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Introduction

Overview

The motion of a particle in a magnetic field has been object of research in many areas of
mathematics, which include dynamical systems, mathematical physics, symplectic topo-
logy, differential geometry and mathematical billiards. Some examples of the discussed
topics are the interpretation of the magnetic flow as the geodesic flow of a non-reversible
Finsler metric [8, 46], the comparison of magnetic and Riemannian geodesic flows [39]
and, most prominently, the question of the existence of closed orbits [9, 16, 30].

In this work, we shall focus on magnetic fields that vanish at infinity, which we summarize
by the term “localized”. For the motion in these magnetic fields two types of orbits can
occur: bounded and unbounded ones. The study of the unbounded orbits is the topic of
scattering theory, while the bounded ones shall be examined by techniques of symbolic
dynamics. In the following, we will give an introduction to these subjects and provide
an outline of this work’s results.

The main goal in scattering theory is to study the asymptotic behaviour of the motion.
This theory has its origin in physics, where Rutherford’s scattering experiments with
a gold foil gave rise to a new atomic model. The solid mathematical foundations were
laid from the 1950s onwards, e.g. in [10], and much effort was devoted to scattering by
a potential in the classical as well as in the quantum mechanical setting [21, 24, 44].
Scattering of a single classical particle in a non-constant magnetic field has, as far as we
know, only been treated by M. Loss and B. Thaller [33], who focused on the quantum
mechanical case of scattering in Rd and considered the classical particle only for the
special case d = 3. Consequently, further studies have only been conducted for quantum
particles, see e.g. [34, 48]. The information about the asymptotic behaviour is contained
in so-called “wave transformations”. This allows the study of the inverse problem, i.e. the
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reconstruction of the magnetic field from the asymptotic data, which is often called
inverse scattering and has been treated by A. Jollivet for magnetic fields, e.g. in [26].
We will consider the motion of a classical particle and generalize the results obtained by
M. Loss and B. Thaller to arbitrary dimensions d ≥ 2. Furthermore, we will extend them
in the sense that we obtain stronger results for the regularity of the wave transformations,
even for the case d = 3. In addition, we consider scattering in a simplified time-dependent
magnetic field, which, to our knowledge, has not been studied before.

Symbolic dynamics is used to analyze dynamical systems by discretizing the underlying
space. The key idea is to assign symbols to certain subsets of the space and label all
trajectories by the successive visits of these sets. Then, the state of the dynamical
system is described by an infinite sequence of symbols and the evolution is given by a
shift map. These techniques have first been used by J. Hadamard in 1898 for the analysis
of geodesic flows on surfaces of negative curvature [20]. Symbolic dynamics received its
first formal treatment as well as its name in 1938 by G. Hedlund and M. Morse [38].
Their study of abstract symbolic systems was not only motivated by pure mathematical
interest in these systems, it was also necessary to be able to use symbolic techniques for
the study of continuous systems. However, the formal notion of shift spaces was first
introduced in the 1960s by S. Smale, who contributed the most notable advancements
to this theory [45]. One of the most important results involving the use of symbolic
dynamics is Sharkovsky’s theorem about periodic points of continuous self-maps of an
interval [42], but note that these techniques were not only used for the analysis of
dynamical systems: The most prominent example is C. Shannon’s use of methods from
symbolic dynamics for the mathematical foundation of communication theory, which has
provided the basis for information theory [41]. For a more detailed presentation of the
history of symbolic dynamics we refer to S. Williams’ article [47] as well as the book by
D. Lind and B. Marcus [31].

Outline of the thesis

This work consists of three main sections.

First, in Chapter 1, we present preliminary results and gather necessary basics to perform
the analysis. We start by reviewing the foundations of classical mechanics, which are
Lagrange’s and Hamilton’s principles of motion and their connection by the Legendre
transformation. Based on this, we introduce the notion of a magnetic field and, in
particular, the notation we will use throughout this work. After this, we present a
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deep result from symplectic topology, the symplectic rigidity. Although we will need it
only once, due to its importance and complexity we outline the proof instead of simply
quoting the theorem. Finally, we introduce the concept of topological entropy as a way
to measure the complexity of a dynamical system.

In Chapter 2 we examine the unbounded orbits by using ideas of scattering theory, where
it is the aim to compare the magnetic flow to the free flow. We start by considering
a time-dependent magnetic field whose strength decays in time, which turns out to be
easier to handle than spatial decay and will provide a useful tool for the calculations in the
time-independent case. We consider the asymptotic velocity and the asymptotic position
of the motion separately and then combine them to define the wave transformations,
whose regularity depends on the rate of decay of the magnetic field. After that, we
turn to time-independent magnetic fields which decay at infinity. Our main tool for
their analysis will be the construction of a time-dependent magnetic field whose decay
in time corresponds to the spatial decay of the original magnetic field. Using this and
following the same plan as before, we obtain similar results for the regularity of the wave
transformations. Finally, we consider the magnetic motion on the cotangent bundle
where we also construct wave transformations. They turn out to be symplectic under
certain assumptions, which is useful for fixed point problems like the question if there is
an initial value with the same asymptotic velocity as the initial velocity.

Chapter 3 is devoted to the study of bounded orbits and focuses on symbolic dynamics.
In a magnetic field that consists of rotationally symmetric components, the question is
if one can prescribe the itinerary of a trajectory, i.e. the order in which the components’
supports are visited. To answer this, we start by examining the motion in a single
rotationally symmetric magnetic field. For sufficiently low energies, it admits circular
orbits for which we analyze whether they are hyperbolic or elliptic. Furthermore, we find
an integral of motion and use it to study the motion of trajectories that stay outside the
largest circular orbit. For a magnetic field consisting of several rotationally symmetric
components we choose a Poincaré section in each support and consider the corresponding
Poincaré (first return) map. Using the results obtained for single components we show
that the Poincaré map is semi-conjugated to the shift map. In particular, it has positive
topological entropy and is chaotic. Finally, we show that the integral of motion is not
necessary: The same result holds if we drop the assumption of rotational symmetry of
the magnetic field.

Note that in Chapter 1 we present known results and concepts, while the ones we shall
obtain in Chapter 2 and Chapter 3 are new unless explicitly marked otherwise.
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CHAPTER 1

Preliminaries

In this chapter, we are going to present basic results that are needed for the following
considerations. In Section 1.1 we will give a short overview over the principles of classical
mechanics. This is the basis for Section 1.2, the main part of this chapter, where we shall
give the definition of a magnetic field and the magnetic flow. Furthermore, we will derive
essential properties of the magnetic flow and introduce the corresponding notation we
will constantly use. Afterwards, in Section 1.3 and Section 1.4, we are going to present
two concepts, symplectic rigidity and topological entropy, that are required at certain
points. However, they are rarely needed, while the notion of a magnetic field is essential
for this work.

1.1 Principles of classical mechanics

We want to describe the motion of a particle moving on a d-dimensional (smooth) Rie-
mannian manifold (M, 〈·, ·〉). This can be modelled on the tangent bundle TM , where
(q, v) ∈ TM stands for the particle being at position q ∈ M and moving with velocity
v ∈ TqM . The manifold M is called the configuration space and the tangent bundle TM
the (velocity) phase space.

One way of describing the motion is the Lagrangian formulation, which we will sketch in
the following. A more detailed treatment can be found in [7, 15]. Motivated by physical
observations, the Lagrangian formulation is based on the calculus of variations, and the
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1.1 Principles of classical mechanics

whole information about the dynamics is encoded in a single function, the Lagrangian.

Definition 1.1.1 A Lagrangian L : TM → R is a C3-function such that the following
two conditions hold:

(i) The Hessian
∂2L

∂v2 :=
(

∂2L

∂vi∂vj

)
i,j=1,...,d

,

calculated in linear coordinates on each fibre TqM , is positive definite for all points
(q, v) ∈ TM , i.e. L is fibrewise strictly convex.

(ii) L has superlinear growth, i.e.

lim
|v|→∞

L(q, v)
|v|

→ ∞

for every q ∈M . �

Note that, since later in this work we shall only consider the case of Rd, we will use local
coordinates wherever possible, so one can think of 〈·, ·〉 as the Euclidean inner product.
In particular, we use the vector notation

∂L

∂v
:=
(
∂L

∂v1
, . . . ,

∂L

∂vd

)
,

and similarly for ∂L
∂q .

Given a Lagrangian L, for a C1-curve γ : [t1, t2]→M its action functional is defined as

AL(γ) :=
t2∫
t1

L(γ(s), γ̇(s)) ds .

Lagrange’s principle states that the motion of a particle between two points q1, q2 ∈M is
given by the curve γ : [t1, t2]→M that satisfies γ(t1) = q1, γ(t2) = q2 and minimizes the
value of AL, which is why Lagrange’s principle is also called the principle of least action.
A curve γ is a minimum of AL if and only if γ satisfies the so called Euler-Lagrange
equation

∂L

∂q

(
γ(t), γ̇(t)

)
= d

dt

∂L

∂v

(
γ(t), γ̇(t)

)
,

which is exactly the case if

∂L

∂q

(
γ(t), γ̇(t)

)
= ∂2L

∂q∂v

(
γ(t), γ̇(t)

)
γ̇(t) + ∂2L

∂v2

(
γ(t), γ̇(t)

)
γ̈(t)

holds. Due to the non-degeneracy of ∂2L
∂v2 , this equation can be solved for γ̈ and yields a

vector field XL on TM .
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1.1 Principles of classical mechanics

Definition 1.1.2 The vector field XL defines a flow ϕt on the tangent bundle TM ,
which we call the Euler-Lagrange flow of L. �

Note that if two Lagrangians L1 and L2 satisfy L1(q, v) − L2(q, v) = αq(v) for a closed
1-form α, then their action functionals differ only by an additive constant and therefore
their minimizing curves coincide. Hence, the Euler-Lagrange flow of a Lagrangian L

remains unchanged if we add a closed 1-form to L.

A different way to describe the motion of a particle is by using Hamilton’s principle,
which is linked to the Lagrangian formulation by the Legendre transformation. Again,
we will give a brief introduction to these concepts and refer to [1] for a detailed treatment.
The Hamiltonian formulation describes the motion on the cotangent bundle or momen-
tum phase space T ∗M . Together with the standard symplectic form ω0 := dλ ∈ Ω2(M),
where λ ∈ Ω1(M) denotes the Liouville form, T ∗M is a symplectic manifold (i.e. a mani-
fold together with a closed, non-degenerate 2-form which is called symplectic form). Note
that by Ωk(M) we describe the set of k-forms on M . In local coordinates q, p for T ∗M ,
the Liouville form λ satisfies

λ =
d∑
i=1

pidqi

and the standard symplectic form equals

ω0 =
d∑
i=1

dpi ∧ dqi .

Definition 1.1.3 A function H ∈ C2(T ∗M,R) is called a Hamiltonian and the corre-
sponding vector field XH given by

ω0(XH , ·) = −dH

is said to be the Hamiltonian vector field of H. This vector field XH induces the Hamil-
tonian flow ϕt∗ of H on T ∗M . �

The connection between the Lagrangian and the Hamiltonian formulation is specified by
the Legendre transformation and the fibre derivative. The Legendre transformation of
some Lagrangian L : TM → R is defined as the Hamiltonian H : T ∗M → R determined
in coordinates by

H(q, p) := 〈p, v〉 − L(q, v)

with the momentum p := ∂L
∂v (q, v). Let us point out that this implicit definition is

possible due to the convexity assumption on the Lagrangian L. The fibre derivative
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1.2 Magnetic fields and the magnetic flow

Ψ: TM → T ∗M of L, which is given by

Ψ(q, v) :=
(
q,
∂L

∂v
(q, v)

)
,

conjugates the flows ϕt and ϕt∗ corresponding to L and H, respectively, i.e. the diagram

T ∗M
ϕt∗−−−−→ T ∗M

Ψ
x xΨ

TM −−−−→
ϕt

TM

commutes. Furthermore, the projections of the flows ϕt and ϕt∗ to the configuration
space M coincide, i.e. they describe the same motion in the configuration space.

1.2 Magnetic fields and the magnetic flow

We start by introducing the notion of a magnetic field and its magnetic flow. Although
later we will only consider magnetic fields on Rd, we give the definition in the general
case of some manifold M . The defined flow models the motion of a charged particle on
M under the influence of a magnetic field.

Definition 1.2.1 A magnetic field on a d-dimensional Riemannian manifold (M, 〈·, ·〉)
is given by an exact 2-form β ∈ Ω2(M) with C2-coefficients. Given some magnetic
potential α ∈ Ω1(M) such that dα = β, the magnetic flow of β on the tangent bundle
TM is defined as the Euler-Lagrange flow with respect to the Lagrangian

L(q, v) = 1
2 |v|

2 + αq(v) .
�

As we have seen in the previous section, the flow is independent of the choice of α. In
coordinates we associate a vector field A := (A1, . . . , Ad) to α by αq =

∑d
i=1Ai(q)dqi.

Using the Legendre transformation, we get

p = ∂L

∂v
(q, v) = v +A(q)

and obtain the Hamiltonian

H(q, p) = 〈v +A(q), v〉 − L(q, v) = 1
2 |v|

2 = 1
2 |p−A(q)|2
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1.2 Magnetic fields and the magnetic flow

on T ∗M . Moreover, the magnetic Euler-Lagrange flow is conjugated to the Hamiltonian
flow of H with respect to the standard symplectic form ω0 = dλ on T ∗M . This flow is
equivalent to the Hamiltonian flow generated by

H(q, p) = 1
2 |p|

2

on T ∗M with respect to the twisted symplectic form

ω = ω0 + π∗β ,

where π : T ∗M → M denotes the canonical projection. In particular, this also shows
that the flow is independent of the choice of α. Using this last formulation, the magnetic
flow can be generalized to closed forms β ∈ Ω2(M) which are not exact.

Since from now on we will consider magnetic fields on Rd and every closed 2-form on
Rd is exact, we do not need the generalized definition but work with the Lagrangian
formulation instead. Choosing α ∈ Ω1(Rd) such that dα = β and using linear, global
coordinates q1, . . . , qn for Rd, we have the global representations

β =
d∑

i,j=1
i<j

Bij(q)dqi ∧ dqj

and

α =
d∑
i=1

Ai(q)dqi

with Bij ∈ C2(Rd,R) for i < j ∈ {1, . . . , d} as well as Ai ∈ C3(Rd,R) for i ∈ {1, . . . , d}.
Hence, we obtain the relation

dα =
d∑
i=1

d(Aidqi)

=
d∑
i=1

 d∑
j=1

∂Ai
∂qj

dqj

 ∧ dqi
=

d∑
i,j=1

∂Ai
∂qj

dqj ∧ dqi

=
d∑

i,j=1
i<j

(
∂Aj
∂qi
− ∂Ai
∂qj

)
dqi ∧ dqj ,

(1.1)

i.e.
Bij = ∂Aj

∂qi
− ∂Ai
∂qj

(i < j ∈ {1, . . . , d}) .
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1.2 Magnetic fields and the magnetic flow

In canonical coordinates q, v for TRd and with the vector field A : Rd → TRd corre-
sponding to α, the magnetic Lagrangian equals

L(q, v) = 1
2 |v|

2 + 〈A(q), v〉 = 1
2 |v|

2 +
d∑
j=1

Aj(q)vj ,

where from now on 〈·, ·〉 denotes the Euclidean inner product and | · | the Euclidean
norm on Rd as well as the absolute value in R. Then, a curve q : (a, b)→ Rd solves the
Euler-Lagrange equation if and only if for all i ∈ {1, . . . , d} we have

0 =
(
∂L

∂qi
− d

dt

∂L

∂vi

)
(q, q̇)

=
d∑
j=1

∂Aj
∂qi

q̇j −
d

dt
(q̇i +Ai(q))

=
d∑
j=1

∂Aj
∂qi

q̇j −

q̈i +
d∑
j=1

∂Ai
∂qj

q̇j


=

 d∑
j=1

∂Aj
∂qi
−

d∑
j=1

∂Ai
∂qj

 q̇j − q̈i
=

d∑
j=1

Bij(q)q̇j − q̈i

(1.2)

with Bji := −Bij for j > i and Bii := 0. With the skew-symmetric matrix B := (Bij)i,j
this yields the differential equation

q̈ = B(q)q̇ (1.3)

or equivalently q̇ = v ,

v̇ = B(q)v .
(1.4)

Therefore, on Rd, we can generalize the definition of a magnetic field.

Definition 1.2.2 A magnetic field on Rd is a locally Lipschitz continuous map

B = (Bij)i,j=1,...,d : Rd → Rd×d

such thatB(q) is skew-symmetric for all q ∈ Rd. Equation (1.4) defines the corresponding
magnetic flow

ϕt = (qt, vt) : P→ P

on the phase space
P := TRd ∼= Rdq × Rdv . �
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1.2 Magnetic fields and the magnetic flow

Note that we do not assume the 1-form given by B to be closed anymore. However,
since the skew-symmetry of the magnetic field is still required, we have 〈v,B(q)v〉 = 0
for all (q, v) ∈ P. This yields

d

dt

1
2 |v

t(x)|2 = 〈vt(x), B(qt(x))vt(x)〉 ≡ 0

for all x ∈ P and therefore the kinetic energy

E : P→ R ,

(q, v) 7→ 1
2 |v|

2

is constant along trajectories, i.e. E is an integral of motion. In particular, we have the
estimate

|qt(x)| ≤ |q0(x)|+
|t|∫

0

|vs(x)| ds ≤ |q0(x)|+
√

2E(x)|t| (x ∈ P, t ∈ R) (1.5)

and therefore the magnetic flow is complete, i.e. ϕ : R × P → P. Furthermore, we can
consider the energy surfaces

PE := E−1(E) ,

which are diffeomorphic to Rd × Sd−1 for E > 0. In analogy, for I ⊆ [0,∞) we define
PI := E−1(I) as the set of points x ∈ P with energy E(x) ∈ I. Finally, note that the
Euclidean norm on Rd induces the canonical operator norm ‖ · ‖ on the space Rd×d of
matrices, which we shall use to measure magnetic fields.

Let us conclude the introduction of magnetic fields with an explanation of the definition:

Remark 1.2.3 In the context of physics one often defines a magnetic field on R3 as a
(Lipschitz continuous) vector field

~B = (b1, b2, b3) : R3 → R3 .

The motion of a particle with unit charge and unit mass is modelled by the differential
equation

q̈ = q̇ × ~B(q) ,

where q̇ × ~B(q) describes the Lorentz force influencing the particle, and × denotes the
vector or cross product. There is a one-to-one correspondence between this setting
and our definition: A straightforward computation shows that the flow given by the
vector field (b1, b2, b3) coincides with the flow given by the 3 × 3-matrix (Bij) with the
identification b1 = B23 = −B32, b2 = −B13 = B31 and b3 = B12 = −B21. �
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1.3 Symplectic rigidity

1.3 Symplectic rigidity

After having introduced the basic notion of a magnetic field, we will proceed with the
presentation of a central result from symplectic topology. For basic concepts and results
of symplectic geometry and topology we refer to [36]. In Section 2.4 we shall consider a
sequence of symplectic maps, and the natural question will be whether the limit is also
symplectic. Since the condition of symplecticity involves the first derivative, the C1-limit
of symplectic maps is also symplectic, but surprisingly, the property to be symplectic
also remains intact under limits in the C0-topology. This result, which is often called
symplectic rigidity, is due to Y. Eliashberg [13, 14] and M. Gromov [19].

Definition 1.3.1 For manifolds M1,M2 let Diff(M1,M2) denote the set of C1-diffeo-
morphisms f : M1 → M2. If (M1, ω1) and (M2, ω2) are symplectic manifolds, we call
a diffeomorphism f ∈ Diff(M1,M2) with f∗ω2 = ω1 a symplectic diffeomorphism or
symplectomorphism. The set of all symplectomorphisms from (M1, ω1) to (M2, ω2) is
denoted by Symp(M1,M2;ω1, ω2). �

Theorem 1.3.2 (Y. Eliashberg, M. Gromov) Let (M1, ω1) and (M2, ω2) be sym-
plectic manifolds. Furthermore, let

fn ∈ Symp(M1,M2;ω1, ω2) (n ∈ N)

be a sequence of symplectic C1-diffeomorphisms and

f ∈ Diff(M1,M2)

a C1-diffeomorphism, such that fn converges to f uniformly on compact subsets of M1.
Then f is symplectic, i.e. f ∈ Symp(M1,M2;ω1, ω2).

Let us point out that we do not require the manifolds to be compact or the mappings
to have compact support.
Note that the literature provides detailed proofs of the Eliashberg-Gromov theorem for
the special case (R2d, ω̂0) with the standard symplectic form

ω̂0 :=
d∑
i=1

dxi ∧ dyi

on R2d, while for the general setting it is only mentioned that one obtains the result
by using local coordinates (e.g. in [23] and [36]). We will conduct this argument later,
but before that, we state the result for the special case (R2d, ω̂0) (see Proposition 1.3.6)
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1.3 Symplectic rigidity

and sketch the corresponding proof as given in [23]. This particular proof relies on the
existence of symplectic capacities of R2d, which are symplectic invariants other than the
volume. Although there is a more general definition of symplectic capacities for any
symplectic manifold, the following one will be sufficient for our purposes.

Definition 1.3.3 A symplectic capacity c of R2d is a map c :
{
A | A ⊆ R2d} → [0,∞]

satisfying the following properties:

(i) Monotonicity: c(A) ≤ c(B) holds for any subsets A,B ⊆ R2d such that there is a
symplectic embedding Φ: A → R2d with Φ(A) ⊆ B. By a symplectic embedding
of some arbitrary subset A ⊆ R2d we mean that Φ can be extended to a symplectic
embedding defined on some open set containing A.

(ii) Conformality: c(µA) = µ2c(A) holds for all A ⊆ R2d and every µ ∈ R.

(iii) Non-triviality: c(B(1)) = c(Z(1)) = π, where

B(r) :=
{

(x, y) ∈ R2d | |x|2 + |y|2 < r2
}

is the open ball of radius r > 0 and

Z(r) :=
{

(x, y) ∈ R2d | x2
1 + y2

1 < r2
}

denotes the standard symplectic cylinder of radius r > 0 in R2d. �

Note that the non-triviality condition excludes the trivial choices where c is the symplec-
tic volume or c ≡ 0. Let us assume the existence of a capacity. Then, as an immediate
consequence of the axioms we obtain Gromov’s non-squeezing theorem, which originally
had motivated the concept of symplectic capacities.

Theorem 1.3.4 (Gromov’s non-squeezing theorem) There exists a symplectic em-
bedding B(r) → Z(R) from the ball of radius r > 0 into the cylinder of radius R > 0 if
and only if r ≤ R.

In fact, the existence of a symplectic capacity is a highly non-trivial result which we
will not investigate further, but refer to [22]. A detailed study of symplectic capacities,
including applications in the context of dynamical systems, can be found in [49].

We will sketch the proof of the Eliashberg-Gromov theorem for the special case of the
standard symplectic space (R2d, ω̂0) (Proposition 1.3.6) according to [23]. For this, we
need the following technical lemma, whose proof can be found in [23] as well.
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1.3 Symplectic rigidity

Lemma 1.3.5 Let A : R2d → R2d be an isomorphism such that A∗ω̂0 6= µω̂0 applies for
all µ ∈ R. Then, for any a > 0 there are symplectic matrices S and T such that

S−1AT =
(
a 0
0 a 0
∗ ∗

)

holds with respect to the splitting R2d = R2 ⊕ R2d−2 into symplectic subspaces.

This means that S−1AT maps the unit ball B(1) into the cylinder Z(a) of radius a,
which now allows us to sketch the proof for symplectic rigidity in R2d as given in [23].

Proposition 1.3.6 Let

Φn : (B(r), ω̂0)→ (R2d, ω̂0) (n ∈ N)

be a sequence of symplectic embeddings converging locally uniformly to a map

Φ: B(r)→ R2d .

If Φ is differentiable at x = 0, then

A := DΦ(0) : R2d → R2d

is symplectic with respect to ω̂0.

Proof (sketch) The proof breaks down to the following three claims:

Claim A A is an isomorphism.

Claim B A∗ω0 = µω0 for some µ 6= 0.

Claim C A∗ω0 = µω0 for µ 6= 0 ⇒ µ = 1.

The main difficulties are hidden in Claim B whose proof is based on the existence of a
capacity, in particular on its consequence, the non-squeezing theorem. For the proof of
this claim we will argue by contradiction and make use of Lemma 1.3.5 to show that we
can map some ball into a smaller cylinder, which violates the non-squeezing theorem.

Proof of Claim A: We assume Φ(0) = 0. First, note that the Lebesgue measure λ = λ2d

on R2d coincides with the symplectic measure given by 1
d!(ω̂0)d, i.e.

λ(A) = 1
d!

∫
A

(ω̂0)d (A ⊆ R2d open) .
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1.3 Symplectic rigidity

The maps Φn are measure preserving and, since they converge locally uniformly to Φ,
we obtain

λ(Φ(B(ε))) = λ(B(ε))

for every ε > 0. On the other hand, we have

λ(Φ(B(ε)))
λ(B(ε)) → |detA| (ε→ 0) ,

which yields |detA| = 1 and implies that A is an isomorphism.

Proof of Claim B: We now show that A∗ω0 = µω0 for some µ 6= 0 by using Lemma 1.3.5.
If we assume that A∗ω0 6= µω0 holds for all µ 6= 0, then for the constant a = 1

8 we find
symplectic matrices S, T such that

S−1AT (B(r)) ⊆ Z
(
r
8
)
. (1.6)

Defining ψn := S−1ΦnT , we obtain that ψn → ψ := S−1ΦT converges locally uniformly
and the derivative of the limit satisfies Dψ(0) = S−1AT . Because of (1.6) and since
Dψ(0) approximates ψ around the origin, we have ψ(B(ε)) ⊆ Z( ε4) for ε > 0 small
enough. Consequently, the locally uniform convergence ψn → ψ implies that the relation

ψn(B(ε)) ⊆ Z
(
ε
2
)

holds for sufficiently large values of n ∈ N. Since the maps ψn = S−1ΦnT are symplectic,
this contradicts Gromov’s non-squeezing theorem and hence A∗ω0 = µω0 holds for some
µ 6= 0.

Proof of Claim C: For n ∈ N we consider the symplectic embeddings

(Φn, id) : (B(r)× R2d, ω̂0 ⊕ ω̂0)→ (R2d × R2d, ω̂0 ⊕ ω̂0) .

By applying the same arguments as above to this sequence, we obtain that the derivative
Ā := D(Φ, id)(0, 0) of the limit (Φ, id) at (0, 0) satisfies

Ā∗(ω̂0 ⊕ ω̂0) = ν(ω̂0 ⊕ ω̂0)

for some ν 6= 0. On the other hand, since Ā = (A,1), we have

Ā∗(ω̂0 ⊕ ω̂0) = (µω̂0)⊕ ω̂0

and therefore µ = 1. �
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By introducing local coordinates on the manifolds M1 and M2 one can transfer this
result to arbitrary manifolds, as stated in Theorem 1.3.2.

Proof (of Theorem 1.3.2) For an arbitrary point x ∈ M1 we have to show that
the derivative Df(x) : TxM1 → Tf(x)M2 is symplectic. By Darboux’s theorem, each
symplectic manifold is locally symplectomorphic to (R2d, ω̂0). Thus, around x and f(x)
there are Darboux charts, i.e. there are open sets U1, U2 around x and f(x), respectively,
and coordinates ψi : Ui → R2d such that ψ∗i ω̂0 = ωi on Ui for i = 1, 2. Without loss of
generality we can assume that ψ1(x) = 0. Furthermore, we can choose r > 0 such that
U2 is an open environment of

f(ψ−1
1 (B(r))) .

Since ψ−1
1 (B(r)) is compact and fn → f converges uniformly on compact sets, there is

N ∈ N such that
fn(ψ−1

1 (B(r))) ⊆ U2 (n ≥ N) .

Hence, for n ≥ N the maps Φn : B(r)→ R2d given by

Φn := ψ2 ◦ fn ◦ ψ−1
1

are well defined, symplectic with respect to ω̂0 and converge locally uniformly to

Φ := ψ2 ◦ f ◦ ψ−1
1 .

By Proposition 1.3.6 we obtain that DΦ(0) is symplectic, and therefore

Df(x) : TxM1 → Tf(x)M2

is symplectic. This holds for any x ∈M1 and therefore f is symplectic. �

1.4 Topological entropy

In this section, we will give a brief introduction to the concept of topological entropy,
which can be thought of as a tool to measure how sensitive the motion depends on
changes of the initial value. The notion of topological entropy was introduced by
R. Adler, A. Konheim and M. McAndrew in 1965 for topological spaces [2], while in
1971 R. Bowen gave a different definition for metric spaces [4], which he proved to be
equivalent to the previous one [5]. We shall use Bowen’s definition, which is introduced
in the following. For a thorough discussion we refer to [27] and [40].
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Definition 1.4.1 Let f : X → X be a continuous map on a compact metric space
(X, d). For n ∈ N we introduce a new metric dnf on X by

dnf (x, y) := max
{
d(f i(x), f i(y)) | 0 ≤ i < n

}
(x, y ∈ X) ,

which measures the distance between the two orbit segments {x, . . . , fn−1(x)} and
{y, . . . , fn−1(y)}. Given n ∈ N and ε > 0, a subset A ⊆ X is called (n, ε)-separated
for f if dnf (x, y) > ε holds for any x, y ∈ A, x 6= y. By

r(n, ε, f) := max
{
|A| | A ⊆ X is an (n, ε)-separated set for f

}
we denote the largest cardinality of an (n, ε)-separated set for f . We consider the growth
rate of r as n increases and define

h(ε, f) := lim sup
n→∞

log r(n, ε, f)
n

.

