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1 Introduction

1 Introduction

Cancer — one of three women and one of two men receive this diagnosis during their
lifetime (US National Cancer Institute, 2013a, 2013b, 2013¢). Although many new ther-
apies have been developed in the past decades, the lifetime risk of dying from cancer is
still about 20% (22.94% and 19.34% in 2012 in the US for males and females, respec-
tively).

Tumorigenesis is caused by an imbalance of proliferation and programmed cell death.
Genes that regulate these mechanisms are altered (Croce, 2008) and can be divided into
two categories. Oncogenes are responsible for proliferation and cell growth, and tumor
supressor genes promote cell death (Wilbur, 2009). Recent research aims to get detailed
insights into cancer biology to target mechanisms responsible for tumor development
and progression.

Changes in gene expression is one of several indications for genetic alterations in cancer.
Knudson (2001) discovered that typically many genes are needed to change a normal cell
into a tumor cell with uncontrolled growth. Microarray technology, and most recently
RNA-seq, is used to measure the expression of thousands of genes simultaneously. Hun-
dreds of cancer-related gene expression datasets are publicly available in databases like
Gene Expression Omnibus (Edgar et al., 2002).

Since modulation of gene expression is caused by either chromatin domains, transcrip-
tion, post-transcriptional modification, RNA transport, translation or mRNA degrada-
tion (Gilbert, 2003), thousands of simultaneously measured gene expressions are promiss-
ing to reveal mechanisms changing under certain conditions.

With the first microarray experiments, researchers have been started to look for differen-

tially expressed genes between disease and control samples, different stages of a disease



1 Introduction

or different tissues. For example, Ismail et al. (2000) identified 160 and 95 genes up-
regulated in normal human ovarian surface epithelium and ovarian tumors, respecively.
Welsh et al. (2001) found several differentially expressed genes between prostate tumors
and normal prostate tissue and proposed the secreted macrophage inhibitory cytokine

(MIC-1) as diagnostic marker.

In this thesis, our goal is to improve statistical methods for high-dimensional data to gain
deeper insights into cancer biology by analyzing gene expression data. We focus on two
topics. First, the large number of available gene expression datasets is used to validate
differentially expressed genes or biomarkers in cancers. Second, genes are not consid-
ered alone but in interaction networks that might change during disease progression or
between different disease stages. We detect differential interaction networks from gene

expression data by testing gene sets derived with and without biological prior knowledge.

Despite the knowledge of multi-gene involvement in tumorigenesis, many publications
describe single genes as predictive or prognostic markers. Trock et al. (1997) found that
MDR1/gpl170 expression in breast cancer tumors is associated with poor response to
chemotherapy and Yamabuki et al. (2007) identified Dikkopf-1 as a novel serologic and
prognostic biomarker for lung and esophageal carcinomas.

The growing number of available data offers the opportunity to validate or disprove
findings. A common approach to evaluate the prognostic or predictive impact of a gene
is meta-analysis (Whitehead, 2002). E.g. Griffith et al. (2006) identified important di-
agostic biomarkers of thyroid cancer via meta-analysis. Mehra (2005) discovered GATA3
as prognostic marker in breast cancer by global gene expression meta-analysis.
Common meta-analysis treats all considered datasets equally except for different weight-
ing. But often findings are discovered on one dataset and shall be validated on other
homogeneous cohorts. Moreover, in all genome-wide expression analyses prognostic or
predictive genes may be misleadingly found due to the high number of performed tests.
To control the number of false positives a correction for multiple testing is required and
commonly performed.

Bonferroni (Hochberg and Tamhane, 1987) published a simple procedure to control the
global number of false positive results. Holm (1979) proposed a less conservative method

and shows that it still controls the global type one error. A less strict approach was pro-
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posed by Benjamini and Hochberg (1995) by controlling the proportion of false positives
among all significant findings. The latter is commonly used for correction for multiple
testing in high-dimensional genetic data, particularly because expression profiles of genes
are not independent.

Taking the validation idea and the adjustment for multiple testing into consideration,
Miller et al. (2001) proposed "a two-stage design in which significance testing applied to
explorytory data is used to guide a second round of hypothesis-testing experiment con-
ducted in a separate set of experimental studies". Victor and Hommel (2007) combine
an adaptive design with the control of the false discovery rate and argue for a generalized
definition for a global p-value. Zehetmayer and Posch (2012) proposed an integrative
approach that is based on the pooled data from both stages in a two stage approach
controlling the FDR.

However, the idea behind the listed approaches is to reduce experimental costs, but not
to validate previous findings. In this thesis, we propose two new approaches to vali-
date biomarkers derived from high-dimensional data. The first strategy combines an
exploratory screening for markers with a common meta-analysis of validation datasets.
The second approach is based on sequential validation of considered datasets. By suc-
cessively reducing the number of genes through the validation steps less adjustment for
multiple testing is required. Both approaches are already puplished by Lohr et al. (2012)
and Botling et al. (2013), respectively.

In the past years biological network interference has become a major research topic,
because researchers realized that — especially cancer — biology is more complex and
cannot be assessed by analyzing the expression of single genes.

Many methods for network inference have been proposed in the past decades. Butte et
al. (2000) published the concept of relevance networks that use the Pearson correlation
and a fixed threshold to determine which edges are present in a graph. A more sophis-
ticated approach for graph estimation are Bayesian Networks (Pearl, 2000). Sampling
from the posterior distribution of the graph given the observed data via Markov Chain
Monte Carlo (MCMC) simulations (Grzegorczyk and Husmeier, 2008), the posterior
probability for each edge is determined by the average of simulated samples. Although

Friedman et al. (2000) applied this method to expression data, inference of Bayesian
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Networks is computational expensive due to the MCMC simulations and therefore not
suitable for high-dimensional data.

An alternative method for network inference is the Covariance Selection or Graphical
Gaussian Models based on an idea from Dempster (1972). Whittaker (1990) developed
the theory of Graphical Gaussian Models assuming a multivariate normal distribution
of the data. Zero entries of the inverse covariance matrix, i.e. the precision matrix, and
therefore in the matrix of partial correlations are interpreted as absent edges in a graph,
while none-zero entries in the matrix of partial correlations denote present edges. Partial
correlation denotes the correlation of two variables if the influence of other variables is
removed. For the calculation of the partial correlation matrix, the inverse of the covari-
ance matrix is required. The covariance matrix can only be inverted if it has full rank,
i.e. more observations than variables must be considered. However, gene expression is

often measured for only few samples.

Many researchers adopt the idea of the Graphical Gaussian Models and developed meth-
ods that allow sparse estimation of the covariance or rather precision matrix for genetic
data.

Schéfer and Strimmer (2005a) proposed a linear shrinkage approach for the estimation
of the covariance matrix. By combining the unconstrained estimation of the covariance
matrix with a constrained estimator — a diagonal matrix with the variances of genes —
the resulting estimation of the covariance matrix will be positive definit and therefore
invertible.

Friedmann et al. (2008) applied a Lasso penalty to the covariance matrix. Their pro-
posed algorithm fits a modified Lasso regression iteratively for each variable. The idea
for the algorithm was adopted from Meinshausen and Biihlmann (2005). They com-
bined neighborhood selection that estimates the conditional independence restrictions
separately for each node with the Lasso as an alternative to standard covariance selec-
tion for sparse high-dimensional graphs.

Another approach for the regularized estimation of the covariance and thereof partial
correlation matrix was proposed by Tenenhaus et al. (2010). They applied a Partial
Least Squares Regression to assess the strength of independence of any two genes in a
small-sample-size and high-dimensional network setting.

A general framework for combining regularized regression methods with the estimation
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of Graphical Gaussian models was introduced by Kramer et al. (2009). They sug-
gested to use various existing methods like Partial Least Squares Regression as well as
two new approaches based on ridge regression and two-stage adaptive lasso, comparing
sparse and non-sparse methods for gene-association estimation. Extensive simulations
and comparisons resulted in the conclusion that the shrinkage approach proposed by
Schifer and Strimmer (2005a) is more stable than regression based methods like the one
from Meinshausen and Biihlmann (2005).

Recently many methods for graph comparisons in the context of microarray data have
been developed. De la Fuente (2010) resumes the recent ideas published from differential
expression of single genes to differential coexpression and further to different (interac-
tion) networking. Choi et al. (2005) compared tumor and normal tissue by estimating
Relevence Networks for each phenotype. Assuming the same number of edges to be
present in both graphs, edges that are exclusive in one of the two graphs are called
subtype-specific links.

A method to detect changes between multiple ordered groups, e.g. time series, was pro-
posed by Gillis and Pavlidis (2009). Differential co-expression between multiple groups
is assessed by a measure based on Haar-wavelets (Haar, 1909).

Jacob et al. (2012) combined both steps — first testing individual genes, then testing
gene sets for enrichment of differentially expressed genes — in a single procedure. Their
method takes the network topology, e.g. from KEGG pathways (Kanehisa and Goto,

2000), into account to gain more power.

These methods for graph comparison depend on differential co-expression of gene net-
works. An alternative approach is to quantify a change in the interaction structure of
gene expression.

Gill et al. (2010) proposed a framework for the detection of differential connectivity.
They use a connectivity score to test whether the overall modular structure of two
graphs, the connetivity of a specific set of "interesting genes", or the connectivity of a
single gene between two networks is different. Therefore, a permutation test using the
mean distance of partial correlations derived by the shrinkage approach of Schéfer and
Strimmer (2005a) is applied.

A method for Indirect Comparisons of Interaction Graphs was proposed by Mansmann
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et al. (2010). A hierarchical top-down testing approach using resampling technique
is applied beginning with the global null-hypothesis "no node in the network shows a

different interaction".

To assess whether the interaction of genes is different under two conditions, it is not fea-
sible to consider the entire collection of measured genes. Hence, strategies for hypothesis
generation of differential networks are required.

Kostka and Spang (2004) detected sets of differentially co-expressed genes under two con-
ditions by calculating a score based on an ANOVA model for differential co-expression

and application of an algorithm that finds high scoring gene sets.

Gambardella et al. (2013) developed a procedure named DINA (Dlfferential Network
Analysis) that is able to identify a set of genes, whose co-regulation is condition-specific.
DINA starts with a set of genes, e.g. a KEGG pathway, and a set of networks, for exam-
ple derived by Spearman Correlation analysis. A co-regulation probability is calculated
and its variability across networks is assessed based on permutation testing of an en-
tropy which describes the uncertainty associated with a random variable, i.e. the genes
have a high co-regulation probability only in one network, i.e. the pathway activity is
condition-specific, the entropy will be low.

Another approach is to test gene sets defined by biological prior knowledge. For exam-

ple Jacob et al. (2012) proposed to apply their testing procedure to all KEGG pathways.

However, due to the large number of genes and constrains of used methods, the detec-
tion of differential interaction networks remains challenging. In this thesis, we propose
a new algorithm for Differential Networks Gene Selection(DiNGS). Starting with a suit-
able pair of genes a forward selection is performed on a criterion ensuring differential
co-regulation between two groups.

Adopting the idea of differential expression to our aim to find differential interaction
networks, we perform a Gene Set Enrichment Analysis in Gene Ontology (GO) groups
(Edgar et al., 2002) of genes known to have impact on breast cancer prognosis. En-
riched gene sets are afterwards tested for differences in their corresponding interaction

networks of breast cancer patients with and without metastasis by several permutation
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tests. These tests use test statistics based on partial or orinary correlations including
the test proposed by Gill et al. (2010). The properties of the permutation tests are
explored in an extensive simulation study.

Most of the permutation tests are already published in Lohr et al. (2010).

This thesis is organized as follows: In Chapter 2 we provide the biological background
of cancer and describe the datasets considered in this thesis. Chapter 3 introduces the
validation approaches for high-dimensional gene expression data. Within this chapter,
Section 3.1 presents methods for meta-analysis and validation. The sequential valida-
tion procedure and the two-step meta-analysis approach are introduced in Sections 3.2
and 3.3, respectively. Section 3.4 summarizes the results of both methods applied to
non-small cell lung cancer and compares them with an ordinary meta-analysis.

In Chapter 4, concepts for the detection of differential networks are introduced. The
corresponding methods are described in Section 4.1. Section 4.2 presents explicit ways to
discover differential interaction networks. A simulation study to explore the properties
of the permutation tests introduced in Section 4.1 is presented in Section 4.3. Results
of this chapter are summerized in Section 4.3.

Chapter 5 discusses methods and findings from both topics — the validation approaches
for high-dimensional gene expression data and the detection of differential gene interac-
tion sub-networks — and gives an outlook to possible extensions and provides concluding

remarks of this work.
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2 Biological background and datasets

2.1 Cancer

In Germany cancer is the most frequent cause of death after cardiovascular diseases
(Kaatsch et al., 2012). Worldwide, more than 12 million people are newly diagnosed
with cancer per year (Jemal et al., 2011). In fact, cancer comprises more than 200 dif-
ferent diseases (Schulz, 2005). Though all cancers share the same elementary features
in matters of malignancy, it shows a large range of diversity, which requires different
therapeutic strategies.

The DNA contains the information that is required for an organism to develop its mass
and shape, and the information about every protein that is needed for biological pro-
cesses. The central dogma of molecular biology describes the flow of information in
a biological organism consisting of replication, transcription, and translation. In the
replication the DNA sequence is copied to transfer it from a mother to a daughter cell.
In the transcription, DNA is rewritten into mRNA. Afterwards the information can be
translated through the mRNA to a protein specified by the DNA sequence (Alberts et
al., 2007). Although the organism has developed many controls to avoid errors in repli-
cation, errors sometimes do occur, which might lead to erroneous incorporation into the
newly synthesised DNA strand due to mutated nucleotides and may cause a disequilib-
rium between cell growth and apoptosis. Though the diversity of cancers is high, some
cancer types affect the people more than others. This thesis is focused on breast and
non-small cell lung cancer that play a major role in terms of world-wide incidence and

mortality.
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Breast cancer

Carcinomas of the breast are the most frequent cancer types in women by far with a
age-standardized incidence of 123.1 per 100 000 female inhabitants in 2008 in Germany
(Kaatsch et al., 2012). Breast cancer caused 458 503 deaths worldwide which is 13%
of all cancer-related deaths in women. Although women are 100 times more frequently
affected than men, men may also be affected and they tend to have poorer outcomes
due to delays in diagnosis (American Cancer Society, 2013). The risk for breast cancer
increases with age, i.e. postmenopausal, but also younger women are affected and often
with poorer prognosis due to hereditary predispositions. Other known risk factors are
long (life-)time exposure of estrogens, ionizing radiation, cigarette smoking, alcohol, and
a high-fat diet (Schulz, 2005), where several factors might interact, also synergistically.
Breast carcinomas are classified by several aspects. The main aspects, histopathology,
stage, grade, and receptor status, are considered for treatment selection and conclusions
may be drawn for prognosis.

First, breast cancer is classified by its histological appearance. About three quarters
of all breast cancers are invasive ductal carcinomas (55%), ductal carcinomas in situ
(13%), and invasive lobular carcinomas (5%) (Eheman et al., 2009). The World Health
Organization (WHO) recommends further subdivision of breast cancers according to
pathological type (WHO, 2003).

The determination of amount and location of the cancer in the organism or body is called
staging. We know two different kinds of staging, the clinical staging that is obtained
by mammography, x-rays and CT scans before surgery, and the pathological staging ob-
tained by surgery which is more accurate (American Joint Committee on Cancer, 2010).
The TNM classification system, a commom used scheme for several cancer types, that is
based on the size of the tumor (T), the invasion of surrounding organs and lymph nodes
(N), and the presence of distant metastasis (M) (Sobin and Compton, 2010). The classi-
fication is explained below in the following section about non-small lung cancer, because
staging information is available for the lung cancer datasets but not for all breast cancer

data used in this thesis.

However, the grading is used for breast cancer classification in this thesis. It depends on

the microscopic appearance of the breast cancer cells compared to normal breast cells.
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Grading classifies the tissue in well differentiated (low grade), moderately differentiated
(intermediate grade), and poorly differentiated (high grade) tumors. In the following,
the Nottingham (also called Elston-Ellis) scale system (Elston and Ellis, 1991) is used
as modification of the Scarff-Bloom-Richardson grading system (Bloom and Richardson,
1957), which grades breast carcinomas by summing scores for tubule formation, nuclear
pleomorphism, and mitotic count. The score ranges from I to ITI, where I stands for well
differentiated, while a poor or undifferentiated tumor is given a higher score of III.

Another classification criterion is the status of hormon receptors like estrogen receptors
(ER), progesterone receptors (PR) and HER2/ERBB2. The presence of receptors is
often identified by immunohistological analysis. Estrogen in combination with its recep-
tor is a key regulator of growth in a normal breast (Schulz, 2005). ER positive (ER+)
tumors depend on estrogen for their growth and therefore may be treated with drugs
to reduce the effect of estrogen, e.g. Tamoxifen. HER2 (human epidermal growth factor
receptor 2) is a protein encoded by the ERBB2 gene (Coussens et al., 1985). It stimu-
lates cell proliferations and inhibits apoptosis. Patients with overexpression of ERBB2
("HER2 positiv") have a poorer prognosis, but treatment by a monoclonal antibody
"Trastuzumab" that binds at HER2 is indicated. PR is a protein inside cells that is ac-
tivated by progesterone (Law et al., 1987) and has functions in maintaining pregnancy,
in estrous and menstrual cycles. Hence, the combination ER+/PR+/ERBB2- indicates

a comparatively good prognosis.

Non-small cell lung cancer

Lung cancer is the leading cause of cancer-related death worldwide (Ferlay et al., 2010).
More than 1.6 million people were newly diagnosed and about 1.38 million died due to
lung cancer in 2008. Among men, lung cancer is more frequently diagnosed than among
women, but the incidence in women has considerably increased over the last decades
and has just recently begun to stabilize (Jemal et al., 2004). This fact can be explained
by the amplified tobacco usage in women (Lum et al., 2008). Tobacco smoke is the most
prominent risk factor that causes about 80 — 90% of all lung carcinomas (Horn et al.,
2012). Other known risk factor are genetic factors, radon gas, asbestos, and air pollution
(Alberg and Samet, 2010; O‘Reilly et al., 2007) including second-hand smoke (Carmona,

10
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2006). Most patients diagnosed with lung cancer are older than 60 years (DKFZ, 2013).
Compared to smoking-related lung cancer, carcinomas in non-smokers occur more often
in women and are more often classified as so called adenocarcinomas (Subramanian and
Govindan, 2007). In gerenal, lung cancer can be divided into small cell lung cancers
(SCLC) that account for approximately 15% of all lung cancers and non-small cell lung
cancers (NSCLC) (Travis, 2011). SCLC is assumed to have its origin in neuroendocrine
cells of the lung (Rosti et al., 2006). Patients diagnosed with SCLC show a promising
response to chemotherapy at first, but often develop a therapy resistance followed by

metastatic disease within five years. In this thesis we focus on datasets consisting of
NSCLC.

By cellular morphology, three main subgroups of histological substypes are defined which
are the above mentioned adenocarcinomas, squamous cell and large cell carcinomas that
make up 40%, 21%, and 14% of all diagnosed lung cancers, respectively. A microscopic
examination of the stained tissue is a standard procedure after surgery. The classifica-
tion of histological subtype is essential for the choice of therapy (Langer et al., 2010).
The glandular structure is characteristic for adenocarcinomas as well as the production
of mucin (Cooper et al., 2011). It is the most common type in non-smokers as mentioned
above and in men younger than 50 years as well as in women of all ages. Adenocar-
cinomas are also associated with KRAS or EGFR mutations (Sequist et al., 2007).
Keratinisation and intercellular bridges are typically seen in squamous cell carcinomas,
while large cell carcinomas are undifferentiated with no sign of glandular or squamous
differentiation. Other minor histological subtypes of NSCLC are adenosquamous carci-

nomas, sacromatoid carcinomas and typical/atypical carcinoids (Travis, 2011).

The staging of a tumor as already mentioned in the breast cancer section above is defined
by the TNM system (Goldstraw et al., 2007; Sobin and Compton, 2010). Here, the stage
of cancer is evaluated by the tumor size (T1-T4), the invasion of lymph nodes and organ
structures (NO-N4) and the presence of distant metastasis (M0-M1). Detailed informa-
tion on the classification can be found in Table 20 in the appendix. By combining the
classification of T, N, and M a stage in range of I to IV is assigned (cf. Table 1). The
stages are further subdivided in "a" and "b", except for stage TV. If distant metastases

are present, the size of the tumor or whether lymph nodes are affected does not matter.

11
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Stage TNM subset ‘ Stage 'TNM subset

IA Tla/T1b NO MO IB T2a NO MO

ITA Tla/T1b N1 MO I1B T2b N1 MO
T2a N1 MO T3 N0 MO
T2a NO MO

IITA  T1/T2 N2 MO IIIB T4 N2 MO
T3 N1/N2 MO any T N3 MO
T4 NO/N1 MO

v any T any N Mla/M1b

Table 1: Tumor stage based on TNM (7. edition), reproduced from Tsim et al. (2010).

All metastatic cancers are classified as stage IV. The prognosis and treatment decision

depend on the tumor stage.

Frequently, NSCLC is diagnosed at late stage, because of the absence of lung-cancer
specific symptoms. First symptoms may be respiratory ones, like coughing, hoarseness,
or chest pain. Further symptoms such as weight loss, headache, and fatique might
indicate late stage cancer with presence of distant metastases. In stage I and II surgical
resection is recommended with the chance of total remission, hence 30 — 40% of stage I
patients experience a tumor relapse (Spiro et al., 2007). Stage II patients are treated with
adjuvant chemotherapy, but for stage I it is controversially discussed (Scott et al., 2007).
Stage III is quite heterogeneous. Patients diagnosed with stage Illa have a considerably
higher 5-year survival rate than stage ITIb patients with 23% and 7%, respectively. Often
patients with stage I1la are surgically treated followed by adjuvant chemotherapy, while
stage I1Ib tumors are inoperable and recommended to be treated with a combination of
radio- and chemotherapy (Jett et al., 2007). NSCLC with metastatic disease, i.e. stage
IV, is considered to be incurable and patients are treated with combinated therapies to

improve life quality and gain some more months or even years (Socinski et al., 2007).

12
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2.2 Datasets

A biomarker is an indicator of underlying biology (Biomarker Definitions Working
Group, 2001). We distinguish between predictive biomarkers that provide information
about e.g. response to treatment and prognostic biomarkers which predict the outcome
of individual patients e.g. in terms of overall survival times or relapse-free survial. For
the breast and non-small cell lung cancer datasets that will be described below, differ-
ent event-free survival times are available. The discovery and validation of prognostic
biomarkers will be part of this thesis. The challenge is due to the data structure.

All considered datasets comprise gene expression data of thousands of genes measured
on Affymetrix microarrays. In general, microarray technology bases on hybridisation
of complementary DNA or RNA nucleotide strands located on a chip to fixed DNA
molecules so that each spot represents a specific gene or transcript for thousands of
genes in parallel. On the high density DNA Probe arrays of Affymetrix synthetic DNA
fragments are sythesized on the GeneChip® (Lipshutz et al., 1999). Here, every gene is
represented by one or more probe sets that in turn consists of up to 20 oligonucleotide
probe pairs. Each probe pair is divided in two probe cells, and each probe cell consists
of approximately 107 identical 25-mer oligonucleotides. In the first probe cell, the so
called Perfect Match (PM), the nucleotide stretches matches perfectly with the one of
the gene. The second probe cell is a kind of control of hybridisation signal where the
sequence contains a non-matching nucleotide (MM). The 11-20 probe pairs of a probe
set are randomly distributed on the array to avoid spatial effects. The values for each
probe on an array is provided in the so called Cel-File and needed to be combined in a
suitable way to one value for each probe set.

In addition, the low-level analysis ensures the comparability of values from different
samples. It proceeds in four steps: Background correction, normalisation, probe specific
background correction and finally combining to one value per chip and probe set. Many
methods for this steps have been proposed in the literature (e.g. Lazaridis et al., 2002;
Bolstad et al., 2003). We use the RMA (robust multi-array average) method (Irizarry
et al., 2003) as implemented in the R (R Core Team, 2013) package "affy" (Gautier et
al., 2004) available on Bioconductor (http://www.bioconductor.org/ ).

13
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2.2.1 Breast cancer datasets

In this thesis, three breast cancer datasets where gene expression of node-negative (NO)
patients is measured on Affymetrix GeneChip© HG U133A are considered. For all three

cohorts, information on metastasis-free survival times are available.

The first data set derives from a population-based cohort study consisting of 200 pa-
tients consecutively treated at the Department of Obstetrics and Gynecology of the
Johannes Gutenberg University Mainz between 1988 and 1998 (Schmidt et al., 2008).
Therefore, this data set is referred to as "Mainz cohort". After surgical intervention
in form of a modified radical mastectomy (75 patients) or a breast-conserving surgery
followed by irradiation (125 patients), none of the women received a systemic therapy.
During surgery no patient showed evidence of regional lymph node nor distant metasta-
sis. From the original pathological report established prognostic factors like histological
grade, tumor size, and steroid receptor status as well as data of the age at diagnosis date
were recorded. The median age of the 200 patients at surgery was 60 years (34 to 89
years). The median follow-up time was 7 years and 8 months. Data is acessible through
Gene Expression Omnibus (GEO, Edgar et al., 2002), accession number GSE11121.

Frozen tissue samples were selected from the tumor bank of the Erasmus Mediacal Cen-
ter in Rotterdam (Netherlands). All 286 patients were diagnosd with node-negative
breast cancer and surgically treated between 1980 and 1995 with a breast-conserving
therapy or modified radical mastectomy, 219 and 67 patients, respectively. As in the
Mainz cohort, none of them received any sytemic neoadjuvant or adjuvant chemotherapy
(Wang et al., 2005), but 248 patients received a radiotherapy. Median patient age at
surgery was below the median age in the Mainz cohort with 52 years (range from 26 to
83 years). Median follow-up time was about 7 years and 2 months, examinations were
dated every 3 months in the first two years after surgery, every 6 months up to the fifth
year and afterwards annual examinations were scheduled. This data set can be found
by accession number GSE2034 in the GEO data base.

The third data set consists of two cohorts reported through accession numbers GSE6532

14
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and GSE7390 in the GEO data base. The TRANSBIG cohort formed a collection of
untreated node-negative breast cancer samples from patients of five European centers:
Institut Gustave Roussy in Villejuif, France; Karolinska Institute in Stockholm, Swe-
den; Center René Huguenin in Saint-Cloud, France; Guy‘s Hospital in London, United
Kingdom, and John Radcliffe Hospital in Oxford, United Kingdom (Buyse et al., 2006).
Further criteria of inclusion were that patients were diagnosed between 1980 and 1998
with node-negative breast cancer with tumor size < 5 cm and without previous ma-
lignancies or bilateral synchronous breast carcinomas, had not received any systemic
adjuvant therapy, and were younger than 61 years at diagnosis. The latter fact was not
consequently complied, but it makes the TRANSBIG cohort the study with with the
youngest median age of 49 years (range from 24 to 73 years). It has the longest median
follow-up time with about 13 years and 7 month. Assessment of grading according to
Elston and Ellis was missing for 15 patients, while the grading for all 200 patients of the
Mainz cohort was available. The data set of the Rotterdam cohort contains no grading

information at all.

2.2.2 Non-small cell lung cancer datasets

The second collection of datasets used in this thesis consists of patients diagnosed with
non-small cell lung cancer (NSCLC). Again, we require information about event times
and gene expression data measured on Affymetrix HG U133A with 22 283 or HG U133
Plus 2.0 array. With the latter, 54 675 probe sets are measured. Except for 6 features,
all probe sets of the HG U133A can be found on the HG U133 Plus 2.0 array. Therefore,
the overlap of 22 277 probe sets is considered for the analysis performed in this thesis.

For all cohorts, overall survival or censoring times are available.

The first NSCLC dataset, which is denoted as our basic cohort and is used for gener-
ating hypotheses, derives from patients operated in Uppsala University hospital in the
years 1995-2005 with primary lung tumors and reported to the Uppsala-Orebro Regional
Lung Cancer Registry (Botling et al., 2013). Further criteria of inclusion were that fresh
frozen tumor tissue must be available in the Uppsala frozen tissue Biobank, the tumor
must be larger than 5 mm, it must be confirmed as adenocarcinoma, squamous or large
cell carcinoma/other NSCLC (NSCLC not otherwise specified (NOS)), and the fraction
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Figure 1: Kaplan-Meier curve for overall survival of the Uppsala NSCLC cohort.

of tumor cells must be above 50%. Patients who had received a neoadjuvant treatment
were excluded. In total, 196 patients were included in the study. Information on several
clinical and histopathological variables are available through the Uppsala-Orebro Re-
gional Lung Cancer Registry like sex, age at diagnosis, performance status according to
WHO (Oken et al., 1982) and the reports of the pathologists of the Uppsala University
hospital on TNM staging. 106 (54.1%) patients were diagnosed with adenocarcinomas,
and 66 and 24 with squamous and large cell carcinomas/NOS, respectively. This ap-
proximately complies with the proportions of all NSCLC cases (cf. Section 2.1). The
median follow-up time was about 3 and a half years, no observation was censored within
five years after surgery as we can see in Figure 1. Here, the Kaplan-Meier curve (e.g.
Klein and Moeschberger, 2003) for all patients of the Uppsala lung cancer cohort is
shown. Although patients with late stage NSCLC are usually not operated, 10 patients
diagnosed with stage IIIb or even stage IV were operated and included in this study.
This dataset, also referred to as the Uppsala cohort, is available via Gene Expression
Omnibus, accession number GSE37745.
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dataset AC SCC other histology total Affymetrix array
GSE37745 | 106 66 24 196 HG U133 Plus 2.0
Jacob 448 - - 448 HG U133A
GSE4573 - 130 - 130 HG U133A
GSE31547 | 30 - - 30 HG U133A
GSE3141 58 52 - 110 HG U133 Plus 2.0
GSE29013 | 30 25 - 55 HG U133 Plus 2.0
GSE31210 | 204 - - 204 HG U133 Plus 2.0
GSE19188 | 40 24 18 82 HG U133 Plus 2.0
GSE14814 | 28 52 10 90 HG U133A

Table 2: Overview of considered non-small cell lung cancer datasets.

