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Summary 

In the recent years, microreactors have been recognized as a potent technology for enhancing 

reaction rates at low energy input and simplified scale up issues. The aim of this thesis was to 

develop and apply microreactors for biocatalytic reactions. In this context, the potential 

advantages of microreactors were explored for both forms of biocatalysts, isolated enzymes and 

whole cells. 

Fast inactivation of the respective enzyme was a key problem when applying it in aqueous-

organic segmented flow microreactors. The large aqueous-organic interfacial area and the strong 

fluidic forces within the segments mostly accounted for enzyme inactivation. Enzyme 

immobilization and addition of surfactant to the aqueous phase were explored as possible 

solutions to overcome fast enzyme inactivation. At an optimal concentration of surfactant 

(Tween 20), the direct contact of enzymes with the interface was prevented, resulting in almost 

100 % recovered enzyme activity as compared to 45% without any medium modification. After 

stabilizing enzyme activity, the enzymatic performance was evaluated in the segmented flow 

reactor for 1-heptanol synthesis by using thermostable alcohol dehydrogenase (TADH) and 

formate dehydrogenase (FDH). An average volumetric productivity of 10.4 gproduct Lorg
-1 hr-1 (90 

mM h-1) was obtained in the 0.5 mm (i.d.) capillary microreactor. The study performed revealed 

that the capillary diameter, flow velocity, and enzyme as well as substrate concentrations were 

important parameters regarding reactor performance. These parameters govern the interplay 

between reaction rates and mass transfer rates and for the systematic optimization of the 

enzymatic microreactor an operational window approach was proposed.  

The concept of segmented flow was expanded to whole-cell catalysis by utilizing biofilms as 

biocatalysts in the microreactor system. The development and maintenance of a stable biofilm 

without clogging the capillary was achieved by following a three step procedure: i) Development 

of a first-stage biofilm during single phase flow. ii) Introduction of air segments which leads to a 

significant detachment of the biofilm. iii) Development of an adapted second-stage biofilm under 

segmented flow conditions. Based on this concept, two reactor set-ups (aqueous-air) segmented 

flow biofilm membrane reactor (SFBMR) and (aqueous-air-organic) segmented flow biofilm 

reactor (SFBR) were developed, and their applicability were investigated for several reactions. For 

styrene epoxidation to (S)-styrene oxide oxygen availability was identified as key limiting 

parameter in the SFBMR, and by enhancing the air flow rates the volumetric productivity was 

improved by 4-fold (11 to 46 gsty. oxid. Ltube
-1 day-1).  
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In summary, this thesis shows the development of the segmented flow microreactor technology 

for enzyme and biofilm catalysed reactions, and emphasizes the potential of this technology for 

biocatalytic reactions.   
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Zusammenfassung 

In den vergangenen Jahren rückten Mikroreaktoren vermehrt in den Fokus des allgemeinen 

Interesses. Diese Systeme zeichnen sich durch eine erhöhte Reaktionsleistung unter niedrigem 

Energieeintrag und relativ einfache Maßstabs Vergrößerung aus. Ziel dieser Arbeit war die 

Entwicklung und Anwendung von Mikroreaktoren auf biokatalytische Synthesereaktionen. In 

diesem Zusammenhang wurde das Potenzial von diesen Reaktorsystemen sowohl für isolierte 

Enzyme als auch für ganze Zellen untersucht. 

Aufgrund der großen Phasengrenzfläche zwischen wässriger und organischer Phase und der 

starken Konvektivkräfte werden isolierte Enzyme in einem (wässrig-organisch) segmentierten 

Durchfluss Reaktor sehr schnell inaktiviert. Durch Zugabe von Tween20 wurde der direkte 

Kontakt der Enzymmoleküle mit der Phasengrenzfläche verhindert. So konnten fast 100% 

Enzymaktivität zurückgewonnen werden, verglichen mit  45% Restaktivität ohne Stabilisator. 

Anhand der Synthese von 1-Heptanol mittels thermostabler Thermus Alkohol Dehydrogenase 

(TADH) und Format Dehydrogenase (FDH) zur Kofaktorregeneration wurde die 

Anwendbarkeit dieser Technologie untersucht. Im segmentierten Fluss in einer 0.5 mm (i.d.) 

Kapillare wurde eine mittlere Produktivität von 10.4 gProdukt Lorg
-1 hr-1 (90 mM h-1) erreicht. Der 

Durchmesser der verwendeten Kapillare, die Fließgeschwindigkeit und die Enzym / Substrat 

Konzentrationen erwiesen sich als entscheidend für die Leistung des Systems. Diese Parameter, 

welche das Zusammenspiel von Massentransfer und Reaktionsrate bestimmen, wurden in einem 

Prozessfenster zusammengefasst, welches nun als Hilfsmittel für eine systematische Optimierung 

dieser Systeme zur Verfügung steht.  

Das Konzept der segmentierten Durchfluss-Mikroreaktoren wurde auf die Ganzzellbiokatalyse 

ausgedehnt, mit einem Biofilm als Modellsystem. In einem 3-stufigen Prozess konnte ein stabiler 

Biofilm in den Kapillaren etabliert werden. i) Anzucht eines Primärbiofilms im wässrigen Fluss. 

ii) Zuschalten der Gasphase in segmentierten Fluss. Dadurch kommt es zur starken Abscherung 

des größten Teils der Biomasse. iii) Wachstum des adaptierten Sekundärbiofilms im 

segmentierten Fluss.  Mit dem „Segmentierter-Fluss (wässrig / Luft) Biofilm-Membran-Reaktor“ 

(SFBMR) und dem „Segmentierter-Fluss (wässrig / Luft / organisch) Biofilm-Reaktor (SFBR) 

wurden zwei unterschiedliche Durchfluss-Reaktoren entwickelt.  Es zeigte sich, dass die Biofilm 

katalysierten Biotransformationen hauptsächlich durch Sauerstoff limitiert wurden. Mit der 

Erhöhung des Sauerstofftransfers im SFBMR konnte eine vierfache Erhöhung der 

volumetrischen Produktivität (11 bis 46 gsty.oxid. L-1 Tag-1) erreicht werden. Im SFBR war es 

aufgrund der limitierten Verweilzeit im Reaktor nicht möglich, den Sauerstofftransfer wesentlich 
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zu erhöhen. Dies führte zu sehr niedrigen Umsatzraten und zeigt einen klaren Nachteil des 

SFBR‘s im Vergleich zum SFBMRs. 

Zusammenfassend zeigt diese Arbeit die Entwicklung und Anwendung von segmentierten 

Durchfluss-Mikroreaktoren für Enzym und Biofilm katalysierte Reaktionen, und verdeutlicht das 

Potenzial dieser Technologie für die Biotechnologie. 
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Abbrevations 

a  Interfacial area per volume (m² m-3) 

Aaq.  Aqueous phase surface area (m²) 

BEHP  Bis(2-ethylhexyl) phthalate 

CAs  Substrate concentration on the surface (mM) 

Cab  Substrate concentration in the bulk liquid (mM) 

CAi  Equilibrium substrate concentration in the aqueous phase (mM) 

CAL   Substrate concentration in the bulk aqueous phase (mM) 

CDW  Cell dry weight 

d   Diameter (mm) 

DA  Substrate diffusion coefficient (m² s-1) 

DAe  Effective diffusion coefficient (m² s-1) 

DCPK  Dicyclopropyl ketone 

DaI   First Damköhler number 

DaII   Second Damköhler number 

Daapp   Apparent Damköhler number 

eo   Enzyme concentration (mM) 

e.e.  Enantiomeric excess 

Ea            Active form of the enzyme 

Ei  Inactive form of the enzyme 

Einact.  Enzyme inactivated (µg mL-1) 

F   Laminar friction constant  

FDH  Formate dehydrogenase 

For.  Formate 

Fr.  Flow ratio 

GC   Gas chromatography 

i.d.  Inner diameter 

IPTG  Isopropyl β-D-1-thiogalactopyranoside 

ka  Rate constant for adsorption [mL µg-1 s-1] 

kL  Mass transfer coefficient (m s-1) 

kd   Enzyme inactivation coefficient (s-1) 

Km  Michaelis constant (mM) 

Korg/aq  Substrate partition coefficient in the organic and aqueous phases 

kcat   Turnover number (s-1)  
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LogPO/W Logarithm of octanol-water partion coefficient 

LUC   Segment length (mm) 

NAD+/H Oxidized/reduced nicotinamide adenine dinucleotide 

OD  Optical density 

OTR  Oxygen transfer rate 

P   Power (W) 

Pe  Peclet number 

PTFE  Polytetrafluroethylene 

rA  Rate of reaction in the aqueous phase 

rA,obs  Observed reaction rate (mM s-1) 

rd  Rate of enzyme inactivation (mM s-1) 

rxs.  Reactions 

SFBMR Segmented flow biofilm membrane reactor 

SFBR  Segmented flow biofilm reactor 

SFER  Segmented flow enzymatic microreactor 

Sty. oxid.  Styrene oxide 

STY   Space time yield (mM h-1) 

SX  External surface area (mm²) 

tr   Reaction time (min) 

TADH  Thermus alcohol dehydrogenase 

U  Activity unit equal to 1 µmol product formed per minute 

V   Volume (L) 

Vact.lost  Loss in volumetric enzyme activity (%) 

Vaq.  Particle volume (mm³) 

VP  Aqueous phase volume (m³) 

Vmax  Maximum reaction rate (mM s-1) 

Yso2   Yield of biomass on oxygen (mg mg-1) 

τ   Residence time (min) 

φ   Phase ratio  

µ   Viscosity (Pa s) 

ϵL   Liquid holdup 

ϵG   Gas holdup 

δ   Diffusion layer thickness (mm) 

Ω   Observable modulus 
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Φ   Weisz modulus 

θ  Fractional surface area covered by enzymes 

Γ  Surface excess energy 
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Introduction 
Current academic and industry research is gaining pace on developing and applying novel 

miniaturized systems (Hessel et al. 2009). Microreactors are characterized by sub-millimetre 

dimensions, which enhance the surface area to volume ratios and decreases diffusion time. Such 

devices are gaining importance in process development as they profit from an excellent heat and 

mass transfer, efficient mixing, low energy input, compact size and improved safety (Ehrfeld et al. 

2000; Kockmann 2006).  

1.1 General criteria to choose a microreactor design 

Reactions that necessitate high mass and/or heat transfer rates to improve the apparent reaction 

rates are generally considered to be well suited for microreactors (Ehrfeld et al. 2000; Renken and 

Kiwi-Minsker 2010). The reactants mass transfer time and the reaction time are important 

measures regarding the influence of chemical parameters (catalyst, solvent, temperature, etc.) or 

physical parameters (reactor type, stirring speed, solvent viscosity etc.) on the product yield of 

such reactions. Figure 1.1 compares the time scale of chemical and physical processes such as 

mass and heat transfer, and mixing (Renken and Kiwi-Minsker 2010). The reaction time is the 

time necessary to completely convert the reactant or substrate supplied. It is the ratio of the reactant 

concentration (s) and the reaction rate (r). As a thumb rule, the time scale for the physical 

processes should be one order of magnitude smaller than the reaction time to overcome mass 

transfer limitations. The characteristic time range for physical processes is in between 10 to 10-2 s 

in conventional reactors and from 10-2 s to 10-5 s in microreactors. Therefore, very fast or 

instantaneous reactions having a time scale in the range of 10-3 to 10-5 s are influenced by physical 

parameters in microreactors. 

 
Figure 1.1: Overview of the time scale of chemical and physical processes adapted from  (Renken 
and Kiwi-Minsker 2010). 
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For slow reactions, the reaction performance is dependent on the intrinsic reaction kinetics of the 

catalyst. Such reactions would profit least if employed in microreactors. Thus, application of 

biocatalytic reactions in microreactors calls for understanding the characteristic reaction and mass 

transfer times, which depend on the nature of the biocatalyst applied.  

1.2 The different types of biocatalysts  

Biocatalysts perform chemical transformation of various compounds mostly in an aqueous 

medium, at ambient conditions (temperatures, pH) and atmospheric pressure. Enzymes form the 

major class of biocatalysts and are employed either in an isolated form or contained in whole cells 

(Table 1.1). The advantages of isolated enzymes are the higher specificity and less mass transfer 

resistance, but they usually require high preparation costs and recycling of expensive cofactors in 

case of cofactor dependent enzymes. In contrast, whole cells recycle the necessary cofactors 

intrinsically and enzyme stability is higher inside the cells. On the downside whole cell 

biocatalysis might be limited by (cell membrane) mass transfer over the cell membrane, protein 

production, cellular metabolism and side reactions. Whole cells can be applied as growing culture 

or resting cells. A brief overview of different types of biocatalysts and its advantages and 

disadvantages is given in Table 1.1. 

Table 1.1: Biocatalyst forms and its advantages and disadvantages (adapted and 
modified from (Faber 2004; Gross 2010). 
Biocatalyst Form Advantages Disadvantages 

Isolated enzymes Free enzymes Simple work-up and no 
side reactions 

Cofactor recycling, 
lower stability and 
expensive purification 

Immobilized enzymes Higher stability, easy 
recovery, and reuse 

Activity loss during 
immobilization, extra 
preparation costs and 
additional mass transfer 
resistance 

Whole cells Free cells-growing 
culture 

Higher activities and no 
cofactor recycling 
necessary 

Large amount of 
biomass and unwanted 
by-products 

Free cells-resting state Easy work-up and fewer 
by-products 

Lower activities and 
stability 

Artificially immobilized 
whole cells 

Re-use possible and 
higher stability 

Lower activities, 
substrate mass transfer 
limitation 

Natural immobilized 
whole cells- (biofilm) 

Higher activities and 
high tolerance to toxic 
chemicals 

Slow growth and mass 
transfer limitation of 
nutrients  
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Enzymes or whole cells may be immobilized to gain structural stability, high catalyst density, and 

to achieve multiple uses. Several methods for immobilization are known, such as crosslinking, 

binding to carrier particles, microencapsulation etc., and detailed description of these methods 

can be found in several texts and review papers (Buchholz et al. 2005; Cao. L 2005; Sheldon 

2007).  

A natural way of immobilization is biofilm formation. Biofilms formed by microbes have the 

ability to self-attach (and thus immobilize) to solid surfaces (substratum) and encase themselves 

in an excreted extra-polymeric matrix called EPS. Key compounds of EPS are polysaccharides, 

proteins, free nucleic acids, and water. It acts as a glue to hold the biofilm to its substratum and 

shields the organisms against various toxic substances. The development of biofilms comprises 

three major steps (Figure 1.2), (1) reversible attachment of the cells to the substratum, (2) 

formation of micro-colonies, EPS secretion and biofilm maturation, (3) steady state, an 

equilibrium between biofilm detached and regrowth. A schematic view of biofilm development is 

shown in figure 1.2 and a detailed description on each step can be found in Halan and co-

workers (Halan et al. 2012). 

 
Figure 1.2: Schematic model showing the three major biofilm development steps (1) biofilm 
attachment, (2) development of micro-and macrocolonies, and (3) steady-state dispersal and 
reproduction.   

1.2.1 Characteristic reaction times for free enzymes or suspended whole cells 

The key to understand biological reaction rates is to examine the kinetic parameters of 

biocatalysts. The kinetic parameters of 6870 enzymes taken from the Brenda database 

(www.brenda-enzymes.info) are plotted in Figure 1.3 as a function of kcat/Km over the number 

of enzymes. The turnover number kcat/Km, is the second order rate constant, and an enzyme is 

very efficient if its turnover number is high. In fact, 45 (0.65%) of the enzymes reported in the 

Brenda database perform catalysis at a turnover number of 108 to 109 M-1 s-1, which is considered 

to be the uppermost limit of bimolecular reactions. At these rate constants, the frequency of the 

collision between substrate and enzyme, and the product formation are the same. In such 
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condition, every collision of substrate molecules with the catalyst leads to a product molecule. 

Such bimolecular reactions are diffusion controlled. 

 
Figure 1.3: Distribution of the second order rate constants (kcat/Km) for enzymes. Data taken 
from Brenda database (www.brenda-enzymes.info). 

The average rate constant for most of the enzymes have kcat/Km values in the range of 104 to 105 

M-1 s-1. Thus, some enzymatic reactions occur very fast, while others are slow. To estimate the 

velocity of enzymatic reactions relative to other chemical transformations, the rate of reactions 

(Figure 1.4) adapted from (Levenspiel 1999) can be applied.  The relative reaction rates vary from 

days in waste water treatment plants to few seconds in rocket engines. Interestingly, the 

uppermost limit is set to bimolecular reactions occurring at 1 atm and 400°C, where every 

collision of the respective reactants with the catalyst results in a product molecule. Similar is also 

true for the upper limit of enzymatic reactions at a turnover number of 108 to 109 M-1 s-1 (see 

above). Furthermore, based on the moderate catalytic speed (kcat/Km in the range of 104 to 105) 

of enzymes and assuming that the substrate and enzyme concentration in the solution is 1 M, we 

estimated the reaction rates. Essentially, the moderate enzymatic reaction rates are in the range of 

104-105 mole m-3 s-1, which is similar to the speed of rocket engines as stated in figure 1.4. 

However, these reaction rates are only possible at a substrate and enzyme concentration of 1 M. 

In practice, the available substrate and enzyme concentrations in the aqueous phase are 100 to 

1000 fold lower than this theoretical value, which severely diminishes the reaction performance. 

Especially, the interesting organic substrates exhibit a very low solubility (below 20 mM) in the 

aqueous phase. If we assume 1 mM of enzyme with the rate constant in the range of 104-105 M s-1 

(moderate speed) then it would take 5 to 0.5 s to completely convert 20 mM of substrate in the 

aqueous phase. Obviously, the addition of a second organic phase is necessary to replenish water 

insoluble substrate molecules. The second organic phase serves as a substrate reservoir to 

overcome the substrate availability limitation. In two-phase biocatalysis, the transformation of the 

respective molecules (rate of reaction) might severely depend on the transport of the substrate 
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over the phase boundary to the biocatalyst. For such a situation, volumetric mass transfer 

governs the reaction performance. 

 
Figure 1.4: Rates of reactions (moles m-3 s-1) adapted from (Levenspiel 1999). 

A similar situation arises, if aerobic microorganism’s (suspended whole cells) are employed as 

biocatalysts where oxygen is a key nutrient for growth and metabolism. However, the solubility 

of oxygen in the aqueous phase is (approx.) 0.2 mM. Typically, the oxygen uptake rate for a 

microorganism such as Azotobacter vinelandii is 12.5 mmol g-1 h-1 (Doran 2004). If we assume a cell 

concentration 10 g L-1 then it would take 6 s to completely consume the oxygen present in the 

aqueous phase. Thus, the continuous supply of air becomes obligatory in bioreactors, and the 

oxygen transfer rate might play a key role in the reactor performance. The oxygen mass transfer 

rate is a function of the volumetric mass transfer coefficient and the concentration gradient 

(Garcia-Ochoa and Gomez 2009). Thus, the maximum oxygen transfer rate per unit aqueous 

volume is given as:  

OTRmax = kLaCAi            (1.1) 

By assuming the oxygen concentration to be constant (due to the solubility limit), the maximum 

oxygen transfer from the gas phase to the liquid phase is characterized by the volumetric mass 

transfer coefficient (kLa). The oxygen mass transfer time is quantified by the mass transfer 

coefficients in the aqueous phase. 

tm=(kLa)-1=(kLAaq./Vaq.)
-1                          (1.2) 

where, Aaq. is the aqueous phase surface area and Vaq. is the aqueous phase volume. For gas-liquid 

reactors, the surface area to volume ratio in micro-channel reactors is reported to be in the range 

of 3000 to 9000 m2 m-3 (Kashid et al. 2011a; Yue et al. 2007), while in conventional reactors a 

maximum surface area to volume ratio of 2000 m2 m-3 is reached (Doraiswamy and Sharma 

1984). Overall, the mass transfer coefficients (kLa) in microchannel reactors are several folds 

10
-4

10
-3

10
-2

0.1 1 10

Cellular rxs.,
industrial water treatment

plants

10
3

10
4

10
5

10
9

10
10

Human at
rest

Working
hard

Gases in porous catalyst
particles

Coal furnaces

Jet engines Rocket engines Bimolecular rxs. in which
every collision counts, at
about 1 atm and 400°C



7 
 

higher than in conventional reactors (Figure 1.5). Thus, biological reactions that are limited by 

mass transfer could benefit from relatively high kLa values in microreactors.  

 
Figure 1.5: Mass transfer coefficient versus interfacial area generated in various reactor types. The 
data for conventional reactors are adapted from (Doraiswamy and Sharma 1984), while data for 
microchannel reactors are adapted from (Yue et al. 2007). 

1.2.2 Characteristic reaction and mass transfer times for immobilized biocatalysts 

Almost 40% of the reported biocatalytic processes applied on industrial scale involve 

immobilized biocatalysts (Liese et al. 2006). As discussed above, the biocatalyst could be 

immobilized either artificially (enzymes or whole cells) within solid particles or gels, or naturally 

(only whole cells) in a self-made polymeric material (biofilms). Based on the characteristic times 

scale of reaction and physical processes we would like to evaluate whether immobilized 

biocatalysts have the potential to be applied in microreactors.  

To address this issue, we have selected biofilms as an immobilized form of biocatalyst. Biofilms 

are highly dynamic structures and various processes, such as biomass growth, biomass decay, 

detachment, reaction and multicomponent diffusion, take place during biofilm development 

(Picioreanu et al. 2000). These processes have completely different time scales (Figure 1.6), which 

makes biofilms the most complex form of immobilized biocatalysts for such an evaluation.  

Biomass growth, biomass decay and detachment are slow processes that occur at a time scale of 

hours to days (Figure 1.6). These processes take longer time to reach a steady state but they 

define the biofilm volume or biocatalyst concentration. However, biofilm reactors are usually 

operated for longer time periods (weeks to months), and once the steady state is reached (1 to 3 

days for biofilm growth and detachment to be in equilibrium) a constant biomass could be 

assumed in the reactor.   
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Multicomponent diffusion of molecules takes place from the bulk phase into the biofilm, which 

contains nutrients for biofilm growth and substrates for reactions. In conventional biofilm 

reactors, the characteristic reaction time is smaller than the substrate diffusion time into the 

biofilm. This means that the reaction is diffusion limited and the catalytically active biomass is 

performing below the possible maximum. As the characteristic reaction time for physical 

processes in microreactors (10-3 to 10-5 s) are lower than in conventional biofilm reactors, the 

reactor performance could be considerably improved for biofilm reactions. However, the key 

bottleneck to realize such a microreactor is the development and maintenance of a stable biofilm 

without clogging the microchannel. This key challenge is addressed in the later part of this thesis 

(chapter 5 and 6). Overall, based on the concept of the characteristic time scale of biocatalytic 

reactions and mass transfer, the potential of microreactors could be explored for biocatalytic 

reactions limited by mass transfer rates.  

 
Figure 1.6: Characteristic times for processes occurring in biofilms. Data adapted and modified 
from (Picioreanu et al. 2000). 

1.3 Multiphase biocatalysis: defining an operational regime by non-dimensional 
numbers 

Several biocatalytic reactions involve multiple phases such as gas-liquid, liquid-liquid and liquid-

solid phases. However, to explore these reactions in microreactors it is utmost important to 

understand whether the reactor performance is mass transfer limited. As described in the above 

section, characteristic times for mass transfer of compounds and characteristic reaction times 

allow an approximation possible mass transfer limitations. In chemical engineering literature, 

such characteristic times are typically described by non-dimensionless numbers.   
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In the following section, non-dimensional numbers are applied to understand the operational 

regime (mass transfer limited or kinetically limited) for solid-liquid and liquid-liquid phase 

biocatalytic reactions described in the literature.  

1.3.1 Liquid-solid biocatalysis  

In heterogeneous biocatalysis, the reaction is performed in the solid particles leading to a two-

step mass transfer resistance (Kasche and Kuhlmann 1980). First, the substrate needs to diffuse 

from the adjoining liquid bulk phase to the solid surface, which is often referred to as external 

mass transfer. In the second mass transfer resistance step, the substrate has to diffuse through 

the solid in order to reach the biocatalyst, referred to as internal mass transfer resistance.   

External mass transfer resistance: This mass transfer resistance may occur by a liquid film 

surrounding the catalyst particle, which is assumed to be stagnant film based on the film theory. 

To assess the influence of external mass transfer resistance on the biocatalytic reaction rate, an 

observable modulus, Ω, (Doran 2004) is applied: 

ߗ ൌ
VP

SX
ቀ

rA,obs

kLCAb
ቁ=

reaction rate

external mass transfer rate
                                                                               (1.3) 

ߗ ൌ
external diffusion time (τext. diffusion)

reaction time (τreaction) 
                                                        (1.4) 

Where Vp is the particle volume, Sx the external surface area, rA,obs the observed reaction rate per 

unit volume of catalyst, kL the liquid phase mass transfer coefficient and CAb is the substrate 

concentration in the bulk liquid. Equation 1.3 is further simplified by assuming that the liquid 

mass transfer coefficient (kL) is proportional to the substrate diffusivity (DA) and inversely 

proportional to the liquid film thickness (δ),  

ߗ ൌ
VP

SX
ቀ

rA,obsδ

DACAb
ቁ      		            (1.5) 

The observable modulus, Ω, is used to quantitatively illustrate the impact of external mass 

transfer on the biocatalytic reaction (Table 1.2). If Ω is much smaller than 1, the substrate surface 

concentration is equal to the substrate bulk concentration (CAs~ CAb) and the external mass 

transfer is insignificant. In case of high external mass transfer resistance (Ω >1), the substrate 

surface concentration is much lower than the substrate bulk concentration (CAs<< CAb), and the 

reaction rate is assumed to be restricted by the external mass transfer rate. In such cases, several 

strategies can be employed to lower the observable modulus such as increasing the surface area to 

volume ratio, decreasing the film thickness by flow velocity, decreasing the reaction rate, or by 

increasing substrate concentration. In the following section, several experimental examples are 

evaluated from the literature to determine the operation regime. 
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Examples: Horvath and coworkers covalently immobilized trypsin and urease on the inner 

surface of capillaries and studied the impact of substrate concentration and flow velocity on the 

reactor performance (Horvath and Solomon 1972). To interpret the impact of external mass 

transfer on the reaction performance we have estimated the observable modulus (Ω) for two 

reactor formats (Table 1.2). The estimation of Ω, was based on the assumption of a diffusion 

layer thickness (δ) of 0.1 times capillary radius (Kerby et al. 2006) and a substrate diffusion 

coefficient of 6.9×10-6 cm2 s-1. The impact of substrate concentrations (CAb), 1 and 10 mM, on 

the observable modulus (Ω) is stated in table 1.2. The low Ω values in the first reactor setup 

suggest that the reaction is not mass transfer limited and the substrate concentration at the 

surface of immobilized enzyme (CAs) is equal to the bulk substrate concentration (CAb) (Table 

1.2). This means that the increase in substrate concentration will not affect the reaction 

performance dramatically. The experimental results confirmed our predictions as slight 

improvement in the reaction rates from 8 to 12 mmoles s-1 were seen with a 10-fold increase in 

substrate concentration (1 to 10 mM). Additionally, the reaction rate was found to be 

independent on the flow rate affirming no impact of external mass transfer resistance. 

