Construction of Nonnegatively
Curved Invariant Metrics on
Homogeneous Disc Bundles

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

Der Fakultat fiir Mathematik der
Technischen Universitat Dortmund
vorgelegt von

Artanc¢ Kayacelebi

September 2015



to Betil



Contents

[0__Introduction|

I Preliminaries

Im

Invariant Metrics on Homogeneous Manifolds| . . . . . . .. ... ... ...

[1.2  Curvature of Homogeneous Metrics| . . . . . . .. ... ... .. ... ...

2 Cheeger’s Construction|
13 Cheeger Deformations|
4 Homogeneous Sphere Metrics|
[ Curvature of Generalized Warped Product Metrics|
|6 Nonnegatively Curved Invariant Metrics on Homogeneous Disc Bundles|
7 Cohomogeneity One Manifolds|
[7.1 Topology of Cohomogeneity One Manifolds| . . . ... ... ... ... ...
[7.2 Nonnegatively Curved Invariant Metrics on Cohomogeneity One Manitfolds| .
APP Ul

16

22

31

37

57
o7

61

78



Acknowledgments

In the first place I would like to thank my thesis advisor Prof. Dr. Lorenz J. Schwach-
hofer for the time he spent on continuously supporting me and his inexhaustible patience
throughout the development of this work.

Furthermore I would like to thank all the other members of the Lehrstuhl VII Differential-
geometrie at the TU Dortmund.

Finally, I want to express my deepest thanks to my family and to my lovely wife Betiil for

her persistent encouragement during the past years.



Chapter 0
Introduction

Riemannian manifoldsE] with positive or more generally nonnegative curvatureE] have been
of interest since the very beginnings of Riemannian geometry.

One class of such manifolds is constituted by compact Lie groups G which always admit a
biinvariant metric g. These are metrics for which left and right translations are isometries

and which are nonnegatively curved because their curvature is given as
1 .
1 H (X, Y]Hg for the plane spanned by an orthonormal pair X and Y

w.r.t. to the Levi-Civita connection on G.

By a theorem of O’Neill it is known that Riemannian submersions do not decrease curva-
ture. This theorem can is used to construct manifolds with nonnegative curvature out of
ones which are known to admit a nonnegatively curved metric. For instance let (M, gar)
be a nonnegatively curved Riemannian manifold. Consider an isometric and properly dis-
continuous action by a compact Lie group G on M. Then by O’Neills Theorem it follows
that the metric g on M/G for which the quotient map (M, gp;) — (M/G, g) becomes a
Riemannian submersion is nonnegatively curved. For example let K C G be compact Lie
groups with K acting by group multiplication on G. Then a metric on G/K induced by a
biinvariant metric on G has nonnegative curvature since a biinvarinat metric has nonnega-
tive curvature as observed above. Such a submersion metric is called normal homogeneous
metric.

Apart from the method of using Riemannian submersion to obtain manifolds with non-
negative curvature out of given ones, one can consider the product of two nonnegatively

curved manifolds. Furthermore we can glue two nonnegatively curved manifolds with non-

!manifolds are assumed to be connected in this work, except for Lie groups
2throughout the work the word "curvature" refers to the sectional curvature



negative curvature along their totally geodesic common boundary given that the metrics
near boundaries are isometric to obtain a new manifold with nonnegative curvature.
Cheeger used a combination of these three methods to construct new examples of nonneg-
atively curved manifolds in [C]. Namely he showed that the connected sum of two compact
symmetric spaces of rank one admits metrics wih nonnegative curvature.
Before going on to another application of Cheeger’s method we describe the notions of
homogeneous disc bundles and of a collar metric on these bundles. A homogeneous disc
bundle is a bundle of the form

GxkgD—G/K,

where D is a disc in some vector space V whose boundary is the sphere Sg and the
subgroup K C G acts transitively on this sphere. The action of K on G x D is given by

the free diagonal action
k*(g,p) = (gk™" k- p).

A metric on a homogeneous disc bundle is called collar metric if a neighborhood of the
boundary 0(G xx D) = G/H, where H C K denotes the isotropy group of some point in
G x i D\ {0}, is G-equivariantly isometric to ((R — e, R) x G/H,dr? + g) for some € > 0,
where ¢ is an invariant metric on G/H. If g is a normal homogeneous metric we have a
normal homogeneous collar metric.

In [GZ1] submersion metrics on homogeneous disc bundles are discussed. Taking a non-
negatively curved left-invariant metric on G which is also K-right-invariant and a nonneg-
atively curved K-invariant metric on D yields a nonnegatively curved G - invariant metric
on G xg D. In |GZI] it is shown that if the rank (dimgV’) of the disc bundle is at most 2
it is possible to carry out the construction described above in such a way that the metric
is a normal homogeneous collar metric.

Now every closed cohomogeneity one manifold M with two nonprincipal orbits can be
described by two homogeneous disc bundles which are glued along their common boundary

which is a principal orbit G/H, i.e.
M = (G XK+ D+) UG/H (G XK_ D_) .

If the codimension of the nonprincipal orbits is at most 2 we can make the above described
construction on each half to obtain a G-invariant metric on M. This result led to new
examples in [GZI] such as that every principal SO(k)-bundle over S* admits an invariant
metric with nonnegegative curvature since these bundles carry a cohomogeneity one action
by SO(3) x SO(k). Other examples are the sphere bundles over S* and resulting from
that 10 out of the 14 (unoriented) exotic 7-spheres.
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In that paper it was conjectured that every cohomogeneity one manifold supports an
invariant metric with nonnegative curvature, but in [GVWZ] the authors showed that
when the ranks of the two halves of a cohomogeneity one manifold is given by a pair of
integers (¢1,02) with £1,0o > 2 and (¢1,¢3) # (2,2), one can find an infinite family of
cohomogeneity one G-manifolds that do not admit a G-invariant metric with nonnegative
curvature.

In [STa2] homogeneous disc bundles admitting normal homogeneous collar metrics have
been extensively studied. The authors showed that if a normal homogeneous collar metric
exists then G xXg D is either the quotient of a trivial bundle or its rank has to be in
{2,3,4,6,8}. Furthermore they gave a complete classification for such bundles in the rank
6 and 8 case and a partial one in the rank 3 case. Let @ denote a Adg-invariant inner
product on g. Denoting by m the orthogonal complement of h C £ and by p the orthogonal
complement of h C g where ) resp. € resp. g denote the Lie algebras of the Lie groups
H resp. K resp. GG given as above the authors showed that a normal homogeneous collar
metric exists if there exists a C' > 0 such that for all X, Y € p we have

[ X A Y| < CHIX Y (1)

where subscripted m’s indicate the projection onto m.
Denote the orthogonal complement of € in g by s and consider the left-invariant metric g.

on G induced by the inner product

Qs|E = (1 + 5)@’87 Q€|ﬁ = Q’s

Condition ensures by a result in [STa2| that for sufficiently small ¢ the metric g. has
nonnegative curvature for planes which are contained in p. By the fact that the portion of
the horizontal lifts of planes in the base manifold lying in the first component of the tangent
space to G Xk D is in p we take the metric g. and a nonnegatively curved K-invariant
metric on D to yield a nonnegatively curved quotient metric on G x g D.

Furthermore in the same paper the authors proved that is almost necessary for the
existence of a nonnegatively curved normal homogeneous collar metric. In fact m replaced
by my in condition , for an irreducible subspace m; C m is proven to be a necessary

condition.

In this thesis we are going to analyze under which conditions metrics with prescribed
properties can be constructed on homogeneous disc bundles. In particular we point out

the following

1il



Theorem 5.13. Let K C O(n+1) be a Lie subgroup which acts transitively on S™ C R™"1,
Let g1 be a K-invariant metric on S™ with positive curvature and let r(x) = ||x|| be the
radius function on R 1.

Then there exists a K-invariant metric g on the unit ball B1(0) C R™™! with positive
curvature and an € > 0 such that on r—1((1 — ¢,1)) we have g = dr® + n(r)% g1 where
n:(1—e,1) — R satisfies n,n’ > 0.

This generalizes Theorem 5.1 in [STu|, where this theorem was shown for the case when
g1 is a normal homogeneous metric.

In addition we are going to show

Theorem 6.5. Suppose that m decomposes irreducibly as m = my&... G m, w.r.t. the
action of H on m via the adjoint representation and that we have a chain of Lie groups H C
K1 C...C K, = K such that the Lie algebra €; of K; is given as &, =hdm; ®... dm,.
Then there exists o nonnegatively curved invariant collar metric on the homogeneous disc

bundle G X g D with totally geodesic fibers and boundary metric g if there exists a constant
C > 0 such that

Rg(X’Y;KX) > C(||Xm169.--€9mr—1 A Ym1€9--~€9mr—1H2 + H[Xv Y]ml@m@mr—l”Q) :

Here RY denotes the curvature tensor of the metric g where g is assumed to be given on p

as

(9)[6H}|mi = f12 id|m, (9)[6H]|5 = idJs ,
with 0 < f? < 1.

Here the obstruction for the functions f; is in fact not restrictive in the sense that otherwise
we obtain the same rigidity as in [STa2| where normal homogeneous collar metrics were
analyzed as stated above (cf. Corollary [6.3).

A more detailed summary of the contents of this work is given in the following outline of
the work.

Outline of the work

In the first chapter we give a brief introduction to invariant metrics on homogeneous
manifolds along with the computation of the curvature of such metrics in the special case

when an underlying chain of Lie groups is given.

v



Chapter [2] is devoted to a construction method mentioned above which goes back to
Cheeger. After clarifying how the construction is carried out we compute the curvature of

Cheeger metrics explicitly.

In Chapter [3] we revisit Cheeger’s construction for the special case that it provides a
deformation of a G-invariant metric on a manifold M on which a compact Lie group G
acts by isometries.

Furthermore we give an equivalent condition when there exists a Cheeger deformation
for a G-invariant metric on a homogeneous space G/H such that the deformed metric is

nonegatively curved.

Chapter {| deals with invariant metrics on spheres. At the end of Chapter 4 we use the
results from Chapter 3 to show that every positively curved invariant metric g; on the
sphere can be joined with the round metric by a diagonal path of positively curved invariant

metrics on spheres.

In the following Chapter |5 we discuss the curvature of generalized warped product metrics.
Here a metric of the form dt? + g, on a product I x G/H where I is an interval and g; is
a family of G-invariant metrics in G/H is called a generalized warped product metric.
We determine conditions under which there exist a reparametrization for a generalized
warped product metric such that the reparametrized metric possesses nonnegative resp.
positive curvature.

We use these results on the one hand to show Theorem 5.13 stated above. On the other
hand we use the results on reparametrizations to prove Theorem 6.5 in Chapter [l There
we also analyze to what extent metrics on the boundary of a disc in Cheeger’s construction
can even have negative curvature when taking a biinvariant metric on G and demanding

for the quotient metric to be nonnegatively curved.

Finally in Chapter [7] we put the obtained results into the context of cohomogeneity one

manifolds.



Chapter 1

Preliminaries

1.1 Invariant Metrics on Homogeneous Manifolds

We will give a brief introduction to invariant metrics on homogeneous manifolds. A more
detailed treatment can be found in standard textbooks such as [Be|, [CE] or [Pe].

A manifold M is called homogeneous if there is a Lie group K acting transitively on M.
Here we will consider left actions. Let H, C K be the isotropy subgroup at some point
p € M, i. e. the elements of K fixing the point p. Since H), is closed it is itself a Lie group.
The set K/H, = {kH, : k € K} of left cosets modulo H), inherits a unique manifold
structure from K via the canonical projection 7 : K — K/H, by the requirement that =
is smooth and that (7, K, K/H,) is a principal Hy,-bundle. Then the map o : K/H, - M
with kH,, — kxp is a diffeomorphism with respect to the unique smooth manifold structure
on K/H,. Since the isotropy groups at different points are conjugate in K, this construction
does not depend on the point p € M and we henceforth write K/H = M

According to the identification of M with K/H the left action of K on M is carried into
a transitive left action of K on K/H which can be described by diffeomorphisms.

More precisely we have a map
0: K — Diff(K/H)
kK — O R
with

O0r: K/H — K/H

(1.2)

If ky =eand k € H in (1.2) we obtain that dfy, is an automorphism of Tem K /H which



leads to the isotropy representation
p:H — Aut(TiemK/H).
A metric (, ) on K/H is called K-invariant or K-homogeneous if
(dbrv, dOpw) gy ) = (O, Wy gy YV v, w0 € Ty K/ H (1.3)

i.e. K is acting by isometries. If H is the trivial group this metric is nothing else than a
left invariant metric on K.

Before dealing with other characterizations and the existence of invariant metrics on ho-
mogeneous spaces we note the following.

Let (,) be a K-invariant metric on K/H and denote by K* the isometry group of
(K/H,{,)) which by hypothesis acts transitively. Then K* acts effectively on K/H since
it is a subgroup of Diff(K/H). Let H* denote the isotropy group of this action so that
especially K*/H* = K/H. Consider the isotropy representation

p*: H* = O(TiemK/H) ,

where we use the identification Tjp« K*/H* = Ti.yK/H. The image of H* under p*
is contained O(T[GH}K/H) C Aut(T[eH}K/H) since H* C K* also acts by isometries
on K/H. Moreover an isometry on a connected manifold is determined by giving its
differential at some point. Therefore p* is injective and we can identify H* with a subgroup
of O(T[eH]K/H). By the Myers-Steenrod Theorem (cf. [Be], Theorem 1.77), K* is in fact
a Lie group and moreover the isotropy subgroup can be identified with a closed subgroup
of O(T[6 mK /H ) and therefore is compact.

Since K also acts by isometries, the image of the map 6 in is contained in K*. If 6
is injective we can identify K with a subgroup of K* and the action of K on K/H is also
effective.

If 0 is not injective, K does not act effectively. Then we make the following construction.
Let Hy = ker(0) = ker(p). Then Hj is a normal subgroup of K which is contained in H.

So we obtain Lie groups
K:=K/Hy and H:=H/H,.

It follows that K /H is diffeomorphic to K/H and that the canonical action of K on K /H is
effective. Since every non-effective action can be made effective in this manner we assumne

from now on w.l.o.g. that the actions we consider are effective and that we can identify K



with a subgroup of K*.

By abuse of notation we assume from now on that K = K C K*.

For getting a K-invariant metric on K/H we propagate an inner product on T.gK/H
such that is satisfied. That is we define

(v, W) pem = (do; v, do;  w) Vv, w e Ty K/H . (1.4)

[eH]

It follows for k € H that (, >[GH] must be invariant under the isotropy representation.
Conversely if we have an inner product on Tj.g K /H which is invariant under the isotropy
representation we get a K-invariant metric on K/H by defining an inner product according
to on Ty K/H.

For another characterization of K-invariant metrics on K/H we make use of the canonical
identification of Tj.)K/H with £/, where h and € denote the Lie algebras of H and K
which in turn enables us to interpret the differential of m at the identity as the natural
projection dm : € — £/ h. Since b is Ady-invariant so is € / h and therefore H acts naturally
on £ /b via the adjoint representation. Note that for all v € € and h € H we have

On(m(e™)) = On([e" H]) = On(Ocrv [eH])
— Oy (B H)) = Gy ([eH))
= w(heh71).

Differentiating this yields
dOy(dm(v)) = drn(Adp(v)) Vwvet he H. (1.5)

Now, a K-invariant metric on K/H is determined by an inner product invariant under
the isotropy representation at [eH| as observed above. In view of this leads to an
inner product on €/b invariant under the action of Ady. Conversely suppose that we
have an Adpy-invariant inner product on £ /b which leads to an inner product in T} K/ H
invariant under the isotropy representation. Then propagating this inner product as in
(1.4) gives rise to a well-defined K-invariant metric on K/H.

For being able to formulate some of the upcoming facts more compactly we give

Definition 1.1. A homogeneous space K/H is called reductive, if € admits a decomposition
t = b m such that Adgy(m) C m.

For later references we state



Proposition 1.2. On a reductive honogeneous space K/H, K-invariant metrics on K/H

are in 1-1 correspondence with Adg-invariant inner products on m.

The proof follows from the identification of m with €/ b.
Let (,) denote an Adg-invariant inner product on € /h. As Ady acts naturally on € /b so
does ady. Then for z,y € £/bh and v € h we have

(Adgtex, Adetoy) = (z,y) .
Differentiating this yields
(adyz,y) + (2, adyy) = 0.

So a Adg-invariant inner product on £/ is ad, skew symmetric for all v € .
Conversely suppose that we have an ad, skew symmetric inner product on € /§ for all
v € h. Then for z,y € £/ h and v € h we get

(Adgwz, Adwy) = (e, eddtvy) = (e2dtog, Z(t”/n!)(adv)"y)
= Y (1" /) (ady) e, y) = (e y).

Since elements of the form e!” for v € b generate the identity component of H we get that

every ad, skew symmetric inner product on € /b is also Adg-invariant if H is connected.
Again for later references we state

Proposition 1.3. Let H be connected. Then a homogeneous space K/H with € = hdm
is reductive if and only if ady(m) C m.

Here again the proof follows from the identification of m with €/ b.

But still the question remains when invariant metrics do exist at all. This is answered by

the following

Proposition 1.4. K/H admits a K-invariant metric if and only if Ady is compact in
GL(®).