In addition to the Uppsala NSCLC cohort where gene expression is measured on HG
U133 Plus 2.0 arrays, 8 more datasets are considered for validation in this thesis. An
overview of these cohorts is given in Table 2.

The dataset "Jacob" provided by Shedden et al. (2008) on the caArray platform
(https://array.nci.nih.gov/caarray/) of the National Cancer Institute with experiment
identifier "jacob-00182" consists of 448 early-stage (Ib and II) lung adenocarcinomas.
Extended information on clinical data like age at diagnosis, sex, but also additional
event times such as progression-free survival is available for these samples collected from
the treatment institutions University of Michigan Cancer Center, Moffitt Cancer Center,
Memorial Sloan-Kettering Cancer Center, and the Dana-Farber Cancer Institute, USA.
Gene expression of this multi-center cohort was measured on Affymetrix HG U133A
arrays.

From the Gene Expression Omnibus platform the dataset with accession number
GSE31547 was used in addition. Gene expression was also measured on the Affymetrix
HG U133A chip and the cohort consists also of the histological subtype of adenocarci-
nomas. This dataset is contributed by Girard from the Hamon Center for Therapeutic
Oncology Research at Southwestern Medical Center, Dallas, USA, but the study had
not been published yet. The original dataset as stored in GEO with accession num-
ber GSE31547 contains 30 primary lung adenocarcinomas and 20 adjacent normal lung
controls. In this thesis, only the 30 adenocarcinomas are used for which additional in-
formation on clinical parameters are available. One more dataset that consists only of
adenocarcinomas is considered in this thesis. GSE31210 (Okayama et al., 2012) contains

required information on overall survival times of patients as well as gene expression mea-
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surements on HG U133 Plus 2.0 arrays of 204 patients that were diagnosed with stage I
or IT between 1998 and 2008 at the National Cancer Center Hospital, Japan. These pa-
tients did not receive any neoadjuvant therapy nor a postoperative chemotherapy and/or
radiotherapy after complete resection of tumor tissue.

In contrast, the study with accession number GSE4573 consists of 130 samples from 129
patients diagnosed with squamous cell carcinomas only (Raponi et al., 2006). For one
patient two samples from different areas of the same tumor were taken and microarrays
were prepared. Common clinical information of the patients diagnosed with stage Ia to
ITTb and received surgically resection of tumor are available.

Besides these datasets containing only one histological subtype, we consider four more
mixed cohorts. GSE3141 (Bild et al., 2006) has nearly balanced numbers of patients with
adenocarcinomas and squamous cell carcinomas as well as GSE29013 (Xie et al., 2011).
In contrast to GSE3141, the latter contains many clinical parameters such as TNM stage
and age at diagnosis, but the microarrays are made of formalin-fixed paraffin-embedded
(FFPE) samples which has disadvantages in terms of RNA degradation (Zhu et al.,
2010). GSE19188 (Hou et al., 2010) contains tumor samples of 40 adenocarcinomas, 24
squamous cell, and 18 large cell carcinomas. Also GSE14814 (Zhu et al., 2010) provides
data of 10 large cell carcinomas in addition to the two most frequent histological sub-
types of early-stage patients. One criterion of inclusion here was that tumor cellularity
was higher than 20% which is considerably low compared for example with the tumor
cell fraction of at least 50% in the Uppsala NSCLC cohort.
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3 Validation approaches for high-dimensional genetic data

3 Validation approaches for high-dimensional genetic

data

Validation has become a major issue in biological analysis especially since high-dimensional
data are available. Due to the enormous numbers of genes that are analyzed, the chance
of observing significant results just by chance is high. Hence, adjustment of the a-level
or rather p-values is required. Thereby the global a-level is controlled.

In this thesis we present different approaches for the validation of significant features on
high-dimensional datasets applied to the cohorts introduced in Section 2.2. Significant
features can be obtained e.g. from two sample t-tests that compare the means of gene
expression values between two groups of patients or from Wald tests that identify genes
correlated with survival. The performance of the methods will be analyzed by a simula-

tion study to assess the number of false positive and false negative features.

validation

>

dataset 1 dataset 2 dat'aset K
. B . o .

Figure 2: Illustration of validation and simultaneous adjustment for multiple testing on
K > 1 high-dimensional datasets.

high-dimensional
measurements

<€

adjustment for multiple testing
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Actually, for validation on other datasets, adjustment must be performed on every con-
sidered cohort. Whether the true significant features stand out in another dataset de-
pends on the quality of the studies. We assume quality to be a composition of sample
size of a study and the underlying noise. The noise might originate from differences in
specific technical procedures performed in a specific medical center, to differences be-
tween compositions of the samples in different medical centers, or maybe unconsidered
biological differences of the study individuals.

Though, to identify the true positive, which means true significant, genes will be quite
difficult after strict adjustment due to differences between the studies. Hence less strin-
gent adjustment methods are required. The issue of validation and simultaneous need
of adjustment for multiple testing is illustrated in Figure 2. Due to the large number
of tested genes the number of erroneously rejected hypotheses must be controlled and

concurrently we aim for a validation of findings on other datasets.

The combination of two or more datasets to one combined cohort and subsequent analyz-
ing and trying to confirm the results e.g. by cross-validation seems to be a poor concept.
In most cases a batch effect occurs. An example is given in Figure 3. Here, we see the
expression values examplified for the first common probe set "1007 s _at" representing
gene "DDR1" in the list of the nine non-small cell lung cancer datasets introduced in
Section 2.2.2. for every patient. The expression values of each cohort are painted in an
distinct color. We recognize that values of one cohort are often strictly separated from
the values of the others. Combining those values without batch normalization will bias
the result of most analyses.

A better approach for combined results is the ordinary meta-analysis. One advantage
which might be concomitant a disadvantage is that many small signals may be sufficient
for a significant result in a meta-analysis. Besides it takes all studies into account simul-
taneously. However, our focus is on another strategy: We have a basic dataset that we
use to identify interesting genes. Afterwards these genes should be validated on other
datasets. Though, we have to find a tradeoff between validation and strict adjustment
for multiple testing to receive as many relevant genes as possible and simultaneously
eliminating all false positive, i.e. non-relevant genes.

In the following section we give a short introduction to multiple testing and particularly

the adjustment of p-values by controlling the False Discovery Rate (FDR). Further some
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Figure 3: Expression values of probe set "1007 s at" representing gene "DDR1" of all
nine non-small cell lung cancer cohorts.

methods for survival analysis and meta-analysis used in this chapter are described. A
sequential validation strategy is proposed in Section 3.2. We demonstrate the use of this
procedure concerning the elimination of false positive results and simultaneously maxi-
mizing the power of the procedure in a simulation study, as well as the use in assessing
the quality of datasets. We also apply the strategy to several cancer datasets that are
introduced in Section 2.2. Another validation approach is introduced in Section 3.3, and
performed on non-small cell lung cancer datasets. The special feature of this strategy is
the 2-step procedure of first on unadjusted screening and than a meta-analysis for vali-
dation. In addition, an ordinary meta-analysis is performed on the lung cancer datasets.

In Section 3.5, the results of the three approaches are compared and discussed.
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3.1 Methods
3.1.1 Multiple testing

If a statistical test is performed, two outcomes are possible: The null hypothesis (Hy)
can be rejected, i.e. the test is significant, or there is no sufficient proof against Hy and
the test is not declared to be significant. On the other hand the null hypothesis can be
true or false. If Hy is true and it is not rejected we obtain a correct decision, just as if the
null hypothesis is not true and the test is significant. Hence, two (types of) errors can be
committed (Dudoit and van der Laan, 2008). We call a decision type I error or true posi-
tive if a true null hypothesis is rejected and a type II error or false negative is committed
if a non-true null hypothesis is not rejected. In modern testing theory the main focus
is on the type I error that is controlled by a level a, i.e. P(rejecting Ho|Hy is true) < «

and we merely try to minimize the type II error given a fixed value for a.

Number Number
Number of | not rejected rejected | Total
true H, A V 9o
non-true Hy F B g1
9 R Ry

Table 3: Number of correct decisions and type I and type IT errors committed in multiple
testing of g hypotheses (reproduced from Benjamini and Hochberg, 1995).

In many fields like the analysis of gene expression data thousands of hypotheses are
tested simultaneously. If we test lots of hypotheses at a specified significance level the
probability of committing type I errors increases with the number of hypotheses. There-
fore, an adjustment for multiple testing is required to control the type I error rate. Let
us assume we want to test g null hypotheses H}, i = 1,...,g of which gy are true and
g1 = g — go hypotheses are false. Both parameters, go and g; are unknown. The number
of rejected and not rejected null hypotheses are treated as random variables denoted by
R and g — R, respectively. Table 3 (cf. Benjamini and Hochberg, 1995) summarizes the
numbers of true/non-true and (not) rejected hypotheses. A, F, V', and B are unobserv-

able random variables where V' are the false positives or type I errors and F' denotes
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the number of false negatives or rather type II errors. As mentioned above, it is the
philosophy of significance testing to control the number of type I errors. In the following
the two most common type I error rates are introduced as well as one multiple testing

procedure for each error rate.

The family-wise error rate

We define the family-wise error rate (FWER) as the probability of rejecting at least
one null hypothesis when it is true, i.e. committing at least one type I error under all
decisions (Dudoit et al., 2003):

FWER = P(V > 1).

To control the FWER on a global level « the p-values have to be adjusted. One common
procedure that is used in this thesis is the Holm procedure (Holm, 1979) which is a further
development of the Bonferroni procedure (Dudoit and van der Laan, 2008). Compared
to Bonferroni as a single-step procedure the Holm procedure adjusts the p-values step-
down which is an advantage because it is less conservative.

Let p1 < ps < ... < p, denote observed and ordered raw p-values and let Hy, HZ, ..., H§
be the corresponding null hypotheses. We define

*=min{i:p;>a/(g—i+1)}.

If such i* exists, reject all null hypotheses H¢, with i =1,2,...,(i* —1). When no such

1* exists, all g null hypotheses are rejected. The adjusted p-values can be calculated

by
pi = max {min ((g =1+ 1) pi, 1)}

seeesl

Afterwards, these adjusted p-values can be compared with the local level a.
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The false discovery rate

The false discovery rate (FDR) described by Benjamini and Hochberg (1995) is defined

as the expected proportion of type I errors among the reject hypotheses:

FDR = E(O)

where O is defined by O = %. This error rate tolerates some type I errors, but the
proportion of errors among all rejected hypotheses is controlled. If all null hypotheses
are true, the false discovery rate is equilavent to the family-wise error rate because b = 0,
where b denotes an observation of B and V = R. Let v denote an observation of V' and
define % := 0. If the numbers of true as well as false null hypotheses are greater then 0,

we have to consider two cases:

1. v =0 (no Hy is rejected) = O = £ =0= P(V > 1) = E(O)

2. v>0%< v >1 (at least one Hy is misleadingly rejected):
%§1:>[(V21)2%ZOiP(VZl)EE(O)

Thus, by controlling the FWER, the FDR is also controlled in the weak sense.

Benjamini and Hochberg (1995) provide a procedure for controlling (only) the FDR for
independent tests which is less stringent and power is gained, i.e. we yield a smaller
number of type II errors. Other procedures for the control of the FDR under certain
dependence structures are provided for example by Benjamini and Yekutieli (2001).
Therefore, let p; < po < ... < p, denote observed and ordered raw p-values as in the

last paragraph and we define

7 =min{i:p; < (i/g)a}.

If all hypotheses H¢, with ¢ = 1,2,....4** were rejected the FDR is controlled at level

a. If no such +** exists, we reject no hypothesis. The corresponding adjusted p-values

o= min, {min (G01) }
p; = min qmin | =p;, 1) ¢ .
I=i,....g [

can be calculated as follows:
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These adjusted p-values can be compared with the local level a as for the Holm proce-

dure.

3.1.2 Cox proportional hazards model

Survival analysis deals with the problem of analyzing time-to-event data. In our case
of biological data, events could be, for example, death, recurrence of cancer, or distant
metastasis. Not for all patients the event of interest can be observed in the period fixed.
If the event has not occured until at the end of the period or a patient drops out of
the study for other reasons, the corresponding observation will be (right) censored. High
censoring rates are often seen in cancer data. But instead of eliminating all patients with
missing endpoints, the censored data is integrated in survival analysis. Even if we do not
know the exact event time of a censored patient, we know that he or she has not seen
the event until his or her drop-out. An important assumption for the following methods
of survival analysis is that censoring is independent from the event of interest. Before
we specify the Cox proportional hazard model, the notation and some basic quantities
will be introduced.

Let T be the time from a starting point ¢ = 0 to the event of interest, i.e. a non-negative
random variable, and f(¢) its density with distribution function F(t) (see Klein and
Moeschberger, 2003). The survival function is the probability of observing the event
after time point ¢, defined as

S(t) := P(T > t).

Since T is a continuous random variable S() is a continuous, strictly decreasing function
with lim;_,0 S(¢t) = 1 and limy_,o, S(t) = 0 and moreover the complement of the distri-
bution function S(t) =1 — F(t) = 1 — P(T < t). Alternatively, the survival function
can be specified by the integral of the density, f(), i.e.

St)y=P(T >t)= /too f(u) du.

The probability that an individual experiences the event in the next instant, conditional

on that the person was event-free until ¢, is called risk function or hazard rate (function)
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h(t):
Pt<T<t+At|T >1
h(t) = lim LEST <+ AT > 1)
AtL0 At

where h(t) > 0,Vt € [0,00]. The hazard rate is connected to the survival function as
follows: Pt<T<t+ At 1 t

h(t) = Jim ST <t+ A1 _ S

AtL0 At P(T>t) S(t)

Beside the plain hazard rate, the probability of an individual experiences an event in the
next instant time, conditional on survival time ¢ with a specific value of a covariate is
considered. Possible candidates for covariates that might have impact on the probability
that an individual experiences an event in the next instant may be e.g. gender, a special
treatment, or gene expression. This conditional probability can be described by the Coz
proportional hazards model (Cox, 1972).

Let the data consist of n samples. For each sample or patient the triple (1},6;,Z;),
j = 1,...,n is available, where Tj is the time that patient j spent in the study, 9,
the indicator whether the j—th patient experienced the event (§; = 1) or was censored
(6; =0), and Z; = (Z;1,...,Zj,) is a vector of p covariates for individual j. Cox (1972)

defines the basic model as follows:

h(t|Z) = ho(t) - exp (B'Z) = ho(t) - exp (Z 5kzk> ;

k=1

where ho(t) is an arbitrary baseline hazard rate (function), and 8 = (Bi,...,3,) is a
parameter vector. The Cox proportional hazards model is a semiparametric model be-
cause it consists of a nonparametric part, the baseline hazard rate, and a parametric part
since the effect of the covariates is assumed to be parametric. An important assumption
of the model is couched in its name: the proportionality of hazard rates. If we have
two patients with covariate values Z; and Zs, then the ratio of the two hazard rates is

constant, i.e. independent of time t:

h(t|Zz)  ho(t)-exp(BZa)  ho(t) - exp (3h_ BrZok) > B (Zik — Za)

k=1

h(t|Z1) _ ho(t) - exp (BZ1) _ ho(t) - exp (Xhy BeZu) _ exp [ p

[

Vv
constant int

This ratio is called relative risk or hazard ratio (HR) and describes the relative risk
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of a patient with covariate vector Z; experiencing the event of interest in the next
instant compared to a patient with covariate vector Zs. In this thesis, we restrict on
the analysis of univariate Cox proportional hazards models. If so, and the covariate
has two categories, e.g. treatment and control, exp(f;) = 28123

the occurence of the event of a patient who received the treatment relative to the risk

describes the risk for

for an individual of the control group. A similar interpretation is possible for hazard
ratios of multivariate Cox proportional hazards models, however, the values of all other
covariates that are considered in the model must be the same in both groups.

The parameter vector 8 can be estimated by a Maximum Likelihood approach. Suppose
that there are no ties between the observed event times, and let t; < 5 < ... < tp
denote the ordered event times with corresponding k-th covariate Z;,7 = 1,...,D
for the patient with event time ¢;. The risk set at time point ¢;, denoted by R(t;), is
defined as the set of all individuals who have not seen the event till time ¢; or dropped
out of the study, i.e. they are still under risk and might see the event in the future.
The partial likelthood is based on hazard rates and is composed of the information of
an individual patient ¢ experiencing the event (in the numerator) and the information
about all patients that are still under study for every time point ¢; (in the denominator)

as follows:

1)~ T o (S 8]
paiey ZjeR(ti) exp >4y BrZjn]
The name "partial" likelihood refers to the fact that this expression ignores the actual
event times but takes the order of the latter into account. Instead of maximizing the

partial likelihood we maximize the log partial likelihood which can be written as

LL(B) = In (ﬁ exp [3 % BeZik] ) _ im( exp [0, BuZo] )

paiey ZjeR(ti) exp [3 71 BrZj] ZjeR(ti) exp [ 41 BrZji]

—1
D p

D p
Y Az -3 | Y e (z mzjk)
=1 k=1

i=1 k=1 JER(L;)

Solving the equation system 8%}CLL(,B) =0,Vk =1,...,pleads to the maximum likeli-
hood estimation ,B of the regression coefficients B.

After the estimation of the parameter vector B, the baseline hazard rate ho(t) is esti-
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mated by the Breslow estimator

ho(t) = [ a

t<t; ZjeR(ti) exp <ﬁZJ>

with d; as the number of events at time point #;. As mentioned before, we assume to
have no ties between the event times since time is continuous and therefore we have
di=1Vi=1,...,D.

Finally, when the Cox proportional hazards model with the chosen variables is estimated,
it will be of interest which covariates have a significant effect on the individual risk. In
this thesis we restrict to univariate Cox proportional hazards models, as mentioned
above. Therefore, testing the hypothesis Hy : 5 = 0, that is equivalent to Hy : HR = 1,
vs. Hy : 1 # 0 is sufficient to answer the question if the covariate Z; has a significant
influence on the event time, e.g. survival. The statistic of the local (Wald like) test (see
Wald, 1943) that is used in this thesis is defined as

2 _
XW* ’

where the standard error SE(f;) is derived by i-th diagonal element of |——2—LL(B)

or rather —8‘2—;1LL(51) in the special case of p = 1. The null-hypothesis is rejected if
Xiv > Xp1_a» Where X2, is the (1 — a)-quantile of the x* distribution with p =1

degrees of freedom.

3.1.3 Meta-analysis

Since meta-analysis was first defined by Glass (1976) as "the statistical analysis of a
large collection of analysis results from individual studies for the purpose of integrating
the findings", it has become indispensable in todays clinical research. Especially in the
context of evidence-based medicine meta-analyses are essential for the highest level of
evidence (Evidence-Based Medicine Working Group, 1992). Many statistical methods for

conducting meta-analyses were developed and refined (see Sutton et al., 2000, or Stangl
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and Berry, 2000). We restrict to one or rather two mainstream statistical approaches
(cf. Whitehead, 2002).

A main focus of controversy is the choice between the fized effect and the random effects
model that enable an estimate of the overall effect of interest. In the fixed effect model
the effect of every study is considered to be out of the same (normal) distribution, while
in the random effects model an additional between study effect is assumed. The biggest
disadvantages of the fixed effect model are that it does not hold under heterogeneity
(see e.g. Schumacher and Schulgen, 2006) and it holds only for the particular studies
included in the meta-analysis, i.e. a generalization of the results is quite problematic.
The random effects model consideres this issue and is more generazible. However, it
must be taken into account that often the trials included in the meta-analyses are not
representative for the total polulation. Moreover, if only a small number of studies are
taken into consideration, the between-study effect fitted by a random effects model might
be unreliable. Before both models are briefly introduced, we define some notation.

Let K be the number of independent studies and 6 the true effect of interest that shall
be estimated by 0. Or, k = 1,..., K denotes the single study effect of the k-th study
that is estimated by 0.

The fixed effect model

In Whitehead (2002) the general fixed effect model is defined by
ék:9—|—€k, sze ijzl,,K

for k = 1,..., K, where the errors e; are realizations of normally distributed random
variables €, ~ N(0,&7). Tt follows that

We treat the variance of 0, var (ék) as if it were the true variance (£7) and denote

1

@) as the inverse estimated variance of 0,. Then we assume that
var( U

W =

Or ~ N(0,w;b).
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The overall (fixed) effect 6 is estimated by a weighted sum of the single study effects:

6 — Zk 19kwk
Zk 1 Wk

A calculation of the standard error of § can be obtained as follows

A 1
SE) =, ——.
@) \/ Z?:l Wk

Thus, an appromimate 95% confidence interval (CI) for the overall effect is given by

—196 Q+196
klwk klwk

Using a test for heterogeneity we are able to test the hypothesis Hy : 6, =0, = ... = 0
against Hy : 0 # 0; for at least one pair (k,1), 1 < k,l < K, k # 1 (see Whltehead,
2002). The test statistic is given by

If the null-hypothesis is true, i.e.
all study effects are homogeneous, Q follows a y distribution with (K — 1) degrees of
freedom. Thus, we can reject the null-hypothesis if @ > x%_,,_,, where x% _;,_, is the

(1 — a)-quantile of the x? distribution with (K — 1) degrees of freedom.

The random effects model

In a random effects model we assume the single study effects 61,605, ...,0x to follow

a normal distribution with mean 6 and variance 72. The general random effects model
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is defined as follows:
O = 60+ v + e,

for k = 1,..., K. Here, v are random effects (or between study effects) with v ~
N(0,7%) and € is a normally distributed error with e, ~ N(0,&?) as before. Assuming

that v, and ¢, are independently distributed, it follows that
Op ~ N (0,6 +77).

The between study variance 72 can be estimated by 72 from the data using the method

of moments described by DerSimonian and Laird (1986):

a2 @-(K-1)
K SE w2’
2k W T S

With this estimator we made the assumption that
Op ~ N (0,w;" +72).
We define wj = (w, " + %2)_1 and it follows that
O ~ N (0, (wp)™").

As in the fixed effect model, we treat (w})™" as if it were the true variance of 6, and we

obtain K -
gr — > ket Orwy

K
> k1 Wi

as maximum likelihood estimate of . Analogously to the fixed effect model, the standard

ey 1
B0 = \/ 25:1 wz’

which leads to an approximate confidence interval for the effect of interest 6:

~ / 1 A / 1

0 —1.96, | ——; 0" +1.96, | —— | .
K * ) K *

[ > k1 Wh > he1 Wi
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The weights wy, and wj of the fixed effect and the random effects model, respectively,
will not differ much if the estimate of the between study effect 72 is close to zero. The
obtained estimates of the overall effect, the standard errors as well as the confidence
intervals will be hardly the same in this case. However, if 72 is large the standard error
will be larger for the random effects model and with it the confidence interval for 6.
Besides, the estimate of the latter model will move closer to the arithmetic mean. The

amount depends on the study with the largest weights in the fixed effect model.
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3.2 Sequential validation strategy

Clearly discriminated from the concept of the ordinary meta-analysis we propose a step-
wise validation procedure (Lohr et al., 2012). We assume that some characteristic shall
be tested genome-wide, e.g. differential expression among two conditions or patient
groups by conducting t-tests or the correlation with a specific event time by a Wald
tests, on serveral datasets. Here, we restrict on gene expression data, but the algorithm
is also applicable for other types of high-dimensional data, e.g. SNP (single-nucleotide
polymorphisms) data. Suppose K datasets are available and g genes are measured in
each cohort. In total we obtain K - g p-values that require a reasonable adjustment.
We propose the following algorithm that is briefly explained for K = 3 datasets. As-
sume the datasets are ordered according to an arbitraty preference. For all genes in each
datasets raw p-values have been calculated. In a first step, we adjust the p-values of the
first dataset for multiple testing with method M;. All genes related to p-values above
the significance level a are excluded from further analysis. In a second step, the p-values
belonging to the remaining genes are adjusted on the second dataset using method M.
Usually the number of significant genes after adjustment for multiple testing in the first
step is much smaller then the entire number of screened genes. For that reason the size
of the adjusted p-values will increase. Again, we take the genes whose adjusted p-values
are smaller then the a-level of the second dataset and reduce the third dataset to these
genes. The remaining p-values of the third dataset are adjusted for multiple testing with
method Mj3 once more. Conducting this procedure the number of potential significant
genes decreases from step to step. The general algorithm for K > 3 can be found in
Figure 4 (see Lohr et al. 2012, p. 449).

Tuning at several points of the algorithm is possible. The significance level o can be
selected as well as the methods of adjustment. We apply the algorithm to simulated data
and to real cancer data. In simulation studies we have tested lots of combinations of these
parameters and the results are summarized in Section 3.2.2. It will turn out that the
best setting in simulations was to use the Benjamini-Hochberg procedure that controls
the False Discovery Rate (FDR) as adjustment for multiple testing in combination with
an significance level of « = 5% in every step (M1 = M2 = ... = M). This setting is

used to analyze three breast cancer datasets via the sequential validation algorithm.
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Input: Raw p-values for K ordered datasets and g genes,
sorted sequence of length K of methods M, ..., Mg for multiple testing,
critical level « for selection of significant features

Output: List of significant features genes after sequential validation in all K datasets
Algorithm:

Step 1. Adjust the raw p-values of the first dataset for multiple testing with
method M, and select the remaining significant genes with p-value below «

step k=2,..., K.
Reduce dataset k to selected features, adjust the corresponding raw p-values for
multiple testing with method Mj, and select the remaining significant features
with p-value below «

step K + 1. Select final list of genes whose adjusted p-values are below « in step
K.

Figure 4: Algorithm for stepwise p-value adjustment for K datasets (reproduced from
Lohr et al., 2012).

3.2.1 Stepwise validation on breast cancer datasets

All three breast cancer cohorts of Mainz, Rotterdam, and TRANSBIG described in Sec-
tion 2.2.1 were divided into two groups. A major challenge is the prediction of clinical
outcome. Therefore we are looking for differentially expressed genes or rather probe sets
in patients with and without metastastes as an indicator of recurrence free survial. The
first group consists of patients that developed metastases, the second one of patients
which had been observed for at least five years and did not develope any metastases.
Patients that dropped out of the studies within five years without metastases were ex-
cluded from this analysis. Through this classification the metastases groups include 47,
107, and 72 patients and the metastases-free groups contain 136, 168, and 189 patients
for the Mainz, Rotterdam, and TRANSBIG cohorts, respectively.

We apply t-tests to every probe set on all three datasets and apply the algorithm for

every possible order of the studies. A basic dataset, to explore significant features in, is
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sequence ‘ 1st step 2nd step 3rd step
Mainz — Rotterdam — TRANSBIG 32 8 2
Mainz — TRANSBIG — Rotterdam 32 12 2
Rotterdam — Mainz — TRANSBIG 133 43 24
Rotterdam — TRANSBIG — Mainz 133 45 24
TRANSBIG — Mainz — Rotterdam 0 0 0
TRANSBIG — Rotterdam — Mainz 0 0 0

Table 4: Numbers of significant probe sets in each step for the six validation sequences
(using FDR for significance adjustment in every step and a a-level of 5%) for
the three breast cancer cohorts (reproduced from Lohr et al., 2012).

not determined here, the purpose is to observe the results for all sequences. The numbers
of significant probe sets in each step are shown in Table 4. We notice the number of
significant probe sets after three steps only depends on the dataset that is adjusted first.
Differences between the numbers after the second step are compensated in the third
adjustment step. If we adjust the Rotterdam cohort first most probe sets are detected,
while starting the adjustment with the dataset of TRANSBIG leads to no significant
probe sets even in the first step. It is obvious that there must be crucial differences
between the datasets regarding the size of signals. The TRANSBIG cohort seems to be
associated with the smallest number of signals since the number of significant genes is
regarded as an indication for the strength of signals. Only the less strong adjustment of
the TRANSBIG cohort in a validation step, i.e. second or third step, yields significant
genes.

