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Abstract

We study quantum phase transitions and the critical behavior of topologically-ordered
phases by considering various string-net models perturbed by local operators defined on
the two-dimensional honeycomb lattice. More precisely, by means of high-order series
expansions in combination with exact diagonalization, we analyze the phase transitions
induced by the analogue of a magnetic field for the topologically-ordered phases de-
scribed by doubled semion, Fibonacci, and Ising theories. We develop a quasi-particle
picture of the elementary anyonic excitations for all these models. The effective models
of interacting quasi-particles allow us to determine the respective phase diagrams and
to analyze spectral properties of the low-energy physics. Our analysis of the low-energy
spectrum leads to the first evidence of continuous quantum phase transitions out of
topologically-ordered phases harboring non-Abelian anyons.

Wir untersuchen Phasenübergänge und das kritische Verhalten topologisch geordneter
Phasen unter Einfluss von lokalen Störungen anhand verschiedener String-Net-Modelle,
die auf dem zweidimensionalen Bienenwabengitter definiert sind. Mittels verschiedener
Hochordnungsreihenentwicklungen und exakter Diagonalisierung werden Phasenüber-
gänge zwischen verschiedenen topologisch geordneten und topologisch trivialen Phasen
untersucht. Die hier betrachteten topologisch geordneten Phasen werden jeweils durch
achirale Semion–, Fibonacci– und Ising–Feldtheorien beschrieben. Zur Betrachtung der
gestörten String-Net-Modelle, entwickeln wir eine Quasiteilchenbeschreibung der jeweili-
gen elementaren anyonischen Anregungen. Diese effektiven Modelle wechselwirkender
Quasiteilchen ermöglichen eine Analyse des Niederenergiespektrums und damit auch
eine Bestimmung der kritischen Eigenschaften von auftretenden Phasenübergängen. Un-
sere Untersuchung liefert erste Anzeichen für kontinuierliche Phasenübergänge zwischen
topologisch geordneten Phasen, deren elementare Anregungen fraktionale, nicht abelsche
Statistik aufweisen, und topologisch trivialen Phasen.

Nous étudions les transitions de phases et le comportement critique de systèmes topo-
logiquement ordonnés en considérant différents modèles de string-nets en présence d’une
perturbation locale. Plus précisément, en utilisant à la fois des théories de perturbations
à des ordres élevés ainsi que des diagonalisations exactes, nous analysons les transitions
induites par l’équivalent d’un champ magnétique pour des théories d’anyons de type
Fibonacci, Ising, et semionique et développons une image de type quasiparticules pour
les excitations élementaires. Les modèles effectifs de quasiparticules anyoniques en in-
teraction nous permettent de déterminer les diagrammes de phase pour chacune de ces
théories et d’analyser les propriétés spectrales de basses énergies. Ces études nous con-
duisent à mettre en évidence de transitions de phase quantiques continues dans des
systèmes topologiquement ordonnés en présence d’anyons non-Abéliens.
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Chapter 1
Introduction

The secret of getting ahead is getting started.

- Mark Twain -

The main goal of modern physics is to describe and understand the various states of

matter found in nature, ranging from large scales as the evolution of the universe in

cosmology down to the subatomic scales of the constituting particles of matter and light

in high-energy physics. In condensed-matter physics, the classification of the various

phases emerging due to strong correlation effects is at the heart of current investigations.

One can characterize the different phases of matter by considering an order parameter.

Any order parameter is linked to a symmetry, which is present for a given phase. Of

particular importance are local order parameters as these can be related e.g. to (broken)

spatial symmetries, which are of relevance in the study of condensed-matter systems,

or to local-gauge symmetries essential for electrodynamics. A well-known example for a

local order parameter is the magnetization of a ferromagnet.

A deeper understanding of the characteristics of a phase arises when transitions between

different phases are studied. In the case of a continuous transition between two phases

described by a local order parameter, the behavior of the system at the transition point

does not depend on its local details but only on the symmetries characterizing the two

phases. The quantities showing this universal scaling behavior are accessible either by

experiments or by theoretical descriptions and thus allow to determine the symmetries

involved for a given system. The corresponding theoretical framework of spontaneous

symmetry breaking was developed by Landau in the 1930’s [1, 2]. It has been successfully

applied to many fields of physics since then. In our discussion, we shall restrict ourselves

to quantum phase transitions, which are not governed by thermal fluctuations but purely

by quantum fluctuations. Therefore, we consider only the case of zero temperature in

the following.

1
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In the 1980’s, the discovery of the fractional quantum Hall effect [3, 4] in the two-

dimensional electron gas yielded the first example of a system, which is not described by

local order parameters, since different phases are not distinguishable by a local symme-

try. Soon, possible connections to the phenomenology of high-temperature superconduc-

tors were pointed out [5, 6]. These findings triggered the emergence of a classification

scheme invoking non-local properties and thus going beyond the Landau paradigm. This

classification is the so-called topological order [7, 8].

One can characterize topological order in several ways. A formal description of topo-

logically-ordered systems is given by topological quantum field theory [9–11]. However,

the lack of a local order parameter can also be seen as a defining property for topological

order [12–14]. According to the latter definition, we refer to a system in the thermo-

dynamic limit with a spectral gap above the ground state(s) {|gsα〉} as topologically

ordered if we have for any operator O with bounded support

〈gsα|O
∣∣gsβ

〉
= c δα,β, (1.1)

where the constant c does not depend on the particular state |gsα〉. Thus, there is no

local operator acting non-trivially within the ground-state manifold. However, topo-

logically ordered phases can still be characterized by non-local order parameters. The

corresponding quantities can, for example, be the expectation value of Wilson-loop op-

erators on the scales of the system size [15] or properties of the topological field theory

as the modular S-matrix [16].

Topological order manifests itself in different ways. One hallmark is that the ground-

state degeneracy of a system depends on the topology, in which it is embedded [8]. Also,

measures of the long-range entanglement such as the so-called topological entanglement

entropy can witness topological order [17, 18]. The framework of topological symmetry

breaking [19] has been developed in order to allow for a description of continuous phase

transitions in analogy to spontaneous symmetry breaking. Let us note that although

topological order allows to classify phases without local order parameters and topological

symmetry breaking explains how some phase transitions between different topologically

ordered phases may occur, this framework does not provide an answer to the question

whether the universal properties emerging in spontaneous symmetry breaking carry over

to topological phase transitions or not.

The interest in topologically ordered systems even further increased after it has been

realized that the excitations have exotic exchange statistics in two dimensions [20, 21],

i.e. they do not behave as bosons or fermions. It was Wilczek, who named excitations

with exotic exchange statistics as anyons [22]. This fractional statistics was later on

found to be intimately related to topological order [23]. There are two types of anyons.
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When two Abelian anyons are exchanged, the wave function acquires a phase factor

similar to the case of bosons and fermions, whereas the exchange of non-Abelian anyons

represents a non-trivial unitary transformation in the corresponding Hilbert space. The

latter implies in particular that the excited states are not uniquely specified by the po-

sition of the quasi-particles. These exotic particles are expected to exist in fractional

quantum Hall states, e.g. the so-called Fibonacci anyons appear in the theoretical de-

scription of the fractional quantum Hall state for filling fraction ν = 12/5 [24], and there

is even recent experimental evidence for the so-called Ising anyons to be the elementary

excitations of the corresponding state at filling fraction ν = 5/2 [25–27].

Topological order switched from the stage of a purely academic interest to the focus of

eventual application after it was realized that the absence of a local order parameter is

equivalent to the fact that local perturbations cannot induce decoherence in topologically

ordered systems [28, 29]. Thus topologically ordered systems are a suitable platform for

decoherence-free quantum computation. The degenerate ground-state manifold can be

used to store a quantum state, whereas the non-Abelian exchange statistics allows for

the implementation of different operations [30–33]. The fact that non-Abelian anyons

can be used to implement quantum computation underlines their more complex struc-

ture compared to Abelian anyons, which lack this feature. In the context of quantum

information, the investigation of phase transitions out of a topologically ordered phase

is, in some sense, equivalent to study the robustness of a topological quantum computer.

Let us mention that there are related phases of matter that attracted interest in recent

years: the so-called symmetry-protected topological order shares a lot of features with

the topological order we discussed above. In particular, topological invariants character-

ize both families of states. Prominent examples of the symmetry-protected topologically

ordered states are the so-called topological insulators [34, 35]. The most important dis-

tinction between these two classes of phases is the presence of symmetries, which allow to

classify and understand the various symmetry-protected topological-orders [36–40]. In

contrast to topological ordered phases, symmetry protected topologically ordered states

display only short-range entanglement [41]. Nevertheless, these phases harbor anyons as

boundary modes (e.g. the so-called Majorana mode in one-dimensional wires [42, 43]),

which yield promising candidates for the experimental implementation of topological

quantum computation [44, 45].

The models available to study topological-ordered phases can be divided into two fam-

ilies. The first consists of models, in which the topological excitations emerge from

more conventional microscopic (e.g. spin) degrees of freedom. To this family belong the

Heisenberg models and extensions on frustrated lattices [46], quantum loop gases [47],

and quantum dimer models [48–50]. However, the latter models do mostly support only
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Abelian anyons as the emergence of non-Abelian statistics requires in most cases either

non-local interactions between the microscopic degrees of freedom [51] or a modification

of properties of the Hilbert space [52].1

These possibilities are already built in for the second family of models as their micro-

scopic degrees of freedom are already given in terms of anyons. The most prominent

representants of this family are the lattice-gauge models [54, 55], including the celebrated

toric code [28]. Also, the string-net picture [56–59] provides models realizing topological

order, which will be the main focus of this thesis. These models are likely not realized

in a condensed-matter system due to their fine-tuned multi-spin interactions, but serve

as playground to investigate fundamental properties of topologically ordered phases.

Especially in one spatial dimension, the investigation of the latter type of models also for

those harboring non-Abelian anyons is very successful, as one can often either identify

integrable models [60–63] or one is able to perform accurate numerical studies to find the

corresponding critical theory [64–68] for phase transitions driven by anyon interactions.

Also the effect of local perturbations on non-Abelian anyons has been considered [69, 70].

However, when it comes to the investigation of phase transitions in two dimensions,

considerably less is known. This is on the one hand due to the lack of analytical and

numerical tools and on the other hand due to the existence of only a few exactly solvable

models, which serve as a suitable starting point. Nevertheless, there are numerical works

approaching the limit of two dimensions by considering quasi-one dimensional ladder

systems [67, 71, 72].

One of the exactly solvable models is the toric code [28], the simplest example of a lattice

gauge theory. Its general version is defined for any discrete group, its simplest version,

the Z2 toric code, serves as standard model for topological order in two dimensions just

as the Ising model for statistical physics. The excitations in this model can be described

in terms of so-called semions, which have Abelian exchange statistics. Additionally to

its theoretical importance, there is a proof of principle realization of this model in arrays

of Josephson junctions [73]. If perturbed by a magnetic field, this model shows phase

transitions, which can be either continuous [74–80] or discontinuous [81, 82], and it also

displays multi-critical behavior. Furthermore, the limits of applicability in the context

of quantum information have been investigated [83, 84]. The same richness of critical

behavior has also been found for the extension to more general Abelian models [85, 86].

The non-Abelian versions of the toric code have also been described [28, 87] and also the

phase diagram for some non-Abelian versions in the context of topological symmetry

1A particular exception is Kitaev’s honeycomb model [53].
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breaking [88] has been investigated [16]. However, a detailed study of the phase transi-

tions themselves is still ongoing work, which is also due to the fact that the complexity

of non-Abelian excitations results in a much larger effort within the analysis.

Another exactly solvable model is Kitaev’s honeycomb model [53]. It consists of (aniso-

tropic) two-spin terms and is either described by the Abelian Z2 toric code or by non-

Abelian Ising anyons at low energy in the presence of a time-reversal symmetry breaking

magnetic field. The effects of the magnetic field have been investigated [53, 89–92] and

evidence for a continuous phase transition between the (chiral) non-Abelian and the

paramagnetic phase has been found [93].

The third and most general class of models are the string-net models introduced by

Levin and Wen [56]. As the toric code can be defined for any discrete group, string-net

models can be defined for any tensor category [11], which includes not only the usual

groups but also the so-called quantum groups [94, 95]. Thus, there are connections to

lattice gauge theory models [96].2

The possibility to include also quantum groups allows to study the simplest possible

topological phases with non-Abelian anyons. These are the phases, which harbor the

already mentioned Fibonacci and Ising anyons. These phases are simpler than the non-

Abelian lattice gauge theories in the sense that the Hilbert space of the microscopic

degrees of freedom for Fibonacci (Ising) anyons is two- (three-) dimensional, whereas

non-Abelian lattice gauge theories require at least a local dimension of six (the order of

the smallest non-Abelian group D3).

The string-net models have been shown to realize doubled Chern-Simon field theories

[98, 99]. Thus these models realize achiral phases and are not directly related to any ex-

perimental setup, but they allow to study also non-Abelian excitations. One-dimensional

versions [69, 70] show continuous phase transitions to chiral topological phases in the

presence of local perturbations. Phase transitions between different topologically or-

dered phases realized in the string-net picture have been investigated for special cases

[97, 100, 101] by means of duality mappings to statistical models. However, quantita-

tive investigations of the critical properties for a continuous phase transition between

topologically ordered phases harboring non-Abelian anyons, which are the ones enabling

topological quantum computation, and topologically-trivial phases, which represent the

overwhelming majority of known phases, are still missing for two-dimensional systems.

One goal of this thesis is to bridge this gap by providing and analyzing examples for

such transitions. Therefore, we shall discuss the most important string-net models,

2Note that these string-net and toric code models defined for the same group coincide in their ground-
state properties. However, the properties of the excitations differ. These differences may be removed by
modifying the string-net model as in Ref. [97].
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namely the ones for semions, Fibonacci, and Ising anyons and analyze the effect of a

local perturbation in two spatial dimensions.

To this aim, we have to develop a description for the (non-Abelian) anyonic excitations

in the string-net model, which is also valid in the presence of perturbations. This quasi-

particle picture for non-Abelian anyons is the second main focus of this thesis.

In order to obtain quantitative results to study critical properties, we use computer-based

analytical calculations. The implementation of these provides a tool to investigate gen-

eral properties of topologically ordered phases (with Abelian and non-Abelian anyonic

excitations).

However, there are a lot of details to be discussed about the way the above steps are

achieved in order to contribute to a deeper understanding of the fast-developing field of

quantum criticality in the context of topological order. Therefore, choices have to be

made to maintain the present manuscript in a concise form.

Thus, before discussing the structure of the manuscript, let us mention what is not

included in it. A substantial part of the preparation of this thesis was devoted to the

investigation of critical properties of Abelian versions of the toric code, which, as a

prelude, served as a playground to develop most of the essential ideas for models, which

are not as complex as those harboring non-Abelian excitations. As the main focus is on

phases with non-Abelian anyons, we redirect the interested reader to Ref. [86], where

our findings are detailed.

Another important part of my PhD work was the study of the perturbed string-net model

for Fibonacci and Ising anyons defined on a two-leg ladder, where we were able to obtain

good agreement between our results for the phase diagram and critical exponents and

the critical theories identified in Refs. [69, 70]. As we focus within this manuscript on the

critical properties of two-dimensional systems, we shall not discuss these investigations

in the following.

Additionally, we shall focus on the specific theories for semions, Fibonacci, and Ising

anyons, although many others [54, 55, 65, 68, 102] can be discussed.

The remainder of this thesis aims to analyze the critical properties of phase transi-

tions out of topologically ordered phases driven by the condensation of (non-) Abelian

anyons as well as the necessary ingredients to yield a quantitative description for two-

dimensional systems. As a consequence, this manuscript is divided into two parts.

In the first part, we discuss the microscopic model under investigation as well as our

results for the critical properties. In Chapter 2, we give therefore a brief introduction to
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the properties of a unitary modular tensor category in order to provide the vocabulary

necessary to understand the details of the string-net models.

The string-net model investigated in this thesis is presented in Chapter 3. The main

focus is the description of the two-dimensional model introduced by Levin and Wen [56],

which includes the non-local properties of the excitations similar to the construction

of Ref. [103]. We detail this construction for the Abelian case of semions as well as

for the non-Abelian cases of Fibonacci and Ising anyons. We also introduce the local

perturbation, which is the analog of a magnetic field in the case of toric code models,

and discuss its effects for the different topological phases.

The theoretical framework describing continuous phase transitions out of topologically

ordered phases is discussed in Chapter 4. We detail the possible, so-called condensate

induced phase transitions for the models under investigation.

The actual results are presented in Chapter 5. We begin with the study of the per-

turbed string-net model for semions. The discussion of the Abelian model by consider-

ing the low-energy spectrum allows to re-discover the known results for the dual spin-1
2

transverse-field Ising model defined on the triangular lattice. Comparisons with its

known properties allow us to estimate the accuracy of our results. Then, we discuss the

phase diagram and the critical properties of the perturbed string-net model for Fibonacci

anyons along the same lines as for the semions. We find first evidence of a second-order

phase transitions out of a topologically ordered phase harboring non-Abelian anyons in

two dimensions [104]. As a second example, we consider the perturbed string-net model

for Ising anyons. As in the case of the Fibonacci anyons, we find phase transitions driven

by condensation of the non-Abelian excitations towards a topologically trivial phase.

Thus, in this first part, we discuss the critical behavior for the perturbed topological

phases. In the second part, we discuss in large detail how we obtained the low-energy

spectrum. The general ideas of the different ways to derive effective models by perturba-

tive means is presented in Chapter 6. We also detail how to combine these different ways,

namely perturbative continuous unitary transformations [105], degenerate perturbation

theory [106], and partition techniques [107], in order to obtain results directly valid in

the thermodynamic limit. Additionally, our implementation to obtain non-perturbative

results on finite-size systems by exact diagonalization is discussed.

The details of the implementations of the perturbative techniques for the different mod-

els are discussed in Chapter 7. The focus is put on particularities of the study of models

featuring essential non-local properties as the fractional exchange statistics. Addition-

ally, we discuss also implementation features for operators with large support as the

multi-spin terms, which arise in the string-net Hamiltonian.
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The second part is concluded in Chapter 8 by the discussion of the tools, which allow

to perform a perturbative treatment of considered models up to high order and thus

to obtain also quantitative results. The linked-cluster expansion, which we generalize

here to topologically ordered phases, allows to obtain the quantities of interest in the

thermodynamic limit by considering contributions from finite-size systems.

A brief summary of the obtained results is given together with some perspectives on

future studies in the context of universal behavior of topologically ordered phases in

Chapter 9.



Part I

Phase transitions in perturbed

string-net models

9





Chapter 2
Anyons

We live in a rainbow of chaos.

- Paul Cezanne -

The aim of this chapter is to introduce the necessary ingredients to describe anyons.

Therefore, we discuss the impact of the exotic braiding statistics and detail the essential

aspects of the algebraic theory for anyons. This chapter is completed by a list of data

for the anyonic theories, which are of major interest for this thesis.

2.1 Quantum mechanics in two dimensions

As mentioned in the previous chapter, the exotic exchange statistics triggers the general

interest in anyons for the purpose of topological quantum computing. To illustrate this,

let us consider the quantum mechanics of identical particles. Consider two identical

particles in Figure 2.1. One particle is moved counter-clockwise around the other along

the path γ. This process corresponds to a double-exchange of the two particles. In

dimensions larger than two, the path γ can be contracted to a point and as the action

of the exchange only depends on the homotopy-class of the path, the double exchange

of two particles acts as the identity. This already tells us that the phase of the wave

function, which is the consequence of a single exchange of the two particles, can only be

±1. The positive sign appears, if particles are bosons, the negative one for fermions. In

two dimensions, the path γ is not contractible to a point, thus the above argumentation

does not hold. In this case, it is instructive to consider a (2 + 1)-dimensional world-line

picture, where the third dimension represents time. Following the world lines during the

encircling process, we see that these become braided. These braids cannot be removed

by smooth variations of the world lines with fixed end-points and thus configurations

of braided or unbraided world lines are in general not equivalent. As a consequence,

if any two configurations represent linearly dependent states, the single exchange may

11
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γ

=
BA A B Time

A B

6=

A B

Figure 2.1: Braiding of two particles. The double-exchange of two particles is equiv-
alent to move one particle around the other one. On the left-hand side, we see the
encircling process from the top. On the right-hand side, we trace the world lines of the
two particles during the encircling as seen from the front. The additional dimension
represents the time. In two spatial dimensions, the encircling and thus the double ex-
change is not equivalent to the identity, as the world lines become braided during the
process.

yield any phase eiθ (whence the name “any-phase-on”=anyon) and not only θ = 0, π as

in three dimensions. If both configurations represent linearly independent states, then

the exchange can even yield unitary transformations in the subspace spanned by these

configurations. In the former case, the anyons are called Abelian as a different order of

exchanges yields the same exchange-phase in the end. In the latter, the anyons are called

non-Abelian as the successive application of unitary transformations does not commute

in general.

The concept of these non-trivial exchanges for N anyons is formulated by the braid group

BN [108]. Defining the generators {σi}i=1,..,N , where σi denotes the counter-clockwise

exchange of the particles i and i + 1, the defining properties of the braid group, also

depicted in Figure 2.2, read

=

i+ 1 j + 1 i i+ 1 j + 1i j j

=

i i+ 2i+ 1 i+ 2i+ 1i

Figure 2.2: Pictorial presentation of the defining properties of the braid group in terms
of braiding world lines. The left part represents Eq. (2.1), which states that the order
of braidings of distinct world lines does not matter. The right picture represents the
condition (2.2) stating that different exchanges of adjacent world lines are independent
of the order as long as the world lines do not become braided with each other.

σiσj =σjσi for |i− j| ≥ 2 (2.1)
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σiσi+1σi =σi+1σiσi+1 for 1 ≤ i ≤ N − 1. (2.2)

States transforming according to one-dimensional representations of the braid group

obey Abelian anyonic statistics, whereas non-Abelian anyons transform according to

higher-dimensional irreducible representations of BN .

2.2 Algebraic theory of anyons

However, the general framework of anyons requires more theoretical input. The mathe-

matical framework for an algebraic theory of anyons has been discussed, e.g., in different

contexts such as conformal field theory [109], topological quantum field theory and mod-

ular tensor categories [11, 110], and topological quantum computation [53]. Here, we

consider unitary modular tensor categories [11, 56, 110]. In the following, we list the

main ingredients of an anyonic theory needed within this thesis. More details can be

found e.g. references mentioned above.

Each anyonic theory requires a label set F with a finite number of (N + 1) elements.

These labels denote different quantum “numbers”, to which we refer also as particle

types. The label set can be e.g. the set of group elements of a finite group [28] or

irreducible representations of a (quantum) group [94]. A label set has to contain a

distinguished or trivial element denoted by 1 in the following.

For completeness, let us mention that in general, one has the duality map:

ˆ: F → F , a 7→ â with 1̂ = 1. (2.3)

Labels with â = a are called self-dual. As we are within this thesis mostly concerned

with theories, which only contain self-dual labels, we assume self-duality from now on if

not mentioned otherwise.

2.2.1 Fusion

The label set is endowed with an algebraic structure ⊗ : F × F → F . For a, b ∈ F :

a⊗ b =
∑
c∈F

N c
a b c, (2.4)

with N c
a b being non-negative integer. We have

∑
cN

c
a b > 0 ∀a, b, i.e. there is at least

one fusion outcome for every possible fusion process. This algebraic structure is in the
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context of conformal field theories also known as operator product expansion [111]. For

notational convenience, we introduce

δa,b,c =

{
1 if N c

a b 6= 0

0 otherwise
. (2.5)

If N c
a b = δa,b,c ∀a, b, c, the theory is called multiplicity-free. We will deal here only with

multiplicity-free theories.

The fusion algebra represents the way, how to sum up quantum numbers. One example

is the addition of angular momenta 1
2 ⊗

1
2 = 0 ⊕ 1, i.e. two spin-1

2 representations fuse

to a spin 0 and a spin 1 object.1 In particular, fusion with the trivial particle 1 yields

the same particle type, i.e.

N c
1 b = N c

b1 = δb,c. (2.6)

One can represent the fusion process pictorially as in the left-hand side of Figure 2.3,

where the particles a and b fuse to the particle c.

If there is more than one c with N c
a a 6= 0, the particle a has several possible fusion

outcomes when fused with itself. Thus the sum of the corresponding quantum numbers

is not unique and in the resulting degenerate Hilbert space spanned by these different

states, exchange of these particles will be governed by non-Abelian exchange statistics.

Let us mention already here that if N1
a a 6= 0, the particle a is said to have the property

referred to as partial trivial self-monodromy in Ref. [19].

c

ba

b
n−1

a3 . . .a2

b1

a1 a
n

Figure 2.3: Diagrammatic representation of fusion processes. On the left-hand side,
a single fusion process is depicted. The single vertex is invariant under the exchange
of the labels a, b, and c. This implies that N c

a b = Na
b c = N b

c a. The fusion diagram
can also be read as splitting diagram, if the time direction is reversed [53]. On the
right-hand side, concatenated fusion is depicted.

For a general fusion process, the rotation symmetry of the fusion vertex already tells us

that N c
a b = Na

b c = N b
c a. Together with (2.6), we see that there is a unique way to fuse

two labels a to obtain the trivial label, i.e. N1
a a = 1.

1Note that the group SU(2), whose representations are used in this example, has infinitely many
representations and thus does not yield a suitable anyonic model. However, all fusion algebras presented
within this thesis can be derived as so-called quantum deformations of SU(2).
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By successive application of the fusion rules, we can now add up all quantum numbers

as e.g. shown in Figure 2.3. Note that different fusion trees form an orthogonal basis of

the Hilbert space given by the particles that fuse. The fusion trees are also known as

Bratelli diagrams [110].

It is physically intuitive to require the outcome of the summation of quantum num-

bers to be independent of the order of the summation. This is equivalent to imposing

associativity of the fusion algebra, i.e.

(a⊗ b)⊗ c = a⊗ (b⊗ c) . (2.7)

Equation (2.7) states that the two ways of fusing three particles to obtain a fourth one

are equivalent. This means that the corresponding states are connected by a unitary

transformation so that one particular fusion tree for the first way can be expressed by a

linear superposition of the fusion trees of the second way. In the pictorial representation

this corresponds to the so-called F -move depicted as∣∣∣∣∣∣∣∣ e

a b c

d

〉
=
∑
f

F a b ec d f

∣∣∣∣∣∣∣∣ f

a b c

d

〉
. (2.8)

The coefficients F a b ec d f are known as F -symbols, crossing-symmetries, or 6j-symbols. As

notational convention within this thesis, we use the notation of Ref. [56] for the F -

symbols. Let us note here that

F a b ec d f ∝ δa,b,eδc,d,eδa,d,fδb,c,f , (2.9)

so that an F -move acting onto a state fulfilling the branching rules at the two vertices

leads to a superposition of states, which also fulfill the branching rules on both vertices.

Let us note that there are several symmetries relating the values of different F -symbols.

For example, fusion trees, which can be obtained from the one in (2.8) by permuting

the position of the different labels, yield the same numerical values in the superposition

of the right-hand side of (2.8). These symmetries can be used to simplify the actual

calculations performed in the following.

Let us note here that we consider within this thesis only theories, for which the F -

symbols F a b ec d f are real. This fact assures the hermiticity of the Hamiltonians discussed

in Chapter 3.

In order to assure consistency of the fusion algebra, i.e. the independence of the actual

order of fusion if more than three particles are involved, we consider the diagram depicted
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in Figure 2.4. Consistency of the fusion algebra is equivalent to the requirement that

the F -moves are defined such that this diagram commutes. This constrains the possible

F

a b c d

e

e

e

ee

l

k

a b c d a b c d

a b c d

dcba

l

k

f

g

g

h

f

hF

FF

F

Figure 2.4: Successive F -moves along the upper and lower path in the diagram yield
the same configuration. The F -symbols are defined such that the diagram commutes,
i.e. the actual sequence of F -moves applied does not matter, as long as the same fusion
diagram is obtained.

sets of F -symbols to be solutions of the so-called pentagon equations

∑
h

F a b fc g hF
a h g
d e kF

b c h
d k l = F f c gd e l F

a b f
l e k . (2.10)

The solutions of (2.10) correspond to tensor categories [94]. Note that no further condi-

tion is needed to yield consistency of the F -moves. Let us mention that for each anyon

type a, the quantum dimension

da =
1∣∣F a a1a a1

∣∣ (2.11)

plays a distinguished role. If we have for example the labels a, b, and c with a ⊗ b =∑
c
N c
a bc, then the quantum dimensions da, db, and dc fulfill the same equation, if the

labels are replaced by them:

dadb =
∑
c

N c
a bdc. (2.12)

In particular, anyons, which can fuse with themselves to more than one particle type

and thus have non-Abelian exchange statistics, have a quantum dimension larger than

one.
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2.2.2 Braiding

We have seen above that non-trivial braiding is one of the defining properties of anyons.

If we fix the possible particle positions, we represent the braiding of two anyons by

crossing their world-lines as in Fig. 2.2, i.e.

Ra b =

a b

(2.13)

The corresponding unitary transformation is called R-move and can be written in terms

of the fusion trees as ∣∣∣∣∣∣
c

ab 〉
= Ra bc

∣∣∣∣∣∣
c

ab 〉
, (2.14)

so that we can express the exchange of two particle with labels a and b as in Ref. [95]

via

Ra b =
∑
c

√
dc
da db

Ra bc

a

b

c

a

b

. (2.15)

As the trivial label corresponds to the vacuum and braiding with the vacuum does not

change the state, we have

Ra1c = R1 b
c = 1. (2.16)

The R-moves are representations of the braid group and thus fulfill (2.1) and (2.2).

However, to be compatible with the F -moves, we can see in Figure 2.5 that the R-moves

have to fulfill additionally the so-called hexagon equations

∑
f

F c a eb d f R
c f
d F a b fc d g = Rc ae F a c eb d g R

c b
g (2.17)

∑
f

F c a eb d f

(
Rf cd

)−1
F a b fc d g =

(
Ra ce

)−1
F a c eb d g

(
Rb cg

)−1
(2.18)

The crossing symmetry and the braiding properties of an anyonic theory are thus related

by the hexagon equations, so that fusion and braiding are not independent processes. Let

us finally note that the pentagon and hexagon equations are homogeneous equations, so

e.g. the F -symbols yielding different theories are in general defined up to multiplicative
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b

f

d

a b c

a b c

d d

a b c

a

a b

b

F

e

RR

R

e

F

g

f

F
d

d

c

c

d

g

a c

e

b c

d d

a b c

a

a b

b

c

c

d

d
F

f

g

F

R−1

R−1 R−1

e

F

d

g

a b c

f

d

a b c

a

Figure 2.5: The sequences of R- and F -moves shown lead to the same Bratelli di-
agram. To be consistent, the upper and the lower paths in the diagrams have to
commute. This imposes the so-called hexagon equations for the R-symbols and their
inverses (2.18).

factors. To remove this ambiguity, we choose the gauge [56]

F i j kj i1 = δi,j,k

√
dk
didj

(2.19)

without loss of generality.

2.2.3 Twists and spins

Although the exchange statistics of elementary excitations in two spatial dimensions is

richer than in higher dimensions, one can introduce for each particle a the so-called

twists θa , which are as in the higher-dimensional case linked to the particle spin sa via

the spin-statistics theorem [112]

θa = e2πisa . (2.20)

It can be interpreted as the global phase picked up if one rotates the corresponding

particle state about 2π or as the result of a double-exchange of two identical particles

as in shown in Fig. 2.1. For bosons b we thus have θb = 1, for fermions f the twist is

given by θf = −1.

The twist is also referred to as self-monodromy [19]. We will refer occasionally also

to particles a with trivial self-monodromy, i.e. θa = 1, as bosons [19], although these

particles might have non-trivial braiding properties when braided around other particles.

Let us note here that the trivial particle 1 always has θ1 = 1, so that it can be interpreted

as a boson.
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2.2.4 Modular S-matrix

To complete our list of ingredients of anyonic models considered in this work, we discuss

the topological or modular S-matrix. As already mentioned in the previous chapter, one

may want to interpret an anyonic label as a flux. Fluxes through surfaces are measured

by transporting an “test”-anyon along the contour of the surface. The corresponding

information is encoded in the S-matrix. If an anyon of type a is transported around an

anyon of type b, the resulting state is given by∣∣∣∣∣∣a
b 〉

=
Sab
S1b

∣∣∣∣∣∣
b 〉

. (2.21)

An anyonic theory is called modular if the S-matrix is invertible. Thus, one can measure

all appearing fluxes by transporting (an appropriate superposition of) anyons along the

boundary of the corresponding surface. There are some particular properties of the

S-matrix elements. For example, the S-matrix is symmetric. Additionally, one has

S0a ∼ da and the first row of the S-matrix is normalized such that
∑

a (S0a)
2 = 1. The

normalization factor D =
√∑

a d
2
a is the so-called total quantum dimension [95] or total

quantum order [102].

2.3 Doubling of a theory

From given anyonic theories, one can construct more complicated ones. One particular

way is to consider instead of a fusion algebra F its quantum double version given by

D (F) = {(a, b), a, b ∈ F}. The components of the labels are referred to as left- and

right-handed, respectively.

In a standard construction, the quantum double D (F) inherits its algebraic struc-

ture from F by simply taking the product of corresponding undoubled quantities, as

e.g. N
(cL,cR)
(aL,aR),(bL,bR) = N cL

aL,bL
N cR
aR,bR

the fusion algebra. A fusion vertex for a doubled

theory is depicted in Figure 2.6.

(cL, cR)

(aL, aR) (bL, bR)

Figure 2.6: The fusion vertex of a doubled theory can be understood as independent
fusion of the left- and right-handed components of the appearing labels.
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This is equivalent to the statement that left-handed and right-handed sectors are in-

dependent of each other, i.e. the left-handed component does not have an impact on

the braiding or the fusion of the right-handed component and vice versa. The different

chiralities manifest themselves most prominently in the particle twist, as

θ(a,b) = θaθ
−1
b = θ−1

(b,a). (2.22)

However, there are also other ways of doubling a theory than the standard one shown

above. Note that these non-trivial doubled theories arise also in the context of toric

code models [28]. The most prominent example is the doubled theory D (Z2). In this

example modularity of the doubled theory is achieved by introducing additionally a non-

trivial braiding of left- and right-handed components. The label set is given by FD(Z2) =

{1, e,m, ε} and its connection to the corresponding Z2-theory with FZ2 = {1,−1} can

be inferred from

1D(Z2) = (1Z2 ,1Z2) , e = (−1Z2
,1Z2) ,

m = (1Z2 ,−1Z2
) , ε = (−1Z2

,−1Z2
) . (2.23)

The braidings of the undoubled theory are all trivial, i.e. Sa b = 1 for a, b ∈ {1,−1}, so

that this theory is not modular. By introducing the so-called mutual semionic statistics,

i.e. S−1L,−1R = −1, we obtain a modular doubled theory (cf. Section 2.4). This way of

doubling a theory can usually be found in the context of lattice gauge theories [28].

Let us finally mention some special labels of a doubled theory: the labels, whose left-

and right-handed sectors are identical, i.e.

ã = (a, a) (2.24)

are called achiral particles, as these do not have a particular chirality. In particular,

their twist is always trivial, i.e. θã = 1 [19]. We drop the ˜ whenever it is clear from the

context whether we are referring to the doubled or undoubled theory.

2.4 List of theories

To conclude, the necessary ingredients of an anyonic theory required for this thesis are

given by the fusion algebra F , the F -symbols, the braiding properties encoded in the

twists, the R-symbols, and the S-matrix. We did not discuss above all relations between

these objects as e.g. the Verlinde-formula [53]. For a more complete discussion, we refer

to e.g. Refs. [11, 30, 53, 94, 95, 102].
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In the following we list the data of theories, i.e. the fusion algebras, F - and R-symbols,

and the S-matrix, which are of interest within the thesis. This data can be found e.g. in

Refs. [95, 102]. Note that the considered fusion algebras can all be related in some

fashion to quantum deformations of SU(2). However, although the fusion algebras are

identical, there exist several solutions for the F - and R-symbols. Thus the F -symbols

used within this work do not necessarily coincide with the ones for SU(2)k given e.g. in

Ref. [113].

We will concentrate within this thesis on the theory of semions as well as the D(Z2) the-

ory as examples for Abelian anyons and on Fibonacci- and Ising-anyons as the simplest

examples for non-Abelian anyons. Let us mention for completeness that there are other

modular theories with three labels, which harbor fusion algebras distinct from those of

the previously mentioned theories: the theories denoted in Ref. [102] by Z3 and(A1, 5)2.

Their study, although completely analogous to the study of the other models, is beyond

the scope of this thesis, as we aim here to illustrate the physics in the simplest possible

models.

The following list is organized as follows: For each theory, we give first the label set,

the quantum dimensions and the twists. Then the fusion algebra is shown in tabular

form. Allowed fusion vertices are depicted up to rotations. We remind that δa,b,c = 1

if the fusion vertex on left-hand side of Figure 2.3 is allowed and δa,b,c = 0 otherwise.

We give the F -symbols, for which F a b ec d f 6= δa,b,eδc,d,eδa,d,fδb,c,f , as well as the R-symbols,

for which Rb ca 6= δa,b,c. For the topological S-matrix, we denote the matrix elements for

labels ordered in the same way as given in the label set.

2.4.1 Semions

Label set: {1, s}
Quantum dimensions: d1 = 1, ds = 1

Twists: θ1 = 1, θs = i

Fusion algebra:

⊗ 1 s

1 1 s

s s 1

Fusion vertices:
1

1

1

,

s

1

s

 (2.25)

Non-trivial F -symbols:

F s s1s s1 = −1

Modular S-matrix:

S =
1√
2

(
1 1

1 −1

) Non-trivial R-symbols:

Rs s1 = i
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Let us note that the fusion algebra is the same as the multiplication table of the group

Z2. However, the corresponding theory is non-modular and for all F -symbols we have

F a b ec d f = δa,b,eδc,d,eδa,d,fδb,c,f .

2.4.2 Fibonacci

Label set: {1, τ}
Quantum dimensions: d1 = 1, dτ = ϕ, where ϕ = 1+

√
5

2 is the golden ratio.

Twists: θ1 = 1, θτ = e
4πi
5

Fusion algebra:

⊗ 1 τ

1 1 τ

τ τ 1⊕ τ

Fusion vertices:
1

1

1

,

τ

1

τ

,

τ

τ

τ

 (2.26)

Non-trivial F -symbols:

F τ τ 1
τ τ 1 = ϕ−1, F τ τ 1

τ τ τ = ϕ−1/2,

F τ τ ττ τ 1 = ϕ−1/2, F τ τ ττ τ τ = −ϕ−1.

Modular S-matrix:

S = 1√
1+ϕ2

(
1 ϕ

ϕ −1

) Non-trivial R-symbols:

Rτ τ1 = e−
4πi
5 , Rτ ττ = e

3πi
5 .

Let us mention that the theory of Yang-Lee anyons (the Galois-conjugate of the theory

of Fibonacci anyons [66]) can be obtained by ϕ 7→ − 1
ϕ . However, this theory is not

unitary, so we do not consider it here.

Note that the Fibonacci theory can be obtained by only considering the subalgebra of

SU(2)3 formed by the integer labels [57].

2.4.3 Ising

Label set: {1,σ,ψ}
Quantum dimensions: d1 = 1, dσ =

√
2 , dψ = 1

Twists: θ1 = 1, θσ = e
πi
8 , θψ = −1

Fusion algebra:

⊗ 1 σ ψ

1 1 σ ψ

σ σ 1⊕ψ σ

ψ ψ σ 1

Fusion vertices:
1

1

1

,

σ

1

σ

,

σ

ψ

σ

,

ψ

1

ψ


(2.27)
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Non-trivial F -symbols:

Fσσ 1
σσ 1 = 1√

2
,Fσσ 1
σσψ = 1√

2
,

Fσσψσσ 1 = 1√
2
,Fσσψσσψ = − 1√

2
,

Fψσσψσσ = −1,Fσψ τσψσ = −1.

Modular S-matrix:

S = 1
2


1

√
2 1

√
2 0 −

√
2

1 −
√

2 1


Non-trivial R-symbols:

Rσσ1 = e−
πi
8 , Rψψ1 = −1,

Rσψσ = Rψσσ = e−
πi
8 ,

Rσσψ = e
3πi
8 .

Let us remark here, that the fusion algebra of Ising anyons coincide with the one of

SU(2)2. The major difference between these two theories is given by the different spins

of the σ-particle as well different braidings elements involving this particle [102].

2.4.4 Toric Code

Label set: {1, e,m, ε}
Quantum dimensions: d1 = 1, de = 1, dm = 1, dε = 1

Twists: θ1 = 1, θe = 1, θm = 1, θε = −1

Fusion algebra:

⊗ 1 e m ε

1 1 e m ε

e e 1 ε m

m m ε 1 e

ε ε m e 1

Fusion vertices:
1

11

,
ε

e m

,
1

aa
 (2.28)

a ∈ {e,m, ε}.

Non-trivial F -symbols:

none

Modular S-matrix:

S =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1



Non-trivial R-symbols:

Re e1 = Rmm
1 = −Rε ε1 = 1,

Remε = −Rme
ε = 1,

Rεme = −Rmε
e = 1,

Re εm = −Rε em = 1.

This theory is the most simple doubled theory presented in Section 2.3, which can be

obtained by doubling either the semion theory or the Z2 with additional non-trivial

braiding relations. It also appears in the context of Z2 lattice gauge theories [28].

2.5 Chapter Summary

Within this chapter, we introduced the notion of anyons as particles with non-trivial

braiding statistics in two-dimensional quantum systems.
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Additionally, we presented very briefly the different ingredients for an algebraic theory

of anyons, which is given here as a unitary, modular tensor category. These ingredients

comprise the fusion of anyons, their self-statistical properties expressed in terms of their

spin, as well their mutual statistical properties expressed by the braid-operators R.

We additionally discussed the modular S-matrix, which allows to treat not only planar

graphs like the fusion trees but also more involved structures.

We emphasize that this discussion is not complete at all, as we did not mention e.g. the

various interplays between these different properties such as the Verlinde formula [53].

So we direct the interested reader to other works [11, 30, 53, 94, 95, 102].

The doubled theories represent a particularly simple way to construct more complex

anyonic theories from simpler ones. Let us emphasize here the fact that within doubled

theories, we have always labels with trivial spin, i.e. their twists equal 1. These particles,

which are the generalizations of bosons in the anyonic context, play a key role in the

topological symmetry breaking discussed in Chapter 5.

In the following, we shall use the ingredients introduced in this chapter to construct

models harboring topologically ordered ground states as well as anyonic excitations.



Chapter 3
String-net models

Whatever one man is capable of conceiving,

other men will be able to achieve.

- Jules Verne -

In this chapter, we present the microscopic models that are at the heart of this study. As

we are interested in phase transitions out of topologically ordered phases, we investigate

the phase diagram of a perturbed lattice model, which is known to harbor topological

order.

As a starting point, we consider the string-net Hamiltonian presented by Levin and

Wen [56]. The unperturbed model is exactly solvable and thus one is able to describe

its ground state(s) and its excitations. These turn out to be Abelian or non-Abelian

anyons depending on the particular anyonic theory used to construct the model.

The first part of this chapter is dedicated to practical insights of how to describe the

eigenstates of the Levin-Wen model in terms of fluxes, which emerge from the microscopic

degrees of freedom due to the particular choice of the underlying anyonic theory.

In the second part, we add a local term to the Hamiltonian in the same fashion as in

Refs. [69, 70, 74, 78, 86]. We focus on the case of two-dimensional systems to investigate

phase transitions driven by the interplay of the topological order and a local perturba-

tion. We detail how to describe this type of models on different topologies and also for

the different anyonic theories, namely the semions, Fibonacci and Ising anyons.

3.1 The Levin-Wen Hamiltonian HLW

To discuss the Hamiltonian HLW introduced by Levin and Wen [56], let us start with a

general string-net Hamiltonian HSN, which can also be seen as an analogue of the Hamil-

tonian of a lattice-gauge theory [28]. We will obtain finally the topological Hamiltonian

25
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HLW as an appropriate limit of HSN.

3.1.1 String-net Hamiltonian HSN

The string-net Hamiltonian can be defined on any trivalent graph. Here, we consider

particular trivalent lattices on the surface of a sphere or a torus, i.e. on two-dimensional

manifolds. We discuss these two cases considered in Section 3.1.4. However, as the main

focus of this work is the two-dimensional hexagonal lattice depicted in Figure 3.1, we

will illustrate the construction of the model for this example.

As in lattice-gauge models, the microscopic degrees of freedom reside on the links {e}
of the lattice.1 These degrees of freedom can take the (N + 1) values in the label set of

a fusion algebra F as introduced in Chapter 2. We refer to the basis of orthonormal

product states given by

|{`e}〉 =
∏
e

|`e〉e (3.1)

as bond basis in the following. In pictorial representations, we color the link e according

to its label `e as introduced in Section 2.4.

Within this basis, we construct the string-net model making in the following use of the

different properties of the fusion algebra discussed in Section 2.2. Therefore, we define

the general string-net Hamiltonian HSN as

HSN = −Jv

∑
v

Qv − Jp

∑
p

Bp, (3.2)

where the index v denotes the vertices of the considered lattice, the index p its plaquettes.

We refer to Qv as charge operator and to Bp as flux operator in analogy to lattice-gauge

theories as in Ref. [28]. The action of the charge operator is defined as

Qv

∣∣∣∣∣∣
ℓ3

ℓ1 ℓ2 〉
= δ`1,`2,`3

∣∣∣∣∣∣
ℓ3

ℓ1 ℓ2 〉
, (3.3)

where the δ`1,`2,`3 is defined in (2.5). We see that the charge operator Qv is diagonal

in the bond basis. As its eigenvalues are 0 or 1, this operator is a projector. Thus it

projects onto states |`1〉 |`2〉 |`3〉, where `3 appears in the fusion product of the labels `1

and `2. For Jv > 0 the excited states correspond to eigenvalue 0 of a Qv and are referred

to as a charge, whereas charge-free states are those, for which each vertex configuration

in the lattice correspond to a fusion vertex of the theory.

1In the following, we will use the terms bond, link, and edge homologously.
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Thus for charge-free states, the fusion rules for the labels of F translate to the so-called

branching rules for the microscopic degrees of freedom. The name branching rules stems

from the picture that for charge-free states the microscopic degrees of freedom constitute

extended objects as strings of the same non-trivial label unless at some vertex this string

branches into two strings, each carrying in general a different label. An example for this

kind of state is depicted in Figure 3.1.

Figure 3.1: The string-net model is defined on the hexagonal lattice depicted on the
left-hand side. The microscopic degrees of freedom are located on the edges of the
lattice. In order to represent the different possible values, the microscopic degrees of
freedom can take, we color the edges in the colors corresponding to the labels of the
anyonic theory defined in Section 2.4. Due to the constraints induced by the charge
operators, the different local degrees of freedom organize in the so-called string nets,
for which one example is depicted on the right-hand side.

Let us remark here that in particular end points of strings, i.e. vertices in the lattice,

where one string carrying a non-trivial label ends without branching, correspond for any

anyonic theory to a charge.

This fact allows to draw analogies of this model with lattice-gauge theories, for which the

strings of a given label corresponds to electric flux lines. In particular, strings carrying

the trivial 1 label correspond to “neutral” flux lines, which represent the absence of

non-trivial fluxes.

Let us state here that we have for the charge operators and flux operators

[Qv, Bp] = 0 ∀v, p. (3.4)

We will discuss this property in more detail after having discussed the flux operators

Bp. However, anticipating this result, we can already define the Levin-Wen Hamiltonian

HLW by

HLW = lim
Jv→∞

HSN. (3.5)

In this limit, violations of the branching rules correspond to an infinite energy cost. As

we are interested in the low-energy physics, we will discuss from now on only the charge-

free sector. As the flux and charge operator commute, the action of the Bp preserves
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the number of charges and can thus be without further restrictions discussed in the

charge-free subspace.

3.1.2 The fat-lattice visualization

In order to discuss the flux operators, it is very useful to consider another representation

of the involved degrees of freedom. This representation is the so-called fat-lattice [56].

It can be motivated by the seminal works of Turaev [110], which state that the Hilbert

space of the Levin-Wen model for a given graph, i.e. the charge-free Hilbert space of the

string-net model, can be linked to a topological field theory defined on the surface of a

three-dimensional thickening of this graph. However, here we only use this visualization

of a thickened graph, but consider a flux-line picture, where the flux lines run through

the interior of the thickened links of the graph.

Let us remark here that this visualization as presented in Ref. [56] and within this

chapter is close to the flux-line picture of a lattice-gauge theory. However, in the absence

of charges, the picture of electric flux-lines of the lattice-gauge theory yields actually a

Wilson-line representation [88, 98, 99].

Figure 3.2: In the fat-lattice representation, the two-dimensional hexagonal lattice
shown on the left is thickened to yield the tube network shown in the middle picture.
Note that the third dimension is used as an auxiliary tool to represent the flux degrees
of freedom introduced in (3.17). The original lattice is represented by the retraction
skeleton located in the center of the tubes. The advantage of this representation is
that it allows for a more flexible visualization of the action of the operators, which are
introduced in the following. These operators can then be seen as injecting Wilson-loops
into the fat lattice, which then leads to a network of string running through the fat
lattice as depicted in the right-hand side.

Therefore, we consider, instead of the two-dimensional lattice, the three-dimensional

tube-like network depicted in Figure 3.2. The original lattice can be recovered by con-

sidering the retraction skeleton of the three-dimensional structure. We represent now

the degrees of freedom of the bonds by strings running through the tubes as illustrated

in Figure 3.2. The strings are labeled (or colored) by labels of the fusion algebra F .

It is obvious that this representation contains much more flexibility to represent a given

state in the bond basis. Let us formalize a little bit more the rules we work with within

the fat-lattice representation.
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1. Consider strings only within the tubes.

2. Strings carry labels of F .

3. Only closed loops are allowed (open strings correspond to charges at the end

points).

4. Additional links carrying the label 1 can be introduced or removed within the tube

without changing the state (neutral flux lines are invisible).

5. Strings can be smoothly deformed within the tubes.

6. F - and R-moves can be applied to transform the flux lines within the tubes.

The rules 5 and 6 can be motivated by the fact that smooth deformations of the flux

lines shall not cause a difference in the resulting state if it is topologically ordered.

Before discussing the relation between the fat-lattice representation and the bond basis,

let us consider one example of how the above rules can be used to simplify the string

configurations in the fat-lattice representation: therefore we recall the definition of the

modular S-matrix (2.21), which can be also written as∣∣∣∣∣∣∣∣ a

b 〉
=
Sab
S1b

∣∣∣∣∣∣∣∣ 1

b 〉
. (3.6)

So we can use the rules 4, 5, and 6 from above to transform string-net configurations

within the tube network. For example, we can remove small loops within a tube via

i j

k

l

F−move
=

∑
m

F j k il j m

m j

k

l

insert 1−loop
=

∑
m

F j k il j m

m
j

1

k

l

3.6
=
∑
m

F j k il j m

Sj1
S11︸︷︷︸
dj

δm,1 1

k

l

remove 1−labels
= F j k il j 1 djδk,l

k . (3.7)

The term δm,1 appears after applying (3.6) as the label m shares a vertex with two

1 labels and thus we have necessarily m = 1 to yield a non-zero contribution since

δm,1,1 = δm,1. The term δk,l arises because we have δk,1,l = δk,l for self-dual anyonic

theories.
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Due to the appearance of the δk,l in (3.7), we see that the branching and reunion of a

string cannot change its label and thus the label is necessarily conserved along the string

in the absence of a branching to distinct strings.

This fact allows us to relate the string network in the fat lattice to the bond basis.

Therefore, one has to reduce several strings located in one tube to one string by inserting

1-strings and performing appropriate F -moves, e.g.

a b = a

a

1 b

b

=
∑
c

F a a1b b c
a

a
c

b

b

. (3.8)

In this example, this state will be represented in the bond basis by a superposition of

the labels c for this bond.

To obtain in the end the retraction skeleton, the additional vertices introduced by con-

tracting flux lines within a tube as in (3.8) now having the incident labels {a, b, c} have

to be removed. For this task one can proceed similar as in (3.7). In the end, we arrive

from the fat lattice, through which the different strings run, to a superposition of differ-

ent states represented only by the retraction skeleton, where the label `e of the unique

string within a tube e corresponds one-to-one to the label `e located on the bond e in

the bond basis.

Thus we see that the fat-lattice representation enables us to perform manipulations on

the states in a graphical fashion.

