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Summary  

Molecularly imprinted polymers (MIP) are perceived to have several shortcomings such as 

heterogeneous binding site, template occlusion, and difficulties in template recovery and in 

upscaling for commercial exploitation. This thesis describes the development of novel 

methods to overcome these drawbacks, combining surface imprinting on nanoparticles with 

Reversible Addition Fragmentation chain Transfer polymerization (RAFT) to prepare well-

defined MIP composites.  

The first part of this thesis describes the use of R-immobilized RAFT technique from silica 

core to generate tunable core-shell structured cross-linked MIP nanoparticles for chiral 

discrimination. Before creating the cross-linked polymers, the grafting of linear polymers 

from RAFT modified silica nanoparticles was optimized. Imprinted copolymers of 

methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) were grafted from the 

supports in presence of L-phenylalanine anilide (L-PA) as chiral template. The relatively low 

ABDV/CPDB ratio reduced the amount of free polymer derived from the initiator and yet 

maintained a moderate polymerization rate. Silica nanoparticles with two different sizes, ca 

20 nm and ca 200 nm, were used as a support material to investigate the effect of core size in 

binding properties of MIP particles. The resulting beads were subsequently characterised by 

FTIR, TEM, SEM, DLS, TGA and elemental analysis. In binding tests using reversed phase 

HPLC, the imprinted nanoparticles exhibited a much-higher binding affinity for the template 

molecule than the non-imprinted particles. In addition, the imprinted nanoparticles were able 

to discriminate the template L-PA and its optical antipode D-PA. Furthermore, core-shell 

particles with smaller core size displayed a higher binding affinity than those with larger 

cores.  

In the second part of this thesis, the previously established, optimized synthesis route for 

core-shell nanoparticles imprinted with L-PA was applied in a solid-phase synthesis approach 

to prepare molecularly imprinted core-shell nanoparticles (MIPNPs) in template free form 

towards L-phenylalanine (L-Phe) immobilized on magnetic placeholder templates. The latter 

was achieved by grafting poly (MAA-co-EDMA) on RAFT-modified silica nanoparticles. To 

the best of my knowledge, this thesis presents the first artificial receptor that has successfully 

been produced using magnetic placeholder templates. All the materials were characterized 

using elemental microanalysis, FT-IR, TGA, SEM, TEM and DLS. In order to evaluate the 
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binding properties, the particles were subsequently tested for their affinity towards the 

template L-PA and D-PA in acetonitrile. The results demonstrated that the MIPNPs prepared 

via this method had highly accessible binding sites and good discrimination towards the 

template L-PA and D-PA. 

The third part of this thesis illustrates engineering of epitope imprinted core-shell 

nanoparticles towards beta-amyloid template. The “epitope imprinting” consists of using only 

a short and exposed peptide sequences as a surrogate template for the whole protein. Beta-

amyloid contains a pool of peptidic fragments in varying length, which are important 

biomarkers involved in the pathology of Alzheimer’s disease. With the aim of developing 

polymeric complements to one of these biomarkers, the peptide Aβ37-42 was used as template 

to generate an artificial receptor. The MIPs were prepared in organic media by using 

diarylurea as comonomer, ethyl ammonium methacrylate as a functional monomer and 

divinylbenzene as a crosslinker. The adsorption capacity of the resulting MIPs was examined 

by reversed phase HPLC.  

The last part of this thesis had the aim to develop an artificial receptor for the human 

immunoglobulin G (IgG). The decapeptide fragment (T10) from the C-terminus of its heavy 

chain was used as template. Epitope imprinted nanoparticles were prepared by grafting of 

poly-(methacrylicacid-co-methacrylamide-co-ethylbisacrylamide) and/or poly-(bisphosphon- 

icacid-co-methacrylamide-co-ethylbisacrylamide) in presence of the T10 template from a 

RAFT modified colloidal silica core. The resultant MIPs were characterised by FT-IR, TEM, 

TGA and elemental analysis. The polymers were examined by equilibrium rebinding for their 

affinity towards the template T10 in aqueous media by reversed phase HPLC. For polymers 

prepared in organic media, the resulting imprinted and nonimprinted particles revealed a 

similar adsorption capacity towards T10 template. When the synthesis was performed in 

aqueous media, the imprinted particles displayed a higher adsorption capacity than the 

nonimprinted particles. Compared to polymer grafted using the bisphosphonic acid monomer, 

polymer obtained via methacrylic acid as functional monomer showed better imprinting 

performance. Our results provide a new potential for peptide and protein imprinting in 

aqueous media using SI-RAFT technique and it might also be transferred to epitopes of other 

proteins. We believe that such synthetic MIP nanoparticles are highly promising alternatives 

to biological receptors with great potential in many analytical applications and other areas.  
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Zusammenfassung   

Molekular geprägte Polymere (MIP) weisen diverse Mängel wie heterogene Bindungsstellen, 

Einschluss der Template und Schwierigkeiten bei der Rückgewinnung der Template und der 

Hochskalierung zur kommerziellen Nutzung auf. Diese Arbeit beschreibt die Entwicklung 

neuer Methoden, um diese Nachteile zu überwinden. Dabei kombiniert sie die 

Oberflächenprägung auf Nanopartikeln mit der Reversible-Addition-Fragmentation-Chain-

Transfer-Polymerisation (RAFT), um klar definierte MIP Komposite herzustellen. 

Der erste Teil der Arbeit beschreibt die Anwendung von R-immobilisierter RAFT-

Polymerisation auf Silica-Kernen, um vernetzte MIP-Nanopartikel mit wohldefinierter Kern-

Schale-Struktur für die chirale Unterscheidung von Analyten herzustellen. Vor der 

Herstellung der vernetzten Polymeren wurde zunächst die Pfropfung von linearen Polymeren 

mit Silica-Nanopartikeln, die mit RAFT-Reagenzioen modifiziert waren, optimiert.  Geprägte 

Copolymere von Methacrylsäure (MAA) und Ethylenglycoldimethacrylat (EGDMA) wurden 

auf das Trägermaterial in Gegenwart von L-Phenylalanin anilid (L-PA) als chiralem Templat 

gepfropft. Das relativ geringe ABDV/CPDB Verhältnis reduzierte die Menge des durch den 

Initiator gebildeten freien Polymers und führte dennoch zu einer moderaten 

Polymerisationsrate. Silica-Nanopartikel mit zwei verschiedenen Größen , ca. 20 nm und ca. 

200 nm, wurden als Trägermaterial verwendet, um die Auswirkung der Kerngröße auf die 

Bindungseigenschaften der MIP-Teilchen zu untersuchen. Die resultierenden Partikel wurden 

dann durch FTIR, TEM, SEM, DLS, TGA und Elementaranalyse charakterisiert. In 

Bindungstests unter Verwendung von Umkehrphasen-HPLC zeigten die geprägten 

Nanopartikel eine viel höhere Bindungsaffinität für das Templat-Molekül als die nicht 

geprägten Teilchen. Darüber hinaus wurden die Template L-PA und sein Spiegelbildisomer 

D-PA von den geprägten Nanopartikel unterschiedlich stark gebunden. Des Weiteren zeigte 

sich, dass Kern-Schale-Teilchen mit kleineren Kerngrößen eine höhere eine höhere 

Bindunsgaffinität aufweisen, als Partikel mit größerem Silicakern. 

Im zweiten Teil dieser Arbeit wurde die zuvor entwickelte, optimierte Syntheseroute für die 

mit L-PA geprägten Kern-Schale-Nanopartikel in einem Festphasen-Synthese-Ansatz 

angewandt. Durch die Immobilisierung von L-Phenylalanin (L-Phe) auf magnetischen 

Platzhalter-Templaten wurden molekular geprägte Kern-Schale-Nanopartikel (MIPNPs) in 

templatfreier Form synthetisiert. Dieses wurde durch Pfropfung von Poly(MAA-co-EDMA) 
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auf RAFT -modifizierten Siliciumdioxid-Nanoteilchen erreicht. Nach meinem besten Wissen 

stellt diese Arbeit den ersten künstlichen Rezeptor vor, der erfolgreich unter Verwendung von 

magnetischen Platzhalter-Templaten hergestellt wurde. Alle Materialien wurden unter 

Verwendung von Mikroelementaranalyse, FT-IR, TGA, SEM, TEM und DLS charakterisiert. 

Um die Bindungseigenschaften zu studieren, wurden die Teilchen anschließend bezüglich 

ihrer Affinität gegenüber der Template L-PA und D-PA in Acetonitril getestet. Die 

Ergebnisse zeigten, dass die mit dieser Methode hergestellten MIP-Nanopartikel gut 

zugängliche Bindungsstellen hatten und L-PA gegenüber D-PA bevorzugt gebunden wurde. 

Der dritte Teil der Arbeit veranschaulicht die Konstruktion von Epitop-geprägten Kern- 

Schale-Nanopartikeln zur Bindung eines Beta-Amyloid-Templats. Das "Epitop-Imprinting" 

beinhaltet die Verwendung einer kurzen, an der Oberfläche exponierten Peptidsequenzen als 

Surrogat-Templat für ein ganzes Protein. Beta-Amyloid besteht aus unterschiedlich langen 

Peptidfragmenten, diese sind wichtige Biomarker, die an der Pathologie der Alzheimer-

Krankheit beteiligt sind. Mit dem Ziel einen künstlichen Rezeptor zu einem dieser Biomarker 

zu entwickeln wurde das Peptid Aβ37-42 als Templat zur MIP-Synthee verwendet. Die MIPs 

wurden mit Diarylharnstoff als Comonomer sowie Ethyl-Ammonium-Methacrylat als 

funktionelles Monomer und Divinylbenzol als Vernetzer in organischem Lösungsmittel 

synthetisiert. Die Adsorptionskapazität der erhaltenen MIPs wurde durch Umkehrphasen- 

HPLC untersucht. 

Der letzte Teil der Arbeit hatte das Ziel, einen künstlichen Rezeptor für das humane 

Immunglobulin G (IgG) zu entwickeln. Das Dekapeptid-Fragment (T10) aus dem C-

Terminus seiner schweren Kette wurde als Matrize verwendet. Epitop-geprägte Nanopartikel 

wurden durch Grafting von Poly(Methacrylsäure-co-Methacrylamid-co-Ethylbisacrylamide) 

und/oder Poly(Bisphosphonsäure-co-Methacrylamid-co-Ethylbisacrylamid) in Gegenwart des 

T10 Templats aus RAFT-modifizierten, kolloidalen Siliciumdioxid-Kernen hergestellt. Die 

resultierenden MIPs wurden durch FT-IR, TEM, TGA und Elementaranalyse charakterisiert. 

Die Polymere wurden unter Verwendung von Umkehrphasen-HPLC durch Gleichgewichts-

Rebinding auf ihre Affinität gegenüber des Templats T10 in wässrigen Medien untersucht. 

Bei Polymeren, die in organischen Medien hergestellt wurden, zeigten die resultierenden 

geprägten und nicht-geprägtem Polymere ähnliche Aufnahmekapazität gegenüber dem T10-

Templat. Bei der Synthese in wässrigem Medium zeigten die geprägten Partikel eine höhere 

Aufnahmekapazität als die nicht geprägten Partikel. Im Vergleich zu den gepfropften 
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Polymeren mit dem Bisphosphonsäure-Monomer zeigten die Polymere mit Methacrylsäure 

als funktionellem Monomer eine bessere Prägeeffektivität. 

Unsere Ergebnisse liefern einen neuen Ansatz zur Prägung von Polymeren mit Peptiden und 

Proteinen in wässrigen Medien unter Verwendung der SI-RAFT-Technik, die auch auf 

Epitope anderer Proteine übertragen werden könnte. Wir sind davon überzeugt, dass diese 

synthetischen MIP Nanopartikel vielversprechende Alternativen zu biologischen Rezeptoren 

mit großem Potenzial in vielen analytischen Anwendungen und auch in anderen Bereichen 

sind. 
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Objectives of the Thesis 

The main objective of this work is to develop novel molecularly imprinted core-shell 

nanoparticles (MIP NPs) by using surface initiated RAFT polymerization showing high 

affinity and good selectivity for target molecules. Novel recognitive polymer networks have 

been designed with considerations of the complex interactions taking place between the 

templates and ligands at the molecular level. Chapter 2 briefly describes the characterization 

techniques used to analysis prepared polymers in this thesis. Grafting imprinted polymers 

from the RAFT modified silica supports towards the template L-PA and its optical antipode 

D-PA have been studied in chapter 3. This grafting procedure consists of R-group 

immobilization of RAFT agent onto silica nanoparticles and coplymerization of methacrylic 

acid (MAA) and ethyleneglycol dimethacrylate (EDMA). In chapter 4, solid- phase synthesis 

of MIPs core-shell nanoparticles using magnetic template has been investigated. In this 

method the protected L-phenylalanine (Fomc-L-Phe) template was immobilized on the 

surface of magnetic-silica nanoparticles. Subsequently the magnetic placeholder template was 

added to prepolymerization mixture (i.e. MAA, EDMA, RAFT-SiO2 and toluene) to yield the 

L-Phe imprinted MIP NPs.  

The engineering of epitope imprinted core-shell nanoparticles towards beta-amyloid template 

for the pathology of Alzheimer’s disease has been investigated in chapter 5. The C-terminal 

sequence Aβ37-42 was selected as template and transformed into its acetylated 

tetrabutylammonium salt (Ac-Aβ37-42-TBA) to enhance the template solubility. The MIPs 

were synthesized using divinylbenzene as hydrophobic crosslinker in organic media. In 

chapter 6, nano-sized core-shell particles by grafting of thin films imprinted with a 

hydrophilic peptide from nonporous silica cores have been reported. In this chapter 

decapeptide fragment (T10) from the C-terminus of IgG heavy chain was selected as template 

and polymerization was carried out using hydrophilic acrylamide based monomers in 

aqueous media. The resulting beads were subsequently characterised by FTIR, TEM, DLS, 

TGA and elemental analysis. In each chapter the polymers were tested for their affinity 

towards the target molecules by reversed phase HPLC.    
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Chapter 1: Background and State of the Art 

 

1.1  Molecularly imprinted polymers  

Robust molecular recognition elements with antibody-like ability to bind and discriminate 

between molecules can today be synthesized using various forms of molecular imprinting 

(Figure  1.1) [1-5]. The most common form of imprinting entails the synthesis of reticulated 

polymers in the presence of templates (T) which, widely defined, may range from being 

individual ions, small molecules, or biological macromolecules to microorganisms or crystal 

particles. Functional monomers act as anchors, interacting with the template (1) and holding 

it in place during the subsequent polymerization (2). Removal of the template from the 

formed polymer liberates binding sites (3) complementary in shape and binding groups to the 

template structure. Hence, these molecularly imprinted polymers (MIPs) are functional in the 

sense that they exhibit a memory for the template and can selectively bind it or related 

structures with high affinity, not unlike the way antibodies bind their antigens. In spite of this 

advanced function, and in contrast to the biological recognition elements, MIPs are 

remarkably stable against mechanical stresses, high temperatures and pressures, and intense 

radiation. They are also resistant to treatment with acid, base or metal ions, and stable in a 

wide range of solvents. The storage endurance of the polymers is also very high. 

Furthermore, the polymers can be used repeatedly without loss of their “memory effect.” 

This, in addition to the relative ease of producing MIPs, has led to a boom in the research and 

industrial interest in this fascinating class of materials, particularly with the aim of finding 

alternatives or substitutes for the labile biologically derived recognition elements [6]. 

 

                                         Figure  1.1. Principle of molecular imprinting. 
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The main appeal of molecular imprinting lies in its simplicity in terms of the required 

ingredients, equipment, and unit operations. The majority of the reported examples are based 

on MIPs formed by free radical polymerization in the presence of the template by operations 

requiring only simple equipment. Hence, MIPs can be produced in essentially any moderately 

equipped laboratory. 

The design of a MIP receptor can be divided into three steps, distinguished by the type of 

chemistry involved and the length scales of the designed features (Figure  1.2) [6]. The 

construction of a binding site for a low-molecular-weight target aims to place functional 

groups at 1-nm length scale, in complementary positions to the target. This design starts with 

an examination of the structural and functional features of the target molecule for which an 

MIP is needed, while also considering the context in which the MIP should operate (solvent, 

temperature, target concentration, static or dynamic mode, etc.) and whether the binding 

event should trigger an associated function. The template can be either covalently or 

noncovalently linked to the functional monomer and the same distinction can be made with 

respect to the interactions occurring between the target molecule and the resulting binding 

site. 

Binding site design Scaffold design Morphology design 

*   Template molecule 
- Target imprinting 
- Fragment imprinting 
- Analog imprinting 

 

*  Organic polymers 
- Polymethacrylics, 

polyacrylics, and  
polystyrens 

 

*  Crushed monoliths  

*  Beaded MIPs  

*  Hierarchical MIPs 

*  Composites 

*  Thin films 

*  Fibers and tubes 

*  Membranes  

*  Perfusive monoliths 

*  Nanostructured MIPs  

 

* Functional monomers 
- Computational methods 
- Combinatorial methods 
- Host-guest chemistry 
- Covalent imprinting 

 
 

*  Inorganic polymers 
- For example, SiO2,  

TiO2, etc. 
 
* Polymerization techniques 

- Noncontrolled 
- Controlled 
- Type of initiator 

 
* Crosslinking 

- During polymerization 
- After polymerization 
- Degree of cross-linking 
- Covalent or noncovalent 

 

                                      Figure  1.2. Steps involved in MIP design. (adapted from [6]) 
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MIPs have attracted great interest during recent years because they have certain advantages 

over immunosorbents, such as mechanical robustness, resistance to elevated temperatures and 

pressures, an improved inertness to strong acids, bases and organic solvents, as well as low 

cost, ease of preparation, long shelf-life and reproducibility. Consequently, MIPs have been 

widely used in applications based on specific molecular recognition, namely as recognition 

elements in sensors [7-9], as substitutes of antibodies in binding immunoassays [10], for 

directed synthesis and catalysis [11], for drug delivery [12], as drugs [13, 14], chiral 

recognition [15, 16] and, in particular, in purification and separation techniques [17-19]. 

 

Figure  1.3. Scheme outlining the main applications envisaged for MIPs.(adapted from[20]) 

 

1.2 Imprinting approaches 

The approaches to produce MIPs can be generally divided into a few categories, based on the 

type of interactions between the template and the functional monomer, which are covalent 

molecular, non-covalent, semi-covalent and metal-coordinating molecular imprinting. 
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1.2.1  Covalent imprinting 

Covalent imprinting is where the template is bound to one or several polymerization groups 

covalently. Once the template-MIP complex is formed (after synthesis), the covalent bonds 

must be cleaved. After the template is removed, the target molecule can rebind due to 

covalent bonds being formed in the same locations, with the main advantages being that the 

functional groups are associated with the template only, and the stability of covalent bonding 

yields more homogeneous binding sites. Only certain compounds can be imprinted in this 

way, including diols, aldehydes, ketones, amines, and carboxylic acids [2]. Covalent 

imprinting methods have historically been the more prevalent (until recently) where it was 

first developed by Wulff et al.[21]  

 

Figure 1.4. Covalent imprinting of 4-nitrophenyl-a-d-mannopyranoside-2,3:4,6-di-O-(4vinylphenylboronate). 
(adapted from[22]) 

 

1.2.2 Non-covalent imprinting 

Non-covalent imprinting adducts, which are formed between the template and functional 

monomer, are based on non-covalent interactions, such as hydrogen bonding, ion pairing, 

dipole-dipole interactions, and Van der Waals forces. Unlike covalent imprinting these 

adducts are unstable and rearrange in relation to the imprinting process [2, 22]. After 

production the template is removed by washing with a solvent or a mixture of solvents. The 

non-covalent approach is the most popular method of MIP synthesis [20] and was introduced 

in the early 1980s [23].  

Non-covalent imprinting is usually based on commodity acrylics or methacrylic monomers 

(e.g., methacrylic acid (MAA)) which are then cross-linked with ethylene glycol 
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dimethacrylate (EGDMA). Hydrogen bonding or acid-base interactions between the template 

and functional groups (of low molecular weight compounds) are desirable [24]. 

The non-covalent approach has been used more extensively due to follow three reasons: 

(i) Non-covalent methodology is easier because it does not require synthetic steps toward 

the prepolymer complex; interactions between monomers and template are easily 

obtained when all components are mixed in solution. 

(ii) Removal of the template is generally much easier, usually accomplished by 

continuous extraction. 

(iii) A greater variety of functionality can be introduced into the MIP binding site using 

noncovalent methods. 

Therefore, investigations into the behavior of MIPs have dealt more frequently with non-

covalent systems. 

 

Figure  1.5. Non-covalent imprinting of a dipeptide derivative by multiple non-covalent interactions with 
methacrylic acid. (adapted from[25]) 

 

1.2.3 Semi-covalent imprinting  

Semi-covalent imprinting attempts to combine the advantages of the covalent and the non-

covalent approach. As the template is covalently bound to a polymerizable group, the 

functionality which is recovered after cleavage of the template should only be found in the 

binding site. This also results in a more uniform distribution in binding site affinities [26]. 

Semi-covalent imprinting is also possible and refers to the method which utilizes a covalent 

or partly covalent template structure in the polymerization step but is distinct from covalent 
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imprinting in that the rebinding step is non-covalent [22], and this was pioneered by 

Sellergren and Andersson [27]. 

 

Figure  1.6. Semi-covalent imprinting for L-p-aminophenylalanine ethyl ester. (adapted from[27]) 

 

1.2.4 Metal ion imprinting 

Metal ions can take part in imprinting either as a template or can directly be involved in the 

template-polymer interactions. With the latter binding is possible as metal ions are able to 

accept electrons into their “un filled orbitals of the outer coordination sphere” [2] from the 

heteroatoms of ligands. Therefore, the binding strength can range from weak bonds to strong 

bonds (which can behave covalently), depending on the metal, its oxidation state, and ligand 

characteristics [2, 22]. The first approach was reported in 1985 with the imprinting of amino 

acids [28]. 
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1.3 Molecularly imprinted polymer syntheses 

The synthesis of molecularly imprinted polymers is a chemically complex pursuit and 

demands a good understanding of chemical equilibrium, molecular recognition theory, 

thermodynamics and polymer chemistry in order to ensure a high level of molecular 

recognition [29-31]. The polymers should be rather rigid to preserve the structure of the 

cavity after splitting off the template. On the other hand, a high flexibility of the polymers 

should be present to facilitate a fast equilibrium between release and reuptake of the template 

in the cavity. These two properties are contradictory to each other, and a careful optimization 

became necessary. The challenge of designing and synthesizing a molecularly imprinted 

polymer can be a daunting prospect to the uninitiated practitioner, not least because of the 

sheer number of experimental variables involved, e.g. the nature and levels of template, 

functional monomer(s), cross-linker(s), solvent(s) and initiator, the method of initiation and 

the duration of polymerization. Moreover, optimization of the imprinted products is made 

more difficult due to the fact that there are many variables to consider, some or all of which 

can potentially impact upon the chemical, morphological and molecular recognition 

properties of the imprinted materials. Fortunately, in some instances it is possibly to 

rationally predict how changing any one such variable, e.g. the cross-link ratio, is likely to 

impact upon these properties [32-36]. 

 

1.3.1 Template 

Generally, template molecules are target compounds in analytical processes. An ideal 

template molecule should satisfy the following three requirements. First, it should not contain 

groups involved in or preventing polymerization. Second, it should exhibit excellent chemical 

stability during the polymerization reaction. Finally, it should contain functional groups well 

adapted to assemble with functional monomers. 

The imprinting of small, organic molecules (e.g., pharmaceuticals, pesticides, amino acids 

and peptides, nucleotide bases, steroids, and sugars) is now well established and considered 

almost routine. Optically active templates have been used in most cases during optimization. 

In these cases the accuracy of the structure of the imprint (the cavity with binding sites) could 

be measured by its ability for racemic resolution, which was tested either in a batch procedure 

or by using the polymeric materials as chromatographic supports. 
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One of the many attractive features of the molecular imprinting method is that it can be 

applied to a diverse range of analytes, however, not all templates are directly amenable to 

molecular imprinting processes. Most routine MIPs were synthesized using small organic 

molecules as template. Although specially adapted protocols have been proposed for larger 

organic compounds, e.g., proteins, cells, imprinting of much larger structures is still a 

challenge. The primary reason is the fact that larger templates are less rigid and thus do not 

facilitate creation of well-defined binding cavities during the imprinting process. 

Furthermore, the secondary and tertiary structure of large biomolecules such as proteins may 

be affected when exposed to the thermal or photolytic treatment involved in the synthesis of 

imprinted polymers. Rebinding is also more difficult, since large molecules such peptides and 

proteins do not readily penetrate the polymer network for reoccupation of binding pockets. 

Table  1.1. Examples of various templates used in molecular imprinting. 

Category of template molecule Specific examples Reference 

Amino acids 
Phenylalanine anilide [37] 

Histidine [38] 

Antibiotics 

Trimethoprim [39] 

Penicillin [40] 

Norfloxacin [41] 

Drugs 

Propranolol [42] 

Paracetamol [43] 

Ibuprofen [44] 

Narcotics Cocaine [45] 

Pesticides / herbicides 

Carbaryl [46] 

Linuron & isoproturon [47] 

Cortisol [48] 

Steroids 
Testosterone [49] 

β-D-fructopyranose [50] 

Sugars Methyl-α-D-glucopyranoside-6-acrylate [51] 
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1.3.2 Functional monomers 

Functional monomers are responsible for the binding interactions between the template and 

polymer matrix. It is clearly very important to match the functionality of the template with 

the functionality of the functional monomer in a complementary fashion in order to maximize 

complex formation. The functional monomer must also have a group that is capable of 

undergoing a polymerization reaction thus facilitating the formation of the growing polymer. 

The role of the monomer is to provide functional groups which can form a complex with the 

template by covalent or non-covalent interactions. The strength of the interactions between 

template and monomer affects the affinity of MIPs [52, 53], and determines the accuracy and 

selectivity of recognition sites [54]. The stronger interaction provides the more stable 

complex and resulting in the higher binding capacity of the MIPs, and therefore, correct 

selection of the functional monomers is very important. Tedious trial-and-error tests are often 

required to select a suitable monomer. In order to perform rational design and convenient 

synthesis of MIPs, several strategies, such as spectroscopic measurement e.g., nuclear 

magnetic resonance [55, 56], uv-vis [57, 58],  fourier-transform infrared spectroscopy [59], 

computer simulation [60],  and isothermal titration calorimetry [61] have been employed to 

select optimal functional monomers capable of forming more stable complexes with 

templates. Research on how to choose and evaluate appropriate functional monomers has 

been reviewed recently [62]. Commonly used monomers for molecular imprinting include 

methacrylic acid (MAA), acrylic acid (AA), 2-or 4-vinylpyridine (2- or 4-VP), acrylamide, 

trifluoromethacrylic acid and 2-hydroxyethyl methacrylate (HEMA). Structures of several 

typical monomers are listed in Figure  1.7. MAA has been used as a ‘‘universal’’ functional 

monomer due to its unique characteristics, being capable to act as a hydrogen-bond donor and 

acceptor, and showing good suitability for ionic interactions [63]. 

Generally, the molar ratios between template and monomer in the synthesis process affect the 

affinity and imprinting efficiency of MIPs. Lower molar ratios induce less binding sites in 

polymers due to fewer template–monomer complexes, but over-high ones produce higher 

non-specific binding capacity, diminishing the binding selectivity. So, in order to gain high 

imprinting efficiency, the molar ratio of templates to monomers should be optimized. 
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Figure  1.7. Structure of the most common monomers used for molecular imprinting. 

 

1.3.3 Cross-linkers 

For imprinted polymer synthesis, the cross-linker also fulfils important functions. The cross- 

linker is important in controlling the morphology of the polymer matrix, serves to stabilize 

the imprinted binding sites and imparts mechanical stability to the polymer matrix in order to 

retain its molecular recognition capability [24]. Different cross-linkers have been used 

(Figure  1.8). High cross-link ratios are generally used in order to access permanently porous 

(macroporous) materials with adequate mechanical stability. Ethylene glycol dimethacrylate 

(EGDMA) and trimethylolpropane trimethacrylate (TRIM) are the most commonly 

employed. Some authors found that cross-linker has a major impact on the physical 

characteristics of the polymers and much less effect on the specific interactions between the 

template and functional monomers [59, 64, 65]. TRIM as cross-linker gives polymers with 

more rigidity, structure order and effective binding sites than EGDMA. In the case of 
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polymerization obtained by precipitation method, it has been seen that optimizing the amount 

of cross-linker and reducing the concentration of the template, the polymer binding properties 

are improved and the level of non-specific interactions is decreased [66]. In another study it 

has been observed that the type of cross-linker strongly influences the final size and yield of 

MIP nanoparticles[67]. In fact, when divinylbenzene was used as the cross-linker, 

polydisperse MIP particles were obtained in low yield, whereas, trimethylolpropane 

trimethacrylate (TRIM) led to uniform nanoparticles in high yield (90%). 
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Figure  1.8. Structure of the most common cross-linkers used for molecular imprinting. 

 

1.3.4 Solvents (porogens) 

The synthesis of  MIPs is conducted within an organic solvent which has the role of both 

solubilizing the pre-polymerization components and creating pores within the MIP structure 

necessary for access of targets to internal binding sites [29]. Formation of the pores and 

resultant pore size is dependent on solvent strength [68]. 
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In the pre-polymerization mixture the monomers are completely soluble and early polymer 

growth continues in solution as a dispersion of highly cross-linked oligomers. The oligomers 

then grow and aggregate to form microspheres and larger clusters which, at a certain size, 

dependent on solvent strength, separate from the solvent. As the polymer dispersion 

precipitates, solvent rich domains are captured within the polymer structure, resulting in the 

formation of the pores. In a weakly solubilizing media, phase separation occurs early in 

polymerization and leads to the formation of larger pores sizes, whereas, in highly 

solubilizing media, phase separation occurs later and leads to the formation of smaller pore 

sizes [69]. Importantly, MIPs prepared in the absence of solvent lack porosity and have low 

selectivities [29]. 

The solvent can also have a significant effect on the stability of functional monomer 

interactions with the template in the pre-polymerization mixture. Highly polar solvents tend 

to destabilize polar non-covalent interactions, particularly protic solvents, which afford a high 

degree of disruption to hydrogen bond interactions [29]. On the other hand, highly polar and 

protic solvents can stabilize π-π stacking interactions between non-polar molecules, such as a 

chlorinated benzene template and an aromatic functional monomer, by solvophobic effects 

[70]. In addition, solvent polarization can stabilize molecular charges and dipoles of the 

functional monomer and template and result in stronger dipole interactions [71]. 

In the development of a MIP synthetic procedure, a compromise must be made between the 

stabilization of functional monomer interactions with the template and the solubility of the 

pre-polymerization mixture. These considerations usually result in the selection of a solvent 

from a small list of commonly used solvents consisting of chloroform (CHCl3), acetonitrile 

(MeCN), dichloromethane (DCM), toluene and tetrahydrofuran (THF) [22]. 

 

1.3.5 Initiators 

Many chemical initiators with different chemical properties can be used as the radical source 

in free radical polymerization (Figure  1.9). Normally they are used at low levels compared to 

the monomer, e.g. 1 wt. %, or 1 mol. % with respect to the total number of moles of 

polymerisable double bonds. The rate and mode of decomposition of an initiator to radicals 

can be triggered and controlled in a number of ways, including heat, light and by 

chemical/electrochemical means, depending upon its chemical nature. For example, the 
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azoinitiator azobisisobutyronitrile (AIBN) can be conveniently decomposed by photolysis 

(UV) or thermolysis to give stabilized, carbon-centred radicals capable of initiating the 

growth of a number of vinyl monomers. As an illustrative example of the use of AIBN, this 

initiator can polymerize methylmethacrylate under thermal or photochemical conditions to 

give poly (methyl methacrylate). Oxygen gas retards free radical polymerizations, thus in 

order to maximize the rates of monomer propagation, ensure good batch-to-batch 

reproducibility of polymerizations, removal of the dissolved oxygen from monomer solutions 

immediately prior to the polymerization is advisable. Removal of dissolved oxygen can be 

achieved simply by ultrasonication or by sparging of the monomer solution by an inert gas, 

e.g. nitrogen or argon. 
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Figure  1.9. Chemical structure of common initiators used in molecular imprinting. 

 

1.3.6 General polymerization procedures 

The vast majority of monomers, especially liquid monomers, are normally supplied with 

polymerization inhibitor present to suppress on-shelf polymerization. Whilst it is certainly 

possible to polymerize monomer in the presence of inhibitor, especially when the levels of 

inhibitor are low and/or higher levels of polymerization initiator are present, to ensure good 

batch-to-batch reproducibility of experiments, both in house and inter-laboratory, it is 

probably advisable to remove the polymerization inhibitors from monomers, often in series 
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with a second purification step, e.g. distillation. Such purifications are often straight-forward 

to perform, with many rigorous literature procedures being readily available [72].  

Oxygen gas retards free radical polymerizations, thus in order to maximize the rates of 

monomer propagation and to, once again, ensure good batch-to-batch reproducibility of 

polymerizations, removal of the dissolved oxygen from monomer solutions immediately prior 

to polymerization is advisable. Removal of dissolved oxygen can be achieved simply by 

ultrasonication or by sparging of the monomer solution by an inert gas, e.g. nitrogen or argon. 

If more rigorous degassing of monomer solutions is required, for whatever reason, then the 

method of freeze-pump-thaw comes into its own. 

The majority of MIPs have been prepared via the free radial polymerization of vinyl 

monomers. Radical polymerization conditions are favored because they are mild, can utilize a 

large pool of commercially available monomers, and are compatible with most functional 

groups. This last attribute enables the use of monomers containing polar, aromatic, acidic, 

basic, and charged recognition groups. Polymerizations are carried out with 1 to 5% of a 

radical initiator such as 2,2-azobisisobutyronitrile (AIBN) or azo-bis-dimethylvaleronitrile 

(ABDV). Both thermal and UV-irradiation polymerization conditions have been used. The 

thermal irradiation conditions are more general and can be applied to a broader array of 

monomers, crosslinkers, and templates and yield more uniform polymers. UV-irradiation 

conditions can be carried out at lower temperatures, which are more favorable for the non-

covalent imprinting conditions. MIPs have also been prepared using other polymerization 

methods. The largest and most successful of these are the imprinted sol- gels [73, 74]. MIPs 

have also been prepared using electropolymerization[75], condensation[76], step-growth[77], 

and metathesis polymerizations [78]. 

