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Abstract

Modern data-driven statistical techniques, e.g., non-linear classification and re-
gression machine learning methods, play an increasingly important role in applied
data analysis and quantitative research. For real-world we do not know a priori
which methods will work best. Furthermore, most of the available models depend
on so called hyper- or control parameters, which can drastically influence their per-
formance. This leads to a vast space of potential models, which cannot be explored
exhaustively. Modern optimization techniques, often either evolutionary or model-
based, are employed to speed up this process.

A very similar problem occurs in continuous and discrete optimization and, in
general, in many other areas where problem instances are solved by algorithmic
approaches: Many competing techniques exist, some of them heavily parametrized.
Again, not much knowledge exists, how, given a certain application, one makes the
correct choice here. These general problems are called algorithm selection and al-
gorithm configuration. Instead of relying on tedious, manual trial-and-error, one
should rather employ available computational power in a methodical fashion to ob-
tain an appropriate algorithmic choice, while supporting this process with machine-
learning techniques to discover and exploit as much of the search space structure as
possible.

In this cumulative dissertation I summarize nine papers that deal with the problem
of model and algorithm selection in the areas of machine learning and optimization.
Issues in benchmarking, resampling, efficient model tuning, feature selection and
automatic algorithm selection are addressed and solved using modern techniques. I
apply these methods to tasks from engineering, music data analysis and black-box
optimization.

The dissertation concludes by summarizing my published R packages for such
tasks and specifically discusses two packages for parallelization on high performance

computing clusters and parallel statistical experiments.
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1 Introduction

“It is better to have an approximate answer to the right question than an exact
answer to the wrong one.”
— John Tukey

Modern data-driven statistical techniques play an increasingly important part in applied
data analysis and quantitative research. In this work I will focus mainly on classification
and regression techniques which try to answer the following question: Given a set of
observations D = {(x;,y;)}7,, the training data, and a class of potential models F, can
we inductively find a model f € F, which predicts the true output y by § = f(x) for
unseen (x,y) with a low error on average? Here, & will be from X, the feature space,
which may or may not coincide with RP and y € ), which is a finite set for classification
and R for regression. We will usually assume that the elements of D are drawn i.i.d.
from a joint, unknown distribution P on X x ), and in order to obtain f we must fit
f to the training data in a statistical sense. A plethora of different models have been
proposed during the last decades to handle these types of problems and many of them

can be written in the form of regularized risk minimization:
f:argminZL(f(wi),yi)—i—)\Q(f) : (1)

Here, F is the space we are allowed to select our model from, L(-,-) is a loss function
that measures the distance between a true label (or value) y and its prediction f(x),
and Q(-) is an operator on F that measures the complexity of f, called a regularizer or
complexity penalty. The trade-off between loss and regularization is controlled by A. If

f is specified by a vector of “natural” model parameters a, becomes:

& = argmin Yy L(f(i, @), 3i) + A\a) . (2)

* =1

“Natural” means that we can directly estimate these parameters by minimizing , which
distinguishes them from the so-called hyper-parameters discussed further below.

The reader will find excellent introductions to the whole topic in the books by [Hastie
et al.| (2009) and Bishop| (2006).

Much theoretical knowledge is available concerning the learning problem : Loss func-
tions usually correspond to assumptions about the error distribution (e.g., quadratic loss

usually implies the assumption of normally distributed errors), while regularizers corre-



spond to assumptions about the prior distribution on the parameters in a Bayesian sense.
Non-differentiability often induces sparseness in the solution (e.g., see the hinge loss for
support vector machines or the L;-regularizer for feature selection), but we pay the price
of having to solve a computationally and numerically more demanding problem. The
kernelization of introduces a further theoretical tool to arrive at non-linear modeling
with essentially linear computational techniques and allows to handle spaces X which
are structured in non-standard ways.

Considering all of the above, one might argue that to arrive at the optimal model and an
associated solution strategy for a given task in statistical learning, one simply needs to
consider the task’s abstract properties and requirements. Up to a degree this is certainly
true and can be considered a great success and an indication of the maturation of a still
very young field. Unfortunately, the model building process is not as straightforward
as it might sound: Many nuts and bolts still remain, and the practitioner usually has
a larger set of alternative methods at his disposal, which are applied and tweaked in
a lengthy trial-and-error fashion. The formal terminology for choosing among them is
called model selection. Comparing such models — when only a finite amount of training
data is available — is done by resampling, i.e., generating a sequence of training sets
D1, ...Dy and test sets Dy, ... D with

k
Y S (@) = Er U@ @)

D; i
1 |l (x:,y:)€D;

|

Here, p is the true measure of performance as implied by the application (which not
necessarily coincides with L). To simplify the notation it was assumed that we are
interested in the estimated mean performance according to p (which must not always be
the case). Now, what are the reasons that make model construction and selection less
straightforward than the arguments above might have implied?

Sometimes the loss function of choice is not computationally tractable. The usual ap-
proach is to select a reasonable approximation available for L. Convex upper surrogate
losses are a fine choice to approximate the zero-one loss, e.g., the hinge loss or the (less
often used) Huber loss, while the second one can be numerically preferable because of
its differentiability. If we want to estimate probabilities instead of predicting discrete
class labels in classification, our loss function usually corresponds to the negative log-
likelihood of the stochastic model we are fitting. At this point we have already begun to
approximate the mathematical problem we were originally interested in, without perfect

guarantees which approach will be the optimal choice — and this will not be the last



time we are forced to proceed in such a manner. Consider, e.g., the following settings
for a random forest: the number of trees, the size of the drawn subsets, whether to draw
with replacement or not and the various settings of the tree itself (which splitting crite-
rion, etc.). And the more we deviate from “standard statistical learning” scenarios (for
which the defaults of these settings have often been optimized), the more advantageous it
might be to correctly configure the algorithm. All these different modeling choices cause
expressed and sometimes more subtle consequences regarding statistical, computational
and practical properties of the model we are going to obtain. Usually it is quite hard to
understand and quantify the trade-offs between these properties before actually running
an excessive amount of experiments and trying everything out.

Moreover, often it is not @ that enters our model f, but in reality we employ (sometimes
extensive) pre-processing, so a more honest model equation might be f(7(x,v), o, 3),
where B denotes the hyper-parameters of the learning algorithm and 7 denotes the pre-
processing operation (which mostly comes with its own parameters ). Furthermore,
feature selection must often be performed to obtain good results or to better interpret
the model.