3.1.3 The flux operator Bp

Before starting to discuss the action of the flux operator Bp in detail, let us here already

give its action in the bond basis and then develop a more intuitive picture. We have [56]

Bp

∣∣∣∣∣∣∣∣∣
a

b

c
d

e

fg

h

i j

k

l

p

〉
=

∑
s,

g′,h′,i′,j′,k′,l′

ds
D2

F a g lsl′g′F
b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′F

e k j
sj′k′F

f l k
sk′l′

∣∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ j′

k′

l′

p

〉
. (3.9)

To understand this result, let us consider instead of the operator Bp the operator Bsp ,

which in the fat-lattice representation is given by

Bsp

∣∣∣∣∣∣∣∣∣ p

〉
=

∣∣∣∣∣∣∣∣∣
sp

〉
, (3.10)
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i.e. the operator Bsp injects loops, which are labeled by s, around the plaquette p.

The matrix elements of this operator can then be determined by the following counter-

clockwise sequence of F -moves:∣∣∣∣∣∣∣∣
a

b

c
d

e

fg

h

i j

k

l

s

〉
=
∑
l′

F l l 1ssl′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg

h

i j

k

ll′l

s

〉
=
∑
l′,g′

F l l 1ssl′F
a g l
sl′g′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fgg
′

h

i j

k

l′ l

s

〉

=
∑
l′,g′,h′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h
h′

i j

k

l′ l

s

〉
=
∑
l′,g′
h′,i′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′F

c i h
sh′i′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ i j

k

l′ l

s

〉

=
∑
l′,g′
h′,i′,j′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ j′j

k

l′ l

s

〉

=
∑
l′,g′,h′
i′,j′,k′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′F

e k j
sj′k′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ j′

k′
k

l′ l

s

〉

=
∑
l′,g′,h′
i′,j′,k′,l′′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′F

e k j
sj′k′F

f l k
sk′l′

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ j′

k′

l l′l′′

s

〉

3.7
=
∑
l′,g′,h′
i′,j′,k′,l′′

F l l 1ssl′F
a g l
sl′g′F

b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′F

e k j
sj′k′F

f l k
sk′l′F

s l′′ l
l′sg′ ds

∣∣∣∣∣∣∣∣
a

b

c
d

e

fg′

h′

i′ j′

k′

l′ 〉
. (3.11)

Due to the normalization (2.19), we have

F l l 1ssl′F
s l′′ l
l′sg′ ds = δl′,l′′ (3.12)

and thus the matrix elements of Bsp simplifies to

〈 a
b

c
d

e

fg′

h′

i′ j′

k′

l′

p

∣∣∣∣∣∣Bsp
∣∣∣∣∣∣

a
b

c
d

e

fg

h

i j

k

l

p

〉
=

∑
g′,h′,i′,j′,k′,l′

F a g lsl′g′F
b h g
sg′h′F

c i h
sh′i′F

d j i
si′j′F

e k j
sj′k′F

f l k
sk′l′ . (3.13)

Thus the operators Bsp are twelve-link terms, which preserve the labels of the out-going

links of plaquette p. Before constructing the flux-operator Bp from the Bsp , let us first

discuss the commutation relation of the Bsp and the charge operator:

[
Bsp , Qv

]
= 0 ∀s, p, v. (3.14)
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From (3.13), it is obvious that the matrix elements of Bsp are proportional to F -symbols

involving labels from the vertex neighboring the plaquette p. It results from (2.9) that

the Bsp act only non-trivially on plaquettes without neighboring charges, as otherwise

the corresponding F -moves yield 0 as matrix element. Thus the Bsp act only non-trivially

within the charge-free eigenspace of the involved charge operators. Consequently, the

operators Bsp and Qv commute with each other.

From the representation (3.10), it is also obvious that
[
Bsp , B

s′
p′

]
= 0 ∀s, s′, p, p′, as one

can interchange, using (2.10), the order of the insertion of the different loops without

changing the final result.

Let us mention here the fact that B1
p = 1 within the charge-free sector, as inserting a

neutral flux line does not change the state of the system.

Finally, we can define the flux operator Bp by

Bp =
∑
s

ds
D2

Bsp . (3.15)

Together with (3.13), this yields the expression for the matrix elements of Bp in (3.9).

As the different Bsp commute, the Bp also commute with each other.

The operators defined in (3.15) are projectors, as can be seen from their action on a

reference state |ref〉:

B2
p |ref〉 =

∑
s,s′

ds
D2

ds′

D2

∣∣∣∣∣∣ ss′

〉
=
∑
s,s′

∑
s′′

ds
D2

ds′

D2
F s s 1
s′s′s′′

∣∣∣∣∣∣ s′′s′

s 〉

3.7
=
∑
s,s′

∑
s′′

ds
D2

ds′

D2
F s s 1
s′s′s′′ds′F

s′ s s′′
s s′ 1

∣∣∣∣∣∣ s

〉

=
∑
s

ds
D2

(∑
s′

d2
s′

D2

)
︸ ︷︷ ︸

=1

∑
s′′

F s s 1
s′s′s′′F

s′ s s′′
s s′ 1︸ ︷︷ ︸

=1

∣∣∣∣∣∣ s

〉

=Bp |ref〉 , (3.16)

where we used the fact that performing and undoing an F -move yields the initial state.

Thus the possible eigenvalues of Bp are 0 and 1. Let us now discuss the corresponding

eigenstates. Therefore we will make use of the modular S-matrix (3.6).
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If we assume a flux f threading through the plaquette p, as represented by a flux line,2 we

have

Bp

∣∣∣∣∣∣∣∣
f 〉

=
∑
s

ds
D2

Bsp

∣∣∣∣∣∣∣∣
f 〉

=
∑
s

ds
D2

∣∣∣∣∣∣∣∣
f

s

〉

=
∑
s

ds
D2

Ssf
S1f

∣∣∣∣∣∣∣∣
f

1

〉
=

1

DS1f

∑
s

S1sSsf

∣∣∣∣∣∣∣∣
f 〉

=δ1f

∣∣∣∣∣∣∣∣
f 〉

, (3.17)

where in the last step, we used the unitarity of the S-matrix and DS11 = 1.

So, the operator Bp projects onto states with trivial flux 1 threading through the pla-

quette p and consequently a state

|{1p}p, ref〉 = N
∏
p

Bp |ref〉 , (3.18)

where N is a normalization constant dependent of |ref〉, is a state with no flux threading

through the surface, iff its norm is non-zero.

For Jp > 0, all ground states of HLW can be represented as in (3.18) with suitable

choices of states |ref〉. However, the possibly different ground states will in general not

be orthogonal for different choices of |ref〉. Additionally, we observe that due the action

of the operators Bp, these states will be generically a weighted superposition of nearly

all states represented in the bond basis (3.1).

Let us note here that we can construct other projectors than Bp by choosing other

weights of the Bsp , i.e for a ∈ F we have

Pap = S1a
∑
s

SasB
s
p . (3.19)

One can show analogously as in (3.17) that Pap project onto a state with flux label a

through the plaquette p. Note that P1
p = Bp. Due to the unitarity of the S-matrix, we

have PapPbp = δabPap , i.e. the projectors Pap project on orthogonal subspaces.

2Note that in the underlying field theory, the flux labels correspond to achiral labels of the doubled
theory D(F), so that one shall in principle write (f, f) instead of f here. However, for our picture, the
undoubled labels are sufficient at this stage and thus we shift the discussion of the connection to the
doubled theory D(F) to the end of Section 3.1.4, where we have a better suited state representation at
hand.
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As we have

∑
a

Pap =
∑
a

S1a
∑
s

SasB
s
p =

∑
s

(∑
a

S1aSas

)
Bsp =

∑
s

δ1sB
s
p = B1

p = 1, (3.20)

we see that we can achieve a complete description of the local excitations by including

the flux labels through each plaquette. We can thus define eigenstates of HLW as

|{bp}, {`e}〉 = N
∏
p

Pbpp
∏
e

|`〉e , (3.21)

where
∏
e |`〉e corresponds to the reference state |ref〉 in (3.18). These eigenstates can

be used to represent all states in the Hilbert space. We refer to the representation of

states in (3.21) as flux basis. However, from the fact that it involves additionally to

the bond labels (which characterize already completely a basis set of states) also the

quantum numbers of the fluxes, it is clear that the states in the flux basis form an

overcomplete and in particular non-orthogonal set of states. Nevertheless, it is a useful

representation of the eigenstates of HLW as it allows to characterize an eigenstate only

by local quantities such as local fluxes and link labels.

3.1.4 The dual basis

Despite the fact that the flux basis (3.21) enables us to construct eigenstates of HLW, it

does not allow us to understand features like the non-trivial degeneracies arising from

the non-Abelian statistics, as this information is still hidden in the bond variables of the

reference state(s) |ref〉.

Therefore let us continue to construct an eigenbasis of HLW, which is completely inde-

pendent of the bond labels and additionally consists of orthonormal states. To achieve

this, we consider operators, which are the analogue to the Bsp , and from which we con-

struct projectors as in (3.19). These so-called simple operators W±,s{p0,...,pn} are defined

as in the following example

W+,s
{p0,p1}

∣∣∣∣∣∣∣ p0 p1

〉
=

∣∣∣∣∣∣∣ s
p0 p1

〉
, (3.22)

W−,s{p0,p1}

∣∣∣∣∣∣∣ p0 p1

〉
=

∣∣∣∣∣∣∣ s
p0 p1

〉
, (3.23)

i.e. these operators insert loops with label s along the boundary of the joint plaquettes

∂{p0, . . . , pn}.
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Let us note that there are in principle two distinct ways of inserting a loop: the one

labeled with ’+’ refers to inserting a loop from above the lattice, the one labeled with ’−’

from below. We will refer to the different signs as different chiralities in the following.

The matrix elements of the W±,s{p0,...,pn} can be determined as in (3.11), but there is one

additional ingredient for the calculations: if the inserted loop crosses an edge pointing

inwards the surface surrounded by the loop, there are additionally to the F -moves also

R-moves necessary to move the linking string labeled with s along the path of the

inserted loop. This can be depicted for positive chirality as∣∣∣∣∣∣ s

k′ k l

i 〉
=
(
R−1

)i l
k

∣∣∣∣∣∣ s

k′ k l

i 〉
=
(
R−1

)i l
k

∑
l′

F i l ksk′l′

∣∣∣∣∣∣ s

k′ l′ l

i 〉

=
(
R−1

)i l
k

∑
l′

F i l ksk′l′R
i l′
k′

∣∣∣∣∣∣ s

k′ l′ l

i 〉
, (3.24)

and negative chirality respectively as∣∣∣∣∣∣ s

k′ k l

i 〉
= Ri lk

∣∣∣∣∣∣ s

k′ k l

i 〉
= Ri lk

∑
l′

F i l ksk′l′

∣∣∣∣∣∣ s

k′ l′ l

i 〉

=Ri lk
∑
l′

F i l ksk′l′
(
R−1

)i l′
k′

∣∣∣∣∣∣ s

k′ l′ l

i 〉
. (3.25)

Note that we encounter an R-move involving the matrix-element
(
R−1

)i l
k
Ri l

′
k′ for the

W+,s
{p0,...,pn}-operator, but we have Ri lk

(
R−1

)i l′
k′

for W−,s{p0,...,pn}. Thus if these matrix ele-

ments are not identical, W+,s
{p0,...,pn} and W−,s{p0,...,pn} are distinct operators.

However, as this is the only difference between the operators, it shall be clear that they

commute with each other. Moreover, one can also conclude by the same argument that

two operators of different chirality always commute, even if they do not insert a loop

along the same path in the lattice.

Let us mention here that there is one important exception to the fact that two operators

acting along the same path but which have opposite chiralities are distinct from each

other:

W+,s
{p} = W−,s{p} = Bsp , (3.26)

i.e. when acting only on one plaquette, the operators W±,s{p} reduce to the same operator

Bsp , which tells us already that the eigenstates of the operator Bp are achiral.
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To simplify the following discussion, we restrict ourselves, in a first step, to the operators

of positive chirality, as the ones of negative chirality are completely equivalent but

independent.

In analogy to the local projectors Pap (3.19), we construct non-local projectors as

P+,a
{p} = S1a

∑
s

SasW
+,s
{p} . (3.27)

The projectors P+,a
{p} measure the flux through the total surface {p}. This flux corre-

sponds to the fusion product of the local flux labels bp within the surface. We thus

represent these non-local flux quantum numbers as in the following example of two

plaquettes

P
+,b+1,2
{p1,p2}P

+,b+1
{p1} P

+,b+2
{p2} |ref〉 =

∣∣∣∣∣∣∣
b+1 b+2

b+1,2 〉
. (3.28)

Note that this state only has a non-zero norm if N
b+1,2

b+1 ,b
+
2

6= 0, thus we also link the different

flux lines representing local and non-local fluxes, which yields the corresponding fusion

vertex. Let us note that this construction is similar to the one performed in Ref. [103].

In the following, we will omit the fat-lattice in pictorial representations, if the reference

state |ref〉 is uniquely specified.

The aim is now to represent the states as

∣∣{bp}, {b±p1,...,pn}{p1,...,pn}
〉

= N
∏
p

Pbpp
∏

{p1,...,pn},±

P±,b
±
p1,...,pn

{p1,...,pn} |ref〉 , (3.29)

where |ref〉 is a unique reference state. A suitable choice is the state

|ref〉 =
∏
e

|1〉e . (3.30)

This particularly simple choice is sufficient, as it turns out that, like in Ref. [52], all

eigenstates of HLW have a non-vanishing overlap with this state.

In order to obtain an orthogonal basis, one has to choose the {p1, . . . , pn} in a suit-

able way, as different projectors do in general not commute if non-Abelian anyons are

involved. This can be seen for example from

P
+,b+1,2,3
1,2,3 P

+,b+1,2
1,2

∏
p=1,2,3

Pbpp |ref〉 =

∣∣∣∣∣b1 b2 b3

b+1,2
b+1,2,3

〉
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=
∑
b+2,3

F
b1 b2 b+1,2

b3 b
+
1,2,3 b

+
2,3

∣∣∣∣∣b1 b2 b3

b+2,3
b+1,2,3

〉
=
∑
b+2,3

F
b1 b2 b+1,2

b3 b
+
1,2,3 b

+
2,3

P
+,b+1,2,3
1,2,3 P

+,b+2,3
2,3

∏
p=1,2,3

Pbpp |ref〉 . (3.31)

Thus it is clear that two projectors P
+,b+1,2
{p1,p2} and P

+,b+2,3
{p2,p3} do not commute if there is

more than one value for b+2,3, which yields a non-zero F -symbol. Thus the projectors

commute, if the plaquette sets they act on are either completely disjoint or nested into

each other, as the example (3.31) does not apply to this situation. The two projectors

also commute if only one non-zero F -symbol appears on the right-hand side of (3.31),

which is the case for Abelian theories.

If one surface is completely included (nested) in the other, the projectors commute for

a general anyonic theory. We use this fact to construct a set of commuting projectors

by choosing the operators P
±,b±Sn
Sn

, where

Sn = {p1, . . . , pn}, n = 2, . . . , Np. (3.32)

We will refer to this basis as dual basis in the remainder of this thesis, as it is completely

described by the local fluxes and their non-local fusion channels and thus by degrees of

freedom originating from the (dual) lattice formed by elementary plaquettes.

However, in order to construct a complete set of states, it is necessary to incorporate

the details of the surface, the lattice is embedded in.

Let us consider as first example a lattice with Np plaquettes embedded on the surface

of a sphere. As we can see in Figure 3.3, we have the two constraints

P
±,bSNp−1

SNp−1
= P

bpNp
pNp

, (3.33)

P
±,bSNp

SNp
= 1δbSNp

,1, (3.34)

as on the sphere, a loop around all but one plaquette is the same as the loop around this

plaquette, which leads to (3.33). Additionally, there is no non-trivial loop around the

sphere and consequently there is no boundary of SNp surrounding a plaquette, which

results in the charge-free sector to (3.34).

Thus, we can represent the eigenstates for a lattice with Np plaquettes on the sphere by

the fusion diagram

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np−1

〉
=

∣∣∣∣∣∣∣∣∣∣
b1 b2 b3 · · · bNp

b+1,2
b+1,2,3

b−1,2
b−1,2,3

〉
, (3.35)
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where we omitted the flux lines carrying the label b±SNp
as these equal always 1.

Let us remark here that the number of states represented in the fusion diagram (3.35)

equals the one for the trivalent lattice embedded on the surface of the sphere, as both

graphs have the same number of vertices Nv (where Nv = 2(Np−2) by Euler’s theorem)

and can thus be deformed into each other by applying suitable F -moves (c.f. Ref. [114]),

which yields a unitary transformation from the lattice to the fusion diagram. Conse-

quently, the dual basis on a sphere given by

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np−1

〉
= N

∏
±,n=2,...,Np−1

P
±,b±Sn
Sn

∏
p

Pbpp |ref〉 (3.36)

is indeed a complete basis.

Before discussing the properties of the eigenstates of HLW in detail, let us first complete

our discussion about the dual basis for the torus. On the torus, the constrains (3.33)

and (3.34) do not hold. As can be seen in Figure 3.3, due to the non-trivial topology

of the torus, not only the projectors P
±,b±SNp−1

SNp−1
and P

±,b±SNp

SNp
are independent, but there

are additionally two non contractible loops C1,2. Along these loops, one can define in

analogy to (3.23) and (3.27) the projectors

P
±,c±1,2
C1,2 = S1c±1,2

∑
s

Sc±1,2s
W±,sC1,2 . (3.37)

However, these loops intersect and we have thus as for the non-local projectors in (3.31)[
P±,c1C1 ,P±,c2C2

]
6= 0,

[
P±,c1C1 ,P∓,c2C2

]
= 0, (3.38)

i.e. we can choose projectors (3.37) of each chirality independently, but projectors of the

same chirality do not commute.

∂SNp−1

∂pNp

∂SNp
C1

C2

∂SNp∂SNp

∂SNp ∂SNp

Figure 3.3: For the sphere, two constraints for the projectors (3.28) arise. The first
one is that a loop surrounding all but one plaquette is the same as the loop encircling
this plaquette. Thus the corresponding projectors coincide. Additionally, the boundary
of SNp

encircles no plaquette, as illustrated in the middle. Therefore the corresponding
projector does not measure any flux and is thus the identity.
For the torus with its periodic boundary conditions, there are additionally to the pro-

jectors P±,b
±
Sn

Sn
, n = 2, . . . , Np, also the operators P±,c

±
1,2

C1,2 , which arise due to the non-
contractible cycles C1,2 forming the boundary ∂SNp

of SNp
.



Chapter 3. String-net models 39

These projectors measure the flux through the torus itself. The corresponding flux lines

can be represented as in (3.39), since they do not interfere with the local fluxes and their

fusion channels.

We can thus represent the dual basis for the torus as

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np , c
+, c−

〉
=N

∏
±

P±,c±C

∏
n=2,...,Np

P
±,b±Sn
Sn

∏
p

Pbpp |ref〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b1 b2 b3 · · · bNp

b+1,2

b+1,2,3
b+1,...,Np

b−1,2
b−1,2,3 b−1,...,Np

c−

c+

〉
. (3.39)

We see that the number of vertices in this representation is the same as for the hexagonal

lattice on the torus (Nv = 2Np), so that the dual basis is complete also for this topology.

Let us note here that one can in principle also manipulate the fusion diagrams in (3.39) by

performing F - and R-moves. However these moves only commute with the Hamiltonian

HLW, if they let the labels bp invariant. We omit a color-coding as in the fat lattice for

notational simplicity.

So, we achieved our aim to construct with the dual basis (3.36) and (3.39) an orthogonal

basis, in which the Hamiltonian HLW takes the simple diagonal form

HLW

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np , c
+, c−

〉
=− Jp

∑
p

δbp,1
∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np , c

+, c−
〉
. (3.40)

This basis allows us for example to make the connection to the interpretation of the

topological phases in terms of the surface topology fluctuations put forward in Ref. [69].

Let us note that if there is no flux through a plaquette p, we have bp = 1. All other

labels in the fusion diagram (3.39) are not effected if one removes the link corresponding

to the plaquette p. However, removing this link from the fusion diagram is equivalent

to remove the plaquette in the fat-lattice representation (3.17) by closing its surface as

depicted in Figure 3.4.

By this visualization, one can then interpret the flux-free state(s) as a closed double

surface. Excited states can then be visualized as holes pinched through the surface.
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Figure 3.4: Form the dual basis (3.36), we see that removing trivial local flux lines
is equivalent to closing the corresponding plaquette p. The ground state of HLW thus
corresponds to a closed, double-sheeted surface [58, 110]. For non-trivial fluxes, this
closing is not possible and thus excitations correspond to holes in the closed surface
representing the ground state. This connection of the dual basis to the surface geometry
[69] allows e.g. to obtain the axioms for a topologically ordered ground state by applying
the rules for the fat-lattice representation.

Within the closed double surface, we can again use the rules for the fat-lattice rep-

resentation for manipulating strings within tubes as discussed in Section 3.1.2. This

allows us to recover the properties of a topologically ordered ground state discussed in

Ref. [56]: As strings may be deformed arbitrarily without changing the actual state, we

see that the ground-state wave function is topologically invariant. The weight of closed

loops labeled with s is given by the coefficient of Bsp in (3.15). As closed string network

can be removed in a similar fashion as in (3.7), the ground-state wave function is scale

invariant.

Given this properties, one can show that the weight of a given configuration in the bond

basis in the ground state only depends on the number of branchings, but not on the

length scale, which manifests the topological order.

Let us note also that from the dual basis representation of states, one can easily obtain

the doubled representation, which allows to characterize all of the excitations of the

string-net model in terms of labels of the doubled algebra D(F) [98, 99]. This can be

achieved by reflecting the lower part of the fusion diagram (3.36) or (3.39) about the

surface. This is equivalent to defining the dual basis for the torus via

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np , c
+, c−

〉
=NP(c+,c−)

C1

∏
n=2,...,Np

P
(b+Sn ,b

−
Sn

)

Sn

∏
p

P(bp,bp)
p |ref〉

=

∣∣∣∣∣∣∣∣∣∣∣∣ (b1,b1) (b2,b2) (b3,b3) (bNp ,bNp )

...

...

(b+1,2,b
−
1,2) (b+1,2,3,b

−
1,2,3)

(b+1,...,Np
,b−1,...,Np

)

(c+,c−) 〉
. (3.41)

By actually performing this reflection, we also see that local excitations on the plaquettes

are always achiral, as they correspond to labels (a, a) of the string rooting from the

respective plaquette. In particular these excitations have twists θ(a,a) = 1 and can thus
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be seen as bosons for any anyonic theory. By our construction, we observe that one can

attribute the achirality of the local excitations to the fact that an orientable surface has

an inner and an outer part [58, 110].

Let us remark that to obtain the representation of the doubled theory, one has in prin-

ciple to choose the same non-contractible loop for each chirality. However, as these two

sectors are independent of each other, one can also choose without loss of generality

different loops for each respective chirality. Thus, one can e.g. obtain the topological

degeneracy via undoubled labels encircling each non-contractible loop, as it was done

to detect the topological degeneracy e.g. in Refs. [28, 86] instead of considering doubled

labels encircling only one loop, as done e.g. in Ref. [88]. Note that in the latter case,

the doubledness of the theory manifests itself in the fact that there are also chiral labels

(a, b) with a 6= b for the non-local fluxes, although the local fluxes can only be labeled

by achiral labels (a, a).

3.1.5 Properties of the eigenstates

Let us now discuss the general structure of the eigenstates, in particular ground states

and low-energy excitations. The special properties of each different theory are detailed

in the end of this section.

We first focus on the case Jp > 0. In this case, we have already seen in (3.18) that the

ground states of HLW are given by all states, for which bp = 1 for all plaquettes p. From

the representation (3.35), it is obvious that there is a unique ground state on the sphere,

namely

|gssphere〉 =
∣∣∣{1}p, {1S±n }n=2,...,Np−1

〉
, (3.42)

as all vertices in the fusion diagram are constrained to have only 1 as incident labels.

In contrast to this, we can see from Eq. (3.39) that this constraint does not apply to the

labels c± and thus these can take all N + 1 possible label values. Consequently, there

are (N + 1)2 ground states on the torus, which read

∣∣gstorus, c
+, c−

〉
=
∣∣∣{1}p, {1S±n }n=2,...,Np , c

+, c−
〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1 · · · 1

1
1

1

1

1 1

c−

c+

〉
. (3.43)
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So, we observe that the ground-state degeneracy is dependent on the topology of the

surface, into which the lattice is embedded. This represents a hallmark of topological

order. Let us note here that our way of representing the states in the dual basis allows

to reproduce easily the results obtained in Ref. [115] for the ground state degeneracy.

Additionally, we can observe that not only the ground-state degeneracy, but also the

full spectrum depends on the topology of the surface. For example, on the sphere, the

only closed loops in the fusion diagram are those, which involve links representing local

fluxes. Thus, there is no state with only one local flux on the sphere. The lowest-energy

excitation is a two-flux state (also present on the torus for e.g. c± = 1), which can be

represented locally in the fusion diagram as

|ap1 , ap2〉 =

∣∣∣∣∣∣∣∣∣∣∣

1

1

aa
p2p1

〉
, (3.44)

where the two local fluxes carry the same label a 6= 1. All two-flux states represented

in the dual basis (3.36) can be brought into the local form shown in (3.44) by a suitable

sequence of F -moves, which commutes with the Hamiltonian. So, we see that the energy

of a two-flux state does not depend on the actual distance of the fluxes. Thus the

flux excitations are indeed deconfined, as can already be seen from the fact that the

Hamiltonian HLW consists of the sum of equally weighted frustration-free projectors.

Contrary to the sphere, there are closed loops in the fusion diagram for the torus (3.39),

which do not involve local fluxes. A single flux line may terminate at these loops, if the

theory is non-Abelian. In particular, for each non-zero fusion matrix element Nf
c c with

f 6= 1, we have a one-flux state

|bp = f, c, c〉 =

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1 · · · f

1
1

f

1

1 f

c

c〉
. (3.45)

As these matrix elements do exist only for non-Abelian theories, already the low-energy

spectrum on a torus can tell us, whether a theory is Abelian or non-Abelian.

Let us now investigate the exchange statistics of the excitations. Therefore, we consider

a state

|a1, a2, a3, a4, u, d〉 =

∣∣∣∣∣a a a a

u

d

〉
(3.46)
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with four identical fluxes located at some positions 1, 2, 3, 4 on the lattice. We assume

the overall fusion channel to be labeled by the 1-label. Note that this state exists on

the sphere and on the torus. If we exchange now the position of the particles a2 and a3

by some sequence of local processes, we obtain the state

∣∣∣∣∣a a a a

u

d

〉
=
∑
u′,d′

F a a ua au′F
a a d
a a d′

∣∣∣∣∣∣a a a a

u′

d′

〉
=
∑
u′,d′

F a a ua au′F
a a d
a a d′

∣∣a1, a3, a2, a4, u
′, d′
〉
.

(3.47)

Thus we observe that the exchange of identical particles yields in principle a unitary

transformation on the degenerate states denoted by the labels of the fusion channels

u, d. In the special case of an Abelian theory, we have Nu
a a = Nd

a a = 0 for u, d 6= 1, the

exchange yields a phase factor
(
F a a1a a1

)2
. Let us remark here that in the case of non-

Abelian anyons, the non-local fusion channels u, d represent the topologically protected

qubits, on which one can act by braiding the particles as in the example above.

For the case Jp < 0, let us just mention here that the ground states are characterized by

the fact that most of the local fluxes are non-trivial. The actual ground-state degeneracy

then depends on the details of the anyonic theory, so that we shift this discussion to

Section 3.5, where we discuss the different models in detail for each theory.

3.1.6 Brief summary for the string-net Hamiltonian

Before we turn to the local perturbation, let us summarize what we have achieved so

far for the description of the topological Hamiltonian HLW. We introduced a general

string-net Hamiltonian HSN (3.2) consisting of commuting charge and flux operators.

The charge-free sector is obtained by imposing the branching rules as local constraints

at each vertex of the underlying lattice. The appropriate basis for this prescription is

the bond basis (3.1), in which the charge operators are diagonal.

In order to understand the flux operators in terms of injecting Wilson loops, we extended

the bond picture to the fat-lattice representation that allows to interpret a state as

a superposition of string networks. In this representation, we identify the local flux

operator Bp as a projector, which project onto the flux-free states at plaquette p using

the modular S-matrix as a key ingredient. We defined the flux basis (3.21) by the

quantum numbers of the local fluxes and the bond label configuration. This basis has

the advantage of being local, however it is overcomplete and non-orthogonal.

By extending the projector description also to larger parts of the surface and to non-local

fluxes, we have been able to construct the dual basis (3.39). This basis is completely
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defined in terms of orthogonal projectors and has no particular reference to the bond

labels. Thus it yields an orthogonal eigenbasis of HLW. Within this basis representa-

tion, we were able to discuss without a reference to a particular anyonic theory already

features like the topological ground-state degeneracy and the exchange statistics of the

excitations. We also discussed the fact that the underlying anyonic theory for the flux

excitations residing on the plaquettes of the lattice is the doubled theory D(F), although

the microscopic degrees of freedom residing on the edges take labels in the label set F .

3.2 The local Hamiltonian Hloc

In this section, we will discuss the simplest possible local Hamiltonian that can be used to

perturb the topologically ordered phase, given by the ground states of the Hamiltonian

HLW (3.5). Let us mention that the perturbation presented below has already been

discussed for non-Abelian theories in the Refs. [69, 70].

We define the local Hamiltonian Hloc by

Hloc = −Je

∑
e

P1
e , (3.48)

where projectors P1
e acting on the bond labels `e are defined by

P1
e |`e〉e = δ`e,1 |`e〉e . (3.49)

This Hamiltonian is obviously diagonal in the bond basis and thus commutes with the

charge operators Qv that are also diagonal in this basis. Thus, we can discuss the

eigenstates of Hloc within the charge-free sector. We discuss in the following the limit

Je > 0, as this does not depend on specific details of the underlying anyonic theory. The

case Je < 0 will be considered for each theory individually.

For Je > 0, the ground state |gs1〉 is given by

∣∣gsloc,1

〉
=
∏
e

|1〉e . (3.50)

In particular, the ground state is unique for any topology of the surface. Consequently,

there is no topological order.

Excitations of this Hamiltonian are states with link labels `e 6= 1. Due to the branching

rules, there is no single-link excitation, since δ1,1,a = 0 for a 6= 1 in any anyonic theory.
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Consequently, the low-energy excitations in this limit are given for s 6= 1 by

|6s〉p = Bs
p

∣∣gsloc,1

〉
=

∣∣∣∣∣∣ p s

〉
, (3.51)

i.e. by the shortest possible loop around plaquette p, where the links are labeled by s. As

there are N labels distinct from 1, there are N excitations per plaquette with excitation

energy 6Je.

Despite the fact that these excitations are extended objects involving several links, they

are created by the action of the local operator. Thus, it is clear that their exchange

statistics is bosonic [10].

To complete our discussion of the local Hamiltonian, let us consider the action of P1
e in

the dual basis. Therefore, we consider two adjacent plaquettes p1 and p2, which share the

inner bond e. We assume the corresponding fusion diagram ordered such that the two

plaquettes are adjacently located. If we now interpret the retraction skeleton within the

thickened bond as a flux line, we can use the S-matrix (3.6) to obtain a representation of

P1
e , which is the analogue of the definition of the projector P1

p in (3.17). More concretely,

we define operators Lse in analogy to the Bsp (3.10) to inject loops labeled by s around

the link e such that we have

P1
e

∣∣∣∣∣∣∣∣bp1 bp2

b+p1,p2

b−p1,p2

`e

〉
=
∑
s

ds
D2

Lse

∣∣∣∣∣∣∣∣bp1 bp2

b+p1,p2

b−p1,p2

`e

〉
=
∑
s

ds
D2

∣∣∣∣∣∣∣∣bp1 bp2

b+p1,p2

b−p1,p2

s
〉
. (3.52)

The additional loop around the thickened edge can then be removed in the same manner

as in (3.11) to yield finally

P1
e

∣∣∣∣∣∣∣∣bp1 bp2

b+p1,p2

b−p1,p2

`e

〉
=
∑
s

ds
D2

F
b+p1,p2 bp2 bp1
s b′p1 b

′
p2

F
b−p1,p2 bp1 bp2
s b′p2 b

′
p1

∣∣∣∣∣∣∣∣b′p1 b′p2

b+p1,p2

b−p1,p2

`e

〉
. (3.53)

Thus we can describe also the action of the local operators P1
e onto the eigenstates of

HLW. In general, one has to transform the fusion diagram to reorder the local fluxes

such that the flux labels for the two plaquettes sharing the bond e are adjacent in the

fusion diagram. This involves in general F - and R-moves and thus the matrix elements

of the local perturbation depend in general not only on the local flux labels on the two

adjacent plaquettes, but also on the other flux labels (local and non-local).
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A more physical picture for the action of the local perturbation (3.48) onto eigenstates

of HLW can be given in the bond basis. Eigenstates of HLW are represented in the bond

basis as a superposition of roughly all basis states, where the weight of each basis state

only depends, on the string-net configuration, i.e. the number of loops and branchings

but not their size. In particular, there is no notion of a string tension. The local

perturbation Hloc (3.48) weights the length of non-trivial strings and thus introduces a

string tension for the string-net states.

3.3 The perturbed string-net Hamiltonian

In the last section, we presented the two Hamiltonians HLW and Hloc, where the first

realizes a topologically ordered ground state for Jp > 0 and the second a topologically

trivial ground state. In the following, we study the Hamiltonian

H = HLW +Hloc = − cos θ
∑
p

P1
p − sin θ

∑
e

P1
e , (3.54)

where we set Jp = cos θ and Je = sin θ for notational convenience.

Let us remark that for the values θ = 0, π, we obtain the exactly solvable Hamiltonian

HLW and Hloc for θ = π
2 ,

3π
2 . Note that the sign of the coupling constants changes

depending on the value of θ. We refer to the phases, which are realized for θ = 0

as topological, to the ones for θ = π
2 as “polarized” or 1-phase. The other phases

are labeled according to their specific properties, which depend on the details of the

considered anyonic theory.

For different values of θ, the models are not exactly solvable in two dimensions and the

excitations within the respective phases become mobile and interacting. Additionally,

the Hamiltonians HLW and Hloc yield different ground-state degeneracies (e.g. (N + 1)2

and one, respectively). Thus between the distinct phases, in particular between the

topological and the 1-phase, we expect a phase transition. The location and the order

of the phase transitions are the focus of the analysis of the different models, which are

obtained for the respective anyonic theories detailed in the following.

3.4 Realizing different boundary conditions

Up to now, we only discussed the dual basis for lattices embedded on closed surfaces

as the sphere or the torus. However, in the thermodynamic limit, the actual topology

of the surface only impacts the number of topological sectors given by the non-local
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quantum numbers of HLW that distinguish the different ground states. These sectors

are decoupled in the thermodynamic limit, as the local perturbation in (3.54) cannot

couple them at any finite order in perturbation theory.

Therefore it is possible to investigate the same phase diagram not only for systems

with periodic boundary conditions, but also for different, and perhaps easier to handle,

underlying topologies. Possible examples are an open plane or a cylinder geometry, for

which the above model (3.54) has already been studied [69, 70]. In the latter cases,

one has to include boundary modes in the description, whereas for the torus, a full

description of the model has already been discussed in the previous chapters. Thus, we

give in the following the recipe to obtain a description for systems with open boundaries

from the dual basis description discussed in Section 3.1.4.

3.4.1 The ladder

Let us start with a cylinder geometry, which is used in the study of the anyonic theories

on the ladder e.g. in Refs.[69, 70, 72]. We consider here a two-leg ladder as depicted

in Figure 3.5 with periodic boundary conditions along the ladder direction and open

boundaries perpendicular to it. Note that this ladder forms a trivalent graph, for which

the Hamiltonian (3.54) can be defined consistently as for the hexagonal lattice. This

ladder can be embedded into the surface of the cylinder. By adding the two caps as

shown in Figure 3.5, we obtain a surface, which is topologically equivalent to the surface

of a sphere.

+

+

Figure 3.5: On the left-hand side, the two-leg ladder is depicted. With periodic
boundary conditions along the legs, the ladder can be embedded in the surface of the
cylinder depicted in the middle. The plaquettes, on which HLW acts, are shaded in
blue. The eigenbasis of HLW (3.5) can be obtained by closing the holes by appropriate
caps, which yield the surface depicted on the right-hand side. Its topology is equivalent
to the sphere and consequently, one can use the states (3.36) to describe the eigenstates
of HLW also on this surface with boundaries.

To construct the dual basis for this sphere, we observe that by closing the surface, we

introduced two additional plaquettes, for which one can define the projection operators

in analogy to (3.19). So we obtain for the states on the closed surface the representation
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(3.35), which reads here∣∣∣∣c1 c2
p1 p2 p2 pNp

· · ·
〉

F−moves
−−−→

∣∣∣∣ c1

c1

c2

c2p1 p2 pNp−1 pNp

· · ·
〉
, (3.55)

where we have colored the flux lines corresponding to the artificial plaquettes in orange.

The corresponding quantum numbers can be interpreted as the quantum numbers of

the boundary modes, localized at the boundary of each artificial plaquette. As the

corresponding projectors do not appear in the Hamiltonian (3.54), we perform a sequence

of F -moves to obtain the right-hand side of (3.55), where only local flux projectors act

on the rungs of the now periodically coupled ladder forming the fusion diagram.3

From the left-hand side of (3.55), one can read off that there are (N + 1) different ground

states of HLW on the cylinder, which correspond to the different loops containing the two

artificial flux lines, but no local flux line. We can also read off (3.55) that the number

of one-flux states at plaquette p of the original ladder is at least two, which corresponds

to the number of closed loops containing the local flux line at plaquette p and one of

the artificial flux lines.

The action of Hloc is local4 in this fusion diagram, if it acts only on bonds, which do

not form the boundary of the original ladder shown in Figure 3.5. As the boundary is

formed by the legs of the ladder, this means that the local perturbation is defined to act

only on the rungs of the original ladder.

From the right-hand side of (3.55), we can also see that an action of the local perturba-

tion on all rungs of the ladder can change the value of the non-local flux.

We can read off the fusion diagram in (3.55) that the action of the operators Lsp (3.52)

in the dual basis for the cylinder (3.55) is the same as the action of the Bsp (3.9) in the

bond basis (3.1). This yields a duality mapping as presented in Refs. [69, 70] for the

Hamiltonian, i.e. a transformation which maps the Hamiltonian (3.54) onto itself, but

exchanges the coupling constants Jp and Je. It turns out that for the theories considered

within this thesis, the Hamiltonian is exactly solvable at the self-dual points θ = π
4 and

θ = 3π
4 [69, 70, 116], where it is critical. Due to the exact solutions, the critical exponents

for the corresponding phase transitions are known [69, 70].

3The boundaries are now twisted since F -moves, which move the vertices attached to the artificial
fluxes across the surface of the sphere, do not commute with the Hamiltonian HLW[69]. However, in the
case of non-Abelian anyons, different boundary conditions result only in a change of the degeneracies of
the respective levels. So, spectral properties like the excitation gap or the ground-state energy are not
affected by the choice of untwisted periodic boundary conditions in the thermodynamic limit.

4I.e. it can be represented as in (3.53) in terms of local fluxes and their fusion channels.
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3.4.2 Open boundary conditions

In order to obtain a similar description for the case of open systems, i.e. systems defined

on finite parts of an open plane, we proceed similarly to the case of the cylinder. However,

as the open plane is topologically equivalent to the punctured sphere, we just need to

add one additional plaquette contouring the given open system as depicted in Figure 3.6.

Figure 3.6: The states for systems with open boundary conditions, e.g. the one shown
on the left, can also be described in terms of the dual basis (3.35). In order to also
take into account boundary modes, one has to introduce an additional plaquette, sur-
rounding the open finite cluster depicted on the left-hand side. This arrangement is
then equivalent to the system on a sphere as shown on the right-hand side, where the
additional plaquette is colored in red and the plaquettes, the Hamiltonian HLW acts
on, in blue. Thus, we can use the dual basis for the sphere to obtain the eigenstates of
HLW including the description of the non-local boundary modes (3.56).

Thus the boundary modes of the considered topological phase can be represented by one

additional flux line in the dual basis

∣∣{bp}p=1,...,Np , {b±Sn}n=2,...,Np−1, c
〉

=

∣∣∣∣c
p1 p2 pNp−1 pNp

· · ·
〉
. (3.56)

We see that there are (N + 1) different non-local boundary modes for an open system.

However, we can directly read off (3.56) that there is one unique ground state of HLW,

which is realized for c = 1 and a unique one-flux state per plaquette and label a, realized

for c = a.

As in the case of the ladder, the local perturbation does not change the quantum number

of the boundary mode, unless it acts on the boundary itself.

3.5 Realizations of the different anyonic theories

After having discussed up to now the general framework of perturbed string-net Hamil-

tonians, we turn to the details of the particular models, we investigate in the following.

These are the string-net model for semions, Fibonacci and Ising anyons. Our main focus

is the study of the phase diagram of H (3.54) defined for a two-dimensional system as
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well as the phase transitions between the different phases. Therefore we focus on the

case of the two-dimensional honeycomb lattice in the thermodynamic limit.

We also analyze the Abelian semion model. As string-net models for Abelian theories

with (N + 1) labels are dual to (N + 1)-state Potts-models [96], known results for the

latter provide the possibility to cross check our results. We shall therefore also discuss

the duality relation in more detail in Section 3.5.3.

3.5.1 The golden string net: Fibonacci anyons

The perturbed string-net Hamiltonian (3.54) is exactly solvable for four values of θ.

For θ = 0, π we obtain the string-net Hamiltonian (3.5) and for θ = π
2 ,

3π
2 the local

perturbation Hloc. Let us discuss the details of the different phases corresponding to

these points.

3.5.1.1 The topological phase

As already discussed in Section 3.1.5, the system shows topological order for θ = 0. The

degeneracy of the ground state can be described according to (3.41) by the number of

elements of the fusion algebra of the doubled Fibonacci theory D(Fib), which has the

label set {(1,1), (1, τ ), (τ ,1), (τ , τ )}. Thus, the ground state on the torus is four-fold

degenerate.

The excitations are gapped and are given by local fluxes, which correspond to the achiral

label (τ , τ ). The chiral labels only appear in the nonlocal fusion channels. Let us note

that the elementary excitation is a one-flux state (3.45) with energy gap Jp. As discussed

in Section 3.1.5, these excitations are non-interacting and static non-Abelian anyons.

Hloc↔ Hloc↔ Hloc↔

Figure 3.7: The processes induced by the local perturbation Hloc on eigenstates of
HLW include pair creation/annihilation, hopping terms, correlated creation/annihila-
tion terms as well as two-flux interactions, represented by the single diagram on the
right.

The action of the perturbation Hloc on the eigenstates of HLW is given in (3.53). Pro-

cesses induced by the perturbation are depicted in Figure 3.7. There are pair creation

and annihilation, hopping, correlated creation and annihilation as well as pure interac-

tion processes. Thus the local fluxes become mobile, interacting quasi-particles. Let us
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remark here that the local perturbation does not change the overall fusion label, i.e. the

total flux through a surface is conserved, unless the perturbation acts on its boundary.

3.5.1.2 Counting of states

Let us mention here one point, which we neglected in the general discussion: in the

representation of the dual basis (3.39), we can actually compute the degeneracy of a k-

flux state on a system with Np plaquettes and thus the total dimension of the charge-free

Hilbert space.

Therefore, one considers the parts of the fusion diagram corresponding to the positive

and negative chirality separately. Given k local fluxes, which are now at the “leaves” of

the Bratelli diagram shown in Figure 2.3 for each chirality, the other local fluxes carry

label 1 and can therefore be omitted in the following consideration.

Now, one has to determine the number of all possible fusion channels b±Sn for n =

2, . . . , Np of the local fluxes. Let us proceed iteratively to illustrate how this can be

achieved.

When fusing the fluxes b±Sn with bpn+1, there are the two possible values for b±Sn = 1

and b±Sn = τ . Let N1
n (Nτ

n ) be the number of possibilities of having b±Sn = 1 (b±Sn = τ ).

There are three possible fusion vertices for fusing b±Sn with bpn+1 to yield b±Sn+1, which

are depicted in Figure 3.8.

τ τ

1

1 τ

τ

τ τ

τ

Figure 3.8: The three fusion vertices arising in the counting of the fusion channels.
When read from left to right, the upper label describes the possible fusion outcomes
(b±Sn

⊗ τ ) 3 b±Sn+1, as bpn = τ . When read from up to down, the upper label represents

b±SNp
, whereas the two lower represent c±, if both are identical. Additionally, there is

the trivial vertex (all labels equal 1), which contributes to the three possible ways of
fusing b±SNp

with c±.

We see that the number of possible configurations to have b±Sn+1 = 1 is N1
n+1 = Nτ

n

and that for b±Sn+1 = τ we have Nτ
n+1 = N1

n + Nτ
n configurations. As we have N1

1 = 0

and Nτ
1 = 1 due to b±S1

= b±p1
= τ , we obtain finally that the N1,τ

n follow the Fibonacci

sequence (Fl)l≥−1, which is given by

Fl+1 = Fl + Fl−1, for l ≥ 1, F0 = 0, F−1 = 1, (3.57)
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so that we have

N1
n = Fn−1, Nτ

n = Fn. (3.58)

Additionally to the fusion channels of the local fluxes, the non-local fluxes c± of the

same chirality have to be taken into account. As the label c± can take either the value 1

or τ we can again read from Figure 3.8 that for a given chirality the number of possible

label configurations is

2N1
k +Nτ

k = 2Fk−1 + Fk. (3.59)

As the fusion diagrams for the two chiralities are independent of each other, we obtain

the total degeneracy Dtorus
k of a k-flux state on a torus with Np plaquettes

Dtorus
k =

(
Np

k

)
(Fk + 2Fk−1)2 =

(
Np

k

)(
F 2
k + 4Fk−1Fk + 4F 2

k−1

)
, (3.60)

where the binomial coefficient accounts for the number of possibilities to distribute k

fluxes on Np plaquettes.

Let us remark that the above way of counting the possible degenerate states represents a

concrete implementation of the more general result obtained in Ref. [117]. Nevertheless,

it allows us to obtain the total dimension Dtorus
tot of the Hilbert space for a charge-free

system with Np plaquettes by

Dtorus
tot =

Np∑
k=0

Dtorus
k . (3.61)

By replacing now Fn = 1
2ϕ−1

(
ϕn −

(
− 1
ϕ

)n)
(Moivre-Binet theorem), we obtain for the

total dimension of the Hilbert space

Dtorus
tot =

(
1 + ϕ−2

)Np
+
(
1 + ϕ2

)Np
, (3.62)

which agrees with the formula obtained in Ref. [114] via transfer matrix methods. Let

us finally note that the counting of states is possible in the dual basis, as here the

hierarchic structure of the fusion diagram allows to order the different fusion channels,

which e.g. not possible in the bond basis of the hexagonal lattice.
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3.5.1.3 The flux-full case

For θ = π, we can describe the eigenstates of H (3.54) again in the dual basis. However,

the overall sign of the projectors in HLW is different compared to the topological phase.

Consequently, the degenerate ground state is now given by the states, for which bp = τ

for every plaquette p. As we can read from (3.60), the ground-state degeneracy yields

Dtorus
Np

=
(
FNp + 2FNp−1

)2
and thus diverges in the thermodynamic limit Np → ∞.

Excitations above this set of ground states contain local 1 fluxes and are thus gapped.

However, within the infinitely degenerate ground-state manifold, a local perturbation

such as Hloc couples different states with each other. Thus, one cannot expect the de-

generacy to persist completely for some deviations from θ = π. Consequently, the point

θ = π is not expected to belong to an extended topological phase, but to represent rather

a particular point in the phase diagram. This observation agrees with the definition of

topological order given in (1.1).

3.5.1.4 The 1-phase

Let us now turn to the case θ = π
2 . The ground state of the 1-phase is unique and given

by (3.50) as discussed in Section 3.2. The elementary excitations are the states |6τ 〉p
(3.51).

The action of the Hamiltonian HLW onto these states can be read from (3.9). Note that

there is no direct hopping term for this perturbation, i.e.

〈6τ |p′ HLW |6τ 〉p = 0, (3.63)

where p and p′ are neighboring plaquettes on the hexagonal lattice. Consequently, the

elementary excitations become mobile only via virtual fluctuations.

3.5.1.5 The τ -phase

For θ = 3π
2 , i.e. the negative sign of the coupling Je, we see that the ground state is

given by

∣∣gsloc,τ

〉
=
∏
e

|τ 〉e , (3.64)

which is the state with the least number of 1-labels on the edges. Note that
∣∣gsloc,τ

〉
also fulfills the branching rules, as for the Fibonacci theory, we have δτ ,τ ,τ = 1. This
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state is not degenerate for any surface. Thus the corresponding phase is topologically

trivial. In analogy to the 1-phase, we refer to this phase as τ -phase.

Contrary to the 1-phase, the elementary excitations are given here by

|τ 〉e = |1〉e
∏
e′ 6=e
|τ 〉e′ , (3.65)

which have an energy gap of −Je > 0. As these states can be obtained by flipping a

local link label from τ to 1, we can conclude that these excitations are bosonic [10].

HLW↔ HLW↔ HLW↔

Figure 3.9: Some of the matrix elements of HLW in the low-energy configurations of
the τ -phase. We see that the action of HLW creates single and multiple excitations, as
well as long-range hoppings.

In Figure 3.9, we show the action of HLW on some of the low-energy configurations.

We observe that there are much more actions of HLW on the ground state than in the

1-phase, which generate states with one, two or three excitation. This already indicates

that HLW induces strong fluctuations on the ground state.

Additionally the action of HLW provides hopping terms for the elementary excitations.

These hopping terms are long ranged, as an excitation may hop to any bond of the

plaquette, the topological Hamiltonian acts on. Thus, we see that the two “polarized”

phases for the Fibonacci theory show different excitations and consequently a different

action of the Hamiltonian HLW on the low-energy states.

3.5.2 Ising anyons

In the following, we discuss the perturbed string-net model for Ising anyons. This theory

has three labels, so that we have two distinct types of excitations. One consequence is

e.g. that the phase corresponding to the value θ = 3π
2 , is not a polarized phase as the

τ -phase for the Fibonacci model. Due to the similarities with a quantum dimer model,

we refer to this as dimer limit.
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3.5.2.1 The topological phase

The labels describing the effective degrees of freedom for topological phase at θ = 0 are

given by the doubled Ising theory D(Ising), which has the label set

{(1,1), (1,ψ), (ψ,1), (ψ,ψ), (σ,σ), (σ,1), (1,σ), (σ,ψ), (ψ,σ)}. (3.66)

The number of ground states is therefore 9. The achiral labels corresponding to possible

labels for the fluxes are given by (1,1), (σ,σ), and (ψ,ψ), the chiral labels only appear

in the non-local fusion channels.

Note that the (ψ,ψ)-anyon is Abelian, i.e. it only has a unique fusion channel, when

fused with itself. The (σ,σ)-anyon is non-Abelian. We observe that the branching rules

restrict the number of local (σ,σ)-fluxes to be even.

The action of the local perturbation Hloc is given by (3.53) and results in similar pro-

cesses as depicted in Figure 3.7. However, let us note here that only pairs of the same

label are created or annihilated, but the correlated creation may involve distinct local

flux-labels. Otherwise, the perturbation has the same flux-conserving property as for

the Fibonacci theory, as it does not change a flux through a surface unless it acts on its

boundary. Through the action of the perturbation the local fluxes become mobile and

interacting quasi-particles.

3.5.2.2 Counting of states

Let us note here that we can determine the dimension of the Hilbert space analogously

to Section 3.5.1.2. However, we have two labels for non-trivial fluxes and thus we have

to sum over the number of states with kψ (ψ,ψ)-fluxes and kσ (σ,σ)-fluxes

Dtorus
tot =

∑
kψ ,kσ

Dtorus
kψ ,kσ

. (3.67)

The degeneracies Dtorus
kψ ,kσ

can e.g. be obtained by first fusing the kψ Abelian ψ-labels,

for which we have in analogous notations as in Section 3.5.1.2

N1
kψ

=

{
1 kψ even

0 kψ odd
, Nψ

kψ
=

{
0 kψ even

1 kψ odd
, (3.68)

as for Abelian fluxes, the overall fusion channels are already uniquely determined by

the local fluxes. For the non-Abelian σ-labels, we have for kσ > 1, due to the fusion

vertices of the Ising theory (2.27), the following non-zero multiplicities Na
kσσ

of fusing
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kσ σ-labels to label a

N1
2nσ = Nψ

2nσ = Nσ
(2n−1)σ, Nσ

(2n+1)σ = N1
2nσ +Nψ

2nσ. (3.69)

As we have Nσ
1 = 1, we see that

N1
2nσ = Nψ

2nσ = Nσ
(2n+1)σ = 2n. (3.70)

To obtain the total degeneracy on the torus, one has to take into account the flux labels

c±. As we have 1⊗σ = ψ⊗σ = σ, the number of ψ-labels does not impact the result,

if kσ > 0. Note that there is no fusion vertex with an odd number of σ-labels, so that

the overall fusion channel of the local fluxes has to be either 1 or ψ. We can read off

the fusion vertices (2.27), that there are three ways to fuse an overall fusion channel 1

with the possible labels of c±, whereas there is only one possibility of fusing an overall

fusion channel ψ, as δψ,c±,c± = δc±,σ.

