
Higher-Order Process Engineering:
The Technical Background

Johannes Neubauer

21.04.2014

TU Dortmund

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Conventions . 3
2.2 ChainReaction . 3
2.3 Extreme Model-Driven Design . 4

3 Higher-Order XMDD 7
3.1 Top-Down View . 7

3.1.1 Execution Context & Constants 8
3.1.2 IO Activities . 10
3.1.3 User Interface . 13
3.1.4 Dependency Management . 15

3.2 Canonical Mapping . 15
3.2.1 Atomic Activities . 16
3.2.2 Service Browser . 20
3.2.3 Class Chooser . 21

3.3 Hierarchy . 22
3.3.1 Parameterization . 24
3.3.2 Abstraction Activities . 26
3.3.3 Stateless and Stateful Processes 27
3.3.4 Type Parameters . 28
3.3.5 Constructors . 30
3.3.6 Graph Inspector . 31
3.3.7 Graph Browser . 32
3.3.8 Graph Chooser . 33

3.4 Configuration . 33
3.4.1 Configuration Graphs . 34
3.4.2 IO Browser & Preconfigured Activities 35

3.5 Variability . 37
3.5.1 Interface Graphs . 38
3.5.2 Interface Graph SIBs . 40
3.5.3 Constructor Activities and Interface Graphs 42
3.5.4 Configuration Interface Graphs 42

3.6 Inversion of Control . 44
3.6.1 On the Target Language Level 45
3.6.2 On the Modeling Level . 45

3.7 Transition from jABC3 to jABC4 . 46

iii

Contents

3.8 The Interpreter . 48

4 Conclusion 51

iv

List of Figures

2.1 A screenshot of the open source computer board game ChainReaction
in retro-look. 4

3.1 Excerpt of the control- and data-flow information for an activity (i.e.,
“activity n”) in a dKTSC . 8

3.2 Screenshot of the jABC4 main window showing a process model of a
simple game strategy (GS) for the computer board game ChainReaction. 13

3.3 Mapping of a method to an atomic SIB. 15
3.4 Both tabs of the settings dialog for service browsers. 20
3.5 A view of a service browser offering some services of the JRE. 20
3.6 Class chooser for setting the type of a context variable labelled “iter-

able”. 21
3.7 Input and output parameterization of a service graph using the ex-

ample of an technical SLG for iterating through an iterable (e.g. a
collection). 23

3.8 Example configuration graph for the ChainReaction Scenario. 35
3.9 Example IO browser for the configuration graph shown in Fig. 3.8. . 35
3.10 Interface graph for cell evaluations in the ChainReaction scenario. . 39
3.11 Service graph interacting between jABC4 and ChainReaction. 41
3.12 Starter graph for the instantiation of two GSs and execution of Chain-

Reaction via the graph depicted in Fig. 3.11 in activity “start game”. 42
3.13 Example for a configuration interface graph combining the configura-

tion graph shown in Fig. 3.8 and the interface graph of Fig. 3.10 for
the ChainReaction scenario. 43

3.14 The example GS (cf. Fig. 3.2) in a step-by-step execution via the
tracer plugin. 49

v

1 Introduction

The higher-order process engineering (HOPE) approach is a consequent evolution
of the XMDD [MS04, MS09a, MS12, SMCB96] approach. The main goal of XMDD
is to involve the application expert, who knows the requirements on an application,
into the system design process [MS06, SM99, SN07]. This still holds for HOPE. But
application experts are not necessarily well-versed in technical realization, so that
technical experts implement the requirements. On the contrary, technical experts in
general lack expertise in the application domain. According to concepts like extreme
programming, lean design, and agile computing, this is tackled by strengthening the
communication between technical experts and application experts. Unfortunately
the state-of-the-art solutions to this are either

1. based on informal communication [SS06, STA05], which is error-prone and
puts forward a semantic gap between the participants in terms of terminology
and experience,

2. use a formal, executable language like BPEL+BPMN [AAA+07], but it bur-
dens the modeler to juggle with technical details like web service endpoints,
or

3. use the formal description language BPMN 2.0 [OMG11] which is less technical,
but introduces a semantic gap between the description and its realizations, as
the standards as well as their current realizations have no proper support for
the integration of business activities in a service-oriented fashion [DS12].

In the XMDD approach and its incarnation the jABC framework immediate user
experience and feedback and seamless acceptance has been realized introducing a
hierarchical coordination layer, i.e. the SLGs, with its components, i.e. the SIBs,
which are decoupled from the service implementations beneath. Hence the appli-
cation experts design the application behavior according to the requirements in
coarse-grained, easy-to-understand process models, and the technical experts im-
plement the needed SIBs and services. Furthermore the role of domain experts is
situated in between application experts and technical experts as they are responsi-
ble for bundling SIBs from technical experts to libraries and present them to the
application experts tailored to a specific domain.

The HOPE approach extends XMDD via runtime variability capabilities, in order
to meet the growing requirements on (business) process modeling in terms of sup-
porting system evolution beyond the state-of-the-art of design-time variability like
product-lining and variability modeling with the flexibility to safely add new func-
tionality at runtime. Key to this intent is to enhance the in essence control-oriented
XMDD paradigm with data-orientation and to adapt well-known paradigms from

1

1 Introduction

programming languages in a simplicity-first fashion [SN07, MS11], ranging from
features of object-orientation [KA90] to functional programming [Ses12]. The new
HOPE approach is type-aware, so that type-safety can be validated at design-time.
But the central achievement is the introduction of higher-order semantics by treating
services and processes as first-class citizens. They may be moved around just like
data and plugged and played into activities at runtime, thus enabling higher-order
process engineering. This leads to comprehensible and concise models still manage-
able for application experts which are in general non-programmers. The realization
has been carried out minimally invasively on top of the incarnation of XMDD the
modeling environment jABC3 [SMN+06, SM08] facilitating its simplicity-oriented
plugin framework as described in [NNL+13].
The HOPE approach has been validated in varying scenarios, where the dynamic

exchange of processes, services, and service implementations is essential:

- dealing with the combinatorial explosion regarding variant rich systems as well
as the flexibility needed to be able to react to requirements or environmental
changes at run-time in [NS13b] and [NS13a],

- applying the approach to active automata learning [Ang87, SHM11, NMS13,
NSB+12, WNS+13] and (risk-based) testing [FR14, GT02, RSM08] inte-
grating process models into the active automata learning framework Learn-
Lib [RSBM09, MSHM11] via full-code generation [Jö13, JS12] in [NS14] as
well as [NWS14],

- run-time enabling process model synthesis in [NSM13], i.e. loading tailored,
synthesized processes at run-time and plug them into running processes as
appropriate, and

- several bachelor and master theses as well as research projects ranging from
reverse engineering, over modeling of dynamic data bases, benchmark genera-
tion, automata learning, to modeling game strategies in [Neu14].

This document accompanies the thesis [Neu14]. Thus it describes the extensions
of the formal model behind XMDD for HOPE and the realization of HOPE’s in-
carnation the jABC4 along a running example: modeling game strategies for the
computer board game ChainReaction. The structure of this document is as follows:
Chap. 2 introduces the extreme model driven design (XMDD) and one thing ap-
proach (OTA). The concepts of HOPE and the prototypic implementation jABC4
on top of the jABC3 framework are delineated in Chap. 3 by means of the running
example ChainReaction. Chap. 4 concludes this report.

2

2 Preliminaries

In the following the conventions used throughout this document, the XMDD ap-
proach, and the running example ChainReaction are described.

2.1 Conventions

The following conventions will be used throughout this document:

new notion
New notions will be written emphasized.

“label”
Labels of activities, branches, and context variables will be presented in quotation
marks. The differented types of labels will be disambiguated in the text.

ClassName, InterfaceName, and EnumerationName
Simple as well as full qualified names of Java types will be prefixed with a corre-
sponding icon, and written in a type writer font.

ServiceGraphName and InterfaceGraphName
Simple as well as full qualified names of graph types will be prefixed with a cor-
responding icon, and written in a type writer font.

A domain X is a structure X = (X1, X2, φ,R) where . . .
A structure will be defined as a domain (e.g. X) and is identified with an identifier
set or structure (e.g. X1). The other sets or structures (e.g. X2) are related to
the entities via a function (cf. φ) or relation (cf. R).

2.2 ChainReaction

In order to show the impact of HOPE a running example will be used, which bases
on project weeks held at recurring events at TU Dortmunds to attract pupils on
lower secondary education level for computer science. The pupils have been asked
to create a game strategy for a computer opponent in the open source computer
board game ChainReaction1 with jABC4.
ChainReaction (cf. Fig. 2.1) is a two player game with a 6 × 5 board. The

opponents place one token – denoted by “atom” – on a cell each turn alternately.
An atom may be placed either on cells of the current player (i.e., he has at least
one atom on the cell) or on empty cells. Each cell has a capacity depending on its

1http://cr.freewarepoint.de

3

http://cr.freewarepoint.de

2 Preliminaries

Figure 2.1: A screenshot of the open source computer board game ChainReaction in
retro-look.

horizontal and vertical neighbors. Hence a corner cell has a capacity of two, an edge
cell a capacity of three, and a center cell a capacity of four atoms.
If a cell reaches its capacity, it will explode and each atom spreads to one neighbor

cell and assimilates it with all its atoms. The exploded cell will be empty and is no
longer owned by the player. If one of the neighbor cells reaches its capacity because
of the new atom, it will explode, too. This may lead to chain reactions changing
the complete board and this is where the game’s name comes from. The goal of the
game is to reach a board configuration where the oponent has no cells anymore.
The task for the pupils was to create a jABC4 process which evaluates a given

cell in a given board configuration regarding the benefit to place an atom. Both the
game strategies created by the pupils as well as ‘bridging processes’ for interacting
with the API of the game will be used throughout this document.

2.3 Extreme Model-Driven Design

The basis for higher-order process engineering (HOPE) is the extreme model-driven
design paradigm (XMDD) [MS04, MS09a, MS12] which embodies ideas from

1. service orientation [MSR05],

2. model-driven design [VG07], and

3. the end-user-centeredness advocated in extreme programming [BA04].

Combining these strands enables application experts to control the design and
evolution of processes during their whole life-cycle according to their own level
of technical competence and business responsibility. The one thing approach
(OTA) [SN07, MS09b] provides the conceptual modeling infrastructure for XMDD
that enables all the stakeholders (application experts, designers, component experts,
implementers, quality assurers, . . .) to closely cooperate in the design process.

4

2.3 Extreme Model-Driven Design

In particular it enables immediate user experience and feedback and thereby
seamless acceptance: all stakeholders know, refine, and modify one and the same
“thing”, without duplications or need to juggle with different modeling languages
or paradigms. It allows them to observe the progress of the development and the
implications of decisions at their own level of expertise, which is a central trait of
the one thing approach.
The language for this comprehensive model where all the information converges are

executable process models called service logic graphs (SLGs). Operationally, the pro-
cess models are similar to control flow graphs: the nodes represent activities and the
branches describe how to continue the execution depending on the result of the pre-
vious activity. Following the terminology of telecommunication systems [SMC+96],
these activities are called service-independent building blocks (SIBs).
SIBs may represent a single functionality (i.e., a service) or a whole subgraph (i.e.,

another SLG) introducing hierarchy [SMBK97], thus serving as a macro that hides
more detailed process models. SIBs are parameterizable and communicate resources
via shared execution contexts, a hierarchical concept. The application expert is
equipped with a collection of SIBs, which forms the available domain of reusable,
configurable processes and components shaping a kind of domain specific language
(DSL).

SLGs are also directly formal models: they are semantically interpreted as Kripke
Transition Systems (KTS), a generalization of both Kripke structures (KS) and
labeled transition systems [MSS99] (LTS) that allows labels both on nodes and
edges.

Definition 2.1. A KTS over a finite set of atomic propositions AP is a structure
KTS = (S, s0, Act,R, I), where

- S is a finite set of states.

- s0 ∈ S a dedicated start state.

- Act is a finite set of actions.

- R ⊆ S ×Act× S is a total transition relation.

- I : S → 2AP is an interpretation function.

In the following the underlying formal model is incrementally enhanced for better
presentation of the new concepts of HOPE. Therefore an alternative formal definition
of the core elements in an SLG is introduced, providing a more natural (canonical)
interpretation. In a KTS the action labels are interpreted as the active part and the
states are idle. In SLGs the activities are the active part (cf. the states in a KTS),
and decide which branch (cf. the actions in a KTS) is followed after execution to
find the successor activity, leading to the following definition:

Definition 2.2. A dKTS (say dual KTS) over a finite set of atomic propositions
AP is a structure dKTS = (A, a0,B, δ, I), where

- A is a finite set of activities (instantiations of SIBs).

5

2 Preliminaries

- a0 ∈ A a dedicated start activity.

- B is a finite set of branching labels denoted by branches.

- δ : A× B → A is a transition function.

- I : A → 2AP is an interpretation function.

A dKTS is called dual KTS, since edge labels and nodes swap their semantics.
Moreover, in order to have a clearer separation of notions the term service indepen-
dent building block will be used for templates of activities, i.e., an activity is an
instantiation of a SIB component.

6

3 Higher-Order XMDD

The higher-order process engineering (HOPE) approach is a consequent evolution
of XMDD adding data-orientation to an in essence control-oriented approach as
well as higher-order semantics allowing to select, modify, construct and then pass
processes during process execution as if they were data. These enhancements have
been accompanied by profound changes to the meta-model of SLGs and the binding
of implementations to activities.
In the following Sec. 3.1 describes the revised meta-model for SLGs. Sec. 3.2 il-

lustrates the dynamic integration of services, whilst Sec. 3.3 depicts the realization
of hierarchical modeling with well-defined input/output parameterization as well as
how SLGs may be bundled to libraries. Sec. 3.4 will show how new SIBs can be
created by preconfiguring existing ones, without introducing technological breaks.
Sec. 3.5 deals with higher-order semantics of SLGs following the HOPE approach,
and Sec. 3.6 introduces using dependency injection in order to realize environmen-
tal objects in the execution context of process models without global variables or
scopes. The last two sections 3.7 and 3.8 dwelve into the realization of jABC4 (i.e.,
the incarnation of HOPE) on top of the existing jABC3 framework as well as the
adaption to the integrated interpreter for rapid prototyping.