For the second reactor setup (Table 1.2), the high Ω value at lower substrate concentration 

indicates that the system is mass transfer limited and the reaction is controlled by the substrate 

diffusion from the bulk phase to the surface of biocatalyst. The experimental results are in good 

agreement to the conclusions drawn from the observable modulus as the reaction rates were 

improved from 12 to 55 mmoles s-1 by the 10-fold increase in substrate concentration (1 to 10 

mM). Moreover, the reaction rates were observed to be strongly dependent on the flow rates 

which clearly emphasize the role of external mass transfer limitation.  

Thus, the simple observable modulus is sufficient to define the operational regime where the 

reactor will be operated (mass transfer or kinetically limited). Once the operability is known, 

further steps to optimize the reactor performance can be undertaken. For example, the first 

reactor setup is operated in a kinetically limited regime. To maximize the reaction rate in such 

setups, either the enzyme loading should be increased or enzymes having higher kcat values should 

be employed for immobilization.    

In an another study, soybean peroxidase (SBP) was immobilized on a glass surface coated with 

poly(maleic anhydride-alt-α-olefin) (PMA) by Lee and co-workers (Lee et al. 2003). In this 

example, the amount of immobilized enzyme in the reaction was varied to study the impact of 

reaction rate on the reactor performance. At a Vmax of 1.4 mM min-1 it would take 5.4 s to 

completely convert 0.13 mM of substrate. Despite the fast reaction rate, the residence time of the 

substrate in the microchannel was higher than 30 s, which clearly suggests that the system will 
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run into a substrate limitation within seconds. By loading a lower amount of enzyme on the chip 

the reaction rate was lowered, which enabled 80% substrate conversion. It has to be emphasized 

here that it is more often the applied substrate concentration rather than substrate transfer being 

the controlling step in such microreactor formats. 

Internal mass transfer resistance: The second mass transfer resistance step comes into play, if 

the substrate has to diffuse through the solid in order to reach the biocatalyst and is also referred 

to as internal mass transfer resistance. Although a high biocatalyst concentration per unit volume 

can be attained with immobilized enzymes maximizing the volumetric productivity, diffusion 

obstruction may impede the overall reaction performance. Therefore, it is important to predict 

the inner particle mass transfer in order to identify limiting parameters. The impact of the internal 

mass transfer resistance on biocatalytic reactions can be estimated by the Thiele modulus. 

However, this necessitates a detailed kinetic study, as it is based on the true kinetic parameters 

like Km and Vmax of the catalyst. Therefore, the observable Thiele modulus also called Weisz 

modulus Φ, is much more feasible and allows a quicker estimation of the internal mass transfer 

(Doran 2004).  

ߔ ൌ ቀ
VP

SX
ቁ

2
ቀ

rA,obs

DAeCAs
ቁ							           (1.6) 

ߔ ൌ ቀ
reaction rate

internal mass transfer
ቁ= ቀ

internal diffusion time (τint. diffusion)

reaction time (τreaction)
ቁ						       (1.7) 

where, rA,obs is the observed reaction rate per unit volume of catalyst and DAe is the effective 

diffusion coefficient of a substrate. The internal mass transfer limitations are significant if Φ is 

higher than 3 and negligible if Φ is equal to or less than 1.  

Examples: Heydorn and coworker studied biofilm forming P. aureofaciens in flow cells (Heydorn 

et al. 2000). The biofilm of P. aureofaciens was grown with various citrate concentrations as sole 

carbon and energy source, and the biofilm thickness was measured accordingly. We estimated the 

Weisz modulus for different citrate concentrations with the objective to understand the impact of 

internal mass transfer resistance. Therefore, the biofilm thickness was assumed to 1 mm which is 

the maximum depth of the cultivation device and thus upper limit to which the biofilm could be 

grown. Interestingly, the Weisz modulus for the different substrate concentrations was greater 

than 3, indicating that the internal mass transfer was significant and thus the system will be 

strongly citrate mass transfer limited (Table 1.3). Furthermore, the substrate penetration depth to 

which the internal mass transfer allows biotransformation during its conversion was extrapolated. 

This was done by assuming the Weisz modulus equals 1, and estimating the ratio (Vp/Sx) in the 

equation 1.6. This ratio (Vp/Sx) has the dimension of length (m) and is considered to be the 

distance necessary for a substrate to penetrate into the solid phase. In biofilms, the depth to 
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which the internal mass transfer allows substrate delivery (for consumption), is considered to be 

the “active thickness”. Our predictions show good agreement with the experimental biofilm 

thickness values observed after 10 days (Table 1.3). In a similar manner, the Weisz modulus and 

biofilm thickness have been estimated regarding oxygen transfer in gel beads with incorporated 

cells (Table 1.3).  

In another example, Halan and coworkers studied biofilm growth in the presence of solvent 

(styrene) stress in a flow-cell system (Halan et al. 2011). Here, it is important to determine the 

penetration depth of the solvent molecules into the biofilm. Based on Φ=1 a penetration depth 

of 277 µm was estimated while the experimental biofilm thickness in the flow cell was reported 

to be 120 µm. As the penetration depth of styrene is higher than the biofilm thickness it can be 

assumed that styrene is present throughout the biofilm. Furthermore, the penetration depth of 

second substrate (oxygen) was estimated and it was found out to be significantly lower (144 µm) 

than that of styrene (277 µm), indicating oxygen to be the limiting substrate. As oxygen is key 

component for biofilm growth and activity, its depletion limits biofilm growth and consequently 

active biofilm thickness. This illustrates the important role of the simple Weisz modulus for 

determining the limiting substrate that governs reaction performance. Once the limiting substrate 

is known further strategies for its optimization such as increase in flow velocity or oxygen rich air 

can be applied.  
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Table 1.2: Estimation of observable modulus for monolith enzyme microreactors  

 

 

Biocatalyst 
Reactor setups 
(diameter×length) 

Reaction Biocatalyst 
characteristics 
Vmax (mM min-1), 
De (cm² s-1) 

Observable 
modulus 
  (Ω) 

Limitations Experimental 
observations 

References 
 

Trypsin 
Reactor 1: (0.1 cm×100 
cm) 
Reactor 2: (0.05 cm×25 
cm) 

 
Hydrolysis of N-
benzoyl-L-arginine 
ethyl ester to N-
benzoyl-L-arginine 

 

 
1.1, 6.9×10-6  
74, 6.9×10-6  
 

1 mM         
0.34 
5.5 
 

10 mM 
0.034 
0.55 
 

 
Kinetically 
limited  
Mass 
transfer/kin-
etically limited 

                                         
No influence of fluid 
flow Impact of substrate 
concentration and fluid 
flow 

 
(Horvath and 
Solomon 1972) 

Lipase 
Reactor: (0.05 cm×500 
cm) 

 
Hydrolysis of 4-
nitrophenyl acetate 
to 4-
nitrophenolate 

 
60, 6.9×10-6 

1 mM         
0.036 

5 mM    
0.18 

 
Kinetically 
limited 

                                         
Vmax for immobilized and 
free enzyme similar to  

 
(Costantini et al. 
2010) 

Soybean peroxidase 
Reactor 1: (0.02 cm×3 cm) 
Reactor 2: (0.02 cm×3 cm) 

 
Oxidation of p-
cresol 

 
1.4, 14×10-6 
0.94, 14×10-6  

0.12 mM     
0.06       
0.04 

 
-----          
----- 

 
Kinetically 
limited 
Kinetically 
limited 

                                     
Complete substrate 
conversion  80% 
conversion in 2 min  

 
(Lee et al. 2003) 
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1.3.2 Liquid-liquid biocatalysis 

 Liquid-liquid two-phase systems are applied for biocatalytic reactions with barely water soluble 

substrates and/or for reactions with substrates or products being toxic or inhibitory to the 

biocatalyst. The function of the organic phase is to partition the substrate and product, and 

thereby reducing the respective concentrations in the aqueous phase (Woodley and Lilly 1990). 

Additionally, it serves as a source to deliver substrate below the toxicity or inhibitory limits in 

order to operate the reactor at maximum catalyst activity. However, if the substrate mass transfer 

rate is lower than the reaction rate than the mass transfer is the limiting step. Therefore, 

evaluating the limiting step is necessary to work around the bottlenecks and optimize the reaction 

performance. Due to the hydrophobicity of the substrate, its partitioning into the aqueous phase 

is lower than into the organic phase. Therefore the mass transfer limitations are assumed to be 

more prominent in the aqueous phase. The impact of the reaction rate on the mass transfer rate 

is described by the second Damköhler number (DaII),  

DaII=
kcateoφ

kLaCA
                  (1.8) 

where, φ is the phase volume ratio (Vaq/Vorg), kL is the aqueous phase mass transfer coefficients, 

a is the interfacial area per volume, eo is the enzyme concentration, CA is the substrate 

concentration and kcat is the turnover number. In equation 1.8, the true kinetic parameter kcat is 

essential and therefore detailed kinetic studies are required, similar to the Thiele modulus 

discussed above. To make a rough estimation the apparent Damköhler number can be applied, 

which is determined as Daapp, 

Daapp=
Vappφδ

DeaCA
=
τdiffusion

τreaction
		           (1.9) 

The apparent Damköhler number, Daapp, is used as a quantitative measure for the impact of 

mass transfer on the biocatalytic efficiency in liquid-liquid biocatalytic reactions (Table 1.4).  

Examples: A study performed by Swarts et al., 2007, determined kinetic parameters in a 

water/n-decane two phase system on microscale and compared the kinetic parameters with the 

bench scale (Swarts et al. 2008). The kinetic parameters were found to be similar between the 

micro and the bench scale. We estimated the apparent Damköhler number to understand the 

impact of substrate mass transfer on the reaction rate. The very low Damköhler number value 

suggests that the system is kinetically limited as there is no influence of substrate molecules being 

transformed from the organic phase to the aqueous phase (Table 1.4). Obviously, as there is no 

influence of substrate molecule transfer on the reaction rate, the kinetic parameters that have 

been determined were found to be similar to the bench scale setups.   
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Overall, what lesson do we learn from applying such dimensionless numbers? In short, such 

dimensionless numbers gives a clear insight about the processes that could be neglected in 

microreactors or the ones that could benefit from microreactors.   
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Table 1.3: Estimation of Weisz modulus for liquid-solid biocatalytic reactions from selected literature studies  

 
Table 1.4: Estimation of the Damköhler number apparent for liquid-liquid biocatalytic  

 

Reactor setup Biocatalyst Substrate Parameters  
De (m² s-1), S (mg L-1), 
a (mm-1) r (mg L-1s-1) 

Weisz 
modulus 
(Φ) 

Estimated 
biofilm 
thickness (Φ=1)

Experim. 
thickness

Remarks References 

Flow cell: 
0.01 cm×0.4 
cm×4 cm 

 Pseudomonas 
aureofaciens 

Citrate 1.2 ×10-10, 6.4, 1, 18 
1.2 ×10-10, 21.4, 1, 18 
1.2 ×10-10, 107, 1, 18 

23148 
6944 
1388 

6.5 µm 
12 µm 
26 µm 

5.81 µm 
5.8 µm 
24.6 µm 

The penetration 
depth increases 
with the substrate 
concentration   

(Heydorn et 
al. 2000) 

Immobilized cells 
in gels: 2 mm 
diameter sphere 

Nitrobacter 
agilis 
 

Oxygen 
 

2 ×10-9, 0.384, 3, 0.15 
2 ×10-9, 0.384, 3, 1.5 
2 ×10-9, 0.384, 3, 15 

22 
225 
2250 

210 µm 
67 µm 
21 µm 

400 µm 
100 µm 
20 µm 

The penetration 
depth decreases 
with the reaction 
rate   

(Picioreanu 
et al. 2000) 

Flow cell:  
10 mm× 1 mm 

Pseudomonas 
sp.VLB120∆C 

Oxygen 
Styrene 

1.5 ×10-9, 6, 2, 0.44 
2.4 ×10-10, 312, 2, 0.97 

12 
3 

144 µm 
277 µm 

120 µm Oxygen is the 
limiting substrates 

(Halan et al. 
2011) 

Flow 
pattern 

Reaction Biocatalyst Reactor setup Biocatalyst character. 
V (mM h-1), CA (mM),  
a (m2 m-3) 

Daapp Remarks References 

Parallel flow 
 

Oxidation of cholesterol 
to 4-cholesten-3-one 

Lipase Wide 220 µm, depth 
50 µm, length 332 µm 

3, 0.1, 9090  0.005 Kinetically 
limited 

(Marques et al. 
2010) 

Parallel flow Esterification of 1-
butanol and propionic 
acid to butyl propionate 

Lipase Wide 90 µm, depth 40 
cm 

3240, 850, 11111  0.001 Kinetically 
limited 

(Swarts et al. 
2008)  
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1.4 Multiphase biocatalytic microreactors 

Different microreactor configurations to perform multiphase biocatalytic reactions and to ensure 

the advantages over conventional bioreactors are currently being investigated at academic and 

industrial research level. A brief overview of multiphase microreactors is given in the following 

sections with a summary in Table 1.5.  

1.4.1 Packed bed microreactors 

Such reactor formats are extensively applied for liquid-solid biocatalysis. In packed bed 

microreactors, the biocatalyst is immobilized on polymer resins, glass, magnetic beads, and other 

surfaces, and packed within the microspace (Schilke et al. 2010; Sotowa et al. 2005). Catalyst 

pellets in conventional packed bed reactors have a diameter in the range of 4-8 mm, while in 

packed bed microreactors these are 50 µm, which results in a 100-fold increase of the surface area 

to volume ratio (Dencic et al. 2011). Several new materials have been designed at nano-scale to 

maximize the surface area for biocatalyst loading. For example, nanosprings made from silicon 

dioxide exhibit a surface area of 300 m2 g-1, which is 3 fold higher than that of a standard 

polymeric material (Schilke et al. 2010).  

The most important features of packed bed microreactors are a high enzyme loading, a high 

liquid-solid surface area, and good mixing, which altogether results in high reactor productivities. 

However, major drawbacks of this technology are high pressure drop, incorporation of beads in 

the microspace, and clogging of the system due to biocatalyst leaching. Further, the enzyme 

immobilization method should be flexible to replace enzyme without disassembling the micro-

device (Bolivar et al. 2011).  

1.4.2 Falling film microreactors 

In falling film microreactors, a very thin layer of liquid flows according to the force of gravity and 

gas passes this layer in a co-flow or counter-flow manner. The biocatalysts is either deposited on 

the wall or suspended in the liquid phase. Compared to the liquid film thickness in conventional 

film reactors (0.5 to 3 mm), falling film microreactors can generate stable film thickness less than 

0.1 mm (Karimi and Kawaji 1998). This reduces the diffusion distance corresponding to lower 

mass transfer resistance.  

The most important aspect of this reactor setup is its compact design, with a very high specific 

interfacial area up to 20000 m2 m-3, which is (a few) orders of magnitude higher than the 

interfacial area reached in conventional reactor formats (Hessel et al. 2005). In addition, the 

pressure drop in this system is low compared to the packed bed microreactors. Moreover, a 

maximum liquid throughput of 25 cm³ min-1 can be achieved in this device. Such falling film 
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microreactor devices are commercially available, easy to scale up and have the potential to 

become a key technology for biocatalytic reactions involving liquid-gas, solid-liquid, and solid-

liquid-gas phases. However, due to high mass transfer rates and very low residence time of only a 

few seconds, this technology is restricted to extremely fast biocatalytic reactions. The residence 

time may be prolonged by an increase in channel length or descent angle.  

1.4.3 Monolith microreactors 

In monolith microreactors, biocatalysts are immobilized on the inner surface of materials such as 

silicon, poly(dimethylsiloxane), fused silica and several other surfaces of tubing or channels. 

Several immobilization techniques including physical adsorption, covalent immobilization and 

cross linking have been reported to attach the biocatalyst to the microreactor surface (Chen et al. 

2011; Horvath et al. 1973). Monolith reactors are extensively applied for liquid-solid biocatalytic 

reactions and current research is expanding their application for liquid-gas-solid biocatalytic 

reactions. 

In this reactor configuration, the capillary or channel diameter is of utmost importance regarding 

the surface area to volume ratio. Decreasing the capillary diameter from 2 mm to 0.5 mm (4 

fold), the surface area to volume ratio is enhanced by a factor of 8. In comparison to the packed 

bed formats, the pressure drop in the monolith microreactors is lower, as the passage of fluidic 

flow encounters less restriction (Kreutzer et al. 2005). Additionally, scale-up of monolith reactors 

is achieved by simply increasing the number of tubings or channels (Kreutzer et al. 2006).  

1.4.4 Segmented flow microreactors 

 Segmented flow is also known as slug flow, plug flow bubble train or Taylor flow, refer to a flow 

pattern in which alternate immiscible segments are flowing through a capillary channel (Kashid 

and Agar 2007; Tice et al. 2003). The phase with high affinity to the capillary wall establishes a 

continuous phase while the second immiscible phase cuts the continuous phase and develops an 

alternate segmented type of flow (Harries et al. 2003). Due to large surface area of the segments, 

interfacial forces are very dominant in this type of flow pattern. The shearing motion due to the 

flow and wall generates recirculation or vortex motions which enhance mixing within the 

segments. The mass transfer between the segments occurs by diffusion. A high mass transfer rate 

is achieved within such flow patterns compared to the parallel flow because of the large surface 

area to volume ratio and the good mixing rate within the segments (Harries et al. 2003). These 

reactor formats are suited for liquid-liquid, gas-liquid, or gas-liquid-solid biocatalytic reactions. 

However, inactivation of soluble enzyme due to high shear stress and interfacial area between 

aqueous and e.g., organic phase might result into lower reaction performance (Marques and 

Fernandes 2011).  
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1.4.5 Co-flow microreactors 

 In co-flow patterns, the two immiscible phases run in parallel streams alongside one another. 

This type of flow is generated when the ratio of the flow rates for the wetting phase to the non-

wetting phase is very small (Marques and Fernandes 2011). These reactor formats are applied for 

liquid-liquid and liquid-gas biocatalytic reactions. In this flow pattern, mass transfer occurs 

through diffusion at the interface which is along the axial direction of the channel. One of the 

important advantages of the co-flow pattern is the easy downstream separation of the phases 

based on the affinity of the phases towards the material (Marques and Fernandes 2011). 

Additionally, due to low shear stress the enzyme inactivation in such fluidic reactors was 

observed to be lower as compared to the segmented flow type (Marques and Fernandes 2011).  

1.4.6 Membrane microreactors 

In membrane microreactors, the substrates and products are separated from the enzyme by a 

membrane barrier (Table 1.5), thereby enhancing the rates of product-inhibited or 

thermodynamically limited reactions (Machsun et al. 2010). Biocatalysts, including both isolated 

enzymes and whole cells can be stabilized by immobilization on the membrane by physical 

adsorption, ionic binding, covalent binding, gelification, or by entrapment (Li et al. 2008; 

Machsun et al. 2010). In addition, suspended biocatalyst can also be used in this type of 

microreactors. Size of the membrane matrix play an important role on the reactor performance as 

it affects the diffusion length. Membrane microreactors are applied for liquid-solid, liquid-liquid, 

or liquid-gas-solid phases.  
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Table 1.5: Microreactor types applied for multiphasic biocatalytic reactions 

Abbreviations: L liquid phase, S solid phase and G gas phase 

Reactors Reactor type Phases  Advantages Limitations References 
Packed bed 
microreactor 

 

L-S         
G-L-S 

High liquid-solid surface       
High enzyme loading            
Easy operation              

- High pressure drop       
- Flow maldistribution   

(Schilke et al. 2010; 
Sotowa et al. 2005)     

Falling film 
microreactor 
 

G-L        
L-S         
G-L-S 

High liquid-gas surface 
area              
Low pressure drop 

- Very low residence 
time 

(Al-Rawashdeh et al. 
2012; Dabir et al. 
1996; Vankayala et 
al. 2007) 

Monolith 
microreactor 
  

L-S         
G-L-S 

Low pressure drop                
Less transport limitation 

- Specific liquid-solid 
surface area                      
- Catalyst 
immobilization 

(Chen et al. 2011; 
Honda et al. 2006; 
Horvath and 
Solomon 1972) 

Segmented 
flow 
microreactor 
 

 

L-L        
G-L-S     
L-L-G-S 

High liquid-gas or liquid-
liquid surface area                 
Low pressure drop 

- Specific liquid-solid 
surface area                      
- Limited range of flow 
rates 
- Interfacial inactivation 
of enzymes 

(Karande et al. 2011; 
Martin et al. 2003; 
Mohr et al. 2010; 
Voloshin et al. 2005)  

Co-flow 
microreactor 
 

L-L Mass transfer by diffusion     
Low pressure drop                
Easy phase separation 

- Limited range of flow 
rates                         
 

(Marques et al. 2010; 
Maruyama et al. 
2003; Swarts et al. 
2010)  

Membrane 
reactor 

 

S-L         
G-L-S 

Easy phase separation - High cost 
- Enzyme adsorption 
and interfacial 
inactivation 

(Gross et al. 2007; 
Gross et al. 2010; 
Machsun et al. 2010)  
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1.5 Concluding remarks 

From the characteristic time scale of mass transfer and biocatalytic reactions, it seems that there 

are several biocatalytic reactions that could benefit from microreactors. Interestingly, there are 

different concepts of integrating biocatalytic reactions into fluidic microreactors (section 1.4), and 

the selection of an ideal microreactor configuration depends on several factors (section 1.2). First, 

the biological parameters such as cell growth, enzyme kinetics, and stability under technical 

conditions need to be well understood. Second, the physical parameters such as phase properties 

and ratios, flow rate (residence time), and the mechanism of transport between the phases, and its 

impact on the reactor performance needs to be explored. In order to maximize the product yield 

in the microreactor, the biological parameters need to be combined with the physical parameters. 

Indeed, the accurate tuning of these parameters to maximize the reactor performance might even 

lead to innovative microreactor design concepts.    
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1.6 Scope of the thesis 

The primary goal of this thesis was the development and application of multiphasic microreactors 

for biocatalytic reactions. In this context, several questions regarding biological and technical 

challenges are addressed. 

In chapter 2, we investigated isolated enzyme stability in aqueous-organic segmented flow 

capillary systems applying thermostable alcohol dehydrogenase (TADH) as biocatalyst. Several 

possibilities to retain maximum enzyme activity in the liquid-liquid segmented flow have been 

studied and are presented in chapter 3. A simple, fast and cost effective method was selected to 

retain maximum enzyme activity in the aforementioned setup. 

Chapter 4 explores the potential of segmented flow microreactors for isolated enzyme based 

catalysis. The impacts of important biological, physical and technical parameters on the reactor 

performance are addressed. Furthermore, all key parameters governing reaction performance are 

summarized in an operational window for an easy assessment of the various system constraints.    

The concept of multiphase segmented flow systems was expanded to whole cell catalysis by 

utilizing biofilms as biocatalysts in the microreactor system (chapter 5 and 6). A method for the 

development and maintenance of stable biofilm growth under high fluidic stress due to 

segmented flow was established. Aqueous-air segmented flow biofilm membrane reactors 

(SFBMR) as well as an aqueous-air-organic segmented flow biofilm reactor (SFBR) were 

developed. These designs integrated the characteristics of catalytic biofilms with the advantages 

of segmented flow and microreactors. Furthermore, several different reactions were investigated 

to check the adaptability of these systems. 

Finally, chapter 7 concludes the overall work performed in the thesis with a broader perspective.  
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2.1 Summary 

Multiphase flow microreactors benefit from rapid mixing and high mass transfer rates, yet their 

application in biocatalysis is very often limited due to the fast inactivation of isolated enzymes. In 

this study, an alcohol dehydrogenase from Thermus species was used to study enzyme stability in 

segmented flow microsystems. Enzyme inactivation during segmented flow is due to the large 

interfacial area between aqueous and organic phase. High Peclet number points to strong 

convective forces within the segments which lead to rapid inactivation of the enzyme. Theoretical 

models were used to compare protein adsorption kinetics to the interface in the segmented flow 

microreactor and drop tensiometry experiments. Based on the experimental observations and the 

investigation of the dynamic surface tension, a three step enzyme inactivation mechanism was 

proposed for isolated enzymes in such microreactors. Overall, strong inactivation of enzyme in 

segmented flow limits the applicability of this system and an approach to stabilize enzyme activity 

is essential. 
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2.2 Introduction 

During the past decades, industrial and academic research focused on discovering new enzymatic 

reactions for chemical synthesis (Schmid et al. 2001). Although a number of enzymatic reactions 

are exploited at industrial level, the biocatalytic performance is often limited by the insufficient 

solubility of the substrate and/or inactivation of the enzymes. One possibility to overcome this 

barrier is the application of an immiscible two liquid phase system (Woodley and Lilly 1990). It 

involves an organic phase, which acts as substrate reservoir and product sink, whereas an 

aqueous phase contains the biocatalyst. The two liquid phase concept is usually applied in 

conventional batch or semi-batch systems (Cremonesi et al. 1975; Neuhauser et al. 1998). These 

are rather flexible in adapting to the necessary reaction conditions and may be used for 

multipurpose processes. However, mass transfer between the two phases, especially when 

considering scale up, is critical in such setups (Panke et al. 2002). Intense mixing of the two liquid 

phases is essential, but the resulting emulsion requires additional separation efforts in 

downstream processing (Baldascini and Janssen 2005; Colombie et al. 2001). This requires a high 

energy input, which is often neglected when working on a laboratory scale, but needs to be 

considered on a technical scale (Panke et al. 2002). 

These challenges could be surmounted by utilizing continuous drop flow in a microsystem 

(Burns and Ramshaw 2002; Dummann et al. 2003). Drop flow is formed by contacting two 

immiscible phases using a T or Y shaped connector in a capillary tubing. It forms a replica of a 

moving train with each single phase compartment linked to the second phase. Liquid-liquid drop 

flow in a microreactor has several synonyms, such as plug flow (Tice et al. 2003), slug flow 

(Kashid and Agar 2007) and segmented flow (Nord et al. 1987). Johansson and co-workers have 

used the concept of liquid-liquid segmented flow to extract chemical compounds from different 

phases (Johansson et al. 1980). Later, Kinkel and Tomlinson developed a flow splitter to separate 

the segmented flow based on the wetting properties of fluids with the solid (Kinkel and 

Tomlinson 1980); hence no additional efforts to separate the phases are required. In a recent 

publication (Kashid et al. 2007), it has been shown that the mass transfer coefficients in a 

segmented flow microreactor are much higher as compared to conventional extraction systems. 

Thus, liquid-liquid segmented flow microreactor is an attractive tool to perform multiphase 

enzymatic syntheses and to overcome issues concerned with low substrate mass transfer, high 

energy input and downstream separation of phases. 