Thus, we get in total

Dtorus
kψ ,kσ

=



(
Np

kψ

)(
Np − kψ
kσ

)(
3N1

kσσ
+ 1Nψ

kσσ

)2
kσ > 0(

Np

kψ

)(
3N1

kψψ
+ 1Nψ

kψψ

)2
kσ = 0

, (3.71)

where the binomial coefficients account for the number of possibilities to distribute the

fluxes on Np plaquettes.

Let us note that one can transform the lengthy expression (3.71) with some algebra to

obtain the degeneracy of a k-flux state

Dtorus
kψ+kσ =

(
Np

kψ+kσ

)(
1 + 6(−1)kψ+kσ + 2 · 3kψ+kσ

)
(3.72)

The latter form can be easily summed over to obtain the total dimension of the Hilbert

space, which reads

Dtorus
tot = 2 · 4Np + 2Np . (3.73)

Let us note here that if one sums only the degeneracies of the levels with kσ = 0 and

omits the values σ for c±, one obtains the total dimension for the semionic theory to be

Dtorus
sem, tot =

Np/2∑
k=0

(
Np

2k

)
= 2 · 2Np , (3.74)
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as it shares the fusion rules with the restricted set {(a, b), a, b ∈ {1,ψ}}.

3.5.2.3 The flux-full case

For θ = π, we are in the same situation as for the Fibonacci theory: the ground states

are states, where a non-trivial flux is located on every plaquette. Additionally to the

fact that there are two types of non-trivial fluxes, also the non-unique fusion channels

of the σ-labels lead to an infinite ground-state degeneracy in the thermodynamic limit.

Also in the present case, the local perturbation couples the different states, and thus

this degeneracy is expected to split at least partially.

3.5.2.4 The 1-phase

As described for the general string-net model, the unique ground state
∣∣gsloc,1

〉
is given

by (3.50). The gapped elementary excitations are

|6σ〉p = Bσp
∣∣gsloc,1

〉
=

∣∣∣∣∣∣
〉
, (3.75)

|6ψ〉p = Bψp
∣∣gsloc,1

〉
=

∣∣∣∣∣∣
〉
, (3.76)

on which the Hamiltonian HLW acts as described in (3.9) and thus introduces similar

processes as for the Fibonacci theory. In particular, there is no direct hopping term, so

that also here the elementary excitations become mobile only via virtual fluctuations.

Nevertheless, the topological Hamiltonian couples the two excitations on the same pla-

quette p, i.e.

〈6ψ|pHLW |6σ〉p =
dσ
D2
6= 0, (3.77)

so that the elementary excitations mix under the action of HLW.

3.5.2.5 The dimer limit

Contrary to the Fibonacci theory, the ground state for θ = 3π
2 is not unique, but degen-

erate. This is because the only fusion vertex without label 1 is given by the one related
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to δσ,σ,ψ = δσ,ψ,σ = δψ,σ,σ = 1. Consequently, there are the three ways

σ

ψ

σ
ψ

σ

σ σ

σ

ψ

(3.78)

of assigning this fusion vertex to a vertex of the actual lattice. One observation is that

Figure 3.10: For θ = 3π
2 , we see that the ground states correspond to the states with

one ψ and two σ as incident labels. The corresponding states can be seen as dimer
coverings of the hexagonal lattice, by assigning a dimer to each bond labeled by the
label ψ.

there is one link labeled by ψ per vertex. By considering now these links as dimers as in

Figure 3.10, we see that the ground states correspond to complete dimer coverings of the

hexagonal lattice. Defects of these dimer coverings correspond to excitations −Je > 0.

Let us note already here that the action of HLW induces terms within the ground-state

manifold, and thus the dimer limit is not expected to belong to an extended phase for

small deviations from θ = 3π
2 . We observe, that these terms go beyond the ones usually

considered for quantum dimer models (cf. e.g. to Refs. [49, 118]). Consequently, the

analysis of the phases arising in the vicinity of this point in the phase diagram is not as

straightforward as e.g. for the 1-phase.

3.5.3 The Abelian cases: semions and D(Z2)

For the Abelian case of the semions and the D(Z2) theory, we can actually describe

the Hamiltonian H (3.54) in terms of the transverse-field Ising model defined on the

dual, i.e. the triangular lattice. In order to understand this result, let us proceed in two

steps. The first consists in realizing that the degrees of freedom, which are relevant for

the matrix elements of the local Hamiltonian, are given by achiral labels. Within this

achiral sector, one can show in a second step that the Hamiltonian (3.54) for doubled

semions coincides with the one of the D(Z2) theory (2.23). As discussed in Ref. [56], this

theory is equivalent to a Z2-gauge theory [119]. The latter is dual to the transverse-field

Ising model for an open plane (as detailed e.g. in Ref. [120]) and thus we can finally

understand the different phases of the perturbed anyonic model in terms of the known

phases of the transverse-field Ising model.
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For the first step, let us remind that for Abelian anyons, there is also a unique fusion

outcome, so we have always b+Sn = b−Sn . Thus the fusion channels of local fluxes are

in the doubled representation (3.41) always achiral. Let us note that the label for the

non-local flux (c+, c−) may be chiral, but as we have necessarily b+SNp
= b−SNp

= 1 for

Abelian theories, the non-local fluxes are decoupled from the local fusion channels.

Consequently, the matrix elements of the local perturbation for appropriately ordered

local fluxes in the dual basis (3.53) are given by

P1
e

∣∣∣∣∣∣∣∣ c

c

ba

〉
=
∑
t,a′,b′

dt
D2

(
F c b at a′ b′

)2

∣∣∣∣∣∣∣∣ c

c

b′a′

〉
. (3.79)

We can see by comparing the possible values of the matrix elements of the semionic

(cf. Section 2.4.1) and the D(Z2) theory (cf. Section 2.4.4), that the matrix elements in

(3.79) coincide if we replace s by −1.

As we have additionally in the achiral sector for these theories∣∣∣∣∣∣∣∣ c

c

ba

〉
=

∣∣∣∣∣∣∣∣ c

c

ab

〉
= Ra bc

(
Rb ac

)−1

∣∣∣∣∣∣∣∣ c

c

ab

〉
=

∣∣∣∣∣∣∣∣ c

c

ab

〉
, (3.80)

i.e. the R-moves necessary to transform the fusion diagram into the local form (3.79),

do not change the matrix elements of the local perturbation for Abelian theories. In

particular (3.80) shows that particles labeled by (s, s) and ε = (−1,−1) have bosonic

exchange statistics.

Consequently, the Hamiltonian (3.54) for the semionic theory and the D(Z2) theory

coincide. As already detailed in Ref. [56], we can express (3.54) for the D(Z2) theory

H = −Jp

2

∑
p

(
1 +

∏
e∈p

σxe

)
− Je

2

∑
e

(1 + σze) , (3.81)

where the σx,ze are the Pauli matrices, and we use the representation σze |±1〉e = ± |±1〉e.
As e.g. detailed in Ref. [120], we can obtain the transverse-field Ising model from (3.81)

by introducing the mapping

∏
e∈p

σxe → σ̃xe , σze → σ̃zp σ̃
z
p′ , (3.82)
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where p, p′ denote the plaquettes neighboring the link e. Finally, we obtain up to a

constant energy shift the Hamiltonian HTFIM

HTFIM = −Jp

2

∑
p

σ̃xe −
Je

2

∑
〈p,p′〉

σ̃zp σ̃
z
p′ . (3.83)

Thus we have mapped the perturbed topological Hamiltonian onto the transverse-field

Ising model on an open system. Note that we have not discussed the effect of the

boundary conditions yet.

As the topological Hamiltonian HLW is mapped onto the field term in (3.83), we see

that for θ = 0 and for θ = π, there is a topologically ordered phase of D(Z2) type. The

ground state is unique for (3.83) as described in (3.42). Note that the number of flipped

spins with respect to the ground state is constrained to be even.

The limit θ = π
2 corresponds to the ferromagnetic Ising model on the triangular lattice.

However, the ground state of the string-net model is unique, as due to the conserved

boundary mode (3.56) one ferromagnetic ground state is fixed. Excitations are anti-

ferromagnetic bonds at the boundary of domains with plaquettes labeled by 1p and −1p

respectively.

The limit θ = 3π
2 corresponds to the anti-ferromagnetic (AFM) Ising model on the

triangular lattice. Due to the frustrating geometry of the triangular lattice, the ground

state is infinitely degenerate. Note that also here, the Z2-symmetry of the spin-1
2 Ising

model is broken by the conserved non-local boundary mode in the original model.

Let us finally note here that this mapping can be seen as a special case of the duality

mapping for unperturbed (Abelian) string-net models onto (N + 1)-state Potts models

presented in Ref. [96], which is extended to handle also the perturbation Hloc. This

mapping introduces a domain-wall picture for the labels defined on the bonds of the

hexagonal lattice. As we start from a description dual to the bond basis, we employ

additionally the duality of the resulting gauge model to the Ising model to obtain the

same result. The advantage of the ways presented above is that it allows to make the

connection of the semionic model and the lattice-gauge model to show that these two

coincide for the given perturbation.

Additionally, from the above construction it is clear that one cannot construct, by similar

means, an analog mapping for the non-Abelian case, where the involved R-moves do not

cancel. So, for Fibonacci and Ising anyons, we do not expect e.g. a phase transition

out of the topological phase described in a one-to-one correspondence of the topological

excitations to the ones of a statistical spin model.
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3.6 Chapter Summary

In this chapter we introduced the microscopic models investigated in Chapter 5.

Therefore, we presented the Hamiltonian HLW introduced by Levin and Wen [56]. This

exactly solvable Hamiltonian is defined in terms of the properties of a general anyonic

model as presented in Chapter 2. We discussed its properties making use of the bond

basis (3.1), defined completely in terms of the microscopic degrees of freedom, as well

as the flux basis (3.20), which characterizes the eigenstates of HLW the most local way

possible. Finally we constructed the dual basis, which allows to determine properties

such as (ground-state) degeneracies in a straightforward fashion. Let us emphasize

here that the construction of the dual basis, which is an orthonormal and complete

eigenbasis, has not been reported in the literature to the best of our knowledge.5 It

turns out that the eigenbasis of the topological Hamiltonian is described in terms of an

anyonic theory, which is the doubled version of the theory from which the microscopic

model is constructed.

We discussed also the effects of different surface topologies including boundaries on the

spectrum of the string-net model. This allows to treat the string-net Hamiltonian not

only for periodic boundary conditions, but also open boundaries.

To perturb the topological phase with a local operator, we introduced the Hamiltonian

Hloc. This term represents the simplest local perturbation and is the analogon of a single

parallel field in the study of the Abelian toric code models [71, 75, 77–79].

We discussed on general grounds the different phases to be expected in the phase diagram

of a perturbed string-net model. This discussion was then detailed for the three different

types of anyons, for which we investigated the perturbed topological Hamiltonian: the

non-Abelian Fibonacci and Ising anyons as well as the Abelian semions. For the latter,

is turns out that the model is equivalent to the transverse-field Ising model. For the

non-Abelian anyons, there is no such an equivalence.

By investigating the limiting cases of the topological and the local Hamiltonian, we

identify for the Fibonacci theory the doubled topological phase and two topologically

trivial phases. The latter phases, called 1- and τ -phase, are the analog of the param-

agnetic phase in the study of the perturbed toric code but they are different due to the

differences between the 1 and τ of the Fibonacci theory.

5However, the low-energy Hilbert space as been described for the ladder geometry e.g. in Ref. [69]
and a similar picture for anyonic states has been developed in Ref. [103].
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For the Ising anyons, we find a richer variety of limiting cases. Additionally to the

topological and the 1-phase, we find for θ = 3π
2 that the effective model is described in

this limit by a model build from quantum dimers.

In the following chapters we shall investigate the possible phase transitions of these three

different models.



Chapter 4
Topological symmetry breaking

In all chaos there is a cosmos,

in all disorder a secret order.

- Carl Gustav Jung -

In the previous section, we discussed the perturbed string-net model (3.54), which har-

bors topological ordered and topological trivial phases. When tuning the relative cou-

plings or respectively the control parameter θ in (3.54) (not to be confused the twist θa

of a particle a), phase transitions occur.

In principle, there are two types of phase transitions: those, where the system’s ground

state changes because another state becomes lower in energy, and those, where the

ground state remains the same, but changes its characteristics. The latter case is referred

to as a continuous phase transition.

If a continuous phase transition takes place between two non-topologically ordered

phases, the change of the ground-state wave function can be captured by a local order

parameter [1, 2]. This local order parameter transforms according to the representations

of the symmetry groups, which describe the symmetries of the two phases between which

the transition occurs. A continuous phase transition is then possible if one symmetry

group can be reduced or broken to the other one, i.e. if one symmetry group is a sub-

group of the other [121, 122]. The properties of the ground-state wave function and the

local order parameter at the transition point are then only dependent on the involved

symmetries and not on microscopic details of the underlying model.

This yields the characterization of phase transitions in terms of universality classes. The

critical properties, as e.g. critical exponents, coincide for phase transitions of the same

universality class and can be used to identify a phase transition investigated for a given

microscopic Hamiltonian. However, topologically ordered phases cannot be character-

ized by any local order parameter. Consequently, the approach to phase transitions

63
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via the Landau paradigm of symmetry breaking does not apply in general to phase

transitions out of topological phases.

In some cases, there is an effective dual description of the topological phase, in which

a local order parameter in the dual theory can capture a phase transition. This is for

example the case if the low-energy spectrum only contains particles with trivial mutual

braiding statistics, as e.g. for the semions discussed in Section 3.5.3 or for ZN -anyons

[86, 96].

However, these local dual descriptions do not exist for non-Abelian anyons, as there

e.g. the non-trivial degeneracies of excited states cannot be captured locally.

Therefore, a formalism analogous to Landau’s symmetry breaking paradigm has been

developed [19, 100] based on the algebraic structure of the anyonic theories presented in

Chapter 2, i.e. the fusion algebra F plays in this framework the role of the symmetry

group in the Landau-Ginzburg theory. This framework, to which one also refers as

Hopf-symmetry breaking [123] is the focus of the present chapter.

4.1 General framework

Let us note here that e.g. topologically ordered phases also arise in the context of gauge

symmetries [19, 28, 86]. These gauge symmetries cannot be broken by a local order

parameter [124]. However, it is possible to describe condensates with order parameters.

So, we consider here continuous phase transitions, which are driven by the condensation

of one or more particles to form, together with the ground state of the original phase,

the ground state of the broken one.

In order to discuss these phase transitions, we will proceed along the lines of Ref. [19] in

two steps. In the first step, we shall reduce the fusion algebra F describing the original

phase by condensation of an excitation into the vacuum of an intermediate algebra F ′.
This intermediate algebra contains all possible excitations in the other phase, but is not

required to only describe deconfined particles. Thus it may also contain representations,

which either do not correspond to point-like particles or correspond to particles having

non-trivial braiding statistics with the condensate. Both types lead in the absence of

boundaries to the confinement of the corresponding representations in the resulting

phase, which will be described by a fusion algebra F̄ . The confined representations can

eventually be used to describe boundary modes of the broken phase [19].
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4.1.1 Condensation

For the condensation picture of the phase transition, it is useful to think about the labels

of the fusion algebra F as irreducible representations of a (quantum) group.

Irreducible representations {a} of F , which are reducible representations of the subal-

gebra F ′, can be decomposed in terms of irreducible representations {ā} of F ′. This

splitting can be described by

a→
∑
ā∈F ′

naā ā, (4.1)

where a is an irreducible representation of F , the ā are the irreducible representations of

F ′ and naā are the integer multiplicities appearing in the decomposition. Note that this

is the exact analogue of the decomposition of representations in the case of the reduction

of the symmetry group within Landau’s paradigm. We refer to the labels a as lifts of ā

if naā 6= 0.

Additionally, it is possible that distinct representations of F correspond to the same

representation of F ′, so that different particles become identified via the transition.

The possible fusion algebras F ′ are required to be well-behaved, i.e. the fusion algebra of

the labels is an associative, well-defined algebra with a unique trivial label. Additionally,

we require also for the labels in F ′ that N 1̄
ā ā ≤ 1, i.e. there is a unique way to couple to

the vacuum.

In order for the fusion algebras F and F ′ to be compatible with each other, we require

that the transition to the reduced algebra and the fusion rules commute, i.e. if a⊗ b =∑
c
N c
a bc, we have

a⊗ b→

(∑
ā∈F ′

naā ā

)
⊗

∑
b̄∈F ′

nbb̄ b̄

 =
∑
ā,b̄∈F ′

naān
b
b̄ ā⊗ b̄ =

∑
c∈F

N c
a b

(∑
c̄∈F ′

ncc̄ c̄

)
. (4.2)

This constraint leads e.g. to the necessary condition

a→
∑
ā∈F ′

naā ā⇒ da =
∑
ā∈F ′

naā dā, (4.3)

which is helpful to identify possible candidates of F ′.
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In order to have a non-trivial condensation, there has to be at least one label b 6= 1 such

that nb
1̄
6= 0, i.e.

b→ 1̄ +
∑
b̄ 6=1̄

nbb̄ b̄. (4.4)

However, not only properties like the fusion rules of the algebra F carry over to the

intermediate algebra F ′, but also other properties like spins and mutual braiding statis-

tics. We discuss how this point impacts the excitations of the symmetry-reduced phase

in the following section.

4.1.2 Confinement

Not all excitations of the symmetry-reduced phase described the fusion algebra F ′ will

be point-like, deconfined particles. The latter are then described by the resulting fusion

algebra F̄ .

To see this, one has to consider the fact that properties of representations ā ∈ F ′ like

the spin are inherited from the lifts a ∈ F .

As point-like particles have a well-defined spin, we see directly that representations ā

with lifts having distinct spins cannot be point-like. As extended excitations correspond

to regions, where the original phase is restored, these will have an extensive energy cost

with respect to the vacuum of the resulting phase, which contains the condensate. Con-

sequently these excitations will be confined, i.e. not present in the low-energy spectrum.

This tells us directly that the condensing particle b has to fulfill θb = 1, in order to yield

a meaningful, i.e. deconfined, vacuum.

Additionally, we require the excitations in the resulting phase to have trivial braiding

statistics with the condensate in order to obtain a well-defined fusion algebra, which

in particular fulfills (2.16). Excitations not fulfilling this condition interact with the

condensate and consequently become confined. Note that this is the analog of the Higgs

mechanism discussed in high-energy physics [125–127].

So we obtain the final fusion algebra F̄ by eliminating all representations in F ′ not

fulfilling the above conditions. For notational brevity, we label the representations in F̄
the same as in F ′. Note that the fusion algebra F̄ turns out to be a closed algebra [19]

and thus yields a meaningful description of a topological phase.

However, the confined particles may also be present in the physical system if there is

a boundary between a region with and without condensate. In the same sense, the
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confined labels of F ′ may appear as boundary modes in the resulting phase. This

occurs e.g. in case of the two-leg ladder geometry investigated in Ref. [69, 70]. Here

the system consists mostly of the boundary (the legs), where is no condensate present.

Thus, extended excitations coupling to the boundary have only a finite energy cost and

consequently no confinement takes place.

Let us discuss now the examples, which are relevant for the anyonic theories considered

in this thesis.

4.2 Examples of topological symmetry breaking

In this section, we consider the possible condensate-induced phase transitions for the

models of interest within this thesis. Therefore we will give the intermediate algebra. In

the case of topological non-trivial resulting phases, we give the fusion algebra of it, too.

4.2.1 Phase transitions out of the doubled semion phase D(Semion)

We discuss here the case of the fusion algebra of the doubled semion model D(semion) =

{(1,1), (1, s), (s,1), (s, s)}. The only achiral label except (1,1) is (s, s). The quantum

dimensions of all labels equal 1, so that no splitting of the corresponding representations

can occur. Therefore we have as the only possibility of a symmetry reduction:

(1,1)→ 1̄, (s, s)→ 1̄,

(1, s)→ s̄, (s,1)→ s̄. (4.5)

So, the intermediate algebra is the fusion algebra of the semionic theory.

As the particles (1, s) and (s,1) do not have the same spin, the resulting particle s̄

has to be confined. Thus the phase arising via topological symmetry breaking from

the doubled semion theory does not have deconfined topological excitations and is thus

topologically trivial.

This result also holds for the D(Z2) model, as here the fusion algebra is identical to the

one for D(Semion). However, the spin of the only possible excitation −1̄ is well-defined,

but its non-trivial braiding relation with (−1,−1) leads to the confinement.
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4.2.2 Phase transitions out of the doubled Fibonacci phase D(Fib)

The label set of the doubled Fibonacci theory is given by

FD(Fib) = {(1,1), (1, τ ), (τ ,1), (τ , τ )}. (4.6)

We have the quantum dimensions d(1,1) = 1, d(1,τ ) = ϕ, d(τ ,1) = ϕ, d(τ ,τ ) = ϕ2. In

particular, the quantum dimension of the only non-trivial achiral representation (τ , τ )

is larger than two. Thus, it splits within the symmetry breaking. The other quantum

dimensions are smaller than two and thus, the corresponding representations do not

split. Thus we have

(1,1)→ 1̄, (τ , τ )→ 1̄ + τ̄ ,

(1, τ )→ τ̄ , (τ ,1)→ τ̄ , (4.7)

i.e. the undoubled theory for Fibonacci anyons as the only possible result of the symmetry

breaking.

As in the case of the semions, the spin of the remaining excitation τ̄ is not well-defined,

as the spins of the three different lifts (τ , τ ), (1, τ ) and (τ ,1) do not coincide. Thus,

there are no deconfined particles in the resulting phase and consequently, this phase is

topologically trivial.

4.2.3 Phase transitions out of the doubled Ising phase D(Ising)

The label set of the doubled Ising theory is given by (3.66). There are two types of

achiral excitations, namely (σ,σ) and (ψ,ψ). Whereas d(ψ,ψ) = 1, so that the particle

(ψ,ψ) cannot split, we have d(σ,σ) = 2 and thus this particle may split in the symmetry

reduction process. Let us note here that the other particles have quantum dimension

lower than two and thus do not split.

We have two achiral particles and thus in principle (at least) two ways of symmetry

breaking. Let us begin with the condensation of (σ,σ):

For this condensation, we have the only possible intermediate algebra

(1,1)→ 1̄, (σ,σ)→ 1̄ + ψ̄,

(1,ψ)→ ψ̄, (ψ,1)→ ψ̄, (ψ,ψ)→ 1̄,

(1,σ)→ σ̄, (ψ,σ)→ σ̄, (σ,1)→ σ̄, (σ,ψ)→ σ̄. (4.8)
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So, the algebra after condensation coincides with the one of the Ising theory. However,

as (σ,σ) braids non-trivially with all other particles except (ψ,ψ), all excitations in the

resulting phase are confined and thus this phase is topologically trivial.

Let us note here that all symmetry reductions obtained so far are of the form

(a, b)→
∑
c̄

N c
a bc̄, (4.9)

i.e. the doubled algebra is reduced to the undoubled one. This type of symmetry reduc-

tion is actually possible for every doubled theory. However, due to the confinement of

excitations, the resulting phase is in general trivial.

However, for the condensation of the (ψ,ψ)-particle, we have additionally to the con-

densation discussed above the possibility that the (σ,σ)-particle splits, but not in the

trivial particle. Then we have

(1,1)→ 1̄, (ψ,ψ)→ 1̄,

(1,ψ)→ ψ̄, (ψ,1)→ ψ̄,

(σ,σ)→ λ̄1 + λ̄2,

(1,σ)→ σ̄, (ψ,σ)→ σ̄, (σ,1)→ σ̄, (σ,ψ)→ σ̄. (4.10)

Note that the lifts of σ̄ have different spins and thus σ̄ is confined in the resulting phase.

The ψ̄ is not confined for λ̄1, λ̄2 6= 1̄ as θ(1,ψ) = θ(ψ,1) = −1 and its trivial braiding

with (ψ,ψ).

There are two possible choices for the fusion algebra to be consistent:

⊗ 1̄ λ̄1 λ̄2 ψ̄

1̄ 1̄ λ̄1 λ̄2 ψ̄

λ̄1 λ̄1 1̄ ψ̄ λ̄2

λ̄2 λ̄2 ψ̄ 1̄ λ̄1

ψ̄ ψ̄ λ̄2 λ̄1 1̄

⊗ 1̄ λ̄1 λ̄2 ψ̄

1̄ 1̄ λ̄1 λ̄2 ψ̄

λ̄1 λ̄1 ψ̄ 1̄ λ̄2

λ̄2 λ̄2 1̄ ψ̄ λ̄1

ψ̄ ψ̄ λ̄2 λ̄1 1̄

. (4.11)

The left fusion-rule table coincides with the one described in Section 2.4.4 for the D(Z2)

theory. In addition to the fusion rules, also the spins coincide as

θλ̄1
= θλ̄2

= θ(σ,σ) = 1, θψ̄ = θ(1,ψ) = −1. (4.12)

So, we see that there is a possible continuous phase transition between the D(Ising) and

the D(Z2) phases. This phase transition is described in large detail e.g. in Ref. [101] for

the transition from the D(SU(2)2) to D(Z2) theory. As D(SU(2)2) and D(Ising) have
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the same fusion algebra [102], we expect a phase transition of the same type. Let us

note that this transition has also been investigated for D(SU(2)k) for general values of

k [100].

The right fusion-rule table is the multiplication table of the group Z4. It has e.g. been

discussed in Ref. [128] in the context of one-dimensional quantum chains. However, with

these fusion rules and the spin values (4.12), there is no unitary modular anyonic theory

[19, 102]. Thus for this choice, we do not have a phase transition in two dimensions

between two anyonic theories as defined in Chapter 2.

So for the case of the doubled Ising theory, we find two possible phase transitions out of

the topological phase. One is driven by the simultaneous condensation of both achiral

particles and results in a topologically trivial phase. In contrast to this, the second phase

transition is driven by condensation of the Abelian achiral particle, leading a the topo-

logically ordered phase, which corresponds to the D(Z2) theory. Let us note here that

for the models discussed in Chapter 3, the perturbation Hloc (3.48) provides dynamics

to both particles and thus drives, as we shall discuss in Chapter 5, a condensation of

both anyons, resulting in the topologically trivial phase. If one chooses a perturbation

which provides only dynamics to the (ψ,ψ)-particle, e.g. by a perturbation term Lψe

(3.52), one expects the second phase transition as discussed in Ref. [101] to take place.

4.3 Chapter summary

In this chapter, we have presented the framework of topological symmetry breaking.

It generalizes the spontaneous symmetry breaking for non-topologically ordered phases

and yields criteria, under which conditions a continuous phase transition may occur.

This concept is based on the breaking of the fusion algebra F by condensation of a

particle into the ground state to a subalgebra F ′. This subalgebra may still describe

e.g. extended excitations. The subalgebra F̄ , which describes the deconfined, point-like

excitations of the resulting phase is obtained by eliminating all representations of F ′,
which are extended particles or possess non-trivial braiding statistics with the formed

condensate.

We have discussed the possible condensation scenarios for the theories of interest within

this thesis. The respective condensation of all achiral (quasi-) particles is driven by the

local perturbation Hloc (3.48), and thus it is very likely that all achiral excitations of

HLW condense to yield a continuous phase transition to a topological trivial phase.
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As we are considering here doubled anyonic phases, we find that there is always the

possibility of a continuous phase transition to a topologically trivial phase by the simul-

taneous condensation of all achiral excitations. In the case of the Ising anyons, we find

a possible continuous transition to another topologically ordered phase described by the

D(Z2) fusion algebra as described in Refs. [100, 101].

Therefore we have for the three distinct theories presented in Chapter 3 always the

possibility of a continuous phase transition between topologically ordered and trivial

phases. We shall investigate the different phase transitions in this model for each case.

Let us note here that although the framework of condensate-induced symmetry breaking

allows to understand continuous phase transitions, it does not enable us to identify the

analog of universality classes for models described by different fusion algebras. Therefore

we expect the phase transitions for the different anyonic theories to be different.





Chapter 5
Results for perturbed string-net models

The shortest answer is doing the thing.

- Ernest Hemingway -

In this chapter, we shall investigate the phase diagram and phase transitions for the three

different microscopic models presented in the previous chapters, namely the perturbed

string-net model (3.54) for semions, Fibonacci anyons, and Ising anyons. We study these

systems in the thermodynamic limit on a hexagonal lattice as depicted in Figure 3.1.

~n2 ~n1

x
y

z

Figure 5.1: To describe the elementary excitations of the topological and the 1-phase,
which are defined on the plaquettes of the triangular lattice, the lattice vectors ~n1 and
~n2 are chosen. For the elementary excitations residing on the links of the lattice, i.e. the
excitations of the τ -phase, we give additionally the unit cell indicated by the dashed
triangle, where the three different links are denoted by x, y, and z, respectively.

For our description of the low-energy physics, we choose the unit cells depicted in Fig-

ure 5.1. Note that the low-energy degrees of freedom are located either on the plaque-

ttes {p} for the topological and the 1-phase for all three considered models or on the

links {e} for the τ -phase of the Fibonacci model. Therefore we employ for the first case

the unit cells for the triangular lattice formed by the plaquettes and for the second the

triangular lattice formed by the three-link unit cells.

To determine the phase diagram and the phase transitions of the respective models, we

investigate their low-energy physics. Therefore we determine the ground-state energy per

plaquette e0 and the gap of the lowest-energy excitation ∆ using the methods discussed

in large detail in Chapter II.

73
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Let us mention here only that we derive the effective Hamiltonians Heff
0qp for the ground

state(s) and Heff
1qp for the elementary excitations, which decouple the respective sectors

from the rest of the Hilbert space.

In the case of a unique ground state, Heff
0qp is a 1 × 1 matrix, and so the ground-state

energy per plaquette reads

e0 =
1

Np
〈gs|Heff

0qp |gs〉 =
1

Np
E0, (5.1)

where |gs〉 is the reference state for the series expansion, Np is the number of plaquettes

in the lattice, and E0 is the extensive ground-state energy.

The effective Hamiltonian Heff
1qp is of the general form

Heff
1qp =

∑
~ι

∑
~r,α,β

tα,β~r |~ι+ ~r, α〉 〈~ι, β| , (5.2)

where ~ι denotes the position of the unit cell, ~r = n1~n1 + n2~n2 with n1, n2 ∈ Z is a

lattice vector, and the indices α and β summarize possibly appearing additional quantum

numbers as e.g. flux labels.

The hopping elements tα,β~r are given by

tα,β~r = 〈~ι+ ~r, α|Heff − δα,β δ~r,~0E0 |~ι, β〉 , (5.3)

where Heff is a method-dependent effective Hamiltonian as discussed in Chapter 6.

For translationally invariant systems, the effective Hamiltonian (5.2) is (block-) diago-

nalized by the unitary Fourier transform defined as∣∣∣~k, α〉 =
1√
Nc

∑
~ι

e−i~k~ι |~ι, α〉 , (5.4)

where Nc is the number of unit cells in the lattice. Note that in the thermodynamic

limit, the infinitely extended lattice is invariant under translations. So, we can always

apply this transformation.

The matrix elements of the effective Hamiltonian Heff
~k

take in this basis the simple form

(
Heff
~k

)
β,α

=
〈
~k, β

∣∣∣Heff
1qp

∣∣∣~k, α〉 =
∑
n1,n2

ei~k~ι tα,βn1~n1+n2~n2
. (5.5)

The dispersion ω(~k) is then obtained by diagonalizing the finite-dimensional matrix Heff
~k

.

Note that in the case of the absence of additional quantum numbers, ω(~k) is directly

given by the right-hand side of Eq. (5.5).
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The global minimum of the dispersion in ~k at the value ~kc gives the elementary ex-

citation gap ∆ = ω
(
~kc

)
. This quantity is of particular interest in the context of

condensate-induced phase transitions as detailed in Chapter 4. Within this framework,

the condensate is formed by the condensation of an elementary excitation, thus the

elementary particle-gap necessarily closes at the transition point.

In what follows, our main focus is the study of the phase transition between the topo-

logical and the 1-phase, as it is present for the three investigated models.

5.1 Phase transitions in the semion model

In this section, we analyze the perturbed string-net model (3.54) for semions. The

different series expansions discussed can be found in Appendix A.

As detailed in Section 3.5.3, this model is dual to the spin-1
2 transverse-field Ising model

on the triangular lattice. Consequently the spectra of these two models coincide up to

degeneracies. For the transverse-field Ising model, the phase diagram and the phase

transitions are well known [129–133].

In particular, the phase transition from the paramagnetic to the ferromagnetic phase

(corresponding to the phase transition from the topological to the 1-phase in the lan-

guage of Chapter 3) is a standard example for a continuous quantum phase transition

[134], being in the universality class of the classical Ising model in three dimensions

(c.f. Refs. [129, 130] and references therein).

Additionally, the phase transition from the paramagnetic to the anti-ferromagnetic phase

is known to be in the same universality class as the three-dimensional classical XY -

model [131, 133]. Thus, we shall use the analysis of this data as a verification of our

procedure to obtain the low-energy spectrum and to validate the analysis applied also

in the non-Abelian cases.

The global picture for the semion model is given in Figure 5.2, where we show the

ground-state energy per plaquette e0 and the low-energy gap ∆ as a function of the

control parameter θ (3.54). For the ground-state energy, we show the series expansions

around the exactly solvable limits θ = 0, θ = π (red) and θ = π
2 (blue). Additionally,

we show exact-diagonalization data for two different system sizes (gray and black).

Note that on the periodic systems considered in the exact diagonalization, the number

of excitations is constrained to be even. In order to achieve a matching of the obtained

spectra from exact diagonalization and the series expansion, we show for the semion
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Figure 5.2: The ground-state energy e0 (top) and the low-energy gap 2∆ (bottom)
in dependence of the control parameter θ. We show data from series expansions for the
different limits (red for the limit θ = 0, π, blue for the limit θ = π

2 ). Additionally, data
from exact diagonalization is given (gray for the Np = 9 and black for the Np = 12
system). The left inset shows the crossing of the different curves for the ground state
energy around θ ≈ 0.207 for different orders of the series expansion. In the right inset,
we show the series expansion for e0 from order one (orange) to order eleven (dark red)
around θ = 5.73.

model not the elementary-particle gap ∆ obtained by the series expansion, but the

lower band edge of the two-particle continuum 2∆.1

The two topological phases found for θ = 0 and θ = π are identical due to the 1 ↔ s

symmetry of the fusion algebra. Thus, we only consider the phase transitions out of

the topologically ordered phase to which the point θ = 0 belongs, as the analogue case

exists also in the case of the non-Abelian theories.

1For the very special case of this model, the lower-band edge of the two-particle continuum coincides
with twice the single-particle gap ∆, as the dispersion is minimal at the momenta ~k, for which 2~k is
equivalent to ±~k. We shall discuss this in more detail when discussing the results in Section 5.1.1.
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5.1.1 Phase transition between topological and 1-phase

As can already be seen from Figure 5.2, there are two different situations encountered

in the study of the phase transitions with series-expansion techniques: either series

expansions for both phases are known and can be analyzed in a joint fashion, or series

expansions are only available for one phase, in which case one is restricted to use only

information from one side of the phase transition. We find the former scenario for the

transition from the topological to the 1-phase and the latter for the transition from the

topological to the dual of the anti-ferromagnetic phase.

e0

−1.25

−1.35

0.14 0.16 0.18 0.20 0.22 0.24
θ

−1.29

−1.31

0.20

∆

0.5

0.4

0.3

0.2

0.1

0
0.15 0.20 0.25

Figure 5.3: The ground-state energy e0 (top) and the one-particle gap ∆ (bottom)
around θ ≈ 0.2. The series for etop0 is depicted from order one (orange) to eleven (red),
the series for e10 from order one (light blue) to 18 (dark blue). The series for ∆+

top is
shown from the order one (orange) to order eleven (dark red), the series for ∆1 from
order one (light blue) to twelve (dark blue). All series behave monotonously, i.e. for
higher orders the respective values decrease. The insets shows the behavior of the series
in a large zoom to depict the two crossing points of the series for order nine (etop0 ) and
18 (e10) by magenta dots.

In the following, we detail our findings for the transition between the topological and the

1-phase. The analysis of the other phase transition is performed by a simpler analysis
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similar as e.g. in Ref. [133].

In Figure 5.3, we show the series for the ground-state energy e0 and the gap ∆ around

θ ≈ 0.2. We depict the series order by order, with orders ranging e0 in the topological

phase from one to eleven and for the 1-phase up to 18 in t = tan θ. We give here the

series up to order four

etop
0 = cos θ

(
−1− 3

2
· t− 3

8
· t2 − 3

8
· t3 − 87

128
· t4 +O(t5)

)
, (5.6)

e10 = sin θ

(
−3− 1

2
· t−1 − 1

24
· t−2 − 1

17280
· t−4 +O(t−6)

)
. (5.7)

Note that for the series valid in the 1-phase, odd orders vanish. This is due to the

Z2 symmetry of the phase, which, together with the “acting-twice” property of the

topological Hamiltonian discussed in Section 7.3.1, leads to the vanishing of odd orders

for the topologically-trivial phase.

One can see that both series for the ground-state energy seem to match very well in

the interval θ ∈ [0.19, 0.21], however it is not obvious how to state precisely, where

the phase transition between the two phases is located. Additionally, if one identifies

the location of the phase transition via a crossing point of two finite-order series, both

series have generically a different slope at the crossing point. Thus one is naively led to

conclude that the phase transition is of first order, as the ground-state energy given by

the minimum of the two series shows a kink at the crossing point. In order to be able

to detect reliably a continuous or second-order phase transition, one has to extrapolate

the information contained in the series expansions to the infinite-order limit and verify

that the kink vanishes in this limit.

In the case considered here, the ground-state energies converge monotonously with order,

i.e. all coefficients of the series have the same sign (cf. Eqs. (A.1) and (A.53)). We can

use this to extrapolate the crossing points of the series for the ground-state energy etop
0

at order n with the series for e10 at order 2n. Note that this choice of different orders

is arbitrary, however it can be motivated by the fact that the perturbation operators

appearing in the effective Hamiltonian have the same extension of n plaquettes for an

order n calculation in the topological phase and for an order 2n calculation in the 1-

phase due to the ”acting-twice” property. Thus, the involved operators act on the same

length scale, leading to this choice of comparison. Note that in the limit of infinite order,

every possible choice should lead to the same result.

We find here two crossing points for the ground-state energy series per n. We depict

their position for a given n in Figure 5.5 as function of the inverse order 1
n . Note that,

if the positions of the two crossing points meet in the limit of infinite order, the first
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derivative of the ground-state energy has to be continuous. In this case, our results are

consistent with a continuous phase transition.2

However, before discussing the results of this finite-order scaling in more detail, let us

turn to the data provided by considering the elementary-excitation gap. The gap of

the topological phase ∆+
top is determined up to order eleven, the gap ∆1 is taken from

Ref. [130] up to order 11 to consider the same orders as obtained for the non-Abelian

cases. They read up to order four

∆+
top = cos θ

(
1− 3 · t− 3 · t2 − 21

4
· t3 − 63

4
· t4 +O(t5)

)
, (5.8)

∆1 = sin θ

(
6− 1

6
· t−2 − 1

432
· t−4 +O(t−6)

)
. (5.9)

Note that both gaps are the minimum of the respective dispersions ω
(
~k
)

at ~kc = ~0.

This allows us to obtain the lower-band edge ω−2qp of the two-particle continuum depicted

in Figure 5.2 via

ω−2qp = min
~k,~q

(
ω
(
~k + ~q

)
+ ω (−~q)

)
= 2 min

~k
ω
(
~k
)

= 2∆, (5.10)

where we used the fact that the ~k-point minimizing the dispersion is also the minimum

of the two-particle continuum.

In the case of a continuous phase transition, we expect the elementary-excitation gap

to go to zero simultaneously from both sides of the transition point. As we can see in

Figure 5.3, this is not the case for a finite-order series. So, we shall proceed as in the

case of the ground-state energy and extrapolate to the limit of infinite order.

Therefore, we consider the zeros of both gaps as well as the location of the crossing

points of the two curves. In contrast to the ground-state energy, we consider for the

crossing points both gap series at the same order n. This is due to the fact that for

the non-Abelian cases, we reach about the same orders in the series expansion for the

topological and the 1-phase.

Let us already note here that in principle, one can perform an extrapolation by a dlog-

Padé approximant for each gap separately. However, due to differences in the conver-

gence of both series, we find that the results of these separately performed extrapolations

do in general not coincide for the orders considered here. Consequently, these will not

yield a consistent picture and we do not discuss them here.

2Note that one can never rigorously exclude a (weak) first-order transition within this approach, as
a distinction between a small but finite or a vanishing kink in the ground-state energy is not obvious.
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Figure 5.4: The exact diagonalization data for the system with Np = 4, 7, 9, and 12
(colored in light gray to black). We show the ground-state energy per plaquette, its
first and second derivative, as well as the low-energy gap ∆. Note that for the region
θ ∈ [π, 2π], one can observe strong finite-size effects due to frustration.

Additionally to the data obtained by series expansions, we also diagonalized the per-

turbed string-net model (3.54) on finite, periodic systems as detailed in Section 6.2. We

shall now consider the results depicted in Figure 5.4, where the ground-state energy per

plaquette e0, its first and second derivative as well as the low-energy gap ∆ are given.

For the region θ ∈ [0.1, 0.3] (c.f. the insets in Figure 5.4), we observe a well converged

ground-state energy. In the same region, the first derivative ∂θe0 steepens with system

size, but converges on the scales considered here. The second derivative ∂2
θe0 shows no

tendency to converge, as far as one can tell from the system sizes considered. In order

to obtain quantities valid for the thermodynamic limit, we shall perform a finite-size

scaling. We are interested here in the location of the phase transition, which, if of

second order, should be signaled by a closing gap and a diverging second derivative of

the ground-state energy. Therefore, we consider the gap minimum and the minimum of

∂2
θe0. This data is given together with the data of the series expansion in Figure 5.5.

Additionally, we shall discuss the value of the gap ∆ at its minimum for the different

system sizes. We plot the different quantities against either inverse order or inverse

system size 1
Np

.

We observe that the data obtained by series expansions and by exact diagonalization

differ significantly. This is due to the fact that the low-energy excitations for the periodic

systems, on which exact diagonalizations are performed, are not single but pairs of
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Figure 5.5: The finite-order and finite-size scaling is performed for the location of the
phase transition (top) or the elementary-excitation gap at the transition point (bottom).
The lines are power-law fits to the data points (c.f. text). The estimate for the location
of the critical point θc1 ≈ 0.207 is obtained by a least-square fit of the crossing points of
the series expansions of the ground-state energy e0. We observe good compatibility of
all data points with a continuous phase transition at θc1, except for the data from exact
diagonalization. The data obtained for the elementary-excitation gap is consistent with
a convergence to zero in the limit of infinite order/size. Note that the ED results for
the gap are divided by a factor of two to be comparable to the series expansion results.

excitations. Thus the length scales necessary for a converging finite-size scaling are

significantly larger.

The estimate of the location of the phase transition θc1 = 0.207 is obtained by a least-

square fit of the data points with a power-law behavior

an ≈ (θn − θc1)γa , (5.11)
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where the quantities (θn, an) are the location and the value of the different crossing

points or minima for different orders or system sizes n.

Let us note that this way of extrapolating the perturbative data to the infinite-order

limit is heuristic. This can already be seen in the data for the zeros of the gap ∆+
top,

which shows a large jump between order eight and nine, indicating that the impact of

higher-order terms cannot always be predicted from the lower orders. Nevertheless, for

a converging expansion this scaling is supposed to work, once one has reached suitably

high orders in the expansion.

This scaling allows to obtain a quantitatively similar result3 as an analysis involving

even higher orders and considering directly the order parameter as performed e.g. in

Ref. [129]. We observe in the lower plot in Figure 5.5 that also the values for the gap

at the crossing point (minimum) are compatible with the convergence to zero if one

increases the order the (size) of the system. The fits to the points are again power-law

functions.

Having obtained the location of the phase transition by this scaling, we turn now to the

determination of the universality class. Therefore one considers the critical exponents.

The most important one for our analysis is the exponent associated with the gap. It is

defined by

∆ ∝ |θ − θc|zν (5.12)

and can be obtained by dlog-Padé extrapolation of the series expansion for the gap

as detailed in Section 6.1.6. Note that this exponent is a product of the dynamical

exponent z and the exponent ν associated with the divergence of the correlation length

at the phase transition point.

zν obtained for ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.645 0.646
3 0.646 0.646 0.646
4 0.646 0.646 0.646
5 0.646 0.645 0.648

zν obtained for ∆1

N [N/N-1] [N / N] [N / N+1]

2 - - 0.758
3 0.734 0.684 0.645
4 0.632 - 0.617
5 0.606 0.624 -

Table 5.1: The critical exponent zν for the phase transition between topological
and 1-phase obtained by biased dlog-Padé extrapolations. Unphysical results for the
exponent, i.e. those with zν < 10−3, are discarded.

3We note that in the units of Ref. [129], the location of the phase transition tan θc1 = 0.210 agrees
with the xc = 0.20974 given there. The estimate is obtained there by considering the series expansion
of the susceptibility up to order 14.
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We perform dlog-Padé extrapolations of the gap series for the topological and the 1-

phase, which we bias on the location θc1 determined previously. The results are listed in

Table 5.1.

As the series for the topological phase is the same as in Ref. [129], we obtain the same

result, i.e. a critical exponent zν = 0.65. However, for the 1-phase, we use less orders

than in Ref. [130] (eleven instead of 18). We find that our results are not at all converged

and thus we consider the values obtained via ∆+
top. Let us note that the most precise

value is given by ν = 0.6301 in Ref. [135]

z obtained for ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 1.3 1.1
3 1.3 1.3 1.3
4 1.1 1.3 1.3
5 1.3 1.3 -

Table 5.2: The critical exponent z for the phase transition between topological and
1-phase obtained by the variation of biased dlog-Padé extrapolations around ~kc = ~0.

The dynamical critical exponent z is also associated with the dispersion in the vicinity

of the closing point, i.e.

ω
(
~k
)∣∣∣
θ=θc

∼
∣∣∣~k − ~kc∣∣∣z . (5.13)

We can determine this exponent by varying the value of ~k in the biased dlog-Padé

extrapolants used to determine zν. This yields the values shown in Table 5.2. By

comparing the value with the known value z = 1, we see that there is a deviation of

about roughly 30%, which is larger than for the exponent zν. This is due to the fact that

we use a variation of an approximant to determine the exponent and not the approximant

itself. Let us remark that these large deviations for the dynamical exponent z have also

been found in other studies of the Ising model [136].

Having determined these two exponents, one can obtain further ones by hyper-scaling

relations [137]. For example, the relation

2− α = ν(d+ z), (5.14)

where d = 2 is the spatial dimension of the system, yields the critical exponent α that

is associated to the specific heat, or in our case of a zero-temperature phase transition

to the second derivative of the ground-state energy i.e.

∂2
θe0 ∼ |θ − θc|−α . (5.15)
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Note however that in case of a second-order phase transition, we have α < 1 as ∂θe0

diverges otherwise. If one can obtain values for α by other means, one can check, whether

relation (5.15) holds. Let us remark here that the exponent α is not easily obtained by

the means of series expansions [129], so we use the relation (5.14) to infer that α ≈ 0.10.

This value is consistent with the relatively small slope of ∂θe0 ∼ (θ − θc1)−α+1, which

can be observed in the exact-diagonalization data shown in Figure 5.4.

Even though this type of analysis seems artificial as there are more straightforward ways

to extract the location of the phase transition as well as the associated exponents for the

transverse-field Ising model by a direct analysis of the model itself as in Refs. [129, 130].

Note however that also in these studies, the critical exponents differ from the ones

obtained by the investigation of the classical, three-dimensional Ising model as e.g. in

Ref. [135, 138, 139] by about 5%.

We shall use these differences to estimate the order of magnitude of the uncertainty of

our results for zν, as differences up to roughly 10% for this critical exponent may arise

also in some examples for analogous studies, as e.g. the ones performed in Refs. [86, 133].

Note that these uncertainties cannot be estimated in a more systematic fashion as they

depend on the details of the particular model.

Before analyzing the finite-order and finite-size behavior of the data for the second phase

transition out of the topologically ordered phase, let us discuss the obvious finite-size

effects in Figure 5.4 for the region θ ∈ [π, 2π].

For θ ≈ π the flux-full state is the ground state in thermodynamic limit due to the ex-

change symmetry 1↔ s. However, on finite systems with an odd number of plaquettes,

the flux-full state is not part of the Hilbert space. Thus for systems with an odd number

of plaquettes at θ = π, the extensive number of ground states is given by the states with

only one flux-free plaquette.

Around θ = 3π
2 , the Hamiltonian (3.54) is equivalent to the anti-ferromagnetic (AFM)

Ising model in a transverse field, which is frustrated on the triangular lattice. Due to

this frustration, the spectrum depends strongly on the system size. Therefore, we do

not expect the exact diagonalization in the region θ ≈ 3π
2 to be as converged as for the

unfrustrated case θ ≈ π
2 , especially for the excited states. Consequently, we focus on the

perturbative results, as these do not suffer from finite-size effects.

5.1.2 Phase transition between topological and AFM-phase

For this phase transition, we cannot proceed in the analysis as for the previously dis-

cussed phase transition, as here we only have perturbative expansions valid for one phase
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and additionally strongly system-size dependent exact-diagonalization data. Therefore,

we analyze the data of the gap of the topological phase to pinpoint the location of the

phase transition.

∆−
top

1.00

0.75

0.50

0.25

0.00
5.8 6.0 6.2

θ
Figure 5.6: The series of the gap ∆−top in the topological phase is depicted from
order one (yellow) to order eleven (dark red). Additionally to the alternating series,
we give the dlog-Padé extrapolations (blue), which determine the location of the phase
transition at θc2 = 5.73.

In Figure 5.6, we show the one-particle gap ∆−top determined up to order eleven, which

minimizes the dispersion ω
(
~k
)

for ~k = ±
(

2π
3 ,−

2π
3

)
for θ < 0 in the topological phase.

Note that 2~k is equivalent to −~k and thus, as for the other phases, the lower band edge

is given by twice the gap.

The gap reads up to order four

∆−top = cos θ

(
1 +

3

2
· t+

3

8
· t2 +

15

16
· t3 +

243

128
· t4
)
. (5.16)

Note that the agreement of our series expansions with the one obtained in Refs. [129,

130, 133] already allows us to check the validity of our procedure to obtain the series

expansions.

We show in Figure 5.6 also the dlog-Padé extrapolants of the gap. We see that the

alternating series is extrapolated to yield a closing gap at θc2 = 5.73 in accordance with

Refs. [132, 133].

In Table 5.3, we give the zeros of the approximants as well as the estimated exponents

zν and z. The corresponding values for the classical three-dimensional XY model are

given by ν = 0.67 [140] and z = 1 [131] respectively, so we observe a deviation of our

results slightly larger than the error estimates discussed above.
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θc2 obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 5.749 5.730
3 5.721 5.735 5.733
4 5.733 5.734 5.735
5 5.735 5.733 -

zν obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 0.65 0.75
3 0.81 0.72 0.73
4 0.73 0.72 0.72
5 0.72 0.72 -

z obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 1.3 1.4
3 1.5 1.4 1.4
4 1.4 1.4 1.4
5 1.4 1.4 -

Table 5.3: The location of the phase transition θc2 = 5.73 and the values of the
critical exponents zν = 0.72 and z = 1.4 are obtained by dlog-Padé extrapolation of
the gap ∆−top.

5.1.3 Summary of the phase transitions in the semion model

In the above section, we presented our results for the perturbed string-net model for

semions. We determined the phase diagram and analyzed the phase transitions between

the different phases. The comparison with the results for the transverse-field Ising model

allows for an estimate of the accuracy of our results.

We find in total four continuous phase transitions between a topologically ordered and

a topologically-trivial phase, two of them related to each other by the 1↔ s symmetry

of the semion fusion algebra.

We performed series expansions for the topological and the 1-phase. The location of

the phase transition between these phases is determined via a finite-order and finite-

size scaling. Using the so obtained position of the phase transition θc1 = 0.207 as bias,

we obtain the critical exponent associated with the gap, i.e. zν = 0.65, by a dlog-Padé

extrapolation. Comparison with the values available in the literature leads to an estimate

of the error of about 10% for this exponent. Additionally, we obtain an estimate for the

dynamical exponent z = 1.3 by investigation of the gap closing behavior in dependence

of the wave vector ~k. Additionally, we discussed also the exponent α related to the

divergence of the second derivative of the ground-state energy.