Proof. Suppose that Ady is compact in GL(#). Let w be a right invariant volume form on
Adpg, i.e. we have R} _ w(h - h1) = w(h) for all h € Ady. Such a form can be obtained
from a right invariant metric on Ady. Then for an arbitrary inner product (,) on ¢ we

can define the inner product

(2, ) = / (Ady(2), Ady(y)) w(h) (1.6)

Ady



on t. Then (, ) defines an Adg-invariant inner product on € which can be seen by the
following computation where we make use of the right invariance of w and the fact that

Ry, is a diffeomorphism for all k € K . For hy € H and z,y € £ compute

(Adp, (), Adp, (y)) = /A , (AdpAdp, (), AdpAdp, (y)) w(h)

= / (Adh-h1 (33), Adh-h1 (y))RZl_lw(h : hl)
Ady (1.7)

_ / (Ady (), Ady(y)) w(h)

Ady

= (z,y) .

Let m be the orthogonal complement of h in € w.r.t. the metric (,). Then (,)|m is
Adpg-invariant as well and by Proposition we get the desired result.

Conversely suppose that we have a K-invariant metric (,) on K/H. Let K* denote the
isometry group of (K/H, (,)) with Lie algebra £* and let H* denote the isotropy group of
some point with Lie algebra h*. We have pointed out above that H* is compact. It follows
that Adg+ is a compact subgroup of GL(£*). So similar to what we have done above we
can define a metric on €* which is Adpg+«-invariant so its restriction to € is Adpg-invariant.
Hence with respect to this metric Ady operates by isometries and it follows that it can be
identified with a subgroup of O(£) from which we can deduce that its closure is compact
in GL(#). O

Remark 1.5. If K is a closed subgroup of K* then the existence of a K-invariant metric on
K/H is guaranteed. Since then H is a closed subgroup of H* and therefore compact from
which the compactness of Ady follows and then by Proposition we get the statement.

From now on we suppose that K is a closed subgroup of K*.

The next Proposition links left invariant metrics on K to K-invariant metrics on K/H.

Proposition 1.6. Let K/H be a reductive homogeneous space with ¢ = hdm. Then a left
invariant metric g on K induces a K-invariant metric on K/H if ge|m is Adg-invariant.
Conversely a K-invariant metric on K/H induces a left invariant metric g on K which is

also right invariant when restricted to H and for which we have m = h=.

Proof. That a left invariant metric g on K induces a K-invariant metric on K/H if ge|m
is Adg-invariant follows immediately from Proposition [I.2] Conversely if we have a de-
composition € = h@m with Adg(m) C m and a K-invariant metric on K/H then again
by Proposition this metric leads to an Adg-invariant inner product on m. We extend

this inner product to all of € and declare h and m to be orthogonal and Adg-invariant



on h. Then propagating this inner product leads to a left invariant metric on K which is

biinvariant when restricted to H. O

For the remainder of this work let K be a compact Lie group. Then the existence of a
biinvariant metric on K or equivalently the existence of of a Adg-invariant inner product
on ¢ is guaranteed. Since K is compact so is Adg in O(E). So we can define a metric on €
as in (1.6) with Ady replaced by Adg and this metric is Adg-invariant. This follows with

an analogeous computation as in ([1.7)).

Remark 1.7. A left invariant metric ¢ on K as in Proposition with g(h,m) = 0 not
only induces a K-invariant metric on K/H but turns the canonical projection

m : K — K/H into a Riemanniann submersion with fiber type H.
To point out a geometric feature of the fibration in the previous remark we need

Proposition 1.8. Let g be a left invariant metric on K and let X,Y,Z € t. Then
ViV = % X,Y] - U(X,Y), (1.8)
where U : € x £ — € is defined by
29(U(X,Y), 2Z) = g([Z, X].Y) + g(X,[2,Y])

and V is the Levi-Civita connection of the metric g.

Proof. By left invariance we have

0=Xg(Y,2)=9(VxY,Z) +9(Y,VxZ)
0=Yg(X,2)=9(VyX,Z)+g(X,VyZ)
0=29(X,Y)=g(VzX,Y)+g(X,VzY).

Substracting the third equation from the sum of the first two and using that the Levi-Civita

connection is torsion-free we get

from which (1.8]) follows. O



This leads to the following

Remark 1.9. The fibers of the fibration in in Remark [I.7] are totally geodesic.
To show this fact, let X,Y € h. Then on the one hand we have [X,Y] € h since b is a Lie
algebra. On the other hand we have U(X,Y) € b. For this let Z € m. Then we obtain

29(U(X,Y),2) = 9([2,X],Y) + 9(X,[2,Y]) = 0,
if and only if g is chosen as in Proposition Since then we get [Z, X] € m as well as
[Z,Y] €m. So we get VxY € b for X,Y € b and the claim follows.
For later use we state

Corollary 1.10. Let (, ) be a K-invariant metric on K/H and let X,Y,Z € m. Then

VxY =2 [X,Y]a - UX,Y), (1.9)

1
2
where U : m xm — m is defined by

2 <U(X, Y)7Z> = <[Z7X]m7Y> + <X7 [Zv Y]m)

and V denotes the Levi-Civita connection of the metric ( , ).

Proof. Let g be left invariant metric on K which induces the metric (, ) in accordance
with Proposition and let V denote the Levi-Civita connection of g. Then from the

general theory of Riemannian submersions we have

N =

where X, Y € m and X,Y are the corresponding horizontal lifts and the superscript V
denotes the projection onto the vertical space. Here the submersion is the projection map.

Therefore the horizontal lifts coincide with the actual elements and the vertical space is b.

Now using (1.8)) yields (1.9). O

For another characterization of invariant metrics on homogeneous spaces let () denote an
Adg-invariant inner product on € and let gg denote the induced biinvariant metric on K.
With respect to @@ we have a Q-orthogonal decomposition £ = h@Em. On m define the
inner product

Qu(X,)Y) =QX,Y) XY em, (1.11)



where ¢ : m — m is some @-symmetric, positive definite linear map. It follows that Q)
is Adg-invariant if and only if ¢ is Adg-equivariant. So by Proposition @y induces a
K-invariant metric on K/H in this case. If ¢ is Adg-equivariant it follows especially that
1 is ady-equivariant as well.

Let U be a @-symmetric extension of 1 to ¢ with U], = ¢ and arbitrary on h. Then we
especially have ¥(h) C h. The inner product

Qu(X,Y):=Q(¥X,Y) X,Yc¢t

fulfills Qg (h, m) = 0 and induces a left invariant metric gy on K such that by Remark
the projection map m : (K, gy) — (K/H, gy) is a Riemannian submersion not depending

on the choice of the extension W.
We make the following convention for the remainder of this work

Convention Let @ be some Adg-invariant inner product on €.

If it is not further specified we mean a homogeneous metric on K/H induced by an inner
product as in when writing g,.

Similarily when writing gg for a left invariant metric on K we mean a metric induced by

some (Q-symmetric, positive definite map ¥V : g — g.

Let gy be a K-invariant metric on K/H. Since 1 is Q-symmetric we obtain a Q-orthogonal
decomposition m = m; & ... m, into eigenspaces of 1. So on these eigenspaces the inner
product @y inducing g, must be a multiple of ). Moreover since ¢ is Ady-equivariant
this decomposition in fact yields an Adg-invariant decomposition of m, which in turn
provides a decomposition invariant under the action of the isotropy group via the adjoint
representation. This leads to a decomposition m = m; @ ... G m, where H acts trivially
on m; and mg,--- ,m, are irreducible subspaces, where some eigenspaces are possibly
subsumed to yield m; and others split further to yield the subspaces ms,...m,. Since by

our construction each m;, 2 <4 < r, is contained in some eigenspace m;, it follows that
V|, = a2 1dy, for 2<i<r. (1.12)

Restricted to m; the metric can be arbirary.

Remark 1.11. If dim(m;) < 1 the metric is determined by ([1.12]) for 1 <1 <r.



1.2 Curvature of Homogeneous Metrics

As explained in the previous chapter homogeneous metrics arise as Riemmannian submer-
sion metrics of certain left invariant metrics by means of the projection map. For the
relation between the curvature of submersion metrics and the metric on the total space we

have a formula due to O’Neill

Theorem 1.12 (B. O’Neill). Let 7 : (B,g) — (M, g) be a Riemannian submersion, then

we have
RI(X,)Y;Y,X)=RI(X,YV;Y,X) + - H [X,Y] H (1.13)

where RI denotes the curvature tensor of g, R9 the curvature tensor of g, X,Y are the
horizontal lifts of X, Y € X(M) and the superscript V denotes the projection onto the

vertical part.
The expression 5 H [X,Y] VH, 18 called O’Neill term.

From Theorem it follows that a homogeneous metric on K/H has nonnegative cur-
vature if the left invariant metric on K inducing the homogeneous metric by means of the

canonical projection has.

For computing the curvature of a left invariant metric gg on K we use a result of Piittmann

which is stated in the next

Theorem 1.13 (cf. [Pil, p. 344). Let gy be a left invariant metric on K. Denote the

curvature tensor of gy by RIY. Then we have

ROY(X,Y3Y,X) = S QX WY] +[UX,Y], [X,Y))
3
le@( (X, Y], [X,Y]) 114)
ZQ([X \IIY] [\I/X, Y],\If‘l([X, \IJY] — [\I/X, Y]))
- Q([X, ¥X], ¥ Y, vY]),
where X,Y € ¢.

Using (1.13) and (1.14) we can give a formula for the cuvature of a homogneous metric

Corollary 1.14. Let gy be a homogeneous metric on K/H and let gy be a left invariant

metric on K inducing g, by means of the projection map. Then we have

RO (X,V5Y,X) = RO (X, V37, X) + 5 Q(UIX, Y]y, [X, V)
3
X Y, 1

Y
=R (X,Y;Y, X))+ = Q(Y[X,Y]y, [X,Y]y),

Nej



where X,Y € m and X,Y € m are the corresponding horizontal lifts for which we have

X = X and Y = Y since the differential of the projection map is the identity and
%Q(\I/[X, Yy, [X, Y]h) is the O’Neill term because the vertical space of the projection map
is b. Replacing R9Y (X, Y:Y, X) with (1.14)) gives an explicit formula for R9v (X, Y:Y, X).

Remark 1.15. The curvature formula given in Corollary does not depend on the
choice of the extension W. This can be seen as follows.
Adding the second line of ((1.14]) and the O’Neill term gives

=2 QM v Y] + 2 QX Y] X V) = 2 QX Y], [X. V)

E Z (w[X, Y]ma [X? Y]m) :

Since ¥ is ady-equivariant we obtain
VX, Z|=V[X,Z] VXem,Zeh.
From this we deduce for all X, Y € m and Z € b,
QX Y], 2) =~ Q(V.[¥X. Z]) = ~ (V. ¥[X, 2]) = Q(IX. ¥V, 2),
Therefore we have
(WX, Y], — [X,¥Y], =0 VX,Yem
and
VX, X]y=0 VXem.

So the claim follows.

We compute the curvature just for a special case of homogeneous metrics which will suffice

for our purpose.

Suppose that we have an underlying chain of Lie groups
HCcKi CcKyCc...CK,=K
and the induced @-orthogonal decomposition

m=m H...6m,, (1.15)
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such that the Lie algebra ; of K; is given by
LE=hPmd...om; forl<i<r.

Define the following expressions which will be used throughout the text

B! = [X;,Yilp + [X;,Yily and BY := Y BY for1<ij<r i#j 0<k<r
0<k<r

l3i:zz[k@,§@]k and B' = EE: 132 for1<i<r, 0<Ek<r,
0<k<r

where the subscript on X resp. Y denotes from which m; it is from and the subscript on
the bracket denotes the mg-part of the bracket if 1 < k < r and the h-part of the bracket
if K =0. Due to the ad-skew-symmetry of (Q we obtain immediately

B =0 fori<gjandj#k,
B, =0 fork>i.

Furthermore we suppose that the metric on K/H is diagonal with respect to (1.15). We
set
V|, ;= a?ld for 1<i<r. (1.16)

In this situation we say that the homogeneous metric gy, induced by v has the parameters
(a2,a3,...,a2). We are going to compute R%(¢p~1X,9~1Y;4~1Y,9~1X) rather than

T

R9(X,Y;Y, X) because this will be needed later. The actual computations can be found

in the appendix. Here we just give the result

Lemma 1.16. Let a chain of Lie groups be given and let ¢ be defined as in (1.16)). Then

we have

RO (471X, 7Y, 7Y, 471 X)

= Y CIBIP+ Y et (- aa QB BY) + ot |B + Y BT

1<i<r 1<i<j<r 1<i<r

1 - , 1 - - ,
1 2 wlIBE+ YD BEF L D0 e t(4-3ake?)|[BL

1<k<r—1 1<i<k 1<k<i<r

1 . .
+5 Y o te(3- 243070 Q(BLBE+ Y B

1<k<j<r 1<i<k

1 o
+5 > a4t *(6—3aia;” —2a7a;°)Q(B}. BY).

1<k<i<j<r

11



Remark 1.17. For ¢ = Id this is the well-known formula
1 3
R (XYY, X) = Sy + 2 v

for the unnormalized curvature of a normal homogeneous metric.
For r = 2 we obtain
R (' X, 0759V 7 X)
=ay || BY||* + agtay (3 — atay?)Q(By, BY) + a3 || B3| + ia;ﬁuBg +B2|?
1

1 (ar®IBL* + 207205 (3 - 20%a3 ) Q(BL. BY) +a3°(4 = 3a3az?) | BY|*) (117)

:%<3G%H‘11_4B(1) + a2_4B(2)H2 - afGHBlH2 +a3°%|| B2 + BlQHZ
+2a7%a;(3 - 2a2a;2)Q(BY, B?) + a5 (4 — 3a%a3?) || B3 + Bf||2> _

Remark 1.18. The last two lines give exactly the formula of Proposition 3.1 in [STul

when twisting is used there.

For the rest of the chapter let a triple of Lie groups H C K; C K be given. This case has
been extensively studied in [STall]. The following theorem can be found there. The proof
presented there uses a power series expansion for the unnomalized curvature whereas the
one presented here just uses the formula in (1.17).

Theorem 1.19 (cf.[STall, Thm 0.1). Consider the homogeneous metric g, on K/H with
Y|m, = (14 a)id and Y|my = 1d.
Then gy has nonnegative curvature for small a > 0 iff there exists a C' > 0 such that
|Bi|| < C|IIX,Y]]] VX,Yem. (1.18)

In fact if (K1, H) is a symmetric pair, i.e. Bl =0 then gy has nonnegative curvature for
a<1/3.

Proof. For the proof we consider elements of the form

X=(01+4+a)'X1+X, and Y=040a)'V1+Y;.

12



The unnormalized curvature in (1.17)) evaluated for ¥ X and ¢Y yields

2 1
ROGY3Y.X) = s 1B+ T QB BY) + 1B+ 1133 + B
~——

=:Ip =iz

1 1 1—2a
+4<(1+G)BHB%H2+2 2015 +<1_3a>HB§H2> |

A1

Clearly I is nonnegative. For Iy we claim that
1 0 212
Iy — gH131+BOH >0. (1.19)
For this observe that the discriminant
A 1 1 (1 2—a 1\> (20— 3)d®
(14+a)3 8 8 l+a 4)  (1+a)?

is nonnegative if a < %. In particular Iy is nonnegative.

By the Cauchy-Schwarz inquality we have
—|BillBEl < QB B) < ||B1] |8

If Q(B117 B%) is nonegative then it follows immediately that I is nonnegative for sufficiently

small a.
If
] 1—3a
—IBil 1Bl < @(BLBY) <0 with ¢ < g
we have

4(1 — 3a) 4(1 — 2a)?
Grap ¢ Gxap 20

So I; is nonnegative in this case.

The last case is

1—-3a

BB < @1 BY) <~ B B0 with ¢ < g

Observe that for sufficiently small a, ¢ is arbitrarily close to 1. This in turn implies that for

13



sufficiently small @ we have that B{ is arbitrarily close to —B? which ensures the estimate
|8} + B < 57 1211
Therefore by using the assumption we can perform
|BH < 2l vl = (|13 + BRI + 181 + B + (183 + B[
< (|1By+ B3I+ B3+ B2IP) + 5 |BIP

Moreover it can be checked that we have the estimate

1—3a—(1-2a)%*(1+a)
I >
4(1 — 3a)(1 +a)3
—g(a)

A

Here g is a negative valued function with ¢(0) = 0. By using this, and (1.20) we
obtain
ROCYYX) > (||BY + BRI + gfa) | B + 5 133 + B
> (8+2c2 (@) 1B + B3| + (4+2C2 (@) |83 + B2,

Thus choosing a small enough such that § + 2C?g(a) > 0 we obtain the desired result.

The supplementary statement in the Theorem follows since Iy and Is are nonnegative as

mentioned above and the coefficient of HB%H is nonnegative for a < % The remaining

terms vanish since B{ = 0 for symmetric pairs. O

As the proof suggests one can in general not hope for a metric gg on K inducing a homo-
geneous metric on K/H as in Theorem fulfilling (1.18) to have nonnegative curvature
as well because the O’Neill tensors contribution to the curvature is essential in the proof.

In fact gy does not even have nonnegative curvature for planes contained in m (cf. [S1]).

Nevertheless we have

Theorem 1.20 (cf.[STall, Prop. 4.2). Consider the homogeneous metric g, on K/H with
Y|m, arbitrary and Y|my = 1d

Then gy has nonnegative curvature for |wm, sufficiently close to id if there exists a C > 0

14



such that
[ Xy A VYo || <CJ|[IX Y]] VXY em. (1.21)

In fact, if (1.21)) is fulfilled then every left invariant metric gy on K which induces g, by

means of the canonical projection has nonnegative curvature for all planes contained in m.