3.1 Top-Down View

An SLG in the HOPE approach has some additional information as compared to
a dKTS for modeling the data-flow and data-type information: Every SLG has a
type-aware local execution context for sharing resources between the activities. Each
activity has a set of input parameters, branches, and output parameters per branch.
Input parameters can either read a value from the shared resources or a constant
value defined during modeling. Output parameters write to a context variable.
In Fig. 3.1 an exemplary, combined control- and data-flow view for a single activity

is shown. Figures showing excerpts of an SLG will have a similar visualization like
Fig. 3.1. Its semantics are described in the following paragraphs:
The context is shown as a grey box with context variables depicted in white boxes

with rounded edges. The icon next to the label of the variable picture the seminal
type of the variable, i.e., Java class , Java interface , service graph (cf.
Sec. 3.3), or interface graph (cf. Sec 3.5). After the label of the context variable
the simple name of its type follows in parantheses, e.g., the java class Class1 for
context variable “variable1”.
The input parameters of the activity of interest “activity n” are shown in the

small parameter window “inputs”. A small icon on the left of each variable express,
whether the parameter is dynamic D (i.e., read from the context) or static (i.e.,

7

3 Higher-Order XMDD

Context
variable1
(Class1)

variable3
(Class3)

...variable2
(Class2)

activity n

inputs

arg1 (Type1)
arg2 (Type2)

D
D

arg3 (String)

out1 (Class3)

outputs

D

reads from
context

writes to
context

branch1

branch2

activity n+1

activity n+2

...

"Hello
World"

reads from
a constant

activity n-1

... branch1

activity of
interest

Figure 3.1: Excerpt of the control- and data-flow information for an activity (i.e.,
“activity n”) in a dKTSC .

read from a constant value). The simple name of a type is denoted in parentheses
right after the label of the parameter.
Constant values are displayed as little speech bubbles (cf. “Hello World”). A

directed edge with a filled arrow head starting in the variable and pointing at a
dynamic parameter, denotes from which context variable the parameter reads.
Output parameters of a branch of activity “activity n” are shown in a small output

window labelled “outputs” (here pictured exemplarily for branch “branch1”). As all
output branches write to a context variable they are always marked as dynamic D
and the simple name of its type is given subsequently in parantheses. The context
variable, an output parameter writes to, is noted via a directed edge (with a filled
arrow head) starting from the output parameter and pointing at the variable.
These concepts of a type-aware execution context and input/output parameteri-

zation of activities are defined more formally in the following subsections.

3.1.1 Execution Context & Constants

The execution context consists of a set of typed variables and at runtime each
variable has a mutable value associated to it. These variables have a auto-generated
unique name which is coupled with a domain-specific, human-readable simple name.
Together the unique name and the domain-specific name are denoted by label. Labels
will be used for other components like activities, input and output parameters as
well as branches, too.

Definition 3.1. A label domain is a structure L = (ID,N , id) where

- ID is a set of identifiers. ID is a local set containing only the ids for the
respective structure, but the identifiers itself are universally unique identifiers

8

3.1 Top-Down View

(UUIDs) 1. This is especially relevant for the implementation of the higher-
order process modeling approach for differentiating elements with the same
name.

- N is a set of human readable, domain specific names, that are not necessarily
unique.

- id : ID → N is a bijective function mapping identifiers to names.

- A label l ∈ L is a structure l = (i, n) with i ∈ ID and n ∈ N . For better
presentation l 7→L n will be used and the name of a label is employed as its
representative.

In the following the variables are employed as the elements of the execution context
(i.e. context variables) and formal as well as actual input/output parameters of
activities. The general concept of a variable consists of a label being associated with
a type. The underlying type system is simply the Java type system augmented with
graph types for service- (cf. Sec. 3.3) and interface graphs (cf. Sec. 3.5.1). If a
graph is generated to code, it will accordingly be represented via a Java class or
Java interface.

Definition 3.2. A variable domain over a type system T is a structure V = (LV , νT)
where

- LV is a label domain.

- νT : LV → T is an injective function mapping a type to each variable.

- A variable v ∈ V is structured as follows: v = (lv, t) where lv ∈ LV , and
t =def νT (lv). For better presentation v 7→V t will be used.

The execution context then relates a value to each variable, which may be written
by output parameters and read by input parameters. These values are calledmutable
as the referenced value of a context variable may change (i.e. it is reassigned) due
to a write operation of an output parameter.

Definition 3.3. An execution context (i.e. a context variable domain) over a type
system T is a structure C = (VC ,Var, νVar) where

- VC is a variable domain (see Def. 3.2). Each v ∈ VC represents exactly one
context variable.

- Var represents the set of all objects available in the current runtime environ-
ment each of any type tmv ∈ T including null indicating the absence of a
value. These values represent the system state at runtime.

- νVar : VC → Var is an injective function mapping a value to each context
variable.

1http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

9

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

3 Higher-Order XMDD

- A context variable c ∈ C is structured as follows: c = (v,mv), where v ∈ VC ,
and mv =def νVar(v). For better presentation c 7→C mv and c 7→CV tmv will be
used.

- The type of the mutable valuemv has to be compatible to the type tmv defined
for the variable v as follows v 7→V tmv.

Each SLG has an execution context C which is represented by a context variables
domain.
A second kind of resource are the constants. They correspond to immutable values,

i.e., they are declared at modeling time and cannot be reassigned at runtime. In
most cases it is desirable that the value itself is a constant, too (e.g., using an int,
String, or Collections.unmodifiablyMap(Map<K, V>)).

Definition 3.4. A constant domain over a type system T is a structure Const =
(Val, νConst) where

- Val is a finite set of constant values. Example:

Val = {1, 1.0, "Hello World!", "Hello"→ "World!"}

- νConst : Val → T a function linking each value of the set of constants to its
type. Example:

νConst = {(1, int), (1.0, float), ("Hello World!", String),
("Hello"→ "World!", UnmodifiableMap)}

- A constant const ∈ Const is a tuple const = (val, t) with val ∈ Val, and
t=def νConst(val) ∈ T . For better presentation const 7→Const t will be used.

The current implementation of jABC4 supports primitive types, strings, file han-
dles, and some more. But conceptually arbitrary objects may be used.

3.1.2 IO Activities

In the HOPE approach the main entities representing the services/processes to be
executed are the activities. They are the instantiations of SIBs, which carry the
actual parameter definitions. They may be compared to a statement in conventional
programming languages. According to the advised data-flow information, they have
a well-defined input/output parameterization. Their input parameters may either
read a mutable value from a context variable at runtime or a constant value. The
association to a variable may be changed at modeling time as well as switching
between static and dynamic parameters, and setting a constant value as input.

Definition 3.5. An input parameter domain over a context C and constants Const
is a structure In = (VIn, σC , σConst) where

- VIn is a (input) variable domain (see Def. 3.2). Each v ∈ VIn represents
exactly one input parameter.

10

3.1 Top-Down View

- σC : VIn 7→ C is a partial function describing from which variable of the context
C an input parameter reads the current mutable value. In the following i reads
c will be used with i ∈ VIn and c ∈ C. Parameters that read from a context
variable are called dynamic variables.

- σConst : VIn 7→ Const is a partial function describing the input parameters
being assigned with a constant value. In the following i represents const will
be used. Parameters representing a constant value are called static parameters.

- A parameters is called undefined, whenever its variable v ∈ VIn is in neither
of these sets:

v /∈ (domain(σC) ∪ domain(σConst))

- One has domain(σC) ∩ domain(σConst) = ∅, i.e., a parameter can either be
static, dynamic, or undefined.

- If domain(σC)∪domain(σConst) = VIn the set of input parameters In is called
complete.

- A dynamic input parameter id ∈ In is a tuple id = (v, c) with v ∈ domain(σC)
and c =def σC(v). For better presentation write id 7→σC c will be used.

- A static input parameter is ∈ In is a tuple is = (v, const) with
v ∈ domain(σConst) and const =def σConst(v). For better presentation
is 7→σConst const will be used.

Output parameters on the contrary may only be dynamic and a modeler declares
to which context variable each writes the corresponding value being returned from
the execution of the underlying service or process.

Definition 3.6. A output parameter domain over a context C is a structure Out =
(VOut, ω) where

- VOut is a (output) variable domain (see Def. 3.2). Each v ∈ VOut represents
exactly one output parameter.

- ω : VOut 7→ C is a partial function describing to which variable of the context
C an output parameter (over-)writes the mutable value (cf. Def. 3.3). In
the following o writes c will be used with o ∈ VOut and c ∈ C. All output
parameters are dynamic variables as they either write to a context variable or
are undefined2.

- If ω is total the set of output parameters is called complete:

ω : V ′ → C, and V ′ = V

- An output parameter o ∈ Out is a tuple o = (v, c) with v ∈ VOut and
c =def ω(v). For better presentation o 7→Out c will be used.

2An output parameter is undefined, iff its variable v ∈ VOut does not write to a context variable
v /∈ domain(ω).

11

3 Higher-Order XMDD

An output parameter is always associated to a labelled branch of the activity.
Different from conventional programming languages, there may be more than one
output parameter per branch, although generally but not necessarily an ouput pa-
rameter has only one branch. The semantic behind relating output parameters to
branches is, that depending on the outcome of the execution of the activity in terms
of control-flow, it may return different values. If, e.g., a non-void Java method
returns successfully, a value of its return type (or null) will be returned. But if an
exception is thrown, an instance of the exception type will be the result.

Definition 3.7. A branch domain over a context C is a structure B = (LB,Out, ωB)
where

- LB is a label domain representing the branch names.

- Out is a output parameter domain (cf. Def. 3.6).

- ωB : LB → 2Out is a function assigning a subset of the outputs to each branch
label.

- One has {ωB(l) | l ∈ LB} = Out, i.e., every output parameter is assigned to
at least one branch.

- A branch b ∈ B is a tuple b = (lb,Outb) with lb ∈ LB and Outb=def ωB(lb).
For better presentation b 7→B Outb will be used.

With input parameters, branches, and output parameters, all ingredients for in-
put/output activities (IO activities) are available. There are different kinds of IO
activities which will be introduced and discussed in Sec. 3.2, 3.3, and 3.5.

Definition 3.8. The IO activity domain3 over a context C and constants Const is
a structure A = (LA, In,B, i, b) where

- LA is label domain (cf. Def. 3.1) identifying each activitiy as well as giving it
a domain specific name.

- In is a input parameter domain (cf. Def. 3.5). For the static input parameters
the constants of Const are used.

- B is branch domain (cf. Def. 3.7).

- i : LA → 2In is a function mapping input parameters to activities.

- b : LA → 2B is a function mapping branches to activities.

- An activity a ∈ A is a tuple a = (la, Ina,Ba) where

– la ∈ LA is the label of the activity,

– Ina=def i(la) ⊆ In is the input parameter domain of activity a, and

– Ba=def β(la) ⊆ B is the branch domain of activity a.
3IO activity and activity will be used synonymously in the following unless it is explicitely differ-
entiated.

12

3.1 Top-Down View

1

2

3

Figure 3.2: Screenshot of the jABC4 main window showing a process model of a
simple game strategy (GS) for the computer board game ChainReaction.

For better presentation a 7→A (Ina,Ba) will be used.

With execution contexts, constants and IO activities, a much richer meta-model
may be defined introducing the dual kripke transition system with context, which
incorporates the data-flow as well as data-type information.

Definition 3.9. A dual kripke transition system with context over a type system T
and a finite set of atomic propositions AP is a structure dKTSC = (A, a0,B, δ, I, C),
where

- A is an activity domain (cf. Def. 3.8).

- a0 ∈ A a dedicated start activity.

- B is a branch domain (cf. Def. 3.7).

- δ : A× B → A is a transition function.

- I : A → 2AP is an interpretation function.

- C is an execution context shaping the context of shared resources (cf. Def. 3.3).

3.1.3 User Interface

The user interface of the development environment jABC4 (based on the jABC3
framework) is shown in Fig. 3.2. It is divided in three main areas:

13

3 Higher-Order XMDD

1. The browser area consists of different tabs with tree-views for resources
namely the project browser, graph browser (cf Sec. 3.3.7), service browsers
(cf. Sec. 3.2.2), and IO SIB browsers (cf. Sec. 3.4.2).

2. The graph canvas is the main modeling area, where the SLGs are depicted as
well as modified.

3. The inspector area contains panels showing meta-information regarding cur-
rently selected activities or the currently shown SLG in the graph canvas. For
changeable attributes the inspectors provide editors.

In the project browser a modeler selects the jABC4-project to work on. The other
browsers (denoted by SIB browser) show project-specific the available resources in
terms of SIBs (i.e., kinds of activities), that may refer to a method call (atomic
activities), a process invocation (abstraction activity), or a preconfigured activity,
which may be either an atomic or an abstraction activity.
An arbitrary SIB may be instantiated as an activity by drag&drop from a leaf

node of a SIB browser to the graph canvas. An activity is visualized on the graph
canvas via an icon representing the node and a text label beneath it, showing the
initial label of the activity, which may be changed lateron.
To create a new context variable the graph inspector may be used, which is shown

in the inspector area (cf. bottom-left of Fig. 3.2). A right-click in the list of “Vari-
ables” and click on the menu item “Add new. . . ” opens a popup dialog where the
modeler enters a name for the variable. Initially the type of a variable is Object.
Sec. 3.2.3 and 3.3.8 describes how the type of a context variable is declared.
When a context variable c ∈ C is dragged to and dropped on an activity a,

a popup-menu opens where each entry represents an input parameter. With the
selection of an input parameter id ∈ Ina the relation id 7→σC c is set.
The input parameter window (cf. “inputs” in Fig. 3.1) of an activity can be opened

via right-clicking on the activity and selecting “Manage input parameters. . . ” or

1. holding the left-mouse on the activity for about half-a-second,

2. a blue and an orange arrow appear left and right beneath the mouse
cursor,

3. moving to the left (i.e., on), opens the input parameter window.

In the popup menu of an input parameter it is possible to switch between static
and dynamic D parameters (iff the type of the parameter is supported for constant
values). For a static parameter is ∈ Ina a menu point “set value. . . ” is available,
which opens a corresponding editor for entering its constant value setting the relation
is 7→σConst const with const ∈ Const.
Choosing to move on the aforementioned orange arrow opens a popup menu

with all branches of the activity. If a branch is selected, the corresponding output
parameter window (cf. “outputs” in Fig. 3.1) will be opened. Analogously to the
inputs, there is a menu item “Manage output parameters” – which has a sub menu

14

3.2 Canonical Mapping

inputs

str (String)
instance (String)

D
D

Context

result (Integer)

outputs

D

java.lang.String#lastIndexOf(String): int

success

no result

exception

error

branches

a substring
(String)

last index
(Integer)

...