Reducing the dimensions of the reaction compartment in bioprocesses from meters to 

millimeters enlarges the surface to volume ratio (Janasek et al. 2006). From the context of 

enzyme based catalysis, this typically would enhance the contact of the enzyme to the interfacial 
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area, resulting in a loss of its structural integrity (Ross et al. 2000; Tanaka et al. 2001). Enzyme 

inactivation in liquid-liquid bubble column systems was found to be proportional to the 

interfacial area (Ghatorae et al. 1994a). For liquid-liquid segmented flow microreactors, the 

interfacial area was found to be 2 to 3 times higher than in stirred tank systems (Kashid et al. 

2007). Thus, it is crucial to investigate enzyme stability under the liquid-liquid segmented flow 

conditions to explore such reactor formats for biocatalysis. In this context, the influence of 

enzyme concentration, segment length, fluid flow velocity and capillary diameter on the activity 

of the applied enzyme was evaluated. Thermophilic alcohol dehydrogenase (TADH) from 

Thermus sp. ATN1, recombinantely synthesized in Escherichia coli BL21 (DE3), was used as a 

model enzyme in this set-up because of its broad substrate spectrum and its capability to produce 

chiral alcohols via asymmetric hydrogenation of ketones (Höllrigl et al. 2008).  
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2.3 Materials and methods 

2.3.1 Chemicals 

All chemicals were purchased either from Sigma-Aldrich (Steinheim, Germany) or Carl Roth 

GmbH (Karlsruhe, Germany), unless indicated otherwise. Chemicals used in tensiometry 

experiments were Bis-Tris (C8H19NO5, Assay 99% purity) from Fluka, Hexadecane (C16H34, 

minimum 99% purity) was from Sigma-Aldrich (Steinheim, Germany). All chemicals were used 

without further purification. Seralpur Pro 90 CN (Seral, Ransbach-Baumbach, Germany) filtered 

water was used to prepare all aqueous solutions. Buffer composition in all experiments was 100 

mM Bis-Tris, pH 6.5 at 55°C, unless stated otherwise.  

2.3.2 Liquid-liquid segmented flow setup  

The setup of the liquid-liquid segmented flow reactor is shown in Figure 2.1. Aqueous and 

organic liquid was pumped separately by using a two-channel peristaltic pump (Ismatec REGLO, 

Glattbrugg, Switzerland) fitted with 0.7 mm inner diameter solvent resistant pump tubing 

(Ismatec Tygon MHLL, Glattbrugg, Switzerland). Segmented flow was achieved through a 1 mm 

inner diameter T-piece connector (Roland Vetter RTA-TB6, Ammerbuch, Germany), and 

introduced into 1 mm or 2.15 mm inner diameter PTFE tubing (VICI, MACHEREY-NAGEL, 

Dueren, Germany). All segmented flow experiments were conducted at 55°C. 

 
Figure 2.1: Schematic view of the liquid-liquid segmented flow setup. 1: aqueous phase reservoir; 2: 
organic phase reservoir; 3, 4: solvent resistant tubing; 5, 6: two channel peristaltic pump; 7: T shaped 
mixer; 8: aqueous phase segment; 9: organic phase segment; 10: 1 mm or 2.15 mm inner diameter PTFE 
capillary; 11: samples collected for offline analysis; 12: Thermo-bath to maintain temperature; 13: 
Magnified sketch of segments showing internal circulations generated within a segment (adapted from 
Kashid et al. 2007). The stress applied by the solid wall on the moving segments creates internal 
circulations, thus increasing convective forces within each segment. 

The segment length was dependent on the inlet flow rates of both phases and was controlled by 

using the flow ratio Fr (Fr = va/vo, where va is the aqueous phase flow rate and vo is the organic 

phase flow rate). For 1 mm inner diameter PTFE capillary, at equal inlet flow rates, the flow ratio 

1

2

3

4

5

6

7

8 9

10

11

12

PTFE capillary

1 
m

m

Flow

Aq. = Aqueous segment Org. = Organic segment

Org.

stress

Aq.

13



28 
 

was equal to 1 (Fr=1) and the aqueous segment length was ~3 mm. By varying the flow ratio 

from 0.3 to 3.33, the aqueous segment lengths were varied from ~1 mm to ~7 mm. The 

residence time of the segments was controlled either by varying the flow rates at a constant flow 

ratio or by changing the capillary length. TADH inactivation in the segmented flow was 

determined from the difference in TADH activity before and after passing through the reactor 

using a UV spectrophotometer, unless stated otherwise. 

2.3.3 Drop tensiometry experiments 

The pendant drop technique was used to measure the dynamic interfacial tension between the 

hexadecane-buffer system at room temperature, based on the shape of a gravity-distorted liquid 

drop, using a video-based contact angle meter (OCA15) manufactured by DataPhysics 

Instruments (Filderstadt, Germany).  

A syringe was filled with the aqueous solution containing different amounts of TADH and fitted 

to the dosing unit. The height of the syringe was adjusted to dip the needle into a cuvette 

containing hexadecane, while the camera was focused on its tip. By applying pressure to the 

syringe an aqueous droplet of (approx.) 20 µL was formed inside the hexadecane. Simultaneously, 

sequential drop images were obtained at specific time intervals. From the Young-Laplace 

equation, the droplet profile was fitted by the instrument to determine the interfacial tension. The 

surface pressure is defined as the difference between the interfacial tension of the hexadecane-

buffer system without TADH and the hexadecane-buffer system in the presence of TADH. The 

interfacial tension between Hexadecane and Bis-Tris buffer was 42-40 mN m-1 and was stable 

over time.  

2.3.4 Preparation of TADH 

E. coli BL21 (DE3) pLysS pASZ2 cultivated in a 3 L conical flask with baffles using 300 mL of 

Terrific Broth (Sambrook and Russell 2001) as medium supplemented with ampicillin (100 µg 

mL-1) and chloramphenicol (20 µg mL-1) to express TADH gene. After reaching an OD450 of 4 - 

4.5, enzyme production was induced by adding 0.5 mM IPTG and the cells were cultivated for 

another 6 hours. Subsequently cells were harvested by centrifugation at 4618×g, 4°C for 20 

minutes in a Sorvall RC-5B centrifuge (Thermo Electron Corporation, Langenselbold, Germany). 

Enzyme purification was done according to (Höllrigl et al. 2008), reaching a final purity of 90 to 

95% (no contaminating activities were found) and stored at -20°C. 

2.3.5 Spectrophotometric determination of TADH activity 

TADH activity was measured by UV-Vis absorption at 340 nm using a Cary 300 Bio UV-VIS 

spectrophotometer (Darmstadt, Germany). The assay mixture contained 160 mM 3-
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methylcyclohexanone and 0.2 mM NADH in 100 mM Bis-Tris to a total volume of 200 µL, pH 

6.5 at 55°C. The reaction mixture was thermostated at 55°C and started by the addition of 

TADH. The decrease in absorbance at 340 nm was monitored for 60 seconds and enzyme 

activities were calculated using a specific absorption coefficient of ε = 6220 M-1 cm-1 for NADH 

at 340 nm. 1 unit of enzyme activity was defined as 1 µmole of NADH consumed per minute. 

2.3.6 Gas chromatography analysis 

From the substrate and product measurements, 0.5 mL of reaction solutions were extracted with 

1 mL of ether and quantified by gas chromatography (Focus GC, Thermo Electron Corporation, 

Dreieich, Germany) using a chiral RT-βDex-sm column (30 m×0.25 mm×0.25 µm Restek 

GmbH, Bad Homburg, Germany) column according to the method reported by Höllrigl et al., 

2007.  

2.3.7 Protein quantification 

Protein concentration was measured by the method given by Bradford (Bradford 1976), using the 

quick start Bradford dye (Bio-Rad, Munich, Germany), with a standard curve prepared using 

bovine serum albumin. 
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2.4 Results  

2.4.1 Inactivation of TADH in a hexadecane-buffer segmented flow microreactor 

Höllrigl and co-workers reported that organic solvents have a detrimental effect on TADH 

activity in a two-phase batch system (Höllrigl et al. 2008). In this context, the amount of enzyme 

activity lost in an aqueous-organic segmented flow microreactor was quantified as a function of 

TADH concentrations, segment length and capillary diameter at varying residence time. 

 
Figure 2.2: Influence of enzyme concentration on TADH activity in the liquid-liquid segmented 
flow reactor. The flow rates were adjusted from 0.075 to 1 mL/min in a 200 mm long, 1 mm inner 
diameter capillary, at a constant flow ratio of 1 (Fr=1), to achieve the respective residence time. TADH 
concentration in the different experiments is indicated in the graph.  

The loss in TADH volumetric activity was inversely dependent on the applied initial enzyme 

concentration, with a rapid increase for first 20 to 40 seconds (Figure 2.2). The amount of 

TADH inactivated in a time period of 60 seconds was calculated by using equation 2.1, 

lostactoinact VEE ..                                                (2.1) 

Here, .inactE [µg mL-1] is the amount TADH inactivated, Eo [µg mL-1] the initial TADH 

concentration and Vact.loss [%] is the loss in volumetric activity. Interestingly, the absolute amount 

of TADH losing its activity was always in the range of 3.4 - 3.6 µg mL-1. Since the experiment 

was performed at equal inlet flow rates of aqueous to organic phase (Fr=1), the interfacial area 

between the adjacent segments remained constant. From these data it may be concluded that 

TADH inactivation might occur from the complete coverage of interfacial area by the enzyme. 

Noting that a similar amount of TADH was inactivated due to the constant interfacial area, the 

following experiment was focused on varying the interfacial area between the segments. By 

changing the aqueous segment length from 1 mm to 7 mm, the interfacial surface area to volume 

ratio was varied from ~1.7 to 1.1 mm-1. If the loss in TADH activity is due to the constant liquid-

liquid interfacial area, the maximum loss in TADH activity should be seen at a lower segmented 
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length, because of the resulting large interfacial area to volume ratio. However, results were in 

contrast to our prediction and maximal loss in TADH activity was seen in the longer segments 

(Table 2.1). These results clearly indicate that the surface area to volume ratio alone cannot be the 

only reason for TADH inactivation.     

Table 2.1: Loss in volumetric TADH activity at varying segment length and time  

 
Further elucidation of these results was made by calculating the Peclet number Pe =UL/D, where 

U, L and D represent flow velocity, segmented length and diffusion coefficient, respectively. The 

Peclet number is a good indicator to determine whether diffusion or convective transport is 

dominating in a system (Baret et al. 2009). If the Peclet number is larger than 1, transport occurs 

mainly by convection, while at a Peclet number smaller than 1 it will be vice-versa. To determine 

the Peclet number, the flow velocity and the segment size of the aqueous phase were measured 

while protein diffusion coefficient was assumed to be 5 × 10-7 cm2 s-1 (Young et al. 1980). The 

maximum loss in TADH activity was seen in segments of 7 mm (length) at a residence time of 

2.5 min. As indicated by the corresponding high Peclet number (Table 2.1), this may be attributed 

to the very high convective force within the segment. Increase in the residence time to 8 min was 

achieved at the expense of flow velocity, thus decreasing the Peclet number and resulting in a 

lower convective force and a more stable enzyme. The same explanation holds for the reduced 

loss in TADH activity for 3 and 1 mm segment lengths compared to 7 mm segment length. Thus 

it could be concluded that above a certain Peclet number the convective forces within the 

segmented flow is responsible for the increase in TADH inactivation, while below this value the 

residence time itself has a high influence on TADH inactivation.  

Next, the influence of the capillary inner diameter on TADH activity was investigated in the 

segmented flow microreactor. According to Nord et al., and Kashid et al., a decrease in the 

capillary inner diameter increased mass transfer rates due to the enhanced convective transport 

within the segments (Kashid et al. 2007; Nord and Karlberg 1984). In our case, this would mean 

that the increase in capillary diameter should reduce the loss in enzyme activity. For comparison 

of TADH activity at a constant residence time, the length of 1 mm inner diameter capillary was 

doubled to that of 2.15 mm inner capillary diameter. Increasing the capillary inner diameter from 

Aqueous flow 
(mL/min) 

Organic flow 
(mL/min) 

Flow 
ratio (Fr)

Residence 
time (min)

Aqueous 
segment 

(mm) 

Peaq × 
10³ 

Loss in vol. 
TADH act. (%)

0.50 0.15 3.33 2.5 7 1480 81 
0.32 0.32 1.00 2.5 3 270 47 
0.21 0.43 0.50 2.5 1 130 46 
0.17 0.05 3.33 8.0 7 510 56 
0.11 0.11 1.00 8.0 3 90 51 
0.07 0.15 0.50 8.0 1 40 47 
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1 mm to 2.15 mm had a beneficial effect on TADH activity and the loss in volumetric TADH 

activity was reduced by 20 % (Figure 2.3).   

 
Figure 2.3: Influence of capillary inner diameters on TADH activity. The flow rates were adjusted 
from 0.075 mL/min to 0.5 mL/min, at a constant flow ratio of 1 (Fr=1) to achieve the respective 
residence time in the 2000 mm long, 1 mm inner diameter capillary and in the 1000 mm long, 2.1 mm 
inner capillary, respectively. 100 % volumetric TADH activity corresponds to 0.5 U/mL 

2.4.2 Drop tensiometry to examine enzyme adsorption  

To investigate TADH adsorption to the liquid-liquid interface, drop tensiometry experiments 

were performed. Tensiometry is a simple and useful tool to study adsorption phenomena to 

aqueous-organic or aqueous-air interfaces, and to determine the adsorption isotherms based on 

the final equilibrium values (Baret et al. 2009).  

 
Figure 2.4:  Influence of TADH concentration on the dynamic surface tension at the hexadecane-
buffer interface (100 mM Bis-Tris pH 6.5 at 55°C).  

In this work, the rates of enzyme adsorption on the aqueous-organic interface were determined 

by using dynamic surface pressure. TADH concentration had an impact on the interface, which is 

seen from the correlation of increasing dynamic surface pressure and TADH concentration 
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(Figure 2.4). This demonstrates that TADH is being adsorbed to the liquid-liquid interface, with 

the adsorption kinetics becoming faster with increasing TADH concentration. 

2.4.3 Theoretical approach to predict TADH adsorption in drop tensiometry and within 
segmented flow 

In the segmented flow microreactor, the loss of enzyme activity is influenced by the convective 

transport generated within the aqueous segments (Table 2.1), whereas, in the drop tensiometry 

experiments such effects could be excluded. To understand and compare the adsorption kinetics 

within the segmented flow microreactor and the tensiometry experiments, a theoretical approach 

to determine the rate constant for adsorption was developed. It is based on the simple theory of 

the Langmuir adsorption (Roach et al. 2005; Siegel et al. 1997). According to the Langmuir 

model, the rate of protein adsorption is proportional to its bulk concentration and to the 

available surface area. The equation is expressed as follows, 

 ta θ1ck
dt

dθ
                                                                                                                                  (2.2)  

Where, ka [mL µg-1 s-1] is the rate constant for adsorption, c [µg mL-1] is the bulk protein 

concentration and   is the fractional surface area covered by the proteins. Integrating and 

rearranging the above equation to resolve fractional surface coverage   is given as, 

 ctkat  exp1                                                                                                                    (2.3)  

Equations 2.2 and 2.3 have been derived under the assumptions that protein adsorption is 

irreversible and that the solution contains excess amount of protein compared to the amount on 

surface.  

2.4.4 TADH adsorption within segmented flow 

To develop a relation between the loss in TADH activity (obtained experimentally, Figure 2.2) to 

the adsorption (Equation 2.3), it is assumed that the entire interfacial adsorbed enzyme loses its 

activity. Based on the Equation 2.1, the amount of TADH being inactivated is in the range of 3.4 

to 3.6 µg mL-1, which correlates to the interfacial surface concentration of 2-3 mgEnzyme m
-2.  This 

surface concentration was sufficient to cover the entire interface area with a packed monolayer of 

enzyme (Baldascini and Janssen 2005; Beverung et al. 1999), corresponding to complete surface 

coverage =1. Therefore, the fractional surface coverage ( ) is considered to be the ratio 

between TADH inactivated at time t to the maximum amount of TADH being inactivated. 

 ctk
E

tE
a

maxinact

inact
t  exp

)(

.

. 1                                                                                                  (2.4) 

Equation 2.4 was obtained by using several approximations: first a simple Langmuir model for 

TADH adsorption and second by correlating the amount of TADH being inactivated to the 
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amount adsorbed. The rate constant of adsorption ka was adjusted to the experimental results to 

obtain an adequate fit according to the Equation 2.4. The obtained fits were in good agreement 

to the experimental values at ka = 8 × 10-3 mL µg-1 s-1 and ka = 7 × 10-3 mL µg-1 s-1 for c = 11 µg 

mL-1 and c = 21 µg mL-1, respectively (Figure 2.5A and Table 2.2).  

Table 2.2: Comparison of rate constants for enzyme adsorption 

 a-this work, obtained from Figure 2.5. b-adsorption of fibrinogen to a methyl-terminated alkanethiol self-
assembled monolayer (SAM) from (Siegel et al. 1997). 

2.4.5 TADH adsorption in drop tensiometry 

In order to relate surface pressure at time t to the fractional surface coverage (Equation 2.3), 

Equation 2.5 was applied.  

tt .max)(                                     (2.5) 

When t  = 0, surface pressure is equal to zero, it means that there is no effect of solute or 

protein on the interface. At t  = 1, the surface area is completely covered by the solute or 

protein and surface pressure at time t is maximal.  

 
Figure 2.5: Comparison between experimental and theoretically fit calculated from Equation 2.4 
and 2.5 at varying TADH concentrations. A) Fractional surface coverage with time for 11 and 21 
µg/mL of TADH, in the segmented flow system. B) Dynamic surface pressure at 11 and 25 
µg/mL of TADH concentration, obtained from drop tensiometry. The solid lines are numerical fits 
applied to obtain the rate constant for adsorption. The experimental data are also shown in figure 2.2 and 
2.4 

Fitting the above equation to the experimental data at 11 and 25 µg mL-1 (Figure 2.5B), yields the 

rate constants for adsorption ka = 6 × 10-4 mL µg-1 s-1 and ka = 5.5 × 10-4 mL µg-1 s-1, respectively. 

TADHa  
(µg mL-1) 

ka in drop 
tensiom.a 
[ mL µg-1 s-1] 

TADHa  
(µg mL-1) 

ka in segmented 
flowa 
[ mL µg-1 s-1] 

Fibrinogenb  
(µg mL-1) 

kab                  
[ mL µg-1 s-1] 

11 6 × 10-4 11 8 × 10-3 14 3.66×10-3 

25 5.5 × 10-4 21 7× 10-3 28 2.60×10-3 
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The adsorption rate constants in tensiometry were lower than in the segmented flow reactor 

which suggests the dominance of convective forces in the segmented flow reactor. 

2.5 Discussion 

2.5.1 TADH inactivation in a segmented flow system  

There are a couple of mechanisms discussed in literature, describing the inactivation of enzymes 

due to liquid-liquid two phase systems (Baldascini and Janssen 2005; Ghatorae et al. 1994a). 

Ghatorae and co-workers proposed dissolved organic solvent molecules in the aqueous phase 

may interact with and inactivate the enzyme (Ghatorae et al. 1994b). However, the very low 

solubility of the organic liquid (hexadecane with a LogPO/W value of 8.8 adapted from (Hickel et 

al. 1998)) in the aqueous phase makes this scenario very unlikely in our system. Another 

possibility that may lead to enzyme inactivation is the solid-liquid interface (Colombie et al. 2001; 

Tanaka et al. 2001). According to Nord and co-workers a thin film of organic solvent will stick to 

the tube wall throughout the tubing, due to the hydrophobicity of the tube material and the 

organic phase (Nord and Karlberg 1984). If we assume a thin film of hexadecane attached to the 

hydrophobic PTFE tubing, the enzyme interaction with the solid surface would be reduced, but 

the liquid-liquid interaction between the aqueous and the organic phase would increase.  

On the basis of the experimental observations on the loss in TADH activity and the dynamic 

surface tension measurements, TADH inactivation in a segmented flow microreactor may occur 

in three consecutive steps as outlined in figure 2.6. A similar mechanism was described by 

Baldascini and Janssen for liquid-liquid stirred cell systems (Baldascini and Janssen 2005).  

 
Figure 2.6: Scheme showing TADH adsorption and inactivation mechanism in the liquid-liquid 
segmented flow system. Step 1: irreversible adsorption of TADH to the interface; step 2: inactivation of 
TADH at the interface; step 3: desorption of TADH from the interface. 

In the first step, TADH gets into contact with the interface between aqueous and organic phase 

either by convection and/or by diffusion, where it is irreversibly adsorbed. During the second 

step, the adsorbed TADH interacts with the exposed hydrophobic surface, which promotes the 
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loss of structural integrity of the protein. Finally in the third step, the attached inactivated TADH 

is desorbed. This is an energy consuming process as the attached TADH is desorbed from the 

interface and therefore seen only at a very high convective force. This inactivation mechanism is 

discussed in detail in the following paragraphs.              

Step 1 and 2: Adsorption and inactivation of TADH 

An immiscible water-organic interface consists of molecules with imbalanced cohesive energy, 

which arises due to the uncompensated bonds between aqueous molecules and organic 

molecules. This excess free energy between both liquids is numerically equivalent to the 

interfacial tension (Donahue and Bartell 1952 ). An enzyme poses surface activity due to the 

presence of hydrophobic and hydrophilic amino acids (Eisenberg et al. 1984), and thus has the 

ability to interact with the interface molecules. This was confirmed by the outcome of the 

tensiometry experiments, where the dynamic surface pressure increased with TADH 

concentration (Figure 2.4). In addition, the adsorption rate constants in tensiometry were lower 

than in the segmented flow reactor (Table 2.2). These results conclude diffusion limitation in the 

drop tensiometry experiments and the dominance of convective forces in the segmented flow 

reactor. As the tensiometry experiments were performed at lower temperature compared to the 

segmented flow experiments, this temperature drop in the tensiometry experiments might also be 

the reason for a low TADH diffusion rate. 

Roach and co-workers reported similar rate constants for RNase adsorption in a plug flow 

microreactor and in drop tensiometry (Roach et al. 2005). The similar rate constants for 

adsorption might come from the oversimplified equation used by the authors to relate the surface 

pressure from tensiometry to the fractional surface coverage. The dominance of convective 

forces within the segmented flow microreactor was also concluded from the initial TADH 

inactivation rate (6.3 mg m-2 min-1 from Figure 2.2), which was (approx.) 350 times faster than 

reported for epoxide hydrolase in a two-phase stirred reactor (1.8×10-2 mg m-2 min-1
 at 180 rpm in 

an octane-buffer system) (Baldascini and Janssen 2005). The amount of enzyme inactivated 

remained constant and was in the range of 3.4 mg L-1 to 3.6 mg L-1. Based on the interfacial area 

of a single aqueous segment, inactivated TADH surface concentration reached was in the range 

of 2-3 mg m-2. Ghatore and co-workers have found similar results for urease, lipase, 

chymotrypsin and ribonuclease in a liquid-liquid bubble column reactor (Ghatorae et al. 1994b). 

According to Baldascini et al., and Beverung et al., this concentration was sufficient to cover the 

interface area with a packed monolayer of enzyme (Baldascini and Janssen 2005; Beverung et al. 

1999). The coverage of interface with the adsorbed enzyme led to a decrease in the inactivation 

rate similar to the effect observed for TADH in Figure 2.2.  
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Step 3: Desorption of TADH from the liquid-liquid interface 

As the interface is covered by TADH, further inactivation will only be possible by replacing the 

adsorbed protein with fresh enzyme. This process requires energy to desorb the enzyme from the 

interface (Baldascini and Janssen 2005). In liquid-liquid segmented flow, internal circulation 

generated within the segments is the only force available to break these bonds. This internal 

circulation is due to the shear stress generated by the solid wall on the moving segments pushing 

the liquid within the segments into a circulating flow (Burns and Ramshaw 2001) (Figure 2.1). It 

creates small eddies inside the segment and enhances the internal mixing. The segment length 

and flow velocity play an important role in developing internal circulations. This was reflected 

from the maximal loss in TADH activity in the 7 mm long segments at a residence time of 2.5 

min. The corresponding very high Peclet number, which specifies the dominance of convective 

force within the segmented flow (Table 2.1), also confirmed this assumption. Interestingly, 

changing the residence from 2.5 to 8 min decreased the Peclet number and accordingly reduced 

the loss in TADH activity for the 7 mm segment length, whereas for the 3 mm and 1 mm the 

loss in TADH activity was slightly increased. Thus it could be concluded that the convective 

forces within the segment are dominant above a certain Peclet number and below this value the 

loss in TADH activity is mainly dependent on the residence time. Reducing the segment size to 

the micron range (1-100 µm) would decrease the phase ratio, which would not be beneficial for 

catalysis anymore (van der Vegt et al. 1996). Smaller droplets would significantly enhance the 

surface to volume ratio thus minimizing mass transfer barriers at the cost of higher inactivation 

rates. Such applications might target chip assay rather than production formats.  
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2.6 Conclusion 

The present study investigated the influence of segmented flow microreactor process parameters 

on isolated enzymes activity. The loss in TADH activity was attributed to enzyme inactivation in 

the segmented flow microreactor due to non-specific interfacial adsorption which was confirmed 

by drop tensiometry experiments. The rate constant for adsorption suggests diffusion limitation 

in the drop tensiometry experiments, whereas TADH inactivation was highly influenced by the 

convective forces within the segments in the microreactor itself. Thus, the respective enzymes 

need to be stabilized in order to develop segmented flow microreactors as a tool to perform 

productive enzymatic catalysis. Approaches how to achieve this will be evaluated in the next 

chapter.  

 

Acknowledgments  

We thank Patrick Degen (Lehrstuhl fur Physikalische Chemie, Universität Dortmund) for his 

assistance during drop tensiometry experiments. This work was financially supported by the 

Zentrum für Angewandte Chemische Genomik, the European Union (EFRE) and by the 

Ministry of Innovation, Science, Research and Technology of North Rhine-Westphalia.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39 
 

Chapter 3 
 

 

 

 

Stabilizing Enzyme Activity in an Aqueous/Organic Segmented Flow 
 
 
 
Rohan Karande, Andreas Schmid and Katja Buehler 

 
 

 

 

 

 

Katja Buehler and Andreas Schmid coordinated and supervised the project and corrected the 

manuscript 

 

 

 

 

 

 

 

 

Published in parts in Langmuir, 2010, 26 (11), 9152-9159. 

 
 



40 
 

3.1 Summary 

A general and simple approach to stabilize enzyme activity in a segmented flow system is 

essential for the application of segmented flow microreactors for productive enzymatic synthesis. 