Remark 1.21. Note that ((1.21) implies (1.18).

The proof of Theorem 4 presented in [STal is carried out by using a power series expansion
for the unnormalized curvature in the case when there is an inverse linear path between a
normal homogeneous metric and the metric in case. Here a path is called inverse linear if
the inverses of a path between metric inducing linear maps form a straight line.

The power series used there is a result of adding the O’Neill term coming from the projec-
tion map to the power series expansion of the unnormalized curvature of a left invariant
metric on K first developed in [HT]. In fact the same power series was also used in [STal]
to prove Theorem [1.19]
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Chapter 2
Cheeger’s Construction

In the upcoming we are going to describe Cheeger’s construction introduced in [C].

Let G be a Lie group and K C G a compact Lie subgroup acting isometrically on a
Riemannian manifold (M, gps) from the left. Let G be equipped with a left invariant
metric (, ) which is also right invariant under K, i.e. (, ) is biinvariant restricted to K.

Then K acts isometrically on G x M via the diagonal action

k+(g,p) == (gk~' k-p). (2.1)

Especially this action is free and automatically properly discontinuous since K is compact,
so that the quotient G X g M modulo this action is a manifold.

Let g denote the inherited metric on G X g M such that the canonical submersion
T (Gx M, (,)®gu) = (Gxx M,3) (2.2)

becomes a Riemannian submersion. Then the metric g is G-invariant w.r.t. the canonical

action of G on G x g M given by

g * [91,p] == [991, D] (2.3)

and the codimension of a principal orbit of this action equals the codimension of a principal
orbit of the action of K on M.
Before pointing out a geometric feature of the submersion in (2.2)) we need

Lemma 2.1. Let 7 : (M,g) — (B, g) be a Riemannian submersion and let S C B be a
submanifold. If S := m=(S) C M is totally geodesic then S is totally geodesic as well.

Proof. Let V resp. V denote the Levi-Civita connection of (M,g) resp. (B,g) and let
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X,Y € TS with horizontal lifts X, Y € T'S. Then by (1.10) we have
VxY = (Vg%

Since S is totally geodesic it follows that V¢Y € T'S. Therefore we get VxY € T'S and
consequently VxY € TS, that is S C B is totally geodesic. O

The previous Lemma can be used for the proof of

Proposition 2.2. The map (G xx M,g) — (G/K,(,)) given by (g,p) — gK is a fiber
bundle with fiber M. Moreover, it is a Riemannian submersion with totally geodesic fibers.

Here by abuse of notation we denote the metric on G/K induced by () by the same symbol.

Proof. Observe that G xx M 1is the total space of the associated fiber bundle M —
G xXxg M — G/K to the principal K-bundle K — G — G/K. Furthermore with the
metrics considered the fibers of K < G — G/K are totally geodesic (cf. Remark [1.9).
Due to the left invariance of the metric on G, the manifolds g K are totally geodesic as well.
Therefore the manifolds gK x M C G x M are totally geodesic since we have a product
metric on G x M. Moreover the preimage of a fiber of M — G xxg M — G/K under 7
can be identified with a submanifold of the form gK x M C G x M. Therefore the fibers
are totally geodesic by Lemma [2.1 O

A special situation in the above construction comes into light if M =V is a vector space
of dimension n 4+ 1 and K acts transitively on the unit sphere ST in V' by means of a
representation K — O(V). In what follows we assume by abuse of language that K itself
acts on V. It is no obstruction to assume that K acts by orthogonal transformations since
in [MS] it is shown that transitive actions on spheres are by linear transformations. A
vector bundle of the form

T:=GxgV—>G/K (2.4)

with the properties described above is called a homogeneous vector bundle. As we assume
K to act transitively on the unit sphere in V' it leaves all spheres centered at the origin
invariant.

Furthermore the norm function ry : V.— RT, v — ||v|| is K-invariant and hence induces
a well-defined function 77 : T — R, K(g,v) = ||v]|. For R € R define T by

T > Tg := G xx Bg(0) = r;*([0, R]),

where Br(0) denotes the closed ball of radius R in V. T in ({2.4) replaced by T is called

homogeneous disc bundle. The level sets of r7 are precisely the G-orbits of T' which in
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view of (2.3) is clear.

We write the sphere as a homogeneous space as K/H where H C K is the stabilizer
of some point p € S™. By the map G/H — G xx K/H, gH — [g,eH]| with inverse
G xx K/H — G/H, [9,kH] — gkH we have off the O-section an identification of the
G-Orbits of T with G/H.

This identification map associates to the isometries in the usual action map of G on
G/H by left translations which are therefore isometries as well. That is, the metric on
G/H is homogeneous.

Moreover we get that G x i (Bg(0) \{0}) is G-equivariantly diffeomorphic to (0, R] x G/H
w.r.t. to these actions.

From now on let G be a compact Lie group so that the existence of a biinvariant metric is
guaranteed. Let @@ be an Adg-invariant inner product on the Liealgebra g of G and denote

the induced biinvariant metric by gg. We fix a Q-orthogonal decomposition
g=hPp=hdmods=tDs,

where h resp. € are the Lie algebras of H resp. K.
On V =[0,00) x K/H we consider a metric which in polar coordinates can be written in

the form
gv = dr® + gy - (2.5)

We call a metric of this form a generalized warped product metric. The gy () constitute
a one-parameter-family of K-invariant metrics on K/H = S™ which arise by propagating
inner products Q) (X,Y) := Q((r)X,Y) on m according to (L.4), where ¥ : m —» m
are (Q-symmetric, positive definite, Adpg-equivariant maps. As we have pointed out in
the previous chapter there is a one-to-one correspondence between K-invariant metrics on
K/H = S™ and these maps ¢ (r). In addition we demand for 1, to depend smoothly on r
and to be of the form dr? + f(r)? gean on [0,¢) x K/H for some £ > 0 and some smooth
function f : [0,e) — R where g.q, denotes the round metric on the sphere. Then the
metric in is smooth iff f(0) = 0 and f/(0) = 1 (see [GZ2]). In fact the submersion
metric on T is smooth if the metric in is smooth.

Furthermore we identify m with 7;,5™ via action fields,

m> X — X*(p exp(tX)(p) € T,S5".

d
)= il

Before stating the next lemma we underline that G-invariant metrics on the G-orbits of
T which are diffeomorphic to G/H are in one-to-one correspondence with @Q-symmetric,

positive definite, Adg-equivariant maps ¢ : p — p.
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Lemma 2.3. Let TR — G/K be a homogeneous disc bundle. Let g, be a left invariant
metric on G which is induced by a Q-symmetric, positive deﬁmte Adg-equivariant map
v :g— g. Furthermore let gy be a K-invariant metric on V as in and let plmoth(t) =

Y(t) o |m for all t € [0, R]. Then the metric on the G-orbit v, (tg) induced by means of a

Riemannian submersion

™ : (G % (Br(0)\{0}), 9, & (dt* + gy(p))) = ((0, R] x G/H,dt* + gy())

1s induced by the map ¢ : p — p given by

P(t0)|lm = ¢lm ¥(to) (Plm + w(to))_l ,and  ¢(to)ls = ¢ls

and we have

Io(to)(m,5) = 0.

Proof. We decompose X € g as X = Xy + Xy + X where the subscripts denote the
projection onto the corresponding parts. To determine the vertical space V, that is the

tangent space to the fiber at the point (g,p) € G x S}! we have to compute for X € ¢

d
| (exp(sX)p))

Ly(exp(~5X)), X ) = (= dLy(X), X) = (= X, Xz)

d d
5 le exp(sX)(g,p) = (g‘szogexp(—sX),

- (i

where X denotes the action field of X, € m. So

s=0

Viep) = {(X5,0) [ Xy € b} © {(—Xm, Xg) [ X € m}.
To determine the horizontal space Hcp) let (Y, V) € T(¢ (G X S’g)) and compute

(g<p+gw (to) )( X7X:1)7(Y> V))
= ggo(_Xha va]) + ggo(_Xm7Ym) + g4p(07 sz) + gw(to)(X:‘U V)
= Q(—¢[nXp, Yy) + Q(0,9lsYs) + Q(Xum, ¥(t0)V — @lmYim) -

So we obtain

Hiep) = {(Xs,0) [ Xs € 8} ® {(¥(t0) X, (P X)") | Xow € m} .

In order to give the horizontal lift of a tangent vector X = X + Xs € mPs = p =
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Tier)G/H we observe that

dr((Xs,0)) = X5, and  dr((¢(to) Xm, (lmXm)")) = (lm + ¢ (t0)) X -

So one can check that the horizontal lift is

X = (w(to)(90|m + w(to))*le + Xs 5 (‘P‘m(‘ﬂm + w(to))ile)*) .

Therewith m becomes a Riemannian submersion we get for Xy + X, Yn + Ys € mPs

9¢(t0)(Xs7Y5) = gso(Xs, Ys)

gd)(to)(st Yin) =0

9(t0) (X, Yin) = (90 + 9y(10)) (X, Y)
= (9¢ + Guto)) (Y (t0) (@l + ¥ (t0)) ™ Xon, @l (0l + () X)),

(¥ (to) (elm + ©(t0)) ™ Yau, @l (ol + 1 (t0)) "' Vi)
= Q (¢lnth(t0) (lm + 1 (t0)) ™" Xims 1 (t0) (#lm + ©(t0)) " Vin)
+Q (lnt(t0) (Plm + ¢ (t0)) ™ X, @lm(plm + ¥ (t0)) " Vin)

= Q (#lwt(t0) (Plm + (t0) ™ Xm, Vi)

from which the statements in the Lemma follow. O

Remark 2.4. We especially have the following geometric feature for the metrics in Lemma 2.3
For all ¢ € (0, R] the fibers of the homogeneous fibration

(K/Ha g'g[)(t)) — (G/Ha g¢(t)) - (G/Ka gtp)

are totally geodesic (cf. [BB]). We can prove this fact by using Corollary The proof
itself is analogeous to that of Remark [1.9]

For the unnormalized curvature for a special form of a metric as in the previous lemma we

have

Proposition 2.5. Consider a submersion metric as in[2.3 with p|w = cId. Let R% denote

the curvature tensor of the metric g, and let R9 denote the curvature tensor of the metric

20



gy- Then for all X,Y € m we have

R% (671X, 671V 671Y, 671 X)

=R (¢ X, 07 Y07, 07 X) + R (Y7 X, 07 Vi 07 Vo, 7 X
3 _ 2.6
+ZQ((0+¢) Y(eBE + A% — ¢vBY), eBE + A% — ¢ BY) (26)

2
)

3 ¥ —1 4%
+ 1 c HBh +c Ab ‘
where we use the abbreviations

A9 = [ X Y] + [ X, ¢ tY] AY = [ X, Vo] + [Xe, v Ye] € €
B? = [p X, o7 'Y] BY = [y X, Y] €
C¥ =l 'X,)Y] - [X, ¢ Y] €5 CY = [ ' Xy, i) — [Xe, Y] €8

The actual computations for verifying the validity of the formula given in Proposition
can be found in the appendix.

Remark 2.6. We work with twisting, i.e. we consider elements of the form ¢~ X, ¢~ 'Y as
in Proposition [2.5]rather than X, Y because the horizontal lifts can be handled much easier

when twisting is used. For a more detailed treatment of this feature see the appendix.
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Chapter 3
Cheeger Deformations

An important special case of Cheeger’s construction as in occurs if we take K = G
because then Cheeger’s construction gives a deformation of the initial G-invariant metric
on M which is also G-invariant.

To make this process more precise let () be an Adg-invariant inner product on the Lieal-
gebra g of G and denote the induced biinvariant metric by gg. We consider the diagonal
action of G on G x M as in (2.1). By the map {e} x M — G x¢ M, (e,p) — G(e,p) with
inverse G xg M — {e} x M, G(g,p) — (e, g(p)) we have an identification of G xg M with
M = {e} x M.

Especially the composition of the submersion as in and the diffeomorphism between
G Xg M and M is nothing else than the usual action map of the G-action on M.

Legitimated by this construction we give

Definition 3.1. Let (M, g) be a Riemannian manifold and let the situation be as above.

Then for ¢ > 0, the metric g; on M for which the action map
(G x M, t_ng @g) — (M,gt)

becomes a Riemannian submersion is called a Cheeger deformation of g.
The next proposition states some properties of Cheeger deformations

Proposition 3.2 (cf. [S2|, Proposition 2.2). Let g be a G-invariant metric on M and let
gt be the Cheeger deformation of g for t > 0.

1. 1 =
tg% gt =49

2. If M = G/H is a homogeneous space with a G-invariant metric g then tlim tg: = 90
—00
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Proof. Let p € M. Decompose the tangent space of M in p orthogonally w.r.t. g as
Tp(G - p) & Sp,

where G - p is the G-orbit through p.

Let H C G be the stabilizer of p, so that G-p = G/H. Consider the @Q-orthogonal
decomposition g = hdm and write g > X = X + X, where Xj resp. Xy, are the
projections onto h resp. m. We have the identification m = T,,(G - p) via action fields
m 3> X — X*(p).

Let ¢ : m — m be the Q-symmetric, positive definite, Ady - equivariant map such that

9(X*(p),Y*(p)) = Q(eX,Y).

With analogeous computations as in the proof of Lemma [2.3| we get

View = {(= X, X5(p) [ Xm €m }.
and
Hep) = { (9 Xm, (t_le)*(p)) | X €m} @ Sp.
Therefore we get for the horizontal lift of X™*(p),

1

(0 (" +0) X, (1 + 0) T X)) -

So we obtain

gils, = 9ls,  9:(Sp To(G-p)) =0, (X" (0),Y*(p) = Qe (tp +1)'X,Y). (3.1)
From this the statements in the proposition follow. O

Remark 3.3. In view of [I} in Proposition [3.2] we will allow ¢ for technical reasons in the
definition of Cheeger deformations to be 0. In this case the initial metric on M will stay

unchanged.

Next we are going to deal with the question when it is possible to apply a Cheeger de-
formation to a G-invariant metric on a homogeneous space G/H such that the Cheeger
deformed metric is nonnegatively curved.

We use the same notions as in the previous chapter. Here we have s = 0 and a Riemannian
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submersion

m: (Gx G/H, t g0 @ gy) — (G/H, gy) -

We are going to use the same abbreviations as in Proposition 2.5 and write A, B, C' instead
of AY, BY,CY since here we just have one unspecified map 1. For the unnormalized

curvature of g4 we have according to Proposition

R(671 X, 67V 16717, 671 X)
= TP Y)IP RO (6 X Y Y, ) (32)

+ ZtQQ((t‘l + ) (X, Y + ¢ A — £ WB), [X, Vw4t A — ¢ 1 By)

+ Zt?’ 11X, Y]y + L 4 ||

)

where X, Y € m.
If [X,Y] =0, Ay = 0 and Ay = ¥ By, all the terms coming from the Cheeger deformation
in (3.2) vanish. Moreover for R9¥ which is invariant under Cheeger deformations we obtain

in this case

RO (v X, 7 Y307 g X)

= S QA B) — > QB Bu) + 1 Q(C.07C) ~ Q[0 X, X], 07 WY, Y]) (33)
1

= 1 Q(Ca 7 Cn) — 1 Q(Aw v An) — Q[ X, X Y, Y]),

where the h-part of C vanishes as shown in Remark Moreover by using the definitions
of A and C' we get by calculation

1 Q(Cn 07 C) — 1 Q(Am v An)
=~ 1 QX Y], — (XY ([0 XY, - [XeTY],)
S QXY+ XY ([ XY+ (X Y])

— —Q([v X, Y] o [X, 0 Y],).

Taking (3.3)) into account we see that

—Q([vT XYLy (X Y]) = Q([v X, X T YY) 2 0
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is necessary for secg, > 0 for all X, Y € m. Nevertheless this need not to be sufficient.
The next theorem gives an equivalent condition to the existence of a ¢ > 0 such that
secg, > 0 for all X, Y € m.

Theorem 3.4. There exists a Cheeger deformation of a homogeneous metric gy on G/H
wnto o metric with nonnegative curvature if and only if there exists a constant r, such that
forall XY em

R (7 X, 7YY T X)) > = (XY + AP + [ Am — v Bal?) - (34)

holds.

Proof. We have to show that (3.4)) is equivalent to the nonnegativity of (3.2).
To see that (3.4)) is sufficient for nonnegative curvature we first observe that there is a

constant ¢; > 0 such that

QU +9)  (IX, Y]+t A — 7B, [X, Yo + £ A — 719 By)
> o1t |[[X, Yl + " A — 1By

and that we can write

1 3 _
*HXYbHQJF*HXYhH LA |?

L [ e e e e L

So
R (¢7'X, 671V 97 Y, 97 X)
>t (t*3ng (' X YT Y X)) + ! L 1Y |
100 B vy, +H S Y]+ t‘lAbH +—t‘2HAh||2
2 a[06V w4 7 A — B
=13 (fi”RQw (' XYY X)) i X,V mH2

B vy, +H = XY],,+4 lAbH +—t 2| 4 |I?

