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Chapter 1

Introduction and Tullock

Rent-Seeking Contest

1.1 Introduction

Contests are omnipresent in human society and they are a big issue in the lives of

everyone. A lobbyist influences the laws that are made by government and therefore

determines what we have to pay for health insurance, for example. An application

for a new job can be seen as a contest. The result of a football match or the deter-

mination of the football champion can also be seen as the outcome of a rent-seeking

contest. Wars or battles are also examples. Even finding a girlfriend or boyfriend

can be seen as a contest.

In all cases a prize is at stake and people that are interested in this prize will spend

irreversibly effort to win it. Nearly every day it is possible to find examples in the

news. The beginning of the crisis in the Ukraine in 2013 is a very good one. It first

started with a contest between the European Union (EU) and the Russian Federa-

tion. In 2013 the president of the Ukraine, Janukowitsch, had the choice whether

to sign a contract with the EU or to cooperate with Russia. Both Russia and the

EU tried to convince Janukowitsch. In the end Russia won1 by offering 15 billion

US-Dollars worth of credit (without demanding any reform) and reducing the prize

of gas for the Ukraine. Also the EU, the International Monetary Fund and the US

Government offered credits, but they demanded the enactment of reforms.

Because of the importance of contests in everyday life, we want to examine contests

from a theoretical point of view. We will make use of the way how Tullock modeled

rent-seeking contests. A description of the model of Tullock is given at the end of

this section. But given that there has been and still is very much interest in contests

in the literature, we will concentrate on combining contests with another concept

1At least until the coup that overturned the government.
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that has only received little attention in that context. This concept is delegation.

As we will show subsequently, delegation and contests can fit together. Because of

the complexity of international affairs delegation is needed and used.

Shelling (1960) first introduced strategic delegation to contests. He shows that del-

egating a decision, or only a part of it, to an agent can change the result in favor

of the delegating principal. One example he uses is a sadist in a prison. Everyone

knows that a sadist will always punish someone for misconduct. This may lead to a

reduction in the number of misconducts in the prison. Another famous result is the

result of Wärneryd in 2000. He states that delegation is able to reduce investments

in rent-seeking contests and therefore reduces waste, if it is assumed that such efforts

are not welfare enhancing. But on this point there are (at least) two opinions. On

the one hand, producing tanks, machine-guns or paying a lobbyist, a lawyer and

so forth increases gross national income and the military sector has always been

a driver in innovations. Also a tank has an afterlife. It is shown how a Russian

tank is used to produce a hammer in a German commercial for a hardware store for

example.

But on the other hand, in a symmetric situation no investment in a contest by both

sides would always be pareto optimal. Symmetric means that the prize valuation

and the technology of the players do not differ. Technology determines how their

investment changes their probability of winning. If no one would invest, both would

have a chance to win and they would have no costs. In equilibrium the chance is

also one half, but both put in effort. Although a tank, for example, has a positive

effect the total effect is negative because the money could have been spent elsewhere

where more people could benefit from it.

Therefore the question arises whether wasteful investments in contests can be re-

duced. Wärneryd shows that delegation could work. But in his study delegation has

to be mandatory. This is a serious problem, because every principal would benefit

from mutual delegation, but not delegating is a dominant strategy. Accordingly,

they are kept in a kind of prisoners’ dilemma.

To incorporate the fact that the strategies used by an individual may change over

time, evolutionary game theory is introduced into the analysis. The biological con-

cept is mainly used for animal populations. To put it briefly, in finite populations

an individual should always be concerned with the payoffs or fitness, as it is called,

of all other opponents. That is, because evolutionary forces have a bias towards

individuals that behave that way. Only if an individual can ensure that his absolute

fitness is highest, he will raise more offspring and therefore his strategy will become

more frequent in the population. This fact makes hurting oneself to hurt others even

more a good idea. In this context we will use the term individualistic player. This

refers to a player that only cares for his utility and is not influenced by the utility of
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any other player. In game theory we are most of the time concerned with rational

agents. But in biology we are concerned with genes. Both concepts are used in the

indirect evolutionary approach as will be shown below. But let us first concentrate

on the direct evolutionary approach.

In the direct evolutionary approach, evolution works on the level of strategies. Only

strategies that are more successful than other strategies will spread further in the

population. This may also lead to a situation where players do not behave ratio-

nally, i.e. they do not maximize their utility. This can lead to a deviation from

Nash equilibrium. In fact it was shown by Schaffer (1988), that one should act in a

non-altruistic way if one is to play a contest in a finite population. That means in

finite populations the more successful players are not playing the Nash equilibrium

strategy, i.e. they hurt themselves just to hurt the opponents even more. An exam-

ple that was spread in the news on July 31st, 2013 that sheds some light on that case

happened in the potash sector2. In this particular sector there are two cartels that

determine prices. Uralkali (a Russian potash firm) was part of one cartel. But this

particular firm decided to leave the cartel and to increase production and therefore

to reduce the price. In the potash sector it is common knowledge that Uralkali has

the lowest costs. This announcement destroyed 13 billion Dollars of stock exchange

capitalisation in a few hours. The stock of Uralkali lost more than 25 percent. Later

Uralkali stated that getting rid of some opponents in the sector is the aim of this

action3. One can see that Uralkali hurts itself to hurt other firms with higher costs

even more, just to gain some market share. If opponents that care for high prices

leave the market, then Uralkali is successful. But if Uralkali has to leave the market,

then collusion is better.

In the indirect evolutionary approach the individuals are rational in terms of max-

imizing their utility but their objective functions or preferences are determined by

nature (by their genes, for example). Accordingly, evolutionary forces work on the

level of preferences. Given the preference function of an individual, the individual

actively chooses a strategy that maximizes his utility. That means that the Nash

equilibrium strategy is played by the individuals. In human society one can think

of altruists, non-altruists and individualists. And only the preferences that lead to

the highest fitness become more frequent and therefore the population may, in the

end, only consist of individuals with a certain preference function. In the direct

evolutionary approach individuals choose strategies that proved to be successful in

the past and the individuals that use the most successful strategy form the popu-

lation in the long run. But in the indirect evolutionary approach natural selection

2A summary is given in the following newspaper article:
http://www.handelsblatt.com/unternehmen/industrie/ks-unter-druck-russen-treiben-dax-
konzern-zur-verzweiflung/8579358.html.

3It is supposed that a Belarusian firm was the main target.
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leads to a population of individuals that choose the appropriate strategies rationally

because they have the genes that make them act this way. In nature, there are many

examples for species that care for their offspring but there are also many examples

for species that do not do that. Let us consider a species that cares for their off-

spring. The direct evolutionary approach would argue that individuals that cared

were more successful because they had a higher fitness. Although this behavior may

have reduced utility. But the indirect evolutionary approach argues that only these

individuals had a higher fitness that have preferences that make them rationally

choose to care. There have also been individuals that did not care. But their fitness

was lower and they became extinct.

In Chapter 2 we are concerned with this kind of problem. We will have a short

look at the direct and indirect evolutionary approach in context of a contest, and a

second kind of indirect evolutionary approach is introduced. Leininger (2009) used a

Tullock rent-seeking contest to find out whether it is advantageous to be an altruist,

an individualist or a non-altruist. That means he was concerned with whether or

not interdependent preferences can enhance the fitness. He states that negatively

interdependent preferences yield an advantage in finite populations.

We will show that also the perception of the value of the contested prize can be

used in an indirect evolutionary approach and that this leads to the same result.

I.e. an agent is willing to exert more effort in order to win the prize than he should

do objectively. A good example is the intrinsic motivation to be better than the

opponents or that somebody wants to be the winner. Winning gives an individual

an extra utility. That also makes cheating worthwhile. The opponents are hurt just

to have a higher probability of being the first. In any case the efforts spent are

increased compared to individualistic preferences.

On the one hand, efforts exerted in a contest could be used elsewhere to increase

welfare. And on the other hand, evolutionary forces even lead to more efforts ex-

erted in contests. Maybe sending delegates could be a good idea to decrease efforts

made. A delegate wants to get paid and also a principle wants to get a share of the

contested prize. There has to be some kind of split up of the prize. Accordingly, the

prize for a delegate is smaller. Therefore, he will invest less compared to a principal.

In a situation with negatively interdependent preferences sending a delegate that is

not concerned with the payoff of the enemy of the principal can reduce efforts spent.

With negatively interdependent preferences an agent is concerned with his payoff

and the wish that the other should lose. But a delegate in this situation may only

be concerned with his material payoff. A divorce can be a good example. The term

“can” refers to the fact that not all divorces are consensual divorces. If we are in a

non-consensual divorce, we are clearly confronted with interdependent preferences
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and overvaluation of things that may have an additional personal value to one party.

In this situation a neutral lawyer who acts as a delegate could reduce efforts spent,

because he is only interested in the objective value of things and has no disutility if

the other party gets something.

The question of contracting an agent is the question of how to split up the contested

prize. Splitting up in this particular context means that the principal gets the whole

prize if the contest is won, but he has to pay the agent. It is assumed that the pay-

ment to the agent is made conditional on the value of the contested prize. The share

the delegate gets is therefore money that represents a share of the monetary benefit

for the principal and not a share of the indivisible prize of the contest. In Chapter

3 we want to have a look at how much to offer in order to contract an agent. So

far Baik (2007) answered the question, but only for a limited set of contracts. Baik

comes to the conclusion that no-win-no-pay contracts should be used, because in

such contracts the difference between winning and losing is greatest and therefore

the delegate has the greatest incentive to win. But it is shown that this is not true

in all cases. Baik assumes that a principal cannot punish the agent for a defeat. Be-

cause of that assumption his set of contracts is limited. Why shouldn’t it be possible

to punish a delegate? Such contracts are quiet common in non-legal sectors. The

Yakuza4 are a good example: An agent has to amputate a part of his finger if the

principal is dissatisfied with his performance. Another example was spread in the

news on 21st of december 20145. Some eyewitnesses claim that after having lost a

battle, the Islamic State executed 45 of its own fighters for this defeat. The Islamic

State shares the resources conquered with his soldiers but also punishes them for a

defeat. One example for sharing the resources is the sad destiny of displaced women.

Some were sold but some were also given to the fighters6.

Instead of assuming non-legal sectors, we could also have a look at a situation with-

out enforceable (property) rights. Agents may be forced to act for a principal and

they may be forced to sign extreme contracts. Young men may be forced to fight for

the Islamic State and to pay with their lifes for a lost battle, for example. Whereas

in functioning states those contracts are not allowed under the rule of law.

But there are also examples in legal sectors. One could think of contractual penal-

ties that become effective if determined goals were not reached by the agent. Also

soccer is an example, if the outcome of a match is interpreted as a contest and it

is assumed that both coaches are delegates of the management. The prize is given

by winning the match. Both coaches invest effort to win the match, but in most of

4I.e. the japanese mafia.
5http://www.n-tv.de/politik/IS-Miliz-toetet-noch-mehr-eigene-Kaempfer-article14199261.html
6As stated in a notable German newspaper on 11/10/2014:

http://www.faz.net/aktuell/politik/ausland/naher-osten/is-dschihadisten-verkauften-yezidische-
frauen-als-sklavinnen-13256836.html.
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the cases only one coach succeeds. The loser may be fired if losing happens to of-

ten. Therefore, he is unemployed and also his future earnings are decreased because

other clubs could refrain from hiring a “loser coach”. The coach of the losing team is

therefore punished. Also managers are fired if they are not able to stop competitors

from increasing their market share at the expense of his own firm.

When penalties are introduced, the difference in payment for the delegate between

winning and losing may be expanded. Accordingly, contracts might incentivize dele-

gates to a greater extent than a no-win-no-pay contract. A reduction in efforts spent

might therefore be smaller compared to Wärneryd (2000). We will also be concerned

with this topic in Chapter 3. Baik uses principals with individualistic preferences.

To compare the results with the literature, we will first use individualistic prefer-

ences. The consequences of interdependent preferences are also explained. We will

also have a look at situation where individualistic principals contract agents with

negatively interdependent preferences.

After the optimal contracts are determined, we will have a look at relative con-

tracts. The relation of this type of contract to the contracts determined in Chapter

3 is explained. But in Chapter 4 we will concentrate on negatively interdependent

preferences. With negatively interdependent preferences in a contest, a principal

values his payoff and also assesses the payoff the opponent does not get, i.e. they

want to have more than the opponent. Principals do not play the contest and there-

fore the efforts invested do not increase directly. But it is shown in Chapter 4 how

these negatively interdependent preferences influence the choice of the contract and

therefore increase efforts indirectly. Relative contracts are chosen because they re-

ward the delegate if he was able to do better than the other delegate. Accordingly,

they can transfer the preferences of the principal to the delegate. In a divorce battle

with lawyers as delegates, for example, incentivizing the lawyer to gain more than

his opponent might be a good idea.

Relative contracts are therefore less concerned with absolute payoffs, but with the

relative position the delegate achieves. Putting a positive weight on sales in manager-

contracts is one example for this type of contract.

In Chapter 2 it is explained that negatively interdependent preferences yield an ad-

vantage in finite populations compared to altruistic and individualistic preferences.

In Chapter 4 we will examine whether something similar can be observed in the

selection of contracts or not, i.e. do negatively interdependent contracts have an

advantage or not.

Wärneryd (2000) showed that no-win-no-pay contracts can reduce efforts spent in

contests in a setting with mandatory delegation. Whether this also holds with rel-

ative contracts or not will also be part of my investigation in this chapter.
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It is assumed in Chapters 3 and 4 that the principal uses the contract to influ-

ence the effort made by the agent. In Chapter 5 we will introduce training into the

delegation setting. Training is modeled as an investment of the principal in order to

make the agent more effective. Two approaches are used in this chapter: Training

can reduce the unit costs of investing effort for the agent or it can influence the

weight the effort has, i.e. whether the agent can achieve more without doing more

just because he was trained. The principal pays to increase the skills of his delegate.

We can think of soldiers and their basic training when they start. Also researchers

go to conferences and employees get training when they start a job. These examples

show that principals are willing to invest money to make the agents more effective.

As we will see, the design of training makes it also possible to include assistance

to the delegate. That means that also investing in technical assistance etc. can be

included in this setting. A steel helmet for example does not kill an enemy, but it

helps to keep the soldier alive and therefore to make him more effective, in a sense.

Another example is water and food for soldiers. To provide sustenance can increase

the effectiveness of the soldiers in a battle. We will be concerned with the influence

of training on principals and delegates. But we will concentrate on the contest ac-

tually played. The effects of training in the future are neglected. Also the effects

of changing the costs of training or the form of the Contest-Success-Function are

shown.

To judge whether delegation can decrease wasteful investment or not, the results are

recapitulated in Chapter 6. Also the implications of the development of contracts

are shown. So far, introducing mandatory delegation can be seen as an interven-

tion by government to reduce investments in rent-seeking. We will discuss whether

this is enough or not, i.e. should the government also determine the contracts

to be used. Such a type of governmental interference is the German “Rechtsan-

waltsvergütungsgesetz”. We will also have a look at how principals can influence

the outcome of the contest even though contracts are prescribed.

So far, contracts were given by no-win-no-pay contracts. We want to emphasize

that more competitive contracts may also be used by the principals. Also training

may be used to influence the effort put in by the delegate. Additionally, in the sec-

tion “Future Research” we will be concerned with another type of gaining influence

on the behavior of the delegate. As Akerlof and Kranton (2000) show, identity is

also an important factor for individuals. And we will try to introduce identity in a

contest with delegation.
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1.2 Tullock Rent-Seeking Contest

Before we start with the model of Tullock (1980), we will give an intuition for the

meaning of the terms economic rent and rent-seeking. According to Tollison (1982)

an economic rent is “defined as a return in excess of a resource owner’s opportunity

cost,[...]”. An economic rent can be artificial or not, i.e. a shortage that leads

to an excess return can be created by a shift in demand, for example, or by the

decision of an authority. The difference is that artificial rents may be persistent,

i.e. they are not driven to normal levels by market forces. We will give an example

to demonstrate what this means. Let us consider the National Football League

(NFL) in the USA. Each of the 32 clubs is granted a franchise. Each team has a

“Home Territory” and a “Home Marketing Area”. In the Home Territory the team

can exclusively host professional football games. In the Home Marketing Area a

team has the right to advertise, promote, and host events, i.e. a team can act as

a monopolist in the defined territories and therefore earns an economic rent. This

rent is artificial because the number of franchises is restricted by the NFL to 32.

According to Forbes magazine all 32 NFL clubs rank among the top 50 most valuable

sports teams in the world7.

We can also use this example to demonstrate what is meant by rent-seeking. Assume

that the league decided to grant another franchise and that there is more than one

candidate. Each of the candidates wants to convince the authorities of the NFL

that he is the best. Accordingly, every candidate spents money on promotion,

bribery and so on. But only one candidate wins the franchise. This expenditure

of scarce resources by all candidates to capture an economic rent is called rent-

seeking. According to Congleton et. al (2008) “Incentives for rent seeking are

present whenever decisions of others influence personal outcomes or more broadly

when resources can be used to affect distributional outcomes.” (p. 1).

In most cases a monopoly leads to a loss in welfare. If this monopoly is artificial and

scarce resources are spent to gain this monopoly, we have to add these expenditures

to the welfare loss of the monopoly to account for all negative effects. The idea

that resources spent attempting to make or prevent transfers should be counted as

a cost to society was introduced by Tullock (1967). Compared to the economic rent

of a monopoly, how much is invested to gain the monopoly rights? Until Tullock

(1980) it was believed that the total amount invested is as high as the monopoly

rent or even higher. In “Efficient Rent Seeking” Tullock modeled the actual process

of rent-seeking and showed that this is not necessarily true. Tullock uses a simple

lottery to explain his model. In this section we will recall his model. Assume that

7Kurt Badenhausen (April 18, 2012). ”Manchester United Tops The World’s 50 Most Valuable
Sports Teams”. Forbes. Retrieved September 12, 2012.
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two risk-neutral players can buy lottery tickets. The amount of ticket bought by

the first player is denoted by A and the amount of tickets of the second player is

given by B. One ticket is randomly chosen and the player who bought it wins the

contest. Accordingly, the probability that A wins the lottery is PA = A
A+B

. A

function that maps efforts (“ticket purchases”) to winning probabilities is called a

Contest-Success-Function (CSF).

Tullock assumes that the prize of the lottery is an amount of 100 Dollars and that

the price of one lottery ticket is one Dollar. He showes that both players should buy

25 lottery tickets and therefore only one half of the rent is dissipated. The money

spent for the tickets is sunk from the point of view of A and B. Accordingly, they

spent irreversible effort to win the prize; i.e. both players seek to win the rent (100

Dollars) and in order to do this they buy tickets.

To get the odds of one player in the model, we just have to devide the number of his

tickets by the sum of all tickets sold. Tullock extends his model to model a broader

class of situations. In his extension the probability that the first player wins is given

by

PA =
Ar

Ar +Br
.

We will stick to this form of modeling rent-seeking. r is an exogenously given pa-

rameter and r determines the weight of the effort in the CSF. If r > 1, then the

impact of an additional unit of effort invested is higher than the impact of the unit

spent before. If r < 1, the impact of an unit of effort decreases the more effort has

already been spent. As soon as r > 2, we are confronted with multiple equilibria

where only one player invests. That would mean that only one player in the contest

is active. We want to avoid this rather unrealistic scenario and therefore do not

consider this case. Another interpretation is that r is a measure of how much the

relative size of effort counts. If r is zero, it does not matter who invested more.

Every individual has the same probability of winning. If r is close to infinity, the

player who invested the most will win the contest almost certainly.

We will use this so-called exponential form in our analyses. One reason is that we

can model many real world scenarios with this function. Another reason is that

according to Skaperdas (1996) this is the standard form in modeling rent-seeking.
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Chapter 2

On the Evolution of Preferences

This chapter has benefitted from extensive discussions with Wolfgang Leininger and

Burkhard Hehenkamp.

2.1 Introduction

Garfinkel and Skaperdas (2007) point out that individuals not only engage in mutual

beneficial activities but also use resources to appropriate wealth of other agents. A

vast literature concerning this aspect has evolved in the last decades: Tullock (1980)

with his idea of efficient rent-seeking and the use of a Contest-Success-Function,

Haavelmo (1954) who first modeled the choice between production and appropriation

and Hirshleifer (1995) theorizing about conflict, are just a few.

In recent years evolutionary concepts have also been applied in this context.

Mostly this is done in order to gain some insights about how strategies evolve over

time. In the direct evolutionary approach, evolution works on the level of strategies.

A behavior that yields a higher payoff than any other behavior is imitated by others.

In the long run, only the strategy which performs best compared to other available

strategies survives, and is therefore evolutionarily stable. Ultimately, only those

individuals form the population that were more successful than their opponents,

because they have more resources to spend on reproduction, for example. In finite

populations this can cause a deviation from Nash equilibrium. But evolution does

not only work on the level of strategies. For that reason, an indirect evolutionary

approach has been termed by Güth and Yaari (1992). The behavior of an individual

depends on his preferences which act as stimuli. The strategy chosen according to

the given preferences, compared to the strategies used by other individuals in the

population, determines the fitness of an individual. Evolution does not take place

in the choice of certain strategies, those are chosen rationally, but in the stimuli

appearing over time. In the end only individuals with the most “useful” stimuli form

the population. By using this approach, Leininger (2009) develops evolutionarily
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stable preferences (EST) in a two-player Tullock contest. He shows that pure profit

maximization is evolutionarily stable only within an infinite population. But as

soon as the population is smaller, the individuals are concerned with a weighted

relative payoff. This leads to perfectly negatively interdependent preferences for a

population of two individuals. It is worth to notice, that even though individuals

hurt themselves by such a behavior, they hurt the opponent even more. Of course,

negative interdependent preferences are not rational from the point of view of the

whole population. Accordingly, the term spiteful is used in the literature.

This chapter is aiming at the indirect evolutionary approach as well. We state

that both, the preferences over the outcome for the enemy and the valuation of

the contested prize, can act as a stimulus. Of course, some individuals can use

the prize more efficiently than others, but this case is of no importance here. The

prize has a unique value, but the individuals may rate it differently. This approach

is equivalent to a situation where every individual faces the same costs, but the

individuals think that the costs are different. Therefore, underestimation of the

own costs can act as an explanation for an overestimation of the contested prize

and the other way around. Additionally, if we compute our own costs correctly,

we can still overestimate the prize if we overestimate the costs of our opponents.

Another explanation is an intrinsic value of winning. Getting the desired object

gives individuals an extra boost in utility that cannot be explained solely by the

value of the prize. Boudreau and Shunda (2010) also used a Tullock rent-seeking

contest and the indirect evolutionary approach to determine evolutionarily stable

prize perceptions. But they only consider two-player contests and compare their

outcome to the direct evolutionary approach.

We assume that there is an ex-post outcome which is unknown to the players

ex-ante. We want to show that overvaluation is evolutionarily stable in contests

of arbitrary size if the population is finite. It is also shown that overvaluation

can occur in infinite populations. This means that making a “mistake” can be

beneficial in evolutionary terms. Because of a higher valuation, the opponents are

discouraged on the one hand and the player acts more aggressively and therefore

hurts his opponent even more than he hurts himself on the other hand. The latter

effect is similar to the result of Leininger (2009). We will show that the material

outcome and the invested efforts are the same for both indirect approaches. It is also

shown that both indirect evolutionary approaches predict more aggressive behavior

and therefore lower material payoffs than the direct evolutionary approach. Only

in two-player contests and playing the field contests all investigated approaches are

equivalent in the behavior they predict.

The remainder of the chapter proceeds as follows: In Section 2.2 we specify an

evolutionary game to explain the direct and the indirect evolutionary approach. In
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section 2.3 we set up the model and recapitulate some basic definitions and concepts.

In Section 2.4 evolutionarily stable prize perceptions are derived within an arbitrary

but finite population for two-player Tullock contests and for Tullock contests with

more than two opponents. Section 2.5 compares our results with the results of the

direct evolutionary approach according to Schaffer (1988) and with the results of the

indirect evolutionary approach developed by Leininger (2009); Section 2.6 concludes.

2.2 Direct and Indirect evolutionary approach

2.2.1 Direct evolutionary approach

To demonstrate the direct evolutionary approach, we will concentrate on symmetric

two-player games. This presentation draws heavily on Schaffer (1988). Assume that

there is a population of N individuals. It holds that 2 ≤ N <∞. All players engage

in contests of size two. Suppose that two individuals are randomly chosen to play

a contest. We call the players player 1 and player 2. The strategy space of the first

player is S1. The set of strategies of the second player is S2. It holds that S1 = S2

and that S1, S2 ⊂ R. S = S1×S2 is the product of strategy sets. Both players want

to maximize their material payoff or fitness. We denote by fi : S → R, i ∈ N , the

material payoff function of individual i. The material payoff of any player in the

two-player contest depends on his strategy and the strategy of the opponent.

Suppose that one individual in the population is a mutant, i.e. he plays a strategy

that is different from the strategy the other N − 1 individuals in the population

are playing. We will denote his strategy by xM . We will call the strategy the

other individuals are using xESS. The superscript indicates that this strategy is an

Evolutionarily Stable Strategy (ESS). Before the conditions for a strategy to be an

ESS are explained, we will give a short description of what an ESS is: “Roughly,

an ESS is a strategy such that, if most of the members of a population adopt it,

there is no ’mutant’ strategy that would give higher reproductive fitness.” (Maynard

Smith and Price (1973), p.15). Higher reproductive fitness in this context means

that once the ESS is used by all members of the population, no individual can get

more resources for reproduction by playing a different strategy.

Because there is only one mutant, this mutant will always play against a player that

plays xESS. His material payoff is given by

fM = fM(xM , xESS).

The payoff of an ESS-player, when he plays the contest against the mutant, is

denoted by fESS(xM , xESS). The probability that an ESS-player plays the contest
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against the mutant is given by 1
N−1

. Accordingly, his expected material payoff is

fESS =
N − 2

N − 1
fESS(xESS, xESS) +

1

N − 1
fESS(xM , xESS).

According to Schaffer (1988) a strategy is an ESS if and only if two conditions are

fulfilled:

a) Equilibrium condition and

b) Stability condition.

