
Active automata learning for real-life

applications

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Maik Merten

Dortmund

2013

Tag der mündlichen Prüfung: 09.01.2013

Dekanin: Prof. Dr. Gabriele Kern-Isberner

Gutachter:

Prof. Dr. Bernhard Steffen

Prof. Dr. Reiner Hähnle

Acknowledgements

I want to thank Bernhard Steffen for guiding me during the past five years. Clearly, this dis-

sertation is a result of having being challenged, motivated, and supported in a truly unique

environment, created by the persons that gathered at the Chair of Programming Systems to

create and cooperate.

Thus I would also like to thank my colleagues, and in particular Falk Howar, with whom

I had the pleasure of sharing an office for three years. Hilarity sure ensued, as did pleasant

traveling and countless hours of fruitful discussion.

Last but not least, thanks also go to my family, which was both supportive and patient.

iii

Contents

1. Introduction 1

1.1. Research problems addressed in this thesis 3

1.2. Contributions . 4

1.3. Organization . 5

2. Preliminaries and basic concepts of automata learning 7

2.1. Mealy machines and running example . 7

2.2. Passive automata learning . 11

2.2.1. An algorithm for passive learning 11

2.2.2. Problems with passive automata learning 13

2.3. Active automata learning . 14

2.3.1. The MAT model: introducing the teacher 14

2.3.2. The L∗ algorithm . 14

3. Tools for the real life: LearnLib and LearnLib Studio 19

3.1. LearnLib . 19

3.1.1. LearnLib interfaces for MAT learning 20

3.1.2. LearnLib’s extended MAT model 21

3.1.3. Query batches in LearnLib . 22

3.1.4. Supporting infrastructure . 23

3.1.5. The universality of LearnLib . 23

3.2. LearnLib Studio . 24

3.2.1. The LearnLib Studio modeling approach 24

3.2.2. SIB learning . 27

4. The DHC algorithm 29

4.1. The core of the algorithm . 29

4.2. Algorithm termination . 30

4.3. Refining hypotheses . 30

4.4. Memory consumption . 33

4.5. Number of generated MQs . 35

4.6. Creating query batches . 36

5. Scalability in practice 37

5.1. Practical concerns . 37

5.1.1. Challenges for active automata learning 37

5.1.2. Filter example: The query cache 39

5.2. Distributed learning . 39

v

Contents

5.3. Moving learning into the cloud . 41

5.3.1. Cloud computing and automata learning 41

5.3.2. The WebABC . 43

6. Automated configuration of learning setups 45

6.1. The role of test drivers in active automata learning 45

6.2. Learning setup creation by interface analysis 46

6.2.1. Determining a learning alphabet 47

6.2.2. Interfacing with the target system 47

6.2.3. Dealing with live data values . 48

6.3. The learning setup interchange format by example 49

7. Related Work 53

8. Conclusion and Outlook 57

8.1. Conclusion . 57

8.2. Outlook . 58

A. Selected papers 67

B. Comments on my participation 69

C. Other publications 71

vi

List of Figures

1.1. Software development on the UNIVAC computer system 2

1.2. Overview on presented contributions. 6

2.1. The illustrated state space of the coffee machine. Source: Paper I 8

2.2. Mealy specification of the coffee machine. Source: Paper I 9

2.3. Minimal Mealy machine of the coffee machine. Source: Paper I 11

2.4. Tree constructed according to six input/output traces, nodes colored after

corresponding states (r)ed, (g)reen, (b)lue. 12

2.5. Automaton model constructed from the colored tree in Figure 2.4. 12

2.6. The structure of the L∗ observation table. 15

2.7. A closed and consistent observation table. Source: Paper I 16

3.1. The MAT model components (solid border) and the respective interfaces of

the LearnLib component model (dashed border). 20

3.2. Interplay of basic LearnLib components. 21

3.3. An overview of all basic LearnLib components. 23

3.4. Modeled learning setup with configuration phase and implicit query handling. 25

3.5. Modeled learning setup utilizing the new modeling paradigm. 26

4.1. First steps of DHC hypothesis construction. Source: Paper I 31

4.2. First hypothesis constructed by the DHC algorithm. 31

4.3. Pseudocode of the DHC core algorithm. Source: Paper III 32

4.4. An early stage of the DHC hypothesis construction, corresponding to Figure

4.1(c), with the distinguishing suffix “water button”. Source: Paper I 33

4.5. Memory consumption of the DHC algorithm compared to two L∗ imple-

mentations. Source: Paper III . 35

5.1. Batch sizes for different algorithms implemented in LearnLib. Source: Pa-

per IV . 40

5.2. Scaling of different learning algorithms in a simulated distributed setup. . . 41

5.3. User interface of WebABC, with a modeled learning setup visible. 43

6.1. Architecture of a configurable test driver for active automata learning.

Source: Paper V . 46

6.2. Excerpt of a learning setup for the e-commerce example. Source: Paper V . 50

6.3. Learned model of the e-commerce example. Source: Paper V 52

vii

1. Introduction

Without a doubt, it is fair to say that information technology made tremendous progress

since its original inception. This is an easy to point out fact, given how our daily lives are

obviously augmented with networked computer systems. Most of us find it nigh-impossible

to escape the influence of the modern-day networked lifestyle, considering “offline time”

to be mostly a part of the holiday season or vacations, offering a noticeable change in pace

from everyday life.

While considerable progress has been made in the construction of increasingly complex

systems, mostly by introducing ever more layers of abstraction that are supposed to shield

the engineers from the insurmountable flood of details of modern distributed and inherently

complex systems, it appears that not every facet of software engineering is developing at

the outstanding pace which seems to drive the industry.

As modern software development is mostly a “high level matter”, using high level pro-

gramming languages with rich libraries that facilitate several layers of abstraction, a single

engineer will be hard-pressed to answer questions regarding the exact flow of computation

and data processing. Be it object-relational database mappers, automatic memory manage-

ment or “enterprise-enabled” management containers for business applications: the exact

behavior in all but the most basic scenarios is usually not traceable by engineers employing

these advanced technologies. This means that even isolated systems are not comprehensible

in their entirety.

How much more difficult must it be to comprehend the implications of connecting several

networked systems, all by themselves already only comprehensible on the surface? When

focusing on what uncertainties linger beneath the surface, it must appear almost like a mir-

acle that the very systems that play important roles in our daily lives evidently work - or at

least work most of the time: incidents such as an email service provider employing “cloud

storage” being forced to resort to tape backups to restore user accounts that were wiped by

a software update (which happened to Google Mail in February 2011, [65]) are remarkably

rare.

While this scenario of opaque networked systems may appear dire and intimidating, it

is clear that the continued trend of moving system development onto a “higher level” by

abstracting from the details of computer operation, despite having some undesired side

effects, is an essential enabler for the continued evolution of software-engineering. It is hard

to imagine how a flourishing software industry could have developed if engineers would

have know every single detail of the hardware and basic operating system.

To illustrate this it can help to have a short glimpse on what software construction used

to look like in the early days of automated electronic data processing. The UNIVAC system

is regarded to be the first commercially available computer, introduced in 1951. Programs

for this system were first drawn as algorithmic flow charts, which then were transformed

into a sequence of instructions that subsequently were transcribed onto magnetic tape. The

1

1. Introduction

(a) (b)

(c) (d)

Figure 1.1.: Software development and operation on an UNIVAC system: (a) and (b) show

the manual construction of program flowcharts. Transcription to magnetic tapes

is shown in (c), software operation in (d). Screen captures taken from the ad-

vertisement film “Remington-Rand Presents the UNIVAC”.

instructions would encompass nearly all aspects of managing computing resources and ef-

fecting the actual computation. Debugging of programs was everything but an interactive

process, involving lengthy roundtrips of design, transcription and operation. This develop-

ment process is illustrated in Figure 1.1.

It nowadays appears impractical to create complex software systems in this fashion. How-

ever, as natural artifacts of the archaic development process useful side-products were cre-

ated: the flowcharts of the programs can be considered to be at least a natural precursor of

documentation, enabling other engineers to grasp the overall structure of the program. Of

course, the algorithmic flowcharts already are an abstract view onto the actual computation,

omitting details of machine operation.

Nowadays development of IT systems does not literally have to start at the drawing board.

Nonetheless various modeling approaches, supposed to escort the development process

from start to finish, have been proposed to ease design and documentation, with the in-

tent of enabling creation of high quality software products in a methodical and transparent

matter.

In practice it needs considerable discipline and effort to develop systems that way. Many

systems are created by “hacking”, without an all-encompassing design effort. Programs that

were merely intended to demonstrate the feasibility of a certain approach are developed into

full-scale systems. Legacy systems with a history of neglected documentation are extended

beyond their original design. Documentation is, if at all, usually an afterthought.

2

1.1. Research problems addressed in this thesis

In fact, documentation duties are considered a nuisance amongst many programmers,

which does not impair the ability to succumb to desperate outcries whenever they find doc-

umentation is missing for a system they are supposed to work on.

With system descriptions being usually incomplete or otherwise inadequate, methods to

automatically infer formal models from preexisting systems in a “black-box” fashion, i.e.,

methods that can create formal descriptions even in the aftermath of system deployment,

have immediate appeal. With active automata learning a method emerged in the 1980ies

which shows great potential for creating formal models that can be used for documentation

and testing. Nonetheless adaptation into real-life use has been slow, caused by considerable

resource demands of the underlying algorithms as well as software implementations that

were not focused on the exploration of real-life reactive systems. In this thesis refinements

to algorithms and software implementations will be discussed that were created with the

goal of real-life system exploration in mind.

1.1. Research problems addressed in this thesis

In this section the research problems addressed in this thesis are summarized. The central

question of this thesis is

How can active automata learning be readied for application on real-life systems?

Automata learning is a concept discussed in the literature for decades. Accordingly, the

theoretical framework for learning automata from observations has been in place already

for a considerable time. Nonetheless considerable progress is still being made, e.g., by

increasing the expressiveness of models that can be learned [33].

Despite the ever-increasing theoretical maturity of the field, real-life applications are few

and far between. In part this can certainly be attributed to the lack of ready-made infras-

tructure, e.g., frameworks that support automata learning with the goal of learning realistic

systems. Additionally, the degree of automation in this field is low, meaning that learning

setups have to be instantiated manually and per-system, making this a time-consuming and

laborious undertaking.

To make automate learning applicable to real-life scenarios, following tasks have to be

solved:

Creating an infrastructure for real-life learning: For actual applicability of learning

algorithms by engineers the mere existence of interesting algorithms in literature is not

enough: clearly, the algorithms have to be implemented and readily available as well. This

alone, however, is still not enough, as algorithms should be easily exchangeable within a

given structure, to allow for quick experimentation and evaluation. This calls for a flexible

framework that provides unified access to a selection of pre-implemented and well-tested

learning algorithms.

This framework should abstract from the inner-workings of learning algorithms and pro-

vide an easy-to-use interface.

3

1. Introduction

Apart from integrating learning algorithms, the framework should also provide support

for components that accelerate learning by infusing application-specific knowledge into the

learning process, e.g., so called filters have to find a natural place within learning setups.

In active automata learning, where the learning algorithm can query the target system for

additional information, the number of queries can quickly exceed several ten millions. This

can dominate the required runtime of constructing a model representation of the target sys-

tem, possibly clocking in at several hours or days, which is clearly undesirable. Filters can

dramatically reduce the number of queries that have to be processed, reducing the required

time for learning to conclude accordingly.

Other important components that should fit into the general framework are equivalence

tests, which determine if the learned model is indeed a faithful representation of the target

system. If a mismatch is detected learning will resume creating a more faithful model. Oth-

erwise, the learning procedure is finished. Equivalence tests are central to the correctness

of active automata algorithms and thus have great practical importance.

As the theoretical state of the art in automata learning progresses, e.g., by extending the

expressiveness of models that can be learned, the learning framework should be able to

allow implementation of such algorithms without major changes, meaning the framework

should be engineered along concepts that are shared between many different concrete algo-

rithms and serve as general underpinning of the employed learning method.

While learning frameworks do exist, they fail to offer all-encompassing solutions for real-

life application, e.g., by only offering a set of distinct learning algorithms without presenting

a unified view, including little useful infrastructure or by being cryptic and unintuitive to

use.

Enabling automated learning experiments: Creating application-fit learning setups can

be a time-consuming process, which includes analyzing the target system and determining a

fitting set of configuration options for the actual learning process. This hampers the overall

adoption of learning methods and is a complete deal-breaker in any scenario where arbitrary

systems are to be learned in an automated fashion without manual intervention. Such a

scenario is provided in the Connect project [39], where connectors between systems are to

be synthesized from learned models automatically.

Enabling high-level integration into processes: The construction of models for preex-

isting systems can be part of greater schemes, where, e.g., the constructed models are part of

regression tests or software synthesis (as, e.g., in the Connect project). Thus it is desirable

to employ a service-oriented view onto learning as one part of the solution for a bigger task,

where learning components can be orchestrated as part of an all-encompassing process.

1.2. Contributions

In this thesis my following contributions are presented:

Learning framework and tools: A new Java framework for learning algorithms was

developed, structured after core components of the minimally adequate teacher (MAT)

4

1.3. Organization

paradigm for active automata learning. This framework lays the foundation for the imple-

mentation of both classical and advanced active learning algorithms. This work supplants

an older version of LearnLib that was implemented in C++ and did not feature a strong

component model.

Employing the reworked framework and accompanying algorithm implementations,

LearnLib Studio, a service-oriented integrated environment for modeling and executing

learning setups, was created on top of the jABC [63] framework.

Learning algorithms: A new active learning algorithm that does not employ a traditional

observation table was developed and implemented for the new LearnLib framework. This

algorithm is useful for both didactic and practical uses, being inspired by the structure of

the well-known breadth-first search and clearly separating data structures with distinct pur-

poses, making it easy to tailor configurations with different memory footprint by simplified

externalization.

Scalability of learning solutions: The new LearnLib component model allows for easy

integration of generic or application-specific filters that reduce the overall number of learn-

ing queries to be processed, which is a vital concern when learning real-life systems of

considerable size. The framework integrates means for parallelized and networked execu-

tion of queries, leading the way towards learning setups that are executed within a cloud

environment. Experiments have been conducted that show that formidable time savings can

be achieved by parallelized execution. In addition, a prototypical Software as a Service

(SaaS) application, named the WebABC, was developed that supports modeling and exe-

cuting learning setups in web browsers utilizing scalable cloud computing infrastructure.

Automated configuration of learning setups: Writing test drivers and determining an

application-fit learning alphabet can be laborious and thus time-consuming. A configurable

test driver, containing means to translate between the abstract input- and output-alphabets

of the learning algorithm and concrete system input and output values, was developed. By

means of interface analysis an application-specific configuration for the reusable test driver

can be created, making fully automated learning setups possible.

1.3. Organization

This thesis is structured as follows: In Chapter 2 the theoretical background and formalisms

subsequently used will be discussed, introducing the automaton model predominantly used

in this thesis, followed by the foundations of automata learning. Chapter 3 discusses the

structure of LearnLib, the automata learning library which served as implementation frame-

work for this thesis. This section also introduces LearnLib Studio, a graphical tool for mod-

eling and executing learning setups, built on top of LearnLib. A new learning algorithm

first introduced in LearnLib will be presented in Chapter 4. After sketching challenges of

automata learning in real-life practice and possible solutions in Chapter 5, the automation

of learning setups is discussed in Chapter 6. Related work is discussed in Chapter 7. This

thesis concludes in Chapter 8.

5

1. Introduction

Figure 1.2.: Overview on presented

contributions.