 

1.4 Living radical polymerization and MIPs 

Radical polymerization is one of the most versatile chemical reactions as it allows for the 

conversion of a wide variety of vinyl monomers into polymeric materials. The extremely high 

reactivity of the radicals provides great versatility and tolerance of a wide variety of 

functional groups during polymerization allowing for the use of a broad spectrum of 

monomers and additives at various reaction conditions [79, 80]. Unfortunately, this high 
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reactivity also results in a large number of undesirable side reactions resulting in significant 

branching as well as a loss of control of the molecular weight and tacticity of the polymer[81, 

82].  Living radical polymerization (LRP) promises better control over these parameters[83]. 

 

1.4.1 MIPs synthesis by free radical polymerization 

Free radical polymerization is the most popular and general method to prepare MIPs due to 

its attractive properties, such as rapidity and simplicity in preparation, with no requirement 

for sophisticated or expensive instrumentation, and purity in the produced MIPs [79]. Vinyl 

based starting materials (monomers and cross-linkers) are used and the polymerization 

involves three principle steps; initiation to activate the monomers, propagation or growth of 

the active chain by sequential addition of monomers, and termination of active chain to form 

the final polymer chains. In practice, the initial step plays the most important role and can 

affect the overall success of the synthesis of MIPs as optical sensing receptor. External 

initiator is usually added to activate the polymerization process either by thermal or radiation 

process and the reactor is usually sealed under inert gas to avoid termination of the radical 

species. As a result, proper consideration must be given in ensuring a suitable reactor for such 

type of polymerization technique was available before MIPs can be produced. More 

advanced settings are required if the final formation of MIPs is to be in a given form such as 

thin layer, microbeads, nanorods, etc.  

However, the monolithic polymer obtained by bulk polymerization has to be crushed, ground 

and sieved to an appropriate size, which is time-consuming and would reduce polymer yield 

(only 30–40% of polymer recovered as usable material). In addition, grinding operation 

results in irregular particles in shape and size, and some high affinity binding sites are 

destroyed and changed into low affinity sites. Bulk polymerization yields polymers with a 

heterogeneous binding site distribution which thus greatly confines the use of MIPs as 

chromatographic adsorbents [84]. 
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                          Figure  1.10. Schematic representation of free radical polymerization. 

 

1.4.2 Limitation of free radical polymerization at MIPs  

This method is the most popular since it is simple; nevertheless, crushing, grinding and 

sieving to obtain the appropriate particle sizes is tedious and time-consuming and often 

produces particles that are irregular in size and shape. In addition, some interaction sites are 

destroyed during grinding, reducing the MIP loading capacity and, since only a portion of the 

original polymer is used, this method suffers from high consumption of the template 

molecules [85]. Furthermore, another drawback to conventional FRP is the lack of control 

over chain propagation and termination because of the very high reactivity of the radicals. 

This results in the formation of polymer networks with heterogeneous structures with various 

imperfections, like primary and secondary cycles, and pendant double bonds [86]. The 

presence of heterogeneity within the network structures of imprinted polymers affects the 

quality of the binding sites formed within the networks and results in a broad distribution of 

binding sites with large proportions of low affinity sites and low overall capacity. 

Living/controlled radical polymerization (LRP) techniques offer the ability to create 

improved imprinted polymers with more homogeneous network structures and, as a result, 

better binding parameters. In addition, using LRP can lead to more control over network 

structures and a better understanding of their structure-property relationships; however, these 

Propagation 

Initiation 

Termination 

combination 

disproportionation 

49 

 



  

reactions are relatively new to the imprinting field and have not been used extensively in 

molecular imprinting. 

 

Figure  1.11. Irregularly shaped particles resulting from mechanical grinding of a “traditional” molecularly 
imprinted polymer (MIP-FRP). 

 

1.4.3 MIPs synthesis by controlled radical polymerization 

Living radical polymerization (LRP) offers the ability to control molecular weight, 

polydispersity, and tacticity while reducing microgel formation in polymers created via free-

radical polymerization (FRP). The improved network architecture of polymers created via 

LRP has great potential, especially when considering imprinted networks which have 

traditionally been plagued by heterogeneity in network morphology and binding affinities. 

Using LRP can considerably improve template recognition and further delay template 

transport in imprinted polymers. 

 

1.4.3.1 Iniferter polymerization 

Otsu proposed a pseudo-living polymerization method based on the use of iniferters (standing 

for initiator-transfer agent-terminator) [87-89]. This first example of controlled radical 

polymerization (CRP) consists in the dissociation of dithiocarbamates into an initiating alkyl 
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radical and a second radical species that is stabilized and not capable of initiating a new 

polymer chain. When the energy supply to the reaction in the form of heat or UV irradiation 

ceases, the two radicals recombine and the chain growth stops. The system can later be       

re-initiated with the same or other monomers, thus providing some degree of living character. 

 

Figure  1.12. General mechanism of iniferter polymerization. 

Considering iniferter-initiated polymerization, this allows for a control of the molecular 

weight that is not as good compared with the other CRP methods. This method was mainly 

used to achieve the synthesis of thin MIP films on supports by surface-initiation. In the 

context of MIPs, it has the advantage, though, of being compatible with the majority of 

functional monomers commonly used. Kobayashi and coworkers[90] were the first to use this 

CRP method for molecular imprinting. They reported photografting an MIP layer on a 

polyacrylonitrile membrane modified with a diethyldithiocarbamate iniferter. 

Sellergren and coworkers [91] reported the L-phenylalanine anilide (L-PA) imprinted 

polymer via iniferter-modified supports. They used porous silica (DP ~ 100 nm) and gel-type 

or macroporous (12% nominal crosslinking density) Merrifield resins were modified with 

iniferter groups for grafting of crosslinked molecularly imprinted or non-imprinted polymer 

layers through iniferter polymerization. They explored that the nature of the support material 

is of crucial importance for successful grafting of molecularly imprinted polymer layers. 

Whereas templated sites appeared to be absent in composites prepared from polystyrene-

based support materials, silica based grafts were more successful in this regard. Compared to 

the system based on immobilized azoinitiators, these systems exhibit the advantage that no or 

minimal propagation occurs in solution. This may open the way for continuous methods for 

the production of MIPs in beaded form. The living nature of the iniferter grafts may offer the 

additional possibility of consecutive grafting of multiple polymer layers [92].  
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1.4.3.2 Nitroxide mediated polymerization (NMP) 

Nitroxide-mediated radical polymerization (NMP), also referred as stable free radical 

polymerization (SFRP), is one of the versatile methods for the controlled/living 

polymerizations. NMP is generally based on the use of nitroxyl radicals (nitroxides) or 

alkoxyamines. Solomon and Rizzardo [93, 94] and Moad and Rizzardo [95] first used 

alkoxyamines for the polymerization of various vinyl monomers. However, only low 

molecular weight polymers were obtained. Later Georges et al. [96] showed that high 

molecular weight polystyrene (Mn> 50,000) with low polydispersity (<1.5) could be prepared 

using benzoyl peroxide (BPO) and a nitroxyl radical such as 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO). 

 

Figure  1.13. Mechanism of Nitroxide Mediated Polymerization (NMP). 

Boonpangrak et al. [97] used sacrificial covalent imprinting and nitroxide-mediated LRP 

(NMP) to produce cholesterol imprinted polymers at a relatively high temperature of 125 oC 

with divinyl benzene as the crosslinker. They found that compared to MIPs prepared under 

the same condition using a traditional radical initiator, template cleavage from the covalently 

imprinted NMP polymer was much more efficient. The imprinted hydrolyzed polymer 

prepared by NMP also displayed an imprinting effect that was clearly superior to that 

obtained using traditional radical polymerization, particularly for the high affinity sites that 

were easily characterized by radioligand binding analysis. 

Byrne and coworkers used non-covalent molecular imprinting based primarily on multiple 

hydrogen bonds to produce highly crosslinked polymer networks via UV FRP and iniferter 

controlled LRP reaction at 0 oC [98]. Imprinted polymers prepared using LRP demonstrated a 

63% increase in binding capacities as compared to the corresponding polymers prepared via 

conventional FRP while retaining the average binding affinity and selectivity for the template 

molecule.  
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1.4.3.3 Atom transfer radical polymerization (ATRP) 

Since its first discovery in 1995 [99-101], ATRP has drawn significant attention from both 

academic and industrial communities due to its versatility in the synthesis of polymers with 

predictable molecular weights, low dispersities and specific functionalities, the easy 

availability of many kinds of initiators and catalysts, and its general applicability for a wide 

range of monomers (such as (meth)acrylates, styrene and its derivatives, 2,4-vinylpyridine, 

acrylamides, and so on) [102, 103]. In a controlled ATRP system, a fast, dynamic equilibrium 

is established between the dormant species (e.g., alkyl halides) and active species (radicals), 

with transition metal complexes acting as reversible halogen atom transfer reagents 

(Figure  1.14), which keeps a very low radical concentration in the system and leads to 

negligible radical termination and controlled polymerization [104, 105]. 

 

Figure  1.14. Mechanism of ATRP. 

According to their different initiating species used, two kinds of ATRP processes are 

available, which are normal ATRP and reverse ATRP, respectively [106]. In the normal 

ATRP system, the initiating radicals stem from the reaction between an alkyl halide (or 

arenesulfonyl halide) and a transition metal complex in its lower oxidation state [e.g., 

Cu(I)/ligand]; while in the reverse ATRP system, a conventional radical initiator (e.g., AIBN) 

is used to generate primary radicals in the beginning of the polymerization, which are then 

deactivated by a transition metal complex in its higher oxidation state [e.g., Cu(II)/ligand]. In 

both systems, the equilibrium between the dormant species and active radicals can be quickly 

established soon after the polymerization starts. 

The process can be applied to a wide range of monomers and at mild reaction, though it must 

be said that traces of oxygen can have a much more dramatic effect on the reaction rate than 

in a conventional radical polymerization. A further drawback, restricting industrial 
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application, is the presence of considerable amounts of metal in the product. Nonetheless, 

numerous well-defined complex polymer architectures have been prepared with ATRP [107]. 

With ATRP, the major limitation for this technique in the context of MIP synthesis is the 

small choice of monomers with suitable functional groups. Typical monomers used for 

molecular imprinting such as methacrylic acid and trifluoromethyl acrylic acid are 

incompatible, and with methacrylamide [108] and vinylpyridine [109], it is difficult to 

achieve high monomer conversion with the metal-ligand complex involved in ATRP. 

Template molecules also often carry functional groups that may inhibit the catalyst. Thus, the 

difficulty of obtaining high conversion in the presence of certain functional groups on 

monomer and template seems to make ATRP not the best choice for molecular imprinting. 

Nevertheless, Wei et al. [110] describe the use of surface-confined ATRP to create imprinted 

polymer films with controlled thickness on a gold substrate, using 2-vinylpyridine as the 

functional monomer, ethylene glycol dimethacrylate as the cross-linker, and the fluorescent 

template didansyl-L-lysine. A linear increase in thickness was observed over time, and 15 

nm-thick polymer films were obtained in 20 h at room temperature. When the adsorption 

properties of these films were studied using fluorescence measurements, an imprinting effect 

was observed, as the adsorption capacity and the association constant of the didansyl-L-lysine 

template on the MIP film were approximately two times higher than those measured with the 

non-imprinted control polymer film. In addition, another amino acid derivative, didansyl-L-

cystine, adsorbed less well to the didansyl-L-lysine- MIP compared with the original 

template. 

 

1.4.3.4 Reversible addition fragmentation chain transfer polymerization (RAFT) 

The RAFT process was invented at the Commonwealth Scientific and Industrial Research 

Organization (CSIRO) in 1998 and became one of the most convenient and versatile 

techniques for preparing living polymers with low polydispersity and predictable molecular 

weights [111-113]. 

In recent years RAFT polymerization has emerged as a very attractive method for producing 

pseudo living free radical polymerizations [114, 115]. Its main potential lies in its versatility 

towards the types of monomers it can polymerize, including styrenic, (meth)acrylamides, 
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(meth)acrylates, acrylonitrile, vinyl acetates, vinyl formamide, vinyl chlorides as well as a 

range of other vinyl monomers [116]. Another advantage of the RAFT process is that it is 

carried out in the same conditions as a classic free radical polymerization except with the 

addition of a chain transfer agent (CTA) also referred to as a RAFT agent. As a result, RAFT 

polymerizations have been carried out in bulk, aqueous solutions, organic solutions, 

suspensions, emulsions, mini and micro emulsions, and ionic liquids and can be carried out at 

low temperatures [117, 118]. In addition to simple homopolymers, a large variety of 

macromolecular structures have been synthesized via RAFT including statistical, block, 

multiblock, gradient, and comb copolymers, telechelic (co)polymers, star, hyperbranched, 

and network (co)polymers [119, 120].  

The RAFT process utilizes classic free radical initiators and monomers but also includes the 

presence of a CTA. These RAFT agents are most commonly dithioesters with the general 

structure shown in Figure  1.15. 

 

Figure  1.15. General form of RAFT chain transfer agents. 

The Z group serves to activate or deactivate the reactivity of the C=S bond towards addition. 

The R group must form a stable free radical. A wide variety of RAFT agents bearing different 

Z and R groups have been synthesized and evaluated relative to their effectiveness in 

mediating the polymerization of vinyl monomers [121, 122]. Effective RAFT agents include: 

dithiobenzoates, dithioacetates, dithiocarbonates (xanthates), and trithiocarbonates. Some of 

the more versatile RAFT agents are 4-cyanopentanoic acid dithiobenzoate and carboxyl-

terminated trithiocarbonate that were used in my experiments. 

Upon completion of a RAFT polymerization the vast majority of chains will possess a 

thiocarbonylthio end-group, with the overall process able to be viewed as an insertion of 

monomer units between the S-R bond of the RAFT agent 1 (Figure  1.16) to give a polymer 2. 

The largely conserved RAFT end-group of 2, itself a macro-RAFT agent, facilitates the 

synthesis of block copolymers through the subsequent polymerization of a second monomer. 
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Additionally the thiocarbonylthio group provides a functional handle for a variety of post-

polymerization modifications [123, 124]. 

 

Figure  1.16. The overall outcome of the RAFT process. 

The generally accepted mechanism of synthesis of homopolymer (macroRAFT agent) via the 

RAFT process is described in Figure  1.17. This process is highlighted by five distinct steps:  

Initiation: involves in the release of free radicals from typical azo or peroxy initiators into 

the reaction system and the reaction of the initiator-derived radicals with monomers. 

Chain transfer: the propagating polymeric chain adds to the reactive C=S bond of the chain 

transfer agent (CTA) to form intermediate radicals. These radicals can then fragment 

reversibly to produce a macroCTA and the re-initiating group R·. 

Reinitiation: the released R· radical can reinitiate the polymerization by reacting with 

monomer and starting a new polymer chain which will propagate or react back on the macro-

CTA. When the initial CTA is completely consumed, the polymerization system is controlled 

by the presence of macro-CTA. 

Chain equilibrium: this step involves the exchange of active and dormant thiocarbonylthio 

capped chains. Each potential macroradical has equal probability of undergoing chain 

growth, promoting homogenous chain growth to yield a low PDI. 

Termination: the polymerization is terminated via combination or disproportionation 

inherent to the free-radical polymerization processes. The majority of the polymer product 

(>90%) consists of polymeric chains with the reinitiating R group and thiocarbonyl thio 

groups at either end of the polymeric chain. 

1 2 
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Figure  1.17. Mechanism of RAFT polymerization. (adapted from[125]) 

In conclusion, RAFT is arguably the most promising among the CRP methods to employ in 

MIP systems. Titirici and Sellergren [126] demonstrated the ability to successfully graft 

cross-linked l-phenylalanine anilide imprinted films onto mesoporous silica beads using 

RAFT polymerization. They reported that the use of RAFT polymerization offered better 

control of the grafting process resulting in lower solution polymerization, lower gelation, and 

a lack of particle agglomeration. 

Xu et al. [127] combined RAFT and precipitation polymerization to create atrazine imprinted 

polymer microspheres for recovering atrazine from food matrices. They used MAA as the 

primary functional monomer for the atrazine template, EGDMA as the crosslinker and 

acetonitrile as the porogen. The results of equilibrium binding experiments showed that the 

RAFT MIP microspheres demonstrated 2.5 times higher template binding when compared to 

the corresponding FRP microspheres. Scatchard analysis revealed that template binding 

capacity and affinity were both nearly doubled simultaneously by using RAFT when 

compared to the corresponding FRP MIPs. 

Recently, Yue et al. [128] reported the efficient synthesis of narrowly dispersed hydrophilic 

MIP nanoparticles with excellent specific molecular-recognition ability in real aqueous 
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solutions, including river water and biological samples. They used RAFT precipitation 

polymerization and provided for the first time narrowly dispersed highly cross-linked MIP 

nanoparticles with surface-grafted hydrophilic polymer brushes in a facile one-pot approach. 

The hydrophilic polymer brushes on the MIP nanoparticles not only significantly improved 

their surface hydrophilicity and led to their water compatibility, but they also acted as a 

protective layer to prevent proteins in the biological samples from accumulating on the 

nanoparticle surface and blocking the imprinting sites [129, 130] and thus enabled the MIP 

nanoparticles to function properly in such complex matrices. 

 

1.4.4  Surface-initiated controlled radical polymerization and MIPs 

Polymers grafted densely onto solid substrates (polymer brushes) have attracted much 

attention in the recent past as a novel method to modify surfaces owing to its potential 

applications in lithography, corrosion resistance, drug delivery, increased bio-compatibility of 

materials, biosensor, etc. [131, 132]. Different techniques have been used to generate 

polymer brushes for instance: conventional free radical polymerization, ring-opening 

metathesis polymerization, living anionic and cationic polymerization and controlled/living 

radical polymerization. To achieve a better control of molecular weight and molecular weight 

distribution and to synthesis block copolymer brushes, researchers have used 

controlled/living radical polymerization methods to make brushes. Numerous recent reports 

describe the use of living radical polymerization techniques to grow polymer chains from 

surfaces in a well-defined manner [130, 133, 134].  

Thanks to the robustness and versatility of controlled radical polymerization (CRP), this 

surface-modification technique has been applied to many types of substrates [106, 132]. 

Spherical fine particles have been surface-modified via surface-initiated controlled radical 

polymerization (SI-CRP) in conjunction with various methods for initiator fixation, 

depending on the characteristics of the particle surfaces [133, 134].  

The tethering of the polymer to the surface is generally performed either through physical 

adsorption or covalent attachment. Covalent attachment is often preferred due to the inherent 

resistance to degradation by temperature and solvents [131]. Covalent attachment of polymer 

brushes can be achieved by either “grafting to” or “grafting from” techniques (Figure  1.18). 

The “grafting to” technique employs a preformed polymer with a reactive endgroup to attach 
58 

 



  

the polymer chain onto the substrate (common reactive functional groups include thiols, 

silanes, amino or carboxylic groups). The “grafting to” technique usually involves low 

grafting densities due to steric repulsion between the already grafted chains and the incoming 

macromolecular units from solution that in turn preclude the access of new polymer chains to 

grafting sites on the surface. This effect is more pronounced when dealing with high 

molecular weight polymer chains. Conversely, in the “grafting from” strategy, polymer 

chains are straightforwardly synthesized from a substrate previously modified with 

polymerization initiators, the so-called “surface-initiated polymerization” in which 

polymerization occurs exclusively at the surface. Because the diffusion of monomer is not 

strongly hindered by the existing grafted polymer chains, this technique is more promising to 

achieve high graft densities [135].  

 

Figure  1.18. Schematic illustrations of (a) “grafting to” and (b) “grafting from” methodologies. (adapted 
from[136]) 

All known types of the surface-initiated controlled radical polymerization techniques have 

been utilized for preparing molecularly imprinted polymers onto different supports. The 

polymerization methods that have been employed are surface-initiated iniferter-mediated 

polymerization (SI-IMP), surface-initiated nitroxide mediated radical polymerization (SI-

(a)  ″Grafting to″ 

(b) ″Grafting from″ 
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NMP), surface-initiated atom transfer radical polymerization (SI-ATRP) and surface-initiated 

reversible addition fragmentation chain transfer polymerization (SI-RAFT). Many research 

papers have been published on the preparation of imprinted materials by surface-initiated 

controlled radical polymerization (Table 1.2). 

Table 1.2. MIPs prepared by the surface-initiated controlled radical polymerization techniques. 

Support Analyte CRP 
method Application References 

Silica particles Bovine milk Iniferter HPLC [137] 

Polystyrene beads Glutathione Iniferter Separation [138] 

Silica particles Sulfamethazine Iniferter HPLC [139] 

Silica particles Thiabendazole Iniferter HPLC [140] 

Polystyrene beads Lysozyme Iniferter Separation [141] 

Polystyrene beads, 

Silica particles 
L/D- phenylalanine anilide Iniferter 

Chiral  

separation 
[91, 92] 

Flat surfaces Theophylline Iniferter Separation [142] 

Carbon nanotubes Theophylline Iniferter Biosensor [143] 

Silica particles Lysozme ATRP Separation [144] 

Silica particles protein ATRP separation [145] 

Silica particles L-phenylalanine ATRP HPLC [146] 

Silica particles Benzoic-acid ATRP 
Thermo-

responsive LC 
[147] 

Graphite oxide Propionamide ATRP separations [148] 

Silica particles L-phenylalanine anilide RAFT separation [126] 

Silica particles Dichlorophenoxyacetic acid RAFT separation [149] 

Fe3O4 NPs Cholesterol RAFT separation [150] 

Silica particles Theophylline RAFT SPE [151] 

Silica particles 2,4-dichlorophenol RAFT separation [152] 

Fe3O4 NPs S-propranolol RAFT separation [153] 
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1.4.4.1 MIPs via surface-initiated iniferter polymerization  

The iniferter method for surface grafting of MIPs has been used for imprinting different 

templates and for different applications (e.g., solid-phase extraction (SPE) and chiral 

separation) [91, 92, 139, 140, 154]. As a kind of CRP, the iniferter technique has special 

advantages in making surface-modified materials. Polymerization in solution can be avoided 

by attaching the iniferter onto the support surface, because the active radicals remain bound 

to the surface whereas non-active radicals are in solution [92]. Meanwhile, block polymers 

with different properties can be grafted and the polymer layer thickness is more controllable. 

Using benzyl N,N-diethyldithiocarbamate as the iniferter, the polymerization can be initiated 

by UV irradiation, which is advantageous in MIP preparation because the template/monomer 

complexes are stable at low temperatures. 

Yoshimi and colleagues grafted theophylline-imprinted MIP films onto cellulose membranes 

by photo-iniferter-induced living radical polymerization [142]. The results showed that the 

amount of the grafted MIP films could be easily controlled by tuning the UV irradiation time 

and the number of polymerization cycles. Moreover, they also showed obvious gate effect 

toward the template. 

Sellergren and co-workers were the first to use iniferter-modified spherical silica/polymer 

particles for surface-grafting of MIP layers (Figure  1.19) [91]. The porous spherical silica 

particles and gel type or macroporous Merrifield resins were firstly modified with 

dithiocarbamate groups and subsequently used for the surface grafting of MIP layers by 

photo-iniferter-induced living radical polymerization. The MIP-grafted silica exhibited 

enantioselectivity for chromatographic separations. The additional possibility of 

consecutively grafting multiple MIP layers due to the living character of the iniferter 

polymerization was also demonstrated by the same group [92].  
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Figure  1.19. Surface-grafting of MIP layers on the spherical particles by photo-iniferter-induced living radical 
polymerization.(adapted from[91]) 

Dong et al. reported a novel restricted access-molecularly imprinted material with selectivity 

for sulfonamides by using surface-initiated iniferter method [137]. The material was prepared 

by grafting two layers with different functions on the silica support. The result has shown that 

this restricted access-MIP grafted silica not only has the selectivity for the template and its 

analog, but also has the ability of exclusion for bovine serum albumin (BSA). It indicated that 

the material possesses both properties of molecularly imprinted polymer and restricted access 

material. 

Recently, Song et al. proposed a simple and effective approach to synthesize uniform surface 

imprinted polymer microspheres via surface-initiated iniferter polymerization [138]. They 

used polystyrene microspheres containing iniferter as support and glutathione as template 
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molecules. The synthesized glutathione surface imprinted polymer microspheres showed 

faster mass transfer and higher binding amounts rate toward template than non-imprinted 

polymer.  

 

1.4.4.2 MIPs via surface-initiated atom transfer radical polymerization (SI-
ATRP)  

As mentioned above the ATRP technique has some limitation in the context of the MIP 

preparation. For instance the small choice of monomers with suitable functional groups and 

effect of the template molecule on ATRP catalyst makes it difficult to use as versatile method 

in the MIP technology [155].  However ATRP has also been used for the preparation of 

surface imprinted materials. Wang and coworkers described the synthesis of the MIP 

nanotube membrane using a porous anodic alumina oxide (AAO) membrane by surface-

initiated atom transfer radical polymerization for the selective chemical separation [156]. The 

imprint molecule, functional monomer, and cross- linking agent used in this study were β-

estradiol, 4-vinlpyridine (4-VP), and ethylene glycol dimethacrylate (EGDMA), respectively. 

The results showed that the MIP nanotube membranes had an 11 fold higher binding capacity 

and 13 fold better imprinting effect in comparison with traditionally formed bulk MIPs for 

the same template molecule. 

Huang and Wirth used surface-initiated APRP to graft thin polymer films of polyacrylamide 

onto silica for protein separation [144]. Four proteins were separated in about 4 min on a 

polyacrylamide-modified silica, showing good efficiency. Much longer times were required 

for the same protein separation using dextranbonded or diol-modified silica. The higher 

separation efficiency of the column prepared via ATRP was attributed to the uniformly-

coated films, which left sufficient pore volumes in the silica for size-exclusion 

chromatography (SEC). In addition, better peak symmetry for lysozyme was obtained 

compared with that on Zorbax GF-250. This indicates that the adsorption caused by the 

silanol groups was reduced, due to better surface coverage with the polymer. 

Yoshikawa et al. by the use of surface-initiated atom transfer radical polymerization, grafted 

a low-polydispersity poly(2-hydroxyethyl methacrylate) (PHEMA) onto the inner surfaces of 

silica monoliths with mesopores of about 50 and 80 nm in mean size [145]. The interaction of 
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the polymer brushes with proteins was then studied. They found that concentrated pHEMA 

brushes were better at repelling proteins and provided long-term stability against biofouling. 

Ihara  and co-workers reported a new polymerizable N-octadecyl-L-phenylalaninederived 

self-assembling monomer and  its polymerization from silica surface by ATRP to produce 

high-density organic phase for HPLC [146]. The new monomer was polymerized from 

initiator-grafted silica by surface-initiated ATRP in presence of CuBr/PMDETA catalyst. 

Polymer chains were grown from the silica surfaces to yield individual particles composed of 

a silica core and a well-defined, densely grafted outer polymer layer. The resulting composite 

was introduced as one potential application of the polymer-coated silica particles as high-

density organic stationary phase for high-performance liquid chromatography. 

Poly(N-isopropylacrylamide) is a well-known thermoresponsive polymer exhibiting a 

reversible temperature-response in aqueous medium. For developing thermoresponsive 

chromatographic matrices with a strong hydrophobicity, poly(N-isopropylacrylamide-co-n-

butyl methacrylate) (poly(IPAAm-co-BMA)) brush grafted silica beads was prepared by 

Okano et al through a surface-initiated atom transfer radical polymerization (ATRP) with a 

CuCl/CuCl2/Me6TREN catalytic system in 2-propanol at 25 °C for 16 h [147]. The results 

showed that retention times of the analytes increased with the increase in BMA composition 

ratio. Dehydration of grafted copolymer with large BMA composition was performed at low 

temperature. They indicated that the copolymer-brush-grafted surface prepared by ATRP was 

an effective tool for separating hydrophilic analytes at low temperature through modulating 

the strong hydrophobic interaction.  

Recently, Ji and co-workers synthesized novel acrylamide (AA) molecularly imprinted 

polymer by atom transfer radical polymerization (ATRP) on graphite oxide (GO) particles. 

Propionamide (PAM) was used as a dummy template molecule, hydroxy ethyl acrylate 

(HEA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a crosslinking 

agent, and acetonitrile as both solvent and dispersion medium [148]. The corresponding 

adsorption kinetic curves and adsorption isotherms showed that the AA adsorption reached 

equilibrium after 5 h, with large amounts of AA being adsorped in the first 100 min. The 

maximum AA adsorption capacity was 123.48 µmol/g according to Scatchard analysis, which 

indicated that the MIP possesses good AA adsorption capacity. This MIP-GO material was 

used to selectively determine AA in fried food samples. 
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More recently, Zhao and colleagues reported the novel macroporous core-shell molecularly 

imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-

D) which were prepared by surface initiated atom transfer radical polymerization (SI-ATRP) 

[157]. By using one-step swelling and polymerization method, the monodispersed 

macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as 

supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner 

and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs 

revealed desirable efficiency for template removal and mass transfer, and thus excellent 

accessibility and affinity toward template 2,4-D. They demonstrated that this novel 

macroporous core-shell imprinted material may become a powerful tool for rapid and 

efficient enrichment and separation of target compounds from the complicated samples.  

 

1.4.4.3 MIPs via surface-initiated reversible addition fragmentation chain 
transfer polymerization (SI-RAFT) 

Surface-initiated RAFT polymerization has been widely utilized as an approach to produce 

polymer brushes with precise structural and grafting density control. Two general routes to 

prepare surface-grafted polymer chains can be followed, that is (a) using a surface anchored 

radical initiator with free CTA in solution and (b) using a surface anchored CTA with an 

appropriate initiation method [158]. In both cases, the polymer chains are able to grow from 

the surface rather than diffuse to the surface against the concentration gradient of the existing 

grafted polymers. Thus compared to the grafting to approach surface initiated RAFT 

polymerization is more promising approach to construct dense and thick polymer layers on 

the surface of materials. 

 

1.4.4.3.1 Grafting-from surface-anchored initiators 

The immobilization of initiators on the material surfaces can be achieved by various 

techniques, including chemical reaction, plasma discharge and high-energy irradiation. The 

subsequent polymerization from these surface-anchored initiators in the presence of free CTA 

can generate surface-grafted polymer chains with uniform structure and adjustable length. 

65 

 



  

An early example of SI-RAFT polymerization was reported by Baum and Brittain, who  

prepared 30 nm-thick PMMA brushes as well as 11 nm-thick PS and poly(N,N-

dimethylacrylamide) (PDMAM) brushes from azo-functionalized silicon wafers in the 

presence of the chain transfer agent (CTA) 2-phenylprop-2-yl dithiobenzoate and free 

initiator (2,2′-azoisobutyronitrile (AIBN)) (Figure  1.20) [159]. Addition of free initiator (e.g., 

AIBN) was shown to facilitate polymer brush growth not only because it acts as a scavenger 

for possible trace amounts of impurities in the polymerization mixture but also since it 

increases the amount of radicals in the system, which are necessary to avoid early termination 

by CTA capping, as the concentration of the surface initiators is particularly low. 

 

Figure  1.20. A general process of surface-initiated RAFT polymerizations from a surface-anchored azo 
initiator. (adapted from[159]) 

Titirici and Sellergren were first to introduce the surface grafted thin film MIP composite 

using RAFT polymerization from surface anchored azo initiator [126]. In the reaction,           

2-phenylprop-2-yl-dithiobenzoate was used as the chain-transfer agent for imprinting           

L-phenylalanine anilide (Figure  1.21). The particles prepared via RAFT-mediated grafting 

appeared smooth with no agglomeration. The resulting materials could separate a racemate of 

phenylalanine anilide and some structural analogous within a few minutes. The materials 

exhibited superior mass transfer properties compared to the traditional imprinted bulk monoliths 

or materials prepared without the polymerization control through RAFT agents. 
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Figure  1.21. The grafting of L-phenylalanine anilide (L-PA) imprinted polymer films from porous silica 
supports controlled by addition of RAFT agent.(adapted from[126]) 

 

1.4.4.3.2 Grafting-from surface-anchored CTAs 

An alternative way to modify the surface of materials via surface-initiated RAFT 

polymerization is grafting-from surface-anchored CTAs, which generally can be 

accomplished through either the R-group or Z-group approach (Figure  1.22). In the R-group 

approach, the RAFT agent is attached to the substrate surface via its leaving and reinitiating 

R group. The solid substrate acts as part of the leaving R group, and thus the propagating 

radicals are located on the terminal end of the surface-grafted polymer, which facilitates the 

growth of grafted polymer chains. This approach resembles a “grafting-from” approach. In 

the Z-group approach, the RAFT agent is attached to the surface via its stabilizing Z group. 

Because the RAFT agent is permanently attached to the surface, this approach resembles a 

“grafting-to” approach. The polymeric radicals always propagate in solution before they 

attach to the surface of substrate via the chain-transfer reactions with attached RAFT agents. 
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Figure  1.22. Two different approaches of surface attachment where RAFT agent attached to the surface via its Z 
or R group.(adapted from[160]) 

 

1.4.4.3.2.1  R-group approach 

In order to attach the CTA to the inorganic surface via its R-group, several synthetic 

methodologies have been used. In the first known report using this approach, an ATRP 

macroinitiator grafted on silica particles was converted into a RAFT macroCTA by reaction 

with 1-phenylethyl dithiobenzoate in the presence of CuBr via an atom transfer 

addition[161]. 

Li and Benicewicz presented another approach, in which the addition of free CTA in solution 

was not necessary to control the polymerization. A CTA bearing a silane group was 

synthesized in four steps and immobilized onto silica surface by heating. Using careful 

conditions (low RAFT agent surface density, low initiator/CTA ratio and low monomer 

conversions), it was possible to limit chain termination by combination and a linear increase 

of number-average molecular weight (Mn) with conversion was observed. Nevertheless, 

polymerization retardation occurred, which was attributed to the local high CTA 

concentration on the surface [162]. Another very common strategy to attach the CTA to silica 

or silicon surfaces is the prior surface modification with hydroxyl or amine groups followed 

by esterification or amidation with a CTA bearing a carboxylic acid (in the presence of 

coupling agents) or an activated ester [163-165]. 
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Some examples concerning the surface-initiated polymerization from metal surfaces using an 

anchored CTA via the R-group can be found in the literature. For instance, Skaff and Emrick 

synthesized a trithiocarbonate bearing a phosphine oxide ligand capable of binding to CdSe, 

which was then immobilized through ligand-exchange chemistry. Surface-initiated 

polymerization with different monomers was performed, yielding several (co)polymer-coated 

quantum dots [166]. Raula et al. modified the surface of Au NPs with 11-mercapto-1-

undecanol and further reacted with a 4-cyanopentanoic acid dithiobenzoate. The so-formed 

anchored CTA was then used to produce polymer-grafted Au NPs by RAFT polymerization 

[167]. Certainly, the R-group approach stands as the most successful  way to obtain thick 

polymer brushes with a narrow molecular weight distribution utilizing RAFT 

polymerization[135, 168]. 