Finally, the topological entropy htop(f) of f is defined by

htop(f) := lim
ε↘0

h(ε, f) .
�

Note that although the construction depends on the specific metric, the value of the
topological entropy does not. Two metrics defining the same topology yield the same
value of htop(f), which justifies the name “topological” entropy. According to [40], one
can use the topological entropy to define chaos.

Definition 1.4.2 Let (f,X, d) be a (discrete) dynamical system, meaning that the map
f : X → X is a homeomorphism on the metric space (X, d). If the topological entropy
htop(f) > 0 is strictly positive, the system (f,X, d) is said to be chaotic. �

As an important example of a chaotic dynamical system, we consider the full shift on
N symbols, or simply the shift:
For N ∈ N let

ΣN := {1, . . . , N}Z

denote the space of bi-infinite sequences in N symbols. On this space we define a metric
d : ΣN × ΣN → [0,∞) by

d(x, y) := max
{ 1

2|j|
| j ∈ Z : xj 6= yj

}
,
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which describes the first index where x, y ∈ ΣN differ. In this metric, ΣN is compact
and the (left) shift map σ : ΣN → ΣN given by

σ((si)i∈Z) := (si+1)i∈Z ,

shifting a sequence one position to the left, is a homeomorphism. For the dynamical
system (σ,ΣN , d) we will now compute the topological entropy. For this, we fix ε > 0
and let k ∈ N0 such that 2−k−1 ≤ ε < 2−k. For n ∈ N we have dnσ(x, y) > ε if and only
if there exists an index j ∈ {−k, . . . , k + n− 1} such that xj 6= yj , which means that x
and y have to differ at least at one of these 2k + n indices. Hence, we have

r(n, ε, σ) = N2k+n

and obtain
h(ε, σ) = lim sup

n→∞

(2k + n) logN
n

= logN ,

which implies
htop(σ) = logN .

In many other examples, including the ones studied in this work, it is complicated to
compute the topological entropy. Therefore, we need estimates for htop(f) and htop(g)
depending on how the homeomorphisms f and g are related.

Definition 1.4.3 Let (f,X, dX) and (g, Y, dY ) be dynamical systems. Then f and g

are conjugated if there is a homeomorphism h : X → Y such that h ◦ f = g ◦ h. If the
map h is only continuous and surjective, then f is said to be semi-conjugated to g. �

Now we can formulate the following result, whose proof can be found in [27] and [40].

Proposition 1.4.4 Let f : X → X and g : Y → Y be homeomorphisms of the compact
metric spaces (X, dX) and (Y, dY ), respectively. If f and g are conjugated, then their
topological entropies satisfy htop(f) = htop(g). If f is only semi-conjugated to g, we still
have the estimate htop(f) ≥ htop(g).

In order to show that a dynamical system is chaotic, it is therefore sufficient to establish
a semi-conjugacy to the shift.
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CHAPTER 2

Scattering theory

In this chapter, we consider a magnetic field B on Rd that vanishes at infinity and study
its influence on the motion of a charged particle, where we focus on the analysis of the
asymptotic behaviour for the so-called scattering states, i.e. the unbounded trajectories.
In particular, we compare the magnetic flow to the free flow ϕt0 : P→ P given by

ϕt0(q, v) := (q + tv, v)

and derive conditions under which the limit

lim
t→∞

ϕ−t0 ◦ ϕ
t (2.1)

exists. Under certain assumptions about the decay of the magnetic field the existence
of this limit is equivalent to the fact that for any given x there is some y such that the
magnetic trajectory of x and the free trajectory of y are asymptotic to each other for
t → ∞. Moreover, we will figure out that the limit (2.1) conjugates the free flow ϕt0
and the magnetic flow ϕt (restricted to the scattering states), and we shall study its
regularity depending on how fast the magnetic field decays for |q| → ∞. In particular,
we do not consider a fixed rate of decay in this work, which is the reason for not giving
a precise definition of the term “localized” magnetic field.

A useful tool for these examinations for a time-independent magnetic field vanishing at
infinity will be the consideration of (a simplified model for) a time-dependent magnetic
field, whose strength decays uniformly in time. Here, due to the time dependence, we
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2.1 The virial radius

cannot ask the question of conjugacy, but we can still check if the limit

lim
t→∞

ϕ−t0 ◦ ϕ
t,0 (2.2)

exists and study its properties. At first sight it might seem odd to consider the time-
dependent case first, but the time decay is easier to handle than the spatial decay, and
we will trace back the latter case to the first one. The reason behind this is that the
decay of the magnetic field occurs in the same variable as the one the motion evolves
in, and therefore we directly know estimates on the strength of the magnetic field along
the trajectory, independent of the position. In contrast, if there is spatial decay, we first
have to translate the time evolution of the trajectory into estimates on the position to
be able to make use of the decay of the magnetic field. This will be done by constructing
a time-dependent magnetic field whose decay in time corresponds to the spatial decay
of the original magnetic field.

Most of the arguments in this section are based on B. Simon’s approach for the exami-
nation of scattering in potentials [44], while the method of discussing time decay as a
model for spatial decay was introduced and used by G. Graf [17] and J. Dereziński [11].
A comprehensive summary of the results and techniques for the case of potential scat-
tering is given by J. Dereziński and C. Gérard [12], which inspired the consideration of
scattering by magnetic fields in this chapter.

2.1 The virial radius

As mentioned in the introduction, we will examine bounded and unbounded orbits.
Before we can start with the study of the asymptotic behaviour, we need to derive
conditions when orbits are unbounded and we have to obtain estimates on how fast they
escape to infinity. The key value for this is the virial radius which we will introduce
later in this section. Before that, we shall start with the following definition of bounded
and scattering subsets of the phase space which goes back to W. Hunziker [25]. At this
point, recall that for a magnetic field B : Rd → Rd×d the magnetic flow

ϕt = (qt, vt) : P→ P

was given by the magnetic differential equation (1.3) on the phase space P = TRd. The
kinetic energy E(q, v) = 1

2 |v|
2 is constant along the trajectories and, in particular, the

energy surfaces PE = E−1(E) are invariant with respect to ϕt.
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2.1 The virial radius

Definition 2.1.1 By
b± :=

{
x ∈ P | sup

±t≥0
|qt(x)| <∞

}
we denote the set of points whose trajectories are bounded for t→ ±∞, and by

b := b+ ∩ b−

we describe the set of bounded states. The set

s := s+ ∩ s−

with
s± := P \ b± =

{
x ∈ P | sup

±t≥0
|qt(x)| =∞

}
will be called the set of scattering states. For an energy E ≥ 0 we denote the sets of
bounded and scattering states with energy E by

b±E := b± ∩ PE

and
s±E := s± ∩ PE . �

Note that we will often describe points in b± and s± as bounded and scattering states,
if there are no ambiguities about the case t → ±∞. We will see shortly that for those
magnetic fields considered in this work the term scattering states is justified, i.e. that
points x ∈ s± satisfy

lim
t→±∞

|qt(x)| =∞

(see Proposition 2.1.5). Before we turn to the result, we remark that is is sufficient to
study the case t→ +∞:

Remark 2.1.2 Note that the flow is not reversible, which means that in general the
curve t 7→ ϕ−t(x) is not a trajectory. This suggests that the case t → −∞ has to be
treated separately. However, a straightforward computation shows that for any initial
value x = (q, v) ∈ P the backward trajectory t 7→ q−t(x) coincides with the forward
trajectory of the flow induced by the magnetic field −B(q) with respect to the initial
value (q,−v). Thus, it is sufficient to consider the limit t → +∞ and we shall give all
proofs only for this case. �

We will study magnetic fields that satisfy at least the following condition (2.3). This
means they decay faster than 1

|q| for |q| → ∞.
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2.1 The virial radius

Lemma 2.1.3 Assume the magnetic field B : Rd → Rd×d satisfies

∞∫
0

sup
|q|≥r
‖B(q)‖ dr <∞ . (2.3)

Then we have the convergence

|q| · ‖B(q)‖ → 0 (|q| → ∞) .

Proof Suppose the assertion does not hold. Then there exist ε > 0 and a sequence
(qn)n∈N with |qn| → ∞ such that |qn| · ‖B(qn)‖ ≥ ε. We can assume |qn+1| ≥ 2|qn| and
together with the inequality

sup
|q|≥|qn|

‖B(q)‖ ≥ ε

|qn|

we obtain

∞∫
0

sup
|q|≥r
‖B(q)‖ dr ≥

∞∑
n=1

|qn+1|∫
|qn|

sup
|q|≥|qn+1|

‖B(q)‖ dr

≥ ε
∞∑
n=1

|qn+1| − |qn|
|qn+1|

≥ ε
∞∑
n=1

1
2 .

This contradicts the premise (2.3). �

For the analysis of scattering states the following quantity is crucial.

Definition 2.1.4 For a magnetic field B satisfying condition (2.3), the value

Rvir(E) := max
{
r ≥ 0 | |q| · ‖B(q)‖ ≥

√
2E for |q| = r

}
is said to be the virial radius of B with respect to the energy E. If the set on the right
hand side is empty for an energy E > 0, we set Rvir(E) := 0. �

The virial radius plays an important role for the dynamics: Outside the ball of radius
Rvir(E) the magnetic field is too weak to capture orbits and prevent them from escaping
to infinity. This is expressed by the following result which, in particular, justifies the
term scattering states. A visualization of the assumptions is given in Figure 2.1.
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2.1 The virial radius

Proposition 2.1.5 Assume the magnetic field B satisfies condition (2.3). Let E > 0
and x0 = (q0, v0) ∈ PE with |q0| > Rvir(E) and 〈q0, v0〉 ≥ 0. Then there exists δ > 0
such that

|qt(x0)|2 ≥ |q0|2 + δt2

holds for all t ≥ 0. In particular, the set s+ of scattering states is open and satisfies

s+ =
{
x ∈ P | lim

t→∞
|qt(x)| =∞

}
.

For s− we obtain the analogous result if we assume 〈q0, v0〉 ≤ 0 instead of 〈q0, v0〉 ≥ 0.

Figure 2.1: Visualization of the scattering condition

Proof For |q| ≥ |q0| > Rvir(E) the inequality |q| · ‖B(q)‖ <
√

2E holds, so we can
define

δ := E −
√
E√
2

max
|q|≥|q0|

(
|q| · ‖B(q)‖

)
> 0 ,

where the maximum exists due to the convergence |q| · ‖B(q)‖ → 0 for |q| → ∞. In
particular, we have the estimate

|q| · ‖B(q)‖
√

2E ≤ 2E − 2δ (|q| ≥ |q0|) .

We set (q(t), v(t)) := ϕt(x0) and consider the function f(t) := 1
2 |q(t)|

2 with derivatives

f ′(t) = 〈q(t), v(t)〉

and
f ′′(t) = 2E + 〈q(t), B(q(t))v(t)〉 ≥ 2E − |q(t)| · ‖B(q(t))‖

√
2E.

As long as |q(t)| ≥ |q0|, the second derivative satisfies the inequality

f ′′(t) ≥ 2E − (2E − 2δ) = 2δ. (2.4)

Since f ′(0) ≥ 0, this holds for any t ≥ 0 and hence the claim follows. �
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2.1 The virial radius

Remark 2.1.6 The radius Rvir is the best possible value for this result in the sense that
the statement does not hold if one replaces the condition |q0| > Rvir(E) by |q0| ≥ Rvir(E).
For the case d = 2 we will see in Chapter 3 that there is a circular orbit of radius r > 0
around the origin if |q|·‖B(q)‖ =

√
2E holds for all |q| = r. Hence, if for an energy E > 0

we have |q| · ‖B(q)‖ =
√

2E for all |q| = Rvir(E), then an initial value x0 = (q0, v0) ∈ PE
with |q0| = Rvir(E) and 〈q0, v0〉 = 0 (where v0 points into the right direction) yields a
circular orbit of radius Rvir(E). In particular, |qt(x0)| = Rvir(E) holds for all t ∈ R and
therefore, the estimate on the escape rate does not apply. Moreover, x0 is not even a
scattering state. �

From Proposition 2.1.5 we immediately get the following corollary which says that for
sufficiently large energies there are only scattering orbits.

Corollary 2.1.7 For any energy E > Ẽ◦ with

Ẽ◦ := max
q∈Rd

(|q| · ‖B(q)‖)2

2

we have Rvir(E) = 0 and, in particular, the energy surface PE consists only of scatter-
ing states, i.e. PE = sE. Furthermore, as a function of the energy E, Rvir is strictly
decreasing for energies E ≤ Ẽ◦.

Since |qt(x0)| ≤ |q0|+ |t||v0| as in (1.5), the solution curve can escape to infinity at most
at linear speed and Proposition 2.1.5 states that the rate is not less than linear. In fact,
for compact sets of scattering states there is a uniform lower bound on the escape speed:

Lemma 2.1.8 Let K ⊆ s+ be compact. Then there exist constants C, T > 0 such that
|qt(x)| ≥ Ct holds for all x ∈ K and t ≥ T . The analogous result applies for s−.

Proof Let
Emin := min

x∈K
E(x)

denote the minimal energy of initial values in K. There is a time T > 0 and a radius
R > 0 such that

|qt(x)| ≥ R > Rvir(Emin) ≥ Rvir(E(x)) (t ≥ T )

and
〈qT (x), vT (x)〉 ≥ 0

hold for all x ∈ K. From Proposition 2.1.5 we obtain the estimate

|qt(x)|2 ≥ |qT (x)|2 + δ(E(x))(t− T )2 ,
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2.2 Time decay in a simplified time-dependent magnetic field

where we can choose
δ(E) = E −

√
E√
2

max
|q|≥R

(
|q| · ‖B(q)‖

)
,

as the proof showed. Due to

δ′(E) = 1− 1
2
√

2E
max
|q|≥R

(
|q| · ‖B(q)‖

)
> 1− 1

2
√

2E
√

2E = 1
2 (E ≥ Emin)

we have δ(E) ≥ δ(Emin) for E ≥ Emin and with C :=
√
δ(Emin) we obtain

|qt(x)|2 ≥ |qT (x)|2 + C2(t− T )2 ≥ C2(t− T )2

for all x ∈ K and t ≥ T . Hence, the inequality

|qt(x)| ≥ C

2 t

holds for all t ≥ 2T . �

In a later section we need to divide by the time t. In order to do this, we have to work
around the singularity at t = 0 and therefore introduce the function 〈t〉 :=

√
1 + t2 for

t ∈ R, which can be seen as a smooth modification of the absolute value.

Lemma 2.1.9 The function 〈t〉 :=
√

1 + t2 for t ∈ R satisfies the following properties:

(i) lim
t→∞

t

〈t〉
= 1 .

(ii) Given T > 0, there exists a constant C > 0 such that t ≥ C〈t〉 holds for t ≥ T .

Proof The first assertion is obvious and the second one holds since t
〈t〉 is bounded away

from 0 for t ≥ T > 0. �

Using this function, we immediately obtain an analogue for the escape rate in Lemma 2.1.8:

Lemma 2.1.10 Let K ⊆ s+ be compact. Then there exist constants C, T > 0 such that
|qt(x)| ≥ C〈t〉 holds for all x ∈ K and t ≥ T . Again, the same applies for s−.

2.2 Time decay in a simplified time-dependent magnetic field

Now we turn to the analysis of the asymptotic behaviour of the motion, where we
are interested in the limits (2.1) and (2.2), respectively. Before we analyze a time-
independent magnetic field in Section 2.3, we start with a simplified version of the
motion in a time-dependent magnetic field. In particular, we consider the equation

q̈ = B(t, q)q̇ (2.5)
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2.2 Time decay in a simplified time-dependent magnetic field

or equivalently q̇ = v ,

v̇ = B(t, q)v ,
(2.6)

with a skew-symmetric matrix B(t, q).

Definition 2.2.1 A (time-dependent) magnetic field is a continuous map

B : R× Rd → Rd×d

(t, q) 7→ B(t, q)

which is locally Lipschitz continuous with respect to q and satisfies B(t, q)T = −B(t, q)
for each (t, q) ∈ R × Rd. The (time-dependent) magnetic flow is induced by the time-
dependent magnetic equation (2.6) and is denoted by

ϕt,t0(x) = (qt,t0(x), vt,t0(x)) ,

which means that ϕt,t0(x0) solves the differential equation (2.6) with initial time t0 and
initial value ϕt0,t0(x0) = x0. �

Note that this is a slightly different definition of the motion in a time-dependent magnetic
field than the one we would obtain by the Lagrangian formulation. On the one hand it
is simplified in the way described in the following remark, on the other hand it is more
general since it does not require the magnetic field to define an exact 1-form.

Remark 2.2.2 For a given time-dependent magnetic field

βt =
d∑

i,j=1
i<j

Bij(t, q)dqi ∧ dqj ∈ Ω2(Rd)

and a corresponding magnetic potential

αt =
d∑
i=1

Ai(t, q)dqi ∈ Ω1(Rd) ,

the time-dependent magnetic Lagrangian L : R× TRd → R is given by

L(t, q, v) = 1
2 |v|

2 + 〈A(t, q), v〉 − Φ(t, q) ,

with a suitable function Φ: R × Rd → R, as described below. The flow induced by
this Lagrangian models the motion of a charged particle in a magnetic field when an
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2.2 Time decay in a simplified time-dependent magnetic field

effect called electromagnetic induction is taken into account, which is described by the
Maxwell-Faraday equations. The function Φ: R× Rd → R satisfies

∂Φ
∂qi

= Ei + ∂Ai
∂t

(i = 1, . . . , d)

with the induced electric field

E(t, q)dq :=
d∑
i=1

Ei(t, q)dqi

given by

−d(Edq) = ∂βt
∂t

.

In fact, E is not uniquely determined by this condition. However, this is achieved by
additional assumptions in the model, which we shall not investigate here. Uniqueness
does not hold for Φ, though, but the corresponding motion will not depend on the choice.
Note that this construction does not contradict the one in the time-independent case,
since for a time-independent magnetic field β we can choose Φ ≡ 0. Similar to (1.2), for
the motion we obtain

0 =
(
∂L

∂qi
− d

dt

∂L

∂vi

)
(t, q, q̇)

=
d∑
j=1

∂Aj
∂qi

q̇j −
∂Φ
∂qi
−

q̈i + ∂Ai
∂t

+
d∑
j=1

∂Ai
∂qj

q̇j


=

 d∑
j=1

∂Aj
∂qi
−

d∑
j=1

∂Ai
∂qj

 q̇j − ∂Φ
∂qi
− ∂Ai

∂t
− q̈i

=
d∑
j=1

Bij(t, q)q̇j − Ei(t, q)− q̈i

and hence the differential equation

q̈ = B(t, q)q̇ − E(t, q) . (2.7)
�

For our purposes it is more suitable to consider the simplified time-dependent magnetic
flow instead of the one described in the previous remark. Since the magnetic field is
skew-symmetric, we still have 〈v,B(t, q)v〉 = 0 for all t ∈ R and (q, v) ∈ P. This yields

d

dt

1
2 |v

t,t0(x)|2 = 〈vt,t0(x), d
dt
vt,t0(x)〉 = 〈vt,t0(x), B(t, qt,t0(x))vt,t0(x)〉 = 0
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2.2 Time decay in a simplified time-dependent magnetic field

and hence the kinetic energy

E : P→ R, (q, v) 7→ 1
2 |v|

2

is constant along trajectories. Note that this would not be the case for trajectories of the
flow given by (2.7). We observe that the divergence of the vector field associated to the
magnetic equation (2.6) vanishes and therefore, by Liouville’s theorem, the generated
flow preserves the volume. Finally, we claim that although the flow is also not reversible,
it suffices to consider the asymptotic behaviour of the motion and the limit of ϕ−t0 ◦ϕt,0

for t→ +∞, similarly to the time-independent case described in Remark 2.1.2:

Remark 2.2.3 A straightforward computation shows that for any given initial value
x = (q, v) ∈ P, the backward trajectory t 7→ q−t,0(x) coincides with the forward trajec-
tory of the flow induced by the magnetic field −B(−t, q) with respect to the initial value
(q,−v). Thus, it is sufficient to study the limit t→ +∞ and we shall give all proofs only
for this case. In particular, for magnetic fields decaying for t → −∞, we can consider
the limit

lim
t→−∞

ϕ−t0 ◦ ϕ
t,0

and obtain analogous results as for t→ +∞. �

2.2.1 Asymptotic velocity and asymptotic position

To describe the asymptotic behaviour of the motion we start by considering the velocity.
We shall examine time-dependent magnetic fields that decay uniformly in time, faster
than 1

t for t→∞.

Proposition 2.2.4 Let the magnetic field satisfy
∞∫
0

‖B(t, ·)‖∞ dt <∞ . (2.8)

Then the following statements hold:

(i) For any x ∈ P the limit
v+(x) := lim

t→∞
vt,0(x)

exists and is called the asymptotic velocity.

(ii) The asymptotic velocity satisfies

v+(x) = lim
t→∞

qt,0(x)
t

for all x ∈ P.
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2.2 Time decay in a simplified time-dependent magnetic field

(iii) The mapping v+ : P → Rd is continuous. Moreover, the limits in (i) and (ii) are
uniform on the sets P[0,E] = E−1([0, E]) for any energy E > 0.

The analogous results hold for v− : P→ Rd given by

v−(x) := lim
t→−∞

vt,0(x) .

Proof For fixed x0 = (q0, v0) ∈ P we have

vt,0(x0) = v0 +
t∫

0

d

ds
vs,0(x0) ds = v0 +

t∫
0

B(s, qs,0(x0))vs,0(x0) ds .

With the kinetic energy E(x0) of x0 the inequality

t∫
0

|B(s, qs,0(x0))vs,0(x0)| ds ≤
√

2E(x0)
t∫

0

‖B(s, ·)‖∞ ds

holds for all t ∈ R, and because of (2.8) the limit on the left hand side exists for t→∞.
Hence,

v+(x0) := lim
t→∞

vt,0(x0) = v0 +
∞∫
0

B(s, qs,0(x0))vs,0(x0) ds

exists. Since for any given E > 0 and all x ∈ P[0,E] we have the convergence

|v+(x)− vt,0(x)| = |
∞∫
t

B(s, qs,0(x))vs,0(x) ds| ≤
√

2E
∞∫
t

‖B(s, ·)‖∞ ds→ 0 (2.9)

for t → ∞, v+ is the uniform limit of continuous functions on P[0,E] and hence it is
continuous on the interior P[0,E). This implies that v+ is continuous on P = ∪E>0P[0,E).

To show assertion (ii) we also fix x0 = (q0, v0) ∈ P and set (q(t), v(t)) := ϕt,0(x0). We
have

d

ds

(
q(s)− sv+(x0)

)
= v(s)− v+(x0) = −

∞∫
s

B(u, q(u))v(u) du (2.10)

and, using

d

ds

∞∫
s

B(u, q(u))v(u) du = −B(s, q(s))v(s) ,
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2.2 Time decay in a simplified time-dependent magnetic field

we can compute the integral
∫ t

0 ds of (2.10) through integration by parts. This yields

q(t)− tv+(x0) = q0 −
t∫

0

1 ·

 ∞∫
s

B(u, q(u))v(u) du

 ds

= q0 −

s ∞∫
s

B(u, q(u))v(u) du

∣∣∣∣∣∣
t

0

−
t∫

0

s(−B(s, q(s))v(s)) ds


= q0 − t

∞∫
t

B(u, q(u))v(u) du−
t∫

0

uB(u, q(u))v(u) du

(2.11)

and we obtain the equation

q(t)
t
− v+(x0) = q0

t
−
∞∫
t

B(u, q(u))v(u) du−
t∫

0

u

t
B(u, q(u))v(u) du .

We now show that this expression converges to zero uniformly on P[0,E]. With 1[0,t] de-
noting the characteristic function of the interval [0, t] we have the pointwise convergence

u

t
B(u, q(u))v(u)1[0,t](u)→ 0 (t→∞)

and due to

|u
t
B(u, q(u))v(u)1[0,t](u)| ≤

√
2E(x0)‖B(u, ·)‖∞ (u ≥ 0) ,

there is an integrable majorizing function. Thus, Lebesgue’s dominated convergence
theorem yields

t∫
0

u

t
B(u, q(u))v(u) du→ 0 (t→∞) .

Furthermore, we have

|
∞∫
t

B(u, q(u))v(u) du| ≤
√

2E(x0)
∞∫
t

‖B(u, ·)‖∞ du→ 0 (t→∞) ,

which finally implies that

qt(x)
t
− v+(x)→ 0 (t→∞)

converges uniformly on P[0,E] and hence completes the proof. �

After the velocity we now study the position component qt,0(x) − tvt,0(x) of the term
ϕ−t0 ◦ ϕt,0 in (2.2). For this we need a faster decay than for the asymptotic velocity.
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2.2 Time decay in a simplified time-dependent magnetic field

Proposition 2.2.5 Let the magnetic field satisfy
∞∫
0

t‖B(t, ·)‖∞ dt <∞ . (2.12)

Then the following statements hold:

(i) For any x ∈ P the limit

q+(x) := lim
t→∞

(
qt,0(x)− tv+(x)

)
exists and is called the asymptotic position.

(ii) The asymptotic position satisfies the equation

q+(x) = lim
t→∞

(
qt,0(x)− tvt,0(x)

)
(2.13)

for all x ∈ P.

(iii) The mapping q+ : P→ Rd is continuous. Moreover, both limits are uniform on the
subsets P[0,E] ⊆ P.

The analogous results hold for q− : P→ Rd given by

q−(x) := lim
t→−∞

(
qt,0(x)− tv−(x)

)
.

Proof We fix x0 = (q0, v0) ∈ P and make use of the previously obtained identity (2.11)
for qt,0(x0)− tv+(x0), namely

qt,0(x0)− tv+(x0) = q0 − t
∞∫
t

B(s, qs,0(x0))vs,0(x0) ds−
t∫

0

sB(s, qs,0(x0))vs,0(x0) ds .

The integral
∫ t

0 sB(s, qs,0(x0)) ds converges for t→∞ by Lebesgue’s dominated conver-
gence theorem. Since furthermore the estimate

|t
∞∫
t

B(s, qs,0(x0))vs,0(x0) ds| ≤
√

2E(x0)
∞∫
t

s‖B(s, ·)‖∞ ds→ 0 (t→∞)

holds, we obtain the existence of the asymptotic position q+(x0). The limit is uniform in
x0 on all subsets of P with bounded energy and hence, q+ is continuous on P. Similarly
to (2.9) we have t(v+(x0)− vt,0(x0))→ 0 for t→∞ and hence

qt,0(x0)− tvt,0(x0) = qt,0(x0)− tv+(x0) + t(v+(x0)− vt,0(x0))→ q+(x0) (t→∞)

converges uniformly on P[0,E]. �
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2.2 Time decay in a simplified time-dependent magnetic field

2.2.2 Wave transformations

Asymptotic velocity and asymptotic position together allow the following definition.

Definition 2.2.6 For a magnetic field satisfying condition (2.12), namely

∞∫
0

t‖B(t, ·)‖∞ dt <∞ ,

the mappings

Ω± : P→ P

x 7→ (q±(x), v±(x))

are well defined. These are called the (velocity) wave transformations and, assuming
(2.12), they coincide with the limit (2.2), i.e.

Ω± = lim
t→±∞

ϕ−t0 ◦ ϕ
t,0 .

�

The name wave transformation (sometimes also called wave operator or Møller operator)
shows that scattering theory has its roots in quantum mechanics, where the state of
a system is described by a so-called wave function. It has been adopted to classical
mechanics, for example in [12, 44], and we shall follow this terminology.

If for once we drop any assumptions on the magnetic field, then we can still define the
wave transformations Ω± := (q±, v±) as formal limits. The following proposition shows
that the existence of the limit Ω+(x) = y is equivalent to the fact that there is a point
y ∈ P such that the free trajectory of y is asymptotic to the magnetic trajectory of x ∈ P.
Note that points x ∈ P0 with zero energy are fixed points and Ω±|P0

= id holds, but
for those points x ∈ P(0,∞) with positive energy such that the limits Ω±(x) exist, this
implies that the magnetic trajectories are asymptotically straight lines.

Proposition 2.2.7 Let B be any time-dependent magnetic field. Then, for x ∈ P the
following statements are equivalent:

(i) Ω+(x) = (q+(x), v+(x)) = y ∈ P (i.e. the limit exists and equals y).

(ii) ϕt,0(x)− ϕt0(y)→ 0 for t→∞.

The analogous result holds for Ω−.
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2.2 Time decay in a simplified time-dependent magnetic field

Proof Let x ∈ P. Then for a point y = (q∞, v∞) we have

Ω+(x) = y ⇐⇒ lim
t→∞

vt,0(x) = v∞ and lim
t→∞

(
qt,0(x)− tv∞

)
= q∞

⇐⇒ lim
t→∞

(
qt,0(x)− tv∞ − q∞, vt,0(x)− v∞

)
= 0

⇐⇒ lim
t→∞

(
qt,0(x), vt,0(x)

)
−
(
q∞ + tv∞, v∞

)
= 0

⇐⇒ lim
t→∞

ϕt,0(x)− ϕt0(y) = 0 . �

Remark 2.2.8 We can relate the incoming asymptotic straight line to the outgoing
one: The wave transformations give rise to the scattering transformation

S := Ω+ ◦ (Ω−)−1 : P→ P ,

which is relevant when considering inverse scattering. In the following, we will focus on
the analysis of the wave transformations Ω±, whose properties transfer to S. �

From now on we shall assume that the magnetic field satisfies at least condition (2.12)
on the decay. Then the previous results on asymptotic velocity and asymptotic posi-
tion imply that the wave transformations Ω± exist and are continuous mappings. The
remainder of this section is devoted to the study of their regularity. Naturally, we be-
gin with the examination if they are bijections and, moreover, homeomorphisms. For
this, we start with a technical lemma which relates the asymptotic values to an integral
equation for the trajectory.