The structure of this thesis reflects the structure

of the contributions.

Innovations to the structure of the underlying

LearnLib framework and surround tools are the

foundation for the following contributions. Sub-

sequent innovation in the algorithm space was re-

alized on top of this reworked learning infrastruc-

ture. With the renovated framework and associ-

ated algorithm implementations, attacking scala-

bility issues of automata learning in general be-

comes the main focus. Lastly, with a learning

stack enabled for real-life applications, the overall effort for producing and executing learn-

ing setups can be decreased substantially by automated configuration of learning setups,

which can potentially drive the adoption of automata learning in practice.

A graphical representation of this structure is provided in Figure 1.2. Variations of this

figure will indicate the location of the respective chapters within this landscape.

Note on references: Subsequent sections will frequently refer to a selection of publica-

tions, denoted as “Paper I” to “Paper VI”. These references are declared in Appendix A.

6

2. Preliminaries and basic concepts of

automata learning

In this chapter, basic concepts will be discussed that establish a background for the contri-

butions discussed in this thesis. This includes a description of the machine model mostly

discussed throughout this work, i.e., Mealy machines, and the overall concept of automata

learning, both in passive and active form.

2.1. Mealy machines and running example

Having formal representations of systems is a prerequisite for verification techniques such

as model checking. In this thesis, system usually refers to reactive systems. A very simple

example system, taken from Paper I, is the following:

Example 1 (A coffee machine) Let us consider a very simple reactive system: a coffee

machine. This machine has an assessable user interface, namely a button which starts the

production of delicious coffee. However, before the production of this precious fluid can

commence, a water tank (filled with water) and a coffee pod have to be put in place. After

every cup of coffee produced, the machine has to be cleaned, which involves the removal of

all expendables. Thus the operations possible on the machine are “water” (fill the water

tank), “pod” (provide a fresh coffee pod), “clean” (remove all expendables) and “button”

(start the production of coffee).

One single flaw that escaped product testing, however, is that the machine will imme-

diately enter an error state on any mishandling. If, e.g., the button for coffee production

is pressed before a complete set of expendables is filled in, an error will be signaled that

cannot be overcome using the conventional interaction operations described above. This

explains the lukewarm reception by consumers and in turn the affordable price of the ma-

chine.

The state space of the machine is readily observable (see Figure 2.1), as is the output

produced: the machine can be “OK” (“X”) with a user interaction, produce coffee (“K”),

or express its dissatisfaction with the way it is operated by signaling an error (“✷”). �

A very widespread automata model are Deterministic Finite Automata (DFAs), which

model languages, i.e., decide if a sequence of input symbols is recognized as being included

in a target language or not. DFAs are well-studied objects in the field of language theory

that recognize regular languages. Algorithms exist, e.g., for automata products and for

minimization, leading to canonical forms.

In practice, when trying to employ DFAs to model reactive systems, the limitation of

DFAs to merely accept or reject sequences of input symbols poses certain challenges: Most

reactive systems have no natural notion of accepting or rejecting inputs and instead produce

7

2. Preliminaries and basic concepts of automata learning

(a) empty (b) with pod (c) with water

(d) with pod and water (e) success (f) error

Figure 2.1.: The illustrated state space of the coffee machine. Source: Paper I

reactions from a – sometimes large – domain of possible values, i.e., an output alpha-

bet. For instance, the coffee machine example already possesses three observable outputs.

One way to cope with this problem is to explicitly encode all expected pairs of input- and

output-symbols into the alphabet Σ and to denote the production of an input/output-pair by

transitioning into an accepting state.

This construction, obviously, is tedious and verbose. To make matters worse, the resulting

model does not exactly lend itself to easy comprehension, due to being inflated by the very

construction principle. Clearly, a more fitting model for reactive systems is desirable.

It turns out that Mealy machines are a much better fit for reactive systems:

Definition 1 A Mealy machine is a tuple 〈S , s0,Σ,Ω, δ, λ〉 with:

- S , a finite set of states, also called locations,

- s0 ∈ S , the initial state,

- Σ, a finite set of input symbols, the input alphabet,

- Ω, a finite set of output symbols, the output alphabet,

- δ : S × Σ → S , a function specifying the transitions for every state to its successor

states, and

- λ : S × Σ→ Ω, a function producing an output symbol for every transition.

8

2.1. Mealy machines and running example

a

b c

d d′e

f

pod/X water/X

clean/X
button/✷

water/X

pod/X

button/✷

pod/X

water/X

button/✷

button/K

{water, pod}/X

button/K

{water, pod}/X

clean/X

Σ \ {clean}/✷

Σ/✷

Figure 2.2.: Mealy specification of the coffee machine. Source: Paper I

Intuitively, when providing an input symbol α ∈ Σ, a Mealy machine will proceed into

a successor state as denoted by the δ function and produce an output symbol o ∈ Ω while

doing the transition, as denoted by λ. Both δ and λ can be extended in an intuitive way to

also process non-empty sequences (words) of input symbols w ∈ Σ+ by successive applica-

tion to every symbol in the input word. In this thesis both versions of these functions will

be used, depending on context.

It is apparent that Mealy machines are a conservative extension of DFAs, with the key

differences being:

- Instead of being restricted to {+,−} as output alphabet, arbitrary finite sets are possible

with Mealy machines.

- The “output” of the machine is a property of the transition taken, not of the state

entered.

The freedom of defining application-fit output symbols significantly eases modeling real-

life systems. One notable property that does not change when going from DFAs to Mealy

machines, however, is the class of languages that can be expressed: every DFA can be

transformed into a Mealy representation (this is trivial) and every Mealy machine can be

represented by a DFA (by means of the cumbersome construction outlined above, where

the input alphabet consists of pairs of input and output symbols).

Example 2 (The coffee machine Mealy model) The behavior of the coffee machine de-

scribed in Example 1 can be specified as Mealy machineMcm = 〈S , s0,Σ,Ω, δ, λ〉, with

9

2. Preliminaries and basic concepts of automata learning

- S = {a, b, c, d, d′, e, f }

- s0 = a

- Σ = {water, pod, button, clean}

- Ω = {X,K,✷}

The model presented in Figure 2.2 defines the output- and transition-function. �

For algorithms constructing automata models, the definition of equivalence between

states is of great importance. For Mealy machines, equivalence between states is defined as

follows:

Definition 2 Two states sa, sb ∈ S of a Mealy machine are equivalent if both states show

exactly the same behavior for all futures, i.e., every input word w ∈ Σ+ produces the same

output for both:

sa ≡ sb ⇐⇒ λ(sa,w) = λ(sb,w) ∀w ∈ Σ+

In automata models, states can be identified by the words that reach them, i.e., by their

access sequences. Thus this notion of state equivalence can be related directly to the Nerode

relation on languages:

Definition 3 Two words x, y ∈ Σ∗ are considered equivalent by the Nerode relation on the

language L if for any suffix z ∈ Σ∗ the concatenations xz and yz are either members or

non-members of language L:

x ∼L y ⇐⇒ (∀z ∈ Σ∗ : xz ∈ L⇐⇒ yz ∈ L)

With this relation, equivalence classes on words can be defined:

Definition 4 For x ∈ Σ∗, the equivalence class [x] is defined as

[x] = {y ∈ Σ∗ | x ∼L y}

Applying the Nerode equivalence classes, all states whose access sequences are in the

same equivalence class are considered equivalent. Thus the number of states in the minimal

automaton representation for a given language L equals the number of Nerode equivalence

classes. In fact, a language is only regular if a finite state acceptor can be constructed, i.e.,

the number of equivalence classes is finite (Myhill-Nerode theorem, cf. [52]).

Referring again to the coffee machine example illustrated in Figure 2.2, it can be observed

that the states d and d′ produce the same output behavior for all futures. This means that

these two states are equivalent according to the specification of state equivalence for Mealy

machines. Thus, the states d and d′ can be merged, resulting in a minimal Mealy machine

representation displayed in Figure 2.3.

The concept of (non-)equivalence of states is a very fundamental principle for automata

learning. By identifying states by means of prefixes (i.e., their access sequences) and prov-

ing inequality by diverging output on suffixes (their futures), the state space of the model

under construction can be built and successively refined as new data is gathered.

10

2.2. Passive automata learning

a

b c

d e

f

pod/X water/X

clean/X
button/✷

water/X

pod/X

button/✷

pod/X

water/X

button/✷

button/K

{water, pod}/X

clean/X

Σ \ {clean}/✷

Σ/✷

Figure 2.3.: Minimal Mealy machine of the coffee machine. Source: Paper I

2.2. Passive automata learning

In automata learning two distinct, but complementary, branches have emerged, each pos-

sessing unique advantages and disadvantages: passive learning and active learning.

Passive automata learning constructs automata representations of prerecorded behavioral

traces of systems. Each trace is composed of input symbols, denoting stimuli the system

was exposed to, and corresponding output symbols denoting the system’s reaction to the

input symbols. One example for a typical source of such traces are system logs which were

created during normal operation of a system.

2.2.1. An algorithm for passive learning

One simple way to create deterministic automata models from prerecorded traces is illus-

trated in Figure 2.4: the traces are used to construct a data structure resembling a prefix tree.

Nodes in this tree are associated with states in the automaton model to be constructed, with

edges between nodes denoting state transitions for a given input symbol, producing one

output symbol in the process. The mapping between nodes and associated states is deter-

mined by solving a graph coloring problem, where following rules are applied to generate

deterministic automata models:

- All nodes associated with the same color produce the same output symbol for any

given input symbol.

- For any given input symbol, the transition function for all equally colored nodes tar-

gets successors with the same color.

11

2. Preliminaries and basic concepts of automata learning

pod/X, water/X, button/K, pod/✷

pod/X, button/✷, water/✷, water/✷

button/✷, pod/✷, button/✷

button/✷, button/✷, water/✷

pod/X, water/X, water/X

pod/X, water/X, pod/X

r

r b

g b r b

r r b b b b

r b

pod/X button/✷

water/X button/✷ pod/✷ button/✷

pod/X

water/X

button/K water/✷ button/✷ water/✷

pod/✷ water/✷

Figure 2.4.: Tree constructed according to six input/output traces, nodes colored after cor-

responding states (r)ed, (g)reen, (b)lue.

r

g b

pod/X

water/X button/✷

{pod,water}/X

button/K

pod/✷

{water, button}/✷

Figure 2.5.: Automaton model constructed from the colored tree in Figure 2.4.

12

2.2. Passive automata learning

Figure 2.5 shows the final result of the automaton model construction process for the

traces given in Figure 2.4. As can easily be seen, the model can successfully reproduce the

traces that were provided as construction input and can also serve as a predictor for as-of-

yet unseen behavior. Seen from this perspective, the presented approach appears to be a

complete and resounding success. However, this construction method is not without its fair

share of problems, as will be discussed in the following.

2.2.2. Problems with passive automata learning

One issue with the presented approach is the runtime complexity. It is well-known that

the graph-coloring problem is NP-complete. Thus, constructing a minimal solution to this

problem can have undesirable runtime properties. In fact, it has been shown that construct-

ing minimal automata from provided data is in general NP-complete [26] and not merely an

artifact of the concrete approach chosen here. This high complexity means that two conflict-

ing interests arise: the more data (in the form of system traces) is provided, the better are

the chances that enough information is contained to construct an accurate model. However,

this also makes finding an accurate solution increasingly difficult.

Another issue is that the produced result is ambiguous. In the graph coloring phase of

model construction several alternatives exist that are not in contradiction to the construction

rules. For instance, in Figure 2.4 the node that is reached by the input trace “button, pod”

is colored red. This decision, however, is arbitrary, as, e.g., that particular node could just

as well be colored blue. This has direct impact on the constructed automata model: the

predictions the model produces can change significantly, depending on arbitrary choices

during the construction process.

This issue makes it hard to judge the actual quality of the produced model as a predictor

for future, i.e., of yet unobserved, behavior of the targeted system. Only once additional

traces are collected from the target system and subsequently compared to model predictions

the quality of the constructed model can be assessed.

It is important to note that this problem does not stem from a sloppy construction ap-

proach, but is instead caused by gaps in system knowledge contained in the traces employed

as construction input: there is not enough information to construct an unambiguous solu-

tion. Referring to the example above, both decisions (either coloring the mentioned node

red or blue) are completely valid given the provided information.

With additional system-specific information it may be possible to introduce additional

construction rules aimed at procuring a result that is more likely to resemble the actual

model representation of the target system, but in the end any such approaches still remain

heuristic in nature. As such, it remains difficult to make informed statements on the accuracy

of the produced automata model.

To produce models with ascertainable properties, it has to be assured that enough infor-

mation on the target system is provided so that no ambiguity remains in the construction

process. This can be achieved by producing “characteristic” traces that leave no room for

uncertainty [20]. In practice, however, when learning actual real-life systems, it is hard to

produce traces that indeed are characteristic.

Another idea is to request additional information wherever ambiguity exists. This is the

approach chosen by active automata learning.

13

2. Preliminaries and basic concepts of automata learning

2.3. Active automata learning

Active automata learning is often associated with Dana Angluin’s seminal algorithm L∗ [6].

Angluin introduced the concept of a minimally adequate teacher (MAT), which provides in-

formation about the System Under Learning (SUL) so that accurate construction of models

can be guaranteed.

2.3.1. The MAT model: introducing the teacher

In the MAT model of automata learning, the teacher can answer two distinct sorts of queries.

As the focus of this work is on learning automata models for reactive systems, all for-

malisms will be provided according to the definition of Mealy machines which was given

in Section 2.

- Membership Queries (MQs): Provided a sequence of input symbols, the teacher will

return system output accordingly. This means that for an input word w ∈ Σ+ the

teacher will produce MQ(w) ∈ Ω+.

- Equivalence Queries (EQs): Provided a learned Mealy machine hypothesis MH =

〈S H , sH
0
,Σ,Ω, δH , λH〉, the teacher will produce a counterexample c ∈ Σ+ that pro-

duces output on Mh that is different from the output produced on the correct Mealy

machine representation of the target system MS = 〈S S , sS
0
,Σ,Ω, δS , λS 〉, i.e., λH(c) ,

λS (c). If MH and MS are equivalent, meaning that the learned hypothesis is an accu-

rate representation of the target system and thus no such c ∈ Σ+ exists, no counterex-

ample will be produced.

Using these two types of queries, algorithms in the MAT model can be separated into two

distinct phases:

1. construction of a hypothesis automaton using MQs

2. validation of the hypothesis using EQs

These phases are executed in turn. If a counterexample was produced via EQ in the

second phase, the first phase will be resumed, constructing a refined hypothesis model. If

no counterexample is produced, the learning procedure terminates. Given that EQs will

only produce no counterexample if the learned hypothesis model is correct, it is easy to see

how this procedure is trivially partially correct, as the procedure will only terminate with a

correct result.

In the following, the L∗ algorithm will be sketched as one example of algorithms follow-

ing the MAT model. An in-detail construction analysis of L∗ is provided in Paper I.

2.3.2. The L∗ algorithm

As described above, the states of an automaton can be characterized by sets of words in the

following fashion:

1. By prefixes that reach a specific state, i.e., its access sequences, and

14

2.3. Active automata learning

Figure 2.6.: The structure of the L∗ observation table.

2. by an additional set of suffixes that denote state transitions.

Angluin’s L∗ algorithm organizes these pre- and suffixes in a data structure called ob-

servation table. In this table, which is illustrated in Figure 2.6, prefixes (that in effect are

access sequences to states) are organized in rows, while the columns are dedicated to suf-

fixes (and thus state transitions). The cells in the table represent output behavior for a given

state and a given transition and are filled by means of MQs, with the query word being the

concatenation of the pre- and suffix for the given cell.