The Equilibrium condition requires that the following holds:

fESS ≥ fM ,

i.e. the expected material payoff of an ESS-player has to be at least as high as the

payoff of a mutant. Accordingly, there is no strategy that yields a material payoff

that is higher.

To find the ESS, we have a look at

max
xM

fM − fESS.

For xM = xESS the maximum of zero is reached. By using the conditions for fM

and fESS derived above, we get

max
xM

fM(xM , xESS)− 1

N − 1
fESS(xM , xESS).

In a finite population an ESS does not maximize the material payoff of a player.

In fact, in a finite population it is evolutionarily stable to maximize a weighted

relative payoff. The weight put on the material payoff of the opponent depends on

the size of the population. As N → ∞, the concern for the opponent vanishes and

the problem is therefore to maximize the own material payoff. Accordingly, in a

finite population the ESS can be different from the Nash equilibrium strategy. In

an infinite population it is evolutionarily stable to act according to the preferences

and therefore to maximize the material payoff. In such a population the ESS is also

the Nash equilibrium strategy. But in a finite population it is evolutionary stable to

act as if the aim is to maximize a weighted relative payoff. Accordingly, the Nash

equilibrium strategy and the ESS need not be the same.

The intuition is that the evolution of strategies works relatively fast, i.e. the individ-

uals realize easily whether a different strategy is more successful or not. Successful
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in this context means that a strategy yields a material payoff, and therefore a re-

productive fitness, that is higher than the average material payoff of the opponents.

The higher the material payoff, the more offspring can be raised. By deviating from

the Nash equilibrium, the material payoff is decreased, but the material payoff of

the opponents that use the Nash equilibrium strategy is decreased even more. Ac-

cordingly, it is evolutionarily stable to hurt oneself in order to hurt the opponents

even more.

We just concentrated on one contest that is played in the population. We have

to remember that every individual in the population is part of a two-player contest.

We have to consider the payoff of each of the individuals to check whether a strategy

is evolutionarily stable or not. We also assumed that there is only one mutant. This

assumption must also be relaxed to account for the appearence of more than one

mutant. Accordingly, we will now turn to the second condition that an ESS must

fulfill. Schaffer (1988) defines stability as follows:

“A strategy xESS is Y-stable if, in a population with a total of up to Y identical

mutant strategists with any mutant strategy sM ∕= sESS, fM < fESS for all 2 ≤
M ≤ Y . The ESS is globally stable if Y = N − 1.” (p.473)

The equilibrium condition ensures that there is no strategy that is more successful

than the ESS in the two player contest. The stability condition deals with strategies

that perform as good as the ESS in the two-player contest. In fact, if there are no

more than Y mutants, then the expected material payoff of using the ESS is higher

than the material payoff of the mutant strategy, i.e. the expected material payoff

of a mutant in a contest with another mutant is lower compared to the expected

material payoff of an ESS-player playing a contest with another ESS-player.

We will now turn to the indirect evolutionary approach. It is important to remember

that the direct evolutionary approach may predict a deviation from Nash equilibrium

in finite populations.

2.2.2 Indirect evolutionary approach

We will concentrate on symmetric two-player games to explain the indirect evolu-

tionary approach. This subsection follows the idea of Güth and Peleg (2001) and

Leininger (2009). The notation and the depiction follow Leininger (2009).

Assume that a game is played by two players. We call these players player 1 and

player 2. The set of strategies of player 1 is denoted by S1. Because this game

is symmetric, it holds that S1 = S2, where S2 is the strategy set of player 2. Ac-

cordingly, S = S1 × S2 is the product of strategy sets. The preference of any player

determines how he will act in the game. But the preferences of any player can change
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in this game. Mi denotes the set of all kinds of preferences player i = 1, 2 can be

stimulated by. Accordingly M = M1 ×M2 is the “’mutation space’ of stimuli”, as

Leininger (2009) called it.

The utility Πi of player i is given by

Πi : S ×M → R.

We can see that the payoff of any player is determined by his preference and the

preference of the other player, but also by his strategy and the strategy of the other

player. The question arises how strategies are chosen and how preferences evolve.

The preference of any player is the result of an evolutionary process. For any com-

bination of preferences, the strategy chosen by the players is always the result of

(Nash-)equilibrium behavior. Evolution determines the utility functions of the play-

ers. Both players are totally rational and play the unique Nash equilibrium of the

game that is specified by the utility functions. The intuition is as follows: Prefer-

ences evolve slowly. We can think of a father and his son. The preference of the

father is determined when he is born and cannot change. But the prference of the

son can differ from the preference of the father. Because of this slow process, the

individuals have time to find the optimal strategy.

Figuratively speaking, the evolutionary game consists of two games. One game is

played by the players, who choose the best strategy in order to maximize their utility.

The second game is played by nature. The strategies of nature are the preferences.

Only these preferences that make the players choose the correct strategies will sur-

vive. To judge whether a preference function is better fit than another preference

function or not, we have to introduce the evolutionary fitness function fi : S → R of

player i ∈ N . N is the number of individuals in the evolutionary game and again N

is at least two. The fitness function of player i gives us the material payoff of player

i for any combination of strategies. The players perceive a utility, but normally this

says little about his material payoff. Consider a player that goes base jumping. His

utility is positive, but he risks his life and spents money. Accordingly, his material

payoff may be negative.

Note that the fitness of player i is only dependent on the chosen strategies. The

preferences determine the strategies that are chosen, but they do not influence the

fitness of a player directly. The higher is the fitness of an individual, the more off-

spring he can raise and therefore the higher is the probability that his preference

will prevail in the population.

To formalize the evolutionary game, assume that two players are randomly chosen

from the population to play the game. The preference of the first player is given by

m1 and the preference of the second player is m2. The preferences are determined,

18



therefore we denote the game the players are playing as

E(m1,m2) = ({1, 2}, S,Π1(x1, x2,m1,m2),Π2(x1, x2,m1,m2)).

For simplicity, we assume that E is well defined and has a unique Nash Equilib-

rium for each m ∈ M . The Nash Equilibrium strategies are given by x∗1(m1,m2)

and x∗2(m1,m2). As mentioned above, the strategies chosen by the players only

depend on the preferences. The utilities of the players in equilibrium are de-

pendent on the strategies and the preferences. Accordingly, they are given by

Π∗1(x∗1(m1,m2), x∗2(m1,m2),m1,m2) and Π∗2(x∗1(m1,m2), x∗2(m1,m2),m1,m2). But

we can also compute the evolutionary fitness of the players:

f1(x∗1(m1,m2), x∗2(m1,m2)) and f2(x∗1(m1,m2), x∗2(m1,m2)).

“This gives rise to indirect fitness functions

Fi(m1,m2) = fi(x
∗
1(m1,m2), x∗2(m1,m2)), i = 1, 2

for the players, which can be regarded as the payoff functions of an evolutionary

game that is played over types.”(Leininger (2009), p.347)

This is the second game we mentioned above. Following Leininger, we denote this

game

Ē = ({1, 2},M, F1(m1,m2), F2(m1,m2)).

The preferences determine the Nash equilibrium and therefore the payoffs of the first

game. But utility normally tells us nothing about the material payoff. Therefore

we use the fitness functions to calculate the material payoffs. Using Fi we can

judge whether player i = 1, 2 has a higher material payoff or not. If his material

payoff is higher, then his preference yield an advantage in the evolutionary game.

But by using these indirect fitness functions, we can judge for any combination of

preferences, which one is better. The solution concept applied to this problem is

ESS (evolutionarily Stable Strategies). But since we are confronted with preferences,

we will call it ESP (Evolutionarily Stable Preferences), i.e. we are searching for

the preference that, once spread in the whole population, cannot be invaded by a

sufficiently small number of mutants with another preference. Assume that m∗ =

(m∗1,m
∗
2) is the unique ESP of Ē. Hence, the Nash equilibrium of E is given by

x∗(m∗) = (x∗1(m∗1,m
∗
2), x∗2(m∗1,m

∗
2)).

Accordingly, the solution of the indirect evolutionary game is given by a vector of

preferences and strategies. Note that the strategies are induced by these preferences.
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2.3 The Model

As Alchian (1950) points out, it might to some degree be the case that environ-

ment adapts individuals through natural selection instead of individuals adapting

to environment. Güth and Yaari (1992) had this in mind when they wrote about an

indirect evolutionary approach. They allow for an indirect dependence of behavior

on genetically determined “stimuli”. These stimuli define the game played directly

by determining the preferences of the players. Leininger (2009) argued that the

preferences for the opponent can act as such a stimulus. In this article we show that

this need not necessarily be the only possibility. The perception of the prize can

act as a stimulus as well. The strategies and therefore the actions depend on the

valuations the players have.

Time and time again, rational players are involved in Tullock contests with r ≤ 1

and with an arbitrary number of opponents n ≥ 2 within a given population of

arbitrary size N . It holds that N is at least as high as n. As will be shown below,

we have to consider r to be smaller or equal to one because the material payoff of

the players is in expectation negative otherwise. The consequences of a negative

material payoff are given in the first chapter. The contest is for the prize V . We

assume that this is also the objective value of the prize. The perception of player

i ∈ {1, ..., n} is given by �iV , with �i ∈ [0,∞). Note that we have overvaluation if

�i > 1, undervaluation if �i < 1 and a correct prize perception if �i = 1.

According to his valuation, player i invests effort denoted by xi. The sum of all

efforts by all players, except player i, is denoted by x−i.

Accordingly, the probability that player i wins the contest is given by

pi(xi, x−i) =

⎧⎨⎩
xri

xri +xr−i
for xi + x−i > 0

1
n

for xi + x−i = 0.

After all players have exerted effort, the winner is chosen by nature according to the

achieved probabilities and the prize is handed over.

To determine the amount of effort a player is willing to invest, we have to take a

look at his utility function. The utility function of an arbitrary player i is given by

Πi =
xri

xri + xr−i
�iV − xi.

With probabiliy
xri

xri +xr−i
player i wins the contest. If he is successful, he gets the prize

which is worth �iV to him. If he loses, he gets nothing. But in both cases player i

has to bear the costs for the invested effort.
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We denote by x∗i (�i, �−i) the (optimal) effort player i is willing to exert in the Nash

equilibrium of this contest. Because the invested efforts are determined by the

valuation parameters, the utility in the Nash equilibrium of the contest Π∗i (�i, �−i)

of any player i is also dependent on these parameters. This gives rise to the indirect

evolutionary approach. Note that we get a second game that is played by nature

with preference parameters acting as “strategies”. The valuations evolve through an

evolutionary process. The most successful valuation can spread faster and therefore

increase its share of the population. Evolution “determines” the valuations, but the

choice of strategies is the result of (Nash) equilibrium behavior of the players.

From time to time, mutations with a different prize perception than the prevailing

one appear. If the new valuation is fitter, then it will become the dominant prize

perception through natural selection. In order to judge whether a prize perception

is fitter or not, we take a look at material payoffs. Only if an individual is relatively

more successful in material terms than his opponent, he can raise more offspring

and the perception reproduces faster.

To determine the evolutionarily stable valuation, we have to have a look at the

evolutionary success function, as Leininger (2009) termed it.

The material payoff of any player i is given by

fi =
(x∗i (�i, �−i))

r

(x∗i (�i, �−i))
r + (x∗−i(�i, �−i))

r
V − x∗i (�i, �−i).

Note that fi is defined with regard to the true, not perceived value of the prize. But

as stated above, absolute payoff is not all that matters. Absolute payoff has to be

compared to the payoff the opponents get. Only if we have a higher absolute payoff

than our opponents, we are more successful in evolutionary terms. To determine

the fitness of any player, it is necessary to subtract the weighted material payoffs

of the opponents from the material payoff. The weight on the material payoff of

the opponents is determined by the number of opponents and by the share of the

population these opponents represent. If the opponents in the contest represent

a large fraction of the population, then the weight is high because beating the

opponents leads to an advantage over a large fraction of the population. The indirect

fitness function of player i is given by

Fi = fi(�i, �−i)−
1

(N − 1)

n∑
j=1
j ∕=i

fj(�j, �−j).

The evolutionarily stable valuation parameter for the contested prize is given by �∗.

Given that any player has a valuation of �∗V , any deviation leads to a fitness that

is lower or equal compared to the fitness with �∗. Additionally, x∗(�∗) is the Nash
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equilibrium of the contest played by the individuals.

2.4 Evolutionarily stable prize perception

As mentioned in Section 2.1, we first concentrate on contests between two-players

with r ≤ 1, before we turn to contests between an arbitrary number of players with

r = 1. In the last subsection we also have a look at n-player contests and r ≤ 1.

2.4.1 Two-player contests

Any two players1 out of an arbitrary but finite population N are chosen to play a

Tullock contest. Suppose that N − 1 individuals rate the contested prize according

to the evolutionarily stable prize perception (ESV) �ESV . The remaining individual

is a mutant with a different valuation. This valuation is denoted by �M . The effort

invested by the mutant is given by xM , and the effort exerted by a random player

with the evolutionarily stable prize perception is denoted by xESV . If the mutant

was to play the contest, he would maximize

ΠM =
xrM

xrM + xrESV
�MV − xM .

An ESV-player is concerned with

ΠESV =
xrESV

xrM + xrESV
�ESV V − xESV .

Deriving both first order conditions and setting them equal yields

xESV =
�ESV
�M

xM .

The equilibrium efforts are

xM =
�r+1
M �rESV

(�rM + �rESV )2
rV,

xESV =
�rM�

r+1
ESV

(�rM + �rESV )2
rV.

The probability that the mutant wins the contest is given by

pM =
�rM

�rM + �rESV
.

1see Boudreau and Shunda (2010) for the case of r = 1.
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Whether the probability of winning the contest is higher for the mutant or for the

ESV-player depends on the relative size of the prize perceptions of both players. If

the mutant values the prize higher than the ESV-player, he will invest more and

will therefore win with a higher probability.

Given the probability and the efforts, we can determine the material payoffs of the

players. The indirect fitness function is used to decide whether a prize perception

is evolutionarily stable or not. The indirect fitness function of the mutant reads

FM =
�rM

�rM + �rESV
V − �r+1

M �rESV
(�rM + �rESV )2

rV

− 1

(N − 1)

�rESV
�rM + �rESV

V +
1

(N − 1)

�rM�
r+1
ESV

(�rM + �rESV )2
rV.

FM is composed of four terms. The first is the expected prize the mutant gets.

The second term is what he spends in the contest. The last term is the investment

of the opponent. The third term is the share of the prize the ESV-player gets

in expectation. The last two terms are weighted by the share of the remaining

population the ESV-player represents.

The first order condition with respect to �M is used to determine the influence of

the prize perception on the evolutionary fitness. Since �ESV is the evolutionarily

stable prize perception, the maximum fitness of the mutant is reached when his prize

perception is equal to �ESV . Therefore, we can set �M = �ESV = �. The first order

condition reduces to

0 = (2r�2r−1 − r�2r−1)2�r − 2(r + 1)r�3r + 2r2�3r

+
2r

(N − 1)
�3r−1 +

r

(N − 1)
(2r�3r − 2r�3r)

0 = 2r�3r−1 − 2r�3r + 2r
1

N − 1
�3r−1.

Searching for the evolutionarily stable prize perception yields

Theorem 2.1: For a finite population of size N and any r ≤ 1, the unique

symmetric evolutionarily stable prize perception in a two-player contest is given

by �∗ = N
N−1

; i.e. the evolutionary stable preference function of player i=1,2 is

determined as

Πi =
xri

xr1 + xr2

N

N − 1
V − xi.

Accordingly, we can state:
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Lemma 2.1: In a two-player Tullock contest the material payoff of a player is

�M = �ESV = �1 =
2N − 2− rN

4(N − 1)
V.

And the utility is given by

UM = UESV = U1 =
N

(N − 1)

(2− r)
4

V.

The effort invested is given by

xM = xESV = x1 =
N

(N − 1)

rV

4
.

Note that the utility is always positive because r ≤ 1. The utility is also always

greater than the material payoff because the contested prize is overvalued, at least

in finite populations. Therefore the individuals feel better since they believe that

the value of the prize is greater than it actually is. In contrast, the material payoff

is zero for r = 1 and N = 2. The evolutionary fitness of every player is positive as

long as N > 2.

Because winning has an intrinsic value, full dissipation can occur. This happens for

N = 2 and r = 1. Although the individuals spent everything the prize is worth,

they still have a positive utility that is created by the overvaluation of the prize. We

may think of a collector of coins. Although he spent everything the coin is worth

objectively in the contest for this coin (on Ebay, for example), he still is happy

because he got the desired coin, which might have been the final piece to complete

his collection.

Boudreau and Shunda (2010) also find that the evolutionarily stable prize percep-

tion is equal to �∗. But because they only used r = 1, they do not find that this

prize perception is independent of r and therefore holds for a much broader set of

Contest-Success-Functions.

2.4.2 n-player contests

We now assume that 2 ≤ n ≤ N . Individuals are chosen to play a contest for V .

Only one of the chosen players is a mutant and has a prize perception �AM . The

prize perceptions of the other players are given by the ESV-prize perception �AESV .

In contrast to Section 2.4.1, we assume r = 1.
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Accordingly, if the mutant is chosen to play the contest, his utility is given by

ΠA
M =

xM
xM + (n− 1)xESV

�AMV − xM .

And the utility of an arbitrary opponent is

ΠA
ˆESV

=
x̂ESV

xM + x̂ESV + (n− 2)xESV
�AESV V − x̂ESV ,

where x̂ESV denotes the effort the chosen ESV-player exerts.

Accordingly, the first order condition of any of the ESV-players is given by

∂ΠA
ˆESV

∂x̂ESV
=

xM + (n− 2)xESV
(xM + (n− 1)xESV )2

�AESV V − 1
!

= 0.

Setting this equal to the first order condition of the mutant yields

xM =
(n− 1)�AM − (n− 2)�AESV

�AESV
xESV .

It is worthwhile to have a look at the resulting equilibrium efforts invested by the

players:

xM =
(n− 1)�AM�

A
ESV V ((n− 1)�AM − (n− 2)�AESV )

((n− 1)�AM + �AESV )2
,

xESV =
(n− 1)�AM(�AESV )2V

((n− 1)�AM + �AESV )2
.

By using the first derivatives with respect to the prize perceptions, it is possible to

identify two effects of an increase in the prize perception. The first order conditions

are the following:

∂xAM
∂�AM

=
(n− 1)(�AESV )2V

((n− 1)�AM + �AESV )3

(
n(n− 1)�AM − (n− 2)�AESV

)
,

∂xAM
∂�AESV

=
(n− 1)2(�AM)2V

((n− 1)�AM + �AESV )3

(
(n− 1)�AM − (2n− 3)�AESV

)
,

∂xAESV
∂�AESV

=
2(n− 1)2(�AM)2�AESV V

((n− 1)�AM + �AESV )3
,

∂xAESV
∂�AM

=
(n− 1)(�AESV )2V

((n− 1)�AM + �AESV )3

(
�AESV − (n− 1)�AM

)
.

If the value the mutant assigned to the prize increases, for example, his invested

effort would rise if n(n− 1)�AM > (n− 2)�AESV . Whereas, if �AESV < (n− 1)�AM , the

ESV-players would be discouraged and would therefore invest less. The chance of
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winning the contest for an arbitrary ESV-player is rather low. If a mutant invests

more, the contest becomes unattractive and therefore the invested effort decreases.

We term the first effect incentive-effect, because a higher valuation for the contested

prize incentivizes the player to act more aggressively. But if a player faces an

opponent with a higher prize perception, then he is discouraged and invests less.

Accordingly, we term this effect discouragement-effect. These two effects are also

present if the prize perception of the ESV-players increases: The first derivative of

the efforts invested by the ESV-players with respect to �AESV is always positive. But

the discouragement-effect on the mutant is only present if (2n−3)�AESV > (n−1)�AM .

If (n − 1)�AM < �AESV , the mutant is encouraged to react with a higher investment

against opponents with an increasing prize perception. The mutant is alone and

wants to survive. If the pressure on him increases from all sides, he can only have

success in evolutionary terms if he can hold the ground. This means, that he has to

invest more effort.

Note that the discouragement-effect vanishes in a symmetric equilibrium in two-

player contests since they cancel out. The mutant is discouraged by the ESV-player

to the same degree he discourages the ESV-player. This is an explanation why this

effect is not present in Section 2.4.1.

We can compute the winning probabilities of the mutant and an arbitrary ESV-

player by using the equilibrium efforts:

pAESV =
�AESV

(n− 1)�AM + �AESV
,

pAM =
(n− 1)�AM − (n− 2)�AESV

(n− 1)�AM + �AESV
.

Accordingly, the indirect evolutionary fitness of the mutant is given by

FA
M =

(n− 1)�AM − (n− 2)�AESV
(n− 1)�AM + �AESV

V − (n− 1)�AM�
A
ESV V ((n− 1)�AM − (n− 2)�AESV )

((n− 1)�AM + �AESV )2

− (n− 1)

(N − 1)

�AESV
(n− 1)�AM + �AESV

V +
(n− 1)

(N − 1)

(n− 1)�AM(�AESV )2V

((n− 1)�AM + �AESV )2
.

By deriving the first order condition with respect to �AM and setting �AM = �AESV = �∗

afterwards, we can calculate the evolutionarily stable prize perception:
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Theorem 2.2: For a finite population of size N and r = 1, the unique symmet-

ric evolutionarily stable prize perception in a n-player contest is given by

�∗ = n(n−1)N
N(n2−2n+2)−n ; i.e. the evolutionary stable preference function of player i=1,...,n

is determined as

Πi =
xri

xri + xr−i

(
n(n− 1)N

N(n2 − 2n+ 2)− n

)
V − xi.

Note that �∗ = n(n−1)N
N(n2−2n+2)−n reduces to N

N−1
if n = 2 (Theorem 2.1).

�∗ is maximal for a population of N individuals if nmax = 2N
N+1

+
√

2N(N−1)
(N+1)2

players

are active in the contest. The latter expression converges to 2+
√

2 for N approach-

ing infinity. Accordingly, the evolutionarily stable preference for the contested price

is highest for two-and three-player contests, even within a very large population. To

have three players in the contest already leads to the highest valuation for popula-

tions with more than three individuals. It can be shown that even for an infinite

population the evolutionarily stable valuation is greater than one for three-and four-

player contests. In fact, for N approaching infinity and n = 3 or n = 4, �∗ converges

to 6
5
. Even if there is an infinite number of individuals, an overvaluation of the prize

occurs, except for playing the field contests. A reason for this is that a player with

a higher prize perception acts more aggressively in the single contest. This behavior

yields an advantage in the contest. And in evolutionary terms, the player can have

an edge over these competitors if he is successful.

Another striking result is that �∗ = N
N−1

for playing the field contests, i.e. N = n

and for contests with only two players. By comparison with �∗ from Section 2.4.1,

one can also see that the equilibrium prize perception in contests between more than

two-players is greater than the equilibrium prize perception in two-player contests as

long as N > n. In two-player contests no discouragement-effect exists. Accordingly,

a valuation that is higher than � = N
N−1

is not beneficial for a player in a two-player

contest. But as soon as n is higher than 2, the discouragement-effect occurs and a

further increase of � may be beneficial. With a higher prize perception an individ-

ual has a higher chance winning the prize. One reason is that he invests more and

another reason is that the opponents are discouraged and therefore invest less.

To see why it is not beneficial for any player to have a prize perception higher than
N
N−1

in a playing the field contest, we have a look at the first derivative of the

fitness function of the mutant with respect to �AM after we applied the symmetry
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assumption:

0 = n(n− 1)�2
1

− (n2 − 2(n− 1))�3
1

+
n− 1

N − 1
n�2

1

− n− 1

N − 1
(n− 2)�3

1.

The first line gives the effect of a higher valuation on the winning probability. Of

course, this effect is positive. In the second line the effect on the invested effort is

given. Because more exerted effort leads to higher costs, this effect is negative. The

third line states that a higher prize perception decreases the probability of winning

the contest of an opponent, and is therefore beneficial. The reason for the relatively

low prize perception in playing the field contests is shown in the fourth line. It is

true that a higher valuation discourages the opponents. But this effect is not only

beneficial as can be seen in the fitness function. By discouraging the opponents,

their investments are reduced. This means that their costs are lower and therefore

they have more resources left. Accordingly, the effect in the fourth line is negative.

Because this effect is weighted with n−1
N−1

, the loss in fitness due to discouraging the

opponents is the highest in playing the field contests.

Lemma 2.2: The material payoff for a player with the evolutionarily stable prize

perception �∗ in the equilibrium of a contest of n players with r = 1 is

�AM = �AESV = �2 =
N − n

(N(n2 − 2n+ 2)− n)

V

n
.

The utility in equilibrium is given by

UA
M = UA

ESV = U2 =
(n− 1)

n

N

N(n2 − 2n+ 2)− n
V.

The equilibrium effort invested is

xAM = xAESV = x2 =
(n− 1)2N

nN(n2 − 2n+ 2)− n2
V.

Note that the material payoff is zero for playing the field contests and positive

otherwise. Again, the intrinsic value makes the individuals spend as much as the

prize is worth objectively. The reason why it is not beneficial to spend even more is

given by the fact that this leads to a negative fitness. The utility is always positive
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and greater than the material payoff. The reason for this is the evolutionarily stable

prize perception, i.e. even if the fitness is negative, the utility can be positive. An

individual may feel happy even if the opponents are more successful. In a finite

population, �∗ is strictly greater than one. Accordingly, it is beneficial to overvalue

the contested prize within a finite population. On the one hand it makes an agent

“happy” because he believes that he has more in expectation and on the other hand

he acts more aggressively and hurts the opponents more than he hurts himself.

Another important result is that the efforts invested in equilibrium are falling in n

and N . This holds for all but one case. The effort invested by an arbitrary player

in a three-player contest is higher than in a two-player contest. Individuals in a

contest are concerned with the size of the population and the number of opponents.

Holding the number of opponents in the contest constant and increasing the number

of individuals in the population always reduces the invested effort. The smaller is

the number of players in the contest compared to the number of individuals in the

population, the smaller is the share of the population you can beat in this particular

contest. This makes saving resources compared to a smaller population worthwhile.

