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Abstract 
Population forecasts have recently received a great deal of attention. They are widely 
used for planning and policy purposes. In this paper, the Gompertz growth curve is 
proposed to forecast the U.S. population. In order to evaluate its forecast error, 
population estimates from 1890 to 2010 are compared with the corresponding predictions 
for a variety of launch years, estimation periods, and forecast horizons. Various 
descriptive measures of these forecast errors are presented and compared with the 
accuracy of forecasts made with the cohort component method (e.g., the U.S. Census 
Bureau) and other traditional time series models.  These models include quadratic and 
cubic trends, which were used by statisticians at the end of the 19th century (Pritchett and 
Stevens). The measures of errors considered are based on the differences between the 
projected and the actual annual growth rate. It turns out that the forecast accuracies of the 
models differ greatly. The accuracy of some simple time series models is better than the 
accuracy of more complex models. 
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1. Introduction 
 
The need for population forecasts is hardly disputed. In politics, in public administration, 
and in business, far-reaching decisions are made which depend on the future development 
of the population. The reliability of population predictions is influenced, however, by a 
multitude of factors. If long-term population forecasts are to serve as a rational basis for 
decision-making, then one needs to have an idea of their uncertainty. The smaller this 
uncertainty is, the more willing people will be to make decisions that are dependent on 
demographic factors (e.g., a decision to stabilize the financing of old age pensions). 
In this paper, the Gompertz growth curve is proposed to forecast the U.S. population. In 
order to evaluate the forecast error, population estimates from 1890 to 2010 are compared 
with the corresponding predictions for a variety of launch years, base periods, and 
forecast horizons. Various descriptive measures of the forecast errors are presented and 
compared with the accuracy of forecasts made with the cohort component method (e.g., 
the U.S. Census Bureau) and other traditional time series models.   
 

2. The Gompertz Growth Curve 
 
A population can be forecast by the following general traditional time series model 

T
r(t)dt

0P(T) P(0) e
∫

= ⋅ , 
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where  P(T) is the population at time T, P(0) is the base population at time 0, and r(t) is 
the continuous growth rate at time t. 
If a declining exponential growth rate is assumed, viz., 

k tr(t) A e− ⋅= ⋅  with A > 0, k > 0, 
one obtains through integration 

( )A A exp k tk kP(t) P(0) e
− ⋅ − ⋅

= ⋅ =
( )A exp k t

kC e
− ⋅ − ⋅

⋅  

with 
A
kC P(0)e= . Here, C is the saturation level, since 

( )A exp k tklim C e C
t

− ⋅ − ⋅
⋅ =

→∞
. 

The population at time 0 is given by 
A
kP(0) Ce

−
= . 

This function is called the Gompertz growth curve. It has been used by Winsor (1932) 
and other authors since 1926 (see Winsor, 1932, p. 7) as a growth curve, both for 
biological and economic phenomena1. It is a modification of the famous Gompertz law of 
1825, which states that the force of mortality increases exponentially with age. 
In terms of actuarial notation, this formula can be expressed as  

( ) = ⋅ kxx A eμ , 
where ( )xμ is the force of mortality, A > 0, k > 0, A is the general mortality level, x is the 
age, and k is the age-specific growth rate of the force of mortality. Since 

( ) ln ( )1( ) ( )= − ⋅ = −
d l x d l xx dx l x dxμ , 

one gets through integration the survivor function of the Gompertz distribution 

( ) exp ⎛ ⎞
⎜ ⎟
⎝ ⎠

⋅= − ⋅A A k xl x ek k  0≥x . 

Since with human populations <<A k , the survivor function can be approximated for 
−∞ < < ∞x by 

( ) exp ⎛ ⎞
⎜ ⎟
⎝ ⎠

⋅= − ⋅A k xl x ek ;  ( ) 1 exp ⎛ ⎞
⎜ ⎟
⎝ ⎠

⋅= − − ⋅A k xF x ek  is called the Gumbel (minimum) 

distribution (cf., e.g., NIST/SEMATECH, 2011). This distribution is left-skewed. 
In order to recognize the relationship of the Gompertz growth curve to the Gompertz 
distribution, the parameter C may be set to unity. In this case, one obtains an improper 
distribution function  

( )A exp k tkF(t) e
− ⋅ − ⋅

=  for t 0≥ , since 
A
kF(0) e

−
= . 

This improper distribution function can be modified in order to obtain the proper 
distribution function: 

( ) AA exp k t kke e
F(t) A

k1 e

− ⋅ − ⋅ −−
=

−
−

 for t 0≥ . 