Rows with the same cell content, i.e., states that show the same output behavior for all

suffixes, are considered equivalent by the L∗ algorithm.

The observation table is split in two halves: the upper half contains all rows associated

with access sequences belonging to established states; the lower half contains all rows be-

longing to the transition successors of the states of the upper half. Any new states discovered

in the lower half (i.e., a row with content that is not already present in the upper half) will

be moved to the upper half.

Algorithm termination

L∗ will terminate once the observation table is closed and consistent. These two properties

are defined as follows:

- An observation table is closed if all transitions lead to already established states.

Closedness is established by moving all new discovered states into the upper half

of the observation table and exploring their successors, filling the observation table

accordingly.

15

2. Preliminaries and basic concepts of automata learning

- An observation table is consistent if all rows (i.e., states) with the same row content

(i.e., states that are considered equivalent) have equivalent successors for every tran-

sition. If an observation table is not consistent, this means that at least one state has

two distinct successors for one transition, i.e., the automaton shows nondeterminism.

Inconsistency is resolved by adding suffixes witnessing inequality of offending states.

If the observation table is closed and consistent, a deterministic conjecture can be con-

structed. An example is provided in Figure 2.7, showing the observation table correspond-

ing to the first hypothesis produced when learning the coffee machine. It can be observed

that only two states were identified, while the target system possesses six states, demon-

strating the need of a refinement mechanism.

D

water pod button clean

Sp
ǫ X X ✷ X

button ✷ ✷ ✷ ✷

Lp

water X X ✷ X

pod X X ✷ X

clean X X ✷ X

button · water ✷ ✷ ✷ ✷

button · pod ✷ ✷ ✷ ✷

button · button ✷ ✷ ✷ ✷

button · clean ✷ ✷ ✷ ✷

Figure 2.7.: A closed and consistent observation table. Source: Paper I

Refining hypotheses

Every conjecture will be subjected to verification by means of an EQ. If a counterexample is

found, Angluin’s L∗ will add rows for all prefixes of the counterexample. As the counterex-

ample will reach at least one state which was wrongfully identified as equivalent to another

state (but is evidently not, as witnessed by the diverging output), this means that the table

will now be inconsistent. This inconsistency will be resolved by introducing new suffixes

as described above.

In short, refinement of the hypothesis will be achieved by introducing new rows and – in

turn – columns to the observation table. To achieve closedness of the observation table, new

MQs will be generated, filling the new table cells.

Memory consumption

The observation table will store the results of every MQ generated by the learning algorithm.

It can be proved that the maximum number of MQs generated by a learning setup utilizing

an optimized version of the L∗ algorithm with improved counterexample handling is O(n2k+

k2n+n log(m)), where n is the number of states in the automaton representation of the SUL,

k is the size of the alphabet and m is the length of the longest counterexample discovered

by an EQ (cf. Paper I).

16

2.3. Active automata learning

The n log(m) term is due to an advanced strategy of counterexample evaluation and does

not contribute to the memory consumption of the L∗ core algorithm. Nonetheless, being

quadratic in memory consumption regarding the size of the target system and its alphabet,

the L∗ algorithm can quickly consume undesirable amounts of system memory. This can

severely restrict the maximum size of systems that can be explored by this algorithm as

originally proposed by Angluin. Refinements to the basic algorithms, however, can in prac-

tice dramatically reduce the memory consumption encountered in real-life examples, e.g.,

by organizing the observation table data structure so that only one table row is allocated per

discovered state, avoiding duplicate row contents.

17

3. Tools for the real life: LearnLib and

LearnLib Studio

Although, as mentioned in the introduction, both the theoretical foundations of automata

learning and learning algorithms based on the MAT paradigm have been known for a con-

siderable amount of time (the former being based on language theory and especially the

Nerode relation described in 1958 [52], the latter having been introduced by Angluin in

1987 [6]), the application on real-life systems is comparatively recent.

Likely reasons include the demands of real-life

learning scenarios on computation and memory

resources, only becoming satisfiable decades after

the initial conception of the underlying concepts.

Other factors may include the lack of easily avail-

able and robust algorithm implementations and

supporting infrastructure.

This chapter describes the LearnLib, a library

of learning algorithms and supporting infrastruc-

ture, and LearnLib Studio, a modeling and execution environment for learning setups. In

the overall scheme of things, these components lay the foundation for other contributions

presented in this thesis.

3.1. LearnLib

To make automata learning useful in practice, robust and versatile implementations of learn-

ing algorithms are obviously needed. However, algorithms alone are not sufficient, as sur-

rounding infrastructure is needed as well to allow for quick assembly of learning setups. As

catering both aspects represents a significant investment, having a flexible and thus reusable

library, encompassing as many aspects of active automata learning as possible, has great

value.

To satisfy the need for a flexible and powerful framework for automata learning, the

LearnLib library was developed at the Chair of Programming Systems at TU Dortmund.

Originally having been implemented in C++, the library was subjected to a large scale

reengineering effort by the author of this work. Major goals for this reengineered version

were ease of real-life deployment and modularization of the library to a much greater extend

compared to the preexisting iteration. To achieve these goals, common patterns for all

active automata algorithms had to be identified and transferred into a modular design. The

result is a Java class library achieving high flexibility by condensing learning concerns into

interfaces that allow for easily interchangeable implementations of learning algorithms and

supporting infrastructure.

19

3. Tools for the real life: LearnLib and LearnLib Studio

Figure 3.1.: The MAT model components (solid border) and the respective interfaces of the

LearnLib component model (dashed border).

When analyzing active automata learning setups it is easy to realize recurring patterns that

are shared regardless of the intended scope of application. In the MAT approach, learning

setups have to provide solutions for the following tasks:

- Constructing queries and conjectures, a task which represents the main operation of

any learning setup.

- Determining output for queries, i.e., active interrogation of the SUL, which necessi-

tates means of interacting with the target system.

- Finding counterexamples to disprove inadequate hypotheses. This, again, requires

interaction with the target system in most cases.

- Processing counterexamples, i.e., extraction of information from counterexamples

that enables successive refinement of inadequate hypotheses.

These tasks have to be supported by an infrastructure that offers, e.g., means to assemble

symbols from the learner’s alphabet to queries and to create formal hypotheses. In LearnLib,

components accounting for these basic tasks are standardized via interface contracts, which

will be illustrated in the following.

3.1.1. LearnLib interfaces for MAT learning

The components described in the MAT model can be translated into interfaces encapsulating

the respective functionalities in a straightforward way:

- LearningAlgorithm: This interface encapsulates learning algorithms such as L∗

that pose queries and construct conjectures. The interface specifies methods to start

the construction of queries (and therefore conjectures), to access hypotheses, and to

submit information extracted from counterexamples to the learning algorithm.

- MembershipOracle: Components that provide answers for learning queries are de-

scribed by this interface. Given the clearly defined scope, the interface is comprised

of a single method that receives queries and returns a corresponding response. Test

drivers instrumenting the SUL implement this interface, as do filters that answer

queries with the help of preexisting or accumulated knowledge. An example for

the latter are query caches that try to answer queries from the responses of preceding

queries.

20

3.1. LearnLib

Figure 3.2.: Interplay of basic LearnLib components.

- EquivalenceOracle: Implementations of this interface receive a learned hypothe-

sis and return a counterexample when a mismatch between the learned model and the

SUL is detected. Thus these components implement EQs, usually employing approx-

imative methods.

In Figure 3.1 the relation between the MAT model and the mentioned interfaces is il-

lustrated, while Figure 3.2 shows how these basic components can be combined to create

complete learning setups: a LearningAlgorithm component can be attached to a chain of

MembershipOracle components, implementing, e.g., general or application-specific query

filters or the actual SUL instrumentation. Every component of this chain tries to determine

an answer for the current query, only delegating the query to the next MembershipOracle

component if no answer could be constructed. This way the SUL adapter will only need

to query the actual target system if all preceding filters failed to generate a response, po-

tentially resulting in considerable time savings if invocation of the target system is time

consuming.

As indicated in Figure 3.2, this “pipeline” for processing queries can also be used for

EQs, which often are approximated by means of MQs.

3.1.2. LearnLib’s extended MAT model

When implementing modern learning setups, one can identify an entity that is distinct from

the learner and the teacher that already are present in the classical MAT model. This compo-

nent is concerned with the analysis of counterexamples to ensure their efficient exploitation.

In this area considerable progress has been made over the original conception of the L∗ al-

gorithm.

Departing from the L∗ approach of adding prefixes of counterexamples to the observation

table, subsequent algorithm proposals construct refined hypotheses following the addition

of suffixes of the counterexample to the observation data structure, serving as witnesses

for state non-equivalence. A simple way to ensure that all relevant suffixes are added is

to simply add all suffixes of the counterexample. A less wasteful way of handling coun-

terexamples is to determine which suffixes are essential for hypothesis refinement (and thus

learning progress) and to only add those to the learner’s data structures.

This can be achieved, e.g., by a binary search over the provided counterexample, which

generates additional MQs to pinpoint the exact spot where the hypothesis and the SUL are

in disagreement [60]. With this analysis a single suffix is identified that guarantees learning

progress.

21

3. Tools for the real life: LearnLib and LearnLib Studio

The analysis of counterexamples is encapsulated by the CounterExampleHandler in-

terface in LearnLib. Components implementing this interface can be utilized by different

learning algorithms (for instance, the procedure sketched above was originally proposed as

an extension to the L∗ algorithm, but can also be applied to other algorithms), supporting

the idea that entities concerned with counterexample analysis are distinct from learners.

It is possible to regard counterexample analysis as a task that can be delegated to the

teacher, in addition to answering MQs and EQs. This, however, appears unnatural as an

“analysis query” on counterexamples differs significantly from MQs and EQs already han-

dled by the learner: while the latter two provide information on the SUL, with results being

predetermined by its behavior, the analysis of the counterexamples can yield significantly

different results, depending much more on the strategy employed than on the SUL’s behav-

ior.

Another reason for not attributing counterexample analysis to the learner is that the anal-

ysis methods that have been conceived do not need extended teachers: they gather infor-

mation about the SUL needed for analysis by means of standard MQs. Thus, looking from

a practical standpoint, it appears most natural to regard counterexample analysis as a new

component in the MAT model.

In real-life learning scenarios, where EQs can often be only approximated by additional

MQs, this has interesting implications on the overall information flow: while in the MAT

model as originally conceived there is only one active component (the learner) that queries

the teacher using two types of queries, in practice there emerge two components (the learner

and the counterexample analysis component) that query the teacher only by means of MQs.

3.1.3. Query batches in LearnLib

LearnLib supports a special delivery form of learning queries, the so named query batches.

Batches of queries are collections of several distinct queries, which are emitted at once by a

learning algorithm. It can be advantageous to process batches of learning queries instead of

single queries, e.g., by sorting batches so prefixes of other queries within a batch are queried

last. This can improve the hit rate of query caches and thus decrease the accumulated total

time spent on retrieving query answers.

Another application of query batches is the distribution of queries onto several duplicated

instances of the SUL. In this scenario, which will be discussed in more detail in Section 5.2,

a networked cluster of target systems is utilized to retrieve query answers in parallel. De-

pending on the number of available target systems and the size of generated query batches,

this can drastically decrease the wall clock time consumed for constructing conjectures.

Several learning algorithms in LearnLib support the assembly of learning queries into

batches, filling, e.g., several cells in an observation table at once.

To process batches, an extended version of the MembershipOracle interface exists,

which is named MultiMembershipOracle. Oracles implementing this interface can pro-

cess a set of query words and will return a map data structure where each query is mapped

to its respective output.

22

3.1. LearnLib

Figure 3.3.: An overview of all basic LearnLib components.

3.1.4. Supporting infrastructure

Augmenting the interfaces that devise contracts for algorithmic components, basic data

structures upon which the algorithms can work on have to be provided as well. Of those,

the following ones are the most notable:

- Symbol: Implementations of this interface can be used to, e.g., represent the symbols

of the (often abstract) alphabet the learning algorithm uses for queries as well as the

(concrete) symbols executable on the SUL.

- Alphabet: An alphabet is a set of Symbol objects. Alphabets are used to define, e.g.,

the input alphabet Σ of Mealy machines and thus form the basis for model construc-

tion.

- Word: Words are ordered sequences of Symbol instances. Queries generated by learn-

ing algorithms are instances of Word, as are the corresponding responses created by

MembershipOracle components.

- State and Automaton: To allow for the construction of automaton conjectures,

LearnLib includes a simple automaton library. The Automaton interface specifies

a contract for automaton structures that LearningAlgorithm instances can use to

form and provide hypotheses. For example, the Automaton interface defines that au-

tomaton states are to be represented by State objects, which utilize Symbol objects

to define output and transition functions.

LearnLib includes implementations of these basic interfaces to facilitate learning of re-

active systems, with Mealy machines as targeted formal model. However, it is possible to

implement learning algorithms for other automaton models as well, provided implemen-

tations of the basic interfaces, engineered to cater the needs of the respective automaton

model, are supplied.

3.1.5. The universality of LearnLib

As described in the previous sections, LearnLib is structured according to the principles of

the MAT model. The interfaces have been designed to isolate reusable components, which

23

3. Tools for the real life: LearnLib and LearnLib Studio

can be employed in a wide range of learning setups. As such the framework easily sup-

ports learning algorithms such as L∗ or Observation Packs [32], with, e.g., counterexample

analysis strategies being exchangeable between algorithms. An overview of the component

concept is provided in Figure 3.3.

The first learning algorithms implemented within the new LearnLib component model

were geared towards learning Mealy machine models of reactive systems. Testimony to the

overall flexibility of the LearnLib framework is the arrival of algorithms that learn models

as Register Automata (RAs, [17]), which extend the expressiveness of models over Mealy

machines. The learning algorithm for RAs is formulated as MAT learner, meaning that

the very same principles apply. Thus it was possible to fit an implementation of this algo-

rithm into the framework merely by creating extended implementations of the supporting

model infrastructure, such as Automaton or Symbol, to accommodate the extended ma-

chine model of RAs. The introduction of Register Automata to LearnLib was a subject of

Paper II.

3.2. LearnLib Studio

LearnLib is augmented by LearnLib Studio, which allows for graphical composition of

learning setups. Based on jABC [63], an environment for model-based development of

software, LearnLib Studio makes components included in LearnLib available as easy to use

graphical building blocks (known as SIBs in jABC nomenclature), from which complete

learning setups can be created.

The rationale behind developing a model-based construction approach for learning setups

is that in real-life situations, the learning procedure cannot in general be considered as

a standalone entity. Quite contrarily, active automata learning exists in an entanglement

with surrounding systems, most notably, of course, the SUL. In cases where several SUL

instances are used to allow for parallelized processing of learning queries, the management

of these systems becomes its very own concern that has to be handled. Also, e.g., when

employing automata learning as part of regression testing during software development, the

repeated execution and evaluation of learning setups has to be accomplished as well.

Service-oriented orchestration, supported by jABC, can be employed to solve these man-

agement issues. As such, it makes sense to make LearnLib components available as service-

oriented building blocks as well, which is the main premise of LearnLib Studio.

3.2.1. The LearnLib Studio modeling approach

In the literature active learning algorithms are described as entities that interrogate oracles

to satisfy arising data needs. It is most straightforward to implement learning algorithms

according to this view: once the learning setup is instantiated, control is given to the core

learning algorithm, which defers generated queries to an oracle.

