Coresets and Streaming Algorithms
for the k-means Problem
and Related Clustering Objectives

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Technischen Universitat Dortmund
an der Fakultat fir Informatik

von

Melanie Schmidt

Dortmund
Dezember 2014

Tag der miindlichen Prifung: 17.12.2014
Dekan: Prof. Dr. Gernot Fink
Gutachter: Prof. Dr. Christian Sohler,

Prof. Dr. Johannes Blémer

iii

Abstract

The continuing technological advances in different areas represent a challenge for re-
searchers in computer science and in particular in the area of algorithms and theory. The
gap between processing speed and data volume increases constantly, even though the per-
formance of computers and their central processing units increases at a fast rate. This is
because the data that surrounds us multiplies at an even more rapid pace. One example
for the phenomenon is the Large Hadron Collider (CERN) that generates more than half
a gigabyte of data every second. Even algorithms with linear running time are here too
slow if they need random access to the data. Data stream algorithms are algorithms that
only need one pass over the data to (approximately) solve a problem. Their memory usage
is usually polynomial in the logarithm of the input size. Ideally, a data stream algorithm
can process the data directly while it is created.

In my thesis, I consider k-means clustering. Given n points in the d-dimensional Eu-
clidean space R?, the k-means problem is to compute k centers which minimize the sum
of the squared distances of all points to their closest center. The centers can be chosen
arbitrarily from R?. For a given solution, i.e., a set of k centers, we say that the sum of
the squared distances is the k-means cost of this solution. The k-means problem has been
studied for sixty years and often occurs in machine learning, also as a subproblem.

In the context of data streams, a popular technique to solve the k-means problem is the
computation of coresets. A coreset for a point set P is a (usually much smaller) point set
S which has approximately the same cost as P for any possible solution. More precisely
and defined for the k-means problem, a (1 4 ¢)-coreset for an ¢ € (0,1) is a set S that
satisfies that the cost of S for any set of k centers C' is at least an e-fraction off the cost of
P with the same centers C'.

A coreset computation is often first designed as a polynomial algorithm with random
access to the data. Then, the algorithm is converted into a data stream algorithm by using a
technique which is known as Merge-and-Reduce. By using Merge-and-Reduce, the memory
usage of the algorithm is usually increased by a factor which is polynomial in logn. In
joint work with Hendrik Fichtenberger, Marc Bury (né Gillé), Chris Schwiegelshohn and
Christian Sohler, I developed a data stream algorithm for the k-means problem which
does not use Merge-and-Reduce. It processes the input points one by one and directly
inserts them into an appropriate data structure. We use a data structure which is used
in BIRCH (Zhang, Ramakrishnan, Livny, 1997), an algorithm which is very popular in
practical applications. By analyzing and improving the data structure, we could develop
an algorithm which computes a (1 + ¢)-coreset in the data stream model and that uses
pointwise updates. Our algorithm is named BICO as a combination of BIRCH and the term
coreset. The memory usage of BICO is bounded by O(k - logn - e~(@+1) if the dimension
of the input points is a constant. We implemented a slightly modified version of BICO
and combined it with an algorithm for the k-means problem which is known for its good
results in practical applications. In an experimental study, we verified that the combined
implementation computes solutions with high quality while it is much faster than other
implementations that compute solutions of high quality. Our work was published at the

iv Abstract

European Symposium on Algorithms 2013.

Joint work with Dan Feldman and Christian Sohler led to an important result on the k-
means problem which was published at the ACM-SIAM Symposium on Discrete Algorithms
2013. It is a dimensionality reduction. If data is high dimensional, then reducing the
dimension is as useful as reducing the number of points. We showed that it is possible to
reduce the dimension of any k-means input to O(k/e?) while preserving the cost function
up to an e-fraction. The number of dimensions is in particular independent of the number
of input points. The dimensionality reduction uses the singular value decomposition, a tool
which is often used in practical applications. By combining the dimensionality result with
known coreset constructions, we developed a construction that computes coresets of a size
which is independent of the dimension and of the number of input points. To achieve this,
we extended the usual coreset definition by allowing to store an additional constant. This
does not increase the memory usage by much. This extension has the potential to allow for
powerful coreset constructions. We develop an additional independent coreset construction
for the k-means problem which also computes coresets of a size which is independent of
the dimension and number of input points. The size of the computed coresets is larger,
but it is applicable to at least one additional clustering problem which can (probably) not
be solved by applying the singular value decomposition.

The results described so far are the core of the first part of this thesis. The second part
contains results on related objective functions, including a so-called projective clustering
problem. Additionally, the second part considers a probabilistic k-median problem which
is joint work with Christiane Lammersen and Christian Sohler. The k-median problem is
defined with Euclidean distances that are not squared, other than that it is identical to
the k-means problem. In the probabilistic version we assume that the input points can
appear at different locations. The probability for a point to appear at a certain location
is given by a discrete probablity distribution. The task is to compute £k centers that
minimize the expected k-median cost. We develop a definition of a coreset for probabilistic
clustering and show how to compute a coreset. This result was published at the Workshop
on Approximation and Online Algorithms 2012.

Zusammenfassung

Die technologischen Weiterentwicklungen in verschiedensten Bereichen bringen neue Her-
ausforderungen fiir die Informatik und insbesondere auch fiir die Algorithmik und die
theoretische Informatik. Obwohl Prozessorgeschwindigkeiten und rechnerinterne Kommu-
nikationsgeschwindigkeiten schnell anwachsen, vergrofiern sich die Datenmengen um uns
herum so viel rasanter, dass Algorithmen, die man klassischerweise als effizient bezeich-
nen wiirde, ungeeignet werden. Ein Beispiel dafiir ist der Large Hadron Collider (,Grofer
Hadronen-Speicherring’, CERN), der iiber ein halbes Gigabyte an Daten pro Sekunde
produziert. Selbst Algorithmen mit linearer Laufzeit konnen zu langsam sein, wenn sie
wahlfreien Zugriff auf die Daten bendtigen. Datenstromalgorithmen sind Algorithmen,
die fir die (approximative) Losung eines Problems nur einen einzigen Durchlauf durch
die gegebenen Daten benétigen, und deren Speicherplatz im Vergleich zur verarbeiteten
Datenmenge sehr klein ist, iiblicherweise ein Polynom im Logarithmus der Eingabegrofe.
Im Idealfall konnen Daten mit einem Datenstromalgorithmus direkt wihrend der Entste-
hung verarbeitet werden.

In meiner Dissertation beschéftige ich mich mit sogenanntem k-means Clustering, unter
anderem im Datenstrommodell. Fiir eine Menge von Punkten im d-dimensionalen Euk-
lidischen Raum R? ist die Aufgabe, k Zentren zu finden, so dass die Summe der quadrierten
Distanzen aller Punkte zu den ihnen jeweils néchsten Zentren minimiert wird. Die Zentren
kénnen dabei frei aus dem R? gewihlt werden. Fiir eine mogliche Losung, also eine Menge
von k Zentren C', bezeichnen wir die Zielfunktion im Folgenden auch als k-means Kosten
von P mit Zentren C. Das k-means Problem wird seit iiber sechzig Jahren untersucht und
tritt im maschinellen Lernen héufig auf, z.B. auch als Teilproblem.

Eine haufig verwendete Technik, um das k-means Problem im Datenstrommodell zu
l6sen, ist die Berechnung von Kernmengen. Eine Kernmenge fiir eine Punktmenge P ist
eine (normalerweise deutlich kleinere) Punktmenge S, die approximativ fiir jeden méglichen
Losungskandidaten die gleichen Kosten hat wie P. Genauer gesagt und spezifisch fiir das
k-means Problem formuliert ist eine (1 +¢)-Kernmenge fiir ein € € (0,1) eine Menge S, fiir
die die k-means Kosten von S fiir jede mogliche Zentrenmenge C' aus k Zentren hochstens
um einen e-Anteil von den k-means Kosten von P mit denselben Zentren C' abweichen.

Fir die Berechnung einer Kernmenge wird héufig erst ein polynomieller Algorithmus
entworfen, der die Daten auch mehrfach lesen kann. Dieser wird dann mit Hilfe einer
Technik, die als Merge-and-Reduce bekannt ist, in einen Datenstromalgorithmus umge-
wandelt. Dadurch erhoht sich in der Regel der Speicherbedarf um einen Faktor, der poly-
nomiell in logn ist. Zusammen mit Hendrik Fichtenberger, Marc Bury (geb. Gillé), Chris
Schwiegelsohn und Christian Sohler habe ich einen Datenstromalgorithmus fiir das k-means
Problem entwickelt, der ohne die Merge-and-Reduce Technik auskommt. Dieser verarbeitet
die Punkte im Eingabestrom einzeln und nimmt sie direkt in eine geeignete Datenstruktur.
Wir verwenden eine Datenstruktur, die bereits in einem in der praktischen Anwendung sehr
beliebten Algorithmus, BIRCH (Zhang, Ramakrishnan, Livny, 1997), ihre Schnelligkeit
demonstriert hat. Durch eine Analyse und Weiterentwicklung dieser Datenstruktur waren
wir in der Lage, einen Algorithmus zu entwickeln, der im Datenstrommodell eine (1 + ¢)-

vi Zusammenfassung

Kernmenge berechnet und nur punktweise Aktualisierungen der Datenstruktur benotigt.
Der Name unseres Algorithmus ist BICO, was eine Kombination aus BIRCH und dem en-
glischen Wort fiir Kernmenge, coreset, ist. Der Speicherbedarf von BICO ist fiir Eingaben
mit konstanter Dimension durch O(k-logn-e~(@*1) beschrinkt. Wir haben BICO in einer
leichten Abwandlung implementiert und mit einem Algorithmus fiir das k-means Problem,
der fiir seine guten Ergebnisse in praktischen Anwendungen bekannt ist, kombiniert. In
einer experimentellen Studie konnten wir belegen, dass die kombinierte Implementierung
Losungen von hoher Qualitdt berechnet und sehr viel schneller ist als andere bekannte
Implementierungen von Algorithmen, die Losungen von hoher Qualitdt berechnen. Die
Arbeit wurde auf dem European Symposium on Algorithms 2013 verdffentlicht.

Ein grundlegendes Ergebnis zum k-Means Problem ist in Zusammenarbeit mit Dan
Feldman und Christian Sohler entstanden und wurde auf dem ACM-SIAM Symposium
on Algorithms 2013 veroffentlicht. Unser erstes Resultat ist eine Dimensionsreduktion.
Im Falle von hochdimensionalen Daten ist es nicht nur hilfreich, die Anzahl der Punkte
zu reduzieren, sondern noch viel mehr, ihre Dimension zu verkleinern. Wir zeigen, dass
man die Dimension einer k-Means Eingabe auf O(k/e?) reduzieren kann, wihrend sich die
Zielfunktion maximal um einen e-Anteil &ndert. Die Anzahl der Dimensionen ist insbeson-
dere unabhéangig von der urspriinglichen Dimension. Die niedrigdimensionalen Punkte
kann man mit einer Singularwertzerlegung berechnen, ein Werkzeug, das auch in der
praktischen Anwendung héufig verwendet wird. Durch eine Kombination mit vorherigen
Kernmengenkonstruktionen konnten wir einen Algorithmus entwerfen, der eine Kernmenge
berechnet, deren Grofle unabhingig von der Anzahl und der Dimension der Eingabepunkte
ist. Wir erweitern dazu die iibliche Kernmengendefinition, indem wir das Speichern einer
zusatzlichen Konstanten erlauben. Dadurch entsteht kein signifikanter zusatzlicher Spe-
icheraufwand. Das Potential dieser Erweiterung demonstrieren wir auch durch den Entwurf
einer zweiten vollkommen unabhangigen Konstruktion fiir das k-means Problem, die eben-
falls eine Kernmenge mit zusétzlicher Konstante berechnet, deren Groflie unabhéingig von
der Anzahl und Dimension der Eingabepunkte ist. Die Grofle dieser Kernmenge ist grofier
als die aus der ersten Konstruktion, dafiir lasst sich die Konstruktion auf mindestens ein
anderes verwandtes Clusteringproblem iibertragen, fiir das die Anwendung einer Singulér-
wertzerlegung (wahrscheinlich) nicht moglich ist.

Die bisher beschriebenen Ergebnisse sind der Kern des ersten Teils meiner Arbeit. Im
zweiten Teil beschreibe ich Ergebnisse fiir verwandte Zielfunktionen, unter anderem aus
dem Bereich des sogenannten projektiven Clusterings. Auflerdem enthélt dieser Teil ein
gemeinsames Resultat mit Christiane Lammersen und Christian Sohler fiir das probabilis-
tische k-median Problem. Das k-median Problem verwendet Euklidische Distanzen, die
nicht quadriert werden, und ist ansonsten identisch zum k-means Problem. In der proba-
bilistischen Version nehmen wir an, dass die Eingabepunkte keine feste Koordinaten haben,
sondern als diskrete Wahrscheinlichkeitsverteilung tiber mogliche Positionen gegeben sind.
Das Problem ist nun, k& Zentren zu berechnen, fiir die die erwarteten k-median Kosten
minimal sind. Wir entwickeln eine Kernmengendefinition fiir diesen Fall und zeigen, wie
man eine Kernmenge berechnen kann. Diese Arbeit haben wir auf dem Workshop on
Approximation and Online Algorithms 2012 veroffentlicht.

vii

Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. Christian Sohler from whom I have
learned a lot about how to choose reseach questions and how to solve them. Thank you
for advising and supporting me, for pointing me to plenty interesting research questions
and for giving me the opportunity to visit summer schools and other researchers.

During the majority of my PhD time, I worked on the project ‘A practical theory for
clustering algorithms’ in the DFG Priority Programme 1307 ‘Algorithm Engineering’. 1
thank the DFG for the funding. It was a joint project with the group of Prof. Dr.
Johannes Blomer in Paderborn. I thank him and Kathrin Bujna, Dr. Daniel Kuntze and
Dr. Marcel R. Ackermann for a creative environment and an enjoyable collaboration. Prof.
Dr. Johannes Blomer also agreed to assess my thesis and I thank him for that, too.

I thank Marc Bury, Hendrik Fichtenberger, Dr. Martin Grof}, Dr. Jan-Philipp Kapp-
meier, Dr. Christiane Lammersen, Dr. Rainer Penninger, Arseny Pyatikhatka, Dr. Daniel
Schmidt, Magdalena Schmidt, Chris Schwiegelshohn and Dr. Christine Zarges for proof-
reading parts of my thesis. Your comments were invaluable. Special thanks go to Martin
and Daniel for reading (nearly) all of my thesis and all the helpful feedback, to Jan for
preparing elaborate comments despite writing his own thesis at the same time, and to Marc
for checking the math in Chapter 3.

The results in this thesis are based on joint work with Marc Bury, Dr. Dan Feldman,
Hendrik Fichtenberger, Dr. Christiane Lammersen, Chris Schwiegelshohn and Prof. Dr.
Christian Sohler. Thank all of you for the superb collaborations.

My thanks for fruitful discussions and a nice working atmosphere go to all my colleagues
in Dortmund. While writing this thesis, my colleagues helped me out to reduce the addi-
tional workload, in particular Chris and Marc. Christiane always had the right words to
cheer me up, both while we were working together but still when she had already left. I
thank Chris, Christiane, Christine and Marc for their friendship and support. I also owe
thanks for their encouragement to Dr. Thomas Jansen and Prof. Dr. Petra Mutzel.

Besides working on the content of this thesis, I had a wonderful time doing research
on network flows with Daniel, Jan and Martin. Thanks belong to the three of you and
to Prof. Dr. Martin Skutella and his group for welcoming us in Berlin and making this
research project even more fun. Additional cooperations outside of my thesis topic were
with Dr. Frank Hellweg and Dr. José Verschae. Thank you for the great time and fruitful
collaboration.

[thank my parents and my sisters Katharina and Magdalena for their love and support.
To my husband Daniel I owe thanks for more reasons than I can name here.

Finally, I wish to document my thankfulness to Prof. Dr. Ingo Wegener. Ingo died
before I started to work on my PhD, but he is the reason why I did it. His memory
accompanies me and [am very thankful for that.

viii Acknowledgments

Contents

1 Introductionl

I The k-means problem|

2 Introduction to the i-means problem|
[2.1 'The k-means problem|.
[2.2 The k-median problem| 0L
[2.3 Notations in Fuclidean geometry|
[2.4 A basic observation and its consequences|
[2.4.1 Enumerating solutions and connections to discrete clustering|

2.4.2 Alternative formulations for k-means|

[3 Dimensionality reduction techniques|
[3.1 Two popular dimensionality reduction techniques
[3.1.1 Random projections|,
[3.1.2 T'he best fit subspace and the singular value decomposition|.
[3.2 The singular value decomposition revisited|
[3.2.1 Weighted input sets|.

{4 Small coresets for the k-means problem|
4.1 Coresets for the k-means problem|
[4.1.1 Applications of strong coresets|.
|4.2 'Techniques used in coreset constructions|
[4.2.1 Moving points|
[4.2.2 Uniform sampling],
[4.2.3 History of coresets in view of the k-means problem|
4.3 Computing small coresets for k-means|
[4.3.1 Improving the running time|
[4.4 Smaller coreset sizes via dimensionality reductionl

6 The k-means problem in data streams|
[>.1 The Merge-and-Reduce technique]
[5.2 Streaming algorithms for k-means clusteringl
[5.2.1 Algorithms based on Merge-and-Reduce]
[5.2.2 A streaming coreset|.o

10
17
20
25
27
28

31
31
34
40
46
95

59
29
61
64
65
66
70
7
83
85

X Contents
[5.2.3 Implementations of streaming algorithms for k-means| 99

b.3 A lower bound for BIRCH with fixed thresholdl 102
(5.4 BICO — BIRCH meets coresets for k-means clustering| 107
[>.4.1 The basic algorithm| 108

[5.4.2 Including rebuilding steps into BICO| 116

[.4.3 Running time] 123

[>.4.4 Implementation|o 127

[>.4.5 Experimental setting| 00000 129

[.4.6 Experiments|. 131

Il Extensions of classical clustering] 139
6 Kernel £-means problems| 141
[6.1 The k-means problem in inner product spaces| 141
[6.1.1 Coresets with offsets in inner product spaces| 144

[6.2 The kernel k-means problem| 145
[6.2.1 Coresets for kernel k-means problems| 149

[/ Probabilistic k-median clustering 157
[7.1 A probabilistic k-median problem|o 000 160
[[.2 Probabilistic coresets 163
[7.3 The assigned metric k-median problem| 167
[7.4 The assigned FEuclidean k-median problem| 171
[7.4.1 Superpolynomial algorithms for the assigned Fuclidean casel 172

[7.4.2 A coreset construction for the assigned Fuclidean case] 174

[8 Projective clustering problems| 199
[8.1 Introduction to projective clustering problems| 200
(8.2 Small coresets for subspace approximation| 202
[8.2.1 Affine subspaces|. 203

[8.3 A coreset framework for projective clustering/ 206
[8.4 The integer linear projective clustering problem| 209
[8.4.1 Sensitivity bounds from L_,-coresets| 211

[8.4.2 Constructing L,-coresets| 213

[8.4.3 Obtaining the coreset result| 219

T Appendix| 223

(A

Dissimilarity measures and vector spaces| 225

[A.1 Dissimilarity measures and metrics| 225
[A.2 Vector spaces| 226

X1

[A.3 Inner product spaces|

.............................. 227
[A.4 Sequences and Hilbert spaces| 228
[A.5 Additional tfacts on kuclidean geometryl. 229
Additional information on BICO experiments| 231
B.1 Settings| e 231
B.2 Numerical results 232

: 241

xii

Contents

1 Introduction

Summarizing is a natural concept. Every encyclopedia contains the population size, the
gross domenstic product or the area of a country. Events are summarized in end-of-the-
year reviews, books and movies are reviewed in magazines or on websites. Even this thesis
contains a short summary of its contents.

We summarize data for different reasons. In a condensed form, it is easier to grasp the
essentials of a topic. A summary structures data and makes it more accessible, easier to
understand. The next reason is that we want to save space. In this context, summarizing
means compressing. Most digital music files are stored in a compressed way to save disk
space. In the context of algorithm design, there is another important aspect. Reducing the
amount of input data decreases the running time of most algorithms. This is particularly
true if the data is reduced to an amount that fits into the main memory, since reading data
from the hard disk has significant impact on the running time. Algorithms falter because
of the sheer amount of time it takes to just read the data. Lastly, there are also cases where
we summarize because we simply cannot store the original data. For example, consider
the data from the large hadron collidor which is so vast that it is directly filtered. Only a
small fraction of the data is actually stored.

Good methods to compress data are increasingly important since we face more and more
data that is automatically generated, not only from experiments in physics, but also from
social media. This phenomenon has been called Big Data lately. We need new methods to
compress data in a meaningful way in order to deal with terabytes and soon petabytes of
data.

This thesis studies the concept of coresets. A coreset is defined in the context of an
objective function. It summarizes input data with respect to this objective function. Notice
that a summary can be good for one purpose and bad for another. A summary can never
be similar to the original data in every aspect. It is sufficient if it resembles the data with
respect to the intended use. When compressing music, we want to preserve everything that
the human ear can perceive. When we compress input data for an optimization problem, we
want that the summary has the same properties according to the given objective function.

The optimization problems studied in this thesis are geometric clustering problems.
Clustering is a summary method in its own right. It means that we partition input data
into subsets of points that we believe belong together. For geometric clustering, we measure
whether points belong together by similarity or dissimilarity measures. A dissimilarity
measure for Euclidean points would be the Euclidean distance. Assume that we partition
points into subsets such that points in the same subset are close together, and points in
different subsets are far away from each other. Then we can replace each subset by a
representative point and obtain a smaller data set.

2 1 Introduction

Figure 1.1: A two-dimensional input to the k-means problem and three well chosen centers.
The lines indicate which point is assigned to which center.

One of the most widely studied clustering problems is the k-means problem. It consists
of the following basic geometric question: Given a set P of points from the Euclidean
space RY, find k centers that minimize the sum of the squared distances from every point
to its closest center. A two-dimensional example for the k-means problem is depicted in
Figure We can imagine that the centers are potential locations for new stores that a
big company will open, and that they want to minimize the customer’s way to the nearest
shops. Instead of shops it could also be telephone or internet exchange points, schools or
public swimming bathdT}

The k-means problem has the nice property that for £ = 1, the solution is the centroid
of the point set, which is given by an explicit formula as the sum of the points divided by
the number of points. This analytic solution to the 1-means problem implies that in an
optimal solution for the k-means problem with k£ > 1, the input point set is partitioned into
k subsets and all points in the same subset have the same center, namely the centroid of
the subset. Using this observation, the k-means problem can be solved exactly by iterating
through all partitionings of P into k subsets, computing the centroids of the subsets and
keeping track of the solution with lowest cost. Of course this algorithm is highly inefficient.
In fact, it turns out that the k-means problem is NP-hard even for k = 2 [ADHPQ9].

The most popular algorithm for solving the k-means problem is Lloyd’s algorithm [LIo82],
a local improvement heuristic developed more than fifty years ago. Lloyd’s algorithm starts
with an initial solution of k centers, often chosen uniformly at random from the input point
set. Then it calculates the partition induced by the center set by assigning each point to

Intuitivelly, one might also model the above examples with non-squared distances. In this case, the
problem is called k-median problem. Both problems have many applications. The k-means problem
punishes larger distances more severely, which often makes a lot of sense: A slightly larger average
way to school is certainly preferable to some children living in an insurmountable distance. We discuss
differences between k-means and k-median in more detail later.

its closest cluster, thus forming k£ point sets. Because the optimal solution for a point
set is its centroid, the algorithm replaces the center belonging to each point set by the
centroid of the point set. This can only improve the solution. The new centers induce a
new partitioning, and so the algorithm iterates until convergence.

There are also various approximation algorithms known for the k-means problem, and
many of the newer algorithms are based on the computation of coresets. A coreset for
the k-means problem for an input set P is a (smaller) weighted set S with the property
that for each choice of k centers, the sum of the squared distances between the points in
P and the centers is approximately the same as the sum of the squared distances between
the weighted points in S and the centers. Notice that a coreset does not only preserve
the cost of an optimal or nearly optimal solution. It approximates the cost function for
every choice of centers. This is very convenient. When we run an algorithm on .5, it will
behave similarly as it would when run on P. Coresets have a theoretical guarantee, in fact,
it is ensured that the cost of any solution is (1 + ¢)-approximated by the coreset. Thus,
we can use coresets to speed up approximation algorithms at the expense of an additional
(1 + e)-factor in the quality guarantee.

Coresets can also be used for distributed computations or when data is given in a stream-
ing setting. The latter means that the data can only be read once, in a given order that
cannot be influenced by the algorithm. The constant production of data by the large
hadron collidor is a prime example for a streaming setting. The algorithm cannot store all
of the data but only a small fraction of it.

The topic of this thesis is the study of coresets and related summaries. The thesis has two
parts. The first part is devoted to the k-means problem, while the second part discusses
additional clustering objectives.

Chapter [2] introduces the k-means problem, gives a brief outline of its history, its ap-
proximability, and its complexity. The k-median problem, which is closely related to the
k-means problem, is also introduced. Furthermore, the chapter contains a short intro-
duction to Euclidean geometry and basic techniques for the development of algorithms in
the context of the k-means problem.

Chapter [3] addresses dimensionality reductions for the k-means problem. If data is high
dimensional, summarizing it can also mean that we reduce the dimension instead of the
number of points. The chapter contains a review of methods that reduce the dimension
of the points but preserve the k-means objective function up to a factor of (1 +¢). Then,
a new method is presented that is able to reduce the dimension of an input point set to
O(k/e*) while the k-means objective is changed by at most an e-faction.

Chapter [4] introduces coresets for the k-means problem, reviews their history and known
coreset results. Additionally, two important methods to construct coresets are discussed.
One of them is sampling. The chapter concludes with two new coreset constructions. Both

4 1 Introduction

have the property that the number of points in the coreset is independent of the number
of input points and it is also independent of the dimension of the input points.

Chapter [b] discusses the computation of coresets in data streams. It starts with an
introduction to the streaming setting and explains the Merge-and-Reduce technique which
can be used to embed coreset constructions into streaming. Then, existing streaming
algorithms for the k-means problem are reviewed, and one of the coreset constructions
from Chapter 4] is embedded into Merge-and-Reduce. The chapter concludes with the
presentation of BICO, a coreset construction for the k-means problem in the streaming
setting which has a theoretical guarantee but is also easy to implement and fast in praxis.

Chapter [6] is the first chapter of the second part of the thesis. It considers the kernel
k-means problem which is a generalization of the k-means problem for instances that are
not linearly separable. One of the constructions from Chapter {4]is observed to work in so
called inner product spaces. This insight is then used to construct coresets for the kernel
k-means problem.

Chapter [7| considers a probabilistic clustering problem. Here, points can appear at dif-
ferent positions within a given metric space. Coresets are constructed for a probabilistic
k-median problem, both in the Euclidean space and in finite metric spaces. The chapter
also contains approximation results for both problems.

Chapter introduces projective clustering problems. This generalization is the task to
cluster points with affine subspaces. Notice that points are affine subspaces of dimension
zero. A coreset construction for clustering with one j-dimensional subspace is presented,
followed by a coreset construction for clustering with k subspaces of dimension j.

The results in this thesis arose from collaborations with Marc Bury, Dan Feldman, Hen-
drik Fichtenberger, Christiane Lammersen, Chris Schwiegelshohn and Christian Sohler.
Chapters and sections which present original research refer to the publications and name
the co-authors. For all publications with n authors, I have contributed at least 1/n of the
work.

Part |

The k-means problem

2 Introduction to the £-means problem

Clustering is an oldF_-] and broad topic and the term itself is hard to define concisely.
Jain [JailO] states that the goal of clustering is ‘to discover the natural grouping(s) of
a set of patterns, points or objects’ and that the aim of cluster analysis is to find an ‘auto-
matic algorithm’ to do so. This statement describes the inherent motivation of clustering,
and it tells us that a clustering partitions an input into subsets, also called clusters.

Clustering is an unsupervised method, meaning that it tries to ‘discover’ the structure
hidden in the data without external guidance. This differentiates clustering from supervised
learning methods, where parts of the data include class labels.

Given Jain’s broad notion of clustering, it is natural that clustering has applications
in many very different areas. Indeed, Jain [Jail0] names image segmentation / computer
vision, information access and retrieval, grouping customers for efficient marketing, work-
force management and planning, and the study of genome data in biology as examples. We
can imagine that clustering plays a role whenever objects shall be grouped into similarly
behaving subgroups, whenever structure is searched for in not yet understood data, and
whenever large data sets need to be compressed into a set of meaningful representatives.

The different application areas also mean that there is not ‘the’ clustering method.
Consider Figure which shows an example by Jain (approximately reproduced from
[Jail0]). Jain uses it as a visualization of different cluster shapes and densities and states
that ‘Although these clusters are apparent to a data analyst, none of the available clustering
algorithms can detect all these clusters.

Even more, we notice that this example also illustrates that the ‘natural’ clustering (and
thus, the right choice of the clustering objective) often lies in the eye of the beholder.
Depending on the application and the overall structure of the data, we might well consider
the orange, gray and purple cluster as one cluster. Consider Figure which shows two
point sets including these these three sets in a different context. In the right picture of
Figure we would probably indeed identify these three point sets as different clusters.
However, in the left picture we might favour to see them as one cluster.

Because of the large number of different applications and thus also large number of
different goals, various clustering problems and algorithms exist in the literature. Several

"Hansen and Jaumard [HJ97] claim that clustering dates back to Aristotle. In fact, in his text ‘Cate-
gories’ [Ari], Aristotle derives ten categories to classify objects and concepts, which shows an under-
standing of the concept of partitioning options due to their properties. Additionally, the Stanford
Encyclopedia of Philosophy [Lenll] also names Aristotle the ‘originator of the scientific study of life’
because ‘his zoological writings provide a theoretical defense of the proper method for biological inves-
tigation; and they provide a record of the first systematic and comprehensive study of animals’, which
is based on several of his other writings. While discussing whether Aristotle really worked on clustering
is besides the point, we conclude that the desire to classify and categorize is indeed an old one.

2 Introduction to the k-means problem

v oo .

.:-' N f’ ‘.'\ R
5 “:' (\.,«'} ’.3

Figure 2.1: Example reproduced after Figure 2 in [Jail(]. The left side presents the input.
In the right picture, the points are colored according to the desired clustering.

Figure 2.2: Two examples including the orange, gray and purple cluster from Figure .

surveys and books have been written to summarize and classify the different approaches.
These include earlier books by Anderberg [And73] in 1973, by Hartigan [Har75] in 1975
and by Jain and Dubes [JD8§| in 1988, newer publications like the review by Jain, Murty
and Flynn [JMF99] in 1999 or the book by Everitt, Landau and Leese [ELL09] (first
edition 2001), and even more recent publications by Xu and Wunsch [XW05] in 2005,
Berkhin [Ber06] in 2006 or the data clustering survey by Jain [Jail0] in 2010. The latter
survey has already been cited more than 850 times (according to Google Scholar [Gool4],
accessed on 31st of January 2014)ﬂ which highlights the popularity of the topic even more.

While there is no commonly agreed upon specification, introductions to the field usually
ask of a clustering that objects are only grouped together if they are in some way similar.
For example, Berkhin [Ber(6] says that ‘clustering is a division of data into groups of

similar objects’.

Often, it is also required that objects that are not grouped together

20n the 2nd of May in 2015, the number of citations has reached 1668 already.

and are thus classified as different, are in some way dissimilar. Xu and Wunsch [XWO05]
write that ‘most researchers describe clusters by considering the internal homogeneity and
the external separation.” However, these goals might be hard to achieve simultaneously.
The definition currently found on the online encyclopedia Wikipedia [Wik] gives a slight
relaxation by demanding of a clustering that ‘objects in the same group (called a cluster)
are more similar (in some sense or another) to each other than to those in other groups
(clusters). For our purposes, we will keep the following stability-type idea in mind: A
clustering is a partitioning of a set of objects into clusters such that every object satisfies
that it is in some way more similar to the objects in its cluster than to the objects in other
clusters.

There are various ways to specify what we mean by similar, and this depends on the
application area. For example, assume we want to cluster strings of a fixed length from
a finite alphabet. Then the similarity between two strings could be measured by the
number of coinciding characters. If we normalize the similarity measure by dividing by
the string lengths and consider binary strings, this measure is called (simple) matching
coefficient (see for example Everitt, Landau, Leese [ELL09]). Yet, there are several other
similarity measures for binary strings, and following the presentation in [ELL09|, we see
that this is due to different application areas. The expressiveness of a match can be low
if the bit encodes the presence of something rare, for example a rare genetic defect. If
the match encodes the absence of this defect, then it is disputable whether this really
indicates a significant similarity. So, depending on the actual scenario, different measures
are reasonable, and [ELL09| lists six different relatively simple similarity measures for
binary strings alone.

Often, dissimilarity measures provide a more natural modelling. If the objects are co-
ordinates on a city map, then we probably associate similarity with closeness, or, in other
words, low dissimilarity. As for similarity measures, there are several ways to define dis-
similarities, even if we fix an underlying metric like the Euclidean distance measure. In
the introduction, we already got to know the k-means problem, where the dissimilarity of
points in the Euclidean space is measured by the Euclidian distance, but squared. This is a
very common modelling, and the remainder of this chapter is devoted to the introduction
to this problem. In Section [2.2] we look at the k-median problem, the close relative of
the k-means problem where the distances are non-squared. Other dissimilarity measures
related to the Euclidean space include /! distances which are based on the g-th power of
p-normg’| and Mahalanobis distanceq}

Before we now take a closer look at the k-means problem, one final remark regarding the
type of clustering that is done in this thesis. The clustering algorithms in this thesis belong
to the field of partitional clustering. This means that they look for partitionings of the input
data into subsets in a way that optimizes a clustering objective function. For example,
algorithms for the k-means or k-median problem can be viewed as partitional clustering

a/p
3The 13 distance of two points # = (21, ...,24)" and y = (y1,...,ya)" from R? is (Z‘Ll lz; —yil?) .

4For a symmetric positive definite matrix A € R%*? the corresponding Mahalanobis distance of two
points and y from R? is \/(z — y)T A(z — y).

10 2 Introduction to the k-means problem

algorithms. Every solution (a set of k centers) induces a partitioning (by assigning every
point to its closest center) with a certain cost (the sum of the [squared] distances of all
points to their centers). This cost is then optimized.

The wide field of clustering contains other approaches as well. For a systematic overview
on different approaches and viewpoints, see for example [Ber(06] and [JD88]. One popular
example is hierarchical clustering. Hierarchical clustering computes a nested sequence of
partitions, i.e., the input point set is subsequently subdivided, usually until a level where
all subsets are singletons (only contain one point). The subdivision is done according to
a splitting criterion based on similarity. A hierarchical clustering algorithm can also start
with the set of singletons and subsequently merge these based on a similarity merging
criterion. Our only brief contact with hierarchical clustering will be in Chapter because
the algorithm BIRCH described there uses a hierarchical clustering algorithm.

2.1 The k-means problem

Now, we consider the objective function on which the ‘most commonly used partitional
clustering strategy’ [JD8S] is based upon. The k-means objective function seeks to minimize
the sum of the squared distances of all points to a set of k centers. It is also known as
square error criterion or sum of squared errors, usually abbreviated by SSE.

The squared Euclidean distance is an old clustering objective. Bock [Boc07] traces the
k-means problem back to 1950 to a paper by Dalenius [Dal50]. The still most popular
algorithm for the k-means problem was already developed in 1956 by Steinhaus [Ste56]
and independently in 1957 by Lloyd [LIo57]. The immense popularity of the k-means cost
function becomes most apparent in the popularity of this algorithm. We discuss it below.

The k-means problem is specified with a dissimilarity measure, the Euclidean distance.
We will review the definitions and notations in Euclidean geometry below, for now it is only
important that we denote the Euclidean space by R? and the Euclidean norm by || - ||. In
addition to the k-means objective function, we also define the k-median objective function.
Firstly, we will consider (a probabilistic version of) the k-median problem in Chapter
Secondly, we will occasionally use the k-median problem for comparisons of properties of
the k-means problem. We also define a popular variant of both problems, called discrete
clustering.

Definition 2.1.1 (k-means and k-median). Let P C R? be a finite set of points in the
d-dimensional Fuclidean space, let k € N be positive integer. The (Euclidean) k-median
problem is to find a set C C RY of k points (called centers) that minimizes the sum of the
Euclidean distances of the points in P to their closest center in C, > ,cp min.ec ||z — c||.
The (Euclidean) k-means problem is to find a set C C RY of k points that minimizes

Z min ||z — ¢||?,

el ceC

the sum of the squared Fuclidean distances of the points to their closest center.

2.1 The k-means problem 11

. '.o ; o ° oo: ° '.t o°
o * % ® e > . e ® o, - o8 .:.' o.' "'Oo.
A I T I 08 4 ..':: oot o0,o'. <. e, .0 L) . .
.o '.; o:.": !:.:..' .o ...o f..:*:. P e .~‘: .. ::.:o... :.3...'..'. .. "'
el ens A et S I A I LY LR
R A U B ST e
. “ .3 ot o \' .d R Ce 0 & %3 A2 *?. - ° e 3,
. ;".. - "o : . .."'.v S .‘o . o e '\.J"o" ":'o e o .'O
. P-4 o 8% LT ads . LI B v heo® e, o .
vy oo s 43 W R b Lo, AR s
o-.o.‘ .'.’O & ° IO..‘ ,.’. ° . 3 .'o ° o4 . . o 0..
2%t o O 2%t O LIRS ALK Y P N A
. < S, . ..Qo'fl'\(.:. ..“.o LY ..:..... S.' :'/
CreteT X et X . S et
° :'.. o;. o..° .°.°... |o;.. o ® .] R % ..' .,'... ...o...'?ﬁ.
e 0'...°.o. ."':"r.°.o. st ~ 0 . %oy j
SR TR
S ° > . & e T
h o] . o s W

Figure 2.3: Examples of point sets that are to be partitioned into two clusters. The red
points are chosen to lie at the center of the intuitive clusters. The blue lines
show the partitioning created by assigning each point to its closest center. This
partitioning is probably not the intuitive one.

If the point set is weighted by a function w : P — R, the weighted k-means problem is
the task to minimize Y ,cp min.ec w(z)||z — ¢||* over the choice of C C R* with |C| = k.
The discrete (possibly weighted) Euclidean k-means or k-median problem is verbatim except
that it does not optimize over C C R%, but over all choices of C' from a finite set, e.g.,
from the input point set.

Notice that discrete clustering problems are discrete with respect to the set of centers,
not with respect to the input point set. Standard discrete clustering problems use the
input point set as the candidate set for the centers. So, if we talk about ‘the’ discrete
k-means or k-median problem, we mean that the candidate set is equal to the input point
set. Complementary to the discrete case, k-means and k-median problems with R as the
candidate space for the centers are also refered to as continuous.

For all these problems, we also call the value of the objective function the cost of P with
a given center set C' or the optimal cost of P for the optimal choice of C.

Limitations for finding ‘natural’ clusterings. As we discussed above, no (known) clus-
tering objective finds every ‘natural’ clustering. The k-means objective is particularly
well-suited for spherical clusters with relatively equal radii. Figure [2.3|shows two examples
where with the ‘natural’ centers, the implicit assignment of points to centers does not lead
to the natural clustering. Notice however that both examples show clusters which are very
close together compared to their radii. If the clusters are well-spread, an optimal k-means
clustering is more likely to coincide with the intuitively expected result.

Additionally, consider Figure 2.2l While the four clusters in the picture on the left side
may be found with an algorithm for the k-means problem, the seven clusters in the picture
on the right are impossible to be the result of a k-means optimization. The reason is that

12 2 Introduction to the k-means problem

they are not linearly separable — there is no way to define centers that partition the two-
dimensional space into rings. In Section [6.2] we will see an extension of k-means designed
for this type of data.

Finally, notice that for optimizing the k-means clustering function, the value of k£ must
be known in advance, or, if we want to find it (for example by binary search), an additional
quality measure of the resulting clustering is needed. The k-means objective is monoton-
ically decreasing in the number of clusters. Many approaches exist to determine a good
number of clusters. Section 5 in the paper by Tibshirani, Walther, and Hastie [TWHOI]
and the summary by Gordon [Gor96] can serve as a starting point. One idea is to look
for a significant drop in the cost followed by a relatively stable cost (the elbow method).
So if there exists a number of centers k& where the optimal k-means cost drops unpropor-
tionally compared to the optimal (kK — 1)-means cost, but does not continue to decrease
significantly when considering k + 1 optimal centers, the ‘right’ number of clusters might
have been found.

Lloyd’s algorithm. The most popular algorithm for the k-means problem is Lloyd’s algo-
rithm. It is a local improvement strategy. Starting with an arbitrary solution consisting of
k centers from R?, two steps are iterated until convergence is reached or until a stopping
criterion is satisfied. First, every input point is assigned to its closest center, ties broken
arbitrarily. This results in a partitioning of the point set into k& clusters. Second, the
optimal 1-means solution is computed for each subset in this partitioning. The optimal
solution for & = 1 is the centroid (which is the sum of the points divided by their number),
so the 1-means solutions for the k subsets can be computed in time O(ndk). The centers
are then replaced by the k£ centroids and the algorithm continues with these new centers.

When we consider the sum of the squared distances of all points to the center that they
are assigned to, both steps can only decrease this sum. To see this, notice that computing
the centroids while keeping the partitioning can only decrease the cost because the centroid
is the best 1-means solution. Reassigning the points to their now closest center can again
only decrease the cost. There are only finitely many ways how a point set of n points
can be partitioned, thus the algorithm will eventually converge to a situation where the
reassignment of the points results in the same partitioning as before. Then, the algorithm
stops.

Due to its popularity, Lloyd’s algorithm is actually often called k-means algorithm. We
avoid this naming because the term was first used by MacQueen [Mac67] to name a differ-
ent algorithm for the k-means problem, causing some potential for confusion, and because
the reference to Lloyd is also common. The algorithm was, however, independently dis-
covered by Steinhaus [Ste56] even before Lloyd described it in 1957 [LIo57]. According to
Bock [Boc07], referring to Lloyd is common in ‘computer science and pattern recognition
communities’ Both Steinhaus and Lloyd actually considered a continuous version of the k-
means problem and thus also of the algorithm. According to Bock, the first to propose the
discrete algorithm was Forgy as part of a lecture which is documented in other publications
(the usual reference [For65] is the abstract of this talk).

2.1 The k-means problem 13

i 2
P
o9

Figure 2.4: An example with five points where the blue points form a local but not global
optimum for k = 3.

Lloyd’s algorithm is over fifty years old. It is probably indeed ‘the best-known’ algorithm
for the k-means problem as Xu and Wunsch [XW05] call it, has been titled ‘the most com-
monly used partitional clustering strategy’ [JD88] and the ‘by far most popular clustering
tool used in scientific and industrial applications’ [Ber06]. The recent survey by Jain [Jail0]
again certifies that ‘it is still one of the most widely used algorithms for clustering’, despite
its age. Lloyd’s algorithm was also named one of the ten most influential algorithms in
the data mining community after a three-stage recommendation process by the organiz-
ers of the IEEE International Conference on Data Mining (ICDM), as documented in the
publication by Wu et. al. [WKQT0§].

The enormous popularity of Lloyd’s algorithm might be due to its simplicity (both steps
are easy to understand and implement) and the experience that it is often fast (if we simply
stop after running a constant number of iterations, the running time is O(nkd)) while
computing reasonable solutions, or because of the lack of an always convincing alternative,
as Jain [Jail(] implies.

However, the algorithm does not come with a polynomial running time guarantee or a
guarantee on the quality of computed solutions. After Dasgupta [Das03] and Har-Peled and
Sadri [HPS05] raised the question on the running time of Lloyd’s algorithm and gave first
bounds, Arthur and Vassilvitksii [AV06] and Vattani [Vatll] showed that the number of
necessary iterations can be exponential in the number of points, and this can even happen
for points in R2.

When the algorithm converges, the result is a local optimum, but it is not guaranteed to
be a global optimum or an approximation of one. Figure depicts a five point example
for this described by Mettu and Plaxton [MP04]. The coordinates of the blue points are
(0,—1), (0,0) and (0, 1), the coordinates of the red points are (—0,0) and (0, 0). If Lloyd’s
algorithm is initialized with the blue points, then assigning every point to its closest centers
and computing the centers again yields the blue points as centers. The optimal solution
would be to pick (—0,0), (0,0) and (9, 0) as centers, which costs 2. The local optimum has
a cost of 2- 02, which can be arbitrarily large.

14 2 Introduction to the k-means problem

The k-means+ algorithm. As already apparent in the above example, the initialization
of Lloyd’s algorithm is crucial for the quality of the solution. Among the many methods
to find good initial centers, we discuss one method in more detail. In 2009, Arthur and
Vassilvitskii [AVO7] proposed the algorithm k-means+, which consists of a clever random
initialization process followd by Lloyd’s algorithm. The centers are chosen iteratively. The
first one is drawn uniformly at random from the point set. In each of the remaining k£ — 1
steps, the centers are chosen according to a probability function based on the current cost
of the points. More precisely, the probability to choose a point is the squared distance to
its closest center divided by the sum of the squared distances of all points to their closest
center. The intuitive idea behind this procedure is to choose points which have a high cost
in the current solution. If a cluster of points lies very far away from any so far chosen
center, it is probably a good idea to pick one of its points. The same holds if a cluster
is only medium far, but contains a lot of points. By choosing the probability distribution
based on the current cost of the points, both of these scenarios are covered at the same
time (in contrast to for example simply picking the currently most expensive point).

Arthur and Vassilvitskii show that the k centers chosen by this random procedure are
themselves a O(log k)-approximative solution. Applying Lloyd’s algorithm enhances the
solution further, providing a local optimum of at least the same quality.

The distinctive feature of k-means++ is that it is an easy algorithm and practically fast,
but it comes with an approximation guarantee, even though this guarantee is high.

Complexity of the k-means problem. As the popularity of a potentially exponential
algorithm already indicates, the k-means problem is NP-hard. It has two parameters, and
it is a natural approach to check whether fixing these to constants influences the hardness of
the problem. The parameters are the number of centers k£ and the dimension d of the input
points. We might ask if fixing one of them and applying some sort of enumeration strategy
can yield a polynomial algorithm. Notice that we cannot easily enumerate all possible
centers as there are infinitely many possibilities. In Section [2.4] we see that the 1-means
problem can be solved analytically. We also see that this implies that we can solve the
k-means problem by iterating through all partitions of the input point set, computing the
1-mean of every subset and keeping track of the best solution. However, this enumeration
algorithm is not polynomial, not even for constant k. In fact, if the dimension of the
problem is arbitrary, then the k-means problem is NP-hard even for k = 2. A short proof
for this is due to Aloise, Deshpande, Hansen and Popat [ADHP09], a proof containing a
sequence of reductions is due to Dasgupta [Das0§]. The motivation for their work was
an error in a previous proof due to Dasgupta, Frieze, Kannan and Vempala [DFK™04].
The k-means problem is also NP-hard for constant dimension and arbitrary k by the work
of Mahajan, Nimbhorkar, and Varadarajan [MNVQ9], more precisely, even for d = 2.
For constant dimension and a constant number of centers, the problem can be solved in
polynomial time by the algorithm of Inaba, Katoh, and Imai [IKI94]. It is indeed an
enumeration algorithm, iterating through all possible partitions which can be induced by
weighted Voronoi diagrams.

2.1 The k-means problem 15
’ Authors ‘ Year ‘ Guarantee ‘ Running Time ‘ Reference ‘
’ k and d are arbitrary ‘
Jain, Vazirani 1999 < 108 poly(n,d, k) [JVO1]
Kanungo, Mount, | 2002 O(1) poly(n,d, k) [KMNT04]
Netanyahu, Piatko,
Silverman, Wu
Mettu, Plaxton 2002 O0(1) O(ndk) for polyno- [MP04]
mial coordinates and
k € [logn,n/logn]
Arthur, Vassilvitskii 2007 | exp. O(logk) | O(ndk) [AV07]
Aggarwal, Deshpande, | 2009 O(1) O(ndk) + poly(k,logn) [ADK09]
Kannan
’ k is arbitrary, d is a constant ‘
Kanungo, Mount, | 2002 9+e¢ w(ne=?In1/e) [KMNF04] |
Netanyahu, Piatko,
Silverman, Wu
’ k is a constant, d is arbitrary ‘
Drineas, Frieze, Kan- | 1999 2 O(n¥’72) + poly(d, n) [DFK™04]
nan, Vempala, Vinay
Ostrovsky, Rabani 2000 1+e O(nlk+e DMy [OR02]
de la Vega, Karpinski, | 2003 1+e¢ O(n(log® n) e 8Ine™t), | [dIVKKRO3]
Kenyon, Rabani precomputed distances
Kumar, Sabharwal, Sen | 2004 1+e¢ O(nd - 2k/9°T) [KSS10]
Chen 2006 1+e O(nd+ 2%/ 2 10g"2) | [Che9)]
Feldman, 2007 1+4e O(nd)+d-poly(1/e)+2°*/=) | [FMS0OT]
Monemizadeh, Sohler
Feldman, Langberg 2011 l+e¢ O(nd + 2ro(1/:k)) [EL11Db]
Jaiswal, Kumar, Sen 2012 1+4¢ O(nd - 20(’“2/5)) [JKS14]
k is a constant, d is a constant ‘
Hasegawa, Imai, Inaba, | 1993 2 O(nF+1) [HITK93]
Katoh
Inaba, Katoh, Imai 1994 1 nOUdk) [TKT194]
Matousek 2000 1+¢ O(nlogh ne—2+d) [Mat00]
Har-Peled, Mazumdar 2004 l+e On + log?n + | [APMO4]
e~ (2d+1)k logk—i-l nlogk(l/g))
Effros, Schulman 2004 1+¢ (1/£)°@nloglogn + [ES04]
(1/€)O(kd)
Frahling, Sohler 2005 1+¢ O(nlog® A+ log'n + [FS05]
e(=20+1)k)
Har-Peled, Kushal 2005 1+¢ O(n + poly(logn,1/e) [HPKO07]
+/(€))

Table 2.1: A list of several approximation algorithms for the k-means problem.

16 2 Introduction to the k-means problem

The NP-hardness naturally raises the question whether approximation algorithms ex-
ist. To the best knowledge of the author of this thesis, the status of current reseach is
the following. For constant k£ and constant d, the problem is polynomially solvable and
polynomial approximation schemes serve only to speed up the running time. Matousek
was the first to propose such a PTAS in [Mat00]. Constructing a PTAS is still possible for
arbitrary d and constant k, and the first PTAS in this scenario was given by Ostrovsky and
Rabani [OR02]. In this case, even linear time (1 + ¢)-approximation schemes are possible,
and the first such scheme was given by Kumar, Sabharwal and Sen [KSS10].

If k is arbitrary, no (1 + ¢)-approximation is known, not even for constant dimension. It
is also not known whether the problem is APX-hard. Constant approximations are pos-
sible, even if k and d are variable. The first such approximation was given by Jain and
Vazirani [JV01] who proposed a primal-dual algorithm for the k-median problem which
can be extended to the k-means problem. They give 108 as a rough upper bound on the
approximation guarantee, but state that a much better guarantee is achievable. Kanungo,
Mount, Netanyahu, Piatko, Silverman and Wu [KMN™04|] propose an approximation based
on a local search algorithm proposed in [AGKT04] for the k-median problem. Their algo-
rithm can be used in two ways. In a basic version, it achieves an approximation a little
better than Jain and Vazirani, but is also applicable in the scenario of variable d and k. In
a refined version, the approximation guarantee is improved to 9 4 £, but the running time
is only polynomial for constant dimension d. However, a slight change to the algorithm
most likely reduces the running time to be polynomial in d, too.

Table gives an overview including many important steps in the development of faster
k-means approximation algorithms. It is meant as a (probably not complete) look-up table
for different approximation algorithms, giving an impression of the variety of available
approximation algorithms for the k-means problem.

Remarks on Table 2.1l Notice that the algorithm by Inaba, Katoh and Imai [IKI94] is
deterministic, but most of the cited algorithms are randomized. In this case, the running
times are stated under the assumption that random numbers can be drawn in O(1). Gen-
erally, the running times do not include terms which are assumed to be constant. The
algorithms developed in [Che09) [FS05, [FMS07, [FL11a, HPMO04, [HPKO07] involve the de-
velopment of coresets and were designed for data streaming settings. We discuss coresets
in Chapter [4] and data streams in Chapter

The algorithm by Frahling and Sohler [ES05] was developed for geometric data streams,
where the assumption is that the input points lie on the grid {1,..., A}¢ for a constant A.
Such a grid can always be found by scaling and translating the points, then A has to be
at least the spread of the input point set, i. e., the quotient of the maximum and minimum
distance of all input points.

The algorithms by Jain and Varadarajan [JVO01] and Mettu and Plaxton [MP04] were
originally developed for the k-median problem but were later noted to work for the k-means
problem, too.

The running time of the algorithm by Kanungo et. al. [KMNT04] is cited as n3c~¢ by

2.2 The k-median problem 17

[AVO07]. It is definitely exponential in d because it uses a so-called centroid set due to
Matousek [Mat00] as a candidate set for centers instead of using R?. This induces only
a (1 + e)-error. Using the algorithm without the centroid set and instead using P as the
candidate set for centers induces a higher approximation ratio, but yields an algorithm
with polynomial dependence on d. For a more detailed analysis of such a version of the
local search algorithm, also see [SR10], where an upper bound of 50 for the approximation
guarantee is given.

The approximation guarantee of the algorithm by Arthur and Vassilvitskii [AV07] is on
expectation, so a single run of the algorithm may return a worse result.

The table only lists results that were explicitly stated for the k-means problem and
are not bicriteria approximations. Notable additional results include the generic sampling
algorithm that can be used to speed up approximation algorithms and was analyzed by
Mishra, Oblinger and Pitt [MOPO1] and later by Czumaj and Sohler [CS04], and which
is one basis of the algorithm by [Che09]. We discuss it in more detail on page in
Section [£.2.3

Organization of the remainder of this chapter. In Section[2.2] we shortly review results
on the very related k-median problem. After that, we look at useful observations that help
solving the k-means problem. Our choices are subjective and motivated by the topics
that are considered in later chapters. Section could also be titled ‘Preliminaries’ as it
contains definitions and notations that are later needed. In Section [2.4] we introduce a
‘folklore’ finding from linear algebra. Despite its simplicity, it has had a huge impact on
the study of the k-means problem and on the design of algorithms for it. We also see a
few of its direct consequences.

2.2 The k-median problem

We consider the two most common k-median problems. For us, ‘the’ Euclidean k-median
problem is the task to compute %k centers from R¢ such that the sum of the non-squared
distances from each input point to its closest center is minimized. It is closely related to
the k-means problem.

For the k-median problem, it is also very common to consider finite metric spaces, i.e.,
a set X with a distance function d : X x X — R™ that satisfies the triangle inequality, is
non-negative and symmetric (and d(x,y) is only zero iff x = y). We formally define metrics
in Section [A.1} For k-median problems in finite metric spaces, the input point set P C X
is a subset of the metric space. By ‘the’ metric k-median problem we mean the problem
to compute k centers from P that minimize the sum of the distances of all points in P to
its closest center. So, centers can only be chosen from the input point set.

Both versions are well-studied, and they are quite related to the k-means problem.
The k-means counterparts of some of the results discussed below are also mentioned in

Section and in particular in Table [2.1]

18 2 Introduction to the k-means problem
’ Authors Year ‘ Guarantee ‘ Running Time ‘ Reference ‘
Bartal 1996 | O(klognlog;n) | poly(n,k) [Bar96]
Bartal 1998 | O(lognloglogn) | poly(n,k) [Bar98|
Charikar, Chekuri, Goel, Guha | 1998 | O(logkloglogk) | poly(n,k) [CCGGIY|
Charikar, Guha, Tardos, | 1999 6% poly(n, k) [CGTS02)
Shmoys
Jain, Vazirani 1999 6 O(n?) [IVO1]
Charikar, Guha 1999 4 O(n?) [CGO05]
Arya, Garg, Khandekar, Meyer- | 2001 3+¢ poly(n, k) [AGK™04]
son, Munagala, Pandit
Guha, Meyerson, Mishra, Mot- | 2000 0(1) O(nk) [GMM™03]
wani, O’Calaghan
Mettu, Plaxton 2002 0(1) O(nk) for k € [MP04]
[logn,n/logn]
Charikar, O’Callaghan, Pani- | 2003 o) one-pass stream- | [COPO03]
grahy ing algorithm
Chen 2006 10+¢ O(nk + [Che09)
ke 51og’ n)
Li, Svensson 2013 1+v3+e¢ O ") [LS13]

Table 2.2: Some approximation algorithms for the metric k-median problem.

Complexity. The metric k-median problem is NP-hard [KH79b]. The Euclidean k-median
problem is also NP-hard, even in the plane [MS84]. The variant where the centers can only
be chosen from the input points (but the metric space is the Euclidean space) is also NP-
hard, as shown by Papadimitriou [Pap81]. Additionally, the Euclidean k-median problem is
the Fermat-Weber problem for k = 1. As we mentioned before, the Fermat-Weber problem
cannot be solved optimally by an algorithm that uses only arithmetic operations and the
computation of roots [Baj8§].

Notice that the metric k-median problem can be solved in polynomial time by iterating
through all possibilities to choose k centers from n input points if £k is constant.

Approximation algorithms for the metric k-median problem. For the metric k-median
problem, no PTAS is known for the case of arbitrary k£, and most likely, none exists. Lin
and Vitter [LV92] showed that computing a (14 ¢)-approximation to the metric k-median
problem is NP-hard. Guha [Guh00] showed that it cannot be approximated within a factor
less than 1 + 1/e unless it holds that NP C DTIME[n®(°¢!¢™)] The bound was improved
by Jain, Mahdian and Saberi [JMS02]. They showed that the metric k-median problem
cannot be approximated within a factor less than 1+2/e unless NP C DTIME[n®Uoslogn)],

Table gives an overview on some approximation algorithms for the metric k-median
problem. The approximation guarantee has been continuously improved. Two particu-
larly noteworthy contributions are the first constant-factor approximation due to Charikar,

2.2 The k-median problem 19

Guha, Tardos and Shmoys [CGTS02] and the algorithm with the currently best approxi-
mation ratio due to Li and Svensson [LS13], which was developed after a rather long period
without an improvement of the best known approximation ratio. The ratio is 1 + /3 + €.

We notice two details. First, the constant approximation due to Chen [Che09] uses
coresets. The coreset size ist O(dk*¢2lognlog(k/e)). Second, Mettu and Plaxton [MP04]
developed not only an algorithm but also proved an Q(nk) lower bound on the running
time of any constant-factor approximation, even for randomized algorithms, which is nearly
matched by their running time and the running time of the algorithm due to Chen.

In addition to approximation algorithms like in Table [2.2] there exist several algorithms
that compute approximations under relaxed conditions, for example bicriteria approxima-
tions which relax the number of centers. For example, a randomized bicriteria approxi-
mation by Indyk [Ind99], which is of particular interest to us, computes O(k) centers that
provide a constant factor approximation. The running time is O(nk/ 6?) where ¢ is the
failure probability of the algorithm. Another example is an algorithm due to Meyerson,
O’Callaghan and Plotkin [MOPO04]. It is a constant factor approximation with running time
O(k((k?/¢)-log k)?) under the assumption that there exists an optimal solution where each
cluster has at least Q(ne/k) points for a constant ¢ > 0.

The algorithms by Guha, Meyerson, Mishra, Motwani and O’Callaghan |[GMM™03] and
by Charikar, O’Callaghan and Panigrahy [COP03] work in the streaming model. The
algorithm in [GMMT03] needs O(n®) space and computes a 2°1/%)-approximation. The
algorithm in [COP03] needs O(klog®n) space.

Approximation algorithms for the Euclidean k-median problem. When the set of can-
didates is restricted to the input point set, then the Euclidean k-median problem is a special
case of the metric k-median problem. By the triangle inequality, optimally solving this dis-
crete version yields a 2-approximation for the Euclidean k-median problem where centers
can be chosen from RY. Consequently, all approximation algorithms in Table induce
constant approximations for the Euclidean k-median problem with twice the constant.

When either k& or d is constant, then the (continuous as well as the discrete) Eu-
clidean k-median problem can be approximated to arbitrary precision. Table lists
(1 + e)-approximations for the Euclidean k-median problem for either constant d or k.

The first (1 + ¢)-approximation algorithm is due to Arora, Raghavan and Rao [ARR9S].
It is based on the famous result due to Arora [Aro98] on the Euclidean Traveling Salesman
problem and works for instances in the Euclidean plane, so the dimension is a constant.
Kolliopoulos and Rao [KRQOT7] developed the first (1 4 ¢)-approximation that works in R?
for constant dimensions d > 2, but for the discrete version of the problem. Nevertheless,
it is the base algorithm used by the coreset based results for constant d.

For constant k, the first PTAS is due to Ostrovsky and Rabani [OR02], followed by the
paper that introduced coresets to clustering and which is due to Badoiu, Har-Peled and
Indyk [BHPIO2]. The base algorithm for the coreset construction due to Chen [Che09)
and Feldman and Langberg [FL11a] is due to Kumar, Sabharwal and Sen [KSS10]. The
algorithm by Feldman, Monemizadeh and Sohler [FMSQ7] is stated to be extendable to

20 2 Introduction to the k-means problem

’ Authors ‘ Year ‘ Running Time ‘ Notes ‘ Reference ‘
’ k is a constant, d is arbitrary ‘
Ostrovsky, Rabani 2000 | O(nlk+e"H7W) [OR02]
Bidoiu, Har-Peled and Indyk | 2002 | 2/97% g0y, 10g0%) [BHPI02]
Kumar, Sabharwal, Sen 2004 | O(nd - 2(’“/5)0(1)) [KSS10]
Chen 2006 | O(nd+ 20/97Y 2 10gh+2 p) [Che09]
Feldman, Langberg 2011 | O(nd + 2PV (/2R)) [FLI1D]
’ k is arbitrary, d is a constant ‘
Arora, Raghavan, Rao 1998 | O(nOE+D) d=2 | [ARR9S
Kolliopoulos and Rao 1999 | O(20(oe(1/2)/ 9" D 1ogdto n)| discrete [KROT]
Har-Peled, Mazumdar 2004 | O(n + k®log” n + k% -log® n - [HPMO04]
e((I+log1/e)/e)™™ 1)

Frahling, Sohler 2005 | O(k°log”n + k% - log’n - [FS05]
eO((+log(1/€)/e)*~1))

Har-Peled, Kushal 2005 | O(n + poly(k,logn,1/e) [HPKO07]
+/f(k,¢))

Table 2.3: A list of (1 + €)-approximations for the Euclidean k-median problem.

the Euclidean k-median case but it is not listed since the k-median version is not explicitly
stated.

2.3 Notations in Euclidean geometry

The Euclidean space R? consists of all d-tuples (1, ..., 24)" of values from R, considered as
a column vector. Whenever we talk about the k-means problem, we will always use R¢ as
the space that the input points lie in, even when not explicitly stating so. We assume that
the set N is the set of all positive integers and does not contain 0. However, we sometimes
refer to N as N>Y to emphasize this fact. Further, we use the abbreviation [n] := {1,...,n}
for the set of the first n integers in N.

Points and distances. We call the elements in R? vectors or points. Usually, we denote
points from R? by lower case letters. Point sets in R? are denoted by capital letters and
we denote the input point set of the problem at hand by P C R unless otherwise stated.
P is also used whenever we need an arbitrary point set from R? for a definition. A vector
x from R? is a unit vector if its length ||z|| := /3 ;=1 4?7 is one. For a given finite point
set P, the centroid or mean of P is defined by

2.3 Notations in Fuclidean geometry 21

For two points x,y € R%, we denote their Euclidean distance by

le—yll= | > (@i—w)

i=1,...,d

We use the notation dist(z,y) := ||z — y|| for the Euclidean distance and dist*(z,y) :=
(dist(z, y))? for the squared Euclidean distance. For a finite set P and a point y € RY,
we sometimes abbreviate dist*(P,) = ¥ ,cp dist*(z,y). Given a compact point set P, the
diameter of P is the largest distance between two points in P, and we denote it by

diam(P) := max ||z — yll.

For a non-empty closed (not necessary finite) set L C R? and a point z € R, we
abbreviate the smallest (squared) distance between x and any point from L by dist(z, L) :=
minye, dist(x, y) or dist?*(x, L) := min,ey dist*(x, y), respectively, and call it the (squared)
distance between z and L. Analogously, we denote the (squared) distance between two
non-empty and closed sets Ly, Ly C R? of points by dist(Ly, Ly) := min,cy, dist(x, Ly) or
dist?(Ly, Ly) := mingep, dist?(x, Ly), respectively.

For a point x € R? and a non-negative constant r € RZ% we denote the set of all points
that are within distance r of z by B(z,7), i.e., it is B(x,r) = {y € R? | ||z —y|| < r}. We
call this set the sphere or the ball of radius r around =x.

Scalar product in R%. For two vectors x,y € R? the scalar product (or dot product)
of x and y is defined by (z,y) := 3% | 2;5:. The scalar product is an inner product (see
Section and is also called the standard inner product in R%.

We also use the notation 7y := (z,y). Notice that for a point z € RY, the scalar
product of x with itself gives the squared length of z, i.e., (z,z) = ||z||?.

If the scalar product of two points x,y € R? is zero, then we say that they are orthogonal.
We call a set of points orthonormal if all points are unit vectors and they are pairwise
orthogonal. Orthogonal (and in particular orthonormal) vectors satisfy the Pythagorean
theorem.

Theorem 2.3.1. Let x1,...,7; € R? be k < d pairwise orthogonal vectors from R®. Then

it holds that

k 2

>,

i=1

k
2
=>_ il
i=1
Proof. Let k = 2. Then, we see that
|z +yll* = (@ +y, 2 +y) = (v, 2) + 2z, y) + (y,y) = [|2]]” + []y]]*

The general case follows by induction.]

22 2 Introduction to the k-means problem

Bases and subspaces. Let B = {by,...,b;} C R? be a finite set of vectors. The span
of B is the subset span(B) := {x € R? | 3ay,...,ap : @ = X%, a;b;}. We also say that
B spans this subset. If B contains ¢ > 2 distinct vectors b;,, ..., b;, such that there exists
scalars agq,...,ay, not all zero, that satisfy Z§:1 aib;; = (0,0,... ,0)T then B is called
linearly dependent, otherwise B is called linearly independent. For a linearly independent
B, we say that B is a basis of span(B). For example, if span(B) = R? and B is linearly
independent, then we say that B forms a basis of R?.

A subspace of R? is a subset U C R? which is the span of a finite set of vectors from R,
i. e., there exists a finite set B with U = span(B). Notice that every basis of R? contains d
vectors, and that for a subspace U C R¢, all bases have the same Cardinaht. The number
of vectors in a basis of U is called the dimension of U. The dimension of R? is d.

Abbreviations for the optimal k-means cost. For a given center set C C RY, |C| = k,
the k-means cost of a (finite) point set P € R? as defined in Definition can be rewritten

as
> dist®(z, C).
zeP
We abbreviate this cost by COStZ%<P, C), where the ¢2 indicates that we use the squared
2-norm, which is the Euclidean norm. Additionally, we abbreviate the optimal cost by
costZ%(P), ie.,

% L . o .)
COStZ%(P) = CCg&EiIClW:k costz (P, C) = C’C]lg’},l\ICl’lzkggdlSt (x,C).

If the point set is weighted by a weight function w : P — R, we use

costyz ,(P) 1= ;w(x) dist*(z, C') and costyz ,(P) := 0c£til,i|g|:k costyg o, (P, C).

Moving points. At this point, we add an insight that is often used in coreset construc-
tions. We discuss it here (even though coresets are not the topic here) because it is easy
to prove and adds to our understanding of the k-means problem, and because it will also
help in Chapter [3]

The intuitive idea is that if we move the points in an input point set ‘not too much’, then
the cost function will also not change ‘much’. It makes sense that the dependency between
the distortion of the input and the distortion of the cost function might be quadratic as
the cost function includes squared distances. The following lemma makes this more precise
and gives a bound on how much we can distort an input if we do not want to increase the
cost by more than an e-fraction. Statements like this lemma are frequently used in coreset
theory. A more general version of the following lemma is for example contained in the long
version of [FS05)].

5For vector spaces, these statements are for example proven in Theorem 4 and Corollary 1 on page 44 in
[HK72]. The Euclidean space R? is a vector space (see Example 1 on page 29 plus the fact that R is a
field, page 2), and so is every subspace of it (for which we would have to show that the above definition
implies the precondition of Theorem 1 on page 35 of [HKT2]).

2.3 Notations in Fuclidean geometry 23

Lemma 2.3.2. Let P, Q be two sets of n points in R%, lete € (0,1) and and let 7 : P — Q
2
be a bijection such that Y ||z —7(z)|]* < %-A for A > 0. Then for any set C of k centers
zeP
we have [costz(Q, C) — costyz (P, C)| < e - max{A, costz (P, C)}.

Proof. We use the abbreviation mj . := max{A, costg (P, C)}. Let C' be an arbitrary cen-
ter set with |C| = k. For each x € P let a(z) := dist(z,C) = min.c ||z — ¢|| denote
the minimal distance from z to any center in C, and let a be the |P|-dimensional vec-
tor consisting of all a(x) (fix an arbitrary order). Notice that the k-means cost satisfies
costg (P, C) = |[al|*.

Set a'(x) = ||m(x) — || and let @’ be the | P|-dimensional vector of all a’(x) (ordered in
the same order as a). Notice that COStg%(Q, C) < ||la+d'||* by the triangle inequality. Also

by the triangle inequality, [|a + @'|| < ||a|| + [[a'|] < y/costy (P, C) + \/%- V/A. The square

of this term is

£ g 5 g
coste (P, C) + ZE\/K,/costzg(P, C) + EA < cost (P, C) + 5/\ + 1—6A

which implies that

2
costz (@, C) < costy (P, C) + (% + %)mA,c < costgz (P, C) + £ - max{A, costz (P, C)}.
To obtain a bound on costg(P,C) — costg(Q,C), we distinguish two cases. Either

costyz (Q,C) > costyz (P, C), then the inequality holds because the difference is not positive.

Otherwise, costy (P, c) > costfg(Q,C’). Then we exchange the roles of P and () in the

above computations to obtain

costz(P, C) < costyz(Q,C) + € - max{A, costz (Q, C)}
< costg(Q, C) + & - max{A, costz (P, C)}

because costg (P, C) > costg(Q, C). O

Notice that normally, we use a constant A with A < costz (P, C). In this case, Lemma
directly implies a bound of ¢ - costeg(P, (). On some occasions, we need A when the error
cannot be bounded with respect to COStZ%(P, (') but we want to bound it with respect to a
different quantity.

Matrix notation. It can be useful to represent a set of points by a matrix. For a finite set
of points P C R? with n := | P| points, we define [P] C R™*? as the matrix that contains
the points in P as its rows in an arbitrary but fixed order. Then, [P];; denotes the jth
value in row i for i = 1,...,n and j = 1,...,d, and [P];, denotes the complete i-th row
and thus the i-th point of P in the fixed ordering.

When we want to refer to a matrix without a direct reference to the represented point
set, we usually name the matrix A, its i-th row A;, and the jth entry in row ¢ of A by

24 2 Introduction to the k-means problem

A;j. Occasionally, we also use A,; for the jth column of A. When we use A as the input
to a k-means problem, we mean that we want to cluster the rows of A. Analogously to
the above defined notation we also use costy (A, C) = 3iL; mineec |[Asu — ¢||? for the cost
of clustering the points in A with the center set C, and use the abbreviation Costzg(A) =
miIlC’|C|:k COStZ% (A, C)

We say that A is orthogonal if the set of its column vectors is orthonormal. The Frobenius
norm of A is denoted by ||Al|r, i.e.,

n d
YDA

i=1j=1

|AllF =

Matrix multiplication is a generalization of the scalar product for vectors. Let A &
R4 B € R%™ be matrices. Then the entries of the product A - B are defined by

(A~ B)ij = (Aix, Bsj)

foralli € {1,...,n} and j € {1,...,d}. For two vectors z,y € R?, the scalar product 27y
is just the matrix product of a (1 x d)- matrices with a (d x 1)-matrix.

A matrix always represents a linear transformation or linear map, i.e., a function
f R — R? that satisfies f(z +s-y) = f(x) + s(f(y)) for all z,y € R? and all s € R.
Given a matrix A € R¥*? the corresponding linear transformation is ¢4 : RY — R?
defined by ¢4(z) = Az for all x € R% The matrix-vector multiplication is denoted by
Ax and results in the d’-dimensional vector ((Ay,,z),...,{(Ags, 2))T. Even more, every
linear transformation can be written in this form (see, for example, Theorem 11 on page
87 in [HK72]), which means that linear transformations can be identified with the matrices
representing them. We thus do not distinguish between A and ¢4 and for example say
that ‘A maps a vector’ when we mean that ¢4 maps it.

The set of all vectors that are mapped to the zero vector by A is called the kernel of A
which we denote by

ker(A) := {x € R*| Az = 0}.
Another term used for the kernel of a linear map is null space. The set of all vectors in R¥
that can be reached by A is the image of A which we denote by

im(A) := {y = Az | z € R},
The kernel of A is a subspace of R?, and the image of A is a subspace of RY (see, e.g.,
[HK72], page 71). Their dimensions adds up to d.
Theorem 2.3.3 (Corollary 4.1.9 on page 262 in [Wat10]). Let A € R™*?. Then,
dim ker(A) + dimim(A) = dimR? = d.
The rank of A is the dimension of the image, rank(A) := dimim(A). For a matrix

A € R4 the transposed matrix is the matrix AT € R¥" which is defined by AiTj = Aj.
We note the following fact that we will need later on.

Theorem 2.3.4 (see [Wat10], Corollary 5.8.4 on page 390). For a matriz A € R™*¢ it
holds that rank(A” A) = rank(A).

2.4 A basic observation and its consequences 25

z z
z z
€T T T 2 Yy x Y

Figure 2.5: Two examples of a point set {z,y, 2z} and its 1-median ¢ and 1-mean p. In the
right example, the points are z = (—1,0),y = (1,0),z = (0,1), the 1-median
lies at ¢ = (0,1 — %) and the 1-mean lies at p = (0, 3).

=

2.4 A basic observation and its consequences

For £ = 1, the k-means problem can be solved analytically. More precisely, the optimal
1-mean of a point set P is its centroid, the sum of the points divided by their number. This
the topic of this section and we see a proof for it in Lemma [2.4.1 We use the notation
w(P) == (X,epx)/|P| for the centroid of a point set P.

That the centroid is the best 1-mean is the first of many consequences of the following
basic observation from linear algebra. This lemma is widely used in the development and
analysis of algorithms for the k-means problem. For example, it is needed for the work by
Zhang, Ramakrishnan and Livny in [ZRLI7a] as we discuss in Section [2.4.2] The proof
included here is similar to the proof of Lemma 2.1 in [KMNT04].

The lemma allows to split the 1-means cost of a point set P with a given center ¢ into
the optimal 1-means cost of the point set plus |P| times the distances between ¢ and the
optimal center.

Lemma 2.4.1. Let P C R? be a finite point set and let p := |—113| > wep X be its centroid.
Then, every point z € RY satisfies

D Ml =2l =3 llo = pl® + 1P| |z = pll* = dist*(P,) + |P] - ||z = pl .

veP z€P
It P is weighted by w : P — R, then it holds that ¥ ,cpw(z) - [z — 2||> = Cpepw(z) -
|2 — pwl|? + W - ||z = pw||* where W =3 cpw(@) and py = 55 X pep w(a)a.
Proof. Notice that for all points z,y € R% it holds that ||z + y||*> = (z + y,z + y) =
(@, 2)+2(z, y)+(y, y) = |l=[[*+2(z, y)+{lyl|[*. This implies that ||z—z* = [Jz—p+p—=2||* =
|z — pl|* +2(u— 2,2z — p) + || — z||*>. Furthermore, it holds that

o) = (S o) = 1Pl n=1Pl-n = Pl =0

zeP zeP
Combining both statements implies that

Dol =zl =3 Nl —pll* +2(n = 2)" D (x —p) + 1P| ||z — plf?

zeP reP zeP

=2 _llz=ul* + 1P|z = ul*.

zeP

26 2 Introduction to the k-means problem

Figure 2.6: A third example of a point set {z,y, 2z} and its 1-median and 1-means. When
z is moved further to the right, the distance between ¢ and p increases.

When P is weighted with w : P — R™, the calculation is similar:

> w(@)llz - 2|*

= E;UJ(SU) Nl = gl + 2000 — 2)* E;UJ(SU) (T =) + E;Dw(fv) Iz =
- E;w(x) N = gl [* + 200 — 2)"((E;w(flf)) =W pi) + W ||z = P
= 2;10(56) Nl = pol P+ W |2 = ol

]

We have seen that the proof of Lemma [2.4.1] contains only basic linear transformations.
The variety of consequences that this statement has is thus all the more surprising. The
first and immediate conclusion that we draw is that the 1-means cost of a point set is
always at least dist?(P, u(P)) for its centroid u(P), and therefore p(P) is the optimal 1-
means solution. Additionally, this optimal solution is also unique, because every deviation
from g induces additional cost.