Lemma 2.2.9 Let (q∞, v∞) ∈ P and let γ ∈ C1([T,∞),Rd) for some T > 0. Further-
more, let the magnetic field satisfy

∞∫
0

t‖B(t, ·)‖∞ dt <∞ .

Then the following statements are equivalent:

(i) γ is a solution of the magnetic equation (2.5) for t ≥ T with

Ω+(ϕ0,T (γ(T ), γ̇(T ))) = (q∞, v∞) .

(ii) γ satisfies the integral equation

γ(t) = q∞ + tv∞ +
∞∫
t

(s− t)B(s, γ(s))γ̇(s) ds (2.14)

for t ≥ T and γ̇ is bounded.

The analogous result holds for Ω−.
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2.2 Time decay in a simplified time-dependent magnetic field

Proof “(i) ⇒ (ii)”: For t, u ≥ T we have

γ(t) = γ(u)−
u∫
t

γ̇(s) ds

= γ(u)−
u∫
t

γ̇(u)−
u∫
s

γ̈(τ) dτ

 ds

= γ(u)− (u− t)γ̇(u) +
u∫
t

u∫
s

B(τ, γ(τ))γ̇(τ) dτ ds .

Integrating by parts yields
u∫
t

1 ·

 u∫
s

B(τ, γ(τ))γ̇(τ) dτ

 ds

= s

u∫
s

B(τ, γ(τ))γ̇(τ) dτ

∣∣∣∣∣∣
u

t

−
u∫
t

s(−B(s, γ(s))γ̇(s)) ds

= −t
u∫
t

B(τ, γ(τ))γ̇(τ) dτ +
u∫
t

sB(s, γ(s))γ̇(s) ds

=
u∫
t

(s− t)B(s, γ(s))γ̇(s) ds

and hence we obtain

γ(t) = γ(u)− uγ̇(u) + tγ̇(u) +
u∫
t

(s− t)B(s, γ(s))γ̇(s) ds .

Furthermore, since γ is a solution of the magnetic equation (2.5), we have

γ(t) = qt,T (γ(T ), γ̇(T )) = qt,0(ϕ0,T (γ(T ), γ̇(T )))

and similarly
γ̇(t) = vt,0(ϕ0,T (γ(T ), γ̇(T )))

for t ≥ T . Together with the assumption on the decay of the magnetic field, this implies

γ̇(u)→ v∞ (u→∞)

and, using property (2.13) of the asymptotic position, also the convergence

γ(u)− uγ̇(u)→ q∞ (u→∞) .
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2.2 Time decay in a simplified time-dependent magnetic field

Therefore we obtain

γ(t) = q∞ + tv∞ +
∞∫
t

(s− t)B(s, γ(s))γ̇(s) ds ,

i.e. γ satisfies the integral equation. Since (γ, γ̇) solves the magnetic equation (2.5),
|γ̇(t)| is constant and, in particular, γ̇ is bounded.

“(ii) ⇒ (i)”: Let γ : [T,∞) → Rd satisfy the integral equation. For the derivatives of
the integral with respect to t we have

d

dt

∞∫
t

(s− t)B(s, γ(s))γ̇(s) ds

= −tB(t, γ(t))γ̇(t)−

 ∞∫
t

B(s, γ(s))γ̇(s) ds− tB(t, γ(t))γ̇(t)


= −

∞∫
t

B(s, γ(s))γ̇(s) ds

(2.15)

and

d2

dt2

∞∫
t

(s− t)B(s, γ(s))γ̇(s) ds = B(t, γ(t))γ̇(t) .

Therefore, γ is a solution of the magnetic equation (2.5) and satisfies

γ̇(t) = v∞ −
∞∫
t

B(s, γ(s))γ̇(s) ds→ v∞ (t→∞)

as well as

γ(t)− tv∞ = q∞ +
∞∫
t

(s− t)B(s, γ(s))γ̇(s) ds→ q∞ (t→∞) .

Hence, for
x := ϕ0,T (γ(T ), γ̇(T ))

we have ϕt,0(x) = (γ(t), γ̇(t)) for t ≥ T and therefore

Ω+(x) = (q∞, v∞) . �
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2.2 Time decay in a simplified time-dependent magnetic field

In order to show that Ω+ and Ω− are bijections, we will use this lemma to construct
an operator with a unique fixed point. To prove the continuity of (Ω±)−1, we need the
following lemma that states when solutions of a fixed point equation depend continuously
on an additional parameter. A version of this result with similar assumptions is given
in Theorem 4.9.2 in [32].

Lemma 2.2.10 Let (X, d) be a complete metric space and Y a topological space. Fur-
thermore, let I : Y ×X → X satisfy the following two properties:

(i) There is some λ < 1 such that the inequality d(I(y, x1), I(y, x2)) ≤ λd(x1, x2) holds
for all y ∈ Y and all x1, x2 ∈ X.

(ii) For any x ∈ X the map Y → X, y 7→ I(y, x) is continuous.

For any y ∈ Y let x∞(y) ∈ X denote the unique solution of x = I(y, x) as given by the
Banach fixed point theorem. Then the mapping Y → X, y 7→ x∞(y) is continuous.

Proof For y0 ∈ Y we have

d(x∞(y), x∞(y0)) = d(I(y, x∞(y)), I(y0, x∞(y0)))

≤ d(I(y, x∞(y)), I(y, x∞(y0))) + d(I(y, x∞(y0)), I(y0, x∞(y0)))

≤ λd(x∞(y), x∞(y0)) + d(I(y, x∞(y0)), I(y0, x∞(y0))) .

This implies

d(x∞(y), x∞(y0)) ≤ 1
1− λd(I(y, x∞(y0)), I(y0, x∞(y0)))

and therefore the continuity of the mapping y 7→ I(y, x∞(y0)) yields the continuity of
y 7→ x∞(y) in y0. �

Finally, this allows us to show when Ω+ and Ω− are homeomorphisms.

Theorem 2.2.11 Let the magnetic field satisfy

∞∫
0

t‖B(t, ·)‖∞ dt <∞

and assume there is a continuous function ` : [0,∞)→ [0,∞) with

‖B(t, q1)−B(t, q2)‖ ≤ `(t)|q1 − q2| (q1, q2 ∈ Rd, t ≥ 0) .
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2.2 Time decay in a simplified time-dependent magnetic field

(i) If ` satisfies the condition
∞∫
0

t`(t) dt <∞ ,

then Ω+ is a bijection.

(ii) If ` decays faster, such that
∞∫
0

t2`(t) dt <∞

holds, then Ω+ is a homeomorphism.

The analogous results hold for Ω−.

Proof (i) We show that for any fixed energy E > 0 the wave transformation Ω+ maps
the set P[0,E] = {(q, v) ∈ P | |v| ≤

√
2E} bijectively to itself. Since |v+(x0)| = |v0|,

we already know the relation Ω+(P[0,E]) ⊆ P[0,E] and it remains to show that Ω+∣∣
P[0,E]

attains every value (q∞, v∞) ∈ P[0,E]. This is achieved by using Lemma 2.2.9 and a
contracting operator that depends on the parameters q∞, v∞ and whose unique fixed
point yields the desired solution curve asymptotic to q∞ + tv∞. For this, we note that
γ satisfies

γ(t) =
∞∫
t

(s− t)B(s, γ(s) + q∞ + sv∞)(γ̇(s) + v∞) ds (2.16)

if and only if the mapping t 7→ γ(t) + q∞ + tv∞ satisfies the integral equation (2.14).
We will show that the operator given by the right hand side of (2.16) is a contraction
on some complete metric space. For any E > 0 this will be a function space of curves γ,
with the only difference being the domain of definition.

We fix an energy E > 0 and some λ < 1
2 . Furthermore, let T = T (E) > 0 satisfy

∞∫
T

t‖B(t, ·)‖∞ dt ≤
λ

1 +
√

2E
(2.17)

as well as
∞∫
T

t`(t) dt ≤ λ

1 +
√

2E
. (2.18)

We define

X = X(E) :=
{
γ ∈ C1([T (E),∞),Rd

)
| |γ(t)|+ |γ̇(t)| → 0 for t→∞

}
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and

X1 :=
{
γ ∈ X | ‖γ̇‖∞ ≤ 1

}
.

Then X, together with the C1-norm ‖γ‖C1 := ‖γ‖∞+ ‖γ̇‖∞, is a closed subspace of the
Banach space (C1

b ([T,∞),Rd), ‖·‖C1) of bounded C1-functions with bounded derivative,
and hence itself a Banach space. As a closed subset, X1 ⊆ X is a complete metric
space. For the desired asymptotic values (q∞, v∞) ∈ P[0,E] and for γ ∈ X we define
I(γ) = IE(q∞, v∞, γ) : [T,∞)→ Rd by

I(γ)(t) :=
∞∫
t

(s− t)B(s, γ(s) + q∞ + sv∞)(γ̇(s) + v∞) ds . (2.19)

We claim that I maps X1 into itself and is a contraction. We first show I(X1) ⊆ X1

and for this, let γ ∈ X1. Similar to (2.15) we obtain

d

dt
I(γ)(t) = −

∞∫
t

B(s, γ(s) + q∞ + sv∞)(γ̇(s) + v∞) ds (t ≥ T ) (2.20)

and due to ‖γ̇‖∞ ≤ 1 we have

|I(γ)(t)|+ | d
dt
I(γ)(t)| ≤ (1 +

√
2E)

∞∫
t

s‖B(s, ·)‖∞ ds+ (1 +
√

2E)
∞∫
t

‖B(s, ·)‖∞ ds

→ 0 (t→∞) .

Furthermore, the inequality

‖ d
dt
I(γ)‖∞ ≤ (1 +

√
2E)

∞∫
T

‖B(s, ·)‖∞ ds ≤ λ < 1 , (2.21)

applies, which yields, together with the previous computation, that I(γ) ∈ X1 holds.

It remains to show the contracting property of I on X1. For this, let γ1, γ2 ∈ X1. Then,
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for s ∈ [T,∞) we have

|B(s, γ1(s) + q∞ + sv∞)(γ̇1(s) + v∞)−B(s, γ2(s) + q∞ + sv∞)(γ̇2(s) + v∞)|

≤ |B(s, γ1(s) + q∞ + sv∞)−B(s, γ2(s) + q∞ + sv∞)| · |v∞|

+ |B(s, γ1(s) + q∞ + sv∞)γ̇1(s)−B(s, γ2(s) + q∞ + sv∞)γ̇2(s)|

≤ `(s)|γ1(s)− γ2(s)| · |v∞|

+ |B(s, γ1(s) + q∞ + sv∞)γ̇1(s)−B(s, γ2(s) + q∞ + sv∞)γ̇1(s)|

+ |B(s, γ2(s) + q∞ + sv∞)γ̇1(s)−B(s, γ2(s) + q∞ + sv∞)γ̇2(s)|

≤ `(s)|γ1(s)− γ2(s)|
√

2E

+ |B(s, γ1(s) + q∞ + sv∞)−B(s, γ2(s) + q∞ + sv∞)|

+ |B(s, γ2(s) + q∞ + sv∞)| · |γ̇1(s)− γ̇2(s)|

≤ (1 +
√

2E)`(s)‖γ1 − γ2‖∞ + ‖B(s, ·)‖∞‖γ̇1 − γ̇2‖∞ .

(2.22)

Together with the inequalities (2.17) and (2.18) this implies

|
(
I(γ1)− I(γ2)

)
(t)| ≤

∞∫
t

(s− t)|B(s, γ1(s) + q∞ + sv∞)(γ̇1(s) + v∞)

−B(s, γ2(s) + q∞ + sv∞)(γ̇2(s) + v∞)| ds

≤ (1 +
√

2E)
∞∫
T

s`(s) ds ‖γ1 − γ2‖∞

+ (1 +
√

2E)
∞∫
T

s‖B(s, ·)‖∞ ds ‖γ̇1 − γ̇2‖∞

≤ λ‖γ1 − γ2‖C1 .

Similarly, by using (2.20) and (2.22) again, we have

| d
dt

(
I(γ1)− I(γ2)

)
(t)| ≤

∞∫
t

|B(s, γ1(s) + q∞ + sv∞)(γ̇1(s) + v∞)

−B(s, γ2(s) + q∞ + sv∞)(γ̇2(s) + v∞)| ds

≤ (1 +
√

2E)
∞∫
T

`(s) ds ‖γ1 − γ2‖∞

+ (1 +
√

2E)
∞∫
T

‖B(s, ·)‖∞ ds ‖γ̇1 − γ̇2‖∞

≤ λ‖γ1 − γ2‖C1 .
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Therefore, the inequality

‖I(γ1)− I(γ2)‖C1 ≤ 2λ‖γ1 − γ2‖C1 (2.23)

holds with 2λ < 1, independent of γ1, γ2 ∈ X1. Hence, restricting I to X1 we obtain
that I : X1 → X1 is a contraction. Therefore, there exists exactly one curve

γ∞ = γ∞(q∞, v∞) ∈ X1 ⊆ C1
b

(
[T,∞),Rd

)
with I(q∞, v∞, γ∞) = γ∞, and Lemma 2.2.9 yields that

q(t) := γ∞(t) + q∞ + tv∞ (t ≥ T )

solves the magnetic differential equation (2.5) on [T,∞). This curve can be extended to
a solution q : R → Rd which satisfies Ω+(q(0), q̇(0)) = (q∞, v∞). Since q as well as the
extension are uniquely determined by q∞ and v∞, the wave transformation Ω+ maps
P[0,E] bijectively to itself for any E > 0. Thus, the inverse (Ω+)−1 exists.

(ii) To show the continuity of (Ω+)−1 we need a more formal description of the previously
mentioned extension process. With the evaluation functional

δT : C1
b

(
[T,∞),Rd

)
→ P, δT (γ) = (γ(T ), γ̇(T ))

the result of Lemma 2.2.9 yields

(q∞, v∞) = Ω+(ϕ0,T (δT (γ∞(q∞, v∞)) + (q∞ + Tv∞, v∞))) .

Hence, on P[0,E] the map (Ω+)−1 is given by

(Ω+)−1(q∞, v∞) = ϕ0,T (δT (γ∞(q∞, v∞)) + (q∞ + Tv∞, v∞)) . (2.24)

The evaluation functional is continuous and therefore it remains to show that the unique
fixed point γ∞(q∞, v∞) of I(q∞, v∞, ·) depends continuously on the parameters q∞ and
v∞. To obtain this we will apply Lemma 2.2.10. Since the inequality (2.23) holds for all
points (q∞, v∞) ∈ P[0,E], it suffices to verify that the mapping (q∞, v∞) 7→ I(q∞, v∞, γ)
is continuous for fixed γ ∈ X1, which is achieved by using a similar estimate as (2.22)
for the contraction property. For any points (q1, v1), (q2, v2) ∈ P[0,E] and all s ∈ [T,∞)
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we have

|B(s, γ(s) + q1 + sv1)(γ̇(s) + v1)−B(s, γ(s) + q2 + sv2)(γ̇(s) + v2)|

≤ |B(s, γ(s) + q1 + sv1)−B(s, γ(s) + q2 + sv2)| · |γ̇(s)|

+ |B(s, γ(s) + q1 + sv1)v1 −B(s, γ(s) + q2 + sv2)v2|

≤ |B(s, γ(s) + q1 + sv1)−B(s, γ(s) + q2 + sv2)|

+ |B(s, γ(s) + q1 + sv1)v1 −B(s, γ(s) + q2 + sv2)v1|

+ |B(s, γ(s) + q2 + sv2)v1 −B(s, γ(s) + q2 + sv2)v2|

≤ `(s)|q1 + sv1 − q2 − sv2|

+ |B(s, γ(s) + q1 + sv1)−B(s, γ(s) + q2 + sv2)| · |v1|

+ |B(s, γ(s) + q2 + sv2)| · |v1 − v2|

≤ `(s)(1 + |v1|)|q1 + sv1 − q2 − sv2|+ ‖B(s, ·)‖∞|v1 − v2|

≤ `(s)(1 +
√

2E)|q1 − q2|+ s`(s)(1 +
√

2E)|v1 − v2|+ ‖B(s, ·)‖∞|v1 − v2| .

Hence, since the integrals
∞∫
0

s2`(s) ds <∞

and ∞∫
0

s‖B(s, ·)‖∞ ds <∞

exist by assumption, both the inequalities

|
(
I(q1, v1, γ)− I(q2, v2, γ)

)
(t)|

≤
∞∫
t

(s− t)|B(s, γ(s) + q1 + sv1)(γ̇(s) + v1)

−B(s, γ(s) + q2 + sv2)(γ̇(s) + v2)| ds

≤
∞∫
T

s`(s) ds (1 +
√

2E)|q1 − q2|

+
∞∫
T

s2`(s) ds (1 +
√

2E)|v1 − v2|

+
∞∫
T

s‖B(s, ·)‖∞ ds |v1 − v2|

≤ const(|q1 − q2|+ |v1 − v2|)
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and

| d
dt

(
I(q1, v1, γ)− I(q2, v2, γ)

)
(t)|

≤
∞∫
T

`(s) ds (1 +
√

2E)|q1 − q2|

+
∞∫
T

s`(s) ds (1 +
√

2E)|v1 − v2|

+
∞∫
T

‖B(s, ·)‖∞ ds |v1 − v2|

≤ const(|q1 − q2|+ |v1 − v2|)

hold for all t ≥ T . Consequently, this yields

‖I(q1, v1, γ)− I(q2, v2, γ)‖C1 ≤ const(|q1 − q2|+ |v1 − v2|) ,

which implies the continuity of I with respect to q∞ and v∞. By using Lemma 2.2.10
we obtain the continuity of the mapping (q∞, v∞) 7→ γ∞(q∞, v∞), which yields the
continuity of (Ω+)−1 on P[0,E). Since this applies for all E > 0, the inverse (Ω+)−1 is
continuous and, thus, Ω+ is a homeomorphism. �

As Ω+ and Ω− are the locally uniform limits of the volume preserving maps ϕ−t0 ◦ϕt,0, we
expect that this property also holds for Ω+ and Ω−. Before we are able to show that this
is indeed the case, we need the following condition for a homeomorphism to be volume
preserving, which is a consequence of the transformation formula for integrals. In fact,
this is not a new result – for example B. Simon also used it to show the volume preserving
property when studying potential scattering [44]. Due to the lack of a reference to a
precise statement, though, we give the proof ourselves.

Lemma 2.2.12 For any homeomorphism Φ: Rn → Rn the following statements are
equivalent:

(i) Φ is volume preserving, i.e. Φ(λ) = λ, with the Lebesgue measure λ = λn and the
pushforward measure Φ(λ)(A) := λ(Φ−1(A)).

(ii) The equality ∫
Rn

f ◦ Φ dλ =
∫
Rn

f dλ

holds for all smooth and compactly supported functions f ∈ C∞c (Rn,R).
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Proof “(i) ⇒ (ii)”: By the transformation formula for integrals, the equality∫
Rn

f ◦ Φ dλ =
∫
Rn

f dΦ(λ) =
∫
Rn

f dλ

holds for any measurable function f : Rn → Rn.

“(ii) ⇒ (i)”: We show this statement by contradiction and assume Φ(λ) 6= λ. Then
there exists a cuboid A ⊆ Rn such that

Φ(λ)(A) 6= λ(A) .

For A, there is an increasing sequence of non-negative, smooth functions fk ∈ C∞c (Rn,R)
such that fk → 1A converges pointwise to the characteristic function 1A of A. By
assumption, we have ∫

Rn
fk ◦ Φ dλ =

∫
Rn

fk dλ

for all k ∈ N, and the monotone convergence theorem yields∫
Rn

fk dλ→
∫
Rn

1A dλ = λ(A)

as well as∫
Rn

fk ◦ Φ dλ→
∫
Rn

1A ◦ Φ dλ =
∫
Rn

1Φ−1(A) dλ = λ(Φ−1(A)) = Φ(λ)(A) .

Since the limit is unique, this contradicts the assumption. �

Finally, this allows us to show that the wave transformations Ω± are volume preserving.

Proposition 2.2.13 Let the magnetic field satisfy the assumptions of Theorem 2.2.11,
such that the wave transformations Ω± : P → P are homeomorphisms. Then the maps
Ω± are volume preserving.

Proof Let f ∈ C∞c (R2d,R). We claim that

f ◦ ϕ−t0 ◦ ϕ
t,0 → f ◦ Ω+ (2.25)

converges uniformly on P ∼= R2d. Due to the compact support of f there is some E0 > 0
such that supp f ⊆ P[0,E0]. Since f is uniformly continuous and ϕ−t0 ◦ϕt,0 → Ω+ converges
uniformly on P[0,E0], the convergence in (2.25) is uniform on P[0,E0]. The energy surfaces
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PE are invariant under the flow and therefore we have f ◦ ϕ−t0 ◦ ϕt,0(x) = f ◦Ω+(x) = 0
for any x /∈ P[0,E0]. Thus, the convergence in (2.25) is uniform on P and we obtain∫

P

f ◦ Ω+ dλ = lim
t→∞

∫
P

f ◦ ϕ−t0 ◦ ϕ
t,0 dλ . (2.26)

Now we can make use of Lemma 2.2.12: The maps ϕ−t0 ◦ϕt,0 are volume preserving and
therefore ∫

P

f ◦ ϕ−t0 ◦ ϕ
t,0 dλ =

∫
P

f dλ

holds for all t ∈ R. According to (2.26) this implies∫
P

f ◦ Ω+ dλ =
∫
P

f dλ

and, by applying Lemma 2.2.12 again, we obtain that Ω+ is volume preserving. �

This shows that we do not require any additional assumptions on the rate of decay for
the homeomorphisms Ω± to be volume preserving. The following considerations will
be devoted to the question whether a higher rate of decay yields differentiability of the
wave transformations Ω±. One way of approaching this problem would be to try to
show convergence in the C1-topology. Instead, we proceed similarly to the proof of the
continuity of (Ω±)−1 and start with an analogous result to Lemma 2.2.10, which states
when a fixed point of a parametrized equation depends differentiably on the additional
parameters. For a similar case, this result can be found in Theorem 4.9.4 in [32].

Lemma 2.2.14 Let V,W be Banach spaces and A ⊆ V , B ⊆W be open. Furthermore,
let I : A×B →W be a C1-map and λ < 1 such that

‖I(v, w1)− I(v, w2)‖ ≤ λ‖w1 − w2‖ (v ∈ V, w1, w2 ∈W ) .

Furthermore, assume that for each v ∈ A the contraction w 7→ I(v, w) has a fixed point
in B. Then the map v 7→ w∞(v) denoting this (unique) fixed point of I(v, ·) is a C1-map.

Proof We apply the implicit function theorem. Note that w = w∞(v) holds if and only
if Î(v, w) := I(v, w)−w = 0. The map Î is continuously differentiable and its derivative
DwÎ with respect to w equals DwÎ = DwI − id. Due to ‖DwI‖ ≤ λ < 1 the map DwÎ

is invertible, and hence the statement follows from the implicit function theorem. �

Having obtained this lemma, we can proceed to show the differentiability of the wave
transformations. For this result the magnetic field has to be differentiable and we need
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to make assumptions on the decay of the derivative of B, which we will describe in terms
of its components Bij .

Theorem 2.2.15 Let the components Bij of the magnetic field B ∈ C1(Rd,Rd×d) satisfy

∞∫
0

t‖Bij(t, ·)‖∞ dt <∞

and
∞∫
0

t2‖∇qBij(t, ·)‖∞ dt <∞

for all i, j ∈ {1, . . . , d}. Furthermore, assume that for every pair i, j ∈ {1, . . . , d} there
exists a continuous function ` : [0,∞)→ [0,∞) with

|∇qBij(t, q1)−∇qBij(t, q2)| ≤ `(t)|q1 − q2| (q1, q2 ∈ Rd, t ≥ 0)

and
∞∫
0

t3`(t) dt <∞ .

Then the wave transformation Ω+ is a C1-diffeomorphism. The analogue holds for Ω−.

Proof We fix an energy E > 0 and show that (Ω+)−1 is a C1-map on each set P[0,E),
from which we then deduce that this also holds for Ω+. The proof works similarly to
the one that Ω+ is a homeomorphism in Theorem 2.2.11. Again, we use the map

I = I(E) : P×X → X = X(E)

which is given by (2.19), namely

I(γ)(t) =
∞∫
t

(s− t)B(s, γ(s) + q∞ + sv∞)(γ̇(s) + v∞) ds , (2.27)

on the space P×X ∼= Rd × Rd ×X with

X = X(E) =
{
γ ∈ C1

b

(
[T,∞),Rd

)
| |γ(t)|+ |γ̇(t)| → 0 for t→∞

}
.

The proof of Theorem 2.2.11 yields that I is a contraction on P[0,E) ×
◦
X1 with

◦
X1 :=

{
γ ∈ X | ‖γ̇‖∞ < 1

}
,
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and due to inequality (2.21) the unique fixed point γ∞ = γ∞(q∞, v∞) of I(q∞, v∞, ·)
satisfies ‖γ̇∞‖∞ < 1, i.e. γ∞ ∈

◦
X1. Moreover, for (q∞, v∞) ∈ P[0,E) we obtain the

equation (2.24) for (Ω+)−1, namely

(Ω+)−1(q∞, v∞) = ϕ0,T (δT (γ∞(q∞, v∞)) + (q∞ + Tv∞, v∞)) .

Thus, it suffices to show that the unique fixed point γ∞(q∞, v∞) of I(q∞, v∞, ·) de-
pends in a continuously differentiable way on the parameters. We obtain this fact by
Lemma 2.2.14, and to apply its result it remains to verify that I is continuously differ-
entiable on P[0,E) ×

◦
X1 with respect to the norms

‖(q, v, γ)‖P×C1 := |q|+ |v|+ ‖γ‖C1 ((q, v, γ) ∈ P×X)

on P × X and ‖ · ‖C1 on X. We postpone this verification to Lemma 2.2.16, where
we shall show that I is a C1-map, even on the whole space P × X. Already assuming
that this holds, we obtain that the unique fixed point γ∞(q∞, v∞) depends in a con-
tinuously differentiable way on the parameters q∞, v∞ and the equality above shows
that (Ω+)−1 is a C1-map. By Proposition 2.2.13, the wave transformation Ω+ is volume
preserving, which of course also holds for its inverse (Ω+)−1. Therefore (Ω+)−1 satisfies
|detD(Ω+)−1| ≡ 1 and the inverse mapping theorem yields that Ω+ is a C1-map as
well. �

It remains to show that the contraction I given by (2.27) is a C1-map. Unfortunately,
it is not easily argued that I is a composition of differentiable functions since the map
f 7→ (t 7→

∫∞
t (s− t)f(s) ds) is linear but unbounded and hence not differentiable. To

obtain the result nonetheless, we shall therefore use the definition explicitly.

Lemma 2.2.16 If the assumptions of Theorem 2.2.15 hold, then for any E > 0 the map
I = I(E) : P×X → X = X(E) given by (2.27) is a C1-map.

Proof In the following we will denote the i-th component of w ∈ Rd by [w]i. Because
of

[I(q, v, γ)(t)]i =
d∑
j=1

∞∫
t

(s− t)Bij(s, γ(s) + q + sv)[γ̇(s) + v]j ds

for (q, v, γ) ∈ P × X and t ≥ T = T (E), it is sufficient to show the assertions for the
maps Iij : P×X → C1

b ([T,∞),R) given by

Iij(q, v, γ)(t) :=
∞∫
t

(s− t)Bij(s, γ(s) + q + sv)[γ̇(s) + v]j ds .
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For fixed i, j ∈ {1, . . . , d} we will show that Iij is differentiable and the derivative

DIij(q, v, γ) : P×X ∼= Rd × Rd ×X → C1
b

(
[T,∞),R

)
at (q, v, γ) ∈ P×X is given by

DIij(q, v, γ)(ρ, ν, η)(t)

=
∞∫
t

(s− t)
(
〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j

+Bij(s, γ(s) + q + sv)[η̇(s) + ν]j
)
ds

(2.28)

for (ρ, ν, η) ∈ Rd×Rd×X and t ≥ T . We will explain later how this formula is obtained
(see Remark 2.2.17). The proof of this statement consists of two parts.

Claim A For any fixed (q, v, γ) ∈ P×X, the linear map

Φ: Rd × Rd ×X → C1
b

(
[T,∞),R

)
given by the right hand side of (2.28) satisfies

‖Iij(q + ρ, v + ν, γ + η)− Iij(q, v, γ)− Φ(ρ, ν, η)‖C1 = o(‖(ρ, ν, η)‖) (2.29)

for (ρ, ν, η)→ 0 with

‖(ρ, ν, η)‖ := |ρ|+ |ν|+ ‖η‖C1 ((ρ, ν, η) ∈ Rd × Rd ×X) .

Claim B Φ is bounded.