This approach can easily be transferred into a modeling view: the modeled learning setup

first instantiates and configures all involved components, and then starts the actual learning

procedure, which proceeds to form a hypothesis. In this view, the interrogation of the tar-

get system is done implicitly according to the setup chosen in the configuration part of the

model, and not modeled explicitly. A corresponding modeling approach was employed in

24

3.2. LearnLib Studio

Figure 3.4.: Modeled learning setup with configuration phase and implicit query handling.

early versions of LearnLib Studio, which is illustrated in Figure 3.4: the first steps of the

learning process are concerned with creating a fixed setup (“Configuration”), not dissimilar

to the learning “pipeline” concept shown in Figure 3.2. The setup is subsequently exe-

cuted (“Learning loop”) and the results of the execution phase are subsequently exported

(“Export”).

Apart from very simple learning setups, this modeling approach leaves much to be de-

sired, as the actual interrogation is done in seclusion, accomplished in an opaque way ac-

cording to the fixed preset configuration. This precludes, for example, the ability to model

per-case reactions to individual learning queries.

Due to the limitations of the original modeling approach, LearnLib Studio was outfitted

with a new modeling paradigm, first described in Paper II. As can be seen in Figure 3.5,

the strict phase-oriented structure of the original approach was abandoned. Instead of a

configuration phase it is, e.g., sufficient to specify a learning alphabet, after which a learn-

ing algorithm is engaged. The queries produced by the learning algorithm are processed

individually, enabling fine-grained handling of queries on a per-case basis, as is the case in

Figure 3.5, where the number of queries for the target system is decreased by first effecting

a cache lookup before eventually asking the SUL for an answer in case of a cache miss.

For being able to implement such a modeling paradigm, the model has to be in control

at all times. This means that, e.g., the model has to control when queries are generated

and also has to describe how these queries are answered. This, at first, seems to clash with

the conventional view onto active learning, where the core learning algorithm is in charge

of emitting queries without external control. However, it is possible to execute the core

learning algorithm within its own control flow (e.g., by means of multithreading) and have

25

3. Tools for the real life: LearnLib and LearnLib Studio

Figure 3.5.: Modeled learning setup utilizing the new modeling paradigm.

26

3.2. LearnLib Studio

the generated queries buffered in a “query pool”. The model of the learning setup then

can retrieve queries whenever called for, and proceed to process them freely according to a

modeled strategy, with system interrogation being fully transparent at model-level.

3.2.2. SIB learning

LearnLib Studio is not restricted to merely modeling learning setups. Being based on jABC

technology, it can be outfitted with additional plugins and SIB libraries to control arbitrary

systems. For instance, by employing a specialized SIB palette web applications can be

controlled by process graphs.

In case of web applications, specialized browser plugins can record user interactions

and subsequently translate those into process graphs composed of individual steps, i.e., a

sequence of fittingly parameterized SIBs. Coupled with the execution facilities of jABC and

surrounding management processes, powerful test suites can be assembled and orchestrated,

e.g., for regression testing.

Once a suite of test cases is assembled, LearnLib Studio allows for generating automata

models. This can be achieved by selecting interaction SIBs or complete test cases and using

those as alphabet for active automata learning. The learning procedure then utilizes the

execution resources of the jABC to pose membership queries to the target system.

By constructing the learning alphabet from executable SIBs and process graphs, the re-

sulting models themselves are composed of executable building blocks, enabling direct ex-

ecution. The potential of combining static test suites and dynamically learned models has

been demonstrated in Paper VI (which employs an early precursor of LearnLib Studio),

while the idea of basing learning alphabets on SIBs has also been explored in [8] and [9].

Apart from being executable, those SIB models can also be subjected to analysis by

model checkers such GEAR [7]. With model checking it possible to assert properties such

as that, e.g., protected areas within a web applications are only accessible via a login pro-

cedure. The learned models can also be used to generate further tests, in the end coming

full circle, but with refined documentation of the target system, asserted properties and ad-

ditional tests.

27

4. The DHC algorithm

While LearnLib implements a variety of well-known learning algorithms, it also im-

plements a new and unique algorithm which is discussed in detail in Paper III.

This new algorithm is easy to follow, sepa-

rates data structures for observation storage and

hypothesis construction, and can generate big

batches of learning queries that can be executed in

parallel. It emerged during the effort of rethinking

the overall structure of learning procedures that

lead to the reengineering of the LearnLib frame-

work (as described in Chapter 3) and was first im-

plemented within the freshly laid out component

model.

4.1. The core of the algorithm

In contrast to the L∗ algorithm, the DHC algorithm does not employ an observation table to

organize information gathered on the target system and from which conjectures are formed.

Instead, the algorithm directly constructs an automaton hypothesis. Hence the name of this

algorithm: Direct Hypothesis Construction (DHC). Hypothesis construction works along

the concepts of completeness and output signatures, which are defined as follows:

Definition 5 A state is called complete if an output symbol is determined for all transitions,

i.e., for all symbols of the input alphabet. A hypothesis is complete if all of its states are

complete.

Definition 6 The ordered set of output symbols produced by a state in response to input

symbols is called output signature. The output signature of a state is only well-defined once

the state is complete.

The general idea of the DHC algorithm is to explore the target system in a breadth-first

manner and to construct a hypothesis model in the process. As states are visited, MQs are

composited by concatenation of the states’ access sequences in the hypothesis model with

symbols from the input alphabet, which serve as suffixes denoting transitions. The output

produced by the SUL is annotated at state transitions accordingly. These steps ensure that

every visited state is completed and thus possesses a well-defined output signature.

States with equal output signatures, also called siblings, are considered to be equivalent

and thus merged into a single state by the DHC algorithm. If a freshly explored state is

not considered equivalent to a preexisting state (which means that a new system state was

29

4. The DHC algorithm

discovered, witnessed by a new output signature), successor states for all transitions are

enqueued for future exploration.

The breadth-first nature of the DHC algorithm can be observed in Figure 4.1, which

illustrates the basic construction steps according to Example 1 introduced in Section 2.1.

The hypothesis at first only consists of the incomplete starting state, which is completed

using membership queries. This results in new incomplete states that are completed using

additional queries. In this example the leftmost successor of the starting state shows the

same output behavior after completion, which results in this state being merged with the

starting state.

An overview in the form of pseudocode is provided in Figure 4.3.

In a sense this construction can be related to the construction of a hypothesis from a

tree-like data structure discussed in Section 2.2 for passive learning. The notion of state

completeness, however, avoids the ambiguity problems discussed in the context of passive

learning algorithms. Another difference is that folding of the model is done directly during

construction, not as a form of postprocessing on gathered observations.

4.2. Algorithm termination

The DHC algorithm will terminate once the queue of states to be explored is empty. This

happens when no non-equivalent states are discovered, i.e., if the output signature of every

freshly explored state matches a previously discovered state.

Given that the automaton representation of the SUL is guaranteed to only possess a finite

number of states (otherwise no finite-state automaton representation is possible), only a

limited number of distinct output signatures can exist, guaranteeing algorithm termination.

4.3. Refining hypotheses

The first hypothesis constructed by the DHC algorithm for the coffee machine example is

displayed in Figure 4.2. It is easy to see that this model is not a faithful representation

of the target system visualized in Figure 2.3. As is the case with all MAT algorithms, the

hypotheses constructed by the learning algorithm are subjected to an equality test by means

of EQs.

If a counterexample was discovered, one of its suffixes can be identified that reveals

diverging behavior for at least one state in the hypothesis model, as mentioned in Section

3.1.2. Rivest and Shapire described a procedure in [60] employing a binary search on the

counterexample to pinpoint the relevant suffix (the procedure is also illustrated in Paper

I within the coffee machine example). The identified suffix is inserted into the learning

algorithm’s alphabet. Subsequently construction of a new hypothesis will be started from-

scratch with the refined alphabet, which includes the new suffix to reveal diverging behavior

between at least two states.

Figure 4.4 demonstrates the effect of adding such a distinguishing suffix. The diverging

output for the distinguishing suffix “water button” at the states s0 and s1 ensures that the

output signatures of these states are different. This prevents the merging of those two states,

in contrast to what happens without a distinguishing suffix in Figure 4.1, where the output

30

4.3. Refining hypotheses

s0

(a) incomplete starting state

s0

s1 s2 s3 s4

pod/X

water/X button/✷

clean/X

(b) starting state completed

s0

s1 s2 s3 s4

s5 s6 s7 s8

pod/X

water/X button/✷

clean/X

pod/X water/X button/✷ clean/X

(c) state s1 completed

s0

s1 s2 s3

pod/X

water/X button/✷

clean/X

(d) former state s1 merged with starting state

Figure 4.1.: First steps of DHC hypothesis construction. Source: Paper I

s0 s1Σ \ {button}/X
button/✷

Σ/✷

Figure 4.2.: First hypothesis constructed by the DHC algorithm.

31

4. The DHC algorithm

1 f u n c t i o n DHC(A l p h a b e t a l p h a b e t) {

2 H y p o t h e s i s hypo = new H y p o t h e s i s () ;

3 Queue w o r k l i s t = new Queue () ;

4 w o r k l i s t . enqueue (hypo . g e t S t a r t S t a t e ()) ;

5

6 w h i l e (w o r k l i s t . i sNotEmpty ()) {

7 S t a t e c u r r e n t S t a t e = w o r k l i s t . dequeue () ;

8 Sequence a c c e s s S e q = c u r r e n t S t a t e . g e t A c c e s s S e q u e n c e () ;

9 f o r (Symbol sym i n a l p h a b e t) {

10 Query que ry = a c c e s s S e q . append (sym) ;

11

12 / / Communicate wi th t h e t a r g e t system , f e t c h o u t p u t symbol

13 Symbol o u t p u t = doMembershipQuery (que ry) ;

14

15 / / s e t t h e t r a n s i t i o n o u t p u t f o r t h e sym i n p u t −symbol

16 / / t o t h e r e t r i e v e d o u t p u t symbol .

17 c u r r e n t S t a t e . s e t T r a n s i t i o n O u t p u t (sym , o u t p u t) ;

18 }

19

20 S t a t e s i b l i n g = f i n d O t h e r S t a t e W i t h S a m e S i g n a t u r e (c u r r e n t S t a t e) ;

21 i f (e x i s t s (s i b l i n g)) {

22 / / r e r o u t e a l l t r a n s i t i o n s t o c u r r e n t S t a t e t o s i b l i n g

23 hypo . r e r o u t e A l l T r a n s i t i o n s (c u r r e n t S t a t e , s i b l i n g) ;

24 hypo . remove (c u r r e n t S t a t e) ;

25 } e l s e {

26 c u r r e n t S t a t e . c r e a t e S u c c e s o r s F o r E v e r y T r a n s i t i o n () ;

27 f o r (S t a t e s u c c e s s o r o f c u r r e n t S t a t e) {

28 w o r k l i s t . enqueue (s u c c e s s o r) ;

29 }

30 }

31 }

32

33 r e t u r n hypo ;

34 }

Figure 4.3.: Pseudocode of the DHC core algorithm. Source: Paper III

32

4.4. Memory consumption

s0

s1 s2 s3 s4 f1

s5 s6 s7 s8 f2

pod/X
water/X button/✷ clean/X

[water, button]/[X,✷]

pod/X
water/X button/✷

clean/X
[water, button]/[X,K]

Figure 4.4.: An early stage of the DHC hypothesis construction, corresponding to Figure

4.1(c), with the distinguishing suffix “water button”. Source: Paper I

signatures match. Note that in Figure 4.4 states reached by distinguishing suffix transitions

are named with a diverging scheme so that the state names in Figure 4.1(c) are also valid

in this figure for quick comparison. The letter “f” is used to express that the distinguishing

suffixes reveal peeks into future behavior. Also note that these states do not need to be

enqueued into the breadth-first exploration queue, as they are guaranteed to be visited by the

successive execution of the singular input symbols of the distinguishing suffix, necessitating

only the exploration of successor states for original input alphabet symbols.

4.4. Memory consumption

The DHC algorithm allows for unparalleled flexibility regarding the memory profile of the

learning algorithm. This is due to DHC being the only algorithm that cleanly separates

following vital concerns:

- The constructed model steers exploration and also represents the hypothesis at any

given time. By its very nature this data structure does not outgrow the minimal rep-

resentation of the SUL and thus denotes the absolute bare minimum of memory re-

sources needed to successfully generate a model.

This compact in-memory representation comes, however, at a price. While L∗ refines

hypotheses by adding new rows and columns to the observation table, keeping all

information already gathered intact, the DHC algorithm resumes construction from

scratch as part of counterexample handling. This means that each refinement itera-

tion will repeat every single membership query from the previous iteration, with new

queries being generated additionally (caused by the new alphabet symbols). Depend-

ing on the time needed by the teacher to answer one MQ, this can add considerably

to the overall time consumed by the learning procedure, if no data structure for ob-

servation storage (i.e., a cache) is employed to filter out repeated queries.

33

4. The DHC algorithm

Storage technology Access times Typical capacity

Hard Disk Drives (HDD) 10−2 s 2000 GB

Solid-state Drives (SSD) 10−4 s 200 GB

Dynamic Random Access Memory (DRAM) 10−8 s 8 GB

Table 4.1.: Approximate access times and storage capacities for various storage technolo-

gies. Typical storage capacities are rough estimates for well-equipped desktop

PCs (September 2012).

- A data structure is utilized to organize future exploration, i.e., a work list. For the

DHC algorithm, being inspired by classical breadth-first search, this is a simple queue

of yet unexplored states. Given that these unexplored states can only be children to

freshly discovered states, a memory conserving alternative to directly enqueuing these

unexplored states is to enqueue only the parent state. Subsequently, the children that

originally would have been enqueued can be recovered by iterating over the alpha-

bet. This means that the work list can be implemented in a way so that memory

consumption is bounded by the size of the target system.

- The data structure associating discovered states to their respective output signatures

can easily be implemented as a decision tree. During learning, the output signature

cannot reasonably gain more symbols than states in the final hypothesis, meaning that

worst-case memory consumption of this structure can be estimated to be dominated

by O(n(n+ 1)/2), while in practice the memory consumption seems to be much more

benign as distinguishing suffixes usually result in more than one state being split.

Being subject to regular access patterns, the decision tree can be organized for mass

storage devices in cases where this data structure grows in a less good-natured way.

- Observation storage can either be omitted (in cases where repeated membership

queries are inexpensive) or be delegated to a cache, which can either reside in sys-

tem memory or be externalized. Again, a decision tree can be used as underlying

data-structure, which can easily be maintained on external storage.

In summary, DHC offers unique possibilities to optimize the memory profile for the ap-

plication in mind, balancing speed and storage needs. This is achieved by clear separation of

concerns between data structures, whose simplified data access patterns enables easier ex-

ternalization than a “one structure fits all” observation table. As presented in Figure 4.5, the

DHC algorithm can achieve memory consumption scaling with the number of discovered

states, which compares favorably to L∗.

Modern computer systems employ a hierarchy of different storage technologies. As a

rule of thumb fast storage technologies (such as DRAM) are expensive and thus in practice

limited in capacity, while cheap storage technologies (such as HDDs) can offer abundant

capacity. As illustrated in Table 4.1, the differences in access times between fast and slow

storage span several orders of magnitude, as is the case for the typical storage capacities.

By separating the various storage concerns into distinct data structures, the DHC algo-

rithm makes it possible to make use of the various levels of the memory hierarchy according

to the respective properties. For instance, the constructed hypothesis is rather compact and

34

4.5. Number of generated MQs

Figure 4.5.: Memory consumption of the DHC algorithm compared to two L∗ implementa-

tions. Source: Paper III

is accessed and modified rapidly by the learning algorithm. Observation storage, however,

may consume considerable storage space, but is less performance critical as even an ex-

ternalized data structure for observation storage on a (comparatively slow) hard drive can

be significantly faster than actually querying the SUL. The other data structures fall in-

between those two extremes regarding access frequency and size and thus can be fitted into

the memory hierarchy according to the resources at hand.