Its growth rate is 

                                                 
1 I do not know of an application of the Gompertz growth curve in population forecasting with the 
exception of my own analysis (cf. Pflaumer, 1988). 
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k tA e
r(t) A Aexp( k t)k k1 e

− ⋅⋅
=

⋅ − ⋅ −
−

 for t 0≥  

with 
t 0
lim
→

= ∞  and 
t
lim 0
→∞

= . With increasing t, the growth rate approaches the 

exponential growth rate k t k t
A
k

Ar(t) e A e
1 e

− ⋅ − ⋅

−
= ⋅ > ⋅

−
. 

A change of the domain leads also to a proper distribution function, which is the right-
skewed Gumbel (maximum) distribution 

( )A exp k tkF(t) e t
− ⋅ − ⋅

= −∞ < < ∞ . 
The mathematical properties of the Gompertz growth curve were given in Winsor (1932).  
Differentiating the function twice, one gets the point of inflection 

A
ln

km
k

=

⎛ ⎞
⎜ ⎟
⎝ ⎠ . The ordinate at the point of inflection is 

C
e

, i.e., when approximately 37% 

of the final growth has been reached.  At time t = m, the population increase is maximal.  
Near the point of inflection, the function can be approximated through a Taylor series 
expansion by  

( )( )C
P(t) k t m 1

e
≈ ⋅ ⋅ − + . 

A substitution yields an easy to interpret formula for the population trajectory, 
( )( )exp k t m

P(t) C e
− − −

= ⋅ , 
where 
C = upper asymptote (saturation level), 
m = the time of maximum increase, 
k  = the rate of decrease of the growth rate.        

The growth rate is ( )k x m k m k t k tr(t) A exp( k t) k e k e e r(0) e− ⋅ − ⋅ − ⋅ − ⋅= ⋅ − ⋅ = ⋅ = ⋅ = ⋅ . 

Since 
A k tln P(t) ln C e
k

− ⋅− = − ⋅ , it is possible to describe the growth rate as a function 

of the population size P(t), that is  ( )C
r(t) k ln k ln C ln P(t)

P(t)
= ⋅ = ⋅ −

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The closer the 

population is at the saturation level, the lower the growth rate will be.  
 
 

3. Empirical Analysis and Forecasts 
 

3.1 The Gompertz Growth Curve  
The analysis is carried out with decennial U.S. population data from 1790 to 2010 (cf. 
Table 2). The parameters have been estimated by a nonlinear method of least 
squares using the decennial population figures P(t) between the years 1790 and 

2010 as a  function of 1790
10
−= yeart  or,  0,1, 2,....21, 22=t . 
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Regression estimates were made based on n = 23 observations. The results are seen in 
Table 1. All estimators correspond to the theoretical assumptions, and are statistically 
significant.  The model explains the development of the population between 1790 and 
2010 on the whole very well, although the population totals in 2000 and 2010 have been 
underestimated by nearly 1% (cf. Table 2). The saturation level is about 1.37 billion; the 
population growth rate decreases on the average by roughly 6% every ten years 
(k=0.0613); the point of inflection is predicted for 2076 ( 1790 28.6 10= + ⋅ ), which is the 
year with the maximum absolute population growth. 
 
Table 1: Estimates of the Gompertz growth curve between 1790 (t = 0) and 2010 (t = 22) 

 
Parameter Estimate t-Value 

C 1370.0 6.73 
k 0.0613 14.69 
m 28.576 14.19 

Cases incl. 23  
Nonlinear estimation 

 
Table 2: Actual and estimated population 

 
Year 1790 1800 1810 1820 1830 1840 1850 1860 
Actual Pop. 3.93 5.31 7.24 9.64 12.87 17.07 23.19 31.44 
Gompertz 4.30 6.10 8.40 11.40 15.10 19.80 25.40 32.20 
Year 1870 1880 1890 1900 1910 1920 1930 1940 
Actual Pop. 38.56 50.19 62.98 76.21 92.23 106.02 123.20 132.16 
Gompertz 40.30 49.70 60.50 72.80 86.70 102.10 119.20 137.80 
Year  1950 1960 1970 1980 1990 2000 2010 
Actual Pop.  151.33 179.32 203.21 226.55 248.71 281.42 309.05 
Gompertz  157.90 179.50 202.60 227.00 252.50 279.20 306.90 
 