We start with the proof of Claim A. We set C := |v|+‖γ̇‖∞ and let (ρ, ν, η) ∈ Rd×Rd×X.
To estimate the C1-norm in (2.29) we need a preliminary calculation for the integrand.
For all s ∈ [T,∞) we have

Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)[γ̇(s) + η̇(s) + v + ν]j
−Bij(s, γ(s) + q + sv)[γ̇(s) + v]j
− 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j
−Bij(s, γ(s) + q + sv)[η̇(s) + ν]j

=
(
Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)−Bij(s, γ(s) + q + sv)

− 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉
)
[γ̇(s) + v]j

+
(
Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)−Bij(s, γ(s) + q + sv)

)
[η̇(s) + ν]j

= 〈∇qBij(s, ξs)−∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j
+ 〈∇qBij(s, ξs), η(s) + ρ+ sν〉[η̇(s) + ν]j
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for some point ξs ∈ Rd between γ(s) + q + sv and γ(s) + η(s) + q + ρ+ sv + sν. Since

|ξs − (γ(s) + q + sv)| ≤ |η(s) + ρ+ sν|

holds, we can estimate the absolute value of the previous equation and obtain the in-
equality

|Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)[γ̇(s) + η̇(s) + v + ν]j
−Bij(s, γ(s) + q + sv)[γ̇(s) + v]j
− 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j
−Bij(s, γ(s) + q + sv)[η̇(s) + ν]j |

≤ `(s)|η(s) + ρ+ sν|2|γ̇(s) + v|

+ ‖∇qBij(s, ·)‖∞|η(s) + ρ+ sν| · |η̇(s) + ν|

≤ C`(s)(‖η‖∞ + |ρ|+ s|ν|)2

+ ‖∇qBij(s, ·)‖∞(‖η‖∞ + |ρ|+ s|ν|)(‖η̇‖∞ + |ν|)

≤
(
Cs2`(s) + s‖∇qBij(s, ·)‖∞

)
(‖η‖∞ + ‖η̇‖∞ + |ρ|+ |ν|)2

=
(
Cs2`(s) + s‖∇qBij(s, ·)‖∞

)
‖(ρ, ν, η)‖2 .

(2.30)

Finally, we can consider the C1-norm in (2.29). Inequality (2.30) yields

|
(
Iij(q + ρ, v + ν, γ + η)− Iij(q, v, γ)− Φ(ρ, ν, η)

)
(t)|

= |
∞∫
t

(s− t)
(
Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)[γ̇(s) + η̇(s) + v + ν]j

−Bij(s, γ(s) + q + sv)[γ̇(s) + v]j
− 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j

−Bij(s, γ(s) + q + sv)[η̇(s) + ν]j
)
ds|

≤
∞∫
T

Cs3`(s) + s2‖∇qBij(s, ·)‖∞ ds ‖(ρ, ν, η)‖2 .

(2.31)
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Furthermore, by using (2.30) again, we obtain

| d
dt

(
Iij(q + ρ, v + ν, γ + η)− Iij(q, v, γ)− Φ(ρ, ν, η)

)
(t)|

= | −
∞∫
t

Bij(s, γ(s) + η(s) + q + ρ+ sv + sν)[γ̇(s) + η̇(s) + v + ν]j

−Bij(s, γ(s) + q + sv)[γ̇(s) + v]j
− 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j
−Bij(s, γ(s) + q + sv)[η̇(s) + ν]j ds|

≤
∞∫
T

Cs2`(s) + s‖∇qBij(s, ·)‖∞ ds ‖(ρ, ν, η)‖2 .

(2.32)

The inequalities (2.31) and (2.32) imply that

‖Iij(q + ρ, v + ν, γ + η)− Iij(q, v, γ)− Φ(ρ, ν, η)‖C1 = const‖(ρ, ν, η)‖2

holds, which shows statement (2.29) and hence proves Claim A.

We now turn to the proof of Claim B. For (ρ, ν, η) ∈ Rd × Rd × X and t ∈ [T,∞) we
have

|Φ(ρ, ν, η)(t)| ≤
∞∫
T

s
(
C‖∇qBij(s, ·)‖∞|η(s) + ρ+ sν|+ ‖Bij(s, ·)‖∞|η̇(s) + ν|

)
ds

≤
∞∫
T

Cs2‖∇qBij(s, ·)‖∞ + s‖Bij(s, ·)‖∞ ds
(
‖η‖∞ + ‖η̇‖∞ + |ρ|+ |ν|

)
and

| d
dt

Φ(ρ, ν, η)(t)| ≤
∞∫
T

Cs‖∇qBij(s, ·)‖∞ + ‖Bij(s, ·)‖∞ ds
(
‖η‖∞ + ‖η̇‖∞ + |ρ|+ |ν|

)
.

Together, these inequalities yield

‖Φ(ρ, ν, η)‖C1 ≤ const(‖η‖∞ + ‖η̇‖∞ + |ρ|+ |ν|) = const‖(ρ, ν, η)‖ ,

which implies that Φ is bounded, i.e. proves Claim B. Therefore, Iij is differentiable
with DIij(q, v, γ) = Φ.

It remains to show the continuity of DIij . Moreover, we will show that DIij is even
Lipschitz continuous on those subsets of P × X where |v| and ‖γ̇‖∞ are bounded. For
this, we have to check if

‖DIij(q1, v1, γ1)−DIij(q2, v2, γ2)‖Op ≤ const‖(q1, v1, γ1)− (q2, v2, γ2)‖
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holds for (q1, v1, γ1), (q2, v2, γ2) ∈ P×X with |vi|+ ‖γ̇i‖∞ ≤ C (i = 1, 2), where ‖ · ‖Op
denotes the canonical operator norm on the space

L
(
Rd × Rd ×X,C1

b

(
[T,∞),Rd

))
of linear bounded maps from Rd×Rd×X to C1

b ([T,∞),Rd). We start with a preliminary
estimation. For (ρ, ν, η) ∈ Rd × Rd ×X and s ≥ T we have

|〈∇qBij(s, γ1(s) + q1 + sv1), η(s) + ρ+ sν〉[γ̇1(s) + v1]j
+Bij(s, γ1(s) + q1 + sv1)[η̇(s) + ν]j
− 〈∇qBij(s, γ2(s) + q2 + sv2), η(s) + ρ+ sν〉[γ̇2(s) + v2]j
−Bij(s, γ2(s) + q2 + sv2)[η̇(s) + ν]j |

= |〈∇qBij(s, γ1(s) + q1 + sv1)−∇qBij(s, γ2(s) + q2 + sv2), η(s) + ρ+ sν〉

· [γ̇2(s) + v2]j
+ 〈∇qBij(s, γ1(s) + q1 + sv1), η(s) + ρ+ sν〉[γ̇1(s)− γ̇2(s) + v1 − v2]j

+
(
Bij(s, γ1(s) + q1 + sv1)−Bij(s, γ2(s) + q2 + sv2)

)
[η̇(s) + ν]j |

≤ `(s)|γ1(s)− γ2(s) + q1 − q2 + sv1 − sv2| · |η(s) + ρ+ sν| · |γ̇2(s) + v2|

+ ‖∇qBij(s, ·)‖∞|η(s) + ρ+ sν| · |γ̇1(s)− γ̇2(s) + v1 − v2|

+ ‖∇qBij(s, ·)‖∞|γ1(s)− γ2(s) + q1 − q2 + sv1 − sv2| · |η̇(s) + ν|

≤
(
Cs2`(s) + 2s‖∇qBij(s, ·)‖∞

)
‖(q1, v1, γ1)− (q2, v2, γ2)‖‖(ρ, ν, η)‖

(2.33)

and therefore

|
(
DIij(q1, v1, γ1)−DIij(q2, v2, γ2)

)
(ρ, ν, η)(t)|

= |
∞∫
t

(s− t)
(
〈∇qBij(s, γ1(s) + q1 + sv1), η(s) + ρ+ sν〉[γ̇1(s) + v1]j

+Bij(s, γ1(s) + q1 + sv1)[η̇(s) + ν]j
− 〈∇qBij(s, γ2(s) + q2 + sv2), η(s) + ρ+ sν〉[γ̇2(s) + v2]j

−Bij(s, γ2(s) + q2 + sv2)[η̇(s) + ν]j
)
ds|

≤
∞∫
T

Cs3`(s) + 2s2‖∇qBij(s, ·)‖∞ ds ‖(q1, v1, γ1)− (q2, v2, γ2)‖‖(ρ, ν, η)‖ .
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2.2 Time decay in a simplified time-dependent magnetic field

Using estimate (2.33) again, we obtain

| d
dt

(
DIij(q1, v1, γ1)−DIij(q2, v2, γ2)

)
(ρ, ν, η)(t)|

≤
∞∫
T

Cs2`(s) + 2s‖∇qBij(s, ·)‖∞ ds ‖(q1, v1, γ1)− (q2, v2, γ2)‖‖(ρ, ν, η)‖ .

The last two inequalities show that

‖
(
DIij(q1, v1, γ1)−DIij(q2, v2, γ2)

)
(ρ, ν, η)‖C1 ≤ const‖(q1, v1, γ1)−(q2, v2, γ2)‖‖(ρ, ν, η)‖

and therefore the estimate

‖DIij(q1, v1, γ1)−DIij(q2, v2, γ2)‖Op ≤ const‖(q1, v1, γ1)− (q2, v2, γ2)‖

holds, as claimed. �

Remark 2.2.17 Instead of the direct computation in the previous lemma we could have
made use of a modified chain rule, but this would have required even more calculations.
However, this approach provides a better insight of how the formula (2.28) for the
derivative of Iij is obtained, so we will outline the arguments in the following.

Modified chain rule Let X,Y, Z be Banach spaces. Let H : domH ⊆ Y → Z be a
linear, but not necessarily bounded map, where domH denotes the domain of definition
of H. Furthermore, let G : X → Y be differentiable at x ∈ X and let r : X → Y be the
corresponding remainder given by

r(ξ) := G(x+ ξ)−G(x)−DG(x)ξ = o(‖ξ‖)

for ξ → 0. Assume furthermore that the following conditions hold:

(i) The images of G, DG(x) and r are contained in domH.

(ii) H ◦DG(x) : X → Z is bounded.

(iii) H ◦ r : X → Z satisfies H(r(ξ)) = o(‖ξ‖) for ξ → 0.

Then
(H ◦G)(x+ ξ)− (H ◦G)(x)− (H ◦DG(x))ξ = (H ◦ r)(ξ) = o(‖ξ‖)

holds for ξ → 0 and, thus, H ◦G is differentiable at x with

D(H ◦G)(x) = H ◦DG(x) .
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2.2 Time decay in a simplified time-dependent magnetic field

In the proof of the previous lemma we have considered the map Iij = H ◦ G which is
composed of

H : domH ⊆ C0
b

(
[T,∞),R

)
→ C1

b

(
[T,∞),R

)
,

f 7→

t 7→ ∞∫
t

(s− t)f(s) ds


and

G : P×X → C0
b

(
[T,∞),R

)
,

(q, v, γ) 7→
(
s 7→ Bij(s, γ(s) + q + sv)[γ̇(s) + v]j

)
.

Let us assume that the derivative DG(q, v, γ) : P ×X → C0
b ([T,∞),R) of G at a point

(q, v, γ) ∈ P×X is already known and given by

DG(q, v, γ)(ρ, ν, η)(s) = 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉[γ̇(s) + v]j
+Bij(s, γ(s) + q + sv)[η̇(s) + ν]j .

(2.34)

Then we can apply the modified chain rule: Claim A assures that condition (iii) holds,
Claim B yields condition (ii), and the assumptions on the decay of the magnetic field
imply that the integrals exist, i.e. condition (i) holds. Thus, we obtain the formula (2.28)
for the derivative of Iij = H ◦G at the point (q, v, γ) ∈ P×X.

However, we have not shown the formula for the derivative of G yet. This can be done
by using the product rule for the Banach algebra C0

b ([T,∞),R): The map G = G1 ·G2

is the product of the maps G1, G2 : P×X → C0
b ([T,∞),R) given by

G1(q, v, γ)(s) = Bij(s, γ(s) + q + sv)

and
G2(q, v, γ)(s) = [γ̇(s) + v]j .

A computation shows that the derivativesDG1(q, v, γ), DG2(q, v, γ) : P×X → C0
b ([T,∞)

at a point (q, v, γ) ∈ P×X are given by

DG1(q, v, γ)(ρ, ν, η)(s) = 〈∇qBij(s, γ(s) + q + sv), η(s) + ρ+ sν〉

and, since G2 is linear,

DG2(q, v, γ)(ρ, ν, η)(s) = [η̇(s) + ν]j .

Thus, by using the product rule in Banach algebras we obtain formula (2.34) for the
derivative of G, and consequently formula (2.28) for the derivative of Iij . �
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2.3 Spatial decay in a time-independent magnetic field

With this observation we conclude the analysis of the asymptotic behaviour of a charged
particle in a time-dependent magnetic field. Let us point out that every trajectory
(apart from the fixed points) is asymptotically straight, provided that the magnetic field
decays sufficiently fast as the time increases. This is a main difference to the motion in
a time-independent magnetic field, which we will examine in the following.

2.3 Spatial decay in a time-independent magnetic field

In this section we can finally consider scattering in magnetic fields that vanish at infinity,
i.e. study the existence and the properties of the limit (2.1). To do so, we take the same
approach as in the time-dependent case and consider the asymptotic velocity and the
asymptotic position. Fortunately, we do not have to start from scratch to show their
existence and continuity, but can build upon the results for time-decaying magnetic fields
and combine them with the results obtained for the escape rate in Section 2.1. The main
tool we shall use is the introduction of a time-dependent magnetic field Bχ(t, q) related
to the time-independent one B(q), where the decay of Bχ in time corresponds to the
decay of B in space. We will now describe this process in detail, so in the following
proofs we simply refer to this remark:

Remark 2.3.1 We shall start with a compact set K ⊆ s+. Assume that there are
constants C > 0 and T ∈ R such that

|qt(x)| ≥ C〈t〉 (x ∈ K, t ≥ T ) , (2.35)

where 〈t〉 =
√

1 + t2 denotes the smooth modification of the absolute value. Furthermore,
let χ ∈ C∞(Rd,R) satisfy the following three properties:

(i) χ(q) = 0 for |q| ≤ ε for some ε > 0.

(ii) χ(q) = 1 for |q| ≥ C.

(iii) 0 ≤ χ(q) ≤ 1 for all q ∈ Rd.

We call χ a cut-off function with respect to C and use it to define the time-dependent
magnetic field

Bχ(t, q) := χ

(
q

〈t〉

)
B(q) .

The effect of this modification is that the magnetic field Bχ vanishes on growing balls
around the origin as t increases, while outside even larger balls B and Bχ coincide, as
visualized in Figure 2.2. Now consider the trajectory of some x ∈ K. Because of (2.35)

53



2.3 Spatial decay in a time-independent magnetic field

Figure 2.2: Sketches of the graphs of B and Bχ(t, ·)

and property (ii) of χ we have

Bχ(t, qt(x)) = B(qt(x))

for t ≥ T , and hence, with ϕt,t0χ denoting the flow induced by Bχ, we obtain the equality

ϕt,Tχ (ϕT (x)) = ϕt(x) (t ≥ T ) , (2.36)

which is visualized in Figure 2.3. This implies that the magnetic flow ϕt(x) solves the

Figure 2.3: Comparison of the flows of B and Bχ

time-dependent magnetic equation (2.6) for t ≥ T . Hence, for these times any trajectory
of the magnetic flow given by B that starts in K is also a trajectory of the flow given
by the time-dependent magnetic field Bχ. Finally, note that this also holds for t < −T ,
so we can use the same mechanism for the case t→ −∞. �

The calculations in Section 2.1 assure that the assumptions in Remark 2.3.1 can be met
and we will now use the process described above to construct the asymptotic velocity
and the asymptotic position for magnetic fields decaying in space.
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2.3 Spatial decay in a time-independent magnetic field

2.3.1 Asymptotic velocity and asymptotic position

In the case of time decay there were only fixed points (with E(x) = 0) and unbounded
states (with E(x) > 0). Now for a time-independent magnetic field non-trivial bounded
orbits may occur, for instance circular orbits, and for these the limits of the velocity for
t → ±∞ do not exist. There are two possibilities to work around this: We can either
choose only the scattering orbits as the domain of definition, or we define the asymptotic
velocity in a different but consistent way on the whole phase space P. Although only
the scattering states s± shall be examined further, we give a general definition that is
included in the following proposition:

Proposition 2.3.2 Let the magnetic field satisfy

∞∫
0

sup
|q|≥r
‖B(q)‖ dr <∞ .

Then the following statements hold:

(i) The asymptotic velocity

v+(x) := lim
t→∞

qt(x)
t

exists for all x ∈ P.

(ii) For x ∈ s+ the equation
v+(x) = lim

t→∞
vt(x)

holds. In particular, v+ is invariant under the flow.

(iii) The asymptotic velocity is continuous on s+ and, moreover, on compact subsets of
s+ both limits are uniform.

The analogous results hold for v− : P→ Rd given by

v−(x) := lim
t→−∞

qt(x)
t

.

Proof Clearly, for x ∈ b+ we have v+(x) = 0. Now let K ⊆ s+ be compact. Then by
Lemma 2.1.10 there are C, T > 0 such that |qt(x)| ≥ C〈t〉 for x ∈ K and t ≥ T . Now
we choose a cut-off function χ with respect to C and define

Bχ(t, q) := χ

(
q

〈t〉

)
B(q)
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2.3 Spatial decay in a time-independent magnetic field

as in Remark 2.3.1. We want to use Proposition 2.2.4 and to do so we have to compute
‖Bχ(t, ·)‖∞. Because of χ(q) = 0 for |q| < ε as well as t ≤ 〈t〉 we have the inequality

‖Bχ(t, q)‖ = 0 (|q| ≤ tε) .

Since ‖Bχ(t, q)‖ ≤ ‖B(q)‖ holds for all t ∈ R and q ∈ Rd, we obtain the estimate

‖Bχ(t, ·)‖∞ ≤ sup
|q|≥tε

‖B(q)‖

and hence Bχ satisfies
∞∫
0

‖Bχ(t, ·)‖∞ dt ≤
∞∫
0

sup
|q|≥tε

‖B(q)‖ dt ≤ 1
ε

∞∫
0

sup
|q|≥r
‖B(q)‖ dr <∞ ,

i.e. the assumption of Proposition 2.2.4 is met. This means that for all x ∈ P the limit

v+
χ (x) = lim

t→∞
vt,0χ (x) = lim

t→∞

qt,0χ (x)
t

exists. Hence, for x ∈ K we can use identity (2.36) and obtain that the limit

v+(x) := lim
t→∞

qt(x)
t

= lim
t→∞

qt,Tχ (ϕT (x))
t

= lim
t→∞

qt,0χ (ϕ0,T
χ ◦ ϕT (x))
t

= v+
χ (ϕ0,T

χ ◦ ϕT (x))

(2.37)

exists. Furthermore, using (2.36) again, v+ can be expressed as

v+(x) = v+
χ (ϕ0,T

χ ◦ ϕT (x))

= lim
t→∞

vt,0χ (ϕ0,T
χ ◦ ϕT (x))

= lim
t→∞

vt,Tχ (ϕT (x))

= lim
t→∞

vt(x) .

Proposition 2.2.4 assures the uniform convergence of qtχ
t → v+

χ and vtχ → v+
χ for t → ∞

on compact subsets of P. Hence, this also holds for the limits

qt

t
→ v+ (t→∞)

and
vt → v+ (t→∞)

on compact subsets of s+. �
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2.3 Spatial decay in a time-independent magnetic field

The asymptotic velocity can be used to characterize bounded and unbounded orbits:

Corollary 2.3.3 For x ∈ P the following statements are equivalent:

(i) v±(x) = 0.

(ii) x ∈ b±.

This is the same as v±(x) 6= 0⇔ x ∈ s±.

Proof Since v+(x) = 0 for x ∈ b+ it remains to show that x ∈ s+ implies v+(x) 6= 0.
For any given x ∈ s+ we can apply Lemma 2.1.8 and obtain v+(x) ≥ C > 0. �

After the asymptotic velocity we now introduce the asymptotic position. Since there
might be non-trivial bounded orbits, this is only possible for scattering states.

Proposition 2.3.4 Let the magnetic field satisfy
∞∫
0

r sup
|q|≥r
‖B(q)‖ dr <∞ . (2.38)

Then the following statements hold:

(i) For x ∈ s+ the asymptotic position

q+(x) := lim
t→∞

(
qt(x)− tv+(x)

)
exists and satisfies

q+(x) = lim
t→∞

(
qt(x)− tvt(x)

)
. (2.39)

(ii) The mapping q+ : s+ → Rd is continuous and both limits exist uniformly on com-
pact subsets of s+.

The analogous results hold for q− : s− → Rd given by

q−(x) := lim
t→−∞

(
qt(x)− tv−(x)

)
.

Proof Let K ⊆ s+ be compact. Let C, T > 0 be as in Lemma 2.1.10, i.e. such that
|qt(x)| ≥ C〈t〉 holds for x ∈ K and t ≥ T , and let χ ∈ C∞(Rd,R) be a cut-off function
with respect to C. As in the proof of Proposition 2.3.2 there exists ε > 0 such that the
time-dependent magnetic field

Bχ(t, q) := χ

(
q

〈t〉

)
B(q)
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2.3 Spatial decay in a time-independent magnetic field

vanishes for |q| < tε. Therefore, the inequality

∞∫
0

t‖Bχ(t, ·)‖∞ dt ≤
∞∫
0

t sup
|q|≥tε

‖B(q)‖ dt <∞

holds and Proposition 2.2.5 yields that the asymptotic position q+
χ : P→ Rd induced by

Bχ exists as a continuous map. Using the equations (2.36) and (2.37) we obtain

q+(x) := lim
t→∞

qt(x)− tv+(x)

= lim
t→∞

qt,Tχ (ϕT (x))− tv+
χ (ϕ0,T

χ ◦ ϕT (x))

= lim
t→∞

qt,0χ (ϕ0,T
χ ◦ ϕT (x))− tv+

χ (ϕ0,T
χ ◦ ϕT (x))

= q+
χ (ϕ0,T

χ ◦ ϕT (x)) ,

(2.40)

i.e. the asymptotic position q+(x) exists for x ∈ K and it remains to show property
(2.39). For this we make use of the similar statement in Proposition 2.2.5 for the time-
dependent case, namely the fact that q+

χ satisfies

q+
χ (x) = lim

t→∞
qt,0χ (x)− tvt,0χ (x) (x ∈ P) .

Continuing from (2.40) we obtain

q+(x) = q+
χ (ϕ0,T

χ ◦ ϕT (x))

= lim
t→∞

qt,0χ (ϕ0,T
χ ◦ ϕT (x))− tvt,0χ (ϕ0,T

χ ◦ ϕT (x))

= lim
t→∞

qt,Tχ (ϕT (x))− tvt,Tχ (ϕT (x))

= lim
t→∞

qt(x)− tvt(x) ,

and since Proposition 2.2.5 yields that qtχ − tvtχ → q+
χ converges uniformly on compact

subsets of P for t→∞, this also holds for the limit

qt − tvt → q+ (t→∞)

on compact subsets of s+. �
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2.3 Spatial decay in a time-independent magnetic field

2.3.2 Wave transformations

Having obtained the asymptotic velocity and the asymptotic position we can combine
them as in the time-dependent case.

Definition 2.3.5 The (velocity) wave transformations

Ω± : s± → P0 := TRd \ Rd ∼= Rdq ×
(
Rdv \ {0}

)
given by

Ω±(x) = (q±(x), v±(x))

are well defined if the magnetic field satisfies (2.38), namely

∞∫
0

r sup
|q|≥r
‖B(q)‖ dr <∞ .

If this condition holds, they coincide with the limit (2.1), i.e.

Ω± = lim
t→±∞

ϕ−t0 ◦ ϕ
t .

�

For once we drop assumption (2.38) on the magnetic field and consider Ω± := (q±, v±)
as formal limits in order to obtain a similar characterization as in Proposition 2.2.7: If
for some point x ∈ P the wave transformations Ω± exist, then its magnetic trajectory
is asymptotically a straight line. This is described in the following proposition, whose
statement and proof are analogous to the time-dependent case.

Proposition 2.3.6 Let B be any magnetic field. Then, for x ∈ P the following state-
ments are equivalent:

(i) Ω±(x) = (q±(x), v±(x)) = y ∈ P (i.e. the limit exists and equals y).

(ii) ϕt(x)− ϕt0(y)→ 0 for t→ ±∞.

Before proceeding to our main goal in this section (the analysis of the regularity of the
wave transformations), we remark that for scattering states x ∈ s = s+ ∩ s− we can link
the incoming to the outgoing straight line, e.g. in order to consider inverse scattering.

Remark 2.3.7 As for the time-decaying case, we define the scattering transformation

S := Ω+ ◦ (Ω−)−1

59



2.3 Spatial decay in a time-independent magnetic field

which assigns to each incoming asymptotic line its corresponding outgoing asymptotic
line. The domain of definition of S is

domS = Ω−(s)

and its image equals
imS = Ω+(s) .

We can apply a result which is due to C. L. Siegel [43] (for a precise statement and the
proof we refer to Proposition 2.1.4 in [12]): The sets s+ and s− differ only by a set of
measure zero, i.e.

(s+ \ s−) ∪ (s− \ s+)

is a nullset in P. This implies that the sets s±\s have measure zero. We will see that with
additional assumptions on the magnetic field, the wave transformations Ω± : s± → P0

are measure preserving homeomorphisms and therefore, both the domain Ω−(s) and the
image Ω+(s) of S have full measure in P0 = Ω±(s±) as well as in P. However, since all
information about the asymptotic behaviour is coded in the wave transformations, we
will focus exclusively on their analysis. �

From now on we shall assume that the magnetic field satisfies at least condition (2.38).
In this case, both the asymptotic velocity and the asymptotic position exist, so the
wave transformations are well defined continuous maps. In particular, as an immediate
consequence of the identities (2.37) and (2.40), we obtain the next corollary, which links
the wave transformations of the magnetic field B to the ones of the corresponding time-
dependent magnetic fields Bχ. It assures that the asymptotic values of x and ϕ0,T

χ (ϕT (x))
coincide, which are computed for the magnetic flows of B and Bχ, respectively. This is
visualized in Figure 2.4.

Figure 2.4: Equality of the asymptotic behaviour of x and ϕ0,T
χ (ϕT (x))
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2.3 Spatial decay in a time-independent magnetic field

Corollary 2.3.8 Let K ⊆ s+ be compact. Then there are constants C, T > 0 and a
cut-off function χ with respect to C such that

Ω+ = Ω+
χ ◦ ϕ0,T

χ ◦ ϕT

holds on K. In particular, Ω+ is injective. The analogous result holds for Ω−.

The next lemma shows that the wave transformations intertwine the magnetic flow and
the free flow, which is visualized in Figure 2.5.

Figure 2.5: The wave transformation Ω+ intertwines the magnetic and the free flow

Lemma 2.3.9 The equality
Ω± ◦ ϕt = ϕt0 ◦ Ω±

holds on s±.

Proof For x ∈ s+ we have the equation

Ω+(ϕt(x)) = lim
s→∞

(qs(ϕt(x))− svs(ϕt(x)), vs(ϕt(x)))

= lim
s→∞

(qs+t(x)− (s+ t)vs+t(x) + tvs+t(x), vs+t(x))

= (q+(x) + tv+(x), v+(x))

= ϕt0(Ω+(x)) . �

We did not write that Ω+ conjugates the two flows in the sense of Definition 1.4.3 since
neither the existence nor the continuity of its inverse are guaranteed. This question is
answered by the following theorem, though.

Theorem 2.3.10 Let the magnetic field B ∈ C1(Rd,Rd×d) be such that the components
Bij satisfy

∞∫
0

r sup
|q|≥r
|Bij(q)| dr <∞
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2.3 Spatial decay in a time-independent magnetic field

and ∞∫
0

r2 sup
|q|≥r
|∇Bij(q)| dr <∞

for all i, j ∈ {1, . . . , d}. Then the wave transformations Ω± : s± → P0 = TRd \ Rd are
volume preserving homeomorphisms.

Proof It is to show that Ω+ is bijective and (Ω+)−1 is continuous. For both claims
we will make use of the corresponding result in the time-decaying case. Let K ⊆ P0 be
compact. Then for any (q0, v0) ∈ K we have the estimate

|q0 + tv0|
t

≥ min
(q,v)∈K

|v| − 1
t

max
(q,v)∈K

|q| ≥ 2C̃ > 0 (t ≥ T̃ )

for some C̃ > 0 and T̃ > 0, which means

|q0 + tv0| ≥ 2C̃t (t ≥ T̃ ) .

Then, by Lemma 2.1.9 there is a constant C > 0 such that

|q0 + tv0| ≥ 2C〈t〉 (t ≥ T̃ ) .

We now use a cut-off function χ with respect to C and define the time-dependent mag-
netic field Bχ = (Bχ

ij) by Bχ
ij(t, q) := χ( q

〈t〉)Bij(q). Since χ( q
〈t〉) = 0 holds for |q| ≤ tε we

obtain
∞∫
0

t‖Bχ(t, ·)‖∞ dt ≤
∞∫
0

t sup
|q|≥tε

‖B(q)‖ dt ≤
d∑

i,j=1

∞∫
0

t sup
|q|≥tε

|Bij(q)| dt <∞

as before. Furthermore, the cut-off function χ satisfies ∇χ( q
〈t〉) = 0 for |q| ≤ tε as well

as χ(q) ≡ 1 for |q| sufficiently large. In particular, ∇χ is bounded by some constant C1.
For fixed i, j ∈ {1, . . . , d} the derivative of Bχ

ij with respect to q equals

∇qBχ
ij(t, q) = 1

〈t〉
∇χ

(
q
〈t〉

)
Bij(q) + χ

(
q
〈t〉

)
∇Bij(q) ,

which yields the inequality

‖∇qBχ
ij(t, ·)‖∞ ≤

C1
〈t〉

sup
|q|≥tε

|Bij(q)|+ sup
|q|≥tε

|∇Bij(q)| .