}

my string
(String)

Figure 3.3: Mapping of a method to an atomic SIB.

with all branches – leading to the same output parameter window like using the
orange arrow .
An output parameter o ∈ Outb of the selected branch b ∈ Ba writes to context

variable c ∈ C denoted o 7→Out c by dragging the parameter and dropping it onto
the variable in the graph inspector.

3.1.4 Dependency Management

Apache maven4 support has been added to jABC4-projects, so that if a pom.xml is
in the root folder of a project, the dependencies defined there will be added to the
project class path. The different SIB browser may then rely on this enhanced class
path for finding services (i.e., Java methods) and SLGs5, which may be delivered as
SLG libraries each library bundled in a standard Java archive via maven artifacts.

3.2 Canonical Mapping

This section will show how to dynamically bind services to activities [NS14]. In our
running ChainReaction example we need a basic functionality like adding a value
to an integer in order to realize a bonus to the current cell evaluation, or iterating
through the cells of the game board. This is realized via a direct mapping between

4http://maven.apache.org
5SLGs are serialized to XML files and may then be put into a JAR (Java archive). The archive
can be added to the class path and the XML files may be retrieved via standard mechanisms of
the Java runtime environment (JRE) and deserialized to an SLG.

15

http://maven.apache.org

3 Higher-Order XMDD

method constructor static abstract

class –

abstract class

interface – – –

Table 3.1: Icons for atomic activities.

constructs of the target language and the atomic activities. Services are repre-
sented by static, constructor, and dynamic6 methods. Fig. 3.3 depicts an example
for an atomic activity representing the method lastIndexOf(String) of the class
String. The details of the input and output parameterization as well as the bind-

ing of methods to atomic activities is described in the following. Lateron Sec. 3.3
will delineate how SLGs abstracting from technical service bindings may be bundled
to SLG libraries to be reused by application experts guaranteeing executability.
A target language may be any object-oriented language supporting a more or

less one-to-one mapping between the structures defined here and constructs of the
language. A prototype for modeling and interpreting the process models has been
designed and implemented in this thesis on top of the jABC3 platform for Java and
a codegenerator following the full-code generator principle of [Jö13] for both Java
and Scala7. The approach heavily bases on the existing type system of the respec-
tive target language. An easy-to-use subset of modern object-oriented languages is
supported on an ‘as needed’ basis, i.e., it may be enhanced in future versions in
order to fulfill some requirements.

3.2.1 Atomic Activities

Technically there are the following three different variations of method types:

1. the static methods8 represented by static SIBs,

2. constructor methods which are also realized as static SIBs, and

3. dynamic methods9 realized via dynamic SIBs.

A constructor method is static too in that it is not called on an instance but on a class
and therefore it is interpreted a special form of a static method, although the syntax
for calling a constructor method and a static method differs in most languages, e.g.,
in Java the new operator is used to invoke constructors. Additionally, a constructor
is named alike its declaring class and always returns either a corresponding instance

6Dynamic methods are often denoted by instance methods in object-oriented programming.
7The Scala generator has been implemented with support of a student assistant.
8In object-oriented programming a static method is associated to a class and not to an object.
9A dynamic method is associated to an instance of a class (i.e. an object).

16

3.2 Canonical Mapping

or throws an exception. But from the point of view of the HOPE approach they are
comparable.
In the user interface I differentiate whether an atomic activity is either a normal,

constructor, static, or abstract method and whether it is declared in a normal,
abstract, or interface class. This is reflected in the activities’ icon (cf. Table. 3.1).
Regarding the return type of a method I introduce three SIB variants:

1. the service SIB represents a method call with an arbitrary return type in-
cluding void for methods which have no return type, except boolean and
enumerations (sub classes of Enum),

2. the decision SIB handles methods with a return type boolean used to realize
if-then control-structures, and

3. the enumeration SIBs deal with methods returning Java enumerations realizing
a switch statement.

This is not meant as an exhaustive list of variants and it therefore may be enhanced
in the future.

Definition 3.10. The atomic activities Aa shape a subset of the IO activities A.
The atomic activities inherit the structure of IO activities (cf. Def. 3.8) and bind the
name, instance parameter, input parameters and return type of the method to these
structures. Additionally the method itself is bound to an atomic activity. Hence
a domain of atomic acitivities is a structure Aa = (LAa , InAa ,BAa , iAa , bAa ,M,m)
where

- LAa ⊆ LA, InAa ⊆ In, BAa ⊆ B, iAa : LA → InAa , and bAa : LA → BAa

are defined similar to the corresponding structures in Def. 3.8. The binding
of structures of the associated method is described separately for the different
types of atomic SIBs in the following.

- M is a set of (public) methods in the target language.

- m : LAa →M is a bijective function mapping a method to each atomic activity.

An atomic activity a ∈ Aa represents a method call in a target language (i.e.
Java) and is called atomic SIB which is the superset of static and dynamic SIBs in
the different shapes service, decision, and enumeration SIBs. Each maps at least
the following constructs from a method in the target language (Java), to a structure
a = (la, Ina,Ba,m) as follows

- la is a label that is composed of (in this order)

1. the uppercase letters of the class name10,

2. a hash character,

3. all characters until the first uppercase letter of the method name11, and
10With ‘class name’ I refer to the simple name of a Java class, i.e., for the class java.lang.String

the simple name is String.
11With ‘method name’ the simple name of a method is meant, i.e., for the method

java.lang.String.lastIndexOf(String) the simple name is lastIndexOf.

17

3 Higher-Order XMDD

4. the upercase letters of the rest of the method name.

Hence for the method java.lang.String.lastIndexOf(String) the label is:
“S#lastIO” (cf. the activity in Fig. 3.3). This is only a predefined label. It
may be changed by the modeler lateron.

- Ina =def iAa(a) is a set of input parameters (cf. the inputs-window in Fig. 3.3),
that is directly connected to the formal input parameters of the method. Each
input parameter has a position in the parameter array and a type t ∈ T .
The position is translated to a name label arg_$pos for the input parameter.
If there is a name present in the target language, it is favored. For Java if
available we use the Javadoc information which contains the name of each
parameter, since it is not directly accessible through the Java reflection API12.

- For dynamic SIBs, which are executed on an instance, there is an additional
special input parameter instance parameter i ∈ Ina (cf. the parameter “in-
stance” in the activities’ inputs in Fig. 3.3). Hence a dynamic SIB ad ∈ Aa is
denoted as ad = (la, i, Inad

,Ba) with Inad
= (Ina \ i).

- Ba =def bAa(a) is the set of branches that handle the return value of a method
as well as the exceptions or more generally the throwables as this is in Java
the superset of exceptions and errors (cf. the branches-popup-window and the
outputs-window in Fig. 3.3).

The exception handling is the same for all atomic SIBs. There is one branch for each
throwable in the list of defined throwables13. The label of such a branch is composed
of a lower case version of the class name where the elements separated via camel
case letters are detached via a space character. In addition the word “exception”
– or “error” respectively – is omitted. For NullPointerException the resulting
label is: “null pointer”.
In addition there is one branch for all subclasses of Exception, which handles

all exceptions not defined in the method definition (e.g. the runtime exceptions like
NullPointerException which can be thrown although they are not explicitly

stated in the method definition). Furthermore one branch deals with errors (i.e.
subclasses of Error) as, e.g. OutOfMemory, which are not necessarily defined by
the method but may be thrown at any time as they describe a completely unexpected
situation like running out of memory.
Each of these exceptional branches has exactly one output parameter: the respec-

tive throwable. It is typed with the explicitly stated class (for throwables defined by
the method) as well as Exception and Error for the latter general exceptional
branches.
The output branches for the return type differ for service, decision, and enumera-

tion SIBs. Constructor methods are always represented via service SIBs. Dynamic
and static methods may arise in all three forms:
12The Java reflection API enables to inspect the meta-model of Java and execute methods dynam-

ically.
13The explicitly defined throwables of a method are listed in the throws clause of the method

declaration.

18

3.2 Canonical Mapping

Service SIBs have a dedicated branch labeled “success” for successful execution,
which has exactly one output parameter labeled “return” typed with the return
type of the method. They further on have a “no result” branch devoid of any
output parameter, followed if a null is returned. In contrast, void methods
have a “success” branch without any output parameter (and no “no result”
branch).

Decision SIBs distinguish the branches “true” and “false” representing the respec-
tive output of the boolean return type. Both branches define exactly one
output parameter returning the respective boolean return value of the method
execution. Additionally a “no result” branch without any output parameter
deals with a null result14.

Enumeration SIBs provide one branch per enumeration constant labeled alike the
constants string representation (i.e. constant.toString()). Each branch has
exactly one output parameter returning the respective constant. Furthermore
a “no result” branch without any output parameter will be followed if a null
has been returned.

The semantics of an atomic SIB is as follows. If the execution of an SLG reaches
an atomic SIB:

1. the input parameters InAa are evaluated (including the instance for dynamic
SIBs),

2. the method is executed with the input parameters as actual parameters,

3. the return value or throwable is collected as the method has returned,

4. the corresponding output branch b = (lb,Outb) ∈ BAa is selected,

5. the output parameters Outb of the branch – which are either one Outb = o

or none Outb = ∅ for atomic SIBs – are evaluated and if appropriate (i.e.
#Outb =̂ 1) the throwable or return value is written to the connected context
variable c for o 7→Out c, and

6. the successor SIB asucc = δ(acurr, b) is evaluated.

Hence an atomic SIB is like a statement in the target language perfoming a single
method call without any nested calls. The evaluation of input parameters differs for
the static and dynamic variants:

- for a static input parameter is 7→σConst const the constant const is retrieved
and used as actual parameter for the method, and

- for a dynamic input parameter id 7→σC c the mutable value mv defined as
c 7→C mv of the context variable c is retrieved and used as actual parameter
for the method.

19

3 Higher-Order XMDD

Figure 3.4: Both tabs of the settings dia-
log for service browsers.

Figure 3.5: A view of a service
browser offering some
services of the JRE.

3.2.2 Service Browser

Atomic activities are created from service SIBs, i.e., static and dynamic SIBs. These
each represent a method of a class, abstract class, or interface. The service browsers
are responsible for making available these services. In the project browser, a new
service browser may be created via a right-click on the project node, followed by
selecting “Create service browser. . . ” and entering a name for the new browser.
Afterwards a new browser tab is added, which is stored to the project configuration,
so that it is available beyond a restart of the environment.
In a service browser the offered services may be prefiltered via some configurations

in a settings dialog (right-click on a node and select “Settings. . . ”), which is depicted
in Fig. 3.4. The dialog has two tabs. The first tab “Filter” offers to constrain the
package and simple name of classes via regular expressions. Please note that in the
spirit of separation of concerns, these are settings that are done by very few technical
experts preparing a jABC4-project for domain experts who then will use the services
to build technical SLGs as a library for application experts. Hence in the settings
dialog, using regular expressions is adequate for the target audience. In addition
the kind of returned classes may be specified in the table below (i.e., “interface”,
“class”, . . .). The second tab “Classpath” allows to choose, in which libraries the
service browser should search for services. The classpath entries are built from the
project classpath, i.e., it contains the transitive hull of dependencies defined in the
projects maven pom.xml (cf. Sec. 3.1.4).
An example of a service browser offering some basic JRE services is depicted in

Fig. 3.5. It consists of a tree view showing the package structure of the prefiltered
Java types, and a fast filter component, which allows to do further filtering in a
convenient way. The public methods of thes classes shape the leaf nodes of the
tree. It does not offer complete regular expressions as it should be used by domain
14I support this, since a method that returns the wrapper class Boolean of the primitive type

boolean may return a null in Java.

20

3.2 Canonical Mapping

Figure 3.6: Class chooser for setting the type of a context variable labelled “iterable”.

experts and not necessarily by technical experts. Instead such a filter may contain
wildcards like “?” for an arbitrary character and “*” for any number of arbitrary
characters. The mouse cursor in Fig. 3.5 points at the method iterate() of the
interface Iterable so that a tooltip with the documentation of the service is
shown. I created a corresponding importer for the Javadoc of Java classes, which is
then shown in the servcie browser as well as in input and output parameter windows
of a respective activity.
Via drag and drop of a leaf node – representing a Java method – to the graph

canvas a new atomic activity is created with an icon as illustrated in Table. 3.1. The
input parameter, branches and output parameter are created automatically from the
reflective information of the corresponding Method object as described in Sec. 3.2.1
as well as the corresponding type information.

3.2.3 Class Chooser

A context variable may be configured in the graph inspector (cf. Fig. 3.2). Along its
label and mutable value (at runtime) it has a type (cf. Def. 3.3), which may be set via
the class chooser in the case of Java types (cf. Sec. 3.3.4 for graph type parameters
and Sec. 3.3.8 for graph types). This is done via a right-click on a context variable
followed by “Edit type (<simple name of current type>). . . ”. Fig. 3.6 displays the
class chooser for a context variable labelled “iterable”. The chooser consists of two
tabs. The tab labelled “Searchpath” is the same as the “Classpath” tab of the
settings dialog for service browsers (cf. Sec. 3.2.2). The selected class path elements
are stored in the project configuration so that this can be prepared by a technical
expert for a domain expert.
The currently shown tab labelled “Search” features a search panel, which has the

same easy-to-use filter capabilities as the fast filter component of a service browser.
The results are presented in a list below. Via tooltips, the documentation of the
corresponding class can be inspected (again imported from the Javadoc of the class).