The enzyme inactivation in segmented flow reactors is mainly due to the large interfacial area and 

the strong convective forces within the segments. Addition of surfactant to the aqueous phase or 

enzyme immobilization prevented the biocatalyst from direct contact with the interface and thus 

stabilized enzyme activity. Almost 100 % of the enzyme activity could be recovered compared to 

45 % without any enzyme or medium modification. Drop tensiometry measurements point to a 

mixed enzyme-surfactant interfacial adsorption. Above a certain surfactant concentration, the 

surfactant forms a protective layer between the interface and the biocatalyst and this optimal 

surfactant concentration was dependent on the aqueous-organic interfacial area. Comparing both 

approaches, addition of surfactant seems to be a simple and promising approach to recover 

maximum enzyme activity in the segmented flow, which could be used easily for the stabilization 

of different enzymes.   
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3.2 Introduction 

The fast inactivation of enzymes limits the application of aqueous-organic segmented flow 

microreactors (chapter 2). A detailed understanding of the enzyme inactivation mechanism would 

aid to develop strategies to overcome this problem. The enzyme interaction with the aqueous-

organic interface was studied by several authors using drop tensiometry (Hickel et al. 1998; Roach 

et al. 2005). For a hydroxynitrilelyase, a decrease in the interfacial tension due to interfacial 

contacts of hydrophobic parts of the enzyme resulted into the loss of the secondary protein 

structure. Similar results were observed using a thermophilic alcohol dehydrogenase (TADH) 

from Thermus species, where the interfacial surface tension decreased and the adsorption kinetic 

became faster with increasing TADH concentration, as described in chapter 2. 

Moreover, the enzyme stability was also found to be dependent on the reactor geometry. For 

example, Colombie and co-workers studied the influence of liquid-solid and liquid-air interfaces 

on lysozyme stability in stirred tank reactors (Colombie et al. 2001). The inactivation rate was 

reported to be of first order and dependent on the type of interface, area of interface, and on the 

power conveyed by the impeller. In liquid-liquid bubble columns, the enzyme inactivation was 

observed to be proportional to the aqueous-organic interfacial area (Ross et al. 2000). In 

segmented flow microreactors, the strong internal convective forces within the segments not only 

enhanced the rate of enzyme inactivation but also increased the amount of enzyme being 

inactivated. Thus, the interfacial surface area and the convective forces within the segments thus 

both account for TADH inactivation (chapter 2).  

The capability of segmented flow microreactors for enzymatic synthesis can only be realized if 

the interfacial adsorption and inactivation of enzymes is minimized. This may be done either by 

preventing the enzyme from driving towards the interface or by modifying the interface to reduce 

its detrimental effect. Enzyme immobilization is a general approach applied to improve enzyme 

stability (Buchholz et al. 2005). This might change enzyme characteristics and consequently lead 

to structural stability. In addition, depending on the surface properties immobilized biocatalyst 

can be attracted to or departed from the liquid-liquid interface. Moreover, application of the 

immobilized biocatalyst benefits from easy downstream separation and recycling of non-

converted substrate (Rao et al. 2007).  

Another approach to stabilize enzyme activity would be to change the surface properties of the 

interface by using surface active agents like surfactants (Kotsmar et al. 2008; Roach et al. 2005). 

For example, Roach and co-workers controlled enzyme adsorption to the interface in a drop flow 

system by using an aqueous insoluble surfactant (Roach et al. 2005). However, the downstream 

process to separate the surfactant from the organic phase would be a tedious task, as the product 
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formed during catalysis and the surfactants are dissolved in the organic phase. This problem 

could be circumvented by using an aqueous soluble surfactant. 

In this work, we investigated the effect of enzyme immobilization as well as the addition of 

surfactant on TADH activity in the segmented flow system. Interestingly, both approaches were 

successful and maximum enzyme activity could be recovered after passing the enzyme through 

the segmented flow reactor. Additionally, the stability of formate dehydrogenase (FDH) used for 

cofactor regeneration of this NADH dependent reaction was investigated. The final aim of this 

work was to recover complete enzyme activity in liquid-liquid segment flow microreactors, and to 

set an experimental basis to perform demanding biocatalytic reactions. 
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3.3 Materials and methods 

3.3.1 Liquid-liquid segmented flow setup  

The setup of the liquid-liquid segmented flow reactor was similar to the one introduced in 

chapter 2 (Figure 2.1). For the experiments performed with enzyme loaded beads, the setup was 

slightly modified by connecting an additional PTFE tubing (1 mm inner diameter and 200 mm 

long) to the end of the aqueous pump tube (between number 7 and 3 in figure 2.1). The beads 

(10 mg dry weight) containing immobilized TADH were initially pumped at a high flowrate (1 

mL min-1) to fill up the additional tubing. As soon as the additional tube was filled with the beads, 

the respective residence time of the beads in the segmented flow was achieved by changing to the 

desired flowrate. All segmented flow experiments were conducted at 55°C. 

The residence time of the segments was controlled either by varying the flow rates at a constant 

flow ratio or by changing the capillary length. TADH and FDH activity in the segmented flow 

was determined from the difference in enzyme activity before and after the segmented flow using 

a UV spectrophotometer based standard assay as described below, unless stated otherwise. 

Information on the drop tensiometry experiments and purification of TADH can be found in 

chapter 2.3.3 

3.3.2 Preparation and purification of FDH  

The formate dehydrogenase (FDH) C23S mutant from Candida boidinii was used for cofactor 

regeneration (Slusarczyk et al. 2000). It was purified from recombinant E. coli JM110 cultivated in 

a 3 L conical flask with baffles using 300 mL of Terrific Broth (Sambrook and Russell 2001) 

supplemented with ampicillin (100 µg mL-1). At an OD450 nm of 0.5-0.6, cells were induced by the 

addition of 0.5 mM IPTG and the cultivation was continued for another 5 hours. Subsequently, 

cells were harvested by centrifugation at 4618×g, 4°C for 20 minutes in a Sorvall RC-5B 

centrifuge (Thermo Electron Corporation, Langenselbold, Germany) and stored at -20°C. 

Enzyme purification was performed by resuspension of the cell pellet to 30 % (w/v) in 10 mM 

phosphate buffer (pH 7.5 at room temperature) and passing it through a French press unit at 

1050 psi for two times (Aminco SLM Instruments, Urbana, IL). Insoluble cell debris was 

removed by ultracentrifugation for 30 min at 91500 g. The supernatant was loaded onto an anion 

exchange XK 16/20 column filled with 24 mL of DEAE streamline material at a flow rate of 2 

mL min-1 in 10 mM phosphate buffer. Elution was performed at the same flow rate by applying a 

linear gradient of 2M NaCl min-1 in 10 mM phosphate buffer pH 7.5. Fractions were 

concentrated 5-fold by filtration (Centricon, 10 KDa, Millipore Corporation, Schwalbach, 

Germany) at 3990 × g (4°C), aliquoted in  1 ml Eppendorf tubes and stored at -20°C. A final 

purity of 60 to 70% was reached (based on PAGE analysis) and no contaminating activities were 
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found in the control experiments. Information on the preparation of TADH are described in 

chapter 2.3.4 

3.3.3 TADH immobilization on epoxy SEPABEADS® EC-EP  

100 mg of epoxy SEPABEADS® EC-EP were added to 1.8 mL phosphate buffer (0.5 M, pH 7) 

containing 1.1 mg mL-1 TADH in a 2 mL Eppendorf safe-lock tube. The tube was attached to a 

REAX 2 rotator (Heidolph, Schwabach, Germany) set to 30 rpm at room temperature. After 3 

hours, the supernatant was discarded and the beads were suspended in 100 mM phosphate buffer 

pH 8.9 to a final volume of 2 mL. It was incubated in a thermo mixer (Eppendorf Thermomixer, 

Hamburg, Germany) at 25°C, 500 rpm for 24 hrs. Finally, the bead surface was hydrophilized in 

1 M glycine solution (100 mM phosphate buffer, pH 8.9) at room temperature for 2 hours. After 

hydrophilization the supernatants were discarded and the beads were washed several times with 

immobilization buffer and stored at 4°C. In order to evaluate the stability of immobilized TADH, 

immobilized TADH activity was performed as described in next section, and after the activity 

assay the beads were washed at least 3 times by using immobilization buffer, and then reused for 

the next activity test.   

3.3.4 Determination of immobilized TADH activity 

Activity of immobilized TADH was determined by adding 5 mg of beads loaded with TADH to 

950 µL of 100 mM KPi buffer (pH 6.6) containing 160 mM 3-methylcyclohexanone in a 1.5 mL 

Eppendorf tube. The mixture was incubated at 55°C for 2 minutes before the reaction was 

started by the addition of 5 mM NADH to a final volume of 1 mL and incubated for another 10 

min in a thermo mixer (Eppendorf Thermomixer, Hamburg, Germany) at 55 °C, 900 rpm. 

Afterwards, 0.5 mL of supernatant containing substrate and product were extracted with 1 mL of 

ether and quantified by gas chromatography (Focus GC, Thermo Electron Corporation, 

Dreieich, Germany) using a chiral RT-βDex-sm column (30m×0.25mm×0.25 µm Restek GmbH, 

Bad Homburg, Germany) column according to the method reported by Höllrigl et al. (Höllrigl et 

al.,  2008).  

3.3.5 Spectrophotometric determination of soluble FDH activity 

The assay mixture for FDH contained 200 mM ammonium formate and 0.5 mM NAD in 100 

mM phosphate buffer pH 6.5 at 30°C to a total volume of 200 µL. This mixture was 

thermostated at 30°C and the reaction was started by adding FDH. 

For FDH activity the increase of the NADH signal was monitored. Enzyme activities were 

calculated using a specific absorption coefficient of ε = 6220 M-1 cm-1 for NADH at 340 nm. 1 
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unit of enzyme activity was defined as 1 µmole of NADH consumed or produced per minute. 

Spectrometric determination of TADH activity was applied as described in chapter 2.3.5. 

3.3.6 Analytics 

Analytical methods were applied as described in chapter 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

3.4 Results 

Almost 20 to 55% of TADH activity was lost in the segmented flow, depending on the selected 

parameters and described in chapter 2. We investigated two approaches to stabilize TADH in the 

segmented flow reactor system. In the first approach, TADH was fixed on a matrix before 

introducing it into the segmented flow system. In the second approach, the interface was 

modified by adding surfactant, which formed a protective layer between the enzyme and the 

interface. The results of both methods are presented in the subsequent sections.  

3.4.1 Approach 1: Use of Immobilized TADH   

The enzyme was immobilized on a solid surface to avoid the direct contact of TADH and the 

liquid-liquid interface. A spherical epoxy-functionalized polymethacrylate (SEPABEADS® EC-

EP) carrier exhibiting a high porous structure which enhances the surface area was used to 

immobilize TADH. An optimal protocol to immobilize TADH covalently on the epoxy 

Sepabeads was developed on the basis of the recovered bead activity in several runs. The three 

step strategy for the covalent immobilization of TADH on the Epoxy SEPABEADS® EC-EP 

was similar to the protocol given by Ruinatscha and co-workers and described is described in 

methods section 3.3.3 (Ruinatscha 2009).  

The enzyme stability on the beads after each immobilization step was determined by using 

repetitive batch mode activity tests (Figure 3.1), meaning that after each activity assay, the beads 

were washed several times and then reused for the next activity test.  

 
Figure 3.1: Stability of immobilized TADH after each step of immobilization performed in a 
single phase batch system. The dense hatched bars indicate immobilized TADH activity after the first 
step; plain bars indicate immobilized TADH activity after the second step; hatched bars indicate 
immobilized TADH activity after the third step.  

After the first step of immobilization, the immobilized TADH activity decreased by 50 % in a 

single reuse. In comparison to the first step, the immobilized TADH activity in the second step is 

almost two-fold higher, and the beads could be reused for several runs. However, a slight 
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decrease in bead activity after each run was observed. After the final immobilization step, initial 

bead activity was slightly higher as compared to the second step, but the loss in the activity 

during the reuse was still persisting. These results indicate that two steps are sufficient for TADH 

immobilization on epoxy Sepabeads. 

After immobilizing TADH on to the epoxy SEPABEADS carrier, the beads were tested for 

enzyme activity in the segmented flow system. Immobilization of TADH allowed for a recovery 

of 85 to 95 % of TADH activity regardless of the applied tube diameter (Figure 3.2). Compared 

to the experiments with non-immobilized TADH (chapter 2) in the segmented flow, the 

immobilized enzyme showed a significant enhanced half-life time indicating that the direct 

contact of TADH to the organic phase was successfully avoided, and the enzyme was less 

sensitive towards the convective force in the segments. However, technical problems like unequal 

distribution of beads in each aqueous segment, and difficulties in pumping the beads at low 

aqueous flow rates were observed.    

 
Figure 3.2: Stability of immobilized TADH in the liquid-liquid segmented flow system. A) 
Experiment performed in a 2000 mm long, 1 mm i.d. PTFE capillary. B) Experiment performed 
in a 1000 mm long, 2.1 mm i.d. PTFE capillary. In both capillaries, the aqueous to organic phase flow 
ratio was kept equal to 1 (Fr=1) and the flow rates were adjusted from 0.1 mL min-1 to 0.5 mL min-1 to 
achieve the desired residence time. Immobilized TADH activity before and after the segmented flow was 
quantified as described in the material and methods section. 100 % relative activity corresponds to 30-40 
U g-1 bead TADH immobilized activity. 

3.4.2 Approach 2: Stabilization of TADH activity in the segmented flow reactor by using 
surfactants  

As an alternative to enzyme immobilization the influence of surfactant on TADH activity was 

evaluated. The use of surfactants to avoid enzyme adsorption on the liquid-liquid interface has 

been successfully applied by several authors (Kotsmar et al. 2008; Roach et al. 2005). In this 

work, surfactants dissolved in the aqueous phase were screened in the segmented flow reactor 

(Figure 3.3). For better comparison of TADH activity in different surfactant, the experiments 

were performed at equal flow rates (Fr=1), and at constant residence times. All tested surfactants 
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had a beneficial effect on enzyme activity (Figure 3.3), and a maximal of 15% TADH volumetric 

activity was lost during one run in the segmented flow system, compared to 55% in the absence 

of surfactant. For further studies Tween 20 was selected as a model compound. 

 
Figure 3.3: Loss in volumetric TADH activity by varying surfactants in the liquid-liquid 
segmented flow system. The aqueous to organic phase flow ratio was kept equal and the flow rate was 
kept constant at 0.075 mL min-1. 

Apart from the stabilizing effect, Tween 20 had a dramatic impact on the catalytic activity of 

TADH (Figure 3.4A). In the standard spectrophotometer based activity assay the initial TADH 

activity was enhanced to 115% in the presence of 0.1 mg mL-1 Tween 20. Above this 

concentration TADH activity decreased again, in the single batch as well as in the segmented 

flow system. This indicates that TADH inactivation in presence of surfactant is due to the 

enzyme-surfactant interaction rather than the enzyme liquid/liquid interface interaction (Figure 

3.4A). However, when reducing the capillary inner diameter from 1 mm to 0.5 mm, and 

increasing the residence time to 30 minutes, only 20% of TADH activity could be recovered 

using 0.1 mg mL-1 Tween 20 (Figure 3.4B). Further improvement in TADH activity was achieved 

by increasing the Tween 20 concentration to 0.55 mg mL-1, which allowed a recovery of 90% 

TADH activity. By decreasing the capillary diameter the interfacial surface area becomes larger, 

which might lead to a higher degree of TADH inactivation. Therefore, higher surfactant 

concentrations were necessary to cover the interface and to avoid TADH-interface interactions. 

In similar set of experiments, activity of the NADH regeneration enzyme formate dehydrogenase 

(FDH) was investigated in the segmented flow system. Interestingly, a total loss in FDH activity 

was observed when applying 0.1 mg mL-1 of Tween 20 in the 0.5 mm capillary (Figure 3.4B). The 

subsequent increase in the surfactant concentration correlated with an increase in FDH activity 
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and finally almost 100 % could be recovered. Overall, by optimizing the Tween 20 concentration 

to the capillary diameter recovered 90 to 100% of TADH and FDH activities.     

 
Figure 3.4: A) Effect of Tween 20 concentration on TADH activity. Dark circle represents TADH 
activity in presence of Tween 20 determined in a single phase batch system. TADH activity without 
surfactant corresponds to 100 % (0.5 U mL-1) and is related to the activities in presence of Tween 20. 
Open square represents TADH activity in the liquid-liquid segmented flow in the presence of Tween 20. 
The flow rates were constant at 0.2 mL min-1 each in a 2500 mm long, 1 mm inner diameter capillary to 
achieve 4.9 minutes of residence time. B) Effect of Tween 20 on the TADH and FDH stability using 
a 0.5 mm i.d. capillary. Length 25 m, aqueous flow 82.5 µL min-1 and organic flow 82.5 µL min-1, 
residence time of 30 min. Aqueous phase: FDH 2 U mL-1, TADH=4 U mL-1. 

3.4.3 Drop tensiometry experiments to examine enzyme and/or surfactant adsorption  

In order to investigate the role of the liquid-liquid interface on TADH and surfactant adsorption, 

drop tensiometry experiments were performed. The rates of mixed enzyme-surfactant 

adsorptions were determined by using dynamic surface pressure. At the lowest Tween 20 

concentration studied (5 µg mL-1), the mixed system (TADH + Tween 20) showed higher surface 

pressure as compared to the individual Tween 20 and TADH surface pressure curves (Figure 

3.5A). This observation clearly points towards simultaneous adsorption of Tween 20 and TADH 

at the liquid-liquid interface. With an increase in the Tween 20 concentration to 20 µg mL-1, the 

difference between the surface pressure of the mixed system and Tween 20 is reduced, indicating 

that Tween 20 is adsorbing faster to the interface than TADH (Figure 3.5B). At the highest 

concentration of Tween 20 (100 µg mL-1), the surface pressure of the system containing TADH 

and surfactant and the one containing only Tween 20 are similar (Figure 3.5C), which indicates 

that Tween 20 is adsorbed to the interface rather than TADH.  

These results demonstrate that at a certain Tween 20 concentration (0.1 mg mL-1), surfactant 

molecules dominate interfacial adsorption. However, to gain additional information on the 

adsorption layer formed by simultaneous or preferential adsorption of TADH and Tween 20, one 

can execute further investigation by ellipsometry or neutron reflection techniques. 
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Figure 3.5: Dynamic surface pressure at the hexadecane-buffer interface. Change of surface 
pressure for the hexadecane-buffer interface with time for TADH (A), Tween 20 (B) and with both (C), 
TADH and Tween 20, is shown. Schematic sketches describe possible mixed (enzyme and surfactant) 
interactions on the interface. 
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3.5 Discussion 

On the basis of our hypothesis on enzyme inactivation, the direct contact of the enzyme with the 

interface should be avoided in order to stabilize enzyme activity. This is done either by reducing 

the surface free energy of the interface by using surface active molecules or by changing the 

surface activity of enzyme by immobilizing them onto a solid matrix (Mateo et al. 2002). 

3.5.1 Evaluation of the two approaches to stabilize TADH in the liquid-liquid segmented 
flow reactor 

A three step enzyme immobilization protocol similar to the one published by Ruinatscha and co-

workers for the covalent immobilization of a monooxygenase on epoxy-functionalized Sepabeads 

EC-EP (Ruinatscha 2009) was investigated for TADH immobilization. The reusability of 

immobilized TADH in a batch system was considered to be an important criterion for the 

success of the immobilization. After the first step of TADH adsorption, almost 50% of 

immobilized TADH activity was lost (Figure 3.1). This loss in activity is attributed to desorption 

of the enzyme from the carrier particles. Although bead activity after subsequent covalent 

attachment improved by two-fold which could be reused for several runs, a slight loss in 

immobilized enzyme activity after each run was observed (Figure 3.1). This could be the result of 

unbound epoxy functional groups on the beads, which react with the enzyme residues affecting 

the catalytic activity of TADH. To overcome the untreated epoxy functional groups and to 

obtain a chemically inert heterogeneous catalyst, the beads were post treated with a non-polar 

amino acid (Glycine). However, this treatment had no influence on bead performance.  

Overall, TADH stability could be significantly improved by immobilization and only 5 to 15% of 

bead activity was lost in each cycle (Figure 3.2). This might be due to the hydrophobic nature of 

the Sepabeads (Srinivasulu and Rao 1993), which drives them towards the aqueous/organic 

interface where they attach. This interfacial adsorption would be beneficial to perform interfacial 

catalysis, but on the down side the enzymes present on the bead surface get exposed to the 

interface and might be inactivated. However, the main bottleneck of this system is of technical 

nature, which prevents the equal distribution of beads in each aqueous segment. We suggest 

using hydrophilic nano-beads with a lower specific gravity then the aqueous phase to overcome 

these challenges. 

As an alternative approach, the surface free energy of the interface was reduced by adding 

molecules, which were more surface active then an enzyme such as surfactant. At low amounts of 

surfactant molecules present in the aqueous phase, both TADH and Tween 20 is adsorbed to the 

interface (Figure 3.5A). At higher concentrations of Tween 20, the adsorption of the surfactant to 

the interface was faster than in case of the protein. This becomes obvious from the surface 
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tension measurements, where the surface pressure approached the surfactant surface pressure 

(Figure 3.5B). With increasing Tween 20 concentrations the effect of TADH on interface was 

almost negligible (Figure 3.5C). These results suggest that Tween 20 prevents the interfacial 

adsorption of TADH, which might lead to an increase of TADH activity above 100% in the 

segmented flow system (Figure 3.4A).  

This surface active molecule not only changed the surface free energy of the interface but also 

had an impact on enzyme activity. In the standardized spectrophotometric assay, the presence of 

0.1 mg mL-1 Tween 20 had a positive impact on the initial TADH activity (enhancement to 

115%). Also in the segmented flow system the addition of surfactant was beneficial for the 

recovery of enzyme activity (Figure 3.4A). According to Miller et al. and Kotsmar et al., the 

surfactant-enzyme interaction mechanism for the non-ionic surfactants is due to the hydrophobic 

interaction between the surfactant and the enzyme (Kotsmar et al. 2008; Miller et al. 2000). This 

hydrophobic interaction between Tween 20 and hydrophobic groups present on the TADH 

might lead to a better accessibility of the substrate to the binding pocket, indicated by a rise in 

TADH activity (Figure 3.4A). However, with increasing Tween 20 concentrations, the resulting 

hydrophobic interaction between surfactant and TADH might disrupt the entire structure of the 

protein and is therefore not beneficial for enzyme stability. Similar results of enhancement in the 

enzyme activity at low surfactant concentration and inhibition at higher surfactant concentration 

have been described by Srinivasulu and Rao (Srinivasulu and Rao 1993). Interestingly, a Tween 

20 concentration of 0.1 mg mL-1 was observed not to be beneficial in the 0.5 mm capillary as 

almost 80% of TADH activity and 100% of FDH activity was lost (Figure 3.4B). The increase in 

the interfacial surface area by reducing the capillary diameter necessitates more surfactant to 

cover the interface. Due to the low amount of surfactant at 0.1 mg mL-1 subsequent adsorption 

of enzymes and loss in the activities was observed. However, with increase in the surfactant 

concentration, the recovery of TADH and FDH activity improved in the segmented flow system.      

Overall, the enzyme immobilization and the use of surfactant approaches tested here showed 

magnificent improvement in stability of TADH and FDH activity. This surfactant approach 

would also be an interesting option to control enzyme inactivation in liquid-liquid batch or semi 

batch systems. Now the stage is set to exploit the segmented flow technology for productive 

biocatalysis. The presented TADH/segmented flow system allows qualitative cause-effect studies 

with time dependent losses of enzyme activities as read-out parameters. System boundaries 

identified might include different inactivation rates of multienzyme reactions or the identification 

of optimal solvent/enzyme/reaction combinations.   
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3.6 Conclusions 

The present study shows the successful stabilization of an isolated dehydrogenase in a segmented 

flow reaction system. Inactivation of TADH in the segmented flow microreactor was due to non-

specific interfacial adsorption. The enzyme was stabilized either by immobilization or by the 

addition of surfactants. Drop tensiometry experiments helped to elucidate how the surfactant 

replaces the enzyme at the interface. The use of surfactants seems to be more attractive because 

of better activity yield, less complexity, and easier implementation into the liquid-liquid 

segmented flow reactor. At an optimal Tween 20 concentration, TADH and FDH activities in 

the segmented flow microreactor are stabilized. This simple solution can be applied to a variety 

of enzymes to stabilize their activity. The potential of this technique for biocatalysis will be 

evaluated in the next chapter. 
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4.1 Summary 

A segmented flow capillary microreactor was used to perform the enzyme catalysed conversion 

of 1-heptaldehyde to 1-heptanol in a two liquid-liquid phase system. These reactor formats are 

established for chemical reactions but so far data describing the relevant system parameters for 

enzymatic catalysis are missing. This work addresses the impact of important parameters such as 

capillary diameter, flow velocity, phase ratio, and enzyme as well as substrate concentration on 

the enzymatic reaction performance under segmented flow conditions. All key parameters 

governing reaction performance have been correlated in a novel operational window for an easy 

assessment of the various system constraints. Such systems are characterized by high 

productivities and easy phase separation facilitating downstream processing. This work 

underscores the importance of segmented flow systems as a promising tool to perform 

multiphasic enzymatic catalysis.  
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4.2 Introduction 

The main objective of bioreactor design is to ensure high productivities and catalyst stabilities at 

low manufacturing and maintenance costs. In the last decades, considerable efforts have been 

made in this respect either by design of new reactors or by optimization of established systems. 

Especially, the concept of miniaturizing reaction formats has gained interest as productivities of 

chemical reactions are enhanced by orders of magnitude (Ehrfeld et al. 2000; Watts and Haswell 

2005). Accordingly, microreactors have been successfully implemented in the chemical industry 

for the production of fine chemicals (Roberge et al. 2008; Wirth 2008).   

Segmented flow capillary microreactors are especially suited for reactions comprising multiple 

liquid-liquid phases due to the improved mass transfer rates compared to the conventional batch 

systems (Kashid et al. 2007). A segmented flow is formed by the contact of immiscible fluids 

through a T or Y shaped mixer generating alternate fluid segments (Kashid et al. 2011b; Kashid 

et al. 2008; Kinkel and Tomlinson 1980). The high mass transfer rates are obtained from the 

enhanced surface area to volume ratio between the segments, while the shearing motion 

generates re-circulations or vortex motions and enhances mixing within the segments (Burns and 

Ramshaw 2001; Burns and Ramshaw 2002; Nord et al. 1987). Additionally, the power input 

necessary to obtain high mass transfer coefficients in the segmented flow are low compared to 

the conventional systems (Kashid et al. 2007). Moreover, these types of microreactors are simple 

in design, easy to construct and cheaper than conventional reactors. 

Although well established for chemical reactions, segmented flow capillary microreactors are so 

far not used for enzymatic catalysis. One has to keep in mind that only fast reaction limited by 

mass and heat transfer profit from the advantages of miniaturization. Contrary to chemical 

reactions, biocatalytic conversions are relatively slow and are often not hampered by mass or heat 

transfer problems. Therefore just a limited number of multiphase enzymatic reactions which are 

depending on sufficient inter-phase transport will benefit from a microscale reaction system 

(Bolivar et al. 2011). However, high surface to volume ratios between the segments might lead to 

biocatalyst inactivation. In the chapter 2 and 3, the enzyme (TADH and FDH) inactivation in the 

segmented flow was investigated and successfully circumvented by addition of surfactant to the 

aqueous phase. This chapter presents our continuing effort for the development of segmented 

flow enzymatic microreactors (SFER).  