Therefore, the function ` : [0,∞)→ [0,∞) given by

`(t) :=
d∑

i,j=1
‖∇qBχ

ij(t, ·)‖∞
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2.3 Spatial decay in a time-independent magnetic field

satisfies

‖Bχ(t, q1)−Bχ(t, q2)‖ ≤
d∑

i,j=1
|Bχ

ij(t, q1)−Bχ
ij(t, q2)|

≤
d∑

i,j=1
‖∇qBχ

ij(t, ·)‖∞|q1 − q2|

= `(t)|q1 − q2| (q1, q2 ∈ Rd, t ≥ 0)

as well as
∞∫
0

t2`(t) dt ≤
d∑

i,j=1

C1

∞∫
0

t sup
|q|≥tε

|Bij(q)| dt+
∞∫
0

t2 sup
|q|≥tε

|∇Bij(q)| dt

 <∞ .

Thus, Theorem 2.2.11 yields that the wave transformation Ω+
χ : P → P induced by Bχ

exists and is a homeomorphism. Since qtχ − tv+
χ → q+

χ converges uniformly on compact
sets and (Ω+

χ )−1(K) is compact, there exists some time T ≥ T̃ such that the estimate

|qtχ(x)− tv+
χ (x)− q+

χ (x)| ≤ C

holds for t ≥ T and x ∈ (Ω+
χ )−1(K). These initial values satisfy (q+

χ (x), v+
χ (x)) ∈ K and

therefore we have

|qtχ(x)| ≥ |q+
χ (x) + tv+

χ (x)| − |qtχ(x)− tv+
χ (x)− q+

χ (x)| ≥ 2C〈t〉 − C ≥ C〈t〉

for t ≥ T . This yields Bχ(t, qt(x)) = B(qt(x)) and therefore

ϕt,0χ (x) = ϕt(ϕ−T ◦ ϕT,0χ (x))

for x ∈ (Ω+
χ )−1(K) and t ≥ T , which implies

Ω+
χ (x) = Ω+(ϕ−T ◦ ϕT,0χ (x)) .

Hence, K is contained in the image of Ω+ and due to the arbitrary choice of K this
shows that Ω+ is surjective. Since Ω+ is injective by Corollary 2.3.8 we obtain that
(Ω+)−1 is given by

(Ω+)−1(y) = ϕ−T ◦ ϕT,0χ ◦ (Ω+
χ )−1(y)

for y ∈ K. In particular, (Ω+)−1 is continuous. Also by Corollary 2.3.8, on any compact
set we have the identity

Ω+ = Ω+
χ ◦ ϕT,0χ ◦ ϕT ,

and the occurring flows as well as the induced wave transformations Ω+
χ are volume

preserving by Proposition 2.2.13. Thus, this property also holds for Ω+. �
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2.3 Spatial decay in a time-independent magnetic field

In particular, Ω+ conjugates the magnetic flow ϕt
∣∣
s+ and the free flow ϕt0

∣∣
P0 , each

restricted to scattering states s+ and to states with non-zero energy. The next task
is to study if a higher regularity of the magnetic field (and thus, of the magnetic flow)
yields a higher regularity of the wave transformations. The conditions involve the second
derivative of functions f ∈ C2(Rd,R) and we denote the Hessian by D2f .

Theorem 2.3.11 Assume the magnetic field B ∈ C2(Rd,Rd×d) is such that every com-
ponent Bij : Rd → R for i, j ∈ {1, . . . , d} satisfies

∞∫
0

r sup
|q|≥r
|Bij(q)| dr <∞

as well as ∞∫
0

r2 sup
|q|≥r
|∇Bij(q)| dr <∞

and ∞∫
0

r3 sup
|q|≥r
‖D2Bij(q)‖ dr <∞ .

Then the wave transformations Ω± : s± → P0 are C1-diffeomorphisms.

Proof Similar to the proof of Theorem 2.3.10, for a compact set K ⊆ s+ we consider
the induced time-dependent magnetic field Bχ with a suitable cut-off function χ and
show that the components Bχ

ij of Bχ satisfy the assumptions of Theorem 2.2.15. As in
the previous proof, for fixed i, j ∈ {1, . . . , d} the function Bχ

ij satisfies both

∞∫
0

t‖Bχ
ij(t, ·)‖∞ dt <∞

and ∞∫
0

t2‖∇qBχ
ij(t, ·)‖∞ dt <∞ ,

while its second derivative with respect to q equals

D2
qB

χ
ij(t, q) = 1

〈t〉2
D2χ

(
q
〈t〉

)
Bij(q) + 1

〈t〉
∇χ

(
q
〈t〉

)
∇Bij(q)T

+ 1
〈t〉
∇Bij(q)∇χ

(
q
〈t〉

)T
+ χ

(
q
〈t〉

)
D2Bij(q) .

Since
χ

(
q

〈t〉

)
= ∇χ

(
q

〈t〉

)
= D2χ

(
q

〈t〉

)
= 0
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2.3 Spatial decay in a time-independent magnetic field

holds for |q| ≤ tε and χ(q) ≡ 1 for |q| sufficiently large, there are constants C1, C2 > 0
such that ‖∇χ‖∞ ≤ C1 and ‖D2χ‖∞ ≤ C2, which yields the inequality

‖D2
qB

χ
ij(t, ·)‖∞ ≤ sup

|q|≥tε

(
C2
〈t〉2
|Bij(q)|+ 2C1

〈t〉
|∇Bij(q)|+ ‖D2Bij(q)‖

)
. (2.41)

The function ` : [0,∞)→ [0,∞) given by

`(t) := ‖D2
qB

χ
ij(t, ·)‖∞

satisfies

|∇qBχ
ij(t, q1)−∇qBχ

ij(t, q2)| ≤ `(t)|q1 − q2| (q1, q2 ∈ Rd, t ≥ 0)

and, by using (2.41) together with the assumptions about the decay of the magnetic
field, we obtain the estimate

∞∫
0

t3`(t) dt ≤
∞∫
0

sup
|q|≥tε

(
C2t|Bij(q)|+ 2C1t

2|∇Bij(q)|+ t3‖D2Bij(q)‖
)
dt <∞ .

Hence, by applying Theorem 2.2.15 we obtain that Ω+
χ is a C1-diffeomorphism. As the

equality Ω+ = Ω+
χ ◦ ϕ−T ◦ ϕ0,T

χ holds on K and the compact set K ⊆ s+ was arbitrarily
chosen, this also applies for Ω+. �

Finally, let us put our results into the context of the ones already existing in the litera-
ture:

Remark 2.3.12 To our knowledge, the asymptotic behaviour of a classical particle in a
magnetic field has only been treated by M. Loss and B. Thaller [33], who have considered
the special case d = 3. On R3 one can describe a magnetic field by a Lipschitz continuous
function ~B : R3 → R3 and the magnetic flow is given by the differential equation

q̈(t) = q̇(t)× ~B(q(t)) ,

where × denotes the vector or cross product (compare Remark 1.2.3). Loss and Thaller
considered a magnetic field ~B ∈ C2(R3,R3) such that, using multi-index notation, the
estimates

|Dα ~B(q)| ≤ const(1 + |q|)−3/2−δ−|α| (δ > 0, |α| = 0, 1, 2) (2.42)

hold. In view of our notation this yields
∞∫
0

r
1/2 sup
|q|≥r
‖B(q)‖ dr <∞
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2.4 Wave transformations on the cotangent bundle

as well as
∞∫
0

r
3/2 sup
|q|≥r
‖DB(q)‖ dr <∞

and
∞∫
0

r
5/2 sup
|q|≥r
‖D2B(q)‖ dr <∞ .

For such a magnetic field they have obtained that the wave transformations are vol-
ume preserving homeomorphisms. A comparison with our corresponding result given in
Theorem 2.3.10 shows that Loss and Thaller allowed a slightly weaker decay of the mag-
netic field and its derivative, but they required the magnetic field to be a C2-function
instead of a C1-function. Moreover, they made assumptions on the decay of the second
derivative. For the case of the magnetic field being a C2-function and with slightly faster
decay than (2.42) we have even obtained that the wave transformations are diffeomor-
phisms (see Theorem 2.3.11). However, this result has no analogue in the work of Loss
and Thaller, who finish their analysis with the statement of the wave transformations
being homeomorphisms. �

Together, Theorem 2.3.10 and Theorem 2.3.11 suggest that a higher regularity of the
magnetic field B and an increasing rate of decay for the derivatives yield a higher order
of differentiability of the wave transformations Ω±. With this conjecture we conclude
the analysis of the wave transformations’ regularity and turn to a different aspect.

2.4 Wave transformations on the cotangent bundle

In Section 1.2 we have introduced the Hamiltonian formulation of the magnetic flow
on the momentum phase space T ∗Rd, which raises the question if there also exist wave
transformations on T ∗Rd. In contrast to the previous results, for this consideration we
have to assume that the magnetic field

β =
d∑

i,j=1
i<j

Bijdqi ∧ dqj

is exact. Given a magnetic vector potential α of the magnetic field β and using the
Legendre transformation, we have obtained the Hamiltonian flow ϕt∗ on T ∗Rd that is
generated by the magnetic Hamiltonian H(q, p) = 1

2 |p − A(q)|2 with the vector field A
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2.4 Wave transformations on the cotangent bundle

corresponding to α. In particular, with the fibre derivative

Ψ: TRd → T ∗Rd

(q, v) 7→ (q, v +A(q))

of the magnetic Lagrangian L(q, v) = 1
2 |v|+ 〈A(q), v〉, we have the conjugacy

ϕt∗ = Ψ ◦ ϕt ◦Ψ−1

between the Hamiltonian flow ϕt∗ on T ∗Rd and the magnetic Euler-Lagrange flow ϕt on
TRd. This construction depends on the magnetic potential α, but since we will later
choose one specific α, we omit the reference. Similarly to ϕt, the flow ϕt∗ gives rise to
the momentum wave transformations

Ω±∗ := lim
t→±∞

ϕ−t0,∗ ◦ ϕ
t
∗ , (2.43)

where ϕt0,∗ : T ∗Rd → T ∗Rd denotes the free flow given by

ϕt0,∗(q, p) = (q + p, p) .

Note that the momentum wave transformations Ω±∗ are not necessarily conjugated to
the velocity wave transformations Ω±. With

Ψ0 : TRd → T ∗Rd

(q, v) 7→ (q, v)

denoting the fibre derivative of the Lagrangian L0(q, v) := 1
2 |v|

2 corresponding to the
free flow ϕt0 we have

ϕt0,∗ = Ψ0 ◦ ϕt0 ◦Ψ−1
0 ,

and both of the following diagrams commute. However, due to Ψ0 6= Ψ, there is no
conjugacy between ϕ−t0 ◦ ϕt and ϕ

−t
0,∗ ◦ ϕt∗.

T ∗Rd ϕt∗−−−−→ T ∗Rd

Ψ
x xΨ

TRd −−−−→
ϕt

TRd

T ∗Rd
ϕt0,∗−−−−→ T ∗Rd

Ψ0

x xΨ0

TRd −−−−→
ϕt0

TRd

As of now it is not even obvious if the limits in (2.43) exist. In the following we will
show that, with the right choice for the magnetic potential, the limits exist on the sets

s±∗ := Ψ(s±) ,

67



2.4 Wave transformations on the cotangent bundle

and moreover, the momentum wave transformations

Ω±∗ : s±∗ → P0
∗ := Ψ0(P0) = T ∗Rd \ Rd

are symplectic diffeomorphisms. Despite the two different conjugating maps Ψ and Ψ0,
there is a connection between Ω± and Ω±∗ . To establish this, we have to start by choosing
a suitable magnetic potential, i.e. we have to find a suitable 1-form α such that

dα = β =
d∑

i,j=1
i<j

Bijdqi ∧ dqj

holds. For the magnetic field we assume

∞∫
0

r sup
|q|≥r
|Bij(q)| dr <∞

and define

α :=
d∑
i=1

Ai(q)dqi (2.44)

with

Ai(q) :=
d∑
j=1

∞∫
1

Bij(qs)qjs ds , (2.45)

where Bij := −Bji for i > j and Bii ≡ 0, as before. This choice for α is adapted from
the discussion of the quantum mechanical case by M. Loss and B. Thaller in [33], and
with additional assumptions on the magnetic field, α is indeed a magnetic potential.

Lemma 2.4.1 Assume the magnetic field satisfies

∞∫
0

r sup
|q|≥r
|Bij(q)| dr <∞

and
∞∫
0

r2 sup
|q|≥r
|∇Bij(q)| dr <∞

for all i, j = 1, . . . , d. Furthermore, assume that Bij(Rej) ≡ 0 for all i, j = 1, . . . , d,
where ej denotes the j-th unit vector in Rd. Then α defined as in (2.44) and (2.45)
satisfies dα = β, i.e. α is a magnetic potential for β.
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2.4 Wave transformations on the cotangent bundle

Proof For any α of the form (2.44) we have

dα =
d∑

i,j=1
i<j

(
∂Aj
∂qi
− ∂Ai
∂qj

)
dqi ∧ dqj (2.46)

as in (1.1). To compute the partial derivatives, we have to check if the order of integration
and differentiation in (2.45) can be interchanged. For this, we have to distinguish the
two cases q 6= 0 and q = 0. Consider a bounded open set U ⊆ Rd such that 0 /∈ U , i.e.
there are constants C, ε > 0 such that ε ≤ |q| ≤ C for q ∈ U . For i, j, k = 1, . . . , d we
have

∂

∂qk
(Bij(qs)qjs) = ∂

∂qk
Bij(qs)qjs2 +Bij(qs)sδjk

and, thus, the inequality

| ∂
∂qk

(Bij(qs)qjs)| ≤ |
∂

∂qk
Bij(qs)qjs2|+ |Bij(qs)s|

≤ |q| sup
|q̃|=|q|s

|∇Bij(q̃)|s2 + sup
|q̃|=|q|s

|Bij(q̃)|s

≤ C sup
|q̃|≥εs

|∇Bij(q̃)|s2 + sup
|q̃|≥εs

|Bij(q̃)|s

holds for all q ∈ U and s ≥ 1, i.e. there is an integrable majorizing function for the partial
derivatives. Therefore, the order of integration and differentiation can be interchanged
and we obtain

∂Ai
∂qk

(q) =
d∑
j=1

∞∫
1

∂

∂qk
Bij(qs)qjs2 +Bij(qs)sδjk ds

=
∞∫
1

d∑
j=1

∂

∂qk
Bij(qs)qjs2 +Bik(qs)s ds

(2.47)

for q 6= 0. By a straightforward computation we now show that this equation also holds
for q = 0. For all h ∈ R the equality Ai(hek) = 0 holds since every summand in (2.45)
vanishes: We have Bij(hek) = 0 for j = k by assumption, and [ek]j = δjk = 0 for j 6= k,
where [w]k = wk denotes the k-th component of w ∈ Rd. This implies ∂Ai

∂qk
(0) = 0, which

coincides with the right hand side of (2.47) for q = 0, and therefore this equality holds
for all q ∈ Rd.
Using the identity Bji −Bij = 2Bji this yields(

∂Aj
∂qi
− ∂Ai
∂qj

)
(q) =

∞∫
1

d∑
k=1

(
∂

∂qi
Bjk(qs)−

∂

∂qj
Bik(qs)

)
qks

2 + 2sBji(qs) ds . (2.48)
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To simplify this expression, we have to find a relation between the partial derivatives
∂
∂qi
Bjk, ∂

∂qj
Bik and ∂

∂qk
Bij , which we obtain by computing the vanishing coefficient fijk

of dqi ∧ dj ∧ dqk in

0 = dβ =:
d∑

j1,j2,j3=1
j1<j2<j3

fj1j2j3dqj1 ∧ dj2 ∧ dqj3 .

Due to Bij = −Bji we do not need to distinguish between the order of the indices and
obtain

0 = fijkdqi ∧ dqj ∧ dqk

=
(
∂

∂qi
Bjk

)
dqi ∧ dqj ∧ dqk +

(
∂

∂qj
Bik

)
dqj ∧ dqi ∧ dqk +

(
∂

∂qk
Bij

)
dqk ∧ dqi ∧ dqj

=
(
∂

∂qi
Bjk −

∂

∂qj
Bik + ∂

∂qk
Bij

)
dqi ∧ dqj ∧ dqk ,

which yields the equality
∂

∂qi
Bjk −

∂

∂qj
Bik = − ∂

∂qk
Bij .

Following from (2.48) we obtain(
∂Aj
∂qi
− ∂Ai
∂qj

)
(q) =

∞∫
1

−
d∑

k=1

∂

∂qk
Bij(qs)qks2 + 2sBji(qs) ds

= −
∞∫
1

〈∇Bij(qs), q〉s2 − 2sBji(qs) ds

=
1∫
∞

∂

∂s

(
Bij(qs)

)
s2 + 2sBij(qs) ds

=
1∫
∞

∂

∂s

(
Bij(qs)s2

)
ds

= Bij(qs)s2
∣∣∣1
∞

= Bij(q) ,

where the last equality holds due to Bij(qs)s2 → 0 for s → ∞, as in Lemma 2.1.3.
Hence, according to (2.46) this yields

dα =
d∑

i,j=1
i<j

Bijdqi ∧ dqj = β
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and therefore proves the statement. �

Let us give a description of the additional condition on the magnetic field:

Remark 2.4.2 Recall from Remark 1.2.3 that for the case d = 3 the magnetic field
can be described by the vector field (b1, b2, b3) : R3 → R3 given by b1 = B23 = −B32,
b2 = −B13 = B31 and b3 = B12 = −B21. Then the condition Bij(Rej) ≡ 0 for all
i, j ∈ {1, . . . , d} yields that b2 and b3 vanish on the e1-axis, b1 and b3 vanish on the
e2-axis, and b1 and b2 vanish on the e3-axis. This means that on each of the three
coordinate axes the magnetic field is parallel to the respective axis.
Note that we could have chosen the magnetic potential given by

d∑
i=1

 d∑
j=1

1∫
0

Bji(qs)qjs ds

 dqi
instead, where we integrate from zero to one rather than from one to infinity. In this case,
the assumptions on the decay as well as the additional condition would not have been
necessary. However, with this choice of a potential the following constructions would
not be possible. In particular, this potential would not decay to zero along scattering
trajectories. �

Before we can proceed to relate Ω±∗ to Ω± we have to derive a result on how fast the
magnetic potential α decreases along scattering trajectories.

Lemma 2.4.3 Let the magnetic field satisfy the assumptions of Lemma 2.4.1. Then for
any compact set K ⊆ s+

∗ = Ψ(s+) the limit

lim
t→∞

tA(qt(x)) = 0

exists uniformly on K. The analogous result holds for s−∗ = Ψ(s−).

Proof Using Lemma 2.1.8 and inequality (1.5) we obtain constants C1, C2 > 0 and a
time T > 0 such that C1t ≤ |qt(x)| ≤ C2t for t ≥ T . For any indices i, j ∈ {1, . . . , d}
and t ≥ T we therefore have

|t
∞∫
1

Bij(qt(x)s)[qt(x)]js ds| ≤
∞∫
1

sup
|q|≥C1ts

|Bij(q)|C2t
2s ds

u=ts= C2
C1

∞∫
t

sup
|q|≥C1u

|Bij(q)|C1u du
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and together with the assumption
∫∞

0 sup|q|≥u |Bij(q)|u du <∞ this implies

|t
∞∫
1

Bij(qt(x)s)[qt(x)]js ds| → 0 (t→∞) .

Since the constants C1, C2 and T depend on K only, the limit is uniform in x ∈ K. This
implies that

tAi(qt(x)) =
d∑
j=1

t

∞∫
1

Bij(qt(x)s)[qt(x)]js ds→ 0 (t→∞)

converges uniformly on K, which therefore also holds for tA(qt(x)). �

Having obtained this result on the magnetic potential, we are now able to express the
momentum wave transformations Ω±∗ on T ∗Rd in terms of the velocity wave transforma-
tions Ω± on TRd.

Theorem 2.4.4 Assume the magnetic field satisfies the conditions of Theorem 2.3.11,
namely

∞∫
0

r sup
|q|≥r
|Bij(q)| dr <∞

as well as
∞∫
0

r2 sup
|q|≥r
|∇Bij(q)| dr <∞

and
∞∫
0

r3 sup
|q|≥r
‖D2Bij(q)‖ dr <∞

for all i, j = 1, . . . , d, such that the velocity wave transformations Ω± : s± → P0 on TRd

are diffeomorphisms. Assume furthermore that Bij(Rej) ≡ 0 holds for all i, j = 1, . . . , d.
Then the momentum wave transformations

Ω±∗ : (s±∗ , ω0)→ (P0
∗, ω0)

are symplectomorphisms with s±∗ = Ψ(s±) and P0
∗ = Ψ0(P0) = T ∗Rd \ Rd.

72



2.4 Wave transformations on the cotangent bundle

Proof For x∗ ∈ s+
∗ = Ψ(s+) we have

ϕ−t0,∗ ◦ ϕ
t
∗(x∗) = ϕ−t0,∗ ◦Ψ ◦ ϕt(Ψ−1(x∗)︸ ︷︷ ︸

=:x

)

= ϕ−t0,∗ ◦Ψ(qt(x), vt(x))

= ϕ−t0,∗(qt(x), vt(x) +A(qt(x)))

= (qt(x)− t(vt(x) +A(qt(x))), vt(x) +A(qt(x)))

→ (q+(x), v+(x)) = Ψ0 ◦ Ω+ ◦Ψ−1(x∗) (t→∞) .

Hence, the limit
Ω+
∗ = lim

t→∞
ϕ−t0,∗ ◦ ϕ

t
∗

exists and satisfies the equality

Ω+
∗ = Ψ0 ◦ Ω+ ◦Ψ−1 .

In particular, by using Theorem 2.3.11 we obtain that

Ω+
∗ : s+

∗ → P0
∗

is a diffeomorphism. Furthermore, the convergence is uniform on compact subsets of
s+
∗ since this holds for both the components, as shown in Proposition 2.3.2, Proposi-
tion 2.3.4 and Lemma 2.4.3. Therefore, the momentum wave transformation Ω+

∗ is the
locally uniform limit of the symplectomorphisms ϕ−t0,∗◦ϕt∗. This allows us to use the result
of M. Gromov and Y. Eliashberg described in Theorem 1.3.2: The set of symplectomor-
phisms Symp(s+

∗ ,P0
∗;ω0, ω0) is a closed subset of the set of diffeomorphisms Diff(s+

∗ ,P0
∗)

with respect to the C0-topology. Therefore, the diffeomorphism Ω+
∗ is symplectic. �

With this result we finish our examination of the scattering orbits and the asymptotic
behaviour of the motion. In order to provide a comprehensive study of the dynamics
induced by a magnetic field, we shall analyze the behaviour of bounded orbits in the
following chapter.
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CHAPTER 3

Symbolic dynamics

In Chapter 2 we have obtained that the magnetic flow of a magnetic field of sufficiently
fast decay is conjugated to the free flow – when restricted to the scattering states. In
this chapter we will see that the motion of the bounded states can become much more
complex. To show this, we will restrict ourselves to the case d = 2, where a magnetic
field is a locally Lipschitz continuous function B : R2 → R and the magnetic flow on the
phase space P = TR2 is given by q̇ = v

v̇ = B(q)Jv
(3.1)

with the skew-symmetric matrix J :=
( 0 1
−1 0

)
.

We shall consider multi-bump magnetic fields, i.e. those that consist of several compo-
nents with disjoint supports. For the corresponding magnetic flows we will obtain a
Poincaré (first return) map as well as a coding by symbolic dynamics, which shows that
they carry positive topological entropy. Thus, they are chaotic in the sense of Defini-
tion 1.4.2. For magnetic fields, the entropy has been studied on compact manifolds, for
example by S. Grognet, who exhibited positive topological entropy for high energies in
case of negative curvature [18], and by J. Miranda, who showed that certain perturba-
tions of the magnetic field yield positive topological entropy [37]. The closest situation
to the one we shall investigate is the case of a multi-bump potential considered in [28],
where a non-trivial topological index of the single bumps has been used to obtain the
existence of symbolic dynamics. Here, we have non-compact energy surfaces PE which
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3.1 Rotationally symmetric magnetic fields

are diffeomorphic to R2 × S1 for E > 0, so the embedding of symbolic dynamics cannot
be based on the non-trivial topology of the energy surface but needs to be established
by other methods. One general procedure would be to show that the dynamical system
is hyperbolic, but although we will have a circular orbit and derive conditions for its
hyperbolicity, the approach we shall take to establish symbolic dynamics will not be
based on this. Instead, it will be mostly constructive and involves a detailed analysis of
certain trajectories. In particular, our proof also works for the case of non-hyperbolic
circular orbits.

In the first part we will consider a magnetic field with rotationally symmetric bumps.
To do so, we start by analyzing the motion induced by a single bump. We obtain
an additional integral of motion besides the kinetic energy and use it to examine the
behaviour of those trajectories that stay outside the largest circular orbit. Afterwards,
we use these results to study a magnetic field consisting of n bumps and construct a
Poincaré map which is semi-conjugated to the full shift in n symbols. The calculations
for the single bumps are based on the existence of the additional integral, which suggests
that the rotational symmetry is a necessary condition to obtain symbolic dynamics. In
the second part we will show that this is not the case: For a more general setting without
an additional integral we exhibit a similar behaviour of the dynamics and, in particular,
we also derive a semi-conjugacy to the full shift.

Parts of the analysis for rotationally symmetric bumps are based on the joint work with
A. Knauf and K. F. Siburg, see [29].

3.1 Rotationally symmetric magnetic fields

We start by considering the case of a rotationally symmetric magnetic field B : R2 → R,
i.e. there exists a profile function B̂ : [0,∞) → R such that B̂(|q|) = B(q) holds for all
q ∈ R2. For now, we do not impose any further assumptions on the magnetic field. In
particular, it is not necessary that the sign is fixed and, moreover, there may be regions
where the magnetic field vanishes, i.e. suppB does not have be connected.

3.1.1 An additional integral of motion

Due to the additional symmetry one would expect the existence of another integral of
motion besides the kinetic energy. In fact, Proposition 3.1.3 will show that the magnetic
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momentum given in Definition 3.1.2 is an integral of motion. The following remark
describes how this formula is found, but we cannot use the procedure for the proof.

Remark 3.1.1 The key idea is to apply Noether’s theorem (see e.g. [3]), which states
the existence of an integral of motion and, moreover, yields an explicit formula.

Noether’s Theorem Let L : TM → R be a Lagrangian on some manifold M and let
hs : M →M be a one-parameter family of diffeomorphisms satisfying

L(hs(q), Dhs(q)v) = L(q, v)

for each (q, v) ∈ TM . Then there exists an integral of motion I : TM → R for the
Euler-Lagrange flow induced by L, which (in coordinates) is given by

I(q, v) = 〈∂L
∂v

(q, v), d
ds

∣∣∣∣
s=0

hs(q)〉 ,

and the value of I is independent of the choice of coordinates.

Inspired by the rotational symmetry we want to apply Noether’s theorem to the magnetic
Lagrangian

L(q, v) = 1
2 |v|

2 + αq(v) = 1
2 |v|

2 + 〈A(q), v〉

with some magnetic potential α (or A, respectively) and the one-parameter family

hs : R2 → R2, hs(q) :=
(

cos s − sin s
sin s cos s

)
q =: Tsq

of rotations by angle s ∈ R. For all q ∈ R2 we have Dhs(q) = Ts and hence

L
(
hs(q), Dhs(q)v

)
= 1

2 |Tsv|
2 + 〈A(Tsq), Tsv〉 .

If the magnetic potential A satisfies ATs = TsA, we can use the orthogonality of Ts and
obtain

L
(
hs(q), Dhs(q)v

)
= 1

2 |v|
2 + 〈A(q), v〉 = L(q, v) .

Then Noether’s theorem yields that

(q, v) 7→ 〈∂L
∂v

(q, v), d
ds

∣∣∣∣
s=0

hs(q)〉 = 〈v +A(q),−Jq〉 (3.2)

is an integral of motion. Hence, in order to be able to apply the theorem, we need to
find a suitable magnetic potential such that ATs = TsA, which we obtain by using polar
coordinates r, ϑ. For this we make the additional assumption that the integral

∞∫
0

B̂(s)s ds <∞
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exists. In this case, the 1-form

α :=

− ∞∫
r

B̂(s)s ds

 dϑ
with the “change in angle” form dϑ satisfies

dα = B̂(r)rdr ∧ dϑ = B(q)dq1 ∧ dq2 = β

on R2 \ {0}. Because of

dϑ = q1dq2 − q2dq1
q2

1 + q2
2

we have

α = 1
|q|2

∞∫
|q|

B̂(r)r dr(q2dq1 − q1dq2) ,

and thus, the corresponding vector field A : R2 \ {0} → R2 is given by

A(q) = 1
|q|2

∞∫
|q|

B̂(r)r dr
(
q2

−q1

)
=

 1
|q|2

∞∫
|q|

B̂(r)r dr

 Jq .
In particular, the magnetic potential A satisfies ATs = TsA for all s ∈ R. However, as a
downside of using polar coordinates, the 1-form α is no magnetic potential on the whole
plane R2 and the vector field A is not defined in the origin. If one neglected this and
applied Noether’s theorem anyway, one would obtain from equation (3.2) that

(q, v) 7→ 〈q, Jv〉 −
∞∫
|q|

B̂(r)r dr

is an integral of motion – and this term would also be defined for q = 0. Unfortunately,
we cannot strictly apply Noether’s theorem to obtain this result, although it would
eventually yield a well defined expression. �

Motivated by this realization we make the following definition.