 

1.4.4.3.2.2  Z-group approach 

Alternatively, it is possible to attach the RAFT agent to the inorganic surface through its       

Z-group. However, this approach has been much less reported than the R-group one, which 

may be explained by the low grafting densities attained and the weakness of the bonds 

linking the inorganic surface to the polymer brushes. Since the polymer growth occurs strictly 

in solution, the chains must reach the inorganic surface to undergo reversible chain transfer 

reactions, being hindered by the already present chains. Besides, the thiocarbonylthio group 

is sensitive to hydrolysis, oxidation and nucleophilic attack and loss of grafted polymer 

chains can occur. Advantageously, this strategy enables the preparation of nanohybrids 

containing exclusively dormant chains. 

This strategy was first employed by Perrier et al. for the synthesis of SiO2 NPs grafted with 

poly(methyl acrylate) (PMA) [169] and has been since then mainly used for the modification 

of silica and silicon surfaces/NPs. In their pioneering work, activated silica NPs were reacted 

with 4-(chloromethyl)phenyltrimethoxysilane to introduce a chlorobenzyl group that further 

reacted with sodium methoxide and elemental sulfur, then with methyl-α-bromophenylacetate 

to lead the silica-supported CTA. 

In order to covalently attach the CTA via its Z-group, the previous strategy has generally 

been used. That is, first the surface is modified with a chloro-containing group and further 

reacted with appropriate reactants to yield the Z-anchored CTA. For instance, Nguyen and 
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Vana synthesized silica immobilized cumyl dithiobenzoate to mediate the polymerization of 

styrene and methyl methacrylate (MMA) [170]. Wang et al. used a similar synthetic route to 

prepare a palygorskite-anchored benzyl dithiopropyltrimethoxysilane CTA [171] and Peng et 

al. modified Si(100) with a methoxycarbonylphenylmethyl dithiobenzoate to prepare polymer 

brushes via surface-initiated RAFT polymerization [172]. 

Both of the R-group and Z-group approach have been used to prepare the molecularly 

imprinted polymers. Lu et al. reported a general protocol for preparing surface-imprinted 

core-shell nanoparticles via surface RAFT polymerization using RAFT agent functionalized 

silica nanoparticles as the chain-transfer agent by copolymerization of 4-VP and EDMA in 

the presence of 2,4-dichlorophenoxyacetic acid (2,4-D) as template [149]. The resulting 

surface-imprinted core-shell nanoparticles bind the original template 2,4-D with an 

appreciable selectivity over structurally related compounds. 

Wang and co-workers synthesized the theophylline imprinted composites using surface 

initiated RAFT polymerization from silica surface [151]. The authors observed that measured 

binding kinetics for theophylline to the MIP-Silica and MIPs prepared by conventional bulk 

polymerization demonstrated that MIP-Silica had improved mass-transfer properties. In 

addition, MIP-Silica was used as the sorbent in solid-phase extraction to determine 

theophylline in blood serum. 

Unsal et al.  used surface-controlled RAFT polymerization to prepare an ion-exchanger with 

polyanionic molecular brushes successfully [173]. The RAFT chain-transfer agent was 

covalently attached to monodispersive poly(dihydroxypropyl methacrylate-co-ethylene 

dimethacrylate) [poly(DHPM-co-EDMA)] particles. The 3-sulfopropyl methacrylate (SPM) 

was grafted from the surface of poly(DHPM-co-EDM) for protein separations. 

Molecularly imprinted polymer for selective recognition and removal of chlorophenols from 

contaminated water prepared by RAFT silica mediated polymerization have been reported by 

Li et al. [152]. They used 2,4-dichlorophenol (2,4-DCP) as template, methacrylamide 

(MAAM)as functional monomer, divinylbenzene (DVB) as cross-linker in acetonitrile. The 

resulting silica-MIP showed outstanding affinity towards 2,4-DCP in aqueous solution.    . 

Gonzato et al. reported a general protocol to synthesize superparamagnetic molecularly 

imprinted polymer particles with a 7 nm MIP shell, using a RAFT-mediated approach [153]. 

S-propranolol imprinted composites were obtained by functionalizing amino-modified 
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nanoparticles with a trithiocarbonate agent and subsequently by polymerizing thin 

molecularly imprinted layers. The authors demonstrated that the resulting composites retain 

both a good imprinting effect and a superparamagnetic behavior using this reaction system.  

Grafting techniques allow the graft a thin film of imprinted polymer on the substrates. Using 

this strategy, evenly distributed thin layers of MIPs with reduced mass-transfer resistance can 

be created. In addition, desirable formats [e.g., particles, tubes or microchips with different 

characteristics (size, porosity, pore volume, and surface area)] can be obtained. Many 

research papers have been published on the preparation of surface-imprinted materials by 

CRP (Table 1.2). 

 

1.5 Molecularly imprinted nanoparticles 

Molecularly imprinted polymers have been mostly prepared by traditional bulk 

polymerization technique at the micro scale. Beside of some good applications of bulk 

material for chromatographic and SPE purposes, they still suffer from several drawbacks for 

instance tedious grind and sieving process, irregular shape and size, heterogeneous binding 

sites, possibility of template leakage and limit access to the binding sites. Molecularly 

imprinted nanoparticles are good candidate to address these drawbacks. MIP NPs have higher 

surface-to-volume ratios and greater total active surface areas per unit weight of polymer. 

Imprinted cavities are more easily accessible to the template, which improves binding 

kinetics and facilitates the template removal process, thus enhancing their overall 

performance [174-176]. 

 Imprinted nanoparticles can be prepared by many techniques such as precipitation 

polymerization [13], solution polymerization [177], mini-emulsion polymerization [178], 

micro-emulsion polymerization [179], grafting approaches [175], sol-gel process [180], etc. 

MIP nanoparticles have already been used as enzyme mimics [181], drug delivery systems 

[182],antibody substitutes [183] catalysis[184], capillary electrochromatography [185], 

sensing application [186] and separation [187]. Molecular imprinting approach has also been 

extended to different types of nanomaterials, such as nanowires [188], nanotubes [189], 

nanofibers [190], nanofilms [191], nanogel [192], core-shell [193], quantum dots [194], 
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fullerene [195], dendrimers [196]. The most significant examples of these will be reviewed in 

the following sections. 

 

1.5.1  Imprinted nanofibers, nanowires and nanotubes 

To extend the range of possible application using the imprinting approach, a number of 

research groups have used other types of nanomaterials, such as nanowires, nanotubes and 

nanofibres in the context of MIP techniques.  

The surface imprinting nanowires with highly selective recognition for a variety of template 

proteins, including albumin, hemoglobin, and cytochrome c were prepared by Li et al. [188]. 

They used alumina membranes as support material and a sol-gel template synthesis method to 

deposit silica nanotubes within the pores of the alumina membranes.  They demonstrated that 

these imprinted nanowires have a good site accessibility toward the target protein molecules. 

Furthermore, the large surface area of the nanowires results in large protein molecule binding 

capacity of the imprinted nanowires. 

Kan et al. reported an MIP composite containing multiwalled CNTs (MWNTs) for use as the 

selective layer in an electrochemical sensor [197]. The MIP was prepared with dopamine as 

the template and methacrylic acid and trimethylolpropane trimethacrylate as monomers. 

Vinyl groups introduced on MWNTs surface were found to be the key for the formation of 

the MWNTs-MIP composite, the thickness of the MIP layer being 15-20 nm (Figure  1.23). 

The authors demonstrated that MWNTs-MIPs not only possessed a rapid dynamic adsorption 

but also exhibited a higher selectivity toward dopamine compared to epinephrine. 

 

    Figure  1.23. Synthesis route of multiwalled carbon nanotubes.(adapted from[197]) 
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Chen and coworker synthesized a surface glycoprotein imprinting over magnetic Fe3O4@Au 

multifunctional nanofibers (NFs) [190]. The results showed that the magnetic multifunctional 

Fe3O4@Au NFs can not only direct the selective occurrence of imprinting polymerization, 

but also drive glycoprotein templates into the polymer through reversible covalent complex 

formation. The results also showed that the imprinted NFs reached saturated adsorption at 0.3 

mg/mL within 90 min and exhibited significant specific recognition towards the template 

protein. 

 

1.5.2  Imprinted nanofilms 

Of the various imprinted nanomaterials, nanofilms with a thickness smaller than one 

micrometer are one of the most desirable forms of the feasible applications in chemosensors, 

and have thus attracted intense research interest in recent years [198, 199]. In addition to 

large surface-to-volume ratio and fast binding kinetics, the most remarkable advantage is that 

the molecularly imprinted nanofilms can be synthesized directly on the surfaces of 

electrochemical electrodes [200], quartz crystal microbalances (QCM) [201] and surface 

plasmon resonators (SPR) [202] for the detection of target analytes. 

Ersöz et al. reported the combination of quartz crystal microbalance with MIP to prepare a 

sensor using the ability of glucose to chelate of copper (II) ion of methacrylamidohistidine 

(MAH) monomer to create ligand exchange (LE) assembled monolayer which is suitable for 

glucose determination [201]. The authors investigated the measurement of binding interaction 

of molecularly imprinted QCM sensor via ligand interaction, pH effect on frequency shift and 

recognition selectivity of glucose-imprinted polymer with respect to methyl-α-d-

glucopyranoside and sucrose. 

 

1.5.3 Imprinted microgel/nanogel  

 “Microgels” are defined as gel particles of any shape with an equivalent diameter of 

approximately 0.1 to 100 µm, whereas the diameter of “nanogels” is approximately 1 to 100 

nm both exhibiting network structures that swell in a suitable solvent [203]. These materials 

may dissolve in solvents-just as linear polymers-however, preserving a nearly fixed 

conformation. They may swell and change their dimensions depending on the solvent and 
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environmental conditions. The precipitation polymerization method can be optimized to 

produce microgels/nanogels in the different size range. A characteristic of these materials is 

that they produce low-viscosity colloidal solutions after preparation in a suitable solvent that 

never reaches the point of precipitation. They are now increasingly being investigated as 

novel materials for applications in catalysis, drug delivery, sensing and medical diagnostics, 

etc. [192].  

Recently, Pan et al. prepared thermo-responsive molecularly imprinted nanogels for specific 

recognition and controlled release of proteins (Figure  1.24) [192]. Polymerization carried out 

by using the aqueous precipitation polymerization with the aid of a surfactant, sodium 

dodecyl sulfate (SDS), lysozyme as the protein template and N-isopropylacrylamide as the 

major monomer. Simply by adjusting the SDS amount during polymerization, the size of 

nanogels could be finely controlled, ranging from a few hundred down to a few dozen 

nanometers. The authors demonstrated that compared to non-imprinted counterparts, the 

lysozyme-imprinted nanogels possessed higher rebinding capacity, more rapid rebinding 

kinetics, and much higher specificity toward lysozyme.   

 

Figure  1.24. Schematic illustration of the preparation of thermo-responsive lysozyme- imprinted nanogels via 
aqueous precipitation polymerization and their shrinking/swelling behavior around the volume phase transition 
temperature (VPTT). (adapted from[192]) 
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 Haupt and co-workers reported the synthesis of soluble molecularly imprinted polymer 

nanogels as synthetic antibodies, with dimensions and molecular weights close to those of 

biological antibodies [204]. They used s-propranolol as template molecule, ethylene glycol 

dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer 

and a multi-initiator based on a G3-dendron and 8 iniferter moieties for the polymerization of 

MIP nanogels as synthetic antibody mimics. Nanogels were prepared by dilution method in 4 

days at 30 ºC. They obtained monodisperse MIPs of a 17 nm, which is in the same size range 

as biological antibodies. The authors also observed a good imprinting effect despite the small 

particle size and the use of weak monomer-template interactions. In addition, they 

demonstrated the superiority of these nanogels compared with those initiated with the 

corresponding monoinitiator, in terms of target binding. Potentially, the living character of 

the iniferter polymerization allows for re-initiating the polymerization with different 

monomers, and thus for fine-tuning the surface properties of the particles.  

 

1.5.4 Molecularly imprinted core-shell nanoparticles 

Nowadays, core-shell structured nanoparticles have been raised great interests in the 

molecularly imprinting technology [5, 205, 206]. The main advantages of the core-shell 

approach are that the MIP layer can be very thin and uniform. Meanwhile, other 

functionalities such as magnetic and fluorescent properties can be conveniently built into the 

MIP as the core particle. Core-shell molecular imprinting of nanomaterials overcomes 

difficulties with template transfer and achieves higher binding capacities for macromolecular 

imprinting, which are more important to the imprinting of natural low-abundance proteins 

from cell extracts [207]. 

To date, many core-shell structured surface- imprinted MIP nanoparticles have been prepared 

using different methods such as emulsion polymerization [208], precipitation polymerization 

[209], grafting approaches [210], sol-gel process [211].  

Molecular surface-imprinted polymers nanoparticles encapsulating magnetite modified with 

oleic acid, for recognition of salicylic acid were obtained by Zhu et al. with three-step 

miniemulsion polymerization [208].They demonstrated that the important factors for 

preparation of magnetic molecular imprinting polymers are  polymerization process, solvents, 

miniemulsifying approaches, and co-stabilizer which had important role  to obtain magnetic 
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molecular imprinting polymers (MMIPs) nanoparticles (NPs) with high saturation 

magnetization (Ms), regular morphology and good monodispersion. In addition, the high 

adsorption capacity and good selectivity for target molecule were displayed by the MMIPs 

NPs. 

Clickable molecularly imprinted core-shell nanoparticles have been synthesized using a 

simple one-pot precipitation polymerization with sequential addition of monomers [209]. The 

authors described the synthesis of alkyne and azide coated MIP nanoparticles that can be used 

as molecular recognition building blocks. In addition, two well-established model templates, 

propranolol and 2,4-dichlorophenoxy acetic acid (2,4-D) were used to demonstrate the 

feasibility of this approach. The easily accessible clickable groups were provided a 

convenient means to conjugate different MIP nanoparticles into composite materials, which 

may be used to achieve simultaneous separation and detection of multiple analytes. 

Zhou and co-workers reported a dendritic-grafting method introducing more functional 

groups to modify the SiO2-coated magnetic nanoparticles (SiO2-coated MNPs) for 

determination of estrogens in plasma samples (Figure  1.25) [212]. The magnetic MIPs 

(MMIPs) were obtained by using 17- ethyl estradiol (EE2) as a pseudo template, dendronized 

SiO2-coated MNPs as the supporter, MAA as functional monomer and EGDMA as cross-

linker agent. The resulting MMIPs showed high adsorption capacity, quick binding kinetics 

and good selectivity for trace estrogens and provided an effective tool for the monitoring of 

estrogens in food or environment. 

 

Figure  1.25.Schematic representation of the possible preparation process of magnetic MIPs. (adapted 
from[212]) 
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Recently, Chen et al. proposed a strategy for imprinting of a protein on the surface of 

nanoparticles using a metal chelating monomer [210]. With lysozyme as a model protein 

template and Cu2+ chelating N-(4-vinyl)-benzyl iminodiacetic acid as the coordination 

monomer along with other monomers such as N-isopropylacrylamide, acrylamide and 

methylenebisacrylamide, protein imprinted polymer nanoshells were formed over vinyl-

modified silica nanoparticles via surface polymerization in high-dilution monomer solution. 

The feed concentration of the crosslinking monomer was optimized toward achieving the best 

imprinting effect. The resultant core-shell imprinted particles showed greatly faster binding 

kinetics, elevated rebinding capacity and selectivity. More importantly, noticeably high 

binding affinity was achieved with an estimated dissociation constant of 4.1×10−8 M which is 

comparable to that of conventional antibodies. 

Deng et al. prepared a nanoparticle-based metronidazole-imprinted polymer by combining a 

surface molecular imprinting technique with a sol-gel process [211]. Metronidazole was used 

as a template, 3-aminoprophyltriethoxysilane as the functional monomer, and tetraethyl 

orthosilicate as the cross-linker. The resulting magnetic molecularly imprinted polymer was 

used successfully for the determination of metronidazole by solid phase extraction coupled 

with spectrophotometric detection. The obtained material showed high adsorption capacity, 

good extraction performance and acceptable stability and repeatability. 

  

1.6 Proteins and peptides imprinting  

Obviously, proteins, and to a minor extent peptides, are an extremely important target class in 

life sciences. Synthetic polymer-based molecular receptors for peptides and proteins would 

open up a wide range of possibilities for new applications in biotechnology, diagnostics and 

chemistry, complementary to and extending beyond the scope of current antibody 

technology. Protein purification in one step, diagnostic tests in aggressive sample matrices 

and novel biosensors are some of the novel possibilities. Therapeutic MIPs in analogy to 

therapeutic antibodies may eventually have the largest commercial potential of all MIP 

applications [213]. Macromolecular targets like proteins pose additional difficulties, and 

classical imprinting approaches have mostly failed to deliver satisfactory results. Several 

reasons for this have been identified: proteins are in general not compatible with organic 

solvents and will quickly denature in prepolymerisation mixtures based on organic solvents 
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as porogens. Furthermore, mass transport of macromolecules may be prohibitively slow in a 

highly cross-linked polymer matrix. As a consequence, the protein templates may be difficult 

to remove from the binding pockets, thus reducing the surface sites available for rebinding 

[214]. Analogously, rebinding may be too slow for practical applications. Furthermore, the 

rigid structure of an MIP, lacking the segmental motions of conventional linear polymers, 

may effectively prevent proteins from entering the specific binding pockets, and unspecific 

adsorption at the polymer surface may be the predominant binding mode. Finally, the more 

availability of sufficient amounts of a highly purified protein target is not granted, and only 

few proteins are commercially available and low priced. The comparison of antibodies and 

MIPs has been shown in Table  1.3. 

Table  1.3. Typical characteristics of antibodies and MIPs. (adapted from[215]) 

 Antibodies MIPs 

Affinity 10-7 – 10-11 M 10-3 – 10-10 M 

Application Physiological conditions Organic or aqueous media 

Capacity ~ 6 μmol.g-1 ~ 0.1 – 10 μmol.g-1 

Cost £100’s for µg quantities £10’s for g quantities 

Production Animal host, months 2 – 3 days 

Reusability Not usually 100’s of times 

Stability Narrow temperature and pH range Wide temperature and pH range 

Storage time Limited Stable over period of years 

 

There are a number of different strategies for creating polymeric receptors targeting peptides 

and proteins such as bulk, surface, and epitope imprinting. The following sections outline a 

number of the approaches used to create MIPs capable of recognizing biological 

macromolecules. 

 

1.6.1 Bulk imprinting 

Bulk imprinting, the standard technique which has been so successful for small molecular 

weight MIPs, is the most straightforward approach to macromolecular imprinting. The 
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advantages to this approach are that three-dimensional binding sites are formed for the entire 

protein and that there are a multitude of facile procedures already present in the literature. 

Polyacrylamides and their derivatives are among the most extensively used polymeric 

materials for bulk imprinting of proteins. 

Molecularly imprinted polymers based on polyacrylamide hydrogels for the selective 

imprinting of bovine haemoglobin (BHb) have been developed by Hawkins et al [216]. For 

the first time, they explored in detail a variety of template removal strategies including 

varying ratios of sodium dodecylsulphate: acetic acid (SDS:AcOH) and also the use of a 

trypsin digest. The haemoglobin-imprinted composite exhibited specific selectivity to the 

template molecule over structurally similar proteins. 

A simply hemoglobin (Hb) molecularly imprinted polymer (MIP) was prepared by Guo and 

co-workers using Hb as the imprinted molecule, acrylamide as the functional monomer and 

cross-linked chitosan beads as the supporting matrix [217]. The MIP was achieved by 

entrapment of the selective soft polyacrylamide gel in the pores of the cross-linked chitosan 

beads by letting acrylamide monomer and the protein diffuse into the pores of chitosan beads 

before starting the polymerization. The chitosan beads were freed from the surrounding 

polyacrylamide gel by washing. The resulting MIP showed higher adsorption capacity for Hb 

than the non-imprinted polymer with the same chemical composition, and the MIP also 

demonstrated selectivity for the imprinted molecule.  

The template removal is a crucial step in protein imprinting, especially in the bulk approach, 

that is often not properly addressed. As a result, the alternative approaches of surface 

imprinting and epitope imprinting have attracted increasing interest. 

 

1.6.2 Surface imprinting 

A fundamental strategy of surface imprinting is to locate the imprinted sites at or close to the 

surface of the MIP, therefore enabling easy access to the target protein molecules. Thus, in 

comparison with bulk imprinting, the transfer of protein is much easier and the binding 

kinetic is less restricted although usually lower [218]. The selectivity can also decrease 

because only part of the protein is bound and recognized. Some elegant examples are 

discussed below. 
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The MIP nanoparticles themselves can be further applied as templates for surface imprinting. 

Dickert and co-workers have extended the concept of molecular imprinting by templating 

polymer with immunoglobulins and using these MIPs as stencils for designing actual plastic 

replicas of the initial antibody [219]. The created replicas had similar affinity profile as 

original antibodies. 

A new and facile fabricating method for lysozyme molecularly imprinted polymer beads 

(lysozyme-MIP beads) in aqueous media was presented by Qin et al. [141]. Mesoporous 

chloromethylated polystyrene beads containing dithiocarbamate iniferter were used as 

supports for the grafting of lysozyme imprinted copolymers with acrylamide and N,N′-

methylenebisacrylamide through surface initiated living-radical polymerization. The 

lysozyme-MIP column exhibited a pronounced imprinting effect and was capable of 

separating the template from competitive proteins, whereas the NIP column had no selective 

properties. 

Chen et al. prepared silicon nanowires as the reinforcement material in protein molecular 

imprinting with dopamine as the monomer and bovine hemoglobin as the template molecule 

(Figure  1.26) [220]. The imprinted nanowires showed fast adsorption kinetics the 

equilibrium, significant selectivity and large binding capacity for the template protein. 

 

Figure  1.26. Schematic of preparation of MIP for bovine hemoglobin(BHb) recognition. (adapted from[220]) 

Surface imprinting results in the formation of specific cavities on the surface of the imprinted 

polymer. These cavities have particular shapes or steric effects that are complementary to 

parts or fragments of the protein template. However, because of the complexity and 

conformational flexibility of proteins, the interactions between the protein template and the 

functional monomer are not as specific and efficient as desired. As a result, protein surface-
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imprinted polymers sometimes exhibit cross-reactivity, non-specific binding and low 

selectivity. 

 

1.6.3 Epitope imprinting 

In nature, antibody-antigen interactions depend on the recognition between the antibody and 

an antigenic site of the protein, the epitope. The epitope is a short amino-acid sequence 

complementary to binding site of antibody. In the field of molecular imprinting, Rachkov and 

co-workers applied this observation to develop a new concept for the synthesis of protein 

recognition polymers [221, 222]. Instead of the whole proteins, a short peptide sequence, 

often exposed at the protein surface, was used as a template for MIP preparation. Once the 

matrix has been polymerized the resultant imprinted material should be able to recognize and 

bind the whole protein. 

The epitope approach has been successfully used to bind oxytocin by imprinting the Tyr-Pro-

Leu-Gly amino acid sequence [221]. In this study, synthesis of the MIP was performed in an 

organic environment, but subsequent rebinding experiments were performed using 

chromatographic methods in both aqueous-rich and aqueous-poor mobile phases. In the 

aqueous-poor mobile phase, hydrogen bonds and ionic interactions are the dominating factor 

in creating selective recognition sites. In the aqueous-rich phase, ionic and hydrophobic 

interactions provide the dominant binding interaction. 

Titirici and Sellergren reported hierarchical epitope imprinting for peptide recognition [223]. 

They used silica particles containing immobilised peptidic templates for the generation of 

hierarchically imprinted polymers. The pores of the silica mould were filled with a mixture of 

monomers/initiator and polymerised, followed by dissolution of the silica template. This 

method leaves behind imprinted polymers with binding sites located at the surface, which are 

capable of recognizing larger molecules with the same immobilised epitope. 

Shea et al. chose C-terminal 9-mer peptides of target proteins as epitopes and prepared the 

peptide-imprinted polymers against the immobilized epitopes (Figure  1.27) [224]. The 

polymer films obtained had high selectivity for the target proteins including cytochrome c, 

alcohol dehydrogenase and albumin. A number of advantages therefore stem from using 

terminal peptide epitopes as the template, namely: the conformation of whole protein does 
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not need to be retained, allowing harsher solvent and temperature conditions to be used; 

selectivity in protein recognition can be controlled by the choice of epitope and its length; 

template removal is far more easily achieved than with whole protein and highly selective 

imprints can be obtained. On the other hand, a good knowledge of the protein structure is 

necessary, but there are a number of computational and database based methods available 

which can help. Another limitation is that custom synthesis may be required in order to 

prepare the templates which may be relatively costly and time-consuming. 

 

Figure  1.27. The surface-bound epitope approach employed by the group of Shea using C-terminal 
nonapeptides as templates for protein imprinting. (adapted from[224]) 

Sellergren and co-workers [225] developed an epitope-imprinting strategy that leads to a 

synthetic phosphotyrosine (pTyr)-selective imprinted polymer receptor. The resulting 

polymer displayed good binding affinities for the pTyr template, in the range of that observed 

for corresponding antibodies, and a clear preference for pTyr over phosphoserine (pSer). In 

further analogy to the antibodies, the imprinted polymer was capable of capturing short 

tyrosine phosphorylated peptides in the presence of an excess of their non-phosphorylated 

counterparts or peptides phosphorylated at serine. 

Nevertheless, these data clearly show that such epitope-imprinting approaches are effective in 

providing sequence-specific recognition of proteins. Epitope imprinting could open a new 

way to prepare imprinted polymers for the recognition of various kinds of unknown or 
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unidentified proteins. This convenient technique may become essential for proteomics as a 

future technology in biotechnology and medicine.  

It is worth to note that combination of nano-sized material and protein imprinting has been 

generated the powerful techniques in protein imprinting polymers [5, 226]. Lv et al. presented 

the newest developments concerned with use of nanomaterials, such as magnetic and silica 

nanoparticles, nanowires, carbon nanotubes, and quantum dots as supports enabling the 

preparation of protein-imprinted polymers via surface imprinting techniques [226]. The high 

molecular binding selectivity, fast binding kinetics, colloidal stability and in vivo 

applicability make MIP nanoparticles as one of the best chose for protein imprinting. 
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Chapter 2: Characterization Techniques 

 

2.1 Thermogravimetric analysis (TGA) 
Thermogravimetric analysis (TGA) was carried out using a TGAQ50 (TA instruments, 

Eschborn, Germany). The sample (~ 10-15 mg) was placed in a platinum pan, which is 

suspended in a sensitive balance together with the reference pan. The sample was then 

heated, in a furnace, with at a rate of 10 or 20°C/min, under N2 atmosphere. 

This analysis is a thermal method that involves the measurement of weight loss as a function 

of temperature or time. TGA can be used to quantify the mass change in a polymer associated 

with transitions or degradation processes [227]. 

The ligand and area density (Ds) of the immobilized ligand were calculated based on             

% weight loss of content versus the preceding step monitored by thermogravimetric analysis 

(Eq.  2-1 and Eq.  2-2) [228]. 

𝐿𝑖𝑔𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝜇𝑚𝑜𝑙/𝑔) =
�� %𝑊100−800

100 − %𝑊100−800
� × 100 − %𝑊𝑆𝑖𝑙𝑖𝑐𝑎�

𝑀𝑤𝐿 × 100
× 106   Eq.  2-1 

𝐴𝑟𝑒𝑎 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝜇𝑚𝑜𝑙/𝑚2) =
�� %𝑊100−800

100 − %𝑊100−800
� × 100 − %𝑊𝑆𝑖𝑙𝑖𝑐𝑎�

𝑆 × 𝑀𝑤𝐿 × 100
× 106   Eq.  2-2 

Where  

%W100-800 = % mass loss of modified silica between 100 oC and 800 oC 

%Wsilica = % mass loss of starting silica 

Mw = molecular weight of coupled ligand 

S = surface area of the silica support  
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The shell (film) thickness based on TGA mass loss was calculated according to Eq.  2-3: 

𝑑 =
𝐷𝑐𝑠 − 𝐷𝑐

2
     Eq.  2-3 

where Dcs and Dc are the average diameters of the core-shell and the core particles 

respectively. Dc was assumed equal to the number average particle size derived from DLS, 

whereas Dcs was obtained from the average volume of the core-shell particles (Vcs) according 

to Eq.  2-4: 

𝐷𝑐𝑠 = �6 × 𝑉𝑐𝑠
𝜋

3
   Eq.  2-4 

where Vcs in turn is the sum of the core (Vc) and shell (Vs) volume (Eq.  2-5): 

𝑉𝑐𝑠 = 𝑉𝑐 + 𝑉𝑠       Eq.  2-5 

Vc and Vs were in turn obtained from Dc and the total monomer volume (Vm) expressed in 

cc/g according to Eq.  2-6 and Eq.  2-7: 

𝑉𝑐 =
𝜋 × 𝐷𝑐3

6
      Eq.  2-6 

𝑉𝑠 =
1021  × 𝑉𝑚

𝑁
 Eq.  2-7 

with N being equal to the number of particles calculated from Dc and the specific surface area 

of the core particles as Eq.  2-8: 

𝑁 =
1018 × 𝑆𝑐
𝜋 × 𝐷𝑐2

    Eq.  2-8 

The total monomer volume (Vm) from the mass loss (%) and average monomer density (ρ) 

was calculated as follows: 
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𝑉𝑚 =
%𝐺

𝜌(100 − %𝐺)    Eq.  2-9 

where %G  is the mass loss of the grafted polymer in % and average monomer density (ρ) 

assumed equal to one. 

 

2.2 Scanning electron microscopy (SEM) 
SEM was provided at the Department of Biochemical and Chemical Engineering, TU 

Dortmund. The SEM pictures were recorded on a Hitachi H-S4500 FEG in secondary 

electron mode with an acceleration voltage of 1 kV. The samples were deposited on holders 

with carbon foil. Scanning electron microscopy (SEM) gives information on the morphology 

and surface texture of the materials. Scanning electron microscopy is the most widely used 

technique to study the shape, size, morphology and porosity of polymers. 

 

2.3 Transmission electron microscopy (TEM) 
TEM pictures were used for the determination of the size, morphology and shell thickness of 

the core-shell nanoparticles. The TEM images were obtained using a energy filter 

transmission electron microscope (Philips CM200) provided by the Department of 

Biochemical and Chemical Engineering, TU Dortmund. The obtained particles (1 mg) were 

dispersed in isopropanol (SiNPs) or water (magNPs) and sonicated for 20 min, then a drop of 

the suspension was placed over a copper TEM grid. 

 

2.4 Fourier transform infrared spectroscopy (FTIR) 
This was performed using a TENSOR 27 Fourier transform infrared spectrometer (FTIR) 

from Bruker with a platinum ATR moiety. This instrument allows direct measurement of 

solids and solutions without any sample preparation. 
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2.5 Solution NMR 
NMR spectra were recorded on a Bruker 500 spectrometer using CDCl3 and DMSO as solvent. 

 

2.6 Dynamic light scattering (DLS) 
Particle sizes were measured with a Zetasizer Nano-ZS particle-size analyser from Malvern 

Instruments Ltd (UK). The obtained particles (2 mg) were dispersed in isopropanol (SiNPs) 

or water (magNPs) to a concentration ~ 10 μg mL-1 and sonicated for 20 min, then an aliquot 

of the dispersion of NPs (1 mL) was analysed by DLS at 25 °C. 

 

2.7 Elemental analysis (EA) 
Carbon, hydrogen, nitrogen and sulphur contents were performed using a Heraeus Elemental 

Analyzer CHN-O-Rapid (Elemental-Analysis system, GmbH). About 10 mg of dried sample 

was submitted for elemental analysis. This technique involves the catalytic combustion of the 

sample, with selective adsorption of the evolved gasses. The relative weight percentages of 

the elements (e.g. C, H, N and S) may thus be obtained. 

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of immobilized ligand on the silica 

surface. The ligand density of immobilized ligand was calculated based on the change in 

carbon (ΔC) or nitrogen (ΔN) content versus the preceding step [229], e.g. for ΔC: 

𝐿𝑖𝑔𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑚𝐶

𝑀𝐶
× 103 Eq.  2-10 

Where: 

𝑚𝐶 =
%∆𝐶 

100 −  %∆𝐶 × 𝑀𝑊
𝑀𝐶

 Eq.  2-11 

mC = weight of carbon of the grafted ligand per gram of bare silica support  

Mw = molecular weight of the coupled ligand, 

MC = weight of carbon per mole of coupled ligand, 
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The area density (Ds) of immobilized ligand was calculated based on the change in carbon 

(ΔC) content versus the preceding step, as follows: 

𝐷𝑠 =
𝑚𝐶

𝑀𝐶 × 𝑆
× 106 Eq.  2-12 

where S is the surface area of the silica supports. 

The coverage (C) was calculated as Eq.  2-13, assuming a maximum silanol group density of 

8 μmol/m2 

𝐶 = 100 × 𝐷/8       Eq.  2-13 

The average distance dL (nm) between the coupled ligands assuming a random ligand 

distribution was calculated as Eq.  2-14 

𝑑𝐿 = � 1018

𝐷 × 10−6 × 𝑁
 Eq.  2-14 

where N is the Avogadros number. 

In addition, to calculate the grafting density of coupled ligand another equation has been 

reported which is in good agreement with aforementioned equations[228]. 

𝑔𝑟𝑎𝑓𝑡𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝜇𝑚𝑜𝑙/𝑚2) =
%∆𝐶

[(1200𝑁𝐶  − %∆𝐶(𝑀− 1))  × 𝑆] × 106   Eq.  2-15 

Where %∆C, NC , M and S are the difference of carbon content after and before grafting,  

number of carbon atoms, the molecular weight of the grafted molecule and specific surface 

area(m2/g) respectively.  

The shell thickness based on elemental analysis was calculated as outlined in TGA thickness 

calculation but deriving the total monomer volume (Vm) from the carbon content (%C), 

average monomer density (ρ) assumed equal to one and grafting density (%G) as follows: 
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𝑉𝑚 =
%𝐺

𝜌(100 − %𝐺)    Eq.  2-16 

where %G was calculated according to Eq.  2-17 from the nominal carbon content of the 

grafted polymer (%Cpol) and the found carbon content (%C). 

%𝐺 =
%𝐶

%𝐶𝑝𝑜𝑙
× 100     Eq.  2-17 

 

2.8 Nitrogen adsorption 
Nitrogen adsorption measurements were performed on a Quantachrome Nova4000e 

(Quantachrome Corporation, Boynton Beach, FL) automatic adsorption instrument. Before 

measurements, the equivalent weight of 10 to 20 m2 of sample were placed in a glass cell, 

and degassed under vacuum over night at 50 °C. The initial part of the resultant physisorption 

isotherm is attributed to monolayer-multilayer adsorption and in this region was applied the 

Brunauer-Emmett-Teller (BET) method to determine the surface area [230]. 