The disagreement in the number of significant genes depending on the order of adjust-
ment may be caused by two reasons: 1. the different sample sizes of the cohorts and/or
2. the underlyding noise in the data. While the TRANSBIG cohort is associated with
the smallest number of significant probe sets and has a larger sample size than the Mainz
dataset we expect the TRANSBIG cohort to be the dataset with the highest noise level.
To draw any conclusions about the effect of sample sizes and noise levels, in the follow-
ing the influence of varying noise levels and afterwards sample sizes on simulated data

section is analyzed.
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3.2.2 Performance check via simulation studies

Since real data is not suitable to analyze the properties of an algorithm, we performed
extensive simulation studies. A selection of the results is presented in the following
subsection. First we describe how the data is designed. As mentioned above we expect
different underlying noise levels and sample sizes to be reasons for differing data qualities
that are responsible for the varying numbers of significant probe sets. Therefore, we
analyze the effect of varying noise levels first by simulating data with equal sample sizes.
Afterwards we examine the additional influence of different sample sizes based on the

breast cancer datasets.

Design of data

Data for two groups of patients, here for simplification we call them cases and controls,
has to be generated. We assume the expression values of both groups to be normally
distributed. For a subset of genes, that is assumed to be significant, the expression
values of one group are shifted by realizations of an also normally distributed random
variable C. Let n; and ng be the number of patients in the cases and the control group,
respectively. We define g as the total number of measured genes and m, m < g the
number of differentially expressed genes between cases and controls. Let the baseline
expression values for both groups a;;, ¢ =1,...,9,and j =1,...,(ng+ ny) be realiza-
tions of a normally distributed random variable A, where A ~ N(0,0%), 02 > 0 and
let ¢;;,% = 1,...,m, and j = 1,...,n; be realizations of a normally distributed shift-
variable C;, C' ~ N (s, 02), ps € R, and 02 > 0. The matrix of the simulated expression

values x is then composed of

ai,j—l—cm, izl,...m,jzl,...,nl,
Lij =
a; j, t=m+1,...,9, ] =n0,...,n9+ n1.

For the simulated data we determine some basic settings. The number of measured genes
is set to g = 20 000 and the number of differentially expressed genes is fixed to m = 100.
In the following simulations we generate ¢; ; from a normal distribution with mean and
variance 1, thus the effect in every study is assumed to be the same. We generate K = 3

datasets for each simulation and carry out the algorithm as described above. For the
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three datasets we assume different quality levels which depend on the sample sizes and
the underlying noise, that is variance. In the following section we assume equal sample
sizes in the cases and the control group and all three datasets to be able to recognize

the effect of different noise intensities o} of the datasets. We denote the dataset with
2

the lower quality, i.e. higher variance, by alzq, the one with medium quality by oy, and

the dataset with highest quality, i.e. lowest variance, by Jﬁq.

Stepwise validation for simulated data with equal sample sizes

First, we set the number of patients per group to n; = ny = 50 in each dataset. Though,
the qualities of the datasets are defined by their underlying noise level. Table 5 shows
the results of the validation algorithm assuming a standard deviation of o5, = 0.8 on
the high quality dataset (denoted by hq), a moderate noise level of o,,, = 1.1 on the
dataset with medium quality (mgq), and a third low quality dataset (Ig) with o, = 1.5.
In extended simulations these noise levels turned out to be realistic and the effect of the
adjustment can be well studied. The median of the true positives as well as the median
of the false negatives of 1000 simulations for all three steps are presented, on the left
for adjustment with Bonferroni-Holm (Holm) and on the right side controlling the FDR,

with the Benjamini-Hochberg procedure at an a-level of 5%.

Ohg =08, 0mq =1.1,0/0 =15

Holm FDR

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
hq—mq—lg| 45/0 445 /0 31 /0 85 /4 84 /0 77 /0
hq—l¢g—mq| 45/0 31/0 31/0 85 /4 78 /0 77/ 0
mq — hqg — lq 17/0 17/0 15 /0 53 /2 53 /0 49 /0
mq — lqg — hq 17 /0 15/0 15 /0 53 /2 49 /0 49 /0
lg = hqg — mq 4/0 4/0 4/0 15/ 1 15 /0 15/0
lg — mq — hq 4/0 4/0 4/0 15/ 1 15/0 15/0

Table 5: Median true positives/false positives in each step of the six adjustment se-
quences for simulated gene expression data (reproduced from Lohr et al., 2012).

Independent of the method of adjustment for multiple testing the median number of
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true positives decreases from step to step as well as the median number of false posi-
tives. The optimal result would be to identify all true positives which means significant
genes and reduce the number of false positives to zero, simultaneously. By performing
the algorithm using Bonferroni-Holm correction no false positives are found even after
the first adjustment step for all sequences of datasets in this setting. After the second
adjustment step we observe no false positives even using the FDR. We get closest to our
aim of 100 true positives and zero false positives if the dataset with the highest quality,
i.e. here the lowest noise level, is adjusted first. Whether the dataset with medium or
high underlying noise is adjusted next is less important because the difference in true
positives after the second adjustment step is equalized after the third step.

We tested various parameter settings for the noise, adjustment methods (see Table 21
and 22 in the appendix), distributions for the shift-variable and (equal) number of ob-
servations as well as adapted settings on different kinds of data performing other tests.
Beside simulating gene expression data and applying ¢-tests on it, we analogous gener-
ated SNP data with differential allele frequencies of 0.53 in the cases and 0.48 for the
control group and apply x?-tests to test the hypothesis whether the allele frequencies
are significantly different (see Lohr et al. 2012). Although, adapting the number of
true positives after the first adjustment step by modulating the number of patients per
group, we observe less true positives in the second step. We see, the type of data as well
as the properties of the test procedure play a role for the amount of the true positive
rate.

In summary, in all scenarios it is advantageous to use the study with highest quality for
selecting candidate features at the beginning. In later steps we cannot compensate the
effect of lost signals due to the application of a multiple testing adjustment on datasets

with large noise.

Stepwise validation for simulated data with unequal sample sizes

As mentioned above, we assume that the quality of a dataset depends on the sam-
ple size(s) and the underlying noise. The effect of the latter was analyzed in the last
paragraph, now our focus is on the influence of different sample sizes. We reduce the
following descriptions to adjustment for multiple testing by controlling the FDR at a

level of 5% because it seems sufficient at least for all parameter settings that we have
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conducted.

The sample sizes of the three breast cancer datasets are used to generate simulated
expression data. Hence, the simulated datasets have sample sizes of niy = 47 cases
(metastasis) and ngp = 136 controls (no evidence of metastasis) as in Mainz, n;g = 107
cases and ngr = 168 controls as in Rotterdam and n;r = 72 cases and nor = 189 con-
trols as in TRANSBIG. If we assume a different underlying noise in all datasets there
are six possible arrangements for variance on datasets due to the different sample sizes.
Analogously to the notation lq, mq, and hq for low, medium, and high quality we use
the acronyms lv, mv, and hv for low, medium, and high variance, respectively. Tables 6
to 8 show the median of the true positives as well as the median of the false positives as
before for the standard deviations 1.1, 1.5, and 2.3 for all possible sequences. We simu-
late a higher noise of 2.3 instead of 0.8, because in the previously described analyses one
cohort (TRANSBIG) turned out to have a considerably higher noise than the other two
studies. For example, oy < og < or denotes that the variance of the data based on the
sample sizes of the Mainz cohort is the lowest o3, = 1.1, the one based on the sample
sizes of the Rotterdam study is medium 0% = 1.5, and the variance of the dataset with
the sample sizes of TRANSBIG is the highest 0% = 2.3.

If we adjust the datasets with sample sizes of Rotterdam first and these datasets have low
or medium variance, high numbers of true positives, 85 and 79, respectively, are obtained
by the corresponding sequences after the third adjustment step. These numbers are only
outperformed when the datasets with the sample sizes of TRANSBIG have the lowest
underlying noise level and is adjusted first with 86 true positives. We obtain the worst
results, i.e. smallest number of true positives, if a Mainz-like dataset is adjusted first.
Especially, if this dataset has the highest underlying variance only three of the aimed

100 true positives were observed.

Summary

The simulation scenarios with equal sample sizes per group of patients suggest that
it is the best strategy to start the sequential adjustment with the dataset of highest
quality, i.e. lowest variance. Here, the highest number of true positives is obtained after
three steps, independent of the order of the datasets used in the second and third step.

Furthermore, as there are already no false positives after two adjustment steps, control-
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oy < op <o oy < op < OR

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
lv — mv — hv 73/5 73.0/0 65 /0 73 /5 72/0 685/0
lv — hv — mv 73/5 64.0/0 64 /0 73 /5 69 /0 68.0/0
mv — v — hv 89 /5 83.0/0 79/0 72 /4 72/0 68.0/0
mv — hv — v 89 /5 179.0/0 79/0 72 /4 68 /0 68.0/0
hv — lv — mv 16 /1 150/0 15 /0 32 /2 32/0 320/0
hv — mv — v 16 /1 155/0 15 /0 32 /2 32/0 320/0

Table 6: Median true positives/false positives in each step of the six possible adjustment
sequences for setting oy < or < o and oy < op < or with low variance (lv)
1.1, medium variance (mwv) 1.5 and high variance (hv) 2.3 (reproduced from
Lohr et al., 2012).

op< oy <OT opr<or <Oy

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
lv — mv — hv 99 /5 95 /0 85 /0 99 /5 99 /0 72/0
lv — hv — mv 99 /5 88 /0 85 /0 99 /5 71/0 71/0
mv — v — hv 36 /3 36 /0 32 /0 72 /4 72 /0 52 /0
mv — hv—lv| 36/3 32/0 32/0 72 /4 52 /0 52 /0
hv—=lv—=mv | 16 /1 6/0 15/0 3/0 3/0 3/0
hv — mv — lv 16 /1 15/0 15 /0 3/0 3/0 3/0

Table 7: Median true positives/false positives in each step of the six possible adjustment
sequences for setting op < oy < o and o < o < oy with low variance (Iv)
1.1, medium variance (mwv) 1.5 and high variance (hv) 2.3 (reproduced from
Lohr et al., 2012).

or <oy < OR or < ORr < O)M

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
lv — mv — hv 95 /6 91 /0 86 / 0 95 /6 95 /0 685/0
lv — hv — mv 95 /6 90 / 0 86 /0 95 /6 68 /0 68.0/0
mv — v — hv 36 /3 36 /0 34 /0 89 /5 8 /0 650/0
mv — hv — lv 36 /3 34 /0 34 /0 89 /5 64 /0 64.0/0
hv —=lv—mv | 32/2 32/0 31/0 3/0 3/0 30/0
hv —mv —lv| 32/2 31/0 31/0 3/0 3/0 30/0

Table 8: Median true positives/false positives in each step of the six possible adjustment
sequences for setting or < oy < or and o < og < o)y with low variance (lv)

1.1, medium variance (mwv) 1.5 and high variance (hv) 2.3 (reproduced from
Lohr et al., 2012).
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ling the FDR seems sufficient. A third or even more adjustment steps are unnecessary
in this scenario. Since we do not know the real underlying noise or the effect size we
must be very careful about making generalizations from these conclusions.

The simulation study with unequal sample sizes suggests that first adjusting a dataset
with largest sample size (as in the TRANSBIG cohort) and lowest variance yields the
highest number of true positives. If the dataset with sample sizes of TRANSBIG is sim-
ulated with highest variance and the dataset with sample sizes of the Rotterdam cohort
with lowest or at least medium variance, one should use the dataset with sample sizes of
Rotterdam in the first adjustment step. Because we observe most significant probe sets
when the real Rotterdam cohort is adjusted first, one may conclude that TRANSBIG
has higher variance than Rotterdam and that Rotterdam has the highest quality, if we
take the sample size and the underlying noise into account. Since TRANSBIG has no
significant probe set when it is adjusted first, we may infer that is has lowest quality.
Whether this depends on a high underlying variance or a different composition of the pa-
tient population remains unclear just as which of the datasets has the lowest or medium
variance. Thus we can say that the 45 probe sets in the real breast cancer datasets,
that are found to be significant after the second adjustment step, are very likely true

positives and are therefore of biological interest.

3.2.3 Application to non-small cell lung cancer datasets

Next we apply the sequential validation algorithm to the non-small cell lung cancer
datasets. Since the lung cancer datasets are hybridized on two different Affymetrix mi-
croarrays we take the overlap of 22 277 probe sets for further analyses. Instead of dividing
the patients strictly in two distinct groups and looking for differential expressed genes
or probe sets, we examine the correlation of expression values and the overall survival
time of the patients. Therefore univariate Cox proportional hazards models are fitted
to the expression values of every probe set in every dataset. We test the hypothesis
"Hy : HR = 1" which is equivalent to "Hy : f = 0" versus "H; : HR # 1" with a Wald
test. Altogether nine non-small cell lung cancer datasets are available. Thus, we have
9.22277 = 200493 p-values. In Table 9 the numbers of probe sets that are significant
at a local a-level of 5% and 1% and on the same significance levels controlling the FDR

for every single dataset are shown. The distributions of the unadjusted p-values can be
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found in Figure 19 in the appendix. We see that the number of significant probe sets
at an a-level of 5% for most datasets lies between 1000 and 2000. Exceptions are the
Jacob dataset and GSE31210 that contain clearly more significant probe sets as well as
GSE14814 that contains only 638 significant features at an a-level of 5%. After adjust-
ment by controlling the FDR we find at least one significant probe set at an a-level of
5% (or 1%) only in the Jacob dataset, GSE31210, and GSE29013.

dataset unadjusted 5% unadjusted 1% FDR 5% FDR 1%

Uppsala 1875 450 0 0
Jacob 3402 1354 258 20
GSE4573 1118 189 0 0
GSE31547 1656 318 0 0
GSE3141 1492 366 0 0
GSE29013 1564 419 2 1
GSE31210 7597 4390 4355 1381
GSE19188 1177 190 0 0
GSE14814 638 128 0 0

Table 9: Numbers of significant probe sets unadjusted and after adjustment using FDR
at a a-level of 5% and 1%, respectively, for all nine non-small cell lung cancer
datasets.

In the last section two adjustment steps seemed sufficient to eliminate all false positive
features. We apply one additional adjustment step, now then three adjustment steps,
to the lung cancer datasets, because the power properties of the local Wald test might
differ from the t-test and we might have missed the true underlying noise or the effect
size in the real lung cancer datasets in our simulations. Thus (92—!3)! = 504 orders of three
datasets out of the nine are possible. However, it makes less sense to consider sequences
where one of the datasets that contain no significant features after simple adjustment
controlling the FDR is set on first position. In fact, we merely find 13 sequences that
yield at least one significant probe set after three adjustment steps. The numbers of sig-
nificant probe sets in each step for those validation sequences are shown in Table 10. We
see the datasets Jacob and GSE31210 as well as GSE31547 (on the third position) are
rife in the list. For the sequences "Jacob — GSE31210 — GSE31547" and "GSE31210
— Jacob — GSE31547" the highest numbers of significant features are observed, 18 and

21, respectively. The six possible sequences for these three datasets and the correspond-
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ing number of significant probe sets are listed in Table 23 in the appendix. In contrast
GSE4573 and GSE14814 do not occur in any relevant sequence. GSE4573 consists of pa-
tients with the histological subtype of squamous cell carcinomas and GSE14814 contains
almost twice as much squamous cell carcinomas as adenocarcinomas, while all patients
in the Jacob dataset, GSE31547, and GSE31210 are diagnosed as adenocarcinomas. We

may hypothesize that the squamous cell carcinomas biased the results in some way.

sequence 1st step 2nd step 3rd step
Jacob —  Uppsala —  GSE31547 258 5 1
Jacob —  Uppsala —  GSE31210 258 5 2
Jacob —  Uppsala —  GSE19188 258 5 3
Jacob — GSE29013 — GSE31210 258 2 2
Jacob — GSE31210 — Uppsala 258 120 2
Jacob —  GSE31210 — GSE31547 258 120 18
Jacob —  GSE31210 — GSE29013 258 120 2
GSE29013 — GSE31547 — Jacob 2 1 1
GSE31210 — Jacob —  Uppsala 4355 241 2
GSE31210 — Jacob —  GSE31547 4355 241 21
GSE31210 — Jacob —  GSE29013 4355 241 4
GSE31210 — GSE29013 — Jacob 4355 9 7
GSE31210 — GSE29013 — GSE3141 4355 9 2

Table 10: Numbers of significant probe sets in each step for the validation sequences
(using FDR for significance adjustment and a a-level of 5%) that consider at
least one significant probe set after three adjustment steps on the non-small
cell lung cancer datasets.

For that reason the analyses are repeated restricted on the subgroup of adenocarcino-
mas. Fight datasets contain patients with adenocarcinomas and remain in the analysis,
therefore (sé—!:a)! = 336 combinations of the datasets with respect to the order are possible.
All orders are analyzed, but only six sequences yield at least one significant probe set
after the third adjustment step. The six sequences and the numbers of significant fea-
tures in each step regarding these sequences are listed in Table 24 in the appendix. The
sequences "Jacob — GSE31210 — GSE31547" and "GSE31210 — Jacob — GSE31547"
that reached the highest numbers of significant probe sets through all non-small cell lung
cancer patients are in the list of relevant sequences for the adenocarcinomas, again, as

we expected because all three datasets only contain patients with diagnosis adenocarci-
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noma. In the four remaining sequences the dataset GSE3141 is represented at second or
third position. If we have a look at the histogramms of the p-values of the Wald tests
in the Cox proportional hazards models for all probe sets just containing the patients
with an adenocarcinoma (see Figure 20 in the appendix), the distribution of those in
GSE3141 has considerably changed compared to the distribution of all lung cancer pa-
tients in this dataset. The number of significant probe sets at a local a-level of 5% has
increased to 2722. The Uppsala dataset and GSE29013 are not contained in the list of
sequences that lead to at least one significant feature after the third adjustment step of

the algorithm.
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3.3 Two-step meta-analysis approach

As mentioned at the beginning of the chapter the common approach to evaluate findings
on several datasets is to apply meta-analyses to the effects of interest. In Botling et al.
(2013) the meta-analysis approach is combined with the validation idea. In contrast to
the sequential validation strategy above that uses at most three datasets in practise, all
cohorts should be used in the following two-step approach. Since the Uppsala cohort is
our basic dataset we start the procedure with this dataset. If we have a look on the p-
values of the univariate Cox proportional hazards models in the Uppsala cohort as they
were calculated in Section 3.2.3, again, no probe set holds a False Discovery Rate of 5%
(cf. Table 9). This requires less strict adjustment on the Uppsala dataset to receive
any potentially interesting probe set. Thus, all probe sets that pass an unadjusted
significance-level of p < 0.01 in this first step are selected as possibly relevant genes.
Again, like in the sequential approach in Section 3.2, all other features are ignored in
the following second step. For the remaining 450 probe sets, meta-analyses are performed
on the eight lung cancer datasets excluding the Uppsala cohort. Assuming a random
effects model 59 probe sets show a raw p-value less than 0.01 and 13 p-values hold a FDR
of 1%. We choose the random effects model instead of a fixed effects model, because
we want to avoid testing for heterogenity for every probe set. Since eight datasets are
available for the meta-analyses we can estimate an additional parameter, namely the

between study effect. The workflow is illustrated in Figure 5.

Uppsala cohort

Meta-analysis

22 277 probe sets | p<0.01 FDR<0.01
196 patients 1149 patients ‘ :>

Figure 5: Workflow of the two-step meta-analysis (reproduced from Botling et al., 2013).

If we restrict to the histological subtype of adenocarcinomas, 658 probe sets are identified

in the Uppsala cohort to be possibly interesting (raw p-value < 0.01). In the meta-
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analysis less evidence for the significance of these features is found and only 32 probe
sets yield an unadjusted p-value in the random effects model p < 0.01 and merely seven
if the FDR of 1% is controlled.

Since dataset GSE31210 has most significant features of all cohorts and adjusting it first
leads to the highest number of significant probe sets after three adjustment steps (cf.
Section 3.2.3), we perform the analysis once more with GSE31210 as screening dataset.
Like before we take the 4390 probe sets whose p-values in the univariate Cox proportional
hazards model that pass the local a-level of 1% (cf. Table 9) as candidates to validate in
the next step. In the meta-analysis 426 of the 4390 probe sets show a raw p-value < 0.01
assuming a random effects model and 63 hold a FDR of 1%. For the sake of completeness
we restrict the analysis to the histological subgroup of adenocarcinomas once more. Due
to the fact that all patients of dataset GSE31210 are diagnosed as adenocarcinomas,
the first step remaines unchanged. Only the meta-analyses in the second step has to be
restricted on the histological subgroup of adenocarcinomas on the other datasets. Then
we observe 371 probe sets with a raw p-value less than 0.01 and 52 significant ones after
adjustment with the Benjamini-Hochberg procedure with a FDR of 1%.

In Figure 6 we see the overlap of the significant probe sets at the end of the two-step

GSE31210 Uppsala

22208

Figure 6: Visualisation of the significant features at the end of the two-step meta-analysis
for all patients comparing the proceeding when Uppsala and GSE31210 are
used as basic dataset, respectively.

meta-analysis when Uppsala is used as basic dataset compared with the results if dataset
GSE31210 is used for preselection. The overlap is only seven probe sets that are listed

with their corresponding gene symbols and gene names in Table 25 in the appendix.
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3.4 Summary and comparison

Since microarray technology has become comparatively low priced, more and more gene
expression data is freely available in appropriate databases. This information can help
for validation of findings. Coinstantaneous, due to the large number of measured genes
and possibly resulting statistical tests, it is necessary to control the probability for false
positive findings. But after a strict adjustment for multiple testing and a subsequent just
as stringent adjustment on every dataset, no significant results will be left. A common
approach to combine the information of several datasets is the ordinary meta-analysis.
However, this approach does not take the validation idea into account, but treats all
datasets equally due to their variance. Hence, strategies that consider the validation
idea and that are less strict in adjustment for multiple testing are required. In this
chapter we presented two new approaches that meet the required demands.

The first approach was a sequential validation strategy that was proposed by Lohr et
al. (2012). Here, an order of the considered datasets must be determined. The FDR or
the FWER is controlled on the first dataset and only those features that hold the given
a-level after adjusting the p-values by the Benjamini-Hochberg or rather Bonferroni-
Holm procedure are examined on the next cohort. We applied this procedure to the
Mainz, Rotterdam and TRANSBIG breast cancer datasets, performed extensive simu-
lation studies and adopt the strategy to nine non-small cell lung cancer cohorts at last.
A finding of the simulation study was that two adjustment steps and the control of the
FDR seemed sufficient to eliminate all false positive features in the conducted settings.
For the reliability of non-false positive results a conservative additional step was car-
ried out on the lung cancer datasets. However, the application of this 3-step strat-
egy remained challenging, since merely three datasets, namely Jacob, GSE31210, and
GSE29013, yield at least one probe set that is significant after adjustment by controlling
the FDR on a level of 5%. The sequences "Jacob — GSE31210 — GSE31547" and
"GSE31210 — Jacob — GSE31547" render the highest numbers of significant features
(18 and 21, respectively) after the third step. The top results remain the same if the
analysis is restricted to patients with the histological subtype of adenocarcinomas, since
these three cohorts consist only of patients that are diagnosed as adenocarcinomas. If
we consider all patients eleven more 3-step sequences lead to at least one significant
probe set, in the subgroup of adenocarcinomas only four sequences. But the numbers of

significant probe sets after three steps are generally higher in the mentioned sequences
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when we restrict to the adenocarcinomas instead of analyzing all patients, although the
number of patients decreases. On the other hand particularly the Uppsala cohort seems
to have less impact if constrained to the adenocarcinomas in comparison to all patients.
That points to a common issue of subgroup analysis. If we want to draw any conclusion
about a subgroup and use another, hopefully similar, subgroup besides the group of
interest, the results will be biased. If the patients of other subgroups are ignored we
have a smaller sample size and the variance will increase. For example Netzer (2013)
has a closer look on the bias-variance-tradeoff in subgroup analysis. Here, all patients
are considered for the analysis of a special subgroup but depending on their similar-
ity /characteristics with different weights.

The greatest advance in the sequential valididation approach is that the quality of a
dataset, that we define by sample size and the underlying noise in the data, may be
assessed compared to other datasets in some situations. If we have a look on the results
of the breast cancer datasets in Section 3.2.1, again, it is obvious that TRANSBIG will
have the highest underlying noise, because there are more patients in this study than in
the Mainz cohort and adjusting TRANSBIG (first) we find no significant features. We
may conjecture that it is caused by a batch effect because this cohort consists of patients
data from five different European centers. Rotterdam is the dataset with highest quality
in terms of sample size and variance. But whether Mainz or Rotterdam has less under-
lying noise remains unclear since more patients are included in the Rotterdam cohort.
Another important issue of the sequential validation approach remains unsolved.

The simulation study pointed out that two adjustment steps are sufficient to eliminate all
false positive features, which was our priority objective. However, in simulation studies
it is impossible to regard all scenarios since we do not know the true number of signifi-
cant features, the true effect size, and so on. In addition, all settings cannot be repeated
for every testing procedure. Therefore, we applied an additional, third adjustment step
to the real lung cancer datasets. Yet, it is questionable that three adjustment steps are
the optimal strategy in either case. Three steps may be not sufficient to eliminate all
false positives, e.g. if the number of true positives might be exceeding high or the effect
size is quite small. In other situations, as in the simulations, two steps are sufficient
and through a third step the power of the procedure decreases. A better approach will
probably be to take all available datasets for the validation of results into consideration.
In Section 3.3 a workflow that includes all given datasets is introduced. This approach

does not require a selection among the available datasets nor an assessment of the com-
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plete order for the validation. The procedure is simple. A preselection of potentially
interesting candidate features is made without any adjustment on the basic dataset and
afterwards the effects of these genes are validated via meta-analyses on the remaining
cohorts. The adjustment in the first step is missing because as few as possible true posi-
tive features shall be overlooked. Pursuing this workflow, we yield 450 probe sets whose
p-values hold a local a-level of 1% in the Uppsala dataset. Performing meta-analyses
on the other eight non-small cell lung cancer datasets for these 450 preselected probe
sets yields 13 features that are significant even when controlling the FDR (59 with a
raw p-value < 0.01). The histological subgroup of patients with adenocarcinomas were
analysed with this approach, too. Here, 658 interesting probe sets with a raw p-value
< 0.01 are found in the Uppsala cohort, which is nearly one and a half times as much
as in all non-small cell lung cancer patients, although just half the amount of patients
are considered. Applying meta-analyses to the adenocarcinoma patients of the remaing
seven datasets that contain patients of this histological subtype to these 658 features
only yields seven probe sets whose p-values hold a FDR of 1% (32 with a raw p-value
< 0.01). It seems as there are less signals in the subgroup of adenocarcinoma patients
than in the other datasets which might be up to the smaller sample size but also to qual-
ity criteria as e.g. minor fraction of tumour cells in the samples or inaccuracy among
the histological grading. Since cohort GSE31210 brings up most significant probe sets
(4355 hold a FDR of 5% and 4390 a local a-level of 1%) we repeat the procedure with
GSE31210 as basic dataset. Following the workflow we yield 63 probe sets that hold a
FDR of 1% (426 probe sets with corresponding p-values < local a-level of 0.01) if all
non-small cell lung cancer patients are considered and 52 probe sets that hold a FDR
of 1% (371 probe sets < local a-level of 0.01) after all if we restrict to the subgroup of
adenocarcinoma patients. We see that even in this approach it is crucial which dataset is
considered first. If we assume the dataset with the highest number of significant features
to have highest quality, it would be beneficial to start with even this cohort to obtain
most (true) significant genes.

As a comparision with the two validation approaches we perform a common meta-
analysis that ignores the validation idea. A random effect model is assumed for each
probe set of the overlap of the two different Affymetrix arrays to avoid an additional test
for heterogenity. Analyzing all non-small lung cancer patients 123 of the 22277 probe
sets hold a FDR of 1% (1665 raw p-values < 0.01), while 120 probe sets are significant on

a FDR of 1% if only the adenocarcinomas are considered. Most of the features that were
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identified in the validation meta-analysis approach using Uppsala as well as GSE31210
as basic dataset were found with the common meta-analyses.

The probe set with the smallest p-value in the random effects model of all nine non-
small cell lung cancer datasets that is also significant in the validation meta-analysis
if Uppsala as well as if GSE31210 is taken as basic dataset represents gene "AGFG1"
that encodes a protein that is related to nucleoporins that are responsible for mediating
nucleocytoplasmic transport (Fritz et al., 1995). The corresponding forest plot is illus-
trated in Figure 7.

We see that the estimated Hazard Ratios of all studies are greater than 1 and the stud-

AGFG1

Study n HR 95%—Cl
Uppsala 196 | —— 152 [1.21; 1.91]
Jacob 442 - 1.36 [1.15; 1.61]
GSE4573 130 ——— 1.70 [1.00; 2.89]
GSE31547 30 : 2.74 [0.89; 8.46]
GSE3141 110 = 1.30 [0.93; 1.81]
GSE29013 55 ; : 3.17 [0.76; 13.25]
GSE31210 204 —— 2.55 [1.52; 4.28]
GSE19188 82 —w—— 1.55 [0.96; 2.48]
GSE14814 90 —t—++— 1.31 [0.79; 2.17]
Fixed effect model = 1.47 [1.31; 1.64]
Random effects model <> 1.48 [1.31; 1.68]

| T |

0.81 2 10

Hazard Ratio p<0.0001

Figure 7: Forestplot of the meta-analysis for probe set "218092 s at" that represents
the gene "AGFG1" including all nine non-small cell lung cancer datasets. The
p-value (bottom right) corresponds to the random effects model.

ies quite agree with each other, all confidence intervals comprise the overall study effect.
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For this reason the fixed effect and the random effects model yield very similar results.
Four of the studies are even significant considering the single study effect, particularly
Uppsala and GSE31210. The estimated hazard ratios of the datasets with smallest sam-
ple sizes (GSE31457 and GSE29013) have the largest confidence intervals. Altogether
the p-value < 0.0001 of the random effects model indicates that the true hazard ratio
is unequal to zero. More precisely, if the expression of AGFGI increases, the overall
survival time of non-small lung cancer patients decreases. Thus, AGFG1 seems to be an

oncogene.

best 3 step validation meta—analyses
ordinary meta—analyses 22105

Figure 8: Visualisation of the significant features at the end of the best 3-step sequential
validation approach, the combined meta-analysis for all patients comparing
the proceeding when Uppsala is used as basic dataset, and the common meta-
analyses assuming a random effects model.