Model forecasts are compared with forecasts of the U.S. Census Bureau in Table 3. Their 
projections are based on Census 2000 and were produced using a cohort-component 
method. The components of change were projected into the future based on past trends. 
The projections cover the period 2000–2050. (U.S. Census Bureau, 2010). Between 2010 
and 2050, the Census Bureau projects a growth of the U.S. population from 310 million 
to 439 million, an increase of 42%. The Gompertz growth curve projects, with a base 
population of only 307 million, a population of 425 million in 2050, an increase of 38%. 
The 99% prediction intervals of the Gompertz curve contain the low and the middle 
alternatives of the Census forecasts. In 2100, the population is projected to grow to 579 
million, an increase of 89%. The fact that the population is also expected to become 
much older can only be concluded with the cohort-component method. 
 
3.2 Alternative Simple Trend Models 
The growth of the U.S. population has been forecast by simple trend models before.  The 
first polynomial  model  was developed  by the professor  of mathematics and astronomy,  
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Table 3: Gompertz growth curve forecasts and U.S. Census Bureau forecasts 
 

Year Point 
Forecast 

99% CI 
(LL) 

99% CI 
(UL) 

Census 
Forecast 

2008 

Census 
Forecast 

2008 
(low) 

Census 
Forecast 

2008 
(high) 

2010 306.90 295.60 318.21 310.23 308.28 312.50 
2020 335.43 322.34 348.53 341.39 336.84 346.69 
2030 364.69 348.91 380.46 373.50 365.68 382.61 
2040 394.52 375.16 413.89 405.66 393.86 419.40 
2050 424.81 400.98 448.64 439.01 422.55 458.18 
2060 455.42 426.30 484.54    
2070 486.22 451.01 521.42    
2080 517.09 475.06 559.11    
2090 547.91 498.36 597.45    
2100 578.57 520.85 636.29    

Source: Own Calculations and U.S. Census Bureau (2009): National Projections; Low Net 
International Migration Series; High Net International Migration Series 
 
Henry Smith Pritchett2 (1891, 1900).  By plotting and investigating the data from 1790 to 
1880, he concluded that the growth of the U.S. population can be best explained by 
a cubic polynomial of time. By the use of his formula, he obtained decennial forecasts 
from 1910 to 2000.   These forecasts  were not bad  for the first  few decades.   For longer 
periods, the model overestimated the actual population. He also made predictions for 
unusually long periods (2500: 11.9 billion; 3000: 40.9 billion). A similar approach is due 
to the professor of physics of the University of Maine, James S. Stevens (1900, 1910). He 
fitted a parabolic function of time to the population data between 1790 and 1880. His 
long-term forecasts are much better. For 2000, e.g., he predicted a population of 287.8 
million, which is only slightly above the actual population. His forecasts for 2500 and 
3000 are 3.4 and 10.1 billion people. Formally, the Stevens and the Pritchett model can 
be represented by 

2P(t) a b t c t= + ⋅ + ⋅  
and 

2 3P(t) a b t c t d t= + ⋅ + ⋅ + ⋅ , 
with the growth rates 

dP(t)
b 2ctdtr(t) 2P(t) a bt ct

+
= =

+ +
 

and 

2
dP(t)

b 2ct 3dtdtr(t) 2 3P(t) a bt ct dt

+ +
= =

+ + +
. 

 
                                                 
2 Pritchett (1857–1939) was President of the Massachusetts Institute of Technology from 1900 to 
1907 and wrote his doctoral thesis in Munich, Germany: 
Über die Verfinsterungen der Saturntrabanten, München, Univ., Diss., 1895. 
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Although the polynomial functions do not have a saturation level, their growth rates 
approach zero with increasing time t. 
The earliest population projections were made by assuming an exponential or geometric 
growth model with constant growth rate r: r TP(T) P(0) e ⋅= ⋅ . A good example of this 
kind of model is the forecast of the clergyman and Harvard professor E. Wigglesworth in 
1775. In this study, “Calculations on American Populations,” he made a long-term 
forecast for the population of the “British Colonies.” He had observed that the population 
of his country doubled approximately every 25 years, which corresponded to a yearly 
growth rate of 2.8%. If one assumes, as Wigglesworth did, an initial population of 2.5 
million and a continued constant growth rate of 2.8%, then one arrives at a forecast of 
640 million people for the year 1975. With this figure, however, Wigglesworth 
considerably overestimated the actual population, which was less than 220 million in 
1975. In the long term, the geometric trend model will considerably overestimate the 
population if the population growth rates are declining, which is the usual case. 
The biologists R. Rearl and L.-J. Reed (1920) used the S-shaped logistic curve in order to 
produce long-term forecasts for the population of the United States. They predicted a 
saturation level of approximately 196 million. This population size was already surpassed 
in the mid 1960´s. 
The logistic population growth curve goes back to Verhulst (1838). However, his work 
was ignored and eventually forgotten. Empirical investigations in general show that the 
population was significantly underestimated by the logistic function after as little as 30 
years, e.g., Keyfitz (1979). In the long run, the application of the logistic model leads to 
an underestimation of the population size. Relevant formulas of the logistic curve are 