The phase transition between the topological and the frustrated phase is investigated

only by means of series expansions for the topological phase. We perform unbiased

dlog-Padé extrapolations to obtain the position of the phase transition θc2 = 5.73 and

the critical exponent zν = 0.72. Additionally, we obtain the estimate z ≈ 1.4.
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The comparison of the obtained values with the ones for the three-dimensional Ising

model (three-dimensional XY model) reveals that we obtain the critical exponent zν

with an error of about 10% and z with an error of about 40%.

5.2 Phase transitions for Fibonacci anyons

The results discussed in this chapter can also be found in Ref. [104]. The exact-

diagonalization results for the non-Abelian models have been provided by Dr. S. Dusuel

and Dr. J. Vidal.

For the perturbed string-net model with Fibonacci anyons, we discussed in Section 3.5.1

the three exactly solvable points with finite ground-state degeneracy at θ = 0, θ = π
2 ,

and θ = 3π
2 . We show the overall picture for the phase diagram in Figure 5.7.

It shows a good coincidence of the exact-diagonalization and the (extrapolated) pertur-

bative results for the ground-state energy. Thus, we conclude that the three different

phases discussed in Section 3.5.1, the topological, the 1-, and the τ -phase, are the three

phases constituting the phase diagram.

In the vicinity of the transitions between the topological and the 1-phase at θc1 and

between the topological and the τ -phase at θc2, also the elementary-excitation gap is

well described by the perturbative results and the exact diagonalization. At the phase

transition between the two non-topological phases at θ = π, the description of the gap

does not match well between the two approaches, which is due to finite-size effects as

well as low-order expansions, as we shall discuss in Section 5.2.3.

The series expansion results for this section are given in Appendix B.

5.2.1 Phase transition between topological and 1-phase

Let us first analyze the phase transition between the topological and the 1-phase. There-

fore we proceed as in Section 5.1.1 and consider the ground-state energy per plaquette

e0 around θ ≈ 0.24 as depicted in Figure 5.8.

Its perturbative expression in the topological phase reads up to order four

etop
0 =cos θ

(
−1.− 0.829180 · t− 0.300000 · t2 − 0.232918 · t3 − 0.375836 · t4

)
. (5.17)

On the scale of Figure 5.8, the series depicted up to order eleven (yellow to red) is well

converged.
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Figure 5.7: The combined data of the ground-state energy per plaquette e0 and the
elementary-excitation gap ∆ obtained by series expansion techniques for the topological
phase (red), the 1-phase (blue), and the τ -phase (green). The insets depict the states
corresponding to the shown energy level. The exact-diagonalization data for the Np =
12 system (black) shows a rather good coincidence with the perturbative results on
the overall scale. The details are discussed in the text for the three phase transitions
indicated by the dashed lines.

The series valid in the 1-phase is determined up to order 20 and given in Eq. (B.40). It

reads up to order four

e10 = sin θ
(
−3.− 0.276393 · t−1 − 0.333333 · 10−1 · t−2

−0.248452 · 10−2 · t−3 − 0.147309 · 10−3 · t−4
)
. (5.18)

As we can see in Figure 5.8, this series still is not converged for the orders considered

here.

We note that both perturbative expansions (5.17) and (5.18) have the same property as

for the semion-case: the coefficients of the series have all the same sign. Thus we shall
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e0

−1.16

−1.18

−1.20

θ
0.20 0.22 0.24 0.26

Figure 5.8: The perturbative results for the ground-state energy e0 are shown order
by order from order two (light blue) to order 20 (dark blue) for e10 and from order two
(orange) to order eleven (dark red) for etop0 . There are two intersections of the series for
e10 and etop0 , respectively. Additionally we show the results of the exact diagonalization
(light gray to dark gray with increasing system size from Np = 4 to Np = 13). All data
shows a convergent behavior, from which we estimate the location of the critical point
indicated by the dashed line by a finite-order/size scaling.

analyze the location of the phase transition as in Section 5.1.1 to obtain the position of

the transition at θc1 = 0.255 indicated by the dashed line.

Additionally, we show here the ground-state energy determined by exact diagonalization

for increasing system sizes (light gray to dark gray). The curves converge well for the

considered system sizes.

∂θe0

−1.0

−1.2

−1.4

−1.6

θ
0.25 0.26 0.27

∂2θe0

−10

−20

−30

θ
0.25 0.26 0.27 0.28

Figure 5.9: Behavior of the first (left) and second derivative (right) of the ground-
state energy per plaquette obtained by exact diagonalization for the system sizes Np =
4, 7, 9, 12, and 13. As for the semion model discussed in Section 5.1.1, ∂θe0 shows a
convergent behavior, whereas ∂2θe0 does not. This indicates that the phase transition
at θc1 is of second order.

The derivatives of the ground-state energy are given in Figure 5.9. As for the semions, we

observe that the first derivative converges to a finite slope, whereas the second derivative

shows no convergence.

As in Section 5.1.1, we also consider the low-energy gap ∆ as depicted in Figure 5.10.

The series for the gap in the topological phase ∆+
top is determined up to order ten (B.38)
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Figure 5.10: With the same notations as in Figure 5.8, we show the perturbative and
exact-diagonalization results for the elementary-excitation gap in the region, where
the phase transition between the topological and the 1-phase occurs. The picture is
qualitatively the same as for the semion model shown in Figure 5.3.

and reads up to order four

∆+
top = cos θ

(
1.− 1.658359 · t− 2.029180 · t2 − 3.107113 · t3 − 8.042597 · t4

)
. (5.19)

We also determine the gap in the 1-phase up to order eleven (B.53). It reads up to order

four

∆1 = sin θ
(
6.− 0.447214 · t−1− 0.591693 · 10−1 · t−2− 0.015323 · t−3− 0.001826 · t−4

)
.

(5.20)

We observe that the exact-diagonalization results in Figure 5.10 show a good coincidence

with the series expansion for the topological phase, whereas there are deviations for

the 1-phase. This is due to the fact that in the 1-phase, there are additional low-

energy excitations on the finite-size system, corresponding to closed loops of τ -links

wrapping around the torus. These cause the deviations of the exact-diagonalization

data, especially in the vicinity of the phase transition, where the fluctuations induced

by the topological Hamiltonian are very large.

Additionally, we observe that different values for the gap in the vicinity of the phase

transition are larger than for the case of the semions, but the qualitative picture is the

same.
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We therefore show in Figure 5.12 the various quantities, which allow for the finite-

size/order scaling as discussed in Section 5.1.1. We observe that all data is consistent

θc1

0.33

0.27

0.23

0.19

1/size, 1/order

0 0.05 0.10 0.15 0.20 0.25

• crossing points e0

N crossing points gap
H zeros ∆+

top

H zeros ∆1

� min ∂2
θe0

� min ∆

Figure 5.11: The finite-order and finite-size scaling is performed for the location of
the phase transition. The lines are power-law fits to the data points (c.f. text). The
estimate for the location of the critical point θc1 = 0.255 is obtained by a least-square
fit of the crossing points of the series expansions of the ground-state energy e0. We
observe good compatibility of all data points with a continuous phase transition at θc1.

with a second-order phase transition at θc1 = 0.255. In contrast to the case for the

semions, also the exact-diagonalization data agrees well with the series-expansion results.

This is due to the fact that here the single-particle excitations are also present on the

systems considered with ED.

We now performed biased dlog-Padé extrapolation for the gap in the topological phase

∆+
top, we obtain the critical exponents shown in Table 5.4. We find zν = 0.33 and a

value of z = 1. for the dynamical exponent.

Let us remark that the low values of zν have to be considered with caution. If one

performs unbiased extrapolations for ∆+
top, one finds a critical point for θ ≈ 0.26, as

shown in Table 5.5. This value differs from the θc1 given above only by a few percent,

but the resulting estimate for zν yields rather 0.42.

Thus, we encounter here the situation that a small variation in the bias causes large

variations in the resulting exponent. Therefore, we shall consider values of zν in the

range of the 0.33 to 0.45 as possible. Let us note here that this consideration does not

invalidate the finite-order scaling and the estimate of θc1, but is the statement that the

obtained orders are not sufficient for an accurate computation of the critical exponents.
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Figure 5.12: The finite-order and finite-size scaling for the elementary-excitation gap
value is performed for the crossing point of the perturbative results and for the minimum
value of the gap. The data is compatible with a power-law behavior assuming a gap
closing at infinite order/size.

zν obtained from ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.64 0.34
3 0.33 0.33 0.31
4 0.35 0.33 0.36
5 0.34 0.33 -

z obtained from ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 1.05 1.04
3 1.04 0.89 0.91
4 0.91 - 0.98
5 0.98 - -

Table 5.4: The values of the critical exponents zν = 0.33 and z = 1. are obtained by
biased dlog-Padé extrapolation of the gap ∆+

top for θc1 = 0.255.

θc1 obtained from ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.265 0.264
3 0.264 0.259 0.259
4 0.2593 0.259* 0.261
5 0.261 - -

zν obtained from ∆+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.48 0.48
3 0.48 0.39 0.41
4 0.41 0.39* 0.45
5 0.45 - -

Table 5.5: The values for the location of the phase transition θc1 = 0.26 obtained by
unbiased dlog-Padé extrapolation differs from the one obtained by the finite-size/order
scaling by a few percent. The unbiased estimate for zν ≈ 0.45 differs significantly from
the biased one.

However, as we have exact-diagonalization data at hand, we can perform additionally

to the above analysis a data-collapse study. This analysis relies on the fact that the

diverging quantity, in our case the second derivative of the ground-state energy ∂2
θe0,

can be obtained for different system sizes by the so-called scaling function Φ via

∂2
θe0(θ) = −

(√
Np

)α
ν

Φ

((√
Np

)− 1
ν |θ − θc|

)
, (5.21)
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where
(√

Np

)
is the typical linear length scale of the system [141].

−
( √ N
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) −α ν
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2 θ
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Figure 5.13: We perform a data collapse of the exact-diagonalization results for ∂2θe0
for the systems with Np = 7, 9, 12, and 13 plaquettes. After rescaling according to
(5.21) with the values ν = 0.41 and α = 0.78, the four curves collapse onto one curve
in a large range of parameters.

Thus if one rescales the obtained results according to (5.21), the points for different

system sizes should fall onto one single curve in the vicinity of θc. Since the rescaling

depends on the critical exponents ν and α, we vary these to obtain an optimal collapse

for all but the smallest system size. The values α = 0.78 and ν = 0.41 yield the collapsed

data as shown in Figure 5.13.

Assuming that our estimate for the dynamical exponent z = 1. is correct, this yields an

estimate zν = 0.41, which is consistent with the above discussion for the series expansion

results. Additionally, the values ν = 0.41, z = 1., and α = 0.78 fulfill the hyper-scaling

relation (5.14) with good accuracy.

In conclusion, we obtain evidence for a second-order phase transition at θc1 = 0.255 with

a set of critical exponents, which is consistent with the values ν = 0.41, z = 1., and

α = 0.78.

5.2.2 Phase transition between topological and τ -phase

We investigate the phase transition between the topological and the τ -phase by the same

tools as in Section 5.2.1.

The series expansion of the ground-state energy in the τ -phase is obtained up to order

nine, it reads up to order four

eτ0 = − sin θ
(
0.301316 · t−1 − 0.113204 · t−2 + 0.028078 · t−3 − 0.004508 · t−4

)
. (5.22)

Note that the signs of the higher-order coefficients shown in (B.54) do not show a regular

sign pattern as it is the case for etop
0 and e10 .
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Figure 5.14: The series for ground-state energy etop0 is depicted from order one (or-
ange) to ten (dark red) and compared to the series for eτ0 , depicted from order two
(yellow) to nine (green). We show additionally the exact-diagonalization result for the
system with Np = 9 (gray) and Np = 13 (black) plaquettes. In the inset, we show
Padé extrapolations of the series (blue for etop0 and green eτ0 ), which agree with exact
diagonalization data. The respective crossing points of the extrapolations correspond
to θc2 = 5.62.

We show in Figure 5.14 the series for eτ0 order by order (light green to dark green)

together with the one for etop
0 (orange to dark red) as well as the exact-diagonalization

results (gray and black).

The alternating series show a good agreement also with the exact diagonalization results

for θ > 5.9 and θ < 5.5. In between, the series are dominated by the respective highest-

order terms, which leads to deviations from the curve in the limit of infinite order. To

compensate for this, we perform Padé extrapolations for etop
0 (blue) and eτ0 (green), which

are shown in the inset to agree well with the exact diagonalization result for Np = 13

system. The crossing points of the shown extrapolants are located at θc2 = 5.62.

∆
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θ
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Figure 5.15: The series for the gap ∆−top in topological phase is depicted from order
two (orange) to order 10 (dark red), the series for the gap ∆+

τ from order one (yellow)
to six (green). As for the ground-state energy, the alternating series do not show a
monotonous convergence. We show also dlog-Padé extrapolants for ∆−top (blue), which
signal a gap closing in the region θ ∈ [5.6, 5.7]. For ∆+

τ , there are no extrapolants,
which approximate the series well for values of θ > 5.4 due to its low orders and the
alternating behavior of the coefficients.
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We consider additionally the gap shown in Figure 5.15. The dispersion in the topological

phase is minimized by ~k = ±(2π
3 ,−

2π
3 ) and yields the gap ∆−top, which reads up to order

four

∆−top = cos θ
(
1.+ 0.829180 · t+ 0.114590 · t2 + 0.511033 · t3 + 0.404476 · t4

)
. (5.23)

The dispersion in the τ -phase is determined up to order six. It is minimized for ~k =

±(2π
3 ,−

2π
3 ) and the gap ∆+

τ reads up to order four

∆+
τ =− sin θ

(
1 + 0.266874·t−1− 0.204817·t−2− 0.075713·t−3+ 0.039643·t−4

)
. (5.24)

We show in Figure 5.15 the series from order two (orange) to order 10 (dark red) for

∆−top and from order one (yellow) to six (green) for ∆+
τ . We observe the same alternating

behavior as for the ground-state energy. Unbiased dlog-Padé extrapolations (blue) are

depicted for ∆−top. The results for the location of the gap closing θc2 shown in Table 5.6

already indicates that the results are compatible with a continuous phase transition

at θc2 = 5.7. The large uncertainty of θc2 also translates to an even larger uncertainty

in the critical exponents. We find that also biased extrapolations do not lead to any

improvement.

θc2 obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 5.725 5.716
3 5.658 5.693 5.695
4 5.695 5.693* 5.704
5 5.725 - -

zν obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 0.42 0.98
3 0.89 0.58 0.46
4 0.56 0.58* 0.50
5 0.32 - -

z obtained from ∆−top

N [N/N-1] [N / N] [N / N+1]

2 - 0.94 0.98
3 1.80 1.21 1.19
4 1.12 - 1.07
5 0.73 - -

Table 5.6: The values for the location of the phase transition θc2 and the estimates
for zν and z are obtained by unbiased dlog-Padé extrapolations.

Let us remark here that for the obtained orders, there is no extrapolant for the gap in

the τ -phase ∆+
τ , which approximates the series well even for values of θ < 5.4 due to

the low orders and alternating behavior of the series.

Nevertheless, the second derivative of the ground-state energy as shown in Figure 5.16

shows a diverging behavior consistent with a divergence in the region θc2 ∈ [5.6, 5.7].
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Figure 5.16: The second derivative of the ground-state energy e0, shown for system
sizes Np = 4 (light gray), Np = 9 (dark gray), and Np = 13 (black), diverges with
increasing system size. The divergence is located in the region θ ∈ [5.6, 5.7]. The
features of the curves for θ > 5.7 as e.g. the peak for ∂2θe0 = 0 stem from level crossings
between the four ground states in the topological phase and are thus finite-size effects.

All these results lead us to the conclusion that our data is consistent with a second-order

phase transition around θ ∈ [5.6, 5.7]. However, the obtained orders are not enough to

give a quantitatively precise estimate for the critical exponents.

5.2.3 Phase transition between 1- and τ -phase

Let us briefly discuss the phase transition between the two topologically-trivial phases.

At the point θ = π, the infinitely-many ground states are the flux-full states discussed in

Section 3.5.1.3. The perturbation acts within this ground-state manifold, so we expect

a splitting of the levels for θ 6= π.

We do not have the series expansions, neither from the 1-phase nor from the τ -phase,

which approach the limit θ = π quantitatively. This is due to the fact that this limit

corresponds to the value −∞ for the expansion parameter ±1/ tan θ and the orders

reached in our expansions are not sufficient to describe the spectrum in a quantitative

fashion.

Additionally, we see in Figure 5.7 that perturbative and the exact diagonalization results

differ significantly in the region θ ∈
[
π
2 ,

3π
2

]
. In the 1-phase, this is due to the fact that

on the finite-size systems, additional low-energy modes are present, which corresponds

to closed strings of τ -bonds, which wrap around non-contractible loops of the system.

These modes are absent in the thermodynamic limit and thus not described by the series

expansions. In the τ -phase, the finite size of the systems impacts the spectrum, as it

constrains the effect of the long-range hoppings terms discussed in Section 3.5.1.5.
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Figure 5.17: The first derivative of the ground-state energy ∂θe0 is shown for the
system sizes from Np = 4 (light gray) to Np = 13 (black). For system sizes larger than
four, the curves lie almost on top of each other, suggesting a converged jump of the
first derivative.

However, the data from the exact diagonalization does not show any particular features

except at the point θ = π itself. We depicted in Figure 5.17 the first derivative of the

ground-state energy ∂θe0, showing a pronounced jump, which seems to be converges for

all considered systems sizes with Np > 4. We thus conclude that the 1- and the τ -phase

are separated by a first-order phase transition at θ = π.

5.2.4 Summary of the phase transitions in the Fibonacci model

In the above section, we presented the phase diagram of the perturbed string-net model

for Fibonacci anyons. We found that the phase diagram is constituted by the three

phases discussed in Section 3.5.1: the topological, the 1- and the τ -phase.

For the phase transition between the topological and the 1-phase, we were able to

perform a finite-size/order scaling as in Section 5.1.1 and to obtain the location of the

phase transition θc1 = 0.255. We observe a good agreement between the results obtained

by series expansions and exact diagonalization.

The data-collapse results are consistent with a continuous phase transition. Additionally

to the analysis of the series, we performed a data-collapse analysis. This allowed us to

extract the critical exponents. Our results are ν = 0.41, z = 1., and α = 0.78. These

findings are consistent with the hyper-scaling relation (5.14) and with the observation

that the first derivative of the ground-state energy does not diverge. To our knowledge,

even when considering the error estimates discussed in Section 5.1, these values do not

correspond to a known universality class that could be related to this system.



Chapter 5. Results for perturbed string-net models 98

For the phase transition between the topological and the τ -phase, we obtained series of

lower order than in the just discussed phase transition. This and the fact that coefficients

of the series alternate in sign lead to a slow convergence of the series expansions in the

vicinity of the phase transition. Therefore, we have to rely on extrapolations to estimate

the position of the phase transition θc2 =∈ [5.6, 5.7]. This result is also supported by

the data of exact diagonalizations, which displays a divergence of the second derivative

of the ground-state energy in this region. Our estimates for the critical exponents are

consistent with the values zν = 0.5 and z = 1., but less precise due to the alternating

series.

For the phase transitions between the non-topologically ordered phases, we considered

the exact diagonalization results, which show clear evidence for a first-order phase tran-

sition at θ = π.

5.3 Phase transitions for Ising anyons

For the string-net model with Ising anyons, we found two points with a finite ground-

state degeneracy, namely the topological phase for θ = 0 and the 1-phase for θ = π
2 .

Additionally, we discussed the flux-full case θ = π and the dimer-limit θ = 3π
2 .

For the former, we can read off Eq. (3.72) the ground-state degeneracy, which yields

Dtorus
Np

=
(
1 + 6(−1)Np + 2 · 3Np

)
.

For the latter, we can infer its ground-state degeneracy by considering the mapping

σ → s,ψ → 1, which yields a one-to-one correspondence of the ground states in the

dimer limit with the string-net states of the semion model defined on the same lattice.

Thus the ground-state degeneracy is in this case given by (3.74), and, in particular, is

different from the one for the flux-full case.

As we have only two limits, around which we can perform a perturbative analysis, we

rely on the exact diagonalization to determine the global shape of the phase diagram.

In Figure 5.18, we show the ground-state energy and its first and second derivative for

system sizes from Np = 4 (light gray) to Np = 13 (black). We observe at the phase

boundary between the topological and the 1-phase the same shape of the curves as in

the case of the Fibonacci-model. Thus we shall consider the transition as a candidate

for a second-order phase transition at the location θc1 to be determined in the following.
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Figure 5.18: We show the exact-diagonalization results for the ground-state energy
e0 and its first- and second-order derivative for system sizes from Np = 4 (light gray)
to Np = 13 (black). The first derivative shows jumps at θ = π and θ = 3π

2 , indicating
a first-order transition. The phase transition out of the topological phase show the
characteristics of a second-order phase transition.

Additionally, we clearly observe a discontinuous behavior of the first derivative at θ = π

and θ = 3π
2 .4 Finally, we see in the region θ ∈ [3π

2 , 2π] indications of a divergent second-

order derivative at the value θc2 to be determined, thus another candidate for a second-

order phase transition.

We remark that there are several features in the interval θ ∈ [π, 3π
2 ], but the exact-

diagonalization data for the considered system sizes does not provide a conclusive pic-

ture. Thus, as we are interested in the phase transitions out of the topological phase,

we will restrict our analysis to the phases neighboring the topological phase.

4We note that the finite depth of the dip in ∂2
θe0 at θ = 3π

2
is just a finite-resolution effect.
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5.3.1 The valence-bond crystal

Before discussing the different phase transitions in more detail, let us investigate the

phase between θ = 3π
2 and θc2. In particular, we are interested whether this phase is

gapped or gapless, whether it is possibly topologically ordered and what are its charac-

teristics as e.g. the ground-state degeneracy.

The key observation for our analysis is the fact that there are no indications of a phase

transition between θ = 3π
2 and θc2. Thus, we can use insights for the dimer limit to infer

properties of the whole phase.

Consequently, we consider the dimer limit θ = 3π
2 discussed in Section 3.5.2.5 and

treat the topological Hamiltonian HLW at first-order degenerate perturbation theory in

the infinitely degenerate ground-state manifold. When restricted to this subspace, the

Hamiltonian (3.5) in the dimer language Hdm reads up to a constant shift

Hdm = −Jp

4

∑∣∣∣∣ 〉〈 ∣∣∣∣− Jp

8

∑(∣∣∣∣ 〉〈 ∣∣∣∣+

∣∣∣∣ 〉〈 ∣∣∣∣) , (5.25)

i.e. we have a potential term ∝ Jp

4 that is diagonal in the bond basis and a kinetic term

∝ Jp

8 which introduces fluctuations. We see that the coefficient of the kinetic term is

smaller than the one of the potential term. Therefore we neglect in a first step the

kinetic term and discuss only the potential term in (5.25).

For Jp > 0, this term favors hexagons formed by σ-bonds, which consequently have

outgoing ψ-bonds. The ground states of this effective Hamiltonian is thus formed by

dense-packed σ-hexagons as depicted on the left-hand side in Figure 5.19. Note that

this configuration breaks the translational symmetry of the lattice and thus we expect

three ground states for Jp > 0.

Defects of this configuration as depicted on the right-hand side of Figure 5.19 are the

elementary excitations with an energy cost
3Jp

4 , as this configuration lacks three σ-

hexagons.

Thus if there was no kinetic term, we would see that the Hamiltonian leads to a threefold

degenerate ground state with gapped excitations. If we treat in a next step the kinetic

term as a perturbation, we obtain in second-order perturbation theory a gap

∆dm =
Jp

4

(
3− 4

3

1

22

)
=

2Jp

3
, (5.26)

i.e., the gap is reduced by the kinetic term, but remains finite. Thus, we can conclude

that the topological Hamiltonian opens for Jp > 0, i.e. for θ > 3π
2 , a gap in the flux-full
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Figure 5.19: One ground-state configuration for the diagonal part of the Hamilto-
nian Hdm is depicted on the left-hand side. The other ground states are obtained by
translating this configuration by one plaquette. On the right-hand side, we show the
elementary excitation above this ground state shaded in gray.

sector of the perturbed string-net model and one obtains a threefold degenerate ground

state, which is a valence bond crystal (VBC) formed by ψ-bonds. In particular, the

phase between θ = 3π
2 and θc2 is not topologically ordered.

Let us note here that for Jp < 0, the analogous reasoning does not apply in this straight-

forward fashion, as there no state is favored by the dominant part of the Hamiltonian.

Thus, we cannot infer the characteristics of the phase between θ = π and θ = 3π
2 this

way.

5.3.2 Phase transition between topological and 1-phase

For the phase transition between the topological and the 1-phase, we proceed as for the

other models. So we consider the series expansions for the ground-state energy e0. The

series valid in the topological phase is determined up to order ten and reads up to order

four

etop
0 =cos θ

(
−1.− 0.750000 · t− 0.281250 · t2 − 0.210938 · t3 − 0.329590 · t4

)
. (5.27)

The ground-state energy in the 1-phase is determined up to order 18 and reads up to

order four

e10 = sin θ
(
−3.− 0.250000 · t−1 − 0.312500 · 10−1 · t−2

−0.260417 · 10−2 · t−3 − 0.178543 · 10−3 · t−4
)
. (5.28)

In Figure 5.20 we show, as for the Fibonacci model, the series order by order and the

exact-diagonalization results for the ground-state energy. We have qualitatively the

same behavior as for the Fibonacci model. The series for the topological phase is well

converged, whereas the series for the 1-phase still shows changes when increasing the
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Figure 5.20: The perturbative results for the ground-state energy e0 are shown order
by order from order two (light blue) to order 18 (dark blue) for e10 and from order two
(orange) to order ten (dark red) for etop0 . There are two intersections of the series for
e10 and etop0 , respectively. Additionally we show the results of the exact diagonalization
(light gray to dark gray with increasing system size). All data shows a convergent
behavior, from which we estimate the location of the critical point indicated by the
dashed line by a finite-order/size scaling.

order. The exact-diagonalization results show also convergence for the largest system

sizes.

To complete our analysis of the low-energy spectrum, let us turn to the gap. In the

topological phase, we have two different excitations: the σ- and the ψ-flux. We deter-

mine their dispersion up to order ten. For θ > 0, the dispersion is minimized for ~k = ~0

and the gaps ∆σ,+
top and ∆ψ,+

top read up to order five

∆σ,+
top =1.− 1.500000 · t− 1.875000 · t2

− 2.812500 · t3 − 7.093750 · t4 − 16.523356 · t5, (5.29)

∆ψ,+
top =1.− 1.500000 · t− 1.875000 · t2

− 2.812500 · t3 − 7.093750 · t4 − 16.523681 · t5. (5.30)

We note that both dispersions agree with each other exactly up to order four. In order

five they start to differ and, consequently, also the gaps differ from each other. However

the deviations of the coefficients from each other is of the order of 10−4 or smaller, so

that the difference does not impact the results for the spectrum in any noticeable way

for the values of t ≈ 0.3 considered here.5

So we conclude that both achiral excitations condense at the same point, which corre-

sponds to the phase transition to a topological trivial phase described in Section 4.2.3.

5Nevertheless, we note that this difference is one of the principal differences to the one-dimensional
case of the ladder discussed in Ref. [70], where we find that both dispersions are identical up to high
orders.
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Figure 5.21: With the same color-coding as in Figure 5.20, we show the perturbative
and exact-diagonalization results for the elementary-excitation gap in the region, where
the phase transition between the topological and the 1-phase occurs. We depict the
series for ∆σ,+

top from order one (orange) to ten (dark red) and the series for ∆1 from
order one (light blue) to order eight (dark blue). The picture is qualitatively the same
as in semion model shown in Figure 5.10.

However, we see that the σ-gap is strictly below the ψ-gap, thus we use this series for

the further analysis.

The series valid in the 1-phase is determined up to order eight and reads up to order

four

∆+
1 =cos θ

(
6.− 0.500000 · t−1 − 0.500000 · 10−1 · t−2

−0.151042 · 10−1 · t−3 − 0.204226 · 10−2 · t−4
)
. (5.31)

We show the series for ∆σ,+
top (orange to dark red) and ∆1 (light blue to dark blue) as

well as the exact-diagonalization results for the gap in Figure 5.21. Let us note that

on a system with periodic boundary conditions, there is no single σ-state. Thus the

exact-diagonalization gap depicted here corresponds to single ψ-flux states.

A finite-order analysis completely analogous to the one performed in Section 5.2.1 leads

finally to the estimate θc1 = 0.261.

We perform dlog-Padé extrapolations of ∆σ,+
top to obtain zν = 0.40 and z = 1., shown in

Table 5.7, as estimates for the critical exponents.
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θc1 obtained from ∆σ,+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.274 0.274
3 0.273 0.289* 0.267
4 0.267 0.272 0.269
5 0.269 - -

zν obtained from ∆σ,+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.46 0.46
3 0.45 0.31* 0.36
4 0.35 0.45 0.40
5 0.40 - -

z obtained from ∆σ,+
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.99 0.99
3 0.99 0.47* 0.82
4 0.81 1.00 0.90
5 0.89 - -

Table 5.7: The values for the location of the phase transition θc1 and the estimates
for zν and z are obtained by unbiased dlog-Padé extrapolations.

−
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∂
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Figure 5.22: We perform a data collapse of the exact-diagonalization results for ∂2θe0
for the systems with Np = 7, 9, 12, and 13 plaquettes. After rescaling according to
(5.21) with the values ν = 0.39 and α = 0.83, the four curves collapse onto one curve
in a large range of parameters.

Additionally, we perform a data collapse of the exact-diagonalization results for ∂2
θe0.

For the values ν = 0.39 and α = 0.83, we obtain the collapse shown in Figure 5.22.

This leads us to conclude that we find evidence of a second-order phase transition con-

sistent with the simultaneous condensation of σ- and ψ-fluxes at θc1 = 0.261. We obtain

estimates for the critical exponents ν = 0.39, z = 1., and α = 0.83. These values are

in the same range as the ones for the corresponding phase transition in the Fibonacci

model. However, our estimated accuracy does not allow us to judge, whether these two

sets of exponents coincide and thus fall in the same universality class or not.
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5.3.3 Phase transition between topological and the VBC

For the investigation of this phase transition, we are in the same situation as in Sec-

tion 5.1.2: series expansions are only available for the topological phase. Thus, we

estimate the phase transition by extrapolating the gap.

The gaps valid for θ < 0 read up to order five

∆σ,−
top =1.+ 0.750000 · t+ 0.093750 · t2

+ 0.421875 · t3 + 0.369629 · t4 + 0.680623 · t5 (5.32)

∆ψ,−
top =1.+ 0.750000 · t+ 0.093750 · t2

+ 0.421875 · t3 + 0.369629 · t4 + 0.680786 · t5. (5.33)

∆σ−
top

0.75

0.25

0.00
5.4 5.6 5.8

θ
Figure 5.23: The series of the gap ∆σ,−

top in the topological phase is depicted from
order one (orange) to order ten (dark red). Additionally to the alternating series, we
give the dlog-Padé extrapolations (blue), which determine the location of the phase
transition θc2 at between 5.5 and 5.6.

We see that also for this region, the σ-flux gap ∆σ,−
top is slightly smaller than the ψ-flux

gap with a difference in the series beginning at order five.

Thus, we use the series for ∆σ,−
top to extrapolate the gap towards its closing point, as

shown in Figure 5.23. The extrapolations yield a gap closing in the region around

θc2 = 5.57 and estimates for the exponents zν = 0.5 and z = 1..

The simultaneous condensation of the σ- and the ψ-flux is consistent with the fact that

the valence-bond crystal phase found between θ = 3π
2 and θc2 is not topologically ordered.
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θc2 obtained from ∆σ,−
top

N [N/N-1] [N / N] [N / N+1]

2 - 5.58 5.61
3 5.48 5.54 5.56
4 5.57 5.44* 5.57
5 5.58 - -

zν obtained from ∆σ,−
top

N [N/N-1] [N / N] [N / N+1]

2 - 0.53 0.46
3 1.13 0.68 0.59
4 0.48 0.89* 0.55
5 0.44 - -

z obtained from ∆σ,−
top

N [N/N-1] [N / N] [N / N+1]

2 - 1.15 -
3 2.23 1.41 1.25
4 1.04 0.26* 1.16
5 0.95 - -

Table 5.8: The values for the location of the phase transition θc2 and the estimates
for zν and z are obtained by unbiased dlog-Padé extrapolations.

5.3.4 Summary of the phase transitions in the Ising model

For the perturbed string-net model with Ising-anyons, we studied the phase transitions

out of the topologically ordered phase.

The phase transition between the topological and the 1-phase is investigated in the

analogous fashion as in the case of the Fibonacci anyons and we find a qualitatively

similar picture. We locate the phase transition at θc1 = 0.261. Our results are consistent

with a second-order phase transition with the exponents ν = 0.39, z = 1., and α = 0.83.

We analyze the phase neighboring to the topological phase for θ < 0 by first-order de-

generate perturbation theory around the dimer limit θ = 3π
2 . The effective Hamiltonian

describes a quantum dimer model. By a perturbative treatment of the kinetic term,

we show that the topological Hamiltonian opens a gap in the ground-state manifold for

θ > 3π
2 . The ground state is a threefold degenerate valence bond crystal.

The phase transition between the topological and the valence bond crystal phase is

investigated in the same fashion as for the semion model. We find the location of the

phase transition at θc2 = 5.57. Our results are consistent with a second-order phase

transition with the exponents z = 1. and zν = 0.5.

Our findings for the order of the phase transitions are in agreement with the fact that the

gaps of both elementary excitations go to zero at the transition point. This corresponds

to the condensation-driven phase transition from the D(Ising) to a topologically-trivial

phase as discussed in Section 4.2.3.

We note that the estimates for the critical exponents coincide within our estimated

uncertainty with the ones obtained for the Fibonacci-anyon case. However, our results
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are not precise enough to discriminate whether the obtained exponents are the same or

not.

5.4 Comparison between the different models

In the previous sections, we analyzed the phase transitions for the perturbed string-net

models for semions, Fibonacci-, and Ising-anyons on the honeycomb lattice. The phase

diagrams can be summarized as in Figure 5.24.

Figure 5.24: We show the phase diagrams of the perturbed string-net model for
semions (left), Fibonacci- (middle), and Ising-anyons (right) discussed in the previous
sections. For the Abelian case, there are two topologically ordered phases, whereas for
the non-Abelian cases, there is only one. The extension of this phase for the non-Abelian
models is larger than for the Abelian one.

The phase transitions out of the topological phases are found for all three models to

be consistent with a second-order transition, which corresponds in the framework of

condensate-induced phase transitions discussed in Chapter 5 to a condensation of the

achiral fluxes.

The phase transitions between the non-topological phases6 are first-order phase transi-

tions, if present in the phase diagram.

We found for the Abelian model of the semions two extended topological phases. The

phase around θ = 0 is also present for the non-Abelian models, whereas the phase around

θ = π shrinks to a single point.

We list the critical points θc1 and θc2 in Table 5.9. The location of the phase transition

to the different phases at θc2 are close to each other, whereas the location of the phase

transitions to the 1-phase shows a difference of more than 20% between the models

with Abelian and non-Abelian anyons. In this sense the phases harboring non-Abelian

excitations are more stable against the local perturbation considered here.

6We did not discuss the phase in the region θ ∈
[
π, 3π

2

]
for Ising anyons. However we shall assume for

the discussion here that it is topologically trivial, as exact-diagonalization results (not shown) suggest a
possible gapless phase, which, per definition, is not topologically ordered.
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θc2 θc1
Semions 5.73 0.207
Fibonacci 5.7 0.255
Ising 5.57 0.261

Table 5.9: The location of the phase transitions out of the topological phase for the
different models studied in this work.

In our analysis of the non-Abelian models, we find values of the critical exponents, which

are close to each other and might coincide within our accuracy estimates. Therefore one

can speculate whether the exponents are the same and thus the phase transitions out

of a topologically ordered phase with non-Abelian anyons are in the same universality

class. However, we will compare in the following the Abelian and non-Abelian cases.

One difference between the appearing phase transitions is that the corresponding critical

properties differ significantly between the Abelian and non-Abelian cases. For the phase

transitions out of the Abelian phase, the exponent ν of the corresponding 3D Ising or 3D

XY universality classes are 0.63 [138] and 0.67 [142], respectively. Our analysis yields

values of ν which are much smaller. We find values in the range 0.36− 0.5.

The values determined for the dynamical exponent z are compatible with the value 1 for

the Abelian and non-Abelian cases. As the combination d+ z, with d the dimension of

the quantum lattice problem, is replaced by the dimension dcl, which is the dimension

of a classical model sharing the same critical exponents [137], it may be possible to find

three-dimensional classical models, which are in the same universality class and possibly

better suited to further investigation.

One can already infer from the hyper-scaling relation (5.14) that the differences in the

exponent ν result also in different values of α. For the non-Abelian models, we find large

values of α = 0.78 (Fibonacci) or α = 0.83 (Ising), whereas for the Abelian model, the

values of α are small (α = 0.11 for the 3D Ising class [138] and α = −0.014 for the 3D

XY class [142]. This may have an impact for the detection of phase transitions out of

a topologically ordered phase, as the large value of α close to 1 leads to a behavior of

the ground-state energy which is similar to the one for a first-order transition. Conse-

quently, the distinction between first- and second-order phase transition might be more

complicated than for the Abelian cases.

So, our study reveals that the more complex structure of non-Abelian excitations im-

pacts not only the extension of a topological phase, but also the critical behavior at its

boundaries.
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5.5 Chapter Summary

In this chapter, we studied the phase diagram and the phase transitions in the perturbed

string-net models for semions, Fibonacci-, and Ising-anyons on the honeycomb lattice.

The study of the semion model revealed two topological phases separated by two non-

topological phases. These findings are in agreement with the phase diagram of the

transverse-field Ising model as discussed in Section 3.5.3. In particular the second-order

phase transitions out of the topological phases are driven by the condensation of the

anyonic excitations as discussed in Chapter 4.

We determined the locations of the phase transitions and critical properties by analyzing

the low-energy spectrum. In particular, we employed a finite-order scaling analysis to

obtain the location of the phase transition between the topological and the 1-phase.

The comparison with known values for the location of the phase transition and the crit-

ical exponents of the transverse-field Ising model allowed us to estimate the systematic

errors of our approach consisting of a perturbative description of the low-energy physics

as well as exact diagonalizations.

The same quantities have been determined for the non-Abelian models. The phase dia-

gram for the perturbed string-net model with Fibonacci anyons consists of three phases.

We find by the same methods as for the semions the locations of the phase transitions.

We obtain results, which show strong evidence for second-order phase transitions out of

the topologically ordered phase. The set of exponents obtained for both transitions differ

from each other by more than 10% for the value of zν, so these phase transitions may

belong to different universality classes. However, the corresponding critical exponents

do, up to our knowledge, not belong to a known universality class that could be related

to the respective models.

We additionally studied the phase transitions in the model with Ising-anyons. Also

for this model, we found strong evidence for second-order phase transitions out of the

topological phase. The determined critical exponents show similar values as the ones

for the Fibonacci theory. However, our accuracy for these quantities does not allow us

to decide, whether the exponents are the same or different.

Nevertheless, we presented in this chapter the evidence for second order phase transitions

out of topologically ordered phases in a two-dimensional system and provided estimates

for critical exponents associated with spectral quantities.

To conclude, we compared the obtained results for the Abelian and non-Abelian cases.
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Chapter 6
Methodology

What from your father you’ve inherited,

You must earn again, to own it straight.

- Johann Wolfgang von Goethe -

The study of phase transitions involving topologically ordered phases in two-dimensional

lattice systems remains a challenging task even after several years of intensive researches.

This is basically due to the fact that the order parameters describing these phases are

non-local [10, 16, 53, 88, 99] and thus Landau-theory [1, 2] does not apply.

Also a field-theoretical description for topologically ordered phases including their exci-

tations, which holds in the presence of perturbations, is still missing. These features rule

out most of the renormalization group approaches usually used for the study of phase

transitions.1 Additionally, all non-Abelian models, which are the main interest in the

context of topological quantum computation and also the focus of this thesis, seem to

suffer from the sign-problem, rendering quantum Monte Carlo techniques rather difficult

to apply. Also variational methods, which have already been employed successfully in

the context of phase transitions out of Abelian topologically ordered phases [82, 86],

seem to be rather difficult to implement for the models in question, e.g. because of the

large support of the operators (the twelve-link interactions) in the string-net models.

One of the remaining possibilities that has already been applied with some success in

the study of Abelian phase transitions, are perturbative techniques, which give access to

spectral properties like the ground-state energy or dispersions of elementary excitations

[78, 81, 82, 86]. Other local observables and correlation functions are in principle also

accessible [144–146], although their investigation is beyond the focus this thesis. The

perturbative results are correct in the thermodynamic limit (up to a given order), so

finite-size effects are absent for these approaches. However, to capture the physics of the

1Note that renormalization ansatzes based on entanglement properties are currently developed [143].
However, their numerical accuracy for systems in two or more dimensions is still to be improved.
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phase transitions not only qualitatively but also quantitatively, a perturbative treatment

up to high orders complemented by suitable extrapolations is necessary.

Nevertheless, a perturbative expansion may miss phase transitions, if the mode driving it

is not taken into account. So, we also perform exact (Lanczos-) diagonalization (ED) on

finite-size systems. The results obtained by ED are non-perturbative (take into account

all modes on the finite system), but subject to finite-size effects. Consequently, ED

is a complementary approach to series expansions. In the following, we discuss how

the different methods are implemented in order to obtain the results presented in the

previous chapter.

6.1 Series expansions

In this section, we present three perturbative techniques, namely perturbative continuous

unitary transformations [105, 147], degenerate perturbation theory [106, 148], and a

perturbative version of a partitioning approach [107], we used to derive the effective

low-energy Hamiltonians Heff and to determine the ground-state energy as well the

dispersion presented in Chapter 5. These techniques have in common that they allow

to determine the effective Hamiltonian model-independently in operator form. This is

in contrast to the approach of typical linked-cluster expansions [129, 149–151], where

the effective Hamiltonian is explicitly derived for each of the finite-size systems used to

obtain the quantities of interest. The idea here is to separate the tasks of derivation and

evaluation to be able to optimize them independently. In this way, we can benefit from

the operator form of the effective Hamiltonian to perform a linked-cluster expansion also

for non-Abelian anyons.

Here, we will give a short introduction to the derivation of the respective effective Hamil-

tonians for each approach. Since all effective Hamiltonians are linked to the original one

by a unitary transformation, the quantities of interest such as the low-energy spectrum

of these Hamiltonians do not depend on the specific approach in the end. However, the

different approaches allow to evaluate the effective Hamiltonian in a more or less efficient

way depending on the problem at hand. We give a short comparison of the different

approaches in order to determine which one to use in which context in Section 6.1.4.

Additionally, we briefly present the main features of the different methods that allow to

obtain results valid in thermodynamic limit in an efficient way for the different models

presented in Chapter 3.

The aim of these methods is to decouple one subspace from all other subspaces in

the Hilbert space. The problem of diagonalizing the full Hamiltonian reduces then to
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diagonalize the remaining effective Hamiltonian in the smaller (however, in general still

infinite-dimensional) subspace. We shall see in Chapter 7, in which way to proceed for

the relevant subspaces.

All these approaches have in common that they require the original Hamiltonian to be

of the form

H = H0 + V. (6.1)

The unperturbed part H0 has to be diagonal, i.e. represented in its eigenbasis. The

(possibly degenerate) eigenspaces of H0 are coupled with each other via the action of

the perturbation V . To decouple the eigenspace with eigenvalue E0 of H0, all of the

presented methods require that this subspace has a finite-energy gap towards the rest

of the spectrum. The operator V depends linearly on one or more parameters, which

are supposed to be small compared to the energy gap of H0 to allow for a converging

perturbative expansion for the effective Hamiltonian. As the effective Hamiltonian Heff

is constructed to decouple a degenerate subspace of H0 from the rest of the Hilbert

space, it just couples eigenstates of H0 with a given unperturbed eigenvalue E0.

It is useful for the following discussion to introduce the operator Q, which counts the

number of excitations in terms of excited states of H0, i.e.

Q |n〉 = n |n〉 , (6.2)

where |n〉 is an n-particle eigenstate of H0. The effective Hamiltonian Heff conserves

the number of particles and thus commutes with Q.

6.1.1 Perturbative continuous unitary transformations

In this section, we discuss the perturbative continuous unitary transformation (pCUT)

method [147]. It is based on the continuous unitary transformations (CUTs) indepen-

dently proposed by Wegner [152] and G lazek and Wilson [153]. First, we briefly intro-

duce the idea of CUTs, then describe its perturbative version and finally mention some

important properties of the effective Hamiltonian, e.g. that it fulfills a linked-cluster

theorem, which is at the heart of the linked-cluster expansion presented in Chapter 8.

6.1.1.1 Continuous unitary transformations

The key idea of CUTs is to decouple a subspace of H not by one unitary transformation

U , but to obtain the effective Hamiltonian Heff by the application of an infinite sequence
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of transformations. So we consider

H(`) = U †(`)HU(`), (6.3)

with H(0) = H and H(` = ∞) = Heff . Differentiating equation (6.3) by the so-called

flow parameter `, we obtain the flow equation

∂`H(`) =
(
∂`U

†(`)
)
HU(`) + U †(`)H

(
∂`U(`)

)
(6.4)

= [η(`), H(`)] , (6.5)

where we introduced the antiHermitian generator

η(`) =
(
∂`U

†(`)
)
U(`). (6.6)

So the problem of transforming H into the effective Hamiltonian Heff is shifted from

finding the unitary transformation U to the appropriate choice of the generator η(`).

The effective Hamiltonian is then obtained as a solution of the flow equation (6.5) by

Heff = lim
`→∞

H(`). (6.7)

Although the effective Hamiltonian (6.7) will not couple different sectors of the Hilbert

space, and thus will be of simpler global structure, its form within each decoupled sector

will be, generically speaking, more complicated compared to the original Hamiltonian.

For example, locality of the operators will usually not be preserved during the flow.

However, the main advantage of this continuous formulation is that one can prove some

properties of the effective model by analyzing the behavior of H(`) independently of the

choice of a specific basis during the flow. For example, Wegner [152] chose the generator

ηW (`) = [Hd(`), H(`)] , (6.8)

where Hd is diagonal part of the Hamiltonian H, and has shown that all matrix elements

between non-degenerate eigenstates of H vanish in the limit of ` → ∞ and thus the

resulting Hamiltonian becomes diagonal if no degeneracies appear. However, this result

holds just in the limit `→∞, which can often not be obtained in practice.

Let us mention that the flow equation (6.5) represents in general an infinite set of

coupled, non-linear differential equations, which can often not be solved analytically.

For a numerical solution, one has then to truncate the set of equations in order to

obtain a finite system of equations. There exist several strategies of truncation schemes
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based on criteria like the form of the effective terms [154], the extension of their support

[155, 156], or perturbative reasonings [157], just to name a few.

In what follows, we consider the analytical solution for the choice of the quasi-particle

conserving generator ηQ [105, 158]. Its matrix elements in a common eigenbasis {|i〉} of

H0 and Q are defined as

ηQi,j = sgn(Qi,i −Qj,j)Hi,j(`), (6.9)

where Oi,j = 〈i|O |j〉 is the matrix element of the operator O.

This generator is also used in the pCUT [105]. Compared to ηW , it has the additional

feature that it sorts the eigenvalues according to the eigenvalues n of Q (6.2). In the

following, we will consider a special form of H0 and V in order to solve the resulting

flow equation by a model-independent perturbative ansatz that leads us to consider the

perturbative continuous unitary transformations.

Let us just mention that this transformation not only decouples one degenerate eigen-

space of H0 from the rest, but it will decouple all of them from each other. For an

analytical perturbative treatment, this fact does not represent a complication, however

if one wants to solve the flow equations numerically (as e.g. in [157]), one can also

choose different generators to only decouple the part of the Hilbert space, in which one

is interested, and, consequently, reduce the complexity of the flow equations to be solved

[159].

6.1.1.2 Perturbative continuous unitary transformations

In the context of pCUT, we assume for the Hamiltonian (6.1):

• The unperturbed Hamiltonian H0 has a discrete spectrum bounded from below.

Thus we can label the eigenvalues by εi with non-negative integer i. For notational

convenience, we denote the excitation energies by ∆εi = εi − ε0.

• There is a ∆ε such that we have for any excitation energy ∆εi = ni∆ε with integer

ni.

By rescaling H0, it is then always possible to set ∆ε = 1, as we do in the following. In

this case, H0 equals then the particle number counting operator Q (6.2) up to a constant.
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• It exists an integer Nmax such that the perturbation can be written as

V =

Nmax∑
m=−Nmax

Tm, (6.10)

where the operators Tm raise the particle number by m, i.e.

[H0, Tm] = mTm. (6.11)

These assumptions restrict the applicability of the pCUTs. However there are many

(effective) models fulfilling these assumptions in the context of low-dimensional (frus-

trated or unfrustrated) quantum magnets, spin ladders, Hubbard-models, supersolids,

nuclear physics, as well as stabilizer codes including topologically ordered spin models

[78, 81, 82, 86, 90, 160–168], just to name a few.

In the following, we present a solution of the flow equation (6.5) as detailed in [105, 169].

Therefore, we introduce the multi-index notations

m = (m1,m2,m3, . . . ,mk) , (6.12)

|m| = k, (6.13)

M(m) =
k∑
i=1

mi, (6.14)

{m ,m′} =
(
m1, . . . ,m|m|,m

′
1, . . . ,m

′
|m′|

)
, (6.15)

T (m) = Tm1Tm2Tm3 . . . Tm|m| . (6.16)

With these notations, we choose the following general ansatz for the perturbation (H0

stays constant during the flow):

V (`) =
∞∑
k=1

∑
|m|=k

F (`;m)T (m) , (6.17)

so that the complete `-dependence is absorbed in the functions F (`,m). Inserting (6.17)

in the definition of the generator (6.9) yields the following form

ηQ(`) =
∞∑
k=1

∑
|m|=k

F (`;m) sgn (M (m))T (m) , . (6.18)

where sgn is the sign function defined with sgn(0) = 0.
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For the quasi-particle conserving generator (6.9), the flow equation (6.5) reads

∂

∂`
H(`) =

∂

∂`
V (`), (6.19)

=
[
ηQ(`), V (`)

]
−
[
H0, η

Q(`)
]
, (6.20)

=
[
ηQ(`), V (`)

]
−
∞∑
k=1

∑
|m|=k

F (`;m) sgn(M(m)) [H0, T (m)]︸ ︷︷ ︸
M(m)T (m)

. (6.21)

Now inserting the expressions for V (`) (6.17) and ηQ(`) (6.21) yields:

∞∑
k=1

∑
|m|=k

∂

∂`
F (`;m)T (m) =

∑
k1,k2
|m1|=k1
|m2|=k2

F (`;m1)F (`;m2)sgn(M(m1)) [T (m1), T (m2)]

−
∞∑
k

|m|=k

F (`;m)|M(m)|T (m). (6.22)

The differential equation for the function F (`;m) is then given by the coefficients of

T (m) in (6.22) for each m and reads:

d

d`
F (`;m) =− |M(m)|F (`;m)

+
∑

{m1,m2}=m
|m|≥2

[sgn(M(m1))− sgn(M(m2))]F (`;m1)F (`;m2). (6.23)

Here, one can see a feature of the flow equation due to the choice of ηQ [158]: no

terms with |M(m)| > Nmax are generated during the flow, since their the coefficient

[sgn(M(m1))− sgn(M(m2))] yields a zero on the right-hand side of (6.23).

In order to simplify (6.23), we define

F (`;m) = e−|M(m)|`f(`;m). (6.24)

Inserting (6.24) in (6.23), the linear term vanishes and we are left with

∂

∂`
f(`;m) =

∑
{m1,m2}=m
|m|≥2

e(|M(m)|−|M(m1)|−|M(m2)|)`

× {sgn(M(m1))− sgn(M(m2))} f(`;m1)f(`;m2). (6.25)

In Ref. [105] it has been shown that the f(`;m) are bounded functions. Thus we see

that f(`;m) → 0 for M(m) 6= 0 due to the exponential in (6.25). So, the effective

Hamiltonian contains only terms with M(m) = 0.
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Since the sum on the right-hand side of (6.25) contains only mi with |mi| < |m|, we

can solve the equation (6.25) for every m recursively. As |m| corresponds to the order,

we obtain a solution of the flow equation order by order in the perturbation parameter.

The initial conditions can be determined from (6.17):

F (0;m) = f(0;m) =

1, for |m| = 1 and Tm1 present in V = V (` = 0)

0, otherwise
. (6.26)

Since we are interested in the limit `→∞, it is convenient to define coefficients

C(m) = lim
`→∞

F (`;m). (6.27)

One can show by explicitly solving the equations (6.25) that these C(m) are rational

numbers [105]. So, in the end, we can write down the effective Hamiltonian as

Heff
pCUT =H0 +

∞∑
k=1

∑
|m|=k
M(m)=0

C(m)T (m), (6.28)

which reads for the leading orders:

Heff
pCUT =H0 + T0

+
∑
n6=0

1

n
TnT−n

+
∑

n6=0,m 6=−n

1

n(n+m)
T−n−mTmTn −

∑
n6=0

1

2n2
(T0T−nTn + T−nTnT0)

+ . . . , (6.29)

where the indices take values −Nmax, . . . , Nmax if not stated otherwise.