The comparison of the results of the validation meta-analysis, the common meta-analysis,
and the sequential validation approach is visualized in Figure 8. Since all 3-step se-
quences were considered in the latter we look at the results of the sequence that yields

the highest number of significant features. In Figure 8 it is recognizable that the great-
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est overlap of significant features can be found between common and validation meta-
analyses, while there is no overlap between the significant probe sets of the ordinary
meta-analyses and the best 3-step validation analysis, and therefore neither in the over-
lap of all three aproaches. The validation meta-analyses and the best 3-step valida-
tion share only one significant feature: The probe set "218451 at" represents the gene
"CDCP1" which encodes the "CUB domain containing protein 1". From Brown et al.
(2004) it is known that CDCP1 is overexpressed in carcinomas, and that CDCP1 mRNA
is highly elevated in human lung cancer cells (Scherl-Mostageer et al., 2001). Ideka et al.
(2006) even discovered that tumors with higher expression of CDCP1 show a higher level
of proliferation than tumors with low CDCP1 expression. Thus, our results emphasize
the known findings from literature.

In Figure 21 in the appendix the forest plot of the probe set "218451 at" that repre-
sents CDCP1 can be seen. Except for the estimated hazard ratio of study GSE3141 all
single study effects are greater than 1. Five of the nine studies are significant if con-
sidered seperately. The combined study effect of the random effects model is 1.41 (CI:
[1.16 — 1.71]) which leads to a p-value of 0.0005. Due to the high number of analyzed
features that require adjustment for multiple testing the p-value does not hold a FDR
of 5%.

Since the best 3-step validation sequence starts with GSE31210, it is more suitable to
compare the results of this sequence with a validation meta-analysis where GSE31210
is used as basic dataset. The overlap of the significant features hereof and the ordinary
meta-analyses are visualized in Figure 22 in the appendix. We find 426 significant probe
sets with the validation meta-analysis when GSE31210 is screened at the beginning.
Although the number of significant features increases with this proceeding the overlap
with the results of the common meta-analyses is not considerably higher. Again, there
is no overlap of the significant features between the validation meta-analyses and the
ordinary meta-analyses. However, the validation meta-analyses and the best 3-step val-
idation sequence have six significant probe sets in common. The list of significant probe

sets including the genes that they are representing can be found in Table 11.
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probe set symbol  gene name

201251 at PKM?2 pyruvate kinase, muscle

201546 _at TRIP12  thyroid hormone receptor interactor 12
209313 _at GPN1 GPN-loop GTPase 1

218451 at CDCP1 CUB domain containing protein 1

212581 x_at GAPDH glyceraldehyde-3-phosphate dehydrogenase

AFFX-HUMGAPDH,/ GAPDH glyceraldehyde-3-phosphate dehydrogenase
M33197 M _at

Table 11: Probe sets with gene symbol and gene name that are significant after three
steps of sequential validation of the order "GSE31210 — Jacob — GSE31547"
as well as in the validation meta-analysis when dataset GSE31210 is used for
preselection.

Like above the gene CDCP1 is in the overlap, again. It is conspicuous that two probe
sets of the gene "GAPDH" that encodes the enzyme glyceraldehyde-3-phosphate dehy-
drogenase are in the list of the overlap. From literature it is known that GAPDH is
overexpressed in lots of tumors (Sirover 1999, Said et al. 2009) and that overall survival
and the relapse-free survival are reduced in patients whose level of GAPDH expression
is enhanced (Révillion et al. 2000). These results can be confirmed with our findings (cf.
Figures 23 and 24 in the appendix). The estimates for the hazard ratio in all studies are
highly correlated for the two probe sets. We see a slightly smaller p-value for probe set
"212581 x_at", because here the estimated hazard ratio of GSE19188 and GSE29013
points towards the right direction compared to probe set "M33197 M at".

In conclusion, it can be claimed that the ordinary meta-analysis is an excellent method
for the analysis of several datasets, most significant features that hold a FDR 1% can be
found by the application of this procedure. But apart from neglecting the validation idea,
important genes were not identified by the ordinary meta-analysis, e.g. CDCP1. The
assessment of study quality with the stepwise validation approach described in Section
3.2 might be useful, but it remains difficult in most cases. If the number of significant
features in combination with intrinsic noise are considered as quality criteria, the Rot-
terdam cohort seems to be of highest quality of the breast cancer studies. Among the
non-small cell lung cancer datasets the Jacob cohort and GSE31210 seem to have the

highest quality. If we take a closer look, it is obvious that the "good" datasets consist
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of only one histological subtype. In addition to sample size and noise, something like
biological comparability or rather consistency must be included in the constitution of
quality. Therefore, the definition of quality remains challenging and should be reconsid-

ered for every problem.
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4 Differential gene expression networks

The reconstruction of biological, i.e. gene-gene, protein-protein or gene-protein, networks
is a recent research topic (e.g. Juric et al., 2007; Gill et al., 2010). Tt is known that genes
do not act independently, but groups of genes act and interact with each other. The
estimation of gene regulatory networks is challenging.

The dependence structure of g genes is often of interest. Though we get an impression
of the overall correlation structure by calculating the ordinary correlation coefficients
pi, 1,0 =1,..., g, the actual dependencies are not recognizable, because ordinary corre-
lation coefficients do not distinguish between direct and indirect interactions. A direct
interaction between two variables w.l.o.g. X; and X, occurs if X; has a direct influence
on X, or vice versa. This is in contrast to an indirect interaction where X; and X5 are
e.g. both influenced by X3 and conditioned on X3 they become independent. Ordinary
(estimated) correlations are therefore only weak evidence for real direct dependencies
between two genes, while the absence of correlation argues for independence. Hence, an
adaption is required that considers the dependence structures of other given variables.
Precisely the partial correlation coefficient accounts for this issue. It quantifies the cor-
relation between two variables X; and X, conditioning on serveral other variables, or in
other words, it is defined as the correlation between the residuals of a linear regression
explaining X; and Xs, respectively, with the other variables as covariates (Fujikoshi et
al., 2010).

In the following we denote random variables by capital letters, the corresponding obser-
vations by small form letters. Matrices are printed bold, vectors are marked by an arrow

""" above the letter. Figure 9 i) shows a direct

" — " and estimators are labeled by
interaction of A and B, where A is a parent of B. This means A has a direct influence
on child node B. In Figure 9 ii) we see a directed path from B to A. But conditioned

on C, A and B are independent, as well as in Figure 9 iii), where C has the children
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Figure 9: Examples for a i) direct interaction between A and B, ii) indirect interaction
between A and B and iii) interaction of A and B by regulation by a common
gene C.

A and B, and A and B are not adjacent. While for situations i) to iii) of Figure 9 the
ordinary Pearson correlation coefficient will recognize a non-zero correlation between A
and B, the partial correlation for the indirect interaction between A and B in ii) and the
apparent interaction of A and B due to a common regulator C in iii) will 0. We see, the
ordinary correlation is weak evidence for measuring dependence, since in our example
more or less all gene pairs will have non-zero correlation. In contrast, partial correlations
provide only a weak criterion for independence, since most partial correlation vanish,
but it offers a strong measure of dependence.

In this thesis we go one step further. Our focus will not lie on the reconstruction of
genetic networks, but it is on the detection of differential networks. Therefore, we intro-
duce several methods for the identification of differential networks in the next section.
Afterwards, we present some approaches for the detection of differential genetic net-
works and subsequently conduct an extensive simulation study on tests for recognizing

differential networks. In Section 4.4 the results will be summarizied.
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4.1 Methods for differential network analysis

A popular tool for the analysis of gene association networks are Graphical Gaussian
Models (GGMs), also named Covariance Selection Models following Dempster (1972)
who first suggested to fit models with zeros in the off-diagonal elements of the concen-
tration matrix, i.e. the inverse of the covariance matrix. The basis of GGMs form so
called partial correlations as measures of conditional independence. In contrast to rel-
evance networks (see e.g. Butte et al., 2000) that use the standard pearson correlation
coefficient and a predefined threshold, GGMs are able to distinguish between direct in-
teractions between two genes, indirect interactions, and regulation by a third common
gene.

In the following Section 4.1.1 the link between probability theory and graph theory is
clarified. After the general definition of a graphical model, GGMs as graphical mod-
els under the assumption of a multivariate normal distribution are introduced. Partial
correlations that form the basis of GGMs are introduced in Section 4.1.2. Since partial
correlations require a reliable estimation of the covariance matrix a shrinkage approach
for the latter is described in chapter 4.1.3. How a Graphical Gaussian Model is obtained
by the use of a heuristic mixture model approach is explained in Section 4.1.4.

After the estimation of the GGMs, we go a step further and want to discover differences
in gene association networks under two conditions. Hence, several measures for the com-
parison of two networks are introduced in Section 4.1.5. Since the developed measures
follow no known probability distribution, permutation tests are required that are briefly

reviewed in Section 4.1.6.

4.1.1 The link from probability theory to graph theory

A graph G is a pair G = (V, &) consisting of a finite set of nodes (or vertices) V and
a finite set of edges € between the edges in V, ie. £ € V x V (Edwards, 2000). An
undirected edge between nodes §,v € V can therefore be written as (d,7) or (v,d) and
it is visualized by a line. If all edges are undirected we call such a graph undirected.
In contrast, if we consider a graph G = (V',€’), where the edges are directed, i.e. if
(v,0) € € but (d,7) ¢ &, we call it directed. Since we focus on undirected graphs in this
thesis, we restrict to those in the introduction of notation, terminology, and properties

in the following.
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A path is defined as a sequence of edges (not necessarily directed) that is connected
(Lauritzen, 1996). A subgraph G4 is a graph restricted to a subset of nodes A C V and a
subset of vertices £4 = EN(A x A). We call a graph complete if all nodes are connected
by edges. If there is an edge between § and +, they are said to be neighbours or adjacent
and 0 and ~ are called non-adjacent, if no line between the two vertices exists. The
set of vertices that are connected to 0 is denoted by ne (d). For a subset A C V the
collection of neighbours of nodes in A is defined as the union of neighbours that are not
in A, ne(A) = Useqne (6) \ A. If we speak of undirected graphs the set of neighbours
ne (A) is also referred to as boundary of A. The union of A and ne (a) is called closure,
cl(A) =ne(A)UA. A subset B CV separates two vertices § and + if all paths from o
to v intersect B. For A, B,C' C V we say that B separates A from C, if B separates all
nodes ¢ € A from v € C.

A toy example for illustration is given in Figure 10. We define the subsets A =
{X1, X5, X3}, B={X,}, and C = {X5, Xg}. Then the collections of neighbours for the
three distinguished subsets are ne(A) = {X4}, ne(B) = ne({X4}) = {Xa, X3, X5, X6},
and ne(C) = {X4}, while the closure of A is given by cl(A) = {X;, Xy, X3, X4}, the
closure of B by cl(B) = {Xs, X3, X4, X5, X6}, and analogous the closure of C' by
c(C) = {X4, X5, Xe}. B or rather X, separates A = {X1, Xy, X3} from C = {X5, X¢}

because all paths from nodes of A to those of C intersect Xj.

The idea for the link between graph theory and probability theory is to use a graph for the
illustration of an association structure of random variables. Thereby, nodes stand for the
random variables and edges represent (conditional) independence structures among the
variables (Lauritzen, 1996). Hence, we clarify the concept of conditional independence
first.

Let X;, X5, and X3 be random variables with a joint distribution P. Then X; is
conditionally independent of X5 given X3 under P if for any measurable set A; in the
sample space of X; P(A1|Xs, X3) = P(A1|X5), i.e. the conditional probability of A,
given X5 and X3 is independent of X3 and we write X; L X5| X3 [P], or short X1 X5|X3.

If the random variables have a continuous density it holds that

X11X5| X5 € fxixoxs (T1, %2, %3) fx, (T3) = fx, x5 (T1,73) fxox, (T2, 23)

Let U = h(X7) be an arbitrary measurable function on the sample space of X; and X,
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Figure 10: Toy example.

another random variable. And let X; be conditional independent of X5 given X3, i.e.
X711 X5|X3. An algebraic structure that satisfies

G1) Xs is conditionally independent of X given X3, i.e. Xol X;|Xj5;

)

G2) U is conditionally independent of X5 given X3, i.e. UL X5|X53;

G5) X is conditionally independent of X, given X3 and U, ie. X1 1 X5|(X3,U);
)

b

(
(
(
(

G4) If in addition X is conditionally independent of X, given X, and X3, then X is

conditionally independent of X, and X, given X3, i.e. X1 (Xo, Xy)|X5;

where U C X; and X7, X5, X3 are disjoint and finite subsets, is called semi-graphoid. If
X1, Xs, X3 are disjoint and the joint distribution of all variables is positive and contin-

uous

(G5h) If in addition X is conditionally independent of X3 given Xy, then X; is condi-
tionally independent of X, and X3, i.e. Xj1 (X, X3).

will hold and the algebraic structure is called graphoid.
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The concept of graph separation is an example of an algebraic structure that fullfilles

the semi-graphoid axioms, so
g
A1 C|B =3 B separates A from C.

If the subsets A, B, and C are disjoint the algebraic structure satisfies the graphoid
axioms (G1)-(G5). Coming back to the toy graph in Figure 10 we see that A is indepen-
dent of C given B because B = {X,} separates A = { X, Xo, X3} from C' = {X5, X¢}.

For an undirected graph G = (V,€) and a collection of random variables (X;);.,, that
take values into probability space three so called Markov properties are defined as fol-

lows:

(P) All non-adjacent pairs of vertices are independent conditional on the remaining

nodes: If for a given graph and all non-adjacent nodes, 6,y € V, it holds that

oLy [V\{d,7},

the probability measure is said to obey the pairwise Markov property.

(L) Conditional on the adjacent vertices, any vertex is independent of the remaining
nodes: A probability measure satisfies the local Markov property if for any vertex

0 €V, 0 is independent of V with the closure of § given the boundary of ¢, i.e.

SLV\cl (6) | bd (5).

(G) Any two disjoint subsets of nodes separated by a third subset is conditionally
independent given the vertices in the third subset: The global Markov property
is fulfilled by a probability measure if B separates A from C' in G for all disjoint
subsets A, B,C € V, i.e.

Al cB.

The global Markov property implies the local, while the local implies the pairwise Markov

property. If property (G5) of the graphoid axioms is satisfied all three Markov properties

are equivalent, and therefore graph separation satisfies the graph axioms.
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Since conditional independence is highly related to factorization, so are the Markov
properties. Let A C V be a complete subset of G. We say a probability distribution P
factorizes according to G if for all such A exists a non-negative function ¢4 that depends

on the A-coordinates alone, and P has a density f that factorizes to

fay= ] va(za),

A complete

where © = (z,, v € V) and x4 = (z,, v € A). In general, it holds that for every undi-
rected graph the factorization property implies the global Markov property. Hammersley
and Clifford (1971; Clifford, 1990) showed that if a probability distribution satisfies the
pairwise Markov property and has a positive and continuous density if and only if it

factorizes according to G.

An undirected graph G = (V,€) with a set of random variables that satisfies the local
Markov property is called a Markov network or graphical model (Kindermann and Snell,
1980).

As a result of the theorem of Hammersley and Clifford it is sufficient to show the pairwise
Markov property, if the probability distribution has a positive and continuous density, to
proof the required local Markov property for graphical models. A special case of graph-
ical models are so called Covariance Selection Models or Graphical Gaussian Models
(GGMs). As the name suggests the underlying probability distribution of the random
variables is a multivariate normal (Gaussian) distribution. Let ;( be a random vector

and assume it to be multivariate normal distributed with X~ N, (M,Z), where X is

assumed to be regular. W.l.o.g. partition )? in )?: (Xl,XQ,)?:g)‘, where X; and X,
are random variables and X3= (X3,...,X,) denotes a vector of random variables. In
Lauritzen (1996, Proposition 5.2, p.129) it is shown that

XlLX2’X3 = W12 = 0,

where Q = {wi}; ey, = X7 is the concentration matrix of the multivariate normal
distribution. We see, the multivariate normal distribution is positive and continuous
and it obeys the pairwise Markov property and thereby also the local and global Markov

properties and the factorization property.
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In the next section, partial correlations that form the basis of Graphical Gaussian Models

due to the association with the concentration matrix are derived.

4.1.2 Partial correlations

Let w.l.o.g. X; and X, be two random variables, X3= (X3,...,X,) denotes a vector
of random variables, and X= (X1, X5, X3) with corresponding mean vector ¢ and

covariance matrix ¥, where

251 011 012 O3
Hs3 031 O30 X33

The n realizations of the random variables or rather vectors are given by z1, =5, and

x3, respectively, with

T11 T21 31 - Tpl

T1= ) To= ) and T3 =
Tin Ton T3n *° Tpn

As mentioned above partial correlation can be described by the correlation of the resid-
uals of linear models where the variables of interest (X; and X5) are explained by the
remaining variables that are considered (X3). In general, the best linear predictor can

by obtained by the least squares estimator that is given by
y =Pz,

where B = (B,...,0,) is the least squares parameter vector and z is the design matrix
(cf. Toutenburg, 2009). To derive the best linear predictors for X; and X5, we define

r,=x; —%; €R" i=1,2, x5 := 13 — T3 € R™P=2 where Z;, i = 1,2, are the sample

means of x; and ¥, respectively, and T3 = (Zs3,...,T3,) is a sample mean vector, as
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transformations of the observations and

Lin

as transformations of the estimated values.

We look at the predictor for the transformed values
T = x5 b (1)

The general least squares estimator for ; is given by

~ . %

B = (wyas)'ah - x,,i=1,2.

This formula can be transformed to

~ . %

b= (o) 'y 7
= @~ ) (& — 7)] Tz — 73) (7 =)
- E (s — ) (23— 5;3)] - {E (@ — ) (7, —x)]

¢
-~ -~

¢

&1 G
Y33 3

N
= 233 + 034,

where 6;3 and X35 are estimates of o3 and Y33, respectively. If we insert this in expres-

sion (1), we yield

Ak ok x—1 4
Ty =Xy~ Ugg - O3

= T; —X; = (.’1:3—5/’3)'23?31'6'31‘
= xi:fi+(m3—j3)-f}§31-&3i
<~ T, =x; + (C}éz : 23731 . ($3 — f’3)‘>
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Because (gig 5wl (;(3 — ﬁ:;)) :;iS SNy (;(3 — ﬁg) € R, the best linear predictor
of X;, i =1,2, by a linear function of )?3 is
L(Xs) = Xi = it ;iS i - (X:s - “3) :

The residuals

RN

X,L* = Xz - ll(Xg), 1= 172,

are defined as the remaining portion of X, i = 1,2, after removing the linear effects of

X3 and we define the vector of residuals as

(X7 X, — 7. -
X = i — 1 Ml — A?l 2;31 <X3 — ,LL3> s
X2 X9 — H2

039

with

— % X —_ p — —
v () = var | (32 20) - () =2 (- )

011 012 031 A =
= + | (233 ) 031 032
021 022 039

o | (2;;)‘(331 332>

039
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Like the ordinary population correlation (e.g. Fujikoshi et al., 2010) between two vari-
ables X; and X, that is defined by

Cov(Xy, X2)
/Var(X,)Var(Xs)’

T(XI,XQ) =

the correlation between the residuals X7 and XJ or rather partial correlation between
X7 and X, given X3 is

¢

* * p -1 =
Cov(XT, X3) B O12— O3, B33 O32 — s
== = ..p)

~NVar(X})Var(X; ooyl Gy S5 0
\/ ar(X7)Var(X3) \/<U11— 031 2331 031) (UQQ_ 732 2331 032>

(X7, X3)

where the variances and covariance can be instantaneous taken from the variance/covariance

— %
matrix of X . At least we want to transform the partial correlation in a consistent form.
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We define
Wi Wiz ... Wip
2_1 0 Wo1 Wag ... Wy
e\ T T SR
Wp1 Wp2 ... Wpp

also named concentration matriz. From the Inverse Variance Lemma (cf. Whittaker,
1990) it follows

21_21|3...p - (2_1)[1:2,1:2}

and hence, X
Wil Wiz} [ 0O113.p O123.p B
W1 W2 02113..p 022|3..p

or turning it around leads to

-1
wi Wiz O1113..p 012|3...p

Wo1 W22 021|3..p 022|3.p

If the whole expression is inverted we yield

1 *
1 * B
= 12— 03135 032 L 1
| ‘ L = P12)3...p ’
VWi11w22 \/<011—U312§31 0'31) <0’22—U3223_31 0’32)

where x is a place marker for an irrelevant entry of the matrix due to our aim. Since the
expression in the right matrix is the partial correlation between X; and X, given Xs,

pi2i3..p can be written as
W12

P12|3..p = ——F/——-
V W11W22

An estimation of the partial correlation is given by

W12

1612 3.p — T T o/—/—/——-
| VvV W11W22

As we discovered, the elements of the inverse covariace matrix are related to the partial

correlation. Hence, a reliable estimation of the covariance matrix is required.
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4.1.3 Shrinkage estimation of the covariance matrix

Especially in situations of "small n, large p", when much more variables than observa-

SML

tions shall be considered, neither the maximum likelihood estimate nor the unbiased

empirical covariance matrix § = -%-SM" with

n

D (g — &) (w = @),

j=1

1

are good approximations of the true covariance matrix ¥, not even if the number of
variables and observations are approximately the same (Schéfer and Strimmer, 2005a).
A property of the true covariance matrix is positive definiteness, if we assume that
all considered random variables have non-zero variances. Yet, neither the unbiased
nor the maximum likelihood estimator satisfy this requirement. Besides, it is desirable
that a good covariance estimator is well-conditioned, i.e. the ratio of its minimum and
maximum singular value is quite large, it has full rank and therefore, it can be easily
inverted. This characteristic can be found in general neither in the maximum likelihood
nor in the unbiased estimator.

A general approach to improve a covariance estimator is to reduce its variance. The
mean squared error (MSE) of the sample covariance can be decomposed to variance and
bias, i.e.

MSE(S) = Bias(S)? 4 Var(S).

Since S is unbiased by construction, the overall accuracy of the unbiased estimator can
only increase by the reduction of variance. Various approaches have been proposed for
this issue and all procedures have serious disadvantages, e.g. to reduce the variance by
bootstrap aggregation of the empirical covariance matrix (cf. Schéifer and Strimmer,
2005b) that becomes computationally highly expensive with increasing numbers of vari-
ables. A computationally inexpensive and simultaneously well performing "shrinkage"
or rather "biased estimation" approach is described by Schéfer and Strimmer (2005a).
It is based on the theorem of Ledoit and Wolf (2003), which is now briefly introduced.

Let @ = (¢1,...,¢,) be the parameters of a high-dimensional unrestricted model of

interest, and let © = (64,...,6,) denote the matching parameters of a restricted lower
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dimensional submodel, for instance parameters might be all equal, i.e. §; = ... = 0,. The
estimates of ® and © are denoted by U and Y, respectively. Y is also called shrinkage
target. Due to the large number of parameters it is obvious that the unbiased estimate
U will have a comparatively high variance, but ® might have a considerable high bias.

In a linear shrinkage approach both estimates are combined to a new estimator
Ur=\XY+(1-\NU,

where A € [0, 1] is the shrinkage intensity that has to be selected. Apparently, for A = 0
the regularized estimate U* is equal to the unbiased estimator, while for A = 1 the
shrinkage target Y is recovered. This combined estimator can outperform the unbiased
as well as the constrained estimator in terms of accuracy and efficiency.

Besides the choice of the shrinkage target the selection of the optimal shrinkage intensity
remains. For the selection of the latter various procedures have been proposed. It is
possible to fix the shrinkage intensity to a given value or a function that depends on the
sample size. A computationally expensive approach for an optimal A is cross-validation
(e.g. see Friedman, 1989). In an empirical Bayes context, F(Y) is interpreted as prior
mean and \ as a hyper-parameter that has to be estimated from the data by optimizing
the marginal likelihood (cf. Daniels and Kass, 2001). In this thesis we use a procedure
where A is choosen in a data-driven way by minimizing a risk function, here the mean

squared error (MSE), which can be transformed to

= Z\/ar(u;‘) +[E(u)) — 6]’
= Z\/ar ()\yi + (1 — )\) ui) + [E ()\yi + (1 - )\) uz) - ¢z]2

= Z A*Var (y;) + (1 — A)? Var (u;)

+2X (1 — \) Cov (u;, 4:) + [NE (y; — u;) + Bias (u;)]”.
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By minimizing this expression with respect to A\, we yield

f:1 [Var (u;) — Cov (ys, u;) — Bias (u;) E (y; — Uz‘)]'

A=
f:1 E [(yi - Uz‘ﬂ

From this expression we can derive that A* becomes small if the variance of U decreases.
We see, the shrinkage target Y looses its influence when sample size increases. Further-
more, the correlation between U and Y influences the shrinkage intensity. If the two
are positively correlated \* decreases as well as if the mean squared difference between
U and Y increases which protects the regularized estimator U* against erroneously cho-
sen shrinkage targets. Moreover, if U is biased towards the shrinkage target Y, \* will
decrease. However, we assumed that U is unbiased. Then the equation above reduces

to »
v, Var (u;) — Cov (y;, u;)

?:1 E [(yz - Uzﬂ

For the estimation of A\* Schifer and Strimmer (2005a) propose to replace all expec-

A=

tations, variances and covariances by their unbiased sample counterparts, which leads
tO —_— —_— —_—
>0 Var (u;) — Cov (y;, u;) — Bias (u;) (y; — w;)

M=
2
5:1 (yz - Uz)

To keep A* in [0, 1], it must be truncated afterwards to A = maX{O,min {1,5\*}}
Transferring the lemma of Ledoit and Wolf (2003) to the covariance estimation issue we

yield in matrix setting

L\ =|S"-Z|%
= []\Y + (1 -8 -Z|>

=3 ) O+ (1= N sa—oa)?,

=1 [=1

where ||-||% denotes the Frobenius norm which is the eqivalent to the squared error loss
function in matrix setting.
Finally the choice of the covariance shrinkage target is still pending. In Schifer and

Strimmer (2005a) several suitable shrinkage targets are presented. In this thesis we use
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the "diagonal, unequal variance" target, where

Sy, 1=1

0 il

Yii =

which shrinks only the off-diagonal elements of S, and does not shrink the variances.
Thus, M* reduces to
So > iz Var (sir)
Zi;ﬁl s3
since s is unbiased, the covariances é\ov(yﬂ,sil) = 0,Vi # [ and in the denominator

Thereby, it is reasonable to parameterize the covariance matrix in terms of variances

and correlations, instead of variances and covariances, i.e. s}, = pJ; - \/Sii - su, @1 =
1,...,p, because this formulations has two advantages. On the one hand, the (partial)

correlations derived from the resulting, regularized covariance matrix S* are independent
of scale and location transformations of the data matrix. And on the other hand the
off-diagonal elements determining the shrinkage intensity are on the same scale. The

corresponding M s simplified to

- Zi;&l Var (pir)
N=—FF—5—.
Zi;ﬁl Pil

The resulting shrinkage estimator for ¥
Ui s (13 s

will have the desired properties. Since a convex combination of a positive definite matrix
(Y) and a positive semi-definite matrix (S) leads to a positive definite matrix, U* will

be positive definite, too, and can be inverted.

The obtained regularized covariance estimator may be used to calculate partial correla-
tions as introduced in Section 4.1.2. These form the basis for the Graphical Gaussian

models that are also called as covariance selection models.
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4.1.4 The local False Discovery Rate

The next critical part of inferring Graphical Gaussian Models is model selection, i.e.
to determine whether an edge is absent (null edge) or present (non-null edge). In gene
association networks we expect most of the edges, and therefore the partial correlations,
to vanish (Schéfer and Strimmer, 2005b). Therefore, we assume the distribution of

observed partial correlations p across edges is given as a mixture

() =m0 folp, k) + (1 —mno) - fa(p),

of the null distribution fy and the distribution of partial correlations corresponding to
the actually existing edges fa. 7o is the (unknown) proportion of null, i.e. non-existing
edges. The naturally longer tailed density f4 is here assumed to be a uniform distribution
from —1 to 1. The proportion of null-edges 79 can be determined from the data, for
algorithms see Efron (2004) and Storey (2002), respectively. In this thesis, proportion
of no = 0.95 proposed by Schéfer and Strimmer (2005a) is assumed. The density of the

absent egdes can be easily computed in a closed form by

that is given in Hotelling (1953), where Be (k ; a, b) denotes the S—distribution and &
is the degree of freedom. If we consider a large sample setting with n > p, the degree of
freedom is kK = n — p 4+ 1. Thus, the number of observations n must be larger than the
number of variables p as we can see from the formula. If n < p the distribution has the
same form as mentioned above but the degree of freedom is not a simple function of n
and p and has to be estimated from the data (Schéfer and Strimmer, 2005a).