21

3 Higher-Order XMDD

The central convenience feature of the class chooser is activated via the checkbox
“show only filtered” situated in the bottom right of search panel. If it is selected,
the results will contain classes that are compatible with the parameters connected
to the context variable, only.
That means, if a variable is read by an input parameter of an activity with the

interface Iterable, then only every descendant in the inheritance tree – or directed
acyclic graph (DAG) for interfaces – on the selected search path and Iterable
itself will be in the result list, i.e., every collection type that may be used in a
“for each”-statement in Java. This is because the type of an actual parameter of a
method has to be “below” the type of its formal parameter.
In contrast, if a variable is written by an output parameter of an activity with the

interface Iterable, then only Iterable itself as well as every ancestor in the
inheritance tree (or DAG) on the selected search path will be in the result list, i.e.,
Iterable and Object. This is because the type of an actual result of a method

has to be “above” its formal result type.
If a context variables has some connected parameters, the matching class will

often either be determined or there is no match at all, which is a sign for a mistake
in the data-flow modeling. In both cases the user does not have to choose at all. In
a future release, unambiguous types may even be assigned automatically15.
By selecting a class in the result list and hitting the “OK”-button, the class

is set for the context variable. If the class has type parameters (like the T in
Iterable<T>) it is initially set to its upper bound (which is Object for iter-

ables). In the context menu of a context variable, a new menu item appears labelled
“Type parameters. . . ”.
For each type parameter it is then possible to use the class chooser to declare

a concrete class for it. If the chosen type for a type parameter again has type
parameters, they can be recursively set via the class chooser. Input and output
parameters of activities connected to a context variable will automatically adapt
the selected type arguments. If, e.g., the output parameter of an atomic activity
representing the method Iterator<T>#next():T is connected to a String, the type
Parameter T is automatically set to String: Iterator<String>#next():String.
Array types may be created, by choosing the context menu item “is array” on a

context variable. A dialog asks for the dimensions of the array; the default is 1.
Array types may be configured as type arguments, too.

3.3 Hierarchy

In this section I will show how I support hierarchical modeling [NSM13]. In short, the
so called graph SIBs are templates for abstraction activities Ag ⊆ A that reference
a sub model. If the control flow reaches such an activity, it executes the sub model
which returns the branch to impel to the next activity. Fig. 3.7 shows examplarily
two hierarchy levels, where on the nth level an abstraction activity references a
technical sub model Iterate<T> on the n − 1th hierarchy level, which is part of

15Such a feature is called type inference in type theory [PS91].

22

3.3 Hierarchy

inputs

iterable (Iterable<T>)
T (Object)

outputs

D

Context
iterator

(Iterator<T>)
iterable

(Iterable<T>)
next
(T)

inputs

next (T)D

outputs

next (String)D

next

exit

outputs

iterable (Iterable<T>)
instance(Iterate<T>)
T (String)

inputs

D
D

Context
iterable

(Iterable<String>)
next

(String)
iterate

(Iterate<String>)
...

...

Hierarchy
Level n

Hierarchy
Level n-1

Figure 3.7: Input and output parameterization of a service graph using the example
of an technical SLG for iterating through an iterable (e.g. a collection).

jABC4’s basic SLG library. The latter iterates through an arbitrary Java collection
or array (i.e. anything that implements java.lang.Iterable<T>), one element
each time it is executed. The first time Iterate<T> is invoked it retrieves the
underlying iterator of the collection of type Iterator<T>. In each invocation
Iterate<T> tries to get the next element of the iterator and returns the element

via the “next” branch or chooses the “exit” branch if no more elements are in the
collection. Afterwards it can be reused to iterate again through the same or another
iterable.

In the example shown in Fig. 3.7 on the nth hierarchy level an abstraction activity
labelled “iterate” is used to iterate through an iterable with String elements.
For the running example ChainReaction the same graph may be used for iterating
through the board of type Field implementing Iterable<Cell> which returns
the cells from left to right and row by row from top to bottom. The corresponding
concepts are described in the following.

23

3 Higher-Order XMDD

3.3.1 Parameterization

Unlike jABC3 I explicitly do not support global variables for the communication
between hierarchy levels. As stated in [WS73], global variables are harmful as they
make a program less clear and hamper its static analysis. I go one step further
and do not allow scopes, too. Instead the communication between hierarchy levels
is completely defined via input and output parameters and each SLG has a local
execution context, only. Since a consequent enforcement of this rule would lead to
a vast amount of parameters not being easier to handle than global variables or
scopes, I adopt the paradigm inversion of control (cf. Sec. 3.6), in order to inject
values into local context variables from the environment.
The input and output parameterization of a graph is defined by a dedicated input

SIB and one output SIB per branch.

Example 1: Input/Output parameterization of SLG ExampleGS
In the SLG ExampleGS shown in Fig. 3.2 the input SIB has four input parameters,
namely the “board” of type Field, “player” of the enumerated type Player as
well as an “x” and “y” coordinate of the current cell with type Integer. These
parameters write to the corresponding context variables with same name and type
(cf. the graph inspector in Fig. 3.2), so that they can be used throughout the cell
evaluation.
Furthermore the graph has exactly one output SIB “success” with a single output

parameter “evaluation” of type Integer. The output parameter reads from the
equally labelled and typed context variable and is the score for the cell evaluated by
the process with the given x and y coordinates, board configuration, and player.

In the following I will enhance the formal definition of SLGs accordingly.

Definition 3.11. A dual IO kripke transition system with context – denoted by
service graph – over a type system T and a finite set of atomic propositions AP is
a structure dKTSI/OC = (n, p,A, a0,AOut,B, δ, I, C), where

- n is the simple name of the service graph,

- p is the package name of the service graph, which is a tree structure just like
the Java package structure,

- together n and p build the full qualified name of the graph,

- A is an activity domain (cf. Def. 3.8),

- a0 ∈ A a dedicated start activity, i.e., an input SIB,

- AOut ⊆ (A \ a0) a finite set of end activities, i.e., output SIBs,

- B is a branch domain (cf. Def. 3.7),

- δ : A× B → A is a transition function,

24

3.3 Hierarchy

- I : A → 2AP is an interpretation function, and

- C is an execution context shaping the context of shared resources (cf. Def. 3.3).

Further on, a modeler may add meta-information to a service graph like an icon
and documentation for the graph itself as well as its input and output parameteri-
zation. All this information can be added to the components directly in the jABC4
development environment.
An input SIB is the start activity a0 of a dKTSI/OC visualized via a yellow arrow

pointing downwards (cf. activity “start” on hierarchy level n − 1 in Fig. 3.7). The
intuition is, that it defines the formal parameters of the process model, which are
passed as actual parameters from an activity one hierarchy level above. Therefore
a0 defines the input parameters of the SLG as output parameters of its sole branch
“success”. At runtime it is executed first in the process, writes the actual input
parameters to context variables, and follows the “success” branch to the successor
activity. An input SIB has the following properties:

- There is exactly one input SIB for each SLG.

- An input SIB has no ingoing transitions: @ a ∈ A, b ∈ B. δ(a, b) = a0.

- An input SIB is structured as follows a0 = (la0 ,Ba0) where

– la0 ∈ LA is the label of the activity which is always “start”,

– there are no input parameter for an input SIB,

– Ba0 =def b(la0) ⊆ B consists of one branch b labelled “success”, and

– Outsuccess is the finite set of output parameters (i.e. b 7→B Outsuccess)
that defines the formal input parameters of the process model.

For better presentation dKTSI/OC 7→a0 Outsuccess will be used.

The output SIBs are the end activities ae1∪ . . .∪aen = AOut (cf. activities “next”
and “exit” on hierarchy level n− 1 in Fig. 3.7). Intuitively, each ouput SIB defines
a branch of the calling graph SIB. The input parameters of the output SIB declare
the formal ouput parameters of the branch, so that each branch may have its own
outputs. As the control-flow reaches an end activity it evaluates its input parameters
(either from the context or constants) and provides them together with the selected
branch as actual output parameters to the calling activity. An output SIB has the
following properties:

- There is exactly one output SIB per branch, arbitrary many for an SLG.

- An output SIB is structured as follows aex = (laex , Inaex))

– laex is the label of the activity which corresponds to the name of the
branch it defines,

– Inaex is the input parameter domain, defining the formal output param-
eters of the branch this output SIB represents, and

– an output SIB has no branches b(laex) = ∅ and therefore no successors
on the current hierarchy level.

25

3 Higher-Order XMDD

New SLGs are equipped with a start activity as well as end activities via dragging
from the “I/O” area in the graph inspector (cf. Fig. 3.2) the corresponding icon (cf.
Table 3.2) and dropping them to the graph canvas. For end activities a dialog pops
up for entering the label of the activity defining the name of the branch it represents.
The input and output parameter for atomic activities (cf. Sec. 3.2.1) as well as

abstraction activities (cf. Sec. 3.3.2) are automatically created from the respective
underlying structure, i.e. a Java method for atomic activities and the input/output
parameterization of an SLG, as described in the current section, for an abstraction
activity. This is different for start and end activities of an dKTSI/OC . The output
parameters Outsuccess of a start activity as well as the input parameters Inaex are
empty at the beginning. In the corresponding output (input) parameter window, a
new parameter is created via the context menu and the menu item “Add input. . . ”
for a start activity as well as “Add output. . . ” for an end activity. As for context
variables a name has to be entered for a new parameter. Initially a parameter is of
type Object. This may be changed via the context menu analoguous to context
variables (cf. Sec. 3.2.3 and 3.3.8).

3.3.2 Abstraction Activities

The input and output SIBs of the sub process define the formal parameters of an
SLG. An invocation of a sub process is realized via an activity (i.e. abstraction
activities) that references the sub process and defines the actual parameters similar
to the atomic activities.

Definition 3.12. The abstraction activities (i.e. instantiation graph SIBs) Ag shape
a subset of the activities A. Each represents a sub model. If an abstraction activity
references a service graph its’ template is denoted by service graph SIB (cf. Sec 3.5
for more variants of abstraction activities). They inherit the structure of IO activities
(cf. Def. 3.8) and adopt the simple name of the sub model as label as well as bind
the activities’ input parameters to the output parameters Outsuccess of the input
SIB, and the branches to the output SIBs of the sub model.
Additional an instance parameter is bound to the activity which references a

process instance of the respective service graph to be executed. Thus a domain of
abstraction activities is a structure Ag = (LAg , InAg ,BAg , iAg , bAg) where

- LAg ⊆ LA, InAg ⊆ In, BAg ⊆ B, iAg : LAg → InAg , and bAg : LAg → BAg

are defined similar to the corresponding structures in Def. 3.8.

- An abstraction activity (cf. activity “Iterate” on hierarchy level n in Fig. 3.7)
maps the formal input and output parameters of a sub model to actual pa-
rameters of the activity, and represents the invocation of a sub process. It is
a structure a = (la, i, Ina,Ba) where

– la is initially set to the simple name n of the sub model, but may be
changed to an arbitrary domain-specific label lateron,

– i ∈ iAg (a) is an instance parameter referencing a process instance in the
context,

26

3.3 Hierarchy

– Ina =def (iAg (a)\i) is the input parameter domain. Each input parameter
is either read from the context or a constant value and stored to the
context of the sub process via its start activity, and

– Ba =def bAg (a) is the branch domain, one branch for each end activity of
the sub process. At runtime it takes the outputs provided by the chosen
output SIB (either read from the context or a constant value) and stores
them to the context as defined in the abstraction activity.

The aforementioned icon configured for a graph is used as node visulization on
the corresponding abstraction activities (e.g. activity “Iterate” on hierarchy level n
in Fig. 3.7). The documentation is available context sensitively at several points in
the jABC4.

Example 2: Description of SLG ExampleGS
Fig. 3.2 shows in the graph canvas a graph labelled ExampleGS, which uses ab-
straction activities from different SLG libraries (illustrated via the little green ‘G’
in the top right of the corresponding node icons) in order to evaluate the wor-
thiness of a cell for the ChainReaction scenario. At first it uses the basic SLG
PutToContext<Integer> in order to store the initial value 0 to the context vari-

able “evaluation” in activity “initialize evaluation”. Then the activity “type of cell?”
is used to decide for a bonus of +10 for corner cells and +5 for edge cells. The bonus
is added via the graph Add from the basic SLG library. In short, ExampleGS
then checks whether

- the cell is critical (i.e., has #capacity − 1 many atoms) and endangered (i.e.,
at least one neighbor cell of the opponent is critical) which leads to a malus
of -10, or

- the cell is not critical, but endangered which leads to a bonus of +10.

3.3.3 Stateless and Stateful Processes

In the HOPE approach the values in the execution context are first class citizens,
i.e., they do not only hold data values, but may be executed. This is true for Java
objects as well as process instances. Via the instance parameter of an abstraction
activity the modeler can steer the behavior for sub process invocations.
If the instance parameter does not read a context variable, a new process instance

will be created on every occasion the control-flow reaches the activity. This is the
default behavior as it had been in the jABC3 framework. I call the resulting process
instances stateless processes since they (and therefore their execution context) last
for a single execution, only.
The process instance for an instance parameter that reads from a context variable

will be created and stored to the respective variable if it is undefined. If there is
already a process instance in the context, it will be reused. E.g., on hierarchy level
n in Fig. 3.7 the first time activity “iterate” is executed a new process instance

27

3 Higher-Order XMDD

of (graph) type Iterate<String> is created and stored to the context variable
“iterate”. If the control-flow reaches the abstraction activity “iterate” again, the
existing process instance with its current state (execution context) is executed again.
A process instance might be available in the context, because the instance has

been

- injected from the environment (cf. Sec. 3.6),

- created for the execution of an abstraction activity,

- instantiated via a constructor activity (cf. Sec. 3.3.5), or

- passed in as an input parameter to the current process

As such a process instance and its execution context may be reused for repeated
execution I denote them as stateful processes.

3.3.4 Type Parameters

Modern object-oriented programming languages like Java, C#, and Scala have a
feature known as parametric polymorphy in type theory16. In all three languages
mentioned before this feature is called generics. Subtype polymorphism allows to
have virtual methods whose definition can be overriden in sub classes so that at
runtime it is decided which implementation is executed due to the instance on which
it is executed. In contrast, parametric polymorphism adds type parameters to class
(and method) declarations, which may be set or constrained during inheritance or
instantiation via type arguments.
The HOPE approach interprets processes as a special form of functions reminiscent

to functional programming and allows type parameters in their declaration. This
enables generic service graphs like the Iterate<T>-graph (cf. Fig. 3.7), which has
a type parameter for the elements of the collections it may iterate. In an abstraction
activity, the type parameters can be instantiated, without touching the underlying
process model. This already gives a great amount of modeling-time variability,
which is brought to another level by runtime variability in Sec. 3.5. The additional
complexity in the useability for non-programmers – whom I adress with HOPE – is
coped in Sec. 3.4 via preconfiguration of activities, hiding complex information (and
their configuration) from users with less technical expertise, and hence supporting
separation of concerns. This comprises presetting type arguments.
I provide a very simplified version of “generics” for graphs, which enables to define

a graph type parameter and its upper bound (which is Object by default), which
can then be used in the execution context of the graph and its activities as if it is of
the type set as upper bound. Hence a type parameter declaration enhances the type
system T via the type parameters Param to an “augmented” type system TParam17,
which is valid in the scope of the current graph. The graph type parameters are
16

17I use the term “augment” here since I refer to adding new types to a type system, not changing
its capabilities.

