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Chapter 0

Introduction

Riemannian manifolds1 with positive or more generally nonnegative curvature2 have been

of interest since the very beginnings of Riemannian geometry.

One class of such manifolds is constituted by compact Lie groups G which always admit a

biinvariant metric g. These are metrics for which left and right translations are isometries

and which are nonnegatively curved because their curvature is given as

1

4

∥∥[X,Y ]
∥∥
g

for the plane spanned by an orthonormal pair X and Y

w.r.t. to the Levi-Civita connection on G.

By a theorem of O'Neill it is known that Riemannian submersions do not decrease curva-

ture. This theorem can is used to construct manifolds with nonnegative curvature out of

ones which are known to admit a nonnegatively curved metric. For instance let (M, gM )

be a nonnegatively curved Riemannian manifold. Consider an isometric and properly dis-

continuous action by a compact Lie group G on M . Then by O'Neills Theorem it follows

that the metric g̃ on M/G for which the quotient map (M, gM ) → (M/G, g̃) becomes a

Riemannian submersion is nonnegatively curved. For example let K ⊂ G be compact Lie

groups with K acting by group multiplication on G. Then a metric on G/K induced by a

biinvariant metric on G has nonnegative curvature since a biinvarinat metric has nonnega-

tive curvature as observed above. Such a submersion metric is called normal homogeneous

metric.

Apart from the method of using Riemannian submersion to obtain manifolds with non-

negative curvature out of given ones, one can consider the product of two nonnegatively

curved manifolds. Furthermore we can glue two nonnegatively curved manifolds with non-

1manifolds are assumed to be connected in this work, except for Lie groups
2throughout the work the word "curvature" refers to the sectional curvature
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negative curvature along their totally geodesic common boundary given that the metrics

near boundaries are isometric to obtain a new manifold with nonnegative curvature.

Cheeger used a combination of these three methods to construct new examples of nonneg-

atively curved manifolds in [C]. Namely he showed that the connected sum of two compact

symmetric spaces of rank one admits metrics wih nonnegative curvature.

Before going on to another application of Cheeger's method we describe the notions of

homogeneous disc bundles and of a collar metric on these bundles. A homogeneous disc

bundle is a bundle of the form

G×K D → G/K ,

where D is a disc in some vector space V whose boundary is the sphere SVR and the

subgroup K ⊂ G acts transitively on this sphere. The action of K on G ×D is given by

the free diagonal action

k ∗ (g, p) = (gk−1, k · p) .

A metric on a homogeneous disc bundle is called collar metric if a neighborhood of the

boundary ∂(G×K D) ∼= G/H, where H ⊂ K denotes the isotropy group of some point in

G×K D \ {0}, is G-equivariantly isometric to
(
(R− ε,R)×G/H, dr2 + g

)
for some ε > 0,

where g is an invariant metric on G/H. If g is a normal homogeneous metric we have a

normal homogeneous collar metric.

In [GZ1] submersion metrics on homogeneous disc bundles are discussed. Taking a non-

negatively curved left-invariant metric on G which is also K-right-invariant and a nonneg-

atively curved K-invariant metric on D yields a nonnegatively curved G - invariant metric

on G×K D. In [GZ1] it is shown that if the rank (dimRV ) of the disc bundle is at most 2

it is possible to carry out the construction described above in such a way that the metric

is a normal homogeneous collar metric.

Now every closed cohomogeneity one manifold M with two nonprincipal orbits can be

described by two homogeneous disc bundles which are glued along their common boundary

which is a principal orbit G/H, i.e.

M ∼=
(
G×K+ D

+
)
∪G/H

(
G×K− D−

)
.

If the codimension of the nonprincipal orbits is at most 2 we can make the above described

construction on each half to obtain a G-invariant metric on M . This result led to new

examples in [GZ1] such as that every principal SO(k)-bundle over S4 admits an invariant

metric with nonnegegative curvature since these bundles carry a cohomogeneity one action

by SO(3) × SO(k). Other examples are the sphere bundles over S4 and resulting from

that 10 out of the 14 (unoriented) exotic 7-spheres.
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In that paper it was conjectured that every cohomogeneity one manifold supports an

invariant metric with nonnegative curvature, but in [GVWZ] the authors showed that

when the ranks of the two halves of a cohomogeneity one manifold is given by a pair of

integers (`1, `2) with `1, `2 ≥ 2 and (`1, `2) 6= (2, 2), one can �nd an in�nite family of

cohomogeneity one G-manifolds that do not admit a G-invariant metric with nonnegative

curvature.

In [STa2] homogeneous disc bundles admitting normal homogeneous collar metrics have

been extensively studied. The authors showed that if a normal homogeneous collar metric

exists then G ×K D is either the quotient of a trivial bundle or its rank has to be in

{2, 3, 4, 6, 8}. Furthermore they gave a complete classi�cation for such bundles in the rank

6 and 8 case and a partial one in the rank 3 case. Let Q denote a AdG-invariant inner

product on g. Denoting by m the orthogonal complement of h ⊂ k and by p the orthogonal

complement of h ⊂ g where h resp. k resp. g denote the Lie algebras of the Lie groups

H resp. K resp. G given as above the authors showed that a normal homogeneous collar

metric exists if there exists a C > 0 such that for all X,Y ∈ p we have

‖Xm ∧ Ym‖ ≤ C ‖[X,Y ]‖ , (1)

where subscripted m's indicate the projection onto m.

Denote the orthogonal complement of k in g by s and consider the left-invariant metric gε

on G induced by the inner product

Qε|k := (1 + ε)Q|k, Qε|s := Q|s .

Condition (1) ensures by a result in [STa2] that for su�ciently small ε the metric gε has

nonnegative curvature for planes which are contained in p. By the fact that the portion of

the horizontal lifts of planes in the base manifold lying in the �rst component of the tangent

space to G ×K D is in p we take the metric gε and a nonnegatively curved K-invariant

metric on D to yield a nonnegatively curved quotient metric on G×K D.

Furthermore in the same paper the authors proved that (1) is almost necessary for the

existence of a nonnegatively curved normal homogeneous collar metric. In fact m replaced

by m1 in condition (1), for an irreducible subspace m1 ⊂ m is proven to be a necessary

condition.