100

2 eIl + 2 QO X V] A (A - 6B)
3

+ S et | An = ¥Bu*).
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Applying the parallelogram inequality we get
3 -1 —~1 3 -2 2 3 2,-2 2
3 QA X, Ym, At (An — ¥Bw)) > -1 ad || X, Ya||" - 1 ANt 3| Am — ¥ Bal|”

Leaving out the nonnegative term H%[X, Yy + %t_lAth and using (3.4) we can state
that R9¢ (gb_lX, Yo7y, d)_lX) is greater or equal to

E(=rt (| VI + A9 + | A = Bl

1 19 1 _

+(3+ f01)HXY I +1OO 1. Y3 "+ 5 £ (|4
3 3
— e 21X, Ya - fc1>\2t‘2 | An = ¥ Bul[* + 5 c1t72 || Am — Bl )
1 _ 19 _
zt3(<18t 2t 3) | 4g]|* + <m—rt 3) 11X, Y]y ||°

1 3 _ _
+ (342 (=272) =) XV
#(Zer(0-2) =) || A — wBal)

So for an appropriate choice of A and a sufficiently large ¢ nonnegativity can surely be
achieved.
Now suppose that we have nonnegative curvature but (3.4) does not hold. Then there are

sequences r, — 00, X,, =& X and Y;, — Y such that for all n € N we have
RO (47 Xy 67 Vo3 07 Yo 7 X) < = v (| (X, Yl | 4 (| A5 [ + [ AR — v Ba][”) -
First observe that

3 17,41 -1 -1 -1 -1 -1
ZQ(t (' +) (X, Y]m+t7 Ag =t 9Bg), [X,Y]n + 1t Ay —t7'¢By)

3 3
= T YT+ 07 A — 0BT = T X YT+ A — 0B
3

< I YTn 417 YA — t 7 Bal|.

Moreover by the parallelogram inequality we have

3 _ 3 3, _
N (e - T

and

3 3 3
X YT 7 A = 7 B < S X YTl + 5 7 A - v Bal
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So we obtain from ([3.2),

0.< Z0Xn Valll* + 5 (0K ¥aly + 17 A 4 675 R0 (07 X Vo™ Vi, 071 X,)
- Zt‘lQ((t_l + ) (X, Yol + t AL — ¢ B, (X, Yol + t AL — £ BR)
1 3 3 _ 3 3
< 1 YallP+ S VIl + 5472 A [* 4+ 5 1, VP + 5 672 A — 0Bl

— 0 ([, Yol P+ 141 + [l 45 - vB3]%)

= (Gt Y Wl (G2t (G2 =) 45— g

As r, — oo we are provided with a contradiction. O

There are some Lemmas to follow which we prove using Cheeger deformations. Before that

we need

Definition 3.5. A path of K-invariant metrics on K/H, given by g(s) = gy(s), 5 € [a, 0] is
called diagonal if a fixed decomposition m = m; @ ... & m, provides a decomposition into

eigenspaces for each gy(s).

Lemma 3.6. Let g1 be a K-invariant metric on K/H with positive curvature and suppose
that a normal homogeneous metric, denoted by gg, s also positively curved. Then there is a
path, g(s), s € [0,1], of positively curved K-invariant metrics in K/H such that g(0) = gg
and g(1) = g1. In particular this path is digonal.

Proof. Let ¢1 : m — m be the self-adjoint, positive definite, Adg-equivariant linear map

which induces the K-invariant metric g1 on K/H. Consider the Cheeger deformation
(K x K/H,t 'gq @ q1) — (K/H,q) .

The metrics g; are K-invariant and therefore induced by some self-adjoint, positive definite,
Adp-equivariant linear map ¢ : m — m. Moreover these metrics are positively curved
since we assume that the normal homogeneous metric is and Riemannian submersions
do not decrease curvature due to O’Neill’s formula. Since ¢, is self-adjoint and positive
definite there exists a QQ-orthonormal basis of m of eigenvectors {e;} with corresponding

positive eigenvalues {\;}. The linear maps ¢; are related to ¢; by

or = p1(Id + tpr) 7!

as can be deduced from (3.1)). Therefore the eigenvectors {e;} also form a Q-orthonormal
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basis for the maps ¢;. Define
g:10,1] — Aut(m)
s ((1—s)Id+ s<p1_1)71

We have ¢g(0) = Id, g(1) = ¢; and ¢ is smooth. Moreover it can be checked that

g(s) = %gpb, so that the curvature of the metric induced by g¢(s) is positive for all

s € [0,1] and ; induces a path as stated in the Lemma. O
For the following statements suppose that a chain
HCcKi CcKyCc---CK,=K
of Lie groups is given. Let Q@ be a Adg-invariant inner product on £ and let
m=mop---Em,,
be the induced Q-orthogonal decomposition such that the Lie algebra &; of K; is given by

t=hdm d---dm; forl<i<r.

Lemma 3.7. Let g, be a homogeneous metric on K/H with parameters (a3, a3, ..., a?)

» Op
and let gz be another homogeneous metric on K/H with parameters (a,a3,,...,a2).

T
Suppose that there exist ti,ta, ..., t, € RZ9 such that
r -1
a; :a§<<2t1>a§+1> L 1<j<r.
I=j
Then we have seCg, > secy,, -

Proof. Consider the following iteration of Cheeger deformations.

Set ¢, := . For 1 <m < r do the Cheeger deformation

(Kr—m-H X K/Ha t;—lm—&—l gQ D g%’r—mﬂ) — (K/Hv g@rfm) )

where we use the constants t1,%,...,t. € RZ? given in the lemma.

Since gy, _,, is constructed by means of a Cheeger deformation from g,,_, ., we obtain
secg,, =~ = secg, . because Cheeger deformations are curvature nondecreasing.

Note that with this iteration we especially get 9 = ¢ from which the statement in the

lemma follows. O
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Corollary 3.8. Let g, be a homogeneous metric on K/H with parameters (a3, a3, ..., a?)
satisfying
af <a< ... <aj

Then secg, > 0.

Proof. The metric aggQ has nonnegative curvature. Due to our assumption there exist
ti,t9,...,t, such that

r —1
a?:a%(<2t1>a3+1> L 1<j<r.

So the homogeneous metric g, can be constructed by an iteration of Cheeger deformations

from the nonnegatively curved metric a%gQ and so has nonnegative curvature by Lemma

O

Remark 3.9. If a biinvariant metric on K/H is positively curved, then a metric as in the

previous lemma is also positively curved.

Corollary 3.10. For every homogeneous metric g, on K/H with parameters (a3, a3, ..., a?)

there exists an iteration of Cheeger deformations such that the resulting metric has non-

negative curvature.
Proof. Choose ti,ta,...,t, € RZY such that
T —1
&? = a§<<2tl>a? + 1)
I=j

satisfy
a2 <a3<...<a’.

Then by Corollary the metric with parameters (a?, a3, ...,a2) has nonnegative curva-

»r

ture. O
Lemma 3.11. Let g, be a homogeneous metric on K/H with parameters (a},a3, ..., a?)
satisfying a2 < a2 < ... < a?. Let ge be another homogeneous metric on K/H with
parameters (a3,a3,...,a2). Suppose that

~2 2 .
aj <aj, forl<j<r



and that

12>a2'7d? for1<i<j<r.

2~
a; —a; > aj

)

Then secg, > secy, .

Proof. With the conditions imposed we can find an iteration of Cheeger deformations as
in the proof of Lemma such that (a2,a3,...,a2) are the parameters of the resulting

metric. Namely we use the constants

2 =9 ~9
a; — a; a a’;
+1 +1
tj = ]2~2]_ J2 ~2] >0 ,1<j<i<m,
45 %5 @t it

for the Cheeger deformations.
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Chapter 4
Homogeneous Sphere Metrics

There are various ways to describe a sphere as a homogeneous manifold. A classification
can be found in [MS]. We give the following complete list of almost effective transitive
actions by connected Lie groups on spheres in which it is also listed how the isotropy

representation decomposes where the notions coincide with that of Section

K H dim(K/H) isotropy representation
1 SO(n+1) SO(n) n m=m; = R"
2 G SU(3) 6 m=m; =C3
3 Spin(7) Go 7 m=m; = Ca
4 SU(n+1) SU(n) 2n+1 m=m;dmy ZRpC"
5 Un+1) U(n) 2n+1 m=mdmy ZRPC"
6 Sp(n+1) Sp(n) dn+3 m=m; dmy = Im(H) & H"
7| Sp(1)-Sp(n+1) | Sp(l)-Sp(n) | 4n+3 m=m; &my = Im(H) & H"
8| U(1)-Sp(n+1) | U)-Sp(n) n+3 m=momOmz3=ROCoH"
9 Spin(9) Spin(7) 15 m=m; dmy > R7 SRS

For the rest of this work we will refer to the enumeration in this table when talking about
transitive action on spheres.

The following table lists the action of Adg on m,
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Ady|m, Adg|m, Adg|m,
1 can
2 can
3 can
4 id can
5 id can
6 id can
Tlvqug ™t | X — AXqg!
8 id v 2ozl | X AvzT!
9 p7 Ag

where in 7 we have v € Im(H),X € H",q € Sp(l) and A € Sp(n). In 8 we have
ve ImH)\{iR}, X € H",z € U(1) and A € Sp(n). Furthermore p7 resp. Ag denote the
standard representations of Spin(7) on R” resp. RS.

Remark 4.1. Except in case 9 the action of Ady on the last summand of the isotropy
decomposition in fact coincides with the actual action of K on the corresponding sphere.
Furthermore we point out that in the cases 7 and 8 the action is not effective. In each case
the determination of the ineffective kernel is immediate which is isomorphic to Zs. For
the matters of clarity we decided to include the discrete ineffective kernel in the exposition

above.

As one sees the isotropy representation on the m;’s is inequivalent in each case.

We want to work with homogeneous sphere metrics described via Adg-equivariant, pos-
itive definite @Q-symmetric maps ¢ : m — m as described in (1.11), where Q is a fixed
Adg-invariant inner product on the Lie algebra ¢ of K. In case 6 however the isotropy
representation acts trivially on my = I'm(H) and so on this 3-dimensional subspace the
metric can depend on six parameters in general. In the other cases all homogeneous metrics
can be decribed via metric inducing maps which are multiples of the identity restricted to

the irreducible summands, i.e.
w‘mi = CL? Id|mi :

In the upcoming we will describe homogeneous metrics on spheres just by giving the
2
:.

of the identity on m;. This clearly just covers a small portion of homogeneous metrics

constants a;. When doing so in case 6 we will assume that the metric is a multiple

on Sp(n + 1)/Sp(n), namely the ones which are even invariant under the bigger group
Sp(1) - Sp(n + 1) but this will be enough for the purpose of this work.
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It follows especially that in the cases 1, 2, 3 any invariant metric on the sphere is homothetic
to the round metric and threrefore has positive curvature. In what follows we will not
mention these cases anymore.

In the other cases except in case 6 we have an underlying chain of Lie groups such that
the isotropy decomposition happens to be exactly the decomposition induced by the chain.

These chains are the content of the following table

H K Ky K
4] sU) S(UM)U(n)) SU(n +1)
5 U(n) U()U(n) Un+1)
7| Sp(1)Sp(n) | Sp(1)Sp(1)Sp(n) Sp(1)Sp(n +1)
8 U(1)Sp(n) | UMUM)Sp(n) | U1)Sp(1)Sp(n) | U(1)Sp(n + 1)
9| Spin(7) Spin(8) Spin(9)

These chains enable us to apply the results of Chapter 3| where an underlying chain of Lie

groups is supposed to exist to homogeneous sphere metrics.

Furthermore these chains give rise to a geometric description of homogeneous sphere met-
rics.
In the cases 4 and 5 we can associate to K1/H — K/H — K /K, the Hopf fibration

Sty g2t cpr. (4.1)
In case 7 we can associate to Ky1/H < K/H — K/K; the Hopf fibration
§3 <y §AnT3 5 HIP™ . (4.2)
In case 9 we can associate to Ky/H — K/H — K/K; the Hopf fibration
STy 81— 88,

In case 8 we can associate to Ko/H — K/H — K/Ky the Hopf fibration (4.2) and to
K,/H < K/H — K/K; the Hopf fibration (4.1)) for n = 2m + 1.
The fibers of the Hopf fibrations are in fact totally geodesic which follows from Remark

For the homogeneous metrics on the spheres 5,6,7,9 we can interpret a shrinking resp.
enlarging of a? with shrinking resp. enlarging the fibers of the corresponding Hopf fibration.
For the homogeneous metric on sphere number 8 with 3 irreducible summands a shrinking

resp. enlarging of a? can be identified with shrinking resp. enlarging the fibers of the Hopf
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fibration (£.1)) and a simultaneous shrinking resp. enlarging of a? and a3 can be identified
with shrinking resp. enlarging the fibers of the Hopf fibration (4.2)).

It is likely to take a Adg-invariant inner product on € as a basis for investigating invariant
metrics on homogeneous spaces. But this point of view comes with the disadvantage that
K can support more than one biinvariant metric. When dealing with spheres we have a
distinguished metric in the round metric so it is of natural interest what parameters we

have to take to obtain the round metric. The following proposition deals with that issue.

Proposition 4.2 (cf.[GZ2], Lemma 2.4). In the table the parameters for obtaining the
round metric on the sphere of radius 1 are listed, where in the first column we give the only

Adg-invariant inner product on € in each case up to scaling with a positive constant.

Adg-invariant inner product on € round metric

4 Q(A, B) = —3 Re (tr(AB)) (a3,a3) = (n%’ 1)
5| Q(A1+ A, By + By) = = Re (tr(2A41B1 + Ay By)) | (af,a3) = (34224, 1)

6 —1 Re (tr(AB)) (a?,a3) = (2,1)

7| Q((v,A),(w,B)) = —%(ARe (vw) + Re (tr(AB))) | (a},d3) = (2231,1)

8 Q((iz, A), (iy, B)) = £ (Azy — Re (tr(AB))) (a2,a3,a3) = (2 %1,2, 1)
9 Q(A, B) = —; Re (tr(AB)) (a3.a3) = (4,1)

where in case 5 the metric is defined according to the decomposition u(n+1) = span{iId}®
su(n + 1), where A1, By € span{ild} and As, By € su(n+ 1).

The computation of the parameters can be found in the appendix.

Remark 4.3. The sequence of parameters for obtaining the round metric is decreasing in
each case. In the cases 4, 5, 6, 7, 9 there exists a ¢t € R>Y such that

a(ta}+1)"" =1.

In case 8 there exist t1,ts € R>? such that

a%((tl—i—tg)a%—&—l)*l:l a%(tga%—i—l)*l:l.

That is in each case we obtain the parameters for the normal homogeneous metric induced

by the given biinvariant metric.
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From Lemmait follows that secy, > secy,,, > 0, i.e. a normal homogeneous metric on
the sphere has positive curvature. In particular we use the chain Sp(n) C Sp(1)Sp(n) C
Sp(n 4+ 1) in case 6 for being able to apply Lemma in this case.

This is a result first obtained by Berger in [B].

In [VZ] homogeneous sphere metrics with positive curvature have been analyzed. The
authors showed for the cases 4,5,7 that when taking the round metric on the total space
of the corresponding Hopf fibration the metric stays positively curved if and only if the
fibers are scaled with a positive factor less than 4/3.

Invariant metrics on sphere 6 have also been analyzed. We are not going to deal with this
case but as a special case we get the situation on sphere 8§ which is the content of the

following
Proposition 4.4. Let the parameters for a homogeneous metric on sphere 8 be given as

A+1
CL% :2M1 T? a% :2:u27 a% = U3

and let

1 1 H2
qi2 = —, q13=—, {23= —.
M2 K3 K3
Then the metric has positive curvature if and only if

4

1. q12, q13, @23 < 3

2. 3|q35 — 2q03 + 3] < ¢33 + +/(4g23 — 3q13) (4 — 3q13)

The next Proposition generalizes Proposition 3.3 in [STul

Proposition 4.5. Let K C O(n + 1) be a Lie subgroup acting transitively on S™ C R"T!
and let H C K be the isotropy group at some point. Let g1 be a K-invariant metric on
K/H = 8™ with positive curvature. Then there is a diagonal path, g(t), t € [0, 1], through
positively curved homogeneous metrics on K/H such that g(0) = go and g(1) = g1, where

go denotes the round metric.

Proof. Let gg denote a normal homogeneous metric on the sphere which has positive
curvature as stated in Remark The round metric on the sphere has also positive
curvature. Thus by Lemma [3.6] we can find a path of positively curved metrics between
go and gg and between gg and g;. Concatenating these paths gives a path of positively

curved metrics between go and g; as stated in the Proposition. We obtain a diagonal path
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if we can choose the same orthonormal basis in m of eigenvectors for the inducing linear
maps appearing in the proof of Lemma for go and g;.

Except for case 6 the isotropy representations decompose irreducibly so the m} s in the list
above have to be eigenspaces for the inducing linear maps by Schur’s Lemma so we can
choose the same basis of eigenvectors in these cases.

In case 6, note that for go, the normalizer Normon44yH = Sp(1) - Sp(n) operates by
isometries on the tangent space at [eH|, whence the inducing linear map ¢; must be a
multiple of the identity on my and therefore my is an eigenspace for 1. So we can choose
the same eigenvectors which diagonalize the inducing map of g; as an orthonormal basis

of eigenvectors in my for ¢ and concatenate these paths to yield a diagonal path. O
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Chapter 5

Curvature of Generalized Warped
Product Metrics

On I x K/H consider the metric g := dt? + Jo(t), where I C R is an interval and g ) is a
K-invariant metric on K/H which is constructed by propagating the inner product

Qap(t) (X7 Y) = Q(@(t)X7Y) for X,Y €m,

where ¢(t) : m — m is a self-adjoint, positive definite, Adg-equivariant map. We call such
a metric a generalized warped product metric. The parameter ¢ is omitted from now on
for the matters of clarity.