In my presented publications I follow a holistic, data-dependent philosophy, where every
modeling choice is dictated by simply measuring the relevant performance metric through
an appropriate resampling scheme for the available data. The modeling choices are then
efficiently optimized by using an appropriate technique, depending on the structure of
the decision space and the available budget, see Fig.

Looking at the target function in equation , many research questions naturally arise:

1. Given a number of candidate models, how can we compare these in a valid statistical
fashion? This seems to be an obvious question and we require a rigorous answer.
Being able to quantitatively compare proposed solutions for a given task is at the
core of scientific research.

2. How are we going to pre-process our data to arrive at optimal results?

3. How should we decide upon the model class and set parameters which cannot be de-
termined by the usual model fit, e.g., maximum likelihood estimation or regularized
risk minimization? These problems are called model selection and hyper-parameter
tuning. In computer science these are better known under the terms algorithm se-
lection and algorithm configuration, often applied to expensive optimization or
decision procedures, although not limited to such methods.

4. Which features should be included in our model? This is the well-known feature
selection problem in statistical learning.

5. How can we deal with the computational costs when performing such experiments?
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Figure 1: Schematic chain of modeling operations, jointly optimized.

6. How can we succinctly define and rapidly perform complex experiments to investi-
gate the questions above?

As the last two questions already indicate, investigating these issues comes at a substan-
tial computational cost. We would like to compare different models on different data
sets, we will have to search over hyper-parameter and feature set spaces and we need to
resample the data in order to assess the performance. This often results in thousands
of model fits, which themselves might not be computationally cheap — depending on the
size of the data and the scaling of the chosen methods. Of course, one obvious advan-
tage is that the described scenario and many similar tasks in computational statistics are
what is called “embarrassingly parallel”. This means they consist of independent subtasks
which can be solved in parallel on multiple cores and machines to drastically speed up
the computation.
Statistical learning and especially classification has been successfully employed in the
areas of bioinformatics, finance, audio / image recognition and many more. In this work
I will focus on two areas of active current research. I will demonstrate that statistical

learning techniques and model selection can be applied in a meaningful and efficient way



to: a) music data analysis, which is a natural domain for feature selection as often hun-
dreds of features are available through signal processing toolboxes and users are often
interested in interpreting which variable sets work especially well for their considered
tasks; b) the algorithm selection problem in optimization. I consider specifically the con-
tinuous domain for black-box function optimization and the traveling salesman problem
as an example with a discrete decision space.

The subsequent sections are structured in the following way: In Sec. [2] three papers are
presented that deal with the benchmarking and tuning of machine learning methods.
The first article is a methodological overview of resampling techniques with specific con-
siderations for regression models used in optimization. The second paper addresses the
statistical evaluation of the recent class of local classification models by employing a
bias-variance type of analysis on the benchmarking results so that significant insights re-
garding the advantage of these models can be gained. The third paper demonstrates how
parameter-heavy models — in this case resulting from the chaining of pre-preprocessing
steps with kernel models — can be efficiently optimized with a model-based approach.
Sec. [3] discusses feature selection in the domain of music classification. The first contri-
bution compares feature group selection to a group lasso approach in order to investigate
which groups of features are most helpful for an instrument recognition task. The second
paper introduces a hybrid (1+1) evolutionary algorithm to select small feature sets for
music genre recognition.

Using predictive modeling to improve research in optimization scenarios is the topic of
Sec.[d The first paper introduces a set of quantitative low-level features for the charac-
terization of objective function landscapes in black-box optimization. The features are
analyzed and selected by an evolutionary, cost-sensitive, multi-objective algorithm. The
next paper deals with discrete optimization instead of continuous optimization, namely
the traveling salesman problem. An evolutionary method is presented to artificially con-
struct simple and difficult problem instances for the 2-opt algorithm. The third and last
paper the extends the first one by constructing a cost-sensitive algorithm selection model
to predict an optimal black-box optimizer given the proposed low-level function features.
Sec. [5| presents the packages BatchJobs and BatchExperiments for massive parallelization
of statistical experiments on a cluster. The packages can be used to schedule R jobs
to different high performance computing back-ends. While the former offers a flexible
interface for generic jobs based on Map, Reduce and Filter operations, the latter provides
a succinct definition language for embarrassingly parallel statistical experiments.
Finally, Sec. [6]summarizes all R packages that have been created and published alongside

this dissertation.



2 Benchmarking and Tuning Machine Learning Methods

“Essentially, all models are wrong, but some are useful.”
— George E. P. Box

2.1 Contributed Material

Bischl, B., Mersmann, O., Trautmann, H., and Weihs, C. (2012c). Resampling methods
for meta-model validation with recommendations for evolutionary computation. Evolu-
tionary Computation, 20(2):249-275

Schiffner, J., Bischl, B., and Weihs, C. (2012). Bias-variance analysis of local classification
methods. In Gaul, W., Geyer-Schulz, A., Schmidt-Thieme, L., and Kunze, J., editors,
Challenges at the Interface of Data Analysis, Computer Science, and Optimization, vol-
ume 43 of Studies in Classification, Data Analysis, and Knowledge Organization, pages
49-57. Springer

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., and Konen, W. (2012).

Tuning and evolution of support vector kernels. Evolutionary Intelligence, pages 1-18

2.2 Resampling Methods for Meta-Model Validation with
Recommendations for Evolutionary Computation

Bischl et al.| (2012¢) give an encompassing overview of the theory behind resampling
strategies for model evaluation and many practical guidelines to select the correct strat-
egy for a task at hand. Resampling data is an important topic in applied model eval-
uation when only a finite amount of data is available, which has to be efficiently used
for training, validation and testing purposes simultaneously. In general, it refers to the
generation of training and test sets from the original population by means of sampling
and, subsequently, the estimation of model performance, see Fig.

While most of the discussed methods can also be employed for normal regression and
classification, the focus is on stressing the importance of evaluating model accuracy of
regression techniques used as surrogate fitness models found in evolutionary computation
and model-based optimization, see, e.g., Jones et al.|(1998)) or Paenke et al. (2006). In this
case, data is often scarce when target function evaluations are expensive and the subject
of proper evaluation during optimization has been somewhat neglected in most available
publications, but see Tenne and Armfield (2008) for one of the notable exceptions.