We compare Lemma with the situation for non-squared distances. There, the
triangle inequality looks similar: For any two centers ¢, ¢* € R?, ||z —c|| < [|z—c*||+]||c*—¢]]
holds individually for all points z € R?. However, as this only gives an inequality, it does
not help in finding a closed formula for the 1-median of a point set. In particular, the mean
of a point set is not an optimal 1-median, see Figure for two easy examples where they
do not coincide. Looking at Figure 2.6, we see that the centroid and 1-median can differ
significantly.

Finding the 1-median or geometric median of an arbitrary point set in R is also known
as the Fermat-Weber problem and has a long history. In fact, it is impossible to con-
struct the 1-median using only a ruler and a compass (straight-edge and compass construc-
tions) [Mel73], and the problem is not solvable by radicals [Baj88], i. e., it is not expressable
in terms of (+, —,*, /, ¥ -) over Q. This highlights the importance of the explicit formula
for the 1-mean given by Lemma In the following, we see several other deviations
that equip us with useful knowledge and background for advanced studies of the k-means
problem.

2.4 A basic observation and its consequences 27

2.4.1 Enumerating solutions and connections to discrete clustering

Recall that every center set induces a partitioning of the input point set by assigning each
point to its closest center and breaking ties arbitrarily. Now Lemma tells us that for
each subset in the partitioning containing points assigned to the same center, the cost is
minimized by the centroid of the subset. In particular, in the optimal solution, all centers
have to be the centroids of the subset of points assigned to them. Otherwise, the solution
could be improved by replacing the center by its centroid. This holds because keeping
the assignment of the points to centers while exchanging the centers with the centroids
decreases the sum of the squared distances, and then reassigning points to their closest
center can only further improve the cost.

Now instead of looking for centers and assigning the points to their closest center, we
can also directly look for the optimal partitioning. Given any partitioning, we look at
the squared distances of all points to the centroid of their subset in the partitioning, and
then we look for the partitioning with lowest cost. The optimal solution to this alternative
formulation has the same cost as the optimal solution for the k-means problem, and we
can obtain the optimal centers by computing the centroids of the subsets. We formulate
this as an observation.

Observation 2.4.2. Let P € R? be a point set. Finding an optimal solution for the
k-means problem on P is equivalent to finding a partitioning of P into Py,..., P, that
minimizes the term .

> e = (B

=1 IGPZ'

where u(P;) := ﬁ Yeep, T is the centroid of partition P;.

Observation implies that there are at most £ candidates for the optimal solution
of the k-means problem. Notice, however, that this is not polynomial even for constant k.
In particular, finding good approximate solutions might be easier when allowing centers
that are not centroids of any partitioning.

For the discrete k-means problem, the number of possible solutions is naturally bounded
by n* because there are at most n possibilities to choose each centelﬁ, and this is polynomial
for constant k. This gives an interesting angle if we can establish a connection between
the discrete and continuous case. The following fact states that an optimal solution to the
discrete k-means problem is a 2-approximation for the continuous k-means problem, which
is another quite immediate implication of Lemma [2.4.1]

Lemma 2.4.3. Let P C R? be a finite point set. Let C* be an optimal center set for the
continuous Fuclidean k-means problem and let C}; be an optimal center set for the discrete
FEuclidean k-means problem. Then it holds that

> dist* (2, C) < 2 dist?(z, C*).

zeP zeP

6More precisely, there are (Z) reasonable possibilities because choosing a center twice cannot improve the

solution.

28 2 Introduction to the k-means problem

Proof. Let Py, ..., P, be the partitioning of P induced by an optimal center set. Notice
that this implies that {4, = > ,cp, x‘?lw |i=1,...,k} is an optimal center set for P. For
1=1,...,k, let ¢; € P be a point which is closest to pu;, i.e., for all x € P it holds that

llei — will < ||z — ps||- Now, Lemma implies that

dist™(P;, ¢;) = dist®(Pi,) + | P - [ler = gl = dist® (P, i) + D [les — puil

TEP;
< dist® (P, 1) + Y [l — il | = 2dist* (P, ;)
reP;
holds for all © = 1, ..., k. The inequality holds because ¢; is a point in P which is closest

to p;. Summing up over all P; implies the statement.
O

2.4.2 Alternative formulations for k-means

In Observation [2.4.2], we have seen a partition based formulation for the k-means problem.
We conclude the section with two more examples on how Lemma [2.4.1| can be used to
rewrite the cost function. In particular, we see that the optimal cost can be computed
from other statistics of the point set. We start with the following formulation which is the
basis for the usage of clustering features [ZRL97al.

Observation 2.4.4. Let P C R? be a finite point set with mean p. It holds that

D M —ull? =3 ll2l* = [Pl - ||ull* and therefore

zeP zeP

Ol —cll* =3 [l + 1PI(lu = cll* = [|ul®) for any c € RY.

zeP zeP

Proof. We use Lemma to derive the following equation which yields the first state-

ment:
oMl =3 lle =0l = 3 [l — pll* + [P - || — Of*.
zeP zeP zeP
The second statement directly follows by applying Lemma again. [

Notice that the centroid can be computed by dividing the sum of the points by their
number. With this, we see that the optimal cost and the cost for clustering P with one fixed
center ¢ can be computed by only using the number of the points, the sum of the points
and the sum of the squared lengths of all points. These statistics are named clustering
features in [ZRL97al. The advantage is that they can be stored on the fly. When reading
an input consisting of points, we can update their number, and the two sums after each
point and thus output the centroid and the clustering cost for any desired center at any
point during the pass over the data. We will further investigate this in Chapter |5/ in the
context of data stream algorithms for k-means clustering.

2.4 A basic observation and its consequences 29

A second fact which will turn out to be useful is that the optimal cost can also be
rewritten such that it only depends on pairwise distances of points from the data set. The
benefits of this formulation are not immediately clear, but we will further discuss them in

Section B.1.1]

Lemma 2.4.5. Let P C R? be a finite point set with mean . It holds that

3l =l = o5 = 3 lle = vl

zeP zeP yeP

Proof. We interpret Ssep || —y||* as the clustering of P with center y and can then apply
Lemma [2.4.1] This yields that

s S el = 5 S| Hx—uW) +IPLly =l

yeEP xeP yeP zeP
*lex—ul|2+ Y IPI -y =l
a:EP 2’P’ yeP
= > o —plf.
zeP

3 Dimensionality reduction techniques

An input instance for the k-means problem can be large due to two factors: The number
of input points, and the dimension of the input points. Dimensionality reduction targets
the second issue. The idea is to map the point set to a lower dimensional point set such
that a solution for the lower dimensional problem can be translated to a solution for the
original problem with approximately the same cost. Dimensionality reduction can then be
used to speed up algorithms that have a dimension-depending running time.

After an introduction to this area which includes two important dimensionality reduction
methods, we see a new dimensionality reduction result in Section This result and the
results in Section and Section are joint work with Dan Feldman and Christian
Sohler and have been published in [FSS13].

3.1 Two popular dimensionality reduction techniques

There are different approaches to perform a dimensionality reduction while ensuring that
the solution in the lower dimensional space is somehow transferable to the space of the
original points. One way is to make sure that the clustering cost of every subset of the input
point set is preserved with every possible center. Then, the solution can be transferred to
the original space by transferring the partitioning and getting the centers by computing
the centroids of the subsets in the partitioning. A different way is to project to a subspace
of the original space and show that the optimal centers of the projected point set form a
good solution for the original point set, too. In this section, we will see examples for both
techniques, resulting in two different ways to compute approximate k-means clusterings via
dimensionality reductions. We start with reviewing some necessary facts about projections
from linear algebra.

Projections. The easiest case of a projection is when we project along the axes of the
Euclidean standard basis. If we want to project a vector z = (z1,...,24)7 € R? to the
space spanned by the i-th standard basis vector e;, then the length of the projection is just
|z;|, the ith coordinate of x, and the projection is the vector x;e;. Dimensionality reduction
that selects dimensions and reduces the points to these dimensions are also called feature
selection methods because the dimensions usually correspond to features (attributes that
were measured when collecting the data). Feature extraction methods reduce the dimension
by creating new features, for example by projecting the point set to a lower dimensional
subspace of the input space. Notice that in particular feature selection is not only used
to reduce the size, but also to get rid of unimportant features in order to increase the

32 3 Dimensionality reduction techniques

classification quality. For a broader discussion see [JDMOO, [JMF99]. In the following, we
mostly consider feature extraction.

An easy case of feature extraction is to (orthogonally) project onto the (one-dimensional)
subspace spanned by an arbitrary unit vector u € R%. We use the same principle as for
the standard basis vectors, but we need an appropriate basis to understand the projection
better. So, we extend u to an orthonormal basiq| by choosing appropriate vectors by, . . . , by.
Then any vector z € R? has a unique representation in this basis, given by the unique
choice of coefficients «, (s, . . ., B4 that satisfy x = a-u+ 3,5 5;b; (see Lemma in the
Appendix). Now we define the projection of x onto the direction of u as « - u. Notice the
similarity to the case of the standard basis, because the length of this projection is just the
(absolut value of the) coefficient of u in the representation of the basis u, by, ..., by, and
the projection is this coefficient multiplied by the basis vector wu.

Projections and the scalar product. In this context, the following property of the scalar

product is particularly useful to keep in mind. Given a unit vector v € R, it holds for every

r € R4 that |uTxz| is just the length of the projection onto the subspace spanned by u. This

is true because for the unique representation x = a - u + 3., Bib; with o, o, ..., B4 € R?

and the orthonormal basis u, bs, . .., bg we get that ulx = u (o - u + ;5 Bibs) = aulu +
¢, BuTh=a-1+3%,8-0=a.

Observation 3.1.1. Let x € R? be an arbitrary vector from the d-dimensional Fuclidean
space and let u € RY be a unit vector. Then, |ulx| is the length of the (orthogonal)
projection of x onto the one-dimensional subspace spanned by u, and the projected vector
is (ul'z)u.

When we recall from trigonometry that the scalar product also satisfies 7y = cos(<tzy)-
||z|| - [|lyl|, we get an alternative way to derive this fact?] The scalar product of a vector
with a unit vector u € R? satisfies 7u = (<wu) - ||z||. Now consider the case that zu
is positive and recall the definition of cosine in right-angled triangles. Then Figure
visualizes why the scalar product of x and wu just gives the length of the projection of x to
the direction of w.

Projection matrices. We can also define a map Typan(u)(z) = (u’z)u that maps every

vector in RY to its projection in span(u). This projection (and, in fact, every projection) is a
linear transformation because for all z € R? and all s € R, we have that Tspan(u) (8- T +y) =
(u" (s x +y))u = S - Tspan(u) (T) + Tpan(u) (y) by the definition of the scalar product. As
a linear transformation, it can be represented by a matrix in the form mgpan(u) (x) = Ax.
Indeed, we see that Tapan@)(z) = (0’ z)u = uw(u"z) = uu’z because multiplication with
a scalar is commutative and because matrix multiplication is associative. Now, by the

IThis is possible due to the orthogonalization process by Gram [fPG83] and Schmidt [Sch07], also see
Corollary 5.5.3 in the appendix.

2Here, cos(<try) denotes the cosine of the angle between z and .

3.1 Two popular dimensionality reduction techniques 33

2Ty = cos(<wu) - ||z]| = % |lz|] = [|p]|

«— ||p|| = adjacent —

Figure 3.1: A visualization of Observation .

definition of the matrix product,

uiuy -+ UrUq
uu- =

Uquy -+ UqUq
is a d x d-matrix, the so-called tensor product of u with itself. We call a linear transformation

that maps a vector to a subspace projection (even though this creates a homonym), and
we call the corresponding matrix projection matriz.

Projecting to subspaces of higher dimensions. To define the (orthogonal) projection

onto a d’-dimensional subspace U, we choose an orthonormal basis aq,...,as of U and
extend it with d—d’ vectors by, 1, ..., bg to an orthonormal basis of R?. For any z € R? with
the unique representation x = Zle o - a; + Zf:d,ﬂ Bib; for aq, ... aq, Bary1,- -, Pa € R,

we define the projection of z to U as Y%, a; - a;.
As we have already seen above, «; is just (a;)Tx for all i € [d'] because the a; are unit
vectors. Thus, we can rewrite the projection of z to U by

d/

d/ d/
Z o - a; = Z(a;fpx)ai = Z aia;frx.
i=1 i=1

=1

Thus, the projection matrix of the linear transformation 7y : R? — U mapping every
r € R? to its projection in U is just Zf/zl a;al, the sum of the projection matrices for
mapping to each of the one-dimensional subspaces spanned by the basis vectors of U. We
usually denote the projection to a subspace U by 7.

Distances and subspaces. We explicitly state two facts about distances to subspaces
and to points within subspaces that are based on projections. First, using the notation
from the last paragraph, notice that every point y € U is of the form y = Ele asa;

for uniquely defined o) € R. This implies that the squared distance between a point

34 3 Dimensionality reduction techniques

r=%% a;-a; + E?:durl Bib; € RY and y is just

d d 2 d
dist®(2,y) = ||D (s —a)ai + > Bibi|| = > (i —a)llail*+ > Billbil
i=1 i=d'+1 i=1 i=d'+1
& d
=D (w—a))’+ > B (3.1)
i=1 i=d'+1
where the second equality follows by the Pythagorean theorem and the fact that
{ai,...,a@,bay11,...,bq} is an orthonormal basis. As the second term is independent of y,
dist?(z, y) is minimized when o; = o for all i = 1,...,d', i.e., when y = 7y (z).

Observation 3.1.2. Let U C R? be a subspace of R? and let x € R? be a point. It holds
that

dist?(z,U) = Hél(l}l dist?(z,y) = dist*(z, Ty(z))
y

where Ty 1s the projection to U.

Another look at Equation also tells us that we can split the squared distance between
z and y in two parts. The first term, % (o — a})?, is the distance between y and 7y (z),
while the second term, 3¢, ., 32, is the distance between x and 7;(z). This in particular
holds for y = 0, when dist?(x, y) collapses to ||z||> and dist®(7y(z), y) becomes ||my(z)||?.

Observation 3.1.3. Let U C R? be a subspace of R?, let x € RY be a point and let y € U.
It holds that

2| = distz(q:, 7y (2)) + ||mo(2)|]* and distQ(a:,y) = distQ(x,ﬂU(x)) + distQ(WU(:c),y)

where my is the projection to U.

Maps to a lower dimensional space. Instead of projecting the points to a subspace of
lower dimension, we can also directly define the linear transformation to a lower dimensional
space RY. We just use the basis {ai,...,aq} of the subspace and map every x to the d'-
dimensional vector of the coordinates in this basis. This linear transformation is given by
the (d' x d)-matrix which contains the a; in its rows, because then the ith entry of the

resulting vector when multiplying the matrix with x is just (a;)? .

3.1.1 Random projections

We start with a dimensionality reduction method that maps the input points to a different
space of lower dimension. This means that the projection maps to points with less coordi-
nates which do thus not lie within the original Euclidean space. Our focus is on preserving
the k-means objective function, i.e., on providing a point set of smaller dimension which
has a similar k-means cost as the original point set, preferably for every choice of k£ cen-
ters. We have seen that a linear transformation to a space of dimension d’' is given by a
(d' x d)-matrix.

3.1 Two popular dimensionality reduction techniques 35

The easiest idea that might come to mind is to choose a random transformation by
picking a random matrix. That this approach does actually work (if we pick according to
a suitable probability distribution) follows from a seminal result by Johnson and Linden-
strauss from the eighties [JL84], the so-called Johnson-Lindenstrauss Lemma, sometimes
also referred to as Johnson-Lindenstrauss flattening Lemma. We now state the Johnson-
Lindenstrauss Lemma and discuss its importance. That it includes a random choice of a
linear transformation will become clear in the paragraph after that. The following formu-
lation of the Johnson-Lindenstrauss Lemma is inspired by Dasgupta and Gupta [DGO03].

Theorem 3.1.4 (Johnson-Lindenstrauss Lemma [JL84]). Given a constant € € (0,1) and
integers n and d' with d > dy € O(s=2logn), there exists a linear map f : R* — RY such
that for all x,y € P, it holds that

A =g)llz —yll <If (@) = fWI < A+ &)l —yll.
Such a map can be found in randomized polynomial time with constant success probability.

Theorem states that every point set P with |P| = n can be reduced to O(¢~%logn)
dimensions, disregarding its original dimension, while approximately keeping the pairwise
distances. Distance-preserving projections to a different space are called embeddings. 1f
an embedding has no error, it is called isometric embedding. The Johnson-Lindenstrauss
Lemma gives an approzimate embedding.

Embeddings can be seen as a form of compression. As Matousek [Mat02] says: If we
have n points in R™, storing them means storing ©(n?) numbers. It also means storing
O(n?) numbers if we decide to simply store their pairwise distances. However, if we fix €
to a constant and use Theorem [3.1.4] we can project the points to O(logn) dimensions,
meaning that we only need to store O(nlogn) numbers. Yet, all pairwise distances can be
approximately recovered from the compressed point set.

There is a high interest in embeddings, and we are only discussing the Johnson-Lindenstrauss
Lemma and its implications for the k-means problem here. For an overview on the more
general topic of metric embeddings, see for example the book chapters by Matousek [Mat05]
or Indyk and Matousek [IM04] on embedding finite metric spaces. For a survey on impli-
cations of embeddings for algorithms, see Indyk [Ind01].

A finite metric space is given by a finite number of points and a choice of pairwise dis-
tances that satisfies the properties of a metric. Thus, n points in the Euclidean space and
their pairwise distances form a metric space, and the Johnson-Lindenstrauss Lemma is an
approximate metric embedding. As such, it is also discussed in the two above references.
Actually, the Johnson-Lindenstrauss Lemma holds a special position among metric embed-
dings because it gives a surprising and strong result. For example, consider the case of [y
norms, i. e., the case that we define the distances for two points z,y € R? by %, |z; —).
Then an approximate embedding like in Theorem with parameter ¢ requires that the
target space has at least n"*) dimensions [BCO5, [LN0O4]. Thus, basically no analogue to
the Johnson-Lindenstrauss Lemma can exist for /; norms.

36 3 Dimensionality reduction techniques

Application to the k-means problem. The approximation guarantee in Theorem |3.1.4]is
stated for non-squared distances. Some of the proofs of the Johnson-Lindenstrauss Lemma
directly prove the statement for squared distances. However, notice that this is not required
if we are not interested in the actual constants. If || f(z) — f(y)|| < (1 + ¢)||z — y||, then
@) = FIE < (0 +2Plle —ylP = (1+ 20 +)]l — g2 < (1 + 39)][x — yl[*, and a
similar chain works for the lower bound on ||f(z) — f(y)||*. So, applying Theorem
with a smaller epsilon gives the same approximation guarantee for squared distances.

Now, reconsider Lemma [2.4.5] from Section [2.4.2) which says that the sum of the squared
distances of points to their centroid can be written by solely using the pairwise distances
of the points. This does not only apply to the whole input set P, but also to every subset
of P. Thus, preserving all pairwise distances also preserves the 1-means clustering cost of
every subset of P. Recall that Observation [2.4.2| says that we can find an optimal solution
by finding an optimal partitioning. Therefore we can approximate the k-means cost of a
point set by projecting it to O(¢~2logn) dimensions and then computing the k-means cost
of the projected point set.

Lemma 3.1.5. Let P € R? be a point set with n points and let € € (0,1) and d' > dy €
O(s%logn) be constants. There exists a linear map f : R* — RY such that

(1—¢)- costyz (P) < costzg(f(P)) <(1+¢)- COStZ%(P)
where f(P):={f(x) |z € P}.

Proof. We apply Theorem with precision parameter /3, gaining that there exists a
map f : R — ROE1gn) guch that (1—¢)||z—y|[> < ||f(z)—f@)|| < (1+¢)||z—y]]* holds
for all x,y € P. By Observation [2.4.2, optimizing the k-means cost function is equivalent

to finding a partitioning of P into k subsets Py, ..., P, minimizing
k
2 2
Y fle— u(P)l =3 5y 2 lle =l (32)

1=1x€P; z,yeb;

where the equality is due to Lemma 2.4.5] Let Py, ..., P} be an optimal partitioning of
P. This partitioning can be applied to f(P) (just partition the projections accordingly),
and we can use it to bound the k-means cost of f(P) by using formulation (3.2 again. This
implies the second inequality of the observation because

Z 1f(x) = f)II®

z,YeR;

costiy (/(P))

IN
Mw

@
I
—

IIMw

Z (14&)||x —y|]* = (1+¢) - costyz(P).
yeP,

3.1 Two popular dimensionality reduction techniques 37

Assume that costzg(f(P)) <(1—¢)- costzg(P). Let P/, ..., P/ be a partitioning of P that
is optimal for f(P), which implies that

k
* * 1
(1 —¢) - costyz(P) > costys (f(P)) = 272|P’| > f @) = W)l
=1 il yeP!
koo)
> —(1—¢)- Y |lz—y|]?> (1 —¢)-costp(P)
i=1 2|P| / 2
1= ? z,YyeP;
which is a contradiction. So, (1 —¢) - cost}‘%(f(P) < Costz%(P). O

Proof idea for the Johnson-Lindenstrauss Lemma. There exist different proofs for
Theorem which yield different values of dy and matrices with different computational
properties. In the original proof by Johnson and Lindenstrauss [JL84], dy was only specified
asymptotically. A later proof by Frankl and Maehara [FMS8S]|, which is generally said to
be much simpler, achieves a value of dy = ﬁ logn + 1 for the dimension of the target
space. The next alternative proof can be found in (the appendix of) the paper by Indyk
and Motwani [IM98§] in 1998. A notably concise proof using elementary probability theory

4

is due to Dasgupta and Gupta [DG03]. The latter achieves a dimension of dy = =57 Inn.

/3
Additional alternative and short proofs are contained in the papers by Matousek and

[Mat08] and by Indyk and Naor [INO7].

The core of the proof is showing that for a suitable probability distribution, a randomly
chosen linear transformation does not distort the length of an arbitrary but fixed vector
r € R? too much. More precisely, a lemma like the following statement holds. A simi-

lar statement can be found in the presentation of the Johnson-Lindenstrauss Lemma by
Matousek in [Mat0§].

Lemma 3.1.6. Given a constante € (0,1) and integersn and d’ with d' > dy € O(e2*logn),
there exists a probability distribution D over the space of all d' x d-matrices such that a
random matriz A* drawn according to D satisfies for every fized vector x € R? that

Prob (1 —¢&)[|z|| < [[A™z[| < (1 +&)l[x]]) = 1 - 732

The randomness in this statement is (only) over the random choice of A*. The prob-
ability 1 — 1/n? means that we can apply Lemma to n?/k vectors simultaneously
and achieve that the approximation bounds hold for all vectors simultaneously with the
constant probability 1 — 1/k by the union bound (for a constant number x). Given a
set of n input points P, the idea is to look at the (Z) = @ < n?/2 distance vectors
between pairs of input points. A random linear transformation chosen according to D
will then satisfy (1 —¢)||lz —y|| < ||A*(z — y)|| < (1 +¢)||z — yl|| for all z,y € P at the
same time with a probability of at least 1/2. As A*(z —y) = A*x — A*y, this implies the
Johnson-Lindenstrauss Lemma.

38 3 Dimensionality reduction techniques

Lemma is an illustration of the type of result that is needed to obtain Theorem[3.1.4]
but different proofs of the Johnson-Lindenstrauss Lemma use different (but similar) state-
ments. In particular, the proof in [DG03] that we now shortly review, contains a different
concentration lemma. In fact, Dasgupta and Gupta also proof a slightly stronger version
of the Johnson-Lindenstrauss Lemma where the distances are squared.

As in earlier proofs, Dasgupta and Gupta chose A* as a projection to a random k-
dimensional subspace, appropriately scaled. Notice that the proof can be restricted to
unit vectors because A*x is a linear map. So the proof requires to show that the length
of the scaled projection of a given unit vector to a random dy-dimensional subspace is
close to one with the given probability. This is essentially the same as showing that the
scaled projection of a random unit vector on its first dy coordinates satisfies this property.
Imagine that we want to project a vector to a random subspace. Then we draw a random
unit vector, rotate our unit vector into this vector, project it to its first dy coordinates and
reverse the rotation.

A random unit vector is drawn as follows. Define d independent random variables
X1, ..., Xq which are N'(0, 1) distributed and write X = (X7,..., X4)". Then the random
unit vector is just X/||X]||, and the result of the projection is Y = (Xi,..., Xa)/||X]|-
Now the core of the proof in [DGO3| is to show that the squared length of Y deviates
from k/d with sufficiently small probability. This suffices to show a sufficient concentra-
tion bound similar to Lemma and to achieve a Johnson-Lindenstrauss Lemma with
squared distances for projections to dy = ﬁ Inn dimensions.

Computationally preferable versions of the Johnson-Lindenstrauss Lemma. As the
proof idea above suggested, the linear map A* will consist of real values, chosen from a
scaled Gaussian distribution. This means that constructing A* and calculating the matrix-
vector product A*x is computationally expensive.

Achlioptas [Ach03] suggested two computationally preferable versions of the Johnson-
Lindenstrauss Lemma. The first version uses only {—1, +1}-based random variables. Every
entry is chosen uniformly at random from {—1,+1}, then A* is appropriately scaled. In
his second version, each entry of A* is either +1 with probability 1/6, —1 with probability
1/6 and 0 with probability 2/3, then A* is again appropriately scaled. His work shows the
two main ideas that help to find embeddings with better computational properties. First,
the usage of randomness is expensive, and drawing Gaussian distributed numbers is more
expensive than drawing from a finite set of constants. Second, sparse matrices reduce the
computation cost because the zeros do not contribute to the matrix-vector product.

A lot of research was subsequently devoted to the field of computationally efficient
Johnson-Lindenstrauss embeddings. Ailon and Chazelle [AC09] overcame the challenge
that significantly sparse random projections do no longer satisfy sufficient concentration
of the length of projected vectors around their expected value. They showed that the
concentration holds if the coordinates of the input vector are in some sense ‘well spread’
meaning that the maximum entry of the vector x is around 1/ vd. They then defined
A* as the product of different matrices, first spreading the coordinates of an input vector

3.1 Two popular dimensionality reduction techniques 39

Figure 3.2: An example of a point set and its principal components. The black arrows
indicate the standard basis, the red and blue arrow indicate a basis based on
the principal components.

with high probability before applying the actual projection. The sparsest known Johnson-
Lindenstrauss embedding is due to Kane and Nelson [KN12]. Their construction yields
embeddings where the matrices contains at most s = O(e~'log(n)) nonzero entries in each
column, while still embedding into only O(s7?1og(n)) dimensions.

Several other variants and improvements were proposed between the work Achlioptas
and the result by Kane and Nelson, and the field is still developing. For pointers to several
papers from this field, including derandomization results, see for example the introduction

of [KN10].

Lower bound. The Johnson-Lindenstrauss Lemma is tight (up to constant factors).
Alon [Alo03] shows (in Section 9, Remarks) that in order to embed n + 1 points with
pairwise distance 1 into R? such that the pairwise distances of the projected points lie
within (1,1 + ¢), it must hold that d' € Q(mlog n). By scaling, this lower bound
also applies to the above version of the Johnson-Lindenstrauss Lemma. The (log1/e) gap
was closed for random linear maps by Jayram and Woodruff [JW13] and Kane, Meka and

Nelson [KMNT1], and for all linear maps by Larsen and Nelson [LN14].

The tight lower bound in particular means that the logarithmic dependence on the
number of points is necessary. Notice however that this does not mean that embeddings
into smaller dimensions cannot preserve the k-means cost function. While Lemma [2.4.5
gives a convenient way to use embeddings, it is not necessarily the only way. What the
lower bound does tell us is that any dimensionality reduction to o(logn) dimensions that
wants to preserve the k-means cost function by an arbitrarily small factor cannot preserve
the pairwise distances.

40 3 Dimensionality reduction techniques

3.1.2 The best fit subspace and the singular value decomposition

Now we turn to a equally popular tool for dimensionality reduction. Consider Figure
It shows a point set in R? and the standard two-dimensional Euclidean basis. The mean of
the point set lies in the origin. Assume we want to reduce the point set to one dimension,
but we want to keep as much of the lengths of the vectors as possible. Then projecting
them to the direction of the red vector is the best thing to do. It points into the direction
where the point set has the largest variance, also called principal component. Alternatively,
we can also say that it spans the one dimensional best fit subspace, which is the subspace
minimizing the (squared) distance of the points to the subspace.

In particular in higher dimensions, more than just the first principal component are of
interest. To find the next principal component, we look at the subspace orthogonal to the
first component and again pick the direction where the points have the highest variance.
This is iteratively done until all principal components are found. In Figure [3.2] the second
direction is basically determined because there is only one subspace orthogonal to the red
vector.

We now review the mathematical background of this idea. As it turns out, given a
point set P, the principal components are the eigenvectors of the matrix [P]T[P]. Most
of the time, we look at them from a different angle, based on the singular value decom-
position (SVD). The SVD allows us to rewrite a matrix as a product of matrices which
are composed of singular vectors and values of [P]. We will discuss the definition and
interpretation of these terms below. The singular value decomposition is older than the
Johnson-Lindenstrauss Lemma and was developed by different mathematicians around the
beginning of the 19th century. For an historical overview on the origins of the decomposi-
tion, see the survey by Stewart [Ste93].

Definition of the SVD. The singular value decomposition (SVD) of a matrix A € R"*¢
allows us to write A as A = UDV? where D € R is a diagonal matrix and U € R™*",
V € R¥9 are orthogonal matrices, i.e.,

o 0

’ .
U == Ul ... un s D = 0 e O-min{nvd} y VT =
|

where u1,...,u, € R® and vy,...,v4 € R? are orthogonal unit vectors and o; > oy >
... Omin{n,d} = 0 are nonincreasing and nonnegative values. Such a decomposition always

3.1 Two popular dimensionality reduction techniques 41

exists (see, e.g., [Watl0], page 260, Theorem 4.1.1). Notice that

01Ul O2U21 - Omin{n,d} Ymin{n,d}1 v
—_ vy —
O1U12 O2U22
UpvT = :
O1Uin O02U2n, *°* Omin{n,d} Ymin{n,d}n
min{n,d} min{n,d}
D1 Tilli1Vi1 Dl TiUi1Viq
min{n,d} min{n,d}
dim1 TillinVit " D=1 O UinVid
min{n,d}
— 2= OitilVy —
= : (3.3)
min{n,d}
— 2=l OiUinV; —
min{n,d}
i=1

where wu;; and v;; are the jth coordinate of u and v, respectively, and w;v} is the tensor
product of u; and v;. When we restrict the sum in Equation to the first & < min{n, d}
terms, we get the matrix A% = Y% gu0! = UD®VT where D is the matrix result-
ing from replacing oy11, ..., Omin{n,dy by zeros. We discuss A®) in more detail on page

This decomposition is called singular value decomposition because it contains the values
01, .., Omin{n,ay Which are the singular values of A, and because it contains singular vectors,
the u; and v;. In the following, we review the definitions of eigenvalues, eigenvectors,
singular values and singular vectors and see why they can be used as building blocks of
this decomposition.

Eigenvalues and eigenvectors. For a square matrix A € R¥? a real value A € R is an
eigenvalue if there exists a nonzero vector v € R called eigenvector such that

Av = Mo, (3.5)

Notice that while the eigenvectors are nonzero by definition, the eigenvalues can be zero.
Then, the corresponding eigenvectors are mapped to the zero vector and thus belong to
the kernel of A. The other way around, every nonzero vector in the kernel of A is an
eigenvector corresponding to the eigenvalue zero, and an orthonormal basis for the kernel
forms a set of orthonormal eigenvectors belonging to the eigenvalue zero. By Theorem [2.3.3]
on page [24] this set contains r := d — rank(A) vectors v1,...,v,. If we can extend this
set with rank(A) eigenvectors which belong to nonzero eigenvalues, are orthogonal to each
other, and are orthogonal to vy,...,v,, then we have a basis for R" consisting solely of
eigenvectors. Such a basis is called an eigenbasis. It always exists in the case of symmetric
matrices.

42 3 Dimensionality reduction techniques

Theorem 3.1.7 (Theorem 8.1.1 on page 393 in [GLI6], Lemma 1.21 on page 21 in [MS06]).
Let A € R™? be symmetric. Then there exist d distinct eigenvectors of A that are pairwise
orthogonal with d corresponding eigenvalues, and the number of eigenvectors belonging to
nonzero eigenvalues is equal to the rank of A.

Singular values and vectors. If A € R™ ¢ is not square, singular values and a pair of
singular vectors replace eigenvalues and eigenvectors, because Equation is not well-
defined in this case. A real value o € R is a singular value if there exist a left singular
vector v € R™ and a right singular vector v € R? such that

Av =ou (3.6)

ul'A = ov?.

Consider the matrix AT A € R?*? and notice that this matrix is symmetric. Thus, there
exist d pairwise orthogonal eigenvectors of AT A with corresponding eigenvalues. By the
following fact, the non-zero eigenvalues of AT A are also singular values of A.

Lemma 3.1.8. For every non-zero eigenvalue X of AT A with corresponding eigenvector
v € R?, X is positive and o = /X is a singular value of A with corresponding left singular
vector v and corresponding right singular vector u := Av/o € R™.

Proof. We follow the corresponding part of the proof of Proposition 1.2 on pages 162 and
163 of [KV09]. Notice that u’ A = o7 1wTATA = o7 M7 = ov® and Av = 0 Av/o = ou by
definition of ¢ and w, so all that is to show is that ¢ and u are actually well-defined. For
this, notice that

AT Av = W
= vl AT Av = MoTw
= || Av][* = A[Jv]|?
= A= || Av[]/[]o|]* > 0

and thus A is non-negative. By our assumption that A # 0, this means that A > 0. Thus,
o=+ and u := Av/o are well-defined. O

Notice that if v; and v; for ¢ # j are orthogonal eigenvectors of A with corresponding
eigenvalues o; and o;, then (Av;/0;)" Avjo; = o;05vFv; = 0 and thus, u; := Av;/o; and
u; := Av;j/o; are also orthogonal.

By Lemma rank(ATA) = rank(A), so Lemma [3.1.§] implies the existence of
r := rank(A) nonzero singular values oy, ...,0, of A, together with r corresponding left
singular vectors uq,...,u, and right singular vectors vy, ..., v, which satisfy that all left
singular vectors are pairwise orthogonal, and all right singular vectors are pairwise orthog-
onal. Assume that we extend {v,...,v,} to an orthonormal basis of R? by adding an
orthonormal basis v,41,...,v4 of the kernel of A. Let € R? be an arbitrary point from
R? and define o; by = = Ele a;v; (such a; must exist and are unique because the v; form

3.1 Two popular dimensionality reduction techniques 43

a basis). Notice that |a;| is the length of the projection of z into direction v; because
vl'z = vl Y0, aju; = a;. Then it holds that

)

d d T r r r
Ax = AZaivi = ZaiAvi = Z@iUiui = Zaiuiai = ZUiUz’UiTl’ = (Z UWW?) €.
i=1 i=1 i=1 i=1 i=1 i=1
(3.8)
In other words, the matrix Y/_, o;u;v] maps an arbitrary point x to Az. This implies that

A =3"_, ou;vl and we have found our decomposition except for the fact that the sum only
goes up to r instead of min{d, n}. However, we can extend the u; to a basis of R” by adding

a basis {t41,...,u,} of the kernel of A”. Additionally, we set 0,41, ..., Omin{na = 0.
Then we achieve that {w;};—1,. , and {v;},—1 4 are orthonormal sets that span R"™ and
R?, ; > 0 are non-negative numbers and A := Zﬁ?{"’d} ouvl

Theorem 3.1.9 ([Watl(], Theorem 5.8.11 on page 391, and [KV09], Theorem 1.3 on
pages 163-165). Let A € R™? be a nonzero matriz with rank r. Then there exists an
orthonormal basis v, .. .,vg of R and an orthonormal basis i, . .., u, of R and positive
values o4 > 09 > ... > o, > 0 such that

T

oo t=1,...,r T, Joovy t=1,...,r
A“i_{ 0 i=r+1,....a “iA_{ 0 i=r+1,...,n

It holds that A = Z?;hf{n’d} ouvl
Geometric interpretation of singular values and vectors. We have a short look at the
interpretation of singular values. For this purpose, we loosely follow the introduction of
Section 1.1 on pages 161-162 in [KV09|. Recall that the singular values are ordered such
that o1 > 0o > ... > 0, > 0. Also recall that we defined a basis vy, ..., vy consisting of
orthogonal unit vectors, where vy, ..., v, are right singular vectors ordered according to
the corresponding singular values, and the remaining vectors are a basis of the kernel of A.

Our first observation is that vy, the right singular vector belonging to o7, maximizes the
expression ||Av|| among all unit vectors from R?. To see this, let = be an arbitrary unit
vector. We can express by x = Y%, a;v;. First notice that Y7 ; a? = 1 because z is a

2
unit vector and 1 = ||z||* = HZ?ZI ail| =S4, ?|uil)? = =4, o? by the Pythagorean
theorem 2.3.11 Now we observe that
d 2 d 2 d d
[Az|)? = D du|| = ||D auoiw|| =D aiof||wl]* =D ajo}.
i=1 i=1 i=1 i=1

This sum is maximized if a? = 1 and o? = 0 for i # 1. Thus, v; maximizes ||Az||> among
all unit vectors, and thus it also maximizes ||Az|| among all unit vectors.

Now notice that if a vector x is orthogonal to vy, then its a; has to be zero. Thus, among
all vectors that are orthogonal to vy, vo maximizes ||Az||? because ay = 1 and «; = 0 for

44 3 Dimensionality reduction techniques

1 # 2 is the maximal choice. This argument works inductively. Furthermore, if we are
given any v; that maximize ||Av|| in this fashion, then this is enough to ensure that the
vectors are singular vectors ordered according to their singular values.

Theorem 3.1.10 (KV09, Theorem 1.3 on pages 163+164). For A € R"™? find vectors
such that

v = arg II‘n‘ax || Av]|,

_ A
vp=arg, max [l

= A
vd arg”vH:l,(v,vlr)n% Vi=1,...,d || U”

Then allv; € R? are right singular vectors of A with corresponding singular values oy, . . ., 04,
and it holds that o1 > 09 > ... > 0y.

We have a look at the geometric interpretation of ||Av||. For a point A;. in A and a
unit vector v, we notice that ||A;.v|| is the length of the vector that arises from projecting
A to the direction of v by Observation [3.1.1 Thus, Av contains these projection lengths
(plus a sign), and ||Av||? is the sum of the squared projection lengths.

We have seen that for a singular vector v;, it holds that || Av;|| = ¢;. This means that one
interpretation of the singular value o; is that it is the square root of the sum of the squared
lengths of all points in A when projected onto the direction of the right singular vector v;.
Singular values are thus a measure of the extent of the point set into the direction of the
corresponding right singular vectors.

Recall that span{v} := {av | @ € R} is set of all points spanned by a vector v. By
Observation [3.1.3] the length of a vector A;, satisfies that ||A.||> = dist?(Aj., span{v}) +
|| Assv]|?, which implies that

[1Av][* =3 || Aol |* = ZIIAWII2 dist”(Ay, span{v}).

As the length of the vectors is fixed, this means that maximizing ||Av||? is equivalent to
minimizing 37, dist?(Ay, span{v}), the sum of the squared distances of all points to the
line spanned by v. Thus, v; is the vector minimizing the sum of the squared distances of
all points in A to the line spanned by v;. Again, this argument also works inductively.

Theorem 3.1.11 (KV09, Theorem 1.3 on pages 163+164). Find right singular vectors
v; € R as in Theorem|3.1.10, For k < d, define V}, := spanf{vy, ..., vz} as the span of the
first k of these vectors. Then, V) is a best fit subspace of dimension k, i. e.,

Vi = arg Z dist? (A, V).

VCR™ dlm(V

3.1 Two popular dimensionality reduction techniques 45

Finally, we have a second look at Equation , which tells us that A;, can be written as
Zf;hf{n’d} o;u;jv;. Notice that A;,v; = o;u;; because Av; = o;u;. Thus, o;u,; is the length of
the projection of A, to the line spanned by v;. We get the projected point by multiplying
this with v;, i.e., the projection of A;, to span{v;} is o;u;;v;. Thus, Z?;hf{"’d} O v; 18
just the sum of the projections of A, to all vectors of the basis vy,...,v4 which do not
belong to the kernel of A, which makes sense. If we ignore upper terms of this sum and

get Y8, 0;u;;v;, the resulting point is just the projection to the best fit subspace V.

Observation 3.1.12. The matriz A% = Zi-“:l oiuv; = UD®VT contains the projections
of the row vectors of A to Vj as its rows.

SVD and k-means. The best fit subspace from Theorem [3.1.11] gives us a computable
lower bound on the k-means cost of a point set because the squared distances to k centers
cannot be larger than the squared distances to a subspace of dimension k. This follows
basically from the Pythagorean theorem [2.3.1] or the observations on the squared distances
to subspaces that we showed earlier, based on the Pythagorean theorem.

Observation 3.1.13. Let A € R™? be a matriz, let k be an integer and let C' be a set of
k centers. Then it holds that

dist*(A, V) < costez(A, C).

Proof. Let Vj, be the subspace spanned by the points in C. As Vj, is the best fit subspace,
we have that dist?(A4,V;) < dist?(A4,V,). Furthermore, by Observation [3.1.3, we know
that dist®(As,c) = dist?(Az, mp (i) + dist®(mp, (Aix),) for all ¢ € C C Vi, and for
all i = 1,...,n. As >, dist2(Ai*,7rVk(Ai*)) — dist?(A, Vi) by Observation and
dist? (7, (Aii),) > 0, this implies dist*(A, Vi) < costz(A, C). O

Drineas, Frieze, Kannan, Vempala and Vinay [DFK™04] show that the best fit subspace
Vi can also be used to reduce the dimensionality of the input data at the cost of a constant
factor in the cost function. Recall that A®) is the matrix containing the projections of all
points to Vi, and Ag-li) is the projection of the jth point to Vj. Let C'(*k) C Vi be an optimal
center set for A®)_ i.e., an optimal solution for the projected point set, and let C* be an
optimal center set for A.

Let A;, be an input point and let ¢ be its closest center in C*, while ¢’ is its closest
center in). Observation says that by the Pythagorean theorem, ||A;. — c||* =

||Aj*—A§-i) | |2+||A§-i)—c’| |*. By the above argumentation, we already know that 7_, || A;.—
A§ﬁ)||2 = dist*(A, V) < costzg(A, ('), so we only have to worry about the second term.

Define Dj, := A, —cfor j =1,...,n. We can express Dj, by its representation in the
singular vector basis vy, . . ., v4, let the coefficients in this representation be o , ..., aqg € R,

ie, Dj, = Zle a;;v;. Notice that D](»l:) = > i1 i;v; is the projection of Dj, to Vi, and
that HD](]:)H is just the distance between A, and its closest center after both are projected
down to V.

46 3 Dimensionality reduction techniques

Furthermore, notice that ||D§],f)||2 < ||Dj«||* by the Pythagorean theorem because the
vectors vy, ...,vg form an orthonormal basis. This implies that the (squared) distance
between Ayi) and 7y, (c) is at most the distance between A, and c. As this holds for all
points, we have dist*(A®) 1y, (C*)) < dist*(A, C*), if we define 7y, (C*) := {my,(c) | ¢ €
C*} as the projection of the optimal center set for A to V.

Switching from the projections of C* to the optimal center set for A®) can only decrease
the cost. Thus, distZ(A(k),C’E*k)) < dist?(A®) 7y, (C*)) < costgz(A, C), and consequently
dist?(A, Clyy) < 2-cost(A,C).

Theorem 3.1.14 (Drineas, Frieze, Kannan, Vempala, Vinay [DFKT04]). Let A € R™*4
be a matriz, let k be an integer, let C be a set of k centers from R?. Denote the optimal
solution of the k-means problem on A®) by Cly- 1t holds that

costgz(A, C)) < 2 coste(A,C).

Drineas et al. combine this dimensionality reduction with an algorithm that computes
an optimal solution for the k-means problem in R? with runtime O(n®*°/2) = O(n*"/?).
Their output is then a 2-approximation. The next section shows that this dimensionality
reduction can be improved.

3.2 The singular value decomposition revisited

In this chapter, we develop a dimensionality reduction based on the singular value decompo-
sition. In contrast to the technique in Section [3.1.2] the dimensionality reduction presented
here gives a (1 + ¢)-approximation guarantee. To achieve this, we change two things about
the process presented in the last section. First, we project to a higher dimensional best fit
subspace, namely V;,, for m = [17k/e?|. Notice that this is independent of n in contrast to
the Johnson-Lindenstrauss based approach described in Section [3.1.1} Second, in addition
to the projected point set we store a constant value which is the length that the points
‘lose’ when they are projected down. In other words, if the input is given as a matrix A,
we replace it by A and store the constant A := ||A|[% — |[[A™]|2 =4 o2

Then we can prove that for every set of k centers C, adding the cost of clustering A
with C' and the constant A gives a (1 4 ¢)-approximation of the cost of clustering A with
C. As this holds for every center set, finding a solution which is optimal for A™) gives a
(1 + e)-approximation for the optimal k-means cost of A.

Notice that the approximation statements do not hold on the level of single points or
pair of points. They only hold for the cost of the whole point set, i.e., for the sum over
all squared distances. This makes sense as we know from the lower bound in Section [3.1.1]
that an approximation guarantee for all pairwise distances would imply a logarithmic
dependency on the number of points n, and the above stated m does not depend on n (or
logn).

Table lists dimensionality reduction results for the k-means problem. In addition to
the dimensionality reduction based on the Johnson-Lindenstrauss Lemma and the SVD-
based 2-approximation, it contains two results that appeared before the content of this

3.2 The singular value decomposition revisited 47

’ Authors \ Year \ Guarantee \ Dimensions \ Reference ‘
Johnson, Lindenstrauss 1984 1+¢ O(logn/e?) [JL84]
Drineas, Frieze, Kannan, Vem- | 1999 2 k [DFK™04]
pala, Vinay
Boutsidis, Mahoney, Drineas 2009 2+¢ O(klog(k/e)/e?) | [BMDO9]
Boutsidis, Zouzias, Drineas 2010 2+¢ O(k/e?) [BZD10]
Feldman, Schmidt, Sohler 2013 l+e¢ O(k/e?) [FSS13]
Cohen, Elder, Musco, Musco, | 2014 1+¢ [k/e] [CEM™14]
Persu

Table 3.1: Dimensionality reduction results for k-means clustering.

section. One is by Boutsidis, Mahoney and Drineas [BMDQ9], the other by Boutsidis,
Zouzias, Drineas [BZD10]. The latter is based on random projections and projects to
asymptotically the same number of dimension as we do. However, the result gives an
approximation guarantee of 2 + ¢ instead of 1 4+ ¢. The preceding result [BMD09| is
based on the singular value decomposition, but combines it with a sampling process that
samples dimensions from the original dimensions. It has the advantage that the chosen
dimensions are features of the original point set, yielding a better interpretability of the
lower dimensional point set. The approximation guarantee is 2 + ¢.

The dimensionality reduction by Cohen, Elder, Musco, Musco and Persu [CEM™14] was
published in 2014 and is a further development of the reduction presented in this section. It
achieves a an approximation guarantee of 1+ ¢ while projecting to only [k/e] dimensions.

The results in this section and the results in Section [4.3] and Section [4.4] are joint work
with Dan Feldman and Christian Sohler and have been published in [FSS13].

Projecting to V,,,. Recall that A is the projection of A to V,,. The plan of this section
is the following. First, we study how the projections of A and A" to an arbitrary k-
dimensional subspace V' relate to each other. Second, we look at the squared distances
between A or A™ and V. Third, we consider the actual clustering cost of A and A" and
show how to bound the error for a sufficiently large m.

More specifically, the first step is to show that 7y (A;.) and Wv(AZ(T)) have similar average
squared length, and that the average squared distance between 7y (A;.) and WV(AET)) is
small enough for our purposes.

Intuitively, projecting to a subspace means that we only keep the part of the points that
goes into the direction of the subspace. By first projecting onto V,,, we lose all extent of
the points which is orthogonal to V,,. If we then later want to project onto a different
subspace V', we cannot recover the contribution of these orthogonal dimensions. However,
if V' is k-dimensional, then the worst that can happen is that we would have needed k of
these d —m+1 lost dimensions, and that these are the dimensions where A had the highest
extent among the lost dimensions. As we kept all contributions into the direction of the

48 3 Dimensionality reduction techniques

Figure 3.4: Both the original and the two-dimensional point set are projected onto a one-
dimensional subspace. In the first case, the one-dimensional subspace lies
within the two-dimensional subspace, so the projections actually coincide. The
second case shows a worst-case example where the one-dimensional subspace
is orthogonal to the two-dimensional subspace, and all information about the
projection of the points to the one-dimensional subspace is lost.

3.2 The singular value decomposition revisited 49

first m most important singular vectors, the the sum of squared lengths of what we lose
is bounded by ZTT,’L‘:H o?. Figure shows an example of a three-dimensional point set
that is projected to a two-dimensional subspace. Notice that the projection is not to the
best fit subspace but simply to an example subspace. Figure visualizes the best and
worst case that can happen. In the case that we project to an orthogonal subspace, no
information about the projection can be recovered, and the error equals the extent of the
points in the direction of the query subspace.

If V' is spanned by singular vectors, this statement is easy to show formally. Otherwise,
we have to deal with subspaces that are spanned by vectors which are not orthogonal to
our basis. This does not make the proof much harder, but a bit more technical. In the
following lemma, we prove that we do not lose too much of the lengths of the projected
points, and also that the projections are actually in some sense close together.

This lemma is the main technical step before we proceed to the dimensionality reduction
for the k-means problem which is the goal of this section. Notice however that we are not
using many facts about the k-means problem. The main properties that we need is that
the solutions for the k-means problem live in k-dimensional subspaces of R?, and that
the objective is based on the squared Euclidean distance. This is also true for projective
clustering problems which we discuss in Chapter 8] In order to reuse the following lemma
and the subsequent corollary and theorem later, we define it independent of the k-means
problem and in fact even use a different letter, namely 7, for the dimension of our solutions.
For the application to the k-means problem, j is equal to k.

Lemma 3.2.1. Let A € R™ and let V be a j-dimensional subspace and define my : R —
R? to be the mapping that projects every point to its projection in V. Let e € (0,1) and
m € N with m > [j/e] and n,d > m+ j. Then

n (m+j
0 <> ||mv(Au)l]* - Z“?TVAm I?<e- > o7

=1 i=j+1

and
n m+j

> Hﬂ'v(Ai*) — Wv(Ai* H =3 o’

i=1 i=j+1
Proof. Intuitively, the worst case that can happen is that V' is the span of the singular
vectors Up 1, - - -, Um4; because among those directions that we lose, these have the highest

m-j

contribution to A. The loss is then exactly >-/")7. | 07. The main part of the proof is to
show that this is indeed the worst case. Before that, we prove the that it holds that

m+j m+7J
2 2
g o; <e¢ E o;.
i=m+1 i=j+1

There are m 4+ 7 — j — 1+ 1 = m terms in the second sum, and the first sum contains the
smallest j of them. In the worst case, all summands are equal, and then j < e-m implies

50 3 Dimensionality reduction techniques

the inequality. To see this formally for not necessarily equal summands, notice that we
have

il ' 1— 1—¢
2 . 2 J ‘ 2 _ € . 2 €
>z (mog)oz (Log) =tz Y o
i=j 1 € € i=m41
and thus
m+j 2 m+j
> immt10; < D i m+1<7 _ 1 _ _ .
m+tj 2 — mtj 1—e xm+j 2 1—e 7 etl—e =
Zz =j+1 03 Zi:m—l—l Ui + € Zz m+1 03 1 + € 5

Recall that the right singular vectors of A can be extended to a orthonormal basis
{v1,...,v4} of R% Now let {ay,...,a;} be an orthonormal basis of V which can be extended
by {a;41,...,a4} to an orthonormal basis of R?. We start with the second statement of the
lemma because the proof techniques are very similar and the second statement is slightly
more difficult. Here, we are interested in the distance between the projections of A and
A(™ - As projecting is a linear transformation, we can equivalently look at the difference
vectors between the points in A and A and project those to V. Then we need to bound
the sum of the squared lengths of these vectors.

Recall that we find the length of the projection of a vector to span{a,} by computing
the scalar product of the vector with a,, and that the length of the projection to V' is the
sum of these scalar products for all a,. We now have that

i H?TV(Ai*) — (A H Z HWV i — l:n))HQ = ii«Aw — Agf),a5>)2
Y S (A — AL, a))? i 1A = A)a |2 39)

Now define coefficients oy as the unique values satisfying a, = z§:1 ay svs for £ =

,dand s = 1,...,d. Recall from the paragraph about the SVD definition and in

partlcular from the explanatlons on page [41|that we have A = yyminind) ouvl and A =
™ oyuvl. Together, we get

min{n,d} min{n,d} d
(A— A(m Z Oy, Zocg Vs = Z ZO’TOQ,SU,«U?US

r=m+1 r=m-+1 s=1
min{n,d}
= > o (3.10)
r=m-+1

We recall that if we project all points in A onto direction v; and compute the sum of
the squared lengths of the projections, we get o2. So, intuitively it makes sense that the

3.2 The singular value decomposition revisited 51

lengths that remains can be computed based on the singular values, and that it depends
on how V lies compared to the singular vectors. We have now shown that

n j min{n,d}
>y (As) = m (AT ZIIA Alm)ag? = zu > vl
i=1 /=1 r=m+1
j min{n,d}
_Z Z 0&57’
(=1 r=m+1

We can only set j of the coefficients to one, and the expression gets largest when we
set those air to one where we get the highest available o2 terms, i.e., ay, = 1 for r =
m~+1,...,m+j. Tosee that this is indeed true, consider the matrix B € R%*? that contains
oy, as the value in row ¢ and column r. Notice that the fact that all a; are orthonormal
vectors implies that the rows of B are orthonormal vectors, too. Thus, B is an orthogonal
matrix, and in particular, B has full rank and is invertible. The inverse of B is just BT
because BBT = I is just an alternative way of saying that the rows of B are orthonormal
vectors. But the fact that BT is the inverse of B also implies that BT B = I, and this

means that the columns of B are orthonormal, too. Thus, the d vectors (ay,, ..., aq.) are
orthonormal. In particular, Z?:l af. =1forallr=1,...,d. It follows
i min{n,d} min{n,d} j m+j
2 2 2
Z Yo o olaj,= > o> o, < > o (3.11)
=1 r=m+1 r=m+1 /=1 r=m+1

because the o2 are ordered decreasingly and because in total, 35_, Smnimd af, =7 as

the a, are orthonormal.
; 2
For the second statement, notice that 7, ||y (An)||> = 39, HZ;‘le St o suvlvg

2
and Zz 1H7TV()HQ = Z HZ’I’ 125 10'7=CW3’LL7.UT/US
steps as in and (3-10). Thus, we directly get >0, ||mv(Au)|> > X, ||7TV()||2

and it also follows that

by the same transformation

j min{n,d} j min{n,d}

SIEHVIEES SEMVESTIED S DIFETAED 9D MRS i Dt 8

{=1r=1 (=1 r=m+1

]

The second step is now merely a corollary of Lemma [3.2.1] because the Pythagorean
theorem allows us to reduce the error in the squared distances to V' to the error in the
projection lengths. Notice that we approximate the squared distances by computing the
squared distances of A to V' and then adding the length that we have lost by projecting
to V,,. In the worst case, the largest j of the added squared singular values are superfluous
and become the error.

52 3 Dimensionality reduction techniques

Corollary 3.2.2. Let A € R™ and let V be a j-dimensional subspace. Lete € (0,1) and
m € N with m > [j/e] and n,d > m + j. Let AT™ € R™™ be the projection of A to Vi,
the best fit subspace of dimension m. Then it holds that

min{n,d} m-+j
dist?(A, V) < dist?>(A™, V) + Yo o7 <dist*(A4, V) +e- D of < (1L4¢)dist?(A, V).
i=m+1 i=j+1

Proof. As Observation|3.1.3|states, we can split the length of a point into the squared length
of its projection to a subspace plus the squared distance of the point to the subspace by
using the Pythagorean theorem. For the points in A and A™), this means that we get the
following two equalities:

| Ai]1? = [Jmv (A2 + dist? (A, V)
A2 = [y (AL)]2 + dist? (ALY, V)

%)

This still holds if we sum both inequalities over all n points in A and A respectively.
Recall that we can actually compute the loss in the squared length of the points because

S AP =1AIE =Y 0 and Y [JAZ|)2 = [|A™|3 = o
i—1 i=1 i=1 i=1

We gain that we can express the difference between the sum of the squared distances of
the points in A and A in the following convenient way.

dist®(A, V) — dist*(A™, V) = ||AJ[f — [|JA™)[[F — Z [l (A + Z [l (AE)]?

= Z o —Zum i !!2+Z|\7rv (A2

i=m+1

Lemma [3.2.1] tells us that 0 < 37, [|mv (4|2 = S0y [|mv (AT)|)2 < e - Yt 02, and
so we can conclude that

d
dist®(A, V) — dist>(A™, V) < > o7 and

i=m+1
m—+j
dist?*(A, V) — dist?() > Z ol —ec- > o;
i=m+1 i=j+1
which gives the desired bounds. [

Now for the third step notice that the squared distances to a center set within V' can
be split into the squared distances to V' and within V. We have bounded the first part
in Corollary [3.2.2] and we can bound the second part by combining Lemma [3.2.1] with

3.2 The singular value decomposition revisited 53

a statement we saw in the last chapter. That will imply the dimensionality result. We
formulate it for the distance to a non-empty and closed set C' that is contained in a j-
dimensional subspace. A solution for the k-means problem is a set of k points, so it is
in particular a non-empty and closed set. Additionally, it is contained in a k-dimensional
subspace, so the theorem applies to solutions for the k-means problem for j = k.

Theorem 3.2.3. Let A € R™? be a matriz. Let j > 1 be an integer, let ¢ € (0,1) and let
m € N with m > [185 /€] and n,d > m + j. Then for any non-empty closed set C which
is contained in a j-dimensional subspace, we have

< - costg (4, O).

d
‘(COStKS(A(m),)+ > 03) — costyz (4, C)

1=m+1

Proof. We use the fact that C lies in a j-dimensional subspace V. As before, let my :
R? — V be the linear map that maps every point to its projection in V. The Pythagorean
theorem allows us to split squared distances between a point A;, and points in V. More
precisely, Observation says that it holds for all points z € V that

dist?(A, 2) = dist*(Az, V) + dist* (7 (A, 7). (3.12)

Thus, we have dist*(A;,, C) = dist?(A, V) + dist?(7y(A;.), C), and the same statement
holds for all AET). Now the remainder of the proof is to collect and combine the different
statements we have already proven above. Recall that coste (A4, C) = 31, dist?(A, C)

and costz (A C) = | dist (A(m ('), respectively. By Corollary [3.2.2) we deduce that

%

d
costgg(A(m),)+ Y o — costyz (A, C)

i=m+1
(ALY, V) + dist®(my (ALY), ©) + Z o}
1=m+1
=3 dist?(As, V) + dist(my (As), 0)’
i=1
£2 m+j
Zdlst v (A C)‘ +—- Y ol (3.13)
18 i=j+1

By Observation [3.1.13{and Observation [3.1.2, we know that costgz(A4,C) > dist*(A, V) >
, 2
I|A — A2 = sz,l ol — 0 oul
our choice of j, we have

= Zf:jH af. Lemma |3.2.1| says that for

n m+j 2 2
N |2 < 2. ((17/18)e)* 16-18 ((17/18)¢)
;HMAZ*) m (A < :Z T A LA

54 3 Dimensionality reduction techniques

for A = costp(A,C) > S0, 07 > Y"1, 02, This means we can apply Lemma m
with precision parameter (17/18)e which yields that

|costyz (mv(A), C) — costy (my (AT™), C)| < (17/18)e - max{A, costez(my(A4),C)}

<
< (17/18)e - costz (A, C).

We can therefore complete the chain of inequalities started in (3.13|) by
d 2
COStg%(A(m), C)+ i—;d oF — costg (A, C)| < (17/18)e - costyz (A, C) + % -costyg (4, C)
< e costg (4,).
O

We conclude the section by applying the theorem to the k-means problem and stating
the dimensionality result explicitly.

Algorithm 3.1: Dimensionality reduction for k-means.

1 Algorithm k-means approximation(A,k,e)

2 | Sete& =¢/3 and m = [18k/c?] = [162k/e?];

3 Compute the singular value decomposition A = ULV and A = Ux(myT.
4 Compute an a-approximative solution C' to the optimal solution on A™:

5 return C,

Lemma 3.2.4. Let A € R™ be a matriz, let k € N>y, € € (0,1) and o € R with o > 1.
Let n,d > [162k/e?] + k. Algorithm computes an o' -approximation to the optimal
solution for the k-means problem on A, where 1 <o < a-(14¢/3)/(1—¢/3) < a-(1+¢).
In particular, if « <14 ¢/10 and € < 1/7, then it computes a (1 + &)-approximation.

Proof. Let C* be an optimal center set for A and let Cém) the solution computed by
Algorithm [3.1] By Theorem [3.2.3] we know that

d
(costZ%(A(m),C’) + > 0?) — costz (4, C’)’ < (g/3) - cost (A, C)
i=m+1

holds for both C' = C* and C' = Cém) because the dimensionality reduction is per-
formed with ¢/ = £/3 and m is set to [18/&"], respectively. In particular, we have that

costgz(A,C) < 1/(1 —¢/3) (COStg%(A(m)7C> + 3¢ 02>. Notice that ¢ < 1 and this

)

implies 1/(1 —¢/3) =1+4¢/(3 —¢) <1+¢/2. Now we bound the cost of C7,,). Let C,,

3.2 The singular value decomposition revisited 55

be an optimal solution for A™). Then we have that

> o)

i=m+1

/ 1 m
costez(A, Cfyy) < <1 — 5/3) <cost£%(,4().

1 d
< (A O g)
< (1_6/?))0(((308'6@2(14 Ci)+ > o

1=m+1

d
2 (AM™ O > o}
(1_8/3 (cost@ ’C>+. O'l>

1=m-+1

)
< (1 — 5/3) () costyz (A, C7) < (+ ;)Oz(l + ;) - costyg (A4, C7)
) -

<a-(1+¢)-costp(A4,C7).

Additionally, if e < 1/7, then we can bound 1/(1—¢/3) = 1+¢/(3—¢) < 1+¢/(3—1/7) =
14 (7/20)e, and for o = 1 + ¢/10, the we get

costez (A, Cfypy) < () <1 +) - costyg (A, C7)

_ /3
7 15 15

1+ 1 14+—-- 2(A. C*
20)(+10>< +3> costeg (4, C°)

7 1 7 €
< (1 2)(1) £ (A C*
—(to0ft 3t T3)Lt 1g) oty)

4 € .
1+ 58) (1 + 10) -costez(A,C7)
40

5 4 x
< 1+%8+%8+%8) ~costz(A,C7)
<(l+e¢)- COStZ§<A, c).
]
3.2.1 Weighted input sets
Assume that the input contains a weight function {1,...,n} — N that assigns a positive

integer weight to each input point in addition to the input matrix A € R"*¢. We can still
use the dimensionality reduction, but we have to work around the fact that the Singular
value decomposition as defined here does not apply to weighted point sets. Let W :
S w(i) be the sum of all weights. We define E € R"W*? as an expanded version of A in
the following way. For each input point A;., E contains w(i) copies in consecutive rows.
The matrix £ thus has W rows. Notice that £ and the weighted points in A have the
same clustering behaviour, i.e.,

n nwl)

w
Do wi[Ai — 2| =33 (A — 2" = 3 || Ei — 2|
i=1

i=1 =1 (=1

56 3 Dimensionality reduction techniques

for any point z € R%. Thus, it is possible to replace A by E and then apply the dimension-
ality reduction. However, E has a pseudopolynomial size and applying the singular value
decomposition to it is potentially inefficient. Instead, we imitate computing the singular
value decomposition by computing it for a different matrix F. In the ith row of F, we
store /w(i) - Aj. Notice that F' does not have the same clustering behaviour as A and
E. For example, if a center coincides with a point A;, with w(i) > 2, then it induces no

cost, but the point /w(i) - A;x induces cost. So, we cannot replace F by F' for the whole
process, but we can use F to compute the best fit subspace for E. This is true because E
and F' have the same left singular vectors, and the same singular values.

Let [} € RW-w)+D)xd he the matrix where only the first w(1) rows are replaced and
the remaining rows are identical to E. Let u € R" and v € R? be a pair of left and right
singular vectors for E with singular value o, i.e., it holds that Ev = ou and v’ E = ov”

for u = (uy,...,up)? and v = (vy,...,vq)T. By definition, we have that
e Al* — A{*’U ouy
- Al* - A{*U U2
Ev=|— Aj. — v = Al v = | ouw)
— B+ — E(:CU(1)+1)*U OUw(1)+1
— Ew. —_ Eg{,*v ouw
Notice that u; = uy = ... = () because ou; = Af,v for all i € {1,...,w(1)}. Now
| | w w
u' (B - E.w = (ZUiEilaZUiEiZa e ZU Ezd) (ov1, 009, -+, 0Vg)
i=1 i=1

in particular implies that

Zuz ij = ulA]_] + Z UZE” = 0. (314)
=w(1)+1

We define a different left singular vector u'. It is apparent that u cannot be a left
singular vector of Fj since it has the wrong dimension. We define the vector v’ :=
(Vw()ur, tyyer, -+ suw) € RY=*WH - Now we check that v and ' form a pair of
left and right singular vectors for Fj, and that the corresponding singular value is still o.
We get that Fiv = ou’ by

— \/ Al* S \/ 1)AT, oy w(1)uy

Flv= . b V= ((1)+1) S Juw'(i)ﬂ = ou'.

— By, e EVTV*U ouw

3.2 The singular value decomposition revisited o7

Algorithm 3.2: Dimensionality reduction for k-means with weighted input points.

=

Algorithm k-means approximation(A,w,k,e)

2 | Set & =¢/3 and m = [18k/e"?| = [162k/e*];

3 Obtain F' by multiplying each row i in A with \/m ;

4 Compute the singular value decomposition of F’

5 Let V(™ contain the first m right singular values as its columns;
6 Compute Al = AV My (m).

7 Compute an a-approximative solution C' for A™ with w;

8 return C

By Equality [3.14, we see that «'7F, = ov” since

— Jw(l)A,, —

u'TF1 —J7 E(w(1)+1)* -

w w
:<U/1\/ w(l)An + Z UiEﬂ, s ,u’lww(l)Ald + Z quzd)
i=w(1)+1 i=w(1)+1

w w
:<u1w(1)A11 + Z ulEﬂ, s ,ulw(l)Ald + Z quzd)
i=w(1)+1 i=w(1)+1
=(ovy,...,004) = ov’.

Thus, for every left singular vector v € R™ of E' with singular value o there exists a
v € RW=*@+1 guch that v and o form a pair of singular vectors for F, and the singular
value is 0. Notice that E and Fj have the same rank, so they have the same number of
positive singular values by Theorem [3.1.9] This means that the positive singular values
(and right singular vectors) are identical. We can iteratively repeat this argument for every
i € [n], replacing the w(i) rows with copies of A;, by one row with \/w(i)A;. until we reach
F. As all steps preserve the singular values and right singular vectors, we get that F and
F' have the same singular values and right singular vectors.

Since the best fit subspace is spanned by right singular vectors, this implies that £ and
F" have the same best fit subspace. In order to compute the best fit subspace of dimension
m € [d] for E we can thus use a singular value decomposition of F', say F' = UDVT,
and return V,,. Let V™ be the matrix containing the first m right singular values as the
columns. Then EV(™ contains the projection lengths of all points in E to the best fit
subspace, and EV ™V (™ contains the actual projected points. Instead of projecting E we
can project A directly and weight the output, so the resulting m-dimensional point set is
given by AV™V ™) This yields Algorithm for applying the dimensionality reduction
to weighted input points for the k-means problem.

4 Small coresets for the k-means problem

Coresets are a fundamental concept to deal with large amounts of data. Their idea is to
reduce the size of the input dramatically while keeping the main characteristics of the input
set, at least with regard to the objective function at hand. More precisely, a (weighted) set
S is a coreset for an input set P if for all possible solutions of an optimization problem,
the objective function is approximately the same for S and P.

The important virtue of a coreset is its size. If the coreset is (dramatically) smaller
than P, then computing it can be used as a preprocessing step before performing the
actual optimization. We have a more detailed look at this and at applications of coresets
in distributed and data stream settings in Section [4.1.1] Then, we look at the history of
coresets for the k-means problem in Section [4.2.3]

In Section [4.3] and Section 4.4l we see two new methods to construct coresets. The main
feature of these constructions is that they produce coresets that contain a number of coreset
points which is independent on both the number and the dimension of the input points.

The results in these sections as well as the results in Section are joint work with Dan
Feldman and Christian Sohler and have been published in [FSS13].

4.1 Coresets for the k-means problem

The concept of coresets is not restricted to clustering problems or even geometric problems,
but as we are mostly concerned with the k-means problem in this chapter, we specifically
define coresets for k-means for the time being.

Coresets have been proposed and used in different versions. The now commonly used
definition was proposed by Har-Peled and Mazumdar [HPMO04]. They specified coresets for
the k-means and k-median problem and we state the definition for the k-means problem
here. Notice that the definition allows that the input is weighted, for unweighted inputs
we can just set all weights to one. We define the term (1 + £)-coresets so that we can
specify coresets with different error parameters. However, if we do not need this flexibility,
we usually abbreviate to just coreset.

Definition 4.1.1 (Coresets, Har-Peled, Mazumdar, [HPMO04]). Let P C R? be a finite
set of points and let w; : P — R be a function assigning a weight to each point in P.
Let € € (0,1). A finite set S C RY and a weight function wy : S — R form a (strong)
(1 + €)-coreset for P if for all sets of k centers C' C RY, it holds that

(1—¢)> wi(z)min|lz —c|> <> wa(y)min|ly — /> < (1 +¢) Y wi(z) min ||z — ¢|*.
P ceC Jes ceC eP ceC

60 4 Small coresets for the k-means problem

Typically, the aim of a coreset construction algorithm is to compute a coreset of sublinear
size, preferably of a size that is polylogarithmic in the input size. Some problems, including
the k-means problem, admit coreset sizes that are independent of the number of input
points. If the coreset size is constant or depends only on parameters that we assume to be
constant, then the k-means problem can be solved on the coreset in constant time, even
optimally. In this way, every polynomial coreset construction gives us a fixed-parameter
approximation algorithm for the k-means problem.

Parameters that can influence the coreset size are the dimension of the points, the
precision parameter ¢, and the failure probability § in case that the coreset construction
is randomized. In this chapter, we develop coresets for the k-means problem that have a
noticably small dependence on the dimension of the input point set. More precisely, while
the coresets still depend on the dimension because they consist of d-dimensional points, the
number of points will not depend on the dimension. This type of coreset is thus particularly
well suited in the context of large and high-dimensional point sets.

Coresets with offset. As an easy example, reconsider the k-means problem for k =
1. Assume we are given a data set P and want to compute a summary that allows to
(approximately) compute the 1-means cost of P. We can represent P by two points which
have the centroid p(P) of P as their centroid, and which together have the same sum of
squared distances to u(P) as all the points in P. More precisely, we represent P by two
points & = p(P) —0-w and y = pu(P) 4+ 9 - u where u is an arbitrary unit vector, and

0:= \/dist2(P, w1(P))/2, and weight both points by |P|/2. Notice that the 1-means cost of

{x,y} is just 20% = dist?(P, u(P)), and that clustering and y with an arbitrary center z
costs

20% +2- (|P|/2) - dist?>(u(P), z) = dist*(P, u(P)) + | P| dist?(u(P), z) = dist*(P, 2).

So, {x,y} is a coreset for the 1-means problem on P, and it is even exact. However, it seems
a bit unnatural how we force the constant cost into the coreset. Instead, we could simply
store the centroid p(P) as the (only) coreset point, weighted by | P|, and keep track of the
constant cost dist?(P, u(P)) separately. Strictly speaking, we then no longer have a coreset
according to the above definition, because we have to store a constant in addition to the
coreset point. In Section and Section .4 we study the following slight generalization
of the coreset definition which allows us to store this type of extra information.

Definition 4.1.2 (Coresets with offsets, [FSS13]). Let P C R? be a finite set of points and
let wy : P — R be function assigning a weight to each point in P. Let € € (0,1). A finite
set S C RY, a weight function ws : S — R and a constant € € R form a coreset with offset
for P if for all sets of k centers C C R?, it holds that

(1—e) Y wi(z)min|lz—c|]> <> we(y) min ||y —c|?+€ < (14¢) Y wi(z) min ||z —||*.
ceP ceC e ceC P ceC

Now we notice that given a point set P, the centroid p(P) with weight |P| and the
constant dist®(P, u(P)) form a coreset with offset for the 1-means problem on P.

4.1 Coresets for the k-means problem 61

) =\
- N ¢ N ¢

O
1 n/¢ 2 n/t 2 n/l n/¢ n/l

—_

Figure 4.1: An example with the sole purpose to illustrate the strong coreset property.

This idea works because we can use Lemma whenever we want to cluster a point
set with one center. For £ > 1, we do not know in advance which points will choose which
cluster center, so we cannot simply summarize with centroids. In Section [£.3] we will see
a way how to generalize the idea to k-means with k£ > 1.

Centroid sets and weak coresets. Coresets as defined in Definition [4.1.1] and 4.1.2] are
also referred to as strong coresets because they demand that the approximation guarantee
holds for every set of centers. For designing an approximation algorithm, this is not always
necessary, and other forms of summaries of point sets have been developed. These are
sometimes referred to as weak coresets, but there is no commonly agreed upon definition
of this term. The crucial idea behind weak coresets is the possibility to compute (1 + ¢)-
approximations for the original point set based on the weak coreset, and the important
distinction to strong coresets is that weak coresets usually do not guarantee approximations
for all sets of centers. Examples for weak coresets can be found in [BHPI02, [HPV02,
FMSO07, [FL11al, and we discuss at least the first of them in a bit more detail in the second
paragraph of Section [4.2.3] In the context of k-means clustering, the joint use with an
(approximate) centroid set makes sense. An (approximate) centroid set is a set of points
in R? that can supersede the R? as the domain for choosing centers without introducing
too much error, e. g., it contains a (1 + ¢)-approximative solution. It may satisfy additional
conditions. Matousek [Mat00] proposed a centroid set that was used several times in other
works, and [ES04] and [FMSQ7] also propose centroid sets, but we do not go into more
detail on this topic.

4.1.1 Applications of strong coresets

Coresets are point sets that behave like a much larger set of points, at least with regard to a
cost function. In the case of k-means, strong coresets provide an approximation guarantee
for every choice of centers from R?. We review the three main applications of this.

Approximation algorithms. The ability to reduce the size of a point set while keeping its
main characteristics directly leads to a speed-up of algorithms which can then be run on
the reduced set instead of the large original point set. Notice that it is important that we
have the strong coreset property which gives us a guarantee for every choice of centers. In
particular, it is not enough to demand that the cost of the optimal solution is preserved.
Figure illustrates this with a toy example. Assume that we have ¢ blue ‘clusters’ and
that the optimal solution consists of the blue points. Assume that each cluster has a cost

62 4 Small coresets for the k-means problem

of © (the points are suitably distributed within the blue circle), so the total optimum cost
is £ -®. Additionally assume that the distance between the blue and red centers is just
\/® /2. Then assigning the two red points to the left and right of a blue center exactly
costs 2 - /2. In other words, replacing the points by the 2 - £ red points exactly preserves
the cost of the optimal centers. However, the red points can be clustered much cheaper by
placing ¢ centers on top of red points and leaving one single red point alone, which then
costs (29/2)? = D? to assign to the nearest red point. This optimal solution for the red
points does not yield a good approximation to the optimal solution for the blue points.

The strength of the strong coreset property is that it does not only preserve the cost
of the optimal solution, but it also prevents other solutions from becoming drastically
cheaper. That is why we can just run an approximation algorithm on the coreset instead
of the original point set. In order to obtain a (1 + €)-approximation, we have to appropri-
ately adjust the coreset error and the approximation error of the approximation algorithm.
The following lemma shows one way to do this in the case of a (1 + ¢)-approximation
algorithm. It is quite similar to Lemma on combining dimensionality reduction with
an approximation algorithm.

Lemma 4.1.3. Let P C R be a set of n points, let k € N and ¢ € (0,1), and let S C R?
with weight function w : S — R be a (1+¢/3)-coreset for P. Let C* be an optimal solution
of the k-means problem on P, and let C% be an optimal solution for the weighted k-means
problem on S.

Then it holds that |coste (P, C§) — COStZQ()| < e - costp (). If e < 1/7 and C§ is a
(1 + £/10)-approzimate solution for S, then costg (P, Cg) < (1 +¢) - costg (P, C7).

Proof. 1t holds costg (P, C*) < costg (P, Cg) because C* is an optimal solution. Further-
more, by the definition of coresets, (1 —¢/3)-costg (P, C§) < costy (5, C%). By € <1and
basic transformations, it holds that 1/(1 —¢/3) =1+¢/(3 —¢) <1+ ¢/2. We thus have

costz (P, Cg) < (1+¢/2) - costy o, (S, Cg) < (1+¢/2) - costyz (S, C)
< (1+¢/2) - ((1+¢/3) - coste(P,C7)) < (1+¢)-costg (P, C).