If we add a player to a given contest within a population with a determined number

of individuals, there are two effects. On the one hand an additional player can be

beaten and therefore a victory becomes more important from an evolutionary point

of view. This increases the investment by a player. On the other hand an additional

player invests and therefore winning becomes less likely. This effect decreases the

investment of a player. In equilibrium the latter effect dominates the first one for

contests with at least three players; i.e. only in two player contests the equilibrium

investment per player increases, if an additional player is added.

2.5 n-player contests with r ≤ 1

The assumption of r = 1 is relaxed now. Accordingly, the utility of the mutant is

given by

ΠC
M =

(xCM)r

(xCM)r + (n− 1)(xCESV )r
�CMV − xCM .

It is rather difficult to find the evolutionarily stable prize perception analytically.

But it is possible to state the following:

Theorem 2.3: The evolutionarily stable prize perception without discouragement-

effect is given by

�C =
N

N − 1
.
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Proof: Suppose that we are in a symmetric situation with n arbitrary players,

out of a population of size N , playing a given contest. The players do not differ

with respect to their prize perception. This common prize perception is denoted by

�.

The utility of player ℎ, ℎ = 1, ..., n, is given by

Πℎ =
xrℎ
n∑
i=1

xri

�V − xℎ.

Because of the symmetric situation, the first order condition with respect to xℎ

reduces to

n2x2r = (n− 1)rx2r−1�V.

Accordingly, the equilibrium effort is given by x∗ = n−1
n2 r�V .

Now suppose that we have two types of players. The type is determined by the

prize perception. A player of type 1 has a valuation of �̃ for the prize, and a player

of type 2 has a valuation of �̂. We have one player of type 1 and (n − 1) players

of type 2. The player of type 1 believes that he is in a symmetric situation, i.e.

that the other players are also of type 1. Accordingly, his invested effort is given by

x1 = (n−1)
n2 r�̃V . A type 2 player also believes that he is only facing type 2 players.

His invested effort is given by x2 = (n−1)
n2 r�̂V .

By employing this assumption, we can exclude the discouragement-effect because

the investment of any player depends solely on his prize perception. An increase in

valuation only increases the effort invested by this particular player, but it does not

alter the efforts spent by any other player because they still believe that they are in

a symmetric situation.

Subsequently, we can calculate the material payoffs

f1 =
(�̃)r

(n− 1)(�̂)r + (�̃)r
V − (n− 1)

n2
r�̃V,

f2 =
(�̂)r

(n− 1)(�̂)r + (�̃)r
V − (n− 1)

n2
r�̂V.
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Accordingly, the indirect fitness function of the type 1 player is

F1 =
(�̃)r

(n− 1)(�̂)r + (�̃)r
V − (n− 1)

n2
r�̃V

− (n− 1)

(N − 1)

(
(�̂)r

(n− 1)(�̂)r + (�̃)r
V − (n− 1)

n2
r�̂V

)
.

Since we are searching for a symmetric solution, we substitute �̃ and �̂ by �̄ in the

first order condition:

1

n2
=

N

N − 1

�̄2r−1

n2�̄2r
.

Therefore we can state that the evolutionarily stable prize perception without the

discouragement-effect is given by �̄ = N
N−1

.

■

We have seen in Section 2.4.2 that an increase in the prize perception of one player

increases the effort invested by that particular player and also decreases the efforts

invested by any other player, except in two-player contests. Without the second

effect the evolutionarily stable valuation in a Tullock contest is given by N
(N−1)

. But

by incorporating the second effect, even higher prize perceptions can be evolution-

arily stable. Accordingly, it is purely the discouragement-effect which varies and

determines the evolutionarily stable prize perception. Making a mistake changes

the own behavior, but it also has an effect on the opponents. This can help to make

the mistake to be persistent, to become more severe, or make an even bigger mistake

evolutionarily stable. In this model a prize perception of more than one leads to

an advantage in the contest. On the one hand because it induces more aggressive

behavior, but on the other hand because the opponents are deterred. By natural

selection, this may lead to even higher prize perceptions.

2.6 Comparison

2.6.1 Direct evolutionary approach

Schaffer (1988) showed that it is not evolutionarily stable to be an absolute payoff

maximizer in a finite population. Only if the evolutionarily stable strategy (ESS)

- as proposed by Maynard Smith (1973)- is employed by a player, then he is able

to compete with the other individuals in the population. Evolution takes place on

the level of strategies. If a player uses a new strategy and is more successful than

the other players in the population, then this strategy is imitated and becomes the

predominant strategy. This movement stops if the ESS is used by any player. To

31



derive the ESS in the given contest, suppose that we have one mutant. We also have

(n − 1) players that already use the ESS. ESS-players and the mutant are playing

the Tullock-contest with r ≤ 1. The mutant’s material payoff is given by

fDM =
xrM

xrM + (n− 1)xrESS
V − xDM .

As opposed to this, the payoff of an arbitrary ESS-player is given by

fDESS =
xrESS

xrM + (n− 1)xrESS
V − xESS.

The equilibrium condition for xESS being an evolutionarily stable strategy according

to Schaffer (1988) is

fDM ≤ fDESS, for any strategy xDM .

Accordingly, the problem for the mutant’s strategy is max
xDM

(fDM − fDESS). Which can

be written as

max
xDM

{
xrM

xrM + (n− 1)xrESS
V − xM −

(n− 1)

(N − 1)

(
xrESS

xrM + (n− 1)xrESS
V − xESS

)}
.

The solution for this problem is given by xM = xESS and the corresponding max-

imum is zero. It is evolutionarily stable to act as if the preferences are given by a

weighted relative payoff. A striking result is that in finite populations the ESS is a

deviation from the Nash equilibrium strategy.

Note that the stability condition used by Schaffer (1988) is omitted here due to

simplicity.

The probability that the mutant does not win the contest

is given by
(

1− xrM
xrM+(n−1)xrESS

)
. Accordingly, the objective function of the mutant

can be rewritten as

ΠD
M =

xrM
xrM + (n− 1)xrESS

V − xM

− (n− 1)

(N − 1)

(
1

(n− 1)

(
1− xrM

xrM + (n− 1)xrESS

))
V +

(n− 1)

(N − 1)
xESS.

Which reduces to

ΠD
M =

xrM
xrM + (n− 1)xrESS

N

(N − 1)
V − xM +

1

(N − 1)
((n− 1)xESS − V ).

We can immediately state the following:
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Theorem 2.4: The direct evolutionary approach and the indirect evolutionary ap-

proach that is concerned with prize perceptions are only equivalent in the behavior

they predict for two-player and playing the field contests in finite populations.

The evolutionarily stable prize perception for two-player and playing the field con-

tests is given by N
N−1

. This is exactly the weight the direct evolutionary approach

“puts” on the prize (implicitly) as can be seen by having a look at ΠD
M . “Puts” is

put in quotation marks here, because the direct evolutionary approach just predicts

that it is evolutionarily stable to weight the contested prize with this factor.
1

(N−1)
((n− 1)xESS − V ) in ΠD

M is independent of the effort invested by the mutant.

This term therefore has no influence on the investment choice of the M-player. That

leads to the same first order condition the indirect evolutionary approach would

predict. And therefore the effort chosen in the Nash equilibrium of the indirect

evolutionary approach and the ESS-strategy are the same.

The reason why the direct evolutionary approach can be transformed is that any

player accounts for the part of the prize he is supposed to win and additionally the

share of the prize the opponents do not get. This relation is described by Leininger

(2003). He compared Nash equilibrium behavior in a transfer contest to finite pop-

ulation ESS-behavior in a contest. He found that both are identical. In a transfer

contest individuals care for the expected payoff of the opponents because they have

to pay them in expectation. And in an evolutionary equilibrium the players care for

their opponents’ payoff because they have to beat them to have a higher fitness. It

is also obvious why this case creates the same behavior in the evolutionary equilib-

rium as the indirect evolutionary approach concerning prize perceptions without the

discouragement-effect suggests. The prize perception is determined to be N
N−1

, the

opponent cannot be discouraged by a high valuating opponent because they all have

the same prize perception. Accordingly, the material payoffs in the two-player and

the playing the field case are identical in equilibrium for both approaches. However,

when the discouragement-effect is at work (for 2 < n < N), the two approaches

predict different behavior: For r = 1 and 2 ≤ n ≤ N , the material payoff of an arbi-

trary player is fD =
(

(N−n)
n2(N−1)

V
)

. This material payoff is greater than the material

payoff in the indirect evolutionary approach using prize perceptions for 2 < n < N ,

because the higher valuation makes the players act more aggressively. Nevertheless,

the “utility” is smaller in the direct evolutionary approach unless overdissipation

occurs, since 1
(N−1)

((n − 1)xESS − V ) is negative otherwise. The reason for that is

that the prize perception is smaller.
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2.6.2 Indirect evolutionary approach according to

Leininger (2009)

As stated above, Leininger (2009) argued that the preferences about the opponent’s

expected payoff can act as stimuli. Only the preferences about the opponent’s

expected payoff that make the player choose the most successful strategy will survive

in the long run. Suppose that n players, drawn out of a population of N individuals,

are chosen to play a contest with r ≤ 1 for the prize V . Note that Leininger (2009)

only considers two-player contests with r = 1. We assume that n − 1 players are

concerned with the evolutionarily stable preferences (ESP) and that only one mutant

has a different preference function. Because the non-mutants are all alike, we assume

that the preferences of the mutant do not depend on the non-mutant he is facing in

the contest, i.e. he treats them all alike. We also assume that the preferences of any

ESP-player stay the same for any opponent he is facing in the contest. Accordingly,

if the mutant was chosen to play the contest, his utility is given by

ΠL
M =

xrM
xrM + (n− 1)xrESP

V − xM − (n− 1)�M

(
xrESP

xrM + (n− 1)xrESP
V − xESP

)
.

Where �M ∈ [−1, 1] denotes the preferences of the mutant about the expected payoff

of an arbitrary ESP-player. If �M < 0, he is an altruistic player, he is an individu-

alistic player for �M = 0 and a spiteful player otherwise. The evolutionary process

works on the level of preferences about the opponents’ expected payoff and operates

in the interval [−1, 1]. The ESP is given by �∗.

It is possible to state the following:

Lemma 2.3: Concerning the evolutionarily stable preferences and the evolution-

arily stable prize perception �∗, it always holds that

�∗ = (1 + �∗).

Proof: The probability that the contest is won by an ESP-player is given by

1 − xrM
xrM+(n−1)xrESP

. Because they are all alike, the probability for one ESP-player

is 1
n−1

times the latter expression. Accordingly, the utility function of the mutant

can be rewritten as

ΠL
M =

xrM
xrM + (n− 1)xrESP

V − xM

− (n− 1)�

(
1

(n− 1)

(
1− xrM

xrM + (n− 1)xrESP

)
V − xESP

)
.
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After solving the brackets we get

ΠL
M =

xrM
xrM + (n− 1)xrESP

V − xM − �V +
xrM

xrM + (n− 1)xrESP
�V + (n− 1)�xESP ,

which reduces to

UL
M =

xrM
xrM + (n− 1)xrESP

(1 + �)V − xM + �((n− 1)xESP − V ).

Substitute (1 + �) by �CM . The only differences to the utility function ΠC
M from

section 2.4.3 are (n − 1)�xESP and −�V . These two terms are independent of the

efforts invested by the mutant, and have therefore no influence on the decision of

the mutant.2 Accordingly, both indirect evolutionary approaches lead to identical

first order conditions and therefore to no difference in behavior by the players in the

Nash equilibrium of the contest.

■

It is straightforward to show that

Theorem 2.5: Both indirect evolutionary approaches are equivalent in the behavior

they predict in the Nash equilibrium of the contest.

This theorem shows that the indirect evolutionary approach concerning preferences

about the opponents’ payoffs, which works on the interval [−1, 1] can be transformed

into the indirect evolutionary approach that is concerned with price perceptions and

that works on the interval [0, 2]. The intuition behind the fact that interdependent

preferences can be transformed is that any player does not only take account of

the share of the prize he might get but also of the prize the opponents do not get.

This means the contest is played for a quasi-prize that is greater than the objective

value. In the indirect evolutionary approach concerning prize perceptions this effect

is internalized by the higher prize perception.

That theorem also suggests, for example, that a perfectly altruistic player (� = −1)

in the approach of Leininger (2009) is equivalent to a player with a prize perception

of zero in the second indirect approach. Both players will invest nothing. The player

in the first approach will do so because he does not want to harm the opponent, and

the player in the second approach does not want to pay anything for the prize.

Calculating the evolutionarily stable values for the two-player and for the n-player

case with r = 1 yields the following:

2Note that we can employ the same type of analysis for any of the ESP-players.
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Lemma 2.4: In the evolutionary equilibrium of a two-player contest with r ≤ 1

the payoff of the opponent is weighted by

�1 = �∗ − 1 =
1

N − 1
.

Accordingly, the material payoff and the utility of any player is given by

fL1 =
2N − 2− rN

4(N − 1)
V,

and ΠL
1 =

(N − 2)(2N − 2− rN)

4(N − 1)2
V, respectively.

Contrary to this, in the evolutionary equilibrium of a contest between n players and

r = 1 the payoff of the opponent is weighted by

�2 = �∗1 − 1 =
nN + n− 2N

N(n2 − 2n+ 2)− n
.

Accordingly, the material payoff and the utility of any player in equilibrium is given

by

fL2 =
(N − n)

(N(n2 − 2n+ 2)− n)

V

n
,

and ΠL
2 =

(N − n)2

(N(n2 − 2n+ 2)− n)
V, respectively.

As induced by Theorem 2.5, both approaches yield the same material payoff for

the players because their behavior does not change3. The only difference is that the

utilities in both approaches differ. It can be shown that the utility for any player

is always higher in the indirect evolutionary approach used in section 2.4, for both

cases. One reason is that they believe that the value of the prize is higher than

it actually is. Another reason is that the material payoff of the opponent is not

included in their preference function.

In both approaches the individuals invest the same effort, but they are supposed to

be happier in the approach that assigns an additional value to the prize. Pointing

to this result, a soccer-trainer in Germany recently said, “Ich glaube nicht daran,

dass die Angst vor dem Verlieren dich eher zu einem Sieger macht als die Lust auf

Gewinnen.” (Jürgen Klopp)

That means “I don’t believe that the fear of losing makes you become a winner more

3The equilibrium efforts have already been computed in sections 2.4.1 and 2.4.2.

36



easily than the desire to win.”

The fear of losing is the approach of Leininger (2009). The fear is incorporated by

the negative weight on the payoff of the opponents. The desire to win is given by

the higher prize perception. You do not care for the payoff of the opponents. The

only thing that matters is to win.

2.7 Conclusion

We asked whether it is beneficial in evolutionary terms to overvalue the prize in a

Tullock contest or not. We find that this is indeed the case. Because of a higher valu-

ation for the contested prize, the players invest more and the opponents are discour-

aged and exert less effort. Accordingly, we named these two effects incentive-effect

and discouragement-effect. Both effects make overvaluation evolutionarily stable.

The discouragement-effect is only at work in contests between more than two play-

ers but not in playing the field contests. Even without the discouragement-effect

overvaluation does occur in finite populations. Without the discouragement-effect

overvaluation is not evolutionarily stable in an infinite population. But if this effect

is at work, then overvaluation can be evolutionarily stable even in an infinite popu-

lation. This is especially true for three- and four-player contests.

Subsequently, we compared the indirect evolutionary approach concerning prize

perceptions to the direct evolutionary approach and to the indirect evolutionary

approach according to Leininger (2009). We find that all three approaches predict

the same behavior for two-player contests and for playing the field contests. The

direct evolutionary approach and the indirect evolutionary approach that introduces

preferences about the opponents’ payoffs implicitly put a weight on the contested

prize. In the direct evolutionary approach the implicit prize valuation is constant.

This constant prize perception is equal to the prize perception in the indirect evo-

lutionary approach concerning prize valuations without the discouragement-effect.

Accordingly, both approaches do not differ in the behavior they predict in the equi-

librium of two-player and playing the field contests. In a two player contest both

players get discouraged by a high prize perception to the same amount they dis-

courage the opponent. In playing the field contests the discouragement-effect raises

the costs of a higher prize perception to such an amount that the players only act

as aggressively as in the direct evolutionary approach. All other opponents exert

less effort if the prize perception is high. But because there are many players, the

probability of winning changes only slightly. Since the opponents save effort and

therefore have more resources to spend, the evolutionary costs for the high valuat-

ing player rises. The material payoff in the direct evolutionary approach is higher
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because of the less aggressive behavior.

We also show that for contests that have more than two players and that are not

playing the field the behavior predicted by the indirect approaches is more aggres-

sive. This is due to the discouragement-effect.

The indirect evolutionary approach according to Leininger (2009) predicts ex-

actly the same aggressive behavior in the Nash equilibrium of the contest as the

indirect evolutionary approach using prize perceptions because the weights on the

prizes are identical. The implicit weight is not fixed. Therefore this weight is al-

lowed to evolve evolutionarily and in equilibrium amounts to the same amount as

in the new indirect evolutionary approach. Accordingly, the material payoffs are

the same. Only the utility of the players differs. In the indirect evolutionary ap-

proach according to Leininger (2009) the utility is smaller as long as we do not face

overdissipation. The reason for this is that the material payoff of the opponent is

not subtracted and that the prize is overvalued. The individuals feel better because

of their desire to win and they are not depressed by their fear of losing.

We are able to calculate the result for more than two players and for decreasing

marginal efficiency of effort only if we control for the discouragement-effect. It would

shed some light on the relations in perceived utility between direct and indirect

evolutionary approach if we could find an equilibrium for that case. It also might

be interesting whether the result changes if the non-mutants treat the mutants

differently from the way they treat a player that has the same preferences he has.
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Chapter 3

Equilibrium contracts in

two-player Tullock contests

3.1 Introduction

Since Shelling wrote “The Strategy of Conflict”(1960), strategic delegation is an

important topic in economic research. By using a contract a delegate is hired to

act on behalf of a principal. The behavior of the agent is influenced directly by the

chosen terms of the contract. Accordingly, the principal can influence the outcome

of a game in his favor, if he chooses an appropriate contract. Delegation is also an

important issue in human society. Firm owners hire managers, lawyers are hired

to act in lawsuits or employees are sent to negotiations to act on behalf of their

employer. There are many reasons for delegation. The agent may be more skilled,

as stated by Baik and Kim (1997), or the agent may have more instruments that

he can use compared to the principal, as explained by Schoonbeek (2007). Oppor-

tunity costs or better information of the agent also act as explanations. Delegation

may even be required by law. Another interesting point compared to Chapter 2

is that delegation is not present in animal populations. Delegation is therefore a

pure invention of humans. This Chapter will show whether delegation can decrease

wasteful expenditures. This is one explanation for why delegation has been invented.

In economics, delegation is often used in contests. In contests, delegation is able

to reduce the effort made, as is shown by Wärneryd (2000) for two-player Tullock

rent-seeking contests by using no-win-no-pay contracts. The agent has to be paid

and the principal also wants to get a part of the desired prize. Accordingly, the

contested prize has to be split up and therefore the incentives for both are smaller

compared to the incentives of a principal playing the contest on his own behalf. But

if principal and agent do not differ, for example in their abilities, then no principal
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would voluntarily choose to delegate. The principal would always have a higher

probability of winning and therefore a higher expected payoff in a contest due to

the higher incentives. Accordingly, mandatory delegation is assumed by Wärneryd

(2000).

We also use a two-player Tullock contest for a given and indivisible prize in this

chapter. The prize has the same value to both players. It is assumed that agents

and principals are risk neutral. The effort made by the agent is not revealed to the

principal. This gives rise to moral hazard. But it will be shown that moral hazard

can be neutralized by choosing an appropriate contract. Mandatory delegation is

assumed, but it is shown that it is possible to relax this assumption. By choosing an

appropriate contract, the incentives for the agent can be increased to the same level

a principal, acting on his own, is incentivized with. Konrad (2009) assumed that the

effort choice of the agent is revealed to the principal. Using this assumption, he de-

rives that the principal can also incentivize his agent to the extent he is incentivized

with. But, as we will show, it is not even necessary to know the investment of the

agent. Also, selling the right to participate is no preferred option in this article.

Baik (2007) showed that no-win-no-pay contracts are optimal for hiring an agent if

the effort made by the agent is unobservable for the principal. In this paper it is

shown that a no-win-no-pay contract is only one representative of a broader class

of contracts and that Baik (2007) has not examined all possible types of contracts.

Baik (2007) showed that principals only use a part of the prize to pay the agent

and do not use fixed payments. In this chapter, we assume that principals offer a

payment contingent on the prize in case of victory, but they also implement a fine

that is also contingent on the prize if the agent loses the contest. A game structure

similar to the prisoners’ dilemma prevents moral hazard on part of the agents. The

fine is included to meet the idea of contractual penalties. Penalties are often used

in contracts in everyday life to ensure a desired behavior by the contract partners.

But in the theory of contests, this type of contract parameter was excluded so far.

In a contest, the contestants fight against each other to gain the desired prize. A

defeat in this contest is an unwanted result because you have costs and your oppo-

nent a gain. In a delegation scenario a fine represents the wish of the principal not

to lose. This wish can be transferred to the agent through a fine. The reward and

the fine may be bounded, in order to represent contractual law or common rules in

contracting.

If no fine is used, the setting of Baik (2007) results. To the best of my knowledge,

these kind of contracts have been introduced by Harris and Raviv (1979). The con-

tracts are called dichotomous contracts and they are used in a monitoring model.

The contract consists of two branches. If the action of the agent is acceptable for
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the principal, then the agent is paid according to a predetermined schedule. But if

the action is found to be unacceptable, the agent receives a less preferred payment

or he may be dismissed. A signal that may be correlated to the effort invested by

the agent is used to judge whether the action is acceptable or not. In this chapter

the signal is the outcome of the contest, i.e. who is the winner. If the contest is

won, the agent is rewarded; otherwise the agent is punished. Introducing a fine is

quite common in real life, either directly or indirectly. Yubitsume in Japan is a very

good example. This ritual is mainly performed by the Yakuza. To apologize for

disappointing or offending one’s principal, a member amputates parts of his fingers.

This weakens the members ability to fight. Because of his weakness, the ties be-

tween principal and agent become stronger. We also mentioned the “contracts” the

Islamic State uses to contract his soldiers. A situation without enforceable property

rights may also lead to such contracts.

But also in legal sectors such dichotomous contracts may be used. To show this, we

will refer back to contractual penalties. There is a well-known example for such a

penalty in Germany. The government delegated the introduction of the toll system

in Germany to a group of firms (Toll Collect). The contract also defined a fine for

Toll Collect. And indeed Toll Collect had to pay this fine, because the firms were

not able to get the system started on time. The fine stood for the forgone tolls for

the government’s budget.

Another example is a lawyer who loses an important lawsuit. He may not be hired

again and even other individuals may refrain from hiring him. The forgone future

earnings act as an implicit fine.

By using a fine, the incentives for the agent can be increased. Accordingly, by choos-

ing an appropriate contract, a principal can induce more invested effort on part of

the agent and therefore more aggressive behavior than by using a no-win-no-pay

contract.

It is shown that no-win-no-pay contracts are not chosen in equilibrium and that it

is possible to incentivize an agent by contracting to the same extent the principal

himself is incentivized with. Accordingly, a reduction in effort by sending a delegate

cannot be observed if the set of contracts is not limited. By prescribing the contracts

to use, i.e. by forbidding Yubitsume, the legislator can reduce wasteful expenditures.

Concerning Yubitsume, one has to admit that it is still used although it is illegal to

force an agent to do this. One explanation for the usage is that it proved to be an

effective mean to encourage the agents, even if the use is sentenced. Additionally,

other contractual penalties are quiet common in real life, which is another hint that

they proved to be useful.

The influence of a limited fine and reward is explained. Selling the right to partic-

ipate is excluded in this setting. But it is described how this assumption changes
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the results.

Leininger (2009) showes that in finite populations interdependent preferences yield

an advantage. In such populations hurting oneself in order to hurt the opponent

even more may be a good idea. This is also a topic in economics, as the Uralkali

example shows. Also Uralkali hurts itself to get rid of some of the competitors. An-

other example is given by a divorce battle. Both parties want to get more than the

opponent. In the latter example mandatory delegation is prescribed in Germany.

It is not immediately clear whether interdependent preferences change the chosen

contract by the principal or not. On the one hand, the principal wants to transfer

his preferences on the delegate, but on the other hand, the agent is only interested

in his material payoff. If an evolutionary setting is employed, an important question

can be asked: Will the delegates also have interdependent preferences? This topic

is also addressed. In this chapter, the influence of interdependent preferences of the

agents on the chosen contracts by principals with independent preferences is also

considered. Whether the results of this model differ or not is also explained.

This chapter is organized as follows. In section 3.2 we set up the model. Af-

terwards the game is solved using Baik’s (2007) no-win-no-pay contracts and the

contracts using a fine. In section 3.4 the model is solved for a limited fine and a

limited reward. Section 3.5.1 deals with the influence of interdependent preference

on the side of the principals on the chosen contract and 3.5.2 is concerned with

agents with interdependent preferences. The conclusion is given in section 3.6.

3.2 The Model

Two risk neutral players are chosen to play a contest for the exogenously given,

indivisible, and strictly positive prize V . The players are named principal one and

principal two. Each player has to choose an agent that plays the contest for him. We

assume that there is perfect competition on the labor market. The reservation wage

is normalized to zero. Accordingly, their participation constraint is met as long as

their wage is in expectation non-negative. This also means that the contested prize

is always greater than the reservation wage, otherwise delegation would be excluded

by the principals. The agents and the principals do not differ in any detail except

that the principals can hire the delegates. Principals and agents are only interested

in their material payoff.

The game has two stages. At stage one both principals hire a delegate. Katz (1991)

showed that it does not matter whether the terms of the contract are observable or

not. At stage two the agents put in irreversible effort to win the prize V . The unit

costs of effort are constant and are given by one for any player. To hire a delegate

at stage one, both principals determine the share they want to pay to the delegate
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if he wins and the share the agent is fined with if he is defeated (the contractual

penalty). The penalty and the offered share may be limited. This extension is dis-

cussed in Section 3.4. The principal does not have the possibility to sell the right of

participating.