We would like to stress that the coefficients C(m) are independent of any other property

of the original Hamiltonian (6.1) and so they can be determined once and for all. This

contrasts with alternative approaches with CUTs as presented in Ref. [157] or also in

a perturbative framework as in Ref. [150], where the effective Hamiltonian has to be

derived explicitly for each specific system in question.

Let us additionally note that we have

[
H0, H

eff
pCUT

]
6.28
= [H0, H0] +

∞∑
k=1

∑
m=k

M(m)=0

C(m) [H0, T (m)]

6.11
= 0 +

∞∑
k=1

∑
m=k

M(m)=0

C(m)M(m)T (m) = 0, (6.30)
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so we can still use the quantum numbers of the eigenstates of H0 to characterize eigen-

states of Heff
pCUT, as these are conserved. In the following sections, we discuss two im-

portant properties of the effective Hamiltonian (6.28), namely that it is cluster additive

and fulfills a linked-cluster theorem. These features allow to relate results obtained on

finite clusters with those valid in the thermodynamic limit under certain conditions.

6.1.1.3 Cluster additivity

Cluster additivity is a necessary property of the effective Hamiltonian Heff to obtain

results valid for the thermodynamic limit, although Heff is only evaluated on finite-size

systems. Formally, an operator MC defined on a finite- or infinite-size system C is said

to be cluster additive, if for any disjoint bipartition A, B such that C = A∪̇B can be

expressed as

MC = MA ⊗ 1B + 1A ⊗MB, (6.31)

where MA and MB only have support in the subsystems A and B, respectively. Typ-

ically, we consider the case of M being an operator of the type PmH
effPm, where Pm

projects on the m-particle subspace, i.e. Pm |n〉 = δm,n |n〉 for eigenstates of the particle-

counting operator Q (6.2). The meaning of disjoint partition depends on the model

considered. However, it is clear that this property is e.g. fulfilled if no operator with

support in A acts on the same degrees of freedom as any operator with support in B.

Let us mention that for practical purposes, the definition is often turned around: two

subclusters A and B are said to form a disjoint bipartition of C, if (6.31) holds. If the

size of these subsystems is bounded, the contributions to a cluster additive operator M

for an infinite-size system can be decomposed into the sum of the contributions from

finite-size subclusters. The latter can be efficiently evaluated and the value valid for the

thermodynamic limit can be obtained by summing up the finite-size contributions. We

refer to finite-size systems as clusters or graphs in the following.

Let us note that it is in general not true that the effective Hamiltonian Heff is cluster

additive even if the original Hamiltonian H has this property. However, for Heff
pCUT,

we can prove that this holds: for this purpose, we show that the cluster additivity is

maintained during the flow. We suppose H(`) to be cluster additive for a given ` ≥ 0,

i.e. for a suitable partition C = A∪̇B one has

H(`)C = H(`)A ⊗ 1B + 1A ⊗H(`)B. (6.32)
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As the particle counting operator Q (6.2) is cluster additive, we have also cluster addi-

tivity for the generator ηQ(`) (6.9) for this `:

ηQ(`)C = ηQ(`)A ⊗ 1B + 1A ⊗ ηQ(`)B. (6.33)

Considering the flow equation (6.5), we get

∂`H(`)C =
[
η(`)C , H(`)C

]
=
[
η(`)A, H(`)A

]
⊗ 1B + 1A ⊗

[
η(`)B, H(`)B

]
. (6.34)

We see that a cluster-additive Hamiltonian is changed by cluster-additive terms during

the flow and thus starting with a cluster-additive Hamiltonian at ` = 0 yields a cluster-

additive effective Hamiltonian.

The best known consequence of cluster additivity is that the ground-state energy E0,

which is the non-zero eigenvalue of the operator P0HP0, is an extensive quantity. There

are also examples for excited states. For instance, for a general linked-cluster expansion

Gelfand showed [149] that the one-particle reduced Hamiltonian

H1 = P1

(
Heff − E01

)
P1 (6.35)

is cluster additive provided H is cluster additive and that P0HP1 = 0. We have seen

above that the cluster additivity of P1

(
Heff

pCUT − E01
)
P1 holds even without the latter

constraint. This is a very convenient fact, as e.g. the string-net Hamiltonian (3.9) does

not meet this constraint in the non-topological phase, but nevertheless, we obtain an

expansion for the dispersion of the elementary excitations in this case. Let us note

that for this case, alternative linked-cluster approaches need to use cluster-dependent

decoupling schemes [150, 151], which increase the necessary computational resources.

Finally, let us point out that the cluster additivity is one of the ingredients of the linked-

cluster expansion [151, 170], presented in Chapter 8.

As we shall see in the next section, the upper bound for the needed cluster sizes is

provided by another feature of the effective Hamiltonian Heff
pCUT: it fulfills the so-called

linked-cluster theorem.

6.1.1.4 Linked-Cluster Theorem

The next ingredient towards an efficient graph expansion is an upper bound on the range

of the terms in the effective Hamiltonian. It will on the one hand provide a criterion,

which cluster size is large enough to obtain the same result as for the thermodynamic

limit and on the other hand allows us to treat also Hamiltonians, which do not possess the
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cluster additivity property described in the last section. Therefore, we want to re-express

the effective Hamiltonian (6.28) as a sum of nested commutators of the operators Tn.

To explain the significance of this rewriting, let us recall that the operators Tm are sums

of local terms. As terms which do not act on the same degrees of freedom commute, the

commutator structure of the effective Hamiltonian will then tell us that terms, which act

on disjoint supports, do have a zero contribution and thus their evaluation can therefore

be omitted from the very beginning. Let us emphasize that this result holds for any

effective Hamiltonian derived with pCUT, so the linked-cluster theorem is an intrinsic

property of this method.

To prove of this result, we argue along the lines of [171], but for a general form of the

perturbation V : we consider the flow equation (6.21) and introduce the abbreviations

T (k)
m (`) =

∑
M(m)=m
|m|=k

F (`,m)T (m), (6.36)

T̃m(`) =
∑
k

T (k)
m . (6.37)

The expressions for the perturbation and the generator read then

V (`) =
∑
m

T̃m, (6.38)

ηQ(`) =
∑
m

sgn(m) T̃m(`), (6.39)

which leads us finally to the flow equation (6.22) for the T̃m(`), which reads:

∂

∂`
T̃m(`) =

∑
n,n′

n+n′=m

[
sgn(n) T̃n(`), T̃n′(`)

]
− |m|T̃m(`). (6.40)

We see that the flow of the T̃m operators and thus the T (m) is governed by commutator

terms on the right-hand side of (6.40). Replacing T̃m from (6.37) in (6.40) yields

∂

∂`
T̃ (k)
m (`) =

∑
n,n′

n+n′=m

k−1∑
q=1

[
sgn(n) T̃ (k−q)

n (`), T̃
(q)
n′ (`)

]
− |m|T̃ (k)

m (`). (6.41)

Now, we could solve the flow equations again recursively by sorting the different terms

according to their order k. However, it is sufficient for our purpose to state that the

replacement of lower order terms just results in a nesting of the different commutators

and thus will lead to the structure pointed already out in the beginning of this paragraph.
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Here, we give the effective Hamiltonian Heff
pCUT (6.29) in terms of the commutator ex-

pansion (6.28) for the leading orders

Heff
pCUT =H0 + T0

+
∑
n>0

1

n
[Tn, T−n]

+
∑
n>0

1

2n2
([[Tn, T0] , T−n] + [Tn, [T0, T−n]])

+
∑
n>0

m 6=−n,0

1

n+m

1

n
([[T−n−m, Tm] , Tn] + [T−n, [T−m, Tn+m]])

+ . . . (6.42)

Let us emphasize again that due to the above commutator structure of Heff
pCUT, the size of

clusters to be taken into account in a perturbative calculation based on pCUT depends

basically only on the extension of the perturbation V and not on the unperturbed

Hamiltonian H0. This means that our series expansions for the topologically ordered

phase needs the same cluster sizes as any treatment of a topologically trivial phase with

a local perturbation as long as the excitation can be localized on the plaquettes of the

lattice. As we shall see, these effects of the non-trivial statistics will only change the

so-called weights of each cluster in a linked-cluster expansion, but not its general form.

6.1.2 Degenerate perturbation theory

An alternative way to derive an effective Hamiltonian Heff for H = H0 + V is the de-

generate perturbation theory (dpt) described in Ref. [106], which was originally detailed

by Kato [148]. Its advantage compared to the pCUT method presented in the previous

chapter is on the one hand that it is less restrictive on the form of H0 and V and thus

can be applied to more general Hamiltonians than the pCUT method. On the other

hand it has a rather compact structure, which results in faster evaluation of the effective

Hamiltonian. However, this method has also some drawbacks, as e.g. the fact that Heff
dpt

does not obey a linked-cluster theorem, resulting in a restricted applicability.

Let us briefly introduce the method by considering a Hamiltonian of the form (6.1) and

let us introduce additionally the Hermitian projectors P and P̃ , where P projects onto

the (possibly degenerate) eigenspace of H0 with eigenvalue E0 and P̃ onto the eigenspace

of H with eigenvalue E. We then define the operator

Γ = P̃P
(
PP̃P

)− 1
2
. (6.43)
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We have

Γ†Γ =
(
PP̃P

)− 1
2
PP̃ P̃P

(
PP̃P

)− 1
2

=
(
PP̃P

)− 1
2
PP̃P

(
PP̃P

)− 1
2

= P, (6.44)

so the transformation |ψ〉 7→ Γ |ψ〉 is unitary within the subspace, for which we aim at

deriving an effective model. The effective Hamiltonian then reads

Heff
dpt = Γ†HΓ. (6.45)

Now one has to rewrite the projector P̃ in terms of H0 and V to be able to explicitly

write down Heff
dpt. The key idea is to express it via the resolvent of H:

P̃ =
1

2πi

∮
C

dz
1

z −H
, (6.46)

where the contour C has to be chosen in the complex plane such that it encircles no

other eigenvalue of H0 than E0 and also contains the unknown eigenvalues E. Note that

the existence of such a contour relies on the existence of a finite energy gap between E0

and all other eigenvalues of H0 as well as the assumption that the perturbation is small

enough such that all E are still in the vicinity of E0. We express the resolvent in (6.46)

in terms of a power series in V :

1

z −H
=

1

z − (H0 + V )
=

1

(z −H0)

1(
1− V

z−H0

) =
1

(z −H0)

∞∑
n=0

(
V

1

z −H0

)n
. (6.47)

With (6.47) and using additionally the operator identity

1

z −H0
=

P

z − E0
+

1− P
z −H0

, (6.48)

we get after carrying out the integral in (6.46)

P̃ = P −
∞∑
n=1

∑
k1+...kn+1=n

ki≥0

Sk1V . . . V Skn+1 , (6.49)

where we introduced the abbreviations

S0 =− P, (6.50)

Sk =

(
1− P
E0 −H0

)k
. (6.51)

Now we expand the second factor of Γ in (6.43):

(
PP̃P

)− 1
2

=
(
P − P + PP̃P

)− 1
2

(6.52)
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=
(
P − P

(
P − P̃

)
P
)− 1

2
(6.53)

=P +

∞∑
n=1

(2n− 1)!!

(2n)!!

(
P − P

(
P − P̃

)
P
)n
, (6.54)

where we used (n)!! =

{
1 · 3 · . . . · n n odd

2 · 4 · . . . · n n even
. Using the two series expansions (6.49)

and (6.54) in the expression for Γ (6.43), we finally evaluate the effective Hamiltonian

Heff
dpt (6.45)

Heff
dpt = E0P +

∑
n≥1

∑
k1+...+kn−1=n−1

c(k1,...,kn−1)PV S
k1 . . . Skn−1V P, (6.55)

where the c(k1,...,kn−1) are the coefficients stemming from the summation of the fractions

in (6.54). Consequently, these coefficients are rational numbers, like the C(m) in (6.28).

The leading orders of the effective Hamiltonian Heff
dpt are given by:

Heff
dpt = E0P

+ PV P

+ PV SV P

+ PV SV SV P − 1

2
PV PV S2V P − 1

2
PV S2V PV P

+ . . . (6.56)

Let us note that if we are in a situation, where a pCUT expansion is possible, and

replace V =
∑

n Tn in (6.56), we obtain the same expression as (6.29) up to order three.

The coefficients start to differ from order four on. This indicates that the two effective

models obtained by pCUT and degenerate perturbation theory will differ in general

although they are unitarily equivalent. We will discuss this fact in more detail later.

Already by comparing the number of terms appearing in (6.29) and (6.56), we see that

the total number of terms is always smaller for degenerate perturbation theory compared

to pCUT. This already gives a hint that it is faster to evaluate (6.55) than (6.28).

However, the number of intermediate states appearing in the evaluation of each term

in (6.55) is in general larger, so that more memory is needed in the computer-based

evaluation process. In this sense, degenerate perturbation theory represents a method,

which provides a sizable speed-up of the evaluation of the effective Hamiltonian provided

that the necessary computational resources are given. However, this speed-up can still

be increased for the case of a non-degenerate eigenvalue E0, which can be inferred by

using partitioning techniques as presented in the next section.
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Let us finally remark that due to the appearance of the non-local denominator E0−H0 in

the operator S, the effective Hamiltonian Heff
dpt (6.55) typically violates cluster additivity.

6.1.3 Partition technique

In the following, we discuss with the partition technique (pt) a third way to obtain

an effective Hamiltonian Heff
pt . Its final expression is very similar to the degenerate

perturbation theory in the previous section and it allows us to determine the effective

matrix element for a non-degenerate energy level of the unperturbed Hamiltonian. The

method, described in large detail in [107], relies on partitioning the Hilbert space into

two orthogonal parts. First, we introduce the general idea and afterwards, we will focus

on the case of a non-degenerate eigenstate of H0, giving us a method to evaluate series

expansions for the perturbed eigenvalue E in a faster manner.

We divide the Hilbert spaceH into two partsH1 andH2 and define orthogonal projectors

O1 and O2, where Oi projects onto Hi for i ∈ {1, 2}:

1 = O1 +O2, (6.57)

O2
i = Oi, O†i = Oi, i ∈ {1, 2}, (6.58)

O1O2 = O2O1 = 0. (6.59)

To shorten notations, let us further define the partial resolvent

T =
O2

E −H
, (6.60)

which is well-defined if E is not in the spectrum of H|H2
. We assume E to be an

(possibly degenerate) eigenvalue of the unperturbed Hamiltonian. In our application to

perturbation theory, the well-definedness of T is usually guaranteed by the existence of

an energy gap for a sufficiently small perturbation.

One has the following useful relation

O2 (E −H)T = O2. (6.61)

With these notations, we define the operator

Ω = O1 + THO1. (6.62)



Chapter 6. Methodology 128

This operator annihilates obviously all states in H2. Additionally, we have

O2 (H − E) Ω
6.62
= O2 (H − E)O1 +O2 (H − E)THO1

6.61
= O2HO1 −O2HO1 = 0, (6.63)

which states that we also have O2HΩ = EO2Ω. So the operator Ω projects by construc-

tion onto an eigenstate, if restricted to H2. Next, we show that Ω is an eigenoperator

of H, i.e. HΩ = EΩ, iff the eigenvalue E fulfills an additional condition. One has

HΩ = EΩ (6.64)

⇔ 0 = (H − E) Ω = (O1 +O2) (H − E) Ω
6.63
= O1 (H − E) Ω

= O1 (H +HTH − E)O1

⇔ O1EO1 = O1 (H +HTH)O1. (6.65)

By evaluating the expectation value of (6.65) for a eigenstate |ψ〉 of H with eigenvalue

E, we obtain

E = 〈ϕ|H +HTH |ϕ〉 = 〈ϕ|H +H
O2

E −H
H |ϕ〉 , (6.66)

where |ϕ〉 ∝ O1 |ψ〉 is the normalized component of the eigenstate in H1.

As we can see in (6.66), the problem of determining an eigenvalue of H has now been

formally reduced to calculating an expectation value within one part of the Hilbert

space. The important fact is that we did not require H1 to be an eigenspace, but just

that the corresponding eigenfunction has a non-zero component in it. This is naturally

fulfilled, if one chooses H1 to be an eigenspace of an unperturbed Hamiltonian H0 and

H = H0 + V as in (6.1) with a small perturbation V .

In the following, we consider only this case and we furthermore assume H1 to be spanned

by the non-degenerate eigenstate |ϕ0〉 of H0 with unperturbed eigenenergy E0. There-

fore, one has O1 = P , O2 = 1 − P = P with the notations from the previous section.

Condition (6.65) then simplifies to

E = 〈ϕ0|H0 |ϕ0〉+ 〈ϕ0|V + V TV |ϕ0〉 = E + 〈t〉0 , (6.67)

where we defined the so-called reaction operator t, whose expectation value

〈t〉0 = 〈ϕ0| t |ϕ0〉 = 〈ϕ0|PtP |ϕ0〉 (6.68)

gives the energy shift with respect to the unperturbed energy E0.
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To rewrite the partial resolvent (6.60), we use the operator identity 1
A−B = 1

A + 1
AB

1
A−B

with A = P (E0 −H0)P and B = P (V − 〈t〉0)P in (6.60) and obtain

T =
P

E0 −H0 − (V − 〈t〉0)

=
P

E0 −H0
+

P

E0 −H0
(V − 〈t〉0)

P

E0 −H0 (V − 〈t〉0)

= S + S (V − 〈t〉0)T

⇔ T =
1

1− S (V − 〈t〉0)
S, (6.69)

where we employed S = S1 from (6.51). Expanding the right-hand side of (6.69), we

get

T =
∞∑
k=0

(S (V − 〈t〉0))k S, (6.70)

where the requirement for the convergence of the series in (6.70) is fulfilled for a small

and regular perturbation. Inserting (6.70) in the equation for the reaction operator

(6.67), we obtain

t = V + V
∞∑
k=0

(S (V − 〈t〉0))k SV. (6.71)

We observe that (6.71) still contains 〈t〉0, but as a power series. So if we now express

t =

∞∑
i=1

ti, (6.72)

with ti being of order i in the perturbation parameter, we can recursively determine tn

by expanding 〈t〉0 on the right-hand side of (6.71) up to order n− 2. We thus get

t = V

+ V SV

+ V SV SV − 〈t1〉0 V S
2V

+ V SV SV SV − 〈t1〉0 V SV S
2V − 〈t1〉0 V S

2V SV − 〈t2〉0 V S
2V

+ . . . (6.73)

and finally by using EnP = P 〈tn〉0 = PtnP :

Heff
pt = EP = E0P + PtP =

E0P + PV P
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+ PV SV P

+ PV SV SV P − E1PV S
2V P

+ PV SV SV SV P − E1PV SV S
2V P − E1PV S

2V SV P − E2PV S
2V P

+ . . . (6.74)

If one compares the expressions (6.74) and (6.55), one sees that they are closely related.

One can indeed interpret (6.74) as a simplified version of (6.55), where one replaced

all terms P . . . P by P and gathered the coefficients to express them in terms of the

En. This tells us that (6.74) is faster to evaluate than (6.55). However, as the term

PV SV . . . V SV P , which contains usually the largest number of intermediate states,

appears in both expansions, the maximal computation requirement in terms of memory

is exactly the same for both methods.

6.1.4 Efficient perturbation theory

In previous sections, we presented different effective Hamiltonians. Here, we shall now

discuss the advantages and drawbacks of the different methods with respect to each

other as well as the situations, in which one can easily transform results obtained for

one effective Hamiltonian to another one.

In the evaluation of the matrix elements of the different effective Hamiltonians, there

are, generically speaking, two limiting factors: computation time and memory resources.

The latter is basically given by the number of intermediate states to store at a given

moment during the calculation. Most impact on the computation time has the number

of terms in the effective Hamiltonian as well as the number of intermediate states to be

acted on by an operator.

To estimate the number of intermediate states involved, one has to compare the operators

Tm for the pCUT and V for the other methods. Since V =
Nmax∑

n=−Nmax

Tn, it is obvious

that the degenerate perturbation theory and the partition technique generate much more

intermediate states appearing at each step than the pCUT.

Another way to see this, is to realize that all intermediate states appearing in the same

step in the pCUT have a well-defined particle number, whereas the action of the operator

V in (6.55) or (6.74) generates superpositions of states with different particle numbers.

Thus, one can already conclude that dpt and pt are more memory demanding than the

pCUT.
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In the latter, all intermediate states are also treated within the calculation. However,

this is not achieved by the evaluation of one single term2, but by several ones.

This is also reflected in the number of terms in the effective Hamiltonian: As can be

seen in Table 6.1, the number of terms of Heff
pCUT is much larger. In conclusion, although

each term of Heff
pCUT can be evaluated faster than a term of Heff

dpt or Heff
pt as it involves

less intermediate states, combinatorial considerations tell us that the time to evaluate

Heff
pCUT is longer. Additionally, the number of terms in Heff

pCUT depends exponentially on

the parameter Nmax, so that the runtime difference increases with increasing Nmax.

order pCUT (Nmax=2) pCUT (Nmax=6) dpt pt

1 1 1 1 1
2 4 12 1 1
3 18 126 3 2
4 84 1.468 9 5
5 380 17.150 28 12
6 1.750 204.762 94 28
7 8.134 2.473.324 337 63

Table 6.1: Number of terms for the first seven orders for the different methods.
The pCUT (Nmax=2) has to be used for the series expansion in the topological phase,
pCUT (Nmax=6) for the non-topological phase. The number of terms suggests that the
degenerate perturbation theory and even more the partition technique shall be employed
if possible. However, one has still to keep in mind that the operator V corresponds to
Nmax∑

n=−Nmax

Tn and thus will involve a larger number of intermediate states, whereas the

pCUT will only involve intermediate states of one particle number n at a time. Thus
the need of memory resources has also to be taken into account.

Thus, we can conclude that if sufficient memory is available, the matrix elements of

Heff
dpt and Heff

pt are faster evaluated than the matrix elements of Heff
pCUT. Thus, in this

case, degenerate perturbation theory and the partitioning technique are the methods of

choice, especially for large N .

Let us note additionally that in the case of a non-degenerate unperturbed eigenspace,

Heff
pt contains less terms and can thus be evaluated faster than Heff

dpt, provided that the

energy contributions of the previous orders are known at the moment of evaluation.

However, it is only Heff
pCUT, for which we are able to prove the linked-cluster expansion.

This leads directly to the question, whether and how we can relate efficiently the different

effective Hamiltonians.

As the different effective Hamiltonians are all unitarily equivalent to the original one

within the eigenspace of H0, all effective Hamiltonians can be related by a unitary

transformation (Note that the operator Ω in 6.1.3 is not unitary by itself, however

2A term corresponds here to one term of the sums in (6.28) or (6.55)
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together with the normalization of the functions ϕ, it forms a unitary transformation).

The unitary transformation, which transform one of the effective Hamiltonians into

another is usually dependent on the system, on which these are evaluated.

In general, one has to know both effective Hamiltonians in order to determine the unitary

transformation linking them. However, there are some useful exceptions. These allow

to evaluate the best suited effective Hamiltonian (usually Heff
dpt or Heff

pt ) and obtain from

it the elements of another one (usually Heff
pCUT), which are then in turn used further,

i.e. to derive quantities for the thermodynamic limit.

A simple example is the case, in which the unperturbed eigenspace of H0 is non-

degenerate. Then the unitary U connecting the different effective Hamiltonians acts

as identity. Consequently, the obtained eigenvalues are the same and all properties

proven for one effective Hamiltonian carry over directly to the other ones.

This seems to be rather academic, however it turns out that this is often the case. For

example, the ground state of the non-topological phase presented in Chapter 3 is unique

and thus the above considerations apply.

Another non-trivial example are the topologically ordered ground states presented in

(3.43), which are (N + 1)2-fold degenerate, but as a consequence of the topological

order, these states cannot be coupled by a local perturbation in the thermodynamic

limit. Thus one is left with (N+1)2 decoupled states, for which the different approaches

that yield the same energies.

One can also obtain similar results for the one-particle sector: if the cluster, on which the

effective Hamiltonian is evaluated, has translational symmetry and there is only one ex-

cited state per site/plaquette, Fourier transformation decouples the different eigenmodes

of the effective Hamiltonian completely and again one is left with a unique eigenvalue.

One important remark is that the effective Hamiltonians are all translation-invariant

and thus commute with the Fourier transformation. As a consequence, not only the

dispersion in ~k-space, but also each real-space matrix element coincides. This case is

e.g. realized for the excitations in a N = 1 string-net model.

For N > 1, translational invariance can be used in the same way, however, the Hamilto-

nian is reduced to an N ×N matrix in ~k-space. As the unitary transformation may in

this case be explicitly ~k-dependent, one has to determine all matrix elements of Heff on

the given cluster. Having determined e.g. the full Heff
dpt, one still finds a suitable unitary

transform such that all real space elements, which shall be zero for Heff
pCUT due to the

linked-cluster theorem, vanish. The resulting Hamiltonian coincides with Heff
pCUT up to
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a local, i.e. ~k-independent, unitary transformation. Thus, the obtained dispersions from

the block-diagonalized form coincide.

However, without additional symmetries like translational symmetry or topological order

mentioned above, the unitary transformation cannot be determined without determining

both effective Hamiltonians. This limits the use of Heff
dpt and Heff

pt for linked-cluster

expansions for excited states, as the used graphs do not have translational invariance.

Let us finally make a link to another method to perform high-order series expansions

[150]. This relies also on decoupling schemes for different sectors of the Hilbert space.

The degenerate perturbation theory and the partition technique decouple one eigenspace

of the unperturbed Hamiltonian from the rest of the Hilbert space and are thus the

analogue of the ”two-block decoupling scheme” (TBOT) presented in [150], whereas

the pCUT decouples all unperturbed eigenspaces from each other and thus corresponds

to the ”multi-block decoupling scheme” (MBOT). We remark that the differences for

properties like e.g. cluster additivity of the different decoupling schemes correspond

directly to the differences of the methods presented in this thesis.

6.1.5 Perturbation theory in the thermodynamic limit

There is a large amount of literature about how to perform series expansions for the

low-energy spectrum in such a way that the results are correct in thermodynamic limit,

although the actual calculations are performed on finite-size systems, as e.g. presented in

[151, 172, 173] just to name a few review works. Most of them are concerned with series

expansions for the ground-state energy. As this is an extensive quantity, the effective

Hamiltonian is cluster-additive and so it decomposes into a sum of terms, which have

bounded support on the lattice for a given maximal order. This allows then for a linked-

cluster expansion [129, 173], which consists in first determining the combinatorial weight

of each finite-size cluster to the total result and secondly evaluate the contribution for

each cluster. We discuss linked-cluster expansions in more detail in Chapter 8.

However let us note that cluster additive quantities can also be evaluated on large

clusters with suitable boundary conditions. The linked-cluster theorem presented in

Section 6.1.1.4 yields an upper bound on the size of the support of the contributing

terms. So, for an expansion of order n on has to consider a cluster, in which all clusters

consisting of the joint, connected support of up to n operators can be embedded. To

obtain the correct results for the thermodynamic limit, one has in particular to take care

that no “wrapping” of the operator support around the finite-size system is possible if

periodic boundary conditions are applied.
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This “one-cluster” approach yields typically not the highest performance, however, it

allows to determine at least the leading orders of an expansion and can thus be used as a

valuable check. Note that in cases, where translational invariance decouples completely

the excited states, for each real space matrix element, one can choose a translation-

invariant cluster, which is optimally shaped for this particular matrix element, as the

linked-cluster theorem guarantees its correctness for larger clusters.

6.1.6 Extrapolations

Perturbative expansions approximate a given physical quantity f(z) by a finite order

series expansion

SN (z) =
N∑
n=0

snz
n. (6.75)

One expects for a regular f that SN (z)
N→∞

= f(z). However in practice, one has to deal

with the fact that one can just determine the first N orders of the series expansion (6.75).

For a sufficiently small parameter z, SN (z) and f(z) agree reasonably well, whereas the

behavior of SN for large z is usually dictated only by the highest-order term sNz
N .

This case is rather unfortunate, as e.g. physical quantities are usually bounded, but the

functional form of (6.75) is not. Also in the study of second-order phase transitions, the

quantities in the vicinity of a critical point are known to show algebraic behavior, which

is not reflected in the functional form of (6.75). Nevertheless, to describe qualitatively

and also quantitatively the physics, one therefore is often led to extrapolate the ob-

tained series instead of using them directly. As in this work, we want to describe phase

transitions, which are a non-perturbative effect, we are notoriously in this situation.

There are several possibilities to extrapolate a series expansion and none of them is

optimal for every possible situation.

The approach, we use throughout this work, is based on the so-called Padé approximants

[174]. A very detailed discussion of their properties and applications can e.g. be found

in Refs. [175, 176].

A Padé approximant P[L/M ] is given by

P[L/M ](z) =
PL(z)

QM (z)
, (6.76)
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with PL(z), QM (z) being polynomials of degree L and M respectively:

PL(z) =
L∑
n=0

pnz
n, (6.77)

QM (z) =
M∑
n=0

qnz
n. (6.78)

We set q0 = 1 to avoid ambiguities in the following. The Padé approximants P[L/M ] [SN ]

are determined via

SN (z)QM (z) = PL(z) +O
(
zL+M+1

)
, (6.79)

which leads to a linear equation system for the L + 1 + M unknown coefficients of PL

and QM . Thus, by setting N ≥ L + M we get a unique approximant P[L/M ] [SN ] for a

given SN . These approximants have by construction the same Taylor series as SN up to

order N and thus agree well with the series in the region of small z. For larger values

of z, the rational function P[L/M ] typically does not vary as much as SN (z), so that it

seems a reasonable approximation.

Generally speaking, Padé approximants should work well for rational functions, which

in turn shall be able to approximate not to strongly varying functions f . For a detailed

discussion of the convergence properties, we refer to [175].

One drawback of this method is that the approximants may have poles. The correspond-

ing divergences may or may not be related to physical properties. If we use the Padé

extrapolations to extend the range of reliable results, we will not consider approximants

showing poles in the relevant parameter regime.

Another drawback of this method is that it does not allow to estimate an error of the

extrapolations in a reliable fashion. So one is led to consider several approximants,

usually choosing those, which correspond to larger L + M , as these incorporate more

information.

Nevertheless Padé approximants can also be used to obtain more information from the

series expansions SN . In the vicinity of a quantum critical point at a parameter value

zc, scale invariance tells us that quantities like e.g. the gap behaves algebraically, i.e. for

z ' zc there are A(z) and α such that

f(z) = A(z)

(
1− z

zc

)α
. (6.80)
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The rational Padé approximants by themselves are not very good candidates to approx-

imate this behavior. However, taking the logarithmic derivative of (6.80) yields

d

dz
(log(f(z))) =

α

z − zc
(1 +O(z − zc)) , (6.81)

where the corrections stem from the variations of A(z) as well as from corrections to

(6.80) away from criticality. The rational form (6.81) is then approximated by a Padé

approximant. If one proceeds like this for the series expansion SN (z), one obtains its

logarithmic derivative

S̃N (z) =

N∑
n=1

nsn−1z
n−1

N∑
n=0

snzn
. (6.82)

The corresponding equation for the coefficients pn, qn

S′N (z)QM (z) = SN (z)PL(z) +O(zL+M+1) (6.83)

yields a unique solution, if we choose L + M ≤ N − 1. The approximant of the orig-

inal physical quantity f is then the so-called dlog-Padé approximant DP[L/M ], whose

functional form is

DP[L/M ](z) [SN (z)] = SN (0) exp

 z∫
0

dz′P[L/M ]

[
S̃N (z′)

] . (6.84)

If zc is a zero of QM (and not of PL), then the exponential function tends to 0 when

z approaches zc and the corresponding critical parameter zc is given by the zero of the

denominator QL. The corresponding exponent is obtained as the residuum

α =
PL(z)
d
dzQM (z)

∣∣∣∣∣
z=zc

. (6.85)

Let us note that it is possible that the physical zc is not the zero of QM , which is closest

to z = 0. These intermediate zeros of QM , which are called “spurious poles” of the

approximant, are also (exact or approximate) zeros of the nominator PL(z) and thus

do not impact (severely) the ratio PL
QM

. The corresponding dlog-Padé DP [L/M ] is then

called “defective” as it yields the same information as DP [L−1/M−1] and thus cannot

be used to obtain new statements about convergence. Results obtained by defective

approximants are, in general, marked by an asterisk ∗.

A convenient feature of the dlog-Padé approximants is that they allow to use already

known information to refine the analysis. If e.g. the critical value zc is already known,
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the exponent obtained by the biased approximant is given by(
(zc − z) P[L/M ]

[
S̃N (z)

])∣∣∣
z=zc

= α. (6.86)

Let us finally mention that there are a plethora of generalizations of Padé approximants

to e.g. two-point Padé approximants [176] for the case that series expansions for several

limits are available, differential approximants [177] to smoothen even more the form of

the approximant itself, or extensions for the treatment of multi-variate series [178, 179]

just to name a few. There exist even more approximant schemes as the self-similar factor

approximants [180–182], which have also been applied in the context of topological phase

transitions [82]. However for the purpose of this work, we find that the univariate Padé

and dlog-Padé approximants and their biased variants are the most stable extrapolations

and therefore are used to extract the desired information from the series.

6.2 Exact diagonalization

An alternative way, we use to describe the low-energy spectrum, is (Lanczos-) exact

diagonalization on small systems. This method has the advantage that it allows to de-

termine the low-energy spectrum of a given Hamiltonian on a finite-size system without

specific assumptions like e.g. the low-energy subspace corresponding to some unper-

turbed Hamiltonian H0 as done within the series-expansion framework. In addition, one

is not restricted to a certain phase, but can study the whole parameter range in a single

setting. One drawback is that the results of the diagonalization are not directly valid in

the thermodynamic limit and finite-size scaling is necessary to determine e.g. the order

of a phase transition. Exact diagonalization has already been successfully employed

in the study of topologically ordered phases and topological phase transitions, e.g. in

Refs. [59, 67, 69, 70].

In order to avoid boundary effects due to edges, the systems studied here are chosen to

be periodic. As the symmetry of the lattice plays some role (e.g. quasi one-dimensional

systems shall show the behavior described in Refs. [67, 69, 70], which is not at all ex-

pected in a two-dimensional system), the unit cells are chosen for all sizes such that the

corresponding unit vectors form an angle of π
3 . So the shortest non-contractible cycles

have all the same length in each direction. Of particular interest are non-contractible

cycles of length six, as these have a similar energy as the extended low-energy exci-

tations in the non-topological phase (3.51). The corresponding states are part of the

low-energy Hilbert space, but not present in the thermodynamic limit. Thus systems

harboring these states will not yield a correct description of the low-energy spectrum
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of the thermodynamic limit. As can be seen in Figure 6.1, cycles of the length six are

not present in the clusters with Np = 12, 13, so that this particular finite-size effect is

absent for these systems.

Figure 6.1: The different systems, on which the diagonalization is performed. The
blue lines indicate unit cells, which have untwisted periodic boundary conditions. The
dashed red lines show a deformed unit cell, which allows to count the number of pla-
quettes Np = 4, 7, 9, 12, 13. The clusters are constructed such that the shortest non-
contractible cycles (also indicated by the dashed red lines connecting two corners of the
unit cell) are of the same length in each direction.

In order to obtain the low-energy spectrum, we follow a brute force approach:

• First the complete bond-basis for the finite system, i.e. all states not violating

the vertex constraints (2.5), is generated. For large systems, this requires an

appropriate algorithm.

The way of choice is here to introduce for each plaquette p a “flip operator” Fp,

which, when acting on a state, will generate all states, the operator Bp (3.9)

generates, storing each string-net configuration in the bond basis separately.

Note that the flip operators do not necessarily commute with each other as the

Bp, so maybe one has to act several times with each Fp to generate all states.

However, for some theories presented in Chapter 3, this is not sufficient. This is

because states, which differ by an odd number of non-contractible loops of non-

trivial (D(Z2)-theory) or σ-(D(Ising)) labeled links, cannot be transformed into

each other locally as a consequence of the branching rules. So one has to generate

the basis for each sector separately. As the Hamiltonian does not couple these four

resulting sectors, one can treat each of them separately.

Apart from this, no other symmetries are used to decouple different sectors of

the Hilbert space. One can check, whether one has generated the whole basis by
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comparing the number of the generated states with the total dimension of the

Hilbert space ((3.74),(3.62), or (3.73)) for Np plaquettes.

• Second, the Hamiltonian is written in this basis as a finite-dimensional matrix.

This is trivial for the local term (3.48), as it is diagonal in the bond basis. The

string-net Hamiltonian then is written down according to the bond basis. Both

parts of the Hamiltonian are stocked separately and then summed up with the

coupling constants given by the parameter θ (3.54).

• Third, the eigenvalues of the full Hamiltonian are obtained by using an appro-

priate Lanczos [183, 184] or power-method [185] routine. For the large systems,

i.e. Np ≥ 9, the matrix is not fully diagonalized, but only the low-energy spectrum

(typically the lowest 20-50 eigenvalues) is computed. Therefore one has to intro-

duce eventually an appropriate spectral shift, so that the low-energy spectrum of

the Hamiltonian corresponds to the eigenvalues, which have the largest norm.

The algorithms used to obtain the eigenvalues are chosen by the used MathematicaTM

software [186] itself in function of the actual matrix and available computer resources.

So, no further optimizations have to be made, which leads to a relatively comfortable

use.

Let us mention that the brute-force approach used here is not optimal in the sense that

it does not allow to treat the largest possible system for the given computer resources.

Nevertheless, it allows to compute the low-energy spectrum for reasonable system sizes

(see Table 6.2) on rather short time-scales (5-60 minutes per parameter value) with a

rather minimal effort of programming. The prize to pay for the fast evaluation is that

one has to stock the full Hamiltonian (in sparse format) in memory to avoid repeated

slow read-in processes. Thus, it turns out that in this setting one is restricted to a

Hilbert space of typically 30 millions states, if one uses up to 96GB memory.

Np D(Z2) D(Fib) D(Ising)

4 8 (32) 175 144 (528)
7 64 (256) 8.125 8.320 (32.896)
9 256 (1.024) 106.250 131.584 (524.800)
12 2.048 (8.192) 5.031.250 8.392.704 (33.558.528)
13 4.096 (16.384) 18.203.125 33.562.624 (134.225.920)

16 32.768 (131.072) 862.109.375 - (8.590.000.128)

Table 6.2: Largest block size of the Hamiltonian on a system with Np plaquettes
and periodic boundary conditions. In parentheses, we show the dimension of the total
Hilbert space if it differs from the largest block size.

Note that more involved approaches using (lattice-)symmetries [183, 187] can also be

implemented for two-dimensional string-net system. For these, the low-energy spectrum
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has been calculated for system sizes up to Np = 16 [59]. These systems harbor a

comparable number of local anyonic degrees of freedom, however, the total number of

states is about two orders of magnitude larger (cf. Table 6.2).

6.3 Chapter summary

In this chapter, we have presented the methods, which we employ within this thesis. We

discussed three different ways to derive an effective Hamiltonian in a perturbative fash-

ion, namely perturbative continuous unitary transformations, degenerate perturbation

theory, and the perturbative version of the partition technique. The evaluation of these

yield the series expansions presented in the Chapter 5.

We discussed the respective general framework and among other features the linked-

cluster theorem, which is of particular interest in the context of the linked-cluster ex-

pansion presented in Chapter 8.

The technical details of the implementation are discussed in Chapter 7. In the present

chapter, we detailed the extrapolation employed e.g. to obtain estimates for the critical

exponents presented in Chapter 5. Additionally, we discussed the details of the exact

diagonalizations on finite-size systems.



Chapter 7
Implementation of the series expansion

It isn’t the mountain ahead that wears you out;

it’s the grain of sand in your shoe.

- Robert W. Service -

In this section, we discuss the technical details, which are necessary to implement the

methods presented in the previous chapter in order to obtain the series expansion results

of Chapter 5. Thus, we will discuss the details of the evaluation of the matrix elements

of the effective Hamiltonians (6.28), (6.55), and (6.74).

Before we discuss the particularities of the different limits, let us begin with some gen-

eral remarks that apply whenever one performs computer-based series expansions for the

low-energy sector of the Hilbert space under consideration. Then we turn to the imple-

mentation details for the different phases. However, we do not discuss in large detail the

possible optimizations for different finite-size systems to evaluate the matrix elements of

Heff except for the dispersion in the 1-phase, as we consider the linked-cluster expansion

employed for the other cases in Chapter 8.

7.1 General considerations

For the evaluation of Heff it is mandatory to stock the operators Tn or V in some

fashion. It is not useful to store the full Hamiltonian, as this requires a large amount

of memory and the large amount of information to handle slows down the calculation

considerably. Thus, one is often led to a local representation of the perturbation stocked

in the memory, which takes much less memory than the full Hamiltonian. However, an

efficient implementation of this setup requires that the states are represented in a way

that one can easily read the local degrees of freedom necessary to determine the action

of the local Hamiltonian. This is trivial for non-topological phases, however we discuss

the consequences of this especially for the example of the topological phase.

141



Chapter 7. Implementation of the series expansion 142

Another point is to consider the implementation of the actual action of the perturbation

operators: as already stated in Ref. [173], instead of determining for each action the

actual operator elements 〈f |Heff |i〉, it is more efficient to postpone the scalar product

of 〈f | and
(
Heff |i〉

)
to the end of the calculation and to store for the intermediate steps

the result of the actions of Heff on the initial state |i〉. This saves the calculation time

for the intermediate scalar products, which represent an important slow-down factor, if

one has to deal with many intermediate states. This reasoning holds even if one works

with an orthogonal basis, in which for each basis vector the scalar product is trivial, but

the amount of states results in a sizable effort. Thus one reduces the number of actually

calculated scalar products to at most one per term of Heff .

There are in principle two useful strategies: either one performs the scalar product in

the end, i.e. one calculates

〈f |
(
Heff |i〉

)
(7.1)

or one performs it in the middle, i.e. for a term Tm1Tm2Tm3 . . . Tm|m| , one determines

the overlap of the left and the right bracket(
〈f |Tm1Tm2 . . . Tm|m|/2

)(
Tm|m|/2+1

. . . Tm|m| |i〉
)
. (7.2)

separately. Version (7.1) has the advantage that the final scalar product has not to be

calculated for each term separately, which reduces the effort considerably (see Table 6.1

for the number of terms), whereas the latter version (7.2) employs the fact that less

actions of the perturbation generate considerably less intermediate states and thus one

has not to deal with one superposition with contributions from many basis states, but

two superpositions of similar but much smaller number of contributions. However, this

way involves a splitting of each term as in (7.2), so that here the scalar product has to

be carried out for each term separately. Another disadvantage of the latter way is that

for each final state, the calculation has to be carried out explicitly, whereas without the

splitting, one can in principle obtain all possible final states at once.

In conclusion, whenever there is a unique final state and an efficient way to carry out

the scalar product, we take advantage to split the terms of the effective Hamiltonian as

this reduces also the need of memory and allows to evaluate the actions of Heff up to

higher orders, as it acts on simpler states. This is typically the case in our development

for the non-topological phases, especially for the ground states. Whenever several final

states for a given initial state are needed and enough memory resources are available, or

the calculation of the scalar product represents a sizable effort, we implement the final
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overlap calculation. This will be the case for the graph expansions for the excited states

as well as the treatment of the topological phase.

Before considering the specific cases, let us mention another possible simplification, we

use to ease the effort of evaluating the effective Hamiltonian. The key observation is that

we are interested in operator elements in the low-energy sector and that we can represent

the excited states as the ground states almost everywhere except in some region, where

the excitations are located. It is therefore extremely recommendable to reduce the effort

of evaluating the perturbation on the local ground-state configuration.

One way to achieve this for possibly degenerate unperturbed ground states |gs〉 not

coupled by the perturbation at order one, i.e. for all limits for which high-order series

expansions are obtained within this thesis, is to consider instead of V or T0 the modified

operators

Ṽ = V − 〈gs|V |gs〉1, T̃0 = T0 − 〈gs|T0 |gs〉1 (7.3)

and treat the first-order contribution separately. By doing so, one sets T̃0

∣∣∣
gs

as well as

PṼ P for the ground states to zero and thus one assures that the action on the (local)

ground state always creates excitations. This removes a sizable number of terms from

the sums in (6.28), (6.55), and (6.74). Additionally, the action of the operators in (7.3)

on a local ground-state configuration has not to be evaluated, which speeds up the

evaluation of the remaining terms.

The spectral shift in (7.3) has no impact on the hopping elements, as it drops out

in the difference of excited- and ground-state contributions. For the ground states, the

spectral shift is easily determined and constitutes the order one contribution to the series

expansion of the ground-state energy. Thus, in the actual calculations, we will always

consider the shifted version and thus we will drop the ˜ for notational convenience. The

spectral shift is determined explicitly in the following discussion for each phase.

7.2 Implementation for the topological phase

In the topological phase, we use the eigenstates of HLW discussed in Chapter 3 to perform

the series expansion. We presented two eigenbasis sets, namely the flux basis (3.21) and

the dual basis (3.39). The latter is defined purely in terms of the fluxes and their fusion

channels. As this represents the minimal information needed to characterize unambigu-

ously a state, it is desirable to choose this basis to perform efficiently a perturbative

expansion. One can easily determine the constant spectral shift discussed in (7.3), to
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yield per link

〈
gstop

∣∣Hloc,e

∣∣gstop

〉
=− Je

〈
1 1

e

∣∣∣∣∣∣
∑
s

ds
D2

Lse

∣∣∣∣∣∣1 1
e

〉

=− Je

∑
s

ds
D2

〈
1 1

e

∣∣∣∣∣∣∣s s
e

〉
= −Je

d1
D2

= −Je
1

D2
. (7.4)

However, this basis is intrinsically non-local because it involves for the action on each

bond e different R- and F -moves to bring the fusion tree in the form depicted in (7.4).

Thus, this basis is not very useful for the series expansion, as the non-locality of the

involved transformations prevents an efficient evaluation of local operators as the pertur-

bation Hloc. This is necessary to perform a series expansion up to high orders, so we use

instead the flux basis for the actual calculations, as it allows to express the eigenstates

of HLW in a (quasi-) local way.

The drawback of this choice is that we have to work with an overcomplete and in par-

ticular non-orthogonal basis, which requires additional considerations as detailed below.

The dual basis is nevertheless a very useful representation as it allows a straightforward

calculation of low-order matrix elements by hand, where one can easily figure out the

F - and R-moves needed to apply the perturbation.

L

5

1312

4

10

3

9

16 17

86

15

18

1 2

7

11

19

R

14

Figure 7.1: Labeling of the degrees of freedom necessary to determine the action of
Hloc on the bond labeled by 10. As detailed in the text, the evaluation of P 1

10 involved
the nineteen bond variables as well as the flux-variables located at the left (L) and right
(R) plaquette. The labels of the outgoing links, which are enumerated here by 1, 2, 3,
8, 12, 17, 18, and 19, are not altered in the representation of the perturbation in the
flux basis.

Let us remind that in the flux basis, we deal with the flux-labels {bp} as well as the bond-

labels {`e}. Therefore, we have to express also the local perturbation Hloc in terms of

the involved quantum numbers, i.e. to determine

−Je

∑
e

P 1
e |{bp}, {`e}〉 . (7.5)
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With the labeling of Figure 7.1, we can see that for the bond e = 10, we have

P 1
10 = 1L P

1
10 1R =

∑
α′,β′

Pα
′

L P
β′

R

P 1
10

∑
α,β

PαLP
β
R

 , (7.6)

where the indices α, β, α′, β′ denote the different possible flux labels before and after

the action of the perturbation. Thus, we can obtain the desired matrix elements of the

perturbation by evaluating

〈
α′, β′, {`′e}

∣∣Pα′L P β′R P 1
10P

α
LP

β
R |α, β, {`e}〉 (7.7)

in the bond basis. The price to pay is that its evaluation and thus also the application

within the calculation not only involves the two plaquette variables, but also 19 bond

variables, so that we are dealing with 21 variables, which can take (N+1) values each, in

total. The need of handling the large resulting number of matrix elements in an efficient

manner implies for example the use of hash-lists for the states (which for representations

involving less degrees of freedom is usually a slowing-down feature).

Although the number of involved degrees of freedom is large, let us remark that the

number of non-zero matrix elements is by far not as large as (N + 1)21: the labels of

the outgoing links of the double plaquette, as depicted in Figure 7.1, are unchanged.

Consequently, the Hamiltonian splits into (N + 1)8 sub-blocks. The dimension of each

block is further reduced by the branching rules of the theory.

Let us note already here that the use of this representation with enlarged support of

the perturbation operators does not impact properties as the cluster additivity, as it is

solely mediated by the action of the projectors Pαp that all commute with each other.

p0 p2p1l r

Figure 7.2: Labeling of the flux hopping from plaquette p0 to the next-nearest neigh-
bor plaquette p2 via the action of Hloc on the bonds labeled by l and r. The examples
are detailed in (7.8)-(7.11).

The choice of the flux basis therefore forces us to work with an overcomplete basis,

which has important consequences. These can already be anticipated by considering for

example the states involved in the evaluation of the next-nearest neighbor hopping term

for the Fibonacci theory. This process appears at leading order due to the action of the
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operator T−2,lT2,r |τ p0〉. It reads with the labeling of Figure 7.2:∣∣∣∣ τ

〉
T2,r

−−−→
∣∣∣∣ τ ττ

〉
T−2,l

−−−→
∣∣∣∣ τ

〉
, (7.8)∣∣∣∣ τ

〉
T2,r

−−−→
∣∣∣∣ τ τ τ

〉
T−2,l

−−−→
∣∣∣∣ τ

〉
, (7.9)∣∣∣∣ τ

〉
T2,r

−−−→
∣∣∣∣ τ ττ

〉
T−2,l

−−−→
∣∣∣∣ τ

〉
, (7.10)

. . . , (7.11)

where the bonds are colored according the their label and the τ denoted plaquettes with

a τ -flux. All of these processes represent (among the others summarized by “. . .” in

(7.11)) the same physical processes: a hopping of a τ -flux to a next-nearest neighbor

plaquette. As discussed in Chapter 3, one-flux states are unique. Consequently, the

final states in (7.8) - (7.10) all coincide up to a weight, which has to be determined by

explicitly calculating the respective overlaps.

Another point is that the description of the hopping process, which can be written in

the dual basis in a simple fashion as∣∣∣∣∣∣∣∣
τ 1

l r

〉
T2,r

−−−→

∣∣∣∣∣∣∣∣ l r

〉
F -move
−−−−−→

∣∣∣∣∣∣∣∣ l r

〉
T−2,l

−−−→

∣∣∣∣∣∣∣∣
1 τ

l r

〉
, (7.12)

involves in the flux-basis description basically all possible configurations of the bond

variables (hidden in (7.11)). As the number of possible bond configurations (15) for the

example (7.8) - (7.11) is larger than the number of flux configurations in the intermediate

state, it is obvious that taking into account all states results in avoidable calculations.

Thus the task of performing computer-based series expansions in an efficient manner

involves necessarily an implementation of the non-trivial overlap calculation as well as a

reduction of the appearing redundancies. These are the implementation issues we detail

in the next two sections.

7.2.1 Implementation of the scalar product

Let us recall the definition of a state in the flux basis (3.21).

|{bp}, {`e}〉 = N
∏
p

Pbpp
∏
e

|`〉e .
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Therefore, we have to be able to evaluate the scalar product for two arbitrary states

〈
{b′p}, {`′e}

∣∣{bp}, {`e}〉 =N N ′
∏
e

〈
`′
∣∣
e

∏
p

Pb
′
p
p

∏
p

Pbpp
∏
e

|`〉e (7.13)

=N N ′
∏
p

δbp,b′p

∏
e

〈
`′
∣∣
e

∏
p

Pbpp
∏
e

|`〉e , (7.14)

where in the last step we used Pαp Pβp = δα,βPβp . So the calculation of the overlap reduces

to determining the action of the projectors onto a state represented in the bond-basis∏
e
〈`′|e

∏
p
Pbpp

∏
e
|`〉e.

Although this looks similar to perform series expansions in the non-topologically ordered

phase, there are several differences. The most important one is that one has to act on

each plaquette of the given system. This represents a sizable effort for large and, in

particular, for periodic systems. Additionally, one cannot introduce a spectral shift to

ease the calculation as discussed above, because a determination of the action of the

projectors onto arbitrary link-configurations depends in general on the plaquette p.

One conclusion to be drawn is that the overlap calculation represents a sizable effort,

which may have an impact on the efficiency of the performed calculation. To avoid, as

much as possible, the need of performing scalar products, it is useful to implement the

calculation such that the action of Heff on an initial state determined (for all terms)

first and afterwards the scalar product with the resulting superposition of final states is

performed.