Additionally, if we have a (1 + £/10)-approximate solution for S, we get that

€ !
costyz (P, Cg) < <1 + 5 E)COSte; (S,C5) < <1 + 3_1/7>costgg,w(5, %)

1+ 7g/20)costyz (S, Cg) < (1 + 7e/20)[(1 + £/10) - costyz , (S, C§)]
1 +[7/20 4 1/10 + 7/200]¢) - costyz (5, C5)

1+ (97/200)¢) - costyz ., (S, C*)

1+ (1/2)2) - [(1+2/3) - costg(P.C")

1+ (1/2+1/3+1/6)e) - costg (P, C") = (1 +¢€) - costiz (P).

IA A

(
(
(
(
(

IAN A

4.1 Coresets for the k-means problem 63

Using a coreset instead of the original point set can speed up approximation algorithms
significantly. For example, if we compute a coreset S and then use the algorithm by Ku-
mar, Sabharwal and Sen [KSSI0] with its running time O(nd2®/9°") computing the
approximation on S takes O(|S|d2*/ E)O(l)) time, which is polynomial in the dimension and
independent of n. Of course, the total running time includes the time to compute the
coreset itself. Depending on the running time of the coreset construction and depending
on the desired approximation guarantee, it can be interesting to choose different approxi-
mation algorithms from Table 2.1 on page[15] Actually, the list contains the approximation
algorithms in [Che(9, [FS05, [FMS07, [FL11al [HPMO04, [HPKO7] which use coresets to com-
pute the approximation. This also shows in the running times which typically consist of
the running time for the coreset construction plus the running time on the coreset. For
example, Har-Peled and Mazumdar compute a coreset and then use the algorithm by Ma-
tousek [Mat00], and Chen computes a coreset and uses the algorithm by Kumar, Sabharwal
and Sen [KSS10].

Even in the context of heuristics coresets are interesting because we would usually expect
the heuristic to perform similar steps on the coreset as on the original point set, so running
it on a coreset makes sense. However, for the latter the coreset construction has to be
sufficiently practical.

Streaming algorithms. The streaming setting is a new algorithmic paradigm developed
in the emerging field of big data. A streaming algorithm is only allowed to read the data
once, and it has a limited storage capacity, usually assumed to be polylogarithmic in the
input size, i.e., in the length of the stream.

Notice that a coreset computation alone does not suffice to solve a problem in the
streaming setting, because the computation of the coreset might need random access to
the data. However, when we know a coreset computation for a problem, we can read chunks
of the data, compute coresets of the chunks and only keep these coresets. If the storage
for keeping the coresets gets to large, we can reduce it again by computing a coreset of the
union of several stored coresets (also see Observation below).

As each reduction step means an additional error, we have to do these computations
in a reasonable way, which is what the Merge-and-Reduce technique is about. Roughly
speaking, a coreset computation that computes strong coresets of size s = e~ - S(k, n,d)
for a function that depends on n, k and d but not on £ can be turned into a streaming
algorithm which needs storage O(s - log"™ n).

Notice that for weak coresets, this would require much more care because a weak coreset
only guarantees the approximation for certain center sets. When merging sets, different
subsets satisfy guarantees for different center sets, and we do not automatically get a
situation where repeated merging and reducing yields overall approximation guarantees.

Streaming algorithms are the topic of Chapter |5 where we also discuss the Merge-and-
Reduce technique in more detail. We keep in mind that coreset computations directly
imply streaming algorithms, and that the strong coreset property turns out to be very
convenient here, too.

64 4 Small coresets for the k-means problem

Distributed algorithms. Another quite immediate consequence of the existence of a
strong coreset computation for a problem is that the problem can be solved in a dis-
tributed setting. The reason is that coresets can be computed for subsets of a point set
and then be merged into a coreset for the whole point set. So if the data points are spread
over different computers, we can first compute a coreset and then send the coresets to a
central computer or around in the network, gathering a coreset for the distributed data set.
Similarly, if we want to do a parallel computation, we can first split a point set, compute
coresets for the subsets and then join the coresets. The following observation states the
necessary property for the unions of coresets. Notice that we define the weight functions
on R? to shorten the formulation. We assume they are zero everywhere except for the
points in their respective point set.

Observation 4.1.4. Lete € (0,1). Let Sy,5; € R? with weight functions wy,w, : R — R
be (1 + €)-coresets for two disjoint point sets Py, P, C R% of the same dimension. Then
Sy U Sy with wy +wy : RY — R is a (1 + €)-coreset for Py U Ps.

Proof. Let C be a set of k centers from R?. As S; and S are coresets for P, and P, respec-
tively, it holds that |costys ., (S1,C) — costg(Pr, C)] < ecost;fg(Pl) and |costyz y, (S2, C) —
costyz (P, O)] < £costy (P,). Thus, we also have that

|Cost4§7w1+w2(31 USy, C) — costzg(Pl U P, O
= |costyg u, (S1, C) 4 €08ty3 4, (S2, C) — costyz (Pr, C') — costez (P2, C))|
< - costy(P1) + € - costp(P2) = € - costyz(P)

by the triangle inequality and because the cost of a point set can be split into the sum of
the costs of subsets. [

Notice that computing (1 4 &’)-coresets of size s for £ subsets and merging them results
in a (1 + ¢’)-coreset of size £ - s. The size can be reduced by another coreset computation,
which increases the error to (1 + €)%, Using an error parameter of ¢ = £/3 gives a
(1+¢&)?=1+2¢/3+¢%/9 < (1 + ¢)-coreset of size s.

4.2 Techniques used in coreset constructions

In this section, we shortly look at two main techniques used in the construction of coresets.
There are two reasons for doing this. First, we need both techniques later on (sampling
is used in Chapter [7)). Second, it is convenient for the review of different results in Sec-
tion [4.2.3] Our focus is not on obtaining small coresets, but on playing with the techniques
to get an idea how they work.

Notice that we talk about unweighted input point sets for the sake of a clearer exposition.
Most coreset constructions can be naturally extended to work for inputs with integer
weights. If this is not the case, we now see how to compute a coreset of a weighted point

4.2 Techniques used in coreset constructions 65

set based on a coreset construction for unweighted point sets. However, if an explicitly
worked out extension to weighted inputs is known, it should be prefered.

The following lemma uses a similar technique as used by Chen [Che09] who attributes
it to Mettu and Plaxton [MP04].

Lemma 4.2.1. Let P be a point set with n points and let w : P — N be integer weights
and total weight W. Compuling a coreset with integer weighted points for the k-means
problem on P with w can be reduced to O(e~1log W) unweighted coreset computations on
point sets with at most O(n) points.

Proof. We compute the coreset in three steps. First, we partition the input into groups
of points with similar weight. Second, we round the weights such that they are the same
integer for all points in the same group. Third, we compute a (1 4 ¢)-coreset for each
group. The coreset points are then weighted by the integer corresponding to the group.

In order to prevent the rounding in the second step from introducing to much error, we
spend one group for each integer weight from 1 to [2/e]. These are O(e~') groups. We
set w(z) := w(z) for all points in these groups.

To partition the remaining points, we assign an ¢ to each point x € P which is defined as
the largest integer (including zero) that satisfies (1+¢/2)¢ < w(x). All points with the same
exponent ¢ form a group, and the number of these groups is bounded by O(log, . W)=
O(etlogW). If a point x is in the group for exponent £, then we set @(x) := |(1+¢/2)¢].
By definition, it holds w(z) < w(x). Additionally, it holds that

w(z) = [(1+¢/2)"] > (1+¢/2) —1>w(x)/(1+e/2) —1> (1 —¢/2uw(z) -1

>
> (1 —¢e)w(x)

where the third inequality holds since 0 < ¢ < 1 and the last inequality holds since
w(x) > 2/e, which means that 1 < (g/2)w(x).

If all points in a set have the same weight, then computing a coreset for it is equivalent
to computing an unweighted coreset. Thus, we compute a coreset for each of the O(e™!) +
O(e11log W) groups and multiply the weight of each point z in it by @w(x). The union of
the resulting weighted sets is the coreset.]

4.2.1 Moving points

The idea to move points without changing the k-means cost function too much is so central
that it appears at various places in this thesis. We proved the necessary Lemma in
Section [2.3] and first used it in Section for obtaining the SVD-based dimensionality
reduction. It also plays an important role in this chapter for constructing coresets for the
k-means problem, and in the streaming algorithm in Section A generalized version is
used in Chapter [6]

Lemma [2.3.2] says the following about the error induced by moving points of a point set
P € R? to obtain a point set @ € R%. Denote the movement distance of a point z € P by
d(z). If the sum of d(x)? for all z € P is bounded by (£2/16) - costzg(P), then the k-means

66 4 Small coresets for the k-means problem

cost of the moved point set, COStg%(Q,O), is a (1 4 &)-approximation of costyz (P,C) for
every set of centers C.

For a coreset construction, the idea is to move multiple points to the same location
without distorting the cost function too much, and then to replace the set of points on
the same location by one weighted coreset point. As an example, we consider a way to
use grids that cover P. The point set is contained in £ boxes of width 2, /costzg(P): Any

optimal solution induces a partitioning into k subsets, and in each subset, the distance
between any point and the center can be at most , /cost}(P). Each box is now discretized
2

by a grid where the cells have width ¢ - (4v/nd)~" - | /costZ%(P). Every point is moved to
an arbitrary corner of the cell it falls into, points that are already in a corner stay there.
The movement of a point z is then bounded by d(z) = Vd - ¢ - (4v/nd)~" - 1/cost}‘%(P), SO
we have that
2
xezl;d(:v)Q < ;352 (16 -n)""t- costyz (P) = %6 - costyz (P).

We can thus apply Lemma [2.3.2] Let S contain all corners of the grid that are occupied
by at least one moved point, and define the weight of a point y € S as the number of
points € P that are moved to y. Then Lemma [2.3.2] guarantees that |costyg (5, C) —
costyz (P,)] < g - costg(P,C) for all center sets €' with |C] = k. In other words, S is a
coreset for P.

However, the size of S is unconvincing. The grid has O(k - (4y/ne1)?) corners, so the
size of S is only guaranteed to be sublinear for d = 1 (and n large enough compared to 4/¢,
but this is a common assumption), and it is nowhere near the polylogarithmic dependence
on n that we desird’] We move the points around too blindly, not using any structure of
the points. In Section [4.2.3] we hear about different approaches to employ the movement
lemma in a more clever way in order to obtain true coresets with at most polylogarithmic
dependence on n. What they do have in common with the toy construction above, however,
is the exponential dependence on the dimension. Purely geometric arguments do not suffice
do get rid of this, but a sampling based technique helps. We review its basic idea in the
next section.

4.2.2 Uniform sampling

The core of this idea to construct a coreset is simple: Choose a set of points uniformly at
random. The difficulty lies in bounding the error of the so constructed set, and then in
employing the sampling in a reasonable way to reduce this error.

Let C' be a solution candidate, i.e., a set of k£ centers. When choosing one point z
uniformly at random, its expected cost given the solution C' is

Bldist*(s,C)] = ¥ 1 dist*(, C) = 1 dist(P.C).
yeP

!'Notice that S contains at most n points, so at least it is not larger than P.

4.2 Techniques used in coreset constructions 67

Figure 4.2: An example for k& = 2 where the two blue circles represent nearly n/2 points
each, but some outliers in red dominate the optimal k-median cost.

Similarly, if we choose a set S of points independently and uniformly at random, the
S|

expected cost is E[costz(S, O)] = ﬁcostgg (P,C). Thus, we get an unbiased estimator for
the cost of P (with one center set C') by weighting all points in S by |P|/|S].

This approach faces two difficulties. First, the number of different center sets can be
large depending on the specific problem, and the estimation has to be good for all of
them. Second, the estimation can have a high variance, such that with high probability,
the sample set is not a coreset.

A usual way to attack the first problem is to discretize the space of possible centers in a
clever way in order to bound the number of different center sets while not losing too much
quality. We do not want to deal with this issue here and just look at a problem which is
discrete in itself, the discrete k-median problem. Notice that the restriction that centers
have to be chosen from the input point set implies that there are at most n* different
center sets. We choose k-median here to simplify the exposition and add a few comments
on k-means below.

The second issue is equivalent to the question how many samples are needed to achieve
that the cost of the sample set is close enough to the cost of the original points. Sufficient
bounds on the sample size can only be found if the input has a convenient structure.

Consider Figure [£.2] Most of the points are concentrated on the positions of the optimal
two centers, and in an optimal solution, these points cost nothing (or very little, if we
pertubate them a bit to avoid points with exactly the same position). So in order to
approximate the k-median cost of the optimal solution, a coreset needs to contain some
of the red points. In order to sample even one red point with high probability during a
uniform sampling, we need to sample a linear number of points. Thus, uniform sampling
does not yield a sublinear coreset for this point set.

As we consider the discrete k-median problem, all distances to centers are pairwise
distances between input points. Thus, the cost directly relates to the pairwise distances
between input points. Imagine that all pairwise distances are the same, for example that
all distances are one. Then the diameter of P is also one, and the cost of any fixed center
set consisting of points from P is always n — k (all points except the k center points pay
one). A subset S of s points that are weighted by n/s costs between (s — k) - n/s and
s-n/s = n, depending on how many of the center points are contained in S. If we assume
that n is large enough (for example, n > 2k/¢), then n < (1 +¢)(n — k). If n is smaller,
we can just store all points. We can ensure that (s — k) -n/s =n — (k- n)/s is never too
small by choosing an s > k/e. Then, n — (k-n)/s > n —en = (1 — e)n. Thus, in this

68 4 Small coresets for the k-means problem

simplified case, we can find a coreset with O(k/e) points.

In general, we cannot achieve that pairwise distances are equal. We can, however, seek
to achieve that the diameter of the point set is similar to the average cost, which is a
relaxation of the above situation. This can be done by partitioning a point set into subsets
where the diameter can be related to the average cost. In Section below and in
Chapter |7, we discuss how Chen [Che09] finds such a partitioning in more detail.

We conclude this section with demonstrating that relating the diameter to the average
cost does indeed help in bounding the sample size needed when constructing coresets by
uniform sampling. In the process, we review necessary concentration inequalities that are of
independent interest to us. The following chain of ideas is similar to Chen’s work [Che09].
Earlier work by Mishra, Oblinger and Pitt [MOPOQI] also contains a simpler form of the
sampling strategy described here. We start with Hoeffding’s inequality from probability
theory.

Theorem 4.2.2 (Hoeffding’s Bound, Theorem 2 in [Hoe63]). Let X ..., X; be real-valued
independent random wvariables that satisfy a; < X; < b; forv = 1,...,t and let X =
t_, Xi/t. Then it holds for all e > 0 that

N N 72-t2-€2/ Xt:(bif(li)Q
Prob (X — E(X) >¢) <e = .

Notice that while Theoremonly bounds Prob(X —E(X)), we can still use it to bound
the probability Prob (E(X) — X > 5) by applying the theorem to the random variable —X
which is the sum of the random variables —X; for ¢ := 1,...,¢. By the union bound, this
implies that

N N —2-t2~82/ i(bi—ai)Q
Prob (| X — E(X)| > &) < 2 = .
Hoeffding’s bound tells us how many samples one needs to bring a real-valued variable
close to its expected value. The following theorem by Haussler gives us a convenient way
to apply Hoeffding’s bound. It was originally posted in the context of PAC learning.

Theorem 4.2.3 ([Hau90, Hau92|]). Let M > 0 be a fized constant and T a finite set, and
let F be a finite set of functions f: T — R with 0 < f(x) < M for all functions f € F
and all x € T. Let S be a finite set of samples drawn independently and uniformly at
random from T, and let 6, > 0 be parameters. If |S| > %ﬁ . <1n |F|+1n (%)), then it
holds for an arbitrary but fived f € F that

Prob (|Er(f) — Es(f)| > ¢) < /| F],

where Ep(f) = Yoer f(x)/|T] and Es(f) = Xyes f(y)/15].

Proof. Let f € F be an arbitrary fixed function from ¥ . Let z1,.. ., x4 be the samplesin S.
Then, f(z;) is a real-valued random variable with 0 < f(z;) < M, and the expected value
of f(z;) when choosing x; uniformly at random from 7" is Er(f(z;)) = Yser f(2)/|T] =

4.2 Techniques used in coreset constructions 69

Er(f) foralli = 1,...,s. Set X := lel (2;)/]S| = Es(f) and notice that E(X) =
Zill E(f(z:)/IS| = |S| - Er(f)/|S| Er(f) by the linearity of the expected value. By
Hoeffding’s Bound (Theorem and the argument below Theorem “ 2| this implies
that

—2:15]%-e2/ % M?
Prob (|Es(f) — Er(f)| >) <2-e

_ 2_672-|S|.52/M2 <2.¢ 2M2(1nf+1n(2/5) e2/M? 5/|?‘

]

Let T = P be an input point set for the discrete k-median problem. For every choice of
k centers C, we define one cost function fo which sets fo(z) = dist(x, C') for each point
x € P. Thus, the set F has cardinality n*, and so it holds that In F = klnn.

For any set of k centers C' C P and the corresponding fc € ¥, Theorem then
yields that a random sample S of sufficient size satisfies with probability 1 — o6/|F | that

\Er(fe) — Es(fo)| <e

Yeer fo(@) Yies fo(@)
= ’ — <e
|T\ B
& 1. > dist?(z,C) — Y dist*(2,C)| < e
|T| xeT |S| zesS
& > dist?(z,C) — 1P| Y dist*(z,C)| < e+ |P). (4.1)
zeT |S| z€eS

By applying the union bound, we get that Inequality holds for all fo(x) simulta-
neously with probability 1 — §. The inequality yields a coreset if the error is connected
to the cost of P. Thus, we set € := €’ - costj,(P)/|P|, implying that the error is at most

£-|P| = ¢"-costy,(P).

The theorem requires |S| > 25 - (In|F| + In(3)). The factor In|F| + In(
In(2/4) is fine, but M?/(2e?) mlght be large.

This is where the diameter of P comes into play. We observe that fo(z) is bounded by
the diameter of P for any C' and for any x € P. We thus set M := diam(P), which yields
a sample size of

2)=klnn+

M 2, (diam(P))?
gz TG = 5ot ()P

(klnn +1In(2/4)).

As suggested above, assume that the diameter is related to the average optimal cost
of P, e.g., diam(P) < a - costy,(P)/|P| < a - costy,(P,C) for a constant a € R. Then
by setting ¢’ := £"/a, we get a (1 4 €”)-coreset for the discrete k-median problem of size
S| = 0" (klnn+ln5).

70 4 Small coresets for the k-means problem

Concluding remark on k-means. For the discrete k-means problem, diam(P) is not an
upper bound on the cost of a point, but (diam(P))? is, implying that we need a relationship
between the square of the diameter and the average cost. When we go to the continuous
version, the upper bound changes even more because centers can have arbitrary positions
within the Euclidean space. Chen [Che09] describes how to apply Theorem for various
cases including the k-means problem. We consider his work in Section [4.2.3 and apply it
to a probabilistic clustering problem in Chapter [7]

4.2.3 History of coresets in view of the k-means problem

The present definition of coresets and in particular the distinction between strong and
weak coresets have not always been used during the development of coreset theory. Earlier
papers use the term coreset for a smaller point set that somehow represents or summarizes
the point set, or they do not even use the word coreset at all. We have a short look at
different important steps during the progress of coreset using algorithms.

Besides k-means and k-median, we will also repeatedly touch results on other geometric
problems. Given a set of points P C R?, the k-center problem asks for k centers such that
the mazimum distance of a point to its nearest center is minimized. For k = 1, the optimal
solution to the 1-center problem is a minimum enclosing ball, i.e., a ball consisting of a
center ¢ and a radius r such that all points in P lie within distance r of ¢, where r is as
small as possible among all choices of ¢ and r.

The k-cylinder problem or k-line center problem asks for k lines (subspaces of dimension
one) such that the maximum distance of any point to its nearest line is minimized. The k-
center and the k-line center problem can be generalized to a projective clustering problem
that asks for k£ subspaces of dimension j that minimize the maximal distance of all points
to their closest subspace.

An (o, B)-bicriteria approximation for the k-means problem is a set of - k centers which
gives a [-approximation to the optimal cost.

Coreset constructions for geometric problems. Since the idea of coresets is a very
natural concept it is hard and probably impossible to determine where it was first used.
A seminal paper is due to Agarwal, Har-Peled and Varadarajan [AHPV04], who published
a joined journal publication of two preliminary conference publications [AHPOT, HPVO1].
Agarwal et al. work on extent measures of points. For a u € R?, they define the measure
w(u, P) := max,ep(p,u) — minyep(p,u). Notice that for a unit VeCtOIEI u, {p,u) is the
projection of p onto the line spanned by w, so w(u, P) is the directional width, the largest
distance between two points when projected onto a direction wu.

Agarwal et al. use the term e-approzimation for a subset () C P which satisfies (1 —
e)w(u, P) < w(u, Q) for all possible directions u. Thus, an e-approximation can be seen

2Notice that Agarwal et al. use a different representation of directions suitable for their write-up, while
we use unit vectors here.

4.2 Techniques used in coreset constructions 71

as a coreset with the additional property that the point set is an unweighted subset of the
input point set which therefore can only underestimate the true value.

To show that an e-approximation exists, Agarwal et al. first reduce the problem to fat
point sets by showing that affine transformations do not change the problem and by proving
that for every point set P, there exists a affine transformation mapping P to a fat point set
P'. They call a point set P’ a-fat if there exists a point p € R? and a hypercube H such that
p+HCP Cp+aH,i.e., Plies in the ‘shell’ between the two cubes. The transformed
point set is then discretized by a grid, and points from carefully chosen cells form the
c-approximation. The size of the e-approximation is then further reduced by combining
it with a technique by Bronshteyn and Ivanov [BI75], yielding an e-approximation of size
O(e~4=1/2) Agarwal et al. use their e-approximation for approximation algorithms for
computing various extent measures like the diameter or the size of the smallest enclosing
ball of a point set. They also propose kinetic and streaming variants of their algorithms.

Coresets in clustering. Badoiu, Har-Peled and Indyk [BHPI02] find a coreset S C P for
the 1-center problem with an iterative process. The process starts with S = () and first
adds an arbitrary point of P to S. Then, in each round, it computes the center ¢ and
radius r of the minimum enclosing ball of the current subset S. If all points in P lie within
distance (1 + &)r of ¢, the process stops. Otherwise, the point in P which is farthest away
from c is added to S. When the process stops, S has approximately the same minimum
enclosing ball as P (but this does not imply that it is a strong coreset because it might
not approximate all enclosing balls). By a lower bound on the radius after the insertion
of the first two points and the observation that each round increases the radius by a large
enough amount, Badoiu et al. show that the process stops after O(¢~?) rounds.

Badoiu et al. use their coreset to develop an approximation algorithm for k-center and
combine it with other techniques to obtain an approximation algorithm for the 1-cylinder
problem. They also develop a summary for the k-median problem and use it for an approx-
imation algorithm. The size of a coreset for 1-center of the above type was subsequently
improved [BC03|, BCO8, KMY03al, KMY03b] to [e~'] which is optimal [BCOS].

The so far mentioned coreset constructions are deterministic, and they share the property
that the coreset is a subset of the input point set and can only underestimate the objective
value. A different line of development uses random sampling to obtain an input reduction.

Indyk [Ind99] uses sampling to speed up bicriteria approximation algorithms for the met-
ric k-median problem. First, a sample S of ON(\/%) points is drawn uniformly at random
from the input set. Next, a bicriteria approximation is used on S to obtain O(k) centers. S
is not shown to be a coreset, but the center set computed by the bicriteria approximation
is then refined by adding additional centers to reduce the cost of the most expensive points
under the computed bicriteria approximation. Together with these additional centers, the
solution is an [-approximation with ak centers with constant probability for constants
a, f > 0 which are higher than for the invoked bicriteria approximation. The gain is that
the algorithm runs in time @(n) if the invoked bicriteria approximation has a running time
of @(nQ) Indyk also proposes similar algorithms for other geometric problems including

72 4 Small coresets for the k-means problem

the Maximum Traveling Salesman and Maximum Spanning Tree Problem.

Mishra, Oblinger and Pitt [MOPO1] connect clustering to developments in statistics
[Hau92, [Pol84]. Their work includes the observation that Haussler’s Lemma that we stated
as Theorem is beneficial in the context of sampling for clustering problems. They
perform a similar chain of ideas as described in Section in the context of Haus-
sler’s Lemma. In particular, they define a set of O(n*) functions corresponding to the
possible solutions of a metric k-median problem and show that a uniform sample of size
O(W(/{:lnn +1nd71)) yields a set with an absolute error in the clustering cost of
e. However, their work concentrates on drawing connections to statistics and developing
PAC-learning inspired algorithms and it was before coresets in the present form were even
defined. Thus, they do not extend their result to obtain a strong coreset.

Mishra et al. use their sample set for a constant factor approximation for the metric
k-median problem and develop a similar algorithm for the Euclidean k-median problem.

Czumaj and Sohler [CS04] develop an improved analysis of the sampling proposed by
Mishra et al. They also analyze the quality of solutions that are obtained by computing an
a-approximation on the sample and obtained better approximation algorithms for several
clustering problems, including the metric and Euclidean versions of the k-means problem
and the k-median problem.

List of coreset results for the k-means problem. Table lists coreset results for the
k-means problem. It only contains strong coresets, i.e., point sets that yield a (1 + ¢)-
approximation for all possible choices of k£ centers. In the following two paragraphs, we
discuss the results in more detail. Notice that we mostly concentrate on the k-means
results even though the papers often contain results on other problems, too. We also do
not discuss the implications of the results for the data stream setting because this is the
topic of Chapter[5] In particular we do not go into detail on the type of streaming algorithm
that the coreset allows (which is a distinctive feature of a coreset) but concentrate on the
techniques used and the sizes obtained by the constructions.

Coresets for k-means clustering in constant dimension. Har-Peled and Mazumdar
define (strong) coresets for the k-median and the k-means problem in the way that we use
the term today [HPMO04]. They also propose coreset constructions for both problems. The
basic underlying observation is that when input points are moved, it is possible to bound
the change in the cost function if the movement distances are related to the optimum cost.
We have seen this relation in Lemma [2.3.21

In Section we used a simple grid to partition the Euclidean space into cells such
that all points in a cell can be replaced by one weighted point, or, in other words, all points
can be moved to one location which then serves as a representative of the cell. However,
the number of cells was much too high.

To relate the movement distances to the optimum cost while keeping the number of cells
small, Har-Peled and Mazumdar base the partitioning on a («, 3)-bicriteria approximation.
An exponential grid is placed around every of the ak centers. The exponential grids are

4.2 Techniques used in coreset constructions 73

’ Authors \ Year \ Size \ Reference ‘

| k and d are arbitrary |

| Feldman, Langberg | 2011 | O(dke=®) / O(dks*) | [FL1IB] |
Langberg, Schulman 2010 | O(d?k3e™2) [LST0]
Feldman, Monemizadeh, Sohler 2007 | poly(k,e '), weak coreset [EMSO07]
Chen 2006 | O(ke?logn(dk+logd=')) [Che09]

k is arbitrary, d is a constant

Ackermann, Lammersen, Mirtens, | 2010 | O((e 710~ H)°@ . klogn) [AMR*12]
Raupach, Sohler, Swierkot

Har-Peled, Kushal 2005 | O(k3e~ (D) [HPKOT]
Frahling, Sohler 2005 | O(klogne=9) [ES05]
Har-Peled, Mazumdar 2004 | O(klogne™9) [HPMO04]

Table 4.1: A list of several coreset results for the k-means problem.

based on exponentially growing boxes, and the idea is to partition the ‘ring’ between one
box and the next into a constant number of cells. Thus, the cells are also exponentially
growing. This is okay because the larger boxes are further away from any center and thus
there is a higher lower bound on the contribution to the optimum cost that these points
have.

Har-Peled and Mazumdar use a bicriteria approximation with O(klog®n) centers, con-
struct O(logn) rings around every center, each partitioned into O(e~%) cells (for constant
d). Thus, the coreset contains O(k‘log4n - e~%) points. Notice that constants depending
on d or o are omitted. We still see the exponential dependence on the dimension, which
stems from the need to cover d-dimensional cubes with cubes of smaller width.

Frahling and Sohler [F'S05] remove the need to compute a bicritera approximation. Their
algorithm only uses the cost of an approximate solution, which can be found by starting
with an upper bound and halving it until the coreset size meets the proven worst-case size.

Their idea is to construct a partitioning in such a way that all cells contribute a similar
amount to the overall sum of all (squared) movement distances and thus to the error. There-
fore they have to control the number of points in each cell. If a cell is large, fewer points
are allowed to achieve the same worst-case bound on the (squared) movement distances.
Thus, the cells are constructed by using nested grids, quite similar to a (multidimensional
version of a) quadtree. The starting point is a grid with cell diagonal costys (P). Cells
with comparatively few points are called light, cells with relatively many points are called
heavy, and the heavy cells are split into 2 cells with a smaller diagonal. The bound that
distinguishes light and heavy cells depends on the level, i.e., on the cell size. The coreset
then consists of weighted representatives of the leaf cells of this construction.

For the analysis, the points are distinguished into near and far points. Near points are
so close to their closest center in a (fixed but arbitrary) solution that, for constant d, the

74 4 Small coresets for the k-means problem

number of cells containing near points can be bounded by O(k-e~¢) by a volume argument.
Then, the (carefully chosen) definition of light cells bounds the overall error in these cells.
Far points have a lower bound on the distance to their respective center, implying that the
movement distance of every far point is small enough in comparison to its contribution to
the optimum cost.

The size of the coreset can be bounded by a similar distinction of cells into near and
far for heavy cells as for light cells. Frahling and Sohler show that for a suitably refined
version of their algorithm, the coreset size is bounded by O(klogn/e?).

Frahling and Sohler also implemented their coreset construction which is documented
in [F'SO8] (conference version published in 2006).

Notice that the two coreset constructions described above depend exponentially on the
dimension and logarithmically on the number of points. Har-Peled and Kushal [HPKO07]
discovered that the dependence on the number of points can be avoided. Their construction
is again based on centers of an approximative solution, but they replace the exponential
grid around the centers. Instead, they place a unit sphere around each center and compute
a set of O(7(?~Y) points for each sphere. Such a set satisfies that every point on the
corresponding unit sphere is close to one of the points in the set. Then, each center is
connected to each of the points in the respective set, which results in O(ks_(d‘l)) rays.
The points are then snapped onto the rays. Har-Peled and Kushal show that the resulting
movement distances are small enough.

The advantage of the thus reduced point set is that the points on every line lie on a
one-dimensional subspace, allowing a reduction to a 1-dimensional coreset computation.
The only difference is that the coreset must guarantee its approximation factor not only
for centers which are themselves on the line, but for all centers from R?. Har-Peled and
Kushal give a construction that satisfies this and that contains O(k?c~2) points, implying
a coreset of size O(k3e~(@+1)),

Coresets for k-means clustering in high dimension. The idea behind coresets is to
dramatically reduce the size of an input instance in order to compress the data, speed up
approximation algorithms or reduce communication in distributed settings. If the dimen-
sion of the input is high, it is intuitive to ask for a coreset where the number of points does
not exponentially depend on the dimension. Notice that as long as we stay in the input
space, there is a natural dependence of Q(d) in the actual coreset size because the coreset
points are d-dimensional. However, the aim of coreset constructions in high dimension is
to reduce the additional dependency on d as much as possible.

The work by Chen [Che(9] is the first to achieve this for the k-median and k-means prob-
lem (and metric versions of both). As stated above, Mishra, Oblinger and Pitt [MOPO1]
already observed the usefulness of Theorem in the context of clustering. Chen com-
bines the uniform sampling approach with the idea to use a bicriteria approximation.

Chen divides the input according to the bicriteria approximation, assigning every point
to its closest center and placing exponentially growing spheres around the centers. All
points contained in the same shell (the ring between one sphere and the next) form one

4.2 Techniques used in coreset constructions 75

subset. Then, sufficiently many points are sampled from every such ring set to form the
coreset. The inner most sphere has a radius proportional to the average optimal cost. In
this way, the cost of every point in the sphere can be bounded above by the (a multiple)
of the average optimal cost, and as we observed in Section [£.2.2] this limits the number
of samples needed from this subset. The point sets in the shells have a lower and upper
bound on the cost of each point which are within a constant factor of each other, and this
cost is related to the diameter of the subset of points in the shell. Again, this limits the
number of necessary samples. By applying Theorem appropriately, Chen gives an
approximation guarantee of the sample for a set of k centers.

So far, this guarantee only holds for one choice of centers. In order to make it work in
general, the construction can be called with a smaller failure probabilty parameter, such
that the union bound yields that the approximation guarantee holds for more choices of
centers with constant probability. However, the Euclidean space offers an infinite number
of different choices of centes. Chen solves this problem by appropriately discretizing the
space, making sure that the discretized choice of centers do not change the cost too much,
and that the number of such choices is sufficiently small. Chen proves a coreset size of
O(ke=2(logn) - (dk 4+ log6~1)), where 4 is the overall failure probabilty.

The next step is to remove both the exponential dependency on d and the logarithmic
dependency on the number of points at the same time. A suitable sampling process is a
good candidate for this as it does not have an inherit dependence on the dimension as the
different grid based constructions. When sampling uniformly at random, the expected cost
of a point z € P with a center set C' is just the average cost of P with C, costg (P, C)/| P,
so repeated sampling could potentially lead to a coreset. However, sampling uniformly
at random usually has a too high variance. In Chen’s work, this problem is solved by
partitioning the points beforehand to reduce the variance. A different approach is to use
non-uniform sampling to increase the probability of ‘important’ points. However, if the
probability of a point x is p(x) # 1/|P|, then costg(z, C) is biased. The estimator can be
made unbiased again by weighting the sampled point by 1/p(x).

Feldman, Monemizadeh and Sohler [FMS07] are the first to use non-uniform sampling in
the context of coresets for k-means clustering. Their sampling probabilities are based on
the distances of the input points to the centers of a bicriteria approximation. Additionally,
for points that are very close to their respective centers, a uniform sample is added to
the sample. The sample is not shown to be a strong coreset, but it is a building block to
compute a weak coreset. The result does not appear in Table [£.1] which only lists strong
coreset results. It is noticable though that the size of the weak coreset in [FMS07] is
poly(k,e™1), so the number of points is not only polynomial in d but even independent of
d, while it is also independent of n. Finding a strong coreset with this properties is the
main topic of this chapter.

Langberg and Schulman [LSI0] propose a sampling scheme that yields coresets of size
(’M)(d2k:35*2). Notice that they work on the more general topic of shape fitting and that
they use a quite different notation. Nevertheless, the results on e-approzimators proposed
in [LS10] in particular apply to the k-means problem.

The work in [LSI10] is based upon the sensitivity of points. Given a point set P,

76 4 Small coresets for the k-means problem

the sensitivity &(z) of a point = (in the context of k-means clustering) is defined as
SUDCCRY, O]k dist*(z, C)/ X ep dist®(y, C). So, the sensitivity is the maximal fraction that
x can contribute to the total cost for any set of centers, and as such it is a value between
zero and one. For every point x and any center set C', the cost of z with C' is bounded
by &(z) - COSt[%(P, (). The total sensitivity S(P) is just the sum of the sensitivities of all
points.

Langberg and Schulman propose to sample according to the sensitivity, or, more pre-
cisely, according to pointwise upper bounds s(x) > &(z) which sum up to S(P) > &(P).
The probability to sample a point x is then defined as p(z) := s(x)/S(P). To make the
estimation unbiased, the sampled points are weighted by 1/p(x). Langberg and Schulman
show that the variance of drawing one point with this sampling probability is bounded
by (S(P) — 1)(coste (P, C))%. Thus, finding a good bound on the sensitivity reduces the
variance of the estimator. Two things remain. First, Langberg and Schulman also have
to get around the problem that there are infinitely many choices of centers. Second, they
have to compute the bounds s(z) in order to perform the sampling. The latter is done
based on a bicriteria approximation, so this construction is among those that build upon
bicriteria approximations.

The idea to sample according to the sensitivity was further developed by Feldman and
Langberg [FLI1a]. They develop a more general framework using connections to PAC
Learning developing coresets for different problems, including the k-means problem. First,
they present a general bicriteria approximation algorithm, then they state coreset construc-
tions based on the bicriteria approximation. The k-means coreset construction uses the
bicriteria approximation to obtain probabilities for the then following sample step. The
new ingredient is that the centers of the bicriteria approximation are actually added to the
sample and the union then is the coreset. The size of the coreset is bounded by O(dks~°),
which follows from a more general theorem in the current version of the paper [FLI1b]. A
analysis tailored for the k-means problem leads to a smaller bound on the size. Balcan,
Ehrlich and Liang [BELI3] state O(dke=*) as the size of the coreset.

Coresets for the Euclidean k-median problem. The corset constructions [Che09, HPM04,
HPKO07, [FL11al [FS05l [LS10] also work in the Euclidean k-median case and produce core-
sets of similar size as stated in Table The main difference is that the result by
Har-Peled and Kushal implies a smaller coreset in the k-median case. It is then of size
O(k?*~4). Recall that Chen computes coresets for the k-means and k-median problem of
size O(ke2logn(dk + logd")). His construction will be particularly important in Chap-
ter [7]

As for the k-means problem, the sampling approach analyzed by Mishra, Oblinger and
Pitt [MOPO1], also studied by Czumaj and Sohler [CS04], provides insights on how to
apply an approximation algorithm for the metric or Euclidean k-median problem directly
on a random sample from the input point set. We discuss it in Section [4.2.3]

4.3 Computing small coresets for k-means 7

4.3 Computing small coresets for k-means

This section and the next section are devoted to the construction of coresets whose size
does not depend on the dimension of the input points or on the number of input points. We
start with an algorithm with an intuitive idea that illustrates the strength of the concept of
coresets with offsets very well. The algorithm can be used in the context of kernel k-means
as we discuss in Chapter [6.2] In Section we see another coreset construction whose
output size in addition to being independent of d and n has a notably small polynomial
dependence on k and e71. It is also quite different from the first construction considering
the used techniques. This illustrates that the concept of coresets with offsets is not tailor-
made for one specific coreset construction.

We already refered to this Section’s construction when defining coresets with offsets.
Recall that the basic observation in Lemma [2.4.1] that we discussed in some detail in
Section allows to split the 1-means cost of a point set P with a given center ¢ into the
optimal 1-means cost and the distance between ¢ and the centroid of P, weighted by |P|.
The optimal 1-means cost is a constant which appears in every clustering of P. We can
thus seperately store it and concentrate on how to compute the second part of the cost.
For this, we only need the centroid, yielding an exact coreset for the 1-means problem
which consists of one constant and one weighted point.

The challenge of this section is to generalize this idea to the k-means problem. Notice
that for a given center set C, a point set P decomposes into k subsets of points which have
the same closest center. To compute the cost for C, it would be sufficient to know the
centroid and the 1-means cost of every subset. However, the partitioning depends on C,
and we do not know C' in advance. This poses the challenge that we have to overcome in
order to compute a coreset with offset for arbitrary k.

The idea to do this is to subdivide P into subsets such that for every subset P’, repre-
senting it by a 1-means coreset is enough to approximate its k-means cost as well. Then,
we can replace all subsets by their centroids and keep track of the constants. We distin-
guish two types of suitable subsets. The first type are k-unstructured subsets by which we
mean that the 1-means cost and the k-means cost are similar for each of these sets, more
precisely, the 1-means cost is at most (1 + €’) times the k-means cost for a suitable £’
Then, using a 1-means coreset instead of a k-means coreset does not introduce too much
error. If a set is not k-unstructured we say that it is k-structured. The second type are
cheap subsets, which have a very small 1-means cost. In this case, even if the subset is
k-structured, clustering with 1 or £ means does not make a difference compared to the
overall cost.

We partition P into a set of k-unstructured and cheap subsets recursively. Given a
point set, we check if it is k-unstructured. If so, we are done and store the subset, and
the recursion stops. If not, we partition it into subsets according to an optimal k-means
solution and recursively subdivide each of the subsets into k-unstructured or cheap subsets.
The recursion also stops when we reach recursion depth v for a parameter v which is chosen
such that all subsets on level v of the recursion are cheap. Finally, we replace all subsets
by their centroids and store the sum of the squared distances of all points to the centroid

78 4 Small coresets for the k-means problem

Algorithm 4.1: Computing a coreset with offset, first algorithm.
1 Function Partition(P, k, t, v,e)

2 Compute an optimal center set C* = {1, ..., ug} for P;
3 Let Py,..., Py be the partitioning of P induced by C*;
4 Let p be the centroid of P;

5 if t = v or dist®(P,) < (1+¢') X5, dist?(P;, y;) then
6 ‘ M =M U P;

7 else

8 for i=1,...,k do

9 ‘ M = M U Partition(P, k,t + 1,v,&);
10 end
11 end
12 return M;

13 Algorithm Coreset (P,k,c)

14 Set ¢ :=¢%/50, S := () and D := 0;

15 M = Partition(P,k,0, [log, . 1/¢"],€");
16 for every set P' € M do

17 S = SUp(P);

s || w(u(P) = P

19 D =D + dist?(P', u(P"));
20 end

21 return S, w and ®;

of their respective subset.

Algorithm [£.T|shows the algorithm in pseudo code. We use M to denote the set of subsets
in our partitioning. We generate the partitioning in the function Partition. Lines 2-4
compute a partitioning of the input set P based on an optimal solution, and the centroid
of P. In Line 5 we check whether P is k-unstructured or cheap. If one of these is the case,
we store P in M, otherwise we make a recursive call for all k£ subsets in the partitioning
of P. The main algorithm Coreset calls the partition method and replaces the subsets by
their centroids, keeping track of the constants. Also, in Line 18 the centroid is weighted
by the number of points that it represents.

Notice that for a given center set C', the error of the coreset S with offset ® computed
by Algorithm stems from points that are in the same subset in the partitioning M, but
belong to different subsets of the partitioning induced by C'. The cost of the coreset is

costz (S, C)+D = D |P'|mindist®(u(P),c) + > dist’(P', u(P")).
pem ¢ P'eM

We recall from Section[2.4]that Lemma allows to split the cost of the point set with one
center ¢ into the weighted distance between the centroid and ¢ plus the squared distances
of the points to the centroid. Reversely applied, this means that cost@,w(S,)+ =

4.3 Computing small coresets for k-means 79

Y prenm(dist?*(u(P), cpr) + dist? (P, (P')) = ¥ preaq dist*(P’, cpr) where cpr is the center
closest to u(P’) in C. In the optimal solution, however, the points in P’ might not be
closest to the same center and this induces the error.

For the analysis, we need some additional notation. For ¢ = 1,..., v, we name the set
of subsets that are added to M on the ith level of the recursion M¢. In particular, M°
contains the partitioning of the original P into k subsets according to an optimal solution.
All subsets in M for i < v are k-unstructured. We denote the union of all M? for i < v by
M=V, By M" we denote the set of subsets that are added to M on level v. These subsets
are cheap subsets (which may or may not be k-unstructured in addition). We start with
showing that the subsets in M" are indeed cheap, also making precise what we mean by
cheap. Notice that being cheap is actually a property of a set of subsets that ensures that
the sum of all the 1-means costs of the subsets in the set is small.

Lemma 4.3.1. Let P € R be a point set. Let M be the partitioning computed by Algo-
rithm and let MY be the sets added to M on level v of the recursion. Then it holds
that
Y dist?(P', u(P)) <& - costy(P).
PeMv
We say that the subsets in MY are cheap because they satisfy this property.

Proof. In Line 15 of Algorithm , we set the maximum level to log,, . (¢/)~'. We are
interested in the sum of the 1-means costs of all point sets in M". Notice that these
sets result from repeatedly splitting subsets where the k-means cost is significantly smaller
than the 1-means cost. In other words, the sum of the 1-means costs of the k subsets
is significantly smaller than the 1-means cost of the starting set. On level v, the split
has been performed recursively for v times. We can assume that we never stopped the
recursion early because otherwise the sum of the 1-means costs is only smaller. We start
with an optimal partitioning of the original input P, so the sum of the 1-means costs of
these subsets is just costeg(P). After i levels of splitting, the sum of the 1-means costs of
the resulting subsets is bounded by costz(P)/(1 + ¢’). On level v, the sum is bounded by

cost 2 (P costp2 (P costyz (P
5(P) _ e)/71 _ costg(P) o costa(P).
(1 + 8/)1/ (1 + 8/)10g1+6'(€) (8/)71 2

O

Now we consider the k-unstructured subsets. We say that a subset is k-unstructured if
it satisfies that
. .92 /
dist™(P, u(P)) < (1 +¢') - costyz (P).

All subsets in M<" satisfy this condition as Algorithm uses an optimal solution to
compare the 1-means cost with the k-means cost. As it turns out, the basic observation
from Section helps us to deal with k-unstructured subsets. What we see is that if we
cluster a k-unstructured subset P’ with a center set C' which partitions P’ into subsets,
then the centroids of these subsets are relatively close to the centroid of P’ (actually, this

80 4 Small coresets for the k-means problem

does not only hold for partitionings induced by a center set, but for any partitioning).
This will greatly help to bound the error of not splitting P’ into different subsets when
clustering it with C.

Lemma 4.3.2. Let P € R be a point set. Let M be the partitioning computed by Al-
gorithm and let M<" be the sets added to M before level v of the recursion. Let

"€ M= be such a subset and consider an arbitrary partitioning P|, ..., P, of P" into k
subsets. Then it holds that

k k
S~ - dist (P2 p(P)) < - 3 dis?(PL ().
i=1 =
For any fized center set C C R? with |C| = k, it holds that
: 2
/ . / / / /
S 1P dist*(u(L), (P) < &'+ costa (P, ©).

Proof. The lemma is a direct consequence of Lemma Consider that we can rewrite
dist(P’, u(P’)) in the following way, using the lemma.

dist? ZMt (P)) = 3 Bl - dist? (u(PL), u(P')) + dist® (P, p(P2))

i=1

As P’ is k-unstructured and as the cost of an optimal clustering is a lower bound for the
cost induced by the partitioning P, ..., P/, this implies that

; || - dist®(u(P), u(P")) = dist™(Z dist2(P!, u(P)))
) - Do dist* (P, () = 3 dist (P}, p())) = &' Z dist>(P!, u(P))).

For the second part of the lemma, consider the situation that P, ..., P/ is the partitioning
induced by C. The lemma holds for all partitionings, so in particular for this choice.
Then, S8, dist®(P/, u(P})) < costz (P, C) because the definition of P/ now implies that

all points in P/ are clustered with the same center, and then Lemma [2.4.1] implies that the
cost contains the sum of the squared distances to the u(P/).]

We recall that one popular technique in coreset constructions is to move points by small
amounts and to use Lemma 2.3.2] to bound the error in the cost function. We have seen that
cheap subsets satisfy that the sum of the squared distances to the centroids is bounded.
Thus, we can regard the replacement of the cheap subsets by their centroids as moving the
points, and Lemma helps us to bound the change in the cost function.

For the k-unstructured sets this approach does not work. A better way to look at the
error is realizing that the clustering costs of the subsets with its closest center are computed

4.3 Computing small coresets for k-means 81

exactly, but the error stems from the fact that not all points in the subset would actually
choose this center on their own, too.

We can still use arguments based on Lemma by the following trick. We hypothet-
ically shift the points in P such that the shifted versions of all points in the same subset
will actually choose the same center. For this, we need to base the analysis on an arbi-
trary fixed center set C' for Observation [4.3.3] Lemma [4.3.4 and Lemma [4.3.5] To define
the movements, we introduce an intermediate point set Q that has the same clustering
behaviour as P with regard to C'.

Observation 4.3.3. Let the point set Q contain the union of all P € M". For every
point set P € M<", consider the partitioning P, ..., P] induced by C and add |P}| copies
of W(P!) to Q for everyi =1,... k. Then, COStg%(P, C) = COStg%(Q,C) + D¢ for Dg =

S prepr Soby dist*(Pr, u(P,)) by Lemma [2.3.4

The effect of using @) instead of P is that all points originating from the same P’ € M<"
are now indistinguishable in) and have the same clustering behaviour. Instead of moving
the points in P, we define a mapping on). For all P € M" and all x € P’, we define
m(x) = p(P’), so the points in cheap subsets are simply moved to the centroid of their
respective set. For all P' € M<" we defined the partitioning Pj,..., P, induced by C,
and said that @ contains |P/| copies of p(P/). All of these are mapped to p(P’). This
corresponds to moving the k subsets of P’ in such a way that their centroids coincide with
the centroid of P’. We name the resulting point set ().

Lemma 4.3.4. It holds that |costg(Q)', C) +Dgq — coste (P, C)| < (4/5)e - costy (P).

Proof. We check that the precondition of Lemma/|2.3.2)is satisfied. According to Lemma4.3.1}
it holds that
Y dist?(P', u(P")) < & - costya(P).
PreMv

For P' € M<¥, Lemma implies that
k k k
> P dist®(u(B)), w(u(F)))) = Y|P dist®(u(F)), p Z ist?(P))).
i=1 i=1 i—1

By the definition of the P/ and Lemma we have Y28 | dist?(P/, u(P!)) < costez (P', C).
Together, this implies that

2 4 2
Sz —7(@)|]? < 2 - ~coste (P, C) = ;5COSt€§(P, C) = [(/156)8]008%(]3, Q).
TEQ

Lemma 2.3.2)implies that |costez(Q, C)—costz(Q', C)| < e-max{costy (P, C), costg(Q,C)} =
£ - costyz (P,). By Observation (£.3.3, we conclude that

|costz(Q', O) +Dq — costz (P, C)| = |coste (Q', C) — costz(Q, C)| < (4/5)e - coste (P, O).
O]

82 4 Small coresets for the k-means problem

Lemma 4.3.5. It holds that |costz(Q', C) +Dgq — costyz (S, C) — D[< 2e’costz (P, C).

Proof. We want to compare the values costyz(Q)', C)+Dgq and costyz , (S, C)+D. Again, we
distinguish between the contributions originating from cheap subsets and thus originating
from k-unstructured subsets. For this, we use some additional notation. We split S into
S<¥ and S” depending on whether the points are centroids of sets in M<" or M", and we
also split the constant ® into ®<” and D" accordingly. Similarly, ()" is split into QQ’<" and
Q. We do not need to split D as it only contains contributions from sets in M<".

We start with the cheap subsets. Both " and S” consist of centroids of all sets in
P e M¥. In S”, the centroid of P’ is weighted by |P’|, while Q) contains |P’| copies, so
costz(Q', C) = costyz (S, C). As Dq does not contain contributions from sets in M”, D"
completely contributes to the error. This is no problem though because ©" consists of the
squared distances of the points in all P € MY to the respective centroids and the sum of
these squared distances is cheap by Lemma [£.3.1 We get that

|costyz(Q",C) — costz (S, 0) =D = dist*(P', u(P)) < g'costy (P, C).
PleMy

We continue with the k-unstructured subsets. Again)" and S contain similar points:
For every P’ € M= @' contains |P’| points that were all shifted to p(P’), while S
contains u(P’), weighted by |P’|. The difference lies within the constants. S arises from
summarizing a set P’ entirely, replacing it by u(P’) plus the constant dist*(P’, u(P')). For
the same P’, the points in @’ originate from k subsets P, ..., P/ which are the partitioning
of P" according to C'. Each subset generated one point p(P!) in @ which was then shifted
to u(P’) in Q'. So the points coincide, but the constant ®¢ contains the sum of the squared
distances of the points in P/ to the centroid u(P/). However, for k-unstructured subsets,
the centroids of the P/ and of P are close, so this does not induce much error. We see that

|costz(Q~", C) +Dgq — costyz (S, C) — D™

= [Do -2
k
= ¥ (distz(P’, u(P')) — ZdistQ(P{,u(H’)))
PleM<v =1

k

= X (St a0 + P dist (), u(P))) = D dist (P, ()
PeM=<v ri=1 i=1

= > Y|P dist*(u(P), u(F))) < 'costyz (P, C).

PleM<v i=1
For the fourth equality, we use Lemma [2.4.1], and the inequality follows by Lemma [4.3.2]
We conclude by adding the two errors.
|costyz ,, (S, C) +D — cost (Q', C) — Dg| < [cost,,(S”,C) +D” — costz (Q™, C)
+ |costz , (ST, C) + D™ — costz(Q™", C) — Dg| < 2¢'costyz (P, C).

4.3 Computing small coresets for k-means 83

Theorem 4.3.6. Let P C R? be a point set, let 0 < ¢ < 1. Algorithm computes a
(1 + &)-coreset S with offset ® for the k-means problem on P. In particular, it holds for
every set of k centers C' from R? that

|costyz (P, C) — costyz (S, C) — D[< e - costyg (P, C).

S contains kO™ points.

Proof. Lemma [£.3.4 and Lemma [4.3.5] hold for an arbitrary fixed C'. Thus, defining @ and
@' based on C' and applying these statements yields that

|costez (P, C) — costyz ,, (S, C) — D
<|costyz (P, C) — costz(Q', C) — Dql + [costz(Q', C) + D — costyz ,(5,C) — D|
<((4/5)e + 2¢') - costyz (P, C) < e - costyz (P, C).

The size of the coreset is bounded because of the maximal recursion depth v = log,, ., 1/¢".
In the worst-case, all sets in M belong to M| i.e., the algorithm finds no k-unstructured
subsets but always partitions, gaining a set of cheap subsets on level v. Then, there are k¥
subsets in M, and k¥ = k%14 1/¢',

Let Inz : RT — R be the natural logarithm, i.e., the inverse function of e* where
e =y ﬁ is Euler’s number. We use two known facts. First, log, .,z = lnhlljfe,.
Second, for all x € R with x < 1, it holds that e* < 1/(1—z) and thus also z < In(1/(1—x)).

With this in mind, we see that ¢ < 1 implies

/—1 1

1 Ine Ine'~
log,.. 1/’ =Inet. = < —
1+e In(1+¢’) ln(lle/) T

14¢/

<1+ -Ine™t

As ¢/ = (¢2/50), we can bound the number of levels by O(e~2*loge™!). O

4.3.1 Improving the running time

So far, we have not analyzed the running time of Algorithm That is because the
repeated computation of optimum k-means solutions rather serves the purpose of a clear
presentation of the algorithm than it serves to obtain a reasonable running time. The
running time is clearly exponential in 1/e because of the number of coreset points that we
compute. However, we can reduce the dependencies on other parameters by replacing the
optimum k-means computations by approximations. Notice that the analysis above does
not depend on the number of subsets in M or on the actual computation process, but
only on the fact that the subsets are all either cheap or k-unstructured. We change the
algorithm but ensure that this property still holds.

Algorithm is a variant of Algorithm that uses an a-approximate solution to
decide whether to further split a set. M<" still consists of k-unstructured subsets. Let
Py, ..., P} be an optimal partitioning with centers pj, ..., p;. Then the fact that we use

84 4 Small coresets for the k-means problem

Algorithm 4.2: Computing a coreset with offset, variant of the first algorithm.
1 Function Partition(P,k,t,v,e a)

2 Compute a center set €' = {u1, ..., pp} with costyz (P, C") < a - costgz(P);
3 Let Py,..., Py be the partitioning of P induced by C*;

4 Let p be the centroid of P;

5 if £ =v ordist? (P, p) < ((1+¢)/a) Xk, dist*(P;, y;) then
6 | M:=M U {P}

7 else

8 for i=1,...,k do

9 ‘ M = M U Partition(P; k,t+1);
10 end
11 end
12 return M;

13 Algorithm Coreset (P,k,c)

14 Set ¢’ :=¢?/50, a:=1+¢/2, S :=0 and D := 0;
15 M = Partition(P,k,0,log)/, 1/€',a);

16 for every set P € M do

17 S =S Up(P);

18 w(p(P')) = [P'];

19 D =D +dist?>(P', u(P'));
20 end

21 return S, w and D;

an a-approximation guarantees us that all sets added to M<" are k-unstructured because
it holds that

dist®(P, p) < (1 +€)/a) Y dist?(Py,) < (1+&) > dist* (P,).

i=1 =1

In order to ensure that the subsets in M" are still cheap, we increase v. By each level of the
recursion, the cost decreases by a factor of (1+¢’)/a > 1 (because a« =1+4¢'/2 <14 ¢).
Thus, the total cost of the sets on level v is bounded by

) costyz(P) costyz(P)
> dist* (P, p(P) < 2 = : — = &'costyz(P).
PreMy (L+e)/a) ((1+¢)/a)Bate/as 2

By increasing v, the size of the coreset increases, too. Similar as above, we bound the
worst-case size by

1 Ing'~! Ing'~1! Ing'~!
10g(1+€/)/a 1/5/ =In 5,_1' = T S e = oo — 2(1+g,_1).1n 5/_1.
In(l1+¢)/a In T +1+5, 51;1/2

1+4e¢

4.4 Smaller coreset sizes via dimensionality reduction 85

For the running time, we use the result by Jaiswal, Kumar and Sen [JKS14] computing
a (1 + ¢')-approximation of a point set with n points in time O(nd2°*/<)) for constant
k. As we need a (1 + ¢'/2)-approximation, the running time is at most O(nd2°**/¢*)) for
cach approximation. We have to compute kO “ne™") — 90(ogke™*lne™") yiyroximations of
point sets with at most n points, and all other computations need a smaller running time.
The resulting running time is highly exponential in £ and ¢, but not in the dimension d.

Theorem 4.3.7. Let P C R? be a point set. Algorithm computes a (1 + €)-coreset
S with offset ® for the k-means problem on P. In particular, it holds for every set of k
centers C' from R? that

|costyz (P, C') — costyz (S, C) — D[< e - costye (P, C).

S contains kO *Ine™) points. The algorithm can be implemented to have a running time
of O(nd2°W%e* ") for constant k.

4.4 Smaller coreset sizes via dimensionality reduction

Now we continue with a different coreset computation that yields smaller coresets with off-
set for k-means, that also contain a number of points which is independent of the dimension.
The construction is more specialized to squared Euclidean distances than the previous one
because it is based on dimensionality reduction via singular value decomposition.

In Section we saw a way to reduce the dimensionality of a point set to m = O(k/&?)
dimensions while distorting the k-means cost by at most a factor of (1 +¢). The low
dimensional point set still lies within R?, but lies in a subspace of dimension m. More
precisely, a point set stored in the rows of a matrix A € R™? is reduced to A, the
projection of A onto the best fit subspace V,,, of dimension m.

This dimensionality reduction can be used to speed up algorithms that have a running
time depending on the dimension of the point set. In this section we see that it can also
be used to compute small coresets. The idea is to combine the dimensionality reduction
with existing coreset constructions. When the coreset constructions are run on the lower
dimensional subspace, they produce coresets of size independent of the original dimension.
Instead, the dependence on the dimension turns into a dependency on O(k/e?).

We have to take care of one detail, though. Recall from the related work section that
Har-Peled and Kushal [HPKO07] use a dimensionality reduction to d = 1 by projecting
the point set to rays originating at the centers of a bicriteria approximation. Then they
compute a coreset for the points on each ray. The important detail here was that the
coresets have to provide a guarantee for centers from R?, not only for centers that lie on
the ray themselves. We have a similar problem: If we consider A as a m-dimensional
subspace and blindly compute a coreset for it, the coreset guarantee will only hold for
centers which lie in V,.

Luckily, there is an easy solution for this problem. We fix an arbitrary (m + k)-
dimensional subspace V' that contains V,,,. Then we consider the points as (m + k)-
dimensional and compute a coreset for them. Now for an arbitrary center set C', we argue

86 4 Small coresets for the k-means problem

as follows. A(™ and the k centers together lie in a subspace of dimension m + k. The
squared distances between the points in A and the points in C stay the same if we rotate
the subspace. We pick a rotation that is invariant with respect to V,,,, but rotates C' into
our arbitrary fixed subspace V’. Now that the centers lie within V', the coreset property
guarantees us that the cost of A is with rotated center set is approximated. As the cost
has not been changed by the rotation, the guarantee holds for the original center set C' as
well. Notice that the dependency on the dimension of the employed coreset construction
is turned into a dependency on m + k = O(k/g?).

In the following, we use V' = V,,, . as it is a convenient choice. For the application of the
coreset construction it might be necessary to have the point set defined on R™** or it might
be sufficient that the point set lies in a (m + k)-dimensional subspace. In the first case, we
can compute a (m + k)-dimensional representation A of A™) by using the coordinates
of the points in the orthonormal basis vy, ..., v, consisting of the first m + k singular
vectors. More precisely, if Ag-T) =>4 | oyu;, we set flgm) = (a1, .-, Opar)T € R™F (notice
that a1, ..., myr are zero). We can translate the coreset back to R? by using the basis
of Vm+k-

Algorithm 4.3: Computing a coreset with offset, second algorithm.

Algorithm k-means coreset computation(A,k,e)

Set m = [17k/(e/3)*] = [153k/e?];

For i =1,...,m, compute the singular value o; of A and corresponding u; and v;;
Set AW =" gl and © =0 L 0

If necessary, replace A by its m + d-dimensional representation A™;

Compute a (1 + ¢/3)-coreset S with weights w : S — N for A™ with A;

return S, w and D;

b =R B U M

Theorem 4.4.1. Let A € R™? be a matriz, let k € N>y, € € (0,1) and o € R*. Let
n,d > [153k/e*] + k. Let A be an algorithm that computes a (1 + &)-coreset of size
s(n,d,e=1,671) from a d-dimensional point set with n points with probability 1 — 5. Then
algorithm computes a (1 + €)-coreset with offset of size s(n,153k/e*,3/e,671)) with
probability 1 — 9.

Proof. Assume that A is successful, which happens with probability 1 — §. Let S’ be the
coreset computed for either A or A . In the latter case, S’ is the d-dimensional version
of the coreset that we get by using the basis of VV’ to map the coreset back to R%. Notice that
S’ is a coreset for A regarding all choices of centers from Vj,,. Let C' be an arbitrary
set of k centers from R? which does not necessarily lie within V.. Recall that there exists
an orthonormal basis of R? that consists of singular vectors vy, ...,vq4, and that vy, ..., v;
is an orthonormal basis of V;. Choose b,.1,...,bq such that vi,... v, bms1, -, sk
form an orthonormal basis of the m + k dimensional subspace V" := V,, U span(C') and
such that v1, ..., Um, bmits- - ., bg is an orthonormal basis of R?. Now we define a mapping

4.4 Smaller coreset sizes via dimensionality reduction 87

7 : RY — R? that is invariant with regard to V,, and rotates span(C) into V, k. This is
achieved by m(z) = Tx with

T —va + Z vib! .

1=m-+1

For a vector x € R? consider its representation in the basis of V", = = > o +
>4 i1 ibi. Then we see that m(x) satisfies

(ZUW + Z vsz> (Zazvz—i- Z Q; Z)

i=m-+1 1=m-+1
m
= ZOéi’Uz‘ + Z a;U;.

i=1 i=m+1
In particular, if a vector lies in span C, then «; is only non-zero for it =m +1,...,m+k,
so the image of the vector is 3-F ., a;v; € Vipyx. Additionally, 7(z) = x for all z €
V,n. Notice that 7 does not change the lengths of vectors, as ||7(z)||* = || X%, asv; +
S i) = X%, a? = ||z||*> by the Pythagorean theorem and because the basis is

orthonormal.

Let 7(C) := {m(c)|c € C'} be the rotation of C' into V;,,;x and set ¢’ = €/3. By the coreset
guarantee of C' we know that |COSt€§(A(m), m(C)) —costg (S, m(C))] < 5’-cost4§(A(m), 7(C)).
Notice that for a point A;, and a center ¢ € C, ||4;. — 7(0)||* = ||7(A;) — 7(0)|]* =
|| (A —)||* = ||Aje—c||* because 7 is linear and invariant with regard to V,,, and because
it does not change the lengths of vectors. This implies costyz (A 7(C)) = costyz (A)
and costyz(S’, m(C')) = costgz (57, C), and therefore

|costyz (AM™) — costgz (S, C)| < &' - costy (A).

By Theorem , we know that |COSt£§<A(m), C) +D — cost(A, C)| <& coste(A,C).
By the triangle inequality, we conclude that
|costz(S', C) +D — costyz (A, O
< |eostz(S',C) = COStZ%(A(m),)| + |COStg%<A(m), C) +D — costg(A, C))
< COStg%(A(m), C) +¢" - costp(A,C) < € (costgg(A(m), C)+D) +¢& - coste(A,C)
< ('(1+ &) +¢') - costz(A,C) < 3" costz(A,C) < e - cost (4, O).

]

We can combine Theorem with existing coreset computations. For example, using
the construction by Langberg and Schulman in [L.S10], Theorem implies the existence
of a coreset of size O(k°c~%). This size is independent of the dimension and of the number
of input points.

88 4 Small coresets for the k-means problem

Notice that we can extend the coreset construction to weighted inputs by using the
technique described in Section as done in Algorithm [£.4] The algorithm assumes
that the input contains a weight function w : [n] — N that assigns an integer weight to
every index. The coreset construction needs to be applicable to weighted inputs, too, since
we apply it to Agum) weighted by w. The construction gives the same guarantees as the
unweighted version.

Algorithm 4.4: Computing a coreset with offset for inputs with integer weights.

=

Algorithm k-means coreset computation(A,k,c,w)

Set m = [17k/(e/3)*] = [153k/&?];

Obtain F' by multiplying each row A;, with \/m ;

For i =1,...,m, compute the singular value o; of F' and corresponding u; and v;;
Set A =" oyuol and © =4 o

If necessary, replace AU™ by its m -+ d-dimensional representation Alm),

Compute a (1 + &/3)-coreset S with weights w’ : S — N for A™ and w;
return S, v’ and D;

N

® N o o A~ @

5 The k-means problem in data streams

A stream of data is a large list of items (points, in our case), which are presented one by
one in an arbitrary order, meaning that the order cannot be influenced by an algorithm
that wants to analyze the data. A streaming algorithm can read the data only once in the
given order and can only store a sublinear amount of data.

Muthukrishnan [Mut05] gives an extensive survey on techniques for designing data
stream algorithms. We look at one of his introductory puzzles as an easy example for
a data stream algorithm. Consider a data stream consisting of numbers from the universe
{1,...,u} for a u € N. Assume that the stream consists of v — 1 numbers, all distinct,
and that the task is to find the missing number. This can be solved by adding all numbers
in the stream and subtracting the sum from Y% ;7 = u(u + 1)/2, which needs less than
2log u bits of storage.

The storage can be reduced even further to only logu bits of storagd'} For the sake of
simplicity, assume that © = 2¥ — 1. Then notice that the ‘bitwise xor’ over all numbers
from 0 to 2¥ — 1 is zero, and that if we leave out one number, the bitwise xor of all other
numbers is exactly this number. So, the missing number can also be found by computing
the bitwise xor over all numbers in the stream, which can be done with logu bits. This is
optimal since storing the solution for the puzzle requires log u bits (in the worst case).

As an easy example for a data stream algorithm in the area of clustering, consider the
k-means problem for k£ = 1 and assume that we want to approximate the 1-means cost.
So, the stream consists of points x4, x2, . . ., and after every point z; in the stream, we want
to be able to output dist®(P;, u(P;)) for Pj := {xy,29,...,7;}.

By Lemma we can write the 1-means cost of P; as dist*(P;, u(P;)) = >aep, Iz —
w(P)I? = |Pi| - |z = (P> = Lpep, Iz — 2| for any z € RY. We set 2z = 0 and find that

dist®(P;, pu(Fy)) = [Pj] - (PI* = 3 Il

:EEP]'
Consequently, we store the number of points N; := |P;| seen so far, the sum of the
points, s; = >, x;, and the sum of the squared lengths, L; = >7_, ||z;]|*. These features

can be updated after every point, and they are sufficient to calculate dist*(P;, u(P;)) =
N; - ||s;/N;||? = L;. The space complexity (in the uniform cost model) is one d-dimensional
point and two constants, N; and L;.

We have seen this triple before, in form of an exact 1-means coreset consisting of one
weighted point and a constant. In Section we see that strong (approximative) coresets
for the k-means problem generally lead to streaming algorithms.

LOptimizing constants is usually not our focus, but it is interesting in this small introductory example.

90 5 The k-means problem in data streams

Analysis of streaming algorithms. The main evaluation criterion for streaming algo-
rithms is their space complexity which shall be polylogarithmic or at least sublinear in
the size of the stream. The running time of streaming algorithms is often differentiated
into the update time, i.e., the time needed to process one new item in the stream, and
the extraction time, i.e., the time needed to extract a solution for the given problem from
the stored data. Both these times should be polylogarithmic in the stream size. We will
mostly analyze the (total) running time, i.e. the time needed to process a stream of given
length and to output a solution.

When the streaming restriction of only one pass over the data is relaxed and multiple
runs over the data are allowed, then the number of passes becomes another measure of
the performance of a streaming algorithm. In this thesis we only deal with single pass
algorithms, so we do not further elaborate on this matter.

Notice that in the first example above, we used the logarithmic cost model to analyze the
space complexity because we counted the bit length of the involved numbers. This makes
sense as the input is a number problem. In the context of clustering problems and thus
in most parts of this thesis, we will simplify the analysis by using the uniform cost model
to analyze algorithms, i.e., arithmetic operations are assumed to need constant time and
numbers to use constant space.

Streaming models. We can perceive a data stream as a description of an underlying
vector x of a possibly infinite dimension. Muthukrishnan [Mut05] distinguishes between
three data streaming models that differ in the way that the vector is updated.

In the Time-Series model, the entries of x arrive consecutively ordered by their index,
i.e., the stream consists of x1, x5, r3,... and so on. For example, a sensor measuring a
certain value every five minutes creates a time series.

In contrast to this, the other two models assume that the data stream contains updates
on z, and x is initially assumed to be the zero vector. In the Cash-Register model, the
updates are always positive, so each element in the stream specifies a position ¢ and a
positive value which is added to x;. The first example above falls into this category: The
underlying vector is the characteristic vector of the universe {1,...,u} and each arriving
number increases the corresponding coordinate of this vector from 0 to 1. This data stream
model was named in [GKMS01].

If the entries of x can also be decreased, then we have the Turnstile model. Every element
in the stream gives a position ¢ and a value that is added to x;, and this value can be positive
or negative. The model was named in [Mut05] after the turnstiles in subways in New York
which keep track of the number of people currently in the subway. If, like in the subway
example, the updates are restricted such that they can never decrease a coordinate of x
below zero, then the model is called strict Turnstile model.

The above models are general models for data streams. For geometric problems, two
other terms have prevailed, which are the Insertion-Only (data stream) model and the
Dynamic (data stream) model which are special names for geometric versions of the Cash-
Register model and the Turnstile model. In the Insertion-Only model, the stream consists

91

of points x1, g, ... which arrive in arbitrary (worst-case) order. We can see this as a Cash-
Register model if we define the underlying vector as the (infinite) characteristic vector of
all possible points.

The Dynamic data stream model is a specific model for the discrete d-dimensional Eu-
clidean space defined by Indyk [Ind04]. It assumes that the points lie on a grid, more
specifically, that all input points are from {1,..., A}? for a constant A. The stream con-
sists of insertion and deletion operations, i.e., each element in the stream either adds a
point or deletes a point. It is assumed that points can only be added if they are currently
not present, and that they can only be deleted if they are currently present. This means
that the model is a strict Turnstile model where the underlying vector is the characteristic
vector of all A? possible points.

Randomization and approximation. The introductory examples both have the property
that they can be solved deterministically and exactly. This is typically not the case, and
to illustrate this we have a look at a well understood data stream problem which was
proposed by Flajolet and Martin in 1983 [FM83], [FMS&5].

Assume that the stream again consists of numbers from the universe U := {1,...,u}
for a u € N, but this time, the numbers can repeat. We are interested in the number of
distinct elements, i.e., in the question how many different numbers we have seen. This is
easy if we have O(u) bits because then we can store for each number whether we have seen
it. However, we would like the space complexity of the algorithm to be sublinear.

Assume that we could solve this problem deterministically in space o(u), i. e., after seeing
a stream of numbers and storing only o(u) information, we could output the number of
distinct elements exactly. Then we claim that we can use the corresponding algorithm to
do the following impossible task: Given an arbitrary subset S of U, store S with o(u) bits
and later recover it completely.

So, let S C U be an arbitrary subset of U. We feed this to the algorithm as a stream
in an arbitrary order. The algorithm processes S and only stores o(u) bits. Then, we
iteratively append all numbers from 1 to u to the stream. After each number, we check
whether the number of distinct elements has changed. If so, then the number was not
in S, if not, then it was in S. This means that the algorithm can store arbitrary sets
S C{1,...,u} with o(u) bits, which is not possible?

Thus, the distinct element problem cannot be solved exactly by a deterministic data
stream algorithm with o(u) storage. Interestingly, even approximation is not enough if we
stick to determinism: Any deterministic algorithm which computes a constant approxima-
tion needs (u) space [AMS99]. On the other hand, various randomized approximation
algorithms were proposed, including a (1 4 €)-approximation with a space complexity of
O(e7% +logu) [KNWTQ] which is optimal [AMS99, [Woo04].

For the k-means clustering problem, the use of approximation is natural (at least for
designing efficient algorithms) as the problem is NP-hard. Surprisingly and in contrast to

2This argumentation follows a similar argumentation for the slightly different second puzzle in [Mut05].

92 5 The k-means problem in data streams

the distinct element problem, randomization is not necessarily needed to design streaming
algorithms for the k-means problem, see for example Section [5.2.1]

5.1 The Merge-and-Reduce technique

This section discusses a popular method to design efficient streaming algorithms based on
coresets. Strong coresets have the nice property that their union is also a coreset. More
precisely, if S; and Sy are (1 4 €)-coresets for a problem on the input point sets Py and P,
respectively, then S; U S; is a coreset for P, U P». Additionally, coreset computations can
be nested: If Sy is a (1 + &1)-coreset for Sy, and Sy is a (1 4 €9)-coreset for P, then S; is a
(14 ¢e1)(1 + &2)-coreset for P.

So, a reasonable idea to tranfer a coreset construction to the Insertion-Only data stream
model is to partition the input data into chunks, compute a coreset for each chunk and
union the resulting coresets. Whenever this union grows too large, it is reduced by applying
the coreset construction again. However, every union step introduces an additional error,
so the number of unions has to be kept small. More precisely, when looking at a particular
point, the number of unions and coreset computations that it participates in shall be kept
small.

This is exactly what the Merge-and-Reduce technique is about. For each chunk and
the coreset(s) computed from it, the Merge-and-Reduce technique keeps the number of
unions small that it participates in. This is achieved by merging and reducing coresets in
a tree-like fashion. See Figure |5.1|for a visualization. The first chunk (or block) By is read
and reduced to coreset Sp, the second block Bs to coreset S3. Then, S; and Sy are merged
and reduced to coreset S3. Blocks Bs and B, induce the coreset computation of S, and Sx
first and Sg then. When Sg is computed, it is merged with S5 and reduced to S;. In this
way the computation continues: Each block is summarized into a coreset which forms a
leaf of the tree, and whenever both children of a node have computed their coresets, then
the node computes its coreset, too.

The advantage of this computation tree is that every input point takes part in at most
log | P| reduction steps, where |P| is the number of points seen so far. Thus, if every
reduction step computes a (1 + €)-coreset of its input, then the resulting coreset is a
(1 +)elPl_coreset. To compensate this accuracy loss, the reduction steps have to be a
bit more accurate: They have to compute (1 + &’)-coresets for £’ := ¢/ log | P|.

Notice that we may have to store multiple coresets at the same time. However, it is
never necessary to store more than one coreset for each level (plus one, during the time
where a new chunk of data is incorporated into the tree).

So far, we described Merge-and-Reduce with a focus on standard coresets (without off-
set). The offsets do not change the framework much. At the beginning of this section,
we observed that the union of coresets is a coreset and that coreset computations can be
nested. The following lemma states that this still holds for coresets with offsets. This
is central and ensures that we can still use the Merge-and-Reduce technique. The only

5.1 The Merge-and-Reduce technique 93

Figure 5.1: Merge-and-Reduce computation tree.

changes are that we have to store O(logn) constants, and that we have to take care of the
constants when we merge coresets.

Lemma 5.1.1. Let Sy and Sy with constants ©, and D4 be (1 + €)-coresets with offsets
for the point sets Py and Py, respectively. Let S with ©' be a (1 + &’)-coreset with offset
for S;USy. Then Sy U Sy with constant ®1 + Dq is a (1 + €)-coreset for Py U Py, and S’
with constant D1 + Dy + D" is a (14 ¢)(1 + £')-coreset for S; U Ss.

Proof. For the first statement we only need the triangle inequality and the fact that the
cost of a point set is the sum of the costs of its subsets (if the subsets form a partitioning).
We get that for every set of k centers C| it holds that

‘COStZE(S]_ USy, C)+ D +Dy — COStg%(Pl U P, C)|
|costyz(S1,C) + D1 — costz (P, O)] + [costyz (S2, C) + Dy — costyg (P, C)

<
< e cost(Pr, C) + € - costyz (P, C) = € - costz (P U Py, C).