28

3.3 Hierarchy

declared for a complete graph and therefore I enhance the definition of service graphs
accordingly.

Definition 3.13. A Generic Dual IO Kripke Transition System with Context –
denoted by generic service graph – over an enhanced type system TParam and a
finite set of atomic propositions AP is a structure gKTSI/OC = (n, p,Param,A, a0,

AOut,B, δ, I, C), where

- n, p, A, a0, AOut, B, δ, I, C are defined analogously to dKTSI/OC in Def. 3.11,

- Param is a set of graph type parameters (the formal parameters for parametric
polymorphism), which are used to shape the “augmented” type system for this
graph: TParam = T ∪Param. The corresponding semantics is similar to the
generics in Java [Blo08].

- A graph type parameter p ∈ Param is a structure p = (lp, u) where

– lp is a label for the graph type parameter like T or Element, and

– u ∈ TParam is the upper bound of the type parameter.

In an abstraction activity referencing a generic sub model – denoted by parame-
terized abstraction activities – (and therefore invoking a parameterized sub process
at runtime) the type parameter have to be set to a type of the current type system,
i.e., either a type parameter of the current graph or any other type in the type
system. These are the actual parameters Arg for the parametric polymorphism and
denoted by graph type arguments. On hierarchy level n in Fig. 3.7 activity “iterate”,
e.g., parameterizes the type parameter T to String.

Definition 3.14. The parameterized abstraction activities Apg are a subset of the
abstraction activities Ag. Each represents a generic sub model (i.e. a gKTSI/OC).
They inherit the structure of abstraction activities (cf. Def. 3.12) and bind type
arguments for the type parameters of the underlying process model. Thus domain
of parameterized abstraction activities is a structure Apg = (LApg ,Arg, InApg ,BApg ,

a, iApg , bApg) where

- LApg ⊆ LAg , InApg ⊆ InAg , BApg ⊆ BAg , iApg : LApg → InApg , and bApg :
LApg → BApg are defined similar to the corresponding structures in Def. 3.12.

- Arg is a finite set of type arguments (the actual parameters for parametric
polymorphy),

- a : LApg → Arg maps type arguments to parameterized abstraction activities,

- a type argument r ∈ Arg is a structure r = (lr, p, t) where

– lr is a label set to the name of the referenced type param (i.e. it has its
own UUID but adopts the name of the label),

– p ∈ Paramsub is the referenced type parameter of the set of type param-
eters Paramsub declared in the referenced service graph sub,

29

3 Higher-Order XMDD

– t ∈ TParamcurr
is the argument type for p, which is a type in the “aug-

mented” type system of the current service graph curr (on the hierarchy
level of the activity). The type t has to be a subtype of the upper bound
of the type parameter p.

- A parameterized abstraction activity maps the formal input and output param-
eters as well as the type parameter to actual parameters and type arguments
of the activity, and represents the call of a generic sub process. It is a structure
a = (la,Arga, i, Ina,Ba) where

– la, i, Ina, Ba is defined analoguously to abstraction activities (cf.
Def. 3.12), and

– Arga =def a(la) is a set of type arguments, which are used to parameterize
the type parameter of the underlying process model.

A new graph type parameter is defined in the start activity of an SLG (i.e., an
input SIB). As they are formal parameters of a gKTSI/OC , they are declared along
with the input parameter of the graph as output parameters Outsuccess of the start
activity’s branch “success” (cf. Sec. 3.3.1). In Fig. 3.7 on hierarchy level n − 1 the
output parameter window of the start activity declares the graph type parameter T
highlighted via the icon .
A graph type parameter may be used as a type for context variables, input param-

eters, or output parameters of the respective graph and as graph type arguments.
Hence besides using the class chooser for selecting a Java class, the context menu
for editing types has an item denoted “Choose type parameter. . . ”. It offers a di-
alog with a combo box for selecting one of the graph type parameters declared for
the current SLG. In the graph Iterate<T> (cf. hierarchy level n− 1 in Fig. 3.7)
the context variables “iterable”, “iterator”, and “next” as well as output parameter
“next” of end activity “next” reference the graph type parameter T either directly
or as a type argument (e.g., T in Iterator<T> or Iterable<T>).
On hierarchy level n the generic abstraction activity “iterate” (cf. Fig. 3.7) shows

the graph type parameter as actual parameter (i.e., a type argument) in its input
parameter window. Type arguments are analogously highlighted via the icon .
In the example a modeler has set the type argument to String, so that it may
iterate through Iterable<String> and returns an output parameter “next” of
type String for the branch “next”. A type arguments type is set or updated to a
Java type, graph type, or type parameter of the SLG on hierarchy level n just like
the type of a context variable as described in Sec. 3.1.3, 3.2.3, and 3.3.8.

3.3.5 Constructors

A new process instance is created and stored if the context variable connected to
the instance parameter of an abstraction activity is undefined. The instance may be
reused for execution lateron (cf. Sec. 3.3.3). Often it is required to create a process
instance, but delay its first-time execution. A use case is, that a process should be
created and passed to a sub process, where it is executed via an abstraction activity

30

3.3 Hierarchy

at some point This is discussed more detailed in Sec. 3.5 in the context of runtime
variability.
For the purpose of creating new process instances I designed the constructor ac-

tivities. At the time of writing a constructor activity has no input parameter, a type
argument for each type parameter of the referenced service graph (if it is a generic
service graph), and exactly one branch labelled “success” with a sole output param-
eter labelled “instance” referencing the respective service graph. If the execution
reaches such an activity, a process instance of the corresponding (generic) service
graph is created and stored to the bound context variable of the output parameter
“instance” of the branch “success”. Hence a constructor activity can directly be
compared to the new-statement in Java.

Definition 3.15. The constructor activities Ac shape a subset of the abstraction
activities Ag. Each represents a (generic) sub model (i.e. either a dKTSI/OC or a
gKTS

I/O
C). They bind type arguments for the type parameters of the underlying

process model, but do not handle any input or output parameterization of the sub
model, as it constructs instances of it, but does not execute them. Thus a domain
of constructor activities is a structure Ac = (LAc ,Arg,BAc , a, bAc) where

- LAc ⊆ LAg , BAc ⊆ BAg , and bAc : LAc → BAc are defined similar to the
corresponding structures in abstract activities (cf. Def. 3.12). The binding of
structures of the associated sub model is described separately in the following.

- Arg, and a : LAc → Arg are defined analoguously to parameterized abstraction
activities (cf. Def. 3.14).

- A constructor activity maps the type parameter of the referenced sub model
to type arguments of the activity, creates an instance of the sub model, and
stores it to the context variable bound to the output parameter “instance”. It
is a structure a = (la,Arga,Ba) where

– Arga is defined similar to a parameterized abstract activity (cf. Def. 3.14),
and

– Ba consists of a single branch labelled “success” with a single output
parameter parameter labelled “instance”, which is used to write the newly
created process instance to a context variable.

A constructor activity is not to be confused with an atomic activity executing a
Java constructor. The latter is defined as a static SIB (cf. Sec. 3.2.1).

3.3.6 Graph Inspector

The graph inspector is used to configure SLGs. It is depicted in the bottom left of
Fig. 3.2:

- The “Package” and “Name” field define the full qualified name of an SLG.

- The combo box “Type” differentiates between service graphs (cf. Sec. 3.3.1)
and interface graphs (cf. Sec. 3.5.1).

31

3 Higher-Order XMDD

start end service interface constructor

Table 3.2: Node visualization of activities for modeling hierarchical SLGs.

- “Icon” allows to set a domain-specific icon for a graph, which is then used
as node visualization for referencing abstraction activities. A domain-specific
icon overrides the default visualization depicted in Table 3.2, but is overlayed
with the icon for service, interface, or constructor graph SIBs, respectively
(cf. the small overlay icons in the top right of the icons in columns “service”,
“interface”, and “constructor”).

- Start and end activities are created from the “I/O” box as described in
Sec. 3.3.1.

- The “Variables” list contains the context variables of the current SLG (cf.
Sec. 3.1.3).

- For service graphs the implemented interface graph is visualized in the “inter-
faces” list (cf. Sec. 3.5.1). There may be only one interface per service graph
at the time of writing.

3.3.7 Graph Browser

In jABC3 the SLGs are shown in the project browser as they are saved in the
project folder as XML files. This is still the case, but since SLGs of jABC4 have a
full-qualified name and are available via SLG libraries beyond project boundaries,
the graph browser tab has been added. The browser is situated in the top-left of the
jABC4 main window (cf. Fig. 3.2). It shows all graphs on the project class path
as well as the SLGs defined in the project itself in a tree view according to their
package structure. The symbol left of the simple name of an SLG depicts whether
it is a service graph or interface graph (cf. Sec. 3.5.1). In Fig. 3.2 some basic
integer math operations of the basic SLG library are shown.
As for the service browser a fast filter box assists the modeler in finding a graph.

The domain expert may prepare the shown SLGs by configuring the dependencies via
maven, so that the SLG libraries available are tailored to the needs for the project.
The graph browser may even be hidden completely. This may be reasonable for
projects that have prepared service browsers or IO browsers (cf. Sec. 3.4.2), so that
a modeler does not need or should not see the graph browser.
An abstraction activity referencing an SLG is created by dragging a leaf node

of the graph browser to the graph canvas. The new activity automatically has the
input parameters, branches, and output parameters declared in the sub model as
well as the domain-specific icon set in the graph inspector or the default icon as
shown in Table 3.2 if no domain-specific icon has been configured.

32

3.4 Configuration

New constructor activities are instantiated by holding the “CTRL”-key down while
dragging and dropping a service graph onto the graph canvas. No input parameters,
branches, or output parameters of the sub model are created, but the type arguments
as well as a “success”-branch returning a process instance of the given type.

3.3.8 Graph Chooser

Context variables as well as input and output parameters of an SLG (via the start
and end activities) are typed. As described in Sec. 3.2.3 a class chooser may be used
to select a Java type, like a class, interface, or enumeration. Analogously a graph
type may be configured. This is done by a right-click on a context variable or input
(output) parameter of an SLG and selecting the menu item “Choose graph. . . ”. This
opens the graph chooser, which is a dialog similar to the graph browser component.
It shows the SLGs on the project class path, offers likewise a fast filter box, and
has an “OK” and “Cancel”-button. The latter does not change the type of the
respective component. If the “OK”-button is chosen, the currently selected leaf node
representing an SLG is selected as graph type. For context variables the graph type
is inferred automatically via the connected input/output parameters of activities in
the most cases, so that it is not necessary to do it manually.
If the selected SLG is a generic graph, the context menu of the respective com-

ponent (i.e. context variable or parameter) will offer to configure the type of these
type arguments, too (cf. the type Iterate<String> of context variable “iterate”
on hierarchy level n in Fig. 3.7). Initially each is set to the upper bound of the
type parameter. At the time of writing it is not possible to use graph types in
type arguments, neither for graph types nor for Java types. This is not a technical
restriction, but again a decision which may be reconsidered in the future on an ‘as
needed’ basis.

3.4 Configuration

Atomic activities have already been introduced in Sec. 3.2.1, in order to bind service
(i.e. method) executions to activities in technical processes as well as abstraction
activities in Sec. 3.3.2 for creating SIB libraries representing service graphs in a
hierarchical fashion. The former give a foundation in the target language ensuring
executability. The latter abstract from technical details via hierarchical modeling
and assemblation of SIB libraries. Together this allows to create executable domain-
specific processes staying in the same modeling language, i.e. without the need to
program any SIB classes or to use any other form of description language as in
former jABC versions or its predecessor ABC. Even the decision between dynamic
and static input parameters can be made on the modeling level.
But still due to the lack of a SIB class or some similar construct – as it has been

available in jABC3 and its predecessors – it is not possible to hide access to the
execution context. Every communication with context variables has to be modeled
explicitly. This limitation is tackled by a configuration layer. Furthermore it enables
to abstract from additional details without introducing any technological breaks.

33

3 Higher-Order XMDD

3.4.1 Configuration Graphs

The configuration layer is realized via configuration graphs, SLGs without any
control-flow information, i.e. no (or empty) transition function δ : A × B → A
(cf. Def. 3.11), declaring activities with (partially) preconfigured data-flow and fur-
ther meta-information denoted by preconfigured activity. A modeler may

- simply drag-and-drop activities – atomic as well as abstraction activities – to
the canvas of a configuration graph,

- create context variables,

- connect context variables to input and output parameters of the activities,

- set type arguments of a generic abstraction activity,

- change the icon of an activity,

- set the label of activities, and

- add further meta-data as, e.g., validations or temporal formulae for verifica-
tion.

Example 3: Produce a “Bonus”-SIB from an “Add”-SIB
In the ChainReaction scenario, e.g., it is a common task to add a bonus or substract
a malus from the context variable holding the cell evaluation “evaluation” (cf. the
graph canvas in Fig. 3.2). The configuration feature described in this section enables
to create a new domain-specific SIB named de.jabc4.strategies.cr.Bonus
from an existing basic SLG Add. The latter adds Integer “a” to “b” and stores the
result “result” to a third integer. During the preconfiguration (cf. Fig. 3.8) an ab-
straction activity of type Add is created and labeled “de.jabc4.strategies.cr.Bonus”
in the graph canvas of a configuration graph named CR (short for ChainReaction).
Then the first parameter is switched to a static parameter with initial value 1, and
the second is configured to read from the context variable “evaluation”. The output
parameter “result” is set to write to the variable “evaluation”, too. Finally, the icon
of the activity is changed, so that it shows +n instead of a + as the SLG Add does
(cf. activities with label “+5” or “+10” in Fig. 3.2). The new activity can be used
without any configuration. If a modeler uses the activity “Bonus”, but wants to
change the amount of bonus, he or she may change the value of the static parameter
“a” as for any other activity. In contrast, the communication with the context must
not be configured manually anymore, but is still available (and adaptable) on the
modeling level, e.g., for validations.

Then a new io browser can be created from a configuration graph in the spirit of
service- (cf. Sec. 3.2.2) and graph browsers (cf. Sec. 3.3.7), just by right-clicking on
a SIB in the graph browser and selecting “create new io browser”.

34

3.4 Configuration

Figure 3.8: Example configuration graph for
the ChainReaction Scenario.

