

Design of new technologies for the numerical simulation of combined quasi-static dynamic forming processes

Y. Kiliclar, I. N. Vladimirov, S. Wulfinghoff & S. Reese

- A. Motivation
- B. Material modelling
- C. Parameter identification
- D. Validation
- E. Conclusion/Outlook

Motivation 2

High **strain rate** (pulse forming) can shift the forming limit

Forming limit diagram (linear strain path)

Change in the **strain path** can shift the forming limit

Forming limit diagram (quasi-static forming process)

No coil windings

IUL

Interface to capacitor

Coil windings

Deep drawing

Rheological model

4

Starting point:
 Elastoplasticity with nonlinear isotropic / kinematic hardening
 ("pseudo viscosity")

Rate-independent:

"
$$\eta_c$$
" = $\frac{c}{\dot{\lambda}\,b}$ Vladimirov et al. 2008

Dettmer & Reese 2004

Model extension:
 Damage coupled viscoplasticity with nonlinear isotropic / kinematic hardening

Effective stress:

Rabotnov 1968

$$\widetilde{\sigma} = \frac{\sigma}{1 - D} = E \,\varepsilon_e$$

$$E_D = E\left(1 - D\right)$$

Rate-dependent:

$$\dot{\lambda} = \frac{\langle \Phi \rangle^m}{\eta}$$

multiplicative split:

$$\mathbf{F} = \mathbf{F}_e \, \mathbf{F}_p, \,\, \mathbf{F}_p = \mathbf{F}_{p_e} \, \mathbf{F}_{p_i}$$

kinematic hardening

Lion 2000

Helmholtz free energy:

$$\psi = \psi_e(\mathbf{C}_e) + \psi_{kin}(\mathbf{C}_{p_e}) + \psi_{iso}(\kappa)$$
isotropic hardening

 $\mathbf{C}_e = \mathbf{F}_e^T \mathbf{F}_e = \mathbf{F}_p^{-T} \mathbf{C} \mathbf{F}_p^{-1}, \ \mathbf{C}_{p_e} = \mathbf{F}_{p_e}^T \mathbf{F}_{p_e} = \mathbf{F}_{p_i}^{-T} \mathbf{C}_p \mathbf{F}_{p_i}^{-1}$

Clausius-Duhem inequality (isothermal processes):

$$-\dot{\psi} + \mathbf{S} \cdot \frac{1}{2} \dot{\mathbf{C}} \ge 0$$

$$(\mathbf{S} - 2\mathbf{F}_{p}^{-1} \frac{\partial \psi_{e}}{\partial \mathbf{C}_{e}} \mathbf{F}_{p}^{-T}) \cdot \frac{1}{2} \dot{\mathbf{C}} + (\mathbf{M} - \mathbf{\chi}) \cdot \mathbf{d}_{p} + \mathbf{M}_{kin} \cdot \mathbf{d}_{p_{i}} + \mathbf{R} \, \dot{\kappa} + Y \dot{D} \ge 0$$

$$\mathbf{d}_p = \dot{\lambda} \, \frac{\partial \Phi}{\partial \mathbf{\Sigma}}$$

$$\mathbf{d}_{p_i} = \dot{\lambda} \, rac{b}{c} \, \mathbf{M}_{kin}^D$$

symmetric internal variables!

plastic flow rule

Vladimirov et al. 2011

kinematic hardening

$$\dot{\kappa} = \dot{\lambda} \frac{\partial \Phi}{\partial R}, \ R = -Q \left(1 - e^{-\beta \kappa}\right)$$

$$\dot{D} = \dot{\lambda} \sqrt{\frac{2}{3}} \frac{1}{1 - D} \left(\frac{Y}{s}\right)^k H(\kappa - p_D)$$

$$\Phi = \sqrt{\mathbf{\Sigma}^{D} \cdot (\widetilde{A}[\mathbf{\Sigma}^{D}])} - \sqrt{\frac{2}{3}} \left(\sigma_{y} - R\right)$$

$$\dot{\lambda} = \frac{\langle \Phi \rangle^m}{\eta}$$

isotropic hardening

damage Lemaitre (1992)

yield function (anisotropy)

Perzyna formulation

Pull-back to reference configuration!

Flow curves for varying strain rates

Experimental setup for determining the flow curves for varying strain rates

[Nordmetall]

- Parameter identification based on experimental data
- Non-linear objective function to identify optimal parameter vector p

$$F(\mathbf{p}) = \frac{1}{2N} \sum_{i=1}^{N-1} (u_{i+1} - u_i) [(f_{i+1}^{tot}(\mathbf{p}) - \tilde{f}_{i+1}^{tot})^2 + (f_i^{tot}(\mathbf{p}) - \tilde{f}_i^{tot})^2]$$

- Optimization by IPOPT works fine
- Good matching of UNIVERSITA
 UNIVERSITATION

 experiment and simulation
- Localization problem

- Aluminum EN 5083
- Negligible strain rate sensitivity by means of higher stress level
- Higher formability with increasing strain rate

$$p_D = \kappa_1 + \frac{\kappa_2 - \kappa_1}{\dot{\epsilon}_2 - \dot{\epsilon}_1} \left(\dot{\epsilon} - \dot{\epsilon}_1 \right)$$

- Rate dependent (linear) damage threshold
- Damage initiation is shifted

Full coupled quasistatic and electromagnetic forming process

Deep drawing Electromagnetic forming Top view Bottom view Top view Bottom view

- Critical zone
 is in upper
 flange while
 deep drawing
- Critical zone
 moves to
 bottom radius
 while EM
 forming

- "Crack" occurs during EM forming
- No further forming process is possible

- Damage continue evolving but do not lead to failure
- Good agreement with experiments

- Strain ratio exceeds QS-FLC during high-speed forming
- Good prediction of the overall material behavior
- Quantitatively good agreement with experimental result

- Strain ratio exceeds QS-FLD during high-speed forming
- Good prediction of the overall material behavior
- Qualitatively similarly to results of cylindrical cup

- Introduction of a framework for virtual process design in the context of combined quasi-static and electromagnetic impulse forming, featuring:
- ✓ Suitable material model
- ✓ Automatic parameter fitting based on experimental tensile tests
- Good agreement between simulation and experiment
- ✓ Realistic prediction regarding the combined forming processes
- First steps are taken, but:
- → Nonlocal formulations & anisotropic damage are current research tasks

Thank you for your attention