Based on this, we can bound the error of S’ compared to the cost of P, U P,. It holds that

|costz(S", C) + D1 + Da + D' — costyz (P U P, C)|
< Jeostz(S',C) + D" — costyz(S1 U Sz, O)
+ |COSt£%(Sl USy,C)+D1+ Dy — COStg%(Pl U Py, C)|
g'costyz (S1 U S, C) + € - costyz (P U Py, C)
'(1+¢g)costz (P U Py, C) + € - cost (P U P, C)
= (e +¢&" +eg’) - coste(PL U Py, O).

<
<

Notice that (14 ¢)(1+¢') =1+ (¢ + &'+ e¢’), which concludes the proof. O

Merge-and-Reduce is not a new technique but has already been used in the work of
Bentley and Saxe [BS80]. Agarwal, Har-Peled and Varadarajan [AHPVO04] used it in

94 5 The k-means problem in data streams

the context of computing extent measures of points in data streams, and Har-Peled and
Varadarajan [HPMO04] used it to compute coresets in data streams. It has since then been
stated and rephrased several times. We give a version that allows offsets and the usage of
different coreset algorithms. Notice that the theorem assumes that the number of points
is known in advance. We discuss this point below.

Theorem 5.1.2. Let 0 < ¢ < 1/2 and 0 < § < 1 be given. Assume we are given an
algorithm that, given a weighted point set P of n points with total weight W, computes a
(1+¢)-coreset of P for the k-means problem, possibly with offset ®, of size s(n, W, k,e,0) >
1 with total weight W in time t(n, W, k,e,0) with failure probability §, and a storage usage
of s'(n,W,k,e,d). We assume that s(-),s'(-) and t(-) are monotone functions.

Then we can specify an algorithm in the Insertion-Only data stream model which com-
putes a (1 + €)-coreset of an unweighted point set P for D with probability 1 — § where for
e’ :=¢/(2[logn] +2) and §' :=§/(2n) it holds that

e the size of the coreset is bounded by § := s(n,n, k&', "),
e the storage size is bounded by s'(¢-5,n,k, &', 68')+€-5-d with { := [logn] + 1 and
e the running time is bounded by (n/|s|) - t(28,n,k,e',0") + ({5, n, k,e',0").

Proof. We review a different description of the Merge-and-Reduce technique with the fol-
lowing algorithm which fits to the computation tree in Figure but makes more clear
what coresets need to be stored during the computation. We use 5 := s(n,n, k,&’,¢') as
the basic chunk size in which the data is partitioned because it does not induce additional
storage requirement as we want to output a coreset of this size anyhow.

We store a dynamic array (or a list) A of coresets with offsetsﬂ where new elements are
created when needed and new elements start empty. If Afi] holds a coreset, we denote it by
S4 and its offset by D The offset is zero if the coreset construction does not use offsets.
Notice that S# and D# may change during the execution of the algorithm.

In every step of the algorithm, we do the following. First, we read 2 -5 input points and
compute a (1 4 &')-coreset S with offset © of size s(8, 8, k,€’,§") with total weight 5. We
set i = 1 and try to store S at position A[i]. If Ali] is empty, we store S and © and are
done. Otherwise, Ali] contains a coreset S with offset D of the same total weight as
S. We merge S and S, and then reduce their union by another coreset computation to a
coreset S’ with offset ®”. Also, we add the constants and obtain ®’ := D + D4 +D”. Ali]
is emptied, we set i = i + 1 and try to insert S” annotated with ®’ into A[i] in the same
fashion. This repeats until an empty position in the array is reached, which will happen
eventually.

When the current coreset is queried, we take the union of all S currently stored in A,
compute a coreset of the union and return it together with the sum of the constants.

As an illustration, notice that in Figure [5.1] S; is the first coreset stored in A[1], but
is removed when Sy arrives. Sy is never stored in A, but S; is stored in A[2] until Sg is
computed, when Sj is removed and S7 is computed and stored in A[3].

3We call it dynamic array because we use A[i] to reference the ith element, but a list suffices.

5.1 The Merge-and-Reduce technique 95

During the algorithm, the following always holds. If A[i] for ¢ > 1 contains a coreset
S4 with offset D7, then this coreset represents a set P’ containing 2'5 input points, has
weight 25 and is of size s(25,2'3, k,¢’,0") < § (assuming that n is a power of two and that
25 < n)| Furthermore, S is a (1+¢)’coreset for P'. To see this, notice that following the
construction of S{* above, it is a coreset for S, U S. S, and S are coresets for disjoint
subsets of P' and together represent P’. If we assume that S is a (14 ¢’)""!-coreset and
notice that S is a (1 + €)-coreset, then Lemma vields that S"is a (1 + &)’ coreset.

Notice that * = [log |P|| + 1 array positions suffice to store a coreset of a point set P.
Thus, we need to store at most ([log |P|] + 1) - § points for the coresets, plus additional
storage size for the execution of the coreset construction. For the latter, notice that the
largest input to the coreset construction is the union of the ([log|P|] + 1) coresets that
is reduced to one coreset. Here, the storage needed is bounded by s'(([log|P|] + 1) -
5,|P|,k,€',8"). The returned coreset is of size s(23,2(e!PlI+V5 k& §') < 3.

All coresets stored in A are at least (1 + &')" -coresets. The final computation unions
all i* coresets and performs a final coreset computation, yielding a (1 + &')* *l-coreset by
Lemma [5.1.1} For ¢’ := ¢/(2([log |P|] + 2)), we get for £ < 1/2 that

9

1 e/2
(1 5 (Tog [P 1 2)

1+ <l+e.

<2< =
= =1 1—2/2=

) [log | P|1+2

Similarly, we have (1 — m)ﬂoﬂpﬂﬁ > (2e)"2 > e > (1—e).

Set n' := |P|/(25). On the base level, we do n’ coreset computations, which together
take n' - t(25,28, k,£',¢') time. Because the computation has the structure of a binary
tree, the number of coreset computations in inner nodes of the tree is at most n’ — 1, each
processing a set of size 2§ with weight at most |P|. So, the computation time for all coreset
computations except the last computation is bounded by 2n’ - t(23, |P|, k,&’,¢"). The final
coreset computation takes time ¢(([log |P|| + 1)8,|P|, k, €',).

Finally, notice that the probability that one of these 2n’' coreset computations fails is
bounded by 2n/§/(2|P|) < § by the union bound because n’ < |P|.

[

Knowing the number of points. Notice that the above algorithm assumes knowledge
about |P|, the number of points in the data stream. It is needed to set the precision
parameter ¢ and thus the coreset size. By increasing the storage size by another log|P)|
factor, we can get rid of this assumption. When the stream starts, we assume an upper
bound n on the number of points in the stream (maybe we expect at least one point, or
k points, or any constant number). We set the parameters accordingly and compute a
(1 + ¢/3)-coreset for the first n points in the stream. Then, we double our bound, adjust
the parameters and compute a coreset for the next 2n points in the stream. We proceed
like this, always doubling the bound when we reached the estimated number of points. We

4If n is not a power of two and 2'§ > n, then the set in A[i] is empty or represents |P| points and has
size s(n,n, k,e’,0") = 3.

96 5 The k-means problem in data streams

store all the coresets computed in this way, and whenever the current coreset is queried,
we compute a (14 ¢/3)-coreset of the union of all stored coresets and return it. The error
is then (1+¢/3)? < (1+¢), the coreset size is S(|P|, k,e/3) for the actual number of points
|P| seen in the stream, but the storage size increases by a factor of log |P| because of the
log | P| coresets that we have to store.

5.2 Streaming algorithms for k-means clustering

In the last section, we saw the Merge-and-Reduce technique, which provides a rather
general way to design streaming algorithms. We have already heard about several coreset
constructions for the k-means problem in Section[4.2.3] Most of these were used or could at
least be used to design streaming algorithms with the Merge-and-Reduce technique using
Theorem [5.1.2) or a similar result. There are three exceptions. Feldman, Monemizadeh
and Sohler [FMSQT7] construct a weak coreset. Thus, they cannot use the principle directly
but have to adjust it accordingly. The same holds for the streaming algorithm due to
Feldman and Langberg [FLI1a]. Even though their work contains the construction of
a strong coreset, the stated streaming result relies on a weak coreset, and the authors
do not state a result for the strong coreset. Frahling and Sohler [F'S05] do not use the
Merge-and-Reduce technique at all. They design a strong coreset that can be maintained
in the Dynamic geometric data stream model, so deletions of points are also allowed. Their
coreset construction uses statistics about the point set that can be updated under insertions
and deletions of points.

Table lists the storage requirement of streaming algorithms developed for the k-
means problem, measured by the number of stored points. We focus on algorithms that
output a coreset which allows the computation of a (1 + €)-approximation (we include
the two results involving weak coresets stated above). Table lists the time needed to
update the coreset when a new point arrives (in the case of [FS05|, the update time is
also a bound for the time needed to update after the deletion of a point). Feldman and
Langberg [FL11a] do not explicitly state this time. Notice that performing a streaming
algorithm on a stream of n points needs n updates, yielding a running time of n times
the update time. Usually, the extraction time of a coreset is bounded by the storage need
which is implicitly assumed to be o(n) for streaming algorithms.

5.2.1 Algorithms based on Merge-and-Reduce

We shortly review results that are based on the Merge-and-Reduce technique. Theo-
rem allows us to convert coreset constructions for the k-means problem into streaming
algorithms.

Storage and time in typical situations. To get some more intuition, we look at the
consequences of Theorem for a more restricted scenario. Let a coreset construction
be given. Assume that the size of the computed coreset depends on the total weight but

5.2 Streaming algorithms for k-means clustering

97

’ Authors \ Year \ Max. number of stored points \ Reference ‘
k and d are arbitrary

Feldman, Langberg 2011 | O(ke?loge~'log’ n) [FL11D]
Feldman, Monemizadeh, | 2007 | O(k?c=°1og'"n) [EMSO7]
Sohler

Chen 2006 | O(dk?>c2log®n) [Che09)

k is arbitrary, d is a constant

Frahling, Sohler 2005 | O(k2e72461og” A(log A +1logm)3) [FS07]
Har-Peled, Mazumdar 2004 | O(ke~*log” % n) [HPMO04]

] Strong coresets, but streaming result not made explicit

‘ Year ‘ Reference ‘

|

k and d are arbitrary

|

Langberg, Schulman | 2010 | [LSI0]
k is arbitrary, d is a constant

Ackermann, Lammersen, Mértens, Raupach, Sohler, Swierkot 2010 | [AMR™12]

Har-Peled, Kushal 2005 | [HPKO07]

Table 5.1: A list of results for computing coresets for k-means in the streaming setting.

] Authors \ Year \ Update Time \ Reference ‘
k and d are arbitrary
Feldman, Monemizadeh, Sohler | 2007 | O(dk?c~'log® n) [FMS07]
Chen 2006 | O(dk(log” n) poly log(dke™1)) [Che09)
k is arbitrary, d is a constant
Frahling, Sohler 2005 | O(log” A(log A + logm)) [FS03]
Har-Peled, Mazumdar 2004 | O(log®(ke™1) + kP) [HPMO04]

Table 5.2: Update times for the algorithms listed in Table .

98 5 The k-means problem in data streams

not on the number of points, that it satisfies s(|P|, W, k,¢&,d) = &” - log"(671) - (W, k) for
v,v € N, and assume that the additional storage usage is linear in the input size, i.e.,
s'(|P, W, k,e,0) = O(|P)).

Then the total storage need of the streaming version described in Theorem is
O(log |P| - s(|P|,|P|, k&', 8")) = O((log""" |P]) - (log" |P| +log” 67") - 4(| P|, k)).

If the running time of the coreset construction is at least linear in the number of points,
e.g., t(|P|,W, k,e,8) = |P|*{(W, k,¢,6) for a constant x > 1, then the running time of the
streaming version is (| P|/8)-8%t(| P|, k, &, 0) +£55°L(W, k, &', ') = O(|P|-8%)-1(| P|, k, €', 8").
We compare this to |P|* - t(|P|, k,e,d). For £ > 1 and small enough coreset sizes 3, the
streaming version is actually asymptotically faster. For k = 1 it is only slower because of
the final computation, when skipping this and returning the union of the stored coreset, it
has equal asymptotic running time as the non-streaming version.

Now the application works in a rather straightforward way. As a rule of thumb, the size of
the coreset constructed by the streaming version is larger than the size of the non-streaming
variant by a power of logn. There are two things that must be kept in mind, though. First,
the coreset construction has to work for a weighted input set. Often, the generalization to
a weighted point set is verbatim, but as we have seen in Section this is not always
the case. Second, we need to know the dependencies on the precision parameter € and the
failure probability ¢ in case of a randomized algorithm. In particular the dependency on o
is often dropped when stating coreset results, as we can see in Table in Section [4.2.3

Specific results. We review exemplary applications of the Merge-and-Reduce technique
to known coreset constructions without a formal proof. For a deterministic coreset con-
struction like the one by Har-Peled and Mazumdar [HPMO04|, checking the dependency on
J is not necessary. Theorem 6.2 in [HPMO04] states the coreset size for a weighted input
set with total weight W as O(ke~?log W) for constant d, so we get a streaming algorithm
with storage requirement O(ke¢ Jog®t? n) for constant dimension d. The larger coreset
size in the result proven by the authors is due to the fact that they use ¢/(c(i + 1)?) for
coresets on level i of the computation tree (for a constant ¢), which also works but yields
2d powers of logn instead of d.

The construction by Chen [Che09] computes a coreset of size O(dk?log? We=2logd—)
for a weighted input set with total weight W. The streaming algorithm can thus be
constructed to need O(d?k2c~2(logd') - (log®n)) space. As in [HPM04], the streaming
result in [Che(9] is obtained with a precision parameter of £/(c(i + 1)?) for the individual
coreset constructions, leading to the result stated in Table [5.1]

The constructions by Har-Peled and Kushal [HPKQT7], Ackermann, Lammersen, Mértens,
Raupach, Sohler and Swierkot [AMR™12] and Langberg and Schulman [LS10] are in prin-
ciple also suitable to be embedded into Merge-and-Reduce, but the streaming result was
not explicitly stated (JAMRT12] contains a streaming implementation but not a proven
bound on the storage usage in the streaming setting).

5.2 Streaming algorithms for k-means clustering 99

Obtaining an approximative solution. For all algorithms in Table5.1} an a-approximation
can be obtained at any point of the stream by extracting the coreset and running an a-
approximation algorithm.

5.2.2 A streaming coreset

Section [4.4] contains an algorithm that computes coresets for the k-means problem. The size
of the computed coresets is independent of n, the number of points, and d, the dimension
of the input points. The algorithm consists of computing a lower dimensional version of
the input point set by the dimensionality reduction from Section and running a coreset
construction on this lower dimensional set. We shortly review how to conduct this coreset
construction in a streaming setting by using the Merge-and-Reduce technique.

For Merge-and-Reduce, we need a weighted coreset construction. We discussed how to
apply the dimensionality reduction to weighted input points in Section Yet, the
coreset construction that is applied to the lower dimensional point set also needs to be
able to handle weighted inputs. Lemma [4.2.1|states that we can simulate the computation
of a coreset of a weighted point set by O(e~!log W) unweighted computations, where W
is the total weight of the input point set. We can thus in principle use any unweighted
coreset construction.

For example, combining the observation with the coreset result by Langberg and Schul-
man [LS10] gives a weighted coreset constrution that computes coresets that are of size
O(d?k*<~3log W) under the assumption that the dependency of the coreset size on the
failure probability is polylogarithmic (because we need to conduct multiple runs of the
algorithm). This is no longer independent of the number of points, and that is an artefact
of using Lemma [4.2.1] Using Merge-and-Reduce will introduce a dependency on logn in
any case, so we do not elaborate on removing this factor.

Combining this weighted construction with the dimensionality reduction yields coresets
of size O~(k:5e*7log W). Combining the resulting coreset construction with the Merge-
and-Reduce technique results in a streaming algorithm that maintains coresets of size
O(k®c~"1og® n). The number of points in the coreset is thus independent of the dimension
(but the dimension of the points is still d).

Notice that the high dependency on logn is mostly a consequence of using Merge-and-
Reduce together with a coreset construction that has a significant polynomial dependency
on €. In Section [5.4] we see a construction that does not use Merge-and-Reduce. This
coreset construction has the advantage that it is efficient in practical applications. We
discuss other streaming algorithms for the k-means problem that are used in practice in
the next section.

5.2.3 Implementations of streaming algorithms for k-means

We consider an algorithm to be interesting in a practical scenario if it has been implemented
and the implementation is at least documented in a publication. In the best case, the

100 5 The k-means problem in data streams

implementation is also available, either implemented by the authors or within an open
framework.

MacQueen’s k-means algorithm. The oldest algorithm that can be considered a stream-
ing algorithm for the k-means problem is due to MacQueen [Mac67] and was proposed in
1967. It has certainly be implemented several times and is for example available within
the open source project ESMERALDA [EP11]. MacQueen’s k-means algorithm declares
the first k£ points to be the initial centers. Then it reads the remaining points, assigns each
new point to its closest center and recomputes this center. The center is replaced by the
centroid of the points assigned to it. Points are never reassigned to different centers.

The algorithm’s behaviour depends on the ordering of the points, and does not guar-
antee a local optimum like Lloyd’s algorithm does after convergence. It comes without a
guarantee on the quality of the solution. MacQueen did not originally design the algorithm
in light of the streaming scenario, but as the algorithm only reads each point once, it can
be considered to be a streaming algorithm. The running time of a straightforward imple-
mentation is ©(nkd) because we need to compare the distance of an input point to the
current k centers for n—k input points, and the constant hidden in the O-notation is small.
As there is very little overhead and as ©(nkd) is a favorable running time, MacQueen’s
algorithm can be implemented to be very fast in practice.

Clustering features and BIRCH. A very popular streaming heuristic for the k-means
problem is BIRCH [ZRL97al, developed by Zhang, Ramakrishnan and Livny. The authors’
implementation is available at [ZRLI7h].

The core of BIRCH is the so called clustering feature tree, abbreviated as CF tree. It is
based on the observation on the 1-means cost in Lemma[2.4.T As we have already observed
in Section this lemma implies that the 1-means cost of a point set P can be computed
by only using the number of the points, their sum and the sum of the squared lengths of
all points in P. These three statistics are named clustering features in [ZRL97al.

BIRCH reads the points and stores them in clustering features organized in a tree. To
decide where to add points, it offers four predefined distance functions to compute the
distance of two clustering features (a point can be seen as a clustering feature).

The clustering features representing the input are contained in the leaves of the tree,
while the inner nodes serve as a data structure to find the correct leaf. The inner nodes
also contain clustering features, each clustering feature representing the subset of one child
node. For a new point, BIRCH identifies the closest clustering feature in any leaf of the
CF tree. The point is added to the clustering feature if the average 1-means cost of the
represented subset does not exceed a given parameter, the threshold. Otherwise, BIRCH
creates a new clustering feature for the new point.

Both the leaves and the nodes have a maximum capacity of clustering features they can
store. If it is exceeded, the node is replaced by two new nodes, and the clustering features
are split and assigned to the two new nodes. In the parent node, the clustering feature is

5.2 Streaming algorithms for k-means clustering 101

replaced by two. This can cause additional splits unless the change is propagated up to
the first level of the CF tree.

The size of the CF tree is controlled by performing rebuilding steps whenever the desired
maximum number of nodes is exceeded. The threshold is (sufficiently) increased and the CF
tree is reduced by iterating through the nodes and merging clustering features if possible
due to the new threshold. To compute a clustering from the CF tree, BIRCH uses a
hierarchical clustering algorithm.

The authors do not state a bound on the running time, but provide empirical evidence

that it is fast. BIRCH has no theoretical quality guarantees and does indeed sometimes
perform badly in practice [GRS01, [HBV01].

Extensions of k-means+ to the streaming setting. In the non-streaming setting, the
seeding procedure of the k-means+ algorithm holds a special position among the algo-
rithms for the k-means problem. While it provides an (admittedly mediocre) worst-case
guarantee on the (expected) quality of the solution, it is easy to implement and has a
running time of only O(ndk). Naturally, there is an interest to extend the algorithm such
that it works in the streaming setting as well.

There are two algorithms transferring k-means+ into a streaming model. Ailon, Jaiswal
and Monteleoni [AJM09] propose an algorithm that is based on a divide & conquer scheme
developed for the algorithm StreamLS for the k-median problem by Guha, Meyerson,
Mishra, Motwani and O’Callaghan [GMM™03]. Their algorithm reads chunks of the data,
computes a bicritera approximation for each chunk containing O(k) centers, and in the end
computes an approximative solution for the union of all computed centers. As the bicriteria
approximation, an extension of k-means++ is used, which continues to choose centers in
the same way as k-means++ to obtain ak centers for a constant o. The authors show that
these centers provide a constant approximation. For the final computation, k-means++ is
used. Thus, the computed solution has a quality of O(logk).

The algorithm does not use a polylogarithmic amount of space, but the space usage is
O(k+/n) in the basic version and can be improved to O(kn®) space for a constant ¢ which
influences the approximation guarantee. The authors implement the algorithm and provide
experimental results but do not reference an implementation.

Independently and around the same time, Ackermann, Lammersen, Mértens, Raupach,
Sohler and Swierkot [AMR™12] developed a k-means++ variant in the streaming setting
based on coresets which is named StreamKM-++. The coreset result is already mentioned
above. It is obtained by using points successively sampled according to the k-means++
scheme in a similar way as in [AJMO09].

Compared to [AJMO09], the chunk sizes are chosen to be smaller to obtain a streaming
algorithm with polylogarithmic storage usage. In addition to sample a subset of points,
the points that are not sampled are assigned to their closest sample point, and the sample
points are then weighted by the number of points assigned to them. The resulting set is

shown to be a (1+ ¢)-coreset. The coreset construction is then embedded into Merge-and-
Reduce.

102 5 The k-means problem in data streams

At the end of the stream, an approximate solution is computed by running the seeding
part of the k-means++ algorithm on the computed coreset. This step is repeated a constant
number of times to obtain a more stable solution quality.

For the practical implementation, the authors heuristically decide to set the coreset size
for each chunk to m := 200k. This means that the coreset property is no longer guaranteed,
but the decision is backed up by experimental results showing a still high quality of the
solution. To speed up the random sampling (which can take long because updating the
probabilities has a running time of O(mdk)), the algorithm is enhanced with a so called
coreset tree which adds an additional heuristic element but leads to a significant speed-up.
The running time of the implemented version of the algorithm is stated as ©(ndk). The
implementation is available at [ALM™10].

Practical streaming algorithms for related problems. There are a lot of streaming
algorithms for related clustering problems and we shortly review why these are not di-
rectly applicable to the k-means problem in the Insertion-Only data stream model. CURE
[GRS01] requires more than one pass over the data. DBSCAN [EKSX96] is not center
based but computes desity based clusterings. CLARANS [NHO02] is typically used when
centers have to be chosen from the dataset and is not particularly optimized for points in
the Euclidean space. ROCK |[GRS00] and COBWEB [Fis87] are designed for categorical
attributes.

5.3 A lower bound for BIRCH with fixed threshold

In Section [5.4], we develop BICO, an algorithm based on a similar data structure as the
algorithm BIRCH, but which can be proven to compute a coreset. Before that, we in-
vestigate the worst-case behavior of BIRCH and prove a lower bound on the worst-case
quality of its solution. For our analysis, the structure of the CF tree does not matter. We
mainly care about a lower bound on the number of clustering features stored in the leaves
of the tree. Therefore, we focus on describing the creation process of clustering features.
Additionally, we want to ignore the rebuilding algorithm. We thus analyze a variant of
BIRCH where an optimal threshold 7" is given to BIRCH in the beginning. In this con-
text, optimal means that 7" is the smallest threshold among all thresholds that assure that
BIRCH processes the input without needing rebuilding steps. Intuitively, this version of
BIRCH should compute better solutions because it does not need to search for the correct
T and can directly bild the CF tree without rebuilding and restructuring it. However, a
solution computed after rebuilding the CF tree can better by chance, so we explicitly state
that our lower bound holds for BIRCH with fixed threshold.

While it is not too surprising that such a lower bound can be found, we also learn a bit
about the reasons for the worst-case behaviour. We have to go into a bit more detail about
the decision process implemented in BIRCH.

BIRCH provides a set of predefined distance functions to determine the distance between
two clustering features. Our lower bound works for the distance function D, defined in

5.3 A lower bound for BIRCH with fixed threshold 103

[ZRI97a], also called ‘variance increase distance’ there. For a point # € R? and a clustering
feature which represents a point set P’ C R?, the distance according to D, is given by

Sy 2 A
y'e(P'u{z}) y'eP’
> (y_ P) -2 (y_ g) ‘ (5.1)

yeP'U{z} yeP!

The influence of the distance function is limited to the choice of the clustering feature
that a point is added to. In order to transfer the lower bound to other distance functions,
it is sufficient to make sure that this assignment is the same.

The first clustering feature is created for the first point in the stream and then contains
this single point. The following points are added one after the other. For a new point
r € R%, BIRCH first identifies the clustering feature which is closest to x according to Dj.
Then it decides whether to let be absorbed by this clustering feature or to open a new
clustering feature for . Assume the clustering feature holds the point set P’. Then x is
added if

ZyG(P’u{z})(y - N(Pl U {;U}))2
|P'| + 1

is smaller than a given threshold T'. Otherwise, a new clustering feature is opened (possibly
causing splits and rebuilding steps).

BIRCH works with increasing thresholds when processing the input data. It starts
with threshold 7' = 0 and then increases the threshold whenever the number of clustering
features exceeds a given space bound. After increasing the threshold, the tree is reduced
by a rebuilding algorithm. Notice however that points which were already merged cannot
be separated again, so the result of the rebuilding algorithm is not equal to the tree that
would result from running the algorithm with the higher threshold on the original input.
We ignore these effects by assuming that BIRCH starts with an optimal threshold instead
of T'= 0, implying that no rebuilding steps are performed.

Difficult instances for BIRCH. BIRCH bases the decision whether to add a point to
a clustering feature on the (square root of the) average 1-means cost of the represented
subset. The problem with this is that it does not reflect the increase in the total cost of the
subset. Figure [5.2| shows a point set that was generated with two rather close but clearly
distinguishable clusters plus randomly added points serving as noise. The problem for
BIRCH is that the distance between the two clusters is not much larger than the average
distance between the points in the noise. We see that BIRCH merges the clusters together
and thus later computes only one center for them while the second center is placed inside
the noise.

Our lower bound example for the quality guarantee of BIRCH follows this intuition. In
comparison to Figure [5.2] it is multi-dimensional and places the points deterministically
in a structured way useful for our theoretical analysis. We first look at a two-dimensional
variation to explain the structure of the example.

104 5 The k-means problem in data streams

Figure 5.2: An example created by drawing 150 points uniformly at random from the areas
around (—0.5,0) and (0,0.5) and 75 points from [—4,—2| x [4,2]. BIRCH
computed the centers marked by blue crosses, leading to the partitioning by
the blue line. BICO computed the same centers in 10 independent runs, marked
by orange centers and the orange line.

n—h n—h

2 2

Figure 5.3: A two-dimensional example. The blue and green circle each represent (n—h)/2
points at (0,0) and (2,0). There are h orange points at positions (2i, A) for
A =2v/nh? and i € {0,h — 1}. For k = 3, the optimum cost is O(h?).

5.3 A lower bound for BIRCH with fixed threshold 105

Consider Figure [5.3] There are two bunches of points at (0,0) and (1,0), and h orange
points which are far away from the green and blue points. Their coordinates are (2i, A)
for i € {0,...,h — 1}. The distance A = 2v/n - h3 is large enough such that clustering an
orange point together with a green or blue one yields a very high cost on its own.

We set k = 3. Then we can place one center on (0,0) and (1,0) each such that all the
n — h points in the green and blue cluster cost nothing. Placing the third center at (0, A)
yields a cost of Y07 4i? = £(h—1)-h-(2h —1) < 3h%, so the optimal cost is less than 3h%.
Notice that having an orange point in the same cluster as a point that is not orange yields
a clustering cost of at least (v/nh®)? = nh3. So, for any o(n)-approximation this cannot
happen.

If we spend only one center on the lower points, then the cost for the blue and green
points is at least (n—h) because the mean is at (1,0) and there are n — h points at distance
1 of this mean.

We set h = n'/30-9) implying h* = n'~¢. Then clustering the green and blue points
together is at most a 3(n — h)/h? = 3(n® — n~3079)) = O(n°) approximation.

In order to force BIRCH to merge the green and blue points, we first place the orange
points in the stream, from left to right. Then after the insertion of the ith orange point,
each of the previous points has its own clustering feature as long as T' < 1. This is because
the distance between an orange point and any other orange point is at least 2, so merging
two points into one clustering feature means that the merged clustering feature has a 1-
means cost of 2. The radius of the merged clustering feature is thus \/2/72 = 1. So, either

BIRCH needs O(h) = ©(n"/?) clustering features or 7' > 1 holds after reading the orange
points.

After the orange points, we alternatingly append green and blue points to the stream.
We assume that the first green point opens a new clustering feature because otherwise
we have a Q(n)-approximation already. After one green and one blue point, we have a
clustering feature containing both of them because their merged 1-means cost is again 2
and we have T' > 1. The remaining green and blue points are also added to this clustering
feature because after each point, the 1-means cost of the clustering feature is bounded by
the number of points in the clustering feature. This is true because all points have distance
1 to (1,0), and the optimal solution can only be better (when we have one green point
more than blue points).

BIRCH thus either keeps Q(n1/3(1=9)) clustering features or induces an error of n°. We
can set a convenient ¢, for example ¢ = 1/4, and obtain a lower bound on the space of
Q(n'/*) or a lower bound on the approximation guarantee of Q(n'/4), but we cannot get
too close to ©(n'/?) for convincing lower bounds on the approximation guarantee. To get
a higher lower bound on the space usage of BIRCH, we use a multidimensional version of
the example.

Notice that the 1-means cost of the orange points is the main factor that keeps us
from obtaining a higher lower bound. We want to position the orange points such that
they are cheaper but still have a pairwise distance of at least 2. So, we want to place
h points (for an h not necessarily equal to the above setting) with pairwise distance of

106 5 The k-means problem in data streams

at least 2 and minimal cost. Name this point set H. Recall from Lemma that
costyz (H, u(H)) = ﬁZzeH Yyer |z — yl[*. So we get the lowest cost if all pairwise
distances are exactly 2. This is achieved if we construct H as the set of vertices of a
regular simplex. The drawback is that the dimension of H has to be w(h) in order to
embed a simplex with h vertices. We reduce the dimension by applying the Johnson-
Lindenstrauss Lemma appropriately. It allows us to replace the vertices of the simplex by
a O(logh) dimensional set of points with approximately the same properties.

Lemma 5.3.1. There exists a ©(log h)-dimensional point set H consisting of h points such
that the pairwise distances of all points lie in the intervall [2,6]. Thus, the 1-means cost

of H is ©(h).

Proof. First define e} = v/2¢;/(1 —¢) for i = 1,...,h where ¢; is the ith standard basis
vector of R", and define the set H = {¢/,...,e,} C R". Notice that ||e] — ¢}||* = ﬁ +
ﬁ = ﬁ for i # j. By Theorem [3.1.4] there exists a linear map f : R" — R% for

dy € ©(e7?log h) such that it holds for all z,y € H that

(1= e)llz —yll <[If (=) = FWI < A +e)l[x = yl].

This implies that || f(x)— f(y)|[* > (1—¢)?||z—y|| = 4, and also that || f(x)— f(y)|]* < 4(1+
£)?/(1—¢)% The first statement of the lemma follows for ¢ = (1/2), as 4-(3/2)2-2? = 36. By
Lemma [2.4.5, the 1-means cost of the projected points is 571 Y wen Yyen |1f(2) = f(y)II%,

which is at least |H| — 1 and not more than 18| H|. Thus, the cost is in ©(h). O

Theorem 5.3.2. There exists a stream of n points in RO+ for dy € O(logn) such that
for any ¢ € (1,00), BIRCH with distance function Dy needs at least Q(nl’%) clustering
features to process the point set or computes a summary with an Q(nl/)-approzimation
guarantee.

Proof. Let H be the dyp-dimensional point set from Lemma[5.3.1 We construct three point
sets in R% . The point set B consists of (n — h)/2 points at the origin. The point set G
consists of (n — h)/2 points at (0,1,0,...,0,0). For the point set O, we copy the points
from H and append a A = 2-+/nh as the last coordinate. The distance between any
point from O and any point from B U G is at least A, so the 1-means cost of any cluster
containing points from O and B or G is at least nh. We consider k = 3, so the optimal
solution has a cost of at most ©(h) because we can place one center at the origin, one
center at (0,1,0,...,0,0), and place the remaining center optimally for O. Then the total
clustering cost is ©(h) by Lemma [5.3.1]

The stream starts with the points in O in arbitrary order. The first point opens the
first clustering feature. Assume that T < 1 holds for the processing of all points in O.
Then every point in O opens a new clustering feature. To see this, assume x would be the
first point to be added to an existing clustering feature. This clustering feature consists of
only one point which we name y. We know that ||z — y|| > 2, so the radius of the merged
clustering feature is 1. Thus, BIRCH either increases T' > 1 or it opens h clustering
features.

5.4 BICO — BIRCH meets coresets for k-means clustering 107

Assume that T" > 1. After the points from O, we alternatingly put a point from B
and G in the stream. We assume that the first point, which is from B, opens a new
clustering feature because otherwise the approximation guarantee is already increased to
n-h/h = Q(n). The next point is from G, and merging it with the point from B induces
a clustering feature with radius 1. As T" > 1, the two points are merged. We show that all
following points are merged into the same clustering feature. Assume we have already seen
¢ points from B and ¢ points from G, and the (¢+ 1)th point from B is about to be added.
Clustering the ¢ + 1 points from B and the i points from G together costs at most 22 4 1
because we can still place the center at (0,1,0,...,0,0) (this is not optimal but leads an
upper bound on the 1-means cost). So, the radius of the merged clustering feature is at
most 1. A similar reasoning holds when we add the ¢ 4+ 1 points from G.

The 1-means cost of BU G is n — h, so the approximation guarantee of clustering them
with one center is Q((n — h)/h). So BIRCH either has an approximation guarantee of
Q((n — h)/h) or stores h clustering features. For h = n!~/¢ this yields a lower bound
on the storage capacity of n'~'/¢ or a lower bound on the approximation guarantee of
O(n(1/9). 0

5.4 BICO — BIRCH meets coresets for k-means clustering

This section presents BICO, a streaming algorithm that computes coresets for the k-means
problem in the Insertion-Only data stream model, its analysis and an experimental study
that evaluates its speed, accuracy and memory usage (when combined with an approx-
imation algorithm). BICO is joint work with Hendrik Fichtenberger, Marc Gillé, Chris
Schwiegelshohn and Christian Sohler and was first published in [FGS™13].

The term BICO is a combination of the name BIRCH and the term coreset. This is
because BICO builds upon BIRCH to inherit some of its practically desirable properties
and combines it with insights from coreset theory to compute solutions of better quality.

One aspect of the velocity of BIRCH is that it uses very fast pointwise updates. Each
input point is directly processed, and very little time is spent for each update. This is
possible due to the use of clustering features, which provide a way to store large amounts
of points with very little space, and which can absorb a new point in constant time. Recall
that the clustering features of a point set form a 1-means coreset for the point set.

The weakness of BIRCH is that the decision which points are summarized by the same
clustering feature is based on a criterion which allows arbitrary bad summaries. A cluster-
ing feature provides the exact cost of the subset of points represented by them as long as
all the points are assigned to the same center. However, if an optimal assignment would
split the points, and this is much cheaper than clustering them together, then the error of
the summary is high. So improving the quality is about guessing which points will have
the same center, or, more precisely, it is about partitioning the points such that clustering
the points in the same subset together does not induce too much error.

BICO does this partitioning by using a different version of a tree with clustering features.

108 5 The k-means problem in data streams

BICO from a theoretical point of view. During the course of this section, we will prove
that BICO computes a (1 + ¢)-coreset, and that the size of this coreset is bounded by
O(klog ne=(@*2)) if the dimension is constant. BICO works in the streaming setting with-
out an additional framework like Merge-and-Reduce. The size of the computed coreset is
exponential in the dimension. This is comparable to older results in coreset theory, like the
streaming coreset by Har-Peled and Mazumdar [HPMO04] or by Frahling and Sohler [FS05].
Notice however that for constant dimension, the size is actually competitive. To the au-
thor’s knowledge, other known streaming coresets have a higher dependency on n, the
number of points. All other results cited in Table are only polylogarithmic in n,
and the degree of the polynomial is at least four. Braverman et al. [BMO™11] develop a
streaming algorithm for the Euclidean k-means problem that stores O(ke™!logn) points,
for arbitrary d, but assume that the input satisfies a separation condition. As we have seen
in Chapter [3], there exist coresets for the k-means problem with a size that is independent
of n. It is an interesting open problem if and how such a coreset can be computed in the
streaming setting without additional assumptions on the input data.

BICO from a practical point of view. In Section [5.4.4] we see that BICO is well suited
to be implemented and run in a practical setting. We make a few heuristic changes when
implementing BICO, the most important one being that we run BICO with a parameter
that defines the maximum number of clustering features rather than using the theoretically
proven upper bound on the number of clustering features needed. Also, we combine BICO
with k-means++ in order to compute actual solutions in addition to the coreset.

In the implemented form, BICO has the following advantageous properties. First, it
computes solutions of a high quality, the best solutions for three quarters of our test cases,
and at most 3 % away from the best solutions in the remaining cases. Second, it is faster
than StreamKM++, which is the only other algorithm reliably computing solutions of good
quality. Third, by adjusting the summary size BICO can be adjusted to run in similar
time as the BIRCH while still computing better solutions (on the given data). We see this
in more detail in Section [5.4.5

5.4.1 The basic algorithm

The main idea underlying the development of BICO is to combine the data struture of
BIRCH with the concepts and insights from coreset theory. BICO thus resembles BIRCH
in its main structure: It uses a tree storing clustering features, and it processes points
on the fly, adding them to an existing or new clustering feature, and it uses a rebuilding
algorithm to compress the tree when the space bound is reached.

We first describe and analyze the insertion process without the rebuilding algorithm
to explain the main ideas. The update mechanism is described in Algorithm in the
function BICO-update(x,T). The BICO clustering feature tree stores clustering features
in all nodes except the root node. The root node does not store input information, but for
a more concise description we assume that it contains an artificial point p. The distance

5.4 BICO — BIRCH meets coresets for k-means clustering 109

Algorithm 5.1: Update mechanism where 7' is a fixed parameter
Function BICO-update (z,T")

=

2 Set r := p, F := children(cf(p)) and i := 1;

3 if F'=10 or||x —nearest(z, F)|| > /T/2** then /] \JT/2+* =: R,
4 | Open a new clustering feature (z, 1, ,||z]|?,0) on level i as child of cf(r);
5 else

6 Set y := nearest(z, F) ; // y is associated with (y,ny, Py, s,,c¢,)
7 if ¢, + ||z — y||* < T then

8 | Insert @ into cf(y): Set ny+=1, Pji=x, sy+=|z||* and ¢ +=||z — y||*;
9 else

10 Set I := children(cf(y));

11 Set r .=y and 7 :=1i+ 1;

12 Goto line

13 end

14 end

15 if the number of current clustering features is higher than ny., then

16 | Rebuild(;

17 end

18 Function QueryCoreset ()

19 S = 0;

20 for all clustering features (r,n,, P, S, c.) in the BICO tree do

21 S:=SU{P./n.};

22 w(B,/n,) == ny,;

23 end

24 return S and w;

110 5 The k-means problem in data streams

between p and any other point is assumed to be larger than the distance between any pair
of input points.

All other nodes store a clustering feature. When we open a new clustering feature, we
keep the first point that is added as its reference point, which is stored in addition to the
clustering feature. The reference point of the root is p. For a reference point r, we denote
the corresponding clustering feature by cf(r). For each clustering feature cf(r), we store r,
the reference point, n,, the number of points represented by it, P,, the sum of the points
it represents, s,, the sum of the squared lengths of the points it represents and c,. The
latter contains the clustering cost of the represented points with r as the center. This value
could also be computed from n,, P, and s, and is not strictly necessary.

In the following description, we do not distinguish between nodes and the clustering
features stored in the nodes, i. e., we identify the nodes with their clustering features.

The first point in the stream opens a new clustering feature on level 1, as a child of
cf(p). Subsequent points are added to a close clustering feature if possible. We define a

value R; = (/T /2"+* that depends on 7" and on the level i and that we call radius. Points
can not be added to a clustering feature if the Euclidean distance between the reference
point and the input point is larger than R;.

For a new point x, we start looking for an appropriate clustering feature on level 1 within
the set F' of child nodes of c¢f(p). We assume that the function nearest(x, F') returns (one
of) the closest reference point(s) to x among the reference points of clustering features in
F. If the distance between x and the returned reference point y is larger than R;, or if
there is no clustering feature on the current level, then x opens a new clustering feature
on the current level, i.e., on level 1 during the first insertion try. Otherwise, we try to
add z to cf(y). For this, we need ¢,. We check whether ¢, + ||z — y||? is larger than T
If not, then we add x by updating the clustering feature and c,. Otherwise, we increase
the level, replace F' by the set of children of cf(y) and proceed in the same way within the
new level until we either find a level where x can open a new clustering feature or we find
a clustering feature where x can be added.

At any point in time, the method QueryCoreset () returns the current coreset of the
points seen so far. The coreset consists of the centroids of the clustering features, weighted
by the number of points that they represent.

Basic properties. The value ¢, contains the clustering cost of cf(y) when y is used as the
center. Thus, it provides an upper bound on the (optimal) 1-means cost of the clustering
feature. Notice that we could compute the 1-means cost with the centroid and its increase
exactly by using the clustering feature, but finding the closest reference point is easier
than finding the clustering feature with the smallest increase in the cost. Additionally, it
greatly simplifies the analysis to have a fixed reference point during the whole algorithm,
and the centroid would constantly move. So, we are content with the upper bound given
by clustering with the reference point.

Using (an upper bound on) the 1-means cost for the decision whether to add a point (in
contrast to the average 1-means cost) is the most important difference between BICO and

5.4 BICO — BIRCH meets coresets for k-means clustering 111

BIRCH. However, we also introduce the radii and an additional insertion criterion which
also plays an important role.

The idea behind the radius R; is that it bounds the cost that one point contributes to a
clustering feature. If a single point contributes too much error, then 7' is reached fast and
we need a lot of nodes to store the points.

Notice that the radius R; depends on 7" and on the level. More precisely, it exponentially
decreases with the level number. The effect of this is that on lower levels, points cost less
when added to a clustering feature. This means that more points are needed until T is
reached, hereby increasing the capacity for points on lower levels. This implicitly bounds
the number of levels that are created.

Observation 5.4.1. If R; = \/T/(2**) for any positive T, then the number of levels in

our tree is bounded by logn where n is the number of points inserted so far.

Proof. A new level is only created when a point should be inserted but this would increase
the clustering cost of the clustering feature with the reference point as the center above
the threshold T'. The insertion of a point with a distance at most R; to the reference point
increases this cost by at most (R;)?. Therefore, we need at least [T/(R;)?] = 2™ points
until a new level is created, and at least 27* — 1 > 2¢¥3 points are in the parent clustering
feature of the newly opened clustering feature. If there is a clustering feature on level
¢ > [logn] — 3 in the tree, then the number of points in its parent clustering feature is
larger than 2M'°¢”1 > n. This means that [logn] — 4 < logn is an upper bound on the
number of levels. O

Notice that we use the centroids for the actual coreset and not the reference points. We
could use the reference points also. In fact, our analysis will prove the coreset property
for replacing each clustering feature by the reference point (weighted by the number of
represented points). However, by Lemma , when replacing a point set by a single
point, then the centroid minimizes the error. Thus, using the centroids is the better
choice.

Analysis. Applying Algorithm to a stream containing the points of a point set P par-
titions P into subsets corresponding to the clustering features. Consider this partitioning
and let M be the set of all subsets in it. By M; we denote the subset of M belonging
to clustering features on level i. The coreset consists of the centroids of the clustering
features, each one representing one of the subsets of P stored in M. We start by observing
basic properties of this partitioning. In order to reuse the first part of this analysis later in
Section [5.4.2] we formulate our first findings in a more general way by using the following
definition.

Definition 5.4.2. Let P be a partitioning of a point set P with n points. For each P' € P,
let r(P') be a distinguished reference point in P’ and let ((P') € {1,...,|logn]} be a
number assigned to P'. Let 0 be a constant. We say that (P,r,{,0) is a well-structured
T-partitioning of P if

112 5 The k-means problem in data streams

o for each subset P' € P, it holds that ||x — r(P')|| <0 Rypry for all z € P,
o for all P', P" € P with {(P") = {(P"), it holds that ||r(P") —r(P")|| > Repry, and
e for all P' € P, it holds that costz (P, r(P')) <T

for some values R;, i € {1,..., [logn]}.

We see that these conditions are in particular true for M and @ = 1. Then r(P’) is
the reference point of P’ € M, ((P’) is the level of P in the BICO tree and the R; are
as defined in Algorithm [5.1] We show that the weighted reference points of every well-
structured T-partitioning satisfy the coreset property if T is below a certain value. The
following resembles the coreset proof in [F'S05].

Lemma 5.4.3. Let P C R be a set of points and let (P,r,£,0) be a well-structured T-
partitioning of P for T < (™2 - costz(P))/(10°k(10(1 + 2)d)logn) and R; = |/T/21+4
and 0 < € < 1,0 > 1. Define a mapping 7 : P — R? in the following way. For all P' € P
and all x € P, set w(x) = r(P’). Then it holds that

2

> 3 lle—w(@)|]* < o - costig(P).

PeP xcP’

Proof. Let C' € R? be an arbitrary but fixed set of k centers. For x € P, let ¢(z) be the
center in C closest to x, ties broken arbitrarily.

We name the set of all subsets P’ € P with ¢(P") = ¢ by P; and partition P; into two
subsets. P2 C P; contains all subsets that consists only of points z € P; for which the
distance ||z — c(z)|| is at least R;/e’. Here, we use the abbreviation ¢’ = ¢/(5-9). We call
points in subsets in Pifar far. Prear C P; consists of all remaining subsets in P;, and we call
the points in subsets in P**" near.

We now relate the clustering cost of points in P; to the distance to their reference points.
We do this independently for PP and P and then combine our findings afterwards.

If a point # € R? is contained in a subset P’ in P, then its clustering cost dist?(xz, C)
is at least (R;/¢’)?. Because of the precondition of the lemma we know that we have
a well-structured T-partitioning, and thus it holds that the distance between x and the
reference point r(P’) of P’ is at most 9+ R;. Therefore, moving x to r(P’) induces a squared
movement distance of at most 02R? = 022 R?/c"? < 9%/ - dist®(z, C) = (¢/5) dist*(z, C).

For near points, the movement distance might be large compared to the actual clustering
cost, as near points can even lie on a center and thus have no cost, while their distance
to r(P') is positive. We can still bound the sum of the squared movement distances of
points in the same subset by T because points are only inserted if the 1-means cost with
center r(P’) is not increased above T'. We use a volume argument to bound the number
of subsets in P**", which then bounds the total squared movement.

Each P’ € P contains at least one point x € P’ that is contained within a ball

(2

of radius R;/¢’ around c(z). The distance of x to r(P’) is at most 9 - R;. Thus, for all

5.4 BICO — BIRCH meets coresets for k-means clustering 113

P’ € Prear there is always at least one center such that the distance between r(P’) and
the center is at most R;/¢’ + 0R;, and this implies that P’ lies completely within a ball
of radius R;/¢’ + 20R; around this center. It holds that 2 < 1/¢’ since ¢’ = ¢/(50) < 1/5
since ¢ <1 and 9 > 1. Thus, P’ lies within a sphere of radius (1 + 9)R;/¢" around one of
the centers.

We know from the precondition of the lemma that ||r(P")—r(P")|| > R; for two different
P’, P" € P. Consequently, if we place balls with radius R;/2 around all r(P’), then these
balls do not intersect, which means that the number of subsets in P*" is bounded by the
number of disjoint balls with radius R;/2 that fit into &k balls with radius (14+0)R;/¢', i.e.,
by

5/

k- V(L4 0) R/ VO (R/2) = k - (2(1 i °)>d,

where V@ (R) = 7%/2. R4/T'(d/2 + 1) is the volume of a d-dimensional ball with radius R
(here, I' denotes the so-called Gamma function, an extension of the factorial function for
real numbers). The squared movement cost of points in subsets in PP**" is thus bounded
by T - (2(1 +0)/e")% - k for each i. As there are at most [logn]| different i, the overall
squared movement cost of near points is bounded by

d+2

T (21 Nk logn < c
(A +2)/E)7-k-logn < {00 o)) logn

< (¢/10)*- costyz (P).

costyz(P) - (10(1 + 0)0/e) -k -logn

Adding the contributions of near and far points we get that

> 2 lle—r@F+ X 3 le—w(@)|

Plepinear xeP’! Plefpzfar reP!
<(g/10)*- costyz(P) + (e/5) - costyz(P)
=(£%/20) - costyz (P).

]

Corollary 5.4.4. Let P C R? be a set of points given as a stream, let 0 < e < 1. Let S,
weighted by w, be the summary computed by applying BICO-update (x,T) in Algorithm[5.]]
with T < (5d+2-costeg(P))/(102k2Od logn) after each point x (never calling Rebuild() and
assuming that nmax s sufficiently large). Then it holds for every set of k centers C' from
R that

|costyz (P, C') — costyz (S, C)| < & - costyg (P, C).

Proof. The partitioning M computed by Algorithm satisfies the following conditions.
Firstly, all reference points of clustering features on the same level have a pairwise distance
of more than R; = /T /2i*4. Secondly, all points represented by a clustering feature have a

distance of at most R; to their reference point. Thirdly, the clustering cost of each clustering
feature with its reference point is bounded by 7' < (72 cost 3 (P))/(10%-20¢- k-log n). So,

114 5 The k-means problem in data streams

M forms a well structured T-partitioning with @ = 1. Also notice that 20¢ = (10(1+1)-1)<.
Together, this means that for the mapping 7 : P — R? which is defined by m(z) = r(P’)
for all P" € M and all x € P’, we have

2

> 3 o= @)l < o - costa(P) (5.2)

P'eMzeP

by Lemma Notice that this holds for the reference points, but we need it for the
centroids. However, the centroids minimize the sum of the squared distances of all points
by Lemma[2.4.1] which means that Inequality also holds when we define m(x) = u(P’)
for all z € P’ and all P’ € M. This suffices to use Lemma to obtain the coreset
property for S and w (we set A = costyz (P), which is a lower bound for all costys (P, C)). [

We still need to bound the size of the computed coreset or the number of clustering
features in the tree, respectively. The main observation that helps us is about wvirtually full
clustering features. We say that a clustering feature cf(y) is virtually full when the cost
¢, is at least T — (R;)?. The idea is that only virtually full clustering features can refuse
new points, because a point that lies within the radius of a clustering feature contributes
at most (R;)?.

Now the observation is that clustering features are only opened for two reasons. Either
they are opened because the inserted point lies within no clustering feature on the first
level. For this we need to bound the number of clustering features on the first level. Or
they are opened because another clustering feature is virtually full. So we can bound the
number of clustering features that are not on the first level by bounding the number of
virtually full clustering features. We see how to do this in the following lemma.

Lemma 5.4.5. Let P € R? be a point set given as a stream and let the dimension d
be a constant, let 0 < & < 1. Then there exists an Ny, € O (k -logn - 5_(d+2)) such that
applying BICO-update (x,T) in Algom'thm with T > (e7+2 ~costy (P))/(2-10%k20%log n)
after each point x in the stream never exceeds Npya.y clustering features. In particular,
Rebuild () is never called. The size of the coreset S, which is computed by the algorithm
together with weights w, is also bounded by Npax.-

Proof. Let ny denote the number of virtually full clustering features. Notice that (R;)? =
T/(2i4) < (1/32)T because we start with ¢ = 1 on the first level. Thus, virtually full
clustering features have a 1-means cost with the reference point of at least (31/32)7. We
observe that this implies a bound on the number of virtually full clustering features because
we have already bounded the sum of the costs in Lemma [5.4.4]

Recall that we denote the set of all subsets stored in the clustering features of our BICO
tree after reading a point set P by M. Then it holds that

31 2

np- 5T < Y costg(P,r(P)) < 8—costgg(P)
32 PleMm 20
8 , costg(P)

1
. < g2l k. .1
= 155 7 =3¢ k- fle)-logn

5.4 BICO — BIRCH meets coresets for k-means clustering 115

where we use the abbreviation f(g) := (107 - 209) /e®*2.

We name the number of clustering features that are not virtually full by n. and split it
into the number of those that are on level 1, n.;, and the number of those on levels with
higher index, n ;.

We can bound the number of clustering features that are not virtually full but also not
on level 1 by observing that they are children of virtually full clustering features. A child
clustering feature satisfies that the reference point lies within the radius of the parent
clustering feature. Assume we count the number of child nodes of a clustering feature on
level i. All of these have radius R;,q, so their reference points have a distance of more
than R;;1. As in the proof of Lemma [5.4.3] we argue that this implies that balls with
radius R;;1/2 around the reference points of the child nodes do not intersect. All of these
spheres lie completely within a sphere of radius R; + R;y1/2 around the reference point of
the parent clustering feature.

Together, this implies that the number of child nodes of a clustering feature on level i
is bounded by the number of distinct balls of radius R;;1/2 that fit into a ball of radius
R; + R;y1/2, which is bounded by

V(R + Rit1/2)/V(Riy1/2) = (23;4/ 227 + l)d =(V2-2+1)%

We conclude that n., < (\/5 -2+ 1)d -ny¢. Then we estimate n.; by the number of all
clustering features on the first level. The reference points of all clustering features on the
first level have a pairwise distance of at least Ry = /71'/32. We use this to give an upper
bound on the clustering cost of the points on level 1. Notice that this clustering cost in
particular includes the cost for clustering the reference points (and in the worst case for our
coreset size, the clustering features that are not virtually full only contain their respective
reference point).

Let @ be the set of reference points of all clustering features on the first level. Notice
that n.; < |Q|. Assume that Q,...,Qy is a partitioning of () according to an optimal
center set C*. Thus, ¥, costyz (Qi; 1(Qs)) = costez (Q, C*) < costyz(P). By Lemma
the lower bound on the pairwise distances of the reference points implies

coste (@, C) ZCOste2 Qi 1(Qi) = > 2|Q,|(|QZ|2 Qi) (\/T/32)*

=1
Sk
- 64
costyz (P)
= neJ§]Q\§72-#272~k~2-f(6)-10gn.

To see that the last line follows, notice that either |Q] < 9k or |Q] — &k > (8/9)|Q|. In both
cases the statement follows.

116 5 The k-means problem in data streams

It remains to add the three bounds to obtain that the number of clustering features and
thus the number of points in the coreset is bounded by

N4 nes +ney < (14 (V224 1)Nn; +ney
<(1+(W2-2+1)%-
< (1454 (V224 1)) k- f(e) - logn € O(k - logn - e~(@+2)

e k- f(e)-logn+T72-k-2- f(e) - logn

ool =

for constant dimension d. Finally notice that the storage requirement for each clustering
feature consists of storing two d-dimensional points and two constants. [

We obtain the following theorem by Lemma [5.4.4] Lemma and Lemma [5.4.5]

Theorem 5.4.6. Let P be a point set given as a stream in the Insertion-Only model, let 0 <
e <1 be given, let the dimension d be constant. There exists an Nyayx € (’)(k‘-logn-e’(d“))
such that applying BICO-update (x,T) in Algorithm with

(%2 costz(P))/(2- 10%k20%logn) < T < (72 COStg%(P))/(lOQkQOd logn)

after each point x in the stream causes no calls to Rebuild (), and such that the computed
S and w constitute a (1 + €)-coreset. The size of the coreset and the storage requirement
of Algorithm during the computation are bounded by O(k - logn - e~(4+2)),

5.4.2 Including rebuilding steps into BICO

In Theorem [5.4.6] we assume that the algorithm is run with suitable parameter choices,
such that the rebuilding never occurs. In this section, we deal with the problem that the
optimum clustering cost and thus 7" might not be known, and that this might induce the
need to compress the tree.

Algorithm describes the rebuilding process. Whenever the space bound is exceeded
in Algorithm during BICO-update(x,T), the function Rebuild() is called. It consists
of doubling the threshold and then inserting all clustering features into a newly rebuilt tree
as if they were points. Because of the higher threshold, this potentially creates a smaller
tree. It does not create the same tree as if the actual points were inserted because points
that have been merged together already cannot be split again.

The rebuilding works in a breadth first search manner. The algorithm uses a queue
@ to keep track of the clustering features. It is initialized with all clustering features on
level 1. These are ‘deleted’ from the old tree by deleting the connections to the root node
(assuming that nodes have connections to their parent and child nodes).

As long as there are clustering features in the queue, the first one is extracted and
processed. Before we add it into the new tree, we disconnect its child nodes and append
them to the queue. Notice that the usage of a queue and the initalization by the first level
implies that we process the clustering features by level. All clustering features from level
i (in the old tree) are processed before the clustering features from level i + 1 (from the

5.4 BICO — BIRCH meets coresets for k-means clustering 117

old tree) exit the queue. The rebuilding is completely executed before we check whether
the number of clustering features is now small enough. It is repeated until the number is
small enough.

The function BICO-CF-Update (z, cf(x),T") then handles the actual insertion process into
the new tree. It is similar to BICO-update (x,T), but it inserts a clustering feature instead
of a single point. It works along the same lines. First, it checks whether the clustering
feature can just be put into the current level. The current level starts with level 1. This
is the case if there is no other clustering feature, or if the nearest clustering feature is far
away (i.e., if the distance between the reference points is at least R;). Then cf(x) is just
put into the current level. We keep the last node on the search path as in the original
update algorithm so we can connect cf(z) when it is inserted to a level.

If there is a reference point y within the radius of x, there are again two cases. Either the
clustering feature can absorb cf(z), or it cannot. In the latter case we proceed to search
for an appropriate clustering feature among the child nodes, descending one level. In the
first case, however, all points in cf(x) are added to cf(y). This case happens if the union
of the two stored point sets can be clustered with center y with less than T' cost. Notice
that the clustering cost of the union is simply the sum of the clustering costs of the two
subsets because the center y is fixed. The clustering cost of the points currently stored in
cf(y), clustered with y, is stored in ¢,. We can compute the additional cost by using the
clustering feature associated with z. By Lemma [2.4.1] clustering cf(z) with the centroid
costs s, — ny - || Pr/ng||?. Clustering with y instead costs additional n,||P./n, — y||*. The
sum of the two is ¢, the additional clustering cost if cf(z) is merged into cf(y). If ¢, + ¢
is still bounded by T', we do indeed insert cf(z) by updating the clustering feature of y
appropriately.

Properties. The result of the rebuilding algorithm differs from the tree that would have
been constructed by running BICO with the higher threshold in the first place. There are
two main differences. First, clustering features cannot be split again, so we get a different
partitioning. In particular, it is possible that a child not cannot be merged into its parent
node even though the majority of its points would fit there. Second, merging clustering
features undermines the property that points are within the radius of their reference points.
The child nodes’ reference points can lie on the border of the parents nodes’ radius, and
then the points in the child clustering feature are outside of the radius of the parent
clustering feature. Merging them gives the parent clustering feature points outside of its
radius. This effect can also accumulate over several levels. However, points cannot be
arbitrarily far away. To see this, we first have to observe that clustering features can never
decrease their radius.

We take a moment to comprehend what happens to the radii during the rebuilding. The
threshold is doubled, which influences the radii. Let R; be the radius on level i before and
R! be the radius after doubling. Then R} = ,/2T7/2*4 = |/T/2"=1+4 = R._, holds (for
i > 1). So, the radius that level ¢ has after doubling is the radius that level i — 1 had before
doubling. If we would just add an empty top level and keep all clustering features in their

1

18 5 The k-means problem in data streams

Algorithm 5.2: Rebuilding algorithm when number of CFs gets too large

1

© W N O A W N

[S S S e S
S A W N = O

17
18
19
20
21
22
23
24
25
26
27
28
29
30

Function Rebuild()

while number of clustering features is larger than ny., do

Set T':=2-T;

Initialize a queue Q;

Disconnect the clustering features on level 1 from p and insert them into Q;

while Q # () do

Let = be the reference point of the first clustering feature in Q;

for all reference points s of clustering features in children(cf(x)) do
Disconnect cf(s) from cf(z);
Insert cf(s) into Q;

end

BICO-CF-Update (z,cf(x),T);

Delete cf(x) from Q;

end

end
Function BICO-CF-Update (z,cf(z),T) // = is associated with
Set r = p, F' = children(cf(p)) and i = 1; /! (x,ng, Py, Sy, Cr)
if =0 or ||z — nearest(z, F)|| > R; then
| Install cf(x) on level i as a child of cf(r);
else
Set y := nearest(x, F) ; // y is associated with (y,n,, Py, s,,¢y)
Set ¢ := ny (|| Pe/na| [+ |ly — Pu/nal?);
if ¢, + ¢ <T then
| Merge cf(z) into cf(y): Set ny+=n,, P=P,, s,+=s, and ¢, +=¢;
else
Set F' := children(cf(y));
Set r:=yandi:=1+1;

Goto line ;

end

end

5.4 BICO — BIRCH meets coresets for k-means clustering 119

original positions (now one level lower), then all clustering features would just keep their
radius. Instead, the rebuilding algorithm moves some of them up, filling the empty space,
and merges some into their parent nodes. By this, they can only get larger radii.

Lemma 5.4.7. Calling Rebuild () in Algorithm [5.4 never decreases the radius and does
also not merge clustering features into clustering features with a smaller radius.

Proof. The proof is an induction on the number of reinserted clustering features. The
statement is true for the first clustering feature that is reinserted because p has no children
at that point and the clustering feature is installed on level 1. The radius on level 1 is larger
than the radius of every level before the rebuilding. Now the order of the reinsertion process
is important. When a clustering feature is reinserted, only clustering features that were
on a level with a smaller or the same index have been reinserted already. By the induction
hypothesis, these are now on a level with the same or a larger radius. In particular, the
level with the radius that the current clustering feature had before now holds a subset of
the clustering features that were there before, and no new clustering features. Thus, the
current clustering feature still fits here. It is either inserted on a level with a larger index,
merged into a clustering feature on a level with larger radius, or is reinstalled on the level
with the same radius. [

Now we can prove that the distance between any point and its reference point is at most
4R;. The main argument is that the sum of radii over several levels is a geometric series.

Lemma 5.4.8. If the radii are defined as R; = \/T/(27+4), then for a clustering feature on
level 1, all points in the clustering feature lie within a distance of at most 3372, Ry < 4- R;

from the reference point.

Proof. Let i* be the number of the level with the smallest radius that ever occurs, i.e.,
clustering features on this level never have child nodes. We prove the following statement
by induction. For any ¢ € {1,...,7*}, it holds during the whole algorithm that points in
clustering features with radius R; have a distance of at most Z;’;i R; to the reference point
of the clustering feature.

As the base case we use level i* because clustering features here cannot be the result of
merging. A clustering feature can only be on level i* if it was created on this level, and
all points in the clustering feature have been added to it via the normal insertion process.
Thus, they are within distance R;» < 3222,. R; from the reference point.

For points in a clustering feature on a level ¢ < ¢*, there are different options. Let the
point x belong to a clustering feature with reference point r. If x was inserted into the
clustering feature and not merged to it, then it was within the radius of the reference point
when it was inserted. As the radii can only increase Lemma [5.4.7] it is still within the
current radius R; < Z;’ii R; of r.

Otherwise, = ended up in the clustering feature due to a merge. At that point, the
clustering feature which was merged into cf(r) had a smaller radius Ry than cf(r). As the
radius of ¢f(r) can only have increased since then by Lemma [5.4.7 it holds Ry < R;. We

120 5 The k-means problem in data streams

call the reference point of this other clustering feature /. By the induction hypothesis, x
was within distance >332, R; of 7' when it still belonged to cf(r’). As 7" must have been
within the radius of r, which is unknown but smaller than R;, the distance between x and
7 is bounded by R; +>272, R; < 272, R;.

To bound this term, we replace R; by its definition and see that there is a geometric
series which can be bounded by its limit.

JZ:;RJ‘:;VW:Z 2i+4,2j—z’:Ri'Z 9j—i

Jj=t Jj=t

:Ri-i<>j:(2+\/§)-3,-<4-}zi.

]

Now we can proceed to the actual proof. First, we make sure that the number of levels
in the tree is still bounded.

Observation 5.4.9. For R, = /T/(2**) for any positive T, the number of levels is
bounded by logn, where n is the number of points inserted so far.

Proof. Assume that a level with index i* + 1 = |logn] 4 1 is created during the insertion
of the n points and consider the first time that this happens. At this point in time, the
clustering features on level i* have never been merged, so the points in these clustering
features are within distance R;« of their reference point. Each of these points thus induces
a cost of at most (R;-)? = T/(2U°emI+4). When level i* + 1 is created, there has to be
a clustering feature on level ¢* and a point within its radius that does not fit into the
clustering feature. Thus, the cost of the clustering feature when absorbing this point is
larger than T'. However, as T/ R2. = 2U1871+4 > 8n holds, this is not possible with n points.
Thus, level |logn| + 1 cannot be created during the insertion of n points.]

We can now observe that the partitioning is still a well-structured P-partitioning (notice
that we needed the bound on the levels for this, too). That yields the coreset property.

Corollary 5.4.10. Let P C R? be a set of points given as a stream, let 0 < ¢ < 1.
Let S, weighted by w, be the summary computed by applying BICO-update (x,T) in Algo-
m’thm with T < (72 - costyz (P))/(10°k10920% log n) after each point (possibly calling
Rebuild (), but assuming that .. is sufficiently large). Then it holds for every set of k
centers C' from R? that

|costyz (P, C) — costyz (S, O)| < e - costye(P,C).

Proof. The statement follows from the fact that Algorithm still computes a well-
structured partitioning, only 0 has to be increased to 4. The number of levels in the
tree is bounded by logn by Observation [5.4.9. On each level i, the reference points have

5.4 BICO — BIRCH meets coresets for k-means clustering 121

a pairwise distance of more than R; = /7'/27+4. All points in the same clustering feature
have a distance of at most 4R; to their reference point by Lemma Finally, the cost of
the clustering features when clustering with the reference point is kept below T during up-
date steps and rebuilding steps. Thus, for T < (42 Costgg(P))/(lozk’lOd((l +4)4)%logn),
Lemma [5.4.3|ensures that the movement costs to the reference points are small enough. In
the same way as in Corollary we argue that this also implies the coreset property for
the set of centroids. O

The main part of the proof is to show that the number of clustering features is still
bounded. This is challenged by the fact that clustering features cannot be split and that
this induces a worse partitioning. However, we see in the following lemma that we can
find pairs of clustering features that replace the virtually full clustering features from the
original proof, so the unability to split clustering features mainly means that we have two
nodes instead of one virtually full clustering node.

Lemma 5.4.11. Let P € R? be a point set given as a stream, let 0 < € < 1 and let
the dimension d be a constant. Then there exists an Ny, € O (k -logn - 8_(d+2)) such
that applying BICO-update (x,T) in Algorithm possibly triggering calls of Rebuild (),
produces a tree with at most nya. clustering features. The storage need of the algorithm
is bounded by O(nmax). During this process, the threshold is not doubled if T > (e2+2 .
costz(P))/(2 - 10*k10720? log n).

Proof. In order to count the clustering features, we start by labeling them. First, we label
all clustering features on level 1 that have no children as base clustering features and denote
their number as n,. Then, we label all remaining clustering features in the first level as
tuple parents. For each tuple parent, we label one of its children as tuple child. Then,
we iterate this process: As long as there are unlabeled clustering features with children,
we mark one of them as tuple parent and then mark one of its children as tuple child.
We denote the number of tuple parent and child pairs as n;. When there are no more
clustering features with children, we mark the remaining clustering features as leaves and
denote their number as n;.

The biggest challenge is to bound n;. We know that a tuple child cannot be merged into
its tuple parent because otherwise this would have happened during the last rebuilding
step (if the child node was created in the time since the last rebuilding, then it cannot be
merged since its reference point did not fit into the parent node). In this regard, tuple
nodes are similar to virtually full clustering features in our original proof. However, the
1-means cost of each of the two nodes can be small as long as they are not merged. This
means we cannot use the exact same argument.

Instead, we do the following. We define an alternative partitioning as a thought experi-
ment. It cannot be created by the algorithm because the algorithm cannot split clustering
features. For each tuple, we move points from the tuple child to the tuple parent until
moving another point would increase the clustering cost of the tuple parent (with the refer-
ence point as center) above T'. All other clustering features remain the same. Notice that
the resulting tree is not necessarily a possible output of BICO because the tuple children

122 5 The k-means problem in data streams

may have child nodes that could be merged into them now. However, we do not bother
with this, because the resulting partitioning P’ is still a well-structured T-partitioning:
The level information is still valid. The reference points did not move, so their pairwise
distance is still above R; depending on their level i. The points are within 4R; of their
reference points by the same argumentation as in Lemma [5.4.8] The clustering cost of the
clustering features is not increased above T'. So, by Lemma [5.4.3, we have that

2

> 3l = r(P)IP < Sscosty(P).
P'eP’ zeP!
Additionally, each tuple parent P’ now satisfies > ,cpr ||z —7(P)||* > T — (4R;)*> > T/2 >
costgz(P)/(2-klognf(e)) by construction, because no further point could be added. Here,
we use f(g) = 210972209 /¢9t2. The number of tuple parents is therefore restricted by
k-logn - f(g) - €2/10. As the number of tuples did not change by our modification of the
partitioning, the original partitioning satisfies

n, < k-logn - f(e) - £2/10.

The number n; of leaf clustering features is bounded by (v/2-24-1)%n, by the same argument
as in Lemma because we still demand that reference points lie within the radius of
their parent reference point, and because leaf clustering features have to be the child of a
tuple child (base clustering features have no child nodes). The number of base clustering
features is bounded by the lower bound on the pairwise distances as we observed in the

proof of Lemma [5.4.5{ Here, the lower bound is /7'/32, which means that set of reference
points has a clustering cost of

QI -k
64

by using Lemma [2.4.5 Now, either |Q| < 9%k or |Q| — k > (8/9)|Q]. In both cases we get
that

costz (Q, C) > T

n, < |Q| <72 k- f(e) - logn.

Finally, we add the numbers for the three types of clustering features. Notice that each
tuple contributes two clustering features to the total amount. The number of clustering
features is bounded by

ny +2n +n <np+ (24 (V224 D)0,
<72k f(e)-logn+ 2+ (V2-2+ 1))k -logn - f(e) - €2/10
<(T4+ (V224 1) k- f(e) - logn € Ok -logn - e~ 4+2),

We conclude with the following theorem.

5.4 BICO — BIRCH meets coresets for k-means clustering 123

Theorem 5.4.12. Let P € R? be a point set given as a stream in the Insertion-Only
model, let 0 < € < 1, let k € N and let the dimension d be constant. Let T* := (g9+2 .
costz(P))/(2 - 10%k10920%1ogn). Then there exists a value nya, € O (k -logn - 5*(‘”2))
such that the following holds. If the start value for the threshold is chosen such that T < T*
and BICO-update(x,T) in Algorithm is applied to each point x in the stream, then
the threshold is not increased above T* during the process. A (1 + €)-coreset S, weighted
by a function w, is computed with a storage need of O(nmax), and the size |S| is bounded
by Nmax -

Proof. By Lemma [5.4.11] the threshold is not doubled anymore as soon as it satisfies
T > T*/2, which will eventually happen while T < T*. By Corollary |5.4.10] the fact that
T < T* guarantees that the output will be a coreset. [

5.4.3 Running time

When trying to insert a point on level ¢, we need to decide whether the point is within
distance R; of its nearest neighbor, and if so, we need to locate the nearest neighbor
within a set of candidates F'. We denote the overall time spent on these nearest neighbor
searches during the insertion process of a point into the BICO tree by NT(m), where
we use m € O(k - logn - e(@+2)) to abbreviate the coreset size. The other steps in the
insertion process need constant running time except for the rebuilding. So the running
time is bounded by O(NT'(m) - n) plus the time needed for the rebuilding steps.

A rebuilding step needs to go through all m elements of the coreset and to insert them
into the new-build tree. This takes O(m - NT(m)) time. The number of rebuilding steps
depends on how we choose the start value for 7. We proved that BICO computes a (k,)-
coreset for large enough m. In particular, this means that for any m + 1 points, BICO
contracts at least two of them during the process. We use this observation by scanning
through the first m + 1 points and calculating the minimal distance dy between two points
(here, just ignore multiple points at the same position). Notice that if T < d2, we are not
able to merge any two points into one clustering feature. We set T'= d2. Then, T' cannot
be too small, because otherwise we cannot contract the m points.

The cost of any clustering is bounded from above by n-A?_where A, is the maximal
distance between any two points. Our start value for T is bounded from below by the
smallest distance A, between any two points. Thus, the factor between the start and
end value of T" is bounded by n - A"‘a" The fraction A := Ama" is the spread of the points.
With each rebuilding step we double T and thus the number "ot rebuilding steps is bounded
by log(n - A).

Corollary 5.4.13. Let P C R? be a set of n points given as a stream, let 0 < € < 1.
Applying the function BICO-update (x,T) in Algorithm[5.1 with the parameters from The-
orem|[5.4.19 after each point computes a (1+ €)-coreset in time bounded by O(NT(m)(n +
mlog(nA))) using O(m) space where m € O(k -logn - e~(4+2)) s the coreset size and d is
constant. NT(m) is the total time spent on neighbor searches when inserting x (or cf(x),
respectively).

124 5 The k-means problem in data streams

If we just search the candidate set F' to find the nearest neighbor of the point (or
clustering feature) that we want to insert, this takes O(|F|) time. In the worst case, we
encounter all reference points during the insertion process of the point. That means that
this simple implementation achieves NT'(m) = ©(m) in the worst case.

Of course the average time might be less if the tree is suitably balanced. Notice that
the number of levels in the tree is always bounded by logn. Balanced here means that
the number of clustering features that we have to search on each level is small, ideally
logarithmic in the number of clustering features stored in the tree. An example for an
unbalanced tree would be a tree that has the maximum number of nodes on level 1, but
only one of them has child nodes (as many as possible), and this pattern repeats for several
levels. To improve the performance, we can add additional data structures to speed up the
nearest neighbor queries in such cases.

The task we have to solve is: Store a set of reference points (with associated data) that
have at least distance R; to each other in a data structure such that this data structure
determines for any given query point z whether there is a point within distance R; of = in
the data structure and, if so, returns the point. This data structure can be implemented in
any node for the set of its child node, thus always speeding up the calls to nearest (x, F).

Notice the difference to a standard nearest neighbor query. If there is no point within
the radius, we are not interested in the nearest neighbor. That makes the use of data
structures for range queries intuitive. There is a huge number of results on geometric
range data structures and nearest neighbor searches in general and we refer to [Sam05| for
an overview.

In the following, we discuss how to apply different techniques. Let x be the point that
we want to insert (or the reference point of the clustering feature that we want to insert).

Range Queries. As we are only interested in the nearest neighbor if it is within distance
R; of x, an orthogonal range query of a box of side length 2R; centered at x is sufficient to
get all candidates for our nearest neighbor. We have argued before that the points on level
i have a pairwise distance of more than R; and that spheres with radius R;/2 around them
do not intersect. All these non intersecting spheres lie within a box of with side length
2R; + R;/2 which has a volume of (5/2)R¢. That means that the number of candidates is
bounded by (5/2)*R¢/V D (R;/2) = (5/2)4RI2T(d/2+1)/(x¥2R%) = O(1) for constant d.

Notice that we need a dynamic data structure because we have to update it after each
new point. Static range query data structures can be made dynamic by using standard
techniques [BS80), Meh84, [Ove83|] while losing a logarithmic factor in the query time.
See [CT92] and Section 5.3 in [AE99] for an overview on dynamic range data structures.

The logarithmic overhead is not necessarily needed as in the case of the augmented
dynamic range tree in [MN9Q]. For a set with £ points, it can be built in time O(¢log?~* ¢),
has space requirement O(¢log? ' ¢), supports insertion of a point in time O@(log? ! ¢) and
a range query in time (9(10gd_1 ¢+ r) where r is the number of reported points.

When we add this data structure to every node (including the virtual root node) to
organize the child node’s reference points, then finding the nearest reference point for

5.4 BICO — BIRCH meets coresets for k-means clustering 125

a point x can be done in time O(log® ' m) + O(1) for constant dimension d. As we
may have to search on every level, the time spent on neighbor searches is bounded by
O(lognlog® ' m). We need to construct the data structure O(log(nA)) times, once at the
beginning and once at the beginning of every rebuilding phase, so the total construction
time is O(mlog® " mlog(nA)). This is dominated by the search times. Thus, BICO runs
in time O(lognlog® ' m(n +m -log(nA)).

The additional data structures require O(¢log® ' ¢) = O(£log* " m) space in every node,
where /¢ is the number of children. As every node appears at most once as a child, the
space requirement is bounded by O(mlog® ' m).

Corollary 5.4.14. Let P C R? be a set of n points given as a stream, let 0 < ¢ < 1. By
adding an appropriate range query data structure, it is possible to implement BICO such
that it processes P in time O(lognlog® ' m(n 4 m - log(nA)) while using O(mlog®* m)
space, where m € O(k -logn - e~%2)) s the coreset size and d is constant.