4.5. Number of generated MQs

In Paper I the worst case number of MQs generated by DHC during a complete learning

run is given as O(n3mk + n2k2), where n is the number of states, k the size of the original

alphabet Σ, and m the length of the longest counterexample. This assumes that all suffixes

of a counterexample are added to the learner’s alphabet instead of just one suffix per coun-

terexample as discussed in Section 4.3. Another assumption is that no observation storage

is used to filter out repeated queries.

When analyzing an optimized version, following examinations can be made for the last

DHC iteration, i.e., the iteration that yields an adequate system model: The size of the

learning alphabet cannot exceed k+n, as there can only be n counterexamples, each yielding

one additional distinguishing suffix. The learning algorithm cannot discover more than n

unique states, each necessitating k + n queries for completion. As it suffices to explore

only successors reached by symbols of the original alphabet S , each unique state has k

successors that need to be completed with k + n queries. This means that the worst-case

number of membership queries generated by the last iteration is n(k + n) + nk(k + n), which

is O(n2k + nk2). This is also the number of MQs that the SUL has to process if a data

structure for observation storage (i.e., a cache) is employed to filter out repeated queries,

35

4. The DHC algorithm

otherwise the number of queries can be estimated to be O(n3k + n2k2), as there are at most

n iterations.

Analysis of counterexamples by means of binary search consumes log(m) MQs per coun-

terexample, meaning that a complete learning setup utilizing the DHC algorithm with ob-

servation storage will consume O(n2k+nk2+n log(m)) queries. This is the same estimate as

provided for an optimized L∗ algorithm in Paper I, indicating that the DHC algorithm can be

configured to be as efficient regarding MQ numbers as optimized conventional algorithms.

4.6. Creating query batches

As described in Section 3.1.3, LearnLib supports processing several membership queries at

once to optimize filter efficiency or to distribute queries within a networked cluster of SUL

instances.

To take advantage of this mode of operation it is necessary that the employed learning

algorithm and its concrete implementation within the LearnLib framework support creating

such queries. Furthermore, to make best use of this mode of operation it is desirable that

batches contain as many queries as possible, e.g., to be able to assign at least one work item

per network node.

Generating batches is exceptionally easy for the DHC algorithm, as at any time it is

possible to generate queries for all enqueued states in the work list. For comparison, the L∗

algorithm is structured in phases of resolving unclosedness and inconsistencies, which limit

the potential for assembling learning queries. The efficiency of various learning algorithms

in a parallel and distributed environment will be discussed in more detail in Section 5.2.

36

5. Scalability in practice

Even with the availability of flexible and well-structured learning tools, applying automata

learning techniques to real life systems presents challenges which, however, can often be

overcome by means of careful evaluation and adaptation of the learning setup. Some of

these challenges concern time constraints (e.g., learning taking too much time), resource

constraints (e.g., not enough computing resources being available) or constraints regarding

the fitness of the target system for automata learning (ensuring determinism and observa-

tional independence of learning queries).

In this chapter an overview of the most pro-

found challenges will be provided, alongside

strategies for solving the respective problems.

Thus this chapter builds on top of the innovations

regarding the learning framework and algorithms.

5.1. Practical concerns

Regardless of the concrete implementation of ac-

tive automata learning, all learning setups share

common practical concerns which have to be ad-

dressed for successful application of automata learning techniques to real-life examples.

In the following some of these concerns will be discussed, alongside sketches of how to

address them utilizing the infrastructure LearnLib does offer.

5.1.1. Challenges for active automata learning

Even through creating learning setups with LearnLib is easy, successful operation of any

of these setups also depends on “external” factors, many of those regarding the SUL. Thus

challenges remain that have to be overcome before reliable or comprehensive results can be

expected:

1. Determinism: Active automata learning in the sense of Angluin deals with deter-

ministic systems, i.e., that every membership query will return the same result when

repeated. When dealing with reactive systems this means that the same output has to

be produced whenever the same inputs are applied.

It is important to keep in mind that from the point of view of the learner, the test

driver and the SUL are indistinguishable. This means that eventual bugs in the test

driver can introduce problematic non-determinism. The upside, however, is that the

test driver is in the position to produce a deterministic view of an eventually non-

deterministic system. One simple example are timestamps in output messages that

37

5. Scalability in practice

can be removed by the test driver before submitting the query result to the learner.

In this case, the test driver is applying an abstraction step to the output produced by

the SUL. However, this can just as well be accomplished by a dedicated abstraction

facility that is inserted into the MembershipOracle chain depicted in Figure 3.2. In

a similar fashion a test driver can preserve determinism by detecting spurious errors

of the SUL and determining a “correct” result by repeated execution.

2. Reset: The determinism requirement implies that all queries have to be executed in-

dependently from one another – the outcome of succeeding queries may not be influ-

enced by their predecessors. One way to achieve this is to perform a reset procedure

on the target system, which transfers it into a well-defined starting state.

Performing an actual system reset is, at times, challenging. For example, a “target

system” may indeed consist of several networked nodes, each of which has to be in-

cluded into the reset procedure. Even if it possible to consider all involved nodes,

it may be non-trivial to identify the actual subsystems that contribute to the overall

system’s observable state: for example, in many web applications the system state is

solely held in a central database, which means that one can force the system into a

well-defined initial state by importing a previously taken database snapshot. Appli-

cations deployed in a business application server, however, are also influenced by the

state of the container they are executed in.

On a closer look, all that is needed to satisfy the “reset” requirement is that queries

produce no side effects on each another. In practice, many multiuser systems are

designed to service users independently, e.g., by employing a session concept and

containing interaction effects within one session. In these scenarios, all that is needed

to perform a “reset” is to open a new session. This, again, can be seen as a form

of abstraction, where the “abstract” need of observationally independent queries is

concretized into independent sessions on the SUL. This approach of doing reset by

abstraction was first proposed in [1].

3. Execution time: During automata learning, depending on the size of the target sys-

tem, several hundred thousand membership queries may be needed to conclude with

well-formed hypothesis, each query involving actual execution on the system to be

learned and execution of a reset procedure. When considering that each system in-

vocation and system reset may consume several seconds, the dimension of this prob-

lem becomes obvious. Once again referring to Figure 3.2, the query cache and the

MembershipOracle instances implementing application-specific filters aim at an-

swering learning queries without system invocations, saving on execution time.

These concerns can be accounted for by developing application-fit query processors,

i.e., a MembershipOracle component that encapsulate application-specific aspects. For

instance, SUL resets, either actual system resets or abstracted ones, are realized by an

application-fit implementation of the MembershipOracle interface. As already indicated,

the execution time can be decreased by filters that reduce the overall amount of queries that

have to be processed by the SUL. These filters, again, are MembershipOracle implemen-

tations.

38

5.2. Distributed learning

5.1.2. Filter example: The query cache

A query cache is a particularly useful filter for many learning setups. If, for example, the

DHC algorithm is used, the query cache will filter any queries the learning algorithm asks

repeatedly as part of its hypothesis refinement working principle. Given how important

a query cache is for the efficiency of the DHC algorithm, the implementation which is

now available as a reusable component originally started as an internal data structure of

LearnLib’s DHC realization.

However, it was quickly realized that this component is useful in other contexts as well,

which is why the data structure was made generally available. For instance, the cache can

answer all queries without further system interaction that are prefixes to already processed

queries. This is especially useful for learning algorithms that can assemble query batches,

as those can be sorted accordingly.

Another useful property of the cache is that it can detect non-deterministic behavior of

the SUL: as the cache memorizes all queries and their respective outputs, every new query

can be checked against shared prefixes of already stored queries. If the output for any pre-

fix differs from the newly retrieved output, this means that the SUL provided inconsistent

answers, e.g., because of intrinsic nondeterminism or because of an incorrect reset proce-

dure in the test driver. The cache then can signal an appropriate exception, including the

conflicting query outputs for debugging purposes.

The query cache implements the MembershipOracle interface and operates as part of

a chain of components: the cache either can provide an answer for an incoming query, or

simply delegate the query to the next oracle in the chain. Once an answer for the delegated

query arrives, the cache will be updated accordingly.

A suitable data structure for the cache is a decision tree, with nodes that can store output

symbols and which are connected by edges associated with input symbols. In LearnLib,

two implementations exist: one that resides in system memory, and an externalized version

that is stored on hard drives.

5.2. Distributed learning

Although query filters can significantly reduce the number of membership queries that have

to be processed by the SUL [36, 46, 8, 38], for complex systems a high residue of necessary

queries remains. Depending on the speed in which the target system can produce output,

the overall time needed to sequentially process queries can easily become unacceptable.

A possible solution is to create several instances of the SUL, and process several queries

in parallel. For this to work, however, the employed learning algorithm has to generate

several independent queries at once and provide them in batches, as discussed in Section

3.1.3. For maximum effect, the batches have to be big enough as to provide queries for all

SUL instances, meaning that big batch sizes are desirable.

In Paper IV the potential the parallelization potential of different learning algorithms is

investigated. As can be seen in Figure 5.1, the size of batches varies substantially between

algorithms. While the DHC algorithm can generate the biggest batches, their size can fluc-

tuate wildly. The L∗
M

algorithm has a more even distribution, but on average creates smaller

39

5. Scalability in practice

Figure 5.1.: Batch sizes for different algorithms implemented in LearnLib. Source: Paper

IV

batches. While these two algorithms appear to be a good fit for parallelized processing of

queries, the Packs algorithm [32] appears to be much more limited in this regard.

In Figure 5.2 experimental results are provided for a random system with 15 states and 4

input symbols. The experimental setup simulates a scenario where each query is answered

with a delay of 500 ms, which experience shows can easily be reached or exceeded when

dealing with real-life systems. Repeated execution of the experiment revealed that the re-

sults obtained are indeed stable over the course of several runs.

With few threads, i.e., few queries being answered in parallel, the Packs algorithm takes

less time to learn a model than the other algorithms included in this comparison. This can be

attributed to the fact that the Packs algorithm usually generates fewer membership queries

and instead issues more equivalence queries compared to the other learning methods, which

favors the Packs algorithm as equivalence queries immediately return an accurate answer

in this particular experimental setup. Nonetheless, just like the data presented in Figure 5.1

suggests, the Packs algorithm does not scale well with increasing parallelism. In contrast,

both the L∗
M

algorithm and the DHC algorithm scale much more gracefully as they emit

bigger batches of queries. Overall, the DHC algorithm scales best and eventually pulls

noticeably ahead of the L∗
M

algorithm. However, while increasing the thread count gives

near-linear speed increases up to approximately 16 threads in this experiment, subsequent

speedup is much tamer and eventually completely vanishes. Referring again to Figure 5.1,

this can be explained by the non-uniform batch sizes generated by the learning algorithms,

meaning not every batch can take advantage of the added processing resources, leaving

threads idle. Nonetheless, overall, significant time savings can be achieved by processing

queries in parallel, resources permitting.

40

5.3. Moving learning into the cloud

Figure 5.2.: Scaling of different learning algorithms in a simulated distributed setup.

5.3. Moving learning into the cloud

As has been described in the previous sections, utilizing networked systems for automata

learning in the form of, e.g., parallelized and distributed processing of queries can signifi-

cantly accelerate automata learning. Beyond processing queries in a local private cluster of

networked computers, it is also possible to move all concerns of automata learning, from

configuration to execution, onto remote systems. Instead of provisioning local resources,

which can cause considerable expenses, cloud computing can provide such resources as

needed.

The following sections provide a preview on how cloud computing may be utilized to

provide application-fit learning setups on demand.

5.3.1. Cloud computing and automata learning

Comprehensive learning of real-life systems can bind considerable resources:

- Depending on the size of the target system, thousands or hundreds of thousands of

queries are directed at the target system. To generate a result within an acceptable

time-frame, the target system should be able to process several queries per second on

average. This means that adequate resources have to be provided so that the interro-

gated system can operate in a timely fashion. If several SUL instances are to be used

to process queries in parallel as described in Section 5.2, even more resources have

to be made available accordingly.

- The learning algorithm and related components can consume considerable resources

as well. For instance, observation tables such as employed in Angluin’s L∗ algorithm

can quickly consume several gigabytes of system memory, which can limit the size

of the models that can be learned in practice.

41

5. Scalability in practice

In effect this means that employing active automata learning to explore real-life systems

can require significant investments to assemble a setup that can meet all requirements. One

potential solution to cater for these demands is cloud computing [50].

The main idea of cloud computing is to access resources over a high-speed network as

needed, delegating the need to provide and maintain computing infrastructure and services

to specialized providers that can operate cost-efficiently. This concept can provide the fol-

lowing advantages:

- The consumer only pays for those resources that actually have been consumed. The

provider, on the other hand, can even out utilization rates of computing resources due

to a high number of consumers.

- The cost structure is known beforehand to the customer and consumed resources can

usually be monitored in near-realtime. Thus the customer is protected from hidden

costs that can occur when provisioning and operating dedicated resources.

- A single consumer usually only consumes a fraction of the overall resources that can

be provided. Thus it is possible to rapidly react to utilization changes and scale as

needed.

- Cloud services are in general hosted in dedicated data centers. Many big providers of

cloud services operate several geographically distributed data-centers so that local-

ized failures can be compensated by migrating services to another location. This can

increase reliability.

The number of services that can be provided by cloud-computing can be manifold, but

most services can be attributed to one of the following categories:

- Infrastructure as a Service (Iaas): Resources such as computing time and storage

space are provided and accounted for.

- Platform as a Service (PaaS): A software framework is provided that enables access

to cloud resources. Applications that are to be deployed into the cloud have to utilize

this framework to use cloud resources.

- Software as a Service (SaaS): Complete applications are provided to the consumer.

Software maintenance and operation is completely delegated to the cloud provider.

Complete learning setups can easily be instantiated and executed on cloud platforms. A

simple scenario that does not necessitate any software changes is the remote deployment

of virtual machines encapsulating both the learning setup and the SUL. However, such

setups that merely emulate conventional computers do not automatically allocate additional

cloud resources when the need arises. This motivates the development of solutions that are

“native” to the cloud environment and allow for flexible management of cloud resources. In

the following, the WebABC, a SaaS solution for creating and executing modeled learning

setups in a cloud environment, is presented.

42

5.3. Moving learning into the cloud

Figure 5.3.: User interface of WebABC, with a modeled learning setup visible.

5.3.2. The WebABC

Acquiring necessary resources for learning setup execution from cloud vendors instead

of undertaking local provisioning marks a transition from localized learning setups into

a highly networked environment with maximum flexibility and cost transparency. Beyond

the mere execution of learning procedures, owing to advancements in web technology, a

completely cloud-based environment, including a rich user interface for creating setups,

becomes increasingly feasible.

To explore this potential, the WebABC, a web-based re-envisioning of the jABC, was

developed. Currently existing as a prototype, it allows for modeling and executing learning

setups and thus can be seen as web based version of LearnLib Studio. Figure 5.3 provides

a glimpse at what modeling learning solution in WebABC looks like. As can be seen, most

screen space is dedicated to the drawing canvas, with additional UI elements such as the

user chat and SIB parameter inspector being displayed as windows that can be rearranged

according to the user’s needs.