S
P(t) kt1 be

= −+
, S 0, k 0, b 0> > > , S = saturation level, 

dP(t) P(t)
k P 1tdt S

= ⋅ ⋅ −⎛ ⎞
⎜ ⎟
⎝ ⎠

,      
P(t) b

r(t) k 1 k ktS e b
= ⋅ − = ⋅

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

The logistic function is symmetric and has a point of inflection at S/2. The midpoint on 
the abscissa of the curve, where half of the saturation level has been achieved, is 

ln b
tS k2

= . 

For the same estimation period with the same regressors t = 0, 1, … , 22 as for the 
Gompertz growth curve, the following results for the alternative models are presented in 
Table 4. All estimators are significant, and the coefficients of determinations of the 
polynomial models are near unity. 
The forecasts by the alternative models are shown in Table 5. The differences between 
the models are remarkable. The exponential models project a very high population 
increase, whereas the logistic function projects a very low population increase in future 
years. The polynomial models yield similar projections as the Gompertz curve. This fact 
is not surprising, since the Gompertz curve behaves more or less like a polynomial curve 
up until the inflection point. For the present forecast period, the forecast of the Pritchett 
model is higher than the forecasts of the Stevens model and the Gompertz growth curve. 
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Table 4: Estimation results of the alternative models 
 
 

Quadratic and Cubic Trend (Stevens and Pritchett) 
Parameter Estimate t-Value Parameter Estimate t-Value 

a 74.1477 77.76 a 74.1477 86.08 
b 13.607 142.21 b 13.1384 60.4 
c 0.6783 41.94 c 0.6783 46.43 
   d 0.00593 2.35 

R-Squared 0.9991  R-Squared 0.9993  
Cases incl. 23  Cases incl. 23  

 
Logistic Function 

Parameter Estimate t-Value 
S 485.18 13.71 
b 58.088 15.64 
k 0.2081 23.23 

Cases incl. 23  
Nonlinear estimation 

 
Exponential Trend 

Parameter Estimate t-Value 
P(0) 16.327 10.45 
k 0.1364 27.33 
Cases incl. 23  

Nonlinear estimation 
 
 
 

Table 5: Time series forecasts of the U.S. population (estimation period 1790–2010) 
 

 Stevens Pritchett Logistic Function Exponential Trend 
Year Point LL UL Point LL UL Point LL UL Point LL UL 
2010 305.9 302.2 309.5 308.6 304.5 312.8 303.8 285.6 322.1 327.9 288.1 367.8 
2020 335.1 324.6 345.6 339.7 328.7 350.8 326.8 305.2 348.3 375.8 331.8 419.9 
2030 365.7 354.5 376.8 372.6 359.4 385.8 348.1 321.9 374.3 430.8 380.3 481.2 
2040 397.6 385.7 409.5 407.3 391.3 423.3 367.6 335.8 399.5 493.7 434.1 553.2 
2050 430.9 418.1 443.7 443.9 424.2 463.5 385.2 347.1 423.2 565.8 494.0 637.6 
2060 465.5 451.6 479.4 482.3 458.3 506.3 400.7 356.2 445.2 648.5 560.7 736.3 
2070 501.5 486.4 516.6 522.7 493.5 551.9 414.2 363.3 465.2 743.2 635.1 851.3 
2080 538.8 522.5 555.2 565.0 529.8 600.2 425.9 368.8 483.1 851.8 718.4 985.2 
2090 577.5 559.7 595.4 609.3 567.4 651.3 435.9 373.0 498.8 976.2 811.7 1140.8 
2100 617.6 598.2 637.0 655.7 606.1 705.3 444.4 376.2 512.6 1118.9 916.3 1321.4 

(LL and UL are lower and upper limits of 99% prediction intervals)  
 