In the course of SFER development the impact of the mass transfer rates on the TADH reaction 

kinetics were pre-evaluated by using the Damköhler number. The reduction of 1-heptaldeyde to 

1-heptanol was chosen as a model reaction. Important parameters governing the interplay 

between reaction rates and mass transfer rates were investigated and visualized in an operational 
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window for a systematic optimization of the SFER performance (Figure 4.5 and 4.6). An average 

productivity of 10.4 gproduct Lorg
-1 hr-1 (90 mM h-1) was obtained in the segmented flow system using 

a 0.5 mm inner diameter capillary. Phase separation, as well as product isolation, was 

straightforward. 
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4.3 Material and Methods 

4.3.1 Segmented flow enzymatic microreactors (SFER) setup  

The setup of the SFER was similar to that described previously (chapter 1), and shown in Figure 

4.1. The PTFE capillaries were kept in a thermo bath to maintain the reaction temperature 

(45°C). Prior to starting the biotransformation, the flow was stabilized for 10 min at the desired 

flow rate. A standard experiment contained hexadecane as organic phase with 100 mM 1-

heptaldehyde as substrate, and 100 mM Bis-Tris buffer as aqueous phase containing 0.5 mM 

NADH, 500 mM ammonium formate, and TADH as well as FDH for cofactor regeneration. 

The ratio of TADH:FDH was always 2:1. The Tween 20 concentration varied with the capillary 

diameter applied. For 2.15 and 1 mm i.d. capillaries 0.11 mg mL-1, and for 0.5 mm i.d. capillary 

0.55 mg mL-1have been added to the aqueous phase. 

 

Figure 4.1: Schematic view of the liquid-liquid segmented flow setup. 1: aqueous phase reservoir; 2: 
organic phase reservoir; 3, 4: solvent resistant tubing; 5, 6: two channel peristaltic pump; 7: T shaped 
mixer; 8: aqueous phase segments; 9: organic phase segments; 10: 0.5 mm, 1 mm or 2.15 mm inner 
diameter PTFE capillary; 11: samples collected for off line analysis; 12: water bath to control temperature; 
13: magnified sketch of segment showing mass transfer and reaction scheme.  

The reactions were started by contacting and passing organic phase containing the substrate and 

aqueous phase including the enzymes and cofactors through the capillaries. The residence time of 

the segments was controlled either by varying the flow rates or by changing the capillary length. 

The segments were collected from the tube outlet in an Eppendorf tube for every 2 minutes. 

Aqueous phase and organic phase were separated based on the density difference. Substrate 

consumption and product formation were analysed using gas chromatography (GC), while 

residual enzyme activity was determined via an UV spectrophotometer based assay. 
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4.3.2 Preparation, purification and activity determination of TADH and FDH 

Information on the preparation and purification of TADH and FDH can be found in chapter 

2.3.4 and 3.3.2 Determination of TADH and FDH activities, protein concentration and analytical 

methods were applied as described in chapter 2.3.5 and 3.3.5. 

4.3.3 Product recovery  

After the enzymatic transformation, phase separation was based on the density difference. 1-

heptanol was purified by fractional distillation at 7 mbar at elevated temperature. The organic 

phase was heated to 180°C and the temperature of the distillate increased to 65°C. Two distillate 

fractions and the final residue were collected from the still. The first distillate fraction contained 

the major portion of 1-heptaldehyde (70% based on GC containing flame ionization detector), 

whereas the rest of the material was 1-heptanol. The second fraction contained 1-heptanol with a 

purity of 97-98% as determined by GC-FID, with small traces of 1-heptaldehyde. The final 

residue contained 1-hexadecane at a purity of 99.4% (GC-FID analysis) with minor amounts of 

1-heptanol. 
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4.4 Results  

4.4.1 Which enzymatic reactions profits from a microreactor system? 

The true benefit of micro-scale systems are excellent mass transfer rates accomplished by the 

enhanced surface area to volume ratio (Janasek et al. 2006). Therefore, reactions limited by mass 

transfer rates benefit from the substantial transfer potential of micro-systems. Hence, knowing 

the rate limits of the mass transfer and the enzymatic reaction can be helpful to judge in 

suitability for the micro-systems. To evaluate the TADH reaction rate limit, the substrate mass 

transfer resistance was assumed to solely reside in the aqueous phase (based on the high substrate 

partition coefficients, Korg./aq.) (Ramelmeier and Blanch 1989).The substrate mass transfer rate 

through the organic phase into the aqueous phase is thus:  

 ALAeLA CCakm                                               (4.1) 

Where kL is the mass transfer coefficient (m s-1), a is the interfacial area per volume (m-1), CAe is 

the equilibrium substrate concentration in the aqueous phase (mM), CAL is the aqueous phase 

substrate concentration (mM). For the enzyme reactions following Michaelis-Menten kinetics, the 

reaction rate is: 

ALm

ALmax
A CK

CV
r


                                                                                                    (4.2) 

where, Km is the Michelis constant (mM). At steady state the substrate mass transfer rate is in 

balance with the reaction rate (mA= rA), hence equation 4.1 and 4.2 are equated as follows:  

ALm

ALmax
ALAeL CK

CV
φCCak




 





                                                                                           (4.3) 

where, φ is the phase volume ratio (Vaq/Vorg). This equation is rearranged in terms of 

dimensionless quantities by putting:  

Ae

AL
C
C

x   and 
Ae

m
C
Kκ   

  
AeL

max

Cak
φV

x
x1xκ


                                                                                (4.4) 

The right side term can be reduced by introducing the dimensionless variable Damköhler number 

second (Da). Therefore equation 4.4 now becomes: 

   Da
x

x1xκ                                                                     (4.5) 

and, 
AeL

o

AeL

max
Cak
ekcat

Cak
φVDa





                                                                            (4.6) 

where, Vmax = kcat × eo, kcat is the turnover number (s-1) and eo is the enzyme concentration 

(mM). This number parameterizes the reaction kinetics and mass transfer rates, similar to the 



61 
 

Hatta number or Thiele modulus (Samant and Ng 1998). A high Damköhler number represents a 

mass transfer controlled regime where the reaction rate is faster than the mass transfer rate, 

whereas a low Damköhler number indicates a reaction rate controlled regime since the reaction 

rate is much slower than the mass transfer.  

 
Scheme 1: Reactions catalyzed by TADH and used for pre-evaluation presented in Table 4.1.  

Table 4.1 illustrates two reactions catalyzed by TADH with a different turnover number: 

reduction of rac-3-methylcyclohexanone to (1S,3S)-3-methylcyclo-hexanol, and  reduction of 1-

heptaldeyde to 1-heptanol (Scheme 1). As the reaction rate equals the mass transfer rate at a Da 

number of 1 (Da=1), it was possible to estimate the mass transfer coefficient (kLa) necessary in 

the reactor system to normalize the reaction speed. The respective mass transfer coefficient (kLa) 

differs for both reactions: for the conversion of 1-heptaldehyde a kLa of 0.25 s-1 is obtained, 

whereas the conversion of 3-methyl-cyclohexanone gives a kLa of 0.0012 s-1 (Table 4.1). 

Table 4.1: Pre-evaluation of reactions based on the Damköhler number  

 Reaction 1 Reaction 2 

kcat ~ 10 s-1 ~ 100 s-1 

Enzyme 0.025 mM  0.025 mM 

Substratea)  200 mM 10 mM 

Damköhler number 1 1 

Mass transfer coefficient 0.00125 s-1 0.25 s-1 

Mass transfer coefficients were determined by assuming Damköhler number = 1; a) solubility limit of the substrate in 
the aqueous phase.  

This suggests a 200-fold higher mass transfer coefficient for the conversion of 1-heptaldehyde as 

compared to the conversion of 3-methylcyclohexanone. It indicates that the conversion of 1-

heptaldehyde is mass transfer limited, if the reactor is not operated at a mass transfer coefficient 

equal to or above 0.25 s-1. Kashid and co-workers investigated mass transfer in various aqueous 

organic segmented flow systems and compared those to traditional extraction formats (e.g. 
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agitated vessels). The reported mass transfer coefficients for the segmented flow (kLa) have been 

in the range of 0.1 to 2 s-1 (Kashid et al. 2007), which were higher than those obtained for the 

conventional units. As our predicted mass transfer coefficient based on the Da number (Da=1) 

for the conversion of 1-heptaldehyde lies within this range (Table 4.1, kLa = 0.25 s-1), the 

segmented flow system is highly attractive to perform this enzymatic transformation. Based on 

this pre-evaluation, 1-heptaldehyde was chosen as a model substrate for further investigation of 

the SFER. 

4.4.2 Which parameters influence the enzymatic reaction performance in a SFER?  

Several authors have identified important parameters affecting mass transfer performance in 

segmented flow reactors, such as phase ratio, capillary diameter, and flow velocity (Burns and 

Ramshaw 2001; Burns and Ramshaw 2002; Jovanovic et al. 2010; Kashid et al. 2007; Nord et al. 

1987). These parameters were studied in detail to understand their impact on TADH 

performance.  

Trade-off between the enzyme concentration and the capillary diameter  

The impact of enzyme concentration on the reaction performance in the segmented flow reactor 

was investigated in 0.5 mm, 1 mm, and 2.15 mm inner diameter PTFE (Polytetrafluroethylene) 

capillaries. For all studied capillaries, the space time yield (STY) increased linearly with the 

enzyme concentration, until it reached a maximum before levelling off (Figure 4.2A). This point 

to a transition from a reaction rate limited regime to a mass transfer limited regime.  

 
Figure 4.2. A) Influence of enzyme concentration on the space time yield (STY) using capillaries 
of varying inner diameter (i.d.). Flow rate and capillary length were adapted to achieve 30 min residence 
time for each capillary. Aqueous and organic phase flows were kept equal and constant during the 
experiment. 2.15 mm i.d.: length 4.9 m, total flow 0.58 mL min-1 (0.26 cm s-1); 1 mm i.d.: length 11 m, 
total flow 0.29 mL min-1 ( 0.61 cm s-1); 0.5 mm i.d: length 25 m, total flow 0.165 mL min-1 ( 1.40 cm s-1). 
For more information on enzyme stability (TADH / FDH) see supplemental information. B) Impact of 
flow velocity on the product formation. TADH = 8 U mL-1; 1 mm i.d. capillary 11 m long;  total flow 
rate varied from 0.19 to 0.88 mL min-1. 
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For 2.15 mm PTFE capillary, no significant increase in the reaction rate was seen at higher 

enzyme concentrations (2U FDH mL-1 and 4U TADH mL-1). However, the reaction rate was 

further increased by reducing the capillary inner diameter to 1 mm or 0.5 mm. The maximum 

STY of 90 mM h-1 was achieved for the smallest capillary (i.d. 0.5 mm), which illustrates an 

enhancement of mass transfer due to increase in the length of segments and flow velocity with 

decreasing capillary diameter. For the efficient usage of enzymes, it is thus essential to determine 

the optimal enzyme concentration for each capillary unit.  

The impact of flow velocity on the product formation rate  

Segmented flow forms internal circulations or forced vortex within the segments which are 

developed from the shear forces implied by the capillary wall across a segment interface (Burns 

and Ramshaw 2001; Burns and Ramshaw 2002; Jovanovic et al. 2010; Kashid et al. 2007; Nord et 

al. 1987). These circulations improve mixing within the segments and are dependent on the flow 

velocity, length of segments and inner diameter of the tubing. Out of these parameters, flow 

velocity was varied in order to investigate the effect of higher internal circulations on the reaction 

performance while other parameters were kept constant. At high flow velocities and short 

residence times (1.86 cm s-1, 10 min), the space time yield was high (Figure 4.2B). Lowering the 

flow velocity to 0.91 cm s-1 or 0.61 cm s-1 (residence times of 20 or 30 min), increased the total 

product concentration on the expense of STY. This experiment shows the effects of flow 

velocity on the STY at varying residence times. 

The impact of phase ratio on product formation 

In segmented flow reactors, the ratio of aqueous to organic phase (phase ratio) alters the segment 

sizes and is an important parameter influencing the mass transfer rates (Burns and Ramshaw 

2001; Burns and Ramshaw 2002; Nord et al. 1987). The phase ratio was varied by changing the 

individual phase flow rate, while keeping the total flow rates constant to obtain a residence time 

of 20 min (Figure 4.3A). The product concentration in the organic phase increased up to a phase 

ratio of 1.5 and then remained constant. However, the maximal amount of product considering 

both phases was formed at a phase ratio of 1.0. Though, the optimal phase ratio of 1.0 was based 

on the total amount of product formed, a trade-off between the product concentration and the 

amount is necessary to meet downstream separation cost. 
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Figure 4.3: A) The influence of phase ratio on the product formation. TADH = 4 U mL-1, 1 mm i.d. 
capillary 11 m long; aqueous flow 0.15 to 0.3 mL min-1 and organic flow 0.3 to 0.15 mL min-1; residence 
time 20 min. B) Influence of substrate concentration on the product formation using capillaries of 
varying inner diameter (i.d.). TADH = 6 U mL-1; residence time 30 min.; 2.15 mm i.d.: length 4.9 m, 
total flow 0.58 mL min-1; 1 mm i.d.: length 11 m, total flow 0.29 mL min-1; 0.5 mm i.d.: length 25 m, total 
flow 165 mL min-1.   

Trade-off between substrate concentration and capillary diameter 

The effect of varying substrate concentrations on the enzymatic reaction performance in the 

SFER was analyzed in 0.5, 1, and 2.15 mm inner diameter PTFE capillaries. The maximum 

reaction rate was obtained in the smallest capillary (0.5 mm i.d.) at a substrate concentration of 

100 mM 1-heptaldehyde in the organic phase (Figure 4.3B). A further increase of the substrate 

concentration was not beneficial as TADH was inhibited by substrate concentrations above 1 

mM 1-heptaldehyde in the aqueous phase (100 mM in the organic phase, partition coefficient 

Korg/aq =100). In capillaries with a larger inner diameter a lower conversion rate was obtained and 

the optimal substrate concentration shifted from 100 mM to 150 mM. Interestingly, similar 

amounts of product were converted at a substrate concentration of 500 mM, irrespective of the 

capillary inner diameter. This indicates that smaller capillaries are only beneficial for the mass 

transfer rate at lower substrate concentrations.  

Based on the above findings, different reactor set-ups were considered for maximizing product 

formation. Utilizing small sized capillaries is not recommendable, because they have to be very 

long to achieve a sufficient residence time for the reaction. To achieve a residence time of 210 

min, one would need a capillary of 175 m (0.5 mm i.d.), which leads to problems with high 

backpressure and is thus not attractive. Simply changing the flow rate to prolong the residence 

time is no option, as this will in turn change the operating region of the system and lower the 

overall reaction performance (Figure 4.2B). Instead, different sized capillaries have been 

combined (Figure 4.4), which reduced the overall capillary length to 41 m. The reaction was 

started in a 2.15 mm i.d. capillary with the organic segments containing 300 mM 1-heptaldehyde. 

With on-going conversion to 1-hetanol the inner capillary diameter was reduced to 1 mm and 
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finally to 0.5 mm, because at lower substrate concentrations smaller capillaries support higher 

reaction rates. In this combined system 85 mM of the product 1-heptanol could be gained in 105 

min (Table 4.2). With the decrease in capillary inner diameter the flow velocity and the surface 

area to volume ratio increases, which contributes to the enhancement of the mass transfer rates 

and results in a higher product concentration. However, for the longer residence time  (210 min) 

single 2.15 capillary turned out to beneficial as TADH inactivation was more pronounced in the 

coupled capillaries. 

                                 

Figure 4.4: Coupled capillaries SFER set-up (experimental data shown in table 4.2 used to 
elaborate the coupled capillaries SFER set-up). SFER combining 2.15 mm, 1 mm and 0.5 mm 
capillaries in series.  

Table 4.2: TADH catalyzed conversion of 1-heptaldehyde in different SFER 
configurations 

System Residence time (min) 
Product 

(mMorg.) 
STY (mMorghr-1) TADHc) 

cSFER a) 105 85 48 50 

SFER b) 105 64 36 88 

cSFER a) 210 112 32 36 

SFER b) 210 137 39 63 

General conditions: Total flow105min0.3 mL min-1; total flow210min 0.165 mL min-1. Aqueous phase: NADH = 0.5 
mM, TADH = 15 U mL-1, ammonium formate = 1 M, Tween 20 = 0.11 mg mL-1. Organic phase: 300 mM 1-
heptaldehyde.  
a)cSFER: coupled SFER combining different sized capillaries: total capillary length 40.9 m (2.15 mm i.d = 4.9 m, 1 
mm i.d. = 11 m, 0.5 mm i.d. = 25 m). 
b)SFER: standard set-up. Total capillary length 9 m (2.15 mm i.d. only). 
c) Recovered TADH activity; FDH activity was above 89% in all cases.  
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4.4.3 Product isolation  

Product isolation is crucial for the overall process design and very often neglected. Two phase 

systems tend to form stable emulsion in traditional stirred tank systems, which severely 

complicate downstream processing and the recycling of the organic phase due to difficulties in 

phase separation (Mathys et al. 1999). Applying two phase reaction systems to a SFER 

circumvents this problem, as no emulsions are formed and the phases may be easily separated 

based on their density difference. The maximum product concentration obtained in the organic 

phase of our SFER corresponds to 1.5 to 2 wt % of the total organic phase. For the practical 

application of 2-phase enzymatic reactions one of the key steps is to isolate the product and to 

recycle the organic phase. In preliminary experiments, fractional batch distillation of the organic 

phase at 7 mbar and 180°C recovered 410 mg of 1-heptanol (purity 97-98% based on GC 

analysis) as a clear liquid from the distillate. The bottom phase of distillation contained mainly 

hexadecane (99.45% based on GC analysis), which could be recycled in the 2-phasic enzymatic 

reactor. The isolated product yield was 40%, and further optimization to enhance the product 

yield will be of special interest in future works. 
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4.5 Discussion 

The missing information about the suitability of a given reaction for SFER systems hampers their 

broad application in biocatalysis. This was demonstrated by studies investigating the application 

of lyases and lipases in microscale systems (Koch et al. 2008; Swarts et al. 2008). These reactions 

were obviously not mass transfer limited and thus the outcome of the studies was that there was 

no benefit from applying those catalysts to a microscale system. The performance was 

comparable to a lab-scale batch system. The here presented work elaborates a simple approach to 

evaluate enzymatic reactions for application in a microreactor system. By analysing the 

Damköhler number (equation 4.6), it is possible to predict whether the enzymatic reaction would 

profit from the transfer potential of the microsystem. Pompano and co-workers have used the 

Damköhler number to predict the outcome of autocatalytic reactions in segmented flow systems 

(Pompano et al. 2008).   

4.5.1 Tuning reaction, fluidic and system parameters to maximize product formation rates  

In microreactor technology, the scale-up from laboratory to production level is achieved by the 

numbering up or scale out technique (Kashid et al. 2010; Mendorf and Agar 2011). Therefore, 

optimizing the operational parameters for a single unit is the most essential step to develop a 

large-scale system operating at maximal output. In this work, various parameters governing the 

SFER performance were investigated. For the optimal operation of SFER, it is not only 

important to study the impact of single parameters, but also to evaluate how these factors are 

interconnected with each other and influence the overall performance of the SFER. There are 

two approaches to recognize the collective process parameters in two phase systems with an aim 

to understand and optimize a bioprocess. A mathematical approach requiring numerical 

computations (Sayar et al. 2009a; Sayar et al. 2009b), or graphical representation referred to as 

windows of operation (Chen et al. 2007; Woodley and TitchenerHooker 1996). The later 

approach, has been demonstrated and applied to various examples in system and process 

development to identify key limitations using qualitative or quantitative windows of operation 

(Chen et al. 2007; Woodley and TitchenerHooker 1996). In this study, the window of operation 

approach was extended to a ternary diagram for the conceptual design of the SFER (Figure 4.5). 

The three variables that form the axes of the ternary diagram are the reaction efficiency or 

effectiveness factor (E), the Damköhler number (Da) and the productivity (P).  

The effectiveness factor is defined as the ratio of the actual reaction rate in the presence of mass 

transfer limitation to the maximum reaction rate possible (no mass transfer limitation). The 

second variable, the Damköhler number (equation 4.6), couples all of the important parameters 

in the SFER and is used in the ternary diagram as a measure of an individual or collective 
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parameter. For example, an increase in enzyme concentration, phase ratio and capillary diameter 

will lead to a rise in the Da number, whereas, the increase in flow velocity and substrate 

concentration will decrease it. Finally, the third variable on the ternary diagram is the 

productivity, which governs the system performance. These variables were used to plot a 

qualitative (Figure 4.5) and quantitative (Figure 4.6AB) ternary diagram correlating the findings of 

our experimental study. The feasible operational regime is indicated by the shaded region and 

determined by six factors as shown in Figure 4.5. 

 
Figure 4.5: Window of operation for qualitative representation of the Damköhler number (Da) 
and effectiveness factor (E) plotted as a function of productivity (P). Each edge of the triangle 
represents 100% of the respective variable, and the percentage decreases as the variable moves towards 
the opposite side of the triangle, where it is 0%. Lines drawn show the impact of the individual parameter 
on Da, P and E. The shaded area indicates the feasible operational area. 

Out of these six factors, mass transfer limitation, reaction rate limitation and low productivity 

regimes result from the very low values of the variable opposite of the respective factor. An 

enzyme inactivation regime occurs at a very high effectiveness factor combined with a low Da 

number and low productivity. This sounds contradictorily at first. A high E value means the 

enzyme is operating at Vmax, but as the productivity is low, the amount of enzyme has to be low as 

well otherwise the productivity should be higher. The low Da number reflects a high mass 

transfer coefficient, which could be obtained by high velocities and/or a high surface area in a 

segmented flow system. As seen in chapter 2, these conditions will lead to enzyme inactivation 

(Karande et al. 2010). This has also been shown by Woodley and co-workers in a typical stirred 

tank batch reactor and was evaluated in a comparable operating window (Woodley and 
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TitchenerHooker 1996). A technical system limitation regime occurs at a very high productivity, 

combined with a low effectiveness factor and a low Da number. In this situation, the system 

operates at very high enzyme concentrations and necessitates high mass transfer rates to obtain 

high productivities, which is usually not possible due to the technical system constraints (e.g. 

stirring speed in batch formats and flow velocities in the segmented flow systems).  

 
Figure 4.6: Quantitative representation of the experimental data in the ternary plot for the here 
investigated SFER set-up.  A) Impact of the enzyme concentration in 2.15 mm, 1 mm and 0.5 mm 
inner diameter capillary as a function of P, Da and E. B) Impact of substrate concentration, flow velocity 
and phase ratio as a function of P, Da and E. The respective regions were plotted based on the 
experimental data. 1.00 corresponds to 100 %. Region A-Mass transfer limited regime; Region B-
Inefficient use of enzymes; Region C-Low productivity regime; Region D-Reaction limited regime; P - 
Productivity, Da-Damköhler number, E-Effectiveness factor.   

At a very high Da number, low effectiveness factor, and low productivity the enzyme is only used 

inefficiently. In this regime, the system is either operated at a very high enzyme concentration or 

phase ratio, but is strongly limited by the mass transfer rate. Therefore, most enzyme molecules 

are unable to perform a reaction because of the low amount of substrate. To enhance the reactor 

performance, it is essential to move towards the top variable (high productivity), but concurrently 

keeping the balance of the variables on right and left, and to operate within the shaded region. 

For the quantitative representation of the ternary diagram the maximum productivity in the 

SFER was set to 150 mM h-1 by extrapolating the data obtained in Figure 4.2A. To achieve the P-

values the measured productivities were then divided by this maximum of 150 mM h-1. To 

determine the E-values, the observed reaction rate in an aqueous-organic 2-phase system was 

divided by the reaction rate in the single phase system. These two variables (effectiveness factor 

(E) and productivity (P)) were used to plot the experimental sample points in the ternary diagram. 

With increasing enzyme concentration the system moves towards a mass transfer limited 

regime (Figure 4.2A). In the ternary diagram, this shift is represented by dotted lines for 2.15 mm, 
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1 mm and 0.5 mm inner diameter capillaries (Figure 4.6A). At low enzyme concentrations, the 

system operates at very low productivity (Region C) irrespective of the capillary inner diameters. 

With increasing enzyme concentration in the 2.15 mm i.d. capillary, the system operation moves 

into region B where the enzymes are inefficiently used as the system is strongly limited by the 

substrate transfer from the organic into the aqueous phase. To overcome this situation, thinner 

capillaries have been used to improve the mass transfer rate and thus the productivity. The 

capillary inner diameter is directly influencing the segment size which controls the surface area to 

volume ratio and therefore the mass transfer rate. However, at very high enzyme concentrations 

the system performance again moves towards the mass transfer limited regime (Region A). 

Our experimental results have shown an increase in the STY in parallel to the flow velocity 

(Figure 4.2B). The flow velocity mainly attributes to the internal circulations within the segments, 

which influences the mixing and enhances the mass transfer rates (Karande et al. 2010). This is 

well mirrored in the ternary diagram where the system operation moves from mass transfer 

limited regime (Region A) into the feasible operational area. Changing the phase ratio has an 

impact on both the mass transfer and the reaction rate. By increasing the phase ratio, the organic 

segments become shorter as compared to the aqueous segments which results in a higher surface 

area of the aqueous phase and an increase in the substrate transfer rate. However, the change in 

the aqueous segment is further compounded by the rise in the enzyme to substrate ratio, which in 

turn enhances the reaction rate and shifts the reaction towards a mass transfer limited regime. 

This is well reflected in the ternary diagram, where the productivity improves with the phase ratio 

at the cost of effectiveness factor. At a certain phase ratio (phase ratio 1.5, Figure 4.3A) the 

system operation moves towards mass transfer limited regime (Region A, Figure 4.7B) with an 

increasing Da number.   

The substrate concentration in the organic segments has to be correlated to the respective 

capillary diameter (Figure 4.3B). The product formation rate is higher in the smaller capillaries as 

compared to the bigger ones at low substrate concentrations (Figure 4.3B). At 1-heptaldehyde 

concentrations above 1 mM, TADH is inhibited by the substrate in the single phase system (data 

not shown). In the segmented flow a substrate concentration of 100 mM in the organic phase 

corresponds to 1 mM in the aqueous phase at equilibrium (partition coefficient of 100), which is 

reached only in the smallest capillaries because of higher mass transfer rate. Therefore the 

product formation rate is higher in the smaller capillaries as compared to the bigger ones at 100 

mM (Figure 4.3B). In the ternary diagram (Figure 4.6B); this enhancement is represented by lines 

A, B and C for 2.15 mm, 1 mm and 0.5 mm capillaries, respectively. Productivity and 

effectiveness factor are improved in the initial phase, whereas the Da number is lowered. 
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However, in the later stage, the observed reaction rate is reduced due to substrate inhibition for 

the 1 mm and 0.5 mm capillaries and the system operation follows the same line but in the 

reverse direction. Here the productivity and effectiveness factor are reduced, whereas the Da 

number is increased. As the Da number does not account for substrate inhibition of the enzyme 

further improvement to integrate this limit is necessary.  