For analyzing the curvature of g = dt? + g(+) We use a formula developed in [STu| which

is the content of the next

Proposition 5.1. Let g = dt? + 9o be a K-invariant metric on I x K/H as above and
letueR, X,Y € Tiey)K/H = m. Then

RI(udy + X,Y; Y, ud; + X)
=RI(X,Y;Y,X) +2uR9 (0, Y;Y, X) + u’R9(8,,Y;Y,8;)

— R% (X,Y;Y,X) + % (Q(¢>X, Y)? - Q(¢X, X)Q(¢Y, Y))
+ 5 u(3QUAIX YY) + Qe 01X, 0¥] + [V X)) —2Q(p X, 41V, 1)
— 125 - g B)YY).

where RY denotes the curvature tensor of g and R% denotes the curvalure tensor of gy (-
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Remark 5.2. Note that it is necessary that ¢ is bounded in order to get a nonnegatively
curved metric. We will assume this from now on. Furthermore we will assume that ¢ is

positive semidefinite.
The curvature formula for a more special metric is stated in the next

Corollary 5.3. Let § = dt> + f(t)?g be a K-invariant metric on I x K/H and let u € R,
X,Y € Tjeg)K/H = m. Then

R(udy+ X, Y3 Y,ud; + X) = = fF V]2 + £2 (ROGY3Y, X) = (F2IX AYIE) |

where R denotes the curvature tensor of § and R denotes the curvature tensor of g.
It follows that the curvature of (I x K/H,§) is positive (nonnegative) iff f < 0 and
(f)? < inf(sec(K/H,g)), (f <0 and (f)? < inf(sec(K/H, g))).

Some of the following results will deal with metrics if we have an underlying chain of Lie

groups and which are diagonal, i.e. we assume ¢(t) is determined by
P(t)lm;, = fE (1) 1|, 1<i<r, (5.1)

for some fixed Adg-invariant Q-orthogonal decomposition m = m; @ --- & m,. and where
the f;’s are smooth functions on I. For the first and second derivative of ¢ as in (5.1) we

have
Ol = 2fi fi1d|m, and  @lwm, = 2((fi)* + fifi) ldfm, 1<i<r.

Note that by Remark the f;’s have to be bounded.
We write X and Y in terms of an orthonormal basis {E1,...,E,} as X = > X, and
Y =Y, where X; = a;F; and Y; = b;F;. We have

Proposition 5.4 (cf. [STu|, page 11 Prop 4.3). Let the situation be as above. Then

Rg(uat + XYY, ud; + X)
R (XYY, X) = S0 U IX A YR = ST A fid 1 A Y + X A YR

i<j

+3u Y f;?(f’“ — ﬁ)Q(B,i?Yk) —u2Zfif% Q(Y:,Y;).

1<k<i<r fe fi

Our main goal in the upcoming is to develop conditions under which there exists a
reparametrization o(s) := ¢(t(s)) such that we obtain nonnegative or rather positive cur-

vature for a generalized warped product metric. Let R9 denote the curvature tensor of the
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metric § := ds® + 9o(s). Denoting differentiation w.r.t. ¢ with * and w.r.t. s with ' we

get by calculation
RI(uds + X,Y; Y, uds + X)
= R%(X,Y;Y,X) — % P IX AY, +2ut' RI(D,,Y;Y, X) (5.2)
+ (2R (01, Y3 Y, 0)) - %t”Q(ng, v)).
Given an underlying chain of Lie groups and a diagonal metric this reads
RI(uds + X,Y; Y, uds + X)

R (VY X) - O SRR XAV + X Rfd XA+ X YR

1<j

ol (- B)ain) - (AR R)emT) )

1<k<i<r

Proposition 5.5. Suppose that there are constants C1,Co, C3 > 0 such that

RI > Oy (IIX AY 2, + (H(X.Y))?) (5.3)
|RY (0, Y3V, X)| < Co ||V |lg, - (IX AYlg, + H(X,Y)) (5.4)
RI(0,Y;Y,0,) > = C3||Y][;, (5.5)

where H : mxm — R>q is some function. Then there is a reparametrization o(s) =

©(t(s)) such that ds® + 9o(s) has nonnegative curvature.

Proof. Choosing a reparametrization where |¢'| is sufficiently small we can surely guarantee
C1 — 1 (t')? > & > 0 for some ¢ > 0. Therefore by using (5.3) we can estimate

1
R%(X,Y;Y,X) — 1 I IXAYS, > el X AY|Z, +C (H(X,Y))?

> C( IX AYIlZ, + (H(X’Y))2> ’

where C' := min{e, C1}. Furthermore with condition (5.5) we have

1 1
(7R (0. v:7.0) = 51'Q(eY.Y) ) = (= ()T = 31" IV,
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Thus the coefficient of u? is nonnegative when choosing a reparametrization satisfying

_an

1 1\’
- ({)C—zt">0 —= —5>205 << (5] >2C;s. 5.6
(t)°Cs = )2 3 v 3 (5.6)
Moreover by this demand the coefficient of u? is zero if and only if |[|Y|y, = 0 but then
the coefficient of u is zero as well because of condition (5.4). For the time being consider
that (5.6)) is given. Using the observations above and condition (5.4)) we can state that the
discriminant of (5.2) is greater or equal to

(- @res—ge)o—@re) (1X VI, + (HEY))IVE,

where C satisfies Cy ||Y|g, - (| X AY g, + H(X,Y)) < C Y3, (IXAY 5, + (H(X,Y))?).
By performing similar manipulations to that in (5.6) we can state that this expression is

nonnegative if we demand for the reparametrization to satisfy
1\ 2(C5C +C?
1), 20+ ). (5.7
t/ C

Note that (5.6) is satisfied if (5.7) is. Thus demanding for the reparametrization to have
a sufficiently small first derivative and to satisfy (5.7)) gives the desired result. O

Corollary 5.6. Let a chain of Lie groups be given and let ¢ induce a diagonal metric.
Moreover let p € {1,...,r}. Then there is a reparametrization o(s) = p(t(s)) such that

ds® + 9o(s) has nonnegative curvature if the following conditions are satisfied

B9 (X,Y3Y, X) 2 C (|| Xeynm A Yo, am||* + X, YTgy ml|*)  Jor some € >0 (5.8)
fe>€& for 1<k<p forsome&>0 (5.9)
fo=0 for p+1<k<r (5.10)
fi <6&f; for some § >0 (5.11)

Proof. We have to show that the conditions of Proposition are satisfied. Note that by
(5.9), ¢ induces a metric on K, . Therefore there are constants c¢1,c2 € R} such that

il Zllgy < 12llg, < c2llZllg, VZ €. (5.12)
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Thus by and we have
B9 (X,Y3Y, X) 2 O ([|X AY ]2, +[|X, Y]gnml)

for some constant C; > 0.

Since we have an underlying chain of Lie groups the coefficient of w is given as in Proposition

and we obtain by using
3 Z fi <fk ?)Q(Blmyk)

1<k<i<r

s > (- Besn X > (k- e

1<k<p k<i<lr p<k<rk<i<r

( >R < - ;) (B Vi) + > fufe Y. (B,i,}@)) . (5.13)

1<k<i<p ¢ 1<k<p p<i<r

We set Dine :=inf{f; |1 <14 < p} and Dgyp :=sup{fi|1 <i < p}.

Because of (5.9) and the general assumption that the fi’s are bounded we can define

C :=sup {%
k

|-t sfkfk(u Jilld )<fkfk(1+c S”p> <€ fork<i<p, (514)
e fi fell fi Ding
where we have set C' := 1+ C Dewp
Moreover observe that we have HB H HBin < )‘HXi A YiHW < )\HX A Yng, where
A is the norm of the linear map [,] : A2m — ¢ arising from the universal property of
tensors. And since there is a constant ¢; > 0 such that HB H < ClHB H we have

especially HB}cHg‘ < )\1HX A YHQW for some Ay > 0. So by usmg -, and the
%)

Cauchy-Schwarz inequality we can surely estimate

> fk@—i)Q(Bk,Yk > fefxClQ(BIL Y|

1<k<i<r 1<k<i<p
c . C . _
=5 2 lQuBLYl=5 > B, I, = ClxAv], Y,
1<k<i<p 1<k<i<p

where the constant C fulfilling the last estimate exists because of (5.12)).
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The second sum in (5.13)) can be estimated as

T ofefe Y QBLYR| =1 D filr D Q(BLY)

1<k<p p<i<r 1<k<p p<i<r

= ‘Q< Z B, Z fkfk:Yk> Q([Xeé-mmayve;-mm]gpmma Z fk:fkyk>‘

p<i<r  1<k<p 1<k<p

1

= 5 ‘Qgcb([XB; ﬂm7YEé ﬂm]Epmm’Y)‘ P ”YHQw H [Xflf ﬂm’YE; ﬂm]fpﬂmHg¢
1

= 5 HY”Q«/} ’ H [X’ Y]Epﬁm - [X?pﬁmyfpﬁm]epmmu

Ca 1Y llgy - (N[X, Y]e, amll + X AYlg,)

[N

9o

IN

where we used the triangle inequality and the above mentioned identities in the last esti-
mate and C is an apprpriate constant fulfilling the last estimate.
So taking Cy := max{ég, (s} and

H(X,Y) = ||[X,Y]e, Am||

we see that conditions (5.3)) and (5.4) of Proposition [5.5| are satisfied. The validity of (5.5)
is guaranteed by (5.11)). O

Remark 5.7. If we make the above considerations modulo Cheeger deformations we can
replace condition (5.8) in Corollary by the weaker condition

R?(X,Y;Y,X) > C || Xe,nm A Yo, 0w (5.15)
For this consider the Cheeger deformation

(K x K/H X0 ® g,) — (K/H,g5) .
In Chapter 3| we have already computed the curvature of the metric g4 to be

R%(¢7'X,¢7'Y;67'Y, ¢ X)
_ % M(X, Y2 + R (47 X, Y3071, 0 X)
+ % A2 QA+ ) T (IX, Y+ A A = ATWBR), [X, V] + A A — A By)

+ 2 N[, Y]y + A A ||

For the argumentation here the detailed expansion of the O’Neill term, i.e. the last two
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lines in the above formula, is not important, just that the O’Neill term is of course non-
negative. The claim follows when choosing A approriate since the the missing term in
is contributed by the Cheeger deformation.

Furthermore when condition is replaced by the conditions in Corollary are
equivalent for nonnegative curvature since if is not satisfied we can not even have

nonnegative curvature for planes tangential to the orbits (the case when u = 0).

If we are seeking for positive rather than nonnegative curvature, condition (/5.3)) of Propo-
sition is not sufficient because if the right hand side of (5.3)) vanishes we can not even
guarantee positive curvature for planes tangential to the orbits.

Instead we have

Proposition 5.8. Suppose that there are constants C1,Csy, C3 > 0 such that

R9 > C1|X AY|;, (5.16)
|RI(0:,Y;Y, X)| < Co | X AY g, [IY llg,s (5.17)
RI(0:,Y;Y,0;) > —C; HY||_¢2]¢. (5.18)

Then there is a reparametrization o(s) = @(t(s)) such that ds®+gy(s) has positive curvature.

Proof. As in the proof of Proposition we have show that there is a reparametrization
such that the discriminant of (5.2)) is positive. Using the conditions in the proposition
we can make analogeous estimates as in the proof of Proposition to get the desired
result. O

Corollary 5.9. Let I be compact. Suppose that © induces a metric and that
R?(X,Y;Y,X) > C1| X AY]7, (5.19)

for some constant Cy. Then there is a reparametrization o(s) = p(t(s)) such that ds*+g, s

has positive curvature.

Proof. We have to show that the conditions of Proposition are satisfied. Since we
assume that [ is compact and ¢ induces a metric there are constants ¢, co € R such that
forallt el

cllZllg, <l1Zllgy < c2llZllg, VZ cE.

So the validity of condition (5.16|) follows from (5.19). Moreover (5.17)) follows once we
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observe that we have
2 ‘Rg(ﬁt,Y;Y,X)‘ < Co|| X A Y||gWHY||g¢ ,

where Cs is the norm of the linear map

A’mom—oR
(XAY)®Z s RI(3,,Y:Y, X),

arising from the universal property of tensors. Besides condition ([5.18) follows from the

assumption that I is compact. O

Corollary 5.10. Let a chain of Lie groups be given and let ¢ induce a diagonal metric.
Then there is a reparametrization o (s) = @(t(s)) such that ds®+ gy has positive curvature
if the following conditions hold

secg, > ¢ >0 (5.20)

fi <&fi for some § >0 (5.21)

]]:i > ciy;  for i < j and some constants c;; > 0 (5.22)
J

Proof. The statement in the corollary is proven if we can show that with the properties
demanded for the f;’s the conditions of Proposition are satisfied. (5.20) is equivalent
to (5.16)). To show that (5.17) is satisfied we have to show that there is a constant Cy > 0
such that

3 .
35 (- Bamin)| < calx avlvis,.

1<k<i<r

This is done analogeously to the estimate of the first sum in (5.13)) in the proof of Corollary
.6l once we observe that an analogue to the constant C' there can also be defined here due

to assumption ((5.22]).

The validity of (5.18) is guaranteed by (5.21])). O

Proposition 5.11. Suppose that g has nonnegative curvature. Then g remains nonnega-

tively curved if we reparametrize g with a function satisfying |t'(s)] <1 and t"(s) < 0.

Proof. With the conditions imposed on the reparametrization it is easy to see that the dis-
criminant of (5.2)) gets greater than if ¢(s) = s in which case the discriminant is nonnegative

because of our assumption. O
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Remark 5.12. If ¢ has nonnegative curvature then there is a reparametrization such
that the reparametrized metric is nonnegatively curved and the principal orbit on the
boundary is totally geodesic. For this we just have to choose a reparametrization fulfilling
the conditions of Proposition with the additional property lim,_,; t(k)(s) =0, keN.

The following theorem generalizes Theorem 5.1 in [STu|, where it was shown that there is
an extension of a normal homogeneous metric on the sphere to its interior, i.e. to the ball
with boundary the sphere in such a way that the metric is a warped product metric near
the boundary. Here a normal homogeneous metric is replaced by an arbitrary positively

curved metric on the sphere.

Theorem 5.13. Let K C O(n+1) be a Lie subgroup which acts transitively on S™ C R*T!
and let H C K be the isotropy group at some point. Let g1 be a K-invariant metric on
K/H with positive curvature and let v(x) := ||| be the radius function on R™"+1.

Then there exists a K-invariant metric g on the unit ball B1(0) C R™™! with positive
curvature and an € > 0 such that on r=1((1 — ¢,1)) we have g = dr® + n(r)% g1 where
n:(1—e,1) — R satisfies n,n’ > 0.

Proof. Let [a,b] C R and consider a diagonal path ¢(t) = diag {f?(¢)} through positively
curved metrics with g, ) = go and g,y = g1 which exists by Proposition . Impose the

additional condition

fi(t)|[a,a+e) = const, fi(t)|(p—e,p) = const,

for some 0 < e < ‘ZTH’. This additional condition does not change the fact that we have a

diagonal path through positively curved metrics. We consider the metric g = dt? + 9o(t)
which on [a,a+¢) x K/H takes the form dt?+ gy and on (b—e,b] x K/H it takes the form
dt?+g1. For some ¢ > 0 define 3(t) := diag{exp(2h(t))f2(t)} with a function h : [a,b] — R
satisfying

: fi(@®)

rt) 2 0= fit)

Then f;(t) := exp(h(t))fi(t) satisfy f/(t) > 6f;(t) and the condition of Corollary is
satisfied by the metric § := dt®> + 9a(1)- Especially the metric g is of the form dt® +
exp (2h(t))go on [a,a +¢) x K/H and on (b —¢,b] x K/H we have dt*> + exp (2h(t))g:.
Now an application of Corollary yields a metric ds? + Jo(s) ON [d,l;] x K/H where
[@,b] is in accordance with the reparametrization o(s) = @(¢(s)) which has the form ds® +
exp (2h(t(s)))go on [@,a+&) x K/H and the form ds?+exp (2h(t(s)))g1 on (b—&,b]x K/H,
where € > 0. By virtue of Corollary this metric has positive curvature. Therefore we
must have by Corollary that j—; exp (h(t(s))) < 0 on the interval [a,a + &). Moreover

forall 1 <i<r. (5.23)
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we can choose h such that £ exp (h(t(s))) > 0 because the obstruction (5.23) does not
conflict this.
Let sop € [a,a + ). For an appropriate choice of a the existence of a smooth function

¢ :(0,a+ &) — R with the following properties

Clioy =sin(s),  Cl(seare) = exp (h(t(s))),  ¢" <0,

where p > 0 is sufficiently small, is guaranteed. Now define the O(n 4 1)-invariant metric
g = ds® + ((s)?go on the Ball B;;z(0) C R*"!. The standard metric on S"*! with
respect to the normal coordinate chart is given by ds® + sin?(s)gg. Therefore the germ
of g at s = 0 is a smooth metric of constant curvature 1. Moreover since ¢ < 0 and
¢'(s) < ¢’(0) = 1 = min(sec(S™, gg)) for all s > 0 we have by Corollary that g
has positive curvature. Furthermore the germ of g coincides with the germ of the metric
dsz—l—ga(s) at s = a+¢ by construction. So we can glue these metrics to obtain a metric with
positive curvature on B;(0) which on (b—2,b] x K/H has the form ds? +exp (2h(t(s)))g1.