Our paper describes in-depth all state-of-the-art resampling strategies, including boot-

strapping, subsampling, cross-validation and various extensions like stratification and

10
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Figure 2: Left: Generic resampling scheme with training sets D), aggregated loss func-
tion values s on test sets and aggregated performance measures pl). Right:
Nested resampling scheme, used for parameter tuning or feature selection. Both
figures taken from [Bischl et a1.| 42012cD.

nested resampling necessary for tuning or feature selection (see Fig. . For all of these,
we discuss their statistical properties, advantages and shortcomings. Common pitfalls
and their ramifications are emphasized and the reader is provided with practical guide-
lines on how to proceed in his own experiments.

After the statistical preliminaries are covered, a focused discussion on model evaluation
in evolutionary optimization follows, especially regarding the various trade-offs between
model accuracy, usefulness for optimization and model interpretability. The article closes
with two examples where proper model evaluation is illustrated in the context of model-

based optimization.

2.3 Bias-Variance Analysis of Local Classification Methods

Local classifiers (Bottou and Vapnik, (1992} Tutz and Binder} [2005]) are motivated by the

assumption that for many data situations it is difficult to construct a global model for

the whole population of observations and one should rather focus on modeling locally
concentrated subsets of points individually. Many local approaches have already been
published, and one of the best known methods is the k-nearest neighbor classifier. But
localized versions of nearly every other model exist as well, e.g., for discriminant analysis

variants, logistic regression, neural networks, support vector machines or boosting. One
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Figure 3: Left: Error rates, systematic and variance effects and data set noise rate av-
eraged over the considered data sets. Right: Variance effect versus systematic
effect. Both taken from [Schiffner et al. (2012), left figure slightly adapted.
Global classifiers are: linear discriminant analysis (LDA), multinomial regres-
sion (MNR), support vector machine with polynomial kernel (poly SVM). Lo-
cal classifiers are: learning vector quantization (LVQ1), mixture discriminant
analysis (MDA), classification tree (CART), support vector machine with ra-
dial basis function kernel (RBF SVM), k-nearest neighbors (kNN), localized
linear discriminant analysis (LLDA), random forest (RF).

of the main contributions of our article (Schiffner et al., 2012)) is that, after a brief
theoretical categorization of the different local classification approaches, we analyze why
local and hence more flexible models might exhibit a lower error in applications. This
is demonstrated through the theoretical tool of a bias-variance decomposition of the
prediction error: It is a well-known fact that under quadratic loss the expected error of
a predictor can be decomposed into its bias — the systematic deviation from the Bayes
predictor — and its variance — the random fluctuation around its mean prediction. We
follow the work of |James (2003)) and perform a bias-variance decomposition under the
usual zero-one loss for classification. The effects of bias and variance on local classification
models are then studied through a benchmark study consisting of 26 publicly available
data sets and 10 classifiers.

Concerning the bias of local models our intuition is strongly confirmed. The more flexible
local methods exhibit a significantly lower bias than their global counterparts. Interest-
ingly, we pay for this reduced systematic effect in error only with a slightly increased
variance effect for most local methods, resulting in a lower error in total. Fig. [3| shows
the main aggregated results for all considered classifiers, including total error, systematic

and variance effects and their correlation.

12



2.4 Tuning and Evolution of Support Vector Kernels

While kernel-based methods like Support Vector Machines (SVMs) are very popular
prediction models because of their high accuracy and flexibility introduced through the
kernel trick, they also possess at least one major weakness: Their performance is highly
sensitive to the correct choice of the kernel function as well as its parameters (in addition
to the general complexity parameter, usually denoted by C).

In our paper (Koch et al [2012) a model-based approach is proposed to not only tune the
hyper-parameters of an SVM, but also the associated pre-processing operations. Such
operations are especially important if complex modeling tasks from data mining or engi-
neering have to be solved. We consider two of these: a) a time-series forecasting problem
from water resource management, i.e., the prediction of stormwater fill levels based on
past rainfall to prevent the flooding of sewage systems; b) the imbalanced classification
problem of predicting acid concentrations from fluid spectroscopy measurements. While
in the former case specific parameter dependent pre-processing of the time-series data
must be performed to obtain meaningful features, in the latter task the high number
of strongly correlated features is decorrelated by a principal component analysis. The
principal components are used as new features and reduced by a feature selection filter
and classification thresholds of the final model are adapted to account for the high class
imbalance. This leads to tuning problems of the dimensions 9 (two embedding dimen-
sions for two time series, four parameters for time-series pre-processing and C,~, e for
support vector regression with the Gaussian kernel) and 13 (percentage of filters retained
after filtering, five reweighting parameters for the five classes, five probability-thresholds
for the five classes and C, vy for an SVM with the Gaussian kernel), respectively. For both
of these tasks a sequential model-based optimization (SMBO) approach is used which
solves both problems in only a few hundred fitness evaluations. This technique, outlined
in Alg. , relies on the main idea of iteratively substituting the true fitness function (here:
resampled model prediction performance) with a surrogate model which can be optimized
much faster. In many cases a Gaussian process model (also called a kriging model) is
used in such scenarios (our work being no exception), as this has proven to be most
effective in the scenario of expensive global black-box optimization: a) It is a nonlinear
regression (or alternatively: interpolation) technique that can model difficult functional
landscapes with a low amount of data. b) It is a fully stochastic model which allows
the assessment of local model uncertainty and therefore the definition of the so-called
expected improvement (EI) criterion (Jones et all [1998) to determine promising new
points for further evaluation. c) Its infill criterion to decide the next point for evaluation

can be efficiently optimized as analytical gradients are available for the EI, at least for
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Algorithm 1: Sequential Model-Based Optimization

Let g be the black-box function that should be optimized;
Generate initial design {x1,...,x,};
Evaluate g (possibly replicated) on design y; = g(x;);
Let D={(x1,91),- -, (@n,yn) };
while budget not erhausted do
Build surrogate model § based on D;
Select next promising point «* by optimizing in-fill criterion for §(x), e.g., EI(x);
Evaluate new point (possibly replicated) y* = g(z*);
Extend design D + D U {(x*,y*)};

AW N =

© 0 N o w»

the standard covariance kernels.