The main rationales for moving the complete infrastructure, including the graphical user

interface and the execution layer, into a cloud environment, are the following:

- Moving into a distributed environment with parallelized processing of queries can

induce considerable management needs for the overall setup. For instance, if several

SUL instances are to be employed, the life cycle of each instance has to be controlled

in accordance to the needs of the learning setup. If, e.g., virtual machines containing

43

5. Scalability in practice

the SUL are to be used, the setup management has to make sure fitting virtual machine

images are distributed, started, subjected to reset procedures as queries are processed,

and finally terminated once learning finishes. The most straightforward approach to

realize this is to execute the management process in close proximity to the managed

entities, i.e., within the cloud environment.

- The execution layer can dynamically scale the allocation of cloud resources according

to user needs and, e.g., replace faulty processing nodes, thereby increasing reliability.

- Providing the user interface as SaaS cloud service provides the users with a ready-

to-go solution, without the need and sophistication of configuring and maintaining

a local setup. In addition, due to the networked nature of the SaaS solution, fea-

tures such as collaborative editing and messaging between users can easily be made

available.

The WebABC demonstrates the feasibility of providing a rich graphical editing envi-

ronment in a SaaS fashion, coupled with a server-side execution layer that is prepared for

extension into the realm of distributed cloud execution.

44

6. Automated configuration of learning

setups

A major obstacle for deployment of active automata learning in real-life contexts is the

effort needed to design and implement application-fit learning setups. In [62], construction

of the learning setup is estimated to have accounted for approximately 27% of the total

effort when learning an embedded system.

Creating a learning setup involves determining a suitable form of abstraction and finding

ways to manage runtime data influencing the behavior of the target system. While the

former has influence on the expressiveness of the finished learned model, the latter is an

immediate concern when interacting with reactive systems, where communication often is

dependent on concrete data values previously transferred. For example, a system guarded

by an authorization system may transport a security token to the client on login, which

subsequently has to be included with any interaction with protected system areas.

The learning setup has to translate abstract

learning queries into concrete requests to the SUL,

which additionally may have to be augmented

with data values. In automata learning, the build-

ing block facilitating the translation is known as

mapper. To allow for a high degree of automa-

tion in automata learning of reactive systems, the

ability to automatically configure this component

is a basic prerequisite. In Paper V an approach is

presented to configure a reusable test driver with a configurable mapper automatically, with

key points being recalled in the following.

6.1. The role of test drivers in active automata learning

In active automata learning, the learning algorithm usually employs an abstracted learning

alphabet, i.e., the symbols used are not directly employable as system input for the SUL.

Thus, some component in the learning setup has to translate from the abstract realm of

learning symbols into the realm of concrete stimuli for the target system. To actually be

able to observe output generated by the reactive system under observation, these concrete

stimuli also have to be fed into the SUL, using whatever means available to interact.

In current practice, hand-crafted test drivers are employed to attend to this task, using

hardcoded translation mechanisms that facilitate the abstraction and concretization steps,

in addition to effecting system interaction and output observation via system-specific inter-

faces. Overall, these manually created constructs do not lend themselves to reuse, leading

to ad-hoc solutions with very limited scopes of application.

45

6. Automated configuration of learning setups

Figure 6.1.: Architecture of a configurable test driver for active automata learning. Source:

Paper V

To alleviate this problem a configurable – and thus reusable – test driver has been devel-

oped for LearnLib, which is illustrated in Figure 6.1.

Following components are visible within the architectural overview:

- A mapper facilitates the translation of abstract learning symbols into concrete input

symbols for the target system. For parameterized abstract input symbols, the mapper

determines fitting runtime values when creating concrete system input. The mapper

is also responsible for abstracting from concrete output values of the SUL into an

abstract output alphabet. Mappers are discussed, e.g., in [41].

- The data value context contains runtime data values and predefined values such as,

e.g., credentials, which have to be provided beforehand. The data value context pro-

vides concrete data values to the mapper to fill out symbol parameters. When ab-

stracting from runtime output values, the mapper will submit these values to the data

value context for future reference.

- The proxy is an exchangeable component that offers a unified invocation interface to

the SUL and returns system output. It maintains a connection to the target system

and allows the test driver to direct queries to the SUL. In case of systems with a Java

interface, the proxy can interact with the system under examination by employing the

Java class reflection API [55], which offers a standardized way to invoke methods.

Given that many target systems have interface descriptions in standardized formats

such as WSDL (Web Services Description Language, for web services [66]) or IDL

(Interface Description Language, for CORBA services [54]) that can be converted

into Java interfaces, this offers a unified means for target invocation.

In the reusable test driver, all three components merely need system-specific configu-

ration instead of per-system modification of the test driver code. As will be sketched in

the following, for many systems this configuration can be derived by means of interface

analysis, paving the way for learning setups with a high degree of automation.

6.2. Learning setup creation by interface analysis

Fitting configurations have to be determined for the mapper, the proxy and the data value

context. This means that the alphabet has to be determined, a means to interact with the

system has to be employed, and a strategy how to deal with runtime data values has to

46

6.2. Learning setup creation by interface analysis

be found. These concerns can be addressed by interface analysis, as demonstrated in the

following.

6.2.1. Determining a learning alphabet

For many systems, the API provided by the system’s developers is a natural source for the

learning alphabet: most APIs are designed to encapsulate concrete system actions behind

an abstract interface, shielding the user from the exact technical implementation. In fact,

this encapsulation of implementation-specific details is a main motivation for defining APIs.

Beyond this encapsulation aspect, API methods also are often concerned with offering con-

cise ways to effect isolated use cases, being structured from a point of view of a user.

This allows for a straightforward way of determining a learning alphabet, which reflects

the abstract view onto the target system as offered by its API:

- For each method of the API an abstract learning symbol is defined, which can, for

instance, aptly be named after the corresponding method. At runtime the mapper

component within the test driver will issue an actual method call whenever encoun-

tering an abstract symbol.

- Each parameter of an API method is taken into account by parameterizing the corre-

sponding abstract learning symbol. At runtime the data value context will be queried

for live data values to fill out these parameters for actual system invocation.

- Return values (i.e., system output) are converted into abstract output symbols by

merely indicating if the corresponding invocation was successful (and thus returned a

data value) or did lead to a system error (for instance, a system exception occurring).

The latter case can be signaled by emitting an abstract “error” symbol, the former by

emitting an output symbol named after the data type of the returned data value. Any

returned data value should be submitted to the data value context for future reference.

The necessary analysis steps can be conducted via the Java class reflection mechanism in

case of Java interfaces. Alternatively, for interface descriptions in WSDL or IDL specialized

parsing tools can be employed. However, tools such as wsimport and idlj (which are part

of the standard Java Development Kit) can convert these interface descriptions into Java

interfaces, making them accessible to the very same analysis mechanism.

6.2.2. Interfacing with the target system

Invoking systems with a well-defined API is generally a trivial task: in case of Java inter-

faces, invocation is usually possible without much preparation by a generic proxy compo-

nent that utilizes the Java reflection API. For cross-platform interface descriptions such as

IDL or WSDL specialized tools can be employed that generate ready-to-use Java classes

that offer means for system invocation, hiding the details of the concrete remote invoca-

tion mechanism. A generic proxy component can then operate on these generated classes

by invoking methods according to their respective names as specified in the configuration,

without manual modification of the proxy itself.

47

6. Automated configuration of learning setups

6.2.3. Dealing with live data values

To be able to invoke parameterized interface methods, fitting runtime values have to be pro-

vided. In many cases, return values provided by one method are needed as input values for

another method. This is, for instance, the case for many authorization schemes, where one

method will generate and return an authentication token which has to be included with ev-

ery subsequent invocation. Such dependencies can be observed in the e-commerce scenario

discussed in Paper V, where the following methods are exposed via a WSDL interface:

- The openSession method expects authentication information and returns a session

token associated with a newly created session. Conversely, the destroySession

methods expects a session token and invalidates the associated session.

- getAvailableProducts returns a list of available products. This method has no

parameters.

- addProductToShoppingCart adds a specified product to the shopping cart asso-

ciated to a provided session token. The emptyShoppingCart method removes all

items from the shopping cart of the specified session, while getShoppingCart re-

turns an object containing references to all contents of the cart.

- The buyProductsInShoppingCart method purchases all items contained in the

shopping cart associated with the provided session token.

Data dependencies between these methods have to be determined automatically to en-

able learning setups without manual intervention. This can be accomplished, e.g., in the

following ways:

- If the analyzed interface is built on top of a type hierarchy, the inter-method data

dependencies can only exist in alignment with the type system, which means that

only those return values need to be considered as possible data dependencies that

match the corresponding parameter type. For instance, in the e-commerce scenario

of Paper V, the method that adds objects typed as “Product” to a shopping cart has a

data dependency on the method that provides a list of available products.

If the interface makes strong use of types, most dependencies between methods can be

ruled out merely by the type concept. Many real-life web services, however, employ a

relaxed type concept, where data values are always encoded, for instance, as character

strings. In such a scenario of a “depleted” type concept, any return value could fit as

nearly any parameter as far as the type concept is concerned. Thus, type analysis

alone will give only an inflated approximation of the actual data dependencies, which

makes dedicated handling necessary for these cases.

- In cases where no type system exists or is not used in alignment with the inter-method

data dependencies (such as in the depleted type system sketched above), a training

phase can replace or supplant type analysis. During training actual system invoca-

tions are used to confirm or dismiss potential dependencies. While type analysis on

a relaxed type system will usually determine more data dependencies than actually

exist, this type of training can, however, dismiss real data dependencies that only

48

6.3. The learning setup interchange format by example

occur depending on the current system state. Referring again to the e-commerce ex-

ample, adding items from the list of available products to the shopping cart is only

possible once the user is logged in, meaning that training can spuriously dismiss this

dependency if the authorization procedure is not completed beforehand.

Such a training phase can be performed, e.g., by the tool “Strawberry” [10] on WSDL

interfaces.

- Given that both type analysis and a dependency training phase may give unsatisfac-

tory results depending on the employed type concept or the thoroughness of testing,

another possibility is to evaluate semantic annotations that describe the usage of pa-

rameters and return values. In this scenario, type analysis is replaced by semantic

reasoning over an ontology that contains concepts the parameters and return values

are annotated with. The SAWSDL (Semantic Annotation for WSDL, [23]) specifi-

cation describes an extension to WSDL which makes semantic reasoning over the

individual parts of the interface description possible. Sadly, in real-life, only few (if

any) systems expose such a semantically annotated interface.

Once the data dependencies have been determined, one easy way to pass data between

method calls is to allocate one variable per data type in the data value context. Parameter

values can be filled in by referring to the variable corresponding to the parameter type;

system output can be stored in the variable associated with the return value type. In essence,

this means that the data value context can be implemented as a simple map data structure,

mapping data types to runtime values.

In case of data dependencies along single data values that are merely passed between

method invocations, it is easy to see how this approach can work. However, already the

simple e-commerce scenario contains a data dependency that is more sophisticated: the

example contains one method that returns a list of products, while another method consumes

single product objects. It is obviously not viable to merely pass the complete list of products

to the latter method. Instead, a single data value has to be extracted from the overall list of

products and subsequently be used as parameter value.

For this reason the data value context of the reusable LearnLib test driver employs a

scriptable JavaScript context, as described in Paper V. This context is able not only to

retrieve simple named variables (such as the variable “products” that stores the complete

list of products), but it also can evaluate statements such as “elementOf(products)” to

isolate single data values using the predefined “elementOf” function.

These complex statements are stored as parameters of abstract learning symbols and sub-

sequently evaluated at runtime. They can be generated as part of the type analysis, when

sequences of data values are detected as data source for singular parameters.

6.3. The learning setup interchange format by example

The result of the learning setup creation by interface analysis is stored in an interchange

format, which subsequently is parsed to produce an actual instance. Figure 6.2 shows an

excerpt of a learning setup specification generated for the e-commerce scenario. Following

information is specified in this example:

49

6. Automated configuration of learning setups

Figure 6.2.: Excerpt of a learning setup for the e-commerce example. Source: Paper V

50

6.3. The learning setup interchange format by example

- The location of the target system is denoted in line 2.

- An instance pool of predetermined data values is specified in lines 3 to 6. Two vari-

ables and initial values are specified (username and password), which constitute

credentials for the authorization step of the target system.

- A description of the alphabet is given, i.e., a list of methods that are to be in-

voked. In lines 8 to 37 a total of three symbols are defined (openSession,

getAvailableProducts, and addProductToShoppingCart) which relate to

methods exposed in the SUL’s interface.

- For every method the symbolic names of parameters and return values are specified.

For instance, the symbol openSession has two parameters, receiving values from

the variables username and password respectively. Output will be stored in the

variable session. The symbol addProductToShoppingCart also has two parame-

ters: one parameter reads the session variable, while the second parameter expects

a single product value. There are two possible sources for product objects, which

are referred to in separate <alternative> declarations. One source is the list of

available products as obtained by the getAvailableProducts primitive that was

discussed already. Another source (that is not included in the presented configuration

excerpt) is the shopping cart, which already may contain items. Both sources offer

lists of items, not single values, necessitating the use of the elementOf operator. Due

to technicalities of the WSDL to Java mapping, this operator has to be applied on a

subfield of the respective data structures. This subfield is declared using the field

attribute. In total, the scripted statement executed by the data value context to retrieve

a single data value for the first alternative of the second parameter thus is assembled

to elementOf(productArray.item).

Execution of the learning setup shown in Figure 6.2 produces the automata model pre-

sented in Figure 6.3. This model contains information that is not deducible from the inter-

face description alone, reflecting actual behavioral and state-dependent traits. For instance,

the model shows that shopping carts can only be purchased if at least one product item was

added beforehand, and that the shopping cart will be emptied upon purchasing its contents.

Note that for the sake of readability only operations that execute successfully are present in

Figure 6.3, omitting all “error” transitions.

51

6. Automated configuration of learning setups

Figure 6.3.: Learned model of the e-commerce example. Source: Paper V

52

7. Related Work

This chapter explores the context of the work presented in this thesis. Starting with a quick

look onto the general field of machine learning, the chapter will then focus on work in the

realm of automata learning and conclude with work on tools and real-life applications in

this area.

Machine learning The branch of automata learning discussed in this thesis can be re-

garded to be part of the more general field of machine learning. In [51] a definition of

machine learning is provided, which essentially says that a computer program can be con-

sidered to learn with experience if for a given task and quality measure the results improve

with gained experience. It is easy to imagine how this definition applies to the passive au-

tomata learning algorithm sketched in Section 2.2, where one expects the accuracy of the

predictions made by the created model to improve with the growth of the processed data set,

i.e., the processed experience. The same is true for active automata learning, which, how-

ever, actively procures the acquisition of experience to satisfy goals of completeness and

consistence. Other branches of machine learning include methods such as artificial neural

networks [61], bayesian networks [40], decision tree learning [56], and clustering of data

sets (e.g., [43]). Common themes of all these approaches include the prediction of as-of-yet

unseen data or the classification of new incoming data. In contrast to this, Knowledge Dis-

covery (KD) or Knowledge Discovery in Databases (KDD) [24] tries to mine knowledge in

already existing data sets, motivated by the desire to identify relevant information in a “flood

of data” without human intervention. Despite differing goals, the automated identification

of patterns relates KD/KDD with machine learning.

Automata learning Algorithms for automata learning have been conceived in the 1970ies

[11, 64]. These algorithms are concerned with the construction of automata from behavioral

traces, i.e., they can be regarded as passive learning algorithms. A complexity result, namely

that construction of minimal automata from traces is NP-complete, was provided in [26].

Work on passive learning algorithm continues, e.g., by leveraging existing methods for well

studied problems from other domains and reformulating automata construction accordingly.

For instance, in [31] the problem of DFA identification is attacked employing SAT solvers.