In this thesis we are going to analyze under which conditions metrics with prescribed

properties can be constructed on homogeneous disc bundles. In particular we point out

the following
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Theorem 5.13. Let K ⊂ O(n+1) be a Lie subgroup which acts transitively on Sn ⊂ Rn+1.

Let g1 be a K-invariant metric on Sn with positive curvature and let r(x) := ‖x‖ be the

radius function on Rn+1.

Then there exists a K-invariant metric g on the unit ball B1(0) ⊂ Rn+1 with positive

curvature and an ε > 0 such that on r−1((1 − ε, 1)) we have g = dr2 + η(r)2 g1 where

η : (1− ε, 1)→ R satis�es η, η′ > 0.

This generalizes Theorem 5.1 in [STu], where this theorem was shown for the case when

g1 is a normal homogeneous metric.

In addition we are going to show

Theorem 6.5. Suppose that m decomposes irreducibly as m = m1⊕ . . . ⊕ mr w.r.t. the

action of H on m via the adjoint representation and that we have a chain of Lie groups H ⊂
K1 ⊂ . . . ⊂ Kr = K such that the Lie algebra ki of Ki is given as ki = h⊕m1⊕ . . .⊕mi.

Then there exists a nonnegatively curved invariant collar metric on the homogeneous disc

bundle G×KD with totally geodesic �bers and boundary metric g if there exists a constant

C > 0 such that

Rg(X,Y ;Y,X) ≥ C
(
‖Xm1⊕...⊕mr−1 ∧ Ym1⊕...⊕mr−1‖2 + ‖[X,Y ]m1⊕...⊕mr−1‖2

)
.

Here Rg denotes the curvature tensor of the metric g where g is assumed to be given on p

as

(g)[eH]|mi = f2
i id|mi , (g)[eH]|s = id|s ,

with 0 < f2
i < 1.

Here the obstruction for the functions fi is in fact not restrictive in the sense that otherwise

we obtain the same rigidity as in [STa2] where normal homogeneous collar metrics were

analyzed as stated above (cf. Corollary 6.3).

A more detailed summary of the contents of this work is given in the following outline of

the work.

Outline of the work

In the �rst chapter we give a brief introduction to invariant metrics on homogeneous

manifolds along with the computation of the curvature of such metrics in the special case

when an underlying chain of Lie groups is given.
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Chapter 2 is devoted to a construction method mentioned above which goes back to

Cheeger. After clarifying how the construction is carried out we compute the curvature of

Cheeger metrics explicitly.

In Chapter 3 we revisit Cheeger's construction for the special case that it provides a

deformation of a G-invariant metric on a manifold M on which a compact Lie group G

acts by isometries.

Furthermore we give an equivalent condition when there exists a Cheeger deformation

for a G-invariant metric on a homogeneous space G/H such that the deformed metric is

nonegatively curved.

Chapter 4 deals with invariant metrics on spheres. At the end of Chapter 4 we use the

results from Chapter 3 to show that every positively curved invariant metric g1 on the

sphere can be joined with the round metric by a diagonal path of positively curved invariant

metrics on spheres.

In the following Chapter 5 we discuss the curvature of generalized warped product metrics.

Here a metric of the form dt2 + gt on a product I ×G/H where I is an interval and gt is

a family of G-invariant metrics in G/H is called a generalized warped product metric.

We determine conditions under which there exist a reparametrization for a generalized

warped product metric such that the reparametrized metric possesses nonnegative resp.

positive curvature.

We use these results on the one hand to show Theorem 5.13 stated above. On the other

hand we use the results on reparametrizations to prove Theorem 6.5 in Chapter 6. There

we also analyze to what extent metrics on the boundary of a disc in Cheeger's construction

can even have negative curvature when taking a biinvariant metric on G and demanding

for the quotient metric to be nonnegatively curved.

Finally in Chapter 7 we put the obtained results into the context of cohomogeneity one

manifolds.
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Chapter 1

Preliminaries

1.1 Invariant Metrics on Homogeneous Manifolds

We will give a brief introduction to invariant metrics on homogeneous manifolds. A more

detailed treatment can be found in standard textbooks such as [Be], [CE] or [Pe].

A manifold M is called homogeneous if there is a Lie group K acting transitively on M .

Here we will consider left actions. Let Hp ⊂ K be the isotropy subgroup at some point

p ∈M , i. e. the elements of K �xing the point p. Since Hp is closed it is itself a Lie group.

The set K/Hp := {kHp : k ∈ K} of left cosets modulo Hp inherits a unique manifold

structure from K via the canonical projection π : K → K/Hp by the requirement that π

is smooth and that (π,K,K/Hp) is a principal Hp -bundle. Then the map α : K/Hp →M

with kHp 7→ k∗p is a di�eomorphism with respect to the unique smooth manifold structure

onK/Hp. Since the isotropy groups at di�erent points are conjugate inK, this construction

does not depend on the point p ∈M and we henceforth write K/H ∼= M

According to the identi�cation of M with K/H the left action of K on M is carried into

a transitive left action of K on K/H which can be described by di�eomorphisms.

More precisely we have a map

θ : K → Diff(K/H)

k 7→ θk ,
(1.1)

with

θk : K/H → K/H

[k1H] 7→ [kk1H] .
(1.2)

If k1 = e and k ∈ H in (1.2) we obtain that dθk is an automorphism of T[eH]K/H which
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leads to the isotropy representation

ρ : H → Aut
(
T[eH]K/H

)
.

A metric 〈 , 〉 on K/H is called K-invariant or K-homogeneous if

〈dθkv, dθkw〉[kk1H] = 〈v, w〉[k1H] ∀ v, w ∈ T[k1H]K/H , (1.3)

i.e. K is acting by isometries. If H is the trivial group this metric is nothing else than a

left invariant metric on K.

Before dealing with other characterizations and the existence of invariant metrics on ho-

mogeneous spaces we note the following.