Definition 3.1.2 For a rotationally symmetric magnetic field B : R2 → R satisfying

∞∫
0

B̂(r)r dr <∞
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we defineM : P→ R by

M(q, v) := 〈q, Jv〉 −
∞∫
|q|

B̂(r)r dr .

We will call this function the magnetic momentum. �

Although we could not strictly apply Noether’s theorem to obtain an integral, the follow-
ing proposition shows that the considerations in Remark 3.1.1 gave the correct formula.

Proposition 3.1.3 For a rotationally symmetric magnetic field B : R2 → R satisfying
∞∫
0

B̂(r)r dr <∞ ,

the magnetic momentumM : P→ R is an integral of motion of the magnetic flow.

Proof It is to show that the value ofM is constant along trajectories. For a solution
curve (q(t), v(t)) of the magnetic equation (3.1) we have

d

dt

∞∫
|q(t)|

B̂(r)r dr = −B̂(|q(t)|)|q(t)| · 〈 q(t)
|q(t)| , v(t)〉

= −B̂(|q(t)|)〈q(t), v(t)〉 (t ∈ R) .

Note that, although the computation requires q(t) 6= 0, the final equation for the deriva-
tive also holds if q(t0) = 0: Without loss of generality we assume t0 = 0 and obtain

|1
t

 ∞∫
|q(t)|

B̂(r)r dr −
∞∫
0

B̂(r)r dr

 | ≤ 1
|t|

|q(t)|∫
0

|B̂(r)|r dr

= const |q(t)|
2

|t|
→ 0 (t→ 0)

since |q(0)| = 0 and |q(t)| ≤
√

2E(q(0), v(0))|t| by inequality (1.5). Therefore, the
formula for the derivative holds without restrictions and we obtain

d

dt
M(q(t), v(t)) = 〈q(t), Jv̇(t)〉+ 〈v(t), Jv(t)〉+ B̂(|q(t)|)〈q(t), v(t)〉

= 〈q(t), B̂(|q(t)|)J2v(t)〉+ B̂(|q(t)|)〈q(t), v(t)〉

= −B̂(|q(t)|)〈q(t), v(t)〉+ B̂(|q(t)|)〈q(t), v(t)〉

= 0 ,

which proves the statement. �
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Let us point out that we could have defined the magnetic momentum by

(q, v) 7→ 〈q, Jv〉+
|q|∫
0

B̂(r)r dr ,

where no assumption on the decay is required. However, for the calculations in the
upcoming sections our choice is more suitable. The magnetic momentum will allow us
to gain a deeper insight into the dynamics, but before getting to this, we consider the
relation between the magnetic momentum and the first integral, i.e. the kinetic energy E :

Lemma 3.1.4 The integrals E and M are independent (i.e. have linearly independent
differentials) on the set

P
∖ {

(q, v) ∈ P | v = 0 or v = B̂(|q|)Jq
}
.

In particular, the set {
(q, v) ∈ P | v = B̂(|q|)Jq 6= 0

}
is the union of all circular orbits.

Proof For the differentials we have

∇E(q, v) =
(

0
v

)
, ∇M(q, v) =

(
Jv + B̂(|q|)q
−Jq

)
.

For v 6= 0 these vectors are linearly dependent if and only if Jv = −B̂(|q|)q and v = −µJq
for some µ 6= 0. Because of J2 = −1 this is equivalent to v = B̂(|q|)Jq and µ = −B̂(|q|).
It remains to show that initial values (q0, v0) ∈ P with v0 = B̂(|q0|)Jq0 6= 0 correspond
to circular orbits. Due to the rotational symmetry we can assume q0 = (r, 0) for some
r > 0. The only circular trajectory through this point is given by the curve

q(t) := r(cosωt, sinωt)

with ω := −B̂(r): For the derivatives we obtain q̇(t) = rω(− sinωt, cosωt) = B̂(r)Jq(t)
and q̈(t) = −B̂(r)2q(t), which in particular yields the equality q̈(t) = B̂(r)Jq̇(t) and
therefore implies that (q(t), q̇(t)) solves the magnetic equation (3.1). Furthermore, we
obtain

(q(0), q̇(0)) = (q0, B̂(r)Jq0)

and thus, the point (q0, v0) lies on the circular orbit if and only if v0 = B̂(|q0|)Jq0. �

In the following section we shall deepen the analysis of circular orbits, in particular the
study of their hyperbolicity.
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3.1.2 Circular orbits and hyperbolicity

In a constant magnetic field the trajectories are circles of a fixed radius, the Larmor
radius. This raises the question for which energies there are still circular orbits in a
rotationally symmetric magnetic field. The first observation is that the curvature of
a solution q of the magnetic equation (3.1) at time t equals −B(q(t))√

2E and hence, the
existence of a circular orbit in PE = E−1(E) of radius r with respect to the origin of the
configuration plane is equivalent to the fact that r satisfies the equation

|B̂(r)|√
2E

= 1
r
.

In fact, we would have obtained the same condition by using the characterization of the
circular orbits in Lemma 3.1.4. With the energy threshold

Ẽ◦ = max
r≥0

B̂(r)2r2

2 (3.3)

defined in Corollary 2.1.7, this yields the following result.

Lemma 3.1.5 Assume the magnetic field satisfies

∞∫
0

B̂(r) dr <∞ .

Then, for every energy E ∈ (0, Ẽ◦) there are at least two circular orbits and for E = Ẽ◦

there is at least one circular orbit.

Proof Note that Lemma 2.1.3 yields B̂(r)r → 0 for r →∞ and thus the maximum in
(3.3) exists. We fix E ∈ (0, Ẽ◦] and denote the radius where the maximum is attained
by rmax > 0, i.e.

E ≤ max
r≥0

B̂(r)2r2

2 = B̂(rmax)2r2
max

2 .

If equality holds, there is a circular orbit of radius rmax. Otherwise, we make use of the
facts that B̂(r)r = 0 for r = 0 as well as B̂(r)r → 0 for r → ∞. Then, by continuity,
there are radii r− < rmax < r+ such that

B̂(r±)2r2
±

2 = E ,

i.e. we have two distinct circular orbits. �
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Recall from Corollary 2.1.7 that for energies E > Ẽ◦ only scattering orbits occur.
Lemma 3.1.5 now shows that Ẽ◦ is the optimal energy threshold for this result: For
E ≤ Ẽ◦ there are circular orbits, which are, in particular, bounded. This observation
leads us to the assumption that the energy threshold Ẽ◦ coincides with Mañé’s critical
value, which is an energy threshold at which the behaviour of the dynamics changes (see
e.g. [6, 35, 39]). However, we shall not investigate this conjecture further, but turn back
to the examination of circular orbits.

After having established the existence of periodic orbits, the next target of their study
is to develop a criterion for hyperbolicity or ellipticity. This criterion will be given in
Proposition 3.1.8, but before that we present the necessary definitions. Recall that a
fixed point x ∈M of a diffeomorphism Φ: M →M of some manifold M is hyperbolic if
DΦ(x) has no eigenvalues λ of absolute value |λ| = 1 (see e.g. [27] or [40]). This can be
generalized to periodic orbits of flows ϕt : M →M given by a vector field f : M → TM

(compare e.g. Definition 6.2.2 in [27]).

Definition 3.1.6 Let ϕt : M → M denote the (local) flow given by a vector field
f : M → TM on some n-dimensional manifold M . Furthermore, let γ : R → M be
a periodic orbit of period T > 0. Assume there is a point x ∈ im γ such that the
linearization DϕT (x) : TxM → TxM has the eigenvalues 1, λ2, . . . , λn with |λi| 6= 1 for
i = 2, . . . , n. Then γ is called a hyperbolic periodic orbit. �

For a detailed study and, in particular, for the proof that this definition is independent
of the choice of x ∈ im γ, we refer to Chapter 5.8 in [40]. In the following we will explain
the meaning of this definition for hyperbolicity. First, note that it is no restriction to
ask for the eigenvalue λ1 = 1: Due to

f(x) = f(ϕT (x)) = d

dt

∣∣∣∣
t=T

ϕt(x) = d

dt

∣∣∣∣
t=0

ϕT ◦ ϕt(x) = DϕT (x)f(x) ,

the vector field f(x) is an eigenvector of DϕT (x) with respect to the eigenvalue one.
Now assume γ is a periodic orbit and let x0 ∈ im γ. Let P ⊆ M be a hypersurface
with x0 ∈ P that is transversal to the orbit γ. For initial values x ∈ P near x0 the flow
returns to P in time τ(x), which gives rise to the Poincaré (first return) map p : P → P

given by p(x) := ϕτ(x)(x). We obtain that the eigenvalues of Dp(x0) are λ2, . . . , λn and
therefore, the orbit γ is hyperbolic if and only if x0 is a hyperbolic fixed point of the
Poincaré map p.

Similar to the case of hyperbolic fixed points one can generalize the notion of an elliptic
fixed point.
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Definition 3.1.7 A fixed point x ∈M of a diffeomorphism Φ: M →M is elliptic if all
eigenvalues of DΦ(x) have absolute value one. A periodic orbit γ of a flow ϕt : M →M

is called elliptic if some x ∈ im γ is an elliptic fixed point of the time T map ϕT , where
T > 0 is such that ϕT (x) = x. �

As for hyperbolic periodic orbits, this definition is independent of the choice of x ∈ im γ.
With these definitions we are now able to turn to the characterization of circular orbits for
the magnetic flow ϕt : P→ P. Assume x0 ∈ P belongs to a circular orbit of period T > 0.
Since the kinetic energy is constant along trajectories, we obtain E(ϕT (x0)) = E(x0)
and therefore DE(x0)DϕT (x0) = DE(x0) holds, i.e DE(x0) is a (left) eigenvector of
DϕT (x0) for the eigenvalue one. Thus, the eigenvalue one occurs twice for DϕT (x0)
and, in particular, the circular orbit cannot be hyperbolic for the flow ϕt. However, if
for E = E(x0) we consider the restriction

ϕE := ϕ|PE : R× PE → PE

of the magnetic flow to the energy surface PE = E−1(E), we eliminate the additional
eigenvalue one. In particular, we can consider the question of hyperbolicity with respect
to the flow ϕE .

Note that so far we have only examined the kinetic energy E , but the same computations
also hold for the magnetic momentumM. However, in Lemma 3.1.4 we have seen that
their differentials DE and DM are linearly dependent on circular orbits. In particular,
the additional integralM does not increase the multiplicity of the eigenvalue one, so we
do not have to restrict the flow further for the consideration of hyperbolicity.

Let us point out that for the following result only the rotational symmetry of the mag-
netic field is necessary and, since the magnetic momentum is not needed, no assumptions
on its decay are required. However, we need the magnetic field to be a C1-function.

Proposition 3.1.8 Let B ∈ C1(R2,R) be any rotationally symmetric magnetic field.
Assume there is an energy E > 0 such that the corresponding magnetic flow admits a
circular orbit γ : R → PE of radius r > 0 around the origin. Then γ is also a circular
orbit for the restricted magnetic flow ϕE = ϕ|PE . If

−rB̂(r)B̂′(r) > B̂(r)2

holds, this orbit is hyperbolic for ϕE, whereas if

−rB̂(r)B̂′(r) < B̂(r)2

holds, the orbit is elliptic.
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Proof The circular orbit is given by the curve (q(t), q̇(t)) defined by

q(t) := r(cosωt, sinωt)

with ω := −B̂(r). By T := 2π
ω we denote its period. For the examination whether

the periodic orbit is hyperbolic we will choose the point x0 := (q(0), q̇(0)). We have to
compute DϕT (x0), and to do so we shall solve the variational equationẊ(t) = Df(ϕt(x0))X(t)

X(0) = 1
(3.4)

along the circular orbit, where f denotes the magnetic vector field f(q, v) := (v,B(q)Jv).
Because of ∇(B̂(|q|)) = B̂′(|q|) q

|q| we have

Df(q, v) =

 0 1

B̂′(|q|)Jv q
T

|q| B̂(|q|)J


and together with Jq̇(t) = rω(cosωt, sinωt) this yields

Df(ϕt(x0)) =


0 0 1 0
0 0 0 1

B̂′(r)rω cos2(ωt) B̂′(r)rω cos(ωt) sin(ωt) 0 B̂(r)
B̂′(r)rω cos(ωt) sin(ωt) B̂′(r)rω sin2(ωt) −B̂(r) 0


along the circular orbit. Unfortunately, this matrix has variable coefficients, so we
cannot compute the solution of (3.4) directly via the matrix exponential. Therefore,
we transform this problem into an equation with constant coefficients. For this, we
introduce a new variable Y defined by the relation

X =:
(
Tωt 0
d
dtTωt Tωt

)
Y =: StY , (3.5)

where

Tωt :=
(

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
denotes the matrix corresponding to the rotation by angle ωt. The variational equation
(3.4) yields Ẋ = Df(ϕt(x0))StY and from (3.5) we obtain Ẋ = ṠtY + StẎ . Therefore,
Y satisfies the initial value problemẎ (t) = S−1

t (Df(ϕt(x0))St − Ṡt)Y (t) =: A(t)Y (t) ,

Y (0) = S−1
0 X(0) = S−1

0 .
(3.6)
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The computation of A(t) yields

A =


0 0 1 0
0 0 0 1

−rB̂(r)B̂′(r) 0 0 −B̂(r)
0 0 B̂(r) 0


and, in particular, we obtain that A does not depend on t. Hence, the solution of (3.6)
can be described by the matrix exponential and equals Y (t) = eAtS−1

0 . Because of
ST = S0 this yields

X(T ) = STY (T ) = S0e
ATS−1

0

and therefore the eigenvalues of X(T ) coincide with those of eAT . To obtain these it is
sufficient to compute the eigenvalues of A, which are λ1 = λ2 = 0 and

λ3,4 = ±
√
−B̂(r)2 − rB̂(r)B̂′(r) .

This implies that X(T ) = DϕT (x0) has the eigenvalues 1, 1, eλ3T , eλ4T . The occurrence
of one as an eigenvalue of multiplicity two is as expected, so only the other eigenvalues
are of further interest. For

−rB̂(r)B̂′(r) > B̂(r)2

one obtains a positive and a negative real eigenvalue of A. Consequently, the eigenvalues
eλ3,4T of DϕT (x0) satisfy |eλ3,4T | 6= 1, which implies the hyperbolicity of the periodic
orbit. In case of

−rB̂(r)B̂′(r) < B̂(r)2

the eigenvalues λ3,4 are imaginary, so the orbit is elliptic. �

In the following we will explore this condition further. Firstly, in Remark 3.1.9 we provide
a different approach to the previous proof that might grant a better motivation for the
substitution (3.5). Secondly, we give an example where one can recognize the hyperbolic
and elliptic behaviour in the phase portrait. Finally, we examine the geometric meaning
of the hyperbolicity condition.

Remark 3.1.9 By the canonical correspondence J = −i we can consider the real two-
dimensional equation q̈ = B̂(|q|)Jq̇ as the complex equation z̈ = −iB̂(|z|)ż, or equiva-
lently

z̈ + iB̂(|z|)ż = 0 .

Instead of working with the total derivative of the flow, we study the directional deriva-
tives of the solution z(t, x) with respect to the initial value x ∈ C2. The circular solution
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is given by z0(t) := reiωt with ω := −B̂(r), and by x0 := (z0(0), ż0(0)) ∈ C2 we denote the
corresponding initial value. We fix a direction ξ̂ ∈ C2\{0} and define zε(t) := z(t, x0+εξ̂)
for ε ∈ R as well as the directional derivative

ξ := ∂

∂ε

∣∣∣∣
ε=0

zε .

Then, we obtain
∂

∂ε

(
z̈ε + iB̂(|zε|)żε

)
= 0

and hence the equation

ξ̈ + i
∂

∂ε

∣∣∣∣
ε=0

(
B̂(|zε|)

)
ż0 + iB̂(|z0|)ξ̇ = 0.

Because of
∂

∂ε

∣∣∣∣
ε=0
|zε| =

∂

∂ε

∣∣∣∣
ε=0

√
zεzε = 1

2
√
z0z0

(ξz0 + z0ξ) = Re(ξz0)
|z0|

we can deduce

∂

∂ε

∣∣∣∣
ε=0

(
B̂(|zε|)

)
= B̂′(|z0|)

Re(ξz0)
|z0|

= B̂′(r)Re(ξre−iωt)
r

= B̂′(r) Re(ξe−iωt)

and altogether we obtain

0 = ∂

∂ε

∣∣∣∣
ε=0

(
z̈ε + iB̂(|zε|)żε

)
= ξ̈ + iB̂′(r) Re(ξe−iωt)ż0 + iB̂(r)ξ̇

= ξ̈ − B̂′(r) Re(ξe−iωt)rωeiωt + iB̂(r)ξ̇.

(3.7)

In order to derive an equation with constant coefficients we change the coordinates to
the rotating frame and consider the equation in the new variable η given by

ξ = eiωtη .

For the derivatives we have

ξ̇ = iωeiωtη + eiωtη̇

= eiωt(iωη + η̇)

as well as

ξ̈ = iωeiωt(iωη + η̇) + eiωt(iωη̇ + η̈)

= eiωt(−ω2η + 2iωη̇ + η̈) ,
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so in the new variable η equation (3.7) has the form

eiωt(−ω2η + 2iωη̇ + η̈)− B̂′(r) Re(η)rωeiωt + iB̂(r)eiωt(iωη + η̇) = 0.

Multiplying this equation by e−iωt and sorting by derivatives of η yields

η̈ + (2iω + iB̂(r))η̇ + (−ω2 − B̂(r)ω)η − rB̂′(r)ωRe(η) = 0 ,

where the occurring real part of η makes it necessary to return to the real two-dimensional
view. Note that B̂(r) = −ω implies 2iω + iB̂(r) = −iB̂(r) as well as −ω2 − B̂(r)ω = 0
and thus, we obtain

η̈ +
(

0 1
−1 0

)
B̂(r)η̇ +

(
−rB̂(r)B̂′(r) 0

0 0

)
η = 0.

With ζ := η̇ this gives rise to the system

(
η̇

ζ̇

)
=


0 0 1 0
0 0 0 1

−rB̂(r)B̂′(r) 0 0 −B̂(r)
0 0 B̂(r) 0

 ·
(
η

ζ

)

as in the original proof of Proposition 3.1.8. �

As an example we consider the magnetic field given by

B̂(r) =

10(1− r) for r ≤ 1 ,

0 otherwise .

For a visualization it is best to consider the radial phase portrait (r, ṙ) and for this
we need to express the values of the integrals in polar coordinates. For x ∈ PE let
(q(t), v(t)) := ϕt(x) denote its trajectory and by introducing polar coordinates we obtain

q(t) = (r(t) cosϑ(t), r(t) sinϑ(t))

as well as

v(t) = (ṙ(t) cosϑ(t)− r(t)ϑ̇(t) sinϑ(t), ṙ(t) sinϑ(t) + r(t)ϑ̇(t) cosϑ(t)) .

Hence, 2E = |v(t)|2 = ṙ(t)2 + r(t)2ϑ̇(t)2 is constant along the trajectory, which yields

|ϑ̇(t)| =
√

2E − ṙ(t)2

r(t) . (3.8)
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Furthermore, we have the identity

〈q(t), Jv(t)〉 = 〈
(
r(t) cosϑ(t)
r(t) sinϑ(t)

)
,

(
ṙ(t) cosϑ(t) + r(t)ϑ̇(t) cosϑ(t)
−ṙ(t) cosϑ(t) + r(t)ϑ̇(t) sinϑ(t)

)
〉

= r(t)2ϑ̇(t)
(3.9)

and derive from the magnetic momentum that the value of r2ϑ̇−
∫∞
r B̂(s)s ds is constant.

Since the magnetic field is positive, the circular orbits rotate counter-clockwise, i.e.
the value of ϑ̇ is negative. Therefore, according to (3.8) we obtain that the magnetic
momentum equals

−r
√

2E − ṙ2 −
∞∫
r

B̂(s)s ds .

For the kinetic energy E = 1
2 the level sets are depicted in Figure 3.1 and one recognizes

the two circular orbits with radii ≈ 0.89 and ≈ 0.11 as fixed points: the outer one being
hyperbolic, the inner one elliptic for the flow ϕE = ϕ|PE . This concludes the example.

Figure 3.1: A hyperbolic and an elliptic orbit

Now we want to explore the meaning of the condition

−rB̂(r)B̂′(r) > B̂(r)2 .

If the magnetic field is positive along the circular orbit, i.e. B̂(r) > 0, this yields the
inequality

−rB̂′(r) > B̂(r).

Since for circular orbits the equality B̂(r) =
√

2E
r holds, this is equivalent to

d

dr

(
B̂(r)√

2E
− 1
r

)
= B̂′(r)√

2E
+ 1
r2 = 1

r
√

2E

(
rB̂′(r) + B̂(r)

)
< 0 .
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Therefore, a hyperbolic circular orbit corresponds to a transversal intersection of the two
graphs of r 7→ 1

r and B̂√
2E , where

B̂√
2E intersects 1

r “from top to bottom”. Accordingly,
a transversal intersection of the type “from bottom to top” corresponds to an elliptic
orbit. Let us point out that “top” and “bottom” are meant with respect to the graph
of 1

r . If B̂ has compact support, this implies that hyperbolic and elliptic circular orbits
occur in pairs, provided that all intersections are transversal. In particular, under this
condition the innermost circular orbit is always elliptic and the outermost one always
hyperbolic. For the magnetic field given by

B̂(r) =


1
2(4− r + sin(rπ + π)) for r ≤ 4 ,

0 otherwise ,

this alternating occurrence can be seen in Figure 3.2(b) for E = 1
2 . The circular orbits

have the properties which one expects from the graphs in Figure 3.2(a).

(a) Graphs of B̂ and 1
r (b) Phase portrait of ϕE for E = 1

2

Figure 3.2: Hyperbolic and elliptic orbits occurring in pairs

3.1.3 The motion outside the largest circular orbit

From this point on we assume the magnetic field B to have compact support and denote
the radius of the supporting disc

D :=
{
q ∈ R2 | |q| ≤ R

}
by

R := sup(supp B̂) > 0 .

In Lemma 3.1.5 we have shown the existence of circular orbits for energies below a certain
threshold Ẽ◦. If we denote the largest radius of all circular orbits with a fixed energy
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E ≤ Ẽ◦ by R+ = R+(E), then we have

|B̂(r)|√
2E

= 1
r

for r = R+

and
|B̂(r)|√

2E
<

1
r

for r > R+. (3.10)

Note that the sign of B̂(R+) 6= 0 determines the orientation of the outermost circular
orbit. The orbit winds clockwise around the origin if B̂(R+) > 0, and counter-clockwise
if B̂(R+) < 0.

This section shall be devoted to the study of orbits that enter the supporting disc D
but stay outside the largest circular orbit. Let us point out that this outermost circular
orbit plays an important role for the dynamics. In fact, since

‖B(q)J‖ = |B̂(|q|)| ,

its radius R+(E) coincides with the virial radius Rvir(E) given in Definition 2.1.4. There-
fore, Proposition 2.1.5 now reads:

Proposition 3.1.10 Let E ∈ (0, Ẽ◦] and x0 = (q0, v0) ∈ PE with |q0| > R+(E) as well
as 〈q0, v0〉 ≥ 0. Then there exists δ > 0 such that

|qt(x0)|2 ≥ |q0|2 + δt2

holds for all t ≥ 0. In particular, x0 ∈ s+
E is scattering in the future and s+

E is open.
The analogous result applies for t ≤ 0 and s−E if we assume 〈q0, v0〉 ≤ 0.

Note that the rotational symmetry is not necessary for the proof of Proposition 2.1.5,
only the estimate (3.10) in the outer annulus is needed. Furthermore, the calculation in
this proof, namely equation (2.4), shows that t 7→ |qt(x)|2 is convex while qt(x) is outside
the disc {|q| ≤ R+} of radius R+. Hence, for an orbit staying outside this disc, |qt(x)|
either attains its minimum or converges to its infimum as t→∞. The next result shows
that in the second case only R+ can occur as infimum.

Proposition 3.1.11 Let E ∈ (0, Ẽ◦] and x ∈ PE such that |qt(x)| > R+ holds for t ≥ 0.
Then either

min
t≥0
|qt(x)| > R+

or
lim
t→∞
|qt(x)| = R+

applies.
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3.1 Rotationally symmetric magnetic fields

Proof We set (q(t), v(t)) := ϕt(x). If 〈q(t), v(t)〉 > 0 holds for all t ≥ 0, then |q(t)|2 is
strictly increasing and we have mint≥0 |q(t)| = |q(0)| > R+. If there is a time T ≥ 0 such
that 〈q(T ), v(T )〉 = 0, then by Proposition 3.1.10 the minimum is attained at time T .
Hence, in the following we assume

〈q(t), v(t)〉 < 0 (t ≥ 0) .

This implies that |q(t)|2 is strictly decreasing and therefore the same holds for |q(t)|,
from which we deduce the convergence

lim
t→∞
|q(t)| = inf

t≥0
|q(t)| =: R̃ ≥ R+ . (3.11)

Furthermore, equation (2.4) yields that 〈q(t), v(t)〉 is increasing as long as |q(t)| > R+

holds. Therefore we obtain
lim
t→∞
〈q(t), v(t)〉 = 0 ,

since otherwise 〈q(t), v(t)〉 < 0 would be bounded away from 0, resulting in |q(t)| ≤ R+

for some t ≥ 0 and hence contradicting (3.11). By assumption we have

ϕt(x) ∈
{

(q, v) ∈ P | R̃ ≤ |q| ≤ |q0|, |v| =
√

2E
}

(t ≥ 0)

and the compactness of this set yields an increasing sequence of times tn → ∞ as well
as a point x∞ ∈ PE such that

(q(tn), v(tn)) = ϕtn(x)→ x∞ =: (q∞, v∞) (n→∞) .

This implies |q∞| = R̃ > R+ as well as 〈q∞, v∞〉 = 0 and Proposition 3.1.10 yields
x∞ ∈ s+

E . But since |q(t)| → R̃ for t→∞ we have ϕtn(x) /∈ s+
E for any n ∈ N. Because

of ϕtn(x) → x∞ for n → ∞, this is a contradiction to s+
E being open. Hence, the

statement
lim
t→∞
|q(t)| = inf

t≥0
|q(t)| = R+

holds. �

In order to understand the motion of orbits entering the support of B, we consider the
set of points

UE :=
{

(q, v) ∈ PE | |q| = R, 〈q, v〉 ≤ 0
}

(3.12)

through which orbits (in the configuration space R2) enter the supporting disc D. We
want to examine the orbits staying outside the R+-disc given by the largest circular orbit
and for this we make use of the magnetic momentum.
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Definition 3.1.12 For the energy E ∈ (0, Ẽ◦] we define

M+ =M+(E) := −
(

sign B̂(R+)
)
R+√2E −

R∫
R+

B̂(r)r dr

as the value ofM on the circular orbit of radius R+ = R+(E) and call this quantity the
critical magnetic momentum (with respect to the energy E). �

For the following considerations we assume B̂(R+) > 0, i.e.

M+ = −R+√2E −
R∫

R+

B̂(r)r dr ,

and refer to Remark 3.1.19 for the case B̂(R+) < 0. In this setting, the next result
assures that trajectories with magnetic momentum less thanM+ cannot enter the disc
of radius R+.

Lemma 3.1.13 IfM(x) ≤M+ for x ∈ UE, then |qt(x)| > R+ holds for all t ∈ R.

Proof Outside of suppB the motion coincides with the free motion, hence the state-
ment |qt(x)| ≥ R > R+ holds for all t ≤ 0. Now let us assume there is some starting
point x ∈ UE withM(x) ≤ M+, whose trajectory intersects the circle of radius R+ at
some time T > 0, i.e. |qT (x)| = R+. Due to the uniqueness of the solutions we have

〈qT (x), JvT (x)〉 6= −R+√2E ,

since otherwise the trajectory would coincide with the circular orbit, contradicting the
assumption of x ∈ UE . Hence, we have

〈qT (x), JvT (x)〉 > −R+√2E

and therefore

M(x) = 〈qT (x), JvT (x)〉 −
R∫

R+

B̂(r)r dr > −R+√2E −
R∫

R+

B̂(r)r dr =M+ ,

contradicting the initial assumptionM(x) ≤M+. �

This result gives insight to the evolution of the radius |qt(x)| for an initial value x ∈ UE
withM(x) ≤M+. Our next aim is to investigate how such trajectories rotate around the
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origin. For this it is convenient to describe the motion q(t) := qt(x) by polar coordinates
q(t) = (r(t) cosϑ(t), r(t) sinϑ(t)), which is possible due to r(t) = |q(t)| > R+ for t ∈ R.
As in (3.9) the equation

〈q(t), Jv(t)〉 = r(t)2ϑ̇(t) (t ∈ R)

holds and hence, we have to consider the sign of 〈q(t), Jv(t)〉 to study the rotation. We
expect the orbits to rotate in the same orientation around the origin as the circular orbit
of radius R+, but depending on the magnetic field we might have to decrease the energy
threshold Ẽ◦ for this to hold.

Definition 3.1.14 If B̂ ≥ 0 holds on [R+, R], then we define

E◦ := Ẽ◦ .

If B̂ attains positive as well as negative values on this interval, then we set

E′ := 1
2
(
B̂
(
R
2
)
R
2

)2

and define
E◦ := min

{
Ẽ◦, E′

}
.