The share of the contested prize, paid by principal one if his agent wins, is given by

�1 ∈ [0, 1]. The share demanded, if his agent is not successful, is given by �2 ∈ [0, 1].

For simplicity it is assumed that both shares are not greater than one. Nevertheless,

if both shares are used, it is possible to incentivize the delegate with an amount

greater than the contested prize. The corresponding shares used by principal two

are �i ∈ [0, 1], i = 1, 2. Note that we make no assumption concerning the relative size

of the shares, i.e. whether for principal one it holds that �1 > �2 or not, for example.

Both principals are aware of the fact that their agent’s expected payoff must be

non-negative, i.e. that the reward for a victory is high enough to make the agents

willing to sign the contract, even if they have to pay a contractual penalty and the

costs of the effort made when they are not successful.

The model of Baik results, if �2 = �2 = 0.

The effort invested by the agent of principal one is given by d1. The corresponding

effort of the second delegate is given by d2. The winner of the contest is determined

by using the well-known Tullock contest success function with r ≤ 2. Accordingly,

the probability that the delegate of player one wins the contest is given by

p1 =

⎧⎨⎩1
2

for d1 + d2 = 0,

dr1
(dr1+dr2)

for d1 + d2 > 0.

After both agents put in their efforts, the winner is determined and the prize is

handed out. In Chapter 2 r has to be smaller or equal to one because a higher r

could lead to negative material payoffs. The reason is the more aggressive behavior

induced by the negatively interdependent preferences. But in this chapter the indi-

viduals act not as aggressively as they do in Chapter 2. Accordingly, r can rise to

values smaller or equal to two.

The game is solved by using backward induction. Both principals think about

how the behavior of the agents at stage two is affected by the parameters of the

contract. If they know the relation between contract and behavior, both principals

can choose their preferred contract, contingent on the contract of the opponent, at

stage one. The equilibrium is reached if no principal wants to change a parameter

of the contract, for given parameters of the opponent.
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We start at the second stage. The agent of principal one maximizes

�D1 =
dr1

(dr1 + dr2)
�1V −

(
1− dr1

(dr1 + dr2)

)
�2V − d1.

By calculating the first order condition with respect to d1 and setting it equal to

zero, it results

(dr1 + dr2)2 = (�1 + �2)dr−1
1 dr2rV. (3.1)

Calculating the first order condition of the second delegate, and setting both condi-

tions equal afterwards, yields

d2 =
�1 + �2

�1 + �2

d1.

The effort invested by an agent in equilibrium depends on the sum of both shares.

The relation of the sum of both shares of both principals determines which delegate

invests more; i.e. the agent with the higher total incentive also invests more.

To find the equilibrium effort levels, this condition is plugged into (3.1), it results

Lemma 3.1: The equilibrium efforts of the agents contingent on the offered shares

are given by

d1 =
(�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV,

d2 =
(�1 + �2)r(�1 + �2)r+1

((�1 + �2)r + (�1 + �2)r)2
rV.

Accordingly, the probability that the agent of principal one wins the prize is given

by

p1 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)

and analogously for the agent of principal two

p2 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
.

It can be seen from the effort made that any agent is incentivized by the sum

of both shares. A delegate considers the amount he gets if he wins, and he also
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pays attention to the share he has to pay if he loses. By implementing a fine, a

principal can induce more aggressive behavior. If the contest is lost, then the agent

has a negative payoff because he has to pay the fine and has to bear the costs of the

invested effort. It is assumed that the stake of any agent is sufficient to pay the fine.

If the contest is won, then the payoff for the agent is positive. Baik (2007) explained

that no-win-no-pay contracts are optimal because the agent is incentivized by the

difference in payment between winning and losing. This difference is maximized

by no-win-no-pay contracts if no payment takes place if the agent is defeated. By

introducing a fine, the difference can be increased even further. An employee, for

example, acts more committed if his job is on the line.

3.3 Equilibrium contracts

To analyze the implications of all parts of the contract, the analysis is split up. In

the first subsection no fine is allowed. That means �2 = �2 = 0. Since this connotes

that only no-win-no-pay contracts are used, the subsection is named that way.

Afterwards, a fine is allowed for but the participation constraint is not considered.

In the last subsection the principal uses both parts of the contract and designs

contracts that the agent is willing to sign. This subsection contains the equilibrium

contract for the game specified above. Without loss of generality, we concentrate on

principal one.

3.3.1 No-win-no-pay contracts

If an agent wins, then his principal gets the contested prize. But the principal has

to pay the share specified in the contract to his delegate. If the agent loses, he gets

paid nothing. Accordingly, the expected payoff for principal one is given by

�P1 = p1(1− �1)V =
�r1

(�r1 + �r1)
(1− �1)V.

Calculating the first order condition and setting �1 = �1 afterwards, because we are

looking for a symmetric solution, yields the contract used in Nash equilibrium:

�1 = �1 =
r

2 + r
.

It can be established
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Lemma 3.2: If only no-win-no-pay contracts are allowed, the efforts invested

and payoffs achieved in equilibrium are given by

d1 = d2 =
r2

(2 + r)

V

4
,

�P1 = �P2 =
V

(2 + r)
,

�D1 = �D2 =
(2− r)
(2 + r)

rV

4
.

By using no-win-no-pay contracts, the principal offers a share of the prize to the

delegate that is sufficient to endow him with an expected payoff that is non negative.

The expected payoff is strictly positive as long as r < 2. The offered share is

always smaller than 1
2
. Note that the efforts made are smaller than in the case

without mandatory delegation. Accordingly, the payoffs for the principals are higher

compared to not hiring a delegate1. Another result is that the expected payoff of the

principal is always higher than the expected payoff of his delegate. The principal

has the initial right to participate in the contest and therefore he benefits the most.

This is ensured formally by the fact that he knows how the agent reacts to the share

offered. He can use the share most useful to him.

3.3.2 Equilibrium contracts without participation constraint

Now suppose that the principal can use a fine. This fine has to be paid by the agent if

the contest is lost. This can be seen as an insurance against losing. The participation

constraint is not taken into account here. That means that the expected payoff of

the delegate may be negative. The purpose of this section is to show which tool

is preferred by the principal if he does not have to ensure that the participation

constraint is fulfilled.

The payoff of principal one is given by

�P1 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
(1− �1)V +

(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�2V.

By using the first derivatives, it is possible to show

1For a detailed interpretation, see Baik (2007) and Wärneryd (2000).
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Lemma 3.3: The Nash equilibrium in the contract game without participation

constraint is given by

�1 = �1 = 0 and

�2 = �2 = 1.

Proof:

The payoff of principal one is given by

�P1 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
(1− �1)V +

(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�2V.

First of all, we have a look at �1 and under what circumstances this tool is used.

∂�P1

∂�1

=
r(�1 + �2)r−1((�1 + �2)r + (�1 + �2)r)

((�1 + �2)r + (�1 + �2)r)2
V − r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
V

− ((�1 + �2)r + r�1(�1 + �2)r−1)((�1 + �2)r + (�1 + �2)r)

((�1 + �2)r + (�1 + �2)r)2
V

+
r(�1 + �2)r−1�1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
V − r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
�2V > 0.

Substituting (�1 + �2) by a, (�1 + �2) by b and simplifying the expression yields

br(rar−1 − (1 + r)ar) > a2r.

The term in brackets on the left hand side can be positive or negative. Assume for

the moment that r ∕= (1 + r)a. Accordingly, we have to consider two cases. For
r

1+r
> a, we get

br >
ar+1

r − (1 + r)a
.

If the total incentive of the opponent is high enough, then this inequality is fulfilled,

although the total incentive of principal one is strictly smaller than one.

The second case is given for r
1+r

< a.

br <
ar+1

r − (1 + r)a
.

This case is ruled out because the right hand side is negative. The total incentive

cannot be negative.

Accordingly, principal one will only use �1 if the total incentive he wishes to use is
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smaller than r
1+r

.

Now we have a look at �2.

This tool is only used as long as the first derivative is positive.

∂�P1

∂�2

> 0.

Computing this expression and simplifying it, yields

r(�1 + �2)r−1 + (1− r)(�1 + �2)r + (�1 + �2)r > 0.

This condition is fulfilled because r as well as (�1 + �2) are not greater than two.

That means that increasing the fine is always beneficial for the principal. Accord-

ingly, the total incentive will be equal to one because as soon as �2 is greater than
r

1+r
, the principal reduces the reward to �1 = 0. But �2 is still increased. This

movement stops if the upper bound is reached. The same kind of analysis can be

applied to the second principal. And also r ∕= (1 + r)a holds.

■

Lemma 3.3 states that if the agent works for the principal anyway2, then there

will only be punishment for defeats. If the participation constraint is disregarded,

also the effects of both tools on the payoff of the agent are ignored. If a principal

increases the share of the prize offered to the delegate to reward a victory, then the

willingness of the agent to sign the contract increases. Suppose that only a fine is

used. No rational agent will sign the contract because the payoff is negative for sure.

The agent has to pay something if he loses and gets paid nothing if he wins, and

the agent has to pay for the effort invested anyway. But if a reward is used, then

the agent gets a share of the prize. Accordingly, it is possible that his participation

constraint is met. Nevertheless, using a reward that is too high lowers the payoff

for the principal. And a fine that is too high attracts no agent. These effects are

ignored if the participation constraint is neglected.

3.3.3 Equilibrium contracts

In this subsection any principal can reward his delegate for a victory, punish his

agent for a defeat, and has to ensure that the payoff for the delegate is non-negative.

Hence, principal one is confronted with

max
�1,�2

�P1 subject to �D1 ≥ 0.

2We would call this slavery.
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The expected payoff for the delegate in equilibrium of stage two is given by

�D1 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�1V −

(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�2V

− (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

The first part is the share of the prize the agent gets weighted by the winning

probability. The second part represents the fine and the last part are the costs of

effort invested by the agent.

We conclude that principal one does not want to pay more than necessary to his

agent. Accordingly, he only ensures that the payoff of the delegate is zero, no more,

no less. Thus,

(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�2V = +

(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
�1V

− (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

Applying this to the payoff function of principal one yields

�P1 =
(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)
V − (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

Note, that any principal cannot observe the effort invested by any delegate directly.

But by assuming rational behavior of the delegate and knowledge of the fact that

all individuals maximize their material payoff, any principal can conclude how the

delegates react to the terms of the contract. Accordingly, the design of the contract

is used to provide the incentives most useful to the principal. The principal knows

the fine he gets paid and the reward that he has to pay. The delegate has to be

compensated for the fine, but the reward reduces the compensation. Accordingly,

both cancel out if they are applied to the problem of the principal. In expectation

the principal only has to compensate the delegate for the effort invested.

By introducing a fine, it is possible for the principal to offset the reduction in

incentive due to the split up of the prize.

By substituting (�1 + �2) by a and (�1 + �2) by b, the problem of principal one

reduces to

�P1 =
ar

ar + br
V − ar+1br

(ar + br)2
rV.
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By calculating the first derivative and simplifying the first order condition, it can

be shown that

ar + br − (r + 1)ar+1 − (r + 1)abr + 2rar+1 = 0.

Rearranging yields

ar

br
=

a(r + 1)− 1

a(r − 1) + 1
. (3.2)

Doing the same for the second principal yields

ar

br
=

b(1− r)− 1

1− b(r + 1)
. (3.3)

Setting (3.2) and (3.3) equal yields

b =
a

2a− 1
. (3.4)

And a is implicitly defined by

(2a− 1)r =
a(r + 1)− 1

a(r − 1) + 1
. (3.5)

Using (3.4) and (3.5), it is possible to state

Lemma 3.4: The Nash equilibria in the contract game are given by (a∗, b∗) =(
a∗, a

2a∗−1

)
. Where a∗ is determined by (3.5).

According to Lemma 3.4 we can state that there is a symmetric equilibrium that

is independent of r. In fact, a = 1 always solves equation (3.5) for any r. Another

result is that for r = 1 any a solves the equation. We will be concerned with this

case in Section 3.3.4 Whether there are asymmetric equilibria or not, depends on r.

For the symmetric equilibrium we can state

Theorem 3.1: In the symmetric Nash equilibrium any principal incentivizes his

agent with the whole prize.

The proof is straightforward and therefore omitted3. In essence, it is optimal for

any principal to use a contract that incentivizes the agent with the whole prize. The

principal tries to put the agent in the same situation he would be in. That means

3Using the fact that we are searching for a symmetric equilibrium, we can set (3.2) equal to
(3.3). This leads to a = b = 1 because of symmetry.
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that winning the prize is as important for the agent as it would be for the principal

if he were fighting himself. Selling the right to participate is no preferred option in

this setting. Whether the right is sold or not, has no influence on the efforts invested

by the delegate because in both cases his incentives do not differ.

Konrad (2009) shows that for observable effort choices the principal can incentivize

the agent to invest as much as he would. Theorem 3.1 shows that this is also the

case for unobservable effort choices. By using an appropriate contract, the principal

can completely overcome the problem of moral hazard.

In the symmetric equilibrium any agent invests rV
4

to win the contest. In a contest

with no-win-no-pay contracts a delegate invests r2

(2+r)
V
4

. Accordingly, an agent is

more aggressive and therefore invests more when there is a fine for a defeat.

To determine the values for the fine and the reward that are chosen by the

principal, we use the participation constraint.

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�1V =

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V

+
(�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

In expectation the payment to the delegate is as high as the fine that the agent has

to pay and the costs of effort he makes.

Because this is the symmetric equilibrium and �1 + �2 = 1, we get

Theorem 3.2: The shares used by the principals in the symmetric equilibrium

contracts are

�1 = �1 =
(2 + r)

4
and

�2 = �2 =
(2− r)

4
.

It is obvious that the reward is always greater than the fine. If the reward is greater

than (2+r)
4

, the delegate has a positive payoff in expectation. But if the reward is

smaller, then the agent has a negative payoff. �1 and �1 are greater than 1
2

for every

r and they increase in r. �2 and �2 are always smaller than 1
2

and they decrease in

r. The reason for this are the incentives for the principal. If r is very low, investing

more effort than the opponent has only a small effect on the winning probability.

For very low values of r, the determination of the winner is comparable to a coin
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flip. Accordingly, the principal wants to be prepared for both cases. He offers only

a small share as a reward, because the positive effect of more effort is only small

and luck plays an important role. The fine is high, because the principal wants to

insure himself against losing. If r is high, then investing effort leads to a higher

winning probability and the agent has a high incentive to invest effort. And because

he invests much, the principal cannot use a high fine because this would lead to a

negative expected payoff.

Concerning the payoffs, it can be established

Corollary 3.1: The material payoff of any principal is given by �P1 = �P2 = (2−r)
4
V

in equilibrium. The material payoff of the agent is always zero.

The principal only ensures the participation of the agent. Accordingly, the pay-

off for any delegate in equilibrium is zero. Note that the payoff for the principal

is as high as his payoff would be in an equilibrium without mandatory delegation.

Suppose that mandatory delegation is not assumed anymore. Whether a delegate

is hired or not, has no effect on the expected payoff of the principal4. Accordingly,

any principal is indifferent between delegating or playing the contest himself. This

may lead to a situation where only one principal delegates or no principal delegates,

i.e. the assumption of mandatory delegation can be relaxed.

Note that if the contract space is unlimited, agents act as aggressive as principals

would do and it is therefore not possible to observe a reduction in wasteful invest-

ments by introducing mandatory delegation. The efforts invested by the players

can only be decreased if the number of possible contracts is decreased. This would

lead to higher payoffs for the principals and can also lead to higher payoffs for the

delegates. How these restrictions affect the equilibrium is investigated in the next

section.

Concerning the asymmetric equilibria, if they exist, we can state that a principal

sets the total incentive greater than 1 if the other principal sets the total incentive

smaller than 1. One property of these equilibria is that the sum of both total in-

centives of the principals is greater than 2. In the asymmetric equilibria they act

overall even more aggressive. If a principal is confronted with an opponent with

a rather low incentive scheme, he wants to use this weakness by setting an even

4If an aditional stage is introduced to account for the decision on delegating or not, we have four
subgames: no principal delegates, both principals delegate and only one principal delegates. It is
straightforward to show that setting a total incentive of one is an equilibrium even if the opponent
does not delegate. The material payoff for both principals does not differ compared to the no
delegation scenario. On the one hand the non-delegation principal is confronted with an agent
that is as incentivized as the other principal is. And on the other hand the delegating principal
made the agent act as he would do himself.
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higher incentive for his agent. An interesting case where it is possible to see such a

behavior is the case of r = 1.

3.3.4 The case of r = 1

Setting r = 1 in (3.2) and (3.3) yields for both conditions

b =
a

2a− 1
. (3.6)

Accordingly, the best response curves are completely identical5. Therefore, there is

one symmetric equilibrium and there are multiple asymmetric equilibria.

In the symmetric equilibria a=b=1 holds and �P1 = �P2 = V
4

. The asymmetric

equilibria are characterized by
(
a, a

2a−1

)
.

Now assume, without loss of generality, that a > b. According to (3.4) this is true

for a > 1. It also holds that

a+ b > 2.

The sum of incentives in an asymmetric equilibrium is always higher than in the

symmetric equilibrium.

The payoffs for both principals are given by

�P1 =
2a− 1

4a
V

�P2 =
1

4a
V.

It is easy to check that

�P1 >
V
4

> �P2.

Therefore, the more aggressive principal has a higher payoff than the principal with

the weaker incentive scheme.

Suppose that one principal uses a low incentive for his agent. In this case the other

principal increases the incentives for his principal to make profit out of this weak

incentive scheme.

5Leininger (2009) searching for evolutionarily stable preferences derived a similar result in his
model. He concentrates on the relevant symmetric equilibrium.
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3.4 Limited reward and/or fine

Principal 1 has to solve

max
�1,�2

�P1

wrt �D1 ≥ 0

�̄− �1 ≥ 0

�− �2 ≥ 0.

�̄ represents the upper bound for the reward and � the upper bound for the fine.

All constraints can be binding or not. That means we have to consider the following

cases:

Case c1 c2 c3

1 + + +

2 + + 0

3 + 0 +

4 + 0 0

5 0 + +

6 0 + 0

7 0 0 +

8 0 0 0

c1 stands for the participation constraint, c2 for the upper bound constraint for

the reward and c3 for the upper bound constraint for the fine. A “+” indicates that

the constraint is binding. We will concentrate on the symmetric equilibrium.

Case 6 can be excluded because the principal has an incentive to increase the fine.

An increase in the fine increases the incentives for the agent and increases the ex-

pected payoff for the principal. This upward shift continues until the participation

constraint or the upper bound of the fine (or both) are met. Using this argument

Case 8 can also be excluded. Case 4 is examined in Section 3.3.3. We can also

exclude Case 3. This case is equivalent to Case 4. The principal does not want

to increase the reward. An increase would increase the payoff for the agent and

therefore the participation constraint would not be binding anymore. The only case

where the upper bound of the fine is reached, the principal does not want to in-

crease the reward and the participation constraint is binding is when the chosen fine

in Section 3.3.3 is equal to the upper bound.

The participation constraint is binding if

�1 =
2 + r

2− r
�2.
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Accordingly, this condition is fulfilled in cases 1 to 4. In the other cases �1 is greater

than the right-hand side. There will be positive profits for the agent in these cases.

Of course, for the upper bound constraint for the fine and for the reward to be

binding, the shares have to be lower than the values given in Theorem 3.2. The

second condition can only be binding as long as �1 + �2 ≤ r
2+r

.

In the following, we will concentrate on symmetric equilibria. The results for the

maximization problem are given in the following table

Case �1 �2 �P1

1 �̄ � (1− �̄ + �)V
2

2 �̄ 2−r
2+r

� 2+r−2r�̄
2+r

V
2

4 2+r
4

2−r
4

2−r
4
V

5 �̄ � (1− �̄ + �)V
2

7 r
2+r
− � � ( 1

2+r
+ �)V

If the use of the fine is forbidden, the problem given by Case 7 characterizes a no-

win-no-pay contract.

An important result of this table is that limiting the set of contracts is beneficial

for the principal (and it can also be beneficial for the agent)6. The payoff of the

principal is lowest in Case 4, i.e. when the restrictions do not affect his contract

choice. The payoff of the agent is positive in Cases 5 and 7. In any other case the

payoff is zero. Note that in Case 5 and in Case 7 the fine is limited.

Another result is that limiting the reward leads to a higher payoff than limiting the

fine does, i.e. the payoff of the principal in Case 2 is higher than in Section 3.3.3.

This is due to the participation constraint. The principal has to compensate the

agent with a higher reward if he uses a fine. If the reward is limited, the fine is also

limited.

Cases 5 and 1 are not equal. For a given fine, the reward in Case 5 is higher than

in Case 1.

3.5 Interdependent Preferences

We are concerned with interdependent preferences and their influence on the cho-

sen contract in this section. Common sense tells us that negatively interdependent

preferences would also lead to more aggressive behavior. Whether this is true or

not is explained below. But before, we have to say a few words about negatively

interdependent preferences. In a divorce battle, for example, the negatively inter-

dependent preferences result from the relationship between two individuals. If one

of these two has to play a contest with a foreigner, he may not have this kind of

6The upper bounds must be strictly smaller than the desired shares given in Theorem 3.2.
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preferences anymore. But in Chapter 2 we described the work of Leininger (2009).

He derives the result that negatively interdependent preferences are evolutionar-

ily stable in finite populations. Hence, it seems sensible to examine the effects of

such preferences in our framework as well. But this opens another problem: Given

that negatively interdependent preferences are evolutionarily stable, why don’t the

delegates, or principals in the other model respectively, also have negatively inter-

dependent preferences?

We will address two possible explanations here. The decision about the plausibility

of either one is left to the reader.

One answer is that we have two populations. In only one population evolution led to

negatively interdependent preferences. And the same government that introduced

mandatory delegation also obliged that one has to choose a delegate from the pop-

ulation with individualistic preferences.

Another answer could be that the delegates are only hired and have no personal

concern for the prize at stake. A soldier that has to defend his hometown is more

incentivized than a mercenary fighting on the same battlefield, for example. This

could also be an explanation why a delegate may or may not share the principal’s

negatively interdependent preferences. For a principal it may be a good decision to

hire an agent that hates the agent of the opponent. Common sense tells us that an

agent with negatively interdependent preferences will invest more.

3.5.1 Principals with negatively Interdependent Preferences

For simplicity, let us assume that both principals have negatively interdependent

preferences. �, with 0 ≤ � ≤ 1, represents the degree of negatively interdependent

preferences. � is the same for both principals. � = 0 holds for an individualistic

player. The higher � is, the higher are the concerns for the payoff of the opponent.

For � = 1, an individual is interested in the difference between his payoff and the

payoff of his opponent. Accordingly, he has relative preferences. If an evolutionary

setting is employed, � = 1
N−1

holds. N stands for the number of individuals in the

population.

The preferences of the agents and the set of possible contracts are not changed.
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Accordingly, the results at the last stage stay the same:

�P1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
(1− �1)V +

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V,

�P2 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
(1− �1)V +

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V,

�D1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�1V −

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V

− (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

As stated above �Pi (i = 1, 2) gives the material payoff for principal i and �D1

determines the payoff for the delegate of principal one.

Principal one does not maximize his material payoff given by �P1. Because of the

interdependent preferences he maximizes:

UP1 = �P1 − ��P2.

And principal one has to meet the participation constraint of his agent, i.e. �D1 has

to be non-negative in equilibrium.

Theorem 3.3: The total incentive a principal with negatively interdependent prefer-

ences uses in the unique symmetric equilibrium is also one, i.e. �1+�2 = �1+�2 = 1.

Proof:

U1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
(1− �1)V +

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V

− (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�(1− �1)V − (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
��2V.

The first order condition with respect to �2 is given by

∂U1

∂�2

=
r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
(1− �1)V +

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
V

− r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
�2V +

r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
�(1− �1)V

− r(�1 + �2)r−1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
��2V.

This first derivative is greater or equal to zero, for

(�1 + �2)r + (�1 + �2)r(1− r) + r(�1 + �2)r−1(1 + � − �(�1 + �2)) ≥ 0.
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This condition is always fulfilled, because r ≤ 2, the total incentive is smaller or

equal to two and � ≤ 1.

Accordingly, principal one wants to increase the penalty, as long as his delegate is

willing to participate. To ensure that the payoff of the delegate is non-negative, the

principal will use the fine until �D1 = 0.

Using this condition yields

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V =

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�1V

− (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV.

Applying this to U1 yields

U1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
V − (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV

− (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�(1− �1)V − (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
��2V.

(�1 + �2) represent the total incentive principal one uses to incentivize his agent.

To facilitate our further analysis, we will set t = (�1 + �2):

∂U1

∂t
=

rtr−1(�1 + �2)r

(tr + (�1 + �2)r)2
V

− (r + 1)tr(�1 + �2)r(tr + (�1 + �2)r)2 − 2(tr + (�1 + �2)r)rt2r(�1 + �2)r

(tr + (�1 + �2)r)4
rV

+
rtr−1(�1 + �2)r

(tr + (�1 + �2)r)2
(1− �1)�V − rtr−1(�1 + �2)r

(tr + (�1 + �2)r)2
�2�V

= 0.

That expression reduces to

(�1 + �2)r(1 + � − �(�1 + �2))

=
(r + 1)t(�1 + �2)r(tr + (�1 + �2)r)− 2rtr+1(�1 + �2)r

tr + (�1 + �2)r
.

Setting t = (�1 + �2) (symmetry assumption) yields

2tr(1 + � − t�) = t(rtr + tr + tr − rtr).

And therefore t = 1.

We excluded altruism (� < 1) and therefore t = 1 is the unique symmetric solution.

■
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The negatively interdependent preferences are supposed to increase spiteful behav-

ior. And indeed they increase the incentive to win the contest for the principal. But

the participation constraint is a barrier that keeps the total incentive from rising.

In the setting with individualistic preferences, the payoff of the delegate was already

zero. That means the delegate already invested everything the contract allowed him

to. Accordingly, increasing �2 is not possible for principal one.