The posterior probability of a null edge given the observed partial correlation may be

written as

P (null edge) - P (p|null edge) 1o - fo (p, k)

P (null edge|p) = P 0) o)
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which is defined as the local False Discover Rate (IFDR)

Mo - fo (P, &)
f(p)

given the observed partial correlation for a specific edge (Schéfer and Strimmer, 2005a).

IFDR (p) =

Following Efron (2005) we assume an edge to be significant, i.e. present if its local FDR

is smaller than 0.2.

4.1.5 Measures for the comparison of two undirected graphs

Our aim is to compare two genetic networks that are obtained from two conditions of two
groups of patients. Therefore, both networks are estimated separately and afterwards
the difference or similarity of the networks is determined by a suitable measure. In the
following a collection of such measures is introduced.

Let )?: (X1,...,X,) beavector of random variables with population correlation matrix
T = (rij)kjeqr,..py and let p = (Prji(1,...pI\{kj})kjef1,..pp De the matrix of estimated
partial correlations. Denote the enties of the upper triangular matrlx of estimated
..... g and Pc (Pei)iz=1,...B1
respectively, where ¢ = 1,2 are the two conditions or groups and £ = % is the

ordinary correlations and partial correlations by 7‘ = (Fei)i=1

number of possible egdes.
In the folloowing we introduce 14 measures for the comparison of two networks. An

overview of these measures is given in Table 12.

Mazimum absolute distance of partial correlations (MaxDApC)

For all edges the absolute deviations of the partial correlations between two networks is
calculated. The MaxDApC quantifies the difference of two networks by considering only
the largest distance of all estimated partial correlations between the two groups. A high

value of the statistic

T (A 7é>: i 7
(P10 P2) = max o = pail

argues for at least one difference between two networks under the regarded conditions.
However, this measure does not take the number of differences into account. A moderate

change in partial correlations through several edges might remain undiscovered.
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‘ abbreviation ‘ description
Ty | MaxDApC | Maximum absolute distance of partial correlations
T, | MDApC Mean absolute distance of partial correlations
5 | MDQpC Mean quadratic distance of partial correlations
T, | MDE Mean difference of edges
Ts | xE x? statistic based on edges
Te | MDAR Mean absolute distance of ranks
T; | MDQR Mean quadratic distance of ranks
Ty | MDARFE Mean absolute distance of ranks of present edges
Ty | MDQRE Mean quadratic distance of ranks of present edges
Ty | CORpCE Pearson correlation of partial correlations corresponding to present edges
Ty, | RCORpCE | Spearman correlation of partial correlations corresponding to present edges
Tis | MaxDAC Maximum absolute distance of ordinary correlations
Ti3 | MDAC Mean absolute distance of ordinary correlations
Ty | MDQC Mean quadratic distance of ordinary correlations

Table 12: Overview of measures for the comparison of two networks.

Mean absolute distance of partial correlations (MDApC)
For the calculation of the MDApC (cf. Gill et al., 2010) again all absolute deviations

of the partial correlations between two networks are calculated. Then the MDApC is

defined as the mean of all distances divided by the number of possible edges, i.e.

E
Loy 1
15 (Pl, Pz) = E; |p1i — pail -

Like for MaxDApC high values of MDApC suggest differences between the two graphs.

One modified partial correlation leads to alterations of partial correlations of adjacent

nodes, thus MDApC might detect smaller differences between the networks.

Mean quadratic distance of partial correlations (MDQpC)
The MDQpC is quite similar to the MDApC but it considers the quadratic distances

instead of absolute deviations, i.e.

| Z
15 <01,02> = Z P1i — sz

7,:1
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Therefore, we expect MDQpC to respond more sensitive to larger differences of partial

correlations.

Mean difference of edges (MDE)

For the MDE the local FDR must be calculated for every edge first to decide whether an
edge is present or absent. The MDE counts the differences of existing and non-existing
edges and divides this number by the number of possibly existing edges to take the size

of the network into account, i.e.

E
Ty (pl,p2> = Z (p1i) — L(p2i)]|

where

1 , IFDR(ps) < 0.2

I(pei) =
0 , IFDR(ps) > 0.2

denotes the indicator function for significant edges. This measure is straight forward
but it is heavily dependent of the proposed threshold of 0.2. Obviously, a large value

indicates large differences between the groups.

X? statistic based on edges (xE)
After determining which edges are present or absent in the two networks denote the

numbers as follows in a contingency table:

network 1
number of edges present absent | >
network present €11 €10 €.
2 absent €o1 €00 €o.

Z ‘ €.1 €.0 E

From this table we are able to calculate the x? statistic with Yates’ continuity correction
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which is defined as yE, i.e.

7 (71,7 = e w0 = ol - 3
€1.- €1 €y €

and use it as a measure of indepence for the networks of two groups. For the applica-
tion of a y?-test requires the assumption of a discrete probability of observed binomial
frequencies can be approximated by the continuous x? distribution which introduces
some bias (Yates, 1934). This error should be corrected by the modified statistic as
implemented as default in R (R Core Team, 2013) which has advantages especially in
case of small expected cell frequencies. A small value of YE argues for independence and
thus, for differences between the groups. Hence, we set T5 := —Tx to unify the interpre-
tation of the measures. However, the yE statistic only measures the deviance between
observed and expected number of edges. Hence, it does not detect changes from positive
to negative partial correlations, or vice versa, as long as the edge is present according to
the local FDR.

Mean absolute distance of ranks (MDAR)

To receive a more robust measure, we order the absolute partial correlations indepen-
dently for both groups and assign ranks to them. The MDAR is closely related to the
MDApC, only the partial correlations are replaced by the corresponding ranks, i.e,

E
Ty (P1,02) = 5 3 Irk(ou) = rk(pa)].
1=1

where rk denotes ranks of the observations.

Mean quadratic distance of ranks (MDQR)
We define the MDQR, analogue to the MDAR using quadratic distances instead of ab-
solute deviations:
R 1
17 <p1, p 2) =

= (rk (pu) —rk (,021-))2-

E
=1

%

We might expect an advantage in recognizing larger differences compared to the MDAR.
The interpretation of both statistics, the MDAR and MDQR, remains the same. High
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values of them indicate large differences between the networks.

Mean absolute distance of ranks of present edges (MDARE)
The MDARE is highly related to the MDAR. For the MDARE we restrict to edges that
are present in one or both networks, i.e.

T (51, B2> = Z rk (p1i) — rk (p2i)l

1E81g

1
| sig]

where sig denotes the set of significant, i.e. present edges in at least one graph. The

idea is to eliminate irrelevant information that might cause noise.

Mean quadratic distance of ranks of present edges (MDQRE)
For the MDQRE we take the ranks calculated for MDARE and average the quadratic

differences through all edges from the set significant edges

Ty (31, ;2> = | slz'g\ Z (rk (pui) —rk (p2i)>27

1€51g
where sig denotes the set of significant, i.e. present edges in at least one graph as before.
Pearson correlation of partial correlations corresponding to present edges (CORpCE)

The CORpCE is defined as the ordinary Pearson correlation of the partial correlations

restricted to the set of edges that are significant in at least one graph, i.e.

~ Zz si (Pli - ﬁl) - (pai — ;52)
Tho <P1792> = £ 5 >
VS iesig (016 = 71 Ty (02— 72)

In contrast to most measures introduced above a high value of CORpCE argues for a
strong similarity of the network under both conditions. Again, to unify the interpreta-

tion of the statistics, we set Tjp := —Tm-

Spearman correlation of partial correlations corresponding to present edges (RCORpCE)

For a more robust measure we use the Spearman correlation coefficient on the significant
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(i.e. present in at least one graph) edges and exclude all non-significant edges as before

to avoid noise caused by non-differential edges. Thus, we can write RCORpCE as
D iesig (Tk(ﬂli) - Tk(ﬂl)) : (Tk(/)zi) - Tk(fh))
N N2
\/Ziesig (Tk(pll) - Tk(p1)> ' ZiESig (rk{p?l) - Tk(pg))

Tll <p1, pz) =

Like for yYE and CORpCE define T}, := —Tn to ensure a consistent interpretation of all
statistics.

All measures presented above (cf. Lohr et al., 2010) are based on partial correlations
since Graphical Gaussian models outperform relevance networks, and hence, partial cor-
relations have advantages compared to ordinary correlations because they able to rec-
ognize indirect interactions (Schifer and Strimmer, 2005a). Nevertheless we will have a

closer look on three measures based on ordinary correlations.

Mazimum absolute distance of ordinary correlations (MaxDAC)
On the lines of the MaxDApC the maximum of all absolute deviations between the two
groups is considered for MaxDAC but here the differences of the ordinary population

correlationd are calculated, i.e.

T12 <7”'17 7”2> = max |’l“1i — 79l .
ie{l,...,E}

Mean absolute distance of ordinary correlations (MDAC)
Also for the MDApC we define a population correlation based counterpart, named
MDAC, that is defined by

E
N 1
Tz | 71,72 2551’7“11’—7’21'-
1=
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Mean quadratic distance of ordinary correlations (MDQC)
Finally, analogously to the MDQpC we define

E
-~ 1
Ty <7’1, 7’2) = EZ (ri — T2i)2

=1

as MDQC as a distance measure for the comparison of two networks.

4.1.6 Permutation tests for the quantification of differential networks

After the calculation of the above mentioned measures a criterion is required to assess
whether the value of a specific statistic argues for differences between the two consid-
ered networks. An obvious strategy is to test the hypothesis of differential networks
and compute p-values. Since none of the statistics follows an established distribution we

need to simulate it via permutation test technique (cf. Lohr et al., 2010).

Let X= (Xi,...,X,) be a random vector and let 51, e ,in denote independent and

identically distributed samples of this random vector X. Further, we assume the Graph-
1 1
ical Gaussian Model of group ¢ =1 (GGM;) to be estimated by a sample z,..., z  of

ni
X that is independent of that of the second group (GGM,) estimated from z,..., x

n2

1 2

2
of X , where ny+ny =n. Here, X and X may have different distributions. With per-
mutation tests we intend to test the hypothesis Hy : "GGM; and GGM, are identical"
against H; : "GGM; and GGM; are not identical".

The permutation test procedure proceeds as follows: First, we estimate the networks

1 1 N 2
GGM; from z,...,z, and GGM; from z,,...,z, , respectively, and compute the

na?

statistic of interest T}, y € {1,...,14} to quantify the difference between the networks
1

under the given conditions. For h = 1,..., H we pool the samples of both groups z,

yoroy Ty Ty, T, into a single sample and use a random permuation () to re-arrange

the elements of the pooled sample () (51, e ,En> Afterwards the re-arranged sample

—([n] —([n]

is subdivided in two subsamples of the same sizes as the original samples =, ...,z
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—¢ =G . . .
and xn[f]ﬂ, cee :L’n[h]. From these subsamples the statistic of interest 7}, 5 is computed.

After recording the H values from the permutations of the considered statistic compute
the fraction ¢, of permutation statistics 7}, that are greater or equal to the original

statistic T,:

H
1
— E T
qy - H + 1 — Iy(Ty,h Z Ty)7

where I}(T, , > T,) = 1if T, > T,, and zero otherwise. Since for all our statistics high
values indicate differences between the networks of the two groups, we can interpret the

fraction g, as one-sided permutation test p-value.
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4.2 Detection of differential genetic networks

One crucial point for differential network analysis is the selection of genes for which
differences in the interaction structure can be assumed between two groups of individu-
als. In the following we present two different hypothesis generating concepts to detect

differential genetic networks.

4.2.1 Predefined networks from literature

The first strategy is the examination of predefined gene groups that arises from biologi-
cal knowledge. Large databases and bioinformatic initiatives like Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), or the Reactome database can be
screened for differences in genetic networks.

The Reactome database is free, open-source, curated and peer reviewed, available on
http://www.reactome.org/. 1t aims to provide "intuitive bioinformatics tools for the vi-
sualization, interpretation and analysis of pathway knowledge to support basic research,
genome analysis, modeling, systems biology and education" (Milacic et al., 2012, and
Croft et al., 2008). The user is able to download pathways of the following categories
for Homo sapiens: Apoptosis, Binding and Uptake of Ligands by Scavenger Recep-
tors, Cell Cycle, Cell-Cell communication, Cellular responses to stress, Circadian Clock,
Developmental Biology, Disease, DNA Repair, DNA Replication, Extracellular matrix
organization, Gene Expression, Hemostasis, Immune System, Meiosis, Membrane Traf-
ficking, Metabolism, Metabolism of proteins, Muscle contraction, Neuronal System, Re-
production, Signal Transduction, SUMOylation, and Transmembrane transport of small
molecules. Further sub-categories in hierarchical order can be selected and downloaded
in the required formats. Pathways are also provided for other organisms.

KEGG is a free database that provides tools for "understanding high-level functions
and utilities of the biological system, such as the cell, the organism and the ecosystem,
from genomic and molecular-level information(KEGG, hitp://www.kegq.jp/kegg/ ). Tt
represents biological systems, and combines genomic and chemical information with
systems information. KEGG consists of sixteen main databases, at which the KEGG
Pathway database is the most relevant for us. It contains pathway maps in 7 main cate-
gories, namely "Metabolism", "Genetic Information Processing", "Environmental Infor-

mation Processing", "Cellular Processes”, "Organismal Systems", "Human Diseases",
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and "Drug Development", for which hundreds of pathways for different organisms are
available for download or online visualization.

The aim of the GO project is to unify the representation of genes and gene products
across different organisms and databases (Ashburner et al., 2000). It is an international
bioinformatic initiative to maintain and develop its controlled vocabulary and to anno-
tate gene and gene product attributes and to provide tools for easy access to all aspects
of the data provided by the project, available on http://www.geneontology.org/. GO
consists of the onlogies "biological process", "molecular function", and "cellular compo-
nent". The three ontologies contain genes and can be described by a directed acyclic
graph, such that all downstream nodes are a subset of the upstream node above it. In
this way the gene groups become more specific in descending hierarchical order.
Furthermore, some disease-specific databases, like the "Genes-to-Systems Breast Cancer
Database" (G2SBC) can be found on the internet. The G2SBC database provides a
collection of data about genes, transcripts and proteins which have been reported in
literature to be altered in breast cancer cells and includes mathematical models on can-
cerogenesis, tumour growth and tumour response to treatments (Mosca et al., 2010). It
provides breast cancer genes, common molecular alterations in breast cancer, common
KEGG pathways and enriched GO terms if a pathway or GO group is assumed to be
breast cancer related. However, one needs to have some prior knowledge which gene
group might by interesting. On cellular systems level it is also possible to assess lists of
genes that are related to phenotypes, e.g. "grade 1(2) vs. 3". Another interesting aspect
of this database is the section "Mathematical models related to cancerogenesis, tumour
growth and response to treatments", but this section is quite obsolete, since all models
were published between 1995 and 2007.

Instead of genome-wide screening for gene groups of pathways that differ between two
conditions or phenotypes, a literature search for gene groups previously identified as
phenotype-related made sense. e.g. in squamous lung cancer Wang (2012) found the
GO groups "GO:0005576" (Extracellular region), "GO:0050828" (Regulation of lig-
uid surface tension), and other GO terms to be significantly metastasis-related. The
term "MHC protein complex" (GO:0042611) was shown to be cancer related in dif-
ferent tumor tissues. Gene signatures known to be associated with some phenotype

can also be a starting point, e.g. Liu et al. (2007) found a 186-gene-signature that
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predicts the invasiveness of breast tumors, Invshina et al. (2006) present a 264-gene-
signature for the prediction of the histological grade, and van‘t Veer et al. (2002) devel-
oped a 70-gene-signature, known as "MammaPrint" genes commercialised by Agendia
(http://www.agendia.com/pages/mammaprint/21.php) to predict prognosis (Tian et al.,
2010).

We take the MammaPrint genes as basis for further investigations of differences in inter-
action networks between breast cancer patients of the Mainz cohort (cf. Section 2.2.1).
86 probe sets that correspond to 52 genes are present on the Affymetrix HG-U133A
array, i.e. 18 genes are not represented by any probe set. Since the histological grade
is highly correlated with prognosis, we split the patients according to tumor grade. 151
patients with grade I or II are grouped to the first class and 49 patients with grade III
to a second class.

In van‘t Veer et al. (2002) it was shown that the MammaPrint genes are pognostic,
however, it cannot be supposed that these genes build a genetic network with changing
interactions. Therefore, we performed a gene set enrichment analysis by testing the
independence of the two events 1. gene i is in the list of (interesting) MammaPrint
genes and 2. gene i is a member of GO term with Fisher‘s exact test (e.g. Lehmann
and Romano, 2005) which is implemented in the R package topGO (Alexa et al., 2006).
The p-value depicts the probability of observing at least the same amount of enrichment
when interesting genes are randomly selected out of all genes. Hence, a small p-value
gives strong evidence for an over-representation of MammaPrint genes in a specified GO
term. Applying this test to all GO terms of all three ontologies that contain 10 to 100
probe sets, we yield 58 GO groups with a raw p-value < 0.01, i.e. MammaPrint genes
are over-represented in 40 GO terms of the ontology biological process, in 11 terms of
the molecular function ontology, and in 7 GO terms of the ontology cellular component.

To the 58 GO terms enriched with MammaPrint genes we apply permutation tests using

significant tests‘ 0 2 3
2

1 45 6 78
GO terms 123 7 14 72111

Table 13: Number of significant tests (referred to a = 0.05) for 58 enriched GO terms
for MammaPrint genes.

the statistics introduced in Section 4.1.5. Table 13 gives an overview of the frequencies
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of significant permutation tests for the considered GO terms. 1000 permutations were
conducted. The range goes from 0 to 8 significant tests per GO group. For 23 GO terms
no test is significant on an a-level of 5%. Applying the permutation tests to the original
MammaPrint genes significance can be observed for the tests using MDAR, MDAC, and
MDQC. An overview of the most noticable GO groups with description of the term,

number of probe sets and the associated ontology can be found in Table 14.

GO term description probe sets ontology sign. tests
G0O:0032332 positive regulation of chondrocyte differentiation 22 BP 8
G0O:0070628 proteasome binding 12 MF 7
G0:0031663 lipopolysaccharide-mediated signaling pathway 59 BP 6
G0:0031532 actin cytoskeleton reorganization 70 BP 5
G0:0008608 attachment of spindle microtubules to kinetochore 25 BP 5

Table 14: Overview of most noticeable of the enriched GO terms for MammaPrint.

test sig. GO terms

MaxDApC
MDApC
MDQpC
MDE

xE

MDAR
MDQR
MDARE
MDQRE
CORpCE
RCORpCE
MaxDAC
MDAC
MDQC

= O O W WO 00Ut WO oo O

—_ =
D O

Table 15: Number of significant GO groups (referred to a = 0.05) of 58 enriched GO
terms for MammaPrint genes for all considered tests.

In Table 5 in the appendix the results of the 14 tests for all 58 GO terms are shown.
All p-values are unadjusted and therefore considered as descriptive measures. The tests
using MDAC and MDQC, MDApC and MDQpC, MDAR and MDQR, MDARE and
MDQRE, and CORpCE and RCORpCE as test statistics agree in significance on an
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a-level of 5% for most GO terms, but this is due to their similar design. For 16 GO
groups the tests using MDAC and MDQC can reject the null-hypotheses of no differences
between the networks of patients with tumor grade I or IT and grade III, which makes
MDAC and MDQC the tests with most significant findings by far (c¢f. Table 15). In
contrast, with the test using MaxDApC we yield no noticeable GO group. Of course, the
properties of the proposed tests must be analysed, i.e. if the tests hold a given a-level,

which is done in Section 4.3.

4.2.2 DINGS - Gene selection for differential networks

In this section we present a novel approach for the detection of differential networks
between two groups of patients. The idea is to search iteratively for features that maxi-
mize the difference of the resulting network under two conditions or between two groups.
That is we perform a kind of forward selection adapted for differential networks, similar
to model selection for regression models by AIC (Akaike, 1974) or BIC (Schwarz, 1978).
Penalized regression, like ridge regression (Hoerl and Kennard, 1970) or Lasso regression
(Tibshirani, 1996) have been applied for inferring Graphical Gaussian Models by Mein-
shausen and Biithlmann (2005) that could also be implicitly used for model selection.
We need to go one step further, because our aim is to detect differential networks. For
that purpose we introduce a heuristic Differential Network Gene Selection (DiINGS)
algorithm. The general DiNGS proceeding with a default setting that is subsequently
applied to the Mainz breast cancer dataset is shown in Figure 11. Next each step is

descripted in detail.
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Input: Gene expresssion dataset, criterion to split the patients in two groups
Output: Differential probe set network
Algorithm:

Step 1. Preselection of probe sets
Reduce dataset by selecting e.g. 100 probe sets with highest variance

Step 2. Definition of a starting probe set or starting probe set-pair
Fork=1,... R:

e Sample a fraction of the reduced number of preselected probe sets and
calculate partial correlations for each group;

o determine the minimal partial correlation per edge for each group and
compute the distance of partial correlations per edge;

e define probe sets with mazrimum distance of partial correlations as start

pair

Step 3. Addition of probe sets
Find probe set with largest distance of partial correlations between the two
groups of patients out of the remaining probe sets and add this probe set to

the previously selected probe sets

Step 4. Assessment of difference between the selected probe set networks
Calculate the partial correlations of the current probe set selection for both

groups of patients and build the mean squared difference

Step 5. Criterion to stop the algorithm
If the mean squared difference is below a threshold e.g. v, = 0.1 stop and reject

the candidate probe set, else go to Step 3.

Figure 11: DINGS algorithm with standard settings as subsequently used on Mainz
breast cancer dataset.

1. Selecting a differential network out of 20 000 or even 50 000 probe sets is challenging
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and the computation of (partial) correlation matrices will be computationally expensive
or even impossible. Hence, a preselection of probe sets is required. This can be done
in many ways. One straightforward idea is to take probe sets with the highest variance
across all samples. Thus, it is guaranteed to avoid genes or rather probe sets that are
not expressed at all. To ensure selecting probe sets whose expression differs between
both groups on the basis of variance, we propose to choose the probe sets with smallest

values of
Var; (probe set,) + Vars (probe set;)

b t.) =
V(probe set;) Var (probe set,)

Y

where Vary, (probe set;), k = 1,2 denotes the variance of probe set ¢ in group k. An-
other concept would be to cluster the probe sets e.g. by k-means or PAM (Kaufman and
Rousseeuw, 2005) with (1 — correlation) as distance matrix and take the cluster with
the highest average correlation as preselected group. Of couse, the number of clusters
must be selected carefully. The best way might be to define a preselected set due to
biological prior knowledge, e.g. be a larger sized GO term or KEGG pathway, where
differences in a well-defined path or subset are expected. Furthermore, the effects of
different preselection methods are described and discussed in the bachelor thesis from
Cyris (2011).

2. After a subset of probe sets is selected we need to define one probe set or a pair or
probe sets to start with, i.e. for building the network around it. Again, the probe set
with the highest variance could be taken for that purpose, or analogously to the prese-
lection the probe set with smallest within variance in the groups compared to the overall
variance V (probe set,) to ensure differences between the two groups. Certainly, the def-
inition of a starting gene or rather probe set by biological prior knowledge is possible. In
contrast to the three approaches mentioned above, the following two criteria will lead to
a starting pair instead of a single probe set. We propose to start with the pair with the
highest correlation or, trying to take the difference of the groups into account, the pair
with the maximal difference of minimal partial correlations. For assessment of minimal
partial correlations, we condition the correlation on a subset of the preselected probe
sets, e.g. R = 100 times (cf. Step 2 in DINGS algorithm in Figure 11). The minimal
partial correlation per edge out of 100 repeats is recorded, because we assume that this

describes the actual correlation after removing the effect of all other influences at best.
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3. Addition of probe sets: For the actual forward selection another criterion is required.
Probe set ¢ could be added to the previously selected group if it has the highest correla-
tion or partial correlation conditioned on the previously selected probe sets either across
all samples or in a reference group, e.g. healthy people. Again, the measure V (probe set;)
can be used to extend the gene set. Another option is to select the (s; + 1)-th probe set
for the network by maximizing the sum of distances of partial correlations conditioned

on all s; previously selected probe sets

E
maxz ’pu - P2z’| )
Si+1

i=1

where £ = % denotes the number of possible edges of the advanced network.
This criterion guarantees to add the node that maximizes the overall difference. The
maximization of the distance between partial correlations of the candidate node with an
already included node could also be considered, thus difference of previously affiliated

probe sets may decrease through the influence of the recent node.

4. To assess the difference between the selected probe set network the MaxDApC, the
MDApC, but also one of the other statistics for the quantification of difference proposed
in Section 4.1.5 can be deployed. Another option is to consider as before the differences

of edges concerning only the recently affiliated probe set.

5. Finally, a criterion to stop the algorithm on the basis of a measure to assess the
difference (chosen before in 4.) is required. We might stop the algorithm and take
the current set of probe sets for further investigations if none of the remaining probe
sets lead to a difference of (partial) correlations above a threshold v,, which must be
specified. One could also stop if the used statistic, determined in step 4, drops below
a cut point v; or the previously determined maximal number of probe sets is achieved.
A more time-expensive method would be to permute the data and compare the orig-

inal findings with the random results in terms of average of maximal partial correlations.

Of course, not all combinations of the mentioned approaches are suitable for the detec-

tion of differential genetic networks and other combinations may be suitable for different
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aims. E.g. for detecting networks where partial correlations differ preferably between
all edges we need to select measures that consider the average distance of partial cor-
relations. If we are interested in finding a network that is maximal different in e.g. one
path, but the interaction structure retained in both groups should also be considered,
we should use an approach based on a maximal difference of partial correlations but
add further nodes by smallest (partial) correlation. Examplified we show the results for
one suitable combination and analyze the stability of findings (cf. the bachelor thesis of
Windgassen, 2011).

As preselected group we take the 100 probe sets with highest variance in the breast can-
cer cohort from Mainz and split the patients in a group with metastasis within 5 years
after surgery and a second group without metastasis which are followed-up for at least
5 years. The groups contain 28 and 136 patients, respectively. Although the number
of 100 features is pretty small and it might not be necessary here, we sample R = 500
times 20 probe sets of the 100 and the minimal partial correlation is recorded per edge.
Afterwards, the absolute differences per edge are calculated and the corresponding probe
sets of the maximum distance are taken as start pair. Subsequently, the starting probe
sets are deleted from the list of preselected features. The partial correlations for each
of the remaining probe sets with the selected features are calculated separately for both
groups of patients and we build the absolute differences of partial correlations between
the groups. After adding the probe set that corresponds to the maximum distance across
all partial correlations to the selected set of features, the mean squared difference of par-
tial correlations between the groups is computed. This step is repeated until the mean
squared difference of partial correlations drops below a predefined threshold of v; < 0.1.
Finding the probe set pair to start with is the only random process in this variant of
the algorithm. To analyze the stability of this selection we draw stratified bootstrap
samples. In general, bootstrapping is a statistical method to assess the precision of an
estimate (Hastie et al., 2001). Here, we sample n times with replacement of n sam-
ples B times, where B is 200 in this thesis. Unstratified sampling might cause datasets
containing only patients of one group. Hence, we sample n; and ny samples according
to the sizes of the original groups for each bootstrap sample. Calculating the maximal
distance of minimal partial correlations as described above, we record the frequencies of
beeing part of the final set for each probe set. The most frequently selected probe sets
(in at least 40% of the iterations) are listed in Table 16.
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probe set frequency symbol gene name

212094 _at 0.7 PEG10 paternally expressed 10

212092 _at 0.65 PEG10 paternally expressed 10

204351 _at 0.475 S100P S100 calcium binding protein P

205509 _at 0.46 CPB1 carboxypeptidase B1 (tissue)

202018 s _at 0.45 LTF lactotransferrin

214087 s _at 0.445 MYBPC1 myosin binding protein C, slow type

207430 _s_at 0.435 MSMB microseminoprotein, beta-

203535 _at 0.43 S100A9 5100 calcium binding protein A9

209301 _at 0.415 CA2 carbonic anhydrase II

206022 _at 0.405 NDP Norrie disease (pseudoglioma)

206457 _s_at  0.395 DIO1 deiodinase, iodothyronine, type I

209278 s_at 0.385 TFPI2 tissue factor pathway inhibitor 2

205242 _at 0.38 CXCL13 chemokine (C-X-C motif) ligand 13

218332 _at 0.38 BEX1 brain expressed, X-linked 1

218002 s _at 0.37 CXCL14 chemokine (C-X-C motif) ligand 14

209612 s _at 0.36 ADHI1B alcohol dehydrogenase 1B (class I), beta polypeptide

203290 _at 0.355 HLA-DQA1 major histocompatibility complex, class IT, DQ alpha 1

37892 at 0.355 COL11A1 collagen, type XI, alpha 1

205357 s _at 0.35 AGTR1 angiotensin IT receptor, type 1

214079 _at 0.345 DHRS2 dehydrogenase/reductase (SDR family) member 2

213492 at 0.34 COL2A1 collagen, type II, alpha 1

222379 _at 0.34 KCNE4 potassium voltage-gated channel, Isk-related family, member 4

203355 _s_at 0.33 PSD3 pleckstrin and Sec7 domain containing 3

205513 _at 0.33 TCN1 transcobalamin I (vitamin B12 binding protein, R binder family)

219768 _at 0.33 VTCN1 V-set domain containing T cell activation inhibitor 1

204475 _at 0.325 MMP1 matrix metallopeptidase 1 (interstitial collagenase)

205916 _at 0.325 S100A7 S100 calcium binding protein A7

205239 _at 0.31 AREG amphiregulin

213664 at 0.305 SLC1A1 solute carrier family 1 (neuronal/epithelial high affinity
glutamate transporter, system Xag), member 1

213831 _at 0.305 HLA-DQA1 major histocompatibility complex, class IT, DQ alpha 1

Table 16: Most frequently selected probe sets for final set obtained by stratified boot-
strapping for the starting pair.