 

2.9 Binding experiments 

2.9.1 Single point rebinding 

Once a MIP has been synthesized, its specificity, binding capacity and selectivity towards the 

analyte are evaluated[231]. This can be done in chromatographic mode by using the MIP as a 

stationary phase in a chromatography set-up[232], or in a batch by equilibrium binding[233]. 

An imprinting factor, defined as the ratio of the amount bound to the MIP and the amount 

bound to the non-imprinted control polymer (NIP) is determined. 

In a batch equilibrium experiments a small amount of polymer (mpolymer) is allowed to 

equilibrate for 24 h in a solution of the template or the target analyte. The supernatant 

solutions were analyzed using a Hewlett-Packard HP 1100 instrument (Agilent Technologies, 

Waldbronn, Germany) equipped with a UV-DAD detector, an autosampler and a 

commercially available column (Phenomenex Luna C-18, 150×4.6 mm). 
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The results of these experiments are expected to provide information on the nature of the 

imprinted sites. Both MIP and NIP were tested under the same conditions, the free 

concentration (Cfree) of the analyte in the supernatants determined from the peak area and the 

amount bound,  (q, µmol g−1) was calculated according to Eq.  2-18:  

𝑞 = �𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐶𝑓𝑟𝑒𝑒� ×
𝑉
𝑚

     Eq.  2-18 

where Cinitial and Cfree (mmol L−1) represent the initial and equilibrium concentration of 

analyte in solution, respectively. V (mL) is the volume of solution; and m (g) is the mass of 

the polymers. 

 

2.9.2 Binding isotherm 

Adsorption isotherms can yield important information concerning binding energies, modes of 

binding and site distributions in the interactions of small molecule ligands with 

receptors[234]. In the batch rebinding studies, a soluble ligand interacts with the binding sites 

in a solid adsorbent, i.e. the MIP or NIP. The adsorption isotherms are then simply plots of 

equilibrium concentration of bound ligand versus concentration of free ligand. 

Non-linear fitting of theoretical isotherms to experimental data was performed using 

Sigmaplot 12.5, and best fits were evaluated with the Fisher test where a higher F value 

indicates a better fit [235]. The adsorption isotherm models evaluated were Langmuir 

(Eq.  2-19), Bi-Langmuir (Eq.  2-20) and Freundlich (Eq.  2-21) where q* is the concentration 

in the stationary phase at equilibrium with concentration C, and C is the concentration in the 

mobile phase. 
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𝑞∗ =
𝑞𝑠𝑏𝐶

1 + 𝑏𝐶
  Eq.  2-19 

𝑞∗ =
𝑞𝑠1𝑏1𝐶
1 + 𝑏1𝐶

 +  
𝑞𝑠2𝑏2𝐶
1 + 𝑏2𝐶

   Eq.  2-20 

𝑞∗ = 𝑎𝐶𝑚  Eq.  2-21 

 

The Langmuir models assume that one (Eq.  2-19) or two (Eq.  2-20) distinguishable classes of 

sites are present on the surface, each with saturation capacity qs and association constant b. 

The dissociation constant Kd was calculated as the inverse of b. The Freundlich isotherm 

(Eq.  2-21), on the other hand, assumes sites with a Gaussian distribution of binding strengths. 

Here the width of the Gaussian distribution describes the degree of heterogeneity, through the 

index m. This parameter ranges from 1 (homogeneous samples) to 0 (heterogeneous 

samples). Moreover, with the use of a and m it is possible to characterize the affinity 

distribution of the polymer by calculating the average affinity constant, K (Eq.  2-22), and the 

average number of binding sites, N (Eq.  2-23), as described in [236]. 

𝐾 = �
𝑚

𝑚 − 1
� [(𝐾11−𝑚 − 𝐾21−𝑚 )/(𝐾1−𝑚 − 𝐾2−𝑚 )]  Eq.  2-22 

𝑁 = 𝑎(1 −𝑚2 )( 𝐾1−𝑚 − 𝐾2−𝑚 )  Eq.  2-23 

𝐾1 = 𝐾𝑚𝑖𝑛 = 1/𝐶𝑚𝑎𝑥   Eq.  2-24 

𝐾2 = 𝐾𝑚𝑎𝑥 = 1/𝐶𝑚𝑖𝑛   Eq.  2-25 

 

For each model and each set of experimental data, the Fisher parameter was calculated 

according to Eq.  2-26[235]: 
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𝐹𝑐𝑎𝑙𝑐. =
𝑚 − 𝑙
𝑚 − 1

× ��(𝑞𝑒𝑥𝑝,𝑖 −
𝑚

𝑖=1

 𝑞�𝑒𝑥𝑝,𝑖   )2 ÷ �(𝑞𝑒𝑥𝑝,𝑖 −
𝑚

𝑖=1

 𝑞t,i   )2�  Eq.  2-26 

where qexp,i are the experimental values of the solid- phase  concentration of the adsorbate for 

a given system. q¯exp,i  is the mean value of the data, qexp,i , for a given system, qt,i are the 

estimate of the solid phase concentration of the adsorbate by a given model, l is the number 

of adjusted parameters in the model, and m is the number of experimental data for a given 

system. 
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Chapter 3: MIP Core-Shell NPs for Chiral Recognition 

 

3.1 Introduction  

Molecularly imprinted polymer nanoparticles have been received much attention in recent 

years due to their significant properties such as higher surface-to-volume ratios, easy 

accessibility of imprinted cavities and more homogenous binding sites [5, 174]. They have 

many possible applications in separation science, enzyme mimics, sensor and drug delivery 

systems [181, 182].One of the most important type of the MIP nanoparticles is the core-shell 

structured MIP nanoparticles, which combine the excellent processability and multifunctional 

character of polymer matrices and inorganic particles. Various inorganic materials such as 

glass beads, gold, magnetite, carbon nanotubes and silica have been used to generate core-

shell MIP nanoparticles [5]. Among them, silica particles are widely applied for the target 

core materials because of their optical transparency, biocompatibility, chemical and thermal 

resistance, mechanical stability and variable sizes, and low costs [237, 238]. 

To date, surface-initiated controlled radical polymerization (SI-CRP) from silica particles has 

been carried out using different approaches, including iniferter-mediated polymerization, 

nitroxide mediated radical polymerization(NMP), atom transfer radical polymerization (ATRP) 

and reversible addition fragmentation chain transfer polymerization (RAFT)[130, 238]. These 

techniques provide good ability to control molecular weight, polydispersity, thickness and 

functionality of grafting polymers. Among these techniques RAFT polymerization is a robust 

and versatile approach owing to its substantial properties such as compatibility to a wide 

range of monomers, adaptability with reaction conditions, absence of catalyst, ease of 

implementation and inexpensive relative to competitive technologies [114]. 

Surface-initiated reversible addition fragmentation chain transfer polymerization (SI-RAFT) 

has been used to prepare well-defined MIP composites [149, 151, 153]. Mostly the group of 

Sellergren is involved in making new formats of MIPs using surface initiated iniferter and/or 

RAFT polymerization techniques [91, 92, 126, 229, 239, 240]. The first of these consisted in 

the use of immobilized iniferters which allowed the synthesis of layer by layer grafting of 

different MIPs onto wide pore silica [92]. At the same time Rückert et al. reported the 

molecularly imprinted composite via iniferter-modified polystyrene- or silica-based supports 
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with a good recognition ability toward target template in the silica-based composites [91]. 

Titirici et al. investigated the effect of soluble RAFT agent at the grafting polymer from azo-

initiator modified silica supports [126]. They demonstrated that the resulting polymers exhibit 

superior mass transfer properties compared to conventional bulk polymer and the polymer 

which prepared from azo-initiator modified surface in absence of soluble RAFT agent. More 

recently Mahadeo et al. reported the “grafting from” techniques via R-immobilized RAFT 

agent and iniferter-modified silica support to achieve more control on the film thickness and 

monomer conversion [229, 239, 240]. The authors used the living character of the iniferter 

and RAFT polymerization to produce layer by layer grafting of different MIPs onto wide 

pore silica. In addition, a novel class of porous materials generated after etching the 

disposable silica support [239, 240]. 

As far as we know, there are a few reports in the literature which describe the use of            

R-immobilized RAFT technique from silica core nanoparticels in MIPs context.  In the 

current chapter, we used our previously well-established RAFT polymerization procedure to 

generate core-shell structured MIP nanoparticles for chiral discrimination. Silica 

nanoparticles with two different sizes ca 20 nm and ca 200 nm used as a support material. 

These cores modified by an aminosilane to introduce reactive amino groups for further 

coupling of a carboxylic acid containing RAFT agent. Before moving to graft cross-linked 

polymerization, the graft linear polymerization from RAFT modified silica nanoparticles was 

investigated. Afterwards the grafting of nano-shell molecularly imprinted polymers was 

carried out on RAFT-modified nano-silica support. The resulting beads were subsequently 

characterised by FTIR, TEM, DLS, TGA and elemental analysis. The polymers were tested 

for their affinity towards the template L-PA and its optical antipode D-PA in acetonitrile by 

reversed phase HPLC. 

 

3.2 Results and Discussions 

3.2.1 Silica nanoparticles 

Herein, we used different silica core sizes as support martials to further modification.  

Colloidal silica MEK-ST (ca 20 nm) was obtained from Nissan Chemical as a 30 wt % 

dispersion in methylethylketone whereas silica nanoparticles (ca 100 nm, 200 nm, 330 nm) 
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were synthesised according to the Stöber procedure [241-244]. It involves the hydrolysis and 

condensation of tetraethoxysilane (TEOS) in the presence of water and with ammonia as a 

catalyst (pH 11.0-12.0) in alcohol (Figure  3.1). Several primary parameters including 

concentration of TEOS, ammonia, water, alcohol used as the solvent and reaction 

temperature have been reported that affect on the size and size distribution of silica 

particles[245]. By optimizing the quantity of the starting components the physical and 

chemical properties of NPs, such as NP size, porosity, monodispersity and colloidal stability 

can be tailored to suit different applications.   
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                                  Figure  3.1. Schematic representation of the Stöber process. 

The obtained particles were characterized by BET, DLS and TEM (Table  3.1). These 

nanoparticles SiNP1, SiNP2, SiNP3 and SiNP4 had particle sizes of ca 200 nm, ca 20 nm, ca 

100 nm and ca 330 nm and a specific surface area 19 m2/g, 182 m2/g, 32 m2/g and 11 m2/g 

respectively. The TEM images showed that these nanoparticles had a nearly spherical shape 

and narrow particle size distribution (Figure  3.6). 

Table  3.1. Properties of the silica bead supports 

Support Surface area(m2/g) Diameter DLS (nm) Diameter TEM (nm) 

SiNP1 19 211 200 

SiNP2 182 25 20 

SiNP3 32 123 100 

SiNP4 11 364 330 

 

3.2.2 Amino modified silica nanoparticles 

The modification of silica nanoparticles can be achieved by using aminopropyltriethoxy 

silane (APTES) and aminopropyldimethylethoxysilane (APDMES) for two different sizes of 
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silica nanoparticles i.e. SiNP1 and SiNP2 respectively (Figure  3.2) [163, 246]. The silane 

coverage for a complete modification of the silica surface is expected to range from 3.5 to 4.0 

μmol/m2 [247]. Therefore, the amount of APTES was calculated according to the number of 

silanol groups on the silica surface (8 μmol/m2) and the specific surface area for each silica 

sample. The reaction was performed under inert conditions and with an excess aminosilane, 

in order to obtain the maximum coverage of amino groups. The aminomodification of  the 

colloidal silica nanoparticles with APDMES was performed using less amount of aminosilane  

according to the reported procedure by Li et al [163]. The reaction conditions and reagent 

stoichiometry had strong effect on the surface densities of the introduced ligands. The final 

products (SiNP1-NH2 and SiNP2-NH2) were characterized by FT-IR, TGA, TEM, DLS and 

elemental analysis. The surface densities of the introduced ligands were calculated from 

elemental analysis and TGA data. 
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                               Figure  3.2. Amino modification of silica surface with APTES. 

 

3.2.3 Immobilization of dithiobenzoate RAFT agent onto silica 
nanoparticles 

The RAFT agent 4-cyanopentanoic acid dithiobenzoate (CPDB) was coupled to the 

aminofunctionalized  silica cores via the R-group approach in accordance with our previous 

investigations (Figure  3.3) [229]. The carboxyl group of CPDB was first activated with ethyl 

chloroformate due to susceptibility of dithioesters to aminolysis even under mild conditions. 

The reactivity of the ethyl chloroformate activated ester bond is sufficiently high to 

selectively consume the amino groups in the presence of dithiobenzoate groups. 
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Figure  3.3. Immobilization of RAFT agent on silica surface. 

After coupling the CPDB on silica surface a distinct pink color was apparent which 

associated with the dithioester. The color persisted through repeated washes with a 

THF/hexane solution, indicating that it was due to chain transfer agent covalently attached to 

the nanoparticle and not simply physically adsorbed. The colloidal stability of modified 

SiNP2 was evaluated in different solvents. Hence, whereas the bare and aminofunctionalized 

colloidal core particles SiNP2 and SiNP2-NH2 formed stable dispersions in polar solvents 

(e.g. isopropanol, acetone, acetonitrile) the  RAFT modified particles were partially 

aggregated nevertheless being well dispersible in alcohols such as isopropanol (Figure  3.4). 

  

Figure  3.4. a) SiNP2 (A), SiNP2-NH2 (B) and SiNP2-CPDB (C) dispersed in THF b)  SiNP2-CPDB dispersed 
in acetone (A), toluene (B) and methanol (C). 

 

a) b) 

A C B 

   

 

B A C 
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3.2.4 Characterization of the resulting silica core nanoparticles 

The products resulting from the previously described reactions were characterized using 

TEM, DLS, TGA, elemental microanalysis.  In order to confirm successful immobilization 

step, the nanoparticles were characterized by elemental analysis and TGA. The percentage 

mass loss and percentage of carbon increased with each step respectively. The ligand and 

area density of coupled ligand were calculated by two methods. The obtained results are in 

good agreement (Table  3.2 and Table  3.3). 

TGA analysis gives access to an estimated grafting density of coupled groups on silica 

surface by determining the differences of weight loss between pure and modified silica 

nanoparticles. TGA of the bare and modified silica nanoparticles are shown in Figure  3.5. 

TGA was performed between room temperature and 800 oC under N2 atmosphere. For bare 

SiO2, the weight loss up to 120 oC was related to physically combined water and 

unvolatilized solvent, while the weight loss from 120 to 800 oC was assigned to chemically 

combined water and silanol groups dehydroxylation on the silica nanoparticles [248]. This 

weight loss of modified supports can be attributed to the thermal decomposition of 

immobilised ligands on modified silica nanoparticles. The data are presented in Table  3.2.  

Table  3.2. Characterisation of modified silica supports by TGA. 

Supporta 
TGA  

(% mass loss) 

Ligand densityb 

(mmol/g) 

Area densityb 

(μmol/m2) 

         SiNP1 6.78 - - 

         SiNP1-NH2 8.57 0.19 10.38 

         SiNP1-CPDB 9.78 0.08 4.56 

        SiNP2 2.73 - - 

        SiNP2-NH2 4.04 0.13 0.70 

       SiNP2-CPDB 6.01 0.09 0.49 

a) The ligand immobilization was performed in two steps by consecutive coupling of                                           

3-aminopropyltriethoxysilane (APTES) (SiNP1-NH2) or 3-aminopropyldimethylethoxysilane (APDMES) 

(SiNP2-NH2)  and 4-cyanopentanoic acid dithiobenzoate (RAFT) on the indicated core beads as described in the 

experimental section. The SiNP1 displayed a number average particle size of 211 nm with a polydispersity 

index of 0.257 and a specific surface area of 19 m2/g whereas the SiNP2 displayed an average particle size of 25 

nm with a polydispersity of PDI=0.245 and a specific surface area of 182 m2/g. 

b) The ligand density and area density were calculated from the mass loss according to Eq.  2-1 and Eq.  2-2.  
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Figure  3.5. Thermal gravimetric analysis of SiNP1 (pink), SiNP1-NH2 (green) and SiNP1-CPDB (blue) (A), 
SiNP2 (pink), SiNP2-NH2 (green) and SiNP2-CPDB (blue) (B). 

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of immobilized ligand on the silica 

surface. The data are presented in Table  3.3.  On the basis of the increase in carbon content, a 

maximum coverage of 49% coupled CPDB for SiNP1 support and 6% for SiNP2 was 

calculated. The distance between two ligands was 0.6 nm for SiNP1 support and 1.9 nm for 

SiNP2 which is likely higher than the first step (Table  3.3). This indicates that the coupling 

reaction was successfully formed. 
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Table  3.3. Results from the characterisation of modified silica beads by elemental analysis. 

Modified 

supporta 

 

%C 

 

%N 

 

%S 

Ligand 

densityb 

(mmol/g) 

Area 

densityb 

(μmol/m2) 

Coveragec 

(%) 

Distanced 

(nm) 

SiNP1-NH2 1.19 0.43 - 0.20 10.72 134 0.4 

SiNP1-CPDB 2.34 0.38 0.49 0.075 3.96 49 0.6 

SiNP2-NH2 2.10 0.81 - 0.36 2.01 25 0.9 

SiNP2-CPDB 3.33 0.69 0.56 0.081 0.44 6 1.9 

a) The ligand immobilization was performed in two steps by consecutive coupling of 3-

aminopropyltriethoxysilane (APTES) (SiNP1-NH2) or 3-aminopropyldimethylethoxysilane (APDMES) (SiNP2-

NH2) and 4-cyanopentanoic acid dithiobenzoate (RAFT) on the indicated core beads as described in the 

experimental section. 

b) The ligand density and area density were calculated on the basis of the increase in carbon content, as 

described in Eq.  2-10 and Eq.  2-12.  

c) The coverage (C) was calculated according to Eq.  2-13, assuming a maximum silanol group density of 8 

μmol/m2. 

d) The average distance dL (nm) between the coupled ligands assuming a random ligand distribution was 

calculated according to Eq.  2-14. 

 

The yield of coupling in each step was calculated based on results obtained from elemental 

analysis.  From Table  3.3 can be observed that the final densities of the functional groups 

after modifying the silica with the corresponding silanes ranged between 0.20 mmol/g for 

SiNP1-NH2 and 0.36 mmol/g for SiNP2-NH2. The final densities of immobilized RAFT 

agent were in the range of 0.075 mmol/g for SiNP1-CPDB and 0.081 mmol/g for SiNP2-

CPDB.   

The morphology of the particles was characterized with TEM. As shown in Figure  3.6 and 

Figure  3.7, the particles exhibited spherical structures with a diameter about 200 nm and      

20 nm for SiNP1-CPDB and SiNP2-CPDB respectively.  
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Figure  3.6. TEM images of SiNP1 (A, B), SiNP1-NH2 (C, D), and SiNP1-CPDB (E, F). The scale bar is 100 
nm in the case of (A, D); 500 nm for (C) and 200 nm for (B, E, F). 

 

A B 

C D 

F E 

103 

 



  

  

  

  

Figure  3.7. TEM images of SiNP2 (A,B), SiNP2-NH2 (C,D), and SiNP2-CPDB (E,F). The scale bar is 20 nm in 
the case of (A), (B), (C), (D), (F); and 50 nm for (E). 
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The particle sizes were further measured with DLS, which showed an average particle size 

with a relatively narrow distribution of tow samples (Figure  3.8 and Figure  3.9).The number 

average particle size and polydispersity of resultant nanoparticles are presented in Table  3.4. 

Compared with the data obtained by TEM, the slight increase in diameter in DLS was 

observed due to aggregation of modified particles. 

Table  3.4. Number average particle size and polydispersity from DLS of nanoparticles used in the study. 

Particle a Diameter (nm) Polydispersity 

SiNP1 211 0.257 

SiNP1-NH2 243 0.245 

SiNP1-CPDB 331 0.352 

SiNP2 25 0.245 

SiNP2-NH2 31 0.183 

SiNP2-CPDB 65 0.341 

a) The dispersing solvent was isopropanol. 
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                             Figure  3.8. DLS analysis of SiNP1 (A), SiNP1-NH2 (B) and SiNP1-CPDB (C). 

A. 

B. 
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                           Figure  3.9. DLS analysis of SiNP2 (A), SiNP2-NH2 (B) and SiNP2-CPDB (C).       

A. 

B. 
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3.2.5 Synthesis of trithiocarbonate RAFT agent 

The appropriate choice of RAFT agent is important to the success of RAFT polymerizations. 

This holds true whether polymerizations are conducted in aqueous or nonaqueous media. 

Indeed, some general guidelines regarding appropriate choice of RAFT agent for a given 

monomer/monomer family can be found in two recent reviews[114, 249]. Trithiocarbonates 

are versatile RAFT agents and have previously been shown to facilitate the polymerization of 

acrylamide in aqueous media [250]. These RAFT agents are readily synthesized, cause less 

retardation and are more hydrolytically stable than dithiobenzoates [251]. We have chosen 

the trithiocarbonate RAFT agent as a chain transfer agent to polymerize acrylamide 

monomers in aqueous media (Figure  3.10). This RAFT agent was synthesized by reacting of 

carbon disulfide, chloroform, acetone and sodium hydroxide in the presence of a phase 

transfer catalyst (PTC) [252]. 

HO
S S

OH

S

OO

Trithiocarbonate (TTC)  
 

Figure  3.10. Chemical structure of trithiocarbonate RAFT agent used to create MIPs. 

 

3.2.6 Immobilization of trithiocarbonate RAFT agent onto silica 
nanoparticles 

The RAFT agent S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)- trithiocarbonate (TTC) was coupled 

to the aminofunctionalized  silica core in accordance with our previous investigations 

(Figure  3.11) [229].The colloidal silica nanoparticles with 25 nm core size were first 

modified by using 3-aminopropyldimethylethoxysilane (APDMES) to introduce amino 

groups on silica support. The subsequent step was the coupling of trithiocarbonate RAFT 

agent in presence of ethylchloroformate and triethylamine under N2 protection at -78 oC. 

After coupling the TTC on silica surface a distinct yellow color was apparent which 

associated with the trithiocarbonate. The color persisted through repeated washes with a 

THF/hexane solution, indicating that it was due to chain transfer agent covalently attached to 
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the nanoparticle and not simply physically adsorbed. The final products (SiNP-NH2 and 

SiNP-RAFT) were characterized by FT-IR, TGA, TEM, DLS and elemental analysis. The 

surface densities of the introduced ligands were calculated from elemental analysis and TGA 

data. 

Ethylchloroformate
Triethylamine
THF
-78 oC

+
HO

S S
OH

S

OO

SiO2

O
Si

H
N

S S
OH

O O

S

SiO2

O
Si NH2

SiO2-NH2
Trithiocarbonate (TTC)

SiO2-TTC
 

Figure  3.11. Immobilization of RAFT agent on silica surface. 

 

3.2.7 Characterization of surface-modified silica nanoparticles  

The products resulting from the previously described reactions were characterized using 

TEM, TGA, elemental microanalysis.  In order to confirm successful immobilization step, the 

nanoparticles were characterized by elemental analysis and TGA. The percentage mass loss 

and percentage of carbon increased with each step respectively. The ligand density and area 

density of coupled ligand were calculated by two methods. The obtained results are presented 

in (Table  3.5 and Table  3.6 ). TGA analysis gives access to an estimated grafting density of 

coupled groups on silica surface by determining the differences of weight loss between pure 

and modified silica nanoparticles. TGA of the bare and modified silica nanoparticles are 

shown in Figure  3.12. TGA was performed between room temperature and 800 oC under N2 

atmosphere. This weight loss of modified supports can be attributed to the thermal 
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decomposition of immobilized ligands on modified silica nanoparticles. The data are 

presented in Table  3.5.  

Table  3.5. Characterisation of modified silica supports by TGA. 

Supporta 
TGA  

(% mass loss) 

Ligand densityb 

(mmol/g) 

Area densityb 

(μmol/m2) 

SiNP-NH2 3.81 0.104 0.57 

SiNP-TTC 5.71 0.085 0.49 

a) The ligand immobilization was performed in two steps by consecutive coupling of                                          

3-aminopropyldimethylethoxysilane (APDMES) (SiNP-NH2)  and S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)- 

trithiocarbonate (TTC) on the indicated core beads as described in the experimental section. The SiNP displayed 

an average particle size of 25 nm with a polydispersity of PDI= 0.245 and a specific surface area of 182 m2/g. 

b) The ligand density and area density were calculated from the mass loss according to Eq.  2-1 and Eq.  2-2.   

 

 

               Figure  3.12. Thermal gravimetric analysis of SiNP (pink), SiNP-NH2 (green) and SiNP-TTC (blue). 

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of immobilized ligand on the silica 

surface. The data are presented in Table  3.6. On the basis of the increase in carbon content, a 

maximum coverage of 23% coupled amino groups and 8% coupled trithiocarbonate groups 

was calculated. The distance between two ligands was 0.9 nm for SiNP-NH2 support and     

1.7 nm for SiNP-TTC which is likely higher than the first step (Table  3.6). This indicates that 

the coupling reaction was successfully formed. 
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Table  3.6. Results from the characterisation of modified silica beads by elemental analysis. 

Modified 

supporta 

 

%C 

 

%N 

 

%S 

Ligand 

densityb 

(mmol/g) 

Area 

densityb 

(μmol/m2) 

Coveragec 

(%) 

Distanced 

(nm) 

SiNP-NH2 1.96 0.74 - 0.34 1.87 23 0.9 

SiNP-TTC 3.12 0.58 0.82 0.11 0.61 8 1.7 

a) The ligand immobilization was performed in two steps by consecutive coupling of                                          

3- aminopropyldimethylethoxysilane (APDMES) (SiNP-NH2) and S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)- 

trithiocarbonate (TTC) on the indicated core beads as described in the experimental section. 

b) The ligand density and area density were calculated on the basis of the increase in carbon content, as 

described in Eq.  2-10 and Eq.  2-12.   

c) The coverage (C) was calculated according to Eq.  2-13, assuming a maximum silanol group density of 8 

μmol/m2. 

d) The average distance dL (nm) between the coupled ligands assuming a random ligand distribution was 

calculated according to Eq.  2-14.  

 

The yield of coupling in each step was calculated based on results obtained from elemental 

analysis.  From Table  3.6 can be observed that the final density of the functional groups after 

modifying the silica with the corresponding silane was 0.34 mmol/g. The final density of 

immobilized trithiocarbonate RAFT agent was in the range of 0.11 mmol/g.  

The morphology of the particles was characterized with TEM. As shown in Figure  3.13, the 

particles exhibited spherical structures with some aggregation and a diameter about            

20-25 nm. 
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A. B. 

  

Figure  3.13. TEM images of SiNP-NH2 (A), SiNP-TTC (B). The scale bar is 20 nm in the case of (A) and 100 
nm for (B). 

 

3.2.8 Optimization for the grafted linear polymers from silica support 

In the early studies and before moving to graft cross-linked polymerization, the graft linear 

polymerization from RAFT-modified silica nanoparticles was investigated (Figure  3.14). Due 

to solubility of ungrafted linear polymers, separation of these polymers from grafted 

polymers were much easier than insoluble crosslinked free polymers. This property cause to 

obtain the pure grafted linear polymers by repeated centrifugation-redispersion procedure. 

RAFT-modified silica nanoparticles were used to investigate the kinetics of MMA and 

styrene surface graft polymerization by Benicewicz and co-workers [162, 163, 253]. They 

demonstrated that the cleaved PMMA and PSt had a number-average molecular weight of 

37900 g/mol, 8500 g/mol and a PDI of 1.07 and 1.10, respectively. For MAAM surface graft 

polymerization, we expected to achieve a number-average molecular weight of 72000 g/mol, 

and a PDI of 1.05 [250]. Based on these studies, methyl methacrylate (MMA), styrene (St) 

and methacrylamide (MAAM) were grafted from silica substrate and characterized by TGA, 

TEM and elemental analysis.      
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Figure  3.14. Schematic representation of graft polymerization from RAFT-modified silica nanoparticles. 

 

3.2.8.1 Methyl methacrylate graft polymerization from RAFT-modified silica 
nanoparticles (SiO2-g-PMMA) 

The graft polymerization of methyl methacrylate (MMA) from the RAFT-modified silica 

nanoparticles was carried out in the presence of ABDV as a conventional radical initiator. 

The polymerization was carried out at a mild temperature, 50 °C, in THF. Two different sizes 

of core silica nanoparticles i.e. 100 nm and 200 nm were used as solid support. The effect of 

polymerization time and the molar ratios of ABDV/RAFT on the graft polymerization were 

investigated. The pure PMMA-grafted silica particles were obtained by repeated 

centrifugation-redispersion procedure in the THF solution. TGA, TEM, SEM and elemental 

analysis were used to characterize the PMMA-grafted silica nanoparticles (Table  3.7). The 

results showed that high conversion efficiency can be achieved via increasing the 

polymerization time and the molar ratios of ABDV/RAFT [163, 254].  

 

3.2.8.2 Styrene graft polymerization from RAFT-modified silica nanoparticles 
(SiO2-g-PSt)   

Surface-initiated RAFT polymerization onto SiNP was performed employing styrene (St) as 

monomer in the presence of ABDV as a conventional radical initiator. Polymerization was 
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conducted in THF at 50 oC. After polymerization, the polystyrene grafted SiNP were 

extensively purified by repeating the cycle of centrifugation and redispersion in THF to 

remove the free polymers from the particles. The resulting polymers were characterized by 

TGA, TEM, SEM and elemental analysis (Table  3.7). The results revealed that in surface-

initiated RAFT polymerization mediated via dithiobenzoate as a chain transfer group, the 

conversion efficiency of polystyrene chains was low even at longer polymerization times. 

This might be attributed to unavoidable steric hindrance during graft polymerization        

[163, 254]. 

              

3.2.8.3 Methacrylamide graft polymerization from RAFT-modified silica 
nanoparticles (SiO2-g-PMAAM) 

The graft polymerization of methacrylamide (MAAM) from the RAFT-modified silica 

nanoparticles was carried out in the presence of ammonium persulfate (APS) as a radical 

initiator in acetic buffer solution (pH5, 10mM). The trithiocarbonate-modified silica 

nanoparticles were used for methacrylamide graft polymerization in aqueous media 

(See  3.2.6). Trithiocarbonate RAFT agents are readily synthesized, cause less retardation and 

are more hydrolytically stable than dithiobenzoates [251]. Acidic buffer (pH5) was used as 

polymerization media to avoid loss of trithiocarbonate end groups via a combination of 

aminolysis and hydrolysis[250, 255]. After polymerization, the PMAAM-grafted SiNP were 

extensively purified by repeating the cycle of centrifugation and redispersion in water to 

remove the free polymers from the particles. The resulting polymers were dried at 40 oC 

under vacuum and characterized by TGA, TEM, SEM and elemental analysis (Table  3.7). 

 

3.2.9  Characterization of grafted linear polymers  

After polymerization, the beads were subsequently characterized by TGA, TEM, SEM, and 

elemental analysis. Elemental analysis and TGA were used to confirm the successful grafting 

of polymers on silica cores. By using the TGA mass loss data the gravimetric conversion of 

grafted polymers on silica cores were calculated. The results revealed that the conversion 

efficiency of polymer chains was increased by using long polymerization time. The results 

are listed in Table  3.7. 
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The SEM and TEM images of the polymer grafted silica NPs are shown in Figure  3.16 and 

Figure  3.17. Both images demonstrated the highly uniform spherical morphology with the 

size of about 100 nm and 200 nm. In the comparison of TEM images before and after 

polymerization, a shell structure can be seen on the silica particles after polymerization with a 

uniform thickness of the shells which are signed via arrow in Figure  3.16 and Figure  3.17. 

The results obtained from these techniques confirmed that grafting occurred from the surface 

of the silica support. The soluble ungrafted free polymer in the wash fractions was 

precipitated in n-hexane and then subjected to TGA analyses. The gravimetric yield of the 

ungrafted free polymer after drying is shown in Table  3.8.  

Table  3.7. Results from the characterization of grafted linear polymers. 

Polymer name a Solvent 
Time 

(h) 

RAFT/ 

Initiator 
%C %N %S 

Mass 

loss b (%)  

Conv.c 

(%) 

SiO2-g-PMMA-1d THF 15 1/1 7.36 0.63 0.49 18 16 

SiO2-g-PMMA-2d THF 18 1/1 8.25 0.69 0.51 26.7 38 

SiO2-g-PMMA-3e THF 20 1/1 8.91 0.67 0.47 19.2 22 

SiO2-g-PMMA-4e THF 20 5/1 7.89 0.61 0.47 17 16.5 

SiO2-g-PSt-1d THF 40 1/1 6.54 0.57 0.51 13.6 3.1 

SiO2-g-PSt-2d THF 40 2/1 6.43 0.62 0.48 13.5 3 

SiO2-g-PSt-3d THF 72 1/1 7.88 0.59 0.49 15.1 4.6 

SiO2-g-PSt-4d THF 72 2/1 7.41 0.60 0.56 15 4.4 

SiO2-g-PMAAM-1e buffer 16 2/1 6.12 1.49 0.41 9 16 

SiO2-g-PMAAM-2e buffer 16 4/1 5.93 1.37 0.39 7 9.5 

SiO2-g-PMAAM-3e buffer 24 1/1 6.85 1.68 0.40 13 31 

SiO2-g-PMAAM-4e buffer 24 2/1 6.14 1.54 0.42 9.6 19 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion= mass loss (TGA)/mass of monomer feed. 

d) Silica core size is 100 nm. 

e) Silica core size is 200 nm. 
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Table  3.8. Amount of ungrafted free polymers in the wash fractions. 

Polymer name a Solvent 
Time  

(h) 

RAFT/ 

Initiator 

Weight 

 (mg) 

Gravimetric 

yield b (%) 

PMMA-1 THF 15 1/1 250 53 

PMMA-2 THF 18 1/1 210 45 

PMMA-3 THF 20 1/1 231 49 

PMMA-4 THF 20 5/1 195 41 

PSt-1 THF 40 1/1 520 57 

PSt-2 THF 40 2/1 490 54 

PSt-3 THF 72 1/1 593 65 

PSt-4 THF 72 2/1 549 60 

PMAAM-1 buffer 16 2/1 170 53 

PMAAM-2 buffer 16 4/1 142 44 

PMAAM-3 buffer 24 1/1 161 50 

PMAAM-4 buffer 24 2/1 144 45 

a) Ungrafted free polymer in the wash fractions. 

b) Gravimetric yield= gravimetric mass of ungrafted polymer /mass of monomer feed. 
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      Figure  3.15. Thermal gravimetric analysis of SiO2-g-PMMA-2 (A), SiO2-g-PSt-3 SiO2-g-PMAAM-4 (C). 
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Figure  3.16. TEM images of bare silica NPs (A, B); SiO2-g-PMMA (C, D, E); SiO2-g-PSt (F, G); SiO2-g-
PMAAM (H, I). The polymer shells are indicated by arrows. The scale bar is 50 nm in the case of (A, D, H) 100 
nm for (B, C) 20 nm for(E, F, G) and 10 nm for (I).  
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Figure  3.17. SEM images of bare silica NPs (A); SiO2-g-MMA (B, C, D); SiO2-g-MAAM(E); SiO2-g-PSt (F). 
The polymer shells are indicated by arrows. 
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3.2.10 Grafting of molecularly imprinted polymer shells via RAFT- 
modified silica core nanoparticles 

The “grafting from” technique for producing L-phenylalanine anilide (L-PA) imprinted core- 

shell nanoparticles was investigated using our previously reported procedure [229, 239]. 