The paper also contains a second part where the automatic construction of kernels is
attempted by genetic programming (Kozal, (1992). This line of research is motivated by
published articles that claim to have shown that this approach works in very general sce-
narios. We were eager to improve upon these results by enhancing the genetic algorithm
as well as the SVM parameter optimization during its execution. But it turns out that
on the considered benchmark problems even our improved genetic programing approach
leads to disappointing results. Although good-performing common kernel functions can
be recovered by the genetic search, which is surely interesting in its own right, in no
case a significantly better result can be obtained by this computationally much more
demanding technique. We therefore discuss the various reasons why the papers we com-
pared our results to obtained a qualitatively different conclusion. These are two-fold, one
is the often suboptimal tuning of the default SVM when compared to their respective
GP approach, the other is the statistical over-interpretation of narrow confidence inter-
vals obtained from performance evaluations during cross-validation. A further general
problem is the often hard reproducibility due to missing details of the experimental setup

and unpublished code.

2.5 Qutlook

There are at least three different directions to extend the research discussed in this sec-
tion: a) Usually no single learning algorithm dominates all other candidates in a realistic
benchmarking experiment and it is also not possible to identify meaningful subregions
of the data set space where this is the case by naive exploratory analysis. Meta learning
(in its basic form) tries to rectify this by relating statistical properties of the data sets
(so-called meta-features) to model performance. This relation is obtained by solving ei-

ther one classification problem or as many regression problems as there are candidates.
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A large amount of publications is available on this topic (see [Vanschoren, [2010, for a
recent overview), although no exceptional breakthrough seems to have been reached in
this area. Personally, I think that we will never succeed in directly tackling the meta
learning problem through simple statistics and prediction as too many (sometimes subtle
algorithmic) factors are at work and optimization will always play a part. But using
models learned from experience might provide for a very valuable prior distribution to
start the optimization, see the related discussion on instance parameters in the outlook
of Sec. 4. b) The tuning / configuration problem for machine learning is difficult to solve
in a general and efficient way because its decision space is mixed continuous / categorical,
the objective function is black-box, will in most cases be stochastic and can be arbitrarily
expensive to evaluate. Also, especially if we want to configure over the space of multiple
models at once, dependent (hierarchical) parameters will occur (e.g., consider the choice
of a kernel function and its kernel parameters). Quite a lot of these issues are already
addressed by the works of Hutter et al.|(2011) and [Thornton et al.|(2012)) which replace
the Gaussian process by a random forest to perform the surrogate modeling. But one
possible way of enhancing the search process is not addressed: In many cases we can
identify promising parameter settings and model classes by considering only a smaller
portion of data during training / resampling. Of course it is hard to apriorily decide the
size of this portion and it is likely that dynamically increasing it in the later stages of
the tuning is beneficial. As the time-complexity of many learning algorithms scales at
least quadratically with the amount of training examples this algorithmic “knob” offers
a major potential for gaining efficiency, but one pays for this with a possibly distorted

and noisier objective function.
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3 Feature Selection in Music Data Analysis

“An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts
p p-p
- for support rather than for illumination.”

— Andrew Lang

3.1 Contributed Material

Bischl, B., Eichhoff, M., and Weihs, C. (2010a). Selecting groups of audio features by
statistical tests and the group lasso. In 9. ITG Fachtagung Sprachkommunikation. VDE
Verlag

Bischl, B., Vatolkin, I., and Preuss, M. (2010b). Selecting small audio feature sets in
music classification by means of asymmetric mutation. In PPSN XI: Proceedings of the
11th International Conference on Parallel Problem Solving from Nature, volume 6238 of

Lecture Notes in Computer Science. Springer

3.2 Feature Selection

Feature selection (Guyon and Elisseefl, 2003) is an important topic in applied statistical
learning. It is imperative to note that there are different reasons for not using the full
feature set: a) First, it is a well-known fact that the predictive power of classification
and regression models can deteriorate if a high number of correlated and noisy features is
present and naively included into the model without prior selection. We might therefore
cast this problem directly into an optimization problem where we operate on the space of
binary characteristic vectors from {0, 1}?, but we have to be aware of the fact that this
is provably NP-hard (Amaldi and Kann| [1998). Often we have to avoid enumerating all
candidate solutions and therefore one has to employ computationally cheaper heuristics.
It should also be noted that, even if given infinite computational power, searching the
whole binary space might be disadvantageous from a modeling perspective. The more
candidate sets we visit, the more we have to deal with the fact that we discover solutions
which look promising on the data used for evaluation, but which are suboptimal w.r.t.
expected loss. This problem rears its ugly head in the same fashion in tuning applica-
tions (or in any scenario where extremely many candidate models are compared on the
same data and optimized via a lengthy computational process). It is not exactly the
same as overfitting and could even be orthogonal to it. A more appropriate term might

be “oversearching” (Quinlan and Cameron-Jones, [1995) and it is closely related to the
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problem of multiple testing. How to deal with it in an optimal fashion is currently not
known and an area of further research.

b) Reducing the feature set results in a simpler model and we are often willing to trade-
off a certain proportion of predictive power for this advantage. One of the most common
reasons for such a reduction is that we want to interpret the model, others are reduction
of feature computation time or storage space in future applications. Also obtaining the
features for future observations could come at a cost, be it in a computational, monetary
or ethical sense.

For both settings a multitude of different selection methods is currently available. a) Fil-
ters: They operate independently from the subsequently applied learner and rank features
by assigning them a numerical value according to their “relevance”. These range from
simple univariate measures of separability, correlation or mutual information to more
complex multivariate criteria that are defined on all feature subsets (e.g., see minimum-
redundancy-maximum-relevancy by [Peng et al.l [2005, as a popular choice). They are
usually fast but do not consider the interaction between the selected feature set and the
applied learning algorithm. b) Wrappers: They use the predictive power of the used
learner — that they access as a black-box — to evaluate feature sets (Kohavi and John,
1997). Here, one either moves locally through the search space (forward and backward
search) or genetic algorithm variants are used. They are computationally expensive but
can be combined with any learning algorithm and performance measure of choice. c¢)
Embedded methods: They directly integrate the feature selection into the model fitting
process. Examples are the well-known recursive feature elimination scheme for SVMs by
Guyon et al.| (2002) and regularization approaches via the L1 norm (coined the “lasso” by
Tibshirani, 1994)) or Lo normlﬂ (Weston et al., |2003). The former one is computationally
simpler to handle, but still leads to nontrivial optimization problems. The lasso corre-
sponds to an L; constraint on the model coefficients (in a linear model formulation) and
can also be interpreted from a Bayesian perspective as a Laplacian prior distribution for
these coefficients. It assumes a sparse model structure, where many model coefficients
are supposedly zero, and effectively recovers this sparse structure through the specific

geometry of the penalty constraint.