The concept of employing membership and equivalence queries was first discussed by

Angluin in [5], with the L∗ algorithm presented in [6]. This algorithm planted the seed for

further research in this area, e.g., by optimizing L∗ in various ways. Maler and Pnueli [44]

introduced handling counterexamples by directly adding suffixes to the observation table in-

stead of the original L∗ approach of adding prefixes that lead to inconsistencies which only

then are in turned resolved by the introduction of additional suffixes. Rivest and Shapire

[60] presented an approach to identify a single suffix for each provided counterexample em-

ploying an analysis resembling a binary search, consuming additional membership queries

53

7. Related Work

in the process. Overall, however, this approach usually brings sizable savings on the num-

ber of membership queries as the subsequent learning phases consume less queries to form

a refined conjecture, compared to setups where all suffixes of a counterexample are con-

sidered. Learning algorithms utilizing discrimination trees were introduced by Kearns and

Vazirani in [42] and Howar in [32]. For security testing, [29] provides an overview on the

current state of the art of regular inference. In that application area, large input sets have

to be supported, which is problematic with, e.g., the traditional L∗ algorithm due to the

generated number of membership queries that grows in a quadratic fashion with the size of

the input alphabet. Thus the L1 algorithm was proposed [37], which avoids initialization of

the observation table with one column per input symbol, only adding elements to the set of

suffixes that distinguish states.

Whereas the original scope of L∗ was limited to learning language acceptors, i.e., DFAs,

an extension to Mealy Machines was proposed in [53], in the form of the L∗
i/o

algorithm.

This advancement avoids the powerset-like construction of a learning alphabet composed

of pairs of input- and output-symbols that otherwise is necessary when learning models for

reactive systems with DFA learning. Further advancing the expressiveness of models that

can be obtained via automata learning, Register Automata and an accompanying learning

procedure have been proposed [17, 33]. Register Automata allow for expressing the influ-

ence of data values on system behavior, which is, e.g., of utmost importance for learning

communication protocols. Learning procedures have also been developed for I/O Automata

[4], timed Automata [27, 28], Petri Nets [22] and Kripke structures [49].

As the number of queries executed on the SUL has considerable impact on the applica-

bility of learning techniques in real-life examples, various approaches have been developed

to reduce the number of queries that have to be processed. Applying application-specific

knowledge to filter queries have been discussed in several works [36, 46, 8, 38], as well as

the impact of applying several filters in succession [45], where it is demonstrated that the

effectiveness of filters is influenced by their order within the processing chain.

Model-based testing methods [16] have been proposed for realizing equivalence queries.

If an upper bound for the size of the SUL is established, both the W-method [12] and

the Wp-method [25] are guaranteed to find every discrepancy between any considered hy-

pothesis and the target system. Unfortunately, however, these approaches have exponential

complexity in the size of the SUL. In practice it is often impossible to determine a specific

upper bound, undermining the correctness of these approaches or inflating complexity by

resorting to conservative estimates. Instead of proving correctness of a given hypothesis by

means of model-based testing, a recent approach is to instead focus on finding counterex-

amples fast. One such approach that led to winning the ZULU competition [18] is discussed

in [34]. The core idea here is to identify parts of the hypothesis that are either guaranteed to

be correct (i.e., the spanning tree of states explored by the learning procedure) or well-tested

(parts that already were tested in the accumulated runs of equivalence queries) and to focus

testing on other parts.

As discussed in Section 6.2.3, the management of concrete data values during interaction

with real-life systems is an important enabler for learning real-life systems. In the pro-

posed solution, this is achieved during steps of abstraction and concretization, employing a

fixed mapping determined by interface analysis between the realm of the abstract and the

concrete. Another approach is Automatic Abstraction Refinement [35], where new abstract

54

learning symbols with an accompanying concrete data value will be introduced whenever

counterexamples reveal that a certain concrete data value reveals behavior that is not cov-

ered by an existing abstract symbol and its related concretization. The topic of finding fitting

abstractions for automata learning is also discussed in [2] and [21].

Tools and applications Aside of the various iterations of LearnLib, other implementa-

tions of active automata learning have been produced as well. Most notable is libalf [14],

which is an open-source library with learning algorithms which are implemented in C++.

This library offers extensive support for observing data structures within learning algo-

rithms. Compared to LearnLib, however, it does not have an equally pronounced focus on

real-life learning applications, shipping with little accompanying infrastructure.

LearnLib in its initial incarnation was first presented in [59], receiving additional cov-

erage in [47]. Much like libalf nowadays, this version of LearnLib was implemented in

C++. In contrast to the current Java version of LearnLib, no unifying component model

was present.

Automata learning has seen numerous applications from various domains. In [30], learn-

ing is used to generate models of CTI (Computer Telephony Integration) systems, marking

the advent of practical learning scenarios for real-life systems. In [57, 58] record and replay

testing is combined with active automata learning (provided by LearnLib) in the context

of web applications. It is shown that models generated in this fashion can be used, e.g.,

to ensure security properties (such as that restricted areas of the web application can only

be accessed after a system login) by means of model checking. Models for the backend

of an enterprise web application were learned in [8] and [9]. In [3] learning techniques

were employed to learn models for a biometric passport system, revealing spurious behav-

ior outside of the system’s specification that can most likely be attributed to problems with

the employed system interface. The application of learning techniques on communication

protocol entities is illustrated in [13]. In the realm of security research, automata learning

has been employed to learn models of “botnets”, i.e., networked clusters of systems infected

with malicious software that can, for example, be used by criminals to conduct cybercrimes.

Results in that area are presented in [15]. Automata learning was also applied onto automo-

tive embedded systems [62]. This work includes an estimate and breakdown for the effort

spent on the overall procedure, showing that manual construction of learning setups can

take a considerable portion of the overall effort. Another application area recently explored

are wireless sensor networks, discussed in [21], where learning is utilized to create interface

automata [19] models.

55

8. Conclusion and Outlook

8.1. Conclusion

This thesis discussed the development of an infrastructure for active automata learning that

can drive the adoption of active automata learning techniques for real-life applications. This

necessitated work in several areas:

Framework and Tools: The LearnLib library for active automata learning was com-

pletely restructured, replacing a C++ implementation without clear modularization with

a Java framework that is structured by interface declarations reflecting and extending the

architecture of the MAT learning paradigm. Implementations of learning algorithms and

supporting infrastructure were developed within this framework and provide a flexible and

easy to use starting point for the development of learning setups.

To enable easy access to LearnLib components, a graphical solution for modeling learn-

ing setups was implemented on the basis of the jABC framework. The resulting LearnLib

Studio inherits jABC features such as execution of modeled graphs and model checking.

Being based on the concept of service oriented orchestration, modeled learning solutions

can also be embedded within management processes, e.g., to facilitate repeated learning for

regression testing.

Algorithms: The new DHC algorithm is inspired by the well-known breadth-first search,

constructing a hypothesis along the course of the SUL exploration. In contrast to classical

learning algorithms employing an observation table as central data structure, the DHC algo-

rithm maintains a hypothesis at all times. Thus construction progress can be made visible at

any time, making DHC unusually easy to follow and establishing this algorithm as a good

choice for didactic purposes.

The unique construction approach enables the implementation of the DHC algorithm with

data structures that have clearly separated purposes:

- The hypothesis reflects the construction process and is, once completed, the primary

artifact.

- The work list drives the future exploration.

- A data structure associating output behavior to states is used to determine candidates

for state equivalence.

- A query cache removes redundant queries that occur during hypothesis refinement. It

can also serve as a prefix filter.

57

8. Conclusion and Outlook

This clear separation of concern enables efficient implementation of externalized versions

of these data structures, optimized for their respective typical access patterns. With the

ability to choose between internal or external data structures, the memory profile of the

DHC algorithm can be tailored for the application area at hand.

Enabling scalability: Active automata learning of real-life systems can bind considerable

resources in terms of time, computation and storage. The LearnLib framework offers means

to overcome these problems, e.g., by allowing for the integration of application-fit filters that

can dramatically reduce the number of queries that have to be executed on the target system.

Beyond that, the support for query batches allows for parallelized execution of queries on

duplicated SUL instances. Experimental results confirm that significant time savings can be

achieved by processing learning queries in a networked cluster.

The instantiation of several target system instances, however, requires the allocation of

additional resources. Thus it makes sense to consider the use of cloud computing to allocate

resources on demand instead of costly (over-) provisioning of local resources. The WebABC

prototype demonstrates that completely cloud-based solutions for modeling and executing

learning setups can be realized.

Automated configuration of learning setups: Even with the development of efficient

active automate learning technology and accompanying tools, one major issue that hinders

adoption of learning methods into real-life practice is the setup effort needed to conduct

application-fit learning experiments. This can be mostly attributed to the need of construct-

ing fitting alphabets and test drivers that can execute actions on the SUL accordingly.

This effort can be dramatically reduced by employing a reusable test driver that can be

configured for the target system at hand. Configurations can be generated by means of

interface analysis, including strategies for dealing with runtime data.

8.2. Outlook

The work presented in this thesis can be extended in a lot of ways. No framework is “com-

plete” and it is hard to imagine that algorithms for automata learning do not have room left

for improvement.

LearnLib and LearnLib Studio: The LearnLib framework implements learning accord-

ing to the (extended) MAT model. However, active automata learning is not always applica-

ble (e.g., if the target system is in productive mode and cannot be duplicated), so including

passive learning algorithms may be a worthwhile undertaking to harvest automata models,

e.g., from log files.

Another area where additional work can be done is the implementation of additional

automata models and corresponding learning algorithms.

LearnLib Studio can be extended to include, for instance, wizard-style configuration fa-

cilities that automatically propose learning setups according to the SUL’s interface speci-

fication. Including technology to automatically configure learning setups presented in this

thesis, the overall effort to create learning setups can be significantly reduced.

58

8.2. Outlook

DHC algorithm: The current DHC algorithm resumes construction from-scratch when

refining the hypothesis. This allows for an easy implementation of the algorithm, without

special cases beyond adding additional symbols to the learning alphabet when evaluating

counterexamples. However, it should be possible to avoid rebuilding the complete hypoth-

esis as all discovered states are guaranteed to be distinct (and thus will also be in the final

result) and all transitions that were not created during state merging are part of the spanning

tree of the automaton and also guaranteed to be correct. By exploiting these properties a

scheme to locally repair an inaccurate hypothesis should be feasible that avoids complete

reconstruction.

Cloud learning: This thesis presents initial work to move learning into a cloud environ-

ment. While this approach looks promising, the overall applicability still has to be demon-

strated with a series of case studies. Challenges remain in the area of actual tool maturity,

security and reliability.

59

Bibliography

[1] Fides Aarts, Johan Blom, Therese Bohlin, Yu-Fang Chen, Falk Howar, Bengt Jons-

son, Maik Merten, Ralf Nagel, Antonino Sabetta, Siavash Soleimanifard, Bernhard

Steffen, Johan Uijen, Thomas Wilk, and Stephan Windmüller. Establishing basis for

learning algorithms, technical report. http://hal.inria.fr/inria-00464671/

PDF/connect_WP4_D41.pdf, 2010.

[2] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of infinite-state com-

munication protocols using regular inference with abstraction. In Alexandre Petrenko,

Adenilso da Silva Simão, and José Carlos Maldonado, editors, ICTSS, volume 6435

of Lecture Notes in Computer Science, pages 188–204. Springer, 2010.

[3] Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. Inference and Abstraction of

the Biometric Passport. In Margaria and Steffen [48], pages 673–686.

[4] Fides Aarts and Frits Vaandrager. Learning I/O Automata. In Paul Gastin and François

Laroussinie, editors, CONCUR 2010 - Concurrency Theory, volume 6269 of Lecture

Notes in Computer Science, pages 71–85. Springer Berlin / Heidelberg, 2010.

[5] Dana Angluin. A note on the number of queries needed to identify regular languages.

Information and Control, 51(1):76–87, 1981.

[6] Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-

tion and Computation, 75(2):87–106, 1987.

[7] Marco Bakera, Tiziana Margaria, Clemens Renner, and Bernhard Steffen. Tool-

supported enhancement of diagnosis in model-driven verification. Innovations in Sys-

tems and Software Engineering, 5:211–228, 2009. 10.1007/s11334-009-0091-6.

[8] Oliver Bauer. Beherrschung emergenten Verhaltens auf Basis regulärer Extrapolation

am Beispiel einer prozessgesteuerten Anwendung. Master’s thesis, TU Dortmund,

Department of Computer Science, Chair of Programming Systems, 2011.

[9] Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar. Reusing System

States by Active Learning Algorithms. In Alessandro Moschitti and Riccardo Scan-

dariato, editors, Eternal Systems, volume 255 of Communications in Computer and

Information Science, pages 61–78, Budapest, Hungary, 2012. Springer Verlag.

[10] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo Tivoli. Auto-

matic synthesis of behavior protocols for composable web-services. In Proceedings

of the the 7th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering, ESEC/FSE

’09, pages 141–150, New York, NY, USA, 2009. ACM.

61

Bibliography

[11] A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from

samples of their behavior. IEEE Trans. Comput., 21(6):592–597, June 1972.

[12] Avrim Blum and Steven Rudich. Fast learning of k-term DNF formulas with queries.

In Proc. 24th ACM Symp. on Theory of Computing, pages 382–389, New York, NY,

USA, 1992. ACM.

[13] Therese Bohlin, Bengt Jonsson, and Siavash Soleimanifard. Inferring compact models

of communication protocol entities. In Margaria and Steffen [48], pages 658–672.

[14] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,

and David R. Piegdon. libalf: The Automata Learning Framework. In CAV’10, pages

360–364, 2010.

[15] Georges Bossert, Guillaume Hiet, and Thibaut Henin. Modelling to Simulate Botnet

Command and Control Protocols for the Evaluation of Network Intrusion Detection

Systems. In Proceedings of the 2011 Conference on Network and Information Systems

Security, pages 1–8, La Rochelle, France, June 2011. IEEE.

[16] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander

Pretschner. Model-Based Testing of Reactive Systems:, volume 3472 of Lecture Notes

in Computer Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[17] Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen. A

succinct canonical register automaton model. In Tevfik Bultan and Pao-Ann Hsiung,

editors, Automated Technology for Verification and Analysis, volume 6996 of Lecture

Notes in Computer Science, pages 366–380. Springer Berlin Heidelberg, 2011.

[18] David Combe, Colin de la Higuera, Jean-Christophe Janodet, and Myrtille

Ponge. Zulu - Active learning from queries competition. http://labh-curien.

univ-st-etienne.fr/zulu/index.php. Version from 01.08.2010.

[19] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the

8th European software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering, ESEC/FSE-9, pages

109–120, New York, NY, USA, 2001. ACM.

[20] Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars.

Cambridge University Press, New York, NY, USA, 2010.

[21] Faranak Heidarian Dehkordi. Studies on verification of wireless sensor networks and

abstraction learning for system inference. Doctoral thesis, Radboud Universiteit Ni-

jmegen, 2012.

[22] Javier Esparza, Martin Leucker, and Maximilian Schlund. Learning Workflow Petri

Nets. In Johan Lilius and Wojciech Penczek, editors, Applications and Theory of Petri

Nets, volume 6128 of Lecture Notes in Computer Science, pages 206–225. Springer

Berlin / Heidelberg, 2010.

[23] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema.

http://www.w3.org/TR/sawsdl/, 2007. Version from 05.09.2012.

62

Bibliography

[24] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. Knowl-

edge discovery in databases: An overview. AI Magazine, 13(3):57–70, 1992.