Finally a scaling process gives the statement in the theorem. O

Remark 5.14. Observe that in the construction of the function n in the proof of Theorem
we are free to prescribe its derivative by changing the auxiliary function h or the
reparametrization .

Therefore given a positively curved metric g = dr? + n(r)2g; on r~1((1 — ¢,1)) where
n: (1 —e¢1) — R satisfies n,n" > 0 for some ¢ > 0, we can extend this metric to a

positively curved metric on B;(0) C R**!

Remark 5.15. We can extend the resulting metric of Theorem to a nonnegatively
curved metric on R"*! which outside a compact set Br(0) € R*™!, R > 1, is of the form
dt? + 0(2) g1 for some arbitrary large constant 0(2). For this observe that when extending 7 to
the interval (1 — e, 00) by demanding 1 to be concave, the metric will stay nonnegatively
curved by Corollary So given a constant ¢3 > 1 we obtain the statement claimed above

when we demand in addition for n to satisfy lim,_, g, 7(r) = c3 for some 1 < Ry < R.
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Chapter 6

Nonnegatively Curved Invariant

Metrics on Homogeneous Disc
Bundles

Next we are going to deal with nonnegatively curved invariant metrics on homogeneous
disc bundles G x i m with a totally geodesic principal orbit on the boundary. We will
work with the notions of Chapter [

Once we have constructed a nonnegatively curved invariant metric on G X g Br(0) we can

make the principal orbit on the boundary totally geodesic by Remark

In [STa2| the authors considered nonnegatively curved invariant metrics on homogeneous
disc bundles with normal homogeneous collars. These are metrics that are G-equivariantly
isometric to ((R— ¢, R] x G/H,dt* + gg) near the boundary for some € > 0. They proved

the following result

Theorem 6.1 (cf. [STa2|, p.5, Thm. 2.1). If there exists a C > 0 such that for all
X=Xn+X:, Y =Yn+Ys; €p we have the inequality

1 A Yol | < €| [, Y]]

, (6.1)

then G X Br(0) admits a nonnegatively curved G-invariant metric with normal homoge-

neous collar.

Proof. The metric in question is constructed via Cheeger’s method as a submersion metric.

Let g, be the Adg-invariant metric on G which is induced by the inner product

Qo = (1+a) Qle + Qs
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where a¢ > 0. By Theorem Ja has nonnegative curvature for all planes contained in p
for sufficiently small a

Consider (G x R™ gq + g), where ¢ is the metric of Remark with g1 replaced by
the biinvariant metric gg. Denote by g the metric on G x g R™ arising from Cheeger’s
construction. Then ¢ has nonnegative curvature since the horizontal lifts of all planes
in the base have nonnegative curvature so the planes in the base also have nonnegative
curvature due to O’Neill’s formula.

Moreover we choose ¢ = 2L 5o that (a=! +c5 )™t = 1. Thus from Lemma [2.3|it follows
that outside a compact set § has the form dt? + gg and the statement follows. O

In fact in the same paper the authors show that (6.1) is almost necessary. Namely we have

Theorem 6.2 (cf. [STa2|, p.7, Thm. 3.1). Let my C m be a non-trivial Adg-irreducible
subspace such that m contains no irreducible summand equivalent to my and let dt? + 9e(t)
be an invariant metric on (0, R] x G/H with nonnegative curvature and ¢(R)|m, ¢ = Id.
Then there exists a C' > 0 such that for all X = X, + X6, Y =Yy, +Ys € m; s we have:

| Xy A Yoy || < C - [X, Y]] (6.2)

As a consequence we obtain

Corollary 6.3. Suppose that m decomposes irreducibly and that we have an underlying
chain of Lie groups. Furthermore suppose that the metric dt* + 9o(t) ON (0,R] x G/H has
nonnegative curvature. If ¢(R)|m, = a-1d, a > 1, for an irreducible summand m; and
O(R)|s = Id then for all X = Xy, + Xo,Y = Yy, + Y € m; @5 we have (6.2).

Proof. Let dt>+ 9g(t) be the metric with the properties considered in the corollary. Consider

the Cheeger deformation

(Ki x G/H, X "9k, @ 9or)) = (G/H,g))

where K is the Lie group such that its Lie algebra &; contains m;. Then g, is induced by
a linear map which on m; is given by a(Aa + 1)~!Id. Thus choosing \ = a%l > 0 yields a
metric on G/H which is given as in Theorem [6.2| and therefore we get (6.2). O

The triples of Lie groups satisfying (6.2]) have been (partially) classified in [STa2].
We are going to deal with diagonal metrics dt? + 9oty on (0, R] x G/H with ¢|s = Id where
neither the situation of Theorem [6.2] nor the situation of Corollary [6.3]is given.

Furthermore we assume that the metrics can be realized as submersion metrics as follows.
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On G we take a biinvariant metric and on (0, R] x K/H we take a metric dt? + g, where

(t) is as in ((1.16)). By Lemma [2.3| we have

_ () : _
O(t)|m, = T+ a2 Id|m, for1<i<r, o(t)]s :=1d.
So for given ¢(t) : p — p with
O)|m, == fE(t) Id|wm,, fF)<1 forl<i<r, o(t)]s == 1d (6.3)

we can always find functions aiz(t), 1 <4 < r such that

20 _ a?(t) ;
f; (t>_Ta?(t) for1<i<r. (6.4)

For technical reasons we set

fg—‘,-l(t) = 17
therewith ¢(t)]s = f2,(¢) Id.

Remark 6.4. Note that by the relation (6.4)) the functions f; are monotoneous increasing
resp. decreasing if the functions a; are monotoneous increasing resp. decreasing and we

have

a2 (t) . fz2(t)

The results of Chapter |5|can be applied to the metric dt? + gy () on I x K/H with functions
a?(t), 1 < i < r, as well as to the metric dt? + gsry on I x G/H with functions f2(t),
1<i<r+1.

We have

Theorem 6.5. Suppose that m decomposes irreducibly as m =my H ... B m, and that we
have an underlying chain of Lie groups. Let ¢ be as in (6.3). Furthermore suppose that

there exists a constant C > 0 such that

RI#R) (Xa Y; va X) > C(|’Xm1®...€am7»f1 N le@nﬂBm'r—l ||2 + H[Xa Y]m1@-..@mr71 ||2) . (65)

Then there exists a metric on G X x Bg(0) with nonnegative curvature and a totally geodesic

principal orbit on the boundary.
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Proof. We have to prove the theorem in the cases r = 2 and r = 3, since the case r = 1 is
clear.

By abuse of notation we will not change the parameter or the interval from where a
parameter is when we reparametrize a metric.

We begin with the case r = 3.

For Ry < R define auxiliary smooth functions Ay, Ay with the following properties

For j € {1,2} let \; : [Ro, R] — R=? be with
(a) Aj(R) =0
(b) N;<n<0

, o3 a(R)(X)?
€ X = T ma )

+ 6)\;» for some 6 > 0

We are going to construct the functions as in (6.4)) defining the desired metric in two steps.

Step 1. Extend on [Rg, R] according to

ai(t) = %(R)(()\l( )+)\2( B)af(R) +1)""
a3(t) = a3(R) (Ao(t) a3(R) +1)
a3(t) = const,

such that
(i) ai(Re) < a3(Re) < a3(Ro)
(i1) ai(R2) = a3(Re)

Note that by Corollary and Remark we have secg, . > 0 and assuming (i) is
legitimated by Corollary Condition (ii) is equivalent to

X5 (R2) a1 (Rg)\?
N (Ba) + M) = <az<R2>)

and the functions A1 and Ao can surely be chosen such that this is valid.

With this extension condition is valid for all ¢ € [Rg, R]. This follows by construction
because by Lemma we obtain S€Cq,y ) > S€Cqy ) and therefore S€Cq, 1) > S€Cqy p) for all
t € [Ra, R].

Moreover since the functions A, A2 are demanded to satisfy A}, \;, < n < 0 we get a}, ay, >
0 > 0 and with it f], f; > £ > 0. Furthermore the condition A7 > 5 % + 0N, for
some 0 > 0 yields f}' < df] for j € {1,2}.
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So the conditions of Corollary are satisfied and there is a reparametrization such that

the reparametrized metric has nonnegative curvature.

Step 2. Extend smoothly on [Ry, R] such that
(i) aslr,,ry) >0
(#) ail{R,,re) < 0G;|[R,,Ry) for 1 <i <3 and some d >0
(i13) a) > afy > af
(i) a1l{Ry,Ri+n) = @l(Ry,Ry+n) = 3[Ry ,Ry4n) fOT SOmE 77 >0

By construction, it follows from Lemma that secg,,, > 0 on [Ry, Ry] since we have
a3(Ry) < a3(R2) < a3(Rz) and the third condition implies pointwise the conditions of
Lemma [B.171

Moreover the conditions are made up to satisfy the conditions of Corollary Hence
there is a reparametrization such that the metric dt®> + 9y(r) has positive curvature on
[R1, Ro] x K/H and therefore the metric di* 4 g,(;) has nonnegative curvature on [Ry, Ry] X
G/H. Moreover when applying this reparametrization on the whole interval [R;, R] observe
that by the properties of the reparametrization, i.e. |[t/| <1 and ¢ < 0, we do not lose the
nonnegativity of the curvature on [Ra, R] by Proposition Furthermore by the demand
that ail(r, ,ri+n) = @3l[Ry,R14n) = 93][R),R1+n) the metric has the form dt? + fQ(t)g¢(Rl+n)
on [Ry, Ry +n] x K/H for some smooth function f : (Ry, Ry +7n) — R with f, f/ > 0 and
can therefore be extended smoothly to a positively curved metric on Bg,4,(0) by virtue
of Theorem taking Remark into account.

Finally an application of Remark yields the statement in the theorem.

Note that in the case r = 2, is exactly condition of Proposition fort =10
and p = 1.

The proof is analogeous to the proof in the case r = 3 when letting fo take the part of f3
and f; that of fo. O

Next we are going to analyze to what extent a metric on the boundary of Br(0) can even

have negative curvature such that condition (6.5)) is satisfied in special cases.
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If ¢ = id in Lemma [.3] then becomes
R9(¢7'X, 07 Y;67'Y, 671 X)
- % 11X, Y12 + R (¢ Xny 0 Yany 0 Yoy 0 X
£ 3Q(0+9)7 (I, Vin -+ A — $BY), [X, VIn + A%~ BY)

3
+5 11X, Y]y + AY||.

Let r = 2. The second line of the right hand side of can be computed to be

3 1 ) .
41+a? [(1+a7?)Bi + (1 +a3*(2 — afay ) BY + Bj H

1
3

i |0+ (B +BY) + B,

and for the third line of the right hand side of we have
3 p 2 _ 31 2 2 -2
TIX Yy A7 P =SB+ BE + BS + 24, B + 205" B3 |

Summarizing we obtain using (1.17)

R9(¢71X, 7Y 97 Y, 071 X)

1 _ 1 _
= IR+ B + g BRI+ g ar® B+ e |13 + B

+ 1(11_2(12_4 (3-— Qa%aQ_Q)Q(Bl,B2) +ay (1 — Zal% )HBO —|—B%H

2
3 1 _ _ _

+ 1 1+ a2 H(l 12)3% + (14‘@22(2_“%@22))3% +BTH
3 _ 2

TiTra |(1+a3?)(B5 + B') + B

+zHBé+B§+B +2a7%B} + 2052 B3|*.

92
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Proposition 6.6. Consider a homogeneous metric g on K/H = SU(n 4+ 1)/SU(n) for
n > 2.
Then R99 (¢_1X, Y 07y, gb_lX) is nonnegative for

a3 2n(4 + 3a3) , 5  —(n—3)++10n2 —6n
-5 S 1 3 Zf 0< 5 <
a5 ~ 3(1 —n)as+2(3—n)as+3(n+1) 3(n—1)
—(n — /10n2 —
a3 arbitrary if ay > (n 3; (+ 1())n on .
n—

Proof. Since m; is abelian in the considered case, we obtain for (6.7)

RO(p7'X,07 Y071V, 071 X)
- f||Bo+Bﬁu + g 18E B+ 06 Yo+ G 16 V1P
3
+ a3 B3|” + 2|85+ BY|[* +a (1—1% ay )HBlH

2
Zl—i—a%

3 - 2
+1Ta§H(1+a22)(33+3m)+B§H

+ay2(2 - a}ay?)) B} + B ||’

+ z 1(1+2a;%)B2 + B3 ||*.

This is nonnegative if

L B 2+ L2 B P ag® BRI+ a® (1 - Sata?) B2
3 _ _ 3 _
it 10+ e (2-de?) Bl + B I+ 7111 +205%) B3 + B3 ||* > 0.

Decompose By, = ,uB{?l + Z, where Z € (Bgl)J- Ne.

So is valid if

3
(1) |1 B3 + A+ 2| B ) + x| B + az® (1 - Satay?) | B

+
| QO | =

Il
/\/;\)h
N
+

3 _
(a7 ke + 30 2057 1 )23

142052+ )2 || B3

= =~

3 1 _ _
(1+M)2+171+a2 (1—|—a22(2—a%a22) —{—,u)Q)HBfHQ >0.
1
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Let

0 =z 0 w
X = Y = .
2 (—z* O) 2 (—w* 0)

For sphere number 4 with the metric induced by the inner product Q(X,Y) = —1 Re(tr(XY))
it can be computed that

HBO H |2|?|w|? — Re(zw*)? + Im(zw*)? — %Im(zw*)2

Im(zw*)?.

+1
52 = 2

So for a > 0 and b € R we have

n n

a|| B2+ B2 = a<|z|2\w12 _ Re(zuw™)? + <1 S2,0 2(”“)) Im(zw*)2> |

This is surely nonnegative if we can guarantee

2 b2 1
n a n

1—n
1+n’

ISERS
v

It follows that is valid if

B R 1 3 1
6(1—Za%a22>+1(1+u) +ZT(1+Q2 (2~ afa;®) +p)°

1—n
T 1+n

3142052 4 p) )

1
(026+1(1+H)Q+4

After some elementary modifications this is seen to be equivalent to

af _ 4 2 a3 paz(az(p+1) +1)
1+a? ~ 314n1+d3 (1 + a3)? + paj)?

Now the function f, : R\{—(1+ a?)?/a*} defined by

pajz(aj(p+1) + 1)

Ja(p) =1+
’ (1 +a3)? + pa3)”
ttains its minimum for p = — &% with f(— E ) =1 et g L
attains its minimum for p = — Jyra5y with fo(—ozgs; a7y S0 we can surely
guarantee the validity of if
a? < 4 2n a’ 1 a3 o a? < 1 2n a2(4 + 3a2)
1+a} =~ 31+4n1+d} 4 (14 d3) 1+a? = 314+n (1+a3)?
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So demanding for a? to satisfy

1. 3m+D) (L4a3)°  3(1-m)ad+2B-n)ai+3(n+1) 69)
a? ~ 2n a%(4+3a%) 2na%(4+3a%) ’

for given a3 yields (6.8). The right hand side of is nonpositive for

2> —(n —3)+ V10n? — 6n
2= 3(n—1) )

In this case we can choose a? arbitrary. Otherwise if

5 —(n—=3)4++v10n% —6n

0
<a2< 3(7’],—1)

the right hand side of is positive and we have to demand for a? to satisfy

2 < 2na3(4 + 3a3) .
' = 3(1—n)ad +2(83 —n)a3 +3(n+1)

O

Remark 6.7. If m; is abelian in the case r = 2, condition (6.5)) in Theorem becomes
RO (65! X, 65" V5 65V, 05 X) > C - [[[X, V]my ||

When choosing

(R) - 2n(4 + 3a3(R))
(R) " 3(1 —n)a3(R)+2(3 —n)a3(R) +3(n+1)

—(n—3)+v10n? — 6n
3(n—1)

a

NN |

a

for 0<a3(R) <

we can surely guarantee this. Moreover if we choose

4 2n - a?(R) - 2n(4 + 3a3(R))
3n+1 " d3(R)  3(1—n)ai(R)+2(3—n)a3(R)+3(n+1)
—(n—3) ++v10n? — 6n

for 0<a3(R) < 3t —1) ,

we can construct a nonnegatively curved metric on (0, R] x G/H although
RO (P! X, RV 9p Yo' X) £0.
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When choosing

5 —(n—3)++10n? —6n
Aoy >
3(n—1)

we can even construct a nonnegatively metric on (0, R] x G/H where
RIv® (w}_?lX, wﬁlY; 1/1}_%11/, Tﬁ}_le) can take arbitrary negative values.

The next proposition is an analogue of Proposition in the case of sphere number 5,

Proposition 6.8. Consider a homogeneous metric g4 on K/H = U(n+1)/U(n) forn > 2.
Define

—A(n —3) —4n + v2n /A2(5n — 3) + A(13n — 3) + 8n
3(A(n —1) + 2n)

Then R9¢ (¢_1X, oY oY, gzb_lX) s nonnegative for

D=

2 2
as 2(A+ 1)n(4 + 3a3) , 9
—= < 0<ay <D
2 S B @@+ 2B -np— i@t axmrny 1 0=
a% arbitrary if a% >D.