Imprinted copolymers of methacrylic acid (MAA) and ethyleneglycol dimethacrylate 

(EDMA) were then grafted from the supports as shown in Figure  3.18, that is, in a 1:5 molar 

ratio of MAA to EDMA in presence of 5 mol % of Lphenylalanine anilide (L-PA) as chiral 

template and toluene as solvent. Grafting requires an external source of primary radicals 

which was here provided by a soluble initiator, added in substoichiometric amounts with 

respect to the RAFT agent [239].  

 

S
S

O
O
O O

O
O

O

EGDMA

O

OH

MAA

N
H

C
O

H2N

L-PA

SiO2
S

SNC CH3

O

Si
H
N

+

ABDV, 50 oC
Toluene

S

S

S
S

S
S

S

S

S
S

S

S

S

S

SiO2

Template removal

Rebinding

L L
L

L

L
L

L
L

LL
L

L
SiO2

L L
L

L

L
L

L
L

LL
L

L

SiO2-CPDB

 

                          Figure  3.18. Procedure used to synthesise silica core-MIP shell nanoparticles. 
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In preparing the grafting polymer, a molar ratio CPDB/ABDV = 4 and CPDB/ABDV= 3 

were used for SiNP1-MIP&NIP and SiNP2-MIP&NIP, respectively. The relatively low 

ABDV/CPDB ratio helped to reduce the amount of free polymer derived from the initiator, 

and yet maintain a moderate polymerization rate [163]. The quantity of monomer relative to 

the silica supports were adjusted to result in shells/films with approximately 16 nm (SiNP1) 

or 4 nm (SiNP2) thick shells. After polymerization the beads were isolated by centrifugation 

and subjected to repetitive washing-centrifugation cycles in order to remove any leachables 

(e.g. template, oligomers, unreacted monomers). Five cycles were sufficient for exhaustive 

template removal as concluded by HPLC analysis of the washing fractions. After drying at  

40 oC under vacuum, the light pink MIP particles were obtained, suggesting the presence of 

dithioester groups there. The light pink NIP particles with surface-immobilized dithioester 

groups were then prepared and purified under the identical conditions except that the 

template was omitted. The procedure is shown in Table  3.9.   

Table  3.9. Procedure for the preparation of core-shell L-PA imprinted nanoparticles. 

Polymer namea  Template 
L-PA 

(µmol) 

Si-RAFT 

(mg) 

MAA 

(µmol) 

EGDMA 

(µmol) 

Toluene 

(mL) 

RAFT/

ABDV 

SiNP1-MIPb L-PA 17 400 135 676 15 4/1 

SiNP1-NIPb - - 400 135 676 15 4/1 

SiNP2-MIPc L-PA 50 400 404 2020 15 3/1 

SiNP2-NIPc - - 400 404 2020 15 3/1 

a) See experimental section for details. 

b) Silica core size is 200 nm. 

c) Silica core size is 20 nm. 

 

3.2.11 Characterization of grafted imprinted polymer shells 

After polymerization, the beads were subsequently characterized by FTIR, TEM, DLS, TGA 

and elemental analysis. Figure  3.19 displays the TGA and DTG curves of grafted polymers. It 

can be observed from TGA curves that the weight loss of SiNP1-MIP, SiNP1-NIP, SiNP2-

MIP and SiNP2-NIP between 100 oC and 800 oC is 30%, 29%, 50%, 50%, respectively. By 
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using the TGA mass loss data the gravimetric conversion and shell thickness (nm) of grafted 

polymers on silica cores were calculated. The apparent shell thickness was 18 nm for SiNP1-

MIP&NIP and 4 nm for SiNP2-MIP&NIP.  

Elemental analysis was used to confirm the successful grafting of polymers on silica cores.    

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of grafted polymer on the silica surface. 

The data are presented in Table  3.10. On the basis of the increase in carbon content the 

apparent shell thickness was calculated. The obtained shell thickness was 19 nm and 18 nm 

for SiNP1-MIP&NIP and 2.7 nm for SiNP2-MIP&NIP.  

In Table  3.10 the apparent thickness, calculated from the TGA mass loss data and elemental 

analysis, have been compared with the nominal thickness, estimated assuming the grafted 

shell to consist of monomers forming a liquid film covering the core surface. The somewhat 

lower measured thickness compared to the nominal values agrees with our previous report 

[239] and can be attributed to solution chain growth, nevertheless resulting in an acceptable 

conversion of monomer to shell polymer.  

Table  3.10. Results from the characterization of imprinted and nonimprinted core shell beads. 

Polymer name a %C %N %S 
Mass 

loss b (%)  

Conv.c 

(%) 

dnom
d 

(nm) 

dEA
e 

(nm) 

dTGA
f 

(nm) 

SiNP1-MIP 18.20 0.30 0.82 30 87 16 19 18 

SiNP1-NIP 17.23 0.29 0.64 29 84 16 18 18 

SiNP2-MIP 22.86 0.35 0.90 50 94 4.1 2.7 4.0 

SiNP2-NIP 22.53 0.33 0.78 50 93 4.1 2.7 4.0 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion=mass loss (TGA)/mass of monomer feed. 

d) The shell thickness (nm) was calculated according to Eq.  2-3. 

e) The shell thickness (nm) was calculated according to Eq.  2-3, Eq.  2-16 and Eq.  2-17.   

f) The shell thickness (nm) was calculated according to Eq.  2-3 and Eq.  2-9. 

   

122 

 



  

 

A. B. 

  

C. D. 

  

Figure  3.19. Thermal gravimetric analysis of the L-PA imprinted and nonimprinted core shell nanoparticles; 
TGA of SiNP1-MIP and SiNP1-NIP (A), DTG of SiNP1-MIP and SiNP1-NIP (B), TGA of SiNP2-MIP and 
SiNP2-NIP (C), DTG of SiNP2-MIP and SiNP2-NIP (D). 

The TEM images of the L-PA imprinted and nonimprinted core-shell nanoparticles SiNP1-

MIP&NIP and SiNP2-MIP&NIP are shown in Figure  3.20.  An inorganic silica core appears 

darker than the grafted organic polymer shell due to the difference in density. Comparison of 

TEM images of grafted polymer silica nanoparticles with images of bare silica particles and 

RAFT modified silica support confirmed a successful grafting of the polymer shell on the 

silica particles. The average particle size as estimated by TEM measurements of these grafted 

silica core shell particles was found to be in the range of 190–220 nm and 20-25 nm with a 
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shell thickness of 15–20 nm and 3-5 nm for SiNP1-MIP&NIP and SiNP2-MIP&NIP, 

respectively.  

A. B. 

  

  

C. D. 

Figure  3.20. TEM images of the L-PA imprinted and nonimprinted core-shell nanoparticles SiNP1-MIP and 
SiNP1-NIP (A, B), SiNP2-MIP and SiNP2-NIP (C, D). The polymer shells are indicated by arrows. The scale 
bar is 100 nm in the case of (A) 50 nm for (B) and (C) and 20 nm for (D). 

 

The particle sizes measured by DLS were slightly bigger than the sizes obtained from TEM 

due to the aggregation of the particles (Figure  3.21). The TEM images further revealed 

separate or smaller aggregates of polydisperse particles. 

The FTIR spectra of the core-shell beads shown in Figure  3.22 display two characteristic 

bands i.e. the carbonyl stretching of the polymer matrix at ca 1740 cm-1 and the siloxane 

vibration of silica core at ca 1120 cm-1. 

 
124 

 



  

 

 

Figure  3.21. DLS analysis of the L-PA imprinted core-shell nanoparticles SiNP1-MIP (A) and SiNP2-MIP (B). 

  

Figure  3.22. FTIR spectra of SiNP-RAFT(a) SiNP-MIP(b), SiNP-NIP(c). Curves were shifted for clarity.   

600110016002100

Tr
an

sm
itt

an
ce

 [%
] 

Wavenumber [cm-1] 

SiNP-NIP
SiNP-MIP
SiNP-RAFT

 

 

A. 

B. 

a 
b 
c 

125 

 



  

3.2.12 Binding isotherms of the imprinted polymers 

In order to evaluate the binding properties, the particles were subsequently tested for their 

affinity towards the template L-PA and its optical antipode D-PA in acetonitrile. After 

incubating the particles with solutions of L-PA or D-PA of known concentrations the free 

concentration of the solutes were determined by reversed phase HPLC. Binding curves were 

then constructed by plotting the specific amount of bound solute against the free 

concentration of solute.  

As shown in Figure  3.23, the amount of template peptide bound to the MIPNPs at 

equilibrium, increased with increasing initial concentration of the template.  The core-shell 

particles display a distinct saturation behavior with a clear preference for the templated        

L-form. In fact, the binding curve for the D-form coincides with the binding curve for the 

nonimprinted particles indicating the presence of highly discriminative imprinted sites. 

Judging from the sigmoidal and more shallow shape of the curve obtained for the particles 

produced using the larger cores (NP-MIP1) compared with the colloidal size particles      

(NP-MIP2) both the quality and accessibility of the templated sites appears to increase with 

decreasing particle size. This can be understood in terms of shell thickness and particle 

surface area to volume ratio. The large core particles exhibit ca 4 times thicker shells 

compared to the colloidal sized particles but only ca two thirds of the grafting density of the 

latter. Therefore, the different total uptake of LPA of NP-MIP1 and NP-MIP2 can in part be 

attributed to the fact that the larger particles contain less binding sites per unit weight. 

Another factor accounting for the difference is the ca 10x lower surface area (ca 19m2/g) of 

the large particles compared to the colloidal sized particles (ca 182m2/g). This dramatically 

impedes site access probably leaving a portion of the sites buried and nonaccessible. This 

problem is even more pronounced for the mesoporous composite material where access is 

hindered to polymer grafted in the narrower pores of the composite[239]. 

The binding isotherms were subsequently fitted to mono-Langmuir (Eq.  2-19), bi-Langmuir 

(Eq.  2-20), and Freundlich (Eq.  2-21) isotherm model. The resulting parameters are given in 

Table  3.11 to Table  3.13. For each model and each set of experimental data, the Fisher 

parameter was calculated according to Eq.  2-26. The fisher values in Figure  3.24 reflect 

which of the model provides the best fit to a particular isotherm, a higher number indicating a 

better fit. The affinity constant (K) and total number of binding sites (N) were calculated 
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according to Eq.  2-22 and Eq.  2-23. Based on Freundlich binding parameters (Table  3.13), 

the total number of binding sites (N) and binding capacity (a) of NP-MIP2 towards L-PA 

(NLPA= 21.06 (μmol/g), aLPA= 25.09±2.9 μmol/g (mol-1) m), were higher than that for NP-

MIP2 towards D-PA (NDPA= 10.55 (μmol/g), aDPA=13.5±0.32 μmol/g (mol-1) m). The 

heterogeneous index (m) of imprinted polymers network was high and indicated more 

homogenous network formation (m=1). This result agrees with effect of controlled radical 

polymerization in the formation of more homogeneous and uniform crosslinked networks 

[153, 256]. All these together indicated the successful creation of high affinity binding sites 

on the surface of imprinted nanoparticles for L-PA discrimination. 
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A. B. 

  

C. D. 

  

Figure  3.23. Equilibrium binding isotherms of L-PA (circles) and D-PA (squares) on imprinted and 
nonimprinted core-shell particles in acetonitrile. A) L-PA imprinted SiNP1-MIP, B) L-PA imprinted SiNP1-
MIP (red circles) and SiNP1-NIP (green circles), C) L-PA imprinted SiNP2-MIP, D) L-PA imprinted SiNP2-
MIP (red circles) and SiNP2-NIP (green circles). 
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Table  3.11. Mono-Langmuir isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  3.23. 

Polymer name  kd  (mM) qs (μmol/g) r2 F- value 

NP-MIP1 
LPA 4.44×107 ± inf 4.45×108 ± inf 0.9519 39 

DPA 1.58×108 ± inf 6.97×108 ± inf 0.9303 26 

NP-NIP1 LPA 2.16×108 ± inf 9.10×108 ± inf 0.9747 76 

NP-MIP2 
LPA 1.20± 0.53 61.01± 13.23 0.9743 75 

DPA 3.04±0.60 57.07± 7.28 0.9975 809 

NP-NIP2 LPA 1.37×108 ± inf 1.72×109 ± inf 0.9516 39 

 

Table  3.12. Bi-Langmuir Isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  3.23. 

Polymer name  
kd1 

 (mM) 

qs1 

(μmol/g) 

kd2 

 (mM) 

qs2 

(μmol/g) 
r2 

F- 

value 

NP-MIP1 
LPA 1.01×107 5.15×107 1.02×107 5.00×107 0.9519 14 

DPA 1.69×107 3.75×107 1.64×107 3.60×107 0.9303 ND 

NP-NIP1 LPA 2.14×107 4.54×107 2.08×107 4.34×107 0.9747 15 

NP-MIP2 
LPA 1.20 ±inf 27.76 ±inf 1.20 ±inf 33.24 ±inf 0.9743 28 

DPA 3.99 ±inf 65.12±inf 2.47×10-12 0.82 ±inf 0.9993 ND 

NP-NIP2 LPA 1.66×107 1.06×108 1.70×107 1.06×108 0.9516 10 

ND= not determined 
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Table  3.13. Freundlich isotherms fitting parameters obtained by nonlinear regression of data shown in 
Figure  3.23.  

Polymer name  

 

Affinity 

constant, 

K (mM -1) 

Total 

number of 

binding 

sites , N 

(µmol g-1) 

Heterogen

-eity 

parameter, 

m 

Binding 

capacity, a 

(µmol/g 

(mol-1)m) 

Regression 

coefficient, 

r2 

F- 

value 

NP-MIP1 
LPA ND ND 1.11±0.21 9.35±1.44 0.9792 46 

DPA ND ND 1.20±0.26 3.86±0.79 0.9500 38 

NP-NIP1 LPA ND ND 1.20±0.08 3.68±0.23 0.9945 363 

NP-MIP2 
LPA 13.13 21.06 0.61±0.15 25.09±2.9 0.9364 29 

DPA 22.15 10.55 0.72±0.03 13.5±0.32 0.9981 1036 

NP-NIP2 LPA ND ND 1.20±0.27 11.1±2.34 0.9649 55 

ND= not determined (negative value) 

 

Figure  3.24. Fisher values obtained by fitting the L/D-PA binding curves in Figure  3.23 to mono-Langmuir,     

bi-Langmuir and Freundlich isotherm models (see Table  3.11 to Table  3.13). 
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3.3 Conclusions 

A versatile and effective method was developed to prepare silica surface-imprinted 

nanoparticles with a uniform core-shell structure and controllable layer thickness by 

introducing RAFT groups to the surface of silica beads followed by copolymerization with 

functional monomers. According to the binding-isotherm results, the MIPNPs exhibited a 

much-higher binding affinity for the template molecule than the NIPNPs. In addition, 

MIPNPs were able to discriminate the template L-PA and its optical antipode D-PA. 

The results of our research demonstrated that the size of the core particles has an important 

role in binding properties of core shell particles. Comparison of the particles produced using 

the larger cores and the smaller core size revealed that the core-shell particles with smaller 

core size display higher binding affinity than larger one. This can be attributed to high 

specific surface area and grafting density of the colloidal size particles (NP-MIP2). 

 

 

3.4 Experimental 

3.4.1 Synthesis of monodisperse SiO2 nanoparticles  

Monodisperse SiO2 nanoparticles 330 nm, 200 nm and 100 nm in diameter were prepared by 

using a slightly modified Stöber process [241-244]. In a typical synthesis operation, two 

solutions with equal volumes were rapidly mixed to give a total volume of ~250 mL: one 

solution contained ethanol (113.61 mL) and TEOS (11.39 mL), while the other contained 

ethanol (40.99 mL), water (76.50 mL), and ammonium hydroxide (25 wt % in water, 7.56 

mL). The reaction mixture generally turns turbid white as SiO2 particles formed after ~10 

min. The reaction was allowed to continue for 6 h at room temperature, with moderate 

stirring, for full completion (yield 3.5g). Afterwards, they were collected by centrifugation 

(5000 rpm, 10 min) and washed by repeating redispersion in pure ethanol at least three times. 

The obtained nanoparticles were then dispersed and stored in 50 mL of toluene. 
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Table  3.14. Reaction conditions for the preparation of silica NPs of various sizes. 

Silica core  
Size 

(nm) 

Surface 

area 

(m2/g) 

Ethanol 

(mL) 

TEOS 

(mL) 

Water 

(mL) 

NH4OH, 

25%w  

(mL) 

Yield 

(g) 

SiNP2 a 20 182 - - - - - 

SiNP3 100 32 158 11.39 76.5 3.77 3.1 

SiNP1 200 19 155 11.39 76.5 7.56 3.5 

SiNP4 330 11 230 13.8 33 22.4 3.9 

a) Colloidal silica nanoparticles are commercial available and purchased from Nissan chemical company.  

 

3.4.2 Synthesis of amino modified silica nanoparticles  

The synthesis of SiNP1-NH2 was carried out according to the method reported in the 

literature [175, 246]. A suspension (7.00 g, 100 mL) of silica nanoparticles (SiNP1) in 

toluene was added to a three-necked round-bottom flask with stirring for 15 min under N2. 

According to the theoretical number of silanol groups on the silica surface (8 μmol/m2) an 

excess amount of (3-aminopropyl) triethoxysilane (1.26 g, 5.71 mmol) was added to the 

mixture and refluxed at 130 °C under N2 protection overnight, thereafter cooled to room 

temperature and was then precipitated into a large amount of hexanes (500 mL). The particles 

were recovered by centrifugation at 5000 rpm for 10 min and redispersed in 40 mL of acetone 

followed by reprecipitation in 300 mL of hexanes. The aminofunctionalized particles were 

dispersed directly into 70 mL of THF for subsequent coupling of the RAFT agent. 

Amino modified colloidal silica nanoparticles (SiNP2-NH2) were synthesized following a 

method previously reported [163]. A suspension (25 mL) of colloidal silica nanoparticles (7.5 

g, SiNP2) in methyl ethyl ketone was added to a three-necked round-bottom flask together 

with 3- aminopropyldimethylethoxysilane (0.62 g, 3.7 mmol) and dried THF (40 mL). The 

reaction mixture was heated at 85 °C under N2 protection overnight. Thereafter the mixture 

was cooled to room temperature and was then precipitated into a large amount of hexanes 

(500 mL). The particles (SiNP2-NH2) were recovered by centrifugation at 3000 rpm for         

15 min and redispersed in acetone (40 mL) followed by reprecipitation in hexanes (300 mL). 
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The aminofunctionalized particles were dispersed directly into THF (70 mL) for subsequent 

coupling of the RAFT agent. 

Table  3.15. Reaction conditions for the amino modification of silica NPs of various sizes. 

Modified 

support  

Size 

(nm) 

SiO2 

 (g) 

APDMES 

(mmol) 

APTES 

(mmol) 

THF 

(mL) 

Toluene 

(mL) 

SiNP2-NH2 
 20 7.5 3.7 - 40 - 

SiNP3-NH2 100 5.8 - 7.42 - 100 

SiNP1-NH2 200 7.0 - 5.71 - 100 

* The whole reactions were refluxed overnight under N2 protection.  

 

3.4.3 Synthesis of dithiobenzoate modified silica core particles  

A slightly modified version of the procedure reported by Li et al. was followed [163]. In a 

three-necked round bottom flask (250 mL), equipped with an overhead stirrer,                       

4-cyanopentanoic acid dithiobenzoate (0.385 g, 1.38 mmol), ethylchloroformate (132 μL, 

1.38 mmol) and triethylamine (TEA) (192 μL, 1.38 mmol) were dissolved in THF (50 mL). 

The solution was purged with N2 and cooled in an ethanol-liquid nitrogen bath for 40 minutes 

at   -70 ºC. After that, 7.00 g (70 mL) of amino modified silica (1.38 mmol of amino groups) 

were added at -10 ºC and the reaction was allowed to proceed overnight. After that, the 

particles were precipitated in hexane (500 mL) and collected by centrifugation (5000 rpm, 10 

min). Then, they were redispersed in acetone (80 mL), precipitated again in 300 mL of 

hexane, centrifugated at 5000 rpm during 10 min. The obtained nanoparticles (SiNP1-CPDB) 

were dried under vacuum at room temperature (6.5 g, 93% yield). 

In order to prepare the RAFT-modified colloidal silica NPs the same method was followed. 

In a three-necked round bottom flask (250 mL), equipped with an overhead stirrer, CPDB 

(0.74 g, 2.65 mmol), ethylchloroformate (254 μL, 2.65 mmol) and triethylamine (TEA) (370 

μL, 2.65 mmol) were dissolved in dry THF (50 mL) under nitrogen in a three-necked round 

bottom flask. The solution was purged with N2 and cooled in an ethanol-liquid nitrogen bath 

at -78 ºC. After stirring for 40 min the temperature was adjusted to -10 °C and a suspension 

of amino functionalized silica core particles (7.18 g; 2.65 mmol of amino groups) in THF       
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(65 mL) was added and the reaction allowed to proceed overnight. Thereafter the particles 

were precipitated in hexane (500 mL) and collected by centrifugation (3500 rpm, 15 min). 

They were subsequently redispersed in acetone (80 mL), precipitated again in 300 mL of 

hexane, centrifugated at 3500 rpm during 15 min, and redispersed in 100 mL THF. The 

resulting nanoparticles (SiNP2-CPDB) were dried under vacuum at room temperature (6.8 g, 

91% yield). 

Table  3.16. Reaction conditions for the RAFT modification of silica NPs of various sizes. 

Modified 

support  

Size 

(nm) 

SiO2-NH2 

 (g) 

CPDB 

(mmol) 

ClCOOC2H5 

(mmol) 

TEA 

(mmol) 

THF 

(mL) 

SiNP2-CPDB 
 20 7.18 2.65 2.65 2.65 120 

SiNP3-CPDB 100 6.0 1.15 1.15 1.15 120 

SiNP1-CPDB 200 7.0 1.38 1.38 1.38 120 

 

3.4.4 Synthesis of S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)- trithiocarbonate  

The trithiocarbonate RAFT agent was synthesized following a previously described 

procedure [252, 257]. Carbon disulfide (21.73 mL, 0.36 mol), chloroform (72.49 mL, 0.90 

mol), acetone (66.12 mL, 0.90 mol), and tetrabutylammonium hydrogen sulfate (2.41 g, 7.10 

mmol) were mixed with 120 mL of toluene in a 2 L three-necked round-bottom flask 

equipped with a mechanical stirrer and an addition funnel under nitrogen. Sodium hydroxide 

(50%) (201.6 g, 2.52 mol) was added dropwise over 90 min in order to keep the temperature 

below 25 °C. The reaction was stirred overnight. 900 ml water was added to the mixture, the 

layers were separated. The organic layer was discarded and the aqueous layer was acidified 

with 120 mL concentrated HCl (caution! gas, mercaptan odor) to precipitate the product as 

yellow solid. 50 ml toluene was added to stir with the mixture. Filtered and rinsed the solid 

with toluene to collect 13.83 grams of product after drying in the air to constant weight 

(21.75 % yield). 

H NMR (DMSO-d6, ppm from TMS): 1.59 (s, 12H), 12.91 (s, 2H). C-13 NMR (DMSO-d6): 

25.76, 57.25, 176.26, 220.50 
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CS2 + CHCl3 + (CH3)2 CO NaOH+
PTA H+

HO
S S

OH

S

OO

Trithiocarbonate (TTC)
 

                          Figure  3.25. Synthesis of carboxyl-terminated trithiocarbonate RAFT agent. 

 

3.4.5 Synthesis of trithiocarbonate modified silica core particles  

A slightly modified version of the procedure reported by Li et al. was followed [163]. A 

suspension (30 mL) of colloidal silica nanoparticles (9 g, SiNP2) in methyl ethyl ketone was 

added to a three-necked round-bottom flask together with 3-aminopropyldi methyl- 

ethoxysilane (0.81g, 5.02 mmol) and dried THF (50 mL). The reaction mixture was heated at 

85 °C under N2 protection overnight. Thereafter the mixture was cooled to room temperature 

and was then precipitated into a large amount of hexanes (500 mL). The particles (SiNP-

NH2) were recovered by centrifugation at 3000 rpm for 15 min and redispersed in acetone (50 

mL) followed by reprecipitation in hexanes (300 mL). The aminofunctionalized particles 

were dispersed directly into THF (70 mL) for subsequent coupling of the RAFT agent. In a 

three-necked round bottom flask (250 mL), equipped with an overhead stirrer, TTC (0.25 g, 

0.94 mmol), ethylchloroformate (89 μL, 0.94 mmol) and triethylamine (TEA) (130 μL, 0.94 

mmol) were dissolved in dry THF (50 mL) under nitrogen in a three-necked round bottom 

flask. The solution was purged with N2 and cooled in an ethanol-liquid nitrogen bath at -78 

ºC. After stirring for 40 min the temperature was adjusted to -10 °C and a suspension of 

amino functionalized silica core particles (9 g, 0.94 mmol of amino groups) in THF (70 mL) 

was added and the reaction allowed to proceed overnight. Thereafter the particles were 

precipitated in hexane (500 mL) and collected by centrifugation (3500 rpm, 15 min). They 

were subsequently redispersed in acetone (80 mL), precipitated again in 300 mL of hexane, 

centrifugated at 3500 rpm during 15 min, and redispersed in 100 mL THF. The resulting 

nanoparticles (SiNP-TTC) were dried under vacuum at room temperature (8.1 g, 90% yield). 
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3.4.6 Preparation of methyl methacrylate grafted polymer from RAFT-
modified silica nanoparticles 

RAFT agent anchored silica nanoparticles(100 mg, 10.4 µmol) , methyl methacrylate 

(0.50mL, 4690 µmol) and THF (5 mL) were added into a 20 mL glass tube, followed by 

sonication for 10 min. The prepolymerization mixture was purged of oxygen by either 

bubbling with N2 for 15 min or by three successive freeze-pump-thaw cycles. The 

polymerization was carried out at 50 oC for a prescribed time. The pure PMMA-grafted silica 

particles were obtained by repeated centrifugation-redispersion procedure in the THF 

solution. The upper clean liquid was collected, and the fresh THF (10 ml) was added into the 

residue. This procedure was repeated three times until no polymer was in THF. The resulting 

polymers were dried at 40 oC in a vacuum oven for 12 h. 

Table  3.17. Polymerization procedure for the methyl methacrylate graft polymerization. 

Polymer name  
Si-RAFT 

(mg) 

MMA 

(µmol) 

RAFT 

(µmol) 

ABDV 

(µmol) 

THF 

(mL) 

Time  

(h) 

SiO2-g-PMMA-1a 100 4690 10.4 10.4 5 15 

SiO2-g-PMMA-2a 100 4690 10.4 10.4 5 18 

SiO2-g-PMMA-3b 100 4690 8.2 8.2 5 20 

SiO2-g-PMMA-4b 100 4690 8.2 1.6 5 20 

a) Silica core size is 100 nm. 

b) Silica core size is 200 nm. 

 

3.4.7 Preparation of styrene grafted polymer from RAFT-modified silica 
nanoparticles 

RAFT agent anchored silica nanoparticles (100 mg, 10.4 µmol) , styrene (1 mL, 8720 µmol) 

and THF (5 mL) were added into a 20 mL glass tube, followed by sonication for 10 min. The 

prepolymerization mixture was purged of oxygen by either bubbling with N2 for 15 min or by 

three successive freeze-pump-thaw cycles. The polymerization was carried out at 50 oC for a 

prescribed time. The pure PSt-grafted silica particles were obtained by repeated 
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centrifugation-redispersion procedure in the THF solution. The upper clean liquid was 

collected, and the fresh THF (10 ml) was added into the residue. This procedure was repeated 

three times until no polymer was in THF. The resulting polymers were dried at 40 oC in a 

vacuum oven for 12 h. 

Table  3.18. Polymerization procedure for the styrene graft polymerization. 

Polymer name 
Si-RAFT 

(mg) 

Styrene 

(µmol) 

RAFT 

(µmol) 

ABDV 

(µmol) 

THF 

(mL) 

Time 

(h) 

SiO2-g-PSt-1 100 8720 10.4 10.4 5 40 

SiO2-g-PSt-2 100 8720 10.4 5.2 5 40 

SiO2-g-PSt-3 100 8720 10.4 10.4 5 72 

SiO2-g-PSt-4 100 8720 10.4 5.2 5 72 

 * Silica core size is 100 nm. 

 

3.4.8 Preparation of methacrylamide grafted polymer from RAFT-
modified silica nanoparticles 

RAFT agent anchored silica nanoparticles (200 mg, 14 µmol) , methacrylamide (320 mg, 

3760 µmol) and acetic buffer (5 mL, pH5, 10mM) were added into a 20 mL glass tube, 

followed by sonication for 10 min. The prepolymerization mixture was purged of oxygen by 

either bubbling with N2 for 15 min or by three successive freeze-pump-thaw cycles. The 

polymerization was carried out at 50 oC for a prescribed time. The pure PMAAM-grafted 

silica particles were obtained by repeated centrifugation-redispersion procedure in the water 

solution. The upper clean liquid was collected, and the fresh water (10 ml) was added into the 

residue. This procedure was repeated three times until no polymer was in water. The resulting 

polymers were dried at 40 oC in a vacuum oven for 12 h. 
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Table  3.19. Polymerization procedure for the methacrylamide graft polymerization. 

Polymer name  
Si-TTC 

(mg) 

MAAM 

(µmol) 

TTC 

(µmol) 

APS 

(µmol) 

Buffer 

(mL) 

Time  

(h) 

SiO2-g-PMAAM-1 200 3760 14 7 5 16 

SiO2-g-PMAAM-2 200 3760 14 3.5 5 16 

SiO2-g-PMAAM-3 200 3760 14 14 5 24 

SiO2-g-PMAAM-4 200 3760 14 7 5 24 

* Silica core size is 200 nm. 

 

3.4.9 Synthesis of core-shell MIPs using a soluble L-PA  

RAFT modified core particles (SiNP1: 400mg corresponding to 32 μmol RAFT groups) were 

suspended in a prepolymerization mixture containing L-PA (4.1 mg, 17 μmol), MAA (11.5 

μL, 135 μmol) and EGDMA (127 μL, 676 μmol) dissolved in 15 mL of dry toluene. 

Nonimprinted particles were produced identically but leaving out L-PA (SiNP1-NIP). The 

prepolymerization mixture was purged of oxygen by either bubbling with N2 for 15 min or by 

three successive freeze-pump-thaw cycles where after the initiator ABDV (2.01 mg, 8.1 

μmol) was added. This corresponds to a molar ratio of RAFT/initiator of 4. Polymerization 

was initiated at 50°C and allowed to proceed for 22 h. Template removal was then carried out 

by incubating the particles four times with MeOH  80%, Formic acid 15%, 5% H2O (15 mL) 

leaving the suspension to incubate 1 h followed by centrifugation at 5000 rpm. The final step 

washing was carried out with pure methanol (15 ml) for 30 min. Thereafter the particles were 

dried under vacuum at 40 ºC resulting in 491 mg (90%) of SiNP1-MIP and 482 mg (88%) of 

SiNP1-NIP. All the supernatants were collected and analyzed by reverse phase HPLC for the 

presence of template. 

In order to prepare the L-PA imprinted  polymers by using the colloidal silica NPs the same 

method was followed. RAFT modified core particles (SiNP2: 400mg corresponding to 33 

μmol RAFT groups) were suspended in a prepolymerization mixture containing L-PA (12 

mg, 50 μmol), MAA (34 μL, 404 μmol) and EGDMA (381 μL, 2020 μmol) dissolved in 15 

mL of dry toluene. Nonimprinted particles were produced identically but omitting L-PA 
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(SiNP2-NIP). The prepolymerization mixture was purged of oxygen by either bubbling with 

N2 for 15 min or by three successive freeze-pump-thaw cycles where after the initiator 

ABDV (2.75 mg, 11.0 μmol) was added. This corresponds to a molar ratio of RAFT/initiator 

of 3. Polymerization was initiated at 50 °C and allowed to proceed for 22 h. Template 

removal was then carried out by incubating the particles four times with MeOH 80%, Formic 

acid 15%, 5% H2O (15 mL) leaving the suspension to incubate 1 h followed by centrifugation 

at 5000 rpm. The final step washing was carried out with pure methanol (15 ml) for 30 min. 

Thereafter the particles were dried under vacuum at 40 ºC resulting in 730 mg (87%) of 

SiNP2-MIP and 750 mg (89%) of SiNP2-NIP. All the supernatants were collected and 

analyzed by reverse phase HPLC for the presence of template. 

Table  3.20. Polymerization procedure for the preparation of L-PA imprinted core-shell NPs. 

Polymer name  
Si-RAFT 

(mg) 

L-PA 

(µmol) 

MAA 

(µmol) 

EGDMA 

(µmol) 

RAFT 

(µmol) 

ABDV 

(µmol) 

Toluene 

(mL) 

SiNP1-MIP a 400 17 135 676 32 8 15 

SiNP1-NIP a 400 - 135 676 32 8 15 

SiNP2-MIP b 400 50 404 2020 33 11 15 

SiNP2-NIP b 400 - 404 2020 33 11 15 

a) Silica core size is 200 nm.  

b) Silica core size is 20 nm. 

 

 

 

 

 

 

 

139 

 



  

 

3.4.10 Template synthesis 

The templates L- and D-phenylalanine anilide (L-PA and D-PA) were synthesized following 

a previously described procedure [258, 259]. The synthesis consists of two different steps: 

synthesis of BOC-L/D-phenylalanine anilide followed by deprotection. 

3.4.10.1 Synthesis of BOC-L/D-phenylalanine anilide 

BOC-L-phenylalanine anilide was prepared by condensation of BOC-L-phenylalanine and 

aniline in DMF using DCC and HOBt as condensation agents. 0.05 mol (4.5 mL) of freshly 

distilled aniline were added under stirring to a solution of 0.06 mol (15.7 g) BOC-L/D-Phe-

OH, 0.06 mol (8.1 g) HOBt and 0.08 mol (16.5 g) DCC in 200 mL dry DMF. After stirring 

for a few hours, the mixture was filtered, the filtrate dried over MgSO4 and filtered. The 

filtrate was then reduced to dryness under reduced pressure. The solid residue was dissolved 

in DCM and washed with 300 mL each of 1M NaHCO3, 0.5 M HCl and water. The product 

obtained after evaporation of DCM was recrystallised from ethanol. 
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Figure  3.26. Synthesis of BOC-L /D phenylalanine aniline. 