Hashing. As we do not actually want to perform range queries but are only inter-
ested in specific ranges, we can store points even more conveniently. Imagine a grid
with cell width R;. Let = = (z1,...,24)" be a point. We calculate the vector g(z) :=
(lz1/Ri], ..., |zj/Ri], ..., |za/R;]). This maps the point onto one of the corners of its
grid cell.

The nearest neighbor of z is either in the grid cell associated with g(z) or in one of
its 31 — 1 € O(1) neighbor cells. Each of these cells contains O(1) points by the same
argumentation as in the range query paragraph. Thus, when looking for the reference point
which is within radius R; on level i, we can restrict the search to these O(1) candidates.

In order to find them, we need a data structure. Storing a point set for every grid point
takes too much space. Instead, we can use hashing.

One option to use hashing is by using the classic result by Carter and Wegman [CW79] on
universal families of hash functions which includes a family of hash functions for vectors.
This leads to a constant search and insertion time, but both are only on expectation.
Instead, we have a look at perfect hashing, which achieves a constant worst-case lookup
time. This is beneficial since most of our queries are searches.

As we need to use it in a streaming setting, we need dynamic hashing methods. Using
dynamic perfect hashing [DKM794] or cuckoo hashing [PR04], it is possible to maintain
hash maps with constant worst-case search time and constant expected amortized insertion
time. We decide for cuckoo hashing.

We use one hashing data structure for every level. It has to process all queries between
two rebuilding steps. Notice that there are m + 1 insertions between two rebuilding steps.
All other points only query to find the correct reference point and they do not induce a
change in the hashing data structure.

The first thing we need to do is to transform our points into integers which is the expected
input of cuckoo hashing. Notice that the point coordinates are integers between —A and
A, so there are (2A + 1)4 possible points. We can map them to {1,...,(2A + 1)} in time

126 5 The k-means problem in data streams

O(d) with a bipartite mappingﬁ which we call r. For every point x, we compute g(z) and
then hash r(g(z)).

Cuckoo hashing needs a (1,m?)-universal family of hash functionsﬁ which can be con-
structed according to a scheme by Siegel [Sie89]. The construction of this hash family
needs O(m?) space and time for a constant 0 < § < 1.

At the start of the algorithm and at the beginning of the reinsertion in each rebuilding
step, we initialize two tables of size 2m on each level and we choose two hash functions h;;
and h;s to set up the cuckoo hash structure. The hash functions need space o(m). The
tables may be refilled and the hash functions may be replaced during the phase, but the
running time of this is covered by the expected insertion time of cuckoo hashing.

When performing nearest(z, F), we compute h;;(g(x)) and hi(g(x)) and the hash
values of the surrounding cells. The search returns lists with all points in g(z) and the
neighbor cells. We look trough all lists and report the point r closest to x that is stored
in these lists. If the distance between r and x is larger than R;, x opens a new CF and is
added as its reference point to the hash data structure.

By using cuckoo hashing, we need constant worst-case time to look up each of the O(1)
grid points, and as we have to proceed through at most logn levels, the time spent on
neighbor searches when inserting a point x into the BICO tree is O(logn). Insertions have
expected amortized constant time, which means that they induce an expected running
time of O(m) for any phase between two of the at most O(log nA) rebuildings. The space
of BICO is not affected as the hash data structure needs linear size.

Corollary 5.4.15. Let P C R? be a set of n points given as a stream, let 0 < ¢ < 1. By
adding an appropriate hashing based data structure, it is possible to adjust BICO such that
the time to process P is bounded by O(logn(n + mlog(nA))) plus expected O(mlog(nA))
time, using O(m) space, where m € O(k-logn-e~(42) is the coreset size and d is constant.

Filtering. We refer to the term filtering as a generic term for reducing the number of
possible candidates for our nearest neighbor. A filter is a necessary but not sufficient
condition that the nearest neighbor we search has to satisfy. We use them as a heuristic
method to reduce the number of candidates. The methods above can be seen as elaborate
filters: The nearest neighbor has to lie within the box of side length 2R;, and it has to
be within one of the surrounding grid cells. These actually come with a guarantee on the
number of points. However, they are rather complicated.

5We describe one way to do this. For a grid point x, we determine its rank by the following procedure.
Let a be the highest absolute value of any coordinate in z. Then there are (a + 1)¢ points which have
coordinates that have a smaller absolute value than a. Among the points that contain coordinates
with absolute value a, we determine the position of x by transforming x into a ternary vector first.
We replace every coordinate with lower absolute value by 0, every coordinate that is a by 1 and every
coordinate that is —a by 2. Now we just interpret the result as a ternary number z. The rank of x
then is (a +1)% + 2.

SA family of hash functions from U to {0,...,m — 1} is (c, k)-universal if it satisfies Prob(h(z;) =
Y1, M(@2) = Yo, ..., h(xr) = yx) < 55 forall oy, ...,z €U and all yy, ...y, € {0,...,m — 1},

5.4 BICO — BIRCH meets coresets for k-means clustering 127

A very easy example of a filter is the following. If r is the nearest neighbor of and within
distance R;, then there is no coordinate in which the two differ by more than R;. So, what
we could do is to choose a random coordinate and filter the candidate points according to
it. We can also use a precomputed data structure. Assume that we project every input
point to a one-dimensional subspace (which is a bit more general as only projecting to
axis-aligned subspaces) and store it in a data structure according to the length of the
projection. If r and x have at most distance R;, then the length of their projections can
also only differ by R;. Thus, we maintain a table (of sufficient size) where each entry holds
a list of all points that have their projection length in the same R;-interval. Thus, only
points in the same or the two neighboring intervals are candidates for the nearest neighbor
we search.

Important in the design of a filter is that it does not cause too much overhead. The
benefit of filters is heuristic. If a filter does not reduce the number of candidates, then it
should at least not induce too much additional running time. For example, computing the
projection of a point takes ©(d) time. This is fine, since computing the distance between
the query point and any point takes ©(d) time in itself.

Of course we can also combine filters: We can maintain multiple such data structures,
project a new point to all assigned subspaces, take the intersection of all lists that we get
and finally compare the resulting points with the query point in only a randomly chosen
subset of the coordinates. The final list is then the candidate list where we search for the
nearest neighbor. Of course, combining filters normally introduces additional overhead.

5.4.4 Implementation

Now we describe our implementation of BICO. When implementing algorithms with a
theoretical guarantee, it is often necessary or beneficial to make slight changes to the
algorithm. This is also the case for BICO. We adapted BICO with the following principles
in mind.

Only perform small changes. We believe that the theoretical performance guarantees
indicate that the algorithm has important properties that are instrumental for a good
performance. So the general goal is to change as little as possible.

Enable potential for better performance. Heuristics profit from the fact that they perform
well on most data even though there exist bad worst-case examples (that usually do not
occur). It is important to make sure that the implemented algorithm has the potential
to perform well on average data. For example, we think that smaller coreset sizes suffice.
Thus, we should not enforce BICO to use the theoretically computed coreset size because
that would mean that we force it to use too much memory and too much running time
when it might not be necessary.

Keep worst-case running times and avoid overhead. Even if an additional data structure
promises a huge change for better practical performance, we only want to use it if it
does not increase the worst-case running time. The running time of BICO is low enough
to guarantee moderate computation times even for huge data sets, and we do not want
to jeopardize this for speed-ups that might fail on some data sets. Also, we want to

128 5 The k-means problem in data streams

avoid complicated data structures that induce a high (constant) amount of overhead in
terms of lines of code and additional memory requirement because we wish to keep BICO
competitive on smaller instances. Having these guidelines in mind, we implement BICO
with the following changes.

1. The upper bound on the coreset size that we proved is a worst-case guarantee that
holds for any input, regardless how unlikely it is to actually occur. We use an
adjustable summary size, i.e., the user can choose the size. We recommend a size of
m = 200k. This was inspired by [AMRT12] as StreamKM+ is run with the same
coreset size, and it performed well in our experiments (see Section . Notice
that this change is heuristic and means that the summary is not necessarily a (14 ¢)-
coreset.

2. We add a filter to improve the nearest neighbor searches on the first level. This is a
compromise between speeding up the neighbor search and causing a lot of overhead
by additional data structures. The first level is particularly endangered to have a
large number of clustering features as long as the threshold is rather small. We
describe the data structure in more detail below.

3. We slightly change the rebuilding. Instead of reinserting all features, we only reinsert
on the first level, keeping the connections between the nodes and their child nodes.
Then we go through the tree and merge child nodes into their parent nodes if possible.

The filter is simple and uses p projections to 1-dimensional subspaces. Each projection
is represented by a unit vector. At the beginning of the algorithm and at the start of each
rebuilding step, we draw p unit vectors randomly[z]. Let x be the point that we want to
find the nearest neighbor of and let u be the unit vector of one of the projections. We
compute the projection of x onto the line spanned by u by computing the scalar product
z'u. During the insertion process, we keep track of the smallest and the highest value that
occurs. This interval is divided into buckets of size R;. For each bucket, we maintain a list
of the points that are projected into the subinterval represented by this bucket. So when
searching for x, we only need to look through the reference points in the same bucket and
in the two neighbor buckets. We heuristically decide to only search the bucket that x falls
into. To increase the chances that this list is small, we take the projection where the list
in the corresponding bucket is the shortest.

Notice that this data structure potentially creates a lot of buckets, and we did not
implement improvements to compress it (like avoiding to store empty buckets). Also, we
decided to use p = d projections. In our experiments, no problems occured because of this.
The behavior was improved in a newer version of BICO as described in the paragraph on
the source code below.

"We draw each coordinate uniformly at random from [0, 1] and then normalize the vector. This does not
draw a point uniformly at random from the unit sphere, but it is fast and worked well enough.

5.4 BICO — BIRCH meets coresets for k-means clustering 129

From coresets to solutions. BICO computes a summary of the input point set, not a
solution. In order to compute an actual center set, we combine it with the k-means++ algo-
rithm by Arthur and Vassilvitskii [AV07]. We already described this algorithm on page
as one of the fundamental algorithms for k-means clustering. It is known for its practi-
cability combined with a O(log k)-approximation guarantee on expectation. Notice that
combining the original BICO algorithm with k-means+ thus yields an expected O(log k)-
approximation. We implemented k-means++ in a straightforward manner without special-
ized data structures or heuristics to speed it up.

Source code. BICO and k-means++ are implemented in C++. The source code for the
algorithms, the testing environment and links to the other algorithms’ source codes are
available at http://1s2-www.cs.uni-dortmund.de/bico/. We continue to update BICO
and will provide updated source code on the website. We recommend to always use the
latest version of BICO. At the time of this thesis, that is BICO 1.1, but newer versions
will probably appear. The improvements in BICO 1.1 compared to BICO 1.0 are:

e We corrected an error that could prevent the second level from being considered in
the rebuilding.

e The initialization phase was corrected because the previous version did not consider
enough points.

e We installed an upper bound on the number of buckets such that BICO is more
stable when presented with data sets that have a high spread.

e The new code detects if a user chooses a summary size that is larger than the input
size and in that case outputs the input.

e Multiple instances of BICO 1.1 can be created and be used in parallel.

5.4.5 Experimental setting

In this section, we describe the experiments that we conducted. The next section discusses
the results of these experiments.

BICO. We used BICO 1.0 for our experiments which is the version that was current in
2013. Notice the above listed changes in BICO 1.1. On our test data, the third and fourth
change to BICO do not play a role because the spread of the data set was not large enough
to cause problems, and we did not use summary sizes less than the input size. The first
two improvements may improve BICO’s performance over the here presented results. We
plan to do further tests with the updated source code in future work. As mentioned above,
BICO and k-means+ are implemented in C+. For the experiments in this section, they
were compiled with gee 4.5.2. The experiments were performed with a summary size of
m = 200k for BICO and a limit of five iterations of k-means when performing k-means++
on the coreset.

http://ls2-www.cs.uni-dortmund.de/bico/

130 5 The k-means problem in data streams

Reference algorithms. We compare BICO with several algorithms. The first algorithm
is BIRCH [ZRL97a], which is very relevant since we based BICO on BIRCH, and since
BIRCH is a renowned algorithm for k-means clustering in the streaming setting. We
described BIRCH on page and in more detail in Section The second algorithm is
StreamKM-++ [AMR™12]. Tt is the same type of algorithm as BICO, a coreset algorithm for
the k-means problem that is implemented in a slightly heuristic manner in order to increase
the practical performance. We shortly discussed StreamKM++ on page [I0I] We included
MacQueen’s k-means algorithm because it peformed surprisingly well in preliminary tests
on one of our data sets (see the experiments on CalTechl128 in the next section). The
algorithm was also part of the discussion of related work and is described on page [100

StreamLS [GMMT03, [OMM™02] was not specifically developed for the k-means problem
but for the k-median problem. We only included it into the experiments because it was
part of the experimental study in [AMRT12|. It had a rather high running time which is
why we did not include it in the experiments for the largest data sets.

We use the authors’ implementations for StreamKM++, BIRCH and StreamLS. Mac-
Queen’s algorithm is from the sixties and no implementation by the author was available.
We thus used an open source implementation that is part of the open source framework

ESMERALDA [FP11].

Parameters. We ran StreamKM++ with a summary size of 200k like done by its authors
and as we also chose for BICO. BIRCH has a long list of parameters. The authors recom-
mend a set of parameters. As in [AMRT12], we use this set except for the memory settings,
allowing BIRCH to store significant percentages of the data. Compared to [AMRT12], we
increase the memory to 26 % on BigCross and 8% on Census in order to enable BIRCH to
compute solutions for our new test cases with larger k. The parameters are documented
in Table in the appendix. There might be better parameters and the results presented
here are only valid for these parameters.

Datasets. The authors of StreamKM+ conducted a considerable experimental study in
[AMR™12]. We decided to use the largest data sets from their study, plus an additional set
with higher dimension. The evaluated data sets are Tower, Covertype and Census from the
UCT Machine Learning Repository [ANQT7] and BigCross, which is a subset of the Cartesian
product of Tower and Covertype, created by the authors of [AMR™12] to have a very large
data set. Our additional data set consists of 128 SIFT descriptors [Low04] computed on
the Caltech101 object database and was provided by René Grzeszick. We call this data set
CalTech128 because the 128 descriptors imply 128 dimensions. Table[5.3| gives an overview
on the sizes of the data sets. BigCross has the highest number of points and the largest
total size while CalTech128 has the highest dimension. Tower is the smallest data set and
has only three dimensions, while CoverType has the smallest number of points which is
around half a million.

5.4 BICO — BIRCH meets coresets for k-means clustering 131
H BigCross ‘ CalTech128 ‘ Census ‘ CoverType ‘ Tower
Number of Points (n) || 11.620.300 | 3.168.383 2.458.285 581.012 4.915.200
Dimension (d) 57 128 68 55 3
Total size (n - d) 662.357.100 | 405.553.024 | 167.163.380 | 31.955.660 | 14.745.600

Table 5.3: Data set sizes

Test cases. As a basis, we used the test cases that were performed in [AMR™12] for the
data sets that we chose. For Census and CoverType, this is k = 10, 20, 30, 40, 50, for Tower
it is k = 20,40, 60, 80, 100, and for BigCross it is & = 15,20, 25,30. Then, we added the
test cases k = 100, 250, 1000 for all except for CoverType (because of the small number of
points). For BigCross we also added k = 50 for the sake of consistency. On CalTech128,
we tested k = 50, 100,250 and £ = 1000.

We repeated all randomized algorithms 100 times. Notice that BICO is not randomized
in its original version, but the heuristic speed-up is randomized, and k-means++ is random-
ized as well. StreamKM++ also uses k-means++ and is thus also randomized. StreamLS
is also a randomized algorithm. MacQueen’s k-means algorithm is deterministic, as is

BIRCH.

Test environment. All computations were performed on seven identical machines with
the same hardware configuration (2.8 Ghz Intel E7400 with 3 MB L2 Cache and 8 GB
main memory).

5.4.6 Experiments

We did not succeed in searching for parameters that enabled BIRCH to process the Cal-
Tech128 instance. We tried a lower dimensional version which worked and we got the
impression that the implementation cannot handle the high dimensionality of CalTech128.

Running Times. Figure visualizes the running times. The left column shows the
test cases that were also considered in [AMRT12], the right column (including the second
diagram in the last line) shows most of the new test cases. The running time of BICO is
depicted as a block consisting of two blocks which correspond to the time that is spent on
BICO itself and on the execution of k-means++ in the end.

For randomized algorithms, the diagrams show the mean value of 100 runs. All mean
values of all test cases are also listed in Table in the appendix. Additionally, Table|B.3
and Table show the median of the running times and the coefficients of variance for
all randomized algorithms on all test cases.

Notice that StreamLS is not included in the diagrams but in the tables. Its running
time is quite high and would have scaled the diagrams. Without StreamLS, StreamKM++
dominates the diagrams. It is expected that it has a higher running time than the other

132 5 The k-means problem in data streams

BigCross BigCross BigCross
4000 ; ; ; 14000 T 180000 r
StreamKM++ ez B
3500 . 12000 160000 =g 1
BICO s 140000 |- B i
3000 BICO KMeans++ . 10000 <%
. o 120000 |54 8
E 2500 MacQueen =SX3 [E s
= £ 8000 100000 |4 R
=) =3 osesd
£ 2000 BIRCH —— |1 2 B
£ € 6000 80000~ fecg 1
1500 5 5
= € oo 60000 - .
B
1000 40000 - -
] B
500 2000 20000 fztfn\\\ |
0 0 o L Kl
15 20 25 30 1000
Number of Centers Number of Centers Number of Centers
Census Census Census
1200 7000 T 180000 T
.
160000 - & .
1000 6000 ::::; - EZE
B 140000 [~ & ,
° 5000 - . &
2 800 e [120000 [~ ,
£ £ eseed B
= E 4000 [1 100000 [~ .
2 600 g L |
5 € 3000 [K - 80000 &
< 5
& 400 L 60000
40000
200 1000
20000
o 0 0
Number of Centers
Tower Tower
; ; ; ; ; 600 18000 T
16000 - =
200 - 500 |- ,
14000 - =
@ 400 |- . 12000 - =
£
= 10000 [~ =
2 300 1~ -
kS 8000 [=
S
o 200 | . 6000 |- .
4000 [=
100 .
2000 - =
0 v
1000
Number of Centers Number of Centers Number of Centers
Covertype CalTech CalTech CalTech
6000 T 18000 T 600000 T
StreamKM++ R0R
16000 - gz —
5000 BICO mumm - B 500000 - .
BICO KMeans++ Exwwmyy 14000 [-----£4 .
oo
] o 4000 12000 |- . 400000 - :
£ £
= [10000 K4 .
2 2 3000 i) 300000 - -
€ < 8000 K ,
4 o 2000 6000 g4 . 200000 [.
4000 433 —
1000 K 100000 .
2000 [~ .
0 0 'E:::E N 0 B
50 100 250 1000
Number of Centers Number of Centers Number of Centers Number of Centers

Figure 5.4: Diagrams visualizing the (average) running time for most test cases.
Randomized algorithms were performed 100 times.

5.4 BICO — BIRCH meets coresets for k-means clustering 133

reference algorithms since it has a higher focus on accuracy than the other algorithms
except for BICO. BICO, also having a high priority on good quality solutions, is consider-
ably faster than StreamKM-++. The factor is at least five in all test cases and increases for
test cases with larger k. On CalTech128 and k£ = 1000, BICO is twenty times faster than
StreamKM-+, which means an improvement from nearly six days of computation time to
less than seven hours.

The comparison with BIRCH and MacQueen’s k-means algorithm is less clear. For test
cases with small & (up to k = 50), MacQueen’s algorithm is the fastest, followed in nearly
all test cases by BICO, then BIRCH. Covertype is the only instance where BIRCH is faster
than BICO for small values of k£, namely for £ = 40 and & = 50. Notice that for Covertype,
these values are larger compared to the total number of points than for the other inputs. In
most test cases for small k£, BICO runs in twice the running time of MacQueen’s algorithm,
the exception being the smallest Tower test cases.

For test cases with larger k, BICO is slower than MacQueen’s algorithm and BIRCH,
the latter now being the fastest by far. Notice that BIRCH was performed in all test cases
with & = 1000 except for CalTech128, but it is nearly invisible in the diagrams because of
its low running time.

We notice some additional characteristics about the results. Except for BIRCH, all
algorithms’ running times increase with k. That makes sense for the two coreset based
algorithms as they maintain a summary of m = 200k points and in both cases, inserting
points has a running time that depends on m. The fact that m depends on k is a reasonable
and expected property because to keep the same accuracy for larger values of k, we need
to have a larger summary (Q(k) is a natural lower bound for the size of a coreset — a point
set where n/k points have the same coordinates can only be preserved with to arbitrary
precision if at least one point from each cluster is stored). Even just keeping a solution
implies a storage usage of at least k points. What is unclear is whether the running time
(and not only the memory usage) has to depend on k (as much). We see that compared
to StreamKM++, BICO increases slower with regard to k. Even the lean algorithm by
MacQueen increases with k because it computes the distance between any input point and
the k£ centers in the current solution, but it shows the slowest ascent which is of course the
reason why BICO becomes slower than MacQueen for larger values of k.

The running time of BIRCH is basically constant when varying k. This means that
no algorithm with a running time that depends on k can ever beat BIRCH (with this
parameters) with regard to the running time for every value of k. At some point, however,
the centers will outnumber the stored clustering features, and then BIRCH has to guess
the remaining centers or use more storage and probably more running time.

As a final note regarding the running times, notice that the running time of k-means++
makes up a significant portion of the total running time of BICO for some instances, for
example for £ = 250 and £ = 1000 on CalTech128. This could be improved by using a more
advanced implementation of k-means+ which handles high dimensions better. However,
there are test cases where the core part of BICO dominates, for example for all BigCross
experiments and all test cases with low k.

134 5 The k-means problem in data streams

BigCross BigCross BigCross
7e+012 . . 1.16e+012 T 7.5e+011 T
StreamKM++ ez
6.5e+012 — BICO mmmm |-| 1.14e+012 R | —
MacQueen =s=<1 7e+011 .
6e+012 BIRCH 1 |4 1.12e+012 s
5.5e+012 1.1e+012 . 6.56+011
2 2
38 5e+012 2 1.08e+012 .
o | o
4.5e+012 1.066+012 |-] 6e+011 s
4e+012 i 1.04e+012 b
5.5e+011 =
3.5e+012 | 1.02e+012 - B
3e+012 1e+012 5e+011
15 20 25 30 250 1000
Number of Centers Number of Centers Number of Centers
Census Census Census
4e+008 1.3e+008 T 9.5e+007 L
] — 9e+007 —
3.5e+008 1.26+008 8.5¢+007 s
3e+008 1 1.1e+008 8e+007 .
7.5e+007 .
2 2
8 2.5e+008 2 16+008 7e+007 s
o o
6.5e+007 .
+ 4
2e+008 9e+007 66+007 .
1.5e+008 4 864007 5.5e+007 - .
5e+007 [~ —
1e+008 7e+007 4.5e+007
20 50 250 1000
Number of Centers Number of Centers Number of Centers
Tower Tower Tower
3.5e+009 . . . ; ; 1.2e+009 6e+008 T
N N -
3e+009 8 1e+009 B 5e+008 4
2:5e+009 1 8e+008 . 4e+008 .
@ 2e+009 4
8 6e+008 . 3e+008 s
© 1.5e+009 =
4e+008 B 2e+008 o
1e+009 =
5e+008 . 2e+008 B 1e+008 4
0 oL Fl oL EEN
250 1000
Number of Centers Number of Centers Number of Centers
Covertype CalTech CalTech CalTech
6e+011 T T T T T T 3e+011 T 2.6e+011 T
[StreamKM++ B
5.5e+011 35e+011 - BICO mumm B 2404011 |5]
MacQueen =<1 P K
+ &4 o
Se+01L 364011 25e+011 K] ‘ . 22es011 |- K]
45e+011 i N N
4e+011 . 264011 1=K \ .
o o 25e401L K] \
3 35e+011 . 2 2es01 [K . 1864011 |-] \ .
C zesont {1 ¢ & i N
e 2e01L i L6e+011 |- K \ 1
2.5e+011 ol E:E:; E:i:; §
2e+011 4 15e+011 1.5e+011 |- 5 . 1.4e+011 | EEEEE § 4
Jrsse <)
15e+011 4 % 1.2e+011 &
il 1le+011 E;E;i N
le+011 1es011 LI 1e+011
50 50 100 250 1000
Number of Centers Number of Centers Number of Centers Number of Centers

Figure 5.5: Diagrams visualizing the (average) costs of the computed solutions for
most test cases. Randomized algorithms were performed 100 times.

5.4 BICO — BIRCH meets coresets for k-means clustering 135

Accuracy. The diagrams depicting the (average values of the) costs of the solutions are
contained in Figure[5.5] placed in the same order as in Figure[5.4] Table[B.5|in the appendix
contains all costs. Again, the values are average values for the randomized algorithms.
Table and Table contain the corresponding medians and the coefficients of variance
for all randomized algorithms.

As expected, the coreset based algorithms show the best performance with respect to
the quality of the solutions. On 71,8% of the test cases, BICO computed the solution
with the highest quality (the lowest cost). Notice that both StreamKM++ and BICO use
k-means++ to compute the solution. While this introduces randomness, it should not favor
one of them, implying that the different performance is maybe due to a better coreset (but
this is speculation). However, for most of the test cases, the cost of the solution computed
by StreamKM++ is at most 1%-2% higher than the cost of the solution computed by
BICO. Notably, the exceptions where the solution of StreamKM-+ is more than 2% more
expensive than BICO’s solution are all for test cases with larger k, starting with k£ = 100
for CalTech128 and being worse for £ = 250 and k£ = 1000 for Census.

StreamKM-+ computes the best solution for five of the test cases, which is 15,6% of the
cases. The solution by BICO is always at most 0,5% more expensive than StreamKM-+'s
solution. For the remaining four test cases, the algorithm by MacQueen surprisingly out-
performs the other algorithms. Notably, this happens for all CalTech128 test cases. We
included MacQueen into our study because it was used for CalTech128 by the group that
provided the data set. Apparently, it is indeed well suited for this data set, for different
numbers of centers. The solution computed by BICO is at most 3% more expensive than
the solution computed by MacQueen’s algorithm. The solution quality of MacQueen’s
algorithm might depend on the ordering of the points, but we did not test this.

With the exception of Caltech128, where MacQueen’s algorithm performs so surprisingly
well and BIRCH did not work such that we have no comparison, both algorithms computed
solutions of higher cost than BICO and StreamKM++. The solution by BIRCH is always
more than 10% worse than the solutions by BICO and StreamKM-+, and in half of the test
cases, it is more than 30% off. For Tower with & = 250, it is even 2.5 times as high as the
solutions by BICO and StreamKM++. The solutions computed by MacQueen’s algorithm
are of an extremely varying quality, and this seems to be consistent for each data set. For
CalTech128, the solutions by MacQueen’s algorithm are excellent. For Census, the cost
is around 5%-15% higher than the solution by BICO. For BigCross, the cost is 30%-40%
worse than for BICO. Finally, on Covertype and Tower, the solution is up to ten times
worse than BICO’s solution. This seems to slightly favor larger data sets, however, by
that logic BigCross should have the least error. The results might change if the points are
reordered.

Memory usage. Figure shows the memory usage of the algorithms. As before, the
values for the randomized algorithms are the average values of 100 runs. All numerical
values for the (average) running times are contained in Table[B.6|in the appendix. Table[B.9]
and Table [B.10l contain the median values and the variation coefficients for all randomized

136 5 The k-means problem in data streams

BigCross BigCross BigCross
800000 FiSreamrvies T 1.4e+006 T 4564006 T
BICO mmmmm 4e+006
700000 - MacQueen £ e . e s 1.2e+006 |
BIRCH ——1
3.5+006
600000 16+006 il
3e+006
500000
é g 800000 B E 2564006
400000
: 2 600000 3 20006
300000 1564006
400000
200000 164006
100000 - 200000 500000
0 0 0
15 20 25 1000
Number of Centers Number of Centers Number of Centers
Census Census Census
300000 T 1.2e+006 =T 4e+006 T
250000 le+006 3.5e+006 [~ —
3e+006 .
200000 800000
2 2.5e+006 |- .
g
£ 150000 600000 2e+006 |- 25 n
3 3]
= 1.5e+006 %Zﬁ
.5e+006 [.
100000 400000 © &
3 14006 [} .
[200000 258
50000 500000 [~ .
0 o 0
10 20 30 40 50 250 1000
Number of Centers Number of Centers Number of Centers
Tower Tower Tower
180000 T 450000 T 1.4e+006 T
160000 400000 [~ EE‘:EE 7 1.2e+006
140000 350000 [K s
[16+006
120000 300000 |- 4 .
&4
2 100000 250000 -] . 800000
£ £
g 80000 200000 [Eiig 7 600000
&4
60000 150000 K& .
Eig 400000
40000 - 100000 [---4&4 .
&4
20000 |- 50000 5 200000
0 0
20 60 100 250
Number of Centers Number of Centers Number of Centers
Covertype CalTeeh CalTech CalTech
250000 T 16406 2e+006 7e+006 T
[Streank(+
o 8o 1.86+006 |- 4
Queen EXXY 6e+006 [~ T
200000 800000 1.6e+006 |- .
700000
1.4e+006 |- . 5e+006 - -
» 150000 N
2 2 1.26+006 - —
£ E 500000 4e+006 -
2 H 1e+006 [~ 5
100000 400000
L o +006 |- 4
0 800000 3e+006
50000 0 600000 =g 7 264006 |- |
‘ 0} 400000 [~ :535: 7
&
0 0 200000 = 1e+006
% 0 250
Number of Centers Namber of Centers: Number of Centers Number of Centers

Figure 5.6: Diagrams visualizing the (average) memory usage for most test cases.
Randomized algorithms were performed 100 times.

5.4 BICO — BIRCH meets coresets for k-means clustering 137

| | BIRCH | MacQueen | BICO, 200k | BICO, 100k | BICO, 50k | BICO, 25k |

Time 616.74 4241.23 20271.97 0444.75 1670.26 618.94
Costs || 5.79-10'" | 7.17-10'" | 5.12- 10" 5.23 - 101 5.35- 10" | 5.58 - 10!

Figure 5.7: Tests with decreasing coreset sizes on BigCross with & = 1000. Notice that
BICO is less than 1.5 times slower than MacQueen with m = 100k while still
computing reasonable costs where MacQueen computes costs that are very
high. The running time is comparable with BIRCH at m = 25k, while the cost
of the solution is still much better for BICO. The first three columns are from
our original experiments, the remaining are additional experiments performed
with 10 runs.

algorithms.

MacQueen’s algorithm needs very little memory as it only stores the centers chosen so
far and the implementation apparently has little overhead. It is the most memory efficient
algorithm of the tested algorithms. By our parameter settings, we allow BIRCH to use
a relatively large amount of memory, so we cannot blame the algorithm for having the
highest memory usage for the BigCross test instances. Most of the time, BIRCH does
actually not use nearly as much memory as we allow it to do by our settings.

Notice that BICO and StreamKM-++ both maintain a summary of size 200k. So both
algorithms have to store at least 200k points of dimension d, where d depends on the data
set. Of course, both algorithms also have overhead, like the tree structure or the nearest
neighbor data structure in BICO. However, when averaging the maximum memory usage
of (core) BICO by dividing it by 200kd, the value always lies between 125 — 200 Bytes
for all data sets except for Tower. This is relatively stable and indicates that the memory
usage of BICO grows predictably with the summary size. For StreamKM+- the memory
usage differs more. The result of dividing the maximum memory usage by 200kd lies in
the range 250 — 650 Bytes for the same data sets. The memory usage divided by 200kd of
StreamKM-+- gets smaller for larger values of k, which indicates that the algorithm has a
larger constant overhead. It makes the correlation with the summary size less clear.

For Tower, the calculation gives worse values for both algorithms, which is probably due
to the fact that for a low dimensional and comparably small input like Tower, the constant
overhead for data structures plays a more dominant role.

The memory usage of StreamKM++ does not only vary more than BICO’s, it is also
many times higher (for all data sets).

Using BICO under resource constraints. BICO computes solutions of high quality at a
shorter time than StreamKM++. Yet, it may always be that the available time or memory
is not enough to perform BICO as described here, for example for very large values of k.
We wish to point out that it is still possible to use BICO under stricter resource constraints
by sacrificing a bit of the solution quality.

138 5 The k-means problem in data streams

To demonstrate this more specifically, we performed a small additional experiment. For
this we chose the test case k = 1000 on BigCross because it is a large data set where BICO
has an unfavorable running time of several hours, and because this running time is due to
the core BICO algorithm. On Caltech128, a large fraction of the running time is caused
by the execution of k-means++.

We decreased the summary size in several steps and observed how the quality changes.
Notice that decreasing the summary size decreases the running time as most of the update
time of BICO is spent by searching neighbors within the summary. Consider Table In
the original experiments, BIRCH needs 616 seconds to process BigCross with £ = 1000,
and MacQueen’ algorithm needs 4241 seconds. BICO needs an average time of 20271
seconds when executed with a summary with 200k points. For 100k points, the time goes
down to 5444 seconds, which is already comparable to MacQueen’s running time. Finally,
by halving the size two more times, we get to a summary size of only 25k. BICO now runs
in 619 seconds (on average over 10 runs), which is only 3 seconds worse than BIRCH. Yet,
the quality of the solution is still significantly better than the quality of the solutions by
BIRCH and MacQueen’s algorithm (which computes a notably worse solution for this data
set).

Discussion. We did not discuss StreamLS in detail. It is the slowest of the tested algo-
rithms and both its running time and solution quality fluctuate more (see the variation
coefficients in Table[B.4land [B.§)). Additionally, it does not necessarily compute the correct
number of centers (by design). MacQueen’s algorithm can compute very good solutions,
but not in a reliable way. However, it is always fast and needs little memory.

BICO and StreamKM++ compute solutions of comparable quality. However, BICO is
faster and needs less memory. The results regarding BIRCH should be taken with care
because of the large number of parameters. Yet, the experiments at least indicate that it
is difficult to compute solutions of reliably low cost with BIRCH.

In a way, BICO is a descendent of both BIRCH and StreamKM++. Even though BICO
differs from BIRCH significantly, it uses the general structure and the idea to have a tree
of clustering features. BICO and StreamKM++ do not have much in common regarding
their actual courses of actions, but they share the idea to base an implementation on an
algorithm with a proven quality guarantee.

BICO combines the advantages of the two approaches, providing accurate solutions
within short running time by using a lean data structure. The adjustable summary size
as the only main parameter makes it easy to apply BICO to different needs regarding
accuracy, memory usage and running time. We believe that when investigating unknown
data sets, BICO is the best choice to compute a k-means clustering. Additionally, we
expect that BICO might be even faster with a different nearest neighbor data structure.
This is a topic of further research.

Part 1l

Extensions of classical clustering

6 Kernel £-means problems

In this chapter, we see an extension of the coreset construction in Section to more
general settings. The results in Section have appeared in [FSS13], and the insights
in Section follow directly. The results in Section are based on Section and
Section and have not yet been published. They are also joint work with Dan Feldman
and Christian Sohler.

In Section we notice that the coreset construction does not only work for squared
Euclidean distances but for any distance measure where the distance between z and y is
the inner product of x —y and x —y. This observation is interesting because it allows us to
compute coresets for the kernel k-means problem, which we define and study in Section

The results in this chapter are joint work with Dan Feldman and Christian Sohler.

6.1 The k-means problem in inner product spaces

Let V be an inner product space over a field F with an inner product (-) : V.x V — F.
Recall that we can define a norm |- | : V. — R by defining |x| := {/(z, z). Additionally,
dist(x, y) := |x — y| forms a metric. We use it to define a variant of the k-means problem
in inner product spaces.

Definition 6.1.1. Let V be an inner product space with the norm | -| : V — R which
is based on an inner product on V. Let P C V be a finite set of vectors from V. The
k-means problem on V is to find a set C of k vectors from V that minimizes

cost,2 (P, C) : Zm1n|7¢— ¢|?

xE€P
over all choices of C.

We denote the optimal cost of clustering P with k£ centers by cost 2(73). Notice that by
Definition [A.3.1] it holds for all x,y € V that

=

(tx—y)+ (g x—y)
= () + (6 =) + (—5,0) + (—y,—y)
= (x,0) + (6, —y) — (g, x) — (g, —y)

X
= (1) — (Y — (1) + (4)
= x> = (x,y) — (g, 1) + [y]*. (6.1)

dist®(x,) =[x —yI* = (x —y,x — y) =

[y

ot

142 6 Kernel k-means problems

It follows similarly that [x + y[* = [x|> + (x, y) + (y, x) +|y|* for all x,y € V. Furthermore,
Equation (6.1) also implies that it holds for all x,y,z € V that

dist*(x,) = [x —y* =[x — 2+ 2 — y/*
=dist’(x,2) — (x — 2,2 — y) — (2 — y,x — z) + dist*(z,3). (6.2

Recall Lemma from Chapter [2] which allowed us to split the k-means cost quite
conveniently during our studies of the k-means problem. It says that the 1-means cost of
a point set with n points and a fixed center can be calculated by computing the optimal
1-means cost (clustering with the centroid) and adding n times the distance between the
fixed center and the centroid. In particular, it also implies that the centroid is always the
optimal 1-means solution. Luckily, this still holds in inner product spaces.

Lemma 6.1.2. Let V be a vector space and let P C V be a set of vectors. Let u :=
Yocer &/|P| be its centroid. Then, every vector z € V satisfies

Sola—zf =3 [x—pl + 1P| |z — p* = dist® (P, p) +|P| - |2 — uf*.

XEP XEP

Proof. We want to compute Y o |x — 2|* for x,z € V. By Equation we notice that
|x — z|? = dist?(x, p) — (x — p, ot — 2) — {p— z, x — p) + dist®(p, z). Summing over all points
in P, we already have that

Sla—al = la—ulP =Y (x—pmp—2z =Y (n—zx—p+I|P||z—pf

xe?P x€P xeP xeP

Now we notice that

Z(x—u,u—z>=<2x—u,u—z>=<z

?C—Zy/!ip|}u—z>

xEP x€P xE€P yeP
= <Z?c— Zy,u—z> = (0,1 — z) = 0.
xEP yeP

For the last equality notice that the inner product of the neutral vector 0 with any vector
is zero because of the linearity of the inner product. The same idea works for the second
summand, which proves the lemma. O

The other important tool that we used frequently is the movement lemma that allows us
to move points while bounding the change in the cost function. We formulate it for inner
product spaces in the following lemma.

Lemma 6.1.3. Let P C V and Q, C V be finite sets of the same cardinality from an inner
product space V. Let 0 < e <1 be a given constant and let w: P — Q be a bijection that

satisfies
2

€ *
;) lx—m(x)? < 1 cost;s (P).
X

6.1 The k-means problem in inner product spaces 143

Then it holds for every set C C V of k with |C| < k that
| costy2 (P, C) — cost2(Q, C)| < € - costy2 (P, C).

Proof. We follow the proof of Lemma [2.3.2] Let C' be given. We define an n-dimensional
vector a that contains the distances between the points and their closest center, i.e., we
number the points arbitrarily, P = {x,..., 1.}, and define a; := min |x; — ¢|. Notice
that a € R™ is a real vector, and that the cost of P with center set C is the squared
Euclidean length of this vector, cost2 (P, C) = ||a|[*.

Next define a} := |5 — 7(%)| as the distance between x and its image under 7. Notice
that by the triangle inequality, which holds for the norm in V| it holds that for any ¢ € C
that

[m(x) — o] = |m(%) — %+ a — o <|m(a) — x| + [— ¢l

In particular, if c(;) is the point in C that minimizes the distance to x, then it holds that
|7(%) — c(x)| < a) + a;. That implies that

min (%) — ¢ < |7(x) - e(x)| < a; + ai

Adding this inequality over all points in Q, we get that cost;,2(Q, C) < ||a’ 4 a||*. By the
triangle inequality in R, ||a’ 4+ a|| < [|a|| + ||a’||. That implies that

2
2
costy2 (Q, €) < [la+a'l]* < ([[all + [la/]])* < (costy2 (P, C) + %COS‘J 2(7’)>

2 2
< costy2 (P, C) + 24/cost 2 (P, C) % cost pg(P) + % COStZE(P)

2
(1 + ; + 16) costyz (P, C) < (14 ¢) costyz (P, C).

Notice that for the second to last inequality we need that |C| < k because it implies that
cost;’)’;(P) < cost;2(P, C). To obtain the reverse bound, we distinguish to cases. Either
costez(Q, C) > costg(P, €), then the costy (P, C) — costz(Q, C) < 0 < ecostyz(P, C).
Otherwise, costz(P, C) > costiz(Q, C). Then we exchange the roles of P and Q in the
above computations to obtain

2
costz(P, C) < costyz2(Q, C) + 2¢/cost2 (Q, C) —cost 2)—f—%cost;’j;(P)

2
< cost2(Q, C) + 2y/cost; 2 (P — cost 2 P) + E cost; 2(73)

< cost2(Q, C) + ¢ - cost, 2 (P, C

because costgz (Q, C) < coste(P, C). O

144 6 Kernel k-means problems

6.1.1 Coresets with offsets in inner product spaces

We can compute a coreset with offset for an input set P from an inner product space
in the same way as we did in Euclidean spaces in Section [4.3] Algorithm repeats the
algorithm. The idea is to partition P into a set M of subsets of P such that M = MYUM’
with M’ containing only subsets that have a similar 1-means and k-means cost, and M"
containing subsets that have so low 1-means cost that the sum of all of these 1-means
costs together is still small. The subsets in M’ are called k-structured and those in MY
are called cheap. The computation works by recursively partitioning the current subset of
P according to an optimal k-means solution until the current subset satisfies one of the
conditions. All subsets that are k-unstructured on the ith level of the recursion form M?
while the subsets that are created on the (v — 1)th level and enter the vth level of the
recursion form M”. M’ is the union of all M* for i = {1,...,v — 1}.

Algorithm 6.1: Computing a coreset with offset as in Algorithm [4.1]
1 Function Partition(P, k, t, v,&")

2 Compute an optimal center set C* = {p, ..., u} for P;
3 Let Py, ..., P be the partitioning of P induced by C*;
4 Let p be the centroid of P;

5 if t = v or dist®(P, u) < (1+¢') Xk, dist*(P;, u;) then
6 | M:=M U {P}

7 else

8 for i=1,...,k do

9 ‘ M = M U Partition(P;,k,t + 1,v,&");

10 end

11 end

12 return M;

13 Algorithm Coreset (P,k,e)

14 Set ¢’ :=¢2/50, § :=) and D := 0;

15 M = Partition(P,k,0, [log,, . 1/e"],);
16 for every set P’ € M do

17 S =S Uu(P);

18 w(u(P)) = [P'l;

19 D =D +dist*(P', u(P'));
20 end

21 return S, w and ®;

The proof that Algorithm does indeed compute a (1 4 ¢)-coreset for a point set P
from an inner product space is identical to the proof for Euclidean spaces. In other words,
the proof in Section does not use any property of the Euclidean space that is not true
in inner product spaces in general (notice that the Euclidean space is a special case of an
inner product space where the inner product is the standard dot product). We have already

6.2 'The kernel k-means problem 145

oot .=° ...o LY °
e ¥ * e o P ° o o
.o.. é‘ . 0' :. L) “..'.':. :!\.“\
.‘o g, .’::‘.}.‘: I !; -
b -‘.” o L . 7
... .r'. vi'lo // Off..a ///
- : ehe o 2
s s R ay 4 JIPSE LI TRt
XN [. go LYY , ’
i oo .#,..‘ e ‘:3'.' .’ "”""') /7
o S Ll i / $ T - -
< o . - - .-J"' ‘/
Of "R LS

.i .};‘..:‘. o.‘. °
Figure 6.1: Mapping points from R? to R? with ¢(xq, 22) := (21, 22, ||7]|).

seen that this is true for Lemma and Lemma above. The remaining proof is
verbatim and consists only of verifying that no properties were used that are specific for
the Euclidean space.

Theorem 6.1.4. Let P C V be a point set from an inner product space V. Algorithm[6.1]
computes a (1+¢)-coreset S with offset ® for the k-means problem on P in V. In particular,
it holds for every set of k centers C from V that

| cost,,2 (P, C) — costyye (S, C) —D| < e - costy2 (P, C).

S contains kCE M) points.

6.2 The kernel k-means problem

In this section, we see an application of the coreset for inner product spaces to the kernel k-
means problem. In Chapter[2lon page[I1] we discussed the limitations of finding clusterings,
and in particular discussed that the k-means objective can only produce clusterings that
are linearly separable. We had a look at an example with rings (Figure on page . A
similar (but simpler) example is depicted on the left side of Figure (only consider the
black points, the blue circle is explained later).

Assume we want to use a k-means algorithm to separate the two clusters. One way
to do this is to lift the points to a higher dimensional space where they are separable.
The right side of Figure shows the points after adding the length of each point as the
third coordinate. The picture in the middle is included to show the effect of the three-
dimensional presentation of the data. It shows the two-dimensional points as points in the
xy-plane.

Because the origin lies at the center of the rings, adding the length as a coordinate
separates the two clusters nicely. For example, the hyperplane indicated by the blue rect-
angle separates the two clusters. It corresponds to the blue circle in the left picture, which
separates the clusters in their two-dimensional version. By adding one more dimension, it
is possible to simulate a curved separator by a higher dimensional hyperplane. By adding

146 6 Kernel k-means problems

.vt .g .:o..
o\ had “‘
-p
:-:‘ .": ": o .:' D
o Rt R N N
< 4)) °° "
B Y > . IS
;.39 e s ; + *
o ®, '}
> ; { = VN * .
Ly] o . o o
o.. .“".: 2... t -~

Figure 6.2: Mapping points from R? to R® with ¢(x1, 25) := (22, 22, v/22,25).

even more dimensions, the complexity of the separator in the original space can be in-
creased further. We can imagine that by allowing extreme numbers of dimensions, it is
possible to find a higher dimensional space where any partitioning of the points into two
sets can be separated by a hyperplane (for example, reserve d dimensions for each point
and construct an (nd)-dimensional point set).

Our example uses a quite specific map and only three dimensions. A more common
choice would be to define a mapping like ¢(xy, x5) := (22, 23, 2129, 1) Which maps each
point (21, z5) € R? to R* using polynoms in the input coordinates, in this case of degree
two. Assume we compute the standard inner product in R? of ¢(x) and ¢(y) for z,y € R2.
What we get is

(3,23, 219, Taw1), (Y7, Y3, 1Y, You1)) = YL + 235 + 201 Za31 Y2 = (11 + 2230)°
= (z,y)%

We notice that we can compute the inner product in the target space directly, without even
computing the lifted points. Notice that the same happens for ¢(z1, z9) == (22, 22, V2x11)
which maps to R3 and can thus be depicted like in Figure . A formula that allows the
direct computation of the inner product is called a kernel function (we define it more
precisely below).

Whenever an algorithm only needs the inner product to perform its computations, we do
not need to compute the lifted points. Instead, we can just use the kernel function whenever
we need an inner product. This technique is called kernel trick and it works for example
for Lloyd’s algorithm as we discuss below. Recall that we are not actually interested
in the target space or the images of the points. We are interested in the partitioning
that hyperplanes in the target space induce because these can provide a nice partitioning
of our original points. The beauty of kernel methods is that we can compute optimal

6.2 'The kernel k-means problem 147

partitionings in a very high dimensional, even infinitely dimensional target space without
actually computing this space.

Popular kernel functions for Euclidean points. The kernel function x : R? — R defined
by k(x,y) = (x,y)? is an instantiation of a polynomial kernel function. It allows to separate
points in the plane by a quadratic function instead of a hyperplane. It can also be used
when the input space is R? as we know how to compute the inner product for d-dimensional
vectors. A common generalization is to use higher polynomials of the inner product and
to allow offsets, i.e., to define x(z,y) = ((x,y) + ¢)* for constants ¢ € R and ¢ € N. This
allows to separate the input point set by a polynom of degree /.

Notice that for polynomial kernel functions, the implicit target space is still an Euclidean
space of finite dimension (more precisely, the degree is (dy), see Proposition 9.2 on page
293 in [STCO04]). There are popular kernel functions where this is not true, foremost
Gaussian kernel functions. For a broad introduction to different kernel functions and their
construction, see [STCO04], in particular Chapter 2, Chapter 3 and Part III.

Valid kernel functions. As for the popular Gaussian kernels, the target space may be
of infinite dimension, so Euclidean spaces are not general enough. The generalization of
choice are Hilbert spaces. Recall that a Hilbert space is an inner product space that is
also a complete metric space. Hilbert spaces are similar to Euclidean spaces but can have
infinite dimension.

In the short example above, we defined a target space and a suitable mapping ¢, then
we analytically derived the kernel function. Instead, it is more convenient to construct
a kernel function directly, without even defining the target space. This is possible due
to the rich theory on kernel functions which includes a characterization of all functions
R? x R? — R which can be interpreted as an inner product in a Hilbert space. We call
these functions valid kernel functions.

To characterize them, recall that a matrix A € R™ " is positive semi-definite if v Av > 0
for all v € R™. Let X be a set and let k : X x X — R be a function. For any finite subset
P :={x, .., %} C X with |P| = n, define the matrix K” by K] = k(x,x). We say
that x has the finitely positive semi-definite property if for every finite P C X, the matrix
K7 is positive semi-definite. For example, the standard Euclidean dot product satisfies
the finitely positive semi-definite property. The following theorem says that exactly the
functions with the finitely positive semi-definite property are valid kernel functions.

Theorem 6.2.1 (Characterization of kernels, [STC04]). Let k : X x X — R be a function
which is either continuous or has a finite domain. There exists a Hilbert space V over the
field R with inner product (-,-) and a mapping ¢ : X — V such that k can be decomposed
as

K(r,y) = (o(x), d(y))

if and only if k satisfies the finitely positive semi-definite property. Functions that satisfy
this property are called valid kernel functions.

148 6 Kernel k-means problems

Notice that we defined kernel functions on arbitrary sets. Indeed, they can be used for
different data, including for example texts. Part IIT of [STC04] explains various different
kernel functions for different types of input data. It is only important that the target
space is a Hilbert space where we implicitly compute the inner product, i.e., that the
kernel function is valid. The kernel trick then assures that the type of the data does not
matter as it only needs to partition the input data and to access to the kernel function.

Kernel matrices. Kernel functions can also be specified for the input points only instead
of giving an explicit formula, i.e., the input can be given in form of the matrix K7, then
called kernel matriz. This works as long as we only want to evaluate the kernel function on
input points. Notice that by setting x(x, y) = 0 for all x and y where either x ¢ P or y ¢ P
(or both), any positive semidefinite matrix can be extended to a valid kernel function, so
any positive semidefinite matrix can be used as a kernel matrix. How the kernel function
is given — explicitly or as a kernel matrix — does not change how we are going to use it.
Thus, when we refer to the kernel function « in the following, then it may either be stored
as an explicit function or via a kernel matrix.

Kernel k-means problems. A Hilbert space is an inner product space that is also a
complete metric space, so V in Theorem is in particular an inner product space.
Thus, given a point set P C R? Definition defines the k-means problem in V for
o(P) := {¢(z) | € P}, the image of P under ¢. However, solving the k-means problem
in V would require knowledge of V, and the solution would consist of points from V. We
are interested in solving the problem implicitly, and the solution that we can hope for is a
partitioning of P that corresponds to a partitioning of ¢(P) that is optimal for the k-means
problem in V. To emphasize this, we define a special version of the k-means problem for
our purpose which optimizes over all partitionings. Notice that the optimal solution of
the following problem is equal to the partitioning induced by the optimal solution of the
k-means problem for ¢(P) in V.

Definition 6.2.2. Let X be a set and let k: X x X — R be a valid kernel function, 1. e.,
there exists a Hilbert space V and a mapping ¢ : X — V such that k(x,y) = (¢(x), ¢(y))
for all x,y € X. Let P C X be an input point set. The kernel k-means problem with

kernel k is to compute a partitioning Py, ..., Pr of P that minimizes
k
> > min fx— (P
=1 1P i=1,...,
where | - | : V— R is the norm in V based on the inner product (-) : Vx V. — R.

The kernel trick and Lloyd’s algorithm. Assume that we are given a kernel function
k: X x X — R without knowledge of the implicitly defined Hilbert space or the mapping.
We want to perform Lloyd’s algorithm on an input point set P to compute a (heuristic)
solution for the kernel k-means problem with kernel x. As the actual optimization happens

6.2 'The kernel k-means problem 149

in an unknown Hilbert space, we cannot store the actual centers. However, all centers
that occur during Lloyd’s algorithm are centroids of subsets of the input points. We can
implicitly store them by storing the partitioning. Notice that it holds for all P’ C P that

2

> 0(y)

yeP!

:< 2 |7>'|y§,qj |7>'|y§/¢ >

|6(x) — u(e(P))* = ‘ z)

!7”!

_|¢ / y !/ /
\P | Z; - Zp + o, 2 1000)
1
=r(x,x) - k(y, 2) (6.3)
~ 1 S~y A+ o Z

where ¢ is the unknown mapping and ¢(P') := {¢(x) | = € P'}. This implies that
computing the distance of ¢(z) to a center can be done with only using « if the center is
a centroid. In particular, the reassignment step in Lloyd’s algorithm can be performed by
only using x, and the cost of the current solution can be calculated at the same time.

Altogether, Lloyd’s algorithm works like the following. The k centers are initialized
by drawing k£ random points z/,...,z; from P. The point set is then partitioned into k
subsets Py, ..., Py such that for all points z € P;, |¢(x) — ¢(x})|? is minimal among all
choices of 7. Notice that each point can be seen as a subset of the input point set, so
computing the distances is a special case of Equation [6.3] The partitioning represents the
new set of centers u(p(Py)), ..., u(¢(Px)). By Equation the cost of this solution can
be computed, and each point x € P can be reassigned such that |¢(z) — u(p(P:))]? is
minimal, constituting a new partitioning. This is iterated until the partitioning does not
change anymore.

6.2.1 Coresets for kernel k-means problems

The first thing we notice is that our coreset construction for the k-means problem in V
implies the existence of a coreset for ¢(P).

Corollary 6.2.3. Let X be a set and let P C X be an input containing n points. Let
V be a Hilbert space with inner product (-,-) and let | - | : V — R be the norm induced
by the inner product. Let k : X X X — F be a valid kernel function with decomposition
k(x,y) = (o(x),d(y)) for all x,y € X for a mapping ¢ : X — V. Then there exists a
weighted set S C V of k21087 points from V and a constant ® € R such that it holds
for all C C V with |C| = k that

Zmln]gb e — Zmlnw s = ¢’ + D] < e - costyz(o(P), C)

xeP

where w(s) is the weight of s and ¢(P) := {¢(x) | x € P} is the image of P under ¢.

150 6 Kernel k-means problems

Proof. Because V is a Hilbert space, the statement follows directly from applying Theo-
rem to the set ¢(P) = {¢(z) | x € P}. O

The coreset in Corollary is a coreset for the k-means problem in V, but it is not
what we desire from a coreset for the kernel k-means problem. That is because the points
in the coreset are from V. We cannot even store this coreset without knowledge of ¢
and V. We notice, however, that most of the coreset construction can be performed by
only using k, if the optimal clustering is determined in a way that only uses centroids
as centers, for example by iterating through all possible partitionings of the input point
set into k subsets. The only thing that cannot be done is actually computing the coreset
points, because computing the actual centroids requires knowledge of ¢.

Let P € X be the input point set and let ¢(P) be the lifted point set. Consider Algo-
rithm|[6.2] All steps can be executed without actually computing V or ¢. By Theorem[6.1.4]
the result is a partitioning of the input point set into n’ < k€€ *1gs™") subsets such that
when clustering all points in the same subset together, the error is small.

Algorithm 6.2: Variation of the inner product k-means coreset construction.

1 Algorithm Subdivide (P, k,e)

2 | Setn :=0and¢ :=¢e?/50;

3 M = Partition(P,k,0, [log,, . 1/e'],¢’,n');

4 return M and n’;

5 Function Partition(P, k, t, v,e’,n’)

6 Compute an optimal k-means solution on ¢(P);

7 Keep track of a partitioning {Py, ..., Pi} of P with the property
8 | that {¢(P1),...,d(Px)} is optimal for ¢(P);

9 Let p be the centroid of ¢(P), let u; be the centroid of ¢(P;);

10 if t = v or dist*(¢(P),) < (1+ f(2)) Xk, dist*(¢(P;), us) then

11 n :=n"+1;

12 Set S, =P and M := M U{Sy};

13 else

14 for j=1,...,k do

15 ‘ M = MU Partition(P;,k,t + 1,v,e',n');
16 end

17 end

18 return M;

Corollary 6.2.4. Let P C X be a point set containing n points from a set X. Let V
be a Hilbert space with inner product (-,-) : Vx V — R and let |- | : V — R be the
norm induced by the inner product. Let k : X x X — F be a valid kernel function with
decomposition k(x,y) = (¢(x), d(y)) for all x,y € X for a mapping ¢ : X — V. A

6.2 'The kernel k-means problem 151

partitioning P1, ..., Py with n’ < kO 18" satisfying

> mm |p(x) — | — me > () — ¢?| < e costye(¢(P), C)

?CEP 7(€'P[
exists and can be computed without explicit knowledge of 'V or ¢.

Corollary does not provide a coreset, just a rule which points can be assigned as
a group without causing too much error. For an actual coreset, we need to replace the n'’
subsets by something smaller. We cannot replace them by their centroids without explicitly
computing V' and ¢. Instead, we replace them by a smaller subset. For this, we need the
following lemma by Inaba et al. [TKI94].

Lemma 6.2.5. Let P be a set of n points in an inner product space V. Let S be a set of
m points sampled from P uniformly at random. For any § > 0 it holds that

Prob <|M(5) — u(P)|? |P| Yo lx—nu(P 2) <4

x€P

Proof. Let x; be the random variable for the ith sampled point, so x := > x;/m = u(S)
is the centroid of the sampled points. The points are drawn independently, so all y; have
the same expected value and variance. More precisely, it holds that for all i = 1,...,m

that
E(xi) = > «/|P| = u(P)
x€P
and consequently, E(x) = p(P) as well. This means that Var(y) = E((x — E(x))?) =
E(|u(S) — u(P)|?). Now notice that Var(x) = Var(x;)/m for all i = 1,...,n] The
variance of x; is Var(x;) = E((x; — u(P))?) = ﬁ Seep lx —p(P))? foralli=1,...,m. So
together we get that

E(|u(S) — w(P)|*) = Var(x Dol —u(P
|P| xEP
Markov’s Inequality then implies the statement of the Lemma. O

Consider the partitioning of P into n/ < k©E *18™%) gubsets P, ..., Py computed by
Algorithm . By Lemma we know that there exists a small subset of every ¢(P;)
such that its centroid is close to u(¢(P;)). Notice that we can sample a multiset §; of
points from P; instead of ¢(P;) and use the image ¢(S5;) as a uniform sample from ¢(P;).

'This can for example be seen by the following two steps. First, Var(x) = Var(X > " y;) =

B((5; X — Bl X2 xa))?) = mz BI(OCE i — BOZE, xi))?) = Var(372) xi)/m? because ex-
pected values are linear. Second, Var(}"", x;) = > ., Var(x;) = m- Var(x;) by Theorem 3.5 on page
48 of [MUQH).

152 6 Kernel k-means problems

For a given failure probability ¢', we set § := ¢'/(n’) and m = ;5 = 5%n’. Then

Lemma [6.2.5] guarantees us that sampling m points from subset P; yields a (multi)set
S; C P; that satisfies

Z |o(x (P))I” (6.4)

with probability ¢’/n’. By the union bound, this holds for all n’ sets §; simultaneously
with probability 1 —¢’. We also define a weight for each sample point x in §; and set it to
|P;|/m. Thus, the points in §; have total weight |P;]|.

The subsets §; are now supposed to take the role of the centroids in the coreset con-
struction in Algorithm that we cannot compute without knowing V and ¢. So, instead
of the centroid itself, we store a small subset of points with nearly the same centroid. In
contrast to Algorithm [6.1] we do not have control over how much we lose by replacing P;
by S; or ¢(P;) by ¢(S;), respectively. When we replaced a subset by its centroid, the loss
was exactly 3 .cp. [0(x) — u(¢(P:))]*. Now we simply compute the change and let this
contribute to our constant. We set

nl

= > 16(x) = ule(P))* = >_ w(y) - [6(y) — u(@(S5))[* and D := > _D;.

x€P; yEeS; 1=1

Notice that ©; can be negative if ¢(S;) contains many outliers. Now let C C 'V be any
center set. When using the coreset, all points in ¢(S;) are clustered together, and the
constant ®; is added. This costs

min Y w(y) - [¢(y) — ¢ +D;

ceC JESi

=Y w(y) - |o(y) — w(d(S))1* +w(y) - m - min [u(4(S)) — > + D;
yES;

= 3 1o(0) = 0P + L m i 0(S) — of

= 27; [¢(x) = w(@(Pi)) + 1(&(S:) = p(S(S:))* + [Pif - min [n(6(S1)) — f

= 3 7(00) ~ #((S))F + [P min (o(S) — of

=Y [m(d(x)) — e(u(d(S)I (6.5)
x€P;

where we use the mapping 7(¢(x)) := ¢(x) + p(@(Si)) — 1(o(P;)) that moves ¢(P;) such
that its centroid coincides with the centroid of ¢(S;).

We notice two things about Equality [6.5] First, it expresses the cost of clustering all
weighted points in ¢($;) with center c(u(¢(S;))) as the cost of clustering all points in
(¢(P;)) with the same center. So both clustering costs are not the best possible clustering

6.2 'The kernel k-means problem 153

costs with C but the cost of clustering everything with ¢(u(¢(S5;))). Second, our aim is to
connect this clustering cost to clustering all points in ¢(P;) with the center c(u(¢(m;))),
which is the best center when clustering ¢(P;) with one center. We already know by
Corollary [6.2.4 - that clustering all points in ¢(P;) with the same center does not incur too
much cost.

Our plan is to finish the proof by using Lemma [6.1.3] For that, we need a bound on the
squared movement lengths. By the definition of the mapping m, by Inequality and

by Lemma it holds that

S 16(0) = w6 =[P - [1(6(5)) — m(@(Pr)
x€P;
2
<W|K;W|ZM> BPP < 15 - costyt(6(P)
x€P;
for every i =1,...,n'.

Now we can use Lemma[6.1.3] We need the following two statements which we can derive
from the statement of the Lemma. Notice that Lemma is applied to the center sets
{c(i((S:)))} and {c(u(o(Ps)))}, respectively, which is possible since we assume |C| < k
in the Lemma (not |C| = k). We get that

costyz (m(A(Pi)), c(u(@(P2)))) < (1 +¢€) - costyz(o(Pi), ¢))) (6.6)

costy2 (6(Pi), c(u(9(S5i)))) < (1 +€) - costye (m(o(Pi) Si)))) (6.7)

holds for every center set C € V with |C| = k (where ¢(u(4(S;))) and e(u(¢p(P;))) are the
centers in C closest to u(¢(S;)) and p(p(P;)), respectively).

When clustering a point set with one center, the center closest to the centroid is the best
choice due to Lemma [6.1.2l That allows us to conclude

costy (m(9(Py)), c(1u(9(5:)))) < costipz (m(D(P:)), c(u(d(Pi))))
< (1 4¢) - costye (0(Pi), c(u(o(Pi)))) (6.8)

from Inequality [6.6] By the same trick and by using Inequality [6.7] and Inequality we
get that

costy2 (P(Pi), c(u(D(Pi)))) < costz (G(Pi), c(u(d(S5:))))

< (L 4¢) - costip (m(o(Pi)), c(u(D(S5))))
= costy (m(@(Pi), c(u(d(S5:)))) + € costyz (m(6(Pi)), c(u(D(5:))))
= costyz (m(¢(Pi)), c(i(d(S5)))) + 2€ costyz (P(Pi), c(pa(0(Pi))))-

)

Together, we have

min 3 w(y) - [6(5) — e + D = costyz (0P, c(0(P))

cost2 (T(P(Ps)), c(i(@(Si)))) — costyye (0(P;), C(M(¢(Pz))))‘
< 2e costyyz (9(Ps), c(pu(d(Pi)))

154 6 Kernel k-means problems

Algorithm 6.3: The kernel k-means coreset construction.
Algorithm KernelCoreset (P,k)

{M,n'} := Subdivide (P, k,c/5);

for i=1,...,n" do
Sample m := ?n’ points from P; uniformly at random, store them as §;;
Set D; 1= Tyep, [0(x) — d(P))IP = Lyes, wly) - [6(y) — u(d(S)I%:
Set D =D +3;;
Set w(x) = % for all x € S;;

end

S =UZ S

10 return S;,...,S,, w and D;

© 00w N O Uk W N =

for every center set C and for every i = 1,...,n’. Our findings apply to all sets S;, so we
can replace all P; by the corresponding .S; at a total error of

I

39 cost e (B(P), clu(6(P,))) < 25(1 +) costie ((P), C)

i=1

where the inequality follows because Corollary yields that

costy(6(P), €) 3 costys(0(P).cu(6(P))| € 2costys(0(P),).

We conclude that

costy2 (6(P), €) = Y. min 3= w(y) - l0(y) — cf* ~ D

nl

eicostip?(d)(?’i), c(u(@(P:)))) = d_min > w(y) - [é(y) — |* = D;

i=1 yES;

|

< 5¢e - cost2 (0(P), C).

Algorithm summarizes the algorithm that we just analyzed. As the error is five
times as high as we wish it to be, we call the method Subdivide with £/5 as the precision
parameter.

Theorem 6.2.6. Let P C X be a point set containing n points from a set X. Letd > 0 be a
constant. Let V be a Hilbert space with inner product (-,-) : Vx V— R andlet|-|: V— R
be the norm induced by the inner product. Let k : X x X — F be a valid kernel function
with decomposition k(x,y) = (p(x), ¢(y)) for all x,y € X for a mapping ¢ : X — V. With

6.2 'The kernel k-means problem 155

probability 1 — &, Algorithm[6.5 computes a coreset for the kernel k-means problem, i. e., a
set M :={81,...,8u} of n' subsets of P, a weight function w : U, S; — R and a constant
® such that

costy2 (¢(P), C) — > min > w(x) - o(y) — ¢f* —D| < e costyz(¢(P), C)

1

for all center sets C € V. The number of subsets n' is n’ < kCE *108s™) and the size of

each S; is O(6te™*n).

7 Probabilistic k-median clustering

Real world applications usually output data with measurement errors, or contain data that
is inherently probabilistic, like estimations based on statistical investigations. Another
example where probabilistic data occurs is record linkage where the data originates from
different sources. Consider a database that stores our knowlege on a set of entities, and
assume that we want to add information from a new data set. The new data set contains
data on some of the entities. Some of the attributes are the same, but others are different
(and this is the new information). There are no identifiers that determine which entity a
record belongs to, so we have to guess how likely it is that two records belong to the same
entity. This can be modeled by probabilistic data.

For example, assume that our data set describes people, but without a identification
number. We want to join two data bases, and both contain several persons with the name
John Smith. Then we can guess whether two of them are the same person by comparing
the other attributes that are stored in the data base. We can express this by a probability.

If the joined attribute set of both data bases is a set X of multidimensional points, points
in X have a different likelihood to be the underlying entity of an old and a new data set.
In other words, each new record induces a discrete probability distribution over X.

In the following, we go into more detail on the specific probabilistic clustering problem
that is studied in this chapter. The results presented in this chapter are joint work with
Christiane Lammersen and Christian Sohler and have partially appeared in [LSS12] [LSS14].

Assigned and unassigned clustering. In this chapter, we study a probabilistic k-median
problem where the input consists of such discrete probability distributions. The theoretical
study of this type of clustering problem was initiated by Cormode and McGregor in [CMOS].
They propose two kinds of probabilistic clustering problems. Both assume that the input
consists of a set ¥ of probabilistic points, which means that they are represented by a
discrete probability distribution. This distribution specifies a probability for the event
that the point appears at a certain location, but the probability is only nonzero for finitely
many locations. Additionally, the model allows the event that the point does not appear
at all. The finite set X is the union of all locations where any of the distributions has a
positive support.

In the unassigned case, we assume that the clustering cost of a center set is determined
by first performing the random experiment, then assigning each point to its nearest center
and then computing the cost of this assignment. The objective is then to minimize the
expected clustering cost. Consider the k-means problem in the Euclidean space R%, so X

158 7 Probabilistic k-median clustering

is a set from R?. The objective of the unassigned probabilistic k-means clustering is

min Prob(z appears at mln —c||?
S op) -min ly — |

As pointed out in [CMOS§]|, this problem is a weighted k-means problem where X is the
input point set. The weight of an y € X is defined as

p(y) := Y _ Prob(z appears at y),
4

which is the expected number of points that appear at each y. With this definition, the
objective reduces to the weighted k-means objective

o 2
Ceégl'g'kZp -in [[y — ¢f[.

The same is true for the unassigned Fuclidean k-median problem, which is defined verba-
tim except that the distances are not squared. So, both the unassigned Euclidean k-means
problem and the unassigned Euclidean k-median problem directly reduce to their deter-
ministic counterparts.

In the assigned case, we assume that the center that a point is assigned to is decided
before the random experiment is conducted. The objective of the assigned version of the
Euclidean k-means problem thus reads

min min Prob(z appears at — o(2)||%.
e i, 3 3 Prob(x appears at y) - [ly — p(z)l|

As it turns out, this is another situation where (the weighted version of) Lemma m

helps. Abbreviate Prob(z appears at y) by pa,. Using p, 1= > ex pxyy/(zyex pmy), we
can rewrite the objective to

min - omin 3 Y pay - [y — p(@)]*

d
CERL|Cl=k pV>C T2, X

— min mmz(szy-||y—ux||2+(zpw)-||ux—p<x>||2)

d
CERY|Cl=k V=0 “T, N i

=Y Y by lly— pel?+_min mmZ(Zmy)Wluw—ﬂ(@”z-

d
zeV yeX €R%ICl=k p ze?V yeX

The first summand is independent of the solution and is therefore unimportant for the
optimization. The second term is a weighted k-means problem. So, the assigned version
of the Euclidean k-means problem also reduces to a (deterministic) weighted k-means
problem. This observation is also made in [CMO08]. Notice that the same argumentation
holds for the k-means problem in inner product spaces as well. However, it does not
necessarily carry over to the k-means problem in metric spaces that are not inner product
spaces because Lemma [2.4.1| may not hold. Also, it does not carry over to the metric or
even Euclidean k-median problem.

159

For the assigned version of the probabilistic k-median problem, Cormode and McGregor
show that a (2« 4 1)-approximative solution can be computed if an a-approximation for
the deterministic k-median problem is known. The reduction replaces each probability dis-
tribution by an a-approximation of its optimal weighted 1-median (where the probabilities
are interpreted as weights). The approximative 1-medians are appropriately weighted and
then clustered with the a-approximation to obtain a solution. Notice that this is similar
to the k-means case, where the deterministic k-means instance is obtained by computing
the optimal weighted 1-mean p, for each probabilistic point z. Yet, as Lemma does
not carry over to the k-median problem, the reduction does not provide the same quality
as for the Euclidean k-means problem.

Overview on approximation algorithms in this model. By combining the above argu-
ments with known algorithms for the deterministic case, Cormode and McGregor [CMOS]
achieve a (1 + ¢)-approximation for the assigned and unassigned Euclidean k-means prob-
lem and for the unassigned Euclidean k-median problem, and they achieve a constant
approximation for the assigned metric k-median problem.

They also consider the metric k-center problem which is to compute k centers such that
the maximum distance of any input point to its closest center is minimized. The metric
k-center problem is NP-hard [KH79a] and it is also NP-hard to find an a-approximation
for a < 2 according to a reduction from the dominating set problem [HN79]. On the other
hand, 2-approximations for the discrete metric k-center problem were given by [Hs85] and
[Gon85]. Cormode and McGregor give examples where intuitive strategies fail to produce
good solutions for the (assigned or unassigned) probabilistic k-center problem. They give
a bicriteria approximation for the unassigned metric k-center problem that computes a
constant approximation with 2k centers.

Guha and Munagala [GM09] improve this result. They obtain a constant factor approx-
imation for both the unassigned and assigned metric k-center problem, without relaxing
the number of centers.

Related Work on Clustering Uncertain Data. We shortly review algorithms for uncer-
tain clustering besides the approximation algorithms developed in the model by Cormode
and McGregor. As we discussed in Chapter [2] Lloyd’s algorithm is probably the most
known algorithm for the k-means problem. Consequently, facing the need to cluster un-
certain data, it is among the algorithms to be extended to this setting. Chau, Cheng,
Kao and Ng [CCKNO6] propose using Lloyd’s algorithm with the change that points are
assigned to centers according to their expected clustering cost. The resulting algorithm is
called UK-means algorithm.

Ngai et al. [NKCT06] address the issue that computing the expected cost can be compu-
tationally expensive if the input points follow a complicated probability distribution. One
of their techniques to speed the U K-means algorithm up is to use pruning techniques. This
means that they identify points that change their cluster affiliation, but they find them
without actually computing the distances.

160 7 Probabilistic k-median clustering

Density based clustering is a popular clustering method for deterministic clustering.
The most important algorithm for density based clustering is DBSCAN [EKSX96]. This
algorithm has also been extended for handling uncertainty, see Kriegel and Pfeifle [KP05al,
KP05b] and Xu and Li [XL0§|. These are just examples for a rapidly growing field. For an
overview on uncertain data mining, including clustering, see the survey by Aggarwal and
Yu [AY09].

®e
e 0 o o000 [] []
[N N J 0000000000000 0O0C0OCGCOCFOCGOONONOCOIOIOIONONONONOPTO®DO
o000 O0O [] C N N [] []
o000 0O ([] ®e
[N N J [] [] [] []
® 0 [] []
([] []
([] (N J ([] [] (N]
([] L N N J (N J [] L N N J
([] L N J o000 [] [N N J
® 00 o000 (@] ® [N J
[] (N J (@) [] [N]
(©] ([] ®
00 0000000000000 O0C0OCFOCGOCGFONONOCEOIOIOIONONONTODPO
(@)
[N J o0
(@) (N J L N J L N J © 0
[NN J [N J
[NN J L N J © 0 o0
[N N J ® e ()@}
e e © 0

Figure 7.1: An example of a probabilistic clustering instance. The metric space is the
Euclidean plane and X is a grid in the plane. The picture shows the support
of twelve nodes (without the actual probabilities). There are eight blue nodes.
The remaining four nodes are red, green, black and orange. Notice that nodes
can overlap, like the red node does with one of the blue nodes.

7.1 A probabilistic k-median problem

In this section, we formally define the problem studied in this chapter and set the notation.
Figure depicts an example for a possible input to our probabilistic k-median problem.
It illustrates some of the properties of such an input instance.

We have a metric space (X, D) consisting of a possibly infinite set X and a metric
D : X x X — R. In the metric space, X := {x,...,xn} C X is a finite set of m possible
locations. The input point set is a set 9 which consists of n probability distributions
vi,...,% : X — [0,1]. In order to distinguish between the points in X and the input, we
use a special naming convention. By points or locations we mean the elements of X. The
input elements from 4 are called nodes.

Each node #; is a mapping 7z : X — [0, 1] and assigns a probability to each possible
location. We use the abbreviation p;; := v(x;) for all ¢ € [n] and j € [m]. The total

7.1 A probabilistic k-median problem 161

probability of a node is p; :== >, p;;, and we demand that 0 < p; < 1 for all 7 € [n].
For the smallest occuring probability we use the abbreviation pyi, = min{p;; | i € [n],J €
[m], p;; > 0}. Additionally, the problem allows weights for the nodes, i.e., an additional
mapping w : ¥ — R* that assigns a weight to each node.

There is one subtlety to the definition of the solution space of the k-means and k-median
problem. If the distance function is induced by the Euclidean norm, then centers can
usually be chosen from R?. If the distance function is a metric which is only defined on a
finite set, then it makes sense to restrict the solution space. In Section we considered
the metric k-median problem where centers can only be chosen from the input point set
itself. This is a common choice, yet we also want to allow a finite set that is different from
the input point set. Thus, we do not specify the set of candidates and allow it to be a
finite or infinite set from the metric space.

The formulation with a finite set of candidates is often used when the k-median problem
is studied alongside the facility location problem and in a metric setting. An instance for
the facility location problem consists of a metric distance function, a set of facilities, a set
of clients and opening costs for the facilities. The facilities correspond to the centers in the
k-median problem, and the clients correspond to the points. The problem is to choose a
subset of the facilities such that the cost of connecting each client to its closest facility plus
the opening costs of the opened facilities is minimized. So instead of limiting the number
of centers, the facility location problem introduces costs for opening facilities.

In the following definition, we use a finite set of candidates for the metric case and
R? in the Euclidean case. Notice that the centers are (deterministic) points from the
metric space, so the centers are not of the same type as the input elements (which are
probabilistic points). However, they can be interpreted as probabilistic points where the
probability mass is concentrated at one point.