Let 〈 , 〉 be a K-invariant metric on K/H and denote by K∗ the isometry group of

(K/H, 〈 , 〉) which by hypothesis acts transitively. Then K∗ acts e�ectively on K/H since

it is a subgroup of Diff(K/H). Let H∗ denote the isotropy group of this action so that

especially K∗/H∗ ∼= K/H. Consider the isotropy representation

ρ∗ : H∗ → O
(
T[eH]K/H

)
,

where we use the identi�cation T[eH∗]K
∗/H∗ ∼= T[eH]K/H. The image of H∗ under ρ∗

is contained O
(
T[eH]K/H

)
⊂ Aut

(
T[eH]K/H

)
since H∗ ⊂ K∗ also acts by isometries

on K/H. Moreover an isometry on a connected manifold is determined by giving its

di�erential at some point. Therefore ρ∗ is injective and we can identify H∗ with a subgroup

of O
(
T[eH]K/H

)
. By the Myers-Steenrod Theorem (cf. [Be], Theorem 1.77), K∗ is in fact

a Lie group and moreover the isotropy subgroup can be identi�ed with a closed subgroup

of O
(
T[eH]K/H

)
and therefore is compact.

Since K also acts by isometries, the image of the map θ in (1.1) is contained in K∗. If θ

is injective we can identify K with a subgroup of K∗ and the action of K on K/H is also

e�ective.

If θ is not injective, K does not act e�ectively. Then we make the following construction.

Let H0 = ker(θ) = ker(ρ). Then H0 is a normal subgroup of K which is contained in H.

So we obtain Lie groups

K̂ := K/H0 and Ĥ := H/H0 .

It follows that K̂/Ĥ is di�eomorphic toK/H and that the canonical action of K̂ on K̂/Ĥ is

e�ective. Since every non-e�ective action can be made e�ective in this manner we assume

from now on w.l.o.g. that the actions we consider are e�ective and that we can identify K
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with a subgroup of K∗.

By abuse of notation we assume from now on that K = K̂ ⊂ K∗.
For getting a K-invariant metric on K/H we propagate an inner product on T[eH]K/H

such that (1.3) is satis�ed. That is we de�ne

〈v, w〉[kH] :=
〈
dθ−1
k v, dθ−1

k w
〉

[eH]
∀ v, w ∈ T[kH]K/H . (1.4)

It follows for k ∈ H that 〈 , 〉[eH] must be invariant under the isotropy representation.

Conversely if we have an inner product on T[eH]K/H which is invariant under the isotropy

representation we get a K-invariant metric on K/H by de�ning an inner product according

to (1.4) on T[kH]K/H.

For another characterization of K-invariant metrics on K/H we make use of the canonical

identi�cation of T[eH]K/H with k / h, where h and k denote the Lie algebras of H and K

which in turn enables us to interpret the di�erential of π at the identity as the natural

projection dπ : k→ k / h. Since h is AdH -invariant so is k / h and therefore H acts naturally

on k / h via the adjoint representation. Note that for all v ∈ k and h ∈ H we have

θh(π(etv)) = θh([etvH]) = θh(θetv [eH])

= θhetv([h
−1H]) = θhetvh−1([eH])

= π(hetvh−1) .

Di�erentiating this yields

dθh(dπ(v)) = dπ(Adh(v)) ∀ v ∈ k, h ∈ H . (1.5)

Now, a K-invariant metric on K/H is determined by an inner product invariant under

the isotropy representation at [eH] as observed above. In view of (1.5) this leads to an

inner product on k / h invariant under the action of AdH . Conversely suppose that we

have an AdH -invariant inner product on k / h which leads to an inner product in T[eH]K/H

invariant under the isotropy representation. Then propagating this inner product as in

(1.4) gives rise to a well-de�ned K-invariant metric on K/H.

For being able to formulate some of the upcoming facts more compactly we give

De�nition 1.1. A homogeneous spaceK/H is called reductive, if k admits a decomposition

k = h⊕m such that AdH(m) ⊂ m.

For later references we state
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Proposition 1.2. On a reductive honogeneous space K/H, K-invariant metrics on K/H

are in 1-1 correspondence with AdH-invariant inner products on m.

The proof follows from the identi�cation of m with k / h.

Let (, ) denote an AdH -invariant inner product on k / h. As AdH acts naturally on k / h so

does adh. Then for x, y ∈ k / h and v ∈ h we have

(Adetvx,Adetvy) = (x, y) .

Di�erentiating this yields

(advx, y)+ (x, advy) = 0 .

So a AdH -invariant inner product on k / h is adv skew symmetric for all v ∈ h.

Conversely suppose that we have an adv skew symmetric inner product on k / h for all

v ∈ h. Then for x, y ∈ k / h and v ∈ h we get

(Adetvx,Adetvy) = (eadtvx, eadtvy) = (eadtvx,
∑

(tn/n!)(adv)
ny)

=
∑

((−1)n(tn/n!)(adv)
neadtvx, y) = (ead−tveadtvx, y) .

Since elements of the form etv for v ∈ h generate the identity component of H we get that

every adv skew symmetric inner product on k / h is also AdH -invariant if H is connected.

Again for later references we state

Proposition 1.3. Let H be connected. Then a homogeneous space K/H with k = h⊕m

is reductive if and only if adh(m) ⊂ m.

Here again the proof follows from the identi�cation of m with k / h.

But still the question remains when invariant metrics do exist at all. This is answered by

the following

Proposition 1.4. K/H admits a K-invariant metric if and only if AdH is compact in

GL(k).

Proof. Suppose that AdH is compact in GL(k). Let ω be a right invariant volume form on

AdH , i.e. we have R∗h−1ω(h · h1) = ω(h) for all h ∈ AdH . Such a form can be obtained

from a right invariant metric on AdH . Then for an arbitrary inner product (, ) on k we

can de�ne the inner product

〈x, y〉 :=

∫
AdH

(Adh(x),Adh(y))ω(h) (1.6)
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on k. Then 〈 , 〉 de�nes an AdH -invariant inner product on k which can be seen by the

following computation where we make use of the right invariance of ω and the fact that

Rk is a di�eomorphism for all k ∈ K . For h1 ∈ H and x, y ∈ k compute

〈Adh1(x),Adh1(y)〉 =

∫
AdH

(AdhAdh1(x),AdhAdh1(y))ω(h)

=

∫
AdH

(Adh·h1(x),Adh·h1(y))R∗
h1
−1ω(h · h1)

=

∫
AdH

(Adh(x),Adh(y))ω(h)

= 〈x, y〉 .

