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Abstract. The local k-neighborhood of a vertex v in an unweighted
graph G = (V, E) with vertex set V and edge set E is the subgraph
induced by all vertices of distance at most k£ from v. The rooted k-
neighborhood of v is also called a k-disk around vertex v. If a graph has
maximum degree bounded by a constant d, and k is also constant, the
number of isomorphism classes of k-disks is constant as well. We can
describe the local structure of a bounded-degree graph G by counting
the number of isomorphic copies in G of each possible k-disk. We can
summarize this information in form of a vector that has an entry for
each isomorphism class of k-disks. The value of the entry is the number
of isomorphic copies of the corresponding k-disk in G. We call this vector
frequency vector of k-disks. If we only know this vector, what does it tell
us about the structure of G?

In this paper we will survey a series of papers in the area of Property
Testing that leads to the following result (stated informally): There is a
k = k(e, d) such that for any planar graph G its local structure (described
by the frequency vector of k-disks) determines G up to insertion and
deletion of at most edn edges (and relabelling of vertices).

1 Introduction

Very large networks like social networks, the web graph, transportation networks
and road maps appear in many applications. Analyzing huge networks is already
a difficult task and things become even more involved when we want to analyze a
collection of very large networks or learn certain concepts from it. An illustrative
example is the question, if one can learn from the Facebook graph of a country,
whether it is a democracy or a totalitarian state. In order to answer this question
one has to design learning algorithms that extract information from very large
graphs. One possible approach is to extract features from these graphs and use
standard learning methods on the extracted feature vectors. In order to make
this approach work, we want to extract many features from a set of very large
graphs, i.e. we have a problem that is severely time-constraint. One approach to
this problem is to use random sampling to approximately extract features. Such
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random sampling approaches can be studied using the framework of Property
Testing.

2 Property Testing

Property Testing provides a framework to study sampling approaches to ap-
proximately decide if a given object has a property or is far away from it. The
notion of ”far away” is parametrized by e, which typically measures the fraction
of the object’s description that has to be modified to obtain an object that has
the studied property. The concept of Property Testing has first been formulated
by Rubinfeld and Sudan in the context of program checking [12]. It has then
been extended to graphs by Goldreich, Goldwasser and Ron [5]. In this paper,
we consider Property Testing in the bounded degree graph model, which has
been introduced by Goldreich and Ron [7]. In this model, an algorithm is given
oracle access to a graph G = (V, E) with vertex set V' = {1,...,n} and edge
set F and maximum degree bounded by d. Furthermore, the algorithm is given
the values n and d. It can query the oracle about the i-th neighbor of vertex
jforie{l,...,d} and j € {1,...,n} and the answer is either this neighbor
or a special symbol that indicates that such a neighbor does not exist. Next we
define the notion of e-far.

Definition 1. A graph is e-far from a property II in the bounded degree graph
model, if one has to insert or delete more than edn edges to obtain a graph that
has property II and mazimum degree at most d.

A Property Testing algorithm or property tester for a property II must accept
every graph with property I with probability at least 3/4 and reject every graph
that is e-far from IT with probability 3/4. If a graph neither has IT nor is e-far
from it, the algorithm may answer arbitrarily.

The goal of Property Testing is to find algorithms that approximately decide
a property in the above sense without looking at the whole input. In fact, there
are many examples for Property Testing algorithms that make only a constant
number of queries to the input graph (assuming € to be constant). In order to
study these properties we define testable graph properties as follows.

Definition 2. A graph property II is called testable, if there exists a function
q(e,d) such that for every n,d and € there is an algorithm Ac 4, that gets as
input a graph G with n vertices, makes at most q(e,d) queries to G, accepts with
probability at least 3/4, if G has IT and rejects with probability at least 3/4, if G
is e-far from II.

Note that the above notion allows to have different property testers for dif-
ferent values of €,d and n. This is required if one wants to obtain results of a
generality as presented later in this survey.



3 Property Testing of planar graphs

The first properties shown to be testable in the bounded degree graph model
included connectivity, k-connectivity, cycle-freeness and being Eulerian [7]. How-
ever, no results of testable classes of properties were known. The first result in
this direction was proved by Czumaj, Shapira and Sohler [3] who studied Prop-
erty Testing when the input graph is restricted to be a planar graph of maximum
degree at most d. Under this assumption they could prove that every hereditary
property, i.e. any property that is closed under vertex removal, is testable. The
property tester is very simple: It samples a set of vertices S and checks whether
the subgraph induced by S has the studied property. If it does, the tester accepts
and otherwise it rejects. By closedness under vertex removal, the tester accepts
every hereditary graph property.

It remains to prove that the tester rejects, if the graph is e-far from I7. The
proof exploits the fact that every planar graph has a small vertex separator:

Theorem 1. [10] Let G = (V, E) be a planar graph with n vertices. Then V
can be partitioned into three sets A, B, C such that there is no edge between the
sets A and B. Furthermore, |A|,|B| < 2 -n and |C| < 2v/2n.