 

3.4.10.2 Synthesis of L/D-phenylalanine anylide 

BOC-protecting group was removed by treatment with trifluoroacetic acid. To a solution of 

0.03 mol BOC-L/D-phenylalanine anilide in 30 mL DCM were added 30 mL TFA under 

cooling with an ice/salt mixture. The mixture was stirred for 2 h and reduced to dryness under 

reduced pressure. The solid residue was dissolved in 100 mL toluene and the same amount of 
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1M HCl was added. After stirring for a short time, the phases were separated and the toluene 

phase was washed again with 1M HCl. The combined aqueous phases were basified with 5M 

NaOH and extracted with DCM. After drying over MgSO4, filtration and evaporation of the 

solvent, the residue is recrystallised from tert butylmethyl ether. 

 

N
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Figure  3.27. Synthesis of L /D- phenylalanine anilide. 

 

Elemental Analysis: %C= 75.06; %H= 6.71; %N=11.6 

1H-NMR (CDCl3): δ=1.4 (s, 2H, -NH2), δ=2.76 (m, 1H, -CH2
β), δ=3.3 (m, 1H, -CH2

β), δ=3.7 

(m, 1H, -CH) δ=7.05 (m, 2H, m- NH-C6H5); δ=7.3 (m, 5H, -C6H5), δ= 7.5(m, 3H, o- and p- 

in NHC6H5), δ=9.37(s, 1H, NH) 

 

3.4.11 Batch binding tests of NPs for their affinity for L-PA and D-PA. 

Dry template free polymer (10 mg) was weighed into 10 separate HPLC vials followed by 

addition of solutions (1.0 mL) of D- or L-PA (0.1-2.5 mM) in acetonitrile (the test was 

downscaled for samples available in limited quantities). The vials were sealed and their 

contents allowed to equilibrate overnight at room temperature with gentle shaking. After 15 h 

incubation at room temperature the supernatants were sampled (30 μL) and the aliquots 

diluted in 270 μL water and transferred to HPLC vials for measurement of unbound solute 

concentration by reversed phase HPLC. The HPLC system consisted of an Agilent HPLC 

1100 series instrument (Agilent) equipped with a UV-DAD detector and an autosampler. The 
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column was a reversed phase (C18) column (Phenomenex Luna C-18, 150 × 4.6 mm), the 

mobile phase: MeOH/H2O: 62/38 (0.2% TFA), flow rate: 1.0 mL/min, the injection volume 

was 10 μL and the detection performed by UV absorbance at 265 nm. The resulting peak 

areas were used to calculate the amount of bound analyte on the polymer (in μmol/g of 

polymer). The binding results are averages of two independent experiments. 
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Chapter 4: Solid-Phase Synthesis of MIP Core-Shell 

NPs using Magnetic Template 

 

4.1 Introduction  
MIPs are perceived to have several shortcomings such as heterogeneous binding site, 

template occlusion, template recovery and upscaling for commercial exploitation. Several 

approaches such as thermodynamically controlled polymerizations [98, 229], thermal curing 

or annealing [260] and immobilized templates on sacrificial support [261, 262] have been 

proposed to address these problems. An elegant approach in this context is surface imprinting 

of nanoparticles by solid phase synthesis [263-265]. The nanoparticles are here synthesized in 

presence of template modified solid supports whereby growing particles adhere to the support 

surface. Post-synthesis, the particles can be affinity purified in situ leading to high affinity 

receptors in template free form.  

A solid-phase synthesis approach to prepare molecularly imprinted nanoparticles (MIP-NPs) 

towards trypsin has been described by Ambrosini et al [265]. The inhibitor of trypsin,           

p-aminobenzamidine, was attached to the glass beads. After addition of trypsin to form the 

PAB-trypsin complex, polymerization was conducted around the immobilized enzyme.       

N-isopropylacrylamide (NIPAM) was used as the major component in the polymer recipe in 

order to obtain thermoresponsive MIP-NPs. The MIP-NPs are released by a simple 

temperature change, resulting in template-free MIP-NPs that exhibit high specificity and 

selectivity for trypsin. 

Recently Poma et al. reported a reusable solid-phase template approach for the synthesis of 

MIP nanoparticles and their precise manufacture using a prototype automated UV 

photochemical reactor [263]. In this approach the immobilized template have been used more 

than 30 times without loss of performance. 

A limitation with the examples demonstrated thus far is related to the low specific surface 

area of the solid support beads. This translates into low particle yields (< 1 mg/g support 

beads) and a need for large reactors which essentially limits the technique to serial synthesis 

protocols [266]. 
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As a part of this thesis a novel scalable process to produce surface imprinted nanoparticles in 

high yield and in template free form was developed (see MSc thesis of Melanie Berghaus) 

[267]. This is based on the use of nanosized magnetic placeholder templates (Figure  4.1) in a 

process tolerating high template concentrations. The increased product yield should make this 

method ideal for both small-scale parallel synthesis and large-scale synthesis by established 

polymerization techniques. In this chapter we demonstrate the feasibility of the concept 

focusing on an extensively studied model system combined with RAFT mediated 

polymerization [239] from nanosized silica cores (Figure  4.8). 

 

Figure  4.1. Principle of using magnetic templates for synthesis, affinity enrichment and purification of surface 
imprinted core-shell nanoparticles. (1) Polymerization of monomers in presence of the binary particle 
suspension, (2) Separating the magnetic template and polymers adhering to the template from the crude reaction 
mixture. (3) Washing off loosely bound unreacted monomers and oligomers, (4) Gradually releasing the 
polymer adhering to the magnetic template by physical or chemical means thereby enriching high affinity MIP 
particles. (5) Reuse of the magnetic template repeating steps 1-4 [268] . 
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4.2 Results and Discussions 

4.2.1 Synthesis of magnetic core-silica shell nanoparticles 
(magNP@SiO2) 

Before the beginning of this study, Fe3O4 modified nanoparticles have been prepared in our group 

[267, 268]. The Fe3O4 nanoparticles were prepared by the coprecipitation method [268, 269]. 

The growth of silica shells on Fe3O4 nanoparticles was developed by a sol-gel process using 

tetraethyl orthosilicate (TEOS)[270]. The formation of a silica coating on the surfaces of iron 

oxide nanoparticles could provide a good biocompatible, non-toxic coating and easily 

modified with various groups for bioconjugation purposes[271]. The method used to prepare 

magNP@SiO2 is shown in Figure  4.2. The size and shape of magNP@SiO2 were examined 

by transmission electron microscopy (TEM). The TEM images revealed that the diameter of 

the resultant particles was in the range of 10-15 nm. FT-IR spectra of magNP and 

magNP@SiO2 are shown in Figure  4.3. In comparison with the curve of pure magNP, the 

characteristic peaks of the Si-O-Si group at approximately 1100 cm-1 indicated the formation 

of silica shells on the surface of magNP. 

HO

HO
HO

OH
HO OH

OH

OHFeSO4·7H2O   +   FeCl3
NH4OH (aq.)

water
85 oC

Fe3O4
TEOS

water
90 oC

magNP

Fe3O4

magNP@SiO2  

Figure  4.2. Schematic illustration of the synthesis of magnetic core-silica shell nanoparticles. 

 

Figure  4.3. FTIR spectra of magNP (blue line), magNP@SiO2 (red line). The Fe-O-Fe band of the core is 
accompanied by the Si-O-Si band at ca 1100 cm-1 in the IR-spectra of the magnetite particles after the 
application of the silica shell. 
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4.2.2 Aminofunctionalization of magnetic silica nanoparticles (magNP-
NH2) 

The surface hydroxyl groups of magNP@SiO2 were reacted with methoxy groups of            

3-aminopropyltrimethoxylsilane to introduce amine groups on the surface of magNP@SiO2. 

The synthesis rote is shown in Figure  4.4. The presence of free amine groups on the particles 

was confirmed by the ninhydrine test (Ruhemann's purple).   

O
Si NH2O

O

APTMS

ethanol/water 
 40 oC

HO

OH
HO

OH
HO OH

OH

OHFe3O4

magNP@SiO2

Fe3O4

magNP-NH2  

   Figure  4.4. Aminomodification of magnetic-silica core-shell nanoparticles. 

 

4.2.3 Immobilization of L-phenylalanine on magNP-NH2 (magNP-L-Phe) 

The aminomodified magnetic silica nanoparticles (magNP-NH2) were used as core particles 

to immobilize the protected L-phenylalanine template on the surface of magnetic 

nanoparticles. First the protected template was converted to active ester by reacting with      

N-hydroxysuccinimide. Then the activated ester form template was reacted with amino 

groups of magNP to furnish the immobilized template on the surface of magNP (magNP-

Fmoc-L-Phe). Fmoc deprotection was achieved by treating the particles in 20% piperidine in 

DMF. The resulting fulvene-piperidine adduct was quantified by measuring the absorption of 

the supernatants at 301 nm. This measurement was used to estimate the loading of L-Phe on 

the magnetic particles. The schematic synthesis route of template immobilization is shown in 

Figure  4.5. From elemental microanalysis data, coverage and distance amount of immobilized 

template on the surface of magNP were calculated. Results are demonstrated in Table  4.1.   
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Figure  4.5. Synthesis route of template immobilization on the surface of magNP-NH2. 

 

Table  4.1. Results from the characterisation of modified silica beads by elemental analysis. 

Modified 

supporta 

 

%C 

 

%N 

 

%S 

Ligandb 

density 

(mmol/g) 

Area 

densityb 

(μmol/m2) 

Coveragec 

(%) 

Distanced 

(nm) 

magNP-L-Phe 0.86 0.25 - 0.0016 0.014 0.2 11 

a) The ligand immobilization was performed in two steps by consecutive coupling of 3-aminopropyltrim 

ethoxysilane (APTMS) and L-Phe on the indicated core beads as described in the experimental section. The 

magnetic core-shell particles displayed an average particle size of 220 nm with a polydispersity of PDI= 0.245 

and a specific surface area of 110 m2/g. 

b)  The ligand density and area density were estimated from the release of fulvene-piperidine adduct upon 

deprotection of immobilized Fmoc-Phe. 

c) The coverage (C) was calculated according to Eq.  2-13, assuming a maximum silanol group density of 8 

μmol/m2. 

d) The average distance dL (nm) between the coupled ligands assuming a random ligand distribution was 

calculated according to Eq.  2-14. 
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FTIR spectra of aminofunctionalized magNP@SiO2 prior to and after coupling of Fmoc-L-

Phe are shown in Figure  4.6. In comparison with the curve of aminofunctionalized 

magNP@SiO2, the characteristic peaks of the amide groups indicated the immobilization of 

Fmoc-L-Phe on the surface of magNP@SiO2. 

The TEM images of modified magnetite nanoparticles are shown in Figure  4.7. These images 

displayed spherical shape before and after template coupling with more aggregates after 

template immobilization.  

A. B. 

  

Figure  4.6. FTIR spectra of of aminofunctionalized magNP@SiO2 prior to (A) and after (B) coupling of Fmoc-
L-Phe. In (B) the amide I and II bands have been indicated by arrows. 

A. B. 

  

Figure  4.7. TEM images of magNP@SiO2 (A) and magNP-L-Phe (B).The scale bar is 10 nm in the case of (A) 
and 20 nm for (B). 
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4.2.4 Grafting imprinted polymer nanoshell onto surface of RAFT- 
modified silica nanoparticles 

Based on the developed procedure in previous chapter (See in section   3.2.10), the grafting 

imprinted core-shell nanoparticles were prepared using RAFT modified silica support and 

magnetic template. The approach to synthesize magNP-L-Phe imprinted nanoparticles is 

outlined in Figure  4.8. To achieve grafting imprinted polymer, methacrylic acid (MAA), 

ethyleneglycol dimethacrylate (EGDMA), magNP-L-Phe, toluene and ABDV were used as 

functional monomer, crosslinker, template, porogen and initiator, respectively.   

 

Figure  4.8. Procedure used to synthesize silica core-MIP shell nanoparticles using magnetic template. 

In preparing the grafting polymer, a molar ratio EDMA/MAA= 5 and CPDB/ABDV = 3 were 

used. The relatively low ABDV/CPDB ratio helped to reduce the amount of free polymer 

derived from the initiator, and yet maintain a moderate polymerization rate [163]. The 

quantity of monomer relative to the silica support was adjusted to result in shell/film with 

approximately 4 nm thick shell. After polymerization the beads were isolated by an external 

magnetic field, and subjected to repetitive washing cycles in order to remove any leachables 

(e.g. template, oligomers, unreacted monomers). The magnetic fraction was washed by 

elution of the strongly bound particles by acidified methanol. After drying at 40 oC under 

ABDV, 50 oC 
Toluene 
 

magNP-L-Phe 

EGDMA 

MAA 

+ + 
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vacuum, the light pink MIP particles were obtained, suggesting the presence of dithioester 

groups there. Ca 17 mg particles (SiNP-MIP) were recovered in the elution fraction 

corresponding to an overall gravimetric yield of ca 9% assuming quantitative conversion of 

monomer to core-shell polymer. The procedure is shown in Table  4.2. 

Table  4.2. Procedure for the preparation of core-shell L-PA imprinted nanoparticles. 

Polymer 

name a  
Template 

Template 

mass 

(mg) 

L-Phe 

(µmol) 

Si-RAFT 

(mg) 

MAA 

(µmol) 

EGDMA 

(µmol) 

Toluene 

(mL) 

RAFT/

ABDV 

SiNP-MIP 
magNP-

L-Phe 
50 0.49 100 101 505 3 3/1 

a) See experimental section for details. 

 

4.2.5 Polymer characterization 

After polymerization, the beads were subsequently characterised by FTIR, TEM, DLS, TGA 

and elemental analysis. Analysis of the different particle fractions by TGA (Figure  4.9) 

showed an increasing mass loss in the order magNP-L-Phe/SiNP-MIP after washing (37%), 

magNP-L-Phe/SiNP-MIP prior to washing (40%) and released SiNP-MIP (43%). This order 

is expected assuming the aggregates to consist of silica core/polymer shell particles loosely 

and strongly adhered to magnetic FeO/SiO2 particles. By using the TGA mass loss data the 

gravimetric conversion and shell thickness (nm) of grafted polymer on silica core were 

calculated. The apparent shell thickness was 3.2 nm. 

Elemental analysis was used to confirm the successful grafting of polymer on silica core.    

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of grafted polymer on the silica surface. 

The data are presented in Table  4.3.  On the basis of the increase in carbon content the 

apparent shell thickness was calculated. The obtained shell thickness was 2.4 nm.  

In Table  4.3 the apparent thickness, calculated from the TGA mass loss data and elemental 

analysis, have been compared with the nominal thickness, estimated assuming the grafted 

shell to consist of monomers forming a liquid film covering the core surface. The somewhat 

lower measured thickness compared to the nominal values agrees with our previous report 
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[239] and can be attributed to solution chain growth, nevertheless resulting in an acceptable 

conversion of monomer to shell polymer.  

Table  4.3. Results from the characterisation of imprinted core-shell beads. 

Polymer name a %C %N %S 
Mass 

loss b (%)  

Conv.c 

(%) 

dnom
d 

(nm) 

dEA
e 

(nm) 

dTGA
f 

(nm) 

SiNP-MIP 20.50 0.32 0.43 43 82 4.1 2.4 3.2 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion=mass loss (TGA)/mass of monomer feed. 

d) The shell thickness (nm) was calculated according to Eq.  2-3. 

e) The shell thickness (nm) was calculated according to Eq.  2-3, Eq.  2-16 and Eq.  2-17.  

f) The shell thickness (nm) was calculated according to Eq.  2-3 and Eq.  2-9.   

 

A. B. 

  

Figure  4.9. Thermal gravimetric analysis of the L-Phe imprinted core-shell nanoparticles using magnetic 
template; TGA (A), DTG (B); crude magNP-L-Phe/SiNP-MIP prior to washing (red), magNP-L-Phe/SiNP-MIP 
after washing (blue) and released SiNP-MIP (green). 

The TEM and SEM images of the mag-L-Phe imprinted core-shell nanoparticles are shown in 

Figure  4.10.  An inorganic silica core appears darker than the grafted organic polymer shell 

due to the difference in density. Comparison of TEM images of grafted polymer silica 

nanoparticles with images of bare silica particles and RAFT modified silica support 

confirmed a successful grafting of the polymer shell on the silica particles. The average 

50

60

70

80

90

100

100 200 300 400 500 600 700 800

W
ei

gh
t [

%
] 

Temperature [oC] 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

100 200 300 400 500 600 700 800

De
riv

. W
ei

gh
t [

%
/o C

] 

Temperature [oC] 

152 

 



  

particle size as estimated by TEM measurements of these grafted silica core-shell particles 

was found to be in the range of 20-25 nm with a shell thickness of 2-4 nm . 

 A. B. 

  

  
C. D. 

Figure  4.10. TEM (A, B) and SEM (C, D) images of the L-Phe imprinted core-shell nanoparticles using 
magnetic template. The scale bar is 50 nm in the case of (A) 20 nm for (B) 400 nm in the case of (C) and 300 
nm for (D). 

 

The FTIR spectra of the core-shell beads shown in Figure  4.11 display two characteristic 

bands i.e. the carbonyl stretching of the polymer matrix at ca 1740 cm-1 and the siloxane 

vibration of silica core at ca 1120 cm-1. 
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                           Figure  4.11. FTIR spectra of SiNP-RAFT(a) and SiNP-MIP (b). 

The DLS data demonstrated a Z-average size of 45 nm and a polydispersity of 0.255.The 

particles size measured by DLS was slightly bigger than the size obtained from TEM due to 

the aggregation of the particles (Figure  4.12). The TEM images further revealed separate or 

smaller aggregates of polydisperse particles. 

 

                           Figure  4.12. DLS results of the magnetic L-Phe imprinted nanoparticles. 

 

4.2.6  Binding isotherms of the imprinted polymers 

In order to evaluate the binding properties, the particles were subsequently tested for their 

affinity towards the template L-PA and its optical antipode D-PA in acetonitrile. After 

incubating the particles with solutions of L-PA or D-PA of known concentrations the free 
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concentration of the solutes were determined by reversed phase HPLC. Binding curves were 

then constructed by plotting the specific amount of bound solute against the free 

concentration of solute.  

As shown in Figure  4.13, the amount of template peptide bound to the MIPNPs at 

equilibrium, increased with increasing initial concentration of the template. Interestingly the 

material prepared using the magnetic placeholder template showed somewhat steeper binding 

curves and higher uptake of L-PA compared to SiNP-MIP2 (See Figure  3.23). Hence the 

immobilized ligand seems rather effective in generating imprinted sites complementary to   

L-PA. The enantioselectivity and affinity appears particularly striking given that the particles 

were generated using ca 10 times less template compared to the conventional procedure. The 

here reported method profit from the high surface to volume ratio of template decorated 

magnetic nanoparticles potentially allowing a much higher product yield of affinity enriched 

imprinted particles. In addition, the use of immobilized templates and RAFT mediated 

surface initiated polymerization should lead to more accessible and uniform binding sites.  

The isotherms were subsequently fitted to mono-Langmuir, bi-Langmuir and Freundlich 

isotherm models. The resulting isotherm parameters are shown in Table  4.4, Table  4.5 and 

Table  4.6. The Fisher values in Figure  4.14 reflect which of the models provides the best fit 

to a particular isotherm, a higher number indicating a better fit. According to the Fisher value, 

the experimental binding isotherm was best fitted to the Freundlich isotherm model. 

Compared with D-PA, the imprinted polymer for L-PA revealed high total number of binding 

sites (N= 34.10 µmol/g) and binding capacity (a= 37.84 ±1.89μmol/g (mol-1) m). All these 

together indicated the presence of high affinity binding sites on the surface of imprinted 

nanoparticles. 
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Figure  4.13. Equilibrium binding isotherms of L-PA (circles) and D-PA (triangle) on imprinted core-shell 
particles in acetonitrile. The MIPs were synthesized using the magnetic template. 

 

Table  4.4. Mono-Langmuir isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  4.13. 

Polymer name  kd (mM) qs (μmol/g) r2 F- value 

SiNP-MIP 
LPA 0.33 ±0.16 55.04 ±7.38 0.9576 45 

DPA 1.47 ±2.28 64.16 ±49.08 0.7928 7.6 
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Table  4.5. Bi-Langmuir isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  4.13. 

Polymer name  
kd1 

 (mM) 

qs1 

(μmol/g) 

kd2 

 (mM) 

qs2 

(μmol/g) 
r2 

F- 

value 

SiNP-MIP 
LPA 0.085 ±inf 27.37 ±inf 1.49×109 1.79×1010 0.9949 ND 

DPA 0.003 ±inf 9.42 ±inf 3.44×109 4.87×1010 0.9622 ND 

ND= not determined 

Table  4.6. Freundlich isotherms fitting parameters obtained by nonlinear regression of data shown in 
Figure  4.13.  

Polymer name  

 

Affinity 

constant, 

K(mM -1) 

Total 

number of 

binding 

sites ,N 

(µmol g-1) 

Heterogen

-eity 

parameter, 

m 

Binding 

capacity, a 

(µmol/g 

(mol-1)m) 

Regression 

coefficient, 

r2 

F- 

value 

SiNP-MIP 
LPA 20.49 34.10 0.41± 0.06 37.84 ±1.89 0.9794 95 

DPA 39.60 25.84 0.46± 0.17 26.25±3.47 0.8845 15 

 

 

Figure  4.14. Fisher values obtained by fitting the L/D-PA binding curves in Figure  4.13 to mono-Langmuir, bi-
Langmuir and Freundlich isotherm models (see Table  4.4 to Table  4.6). 
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4.3 Conclusions 
Core-shell MIP NPs were produced using a new approach which relies on immobilization of 

the template on a magnetic solid support. Combination of surface initiated RAFT 

polymerization and solid phase synthesis offers significant advantages when compared to 

traditional approaches which rely on free template in solution, such as receptors in template 

free form, template reusability and high affinity binding site.  

The results of our research demonstrated that the MIP NPs prepared via this method has high 

accessible binding site and good discrimination towards the template L-PA and its optical 

antipode D-PA. These aspects in addition to the fact that polymerization take place in 

homogenous media hold great promise with respect to method scalability and parallel 

synthesis. We are currently exploiting these possibilities while applying the concept to other 

model systems including those of biological significance. The results of this chapter have 

been submitted for publication [272]. 

 

 

 

4.4 Experimental 

4.4.1 Synthesis of magnetic core nanoparticles (magNP)  

A slightly modified version of the procedure reported by Ma et al. was followed [269]. 

FeSO4·7H2O (6 g) and anhydrous FeCl3 (7 g) were dissolved in water (200 mL) under N2 

with vigorous stirring at 85 °C. An aqueous solution of 25% ammonia (15 mL) was then 

quickly added leading to a change of color from orange to black due to the precipitation of 

the magnetite nanoparticles. The solution was stirred for 30 min at elevated temperature and 

then allowed to cool down to room temperature. Afterwards, the magnetic particles were 

collected using a magnet and washed with 3 x 50 mL water and in a final step with 50 mL  

0.2 M NaCl solution. The particles were finally dried at 80 °C under vacuum leading to 11 g 

of dry magNP. 
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4.4.2 Silica coating on the surface of magnetic nanoparticles 
(magNP@SiO2)  

Following the procedure reported by Taylor et al. [270], dry magNP (2 g) was dispersed in 50 

mL water by sonication. The particles were collected by a magnet and subsequently dispersed 

in a 10% (v/v) aqueous solution of TEOS (230 mL). After addition of glycerol (200 mL) the 

pH was adjusted to 4.6 with glacial acetic acid. The dispersion was then heated to 90 °C 

under N2 atmosphere and stirred using an overhead stirrer for 2 hours. After washing with 

water (3x200 mL) and ethanol (3x100 mL), the particles were dried in a vacuum oven at     

40 °C leading to 2 g of dry magNP@SiO2. 

 

4.4.3 Aminofunctionalization of magnetic silica nanoparticles (magNP-
NH2) 

magNP@SiO2 (1 g) was dispersed in a solution (30 mL) of ethanol/water (1/1, v/v) by 

sonication for 30 min. 3-aminopropyltrimethoxysilane (APTMS) (4 mL) was added to the 

dispersion under N2 atmosphere and the dispersion stirred at 40 °C overnight. The dispersion 

was thereafter cooled to room temperature and the particles collected with a magnet and 

washed with ethanol, and three times with deionized water. Finally, the particles were dried 

under vacuum at 60 °C leading to 1 g of dry magNP-NH2. The presence of free amine groups 

on the particles was confirmed by the ninhydrine test (Ruhemann's purple). 

 

4.4.4 Immobilization of L-phenylalanine on magNP-NH2 (magNP-L-Phe) 

Fmoc-Phe-OH (1.9 mg) was converted to the active ester by dissolving it in 10 mL phosphate 

buffer (50mM, pH7.5) followed by addition of N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide (EDC) (5 mM) and N-hydroxysuccinimide (10 mM). The reaction was 

allowed to proceed for 15 min followed by addition of 500 mg of magNP-NH2. The 

dispersion was sonicated for 10 min and was thereafter incubated over night at room 

temperature. Fmoc deprotection was achieved by treating the particles in 20% piperidine in 

DMF (5 x 5 mL). The resulting fulvene-piperidine adduct was quantified by measuring the 

absorption of the supernatants at 301 nm. This measurement was used to estimate the loading 
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of L-Phe on the magnetic particles. In parallel, fluorescence of the supernatants was 

measured using an excitation wavelength of 300 nm and detecting the emission at 400 nm. 

 

4.4.5 Synthesis of core-shell MIPs using magNP-L-Phe as template 
(SiNP-MIP) 

A suspension of RAFT-modified core particles (SiNP-RAFT: 100 mg), MAA (8.6 μL), 

EDMA (95 μL) in 3 mL of dry toluene was added to magNP-L-Phe (50 mg), previously 

dispersed in toluene by sonication. The prepolymerization mixture was purged of oxygen by 

either bubbling with N2 for 15 min or by three successive freeze-pump-thaw cycles where 

after the initiator ABDV (0.93 mg) was added. This corresponds to a ratio of RAFT/initiator 

of 3. Polymerization was initiated at 50 °C and allowed to proceed for 22 h. After 

polymerization the particles were collected by magnet and washed by intermittent magnetic 

separation with toluene (3 mL) followed by five times with MeOH 80%, Formic acid 15%, 

5% H2O (3 mL). Each elution step was accompanied by sonication of the suspension for 15 

min. The supernatants containing the free SiNP-MIP2 were collected and pooled followed by 

isolation of the particles by centrifugation. In order to clean them from small traces of 

remaining magNP-L-Phe, they were washed by intermittent magnetic separation with 1) 1M 

HCl (3 mL) overnight resulting in a color change from brownish to pink; 2) three times with 

water (3 mL) until pH was neutral and 3) MeCN (3 mL) and thereafter dried under vacuum at 

40 °C. This resulted 17 mg of dry particles (ca 9 % gravimetric yield). 

 

4.4.6 Batch binding tests of NPs for their affinity for L-PA and D-PA. 

Dry template free polymer (2 mg) was weighed into 10 separate HPLC vials followed by 

addition of solutions (0.2 mL) of D-PA or L-PA (0.1-2.5 mM) in acetonitrile (the test was 

downscaled for samples available in limited quantities). The vials were sealed and their 

contents allowed to equilibrate overnight at room temperature with gentle shaking. After 15 h 

incubation at room temperature the supernatants were sampled (30 μL) and the aliquots 

diluted in 270 μL water and transferred to HPLC vials for measurement of unbound solute 

concentration by reversed phase HPLC. The HPLC system consisted of an Agilent HPLC 

1100 series instrument (Agilent) equipped with a UV-DAD detector and an autosampler. The 
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column was a reversed phase (C18) column (Phenomenex Luna C-18, 150 × 4.6 mm), the 

mobile phase: MeOH/H2O: 62/38 (0.2% TFA), flow rate: 1.0 mL/min, the injection volume 

was 10 μL and the detection performed by UV absorbance at 265 nm. The resulting peak 

areas were used to calculate the amount of bound analyte on the polymer (in μmol/g of 

polymer). The binding results are averages of two independent experiments. 
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Chapter 5: Epitope Imprinted Core-Shell Nanoparticles 

Targeting β-Amyloid  

 

5.1 Introduction  

Alzheimer’s disease (AD) is the most common cause of late life dementia in humans and the 

fourth leading cause of death in the developed world. It is believed that cerebral deposition of 

amyloid plaques is central to the disease process. Thus, microscopically, AD is characterised 

by marked degeneration of the neurons and their synapses and by the presence of large 

numbers of senile plaques and neurofibrillary tangles in the cerebral neocortex and 

hippocampus. The plaques are made up of Amyloid deposits mainly comprising aggregates 

of a 39-42 residue peptide called β-amyloid (Aβ). 

In this work we have investigated the epitope imprinted core-shell nanoparticles via surface 

initiated RAFT polymerization for β-amyloid template. Epitope imprinted nanoparticles 

(NPs) were prepared by grafting of poly-(ethyl ammonium methacrylate -co- diarylurea -co- 

divinylbenzene) in presence of a β-amyloid template from a RAFT modified 200 nm and 20 

nm sized silica cores. After the removal of the template by intensive wash, the resultants 

MIPs were characterized by FTIR, TEM, TGA and elemental analysis. The polymers were 

examined by equilibrium rebinding for their affinity towards the β-amyloid template by 

reversed phase HPLC. 

 

5.1.1 Choice of the amyloid peptide epitopes 

The C-terminal part of Aβ peptides, in general, has been suggested to be involved in the 

dimerization and aggregation of Aβ[273] and one fragment, in particular, has been considered 

to be the major pathogenic form in Alzheimer’s disease, the 42 amino acid sequence (Aβ1-42): 
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Aβ1-42: 

H-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-

Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-Val-Ile-

Ala-OH 

Figure  5.1. Schematic representation of the amyloid precursor protein (APP) and the location of the Aβ 
peptide(up) and the 42 amino acid sequence of Aβ1-42 (down). 

In order to prepare MIPs for discrimination of the C-termini of Aβ1-42, we selected the 

corresponding C-terminal hexapeptide sequences (marked in green) as templates. 

 

5.2 Results and Discussions 

5.2.1 Template synthesis 

In contrast to previously published examples involving hydrophilic peptide sequences as 

templates, the imprinting of the hydrophobic and strongly self-aggregating amyloid peptides 

have posed new challenges. The C-terminal sequence Aβ37-42 exhibit notoriously poor 

solubility in a variety of solvents, and they precipitate in water to form fibers of aggregated 

peptide in a stable antiparallel β-sheet conformation [274]. Poor solubility was also 

confirmed for the acetylated templates, and only a few solvents [e.g., dimethyl sulfoxide 

(DMSO), N,N-dimethylformamide (DMF), formic acid] were capable of dissolving the 

peptides at sufficiently high concentrations for molecular imprinting. DMSO was therefore 

chosen as the base solvent in the preparation of the first set of MIPs. Transforming of 

template into its tetrabutylammonium salt (AcGGVVIA̶ TBA+) enhanced the solubility 

significantly, and polymerization could then be performed in less competitive solvents, 

including up to 65% acetonitrile. This was used to prepare a second set of MIPs. 
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The hexapeptide template, H-Gly-Gly-Val-Val-Ile-Ala-OH (Aβ37-42), was acetylated on the 

N-terminal and transformed to the TBA salt of the acetylated peptide and used as a template 

for the epitope imprinting. From the different methods tested for the acetylation the best 

results were obtained by dissolving the peptide, Aβ37-42 in a minimum amount of DMSO 

followed by addition of NH4HCO3 (50 mM) and acetic anhydride in MeOH. The reaction 

was monitored by a ninhydrin test, as described in the experimental section and the reaction 

time determined by a negative ninhydrin test, i.e. trace amounts of free amino groups. The 

purity of the final compound was determined by RP-HPLC which was in the range of 95-

98%. The TBA salt of the acetylated peptide was prepared by addition of 1 eq. of tetrabutyl- 

ammonium hydroxide in methanol and used directly after drying. 
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Figure  5.2. Chemical structure of the template used for the synthesis of the imprinted polymers (Ac-Gly-Gly-
Val-Val-Ile-Ala-O¯ TBA+, Ac-Aβ37-42-TBA). 

 

5.2.2 Grafting of beta-amyloid imprinted polymers from RAFT-modified 
silica nanoparticles  

The β-amyloid imprinted polymers were produced based on the previously developed 

procedure in our group [275]. The grafting polymer from RAFT-modified silica support were 

conducted by using diarylurea as  comonomer, ethyl ammonium methacrylate as a functional 

monomer, divinylbenzene as a crosslinker,  in presence of Ac-Aβ37-42-TBA as a template in 

organic media (Figure  5.3). In order to improve the template solubility, polymerization was 

performed in less competitive solvents, including up to 65% acetonitrile and 35% DMSO. 

The 1,3-diarylurea  was used as host monomer which is capable of forming a twofold 

hydrogen bond to the template oxyanion [276].The previously combinatorial method in our 

group revealed that the polymer prepared using the hydrophobic cross-linker divinylbenzene 

(DVB) displayed the highest template binding among the cross-linkers tested [275].  
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Figure  5.3. Procedure for preparing beta-amyloid imprinted polymers from RAFT-modified silica nanoparticles 
for binding of the C-terminus of Aβ33-42. 

The polymerization was carried out at 50 oC for 40 h. The ratio among template, comonomer, 

functional monomer and crosslinker was 0.04: 0.04: 4: 20, respectively. In preparing the 

grafting polymers, a molar ratio RAFT/ABDV = 4 and RAFT/ABDV= 3 were used. The 

quantity of monomer relative to the silica supports were adjusted to result in shells/films with 

approximately 30 nm (SiNP-MIP-1) or 4 nm (SiNP-MIP-2, 3, 4) thick shells.  After polymer-  

ization the beads were isolated by centrifugation and subjected to repetitive washing-

centrifugation cycles in order to remove any leachables (e.g. template, oligomers, unreacted 

monomers). Five cycles were sufficient for exhaustive template removal as concluded by 

HPLC analysis of the washing fractions. After drying at 40 oC under vacuum, the light pink 

MIP particles were obtained. The light pink NIP particles with surface-immobilized 

dithiobenzoate groups were then prepared and purified under the identical conditions except 

that the template was omitted. The procedure is shown in Table  5.1. 
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Table  5.1. Procedure for the preparation of core-shell beta-amyloid imprinted nanoparticles.  