�

In the second case, any energy E ≤ E◦ satisfies the inequality

1
2
(
B̂
(
R
2
)
R
2

)2
≥ E ,

and due to (B̂(R)R)2 = 0, there is some radius r̃ ≥ R
2 such that

1
2
(
B̂(r̃)r̃

)2
= E .

This yields a circular orbit of radius r̃ and, in particular, for the largest radius of the
circular orbits we have the estimate

R+ ≥ R

2 . (3.13)

Considering the energy E ∈ (0, E◦] fixed, this now allows us to examine how the orbits
rotate around the origin:

Proposition 3.1.15 Let x ∈ UE with M(x) ≤ M+. Then, there is a constant c < 0
such that 〈qt(x), Jvt(x)〉 ≤ c holds for all t ∈ R.
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Proof With (q(t), v(t)) := ϕt(x) the inequality

〈q(t), Jv(t)〉 =M(x) +
R∫

|q(t)|

B̂(r)r dr

≤ −R+√2E −
R∫

R+

B̂(r)r dr +
R∫

|q(t)|

B̂(r)r dr

= −R+√2E −
|q(t)|∫
R+

B̂(r)r dr

holds for all t ∈ R. If B̂(r) ≥ 0 applies for all r ≥ R+, then we have

〈q(t), Jv(t)〉 ≤ −R+√2E =: c < 0

for any t ∈ R since Lemma 3.1.13 assures |q(t)| > R+. If there is no fixed sign of the
magnetic field, estimate (3.10) yields

|
|q(t)|∫
R+

B̂(r)r dr| ≤
R∫

R+

|B̂(r)r| dr ≤
R∫

R+

√
2E dr − ε = (R−R+)

√
2E − ε

for some ε > 0. Using R− 2R+ ≤ 0 as given by (3.13), this implies

〈q(t), Jv(t)〉 ≤ −R+√2E + |
|q(t)|∫
R+

B̂(r)r dr| ≤ (R− 2R+)
√

2E − ε =: c < 0

for all t ∈ R, which completes the proof. �

Note that in view of Lemma 3.1.13, trajectories of points x ∈ UE with M(x) ≤ M+

cannot enter the disc of radius R+. Furthermore, for these trajectories we already know
that |q(t)| assumes a global minimum or converges to its infimum for t → ∞. Which
behaviour occurs can now be precisely described by the magnetic momentum.

Proposition 3.1.16 Let x ∈ UE. Then the following statements hold:

(i) M(x) =M+ ⇐⇒ lim
t→∞
|qt(x)| = R+.

(ii) M(x) <M+ =⇒ min
t∈R
|qt(x)| > R+.
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Proof (i) We show the implication “=⇒” by contradiction and set (q(t), v(t)) := ϕt(x).
If M(x) = M+ holds and |q(t)| does not converge to R+, then Proposition 3.1.11
yields that |q(t)| attains its minimum Rmin > R+ for some time T ≥ 0. This implies
〈q(T ), v(T )〉 = 0 and therefore the equality

〈q(T ), Jv(T )〉 = ±Rmin
√

2E

holds, where Proposition 3.1.15 assures

〈q(T ), Jv(T )〉 = −Rmin
√

2E .

Thus, since the value ofM is constant along trajectories, we have

M(x) = −Rmin
√

2E −
R∫

Rmin

B̂(r)r dr

= −Rmin
√

2E +
Rmin∫
R+

B̂(r)r dr −
R∫

R+

B̂(r)r dr

< −Rmin
√

2E + (Rmin −R+)
√

2E −
R∫

R+

B̂(r)r dr

= −R+√2E −
R∫

R+

B̂(r)r dr

=M+ ,

which contradicts the premise.

We now show the second implication “⇐=”: Due to |q(t)| → R+ we have the conver-
gence 〈q(t), v(t)〉 → 0 for t → ∞ as in the proof of Proposition 3.1.11, and therefore
〈q(t), Jv(t)〉 → ±R+√2E for t→∞. If the limit was positive, we would have

d

dt
〈q(t), v(t)〉 = 2E +B(q(t))〈q(t), Jv(t)〉 → 2E +

√
2E
R+ R+√2E = 4E (t→∞) ,

which contradicts the fact 〈q(t), v(t)〉 → 0. This implies

〈q(t), Jv(t)〉 → −R+√2E (t→∞)

and since the value ofM is constant along the trajectory of x, we obtain

M(x) = −R+√2E −
R∫

R+

B̂(r)r dr =M+ .
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(ii) Let x ∈ UE with M(x) < M+. For t ≤ 0 the inequality |qt(x)| ≥ R > R+ holds
for any x ∈ UE . Furthermore, since limt→∞ |q(t)| = R+ is not possible by the first part,
Proposition 3.1.11 guarantees

min
t∈R
|q(t)| = min

t≥0
|q(t)| > R+ .

�

Let us point out that the converse in assertion (ii) is false: If x ∈ UE belongs to a
trajectory passing suppB tangentially to the right, then we have |qt(x)| ≥ R > R+ for
all t ∈ R, butM(x) = R

√
2E >M+.

It is our aim to examine how the angle evolves as an orbit rotates around the origin.
In order to keep track of how it varies after the trajectory has entered the support, we
define the rotated angle. For a trajectory that eventually leaves the support, we can
describe its total change by the exit angle.

Definition 3.1.17 For a point x ∈ UE with M(x) ≤ M+ we define the rotated angle
as

θ(t, x) :=
t∫

0

〈qs(x), Jvs(x)〉
|qs(x)|2 ds =

t∫
0

d

ds
ϑs(x) ds .

Furthermore, forM(x) <M+ we consider the exit angle

θe(x) := θ(T e(x), x) ,

where by T e(x) we denote the exit time of x with respect to the supporting disc D, i.e.
the unique time T e(x) ≥ 0 such that |qt(x)| ≥ R holds for t ≥ T e(x). �

In view of this definition, our observations in Proposition 3.1.15 and Proposition 3.1.16
immediately yield the following result.

Corollary 3.1.18 Let x ∈ UE. Then the following statements hold:

(i) IfM(x) ≤M+, then the function θ(t, x) is strictly decreasing with respect to t.

(ii) IfM(x) =M+, then we have θ(t, x)→ −∞ as t→∞.

Most importantly, the equality

lim
n→∞

θe(xn) = −∞

holds for any sequence (xn)n∈N ⊆ UE such that M(xn) < M+ for all n ∈ N and
M(xn)→M+ as n→∞.
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Remark 3.1.19 The previous observations apply for B̂(R+) > 0. In fact, these calcu-
lations work in a similar way for the case B̂(R+) < 0, where the sign of ϑ̇ is switched
since the circular orbit turns in the opposite direction. In particular, along the circular
orbit the equality

(R+)2ϑ̇(t) = 〈q(t), Jv(t)〉 = +R+√2E

holds. Thus, for B̂(R+) < 0 we obtain

M+ = R+√2E −
R∫

R+

B̂(r)r dr

as the critical magnetic momentum, and given x ∈ UE , the analogue of Proposition 3.1.16
now reads:

(i) M(x) =M+ ⇐⇒ lim
t→∞
|q(t)| = R+.

(ii) M(x) >M+ =⇒ min
t∈R
|q(t)| > R+.

Note that the first assertion has not changed. Furthermore, we obtain that the rotated
angle θ(t, x) given in Definition 3.1.17 is strictly increasing with respect to t for any
x ∈ UE with M(x) ≥ M+. If M(x) = M+, it satisfies θ(t, x) → +∞ as t → ∞.
Consequently, for any sequence (xn)n∈N ⊆ UE satisfying M(xn) > M+ for all n ∈ N
andM(xn)→M+ as n→∞, this yields

lim
n→∞

θe(xn) = +∞

for the exit angle θe. �

Finally, we give a geometric interpretation for the magnetic momentum on UE :

Remark 3.1.20 Instead of regarding the valueM(x) of the magnetic momentum for a
point x = (q, v) ∈ UE , we can consider the angle

α(x) := arccos 〈Jq, v〉
R
√

2E

between Jq and v, as shown in Figure 3.3(a). Since we are interested in certain entrance
directions, it is more convenient for the following to think of a critical entrance angle α+

instead of the critical momentumM+. This is possible due to the orientation preserving
homeomorphism between the magnetic momentumM∈ [−R

√
2E,R

√
2E] and the angle

α ∈ [0, π]. In the following we will also consider the rotated angle θ given above and
therefore, to avoid confusions, we shall refer to α as the entrance direction and to α+ as
the critical entrance direction. �
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Note that we can consider the angle α between Jq and v also for points (q, v) ∈ P with
(q,−v) ∈ UE . These correspond to trajectories leaving the supporting disc, and the
value of α describes the exit direction as in Figure 3.3(b). Due to the correspondence

(a) The entrance direction (b) The exit direction

Figure 3.3: The angle α between Jq and v

between the entrance direction and the magnetic momentum we obtain the following
relation.

Corollary 3.1.21 Let x0 = (q0, v0) ∈ UE and assume there is a time T ≥ 0 such that
(qT (x0),−vT (x0)) ∈ UE, i.e. the trajectory of x0 exits the supporting disc D at time T .
Then the equation

α(x0) = α(ϕT (x0))

holds, i.e. the entrance direction and the exit direction coincide.

Proof Due to |q0| = |qT (x0)| = R the magnetic momentum equals

M(x0) = 〈q0, Jv0〉

and
M(ϕT (x0)) = 〈qT (x0), JvT (x0)〉 .

As an integral of motion,M is constant along the trajectory of x0, and thus we obtain
the equation

α(x0) = 〈Jq0, v0〉
R
√

2E
= 〈Jq

T (x0), vT (x0)〉
R
√

2E
= α(ϕT (x0)) .

�

With this we conclude the analysis of rotationally symmetric magnetic fields, which
allows us to conduct the examination of symbolic dynamics.
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3.2 Symbolic dynamics for rotationally symmetric components

In this section, we turn to magnetic fields consisting of a finite number of rotationally
symmetric components and study the complexity of the bounded orbits. We shall do
this by the technique of symbolic dynamics, i.e. by coding the dynamics on a subset of P
by a symbol space and the corresponding shift map. We will choose the coding in such a
way that it mirrors the consecutive intersections of a trajectory with the supports of the
magnetic field’s components as well as the occurring rotations. Therefore, the coding
can be regarded as the itinerary of the trajectory. The magnetic fields we shall consider
in this section will be of the following kind: We assume that the magnetic field

B :=
n∑
k=1

Bk

consists of n components, where each component Bk is rotationally symmetric with
respect to some centre qk ∈ R2, i.e. Bk(q) = B̂k(|q − qk|). Furthermore, with

Rk := sup(supp B̂k)

we consider the supporting discs

suppBk ⊆ Dk :=
{
q ∈ R2 | |q − qk| ≤ Rk

}
and assume they are disjoint, i.e.

Dk ∩Dl = ∅ (k 6= l) .

Let us point out that the components Bk do not need to have a fixed sign. Furthermore,
there may also be parts of the disc {|q − qk| ≤ Rk} where Bk vanishes.

For a rotationally symmetric magnetic field B we have seen in Section 3.1.2 that every
energy below some threshold E◦ = E◦(B) > 0 yields a circular orbit. In the case of
several components we require the existence of circular orbits for each component Bk
and hence define

E◦ := min
1≤k≤n

E◦(Bk) > 0 ,

where E◦(Bk) is computed with respect to the centre qk of the symmetry. We point out
that the magnetic momentum introduced in Proposition 3.1.3 is no longer an integral
of motion since B is not rotationally symmetric anymore. However, for each Bk we
may compute its local magnetic momentumMk (with qk taking the part of the origin)
and obtain a local integral in the sense that Mk is constant along trajectories as long
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as they stay outside the other supports. For the following considerations we fix an
energy E ∈ (0, E◦] and let R+

k = R+
k (E) denote the radius of the outermost circular

orbit in Dk. We writeM+
k =M+

k (E) for the critical magnetic momentum of Bk given
by Definition 3.1.12 and α+

k = α+
k (E) for the critical entrance direction described by

Remark 3.1.20.

In the next part we will need two geometric conditions on the configuration of the compo-
nents suppBk of the magnetic field’s support. Magnetic fields satisfying these conditions
are said to be “in general position”, which we will define precisely in the following (see
Definition 3.2.1). The first condition will allow transitions from one support to any
other. If the supports were placed in a row, for example, then the transition from one
support to an arbitrary other one would not be possible. The easiest way to guarantee
this is to demand for the convex hull of two supports to have an empty intersection
with the other supports. However, this is a rather restrictive condition and we shall use
a weaker one, only demanding for certain parts of the convex hull (depending on the
chosen energy) to have an empty intersection. The weaker condition on the areas of
empty intersection allows a configuration as in Figure 3.4. Here, the areas where even

Figure 3.4: Areas of empty intersection

the weaker assumption requires an empty intersection are shaded in grey. Before we
will describe how these areas are obtained, we introduce the second geometric condition.
This one assures the possibility to choose an appropriate Poincaré section which counts
the revolutions around the given centre qk in the right way. We want to avoid that
nearby orbits going from Dk to Dl have different numbers of intersections and therefore
assume that the areas we will use for the transition from Dk to the other components
do not cover the whole boundary ∂Dk of the supporting disc.

The areas we require for the transitions between two supports, as depicted in Figure 3.4,
are each given by the space between two straight lines. They depend on the orientation
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3.2 Symbolic dynamics for rotationally symmetric components

of their circular orbits, or equivalently, on the sign of the magnetic field B along these
orbits. For this we define bk := B̂k(R+

k ) and consider all four possible sign combinations.
If for fixed k 6= l both signs are positive, i.e. (bk, bl) = (+1,+1), we consider the tangent
line to ∂Dk and ∂Dl passing both supports to the left as well as the line which hits ∂Dk

with direction α+
k and ∂Dl with direction α+

l ; see Figure 3.5(a). By Ak,l = Ak,l(E) and
Bl,k = Bl,k(E) we denote the closed sets of points on ∂Dk and ∂Dl which lie in between
these two lines as depicted in Figure 3.5(b).

(a) The defining lines (b) The sets Ak,l and Bl,k

Figure 3.5: Transition from Dk to Dl for (bk, bl) = (+1,+1)

If both signs are negative we basically consider the same lines as in the previous case,
but replace the left tangent by the right tangent as shown in Figure 3.6.

Figure 3.6: The sets Ak,l and Bl,k for (bk, bl) = (−1,−1)

For (bk, bl) = (+1,−1) we consider the left tangent to ∂Dk that hits ∂Dl with direction
α+
l as well as the line which hits ∂Dk with direction α+

k and is tangent to Dl on the
right side; see Figure 3.7(a) for a visualization and the choice of Ak,l and Bl,k in this
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case. If (bk, bl) = (−1,+1) we again consider the lines as in the case (+1,−1) with left
and right tangent interchanged; see Figure 3.7(b).

(a) (bk, bl) = (+1,−1) (b) (bk, bl) = (−1,+1)

Figure 3.7: The sets Ak,l and Bl,k in case of opposite signs

The supports are supposed to be placed in such a way that for k 6= l the convex hull of
Ak,l and Bl,k intersects no other support. Note that it is possible that one small support
lies in between two larger ones as shown in Figure 3.4. Let us point out that the sets
Ak,l and Bl,k as well as the critical directions α+

k and α+
l depend on the energy value

E ∈ (0, E◦] that we have fixed at the beginning. Thus, all the following constructions
depend on E as well, but for the sake of readability we occasionally omit the explicit
reference when there are no ambiguities. We now give the precise definition of the
geometric conditions we impose on the configuration, where the convex hull of a set M
is denoted by convM .

Definition 3.2.1 Let B =
∑n
k=1Bk be a magnetic field on R2 whose components Bk

are rotationally symmetric (with respect to their centres qk) and have pairwise disjoint
supporting discs Dk = {q ∈ R2 | |q − qk| ≤ Rk}. We say that B is in general position
with respect to the energy E ∈ (0, E◦] if in addition the following two conditions hold:

(i) conv
(
Ak,l ∪Bl,k

)
∩Dm = ∅ for distinct k, l,m ∈ {1, . . . , n}.

(ii) ∂Dk

∖( ⋃
l 6=k

Ak,l ∪
⋃
l 6=k

Bk,l
)
6= ∅ for all k ∈ {1, . . . , n}. �

Note that the first condition guarantees that all the transitions from Dk to any other Dl

are possible. The second condition allows us to put a Poincaré section at an appropriate
place; it will be a radial segment ending in the non-empty set considered there. In
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particular, (ii) assures the existence of points

q∗k = q∗k(E) ∈ ∂Dk

∖( ⋃
l 6=k

Ak,l ∪
⋃
l 6=k

Bk,l
)

;

we pick such points q∗k and consider them fixed in the following. With these points we
define the Poincaré sections

Pk = Pk,E :=
{

(q, v) ∈ PE | q = qk + λ(q∗k − qk) for some λ ∈ (0, 1), bk〈q − qk, Jv〉 < 0
}

as well as the Poincaré map

p = pE : PE :=
n⋃
k=1

Pk,E −→ PE ∪ {∞}

by setting p(x) as the first point ϕt(x) ∈ PE for t > 0, if such a point exists. If this is
not the case, we define p(x) :=∞. Both cases are illustrated in Figure 3.8.

Figure 3.8: Definition of the Poincaré map p

Remark 3.2.2 Let us point out that the Poincaré map p is continuous at x ∈ PE

if p(x) ∈ PE holds. We chose p(x) as the first point in PE instead of the first point
in PE to get this useful criterion for continuity. In particular, if xm → x∞ ∈ PE and
p(xm)→ y∞ ∈ PE , then the continuity of the flow yields p(x∞) = y∞ and p is continuous
at x∞. �

We want to use the Poincaré section to construct the itinerary of a trajectory, and to
do so we have to restrict ourselves to those trajectories which admit such a coding.
Therefore, we consider the set

ΛE :=
{
x ∈ PE | pi(x) ∈ PE for all i ∈ Z

}
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3.2 Symbolic dynamics for rotationally symmetric components

which is invariant under p. Note that at this point, ΛE might contain only the points
x ∈ PE lying on the circular orbits. Let

h = hE : ΛE → Σn = {1, . . . , n}Z

denote the canonical coding map where h(x) = (si)i∈Z is defined by the condition that
pi(x) ∈ Psi,E holds for all i ∈ Z. Furthermore, let σ : Σn → Σn be the left shift
map, shifting a sequence (si)i∈Z one position to the left, as given in Section 1.4. By
construction we obtain the identity

h ◦ p = σ ◦ h .

With these definitions we can formulate the first main theorem of this chapter.

Theorem 3.2.3 Assume the magnetic field B is in general position with respect to the
energy E ∈ (0, E◦]. Then there is a compact pE-invariant subset Λ′E ⊆ ΛE such that the
coding map hE : Λ′E → Σn is continuous and surjective. In other words, the Poincaré
map pE |Λ′E : Λ′E → Λ′E is semi-conjugated to the full shift σ : Σn → Σn.

Proposition 1.4.4 assures that a dynamical system has at least the topological entropy of
a second one it is semi-conjugated to. Thus, we immediately get the following corollary.

Corollary 3.2.4 The Poincaré map pE |Λ′E : Λ′E → Λ′E has positive topological entropy

htop(pE |Λ′E ) ≥ logn .

In particular, this discrete dynamical system is chaotic.

For the following considerations and consequently for the proof of Theorem 3.2.3 we
need to define various sets and maps. Recall from (3.12) in Section 3.1.3 the definition
of the set UE of points in the phase space through which orbits can enter the support.
Due to the different centres of the supports, this will now be replaced by

UE :=
n⋃
k=1

Uk,E

with
Uk = Uk,E :=

{
(q, v) ∈ PE | |q − qk| = Rk, 〈q − qk, v〉 ≤ 0

}
.

Furthermore, we need two additional maps describing the transitions between PE and UE .
For x ∈ UE , i.e. for an orbit entering the support, let

u : UE → PE ∪ {∞}
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denote the first point ϕt(x) ∈ PE for t ≥ 0 where the trajectory hits the Poincaré section.
For a point x ∈ PE let

w : PE → UE ∪ PE ∪ {∞}

denote the first point ϕt(x) ∈ UE ∪ PE for t ≥ 0 where the orbit intersects the Poincaré
section again or enters the support of some other component. In case such points do not
exist, we set u(x) :=∞ and w(x) :=∞, respectively.

We start by describing the basic mechanism of how to find a point that realizes a pre-
scribed itinerary. Let I ⊆ Uk = Uk,E be a segment consisting of phase space points
entering Dk, i.e.

I := γ([a, b])

is the image of a curve γ : [a, b] → Uk. Assume that the trajectory of one endpoint of
I passes Dk tangentially to the left and the other endpoint has the critical entrance
direction α+

k , i.e. its trajectory converges to the outermost circular orbit inside Dk; see
Figure 3.9(a). Then, in I we find a subsegment

Ĩ := γ([ã, b̃]) ⊆ γ([a, b])

of points whose trajectories hit Pk exactly j times before leaving Dk in direction of Dl.
In particular, the resulting segment Ĩ of points in Ul has the same configuration as the
original segment entering Uk: The trajectory of one endpoint of Ĩ passes Dl tangentially
to the left and the other endpoint has the critical entrance direction α+

l ; see Figure 3.9(b).

(a) Endpoints of original segment γ([a, b]) (b) Endpoints of resulting segment γ([ã, b̃])

Figure 3.9: Aiming mechanism for j = 2

This procedure, which we will refer to as aiming mechanism (since one has to aim
precisely into the right direction), is stated precisely in the following lemma. Note that
the previous description is valid for the case of the magnetic fields being positive along
the circular orbits in Dk and Dl. The statement as well as the proof are also given for
this case while the general situation is treated afterwards in Remark 3.2.6.
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Lemma 3.2.5 Assume that the magnetic field B is in general position with respect to
the energy E ∈ (0, E◦]. Let k 6= l ∈ {1, . . . , n} be different indices of supports with
(bk, bl) = (+1,+1) and let j ∈ N denote the desired number of rotations. Furthermore,
let γ : [a, b]→ Uk,E be a curve with

(a) αk(γ(a)) = 0 ,

(b) αk(γ([a, b))) ⊆ [0, α+
k ) ,

(c) αk(γ(b)) = α+
k and

(d) q∗k /∈ im γ .

Then there exists a subinterval [ã, b̃] ⊆ [a, b] such that for all points x ∈ im γ|[ã,b̃] in the
image of γ|[ã,b̃] we have

(i) pi(u(x)) ∈ Pk,E for i ∈ {0, . . . , j − 1},

(ii) w(pj−1(u(x))) ∈ Ul,E,

and the curve γ1 := (w ◦ pj−1 ◦ u ◦ γ)
∣∣
[ã,b̃] : [ã, b̃]→ Ul,E satisfies

(a′) αl(γ1(ã)) = 0,

(b′) αl(γ1([ã, b̃))) ⊆ [0, α+
l ),

(c′) αl(γ1(b̃)) = α+
l and

(d′) q∗l /∈ im γ1.

Proof Let qa, qb ∈ ∂Dk denote the two points of ∂Ak,l as shown in Figure 3.10. The

Figure 3.10: Definition of qa and qb

conditions (b) and (c) implyMk(γ(s)) <M+
k for s < b as well asMk(γ(s))→M+

k for
s→ b, and thus, we can apply Corollary 3.1.18 to obtain

θek(γ(s))→ −∞ (s→ b) .
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Hence, there are parameters sa < sb in [a, b] such that the trajectory of γ(sa) exits
through qa, the one of γ(sb) exits through qb, and for s ∈ [sa, sb] the forward trajectory
hits Pk,E exactly j times before leaving Dk. The trajectory of γ(sa) passes Dl on the left
hand side and, since by Corollary 3.1.21 the entering and exiting directions coincide, the
trajectory of γ(sb) leaves Dk with an angle less than α+

k ; see Figure 3.11. This implies

Figure 3.11: Trajectories of γ(sa) and γ(sb)

that the trajectory of γ(sb) passes to the right of the line hitting Dl with direction α+
l

and hence, it hits Dl with an angle strictly larger than α+
l . Therefore, there are new

parameters ã < b̃ in [sa, sb] such that the trajectory of γ(ã) is the last to pass tangentially
to the left of Dl and the trajectory of γ(b̃) is the first to hit Dl with direction α+

l .
Furthermore, this implies that for s ∈ [ã, b̃] the trajectory of γ(s) hits Dl with an angle
strictly less than α+

l . Then γ1 : [ã, b̃] → Ul,E with γ1(s) := (w ◦ pj ◦ u ◦ γ)(s) is well
defined and satisfies the stated properties. �

Remark 3.2.6 The mechanism in the proof of Lemma 3.2.5 is manufactured for the
situation where both magnetic fields have positive values on their outermost circular
orbits. We argue that an analogous result holds for all other cases as well.

In the case of (bk, bl) = (+1,−1), i.e. when for Bk the outermost circular orbit rotates
clockwise and the one for Bl counter-clockwise, we can choose the curve γ1 in such a way
that the trajectory of γ(ã) hits Dl with direction α+

l , and the trajectory of γ(b̃) passes
tangentially to the right of Dl.

Finally, a similar mechanism still works in the case of bk = −1, i.e. for the circular
orbit rotating counter-clockwise: If we start with a curve γ : [a, b] → Uk,E such that
αk(γ(a)) = π and αk(γ(b)) = α+

k , we have θek(γ(s)) → +∞ as s → b. Then again,
there is a subinterval of points whose trajectories intersect Pk,E the prescribed number
of times and then leave Dk in direction of Dl. Depending on the sign of Bl, we can
choose the segment of the intersection with Dl, as we did for bk = +1. �
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3.2 Symbolic dynamics for rotationally symmetric components

The mechanism described above allows us to show that for every half-infinite sequence
there is a point realizing the prescribed itinerary.

Proposition 3.2.7 For any half-infinite sequence (ki)i∈N0 ∈ {1, . . . , n}N0 there exists a
point x0 ∈ Pk0,E such that piE(x0) ∈ Pki,E holds for every i ∈ N0.

Proof We shall start with a curve γ : [0, 1]→ Uk0 = Uk0,E such that αk0(γ(0)) = 0 (or
αk0(γ(0)) = π, if Bk0 is negative along the circular orbit) and αk0(γ(1)) = α+

k0
. Let us

assume first that the sequence (ki)i∈N0 does not become constant eventually. Let j1 ≥ 1
denote the number of consecutive values of k0, i.e. ki = k0 for i ≤ j1 − 1 and kj1 6= k0.
Then, by Lemma 3.2.5 there is a parameter interval [a(1), b(1)] ⊆ [0, 1] such that

pi(u(γ(s))) ∈ Pk0 = Pki (i ∈ {0, . . . , j1 − 1})

holds for all s ∈ [a(1), b(1)] and we obtain a corresponding curve γ1 : [a(1), b(1)] → Ukj1 .
Applying Lemma 3.2.5 to the curve γ1 and to the number j2 ≥ 1 of consecutive values
of kj1 yields a subset [a(2), b(2)] ⊆ [a(1), b(1)] such that the condition

pi(u(γ(s))) ∈ Pkj1 = Pki (i ∈ {j1, . . . , j1 + j2 − 1})

holds for all s ∈ [a(2), b(2)]. Hence, by iteration, we obtain a sequence of subintervals
[a(m), b(m)] ⊆ [a(m−1), b(m−1)] such that

pi(u(γ(s))) ∈ Pki (i ∈ {0, . . . , j1 + · · ·+ jm − 1})

holds for all s ∈ [a(m), b(m)] and for i (at least) up to m− 1. Then, there is a point

x̄ ∈
⋂
m∈N

γ([a(m), b(m)]) 6= ∅

and hence
x0 := u(x̄) ∈ Pk0

satisfies pi(x0) ∈ Pki for i ≥ 0, which proves the claim if (ki)i∈N0 does not become
constant eventually. However, if this is the case we follow the same procedure up to
the index where (ki)i∈N0 becomes constant. At this index we simply choose the point
with critical entrance direction and do not need to iterate further. The trajectory will
converge to the corresponding circular orbit with an infinite number of intersections of
the Poincaré segment. �

With this result for half-infinite sequences we can now turn to the proof of Theorem 3.2.3.
In order to show that every bi-infinite sequence can be realized by some trajectory, we
take increasing, half-infinite parts of this sequence and show that the corresponding
points obtained by Proposition 3.2.7 converge to a point that has the prescribed itinerary.
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Proof (of Theorem 3.2.3) Let us define

Λ′E :=
{
x ∈ ΛE | |qt(x)− qk| ≥ R+

k for all t ∈ R, k = 1, . . . , n
}

as the subset of points whose trajectories stay outside the open discs {|q − qk| < R+
k }

for all times. To show that h|Λ′E is surjective, let (ki)i∈Z ∈ {1, . . . , n}Z. For each m ∈ N,
Proposition 3.2.7 yields a point ym ∈ Pk−m = Pk−m,E such that pi(ym) ∈ Pki−m holds
for all i ≥ 0, and we define

xm := pm(ym) ∈ Pk0 .

Since Pk0 is compact we have a convergent subsequence which we denote by xm again,
i.e. we have xm → x∞ ∈ Pk0 as m → ∞. We claim that x∞ lies in Λ′E and satisfies
h(x∞) = (ki)i∈Z, i.e.

pi(x∞) ∈ Pki (i ∈ Z) .

In order to prove this, it suffices to show that the trajectory of x∞ does not intersect the
boundary ∂PE of the Poincaré section: As described in Remark 3.2.2, the continuity of
the flow then yields

pi(x∞) = lim
m→∞

pi(xm) ∈ Pki
for all i ∈ Z, which means h(x∞) = (ki)i∈Z. We argue by contradiction and assume that
the trajectory intersects ∂PE at the index i = 0, i.e.

x∞ =: (q∞, v∞) ∈ ∂Pk0 =
{

(q, v) ∈ PE | q = qk0 or q = q∗k0 or 〈q − qk0 , Jv〉 = 0
}
.