Definition 7.1.1 (Probabilistic k~-Median Problem, [CMO0S]). Let (X, D) be a metric space.
Given k € N, a set V of n nodes v; : X — [0,1] with p; < 1 for all i € [n], a finite set
of K possible center locations L C X and a positive weight function w : V — Ry, the
(assigned) weighted probabilistic metric k-median clustering problem for ¥V is to find a
set C:={c,...,a} C L of k cluster centers and an assignment p : V — C minimizing
the expected weighted k-median-clustering cost

ecostD r’/ C p :Zw (47 Zplj 7(9 P 7)1))
i=1 =

The unweighted problem results from setting w(v;) = 1 for all v;. We denote the cost of
an optimal clustering by ecosty (V) and the total weight by W = ey w(y) (we assume
that the problem is scaled such that all weights are at least one). The definition is verbatim
for the Euclidean case, except that L = X = R?, that D is the distance function induced
by the Euclidean norm, and that L is in particular not finite.

The deterministic k-median clustering problem is a special case of the probabilistic prob-
lem, where m = n and, for each node v;, we have p; = 1 and p;; = 0 for all j # 7. As

162 7 Probabilistic k-median clustering

we mentioned, the deterministic k-median problem is often defined with £ = 9/. Notice
that if we have one j € [m] with p;; = p; and hence p;;; = 0 for all j' # j for all nodes
v;, then the probabilistic k-median clustering can be immediately reduced to a weighted
deterministic k-median clustering.

Modelling assumptions. For the metric k-median problem, we assume that the input
contains a way to evaluate the distance between two points in constant time. Otherwise,
the running times stated in this section for the k-median problem have to be be multiplied
by the time needed to compute a distance. Notice that in the Fuclidean case, computing
a distance takes time O(d).

Depending on the way that a metric space is given, the input size is different. When
all pairwise distances are given for all locations in X, the input size is at least |X|? = m?.
Even if it is not, the input has to contain a number for each location in X and each node
in 9/ if the node has a positive probability. We do not elaborate on this further and just

state running times in terms of n and m (and additional parameters when appropriate).

Assumptions on the input without loss of generality. At some points, it will be conve-
nient to have additional assumptions on the input. First, it is helpful if all nodes have the
same total realization probability, i.e., p; is the same for all ¢ € [n]. This can be achieved
without changing the clustering cost as long as we allow weights.

For example, assume that we want to have p;, =1 for all ¢ = 1,...,n. Let 7 be a node
with 0 < p; < 1. By multiplying each p;; with 1/p; and at the same time, multiplying
w(z;) by p;, the objective function is not changed, but the total probability of z; is changed
such that p; = 1 now holds.

Second, we like to have weights that are at least one. Notice that if all weights are
scaled by the same factor, then the costs of all solutions are scaled by this factor. Thus,
we can scale the weights, solve the problem on the scaled input and use the solution for
the original input. The drawback is that the total weight of the scaled input is higher.
If we want to achieve that all weights are at least one, we have to multiply the instance

by 1/wyin, where wy,, is the smallest occuring weight. The total weight is thus increased
from W to W/wpin.

Reducing weighted to unweighted inputs. In the following, we will repeatedly wish to
use unweighted algorithms. It is therefore helpful to observe that we can approximate the
weighted version by an appropriate unweighted version of the problem. In the unweighted
version, the nodes do not have a total probability of one, but they all have the same total
probability, which is also fine. The following lemma resembles Lemma in Section
Chen [Che09] also uses this technique and attributes it to Mettu and Plaxton [MP04].

Lemma 7.1.2. Let V be a set of nodes v; : X — [0, 1] with p; = 1 for all i € [n] and with
weights w : V — RT that satisfy w(v;) > 1 for i € [n]. Let € be a constant with 0 <& < 1.

We can construct a set V' containing |w(v;)/(pmin€)] nodes vy for each v; € V', each with

7.2 Probabilistic coresets 163

total probability puwmn - €, such that the following holds. For each subset T C V and the

corresponding subset T = {gy | v; € T, 0 = 1,...|w(9)/(pmme)]} of V, and for each
C C L with |C| = k, it holds that

’ecostD,w(T, C,p) — ecostp(T, C, ﬁ)’ < e-ecostpw,(T,C,p)
where p(vy) = p(w) for all i € [n] and £ = 1,...,|w(v)/(pmme)]. This holds for the

FEuclidean and for the metric case.

Proof. V contains |w(;)/(pmine)] nodes oy for each node z. Each @, has weight one.
For each x; € X, we set the probability that o, is realized to p;; := pij - pmin - € for all
C=1,...,|w(%)/(pmine)|. The total realization probability of v, thus is puy, - €. For each
subset T of ¥, we define T accordingly, so 7 consists of |w(2;)/(pmme)]| copies of g for
all o € 7. Notice that

w(y;) > w(z) J * Drnin * € > (w(z) — 1) “ Pmin * € = W(%) — Pin - € > (1 —€) - w(m)

Pmin - € Pmin " €
where the last inequality holds because the weights are at least one and ¢ and p,,;, are at
most one. This implies that

ecostp (T, C,p) = > w(w) me (7, p())

v €T

<y | szwpmm £ Dl pla) 2 X wle) S - Dl (o)

v, €T Pmin - € sueT

\.w("/l)/(pmm E)J m

=Y X 1 Xpy Dl p(e) e ccostnu(T.C.p)

v €T z=1 7j=1
= Z szj 7(; 1% 7/1)) +é- ecostDM(’I, C’ p)

Vi,ZET-] 1

—ecostp(T, C,p) + ¢ - ecostpo(T, C, p)

and a similar calculation gives that ecost D(‘Z: ,C,p) < ecostp,(T,C,p). That proves the
statement. W

7.2 Probabilistic coresets

Now, we introduce coresets for the probabilistic k-median-clustering problem. As the
storage size of a probabilistic point set is influenced by the number of probabilistic points
and by the size of the individual probability distributions, we are interested in coresets
where both parameters are small. Notice that the following formal definition of coresets
is relatively general and allows that £ C X. In this case, the convention would be to call
the coreset a weak coreset. However, this only happens when we consider a probabilistic
k-median problem where L is actually smaller than X by definition of the problem itself.

164 7 Probabilistic k-median clustering

Definition 7.2.1 (Coresets for Probabilistic k-Median Problem). Given k € N, a set V' of
n nodes v; - X — [0, 1], a finite set of k possible center locations L C X, a positive weight
function w : V — Rs¢ and a precision parameter €, 0 < ¢ < 1, let U := {w, ..., us} be
a set of mappings u; : X — RT annotated with a positive weight function w' : U — Rxo.
The set U is called (1 + €)-coreset of V' for the probabilistic metric k-median-clustering
problem if, for each C C L of size |C| = k, we have

p%i_rgc ecostp . (U, C, p) — p:I(gij}C ecostp.(V,C,p)| < e- py{;glcecostD,w(‘V, C.p).

The definition is verbatim for the Euclidean case, except that L = R®. If the nodes in V
are weighted by a positive weight function w : V — Rsg, then ecostp(V, C, p) is replaced
by ecostp (Y, C, p).

In the following, for all u; belonging to the coreset that we compute, we denote the
probability that u; is realized at x; by pj; for all j € [m]. Further, we denote the total
probability that u; is realized at all by p; := >°7", pi;. The p] can always be scaled to one
if necessary by scaling the weights of the nodes accordingly.

A coreset for the probabilistic k-median problem consists of nodes, i.e., of probabilistic
points. A node is a mapping from X to RT, and to represent it, we need to store its
support, i.e., all points with positive probability. The representation size of the coreset is
small if it contains few nodes, and if these nodes have few points in their support. Thus,
we need a method to thin out the support of nodes while keeping their clustering cost
approximately the same for all choices of centers. For this, we use the coreset construction
by Chen [Che09] and apply it to the probability distributions of all coreset nodes. Notice
that the metric coreset construction by Chen works in the general setting where the set
of center candidates is not equal to the input point set, although Chen does not note this
explicitly. We state this and the result for the Euclidean case here.

Theorem 7.2.2 ([Che09]). Let (X, D) be a metric space, let P C X be a set of n points
and let L C X be a set of possible center locations. Let k € N be an integer, ¢ € R with
0 < e <1 be a precision parameter and let § € R with 0 < § < 1 be an error probability
parameter.

For |L| = Kk, one can compute a weighted subset Z C P in time O(nklog(1/d)) of size
O(ke™?(klog(r)+log(1/8))log(n)), such that Z is a (k,e)-coreset of P for the deterministic
metric k-median clustering problem.

For X = R%, one can compute a (k,e)-coreset Z C P for P in time O(ndklogd=t) of
size O(e 2k logn(dkloge™ +klogk+kloglogn+log d—1)) for the deterministic Euclidean
k-median clustering problem.

Both statements hold with probablity 1 — 6.

The following lemma shows that we can thin out the probability distribution of a proba-
bilistic point, i. e., we can reduce the number of possible locations of the probabilistic point
without losing too much information. This is done by grouping the locations according to
their probablities and computing a deterministic coreset for each group. This works for the

7.2 Probabilistic coresets 165

metric and Euclidean case if we use the corresponding construction for the computation of
the deterministic coreset.

Lemma 7.2.3. Let v; € V be a node v : X — [0, 1] with weight w(v;), let L C X be a
set of possible center locations and let € with 0 < & < 1 be a precision parameter. The
computation of a v/ : X — [0,1] and a set Z; C X with

> wlw)pl; - D(xg,e) — Y wlw)pij - D(xg,e)| < e > wlw)py - D(x,¢)

GED; GyEX 15 €X

for all centers ¢ € L can be reduced to computing (1 + €)-coresets of sets of at most m
points for the (unweighted) deterministic 1-median problem. The number of constructions
of deterministic coresets is bounded by m and by O(e7 10g(1/pmin))-

Proof. Since we look at a single node, the weight is just a factor that is the same for v
and its sparse representation ¢/. In particular, it holds that

> w(@)py - D(x,¢) — Y w(w)ps; - D(x,¢)| < e Y w(w)py; - D(x, c)
jEZD GeEX GEeEX

S| vy D, o) = D pij- D, o) <e Y pij- D(x,0),
X €Z; GEX GyEX

so we can ignore the weight of z; for the proof.

Recall that for a given center set, a node z; is assigned to one center ¢; € C. The nodes
contribution to the cost function can then be interpreted as a weighted 1-median clustering
cost of the points in the support of #;, where the center is ¢;. The idea now is to compute a
coreset for the support of #; that approximates this 1-median cost for all possible centers.

The first step is to round the probabilities such that we have groups of points with the
same probability value. We round each realization probability p;; down to pi; := Pmin -
(14 ¢/2)" where / is the largest natural number including 0 such that the new realization
probability p;; is not larger than the original realization probability p;;. That means that
Dij < pij, and p;; > p;;/(1+¢/2). The latter implies that p;; > p;;/(1+¢/2) > (1—¢/2)-pi;
because 0 < ¢ < 1. Thus, the rounding cannot increase the clustering cost of z;, and it
decreases the clustering cost of #; by at most an (¢/2)-fraction. The rounding gives us
groups of points with the same probability value as desired.

Notice that the original p;; and also the new values p;; are numbers from [0, 1], and in
particular that they cannot be assumed to be integers. This means that we cannot use
weighted coreset computations which assume integer weights without additional precau-
tions. Instead of additional rounding and a single weighted coreset construction (with a
total weight that depends on py;, and thus leads to a polylogarithmic dependency on ppiy,
when using the construction by Chen), we use multiple unweighted coreset constructions,
one for each of the O(¢~!log(1/pmin)) groups.

166 7 Probabilistic k-median clustering

For all exponents ¢ that occur, we define the set X;, C X as the subset of points where
v; has probability pum - (1 + £/2)°. This gives us at most O(c~ ! log(1/pmin)) sets for each
node. Notice that the number of sets is also bounded by m. We proceed for each &; ; in the
same way. We call a (1+¢/2)-coreset construction for the deterministic 1-median problem
to compute a weighted subset Z;, C X, with positive weight function v’ : Z;, = R
such that, for each center ¢ € L, we have

(e/2) - Z D(x;,¢)

G EXie

> w'(x)-D(xg,c)— > D(x,c)| <

€D e GEX;

Now multiply this inequality with p;j = pmin - (1 +/2)" and set p}; := w'(x;) - pij. Then
we have

5/2 Z pzy' 7er

1 E€Xie

> i D(xg,e)— > piy-D

X5 €D 1 €Xe

Then let Z; be the union of all Z;,. Since the Z; form a partitioning of Z; and the Xj,
form a partitioning of X, we get by the triangle inequality that

< (¢/2) - pr

yEeEX

> vy D(xe)— Y pig- D

?(jGZi ?(jE.X

Recall that p;; < p;; < (1+4¢/2) - p;j by definition. Thus, we get that

> v D(xe) = Y py- D
GEDi GeX
<| > Py Do) = > by Dxg o) +(e/2) - Y pij - D(x;,
jEZ; GeX GeEX
<e- > pij- D(x,
yeEX

Thus Z; is a (1 + ¢/2)-coreset for the probabilistic k-median clustering for the point set
with rounded realization probabilities, and a (1 + £)-coreset for the original support of
V;. O

We combine Lemma [7.2.3] with the coreset results for the metric and Euclidean k-median
problem by Chen in Theorem [7.2.2] Chen’s construction is probabilistic, so we need to
make sure that all coreset computations succeed simultaneously with constant probability.
The number of groups is bounded by m, so to ensure a failure probability of at most §/n
for each node, it suffices to demand a failure probability of at most §/nm in each coreset
computation by the Union Bound. By applying the Union Bound again, we get that the
probability that a coreset computation fails for any node is bounded by 9.

7.3 The assigned metric k-median problem 167

0.2 &.__ 0.2 0.2 ®-.__0.2
T30 04 0_2/’} 0.4
PP 0.5 e’
020" 0.5 ~<0.5 0.2 @&-____ ~~03
0.5 0.2 """ 40 0.5

Figure 7.2: An example for morphing weighted point sets. A number at a node is its
weight. A number at an edge is the amount that is moved along this edge.
The overall movement cost is slightly smaller in the right example. The earth
mover distance is the cost of the cheapest way to morph one point set into the
other.

In the metric case, the time to compute a (1 + €)-coreset for one of the groups of a
node takes O(mlog ™) time by Theorem . Computing the coresets for all groups
of all n nodes with a failure probability of §/(nm) takes O(e'nm - (log %) log(pmin))
time because there are at most O(s~'log(ppin)) groups for each node. The size of each
coreset is O(e*(log k™) logm), so the size of the union of all groups for one node has size
O(e™*(log k"5") (log m) (108 Proin)) -

In the Euclidean case, computing a (14-¢) coreset for one group takes O(mdlog ") time,
so computing all groups of all nodes takes can be done in O(nmde~*(log %2*)(log(piin)))
time. The size of one coreset is O(e*logm - (dloge™" + loglogm + log ™)), so the size
of the union of all coresets for one node has size O(e2logm - (dloge™ + loglogm +
log *5*) (10g(Pmin))))-

The reduction can be used as a preprocessing step before applying an approximation
algorithm or computing a coreset in order to reduce in order to reduce the input size that
needs to be processed.

7.3 The assigned metric k-median problem

We show that it is possible to reduce the assigned metric k-median problem to a determin-
istic metric k-median problem. Above, we considered several reductions from probabilistic
clustering problems to their deterministic counterparts that were observed by Cormode
and McGregor [CMO0S8]. Their work includes a reduction of the assigned metric k-median
problem to a deterministic metric k-median problem. However, the reduction does not
preserve the approximation guarantee. A deterministic a-approximation yields a (2ac+ 1)-
approximation for the assigned metric k-median problem. We look at a different reduction
that preserves the approximation guarantee. The key idea is to change the metric space,
i.e., in order to solve the assigned metric k-median problem we define a deterministic
metric k-median problem in a different metric space.

The metric of our choice is the earth mover distance (EMD). Imagine that a weighted
point set is morphed into a different point set of the same weight. This is done by shifting

168 7 Probabilistic k-median clustering

the weight of the points to the second point set. It is allowed to split the weights, as long
as every bit of the weight of a point is moved to some point in the target point set, and as
long as the target points are not overloaded. The cost of moving a part of the weight of a
point is proportional to the distance that it is moved. An illustration from [RTGO00] fitting
the name ‘earth mover’ distance is the following. A mass of earth is spread according to
the weights of the first point set, and there are holes which have a capacity according to
the second weighted point set. Then the earth mover distance is the amount of work to
fill the holes with the earth. Figure shows an example in the Euclidean plane, and the
following definition defines the earth mover distance formally.

Definition 7.3.1. Let X be a finite set and D : X x X — RT be a metric. Let f,q :
X — [0,1] be two mappings that satisfy > .cx f(x) = Yrex 9(x). We say that a mapping
p: X x X = Rso morphs f into g if it satisfies

Y ol y) = f(x) for all x € X and Y p(x,y) = g(y) for all y € X.

yeX XEX

The cost of p is defined as M(f,g,p) = Xiex yex P(x,y) - D(x,y). The earth mover
distance EMD(f, g) is the minimum cost of a mapping that morphs f into g.

Recall that we can assume (or enforce by scaling the weights and probabilities) that
all nodes have the same total probability. This ensures that we can calculate the earth
mover distance between all pairs of nodes. For any ¢, the function set {f : X — [0,1] |
Yowex f(x) = c} forms a metric space with the earth mover distance (see for exam-
ple [RTGO0], Appendix A). We can interpret the nodes to be elements of this metric
space.

The elements of this metric space are mappings, but we want to compute centers that are
points from the original Euclidean space. This is why we need the flexibility to specify a set
of center candidates in the definition of the k-median problem. If we could not differentiate
between the elements of the metric space that are to be clustered and the elements that are
centers, then the resulting centers would be distributions. With the possibility to specify
a candidate set, we do not have this problem.

Recall that L is the original candidate set for the centers, and let ¢ be a center from X.
If we define an artificial node », with z,(¢c) = 1 and v.(x;) = 0 otherwise, then the earth
mover distance between any node and v, is just the expected clustering cost of the node
with center ¢. So we want to compute k centers from the set of candidates {z, | ¢ € L}
where £ C X is the set of candidates given in our input.

With this in mind, we can define an instance for the deterministic metric k-median
problem such that an a-approximate solution for the instance yields an a-approximate
solution for the assigned k-median problem. In order to approximately solve this instance,
we need to apply an approximation algorithm for the deterministic problem that is able
to handle candidate sets for the center sets that are not equal to the input point set.
Additionally, we need to be able to actually compute the earth mover distance.

The latter can be done efficiently since the task to compute the earth mover distance
can be interpreted as a Hitchcock transportation problem, which is a special case of the

7.3 The assigned metric k-median problem 169

minimum cost flow problem. The minimum cost flow problem can for example be solved
by an algorithm due to Orlin [Or[93] which has a running time of O(m?logm) for an input
with m points (recall that there are m possible realization points in X). For an introduction
to minimum cost flow problems and different algorithms, see the introduction of [OrI93]
or Chapter 10 in [AMO93]. Recall that we assume that evaluating the distance between
two points in the metric space in the input can be done in constant time, otherwise, this
would be an additional factor.

Theorem 7.3.2. Let a set of nodes V', a number k € N, a finite set of k possible center
locations L C X and a precision parameter €, 0 < ¢ < 1, be given. An a-approximation
for the assigned metric k-median problem on this instance can be computed by applying an
a-approximation algorithm for the unweighted deterministic metric k-median problem to
an instance with n nodes and k center locations in a different metric space. The running
time is bounded by T'(n, K, k) - M where T'(n, k, k) is the running time of the deterministic
algorithm and M € O(m?logm).

If the input is weighted with w : V — [1,00) with w(w) > 1 for all i € [n] and total
weight W, then the running time increases to T(W,k, k) - M or T(W/(pmin - €), k, k) - M
depending on whether the deterministic algorithm can handle weighted inputs or not. If it
cannot, then the approzimation guarantee worsens to a(1 + ¢).

Proof. We construct a deterministic k-median instance. The metric space is the function
set {f: X —[0,1] | X cx f(x) = 1} with the earth mover distance as the metric distance
measure. The set of center candidates is {z, | ¢ € L} where v, is defined for all ¢ € L
by v.(c) = 1 and »(x;) = 0 for x; # ¢. The input point set consists of all nodes in V,
interpreted as elements of the metric space. The number of centers and the weights are as
in the probabilistic input. We compute an a-approximate solution for the instance with
the deterministic metric k-median algorithm. During the algorithm, the EMD is computed
by the minimum cost flow algorithm due to Orlin [Or]93].

For a node z; € V and a center v,, the earth mover distance is given by the only mapping
that morphs v into v., which is given by p(x;, ¢) = pi; for j € [m] and p(x;, x;7) = 0 for
xj» 7 c. The cost of this mapping is

Zpij ’ D(’Q? ‘:)
j=1

which is the expected clustering of »; with ¢. Thus, the computed a-approximate solution
induces an a-approximate solution for the assigned metric k-median problem.

If the input is weighted and the deterministic algorithm can handle weights, we include
them as part of the input. If the deterministic algorithm cannot handle weights, then we
replace the instance by an unweighted instance with W/ (puin-€) nodes by Lemma(7.1.2l O

Notice that the minimum cost flow computation can be sped up by first reducing the
support of all nodes as described in Section We discuss this in more detail below when
stating the coreset result.

170 7 Probabilistic k-median clustering

Theorem [7.3.2| assumes that the deterministic a-approximation is able to handle candi-
date sets for the centers that are not the input point set. Luckily, this assumption is not
uncommon. For example, the approximation algorithms due to Arya et al. [AGK™04] and
Li and Svensson [LS13] both work on instances with separate center candidate sets and
input point sets. We use the result by Li and Svensson, which gives the currently best
known approximation guarantee for the metric k-median problem.

Theorem 7.3.3 ([LS13]). Let X with D : X x X — R™ be a metric space, let € > 0 be a
constant. There ezists an algorithm which computes a (1+ V3 +¢)-approzimate solution to
the metric k-median problem for any instance consisting of an integer k, a set of possible

centers L C X and a set of points P C X. The running time of the algorithm is polynomial
in |P|, |L| and k.

The result is stated for the unweighted k-median problem, so we use Lemma for
weighted inputs. Notice that an instance is implicitly a weighted instance if the total
probabilities of the points are different because scaling them such that they become equal
requires weights.

Corollary 7.3.4. For instances where p; = 1 for all nodes v;, there exists a (1 4+ /3 +¢)-
approximation for the unweighted or weighted assigned metric k-median problem. The
running time is polynomial in |X|, |L], k and also in |V| or W/(pmmn - €), respectively
(where W is the total weight and we assume w(y;) > 1 for all i € [n]).

We can also use the reduction in order to compute a coreset for the assigned met-
ric k-median problem. For this, we use the coreset construction by Chen. It works for
weighted inputs, too. In the following theorem, we elaborate a bit more on the running
time reduction when preprocessing the nodes first.

Theorem 7.3.5. Given a set of nodes V', a weight function w : V — RY with w(y;) > 1
for alli € [n] and total weight W, a number k € N, a finite set of k possible center locations
L C X and a precision parameter €, 0 < e < 1, a (1 + &)-coreset for the assigned metric
k-median problem given by the set of nodes U and a weight function w' : U — R can be
computed in time O (n(e‘lm + 7 1%k) polylog(2=, VV,p;liln)> with error probability 0.

U contains O (e_3k2~polylog(n,§,W)) nodes and the size of the support of each node
contains at most O(e > polylog(m, §, W')) points.

Proof. First assume that the input is unweighted. By Lemma and Theorem [7.2.2]
we can reduce the support of each node to O(e~3(log %) (log m)(log pyin)) points in
O(e™'nm - (log) log(pmin)) time. We run the reduction step with a failure probabil-
ity of 1 — 0/2 and precision parameter /3.

We then construct the instance to the deterministic metric k-median problem in the
same way as in the proof of Theorem [7.3.2] The computation of a (1 + &)-coreset for the
probabilistic metric k-median problem is then equivalent to the computation of a (1 4 ¢)-
coreset for the deterministic metric k-median problem. For the deterministic construction,

we use Theorem [7.2.2]

7.4 The assigned Fuclidean k-median problem 171

During the application of Chen’s algorithm, we use a minimum cost flow algorithm.
Because of the reduced support sizes, the running time for one computation of the EMD
is bounded by O(e~°((log £™2)(log m)(log priy))?). Using Theorem , we can compute
a coreset with O(ke 2(klogk + logd!)logn) nodes with failure probability § in time
O(nklogd~'e™*(log knm/§log mlog ppi)?).

To solve the weighted case, we use a grouping technique as in Lemma and round
all weights down to the closest value (1 + ¢)’. This changes the cost function only by an
e-fraction (notice that all weights are at least one). Let wyay be the maximum weight. We
get at most [logy, (Wmax) | +1 = O(e~ ! log(W)) groups of points with the same weight. For
each group, we compute a coreset individually with the algorithm described above while set-
ting the failure probability to §/2n (because the number of groups is also bounded by n, so
that the overall failure probability is ¢/2) and the precision parameter to €/3. This gives us
an algorithm that needs time O(nke*(logn/d(log knm/§ - logmlog poin)® log(W)) when
given reduced nodes and computes a (k, €/3)-coreset with O(ke™3(klogk + logd~1)logn -
log W) nodes and succeeds with probability 1 — d/2. The support of the probability dis-
tributions of all nodes has size at most O(e~3(log x%*)(log m) (log ppain))-

The overall algorithm succeeds with probability 1 —d and the precision is . The overall
running time is O(e~'nmlog “* log poi, + £ nk log % log W (log “2 log m log piy)?). O

7.4 The assigned Euclidean k-median problem

Even though the Euclidean k-median problem and the metric k-median problem are defined
very similarly, none of them is a special case of the other. That is because on the one hand,
assuming a metric is less restrictive than assuming the metric induced by the Euclidean
norm, but on the other hand, allowing centers from R? is less restrictive than allowing
centers from a finite set of points. The same is true for the probabilistic counterparts of
the problems.

We can still use the reduction from the last section for the assigned Euclidean k-median
problem because the Euclidean norm induces a metric. However, we need to equip the
deterministic algorithm with a set of possible centers, and additionally, we cannot use
Euclidean deterministic algorithms since the metric in the input for the deterministic algo-
rithm is the earth mover distance. Thus we get an additional constant factor even though
there exist (1 + ¢)-approximations for the Fuclidean deterministic version.

Recall that if the centers can only be chosen from a finite set instead of R?, we call
a problem discrete. By the triangle inequality, choosing centers from X instead of R? is
a 2-approximation. This is true for the deterministic version and holds for our assigned
probabilistic problem as well, as we see in the following lemma.

Lemma 7.4.1. An optimal solution C' C X for the discrete assigned Fuclidean k-median
problem is a 2-approzximate solution for the assigned Fuclidean k-median problem.

Proof. Let V be a set of mappings v : X — [0,1], let w : ¥/ — R* be a weight function
and let k be a natural number. Let C* C R? and p : ¥/ — C* form an optimal solution for

172 7 Probabilistic k-median clustering

the assigned Euclidean k-median problem on 7/, i.e.,
ecostp(‘VC . P) :Zw szj % — p(@)]]
=1 7j=1

is minimal. We define C” by selecting the closest center from X for every center in C*, so
C" = argmingex{||z—c|| | ¢ € C*}. We define p’ accordingly by p'(z;) = argmingecr ||/ —
p(%)|]. Now let o be any node. By the definition of p/, it holds that ||z; — p(#)|| >
10" (v) — p()|| for all j € [m]. By the triangle inequality in R?, this implies that

n

ecostp(V. C'p) = Y w(w) Y. py -l — 7]
j=1

i=1

3

< St Yopy -l = ol + lotw) = /0l

=1

3

<

[\]

D) Lol = ()] <2+ ecost(V.C",p)

i=1

An optimal choice of centers from X can only be better than C’, and that completes the
proof.]

Together with Corollary [7.3.4] this implies a constant approximation for the assigned
Euclidean k-median problem. In the deterministic Euclidean case, (1 + ¢)-approximations
are typical, but they assume that either k or d is constant. The following corollary states
a constant approximation, but for arbitrary k£ and d.

Corollary 7.4.2. For instances where p; = 1 for all nodes v;, there exists a (24 2v/3+¢)-
approximation for the unweighted or weighted assigned FEuclidean k-median problem. The
running time is polynomial in |X| and k, and also in |V| or W/(pmin - €), respectively
(where W is the total weight and we assume w(w;) > 1 for all i € [n]).

Proof. We apply Corollary to the assigned metric k-median problem (with precision
parameter €/2). The input consists of the nodes ¥/, the number of centers k, the finite
set of possible locations X and the center candidate set X. The metric space is R? with
the metric induced by the Euclidean norm. We get a (1 4+ /3 + £/2) approximation. By
Lemma , the solution is a (2 + 2v/3 + g)-approximation for the Euclidean k-median
problem on V. O

7.4.1 Superpolynomial algorithms for the assigned Euclidean case

In Section [7.4.2] we develop a coreset construction for the assigned Euclidean k-median
problem. It can be used to speed up approximation algorithms. However, no polynomial
(1 + e)-approximation is available in the probabilistic case, so we cannot run any on the
coreset. We shortly describe an exponential algorithm and the speed-up (which leads to
an algorithm that is not exponential, but superpolynomial) after quoting the main result

of Section [7.4.2]

7.4 The assigned Fuclidean k-median problem 173

Theorem Let X C R? be a finite set and let V be a set of n nodes v; : X — [0, 1],
i € [n], let k be a positive integer and let w : V — R be a weight function, and let
W =31, w(y) be the total weight. Let 0 < d,e < 1 be given constants.

A (1 + €)-coreset U for the assigned Euclidean k-median problem consisting of nodes
u; » X — [0,1] can be computed in time O(nd-(k+m)-(dlog(W/(d¢))) with error probability
5. The coreset U consists of O(e 2k*d - log*(W/(£8))) nodes. In additional running time
O(nmde=*(log(nm/6) - (log(pmi)))), the supports of all nodes can be reduced such that each
support contains at most O(e~3dlog?(m/(pminde))) points from X.

Notice that in any solution consisting of a center set C' C R? and an assignment
p: VYV — C for the assigned Euclidean k-median problem, the input is partitioned into
subsets V, which are assigned to the same cluster ¢ by p. In order for the solution to be
optimal, it has to hold for each V, that c is the optimal solution for the assigned Euclidean
1-median problem on V.. If that was not true, the solution could be improved by replacing
the center by this optimal 1-median solution.

Furthermore, for k = 1, assigned clustering is directly reducible to unassigned clustering,
and thus to a weighted deterministic problem. As all points in V, are assigned to the same
center, the assignment is irrelevant when looking for the best center, and the problem can
be interpreted as a deterministic weighted Euclidean 1-median problem. For this problem,
we can use an algorithm due to Kumar, Sabharwal and Sen.

Lemma 7.4.3 ([KSS10]). Let P be a set of points in R, and lete, 0 < & < 1, be a precision
parameter. There exists an algorithm with running time (9(2(1/ E)O(l)d) that finds a point
that is a (1+¢€)-approxzimation to the deterministic Euclidean 1-median of P with constant
probability and which only needs to access the point set via uniform random sampling.

That leads to a simple algorithm to approximate the assigned Euclidean k-median prob-
lem. It has exponential running time.

Lemma 7.4.4. A (1+ ¢)-approzimation for the assigned Euclidean k-median problem can
be computed in time O(k"n(m + d - 29 Jnk/8)) with probability 1 — 6.

Proof. We iterate through all ways to partition 4/ into k subsets. The number of possible
partitionings is bounded by k". For each partitioning and each of the k subsets 9 in the
partitioning we have to compute an approximate deterministic 1-median of the instance
where the locations in X are the input points and the weights are defined by w'(x;) =
e w(w) - pyj for all j € [m]. The total weight of this instance is bounded by W and we
can transform it into an unweighted instance with more nodes by Lemma (interpret it
as a probabilistic 1-median problem with m nodes that have all probability concentrated at
x; such that it matches the formulation of the Observation). The total number of weighted
1-median instances is k - k" = k"L

The running time of the algorithm by Kumar, Sabharwal and Sen does not depend on
the number of input points for the unweighted 1-median problem. Thus, the actual number
of points does not matter as long as we avoid to actually compute the unweighted instance

174 7 Probabilistic k-median clustering

which is possible since the algorithm does not need direct access to the points, only via
uniform random samples. We provide these samples via appropriate weighted sampling.
The time to set up the weights and probabilities is bounded by O(nm) for each 1-median
instance.

The algorithm is randomized and has a constant failure probability, and we want to
compute a significant amount of 1-medians. Thus, we have to decrease the failure proba-
bility by performing several runs for each 1-median. Let 1 — ¢’ be the failure probability
of the algorithm by Kumar et al. We run the algorithm &'~ In(k"! /) times. Then the
probability that it fails in all runs is

1\ (W) (k" *1/5) 13 In(kn+1/6) s
(1/(5’) <e> kntl

By the union bound, this implies that the probability that we compute (1+¢)-approximate
1-median for every subset in every partitioning is at least 1 —4. As one of the partitionings
is optimal, we can find a (1 + ¢)-approximation by returning the best solution that was
found, and this succeeds with probability 1 — 4, too.

The probability ¢’ is a constant, so the number of runs is O(nIn k/§), and each run takes
time 0(2(1/5)0(1)@. This implies the bound on the running time. O

The coreset thus yields a superpolynomial approximation algorithm for the assigned
Euclidean k-median problem.

Corollary 7.4.5. A (1 —ts)-appmximation for the assigned Euclidean k-median problem
can be computed in time O(nd*mlog W + sk*t'md) for s € O(dlog* W/pm) with constant
probability if ¢ and k are also constant.

Proof. We can compute a coreset in time O(nd - (k + m) - (dlog(W/(ée))) with error
probability §/2. The coreset is of size s € O(e~2k?d-log*(W/(pmin-€0))) € O(dlog* W/pmin)
for constant k, e and 6. Applying the algorithm in Lemmal7.4.4 with failure probabilty &/2
to the coreset takes time O(sk*timd- 21/ . Ink/8) € O(sk*Tmd) for constant k, e and
6. The total running time is O(nd*mlog W) 4+ O(sk**'md) under these assumptions. [

7.4.2 A coreset construction for the assigned Euclidean case

This section proposes a coreset construction which is an extension of the construction by
Chen [Che09]. We mentioned the work by Chen before, e. g., in the related work section on
coresets for the k-means problem in Section [4.2.3] specifically on page[74l Chen constructs
coresets of a size that is polynomial in d, k£ and ¢ and polylogarithmic in the number of
points. He adapts his construction for the Euclidean and metric k-median and k-means
problem. Chen also shows how to maintain the coresets in data streams.

Since Chen’s work, constructions for smaller coresets have been proposed, including
the coreset constructions by Langberg and Schulman [LS10] and Feldman and Lang-
berg [FL1la]. The coresets computed by the latter two constructions have a size that

7.4 The assigned Fuclidean k-median problem 175

Figure 7.3: An illustration of the partitioning due to Chen. The radii of the rings are
R,2R, ... 28PN R where R := costy, (P, A)/(B|P|) is a lower bound on the
optimum clustering cost of P, and 2°¢#IPIIR > B|P|R > costj, (P) is an upper
bound on the optimum clustering cost.

is independent of the number of input points. It is an open question whether one of these
constructions can be carried over to the assigned FEuclidean k-median problem. We extend
the construction by Chen to work for the assigned Euclidean k-median problem.

In Section [4.2.2] we discussed how uniform sampling can be used to construct coresets
for the (discrete unweighted deterministic) k-median clustering problem. We saw that the
number of samples that are needed to ensure a small variance can by bounded by

(diam(P))?
2(e’ - costy, (P)/|P])?

~(klnn+1n(2/6)).

Thus, the important idea is to partition the input point set into subsets where the diameter
is related to the average optimum cost. Chen’s construction [Che09] thus works in two
steps. First, it partitions the nodes into disjoint subsets. Second, it draws a random
sample of points from each subset.

The partitioning is based on a bicriteria approximation that computes a set A of ak
centers with a cost of 3 - costj, (P). The points are first partitioned according to the center
that they are closest to. Then, each of the k subsets is subdivided further. The first subset
consists of all points that are within distance costy, (P, A)/(B|P|) < costy,(P)/|P| of the
center. Chen then places exponentially growing spheres around the center, subdividing the
remaining points by rings of increasing width like Figure illustrates. The clustering
costs of all points in a ring satisfy a lower bound that is connected to the diameter of the
ring, which is the key to the analysis. We see this in more detail below when we extend
the method to our application. We need to refine the partitioning because our nodes are
probabilistic, which means that nodes can have a significantly different clustering cost even
if they are in the same ring.

In addition to partitioning and sampling, we add a third step, where we thin out the
support of the the probability distributions of the sampled nodes in order to obtain a

176 7 Probabilistic k-median clustering

coreset with a small overall representation size. We now discuss the realization of the three
steps by comparing them with the steps in [Che(09].

Recall that the input to the assigned Euclidean k-median problem contains a set of n
nodes ¥V = {y : X — [0,1]}, where node v for i € [n] appears at location z; with
probability p;; = z; and satisfies p; = >27; p;; = 1. Additionally, the input contains a
positive integer k and possibly a weight function w : ¥/ — RZ!. The dimension d is a
positive integer, too, and the set of locations X C R? is finite. In the following description
and in the remainder of this section, we will often denote the assigned Euclidean k-median
problem as the probabilistic k-median problem in order to differentiate it better from the
deterministic k-median problem.

Step (1) partitions the nodes into groups that are similar in terms of their locations and
their contributions to the total clustering cost. As mentioned, Chen starts the partitioning
by computing a bicriteria approximation and assigning each point to its closest center.
In the probabilistic case, no bicriteria approximation was known, so we first show how to
find such a bicriteria approximation for the assigned probabilistic problem. We start with
computing point representatives for each node.

e For every node z; € V, compute a point y; € R? that satisfies St pig ey —will <
2 - ming ex 270 pij - |z — @], ie, y; is a 2-approximation of the probabilistic
I-median for . Let Y := {y1, s, ..., 9.} C R? be the set the resulting n points and
define the weight of y; by w(y;) := w().

Now, we compute a deterministic bicriteria approximation for the set of 1-medians inter-
preted as a deterministic clustering problem (whereas Chen computes a bicriteria approx-
imation for the input point set in the deterministic case). A similar step is part of the
constant factor approximation for the assigned k-median problem due to Cormode and
McGregor [CMOS].

e Compute a set A C Y which is a center set of an [a, §]-bicriteria approximation to
cost;,(Y). That is, A := {ai,...,a,} satisfies

costy, (Y, A) < B - costy, ,(Y),

where 5 > 1 is a constant, 7 < ak is the number of centers with o = O(log(W/¢))),
W =3, ey w(w) is the total weight of the nodes (and of V). Let oy : Y — A be an
assignment that assigns every point in Y to a closest center in A. Define o) : ¥V — A
to be the corresponding assignment for 4 such that o4(v;) = oy (y;) for all i € [n].

We show that the computed set A is actually a [35 + 2, a-bicriteria approximation to
the probabilistic optimum ecostgk(‘V). This enables us to transfer the partitioning step
by Chen. We show that R := ecostp.,(V,A,04)/((38 + 2)W) is a lower bound on the
average radius of the optimal cost of a probabilistic k-median clustering for %/ and an
upper bound 2R on the distance between an arbitrary point in Y and its closest center
in A. The value of v is [log((95 + 6)W)]. This ensures that the following partitioning is
indeed a partitioning into disjoint subsets:

7.4 The assigned Fuclidean k-median problem 177

e For all ¢ € [7], define Y; C Y as the subset of points in Y that oy assigns to ay, i.e.,
Y, is the set of all points whose closest point in A is a, (ties broken arbitrarily). Set
V) .= {9]y; € Y¢}. Furthermore, for each ¢ € [r] and each h € {0,1,..., v}, let

_ [Yen B(a, R) h=0
YN [Blag, 2°R)\B(ag, 2"'R)] h>1

be the h-th ring set for the center a, and the corresponding set Y,. Recall that
B(ag, R) = {y € R? | ||a; — y|| < R} is the set of all points in R? that are within
distance R of a;. Set V), = {w|y; € You}-

This gives us subsets of nodes which have relatively close 1-medians. For our purposes
this partitioning is not sufficient, as the probability distributions of the nodes can have
different variances and may not behave similarly according to the cost function. Thus, we
further subdivide the ring sets according to >, cx pijD(x;,y;). Notice that this term is
not the variance because the distances are not squared. It is the expected distance of the
realization of #; to y;. We will see that 2R is an upper bound on this expected distance
for all o if p is chosen as [log((65 + 4)W)]. For each ¢ € [7], each h € {0,1,...,v}, and
each a € {0,1,..., u}, let

Yy, = {yi € You | wys) - Xu,ex pij - Iz — wil| < R} a=0
o {yi €Yo [2°7'R <w(yi) - Yajex pij - v —wil| <2°R} a>1

and set Vipo:={v | yi € Yona}. The set of all V), is the desired partitioning.

Step (2) consists of sampling from each subset. We describe the sampling for weighted
inputs, since even if the input is originally unweighted, we need weights for our assumption
that all realization probabilities are one. From each ‘Vg,h,a, we sample a multiset Uy,
with s" := [c-e72 - [log(1/d) + k(log(k) + dlog(1/¢e) + log(log(W/e)))]] nodes, where ¢ is a
sufficiently large constant. The nodes are sampled with replacement, and, in each sample
step, a node v, € V)4 is picked with probability w(w)/ Y, eq; , , w(wr). We set the weight
of the sample node v to w'(v;) = X, ev,, , w(wr)/s'. We store all sampled nodes in the
multiset

T v M
U .= {ul,...,us} = U U U ‘Zl&h,a.

{=1 h=0a=0

The size of Uis s =5 -7-(v+1) - (u+ 1) € O(k*de=21log*(W/(e6))).

Step (3) computes a node z : X — [0, 1] with a sparse support for each »; € ¥ by using
the reduction from Lemma combinded with Theorem [7.2.2 The node z; assigns a
positive probability to at most O(e~3dlog®(m/(pminde))) points from X.

178 7 Probabilistic k-median clustering

Realization and running time

We use known results to implement the steps. For Step (1), we need to compute the sets YV’
and A. Computing Y works similar to the proof of Lemma where we noticed that for
k =1, the assigned Euclidean k-median problem directly reduces to a deterministic prob-
lem. This applies to computing y; as well, since y; is an approximate probabilistic 1-median
of 7;. Recall the following result by Kumar, Sabharwal and Sen stated as Lemma on

page [I73]
Lemma (JKSS10Q]). Let P be a set of points in R, and lete, 0 < £ < 1, be a precision
parameter. There exists an algorithm with running time 0(2(1/5)O<1)d) that finds a point

that is a (1+ ¢)-approzimation to the deterministic Euclidean 1-median of P with constant
probability and which only needs to access the point set via uniform random sampling.

As in Lemma [7.4.4] we notice that we can theoretically convert z; into a set of un-
weighted nodes by Lemma [7.1.2] but do not actually do the conversion. Instead, we use
our knowledge of this transformation to simulate uniform sampling on the implicitly given
unweighted point set. The (implicit) deterministic k-median instance consists of the union
of the supports of the unweighted nodes. We compute a 2-approximate 1-median for this
instance. That is done by running multiple runs of the algorthm by Kumar, Sabharwal
and Sen with a constant € < 1 by using simulated uniform sampling, and then returning
the best found 1-median. If the algorithm succeeds in at least one run, then the computed
1-median is at least a 2-approximation since ¢ < 1. Let the failure probability of one run
of the algorithm be 1 —¢’. We set the number of runs to (1/6")log(n/d), so the probability
that it fails in all runs is bounded by (1 — §")(1/®)10e(/9) < 1 — §/n. Thus, we find a
2-approximate 1-median with a probability of at least 1 — §/n, and the probability that
we compute one for all nodes without a failure is 1 — ¢ by the union bound. Since we run
the algorithm with constant precision, each run takes O(d) time. We can thus compute
Y in time O(nd(1/4")log(n/0)). Setting up the probabilities before the simulated uniform
sampling takes O(nmd) time for all nodes together.

Computing A means that we have to compute a bicriteria approximation to the deter-
ministic weighted k-median problem for Y. For this, we use an algorithm by Indyk [Ind99)
in a version presented by Chen [Che09]. It computes a bicriteria approximation for the
metric k-median problem. Since the best solution consisting of input points for the Eu-
clidean k-median problem is a 2-approximation for the Eucliden k-median problem, the
bicriteria approximation also works for the Euclidean k-median problem. Computing a
distance takes time O(d), as a worst case bound we can assume that the time multiplies
by O(d).

The following theorem needs k € O(y/n). Notice that our coreset size (as well as the
coreset size of Chen’s construction) is Q(k?), so k € O(y/n) does not pose an additional
restriction. If k is larger, then using n input points is better than actually computing the
coreset.

Theorem 7.4.6 ([Ind99] and appendix A in [Che09]). Given a set P of n points from a
metric space, let k € O(y/n) be a given parameter. It is possible to compute O(k) centers

7.4 The assigned Fuclidean k-median problem 179

in O(nklog1/d) time such that clustering P with them has a k-median cost that is within
a constant factor of the cost of an optimal k-median solution for P with probability 1 — .
For weighted input (with integer weights), the number of centers is O(klogW) and the
running time is O(nklog(1/9) loglog W).

We apply Theorem to Y. As we need integer weights, we weight y; by |w(v;)/e] for
i € [n]. Notice that |w(z)/e]-e > (w(w)/e—1)e = w(y)—e > w(y)—ecw(y;) = (1—e)w(z;)
since the weights are at least one. So our instance corresponds to an instance which has a
cost that is at most an e-fraction off the true cost. By adjusting this ¢ and the precision
of the coreset appropriately, this does not affect our coreset result. We get O(klogW/e)
centers in O(nkdlog(1/9)log(logW/e)) time.

For each y;, we can compute oy (y;) and thus the index ¢ with o € U}, by computing
the distances to the O(klog W /e) centers in time O(dklog W /e). As this also gives us the
distance to ay, we can obtain the index h of the ring set in constant time by computing
[log||y; — as||] — log R. Then we compute the expected distance of z; to y; in time O(md)
in order to compute the index a such that »; € ¥},, again in constant time. Overall,
determining ¢, h and a takes O(dklog W /e 4+ md) for each node.

Determining the sample probabilities for all nodes can be done in time O(n), and then
the sampling takes time s = s’ - 7- (v + 1) - (1 + 1) < n under the assumption that it is
possible to draw a random sample in constant time.

The sum of these running times lies in O(nd-(k+m)-(dlog(W/(d¢))). Finally, computing
sparse representations of all sample nodes takes additional time O(nmde~!(log(nm/d) -

log(pmin))) When using Lemma with Theorem as described in Section

Overview on the analysis

In order to analyze the sampling, we use Theorem [£.2.3] on page [6§ which is due to Haus-
sler [Hau90, [Hau92]. After transforming the input to an unweighted version, we can show
that sampling s” = [£72In1/d"] nodes from each Vi, for a suitable ¢’ and a constant
¢ > 0 is sufficient to bound the error for a given center set C' by

ey Y w(vz-»(d<n,a,h,o>+diam<n,a,h>+ max Zpij-uxj—yim)

€Y
all w,a,h vilew,a,h Yi€Yy a,h ijGX

with high probability, where we abbreviate dist(Yyan, C) = {||lyi — || | vi € Yian.c € C}
by d(Yyan, C). The abbreviation d(P, Q) := dist(P, Q) = min{||z —y|| | z € P,y € Q} will
be frequently used, as well as d(z, P) := dist(z, P) = min{||z — y|| | y € P}.

We show that the first of the three summands is bounded because we use 1-medians to
calculate A. Then, we prove that the second term is bounded because we partitioned into
groups of nodes with closely located approximated 1-medians. The third term is bounded
because the nodes also have similar expected distances to their ;.

The final step is to show that the coreset property holds for all center sets. In order
to use the union bound, we need to discretize the input space in order to show that it is
sufficient to prove the coreset property for a small enough family of center sets.

180 7 Probabilistic k-median clustering

Similar to Chen, we define huge spheres restricting the position of possible centers and
subdivide these by a suitable grid. Finding suitable huge spheres turns out to be challeng-
ing, as the probability distributions can be widespread.

Simulating Weighted Sampling

We use Lemma (see page to transform the input point set into an unweighted
point set. We get an unweighted set 9 containing |w(2;)/(Pmme) | nodes g, for each v; € V
with p;; == 3,(2;) := Dij - Pmin - €, 50 each copy has a total probability of py, - €. The
following holds. For each subset T C 7 and the corresponding subset T = {9, | v €
T z=1,...,|ww)/(pame)|} of V, and for each C C £ with |C| = k, it holds that

‘ecostD,w(’I, C, p) —ecostp(T,C, ﬁ)‘ < e-ecostp.,(7T,C,p)

for any mapping p : ¥V — Cand p(;,) := p(v;) foralli € [n]and z = 1,..., |w(%;)/(Pmine) |-

Notice that ¥ corresponds directly to ¥ where the weight of v is rounded down to
| w(#)/(Pmin€) | * Pmin - €. Thus, changing the weights in this way causes the clustering cost
to change by at most an e-fraction by Lemma [7.1.2] Without loss of generality we can
assume that this step has been performed already, which means that w(#;)/(pmine) € N

and ecostp .,(7,C, p) = ecostD(‘Z:, C, p) holds for all T C V.

Let S be a set of sample nodes where each u = 7 € § is picked independently and
non-uniformly at random from 7 according to the weights and realization probabilities,
i.e., v is picked with probability w(v;)/ >, cr w(wr). Construct S by adding one of the
copies v; , € T of v; chosen uniformly at random for each u = v € §. This means that S
contains the same number of nodes as §, while 7 contains (Zyzgefr w(vz’)) /(Pmin - €) nodes.

S is a set of sample nodes from T where each sample node is picked independently and
uniformly at random from 7 since each v; , is picked with probability

w(vz) Pmin - € o Pmin * € o 1

Yogerw(vr) w(v) - Yo er w(ovr) - ﬁ

We set the weight of any sample node 7 € § to

P Lol
W) = g Wzgww =15 (P)

7.4 The assigned Fuclidean k-median problem 181

which implies the following relationship between the clustering cost of § and .S

€Cost p (5 C,p)

:Z Z Pij - |:E] UZ)H = Z 7/1 Z Dij - |$] Z)“

v ES zjeX v, €S zjeX
7| 7]
=D g Puine Y i llri—p)ll = X2 D0 pise e — plws)l|
v, €8 ‘5‘ zje€X ’5‘ v;,,€5 2 €X
T _
:|’3" -ecostp(S,C, p) (7.1)

where p: § — C is a mapping and p : § — C' is defined by p(v;.) = p(z) for all v, € S.
Now we can apply Theorem to find a way to bound the number of samples |§| while
keeping the error bounded. The following lemma corresponds to Lemma 3.3 in [CheQ9],

but we have to work with the approximated 1-medians instead of the input points, and we
get two additional summands.

Lemma 7.4.7. Let ‘T be any subset of V., let Y(T) :={y; €Y | v € T} be the subset of
the approzimated probabilistic 1-medians of all the nodes contained in T, and let &',& > 0
be given parameters. Let S be a sample of s" := [£721n(2/§")] nodes picked independently
at random from T where each v; € T is picked with probability w(w;)/ 3, eq w(vr). Assign
the weight w'(v;) :== 3, eq w(wvy)/s" to v; € S. Then it holds for any fired set C C X with
|C| =k that

min ecostp.,(7,C,p) — rmnc ecostp . (S, C, p)

p:T—C pS—
< 5(2 w(vm) (d<Y<T>,0>+diam<Y<‘r>>+ max 3 pyla; - yin)
vy €T vi€Y () z;EX

with probability at least 1 — &', where we use d(Y (T),C) = dist(Y (7)), C).

Proof. Consider T and v as defined above. Define the function fo: VS5 R by

fo(w,.) = min E : Dij - ij el
ceC
z;€X

for the given set C. For ¢ € C, set y° := argmingcy(7) ||y’ — c||. Then, by the triangle

182 7 Probabilistic k-median clustering

inequality, for every node v, , € T C ‘17 it holds that
0 < fo(w:) =min > pylle; —cll <min > pi; [|le; — will + [lg = v°l| + [ly* = el

el Jex O rex

S Z ﬁij”xj yz|| +m1n Z pszmmEHyz) H —leCI} Z pzypmmgHy - C||
r;e€X z]EX z;€X

< o — . € . i c _ .

< %ZG:XPUH% il | +min [|y; — °||Pmine + min ||y — cl[pmin

< > pilley — il + diam(Y(T)) - praine + d(Y(T), C) - pruine
ijX

< max Z Dir]Hx] yl/H + d(Y(T)> C’)pming + diam(Y(T))pmmE
yz/EY(T)x cX

where for the last inequality, we replace the first term by the maximum over the possible
terms for all nodes. Due to Theorem , setting F := {fc¢} for the given C, M :=
d<Y(T)7 C) * Pmin 5+diam(Y(T)) *Pmin * € +1MAXy, ey (7)) ijeX Dij ||xj - yz” and N := M,
we have that, for a sample S of size

refern(Z)] ()

from T, it holds that

Pr Z mn Z Dij + ||zj — Z mlg} Z pij - vy — ||| = EM
| | ylzerj xJGX ‘S‘ 7/1265 € r;€X
W | FACORNS ()] S)
7| S|

Due to Equality (7.1]), this implies that

tpw(T,C,p) — tp.w (S, C,
pr{rru_r)lcecos D p) pr?lncecos D (S, p)‘

_ ‘ fI

. §
tp(T,C,p) — — t C
p%eww (Cop) = i, 5 costol S C.p)

‘]T pmm ecostp(T,C, p) — gp%lgl ecostp (S, C, p)‘

< ¢T|-M
= 5|‘f| (d(Y(T),C)pmins+diam(Y(T))pmm€+ max Z Dijllx; — yZH)

yzeY(T) x GX

= ¢ (Z w(w)) (d(Y(‘I),C’) + diam(Y(7)) + max > pyllz; — ylH>

vy €T yi€Y(7T) z;€X

with probability at least 1 — ¢'.]

7.4 The assigned Fuclidean k-median problem 183

Further analysis plan and first upper bound

Now assume that we are given a partitioning ¥ = U)_; V. of disjoint subsets of ¥ and
sample sufficiently many points from each ¥, to apply Lemma . Then, with probability
1 — ¢, the total error induced is

f(Z Z w(wy)d(Y(+Z Z) diam (Y (V).))

T:ly,efl/ r= 17//E'V

Y () max 3 gyl - yiu).

=1y, e, EY((V)Jf eX

Thus, we need to show that our partitioning allows for a good upper bound on these
three error terms while keeping A small. More precisely, we have to relate each of the terms
to the optimal cost. By setting & appropriately, that will then yield to a coreset.

We start with a useful lemma that shows why it is helpful to work with approximate
1-medians as the representatives of the nodes. Interestingly, it provides a bound on the last
term of our error term for the case that we partition 9 into || partitions each containing
one node (which we will not do because it would induce || subsets).

Lemma 7.4.8. If each y; € Y is a 2-approximation of the probabilistic 1-median of v;,
then 377, 270, w(v)pij - ||lz; —will < 2- ecostg?w(‘V) <2. ecost}‘)’w(‘V).

Proof. The assigned k-median problem demands that a node is clustered with one center.
Thus, we can assume that in an optimal solution with n centers, there is a one-to-one
correspondence between centers and nodes. Then, the center corresponding to a node
v; is a 1-median for the deterministic problem on X where z; is weighted with w(;)p;;.
Since the y; are a 2-approximation for the cheapest such 1-median, we get that the cost

"y w(v)pij - [|z; — yil| cannot be more than twice the cost of »; in an optimal assigned
n-median solution. In other words, the set Y~ provides a 2-approximation to ecosty", (V).
Furthermore, 2 - ecostp, (V) < 2 - ecost}, (V) because k < n. O

Now we show that the first of the three error terms is always bounded as long as we use
2-approximate 1-medians to form Y.

Lemma 7.4.9. Let C C X be any set of k cluster centers, let V = U)_, V. be any
partitioning of V' into disjoint subsets and set Y (V,) ={y; €Y | v; € V,} for each set in
this partitioning. If each y; € Y is a 2-approximation of the probabilistic 1-median of v;,
then we have

Z > w(wy)dist(Y) < > w(y;) - dist(y;, C)

r=1y,ev, yi€Y

and

> w(y;) dist(y;, C) <3+ min ecostp (Y, C, p).

vicY p:V=C

184 7 Probabilistic k-median clustering

Proof. Let C' C X be any set of k centers for the probabilistic k-median clustering problem
for V, and let p: 1V — C be an assignment from nodes in ¥ to centers in C that achieves
the minimum cost. Notice that

Z > w(oy)dist(Y()),C) =

r= 17)/6‘1/

vy) min dist(y;, C
yzeY(”l/) (y)

21

<

Z
Z w(oy) dist(yy, C) = > w(y;) dist(y;, O)

y; €Y

i M» i My

and thus the first part of the claim holds.
By Lemma we have Y7 ST w(w)pij - |2 — wil| < 2 - ecost} (V). Combining
this with the triangle inequality, we gain

Z w(ys)d(yi, C Zw (o) lyi — p(w) Z Z w(v; pwHyz p(v)]]
i=1 i=1z;€X

Y €Y

<3S wlwpy (s — a5l + llas — (1)) < 2ecosth, (V) + ecost (V. C. p)

1=1lx;eX

< 3-ecostp.(V,C,p).

Bicriteria Approximation

Let A ={ay,...,a;} CY be the center set of the computed [«, 5]-bicriteria approximation
to costy, ,(Y). Recall that 8 > 1 is some constant, 7 < ak, a = O(log(W/¢))). We show
that A is not only a [a, §]-bicriteria approximation to costy, ,(Y'), but also a [38 + 2, a]-
bicriteria approximation to ecost*Dvw(‘V). Recall that oy : Y — A assigns every point in
Y to its closest center in A, and that o : ¥ — A is the corresponding assignment for V.
By the triangle inequality, we can write ecostp (Y, A, o) as the sum of two terms: The
cost of the probabilistic input when using the y; as centers (which we already bounded in
Lemma [7.4.8)) and the (weighted) distance between each y; and its closest a, in A. The
latter is bounded in the following lemma.

Lemma 7.4.10. If each y; € Y is a 2-approximation of the probabilistic 1-median of v;
and A is an [a, B]-bicriteria approzimation to costy, ,(Y'), then it holds that

Z > w(yi) - [y — ael| < 38 - ecosty, , (V).

{=1y;€Yy

Also, 371 Yyev, W) - ||y — ael| < 3ecostp ., (V, A, a4).

Proof. Let C' C X be any set of k£ optimal centers for the probabilistic k-median clustering
problem for ¥, and let p : ¥ — C be an optimal assignment from nodes in V to centers

7.4 The assigned Fuclidean k-median problem 185

in C. Note that p provides an assignment for Y as well (assign y; to p(#)), but for Y this
is not necessarily optimal. By triangle inequality, we have

costy, ,(Y) < D w(yi)llyi — p() Z > wlw)pijlly — p(a)l|
=1 i=1 z;€X

n

> 2 wepy (g — agll + [z = p(@)l]) < 3+ ecostp, , (V)

=lz;eX

IN

where the last inequality follows from Lemma and the definition of p. Since

Z Z yz ||yl CLgH = p:I{,li_r}lACOStb,W(K A7 p) < BCOStZQ,w(Y)a

l=1y;€Y;

the claim follows. Similarly, we get that

T m
Z Y w(y)lly: — all =Z Z w(w)pijl |y — al|
l=1y;€Yy =1 y;€Y, j=1
T m
< ZZZ (0)pisllys —]| + ZZZ ()pis|x; — adl|
{=1y;€Y; j=1 =1 y;€Y; j=1

< 2-ecost (V) + ecostpw(V, A, 0p) < 3ecostpw(V, A o)

where the second inequality again follows from Lemma [7.4.8 O

Now, we are prepared to bound ecostp (¥, A, 04) and thus prove that A is a bicriteria
approximation to ecost}, , (7).

Lemma 7.4.11. If each y; € Y is a 2-approximation of the probabilistic 1-median of v;
and A is an [a, B]-bicriteria approzimation to costy, ,(Y), then

ecostpw(V, A, 0y) < (36 +2) - ecostp (V).

Proof. Tt follows from the triangle inequality and Lemma [7.4.8| and [7.4.10] that

ecostp,u(V, A, o) <Z > > wl@)pis - (g — will + lly: — all)

(=1 y; €Yy JJJEX

=2 > wlwpyllz; — yzH+Z > wullyi — al] < (38 +2) - ecosty, , (V).

yi€Y z;eX =1y, €Yy

186 7 Probabilistic k-median clustering

Ring Sets and Their Subsets

In this part, we gain a bound on the diameter. Recall from Lemma and the plan on
page that we want to bound three error terms, and that the second one is

fz > w(vy) diam(Y (P,)).

r=lv,€P,

We show that the definition of the ring sets ensures that this term is small. This is similar
to Claim 3.4 in [CheQ9] where Chen analyzes the sum of the diameters of the sets in his
partitioning. The latter also includes ring sets and is defined in Definition 3.1.1 of [Che09].

We partition Y like Chen partitions the input point set. First, the y; are partitioned
according to their closest center in the bicriteria approximation for Y, i.e., we get a subset
for every ay. Then, we further subdivide each subset into ring sets: We place exponentially
growing balls around every a,. These subdivide the set of points belonging to a,. Then,
the diameter of such a ring set is similar to the cost of each y; in the ring set, because this
cost is lower bounded by the radius of the inner ball.

To show that this works, we have to make sure that our choice of the radius for the
smallest ball, R, and the radius of the largest ball, 2R, are chosen appropriately.

Recall that we defined R = (ecostp .,(V, A, 04))/((33+2)W) above. By Lemma

we have

ecostp . (V, A, o) - (36 +2) ecost}, (V)

= (BB+2)W (33 + 2)W

= ecost}, (V) /W.

This means that the inner sphere satisfies that the diameter is related to the average
optimum cost. In particular, the contribution of the subsets of points lying within the
inner spheres to the second error term is bounded by

Z > w(oy) diam(Y (V1)) < > w(n)2R < 2ecost], (V)

L= 17//6'1/[1 %EV

which is what we need (we look into the other subsets below).
Now we want to find an upper bound (depending on R) for the distance between an arbi-
trary point in Y and its closest center in A. This distance is bounded by costy, (Y, A, 0y) =

St w(y)|ly: — oy (yi)||. By Lemma [7.4.10} costy, (Y, A, oy) < 3ecostp(V, A, 0q) =
(98 4+ 6) RW. Recall that we set v to [log((98 + 6)WW)|. That means it holds that

2R = 2MoeOBOWII R > (98 4 6)RW > costy, (Y, A, oy),

so 2Y R provides the desired bound.

Due to the definition of Y, the diameter diam(Y,;) is bounded by 2(2"R) for each
¢ € [r] and each h € {1,...,v}, and we saw above that this also holds for A = 0. In the
following lemma, we use this to conclude proving the bound on the sum of the weighted
diameters of all subsets. The following lemma resembles Claim 3.4 in [Che09).

7.4 The assigned Fuclidean k-median problem 187

Lemma 7.4.12. If each y; € Y is a 2-approximation of the probabilistic 1-median of v;
and A is an [a, B]-bicriteria approzimation to costy, ,(Y), then

Z Z Z w(y;) QhR <(65+1)- ecost}‘:,yw(‘V)

{=1h=0y; €Y, p,

and

ZZ > w(y:) diam(Yyy) < (126 +2) - ecost, (V).

l=1h=0y;EYs 1,

Proof. Let ; € V be an arbitrary node, and let y; € Yy, for some ¢ € [t] and h € {0, ... ,v}.
Notice that 2"R = R if h = 0, and that ||y; — a/|| > 2"7' R holds for all y; € Yy, if h > 1.
Hence, we have 2" R < 2||y; — a/|| + R. Tt follows that

t

S Y @RS Y wl) @l al + B)

=1 h=01y;€Y, p, (=1 h=0y,EYp
ecostp o (V, A, o
- Z > w(ys) 2lly — ael| + R) < 6B ecosty, (V) + Duw(v)
l= 1yz€Ye 35_'_2

<(68+1) ecost*D,w(’V),

where the second inequality follows from Lemma [7.4.10] and the last inequality follows
from Lemma|7.4.11] Now, since diam(Y,;) < 2(2"R), the above inequality also implies the
second part of the claim. O

Up to now, we have seen that the partitioning of our nodes consists of subsets with small
diameter and small distance to an arbitrary C. It remains to bound the maximal value of
>z;ex W(Yi)pij| |z — yil| for each partition. The problem is that the different realizations of
7; do not necessarily lie near y; but can be arbitrarily far away. However, if they are, then
every assignment of 7; to a cluster center will have to pay this distance (weighted with the
nodes weight). This is the reason why we subdivide the ring sets into subsets with the
same behavior regarding >, «x w(w)py||z; — vill-

Recall that u = [log((65 4+ 4)W)], so R-2* > R(6 + 4)W. That implies for all nodes
v € V that

MR > loe(GF+OW) p > 2(38 + 2)RW
= 2-ecostpu(V, A, 0p) > 2 - ecost, (V)
> i .
> p:I‘I/vlle eCOStD,w({V7 Y? p)

This means that w(z;) Y e;ex Dij - |z; — ;|| < min,.y_y ecostp,(V,Y,p) < 2#R, so our
partitioning is well-defined and Yy, = U,¢ {© Yo 5. The final partitioning ensures that
the third error term is bounded.

----- B}

188 7 Probabilistic k-median clustering

Lemma 7.4.13. If each y; € Y is a 2-approximation of the probabilistic 1-median of v
and A is an [a, B]-bicriteria approzimation to costy, ,(Y'), then it holds that

T v W
222 2 wlm) max > piglle; —yall < 5ecosth,, (V).
/=1 h=0a=0 vie{VZ,h?a, yile £L,h,a !l‘jEX

Proof. For a = 0, w(v;) 3, ex Pij:||z;—yil| < R holds by the definition of Y, . Fora > 1,
the maximum in each group can only be twice the term for »;. Thus, we can conclude that

1390 DD DTS gD DN PR

€Y
(=1h=00a=0 4,7}, , Yi' €Yo h,a 2

T v
< 22> 2 w@w <R+2 > Pl _yiH)
¢=1 h=0a=0 ’Uz‘e(VZ,h,a r;€X
< (Z w(%)) R+2) wy) Y pi -l — il
A% Y €Y ZjEX
< ecosty, (V) + 4decost], ,(V),
where the last inequality follows from the definition of R and Lemma [7.4.§| O

Bounding the Number of Possible Center Locations

So far, we have seen statements that hold for fixed center sets. Now we want to achieve
statements that hold for all possible center sets. The problem is that the set of center
candidates is R?, so there are infinitely many possible center sets. Now and up to page
196| we follow Section 4 of [Che09] to resolve this problem. The approach is very similar to
Chen’s work, but the individual statements and lemmata turn out to be more technical.

The idea is to distinguish between two cases. Fither, there is a center very far away
from the input node set (more specifically, far away from the centers of our bicriteria
approximation for the y;), or all nodes (or at least their approximate 1-medians) lie within
a bounded area. In the first case, we get a sufficiently high lower bound on the clustering
cost which allows us to show that the error of U is small in comparison. In the second case,
we can discretize the bounded area by a grid and show that shifting centers to the grid
does not change the cost too much. The grid then has a finite and small enough number
of centers such that we can use the union bound to bound the failure probability for all
possible center sets. We use the same grid as Chen, which is defined as follows.

Definition 7.4.14 (Definition 4.2 in [Che(9]). Let ® € NT and b € N* be parameters. Let
U = Uj_, B(ae, 2°R) be the union of large enough spheres around all centers in A. For
ter] and h € {0,...,d}, define

B(a€7 R) h =0
L&h = h h_1 .
B(ag, 2"R)\B(as, 2" 'R) h>1

7.4 The assigned Fuclidean k-median problem 189

For h € {0,...,®}, set rj, := 2"«R/(b3\/d). For { € [1] and h € {0,...,®}, consider
an azxis-parallel grid with side length ry, to partition Ly into cells. Pick an arbitrary
point from each grid cell in Ly, and store these representative points in &, p. Finally, set

&6 =Ui U;};:O Sep

Chen bounds the number of cells in this grid by a volume argument, noticing that each
cell that has an overlap with B(as,2") does lie completely within B(as, 2"*1). Thus the
number of cells can be bounded by dividing the volume of B(ay, 2"™!) by the volume of a
cell. By simplifying the resulting term, Chen obtains the following.

Lemma 7.4.15 (Claim 4.3 in [Che09]). Let ¢ € [r| and h € {0,...,®} be given. The
number of cells that overlap with Ly, is bounded by ((4y/7ebB)/(€))". This implies that
the numer of points in & satisfies that |&| < 7(P + 1) ((4\/7rebﬁ)/(5))d.

We set the parameters ® and b differently from Chen, so we get a grid of a different size.

Corollary 7.4.16. For ® := [log(18(38 + 2)W/e)], and b := 390, we have In(|&|) =
O(log(k) + log(log(W/e)) + dlog(1/¢)).

Proof. Recall that 7 = ak with a = O(log(W/e)) and that /3 is a constant. Then it follows
by Lemma [7.4.15[and the definiton of ® and b that

In(|&]) < In (ak (Mog(18(38 + 2)W/e)] + 1) (W))

=In (’fO(log[W/e]) - (Mog[18(353 + 2)W/e]] + 1) (4\/”_23905>)

= O(log(k) + log(log(W/e)) + dlog(1/¢)).
[

Now we proceed in the following way. First, we show that we can ensure that the coreset
property holds when the centers lie on arbitrary points in &. Then we show that the
coreset property holds for points outside 4 anyway because they are so far away that the
cost is so high that our error is always small in comparison. Finally, we see that coreset
property for all center sets from 4, even if the centers do not lie on grid points.

We start by ensuring the coreset property for center sets that consist of grid points. We
do this by using our results from Section that hold for one center set. The bound
on In(®) means that we can set the failure probabilities in a way that ensures no failure
occurs for any of the possible choices of k centers from & with high probability.

Lemma 7.4.17. Let ‘V be a set of nodes, let k be an integer and let U be the sample set
weighted by w' which is obtained by Step (2) of our coreset construction (see page .
For all sets C of at most k centers chosen from &, it holds that

min_ecostp (Y, C, p) — min_ecostp (U, C,p)| <e/5- min ecostp.,(V,C,p)

p:V—=C p:U—C p:V—C

with probability at least 1 —6/2.

190 7 Probabilistic k-median clustering

Proof. Fix an arbitrary set C' C X of size at most k. Due to Lemma [7.4.7 setting
¢ :=¢/(5(128 4+ 10)) and &' := |&|7%5/(27(v + 1)(p + 1)), it holds that

min ecostp o (Vinae,C,p) — min ecostp o (Uha, C,
apin ccost, (Vina, C,p) g, 000sto, (Uenar €, p)
€
S) (dist(Yopae, C) +d Yina ; ;
~5(125 + 10) Y w(w)(dist(Yepa, C) 4 diam(Yyp,e) + ,max gxpj l|lz; — vil])

T/'LE{Vl,h,a

with probability at least 1— ¢ for each choice of £ € [7], h € {0,...,v},and a € {0, ..., u}.
Due to the Union Bound, the above inequality is true with probability 1 —7(v+1)(u+1)¢" =
1 —|&|7%5/2 for all v}, simultaneously. Since there are at most |&|* different ways to
select a set C' of size at most k from &, the above inequality holds for every such set C'
with probability at least 1 — /2.

The required sample size is

S = [€2In(2/9)] = (125;10) In (27(” 1)(g+ 1)"’5’k>
< [0’572 [log(1/6) + klog(|&|) + log k log W/aﬂ

< |ee7* [log(1/6) + k (log(k) + log(log(W/e)) + dlog(1/))] | = s

for some sufficiently large constants ¢’ and ¢. To complete the proof, we calculate the sum
of the errors of all subsets V)., for all ¢ € [7], h € {0,...,v}, and a € {0,...,u}. For the
following calculation, we use €’ := ¢/(5(123 + 10)).

min_ecostp.,(V,C,p) — r}anncecostDw (U, C,p)

p:V—=C P
< . .
- EZ; ;) (;) P WH&I?* eeostp(Vina 0, p) P, ¢ CCOSED (Uehar C P)‘

< ZZZ€'~ > w(v)(dist(Yena, C) + diam(Yyy,) + max Z pirillz; — yil])

¢=1 h=0a=0 ’l}iewha enha

< (3 m1n ecostDw(‘V C,p) +ZZ > w(y) diam(Yyy,) + 5eCOStDw((V))

l=1h=0y;€Y,

< (12;"‘10) (3 mlnc ecostp(V,C, p) + (126 +2) ecost*aw(‘V) + 5ecost37w(V))
€
< 5 pr‘r/lglcecostDw(‘V C,p),

where the third inequality follows from Lemma and Lemma and the penulti-
mate inequality follows from Lemma [7.4.12] O

Now we deal with the case that the centers can be chosen arbitrarily. First, we look at
center sets that contain at least one center which is far away, i.e., lies outside . We do

7.4 The assigned Fuclidean k-median problem 191

this in three steps. First, we show that a center outside 4l implies a sufficiently high lower
bound on the optimal cost, more precisely, it implies that min,,.,_, ecost pw(V,C,p) >
17/e ecostp (Y, A, 04). Second, we rewrite the coreset cost into a more convenient form
by shifting between realization probabilities and weights. Third, we show that (in any
case, not only if there is a center outside of), the error of the coreset is bounded by
17-ecostp .. (V, A, 04). Together, we get the coreset result for center sets with at least one
center outside of Ll.

The main technical step is to bound the error of U for all possible center sets by using
the geometric properties of the partitioning from which we sample. We get the following
high upper bound.

Lemma 7.4.18. Let C C R be an arbitrary center set with k centers. It holds that

‘ min ecostp (Y, C,p) — min_ecostp (U, C, p)‘ <17 - ecostp o (V, A, 00).
pV—=C p:U—=C

Additionally, it holds that ecostp ./ (U, A,0q) < (65 + 6) ecost], , (V).

Proof. Recall that the total weight of all nodes in Uy, is exactly the total weight Wy, o :=
ety ., W(w) of all nodes in Vinha- We like to map each node in ¥}, to the node
in Uy, that represents it. So, we want to split V. into s’ disjoint subsets of nodes
Vihaty---sVonas such that each vy € Uy, covers a subset V) p, . with z € [s/]. To do
so, we start with z = 1 and put arbitrary nodes from ‘Vg}hﬂ into Vi 4. until the chosen
nodes have a weight of at least W, ./s". If the last added node exceeded Wy, o/s', then
we reduce its weight such that the sum of all nodes in ‘Vg,h,w is exactly Wyp./s', create a
copy with the remaining weight and start ‘V&h’avzﬂ with it.

During this process, we may split nodes into two or or more copies, but we do not change
the clustering cost. We now assume that ‘¥ is replaced by the set of this splitted nodes.
We use the mapping 7 : [n] — [n| which is defined such that the coreset node v.(; covers
v;. Using this notation, we can rewrite the cost of U when clustering with a mapping p by

ecostp . (U, C, p) = ZZZ > w (v [ZPHH% U@)H]

¢=1 h=0 a= O'U/Eruéha xJEX

SYYYY Y ww) [Zm s - <vw<z->>||]

f=1h=0a=0 = 'UiEVZ,h,a,z IJEX
T v W

YRS [z pm)juxj—p<vﬁm>n] oy
(=1h=0a=0v;€EVy p, o z;€X

This clustering cost looks very much like the clustering cost of ¥/, except for the two
occurences of 7(i). The error is

min ecostp (Y, C, p) — min ecostp . (U, C,
min_ecostp,(V,C,p) = min ecostpw(U C,p)|

=!ZZZ S w@w) Y [pillzy — (@)l = peaylle; — o(wa)ll] | (73)

¢=1 h=0a=0 ViE(VZ,h,a ;X

192 7 Probabilistic k-median clustering

where o : ¥ — (' is an assignment that minimizes the clustering cost for C', which also
minimizes the clustering cost of U with C' (because it just assigns every node in ¥ to the
center that minimizes the expected distance). We can replace p;;||x; — o(%)|| — preayi||2; —
o(vx3i))| by the maximum of the two distances since both are positive. To denote the
resulting term, let 7'(7) € {4, 7 (i)} be such that pi;;||x; — o(vm(;))|| is the larger term.