This strategy makes the evaluation of the matrix elements of Heff a feasible task. This is

true especially for small and open systems like the graphs discussed in detail in the next

chapter. Nevertheless it prevents the splitting of the Hamiltonian Heff as a speed-up

mechanism.

7.2.2 Removing the redundancy

As already discussed, the overcompleteness of the flux basis is due to the involved bond

degrees of freedom necessary to keep track of the information, in which fusion channel

the different fluxes in the system are. The tracking of these fusion channels is not unique,

as a fusion channel of two fluxes can be basically encoded in every path through the

lattice, which links the two flux degrees of freedom. To reduce the computational effort,

it is thus desirable to reduce the redundant number of bond degrees of freedom.

As we perform our calculations by acting with local operators, we cannot remove the

redundancies by specifying the overall, i.e. global, fusion configuration. Nevertheless, we
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can locally remove the redundancy for a given flux configuration. As we represented in

Section 7.2 the perturbation by contributions of the form Pα′L P
β′

R VePαLP
β
R, we can reduce

the number of final (and thus intermediate) states by choosing suitable re-expressions

of the form

Pα
′

L P
β′

R

∣∣{`′1 . . . `′m}〉 =
∑

{`1...`m}

cα
′,β′

{`′1...`′m},{`1...`m}
Pα
′

L P
β′

R |{`1 . . . `m}〉 . (7.15)

We discuss the procedure to find a suitable set cα
′,β′

{`′1...`′m},{`1...`m}
in detail by giving an

explicit example for the Fibonacci theory. We consider a double-plaquette (see Fig-

ure 7.1) in a configuration, where all outgoing links are in state 1. The state of the

outgoing links is not affected by the action of the perturbation. The procedure has to be

done for all values of α′ and β′ in (7.15) as well as for all configurations of the outgoing

links separately. Here we discuss the case α′ = β′ = τ . With the projectors (3.19), we

can write formally

D4PτLPτR



∣∣ 〉
∣∣ 〉
∣∣ 〉
∣∣ 〉
∣∣ 〉


=



ϕ4 −ϕ3 −ϕ3 ϕ ϕ3/2

−ϕ3 ϕ2 ϕ2 −1 −ϕ1/2

−ϕ3 ϕ2 ϕ2 −1 −ϕ1/2

ϕ −1 −1 2ϕ3 −3ϕ1/2−ϕ3/2

ϕ3/2 −ϕ1/2 −ϕ1/2 −3ϕ1/2−ϕ3/2 4+ϕ





∣∣ 〉
∣∣ 〉
∣∣ 〉
∣∣ 〉
∣∣ 〉


, (7.16)

where ϕ is the golden mean and D the total quantum dimension of the Fibonacci theory.

Note that we sorted the states according to the number of links, which are not in the

trivial value, i.e. which differ from the reference state |ref〉 (3.30).

Now we multiply (7.16) with PτLPτR from the left on both sides. Using
(
Pτp
)2

= Pτp and

subtracting the left-hand side yields



−6.2361 −4.2361 −4.2361 1.6180 2.0582

−4.2361 −10.4721 2.6180 −1. −1.2720

−4.2361 2.6180 −10.4721 −1. −1.2720

1.6180 −1. −1. −4.6180 −5.8742

2.0582 −1.2720 −1.2720 −5.8742 −7.4721





PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉


= 0, (7.17)
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where we expressed all coefficients as floating point numbers, since the following oper-

ations involve division of matrix elements and do not preserve the simple structure in

terms of the quantum dimensions as in (7.16). We note that we perform the actual

calculations to guarantee a precision of 50 digits for the final result.

We perform backward elimination (with eventual pivotation) and forward substitution,

which yields



0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

−0.6180 0. −1. 0. 0.

−0.6180 0. 0. −1. 0.

0.4859 −0.7862 0. 0. −1.





PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉

PτLPτR
∣∣∣ 〉


= 0. (7.18)

So by considering the non-trivial lines of (7.18), we have finally

PτLPτR
∣∣∣ 〉

= −0.6180 PτLPτR
∣∣∣ 〉

, (7.19)

PτLPτR
∣∣∣ 〉

= −0.6180 PτLPτR
∣∣∣ 〉

, (7.20)

PτLPτR
∣∣∣ 〉

= 0.4859 PτLPτR
∣∣∣ 〉

− 0.7862 PτLPτR
∣∣∣ 〉

, (7.21)

and thus, we can express all final states in terms of the two states PτLPτR
∣∣∣ 〉

and

PτLPτR
∣∣∣ 〉

, which have not been replaced by the above procedure.

Due to our initial sorting of the states, we retain the states having maximal number of

links in the state 1. This speeds up the final overlap calculation, and it also reduces the

necessity of keeping track of a growing number of non-trivial string-net configurations

during the calculation. Note that this procedure eliminates the need of taking into

account processes as for example depicted in (7.10), as the intermediate state has been

eliminated by the above procedure. However, processes, whose non-trivial bond values

arise due to the fact that intermediate loops cannot be annihilated as depicted in (7.9),

are still to be taken into account, so that one has still to perform an overlap calculation

at the end.

Let us also note that the coincidence of the number of the remaining states and the

number of fusion channels of the two τ -fluxes on the plaquettes is by far not accidental,

but is reflecting the fact that the local perturbation acts within a subspace spanned by

the possible fusion outcomes of the local flux labels.
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For the case of an Abelian theory, the positions of fluxes specify completely a state.

Thus the above procedure reduces the number of final states always to one state for

each sector given by values α′, β′, and the outgoing link variables. If one selects this

state to yield the reference state in the definition of the flux basis (3.21) when embedded

into the lattice, one thus sees that the link degrees of freedom are not necessary at all

to describe the physics of the topological phase. The matrix elements are completely

determined by the plaquette (dual) variables.

7.2.3 Implementation details of the calculations

As our representation of states in the overcomplete flux basis involves many intermediate

states, we reduce the need of memory by evaluating Heff
pCUT (6.28) instead of Heff

dpt or

Heff
pt for the ground-state energy and the dispersion.

The overlap calculation is performed in the end of each calculation. This also allows

for a more convenient book keeping in the linked-cluster expansion detailed in the next

chapter. Indeed, for one initial state all possible final states are determined in one

calculation and thus the effort of tracking all possible matrix elements is reduced.

7.3 The non-topological phases

In our discussion of the implementation of the series expansion for the non-topological

phases, we give first the details for the 1-phase, which is present in all of the considered

models within this thesis. Afterwards, we give details for the τ -phase, which is only

present for the Fibonacci-theory. The other models do not have a finite ground-state

degeneracy in the analogue parameter regime and are therefore not treated by high-order

series expansions.

However, let us mention before we enter the detailed discussion that within the non-

topological phases, we represent the eigenstates of the unperturbed Hamiltonian in the

bond basis, which is an orthonormal product basis. Thus all considerations of the

previous section resulting from the need to deal with an overcomplete basis are absent.

7.3.1 Implementation in the 1-phase

Let us recall that in the 1-phase of any (N + 1) string-net model, the ground state∣∣gsloc,1

〉
is given by (3.50). One can easily determine the spectral shift discussed in
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Section 7.1 which is

〈
gsloc,1

∣∣HLW,p

∣∣gsloc,1

〉
=− Jp

〈
p

∣∣∣∣∣∣
∑
s

ds
D2

Bsp

∣∣∣∣∣∣ p

〉

=− Jp

∑
s

ds
D2

〈
p

∣∣∣∣∣∣∣ p s

〉
= −Jp

d1
D2

(7.22)

for every plaquette. We already discussed in Chapter 3 that the elementary excitations

are given by (3.51). This is a consequence of the fact that excited states with less than

six links not in state 1 do not respect the branching rules. Thus, one can read off the

definition (3.51) that there are only N matrix elements of the perturbation connecting

the unperturbed ground state with the unperturbed excited states. This eases the

calculation especially for the ground-state energy, as the number of intermediate states

grows considerably slower compared to the τ -phase discussed below.

However, as we can already read off (3.51), we have for the honeycomb lattice Nmax = 6

for the pCUT as the action of the perturbation on a plaquette can create at most six

excited links. Therefore, the number of terms in Heff
pCUT is rapidly growing with the

order. Consequently, we evaluate Heff
pt to obtain the ground-state energy and Heff

dpt for

the dispersion. For the former, we can use a linked-cluster expansion, as the ground

state is unique. For the dispersion, one has to evaluate Heff
dpt on periodic clusters (cf. the

discussion in Section 6.1.4). The involved finite-size systems have to be large enough,

such that no processes absent in the thermodynamic limit occur. In this case, these

processes correspond to excitations moving along a non-contractible loop on the finite-

size system, as these non-contractible loops of finite length are clearly an artifact of the

finite-size system.

However, a combination of the linked-cluster theorem 6.1.1.4 and the fact that we are

dealing with extended excitations allows us to consider clusters with non-contractible

loops much shorter (in units of lattice distances) than the order up to which the series

expansion is performed.

The key observation is that the action of the perturbation on a plaquette can create or

annihilate elementary excitations but it cannot move these excitations from one plaque-

tte to another directly.

For example, for a hopping to a nearest-neighbor plaquette, we have with the notation

of Figure 7.1

〈6α|RH
eff |6α〉L = O

(
J2

p

)
, (7.23)
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where processes like∣∣∣∣∣∣ RL

〉
T+4

−−−→

∣∣∣∣∣∣ RL

〉
T−4

−−−→

∣∣∣∣∣∣ RL

〉
(7.24)

contribute. The linked-cluster theorem 6.1.1.4 assures that for a hopping over n plaque-

ttes, the perturbation not only acts on the initial and final location of the excitation, but

also on the n− 1 intermediate plaquettes. As we consider here the action of the shifted

perturbation, any action on the intermediate plaquettes creates excitations on typically

all internal links of the plaquettes. These excitations have to be annihilated again by

a second action of the perturbation to yield a non vanishing contribution for the whole

process. Thus, to obtain non-vanishing hopping elements for a hopping over n plaque-

ttes, we have to perform the perturbative expansion up to order 2 + 2 · (n − 1) = 2n.

Consequently, we have to consider periodic clusters without non-contractible loops of

length n to obtain hopping elements valid for the thermodynamic limit up to order 2n.

Note that a similar result for the ground-state energy on open clusters is discussed in

Section 8.2.1.

Let us emphasize that the calculation of the respective hopping elements can be done on

different cluster shapes such that at least the considered hopping element is determined

correctly in the thermodynamic limit (and other hopping elements on this cluster may

have contributions from non-contractible loops). By shaping an optimal, i.e. smallest

possible, cluster for each hopping element, one is typically able to determine higher-

order contributions (typically two to three orders more) than by only considering one

cluster sufficiently large to obtain all hopping elements correctly for the thermodynamic

limit. The hopping elements are determined by the evaluation of Heff
dpt, which involves

many intermediate states at the same time. Therefore, we evaluate Heff
dpt by the use of

the splitting strategy discussed in Section 7.1, mainly to reduce the need of memory

resources, which can still reach up to several tens of gigabytes per hopping element.

However, the straightforward calculation of the hopping elements for the thermody-

namic limit via the evaluation of Heff
dpt works only if Heff

pCUT and Heff
dpt coincide. This is

necessarily the case, if there is only one elementary excitation per plaquette, i.e. for the

N = 1 theories for semions and Fibonacci-anyons. However, for the Ising theory, the

effective Hamiltonians for the elementary excitation sector do not need to coincide. It

turns out that they do not. In particular, Heff
dpt contains also terms, which violate the

linked-cluster theorem valid for Heff
pCUT. According to the discussion in Section 6.1.4, the

unitary transformation which rotates away these terms (which depend also on the spe-

cific cluster, on which Heff
dpt is evaluated) yields Heff

pCUT up to a local and thus irrelevant

transformation, as we are only interested in the spectrum of the effective Hamiltonian.
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In order to determine the unitary transformation, all matrix elements of Heff
dpt have to

be determined on the same cluster. This reduces the maximal order reached (eight for

Ising anyons instead of eleven for the Fibonacci theory).

Let us remark that for the ladder geometry, the reduction of the cluster size for a given

order does not apply, as the excitations are located on single rungs of the ladder and

thus are not extended objects.

7.3.2 Implementation of the τ -phase in the Fibonacci theory

This section deals with the implementation details of the τ -phase in the Fibonacci model,

as the other considered models do not have a finite ground-state degeneracy in the limit

θ = 3π
2 . Although the perturbation is the same for the 1- and the τ -phase, the different

unperturbed Hamiltonians result in some differences. These can already be observed in

the calculation of the spectral shift, which yields per plaquette

〈
gsloc,τ

∣∣HLW,p

∣∣gsloc,τ

〉
= −Jp

〈
p

∣∣∣∣∣∣
∑
s

ds
D2

Bsp

∣∣∣∣∣∣ p

〉

= −Jp

(
d1
D2

+
dτ
D2

d−6
τ

)
= −Jp

1 + d−5
τ

D2
, (7.25)

where the second term in (7.25) stems from the diagonal contribution of the operator

Bτp to the ground state. This already shows that in this limit, the structure of the

perturbation is more involved than in the other cases discussed in this thesis. The

differences manifest themselves not only in the diagonal contribution of the perturbation

to the ground-state energy, but also in the action onto the unperturbed ground state.

As the perturbation acting on the ground state can generate excitations on each of the

internal bonds of the plaquette, there are much more intermediate states (there are 17

non-zero local matrix elements for the action of HLW on
∣∣gsloc,τ

〉
) and this already at

low orders. As the elementary excitations in the τ -phase are localized on links, and

thus not extended as the excitations in the 1-phase, we do not have an “acting-twice”

property in this case.

Consequently, the necessary cluster sizes to obtain hopping elements valid for the ther-

modynamic limit grow rapidly. Thus, we choose to perform a linked-cluster expansion

to obtain the ground-state energy and the dispersion, as detailed in the next chapter.

This however restricts the highest order reached especially for the hopping elements,

as the evaluation of Heff
pCUT involves among other challenges the large number of terms

shown in the second column of Table 6.1.
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7.4 Chapter Summary

In this chapter, we presented the technical details of our implementation to perform

the high-order computer-based series expansions. The main focus is on the topological

phases. To be able to perform the linked-cluster expansion presented in the next chapter,

we have to choose the overcomplete flux-basis. The overcompleteness leads us to consider

explicitly the evaluation of the non-trivial scalar products, as well as a prescription to

reduce locally the number of basis states to be taken into account. These steps enable us

to perform the graph expansion to obtain reasonably high orders for the series expansions

also for the quantities of the two-dimensional systems.

Additionally, we discussed the details of the series expansions in the non-topological

phases with finite ground-state degeneracy. The structure of the perturbation is more

involved for the two-dimensional systems in the sense that Heff
pCUT contains too many

terms to be efficiently evaluated up to high orders. Consequently, we choose to evaluate

the hopping elements for the elementary excitations in the 1-phase on periodic clusters.

The fact that these excitations are extended reduces the size of the involved clusters, so

that nevertheless reasonable orders are obtained.

For the τ -phase of the Fibonacci theory, this feature is absent and we are thus led to

perform a linked-cluster expansion for the hopping elements due to the otherwise rapidly

growing size of the periodic clusters.

For the ground-state energies of the non-topological phases with unique ground states,

we are able to perform a linked-cluster expansion as detailed in the next chapter.



Chapter 8
Linked-cluster expansion

Nothing is particularly hard

if you divide it into small jobs.

- Henry Ford -

Linked-cluster or graph-expansions are intimately related, but not limited to, the use of

series expansion techniques for lattice systems.

The key idea is to treat the model Hamiltonian defined on an infinite, or finite-size

but large, system by identifying suitable smaller subsystems and decompose the full

Hamiltonian as a sum over contributions from these subsystems. The details of this

decomposition depend on the model, the lattice and the particular form of the desired

decomposition.

Let us mention here the main difference between various approaches as used in either

perturbative [151, 173], or purely numerical [156, 188, 189] treatments and the one used

throughout this thesis: for the former, the effective Hamiltonian, i.e. the Hamiltonian,

which does not couple the subspace of interest to the rest of the Hilbert space, is derived

for each subsystem and the obtained results are then combined in order to yield an

effective Hamiltonian in the thermodynamic limit. The underlying assumption that the

corresponding subspace of the subsystem Hilbert spaces can be meaningfully embedded

in the Hilbert space of the large system is not necessarily true in general. However, it

turns out that it holds in many cases. In particular this embedding is perturbatively

exact for gapped systems [173] and thus also holds at least perturbatively for the non-

perturbative approaches.

In our approach, we determined with the effective HamiltonianHeff
pCUT (6.28) 1 already an

operator expansion directly valid for the thermodynamic limit. Our interest is therefore

to evaluate the matrix elements of Heff
pCUT. Since Heff

pCUT is given as a sum over products

1Since we aim at a local expansion, we consider Heff
dpt and Heff

pt only in the sense of Section 6.1.4, as
the involved resolvent is a non-local quantity.
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of the (quasi-) local operators Tn =
∑
{i} Tn,{i}, where the i corresponds to the location

of the degrees of freedom, our idea is to reorganize (6.28) as a sum of contributions

stemming from different subclusters, as e.g. also performed in Ref. [164]. Thus there

is no further approximation in our decomposition, as long as all subclusters needed to

obtain the correct result up to a given order are taken into account.

Despite this difference, the concept coincides for the different approaches and can be

summarized by the following steps:

1. Choose a suitable family of subclusters, in which one decomposes the original

lattice. This choice is usually driven by the size of the subclusters necessary to

obtain all contributions for a given order correctly as well as the number of the

subclusters involved.

2. Identify equivalent subclusters, such that the quantity of interest q has the same

contribution on each of these subclusters. This reduces the number of subclusters,

on which one has actually to perform an explicit evaluation. A representative of

each class of subclusters is called a graph g. The number of equivalent subclusters

contributes to the weight of the graph wq(g).

3. Determine the quantity of interest q(g) for each graph g.

4. Sum up the contributions q(g) according to

q =
∑
g

wq(g)q(g) (8.1)

in order to obtain the desired quantity q.

Step 4 is trivial, if all ingredients of (8.1) are known. For Step 3, we evaluate the effective

Hamiltonian (6.28) or its reduced one-particle version (6.35). Within this chapter, we

will be concerned mainly with the first two steps, as well as the determination of the

weights wq(g) of the different graphs g.

There are several strategies to choose a family of subclusters. The trivial one is to

choose the cluster itself or a sufficiently large subcluster in the sense of Section 6.1.5 and

perform all calculations on a unique cluster.

A more involved choice for the family of subclusters are the variants of rectangular-

shaped subclusters, which were introduced for the finite-lattice method [190] on a square

lattice in the context of classical statistical physics. This method is also applied suc-

cessfully in the context of quantum many body systems [163, 171]. This choice allows

to identify easily equivalent clusters, which are simply those with identical shape. Also
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the number of graphs grows slowly, i.e. quadratically with the maximal order M of the

perturbative expansion. Note that the adaption to the triangular lattice is also already

known in the literature [191].

In this approach, the size of the largest graph involved grows also quadratically with the

order, i.e. the largest graph contains for this choice roughly M2 plaquettes. As discussed

in Section 6.1.4, the effort of an evaluation does strongly depend on the system size. We

are thus interested here to reduce the maximal size of the graph as much as possible.

This can be achieved by choosing subclusters, which contain at most the joint support

of M local perturbation operators Tn,i, so in our case roughly M plaquettes. The price

to pay is that the number of graphs then grows exponentially with M . We compensate

this by parallelizing the evaluation of the effective Hamiltonian on different graphs.

As the important features like the determination of contributing graphs, their weights

and reduced contributions usually depend on the details of the model, let us discuss

the different limits of presented in Chapter 3 separately in the following sections. Let

us however mention already here that graphs are systems with open boundaries, and

consequently we will for simplicity always assume to evaluate Heff
pCUT on an infinitely

extended plane in order to avoid notational difficulties caused by the non-local fluxes

e.g. present on a torus.

8.1 Graph decomposition in the topological phase

For the evaluation of Heff
pCUT, let us introduce the pictorial notations as in Figure 8.1.

The flux degrees of freedom, which determine the eigenvalues of the unperturbed Hamil-

Figure 8.1: For the topological phase we consider instead of the hexagonal lattice,
(thin lines left), the dual triangular lattice (thick lines left, or right). The degrees of
freedom, which are measured by the particle-counting operator Q reside then on the
sites of the triangular lattice. The perturbation acts on bonds linking the corresponding
sites. we can use the same labeling also for the 1-phase, as the (barycenter of the)
elementary excitations are also located on plaquettes.

tonian, are denoted as small hexagonal sites. The perturbation acts on the bonds of the
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dual lattice linking the adjacent sites. A subcluster is then a collection of a finite num-

ber of bonds as depicted in Figure 8.2. This representation is useful in the context of

developing a graph expansion, the actual calculations are in the end carried out in the

setting already discussed in Chapter 7.

Figure 8.2: A subcluster is a finite collection of effective sites representing the lo-
cations of the degrees of freedom and of bonds linking them. These bonds can form
closed loops as the triangle or branches as the bond linking the site not being part of
the triangle.

Additionally, we define

〈gs| Heff
∣∣∣ |gs〉 = (8.2)

〈gs| Heff
∣∣∣∣∣∣ |gs〉 = (8.3)

〈j| Heff
∣∣∣ |i〉 =

i j

(8.4)

where in (8.2) the Hamiltonian acts on arbitrary links of the given subcluster (here the

one depicted in Figure 8.2), in (8.3) the Hamiltonian has acted on all links depicted by

doubled lines, and (8.4) represents the hopping element ti,j on the finite cluster.2 Note

that the contribution to the local hopping element ti,i reads for this subcluster

tii =

i

− . (8.5)

Bonds not acted on by the perturbation are represented by dotted lines. The reduced

contribution q̄(g) of a subcluster g is the contribution, which cannot be expressed by

the contributions of smaller subclusters. As we take into account all subclusters up to a

given number of bonds, the reduced contributions of a cluster are thus yielded by non-

trivial action of the effective Hamiltonian on all bonds of this cluster. So, the reduced

contribution e.g. for the cluster depicted in 8.2 is given by (8.3).

2One-particle states cannot change their label via the action of the perturbation in the topological
phase. We thus drop the anyon label for the hopping elements here.
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A convenient way to obtain q =
∑

g wq(g)q(g) is to express it in terms of the reduced

contributions q̄(g), i.e.

q =
∑
g

wq̄ q̄(g) (8.6)

and determine the q̄(g) either directly, as done for the present case, or by the use of a

subtraction scheme which we shall present in Section 8.2 for the ground-state expansion

for the non-topological phase. To determine the reduced contribution up to order M ,

we only have to evaluate the effective Hamiltonian on clusters with at most M bonds.

To optimize this evaluation, it is very useful to identify subclusters, which yield a zero

reduced contribution. One important criterion is furnished by the linked-cluster theorem,

presented in Section 6.1.1.4, which states that only linked processes contribute, so that

we have in pictorial notation e.g.

= + (8.7)

and thus in particular

= 0. (8.8)

Consequently, the linked-cluster theorem of the pCUT translates here to a linked-cluster

theorem for the reduced contribution of a graph.

Note that in general cluster additivity is enough to prove that the reduced contribution

of disconnected clusters is zero. As a result, only linked clusters have to be taken into

account. However, cluster additivity of the effective Hamiltonian is not straightforward

to prove if excitations with non-trivial non-local properties as braiding statistics are

involved. So let us emphasize here that the above results derived from the linked-cluster

theorem for Heff
pCUT also hold for anyonic degrees of freedom, since we consider here a

local perturbation and thus e.g. no non-trivial braiding of excitations from disconnected

cluster can contribute in the end. In particular, we have

= 0. (8.9)

Thus, this is a particular feature of our method, which allows us to obtain a linked-cluster

expansion even if non-Abelian anyons are involved. Due to this, we can proceed as like

in Ref. [129] for conventional lattice models to determine a larger family of subclusters,

whose reduced contribution is zero for a given order M of the calculation.
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For the following reasoning, it is useful to consider the dual basis, as it deals only with

the involved flux degrees of freedom and contains no additional local degrees of freedom.

Thus, it is closest to the pictorial representation (8.2)-(8.4). As the flux basis contains

also the flux quantum numbers explicitly, all considerations can be carried over for the

actual calculation, i.e. vanishing reduced contributions in the dual basis are also zero in

the flux basis, in which the actual calculations are performed.

A key observation for reducing further the number of contributing subclusters, is that

subclusters with M bonds do not necessarily contribute at order M . One simple example

is

= O
(
J4

e

)
, (8.10)

i.e. a cluster with two connected bonds contributes to the ground-state energy from

order four on. Note that is a direct consequence of treating the first-order contribution

in the ground-state sector apart in the actual calculation as detailed in Section 7.1.

The reason for the higher leading order of the contribution is that due to the fact that

the action on a bond will create excitations on adjacent sites, if these were unoccupied

before. These excitations have then to be annihilated again to yield a non-vanishing

contribution to the operator element. Thus each site of the cluster has to be acted on

at least twice. This can be achieved by acting twice on the same bond or by acting

on another bond linking the same site. The former is necessarily the case if the site is

the endpoint of a branch as the outer sites in (8.10) or as shown in Figure 8.2. This

yields that the leading order in (8.10) has to be at least four. The fact that one cannot

annihilate single excitations allows to generalize the argument to branches of arbitrary

length, i.e.

︸ ︷︷ ︸
n bonds

= O
(
J2n

e

)
. (8.11)

Another possibility of acting on the same site is to act with the perturbation on another

bond, provided the considered site is not the endpoint of a branch. Then each bond has

only to be acted on once. This is possible in a loop, so e.g.

= O
(
J3

e

)
. (8.12)

Consequently, as a general rule, bonds forming a branch have to be acted upon twice,

bonds being part of a loop just once. The minimal order, from which a cluster can
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contribute, is therefore given by the sum of these numbers, e.g.

= O
(
J2·1+1·3

e

)
= O

(
J5

e

)
. (8.13)

Furthermore, let us mention that e.g. the contribution of the dumbbell-like shaped cluster

= O
(
J7

e

)
, (8.14)

and not, as a naive counting may yield, O
(
J8

e

)
. This is due to the fact that the middle

bond takes formally part of a loop, since the perturbation, also contains two-particle

interaction terms.

A similar reasoning as for contributions to the ground-state energy can also be applied to

the hopping elements. The major difference is that the bonds along the paths connecting

initial and final position of the excitation have not to be acted on twice, which reduces

the minimal order at which a cluster can contribute.

However, the minimal order of the contribution depends, for a given graph, on the actual

initial and final position. For example, one has on the same cluster for

the leading orders of the hopping elements

= O
(
J2

e

)
, = O

(
J3

e

)
, = O

(
J4

e

)
.

(8.15)

This type of reasoning is based on purely local particle-number counting and properties

of the perturbation and thus also holds for anyonic excitations. Let us mention that the

above considered properties of a cluster, i.e. whether its links form loops or branches,

can all be obtained easily from local connectivity properties of the sites of the cluster.

So the adjacency matrix of the sites of the cluster, as defined below, can be used to

characterize this property.

Finally, we discuss here an important class of clusters, which have a non-zero contribution

only for non-Abelian anyons, e.g. one has

= O
(
J6

e

)
6= 0. (8.16)

This is not in contradiction to the linked-cluster theorem, as there is no perturbation

acting on the seemingly disconnected site in the middle of the loop. So, closed loops
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around a particle, which is not acted on at all, also contribute in a non-trivial manner

to the dispersion, manifesting the non-trivial braiding statistics directly in the graph

expansion.

Up to now, we discussed clusters yielding a priori a vanishing contribution. Let us turn

now to the task, which turns a linked-cluster expansion into a graph expansion: the

identification of subclusters that yield the same reduced contribution. It is clear that

clusters, which are mapped onto each other by the action of a symmetry of the underlying

triangular lattice, yield the same result. These global symmetries are translations (T ),

inversion at one site (I), rotation about one site (C), and reflection about an axis of the

lattice (R1,2). For example, for the subcluster depicted in Figure 8.3, we have

T
=

I
=

C
=

R1=
R2= (8.17)

However, apart from these global symmetries, there are also local ones like

= . (8.18)

Since the perturbation is local, its contributions when acting on a bond is entirely

determined by the two fluxes labels residing on the adjacent plaquettes as well as their

(local) fusion channel. Consequently, these local deformations do not change the final

contribution.

0 3

2

1

Figure 8.3: The enumeration of the sites of the shown graph g is chosen such that
the site with the maximal number of links is assigned the lowest label 0. The sites 1
and 2 are equivalent, as their exchange does not alter the maximized adjacency matrix
Ag to be discussed in Eq. (8.20). The sites labeled by 0 and 3 cannot be equivalent to
any other site of the graph due to their different number of links.
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Note that local deformations as depicted in (8.18) leave the adjacency matrix Ac of the

cluster c invariant. The adjacency matrix is defined as

(Ac)s ,s′ =

{
1 if sites s and s′ are linked by a bond

0 otherwise
(8.19)

and is, due to this invariance, a suitable tool to distinguish inequivalent clusters. Per-

mutations of site enumeration may change Ac so that one has to fix a convention. We

choose a permutation of the site ordering which maximizes the matrix elements (Ac)s ,s′

in the increasing order s′ = 0, . . . , Sc − 1, s = 0, . . . , Sc − 1, where Sc is the number of

sites of cluster c. Permutations leaving the maximized Ac invariant will map labels of

equivalent sites onto each other. For the example depicted in Figure 8.3, the maximized

adjacency matrix reads

Ag =


0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

 . (8.20)

Identifying all subclusters with the same maximized Ac works for standard lattice mod-

els, which do not involve non-Abelian anyonic excitations. However, if non-Abelian

anyons are involved, it is clear that

6= , (8.21)

since on the right cluster, one encircles a non-Abelian excitation in contrast to the left

one. This braiding effect of non-Abelian anyons manifests itself also in differences of

contributions to the ground-state energy, e.g

6= . (8.22)

This difference can be understood if one considers the eigenbasis of the unperturbed

Hamiltonian in the dual basis. In order to apply the perturbation to one bond, one has

eventually to perform R- or F -moves as mentioned in Section 3.2, such that the direct

fusion channel of the sites adjacent to the bond acted on is obtained. As different R-

moves do not commute with each other for excited states (braiding with flux-free states

is still trivial), the contribution from the local perturbation will in general differ.
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As a consequence, two clusters cannot be identified with the same graph, if only their

maximized adjacency matrix coincides, but additionally, this inequivalent braidings have

been taken into account. In our setting, this is achieved by introducing an ordering of

the neighboring sites, e.g. for the cluster in (8.22) a labeling of the sites maximizing

the adjacency matrix is given by Figure 8.4. The neighboring order {n(s)} of a site s

3

6 4

01

2 5

4

6 5

01

2 3

Figure 8.4: We depict one labeling, which maximizes the adjacency matrix of the
given subclusters, respectively. As the contributions of these two subclusters differ,
we have to take into account not only the adjacency matrix, which coincides for the
given clusters, but also the order of the neighbors of sites with more than two links.
As global symmetries like reflections change the orientation, we have to consider both
counterclockwise and clockwise order of the linked neighboring sites. This differs for
these two clusters, as one can infer by following the neighbors of site 0 in the middle.
Permuting the labels of the right cluster so that they take the labels of the left one
yields the same neighboring order, however, the adjacency matrix for this configuration
is not maximized. Consequently, we can use the adjacency matrix combined with the
neighboring order to classify the clusters.

is then given by the counterclockwise order of the sites linked with s, i.e. for the left

nleft(0) = 〈1, 2, 5, 3, 4, 6〉 and for the right nright(0) = 〈1, 2, 3, 4, 5, 6〉, where we dropped

all neighbor orders for sites with less than three neighbors. Note that improper rotations

change the orientation and will thus reverse the order of the neighbor order for all

sites. Thus, we will identify the contribution from clusters, sharing the same maximized

adjacency matrix and the same or globally (i.e. for all sites) reversed neighbor order.

For the identification of hopping elements ti,j , we have to consider equivalent sites. This

means that the contributions tc1i,j will equal tc2k,l, if c1 and c2 are equivalent subclusters

and additionally there has to be a permutation σ of the site labels of c2, which leaves

the maximized adjacency matrix Ac2 invariant, yields an equivalent neighbor order nc2

and additionally fulfills σ(k) = i, σ(l) = j. Moreover, we take into account the fact that

the Hamiltonian is real, so that we have ti,j = tj,i.

After having detailed how to identify identical contributions, let us determine the weight

of each reduced contribution for each graph wq̄(g). We define a graph as a representation

of equivalent subclusters. Thus the weight of a graph depends on how many equivalent

subclusters can be embedded in the large or finite cluster.

This number could e.g. be obtained by considering a large cluster, choosing one site in

its bulk as the origin and determining all linked subclusters containing the origin. By

doing so, one can count the number of equivalent subclusters per graph N(g), which
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yields wĒ0(g). As a graph with Sg sites contributes to the ground-state energy of Sg

plaquettes in the original lattice, one has for the weight of the reduced contribution to

the ground-state energy per plaquette

wē0 =
N(g)

Sg
(8.23)

So the graph-expansion for the ground-state energy per plaquette reads

e0 =
6

2
× +

6

3
× +

45

3
× +

12

4
× +O

(
J5

e

)
,

(8.24)

where the leading order of the contributions from different graphs are two, three, four,

and four respectively.

Note that effects of the non-Abelian statistics start to play a role at order eight with

the distinction of the contributions

6= = O
(
J8

e

)
. (8.25)

For the hopping elements, each cluster containing the initial site i and the final site f

contributes with weight 1 to ti,f . Thus the weight of each graph is given by wt̄i,j = N(g)

up to simplifications due to equivalent sites. Identifying the positions ~ri (~rf ) of the site

i (f) in the lattice, one finds for the respective hopping element t~rf−~ri :

t~0 =6×
(

−
)

+ 6×

(
−

)
+O

(
J4

e

)
,

(8.26)

t~n1
= 1× + 2× + 10×

+ 2× + 4× +O
(
J4

e

)
, (8.27)

t2~n1
= 1× + 6× +O

(
J4

e

)
, (8.28)

t3~n1
= 1× +O

(
J4

e

)
, (8.29)

t~n1+~n2
= 2× + 6× +O

(
J4

e

)
, (8.30)

t2~n1+~n2
= 3× +O

(
J4

e

)
. (8.31)

For the determination of these six hopping elements up to order three, one has to evaluate

the contributions from four graphs. This involves in total seven initial states.



Chapter 8. Linked-cluster expansion 166

However, the way mentioned above to obtain all contributing clusters is not well suited

for practical use, as it will generate all subclusters and thus a large overhead of unneeded

information. It is more efficient to consider a separately generated set of graphs and

embed each graph in a sufficiently large cluster.

Therefore, one identifies sites of the graph with sites of the cluster. We start by choosing

the first site of the graph and identify it with the site at the origin of the large clus-

ter. Successively, the remaining sites are embedded according to their links to already

embedded sites. This procedure is then repeated for all inequivalent sites of the graph.

It turns out that a list of graphs only distinguished by the adjacency matrix (also re-

ferred to as topologically equivalent graphs in the literature [151]) is most conveniently

generated.

The neighbor order is then determined for each embedded cluster. After the embedding,

the different clusters are identified yielding the final list of graphs and initial states, for

which operator elements of the effective Hamiltonians have to be determined. We show

in Table 8.1 a list of the number of graphs and initial states needed for a given order.

max. order no. graphs for e0 no. graphs for 1qp no. of initial states for 1qp

1 - 1 1
2 1 2 3
3 2 4 7
4 4 8 15
5 7 16 33
6 13 33 78
7 24 75 203
8 52 188 580
9 114 515 1770
10 282 1507 5765
11 713 4711 19659

Table 8.1: Number of graphs and initial states needed to calculate the ground-state
energy per plaquette e0 or the one quasi-particle dispersion inside the topologically
ordered phase. Note that for the ground-state energy, there is one initial state per
graph. The obtained numbers take into account already all global and local symmetries.

Let us finally mention how the reduced contribution is obtained directly. During the

calculation, we track the links on which the perturbation has already acted. Final

contributions are only added to the reduced quantity, if the perturbation has acted on

all links. This additional information not only saves one from constructing a subtraction

scheme but can also be used to reduce the computational effort by suppressing actions

of the perturbation, which cannot yield a non-zero reduced contribution in the end. For

example, for a contribution of a graph with M bonds at order M , excluding any second

action of the perturbation on a bond does not alter the final reduced contribution and
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additionally reduces the number of the intermediate states. This eases the computational

effort and outweighs the effort of tracking the location of perturbation-actions whenever

the number of bonds is close to the order up to which one calculates.

Let us finally remark that in order to minimize the number of initial states to act on,

we can use again the symmetry ti,j = tj,i. We conclude with a Table 8.1 of the number

of graphs and initial states necessary to obtain the ground-state energy and the quasi-

particle dispersion up to a given order.

It is not obvious to give a good estimate of the runtime for each graph due to the different

shapes of each individual graph and also due to the difference of the computers used for

the calculation. As a rule of thumb, the most challenging calculations of one graph for

one initial state take for the maximal order contribution determined about 40-60 hours,

so that the parallelization of the calculation is mandatory.

8.2 Graph expansions for non-topological phases

For non-topological phases, we do not face challenges like the determination of the

possibly contributing graphs, as excitations in these limits are purely bosonic and the

unperturbed basis is given by simple, orthogonal product states. As we see in the

following, challenges for a graph expansion rise due to the extended support of the

perturbation. We first consider the clusters for the graph expansion for the 1-phase,

i.e. about the limit θ = π
2 . Afterwards we turn to the limit of the τ -phase, i.e. θ = 3π

2 .

8.2.1 Graph expansions in the 1-phase

Let us define in complete analogy to (8.2)-(8.4) the full and reduced contribution on a

single plaquette by

〈gs| Heff
∣∣∣ |gs〉 = , (8.32)

〈gs| Heff
∣∣∣∣∣∣ |gs〉 = . (8.33)

As the number of terms in Heff
pCUT is too large for an efficient evaluation for order larger

than seven, we aim to evaluate not Heff
pCUT but determine the contribution via evaluation

of Heff
pt for the ground-state energy. We thus do not attempt a graph expansion for the

excited states, but determine the hopping elements on large periodic clusters.
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Let us also remark that we represent not all twelve link degrees of freedom, but only the

six, which can be changed by the action of the perturbation. This is just a notational

convenience as the perturbation cannot link two plaquettes sharing only one external

link, as the corresponding operators commute. So again, the linked-cluster theorem

tells us that only linked clusters, i.e. clusters formed by plaquettes sharing their internal

bonds, can contribute.

Due to the fact that the perturbation creates a single, six-particle excitation, one cannot

reduce the number of contributing clusters in the same way as for the topological phase.

However, this is largely compensated by another feature: the fact that on open clusters,

each plaquette, has to be acted on at least twice to contribute to the ground-state energy.

This can be understood by the following reasoning: consider a plaquette at the boundary

of a cluster, i.e. at least one of the internal links of the plaquette is not an internal link

of another plaquette. When the perturbation acts on this plaquette, it will introduce an

excitation on this link. In order to contribute to the ground-state energy, this excitation

has to be annihilated again. This is only possible if the same plaquette is acted on again

by the perturbation.

This argument can be extended to the bulk of the cluster by the statement that plaque-

ttes, which have been acted on once, are surrounded by a non-trivial string as depicted

in Figure 8.5. The outermost string cannot be annihilated by actions on plaquettes

Figure 8.5: A region, in which every plaquette has been acted on once by the pertur-
bation, is bounded by a string. On open clusters, one has to act inside this region to
annihilate this string again.

outside the enclosed area, as this action would move the string outwards. So this string

forms effectively a boundary in the sense that, to be annihilated, the plaquettes within

the encircled area have to be acted on again. Consequently, for the determination of

the reduced contributions up to order 2M , we need only to consider clusters up to M

plaquettes.
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If one considers the question of identifying clusters yielding the same contribution, it

should be clear that

6= 6= . (8.34)

Note that the difference between the first two contributions stems only from the different

configurations of the not-coupled links of the middle plaquette. In order to take into

account this feature, we characterize a cluster not only by the adjacency matrix of the

involved plaquettes, where two plaquettes are defined as being linked if they share an

internal link, i.e. if they can contribute to a non-vanishing contribution in the sense of

the linked-cluster theorem.

Additionally, we consider a neighbor order in analogy to the one for the topological phase.

However, as the relative positions of the neighbors matter in this case, we introduce a

label “−1” for absent plaquettes. For example, the three clusters

cl1 = 201 , cl2 =
20

1

, cl3 =
22 0

1

(8.35)

are then characterized by

Acl1 =


0 1 1

1 0 0

1 0 0

 , ncl1(0) = 〈−1,−1, 1,−1,−1, 2〉 (8.36)

Acl2 =


0 1 1

1 0 0

1 0 0

 , ncl2(0) = 〈−1,−1,−1, 1,−1, 2〉 (8.37)

Acl3 =


0 1 1

1 0 1

1 1 0

 ,

ncl3(0) = 〈−1,−1, 1,−1,−1, 2〉
ncl3(1) = 〈−1,−1,−1,−1, 2, 0〉
ncl3(2) = 〈−1,−1,−1,−1, 0, 1〉

(8.38)

As for the topological phase, our considerations are based on the triangular lattice

formed by plaquettes. This avoids the effort to track the numerous link degrees of

freedom coupled by the perturbation separately (what would e.g. give an adjacency

tensor of rank six) as well as to discuss issues like identifying clusters by considering

about 50 degrees of freedom. With the above convention of the cluster identification,
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the relevant information can be obtained from ∼ 10 plaquettes, which represents a

considerable effort.

A consequence of our treatment is that lattice symmetries of the triangular lattice map

equivalent clusters onto each other. The impact of the extended support of the pertur-

bation manifests itself in the fact that no local deformations of a cluster as in (8.35)

yield an equivalent cluster.

As we have seen previously, we need for order 2M only clusters with up to M plaquettes.

Thus, the way to obtain the reduced contributions presented in the previous section, is

not the optimal one. The tracking of the plaquettes already acted on is a nearly useless

effort, since it cannot be compensated by ruling out efficiently intermediate states not

contributing to the final one.

So, we shall determine the reduced contributions via a subtraction scheme as detailed in

Refs. [171, 173]. From the definition of the reduced contribution (8.33), we see that we

can express the full contribution of a cluster as the sum over the reduced contributions

of all subclusters. here, we do not discuss abstract (and problem specific) formulas, but

we give as an example of the clusters contributing to the ground-state energy up to order

seven:

= , (8.39)

= + 2× , (8.40)

= + 2× + 3× , (8.41)

= + 2× + 3× , (8.42)

= + 3× + 3× , (8.43)

where we already identified subclusters yielding the same contribution due to symme-

tries.

The full contribution can be determined by evaluating Heff without any further restric-

tions or tracking procedures.

To obtain the reduced contribution, for which the weights can be determined as in the

topological phase, we invert the above equations to get:

= , (8.44)
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= − 2× , (8.45)

= − 2× − 3× , (8.46)

= − 2× − 3× , (8.47)

= − 3× − 3× . (8.48)

We see that these expressions still contain reduced contributions on the right-hand-side,

but only those of smaller subclusters. We can therefore obtain the reduced contributions

in terms of the full contributions by replacing iteratively the reduced contributions on

the right-hand side using the above expressions (Note that the full contribution equals

the reduced contribution on the smallest cluster.).

This yields

= , (8.49)

= − 2× , (8.50)

= − 2×
(

− 2×
)
− 3×

= − 2× + 1× , (8.51)

= − 2× + 1× , (8.52)

= − 3× + 3× . (8.53)

By this subtraction, we can thus determine the reduced contributions and then via (8.6)

one obtains the ground-state energy. Note that the weights for the reduced contributions

are independent of the order and can thus be determined once and for all, whereas

the weights of the full contribution depend on the maximal order. Consequently, in

this setting it is more convenient to obtain the weights and subtraction scheme in two

separate steps.

The weights for the reduced contributions are determined in the same fashion as in 8.1.

We finally obtain the ground-state energy per plaquette

e0 =
1

1
× +

6

2
× +

9

3
×
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max. order no. graphs

2 1
4 2
6 5
8 12
10 34
12 116
14 449
16 1897
18 8469
20 38959

Table 8.2: Number of graphs and thus initial states to calculate the ground-state
energy per plaquette e0 about the limit θ = π

2 . The obtained numbers take into
account already all global symmetries. The relatively high orders achieved are due to
the “act-twice” property. The large number of graphs originates from the fact that no
local deformations can be used due to the large support of the perturbation operator.

+
18

3
× +

6

3
× +O

(
J8

p

)
. (8.54)

We give the number of graphs for a given maximal order 2M in Table 8.2. Due to the

“act-twice” property, graphs needed for maximal order 2M + 1, are identical to the ones

needed for order 2M .

Again, it is not evident how to give a universal time estimate for the calculation. Roughly

speaking, the time to calculate the contribution of the maximal order performed within

this thesis takes about 1-2 hours. This relatively short timescale for this large maximal

order is on one hand due to the fact that the sizes of the involved clusters are small and

on the other hand that the perturbation generates relatively few states when acting in

the low-energy sector (e.g. just two states when acting on a local ground state).

8.2.2 Graph expansions in the τ -phase

This limit shares a lot of details with the 1-phase, apart from one important fact: the

perturbation can create and annihilate (among others) single excitations on one link.

Consequently, one does not have the “act-twice” property discussed for the other limit,

which arose due to the fact that acting on a ground state always affects more than one

link.

Additionally, one cannot use local deformations to identify different equivalent clusters.

So one is left to calculate on linked clusters with up to M plaquettes for a calculation

of order M for the ground-state energy as well as for the hopping elements.
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We define analogously to (8.32)

〈gs| Heff
∣∣∣ |gs〉 = , (8.55)

〈gs| Heff
∣∣∣∣∣∣ |gs〉 = , (8.56)

〈j| Heff
∣∣∣∣∣∣ |i〉 = i j , (8.57)

where for this limit, we also explicitly consider the external links to be able to represent

correctly the impact of the excited states.

The graphs for this limit are the same as for the other non-topological limit, as the per-

turbation is the same. We also consider hopping elements, since the one-cluster approach

suffers from the fact that the necessary cluster sizes become too large. The hopping ele-

ments describe the hopping from one link to another caused by the perturbation, which

involves twelve links. Consequently, the number of hopping elements to determine grows

rapidly with the order.

Additional computational effort arises as the perturbation has not only one non-trivial

matrix element when acting on the local ground state, but 17, as it can generate any con-

figuration of excitations on the internal links of plaquette acted on. Thus a considerable

number of states is generated after a few applications of operators.

In order to deal with these challenges, we discuss the determination of the reduced

contributions for the ground-state energy and the hopping elements separately. We

determine the reduced contributions for the ground-state energy as for the other non-

topological phase with the same subtraction scheme and we reach order nine in this

limit.

For the hopping elements, we calculate the reduced hopping element directly, taking

advantage of avoiding the generation of unnecessary contributions.

We obtain the expansion for the ground state energy per plaquette

e0 =
1

1
× +

6

2
+O

(
J3

p

)
. (8.58)
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and for example for the local hopping element

tii~0 = 2

 i −

+ 2×

 i

−

+O
(
J2

p

)
. (8.59)

Let us emphasize the second contribution in (8.59): the large support of the perturbation

operator will mediate the effect of the presence of an excitation, also if the excitation is

located at an external link of the plaquette. This results in the large extension of the

clusters necessary to include all actions of the perturbation and thus in the large effort

to obtain the series expansion in this limit.

max. order no. graphs no. of initial states

1 1 3
2 2 10
3 5 40
4 12 171
5 34 807
6 116 3980
7 449 20082
8 1897 -
9 8469 -

Table 8.3: Number of graphs and initial states to calculate with for either the ground-
state energy per plaquette e0 or the one quasi-particle dispersion. There is the same
number of graphs to be evaluated for the ground-state energy and the hopping elements.

We give in Table 8.3 the number of graphs and initial states. A calculation of a contri-

bution to the ground state energy lasts ∼ 20 minutes. The evaluation of the hopping

elements may take up to 10 hours. However, for each initial state, typically ∼ 20 − 30

hopping elements are determined, which reflects again the involved structure of the

perturbation in this limit.

8.3 Chapter Summary

In this section, we presented the main aspects of the linked-cluster expansions employed

throughout this thesis. In particular, we detailed the linked-cluster expansion for the

topological phase, which even holds in the presence of non-Abelian anyonic excitations.

The main ingredient is the linked-cluster theorem obtained for the effective Hamiltonian

Heff
pCUT, which allows to reduce the number of graphs considerably by excluding unlinked

processes. The linked-cluster theorem replaces the role of the cluster-additivity usually

employed as foundation for graph expansions.
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For the non-topological phases, we detailed the most important features of our imple-

mentation to be able to deal with the large extension of the support of the perturbation

operators. The key idea is to express all quantities of interest (e.g. adjacency matrices)

not directly in terms of the unperturbed degrees of freedom, but first in terms of the

support of the perturbation, i.e. in plaquettes, and then to determine all supplementary

information from this.

We also discussed two different implementations to obtain reduced quantities for each

graph. The direct evaluation requires tracking of the locations, where the perturbation

has acted. It allows to suppress unnecessary intermediate states. We presented briefly

also the idea of the subtraction method, which allows to determine the reduced con-

tributions without any further information and is thus particularly useful for intrinsic

checks of the graph expansion as well as in the situation, where not many contributions

can be sorted out during the calculation.





Chapter 9
Summary and Outlook

Begin at the beginning

and go on to the end; then stop.

- Lewis Carroll -

Within this thesis, we studied phase transitions between several time-reversal invariant

topologically ordered and topologically trivial phases.

Therefore, we considered the topologically ordered phases realized for the string-net

Hamiltonian introduced by Levin and Wen [56]. In particular, we studied the topologi-

cally-ordered phases described by the topological quantum field theory for the Abelian

doubled semions and the non-Abelian doubled Fibonacci and doubled Ising anyons.

The phase transitions studied here are induced by a local perturbation, which drives the

system into the topologically trivial phase.

Our investigation of the phase transitions reveals the first evidence for continuous phase

transitions between topologically ordered phases featuring non-Abelian anyons and topo-

logically trivial phases in two dimensions [104]. Thus our findings open the possibility

to study the critical behavior of systems featuring non-Abelian anyons in dimensions

that are of interest for the possible implementation of a topological quantum computer.

Additionally, the deduced critical exponents for the phase transitions out of the non-

Abelian phases seem to not correspond to any known universality class. This indicates

that the critical properties of these phase transitions may be distinct to the ones known

for conventional phases transitions characterized by local order parameters.

To study further the critical properties in the context of topologically ordered phases,

the investigation of other examples may yield further insights. In one spatial dimension,

similar studies for chiral systems described by the quantum groups SU(2)k for larger

values of k revealed a rich variety of different phase transitions [68]. Along the same lines,

177
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an investigation for two-dimensional systems described by different quantum groups

[54, 55, 65, 102] may provide more examples of different topological phases as well as

examples of phase transitions out of topologically ordered phases. The setting proposed

in this thesis is flexible enough to realize different doubled phases and thus allows for

such an analysis.

Further investigation of the hypothesis of universal behavior in phase transitions out

of topological phases can be performed beyond the study of different string-net models

by the consideration of other models realizing the same phase. For example, string-net

and toric code models are distinct but may realize the same topological phases. The

study of critical properties for these models, which are defined on different lattices and

from different microscopic degrees of freedom, may reveal whether there are universal

properties of the phase transitions.

The methods developed in this thesis, especially the linked-cluster expansion presented

in Chapter 8, allow for an investigation of different models featuring excitations with

Abelian or non-Abelian exchange statistics and thus are suitable for more general inves-

tigations if suitable starting points of the quasi-particle picture are identified. For exam-

ple, studies in analogy to the ones performed for quantum dimers models in Ref. [192]

can be carried out in order to reveal the properties as the low-energy spectrum beyond

the special case of string-net models.

Nevertheless, there are still open questions for the string-net models discussed within

this thesis. A characterization of the respective topological phases in terms of the S-

matrix, proposed in [16, 193], is possible at least for small perturbations. This can lead

to more insights about the interplay between the properties of the topological quantum

field theory and the entanglement properties.

In the study presented in the thesis, we considered the ground states and the single-

excitations states to derive effective low-energy models. With this approach, we are

able to investigate continuous phase transitions in agreement with the framework of

condensate-induced phase transitions. However, the condensate-induced phase transi-

tions rely on the condensation of single excitations. In order to verify this underlying

statement, the role of interactions has to be investigated. This can be achieved by the

investigation of low-energy multi-particle states. Analog studies have been performed

for Abelian anyons [136] and revealed the existence of bound states in special cases. An

investigation of this part of the low-energy spectrum would allow to infer the validity of

the condensation picture for the phase transition.
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The study of topologically ordered phases has been substantially helped by the study of

one- and quasi one-dimensional systems as ladder geometries revealed some properties

of two-dimensional systems [67, 71, 72]. A study of crossover between one and two

dimensions by investigation of these ladder geometries for different ladder-widths with

the methods presented in this thesis may even lead to further insights as larger system

sizes (ladder widths) can be investigated and thus the impact of the boundaries on

topologically ordered systems can be studied also on a quantitative level.