(1.7)

Let m be the orthogonal complement of h in k w.r.t. the metric 〈 , 〉. Then 〈 , 〉 |m is

AdH -invariant as well and by Proposition 1.2 we get the desired result.

Conversely suppose that we have a K-invariant metric 〈, 〉 on K/H. Let K∗ denote the

isometry group of (K/H, 〈, 〉) with Lie algebra k∗ and let H∗ denote the isotropy group of

some point with Lie algebra h∗. We have pointed out above that H∗ is compact. It follows

that AdH∗ is a compact subgroup of GL(k∗). So similar to what we have done above we

can de�ne a metric on k∗ which is AdH∗-invariant so its restriction to k is AdH -invariant.

Hence with respect to this metric AdH operates by isometries and it follows that it can be

identi�ed with a subgroup of O(k) from which we can deduce that its closure is compact

in GL(k).

Remark 1.5. IfK is a closed subgroup ofK∗ then the existence of aK-invariant metric on

K/H is guaranteed. Since then H is a closed subgroup of H∗ and therefore compact from

which the compactness of AdH follows and then by Proposition 1.4 we get the statement.

From now on we suppose that K is a closed subgroup of K∗.

The next Proposition links left invariant metrics on K to K-invariant metrics on K/H.

Proposition 1.6. Let K/H be a reductive homogeneous space with k = h⊕m. Then a left

invariant metric g on K induces a K-invariant metric on K/H if ge|m is AdH-invariant.

Conversely a K-invariant metric on K/H induces a left invariant metric g on K which is

also right invariant when restricted to H and for which we have m = h⊥.

Proof. That a left invariant metric g on K induces a K-invariant metric on K/H if ge|m
is AdH -invariant follows immediately from Proposition 1.2. Conversely if we have a de-

composition k = h⊕m with AdH(m) ⊂ m and a K-invariant metric on K/H then again

by Proposition 1.2 this metric leads to an AdH -invariant inner product on m. We extend

this inner product to all of k and declare h and m to be orthogonal and AdH -invariant
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on h. Then propagating this inner product leads to a left invariant metric on K which is

biinvariant when restricted to H.

For the remainder of this work let K be a compact Lie group. Then the existence of a

biinvariant metric on K or equivalently the existence of of a AdK-invariant inner product

on k is guaranteed. Since K is compact so is AdK in O(k). So we can de�ne a metric on k

as in (1.6) with AdH replaced by AdK and this metric is AdK-invariant. This follows with

an analogeous computation as in (1.7).

Remark 1.7. A left invariant metric g on K as in Proposition 1.6 with g(h,m) = 0 not

only induces a K-invariant metric on K/H but turns the canonical projection

π : K → K/H into a Riemanniann submersion with �ber type H.

To point out a geometric feature of the �bration in the previous remark we need

Proposition 1.8. Let g be a left invariant metric on K and let X,Y, Z ∈ k. Then

∇XY =
1

2
[X,Y ]− U(X,Y ) , (1.8)

where U : k× k→ k is de�ned by

2 g(U(X,Y ), Z) = g([Z,X], Y ) + g(X, [Z, Y ])

and ∇ is the Levi-Civita connection of the metric g.

Proof. By left invariance we have

0 = X g(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

0 = Y g(X,Z) = g(∇YX,Z) + g(X,∇Y Z)

0 = Z g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) .

Substracting the third equation from the sum of the �rst two and using that the Levi-Civita

connection is torsion-free we get

2 g(∇XY,Z) = g([X,Y ], Z)− g(Y, [X,Z])− g(X, [Y, Z]) ,

from which (1.8) follows.
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This leads to the following

Remark 1.9. The �bers of the �bration in in Remark 1.7 are totally geodesic.

To show this fact, let X,Y ∈ h. Then on the one hand we have [X,Y ] ∈ h since h is a Lie

algebra. On the other hand we have U(X,Y ) ∈ h. For this let Z ∈ m. Then we obtain

2 g(U(X,Y ), Z) = g([Z,X], Y ) + g(X, [Z, Y ]) = 0 ,

if and only if g is chosen as in Proposition 1.6. Since then we get [Z,X] ∈ m as well as

[Z, Y ] ∈ m. So we get ∇XY ∈ h for X,Y ∈ h and the claim follows.

For later use we state

Corollary 1.10. Let 〈 , 〉 be a K-invariant metric on K/H and let X,Y, Z ∈ m. Then

∇XY =
1

2
[X,Y ]m − U(X,Y ) , (1.9)

where U : m×m→ m is de�ned by

2 〈U(X,Y ), Z〉 = 〈[Z,X]m, Y 〉+ 〈X, [Z, Y ]m〉

and ∇ denotes the Levi-Civita connection of the metric 〈 , 〉.

Proof. Let g be left invariant metric on K which induces the metric 〈 , 〉 in accordance

with Proposition 1.6 and let ∇ denote the Levi-Civita connection of g. Then from the

general theory of Riemannian submersions we have

∇X̄ Ȳ = ∇XY +
1

2
[X̄, Ȳ ]V , (1.10)

where X,Y ∈ m and X̄, Ȳ are the corresponding horizontal lifts and the superscript V
denotes the projection onto the vertical space. Here the submersion is the projection map.

Therefore the horizontal lifts coincide with the actual elements and the vertical space is h.

Now using (1.8) yields (1.9).

For another characterization of invariant metrics on homogeneous spaces let Q denote an

AdK-invariant inner product on k and let gQ denote the induced biinvariant metric on K.

With respect to Q we have a Q-orthogonal decomposition k = h⊕m. On m de�ne the

inner product

Qψ(X,Y ) := Q(ψX, Y ) X,Y ∈ m , (1.11)
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where ψ : m → m is some Q-symmetric, positive de�nite linear map. It follows that Qψ

is AdH -invariant if and only if ψ is AdH -equivariant. So by Proposition 1.2, Qψ induces a

K-invariant metric on K/H in this case. If ψ is AdH -equivariant it follows especially that

ψ is adh-equivariant as well.

Let Ψ be a Q-symmetric extension of ψ to k with Ψ|m = ψ and arbitrary on h. Then we

especially have Ψ(h) ⊂ h. The inner product

QΨ(X,Y ) := Q(ΨX,Y ) X,Y ∈ k

ful�lls QΨ(h,m) = 0 and induces a left invariant metric gΨ on K such that by Remark 1.7

the projection map π : (K, gΨ) → (K/H, gψ) is a Riemannian submersion not depending

on the choice of the extension Ψ.