'The Ly “norm” is not a vector norm in the strict sense.
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3.3 Selecting Groups of Audio Features by Statistical Tests and the
Group Lasso

In Bischl et al.| (2010a) the classification task of discriminating between musical instru-
ments is approached from the perspective of feature selection. A few hundred audio
features are available for this endeavor, and these are grouped into sets, according to
their methodological origin. We consider the absolute amplitude envelope, mel-frequency
cepstral coefficients (MFCCs), the pitchless chromagram and linear predictor coefficients
(LPCs). Researchers working in this area are naturally interested in the question which
sets (or which combinations) work best for modeling the task under consideration.

We offer two solutions to this selection problem: a) We reduce it to a statistical testing
problem between models (of different feature group sets) by applying the framework of
Hothorn et al.| (2005) and therefore continue the work begun in [Szepannek et al.| (2009).
This approach can be combined with any learning algorithm. b) We offer a much faster
(but less model-independent) approach based on logistic regression and the group lasso

(Meier et al 2008). For the latter, we minimize the regularized risk

n G
min ZL(%‘, o'z + ag) + )\Z llanll2 |
i=1

a,a0
) g:l

where L is the binomial loss acting on the linear model and I, is an indicator function
referring to the index set of all features in group g. The feature groups I, usually partition

T'=(al, ... ,al) (if one allows a slight abuse of notation and
I Ig

all available features, so «
some reordering of the features). As one clearly sees, disjoint groups of features are
penalized internally by the Lo norm, but an L norm acts as a regularizer on the groups
itself, provoking a sparse selection of these and achieving feature selection at the group
level.

We conclude that the computationally cheaper method already produces relevant order-
ings of the feature subgroups, but the statistical testing allows for more detailed results

and more flexibility in cases where the logistic regression model is a misspecification.
3.4 Selecting Small Audio Feature Sets in Music Classification by Means
of Asymmetric Mutation

In Bischl et al.| (2010b)) the problem of automatically classifying the musical genres of
songs is considered, which is helpful in indexing large music databases or learning personal

preferences of listeners (Blume et all) 2011). Again, we are interested in reducing the
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hundreds of potential audio signal features to a manageable number, but we are not
selecting on a group level anymore. In Bischl et al. (2010b) a specific evolutionary
strategy (ES) is proposed which combines a simple (1-+1) mutation strategy (with an
asymmetric mutation rate to favor small feature sets) and a correlation-based heuristic
to ensure a promising generation of candidate feature sets during the search.

This algorithm is validated on a database of 120 commercial albums whose songs are
labeled as Classic, Pop/Rock, Rap, Electronic, R&B, ClubDance and Heavy Metal by
experts from the AllMusicGuid(ﬂ The largest available feature set consists of 572 ele-
ments. Our proposed algorithm (abbreviated ESGH in Fig. |4)) is compared to classifying
without feature selection, random search, a greedy forward search (GFS) using the same
correlation-based heuristic as ESGH to rank features (also called a rank search) and

different (1+1) ES variants. Fig. |4 shows exemplary results for three genres.

Simple—-Pop20 Mid-HeavyMetal20 Hard—-ClubDance20
Ifq l \ _— Eﬁ;NLO*SRA*lS*OS L{N) i —_— E’S:;:LO*SRAflstE g ) —
o Random o andom o GFS
Full Full Random
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o 8 i — ESGH
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o 249
) Y~ |-
o
o
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Figure 4: Comparison of best ES variant (ES-NLO-SRA-16-05, for details see|Bischl et al.,
2010b)) with baseline methods and hybrid ES (ESGH) on three genre predic-
tion tasks, taken from |Bischl et al. (2010b)). The baseline methods are greedy
forward search (GFS), random search (Random) and the full model without
feature selection (Full). Displayed is the number of optimizer iterations vs. the
MSE between the predicted and true proportion of genre segments per song (a
song is segmented into a number of shorter parts which are in turn classified).
All results are averaged over five statistical runs.

We can conclude that our asymmetric, hybrid strategy reliably selects sparse solutions
on the considered genre tasks with a relatively low number of iterations. It combines
the best properties of the (already very well-performing, but sometimes suboptimally
terminating) rank search and the general (1+1) ES (which converges much slower as no

search space guidance is provided in the algorithm for generating candidate points).

2yww.allmusic.com
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3.5 Outlook

Much work still needs to be done regarding this topic. First, one can rightfully treat the
feature selection as a multi-criteria problem (Vatolkin, [2013)). In most cases we cannot
explicitly write down trade-off costs between the loss in prediction and the size of the
feature set, and even if we can, such information is rarely included in the modeling
process. Another very promising aspect seems to be to select features across multiple
data sets. The reason is simple and also obvious: Quite often we are not interested in the
selection of an optimal feature set for one data set, but for a well-defined task domain.
Then it is not sufficient to perform the selection separately for each data set, as multiple
correlated and redundant solutions can exist, and one is interested in a single feature set
which consistently performs well across the whole domain. Note that in [ Mersmann et al.
(2011) (see Sec. ) we already introduce a feature selection method which addresses both
aspects. Finally, although general search heuristics like ESs often perform well when
given enough fitness evaluations they “ignore” quite a lot of easily accessible information
which could and should be exploited during the search: Cheap filter rankings are always
computable and could at least be used to create a skewed initial, prior distribution
over the feature space. And most learning models allow the computation of a variable

importance measure after they have been fitted, which could also be fed back to the ES.
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4 Statistical Modeling for Optimization Problems and

Algorithm Selection Techniques

“It is unworthy of excellent men to lose hours like slaves in the labour of calcu-
lation which could safely be relegated to anyone else if machines were used.”