Another question in the context of condensate-induced phase transitions is whether there

are phase transitions driven by the condensation of chiral particles. The charges in the

string-net model are such chiral excitations and thus by investigating the impact of

suitable perturbations, one may study the possibility of their condensation.

Of particular interest for the detection of topological order in experimental realizations

are quantities like spectral densities, as these are accessible by spectroscopy experiments.

These quantities have already been determined for the toric code in magnetic field [194]

and Kitaev’s honeycomb model [195] and may lead to more insights in the detection of

non-Abelian topological order in real systems.

We have seen in Chapter 4.2.3 that there are two possibilities for a condensate-induced

phase transition for the string-net model described by the doubled Ising anyons. By

modifying the local perturbation, it is actually possible to drive the phase transition to

a doubled Z2 phase [101]. Interpolating between the different perturbations may lead to

multi-critical behavior similar to the case of the toric code in parallel fields [77–79] and

thus lead to another example of multi-criticality in the context of topological phases.

All the points mentioned above, ranging from general considerations as universality

in the absence of local order parameters to more specific ones as the investigation of

particular phase transitions in specific models, show that the study of quantum critical

behavior in the context of topological order is just at its beginning. Quantitative results

as the ones obtained in this thesis yield further insights and thus stimulate further

investigation of this fast moving and rich field at the interface of quantum information,

condensed matter and mathematical physics.



Appendix A
Series expansions for the semion model

In the following, we give the series expansions for the various quantities discussed Section 5.1.

For notational convenience, we set t = tan θ. We give the numerical coefficient of the series with

24 digits.

A.1 Series expansions for the topological phase

ground-state energy e0

For the topological phase (θ = 0), we obtain the following expression for the ground-state energy
per plaquette

e0

cos θ
=− 1.− 1.50000000000000000000000 · t− 0.375000000000000000000000 · t2

− 0.375000000000000000000000 · t3 − 0.679687500000000000000000 · t4

− 1.54687500000000000000000 · t5 − 4.17773437500000000000000 · t6

− 12.3339843750000000000000 · t7 − 39.0636291503906250000000 · t8

− 130.111724853515625000000 · t9 − 451.023448944091796875000 · t10

− 1613.77437404791514078776 · t11

=− 1−
3

2
· t−

3

8
· t2 −

3

8
· t3 −

87

128
· t4 −

99

64
· t5 −

2139

512
· t6 −

6315

512
· t7

−
1280037

32768
· t8 −

4263501

32768
· t9 −

118233091

262144
· t10 −

40611961873

25165824
· t11. (A.1)

This series coincides with the one obtained in Ref. [129] via

eHe
0 = 2 · e0|t=x + 2 +

3

2
x. (A.2)
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hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

t~0 =1.+ 0.750000000000000000000000 · t2 + 1.50000000000000000000000 · t3

+ 3.23437500000000000000000 · t4 + 9.46875000000000000000000 · t5

+ 30.0937500000000000000000 · t6 + 104.285156250000000000000 · t7

+ 374.524108886718750000000 · t8 + 1403.14627075195312500000 · t9

+ 5383.30179977416992187500 · t10 + 21149.4260612328847249349 · t11 (A.3)

t~n2
=− 0.500000000000000000000000 · t− 0.250000000000000000000000 · t2

+ 0.0625000000000000000000000 · t3 + 0.281250000000000000000000 · t4

+ 1.16406250000000000000000 · t5 + 3.60937500000000000000000 · t6

+ 13.0104980468750000000000 · t7 + 44.6967773437500000000000 · t8

+ 164.428810119628906250000 · t9 + 605.546660582224527994792 · t10

+ 2306.28812142213185628255 · t11 (A.4)

t2~n2
=− 0.125000000000000000000000 · t2 − 0.375000000000000000000000 · t3

− 0.640625000000000000000000 · t4 − 1.14062500000000000000000 · t5

− 2.17089843750000000000000 · t6 − 3.90771484375000000000000 · t7

− 5.63903808593750000000000 · t8 + 3.16546249389648437500000 · t9

+ 76.5140865643819173177083 · t10 + 498.552775965796576605903 · t11 (A.5)

t3~n2
=− 0.0625000000000000000000000 · t3 − 0.468750000000000000000000 · t4

− 1.48828125000000000000000 · t5 − 4.24218750000000000000000 · t6

− 12.0977783203125000000000 · t7 − 35.4556274414062500000000 · t8

− 106.436784744262695312500 · t9 − 326.464408556620279947917 · t10

− 1012.68701063262091742622 · t11 (A.6)

t4~n2
=− 0.0390625000000000000000000 · t4 − 0.546875000000000000000000 · t5

− 2.71093750000000000000000 · t6 − 10.4318847656250000000000 · t7

− 37.1158752441406250000000 · t8 − 129.222908020019531250000 · t9

− 449.400380770365397135417 · t10 − 1572.80865471892886691623 · t11 (A.7)

t5~n2
=− 0.02734375000000000000000000 · t5 − 0.615234375000000000000000 · t6

− 4.41259765625000000000000 · t7 − 21.8605651855468750000000 · t8

− 93.8983821868896484375000 · t9 − 377.987742424011230468750 · t10

− 1477.14000665479236178928 · t11 (A.8)

t6~n2
=− 0.0205078125000000000000000 · t6 − 0.676757812500000000000000 · t7

− 6.66979980468750000000000 · t8 − 41.4899940490722656250000 · t9

− 211.558639526367187500000 · t10 − 973.772403717041015625000 · t11 (A.9)

t7~n2
=− 0.0161132812500000000000000 · t7 − 0.733154296875000000000000 · t8

− 9.54661560058593750000000 · t9 − 73.2607340812683105468750 · t10

− 438.539537936449050903320 · t11 (A.10)

t8~n2
=− 0.0130920410156250000000000 · t8 − 0.785522460937500000000000 · t9

− 13.0996780395507812500000 · t10 − 122.200531065464019775391 · t11 (A.11)

t9~n2
=− 0.0109100341796875000000000 · t9 − 0.834617614746093750000000 · t10

− 17.3805027008056640625000 · t11 (A.12)

t10~n2
=− 0.00927352905273437500000000 · t10 − 0.880985260009765625000000 · t11 (A.13)

t11~n2
=− 0.00800895690917968750000000 · t11 (A.14)

t~n1+~n2
=− 0.250000000000000000000000 · t2 − 0.375000000000000000000000 · t3

− 0.500000000000000000000000 · t4 − 0.734375000000000000000000 · t5
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− 1.01171875000000000000000 · t6 − 0.359863281250000000000000 · t7

+ 5.40618896484375000000000 · t8 + 39.2456626892089843750000 · t9

+ 195.897086461385091145833 · t10 + 905.313535816139645046658 · t11 (A.15)

t~n1+2~n2
=− 0.187500000000000000000000 · t3 − 0.625000000000000000000000 · t4

− 1.59375000000000000000000 · t5 − 4.03515625000000000000000 · t6

− 10.6092529296875000000000 · t7 − 29.0416259765625000000000 · t8

− 80.8363075256347656250000 · t9 − 227.717893759409586588542 · t10

− 629.395159383614857991536 · t11 (A.16)

t~n1+3~n2
=− 0.156250000000000000000000 · t4 − 0.957031250000000000000000 · t5

− 3.58398437500000000000000 · t6 − 12.0117187500000000000000 · t7

− 39.2326660156250000000000 · t8 − 128.676366806030273437500 · t9

− 427.447437763214111328125 · t10 − 1439.60862997836536831326 · t11 (A.17)

t~n1+4~n2
=− 0.136718750000000000000000 · t5 − 1.35351562500000000000000 · t6

− 6.94873046875000000000000 · t7 − 29.2557067871093750000000 · t8

− 113.533174514770507812500 · t9 − 426.751708984375000000000 · t10

− 1585.90241499079598320855 · t11 (A.18)

t~n1+5~n2
=− 0.123046875000000000000000 · t6 − 1.80468750000000000000000 · t7

− 12.2636718750000000000000 · t8 − 63.2041854858398437500000 · t9

− 286.543255805969238281250 · t10 − 1217.66795808076858520508 · t11 (A.19)

t~n1+6~n2
=− 0.112792968750000000000000 · t7 − 2.30419921875000000000000 · t8

− 20.1859130859375000000000 · t9 − 125.385822772979736328125 · t10

− 657.463814467191696166992 · t11 (A.20)

t~n1+7~n2
=− 0.104736328125000000000000 · t8 − 2.84751892089843750000000 · t9

− 31.4438095092773437500000 · t10 − 232.755758762359619140625 · t11 (A.21)

t~n1+8~n2
=− 0.0981903076171875000000000 · t9 − 3.43120574951171875000000 · t10

− 46.8299579620361328125000 · t11 (A.22)

t~n1+9~n2
=− 0.0927352905273437500000000 · t10 − 4.05253219604492187500000 · t11 (A.23)

t~n1+10~n2
=− 0.0880985260009765625000000 · t11 (A.24)

t2~n1+2~n2
=− 0.234375000000000000000000 · t4 − 1.09375000000000000000000 · t5

− 3.83789062500000000000000 · t6 − 12.3198242187500000000000 · t7

− 39.1840820312500000000000 · t8 − 125.973030090332031250000 · t9

− 411.775950113932291666667 · t10 − 1367.05790572696261935764 · t11 (A.25)

t2~n1+3~n2
=− 0.273437500000000000000000 · t5 − 1.84570312500000000000000 · t6

− 8.37060546875000000000000 · t7 − 32.7843627929687500000000 · t8

− 121.609603881835937500000 · t9 − 442.748262882232666015625 · t10

− 1606.17204455865754021539 · t11 (A.26)

t2~n1+4~n2
=− 0.307617187500000000000000 · t6 − 2.93261718750000000000000 · t7

− 16.7292480468750000000000 · t8 − 78.2688560485839843750000 · t9

− 333.422058105468750000000 · t10 − 1356.67053508758544921875 · t11 (A.27)

t2~n1+5~n2
=− 0.338378906250000000000000 · t7 − 4.39892578125000000000000 · t8

− 31.1006469726562500000000 · t9 − 171.519048213958740234375 · t10

− 832.120862156152725219727 · t11 (A.28)

t2~n1+6~n2
=− 0.366577148437500000000000 · t8 − 6.28417968750000000000000 · t9

− 54.4121589660644531250000 · t10 − 350.486615896224975585938 · t11 (A.29)

t2~n1+7~n2
=− 0.392761230468750000000000 · t9 − 8.62438201904296875000000 · t10

− 90.4114532470703125000000 · t11 (A.30)
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t2~n1+8~n2
=− 0.417308807373046875000000 · t10 − 11.4528083801269531250000 · t11 (A.31)

t2~n1+9~n2
=− 0.440492630004882812500000 · t11 (A.32)

t3~n1+3~n2
=− 0.410156250000000000000000 · t6 − 3.38378906250000000000000 · t7

− 18.3955078125000000000000 · t8 − 83.4729766845703125000000 · t9

− 348.776204109191894531250 · t10 − 1399.64360278844833374023 · t11 (A.33)

t3~n1+4~n2
=− 0.563964843750000000000000 · t7 − 5.86523437500000000000000 · t8

− 37.8913879394531250000000 · t9 − 197.860380649566650390625 · t10

− 926.142159551382064819336 · t11 (A.34)

t3~n1+5~n2
=− 0.733154296875000000000000 · t8 − 9.62265014648437500000000 · t9

− 73.4921722412109375000000 · t10 − 439.152867794036865234375 · t11 (A.35)

t3~n1+6~n2
=− 0.916442871093750000000000 · t9 − 15.0231170654296875000000 · t10

− 135.048494338989257812500 · t11 (A.36)

t3~n1+7~n2
=− 1.11282348632812500000000 · t10 − 22.4651241302490234375000 · t11 (A.37)

t3~n1+8~n2
=− 1.32147789001464843750000 · t11 (A.38)

t4~n1+4~n2
=− 0.916442871093750000000000 · t8 − 10.9973144531250000000000 · t9

− 80.8760833740234375000000 · t10 − 471.840214133262634277344 · t11 (A.39)

t4~n1+5~n2
=− 1.37466430664062500000000 · t9 − 19.4744110107421875000000 · t10

− 163.324848175048828125000 · t11 (A.40)

t4~n1+6~n2
=− 1.94744110107421875000000 · t10 − 32.7726516723632812500000 · t11 (A.41)

t4~n1+7~n2
=− 2.64295578002929687500000 · t11 (A.42)

t5~n1+5~n2
=− 2.33692932128906250000000 · t10 − 37.0013809204101562500000 · t11 (A.43)

t5~n1+6~n2
=− 3.70013809204101562500000 · t11. (A.44)

The remaining hopping elements are related by lattice symmetries of the underlying triangular

lattice and can be obtained via the relations

t~r =t−~r, (A.45)

tn2~n1+n1~n2
=tn1~n1+n2~n2

, (A.46)

t−n2~n1+(n1+n2)~n2
=tn1~n1+n2~n2

, (A.47)

t(−n1−n2)~n1+n1~n2
=tn1~n1+n2~n2

. (A.48)

The dispersion ω
(
~k
)

has for θ > 0 its minimum at ~k = 0 and thus we obtain the gap

∆+

cos θ
=1.− 3.00000000000000000000000 · t− 3.00000000000000000000000 · t2

− 5.25000000000000000000000 · t3 − 15.7500000000000000000000 · t4

− 49.2656250000000000000000 · t5 − 173.355468750000000000000 · t6

− 627.602783203125000000000 · t7 − 2397.71850585937500000000 · t8

− 9328.93494415283203125000 · t9 − 37313.6442575454711914062 · t10

− 151392.490055541197458903 · t11 (A.49)

=1− 3 · t− 3 · t2 −
21

4
· t3 −

63

4
· t4 −

3153

64
· t5 −

44379

256
· t6 −

2570661

4096
· t7

−
9821055

4096
· t8 −

1222762161

131072
· t9 −

39126191841

1048576
· t10 −

7619833519319

50331648
· t11, (A.50)

whereas for θ < 0, the minimum is located at ~k = ±( 2π
3 ,−

2π
3 ) and thus we obtain the gap

∆−

cos θ
=1.+ 1.50000000000000000000000 · t+ 0.375000000000000000000000 · t2



+ 0.937500000000000000000000 · t3 + 1.89843750000000000000000 · t4

+ 6.52734375000000000000000 · t5 + 21.7529296875000000000000 · t6

+ 79.5190429687500000000000 · t7 + 296.039337158203125000000 · t8

+ 1135.80865287780761718750 · t9 + 4438.45324659347534179688 · t10

+ 17653.5536835690339406331 · t11 (A.51)

=1 +
3

2
· t+

3

8
· t2 +

15

16
· t3 +

243

128
· t4 +

1671

256
· t5 +

22275

1024
· t6 +

162855

2048
· t7

+
9700617

32768
· t8 +

595490847

524288
· t9 +

9308111103

2097152
· t10 +

1777064899901

100663296
· t11. (A.52)

The coefficients of the series for ∆+ (A.50) coincide with the ones given in Ref. [129] after the

rescaling ∆He = 2 ·∆+ up to the obvious error in the order nine coefficent. The coefficients of

the series for ∆− (A.52) coincide with the ones given in Ref. [133] for t→ −2x.

A.2 Series expansions for the 1-phase

ground-state energy e0

For the topological phase (θ = π
2 ), we obtain the following expression for the ground-state energy

per plaquette

e0

sin θ
=− 3.− 0.500000000000000000000000 · t−1 − 0.416666666666666666666667 · 10−1 · t−2

− 0.578703703703703703703704 · 10−4 · t−4 − 7.80790711346266901822457 · 10−7 · t−6

− 1.23107823611105556599804 · 10−8 · t−8 − 2.62701489676216894225737 · 10−10 · t−10

− 6.38456088193761406424490 · 10−12 · t−12 − 1.85303547423302779835841 · 10−13 · t−14

− 4.99918130665435430856152 · 10−15 · t−16 − 1.57645891633032307544926 · 10−16 · t−18. (A.53)

This series coincides with one given in Ref. [130].

hopping elements and dispersion

We give here the hopping elements up to order seven. Higher orders for the gap can be found
e.g. in Ref. [130]. The other hopping elements can be obtained by the symmetry relations (A.48).

t~0 =6−
1

24
· t−2 −

7

27648
· t−4 +

125663

6967296000
· t−6 +O(t−8) (A.54)

t~n2
=−

1

48
· t−2 −

1

3456
· t−4 +

9499

1592524800
· t−6 +O(t−8) (A.55)

t2~n2
=−

1

55296
· t−4 +

67

796262400
· t−6 +O(t−8) (A.56)

t3~n2
=−

217

1592524800
· t−6 +O(t−8) (A.57)

t~n1+~n2
=−

1

27648
· t−4 −

2791

796262400
· t−6 +O(t−8) (A.58)

t~n1+2~n2
=−

217

530841600
· t−6 +O(t−8). (A.59)

The dispersion ω
(
~k
)

has for θ > 0 and θ < 0 its minimum at ~k = 0 and thus we obtain the gap

∆

sin θ
= 6−

1

6
· t−2 −

1

432
· t−4 +

1501

54432000
· t−6 +O(t−8). (A.60)
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Appendix B
Series expansions for Fibonacci anyons

In the following, we give the series expansions for the various quantities discussed Section 5.2.

B.1 Series expansions for the topological phase

ground-state energy e0

For the topological phase (θ = 0), we obtain the following expression for the ground-state energy
per plaquette.

e0

cos θ
=− 1.− 0.829179606750063091077248 · t− 0.300000000000000000000000 · t2

− 0.232917960675006309107725 · t3 − 0.375835921350012618215450 · t4

− 0.693462236992136224686426 · t5 − 1.51775783113839717794778 · t6

− 3.61589688790508917832884 · t7 − 9.25748294775309355458362 · t8

− 24.8964621013594868463679 · t9 − 69.6365374734577493488629 · t10

− 200.825369723026929491604 · t11. (B.1)

hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

t~0 =1.− 0.141640786499873817845504 · t2 − 0.466252583997981085528067 · 10−1 · t3

− 0.306594202199646689967412 · t4 − 0.507724231194690093317687 · t5

− 1.98261113839699255548697 · t6 − 5.17250789491702409870602 · t7

− 17.8773252365141724161415 · t8 − 53.9302405061167652662779 · t9

− 183.079533841477778644822 · t10 (B.2)

t~n2
=− 0.276393202250021030359083 · t− 0.200000000000000000000000 · t2

− 0.258246851112416930081624 · t3 − 0.551755592679035927934370 · t4

− 1.10155425426524371553296 · t5 − 3.07765763344458978337354 · t6

− 7.88729182075149400723644 · t7 − 24.0328898739467053254430 · t8
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− 69.4424027886691217299854 · t9 − 219.323166494970746856176 · t10 (B.3)

t2~n2
=− 0.381966011250105151795413 · 10−1 · t2 − 0.804257247250441637540735 · 10−1 · t3

− 0.161720870791705222324985 · t4 − 0.425847962035092974389786 · t5

− 1.28036432183705022118028 · t6 − 3.52082396268926344921981 · t7

− 11.0299913871715386189683 · t8 − 32.3808443887924141916060 · t9

− 104.198135759730335478727 · t10 (B.4)

t3~n2
=− 0.105572809000084121436331 · 10−1 · t3 − 0.563597022584167537576944 · 10−1 · t4

− 0.173717721305049995419165 · t5 − 0.540756550613346027059142 · t6

− 1.56242415201506815048037 · t7 − 4.88424515549049707041029 · t8

− 14.6189236725596756548611 · t9 − 46.7837080838554814645440 · t10 (B.5)

t4~n2
=− 0.364745084375788638465599 · 10−2 · t4 − 0.330849774859843079444810 · 10−1 · t5

− 0.142057373159266152205821 · t6 − 0.546196466900145178778252 · t7

− 1.98185880470609954783192 · t8 − 6.84738550844484565834790 · t9

− 23.5978561963701904055989 · t10 (B.6)

t5~n2
=− 0.141138286625809668824681 · 10−2 · t5 − 0.201158426782593063342408 · 10−1 · t6

− 0.115353483310139997768118 · t7 − 0.524473364555857824181961 · t8

− 2.13985018746450841732523 · t9 − 8.26682620877668321951283 · t10 (B.7)

t6~n2
=− 0.585144945008832750814706 · 10−3 · t6 − 0.119176882843235126137407 · 10−1 · t7

− 0.892119640111350012887621 · 10−1 · t8 − 0.482875434922475978431369 · t9

− 2.25523734083541099322585 · t10 (B.8)

t7~n2
=− 0.254147276635063026821040 · 10−3 · t7 − 0.703106100515988441002700 · 10−2 · t8

− 0.666721604247304515044548 · 10−1 · t9 − 0.424976581727582208856755 · t10 (B.9)

t8~n2
=− 0.114147441902466406560965 · 10−3 · t8 − 0.411327815923552151027176 · 10−2 · t9

− 0.484059136028509012304455 · 10−1 · t10 (B.10)

t9~n2
=− 0.157747884980354614220636 · 10−3 · t9 − 0.478752360185602711803169 · 10−2 · t10 (B.11)

t10~n2
=− 0.172948424208956557050026 · 10−3 · t10 (B.12)

t~n1+~n2
=− 0.763932022500210303590826 · 10−1 · t2 − 0.975077640500378546463487 · 10−1 · t3

− 0.272525735941566421955039 · t4 − 0.600371970898235799201321 · t5

− 1.73248177878844941997509 · t6 − 4.58294446149620266843477 · t7

− 14.2421041531861767801670 · t8 − 41.4649422871111522899885 · t9

− 132.304893340465256326020 · t10 (B.13)

t~n1+2~n2
=− 0.316718427000252364308992 · 10−1 · t3 − 0.961300899000925335799636 · 10−1 · t4

− 0.253772375728318742183049 · t5 − 0.727564859149058832148180 · t6

− 2.01623520935345068394831 · t7 − 6.23491046308452615972553 · t8

− 18.3968412033347749770463 · t9 − 59.0999146932450267921766 · t10 (B.14)

t~n1+3~n2
=− 0.145898033750315455386239 · 10−1 · t4 − 0.688276809623228808068173 · 10−1 · t5

− 0.260769110241328306661252 · t6 − 0.898462908385217026687590 · t7

− 3.05594603897855257039047 · t8 − 9.91304325640091125119255 · t9

− 32.7971889309124860778559 · t10 (B.15)

t~n1+4~n2
=− 0.705691433129048344123407 · 10−2 · t5 − 0.514270380105545806027688 · 10−1 · t6

− 0.233054149087808156595000 · t7 − 0.945387931955848508118029 · t8

− 3.56789739160315633182691 · t9 − 13.0984732593139931634285 · t10 (B.16)

t~n1+5~n2
=− 0.351086967005299650488824 · 10−2 · t6 − 0.359255109770322519274984 · 10−1 · t7

− 0.205712112222701764953352 · t8 − 0.969913825530281937670501 · t9

− 4.12056409640547979130013 · t10 (B.17)

t~n1+6~n2
=− 0.177903093644544118774728 · 10−2 · t7 − 0.245615795851864470530205 · 10−1 · t8
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− 0.171548870929062166427230 · t9 − 0.934837844078137167580934 · t10 (B.18)

t~n1+7~n2
=− 0.913179535219731252487721 · 10−3 · t8 − 0.163426973509469375890074 · 10−1 · t9

− 0.138545341101261472560514 · t10 (B.19)

t~n1+8~n2
=− 0.141973096482319152798572 · 10−2 · t9 − 0.213456248018639911759962 · 10−1 · t10 (B.20)

t~n1+9~n2
=− 0.172948424208956557050026 · 10−2 · t10 (B.21)

t2~n1+2~n2
=− 0.218847050625473183079359 · 10−1 · t4 − 0.855992356152581126071409 · 10−1 · t5

− 0.322723201834968487591958 · t6 − 1.05861680184552551450558 · t7

− 3.53188052243374435692284 · t8 − 11.1870369835744048458532 · t9

− 36.5463370044321783454247 · t10 (B.22)

t2~n1+3~n2
=− 0.141138286625809668824681 · 10−1 · t5 − 0.782779883307381856713200 · 10−1 · t6

− 0.325839772267923332367724 · t7 − 1.25818071366651594466509 · t8

− 4.60117467542154252927394 · t9 − 16.5122399092724910779658 · t10 (B.23)

t2~n1+4~n2
=− 0.877717417513249126222059 · 10−2 · t6 − 0.649073443323444531902840 · 10−1 · t7

− 0.333022836821848716470200 · t8 − 1.45124809904342637222716 · t9

− 5.85935689475067270101426 · t10 (B.24)

t2~n1+5~n2
=− 0.533709280933632356324184 · 10−2 · t7 − 0.517684299102857910993563 · 10−1 · t8

− 0.310501425140458593358384 · t9 − 1.55004238456344598333016 · t10 (B.25)

t2~n1+6~n2
=− 0.319612837326905938370702 · 10−2 · t8 − 0.394528036680243874617043 · 10−1 · t9

− 0.280054208256104914145310 · t10 (B.26)

t2~n1+7~n2
=− 0.567892385929276611194288 · 10−2 · t9 − 0.582048896889056485961234 · 10−1 · t10 (B.27)

t2~n1+8~n2
=− 0.778267908940304506725119 · 10−2 · t10 (B.28)

t3~n1+3~n2
=− 0.117028989001766550162941 · 10−1 · t6 − 0.782409814063805453775581 · 10−1 · t7

− 0.390314474796729130272594 · t8 − 1.65539340079026540964864 · t9

− 6.58023611241411782848196 · t10 (B.29)

t3~n1+4~n2
=− 0.889515468222720593873640 · 10−2 · t7 − 0.734962030240667476307657 · 10−1 · t8

− 0.414203488408062479246243 · t9 − 1.98545003708950221274601 · t10 (B.30)

t3~n1+5~n2
=− 0.639225674653811876741405 · 10−2 · t8 − 0.647082976878168596435513 · 10−1 · t9

− 0.421008277480882308155368 · t10 (B.31)

t3~n1+6~n2
=− 0.132508223383497875945334 · 10−1 · t9 − 0.108633799755562863949760 · t10 (B.32)

t3~n1+7~n2
=− 0.207538109050747868460032 · 10−1 · t10 (B.33)

t4~n1+4~n2
=− 0.799032093317264845926756 · 10−2 · t8 − 0.759163137328899042064891 · 10−1 · t9

− 0.481308995651267623265606 · t10 (B.34)

t4~n1+5~n2
=− 0.198762335075246813918001 · 10−1 · t9

− 0.146644133922214106259923 · t10 (B.35)

t4~n1+6~n2
=− 0.363191690838808769805056 · 10−1 · t10 (B.36)

t5~n1+5~n2
=− 0.435830029006570523766067 · 10−1 · t10. (B.37)

The other hopping elements can be obtained by the symmetry relations (A.48).

The dispersion ω
(
~k
)

has for θ > 0 its minimum at ~k = 0 and thus we obtain the gap

∆+

cos θ
=1.− 1.65835921350012618215450 · t− 2.02917960675006309107725 · t2

− 3.10711309552514510947767 · t3 − 8.04259726696331282337854 · t4

− 19.1624988542355849837791 · t5 − 58.3172040905260665826176 · t6

− 164.442125764749511128228 · t7 − 528.531811101441199058830 · t8

− 1615.45332802511250829292 · t9 − 5311.99645899926157253121 · t10, (B.38)
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whereas for θ < 0, the minimum is located at ~k = ±( 2π
3 ,−

2π
3 ) and thus we obtain the gap

∆−

cos θ
=1.+ 0.829179606750063091077248 · t+ 0.114589803375031545538624 · t2

+ 0.511033255612458990799789 · t3 + 0.404476040819411930552126 · t4

+ 0.955438271995633484922172 · t5 + 1.78475247774001720568886 · t6

+ 4.52396192042311525049865 · t7 + 11.1729466330618734690580 · t8

+ 31.2002068100911363913816 · t9 + 89.4189513764563181889883 · t10. (B.39)

B.2 Series expansions for the 1-phase

ground-state energy e0

For the 1 phase (θ = π
2 ), we obtain the following expression for the ground-state energy per

plaquette.

e0

sin θ
=− 3.− 0.276393202250021030359083 · t−1 − 0.333333333333333333333333 · 10−1 · t−2

− 0.248451997499976632934353 · 10−2 · t−3 − 0.147309011464659210318636 · 10−3 · t−4

− 0.176251645032083273480020 · 10−4 · t−5 − 0.311482915054660249657726 · 10−5 · t−6

− 4.97495483230338463651490 · 10−7 · t−7 − 8.71294202575369519247181 · 10−8 · t−8

− 1.68047083130372398695520 · 10−8 · t−9 − 3.25279806074299317941897 · 10−9 · t−10

− 6.45224770766780340870601 · 10−10 · t−11 − 1.32894291749439876426994 · 10−10 · t−12

− 2.78653124402744019389761 · 10−11 · t−13 − 5.92393131555246254099121 · 10−12 · t−14

− 1.28029068152250493791582 · 10−12 · t−15 − 2.80343262342032185562862 · 10−13 · t−16

− 6.20299568622746687211081 · 10−14 · t−17 − 1.38624823359624468944367 · 10−14 · t−18

− 3.12554096212216427348799 · 10−15 · t−19 − 7.10025660183991072598726 · 10−16 · t−20. (B.40)

hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

t~0 =6.− 1. · t−1 + 0.187435299583017877947094 · 10−1 · t−2 − 0.578842089590388187162962 · 10−1 · t−3

− 0.149146653743505240470545 · 10−1 · t−4 − 0.695912354451466808606340 · 10−3 · t−5

− 0.211566860915465138527270 · 10−2 · t−6 − 0.749385915953240835199622 · 10−4 · t−7

− 0.294739505503116743244296 · 10−3 · t−8 + .117236929525346125606034 · 10−3 · t−9

− 0.967859450032886842513143 · 10−4 · t−10 + .261994518488941101334499 · 10−4 · t−11 (B.41)

t~n2
=− 0.524316338958385909231040 · 10−1 · t−2 − 0.189066274190990623786420 · 10−1 · t−3

− 0.470391128699895065039709 · 10−2 · t−4 − 0.147613660837969425456556 · 10−2 · t−5

− 0.933392501538059637010548 · 10−3 · t−6 − 0.193865812848346541101498 · 10−3 · t−7

− 0.649791057279814650873279 · 10−4 · t−8 − 0.267955925966750967609429 · 10−5 · t−9

− 0.166317860657325408512926 · 10−4 · t−10 − 0.499957378474017175706321 · 10−5 · t−11 (B.42)

t2~n2
=− 0.139727107396835243038338 · 10−3 · t−4 − 0.134280203717502119723759 · 10−3 · t−5
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− 0.492458712721092650153558 · 10−4 · t−6 − 0.323883447447409509227056 · 10−4 · t−7

− 0.105734911316938641307931 · 10−4 · t−8 − 0.140344768573218682341937 · 10−4 · t−9

− 0.740870447975950092526239 · 10−5 · t−10 − 0.707152002941310774152446 · 10−5 · t−11 (B.43)

t3~n2
=− 0.208536299987985784787439 · 10−5 · t−6 − 0.273670375295580569788355 · 10−5 · t−7

− 0.260613497570593627354210 · 10−5 · t−8 − 0.165186003053570302418776 · 10−5 · t−9

− 0.131707182609010001055197 · 10−5 · t−10 − 0.625339087885252907319405 · 10−6 · t−11 (B.44)

t4~n2
=− 0.101349121653913759767228 · 10−7 · t−8 − 0.241335022369316833346293 · 10−7 · t−9

− 0.209894265060151254797359 · 10−7 · t−10 − 0.231615914030353046566143 · 10−7 · t−11 (B.45)

t5~n2
=− 0.258104894335177400542058 · 10−9 · t−10 − 0.563550589226373529676399 · 10−9 · t−11 (B.46)

t~n1+~n2
=− 0.279454214793670486076675 · 10−3 · t−4 − 0.268560407435004239447518 · 10−3 · t−5

− 0.120417923847500007846082 · 10−3 · t−6 − 0.101412926310923299853054 · 10−3 · t−7

− 0.485510043217187014412262 · 10−4 · t−8 − 0.348804779168664799584680 · 10−4 · t−9

− 0.952006899037934518443172 · 10−5 · t−10 − 0.832316956699560118517686 · 10−5 · t−11 (B.47)

t~n1+2~n2
=− 0.625608899963957354362318 · 10−5 · t−6 − 0.821011125886741709365064 · 10−5 · t−7

− 0.693557796656057604154798 · 10−5 · t−8 − 0.322286468281330202712094 · 10−5 · t−9

− 0.215079017024405358708527 · 10−5 · t−10 − 0.692492851313765924432534 · 10−6 · t−11 (B.48)

t~n1+3~n2
=− 0.405396486615655039068914 · 10−7 · t−8 − 0.965340089477267333385173 · 10−7 · t−9

− 0.879703162772606638824929 · 10−7 · t−10 − 0.101623030855691290434328 · 10−6 · t−11 (B.49)

t~n1+4~n2
=− 0.129052447167588700271029 · 10−8 · t−10 − 0.281775294613186764838200 · 10−8 · t−11 (B.50)

t2~n1+2~n2
=− 0.608094729923482558603370 · 10−7 · t−8 − 0.144801013421590100007776 · 10−6 · t−9

− 0.136542828485842850810935 · 10−6 · t−10 − 0.162558384797575706852191 · 10−6 · t−11 (B.51)

t2~n1+3~n2
=− 0.258104894335177400542058 · 10−8 · t−10 − 0.563550589226373529676399 · 10−8 · t−11.

(B.52)

The other hopping elements can be obtained by the symmetry relations (A.48).

The dispersion ω
(
~k
)

has for θ < π
2 and θ > π

2 its minimum at ~k = 0 and thus we obtain the
gap

∆

sin θ
= 6.− 0.447213595499957939281835 · t−1 − 0.591692546833459515487829 · 10−1 · t−2

− 0.153236820344965837350024 · 10−1 · t−3 − 0.182612884117949049296508 · 10−2 · t−4

− 0.214121856617765481253763 · 10−3 · t−5 − 0.705727330807649509929227 · 10−4 · t−6

− 0.771312026051760919224748 · 10−5 · t−7 − 0.182261920022292588988498 · 10−5 · t−8

− 0.173939403418595455023298 · 10−6 · t−9 − 0.106851219217155477742849 · 10−6 · t−10

− 0.158373280142416397082900 · 10−7 · t−11 (B.53)

B.3 Series expansions for the τ -phase

ground-state energy e0

For the τ phase (θ = 3π
2 ), we obtain the following expression for the ground-state energy per

plaquette

e0

− sin θ
=0.301315561749642483895595 · t−1 − 0.113204493325481999275817 · t−2
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+ 0.0280779746071996264677079 · t−3 − 0.00450780949097200145030589 · t−4

− 0.00303798844679437916619015 · t−5 + 0.00459675253275435560375994 · t−6

− 0.00163366937441387847322281 · t−7 − 0.00228871711566844098308512 · t−8

+ 0.00381264213049307331396524 · t−9. (B.54)

hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

txx−5~n1−~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.55)

txx−5~n1
=0.529549932959660053710220·10−5 ·t−6 (B.56)

txx−5~n1+~n2
=0.961775368330065795258258·10−5 ·t−6 (B.57)

txx−5~n1+2~n2
=− 0.103449005689306208778332·10−4 ·t−6 (B.58)

txx−5~n1+3~n2
=− 0.103449005689306208778332·10−4 ·t−6 (B.59)

txx−5~n1+4~n2
=0.961775368330065795258258·10−5 ·t−6 (B.60)

txx−5~n1+5~n2
=0.529549932959660053710220·10−5 ·t−6 (B.61)

txx−5~n1+6~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.62)

txx−4~n1−2~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.63)

txx−4~n1−~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.361933210817370581410633·10−4 ·t−6 (B.64)

txx−4~n1
=− 0.447627643570088142536093·10−4 ·t−5 − 0.121954072428841706377138·10−6 ·t−6 (B.65)

txx−4~n1+~n2
=− 0.176154236726482919602624·10−4 ·t−5 + 0.738993312915439904793731·10−4 ·t−6 (B.66)

txx−4~n1+2~n2
=0.772455133766997297965047·10−4 ·t−5 − 0.249410428512881467064340·10−3 ·t−6 (B.67)

txx−4~n1+3~n2
=− 0.176154236726482919602624·10−4 ·t−5 + 0.738993312915439904793731·10−4 ·t−6 (B.68)

txx−4~n1+4~n2
=− 0.447627643570088142536093·10−4 ·t−5 − 0.121954072428841706377138·10−6 ·t−6 (B.69)

txx−4~n1+5~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.361933210817370581410633·10−4 ·t−6 (B.70)

txx−4~n1+6~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.71)

txx−3~n1−3~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.72)

txx−3~n1−2~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.604137277311930870001592·10−4 ·t−6 (B.73)

txx−3~n1−~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.180185105474197158838274·10−3 ·t−5

+ 0.286386194984530231538305·10−3 ·t−6 (B.74)

txx−3~n1
=0.373413500113866978664719·10−3 ·t−4 − 0.195946957259888759173168·10−3 ·t−5

− 0.625896065788473410302023·10−3 ·t−6 (B.75)

txx−3~n1+~n2
=− 0.238035580603681576666227·10−3 ·t−4 + 0.362402612311765078704201·10−3 ·t−5

− 0.898017682089430936195628·10−4 ·t−6 (B.76)

txx−3~n1+2~n2
=− 0.238035580603681576666227·10−3 ·t−4 + 0.362402612311765078704201·10−3 ·t−5

− 0.898017682089430936195628·10−4 ·t−6 (B.77)

txx−3~n1+3~n2
=0.373413500113866978664719·10−3 ·t−4 − 0.195946957259888759173168·10−3 ·t−5

− 0.625896065788473410302023·10−3 ·t−6 (B.78)

txx−3~n1+4~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.180185105474197158838274·10−3 ·t−5

+ 0.286386194984530231538305·10−3 ·t−6 (B.79)

txx−3~n1+5~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.604137277311930870001592·10−4 ·t−6 (B.80)

txx−3~n1+6~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.81)
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txx−2~n1−4~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.82)

txx−2~n1−3~n2
=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.83)

txx−2~n1−2~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.181083506430596661823657·10−3 ·t−5

+ 0.365322440833618684178375·10−3 ·t−6 (B.84)

txx−2~n1−~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.346398377708810642111611·10−3 ·t−4

− 0.351152446156008408494839·10−3 ·t−5 − 0.682907473392500010424202·10−3 ·t−6 (B.85)

txx−2~n1
=− 0.327251092267193924955251·10−2 ·t−3 + 0.323733521689035669814616·10−2 ·t−4

− 0.149586777640616038787487·10−2 ·t−5 − 0.119309261351886905246614·10−2 ·t−6 (B.86)

txx−2~n1+~n2
=0.477227060701572778996641·10−2 ·t−3 − 0.746990011236562397693934·10−2 ·t−4

+ 0.639024181690310554303429·10−2 ·t−5 − 0.362795530457435173874305·10−2 ·t−6 (B.87)

txx−2~n1+2~n2
=− 0.327251092267193924955251·10−2 ·t−3 + 0.323733521689035669814616·10−2 ·t−4

− 0.149586777640616038787487·10−2 ·t−5 − 0.119309261351886905246614·10−2 ·t−6 (B.88)

txx−2~n1+3~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.346398377708810642111611·10−3 ·t−4

− 0.351152446156008408494839·10−3 ·t−5 − 0.682907473392500010424202·10−3 ·t−6 (B.89)

txx−2~n1+4~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.181083506430596661823657·10−3 ·t−5

+ 0.365322440833618684178375·10−3 ·t−6 (B.90)

txx−2~n1+5~n2
=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.91)

txx−2~n1+6~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.92)

txx−~n1−5~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.93)

txx−~n1−4~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.388735463646651204517965·10−4 ·t−6 (B.94)

txx−~n1−3~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.155970356379276811360361·10−3 ·t−5

+ 0.311055042433497000599563·10−3 ·t−6 (B.95)

txx−~n1−2~n2
=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.163569339246820384226204·10−2 ·t−5 + 0.718667639479322988988327·10−3 ·t−6 (B.96)

txx−~n1−~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.419735359449249455919311·10−3 ·t−3

− 0.227023316877688790456058·10−2 ·t−4 + 0.477180093825364496364849·10−2 ·t−5

− 0.473705986999049906338227·10−2 ·t−6 (B.97)

txx−~n1
=0.951949424901157312311624·10−2 ·t−2 − 0.747624257671281075055057·10−2 ·t−3

− 0.105683535487409915924913·10−2 ·t−4 + 0.317422583970608684720011·10−2 ·t−5

− 0.524079045120963932991959·10−2 ·t−6 (B.98)

txx−~n1+~n2
=0.951949424901157312311624·10−2 ·t−2 − 0.747624257671281075055057·10−2 ·t−3

− 0.105683535487409915924913·10−2 ·t−4 + 0.317422583970608684720011·10−2 ·t−5

− 0.524079045120963932991959·10−2 ·t−6 (B.99)

txx−~n1+2~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.419735359449249455919311·10−3 ·t−3

− 0.227023316877688790456058·10−2 ·t−4 + 0.477180093825364496364849·10−2 ·t−5

− 0.473705986999049906338227·10−2 ·t−6 (B.100)

txx−~n1+3~n2
=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.163569339246820384226204·10−2 ·t−5 + 0.718667639479322988988327·10−3 ·t−6 (B.101)

txx−~n1+4~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.155970356379276811360361·10−3 ·t−5

+ 0.311055042433497000599563·10−3 ·t−6 (B.102)

txx−~n1+5~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.388735463646651204517965·10−4 ·t−6 (B.103)

txx−~n1+6~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.104)

txx−6~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.105)

txx−5~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.385069750673932543615370·10−5 ·t−6 (B.106)
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txx−4~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.644075270499111237017463·10−4 ·t−5

+ 0.103872962092428672078990·10−3 ·t−6 (B.107)

txx−3~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.110660224382454286956223·10−3 ·t−4

− 0.147852419912244622637577·10−3 ·t−5 − 0.143923159259271323547389·10−2 ·t−6 (B.108)

txx−2~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.430452856461170362514866·10−2 ·t−3

+ 0.414293336781008673731188·10−2 ·t−4 − 0.129643993879778321553960·10−2 ·t−5

− 0.143608789139510590723459·10−2 ·t−6 (B.109)

txx−~n2
=0.105572809000084121436331·t−1 − 0.366891015028180681170728·10−1 ·t−2

− 0.232445691056920962382703·10−1 ·t−3 + 0.144322573584726778543351·10−1 ·t−4

− 0.216830618787032024986157·10−2 ·t−5 − 0.450239404872368613385934·10−2 ·t−6 (B.110)

txx~0 =1.− 0.180339887498948482045868·t−1 + 0.981984037163864760662581·10−1 ·t−2

− 0.149188223162105760410718·t−3 + 0.555480182906295683843826·10−1 ·t−4

+ 0.578104903547281459136771·10−1 ·t−5 − 0.105103788127556625909095·t−6 (B.111)

txx~n2
=0.105572809000084121436331·t−1 − 0.366891015028180681170728·10−1 ·t−2

− 0.232445691056920962382703·10−1 ·t−3 + 0.144322573584726778543351·10−1 ·t−4

− 0.216830618787032024986157·10−2 ·t−5 − 0.450239404872368613385934·10−2 ·t−6 (B.112)

txx2~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.430452856461170362514866·10−2 ·t−3

+ 0.414293336781008673731188·10−2 ·t−4 − 0.129643993879778321553960·10−2 ·t−5

− 0.143608789139510590723459·10−2 ·t−6 (B.113)

txx3~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.110660224382454286956223·10−3 ·t−4

− 0.147852419912244622637577·10−3 ·t−5 − 0.143923159259271323547389·10−2 ·t−6 (B.114)

txx4~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.644075270499111237017463·10−4 ·t−5

+ 0.103872962092428672078990·10−3 ·t−6 (B.115)

txx5~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.385069750673932543615370·10−5 ·t−6 (B.116)

txx6~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.117)

txx~n1−6~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.118)

txx~n1−5~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.388735463646651204517965·10−4 ·t−6 (B.119)

txx~n1−4~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.155970356379276811360361·10−3 ·t−5

+ 0.311055042433497000599563·10−3 ·t−6 (B.120)

txx~n1−3~n2
=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.163569339246820384226204·10−2 ·t−5 + 0.718667639479322988988327·10−3 ·t−6 (B.121)

txx~n1−2~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.419735359449249455919311·10−3 ·t−3

− 0.227023316877688790456058·10−2 ·t−4 + 0.477180093825364496364849·10−2 ·t−5

− 0.473705986999049906338227·10−2 ·t−6 (B.122)

txx~n1−~n2
=0.951949424901157312311624·10−2 ·t−2 − 0.747624257671281075055057·10−2 ·t−3

− 0.105683535487409915924913·10−2 ·t−4 + 0.317422583970608684720011·10−2 ·t−5

− 0.524079045120963932991959·10−2 ·t−6 (B.123)

txx~n1
=0.951949424901157312311624·10−2 ·t−2 − 0.747624257671281075055057·10−2 ·t−3

− 0.105683535487409915924913·10−2 ·t−4 + 0.317422583970608684720011·10−2 ·t−5

− 0.524079045120963932991959·10−2 ·t−6 (B.124)

txx~n1+~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.419735359449249455919311·10−3 ·t−3

− 0.227023316877688790456058·10−2 ·t−4 + 0.477180093825364496364849·10−2 ·t−5

− 0.473705986999049906338227·10−2 ·t−6 (B.125)

txx~n1+2~n2
=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.163569339246820384226204·10−2 ·t−5 + 0.718667639479322988988327·10−3 ·t−6 (B.126)
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txx~n1+3~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.155970356379276811360361·10−3 ·t−5

+ 0.311055042433497000599563·10−3 ·t−6 (B.127)

txx~n1+4~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.388735463646651204517965·10−4 ·t−6 (B.128)

txx~n1+5~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.129)

txx2~n1−6~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.130)

txx2~n1−5~n2
=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.131)

txx2~n1−4~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.181083506430596661823657·10−3 ·t−5

+ 0.365322440833618684178375·10−3 ·t−6 (B.132)

txx2~n1−3~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.346398377708810642111611·10−3 ·t−4

− 0.351152446156008408494839·10−3 ·t−5 − 0.682907473392500010424202·10−3 ·t−6 (B.133)

txx2~n1−2~n2
=− 0.327251092267193924955251·10−2 ·t−3 + 0.323733521689035669814616·10−2 ·t−4

− 0.149586777640616038787487·10−2 ·t−5 − 0.119309261351886905246614·10−2 ·t−6 (B.134)

txx2~n1−~n2
=0.477227060701572778996641·10−2 ·t−3 − 0.746990011236562397693934·10−2 ·t−4

+ 0.639024181690310554303429·10−2 ·t−5 − 0.362795530457435173874305·10−2 ·t−6 (B.135)

txx2~n1
=− 0.327251092267193924955251·10−2 ·t−3 + 0.323733521689035669814616·10−2 ·t−4

− 0.149586777640616038787487·10−2 ·t−5 − 0.119309261351886905246614·10−2 ·t−6 (B.136)

txx2~n1+~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.346398377708810642111611·10−3 ·t−4

− 0.351152446156008408494839·10−3 ·t−5 − 0.682907473392500010424202·10−3 ·t−6 (B.137)

txx2~n1+2~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.181083506430596661823657·10−3 ·t−5

+ 0.365322440833618684178375·10−3 ·t−6 (B.138)

txx2~n1+3~n2
=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.139)

txx2~n1+4~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.140)

txx3~n1−6~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.141)

txx3~n1−5~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.604137277311930870001592·10−4 ·t−6 (B.142)

txx3~n1−4~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.180185105474197158838274·10−3 ·t−5

+ 0.286386194984530231538305·10−3 ·t−6 (B.143)

txx3~n1−3~n2
=0.373413500113866978664719·10−3 ·t−4 − 0.195946957259888759173168·10−3 ·t−5

− 0.625896065788473410302023·10−3 ·t−6 (B.144)

txx3~n1−2~n2
=− 0.238035580603681576666227·10−3 ·t−4 + 0.362402612311765078704201·10−3 ·t−5

− 0.898017682089430936195628·10−4 ·t−6 (B.145)

txx3~n1−~n2
=− 0.238035580603681576666227·10−3 ·t−4 + 0.362402612311765078704201·10−3 ·t−5

− 0.898017682089430936195628·10−4 ·t−6 (B.146)

txx3~n1
=0.373413500113866978664719·10−3 ·t−4 − 0.195946957259888759173168·10−3 ·t−5

− 0.625896065788473410302023·10−3 ·t−6 (B.147)

txx3~n1+~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.180185105474197158838274·10−3 ·t−5

+ 0.286386194984530231538305·10−3 ·t−6 (B.148)

txx3~n1+2~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.604137277311930870001592·10−4 ·t−6 (B.149)

txx3~n1+3~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.150)

txx4~n1−6~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.151)

txx4~n1−5~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.361933210817370581410633·10−4 ·t−6 (B.152)

txx4~n1−4~n2
=− 0.447627643570088142536093·10−4 ·t−5 − 0.121954072428841706377138·10−6 ·t−6 (B.153)

txx4~n1−3~n2
=− 0.176154236726482919602624·10−4 ·t−5 + 0.738993312915439904793731·10−4 ·t−6 (B.154)

txx4~n1−2~n2
=0.772455133766997297965047·10−4 ·t−5 − 0.249410428512881467064340·10−3 ·t−6 (B.155)

txx4~n1−~n2
=− 0.176154236726482919602624·10−4 ·t−5 + 0.738993312915439904793731·10−4 ·t−6 (B.156)
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txx4~n1
=− 0.447627643570088142536093·10−4 ·t−5 − 0.121954072428841706377138·10−6 ·t−6 (B.157)

txx4~n1+~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.361933210817370581410633·10−4 ·t−6 (B.158)

txx4~n1+2~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.159)

txx5~n1−6~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.160)

txx5~n1−5~n2
=0.529549932959660053710220·10−5 ·t−6 (B.161)

txx5~n1−4~n2
=0.961775368330065795258258·10−5 ·t−6 (B.162)

txx5~n1−3~n2
=− 0.103449005689306208778332·10−4 ·t−6 (B.163)

txx5~n1−2~n2
=− 0.103449005689306208778332·10−4 ·t−6 (B.164)

txx5~n1−~n2
=0.961775368330065795258258·10−5 ·t−6 (B.165)

txx5~n1
=0.529549932959660053710220·10−5 ·t−6 (B.166)

txx5~n1+~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.167)

txy−5~n1−~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.168)

txy−5~n1
=− 0.189534496764798260647388·10−5 ·t−6 (B.169)

txy−5~n1+~n2
=0.877376080621468792419441·10−5 ·t−6 (B.170)

txy−5~n1+2~n2
=0.177037358417683147613166·10−4 ·t−6 (B.171)

txy−5~n1+3~n2
=0.877376080621468792419441·10−5 ·t−6 (B.172)

txy−5~n1+4~n2
=− 0.189534496764798260647388·10−5 ·t−6 (B.173)

txy−5~n1+5~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.174)

txy−4~n1−2~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.175)

txy−4~n1−~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.200220092942381917886085·10−4 ·t−6 (B.176)

txy−4~n1
=0.569449829474278083006311·10−6 ·t−5 + 0.114014191569625057146409·10−4 ·t−6 (B.177)

txy−4~n1+~n2
=− 0.556687305315238787755085·10−4 ·t−5 + 0.786929251879297688085574·10−4 ·t−6 (B.178)

txy−4~n1+2~n2
=− 0.556687305315238787755085·10−4 ·t−5 + 0.825966964378827609775518·10−4 ·t−6 (B.179)

txy−4~n1+3~n2
=0.569449829474278083006311·10−6 ·t−5 − 0.181648856174406830339212·10−5 ·t−6 (B.180)

txy−4~n1+4~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.100911746228232087451572·10−4 ·t−6 (B.181)

txy−4~n1+5~n2
=− 0.189534496764798260647388·10−5 ·t−6 (B.182)

txy−3~n1−3~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.183)

txy−3~n1−2~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.496436370479291037259778·10−4 ·t−6 (B.184)

txy−3~n1−~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.122296316262054141270010·10−3 ·t−5

+ 0.203523580864738729690733·10−3 ·t−6 (B.185)

txy−3~n1
=0.702459994891137941012653·10−4 ·t−4 − 0.488919937266819365796534·10−4 ·t−5

− 0.139469056620406891732139·10−3 ·t−6 (B.186)

txy−3~n1+~n2
=0.295772999735320515177323·10−3 ·t−4 − 0.454280811558875829447012·10−3 ·t−5