The point forecasts of the various models for the population in, e.g.,  2050, range from 
385 million to 566 million. Considering the time series of the growth rate of the U.S. 
population in the last two centuries in Figure 1, one can exclude the exponential model 
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and the logistic function as suitable forecasting models. Actual growth rates declined 
from 3% in the first decades of the estimation period  to below 1 % in the last decades. 
The exponential model will probably overestimate the future growth rate, and the logistic 
function will underestimate it. 
The three other models reflect the development of the growth rates quite well. Their 
forecasts range between 425 million (Gompertz growth curve) and 444 million (Pritchett 
model) in 2050. This interval contains the Census Bureau forecast of 439 million, too.   
Which point forecast should be chosen, now? In order to answer this question, an ex post 
error analysis of the forecasts will be carried out in the next chapter. The exponential 
growth model will be dropped because of its unlikely forecasts. 
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Figure 1: Yearly growth rates of the U.S. population 
 
 

4. Evaluation of the Forecast Accuracy 
 

4.1 Measures of the Forecast Error  
There are several possibilities for studying the uncertainty of population forecasts: 
sensitivity analyses, forecast intervals in time series models, and stochastic component 
models (cf., e.g., Land, 1987). A further method of describing the uncertainty in 
population forecasts is based on the calculation of forecast error measures. They can aid 
in an ex post evaluation of a forecast. Under certain conditions, it is even possible to 
construct a forecast interval for future predictions on the basis of the distribution of past 
forecast errors (see, e.g., Keyfitz, 1981). 
The measures of error considered here are based on the differences between the projected 
and the actual annual population growth rates. Keyfitz (1981) and Stoto (1983) have 
shown that this measure is independent of the population size and the length of the 
forecast period.  
Let P0  be the population at the beginning of the projection period, and PT  be the actual 
population T years later. It is easily shown that the actual average annual growth rate is 

( )1
r ln P / P .T 0T
=  
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The projected average annual growth rate is 

( )1 ˆ ˆr̂ ln P / PT 0T
= , 

where TP̂  is the projected population at time T and P0  is the estimated population at the 
beginning of the projection period. The following measures of error will be used. 
 
(1) Logarithmic forecast error 

 
ˆd r r= − ; 

 
if  0 0P̂ P= , then 

P̂1 Td ln
T PT

=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

(2) Average error or bias 

( )1 1ˆBIAS r r d di i in n
= − = =∑ ∑ . 

 
(3) Mean square error 

( )21 1 2ˆMSE r r di i in n
= − =∑ ∑  

     or 
2 2MSE BIAS d= + σ , 

     with 

( )212 d dd in
σ = −∑ . 

 
(4) Root mean square error 

( )21 1 2ˆRMSE r r di i in n
= − =∑ ∑ , 

 
with 
 

ri  = actual growth rate 
ri  = projected growth rate 
di  = r ri i− . 
 

Empirical studies provide strong evidence that the RMSE is nearly invariant with respect 
to the time period over which the projection is made (cf. Keyfitz, 1981; Stoto, 1983; 
Pflaumer, 1993). 
Keyfitz (1981) was the first to point out that the logarithmic forecast error is practically 
independent of the time period about which the prediction is made. In his study, he 
analyzed the errors of 1100 population forecasts. These forecasts had been made by the 
United Nations from 1958 to 1968 for all countries of the world having a population of 
more than one million. The most important result of Keyfitz’s study is that the RMSE 
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varies by 0.3 percentage points for developed countries (low population growth) and 0.6 
percentage points for developing countries (high population growth). 
Jöckel & Pflaumer (1984), in connection with the study of Keyfitz, analyzed the errors of 
360 population forecasts of the United Nations from the year 1958. They, too, arrived at 
the conclusion that the forecast error and the RMSE are relatively stable, but that the 
variance of the RMSE increases with the length of the forecast horizon.  Indeed, this 
result also seems to be plausible. The increasing variance is an expression of the growing 
uncertainty that is caused by an extension of the forecast period. 
 
4.2 Results of the Forecast Error Analysis 
In order to get an idea of the accuracy of the Gompertz growth curve and the other simple 
time series models in the case of population forecasts, these models have been identified, 
estimated, and used for forecasting for various estimation periods, launch years, and 
forecast periods. Long-term ex post forecasts were made and compared with the actual 
population, and subsequently the logarithmic forecast error d and various error measures 
were calculated.  
For each model, moving estimation intervals were selected, all beginning with the year 
1790. The estimation results for the Gompertz model are shown in Table 6.  