— Gottfried W. Leibniz

4.1 Contributed Material

Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., and Rudolph, G. (2011).
Exploratory landscape analysis. In Krasnogor, N., editor, Proceedings of the 13th annual
conference on genetic and evolutionary computation (GECCO ’11), pages 829-836. ACM
Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., and Neumann, F.
(2013). A novel feature-based approach to characterize algorithm performance for the
traveling salesperson problem. Annals of Mathematics and Artificial Intelligence, pages
1-32

Bischl, B., Mersmann, O., Trautmann, H., and Preuss, M. (2012b). Algorithm selection
based on exploratory landscape analysis and cost-sensitive learning. In Genetic and
Evolutionary Computation Conference (GECCO)

4.2 Exploratory Landscape Analysis

In order to better relate the outcome of optimization benchmarks to properties of the
considered test functions, we suggest a new technique coined Exploratory Landscape
Analysis (ELA) in Mersmann et al|(2011). Although one might first think of high-level
function properties designed by experts for this purpose, we instead construct relatively
cheap low-level computer generated features to express the high-level ones, see Fig.
These can be computed automatically for any new, unknown objective function.

In our approach we extract these features from systematically sampled points in the deci-
sion space, to empirically describe aspects like convexity, multi-modality and curvature.
Their implementation ranges from calculating simple statistics from objective value dis-
tributions over fitting surrogate models to the landscape to running short sequences of
local optimization.

We demonstrate that these features can successfully be employed to predict the
BBOB’09/10 (Hansen et al., 2009) function grouping with low classification error. We
create a new multi-objective genetic algorithm to select the cheapest and most relevant

features for this task. Our genetic algorithm is able to switch on complete feature groups
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Figure 5: Relationships between high-level features (grey) and low-level feature classes
(white), taken from |Mersmann et al. (2011)).

(the groups have been created according to feature type and computational costs) in its
mutation and cross-over operators. Technically, we measure the misclassification rate,
the computational cost per selected feature set and the model complexity (number of
features). We then approximate the Pareto front for these three criteria with a binary
variant of the S-metric selection evolutionary multi-objective algorithm (SMS-EMOA)
(Emmerich et all [2005) which optimizes the dominated hypervolume of its population.
In a second experiment, we predict seven high-level function properties (manually as-
signed by experts) by constructing seven classification problems. We use our multi-
criteria algorithm to simultaneously optimize the same features, but this time consider
the maximum misclassification rate over all seven classification problems. We therefore

construct a Pareto front of relevant features for multiple data sets.

4.3 A Novel Feature-Based Approach to Characterize Algorithm
Performance for the Traveling Salesperson Problem

The traveling salesman problem (TSP) is one of the most well-known and well-studied
NP-hard discrete optimization problems. Although a polynomial time approximation

scheme exists (Aroral, |1998), heuristical approaches are often used due to their often
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good performance and much simpler implementation. In Mersmann et al| (2012) we
investigate the common 2-opt local search algorithm which modifies only one pair of
edges per iteration (Johnson and McGeoch, [1997). Despite the success of this algorithm,
it is still hard to understand the performance of this algorithm from a theoretical point of
view, as experimentally obtained results are often much better than worst-case guarantees
obtained from theoretical considerations.

We measure the difficulty of a problem instance for a given heuristic by calculating the
approximation ratio, i.e., the multiplicative loss when running the heuristic in relation to
the optimal solution, which is feasible to compute through a branch-and-cut approachﬂ
on small to medium sized TSP instances. The approximation rate is a common measure
of performance for TSP approximation schemes. As before in Mersmann et al.| (2011), we
are interested in understanding which properties of problem instances mainly influence
problem difficulty and algorithmic performance.

A further obstacle that has to be resolved for our undertaking is the generation of a
representative instance set as a basis for the analysis. A generic evolutionary approach is
presented which allows the construction of TSP instances in the Euclidean plane which
are simple or hard to solve for the algorithm under consideration. Fig. [6] shows two
evolved examples.

To analyze our obtained performance results, we again use a statistical learning ap-
proach by defining a set of computationally cheap instance features to characterize TSP
instances. From the problem instance features classification rules are derived which pre-
dict the hardness level of an instance. It is possible to predict the correct instance classes
with only marginal errors and our results are supported by an exploratory analysis of the
evolved instances and the respective optimal tours. Instances of moderate difficulty can
now be constructed by a newly introduced “morphing” of easy TSP instances into hard
ones (i.e., a convex-combination of node coordinates). Systematic changes of the feature
levels along the path are identified. A multivariate adaptive regression spline (MARS)
model is successfully applied to predict the approximation quality of 2-opt, based on
the features of an adequate subset of the generated instances with appropriately high

accuracy.

3Concorde solver: http://www.tsp.gatech.edu/concorde.html
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Figure 6: Examples of evolved simple and hard TSP instances, including their optimal
tours, taken from |Mersmann et al.| 42012D.

4.4 Algorithm Selection Based on Exploratory Landscape Analysis and
Cost-Sensitive Learning

The algorithm selection problem (ASP) stems from the now very old desire to choose the
right tool for a task without enumerating all available options. A cleverly constructed
portfolio combined with an efficient selection mechanism should surely score better than
any single algorithm. To make the algorithm selection approach work, we need the fol-
lowing components: a) a representative set of benchmark instances that we can run our
algorithms and later train our prognostic model on; b) a carefully constructed, automat-
ically computable set of instance features to characterize them; c) a proper statistical
model which predicts a (hopefully well-performing) algorithm given the feature vector of
a problem instance.

Our approach studies the algorithm selection problem in the context of black-box function

optimization. It builds upon the already mentioned Exploratory Landscape Analysis

features from Mersmann et al.| (2011). From the benchmarking performance results, a

diverse set of four optimizers is constructed which would lead to very good results if
we had an oracle to always select the appropriate algorithm out of the restricted subset

subset for a given problem.
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med(rel. ERT) max(rel. ERT) med(rel. ERT) max(rel. ERT)

optimum 1.45 4.17 1.45 4.17
all features 1.54 86.76 1.90 58731.08
cheap features 1.61 58731.08 2.70 58731.09

Table 1: Cross-validated classification results with cost-sensitive support vector regres-
sion based on omitting function instances (left) and whole functions (right) in
case all features or only the “cheap” features are used. Taken from [Bischl et al.
(2012b). The table shows expected run time (ERT) ratio of the best available
algorithm and the selected one for a specific test function; displayed statistics
are median and maximum values across test functions. Note that “best available
algorithm” refers to the best one w.r.t. the whole BBOB data set, not only the
best one from our reduced set of four algorithms. The optimal performance for
this set (if we had an oracle to always select the correct algorithm from it) is
displayed in the first line. The large numbers for the maximum value indicate
that some methods pick a non-converging algorithm in some cases (for these
non-converging algorithms an ERT imputation was done prior to the analysis).