Now, 〈q∞ − qk0 , Jv∞〉 = 0 is not possible since 〈q − qk0 , Jv〉 < 0 by Proposition 3.1.15,
which also implies q 6= qk0 . Therefore we have q∞ = q∗k0

, where three cases can occur.
However, each of them will lead to a contradiction.

Case 1: k1 6= k0. Since for m ∈ N the trajectory of xm exits the supporting disc Dk0

in the direction of Dk1 , it passes the subset Ak0,k1 . As this set is closed we obtain
q∞ ∈ Ak0,k1 , but since q∗k0

= q∞ this contradicts the choice of q∗k0
/∈ Ak0,k1 .

Case 2: k−1 6= k0. Similar to Case 1, the backward trajectories of the points xm pass
the closed subset Bk0,k1 , contradicting the choice of q∗k0

/∈ Bk0,k−1 .

Case 3: k−1 = k0 = k1. We have |qt(xm)−qk0 | < Rk0 for |t| < T with T > 0 independent
of m ∈ N, and therefore we obtain

|qt(x∞)− qk0 | ≤ Rk0 = |q∞ − qk0 | (|t| < T ) . (3.14)

This yields
〈q∞ − qk0 , v∞〉 = d

dt

∣∣∣∣
t=0

1
2 |q

t(x∞)− qk0 |2 = 0 ,
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i.e. the trajectory passes tangentially to Dk0 and therefore satisfies

|qt(x∞)− qk0 | > Rk0

for small values of |t|, which contradicts inequality (3.14).

This shows that all three cases lead to contradictions and therefore, the assumption
x∞ ∈ ∂Pk0 is false. The trajectory of x∞ does not intersect ∂PE and thus, h|Λ′E is
surjective.

It remains to show the continuity of h on Λ′E . Due to the continuity of the flow ϕt, it
is sufficient to show that the time between two consecutive intersections of the Poincaré
section is uniformly bounded. Two cases are possible: The intersections can occur in
the same support or in different supports. Proposition 3.1.15 gives an upper bound for
the time that a trajectory can stay inside the outer annulus in one support without
intersecting the Poincaré section. Furthermore, outside the support the trajectories
are straight lines and, since |q̇| ≡

√
2E, the time is proportional to the length of the

trajectory. Therefore, we have a uniform bound for the length of the segments between
two consecutive intersections of the orbit with the Poincaré section and thus, a uniform
bound for the time, which consequently yields the continuity of h on Λ′E . �

With this we have shown that the Poincaré map pE |Λ′E is semi-conjugated to the full
shift in n symbols, i.e. for the bounded states the motion exhibits chaotic behaviour.
Let us point out that the required rotational symmetry of the magnetic field is a rather
restrictive constraint, but in the following section we shall see that the characteristics of
the motion do not depend on this condition.

3.3 Non-rotationally symmetric magnetic fields

In this section we will show that the result of Theorem 3.2.3 does not depend on the
existence of the additional integral, the magnetic momentumM, although its frequent
use might suggest this at first. Its existence was helpful for the proofs, but we will now
show that it is not necessary to obtain a semi-conjugacy to the full shift. Similarly to
the rotationally symmetric case we start by studying the motion inside a single bump,
which will later be one component of the magnetic field.
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3.3.1 The motion outside the largest circular orbit

We consider a magnetic field B : R2 → R with compact support

suppB ⊆ D :=
{
q ∈ R2 | |q| ≤ R

}
for some R > 0. For a fixed energy E > 0 we assume that there is a largest circular
orbit of radius R+ = R+(E), i.e.

|B(q)|√
2E

= 1
|q|

for |q| = R+ .

Along this circular orbit the magnetic field has to be constant, but apart from this we
do not require rotational symmetry. We do require, though, that the strength of the
magnetic field is sufficiently weak outside of this circular orbit, as it was the case for
rotationally symmetric magnetic fields. In particular, we assume

|B(q)|√
2E

<
1
|q|

for |q| > R+ . (3.15)

The final assumption is that the magnetic field does not change its sign outside the
circular orbit, i.e. either B(q) ≥ 0 for |q| ≥ R+ or B(q) ≤ 0 for |q| ≥ R+. Before
we gather these conditions in Definition 3.3.1, let us point out that for the rotationally
symmetric case they describe the energies E ∈ (0, E◦]. Furthermore, we observe that
Proposition 3.1.10 and Proposition 3.1.11 both hold for these magnetic fields as well
since their proofs only make use of estimate (3.15) and do not depend on the rotational
symmetry of the magnetic field. In particular, this implies that there is no other periodic
orbit with |qt(x)| > R+ for some t ∈ R.

Definition 3.3.1 Assume that for an energy E > 0 there is a radius R+ = R+(E) such
that the following conditions are satisfied:

(i) |B(q)|√
2E

= 1
|q|

holds for |q| = R+.

(ii) |B(q)|√
2E

<
1
|q|

holds for |q| > R+.

(iii) Either B(q) ≥ 0 or B(q) ≤ 0 holds for |q| ≥ R+.

Then we call E a circular energy. The union of all circular energies we denote by C. �

For the following considerations we fix a circular energy E ∈ C. To avoid having to
distinguish between positive and negative magnetic fields, we consider the first case
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explicitly and treat the second one later in Remark 3.3.8. Since we want to prescribe
the order in which a trajectory hits the supports of the components, we now take a look
at the set of points

UE :=
{

(q, v) ∈ PE | |q| = R, 〈q, v〉 ≤ 0
}

through which orbits (in the configuration space R2) enter the supporting disc D. Using
the angle

α : UE → [0, π], α(q, v) := arccos 〈Jq, v〉
R
√

2E
between Jq and v, we define the sets

UβE :=
{
x ∈ UE | α(x) = β

}
of points x ∈ UE whose trajectories enter the supporting disc with angle α(x) = β.
Initial values x ∈ U0

E correspond to trajectories that pass D tangentially to the left, and
for x ∈ UπE the trajectory passes D tangentially to the right. As in Remark 3.1.20 we
will refer to α as the entrance direction. Furthermore, by

ÛE :=
{
x ∈ UE | inf

t≥0
|qt(x)| > R+

}
we denote the subset of initial values whose trajectories stay away from the closed disc
of radius R+. As a consequence of Proposition 3.1.11, these trajectories are scattering:

Lemma 3.3.2 The set ÛE consists of scattering states, i.e. ÛE ⊆ s+
E.

Proof Let x ∈ ÛE . By Proposition 3.1.11 there is a time T ≥ 0 such that

|qT (x)| = min
t≥0
|qt(x)| > R+

holds. This implies 〈qT (x), vT (x)〉 = 0 and thus, Proposition 3.1.10 yields x ∈ s+
E . �

From this lemma we obtain the next result.

Lemma 3.3.3 The set ÛE is open in UE.

Proof Let x0 ∈ ÛE . Since x0 ∈ s+
E , there is a time T > 0 with |qt(x0)| > R for t ≥ T ,

and 〈qT (x0), vT (x0)〉 > 0. Furthermore, we have the identity

inf
t≥0
|qt(x0)| = min

t∈[0,T ]
|qt(x0)| > R+ .

Thus, there is a neighbourhood N ⊆ UE of x0 such that |qT (x)| > R, 〈qT (x), vT (x)〉 > 0
and

min
t∈[0,T ]

|qt(x)| > R+
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hold for all x ∈ N . In particular, Proposition 3.1.10 yields |qt(x)| > R > R+ for t ≥ T

and x ∈ N . This implies

inf
t≥0
|qt(x)| = min

t∈[0,T ]
|qt(x)| > R+ (x ∈ N)

and therefore N ⊆ ÛE , i.e. ÛE is open. �

In order to analyze the motion, it is our aim to imitate the proofs from the rotationally
symmetric case. Since we cannot make use of another integral besides the kinetic energy,
we need an adequate replacement for the critical magnetic momentum M+. This re-
placement will be one of the connected components of ÛE ; for the following arguments
we need to make sure that there are at least two of them.

Lemma 3.3.4 The sets U0
E and UπE are in different connected components of ÛE.

Proof Let us assume otherwise. Then, since ÛE is open, U0
E and UπE are in the same

path-connected component and there is a curve γ : [0, 1]→ ÛE such that γ(0) ∈ U0
E and

γ(1) ∈ UπE . On the compact set im γ ⊆ s+
E the continuous function T e : UE ∩ s+

E → R,
which denotes the exit time with respect to D, is bounded from above by some Tmax > 0.
We now consider the function f : [0, Tmax]× [0, 1]→ R given by

f(t, s) := 〈qt(γ(s)), Jvt(γ(s))〉 .

This function is continuous and, in particular, gives rise to the continuous function
η : [0, 1]→ R by

η(s) := max
t∈[0,Tmax]

f(t, s) .

For any initial value x ∈ PE we have

d

dt
〈qt(x), Jvt(x)〉 = 〈vt(x), Jvt(x)〉+B(qt(x))〈qt(x), J2vt(x)〉

= −B(qt(x))〈qt(x), vt(x)〉 ,
(3.16)

and therefore the value of 〈q, Jv〉 is constant while the trajectory is outside suppB. This
implies η(0) = −R

√
2E as well as η(1) = R

√
2E and hence, by the continuity of η, there

is some parameter s0 ∈ (0, 1) such that

η(s0) = 0 .

In particular, there is a time t0 ∈ [0, Tmax] such that f(t0, s0) = η(s0) = 0, i.e.

〈qt0(γ(s0)), Jvt0(γ(s0))〉 = 0 .
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This means that q and v either point in the same direction or in opposite directions, i.e.
v = ±

√
2E
|q| q, which implies

〈qt0(γ(s0)), vt0(γ(s0))〉 = ±|qt0(γ(s0))|
√

2E .

We first consider the case of opposite directions, i.e. a negative sign; the other case works
in the same way. Using (3.16) we obtain

d

dt

∣∣∣∣
t=t0

f(t, s0) = B(qt0(γ(s0)))|qt0(γ(s0))|
√

2E ≥ 0 , (3.17)

where strict inequality or equality depends on whether the magnetic field satisfies either
B(qt0(γ(s0))) > 0 or B(qt0(γ(s0))) = 0. In the case of strict inequality in (3.17) we have

f(t, s0) > f(t0, s0) = 0

for t > t0 with t− t0 small enough, and hence

η(s0) = max
t∈[0,Tmax]

f(t, s0) > 0 . (3.18)

This contradicts the choice of s0, which asserts η(s0) = 0. If, on the other hand, equality
holds in (3.17) for the time t0, then we claim that there is a time t1 > t0 with

d

dt

∣∣∣∣
t=t1

f(t, s0) > 0 ,

which again results in contradiction (3.18). We show this claim itself by contradiction:
Assume that

d

dt
f(t, s0) = −B(qt(γ(s0)))〈qt(γ(s0)), vt(γ(s0))〉 = 0

holds for all t ≥ t0. This implies that B equals zero along the trajectory as long as
〈qt(γ(s0)), vt(γ(s0))〉 6= 0 and hence, the trajectory coincides with the straight line

qt+t0(γ(s0)) = qt0(γ(s0))− t
√

2E
|qt0(γ(s0))|q

t0(γ(s0))

for t ≥ 0 until qt+t0(γ(s0)) = 0. In particular, there is a time T > 0 such that

|qT+t0(γ(s0))| = R+ ,

contradicting the assumption γ(s0) ∈ ÛE , which assures

inf
t≥0
|qt(γ(s0))| > R+ .

Thus, strict inequality and equality in (3.17) both lead to a contradiction. This shows
that the initial assumption of U0

E and UπE being in the same connected component is
false and hence proves the statement. �
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This result shows that there are at least two connected components of ÛE . In the
following, we will only use the connected component containing U0

E which we denote
by U+

E . A visualization of these subsets of UE is given in Figure 3.12. Recall the special

Figure 3.12: Visualization of the subsets of UE ∼= ∂D × [0, π]

case of a rotationally symmetric magnetic field, in which we have

U+
E =

{
x ∈ UE | α(x) ∈ [0, α+)

}
,

or equivalently, x ∈ U+
E if and only if M(x) < M+. The following two lemmas show

that trajectories with magnetic momentumM(x) ≤M+ in the rotationally symmetric
case have a similar behaviour as those in the general case which start at U+

E .

Lemma 3.3.5 Let x ∈ U+
E . Then 〈qt(x), Jvt(x)〉 < 0 holds for all t ≥ 0.

Proof For x ∈ U+
E there exists a curve γ : [0, 1] → U+

E such that γ(0) ∈ U0
E and

γ(1) = x. If we assume that there is a time T ≥ 0 such that 〈qT (x), JvT (x)〉 ≥ 0 holds,
then we can apply the arguments from the proof of Lemma 3.3.4 and obtain the same
contradiction. This proves the statement. �

This means that these orbits rotate around the origin in the same orientation as the
circular orbit, which has also been the case in a rotationally symmetric magnetic field
(see Proposition 3.1.15). Furthermore, we can transfer the important properties of points
x ∈ P with critical momentumM(x) =M+ to the non-rotationally symmetric case.

Lemma 3.3.6 Let x ∈ ∂U+
E . Then the following two conditions hold:

(i) |qt(x)| → R+ for t→∞ .

(ii) 〈qt(x), Jvt(x)〉 → −R+√2E for t→∞ .
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Proof (i) For x ∈ ∂U+
E there is an increasing sequence of times tn ≥ 0 such that

|qtn(x)| → R+ converges for n→∞. If we assume

t∞ := sup
n∈N

tn <∞ ,

then the minimum R+ of the radius |qt(x)| is attained at time t∞ ∈ R, which implies
the equation 〈qt∞(x), vt∞(x)〉 = 0. This yields that either

〈qt∞(x), Jvt∞(x)〉 = −R+√2E

or
〈qt∞(x), Jvt∞(x)〉 = R+√2E

holds. The first option is not possible because the trajectory would coincide with the
circular orbit of radius R+. The second option is also not possible since the mapping

R× UE → R, (t, x) 7→ 〈qt(x), Jvt(x)〉

is continuous and, by Lemma 3.3.5, we have 〈qt(x), Jvt(x)〉 < 0 for all x ∈ U+
E and t ≥ 0.

Hence, t∞ <∞ is not possible, i.e. t∞ =∞. Proposition 3.1.10 guarantees that

〈qt(x), vt(x)〉 < 0

holds for all t ≥ 0, which means that |qt(x)|2 is strictly decreasing, and therefore we
have |qt(x)| → R+ for t→∞.

(ii) We use that the conditions |qt(x)| → R+ for t→∞ and 〈qt(x), vt(x)〉 < 0 for t ≥ 0
together imply the convergence 〈qt(x), vt(x)〉 → 0 for t→∞, as previously in the proof
of Proposition 3.1.11. This yields

〈qt(x), Jvt(x)〉 → ±R+√2E (t→∞) ,

where the positive value is not possible, as in the proof of the first part. This shows the
convergence

〈qt(x), Jvt(x)〉 → −R+√2E (t→∞) . �

These two results allow us to proceed similarly to the rotationally symmetric case. For
a point x ∈ U+

E we define the rotated angle

θ(t, x) :=
t∫

0

〈qs(x), Jvs(x)〉
|qs(x)|2 ds
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and for x ∈ U+
E we consider the exit angle

θe(x) := θ(T e(x), x) ,

where T e(x) again denotes the exit time of x with respect to the supporting disc D.
Lemma 3.3.5 and Lemma 3.3.6 immediately yield the next result.

Corollary 3.3.7 For fixed x ∈ U+
E the function θ(t, x) is strictly decreasing with respect

to the time t and satisfies θ(t, x)→ −∞ as t→∞ for x ∈ ∂U+
E . Furthermore, we have

θe(x)→ −∞ (x→ ∂U+
E ) .

This result will be the main tool for the analysis of symbolic dynamics. As stated at the
beginning, it applies for the case that B(q) ≥ 0 holds for |q| ≥ R+. The other case is
treated in the following remark.

Remark 3.3.8 The previous calculations work in a similar way for magnetic fields with
B(q) ≤ 0 for |q| ≥ R+. In this case we define U+

E ⊆ ÛE to be the connected component
of UπE and, given an initial value x ∈ U+

E , we obtain that the inequality

〈qt(x), Jvt(x)〉 > 0

holds for all t ≥ 0. For x ∈ ∂U+
E we still have |qt(x)| → R+ as t → ∞, but now the

convergence
〈qt(x), Jvt(x)〉 → +R+√2E

applies for t→∞. For the angle θ and the exit angle θe defined as above this yields

θe(x)→ +∞ (x→ ∂U+
E ) . �

With this we finish the study of how the motion behaves inside one component and we
now turn to the situation of a magnetic field with multiple components of this type.

3.3.2 Symbolic dynamics for non-rotationally symmetric components

We consider a magnetic field

B :=
n∑
k=1

Bk ,

that satisfies the following conditions:
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(i) Each component Bk has compact support

suppBk ⊆ Dk := {q ∈ R2 | |q − qk| ≤ Rk}

for some qk ∈ R2 and Rk > 0.

(ii) The supporting discs Dk are disjoint.

(iii) The intersection of the circular energies

C :=
n⋂
k=1
C(Bk)

is non-empty.

Note that the circular energies C(Bk) as given in Definition 3.3.1 are now obtained with
respect to the centres qk, i.e. these points now take the part of the origin regarding the
results in the previous section. For an energy E ∈ C we denote the sign of Bk along the
circular orbit of radius R+

k (E) by bk = bk(E). In the following we fix some energy E ∈ C
and omit the reference to E where appropriate.

Due to the multiple components of the support, for k ∈ {1, . . . , n} we consider the
set Uk,E of points entering the supporting disc Dk and denote their union by UE . In
particular, instead of the angle α : UE → [0, π] we now have

αk : Uk,E → [0, π], αk(q, v) := arccos 〈J(q − qk), v〉
Rk
√

2E
.

As in the rotationally symmetric case, there are some obstructions on the configuration
of the supports and on where to place the Poincaré section. Due to the lack of the
additional integral we have less control about the trajectories, so we have to make some
adjustments to the previous definition. For k ∈ {1, . . . , n} we define the critical entrance
direction

α+
k = α+

k (E) := max
x∈U+

E

αk(x)

if bk > 0, and
α+
k = α+

k (E) := min
x∈U+

E

αk(x)

if bk < 0. As previously, for fixed k 6= l there are four different sign combinations of
(bk, bl). If both signs are positive, i.e. (bk, bl) = (+1,+1), we consider the tangent line
to ∂Dk and ∂Dl passing both supporting discs Dk and Dl tangentially to the left. In
addition, we consider the left tangent line to the circular orbit of Bk which hits ∂Dl
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with direction α+
l ; see Figure 3.13(a). By Ak,l = Ak,l(E) and Bl,k = Bl,k(E) we again

denote the closed sets of points on ∂Dk and ∂Dl between these two lines as shown in
Figure 3.13(b).

(a) The defining lines (b) The sets Ak,l and Bl,k

Figure 3.13: Transition from Dk to Dl for (bk, bl) = (+1,+1)

If both signs are negative, we basically consider the same lines as in the previous case,
but with the right tangent replacing the left tangent.

If (bk, bl) = (+1,−1), we consider the left tangent to ∂Dk which hits ∂Dl with direction
α+
l as well as the line which is tangent to the circular orbit of radius R+

k in Dk on the
left hand side, and tangent to ∂Dl on the right hand side. If (bk, bl) = (−1,+1), we
again consider the lines as in the case (+1,−1) with left and right tangent interchanged.

With these sets Ak,l and Bk,l we are able to define the constraints on the configuration
of the supports which the magnetic field has to satisfy.

Definition 3.3.9 Let B =
∑n
k=1Bk be a magnetic field on R2 and assume that the

components Bk have pairwise disjoint supporting discs Dk = {q ∈ R2 | |q − qk| ≤ Rk}.
We say that B is in suitable position with respect to the energy E ∈ C if the two placement
conditions

(i) conv
(
Ak,l ∪Bl,k

)
∩Dm = ∅ for distinct k, l,m ∈ {1, . . . , n} and

(ii) ∂Dk

∖( ⋃
l 6=k

Ak,l ∪
⋃
l 6=k

Bk,l
)
6= ∅ for all k ∈ {1, . . . , n}

are satisfied. �
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Now, the following constructions work analogously to the rotationally symmetric case:
The second condition yields the existence of some points

q∗k = q∗k(E) ∈ ∂Dk

∖( ⋃
l 6=k

Ak,l ∪
⋃
l 6=k

Bk,l
)

(k = 1, . . . , n) ,

which we consider fixed in the following. With these we define the Poincaré sections

Pk = Pk,E :=
{

(q, v) ∈ PE | q = qk + λ(q∗k − qk) for some λ ∈ (0, 1), bk〈q − qk, Jv〉 < 0
}

and the Poincaré map

p = pE : PE :=
n⋃
k=1

Pk,E −→ PE ∪ {∞} ,

which admits the p-invariant set

ΛE :=
{
x ∈ PE | pi(x) ∈ PE for all i ∈ Z

}
.

By construction, the canonical coding map h = hE : ΛE → Σn = {1, . . . , n}Z, which is
given by h(x) = (si)i∈Z such that pi(x) ∈ Psi,E holds for all i ∈ Z, satisfies the identity

h ◦ p = σ ◦ h

with the left shift map σ : Σn → Σn. Finally, we have the maps u : UE → PE ∪{∞} and
w : PE → UE ∪ PE ∪ {∞}, which describe the first intersections of a trajectory with the
corresponding sets.

These definitions now allow us to formulate the main result for magnetic fields with
non-rotationally symmetric components.

Theorem 3.3.10 Assume the magnetic field B is in suitable position with respect to the
energy E ∈ C. Then there is a compact pE-invariant subset Λ′E ⊆ ΛE such that the coding
map hE : Λ′E → Σn is continuous and surjective. In other words, pE |Λ′E : Λ′E → Λ′E is
semi-conjugated to the full shift σ : Σn → Σn.

Again, this yields the following corollary for the topological entropy of the Poincaré map.

Corollary 3.3.11 The Poincaré map pE |Λ′E : Λ′E → Λ′E has positive topological entropy

htop(pE |Λ′E ) ≥ logn .

In particular, this discrete dynamical system is chaotic.
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The proof of Theorem 3.3.10 parallels the one of the corresponding result in the rota-
tionally symmetric case given in Theorem 3.2.3: We can adopt Proposition 3.2.7 and its
proof, which assures that every half-infinite sequence can be realized. This allows us to
copy the proof of Theorem 3.2.3, where it is shown that every bi-infinite sequence can
be realized using initial values that are provided by increasing half-infinite parts of this
sequence, and applying a compactness argument. The only result we have to adjust to
the present situation is the aiming mechanism specified in Lemma 3.2.5, which describes
how to get from one support to the next with the prescribed number of intersections
of the Poincaré section. This lemma has to be replaced by the following one, which is
formulated for the case (bk, bl) = (+1,+1). The other cases work similarly, as it was
the case for rotationally symmetric magnetic fields. To avoid confusion by only pointing
out which parts of the proof of Lemma 3.2.5 change and which do not, we give the full
modified proof instead.

Lemma 3.3.12 Assume the magnetic field B is in suitable position with respect to the
circular energy E ∈ C. Let k 6= l ∈ {1, . . . , n} be different indices of supports such that
(bk, bl) = (+1,+1) and let j ∈ N denote the desired number of rotations. Furthermore,
let γ : [a, b]→ Uk,E be a curve with

(a) γ(a) ∈ U0
k,E,

(b) γ([a, b)) ⊆ U+
k,E,

(c) γ(b) ∈ ∂U+
k,E and

(d) q∗k /∈ im γ.

Then there exists a subinterval [ã, b̃] ⊆ [a, b] such that for all points x ∈ im γ|[ã,b̃] in the
image of γ|[ã,b̃] we have

(i) pi(u(x)) ∈ Pk,E for i ∈ {0, . . . , j − 1},

(ii) w(pj−1(u(x))) ∈ Ul,E,

and the curve γ1 := (w ◦ pj−1 ◦ u ◦ γ)
∣∣
[ã,b̃] : [ã, b̃]→ Ul,E satisfies

(a′) γ1(ã) ∈ U0
l,E,

(b′) γ1([ã, b̃)) ⊆ U+
l,E,

(c′) γ1(b̃) ∈ ∂U+
l,E and

(d′) q∗l /∈ im γ1.
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Proof Let qa, qb ∈ ∂Dk denote the two points of ∂Ak,l as previously shown in Fig-
ure 3.10. Since γ(s)→ ∂U+

k = ∂U+
k,E we have

θek(γ(s))→ −∞ (s→ b)

by Corollary 3.3.7. Hence, there are parameters sa < sb ∈ [a, b] such that

qT
e(γ(sa))(γ(sa)) = qa ,

i.e. the trajectory of γ(sa) exits Dk through qa;

qT
e(γ(sb))(γ(sb)) = qb ,

i.e. the trajectory of γ(sb) exits Dk through qb; and

pi(u(γ(s))) ∈ Pk (i ∈ {0, . . . , j − 1}, s ∈ [sa, sb])

as well as
w(pj−1(u(γ(s)))) /∈ Pk (s ∈ [sa, sb]) ,

i.e. the trajectories hit Pk exactly j times before leaving the support. The trajectory
of γ(sa) passes Dl on the left hand side. Since the curvature of any solution curve is
negative while in the outer annulus{

q ∈ R2 | R+
k ≤ |q − qk| ≤ Rk

}
,

the trajectory of γ(sb) moves towards Dl on the right hand side of the line we used to
define Ak,l and Bl,k – the one being tangent to the circle of radius R+

k and intersecting
Dl with angle α+

l . Hence, it intersects ∂Dl with an angle β > α+
l . If the trajectory does

not intersect Dl, then it passes somewhere to the right and there is a parameter s̃b < sb

such that the trajectory of γ(s̃b) passes tangentially to the right of Dl, i.e. intersects
∂Dl with angle β = π. For simplicity we then denote this parameter by sb. Since the
trajectory of γ(sa) passes somewhere to the left of Dl, there is a parameter ã ∈ [sa, sb]
such that the trajectory of γ(ã) passes tangentially to the left of ∂Dl. Furthermore, we
choose ã such that

w ◦ pj−1 ◦ u ◦ γ(s) ∈ Ul (s ∈ [ã, sb])

holds, i.e. for s ∈ [ã, sb] the trajectory of γ(s) intersects ∂Dl. This means we have a
curve γ̃ : [ã, sb]→ Ul given by

γ̃(s) = (w ◦ pj ◦ u ◦ γ)(s) ,
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such that
αl(γ̃(ã)) = 0

and
αl(γ̃(sb)) = β > α+

l = max
x∈U+

l

αl(x)

hold. This implies γ̃(ã) ∈ U+
l as well as γ̃(sb) /∈ U+

l and hence, there exists a minimal
parameter b̃ ∈ [ã, sb] with

γ̃(b̃) ∈ ∂U+
l .

Therefore, the curve
γ1 := γ̃|[ã,b̃] : [ã, b̃]→ Ul

satisfies the stated properties. �

This describes how the aiming mechanism works for the signature (bk, bl) = (+1,+1).
The other cases rely on the same procedure with only slight modifications regarding the
starting and the resulting curves. This parallels the rotationally symmetric case and
works just as described in Remark 3.2.6. Having obtained the aiming mechanism now
allows us to proceed as in the previous section, and copying the proof of Theorem 3.2.3
then proves Theorem 3.3.10. In particular, this shows that the semi-conjugacy to the
full shift does not depend on the rotational symmetry of the components and, moreover,
not on the existence of an additional integral of motion.

Let us point out that the magnetic fields considered in this chapter have compact support
and therefore all the results from Chapter 2 apply. This demonstrates a fundamental
difference between scattering and bounded states: For the scattering states the motion
is conjugated to the elementary free flow, while for the bounded states we even exhibit
chaotic behaviour.
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List of Symbols

B magnetic field p. 10
B̂ profile function of B p. 75
P := TRd phase space p. 10
PE := E−1(E) energy surface of the kinetic energy p. 11
P0 := P \ P0 phase space without fixed points p. 59
ϕt(x) = (qt(x), vt(x)) magnetic flow on P p. 10
ϕt

∗(x) magnetic flow on T ∗Rd p. 66
ϕt

0(x) free flow on P p. 19
ϕt

0,∗(x) free flow on T ∗Rd p. 67
b, b± set of bounded states p. 21
s, s± set of scattering states p. 21
s±

∗ set of scattering states on T ∗Rd p. 67
q±(x) asymptotic positions pp. 31, 57
v±(x) asymptotic velocities pp. 28, 55
Ω± := (q±, v±) (velocity) wave transformations on P pp. 32, 59
Ω±

∗ (momentum) wave transformations on T ∗Rd p. 67
E kinetic energy p. 11
M magnetic momentum p. 78
M+ critical magnetic momentum p. 91
α+ critical entrance direction pp. 96, 117
D supporting disc of B pp. 88, 110
R+ = R+(E) radius of largest circular orbit pp. 88, 110
Rvir(E) virial radius p. 22
UE set of points with energy E entering the support pp. 90, 111
θe(x) exit angle pp. 95, 115
T e(x) exit time with respect to D p. 95
Ẽ◦, E◦ energy thresholds pp. 24, 92
C set of circular energies pp. 110, 117
PE Poincaré section pp. 102, 119
p = pE Poincaré map pp. 102, 119
ΣN , σ shift space in N symbols, shift map p. 17
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