Polymer 

 name a 

Template: 

Ac-Aβ37-42-TBA 

(μmol) 

SiNP-

RAFT 

(mg) 

Urea 

(µmol) 

EAMA 

(µmol) 

DVB 

(µmol) 

ACN/ 

DMSO 

(mL) 

RAFT/ 

ABDV 

SiNP-MIP-1b 5.11 700 5.11 511 2556 15 3/1 

SiNP-NIP-1b - 700 5.11 511 2556 15 3/1 

SiNP-MIP-2c 5.31 400 5.31 531 2653 15 3/1 

SiNP-NIP-2c - 400 5.31 531 2653 15 3/1 

SiNP-MIP-3c 3.98 300 3.98 398 1990 7 4/1 

SiNP-NIP-3c - 300 3.98 398 1990 7 4/1 

SiNP-MIP-4d 3.98 300 3.98 398 1990 7 4/1 

SiNP-NIP-4d - 300 3.98 398 1990 7 4/1 

a) See experimental section for details. 

b) Silica core size is 200 nm and the particles were modified by dithiobenzoate RAFT agent. 

c) Silica core size is 20 nm and the particles were modified by dithiobenzoate RAFT agent. 

d) Silica core size is 20 nm and the particles were modified by trithiocarbonate RAFT agent. 

 

5.2.3 Polymer characterization  

After polymerization, the beads were subsequently characterized by TGA, TEM, and 

elemental analysis. Elemental analysis and TGA were used to confirm the successful grafting 

of polymers on silica cores. Figure  5.4 displays the TGA and DTG curves of grafted 

polymers. It can be observed from TGA curves the weight loss of the resulting polymers 

between 100 oC and 800 oC which are listed in Table  5.2. By using the TGA results the 

gravimetric conversion and shell thickness (nm) of grafted polymers on silica cores were 

calculated. The results demonstrated that the conversion efficiency of polymer chains was 

increased by using the less amount of solvent for polymerization.   

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of grafted polymer on the silica surface. 
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The data are presented in Table  5.2. On the basis of the increase in carbon content the 

apparent shell thickness was calculated. In Table  5.2 the apparent thickness, calculated from 

the TGA mass loss data and elemental analysis, have been compared with the nominal 

thickness, estimated assuming the grafted shell to consist of monomers forming a liquid film 

covering the core surface. The somewhat lower measured thickness compared to the nominal 

values agrees with our previous report [239] and can be attributed to solution chain growth, 

nevertheless resulting in an acceptable conversion of monomer to shell polymer. 

The TEM images of the polymer grafted silica NPs are shown in Figure  5.5. The images 

demonstrated the highly uniform spherical morphology with the size of about 200-220 nm 

and 20-25 nm. In the comparison of TEM images before and after polymerization, a shell 

structure can be seen on the silica particles after polymerization in with a uniform thickness 

of the shells which are signed via arrow in Figure  5.5. The results obtained from these 

techniques confirmed that grafting successfully occurred from the surface of the silica 

support. 

Table  5.2. Results from the characterisation of imprinted and nonimprinted core-shell beads. 

Polymer name a %C %N %S 
Mass 

loss b (%)  

Conv.c 

(%) 

dnom
d 

(nm) 

dEA
e 

(nm) 

dTGA
f 

(nm) 

SiNP-MIP-1g 18.50 0.47 0.54 24.9 36 30 23.6 18.5 

SiNP-NIP-1g 18.38 0.42 0.75 25.3 37 30 23.4 18.8 

SiNP-MIP-2h 19.36 0.56 0.68 21 41 4.31 2.2 1.3 

SiNP-NIP-2h 21.42 0.58 0.66 23 47 4.31 2.5 1.5 

SiNP-MIP-3h 24.15 0.62 0.69 23 61 4.31 2.9 1.5 

SiNP-NIP-3h 22.76 0.59 0.67 21.5 54 4.31 2.7 1.4 

SiNP-MIP-4i 23.89 0.61 0.56 22.2 61 4.31 2.9 1.4 

SiNP-NIP-4i 25.93 0.68 0.59 25.4 75 4.31 3.2 1.6 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion=mass loss (TGA)/mass of monomer feed. 
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d) The shell thickness (nm) was calculated according to Eq.  2-3.  

e) The shell thickness (nm) was calculated according to Eq.  2-3, Eq.  2-16 and Eq.  2-17  

f) The shell thickness (nm) was calculated according to Eq.  2-3 and Eq.  2-9. 

g) Silica core size is 200 nm and the particles were modified by dithiobenzoate RAFT agent. 

h) Silica core size is 20 nm and the particles were modified by dithiobenzoate RAFT agent. 

i) Silica core size is 20 nm and the particles were modified by trithiocarbonate RAFT agent. 

 

  

  

Figure  5.4. Thermal gravimetric analysis of the beta-amyloid imprinted and nonimprinted core-shell 
nanoparticles; TGA and DTG of SiNP-MIP-1 and SiNP-NIP-1 (A), TGA and DTG of SiNP-MIP-2 and SiNP-
NIP-2 (B), TGA and DTG of SiNP-MIP-3 and SiNP-NIP-3 (C), TGA and DTG of SiNP-MIP-4 and SiNP-NIP-
4 (D). 

 

A. B. 

C. D. 
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Figure  5.5. TEM images of SiNP-MIP-1 and SiNP-NIP-1 (A, B); SiNP-MIP-2 and SiNP-NIP-2 (C, D); SiNP-
MIP-3 and SiNP-NIP-3 (E, F). The polymer shells are indicated by arrows. The scale bar is 200 nm in the case 
of (A) 100 nm for (B) 20 nm for(C, E) 50 nm for (D) and 10 nm for (F). 
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5.2.4 Binding isotherms  

The polymers were freed from the template by washing in methanol and acidified methanol 

and then subjected to a template-rebinding experiment. The recovery of first three washing 

fraction was 11.68 %, 13.83 %, 18.14 % and 15.47 % for SiNP-MIP-1, SiNP-MIP-2, SiNP-

MIP-3 and SiNP-MIP-4, respectively and the washing continued until the template could not 

be detected in the washing solution by RP-HPLC. The low recovery percentage can be 

attributed to the lower detected peak area for template in washing solution (MeOH) than the 

standard stock solution (GuHCl). The template Aβ33-42 was added in free and nonacetylated 

form. The batch rebinding experiments were conducted in 4 M GuHCl using a range of    

Ab33-42 concentrations from 0.005 mM to 0.2 mM. The binding isotherms recorded in 4 M 

GuHCl are informative in regard to the affinity of those sites under denaturing conditions. 

After incubating the particles with solutions of Aβ33-42 of known concentrations the free 

concentration of the solutes were determined by reversed phase HPLC. As can be seen 

obviously from binding isotherms (Figure  5.6), the resulting polymers which prepared in 

diluted condition (SiNP-MIP-1, 2 and SiNP-NIP-1, 2) revealed same adsorption capacity at 

the both imprinted and nonimprinted polymers. This behavior can be attributed to low 

concentration of template in diluted prepolymerization mixture which cause the week 

interaction among the functional monomers and template. In contrast, at the both resulting 

polymers which generated in concentrated condition the imprinted particles displayed slightly 

more adsorption capacity than the nonimprinted particles in high range of template 

concentrations. In addition, GuHCl was used as rebinding media and the peptide should be in 

a wide range of different denatured states, not in the native state. Therefore, the different 

denatured states might be caused the low binding capacity. 

The notoriously poor solubility of Aβ33- 42 in aqueous media posed a considerable problem for 

the rebinding tests. The results of calibration plot therefore reflected this problem and there 

were some points at each calibration curve which caused to obtain low coefficient of 

correlation for a linear regression of all data points. Furthermore, in order to separate polymer 

nanoparticles from free Aβ33- 42 the particles were subjected to centrifugation. After this 

process and in spite of using low speed rotation, some Aβ33-42 was precipitated from 

supernatant. Consequently, the somewhat lower differences at adsorption capacity of the 

imprinted and nonimprinted particles could be attributed to poor solubility of beta amyloid in 

aqueous media. 
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Figure  5.6. Equilibrium binding isotherms of Ab33-42 on imprinted (circles) and nonimprinted (triangles) core-
shell particles in GuHCl (4M)/ACN: 90/10 (v/v). A) SiNP-MIP-1(red circles) and SiNP-NIP-1(blue triangles), 
B) SiNP-MIP-2(red circles) and SiNP-NIP-2(blue triangles), C) SiNP-MIP-3 (red circles) and SiNP-NIP-3 (blue 
triangles), D) SiNP-MIP-4 (red circles) and SiNP-NIP-4 (blue triangles). 
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5.3 Conclusions 

Synthetic receptors for beta amyloid peptides have been prepared by epitope imprinted core-

shell nanoparticles. Two silica nanoparticles with core diameters of 200 nm and 20 nm were 

modified via dithiobenzoate and trithiocarbonate RAFT agent and used as solid supports. The 

final MIPs were designed using TBA salt of the acetylated Aβ37-42 as a template for the 

recognition of Aβ33-42. The batch rebinding results demonstrated that the resulting polymers 

which prepared in diluted condition showed same adsorption capacity at the both imprinted 

and nonimprinted polymers. In contrast, at the both resulting polymers which generated in 

concentrated condition the imprinted particles displayed slightly more adsorption capacity 

than the nonimprinted particles in high range of template concentrations. This behavior can 

be attributed to low concentration of template in diluted prepolymerization mixture which 

cause the week interaction among the functional monomers and template. The poor solubility 

of Aβ33- 42 in aqueous media caused a considerable problem for the rebinding tests. For this 

reason more investigations need to address this problem and get more optimistic results. 

 

 

 

5.4 Experimental 

5.4.1 Acetylation of Aβ37-42 

The peptide, H-GGVVIA-OH (100 mg) was dissolved in the minimum amount of DMSO by 

adding aliquots of 100 μl. After the addition of NH4HCO3 (50 mM), 1.2 equivalents of acetic 

anhydride in MeOH were added drop-wise and the mixture stirred for 12 h. The reaction was 

monitored by adding a drop of the supernatant to 100 μl of ninhydrin in solution (0.1% in 

ethanol) and heating the mixture at 100 °C for 10 min. A positive test (solution turning 

purple) is obtained for free amino groups of the peptide in solution. The product was dried 

under vacuum at 50 °C for 24 h. In order to remove the remaining salts, the product was 

washed with small fractions of cold water, lyophilized and characterized by RP-HPLC 

(column: Phenomenex Luna C-18, 125×4.6 mm, mobile phase: water/MeOH (65/35) + 0.1% 
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TFA, flow rate: 1 ml/min, inj. vol.: 100 μl, tr(H-GGVVIA-OH)= 6.25 min tr(Ac-GGVVIA-

OH)= 14.94 min, purity 95%) . 

 

5.4.2 Tetrabutylammonium salt preparation of acetylated Aβ37-42 

The acetylated hexapeptide, Ac-Aβ37-42, was mixed with a solution of tetrabutylammonium 

hydroxide in MeOH (1M), in an equimolar ratio and allowed to react for 4 h stirring at room 

temperature. The salt was dried under vacuum and used straightforward without any further 

characterization. 

 

5.4.3 Preparation of beta-amyloid imprinted polymers from RAFT-
modified silica nanoparticles  

RAFT modified core particles (SiNP: 700mg corresponding to 65.1 μmol RAFT groups) 

were suspended in a prepolymerization mixture containing Ac-Aβ37-42-TBA (4.1 mg, 5.11 

μmol), Urea (1.91 mg, 5.11 μmol), EAMA (84.2 mg, 511 μmol) and DVB (362 μL, 2556 

μmol) dissolved in 15 mL ACN/DMSO(65/35). Nonimprinted particles were produced 

identically but leaving out Ac-Aβ37-42-TBA. The prepolymerization mixture was purged of 

oxygen by either bubbling with N2 for 15 min or by three successive freeze-pump-thaw 

cycles where after the initiator ABDV (5.4 mg, 21.7 μmol) was added. This corresponds to a 

molar ratio of RAFT/initiator of 3. Polymerization was initiated at 50 °C and allowed to 

proceed for 40 h. Template removal was then carried out by incubating the particles two 

times with MeOH (15 mL), two times with MeOH/HCl (0.1M )(90/10, v/v) (15 mL) leaving 

the suspension to incubate 2 h followed by centrifugation at 5000 rpm. The final step washing 

was carried out with pure methanol (15 ml) for 1 h. Thereafter the particles were dried under 

vacuum at 40 ºC resulting in 850 mg (76%) of SiNP-MIP-1, 820 mg (73%) of SiNP-NIP-1, 

650 mg (78%) of SiNP-MIP-2, 640 mg (76%) of SiNP-NIP-2, 520 mg (83%) of SiNP-MIP-3, 

500 mg (80%) of SiNP-NIP-3, 490 mg (78%) of SiNP-MIP-4 and 480 mg (76%) of SiNP-

NIP-4. All the supernatants were collected and analyzed by reverse phase HPLC for the 

presence of template. The recovery of first three washing fraction was 11.68 %, 13.83 %, 

18.14 % and 15.47 % for SiNP-MIP-1, SiNP-MIP-2, SiNP-MIP-3 and SiNP-MIP-4, 

respectively and the washing continued until the template could not be detected in the 
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washing solution by RP-HPLC. The low recovery percentage can be attributed to the lower 

detected peak area for template in washing solution (MeOH) than the standard stock solution 

(GuHCl). 

 

Table  5.3. Polymerization procedure for the beta-amyloid imprinted polymers. 

Polymer name 

Si-

RAFT 

(mg) 

Urea 

(mg) 

EAMA 

(mg) 

DVB 

(μL) 

RAFT 

(µmol) 

ABDV 

(µmol) 

ACN/ 

DMSO 

(mL) 

Time 

(h) 

SiNP-MIP-1a 700 1.91 84.2 362 65.1 21.7 15 40 

SiNP-NIP-1a 700 1.91 84.2 362 65.1 21.7 15 40 

SiNP-MIP-2b 400 1.98 87.4 376 33.2 11 15 40 

SiNP-NIP-2b 400 1.98 87.4 376 33.2 11 15 40 

SiNP-MIP-3b 300 1.49 65.5 282 33.8 8.45 7 40 

SiNP-NIP-3b 300 1.49 65.5 282 33.8 8.45 7 40 

SiNP-MIP-4c 300 1.49 65.5 282 25.2 6.3 7 40 

SiNP-NIP-4c 300 1.49 65.5 282 25.2 6.3 7 40 

a) Silica core size is 200 nm and the particles were modified by dithiobenzoate RAFT agent. 

b) Silica core size is 20 nm and the particles were modified by dithiobenzoate RAFT agent. 

c) Silica core size is 20 nm and the particles were modified by trithiocarbonate RAFT agent. 

* Ac-Aβ37-42-TBA used as a template with the equivalent of urea monomer. 

** The solvent mixture ratio of ACN/DMSO is 65/35(v/v). 
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5.4.4 Batch rebinding 

Standard stock solution of Aβ33-42 was prepared in GuHCl(4M)/DMSO(80/20). First, Aβ33-42 

was dissolved in DMSO and then diluted by GuHCl (4 M). Dry template free polymer (90 

mg) was dispersed in 1.6 mL ACN and 0.2 mL isopropanol with sonication. The resulting 

polymers were hydrophobic and using organic solvent was necessary to mix them with 

GuHCl buffer. Then, 200 µL (10 mg) of dispersed polymer was added into separate 

Eppendorf tubes by addition of solutions (1.0 mL) of different concentration of Aβ33-42  

(0.005 mM to 0.2 mM) in GuHCl(4 M) (the test was downscaled for samples available in 

limited quantities). This sample preparation was separately done for MIPNPs and NIPNPs. 

The vials were sealed and their contents allowed to equilibrate overnight at room temperature 

with gentle shaking. After 22 h incubation at room temperature the supernatants were 

sampled (300 μL) and transferred to HPLC vials for measurement of unbound solute 

concentration by reversed phase HPLC. The HPLC system consisted of an Agilent HPLC 

1200 series instrument (Agilent) equipped with a UV-DAD detector and an autosampler. The 

column was a reversed phase (C18) column (Phenomenex Luna C-18, 150 × 4.6 mm), the 

mobile phase: water/MeOH(80/20)(0.1% TFA)(70%) and water/MeOH(20/80) (0.1% TFA) 

(30%), (gradient elution) flow rate : 1.0 mL/min, the injection volume was 100 μL and the 

detection performed by UV absorbance at 205 nm. The resulting peak areas were used to 

calculate the amount of bound analyte on the polymer (in μmol/g of polymer). The binding 

results are averages of two independent experiments. 
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Chapter 6: Nano-Sized Core-Shell Particles by Grafting 

of Thin Films Imprinted with a Hydrophilic 

Peptide from Nonporous Silica Cores 

 

6.1 Introduction  

In this work we have combined the nano-sized surface imprinting with epitope approach in 

aqueous media in order to recognize a hydrophilic decapeptide epitope template (T10) 

corresponding to the solvent exposed C-terminus of the human immunoglobulin G (IgG) 

heavy chain. Epitope imprinted core-shell nanoparticles (NPs) were prepared by          

grafting of poly-(methacrylicacid-co-methacrylamide-co-ethylbisacrylamide) and/or poly-

(bisphosphonic acid-co-methacrylamide-co-ethylbisacrylamide) in presence of a decapeptide 

template from a RAFT modified 20 nm sized silica core. After the removal of the template by 

intensive wash, the resultant MIPs were characterised by FTIR, TEM, TGA and elemental 

analysis. The polymers were examined by equilibrium rebinding for their affinity towards the 

template T10 in aqueous media by reversed phase HPLC. 

 

 

Figure  6.1. Structure of the selected C-terminal epitope decapeptide (T10) and its reference decapeptide (R10). 

QKSLSLSPGK   (T10)

QLSKSKSPGL   (R10)
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6.1.1 Selection of the functional and crosslinking monomers 

From the aspect of molecular recognition in molecular imprinting, there are many parameters 

which can influence the properties of produced polymers. In supermolecular chemistry strong 

and selective recognition could be obtained by applying the concept of multivalency[277]. 

Considering the complexity of a protein/peptide, it is quite important to find the optimum 

monomer composition which can interact effectively with the functionalities on the protein 

surface, since the strength of the interactions will affect the affinity and thus the capacity, 

selectivity and sensitivity [278]. Furthermore, due to the solubility properties and sensitive 

structural nature of proteins and peptides, imprinting can generally be performed in aqueous 

environment, which limits the choice of monomers.   

Methacrylic acid (MAA) is a common functional monomer in peptide imprinting which has 

already successfully been used for imprinting peptides in our group [275]. The carboxylic 

group in methacrylic acid capable to provide a hydrogen bond and proton donor as well as a 

hydrogen bond acceptor [1]. In addition it has been demonstrated that MAA has a strong 

tendency to form hydrogen-bonded dimers. The ability of MAA to form dimers might be one 

reason to its extraordinary success and versatility as an MIP functional monomer[279].    

With considering the type of amino acids on the template, we examined anionic 

bisphosphonic monomer as another functional monomer which is specific for different amino 

acid residues on the template with different binding mechanisms and binding strength. This 

functional monomer can bind to lysines and arginines, and has been successfully developed 

into an effective lysozyme binder in aqueous buffer[280]. Methacrylamide (MAAM) was 

selected as a backbone monomer. MAAM is highly water soluble and has widely been used 

in peptide imprinted polymer [13]. Moreover, NH2-group of methacrylamide can form strong 

hydrogen bonds with peptides in polar solvents.  N,N′-ethylenebisacrylamide (EBA) was 

used as a hydrophilic cross-linker to create T10 epitope imprinted polymer in aqueous media. 

Structure of functional monomers and cross-linker are shown in Figure  6.2.  
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Figure  6.2. Functional monomers and cross-linker used to create decapeptide MIPs, (1): Methacrylamide 
(MAAM), (2): Methacrylic acid (MAA), (3): 5-(methacryloylamido)-m-xylylene bisphosphonic acid 
dimethylester dilithium salt, (4): N,N′-ethylenebisacrylamide (EBA). 

 

6.2 Results and Discussions 

6.2.1 Grafting of T10 and R10 imprinted polymers from dithiobenzoate-
modified silica nanoparticles  

The epitope imprinted polymers were prepared from dithioester modified silica nanoparticles 

as the solid support, T10 and R10 as the template, methacrylic acid (MAA) as a functional 

monomer, methacrylamide (MAAM) as a comonomer, N,N′-ethylenebisacrylamide (EBA) as 

a cross-linker, THF as porogen and ABDV as an initiator. The polymerization was carried out 

at 50 oC for 16 h. The ratio among template, functional monomer, comonomer and 

crosslinker was 2: 10: 100: 100, respectively. In preparing the grafting polymer, a molar ratio 

CPDB/ABDV = 1 was used. The quantity of monomer relative to the silica supports were 

adjusted to result in shells/films with approximately 3 nm thick shells. After polymerization 

the beads were isolated by centrifugation and subjected to repetitive washing-centrifugation 

cycles in order to remove any leachables (e.g. template, oligomers, unreacted monomers). 

After drying at 40 oC under vacuum, the light pink MIP particles were obtained. The NIP 

particles with surface-immobilized dithioester groups were then prepared and purified under 

the identical conditions except that the template was omitted. The procedure is shown in 

Table  6.1. 
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Table  6.1. Procedure for the preparation of T10 and R10 imprinted core-shell nanoparticles.  

Polymer 

namea 
Template 

SiNP-

CPDB 

(mg) 

MAA 

(µmol) 

MAAM 

(µmol) 

EBA 

(µmol) 

THF 

(mL) 

Buffer 

(mL) 

CPDB/ 

ABDV 

SiNP-MIP-A T10 180 49.83 498.23 498.25 20 1 1 

SiNP-NIP-A - 180 49.83 498.23 498.25 20 1 1 

SiNP-MIP-B R10 180 49.83 498.23 498.25 20 1 1 

SiNP-NIP-B - 180 49.83 498.23 498.25 20 1 1 

a) See experimental section for details. 

* Silica core size is 20 nm and the particles were modified by dithiobenzoate RAFT agent. 

 

6.2.2 Polymer characterization 

After polymerization, the beads were subsequently characterised by TGA, TEM, and 

elemental analysis. The TGA curves of grafted polymers are shown in Figure  6.3. By using 

the TGA results the gravimetric conversion and shell thickness (nm) of grafted polymers on 

silica cores were calculated. The TGA weight loss of ca. 38%, 37%, 35% and 36% for the 

SiNP-MIP-A, SiNP-NIP-A, SiNP-MIP-B and SiNP-NIP-B in the interval 100-800 °C 

indicates a shell thickness of ca 2.45 nm, 2.54 nm, 2.70 nm and 2.63 nm assuming that the 

monomers are quantitatively incorporated into the shell. 

Elemental analysis was used to confirm the successful grafting of polymers on silica cores.    

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of grafted polymer on the silica surface. 

The data are presented in Table  6.2.  On the basis of the increase in carbon content the 

apparent shell thickness was calculated. The obtained shell thickness was 3.73 nm and      

3.93 nm for SiNP-MIP-A, SiNP-NIP-A and 3.66 nm and 3.59 nm for SiNP-MIP-B, SiNP-

NIP-B. In Table  6.2 the apparent thickness, calculated from the TGA mass loss data and 

elemental analysis, have been compared with the nominal thickness, estimated assuming the 

grafted shell to consist of monomers forming a liquid film covering the core surface. 
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The TEM images of the resulting core-shell nanoparticles are shown in Figure  6.4 which 

agglomerated after solvent evaporation. Comparison of TEM images of grafted polymer 

silica nanoparticles with images of bare silica particles and RAFT modified silica support 

confirmed a successful grafting of the polymer shell on the silica particles. 

Table  6.2. Results from the characterisation of R10 and T10 imprinted and nonimprinted core-shell beads. 

Polymer name a %C %N %S 
Mass 

loss b (%)  

Conv.c 

(%) 

dnom
d 

(nm) 

dEA
e 

(nm) 

dTGA
f 

(nm) 

SiNP-MIP-A 25.88 5.83 0.37 38 90 3.14 3.73 2.70 

SiNP-NIP-A 26.73 5.76 0.34 37 88 3.14 3.93 2.63 

SiNP-MIP-B 24.79 5.38 0.38 35 83 3.14 3.66 2.45 

SiNP-NIP-B 24.51 5.47 0.36 36 85 3.14 3.59 2.54 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion=mass loss (TGA)/mass of monomer feed. 

d) The shell thickness (nm) was calculated according to Eq.  2-3.  

e) The shell thickness (nm) was calculated according to Eq.  2-3, Eq.  2-16 and Eq.  2-17  

f) The shell thickness (nm) was calculated according to Eq.  2-3 and Eq.  2-9.  

 

  

Figure  6.3. Thermal gravimetric analysis of the T10 and R10 imprinted and nonimprinted core-shell 
nanoparticles; TGA of SiNP-MIP-A and SiNP-NIP-A (A), TGA of SiNP-MIP-B and SiNP-NIP-B (B). 
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Figure  6.4. TEM images of the T10 and R10 imprinted and nonimprinted core-shell nanoparticles SiNP-MIP-A 
and SiNP-NIP-A  (A), SiNP-MIP-B and SiNP-NIP-B (B). The scale bar is 20 nm. 

 

6.2.3 The reductive aminolysis of grafting polymers 

In order to analyze the functional properties of the NPs, the dithioester of the terminal RAFT 

groups were first converted to thiols by using aminolysis reaction. This conversion was 

carried out using butylamine as aminolysis reagent in THF for 3 h under N2 protection 

(Figure  6.5). To avoid the oxidative coupling of the thiol end groups, a small amount of 

antioxidant in the form of aqueous sodium (Na2S2O4) was added [281]. By addition of 

aqueous sodium bisulfite the formation of disulfides which result from oxidative coupling of 

thiols could be effectively suppressed.Successful aminolysis was confirmed by disappearance 

of the pink color and the UV absorption band at 302 nm characteristic for the dithioester 

RAFT group (Figure  6.6). 
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Figure  6.5. Aminolysis of grafting polymers. 
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Figure  6.6. UV spectra of RAFT modified particles prior to (red trace) and after (blue trace) aminolysis. The 
inset shows the particle appearance prior to (left vial) and after (right vial) aminolysis. 

 

6.2.4 Binding study via BCA assay  

Assays based on bicinchoninic acid (BCA) are widely used in the quantification of proteins. 

Thereby, proteins or peptides reduce Cu2+ ions (green) to Cu1+ (biuret reaction), which form 

an intense purple complex with BCA [282]. The complex has an absorption maximum at 562 

nm. In the binding experiments, imprinted or non-imprinted polymers (10 mg) were mixed 

with 1 mL of phosphate buffer (50mM, pH 7.4) containing T10 template and/or IgG 

concentrations range from 0.075 to 1.2 mg mL-1. The mixtures were incubated for 24 h at     

19 oC by gentle shaking. Afterwards the mixtures were centrifuged and the concentration was 

determined by BCA assay. Both aminolysed and non-aminolysed particles were characterized 

by this method. The results demonstrated that BCA assay was not good method for binding 

study of colloidal imprinted and non-imprinted nanoparticles due to the interaction of 

dithioester and thiol groups with BCA regent. After incubation of particles with template and 

protein, the particles were separated from supernatant to determine the free concentration of 

the template or protein. As can be seen in Figure  6.7 despite the ultra-centrifugation some 

colloidal particles were remained in supernatant which made an error at binding study.  
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Figure  6.7. Photograph of BCA protein and peptide assay. Solution of supernatant of imprinted and non-
imprinted polymers with BCA reagent(a-d), solution of T10 with BCA reagent(e,f) (A); solution of BCA 
reagent and IgG(a), BCA reagent(b), solution of non-aminolysed and aminolysed particles with BCA 
reagent(c,d) (B). 

 

6.2.5 Grafting of T10 imprinted polymer onto silica nanoparticles via 
RAFT polymerization in organic media 

The epitope imprinted core-shell nanoparticles in organic media were prepared by using 

methacrylic acid (MAA), methacrylamide (MAAM), N,N′-ethylenebisacrylamide (EBA), 

decapeptide (T10), THF, acetic buffer solution (pH5, 10 mM), ABDV as the functional 

monomer, comonomer, crosslinker, template, porogen, co-porogen and initiator respectively. 

Due to insolubility of template (T10) and poor solubility of  ethylenebisacrylamide (EBA) in 

THF, the acetic buffer solution (pH5, 10 mM) was added to prepolymerization mixture to 

solubilize T10 and EBA in organic media. The polymerization was carried out at 50 oC for   

15 h. The ratio among template, functional monomer, comonomer and crosslinker was 2: 10: 

100: 100, respectively. In preparing the grafting polymer, a molar ratio TTC/ABDV = 3 was 

used. The relatively low ABDV/TTC ratio helped to reduce the amount of free polymer 

derived from the initiator, and yet maintain a moderate polymerization rate [163]. The 

quantity of monomer relative to the silica supports were adjusted to result in shells/films with 

A. 

B. 

a b c d e f 

a b c d 
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approximately 4 nm thick shells. After polymerization the beads were isolated by 

centrifugation and subjected to repetitive washing-centrifugation cycles in order to remove 

any leachables (e.g. template, oligomers, unreacted monomers). Five cycles were sufficient 

for exhaustive template removal as concluded by HPLC analysis of the washing fractions. 

The recovery of first three washing fractions was 76.45% and the washing continued until the 

template could not be detected in the washing solution by RP-HPLC. After drying at 40 oC 

under vacuum, the light yellow MIP particles were obtained. The light yellow NIP particles 

with surface-immobilized trithiocarbonate groups were then prepared and purified under the 

identical conditions except that the template was omitted. The procedure is shown in 

Table  6.3.   

Table  6.3. Procedure for the preparation of core-shell T10 imprinted nanoparticles in organic media. 

Polymer 

namea 

T10 

(µmol) 

SiNP-

TTC 

(mg) 

MAA 

(µmol) 

MAAM 

(µmol) 

EBA 

(µmol) 

THF 

(mL) 

Buffer 

(mL) 

TTC/ 

ABDV 

SiNP-MIP1 26.00 300 124.52 1245.20 1245.20 10 1 3/1 

SiNP-NIP1 - 300 124.52 1245.20 1245.20 10 1 3/1 

a) See experimental section for details. 

* Silica core size is 20 nm and the particles were modified by trithiocarbonate RAFT agent. 

 

6.2.6 Grafting of T10 imprinted polymer onto silica nanoparticles via 
aqueous RAFT polymerization 

The “grafting from” technique for producing epitope imprinted core- shell nanoparticles in 

aqueous solution was investigated. To find polymers which could afford high selectivity, 

functional monomer combinations were applied and two different polymers were grafted on 

silica support. In first protocol, methacrylic acid (MAA), methacrylamide (MAAM),       

N,N′-ethylenebisacrylamide (EBA), decapeptide (T10), acetic buffer solution (pH5, 10mM), 

ammonium persulfate (APS) were used as the functional monomer, comonomer, crosslinker, 

template, porogen and initiator respectively. In second protocol instead of methacrylic acid 

(MAA), 5-(methacryloylamido)-m-xylylene bisphosphonic acid dimethylester dilithium 

(BPA) was applied as functional monomer. The polymerization was carried out at 50 oC for 
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23 h. The ratio among template, functional monomer, comonomer and crosslinker for the first 

and second polymers was 2: 10: 100: 100 and 2: 4: 100: 100, respectively. In preparing the 

grafting polymer in water, acidic buffers (pH 5) was used to avoid loss of trithiocarbonate 

end groups via a combination of aminolysis and hydrolysis [250, 255]. If the chemical 

structure of trithiocarbonate compounds cannot be preserved throughout the reaction, 

polymerization is either inhibited or carried out without control. The aminolysis reaction can 

be avoided by working in slight acidic conditions in which almost all of the amines are 

protonated and so the nucleophilic attack on the trithiocarbonate is prevented.  
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Figure  6.8. Procedure used to synthesis silica core-MIP shell nanoparticles for decapeptide in aqueous media. 

In preparing the grafting polymer, a molar ratio TTC/APS = 2 was used. The relatively low 

APS/TTC ratio helped to reduce the amount of free polymer derived from the initiator, and 

yet maintain a moderate polymerization rate [163]. The quantity of monomer relative to the 

silica supports were adjusted to result in shells/films with approximately 4 nm thick shells. 

After polymerization the beads were isolated by centrifugation and subjected to repetitive 

washing-centrifugation cycles in order to remove any leachables (e.g. template, oligomers, 

unreacted monomers). Five cycles were sufficient for exhaustive template removal as 

concluded by HPLC analysis of the washing fractions. The recovery of first three washing 

fractions was 54.98 % for SiNP-MIP2 and 49.03 % for SiNP-MIP3 and the washing 
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continued until the template could not be detected in the washing solution by RP-HPLC.  

After drying at 40 oC under vacuum, the light yellow MIP particles were obtained, suggesting 

the presence of trithiocarbonate groups there. The light yellow NIP particles with surface-

immobilized trithiocarbonate groups were then prepared and purified under the identical 

conditions except that the template was omitted. The procedure is shown in Table  6.4.   

Table  6.4. Procedure for the preparation of core-shell T10 imprinted nanoparticles in aqueous media. 

Polymer 

namea 

T10 

(µmol) 

SiNP-

TTC 

(mg) 

MAA 

(µmol) 

BPA 

(µmol) 

MAAM 

(µmol) 

EBA 

(µmol) 

Buffer 

(mL) 

TTC/ 

APS 

SiNP-MIP2 16.60 200 83.01 - 830.13 830.13 5 2/1 

SiNP-NIP2 - 200 83.01 - 830.13 830.13 5 2/1 

SiNP-MIP3 16.17 200 - 32.35 808.66 808.66 5 2/1 

SiNP-NIP3 - 200 - 32.35 808.66 808.66 5 2/1 

a) See experimental section for details. 

* Silica core size is 20 nm and the particles were modified by trithiocarbonate RAFT agent. 

 

Table  6.5. Amount of the resultant template from the T10 MIPs in the different wash fractions. 

Polymer name  
Wash 1 

(mg) 

Wash 2 

(mg) 

Wash 3 

(mg) 

Wash 4 

(mg) 

Template 

removal (%) 

SiNP-MIP1 19.05 0.38  0.518 - 76.45 

SiNP-MIP2 7.84 1.27 - - 54.98 

SiNP-MIP3 7.51 0.62 - - 49.03 

* Washing solution is NaCl (0.5M) at stage 1, 2 and MeOH (0.1% TFA) at stage 3 and 4. 