Now we use a repeated application of the triangle inequality which reduces the error to
terms that we know. For each ¢, h,a and v, € ‘V&h,a notice that

> prajlley = olew@)ll < X prwjlle; — o(a)l]

ijX IJEX
S prr (4) <|$] yﬂ (v) +||yﬂ' (v) yl‘|+||yz_a(7}z)||)
z;€X
< Nywro) = il + s — o (@) + D pr@ille — Yarw)
LE]’EX
< Mymwoy —will + D2 pillys — (@)l + D pryllz; — yrrll
ijX CBJEX
< Yy = will + D2 pij(Hyi — x| + ||z — U(%’)H) + > prwslles — Yo
:L“]'EX ijX
< Mywoy = will + > piglley —o(w)ll+3- Y pijlle; — will + R (7.4)
ijX $]‘€X

where the last inequality follows since #; and v, (;) are in the same subset, and all nodes
vy and oz from the same subset %,h@ satisfy

—R+ > pjlleg =yl < X puilles —well < R+2 3 purjllay —yrll - (7.5)

zJGX z;€X r;€X

by the definition of the subsets. As v and v (,,) are also in the same ring set V;, we
can bound ||y () — ¥|| in a similar fashion: In the inner sphere, ||y~ () — vil| < R.
Otherwise, the distance of both y.(,) and y; to a, is at least 2"h-1R and at most 2"R.
Thu, [l — 9111 < 9wty — aell + llvi — acll < 22 R+ 1]y — aell < 3lly: — all. So, for al
h, we have ||y () — ¥il| < R+ 3||ly; — as||. We combine this with the error term and
the bounds in to get

’ min ecostp (Y, C, p) — min_ecostp (U, C, p)’

p’V—>C p:U—C
<Z Y w(w (3||yz—ae||+ > pijllz; —o(@)|[+3- ZPMH%—%HJF?R)
l= 17/16% z;€X z;€X
§3~3ecostD7w(’V,A,arV)+Z Z (Z pijllz; — o(w)|] + 3 Z pijllz; — uil| +2R>
=1 y;cv, mJGX z;€X

<10 - ecostp,(V, A, 0p) + 6ecosty, , (V) + Z > w(v)2R < 17 - ecostp (V. A, o)

/=1 T/ze{Vé

7.4 The assigned Fuclidean k-median problem 193

where the second inequality follows because Lemma says that >>7_, >, ey, w(¥i) -
lly: — ael| < 3ecostp.,(V, A, o), and the third inequality follows because Lemma
says that 37, S0 w(w)pi; - ||z — vl | < 2 - ecostpy, (V) < 2 - ecost},, (V) and because
the middle term is just the clustering cost of ¥ with C' since o is chosen optimally.

In order to prove the second statement, notice that similar to , we can rewrite the
clustering cost of U with A by

ccostiw (U A o) =35 Y w (@) 3 prisllzs — ow(zme)ll]. (7.6)

=1 h=0a=0 ;€9 , z;€X

Then we observe that it holds forall o; € V., for £ € [7],h € {0,...,v} and a € {0,..., u}
by the triangle inequality and ([7.5)) that

> peailles — op(w@)ll < X Do (125 = vel| + lymiy — o0 (o))

z,€X r;jeX
<SR+2 Y pyllyy —uwill+ X prsllvee — oz
rEjEX wJEX
< R+2Y pylley —ull+ D pe;2"R
z;€X r;eX

Now we combine this with (7.6) and then apply Lemma [7.4.8] Lemma [7.4.12| and the
fact that WR < ecost}, () by the definition of R to obtain that

ecostpu (U, A, o)
voou
SWR2Y 33 > ww) Y, pyllzy —uill +ZZ Z > w(@)2'R
(=1 h=0a=0 3, , z;€X (=1h=00a=0 3,€V, }, ,
< ecost, (V) +4 - ecosth, , (V) + (68 + 1) - ecost, , (V) < (6 + 6) ecost (V).

That completes the proof for the second statement.]

Lemma 7.4.19. Let V be a set of nodes, let k be an integer and let U be the sample set
weighted by w' which is obtained by Step (2) of our coreset construction (see page .
Let C C R® with a center ¢ € C that is outside Y. Then

min_ecostp ., (V,C,p) — min_ecostp (U, C,p)| <e- min ecostp.(V,C,p).

p:V—=C p:U—C p:V—C

Proof. If there is no »; € ¥ which is assigned to ¢ in the optimal clustering of ¥/, then
c can be ignored. Thus, assume that there exists a node z; that is assigned to c, i.e.,
c € argmingeo Y50 w(w;)pis||r; — || Let ay be the center in A to which v is assigned by

194 7 Probabilistic k-median clustering

oq. Since ¢ ¢ i, we have [|a; — ¢|| > 2® R. Hence, we get the following lower bound on the
optimal clustering cost:

m

m
I{r/uncecostpw (V.C,p) > w(w)pyllr; — Z w(v)pi; ([lae — cl| — ||z; — adl|)
7j=1

w(z)2®R — Z w(w)pijllz; — ad] > (1836 + 2)W/e) - R — ecostp..(V, A, 04))

18 17
>— - ecostpu(V, A, 00) — ecostp,(V, A 04) > — - ecostp..(V, A o).
£ €

We get
ecostp o (V, A, 04) < % min_ecostp . (V,C, p). (7.7)

1 p:V—=C
On the other hand, we can bound the error of our coreset by min,.v_,c ecostp .,(V, C, p)
by Lemma [7.4.18] We conclude that if a center lies outside of U, it holds that

min_ecostp ., (V,C, p) — min_ecostp w' (U, C, p)
C pU—C

p:V—

<17 - ecostp w(V, A, oy) < e min_ecostp.(V,C,p)
p:V—C ’

which concludes the proof. O

Lemma[7.4.19)implies that for all C' with a center ¢ outside i, our sampling set is already
a coreset. Thus, we only have to deal with the case that C' C 4. Therefore, suppose that
C={ecr,...,c) CU Let " ={d),...,c}, where ¢, € & is the representative point of
the cell containing ¢, for ¢ € [k]. Now, we want to show that clustering with C” is not
much different from clustering with C'. In other words, we want to show that the difference
between the optimal clustering costs with C' and C” is small. We start with showing this
statement for one fixed node v;. The main fact to show the following lemma is that for
the optimal center for v; in C, we can find a slightly shifted center in C”, and the distance
between these two can be bounded by the diameter of a cell in our grid.

Lemma 7.4.20. Let V be a set of nodes, let k be an integer and let U be the sample set
weighted by w' which is obtained by Step (2) of our coreset construction (see page .
For every center set C' C $ with |C| = k there exists a center set Co C & with |Cq| < k
such that

tpw(V,C,p) — tp.w(V,Cq,p)| < (g/10 tp.w(V,C,
IprgglCeCOSD (p) min_ccostp, (V. Ca p)| < (¢/10) - min_ ccostp, (p)

and

|pr%111_r>10ecostpw (U, C,p) _p%lilceCOStDw’(ﬂ Ca,p)| < (¢/2) - p$glcecostDw(‘V C,p).

7.4 The assigned Fuclidean k-median problem 195

Proof. Each ¢ € C'lies in a cell, and this cell has a representative in . We define a mapping
g : C — & that sets g(c) to this representative. The center set C := {g(c) | ¢ € C} is
the set of these representatives. For each ¢, € Cg, we set u(c,) to a center with g(c) = ¢,.
Now we show that C' and Cs have approximately the same clustering cost with respect to
7/ and also with respect to U.

Let v € Yy for L € [7], h € {0,...,v} be anode let ¢* € C' and ¢ € Cg be centers that
minimize the clustering cost of »;. Then the clustering cost of ¥ with C differs from the
clustering cost of Cg by at most w(v;) - max{||c* —g(c*)[[,||c; —u(c})[|}. Assume c* has the
higher clustering cost. Since u(c;) is in C, clustering with it can only be more expensive
than clustering with ¢*. Thus, we have by the triangle inequality that

min 3 w(o)pylle; — el = min 3 w(wpyllz; —cll

ijX EX
<Y wlw)pille; —ul)ll = D wlw)pgllz; —]
:UJGX a?jEX
< > w@pilley — cll+ Y wlw)pylle;, —)l — Y wlw)pyllz; —]
z;€X z;€X zjeX

—w(w) - |lc; ~ u(c))|.

If ¢; has the same clustering cost, we can make the same calculations with the difference
that we replace ¢ by u(c*). The rest then follows analogously.

So it suffices to bound w(z;) times the distance between ¢ and its representative g(c) for
any ¢ € C. This distance is bounded by v/d times the cell width of the cell that ¢ lies in,
and this cell width depends on the distance between ¢ and its closest center in A.

Let 1/ be such that ¢ € Ly (recall that »; € V). Then the cell width is defined as
rw = 2" eR/(3908Vd), so rv/d = 2"eR/(3908).

If b’ = 0, then 7yV/d = eR/(3905). Otherwise, c is at least 2" ~'R away from ay, so

rVd < 22" 71 Re /(3908) < 2el|e — af||/(3908) < 2¢/(1968)(|le — x| + ||z; — acl])
for any x; € X. It follows that

| min ecostp.,(V,C,p) — min ecostp.,(V,Cq,p)|

p:V—=C p'V%C
< > w(w)eR/(3908) + r‘I}ln pr v)2¢/(1968)(||c — x;|| + ||, —(lgH))
i=1
<
< 39OB(WR+2p$glceCOStDw<IV C,p) + 2ecostp ., (V, A af,/)>
< (g/10) min ecostp..,(V,C,p)
p:V—=C

by Lemma [7.4.11 and by the fact that it holds R = ecostp (Y, A,04)/((36 + 2)W) <
ecost}, ,,(‘V)/W. This proves the first statement of the lemma. For the coreset, we get

| p%iilc ecostp (U, C, p) — p:I"{lli—I)lC ecostp . (U, Ca, p)|

196 7 Probabilistic k-median clustering

< 3 w'(w)(R/(3908) + min_ Zp” (2r)2¢/(1968)(|lc — 25| + |25 — acll))

v €U

7

RW +2 réllncecostpw (U, C,p)+2 r{lunc > Zp,]w (vir)]|; —(MH)

7//671] 1

—3905<

since the coreset nodes are input nodes (with different weight) and since the sum of the

weights is the same for 9/ and U. We can now use Lemma|7.4.18] The first statement of the
lemma applies to the middle term, and the second statement of the lemma applies to the
last term. For the first term, we use that RW = ecostp., (7, A, 0v)/(38+2) < ecost}, (V)
by definition and by Lemma [7.4.11, We get

i t w! ‘Zl,C, - i t w’ (Z,l,C)
| rqr}lncecos D () min_ecostp, (G P)|

_3905 (RW + 217 - ecostp ., (V, A, 09) +2- (68 + 6) ecost}vw(‘V))

_3905 (ecost}‘) (V) +34(38 + 2) ecost, (V) + (128 + 12) ecost"l‘)’w(‘l/))

§3905(H4B +81) ecost]y (V) < (£/2) - ecost (V).

by Lemma again. That completes the proof. O

The main theorem

We conclude with collecting our results and proving the main theorem.

Theorem 7.4.21. Let X C R? be a finite set and let V be a set of n nodes v; : X — [0,1],
i € [n], let k be a positive integer and let w : V — R be a weight function, and let
W =", w(y) be the total weight. Let 0 < d,e < 1 be given constants.

A (1 + €)-coreset U for the assigned Euclidean k-median problem consisting of nodes
w : X — [0,1] can be computed in time O(nd-(k+m)-(dlog(W/(d¢))) with error probability
. The coreset U consists of O(e 2k*d - log*(W/(£6))) nodes. In additional running time
O(nmde(log(nm/d) - (log(pmin)))), the supports of all nodes can be reduced such that each
support contains at most O(e~3dlog?(m/(pminde))) points from X.

Proof. The coreset size is a direct result of the description of the algorithm. This descrip-
tion and the discussion of the running times can be found from page to page [179 Let
C' C R? be a set of centers. If there is at least one center outside of i, then Lemma
guarantees that

tp,w(V,C,p) — tpw (U, C,p)| < (¢/2 tp,w(V,C,
prgl_r)lcecos Dl) prgglcecos D (p)| < (g/2)- prrBl_r)lCecos Dl p)

holds. Otherwise, all centers in C' lie within . Now C' either lies on grid points and we
define Cq := C', or Lemma gives a center set C' with

| min ecostp.,(V,C,p) — min ecostp.,(V,Cq,p)| < (£/10) - min ecostp.,(V,C,p)
p:V—=C pV—C

p:V—=C

7.4 The assigned Fuclidean k-median problem 197

and

tpw (U, C,p) — tpw (U, C < (g/2 tp.w(V,C,
| min_ ecostp,u(p)— min ecostp. (U, Ce,p)l < (¢/2)- nin_ecostp, (p)-

Lemma [7.4.17] then ensures that Cg satisfies that

min ecostp (Y, Cq, p) — min ecostp . (U,Cq,p)
pV%CG p"uA)CG

< (¢/5)- min ecostp,(V,Ca,p) < (1+¢€)-(¢/5)- min ecostp.,(V,C,p).

p:V—Cqg pV—=C

Together, this implies that

min_ecostp ., (V,C, p) — min_ecostp (U, C, p)‘

p:V—=C p:U—C

<
‘pr‘r/n_r}l ecostp (V,C,p) — pgirchGCOStDw({V Ca,)‘

+‘ min ecostp ., (Y, Ca, p) — milr(lJ ecostDvw/(‘Zl,Cg,p)’

p:V—=Cqg p:U—Cq

+‘ min ecostp (U, Cq, p) — min_ecostp . (U, C,p)‘
p:U—Cy p:U—C

< (1/104+2/5 4+ 1/2)e - ecostp ., (V, C, p) = € - ecostp ..(V, C, p).

Performing Step (3) increases the error, but the result is still a (1 4 3¢)-coreset. Thus,
running all steps with precision parameter /3 yields a (1 + ¢)-coreset for this case as
well. O

8 Projective clustering problems

A shape fitting problem is the task to determine which of a set of predefined shapes fits
best for a given input point set. There is a huge variety of different problems that fall
into this category, since there are many ways to choose the candidate shapes and also to
define how well a shape fits to a set of points. For example, we can fit lines or circles to a
point set, or hyperplanes, subspaces of another fixed dimension, or just points. The fit of a
shape can be the sum of the distances of all points to the shape, or the maximum distance
between any point and the shape. And then, the distance can also be defined in different
ways, for example as the Euclidean distance or as the squared Euclidean distance, or as
any gth power of a distance based on a p-norm.

Notice that the k-means and the k-median problem are special cases of shape fitting
problems where the shapes are sets of k points and the measure to evaluate a shape is
the sum of the (squared) distances. So, we have been studying shape fitting problems in
this thesis at several places. In this chapter, we discuss two other specific shape fitting
problems. They are both based on the the sum of the squared distances as a measure of
the fit of shapes (which are subsets of R?).

The first problem is the subspace approximation problem, where we want to find a
subspace of R? of dimension j that minimizes the sum of the squared distances to an input
point set. We encountered this problem in Section [3.1.2]in the context of the singular value
decomposition. In fact, we already know that the best fit subspace of dimension m, named
Vin, can be computed by the singular value decomposition. It is the optimal solution to
the linear subspace approximation problem. We see how to compute coresets for the linear
and affine subspace approximation problem in Section [8.2]

The second problem that we consider is the integer projective clustering problem where
each shape is a set of k£ subspaces that are j-dimensional. The study of inputs with integer
coordinates was initiated by Edwards and Varadarajan [EV05| as a reaction to a result by
Har-Peled [HP04]. The latter showed that there are no coresets of sublinear size for the
problem to fit two strips to a point set in R%. Edwards and Varadarajan showed how to
compute coresets for the problem to fit a set of £ hyperplanes to a point set under the
assumption that the input points have integer coordinates. Both results are for the version
where the fit is measured by the maximum distance of any input point to the shape. We
consider the integer projective clustering problem with the sum of the squared Euclidean
distances as the measure in Section 8.4l This variant has also been studied before as we
will see below in the related work section.

The results presented in this chapter are joint work with Dan Feldman and Christian
Sohler and have partially appeared in [FSS13].

200 8 Projective clustering problems

8.1 Introduction to projective clustering problems

Since we build upon the results from Chapter[3] we use the matrix notation for input points,
i.e., the input consists of a matrix A € R"*¢ which represents n points of dimension d.
The ith row of A is referred to as A,,.

Recall that a (linear) subspace of R? is a subset V' C R¢ which is the span of a finite set
of vectors from R?. If the subspace is j-dimensional, it is spanned by j linearly independent
vectors ay, . . ., a;, and such a set of spanning vectors is called a basis of V. Notice that linear
subspaces always contain the origin. An j-dimensional affine subspace for j < d is defined
by a linear j-dimensional subspace V' spanned by a basis {ay, ..., a;} plus a vector ¢ that
is orthogonal to all a, for ¢ € [j]. The affine subspace then is T := Ty, :={z +t |z € V}.
If t is nonzero, then T does not contain the origin, and the length of ¢ is the distance of
Ty, to the origin. Projective clustering can be defined for both linear and affine subspaces.

Definition 8.1.1. Let A € R™ be a matriz with n points, let k > 1 and 0 < 1<d—-1
be given integer parameters. The linear (affine) projective clustering problem with squared
Euclidean distances is the task to choose a set V' of k linear (affine) subspaces of R of

dimension j that minimizes
n

Z ndlst (A, V).

7,:1
The subspace approrimation problem is the special case where k = 1. The integer projec-
tive clustering problem has the additional assumption that the input points have integer
coordinates.

We omit the addition ‘with squared Euclidean distances’ from now on since squared
Euclidean distances are the focus of this chapter. Notice that the affine projective clustering
problem for 5 = 0 is the k-means problem. For j = 1, the problem is called the k-line
problem. The special case of k = 1 and j € {0,d—1}, which is the subspace approximation
problem, is also known as the low-rank approximation problem if we are interested in the
projection of the points to the best fit subspace (not in the subspace itself). The optimal
solution to this problem is the matrix AY), which consists of the projections of the points
in A to the best fit subspace V.

Related work on projective clustering problems. Since projective clustering comprises a
lot of interesting problems as special cases, the amount of research on projective clustering
problems is vast. We have a short look at some results. Earlier work often studies projective
clustering problems with the maximum distance as the measure of fit. That means that the
maximum distance between any input point and the shape shall be minimized. Usually,
the shape consists of k linear or affine subspaces. The problem can then also be interpreted
as covering the input point set with the geometric forms that arise from considering all
points that are of a specific distance to a subspace.

Zero dimensional subspaces are only meaningful when they are affine. In the easiest case,
we have one affine subspace of dimension zero, and then we get the minimum enclosing

8.1 Introduction to projective clustering problems 201

ball problem. It is the task to compute a sphere of minimum radius that covers a point
set. It is a well-studied problem that is solvable in polynomial time. For a comprehensive
list of references on the minimum enclosing ball problem, see for example [Yil08]. Its
generalization is the k-center problem where a point set is supposed to be covered by k
spheres, and the maximum radius is to be minimized. In terms of projective clustering, it
is the special case of arbitrary k and j = 1. We shortly discuss the k-center problem and
some references on page [159]

For j =1, i.e., if the subspace is of dimension one, the task is to fit a set of lines to the
input point set. These can be linear or affine subspaces. Following the term k-center, the
problem is also called the k-line center problem. Since the set of points that is within a
given distance of a one-dimensional subspace is an (infinite) cylinder, it is also sometimes
referred to as a covering problem with cylinders. Megiddo and Tamir show that it is
NP-complete to decide whether a set of n points in the plane can be covered by k affine
subspaces of dimension j = 1. This implies that multiplicative approximation is NP-hard
since any multiplicative approximation would have to decide whether optimal fit actually
covers the points. This holds when the fit is measured by the maximum distance as well as
when the fit is measured by the sum of the distances or squared distances. In both cases,
the cost is zero if there are k lines such that each input point lies on one of them. For
constant k, d and e, Agarwal, Procopiuc and Varadarajan [APV05| give an algorithm with
running time O(nlogn) that computes a set of k lines such that the maximum distance
is at most (1 + ¢) times the optimal maximum distance. Har-Peled [HP04] shows that
coresets do not exist for the k-line center problem even if the dimension d and the number
of lines k are both twdll

The problem of j > 1 and & = 1 is for example considered in [AHPV04, [HPV04,
SV12, YZ03]. In particular, Agarwal, Har-Peled and Varadarajan [AHPV04] show how to
compute coresets for this case. Edwards and Varadarajan [EV05] build upon this result
and develop a coreset construction for j = d — 1 and k& > 1 under the assumption that the
input points have integer coordinates (this is necessary for the existence of coresets due to
the result by Har-Peled [HP04]). The projective clustering problem for j > 1 and k > 1 is
also considered in [AP03], HPV02].

When the fit is measured by the sum of the distances or the sum of the squared distances,
then the affine case 7 = 0 is the k-median problem or k-means problem, respectively. We
discuss related work on these problems in Section [2.1]and in Section Both problems are
NP-hard. Feldman, Fiat and Sharir [FFS06] denote the case of j = 1 as the k-line median
or k-line mean problem for Euclidean and squared Euclidean distances, respectively. They
develop a (1 + &)-approximation algorithm for these problems.

For squared Euclidean distances, the case k& = 1 is special since it can be solved ex-
actly by the singular value decomposition. It is also known as low-rank approximation or
the subspace approximation problem. The research focus then lies on developing faster

!'Notice that there are two types of coresets when the maximum distance is used for shape fitting, named
additive and multiplicative coresets by Har-Peled. Additive coresets exist and are used by Agarwal
et al., but multiplicative coresets do not exist.

202 8 Projective clustering problems

algorithm. Work on computing one j-dimensional subspace that minimizes the sum of the
distances, the sum of the squared distances or the sum of the gth power of the distances
in a p-norm includes [DRVWO06, DTV, [FES06, FMSW10, [SV12].

Research that considers the general case of j > 1 and k& > 1 includes [DRVWOG, [DV07,
FL11al, VX12a, VX12b]. The paper by Feldman and Langberg [FL11a] proposes a general
framework based on sampling according to sensitivity which was developed by Langberg
and Schulman [LS10]. Varadarajan and Xiao improve their results for the projective clus-
tering problem in [VX12al [VX12b]. We discuss both the technique from [FLI11a] and the
method from [VX12a] in more detail in the following sections.

8.2 Small coresets for subspace approximation

In this section we study the linear subspace approximation problem. It is the special case of
the linear projective clustering problem where k is set to one, and it is the task to compute
the linear subspace of dimension j that minimizes the sum of the squared distances to a
point set. The optimal solution is the best fit subspace V;. Here, we are interested in
computing a coreset for this problem. That means that we want to be able to approximate
the sum of the squared distances for all possible j-dimensional subspaces, not only for V;.
We compute a coreset by using the following result which we proved in Section [3.2]

Corollary [3.2.2] Let A € R™*¢ and let V be a j-dimensional subspace. Let € € (0,1) and
m € N with m > [j/e] and n,d > m + j. Let A"™ € R™™ be the projection of A to Vi,
the best fit subspace of dimension m. Then it holds that

min{n,d} m+j
dist? (A, V) < dist?(A™, V) + Y o <dist*(A, V) +¢e- D o < (1+e)dist’(A, V).

i=m+1 1=j+1

Corollary holds for any j-dimensional subspace, so A and the constant form a
(1 + ¢€)-coreset for the subspace approximation problem. However, A" still contains n
points, and even though they are projected to an m-dimensional subspace, the matrix A
still stores them with d coordinates. Instead, we could store the right singular vectors that
span V,, and the representation of the points in this basis. That would require m points
of dimension d and n points of dimension m. Alternatively, we could also apply a coreset
construction for the subspace approximation problem to A as we did for the k-means
problem in Section [4.4] However, there is an easier way to obtain a small coreset.

The sum of the squared distances of all points in A™ to V satisfies dist*(A™, V) =
[JAC |2~ |7y (AT™)] |2 by the Pythagorean theorem (see Observation where 7y, (A™)
is the matrix that arises from projecting all points in A®™ to V. Thus, a point set is a
coreset for the subspace approximation problem if the sum of the lengths of the projected
points is similar for A and A for any subspace V.

Recall from Section that we can represent A as A = "™ 50! where u; and
v; are left and right singular vectors to the singular value ¢;. Additionally, uy,...,u, € R”

8.2 Small coresets for subspace approximation 203

and vy, ...,v4 € R? are orthonormal bases of R” and R?, respectively. Let V be any j-
dimensional subspace and assume that it is spanned by the orthonormal basis {a, ..., a;}.
Then there are unique coefficients ay, for £ € [j] and s € d such that a, = %, ay v, It
holds for any ¢ € [j] that

|A(m all® = HZUZUU Za@vj” = HZZala@u,v v]H = HZma&ul

=1 j5=1

m
_ 2 2
= Zgi Qp;-
=1

We define the coreset to be the matrix S(™ € {m x d} where the ith row is the point o;v;.
Then we have that

d 9 m d
j=1 =1 Jj=1

Thus, S does indeed form a coreset together with the constant. Notice that S™ contains
only m € O(j/e) points.

Corollary 8.2.1. Let A € R™4. Let e € (0,1) and m € N with m > [j/e] and n,d >
m + j. It holds for every j-dimensional subspace V' that

dist?(A, V) < dist?()+ Z ol < (1+¢)dist*(A,V)
i=m+1
where the matriz SU™ € R™*? s defined by setting the ith row to ov; fori=1,...,m.

8.2.1 Affine subspaces

The affine subspace approximation problem consists of finding a linear subspace V' and a
translation ¢ such that the sum of the squared distances of all points in A to their closest
point in V' 4t is minimized. Figure illustrates that the affine best fit subspace can have
a better fit to a point set than the best linear subspace.

We start with a lemma that relates the sum of the squared distances to an affine subspace
to the sum of the squared distances to a linear subspace plus additional terms. We need
some notation. Let 7y : R — V be the mapping that projects every point z to its
projection in V, so dist?(x, V) = dist?(z, 7y (x)). For any subspace, we denote the mapping
that projects every point x to its closest point in T by mp(z). Notice that mp(z) =
vz —t)+t =30 (x —t)Tay =)_, x7a, = my(x) + t since t is orthogonal to all a,.

Lemma 8.2.2. Let A €]R”Xd contain a set of n points from R It holds for any
j-dimensional affine subspace T = Ty, that

> dist(Ai, Tya) = dist®(A, V) + 1 ([l = mr(w)]* = [l = v ()])
=1

7’L

where p = E Aii. If p is the null vector, then the distance to Ty, is given by

Z dist? (A, Tyy) = dist*(A, V) +n - |[t]]%

i=1

204 8 Projective clustering problems

(@)
o
Q
o
o
(©]e) é)
° Q
N 01
\
\
\
\
o
' o
' o %o
\ o,
\
\
\
\
\
\
\

Figure 8.1: An example of a point set, the linear best fit subspace (orange) and the affine
best fit subspace (blue). The affine subspace is given by the translation depicted
by the black arrow and the linear subspace indicated by the dashed line.

Proof. Translating Ty, and A by the same vector does not change the distances be-
tween the points in A and their closest point in 7y,;. For the translation —t we get

n dist? (A, Tyy)) = S0, dist?(A, — ¢, V) since {x —t | © € Ty;} = V. By the
Pythagorean theorem (see Observation [3.1.3), we get that

S dist? (A — oy (A — 1) = 3 [[Au — 1] = 3 [l (Ase —)]
i=1 i=1 i=1

for all i € [n]. We use Observation that allows to calculate the sum of the squared
distances by using the centroid of a point set. We interpret ¢ as the center and get

SlAu =l = (3l Ai —) + - [l — ¢
=1 =1

Since t € Ty, we get by the Pythagorean theorem that

=t = [() —]2 + dist? (1, mr (1)
—Jy (1) + ¢ —]2 + dist? (1, mr () = [y ()12 + list? (g, 77 (12).

For the subtrahend, recall that 7y (x) = Zézl 2T asa, and that t is orthogonal to all a,. We
thus get that

I

J 9 J 9 J
|y (As =)||? = H;(Ai* —) || = H;(Aﬁag—tTa[)aZH :H;Aﬁamz
=1 =1 =1

=|lmy (As)I”

8.2 Small coresets for subspace approximation 205

for all ¢ € [n]. We conclude that

> dist®(Ai, Tvg) =3 || Ai — 11> — ZHWV t)|[*
=1

i=1

=(221w = pll? = llmv (A I) + - (v ()P + [l = 7o ()] P).
i=1
We can rewrite dist?(A, V) in a similar way to obtain

dist®(A, V) = 3" [|Aul 2 = llmv (AP = 3 ([[Ai = pl? = [lmy (A)|1?) + 7|l
=1

i=1

The first statement then follows because ||u||> = ||y (u)||* + || — mv(@)]|>. The second
statement follows since || — 7 (u)||*> — || — mv (w)||* = ||t||* if p is the null vector. O

By the reformulation of dist?(A, Tv;) we also see that the optimal translation of a given
subspace V' is t = i — my (1) since || — 7 (p)|[* = [|n — mv (1) — t]|* is then zero and it is
the only term that depends on ¢. If © = 0, then the optimal affine subspace of dimension
7 is the linear best fit subspace. In order to compute the solution to the affine subspace
approximation problem if the centroid is not zero, we can translate the input matrix by
—u, compute the best fit subspace and translate it back. Computing a coreset for the
affine subspace approximation works based on the same idea. We see this in more detail
in the following corollary.

Corollary 8.2.3. Let A € R™4. Let ¢ € (0,1) and m € N with m > [j/e]| and n,d >
m + j. There exist a matriz S € R*™*? and a constant A € Rt such that

dist*(A, Ty,;) < dist*(S, Ty,y) + A < (14 ¢) dist*(A, Ty,)

holds for every j-dimensional affine subspace Ty, consisting of a j-dimensional subspace
V' and an (orthogonal) translation vector t € R

Proof. Let A’ be the matrix obtained by translating A by —u where p := (1/n) X", A;.
is the centroid of the input point set. Let vy, ..., v, be right singular vectors with corre-
sponding singular values for A’. By Corollary , the matrix S € R™*? which has
o;v; as its ith row for ¢ € [m] satisfies

dist?(A’, V) < dist?()+ Z o? < (1+¢)dist?(A, V) (8.1)

i=m+1

for all j-dimensional subspaces V. We use the matrix S’ which contains (o;/v/2)v; and
—(03/v/2)v; as rows 2i — 1 and 2i for each i € [m], so S’ has 2m rows. Notice that the
centroid of S’ is the origin since each pair of rows cancels itself out when summing them up.
S’ has the same distance to any linear subspace as S(™ since the projection length of a row
(0:/v/2)v; to a unit vector ag is ||(0;/v2)v] a||? = ||oiv] as||?/2, and the projection length

206 8 Projective clustering problems

—(03/V2)v; is ||oiwTac||?/2 as well. Thus, [[my(S™)|? = ||mv (Shi_)|[2 + [lmv (Sh)l 1%,
and thus

dist™(ZH P =l (SEOIP = ZUQ/Q—ZH?W(SQZ DI+ [l (95)11%)

i=1

= (ISP = [l (S7™)]7) = dist* (ST, V).
i=1
Together with (8.1]), this implies that

dist?(A’, V) < dist?(Z (1+¢)dist?(A, V)

z:m

holds for all j-dimensional linear subspaces. Let Ty, be an j-dimensional affine subspace
and consider the translated subspace Ty, = {x — p | € Ty, }. Since the centroid of A’
and S’ is the origin, Lemma implies that

dist?>(A’, Typ) = dist(A, V) +n - ||t']]?

and similarly dist®(S’, Ty») = dist*(S’, V) +n - [|t'||?. This implies

dist?*(A’, Ty») < dist*(S', Typ) + Z ol < (1+4¢)dist?>(A, Typ).

i=m+1

The matrix S now arises from adding p to each row in S’. Then translating A’; S" and
Tyy by i gives A, S and Ty, and the distances between them are not changed. We thus

get that
d

dist?(A, Ty:) < dist?(S, Tv,) + Z (1+¢)dist?(A, Tvy).

i=m+1

Thus, the matrix S € R?*™*¢ and the constant A := 3% . 02 form a (1 + £)-coreset for
the affine subspace approximation problem. O

8.3 A coreset framework for projective clustering

Before turning to the integer projective clustering problem, we have a look at a framework
that allows to compute coresets for different variants of projective clustering problems. We
use it in the next section. The framework is based on a non-uniform sampling technique.

Sampling is a powerful tool to construct coresets. We have seen when discussing the
work by Chen [Che09] and applying it to probabilistic k-median clustering in Section
that it has the potential to construct coresets which have a size that is polynomial in
the dimension d, at least for the k-means and the k-median problems. These are special
projective clustering problems.

8.3 A coreset framework for projective clustering 207

&
& o

Figure 8.2: A point set with an outlier as an input to the 2-means problem.

Sampling is about finding the important points in an input point set with high prob-
ability. Figure [8.2) sketches a point set where most points are concentrated around two
centers and one point, named z in the example, is far away. Assume that we consider the
k-means problem for £ = 2. If the distance between z and the rest of the points is large
enough, then z has to be part of any coreset that wants to approximate the cost function.
This pointed example shows why sampling needs to be applied with care. If we sample
uniformly at random and want to sample z with constant probability, we need a linear
number of samples. There are different ways to handle this problem.

Chen uses a bicriteria approximation to get approximately good centers and then par-
titions the point set according to the distance to the nearest center. Uniform sampling is
then applied to each subset, and the points in a subset have a similar distance to their clos-
est center. In the toy example in Figure z would get its own subset (if it is sufficiently
far away) and is then sampled with probability one.

A different way is to directly base the sampling probabilities on the distances to the
centers from the bicriteria approximation. This idea is used by Arthur and Vassilvit-
skii [AV07] for computing an approximation for the k-means problem, and it is used for
the construction of (weak) coresets by Feldman, Monemizadeh and Sohler [FMS07]. The
latter construction uses a set of centers that provides an approximative solution and dis-
tinguishes between points that are close to a center and points that are further away from
their closest center. Uniform sampling is used for the close points. For the other points,
the probability is based on the cost of the points. Again, z is likely to be sampled since its
share in the cost of the approximative solution should be high.

Langberg and Schulman [LS10] and Feldman and Langberg [FL11a] define the notion of
sensitivity of points which is an even more direct way of measuring the importance of a
point. Their work is not restricted to the k-means problem but works for a large class of
shape fitting problems. We review their technique in the following.

In this context, inputs to a shape fitting problem are viewed as functions. Assume we
are given a matrix A € R™ 9 and that the problem is to find the best shape in a set
Q. of closed sets from RY, i.e., the shape @ € Q that minimizes dist*(4,Q), the sum
of the squared distances between the points in A and the shape. Then we can define a
function f,,, : Q — RT that evaluates the fit of a shape to the point by mapping each @
to fa,. (Q) := dist?(A;,, Q). Thus, the matrix A induces a finite set of functions from Q to
R*. A coreset has to approximate the sum of these function values for all possible shapes.

The sensitivity is now defined as the maximum share that one of the functions can
contribute to the sum of the function values for any given shape.

208 8 Projective clustering problems

Definition 8.3.1 (Sensitivity, [LS10, [FL11a]). Let F' be a finite set of functions from a
set Q to RY. The sensitivity of a function f € F is

B £(Q)
o) = s = Gy

The total sensitivity of F'is S(F) := X repo(f).

When we speak of the sensitivity of a matrix A, we mean the sensitivity of the function
set F'={fa, | i=1,...,n} for fu, as described above. Thus, we use the abbreviation
o(Ai) == 0(fa,,), and we say that the total sensitivity of A is S(A) := Y1, o(Aw).

Notice that sensitivity is an accurate measure of the importance of a point for the cost
function. If a set of points has a low total sensitivity, then we can be sure that omitting it
cannot distort the cost function much for any shape. In the example in Figure 8.2} placing
two centers in the centroids of the two point clouds gives z a high share in the cost, so the
sensitivity of z is high.

Feldman and Langberg connect projective clustering problems and coresets with the the-
ory evolving around PAC Learning and the concept of the Vapnik-Chervonenkis dimension
(VC dimension). They develop a sensitivity based sampling scheme that computes coresets
and approximations for different shape fitting problems. We need two more definitions to
state the coreset result.

Definition 8.3.2 (Dimension of a range space). A range space is a pair (F,ranges) where
F is a set, and ranges is a set of subsets of F. The dimension of the range space (F,ranges)
is the smallest integer v, such that for every G C F we have

{G Nrange | range € ranges}| < |G|".

Definition 8.3.3 (Dimension of a set of functions. [LLS01, [FL11al). Let F be a finite set
of functions from a set Q to RT. For every Q € Q and r > 0, let range(F,Q,r) = {f €
F | f(Q) <r}. Let ranges(F') = {range(F,Q,r) | @ € Q,r > 0}. The dimension dim(F')
of F' is the dimension of the range space (F, ranges(F)).

Notice that ranges(F') contains sets of functions from F', so the number of elements in
ranges(F') is bounded by 2/¥!. It will usually be smaller, though. If Q is the set of all
sets of k centers from R? and F' consists of all functions f,,, = dist*(As, Q) for Q € Q,
then ranges(F') contains an element for every possible way to partition the point set with k
spheres. If Q consists of all sets of k j-dimensional subspaces, then range(F, @,) contains
all sets of functions that represent points of A that are within distance r of @), and ranges(F’)
contains an element for each partitioning that can be induced by choosing @) and r. We
see a bound on dim(F’) for this case in the next section.

We can now state the coreset result by Feldman and Langberg that is applicable to differ-
ent projective clustering problems. The core of their algorithm is based on sampling points
according to (an upper bound on) the sensitivity, and the following theorem states the size

8.4 'The integer linear projective clustering problem 209

of the computed coreset depending on the dimension of F' and its sensitivity. Feldman
and Langberg also provide bounds for both terms for different shape fitting problems and
obtain coreset results, and the paper also includes approximation and streaming results.

Theorem 8.3.4 (Theorem 4.1 in [FL11al). Let F' be a finite set of functions from a set
Q. to RY. There is a subset S C F of size

6(F)>27

€

|S] = O(1) - dim(F) - (
with an appropriate weight wy > 0 for each f € S such that such that for every Q € Q,

(1—2) Y fQ) <D wef(Q)<(1+e) > f(Q)

fer fes fer

8.4 The integer linear projective clustering problem

In this section, we use the framework by Feldman and Langberg to compute coresets for
the integer linear projective clustering problem. We do so by combining the dimensionality
reduction from Section with the work by Varadarajan and Xiao [VX12al] on coresets
for the integer linear projective clustering problem. Recall that we proved the following
theorem.

Theorem Let A € R™? be a matriz. Let j > 1 be an integer, let € € (0,1) and let
m € N with m > [18j/e*| and n,d > m + j. Then for any non-empty closed set C' which
is contained in a j-dimensional subspace, we have

< e costg (4, O).

‘(Costp)+ Z) — costgz (4, C)

1=m+1

We can apply the theorem to the integer projective clustering problem: Every set of
k affine subspaces of dimension j is contained in a k(j + 1)-dimensional linear subspace.
Thus, we need m := [18k(j + 1)/&2].

The problem with combining this dimensionality reduction with known algorithms for
the integer projective clustering problem is that the lower dimensional representation of
a point set does not necessarily have integer coordinates even if the original points have
this property. We discuss the details of this difficulty before we consider the technique by
Varadarajan and Xiao to obtain the coreset result.

Lemma 8.4.1 (Variation of Lemma 5.1 in [VX12a]). Let d > 2. Let A € {1,...,A}xd
be a set of n points, let k be an integer and let 0 < j < d —1 be an integer. Let Q;i be the
family of all sets of k affine subspaces of RY of dimension j. At least one of the following
options holds.

o [t holds cost (A, T) > for all T € Qjy, for a function f that depends on j.

(dA) f(])

210 8 Projective clustering problems

V//

Aig*

Figure 8.3: An example for j = 1. V' is the projection of C' to the span of the two linearly
independent input points A; . and A;,., and V” = V' in this example. The
box is constructed by choosing a side length of two times the maximum length,
which is ||A;.|[?, for the direction that is spanned by V", and by chosing two
times the maximum distance to V" as the orthogonal side length.

e The rank of A is bounded by k(j + 1).

Proof. Let T € Qi be any set of k affine j-dimensional subspaces. Compute the parti-
tioning of the points in A according to their closest subspace in 7. For each subset A’
in this partitioning and the corresponding subspace T', consider whether the matrix that
arises from moving A’ by u(A’) has a rank of at most j. If it is, then A’ lies within an affine
j-dimensional subspace and within an (j + 1)-dimensional linear subspace. If this is true
for all k subsets, then A lies within a k(j + 1)-dimensional subspace and the statement of
the lemma is true.

Otherwise, consider a subset A’ that does not lie within an affine j-dimensional subspace
when translated by u(A’). Let T € 7 be its closest affine subspace. We want that the
subspace spanned by A’ contains the origin. Translating A" by pu(A’) might disturb the
integrality of the coordinates, thus we translate A" by subtracting an arbitrary point in
A’ from A’ and from T'. This does not change the distances between points in A’ and 7.
Name the translated versions A” and T”. Notice that the coordinates of all points in A”
are integers between —A and 2A.

Next, we observe that by Lemma we know that the cost of 7" decreases if we
translate it such that it contains the origin. So we move 7" to a linear subspace V', where
V' is of dimension j. A lower bound on costz(A”, V) implies a lower bound on cost,z(A, 7).

We know that A” contains at least j + 1 linearly independent points A; ., ..., A .. V
does not necessarily lie within the subspace spanned by this j + 1 points, so we consider
V', the projection of V' to the span of the A;,.. Notice that the distance between any of
the j + 1 points and V’ is not larger than the distance between V' and the corresponding
point. Thus, dist(A;,., V') < \/COStZ§<A”, V) < \/COS1§£%<A, T) for all ¢ € [j +1].

V' is at most j-dimensional. We extend it to a j-dimensional subspace V" by adding
arbitrary linearly independent vectors contained in the span of the A;,.. Picture a j-

8.4 The integer linear projective clustering problem 211

dimensional box that lies in V" that contains the projections of all A;,, to V" and the
origin. A box like this can be found with sides of length 2 - maxy—y,__j11 ||A;«||- It can be
extended to a (j + 1)-dimensional box containing the points themselves by assigning a side
length of 2 - max,—y ;i dist(A;,., V') to the remaining orthogonal direction. An example
for the construction of the box is depicted in Figure 8.3] The (j + 1)-dimensional volume
of this box is
7 (ezrl?.a?—i-l HAiz*H)j) e:rlr,l-.g.i,:;(—i-l diSt(Aie*> VI) < 2 (2 -d- A)j Y COSt@% (A’ T)

The inequality follows because the squared ength of all points is bounded by 2dA and
because maxy—y,_j+1 dist(A4;,., V') < 1/coste%(A, 7).

We find a lower bound on this expression by observing that the described box contains
all 7 + 1 points and thus in particular the simplex that they span together with the origin.
The (j + 1)-volume of this simplex is 1/(j + 1)! times the square root of | det(A” A",
where A" is a (j + 1) x d-matrix that contains A;,..., Aj;;1) as its rows (see 3.6.2 in
[GK94]). A" only contains integers, so its determinant is an integer, too. Thus, it is at
least one, and this also holds for its square root. We conclude that the simplex has a
(7 + 1)-dimensional volume of at least 1/((j + 1)!), so it holds that

1/((G+ D)) <27%(2d - AY - Jeostz(A, T)
= costa(A, V) > 1/(2771(2d - A (j + 1))

which gives a lower bound on the cost of 1/(dA)/U) for a function f that only depends on
the parameter j. Again, the statement of the lemma is true. O

Lemma [8.4.1] says that we either have a lower bound on the optimal cost of A or A is
contained in a lower dimensional subspace. We keep this in mind when going through the
coreset construction proposed in [VX12a].

Varadarajan and Xiao develop a way to bound the sensitivity of a point set which we
discuss in the next section. By the framework by Feldman and Langberg, this leads to a
coreset result if dim(F) in Theorem is suitably bounded. The following lemma by
Feldman and Langberg settles this part. It is an extension of the corresponding result for
the VC dimension.

Lemma 8.4.2 (Lemma 12.6, [FL11a], and personal communication with Dan Feldman).
Let Q;1 be the family of all sets consisting of k affine subspaces of dimension at most
j. Define F':= {fa,, | © = 1,...,n} for with fa, : Qur — RY defined by fa, (Q) =
dist?(As, Q). Then dim(F) € O(dk). If A is contained in an m-dimensional subspace for
m > j, then it holds that dim(F') = O(km).

8.4.1 Sensitivity bounds from L..-coresets

The key idea by Varadarajan and Xiao is a way to bound the sensitivity of a point set
A based on a so-called L.,-coreset of A. An L..-coreset S is a coreset approximating the

212 8 Projective clustering problems

maximum distance between the point set and any query shape. The name is due to the fact
that the maximum distance is the infinity norm of the vector that consists of the distances
between each point and its closest subspace. The next definition follows [EV05].

Definition 8.4.3 (L..-coresets). Let A in R™? and k > 0 be an integer. Let Q be a
family of closed and non-empty subsets of RY. A matriz S € R™? C A is an Lu-coreset
if it satisfies for all U € Q that

max dist(As, U) < (1 +4¢) - max dist(S;s, U).
If Q = Qji is the family of all sets of k affine subspaces of dimension j, then we call the
Loo-coreset also Lyo-(7, k)-coreset for A.

In [VX12a] and [AHPV04], L,-coresets are instead defined to satisfy that

(I1—¢) max dist (A, U) < ma dist (S, U).
Notice that the existence of a L.,-coreset in the sense of Definition [8.4.3| implies the exis-
tence of a Ly-coreset with ¢’ = £/(1 + ¢) in the sense of [VX12al, and a similar statement
holds for the reverse direction. In this sense, the definitions are equivalent.

Notice that for Q = Qjx, the coreset property is

max mindist(A;,T) < (1+¢)- max mindist(S,T)
i=1,..n TeT 1=1,....,r TeT

for all T € Q;;. The following lemma states the reduction by Varadarajan and Xiao.

Lemma 8.4.4 (Lemma 3.1 in [VX12a), applied to squared distances). Let an input matriz
A € R™ and an integer k > 0 be given. Let Q be a family of closed and non-empty
subsets of RY. Suppose that there exists a non-decreasing function f.(n',d) such that, for
all submatrices A’ € R™ >4 of A, an La-coreset S C A’ for Q of A’ of size f.(n',d) can
be computed in time T'(n',d). Then it is possible to compute an upper bound s(A;.) on the
sensitivity o(A;) fori=1,...,n such that

> 5(Au) < fo(n.d) - (1+)* - (logn + 1)

n
=1

The running time to compute o(A) for all points in A is bounded by n - T'(n,d).

Proof. The proof uses a nested sequence of ¢ subsets of A for an ¢ < n. A; = A is the
input set. The other sets are computed iteratively in the following way. If A, contains
at most f.(n,d) points, the sequence ends and ¢ := u. Otherwise, a coreset S, of A, is
computed, and A, is set to A,\S,.

The result is a sequence of subsets Ay C A,y C Ay C A; = A with |4, < f.(n,d) and
a sequence of coresets Sy, ..., Sy_1. Notice that together with Ay, the coresets partition A.
Thus, for S, := Ay, the sets S1,..., S, form a partitioning of A.

8.4 'The integer linear projective clustering problem 213

Now let A; be an input point, and let v € {1,...,¢} be the index of the coreset that
A, is contained in, i.e., A;. € 5,. Let U € Q. The goal is to upper bound the sensitivity
of A;, by lower bounding the contribution of the remaining points.

Consider the coresets .5, for 1 < v < v and notice that each of them is a coreset for a
point set that contains A;., because A;, € A, for 1 < u < w. For each u € {1,...,v}, let
A;,« be the point in S, with maximum distance to U. By the L.-coreset property, that
implies that

dist? (A, U).

1
dist?(A4; . >

The cost of A; ., ..., A« is a lower bound on the cost of all points. Thus, it follows that

v .
m dlSt2(Ai*, ‘Zl)

By the definition of the sensitivity of a point, that implies that

D dist? (A, U) > Y dist®(A;., U) >
u=1

i=1

(4) dist?(A;., U) - dist®(A;., U) (1+¢)?
0‘ i* fr— ~ fr—
poy dist? (A, U) iy dist®(Ai, U) v

for all A;, € S,. Computing the sum over all v, the total sensitivity of A is bounded by

4

> Y o) < z's'(”) < flnd)- (147X = flnd)- (142,

v=1 A,, €A, =1
< fo(n,d) - (1+¢)*- (logn + 1)

where the last inequality follows because ¢ < n and by known bounds on the harmonic
number H,,.]

8.4.2 Constructing L..-coresets

Varadarajan and Xiao reduced the problem to bound the sensitivity of A to the problem
to compute an L..-coreset for A. Thus, we now turn to see results on L..-coresets. We
start with results on L.-coresets for £ = 1. The following result is one of the first results
on coresets for projective clustering problems.

Theorem 8.4.5 (Theorem 3.7 in [AHPV04]). Let A € R™? be a matriz representing
n points and let ¢ > 0 be given. An Lu,-(d-1,1)-coreset of size O(1/e71) of A can be
computed in time O(n + 1/g471).

Notice that even though the result is for affine hyperplanes, it implies a coreset result
for subspaces of lower dimension as well.

214 8 Projective clustering problems

Observation 8.4.6. If S € R™*? is a Ly.-(d-1,1)-coreset, then it is also a Lu-(j,1)-coreset
forany 7 <d-—1.

Proof. Let T be any j-dimensional affine subspace for j < d — 1, and let = be a point that
maximizes the distance to 7" among all points in A, i.e., dist(x,T) = max;—1__, dist(A;., T).
Consider the affine hyperplane H that goes through 77 (x) and is orthogonal to the vector
x—my(x). Notice that H contains 7" (because T is also orthogonal to x — my (x)), and that
mr(x) = my(x). In particular, the distance between x and H is the same as the distance
between x and T'. Since S is an Ly-(d-1,1)-coreset, it contains a point S;, that satisfies
dist(z, T') = dist(x, H) < _max dist(As, H) < (14 ¢) dist(Si, H) < (1 + ¢) dist(S, T).

1,...,n
This implies that S is an L.-(j, 1)-coreset.]

We can also conclude that the coreset size can be made smaller if the input matrix has
a rank which is smaller than d as we see in the following corollary.

Corollary 8.4.7. Let A € R™? be a matriz representing n points which is of rank r.
Let 0 < e <1andj € {0,...,d — 1} be given. There exists an Loo-(j,1)-coreset of size
O(1/e7t") of A.

Proof. Notice that A is contained in an r-dimensional linear subspace of R¢, and that any
affine j-dimensional subspace is contained in a j + 1-dimensional linear subspace. Let V' be
an arbitrary subspace of dimension j +7 + 1 that contains A (if j+7r+1 > d, let V = RY).

We represent A in an arbitrary basis of V' which results in a matrix A’ € R™("+i+1) By
Theorem and Observation there exists a subset S' C A’ of size O(1/e7*") that
satisfies the coreset property for A’ and all j-dimensional affine subspaces of V. Since A and
A’ describe the same points, this also holds for A when we replace S’ by the corresponding
subset S of A. Now let V'’ be any affine j-dimensional subspace of RY. We can define a
rotation that rotates V' into V' while changing neither A nor the distances between points
in A and V'. We get a subspace V" that lies within V. Thus, S satisfies the coreset
property for V" and this implies that it satisfies the coreset property for V'’ as well. See
the proof of Theorem for the exact way to specify the rotation. [

Now we work through the L.-coreset result by Edwards and Varadarajan [EV05] for
k > 1. The result is originally stated for j = d — 1 but works for smaller j as well and we
will see that it then produces a smaller coreset. In the proof, we need the following modified
lemma from [EVO05]. It gives a lower and upper bound on the distance of a point on the
integer grid {1,..., A} to an affine subspace spanned by grid points. The affine subspace
spanned by z, ..., z; is the subspace {zo+ V'} where V is the span of x; — zq, ..., z; — x¢.

Lemma 8.4.8 (Variation of Proposition 1 in [EVO0A]). Let A € {1,..., A} be a set
of n points, let k be an integer and let 0 < j < d — 1 be an integer. Let T be a j-
dimensional affine subspace {xo + V} where o € {1,...,A} and V is spanned by j
linearly independent a1, ..., x; € {1,..., A} Then for any z € {1,..., A}, dist*(z,T) is
either zero or between 1/(dA)U) and \/dA for a superlinear function f in j.

8.4 'The integer linear projective clustering problem 215

Proof. The upper bound is easy to see since the distance between two points from {1, ..., A}4
can at most be vdA and T contains a point from {1, ..., A}?. Thus, the distance between
any point in A and T is bounded by v/dA.

We start with the case that ¢ is the origin. The points x1, ..., z; form a basis, but they
are not orthogonal. An orthogonal basis can be computed using the orthogonalization
process by Gram and Schmidt, see in the appendix. The orthogonal basis is given
by

-1
—ae= Lt o

and an orthonormal basis is defined by setting v, := v¢/||y¢||. The z, contain coordinates
between 1 and A. The y, result from them by subtracting, multiplying and dividing
different terms. They can thus have fractional coordinates p/q. Here, p and ¢ come from
a range that is increased by every operation. However, since the number of operations
only depends on /, y, contains fractional coordinates p/q for |p|,q € {1,...,(dA)"®} for
a function f’ in ¢. This implies that the coordinates of y, are of the form p/q, |p|,q €
{1,...,(dA)/®} for another function f in /.

Now for any grid point z € {1,...,A} we have dist’(z,T) = ||z||> — ZJ_,(2Ty})?
where ||z[|? is an integer and the subtrahend can be expressed as a fraction with an integer
nominator and a denominator that is at most (dA)/U) for a function f in j. Thus, each
point either costs nothing or at least 1/(dA)). If g is not the origin, we compute the

distance between z —xg and 7" := {x —x¢ | € T'} which is spanned by z1 —x, . . ., x; — 0.
The coordinates of z — zg, 1 — o, ..., x; — xo are between —A and A, so we get the same
result with a different function f. [

Let A be the smallest integer that satisfies A > log(v/dA/(1/(dA)/0))) and notice that
A€ O(f(j) - logdA).

Theorem 8.4.9 ([EV05]). Let A € R™? represent a set of n points from {1,...,A}¢ C R?
where A > 2 is an integer. Letr be the rank of A. Let k € Nt and 0 < & < 1 be parameters.
An Loo-(j,k)-coreset of A with precision € of size ((logdA)/e)’0*™) can be computed for
j<d-—1. The term f(r,j, k) depends onr, j and k.

Proof. The construction by Edwards and Varadarajan works recursively. It builds an L-
(j,k)-coreset based on a construction of L..-(j,k-1)-coresets. The recursion stops when
k = 1, and then a coreset of size O(1/e/%") can be constructed by Corollary [8.4.7, If
j+r>d—1,a coreset of size O(1/e?"1) can be computed instead by using Theorem [8.4.5
with Observation [.4.61

Now we describe the construction of a L..-(j-k)-coreset based on the construction for
k —1. For a set T € Q, we say that T € T handles a point A;, if dist(A.,T) =
mingcq dist(A, T"). The key idea underlying the construction is the following observa-
tion. Whenever we compute an L..-(j,k-1)-coreset S of a point set (), we gain the following
information for any given set of k£ j-dimensional subspaces T1,...,Ty: Either all points in
S are handled by (at least) one of the subspaces T1, ..., T_1, or there is at least one point

216 8 Projective clustering problems

where the closest affine subspace is 7. In the first case, we can use that S is a L-(j,k-1)-
coreset for (). In the second case, we gain information about the position and the extent
of Tk

This idea is now utilized in process with r + 1 levels (d + 1 in the original version). We
describe the construction and sketch the proof except for one subproblem that we deal
with by a lemma below.

On level 0, an Ly-(j,k-1)-coreset S is computed for the input A. For any query 7 =
{11, ..., Ty}, we have that either all points in S are handled by Ti,...,T}_; or there is
at least one point xg in S that is handled by Tj. In the first case, assume that d is the
maximum distance between a point in S and its closest subspace. Since all points in S are
handled by a subspace T, with ¢ < k and since S is a Ls-(j,k-1)-coreset, we have

max min dist(A;,Ty) < (1+¢)max min dist(S;., Ty) = (1 +¢)d.
i=1,...,nl=1,...k—1 Si«€S4=1,...,k—1
Now assume that the maximum distance between any point in A and its closest subspace
in 7 is d’. Since we are interested in the closest subspace, d’ is bounded by the maximum
distance of any point in A to its closest subspace in among the first £ — 1 subspaces. Thus,
d < (14 ¢€)d. This means that S satisfies the Ly-(j,k)-coreset property for this query.

In the other case, one of the points is handled by T. Thus, the task reduces to computing
a coreset under the assumption that one of the points is handled by 7). Each point in
S could be the relevant point, so the construction computes additional coresets for each
choice of a point xy from S. The level 1 computation is called for every choice.

Level 1 then is responsible to compute a set that provides that the L..-(j,k)-coreset
property holds for A and any query where z(is handled by 7). It partitions the points
in A according to their distance to xy. By Lemma m (applied for a 0-dimensional
affine subspace spanned by z;), the distance of any point to xq is either zero or at least
(dA) D) > (dA)~/0) and at most VdA where f(5) is a superlinear function in j. We define
Bo[zo] = {0} and Bylzg] := {As | 2671/ (VAAY D < dist(As, 20) < 2¢/(VdAA)T DY for
1 < ¢ < X\. Notice that this is indeed a partitioning.

Now a similar argument as above is used. For each ring set By[xo], an Loo-(j,k-1)-coreset
Se[xo] is computed and added to S. Let x; be the furthest coreset point from zq that is
handled by 7. Then all coreset points in ring sets further away are handled by 11, ..., Tk_1.
Their maximum distance thus approximates the maximum distances of the other points in
their ring sets. The problem reduces to providing the coreset property for points that are
in the ring set of x; or closer to zp. The point x; can be any point of any Sy[zo] (or o), so
the construction proceeds for any choice of z; from {zo} U U} Se[zo]. If 21 = 70, wWe are
done since z(is in S already. Otherwise, the second level is entered with zy and x; and
the set of points in the inner rings, A[xg,z1] := UJ_, B¢[x¢], where a is the index such that
x1 € Bglzo].

In Level 2, we know that both xy and x; are handled by 7}, and that for all points that
we need to consider, the distance to xg is at most twice the distance between xy and x;.
The points are now partitioned based on their distance to the affine subspace T spanned
by xy and x;. Since both are grid points, we can again use Lemma to see that the

8.4 'The integer linear projective clustering problem 217

distance to T is at least (dA)~/) and at most VdA. We define By[zg, x1] as the set of
points with distance zero to T. We assume for now that we know a method to compute
an Loo-(j,k)-coreset for By|xg,z1]. We define the set By[zg,z1] by Belxg,x1] := {Aw €
Alzg, 1] | 2071/ (VAA) D) < dist(Ay,, T) < 2°/(vdA)TD}, which is a partitioning. An
Loo-(j,k-1)-coreset Splxo, z1] is computed for each By[xg, x| and added to S. Each point
in any Sy|xo, 1] is a choice for the farthest point from 7' which is handled by T}. We
denote it by x5 and its index is again a. So we enter the next level with xg, z; and x5 and
Alxg, 1, 9] := Uj_, B[z, x1].

The next levels work similarly. Level t is entered with a series of points xg, x1,..., ;1
and a point set A[xg, 21, ..., x;—1] for which we know that the distance between any z,; and
the affine subspace spanned by zg,...,x; for ¢ < j is bounded by the distance between
x; and this affine subspace. The task is to compute additional points that ensure the
coreset property for Alzg, x1,...,2_1]. We define a subset By[zo, . .., x;_1] containing those
points from Az, ..., z; 1] that lie on the affine subspace T spanned by x, ..., 2z, 1 and
partition the remaining points according to their distance to 7" by setting B[z, . .., x¢—1] :=
{As € Alzg, ..., x1] | 271/(VdA)YU) < dist(A, T) < 2°/(VAAY D}, An Lo-(3,k-1)-
coreset Sy[zo, ..., x;_1] is computed for all By|xo,...,z; 1] and it is added to S. Then each
point in any Sy[xg,..., 2 1] is a choice for the farthest point that is handled by T}, we
name the point z; and we enter level ¢t + 1 with zg,...,z; and the set Alxg,...,z;] =
UJ_, Belxo, . .., x¢—1] where a is the index of the set x; belongs to.

We enter level r + 1 with affinely independent points x, ..., z,, i.e., xt1 — xq, ..., T, — Tg
are linearly independent. Since A has rank r, there cannot be another point x in A such
that z is affinely independent to xy, ..., z,. Thus, all points in A[z,...,xz,] lie within the
affine subspace spanned by xy, . . ., 2. We see below how to proceed for By[zg, x1, ..., 2z,] :=
Alxo, ..., .| and the process stops.

This completes the description except for the fact that we skipped the subsets on the
affine subspaces spanned by o, . .., z; on each level. We name this affine subspace T;. So
the remaining task is to compute a point set that ensures the L..-j-k-coreset property for
the subsets By|xo, z1], ..., Bolzo, ..., x| (the subset By[zo] only contains zq and zg is in S
anyway). An example for the procedure is depicted in Figure . For any ¢t € {0,...,r},
we know that for any 1 < ¢ <t and a > ¢ it holds that dist(z,, T;_1) < 2-dist(xs, Ty_;) by
construction. Below, we cite a lemma from [EV05] and conclude Observation that
states that under this precondition, the convex hull of {x,...,z;} contains a translate of
the hyper-rectangle

{f'(7) - (a1(z1 — 7, (21)) + ag(wo — 77, (22)) + ...+ ay(we — 77, (24))) | 0 < @y < 1}

where f’(j) is a term that depends on j. Edwards and Varadarajan use this lemma to cover
Bylzo, ...,z by scaled versions of this rectangle. This is possible because By|zo, .. ., z;]
is covered by the rectangle

vo + {(ar(@1 — 73, (1)) + az(we — 77, (22)) + .. + @@ — 73, (20))) | =2 < a; < 2}
Thus Bo[zo, . .., 2] can be covered by O(1/(f'(j)e)") = O(¢7*) copies of the rectangle
{(e/2)f'(4) - (ar(a1 = g, (21)) + a2(w2 — 77, (22)) + . + @@ — 77 (24))) | 0 S @y < 1}

218 8 Projective clustering problems

Figure 8.4: An example for an one-dimensional T} and the construction of the rectangles.
The grey area depicts T} and all points that are within the maximum distance
that any coreset point has to 7). The blue rectangles do not intersect T}
and thus the coreset property for £ — 1 is sufficient. Only the rectangles that
intersect T}, but are not contained in 7} can cause additional error, but it is
bounded since the rectangles are chosen suitably small.

For each of these copies, an L.-(j,k-1)-coreset is computed and added to S. Consider any
of the copies together with the input points and coreset points that lie within it. Again, the
coreset points of these coresets are either handled by 71, ..., Ty_1 in which case we are done,
or there is at least one point in the copy that is handled by 7}. In particular, T} intersects
this rectangle. The rectangle is a scaled down version of a rectangle that is contained in
Tk, and the width that is only /2 times the width of the rectangle contained in Tj. Thus,
all points in By[zo, ..., 2| are within distance (1 4) of the maximum distance between
T, and the coreset point from By|xo, ..., ;] that is contained in Tj. This completes the
sketch of the proof of the coreset property.

Let S(k) be an upper bound on the size of the coreset computed when the number of
subspaces is set to k. By Corollary Theorem [8.4.5] and Observation [8.4.6) we have
that S(1) < O(1/emiMld=Litr}) We first analyze the coreset size without the additional
coreset points from the rectangles. On level 0, S is initialized with S(k — 1) points. There
are S(k — 1) choices for zy. For each x(, we compute A coresets, so there are A\(S(k — 1))?
points added to S on level 1, and level 2 is entered as often. In general, level ¢ is entered
ATH(S(k — 1))t times and adds A(S(k — 1)) to S, for t = 1,...,r. Additionally, we add
O(e~*1) coresets for the rectangles on level ¢ for t = 1,...,7 + 1. We get that

t+1

S(k) < iOWS(k 1)) 2 O,

Together with S(1) < O(&7) and A € O(logdA), we get that the overall coreset size is
((log dA) €)@+ for a function that depends on j, k and r. O

8.4 'The integer linear projective clustering problem 219

Lemma 8.4.10 (Lemma 1 in [EV05], attributed to [BHOL]). Let zy, ...,z bet < d affinely
independent points from R?. Denote the affine t-dimensional subspace spanned by xy, . . . , T4
by T;. Assume that

dist(z,, Tp—1) < 2 - dist(zg, Ty—1)

holds for all1 < ¢ <t and a > {. Then the convex hull of {xq,...,x;} contains a translate

of
{f/(d) - (ar (w1 = 7r (21)) + a2(w2 — 71y (22)) + -+ ar(we — 77y, (24))) | 0 < 05 <1}
where f'(d) is a term that depends on the dimension d.

Observation 8.4.11. If xg,x1,...,x; are contained in a linear subspace of dimension j,
then the statement of Lemma (8.4.10 still holds when f'(d) is replaced by a term f'(j) that
depends on j instead of the dimension d.

Proof. All T; lie within the subspace that is spanned by x, ..., z;, which is contained in a
linear subspace V' of dimension j. The convex hull of the ¢ 4 1 vectors also lies within this
j-dimensional subspaces. Thus, we can represent all x; in an arbitrary basis of V' without
changing the distances between the points and the 7; and without distorting the convex
hull. Then, we apply the lemma. Since it is applied to j-dimensional points, the term f(d)
is in fact a term f(j). The statement of the lemma then translates back when we change
the basis to the original d-dimensional basis.]

8.4.3 Obtaining the coreset result

In this section, we combine the insights from the previous parts and conclude with our
coreset result. By Lemma , we know that for any input matrix A € {1,... A}**?
there are two possibilities. Either the rank of A is bounded by k(j+ 1), or the optimal cost
is at least 1/(dA)fV) for a function f that depends only on j. In the first case, the points in
A are contained in a k(j + 1)-dimensional subspace. We get by Lemma that dim(F)
is then bounded by O(k?j). Since the rank of A is bounded by O(kj), Theorem
implies that an Le-(j, k)-coreset of size (logdA/e)’U*) can be computed, where f(7,k)
only depends on j and k. By Lemma [8.4.4] this implies a sensitivity bound. It holds that
S(A) < O((logdA/e)!) logn). Theorem [8.3.4] then implies that there exists a coreset
for A of size O(k*je~2logn((log dA)/)f k).

In the second case, we use the dimensionality reduction to obtain a small coreset. Let
AU be the projection of A to its best fit subspace of dimension m = [18k(j+1)/e?], and let
V be an arbitrary m’-dimensional subspace that contains A" for m/ := m+j € O(kj/e?).
We represent A in an orthonormal basis of V' and name the resulting (n x m’)-matrix
A’. For an 0 < £ < 1 we now use a grid with cell width wq := (£/4)-(1/v/2nd)-(1/(dA))
and move every point in A’ to its closest grid cell. Let A” be the resulting matrix. Each
point is moved by less than

2

ncosteg(A, T)

1 ¢ 1 15
dwg)? = — . — .
(Vdwo)* = 5 <16

220 8 Projective clustering problems

for any 7 € Q;; where the inequality holds because of the lower bound on the cost function.
In particular, moving all points induces a squared movement of less than

211 i t2 (A, T).
(/16) g costs (4,

A" can now be scaled by 1/wy to obtain a matrix with integer coordinates, and it can
be translated such that these coordinates are positive. Name the resulting matrix A” €

{1,..., A’} The coordinates of A" are of size O(e~*v/nd(dA)?"). Since A" contains
points of dimension m’ € O(kj/e?), its rank can be at most O(kj/e?). Theorem thus
implies that an L..-(j, k)-coreset for A” can be computed which is of size

((log de="Vnd(dA)T D)) Je)T @Rk = ((log dnA) [e)90 k")

where f is a function that depends on j, k and 7 and ¢ depends on j, k, and e~*. The
sensitivity of A” is thus bounded by ((logdnA)/e)9G#<™) Notice that translating and
scaling does not change the sensitivity, so it is also a bound on the sensitivity of A”. In
order to transfer the sensitivity bound to A’, we need the following lemma.

Lemma 8.4.12. Let 0 < e < 1/2, and let Q, be a familiy of non-empty closed subsets of
R?. Let A € R and B € R™ 9 be two matrices that satisfy

2
£ .
14 = Bllf < 15 - min cost (A,).

Then the total sensitivity of B with respect to Q. is bounded by

(1+¢)- &(4)+

where G(A) is the total sensitivity of A with respect to Q.
Proof. The total sensitivity of B is

n dist?(B;., U)

=2 ma

) > dist?(By, U)

For each ¢ = 1,...,n, we denote the U € Q that maximizes ZdiStj(%Eéﬂ) 7 by U(B;).

Notice that Corollary 2.3.2] holds verbatim if we replace C' be any closed and non-empty
set from R?. For A := mingeq costyz (A, U), Corollary n implies that |dist*(B, U) —

dist*(A, U)| < e - dist?(A, U) holds for all U € Q. In particular, it holds for all denomi-
nators, implying that

S(B) Z”: dist®(B;,, U(Bs) z“: dist? (B, U(Bs))
S Y dist’(B; ‘ZI(B (1—e) X0 dist*(Aj., U(Bi))

D% =1

(8.2)

8.4 The integer linear projective clustering problem 221

We define a vector 0 € R" by setting

V(=o)X dist? (A, U(BL))

Di =

Notice that &(B) < [|o]|* because |[9|]* equals the last term in Inequality (8.2). By
the triangle inequality, it holds that dist(B;., U(B;.)) < dist(Bi., Asi) + dist(Az, U(Bix))-
Define the two vectors a, b € R" by setting

a; = and b; 1=
V(L —e) T, dist? (A, U(B..))

V(1 =) T, dist? (A, U(B))

Then we have 9 = a+ b and [[9]| < ||a|| + ||b]| by the triangle inequality in R™. It holds

n diStQ Bi*, Az* n diStQ BZ‘*, Az*
lalf? =3 B A <y B Ae)
= (1—¢) iy dist (Ajs, U(By)) — = (1 — g)mingeq >0y dist (Aj., U)

g
16

<
~ (1 — &) mingeq Y dist®(Aj., U) ~ 16(1 —¢)

mingeq costyz (A4, U) g2

by the precondition of the lemma since 37, dist?(Bi., Aw) = |A — B|%. Additionally
[|6]| < /&(A) because U(B;,) can only cause the term to be smaller, so it holds that

HbHQZZ 18 (z'a;u()) SZmaX dist (A,;U)
= (1—¢) ?:1 dist” (A, U(Bix)) ~ = ueQ (1 —¢) ?:1 dist”(Aj., U)

We get that

1211 < (I[all + b]])*

g2 € €

< 60 =3 +4\/1T€\/6(A)+6(A) <(1+2)-6(4) + .

For the last inequality notice that ¢ < 1/2 implies that 1/(1 —¢) < 2, and then distinguish
the cases 1/(4- 1 —¢) < &(A), which implies that \/&(A) - ¢/(4v/1 —¢) < eB(A), and

S(A) <1/(4-4/1 —¢), which implies that \/&(A)-e/(4v/1 — ¢) < ¢/8. The first summand
is bounded by £/8, too, because € < 1/2. O

We use Lemma [8.4.12| to transfer the sensitivity bound from A” to A’. Since these

matrices satisfy [|A4’ — A”||% < % -mingeq,, costgz(A, T), we get that

S(A) < (14)&(A") + Z < 3((log dnA) /g)96he"),

222 8 Projective clustering problems

Since A’ is in R™™' | Lemma implies that dim(F') € O(km’) € O(k%*j/e?). Theo-
rem implies the existence of a coreset S with weights w that contains O((k?j/e?) -
3((log dnA) /e)90%<™)) points and is a coreset for the matrix A’. The matrix S is also a
coreset for A for the family of all sets of k affine subspaces of dimension j that lie within
V. As in Theorem [{.4.1 we argue that we can find a rotation that rotates every set of
arbitrary k affine subspaces of dimension j from R? such that it lies within V' and does not
change A" nor the distances between A and the set. Thus, the coreset property holds
for all T € Q. More precisely, it holds for every 7 € Qy that

7w dist? (S, T) — costyz (A)

S« €S

<e- costzg(A(m), 7).

By Theorem |3.2.3] we know that

<e-costp(A,T).
i=m-+1

d
‘ (costzg(A(m), T)+ > 0?) — coste (A, T)

holds for all T € Q. since we chose m = [18/k(j +1)/e*] and every T € Qj is contained
in a k(j + 1)-dimensional linear subspace. Together, we get that

d
37w dist?(Sp, T)+ Y. of — costyz (A, T)

S« €S i=m-+1

< 5(005‘543(14(7”), T) + costz(A, T)).

This term is bounded by 3¢ - costyz (A, T) since COStg%(A(m), T) < 2costgz(A, T). We can
replace € by £/3 to reduce the error to e. We conclude that the following theorem holds.
Notice that we assume A € (nd)o(l), so the dependency on A is replaced by a dependency
on n and d.

Corollary 8.4.13. Let A € {1,..., A} with A € (nd)°Y. Let Qu be the family of k
affine subspaces of R? of dimension j. There exists a coreset with offset for A for Qi of
size

(log dn) /2)" 07

where h is a function that only depends on j, k and e *.

Part Il

Appendix

A Dissimilarity measures and vector spaces

In this chapter, the input point sets are from a set X which is not necessarily the Euclidean
space but just a (finite or infinite) set of objects together with a dissimilarity measure.
Whenever we want to emphasize that we are operating in a space that is not necessarily
Euclidean, we use calligraphic letters. Points are written in lower case calligraphic letters
as x,y € X, and subsets of X in upper case letters. The input point set is usually denoted
by P C X.

We review basic definitions and facts from linear algebra. We cite definitions from
different references and reformulate them slightly for brevity and such that they fit together
better.

A.1 Dissimilarity measures and metrics

Clustering partitions objects according to a concept of similarity or, in our case, dissim-
ilarity. We denote general dissimilarity measures on a set X by D : X x X — R2? and
demand that D is non-negative and zero only for the dissimilarity between a vector and
itself.

We extend terms from the Fuclidean case to the case of arbitrary dissimilarity measures.
The distance between two finite point sets P and Q, is the smallest pairwise distance
between a point from P and a point from Q, denoted by D(P, Q) := min{D(x,y) |
x € P,y € Q}. We denote the diameter of a finite point set P C X by diam(P) :=
max, ,ep{D(x,y)}. Forapoint x € X and a non-negative value r € R, we define B(x,r) :=
{y € X | D(x,y) <r} as the sphere with center x and radius r.

When a dissimilarity measure is symmetric, then we call the measure a distance function.
If it additionally satisfies the triangle inequality, then it is a metric and forms a metric
space together with X.

Definition A.1.1 ([Whi68], Definition 2-1 on page 45). For a non-empty set X and a
function dist : X x X — R, we say that X and dist form a metric space and in particular
that dist is a metric on X if it holds for all x,y and z from X that

1. dist(x,y) > 0 and dist(x,y) = 0 if and only if x =y
2. dist(x, y) = dist(y, x)
3. dist(x, y) < dist(x, z) + dist(z,).

For example, the standard Euclidean distance is a metric. The squared Euclidean dis-
tance, however, does not satisfy the triangle inequality and is not a metric, but it is a
distance function.

226 A Dissimilarity measures and vector spaces

A.2 Vector spaces

Recall that an abelian group is a set with a commutative and associative operation that
has a neutral element and is invertible.

Definition A.2.1 ([AII91], Definition 5.3.1 and 5.3.2 on pages 186-187). An abelian group
(G, 0) consists of a set G and an operation o : G X G — G where the image of a,b € G is
denoted as a o b, such that

1. o is commutative, i.e., aob=boa

2. o is associative, i.e., ao (boc) = (aob)oc

3. there exists a neutral element e € G such that eoa = a for alla € G

4. for every a € G, there exists an inverse element b € G such that aob = e.

A field F is a set with two operations + and - such that (F, +) and (F'\{0}, -) are abelian
groups (where 0 is the neutral element of +) and distributivity holds.

Definition A.2.2 (JAII9I], Axioms 3.2.1 and Definition 3.2.9)). A field is a set F together
with two operations + : F X F' — F and - : F'- F — F such that (F,+) is an abelian group
where we call the neutral element 0 and (F\{0},-) is an abelian group where we call the
neutral element 1, and it additionally holds

5. distributivity, i.e., a- (b+c)=a-b+a-c for all a,b,c € F.
For example, R and C are fields.
Definition A.2.3 ([HK72], Chapter 2, pages 28-29). A vector space V over F consists of
1. a field F of so-called scalars with operations +: F X FF— F and - : F x F — F
2. a set 'V of so-called vectors
3. an operation + : Vx V. — V (vector addition) such that (V,+) is an abelian group

4. an operation - : VX F — V (scalar multiplication) where the image of x and « is
denoted by o - x or ax for all « € F and x € 'V and that satisfies that
a) 1-x=x forallz eV
b) (a-p)-z=a-(f-x) foralla,5 € F and allx € V
c) a-(x+y)=ar+ay forala€ Fandx,yc V
d) (a+ B)x = ax+ Bz foralla,f € F and xz € V.

INotice that Z follows from the other axioms in the case of a field and A1-A4 and M1-M4 are the axioms
for the multiplicative / additive abelian group.

A.3 Inner product spaces 227

A subspace of a vector space V is a subset U C V that is a vector space itself.

Often, the field F is either R or the set of complex numbers C. The Euclidian space R?
is one example for a vector space, another is the space of all m x n-matrices or the space
of all functions from a set to a field F'. The latter space is also an example of a space with
infinite dimension.

The elements of a vector space are usually called wvectors. We also continue to use
the term points, even though these points can now be differenct objects like for example
functions. We still use calligraphic letters for point sets and points from vector spaces.

In vector spaces, lengths are usually measured by a norm which is a mapping that
satisfies that the lengths of vectors is non-negative and only zero for the zero vector, that
is linear and that satisfies the triangle inequality.

Definition A.2.4 ([Cho69], page 25). Let F' be either R or C and let V be a vector space
over F'. A mapping |-|: V— R is a norm if

1. from |x| =0 follows x =0
2. la-x|=|a|l-|x| foralae Fand x € V
3. |x+yl <lx|+y| forallx,y e V.

Notice that for any norm |- |, the mapping defined by (x,y) — |x — y| is a metric.