We see, two probe sets, namely "212094 at" and '"212092 at" are most frequenctly
selected by far. It is also the pair that is chosen as starting pair in 56% of all bootstrap
samples. That is conspicuous, because both probe sets represent the same gene "pater-
nally expressed 10" (PEG10) which encodes the retrotransposon-derived protein. The
PEG10 gene includes two overlapping reading frames of the same transcript encoding
distinct isoforms (Lux et al., 2005) and it is known to be overexpressed e.g. in hepatocel-
lular carcinomas (Tsuji et al., 2011) and gallbladder adenocarcinoma (Liu et al., 2011).
The change of partial correlation between metastatic and non-metastatic patients might

indicate a change of association between different isoforms resulting from alternatively
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spliced transcript variants of PEG10.

To summaries it, our selection approach based on the maximal difference of partial cor-
relations adding further nodes by minimal partial correlation has two advantages: First,
it is applicable also for larger preselected gene groups and second, through randomness
different potentially interesting pairs may be found. The algorithm should be conducted

several times.
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Figure 12: Results of the stratified bootstrap analysis for selection of differential genetic
networks in the Mainz breast cancer cohort. Boxplots of the mean squared
differences of partial correlations for each number of included probe sets are
drawn. The red line indicates the boundary of 0.1 to stop at (reproduced
from Windgassen, 2011).

In Figure 12 boxplots of the mean squared distance for all bootstrap samples ordered by
the number of selected nodes are shown. The red line indicates the stop criterion. We see,
mean and variance decrease with growing number of selected features. Most times the

selected set contains between 19 to 38 features until it stops. It is conspicuous that the
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algorithm stopped with merely the starting pair. Here, an improper pair of probe sets is
selected to start with. But once another probe set is added to the starting pair the mean
squared difference of partial correlations inceases above 0.1 for all bootstrap samples.
Although the number of features varies from 19 to 38, the core probe sets remain the
same. Thus, the variant of the DINGS algoritm is just partial stable, it produces an

appropriate number of features to apply further differential network analyses to.
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4.3 A simulation study for the detection of differential neworks

To analyze the properties of the permutation tests with test statistics proposed in 4.1.5
we conduct an extensive simulation study. Therefore, we describe the design of simulated
data and the settings first. Afterwards, we check whether the tests hold the a-level.

Finally the power properties are explored.

4.3.1 Design of data

For the construction of data we take the well-studied RAF signalling pathway, also
known as RAF-MEK-ERK pathway, (Sachs et al., 2005; Dougherty et al., 2005) that is
often used as a gold standard network (e.g. Werhli et al., 2006). This signalling cascade
describes the interaction of 11 phosphorylated proteins and phospholipids in human im-
mune system cells. The central RAF protein is known to be involved in the regulation
of cellular proliferation in immune cells through cell division cycle, apoptosis, cell differ-
entiation, and cell migration. Dysfunctions in the regulation of the RAF pathway lead
to uncontrolled growth and may cause proliferation in many cancers, e.g. melanomas
and Hodgkin disease (cf. Zheng et al., 2003). Since several compounds are known that
are able to inhibit various steps of the RAF signalling pathway, it is obvious to use this
point of contacts as potential drug targets (e.g. Orton et al., 2005; Hilger et al., 2002;
McCubrey et al., 2007). The ability to inhibit single compounds of the signalling cascade
made it possible to infer the network structure via interventional data obtained using
for example kinase-specific inhibitors (Sachs et al., 2005; Pearl et al., 2000).

The simplified network structure of the RAF signalling pathway is illustrated in Figure
13. The graph of this pathway consists of 11 nodes that are connected by 20 directed
vertices. Albeit the proposed methods base on undirected network it is eligible and
probably mandatory to construct directed data because our intention is to apply the

proposed tests to real genetic networks and pathways that are necessarily directed.

Based on its network structure we are going to generate synthetic data to control the
dependencies among the variables. To consider all dependencies correctly we need to
assign a topological order. Therefor, we first introduce two definitions for directed

graphs.
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Figure 13: Model of the RAF signalling pathway.

For a directed graph we say node 0 is a parent of v if there is an edge from § to v (,7)
(cf. notation introduced in section 4.1.1) and (4,7) # (v,0), 6,y € V, or the other way
round, 7 is said to be a child of 0. A topological order is an arrangement of nodes such
that every node is ranked after all its parents (e.g. Lauritzen, 1996).

It is obvious that PIP3 is the only node in the graph that has no parents. Hence, PIP3
has to be top in a topological order. PLCG, PIP2, and AKT are the children of PIP3.
The next node in a topological order has to be PLCG, because AKT has other two more
parent nodes that are not yet ranked, and PIP2 is also a child of PLCG. If we continue,
following this precept we might yield the topological order: PIP3—PLCG—-PIP2—PKC—
PKA—-JNK—-P38—RAF-MEK—-ERK—AKT. This order is ambiguous, another possible
order is PIP3—PLCG —PIP2 - PKC—-PKA — P38 — JNK - RAF —MEK —ERK — AKT,
since JNK and P38 have the same parents.

According to the topological order we sample data from a linear Gaussian distribution
by

X; ~N (Zwipifpi,a> i=1,...,11

Pi

where the random variable X; denotes the expression of node 7 with realizations ;,»7 N ()
denotes a normal distribution, p; are the parent nodes of node ¢, w;,, is the strength of
interaction between node 7 and its parents nodes and z,, are the standardized values as

realisations of the random variable Xpi denoting the expression of the parent node p;
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with B

RN N

Lp, —Lyp,
sd(xp,)

We standardize the values to avoid increasing variance along the topological order. o is

Lp, =

a noise term.

Sampling data from this model serveral parameters can be varied. As default, the in-
teraction strength or rather coefficients w;,, are independently sampled from an uniform
distribution over the interval [0.5; 2] and provided with a randomly sampled sign follow-
ing Werhli et al. (2006). We vary the noise in the data by setting the variance from
small values ¢ = 0.01 to large values of 16. Since we intend to analyze tests for the
difference of two networks we need to simulate networks for two groups and establish
one or more differences between them. The sample sizes are considered as from small
samples sizes with 20 observations per group to large balanced and unbalanced sample
sizes with 200/200 and 300/100 observations per group, respectively, which are quite
realistic sample sizes in real data. As differences the knockout of the central node PKC
only or of the three nodes PIP2, PKC, and PKA, is considered and reported in this
thesis. Other knockouts have been analyzed, but no major differences were found in
principal. As knockout we mean the expression to disappear and therefor assume the
corresponding underlying random variable or rather random variables to be normally
distributed with mean zero which means no influence of other variables. Thus, all edges

that pointed towards the knockout node will vanish.

Parameter settings for simulation of data

variance of noise term 0.01; 0.1; 0.5; 1; 2; 4; 8; 16

sample sizes per group 100/100; 150/50; 180/20; 50/50; 20/20; 200/200; 300/100
knockout of node PKC; (PIP2, PKC, PKA)

number of additional nodes | 0; 5; 10; 20; 50

Table 17: Overview of settings for simulation of data based of the graph of the RAF
signalling pathway.

In real data situations it is challanging to extract exactly these nodes belonging to the
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network of interest as seen in Section 4.2. Hence, we generate a number of additional
noise nodes whose expression assumed to be normally distributed with mean zero to the

data. A complete overview of all parameter settings is given in Table 17.

All combinations of parameter settings are considered and for each combination 100
datasets are generated to analyze the properties of the permutation tests for the quan-
tification of differences in two undirected networks. The results are described in the

following section.

4.3.2 Properties of tests for the quantification of differential networks

Analyzing the a-level

A crucial point to know is whether a test holds the given significance level. Therefore,
we simulate data without systematic differences, i.e. without any knockouts, between
the two groups and apply the permutation tests proposed in Section 4.1.5 and 4.1.6. All
combinations of settings listed in Table 17 in Section 4.3.1 except for the knockout of
nodes are conducted. Considering all 100 datasets for every setting the proportion of re-
jected null-hypothesis for every significance level a; € [0; 1] is determined. The decision
of a test can be considered to be a random variable W with two feature characteris-
tics. Let Wy,..., Wa be sampling variables of W that are independent and identically
distributed (i.i.d.) with

1, null-hypothesis is rejected
W, =
0 , null-hypothesis is not rejected,
with ( = 1,...,A. Hence, W can be assumed to be Bernoulli distributed with success
probability 7, i.e. 7 is the probability of rejecting the null-hypothosis (if Hy is true). It
is known that the sum of A Bernoulli distibuted variables is binomial distibuted with

parameters A and T, 2?21 We ~ Bin (A, 7). Therefore, we can test the hypothesis
Hy:m <oy against Hi 7>«

using a Binomal test (e.g. Genschel and Becker, 2005). In the below-mentioned figures
the upper boundary of the 95% confidence interval first given by Clopper and Pearson
(1934) is plotted. By estimating and testing the proportion of rejected hypothesis we
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test whether a permutation test in a specified scenario rejects too often under the null-

hypothesis, i.e. it does not hold the given a-level.

Examplary, in Figure 14 the results of the scenarios with 20 samples per group and a
high variance of 16 without any systematic differences between the groups are shown.
The same plots for all other scenarios can be found in Figures 25 to 79 in the appendix.
For every significance level oy € [0; 1] on the x-axis, the corresponding proportion of re-
jected null-hypothesis, i.e. the estimated type I error, is drawn on the y-axis. Each plot
corresponds to one of the permutation test statistics introduced in 4.1.5. The different
colors indicate scenarios with different numbers of additional nodes, where light colors
correspond to small numbers and dark colors to larger numbers of additional nodes.
The red dashed line denotes the upper boundary of the 95% confidence interval for

described above.

For the permutation tests using the MaxDApC, MDApC, MDQpC, MDAR, MDQR,
MaxDAC, MDAC, and MDQC as test statistics the proportion of rejected hypothesis
under the null-hypothesis is less or equal to the upper boundary of the confidence inter-
val for 7 in all scenarios. i.e. the mentioned tests do not reject the null-hypothesis too
often, except for some random exceedings around significance levels around 0.5 mainly

in permutation tests based on partial correlations. Noticeable are the runs of the curves
of the MDE, yYE, MDARE, and MDQRE as well as CORpCE and RCORpCE.

96



4 Differential gene expression networks
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Figure 14: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples per group and noise 16.
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Adding 50 nodes as described in Section 4.3.1 the proportion of rejected null-hypothesis
is 0 from «a;, between 0 and 0.5 for the permutation tests using MDE, yE, MDARE, and
MDQRE. At an a-level close to 0.5 the curve sharply increases to 1, i.e. all hypotheses
are rejected above this level. This means that all p-values are approximately 0.5. This
is an artefact of the permutation tests with test statistics that use the local FDR and a
fixed threshold to distinguish between significant and non-significant edges. Considering
a local FDR of 0.2, no edges are present in the networks. With decreasing number of
additional nodes, the rise of the curve is less abrupt because in some iterations we find
present edges in one or both networks. Thus, the permutation tests with test statistics
MDE, yYE, MDARE, and MDQRE are improper, at least for small sample sizes and large

number of nodes in the network.

Also the permutation tests using CORpCE and RCORpCE seem inappropriate for
testing the difference of two networks with small samples sizes and a large number
of vertices. As we see in Figure 14, the permutation tests reject the null-hypothesis
much too often or, in case of 50 additional nodes, always, and therefore, they do not
hold the significance level. The same results as for the CORpCE and RCORpCE per-
mutation tests with 20 observations can be found for the scenario simulating 180 and 20
samples per group with a variance of 16 for the permutation test using the yE statistic
(cf. Figure 48 in the appendix). Yet, in this scenario the yE permutation test does not

hold the significance level for less or no additional nodes for smaller a‘s.

All permutation tests using statistics not mentioned above hold the significance level
for every a, € [0; 1]. Especially the MDAC and MDQC permutation tests that depend
on ordinary correlations instead of partial correlations do not exhaust the acceptable
proportion of rejected null-hypotheses when the noise level and the number of nodes
in the network decreases. This means, the permutation tests become more conservative

with smaller noise level and a smaller number of nodes independent of the sample sizes.

General power properties

In this section we analyze the power properties of the proposed tests. We simulate 100
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datasets for each setting described in Section 4.3.1 with knockout of node PKC or nodes
PIP2, PKC, and PKA. Since the network is different by construction, we are under the
alternative hypothesis. Hence, the proposed tests should reject the null-hypothesis at
best 100 times. Such a test would have a power of 1 or 100%, but this seems unrealistic
under all conditions of sample size and noise. To assess an estimate for the power of
the proposed tests we count the fraction of rejected hypotheses of all tested hypothe-
ses for each scenario. For rejecting a null-hypothesis a threshold of an a-level of 5%
is determined. For the scenario where 100 samples per group are assumed and node
PKC lost its parents the results can be found in Figure 15. The results of simulations
assuming low variance of the noise term are drawn in light colors (yellow) and with in-
creasing variance the power curves are marked in darker colors (blue). Since we merely
simulated a discrete number of 0, 5, 10, 20, and 50 nodes, the filled dots represent the ac-

tual obtained power estimates. The curves are just rough interpolations for visualisation.

In general, the power decreases with growing number of additional nodes in the net-
works and higher variance of the noise term, while the power generally increases with
the sample size (cf. Figure 15 and Figures 80 to 85 in the appendix). However there are

some exceptions which are described in the following paragraphs.
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Figure 15: Proportion of rejected hypothesis for simulated setting of 100 samples per
group and knockout of node PKC.
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variance of noise term 0.01 variance of noise term 16

number of additional nodes number of additional nodes
test statistic 0 5 10 20 50 0 ) 10 20 50
MaxDApC 0.76 0.33 0.16 0.07 0.16 || 0.33 0.17 0.14 0.11 0.24
MDApC 0.76 0.81 0.71 0.66 0.68 || 0.20 0.17 0.17 0.17 0.11
MDQpC 0.77 080 0.65 0.57 0.70 | 0.27 0.23 0.21 0.20 0.13
MDE 0.57 0.58 0.59 0.50 0.51 || 0.06 0.10 0.11 0.06 0.11
xE 037 068 057 041 0.51] 0.11 0.06 0.07 0.11 0.02
MDAR 0.79 0.66 0.49 0.27 0.03 | 0.14 0.08 0.04 0.04 0.07
MDQR 0.77 057 037 0.18 0.03 | 0.18 0.09 0.07 0.06 0.10
MDARE 0.52 071 0.60 0.50 0.52 | 0.10 0.13 0.11 0.05 0.14
MDQRE 0.54 0.67 0.60 0.46 0.52 || 0.12 0.16 0.14 0.04 0.15
CORpCE 0.71 0.80 0.68 0.73 0.67 || 0.27 0.22 0.17 0.07 0.23
RCORpCE 057 0.73 0.60 0.61 0.59 || 0.07 0.08 0.11 0.09 0.05
MaxDAC 0.86 0.86 0.87 083 0.74 | 0.58 0.54 0.47 0.45 0.34
MDAC 0.84 0.89 0.84 0.82 059 043 0.33 0.23 0.19 0.07
MDQC 085 0.92 0.88 0.88 0.77 | 0.52 040 037 0.31 0.14

Table 18: Proportion of rejected null-hypotheses of all considered tests if 100 samples
per group and a noise term of 0.01 on the left side and a noise of 16 on the
right side are assumed and a difference between the networks was created by
eliminating the influence of the parents on node PKC. The rows corresponds
to the different tests, the columns indicate the number of nodes added to the
RAF-network structure as noise factor.

We see, assuming the parameters as specified above for Figure 15, that most permu-
tation tests reach a power of approximately 70 — 80% when no additional nodes and a
small variance of the noise term are simulated. For small variances, the tests with MDE,
YE, MDARE, MDQRE, and RCORpCE as test statistics have less power considering no
additional nodes, but reach their maximal power when 5 or 10 nodes are added to the 11
nodes of the RAF-network. For larger variances of the noise term this effect cannot be
observed. Table 18 shows, the estimated power for 100 samples per group and knockout
of node PKC for the smallest and the highest considered variances of the noise term,

0.01 and 16, respectively.

The tests using MaxDAC, MDAC, and MDQC based on ordinary correlations have
most power in both variance settings. But with growing number of additional nodes the
MDAC loses more power than MaxDAC and MDQC. MDAR and MDQR . perform quite

well without additional nodes and low variance, but otherwise the power becomes very
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small. The power of the test using CORpCE is the highest one of all considered tests
that base on edges, i.e. where the local FDR is considered to decide whether an edge is
present or absent.

In Figure 83 in the Appendix where the setting with only 20 samples per group is
shown, we see that the power of the latter mentioned test increases dramatically with
50 additional nodes and higher variances. This is not a desirable property and arises
from the fact that no edges are significant on a local FDR of 0.2 in both groups. The
permutation test depending on MaxDApC rejectes about 75% of the null-hypotheses in
the simplest setting with 100 samples per group, i.e. with variance of the noise term of
0.01 and no additional noise nodes. But the power decreases severely with increasing
number of nodes in the network. MDApC and MDAQpC do not lose that much power
with increasing number of additional nodes. But the power of the tests using their ordi-
nary correlation based counterparts, namely MDAC and MDQC, is considerable higher,

especially in settings with higher variances of the noise term.

In Figures 86 to 92 in the appendix the results of all settings where nodes PIP2, PKC,
and PKA are modelled as normally distributed noise without influence of the corre-
sponding parents are shown. Here, the differences are assumed to be larger than in the
settings where only one node is knocked out, hence, we expect the tests to reject the
null-hypotheses more often. Indeed, the power is generally higher.

Particularly, assuming 100 samples per group (cf. Figure 86 in the appendix), small vari-
ances of the noise term combined without any additional nodes the MaxDApC, MDApC,
MDQpC, MaxDAC, MDAC, and MDQC tests have power of 100%. The MaxDAC tests
even rejects all null-hypotheses up to a moderate noise level independently of the nodes
added to the RAF-network structure. If no additional nodes are considered the tests
using MaxDAC, MDAC, and MDQC have power above 90% for all variances of the noise
term, while MaxDApC, MDApC, and MDQpC lose power with increasing noise. For
MaxDAC, the power does not decrease below 60% in any setting where 100 samples
per group and a knockout of nodes PIP2, PKC, and PKA are assumed. But without
any additional nodes and high variance of the noise term the test using MDQC recog-
nizes the difference between the networks a little more often. Moreover, the power is
almost independent of the number of additional nodes for the tests using MaxDAC as

test statistic if the amount of noise is not too high.

102



4 Differential gene expression networks

Decreasing power with unbalanced sample sizes

If we compare the results of the setting with 150 samples in the first and 50 samples
in the second group where node PKC is knocked out (Figure 80 in the appedix) with
the one where nodes PIP2, PKC, and PKA are modelled as normally distributed noise
without influence of the corresponding parents (cf. Figure 87 in the appendix) the test
using MaxDApC reached considerably more power than the MDApC and MDQpC tests
in particular for larger numbers of additional nodes.

For both knockout settings the MDAC and MDQC tests have more power than their
counterparts based on partial correlations, namely MDApC and MDQpC. The MaxDAC
test has more power in almost all settings compared to the MaxDApC, except for the
scenario when we simulate 50 additional nodes, high variance and knock out of nodes
PIP2, PKC, and PKA. Here, the MaxDAC test has approximately 20% more power than
the MaxDApC test.

The power curves of the settings with 180 samples in the first and 20 samples in the
second group look pretty similar to the settings with 150 and 50 samples. In comparison
to the settings with knockout of only node PKC the curves are shifted a little bit higher.

Comparing the power of the tests using MDApC and MDQpC of settings where unequal
sample sizes are simulate with settings with smaller, but balanced group sizes, e.g. 150
and 50 samples with 50 samples in both groups, it becomes obvious that the tests
have more power with smaller sample sizes. Examplified, we have a closer look on the
permutation test using MDApC as test statistic on the setting with variance of the
noise term of 1, and node PKC loses its parents (Figure 16). We compare the results
of 300/100 samples to those of 100 samples per group. The power curves for 300/100
samples are contrasted with the ones for 100/100 in Figure 16. The 95% confidence

interval for the proportion of rejected hypotheses

) i (1—7) . 7 (1—7)
[7?—1.96\/ N . 7+ 1.964 / AT
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Figure 16: Comparison of power of the test using MDApC as test statistic between the
scenario with 300 in the first and 100 in the second group and 100 samples
in both groups (cf. caption Table 18).

is drawn for every setting in this figure, where A is the number of samples, here 100.
We see, the amout of power difference grows with increasing numbers of nodes added to
the original 11 nodes included in the RAF pathway. We have several speculations for
this phenomenon.

It might be up to the avarage that is used for the MDApC statistic, because the test
using MaxDApC is not affected. Another reason might be that partial correlations are
used and we cannot see the effect on tests using ordinary correlations. And it might
be due to the shrinkage of the covariance matrix that is used for the calculation of the

partial correlations, because the effect does merely occur if unbalanced samples sizes are
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considered.
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* no additional nodes
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shrinkage intensity of the group containing 300 samples

Figure 17: Comparison of shrinkage intensities in the scenario with 300 in the first and
100 samples in the second group without (blue) and 50 additional nodes (red),
where variance of the noise term is 1, and node PKC is knocked out.

To understand the effect we have a look on the shrinkage intensities of a scenario with
unequal sample sizes, first.

In Figure 17 the shrinkage intensities of the group containing 300 samples are drawn
on the x-axis, and the shrinkage intensities of the group containing 100 samples on the
y-axis. The blue colored dots correspond to the shrinkage intensities obtained from the
dataset without any additional nodes, while red dots stand for intensities of the scenario
where 50 nodes are added to the 11 nodes of the RAF network structure. We see, the
shrinkage intensities of the group containing 100 samples are always greater than the
one estimated from the data of 300 samples. With growing number of additional nodes
the shrinkage intensities increase and the dots scatter wider. This is not only an effect

of larger sample size in one group, it can also be observed with equal sample sizes (cf.
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Figure 93 in the appendix). These results can be easily explained by transforming the

formula for the estimation of the optimal shrinkage intensity:
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M* increases if the ratio of samples and nodes decreases, i.e. if we have less samples or
more nodes to rely on. The other reason for increase of the shrinkage intensity can be
found in the denominator. If edges are deleted the correlations or rather covariances
decrease and the ratio becomes greater.

In Figure 94 in the appendix the histograms of MaxDApC statistic for 300 and 100 sam-
ples and 100 samples per group without and with 50 additional nodes are drawn. No
general differences in the distributions between 300 and 100 and 100 samples per group
can be observed. The distribution of the maximal distances might be a bit shifted to
right for the comparison of 300 and 100 samples which agrees with the slightly greater
power of the test using the MaxDApC statistic. The reversed effect cannot be deter-
mined so easily for the mean distances that are equivalent to the MDApC statistic (cf.
Figure 95 in the appendix).

The reason becomes obvious when we consider the effect of different numbers of nodes
to condition on for estimating the partial correlations. The histograms of distances be-
tween partial correlations conditioned on the 11 original nodes of the RAF pathway and
conditioned on the original 11 plus 50 additional nodes for 300 samples and 100 samples,
where variance of the noise term is 1, can be seen in Figure 18. We take the previously
simulated datasets with 300 samples in the first group and 50 additional nodes and the
datasets with 100 samples in the first group without knockout (and 50 additional nodes)
and estimate two partial correlations for every edge in every dataset.

First, we calculate the partial correlation conditioned on all other 59 variables, second,
the additional nodes are removed and the partial correlation between the nodes of the
original RAF network are computed. The histograms of these distances in Figure 18
show that for 100 samples a lot of distances are close to 0, but we observe also larger
distances than for 300 samples. The many small distances can be explained by the
fact that most partial correlations are estimated smaller in general compared to those

estimated from 300 samples, because the covariances are shrinked more. Some partial
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correlations that are estimated pretty large when conditioned on only 9 variables, will be

more shrinked or rather the corresponding covariances, when we condition on 50 more

nodes.
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Figure 18: Histograms of distances between partial correlations conditioned on the 11
original nodes of the RAF pathway and conditioned on the original 11 plus
50 additional nodes for 300 samples (left) and 100 samples (right), where
variance of the noise term is 1.

This reinforces the advantage in power for unbalanced sample sizes on the MaxDApC
test. We see, the change of partial correlations is different for different numbers of
samples, which increases the average differences for unequal sample sizes, also for per-
mutated data. Hence, the tests based on averages of partial correlation distances loose

power with growing number of nodes.

Estimation of partial correlations without shrinkage of the covariance matrix

Since the shrinkage of the covariance matrix seems to cause problems in several situa-
tions we perform the tests using MaxDApC, MDApC, and MDQpC again, but without
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any shrinkage of the covariance matrix. Of course, now we need to restrict on scenarios
where more samples per group than nodes are simulated. That means for setting with
50 samples in one or both groups the maximum number of additional nodes can be 20,
if we simulate only 20 samples in at least one group we can just add 5 nodes to the
11 nodes of the RAF network structure. In addtion to the difference between partial
correlations calculated with and without shrinkage of the covariance matrix of the three
tests, we compare the results with the correlation based tests. The three tests based on
the maximum, the mean absolute, and mean squared difference of (partial) correlations
are selected, because they demontrated highest power under the alternative and hold
the a-level in every setting.

In Table 19 the power differences of the tests using the maximum, the mean absolute,
and mean squared difference between ordinary correlations and partial correlations with
shrinkage of the covariance matrix are shown on the left and on the right side the dis-
tances between partial correlations with and without shrinkage. Distances are reported
for all settings regarding numbers of additional nodes and variances of the noise term for
100 samples per group. The tables for the other considered sample sizes can be found
in Tables 31 to 36 in the appendix. We see, in Table 19 the test using the maximal dis-
tance has considerably more power if ordinary correlations are used compared to partial
correlations with shrinkage of the covariance matrix, especially with increasing numbers
of additional nodes. If we compare the power between partial correlations with and
without shrinkage, it is an advantage to shrink to covariances if no additional nodes or
50 additional nodes are considered with the maximal distance based test. For 5 to 20
additional nodes there are no considerable differences in the power.

Considering the mean absolute and mean squared difference the tests based on partial
correlation with shrinkage of the covariance matrix have more power in each setting re-
garding number of additional nodes and variance of the noise term compared to the tests
based on partial correlations without shrinkage. If many additional nodes are simulated
the test using mean absolute distance with partial correlation with shrinkage has more
power than the one using ordinary correlations, especially for moderate noise levels. But
in general, we could rank the tests according to power, where ordinary correlation is bet-
ter than partial correlation with shrinkage that in turn is better than partial correlation

without shrinkage of the covariance matrix to recognize differences in two networks.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage
variance number of additional nodes number of additional nodes
0 5 10 20 50 0 5 10 20 50
MaxDA 0.01 0.10 053 0.71 0.76 058 || 0.22 -0.14 -0.19 -0.28 -0.09
0.1 0.0 036 0.58 0.61 058 021 -0.08 -0.10 -0.26 -0.05
0.5 0.00 034 057 066 0631 029 0.03 -0.17 -0.10 0.09
1 0.06 043 048 0.67 0551 036 -0.04 -0.02 -0.02 0.15
2 0.13 048 0.62 066 058 | 0.32 -0.02 -0.10 -0.04 0.09
4 0.21 057 059 057 044 025 -0.12 0.04 -0.03 0.12
8 0.32 046 056 048 033 025 0.00 -0.03 0.04 0.21
16 0.25 037 033 034 0.10 0.18 0.05 0.05 0.03 0.17
MDA 0.01 0.08 0.08 0.13 0.16 -0.09 || 045 071 0.60 0.58 0.64
0.1 0.07 -0.01 0.03 0.07 -0.111 048 057 0.72 0.51 0.51
0.5 0.00 0.00 0.05 -0.01 -0.151 056 0.58 0.67 0.62 0.51
1 0.00 0.08 0.17 0.12 -0.151 063 0.53 043 0.53 0.64
2 0.25 026 030 016 -0.18 | 034 036 0.30 0.36 0.50
4 0.30 037 030 0.06 -0.12 ] 025 0.16 0.24 0.38 0.36
8 040 041 0.18 0.12 -0.101 0.21 0.05 0.21 0.21 0.29
16 0.23 0.16 0.06 0.02 -0.04 || 0.09 0.13 0.14 0.12 0.06
MDQ 0.01 0.08 0.12 0.23 031 007 034 059 048 0.44 0.65
0.1 0.08 0.03 0.17 023 0.09 037 044 0.57 0.38 0.57
0.5 0.00 0.02 016 023 0.07 | 045 047 048 0.45 0.56
1 -0.03 0.11 0.23 031 0051 061 046 038 044 0.64
2 0.07 027 029 034 0.15] 048 0.28 0.33 0.30 0.51
4 0.20 039 048 023 0.08 | 037 0.19 021 0.34 0.36
8 0.34 043 0.23 028 0.06 | 029 0.08 024 0.26 0.29
16 0.25 0.17 0.16 0.11 0.01 | 0.16 0.20 0.20 0.17 0.07

Table 19: Comparison of power for the tests using MaxDA-, MDA-, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 100 samples

per group.