The interconnection between the experimental parameters studied and their impact on the overall 

performance of the SFER can now be visualized in the ternary diagram. As this figure defines the 

reactor operation, the windows of operation may be used as guidance for strategic improvement 

in reactor design. As an example a new reactor setup was developed to maximize the product 

formation at higher substrate concentration (Figure 4.4). This was based on the move from line 

A to B and from B to C the ternary diagram (Figure 4.6B). Technically this was obtained by 

assembling the 2.15 mm, 1 mm and 0.5 mm capillaries in series and starting the conversion at a 

substrate concentration of 300 mM. In this system it was possible to produce 85 mM of the 

product 1-heptanol in 105 min, which was 1.3 fold higher than the maximum reached in a SFER 

set-up using a 2.15 mm inner diameter single capillary (Table 4.2). One of the critical parameter 

during this approach was the adjustment of the optimal surfactant concentration. Tween 20 is 

necessary to stabilize the enzyme but it also decreases the surface tension and thus destabilizes 

the segmented flow at a certain concentration. The amount of surfactant added is depending on 

the surface area, which changes with the capillary inner diameter and thus is different throughout 

the reactor if using a coupled approach (Figure 4.4). Nevertheless, the surfactant concentration 

applied stays constant and cannot be adjusted to the different diameters. As a consequence the 

enzyme becomes inactivated at some point. If the system is running for a longer time, the 

inactivation of the enzyme is significant, leading to an overall lower production rate. In this case 

it is better to use a larger sized capillary, where the optimal surfactant concentration is present 

throughout the reactor reducing the enzyme inactivation (Table 4.2).  For short residence times 

the coupled approach performs better. 
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4.6 Conclusion  

The segmented flow system is a promising tool to enhance enzymatic reactions limited in rate by 

mass transfer. The results presented in this work point out the system boundaries that affect the 

product formation rates in the SFER. The segmented flow eliminates emulsion formation and 

thus significantly reduces workup and of downstream phase separation. The synthesis of 1-

heptanol using TADH and FDH in the segmented flow system sets a benchmark to perform 

enzymatic transformations in segmented flow microsystems. The presented work is the basis for 

implementing enzymatic reactions in microsystems to a scalable level using the numbering 

technique. 
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5.1 Summary 

Biofilm reactors are very often mass transfer limited due to excessive biofilm growth which 

hampers overall reactor performance. This work aimed at developing a biofilm microreactor 

containing a very large surface area (2000-4000 m2 m-3) to grow a compact and homogenous 

biofilm without clogging the capillary system. As fluidic conditions play a key role for the 

development of the biofilm structure, we investigated the effect of aqueous-air interfacial forces 

on biofilm morphology and reactor performance. A simple three step method was developed 

allowing stable biofilm formation under aqueous-air segmented flow conditions: i) development 

of a first-generation biofilm during single phase flow, ii) introduction of air segments which 

discarded most of the well grown biofilm, iii) development of a second-generation biofilm in the 

presence of air-aqueous segments. The application of segmented flow have several advantages on 

the biofilm development: enhanced biofilm growth rate, faster spatial distribution, and a 

significantly compact kind of biofilm in comparison to biofilms grown in single phase flow. 

Furthermore, the applicability of SFBMR was investigated for several biofilm catalyzed reactions 

such as octane and cyclohexane hydroxylation, and styrene epoxidation. For styrene epoxidation 

to (S)-styrene oxide (ee > 99%), oxygen transfer was the key limiting factor and the volumetric 

productivity (11 to 46 g. Ltube
-1 day-1) was enhanced by 4-fold by increasing the air flowrate. This 

work adds a new direction to engineer biofilm structure and to exploit them in microreactors 

which have the merits to form a suitable platform technology.  
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5.2 Introduction 

Biofilms are ubiquitous life form in nature, around and within us (Hall-Stoodley et al. 2004). They 

are microbial communities embedded within a self-produced matrix, which grow at the interface 

of liquids and solids. Biofilms are very robust structures and can endure a wide range of physical, 

chemical and biological stresses (Hall-Stoodley et al., 2004; Nicolella et al., 2000; Qureshi et al., 

2005). Their unique features of self-immobilization, regeneration, and high biomass retention 

have driven research towards application of biofilms as biocatalysts for chemical synthesis (Halan 

et al., 2012). Biofilms can circumvent classical pitfalls of planktonic cell based bioprocesses such 

as short term operational stability, toxicity associated issues, and low volumetric productivities 

(Halan et al., 2011; Nicolella et al., 2000). To fully exploit biofilm potential, novel reactor 

configurations have been developed on the laboratory and pilot scales (Halan et al., 2012; 

Qureshi et al., 2005).  

Key parameters essential for biofilm reactor design are (i) a large solid-liquid surface area for 

biofilm growth, (ii) a solution to cope with excess biomass and (iii) high oxygen transfer in case 

of aerobic biofilms. In the last decade, continuous miniaturized reactors have emerged as a 

potent technology due to high surface area to volume ratios, which are typically in the range of 

2000-4000 m² m-³, and easy scale-up using parallelization of units (Roberge et al., 2008). 

Typically, the catalysts are deposited on the large surface of such reactors resulting in a reactive 

coating, and are applied for fine chemical synthesis, enzymatic transformations (chapter 4), and 

energy generation (Kreutzer et al., 2005). Gross and co-workers utilized the large surface area of 

capillary microreactors to maximize biofilm growth and thereby volumetric productivities for a 

biotransformation (Gross et al., 2007). Despite higher biomass (45 Kg m-3), the overall reactor 

performance was reported to be mass transfer limited and oxygen was identified as the key 

limiting compound (Gross et al., 2010). Strikingly, more biomass leading to a thick biofilm will 

not contribute to the improved reactor performance because oxygen will be completely 

consumed within the upper layers of a biofilm (depth of 100 to 200 µm) (chapter 1 section 1.3.1), 

but may lead to a high risk of system clogging. Thus, excessive biofilm growth restricts the 

applicability of biofilm microreactors, calling for a good mechanism to remove excess biomass 

and thereby to achieve a high amount of active biofilm. Biofilm growth and structure are 

associated with the growth conditions, and are strongly affected by the fluidic conditions. High 

shear stress accomplished by turbulent flow usually leads to compact and dense biofilms, while 

bulgy and patchy biofilms develop under a moderate or low shear stress attained by laminar flow 

(Picioreanu et al., 2000). 
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This work introduces a segmented flow biofilm microreactor, with a novel strategy to apply 

aqueous-air segmented type of flow to overcome excessive biofilm growth and oxygen limitation. 

The (aqueous-air) segmented flow impose fluidic forces such as interfacial forces which becomes 

highly dominant at miniaturized scale, and shear forces caused by the axial movement of air 

segments and the wall (Burn et al., 2001 and Burn et al., 2002). These forces strongly influence 

biofilm development. Continuous injection of air segments showed a positive impact on the 

biofilm growth, spatial distribution, and biofilm compactness without any clogging issues in 

comparison to the biofilm grown under single phase flow. The performance of the segmented 

flow biofilm membrane reactor (SFBMR) was evaluated with Pseudomonas. putida PpS81 pBT10 

biofilms, which employed the hydroxylation of octane to n-octanol. Further, the versatility of 

SFBMR was shown using the long term biocatalytic hydroxylation of cyclohexane to 

cyclohexanol by Pseudomonas sp. KT2440 pCom8-PFR1500 biofilms and the epoxidation of 

styrene by Pseudomonas sp. Strain VLB120∆C biofilms. Overall, this work reports the development 

of the SFBMR concept for continuous biocatalytic production of chemicals. 
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5.3 Materials and Methods  

The strain and plasmids used in this study are listed in Table 5.1. All organisms used have been 

cultivated in Luria-Bertani (LB) medium or M9-medium supplemented with 0.5% (w/v) glucose 

as a carbon source, US* trace elements (Emmerling et al. 2002), and the appropriate antibiotics 

(streptomycin 100 µg mL-1; tetracycline 100 µg mL-1; kanamycin 100 µg mL-1). 

Pre-culture cultivation: Pre-cultures of P. putida  PpS81 pBT10, Pseudomonas sp. VLB120∆C and P. 

putida KT2440 pCom8-PFR1500 were grown overnight in 5 mL LB-medium using baffled 50 mL 

Erlenmeyer flasks in a horizontal shaker (30°C and 200 rpm, Multitron, Infors HT, Bottmingen, 

Switzerland). 

Table 5.1: Strains and plasmids used in this study 
Strain Remarks References 

Pseudomonas sp. Strain VLB120 biofilm forming strain isolated from a styrene 

degrading biofilter 

(Panke et al. 

1998)  

(Gross 2010) 
Pseudomonas putida PpS81 chromosal knockout mutant of P.putida GPo1 

lacking a medium chain-length alcohol 

(Grund et al. 

1975) 

Pseudomonas putida KT2440 P.putida mt-2 cured of the TOL plasmid, solvent 

sensitive 

(Bagdasarian et 

al. 1981) 

Plasmids Remarks References 

pBT10 pCom10 derivative, with alkBFG, alkST genes 

from pGEc47 

(Gross 2010) 

pCom8-PFR1500 Contains genes for CYP153A6, ferredoxin, and 

ferredoxin reductase from Mycobacterium sp. Strain 

HXN-1500 in broad host-range vector pCom8 

under control of the alk regulatory system; Gmr 

(van Beilen et al. 

2005) 

 

5.3.1 (Aqueous-air) segmented flow biofilm membrane microreactor (SFBMR): setup and 
operation 

A schematic view of this set-up is shown in Figure 5.1. The system can be divided into three 

sections: the medium reservoir, the reaction compartment, and the waste outlet. A four channel 

peristaltic pump (Ismatec, Glattbrugg, Switzerland) was fitted with two 1.5 mm inner diameter 

pump tubing (Ismatec Tygon MHLL, Glattbrugg, Switzerland) to pump M9 minimal medium 

and filtered air through the reaction compartment. The reaction compartment consisted of 

silicone tubing with different dimensions depending on the catalyst used. The system was heat 

sterilized (Table 5.2) and inserted into a closed 100 mL glass bottle submerged in 

biotransformation substrate. The inner tube surface served as growth surface for the biocatalyst. 
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The reaction compartment was placed in a thermo-bath to maintain the reaction temperature of 

30°C. The reactor was inoculated by filling the silicone tubes with an overnight culture of the 

respective biofilm forming strain as given in Table 5.2. The flow was turned off for 2 h to allow 

the organisms to attach to the inner tube surface. Thereafter, the medium flow was turned on 

again and after 3-4 days the filtered air flow was started.  

 
Figure 5.1: Scheme of the aqueous-air SFBMR for the production of octanol, cyclohexanol or 
styrene oxide with biofilm forming organisms. 1: medium reservoir; 2: 1.5/2 mm silicone tubing; 3: 
peristaltic pump; 4: silicone tubing as growth surface; 5: air phase; 6: octane phase; 7: waste. The magnified 
sketch of aqueous-air segments describes the mass transfer scheme of substrates in to the biofilm.  

Table 5.2: Parameters applied in the SFBMR setup 
Strain  Silicone 

tube (i.d. 
× length) 

Reaction Organic 
phase (mL) 

Air flow  
(aqueous 
flow) 

Biofilm tube in the 
organic phase (%) 

P. putida PpS81 
pBT10 

2 mm× 
250 mm  

Octane to 
octanol 
 

Octane (20 ml) 0.05 mL min-1        

(0.05 mL min-1)
20% 

Pseudomonas sp. 
KT2440 pCom8-
PFR1500 

2 mm× 
1000 mm 

Cyclohexane 
to 
cyclohexanol 
 

50%(v/v) 
cyclohexane and 
50%(v/v) BEHP 
(40 to100 mL) 

0.1 mL min-1           

(0.1 mL min-1) 
0 to 100% 

Pseudomonas sp. 
Strain VLB120∆C 

2 mm × 
2000 mm 

Styrene oxide
 

Styrene (80 mL) 0.25 - 4 mL 
min-1  (0.25 mL 
min-1) 

80% 

BEHP-Bis(2-ethylhexyl)phthalate 

5.3.2 Sample preparation and analysis 

Aqueous phase samples were extracted with an equal amount of ice cold diethyl ether containing 

0.2 mM of dodecane or decane as an internal standard, and mixed in an thermo mixer (1400 rpm, 

10°C) for 2 min to extract the compounds into the ether phase. After quick spinning the samples 

in a micro-centrifuge (Thermo Electron Corporation, Langenselbold, Germany), the ether phase 

was separated and dried by adding sodium sulphate prior to gas chromatography (Focus GC, 

Thermo Electron Corporation, Dreieich, Germany) using a chiral RT-ßDex-sm column 

(30m×0.25 mm×0.25µm; Restek GmbH, Bad Homburg, Germany). The organic phase samples 
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were diluted 1:10 times in ice cold diethyl ether, dried with sodium sulphate, and analyzed as 

described above.  
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5.4 Results 

5.4.1 Biofilm development in the presence of segmented flow __ a crucial task  

In order to exploit the potential of biofilms in the segmented flow set-up, conditions that allow 

biofilm growth in the presence of segmented flow had to be identified. Two parallel experiments 

were performed to investigate biofilm development under segmented flow conditions. In both 

approaches, tubings were filled with an overnight culture of P. putida PpS81 pBT10 and kept idle 

for 2 h to seed the cells on to the inner surface of the tubing. Biofilm formation was either 

initiated by feeding nutrients via a fixed single phase flowrate or by starting an aqueous-air 

segmented flow. After 3 days, biofilm was visible under single phase flow conditions (Figure 

5.2A), while no biofilm was observed in the air-aqueous segmented flow mode. This effect might 

result from the high fluidic stress implied by the segmented flow on the capillary wall, which 

obviously detaches the adhered cells and prevents biofilm formation at this initial stage. In 

contrast, the single aqueous phase flow implied low fluidic stress on the capillary walls enabling 

biofilm establishment.  

 
Figure 5.2: Biofilm grown under single aqueous phase flow and aqueous-air segmented flow 
conditions. (A) Biofilm grown on the PTFE surface after 3 days of continuous medium flow. (B) 
Biofilm detached from the surface of PTFE tubing after the injection of air segments. (C) Recolonization 
of the biofilm on to the surface of PTFE tubing after 1 day of continuous injection of air segments. (D) 
After 8 to 10 days, PTFE tube without biofilm (above for comparison) and mature biofilm grown on to 
the surface of PTFE tubing (below). Biofilm adaptation in the presence of segmented flow was similar in 
silicone and PTFE tubings, but due to high transparency of PTFE tubing we have displayed their images.  

In the next step, air segments where injected into the well-grown biofilm capillary. As soon as the 

air segments were injected, the biofilm trashed and was flushed out of the capillary tubing (Figure 

5.2B). Surprisingly, by continuing the segmented flow for 1 day, the biofilm seemed to adapt to 

the segmented flow conditions and was able to recover on the surface of the capillary wall (Figure 

5.2C). In the next 3 days, distinct biofilm growth was clearly visible on the complete surface of 

the silicone tube in the presence of aqueous-air segmented flow (Figure 5.2D). Overall, three 
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steps are necessary to allow biofilm growth in the presence of segmented flow: predevelopment 

of biofilm during single phase flow (first generation biofilm), detachment of cells and biofilm 

during aqueous-air segmented flow, and adaptation and regrowth of biofilm under segmented 

flow conditions (second generation biofilm).  

5.4.2 Performance of segmented flow biofilm membrane reactors  

After successfully developing a biofilm under segmented flow conditions, the applicability of 

SFBMRs was evaluated for octanol, cyclohexanol and styrene oxide synthesis.  

SFBMR for octanol synthesis 

In this set-up, oxygen supply was ensured by directly inserting air segments into the aqueous flow 

as well as by diffusion through an oxygen permeable silicone tubing as depicted in Figure 5.1. 

The biotransformation was initiated by inserting tubing containing well grown biofilm into a 

closed compartment with (approx.) 20% of the tube being directly submerged in octane. Octane 

diffused through the silicone membrane into the biofilm, where it was converted to octanol, 

which was then extracted back into the octane phase. Nearly 1.8 mM octanol could be 

accumulated in 20 mL organic phase during 7 days of biotransformation, which corresponds to 

an average volumetric productivity of 1 goctanol Ltube
-1 day-1 (Figure 5.3). After 7 days of 

biotransformation, the octanol concentration declined to 0.3 mM, probably because of product 

degradation by the host intrinsic dehydrogenases. However, during the first 7 days of 

biotransformation the volumetric productivity in the segmented batch mode was two-fold higher 

than the non-segmented batch mode (data not shown here), indicating a positive effect of the 

additional air supply.  

 
Figure 5.3: Octanol production and volumetric productivity in the air-aqueous segmented flow 
biofilm reactor for octane reduction using silicone tubing. Air segments were added to the aqueous 
flow after 3 days; after 6 days the biotransformation was started by the addition of octane into the reaction 
compartment.  
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SFBMR for cyclohexanol synthesis  

Cyclohexanol synthesis was initiated by inserting tubing containing Pseudomonas sp. KT2440 

pCom8-PFR1500 biofilm into a compartment where (approx.) 40 % of the tube was directly 

submerged in an 50 % (v/v) cyclohexane–BEHP phase. While the organic substrate 

(cyclohexane) diffused through the silicone membrane into the biofilm, the product cyclohexanol 

was continuously stripped through the aqueous phase and was not extracted into the organic 

phase. The reactor operation can be distributed into three phases. First the reactor performance 

was evaluated under aqueous flow conditions. Approximately 10 µM cyclohexanol could be 

stripped into the aqueous phase after 5 days of biotransformation, which corresponds to an 

average volumetric productivity of 0.3 gcyclohexanol Ltube
-1 day-1 (Figure 5.4; Phase 1). After 8 days of 

biotransformation, the cyclohexanol concentration in the aqueous phase declined to 2 µM. This 

was most probably due to substrate limitation as cyclohexane easily evaporated out of the system. 

Upon addition of 20 mL cyclohexane to the organic phase, the cyclohexanol synthesis rate 

increased again to the average volumetric productivity of 0.3 gcyclohexanol Ltube
-1 day-1. After 17 days 

air segments were injected into the aqueous flow.  This resulted in only a slight improvement in 

the cyclohexanol product formation and after 3 days of stable cyclohexanol synthesis (13 µM), 

the product concentration declined (Figure 5.4; Phase 2). Completely submerging the tube 

containing biofilm in the organic phase resulted in a significant increase in the product 

concentration in the outlet stream, which corresponds to an increase in the volumetric 

productivity by 2 fold (Figure 5.4; Phase 3).  

 
Figure 5.4: Cyclohexanol production and volumetric productivity in the air-aqueous segmented 
flow biofilm reactor for cyclohexane reduction using silicone tubing. The biotransformation was 
started by the addition of cyclohexane into the reaction compartment on the 3rd day and air segments 
were added to the aqueous flow after 17 days. 
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SFBMR for styrene oxide synthesis 

In this set-up, the biotransformation was initiated by inserting silicone tubing containing 

Pseudomonas sp. Strain VLB120∆C biofilm into a closed compartment with approx. 80 % of the 

tube being submerged in styrene (Figure 5.1). Styrene diffused through the silicone membrane 

into the biofilm, and most of the product formed was extracted back into the styrene phase while 

a very small fraction was stripped into the aqueous phase. The reactor operation is divided in 

four phases depending on the increment in air flow rates (Figure 5.5). In phase I, the system was 

operated with an equal air to aqueous flow at 0.25 mL min-1 and a dilution rate of 4.8 h-1. The 

product concentration in the organic phase increased linearly at an average volumetric 

productivity of 11 gsty. oxid. Ltube
-1 day-1, which corresponds to 14 mmol Ltube

-1 h-1 of oxygen (based 

on stoichiometric amounts) being consumed in the epoxidation reaction. In the next phase, the 

air flow was increased to 0.5 mL min-1 while the aqueous flow was kept constant at 0.25 mL min-1             

, which resulted in an improved volumetric productivity of 14 gsty. oxid. Ltube
-1 day-1. Although the air 

flow was doubled the volumetric productivity only increased by 1.4 fold, probably because the 

oxygen is channelized for the endogenous respiration and epoxidation reaction. In phase 3, the 

air flow was increased by 4-fold attaining 2 mL min-1 and a dilution rate of 21.5 h-1. Thereby 

styrene oxide concentration in the organic phase reached 125 mM with an average volumetric 

productivity of 30 gsty. oxid. Ltube
-1 day-1, which correspond to 1.85 fold increase in productivity. In 

the final phase (4), the air flow was further increased to 4 mL min-1 with a dilution rate of  

40.6 h-1. A total of 250 mM styrene oxide could be accumulated in 80 mL organic phase with the 

average volumetric productivity of 46 gsty. oxid. Ltube
-1 day-1. Overall, this result clearly shows that the 

increase in air flow from 0.25 to 4 mL min-1 improved the volumetric productivity by 4 fold.      

 
Figure 5.5: Styrene oxide accumulation and the corresponding volumetric productivity in the air-
aqueous segmented flow biofilm reactor using silicone tubing (basic setup shown in Figure 5.1). 
After 2 days the biotransformation was started by the addition of styrene into the reaction compartment. 
At the same time the air flow was started. 
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5.5 Discussion 

Conventional biofilm reactors can be classified as fixed bed reactors, where the biofilm attached 

to a surface does not move with respect to a fixed reference frame, and expanded bed reactors, 

where the feed stream flowing upwards through the catalyst bed expands the bed and maintains it 

in a fluidized state (Cheng et al. 2010; Qureshi and Maddox 1988). The most important advantage 

of fixed bed biofilm reactors is the high surface area for biofilm growth. In such reactor formats, 

the production rates increase with biofilm thickness and reach a maximal level when mass 

transfer of nutrients, oxygen and substrate become limiting factors due to undefined fluid flow 

and the absence of mixing. The expanded bed reactors benefit from good mixing, but suffer 

from their increased size, low gas dissolution rates and high energy costs (Nicolella et al. 2000). 

For the organic components having low water solubility biofilm reactor design requires a higher 

degree of complexity. Additionally, the log PO/W  values of these substrates and products are in 

the range of 1 to 4, which typically is considered toxic to whole cells (Laane et al. 1987). The 

application of an organic phase in addition to the aqueous phase, which serves as substrate 

reservoir and product sink, is a straight forward solution to overcome substrate low solubility 

issue and to obtain efficient biomass utilization. However, multiphase biofilm reactors, which 

consist of organic-aqueous-air phases together with the biofilm makes the design fairly complex.  

Major issues in reactor design are substrate supply, proper phase ratios, and high interfacial mass 

transfer to attain maximum reactor performance. The development of segmented flow biofilm 

microreactor configurations was based on addressing these issues.  

5.5.1 Biofilm establishment in the presence of segmented flow  

Biofilm formation can be divided into three main steps; initial cell attachment, micro- and 

macrocolonies formation and growth (Cheng et al. 2010). During initial cell attachment, living 

cells anchor to a solid surface at the aqueous-solid phase boundary. The process of cell 

attachment is dependent on several parameters such as surface conditioning, nature of 

substratum, medium, and cell properties. If the conditions are favorable, the attached cells will 

start to grow microcolonies, which will develop to macrocolonies and excretion of EPS. 

Nevertheless, if cells anchored on a surface experience high shear force of fluid, which is larger 

than the adsorption energy holding the cells, then cells will no longer remain bound to the 

surface. Such observation of cell detachment by shear stress arising from bulk fluid motion has 

been confirmed by several authors (Korber et al. 1989; Lawrence and Caldwell 1987). In case of 

air-aqueous segmented flow, air segments are stretched to fit inside the capillary, and a thin film 

of liquid remains intact between the segment and the capillary wall (Burns and Ramshaw 2001). 

The interfacial forces are highly dominant in this type of flow which causes shear stress between 
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the wall surface and the segment axis (Burns and Ramshaw 2001; Burns and Ramshaw 2002). 

These forces might have been higher than the characteristic shear stress, which detach adhered 

cells and avoid biofilm formation. A similar observation of bacterial detachment by the addition 

of micro-bubbles to the continuous flow was reported by (Sharma et al. 2005a; Sharma et al. 

2005b).        

To overcome cell detachment by segmented flow, the attached cells should gain additional 

mechanical stability before switching the flow mode to segmented flow. This was accomplished 

by allowing the biofilm to mature before injecting the air segments into the system. Although the 

air segments dislodged a significant part of biofilm from the tubing, a certain amount of cells 

stayed attached to the inner capillary wall and started to develop a biofilm during 24 h (Figure 

5.2B and C). Similar observations of biofilm recolonization after dislodging well grown biofilm 

by applying dynamic fluidic stress through single phase flow or by using laser irradiation have 

been reported (Korber et al. 1989; Nandakumar et al. 2003; Rittmann 1982). The biofilm grew 

much more homogenously and compact under segmented flow conditions, eventually covering a 

larger area of the capillary tubing after the organisms adapted to the high shear stress 

(comparison Figure 5.2A and D). The recolonization of the biofilm is the key event to develop a 

stable biofilm under high shear stress of segmented flow, allowing for an improvement in the 

catalytic surface area.  

5.5.2 Versatility and applicability of SFBMR  

Regardless of the exceptional potential of biochemical hydroxylation reactions for industrial 

applications, only a few biocatalytic processes have been implemented on industrial scale. The 

major limitations are either on the side of biocatalyst or on the technical side regarding reactor 

configurations. Efficient oxygen transfer is one of the key design bottlenecks that limit the overall 

performance of such bioprocess. Membrane attached biofilms are a promising concept to 

maximize the oxygen transfer in biofilm reactors. The oxygen transfer rate over the silicone 

membrane was estimated to be 30 g m-2 day-1 (Gross et al. 2010), which corresponds to 60 g L-1 

day-1 for 2 mm inner diameter silicone tube (surface to volume ratio of 2000 m-1). This oxygen 

transfer rate resembles 350 U L(aq.)
-1 which would allow an average biofilm oxygenase activity of 

115 U L(aq.)
-1 assuming an endogenous respiration of 235 U L(aq.)

-1 (van Beilen et al. 2003). This 

estimation clearly indicate that there is an upper limit (115 U L(aq.)
-1  biofilm oxygenase activity) 

and above this limit the membrane biofilm reactor is primarily constrained by oxygen transfer.  