Traditionally, the central modeling task is either cast into a normal classification problem
(“given the problem features, predict the best candidate algorithm”) or multiple regression
problems (“given the problem features, predict each candidate’s performance value, then
select the algorithm with the best estimated performance value”). We argue that in a
realistic setting — where prediction errors can never be avoided — neither approach is
optimal. The reason for this is that the model takes the realistic loss (here difference in
runtime to reach the optimum of the test function up to a desired accuracy) into account
that occurs under a wrong selection. The loss obviously depends on the difference in
performance of the optimal (available) selection and the selection obtained by estimation,
which in turn implies some variation of cost-sensitive learning. The fact that the selection
costs differ for each observation in the training set suggests the not very well-studied
scenario of cost-sensitive learning with example specific costs. We apply the recently
proposed method of one-sided support vector regression by Tu and Lin| (2010) for this
purpose.

Concerning our results regarding the ASP (see Tab. 7 we show that it works in two
different scenarios: a) We can generalize to new instances of the same function for all
functions in the BBOB test set and can predict the optimal or close to optimal portfolio
candidate. b) To a surprisingly high degree we can also generalize to completely new test
functions. But it also becomes clear that the set of BBOB functions might lie too “sparse”

in feature space (in a sense they have been designed that way) to correctly evaluate our
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approach in a cross-validation scheme as we have too few similar examples to learn and

generalize from for a specific test function.

4.5 QOutlook

All of the covered papers present a fruitful combination of optimization methods on the
one side and statistics / machine learning on the other. A few paths of further research
seem especially promising and come directly to mind when considering the work of this
section: a) We want a proper instance feature- and model-based combination of algorithm
selection and configuration in one coherent method. To achieve this, a new expected
improvement criterion must probably be constructed which takes the special relation of
instance features and configuration settings into account. For one recent, quite flexible
non-model-based approach see Kadioglu et al.| (2010). For a model-based approach which
does not take instance features of new test instances into account see Hutter et al.
(2011). b) For black-box optimization one could gain more efficiency by measuring
ELA features and algorithm performance during (multi-start) optimizer runs and by
dynamically selecting the optimizer class and its configuration based on the observed data
(online setting). c¢) Multi-objective black-box optimization can be considered as a further

domain of application for ELA-based analysis, algorithm selection and configuration.
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5 A Framework and Two R Packages for Statistical

Experiments on High Performance Computing Clusters

“When in doubt use brute force.”

— Ken Thompson

5.1 Contributed Material

Bischl, B., Lang, M., Mersmann, O., Rahnenfiihrer, J., and Weihs, C. (2012a). Comput-
ing on high performance clusters with R: Packages BatchJobs and BatchExperiments.

Technical report

The contributed paper has been submitted to the Journal of Statistical Software un-
der the title BatchJobs and BatchFExperiments: Abstraction mechanisms for using R
i batch environments and is currently under review. The associated R packages
BatchJobs and BatchExperiments and their documentations are publicly available on
the Comprehensive R Archive Network (CRAN) and at their project page at http:
//batchjobs.googlecode. com.

5.2 Computing on High Performance Clusters with R: Packages
BatchJobs and BatchExperiments

Extensive computer experiments are a common way to compare statistical methods and
to gain insights into their behavior under different application scenarios as well as to study
their respective advantages and disadvantages. Many universities and research facilities
offer access to dedicated computing clusters and the fast development of cloud computing
services like Amazon’s EC2 platform will further improve the situation. Another relevant
factor is the “embarrassingly parallel” nature often encountered in statistical computa-
tions. Therefore distributing the computationally intensive parts of such experiments to
high performance clusters seems obvious. But it is not a trivial effort to harness these
types of systems. They are typically managed by job schedulers, i.e., one cannot directly
invoke processes on nodes, but has to define special job definition files including our re-
quired computational resources and then submit these via operating system commands.
On top of this, these definition files and their associated commands are not standard-
ized across batch systems, further complicating reuse of code, reproduction of results

and collaborative work. If we want to perform statistical experiments in R, we need a
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framework that contains a description language for all our computational steps. In|[Bischl
et al| (2012a) we introduce two R packages for exactly this purpose. They enable the
user to concentrate on the design of his statistical experiments and to efficiently use all
available resources. Further design goals have been portability and reproducibility: Both
packages are applicable in any batch computing environment and the back-end can be
switched by a single line of code. Torque/Maui, Load Sharing Facility (LSF) and Sun
Grid Engine implementations are already available, Slurm and Condor will follow shortly.
Furthermore, for every computational part a seed for the random number generator is
automatically stored to ensure the reproducibility of stochastic experiments.

The first package, BatchJobs, builds upon the expressive power of the functional pro-
gramming concepts of Map, Reduce and Filter. Mapping refers to the concept of applying

a unary function f(-) to a vector or list of elements

@1, an) L (F@), o, Flan)

If we envision f to be a computational operation that we would like to apply to different
parameters or data sets, we can directly see how the parallelization of such a task be-
comes useful. Reducing (also often called folding or accumulating) means the successive

application of a binary function g(-,-) to a vector or list until a single result remains.

(1, .y zn) = g(... (g(g(x1,22),23), .. .), Tp)

This can be used to recombine the results from a mapping operation or to use a divide and
conquer approach to parallelize certain problems. Finally, filtering is formally defined to
be the selection of elements from a list w.r.t. a logical predicate. In our context it will
allow the selection of subsets of experiments or their results to work on them individually.
One important aspect which distinguishes this toolbox from other approaches (Schmid-
berger et al., 2009) is that it provides a persistent state of computation for all jobs in
a database. This allows the user to query the status of all jobs at any point in time,
submit only subsets (which is important when the complete number of experiments is too
large to schedule at once) and provides facilities for extensions. Maybe even more impor-
tantly, it enables the user to work in a completely asynchronous fashion. This has the
significant benefits that a) parallel jobs can be defined in exactly the right computational
size and the scheduler can start them individually when resources become available; b)
extremely large job sets can be handled that would otherwise potentially overwhelm the
batch system.