For the mean distances in the settings with unequal samples sizes and moderate noise
levels, using partial correlations without shrinkage results in slightly higher power com-

pared with shrinkage, but the tests using ordinary correlations is still more powerful.
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An exception can be observed in case of small sample sizes of 20 or 50 samples per
group. Here, the test using the mean absolute distance of partial correlations has more
power levels than the same test based on ordinary correlations particularly for low noise,
though the latter is still more powerful than the one that uses partial correlations with-

out shrinkage of the covariance matrix.

Optimal distance for a test statistic to recognize differences in interaction net-

works

The questions which distance should be used to maximize the power is still to be ad-
dressed. Thereto, we record the maximum power over the ordinary correlation, partial
correlation with and without shrinkage for every of the three statistics.

The differences between tests based on the three statistics optimized for the correlation
examplified for 100 and 200 samples per group can be found in Tables 37 and 38 in the
appendix. The results for the settings with other sample sizes look very similar and
hence are not shown. The mean squared differences have more or approximate power
(in the setting where only 20 samples per group are assumed) than the test based on
mean absolute differences, particulary if many additional nodes are simulated and a high
variance of the noise term is assumed. Notably, with many additional nodes and high
variance the maximum distance is even more powerful than the mean squared distance.
For moderate combinations of noise and numbers of additional nodes both statistics lead
to similar results. However, the mean squared distance has advantages in terms of power

for small sample sizes and low levels of variances of the noise terms.

4.4 Summary

Genes usually do not act alone but in groups or pathways. The identification and statis-
tical inference of these pathways under certain conditions from gene expression data has
become a recent research topic. Genes are treated as nodes and the interactions between
the genes are represented as edges. Many approaches for network inference have been

proposed. Relevance networks (Butte et al., 2000) derived from ordinary correlations of
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genes are computationally inexpensive but they have two major disadvantages. First,
the direction of the relationship can not be determined and second, we are not able to
distinguish between direct and indirect interactions which means two genes are influ-
enced by a third gene but have no direct relationship. Bayesian networks derived via
Markov Chain Monte Carlo (MCMC) Simulations have the advantage to estimate pos-
terior probabilities for directed egdes but they are computationally expensive. Another
approach to estimate gene expression networks are Gaphical Gaussian Models (GGMs).
Using partial correlations that can be easily obtained from the inverse of the covari-
ance matrix direct interactions can be recognized and like relevance networks GGMs are
computationally inexpensive. Only the direction of interactions remains unclear and we
should keep in mind that a partial correlation depends on the other variables considered
in the network.

If we assume nodes to be random variables and interactions between genes or nodes
to be conditional independence structures we are able to extend the concept of condi-
tional independence with the so called Markov properties (cf. Section 4.1.1) to a set
of nodes and edges, i.e. a graph (cf. Section 4.1.1). Under the assumption that the
genes or rather underlying random variables follow a multivariate normal distribution
we speak of Graphical Gaussian Models. Lauritzen (1996, prop. 5.2, p. 129) shows that
in this case two genes are independent conditional on another gene if and only if the
conresponding entry of the concentration matrix, which is the inverse of the covariance
matrix, is equal to zero. This is the link to the matrix of partial correlations respresent-
ing the correlation of two variables given the values of other variables or phrased in a
different way, the correlation of the residuals of the two variables fitted by a linear model
with the other variables as independent variables. However, the covariance matrix can‘t
be estimated if more observations than variables are considered which is often the case
for gene expression measurements. A loophole for that purpose is shrinkage or biased
estimation of the covariance matrix (Schifer and Strimmer, 2005a, cf. section 4.1.3).
Based on the theorem of Ledoit and Wolf (2003) the covariances are shrinked towards
zero. The GGM estimated from these covariances outperforms GGM selection using
Lasso regression (Meinshausen and Biithlmann, 2005) and other estimators for partial
correlations that employ the pseudoinverse instead of the matrix inverse or that uses
bootstrapping to obtain a variance reduced positive definite estimate of the covariance
matrix (Schéfer and Strimmer, 2005b). Following Efron (2005) a mixture distribution

for the observed partial correlations is assumed in order to compute the probability for
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an existing edge, also reffered as local false discovery rate (cf. Section 4.1.4).

In this thesis we focus on the identification of differences in gene expression networks
between two groups of patients or under two conditions. One can imagine that interac-
tions between genes change with progression of a tumor disease, e.g. paths might collapse
or activation of an oncogene might be increased through a certain signal transduction
cascade.

To assess the differences of two networks or of one network under two conditions, we
apply the mean absolute distance of partial correlations (Gill et al., 2010) and 13 novel
statistics (cf. Section 4.1.5). Most of them are described in Lohr et al. (2010). Some
statistics base on partial correlations, others on ordinary correlations. Some use the
local false discovery rate to decide whether an edge is present or absent and some just
depend on edges that are present in at least one network. To make it more robust ranks
are considered for some statistics. All measures are used as test statistics in permutation
tests (cf. Section 4.1.6), because they follow no known distribution.

But before we can test for differences in a network, a suitable set of genes that form a
biological network or pathway and of which we can assume to be different between the
two groups must be explored. Several databases on the internet, e.g. Gene Ontology, Re-
actome or KEGG provide predefined gene sets and pathway information from biological
knowledge. Since we have no knowledge about differential interactions in a particular
gene set, all gene sets need to be tested.

To avoid testing thousands of gene sets, we analyze gene signatures that are known to
be differential between two groups of patients, though they might not build an interac-
tion network. Therefore we perform a Gene Set Enrichment Analysis (GSEA, Mootha
et al., 2003) for genes of differential signatures in predefined Gene Ontology gene sets.
Enriched gene sets are afterwards tested for differences in interaction networks with our
proposed statistics. The MammaPrint Genes (Tian et al., 2010) that are associated with
prognosis are significantly enriched in 58 Gene Ontology gene sets. For 35 gene sets at
least one test for differences in interaction networks is significant (p < 0.05). However,
large discrepancies in the number of significantly different networks across the statistics
are observed. The test depending on the maximum distance of partial correlations is not
significant for any of the tested gene sets, while the two tests using the mean squared and
absolute distances of ordinary correlations recognize 16 differential interaction networks.
A novel approach for the detection of differential networks is introduced in Section 4.2.2.
The Gene Selection Algorithm for Differential Networks (DiNGS) for variable/gene se-
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lection consists of five steps. These are exchangeable and may be adapted according to
requirements. One basic version is described and analyzed for stability in the selection
of the gene pair to built the (differential) network around.

To analyze properties in terms of type I errors and power, we perform an extended
simulation study. Data has been generated based on the well-known structure of the
RAF pathway, which consists of eleven phosphorilated proteins connected by 20 directed
edges. Our tests base on partial or ordinary correlations that are only able to detect
undirected edges. We need to test them on directed data, because of the biological
rational that one protein or transcription factor influences another gene. Each node is
modeled as linear combination of its parent nodes and an additional noise. The noise,
the sample size of the groups that should be compared, the differences between the
groups as well as the number of additional nodes that would not belong to the network,
are varied. The additional nodes are generated to cause noise.

To check whether the proposed tests hold a given a-level, 1000 datasets without differ-
ences between the two assumed groups have been generated. Considering small sample
sizes in at least one group, the tests using the local FDR to decide if an edge is present
or absent, do not hold the given a-level.

Afterwards, networks with varying differences between two groups are generated to as-
sess an estimate for the power of the proposed tests. In general, we can summarize that
the power decreases with increasing number of additional "noise" nodes and higher vari-
ance of the noise term and increases with higher sample size. Furthermore, the power
decreases significantly for the tests based on mean squared or absolute distances of par-
tial correlations if the number of samples in one group is considerably higher than in
the other one, compared to groups with smaller but equal sample sizes. Three reasons
are suggested: First, the average might play a role, because the phenomenon is not ob-
served for the maximum distance. Second, considering partial correlation may cause the
effect, because tests using ordinary correlations are not affected, which lead to the third
point. The shrinkage of covariances might cause the effect due to different shrinkage
intensities caused by different sample sizes. Therefore, we applied the three tests with
highest power - maximum distance, average of squared and absolute distances, once
more without shrinkage of the covariance matrix. Of course, only situations with more
observations than edges could be considered. A comparison with their counterparts with
shrinked covariances and ordinary correlations lead to the following:

The tests using maximum or mean squared ordinary correlation have highest power in
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all settings if the numbers of samples per group are equal and approximately twice as
many samples per group than nodes are to be tested. The permutation test with the
mean absolute distance of partial correlations (derived from shrinked covariances) as
test statistic has slightly less but also high power. Assuming small variances and small
sample sizes in conjuction with a small number of nodes in the network, the test using
mean squared distance of partial correlations (with shrinkage of the covariance matrix)
has the highest power. The latter can also be used for higher variances. In all other
settings, it is advisable to use the permutation test with the maximum distance of ordi-
nary correlations as test statistic. With increasing variance and numbers of nodes, the
more superior is the maximum distance of ordinary correlations compared to the mean
squared and absolute ordinary correlation and all other measures used as test statistics

for the permutation tests.
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5 Discussion and conclusions

High-dimensional gene expression data offers the opportunity to gain deeper insights
into cancer biology which may help to develop novel therapies. The large amount of
data may indeed be useful for that purpose, however, appropriate analysis strategies are
required. Our goal was to improve statistical methods for extracting useful informa-
tion about differences in gene expression with a focus on two topics - the validation of
single genetic markers in multiple datasets and the detection of differential interaction

networks among two groups of patients under two conditions.

The identification of differentially expressed genes between normal and tumor tissue,
prognostic and predictive markers, from gene expression datasets is a major research
topic. Due to the high number of measured genes, the chance of observing false positive
findings is high. Usually a procedure to control the number or the proportion of false
positive results is applied, but even after correcting for multiple testing we will obtain
some false positive findings. Validation on other datasets will help to gain confidence in
significant markers. By a strict adjustment on every considered dataset many interesting
markers will not be recognized. Powerful standard approaches to combine estimators
from different studies like the common meta-analysis (Whitehead, 2002) do not take the
validation idea into account.

We proposed two strategies that trade adjustment for multiple testing in high-dimensional
data off against validation of findings. Following the first, we screen for significant fea-
tures in one dataset and afterwards a meta-analysis is performed for genes found to be
interesting in the first step on other datasets to validate findings. Another strategy was
called sequential validation strategy. Starting on one dataset, we test for significant

features and all non-significant genes after adjustment are excluded from the next steps.

115



5 Discussion and conclusions

The procedure is repeated on the second dataset, followed by the third dataset until all
datasets are tested and p-values were adjusted for an ever-decreasing number of features.
To assess the characteristics, advantages and disadvantages of the proposed methods, we
performed a simulation study and applied them to three real breast cancer ("Mainz",
"Rotterdam" and "TRANSBIG") and nine non-small cell lung cancer datasets. The
results were compared to those obtained by an ordinary meta-analysis.

Our two-step meta-analysis approach demonstrated its ability to identify additional
prognostic genes in non-small cell lung cancer that would not have been recognized if all
considered datasets were analyzed equally in an ordinary meta-analysis.

Applying the proposed sequential 3-step validation strategy, it seems sufficient for the
elimination of all false positive features to restrict on only three datasets. The over-
lap of significant features of the latter strategy with an ordinary meta-analysis is even
smaller when compared to the two-step meta-analysis. The outcome of our sequential
validation strategy depends on the datasets used, the number of validation steps and
the order of datasets. Testing on one and validating the results on two more datasets
seems sufficient to exclude all false positive findings — at least in a simulation study.
Although it seemed sufficient in the simulation studies, two validation steps might not
be the optimal number to extract most signifcant but not false positive features since it
depends on many factors.

Homogeneity of datasets is important since the highest number of significant genes after
two validation steps is observed analyzing non-small cell lung cancer if datasets contain-
ing only patients with the same histological subtype are considered. Hence, testing all
combinations and orders of datasets our approach offers a selection of datasets that are
most homogeneous and therefore suitable for validating our findings.

In addition, we discovered that the sequential validation method enables us to draw
conclusions about the quality in terms of noise and sample size of datasets in relation
to each other. The breast cancer TRANSBIG cohort was identified to have the least
quality since the sample size is larger than in the Mainz cohort, but less significant genes
than in the Mainz and Rotterdam dataset are found. The least quality might arise from
higher heterogeneity, since it is composed of samples from five European cancer centers.
Zehetmayer and Posch (2012) proposed to conduct a small pilot-study first and validate
the findings on a larger one. But our results argue against this strategy. We discovered

that starting with the dataset with highest quality will result in increasing power.
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The analysis of single genes allows only limited insights in biological processes that are
disturbed in cancer. Considering interactions between genes in sub-networks seems to
be more promising for that purpose.

We proposed the DINGS (Differential Networks Gene Selection) Algorithm to detect dif-
ferential interaction sub-networks. This algorithm can be used flexibly to build networks
that, afterwards, can be tested explicitly for differences in the interaction structure. Since
all of the five steps are exchangeble we might detect networks that are overall different
between two groups or, we could extract a network with maximal differences in a small
part, e.g. a path, in a graph. We are also free to build a larger network around the
assumed differences or to restrict on the basic differential network. This is an advanta-
geous feature, because genetic sub-networks cannot always be clearly distinguished from
other sub-networks.

To test the hypothesis of differences in an interaction structure of a sub-network obtained
by DiNGS or biological knowledge, we proposed a collection of measures and performed
extensive simulation studies. Results were only shown for knockout of nodes "PKC" and
"PIP2-PKC-PKA", while knockout of the other nodes led to similar findings.

We discovered that the permutation test with test statistic MADPC (mean absolute
distance of partial correlations) proposed by Gill et al. (2010) has always less power
than other statistics we proposed, e.g. maximum or mean squared distance of partial
or ordinary correlations. Although Graphical Gaussian Models (GGMs) that base on
partial correlations are known to have a better ability for network reconstruction than
relevance networks based on ordinary correlations (Schéfer and Strimmer, 2005a), our
tests using ordinary correlations have considerably more power.

The permutation tests using a local False Discovery Rate to decide whether an edge is
present or absent have major disadvantages in terms of power and holding the a-level.
A threshold of 0.2 as proposed by Efron (2005) might not be the best choice and could
be adapted in future studies.

Unbalanced sample sizes between the two groups caused issues in most proposed permu-
tation tests. Again, by using a test statistic with ordinary correlations instead of partial
correlations we avoid this issue. Therefore, we argue for using a test based on ordinary

correlation.

Although Schéfer and Strimmer (2005a) showed that GGMs using their shrinkage ap-
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proach outperforms GGMs selection using Lasso regression (Meinshausen and Biithlmann,
2005) and other estimators for partial correlation that employ the pseudoinverse instead
of matrix inverse or bootstrapping approaches, the concept of covariance shrinkage for
differential network recognition should be reassessed in future work.

An extension on larger networks is computationally feasible for all proposed measures,
but for these scenarios the properties of the tests will need to be investigated by ad-
ditional simulation studies. Especially, when we analyze larger sub-networks a closer
look into the structure will be necessary to explicitely find the differences. Therefore, an
adaption of the testing procedure that tests at first for differential modular structures,
then for differences in a sub-class of genes and finally for differential connectivity of
single genes, proposed by Gill et al. (2010), might be a good approach to gain further

insights into mechanisms responsible for cancer development or progression.
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Description

Primary tumour (T
T1 Tumour =3 cm in diameter surrounded by lung or visceral

pleura, without invasion more proximal than lobar bronchus.

Tla Tumour =2 cm in diameter
T1b Tumour >2 c¢m but =3 cm in diameter
T2 Tumour >3 cm but =7 cm in diameter or tumour with:

-Involvement of the main bronchus =2 cm distal to the carina
-Invasion of visceral pleura
-Associated atelectasis or obstructive pneumonitis that does not

involve the entire lung.

T2a, Tumour =5 c¢m in diameter
T2b Tumour >5 ¢cm but =7 cm in diameter
T3 Tumour >3 ¢cm but =7 cm in diameter or tumour with:

-Direct invasion of the chest wall, diaphragm, phrenic nerve
-Direct invasion of the mediastinal pleura or parietal pericardium
-Associated atelectasis or obstructive pneumonitis that involves
the entire lung.
-Tumour within the main bronchus < 2 cm to the carina, without
involvement of the carina.
-Satellite tumour nodule(s) in the same lobe.

T4 Tumour of any size with:
-Invasion of mediastinum
-Invasion of heart or great vessels
-Invasion of trachea, oesophagus, or recurrent laryngeal nerve
-Invasion of a vertebral body or carina
-Separate tumour nodules in a different ipsilateral lobe.

Regional lymph node (N)

NO No regional lymph node metastasis

N1 Involvement of ipsilateral hilar or peribronchial nodes

N2 Involvement of ipsilateral mediastinal or subcarinal nodes
N3 Involvement of contralateral mediastinal or hilar nodes, or

ipsilateral/contralateral scalene or supraclavicular nodes.

Distant metastasis (M)

MO No distant metastasis
M1 Distant metastasis present
Mila Separate tumour nodule(s) in a contralateral lobe or tumour with

pleural nodules or malignant pleural/pericardial effusion
Mi1b Distant metastasis

Table 20: Definition of TNM (7. edition, reproducted from Goldstraw et al., 2007).
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Ohg = 0.7,0mqg = 08,01 = 1.8

Holm FDR

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
hqg — mq — lq 58 /0 58 /0 22 /0 92 /5 92 /0 74 /0
hqg — lg — mq 58 /0 22 /0 22 /0 92 /5 73 /0 73 /0
mq — hqg — lq 45 /0 45 /0 20 /0 85 /4 85 /0 69 /0
mq — lqg — hgq 45 /0 20 /0 20 /0 85 /4 69 /0 69 /0
lg — hqg — mq 1/0 1/0 1/0 4/0 4/0 4/0
lg = mq — hq 1/0 1/0 1/0 4/0 4/0 4/0

DD Ot = W N =

Table 21: Median true positives/false positives in each step of the six adjustment se-
quences for simulated gene expression data.

Ohg = 0.8,0mg = 1.1,00 = 1.5

FDR/Holm/Holm Holm/FDR/FDR

sequence 1st step 2nd step 3rd step || 1st step 2nd step 3rd step
hq — mq — lq 85 /4 74/0 39/0 45 /0 45 /0 42 /0
hg—lg—mq| 85/4 40 /0 39/0 45 /0 42/0 42/0
mq — hq — lq 52 /2 52 /0 32/0 17 /0 17/ 0 16 / 0
mq — lqg = hq 52 /2 31/0 31/0 17 /0 16 / 0 16 /0
lg = hg — mq 15 /1 15/0 15 /0 4/0 4/0 4/0
lg = mq — hq 15 /1 15/0 15/0 4/0 4/0 4/0

DD Ut = W N

Table 22: Median true positives/false positives in each step of the six adjustment se-
quences for simulated gene expression data.
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sequence 1st step 2nd step 3rd step
Jacob —  GSE31547 — GSE31210 258 0 0
Jacob —  GSE31210 — GSE31547 258 120 18
GSE31547 — Jacob —  GSE31210 0 0
GSE31547 — GSE31210 — Jacob 0 0
GSE31210 — Jacob —  GSE31547 4355 241 21
GSE31210 — GSE31547 —  Jacob 4355 0 0

Table 23: Numbers of significant probe sets in each step for the six posiible validation se-
quences (using the Benjamini-Hochberg procedure for significance adjustment
to restrict the FDR to 5%) for the three lung cancer datasets that afford the
highest numbers of significant probe sets after three adjustment steps.

sequence 1st step 2nd step 3rd step
Jacob —  GSE3141 — GSE31547 258 19 5
Jacob — GSE3141 — GSE31210 258 19 11
Jacob — GSE31210 — GSE31547 258 120 18
Jacob — GSE31210 — GSE3141 258 120 13
GSE31210 — Jacob —  GSE31547 4355 241 21
GSE31210 — Jacob —  GSE3141 4355 241 12

Table 24: Numbers of significant probe sets in each step for the validation sequences (us-
ing the Benjamini-Hochberg procedure for significance adjustment to restrict
the FDR to 5%) that consider at least one significant probe set after three
adjustment steps on the lung cancer datasets containing the adenocarcinoma
patients.
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probe set symbol gene name

201037 _at PFKP phosphofructokinase, platelet

202616 _s_at MECP2  methyl CpG binding protein 2 (Rett syndrome)

204385 _at KYNU kynureninase

205839 s at BZRAP1 benzodiazapine receptor (peripheral) associated protein 1
207165 _at HMMR  hyaluronan-mediated motility receptor (RHAMM)
214710 _s_at CCNB1  cyclin Bl

218092 s at AGFG1  ArfGAP with FG repeats 1

Table 25:

Table 26:

Table 27:

Table 28:

Probe sets with gene symbol and gene name that are significant in the com-
bined meta-analysis for all patients when Uppsala is used as basic dataset as
well if dataset GSE31210 is used for preselection.

number of network 1
nodes present absent
network 2 present 15 0
absent 5 35

Theoretical contingency table for simulated networks without any additional
nodes. Value of the y? statistic with continuity correction is Tj (/Jl, pg) =
32.4115.

number of network 1
nodes present absent
network 2 present 15 0
absent 5 100

Theoretical contingency table for simulated networks with 5 additional nodes.
Value of the y? statistic with continuity correction is Tk (Pl, ,02) = 78.9943.

number of network 1
nodes present absent
network 2 present 15 0
absent 5 190

Theoretical contingency table for simulated networks with 10 additional nodes.
Value of the x? statistic with continuity correction is T} (Pl, ,02) = 142.3621.
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number of network 1
nodes present absent
network 2 present 15 0
absent 5 445

Table 29: Theoretical contingency table for simulated networks with 20 additional nodes.
Value of the x? statistic with continuity correction is Ty <pl, ,02> = 321.2684.

number of network 1
nodes present absent
network 2 present 15 0
absent 5 1810

Table 30: Theoretical contingency table for simulated networks with 50 additional nodes.
Value of the x? statistic with continuity correction is T} (Pl, ,02) = 1278.017.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variance number of additional nodes number of additional nodes
0 5 10 20 50 0 5 10 20 50
MaxDA 0.01 0.17 0.27 038 0.53 0.52 0.10 0.04 -0.01 -0.11 0.07
0.1 0.05 022 023 031 034/ 018 0.10 0.15 0.03 0.16
0.5 0.00 0.09 024 035 0521 0.21 011 0.07 0.01 0.08
1 0.02 0.06 026 046 0551 0.16 0.08 0.14 -0.09 0.04
2 -0.01 0.11 024 048 0.511( 029 0.30 0.16 0.06 0.09
4 006 012 039 048 057 037 028 0.19 0.04 0.11
8 0.15 025 032 043 026 | 024 030 0.17 0.17 0.40
16 0.17 0.25 030 027 023 035 0.25 0.31 0.22 0.32
MDA 0.01 0.10 0.12 0.10 0.15 0.14 || 0.47 054 0.61 0.65 0.64
0.1 0.06 0.06 0.03 0.04 0.06] 046 0.59 0.64 0.65 0.60
0.5 0.01 0.05 0.02 0.09 0.01] 049 0.58 0.66 0.59 0.68
1 0.02 010 0.11 0.15 0.02 1 048 0.45 0.56 0.60 0.53
2 018 0.21 0.17 0.31 -0.01 || 0.38 0.48 0.53 0.36 0.55
4 030 034 050 034 -0.10 ] 0.37 023 0.23 0.35 0.61
8 048 0.39 045 0.19 -0.12 || 0.10 0.24 0.19 0.28 0.37
16 043 037 026 0.08 -0.04 | 0.17 0.24 025 0.21 0.11
MDQ 0.01 0.14 0.15 0.15 027 0.17 | 0.27 0.29 0.47 0.50 0.70
0.1 0.05 0.07 0.04 013 0.121 027 042 0.55 0.57 0.60
0.5 0.02 0.02 0.01 0.13 0.10] 0.38 0.48 0.59 0.50 0.68
1 0.01 0.04 0.04 018 0.131 0.36 0.45 051 0.53 0.57
2 008 0.06 0.13 027 0151 035 0.54 0.55 041 0.55
4 006 015 037 032 0.13] 051 040 0.35 042 0.56
8 025 029 039 026 018 | 0.27 031 0.28 0.32 0.39
16 030 032 032 022 0.101( 029 0.39 030 0.24 0.14

Table 31: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 200 samples

per group.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variance number of additional nodes number of additional nodes
0 5 10 20 50 0 5 10 20 50
MaxDA 001 0.25 045 058 057 0341 0.06 -0.21 -0.27 -0.31 0.03
01 0.03 037 040 042 029 021 -0.12 -0.11 -0.23 -0.06
05 0.07 0.29 045 028 0.30 | 0.11 -0.11 -0.15 0.03 0.04
1 003 021 030 035 0.32] 0.08 -0.06 -0.08 -0.18 0.19
2 0.06 017 0.33 047 0261 0.06 0.00 -0.12 -0.11 0.21
4 0.05 014 036 039 024 | 0.14 0.09 -0.02 -0.04 0.16
8 0.14 028 033 029 0361 019 0.03 0.14 0.18 0.25
16 0.22 026 023 0.19 004 016 0.11 0.13 0.26 0.29
MDA 001 0.25 0.19 0.21 0.57 058 036 041 0.48 0.16 -0.05
01 0.04 0.02 0.14 059 055 | 043 049 0.54 0.08 0.01

05 0.08 019 038 071 063 032 044 0.21 -0.05 -0.10

1 023 030 052 067 0571 030 021 0.03 -0.07 -0.07

2 031 052 063 064 045 015 0.00 0.01 -0.10 -0.03

4 049 059 069 053 036 | 011 -0.02 -0.16 -0.01 -0.05

§ 051 056 058 044 023 0.08 0.06 0.04 -0.04 0.00

16 051 0.37 0.25 023 0.05] -0.02 0.00 0.00 -0.03 0.11

MDQ 001 0.25 0.21 022 058 079 022 024 024 0.02 -0.11
01 0.04 0.01 0.11 0.60 0.71 030 031 0.39 -0.10 -0.07

05 0.03 0.08 027 064 075 019 038 0.22 -0.10 -0.09

1 004 014 040 064 0751 032 022 0.06 -0.18 -0.07
2 013 022 048 072 065 | 018 0.08 0.05 -0.16 0.00
4 029 033 068 0.64 062 015 0.08 -0.16 0.01 -0.05
8 037 052 064 057 044 010 011 0.03 -0.01 0.01
16 040 0.43 033 036 0.15]| 0.10 0.04 0.03 0.03 0.07

Table 32: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 300 samples
in the first and 100 samples in the second group.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variance number of additional nodes number of additional nodes
0 5 10 20 0 5 10 20
MaxDA 0.01 024 060 0.71 0.52 || 047 0.13 -0.31 -0.13
0.1 0.17 0.57 0.76 0.57 || 0.50 0.15 -0.24 -0.08
0.5 026 0.55 0.68 0.63 || 0.44 0.19 -0.26 0.03
1 026 046 0.69 0.61 || 0.51 0.19 -0.04 0.00
2 028 053 0.63 0.56 || 0.44 0.17 0.08 0.02
4 0.25 0.57 0.53 0.52 || 0.45 0.04 0.05 0.06
8 0.49 0.33 040 0.42 || 0.10 0.19 0.06 0.03
16 0.27 0.27 0.16 0.14 || 0.14 0.17 0.09 0.15
MDA 0.01 0.17 0.08 0.24 0.62 || 0.61 0.69 0.45 0.01
0.1 0.04 0.04 0.26 0.59 || 0.69 0.73 0.44 0.00
0.5 0.15 0.33 0.47 0.53 ] 059 041 0.14 -0.07
1 033 0.59 0.55 0.58 || 0.44 0.08 0.08 -0.02
2 053 054 0.50 0.46 || 0.21 0.13 0.02 -0.04
4 057 047 042 0.35 || 0.12 0.06 0.02 0.03
8 041 0.29 0.24 0.31 || 0.12 0.13 0.01 0.03
16 0.26 0.28 0.17 0.06 || 0.11 0.01 0.00 0.07
MDQ 0.01 0.18 0.17 0.49 0.77 || 0.63 0.62 0.24 0.01
0.1 0.04 0.12 0.59 0.67 || 0.69 0.68 0.15 -0.03
0.5 0.08 0.29 0.54 0.69 || 0.65 047 0.08 -0.06
1 017 0.51 0.66 0.72 || 0.61 0.18 0.07 -0.04
2 0.37 055 0.61 0.64 || 0.37 0.15 0.04 -0.04
4 0.48 0.55 0.52 0.51 || 0.24 0.06 0.05 0.01
8 050 041 044 0.37 || 0.13 0.15 0.02 0.05
16 027 035 0.18 0.16 || 0.15 0.05 0.03 0.08