One of the solutions to maximize the oxygen transfer is to apply smaller diameter tubes with high 

surface area to volume ratios. The downside of this approach is the increased risk of reactor 

clogging due to biofilm growth. The aqueous-air segmented flow is a technical solution to 
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maximize the oxygen transfer. However, if the reactions are not oxygen transfer limited then 

there is no major benefit in applying segmented flow. Looking at octanol and cyclohexanol 

synthesis, the maximum volumetric activities achieved have been in the range of 5 to 7 U L(aq.)
-1 

(Table 5.3). This is well below the membrane transfer limits. Thus, such reactions are primarily 

constrained by the biocatalyst rather than the mass transfer over the membrane. Although the 

activities are very low, slight improvements in volumetric productivities were observed after 

applying segmented flow in the case of cyclohexanol synthesis (Figure 5.4). The homogenous and 

compact reestablishment of the biofilm in the presence of segmented flow might result in larger 

biofilm surface area and improved volumetric activity. Nevertheless, the true benefit of aqueous-

air segmented flow was accomplished for the reaction which is oxygen limited (Figure 5.5). In 

this case, the styrene oxide volumetric activity was enhanced by simply increasing the flow rates 

(Table 5.3). Higher volumetric productivities with increased flow rates may be caused by the 

improvement in air/oxygen supply. Another reason could be the enhanced oxygen transfer rates 

because of the longer air segments sizes which led to high interfacial area between the air-liquid 

surfaces. Overall, optimization of air flow shifted the mass transfer boundaries, but what are the 

limits of oxygen transfer in such segmented flow systems?  

Kreutzer at al., 2001 studied the physical absorption of oxygen in water for aqueous-air 

segmented flow and calculated the oxygen transfer coefficients in the range of 0.1 to 1 s-1 

(Kreutzer et al. 2001). By assuming the oxygen concentration in the aqueous phase to be 200 µm 

and an oxygen mass transfer coefficient of 0.1 s-1, the oxygen transfer rate corresponds to 1200 U 

L(aq.)
-1, which is 3.5 fold higher than the membrane oxygen transfer rate. These figures equal the 

oxygenase activity of 400 U L(aq.)
-1 (while endogenous respiration is assumed to be 800 U L(aq.)

-1 ), 

which is close to the experimental value (320 U L(aq.)
-1 oxygenase activity) achieved in phase 4. 

These figures are based on the assumption of 0.1 s-1 oxygen mass transfer coefficient, and by the 

improvement in the mass transfer coefficients up to 1 s-1 high volumetric activities are still 

attainable, which elaborates the potential of SFBMR.  

Other most important aspects of these aqueous-air SFBMR are: I) Long term biotransformation 

due to self-immobilization and self-renewal capability of biofilms. II) Encapsulation of 

microorganisms in an EPS matrix enabling continuous biotransformation in the presence of toxic 

substrates and fluidic shear stress. III) Flow conditions can be easily tuned to adjust phase ratios 

and segment sizes. IV) Biofilm growth can be controlled by regulating shear stress implied 

through flow velocity.  
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Table 5.3: Performance comparison of SFBMRs studied 

  
Oxygen transfer rate through silicone membrane 80 U L-1 (Gross et al. 2010). 

Product 
(reactor 
dimension) 

Strain Reactor 
operation

Air flow 
mL min-1 
(air/aqueous) 

Activity 
U L-1 
(g L-1 h-1) 

Membrane 
O2 transfer 
U L-1 

Remarks 

Octanol 
(2 mm × 250 mm) 

P. putida PpS81 
pBT10 

 0.05 (1:1) 5 (1) 68  Limitation on biocatalyst level (low activity) 

Cyclohexanol 
(2 mm × 1000 mm) 

Pseudomonas sp. 
KT2440 

Phase 1 0 (0:1) 2 (0.3) 45 Limitation on biocatalyst level  

Phase 2 0.1 (1:1) 3.5 (0.5) 45 Improvement in mass transfer due to segmented 
flow  

Phase 3 0.1 (1:1) 7  (1) 16 High contact between the biofilm tube with organic 
phase led to improved volumetric productivity 

Styrene oxide 
(2 mm × 2000 mm) 

Pseudomonas sp.  
VLB120∆C 

Phase 1 0.25 (1:1) 76 (11) 32 Oxygen transfer limited 
Phase 2 0.5 (2:1) 97 (15) 32 Oxygen transfer limited 
Phase 3 2 (8:1) 180 (30) 32 Oxygen transfer limited 
Phase 4 4 (16:1) 320 (46) 32 Upper limit of oxygen transfer based on the kLa of 

0.1 s-1 in aqueous-air segmented flow 
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5.6 Conclusions 

A three step method was developed to maintain constant biofilm growth under segmented flow 

conditions. The SFBMR system is rather flexible to adopt new biofilm transformations. The 

styrene oxide volumetric productivity was enhanced four-fold by maximizing the air segment 

flow rates. Thus, SFMBR is a promising alternative for the conventional biofilm reactors and it 

has the merits to form a suitable platform technology for several biofilm catalyzed reactions. This 

now sets the basis for executing biofilm catalysed reactions in membrane based microreactors to 

a higher scale using the numbering technique. 
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6.1 Summary 

In the present study, the concept of a three-phase (aqueous-air-organic) biofilm microreactor was 

developed and evaluated. The contacting pattern between the biofilm and the other phases 

(aqueous-air-organic phases) was ensured by using a segmented type of flow. Different 

biotransformation reactions were evaluated in the aqueous-air-organic-biofilm microreactor 

system. Biofilms were observed to be stable and active over long periods (15 to 30 day), 

irrespective of the solvent stress and the fluidic stress. Other advantages of SFBRs include 

compact size, and maximum utilization of biofilm coverage as the biofilm and the liquid/gaseous 

phases (aqueous, air, and organic) are in direct contact. For octane hydroxylation, the application 

of a segmented flow biofilm reactor (SFBR) showed 2-fold improved productivities as compared 

to the segmented flow biofilm membrane reactor (SFBMR) described in chapter 5. Nevertheless, 

very low conversion rates observed due to short residence time is the key bottleneck that limits 

the applicability of such SFBR in comparison to SFBMR (chapter 5).  
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6.2 Introduction 

In nature most microorganisms have the ability to attach on a surface, develop colonies, secret 

extracellular polymeric matrix (EPS) and subsequently get embedded in the EPS to form biofilms 

(Hall-Stoodley et al. 2004). This adaptation protects microorganisms against harsh environmental 

conditions such as fluidic stress, toxic chemicals, temperature and pH stress (Korber et al. 1989; 

Lawrence and Caldwell 1987). Biofilms are commonly found at the phase boundaries of rivers, 

water falls, hot springs, and also in glaciers. Their establishment on ship hulls, water cooling 

systems, and surface of plants can cause deleterious effects on the system performance. 

Nevertheless, their unique characteristics to self-immobilize and renew allow biomass 

accumulation and retention which in a technically context can be harnessed for constructive 

measure (Rosche et al. 2009). For example, biofilms are applied in waste water plants, 

bioredemedition and in microbial leaching of mine spoils (Sand et al. 1995). Additionally, 

biofilms are also tuned as industrial workhorses for the production of value added chemicals like 

ethanol, lactic acid and acetic acid using fermentative process (Gross et al. 2010; Halan et al. 

2010; Rosche et al. 2009).  

One of the potential advantages of biofilm reactors is the high volumetric reaction rate 

accomplished due to the high biomass concentration (Qureshi et al., 2005). However, very few 

biofilm reactors exploit this advantage because of mass transfer limitation in the biofilm reactors 

(Syron and Casey 2008). Typically, this problem is observed in aerobic biofilms where the 

sparingly soluble oxygen must be transferred from the air phase in to the biofilms. Several 

different reactor configurations such as packed bed, trickle bed, expanded bed, bubble column 

etc., have been investigated to maximize the air transfer rates (Nicolella et al. 2000). The 

complexity in the biofilm reactor design further increases with the application of badly soluble 

organic substrates. Organic substrates may be added as an additional water immiscible phase and 

either consists of a pure substrate phase or as a mixture of the substrate and a carrier phase. In 

such multiphasic biofilm processes, both oxygen and organic substrate must be transferred from 

the respective phases to the biofilms. This multi-component mass transfer is dependent on 

several parameters such as the specific surface area between the biofilm and the different phases, 

the ratio of different phases and the mixing pattern implied within the reactor.  

Novel biofilm reactors are designed to maximize the multi-component mass transfer. Most of 

these reactor configurations have applied a membrane to partition the biofilm and different 

phases. For example, Gross et al., 2007 have applied a silicone membrane to partion biofilm from 

the air and organic phase to perform styrene epoxidation using Pseudomonas sp. Strain VLB120∆C 

biofilms (Gross et al. 2007). By optimizing the air to aqueous phase ratios (127:1) and the organic 
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to aqueous phase ratio (32:1), average styrene oxide volumetric productivity of 16 g Laq
-1 day-1 

were reported. In order to shrink the air phase volume (or to reduce air to aqueous ratio) the 

reactor set-up was modified and continuous aeration was applied by using air-aqueous segmented 

flow (described in chapter 5). The oxygen transfer rate was optimized by varying the air-aqueous 

phase ratios from 1:1 to 16:1, which enhanced the average styrene oxide volumetric productivity 

from 11 to 46 to g Laq
-1 day-1. However, the membrane transfer might contribute to an additional 

mass transfer barrier and lower the reactor performance.  

To overcome membrane mass transfer, we aimed at developing a biofilm reactor in which the 

biofilm and the rest of the phases (aqueous, air, and organic) are in direct contact. Such a system 

emphasis several challenges, the major one being the establishment of a stable biofilm under the 

impact of continuous organic phase and fluidic stresses. This was successfully solved by using a 

simple four step method to develop biofilm under three-phase segmented flow. As a proof of 

concept, the newly developed reactor performance was evaluated for biochemical hydroxylation 

of octane to n-octanol using the biofilm forming strain P. putida PpS81 pBT10. Further, the 

flexibility of SFBR was verified for long term biocatalytic epoxidation of styrene by using 

Pseudomonas sp. Strain VLB120∆C biofilm as a catalyst.  
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6.3 Materials and Methods  

P. putida PpS81 pBT10 and Pseudomonas sp. Strain VLB120∆C have been cultivated in Luria-

Bertani (LB) medium or M9-medium supplemented with 0.5% (w/v) glucose as a carbon source, 

US* trace elements (Emmerling et al., 2002), and the appropriate antibiotics (streptomycin 100 µg 

mL-1; tetracycline 100 µg mL-1; kanamycin 100 µg mL-1). 

6.3.1 Pre-culture cultivation 

Precultures of P. putida  PpS81 pBT10 and Pseudomonas sp. VLB120∆C were grown overnight in 5 

mL LB-medium using baffled 50 or 100 mL Erlenmeyer flasks in a horizontal shaker (30°C and 

200 rpm, Multitron, Infors HT, Bottmingen, Switzerland). 

6.3.2 (Aqueous-air-organic) Segmented flow biofilm reactor (SFBR) 

A schematic view of this set-up is shown in Figure 6.1. A  four channel peristaltic pump (Ismatec, 

Glattbrugg, Switzerland) fitted with two 1.5 mm inner diameter pump tubing (Ismatec Tygon 

MHLL, Glattbrugg, Switzerland) was used to pump M9 minimal medium and air through the 

reaction compartments. Organic liquid (octane or styrene) was supplied by means of a two-

channel peristaltic pump (Ismatec REGLO, Glattbrugg, Switzerland) fitted with 1 mm inner 

diameter solvent resistant pump tubing (Ismatec Tygon MHLL, Glattbrugg, Switzerland). The 

reaction compartment consisted of PTFE tubing with 2.15 mm i.d., and 250 mm length. This 

tube was placed in a thermo-bath to maintain a reaction temperature of 30°C. The reactor was 

inoculated by filling the PTFE capillary with an overnight culture of P. putida PpS81 pBT10 and 

to allow the organisms to attach to the tubing surface for 2 hrs. Thereafter, the medium flow was 

turned on at a rate of 0.075 mL min-1, and after 3-4 days the filtered air flow of 0.075 mL min-1 

was started. After 7 days, organic substrate was added at a flow rate of 0.06 mL min-1. For styrene 

epoxidation, PTFE tubings with 2.15 mm i.d., 500 mm and 1000 mm length capillaries were 

inoculated with an overnight culture of Pseudomonas sp. Strain VLB120∆C and all consecutive 

steps were carried out accordingly. Medium flow and air were set to 0.05 mL min-1 while organic 

phase was added at a flow rate of 0.06 mL min-1. 
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Figure 6.1:  Scheme of aqueous-air SFBR for the production of either octanol from octane using a 
biofilm of P. putida Pps81 pBT10 or for the production of (S)-styrene oxide from styrene, using a 
biofilm of Pseudomonas sp.VLB120∆C. 

Sample preparation and analysis  

Details about the sample preparation and analytical methods are described in chapter 5. 

Table 6.1: Strains and plasmids used in this study 
Strain Remarks References 

Pseudomonas sp. Strain VLB120 biofilm forming (styrene degrading) strain isolated 

from a biofilter 

(Gross et al. 2007; 

Panke et al. 1998)  

Pseudomonas putida PpS81 chromosal knockout mutant of P.putida GPo1 lacking 

a medium chain-length alcohol dehydrogenase 

(Grund et al. 1975)

Plasmid   

pBT10 pCom10 derivative, with alkBFG, alkST genes from 

pGEc47 

(Gross 2010; Schrewe 

et al. 2011) 
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6.4 Results and discussion 

6.4.1 Biofilm establishment in the presence of an aqueous-air-organic segmented flow 

To establish a biofilm under an aqueous-air-organic segmented flow, we followed the similar 

strategy developed in the previous chapter of growing biofilm in a single phase and then adapting 

them to the segmented flow (chapter 5). The three steps are necessary to establish biofilm in the 

presence of aqueous-air segmented flow: (i) development of a first-stage biofilm during single 

phase flow, (ii) start of aqueous-air segmented flow and subsequent detachment of a major 

biofilm part, and (iii) adaptation and regrowth of a second stage biofilm under aqueous-air 

segmented flow conditions. In this work, we had an additional step of injecting organic segments 

along with the aqueous-air segments. Two different organic solvents, octane and styrene with a 

logPO/W of 4.5 and 3 respectively, were applied. Typically, organic compounds with a logPO/W 

below 4 are considered to be toxic for microorganisms, while compounds with a logPO/W 

between 4 and 5 are considered as intermediate toxic (Laane et al. 1987). Upon organic phase 

injection only minor detachment of biomass was observed. However, the biofilm retain 

biofilms established in the presence of toxic organic solvents and showed stable activity for 20 to 

30 days (results shown in the subsequent sections). 

(Aqueous-air-organic) SFBR for octanol synthesis  

Octane hydroxylation applying P. putida PpS81 pBT10 biofilms as catalysts was investigated in 

this three-phase segmented flow biofilm reactor. In order to increase the product titer in the 

organic phase, the organic phase (residence time of 4.31 min) was collected for 24 h and recycled. 

A maximum octanol concentration of 1.7 mM was accumulated in the 60 mL organic phase after 

10 days of biotransformation, and thereafter the product concentration declined (Figure 6.2). The 

average volumetric activity for the first 10 days of biotransformation was 2 goctanol Ltube
-1 day-1, 

which was two-fold higher than in the aqueous-air SFBMR applied in chapter 5. The substrate 

(octane) availability might be a probable explanation for the difference in the productivities of the 

two setups. As the solubility of octane in the aqueous phase is very low (0.7 mg L-1 at 20°C), the 

amount of octane available for the conversion by the biofilm catalyst is dependent on the octane 

mass transfer rate into the biofilm. In the aqueous-air SFBMR, octane had to diffuse through the 

silicone membrane, which contributes as an additional barrier to mass transfer. In contrast, 

octane was supplied directly into the biofilm grown tube in the three phase segmented flow. The 

presence of octane segments in the capillary enhanced the mass transfer rate and thus the octane 

availability for the conversion to octanol, which might have resulted in higher reaction rates. In 

addition, only 20% of the biofilm grown tube is immersed in the organic phase using the 

previous set-up, which could lead to an inefficient use of the available catalyst surface. In 
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aqueous-air-organic segmented flow, the organic phase is injected into the biofilm grown tube 

which improves biocatalyst utilization and might result in better productivities.  

 
Figure 6.2: Productivity of octanol production in the organic-air-aqueous segmented flow biofilm 
reactor (setup shown in Figure 6.1). The arrows (without label) symbolize addition of octane phase. 

Nevertheless, octanol degradation and formation of unwanted products like octanal was 

observed at 1.7 mM of product in the octane phase. A similar pattern of octanol degradation by 

this strain being cultivated in a two-liquid phase bioreactors was also described by Bosetti and co-

workers (Bosetti et al. 1992). The exact reason for this has not been fully elucidated, but several 

reasons are possible. This phenomenon could be due to the induction of intrinsic alcohol 

dehydrogenases, which are degrading the octanol much faster than it is synthesized. Also some 

kind of kinetic control mechanism is possible. Product inhibition or biocatalyst toxification, 

which slows down the alcohol production rate and consequently leads to extraction and loss of 

the octanol in to the aqueous phase, might be one of the reasons for product degradation. 

Further investigation is necessary to clarify this phenomenon. However, this is a catalyst based 

problem, which will be overcome by strain engineering or application of a different host strain. 

(Aqueous-air-organic) SFBR for styrene epoxidation 

To evaluate the system versatility, the (aqueous-air-organic) SFBR performance was investigated 

with a Pseudomonas sp. Strain VLB120ΔC biofilm synthesizing (S)-styrene oxide from styrene. This 

epoxidation reaction using the same strain is well studied in various reactor formats such as fed-

batch (Park et al. 2007), continuous (Park et al. 2007), and membrane reactors (Gross et al. 2010; 

Halan et al. 2010).  

The performance of the SFBR regarding styrene epoxidation was explored in 0.5 m and 1 m long 

capillaries. A biofilm of Pseudomonas sp. Strain VLB120ΔC was grown under aqueous-air 

segmented flow conditions before the biotransformation was started by injecting styrene 

segments into the aqueous-air flow. Similar to the previous three-phase SFBR setup using octane, 
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the organic phase (styrene) was collected for 24 h and then recycled to improve the product titer. 

Interestingly, the styrene oxide concentration in the organic phase in both capillaries increased in 

similar rates, and the longer capillary did not result in a higher product concentration (Figure 6.3). 

A maximum product concentration of 70 mMorg was achieved in the 1 m long capillary during 19 

days of biotransformation. Whereas, in the 0.5 m long capillary a maximal product titer of 68 mM 

was reached in the styrene phase. This corresponds to an average volumetric productivity of 15 

to 20 gsty oxid. Ltube
-1 day-1 of the 0.5 m capillary and 7 to 10 gsty.oxid. Ltube

-1 day-1 of the 1 m capillary, 

respectively. Similar product formation pattern reveals that the system is under certain limitation 

and oxygen might be the possible substrate that limits the reactor performance. In both set-ups, 

the total flow rate was kept constant at 160 µL min-1 with an air flow of 50 µL min-1. Thus, based 

on the mass balance, the amount of oxygen supplied in both setups was 25 mg day-1. According 

to the productivities achieved, the amount of oxygen utilized in the epoxidation reaction was 

estimated to be 24 mg day-1. As the oxygen supply rate and the oxygen consumption rate are 

almost similar, we conclude that the system becomes primarily constrained by the oxygen 

availability rather than the oxygen transfer. Technical solutions to enhance oxygen availability in 

SFBRs include use of oxygen enriched air or increase of the air throughput.  

 

Figure 6.3: Productivity of 0.5 m and 1 m long SFBRs harboring Pseudomonas sp. 
StrainVLB120∆C as biocatalyst (setup shown in Figure 6.1). The arrows indicate the addition of air 
segments after three days, addition of styrene segments and thus start of the biotransformation after 6 
days, and the arrow without label on the 16 day represents exchange of the styrene phase for the 0.5 m 
long capillary.  
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6.5 Perspectives of the (aqueous-air-organic) SFBR concept 

The present study shows the successful development of a three-phase segmented flow biofilm 

reactor. The application of such novel biofilm reactor for octane hydroxylation showed improved 

productivities as compared to the membrane based segmented flow biofilm approach. Other 

advantages of this system include compact reactor size, long term biocatalyst stability and activity, 

and maximum utilization of biofilm coverage as the biofilm and the liquid/gaseous phases 

(aqueous, air, and organic) are in direct contact. Additionally, the system is rather versatile to 

adapt to other biotransformation reactions. 

Although the aqueous-air-organic segmented flow biofilm reactor has the potential to form a 

suitable platform technology several challenges still exists. The short residence time resulted into 

low product titers because of low conversion rates. Only (approx.) 0.004 % of octane and 0.04 % 

of styrene have been converted into the respective product after each run. To improve the 

residence time a longer capillary was applied for the biotransformation, but no improvement in 

product concentration was observed (Figure 6.3) because the system was strongly oxygen limited. 

Increase in air segment size analog to the approach introduced in the previous chapter could 

overcome such limitation. However, in this situation the cost of high flowrate or even lower 

residence time might directly have a negative impact on the productivity. Thus, comparing the 

three-phase SFBR to the optimized two-phase SFBMR (introduced in the chapter 5) one could 

conclude that three-phase SFBR is not the best solution for such reactions and the aqueous-air 

SFBMR is superior at least for reactions evaluated in this work.   
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Microreactors are a potent technology for enhancing reaction rates of mass transfer limited 

reactions with simplified scale-up issues. Although frequently used for chemical reactions, this 

technology is not yet implemented on a broad basis in biocatalysis. The primary goal of this thesis 

was the development and application of multiphasic microreactors for biocatalytic reactions. The 

potential of microreactors were evaluated for both enzyme catalysed reactions and whole cells 

catalysed reactions in the form of biofilm. There are several microreactor formats available to 

perform biological reactions (chapter 1). Understanding the biocatalysts performance in specific 

microreactor formats at an early stage of process design allows for developing the most 

appropriate or ideal reactor configuration (chapter 1). 

An ideal bioreactor configuration is one which explores maximum activity of the biocatalyst 

continuously over a longer time period. This necessitates a stable biocatalyst under process 

conditions. The stability of an enzyme is dependent on multiple parameters such as temperature, 

shear stress, organic solvents, interfacial surface area etc. In chapter 2, the influence of various 

process parameters on isolated enzyme activity in the segmented flow microreactor was 

evaluated, and will be discussed in the following section.  

I. Enzyme stability in the aqueous-organic segmented flow ---- kinetic perspective 

The TADH exposure to the aqueous-organic interface combined with the shear stress generated 

from the moving segments and the capillary wall caused substantial TADH inactivation. The 

TADH inactivation was dependent on enzyme concentrations, segment length and capillary 

diameter (chapter 2). The inactivation rate was first order with the enzyme concentration. To 

determine the inactivation constant a simple model is considered, 

Ea                   Ei  

Where, Ea is the active form of the enzyme and Ei is an inactivated form of the enzyme. For the 

first order enzyme inactivation, the rate of inactivation is given as, 

rd=kD ea               (7.1) 

where, rd is the volumetric rate of inactivation, kD is the inactivation coefficient and ea is the active 

enzyme concentration.  

d(ea)

dt
=-kDea               (7.2) 

Integrating the above equation gives, 

ea=ea0 e-kDt                (7.3) 

where, ea0 is the active enzyme at time zero. The inactivation of the enzyme directly affects the 

reaction performance as it reduces the reaction rate. 

vmax=kcat ea=kcat ea0 e-kDt	            (7.4) 
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Thus, the decline of the active enzymes by inactivation exponentially lowers the maximum 

reaction rate. The inactivation rate constant kD was determined by plotting the logarithmic loss in 

enzyme activity versus time. The inactivation coefficient (kD) in the segmented flow was higher 

than the enzyme inactivation in other reactor configurations (Table 7.1). As stated earlier, the 

high interfacial area combined with the shear stress might result in a higher inactivation 

coefficient in the segmented flow. 

In the aqueous-organic segmented flow microreactor, TADH inactivation occurs through three 

consecutive steps: enzyme adsorption, inactivation and desorption. In the first step, the 

adsorption rate constants in the segmented flow were found to be 10-fold higher than the 

adsorption in the drop tensiometry measurements (chapter 2). This again points to the 

dominance of convective forces in the segmented flow reactor compared to the slow diffusion in 

the drop tensiometry experiments.  

In the second step, the adsorbed TADH interacts with the exposed hydrophobic surface which 

promotes the loss of structural integrity of the protein. While in the final step the attached 

inactivated TADH is desorbed from the interface. Although, we have estimated the overall 

inactivation coefficient, we were not able to distinguish the individual rate constants for the 

second and third step. Therefore in-depth study to determine theses rate constants is essential. 

These rate constants will indicate which of the three steps has the maximum influence on the 

enzyme inactivation process. To improve enzyme stability, further strategies to reduce the 

inactivation coefficients of the dominating step must be examined.  

Table 7.1: Inactivation coefficients (kD) in different reactor formats 
System Phases Enzyme Inactivation 

coefficient (kD) s-1 

Interface 

coverage  

Reference 

Segmented flow 

microreactor 

hexadecane-

aqueous 

TADH 2.5×10-3 to 9.6×10-3 2-3 mg m-2 This work 

Bubble column 

reactor 

octan-2-one-

aqueous 

urease 2.5×10-5 1 mg m-2 (Ghatorae 

et al. 1994a)

Stirred tank reactor air-aqueous lysozyme 0.7×10-3 to 1.4×10-3 ND (Ghadge et 

al. 2003) 

Falling film reactor 

(incline plane) 

air-aqueous lysozyme 0.1×10-3 to 0.5×10-3 ND (Ghadge et 

al. 2003) 

ND-not determined 

II. Stabilizing enzyme activity in an aqueous-organic segmented flow 

The key reason for TADH inactivation in the segmented flow system was the aqueous-organic 

interface. The interface consists of molecules with imbalanced cohesive energy, arising from the 
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uncompensated bonds between aqueous and organic molecules. In nature, every system is prone 

to reduce its free energy. An enzyme poses surface activity due to the presence of hydrophobic 

and hydrophilic amino acids (Eisenberg et al. 1984), and therefore has the ability to interact with 

the interface molecules to reduce the surface free energy. The excess free energy between both 

liquids is numerically equivalent to the interfacial tension (Donahue and Bartell 1952 ). Thus, the 

equation for surface excess energy can be expressed as: 

Γ= 
1

RT
ቂ

d(σ)

d(lnC)
ቃ             (7.5) 

Where, Γ denotes the surface excess energy, C is the enzyme concentration and σ is the interfacial 

tension. 

Two techniques were investigated in chapter 3, to recover maximum enzyme activity from the 

segmented flow. By immobilizing the enzyme on to a solid matrix, its surface activity was 

changed and consequently additional structural stability was gained. Upon covalent 

immobilization of TADH on (Epoxy)-Sepabeads, almost 85 to 95 % of TADH bead activity was 

recovered after one segmented flow cycle. For the suspended enzyme only 55% could be 

recovered (chapter 2). However, the main bottleneck of this mechanism is of technical nature, as 

it is difficult to distribute beads equally in each aqueous segment. A possible solution would be to 

immobilize TADH on hydrophilic nano-beads with a lower specific gravity than the aqueous 

phase to overcome this problem. 