+ 0.621598916746433812504030·10−4 ·t−6 (B.187)

txy−3~n1+2~n2
=0.702459994891137941012653·10−4 ·t−4 − 0.712729126173902816148407·10−4 ·t−5

− 0.282245480976858719259202·10−3 ·t−6 (B.188)

txy−3~n1+3~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.176105720598616376180864·10−4 ·t−5

+ 0.213566087526141996248093·10−3 ·t−6 (B.189)

txy−3~n1+4~n2
=0.569449829474278083006311·10−6 ·t−5 − 0.181648856174406830339212·10−5 ·t−6 (B.190)

txy−3~n1+5~n2
=0.877376080621468792419441·10−5 ·t−6 (B.191)

txy−2~n1−4~n2
=− 0.181723785297851315000999·10−4 ·t−6 (B.192)

txy−2~n1−3~n2
=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.193)
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txy−2~n1−2~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.168526931404936736592009·10−3 ·t−5

+ 0.324718043066997273466999·10−3 ·t−6 (B.194)

txy−2~n1−~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.228529301045632464533917·10−3 ·t−4

− 0.434615398787199701739313·10−3 ·t−5 − 0.448700051594377304562255·10−3 ·t−6 (B.195)

txy−2~n1
=− 0.104791836117613889574824·10−2 ·t−3 + 0.848168284701203959635441·10−3 ·t−4

+ 0.130170278593171370938895·10−3 ·t−5 − 0.223958562151266240767136·10−3 ·t−6 (B.196)

txy−2~n1+~n2
=− 0.104791836117613889574824·10−2 ·t−3 + 0.191933951155773081014763·10−2 ·t−4

− 0.121207250223094324279363·10−2 ·t−5 − 0.948698322174021075536699·10−3 ·t−6 (B.197)

txy−2~n1+2~n2
=0.588337100159830729028012·10−3 ·t−3 − 0.716104703501151355371451·10−3 ·t−4

+ 0.724485682687886637054834·10−3 ·t−5 − 0.210364626416704553400221·10−3 ·t−6 (B.198)

txy−2~n1+3~n2
=0.702459994891137941012653·10−4 ·t−4 − 0.712729126173902816148407·10−4 ·t−5

− 0.282245480976858719259202·10−3 ·t−6 (B.199)

txy−2~n1+4~n2
=− 0.556687305315238787755085·10−4 ·t−5 + 0.825966964378827609775518·10−4 ·t−6 (B.200)

txy−2~n1+5~n2
=0.177037358417683147613166·10−4 ·t−6 (B.201)

txy−~n1−5~n2
=− 0.908618926489256575004996·10−5 ·t−6 (B.202)

txy−~n1−4~n2
=0.459016640159573704196219·10−4 ·t−5 + 0.496436370479291037259778·10−4 ·t−6 (B.203)

txy−~n1−3~n2
=− 0.232921501135639390462189·10−3 ·t−4 − 0.168526931404936736592009·10−3 ·t−5

+ 0.324718043066997273466999·10−3 ·t−6 (B.204)

txy−~n1−2~n2
=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.135702625373352364606986·10−2 ·t−5 + 0.118451844517147120630783·10−2 ·t−6 (B.205)

txy−~n1−~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.236213196203047654053398·10−2 ·t−3

+ 0.702765346756813227778462·10−2 ·t−4 − 0.206506034006256052274364·10−2 ·t−5

− 0.373671320503437343621277·10−2 ·t−6 (B.206)

txy−~n1
=0.137767414994532106638515·10−1 ·t−2 − 0.865348988319435525887061·10−2 ·t−3

− 0.132622387204069425441341·10−2 ·t−4 + 0.312673425116414530905777·10−2 ·t−5

− 0.236686021309884611528280·10−2 ·t−6 (B.207)

txy−~n1+~n2
=− 0.557280900008412143633053·10−2 ·t−2 + 0.531461638264693552159016·10−2 ·t−3

− 0.670565994231402390842320·10−2 ·t−4 + 0.525379281796400113746666·10−2 ·t−5

− 0.500519938535582839435800·10−3 ·t−6 (B.208)

txy−~n1+2~n2
=− 0.104791836117613889574824·10−2 ·t−3 + 0.191933951155773081014763·10−2 ·t−4

− 0.121207250223094324279363·10−2 ·t−5 − 0.948698322174021075536699·10−3 ·t−6 (B.209)

txy−~n1+3~n2
=0.295772999735320515177323·10−3 ·t−4 − 0.454280811558875829447012·10−3 ·t−5

+ 0.621598916746433812504030·10−4 ·t−6 (B.210)

txy−~n1+4~n2
=− 0.556687305315238787755085·10−4 ·t−5 + 0.786929251879297688085574·10−4 ·t−6 (B.211)

txy−~n1+5~n2
=0.877376080621468792419441·10−5 ·t−6 (B.212)

txy−6~n2
=− 0.181723785297851315000999·10−5 ·t−6 (B.213)

txy−5~n2
=0.114754160039893426049055·10−4 ·t−5 + 0.200220092942381917886085·10−4 ·t−6 (B.214)

txy−4~n2
=− 0.776405003785464634873963·10−4 ·t−4 − 0.122296316262054141270010·10−3 ·t−5

+ 0.203523580864738729690733·10−3 ·t−6 (B.215)

txy−3~n2
=0.588337100159830729028012·10−3 ·t−3 + 0.228529301045632464533917·10−3 ·t−4

− 0.434615398787199701739313·10−3 ·t−5 − 0.448700051594377304562255·10−3 ·t−6 (B.216)

txy−2~n2
=− 0.557280900008412143633053·10−2 ·t−2 − 0.236213196203047654053398·10−2 ·t−3

+ 0.702765346756813227778462·10−2 ·t−4 − 0.206506034006256052274364·10−2 ·t−5
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− 0.373671320503437343621277·10−2 ·t−6 (B.217)

txy−~n2
=0.105572809000084121436331·t−1 − 0.289876688775131279103747·10−1 ·t−2

− 0.199186554087748061154480·10−1 ·t−3 + 0.135649359157411725628515·10−1 ·t−4

− 0.349010482426959712643653·10−2 ·t−5 + 0.142312604981261396382189·10−2 ·t−6 (B.218)

txy
~0

=− 0.652475842498527874864216·10−1 ·t−1 + 0.664445218705310486949405·10−1 ·t−2

− 0.181424380744510864458450·10−1 ·t−3 − 0.127689991799532110388965·10−1 ·t−4

+ 0.121266651669238410233434·10−1 ·t−5 − 0.800395520818859059765532·10−2 ·t−6 (B.219)

txy
~n2

=0.137767414994532106638515·10−1 ·t−2 − 0.865348988319435525887061·10−2 ·t−3

− 0.132622387204069425441341·10−2 ·t−4 + 0.312673425116414530905777·10−2 ·t−5

− 0.236686021309884611528280·10−2 ·t−6 (B.220)

txy
2~n2

=− 0.104791836117613889574824·10−2 ·t−3 + 0.848168284701203959635441·10−3 ·t−4

+ 0.130170278593171370938895·10−3 ·t−5 − 0.223958562151266240767136·10−3 ·t−6 (B.221)

txy
3~n2

=0.702459994891137941012653·10−4 ·t−4 − 0.488919937266819365796534·10−4 ·t−5

− 0.139469056620406891732139·10−3 ·t−6 (B.222)

txy
4~n2

=0.569449829474278083006311·10−6 ·t−5 + 0.114014191569625057146409·10−4 ·t−6 (B.223)

txy
5~n2

=− 0.189534496764798260647388·10−5 ·t−6 (B.224)

txy
~n1−6~n2

=− 0.189534496764798260647388·10−5 ·t−6 (B.225)

txy
~n1−5~n2

=0.569449829474278083006311·10−6 ·t−5 + 0.114014191569625057146409·10−4 ·t−6 (B.226)

txy
~n1−4~n2

=0.702459994891137941012653·10−4 ·t−4 − 0.488919937266819365796534·10−4 ·t−5

− 0.139469056620406891732139·10−3 ·t−6 (B.227)

txy
~n1−3~n2

=− 0.104791836117613889574824·10−2 ·t−3 + 0.848168284701203959635441·10−3 ·t−4

+ 0.130170278593171370938895·10−3 ·t−5 − 0.223958562151266240767136·10−3 ·t−6 (B.228)

txy
~n1−2~n2

=0.137767414994532106638515·10−1 ·t−2 − 0.865348988319435525887061·10−2 ·t−3

− 0.132622387204069425441341·10−2 ·t−4 + 0.312673425116414530905777·10−2 ·t−5

− 0.236686021309884611528280·10−2 ·t−6 (B.229)

txy
~n1−~n2

=− 0.652475842498527874864216·10−1 ·t−1 + 0.664445218705310486949405·10−1 ·t−2

− 0.181424380744510864458450·10−1 ·t−3 − 0.127689991799532110388965·10−1 ·t−4

+ 0.121266651669238410233434·10−1 ·t−5 − 0.800395520818859059765532·10−2 ·t−6 (B.230)

txy
~n1

=0.105572809000084121436331·t−1 − 0.289876688775131279103747·10−1 ·t−2

− 0.199186554087748061154480·10−1 ·t−3 + 0.135649359157411725628515·10−1 ·t−4

− 0.349010482426959712643653·10−2 ·t−5 + 0.142312604981261396382189·10−2 ·t−6 (B.231)

txy
~n1+~n2

=− 0.557280900008412143633053·10−2 ·t−2 − 0.236213196203047654053398·10−2 ·t−3

+ 0.702765346756813227778462·10−2 ·t−4 − 0.206506034006256052274364·10−2 ·t−5

− 0.373671320503437343621277·10−2 ·t−6 (B.232)

txy
~n1+2~n2

=0.588337100159830729028012·10−3 ·t−3 + 0.228529301045632464533917·10−3 ·t−4

− 0.434615398787199701739313·10−3 ·t−5 − 0.448700051594377304562255·10−3 ·t−6 (B.233)

txy
~n1+3~n2

=− 0.776405003785464634873963·10−4 ·t−4 − 0.122296316262054141270010·10−3 ·t−5

+ 0.203523580864738729690733·10−3 ·t−6 (B.234)

txy
~n1+4~n2

=0.114754160039893426049055·10−4 ·t−5 + 0.200220092942381917886085·10−4 ·t−6 (B.235)

txy
~n1+5~n2

=− 0.181723785297851315000999·10−5 ·t−6 (B.236)

txy
2~n1−6~n2

=0.877376080621468792419441·10−5 ·t−6 (B.237)

txy
2~n1−5~n2

=− 0.556687305315238787755085·10−4 ·t−5 + 0.786929251879297688085574·10−4 ·t−6 (B.238)

txy
2~n1−4~n2

=0.295772999735320515177323·10−3 ·t−4 − 0.454280811558875829447012·10−3 ·t−5

+ 0.621598916746433812504030·10−4 ·t−6 (B.239)
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txy
2~n1−3~n2

=− 0.104791836117613889574824·10−2 ·t−3 + 0.191933951155773081014763·10−2 ·t−4

− 0.121207250223094324279363·10−2 ·t−5 − 0.948698322174021075536699·10−3 ·t−6 (B.240)

txy
2~n1−2~n2

=− 0.557280900008412143633053·10−2 ·t−2 + 0.531461638264693552159016·10−2 ·t−3

− 0.670565994231402390842320·10−2 ·t−4 + 0.525379281796400113746666·10−2 ·t−5

− 0.500519938535582839435800·10−3 ·t−6 (B.241)

txy
2~n1−~n2

=0.137767414994532106638515·10−1 ·t−2 − 0.865348988319435525887061·10−2 ·t−3

− 0.132622387204069425441341·10−2 ·t−4 + 0.312673425116414530905777·10−2 ·t−5

− 0.236686021309884611528280·10−2 ·t−6 (B.242)

txy
2~n1

=− 0.557280900008412143633053·10−2 ·t−2 − 0.236213196203047654053398·10−2 ·t−3

+ 0.702765346756813227778462·10−2 ·t−4 − 0.206506034006256052274364·10−2 ·t−5

− 0.373671320503437343621277·10−2 ·t−6 (B.243)

txy
2~n1+~n2

=0.117667420031966145805602·10−2 ·t−3 + 0.213503988724726916954670·10−3 ·t−4

− 0.135702625373352364606986·10−2 ·t−5 + 0.118451844517147120630783·10−2 ·t−6 (B.244)

txy
2~n1+2~n2

=− 0.232921501135639390462189·10−3 ·t−4 − 0.168526931404936736592009·10−3 ·t−5

+ 0.324718043066997273466999·10−3 ·t−6 (B.245)

txy
2~n1+3~n2

=0.459016640159573704196219·10−4 ·t−5 + 0.496436370479291037259778·10−4 ·t−6 (B.246)

txy
2~n1+4~n2

=− 0.908618926489256575004996·10−5 ·t−6 (B.247)

txy
3~n1−6~n2

=0.177037358417683147613166·10−4 ·t−6 (B.248)

txy
3~n1−5~n2

=− 0.556687305315238787755085·10−4 ·t−5 + 0.825966964378827609775518·10−4 ·t−6 (B.249)

txy
3~n1−4~n2

=0.702459994891137941012653·10−4 ·t−4 − 0.712729126173902816148407·10−4 ·t−5

− 0.282245480976858719259202·10−3 ·t−6 (B.250)

txy
3~n1−3~n2

=0.588337100159830729028012·10−3 ·t−3 − 0.716104703501151355371451·10−3 ·t−4

+ 0.724485682687886637054834·10−3 ·t−5 − 0.210364626416704553400221·10−3 ·t−6 (B.251)

txy
3~n1−2~n2

=− 0.104791836117613889574824·10−2 ·t−3 + 0.191933951155773081014763·10−2 ·t−4

− 0.121207250223094324279363·10−2 ·t−5 − 0.948698322174021075536699·10−3 ·t−6 (B.252)

txy
3~n1−~n2

=− 0.104791836117613889574824·10−2 ·t−3 + 0.848168284701203959635441·10−3 ·t−4

+ 0.130170278593171370938895·10−3 ·t−5 − 0.223958562151266240767136·10−3 ·t−6 (B.253)

txy
3~n1

=0.588337100159830729028012·10−3 ·t−3 + 0.228529301045632464533917·10−3 ·t−4

− 0.434615398787199701739313·10−3 ·t−5 − 0.448700051594377304562255·10−3 ·t−6 (B.254)

txy
3~n1+~n2

=− 0.232921501135639390462189·10−3 ·t−4 − 0.168526931404936736592009·10−3 ·t−5

+ 0.324718043066997273466999·10−3 ·t−6 (B.255)

txy
3~n1+2~n2

=0.688524960239360556294329·10−4 ·t−5 + 0.554525655720858586617909·10−4 ·t−6 (B.256)

txy
3~n1+3~n2

=− 0.181723785297851315000999·10−4 ·t−6 (B.257)

txy
4~n1−6~n2

=0.877376080621468792419441·10−5 ·t−6 (B.258)

txy
4~n1−5~n2

=0.569449829474278083006311·10−6 ·t−5 − 0.181648856174406830339212·10−5 ·t−6 (B.259)

txy
4~n1−4~n2

=− 0.776405003785464634873963·10−4 ·t−4 − 0.176105720598616376180864·10−4 ·t−5

+ 0.213566087526141996248093·10−3 ·t−6 (B.260)

txy
4~n1−3~n2

=0.702459994891137941012653·10−4 ·t−4 − 0.712729126173902816148407·10−4 ·t−5

− 0.282245480976858719259202·10−3 ·t−6 (B.261)

txy
4~n1−2~n2

=0.295772999735320515177323·10−3 ·t−4 − 0.454280811558875829447012·10−3 ·t−5

+ 0.621598916746433812504030·10−4 ·t−6 (B.262)

txy
4~n1−~n2

=0.702459994891137941012653·10−4 ·t−4 − 0.488919937266819365796534·10−4 ·t−5

− 0.139469056620406891732139·10−3 ·t−6 (B.263)

txy
4~n1

=− 0.776405003785464634873963·10−4 ·t−4 − 0.122296316262054141270010·10−3 ·t−5



+ 0.203523580864738729690733·10−3 ·t−6 (B.264)

txy
4~n1+~n2

=0.459016640159573704196219·10−4 ·t−5 + 0.496436370479291037259778·10−4 ·t−6 (B.265)

txy
4~n1+2~n2

=− 0.181723785297851315000999·10−4 ·t−6 (B.266)

txy
5~n1−6~n2

=− 0.189534496764798260647388·10−5 ·t−6 (B.267)

txy
5~n1−5~n2

=0.114754160039893426049055·10−4 ·t−5 + 0.100911746228232087451572·10−4 ·t−6 (B.268)

txy
5~n1−4~n2

=0.569449829474278083006311·10−6 ·t−5 − 0.181648856174406830339212·10−5 ·t−6 (B.269)

txy
5~n1−3~n2

=− 0.556687305315238787755085·10−4 ·t−5 + 0.825966964378827609775518·10−4 ·t−6 (B.270)

txy
5~n1−2~n2

=− 0.556687305315238787755085·10−4 ·t−5 + 0.786929251879297688085574·10−4 ·t−6 (B.271)

txy
5~n1−~n2

=0.569449829474278083006311·10−6 ·t−5 + 0.114014191569625057146409·10−4 ·t−6 (B.272)

txy
5~n1

=0.114754160039893426049055·10−4 ·t−5 + 0.200220092942381917886085·10−4 ·t−6 (B.273)

txy
5~n1+~n2

=− 0.908618926489256575004996·10−5 ·t−6 (B.274)

txy
6~n1−6~n2

=− 0.181723785297851315000999·10−5 ·t−6 (B.275)

txy
6~n1−5~n2

=− 0.189534496764798260647388·10−5 ·t−6 (B.276)

txy
6~n1−4~n2

=0.877376080621468792419441·10−5 ·t−6 (B.277)

txy
6~n1−3~n2

=0.177037358417683147613166·10−4 ·t−6 (B.278)

txy
6~n1−2~n2

=0.877376080621468792419441·10−5 ·t−6 (B.279)

txy
6~n1−~n2

=− 0.189534496764798260647388·10−5 ·t−6 (B.280)

txy
6~n1

=− 0.181723785297851315000999·10−5 ·t−6. (B.281)

The remaining hopping elements can be obtained via

tα,β~r =tβ,α−~r , (B.282)

tyy(−n1−n2)~n1+n1~n2
=txxn1~n1+n2~n2

, tyz(−n1−n2)~n1+n1~n2
=txyn1~n1+n2~n2

, (B.283)

tzx(−n1−n2)~n1+n1~n2
=tyzn1~n1+n2~n2

, tzz(−n1−n2)~n1+n1~n2
=tyyn1~n1+n2~n2

. (B.284)

The resulting 3× 3 matrix is diagonalized and yields the dispersion ω
(
~k
)

. It has for θ > 3π
2 its

minimum at ~k = ( 2π
3 ,−

2π
3 ) and thus we obtain the gap

∆+

− sin θ
=1 + 0.2668737080010094572359664 · t−1 − 0.2048165955279984180586789 · t−2

− 0.0757131589365322021180094 · t−3 + 0.0396426295787896197316898 · t−4

+ 0.0725795604533690748525843 · t−5 − 0.0669114965805065886277518 · t−6, (B.285)

whereas for θ < 3π
2 , the minimum is located at ~k = (0, π) and thus we obtain the gap

∆−

− sin θ
=1.− 0.733126291998990542764034 · t−1 + 0.262751550219625151364984 · t−2

− 0.101655673067985331255221 · t−3 + 0.019666525219269891934356 · t−4

− 0.070704236450894509987165 · t−5 + 0.109851689895068525044349 · t−6. (B.286)
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Appendix C
Series expansions for Ising Anyons

C.1 Series expansions for the topological phase

ground-state energy e0

For the topological phase (θ = 0), we obtain the following expression for the ground-state energy
per plaquette.

e0

cos θ
=− 1.− 0.750000000000000000000000 · t− 0.281250000000000000000000 · t2

− 0.210937500000000000000000 · t3 − 0.329589843750000000000000 · t4

− 0.591186523437500000000000 · t5 − 1.24871826171875000000000 · t6

− 2.87764098909166124131944 · t7 − 7.11423802596551400643808 · t8

− 18.4883434620674377606239 · t9 − 49.9704000152212494807969 · t10

− 139.288404143044065389608 · t11. (C.1)

hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

tσ~0 =1.− 0.187500000000000000000000 · t2 − 0.140625000000000000000000 · t3

− 0.483398437500000000000000 · t4 − 0.969075520833333333333333 · t5

− 2.96641031901041666666667 · t6 − 7.99696258262351707175926 · t7

− 24.6591871829680454583816 · t8 − 73.6930784793449527442210 · t9

− 232.406474699677368025557 · t10 (C.2)

tσ~n2
=− 0.250000000000000000000000 · t− 0.187500000000000000000000 · t2

− 0.250000000000000000000000 · t3 − 0.542317708333333333333333 · t4

− 1.09714084201388888888889 · t5 − 2.93842456958912037037037 · t6

− 7.56501314375135633680556 · t7 − 22.0559009867931099094972 · t8

− 63.5154320213767931131015 · t9 − 193.526018469661293669711 · t10 (C.3)
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tσ2~n2
=− 0.312500000000000000000000 · 10−1 · t2 − 0.625000000000000000000000 · 10−1 · t3

− 0.124348958333333333333333 · t4 − 0.317952473958333333333333 · t5

− 0.959633721245659722222222 · t6 − 2.66618647398772063078704 · t7

− 8.17693404452300366060233 · t8 − 24.1561720857944017575111 · t9

− 75.7219948366463259305374 · t10 (C.4)

tσ3~n2
=− 0.781250000000000000000000 · 10−2 · t3 − 0.397135416666666666666667 · 10−1 · t4

− 0.121120876736111111111111 · t5 − 0.373268975151909722222222 · t6

− 1.06758766998479395736883 · t7 − 3.24839635508541217066133 · t8

− 9.66504388275072080771782 · t9 − 30.2390387051390908968519 · t10 (C.5)

tσ4~n2
=− 0.244140625000000000000000 · 10−2 · t4 − 0.207248263888888888888889 · 10−1 · t5

− 0.866928100585937500000000 · 10−1 · t6 − 0.326612225285282841435185 · t7

− 1.16846712167861530319653 · t8 − 3.98588897340459588133259 · t9

− 13.5936608585814984151638 · t10 (C.6)

tσ5~n2
=− 0.854492187500000000000000 · 10−3 · t5 − 0.113468876591435185185185 · 10−1 · t6

− 0.629194813010133342978395 · 10−1 · t7 − 0.279303494843926449371463 · t8

− 1.11270097276116676618369 · t9 − 4.21923662473906511223692 · t10 (C.7)

tσ6~n2
=− 0.320434570312500000000000 · 10−3 · t6 − 0.604850863233024691358025 · 10−2 · t7

− 0.434483781518268977663645 · 10−1 · t8 − 0.228664498798068822329591 · t9

− 1.04398789479137642311625 · t10 (C.8)

tσ7~n2
=− 0.125885009765625000000000 · 10−3 · t7 − 0.321764612394105259773663 · 10−2 · t8

− 0.291049056935580179033947 · 10−1 · t9 − 0.179595340019241009447528 · t10 (C.9)

tσ8~n2
=− 0.511407852172851562500000 · 10−4 · t8 − 0.169818456934966831704390 · 10−2 · t9

− 0.189676017536763416941328 · 10−1 · t10 (C.10)

tσ9~n2
=− 0.213086605072021484375000 · 10−4 · t9 − 0.892141865413920433487476 · 10−3 · t10 (C.11)

tσ10~n2
=− 0.905618071556091308593750 · 10−5 · t10 (C.12)

tσ~n1+~n2
=− 0.625000000000000000000000 · 10−1 · t2 − 0.781250000000000000000000 · 10−1 · t3

− 0.218098958333333333333333 · t4 − 0.495171440972222222222222 · t5

− 1.39795656557436342592593 · t6 − 3.71651159686806761188272 · t7

− 11.1881601875210985725309 · t8 − 32.7324682939972406552162 · t9

− 101.568299548126852534163 · t10 (C.13)

tσ~n1+2~n2
=− 0.234375000000000000000000 · 10−1 · t3 − 0.703125000000000000000000 · 10−1 · t4

− 0.184448242187500000000000 · t5 − 0.518719143337673611111111 · t6

− 1.42020679403234411168981 · t7 − 4.26164043219491778087224 · t8

− 12.5095777036430536474220 · t9 − 39.1007119235713741770606 · t10 (C.14)

tσ~n1+3~n2
=− 0.976562500000000000000000 · 10−2 · t4 − 0.444471571180555555555556 · 10−1 · t5

− 0.165432400173611111111111 · t6 − 0.564412935280505521797840 · t7

− 1.89547157832133917160976 · t8 − 6.12645983715617035315034 · t9

− 20.0749443747607201583101 · t10 (C.15)

tσ~n1+4~n2
=− 0.427246093750000000000000 · 10−2 · t5 − 0.298179343894675925925926 · 10−1 · t6

− 0.132032871246337890625000 · t7 − 0.523569408022327187620563 · t8

− 1.92930186326918288022893 · t9 − 6.95990859563730973929208 · t10 (C.16)

tσ~n1+5~n2
=− 0.192260742187500000000000 · 10−2 · t6 − 0.186671504267939814814815 · 10−1 · t7

− 0.103778195233992588372878 · t8 − 0.477884756279457743766377 · t9

− 1.99171805620503751965598 · t10 (C.17)

tσ~n1+6~n2
=− 0.881195068359375000000000 · 10−3 · t7 − 0.114771132606537744341564 · 10−1 · t8
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− 0.773933085655111344262896 · 10−1 · t9 − 0.410204415941156981794813 · t10 (C.18)

tσ~n1+7~n2
=− 0.409126281738281250000000 · 10−3 · t8 − 0.687324849502866977853867 · 10−2 · t9

− 0.559710753028918522702650 · 10−1 · t10 (C.19)

tσ~n1+8~n2
=− 0.191777944564819335937500 · 10−3 · t9 − 0.404455727387848214357478 · 10−2 · t10 (C.20)

tσ~n1+9~n2
=− 0.905618071556091308593750 · 10−4 · t10 (C.21)

tσ2~n1+2~n2
=− 0.146484375000000000000000 · 10−1 · t4 − 0.559895833333333333333333 · 10−1 · t5

− 0.207502011899594907407407 · t6 − 0.679816822946807484567901 · t7

− 2.23510979938899538644547 · t8 − 7.07468902868702905495307 · t9

− 22.8623097034992499402194 · t10 (C.22)

tσ2~n1+3~n2
=− 0.854492187500000000000000 · 10−2 · t5 − 0.461776168258101851851852 · 10−1 · t6

− 0.188378993375801745756173 · t7 − 0.710630058996961931142297 · t8

− 2.54038479923731832674338 · t9 − 8.98024584896679734278881 · t10 (C.23)

tσ2~n1+4~n2
=− 0.480651855468750000000000 · 10−2 · t6 − 0.343311451099537037037037 · 10−1 · t7

− 0.171912640087889055165734 · t8 − 0.734671442071678543614098 · t9

− 2.91172527007669786176128 · t10 (C.24)

tσ2~n1+5~n2
=− 0.264358520507812500000000 · 10−2 · t7 − 0.246123090202425733024691 · 10−1 · t8

− 0.143504170164343260933833 · t9 − 0.698859938329543064978224 · t10 (C.25)

tσ2~n1+6~n2
=− 0.143194198608398437500000 · 10−2 · t8 − 0.168646968114196191272291 · 10−1 · t9

− 0.115911826556723072586618 · t10 (C.26)

tσ2~n1+7~n2
=− 0.767111778259277343750000 · 10−3 · t9 − 0.111973297019554263770335 · 10−1 · t10 (C.27)

tσ2~n1+8~n2
=− 0.407528132200241088867188 · 10−3 · t10 (C.28)

tσ3~n1+3~n2
=− 0.640869140625000000000000 · 10−2 · t6 − 0.416626164942611882716049 · 10−1 · t7

− 0.203075303462307149000129 · t8 − 0.846265290707186252819004 · t9

− 3.30091622796906631015783 · t10 (C.29)

tσ3~n1+4~n2
=− 0.440597534179687500000000 · 10−2 · t7 − 0.352927470894016846707819 · 10−1 · t8

− 0.193859300625974258768215 · t9 − 0.908028422496739347394220 · t10 (C.30)

tσ3~n1+5~n2
=− 0.286388397216796875000000 · 10−2 · t8 − 0.279760552858946581763332 · 10−1 · t9

− 0.176946337471933712630060 · t10 (C.31)

tσ3~n1+6~n2
=− 0.178992748260498046875000 · 10−2 · t9 − 0.211462032443374926824792 · 10−1 · t10 (C.32)

tσ3~n1+7~n2
=− 0.108674168586730957031250 · 10−2 · t10 (C.33)

tσ4~n1+4~n2
=− 0.357985496520996093750000 · 10−2 · t8 − 0.329564006894377196930727 · 10−1 · t9

− 0.203350027212208783348565 · t10 (C.34)

tσ4~n1+5~n2
=− 0.268489122390747070312500 · 10−2 · t9 − 0.287307652303711377053594 · 10−1 · t10 (C.35)

tσ4~n1+6~n2
=− 0.190179795026779174804688 · 10−2 · t10 (C.36)

tσ5~n1+5~n2
=− 0.228215754032135009765625 · 10−2 · t10 (C.37)

tψ
~0

=1.− 0.187500000000000000000000 · t2 − 0.140625000000000000000000 · t3

− 0.483398437500000000000000 · t4 − 0.969075520833333333333333 · t5

− 2.96987575954861111111111 · t6 − 7.99989707381637008101852 · t7

− 24.6819336605660709334008 · t8 − 73.7497251815143436070823 · t9

− 232.621863558620319220101 · t10 (C.38)

tψ
~n2

=− 0.250000000000000000000000 · t− 0.187500000000000000000000 · t2

− 0.250000000000000000000000 · t3 − 0.542317708333333333333333 · t4

− 1.09719509548611111111111 · t5 − 2.93837483723958333333333 · t6

− 7.56226872809139298804012 · t7 − 22.0524087334856574918017 · t8
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− 63.4936561822250424098576 · t9 − 193.469729914308153007692 · t10 (C.39)

tψ
2~n2

=− 0.312500000000000000000000 · 10−1 · t2 − 0.625000000000000000000000 · 10−1 · t3

− 0.124348958333333333333333 · t4 − 0.317952473958333333333333 · t5

− 0.959681193033854166666667 · t6 − 2.66628848181830512152778 · t7

− 8.17810664517889297548145 · t8 − 24.1580036464611525725272 · t9

− 75.7335422265733671845178 · t10 (C.40)

tψ
3~n2

=− 0.781250000000000000000000 · 10−2 · t3 − 0.397135416666666666666667 · 10−1 · t4

− 0.121120876736111111111111 · t5 − 0.373268975151909722222222 · t6

− 1.06760102142522364486883 · t7 − 3.24848327249165915657954 · t8

− 9.66498233694414543026269 · t9 − 30.2390998920468604136778 · t10 (C.41)

tψ
4~n2

=− 0.244140625000000000000000 · 10−2 · t4 − 0.207248263888888888888889 · 10−1 · t5

− 0.866928100585937500000000 · 10−1 · t6

− 0.326612225285282841435185 · t7

− 1.16847226092354260354376 · t8 − 3.98593470181089369848432 · t9

− 13.5939267668929640893583 · t10 (C.42)

tψ
5~n2

=− 0.854492187500000000000000 · 10−3 · t5 − 0.113468876591435185185185 · 10−1 · t6

− 0.629194813010133342978395 · 10−1 · t7 − 0.279303494843926449371463 · t8

− 1.11270319220634236093738 · t9 − 4.21926829410846433276502 · t10 (C.43)

tψ
6~n2

=− 0.320434570312500000000000 · 10−3 · t6 − 0.604850863233024691358025 · 10−2 · t7

− 0.434483781518268977663645 · 10−1 · t8 − 0.228664498798068822329591 · t9

− 1.04398887547404749321512 · t10 (C.44)

tψ
7~n2

=− 0.125885009765625000000000 · 10−3 · t7 − 0.321764612394105259773663 · 10−2 · t8

− 0.291049056935580179033947 · 10−1 · t9 − 0.179595340019241009447528 · t10 (C.45)

tψ
8~n2

=− 0.511407852172851562500000 · 10−4 · t8 − 0.169818456934966831704390 · 10−2 · t9

− 0.189676017536763416941328 · 10−1 · t10 (C.46)

tψ
9~n2

=− 0.213086605072021484375000 · 10−4 · t9 − 0.892141865413920433487476 · 10−3 · t10 (C.47)

tψ
10~n2

=− 0.905618071556091308593750 · 10−5 · t10 (C.48)

tψ
~n1+~n2

=− 0.625000000000000000000000 · 10−1 · t2 − 0.781250000000000000000000 · 10−1 · t3

− 0.218098958333333333333333 · t4 − 0.495171440972222222222222 · t5

− 1.39803116409866898148148 · t6 − 3.71647076547881703317901 · t7

− 11.1900493504088601948302 · t8 − 32.7352555611782767318077 · t9

− 101.586238102227245011611 · t10 (C.49)

tψ
~n1+2~n2

=− 0.234375000000000000000000 · 10−1 · t3 − 0.703125000000000000000000 · 10−1 · t4

− 0.184448242187500000000000 · t5 − 0.518719143337673611111111 · t6

− 1.42024303365636754918981 · t7 − 4.26175564547134525000804 · t8

− 12.5089659191752861883742 · t9 − 39.0993581152697313946570 · t10 (C.50)

tψ
~n1+3~n2

=− 0.976562500000000000000000 · 10−2 · t4 − 0.444471571180555555555556 · 10−1 · t5

− 0.165432400173611111111111 · t6 − 0.564412935280505521797840 · t7

− 1.89549046637099466206115 · t8 − 6.12654282364222656715717 · t9

− 20.0755549295504620468229 · t10 (C.51)

tψ
~n1+4~n2

=− 0.427246093750000000000000 · 10−2 · t5 − 0.298179343894675925925926 · 10−1 · t6

− 0.132032871246337890625000 · t7 − 0.523569408022327187620563 · t8

− 1.92931227007459220572264 · t9 − 6.95998152394272867380673 · t10 (C.52)

tψ
~n1+5~n2

=− 0.192260742187500000000000 · 10−2 · t6 − 0.186671504267939814814815 · 10−1 · t7
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− 0.103778195233992588372878 · t8 − 0.477884756279457743766377 · t9

− 1.99172363575858204098777 · t10 (C.53)

tψ
~n1+6~n2

=− 0.881195068359375000000000 · 10−3 · t7 − 0.114771132606537744341564 · 10−1 · t8

− 0.773933085655111344262896 · 10−1 · t9 − 0.410204415941156981794813 · t10 (C.54)

tψ
~n1+7~n2

=− 0.409126281738281250000000 · 10−3 · t8 − 0.687324849502866977853867 · 10−2 · t9

− 0.559710753028918522702650 · 10−1 · t10 (C.55)

tψ
~n1+8~n2

=− 0.191777944564819335937500 · 10−3 · t9 − 0.404455727387848214357478 · 10−2 · t10 (C.56)

tψ
~n1+9~n2

=− 0.905618071556091308593750 · 10−4 · t10 (C.57)

tψ
2~n1+2~n2

=− 0.146484375000000000000000 · 10−1 · t4 − 0.559895833333333333333333 · 10−1 · t5

− 0.207502011899594907407407 · t6 − 0.679816822946807484567901 · t7

− 2.23513729699845176665381 · t8 − 7.07478435845736449965070 · t9

− 22.8631245699911716870647 · t10 (C.58)

tψ
2~n1+3~n2

=− 0.854492187500000000000000 · 10−2 · t5 − 0.461776168258101851851852 · 10−1 · t6

− 0.188378993375801745756173 · t7 − 0.710630058996961931142297 · t8

− 2.54040492242766832945605 · t9 − 8.98034534391086969301479 · t10 (C.59)

tψ
2~n1+4~n2

=− 0.480651855468750000000000 · 10−2 · t6 − 0.343311451099537037037037 · 10−1 · t7

− 0.171912640087889055165734 · t8 − 0.734671442071678543614098 · t9

− 2.91173876214683631619853 · t10 (C.60)

tψ
2~n1+5~n2

=− 0.264358520507812500000000 · 10−2 · t7 − 0.246123090202425733024691 · 10−1 · t8

− 0.143504170164343260933833 · t9 − 0.698859938329543064978224 · t10 (C.61)

tψ
2~n1+6~n2

=− 0.143194198608398437500000 · 10−2 · t8 − 0.168646968114196191272291 · 10−1 · t9

− 0.115911826556723072586618 · t10 (C.62)

tψ
2~n1+7~n2

=− 0.767111778259277343750000 · 10−3 · t9 − 0.111973297019554263770335 · 10−1 · t10 (C.63)

tψ
2~n1+8~n2

=− 0.407528132200241088867188 · 10−3 · t10 (C.64)

tψ
3~n1+3~n2

=− 0.640869140625000000000000 · 10−2 · t6 − 0.416626164942611882716049 · 10−1 · t7

− 0.203075303462307149000129 · t8 − 0.846265290707186252819004 · t9

− 3.30093401436759631656652 · t10 (C.65)

tψ
3~n1+4~n2

=− 0.440597534179687500000000 · 10−2 · t7 − 0.352927470894016846707819 · 10−1 · t8

− 0.193859300625974258768215 · t9 − 0.908028422496739347394220 · t10 (C.66)

tψ
3~n1+5~n2

=− 0.286388397216796875000000 · 10−2 · t8 − 0.279760552858946581763332 · 10−1 · t9

− 0.176946337471933712630060 · t10 (C.67)

tψ
3~n1+6~n2

=− 0.178992748260498046875000 · 10−2 · t9 − 0.211462032443374926824792 · 10−1 · t10 (C.68)

tψ
3~n1+7~n2

=− 0.108674168586730957031250 · 10−2 · t10 (C.69)

tψ
4~n1+4~n2

=− 0.357985496520996093750000 · 10−2 · t8 − 0.329564006894377196930727 · 10−1 · t9

− 0.203350027212208783348565 · t10 (C.70)

tψ
4~n1+5~n2

=− 0.268489122390747070312500 · 10−2 · t9

− 0.287307652303711377053594 · 10−1 · t10 (C.71)

tψ
4~n1+6~n2

=− 0.190179795026779174804688 · 10−2 · t10 (C.72)

tψ
5~n1+5~n2

=− 0.228215754032135009765625 · 10−2 · t10. (C.73)

The other hopping elements can be obtained by the symmetry relations (A.48).
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The dispersion ω
(
~k
)

has for θ > 0 its minimum at ~k = 0 and thus we obtain the gaps for the

σ- and the ψ-particle which read

∆σ,+top =1.− 1.50000000000000000000000 · t− 1.87500000000000000000000 · t2

− 2.81250000000000000000000 · t3 − 7.09375000000000000000000 · t4

− 16.5233561197916666666667 · t5 − 48.0582529703776041666667 · t6

− 133.183396869235568576389 · t7 − 409.210126276516620023751 · t8

− 1231.46193224709772278743 · t9 − 3900.73520870614524506574 · t10, (C.74)

∆ψ,+top =1.− 1.50000000000000000000000 · t− 1.87500000000000000000000 · t2

− 2.81250000000000000000000 · t3 − 7.09375000000000000000000 · t4

− 16.5236816406250000000000 · t5 − 48.0621524386935763888889 · t6

− 133.170746909247504340278 · t7 − 409.232616357008616129557 · t8

− 1231.41014805650330865334 · t9 − 3900.79031518243977848558 · t10, (C.75)

whereas for θ < 0, the minimum is located at ~k = ±( 2π
3
,− 2π

3
) and thus we obtain the gaps

∆σ,−top =1.+ 0.750000000000000000000000 · t+ 0.093750000000000000000000 · t2

+ 0.421875000000000000000000 · t3 + 0.369628906250000000000000 · t4

+ 0.680623372395833333333333 · t5 + 1.17367808024088541666667 · t6

+ 2.56743341022067599826389 · t7 + 5.44571827679504582911362 · t8

+ 12.5039242965188413981057 · t9 + 29.5149245166312660434282 · t10, (C.76)

∆ψ,−top =1.+ 0.750000000000000000000000 · t+ 0.093750000000000000000000 · t2

+ 0.421875000000000000000000 · t3 + 0.369628906250000000000000 · t4

+ 0.680786132812500000000000 · t5 + 1.16975826687282986111111 · t6

+ 2.55695401297675238715278 · t7 + 5.40481139951282077365451 · t8

+ 12.3674853651670148833789 · t9 + 29.0485813856350017816278 · t10. (C.77)

C.2 Series expansions for the 1-phase

ground-state energy e0

For the 1 phase (θ = π
2 ), we obtain the following expression for the ground-state energy per

plaquette

e0

sin θ
=− 3.− 0.250000000000000000000000 · t−1 − 0.312500000000000000000000 · 10−1 · t−2

− 0.260416666666666666666667 · 10−2 · t−3 − 0.178543244949494949494949 · 10−3 · t−4

− 0.200349254859198041016223 · 10−4 · t−5 − 0.351865673699176518563571 · 10−5 · t−6

− 6.00264240296590775496022 · 10−7 · t−7 − 1.06268022747234966299366 · 10−7 · t−8

− 2.06668586434339172411199 · 10−8 · t−9 − 4.14287313184869848904055 · 10−9 · t−10

− 8.43173702806333463560174 · 10−10 · t−11 − 1.76732327215558302458088 · 10−10 · t−12

− 3.79308366811706943893733 · 10−11 · t−13 − 8.26205982070386673481900 · 10−12 · t−14

− 1.82493536446614742320773 · 10−12 · t−15 − 4.08506096403231715115396 · 10−13 · t−16

− 9.24547845254661430097976 · 10−14 · t−17 − 2.11245497716661431781268 · 10−14 · t−18. (C.78)
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hopping elements and dispersion

With the definitions of Fig. 5.1, we obtain the hopping elements

tσ,σ
~0

=6.− 0.250000000000000000000000 · t−1 − 0.416666666666666666666667 · 10−2 · t−2

− 0.605034722222222222222222 · 10−2 · t−3 − 0.859767926662457912457912 · 10−3 · t−4

− 0.884060725303660021936537 · 10−4 · t−5 − 0.268349547765297505002896 · 10−4 · t−6

− 0.428104180990475333655605 · 10−5 · t−7 − 0.110437499569846398642185 · 10−5 · t−8 (C.79)

tσ,σ
~n2

=− 0.729166666666666666666667 · 10−2 · t−2 − 0.134982638888888888888889 · 10−2 · t−3

− 0.175148292824074074074074 · 10−3 · t−4 − 0.268236325110918209876543 · 10−4 · t−5

− 0.717957445287146840303187 · 10−5 · t−6 − 0.116569643065997612135512 · 10−5 · t−7

− 0.216286640393621205099588 · 10−6 · t−8 (C.80)

tσ,σ
2~n2

=− 0.314368730709876543209877 · 10−5 · t−4 − 0.143833448203339334705075 · 10−5 · t−5

− 0.271135871868103650445296 · 10−6 · t−6 − 0.707157645569631193965595 · 10−7 · t−7

− 0.104539851586421920131808 · 10−7 · t−8 (C.81)

tσ,σ
3~n2

=− 0.806637308435499356208181 · 10−8 · t−6 − 0.534313288822023725247262 · 10−8 · t−7

− 0.241755090011581067243524 · 10−8 · t−8 (C.82)

tσ,σ
4~n2

=− 0.728887413675629422397511 · 10−11 · t−8 (C.83)

tσ,σ
~n1+~n2

=− 0.628737461419753086419753 · 10−5 · t−4 − 0.287666896406678669410151 · 10−5 · t−5

− 0.632146049603520281527933 · 10−6 · t−6 − 0.219679745184650019973583 · 10−6 · t−7

− 0.535155995777599770141155 · 10−7 · t−8 (C.84)

tσ,σ
~n1+2~n2

=− 0.241991192530649806862454 · 10−7 · t−6 − 0.160293986646607117574179 · 10−7 · t−7

− 0.667181264769650891991142 · 10−8 · t−8 (C.85)

tσ,σ
~n1+3~n2

=− 0.291554965470251768959004 · 10−10 · t−8 (C.86)

tσ,σ
2~n1+2~n2

=− 0.437332448205377653438507 · 10−10 · t−8 (C.87)

tψ,σ
~0

=− 0.353553390593273762200422 · t−1 + 0.147313912747197400916843 · 10−1 · t−2

+ 0.155907224324117249303658 · 10−2 · t−3 + 0.211098790940167942216600 · 10−3 · t−4

+ 0.780054554914506324177045 · 10−4 · t−5 + 0.140239338169530425341668 · 10−4 · t−6

+ 0.412033261193082775092098 · 10−5 · t−7 + 0.678364721809739900882853 · 10−6 · t−8 (C.88)

tψ,σ
~n2

=− 0.294627825494394801833685 · 10−2 · t−2 − 0.484908296126191444684607 · 10−3 · t−3

− 0.467772823636500080341849 · 10−4 · t−4 − 0.179224467703901872635989 · 10−5 · t−5

− 0.756516739618551373995314 · 10−6 · t−6 + 0.144680827186335992030476 · 10−6 · t−7

+ 0.519989182075398294744982 · 10−7 · t−8 (C.89)

tψ,σ
2~n2

=− 0.202897634455051975799818 · 10−5 · t−4 − 0.103942116093969298462703 · 10−5 · t−5

− 0.223737717876235152192212 · 10−6 · t−6 − 0.649582344233603330981817 · 10−7 · t−7

− 0.130936802617553114343297 · 10−7 · t−8 (C.90)

tψ,σ
3~n2

=− 0.535780680499667437837095 · 10−8 · t−6 − 0.352786228291859300782429 · 10−8 · t−7

− 0.158379889201522853512953 · 10−8 · t−8 (C.91)

tψ,σ
4~n2

=− 0.516044937994397082917642 · 10−11 · t−8 (C.92)

tψ,σ
~n1+~n2

=− 0.405795268910103951599636 · 10−5 · t−4 − 0.207884232187938596925407 · 10−5 · t−5

− 0.472443374394410701194529 · 10−6 · t−6 − 0.150344658821907463057538 · 10−6 · t−7

− 0.331639748198928528154107 · 10−7 · t−8 (C.93)
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tψ,σ
~n1+2~n2

=− 0.160734204149900231351128 · 10−7 · t−6 − 0.105835868487557790234729 · 10−7 · t−7

− 0.439646964049689424904645 · 10−8 · t−8 (C.94)

tψ,σ
~n1+3~n2

=− 0.206417975197758833167057 · 10−10 · t−8 (C.95)

tψ,σ
2~n1+2~n2

=− 0.309626962796638249750585 · 10−10 · t−8 (C.96)

tψ,ψ
~0

=6.− 0.145833333333333333333333 · 10−1 · t−2 − 0.715277777777777777777778 · 10−2 · t−3

− 0.100903731323653198653199 · 10−2 · t−4 − 0.143564259077916156514641 · 10−3 · t−5

− 0.367516624901264042252227 · 10−4 · t−6 − 0.719451830392257893828678 · 10−5 · t−7

− 0.158412500886427996629716 · 10−5 · t−8 (C.97)

tψ,ψ
~n2

=− 0.520833333333333333333333 · 10−2 · t−2 − 0.100694444444444444444444 · 10−2 · t−3

− 0.142071759259259259259259 · 10−3 · t−4 − 0.255563241464120370370370 · 10−4 · t−5

− 0.664474826538919669525862 · 10−5 · t−6 − 0.126798446353039813793559 · 10−5 · t−7

− 0.253083575170257517205245 · 10−6 · t−8 (C.98)

tψ,ψ
2~n2

=− 0.170898437500000000000000 · 10−5 · t−4 − 0.703352730624142661179698 · 10−6 · t−5

− 0.112935384081475495562108 · 10−6 · t−6 − 0.247826608740329661828209 · 10−7 · t−7

− 0.119657531341479734686412 · 10−8 · t−8 (C.99)

tψ,ψ
3~n2

=− 0.427783156025441483099662 · 10−8 · t−6 − 0.284855754487624569035530 · 10−8 · t−7

− 0.129761000554291166071617 · 10−8 · t−8 (C.100)

tψ,ψ
4~n2

=− 0.363988538622799799397385 · 10−11 · t−8 (C.101)

tψ,ψ
~n1+~n2

=− 0.341796875000000000000000 · 10−5 · t−4 − 0.140670546124828532235940 · 10−5 · t−5

− 0.298104288949203891815775 · 10−6 · t−6 − 0.113366444542163287718662 · 10−6 · t−7

− 0.300709276699838492703622 · 10−7 · t−8 (C.102)

tψ,ψ
~n1+2~n2

=− 0.128334946807632444929899 · 10−7 · t−6 − 0.854567263462873707106591 · 10−8 · t−7

− 0.356290737892094392075796 · 10−8 · t−8 (C.103)

tψ,ψ
~n1+3~n2

=− 0.145595415449119919758954 · 10−10 · t−8 (C.104)

tψ,ψ
2~n1+2~n2

=− 0.218393123173679879638431 · 10−10 · t−8. (C.105)

The other hopping elements can be obtained by the symmetry relations (A.48).

The dispersion is minimized by ~k = ~0 and the gap ∆+
1 for θ < π

2 reads

∆+
1

cos θ
=6.− 0.500000000000000000000000 · t−1 − 0.500000000000000000000000 · 10−1 · t−2

− 0.151041666666666666666667 · 10−1 · t−3 − 0.204225852272727272727273 · 10−2 · t−4

− 0.240913223439413070094888 · 10−3 · t−5 − 0.720772401045415442646247 · 10−4 · t−6

− 0.107328311801088484023827 · 10−4 · t−7 − 0.242154849905598009927503 · 10−5 · t−8, (C.106)

whereas the gap ∆−1 for θ > π
2 reads

∆−1
cos θ

=6.+ 0.250000000000000000000000 · t−1 − 0.437500000000000000000000 · 10−1 · t−2

− 0.122395833333333333333333 · 10−1 · t−3 − 0.181721511994949494949495 · 10−2 · t−4

− 0.343887217941727884909703 · 10−3 · t−5 − 0.828596996337660161192464 · 10−4 · t−6

− 0.182601329879976380714328 · 10−4 · t−7 − 0.380068651931927143552667 · 10−5 · t−8 (C.107)
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[83] C. Stark, L. Pollet, A. m. c. Imamoğlu, R. Renner. Localization of Toric Code Defects.

Phys. Rev. Lett. 107, 030504 (2011)

[84] J. R. Wootton, J. K. Pachos. Bringing Order through Disorder: localization of Errors in

Topological Quantum Memories. Phys. Rev. Lett. 107, 030503 (2011)

[85] S. S. Bullock, G. K. Brennen. Qudit surface codes and gauge theory with finite cyclic groups.

J. Phys. A 40, 3481 (2007)
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[138] H. W. J. Blöte, E. Luijten, J. R. Heringa. Ising universality in three dimensions: a Monte

Carlo study. J. Phys. A 28, 6289 (1995)

[139] H. Kleinert. Critical exponents from seven-loop strong-coupling ϕ4 theory in three dimensions.

Phys. Rev. D 60, 085001 (1999)

[140] A. Gottlob, M. Hasenbusch. The XY model and the three-state antiferromagnetic Potts model

in three dimensions: Critical properties from fluctuating boundary conditions. J. Stat. Phys. 77,

919 (1994)

[141] J. Cardy. Scaling and Renormalization in Statistical Physics. Cambridge University Press (1996)

http://dx.doi.org/10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1007/s00220-012-1500-5
http://dx.doi.org/10.1007/s00220-012-1500-5
http://dx.doi.org/10.1103/PhysRevD.12.3978
http://dx.doi.org/10.1103/PhysRevD.12.3978
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRevB.88.041403
http://dx.doi.org/10.1088/0305-4470/23/10/018
http://dx.doi.org/10.1088/0305-4470/24/12/024
http://dx.doi.org/10.1088/0022-3719/12/19/015
http://dx.doi.org/10.1103/PhysRevB.68.104409
http://dx.doi.org/10.1103/PhysRevB.87.054404
http://dx.doi.org/10.1103/PhysRevB.82.174433
http://dx.doi.org/10.1088/0305-4470/28/22/007
http://dx.doi.org/10.1103/PhysRevD.60.085001
http://dx.doi.org/10.1007/BF02179470
http://dx.doi.org/10.1007/BF02179470


Bibliography 214

[142] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari. Critical behavior of

the three-dimensional XY universality class. Phys. Rev. B 63, 214503 (2001)

[143] G. Vidal. Entanglement Renormalization. Phys. Rev. Lett. 99, 220405 (2007)

[144] C. Knetter, K. P. Schmidt, G. S. Uhrig. The structure of operators in effective particle-

conserving models. J. Phys. A 36, 7889 (2003)

[145] C. Knetter. Perturbative continuous unitary transformations: spectral properties of low dimen-

sional spin systems. Ph.D. thesis, Universität zu Köln (2003)
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