Figure 3.9: Example IO browser for
the configuration graph
shown in Fig. 3.8.

3.4.2 IO Browser & Preconfigured Activities

An io browser (cf. Fig. 3.9) presents all the activities in the configuration graph
(the templates for preconfigured activities) as io SIBs, to be dragged-and-dropped
onto the canvas of another graph. A new activity (the instantiation of a precon-
figured activity) is then created in the target graph gaining the properties of the
preconfigured activity.
If an input or output parameter of the preconfigured activity is connected to a

context variable, a new context variable is created which references the original
variable (enhancing the definition of context variables with a reference to a source
variable), so that if the same or another preconfigured activity referencing the very
context variable is instantiated in the current process model, the formerly auto-
created variable will be reused. Technically this is achieved by falling back to the
UUID of the label (cf. Def. 3.1) of a context variable: Both the source- and the auto-
created variable have the same name, but different UUIDs, though the auto-created
variable references the UUID of the source variable, in order to have distinguishable
context variables that still are associated.
Auto-created context variables are matched transitively, i.e., such a variable al-

ways stores the “root” context variable as source variable. Hence if a preconfigured
activity of configuration graph A (communicating with the execution context) is in-
stantiated in configuration graph B and C, they are again preconfigured activities,
which may both be instantiated in the concrete service graph D. These instantiated
preconfigured activities use the same context variables defined in A. This enables to
combine SLG libraries from different domains easily. This has construction-defined
limitations:

- If a template for a preconfigured activity is changed in a configuration graph,
its instantiations are not updated accordingly as they are copies, that are
autonomous (and can be changed independently). This could be changed in
future releases such that an instantiation of a preconfigured activity references
its template and learn changes to the template. All changes to the instantiation

35

3 Higher-Order XMDD

would have to be stored in an additional layer, so that they are not overwritten
by changes to the template.

- At the time of writing every context variable has exactly one “root” source vari-
able, so that auto-created context variables of different configuration graphs
(assuming the type matches) cannot be merged to one context variable. This
would be helpful in order to merge preconfigured activities (that have no com-
mon ancestor configuration graph) of different domains to communicate with
each other.

Both limitations may be overcome in future releases of the jABC4.
The labels of preconfigured activities are used as the identifier of the SIBs in the

IO browser. For atomic activities the package and simple name of a class, together
with the method name structure the service browser as a tree, whilst for abstraction
activities the package p and name n shape the tree structure in the graph browser.
Analogously, the label of a preconfigured activity is evaluated as a full qualified name
with a ‘.’ as the separator. The package structure is created from the elements before
the last ‘.’ and the label of the IO SIB itself is the part after the last ‘.’18 (denoted as
simple name). If there is no ‘.’ in the label, it will be put into the “default” package.
When an IO SIB is dropped onto the graph canvas, the simple name will be used
as initial label. All properties inherited from a precondigured activity are may be
modified/changed on the newly instantiated activity.
With configuration graphs, a modeler is now able to preconfigure activities on

every hierarchy level and therefore create new activities from existing ones just by

- reorganizing them in taxonomies via a full-qualified name in the label,

- predefining the input and output parameterization, and

- setting input parameters to initial constant values.

This enables to permeate further the principle of separation of concerns:

1. A programmer may prepare a library as a plain old Java API.

2. A technically versed modeler creates generic technical SLGs adapting to the
underlying API via service browsers (cf. Sec. 3.2).

3. A domain expert prepares service graphs (for hierarchical abstraction) as well
as configuration graphs via the graph browser (cf. Sec. 3.3 and this section)
tailoring the technical SLGs as well as service graphs from one hierarchy level
above for a given domain.

4. These service and configuration graphs – on every hierarchy level – may be
published as SLG libraries.

5. An application expert uses selected SLG libraries on a tailored abstraction
level to describe his requirements to an application.

18In Java packages use the same notation.

36

3.5 Variability

Finally, steps (3) and (4) may be applied repeatedly resulting in a “pile” of hierarchy
levels, so that the separation of concerns may be pervaded in a divide-and-conquer
fashion, therof implementation tasks become manageable for all participants. This
is in particular supported by the closed-fashioned of the execution context, commu-
nicating via well-formed input/output parameterizations.
In an application-specific jABC4-project, the domain expert may then choose

from the configuration graphs, which should be used for the io browsers and hide
the graph as well as any service browser, so that an application expert is able to
concentrate on his domain via tailored activities.

Example 4: IO browser for the ChainReaction scenario
In Fig 3.8 there is already a hint, that the configuration graph defines a complete
library of activities for the ChainReaction domain via the vertical dots beneath
the activity “de.jabc4.strategies.cr.Malus”. Example 3 describes how an activity for
adding a bonus to the cell evaluation may be preconfigured, from a basic SLG adding
two integers. The malus is realized analogously via a preconfigured negative value for
the malus to be added as well as a different icon showing a -n. The corresponding
IO browser is shown in Fig. 3.9 with some more preconfigured activities. They
are structured regarding the package definition in the labels of the preconfigured
activities. A Bonus-SIB may be dragged and dropped to the graph canvas of an
arbitrary SLG and the context variable “evaluation” is created and wired to the new
activity. If a second Bonus- or e.g. a Malus-SIB is added to the SLG as a new
activity, they will read from and write to the same context variable “evaluation”.

3.5 Variability

By allowing to bind virtual methods19 to dynamic SIBs and connecting the instance
parameter i =def (Ina \ Inad

) to context variables, at runtime the value of the
context variable may be an instance of an arbitrary sub class of the class declared
in the context variable. Thus polymorphic service calls are directly supported, since
the behavior of a technical SLG may change without touching the process, just by
parameterizing it with instances of different Java types at runtime [NS14]. Hence
besides data objects Java objects are allowed in the context as first-class citizens
reminiscent to functional programming.

Example 5: Java objects as first-class citizens in the execution context
The abstraction activity on hierarchy level n in Fig. 3.7 has the input parameter
“iterable” of type Iterable<T>. At runtime an instance of any class implementing
the interface, like ArrayList, LinkedList, or HashSet may be provided as actual

19Virtual methods are dynamically bound as they override a method of a base class. Calling such
a method on a variable defined with the base class executes the respective implementation of
the instances declaring class. This feature is called subtype polymorphism in object-oriented
programming.

37

3 Higher-Order XMDD

parameter. Then on hierarchy level n − 1 the instance will be used to retrieve an
iterator from the iterable (cf. activity “retrieve iterator”) and stores the result to
the context variable “iterator”. The iterator serves activity “retrieve next” with
the retrieval of the next item in the collection, no matter which implementation of
Iterator<T> is in the context. This allows to change the runtime behavior of a

process model in a typesafe manner without the need to adapt it.

Furthermore, it is possible to

- store process instances in the execution context,

- use them as input and output parameters of input as well as output SIBs,

- reuse them for multiple executions as described in Sec. 3.3.3, and

- to create new instances via constructor activities as presented in Sec. 3.3.5.

This enables to pass services and process instances between graphs just like data.
Thus the paradigm to allow executable and polymorph “entities” in the context as
well as input and output parameters is consequently permeated to the modeling
level supporting true higher-order process engineering (HOPE) as described in more
detail in the following [NS13b, NS13a, NSM13].

3.5.1 Interface Graphs

In order to support runtime variability on the modeling level interface graphs are
introduced declaring the input and output parameterization of a service graph but
no control-flow just like an abstract method (e.g. in Java) declares the method
signatures: each implementing class has to define the method. The same holds for
implementing service graphs.

Definition 3.16. A (generic) dual IO kripke transition system gKTSI/O (or a
dKTSI/O if it does not define any type parameter) – denoted as (generic) interface
Graph – over an enhanced type system TParam and a finite set of atomic propositions
AP is a structure gKTSI/O = (n, p,Param,A, a0,AOut, I), where

- n is the simple name of the interface graph,

- p is the package name of the interface graph,

- together n and p build the full qualified name of the graph,

- Param is a set of graph type parameters (the formal parameters for parametric
polymorphism as described in Sec. 3.3.4),

- A is activity domain (cf. Def. 3.8),

- a0 ∈ A a dedicated start activity, i.e., an input SIB,

- AOut ⊆ (A \ a0) a finite set of end activities, i.e., output SIBs,

38

3.5 Variability

Figure 3.10: Interface graph for cell evaluations in the ChainReaction scenario.

- A = a0 ∪ AOut, since an interface graph declares a process signature and
therefore has a start activity and output activities only, and

- I : A → 2AP is an interpretation function.

In the graph browser interface graphs are shown along with the service graphs
(sorted into the tree structure by package), just showing a purple ‘G’-icon left of
its label instead of a green one as for service graphs (cf. Sec. 3.3.7). An interface
graph can be implemented by any service graph, just by dragging the interface
graph from the graph browser to the list “interfaces” in the graph inspector shown
on the bottom left of Fig. 3.2. At the time of writing exactly one interface is allowed
for a service graph (although it is visualized as a list by now). In the spirit of
functional programming an interface graph can be seen as a function signature and
it therefore has no further identity, so that it does not make sense to let an service
graph implement multiple interfaces that would be substitutable or more precisely
be considered the same. Thus, it is possible to add constraints to an interface graph
so that it is nevertheless reasonable to distinguish interface graphs. Still this is not
supported yet and this again is a decision made on an ‘as needed’ basis, which might
change in the future.
Analoguously by now it is not envisaged to constrain interface graphs or service

graphs, i.e., we have a flat and easy-to-understand inheritance hierarchy. An im-
plementing service graph has the exact same input/output parameterization as its
interface graph in order to be considered valid.
A context variable may represent an interface graph together with Java classes

and service graphs all being a part of the type system T in jABC4. The type is
automatically set – just as for service graph SIBs – as soon as the context variable
is connected to a corresponding activity (cf. Sec. 3.5.2), or may be set manually
via the graph chooser (cf. Sec. 3.3.8). Input and output parameters of a service or
interface graph (i.e., the parameters of input and output SIBs) may be configured
to refer to an interface graph type via the graph chooser, too.

Example 6: An interface graph for the ChainReaction scenario
As described in Sec. 2.2, the task for the pupils in their project week was to create
a process model, that evaluates the worthiness of a cell in a given board configura-
tion. Therefore each process model should have a similar input and output param-

39

3 Higher-Order XMDD

eterization as presented in Example 1. The corresponding interface graph named
GameStrategy is depicted in Fig 3.10. The example GS shown in Fig. 3.2 already

implements the interface (cf. the list “Interfaces” in the graph inspector). The icon
in the graph inspector is set to:

3.5.2 Interface Graph SIBs

Up to here an interface graph may be used as a type for context variables and
input/output parameters of abstraction activities. A process instance of any service
graph implementing this very interface graph may be the mutable value of such
a context variable and passed through the respective input/output parameters at
runtime. Thus in order to execute the process instance polymorphous interface
graph SIBs are introduced. They are structured analogously to service graph SIBs
and are created via drag-and-drop of a leaf node in the graph browser representing
the interface graph to the canvas (cf. Sec. 3.3.2 & 3.3.7).
There are some construction-conditioned limitations:

- The instance parameter “instance” has the type of the interface graph and
may be connected to context variables referencing this very type, only.

- The instance parameter of an interface graph SIB must be set to a context
variable, since an interface graph declares the input/output parameterization
only but is not executable itself. Therefore an instance of a concrete imple-
mentation is definitively necessary and cannot be created on demand.

- It is not allowed, that no instance is available at runtime, since the interpreter
(or the generated code respectively) does not know which implementation of
the interface graph it should instantiate (cf. Sec. 3.6).

- Finally, no contructor SIB is available for interface graphs for the same reason.

At runtime, if the control-flow reaches an interface graph SIB, it will retrieve the
respective instance from the connected context variable and execute it just as de-
scribed in Sec. 3.3. This is always possible since the input/output parameterization
of the interface graph and all its implementing service graphs is exactly the same
and therefore surely substitutable. This way, it is possible to create and pass around
process instances just like data in a higher-order fashion and execute them polymor-
phous without touching the executing process model, just by parameterizing it with
a respective implementation of the interface graphs.

Example 7: The bridge between jABC4 and ChainReaction
A bachelor student of mine prepared an SLG embedding the pupils’ implementa-
tions of CellEvaluation into ChainReaction as an GS, namely StartCR. It is
illustrated in Fig. 3.11. The start activity declares two input parameters for the

40

3.5 Variability

Figure 3.11: Service graph interacting between jABC4 and ChainReaction.

graph. They contain the process instances for both players representing the GSs in
form of implementations of CellEvaluation. The SLG shown in Fig. 3.11 is a
downgraded variant of the original process model, in that it has no check whether
both GSs are set. In the original process an absent GS would result in setting a
human opponent, so that the pupils can test their GS either by playing against it
or letting it play against a competitor GS. Here we assume that both GSs are set.
The GSs are written to the context variables “player 1 GS” and “player 2 GS”.

The first activity after the input SIB “next game move” executes the sub process
handling the interaction with the game. For every game move it alternately returns
with branch “player 1” or “player 2” until one of the oponents has won. Finally,
“next game move” returns with the branch “win” meaning that the GS who did the
last move has won.
The activities following the branches “player 1/2” reference the SLG
PutToContext and write the respective cell evaluation process to the context vari-

able “current GS”. In both cases the graph StartCR then iterates through the cells
of the game board. For each cell the process in the variable “current GS” – which
is interchangingly the GS configured for the first and second player respectively – is
executed in the interface graph SIB “evaluate cell” and the evaluation is stored into
a data structure.
Afterwards the cell with the best evaluation is selected and the actual move takes

place in activity “place atom” and the game is queried for the next move. If the
best cell is not definite, one of the best-rated is chosen randomly.

41

3 Higher-Order XMDD

Figure 3.12: Starter graph for the instantiation of two GSs and execution of Chain-
Reaction via the graph depicted in Fig. 3.11 in activity “start game”.

This example shows, that HOPE enables to pass process instances just like data,
so that an activity (i.e., “evaluate cell”) even may execute a different process instance
every time it is executed.

3.5.3 Constructor Activities and Interface Graphs

A constructor activity (cf. Sec. 3.3.5) creates an instance of a given service graph. If
the service graph implements an interface, the instance may be written to a context
variable typed with the corresponding interface graph and passed to a similarily
typed input parameter of an abstraction activity. This way a modeler can steer
which implementation is executed in the sub process just by parameterizing it with
an instance created by a constructor activity.