** The template was detected in the washing solution by RP-HPLC.  
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6.2.7 Polymer characterization  

After polymerization, the beads were subsequently characterised by TGA, TEM, FTIR and 

elemental analysis. Figure  6.9 displays the TGA and DTG curves of grafted polymers. It can 

be observed from TGA curves that the weight loss of SiNP-MIP1, SiNP-NIP1,  SiNP-MIP2, 

SiNP-NIP2, SiNP-MIP3 and SiNP-NIP3 between 100 oC and 800 oC is 44%, 41%, 36%, 

34%, 39%, 38%, respectively. By using the TGA results the gravimetric conversion and shell 

thickness (nm) of grafted polymers on silica cores were calculated. The apparent shell 

thickness was 3.34 nm and 3.03 nm for SiNP-MIP1, SiNP-NIP1 and 2.54 nm and 2.36 nm for 

SiNP-MIP2, SiNP-NIP2 and 2.83 nm and 2.73 nm for SiNP-MIP3, SiNP-NIP3.  

Elemental analysis was used to confirm the successful grafting of polymers on silica cores.    

From elemental microanalysis data, more precisely from the change in carbon and nitrogen 

contents in each step, we could estimate the amount of grafted polymer on the silica surface. 

The data are presented in Table  6.6.  On the basis of the increase in carbon content the 

apparent shell thickness was calculated. The obtained shell thickness was 3.89 nm and      

3.52 nm for SiNP-MIP1, SiNP-NIP1 and 3.05 nm and 2.96 nm for SiNP-MIP2, SiNP-NIP2 

and 3.37 nm and 3.27 nm for SiNP-MIP3, SiNP-NIP3.  

In Table  6.6 the apparent thickness, calculated from the TGA mass loss data and elemental 

analysis, have been compared with the nominal thickness, estimated assuming the grafted 

shell to consist of monomers forming a liquid film covering the core surface. The somewhat 

lower measured thickness compared to the nominal values agrees with our previous report 

[239] and can be attributed to solution chain growth, nevertheless resulting in an acceptable 

conversion of monomer to shell polymer.  
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Table  6.6. Results from the characterisation of T10 imprinted and nonimprinted core-shell beads. 

Polymer name a %C %N %S 
Mass 

loss b (%)  

Conv.c 

(%) 

dnom
d 

(nm) 

dEA
e 

(nm) 

dTGA
f 

(nm) 

SiNP-MIP1 25.83 4.39 0.81 44 85 4.31 3.89 3.34 

SiNP-NIP1 24.17 4.17 0.79 41 79 4.31 3.52 3.03 

SiNP-MIP2 21.87 3.25 0.73 36 70 4.31 3.05 2.54 

SiNP-NIP2 21.36 3.41 0.70 34 66 4.31 2.96 2.36 

SiNP-MIP3 23.45 4.12 0.65 39 75 4.31 3.37 2.83 

SiNP-NIP3 22.96 4.07 0.61 38 73 4.31 3.27 2.73 

a) See experimental section for details. 

b) Mass loss by thermal gravimetric analysis (TGA). 

c) Gravimetric conversion: Conversion=mass loss (TGA)/mass of monomer feed. 

d) The shell thickness (nm) was calculated according to Eq.  2-3.  

e) The shell thickness (nm) was calculated according to Eq.  2-3, Eq.  2-16 and Eq.  2-17  

f) The shell thickness (nm) was calculated according to Eq.  2-3 and Eq.  2-9.  
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Figure  6.9. Thermal gravimetric analysis of the T10 imprinted and nonimprinted core-shell nanoparticles; TGA 
of SiNP-MIP1 and SiNP-NIP1 (A), DTG of SiNP-MIP1 and SiNP-NIP1(B), TGA of SiNP-MIP2 and SiNP-
NIP2 (C), DTG of SiNP-MIP2 and SiNP-NIP2 (D), TGA of SiNP-MIP3 and SiNP-NIP3 (E), DTG of SiNP-
MIP3 and SiNP-NIP3 (F). 

 

TEM was used to characterize the morphology of the polymer grafted silica nanoparticles. 

Thin layers of polymer grafted silica nanoparticles were prepared by casting a drop of dilute 

suspension of grafted nanoparticles in isopropanol onto a copper grid and evaporating the 

solvent. The TEM images of the T10 imprinted and nonimprinted core-shell nanoparticles are 

shown in Figure  6.10 which agglomerated after solvent evaporation.  An inorganic silica core 

appears darker than the grafted organic polymer shell due to the difference in density. 

Comparison of TEM images of grafted polymer silica nanoparticles with images of bare 

silica particles and RAFT modified silica support confirmed a successful grafting of the 

polymer shell on the silica particles. The average particle size as estimated by TEM 
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measurements of these grafted silica core-shell particles was found to be in the range of      

20-25 nm with a shell thickness of 3-4 nm for the resultant nanoparticles.  

  

  

  

Figure  6.10. TEM images of the T10 imprinted and nonimprinted core-shell nanoparticles SiNP-MIP1 (A), 
SiNP-NIP1 (B), SiNP-MIP2 (C), SiNP-NIP2 (D), SiNP-MIP3 (E) and SiNP-NIP3 (F). The scale bar is 20 nm in 
the case of (A), (B), (C), (E), (F) and 10 nm for (D). 
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The FTIR spectra of the core-shell beads shown in Figure  6.11 display two characteristic 

bands i.e. the carbonyl stretching of the polymer matrix at ca 1740 cm-1 and the siloxane 

vibration of silica core at ca 1120 cm-1. 

 

                   Figure  6.11. FTIR spectra of SiNP-TTC (a), SiNP-MIP (b), SiNP-NIP (c). 

 

6.2.8 Binding isotherms  

The adsorption capacity is an important factor in the evaluation of the selective recognition 

and the special binding of the molecular imprinting technique. The adsorption isotherm of 

imprinted and nonimprinted polymers was plotted by the batch rebinding experiments which 

were conducted in HEPES buffer (pH7.0, 10 mM ) using a range of T10 concentrations from 

0.075 to 1.2 mg mL-1. For non-covalent imprinting, molecular recognition is attributed not 

only to the binding sites that complement molecules in shape and size, but also to the binding 

media including pH, ionic strength and type of solvent and so on. Based on it, HEPES buffer 

with 10 mM concentration at pH7.0 was selected for the evaluation of T10 adsorption 

amount. After incubating the particles with solutions of T10 of known concentrations the free 

concentrations of the solutes were determined by reversed phase HPLC. 

As shown in Figure  6.12, the amount of template peptide bound to the MIPNPs at 

equilibrium, increased with increasing initial concentration of the template.  The core-shell 

particles display a distinct saturation behavior with a clear preference for the decapeptide 

template. The maximum adsorption capacities of SiNP-MIP1, SiNP-NIP1 which prepared in 
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organic media were 60.98 mg g-1 and 61.80 mg g-1 at 1.2 mg mL-1. The maximum adsorption 

capacities for polymers prepared in aqueous media i.e. SiNP-MIP2, SiNP-NIP2, SiNP-MIP3 

and SiNP-MIP3 at 1.2 mg mL-1 were 23.88 mg g-1, 16.69 mg g-1, 26.28 mg g-1 and 23.15    

mg g-1, respectively. As can be seen obviously from binding isotherms, the resulting 

polymers which prepared in organic media (SiNP-MIP1 and SiNP-NIP1) revealed same 

adsorption capacity at the both imprinted and nonimprinted polymers. This behavior can be 

attributed to creating of nonspecific binding sites in organic media. In contrast, for  both 

polymers prepared in aqueous media the imprinted particles displayed more adsorption 

capacity than the nonimprinted particles in all range of template concentrations.  

The binding isotherms were subsequently fitted to mono-Langmuir (Eq.  2-19), bi-Langmuir 

(Eq.  2-20), and Freundlich (Eq.  2-21) isotherm models. The resulting parameters are given in 

Table  6.7 to Table  6.9. For each model and each set of experimental data, the Fisher 

parameter was calculated according to Eq.  2-26. The fisher values in Figure  6.13 reflect 

which of the model provides the best fit to a particular isotherm, a higher number indicating a 

better fit. The affinity constant (K) and total number of binding sites (N) were calculated 

according to Eq.  2-22 and Eq.  2-23. According to mono-Langmuir and bi-Langmuir binding 

parameters, all imprinted polymers showed higher adsorption capacity than corresponding 

nonimprinted polymers (Table  6.7 and Table  6.8). The difference of adsorption capacity 

between imprinted and nonimprinted polymers prepared via MAA as functional monomer 

was much higher than of MIP and NIP prepared using BPA as functional monomer. Based on 

Freundlich binding parameters (Table  6.9), the total number of binding sites (N) and binding 

capacity (a) of SiNP-MIP2 (N= 15.76 (mg/g), a= 25.34±1.42 mg/g (g-1)m ) and SiNP-MIP3 

(N= 16.98 (mg/g), a= 27.90±1.20 mg/g (g-1)m), were higher than that for SiNP-NIP2 (N= 

10.71 (mg/g), a= 17.24±0.98 mg/g (g-1)m) and SiNP-NIP3 (N= 14.85 (mg/g), a= 24.16±0.90 

mg/g (g-1)m). 

These results, together with the rather similar physical formats of the MIP and NIP particles 

clearly reveals the successful generation of selective binding sites in the obtained MIP 

particles and thus the successful molecular imprinting process. Furthermore, by comparison 

of two preparation protocols can be seen that the obtained polymer via MAA as functional 

monomer had better performance than once prepared using BPA as functional monomer. This 

could be attributed to dimer structure of MAA in polymerization mixture and a stable cyclic 

hydrogen bonding among MAA and acid or amide groups of template [1, 279].  
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Figure  6.12. Equilibrium binding isotherms of T10 on imprinted (circles) and nonimprinted (triangles) core-
shell particles in buffer. A) SiNP-MIP1(red circles) and SiNP-NIP1(blue triangles), B) SiNP-MIP2(red circles) 
and SiNP-NIP2(blue triangles), C) SiNP-MIP3 (red circles) and SiNP-NIP3 (blue triangles). 

 

Table  6.7. Mono-Langmuir isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  6.12. 

Polymer name  kd (mg/mL) qs (mg/g) r2 F- value 

SiNP-MIP2 T10 0.192±0.025 28.44±1.29 0.9931 430 

SiNP-NIP2 T10 0.176± 0.010 19.35±0.36 0.9984 1875 

SiNP-MIP3 T10 0.24±0.034 32.59± 1.75 0.9927 409 

SiNP-NIP3 T10 0.26±0.040 29.14± 1.72 0.9915 350 
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Table  6.8. Bi-Langmuir isotherm fitting parameters obtained by nonlinear regression of data shown in 
Figure  6.12. 

Polymer name  
kd1 

 (mg/mL) 

qs1  

(mg/g) 

kd2 

 (mg/mL) 

qs2  

(mg/g) 
r2 

F- 

value 

SiNP-MIP2 T10 0.010± 0.081 2.63±7.64 0.281±0.187 27.69± 5.60 0.9978 151 

SiNP-NIP2 T10 0.022±0.014 1.93±0.85 0.235± 0.016 18.15±0.75 1.000 3284 

SiNP-MIP3 T10 0.023± 0.055 4.40±6.13 0.426± 0.221 32.07±3.73 0.9992 420 

SiNP-NIP3 T10 2.66×10-13 2.06±0.83 0.405± 0.044 29.97± 0.53 0.9999 3363 

 

Table  6.9. Freundlich isotherms fitting parameters obtained by nonlinear regression of data shown in 
Figure  6.12.  

Polymer name  

 

Affinity 

constant, 

K (mg/mL)-1 

Total 

number of 

binding 

sites , N 

(mg/g) 

Heterogen

-eity 

parameter, 

m 

Binding 

capacity, a 

(mg/g 

 (g-1)m) 

Regression 

coefficient, 

r2 

F- 

value 

SiNP-MIP2 T10 31.09 15.76 0.41± 0.04 25.34± 1.42 0.9731 108 

SiNP-NIP2 T10 22.63 10.71 0.38± 0.04 17.24± 0.98 0.9659 85 

SiNP-MIP3 T10 35.83 16.98 0.45± 0.04 27.90± 1.20 0.9857 206 

SiNP-NIP3 T10 34.10 14.85 0.46± 0.03 24.16± 0.90 0.9884 256 
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Figure  6.13. Fisher values obtained by fitting the T10 binding curves in Figure  6.12 to mono-Langmuir, bi- 
Langmuir and Freundlich isotherm models (see Table  6.7 to Table  6.9).  

 

6.3 Conclusions 

The epitope imprinted polymer anchored on the surface of silica nanoparticles have been 

developed with exposed peptide fragments from the C-terminus on the heavy chain of IgG as 

templates in aqueous and organic media. For polymers prepared in organic media, the 

resulting imprinted and nonimprinted particles revealed a similar adsorption capacity towards 

T10 template. When the synthesis was performed in aqueous media, the imprinted particles 

displayed a higher adsorption capacity than the nonimprinted particles. Compared to polymer 

grafted using the bisphosphonic acid monomer, polymer obtained via methacrylic acid as 

functional monomer showed better imprinting performance. In future work, the resultant 

polymer will be used for the recognition of IgG as target protein. 

Our results provide a new potential for peptides and protein imprinting in aqueous media   

using SI-RAFT technique and it might also be transferred to epitopes of other proteins. We 

believe that such synthetic MIP nanoparticles are highly promising alternatives to biological 

receptors with great potential in many analytical applications and other areas. 
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6.4 Experimental 

6.4.1 Aminolysis of the dithioester end groups in the RAFT polymers 

In order to analyze the surface assembly of  the particles in solution, they were subjected to 

aminolysis by butylamine to give free thiol groups on the surface [281]. SiNP-MIP-A and 

SiNP-NIP-B (50 mg, corresponding to ca 4 μmol RAFT groups) were dissolved in THF (1 

mL) containing  20 μL of aqueous Na2S2O4. The reaction mixture was purged of oxygen by 

either bubbling with N2 for 10 min or by three successive freeze-pumpthaw cycles. 

Butylamine (40 μL, 0.4 mmol) was then added, and the reaction was stirred for 3 h under N2. 

Upon the addition of butylamine, an immediate color change from pink to yellow was 

observed. The resulting product was then washed with THF (2x) and methanol (1x) and was 

then collected by centrifugation and dried under vacuum at 40 oC (42 mg, 84 % mass yield). 

 

6.4.2 BCA protein assay 

This assay is based on the reduction of Cu2+ to Cu+ by protein in an alkaline medium (biuret 

reaction). For protein quantification, a general procedure is as following: 25 μL of the 

standard or unknown sample was pipetted in a microplate well and 200 μL of the working 

reagent (50:1 reagent A:B; A includes sodium bicinchoninate. B includes cupric sulfate) was 

added to each well. Then the plate was covered and agitated at room temperature for 30 min 

thereafter the UV absorbance at 562 nm was measured. 

 

6.4.3 Synthesis of 5-(methacryloylamido)-m-xylylene bisphosphonic 
acid dimethylester dilithium salt 

Monomer was prepared in the group of Prof. Dr. Thomas Schrader in Universität Duisburg-

Essen; and converted to the dilithium salt form as follows [85]:  

5-(Methacryloylamido)-m-xylylene bisphosphonic acid tetramethylester (591mg, 1.46 mmol) 

was dissolved in 35 mL of absolute acetonitrile under nitrogen. A solution of lithium bromide 

(283 mg; 3.26 mmol) in 9 mL of acetonitrile was added and the reaction mixture was 

refluxed for 8 hours under nitrogen. During this period the product precipitates from the 
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reaction mixture. The solvent was decanted and the white solid was washed three times with 

acetonitrile. A white solid was obtained after being dried in vacuum (Yield: 576 mg, 96 %). 

1H-NMR (D2O): δ (ppm) = 1.99 (s, 3H, H-7); 3.01 (d, 4H, H-2); 3.51 (d, 6H, H-1); 5.54 (s, 

1H, H-6); 5.79 (s, 1H, H-6); 7.00-7.04 (m, 1H, H-3); 7.18-7.21 (m, 2H, H-4).  

13C-NMR (D2O): δ (ppm) = 18.1, 33.7, 52.0-52.2 (m), 121.6-122.0 (m), 128.3-128.6 (m), 

135.9-136.2 (m), 136.9-137.1 (m), 140.1, 171.3. 
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Figure  6.14. Synthesis of 5-(methacryloylamido)-m-xylylene bisphosphonic acid dimethylester dilithium salt. 

 

6.4.4 Synthesis of PEG-TTC macro chain transfer agent  

A slightly modified version of the procedure reported by Zhong et al. was followed [283]. In 

a 50 mL round-bottom flask equipped with a magnetic stir bar, S,S'-Bis(a,a'-dimethyl-a''-

acetic acid)-trithiocarbonate (TTC) (0.10 g, 0.37 mmol) was stirred to dissolve  in 20 mL of 

anhydrous dichloromethane (DCM).The mixture of 1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride(EDC)(0.072g, 0.37mmol) in 4 mL DCM and N,N-

diisopropylethylamine (EDIPA)(0.048 g, 0.37 mmol) was then added drop-wise, and the 

reaction was stirred at room temperature for 20 min. Then 0.142 g (0.188 mmol) of 

methoxypolyethylene glycol amine (PEG-NH2, 750) was added and allowed to react for 32 h 

at room temperature. The solution was precipitated in cold diethyl ether. The product was 

collected by centrifuge, and dried in the vacuum oven overnight at room temperature (yield: 

0.138 g, 73%).  
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Figure  6.15. Synthesis of PEG-TTC macro chain transfer agent. 

 

6.4.5 Preparation of T10 imprinted core-shell MIPs in organic media  

TTC modified core particles (SiNP: 300 mg corresponding to 25.41 μmol RAFT groups) 

were suspended in a prepolymerization mixture containing T10 (26 mg, 24.90 μmol), MAA 

(10.56 μL, 124.52 μmol), MAAM (105.97 mg, 1245.20 μmol) and EBA (209.44 mg, 1245.20 

μmol) dissolved in 10 mL THF and 1 mL of acetic buffer solutions (pH5, 10mM). 

Nonimprinted particles were produced identically but leaving out T10 (SiNP-NIP1). The 

polymerization mixture was subjected to three freeze-thaw cycles under nitrogen where after 

the initiator ABDV (2.10 mg, 8.47 μmol) was added. This corresponds to a molar ratio of 

TTC/initiator of 3. Polymerization was initiated at 50 °C and allowed to proceed for 15 h. 

Template removal was then carried out by incubating the particles two times with NaCl 

(0.5M, 15 mL), two times with MeOH (0.1% TFA, 15 mL) leaving the suspension to 

incubate 2 h followed by centrifugation at 5000 rpm. The final step washing was carried out 

with pure methanol       (15 ml) for 30 min. Thereafter the particles were dried under vacuum 

at 40 ºC resulting in 590 mg (94%) of SiNP-MIP1 and 575 mg (92%) of SiNP-NIP1. All the 

supernatants were collected and analyzed by reverse phase HPLC for the presence of 

template. 
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6.4.6 Preparation of T10 imprinted core-shell MIPs using MAA in 
aqueous media  

TTC modified core particles (SiNP: 200 mg corresponding to 17 μmol RAFT groups) were 

suspended in a prepolymerization mixture containing T10 (17.34 mg, 16.60 μmol), MAA 

(7.04 μL, 83.01 μmol), MAAM (70.64 mg, 830.13 μmol) and EBA (139.63 mg, 830.13 

μmol) dissolved in 5 mL of acetic buffer solutions (pH5, 10mM). Nonimprinted particles 

were produced identically but leaving out T10 (SiNP-NIP2). The polymerization mixture was 

subjected to three freeze-thaw cycles under nitrogen where after the initiator APS (1.90 mg, 

8.47 μmol) was added. This corresponds to a molar ratio of TTC/initiator of 2. 

Polymerization was initiated at 50°C and allowed to proceed for 23 h. Template removal was 

then carried out by incubating the particles two times with NaCl (0.5 M, 15 mL), two times 

with MeOH (0.1% TFA, 15 mL) leaving the suspension to incubate 2 h followed by 

centrifugation at 5000 rpm. The final step washing was carried out with pure methanol       

(15 ml) for 30 min. Thereafter the particles were dried under vacuum at 40 ºC resulting in 

360 mg (86%) of SiNP-MIP2 and 340 mg (81%) of SiNP-NIP2. All the supernatants were 

collected and analyzed by reverse phase HPLC for the presence of template. 

 

6.4.7 Preparation of T10 imprinted core-shell MIPs using BPA in 
aqueous media 

TTC modified core particles (SiNP: 200 mg corresponding to 17 μmol RAFT groups) were 

suspended in a prepolymerization mixture containing T10 (16.88 mg, 16.17 μmol), BPA 

(12.59 mg, 32.35 μmol), MAAM (68.82 mg, 808.66 μmol) and EBA (136.02 mg, 808.66 

μmol) dissolved in 5 mL of acetic buffer solutions (pH5, 10mM). Nonimprinted particles 

were produced identically but leaving out T10 (SiNP-NIP3). The polymerization mixture was 

subjected to three freeze-thaw cycles under nitrogen where after the initiator APS (1.90 mg, 

8.47 μmol) was added. This corresponds to a molar ratio of TTC/initiator of 2. 

Polymerization was initiated at 50 °C and allowed to proceed for 23 h. Template removal was 

then carried out by incubating the particles two times with NaCl (0.5M, 15 mL), two times 

with MeOH (0.1% TFA, 15 mL) leaving the suspension to incubate 2 h followed by 

centrifugation at 5000 rpm. The final step washing was carried out with pure methanol       

(15 ml) for 30 min. Thereafter the particles were dried under vacuum at 40 ºC resulting in 
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350 mg (84%) of SiNP-MIP3 and 335 mg (80%) of SiNP-NIP3. All the supernatants were 

collected and analyzed by reverse phase HPLC for the presence of template. 

 

A) B) C) 

   

Figure  6.16. Picture of TTC modified silica, imprinted and nonimprinted particles; A) SiNP-TTC, B) SiNP-MIP 
and NIP (before drying), C) SiNP-MIP and NIP (after drying). 

 

6.4.8 Binding experiments 

Dry template free polymer (70 mg) was dispersed in 2.8 mL HEPES buffer (pH7, 10 mM) 

with sonication. Then, 400 µL (10 mg) of dispersed polymer was added into 5 separate 

Eppendorf tubes by addition of solutions (1.0 mL) of different concentration of T10 (0.075-

1.2 mg mL-1) in HEPES buffer (pH7, 10 mM) (the test was downscaled for samples available 

in limited quantities). This sample preparation was separately done for MIPNPs and NIPNPs. 

The vials were sealed and their contents allowed to equilibrate overnight at room temperature 

with gentle shaking. After 15 h incubation at room temperature the supernatants were 

sampled (420 μL) and the aliquots diluted in 80 μL HEPES buffer and transferred to HPLC 

vials for measurement of unbound solute concentration by reversed phase HPLC. The HPLC 

system consisted of an Agilent HPLC 1200 series instrument (Agilent) equipped with a UV-

DAD detector and an autosampler. The column was a reversed phase (C18) column 

(Phenomenex Luna C-18, 150 × 4.6 mm), the mobile phase: water (0.1% TFA)(88%)  and 

ACN (0.1% TFA) (12%), (gradient elution) flow rate : 1.0 mL/min, the injection volume was 

20 μL and the detection performed by UV absorbance at 220 nm. The resulting peak areas 

were used to calculate the amount of bound analyte on the polymer (in mg/g of polymer). The 

binding results are averages of two independent experiments. 
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Conclusions and Perspectives 

Imprinted NPs can be produced by a) precipitation polymerization, b) two phase mini-

emulsion polymerization, by c) pregel interrupted polymerization or by d) grafting to or e) 

from either a soluble or nonsoluble core. In the context of imprinting, the grafting from 

approach e) by controlled radical polymerization (CRP) is particularly attractive overcoming 

key limitations of the other approaches (a and d: excessive dilution and need for extensive 

compositional optimization, b: template effects on emulsification and c: nonstoichiometric 

monomer incorporation). Grafting of imprinted films by CRP, in particular by an                 

R-immobilized RAFT agent, has furthermore proven effective in enhancing the polymer 

binding site accessibility and hence binding capacity for the imprinted target. This was 

therefore the method of choice in our investigation. 

In spite of the aforementioned drawbacks, these polymerization techniques have successfully 

been used for targeting different templates. Multifunctional polymer-based NPs with 

selective protein affinity were prepared by using precipitation polymerization [284]. More 

recently, high selective imprinted nanoparticle polymers by a mini-emulsion polymerization 

technique have been reported for controlled release and analysis of risperidone in human 

plasma samples [285]. MIP nanogels of protein dimensions with good binding affinity and 

specificity were prepared by using pregel interrupted polymerization [204].  

In our investigation, surface-initiated RAFT polymerization has been used to prepare 

molecularly imprinted core-shell nanoparticles towards different templates in organic and 

aqueous media. Silica nanoparticles with different sizes ca 20 nm, ca 100 nm and ca 200 nm 

were used as a support material. Due to versatility and adaptability of RAFT polymerization 

with different monomers and conditions, RAFT is arguably the most promising among the 

CRP methods to employ in MIP systems. 

In the early studies and before moving to graft cross-linked polymerization, the graft linear 

polymerization from RAFT modified silica nanoparticles was investigated. Afterwards the 

grafting of L-PA imprinted polymers was carried out on RAFT-modified silica support. In 

order to prepare imprinted core-shell MIPs via this method there were several difficulties in 

finding the right balance between all parameters (i.e. solid support content, RAFT/initiator 

ratio, monomer concentration, amount of solvent, etc). After plenty of attempts, the 
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polymerization procedure was successfully optimized and the first promising core-shell NPs 

were generated in our group.  

In the first part of the work, well-established RAFT polymerization procedure was used to 

generate core-shell structured MIP nanoparticles for chiral discrimination. According to the 

binding-isotherm results, the MIPNPs exhibited a much-higher binding affinity for the 

template molecule than the NIPNPs. In addition, MIPNPs were able to discriminate the 

template L-PA and its optical antipode D-PA. The results of our research demonstrated that 

the size of the core particles has an important role in binding properties of core-shell 

particles. Comparison of the particles produced using the larger cores and the smaller core 

size revealed that the core-shell particles with smaller core size displayed a higher binding 

affinity than those with larger cores. This can be attributed to high specific surface area and 

grafting density of the colloidal size particles.  

Based on the successful MIP generation in the first part, solid-phase synthesis of MIP core-

shell NPs using magnetic template was investigated in the second part of the work. The final 

aim of this study was to develop a novel scalable process to produce surface imprinted 

nanoparticles in high yield and in template free form. Combination of surface initiated RAFT 

polymerization and solid phase synthesis offers significant advantages when compared to 

traditional approaches which rely on free template in solution, such as receptors in template 

free form, template reusability and high affinity binding sites. The results demonstrated that 

the MIPNPs prepared via this method have high accessible binding site and good 

discrimination towards the template L-PA and its optical antipode D-PA. These aspects in 

addition to the fact that polymerization take place in homogenous media hold great promise 

with respect to method scalability and parallel synthesis.  

In the third part of the work, the epitope imprinted core-shell nanoparticles via surface 

initiated RAFT polymerization for β-amyloid template were developed. The silica 

nanoparticles with different sizes were modified via dithiobenzoate and trithiocarbonate 

RAFT agent and used as solid supports. The final MIPs were designed using TBA salt of the 

acetylated Aβ37-42 as a template for the recognition of Aβ33-42. The batch rebinding results 

demonstrated that the resulting polymers which prepared in diluted condition showed same 

adsorption capacity at the both imprinted and nonimprinted polymers. In contrast, at the both 

resulting polymers which generated in concentrated condition the imprinted particles 

displayed slightly more adsorption capacity than the nonimprinted particles in high range of 
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template concentrations. This behavior can be attributed to low concentration of template in 

diluted prepolymerization mixture which cause the week interaction among the functional 

monomers and template. The poor solubility of Aβ33-42 in aqueous media caused a 

considerable problem for the rebinding tests. For this reason more investigations need to 

address this problem and get more optimistic results. 

In the last part of the work, the nano-sized surface imprinting with epitope approach in 

aqueous and organic media have been combined in order to recognize a hydrophilic 

decapeptide epitope template (T10) corresponding to the solvent exposed C-terminus of the 

human immunoglobulin G (IgG) heavy chain. The resulting imprinted and nonimprinted 

polymers in organic media revealed similar adsorption capacity towards T10 template. Two 

polymers were investigated in aqueous media which had different functional monomer. For 

polymers prepared in organic media, the resulting imprinted and nonimprinted particles 

revealed a similar adsorption capacity towards T10 template. When the synthesis was 

performed in aqueous media, the imprinted particles displayed a higher adsorption capacity 

than the nonimprinted particles. Compared to polymer grafted using the bisphosphonic acid 

monomer, polymer obtained via methacrylic acid as functional monomer showed better 

imprinting performance.  

Our results provide a new potential for peptides and protein imprinting in aqueous media 

using SI-RAFT technique and it might also be transferred to epitopes of other proteins. 

Therefore, combining the results obtained in this work with the use of nanoparticles could 

result in significant improvement to the MIPs properties and applications. We believe that 

such synthetic MIP nanoparticles are highly promising alternatives to biological receptors 

with great potential in many analytical applications and other areas. 

In conclusion, we have developed the promising general platform which has proved to work 

for different monomers and for different templates. We are currently exploiting these 

possibilities while applying the concept to other model systems including those of biological 

significance. As an alternative to the silica core particles, different nanostructured 

counterparts with optionally different functional properties such as magnetic or luminescent 

cores or labeled with probes can be used to develop the new core-shell structured MIP NPs. 
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Chemicals 

3-Aminopropyltriethoxysilane(APTES) ≥98% Sigma-Aldrich,Steinheim, Germany 

3-Aminopropyldimethylethoxysilane(APDMES), 97% Sigma-Aldrich,Steinheim, Germany 

4-(Chloromethyl)phenyltrichlorosilane, 97% Alfa Aesar, Karlsruhe, Germany 

4-(Chloromethyl)phenyltrimethoxysilane, tech. 90% Alfa Aesar, Karlsruhe, Germany 

1-Hydroxybenzotriazole (HOBt) Across, Geel, Belgium 

4-cyanopentanoic acid dithiobenzoate(CPDB) Strem Chemicals, Germany 

N-(2-aminoethyl) methacrylamide hydrochloride Polysciences Inc., Germany 

N,N′- ethylenebisacrylamide (EBA) Sigma-Aldrich,Steinheim, Germany 

S,S'-Bis(α,α'-dimethyl-α''-acetic acid)-trithiocarbonate  Own synthesis 

2,2'-Azobis(2.4-dimethyl valeronitrile),(V-65) Wako Chemicals, Neuss, Germany 

2-propanol Sigma-Aldrich,Steinheim, Germany 

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic-  Applichem, Darmstadt, Germany 

acid (HEPES)  

Acetic acid Sigma-Aldrich,Steinheim, Germany 

GGVVIA (Aß37-42) Genscript, USA 

GLMVGGVVIA (Aß33-42) Genscript, USA 

Acetone Merck KGaA, Darmstadt, Germany 

Acetonitrile (HPLC grade) Merck KGaA, Darmstadt, Germany 

Activated basic alumina  Across, Geel, Belgium 

Ammonium hydroxide solution,28% Fluka, Deisenhofen, Germany 

Ammonium persulfate (APS) Sigma-Aldrich,Steinheim, Germany 

Aniline Sigma-Aldrich,Steinheim, Germany 

BOC-L-phenylalanine Bachem, Heidelberg, Germany 

Butylamine Sigma-Aldrich,Steinheim, Germany 
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Carbon disulfide Sigma-Aldrich,Steinheim, Germany 

Chloroform (p.a) Merck KGaA, Darmstadt, Germany 

Colloidal silica particles, 30 wt % dispersed in methyl-  Nissan Chemical, Japan 

ethyl ketone (MEK-ST)  

Decapeptide (T10) GenScript, Piscataway,NJ, USA 

Dichloromethane (dry) Merck KGaA, Darmstadt, Germany 

Dicyclohexyl carbodiimide (DCC) Sigma-Aldrich,Steinheim, Germany 

Dimethylformamide (dry) Fluka, Deisenhofen, Germany 

Dimethylsulphoxide (p.a.) Merck KGaA, Darmstadt, Germany 

Dipotassium phosphate Sigma-Aldrich,Steinheim, Germany 

Divinylbenzene Sigma-Aldrich,Steinheim, Germany 

D/L-phenylalanine anilide Own synthesis 

Ethylchloroformate Sigma-Aldrich,Steinheim, Germany 

Ethanol (dry) Fluka, Deisenhofen, Germany 

Ethanol( p.a.) Merck KGaA, Darmstadt, Germany 

Ethyleneglycol dimethacrylate (EDMA) Sigma-Aldrich,Steinheim, Germany 

Guanidine hydrochloride (GuHCl) Sigma-Aldrich,Steinheim, Germany 

Hexane (p.a.) Merck KGaA, Darmstadt, Germany 

Hydrochloric acid (conc.) Merck KGaA, Darmstadt, Germany 

Methacrylic acid (MAA) Sigma-Aldrich,Steinheim, Germany 

Methyl methacrylate (MMA) Sigma-Aldrich,Steinheim, Germany 

Methanol (HPLC grade) Merck KGaA, Darmstadt, Germany 

Methanol (p.a.) Merck KGaA, Darmstadt, Germany 

Methacrylamide (MAAM) Sigma-Aldrich,Steinheim, Germany 

Monopotassium phosphate Sigma-Aldrich,Steinheim, Germany 
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Sodium acetate Sigma-Aldrich,Steinheim, Germany 

Silica nanoparticle, 200 nm  Own synthesis 

Sodium chloride Sigma-Aldrich,Steinheim, Germany 

Sodium hydroxide  Merck KGaA, Darmstadt, Germany 

Styrene (St) Sigma-Aldrich,Steinheim, Germany 

Tetrabutylammonium hydrogen sulfate Sigma-Aldrich,Steinheim, Germany 

Tetraethyl orthosilicate (TEOS) , 98% Across, Geel, Belgium 

Tetramethylethylenediamine (TEMED) Fluka, Deisenhofen, Germany 

Tetrabutylammonium hydroxide Sigma-Aldrich,Steinheim, Germany 

Tetrahydrofuran (dry) Fluka, Deisenhofen, Germany 

Tetrahydrofurane( p.a) Merck KGaA, Darmstadt, Germany 

Toluene (dry) Fluka, Deisenhofen, Germany 

Triethylamine Sigma-Aldrich,Steinheim, Germany 

Trifluoroacetic acid Sigma-Aldrich,Steinheim, Germany 

 

HPLC water was purified using a Milli-Q system (Millipore, Bedford, MA). Anhydrous 

solvents, tetrahydrofuran were stored over appropriate molecular sieves.  

Methacrylic acid (MAA), ethyleneglycol dimethacrylate (EGDMA), styrene (St) and methyl 

methacrylate (MMA) were passed through a column of activated basic alumina to remove 

inhibitor and stored at -20 °C before polymerization. Methacrylamide (MAAM) was 

recrystallized twice from mixtures of hexane and toluene prior to use. All other reagents were 

used as received. 
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