An increase of �1 also does not pay. A higher �1 decreases the share he gets if the

delegate wins and this case happens with a higher probability. This increase would

also allow a higher fine, but the case in which he gets paid the fine occurs with a

lower probability. On the other hand, a higher �1 and �2 decreases the probability

of winning for the opponent. But because of the fine, the effect on the material

payoff of the opponent is mitigated. In the symmetric equilibrium all these effects

cancel each other out. Accordingly, it is still optimal to use a total incentive of one

in equilibrium.

As can be seen, delegation can indeed be an adequate mean to decrease waste-

ful investments in contests. Negatively interdependent preferences would make the

principals act more aggressively in the contest if they had to play it. But the par-

ticipation constraint in the delegation setting prevents the principal from increasing

the incentives by using the terms of the contract. With individualistic preferences,

the principals are able to put the agent in the same situation they would be in when

playing themselves. But they are not able to transfer the negatively interdependent

preferences to their agents. Note that the principals also benefit from this because

their material payoff stays the same compared to the case without negatively inter-

dependent preferences. But without delegation it would decrease, and the utility

would be the same as in the delegation setting.

The principal has a positive material payoff. By using a fixed payment, the principal

could increase the total incentive and compensate the delegate for a possible loss.

We will introduce fixed payment F1 for principal one and F2 for principal two, in

order to show that this is no option. A fixed payment does not change the behavior

of the agent directly, but it enlarges the contract space for the principal. Due to

changed contract parameters the behavior of the delegate can be changed. With the

fixed payment the payoff of the delegate of principal one is

�̃D1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�1V −

(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�2V

− (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV

+ F1.
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Increasing the fine until the participation constraint is met is still beneficial for the

principal. Setting �̃D1 = 0 and using this condition yields

Ũ1 =
(�1 + �2)r

(�1 + �2)r + (�1 + �2)r
V − (�1 + �2)r+1(�1 + �2)r

((�1 + �2)r + (�1 + �2)r)2
rV

− (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
�(1− �1)V − (�1 + �2)r

(�1 + �2)r + (�1 + �2)r
��2V.

This is the same function as in the setting without a fixed payment. Accordingly,

the result remains unchanged and the principal is still not able to increase the total

incentive to more than one. That also means that he is still not able to put the

delegate in the same situation he would be in.

3.5.2 Agents with negatively Interdependent Preferences

In this subsection the principals have independent preferences, but the agents have

interdependent preferences. To keep the analysis simple, it is assumed that an agent

is concerned with the payoff of the other agent. Accordingly, we don’t consider the

effects of an agent that is concerned with the payoff of the other principal, of his

principal7 or even both. To avoid the strategic choice of an agent’s type8, �, with

0 ≤ � ≤ 1, represents the degree of negatively interdependent preferences. � is the

same for both and to ensure comparison, it is the same as in section 3.5.1. There are

two effects in this model. The agent will invest more compared to a situation with

independent preferences. This may decrease the incentives offered by the principals,

because the agents want to beat the opponent. But by using a high incentive, the

principal can increase the probability of winning.

The model has two stages. At the first stage the principals choose the contract. The

contract chosen determines the effort invested by the agent at the second stage. The

agent of principal one maximizes his utility uID1. His utility is given by

U I
D1 = �ID1 − ��ID2.

�ID1 is his material payoff and �ID2 is the material payoff of the other agent. �I1 is

the share used by principal one as a reward and �I2 is the share of the prize that is

used as a fine. �I1 and �I2 are the shares used by principal two. The efforts invested

by the agents are denoted by d1 and d2. Accordingly, the agent of principal one

7Such a kind of model is considered in Chapter 6.
8Of course, choosing the agent with the more negatively interdependent preferences may be

advantagous for the principal.
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maximizes

U I
D1 =

dr1
dr1 + dr2

�I1V −
dr2

dr1 + dr2
�I2V − d1 − �

(
dr2

dr1 + dr2
�I1V −

dr1
dr1 + dr2

�I2V − d2

)
.

Deriving the first order condition and rearranging it yields

(dr1 + dr2)2 = dr−1
1 dr2(�I1 + �I2 + ��I1 + ��I2)rV.

Doing the same for the second agent yields

(dr1 + dr2)2 = dr1d
r−1
2 (��I1 + ��I2 + �I1 + �I2)rV. (3.7)

Setting both conditions equal yields

d2 =
(��I1 + ��I2 + �I1 + �I2)

(�I1 + �I2 + ��I1 + ��I2)
d1. (3.8)

In the models so far the total incentive of an agent was given by the sum of both

shares, i.e. the determined fine and reward. But in this model the total incentive

is given by the sum of the own shares and the sum of the shares of the opponent

weighted by �. That means, as long as � > 0, the incentives for an agent to invest

effort are higher in this model compared to the model with agents with independent

preferences for any value of the shares used by the principal. But it still holds that

the relation of the sum of both shares of both principals determines which delegate

invests more.

Using (3.7) and (3.8) yields the equilibrium efforts of the second stage. We can state

Lemma 3.5: The equilibrium efforts of the agents contingent on the offered shares

are given by

d1 =
(�I1 + �I2 + ��I1 + ��I2)r+1(��I1 + ��I2 + �I1 + �I2)r

((�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r)2
rV,

d2 =
(�I1 + �I2 + ��I1 + ��I2)r(��I1 + ��I2 + �I1 + �I2)r+1

((�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r)2
rV.
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Accordingly, the probabilities of winning are

pI1 =
(�I1 + �I2 + ��I1 + ��I2)r

(�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r
,

pI2 =
(��I1 + ��I2 + �I1 + �I2)r

(�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r
.

Let us turn to the first stage of the game. Any principal maximizes his expected

material payoff. The payoff function of principal one is given by

�IP1 = (1− �I1)pI1V + pI2�
I
2V.

But the principal must still ensure participation of the agent. Without the par-

ticipation constraint, the principal will only punish his agent. To prevent this, we

will assume that any agent will sign the contract only if the expected utility is at

least zero. Note that we don’t only consider the material payoff. Accordingly, the

material payoff can also be negative. The agent with interdependent preferences is,

for � sufficiently high, willing to suffer a loss but only if the opponent suffers a loss

that is even greater. A zero material payoff assumption would include situations

with negative utility9. Of course, no agent that maximizes his utility will sign such

a contract. But we have to mention that a negative material payoff for an agent is

problamatic, because he loses money by signing such a contract. We will see that

this problem can be neglected in equilibrium.

The utility of the agent of principal one is

U I
D1 = pI1�

I
1V − pI2�I2V − d1 − �pI2�I1V + �pI1�

I
2V + �d2.

Setting this expression equal to zero and rearranging it afterwards, yields

pI2�
I
2V = pI1�

I
1V − d1 − �pI2�I1V + �pI1�

I
2V + �d2.

Accordingly, the expected material payoff of principal one is

�IP1 = pI1V − d1 − �pI2�I1V + �pI1�
I
2V + �d2.

9Assume that � = 1, the material payoff of the first agent to be zero and the material payoff of
the second agent to be greater zero.
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Using the expressions derived at the second stage, leads to

�IP1 =
(�I1 + �I2 + ��I1 + ��I2)r

(�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r
V

− (�I1 + �I2 + ��I1 + ��I2)r+1(��I1 + ��I2 + �I1 + �I2)r

((�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r)2
rV

− (��I1 + ��I2 + �I1 + �I2)r

(�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r
��I1V

+
(�I1 + �I2 + ��I1 + ��I2)r

(�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r
��I2V

+
(�I1 + �I2 + ��I1 + ��I2)r(��I1 + ��I2 + �I1 + �I2)r+1

((�I1 + �I2 + ��I1 + ��I2)r + (��I1 + ��I2 + �I1 + �I2)r)2
�rV.

The first two terms represent the benefit created by the contest for principal and

agent. The last three terms represent the concern of the agent for the material

payoff of his opponent. We can see that the principal cares for the material payoff

of the other agent, although he has independent preferences. The reason for this is

that these preferences influence the behavior of his agent and therefore he has to

take these preferences into account.

Note that for principal one only the sum of both shares used by him matters. Ac-

cordingly, we will set (�I1 + �I2) = aI . When possible, we will set (�I1 + �I2) = bI .
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The first order condition with respect to a is given by

0 =
r(aI + �bI)r−1

(
(aI + �bI)r + (�aI + bI)r

)
((aI + �bI)r + (�aI + bI)r)2 V

−
(
r(aI + �bI)r−1 + r�(�aI + bI)r−1

)
(aI + �bI)r

((aI + �bI)r + (�aI + bI)r)2 V

−
((r + 1)(aI + �bI)r(�aI + bI)r)

(
(aI + �bI)r + (�aI + bI)r

)2

((aI + �bI)r + (�aI + bI)r)4 rV

−
(r�(�aI + bI)r−1(aI + �bI)r+1)

(
(aI + �bI)r + (�aI + bI)r

)2

((aI + �bI)r + (�aI + bI)r)4 rV

+
2
(
(aI + �bI)r

) (
r(aI + �bI)r−1 + r�(�aI + bI)r−1

)
(aI + �bI)r+1(�aI + bI)r

((aI + �bI)r + (�aI + bI)r)4 rV

+
2(�aI + bI)r

(
r(aI + �bI)r−1 + r�(�aI + bI)r−1

)
(aI + �bI)r+1(�aI + bI)r

((aI + �bI)r + (�aI + bI)r)4 rV

−
r�(�aI + bI)r−1

(
(aI + �bI)r + (�aI + bI)r

)
((aI + �bI)r + (�aI + bI)r)2 ��I1V

−
(
r(aI + �bI)r−1 + r�(�aI + bI)r−1

)
(�aI + bI)r

((aI + �bI)r + (�aI + bI)r)2 ��I1V

+
r(aI + �bI)r−1

(
(aI + �bI)r + (�aI + bI)r

)
((aI + �bI)r + (�aI + bI)r)2 ��I2V

−
(
r(aI + �bI)r−1 + r�(�aI + bI)r−1

)
(aI + �bI)r

((aI + �bI)r + (�aI + bI)r)2 ��I2V

+
(r(aI + �bI)r−1(�aI + bI)r+1)

(
(aI + �bI)r + (�aI + bI)r

)2

((aI + �bI)r + (�aI + bI)r)4 �rV

+
((r + 1)�(aI + �bI)r(�aI + bI)r)

(
(aI + �bI)r + (�aI + bI)r

)2

((aI + �bI)r + (�aI + bI)r)4 �rV

−
2(aI + �bI)r(�aI + bI)r+1

(
(aI + �bI)r + (�aI + bI)r

) (
r(aI + �bI)r−1

)
((aI + �bI)r + (�aI + bI)r)4 �rV

−
2(aI + �bI)r(�aI + bI)r+1

(
(aI + �bI)r + (�aI + bI)r

)
r�(�aI + bI)r−1

((aI + �bI)r + (�aI + bI)r)4 �rV.

We are searching for a symmetric equilibrium. Accordingly, we set a = b = c. It

results

0 = (1− �)− (r + 1)(c+ �c) + r(c+ �c)− 2�2�1 + (1 + �)��1 + 2��2

− (1 + �)��2 + �(c+ �c)(r + �(r + 1))− �(c+ �c)r(1 + �).

Which reduces to

0 = (1− �)− (c+ �c) + (1− �)�c+ �2(c+ �c).
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Accordingly, we can state

Lemma 3.6: The symmetric Nash equilibrium in the contract game is given by

a∗ = b∗ = 1
�2+�+1

.

We can see that as long as 0 ≤ � ≤ 1 holds, 1
�2+�+1

is falling in �. Accordingly,

the total incentive set by the principals is highest for � = 0. We have seen that in

this case the total incentive is given by one. That means that the principal benefits

from the negatively interdependent preferences of his agent. The principal pays less

to an agent with negatively interdependent preferences. Because he is only inter-

ested in his monetary payoff, he does not want to defeat the other principal at any

cost. He therefore pays less, because the agent is intrinsically motivated by the wish

to defeat the other agent. Note that this result does not depend on r.

Another striking result is that the total incentive is 1
3

when � is equal to one. Note

that 1
3

is the share of the prize used by a principal, if r = 1, only no-win-no-pay

contracts are allowed and we are not confronted with negatively interdependent pref-

erences. That means the total incentive in a model with the new kind of contracts

and negatively interdependent preferences is always higher. Although the principals

benefit from the negatively interdependent preferences, they still use a relatively

high share of the prize to incentivize their agent.

For the effort invested by any agent, it holds

d∗1 = d∗2 =
(1 + �)rV

4(�2 + � + 1)
.

In the symmetric equilibrium of the model without negatively interdependent pref-

erences the effort invested by an agent is rV
4

. Accordingly, the effort invested by

an agent is smaller if he has negatively interdependent preferences. We have two

effects. On the one side, the agent invests more because of the wish to defeat the

opponent, but, on the other hand, the principal reduces the incentive for the agent

and therefore investment falls. The latter effect dominates the first effect. The prize

has to be split up between principal and agent. But the share offered to the agent

is so small, that, although he hates the opponent, invests less.

Using the zero-utility condition and the result in Lemma 3.6, we can state
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Theorem 3.4: The shares used by a principal in the symmetric equilibrium

contract are

�I∗1 = �I∗1 =
2 + (1 + �)r

4(�2 + � + 1)
and

�I∗2 = �I∗2 =
2− (1 + �)r

4(�2 + � + 1)
.

We can see that both shares decrease if � increases. The reduction in total incentive

used by the principal is therefore due to a reduction in the fine and a reduction in

the reward.

Concerning the payoffs, we can state

Corollary 3.2: The material payoff of any principal in equilibrium is given by

�IP1 = �IP2 = (2�2+2�+2−r−r�)
(�2+�+1)

V
4

. The material payoff and the utility of any agent in

equilibrium are both zero.

Compared to the result of the contract choice game without negatively interde-

pendent preferences, we can state that if � > 0, i.e. the agents do indeed have

negatively interdependent preferences, the material payoff of the principal is higher.

The principal uses the intrinsic motivation of the agent to increase his share of the

pie. You have to pay more to a mercenary to fight for you, than you have to pay to

a person that hates your opponent (or his soldiers) for some reason.

The material payoff of the agent is zero. Accordingly, we are not confronted with the

problem of a negative material payoff. Although the agent has negatively interde-

pendent preferences, he has no disadvantage: His material payoff does not decrease.

3.6 Conclusion

Wärneryd (2000) showed that mandatory delegation may decrease efforts invested

in a two-player Tullock rent-seeking contest. Because the contested prize is split up

between principal and agent, the agent does not act as aggressively as the princi-

pal would do. Accordingly, efforts made are reduced and expected payoffs for the

principals are increased. This holds true for no-win-no-pay contracts. In this pa-

per it is shown that no-win-no-pay contracts are only a subset of a broader class

of contracts. In fact, a fine and a reward, both depending on the contested prize,

are introduced. Any principal can punish his delegate for a defeat. An example is

found in Yubitsume by the Yakuza, contractual penalties, the hiring of lawyers etc.

The agent acts more aggressive if he is in danger of losing the invested effort and
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some extra money, compared to only losing the effort put in. This fine also prevents

moral hazard by the agent. The probability of shirking is reduced if a defeat is very

bitter.

In a no-win-no-pay contract only a reward is used.

In the symmetric equilibrium with risk neutral agents and principals both prin-

cipals put their delegate in the same situation they would be in without mandatory

delegation. In fact, the share offered as a reward and the share used as a fine must

add up to one. The sum of both shares determines the total incentive of the agent

because this is the difference between winning and losing. For any principal this is

also one because either he wins the contest, or he loses it. The expected payoff for

the agents in equilibrium is always zero, but the payoff of the principal is positive

and is as high as in a situation without delegation. In fact, whether a principal

delegates or not does not alter the payoff in equilibrium. Accordingly, the principals

are indifferent between delegating or not. In the asymmetric equilibria, if they exist,

one agent is incentivized with more than the complete prize and the other one with

less. In total the sum of incentives is greater than two times the prize. If a principal

is confronted with a principal using a weak incentive scheme, he wishes to overrun

the enemy by incentivizing his agent over proportionally compared to the prize at

stake.

The efforts invested in the contest only decrease, as Wärneryd stated, as long as the

contract space is limited. That means, upper bounds for penalties and for rewards

have to be introduced. By introducing a fine, it is possible for the principals to

contract a delegate by using more aggressive contracts. An agent contracted with

the new type acts as a principal would do and, as Wärneryd (2000) showed, has

therefore an advantage compared to a delegate with a no-win-no-pay contract. The

positive effects of delegation are mitigated by more aggressive contracts. If only

no-win-no-pay contracts are allowed, then a principal using a fine to contract an

agent has an advantage. But he has to fear detection. Introducing mandatory dele-

gation alone is not beneficial, but introducing mandatory delegation and restricting

the possible contracts combined with law enforcement is. If the contract space is

limited, for example by law, then wasteful investments in contests can be reduced.

An example is the lawyers’ compensation act (Rechtsanwaltsvergütungsgesetz) in

Germany. By introducing upper bounds, even a positive payoff for the agent is pos-

sible.

Another important result is the influence of interdependent preferences on the side

of the principal on the chosen contract. The incentives of a principal with nega-

tively interdependent preferences to win the contest are higher than for a principal

with individualistic preferences. But the participation constraint keeps the spiteful
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principal from transferring the increased incentive to the agent. Accordingly, the

negative effect of interdependent preferences is mitigated and delegation can indeed

decrease efforts invested, even with the increased contract set. In a divorce battle

both parties want their lawyer to feel the pain they do and to act as he would be in

the same situation. But the lawyer is only interested in his material payoff, and he

has no advantage from hurting himself, just to hurt the opponent even more.

Delegation can also decrease the effort invested if agents have negatively interde-

pendent preferences. Because the agent is intrinsically motivated to invest efforts,

the principal decreases the total incentive. He uses a lower fine and a lower reward.

This reduction is high enough to make the agents invest less compared to a situation

without agents with negatively interdependent preferences. The principal benefits

from this reduction, because his material payoff increases. But the agent does not

benefit. He still has a material payoff of zero.

Delegation leads to a split up of the contested prize between agent and principal. If

the agent has negatively interdependent preferences, the principal can increase his

share, because the agent is intrinsically motivated. But this motivation makes the

agent spent his share in the contest.

It is an interesting endeavor to investigate empirically whether individuals choose

contracts that include punishments or not, and which implications this has on the

behavior of the agents. Also the influence of risk aversion on the delegation decision

and on the chosen contracts seems to be an interesting topic.
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Chapter 4

In defense of lawyers II:

Delegation as an Aid against too

aggressive behavior.

4.1 Introduction

In this chapter we want again show that delegation is beneficial. In order to show the

benefits of delegation, it is assumed that the players in the contest have negatively

interdependent preferences. This assumption can also be justified by the fact that

individuals are to some extent concerned with their relative payoff. As Riechman

(2007) states, this might be the case due to the imitation of successful opponents

or a payment scheme used by firm owners to pay the manager in the rent-seeking

contest. Riechmann also states that experimental evidence supports the significance

of relative payoffs. We also examined evolutionary reasons in Chapter 2.

In this model, two players will compete for a single indivisible prize, and they are

each obliged to hire a delegate who has to compete for them. We use the well-known

Tullock Contest-Success-Function (CSF) to determine the winner. But we will use

a different way of modelling the contest than we used in Chapter 3. In the previous

chapter we assumed that the principals can choose the fine and the reward with-

out any restriction. But in this chapter we will use a model where the principals

have to choose between two types of contracts. Accordingly, the contest has three

stages. At the first stage, the principals simultaneously choose the contracts they

wish to use. They then contract a delegate and truthfully announce the terms of

the contract to the other principal and to both delegates. As Katz (1991) showed,

it is possible to assume unobservability of contracts without changing the results.

At the third stage, the actual contest between the delegates takes place. A prin-

cipal has the choice of two kinds of contract. The first offers a share of the prize
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to incentivize the delegate. Such contracts have been used previously in literature,

by Baik and Kim (1997) or Baik (2007) for example. As before, we will call these

types of contracts no-win-no-pay contracts. The second type consists of a payment

that is made conditionally upon the agent’s success in the contest. Neither delegate

is involved in the conflict before he is contracted and maximizes his individualistic

payoff. Suppose there are two groups of agents. One of these groups consists of

players that maximize weighted relative payoff, irrespectively of the reason which

may have caused this behavior. In the other group the individuals maximize their

absolute payoff. The delegates are hired from the latter group to act in a conflict

between two individuals from the first group. In Germany, for example, a lawyer has

to be hired in divorce proceedings. The spouses may be driven by the maximization

of their relative payoff but normally the lawyers are not.

We will show that both contracts make the principals at least as successful as players

that maximize their absolute payoff in a setting without delegation. If the agent

is paid according to relative success, the principal has to pay a fixed sum to hire

an agent. But a prisoners’ dilemma-like game-structure will prevent moral hazard

in the relationship between the agent and the principal. Accordingly, the second

contract used here differs in to important aspects from the contract in the third

chpater. On the one hand, we introduce fixed payments into the analysis and will

therefore be able to explain there existence. Note that in Chapter 3 they had no

effect. But in this model we will show that they are necessary. On the other hand,

we will be confronted with contracts that reward the agent according to his relative

success, i.e. whether the agent is in expectation more successful than his opponent.

The chapter is structured as follows. First of all, we will recall the equilibrium

outcomes without delegation within a population of absolute and relative payoff

maximizing players as a benchmark in Section 4.2. In Section 4.3, we will establish

the model with both kinds of contracts. The contract choice game is solved in

Section 4.4 before the conclusion in Section 4.5.

4.2 Rent-seeking without delegation

This paper examines Tullock’s (1980) contest with two opponents. Both opponents

make irreversible effort to win the indivisible prize V . The valuation is the same

for both. Since no delegation takes place, there is only one stage. The winner

is determined using the common Tullock Contest-Success-Function (CSF) where

r = 1 (constant marginal efficiency of effort as it is called by Guse and Hehenkamp

(2006)). Accordingly, the probability of player i, i ∈ {1, 2}, winning the prize is

given by
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pi =

⎧⎨⎩ xi
xi+x−i

for xi + x−i > 0

1
2

for xi + x−i = 0.

4.2.1 Maximizing absolute payoff

Every principal strikes for his own benefit, irrespectively of group size and outcomes

for the other players. Accordingly, the expected utility of player i is given by

�i =
xi

xi + x−i
V − xi.

Deriving the first order condition for player i yields

∂�i
∂xi

=
x−i

(xi + x−i)2
V − 1

!
= 0.

In equilibrium we get

x1 = x2 =
V

4

�1 = �2 =
V

4
= �.

4.2.2 Maximizing weighted relative payoff

An arbitrary player j, j ∈ {1, 2}, is now concerned with a weighted relative payoff.

The term relative is used because the utility of a player not only depends on his own

material payoff but also on the material payoff of the opponent weighted by �, with

� ∈ [0, 1]. Here, � states whether a player is an individualistic player or not. If � = 0,

a player is only concerned with his individualistic payoff. But � = 1 indicates that a

player is maximizing his relative payoff. Note that in Leininger’s (2009) derivation

� = 1
N−1

, if preference evolution takes place in a population of size N , i.e. � = 1 for

N = 2. The effort invested by player j is given by yj. Player j maximizes:

uj =
yj

yj + y−j
V − yj − �

y−j
yj + y−j

V + �y−j.

By deriving the first-order conditions, it results that

yj = y−j = (1 + �)
V

4
.

Since the winning probability is 1
2

for all players, the material payoff of any player
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is

�R = (1− �)V
4
,

the corresponding weighted relative payoff is

uR = (1− �)2V

4
.

Note that there is full dissipation if � = 1, as both players then maximize relative

payoffs. But if � comes close to zero, the utility function converges to the individ-

ualistic payoff function. As � decreases, the concern regarding the other player’s

payoffs becomes smaller and smaller. Accordingly, as can be seen from the above

formulas uR = �R = � = V
4

from section 4.2.1 for � = 0. But for � > 0 it holds

that V
4
> �R. If 0 < � < 1, it holds that �R > uR. Because of the negatively

interdependent preferences the utility is smaller than the material payoff. The per-

ceived state of the world is inferior to the actual state of the world. This does

not hold for relative payoff maximization, i.e. � = 1. In that case utility and mate-

rial payoff is zero. This is due to the fact that the payoff of the opponent is also zero.

4.3 The Model

We will now address contests with mandatory delegation. Suppose there is a group

with negatively interdependent preferences. It is common knowledge that this prefer-

ence structure induces aggressive and therefore spiteful behavior in contests. Since

more aggressive behavior yields an advantage compared to absolute payoff maxi-

mization, no player has an incentive to change his behavior. But to compensate for

the disadvantages, mandatory delegation is introduced by law, for example. For the

purpose of simplicity, it is assumed that only two-player contests are allowed to take

place. The reason why the principals are assumed to hire a delegate is that delega-

tion by both principals is not an equilibrium. The contested prize has to be split

up between the delegate and the principal. The incentives for the principal acting

for himself are therefore higher than the incentives for a delegate would be. The

principal invests more and is therefore more successful. In equilibrium, all principals

prefer not to delegate and have a lower material payoff, although the utility does not

change. There are many real life examples for mandatory delegation. In Germany

it is mandatory to hire a lawyer for legal proceedings that take place in the so-called

Landesgericht (regional court) and higher courts. In other words, if the contested

“rent” is sufficiently high, delegation to a lawyer is mandatory (in Germany).
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Both principals have negatively interdependent preferences. It is worth mentioning

that this also ensures participation on the part of the principals: The individuals

experience negative utility if they do not invest, since the opponent then wins for

sure. As before, � (with � ∈ [0, 1]) denotes the player’s concern for the material pay-

off of his opponent. For the purpose of simplicity, it is assumed that both players

have the same concern for their opponent, i.e. � is constant and the same for both

principals.

The game has three stages. At the first stage, both principals choose a contract

simultaneously. At stage II, the principals contract a delegate. At stage III, both

delegates then engage in the contest and exert efforts. Finally, the winner is deter-

mined, and the prize is handed over. Note that the principals cannot observe the

effort of both delegates. They find out whether their delegate won or not, and they

infer the objective functions of their opponent and of the agents. Both principals

can choose between two types of contracts: No-win-no-pay contracts and so-called

relative contracts defined below.