We make the following convention for the remainder of this work

Convention Let Q be some AdK-invariant inner product on k.

If it is not further speci�ed we mean a homogeneous metric on K/H induced by an inner

product as in (1.11) when writing gψ.

Similarily when writing gΨ for a left invariant metric on K we mean a metric induced by

some Q-symmetric, positive de�nite map Ψ : g→ g.

Let gψ be a K-invariant metric on K/H. Since ψ is Q-symmetric we obtain a Q-orthogonal

decomposition m = m̃1 ⊕ . . .⊕ m̃s into eigenspaces of ψ. So on these eigenspaces the inner

product Qψ inducing gψ must be a multiple of Q. Moreover since ψ is AdH -equivariant

this decomposition in fact yields an AdH -invariant decomposition of m, which in turn

provides a decomposition invariant under the action of the isotropy group via the adjoint

representation. This leads to a decomposition m = m1⊕ . . . ⊕ mr where H acts trivially

on m1 and m2, · · · ,mr are irreducible subspaces, where some eigenspaces are possibly

subsumed to yield m1 and others split further to yield the subspaces m2, . . .mr. Since by

our construction each mi, 2 ≤ i ≤ r, is contained in some eigenspace m̃j , it follows that

ψ|mi = a2
i Idmi for 2 ≤ i ≤ r . (1.12)

Restricted to m1 the metric can be arbirary.

Remark 1.11. If dim(m1) ≤ 1 the metric is determined by (1.12) for 1 ≤ i ≤ r.
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1.2 Curvature of Homogeneous Metrics

As explained in the previous chapter homogeneous metrics arise as Riemmannian submer-

sion metrics of certain left invariant metrics by means of the projection map. For the

relation between the curvature of submersion metrics and the metric on the total space we

have a formula due to O'Neill

Theorem 1.12 (B. O'Neill). Let π : (B, ḡ) → (M, g) be a Riemannian submersion, then

we have

Rg
(
X,Y ;Y,X

)
= Rḡ

(
X̄, Ȳ ; Ȳ , X̄

)
+

3

4

∥∥[X̄, Ȳ ]V
∥∥2

ḡ
, (1.13)

where Rg denotes the curvature tensor of g, Rḡ the curvature tensor of ḡ, X̄, Ȳ are the

horizontal lifts of X,Y ∈ X(M) and the superscript V denotes the projection onto the

vertical part.

The expression 3
4

∥∥[X̄, Ȳ ]V
∥∥2

ḡ
is called O'Neill term.

From Theorem 1.12 it follows that a homogeneous metric on K/H has nonnegative cur-

vature if the left invariant metric on K inducing the homogeneous metric by means of the

canonical projection has.

For computing the curvature of a left invariant metric gΨ on K we use a result of Püttmann

which is stated in the next

Theorem 1.13 (cf. [Pü], p. 344). Let gΨ be a left invariant metric on K. Denote the

curvature tensor of gΨ by RgΨ. Then we have

RgΨ
(
X,Y ;Y,X

)
=

1

2
Q
(
[X,ΨY ] + [ΨX,Y ], [X,Y ]

)
− 3

4
Q
(
Ψ[X,Y ], [X,Y ]

)
+

1

4
Q
(
[X,ΨY ]− [ΨX,Y ],Ψ−1

(
[X,ΨY ]− [ΨX,Y ]

))
−Q

(
[X,ΨX],Ψ−1[Y,ΨY ]

)
,

(1.14)

where X,Y ∈ k.

Using (1.13) and (1.14) we can give a formula for the cuvature of a homogneous metric

Corollary 1.14. Let gψ be a homogeneous metric on K/H and let gΨ be a left invariant

metric on K inducing gψ by means of the projection map. Then we have

Rgψ
(
X,Y ;Y,X

)
=RgΨ

(
X̄, Ȳ ; Ȳ , X̄

)
+

3

4
Q
(
Ψ[X̄, Ȳ ]h , [X̄, Ȳ ]h

)
=RgΨ

(
X,Y ;Y,X

)
+

3

4
Q
(
Ψ[X,Y ]h , [X,Y ]h

)
,
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where X,Y ∈ m and X̄, Ȳ ∈ m are the corresponding horizontal lifts for which we have

X̄ = X and Ȳ = Y since the di�erential of the projection map is the identity and
3
4 Q
(
Ψ[X,Y ]h, [X,Y ]h

)
is the O'Neill term because the vertical space of the projection map

is h. Replacing RgΨ
(
X,Y ;Y,X

)
with (1.14) gives an explicit formula for Rgψ

(
X,Y ;Y,X

)
.

Remark 1.15. The curvature formula given in Corollary 1.13 does not depend on the

choice of the extension Ψ. This can be seen as follows.

Adding the second line of (1.14) and the O'Neill term gives

− 3

4
Q
(
Ψ[X,Y ], [X,Y ]

)
+

3

4
Q
(
Ψ[X,Y ]h , [X,Y ]h

)
=

3

4
Q
(
Ψ[X,Y ]m, [X,Y ]m

)
=

3

4
Q
(
ψ[X,Y ]m, [X,Y ]m

)
.

Since Ψ is adh-equivariant we obtain

[ΨX,Z] = Ψ[X,Z] ∀ X ∈ m , Z ∈ h .

From this we deduce for all X,Y ∈ m and Z ∈ h,

Q
(
[ΨX,Y ], Z

)
= −Q

(
Y, [ΨX,Z]

)
= −Q

(
Y,Ψ[X,Z]

)
= Q

(
[X,ΨY ], Z

)
,

Therefore we have

[ΨX,Y ]h − [X,ΨY ]h = 0 ∀ X,Y ∈ m

and

[ΨX,X]h = 0 ∀ X ∈ m .

So the claim follows.

We compute the curvature just for a special case of homogeneous metrics which will su�ce

for our purpose.

Suppose that we have an underlying chain of Lie groups

H ⊂ K1 ⊂ K2 ⊂ . . . ⊂ Kr = K

and the induced Q-orthogonal decomposition

m = m1⊕ . . .⊕mr , (1.15)
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such that the Lie algebra ki of Ki is given by

ki = h⊕m1⊕ . . .⊕mi for 1 ≤ i ≤ r .