Example 8: A starter graph for the ChainReaction scenario
The pupils were able to test their GSs, by creating a simple starter graph as depicted
in Fig. 3.12. It contains a constructor activity for the GS to be tested and one for a
competitor GS, which may be the same or any other GS. In this example the provided
SLG StandardGS is used. The instances are written to context variables and
used as input parameters for the abstraction activity “start game”, which references
the SLG StartCR (cf. Example 7). Hence the pupils used higher-order process
engineering seamlessly, as it hides the technical details of interacting with the game
as well as handles the always same task of evaluating the complete game board. The
pupils were able to simply create the evaluation for one cell in a divide-and-conquer
manner, instantiate it together with a competitor cell evaluation process in a starter
graph and pass it to the game process.

3.5.4 Configuration Interface Graphs

The feature of configuration graphs may be combined with interface graphs, in order
to be able to provide preconfigured IO activities for all instances of a given interface

42

3.5 Variability

Figure 3.13: Example for a configuration interface graph combining the configuration
graph shown in Fig. 3.8 and the interface graph of Fig. 3.10 for the
ChainReaction scenario.

graph. This helps especially if there are a lot of implementations anticipated. But
the telling argument for this hybrid form of SLGs is that a modeler may preconfig-
ure to/from which context variables the input/output parameters of its start/end
activities writes/reads.
In combination with arbitrary further preconfigured activities in the configuration

interface graph, it is possible to predefine domain-specific activities determining not
just the data-flow between the instantiated activities in every implementing service
graph, but between the start/end activities and the execution context (and therefore
for the other activities), too. Thus the data-flow may be preconfigured completely
and consistent for all implementations of an interface graph.
A configuration interface graph is defined similar as an configuration graph (cf.

Sec. 3.4.1), with the difference, that it may be used for both to create an IO browser
like from a configuration graph and it may be applied to context variables and
interface graph activities just like an interface graph (cf. Sec. 3.5.1).
Here the transitivity of auto-created context variables mentioned in Sec. 3.4.2

comes in handy. Experts of different domains may have prepared configuration
graphs for their domain. A selection of template activities of these domains may be
instantiated in the configuration interface graph and their configuration tailored to
the needs of the current domain. This enables an even clearer form of separation of
concerns (than mentioned before) as a modeler, who should implement the interface,
gets a tailored set of activities borrowed from possibly different domains, which have
been defined by separate domain experts, since the preparation of a configuration
interface graph allows to reuse existing components from other configuration graphs.

Example 9: Configuration interface graph for the ChainReaction scenario
The configuration graph for the ChainReaction scenario (cf. Fig. 3.8) may be com-

43

3 Higher-Order XMDD

bined with the interface graph (cf. Fig. 3.10) to a configuration interface graph.
If a new implementation of this graph is created (i.e., a new cell evalution SLG),
the IO browser of the configuration interface graph contains the preconfigured input
and output SIBs, which share the context variables with the other preconfigured
activities like, e.g., “evaluation” which is used by activity “Bonus” and “Malus” and
the end activity “success”. This way an GS may be created just by drag&drop of
domain-specific preconfigured activities, and connecting them regarding the control-
flow, without any need to deal with the data-flow. Still the data-flow information is
available for validations and, e.g., boni may be adjusted via the constant parameters
directly in the process model.

3.6 Inversion of Control

Sec. 3.3.1 mentions that global variables or scopes are not supported intentionally
in favor of simplicity. Thus a consequent use of input and output parameters for the
complete communication between components would bloat the parameterlists. This
can be overcome via configuration graphs, already preconfiguring a lot of them. But
it would aggravate the reuse of interfaces since there will always be at least ‘that’
parameter being necessary in one domain, but not in the other.
In the HOPE approach this issue is tackled via inversion of control (IoC) or more

precisely dependency injection as Martin Fowler in 2004 [Fow04] called the software
design principle of providing dependencies to an object at runtime via some kind of
container. Dependency injection allows to mark context variables to be injected and
at runtime a corresponding instance is provided by the execution environment so
that it is not necessary to pass an instance through all hierarchy levels. This feature
supports separation of concerns in that it hides (or encapsulates) dependencies of
components. Furthermore by adapting the configuration of the environment a new
level of runtime variability is attainable as different implementations can be injected
into the process instances changing its behavior without touching any process model.
A prominent framework supporting dependency injection is contexts and depen-

dency injection20 (CDI), which is both part of the Java EE (enterprise edition)
standard and has a Java SE (standard edition) implementation called “Weld”, so
that it may be used in enterprise environments, standard desktop applications, Java
web start, and applets. Hence, the CDI framework is employed.
The technical details for the interpreted case are described in Sec. 3.8. For the

modeler it is simply a right-click followed by activating the chooser menu item “Inject
instance”. Injection is possible for Java classes, Java interfaces, and interface graphs.
Java types are injected via CDI which returns (injects) an instance of a corresponding
bean21. If there is more than one bean type matching an inject declaration the CDI-
container fails with an exception message “ambiguous dependency”. For interface
graphs an implementing service graph is injected, accordingly. If more than one
20https://www.jcp.org/en/jsr/detail?id=299
21The notion bean stands here for web or enterprise beans, which are container managed java

instances being target of, e.g., dependency injection.

44

https://www.jcp.org/en/jsr/detail?id=299

3.6 Inversion of Control

implementation is found in conformity with the behavior of the CDI-container an
exception is thrown.

Example 10: IoC in the ChainReaction scenario
In the process models referenced by the abstraction activities labelled “next game
move” and “place atom” in Fig. 3.11 the API of the game ChainReaction is invoked.
As the game has a state during a match, an instance of the game object would have
to be passed to the activities and stored in the execution context of StartCR.
Alternatively, both sub processes (namely CRMove and PlaceAtom) could mark
the context variable holding the game instance as injected. In the spirit of separation
of concerns the calling SLG StartCR does not need a context variable for the game
instance anymore, as it is encapsulated on the hierarchy level below.

3.6.1 On the Target Language Level

As described in [NS14] and [NWS14] the IoC capabilities have been used on the
target language level (i.e., Java) for testing a web application. A context vari-
able referenced the interface APIAdapter which offers access mechanisms to the
system under test (SUT). There are different implementations of this interface on
the one hand regarding the access layer (i.e., web-frontend or business logic layer,
cf. [NS14]) and system change in terms of system evolution as well as system migra-
tion [NWS14].
The test blocks for interrogating the SUT are implemented with the HOPE ap-

proach. Technical SLGs access the API adapter for executing an action on the
target system. These get the corresponding API adapter injected, so that the differ-
ent actions can be provided as domain-specific activities to users with low technical
experience without having to deal with retrieving the API adapter. Furthermore
the service graphs representing test blocks (basing on the technical SLGs mentioned
before) can be used to be executed on different access layers as well as for different
system versions just by changing the environment configuration (e.g., the class path)
without the need to bother the modeler.

3.6.2 On the Modeling Level

On the modeling level the IoC capabilities are used for creating different variants of
the code generators for jABC4 process models [Neu14] – which are implemented via
jABC4 process models itself – for the target language Java and Scala respectively.
The dependency injection feature is implemented for the Java generator only, at
the time of writing, so that both the Java and Scala generator process models are
generated to Java.
The generators consist of some base process models for interrogating the structure

of an SLG as well as language specific implementations for generating fragments of
code for the respective target language. At any point where a language specific peace
of code has to be generated for an element of the process model an interface graph
SIB is used and the context variable for the instance parameter is configured as

45

3 Higher-Order XMDD

“Injected instance”. The base process models are bundled into an SLG library. For
each target language an SLG library is provided, too. The latter have a dependency
to the base project and implement the interface graphs.
In the build management environment (i.e., apache maven) a concrete code gen-

erator for an SLG is selected via a maven plugin that references the SLG library for
the concrete target language. The maven plugin invokes the base service graph for
generating a process model and at the injection points the right service graph for
the selected target language are executed since they are the only ones on the class
path due to the maven configuration. If more than one SLG library for concrete
target languages are loaded in one configuration an “ambiguous dependency” ex-
ception will be thrown as mentioned before. This runtime variability solution solves
the same problem as addressed in [JLM+12] via a design-time variability approach
using variation points and model weaving.

3.7 Transition from jABC3 to jABC4

Sec. 6 of [NNL+13] describes how a prototypic reference implementation has been
created for the HOPE approach – the jABC4 plugin – on top of the existing version
jABC3 [SM08] via its powerful plugin concept.
In jABC3 there is no differentiation neither between input and output parameters,

nor between the output parameters of different branches. This is emulated by giv-
ing the parameters corresponding name prefixes like input_ or output_branchxy_,
which are processed in API facades to the jABC3 framework classes in order to
present them nicely in the graphical jABC4 plugin components. The new type-
aware, dynamic SIBs are realized via six “plain old” SIBs:

The service call SIB handles atomic activities. It stores information regarding the
method it represents and uses the Java reflection API22 to execute the method
dynamically.

The input SIB is used as the start activity of an SLG. It retrieves the input pa-
rameters from the parent context and stores them to the local context. For
this purpose each input parameter is divided into two SIB parameter. One is
a model parameter (cf. Chap. 2) with a label prefixed input_ and retrieves
the value from the parent context. The other is a normal SIB parameter with
a label prefix output_success_ responsible for storing the value to the local
context. It has one sole branch “success”, which is followed right after the
parameter transfer. This even works in case of a flat execution context, since
UUIDs are used for the identifier of context variables (cf. Def. 3.3), so that
every context variable has a unique name and therefore cannot interfere with
any other.

The output SIB represents the end activities of an SLG. It retrieves the output
prameters for the respective branch from the local context and stores them to
the parent context. Analogously to input parameter of an SLG, each output

22http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html

46

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html

3.7 Transition from jABC3 to jABC4

parameter is split into a normal SIB parameter prefixed input_ for retriev-
ing the value from the local context and a model parameter prefixed out-
put_branchxy_ for storing the value to the parent context. Each output SIB
exports his only “success”-branch as a model branch (cf. Chap. 2) named like
the label of the output SIB (i.e., branchxy).

The service graph SIB handles abstraction activities referencing a service graph
and is a specialization of the graph SIB of jABC3. The SIB parameters are
the model parameter defined by the input and output SIBs of the associated
service graph, as this is the normal behavior of jABC3. As mentioned before
these are prefixed input_ for the input SIB and output_branchxy_ for the
output SIBs, so that the API facades of the plugin interpret them as the input
and output parameter for the service graph SIB. Additionally, each model
branch of the sub model is translated to a mutable branch of the service graph
SIB according to the standard jABC3 semantics. At runtime it just executes
the process instance in the context. A new instance will be created, if it does
not exist.

The constructor SIB is a graph SIB that references service graphs too but over-
rides the standard behavior in that it does neither use the input/output pa-
rameter nor the branches of the sub model. At runtime it just creates and
stores a process instance of the sub model to the sole context variable output
parameter “instance” of its only “success”-branch instead of executing the sub
model.

The interface graph SIB handles abstraction activities referencing an interface
graph and is defined analogously to service graph SIBs despite, that at run-
time there has to be a process instance in the context or the variable has to
be configured as an “Injected instance”. In the latter case the interface graph
SIB searches for an implementing service graph and creates a corresponding
new instance, stores it to the corresponding context variable and executes it.

These six “jABC3-SIBs” are sufficient to capture all the activities for the HOPE
approach (cf Chap. 3). Each of these SIBs is represented as a SIB class with a
SIB adapter. They use the concept of mutable parameters and branches instead of
defining them statically in the SIB class. Mutable parameters and branches were
originally used for graph SIBs, as they need to be able to adapt to the referenced sub
model. This way one SIB class of the HOPE approach can represent a wide range
of activity types and even switch between dynamic and static input parameters at
the modeling level.
The type information and other meta-information is added as so called user objects

dynamically to the SIBs and SLGs, which are persisted by the jABC framework
automatically. An API facade of jABC4 offers an easy-to-use access to all this
information.
The enhanced information can be viewed and manipulated in specially designed

user interface components of the jABC4 plugin, which comprises hiding some com-

47

3 Higher-Order XMDD

ponents of the plain old user interface. The meta-information is updated via model
listeners, which are part of the plugin concept of jABC3.

3.8 The Interpreter

The jABC3 framework already offers an interpreter for SLGs via the tracer plu-
gin with features like step-wise execution and breakpoints known from debugger as
well as inspection of the current state of an SLG and many more. Since the dy-
namic SIBs are implemented via jABC3-SIBs, a jABC4-SLG is directly executable
via the tracer. Even old and new SIBs can coexist in the same SLG maintaining
its executability [NNL+13]). Furthermore it is possible to use the Genesys gener-
ators [Jö13] to generate executable code from it following the full-code generation
paradigm.
Process instances are realized for stateful processes (cf. Sec. 3.3.3) and higher-

order process modeling (cf. Sec. 3.5) via the class GraphInstance, which holds the
unique identifier of the service graph it represents as well as an jABC3 execution
context (altogether a mapping from string identifiers to arbitrary Java objects),
representing its current state. Hence creating a new process instance of a given
graph is just creating an empty HashMap and setting the identifier. If the instance
should be executed, the interpreter looks up the corresponding SLG overwrites the
context with the one of the process instance and invokes it.
But since all activity types are realized via the six plain old SIBs described in

Sec. 3.7 and the type information is additive meta-information, there is no compile-
time type-safety. Every call to a method is realized via a Java reflection call in the
SIB adapter of the service call SIB. This holds even for the generated code of the
Genesys framework as it calls the aforementioned generic SIB adapters.
The dependency injection feature described in Sec. 3.6 is realized via the afore-

mentioned “Weld” container for Java SE. The tracer plugin is enhanced in that it
creates a weld container for each new execution. In the adapter implementation of
the service call, service graph, constructor and interface graph SIB the current weld
container is retrieved and used to lookup the respective resources.
Some validations regarding the types are already realized in the jABC4 plugin on

the modeling level, but since Java (and Scala) already have a sophisticated type sys-
tem, a generator has been implemented following the full-code generation paradigm
similar to Genesys, completly autonomous from the jABC3 framework. It translates
an SLG into native Java (Scala) calls. The downside is, that the generator can han-
dle the new SIBs only, but it produces, efficient code that can be type-checked by
the compiler of the target language.