In order to further increase the package’s impact, it also contains: debugging facilities,
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as this is one of the most difficult and time-consuming aspects of parallel programming;
functions to “chunk” quickly terminating conceptual jobs into one batch system job to

reduce overhead; and the option to work on the results of previous operations in parallel.

BatchJobs functions Shared functions BatchExperiments functions
Creating the Registry [ makeRegistry ) [ makeExperimentRegistry )
ddProbl
patchfap b hM: 1 aZdAlr:ri::m
Defining Jobs batchReduce atchMapResults & X
. batchReduceResults makeDesign
batchExpandGrid .
addExperiments
Submitting Jobs ( submitJobs )
showStatus
. testJob - -
Status & Debugging sletn:wLZg [ summarizeExperiments )
getJobInfo
Finding Jobs [ findJobs ) [find [Statel, findNot [State]) [ findExperiments )
loadResult[s]
Collecting Results ;ji::jg:ﬁ: [reduceResultsExperiments)
reduceResults [AggregationResultTypel

Figure 7: Workflow and most important functions, taken from Bischl et al.| (2012a)).

The second package, BatchExperiments, extends BatchJobs by making it directly appli-
cable to statistical comparison experiments. The main insight is that an extremely large
number of relevant practical studies can be cast into the form of “apply algorithm A on
problem instance P and store some results”. As both the problem generating function
(e.g., imagine simulated data) and the algorithm can depend on parameter settings, it is
possible to associate arbitrary statistical designs with both parts to study the influence
of parameter variations on the results. Experiments are now defined as the cross-product
of problems, algorithms and their respective parameter setting and they can be repli-
cated any number of times. Such a replicated experiment constitutes one single job in
the terminology of BatchJobs. The workflow for both packages and their most impor-
tant common and individual functions are depicted in Fig. [7, while Fig. [§ shows the
connection between problems, algorithms and parameters for BatchExperiments.

BatchExperiments contains further convenience mechanisms to simplify experimental
work: a) Problems can have “static” as well as “dynamic” parts. For the former, imagine
anything that does not change during an experiment, e.g., a data set, for the latter,

think of anything that depends on parameters or is stochastically generated, e.g., a data
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simulation function. b) Stochastic problems have their own associated random number
generator seed and can be “synchronized” across algorithm applications. This is useful
as we generally want to reduce variance this way in stochastic comparison experiments.
c¢) Problems, algorithms and experiments can be freely added to and removed from the
experimental setup without repercussions. This is especially important as experiments
often change during their execution when one learns due to the inspected first results,

e.g., one wants to include further problems, algorithms or parameter settings in the study.

\

static problem part dynamic problem function | problem algorithm function
static in addProblem() dynamic in addProblem() | instance [algorithm in addAlgorithm()
problem é parameters algorithm é parameters
( problem iterator ] ( algorithm iterator ]
problem design algorithm design
design/exhaustive in makeDesign() design/exhaustive in makeDesign()

Figure 8: Relationship between BatchExperiment concepts of problems, algorithms and
parameters, taken from Bischl et al.| (2012al).

5.3 Outlook

While extensions for other batch systems are nearly trivial, we also plan the support of
environments where no shared filesystem is available and therefore file-staging mecha-
nisms for input and output data need to be provided. Furthermore, some experiments
call for the definition of dependent jobs, where certain computational parts can only be
executed when their prerequisites have already terminated. Such dependency structures
can be defined in a graph, and a topological sorting of the nodes would then define a
valid job order for scheduling.

BatchExperiments naturally allows extensive benchmark studies in the areas of machine
learning, optimization and survival analysis. Furthermore, another interesting appli-
cation might be the combination of BatchJobs with a model-based optimizer to solve
extremely time-consuming problems in black-box optimization, algorithm configuration

and general computer experiments.
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6 Accompanying Software

“An algorithm must be seen to be believed, and the best way to learn what an
algorithm is all about is to try it.”
— Donald Knuth

Several R packages have been developed by me and my respective co-authors during
the completion of this thesis and are contributed alongside. All packages are publicly
available on CRAN, except for mlrMBO (see below), which is still under heavy de-
velopment, but publicly available as an experimental version from its GitHub reposi-
tory. Much emphasis has been put onto the usage of proper software engineering, design
and quality control techniques. All packages contain extensive R, documentation, exam-
ples and unit test sets. For mlr a web tutorial is available at its project home under
https://github.com/berndbischl/mlr, while BatchJobs and BatchExperiments have
an associated Google Code page, which contains documentation regarding their installa-
tion and configuration, as well as an FAQ).

Nearly all modeling and machine learning experiments in my contributed papers have
been written within the mlr framework. Parallelization was nearly always performed with
the help of BatchJobs. It should be strongly emphasized that the mentioned software
and abstraction mechanisms proved to be an invaluable and very necessary ingredient in

conducting all previously covered experiments.

General purpose packages

BBmisc: A generic helper package, mainly for good package design. Includes many
convenience functions.

ParamHelpers: Includes infrastructure to describe general parameter objects for ma-
chine learning models and evolutionary algorithms as well as a generic way to archive

parameters and fitness values during optimization.

Framework mlr - machine learning in R
mlr: Provides a generic interface to now over 50 classification and regression techniques,
all standard resampling techniques and performance measures in supervised learning. It

furthermore:

e allows to use different deterministic and evolutionary optimizers to tune hyper-

parameters of machine learning models.

e offers many standard filter and wrapper feature selection techniques. Some em-

bedded L; regularization methods are already available as base learners in mlr
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itself.

e allows the extension of basic learning procedures with feature selection, tuning and
pre-processing operators. This makes convenient nested resampling and generic,

efficient tuning of data mining operator chains possible.

mlrMBO: Offers a sequential model-based optimization routine that can use any regres-
sion learner from mlr as a surrogate fitness model. Can be used in mlr as an efficient

optimizer for tuning.

Optimization
tspmeta: A toolkit: to generate simple and hard TSP instances by an evolutionary
algorithm; to morph them to create instances of intermediate difficulty; to calculate

characterizing instance features; and to run a battery of TSP solvers.

I have also tried to improve the package soobench a little bit, which contains a battery
of deterministic and noisy benchmark functions for single-objective optimization, generic
noise generators, visualization and convenience functions for optimization benchmarks.

But as this is mainly the work of O. Mersmann, it is not submitted here.

Parallelization and large scale experiments

BatchJobs and BatchExperiments: Both packages have already been covered in Sec. [5
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