De�ne the following expressions which will be used throughout the text

Bij
k := [Xi, Yj ]k + [Xj , Yi]k and Bij :=

∑
0≤k≤r

Bij
k for 1 ≤ i, j ≤ r, i 6= j, 0 ≤ k ≤ r

Bi
k := [Xi, Yi]k and Bi :=

∑
0≤k≤r

Bi
k for 1 ≤ i ≤ r, 0 ≤ k ≤ r ,

where the subscript on X resp. Y denotes from which mi it is from and the subscript on

the bracket denotes the mk-part of the bracket if 1 ≤ k ≤ r and the h-part of the bracket

if k = 0. Due to the ad-skew-symmetry of Q we obtain immediately

Bij
k = 0 for i < j and j 6= k ,

Bi
k = 0 for k > i .

Furthermore we suppose that the metric on K/H is diagonal with respect to (1.15). We

set

ψ|mi := a2
i Id for 1 ≤ i ≤ r . (1.16)

In this situation we say that the homogeneous metric gψ induced by ψ has the parameters

(a2
1, a

2
2, . . . , a

2
r). We are going to compute Rgψ(ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X) rather than

Rgψ(X,Y ;Y,X) because this will be needed later. The actual computations can be found

in the appendix. Here we just give the result

Lemma 1.16. Let a chain of Lie groups be given and let ψ be de�ned as in (1.16). Then

we have

Rgψ
(
ψ−1X,ψ−1Y, ψ−1Y, ψ−1X

)
=

∑
1≤i≤r

a−6
i

∥∥Bi
0

∥∥2
+

∑
1≤i<j≤r

a−4
j a−2

i

(
3− a2

i a
−2
j

)
Q
(
Bi

0, B
j
0

)
+

1

4
a−6
r

∥∥Br
r +

∑
1≤i<r

Bir
∥∥2

+
1

4

∑
1≤k≤r−1

a−6
k

∥∥Bk
k +

∑
1≤i<k

Bik
∥∥2

+
1

4

∑
1≤k<i≤r

a−6
i

(
4− 3a2

ka
−2
i

)∥∥Bi
k

∥∥2

+
1

2

∑
1≤k<j≤r

a−4
j a−2

k

(
3− 2 a2

ka
−2
j

)
Q
(
Bj
k, B

k
k +

∑
1≤i<k

Bik
)

+
1

2

∑
1≤k<i<j≤r

a−4
j a−2

i

(
6− 3 a2

ka
−2
i − 2 a2

i a
−2
j

)
Q
(
Bi
k, B

j
k

)
.

11



Remark 1.17. For ψ = Id this is the well-known formula

RgQ
(
X,Y, Y,X

)
=

1

4

∥∥[X,Y ]
∥∥2

+
3

4

∥∥[X,Y ]h
∥∥2

for the unnormalized curvature of a normal homogeneous metric.

For r = 2 we obtain

Rgψ
(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
= a−6

1

∥∥B1
0

∥∥2
+ a−4

2 a−2
1

(
3− a2

1a
−2
2

)
Q
(
B1

0 , B
2
0

)
+ a−6

2

∥∥B2
0

∥∥2
+

1

4
a−6

2

∥∥B2
2 +B12

∥∥2

1

4

(
a−6

1

∥∥B1
1

∥∥2
+ 2 a−2

1 a−4
2

(
3− 2 a2

1a
−2
2

)
Q
(
B1

1 , B
2
1

)
+ a−6

2

(
4− 3 a2

1a
−2
2

)∥∥B2
1

∥∥2
)

=
1

4

(
3 a2

1

∥∥a−4
1 B1

0 + a−4
2 B2

0

∥∥2
+ a−6

1

∥∥B1
∥∥2

+ a−6
2

∥∥B2
2 +B12

∥∥2

+ 2 a−2
1 a−4

2

(
3− 2 a2

1a
−2
2

)
Q
(
B1, B2

)
+ a−6

2

(
4− 3 a2

1a
−2
2

)∥∥B2
0 +B2

1

∥∥2
)
.

(1.17)

Remark 1.18. The last two lines give exactly the formula of Proposition 3.1 in [STu]

when twisting is used there.

For the rest of the chapter let a triple of Lie groups H ⊂ K1 ⊂ K be given. This case has

been extensively studied in [STa1]. The following theorem can be found there. The proof

presented there uses a power series expansion for the unnomalized curvature whereas the

one presented here just uses the formula in (1.17).

Theorem 1.19 (cf.[STa1], Thm 0.1). Consider the homogeneous metric gψ on K/H with

ψ|m1 := (1 + a) id and ψ|m2 := id .

Then gψ has nonnegative curvature for small a > 0 i� there exists a C > 0 such that

∥∥B1
1

∥∥ ≤ C ∥∥[X,Y ]
∥∥ ∀X,Y ∈ m . (1.18)

In fact if (K1, H) is a symmetric pair, i.e. B1
1 = 0 then gψ has nonnegative curvature for

a ≤ 1/3.

Proof. For the proof we consider elements of the form

X = (1 + a)−1X1 +X2 and Y = (1 + a)−1Y1 + Y2 .
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The unnormalized curvature in (1.17) evaluated for ψX and ψY yields

R(X,Y ;Y,X) =
1

(1 + a)3

∥∥B1
0

∥∥2
+

2− a
1 + a

Q
(
B1

0 , B
2
0

)
+
∥∥B2

0

∥∥2

︸ ︷︷ ︸
=:I0

+
1

4

∥∥B2
2 +B12

∥∥2︸ ︷︷ ︸
=:I2

+
1

4

(
1

(1 + a)3

∥∥B1
1

∥∥2
+ 2

1− 2a

1 + a
Q
(
B1

1 , B
2
1

)
+ (1− 3a)

∥∥B2
1

∥∥2
)

︸ ︷︷ ︸
=:I1

.

Clearly I2 is nonnegative. For I0 we claim that

I0 −
1

8

∥∥B0
1 +B2

0

∥∥2 ≥ 0 . (1.19)

For this observe that the discriminant

4 ·
(

1

(1 + a)3
− 1

8

)
·
(

1− 1

8

)
−
(

2− a
1 + a

− 1

4

)2

= −
(2a− 3

2)a2

(1 + a)3

is nonnegative if a ≤ 3
4 . In particular I0 is nonnegative.