Repeatedly applying this theorem leads to a set of, say, at most en/2 vertices
whose removal partitions G into connected components of size O(1/€2). Since G
has degree at most d we can achieve the same effect by removing the at most
edn /2 edges incident to the vertices in the separator. This implies that any graph
that is e-far from having a property I7 is still ¢/2-far from IT after removing this
set of edges. This essentially reduces testing a property of a graph G to testing
the property in a graph G that only has connected components of constant size.
This implies (and here we are simplifying a bit) that there are {2(n) connected
components that do not have property II (assuming € to be a constant). If
we choose our value of k sufficiently large, i.e. larger than the diameter of the
connected components, then sampling a vertex inside such a component will
lead to the discovery of a subgraph that contains the component (recall that the
sampling is done in the original graph). By closedness under vertex removal this
subgraph does not have IT and the tester rejects.

4 Testing planar graph properties

Given that many properties in planar graphs are testable there is the question
if something similar holds for general graphs. Benjamini, Schramm and Shapira
proved that this is indeed the case [I]. They showed that if the frequency vector of
a graph is close to that of a planar graph, then this graph can be partitioned into
small components by removing, say, edn/2 edges. Furthermore, if a graph can be
partitioned into such a set of small components, we can use arguments similar to
that in [3] to prove that every property that is closed under insertion, deletion
and contraction of edges is testable. Such a property is also called minor-closed.
This implies that every planar and minor-closed graph property is testable (a



graph property II is planar, if every graph that has IT is also planar). The
arguments can be generalized to prove that every minor-closed graph property
is testable [I].

5 Local algorithms to access a partition

Another interesting question one can ask in this context is if it is possible to
get local access to a partition of a planar graph into small components that is
obtained by removing at most edn edges, i.e. whether for a query vertex v one
can locally compute its connected component and the answer is consistent with
some global partitioning. Hassidim, Kelner, Nguyen and Onak [6] introduced a
remarkably simple local algorithm that gives such access. Their algorithm is a
local instantiation of the following global algorithm also given in [6].

GLOBALPARTITIONING (%, €)
Compute a random permutation vy, ..., v, of the vertices in V'
P=10
for i=1to ndo
if v; is still in the graph then
if there is a connected set S C V with v; € S and that has at most
€|S| edges that leave S then Let S be this set
else S = {v;}
P=PU{S}
remove S from G
return P

If we want to locally simulate the algorithm then each vertex computes a
random value between 0 and 1 and the permutation is given by sorting the
vertices increasingly according to these values. It is proved in [6] that in order
to compute the component of a vertex v we typically only need to look at a
constant size neighborhood of v and we only need to instantiate the random
values for this neighborhood. This new algorithm can also be used to simplifiy
and improve some Property Testing results.

Some more efficient constructions in terms of dependency on 1/e are known
for more restricted classes of graphs [4/9].

6 Approximating a planar graph by its local structure

If we consider two planar graphs that are e-close to being isomorphic, i.e. one has
to change at most an € fraction of the edges in one graph to obtain an isomorphic
copy of the other graph, then their local structures will also be similar (we here
think of € being a very small constant). An interesting question is, if the con-
verse is true as well. Based on the previous results, Newman and Sohler proved
that this is indeed the case [I1]. They proved that if two graphs on n vertices



have the same distribution of local neighborhoods, then they can be partitioned
into the same set of connected componented by removing at most edn/2 edges
in each graph. This implies that they are e-close to being isomorphic. In the
formal statement of the theorem below note that fo (k) denotes the normalized
frequency vector of the k-disks in G, i.e. their distribution. Also, recall that a
k-disk around wv is the rooted subgraph induced by all vertices of distance at
most k from v.

Theorem 2. Let G1,G2 be two planar graphs with mazimum degree at most
d on n vertices. Then for every e, 0 < € < 1, there exists n = n(e, p,d), k =
ke, p,d), such that, if |fa,(k) — fa, (k)| < n then Gy is e-close to (being an
isomorphic copy of) Ga.

7 Extensions

Most of the results mentioned above extend to more general classes of graphs,
i.e. to all graphs that, for every €,1 > ¢ > 0, can be partitioned into a set of
small components of size f(e,d) by removing at most edn edges.

8 Open problems

There are several interesting open problems in Property Testing for sparse graphs.
We will mention three of the most interesting ones.

Query complexity of planarity testing. Currently, the best Property Testing algo-
rithm for planarity testing is from [9] and has a query complexity of (1/¢)C(os1/e),
Can this be improved to a polynomial? In order to prove such a result one may
need to develop improved local partitioning algorithms or a different way to
approach the problem.

Testable properties in expander graphs. We do not know much about the testa-
bility of properties that contain expander graph. It would be very nice to find
a characterization of a large set of testable properties that contain expander
graphs.

Testable properties in bounded average degree graphs. If we do not have a degree
bound, most of the techniques presented in this survey do not work any more.
It would be interesting to prove similar results as in the bounded degree graph
model. So far, we know that bipartiteness is testable in arbitrary planar graphs
[2]. Furthermore, it is known that one can test forst isomorphism [g].
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