Another approach was the application of surface active molecules like surfactants to reduce the 

interfacial free energy. A competitive type of interfacial adsorption between the enzyme and the 

surfactant molecules was revealed from the drop tensiometry experiments. Above a certain 

surfactant concentration, the competitive adsorption was mainly dominant by surfactant 

molecules, which form a protective layer between the interface and the biocatalyst in the aqueous 

compartments. Overall, this mechanism recovered almost 100% of TADH activity in the 

segmented flow. The amount of surfactant necessary to form a protective layer was dependent on 

the interfacial surface area. In comparison to the first protective mechanism, the application of 

surfactants seems to be more attractive because of better activity yield, less complexity, and easier 

implementation into the liquid-liquid segmented flow reactor.   

The main limitation of this approach comes from the coalescence of segments after a certain 

residence time. Typically, coalescence of segments is a thermodynamic thrust to minimize the 

interfacial area and is dependent on the surface tension. By adding the surfactants, the interfacial 

tension is reduced and coalescence is typically prevented, as the surfactant acts as a physical 

barrier and repels the adjacent droplet. However, in our setup the coalescence of segments was 

pronounced after addition of surfactants in comparison to the system without surfactants. It has 
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been observed that the adsorbed surface active agents like surfactants on the interface are swept 

to the back of the aqueous segments (Ratulowski and Chang 1990). This generates Marangoni 

effects due to the gradient in surface tension on the interface, which drags the liquid back with 

the surfactant. As the continuous phase in our system is highly viscous (hexadecane) compared to 

the dispersed phase (aqueous phase), the surfactant present in the aqueous phase requires a 

certain period of time to carry the viscous phase. Once the viscous liquid is dragged back two 

aqueous segments approaches closer. The rear end of the forward-facing droplet is highly 

concentrated with surfactant as compared to the front side of the backward-facing droplet. This 

difference between the two interacting droplets facilitates fusion and coalescence of the 

segments. The schematic representation of the segment coalescence mechanism is shown in the 

Figure 7.1. Other ways for coalescence of surfactant-stabilized droplets was observed by heating 

with a laser, electro-coalescence and changing the geometry of the microchannel (Mazutis et al. 

2009; Mazutis and Griffiths 2012). Possible solutions to control the coalescence and to guarantee 

a stable segmented flow over a longer time period should be investigated. 

 
Figure 7.1: Schematic view of possible aqueous segment coalescence. 

III. Enzyme catalysis in the aqueous-organic segmented flow microreactors---
kinetic perspective 

After stabilizing TADH activity, the reaction performance in the segmented flow was 

investigated. The reduction of 1-heptaldeyde to 1-heptanol was chosen as a model reaction based 

on the pre-evaluation by using the Damköhler number. Important parameters governing the 

interplay between reaction rates and mass transfer rates are reported in chapter 4. The enzymatic 

reaction performance under segmented flow conditions was found to be dependent on capillary 

diameter, flow velocity, phase ratio, and enzyme as well as substrate concentration (chapter 4).  

The interaction of substrate mass transfer and the reaction of two enzymes are explored using a 

modelling approach. A detailed kinetic study of both enzymes TADH and FDH were performed 

and rate laws were established (Equation 7.6 and 7.7). The kinetic parameters are given in Table 

7.2. TADH is non-competitively inhibited by the substrate heptaldehyde and competitively 

inhibited by NAD+. Formate dehydrogenase was seen to be affected by competitive inhibition of 

NADH. In comparison to TADH, FDH shows lower affinity to its substrates.  

Aq. phase FlowPTFE capillary

1 
m

m

Org. phase

Step 1. Surfactant being
dragged to the back

Step 2. Two aqueous segments
approache closer

Step 3. Segments coalescence
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rTADH=
VmaxTADH×CS

KmTADH+൬1+
CS
KiS
൰×Cs

×
CNADH

CNADH+KmNADH൬1+
CNAD
KiNAD

൰
       (7.6) 

rFDH=
VmaxFDH×CS,For

CFor.+KmFor.
×

CNAD

CNAD+൬1+
CNADH
KiNADH

൰×KmNAD

        (7.7) 

                 

                        Table 7.2: Kinetic parameters of TADH and FDH                                                  
 

 

 

 

 

 

The mass balance was performed for the aqueous phase by considering the film model and 

assuming that the organic side mass transfer resistance is negligible. This assumption is valid due 

to the very high partition coefficient of the substrate (Korg/aq=100). The mass transfer and the 

reaction then becomes, 

dሾSubstrateTADHሿ

dt
=kLa൫KCorg.-Caq.൯-rTADH         (7.8) 

dሾNADHሿ

dt
=rFDH-rTADH            (7.9) 

Equations 7.8 and 7.9 were solved by using a simple Euler’s one step method and by linearizing 

the rate equations over a small time interval (1 to 5 s). The model suitability was verified by 

comparing measured and computed product formation at the assumed mass transfer coefficients. 

The model shows a good fit to the experimental results reported in chapter 4 at the mass transfer 

coefficients of 0.5, 1.4 and 2.5 min-1 for the 2.15, 1 and 0.5 mm capillary diameter, respectively 

(Figure 7.2; Table 7.3). The mass transfer coefficients for the 1 mm diameter capillary predicted 

by the model are in good range of experimentally determined values reported by Kashid and co-

workers (Kashid et al. 2007). However, for the smallest capillary diameter (0.5 mm) there seems 

to be some discrepancy between the model predicted and experimental determined values. Such 

difference might come from the high coalescence seen at smaller capillary diameters. The fusion 

of droplets reduces the surface area by volume ratio, which ultimately affects the mass transfer 

rates. Therefore, such undesired coalescence within the capillary microreactor should be avoided 

to maximize the mass transfer performance. However, it is interesting to note here that by using 

cationic surfactant like cetyl-trimethyl-ammonium-bromide (CATB), the mass transfer rates and 

consequently the mass transfer coefficients were reported to be higher compared to system 

TADH FDH 

KmTADH 0.786 mM KmFor. 22 mM 

KmNADH 0.025 mM KmNAD 0.316 mM 

KiNAD 0.25 mM KiNADH 0.06 mM 

Kis 1.5 mM   
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without surfactant addition (Kashid et al. 2010). The stabilization of the segments depends on the 

type and amount of surfactant, the properties of the phases, and the micro-device geometry. An 

in-depth study of each individual parameter is necessary to guarantee a stable coalescence free 

segmented flow.   

 
Figure 7.2: Modeled and experimental values of mass transfer and reaction with increasing 
enzyme concentration. The solid lines represent modeled values and the dotted lines experimental 
values shown in Figure 4.2A.  

Table 7.3: Mass transfer coefficients (kLa) in different liquid-liquid segmented flow 
System Phases Operation 

mode 
Reactors 
dimensions 

Mass 
transfer 
coefficients 
(kLa)  

Reference 

Segmented flow 
microreactor 

hexadecane-aqueous 
(heptaldehyde) 

Enzyme 
reactions 

d= 0.5 mm 
d= 1 mm 
d= 2.15 mm 

0.042 s-1 
0.025 s-1 
0.009 s-1 

This work 
(estimated from 
model) 

Segmented flow 
(extractor) 

n-butanol-
aqueous 
(succinic acid) 

Non-reacting 
system 

d= 0.5 mm 
d= 0.75 mm 
d = 1 mm 

0.12-0.31 s-1 
0.07-0.15 s-1 
0.02-0.09 s-1 

(Kashid et al. 
2007) 

Segmented flow 
microreactor 

kerosene-
aqueous 

Acid base 
reaction 

d= 0.38 mm 0.5 s-1 (Burns and 
Ramshaw 
2001) 

Segmented flow 
(extractor) 

n-butyformate-
aqueous 

Non-reacting 
system 

d= 1 mm 0.7-1.57 s-1 (Ghaini et al. 
2010) 

 

IV. Operational window approach: 

Another approach to understand the impact of mass transfer of molecules on the reaction rates is 

to plot dimensionless numbers (Thiele modulus or Damköhler number) against effectiveness 

factor (Figure 7.3A). At lower dimensionless numbers the system is operated in a reaction rate 

limited regime, while at higher dimensionless numbers the system runs in to a mass transfer 

limited regime. Although such plots clearly point to the regime where the system is being 

operated and allow judging the reaction efficiency in the reactor, it is not possible to deduce how 
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efficient the system operates. Therefore, this approach was executed (introduced in chapter 4) to 

a ternary diagram connecting dimensionless number, and the effectiveness factor to the reactor 

efficiency (Figure 7.3B).  

 
Figure 7.3: Effectiveness factor as a function of the dimensionless number (A), and ternary 
diagram (B, applied in chapter 4). 

The reactor efficiency is the ratio of the volumetric productivity to the maximum volumetric 

productivity that could be theoretically achieved within the given reactor volume. The maximum 

value sets an upper limit and remains fixed to all reactor configurations for specific reactor 

volume. This allows not only characterization of the reactor performance but also comparison 

with other reactor configurations. This ternary diagram applied in chapter 4 visualizes the impact 

of single parameters and how these parameters are interconnected and influence the overall 

performance of the SFER. Noteworthy, the operational window was used as guidance for 

strategic improvement of the key parameters that limited the reactor performance (chapter 4).  

The performance of enzymatic reactions in the segmented flow microreactor can be evaluated 

using both modelling and operational window approaches as outlined in the above section. Both 

approaches have certain advantages and disadvantages. In order to get to a faster understanding 

on the system performance it is recommended to integrate both approaches. 

V. Segmented flow biofilm microreactors---kinetic perspective  

The application framework of the segmented flow was extended to whole cell biocatalysis in the 

form of biofilms (chapter 5 and 6). The aim was to integrate the advantages of catalytic biofilm such 

as self-immobilization, robustness and high turnover rates, to the benefits of segmented flow systems, 

such as high mass transfer rates and easy scalability. Within the biofilm, mass transfer of 

substrates is mostly based on molecular diffusion. The substrate that limits the reaction 

performance should be addressed by comparing the relative substrate diffusion and reaction rates 

within the biofilm. Once this is known, specific approaches to maximize the respective substrate 
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flux and thus the reaction performance can be undertaken. Based on the available reactor 

configurations in literature and the reactor developed in this thesis, a microreactor assessment for 

the conversion of styrene to (S)-styrene oxide using Pseudomonas sp. Strain VLB120∆C biofilm 

(Figure 7.4) is described in the following section. The objective was to identify critical parameters 

that influence the overall reactor performance. 

 
 Figure 7.4: Schematic view of styrene epoxidation in the biofilm 

In order to elucidate the substrate that limits the reactor performance the characteristic time 

scales of three most important substrates (glucose, styrene, and oxygen) have been estimated. 

This approach is based on the estimation of dimensionless numbers like the Thiele modulus or 

the Damköhler number to predict the biofilm reactor performance and its constraining factors. 

Gross and co-workers have reported the oxygen, glucose, and styrene substrate uptake rate for 

Pseudomonas VLB120∆C to be 1.1, 0.2, and 0.07 mmol gBDW
-1h-1, respectively. Although, these 

rates were reported for a particular membrane biofilm microreactor setup, they showed the 

maximum styrene oxide volumetric productivities achieved by Pseudomonas sp. Strain VLB120∆C. 

Therefore, these rates were taken as upper limit for the calculations of the dimensionless 

numbers.  

Two-phase biofilm microreactor----oxygen availability as the rate limiting step  

This reactor setup is mainly implemented in the flow cell format for analytical measures. The 

biofilm is grown on a non-permeable substratum and the aqueous flow is supplied with all 

substrates, namely styrene, oxygen, and glucose to the biofilm (Table 7.4; #1). The substrate 

concentrations at the inlet of the aqueous flow were estimated to be 0.2, 3 and 27 mM for 

oxygen, styrene, and glucose, respectively. Based on the assumed reaction rates for oxygen, 

styrene, and glucose, the reaction times for complete conversion of these substrates are 0.2, 5.3, 

and 185 min, respectively. This clearly shows that oxygen and styrene are consumed much faster 

as compared to the glucose and are therefore the substrates that might limit the performance of 

the system.  

 

O

O

Aqueous flow

Biofilm
Substratum
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Table 7.4: Contacting patterns and design criteria for the selection of biofilm 
microreactors setups 

   

#1: Two phase 
(aq-bf) 
Biofilm is grown 
on an 
impermeable 
surface and all 
substrates 
(styrene, 
glucose, oxygen) 
are supplied 
through the 
aqueous phase 
to the biofilm. 

#2: Three 
phase 
(aq-bf-air) 
Biofilm is grown 
on a silicone 
membrane 
surface, and 
oxygen and 
styrene are 
supplied through 
the membrane to 
the biofilm. 

#3: Three phase
(aq-bf-org) 
Biofilm is grown on 
a silicone membrane 
surface, and styrene 
enters the biofilm 
through the 
membrane, while 
oxygen and glucose 
are supplied directly 
by the aqueous 
phase. 

#4: Four phase
(aq-bf-org-air) 
Biofilm is grown 
on a silicone 
membrane surface, 
of which 20 % is 
submerged in a 
styrene phase, 
while 80 % is in 
the air phase. See 
also set-up #2. 

#5: Four phase 
(aq-bf -org-air) 
Biofilm is grown 
on a PTFE 
surface. The 
substrates, 
oxygen and 
styrene enter the 
biofilm through 
the biofilm side 
in the form of 
segments.  

#6: Four phase
(aq-bf -org-air) 
Biofilm is grown 
on a silicone 
membrane surface. 
While oxygen 
enters the biofilm 
through the 
biofilm side and 
styrene are 
supplied through 
the membrane to 
the biofilm. 

So 6 mg/L 
Ss 312 mg/L 
Sg 5000 mg/L 
Do 1.5 ×10-9 
m²/s 
Ds 0.24 ×10-10 
m²/s 
Dg 2 ×10-10 
m²/s 

So 6 mg/L 
Ss 45 mg/L  
Do 1.5 ×10-9 
m²/s 
Ds 0.24 ×10-10  
m²/s 
 

So 6 mg/L
Ss 312 mg/L 
Do 1.5 ×10-9 m²/s 
Ds 0.24 ×10-10  m²/s 
 

So 6 mg/L
Ss 312 mg/L 
Do 1.5 ×10-9 m²/s 
Ds 0.24 ×10-10  
m²/s 
 

So 6 mg/L 
Ss 312 mg/L 
Do 1.5 ×10-9 
m²/s 
Ds 0.24 ×10-10  
m²/s 
 

So 250 mg/L 
Ss 312 mg/L 
Do 1.5 ×10-9 m²/s 
Ds 0.24 ×10-10  
m²/s 
 

to,r 0.22 min  
ts,r 5.35 min  
tg,r 185 min  
τ 6.28 min 

to,r 0.22 min  
tsr 0.77 min  
τ 6.28 min 
 

to,r 0.22 min 
ts,r 5.35 min  
τ 6.28 min 
 

to,r 0.22 min 
ts,r 5.35 min  
τ 6.28 min 
 

to,r 12.6-1.4 min  
ts,r 5.35 min  
τ 6.28 min 
 

to,r 12.6-1.4 min 
ts,r 5.35 min  
τ 6.28 min 
 

Φo 12, DaI,o 27 
Φs  1, DaI,s 1.17 
Φg  0.1, DaI,g 
0.03 

Φo 7 
Φs 22 

Φo 12, Da1,o 27
Φs  3 

Φo 9
Φs 16 

DaI,o 22; A=0.05 
mL min-1 
 

DaI,o 9, A=0.25 mL 
min-1:DaI,o 3.5; 
A=0.5 mL min-1: 
DaI,o 0.8; A=2 mL 
min-1: DaI,o 0.31;  
A=4 mL min-1 
A=air flow 

High Da 
number for 
oxygen suggest 
oxygen 
availability to 
be the rate 
limiting step  

High Thiele 
modulus for  
styrene suggest 
styrene mass 
transfer to be 
the  rate limiting 
step 

High Da number for 
oxygen suggest 
oxygen 
availability to be 
the  rate limiting 
step 

High Thiele 
number for 
styrene compared 
to oxygen suggest 
styrene transfer 
to be the  rate 
limiting step 

High Da number 
for oxygen 
suggests oxygen 
availability to 
be the rate 
limiting step.  

Decrease in Da 
number with air 
flow overcomes 
oxygen 
availability  

Flow cell 
reactor; 
Halan et al., 
2011 

Tubular 
membrane 
reactor; Gross et 
al., 2007 

Tubular membrane 
reactor; Gross et al., 
2007 

Tubular 
membrane reactor; 
Gross et al., 2007 

Aq.-air-org. 
SFBR; This 
work, chapter 6 

Aq.-air. SFBMR; 
This work, chapter 
5 
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Abbreviations: aq- aqueous phase, bf-biofilm phase, org-organic phase, S-styrene, O2-oxygen, G-glucose 
Reaction time (tr ) is the time necessary for the catalyst to convert the substrate supplied. 
tr= c/r, where c is the substrate concentration and r is the rate of reaction.  
Residence time (τ) is the time available for the reaction and is dependent on the reactor volume (V) and volumetric 
flow rate (vr).  
τ = V/vr,  
Mass transfer time (trm ) is the time necessary for the substrate to penetrate the biofilm. 
trm= (thickness)2/D, where D is the diffusion coefficient.  
First Damköhler number (DaI) is the ratio of the residence time to the respective reaction time. 
DaI = τ/tr  
Observable Thiele modulus or Weisz modulus (Φ) is the ratio of the substrate mass transfer time to the 
respective reaction time. 
Φ= trm/tr           
This is an important measure for substrate conversion within the continuous flow reactor. If the reaction time is very 
low than the residence time (DaI>>1), substrate conversion would be fast and the system is limited by substrate 
availability. As a rule of thumb the residence time should be at least in the same order of magnitude as the reaction 
time in order to obtain high conversion in continuous flow reactors.  
Noteworthy, the reaction time for glucose was several fold higher than the residence time in the microreactor 
(Reactor #1, Table 7.4), therefore the biofilm is not glucose limited. As the flow conditions in reactor #1 are similar 
to the other reactor formats (reactor #2, #3, #4, #5), prediction for glucose limitation was not performed for the 
other reactor setups.  
The reaction time for oxygen is the same in all reactor formats (0.22 min). However, it has to be noted that in reactor 
#1 and #3, oxygen is delivered to the biofilm through the aqueous phase. Whereas in reactors #2 and #4, oxygen is 
delivered through the membrane and is transferred perpendicularly to the biofilm substratum. In such reactor setups, 
the diffusion distance has to be estimated based on the reaction time (0.22 min). This diffusion distance can be 
compared with the biofilm thickness to ensure that the oxygen is not the limiting substrate. 
 
According to the first Damköhler number, which analysed the comparison of the flow residence 

time with the reaction time, the reactor performance was clearly oxygen availability limited. 

Oxygen is important in biofilm for two purposes: cell growth (influencing production by lower 

biocatalyst concentration) and reaction rate (oxygen is a substrate for the epoxidation reaction). 

As oxygen is a key substrate for biofilm growth, its limitation means a lower biomass in the 

reactor and a limited styrene conversion rate. Therefore, improvement of oxygen transfer is 

absolutely crucial for maximizing the reaction and reactor performance in such setups.  

Three-phase membrane based biofilm microreactor----substrate mass transfer as the rate 
limiting step  

A tubular membrane biofilm microreactor was designed by Gross and co-workers to improve 

oxygen transfer to the biofilm (Gross et al. 2007). Here, the silicon tube offers a dual function, on 

one side it acts as substratum for biofilm growth and on the other side it supplies oxygen radially 

over the membrane to the biofilm (Table 7.4; #2). The biofilm containing silicone tube is kept in 

contact with the gas phase saturated with styrene allowing simultaneous diffusion of both, styrene 

and oxygen. In this setup, an average styrene oxide volumetric productivity of 4.3 g Ltube
-1 day-1 

was reported for 30 days of reactor operation. Detailed analysis of the experimental results was 

performed by calculation of the Thiele modulus in order to determine the limiting substrate. As 

the Thiele modulus for styrene is approximately 3 times higher than for oxygen, the styrene mass 
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transfer was limiting the reaction performance. Substrate mass transfer is a function of substrate 

concentration, consumption rate, and its diffusivity in the biofilm. As the styrene concentration 

in the air phase is very low (0.44 mM), the mass transfer limitation originates from the very low 

styrene concentration in the gaseous phase. Therefore, an additional modification is essential to 

improve styrene mass transfer and the catalytic performance in this setup. 

By immersing the tube containing the biofilm into a pure styrene phase, the styrene transfer by 

permeation through the tube wall was improved, whereas oxygen was available for the biofilm via 

the aqueous phase (Table 7.4; #3) (Gross et al. 2007). However, the styrene oxide productivity 

(2.2 g Ltube
-1 day-1) in this reactor (Table 7.4; #3) was found to be two fold lower than the 

previous discussed example (4.3 g Ltube
-1 day-1; Table 7.4; #2)). The high Thiele modulus and the 

first Damköhler number for oxygen in comparison to styrene indicate that oxygen availability 

becomes critical in this set-up, which hampers biofilm formation and the styrene conversion rate. 

Overall, it could be concluded that the volumetric productivity in such three phase reactor 

formats is likely to be limited by the missing fourth phase (in this example air).  

Four-phase membrane based biofilm microreactor----scale up a crucial factor 

In this format, 20% of the biofilm containing tube is immersed in a pure styrene phase while the 

remaining 80% are located in the air phase (Table 7.4; #4). This enhanced the styrene and oxygen 

transfer rates into the biofilm, which resulted in elevated productivities (16 g L-1
tube day-1), 

compared to the previous setups(Gross et al. 2007) (Gross et al. 2007). Although promising 

results have been achieved within this reactor format, the very high air phase volume necessary 

would lead to an unacceptably high reactor volume at production scale. For example, a reactor 

comprising 1 litre of aqueous phase one would require 80 and 20 litres of air phase and organic 

phase volume, respectively.  

Four-phase segmented flow microreactor (SFBR) ---- low conversion a big problem 

To overcome the oxygen limitation, a concept of continuous aeration within the biofilm grown 

membrane was developed and applied in chapter 6 (Table 7.4; #5). Realizing such a concept need 

to overcome several challenges. The major challenge was the establishment of a stable biofilm 

under the impact of organic phase, fluidic (organic and/or aqueous) flow and air flow stresses, 

which was successfully solved by using a simple three step method described in chapter 6. A 

product concentration of 70 mM was achieved in the 1 m long capillary during 19 days of 

biotransformation, which corresponds to an average volumetric productivity of 15 to 20 gsty oxid. 

Ltube
-1 day-1.  

Although this system overcomes aeration limitation, challenges still prevail like a short residence 

time leading to very low conversion rates. Only, 0.04 % of styrene gets converted into the 
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respective product after each run. Therefore, this study demonstrates that the contacting pattern 

of substrate to the biofilm needs to be modified in this specific set-up.  

Four-phase segmented flow membrane microreactor (SFMBR) ---- an optimal choice 

To overcome lower styrene conversion problem, the approach of using a membrane for styrene 

supply and extraction was evaluated in chapter 5. To ensure a high oxygen transfer rate, an 

aqueous-air segmented type of flow system similar to the previous setup was selected. The 

challenges of aeration and low substrate conversion were overcome by modifying the 

microreactor system and applying the concept of a membrane biofilm microreactor introduced in 

chapter 5. The operation for styrene conversion is divided in to four phases. In the first phases, 

the high first Damköhler number points to the fact that the oxygen availability was the rate 

limiting step (Table 7.4; #6). As this system was flexible to maximize the air flowrate, the oxygen 

transfer could be easily altered.  Therefore, the air flow was increased from 0.25 to 4 mL min-1, 

which shortened the residence time from 12.6 to 1.8 min, and consequently the first Damköhler 

number from 9 to 0.31. This ensured a high oxygen transfer which is well reflected by the 

enhanced styrene formation rate from 11 to 46 gsty oxid. Ltube
-1 day-1(4 fold).  

Thus, after advocating existing reactor configurations and understanding the key limitations we 

designed the reactor configuration that could overcome several limitations and to improve the 

process performance significantly. For an easy assessment of microreactor technologies from 

laboratory to technical scale, the scale-up of such a system which is dependent on the numbering 

of tubes, needs to be guaranteed. Such concept of applying (liquid-gas) segmented flow on 

monoliths deposited with chemical catalysts are well studied in chemical engineering and even 

applied on the industrial scale (Kreutzer et al., 2005). Examples include segmented flow 

monolithic reactors applied for large scale hydrogen peroxide production in Akzo-Nobel and 

nitro-aromatic hydrogenations in Air Products and Chemicals. Thus, future work should 

concentrate on executing biofilm catalysed reactions in monoliths to a higher scale.  
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Outlook 
This thesis focussed on integrating the concept of microreactors into biocatalysis. Novel reactor 

designs were explored by combining multiphasic microfluidics, biocatalysis and membrane 

technology. New interesting insights were gained and the applicability of microreactors was 

extended to enzyme and biofilm based catalysis. Nevertheless, for practical implementation of 

such designs on industrial scale several questions still need to be addressed. (i) Selection of 

membrane material. This should be solvent resistant, highly permeable for the desired 

compounds, non-toxic for the applied biocatalysts, reusable, and cheap. (ii) Selection of design 

geometry. This needs a maximum surface area in a compact size. (iii) Scale up based on 

numbering-up. Here a single unit related issues like flow distribution, clogging and fouling in the 

single reactor units needs to be taken in to account. 

Interestingly, nature evolved designs have applied the concept of microfluidics and miniaturized 

design in biological systems and solved most of these questions. For example, the size of a single 

cell balances the surface area to volume ratio such that the surface area is maximized while the 

diffusion distance is minimized. Thus, according to Fick's first law the mass transfer rate is 

enhanced, as it is proportional to the area through which diffusion occurs and inversely 

dependent on the diffusion distance.  

With increasing organism size, the average size of cells remains constant, while the number of 

cells increases and the mass transfer of nutrients to the cells are provided by continuous fluidic 

transport. Examples include capillary suction in plants to transport water containing nutrients 

from the roots to the leaves through the xylem conduits (Tyree and Ewers 1991), while in 

animals the fluid (blood) is transported in a circulatory fashion from the heart throughout the 

body (Labarbera 1990). The adaptation of fractal geometry in these designs, combining an 

increased number of micro and nano-sized capillaries, boost the surface area and minimize the 

diffusion distance, which leads to an efficient mass transfer (Emerson et al. 2006; Murray 1926). 

The best example is the human lung, where the air flow is distributed from a single trachea to 8.3 

×106 alveolar sacs, which typically reduce the diameter from 15 mm to 0.8 mm, and thus enhance 

the surface area 4720-fold (Johnson et al. 2000). This fractal geometry or hierarchical branching 

networks have bridged the macroscopic and microscopic world in nature and facilitated transport 

mechanisms.  

Thus, understanding nature’s solutions might motivate to work around microsystem design 

bottlenecks currently faced in industry.  
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