First of all, the model is examined with both principals using no-win-no-pay con-

tracts. The delegate obtains part of the prize but only if he wins. After that the

model is defined with a payment to delegates in case of success and a forfeit in case of

a defeat. This results in relative contracts. The idea behind these contracts is that

the other-regarding preferences of a principal might induce the corresponding dele-

gate to act according to the other-regarding preferences via these contracts. These

contracts also act as “defeat insurance” for the principal. We will then examine the

asymmetric case, namely where one principal uses a no-win-no-pay contract and the

other uses the alternative contract.

In all cases the efforts invested by a delegate are denoted by d. A subscript indi-

cates the principal the delegate is working for. A superscript refers to the case under

examination.

4.3.1 No-win-no-pay contracts

Baik (2007) states that it is optimal to use no-win-no-pay contracts for absolute

payoff maximizing principals if they have to hire a delegate. Note that no payment

is made if the contest is lost, neither positive nor negative. Only if the contest is

won, the agent will get a share of the contested prize. The share principal l is using

as an incentive is denoted with �l, where �l ∈ [0, 1] and l ∈ {1, 2}. We are ruling

out the possibility of selling the right to participate to another agent. If the right

is sold, no delegation will take place but the principal alone will be substituted by

the buyer. It is shown that we can rule out this case without loss of generality.

Negative amounts as a fixed part of compensation are excluded here because a fixed
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payment does not change the behavior of the delegate and therefore the equilibrium

strategies. In Chapter 3 this was shown for a special case. Another result of that

chapter is that delegation with no-win-no-pay contracts is beneficial for a principal

even without a negative fixed payment for the delegate.

The utility function of principal l is given by

uAPl =
dAl

dAl + dA−l
(1− �l)V − �

(
dA−l

dAl + dA−l

)
(1− �−l)V.

The first term represents the expected material payoff received by the principal. He

does not have to bear any expenses directly. On account of this, he only gets the

remaining share of the contested prize in expectation. The second term reflects the

principal’s concern for his relative position. It is the expected material payoff of his

opponent (after delegation) weighted by �.

The delegate is rewarded according to the following payoff function:

�ADl =
dAl

dAl + dA−l
�lV − dAl .

The reservation wage of the delegate is normalized to zero, so as long as the expected

payoff for the delegate is negative, no rational agent will sign this contract.

The model is solved by using backward induction, starting at stage III. In order to

determine the optimal effort, we have to derive the first-order conditions

∂�AD1

∂dA1
=

dA2
(dA1 + dA2 )2

�1V − 1
!

= 0,

∂�AD2

∂dA2
=

dA1
(dA1 + dA2 )2

�2V − 1
!

= 0.

By solving these equations for dA1 and dA2 , it is possible to calculate the winning

probability for any principal l:

pAl =
�l

�l + �−l
.

Accordingly, the probability is given by the ratio of the offered share and the sum of

all shares, i.e. if a principal used a greater part of the prize to incentivize his agent

than his opponent did, he will also win the contest with a higher probability.
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We will now continue by analyzing the second stage. Principal l chooses the

offered share �l such that he maximizes his utility

max
�l

{
uAPl =

�l − �2
l

�l + �−l
V − �

�−l − �2
−l

�l + �−l
V

}
.

Focusing on a symmetric equilibrium, let �1 = �2 = �. The first order condition of

any of the principals can be rewritten as

�− 3�2 + �(�− �2) = 0.

By solving this for �, we obtain

� =
(1 + �)

(3 + �)
.

� = 0 is discarded here as a solution. The chosen � of a player with other-regarding

preferences is 1
2

for � = 1 and 1
3

for � = 0. An absolute payoff maximizing player

would use one third of the contested prize to incentivize his delegate. We can there-

fore state that a player with other-regarding preferences will incentivize his delegate

more than an absolute payoff regarding principal. He therefore acts spitefully.

It is established:

Lemma 4.1: The utility of the principals in equilibrium is given by

uAP1 = uAP2 =
(1− �)
(3 + �)

V = uA.

The underlying material payoff that determines the fitness of the principals in evo-

lutionary terms is

�AP1 = �AP2 =
V

(3 + �)
= �AP .

A delegate in this conflict has an equilibrium payoff of

�AD =
(1 + �)

(3 + �)

V

4
=

�V

4
> 0.

The material payoff of both principals is positive in equilibrium for any value of

�, though they experience zero utility for � = 1.

Note that �AP > �R for � < 1. Delegation is therefore beneficial for the principals in

material terms because the expenditures in the contest are reduced and the winning
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probability remains unchanged since we are in a symmetric equilibrium. Through

introducing delegation with no-win-no-pay contracts, the prize has to be split up

between the agent and the principal. The incentives for a delegate to make effort

and for a principal to incentivize the agent are therefore always lower than without

delegation. Exerting effort also becomes more expensive because the principal has

to pay the delegate to put in more effort, yet only a fraction of this extra incentive

is expended. The reason for this is, that the expected payoff for a delegate is strictly

positive because � is assumed to be non-negative. This result is in line with the

writings of Baik (2007), who predicted positive profits in the “delegate industry” for

contests between absolute payoff maximizing principals. As in the article by Baik,

positive profits arise from strategic decisions by the principals. The principals try to

put their agents into a situation similar to that which they would be in themselves

without delegation. This is achieved by using �V as the prize in a new contest

between the delegates. According to Section 4.2.1, the absolute payoff maximizing

behavior of the delegates leads to positive profits for them. Note that the principal

and the agent are assumed to have the same abilities in the contest and the positive

profits in the delegation industry are therefore not due to a skill advantage of the

agent.

4.3.2 Relative contracts

We will now address the case of relative contracts. Note that Baik (2007) ruled out

a punishment for the delegate if the contest is lost. This assumption is relaxed here.

Both principals can observe whether their delegate has won or not. If the contest is

won, the corresponding principal l will pay a share of 
l (where 
l ≥ 0 and l ∈ {1, 2})
of the prize. In case of a defeat the agent will have to pay a penalty. He will have

to pay a share of 
l of the prize to his principal. The penalty is like insurance for

the principal. If the contest is lost, the principal will experience a negative utility.

But the contest will not be lost completely since he will get compensation from the

agent.

It is still assumed that all delegates and principals are risk-neutral. In addition, it

is possible to pay a fixed amount Fl (where Fl ≥ 0 and l ∈ {1, 2}) to the delegate

to meet his participation constraint. This means an agent gets a fixed amount even

if the contest is lost. In Chapter 3, fixed payments were ruled out, but they have to

be used in this case. The reason why is given by the specific contract. In the latter

Chapter the fine is always smaller than the reward. But in this case both are equal.

The fixed payment compensates the agent for the higher fine.

It is also forbidden to sell the right of participation in this case. We will begin by
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examining stage III. Given the terms of the contract, each delegate chooses how

much effort to put in. Knowing that the delegates are risk-neutral and that they

maximize their absolute payoffs, principal l chooses his offered share 
l to maximize

his weighted relative payoff at stage II.

Accordingly, the expected payoff of the delegate of player l at stage III is given

by

�BDl = 
l
dBl

dBl + dB−l
V − 
l(1−

dBl
dBl + dB−l

)V − dBl + FB
l .

Which can be rewritten as

�BDl = 
l

(
dBl

dBl + dB−l
−

dB−l
dBl + dB−l

)
V − dBl + FB

l .

We call this type of contract a relative contract, because the payment for any

delegate depends on the relative success compared to his opponent. This means

if any delegate succeeds in achieving a higher winning probability than the other

delegate by exerting effort, then he will be rewarded. Note that a delegate will be

penalized if his opponent outperforms him. Payment according to the difference in

the winning probabilities is called a relative payment.

It was already explained in Chapter 3, why introducing a fine may be a good idea.

We also stated some examples where this happens. In this chapter, however, we

examine a special case that was excluded in Chapter 31. But they are related in

some sense. Using relative contracts is quite common in everyday life. One may

think of payments for managers that are made contingent on market share or on

sales. An increased market share is clearly due to the fact that the competitors did

not as well as the firm of the manager.

Returning to the analysis by deriving both delegates’ first-order condition and

by setting them equal, we get

dB1 
2 = dB2 
1.

Using this relationship for determining the optimal efforts and probabilities yields

dBl =
2
2

l 
−l
(
l + 
−l)2

V,

pBl =

l


l + 
−l
.

1This is excluded in Chapter 3 because the fixed payment was excluded.
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At stage II, any principal l maximizes

uBPl = pBl (1− 
l)V + (1− pBl )
lV − FB
l − �

(
pB−l(1− 
−l)V + (1− pB−l)
−lV − FB

−l
)
.

The first term represents the share of the contested prize the principal gets, if the

contest is won. The second term represents the payment by the agent if the contest

is lost and the third part is the fixed payment. These three terms are the material

payoff of principal l. The fourth term stands for the concern of principal l for the

monetary payoff of the other principal.

Rearranging this expression yields

uBPl = pBl V − 
lV (pBl − (1− pBl ))− FB
l − �

(
pB−lV − 
−lV (pB−l − (1− pB−l))− FB

−l
)
.

Using the fact that (1− pBl ) = pB−l and pBl = 
l

l+
−l

leads to

uBPl =

l


l + 
−l
V − 
l

(

l


l + 
−l
− 
−l

l + 
−l

)
V − FB

l

− �

(

−l


l + 
−l
V − 
−l

(

−l


l + 
−l
− 
l

l + 
−l

)
V − FB

−l

)
.

As before, the payoff function of the principal consists of his own material payoff and

the material payoff of the opponent weighted with the concern the individual has.

The material payoff comprises the fixed and the relative payment to the delegate as

well as the contested prize if the contest is won.

The first order condition for player 1 is given by

∂uBP1

∂
1

=

2

(
1 + 
2)2
V − 2
1(
1 + 
2)− 
2

1

(
1 + 
2)2
V

+

2(
1 + 
2)− 
1
2

(
1 + 
2)2
V + �


2

(
1 + 
2)2
V

− �

2

2

(
1 + 
2)2
V − �
2(
1 + 
2)− 
2
1

(
1 + 
2)2
V

!
= 0.

Using symmetry, we can solve this condition for 
∗:


∗ =
1

2
.


∗ = 0 is omitted. We also don’t consider altruism. In equilibrium, the difference in

payment for a delegate between winning and losing is V . By introducing a penalty,

a principal is able to incentivize his delegate with the same amount the delegate

would be incentivized with if he was a principal. As long as � < 1 , it holds that

� < 
∗. Because of the payment in the event of a defeat, a principal is able to offer
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a greater share of the contested prize. The delegate therefore acts more aggressively.

Note that, since we are in a symmetric equilibrium, the expected relative payment

to the agent is zero because no delegate is more successful than the other one. His

payoff would be negative and no rational agent will ever sign this contract without

a fixed amount as compensation. Therefore the fixed amount is used to meet the

participation constraint of an agent. The only sensible amount is F = d. As long

as F > d, other individuals will offer to act as a delegate because positive profits

are possible. This trend stops if the expected payoff is zero and therefore F = d.

This means the principal pays the equilibrium expenses. But why should a delegate

invest anything when the fixed amount is paid in any case? This problem is solved

by a kind of prisoners’ dilemma that both agents are in. Suppose that neither invests

anything. In expectation they will get their compensation

F1 = F2 =
V

4
.

But what happens if the agent of player l deviates and invests an infinitely small,

positive amount " and the other invests nothing? The deviating agent would not

only get the fixed payment but also half of the prize because he would be more

successful than the “lazy” delegate. He would therefore get

�Dl =
3

4
V − ", which is strictly greater than F =

1

4
V.

The other agent would lose and be penalized by his principal, thus receiving strictly

less than the fixed amount F . We can therefore see why an agent would want

to deviate by making effort. Unlike no-win-no-pay contracts, both agents earn an

expected material payoff of zero in equilibrium.

We have seen that a principal pays indirectly for the effort made. He offers a

contract and raises the fixed amount until an agent’s participation constraint is met.

By using relative contracts in a contest with two players and mandatory delegation,

we get

Lemma 4.2: The utility of the principals in equilibrium with relative contracts

is given by

uBP1 = uBP2 = (1− �)V
4

= uBP .

In material terms each principal has a payoff of

�BP1 = �BP2 =
V

4
= �BP .
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We can see that the material payoff is positive, although a principal might experi-

ence a utility of zero. And the result from Chapter 3 is also valid here: By using

appropriate contracts, the principal can prevent moral hazard even if the invested

efforts are unobservable. As in the model with observable effort choice used by

Konrad (2009), an agent being incentivized with relative contracts and a principal

playing the contest make the same effort.

Note that �BP < �AP for � < 1, and �BP = �AP for � = 1. What makes the re-

sult more striking is that we excluded negative fixed payments in the no-win-no-pay

contract case. We therefore have positive profits in the delegation industry. But

in the case with relative contracts we assumed that the fixed payment were only

used to endow the delegate with zero utility and therefore to meet his participation

constraint.

Due to the introduction of relative contracts, some of the effects of delegation with

no-win-no-pay contracts are reversed and any principal as well as his relevant dele-

gate act more aggressively. The reason for this is that the only way for a delegate

to obtain a positive profit is to get ahead of the other delegate. Hence, any agent is

incentivized to exert more effort. This is similar to the situation the principals are

in since they are also concerned with maximizing a weighted relative payoff, making

them more aggressive. But since 
∗ = 1
2
, the prize for the delegate is smaller than

for the principal. He therefore does not act as aggressively as a principal would in a

situation without delegation. Thus, delegation with relative contracts is beneficial

compared to a situation without delegation.

One may think of the following example: Two lawyers get a premium if they are

successful and are not hired again if they are unsuccessful. But they still invest

less than their principals would invest, because defeating the opponent is not as

important to them as it is to their principals.

4.3.3 Asymmetric case

In this case, one principal uses a no-win-no-pay contract and the other rewards his

delegate according to the relative contracts specified above. Without loss of gener-

ality, it is assumed that principal one uses a no-win-no-pay contract and principal

two uses a relative contract. Let �C ∈ [0, 1] denote the share of the contested prize

that principal one offers to his agent. And let 
C ≥ 0 be the corresponding factor

the second principal uses. FC is the fixed payment used by the second principal.
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Starting at stage III, the payoff functions of the delegates are

�CD1 =
dC1

dC1 + dC2
�CV − dC1

�CD2 = FC +

(
dC2 − dC1
dC1 + dC2

)

CV − dC2 .

Using both first-order conditions to determine the winning probabilities in equilib-

rium, yields

pC1 =
�C

�C + 2
C
,

pC2 =
2
C

�C + 2
C
.

Principal one then maximizes

uCP1 = pC1 (1− �C)V − �
(
pC2 (1− 
C)V + (1− pC2 
CV − FC)

)
.

Again, the first part is the monetary payoff of principal one and the second part is

his concern for the monetary payoff of the other principal.

Using pC1 and rearranging leads to

uCP1 =
(�C − (�C)2)

(�C + 2
C)
V − 2
C

(�C + 2
C)
�V +

(
(2
C − �C)

(�C + 2
C)

)

C�V + �FC .

Using his first-order condition to calculate the reaction function of principal one,

yields

�C = −2
C +
√

4(
C)2(1− �) + 2
C(1 + �). (4.1)

Since �C ∈ [0, 1], we excluded −2
C −
√

4(
C)2(1− �) + 2
C(1 + �) as a solution.

The reaction function of principal 2 is given by


C = −�
C

2
+

√
(�C)2(1− �) + �C(1 + �)

2
. (4.2)

Apparently, �C = 
C = 0 is an intersection point of both reaction curves but

with mandatory delegation this is not an equilibrium since both principals have an

incentive to deviate.

It is rather difficult to find the equilibrium analytically. But it is not necessary to

know the exact answer for our further analysis. It is possible to state the following:
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Lemma 4.3: The upper bound for the share of the contested prize player one

chooses in equilibrium is 1
2

and the lower bound for the chosen share in equilibrium

is given by 0.3854, i.e. �C ∈ [0.3854, 1
2
]. The corresponding upper bound for the

share player two chooses in equilibrium is
√

1
2
− 1

4
and the lower bound is 0.324, i.e.


C ∈ [0.324,
√

1
2
− 1

4
].

Proof:

The superscripts are omitted here to simplify the examination.

(i) Lower bounds:

Suppose that � = 0. Accordingly, the reaction functions are given by

� = −2
 +
√

4
2 + 2
,


 = −1

2
� +

√
(�2 + �)

2
.

The intersection of both reaction curves is given for � = 0.3854 and 
 = 0.324.

These values are the candidates for the lower bounds of � and 
. By using

the first derivatives with respect to � and the share offered by the opponent,

the lower bound for 
 is verified because 
 is increasing in � and �. But for

�, we can see that the first derivative with respect to � is positive. The first

derivative with respect to 
 increases for low values of � but decreases for high

values.

To check whether 0.3854 is the lower bound, it is necessary to replace � by

using (4.1). It can be obtained:

−2
 +
√

4
2(1− �) + 2
(1 + �) ≥ 0.3854.

This inequality holds whenever the following inequality holds

� ≥ (−0.4584
 + 0.1485)

(2
 − 4
2)
.

This condition is fulfilled for any � if 
 ≥ 0.324, which is indeed the case.

It is therefore possible to state that 0.3854 and 0.324 are the lower bounds for

the shares � and 
 respectively.

(ii) Upper bounds:

The principal using a no-win-no-pay contract will choose an � ≤ 1
2

in equi-

librium if he has to deal with a principal using a relative contract, whatever

value 
 and � are.
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1

2
≥ � = −2
 +

√
4
2(1− �) + 2
(1 + �).

After some rearrangement, it results

16
2� + 1 ≥ 8
�.

For � < 1, the left side is greater than the right side for any value of 
 since

� ∈ [0, 1]. Additionally, for � = 1 both sides are equal if 
 = 0.25 but for any

other value of 
 the left side is also greater. We can therefore state that the

inequality holds true, whatever values 
 and � take.

To get the upper bound of 
, it is useful to use the fact that 
 increases in

� and �. Using (4.2) and setting � = 1 and � = 1
2

yields the upper bound√
1
2
− 1

4
. Note that the chosen 
 for � = 1 is 4

9
. Accordingly, the upper bound

is not a chosen value but the highest possible value.

The upper bound for � is 1
2

and the upper bound for 
 is
√

1
2
− 1

4
.

■

In addition, as can be seen from Lemma 4.3, the following inequality holds:

�C < 2
C .

The amount the agent of principal two is incentivized with is 2
C since this is the

difference between winning the contest and losing it. Since this is always greater

than �C , it is possible to conclude that the incentives for the agent of player one

are always lower and that the winning probability of the agent of principal two is

higher. Using relative contracts therefore makes the agent act more aggressively.

To increase his probability of winning, principal one offers a greater share of the

prize compared to 4.3.1, since 0.3854 is greater than 1
3
. This holds for low values

of �. But if the concern regarding the opponent is high, principal one reduces his

offer from 4.3.1 because it is too expensive to compete with the offer of principal two.

It is also worth having a look at the equilibrium payoff of the delegate of principal

two:

�CD2 =

(
(2
C − �C)

(�C + 2
C)

)

CV −

(
4�C(
C)2

(�C + 2
C)2

)
V + FC .

Using the reaction functions derived above, it can be shown
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Lemma 4.4: Principal two always has to use a fixed payment to attract a dele-

gate and therefore FC > 0.

Proof: Principal two has to pay a fixed amount if the payoff for his agent would be

negative without a transfer. We have to show the following

(2
C − �C)

(�C + 2
C)

CV − 4�C(
C)2

(�C + 2
C)2
V < 0.

After some rearrangement, it can be obtained that

(2
C − �C)2 − 2(�C)2 < 0.

Applying (4.2) yields

2

√
(�C)2(1− �) + �C(1 + �)

2
< (
√

2 + 2)�C .

After some rearrangement, it is possible to conclude that the material payoff is

negative whenever the following inequality holds:

(1 + �)

(2 + 2
√

2 + �)
< �C .

The left hand side is strictly increasing in �. Accordingly, the condition is fulfilled

whenever the inequality holds for � = 0 and � = 1, which is indeed the case (Lemma

4.3). The expected payoff for the delegate of principal two is therefore negative

without a fixed payment.

■

Although the winning probability for the second delegate is higher than that

for his opponent, it does not pay for him in expectation. The costs of exerting

the effort to achieve this advantage are too high. Accordingly, principal two has to

compensate him for the expected loss.

4.4 Equilibrium in the contract choice game

Summing up the results derived in Section 4.3, we get the following normal form

game.

84



Principal one

Principal two

NW RC

NW uA, uA uCP1, uCP2

RC uCP2, uCP1 uB, uB

Where NW stands for no-win-no-pay contracts and RC for relative contracts.

We will now show

Theorem 4.1: If two players are involved in a contest with mandatory delega-

tion, the unique Nash Equilibrium is given by (RC, RC).

Proof:

It has to be shown that using a relative contract is a dominant strategy. The fol-

lowing must hold

(i) uCP2 > uA and

(ii) uB > uCP1.

For simplicity of examination, we have omitted the superscript.

(i) Claim: Using a relative contract is the best response to a no-win-no-pay con-

tract.

This means

2


(� + 2
)
V − (2
 − �)

(2
 + �)

V − (�− �2)

(� + 2
)
�V − F >

(1− �)
(3 + �)

V.

Since F accounts for the difference between relative payment and effort made,

we get

2


(� + 2
)
− (�− �2)

(� + 2
)
� − 4�
2

(� + 2
)2
>

(1− �)
(3 + �)

.

Rearranging the terms leads to

6�
 + 12
2 + 2�
� + 4
2� + �2�(3 + �)(� + 2
) + �(� + 2
)2

> 4�
2(3 + �) + (� + 2
)2 + ��(3 + �)(� + 2
).

Using Lemma 4.3, it can be easily shown that the first four terms on the left

hand side are always greater than the first two terms on the right hand side.

Looking at the remaining parts of the inequality, it is clear to see that the

terms on the left-hand side are greater than the term on the right-hand side.

The inequality is therefore fulfilled. It is beneficial for a principal to react to

a no-win-no-pay contract with a relative contract.
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(ii) Claim: For any principal, it has to be beneficial to react with a relative contract

to an opponent using a relative contract. Therefore

�− �2

(� + 2
)
V − 2


(� + 2
)
�V +

4�
2

(� + 2
)2
�V − (1− �)V

4
< 0. (4.3)

Using Lemma 4.3, it can be shown that this inequality is fulfilled for � = 1 and

� = 0. To see what happens in between, suppose that both sides are equal.

We obtain

(�− �2)

(� + 2
)
− 1

4
=

2


(� + 2
)
� − 4�
2

(� + 2
)2
� − �

4
.

The solution for � yields

� =
(3�2 + 4�
 − 4�3 − 8�2
 − 4
2)

(4�
 + 12
2 − 16�
2 − �2)
.

According to Lemma 4.3, the denominator is positive but the numerator is

not. This is ruled out since � ∈ [0, 1]. Accordingly, equality does not hold in

(4.3) for any meaningful value of �, � and 
. Since all terms are continuous in

the domain given by Lemma 4.3 and by assumption, we can conclude that uB

is greater than uP1. Using a relative contract to counter a relative contract is

beneficial for both principals.

Conditions (i) and (ii) are both fulfilled. Using a relative contract is therefore the

dominant strategy in the given 2x2 game.

■

Note that this theorem also holds for players that maximize their individualistic

payoff. The agent’s more aggressive behavior induced by relative contracts is bene-

ficial for the principal. Even without concern regarding the opponent.

Now that the equilibrium in the contract choice game has been revealed, we will

now address the respective material payoffs. Assuming that no delegation has been

introduced, a player would receive a material payoff of � = V
4

if the contest took

place between absolute payoff maximizers. In contrast, if there were only relative

payoff maximization, the material payoffs would be �R = (1−�)
4
V . For the purpose

of comparison, we will refer to the first case. The reason is, that it is necessary to

demonstrate that delegation can offset any negative effect of other-regarding prefer-

ences. Thus, we will show that delegation can provide the principals with as much

material payoff as the simple payoff maximization by all players would.
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It can be seen that

�B = � =
V

4
.

We can therefore immediately state:

Theorem 4.2: Contracting delegates by using relative contracts neutralizes (in

equilibrium) the effect of negatively interdependent preferences completely. The ma-

terial payoffs to principals with negatively interdependent preferences, who use equi-

librium relative contracts, is the same as the one of principals with independent

preferences and no delegates.2

The reason for this is the symmetry of the opponents. In expectation no dele-

gate is more successful than his opponent. The material payoff function therefore

decreases to

�BPl =
dBl

dBl + dB−l
− FB

l .

We have seen that a principal pays for the effort made indirectly, i.e. FB
l = dBl . All

that remains is the well-known payoff function for a contest used by Tullock (1980)

involving absolute payoff maximizing players. The only difference is that the efforts

are made by the delegates. The material payoff for any delegate is zero because

no principal is willing to pay more in equilibrium, since this is the lowest value for

which the participation constraint is met. The reason for that result is that individ-

ualistic players are contracted. These agents are only interested in their monetary

payoff. They do not care for the payoff of any other player. Accordingly, a principal

can only incentivize them with the monetary value of the contested prize. To use

the whole prize to incentivize the agent is beneficial for the principal, and therefore

agents act as a player without interdependent preferences would.

It is also worth noting that V
4

is the maximum amount an absolute payoff maxi-

mizing player is willing to pay for the right to participate in the contest. The amount

decreases if the expected opponent or the buyer has a negatively interdependent util-

ity function. In the equilibrium of the contract choice game any principal is expected

to earn the same amount by participating in the contest. It therefore does not pay to

sell the right of participation and it is therefore possible to exclude this case without

loss of generality.

2This theorem is also true for two-player contests with r ≤ 1. The proof is straightforward and
therefore omitted.
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4.5 Conclusion

The question we tried to answer is: Are there mechanisms to reduce competition and

thus wasteful investments in rent-seeking contests, when preferences induce spiteful

behavior?