 
Table 6: Parameters of the Gompertz growth curve in different periods 

 
 Parameter t-Value Estimation 

Interval n C k m C k m 
1790-1890 11 11961.0 0.044 48.1 0.9 5.2 3.9 
1790-1900 12 2812.1 0.057 33.6 1.7 7.4 5.7 
1790-1910 13 1883.9 0.062 29.7 2.9 10.7 8.5 
1790-1920 14 867.5 0.077 22.5 3.9 10.7 9.2 
1790-1930 15 707.2 0.083 20.7 5.8 14.1 12.7 
1790-1940 16 415.7 0.104 16.1 6.2 10.9 11.3 
1790-1950 17 411.3 0.105 16.0 8.4 13.7 14.9 
1790-1960 18 597.9 0.087 19.4 5.3 10.0 10.1 
1790-1970 19 829.0 0.075 22.7 4.5 9.5 9.2 
1790-1980 20 991.0 0.070 24.7 4.9 10.5 10.1 
1790-1990 21 1014.0 0.069 24.9 6.1 12.6 12.4 
1790-2000 22 1241.2 0.064 27.3 6.0 13.0 12.5 
1790-2010 23 1370.0 0.061 28.6 6.7 14.7 14.2 

 
On the basis of the estimated models, 10-year forecasts, 20-year forecasts, etc., were 
made and compared with the observed population numbers.  Out of that, logarithmic 
forecast errors and other error measures were calculated. The forecast model using the 
estimation period from 1790 to 1890, e.g., allows of producing forecasts for 1900, 1910, 
1920, …, 2000, and 2010, with forecast horizons of 10, 20, 30, ..., 100, and 110 years. 
When interpreting the results, it is important to note that the measures are calculated out 
of 1 error with a forecast period of 120 years (estimation period 1790–1890), 2 errors 
with a forecast period of 110 years (estimation periods 1790-1890 and 1790-1900), and 
so on. Finally, it is possible to obtain 12 errors with a forecast period of 10 years (all 
estimation periods with exception of 1790–2010). 
A benchmark for a forecast model is the so-called naïve model, which assumes no change 
in the future trend. Here, the naïve model is created by assuming a constant annual 
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growth rate for the total population, where this constant growth rate has been calculated 
from the last ten-year period of the launch year of the forecast. For example, if the launch 
year of the forecast is 1950, the annual population growth rate between 1940 and 1950 
has been calculated and has been used for forecasts for future periods. 
Table 7 shows the error measures of the various models. The bias of the logistic function 
forecasts is negative, which means that the population was significantly underestimated. 
The large RMSE of the logistic function, nearly 0.48 percentage points on average, is 
mainly explained by its large bias. The naïve model leads to a positive bias and an 
increasing RMSE; the accuracy of the forecasts decreases with increasing forecast length. 
In the case of short- and medium-term forecasts, the naïve model can nearly compete 
with the other models, but in the long run, the naïve model greatly overestimates the 
population, because of its constant growth rate.  The Pritchett, Stevens, and Gompertz 
models are better than naïve forecasting. There is some evidence that the RMSE of the 
Pritchett model and the Gompertz growth curve are nearly invariant with respect to the 
length of the forecast period, whereas their bias is increasing, when the forecast period is 
more than 60 years. The simpler Stevens model yields surprisingly very good results. The 
bias fluctuates around zero, and its RMSE is always lower than the RMSE of the other 
models. The forecast accuracy improves relatively with the forecast period, since its 
RMSE decreases. The Gompertz growth curve and the Pritchett model have similar 
patterns in their error measures, albeit the accuracy of the Pritchett model is slightly 
better than that of the Gompertz growth curve. In summary, it should be noted that the 
following ranking applies with respect to the forecast accuracy: first, the Stevens model; 
second, the Pritchett model; and third, the Gompertz growth curve. The averages of their 
RMSEs over all forecast periods are: 0.09, 0.28, and 0.34 percentage points. 
 

Table 7: Error measures for all models in dependence on the forecast horizon 
(percentage points) 