Example 11: Rapid prototyping of GSs in the ChainReaction scenario
The pupils may test their GS by executing a starter graph (cf. Fig. 3.12) via the
interpreter in the jABC4 development environment. The configured GSs are passed
to the service graph StartCR and invoked alternately. The own implementation
for cell evaluation may be inspected via adding a breakpoint known from debuggers of

48

3.8 The Interpreter

Figure 3.14: The example GS (cf. Fig. 3.2) in a step-by-step execution via the tracer
plugin.

programming languages. This is done by right-clicking on an activity and choosing
“Add breakpoint”. A breakpoint is visualized via a small purple rectangle in the
bottom right of the activities icon . As soon as the execution reaches an activity with
a breakpoint, the corresponding SLG is opened and the user may use the debugging
window for step-by-step execution of the SLG and view the current content of the
execution context. In Fig. 3.14 a breakpoint has been added to the activity “start”
and the execution has been inspected step-by-step until the activity “is critical?”
(cf. the little green “play”-icon in the bottom right of its icon) for the top left cell
of the game board for the first player (cf. player = “player 1”, x = 0, and y = 0
in the execution context). The last steps of execution may be tracked via the green
highlighting of the edges.
Via breakpoints the rapid prototyping of higher-order processes is easy to use, as

the interpreter stops right in the own process models so that the circumstances in
which the SLG has been executed are hidden from the modeler.

49

4 Conclusion

In this document the HOPE approach has been described in detail, which partitions
the development process in different layers in order to support separation of concerns.
The basis are standard APIs in a target language, i.e. Java [Blo08] or Scala [OSV10]
in the reference implementation. On top of that a layer of technical process models
is situated, that directly binds methods of the target language dynamically to activ-
ities (cf. Sec. 3.2). The underlying target language provides well-defined semantics
guaranteeing executability. Technical details are encapsulated via hierarchical mod-
eling (cf. Sec. 3.3). Moreover, the HOPE approach is component-based, it enforces
sophisticated input/output parameterization supporting parametric polymorphy1 of
process models. Together with the already available type system of the underlying
target language this enables to explicitly model the (type-aware) data-flow informa-
tion of all components in addition to the control-flow information. The complexity
being a consequence thereof has been tackled via preconfiguration of activities and
their input/output parameterization as well as the use of inversion of control (IoC)
to inject components into processes (cf. Sec. 3.4 and 3.6). The process models get
flexible and stay comprehensible by adding a higher-order flavor: services and pro-
cess instances are treated as first-class citizens. Implementations of an activity may
be exchanged at runtime (cf. Sec. 3.5). These layers may be iteratively applied by
diverse participants in the development process to create a complete hierarchy of
domain-specific, preconfigured components, and make them available in libraries to
be reused as activities on the respective next layer of abstraction.

1Realizations of parametric polymorphy are often referred to as “generics” in the corresponding
target languages [NW06].

51

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, A. Guzar, N. Kartha, C.K. Liu, R. Khalaf, Di-
eter Koenig, M. Marin, V. Mehta, S. Thatte, D. Rijn, P. Yendluri,
and A. Yiu. Web Services Business Process Execution Language Ver-
sion 2.0 (OASIS Standard). WS-BPEL TC OASIS, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[Ang87] Dana Angluin. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput., 75(2):87–106, 1987.

[BA04] K. Beck and C. Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

[Blo08] J. Bloch. Effective Java. Java Series. Pearson Education, 2008.

[DS12] Markus Doedt and Bernhard Steffen. An Evaluation of Service Integration
Approaches of Business Process Management Systems. In Proc. of the
35th Annual IEEE Software Engineering Workshop (SEW 2012). IEEE,
2012.

[Fow04] Martin Fowler. Inversion of control containers and the dependency in-
jection pattern, Jan 2004. http://www.martinfowler.com/articles/
injection.html.

[FR14] Michael Felderer and Rudolf Ramler. A multiple case study on risk-based
testing in industry. STTT-RBT, 2014. Under Review.

[GT02] Paul Gerrard and Neil Thompson. Risk Based E-Business Testing. Artech
House, Aug 2002.

[JLM+12] Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and
Bernhard Steffen. A Constraint-based Variability Modeling Framework.
International Journal on Software Tools for Technology Transfer (STTT),
14(5):511–530, 2012.

[JS12] Sven Jörges and Bernhard Steffen. Exploiting Ecore’s Reflexivity for Boot-
strapping Domain-Specific Code-Generators. In Proc. of 35th Software
Engineering Workshop (SEW 2012), pages 72–81. IEEE, 2012.

[Jö13] Sven Jörges. Construction and Evolution of Code Generators - A Model-
Driven and Service-Oriented Approach, volume 7747 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Germany, 2013.

53

http://www.martinfowler.com/articles/injection.html
http://www.martinfowler.com/articles/injection.html

Bibliography

[KA90] Setrag Khoshafian and Razmik Abnous. Object Orientation: Concepts,
Languages, Databases, User Interfaces. John Wiley & Sons, Inc., New
York, NY, USA, 1990.

[MS04] Tiziana Margaria and Bernhard Steffen. Lightweight coarse-grained coor-
dination: a scalable system-level approach. Software Tools for Technology
Transfer, 5(2-3):107–123, 2004.

[MS06] T. Margaria and B. Steffen. Service engineering: Linking business and it.
Computer, 39(10):45–55, Oct 2006.

[MS09a] Tiziana Margaria and Bernhard Steffen. Agile IT: Thinking in User-
Centric Models. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation, vol-
ume 17 of Communications in Computer and Information Science, pages
490–502. Springer Berlin/Heidelberg, 2009.

[MS09b] Tiziana Margaria and Bernhard Steffen. Business Process Modelling in
the jABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der
Aalst, editors, Handbook of Research on Business Process Modeling. IGI
Global, 2009.

[MS11] T. Margaria and B. Steffen. Special session on "simplification through
change of perspective". In Software Engineering Workshop (SEW), 2011
34th IEEE, pages 67–68. IEEE, Jun 2011.

[MS12] Tiziana Margaria and Bernhard Steffen. Service-orientation: Conquer-
ing complexity with xmdd. In Mike Hinchey and Lorcan Koyle, editors,
Conquering Complexity. Springer, 2012.

[MSHM11] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria.
Next Generation LearnLib. In Proc. of 17th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2011),
Saarbrücken, Germany, pages 220–223. Springer, 2011.

[MSR05] Tiziana Margaria, Bernhard Steffen, and Manfred Reitenspieß. Service-
Oriented Design: The Roots. In Proc. of the 3rd Int. Conf. on Service-
Oriented Computing (ICSOC 2005), Amsterdam, The Netherlands, vol-
ume 3826 of LNCS, pages 450–464. Springer, 2005.

[MSS99] Markus Müller-Olm, David Schmidt, and Bernhard Steffen. Model-
Checking - A Tutorial Introduction. In Proceedings of the 6th Interna-
tional Symposium on Static Analysis (SAS ’99), pages 330–354. Springer,
1999.

[Neu14] Johannes Neubauer. Higher-Order Process Engineering. Phd thesis, TU
Dortmund, May 2014.

[NMS13] Johannes Neubauer, Tiziana Margaria, and Bernhard Steffen. Design for
Verifiability: The OCS Case Study. In Formal Methods for Industrial

54

Bibliography

Critical Systems: A Survey of Applications, chapter 8, pages 153–178.
Wiley-IEEE Computer Society Press, Mar 2013.

[NNL+13] Stefan Naujokat, Johannes Neubauer, Anna-Lena Lamprecht, Bernhard
Steffen, Sven Jörges, and Tiziana Margaria. Simplicity-First Model-Based
Plug-In Development. In Software: Practice and Experience. John Wiley
& Sons, Ltd., 2013. first published online.

[NS13a] Johannes Neubauer and Bernhard Steffen. Plug-and-Play Higher-Order
Process Integration. IEEE Computer, 46(11):56–62, August 2013.

[NS13b] Johannes Neubauer and Bernhard Steffen. Second-Order Servification.
In Georg Herzwurm and Tiziana Margaria, editors, Software Business.
From Physical Products to Software Services and Solutions, volume 150 of
Lecture Notes in Business Information Processing, pages 13–25. Springer
Berlin Heidelberg, 2013.

[NS14] Johannes Neubauer and Bernhard Steffen. Learning-Based Cross-
Platform Conformance Testing. In STVR. John Wiley & Sons, Ltd.,
2014. in submisssion.

[NSB+12] Johannes Neubauer, Bernhard Steffen, Oliver Bauer, Stephan Wind-
müller, Maik Merten, Tiziana Margaria, and Falk Howar. Automated
continuous quality assurance. In Formal Methods in Software Engineer-
ing: Rigorous and Agile Approaches (FormSERA), 2012, pages 37–43.
Springer, 2012.

[NSM13] Johannes Neubauer, Bernhard Steffen, and Tiziana Margaria. Higher-
Order Process Modeling: Product-Lining, Variability Modeling and Be-
yond. Electronic Proceedings in Theoretical Computer Science, 129:259–
283, 2013.

[NW06] M. Naftalin and P. Wadler. Java Generics and Collections. O’Reilly
Media, 2006.

[NWS14] Johannes Neubauer, Stephan Windmüller, and Bernhard Steffen. Risk-
Based Testing via Active Continuous Quality Control. In Special Issue:
Risk-Based Testing, Software Tools for Technology Transfer. Springer,
2014. to appear.

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0, 2011.
http://www.omg.org/spec/BPMN/2.0/.

[OSV10] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima
Series. Artima, Incorporated, 2010.

[PS91] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. SIGPLAN Not., 26(11):146–161, Nov 1991.

55

http://www.omg.org/spec/BPMN/2.0/

Bibliography

[RSBM09] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.
LearnLib: a framework for extrapolating behavioral models. International
Journal on Software Tools for Technology Transfer (STTT), 11(5):393–
407, 2009.

[RSM08] Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. Dynamic Testing
Via Automata Learning. In Proc. of the Haifa Verification Conference
2007 (HVC ’07), volume 4899 of LNCS, pages 136–152. Springer, 2008.

[Ses12] Peter Sestoft. Higher-order functions. In Programming Language Con-
cepts, volume 50 of Undergraduate Topics in Computer Science, pages
77–91. Springer London, 2012.

[SHM11] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active
Automata Learning from a Practical Perspective. In Marco Bernardo and
Valérie Issarny, editors, Formal Methods for Eternal Networked Software
Systems, volume 6659 of Lecture Notes in Computer Science, pages 256–
296. Springer Berlin Heidelberg, 2011.

[SM99] Bernhard Steffen and Tiziana Margaria. Metaframe in practice: Design
of intelligent network services. In Ernst-Rüdiger Olderog and Bernhard
Steffen, editors, Correct System Design, volume 1710 of Lecture Notes in
Computer Science, pages 390–415. Springer Berlin Heidelberg, 1999.

[SM08] B. Steffen and T. Margaria. Business process modelling in the jabc: The
one-thing approach. In Handbook of Research on Business Process Mod-
eling. IGI Global, 2008.

[SMBK97] Bernhard Steffen, Tiziana Margaria, Volkar Braun, and Nina Kalt. Hi-
erarchical Service Definition. Annual Review of Communications of the
ACM, 51:847–856, 1997.

[SMC+96] Bernhard Steffen, Tiziana Margaria, Andreas Claßen, Volker Braun,
Manfred Reitenspieß, and Helmut Wendler. Service Creation: Formal
Verification and Abstract Views, 1996.

[SMCB96] Bernhard Steffen, Tiziana Margaria, Andreas Claßen, and Volker Braun.
Incremental Formalization: A Key to Industrial Success. Software - Con-
cepts and Tools, 17(2):78–95, 1996.

[SMN+06] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Chris-
tian Kubczak. Model-Driven Development with the jABC, volume 4383
of LNCS, pages 92–108. Springer Berlin/Heidelberg, 2006.

[SN07] Bernhard Steffen and Prakash Narayan. Full Life-Cycle Support for End-
to-End Processes. IEEE Computer, 40(11):64–73, 2007.

[SS06] August-Wilhelm Scheer and Kristof Schneider. Aris — architecture of
integrated information systems. In Peter Bernus, Kai Mertins, and Gün-
ter Schmidt, editors, Handbook on Architectures of Information Systems,

56

Bibliography

pages 605–623. Springer Berlin Heidelberg, 2006. 10.1007/3-540-26661-
5_25.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process Mod-
eling using Event-Driven Process Chains, pages 119–145. John Wiley &
Sons, Inc., 2005.

[VG07] Markus Voelter and Iris Groher. Product line implementation using
aspect-oriented and model-driven software development. In Proceedings
of the 11th International Software Product Line Conference, SPLC ’07,
pages 233–242. IEEE Computer Society, Washington, DC, USA, 2007.

[WNS+13] Stephan Windmüller, Johannes Neubauer, Bernhard Steffen, Falk
Howar, and Oliver Bauer. Active Continuous Quality Control. In 16th
International ACM SIGSOFT Symposium on Component-Based Software
Engineering, CBSE ’13, pages 111–120. ACM SIGSOFT, New York, NY,
USA, 2013.

[WS73] W. Wulf and Mary Shaw. Global variable considered harmful. SIGPLAN
Not., 8(2):28–34, feb 1973.

57

	1 Introduction
	2 Preliminaries
	2.1 Conventions
	2.2 ChainReaction
	2.3 Extreme Model-Driven Design

	3 Higher-Order XMDD
	3.1 Top-Down View
	3.1.1 Execution Context & Constants
	3.1.2 IO Activities
	3.1.3 User Interface
	3.1.4 Dependency Management

	3.2 Canonical Mapping
	3.2.1 Atomic Activities
	3.2.2 Service Browser
	3.2.3 Class Chooser

	3.3 Hierarchy
	3.3.1 Parameterization
	3.3.2 Abstraction Activities
	3.3.3 Stateless and Stateful Processes
	3.3.4 Type Parameters
	3.3.5 Constructors
	3.3.6 Graph Inspector
	3.3.7 Graph Browser
	3.3.8 Graph Chooser

	3.4 Configuration
	3.4.1 Configuration Graphs
	3.4.2 IO Browser & Preconfigured Activities

	3.5 Variability
	3.5.1 Interface Graphs
	3.5.2 Interface Graph SIBs
	3.5.3 Constructor Activities and Interface Graphs
	3.5.4 Configuration Interface Graphs

	3.6 Inversion of Control
	3.6.1 On the Target Language Level
	3.6.2 On the Modeling Level

	3.7 Transition from jABC3 to jABC4
	3.8 The Interpreter

	4 Conclusion