To this end, this paper has explored the effects of delegation in a Tullock rent-seeking

contest where principals maximize a weighted relative payoff. Maximizing the rela-

tive position leads to higher efforts and reduces the material outcome for each player.

It is shown that delegation makes the principals better off in a two-player Tul-

lock contest. We assume that the agents have no particular concern regarding the

opponent. An example is a lawyer acting for a woman in a divorcement process that

was cheated on by her husband. With prescribed delegation, each principal can do

at least as well as if he were in a group consisting only of individualistic payoff max-

imizing players, i.e. “spiteful” preferences are “neutralized” in the contract choice

game. No-win-no-pay contracts can even overcompensate the negative effects of

weighted relative payoff maximizing behavior. But since interdependent preferences

yield an advantage in equilibrium in rent-seeking contests, contracts that reward

the delegate according to his relative success, these are developed and used by the

principals. Relative contracts mean that the delegate has something to lose. He is

therefore incentivized more and has an advantage if his opponent is not penalized

for a loss but only paid in the case of a win. This reduces the efficiency gained by in-

troducing delegation with no-win-no-pay contracts. However, compared to a group

of individualistic players, the efficiency is fully restored. In essence, the economic

institution of contracting delegates can completely offset the inefficiency caused by

negatively interdependent preferences. In theory, delegation has an even better ef-

fect, but is held back by the same competitive forces at the contracting level. More

aggressive contracts drive out more moderate ones. Another result is that delegation

with relative contracts among individualistic principals does not give any advantage

over the equilibrium without delegation. This is due to the fact that relative con-

tracts incentivize the agent with the whole prize. Accordingly, the agent behaves

just like a principal with independent preferences would behave if he were to play the

contest. By delegating, a principal with negatively interdependent preferences can

be replaced by an individualistic player. And therefore there is no welfare gain for

individualistic principals compared to a situation without delegation. This is also a

drawback of delegation. Wasteful investments can only be reduced if the agent does

not care as much as the principals for the material payoff of the opponent. This is

especially true for lawyers. Lawyers are only interested in their income.

It is shown that there is a fixed amount the principal has to pay to hire a delegate
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in the equilibrium of the contract choice game. The fixed amount does not alter the

invested effort but is necessary in order to make an agent willing to sign a contract.

A game-structure like in a prisoners’ dilemma prevents the delegate from acting as

a free rider.

One policy implication of the above analysis is, that mandatory delegation com-

bined with a limited contract space should be introduced. In Germany, for example,

a related system is at work: as stated previously, a lawyer has to be hired in divorce

proceedings and if the contested “rent” is high enough. The payment of lawyers is

also fixed in the lawyers’ compensation act (Rechtsanwaltsvergütungsgesetz).

Mandatory delegation has been assumed. The consequences of relative payoff

maximizing players on the terms of contract have been shown. But it is interesting

to find out whether prescribed delegation leads to changes for a larger group of

contests. Also empirical findings on this topic seem interesting.
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Chapter 5

Training in a Tullock Rent-Seeking

contest with delegation

5.1 Introduction

In Chapter 3 and Chapter 4 the principal used the parameters of the contract to

influence the effort put in by his delegate. To pay the agent, the prize at stake is

split up. Accordingly, the incentives for the delegate are decreased and therefore

investments are decreased. In this chapter the principal can also use training. The

principal cannot reverse the split up, but he can increase the weight of the effort put

in by the agent. On the one hand, the principal uses a contract to hire an agent,

and, on the other hand, he determines the amount of training to employ. Training

increases the skills of the agent and therefore makes his invested effort count more.

Accordingly, he is more effective. Because of his increased skills, he can reach his de-

sired impact in the Contest-Success-Function with a lower investment than without

training. This can also be interpreted as technical assistance the principal pays for

and that does not “count” in the Contest-Success-Function directly because it only

influences the weight of the effort made by the agent. There are many examples

where a principal either invests in training or gives support to his agent. The basic

training in the army is one example for better skills. But also support plays an

important role in an army. An idiom that expresses that a principal may support

his delegate is: An army marches on its stomach. A soldier that is not hungry is a

better fighter than a soldier that nearly starves. One can also think of researchers

going to conferences paid for by their employer. An increased knowledge may in-

crease the possibility of winning a patent race.

To the best of our knowledge, this is the first concern of training in a rent-seeking

contest with delegation. Baik and Kim (1997) use an approach to include different
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skill-levels in the analysis. They assumed that the delegate has an advantage in the

contest compared to the principal. One example is a lawyer that knows the laws and

the verdicts so far. But a principal has to invest more effort because he has to ac-

quire all the information and skills that can be helpful. Accordingly, the lawyer can

have the same impact in the lawsuit at lower costs. Schoonbeek (2007) introduces

another kind of difference in skills between agent and principal. He assumes that a

delegate can use two instruments and the principal can only use one. We have to say

that the second instrument increases the impact of the first one. We can think of a

traffic violation in Germany. If a driver is accused of a traffic violation in Germany,

he has got the possibility to enter a caveat. A lawyer can do the same but he can

also have a look at the documents of the police which can make his caveat more

powerful. A variation of this approach is used here. Schoonbeek assumes that the

delegate can choose whether to use both instruments or only one. We will assume

that the agent only decides how much effort to put in. The principal can decide

whether to increase the weight of the effort put in or not. He also has to bear the

costs of the support given to the agent. We will also have a look at a situation

where training decreases the unit costs of investing effort. The principal decides

whether to decrease the unit costs of investing effort or not. On the one hand, that

increases the costs for the principal, but this can also make the agent invest more.

One may think of a worker that is more effective because of training and therefore

produces more units per hour. The results of this case are compared to the first

approach of including training. By using these two approaches, we can compare a

reduction in unit costs to an increase in the weight of effort in the Contest-Success-

Function. Accordingly, we introduce two additional ways of how a principal can

influence the outcome of the contest. If the unit costs are reduced, the principal

influences the effort choice of the agent. But if the weight is increased, he gains in-

fluence directly, because he can choose how much the effort that was invested counts.

As the examples above indicate, we assume mandatory delegation. The reason

for this assumption can be seen in the assumed contract. We assume that no-win-

no-pay contracts are used. This ensures comparison with the delegation literature so

far. It also shows that training does not need additional assumptions than already

made in the literature. The game has two stages. At the first stage the delegate

is hired and the amount of training is determined. At the second stage the contest

is played by the agents. After the effort was put in by both delegates, the winner

is determined, the prize is handed over, and payments take place. We will use the

Tullock Contest-Success-Function to determine the winner. It is shown under which

circumstances training is used. It is also shown how the parameter of the contract

and the amount of training change with the parameters of the model.
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As stated above, Wärneryd (2000) showed that splitting the contested prize up

leads to an increased payoff for the principal. Whether this holds true if training

is introduced or not, is not immidiately clear. On the one hand, the prize is still

split up and therefore the incentives to put in effort are decreased. On the other

hand, the principal can also influence the outcome of the contest by his investment.

Accordingly, his payoff may be decreased. The answer to this question is also given

in this chapter. Also the consequences for the delegate are given. Because of the

training used by the principals, the delegate can have a bigger impact in the contest,

without investing more. Common sense tells us that a delegate may decrease his

investment to increase his payoff. Whether this is true or not is stated below.

In section 5.2 the model is explained. Section 5.3 gives the equilibrium of the

game. Accordingly, the contract-parameters and the amount of training is deter-

mined. Section 5.4 explains how the equilibrium changes if the parameters of the

model are changed and compares the result to the scenarios without delegation and

without training. Section 5.5 concludes.

5.2 The Model

We will consider two models here. In the first model, training increases the weight

of the effort invested by the agent. In the second model, training reduces the unit

costs of investing effort. But before we will turn to the first model, we give the

assumptions used in both models:

Two risk-neutral principals are involved in a contest for a single, indivisible prize.

The value of the prize is given by V and is the same for all players. This is also

the objective value of the prize. Both principals have to hire a delegate. A del-

egate puts in effort for his employer. The game has got two stages. At the first

stage the principal contracts the delegate and determines the amount of training

the agent gets. At the second stage the contest is played by the delegates. The Tul-

lock Contest-Success-Function is used to determine the winner. r is assumed to be

smaller or equal to two. The delegates are also risk-neutral. The reservation wage of

both agents is normalized to zero. The delegates are contracted with no-win-no-pay

contracts. �i ∈ [0, 1] determines the share of the prize the delegate of principal i,

i = 1, 2, gets if the contest is won. If the contest is lost, the principal pays nothing

to the agent. The agent has to bear the costs of the effort he made in both cases. If

the expected payoff is positive, then the agent will sign the contract. It is assumed

that all individuals only care for their absolute payoff.
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5.2.1 Increased weight of invested effort

The amount of training offered by principal i is given by �i ≥ 0. The costs of one

unit of training is given by V
c
. c is an exogenously given parameter and is always

greater than zero. If c is too low, then the principal will only use the contract to

influence the outcome of the contest. If c is very high, then the principal will train

the agent a lot. Note that the training costs are forgone. As we will show later,

the agent has no positive effect from training, except that he has better skills that

he can use in the future. But the future effects of training are not considered here.

The principal may not use training, but he will always offer a positive share of the

prize to the agent. If no share of the prize is offered, then no delegate will sign

the contract. Only a positive �i ensures a positive effort made by the delegate of

principal i. The offered share will always be smaller than one. The principal would

suffer a loss otherwise. The effort a delegate puts in is given by di. The unit costs

of effort are constant and equal to one. They are the same for any delegate. To sum

up, the probability that the agent of principal i wins is

pi =

⎧⎨⎩
(1+�i)

rdri
(1+�1)rdr1+(1+�2)rdr2

, for d1 + d2 > 0

1
2
, for d1 + d2 = 0.

Of course, if no effort is put in, then training has no effect on the probability. If

both principals decide to use no training, then the standard Tullock contest with

delegation is played, as used in Baik and Kim (1997). We assume a linear costs

function for training, i.e. all units of training cost the same amount. But in reality

improving the skills of an individual is harder the more skilled he already is. This

concept can also be observed in our model. The first derivative of the winning

probability of i with respect to his training decision is positive. But the second

derivative is negative for r ≤ 1 and for a situation where the effort choices do not

differ very much. But in equilibrium this derivative will also be negative. That

means that the more training was used, the smaller is the effect on the winning

probability. The same incremental amount invested in training has therefore a

smaller impact the more money was already invested.

The model is again solved by backward induction. The principals first think about

the effect of their decision on the actions of the delegates but they also think of the

effect on the actions on the other principal. Afterwards, they choose the action that

maximizes their payoff. At the second stage, the agent of principal i decides on his

effort di to put in to maximize

�Di =
(1 + �i)

rdri
(1 + �1)rdr1 + (1 + �2)rdr2

�iV − di.
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The equilibrium is reached if the following holds

d2 =
�2

�1

d1.

Both agents cannot influence the amount invested in training. Accordingly, training

is viewed as a constant term and does not influence the equilibrium condition at

this stage. But training does have an influence on the effort put in and therefore on

the winning probability:

Lemma 5.1: At the second stage, the effort put in by the delegates in equilibrium

is

d1 =
�r+1

1 �r2(1 + �1)r(1 + �2)r

(�r1(1 + �1)r + �r2(1 + �2)r)2
rV

d2 =
�r1�

r+1
2 (1 + �1)r(1 + �2)r

(�r1(1 + �1)r + �r2(1 + �2)r)2
rV.

Accordingly, the probability that agent i wins the contest is

pi =
�ri (1 + �i)

r

�r1(1 + �1)r + �r2(1 + �2)r
.

As can be seen from the formula, the probability is influenced by both variables the

principal can use. Before we turn to the solution of the model, we will recapitulate

some results to ensure comparison.

On the one hand, we want to compare the model to a situation without training.

But on the other hand, we want to compare it to a situation without delegation.

The first situation was analyzed in section 3.3.1 (Lemma 3.2). The result was

�1 = �2 =
r

r + 2
,

d1 = d2 =
r2

(2 + r)

V

4
,

�P1 = �P2 =
V

(2 + r)
,

�D1 = �D2 =
(2− r)
(2 + r)

rV

4
.

The latter situation was analyzed in section 4.2.1. But it was assumed that r = 1.

Accordingly, the model has to be adjusted. It is assumed that both principals play

the contest. xi stands for the effort principal i puts in. The probability that he wins
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is

qi =

⎧⎨⎩
xri

xr1+xr2
, for x1 + x2 > 0

1
2
, for x1 + x2 = 0.

Principal i maximizes �i = qiV − xi.
The equilibrium of this contest is

x1 = x2 =
rV

4
,

�1 = �2 = (2− r)V
4
.

As can be seen from the results, mandatory delegation is always beneficial for the

principal. This is the result of Wärneryd (2000).

5.2.2 Training decreases the unit costs

In this model the amount of training used by the principal has no influence on

the weight of the invested effort in the Contest-Success-Function. The amount of

effort that is invested by the delegate of principal i is given by d̄i. Accordingly, the

probability that the agent of principal i wins the contest is:

p̄i =

⎧⎨⎩
d̄ri

d̄r1+d̄r2
, for d̄1 + d̄2 > 0

1
2
, for d̄1 + d̄2 = 0.

Training has an influence on the unit costs of effort and therefore on the amount

invested by the agent. In this model the unit costs of effort for the delegate of

principal i are given by 1
1+�̄i

. �̄i denotes the amount of training used by principal

i. If no training is used, the unit costs of effort are constant and equal to one for

all agents. But as soon as the amount of training differs, also the unit costs differ.

The more training is used by principal i (the higher �̄i), the lower are the unit costs

for his agent. Because of the chosen functional form of the unit costs, the effect

of one additional unit of training is the lower the more units have been already

used. If there are two soldiers, one soldier is untrained and the other soldier goes

jogging in his leisure time, then the same amount of physical training will have a

greater effect on the first soldier. To represent the costs of training, we will use an

approach similar to the first model. The costs of one unit of training are given by
V
c̄
. c̄ is exogenously given, fixed, and determines whether a lot of training is used

or no training takes place at all. For very high values of c̄ there will also be a lot of

training.
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The share used by principal i is given by �̄i ∈ [0, 1] in this subsection. Hence,

the payoff of the agent of principal i is

�̄Di =
d̄ri

d̄r1 + d̄r2
�̄iV −

d̄i
(1 + �̄i)

.

The equilibrium condition at the second stage is given by

d̄2 =
(1 + �̄2)�̄2

(1 + �̄1)�̄1

d̄1.

In the first model the intersection of the reaction curves of both agents was deter-

mined by the chosen effort. But in this model we can see that the amount of training

chosen by the principal influences the point at which the reaction curves intersect.

Lemma 5.2: At the second stage, the effort put in by the delegates in equilibrium

is

d̄1 =
�̄r+1

1 �̄r2(1 + �̄1)r+1(1 + �̄2)r

(�̄r1(1 + �̄1)r + �̄r2(1 + �̄2)r)2
rV

d̄2 =
�̄r1�̄

r+1
2 (1 + �̄1)r(1 + �̄2)r+1

(�̄r1(1 + �̄1)r + �̄r2(1 + �̄2)r)2
rV.

Note that Lemma 5.2 predicts more invested efforts than Lemma 5.1 does if the

amounts of training and the offered shares do not differ. By increasing the weight

of effort, the effort actually invested counts more. By decreasing the costs of effort,

more effort is invested by the agents.

In this case the winning probability for the agent of principal i is

p̄i =
�̄ri (1 + �̄i)

r

�̄r1(1 + �̄1)r + �̄r2(1 + �̄2)r
.

We can see that the share offered and the amount of training used both influence

the probability of winning. Note that p̄i is equal to pi if the offered shares and the

amount of training used do not differ. Decreasing the unit costs of effort makes

the agent act more aggressively than increasing the weight does. But if �i = �̄i and

�i = �̄i, then the increased weight compensates the principal for the lower invest-

ment.
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5.3 Equilibrium Contract and amount of Training

We will turn to the first stage, now. First, we will consider the model with an

increased weight. The principals know how their decisions influence the outcome at

the second stage. The objective of principal one is to maximize

�P1 =
�r1(1 + �1)r

�r1(1 + �1)r + �r2(1 + �2)r
(1− �1)V − �1

V

c
.

An increase in �1 increases the winning probability, but it also decreases the share

the principal gets if the contest is won. Training also increases the probability of

winning, but he has to pay for every unit. The principal has to ensure that the

payoff for the delegate is not negative. Because of the no-win-no-pay contracts, we

can ignore this for the moment. The principal can only apply a non-negative amount

of training.

Before we solve the model, we will have a look at the model with decreased unit

costs. In this model, any principal i maximizes

�̄Pi =
�̄ri (1 + �̄i)

r

�̄r1(1 + �̄1)r + �̄r2(1 + �̄2)r
(1− �̄i)V − �̄i

V

c̄
.

We can see that the problem for the principal is similar in both models. Accordingly,

we will concentrate on the first model. The analysis for the second model can be

done in the same manner. We will just give the results in the corresponding Lemma

and Theorems. But when it comes to the analysis of the efforts invested by the

delegates, we will analyze both models separately.

Coming back to the problem of the principals in the model with an increased weight,

we can derive the first order conditions. The first order conditions for both principals

are

∂�P1

∂�1

=
(r�r−1

1 − (r + 1)�r1)(�r1(1 + �1)r + �r2(1 + �2)r)

(�r1(1 + �1)r + �r2(1 + �2)r)2
(1 + �1)rV

− r�r−1
1 (1 + �1)r(�r1 − �r+1

1 )

(�r1(1 + �1)r + �r2(1 + �2)r)2
(1 + �1)rV

!
= 0,

∂�P1

∂�1

=
r(1 + �1)r−1(�r1(1 + �1)r + �r2(1 + �2)r)− r�r1(1 + �1)2r−1

(�r1(1 + �1)r + �r2(1 + �2)r)2
�r1(1− �1)V

− V

c
!

= 0,

∂�P2

∂�2

=
(r�r−1

2 − (r + 1)�r2)(�r1(1 + �1)r + �r2(1 + �2)r)

(�r1(1 + �1)r + �r2(1 + �2)r)2
(1 + �2)rV

− r�r−1
2 (1 + �2)r(�r2 − �r+1

2 )

(�r1(1 + �1)r + �r2(1 + �2)r)2
(1 + �1)rV

!
= 0,
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∂�P2

∂�2

=
r(1 + �2)r−1(�r1(1 + �1)r + �r2(1 + �2)r)− r�r2(1 + �2)2r−1

(�r1(1 + �1)r + �r2(1 + �2)r)2
�r2(1− �2)V

− V

c
!

= 0.

The first condition can be reduced to

�r2(1 + �2)r

�r1(1 + �1)r
=

�1

r − (r + 1)�1

. (5.1)

Rearranging the third condition yields

�r2(1 + �2)r

�r1(1 + �1)r
=

r − (r + 1)�2

�2

. (5.2)

Setting the r.h.s’s of (5.1) and (5.2) equal leads to

�1 =
r − (r + 1)�2

(r + 1)− (r + 2)�2

. (5.3)

Let us now turn to the second and fourth condition. The aim is to get an equation

that tells us how the amount of training depends on the offered shares. With such

an equation and (5.3) we can get an equation of how �2 depends on r. Rearranging
∂�P1

∂�1
= 0 yields

1

c
(�r1(1 + �1)r + �r2(1 + �2)2) = r�r1(1− �1)�r2(1 + �1)r−1(1 + �2)r. (5.4)

Rearranging ∂�P2

∂�2
= 0 in the same way and setting it equal to (5.4) yields

(1 + �2) =
(1− �2)

(1− �1)
(1 + �1). (5.5)

Using (5.4) and (5.5) leads to

(1 + �1) =
�r1�

r
2(1− �1)r+1(1− �2)r

(�r1(1− �1)r + �r2(1− �2)r)2
rc, (5.6)

(1 + �2) =
�r1�

r
2(1− �1)r(1− �2)r+1

(�r1(1− �1)r + �r2(1− �2)r)2
rc. (5.7)

Combining (5.2), (5.3), (5.6), and (5.7) leads to
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Lemma 5.3: The share that principal two uses in the equilibrium at the first

stage of the game is determined by

�r+1
2 ((r + 1)− (r + 2)�2)2r = (r − (r + 1)�2)r+1, and

�̄r+1
2 ((r + 1)− (r + 2)�̄2)2r = (r − (r + 1)�̄2)r+1 respectively.

Accordingly, we get

Theorem 5.1: There are no asymmetric equilibria at the first stage of both models.

Proof: Assume, without loss of generality, that in an asymmetric equilibrium

�1 > �2 holds. Using (5.3) leads to

r − (r + 2)�2

(r + 1)− (r + 2)�2

> �2. (5.8)

The denominator of the left hand side of the inequality is negative for �2 >
r+1
r+2

.

The numerator of the same side is negative for �2 >
r
r+2

. A principal will always use

a share that is strictly positive. Accordingly, the right hand side is always positive.

For �2 ∈ ( r
r+2

, r+1
r+2

] the inequality is wrong because the left hand side is negative. To

proof Theorem 5.1, we have to show that the inequality is wrong for �2 <
r
r+2

and

for �2 >
r+1
r+2

. The latter can be shown by having a look at the choice of principal

one. Principal one will only increase his offered share if this increases his expected

payoff. That means he will increase �1 as long as ∂�P1

∂�1
> 0. This first order condition

is negative if

�r1(1 + �1)r

�r2(1 + �2)r
>

r − (r + 1)�1

�1

.

Using (5.6) and (5.7) leads to

�r1(1− �1)r

�r2(1− �2)r
>

r − (r + 1)�1

�1

.

The left hand side is always positive. But the right hand side is negative for �1 ≥ r
r+1

.

If �1 ≥ r
r+1

, then the first derivative with respect to �1 is negative, i.e. principal

one will never use a share that is that high. Because r+1
r+2

> r
r+1

and �1 > �2, (5.8)

is not true for �2 >
r+1
r+2

.

The only case that is left is �2 <
r
r+2

. It is straightforward to use ∂�P2

∂�2
to show that

it is beneficial for principal two to increase his share if �2 is that low. Accordingly,
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(5.8) is not true and therefore there is no asymmetric equilibrium.

■

Both principals are facing a symmetric situation. The desire for the contested prize

is the same for both and therefore they incentivize their delegate to the same extent.

By applying the symmetry assumption to (5.3), it results

Theorem 5.2:The share of the contested prize offered by the principal to his delegate

in equilibrium is given by

�1 = �2 =
r

r + 2
, and

�̄1 = �̄2 =
r

r + 2
respectively.

It is straightforward to show that this indeed maximizes the expected payoff for

the principals. �1 = �2 = 1 is also a solution of (5.3), but this is no equilibrium

because both principals can increase their expected payoff by reducing their offer.

Note that r
r+2

is exactly the same offer as in the situation without training. Because

the principal pays for the training and therefore for the increasing effectiveness, the

higher skill-level does not pay for the delegate. Figuratively speaking, the principal

pays the delegate for the skills he had before the training. Note that this might only

hold for this particular contest. Whether the delegate gets higher wages because of

his increased skills in the future or not is not considered in this chapter.

In equilibrium, the amount of training that principal i=1,2 pays for is given by

�i =

⎧⎨⎩0 for c ≤ 2(r+2)
r

⇔ V
c
≥ r

2(r+2)
V

rc−2(r+2)
2(r+2)

for c > 2(r+2)
r

⇔ V
c
< r

2(r+2)
V.

If one unit of training is too expensive, then the principal prefers not to train the

agent. But if training is relatively cheap, then the principal will invest in the increase

of skills of his delegate. Battles in the last century are a good example. Firearms

can improve the effectiveness of a soldier. But there are some battles in the 20th

century where not all soldiers had firearms because it was too expensive. Examples

are the war between Germany and Poland in 1939 and the Korean War 1950-1953.

In the equilibrium of the model with decreased unit costs of effort, the equilibrium
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amount of training is given by

�̄i =

⎧⎨⎩0 for c̄ ≤ 2(r+2)
r

⇔ V
c̄
≥ r

2(r+2)
V

rc̄−2(r+2)
2(r+2)

for c̄ > 2(r+2)
r

⇔ V
c̄
< r

2(r+2)
V.

A principal will only invest in decreasing the unit costs of effort for his delegate

if the costs of one unit of training are low enough. If the costs for decreasing the

unit costs of effort are too high, then the additional effort invested by the agent in

the contest does not compensate the principal for his investment. Accordingly, no

training is used. One may think of an unskilled worker that only has to operate a

machine in a factory. If anyone could handle the machine, then the factory owner

will not invest in training. But if a manufactory is considered, training may be used

if the output of the agent can be increased by a sufficiently large amount.

The effort made by any delegate in the symmetric equilibrium of the model with an

increased weight of effort is given by

d1 = d2 =
r2

(r + 2)

V

4
.

Surprisingly, the effort put in is exactly the same as given in Lemma 3.2. That means

the amount of training has no effect on the effort choice of the delegate. Even if the

principal trains the agent, the delegate invests as much as in the delegation scenario

that only allowed for no-win-no-pay contracts. The reason for this result can be seen

in Lemma 5.1. The first derivative of the effort choice of delegate one with respect

to training is given by

∂d1

∂�1

=
r(1 + �1)r−1(�r2(1 + �2)r − �r1(1 + �1)r)

(�r1(1 + �1)r + �r2(1 + �2)r)3
�r+1

1 �r2(1 + �2)rrV,

which can be rewritten as

∂d1

∂�1

= (p1 − p2)
r�r+1

1 �r2(1 + �1)r−1(1 + �2)rrV

(�r1(1 + �1)r + �r2(1 + �2)r)2
.

Accordingly, training incentivizes the agent to invest more if he is left behind. This

movement stops if both go head to head. If the winning probability of agent one is

higher, then training reduces the investment because the same impact is achieved

with less effort put in. With relative contracts, that are used in the chapter before,

there would be an additional inventive to have a higher probability of winning. But

the specific effect on this setting is left to future research.
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In the second model the effort invested in the symmetric equilibrium is given by

d̄1 = d̄2 =

⎧⎨⎩ r2

(r+2)
V
4
, if no training is used, and

r3c̄
2(r+2)2

V
4
, if training is used.