[25] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and

Abderrazak Ghedamsi. Test Selection Based on Finite State Models. IEEE Trans. on

Software Engineering, 17(6):591–603, 1991.

[26] E. Mark Gold. Complexity of Automaton Identification from Given Data. Information

and Control, 37(3):302–320, 1978.

[27] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. Learning of event-recording

automata. In In 6th International Workshop on Verification of Infinite-State Systems,

volume 138/4 of Electronic Notes in Theoretical Computer Science, pages 379–395.

Springer, 2004.

[28] Olga Grinchtein, Bengt Jonsson, and Paul Pettersson. Inference of event-recording au-

tomata using timed decision trees. In Proceedings of the 17th international conference

on Concurrency Theory, CONCUR’06, pages 435–449. Springer, 2006.

[29] Roland Groz, Muhammad-Naeem Irfan, and Catherine Oriat. Algorithmic improve-

ments on regular inference of software models and perspectives for security testing.

In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal

Methods, Verification and Validation. Technologies for Mastering Change, volume

7609 of Lecture Notes in Computer Science, pages 444–457. Springer Berlin / Heidel-

berg, 2012.

[30] Andreas Hagerer, Hardi Hungar, Tiziana Margaria, Oliver Niese, Bernhard Steffen,

and Hans-Dieter Ide. Demonstration of an operational procedure for the model-based

testing of cti systems. In Ralf-Detlef Kutsche and Herbert Weber, editors, FASE,

volume 2306 of Lecture Notes in Computer Science, pages 336–340. Springer, 2002.

[31] Marijn J. H. Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In

Proceedings of the 10th international colloquium conference on Grammatical infer-

ence: theoretical results and applications, ICGI’10, pages 66–79, Berlin, Heidelberg,

2010. Springer-Verlag.

[32] Falk Howar. Active learning of interface programs. Doctoral thesis, TU Dortmund,

Department of Computer Science, Chair of Programming Systems, 2012.

[33] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canoni-

cal register automata. In Viktor Kuncak and Andrey Rybalchenko, editors, VMCAI,

volume 7148 of Lecture Notes in Computer Science, pages 251–266. Springer, 2012.

[34] Falk Howar, Bernhard Steffen, and Maik Merten. From ZULU to RERS - Lessons

Learned in the ZULU Challenge. In Margaria and Steffen [48], pages 687–704.

[35] Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning with automated

alphabet abstraction refinement. In Ranjit Jhala and David Schmidt, editors, Verifica-

tion, Model Checking, and Abstract Interpretation, volume 6538 of Lecture Notes in

Computer Science, pages 263–277. Springer Berlin / Heidelberg, 2011.

63

Bibliography

[36] Hardi Hungar, Oliver Niese, and Bernhard Steffen. Domain-Specific Optimization in

Automata Learning. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proc. 15th Int.

Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in Computer

Science, pages 315–327. Springer Verlag, July 2003.

[37] Muhammad Naeem Irfan, Roland Groz, and Catherine Oriat. Improving model in-

ference of black box components having large input test set. In Proceedings of the

11th International Conference on Grammatical Inference, ICGI 2012, pages 133–138,

September 2012.

[38] Malte Isberner. Untersuchung der Optimierbarkeit regulärer Extrapolationsverfahren

durch Ausnutzung vorhandenen Wissens. Master’s thesis, TU Dortmund, Department

of Computer Science, Chair of Programming Systems, 2011.

[39] Valérie Issarny, Bernhard Steffen, Bengt Jonsson, Gordon S. Blair, Paul Grace,

Marta Z. Kwiatkowska, Radu Calinescu, Paola Inverardi, Massimo Tivoli, Antonia

Bertolino, and Antonino Sabetta. CONNECT Challenges: Towards Emergent Con-

nectors for Eternal Networked Systems. In 14th IEEE International Conference on

Engineering of Complex Computer Systems, pages 154–161. IEEE, 2009.

[40] F. Jensen. An Introduction to Bayesian Networks. Springer Verlag, New York, 1996.

[41] Bengt Jonsson. Learning of automata models extended with data. In Marco Bernardo

and Valérie Issarny, editors, Formal Methods for Eternal Networked Software Systems,

volume 6659 of Lecture Notes in Computer Science, pages 327–349. Springer, 2011.

[42] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning

Theory. MIT Press, Cambridge, MA, USA, 1994.

[43] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In L. M. Le Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, pages 281–297. University of

California Press, 1967.

[44] Oded Maler and Amir Pnueli. On the Learnability of Infinitary Regular Sets. Infor-

mation and Computation, 118(2):316–326, 1995.

[45] Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Analyzing second-order ef-

fects between optimizations for system-level test-based model generation. In Test Con-

ference, 2005. Proceedings. ITC 2005. IEEE International, pages 7 pp. –467. IEEE,

2005.

[46] Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. Knowledge-based relevance

filtering for efficient system-level test-based model generation. Innovations in Systems

and Software Engineering, 1(2):147–156, July 2005.

[47] Tiziana Margaria, Harald Raffelt, Bernhard Steffen, and Martin Leucker. The LearnLib

in FMICS-jETI. In ICECCS ’07: Proceedings of the 12th IEEE International Confer-

ence on Engineering Complex Computer Systems, pages 340–352, Washington, DC,

USA, 2007. IEEE Computer Society.

64

Bibliography

[48] Tiziana Margaria and Bernhard Steffen, editors. Leveraging Applications of Formal

Methods, Verification, and Validation - 4th International Symposium on Leveraging

Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceed-

ings, Part I, volume 6415 of Lecture Notes in Computer Science. Springer, 2010.

[49] Karl Meinke and Muddassar Sindhu. Incremental Learning based Testing for Reactive

Systems. In Proceedings of the 5th international conference on Tests and proofs,

number 6706 in Lecture Notes In Computer Science, pages 134–151. Springer, 2011.

[50] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing. http:

//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf, 2011.

Version from 02.09.2012.

[51] T. Mitchell. Machine Learning (Mcgraw-Hill International Edit). McGraw-Hill Edu-

cation (ISE Editions), 1st edition, October 1997.

[52] A. Nerode. Linear Automaton Transformations. Proceedings of the American Mathe-

matical Society, 9(4):541–544, 1958.

[53] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, Uni-

versity of Dortmund, Germany, 2003.

[54] Object Management Group (OMG). CORBA website. http://www.corba.org/.

Version from 09.09.2012.

[55] Oracle Corporation. Trail: The Reflection API. http://docs.oracle.com/

javase/tutorial/reflect/index.html. Version from 29.10.2012.

[56] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March 1986.

[57] Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten. Hybrid test of

web applications with webtest. In TAV-WEB ’08: Proceedings of the 2008 workshop

on Testing, analysis, and verification of web services and applications, pages 1–7,

New York, NY, USA, 2008. ACM.

[58] Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. Dynamic test-

ing via automata learning. Int. J. Softw. Tools Technol. Transf., 11(4):307–324, 2009.

[59] Harald Raffelt and Bernhard Steffen. Learnlib: A library for automata learning and ex-

perimentation. In Luciano Baresi and Reiko Heckel, editors, Fundamental Approaches

to Software Engineering, volume 3922 of Lecture Notes in Computer Science, pages

377–380. Springer, 2006.

[60] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing

sequences. Inf. Comput., 103(2):299–347, 1993.

[61] David E. Rumelhart, Bernard Widrow, and Michael A. Lehr. The basic ideas in neural

networks. Commun. ACM, 37(3):87–92, March 1994.

65

Bibliography

[62] Muzammil Shahbaz, K. C. Shashidhar, and Robert Eschbach. Iterative refinement

of specification for component based embedded systems. In Matthew B. Dwyer and

Frank Tip, editors, Proceedings of the 2011 International Symposium on Software

Testing and Analysis, pages 276–286. ACM, 2011.

[63] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Christian Kubczak.

Model-Driven Development with the jABC. In Eyal Bin, Avi Ziv, and Shmuel Ur,

editors, Hardware and Software, Verification and Testing, volume 4383 of Lecture

Notes in Computer Science, pages 92–108. Springer Berlin / Heidelberg, 2007.

[64] B.A. Trakhtenbrot. Finite automata; behavior and synthesis. Fundamental studies in

computer science. North-Holland Pub. Co., 1973.

[65] Ben Treynor. Gmail back soon for everyone. http://gmailblog.blogspot.

com/2011/02/gmail-back-soon-for-everyone.html, 2011. Version from

02.09.2012.

[66] World Wide Web Consortium (W3C). Web services. http://www.w3.org/2002/

ws/. Version from 09.09.2012.

66

A. Selected papers

I Introduction to Active Automata Learning from a Practical Perspective

by Bernhard Steffen, Falk Howar, and Maik Merten. In Marco Bernardo and Valérie

Issarny, editors, Formal Methods for Eternal Networked Software Systems, 2011, Lec-

ture Notes in Computer Science, Springer Verlag, 6659:256-296.

II Demonstrating Learning of Register Automata

by Maik Merten, Falk Howar, Bernhard Steffen, Sofia Cassel, and Bengt Jonsson.

In Cormac Flanagan and Barbara König, Barbara, editors, Tools and Algorithms for

the Construction and Analysis of Systems, 2012, Lecture Notes in Computer Science,

Springer Verlag, 7214:466-471.

III Automata Learning with on-the-Fly Direct Hypothesis Construction

by Maik Merten, Falk Howar, Bernhard Steffen, and Tiziana Margaria. In Reiner

Hähnle et al., editors, ISoLA 2011 Workshops, 2012, Communications in Computer

and Information Science, Springer Verlag, 336:248-260.

IV The Teachers’ Crowd: The Impact of Distributed Oracles on Active Automata

Learning

by Falk Howar, Oliver Bauer, Maik Merten, Bernhard Steffen, and Tiziana Margaria.

In Reiner Hähnle et al., editors, ISoLA 2011 Workshops, 2012, Communications in

Computer and Information Science, Springer Verlag, 336:232-247.

V Automated Learning Setups in Automata Learning

by Maik Merten, Malte Isberner, Falk Howar, Bernhard Steffen, and Tiziana Mar-

garia. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications

of Formal Methods, Verification, and Validation - 5th International Symposium on

Leveraging Applications, ISoLA 2012, Heraklion, Crete, Greece, October 15-18,

2012, Proceedings, Part I, 2012, Lecture Notes in Computer Science, Springer Ver-

lag, 7609:591-607.

VI Dynamic Testing via Automata Learning

by Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. In Interna-

tional Journal on Software Tools for Technology Transfer, Volume 11, 2009, Springer

Verlag, 307-324.

67

B. Comments on my participation

- Paper I

The concept and the contents of this paper were discussed amongst all authors. I

designed and described the running example. I am main author of the parts that

describe the DHC algorithm and am coauthor of the other sections.

- Paper II

I am one of the two main developers of the described software and implemented the

presented modeling approach for learning setups. The design of the component model

that allowed for the rapid integration of Register Automata was authored by me. This

design is a major contribution and formed the basis for subsequent innovation.

- Paper III

I am the main author of this paper and invented the presented algorithm, which is a

core contribution also presented in this thesis. The algorithm and its presentation was

discussed amongst all authors.

- Paper IV

The concept of generating multiple learning queries at once for parallelized process-

ing was discussed and developed by the authors of this paper over several months.

I integrated this concept into the underlying software framework and implemented

core components for the experimental evaluation.

- Paper V

I am the main author of the paper. The reconfigurable test driver and the setup in-

terchange format were created by me, enabling highly automated learning setups. I

designed and implemented the target system used as a running example.

- Paper VI

The concept of learning web applications in the described fashion was developed and

discussed amongst all authors. I implemented parts of the test execution logic and the

test result aggregator.

69

C. Other publications

- Automated Inference of Models for Black Box Systems based on Interface De-

scriptions

by Maik Merten, Falk Howar, Bernhard Steffen, Patricio Pellicione, and Massimo

Tivoli. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications

of Formal Methods, Verification, and Validation - 5th International Symposium on

Leveraging Applications, ISoLA 2012, Heraklion, Crete, Greece, October 15-18,

2012, Proceedings, Part I, 2012, Lecture Notes in Computer Science, Springer Ver-

lag, 7609:79-96.

- LearnLib Tutorial: From Finite Automata to Register Interface Programs

by Falk Howar, Malte Isberner, Maik Merten, and Bernhard Steffen. In Tiziana Mar-

garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Ver-

ification, and Validation - 5th International Symposium on Leveraging Applications,

ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings, Part I,

2012, Lecture Notes in Computer Science, Springer Verlag, 7609:587-590.

- The RERS Grey-Box Challenge 2012: Analysis of Event-Condition-Action Sys-

tems

by Falk Howar, Malte Isberner, Maik Merten, Bernhard Steffen, and Dirk Beyer. In

Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal

Methods, Verification, and Validation - 5th International Symposium on Leveraging

Applications, ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceed-

ings, Part I, 2012, Lecture Notes in Computer Science, Springer Verlag, 7609:608-

614.

- Simplicity driven application development

by Maik Merten and Bernhard Steffen. presented at Society for Design and Process

Science, SDPS 2012, Berlin

- Never-stop Learning: Continuous Validation of Learned Models for Evolving

Systems through Monitoring

by Antonia Bertolino, Antonello Calabrò, Maik Merten, and Bernhard Steffen. In

ERCIM News, Volume 88, 2012

- A Succinct Canonical Register Automaton Model

by Sofia Cassel, Falk Howar, Bengt Jonsson, Maik Merten, and Bernhard Steffen. In

Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for Verification

and Analysis, 9th International Symposium, ATVA 2011, Taipei, Taiwan, October 11-

14, 2011. Proceedings, 2011, Lecture Notes in Computer Science, Springer Verlag,

6996:366-380.

71

C. Other publications

- Next Generation LearnLib

by Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. In Parosh Aziz

Abdulla and K. Rustan M. Leino, editors, Tools and Algorithms for the Construction

and Analysis of Systems - 17th International Conference, TACAS 2011, Held as Part

of the Joint European Conferences on Theory and Practice of Software, ETAPS 2011,

Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, 2011, Lecture Notes

in Computer Science, Springer Verlag, 6605:220-223.

- Automata Learning with Automated Alphabet Abstraction Refinement

by Falk Howar, Bernhard Steffen, and Maik Merten. In Ranjit Jhala and David A.

Schmidt, editors, Verification, Model Checking, and Abstract Interpretation - 12th

International Conference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Pro-

ceedings, 2011, Lecture Notes in Computer Science, Springer Verlag, 6538:263-277.

- From ZULU to RERS - Lessons Learned in the ZULU Challenge

by Falk Howar, Bernhard Steffen, and Maik Merten. In Tiziana Margaria and Bern-

hard Steffen, editors, Leveraging Applications of Formal Methods, Verification, and

Validation - 4th International Symposium on Leveraging Applications, ISoLA 2010,

Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part I, 2010, Lecture

Notes in Computer Science, Springer Verlag, 6415:687-704.

- On Handling Data in Automata Learning - Considerations from the CONNECT

Perspective

by Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia Cassel. In

Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal

Methods, Verification, and Validation - 4th International Symposium on Leveraging

Applications, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceed-

ings, Part II, 2010, Lecture Notes in Computer Science, Springer Verlag, 6416:221-

235.

- Hybrid Test of Web Applications with Webtest

by Harald Raffelt, Tiziana Margaria, Bernhard Steffen, and Maik Merten. In Tevfik

Bultan and Tao Xie, editors, Proceedings of the 2008 Workshop on Testing, Analysis,

and Verification of Web Services and Applications, held in conjunction with the ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2008),

TAV-WEB 2008, Seattle, Washington, USA, July 21, 2008, 2008, TAV-WEB, ACM,

1-7.

72