Proof. Following from similar argumentations as before we achieve nonnegative curvature

if we can guarantee

3 . _
411+a3 (1+03%(2 ~ ala?) + )’

1 3
> <a2_6 +10 + u)* + S+ 2a5° +ﬂ)2> .

1+n_Xn+1

From here on the proof of Proposition carries out over verbatim with the obvious

replacement and we obtain the statement in Proposition O

Remark 6.9. The limit in Proposition is "better" than that of Proposition as
was to be expected. We get an analogeous result to that of Remark in the case of

Proposition
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Chapter 7

Cohomogeneity One Manifolds

7.1 Topology of Cohomogeneity One Manifolds

A connected manifold M is said to be a cohomogeneity one G-manifold if there is a compact
Lie group G acting on M such that dim(M/G) = 1.

So the orbit space can in fact be identified with either an interval I or the sphere S.
Denote the principal orbits by G/H, where H is the principal isotropy group of such an
orbit up to conjugacy. Let m: M — M /G denote the projection map. From the general
theory (see [Bi]) it is known that the union of the principal orbits forms a dense open
subset of M which we denote by MY. In fact M? = 771(S1) in which case all orbits are
principal and 7 is a bundlle map, or M is the preimage of the interior of the interval I
w.r.t. m.

Furthermore the principal isotropy group H is conjugated to a subgroup of any other
isotropy group K of a nonprincipal orbit. More than that in [M] it is shown that K/H is
a sphere.

The nonprincipal orbits are the preimages of the endpoints of I w.r.t. m and their tubular
neighborhoods are homogeneous disc bundles. Denoting the nonprincipal isotropy groups
by K+ in the case when we have two nonprincipal orbits we obtain the following list for

the shape of cohomogeneity one manifolds

(i) M/G =R M=RxG/H

(17) M/G = |a, o) M=GxgV

(441 M/G = S? M =R xzG/H

(1v) M/G = [a, ] M =G xg_D-Ugp Gxk, Dy,

where in case (iv) we glue the two tubular neighborhoods of the nonprincipal orbits along
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a common principal orbit. For the rest of this chapter we will refer to this list when a

cohomogeneity one manifold is said to be in some case.

Conversely suppose that we are given compact Lie groups H C {K_,K;} C G where
K /H are spheres such that the diagram of inclusions

N
N A

commutes. Then we can construct a cohomogeneity one G-manifold with principal orbit
type G/H and nonprincipal orbits G/K. Here the cohomogeneity one G-action is given
by the canonical action of G' on the homogeneous disc bundles G Xxx_ D_ and G Xx, D,
see Chapter [2] action in (2.3).

Example 7.1 (Brieskorn varieties). Consider the the real algebraic submanifolds of C™*1

given by
Wihi={z e CM 2+ 2+ 42 =0, [zl 4 [zl = 1

These 2n — 1 dimensional manifolds are called Brieskorn varieties. We write elements of
Wj"_l as tupels (z9,2) € Ca C™.

As was observed in [HH| the Brieskorn varieties carry a cohomogeneity one action by
G :=U(1) x O(n) defined by

(e, A) x (20, Z) == (€*?20,e' P A - Z)

Since ‘ezia‘ = 1 it follows that |zo| is invariant under this action. So we obtain immediately
that if (20, Z) and (wp, W) are in the same orbit then |zg| = |wo|.
Conversely if we have |zo| = |wol, then 2z = €% wq and for (29, Z), (wo, W) € W71 we

obtain
Zt.Z =Wt W and |22 = |W]2.

From the first equation it follows that Z = e%® B - W for some B € O(n;C) and from
the second equation we can extract Z = B - W for some B € U(n) whence we obtain
dif

Z=ez A-W for some A € O(n) since O(n; C) NU(n) = O(n).
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So we can deduce that G acts with cohomogeneity one on Wj”fl.
Observe that |zg| € [0,%o] where g is a real solution of t+¢2 = 1. That the minimal value
which |zo| can attain is zero follows from the fact that there are elements in W;" "' with

z9 = 0. For determining the upper bound let ¢ = |zp|. We have
=2t 7| <|ZP=1-1* < t1+1*<1.

Since there are elements in Wj"_l fulfilling t¢ + > = 1 the positive real solution of this
equation is the upper bound for |zp].

Hence W2""1 /G 22 [0, o] with to as above. Denote by 7 : W7"~! — [0,%o] the projection
onto the orbit space. Then the preimages m—1(¢) for t € (0,%) constitute the principal
orbits whereas the preimages 7—1(0) and 7 !(tg) constitute the singular orbits.

Next we are going to determine the groups H C {K_, K;} for the group diagram. For
the principal isotropy group we determine the isotropy group of (2o, 21, 22,0, ...,0) with
|z0] € (0,%0).

(e, diag(l, 1, B)) for d even
(6, diag( —€,—¢€, B)) for d odd,

where e = £1 and B € O(n — 2). So we have H = Zy x O(n — 2).
The isotropy group K_ of an element in 771(0), say (0, 21, 22, ...,0) is given by

K_ = (e_w,diag(ew,ew,B)) ,

where B € O(n — 2). Therefore we have K_ = U(1) x O(n — 2).
Finally the isotropy group K, of an element in 7~ !(tg), say (¢,i1/¢%0,...,0) can be

computed to be

(e,diag(1,B))  for d even

K, =
(e,diag(—e, B)) for d odd,

where e = £1 and B € O(n — 1). So we can deduce that Ky = O(n — 1).

The dimension of the singular orbit G/K_ is 2n — 3 therefore its codimension is 2 whereas
dimension of the singular orbit G/K is n therefore its codimension is n — 1.

For n and d odd the Briekorn manifolds are known to be homeomorphic to spheres and
even diffeomorphic if d = +1mod 8. If otherwise d = +3 mod 8 they are diffeomorphic to

the Kervaire sphere, which is an exotic sphere.
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We will come back to this example later.

7.2 Nonnegatively Curved Invariant Metrics on Cohomogene-
ity One Manifolds

In the cases (i), (i) and (7i7) the existence of nonnegatively curved metrics is guaranteed.
This statement in obvious in the cases (i) and (7i7) and for putting a nonnegatively curved
metric on a cohomogeneity one manifold as in (#4) we can use the results of Chapter [6]
Case (iv) is the most interesting one.

Here one way of putting a nonnegatively curved invariant metric on the cohomogeneity one
manifold is to define nonnegatively curved metrics on each half which are G-equivariantly
isometric to each other near the boundary so that they can be glued along their common
boundary

So it seems likely to seek for the metrics being G-equivariantly isometric to ((R —¢&,R] x
G/H,dt*+ gQ) near the boundary for some € > 0, where gg denotes a normal homogeneous

metrics on G/H and to construct the metrics on each half with Cheeger’s construction.

In [GZ1] it is shown that this is possible when the codimension of the singular orbits is at
most 2.

Observe that in this case we have dim K1 /H < 1 so that especially the tangent space to
K /H can be identified with a at most 1-dimensional subspace of the Lie algebra g of G.
Then the condition of Theorem is satisfied since the left hand side of vanishes and
the existence of a nonnegatively curved normal homogeneous collar metric on each half is
guaranteed.

This situation is especially apparent for the Brieskorn varieties for n = 3. Therefore we

get the existence of a U(1) x O(3)-invariant metric on W.

If the codimension of at least one singular orbit is greater than 2 the existence of a non-
negatively curved invariant metric is not ensured. Let £_ resp. ¢4 denote the codimension
of the singular orbit G/K_ resp. G/K.

In fact we have

Theorem 7.2. For each pair ({—,0y) with (_,0+) # (2,2) and {1 > 2 there exist in-
finitely many cohomogeneity one G-manifolds that do not admit a G-invariant metric with

nonnegative curvature.

For instance the Brieskorn varieties do not support an U(1) x O(n)-invariant metric with
nonnegative curvature for n > 4 and d > 3, because in this case the codimension of one of

the singular orbits is greater than 2.
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Appendix

In the upcoming we are going to present the computations to obtain the curvature formula

stated in Lemma [L.16] For X,Y € m we have

(WX Y]+ [X 0V [ Xow 'Y

(Wl X7 Y] [ X 0T

(WX Y] = [X o Y] o ([0 X Y] = [X97Y]))
[T XX [y YY)

_ 1@(2 > a?Bi+ Y. (a?+a;)B Y o B+ Y az-_Qaj_Zchj>

2
1<ei<r 1<i<5<r 1<i<r 1<i<j<r

**CL%Q(ZCLZlBk‘F Z a; azB,ZCJ,Za%BkJr Z a; azB”>

4
1<i<r 1<i<y<r 1<i<r 1<i<j<r

rrae( Y (- ) (], - [,

1<i<j<r

> (0 - o) (XY, - [X,.7,)

1<i<g<r

—a2Q( Y (07— [Xa X Y (a#—af)[lm]k))

1<i<j<r 1<i<j<r

| + \
O wl— Wil

o
e

IA
4
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= 1 Q2 a72Bli + a2+ a2 Bik, a-_4B}; + a2a2B*
2 7 ( ) k ) 7 7 k

0<k<r k<i<r 1<i<k k<i<r 1<i<k
- %a%@( > a*Bi+ > a?a’B*, > a'Bi+ > a;Qa,;QB““)
k<i<r 1<i<k k<i<r 1<i<k
1020 Y (a7 - ap) (X0 %] - [Xe ),
1<i<k
> (0 = ap?) ([X0 i) - [X, 7))
1<i<k
S (- ad) ] Y @t - a)v))
1<i<k 1<i<k

For fixed k we obtain for the expression in the last line

IO ETVIER S S0

1<i<k 1<i<k

LYY (6 ) (o - ) Q([X X, [¥2 )

1<i<k 1<I<k

== > Y (677 =) (0% = 02 (-Q([Xi. V], [ X Y1) + Q([X4, Vi), [Xi, Yi]))

1<i<k 1<i<k

- ( Z (a7 = a; %) [Xi, Y], Z (a;° —a;” )[Xk,}/;]>

1<i<k 1<i<k
—Q( Z (a;Q—ak2)( B”—f— Z BZ Bk>
1<i<j<k 1<i<k

where we have used the ad-skew-symmetry of ) and the the Jacobi identity from the third
to the forth line as

Q([Xi X5], [Vii Yi]) = —Q(X5, [Xi, [Yi, Vi]])
= QX [k, [V, Xi]]) + Q(X5, [V, [ X, V2 ]])
= —Q([X:.Yi]. [X;. i]) + Q([X:. vi]. [X;. 1))
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With this manipulation at hand we get

100 Y (@ - ) (] - Y)Y (67 - ) ([0 - (X Y)

4 k
1<i<k 1<i<k
—a?Q( Y (@72 = aXe Xel, Y (a7 = )i Vi)
1<i<k 1<i<k
_ %a;%}( S (02— a)B%, S (o) _QEQ)Bik>
1<i<k 1<i<k
~aQ( Y (o) e B Y (- o) B BY).
1<i<j<k 1<i<k

We continue computing
R% (p7' X, 7Y, 9 Y, X))

-3 (o X an ¥ ) - Jae( X wtn Y as)

0<k<r k<i<lr k<i<r k<i<r k<i<lr
+ak2Q< Z a*2Bk, Z a*QBZk> + - Q( Z (a;2+a;2)Bik, Z ai’4B,i>
k<i<lr 1<i<k 1<i<k k<i<r
4 3 . .
fakQQ( Z sz Z ai—2sz> —§Q< Z ;4B Z a¢_2BZk>
1<i<k 1<i<k k<i<r 1<i<k
- B 1 o o
fZ ( Z a; 2 gik. Z 2sz) Zak2Q< Z a; 2gik. Z a; 2sz>
1<i<k 1<i<k 1<i<k 1<i<k
1 P . 1 . .
5%462( Z a; 2gik. Z sz)JrZak@'Q( Z Bk, Z sz>
1<i<k 1<i<k 1<i<k 1<i<k
-2 -2 k
e T et Y e
1<i<j<k 1<i<k
1 s o
- ¥ (5o T a'si ¥ ot - st )))
0<k<r k<i<r k<i<r
+Q( Y (et - e Bl Y a2B%)
k<i<r 1<i<k
*“kQQ( Z a;4327 Z sz) ( Z B, Z Bz’k)
k<i<lr 1<i<k 1<i<k 1<i<k
a0 (et - a B Y (- o) B BY)).
1<i<j<k 1<i<k

After some simplifications and taking the O’Neill term of the canonical submersion into
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account we finally get

R% (7' X, 7Y, 7Y, 97 X))

= > alIBl+ Y0 a3 - el ?)Q(Bh BY)

1<i<r 1<i<j<r
+ Z ( 6HB,€+ Z BlkH + = Q( Z a ak —2a _2)Bi,Bllj+ Z Bik)
1<k<r 1<i<k k<j<r 1<i<k
+3 Z a; (4 = 3aja; ?)|| B
k<z<r
1 S
+§ Z a]74 72(6 3aza;? —2aza] )Q(B,’C,B,ji))
k<i<j<r
\ . . , 112
= Y BIP+ Y aj_4az-_2(3—a?aj_2)Q(B(Z)7B(]))+ia;6 Bi+ ) B
1<i<r 1<i<j<r 1<i<r
+ Z fak HBk-i- Z B 2-1—% Z aj_4ak (3—2@2 _2)Q<B£,B,’§+ Z Bik)
1<k<r—1 1<i<k 1<k<j<r 1<i<k
1 _ - .
+Z Z ai6(4—3a%ai 2)HB,@HQ
1<k<i<lr
—i—% Z aj_4 _2(6 3aka —2a2a] )Q(Bi,Bi)

1<k<i<j<r
3 2
_ 2 —4 i
= qed| X o'
1<i<r
1

Z aj_4ai_2(6 — 3a%ai 2 a2a )Q(BO + Bl,B] + B])
1<i<j<r

+ Y ( HBk+ S Bk
1<i<k

2<k<r

LS~ or%(4— 3a207?) | By + B

4 =
1<e<r

3

2 1 _ _ .
21 S s e B
k<i<r

Lo S et sty S 8
k<j<r 1<i<k
1 Z a; Ya;7%(6 - 3aka2—a2a )Q(Bk,B])>
k<z<]<r

and this is the formula given in Lemma [1.16]
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For verifying that the given formula for the unnormalized curvature in Proposition is

right we first consider the submersion

T (G x K, g, ® Gy) = (G, Js) (7.1)

where g, denotes the K-invariant metric on K inducing the metric g, by means of the

canonical projection. Then we look at the canonical projection

(G, 9s) = (G/H, gg) - (7.2)

This twofolded approach is possible because we get the same inducing map ¢ as if we had
taken pointwise the submersion from Lemma [2.3|as can be checked. We point out that the
canonical projection only affects ¢ in restricting on p. That the range is also restricted to p
is due to the general properties inducing maps have to fulfill when inducing homogeneous
metrics.

The computation of the vertical space, the horizontal space and the horizontal lifts of ele-
ments in g for the submersion in carry out over verbatim from the proof of Lemma [2.3]

The tangent space to a fiber (vertical space) at (g, k) is given as
V(ng) = {(—dLg(X),de(X)) ‘ X e E} C T(ng)(G X K) = TgG o TLK .

So we have
V(e,e) = {(—X,X) |X € E} - T(e,e)(G X K) Zgpt.

The horizontal space is given by
H(e,e) = (570) D {(an CX) ‘ X e E} :

Because of the form of the elements in V( ) and the fact that we obtain a left invariant

9.k
metric by Cheeger’s construction it follows that we have to extend the G-coordinate to a
left invariant vector field and the K-coordinate to right invariant vector field of an element
in H () in order to describe H g 1.