 
 BIAS RMSE 

Horizon Gompertz Pritchett Stevens Log. F Naїve F. Gompertz Pritchett Stevens Log. F. Naїve F.
10 -0.003 0.055 -0.043 -0.340 0.111 0.394 0.359 0.303 0.530 0.410 
20 0.007 0.058 -0.020 -0.329 0.138 0.329 0.293 0.197 0.463 0.401 
30 0.023 0.072 -0.003 -0.348 0.211 0.325 0.279 0.143 0.464 0.438 
40 0.028 0.077 0.001 -0.389 0.263 0.328 0.272 0.111 0.486 0.465 
50 0.040 0.088 0.007 -0.425 0.305 0.344 0.279 0.085 0.514 0.504 
60 0.056 0.099 0.001 -0.458 0.278 0.331 0.268 0.064 0.527 0.493 
70 0.107 0.145 0.001 -0.459 0.315 0.289 0.236 0.037 0.500 0.523 
80 0.183 0.210 0.008 -0.441 0.509 0.271 0.234 0.025 0.462 0.556 
90 0.239 0.243 0.005 -0.443 0.578 0.294 0.255 0.016 0.457 0.624 
100 0.310 0.278 -0.001 -0.432 0.732 0.334 0.281 0.013 0.439 0.742 
110 0.354 0.282 -0.020 -0.447 0.772 0.368 0.283 0.023 0.452 0.784 
120 0.454 0.310 -0.029 -0.412 0.945 0.454 0.310 0.029 0.412 0.945 
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Table 8: Error measures for all models in dependence on the launch year (percentage 
points) 

 
 BIAS RMSE 
Launch Year Gompertz Pritchett Stevens Log. F Naїve F. Gompertz Pritchett Stevens Log. F. Naїve F.
1890 0.448 0.315 -0.046 -0.131 0.719 0.454 0.322 0.101 0.223 0.745 
1900 0.308 0.278 -0.002 -0.262 0.453 0.318 0.289 0.102 0.315 0.489 
1910 0.318 0.334 0.086 -0.207 0.618 0.337 0.346 0.118 0.304 0.623 
1920 0.135 0.218 0.096 -0.365 0.138 0.200 0.250 0.154 0.422 0.175 
1930 0.115 0.218 0.158 -0.343 0.383 0.292 0.331 0.287 0.458 0.419 
1940 -0.284 -0.180 -0.014 -0.716 -0.640 0.311 0.216 0.144 0.725 0.648 
1950 -0.483 -0.379 -0.175 -0.882 -0.011 0.494 0.395 0.190 0.891 0.175 
1960 -0.327 -0.210 -0.153 -0.669 0.553 0.339 0.229 0.173 0.677 0.556 
1970 -0.183 -0.073 -0.108 -0.467 0.193 0.189 0.087 0.120 0.470 0.195 
1980 -0.111 -0.004 -0.076 -0.370 0.069 0.125 0.061 0.090 0.373 0.094 
1990 -0.247 -0.129 -0.190 -0.512 -0.228 0.255 0.140 0.201 0.517 0.240 
2000 -0.150 -0.027 -0.153 -0.411 0.299 0.150 0.027 0.153 0.411 0.299 
 
Table 8 shows error measures in dependence on the various launch years of the forecasts. 
The error measures are calculated from 12 errors of forecast periods from 10 to 120 years 
(launch year 1890), 11 errors of forecast periods from 10 to 110 years (launch year 1900), 
and so on. Finally, 2 forecast errors of forecast periods from 20 to 10 years (launch year 
1990), and 1 error of the forecast period of 10 years (launch year 2000) were used. When 
the error measures are compared in Tables 7 and 8, it becomes apparent that the forecast 
error primarily depends on the time at which the forecast was made and not so much on 
the length of the forecast period. Especially large are the errors with launch years 1930 to 
1950. The models greatly underestimated the future population development. This 
underestimation with large negative biases logically leads to high values of the RMSE. 
Also, the demographers of the 1930´s and 1940´s underestimated future population totals 
despite their comparatively sophisticated methods. The reason for these incorrect 
predictions lay in the assumption that the low fertility level of these years would continue 
in the future. The baby boom of the 1950's and the early 1960's was not predicted and 
therefore not included in any calculations either. Thus, for example, the respected 
demographers Thompson and Whelpton (1943) underestimated the yearly population 
growth on average by one percentage point. The Stevens model outperformed the other 
models for nearly all launch years. For most launch years, the Pritchett model 
outperformed the Gompertz growth model, again, despite the similar error patterns. The 
averages of the RMSE were: 0.16 (Stevens model), 0.22 (Pritchett model), and 0.29 
percentage points (Gompertz growth curve). The average RMSE of the naïve method 
was, at 0.39 percentage points, high, although it produced good results in some launch 
years. 
At the end of this chapter, the performance of the time series models will be compared 
with that of the Census Bureau. Mulder (2002) published a comprehensive analysis of the 
accuracy of the Census Bureau. Her paper evaluates the accuracy of Census Bureau 
population forecasts and their components made between 1947 and 1994 for forecast 
periods of five, ten, fifteen and twenty years. Her naïve model assumes a constant growth 
rate, that of the launch year of the forecast (Mulder, 2002, p. 14). The results regarding 
the RMSE for multiple series are summarized in Table 9. The naïve model outperformed 
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the forecasts of the Census Bureau in short-term forecasts, whereas in the other cases 
similar measures of the RMSE have been achieved. 
 