By the Cauchy-Schwarz inquality we have

−
∥∥B1

1

∥∥∥∥B2
1

∥∥ ≤ Q
(
B1

1 , B
2
1

)
≤
∥∥B1

1

∥∥∥∥B2
1

∥∥ .
If Q

(
B1

1 , B
2
1

)
is nonegative then it follows immediately that I1 is nonnegative for su�ciently

small a.

If

−
∥∥B1

1

∥∥∥∥B2
1

∥∥ q ≤ Q
(
B1

1 , B
2
1

)
< 0 with q2 ≤ 1− 3a

(1− 2a)(1 + a)

we have

4(1− 3a)

(1 + a)3
− q2 4(1− 2a)2

(1 + a)2
≥ 0 .

So I1 is nonnegative in this case.

The last case is

−
∥∥B1

1

∥∥∥∥B2
1

∥∥ ≤ Q
(
B1

1 , B
2
1

)
< −

∥∥B1
1

∥∥∥∥B2
1

∥∥ q with q2 ≤ 1− 3a

(1− 2a)(1 + a)
.

Observe that for su�ciently small a, q is arbitrarily close to 1. This in turn implies that for
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su�ciently small a we have that B1
1 is arbitrarily close to −B2

1 which ensures the estimate

∥∥B1
1 +B2

1

∥∥ ≤ 1

2C2

∥∥B1
1

∥∥ .
Therefore by using the assumption we can perform∥∥B1

1

∥∥2 ≤ C2
∥∥[X,Y ]

∥∥2
= C2

(∥∥B1
0 +B2

0

∥∥2
+
∥∥B1

1 +B2
1

∥∥2
+
∥∥B2

2 +B12
∥∥2
)

≤ C2
(∥∥B1

0 +B2
0

∥∥2
+
∥∥B2

2 +B12
∥∥2
)

+
1

2

∥∥B1
1

∥∥2
.

(1.20)

Moreover it can be checked that we have the estimate

I1 ≥
1− 3a− (1− 2a)2(1 + a)

4(1− 3a)(1 + a)3︸ ︷︷ ︸
=:g(a)

∥∥B1
1

∥∥2
.

Here g is a negative valued function with g(0) = 0. By using this, (1.19) and (1.20) we

obtain

R(X,Y ;Y,X) ≥ 1

8

∥∥B0
1 +B2

0

∥∥2
+ g(a)

∥∥B1
1

∥∥2
+

1

4

∥∥B2
2 +B12

∥∥2

≥
( 1

8
+ 2C2g(a)

)∥∥B0
1 +B2

0

∥∥2
+
( 1

4
+ 2C2g(a)

)∥∥B2
2 +B12

∥∥2
.

Thus choosing a small enough such that 1
8 + 2C2g(a) ≥ 0 we obtain the desired result.

The supplementary statement in the Theorem follows since I0 and I2 are nonnegative as

mentioned above and the coe�cient of
∥∥B2

1

∥∥ is nonnegative for a ≤ 1
3 . The remaining

terms vanish since B1
1 = 0 for symmetric pairs.

As the proof suggests one can in general not hope for a metric gΨ on K inducing a homo-

geneous metric on K/H as in Theorem 1.19 ful�lling (1.18) to have nonnegative curvature

as well because the O'Neill tensors contribution to the curvature is essential in the proof.

In fact gΨ does not even have nonnegative curvature for planes contained in m (cf. [S1]).

Nevertheless we have

Theorem 1.20 (cf.[STa1], Prop. 4.2). Consider the homogeneous metric gψ on K/H with

ψ|m1 arbitrary and ψ|m2 := id .

Then gψ has nonnegative curvature for ψ|m1 su�ciently close to id if there exists a C > 0
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such that

∥∥Xm1 ∧ Ym1

∥∥ ≤ C∥∥[X,Y ]
∥∥ ∀X,Y ∈ m . (1.21)

In fact, if (1.21) is ful�lled then every left invariant metric gΨ on K which induces gψ by

means of the canonical projection has nonnegative curvature for all planes contained in m.

Remark 1.21. Note that (1.21) implies (1.18).

The proof of Theorem 4 presented in [STa1] is carried out by using a power series expansion

for the unnormalized curvature in the case when there is an inverse linear path between a

normal homogeneous metric and the metric in case. Here a path is called inverse linear if

the inverses of a path between metric inducing linear maps form a straight line.

The power series used there is a result of adding the O'Neill term coming from the projec-

tion map to the power series expansion of the unnormalized curvature of a left invariant

metric on K �rst developed in [HT]. In fact the same power series was also used in [STa1]

to prove Theorem 1.19.
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Chapter 2

Cheeger's Construction

In the upcoming we are going to describe Cheeger's construction introduced in [C].

Let G be a Lie group and K ⊂ G a compact Lie subgroup acting isometrically on a

Riemannian manifold (M, gM ) from the left. Let G be equipped with a left invariant

metric 〈 , 〉 which is also right invariant under K, i.e. 〈 , 〉 is biinvariant restricted to K.

Then K acts isometrically on G×M via the diagonal action

k ∗ (g, p) := (gk−1, k · p) . (2.1)

Especially this action is free and automatically properly discontinuous since K is compact,

so that the quotient G×K M modulo this action is a manifold.

Let g̃ denote the inherited metric on G×K M such that the canonical submersion

π :
(
G×M, 〈 , 〉 ⊕ gM

)
→
(
G×K M, g̃

)
(2.2)

becomes a Riemannian submersion. Then the metric g̃ is G-invariant w.r.t. the canonical

action of G on G×K M given by

g ∗ [g1, p] := [gg1, p] (2.3)

and the codimension of a principal orbit of this action equals the codimension of a principal

orbit of the action of K on M .

Before pointing out a geometric feature of the submersion in (2.2) we need

Lemma 2.1. Let π : (M, ḡ) → (B, g) be a Riemannian submersion and let S ⊂ B be a

submanifold. If S̄ := π−1(S) ⊂M is totally geodesic then S is totally geodesic as well.