The horizontal lift of X = X¢ + X, where the subscripts denote the projections onto the

corresponding subspaces of g, is given by

X = (e + )" Xe+ Ko cle+4) 7 Xe),
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and the inducing endomorphism for the metric g4 is given as
Se=cplc+¥)”  and s =gl
Especially we can write the horizontal lift of X = X + X, in terms of ¢ as follows
X = (c"oXe+ Xs, 0 9 Xe)

and in particular we have
o1X = (¢ X, 971 Xy)

Since the horizontal lift of ¢! X is easier to handle with in the computations we are going
to work with twisted elements.
On the one hand we have by the O’Neill formula

R%(¢7'X,¢7'Y;071Y, 671 X)

= R0 (5TX, 5T 5V 5K ) + 5 [ 5T T,

= Rg¢®§w ((QD_lX, ¢_1XE)7 ((10_1Y> ¢_1Y%)a (QO_IYa lz)_lyé)a (SD_IXa ¢_1Xf>)

3 _ _ _ _ 2
+ I X Xe) (07 Y W) 175 e,

=R% (7' X, o707 Y 0T X) + R (07 X T Y 0T Ve 0T X

3 v
+ e X 07X, (oY ) T,

9o DGy

On the other hand we have by Piittmann’s formula

R¥ (671X, 671167V, 071 X)
= %Q([gb_lX, Y]+ [X,07'Y], [¢7'X,¢7'Y]) (7.3)
=20 [0 x0T [67 X, 07Y]) (74)
Fr0eXY) - (X Vo ([0 Y] - [XeTY]) (1)
-Q([o7' X, X], ¢ oY, Y]). (7.6)
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For the matters of clarity we use the abbreviations
A? = [T X, Y] + [X, ¢ Y]

B? = [cp_lX, go_lY]
Cc? = [cp*lX, Y] - [X, gple] €s

AV = [ X, V] + [Xe o™ 'Ve] € 8
BY = [p ' X,y Y] € 8
CY = [ Xe, V] — [Xe,9™ '] €8,

which are also given in the formulation of Proposition [2.5] and point out that we have
$TX =T X YT Xe
Furthermore by Piittmann’s formula we have using the above abbreviations

R% (o' X, o V07 Y, o 1 X)

= Q(#%.B%) - S Q(eB7, BY)

(7.7)
+70(C%071C?) — QI X, X] o [ YY)
and
R (7 X, ™ Ve 0 Y, 7 X)
— %Q(A%Blﬂ) _ZQ(wa,B¢) (7.8)
F3QC% 7Y = Q[ X Xe] ! [0 Y W))

Note that by the Adg-equivariance of ¢ we have

[SOXM}/E]:SO[XMYE] VX5€57 }/EEE

This property of the Lie bracket will be needed in the upcoming calculations. Especially
we point out that we obtain

[QDX57 }/5]? = [X57 QD}/S]E .
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For (7.3)) we get

[0 X Y]+ [X,07'Y] [0 X 07T

NN =N =N

Q(
Qe ' X + ¢ 7' Xy, Y] + [X, 0 'Y + 9 W], [ ' X + ¢ ' Xe, 'Y + 9 YE])
Q(

AP+ [0 X Vo] 4 [Xo o TI] + AV, BY + [0 X 9TV + [0 Xe o7 'Y] + BY)

(Q(A‘/’, B?) 4+ Q(AY,BY) + Q(A%, [¢ ' X, ¢ V4] + [ ' Xp, " 'Y] + BY)

FQUIT Xe Y] 4 [Xa Y] + A% B+ [p7 X0 W] + [ Xep'Y]))

For (7.4)) we have

~2Q(lp7 X671V, [0 X, 07V ))
%Q(cb[ X T X o Y T [T X 4T X 7Y + 97 Y]
%Q(w(B“’ + o ([Xe vV + [0 X6 Vi), BE + 07 ([Xo ™ H] + [0 Xk, Yi]))
—Z Q(ev(c+v) H(Bf + BY + ¢ 'AY),Bf + BV + ¢ 1AY) .
For we obtain
iQ(M Y] = (XYL e T ([o X Y] - [X,671Y]))
(e X v X Y] - (XY o)

o [T X + 971X Y] - [X, 7Y + 97 1Y]))
= 1Q(07 + BT X V] - [Xe W] 4 OV,

¢TI 4 T ([T X Y] — [Xe T W]) 4+ IV i)

:% <Q(C‘F’7¢*10‘F’) 4 Q(Cﬂll?w*lcﬂl)) 4 QQ(ijgofl([wlebYs] . [me,ly%]))

Q[ X Y] - [Xeu ] (9 %] — (X)) + e eV]?).
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And for (7.6) we have

~Q([¢7'X,X],07 o7V Y])
=— Q¢ ' X +¢v ' Xe, X], ¢ e 'Y + 4V, Y])
=— Q¢ ' X, X] + [0 Xe, Xo] + [ X, X,
e e Y+ 0TV Ve e [T Y Y] + 0 [T Y, V)
=- Q¢ ' X X[, ¢ ¢TIV Y]) = Q([vT Xe, Xe 97 [T VR, V]
Q¢ ' X, X] o [TV Ya]) - Q[T Xe, Xa] 07 [T 1Y Y])
— Q[ Xe, X0 U W Vi) — Q[0 Xe, X, [0 Ve, VR])

For relating this with the former results we have to modify some expressions. For this we

use the Jacobi identity and ad-skew-symmetry of @) to perform

Q([X1, X2], V1, Ya]) = —Q(X2, [Xy, [Y1, Y2])
= Q(X27 [1/17 [}/27 Xl]]) + Q(X27 [}/27 [X17Y1H)
= —Q([X1, Vo], [X2, Y1]) + Q([X1, V1], [ X2, Y2]) .

So
([ X X] 7 [0 Vi)
(7! [Xe, Xo] + [07 X, Xe] + [071 X, X, [0 V2,073
= Q( X Y], [Xe 0T ) — T Q([Xe v ], [Xs, 071V
+Q([Xe v lYe] [07 1 Xe 7 Ve]) = Q([Xe ™'V, [0 X, 7 W]
Q™ e, oY), [Xo, v W) = Q[ X, ¥ 7Y, [Xo, 7 V)
as well as

([o~"Xe, X, L ey y))
([0 Xe, o1 Xe] e Ve, Vo] + [0 Ye, e + [0 'Y, Ye])

= c Qv X, Vo], [¢7 Xe Vi]) — Q[T X, Vi, [0 X, Vi)
Qv Xe. Y, [ X, 07 Ye]) = Q([v™ ' Xeo o7 Y], [0 7' Xe, Va])
Qv Xe Yol [¢7' Xs, 07 'Y5]) = Q([UT' Xe, 07 Y], [0 Xs, Y]
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and

—Q([v ' Xe, X, [0 Ve, 07 'YR])

= Q[ ' Xe, o7 'Ye], [Xo, v 'Wa]) — Q([v ™' Xe, v 'V, [Xe, 07 YE])
—c'Q([ X, X, [0V, YA])

= 'Q([ X Vi), [Xe, v 'Ve]) — Q[0 Xey b 'V, [Xe, Vi]) -

As a consequence we arrive at

- Q([¢7' X, X], 07 oY Y])
=—Q([¢ ' X, X],o e Y]) = Q[0 Xe, Xe] .y [0V, V2]
+c'Q(e 7 X Y], [Xe, v Y]) + Q[0 X, Ve 0T [ X, V]
+Q([¢7 ' X, o7 YL, [0 X, Ve + [Xa, ™' Y]) + Qo [0 X Ve, [Xe, 7 'YR])
—Q([X, ¢ Ye], 07 X, ™) = Q[T X, Y, 07 [T X Vi)
— QA% [Xe, 07 'Ye]) — ¢ 1Q(BY, [Xe Wt]) + ¢ Q([vT Xe Vi), [Xe 0]
+Q(AY, [¢7 ' X 07 Y]) - Q(BY, [Xey 97 'Yi])

Collecting all expressions coming from the s-part and neither arising in (7.7)) nor in (7.8)

we get

o (Ko™ ] + [0 X Yi]))
[0 Xe, Vo] + [Xo, 7 W], BE + 97 ([Xo, 0™ V] + [0 X, ] )
o (BE + o ([Xe 0™ + [071 X0 Y0])), BE + 97 ([Xe 07 W] + [071X0 Vi)
(X Y] - [Xe v )
[ X Vo] = [Xey o™ ] o7 ([0 X Y] = [Xey 07 TE]))

+c Qe [Xe, Ve, [Xeo v Ve]) + ¢ Q[T X, Ve, o7 [ X, Vi)
+Q([¢7 ' X, o V2], [0 X Y] 4 [Xe, T 'Ye)) + Qo7 [T X, Ve [Xe T YR])
—Q([X, o Yi], o [ Xe v T'WR]) — Q[0 Xs, Y], o [0 X, Vi) = 0.

O

_l’_

| HM\HM@M\HMH
O

+ o+
QQQAA
Q

For the expressions coming from the €-part and neither arising in (7.7) nor in (7.8) we
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obtain

5 QAT e ([Xe W] + [0 X0 W) + BY)
F1QA,BY + ¢ ([Xe v ] + [0 X0, 1))
- 2 Q(e(c+ ) Y (B + BY + ¢ 1AY),Bf + BY + ¢ 'AY)
F 3O QMY X)) - QB [Xe, YE)
e Q[ X Y, [XewW]) + Q(AY, [p7 Koo W) — Q(BY, [Xay 07 N))
= Se(|1BEIP - QB BY)

+c'Q((c+ ) (¢BY + AY — B¥),cBY + AV — ¢B¢)) :

where —% c HBEDH2 in fact belongs to ([7.7) and —% (de’,Bw) belongs to (7.8)). This is
why the O’Neill term is given as

2 Q((c+v)  (eBf + AV —BY),cBf + AY —¢yBY) .

So
RI(67'X,¢7'Y;¢7 'Y, 971 X)
=R% (7 X, o7 Y97, 07 X) + R (7 X, T Yy e, 0T X

3
+3 Q((c+v) (eBf + AY —¢BY),cBf + AV —BY) .
Now consider the submersion (7.2)). We again have by O’Neill’s formula

R%(¢7'X,¢7'V;¢671Y, 671 X)

_ 3
= R (67X, 07 Y567 1Y 671 X) + S [lloT X, 67 Y,

where 2 [|[¢71X, gb_lY]ng is the O’Neill term because the vertical space of the canonical
submersion from G to the homogeneous space G/H is bh. In the upcoming calculations we
will still work with the introduced abbreviations but we have to pay attention that now X,

resp. Y¢ has to be replaced by X, resp. Y. We can compute the O’Neill term analogeous
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to the computation of (7.4)) to be

(6[o71X,071Y],, [671X,671Y],)

Q
Q(ct(c+ ) (B + By + ¢ 'AY), B + B + ' AY) .

W

We have
3 - Y Y ¥ Y
ZQ((c+w) Y(eBY + Ay — By, eBY + Ay —By)
3
+ 5 Qev(et+ ) (BY + BY +c'AY), B + By + ¢ AY)

3 3

_ ¥ —1 4?2 v pyY

= 1cllBy + AV + S Q(vBY, B)

where %Q(@bBw, Bgﬁ) is especially is the O’Neill term of the canonical submersion

Putting all together yields the formula given in Proposition

Proof of Proposition[{.3. Up to scaling Q(A, B) = —4Re(tr(AB)) is the only Adsy(nt1)-
invariant inner product on su(n + 1) because there are no nontrivial Adggs(;,41)-invariant
subspaces of su(n + 1) and since Q(A, B) = —5Re(tr(AB)) is a Adgy/(n41)-invariant inner
product on su(n + 1) it follows by Schur’s Lemma that it is the only one up to scaling.
The Lie algebra of the isotropy group

1 0
H:{(O M) eSU(n+1)}MeSU(n)}

in po = (1,0,---,0) € §2"*1 C C"™! is given by

= {(( ) mviacmn).

It can be checked that

0

—Zz

bt = span {diag(—ni,i,--- ,i)} é} { (

=my

. (Z)> eﬁu(n+1)‘ze(€"},

-~

—=img2

where m; and my are the Adg-invariant subspaces with m; L mo.
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We compute

1 0 2
Idiag(—ni,i,- a3 = "L g H( * )
—Z

= |2 (7.9)

2 0 Q

Now consider T,,S?"*1. According to the identification of T, S*"*1 with m; ®my via

action fields we get

d . . . .
| exp(tdiag(—niii, - i)(po) = (—ni, 0, ,0)

and jt‘t:oexp<t (_(l g))(po):((),z).

We have
I(=ni, 0, 02, =n? and [(0,2)2,, = |=.

Comparing this with (7.9) yields the parameters af = nQ—fl and a3 = 1 for obtaining the

round metric.

For determining the Adg(,41)-invariant inner products on u(n + 1) we observe that
span{iId} and su(n+1)

are Ady(,1)-invariant subspaces of u(n + 1) and there are no further Ady(,1)-invariant

subspaces. So we obtain by Schur’s Lemma that

Q(Al + Ao, B1 + Bg) = —%Re(tr(%AlBl + AQBQ))
for Ay + Ay, By + By € span{ild} @ su(n + 1), A € R

is up to scaling the only Ady(,41)-invariant inner product on u(n +1).

The Lie algebra of the isotropy group in pg = (1,0,---,0) € §?n*!1 c C*HL,

H:{((l) ]\04> eU(n+1)}MeU(n)}

is given by
h= {(8 j) Eu(n—i-l)}Aeu(n)}.
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For computing h* we first observe that an element in h decomposes as

b > 00} _ (00 —tr(A)Id—Ztr(A)Id.
0 A 0 A n+1 n+1
N—_——

€ span {¢Id}

€su(n+1)

Now let By + By € span {ild} @ su(n + 1) and decompose By € su(n + 1) as

0 0 0
B = by diag(—ni,i,--- i)+ “) ¢ with by € R, z € C", B € su(n).
—z* 0 0 B
=:D
So we get
itr(A) . 0 0 tr(A) , 0 =z 0 0
ERALICS ¥ I - Id, brild + beD + +
Q( ntl (0 A) n+1 1 ? —z* 0 0 B

_ _% ((Aby + byn) i tr(A) + nRe(tr(AB)))

This vanishes for all by € R and A € u(n) if and only if by = —% bo and B = 0. Therefore

we get

—Zz

1 . . . Ny * 0 =z n
h~ = span {nild — Adiag(—ni,i,--- ,i)} D . 0 6u(n+1)|z€@ ,

=my

~~

=mg

where my and mo are the Adg-invariant subspaces with m; L mo.

We compute

ni1d — Adiag(—ni, i, --- )2 = nn+ DAA+D) g 0 =
Q
2 —2z* 0

2
?.

:|Z

Q

Now consider T},,S?"*1.  According to the identification of T, S*"*1 with m; ®my via

action fields we get

%)tzoexp(t (nild — Adiag(—ni, i, ,4)))(po) = (n(A +1)i,0,---,0)

and jtjtoexp<t (_OZ S))(po):(o,z).
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We have

(n(A+1)i,0,--,0)[2, =n*(A+1) and [(0,2)|%,, = |-

Comparing this with the corresponding norms in the metric Q yields the parameters a? =

A1 2n

g and a3 = 1 for obtaining the round metric.

For determining the Ady(1)gp(ns1)-invariant inner products on u(1)sp(n + 1) we observe
that

u(l) and sp(n+1)

are naturally Adg(1)gp(ns1)-invariant subspaces of u(1)sp(n + 1) and there are no further

Ady(1)sp(n+1)-invariant subspaces. Hence by Schur’s Lemma it follows that

Q((iz, A), (iy, B)) = -
for (ix, A), (iy, B) € u(1)sp

(Azy + Re(tr(AB)))

N | —

n+1), Ae R

—~

is up to scaling the only Ad(1)sp(n+1)-invariant inner product on u(1)sp(n + 1).
The Lie algebra of the isotropy group in pg = (1,0,---,0) € S4"*3 ¢ H* !,

H = {<z (; ]?4)) e U(1)Sp(n+1)|z € U(1), M € Sp(n)} ~ U/(1)Sp(n)

is given by

h= {(zx (Z[;U Z)) cu(l)sp(n+1)|z € R, Aesp(n)}.

Decompose B € sp(n + 1) as

~ v 0 0 =z 0 0
B = + + with v = w1 + jvo + kvg € sp(1),
(0 0) (—z* 0) (0 B) 1+ v ks € sp(1)

z e H", Besp(n).

I6)



Then
o (5 Do 0+ (2 0)+ 60 B))
= § Oy + o0 — Re(tx(4B)))

This vanishes for all z € R and A € sp(n) if and only if y = —} v; and B = 0. Therefore

we get

ht = {(—}\ivl, < Y g)) € u(l)sp(n + 1) | v =ivy + jva + kvg € sp(1), z € H”} :

_z*

1 1
An Adg-invariant decomposition of m := h* is given by m = m; & my & ms with

my = {<—}\iv1, (“(;1 8)) cu(l)sp(n+1)|vs € R},

= { (07 (jv2 J(; kvs 8)) e u(D)sp(n + 1) | jvg + kvz € Im(H) \ {iR}} ;

my = {<0, (_Z* g)) cul)sp(n+1)|z e H"}.

We compute
(i 2)
by 1 0 0
O 2
and H ( Z)
—z* 0

= |Z
Consider T,,5%*3. According to the identification of T, S *3 with m; @ me B my via

2

1A+1 , ( jva +kvs 0 > 2
=35 U1, 0,
o 2 A 0 0

(v3 4+ v3),

1
0 2

i

Q
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action fields we get

%’tzoexp (t <—/1\ v, (“(;1 8>>(p0) — %‘t:OeXP (t (’“(;1 8>>(p0)<exp(t (‘%ivl)»_l

A1
:( ki 7;’01707"')0>

)
(e (o (m M 8))(1)0) — (0,02, kv, 0, ,0)
and % L SXP (t (_(l* S))(po) =(0,2).
Computing
(AL 01,0, 0) |2 =02 (%)% [1(0, juz, kvs, 0,--- ,0)|2 = 2 + 3

and (0, 2)]3,,, = |2

and comparing this with the corresponding norms in the metric @ yields the parameters

a? =2 %, a% =2 and a3 = 1 for obtaining the round metric.

The computations for determining the constants for the round metric in the cases 6,7 are

similar to the computuations above and are therefore left out.

Nevertheless we observe that for sphere number 7 we have the isotropy group

H = {(q, (g ]\04>> € Sp(1)Sp(n+1) | qe Sp(l), M € Sp(n)} =~ Sp(1)Sp(n)

in po = (1,0,---,0) € §4*3 C H"*! with Lie algebra

h= {<v (S j)) € sp(Dsp(n+ 1) |v € sp(1), A€ 5p(n)} .

1L
Then an Ady-invariant decomposition of m := b= is given by m = m; ¢ my with

m = {<_ (A” 0)) € sp(L)sp(n+1) | v sp(n} ~ Im(H),

0 0
0 =z
my = {(0, ( i} 0)) € sp(l)sp(n+1) |z EH"} ~ H".
—z
For a detailed treatment of case 9 see [GZ2). O
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