As stated above, training is used if V
c̄
< r

2(r+2)
V . We can see that, if training is

actually used, then the effort invested by the agent is always higher compared to the

situation without training, and compared to the situation where training increases

the weight of effort. Using training to decrease the unit costs of effort is therefore

an effective mean to increase investment by the agents.

5.4 Comparison

We will first turn to the payoff of the delegate. The probability of winning in the

symmetric equilibrium is 1
2

for both agents in both models. In the model with an

increased weight, the effort put in and the share of the contested prize offered by the

principal have not changed compared to the situation in Chapter 3. Accordingly,

the payoff of the agent also does not change and is given by

�D1 = �D2 =
(2− r)
(2 + r)

rV

4
.

Note that this holds with and without training. On the one hand, the principal

contracts the agent and has to ensure participation. Moreover, the principal can

determine the weight of the effort put in. The effort made by the delegate is deter-

mined by the contract. Because the amount invested is determined, the principal

can increase the impact. But the payoff of the agent is not affected because this

is solely a decision of the principal. A soldier, for example, acts according to the

contract he signed and he also has a certain capability. But the weapon he handles

crucially determines the impact he has on the battlefield.

We will now turn to the model with a reduction in unit costs of effort. If no training

is used, then, of course, the same result holds as in Chapter 3. But if training is used,

then more effort is put in. On the one hand, this reduces the payoff of the agent,

on the other hand, the costs are reduced, which is beneficial for the agent. To see

which effect dominates, we have a look at the payoff in the symmetric equilibrium:

�̄D1 = �̄D2 =
1

2
�̄V − �̄(1 + �̄)

rV

4

1

1 + �̄
,

where �̄ represents the share offered in equilibrium by both principals and �̄ gives

the amount of training used in the symmetric equilibrium. Using the result from
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Section 5.3, we get

�̄D1 = �̄D2 =
r

r + 2

V

2
− r2

2(r + 2)2

rV

4

2(r + 2)

rc

=
(2− r)
(r + 2)

rV

4
.

We can state that both effects cancel each other out. The reduction in unit costs

compensates the agent for the increased effort. Accordingly, in both models the

payoff of the delegate is not affected. Whether there is an effect in the future is not

considered here.

We will now turn to the decision of the principals. To shorten the analysis, we will

concentrate on the first model. To get the results for the second model, we just have

to replace c by c̄.

If c is rather low, training is expensive and therefore the principal may not use train-

ing. In such a situation we are in the model described in Chapter 3 and therefore the

result of Wärneryd (2000) still holds: Delegation is able to reduce the investments

and therefore increases the payoff of the principals. If c is high, i.e. the unit costs of

training are low, then training may be used. The payoff of principal i, i=1,2 with

respect to c is

�Pi =

⎧⎨⎩ V
(r+2)

if c ≤ 2(r+2)
r

c(2−r)+2(r+2)
2c(r+2)

V if c > 2(r+2)
r

.
(5.9)

The critical value of c is therefore ĉ = 2(r+2)
r

. As can be seen from the formula, ĉ

decreases if r increases. If r is high and the impact of the effort in the Contest-

Success-Function is high, then the principal will use training even if it is expensive.

If r is rather low, then the principal will use training only if it is cheap. For very

low values of r, investing effort has only a very limited influence on the probability

of winning. If r is close to zero, then the probability of winning is close to 1
2
,

irrespectively of how much effort was invested. In such a situation training is not

used very much.

If an additional unit of effort put in may improve the chances a lot, then the principal

will use everything he has to incentivize the delegate. Accordingly, r influences the

decision whether training is used or not. But it has also influence on the amount

of training that is used. Once c is greater than the critical value ĉ, the amount of

training used by principal i is �i = rc−2(r+2)
2(r+2)

. The first derivative with respect to r is
∂�i
∂r

= 4c
2r+4

and therefore strictly positive. If the impact of effort put in and therefore

also the impact of training is large, then the principal will train a lot. This result

is quite intuitive. For example, we can think of a soccer team. Although all players
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do their best, the result may be bad because they did not train to play together or

they did not train the moves.

Considering the payoff of the principal, assume that training is used. The payoff

of principal i is given by the lower part of (5.9). Of course, it always holds that

�Pi = V
(r+2)

is greater. It also holds that �Pi is greater than �i. Using training is

beneficial for the principal if the following holds:

c(2− r) + 2(r + 2)

2c(r + 2)
> (2− r)V

4
.

This only holds if c < 4(r+2)
r(2−r) . This leads to:

Theorem 5.3:The introduction of mandatory delegation and the possibility of train-

ing the delegate is beneficial for the principal if and only if

c <
4(r + 2)

r(2− r)
, and

c̄ <
4(r + 2)

r(2− r)
respectively.

On the one hand, if c ∈ (2(r+2)
r

, 4(r+2)
r(2−r)), then the introduction of delegation is bene-

ficial for the principal, although he trains his delegate. But even if the introduction

of training may not be beneficial, the payoff of any principal is always positive. On

the one hand, by delegation the prize is split up and therefore incentives to invest

are reduced. But on the other hand, training gives the principal the possibility to

engage in the contest indirectly and therefore investments increase. The latter effect

may even lead to a situation where delegation is not beneficial anymore. The reason

for this result is that the principals are kept in a kind of prisoners’ dilemma. Both

principals would benefit if training is abandoned, but once it is introduced and the

costs are not to high, they will use training. If the opponent does not use training,

it is beneficial to use it because training leads to an advantage and therefore to a

higher probability of winning. Assume, for example, that soldiers have the same

capabilities. But the soldier using better equipment may have a higher probability

of defeating the enemy.

On a final note, we turn to the cost-parameter of training. If c = c̄ then both

approaches predict the same behavior by the principals, i.e. the share offered and

the amount of training used do not differ. But if training is used, then the predicted

effort will always be higher in the model with decreased unit costs.
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There are four cases: no training, training in both models and only training predicted

by one model. If c and c̄ are smaller or equal 2(r+2)
r

, then no training is used by the

principals. Training the agent is too costly for the principal in both approaches.

Training is used by both principals if c and c̄ are greater than 2(r+2)
r

. The costs of

training are sufficiently low, and therefore both approaches predict the principals to

train the agent. In this case more efforts are invested in the model with decreased

unit costs. And the model with a higher costs-parameter also predicts a higher

amount of training that is used in equilibrium.

If only c or c̄ are greater than 2(r+2)
r

, then only the model with the smaller costs-

parameter will predict no training. If training is used to decrease the unit costs of

effort, then more effort is invested.

5.5 Conclusion

The introduction of mandatory delegation with no-win-no-pay contracts into a Tul-

lock rent-seeking contest decreases the effort made and increases the payoff of the

principal. The contested prize is split up and therefore the incentives to invest are

lower for the agent compared to the incentives a principal has without delegation.

In this chapter this model is also applied and it is considered that the principal

may influence the weight of the effort made by the agent in the contest. It is also

considered that the principal can decrease the agent’s unit costs of investing effort.

This is used to model that the principal can train his delegate. This also includes

the possibility that the principal can support his delegate. The principal pays for

the training. There are no additional costs for the agent. The costs of training are

dependent on the contested prize. The marginal costs are constant. Because of the

specification of the Contest-Success-Function, the effect of one additional unit of

training decreases in the amount of training used. Normally, a machine gun has a

fixed price. The more machine guns are on the battlefield, the smaller is the effect

of an additional machine gun. And therefore, more machine guns are needed to get

the same impact the first machine gun had. The model has two stages. At the first

stage the principal contracts the agent and determines either to what extent the

skills of the delegate are improved, or by how much the unit costs are decreased.

At the second stage the contest is played by the delegates and after they invested,

the winner is determined and payments take place. An army is a good example

to demonstrate this. The strength of an army crucially depends on the weapons

it uses and how well trained the soldiers are. The soldiers are contracted to serve

in the army, but the impact of the effort they put in depends on the support the

army gives to them. Firms also constantly invest in the skills of their employees.

They also invest in technical support. The skills of an agent have been modeled
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before by Baik and Kim (1997) and Schoonbeek (2007). Schoonbeek assumes that

an agent can use two instruments. One instrument increases the effect of the other

instrument. A similar approach is used here. Training acts as the instrument that

increases the impact of the other instrument, i.e. the effort the agent puts in. It

is also considered here that training does not have an effect on the weight of the

invested effort directly. Training can be used to decrease the unit costs of effort and

therefore increases the investment of the agent.

In both models the principal can influence the outcome of the contest. He can use

the terms of the contract, and, additionally, he can decide on how to improve the

skills of the agent. In the first model the contract determines the effort the agent

puts in. But the impact of the effort is influenced by the principal. In the second

model training influences the investment of the agent. Training is therefore a way

to bypass mandatory delegation. By investing in training, the principal intervenes

in the contest. Whether the principal uses training or not depends on the costs of

training and on the marginal efficiency of effort. If the costs of training are high, then

the principal may not use training. Accordingly, the beneficial effect of mandatory

delegation is still intact. But if the costs are low, then the principal uses training

and therefore increases the weight the effort of his delegate has or decreases the unit

costs, respectively. If modern weapons are cheap, then an army may be modernized

with a higher probability than when new weapons are expensive.

The marginal efficiency of effort influences the decision on whether to use training

or not, and it influences the amount of training that is used. If the effect of effort on

the probability of winning is only small and the decision on the winner is more like

a coin flip, then the principal will use training only if the costs a very low. He will

also use a small amount of training. If the marginal efficiency is high, i.e. the effect

of effort is very high, then training is used even if the costs are high. He will also

use a lot of money to improve the skills of the agent. If a new weapon can ensure

victory, then this weapon is worth much to the army and it may also be used very

often.

Because of the way to bypass mandatory delegation, the effect on the payoff of the

principal is negative. A situation without training and with mandatory delegation

is best for the principal. If the costs of training are moderate, then the situation

with training leads to a higher payoff compared to a situation without delegation.

But if training is very cheap, then abolishing mandatory delegation is beneficial for

the principal. The principals are kept in a kind of prisoners’ dilemma. Not using

training gives a disadvantage if the opponent uses training. This decreases the prob-

ability of winning for the principal that does not use training.

An example is the use of poison gas in the First World War. It was used by the

Germans to end positional warfare and to help the soldiers win. In the end, the gas
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was used by both sides, increased the death toll, and the positional warfare held on.

The payoff of the agents does not change. In the model with increased weight the

agent’s decision on how much effort to put in is determined by the contract. The

contract is the same as in the situation without training and therefore they do not

invest more. They also do not pay for training. Accordingly, the payoff in the sym-

metric equilibrium is the same as without training. In the second model, training

increases the investment of the agent. But because of the decreased unit costs, the

payoff is held constant.

Overall, the effect of training is therefore negative. The principal loses and the del-

egate does not gain anything. Only the investments in the contest are increased.

One policy implication is therefore to prevent the costs of training from being too

low if the principals are in a contest. Taxation may be used to reach this goal.

The question of whether the results also hold if interdependent preferences are in-

cluded or if the contract space is extended or not, is a topic that is postponed to the

future. It is an interesting approach to combine both models, i.e. training increases

the weight of effort and decreases the unit costs. A machine gun is one example.

Using a machine gun improves the impact of a soldier. This is the direct effect on

the Contest-Success-Function. Additionally training can be used to improve han-

dling. This makes fighting with the gun more efficient and therefore can be seen as

a reduction in unit costs of effort.
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Chapter 6

Summary and Future Research

6.1 Summary

Contests are omnipresent in human society. Everywhere people are investing irre-

versible effort to win an indivisible prize. The effort put in the contest does not

increase the welfare of the society. These investments belong to the dark side of

the force, as Hirshleifer (2001) called it. Instead of creating wealth, people try to

appropriate the wealth that was created by other people. Contests are used here

to model this process of appropriation. In the second chapter, we had a look at

the effect of evolution on the effort exerted in contests in finite populations. In

fact, we asked whether it is beneficial in evolutionary terms to overvalue the prize

in a Tullock contest or not. We found that overvaluation can indeed be beneficial.

Because of a higher valuation for the contested prize, the players invest more and

the opponents may be discouraged and therefore exert less effort. We found two

effects: an incentive-effect and a discouragement-effect. The discouragement-effect

is only operant in contests with more than two individuals, but not in playing the

field contests. Even without the discouragement-effect overvaluation occurs.

A comparison is drawn between the indirect evolutionary approach concerning prize

perceptions, the direct evolutionary approach and the indirect evolutionary approach

according to Leininger (2009). All three approaches predict the same behavior in

equilibrium for two-player contests and for playing the field contests. The direct

evolutionary approach and the indirect evolutionary approach that introduces pref-

erences for the opponents put a weight on the contested prize implicitly. In the direct

evolutionary approach this weight is constant. The indirect evolutionary approach

according to Leininger (2009) produces exactly the same aggressive behavior as the

indirect evolutionary approach using prize perceptions because the weights on the

prize are identical. The implicit weight is not fixed. This weight is therefore allowed

to evolve evolutionarily and in equilibrium amounts to the same amount as in the
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new indirect evolutionary approach. This weight depends crucially on the size of the

population. Accordingly, the material payoffs are the same. Only the utility of the

players differs. In the indirect evolutionary approach according to Leininger (2009)

the utility is smaller as long as we do not face overdissipation of the contested prize.

The reason for this is that the material payoff of the opponent is not subtracted

and that the prize is overvalued. The individuals feel better because of their desire

to win and they are not depressed by their fear of losing. Although, they invest

more compared to a contest where all value the prize equally and correctly. In finite

populations this yields an evolutionary advantage. Accordingly, it is shown that all

three approaches lead to more effort put in to appropriate wealth that other people

created. This makes the problem of unwanted investments even more severe. It was

our aim to show that delegation can be a tool to decrease such wasteful investments.

Wärneryd (2000) showed that mandatory delegation may decrease efforts invested

in a two-player Tullock rent-seeking contest. Because the contested prize is split

up between principal and agent, the agent acts not as aggressively as the principal

would do. Accordingly, efforts made are reduced and expected payoffs for the prin-

cipals are increased. But this is not the end of the story. On the one hand, the

contract space is limited, and on the other hand, the principal has only the contract

to gain influence on the contest.

In fact, the result of Wärneryd only holds true for no-win-no-pay contracts. In this

book it is shown that no-win-no-pay contracts are only one example of a broader

class of contracts. In fact, a fine and a reward, both depending on the contested

prize, are introduced. Any principal can punish his delegate for a defeat. In equilib-

rium the share offered as a reward and the share used as a fine must add up to one.

By using appropriate contracts, the principal can eradicate the effect of the split

up of the prize on the incentives of the agent. The expected payoff for the agents

in equilibrium is always zero, but the payoff for any principal is positive and is as

high as in a situation without delegation. Accordingly, the principals are indifferent

between delegating or not and therefore delegation does not need to be mandatory.

There may also be asymmetric equilibria.

Introducing mandatory delegation alone is not beneficial, but introducing manda-

tory delegation and restricting the possible contracts combined with law enforcement

is. If the contract space is limited, for example by law, then wasteful investments in

contests can be reduced. An example is the lawyers’ compensation act (Rechtsan-

waltsvergütungsgesetz) in Germany. By introducing upper bounds, even a positive

payoff for the agent is possible.

Another important result is the influence of negatively interdependent preferences

on the side of the principal on the chosen contract. These preferences are created

by evolution in finite populations. The incentives of a principal with negatively
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interdependent preferences to win the contest are higher than for a principal with

individualistic preferences. But the participation constraint keeps the first principal

from transferring the increased incentive to the agent. Accordingly, the negative

effect of interdependent preferences is mitigated and delegation can indeed decrease

efforts invested, even with the broader contract set.

In Chapter 3, we also consider individualistic principals that contract agents with in-

terdependent preferences. the agents are concerned with the outcome for the agent,

but not for their principal or the principal of the other agent. We show that dele-

gation can also decrease the effort invested if agents have negatively interdependent

preferences. Because of his wish of defeating the other agent, the agent is intrinsi-

cally motivated to invest. The principal therefore reduces the total incentives. In

fact, he reduces the fine and the reward. This reduction is high enough to make

the agent invest less compared to a situation without agents with negatively inter-

dependent preferences. The material payoff of any agent is zero, but the material

payoff of the principal increases.

If the agent is intrinsically motivated by his negatively interdependent preferences,

the principal can increase his share of the prize.

In Chapter 4 we have look at a special form of contracts that are also used in the

literature: relative contracts. Interdependent preferences are assumed in this chap-

ter. It is shown that by delegating the players are better off in a two-player Tullock

contest in this particular situation. We assume that the delegates do not have a

particular concern regarding the opponent. Accordingly, the result from Chapter 3

also holds for relative contracts. With prescribed delegation, each player can do at

least as well as if he was in a group consisting only of individualistic payoff max-

imizing players, i.e. “spiteful” preferences are “neutralized” in the contract game.

No-win-no-pay contracts can even overcompensate the negative effects of weighted

relative payoff maximizing behavior. But since interdependent preferences yield an

advantage in equilibrium in rent-seeking contests with contracts that reward the

delegate according to his relative success, these are developed and used by the prin-

cipals. In essence, the economic institution of contracting delegates can completely

offset the inefficiency caused by negatively interdependent preferences. This result

also holds for relative contracts. In theory, delegation may have an even better

effect, but is held back by the same competitive forces at contracting level. More

aggressive contracts drive out more moderate ones.

It is shown for relative contracts that there is a fixed amount the principal has to

pay to hire a delegate in the equilibrium of the contract choice game. The fixed

amount does not alter the invested effort but is necessary in order to make an agent

willing to sign the contract. A game-structure like in a prisoners’ dilemma prevents

the delegate from acting as a free rider.
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Again, one policy implication of the above analysis is that mandatory delegation

combined with a limited contract space should be introduced.

The possibility that a principal can intervene into the contest is addressed in Chap-

ter 5. It is considered that the principal may influence the weight the effort exerted

by the agent has in the contest. This approach is used to model that the principal

can train his delegate. This also includes the possibility of supporting the delegate.

The principal pays for the training. The costs of training are dependent on the

contested prize. At the first stage the principal contracts the agent and determines

to what extent the skills of the delegate are improved. At the second stage, the

contest is played by the delegate and after they invested, the winner is determined

and payments take place.

This means that the principal can influence the outcome of the contest in two ways:

He can use the terms of the contract, and, additionally, he can decide on how to im-

prove the skills of the agent. We considered two approaches of how training affects

the outcome. In the first approach the terms of the contract determine the effort

the agent puts in. But the impact of the effort is influenced by the principal. In the

second approach the unit costs of effort are decreased by using training. Accord-

ingly, the effort exerted by the agent is determined by the amount of training and

the terms of the contract. Whether the principal uses training or not depends on

the costs of training and on the marginal efficiency of effort. If the costs of training

are high, then the principal may not use training. Accordingly, the beneficial effect

of mandatory delegation is still intact. But if the costs are low, then the principal

uses training and therefore increases the weight of his delegate’s effort.

The marginal efficiency of effort influences the decision on the use of training and it

influences the amount of training that is used. If the decision on the winner is more

like a coin flip (r is close to zero), then the principal will use training only if the

costs are very low. He will also use only a small amount of training. If the marginal

efficiency is high, then training is used even if the costs are high. The principal will

also use a large amount of money to improve the skills of the agent.

But the use of training influences the payoff of the principal negatively. It is also

possible that the principal is worse off compared to a situation without delegation.

Accordingly, giving the principal the opportunity to gain influence on the decision

leads to an increase in total investment. And therefore the desired effect of delega-

tion is only present if the principal cannot intervene into the contest. The principals

are kept in a kind of prisoners’ dilemma. Not using training is disadvantageous if the

opponent uses training and therefore increases his probability of winning. On the

other hand, the payoffs of the agents do not change. In the approach that considers

an increased weight, his decision on effort to put in is determined by the contract.

The contract is the same as in the situation without training and therefore they
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do not invest more. They also do not pay for training. Accordingly, the payoff in

the symmetric equilibrium is the same as without training. In the second approach,

training increases the effort exerted by the agents because the unit costs are de-

creased. The reduction in unit costs is positive for the agent. In equilibrium both

effects cancel each other out and the payoffs of the agents do not change compared

to a situation without training. Note that we only considered one single contest.

We do not consider the effect of training on contests played in the future.

In essence, it is shown that delegation can indeed reduce the wasteful investments.

The negative effect of negatively interdependent preferences is neutralized by dele-

gation. Because the delegate is only interested in his material outcome, he does not

act as aggressively as the principal would do. This holds true despite the fact, that

the principal can incentivize the agent with the full objective value of the contested

prize by using an appropriate contract. The positive effect of delegation may also

be mitigated if the principal has the opportunity to train his delegate.

6.2 Future Research

In the last decades, there has been an increasing interest in introducing concepts of

various sciences into economic literature. In Chapter 2, we explained how findings

from biology were introduced. Another finding that enriches economics, is also of

interest for delegation and therefore for research. In an article, written in 2000,

Akerlof and Kranton introduced identity into the economic analysis. They define

identity as a person’s sense of self. Akerlof and Kranton state that “Identity can

account for many phenomena that current economics cannot well explain.” (p.715).

Examples are the economics of poverty and exclusion. A person thinks in social cat-

egories. The categories the individual is in, or sometimes chooses to be in, define the

identity of this person. A social category is gender, for example. For the individual

there are ways the people in each social category should behave. An individual has

a disutility if he is not able to behave like his social category tells him to do. He also

has a disutility if other individuals do not behave like they should do. A woman,

for example, feels a discomfort if another woman next to her dresses and talks like

a male construction worker. Or a manager does not like it when another manager

collects bottles on the street. And it is also not right to the manager if he collects

bottles because such a behavior is attributed to poor and unemployed people.

In 2005 Akerlof and Kranton extended their model to organizations. In their intro-

duction they use the drill at West Point as an example. They write about the army:

“They wish to inculcate non-economic motives in the cadets so that they have the

same goals as the U.S. Army.”(p.9)

That means, they introduce another way how the behavior of individuals can be
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influenced. Namely by changing the experienced identity.

It is an interesting endeavor to transfer this topic to a contest with delegation. So

far, a principal can use the contract to influence the behavior of the delegate, but

now he can also influence the behavior by changing the way the delegate sees him-

self. That means, the principal might convince the agent that they have a common

goal. Akerlof and Kranton (2005) state this for the Army. In Chapter 5 we saw how

training can affect the weight the effort invested by the agent has. But we neglected

the effect on identity. To incorporate this additional effect in the future, we want

to use a three stage model to show the consequences of the introduction of identity.

We will use a two-player Tullock-contest. At the first stage, both principals choose

to delegate or not to delegate. If at least one principal delegates, the delegate is

contracted at the second stage. The contract consists of a monetary component and

training. The monetary component is a share of the contested prize the delegate

gets if the contest is won. Training increases the ability of the delegate, on the one

hand, on the other hand, it makes the delegate also regard the payoff of the prin-

cipal. Training is paid for by the principal. At the last stage the contest is played

and payments take place.

In the game there are four subgames: No one delegates, both delegate or only one

principal delegates. We want to explain shortly the mutual delegation subgame to

demonstrate the model. The model is again solved by backward induction. r = 1 is

assumed to ease calculus. The payoff of the delegate of principal i (i = 1, 2) is given

by

�Di =
(1 + �i)di

(1 + �i)di + (1 + �−i)d−i
�iV − di + �i

(1 + �i)di
(1 + �i)di + (1 + �−i)d−i

(1− �i)V.

�i (�i > 0) represents, on the one hand, to what extend the delegate identifies himself

with the principal (shown by his principal’s payoffs). On the other hand the change

of identity is due to training. As in West Point, this training may also increase

abilities. Accordingly, �i increases the weight the effort of the delegate di has in the

Contest-Success-Function. This is the way Baik and Kim (1997) modeled abilities

of delegates. Like in the chapters above, �i represents the share of the contested

prize the principal pays to the delegate if the contest is won.

Without identity the prize is split up. Principal and delegate only cared for their

share. The introduction of training reversed this split up. The equilibrium amount

of training and the according degree of reversal is determined in the second stage of

the game and crucially depends on the costs of training.

The equilibrium at the third stage is given by the winning probability

pi =
(1 + �i)(�i + �i(1− �i))

(1 + �i)(�i + �i(1− �i)) + (1 + �−i)(�−i + �−i(1− �−i))
.
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(1 + �i) gives the effect of the increased ability. �i + �i(1 − �i) gives the total

incentive of the agent. As stated above, a positive �i mitigates the split up of the

prize. For �i = 1, a delegate is incentivized with the whole prize and the share �i

does not matter anymore. We can also think of a delegate that thinks that he and

his principal share the same goals.

At the second stage, principal i determines the contract. His problem is

max
�i,�i

(1 + �i)(�i + �i(1− �i))
(1 + �i)(�i + �i(1− �i)) + (1 + �−i)(�−i + �−i(1− �−i))

(1− �i)V

− �i(1− �i)
V

c
,

wrt �Di ≥ 0.

�i(1 − �i)Vc stands for the costs of training. (1 − �i) was included to express a so

called “real-world” phenomenon: It is easier to convince someone that your mo-

tives are good when you are not greedy. A commander that eats the same things

his soldiers eat and sleeps in the same tents has more motivated soldiers than a

commander that sleeps in the hotel far away from the enemy. Also soldiers tend to

follow commanders more glowingly that share the glory and the money they get with

their soldiers. And a commander that gives away everything he earns can convince

soldiers at low costs.

c was introduced to ensure that there are no extreme solutions. If the costs of

training are too high, then the standard model without identity results. If the costs

of training are too low, then the soldier may believe in the aims of the principal

more than the principal does. This case is given for �i > 1. Religious leaders whose

followers are willing to die for their beliefs, but the leader is not willing to die and

prefers negotiations, are an example. c = 1.5 is an example for a situation with a �

between one and zero. We want to solve the given model for all four subgames and

determine under which circumstances this kind of training is used.

Another shortcoming of this research at hand so far is the assumption that there

is an objective value of the prize. Individuals have different valuations for the same

thing. Bajari and Hortacsu (2003) show for coin auctions on ebay that even if there

is a book value for the coin, the paid price can differ considerably from this value.

Accordingly, it is worthwhile to introduce heterogeneity to the valuation of the prize.
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