Table 9: RMSE of U.S. Census Bureau population forecasts between 1947 and 1994 
(percentage points) 

 

Horizon 

U.S. Census 
Bureau 

Forecast Naїve 
5 0.30 0.18 

10 0.37 0.30 
15 0.39 0.38 
20 0.43 0.46 

Source: Mulder (2002), Table 2 (multiple series) 
 
 
In order to compare Mulder´s results with the previous results, error measures of the time 
series models were calculated for forecasts made between 1950 and 2000 (cf. Table 10) 
 

Table 10: Error measures for all models in dependence on the forecast horizon from 
launch years 1950 to 2000 (percentage points) 

 
 RMSE 
Horizon Gompertz Pritchett Stevens Log. F. Naїve F.

10 0.392 0.307 0.230 0.703 0.303 
20 0.303 0.221 0.148 0.597 0.274 
30 0.279 0.191 0.113 0.590 0.316 
40 0.297 0.194 0.104 0.637 0.356 
50 0.359 0.247 0.119 0.728 0.438 
60 0.413 0.298 0.115 0.805 0.164 

 
 
Because of the differences in the launch years and the lengths of the forecast periods, the 
comparison is limited. But it can be assumed that the time series models yield forecast 
results which are at least not worse than those of the more complex model of the Census 
Bureau. This paradox, that simple models often outperform more complex models, has 
been extensively discussed in the demographic literature (cf., e.g., Keyfitz, 1981; Stoto & 
Schrier, 1982; Stoto, 1983; Pflaumer, 1992; Rogers, 1995; McNown et al., 1995; Long, 
1995; Ahlburg, 1995). 
Smith & Sincich (1992) mention as a reason for this paradox the difficulty of anticipating 
future trends in the components of the more complex models. They believe that the 
cohort-component projections are no more accurate than the trend and ratio projections 
because forecasting fertility, mortality, and migration is just as difficult as forecasting 
population changes. 
 
 

5. Summary and Conclusion 
 
In the present paper, the Gompertz growth curve was considered as a population 
forecasting model. It is a simple alternative to the more complex cohort-component 
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method. Evaluating past forecast errors shows that its forecast accuracy is not worse than 
that of the Census Bureau, which uses the cohort-component-method. The Gompertz 
growth curve has a saturation level like the logistic function. The logistic function 
underestimates the population in the long run. This tendency can not be confirmed for the 
Gompertz growth curve at all. Simpler alternative time series models such as the Pritchett 
model and the Stevens models were considered, too. It turned out that these two models 
outperformed the Gompertz growth curve in the calculation of past forecast errors. The 
Stevens model, a parabolic trend model, achieved the best results. Pflaumer (1992) 
discussed the Box–Jenkins approach for forecasting the U.S. population. He concluded 
that the U.S. population can be satisfactorily described by an ARIMA(2,2,0) process and 
showed that this model is equivalent to a parabolic trend model or Stevens model when 
making long-term population forecasts. The superiority of the polynomial models over 
the Gompertz growth curve should not be generalized. Investigations with other 
population forecasts are still necessary. 
It is remarkable that such a simple model as the Stevens model made such reliable 
forecasts during the last century. Should it be applied to forecast the future population of 
the United States?  Obviously it is not suitable when an age-structured forecast is 
required. It is also not possible to decide a priori which forecasting model will perform 
best in the future. But the forecast accuracy of the past is one indicator for choosing a 
specific model. In addition to the forecast comparison, the time series models serve to 
investigate the plausibility of the assumptions of more complex models. Time series 
models should be regarded as a supplement to the more complex models. In the past, one 
could often observe a discrepancy between the forecasts of the Census Bureau, with its 
more complex model, and the simpler time series forecasts. Since right now both the 
Census Bureau and the time series models forecast show similar results for the future 
population of the U.S., it is to be hoped and to be expected that these forecasts will come 
true. In the year 2050, e.g., the middle or point forecasts are (in millions): Census Bureau, 
439; Gompertz growth curve, 425; Pritchett model, 444; Stevens model, 431. The 
forecast range of the different methods is very small. Thus, from today´s perspective, it is 
to be expected that the Census Bureau’s forecast is accurate. 
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