A.3 Inner product spaces

One particularly important special case of a metric space is an inner product space. Inner
product spaces are vector spaces where it makes sense to define a notion of lengths and
angles via an inner product. For this purpose, we need a vector space over either R or C.
Recall that for a point x € C, T denotes the conjugate of x, which is the complex number
Re(z) — Im(z) - i where Re(z) is the real and Im(z) is the imaginary part of z. For a real
number x € R, it holds that T = x.

Definition A.3.1 ([HKT72], pages 271+277). Let F' be either R or C and let V be a vector
space over F'. An inner product on V is a mapping (-,-) : VX V— F such that (-,-)

1. is linear in the first argument, i.e., it holds for all x,y,z € V and o € F that
o (x+y2) =12+ (y,32)
e (a-x,y) =a-(x,y)

2. is conjugate symmetric, i. e., {x,y) = (y,x) for all x,y € V

3. is non-negative, i.e., (x,x) > 0 for all x € V and (x,x) > 0 if x # 0.

Notice that linearity in the first argument and conjugate symmetry imply that

228 A Dissimilarity measures and vector spaces

4 (x,y+2) =(y+zx) =1 +(zx) = (x.y + (1,2 and

5. (xa-y)=({a-yx)=a (y,x) = (x, 1)

Furthermore, (x, x) is always real because (x, x) = (x, x). Otherwise, property 3 would
actually not be well-defined and the inner product would not be of much use to define
lengths or angles. The following theorem states that the inner product always induces a
norm, and by this, always induces a metric. When the context is clear, we use dist(x, y) :=
|x — y| and dist?(x, y) := (dist(x, y))? to denote this standard metric defined by the inner
product space.

Theorem A.3.2 ([HKT72], page 273+277). Let V be a vector space on the field F' and let

(-,+) be an inner product on V. Then, the function |-|: V — R defined by |x| := \/{x, x)
S a norm.

A.4 Sequences and Hilbert spaces

Let X be a set. A sequence in X is a mapping x : N — X that assigns an element from
X to any natural number. It is common to use the abbreviation x; := x(i) for sequences,
and sequences themselves are often written as (x;);en. Sequences are of particular interest
in metric spaces where we have a notion of distance. Then, we can define what it means
that a sequence is convergent.

Definition A.4.1 ([Rom92], page 244). Let X and dist : X x X — R2% form a metric
space. A sequence (x;)ien in X converges to x if for any € > 0 there exists an n > 0 such
that for all m > n it holds that

dist(xn, 1) < €.

If there exists an x such that (x)ien in X in X converges to x, we say that (%)ien in X is
convergent (in X) or converges (in X).

A special case of convergent sequences are Cauchy sequences.

Definition A.4.2 ([Rom92], page 249). Let X and dist : X x X — R=% form a metric
space. A sequence (x)n in X is a Cauchy sequence in X if for any e > 0 from R, there
exists an n > 0 that satisfies for all my, ms > n that

dist (%, , Amy) < €.

We notice (but do not prove) that all sequences that converge are Cauchy sequences.
The opposite is not necessarily true.

Definition A.4.3 ([Rom92], page 250). Let X and dist : X x X — R= form a metric
space. The space is complete if any Cauchy sequence in X converges.

A.5 Additional facts on Euclidean geometry 229

We know by Theorem that the inner product in an inner product space induces
a norm and thus that every inner product space is a metric space. If this metric space is
complete, it is a Hilbert space. We need Hilbert spaces in Section [6.2]

Definition A.4.4 ([Rom92], page 265). An inner product space that is complete under the
metric induced by the inner product is said to be a Hilbert space.

The Euclidean space R? is a Hilbert space for any d € N. Another example are sequence
spaces, which are inner product spaces containing sequences in R or C as vectors.

A.5 Additional facts on Euclidean geometry

Lemma A.5.1 ([HK72]). Every set of k < d linearly independent vectors from R? can be
extended to a basis of RY.

Proof. Corollary 2 on page 46 of [HKT2] states that every set of linearly independent
vectors from a finite-dimensional vector space V are part of a basis of V. As R? is a finite
dimensional vector space, every set of independent vectors is part of a basis and can thus
be extended to such a basis. [

Theorem A.5.2 ([rPGS83| [Sch07, [HK72]). Let V' be an inner product space of dimension

d and let ai,...,aq be any linearly independent vectors in V. Then one can construct
orthogonal vectors by, ..., by in V such that for each k = 1,...,d the set {by,...,bg} is a
basis for the subspace spanned by aq,...,aq. The vectors are defined by
i—1 b
bi = a; — Z<CLZ‘, bj> : J
j=1 ||bj||2

Corollary A.5.3. Let k < d and let aq,...,a; € R? be orthonormal vectors. Then there
exist vectors by,1,...,bq € R? such that {ai, ..., ak, bgs1,...,bqa} is an orthonormal basis
for RY.

Proof. Notice that the dimension of R? is d and thus every basis of R? consists of d
linearly independent vectors. By Lemma {ai,...,a;} can be extended to a basis

of RY, we name the additional vectors aj.,...,a,. Then, {a1,...,ax, a},q,...,a,} can be
transformed into a orthogonal basis by using Theorem[A.5.2] Notice that the formula b; :=
a; — ;;11<ai, bj)- be]# implies b; = a; for i = 1,..., k because the a; are orthonormal. Thus,
the orthogonal basis that results from Theorem [A.5.2]is of the form {ay, ..., a, bj 1, ..., b
for orthogonal vectors by, y,...,b;. By normalizing the 0}, we get the statement of the
corollary:. [

The following lemma is a standard statement from linear algebra.

Lemma A.5.4. Let B = {by,... by} with k < d be a basis of a subspace U of R? and let
x € U be a vector. Then there exist unique coefficients oy, . .., ax such that r = Zle a;b;.

230 A Dissimilarity measures and vector spaces

Proof. We defined subspaces of R? as subsets of R? which are the span of a finite set of
vectors. This implies that there are coefficients aq, ..., oy such that z = Z?:l a;b;. Now
assume that there exist coefficients 51, ..., [, with x = Zle B;b; and such that «; # ; for
at least one ¢ € {1,...,k}. This implies that

k k
i=1 =1
k
&> (o — Bi)bi =0
i=1

and it holds a; — f3; # 0 for at least one i € {1,...,k}. By our definition of linear
dependence and the fact that a basis must be linearly independent, this contradicts that
B is a basis. Thus, no such coordinates can exist. O

B.1 Settings

Parameter

B Additional information on BICO experiments

Value

TotalMemSize (in bytes)
TotalBufferSize (in bytes)
TotalOutlierTreeSize (in bytes)

p% of dataset size
5% of TotalMemSize
5 % of TotalMemSize

WMflag 0
W vector (1,1,...,1)
M vector (0,0,...,0)
PageSize (in bytes) 1024
BDtype 4
Ftype 0
PhaselScheme 0
RebuiltAlg 0
StatTimes 3
NoiseRate 0.25
Range 2000
CFDistr 0
H 0
Bars vector (100, 100, ..., 100)
K number of clusters k
InitFt 0
Ft 0
Gtype 1
GDtype 2
Qtype 0
RefineAlg 1
NoiseFlag 0
MaxRPass 1
‘ Covertype ‘ Tower ‘ Census ‘ BigCross
p| 10 | 5 [5(8) | 25(26)

Table B.1: Parameter settings for BIRCH.

232 B Additional information on BICO experiments

B.2 Numerical results

Running time (mean, in seconds)

Dataset k StreamLsS \ StreamKM++ \ BICO kmeans-+ \ MacQueen \ BIRCH

BigCross 15 6.88e+03 3.24e+03 3.26e4+02 4.86e—01 | 2.14e+02 | 6.29e+02
20 9.82e+03 3.38e+-03 3.29e4+02 8.86e—01 | 2.36e+02 | 6.27e+02
25 1.60e+04 3.48e+03 3.46e+02 1.40e+00 | 2.53e+02 | 6.25e+02
30 1.91e+04 3.60e+-03 3.43e+02 2.36e4+00 | 2.79e+02 | 6.21e+02

50 3.95e+03 3.99e+4+02 7.97e4-00 | 3.51e+02 | 6.25e+02
100 - 5.02e+4-03 4.61e402 3.28e4-01 | 5.87e402 | 6.21e402
250 = 1.21e4-04 9.63e4+02 2.52e4-02 | 1.18e+03 | 6.30e+02
1000 - 1.71e+05 1.42e+04 6.15e+03 | 4.24e+03 | 6.17e4-02
Caltech128 50 — 3.23e+03 4.58e+02 6.99e+00 | 3.29e+02 -
100 - 4.54e+03 6.07e+02 4.00e4+01 | 4.49e+02 -
250 - 1.61e+04 1.19e+03 3.81e+02 | 8.18e+02 -
1000 - 5.06e+05 6.57e+03 1.66e+04 | 2.70e4-03 -
Census 10 8.67e+02 9.40e+-02 9.32e4+01 1.31e—01 | 5.70e+01 | 1.86e+02

20 2.30e+03 9.89e-+-02 1.00e402 5.52e—01 | 7.39e+01 | 1.83e4-02
30 4.74e+403 1.06e4-03 1.08e4-02 1.38e+00 | 7.75e4-01 | 1.83e4-02
40 9.07e4-03 1.13e4-03 1.19e4-02 2.56e4+00 | 8.71e+401 | 1.87e402
o0 9.28e+03 1.20e4-03 1.32e4-02 3.93e+00 | 9.90e4-01 | 1.83e4-02

100 1.77e4-03 2.51e402 2.00e401 | 1.50e+02 | 1.86e4-02
250 - 6.20e+-03 8.87e4+02 1.59e4-02 | 3.15e+02 | 1.85e+02
1000 - 1.70e4-05 7.77e+03 4.08e403 | 1.13e403 | 1.84e4-02

Covertype 10 1.62e4-02 1.54e4-02 1.47e4-01 2.24e—01 | 9.00e4-00 | 2.55e4-01
20 | 4.99e4-02 1.83e4-02 1.68e4-01 7.90e—01 | 1.11e4-01 | 2.56e4-01
30 7.79e+02 2.33e+02 2.04e+401 2.09e+400 | 1.31e401 | 2.58e+01
40 1.44e4-03 2.97e+02 2.39e+01 4.72e4-00 | 1.48e4-01 | 2.55e4-01
50 1.77e+03 3.91e+-02 2.70e4+01 8.97e400 | 1.70e401 | 2.57e+01

Tower 20 1.18e4-03 9.14e+01 1.66e4-01 1.02e—01 | 4.33e4-00 | 4.23e4-01
40 3.16e+03 9.57e4-01 1.67e4+01 3.87e—01 | 7.46e+00 | 4.21e+01
60 8.35e+03 1.09e4-02 1.81e4-01 9.04e—01 | 1.08e4-01 | 4.22e4-01
80 1.33e+04 1.27e4-02 1.98e4+01 1.91e400 | 1.40e+01 | 4.31e+01

100 1.52e4-02 2.34e+01 3.40e4-00 | 2.02e4-01 | 4.21e4-01
250 - 5.90e4-02 5.89e+01 2.42e+401 | 4.70e401 | 4.20e4-01
1000 - 1.65e4-04 1.25e4-02 5.63e+02 | 1.87e4-02 | 4.18e4-01

Table B.2: Running times of all tested algorithms on all tested data sets. For the random-
ized algorithms, the values are mean values of 100 runs.

B.2 Numerical results

233

Running time (median, in seconds)
Dataset k StreamLsS \ StreamKM++ \ BICO kmeans-++ \ MacQueen \ BIRCH
BigCross 15 7.41e4-03 3.24e+-03 3.28e4+02 4.60e—01 | 2.14e+02 | 6.29e+02
20 | 1.03e+04 3.36e+03 3.28e+02 8.85e—01 | 2.36e4+02 | 6.27e+02
25 | 1.28e+04 3.47e+03 3.42e+02 1.38e+00 | 2.53e+02 | 6.25e+02
30 | 1.99e+4-04 3.59e+4-03 3.40e+02 2.36e+00 | 2.79e+02 | 6.21e+02
50 - 3.95e+03 4.04e+02 7.99e+00 | 3.51e+02 | 6.25e+02
100 - 5.00e+03 4.80e+02 3.24e+401 | 5.87e4+02 | 6.21e+02
250 — 1.20e+04 9.41e4+02 2.52e+02 | 1.18e+03 | 6.30e+02
1000 - 1.69e+05 1.44e+04 6.02e+03 | 4.24e+03 | 6.17e+02
Caltech128 50 - 3.23e+03 4.63e+02 7.00e+00 | 3.29e+02 -
100 - 4.53e+03 6.05e+02 3.97e+01 | 4.49e+02 -
250 - 1.61e+04 1.19e+03 3.71e+02 | 8.18e+02 -
1000 - 5.04e+05 6.77e+03 1.84e+04 | 2.70e+03 -
Census 10 8.30e+02 9.41e+02 9.32e+01 1.30e—01 | 5.70e+01 | 1.86e+02
20 | 1.89e+03 9.88e+02 1.00e4+02 5.35e—01 | 7.39e+01 | 1.83e+402
30 | 3.64e403 1.06e+03 1.07e+02 1.35e+00 | 7.75e+01 | 1.83e+402
40 1.02e+4-04 1.13e+03 1.19e402 2.53e4+00 | 8.71e+01 | 1.87e+02
50 | 7.46e+03 1.20e+03 1.32e+02 3.88e+00 | 9.90e+01 | 1.83e+402
100 - 1.76e+03 2.50e4+02 2.01e4+01 | 1.50e402 | 1.86e+02
250 - 6.08e+03 8.85e+02 1.59e+402 | 3.15e4+02 | 1.85e+02
1000 - 1.68e+05 7.85e4+03 4.01e+03 | 1.13e+03 | 1.84e+02
Covertype 10 | 1.25e+02 1.54e+02 1.47e+01 2.20e—01 | 9.00e+00 | 2.55e+01
20 | 4.13e+02 1.83e+02 1.68e+01 7.90e—01 | 1.11e+01 | 2.56e+01
30 | 7.75e+02 2.31e+02 2.04e4+01 2.04e4+00 | 1.31e4+01 | 2.58e+01
40 | 1.77e4+03 3.00e+02 2.39e+01 4.64e+00 | 1.48e+01 | 2.55e+01
50 | 1.61e+03 3.90e+02 2.69e+01 8.72e+00 | 1.70e+01 | 2.57e+01
Tower 20 | 1.27e+03 9.14e+4-01 1.65e+01 1.00e—01 | 4.33e+00 | 4.23e+01
40 | 3.22e403 9.55e+01 1.66e+01 3.60e—01 | 7.46e+00 | 4.21e+01
60 | 7.67e4+03 1.08e+02 1.79e+01 8.90e—01 | 1.08e+01 | 4.22e+01
80 | 1.55e+04 1.26e+02 1.95e+01 1.88e+00 | 1.40e+01 | 4.31e+01
100 - 1.52e+02 2.27e4+01 3.43e+00 | 2.02e+01 | 4.21e+01
250 - 5.85e+02 5.62e4+01 2.44e+01 | 4.70e+01 | 4.20e+01
1000 - 1.65e+04 1.16e+02 5.60e+02 | 1.87e+02 | 4.18e+01

Table B.3: Running times of all tested algorithms on all tested data sets. For the random-
ized algorithms, the values are median values of 100 runs.

234 B Additional information on BICO experiments

Running time (coefficient of variation)
Dataset k StreamLS \ StreamKM-++ \ BICO kmeans++ \ MacQueen \ BIRCH
BigCross 15 0.6361 0.0034 0.0877 0.2284 n.a. n.a.
20 0.6003 0.0114 0.0247 0.1823 n.a. n.a.
25 0.4200 0.0042 0.0532 0.2309 n.a. n.a.
30 0.5221 0.0037 0.0392 0.1636 n.a. n.a.
50 - 0.0077 0.0695 0.1987 n.a. n.a.
100 - 0.0237 0.1032 0.1127 n.a. n.a.
250 - 0.0798 0.1340 0.1067 n.a. n.a.
1000 - 0.1221 0.1308 0.1768 n.a. n.a.
Caltech128 50 - 0.0114 0.1180 0.1796 n.a. -
100 - 0.0273 0.0771 0.1318 n.a. -
250 - 0.0903 0.0711 0.1401 n.a. -
1000 - 0.1075 0.1098 0.2783 n.a. -
Census 10 0.4917 0.0035 0.0373 0.1515 n.a. n.a.
20 0.5103 0.0033 0.0415 0.1681 n.a. n.a.
30 0.5094 0.0068 0.0319 0.1863 n.a. n.a.
40 0.2709 0.0081 0.0320 0.1256 n.a. n.a.
50 0.5476 0.0121 0.0299 0.1561 n.a. n.a.
100 - 0.0415 0.0328 0.1754 n.a. n.a.
250 - 0.1261 0.0505 0.0907 n.a. n.a.
1000 - 0.1701 0.0792 0.1244 n.a. n.a.
Covertype 10 0.6474 0.0061 0.0098 0.1543 n.a. n.a.
20 0.6471 0.0224 0.0149 0.1399 n.a. n.a.
30 0.6461 0.0475 0.0218 0.1448 n.a. n.a.
40 0.4677 0.0651 0.0342 0.1259 n.a. n.a.
50 0.2110 0.0673 0.0385 0.1434 n.a. n.a.
Tower 20 0.6026 0.0149 0.0186 0.1724 n.a. n.a.
40 0.4067 0.0137 0.0324 0.2622 n.a. n.a.
60 0.4886 0.0237 0.0533 0.1315 n.a. n.a.
80 0.3375 0.0361 0.0535 0.1300 n.a. n.a.
100 - 0.0496 0.1116 0.1419 n.a. n.a.
250 - 0.1054 0.1670 0.1093 n.a. n.a.
1000 - 0.0845 0.2725 0.0930 n.a. n.a.

Table B.4: Coeflicients of variation of the running times of the 100 runs of all tested al-
gorithms on all tested data sets. The coefficient of variation is defined as the
ratio of the standard deviation to the mean: cv(z) = sd(z) / mean(z).

B.2 Numerical results

235

Costs (mean)
Dataset k StreamLS \ StreamKM++ \ BICO \ MacQueen \ BIRCH
BigCross 15 5.14e+12 5.04e+12 5.04e+12 | 6.66e+12 | 6.38e+12
20 4.24e+12 4.16e+12 4.16e+12 | 5.88e+12 | 5.82e+12
25 3.68e+12 3.59e+12 3.58e+12 | 5.31e+12 | 4.69e+12
30 3.17e+12 3.18e+12 3.17e+12 | 4.54e+12 | 3.89e+12
50 - 2.36e+12 2.34e+12 | 3.42e+12 | 2.81e+12
100 - 1.63e+12 1.6le+12 | 2.18e+12 | 1.83e+12
250 - 1.03e+12 1.0le4+12 | 1.14e+12 | 1.14e+12
1000 - 5.24e+11 5.13e+11 | 7.17e+11 | 5.79e+11
Caltech128 50 - 3.26e+11 3.24e+11 | 3.16e+11 -
100 — 3.07e+11 3.0le+11 | 2.93e+11 —
250 - 2.8le+11 2.68e+11 | 2.63e+11 -
1000 — 2.43e+11 2.28e+11 | 2.27e+11 —
Census 10 2.44e+408 2.48e+08 2.48e+08 | 2.82e+08 | 3.79e+08
20 1.87e+08 1.90e+-08 1.90e+08 | 2.04e+08 | 3.04e+08
30 1.57e+08 1.59e+08 1.60e4-08 | 1.75e+08 | 2.35e+4-08
40 1.35e+4-08 1.40e+-08 1.41e+08 | 1.63e+08 | 2.24e+08
50 1.26e+08 1.28e+4-08 1.28e+-08 | 1.46e+08 | 2.13e+408
100 - 1.03e+08 9.95e+-07 | 1.08e+08 | 1.70e+08
250 - 8.00e+07 7.24e+07 | 7.71e+07 | 1.24e+08
1000 - 5.87e+07 4.67e+07 | 5.08e407 | 9.22e+407
Covertype 10 3.51le+11 3.42e+11 3.41e+11 | 5.51le+11 | 4.43e+11
20 2.14e+11 2.06e+11 2.05e+11 | 4.77e+11 | 2.46e+11
30 1.62e+11 1.57e+11 1.56e+11 | 4.10e+11 | 1.86e+11
40 1.37e+11 1.31le+11 1.30e+11 | 3.57e+11 | 1.55e+11
50 1.1le+11 1.15e+11 1.14e+11 | 3.51le+11 | 1.36e+11
Tower 20 6.15e+408 6.22e4-08 6.22e+08 | 3.36e+09 | 9.19e4-08
40 3.21e+08 3.33e+08 3.32e+08 | 2.70e+09 | 4.70e+08
60 1.91e4-08 2.43e+08 2.42e+08 | 1.98e+09 | 3.75e+08
80 1.68e+08 1.95e+08 1.93e+08 | 1.97e+09 | 3.25e+08
100 - 1.65e+08 1.63e+08 | 1.53e+09 | 3.05e+08
250 - 8.83e+07 8.72e4+07 | 1.15e+09 | 2.25e+08
1000 - 3.63e+07 3.63e4+07 | 5.53e+08 | 1.76e+08

Table B.5: Costs of all tested algorithms on all tested data sets.

algorithms, the values are mean values of 100 runs.

For the randomized

236 B Additional information on BICO experiments

Memory usage (mean, in KB)

Dataset k StreamLsS \ StreamKM++ \ BICO kmeans-++ \ MacQueen \ BIRCH
BigCross 15 | 1.27e+07 | 1.07e+05 | 2.75e+04 1.02e+04 | 8.05e+03 | 6.84e+05
20 | 1.27e+07 | 1.41e+05 | 3.53e+04 1.20e+04 | 9.58¢+03 | 6.84e+05
25 1.27e+07 1.75e+05 4.35e4+04 1.35e4+04 | 1.12e+04 | 6.84e+05
30 1.27e+4+07 1.95e+05 5.17e4+04 1.60e+404 | 1.27e4+04 | 6.84e+05

50 3.22e+05 8.63e4+04 2.36e4-04 | 1.89e+04 | 6.84e+05
100 - 5.96e4-05 1.64e+05 3.87e+04 | 3.44e+04 | 6.84e4-05
250 = 1.25e4-06 4.03e+05 8.87e4-04 | 8.08e+04 | 6.84e+05
1000 - 4.12e+06 1.56e4+06 3.52e+05 | 3.13e+05 | 6.84e+405
Caltech128 50 - 5.32e4+05 1.67e+05 4.17e+04 | 7.80e+04 -
100 - 9.71e+05 3.28e+05 8.16e4+04 | 1.52e+05 -
250 - 1.97e4-06 7.90e4+05 2.11e405 | 3.75e+405 -
1000 - 6.56e+06 3.13e+06 8.08e+405 | 1.49e+4-06 -
Census 10 3.15e+06 7.80e+04 2.40e+04 9.29e4-03 | 7.86e4-03 | 1.70e4-05

20 3.15e4-06 1.41e4-05 4.30e+04 1.34e404 | 1.22e+04 | 1.70e+05
30 3.16e+06 1.94e4-05 6.18e4+04 1.73e4-04 | 1.66e+04 | 1.70e+05
40 3.16e+4-06 2.57e+05 8.05e+04 2.13e404 | 2.10e+04 | 1.70e+05
20 3.16e+06 2.93e+05 9.81e4+04 2.42e4-04 | 2.54e+04 | 1.70e+05

100 5.29e+05 1.90e4-05 4.64e+04 | 4.73e404 | 1.70e4-05
250 - 1.18e4-06 4.53e4+05 1.02e4-05 | 1.13e4-05 | 1.70e+4-05
1000 - 3.67e4-06 1.72e4-06 3.93e+05 | 4.42e4-05 | 1.70e4-05

Covertype 10 6.41e4-05 5.85e+04 2.07e4+04 8.72e403 | 6.38e403 | 5.03e+04
20 6.41e+05 1.04e4-05 3.60e4+04 1.11e4-04 | 9.36e+03 | 5.03e+04
30 6.41e4-05 1.40e+05 5.08e+04 1.44e+404 | 1.23e404 | 5.03e404
40 6.41e+05 1.85e4-05 6.54e4+04 1.87e4-04 | 1.53e+04 | 5.03e+04
50 6.41e4-05 2.07e4-05 8.10e404 2.37e404 | 1.83e404 | 5.03e+4-04

Tower 20 1.39e4-06 4.68e+-04 9.74e4+03 6.32e4-03 | 3.38e+03 | 6.11e+04
40 1.39e+-06 8.40e+-04 1.51e4-04 7.25e4-03 | 3.50e4-03 | 6.11e4-04
60 1.39e4-06 1.16e4-05 2.05e+04 8.37e403 | 3.60e4-03 | 6.11e4-04
80 1.39e4-06 1.53e4-05 2.60e4-04 9.66e4-03 | 3.70e4-03 | 6.11e+04

100 1.77e4-05 3.16e4+04 1.12e4-04 | 3.78e+03 | 6.11e+04
250 - 4.03e+05 7.25e+04 2.04e404 | 4.51e403 | 6.11e4-04
1000 - 1.30e4-06 2.48e+05 5.73e404 | 8.21e403 | 6.11e4-04

Table B.6: Maximum memory usage of all tested algorithms on all tested data sets. For
the randomized algorithms, the values are mean values of 100 runs.

B.2 Numerical results

237

Costs (median)
Dataset k StreamLS \ StreamKM++ \ BICO \ MacQueen \ BIRCH
BigCross 15 5.22e+12 5.02e+12 5.03e+12 | 6.66e+12 | 6.38e+12
20 4.34e+12 4.16e+12 4.16e+12 | 5.88e+12 | 5.82e+12
25 3.69e+12 3.59e+12 3.58e+12 | 5.31e+12 | 4.69e+12
30 3.28e+12 3.18e+12 3.17e+12 | 4.54e+12 | 3.89e+12
50 - 2.36e+12 2.34e+12 | 3.42e+12 | 2.81e+12
100 - 1.63e+12 1.6le+12 | 2.18e+12 | 1.83e+12
250 - 1.03e+12 1.0le4+12 | 1.14e+12 | 1.14e+12
1000 - 5.24e+11 5.13e+11 | 7.17e+11 | 5.79e+11
Caltech128 50 3.26e+11 3.24e+11 | 3.16e+11 -
100 3.07e+11 3.00e+11 | 2.93e+11 -
250 2.8le+11 2.67e+11 | 2.63e+11 -
1000 2.43e+11 2.28e+11 | 2.27e+11 —
Census 10 2.40e+-08 2.48e+08 2.47e+08 | 2.82e+08 | 3.79e+08
20 1.86e+08 1.90e+-08 1.90e+08 | 2.04e+08 | 3.04e+08
30 1.56e+08 1.59e+08 1.59e+08 | 1.75e4-08 | 2.35e+08
40 1.34e+08 1.40e+-08 1.41e+08 | 1.63e+08 | 2.24e+08
50 1.26e+08 1.28e+4-08 1.28e+-08 | 1.46e+08 | 2.13e+408
100 - 1.02e+08 9.95e+-07 | 1.08e+08 | 1.70e+08
250 - 8.00e+07 7.24e+07 | 7.71e+07 | 1.24e+08
1000 - 5.86e+07 4.67e+07 | 5.08e407 | 9.22e+407
Covertype 10 3.59e+11 3.4le+11 3.40e+11 | 5.51le+11 | 4.43e+11
20 2.15e+11 2.06e+11 2.04e+11 | 4.77e+11 | 2.46e+11
30 1.64e+11 1.57e+11 1.56e+11 | 4.10e+11 | 1.86e+11
40 1.37e+11 1.31le+11 1.30e+11 | 3.57e+11 | 1.55e+11
50 1.1le+11 1.15e+11 1.14e+11 | 3.51le+11 | 1.36e+11
Tower 20 6.35e+08 6.22e4-08 6.21e+08 | 3.36e+09 | 9.19e4-08
40 3.13e+08 3.33e+08 3.32e+08 | 2.70e+09 | 4.70e+08
60 1.99e+08 2.43e+08 2.42e+08 | 1.98e+09 | 3.75e+08
80 1.68e+08 1.95e+08 1.93e+08 | 1.97e+09 | 3.25e+08
100 - 1.65e+08 1.63e+08 | 1.53e+09 | 3.05e+08
250 - 8.83e+07 8.72e4+07 | 1.15e+09 | 2.25e+08
1000 - 3.63e+07 3.63e4+07 | 5.53e+08 | 1.76e+08

Table B.7: Costs of all tested algorithms on all tested data sets.

algorithms, the values are median values of 100 runs.

For the randomized

238 B Additional information on BICO experiments

Costs (coefficient of variation)
Dataset k StreamLS \ StreamKM-++ \ BICO \ MacQueen \ BIRCH
BigCross 15 0.0551 0.0073 0.0075 n.a. n.a.
20 0.0698 0.0064 0.0061 n.a. n.a.
25 0.0251 0.0068 0.0057 n.a. n.a.
30 0.0722 0.0064 0.0067 n.a. n.a.
50 - 0.0058 0.0036 n.a. n.a.
100 - 0.0044 0.0027 n.a. n.a.
250 - 0.0035 0.0020 n.a. n.a.
1000 - 0.0026 0.0011 n.a. n.a.
Caltech128 50 0.0019 0.0072 n.a. -
100 0.0027 0.0051 n.a. -
250 0.0041 0.0044 n.a. -
1000 0.0082 0.0019 n.a. -
Census 10 0.0490 0.0220 0.0184 n.a. n.a.
20 0.0229 0.0139 0.0150 n.a. n.a.
30 0.0167 0.0132 0.0139 n.a. n.a.
40 0.0235 0.0116 0.0130 n.a. n.a.
50 0.0118 0.0098 0.0100 n.a. n.a.
100 - 0.0080 0.0072 n.a. n.a.
250 - 0.0152 0.0040 n.a. n.a.
1000 - 0.0404 0.0018 n.a. n.a.
Covertype 10 0.0730 0.0061 0.0049 n.a. n.a.
20 0.0527 0.0065 0.0054 n.a. n.a.
30 0.0466 0.0068 0.0060 n.a. n.a.
40 0.0164 0.0061 0.0041 n.a. n.a.
50 0.0195 0.0051 0.0034 n.a. n.a.
Tower 20 0.0777 0.0123 0.0105 n.a. n.a.
40 0.0614 0.0075 0.0064 n.a. n.a.
60 0.0739 0.0068 0.0058 n.a. n.a.
80 0.0130 0.0069 0.0048 n.a. n.a.
100 - 0.0055 0.0046 n.a. n.a.
250 - 0.0034 0.0025 n.a. n.a.
1000 - 0.0015 0.0015 n.a. n.a.

Table B.8: Coeflicients of variation of the costs of the 100 runs of all tested algorithms on
all tested data sets. The coefficient of variation is defined as the ratio of the
standard deviation to the mean: cv(z) = sd(z) / mean(z).

B.2 Numerical results 239

Memory usage (median, in KB)

Dataset k StreamLsS \ StreamKM++ \ BICO kmeans-++ \ MacQueen \ BIRCH
BigCross 15 | 1.27e+07 | 1.07e+05 | 2.75e+04 1.0le+04 | 8.05e+03 | 6.84e+05
20 1.27e+07 1.41e+405 3.03e+04 1.20e4-04 | 9.58e+03 | 6.84e+4-05
25 1.27e+407 1.75e+05 4.36e+04 1.30e+04 | 1.12e+04 | 6.84e+405
30 1.27e4-07 1.95e+05 5.17e4+04 1.60e+404 | 1.27e4+04 | 6.84e+05

50 3.22e+05 8.63e4+04 2.42e4-04 | 1.89e+04 | 6.84e+05
100 - 5.96e4-05 1.64e+05 3.87e+04 | 3.44e+04 | 6.84e4-05
250 = 1.25e4-06 4.03e+05 8.87e4-04 | 8.08e+04 | 6.84e+05
1000 - 4.11e+06 1.56e4+06 3.52e+05 | 3.13e+05 | 6.84e+405
Caltech128 50 - 5.32e4+05 1.67e+05 4.20e+04 | 7.80e+04 -
100 - 9.70e+05 3.28e+05 8.18e+404 | 1.52e+05 -
250 - 1.97e4-06 7.91e4+05 2.11e4+05 | 3.75e+405 -
1000 - 6.56e+06 3.13e+06 8.09e+4-05 | 1.49e+4-06 -
Census 10 3.15e+06 7.80e+04 2.40e+04 9.27e403 | 7.86e4-03 | 1.70e4-05

20 3.15e4-06 1.41e4-05 4.29e+04 1.34e404 | 1.22e+04 | 1.70e+05
30 3.16e+06 1.94e4-05 6.18e4+04 1.73e4-04 | 1.66e+04 | 1.70e+05
40 3.16e+4-06 2.57e+05 8.05e+04 2.14e4-04 | 2.10e+04 | 1.70e+05
20 3.16e+06 2.93e+05 9.80e+04 2.41le4-04 | 2.54e+04 | 1.70e+05

100 5.29e+05 1.90e4-05 4.46e+04 | 4.73e404 | 1.70e4-05
250 - 1.18e4-06 4.53e4+05 1.02e4-05 | 1.13e4-05 | 1.70e+4-05
1000 - 3.66e4-06 1.71e406 3.93e+05 | 4.42e4-05 | 1.70e4-05

Covertype 10 6.41e4-05 5.85e+04 2.07e4+04 8.72e403 | 6.38e403 | 5.03e+04
20 6.41e+05 1.04e4-05 3.60e4+04 1.11e4-04 | 9.36e+03 | 5.03e+04
30 6.41e4-05 1.40e+05 5.08e+04 1.44e+404 | 1.23e404 | 5.03e404
40 6.41e+05 1.85e4-05 6.54e4+04 1.87e4-04 | 1.53e+04 | 5.03e+04
50 6.41e4-05 2.06e+05 8.10e404 2.37e404 | 1.83e404 | 5.03e+4-04

Tower 20 1.39e4-06 4.68e+-04 9.74e4+03 6.34e4-03 | 3.38e+03 | 6.11e+04
40 1.39e4-06 8.40e4-04 1.50e4-04 7.07e4-03 | 3.50e4-03 | 6.11e4-04
60 1.39e4-06 1.16e4-05 2.05e+04 8.37e403 | 3.60e4-03 | 6.11e4-04
80 1.39e4-06 1.53e4-05 2.60e4-04 9.66e4-03 | 3.70e4-03 | 6.11e+04

100 1.77e4-05 3.16e4+04 1.12e4-04 | 3.78e+03 | 6.11e+04
250 - 4.03e+05 7.24e4+04 2.04e404 | 4.51e403 | 6.11e4-04
1000 - 1.30e4-06 2.49e+05 5.75e404 | 8.21e4-03 | 6.11e4-04

Table B.9: Maximum memory usage of all tested algorithms on all tested data sets. For
the randomized algorithms, the values are median values of 100 runs.

240 B Additional information on BICO experiments

Memory usage (coefficient of variation)
Dataset k StreamLS \ StreamKM-++ \ BICO kmeans++ \ MacQueen \ BIRCH
BigCross 15 0.0000 0.0003 0.0065 0.0528 n.a. n.a.
20 0.0000 0.0004 0.0073 0.0462 n.a. n.a.
25 0.0000 0.0004 0.0083 0.0782 n.a. n.a.
30 0.0000 0.0005 0.0079 0.0338 n.a. n.a.
50 - 0.0005 0.0081 0.0738 n.a. n.a.
100 - 0.0005 0.0076 0.0284 n.a. n.a.
250 - 0.0017 0.0057 0.0146 n.a. n.a.
1000 - 0.0078 0.0047 0.0038 n.a. n.a.
Caltech128 50 - 0.0026 0.0062 0.0718 n.a. -
100 - 0.0027 0.0094 0.0662 n.a. -
250 - 0.0039 0.0118 0.0247 n.a. -
1000 - 0.0208 0.0144 0.0382 n.a. -
Census 10 0.0000 0.0008 0.0105 0.0329 n.a. n.a.
20 0.0000 0.0010 0.0095 0.0519 n.a. n.a.
30 0.0000 0.0009 0.0077 0.0761 n.a. n.a.
40 0.0000 0.0010 0.0086 0.0623 n.a. n.a.
50 0.0000 0.0012 0.0084 0.0727 n.a. n.a.
100 - 0.0013 0.0069 0.1099 n.a. n.a.
250 - 0.0015 0.0084 0.0279 n.a. n.a.
1000 - 0.0069 0.0093 0.0079 n.a. n.a.
Covertype 10 0.0000 0.0007 0.0068 0.0111 n.a. n.a.
20 0.0000 0.0007 0.0077 0.0141 n.a. n.a.
30 0.0000 0.0007 0.0065 0.0116 n.a. n.a.
40 0.0000 0.0007 0.0064 0.0076 n.a. n.a.
50 0.0000 0.0012 0.0086 0.0058 n.a. n.a.
Tower 20 0.0000 0.0009 0.0067 0.0090 n.a. n.a.
40 0.0000 0.0010 0.0115 0.0383 n.a. n.a.
60 0.0000 0.0010 0.0051 0.0060 n.a. n.a.
80 0.0000 0.0010 0.0042 0.0057 n.a. n.a.
100 - 0.0010 0.0060 0.0218 n.a. n.a.
250 - 0.0018 0.0046 0.0064 n.a. n.a.
1000 - 0.0198 0.0229 0.0200 n.a. n.a.

Table B.10: Coefficients of variation of the memory usage of the 100 runs of all tested
algorithms on all tested data sets. The coefficient of variation is defined as the
ratio of the standard deviation to the mean: cv(z) = sd(z) / mean(z).

Bibliography

[AC09)]

[Ach03]

[ADHPOY]

[ADKO09)]

[AE99]

[AGK*04]

[AHPO1]

[AHPV04]

[AJMOY]

A1191]

Nir Ailon and Bernard Chazelle, The fast johnson-lindenstrauss transform
and approximate nearest neighbors, SIAM Journal on Computing 39 (2009),
302 — 322.

Dimitris Achlioptas, Database-friendly random projections: Johnson-
lindenstrauss with binary coins, Journal of Computer and System Sciences

(JCSS) 66 (2003), no. 4, 671 — 637.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat, NP-
hardness of FEuclidean sum-of-squares clustering, Machine Learning 75
(2009), no. 2, 245 — 248.

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan, Adaptive sampling
for k-means clustering, Proceedings of the 12th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), 2009, pp. 15-28.

Pankaj K. Agarwal and Jeff Erickson, Geometric range searching and its
relatives, Contemporary Mathematics 223 (1999), 1-56.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Mu-
nagala, and Vinayaka Pandit, Local search heuristics for k-median and facility
location problems, SIAM Journal on Computing 33 (2004), no. 3, 544 — 562.

Pankaj K. Agarwal and Sariel Har-Peled, Maintaining the approximate extent
measures of moving points, Proceedings of the 12th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2001, pp. 148 — 157.

Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan, Approxi-
mating extent measures of points, Journal of the ACM 51 (2004), no. 4, 606
- 635.

Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni, Streaming k-means approx-
imation, Proceedings of the 22nd Annual Conference on Neural Information
Processing Systems (NIPS), 2009, pp. 10-18.

Reg B. J. T. Allenby, Rings, fields and groups, second ed., Edward Arnold,
1991.

242

Bibliography

[ALM*10]

[Alo03]

[AMO93]

[AMR*12]

[AMS99]

[ANO7]

[And73]

[APO3]

[APV05]

[Ari]

[Ar098]

[ARROS)]

Marcel R. Ackermann, Christiane Lammersen, Marcus Mértens, Christoph
Raupach, Christian Sohler, and Kamil Swierkot, Implementation of
Stream KM+, http://www.cs.uni-paderborn.de/en/research-group/

ag-bloemer/research/clustering/streamkmpp.html, 2010, accessed:
2014-04-13.

Noga Alon, Problems and results in extremal combinatorics — i, Discrete
Mathematics 273 (2003), no. 1-3, 31 — 53.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network
flows: Theory, algorithms, and applications, Prentice Hall, 1993.

Marcel R. Ackermann, Marcus Méartens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler, Streamkm++: A clustering al-
gorithm for data streams, ACM Journal of Experimental Algorithmics 17
(2012), article 2.4, 1-30.

Noga Alon, Yossi Matias, and Mario Szegedy, The space complezity of approz-
imating the frequency moments, Journal of Computer and System Sciences58
(1999), no. 1, 137 — 147.

Arthur U. Asuncion and David J. Newman, UCI machine learning repository,
2007.

Michael R. Anderberg, Cluster analysis for applications, Academic Press,
1973.

Pankaj K. Agarwal and Cecilia Magdalena Procopiuc, Approximation algo-
rithms for projective clustering, Journal of Algorithms 46 (2003), no. 2, 115—
139.

Pankaj K. Agarwal, Cecilia Magdalena Procopiuc, and Kasturi R. Varadara-
jan, Approzimation algorithms for a k-line center, Algorithmica 42 (2005),
no. 3 - 4, 221 — 230.

Aristotle, Categories, The Complete Works of Aristotle — The Revised Oxford
Translation (Jonathan Barnes, ed.), Princeton University Press.

Sanjeev Arora, Polynomial time approximation schemes for euclidean travel-
ing salesman and other geometric problems, Journal of the ACM 45 (1998),
no. H, 753 — 782.

Sanjeev Arora, Prabhakar Raghavan, and Satish Rao, Approzimation
schemes for euclidean k-medians and related problems, Proceedings of the
30th ACM Symposium on the Theory of Computing (STOC), 1998, pp. 106
- 113.

http://www.cs.uni-paderborn.de/en/research-group/ag-bloemer/research/clustering/streamkmpp.html
http://www.cs.uni-paderborn.de/en/research-group/ag-bloemer/research/clustering/streamkmpp.html

Bibliography 243

[AV06] David Arthur and Sergei Vassilvitskii, How slow is the k-means method?, Pro-
ceedings of the 22nd ACM Symposium on Computational Geometry (SoCG),
2006, pp. 144 — 153.

[AVO07] , k-means+: the advantages of careful seeding, Proceedings of the 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007, pp. 1027 —
1035.

[AY09] Charu C. Aggarwal and Philip S. Yu, A survey of uncertain data algorithms
and applications, IEEE Transactions on Knowledge and Data Engineering 21
(2009), no. 5, 609 — 623.

[Baj88] Chandrajit L. Bajaj, The algebraic degree of geometric optimization problems,
Discrete & Computational Geometry 3 (1988), 177 — 191.

[Bar96] Yair Bartal, Probabilistic approximations of metric spaces and its algorithmic
applications, Proceedings of the 37th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 1996, pp. 184 — 193.

[Bar98] , On approximating arbitrary metrices by tree metrics, Proceedings
of the 30th ACM Symposium on the Theory of Computing (STOC), 1998,
pp. 161 — 168.

[BCO3] Mihai Badoiu and Kenneth L. Clarkson, Smaller core-sets for balls, Proceed-
ings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA),
2003, pp. 801 — 802.

[BCO5] Bo Brinkman and Moses Charikar, On the impossibility of dimension reduc-
tion in ly, Journal of the ACM 52 (2005), no. 5, 766 — 788.

[BCOS] Mihai Badoiu and Kenneth L. Clarkson, Optimal core-sets for balls, Compu-
tational Geometry 40 (2008), no. 1, 14-22.

[BEL13] Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang, Distributed clus-
tering on graphs, CoRR abs/1306.0604 (2013), accessed: 2015-05-03.

[Ber06] Pavel Berkhin, A survey of clustering data mining techniques, Grouping Mul-
tidimensional Data, Springer, 2006, pp. 25 — 71.

[BHO1] Gill Barequet and Sariel Har-Peled, Efficiently approzimating the minimum-

volume bounding box of a point set in three dimensions, Journal of Algorithms
38 (2001), no. 1, 91 — 109.

[BHPI02] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk, Approzimate clustering
via core-sets, Proceedings of the 34th ACM Symposium on the Theory of
Computing (STOC), 2002, pp. 250 — 257.

244

Bibliography

[BI75]

[BMD09]

[BMO*11]

[Boc07]

[BS80]

[BZD10]

[CCGGIS]

[CCKNOG]

[CEM*14]

[CGO5]

[CGTS02]

E. M. Bronshteyn and L. D. Ivanov, The approzimation of convexr sets by
polyhedra, Siberian Mathematical Journal 16 (1975), no. 5, 852-853.

Christos Boutsidis, Michael W. Mahoney, and Petros Drineas, Unsupervised
feature selection for the k-means clustering problem, Proceedings of the
23rd Annual Conference on Neural Information Processing Systems (NIPS),
2009, pp. 153 — 161.

Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman,
Michael Shindler, and Brian Tagiku, Streaming k-means on well-clusterable
data, Proceedings of the 22th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2011, pp. 26 — 40.

Hans-Hermann Bock, Clustering Methods: A History of k-Means Algorithms,
Selected Contributions in Data Analysis and Classification (Paula Brito,
Patrice Bertrand, Guy Cucumel, and Francisco Carvalho, eds.), Springer,
2007, pp. 161 — 172.

Jon L. Bentley and James B. Saxe, Decomposable searching problems i:
Static-to-dynamic transformation, Journal of Algorithms 1 (1980), no. 4, 301
— 358.

Christos Boutsidis, Anastasios Zouzias, and Petros Drineas, Random Pro-
jections for k-means Clustering , Proceedings of the 24th Annual Conference
on Neural Information Processing Systems (NIPS), 2010, pp. 298 — 306.

Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha, Round-
ing via Trees: Deterministic Approzimation Algorithms for Group Steiner
Trees and k-Median, Proceedings of the 30th ACM Symposium on the The-
ory of Computing (STOC), 1998, pp. 114 — 123.

Michael Chau, Reynold Cheng, Ben Kao, and Jackey Ng, Uncertain data min-
ing: An example in clustering location data, Proceedings of the 10th Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2006,
pp. 199 — 204.

Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu, Dimensionality reduction for k-means clustering and low
rank approzimation, CoRR abs/1410.6801 (2014), accessed: 2015-05-03.

Moses Charikar and Sudipto Guha, Improved combinatorial algorithms for
facility location problems, SIAM Journal on Computing 34 (2005), no. 4, 803
- 824.

Moses Charikar, Sudipto Guha, Eva Tardos, and David B. Shmoys, A
constant-factor approximation algorithm for the k-median problem, Journal
of Computer and System Sciences 65 (2002), no. 1, 129 — 149.

Bibliography 245

[Che09] Ke Chen, On coresets for k-median and k-means clustering in metric and eu-
clidean spaces and their applications, STAM Journal on Computing 39 (2009),
no. 3, 923 — 947.

[Cho69] Gustave Choquet, Lectures on analysis: Volume i: Integration and topological

vector spaces, W. A. Benjamin, 1969.

[CMOS| Graham Cormode and Andrew McGregor, Approximation algorithms for
clustering uncertain data, Proceedings of the 27th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), 2008,
pp- 191-200.

[COPO3] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy, Better streaming
algorithms for clustering problems, Proceedings of the 35th ACM Symposium
on the Theory of Computing (STOC), 2003, pp. 30 — 39.

[CS04] Artur Czumaj and Christian Sohler, Sublinear-Time Approximation for Clus-
tering Via Random Sampling, Lecture Notes in Computer Science 3142
(2004), 396 — 407.

[CT92] Yi-Jen Chiang and Roberto Tamassia, Dynamic algorithms in computational
geometry, Proceedings of the of the IEEE, Special Issue on Computational
Geometry 89 (1992), no. 9, 1412 — 1434.

[CW79) J. Lawrence Carter and Mark N. Wegman, Universal classes of hash func-
tions, Journal of Computer and System Sciences 18 (1979), no. 2, 143 —
154.

[Dal50] Tore Dalenius, The problem of optimum stratification i, Scandinavian Actu-

arial Journal 1950 (1950), no. 3 — 4, 203 —213.

[Das03] Sanjoy Dasgupta, How fast is k-means?, Proceedings of the 16th Conference
on Learning Theory (COLT), 2003, p. 735.

[Das08] , The hardness of k-means clustering, Tech. Report CS2008-0916, Uni-

versity of California, 2008.

[DFK*04] Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh Vempala, and
V. Vinay, Clustering large graphs via the singular value decomposition, Ma-
chine Learning 56 (2004), 9-33.

[DGO3] Sanjoy Dasgupta and Anupam Gupta, An elementary proof of a theorem of
johnson and lindenstrauss, Random Structures and Algorithms 22 (2003),
no. 1, 60 — 65.

246

Bibliography

[DKM*94]

[dIVKKRO3]

[DRVWO6]

[DTV11]

[DV07]

[EKSX96]

[ELL09]

[ES04]

[EVO05]

[FFS06]

[FGS+13]

Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan, Dynamic perfect

hashing: Upper and lower bounds, STAM Journal on Computing 23 (1994),
no. 4, 738 — 761.

Wenceslas Fernandez de la Vega, Marek Karpinski, Claire Kenyon, and Yuval
Rabani, Approzximation schemes for clustering problems, Proceedings of the
35th ACM Symposium on the Theory of Computing (STOC), 2003, pp. 50 —
58.

Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang,
Matrixz approrimation and projective clustering via volume sampling, Theory
of Computing 2 (2006), no. 1, 225 — 247.

Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi, Algorithms and
hardness for subspace approrimation, Proceedings of the 22nd ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2011, pp. 482-496.

Amit Deshpande and Kasturi R. Varadarajan, Sampling-based dimension re-
duction for subspace approximation, Proceedings of the 39th ACM Sympo-
sium on the Theory of Computing (STOC), 2007, pp. 641 — 650.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu, A density-
based algorithm for discovering clusters in large spatial databases with noise,
Knowledge Discovery and Data Mining, 1996, pp. 226 — 231.

Brian S. Everitt, Sabine Landau, and Morven Leese, Cluster analysis, 4 ed.,
Wiley, 20009.

Michelle Effros and Leonard J. Schulman, Deterministic clustering with data
nets, Electronic Colloquium on Computational Complexity (ECCC) (2004),
no. 050.

Michael Edwards and Kasturi R. Varadarajan, No coreset, no cry: II, Pro-
ceedings of the 25th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 2005, pp. 107
115.

Dan Feldman, Amos Fiat, and Micha Sharir, Coresets forweighted facilities
and their applications, Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2006, pp. 315 — 324.

Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn,
and Christian Sohler, BICO: BIRCH Meets Coresets for k-Means Clustering ,
Proceedings of the 21st Annual European Symposium on Algorithms (ESA),
2013, pp. 481-492.

Bibliography 247

[Fis87] Douglas H. Fisher, Knowledge acquisition via incremental conceptual cluster-
ing, Machine Learning 2 (1987), no. 2, 139 — 172.

[FL11a] Dan Feldman and Michael Langberg, A unified framework for approximating
and clustering data, Proceedings of the 43th ACM Symposium on the Theory
of Computing (STOC), 2011, pp. 569 — 578.

[FL11b] , A unified framework for approximating and clustering data, CoRR
abs/1106.1379v3 (v1 in 2011), accessed: 2015-01-15.

[FM83] Philippe Flajolet and G. Nigel Martin, Probabilistic counting, Proceedings
of the 24th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 1983, pp. 76 — 82.

[FM85] , Probabilistic counting algorithms for data base applications, Journal
of Computer and System Sciences31 (1985), no. 2, 182 — 209.

[FMSS| Peter Frankl and Hiroshi Maehara, The johnson-lindenstrauss lemma and

the sphericity of some graphs, Journal of Combinatorial Theory, Series B 44
(1988), no. 3, 355 — 362.

[FMSO07] Dan Feldman, Morteza Monemizadeh, and Christian Sohler, A ptas for k-
means clustering based on weak coresets, Proceedings of the 23rd ACM Sym-
posium on Computational Geometry (SoCG), 2007, pp. 11 — 18.

[FMSW10] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P.
Woodruft, Coresets and sketches for high dimensional subspace approxima-
tion problems, Proceedings of the 21st ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2010, pp. 630-649.

[For65] Edward W. Forgy, Cluster analysis of multivariate data: Efficiency versus
interpretability of classifications, Biometrics 21 (1965), 768 — 769.

[FP11] Gernot A. Fink and Thomas Plotz, Open source project ESMERALDA,
http://sourceforge.net/projects/esmeralda/files/esmeralda/openy
201.20/, 2011, accessed: 2014-04-13.

[F'S05] Gereon Frahling and Christian Sohler, Coresets in dynamic geometric data
streams, Proceedings of the 37th ACM Symposium on the Theory of Com-
puting (STOC), 2005, pp. 209 — 217.

[FS08] _, A fast k-means implementation using coresets, International Journal
of Computational Geometry and Applications (2008), 605 — 625.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler, Turning Big Data into
Tiny Data: Constant-size Coresets for k-means, PCA and Projective Cluster-
ing, Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2013, pp. 1434 — 1453.

http://sourceforge.net/projects/esmeralda/files/esmeralda/open%201.20/
http://sourceforge.net/projects/esmeralda/files/esmeralda/open%201.20/

248

Bibliography

[GK94]

[GKMS01]

[GLY6]

[GMO9]

[GMM+03]

[Gon85]

[Gool4]

[Gor96]

[GRS00]

[GRS01]

[Guh00]

[Har75]

[Hau90]

Peter Gritzmann and Victor Klee, On the complexity of some basic problems
in computational convexity: II. volume and mixed volumes, Universitat Trier,
Mathematik /Informatik, Forschungsbericht 94 — 07 (1994).

Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss,
Surfing wavelets on streams: One pass summaries for approrimate aggregate

queries, Proceedings of the 27th International Conference on Very Large Data
Bases (VLDB), 2001, pp. 79 — 88.

Gene H. Golub and Charles F. Van Loan, Matriz computations, third ed.,
The Johns Hopkins University Press, 1996.

Sudipto Guha and Kamesh Munagala, Fzceeding expectations and clustering
uncertain data, Proceedings of the 28th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), 2009, pp. 269 — 278.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan, Clustering data streams: Theory and practice, IEEE Transac-
tions on Knowledge and Data Engineering 15 (2003), no. 3, 515 — 528.

Teofilo F. Gonzalez, Clustering to minimize the mazximum intercluster dis-
tance, Theoretical Computer Science 38 (1985), 293 — 306.

Google, Google Scholar: Citations for [Jail(], http://scholar.google.
de/scholar?cites=16205305846126879965&as sdt=2005&sciodt=0,5&
hl=en, 2014, accessed: 2014-01-31.

A. Gordon, Null models in cluster validation, From data to knowledge : the-
oretical and practical aspects of classification, data analysis, and knowledge
organization, Springer, 1996, pp. 32 — 44.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, Rock: A robust clustering
algorithm for categorical attributes, Information Systems 25 (2000), no. 5,
345-366.

, Cure: An efficient clustering algorithm for large databases, Informa-
tion Systems 26 (2001), no. 1, 35 —58.

Sudipto Guha, Approximation algorithms for facility location problems, Ph.D.
thesis, Stanford University, 2000.

John A. Hartigan, Clustering algorithms, Wiley, 1975.

David Haussler, Decision theoretic generalizations of the pac learning model,
Proceedings of the 1st International Workshop on Algorithmic Learning The-
ory (ALT), 1990, pp. 21 — 41.

http://scholar.google.de/scholar?cites=16205305846126879965&as_sdt=2005&sciodt=0,5&hl=en
http://scholar.google.de/scholar?cites=16205305846126879965&as_sdt=2005&sciodt=0,5&hl=en
http://scholar.google.de/scholar?cites=16205305846126879965&as_sdt=2005&sciodt=0,5&hl=en

Bibliography 249

[Hau92] , Decision theoretic generalizations of the pac model for neural net
and other learning applications, Information and Computation 100 (1992),

no. 1, 78 — 150.

[HBVO01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis:, On clustering
validation techniques, Journal of Intelligent Information Systems (JIIS) 17
(2001), no. 2-3, 107 — 145.

[HITK93] Susumu Hasegawa, Hiroshi Imai, Mary Inaba, and Naoki Katoh, Efficient al-
gorithms for variance-based k-clustering, Proceedings of the 1st Pacific Con-
ference on Computer Graphics and Applications, 1993, pp. 75 — 89.

[HJ97] Pierre Hansen and Brigitte Jaumard, Cluster analysis and mathematical pro-
gramming, Mathematical Programming 79 (1997), 191 — 215.

[HK72] Kenneth M. Hoffman and Ray Kunze, Linear algebra, second ed., Pearson,
1972.

[HN79] Wen-Lian Hsu and George L. Nemhauser, Easy and hard bottleneck location
problems, Discrete Applied Mathematics 1 (1979), 209 — 215.

[Hoe63] Wassily Hoeftding, Probability Inequalities for Sums of Bounded Random
Variables, Journal of the American Statistical Association 58 (1963), no. 301,
13-30.

[HP04] Sariel Har-Peled, No coreset, no cry, Proceedings of the 24th IARCS Annual

Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), 2004, pp. 324 — 335.

[HPKO7] Sariel Har-Peled and Akash Kushal, Smaller coresets for k-median and k-
means clustering, Discrete & Computational Geometry 37 (2007), no. 1,
3-19.

[HPMO04] Sariel Har-Peled and Soham Mazumdar, On coresets for k-means and k-
median clustering, Proceedings of the 36th ACM Symposium on the Theory
of Computing (STOC), 2004, pp. 291 — 300.

[HPS05] Sariel Har-Peled and Bardia Sadri, How fast is the k-means method?, Algo-
rithmica 41 (2005), no. 3, 185 — 202.

[HPVO1] Sariel Har-Peled and Kasturi R. Varadarajan, Approximate shape fitting via
linearization, Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2001, pp. 66 — 73.

[HPV02] , Projective clustering in high dimensions using core-sets, Proceedings
of the 18th ACM Symposium on Computational Geometry (SoCG), 2002,

pp. 312 - 318.

250 Bibliography

[HPV04] , High-dimensional shape fitting in linear time, Discrete & Computa-
tional Geometry 32 (2004), no. 2, 269 — 288.

[Hs85] Dorit S. Hochbaum and David B. shmoys, A best possible heuristic for the
k-center problem, Mathematics of Operations Research 10 (1985), 180 — 184.

[TK194] Mary Inaba, Naoki Katoh, and Hiroshi Imai, Applications of weighted voronoi
diagrams and randomization to variance-based k-clustering (extended ab-
stract), Proceedings of the 10th ACM Symposium on Computational Ge-
ometry (SoCG), 1994, pp. 332-339.

[IM9Sg] Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: Towards
removing the curse of dimensionality, Proceedings of the 30th ACM Sympo-
sium on the Theory of Computing (STOC), 1998, pp. 604 — 613.

[IMO4] Piotr Indyk and Jiti Matousek, Low-distortion embeddings of finite metric
spaces, Handbook of Discrete and Computational Geometry (Jacob E. Good-
man and Joseph O’Rourke, eds.), Chapman & Hall, 2nd ed., 2004, pp. 177 —
196.

[INO7] Piotr Indyk and Assaf Naor, Nearest neighbor preserving embeddings, ACM
Transactions on Algorithms (TALG) 3 (2007), article 31.

[Ind99] Piotr Indyk, Sublinear time algorithms for metric space problems, Proceed-
ings of the 31st ACM Symposium on the Theory of Computing (STOC),
1999, pp. 428 — 434.

[IndO1] , Algorithmic applications of low-distortion geometric embeddings,
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2001, pp. 10 — 33.

[Ind04] , Algorithms for dynamic geometric problems over data streams, Pro-
ceedings of the 36th ACM Symposium on the Theory of Computing (STOC),
2004, pp. 373 — 380.

[Jail0] Anil K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition
Letters 31 (2010), no. 8, 651 — 666.

[JD8§] Anil K. Jain and Richard C. Dubes, Algorithms for clustering data, Prentice
Hall, 1988.

[JDMOO] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao, Statistical pattern

recognition: A review, IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 22 (2000), no. 1, 4 — 37.

Bibliography 251

[JKS14] Ragesh Jaiswal, Amit Kumar, and Sandeep Sen, A Simple D*-Sampling
Based PTAS for k-Means and Other Clustering Problems, Algorithmica 70
(2014), no. 1, 22 - 46.

[JL84] William B. Johnson and Joram Lindenstrauss, Fxtensions of lipschitz map-
pings into a hilbert space, Contemporary Mathematics (1984), no. 26, 189 —
206.

[JMF99] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn, Data clustering:
A review, ACM Computing Surveys 31 (1999), no. 3, 264 — 323.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi, A new greedy approach
for facility location problems, Proceedings of the 34th ACM Symposium on
the Theory of Computing (STOC), 2002, pp. 731 — 740.

[JVO1] Kamal Jain and Vijay V. Vazirani, Approximation algorithms for metric fa-
cility location and k-median problems using the primal-dual schema and la-
grangian relazation, Journal of the ACM 48 (2001), no. 2, 274 — 296.

[JW13] T. S. Jayram and David P. Woodruff, Optimal bounds for johnson-
lindenstrauss transforms and streaming problems with subconstant error,
ACM Transactions on Algorithms 9 (2013), no. 3, article 26.

[KH79a] Oded Kariv and Seifollah Louis Hakimi, An algorithmic approach to network
location problems. part i: The p-centers, SIAM Journal on Applied Mathe-
matics 37 (1979), no. 3, 513 — 538.

[KH79b] , An algorithmic approach to network location problems. part ii: The
p-medians, STAM Journal on Applied Mathematics 37 (1979), no. 3, 539 —

560.

[KMNT*04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,
Ruth Silverman, and Angela Y. Wu, A local search approximation algorithm

for k-means clustering, Computational Geometry 28 (2004), no. 2-3, 89 —
112.

[KMN11] Daniel M. Kane, Raghu Meka, and Jelani Nelson, Almost optimal explicit
johnson-lindenstrauss transformations, Proceedings of the 15th International
Workshop on Randomization and Computation (RANDOM), 2011, pp. 628
—- 639.

[KMY03a] Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirnm, Approzimate
minimum enclosing balls in high dimensions using core-sets, ACM Journal
of Experimental Algorithmics 8 (2003), article 1.1, 1-29.

252

Bibliography

[KMY03b]

[KN10]

[KN12]

[KNW10]

[KP05a]

[KPO5D)

[KRO7]

[KSS10]

[KV09]

[Lenll]

[L1o57]

[L1082]

, Computing core-sets and approrimate smallest enclosing hyper-
spheres in high dimensions, Proceedings of the 5th Workshop on Algorithm
Engineering and Experiments (ALENEX), 2003, pp. 45 — 55.

Daniel M. Kane and Jelani Nelson, A derandomized sparse johnson-
lindenstrauss transform, CoRR abs/1006.3585 (v3 in 2010), accessed: 2015-
01-15.

, Sparser johnson-lindenstrauss transforms, Proceedings of the 23rd
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, pp. 1195 —
1206.

Daniel M. Kane, Jelani Nelson, and David P. Woodruft, An optimal algorithm
for the distinct elements problem, Proceedings of the 29th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
2010, pp. 41 — 52.

Hans-Peter Kriegel and Martin Pfeifle, Density-based clustering of uncertain
data, Proceedings of the 11th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD), 2005, pp. 672 —677.

, Hierarchical density-based clustering of uncertain data, Proceedings
of the 5th IEEE International Conference on Data Mining (ICDM), 2005,
pp. 689 — 692.

Stavros G. Kolliopoulos and Satish Rao, A nearly linear-time approzimation
scheme for the euclidean k-median problem, SIAM Journal on Computing 37

(2007), no. 3, 757 — 782.

Amit Kumar, Yogish Sabharwal, and Sandeep Sen, Linear-time approxima-
tion schemes for clustering problems in any dimensions, Journal of the ACM
57 (2010), no. 2, 5:1 — 5:32.

Ravi Kannan and Santosh Vempala, Spectral algorithms, Foundations and
Trends in Theoretical Computer Science 4 (2009), no. 3-4, 157-288.

James Lennox, Aristotle’s biology, The Stanford Encyclopedia of
Philosophy, Fall 2011 Edition (Edward N. Zalta, ed.), Fall 2011
ed., 2011, http://plato.stanford.edu/archives/fall2011/entries/
aristotle-biology/, accessed: 2014-02-09.

Stuart P. Lloyd, Least squares quantization in PCM, Bell Laboratories Tech-
nical Memorandum (1957), later published as [L1o82].

, Least squares quantization in PCM, IEEE Transactions on Informa-
tion Theory 28 (1982), no. 2, 129 — 137.

http://plato.stanford.edu/archives/fall2011/entries/aristotle-biology/
http://plato.stanford.edu/archives/fall2011/entries/aristotle-biology/

Bibliography 253

[LLSO01] Yi Li, Philip M. Long, and Aravind Srinivasan, Improved bounds on the
sample complexity of learning, Journal of Computer and System Sciences

(JCSS) 62 (2001), no. 3, 516-527.

[LNO4] James R. Lee and Assaf Naor, Embedding the diamond graph in [, and di-
mension reduction in l;, Geometric & Functional Analysis (GAFA) 14 (2004),
no. 4, 745 — 747.

[LN14] Kasper G. Larsen and Jelani Nelson, The Johnson-Lindenstrauss lemma 1is

optimal for linear dimensionality reduction, CoRR abs/1411.2404 (v1 in
2014), accessed: 2015-04-29.

[Low04] David G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2004), no. 2, 91 — 110.

[LS10] Michael Langberg and Leonard J. Schulman, Universal epsilon-approximators
for integrals, Proceedings of the 21th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2010, pp. 598-607.

[LS13] Shi Li and Ola Svensson, Approzimating k-median via pseudo-approrimation,
Proceedings of the 45th ACM Symposium on the Theory of Computing
(STOC), 2013, pp. 901 — 910.

[LSS12] Christiane Lammersen, Melanie Schmidt, and Christian Sohler, Probabilistic
k-median clustering in data streams, Proceedings of the 10th Workshop on
Approximation and Online Algorithms (WAOA), 2012, pp. 70 — 81.

[LSS14] ____, Probabilistic k-median clustering in data streams, Theory of Com-
puting Systems (2014), 1-40.

[LV92] Jyh-Han Lin and Jeffrey Scott Vitter, e-approzimations with minimum pack-
ing constraint violation, Proceedings of the 24th ACM Symposium on the
Theory of Computing (STOC), 1992, pp. 771 — 782.

[Mac67] James B. MacQueen, Some methods for classification and analysis of multi-
variate observations, Proceedings of the 5th Berkeley Symposium on Math-
ematical Statistics and Probability, 1967, pp. 281— 297.

[Mat00] Jiri Matousek, On approximate geometric k-clustering, Discrete & Computa-
tional Geometry 24 (2000), no. 1, 61 — 84.

[Mat02]

, Lectures on discrete geometry, Springer, 2002.

[Mat05] ____, Embedding finite metric spaces into normed spaces, Revised version
of chapter 15 in [Mat02] available at http://kam.mff.cuni.cz/~matousek/
dg-nmetr.ps.gz, 2005, accessed: 2014-02-27.

http://kam.mff.cuni.cz/~matousek/dg-nmetr.ps.gz
http://kam.mff.cuni.cz/~matousek/dg-nmetr.ps.gz

254

Bibliography

[Mat08]

[Meh84]

[Mel73]
[MNOO]

[MNV09]

[IMOPO1]

IMOP04]

IMP04]

IMS84]

[MS06]

IMUO05]

[Mut05]

INF02]

[INKC+06]

, On variants of the johnson-lindenstrauss lemma, Random Structures
and Algorithms 33 (2008), no. 2, 142 — 156.

Kurt Mehlhorn, Data structures and algorithms 3: Multi-dimensional search-
ing and computational geometry, Monographs in Theoretical Computer Sci-
ence. An EATCS Series, vol. 3, Springer, 1984.

Z. A. Melzak, Companion to concrete mathematics, Wiley, 1973.

Kurt Mehlhorn and S. Naher, Dynamic fractional cascading, Algorithmica 5
(1990), no. 2, 215-241.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan, The
Planar k-means Problem is NP-Hard, Proceedings of the 3rd Workshop on
Algorithms and Computation (WALCOM), 2009, pp. 274 — 285.

Nina Mishra, Daniel Oblinger, and Leonard Pitt, Sublinear time approximate
clustering, Proceedings of the 12th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2001, pp. 439 — 447.

Adam Meyerson, Liadan O’Callaghan, and Serge A. Plotkin, A k-Median
Algorithm with Running Time Independent of Data Size, Machine Learning
56 (2004), no. 1-3, 61-87.

Ramgopal R. Mettu and C. Greg Plaxton, Optimal time bounds for approzi-
mate clustering, Machine Learning 56 (2004), no. 1 -3, 35 — 60.

Nimrod Megiddo and Kenneth J. Supowit, On the complexity of some com-
mon geometric location problems, SIAM Journal on Computing 13 (1984),
no. 1, 182-196.

Keith E. Muller and Paul W. Steward, Linear model theory: Univariate,
multivariate, and mized models, first ed., Wiley Interscience, 2006.

Michael Mitzenmacher and Eli Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis, Cambridge University Press, 2005.

S. Muthukrishnan, Data streams: Algorithms and applications, Foundations
and Trends in Theoretical Computer Science 1 (2005), no. 2, 117 — 236.

Raymond T. Ng and Jiawei Han, Clarans: A method for clustering objects for
spatial data mining, IEEE Transactions on Knowledge and Data Engineering
14 (2002), no. 5, 1003-1016.

Wang Kay Ngai, Ben Kao, Chun Kit Chui, Reynold Cheng, Michael Chau,
and Kevin Y. Yip, Efficient clustering of uncertain data, Proceedings of the
6th IEEE International Conference on Data Mining (ICDM), 2006, pp. 436
— 445.

Bibliography 255

[OMM*02] Liadan O’Callaghan, Adam Meyerson, Rajeev Motwani, Nina Mishra, and
Sudipto Guha, Streaming-data algorithms for high-quality clustering, Pro-
ceedings of the 18th IEEE International Conference on Data Engineering,
2002, pp. 685 — 694.

[ORO02] Rafail Ostrovsky and Yuval Rabani, Polynomial-time approzimation schemes
for geometric min-sum median clustering, Journal of the ACM 49 (2002),
no. 2, 139 — 156.

[Or193] James B. Orlin, A faster strongly polynomial minimum cost flow algorithm,

Operations Research 41 (1993), 338 — 350.

[Ove83| Mark H. Overmars, The design of dynamic data structures, Lecture Notes in
Computer Science, vol. 156, 1983.

[Pap81] Christos H. Papadimitriou, Worst-Case and Probabilistic Analysis of a Geo-
metric Location Problem, Siam Journal on Computing 10 (1981), no. 3, 542
— H57.

[Pol8&4] David Pollard, Convergence of stochastic processes, Springer, 1984.

[PRO4| Rasmus Pagh and Flemming Friche Rodler, Cuckoo hashing, Journal of Al-
gorithms 51 (2004), no. 2, 122-144.

[Rom92] Steven Roman, Advanced linear algebra, 1st ed., Springer, 1992.

[rPG83] Jorgen Pedersen Gram, Ueber die Entwicklung reeler Functionen in Reihen

mittelst der Methode der kleinsten Quadrate, Journal fiir die reine und ange-
wandte Mathematik (1883), 41 — 73.

[RTGOO] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas, The earth mover’s
distance as a metric for image retrieval, International Journal of Computer
Vision 40 (2000), no. 2, 99-121.

[SamO05] Hanan Samet, Foundations of multidimensional and metric data structures,
Morgan Kaufmann Publishers Inc., 2005.

[Sch07] Erhard Schmidt, Zur Theorie der linearen und nichtlinearen Integralgle-
ichungen. I. Teil: Entwicklung willkiirlicher Funktionen nach Systemen
vorgeschriebener, Mathematische Annalen (1907), no. 63, 433 — 476.

[Sie89] Alan Siegel, On universal classes of fast high performance hash functions,
their time-space tradeoff, and their applications, Proceedings of the 30th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), 1989,
pp- 20 — 25.

256

Bibliography

[SR10]

[STC04]

[Steb6]

[Ste93]

[SV12]

[TWHO1]

[Vat11]

[VX12a]

[VX12b]

[Wat10]

[Whi68]

(Wik]

[WKQ*08]

Mingjun Song and Sanguthevar Rajasekaran, Fast algorithms for constant
approximation k-means clustering, Transactions on Machine Learning and
Data Mining 3 (2010), no. 2, 67 — 79.

John Shawe-Taylor and Nello Cristianini, Kernel methods for pattern analy-
sis, Cambridge University Press, 2004.

Hugo Steinhaus, Sur la division des corps matériels en parties, Bulletin de
I’Académie Polonaise des Sciences IV (1956), no. 12, 801 — 804.

Gilbert W. Stewart, On the early history of the singular value decomposition,
STAM Review 35 (1993), 551 — 566.

Nariankadu D. Shyamalkumar and Kasturi R. Varadarajan, Efficient sub-
space approximation algorithms, Discrete & Computational Geometry 47
(2012), no. 1, 44-63.

Robert Tibshirani, Guenther Walther, and Trevor Hastie, Estimating the
number of clusters in a dataset via the gap statistic, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63 (2001), 411 — 423.

Andrea Vattani, k-means requires exponentially many iterations even in the
plane, Discrete & Computational Geometry 45 (2011), no. 4, 596 — 616.

Kasturi R. Varadarajan and Xin Xiao, A near-linear algorithm for projective
clustering integer points, Proceedings of the 23rd ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2012, pp. 1329 — 1342.

, On the sensitivity of shape fitting problems, Proceedings of the 32nd
ITARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), 2012, pp. 486-497.

David S. Watkins, Fundamentals of matrixz computations, third ed., Wiley,
2010.

Alan J. White, Real analysis: an introduction, Addison-Wesley, 1968.

Wikipedia, Cluster analysis, http://en.wikipedia.org/wiki/Cluster_
analysis, accessed: 2014-02-10.

Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg,
Top 10 algorithms in data mining, Knowledge and Information Systems 14
(2008), no. 1, 1 — 37.

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Cluster_analysis

Bibliography 257

[Wo004] David P. Woodruft, Optimal space lower bounds for all frequency moments,
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2004, pp. 167 — 175.

[XTL.0§] Huajie Xu and Guohui Li, Density-based probabilistic clustering of uncertain
data, Proceedings of the 1st International Conference on Computer Science
and Software Engineering (CSSE), vol. 4, 2008, pp. 474 — 477.

[XWO05] Rui Xu and Donald C. Wunsch 11, Survey of clustering algorithms, IEEE
Transactions on Neural Networks 16 (2005), no. 3, 645 — 678.

[Y1108] E. Alper Yildirim, Two algorithms for the minimum enclosing ball problem,
STAM Journal on Optimization 19 (2008), no. 3, 1368 — 1391.

[YZ03] Yingyu Ye and Jiawei Zhang, An improved algorithm for approximating the
radii of point sets, Proceedings of the 6th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX),
2003, pp. 178 — 187.

[ZR197a] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, BIRCH: A New Data
Clustering Algorithm and Its Applications , Data Mining and Knowledge Dis-
covery 1 (1997), no. 2, 141 — 182.

[ZRLITD] , Implementation of BIRCH, http://pages.cs.wisc.edu/~vganti/

birchcode/, 1997, accessed: 2014-04-13.

http://pages.cs.wisc.edu/~vganti/birchcode/
http://pages.cs.wisc.edu/~vganti/birchcode/

	Introduction
	The k-means problem
	Introduction to the k-means problem
	The k-means problem
	The k-median problem
	Notations in Euclidean geometry
	A basic observation and its consequences
	Enumerating solutions and connections to discrete clustering
	Alternative formulations for k-means

	Dimensionality reduction techniques
	Two popular dimensionality reduction techniques
	Random projections
	The best fit subspace and the singular value decomposition

	The singular value decomposition revisited
	Weighted input sets

	Small coresets for the k-means problem
	Coresets for the k-means problem
	Applications of strong coresets

	Techniques used in coreset constructions
	Moving points
	Uniform sampling
	History of coresets in view of the k-means problem

	Computing small coresets for k-means
	Improving the running time

	Smaller coreset sizes via dimensionality reduction

	The k-means problem in data streams
	The Merge-and-Reduce technique
	Streaming algorithms for k-means clustering
	Algorithms based on Merge-and-Reduce
	A streaming coreset
	Implementations of streaming algorithms for k-means

	A lower bound for BIRCH with fixed threshold
	BICO – BIRCH meets coresets for k-means clustering
	The basic algorithm
	Including rebuilding steps into BICO
	Running time
	Implementation
	Experimental setting
	Experiments

	Extensions of classical clustering
	Kernel k-means problems
	The k-means problem in inner product spaces
	Coresets with offsets in inner product spaces

	The kernel k-means problem
	Coresets for kernel k-means problems

	Probabilistic k-median clustering
	A probabilistic k-median problem
	Probabilistic coresets
	The assigned metric k-median problem
	The assigned Euclidean k-median problem
	Superpolynomial algorithms for the assigned Euclidean case
	A coreset construction for the assigned Euclidean case

	Projective clustering problems
	Introduction to projective clustering problems
	Small coresets for subspace approximation
	Affine subspaces

	A coreset framework for projective clustering
	The integer linear projective clustering problem
	Sensitivity bounds from L-infinity-coresets
	Constructing L-infinity-coresets
	Obtaining the coreset result

	Appendix
	Dissimilarity measures and vector spaces
	Dissimilarity measures and metrics
	Vector spaces
	Inner product spaces
	Sequences and Hilbert spaces
	Additional facts on Euclidean geometry

	Additional information on BICO experiments
	Settings
	Numerical results

	Bibliography