Table 33: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 150 samples
in the first and 50 samples in the second group.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variance number of additional nodes number of additional nodes
0 5 10 20 0 5 10 20
MaxDA 0.01 023 0.64 0.56 0.43 || 0.43 -0.04 -0.07 -0.04
0.1 0.12 0.59 0.57 0.53 || 0.56 0.04 -0.17 -0.07
0.5 0.16 0.61 0.67 0.53 || 0.57 -0.04 -0.13 0.02
1 021 0.54 068 0.55 || 0.40 0.06 -0.05 0.00
2 030 0.53 0.57 0.37 || 0.32 0.05 -0.05 0.06
4 036 053 041 0.33 || 0.27 0.00 -0.02 0.03
8 0.36 0.41 0.29 0.34 || 0.08 0.03 0.07 -0.01
16 025 0.12 0.09 0.09 || 0.04 0.05 0.02 0.01
MDA 0.01 0.08 -0.05 0.02 0.11 || 0.65 0.73 0.66 0.36
0.1 0.01 -0.03 0.00 0.07 || 0.68 0.70  0.52 0.40
0.5 -0.04 -0.04 0.06 0.04 || 0.71  0.58 0.48 0.35
1 -0.01 -0.01 0.12 -0.031 0.61 0.56 0.43 0.37
2 018 0.11 0.09 0.03 || 045 037 0.32 0.34
4 029 023 0.11 -0.031 0.28 0.14 0.20 0.28
8 0.17 0.11 0.02 -0.06 || 0.18 0.21 0.24 0.27
16 0.02 -0.01 0.01 -0.02 | 0.12 0.08 0.10 0.07
MDQ 0.01 0.10 0.27 0.33 0.36 || 0.66 0.48 0.43 0.22
0.1 0.02 0.14 0.36 0.30 || 0.70  0.57 0.24 0.30
0.5 -0.01 017 0.33 0.28 || 0.71 0.44 0.29 0.27
1 0.00 025 048 0.23 || 0.65 0.36 0.24 0.35
2 0.19 030 0.32 0.12 || 047 032 0.24 0.35
4 025 032 027 0.16 || 0.35 0.21 0.15 0.25
8§ 0.27 0.18 0.18 0.05 | 0.19 0.25 0.23 0.22
16  0.07 0.07 0.06 0.01 || 0.07 0.10 0.08 0.08

Table 34: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 50 samples

per group.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variance number of additional nodes number of additional nodes
0 5 0 5
MaxDA 0.01 0.51 0.60 || 0.04 -0.01
0.1 0.37 0.56 || 0.19 0.08
0.5 0.50 0.46 || 0.14 0.07
1 0.41 0.41 0.23 0.14
2 0.35 0.37 || 0.17 0.11
4 042 0.34 || 0.06 -0.01
8 0.37 0.21 || -0.04 0.06
16 0.17 0.17 || 0.05 0.01
MDA 0.01 0.50 0.60 || 0.15 0.11
0.1 0.51 0.64 || 0.09 0.04
0.5 0.64 0.55 || 0.05 0.03
1 0.60 0.53 || 0.07 0.01
2 043 0.43 || 0.06 0.03
4 0.34 0.38 || 0.02 -0.05
8 0.34 0.18 || -0.01 -0.01
16 0.10 0.05 || 0.07 0.03
MDQ 0.01 0.45 0.51 0.23 0.22
0.1 0.45 0.59 || 0.20 0.11
0.5 0.60 0.57 || 0.10 0.06
1 057 0.56 || 0.12 0.01
2 043 0.56 || 0.13 -0.02
4 0.37 0.39 || 0.07 -0.01
8 0.47 0.23 || 0.00 0.00
16 0.13 0.08 || 0.07 0.03

Table 35: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 180 samples
in the first and 20 samples in the second group.
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Cor — pCor with shrinkage pCor with — pCor without shrinkage

variancenumber of additional nodes number of additional nodes
0 5 0 5
MaxDA 0.01 0.20 0.27 0.12 0.01
0.1 0.31 0.29 0.09 0.02
0.5 0.19 0.19 0.25 0.00
1 0.20 0.12 0.10 0.05
2 0.22 0.22 0.05 -0.02
4 0.20 0.10 0.08 0.01
8 0.10 0.08 -0.01 0.04
16 0.04 0.02 -0.03 0.02
MDA 0.01 -0.24 -0.02 0.62 0.46
0.1 -0.36 -0.13 0.69 0.48
0.5 -0.24 -0.06 0.59 0.34
1 -0.09 -0.02 0.45 0.27
2 -0.01 0.03 0.29 0.18
4 0.04 -0.02 0.13 0.07
8 0.06 -0.03 0.01 0.08
16 0.01 0.02 -0.02 0.02
MDQ 0.01 -0.08 0.35 0.57 0.19
0.1 -0.19 0.29 0.65 0.16
0.5 -0.18 0.27 0.57 0.11
1 0.03 0.18 0.42 0.12
2 0.15 0.16 0.26 0.16
4 0.08 0.08 0.15 0.07
8 0.10 0.01 0.01 0.06
16 0.01 0.02 -0.05 0.03

Table 36: Comparison of power for the tests using MaxDA-, MDA, and MDQ- as test
statistics based on partial correlations (pCor) with and without shrinkage of
the covariance matrix and ordinary correlations (Cor) considering 20 samples

per group.
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variance number of additional nodes

0 5 10 20 50

max MDQ - max MDA

0.01 0.01 0.03 0.04 0.06 0.09
0.1 0.01 0.01 0.04 003 0.14
0.5 0.00 0.00 0.01 0.10 0.12
1 0.03 0.00 0.06 0.10 0.05
2 0.00 0.02 0.03 0.11 0.16
4 0.05 0.09 0.13 0.15 0.09
8 0.03 0.10 0.09 0.21 0.05
16 0.09 0.07 0.14 0.12 0.03

max MDA - max MaxDA
0.01 -0.02 0.03 -0.03 -0.01 -0.06
0.1 0.02 0.00 -0.01 -0.02 -0.12
0.5 0.01 0.00 -0.01 -0.11 -0.20
1 -0.02 -0.02 -0.06 -0.09 -0.13
2 -0.03 -0.01 -0.04 -0.16 -0.23
4 -0.07 -0.06 -0.09 -0.20 -0.19
8 -0.07 -0.10 -0.15 -0.24 -0.25
16 -0.15 -0.21 -0.24 -0.26 -0.23

max MaxDA - max MDQ
0.01 0.01 -0.06 -0.01 -0.05 -0.03
0.1 -0.03 -0.01 -0.03 -0.01 -0.02
0.5 -0.01  0.00 0.00 0.01 0.08
1 -0.01  0.02 0.00 -0.01 0.08
2 0.03 -0.01 0.01 0.05 0.07
4 0.02 -0.03 -0.04 0.05 0.10
8 0.04 0.00 0.06 0.03 0.20
16 0.06 0.14 0.10 0.14 0.20

Table 37: Comparison of maximal power using on partial correlations (pCor) with or
without shrinkage of the covariance matrix or ordinary correlations (Cor) of
the tests using MaxDA-, MDA, and MDQ- as test statistics considering 100
samples per group.
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variance number of additional nodes

0 5
max MDQ - max MDA

001 -0.06 0.08
01 -0.05 -0.01
05 -0.02 0.03
1 -0.01 0.04
2 0.13 0.10
4 0.08 0.06
8 0.04 -0.01
16 0.03 0.00
max MDA - max MaxDA

001 0.24 0.19
01 0.26 0.19
05 0.20 0.13
1 0.12 0.13
2 -0.02 0.00
4 -0.11 -0.02
8 -0.03 -0.02
16 -0.01 0.02
max MaxDA - max MDQ

001 -0.18 -0.27
01 -0.21 -0.18
05 -0.18 -0.16
1 -0.11 -0.17
-0.11 -0.10

4 0.03 -0.04
8 -0.01 0.03
16 -0.02 -0.02

Table 38: Comparison of maximal power using on partial correlations (pCor) with or
without shrinkage of the covariance matrix or ordinary correlations (Cor) of
the tests using MaxDA-, MDA-, and MDQ- as test statistics considering 20
samples per group.
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Table 39: Overview of the results of the permutation tests for the enriched GO groups in the ontologies biological pro-
cess (top), molecular function (middle), and cellular component (bottom), separated by midrules, regarding
MammaPrint genes. p-values below 0.05 are marked in grey.

GO term MaxDApC MDApPC MDQpC MDE XE MDAR MDQR MDARE MDQRE CORpCE RCORpCE MaxDAC MDAC MDQC
GO:0030949  0.936 0.045 0.071 0.978 0.966 0.050 0.057 0.692 0.661 0.547 0.273 0.210 0.022 0.024
GO:0044342  0.507 0.194 0.347 0.835 0.615 0.128 0.053 0.858 0.858 0.874 0.703 0.059 0.287 0.147
GO:0048630  0.098 0.845 0.857 0.036 0.810 0.797 0.671 1.000 1.000 0.392 0.977 0.312 0.672 0.632
GO:0001957  0.082 0.099 0.067 0.955 0.694 0.552 0.583 0.504 0.467 0.027 0.045 0.287 0.015 0.028
GO:0043569  0.288 0.918 0.902 0.815 = 0.031 0.588 0.657 0.888 0.873 0.020 0.072 0.696 0.710 0.682
GO:0014912  0.112 0.116 0.067 0.825 0.534 0.509 0.565 0.865 0.759 0.059 0.615 0.566 0.085 0.116
GO:0002063  0.541 0.266 0.303 0.367 0.381 0.178 0.158 0.383 0.336 0.315 0.474 0.408 0.060 0.101
GO:0032332  0.624 0.003 0.004 0.955 0.750  0.005 0.003 0.660 0.579 0.001 0.010 0.252 0.009 0.005
GO:0060056  0.446 0.698 0.814 0.036 0.006 0.228 0.379 0.704 0.710 0.968 0.908 0.161 0.522 0.560
GO:0040001  0.068 0.305 0.291 0.929 0.756  0.442 0.245 0.936 0.826 0.077 0.112 0.075 0.031 0.030
GO:0043568 0.112 0.508 0.775 0.873 0.724  0.032 0.013 0.854 0.840 0.359 0.665 0.244 0.351 0.262
GO:0071320 0.473 0.331 0.486 0.073 0.112 0.150 0.172 0.311 0.357 0.755 0.896 0.744 0.542 0.562
GO:0045668  0.715 0.244 0.162 0.049 0.022 0.245 0.137 0.034 0.027 0.132 0.090 0.528 0.308 0.279
G0:0031069  0.361 0.221 0.049 0.591  0.261  0.372 0.312 0.616 0.598 0.130 0.268 0.785 0.758 0.778
GO:0001958  0.571 0.528 0.628 0.544  0.586  0.404 0.423 0.739 0.702 0.947 0.841 0.377 0.343 0.345
GO:0032508  0.865 0.915 0.970 0.909 0.936 0.518 0.527 0.841 0.854 0.495 0.870 0.630 0.328 0.367
GO:0071407  0.352 0.070 0.099 0.768  0.802  0.477 0.510 0.625 0.673 0.186 0.613 0.238 0.218 0.221
GO:0017148  0.841 0.320 0.424 0.073  0.269 0.475 0.472 0.146 0.117 0.493 0.705 0.045 0.004 0.007
GO:0010508  0.162 0.649 0.331 0.984 0.799 0.948 0.946 0.956 0.956 0.564 0.481 0.278 0.230 0.186
GO:0038084  0.926 0.475 0.647 0.326 0.615 0.127 0.104 0.566 0.566 0.373 0.611 0.087 0.036 0.031
GO:0019852  0.486 0.579 0.717 0.306 0.619 0.410 0.312 0.200 0.213 0.597 0.746 0.032 0.450 0.099
GO:0070830 0.466 0.467 0.565 0.845 0.929 0.082 0.088 0.536 0.560 0.753 0.772 0.197 0.299 0.295
GO:0006940 0.708 0.579 0.658 0.636 0.693 0.464 0.351 0.696 0.656 0.671 0.674 0.864 0.368 0.431
GO:0031532  0.790 0.016 0.023 0.058 0.068 0.055 0.027 0.019 0.023 0.118 0.095 0.227 0.135 0.167
GO:0031032 0.314 0.051 0.056 0.941 0.876  0.718 0.565 0.866 0.891 0.096 0.373 0.325 0.340 0.369
GO:0030901  0.792 0.373 0.259 0.953 0.801 0.878 0.899 0.938 0.918 0.842 0.426 0.466 0.409 0.385
GO:0043552  0.512 0.132 0.185 0.780 0.689 0.088 0.110 0.546 0.508 0.088 0.140 0.516 0.082 0.081
GO:0002548  0.487 0.022 0.045 0.265 0.226  0.003 0.002 0.253 0.264 0.403 0.403 0.888 0.205 0.272
GO:0021670  0.839 0.657 0.766 0.070  0.163  0.042 0.052 0.068 0.070 0.634 0.503 0.546 0.129 0.112
GO:0051382  0.512 0.516 0.622 0.462  0.410 0.437 0.336 0.272 0.244 0.252 0.279 0.671 0.685 0.603
G0:0000281  0.101 0.111 0.148 0.724  0.212  0.055 0.030 0.676 0.621 0.139 0.168 0.420 0.146 0.196

GO:0031663  0.952 0.059 0.088 0.021  0.026 0.336 0.423 0.039 0.043 0.482 0.555 0.199 0.024 0.025

xipuaddyy




Gql1

Table 39: Overview of the results of the permutation tests for the enriched GO groups in the ontologies biological pro-
cess (top), molecular function (middle), and cellular component (bottom), separated by midrules, regarding
MammaPrint genes. p-values below 0.05 are marked in grey.

GO term MaxDApC  MDApC MDQpC MDE XE MDAR MDQR MDARE MDQRE CORpCE RCORpCE MaxDAC MDAC MDQC
GO:0007076  0.295 0.182 0.085 0.973 0.202 0.637 0.778 0.904 0.904 0.003 0.005 0.131 0.060 0.064
GO:0048853  0.116 0.071 0.070 0.656  0.210 0.096 0.097 0.914 0.914 0.186 0.616 0.105 0.016 0.013
GO:0008608  0.178 0.026 0.047 0.710 0.778 0.108 0.219 0.832 0.836 0.824 0.935 0.003 0.028 0.030
GO:0000186  0.328 0.010 0.005 0.103 0.174 0.077 0.061 0.192 0.153 0.464 0.777 0.394 0.010 0.010
GO:0014068  0.109 0.050 0.044 0.411 0.383 0.246 0.086 0.372 0.359 0.212 0.331 0.331 0.020 0.023
GO:0034080 0.726 0.354 0.697 0.408 0.405  0.004 0.009 0.145 0.142 0.205 0.098 0.894 0.492 0.531
GO:0021772  0.740 0.966 0.981 0.875 0.819 0.381 0.437 0.770 0.737 0.481 0.560 0.885 0.313 0.362
GO:0006024 0.869 0.115 0.065 0.617  0.557 0.381 0.404 0.557 0.391 0.195 0.222 0.319 0.030 0.022
GO:0005520 0.511 0.179 0.191 0.396  0.493 0.166 0.075 0.225 0.217 0.253 0.095 0.193 0.104 0.088
GO:0001968  0.085 0.016 0.031 0.207 0.101 = 0.018 0.012 0.220 0.164 0.584 0.158 0.362 0.258 0.285
GO:0003678  0.866 0.788 0.877 0.857 0.831  0.057 0.034 0.841 0.853 0.385 0.757 0.266 0.095 0.111
GO:0005355  0.185 0.726 0.777 0.295 0.654 0.362 0.309 0.113 0.156 0.679 0.792 0.063 0.755 0.607
GO:0005021  0.934 0.452 0.640 0.353 0.624 0.114 0.081 0.607 0.607 0.371 0.608 0.101 0.028 0.027
GO:0051059  0.289 0.183 0.253 0.960 0.508 0.071 0.291 0.998 0.998 0.463 0.901 0.390 0.331 0.305
GO:0070628  0.191 0.001 0.001 0.364 0.346  0.017 0.009 0.540 0.433 0.160 0.651 0.029 0.005 0.010
GO:0004029 0.473 0.318 0.205 1.000 0.006 0.326 0.210 1.000 1.000 0.995 0.995 0.257 0.235 0.213
GO:0030276  0.599 0.214 0.220 0.910 0.840 0.433 0.302 0.723 0.803 0.242 0.388 0.551 0.469 0.448
GO:0008242  0.780 0.806 0.647 0.400 0.776  0.886 0.704 0.311 0.241 0.027 0.003 0.541 0.461 0.334
GO:0001085  0.087 0.022 0.019 0.119 0.264 0.013 0.052 0.078 0.090 0.236 0.311 0.447 0.115 0.087
GO:0000145  0.843 0.907 0.917 0.783  0.499 0.972 0.954 0.478 0.463 0.607 0.140 0.872 0.814 0.736
GO:0016942  0.188 0.074 0.147 0.492  0.303 0.060 0.081 0.914 0.835 0.908 0.751 0.228 0.168 0.158
GO:0034451  0.985 0.935 0.979 0.992 0.885 0.394 0.439 0.953 0.942 0.731 0.055 0.997 0.852 0.912
GO:0046581  0.135 0.339 0.302 0.676  0.092 0.690 0.841 0.524 0.511 0.008 0.012 0.339 0.615 0.569
GO:0005923  0.402 0.122 0.141 0.155 0.545 0.219 0.226 0.166 0.237 0.621 0.874 0.710 0.325 0.322
GO:0005587  0.294 0.439 0.220 0.775 0.703  0.862 0.802 0.134 0.098 0.548 0.058 0.250 0.027 0.033

GO:0031011  0.131 0.184 0.202 0.977 0.876  0.684 0.678 0.617 0.528 0.171 0.095 0.387 0.031 0.038
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Additional figures
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Figure 19: Histogramms of the p-values of the Wald tests testing the hypothesis "Hj :
HR = 1" for every probe set for all nine non-small cell lung cancer datasets.
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Figure 20: Histogramms of the p-values of the Wald tests testing the hypothesis "Hj :
HR = 1" for every probe set in the histological subgroup of adenocarcinomas
for the non-small cell lung cancer datasets.
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CDCP1
Study n Hazard Ratio HR 95%—Cl
Uppsala 196 = 1.51 [1.21; 1.89]
Jacob 448 : 1.35 [1.14; 1.59]
GSE4573 130 e 1.22 [0.83; 1.81]
GSE31547 30 | —————— 7.42 [2.11; 26.11]
GSE3141 110 e 0.98 [0.77; 1.26]
GSE29013 55 o 1.60 [0.86; 2.98]
GSE31210 204 e 2.58 [1.61; 4.16]
GSE19188 82 - 1.43 [1.09; 1.89]
GSE14814 90 — 1.01 [0.64; 1.61]
Fixed effect model ¢ 1.35 [1.23; 1.49]
Random effects model > 1.41 [1.16; 1.71]

! ! ! ! p=0.0005

0.1 051 2 10

Figure 21: Forestplot of the meta-analysis for probe set "218451 at" that represents the
gene "CDCP1" including all nine non-small cell lung cancer datasets. The
p-value (bottom right) corresponds to the random effects model.
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best 3 step validation meta—analyses GSE21310
ordinary meta—analyses 21755

Figure 22: Visualisation of the significant features at the end of the best 3-step sequential
validation approach, the combined meta-analysis for all patients comparing
the proceeding when GSE31210 is used as basic dataset, and the common
meta-analyses assuming a random effects model.
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GAPDH
Study n Hazard Ratio HR 95%-~—Cl
Uppsala 196 —'— 1.63 [1.04; 2.55]
Jacob 448 - 1.78 [1.32; 2.40]
GSE4573 130 —— 1.32 [0.63; 2.75]
GSE31547 30 |————— 8.98 [2.04; 39.43]
GSE3141 110 e 2.10 [1.33; 3.34]
GSE29013 55 — 1.00 [0.27; 3.71]
GSE21310 204 |—— 3.88 [1.91; 7.88]
GSE19188 82 — 1.15 [0.53; 2.48]
GSE14814 920 —— 1.02 [0.58; 1.78]
Fixed effect model $ 1.73 [1.45; 2.08]
Random effects model <> 1.74 [1.30; 2.33]

! ! ! ! p=0.0002
01 051 2 10

Figure 23: Forestplot of the meta-analysis for probe set "212581 x at" that represents

the gene "GAPDH" including all nine non-small cell lung cancer datasets.
The p-value (bottom right) corresponds to the random effects model.
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GAPDH
Study n Hazard Ratio HR 95%-~—Cl
Uppsala 196 —'— 1.49 [1.00; 2.20]
Jacob 448 : 1.54 [1.21; 1.97]
GSE4573 130 —— 1.17 [0.65; 2.11]
GSE31547 30 | ——————9.70 [2.28;41.26]
GSE3141 110 s 2 1.57 [1.09; 2.25]
GSE29013 55 — 0.68 [0.08; 6.19]
GSE21310 204 —— 2.97 [1.65; 5.32]
GSE19188 82 — 0.85 [0.46; 1.56]
GSE14814 920 —#+ 1.05 [0.65; 1.69]
Fixed effect model é 1.49 [1.28; 1.73]
Random effects model <> 1.49 [1.15; 1.94]

! ! ! ! p=0.0027
01 051 2 10

Figure 24: Forestplot of the meta-analysis for probe set "M33197 M at" that rep-
resents the gene "GAPDH" including all nine non-small cell lung cancer
datasets. The p-value (bottom right) corresponds to the random effects
model.
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Figure 25: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 0.01.
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Figure 26: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 0.1.
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Figure 27: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 0.5.
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Figure 28: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 1.
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Figure 29: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 2.
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Figure 30: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 4.
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Figure 31: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 8.
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Figure 32: Proportion of misleadingly rejected hypothesis for simulated setting of 100
samples in each group and noise 16.
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Figure 33: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 0.01.
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Figure 34: Proportion of misleadingly rejected hypothesis for simulated setting of 150

and 50 samples per group and noise 0.1.
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Figure 35: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 0.5.
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Figure 36: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 1.
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Figure 37: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 2.
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Figure 38: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 4.
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Figure 39: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 8.
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Figure 40: Proportion of misleadingly rejected hypothesis for simulated setting of 150
and 50 samples per group and noise 16.
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Figure 41: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 0.01.
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Figure 42: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 0.1.
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Figure 43: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 0.5.
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Figure 44: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 1.
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Figure 45: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 2.
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Figure 46: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 4.
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Figure 47: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 4.
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Figure 48: Proportion of misleadingly rejected hypothesis for simulated setting of 180
and 20 samples per group and noise 16.
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Figure 49: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 0.01.
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Figure 50: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 0.1.
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Figure 51: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 0.5.
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Figure 52: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 1.
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Figure 53: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 2.
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Figure 54: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 4.
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Figure 55: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 8.
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Figure 56: Proportion of misleadingly rejected hypothesis for simulated setting of 50
samples in each group and noise 16.
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Figure 57: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 0.01.
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Figure 58: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 0.1.
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Figure 59: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 0.5.
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Figure 60: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 1.
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Figure 61: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 2.
198



0 additional nodes

5 additional nodes

10 additional nodes
—— 20 additional nodes
—— 50 additional nodes

MDE XE

Figure 62: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 4.
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Figure 63: Proportion of misleadingly rejected hypothesis for simulated setting of 20
samples in each group and noise 8.
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Figure 64: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 0.01.
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Figure 65: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 0.1.
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Figure 66: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 0.5.
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Figure 67: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 1.
204



0 additional nodes

5 additional nodes

10 additional nodes
—— 20 additional nodes
—— 50 additional nodes

Figure 68: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 2.
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Figure 69: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 4.
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Figure 70: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 8.
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Figure 71: Proportion of misleadingly rejected hypothesis for simulated setting of 200
samples in each group and noise 16.
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Figure 72: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 0.01.
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Figure 73: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 0.1.
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Figure 74: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 0.5.
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Figure 75: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 1.
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Figure 76: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 2.
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Figure 77: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 4.
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Figure 78: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 4.
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Figure 79: Proportion of misleadingly rejected hypothesis for simulated setting of 300
and 100 samples per group and noise 16.
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Figure 80: Proportion of rejected hypothesis for simulated setting of 150 and 50 samples
and knockout of node PKC.
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Figure 81: Proportion of rejected hypothesis for simulated setting of 180 and 20 samples
and knockout of node PKC.
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Figure 82: Proportion of rejected hypothesis for simulated setting of 50 samples per
group and knockout of node PKC.
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Figure 83: Proportion of rejected hypothesis for simulated setting of 20 samples per
group and knockout of node PKC.
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Figure 84: Proportion of rejected hypothesis for simulated setting of 200 samples per
group and knockout of node PKC.
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Figure 85: Proportion of rejected hypothesis for simulated setting of 300 and 100 samples
and knockout of node PKC.
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Figure 86: Proportion of rejected hypothesis for simulated setting of 100 samples per

group and knockout of nodes PIP2, PKC, and PKA.
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Figure 87: Proportion of rejected hypothesis for simulated setting of 150 and 50 samples
and knockout of nodes PIP2, PKC, and PKA.

224




variance 0.01
variance 0.1
variance 0.5
variance 1
—— variance 2
—— variance 4
—— variance 8
—— variance 16
MDQpC
1.0
0.8
06"
§o4-’>§
. .\.
024 NN,
\' §| _—
0.0 T T T T T T
0 10 20 30 40 50
number of additional nodes
MDAR
1.0
0.8
go.a E
80.4
0.24:= —_
SiE=
0.0 4 T T T T T T
0 10 20 30 40 50
number of additional nodes
MDQRE
1.0
0.8
go.e E
204,
0.2 4 § N é-
e
0.0 T T T T T T
0 10 20 30 40 50
number of additional nodes
MaxDAC
10
~ T .
084, T W,
~._. \
0.6 S~ .
E_o 44— T
. ~N
—
0.2 e
0.0 -
T T T T T T
0 10 20 30 40 50

number of additional nodes

MaxDApC MDApC
1.0 1.0
0.8 1 0.8
[ 0 6 = N : \ [ 0 6
2 iz TS ————:| %
20.4 —r -/' 20.4
0.2 021:\
\'E! e —
0.0 4 T T T T T T 0.0 T .I T T T T
0 10 20 30 40 50 0 10 20 30 40 50
number of additional nodes number of additional nodes
MDE XE
1.0 1.0 .
0.8 0.8 - :
g 0.6 go,a e
80.4 80.4
0.2- | 021 ::'
] o = '
0.0 .I—l‘.l !I T T l| 0.0 I|§.—ll -I T T T
0 10 20 30 40 50 0 10 20 30 40 50
number of additional nodes number of additional nodes
MDQR MDARE
1.0 1.0
0.8 0.8
g 0.6 go,e e
80.4 - 80.4 -
g _ . :
< : 021.0 %
'\;>:é:§! Sisi=—; :
0.0 4 T T T T T T 0.0 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
number of additional nodes number of additional nodes
CORpCE RCORpCE
1.0 1.0
0.8 0.8
$0.6. ' 50.6 1
20.4 B\ . 2044.
NN %n s .
024 T : 021" Sy =<
0.0 0.0 -
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
number of additional nodes number of additional nodes
MDAC MDQC
1.0 1.04.
084~ 08-. =i~
: . \' \: \ h ~. \-
- . . - N
gost N\ N goey N
80.4 - . .\.\_ 20.4 4 o .\
\. ~. . \
0.2 \'—-\. 0.2 -
0.0 1 0.0 -
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

number of additional nodes

number of additional nodes

Figure 88: Proportion of rejected hypothesis for simulated setting of 180 and 20 samples
and knockout of nodes PIP2, PKC, and PKA.
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Figure 89: Proportion of rejected hypothesis for simulated setting of 50 samples per

group and knockout of nodes PIP2, PKC, and PKA.
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Figure 90: Proportion of rejected hypothesis for simulated setting of 20 samples per
group and knockout of nodes PIP2, PKC, and PKA.
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Figure 91: Proportion of rejected hypothesis for simulated setting of 200 samples per
group and knockout of nodes PIP2, PKC, and PKA.
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Figure 92: Proportion of rejected hypothesis for simulated setting of 300 and 100 samples
and knockout of nodes PIP2, PKC, and PKA.
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Figure 93: Comparison of shrinkage intensities in the scenario with 100 samples per
group without (blue) and 50 additional nodes (red), where variance of the
noise term is 1, and node PKC is knocked out.
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Figure 94: Histogramms of the maximal distances of partial correlations in the scenario
with 300 samples in the first and 100 samples in the second group (top) and
100 samples in both groups (bottom) without (left) and 50 additional nodes
(right), where variance of the noise term is 1, and node PKC is knocked out.
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Figure 95: Histogramms of the mean distances of partial correlations in the scenario
with 300 samples in the first and 100 samples in the second group (top) and
100 samples in both groups (bottom) without (left) and 50 additional nodes
(right), where variance of the noise term is 1, and node PKC is knocked out.
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