Proof. Let ∇ resp. ∇ denote the Levi-Civita connection of (M, ḡ) resp. (B, g) and let
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X,Y ∈ TS with horizontal lifts X̄, Ȳ ∈ T S̄. Then by (1.10) we have

∇XY = (∇X̄ Ȳ )H .

Since S̄ is totally geodesic it follows that ∇X̄ Ȳ ∈ T S̄. Therefore we get ∇XY ∈ T S̄ and

consequently ∇XY ∈ TS, that is S ⊂ B is totally geodesic.

The previous Lemma can be used for the proof of

Proposition 2.2. The map (G ×K M, g̃) → (G/K, 〈 , 〉) given by (g, p) 7→ gK is a �ber

bundle with �ber M . Moreover, it is a Riemannian submersion with totally geodesic �bers.

Here by abuse of notation we denote the metric on G/K induced by 〈 , 〉 by the same symbol.

Proof. Observe that G ×K M is the total space of the associated �ber bundle M ↪→
G ×K M → G/K to the principal K-bundle K ↪→ G → G/K. Furthermore with the

metrics considered the �bers of K ↪→ G → G/K are totally geodesic (cf. Remark 1.9).

Due to the left invariance of the metric on G, the manifolds gK are totally geodesic as well.

Therefore the manifolds gK ×M ⊂ G ×M are totally geodesic since we have a product

metric on G ×M . Moreover the preimage of a �ber of M ↪→ G ×K M → G/K under π

can be identi�ed with a submanifold of the form gK ×M ⊂ G×M . Therefore the �bers

are totally geodesic by Lemma 2.1.

A special situation in the above construction comes into light if M = V is a vector space

of dimension n + 1 and K acts transitively on the unit sphere Sn1 in V by means of a

representation K → O(V ). In what follows we assume by abuse of language that K itself

acts on V . It is no obstruction to assume that K acts by orthogonal transformations since

in [MS] it is shown that transitive actions on spheres are by linear transformations. A

vector bundle of the form

T := G×K V → G/K (2.4)

with the properties described above is called a homogeneous vector bundle. As we assume

K to act transitively on the unit sphere in V it leaves all spheres centered at the origin

invariant.

Furthermore the norm function rV : V → R+, v 7→ ‖v‖ is K-invariant and hence induces

a well-de�ned function rT : T → R+, K(g, v) 7→ ‖v‖. For R ∈ R+ de�ne TR by

T ⊃ TR := G×K BR(0) = r−1
T ([0, R]) ,

where BR(0) denotes the closed ball of radius R in V . T in (2.4) replaced by TR is called

homogeneous disc bundle. The level sets of rT are precisely the G-orbits of T which in
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view of (2.3) is clear.

We write the sphere as a homogeneous space as K/H where H ⊂ K is the stabilizer

of some point p ∈ Sn. By the map G/H → G ×K K/H, gH 7→ [g, eH] with inverse

G ×K K/H → G/H, [g, kH] 7→ gkH we have o� the 0-section an identi�cation of the

G-Orbits of T with G/H.

This identi�cation map associates to the isometries in (2.3) the usual action map of G on

G/H by left translations which are therefore isometries as well. That is, the metric on

G/H is homogeneous.

Moreover we get that G×K (BR(0) \{0}) is G-equivariantly di�eomorphic to (0, R]×G/H
w.r.t. to these actions.

From now on let G be a compact Lie group so that the existence of a biinvariant metric is

guaranteed. Let Q be an AdG-invariant inner product on the Liealgebra g of G and denote

the induced biinvariant metric by gQ. We �x a Q-orthogonal decomposition

g = h⊕ p = h⊕m⊕ s = k⊕ s ,

where h resp. k are the Lie algebras of H resp. K.

On V = [0,∞)×K/H we consider a metric which in polar coordinates can be written in

the form

gV = dr2 + gψ(r) . (2.5)

We call a metric of this form a generalized warped product metric. The gψ(r) constitute

a one-parameter-family of K-invariant metrics on K/H ∼= Sn which arise by propagating

inner products Qψ(r)(X,Y ) := Q(ψ(r)X,Y ) on m according to (1.4), where ψ : m → m

are Q-symmetric, positive de�nite, AdH -equivariant maps. As we have pointed out in

the previous chapter there is a one-to-one correspondence between K-invariant metrics on

K/H ∼= Sn and these maps ψ(r). In addition we demand for ψr to depend smoothly on r

and to be of the form dr2 + f(r)2 gcan on [0, ε) ×K/H for some ε > 0 and some smooth

function f : [0, ε) → R where gcan denotes the round metric on the sphere. Then the

metric in (2.5) is smooth i� f(0) = 0 and f ′(0) = 1 (see [GZ2]). In fact the submersion

metric on TR is smooth if the metric in (2.5) is smooth.

Furthermore we identify m with TpS
n via action �elds,

m 3 X 7→ X∗(p) =
d

dt

∣∣∣
t=0

exp(tX)(p) ∈ TpSn .

Before stating the next lemma we underline that G-invariant metrics on the G-orbits of

T which are di�eomorphic to G/H are in one-to-one correspondence with Q-symmetric,

positive de�nite, AdH -equivariant maps φ : p→ p.
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Lemma 2.3. Let TR → G/K be a homogeneous disc bundle. Let gϕ be a left invariant

metric on G which is induced by a Q-symmetric, positive de�nite, AdK-equivariant map

ϕ : g→ g. Furthermore let gV be a K-invariant metric on V as in (2.5) and let ϕ|m◦ψ(t) =

ψ(t) ◦ϕ|m for all t ∈ [0, R]. Then the metric on the G-orbit r−1
T (t0) induced by means of a

Riemannian submersion

π : (G× (BR(0) \{0}), gϕ ⊕ (dt2 + gψ(t)))→ ((0, R]×G/H, dt2 + gφ(t))

is induced by the map φ : p→ p given by

φ(t0)|m = ϕ|m ψ(t0) (ϕ|m + ψ(t0))−1 , and φ(t0)|s = ϕ|s ,

and we have

gφ(t0)(m, s) = 0 .

Proof. We decompose X ∈ g as X = Xh + Xm + Xs where the subscripts denote the

projection onto the corresponding parts. To determine the vertical space V, that is the
tangent space to the �ber at the point (g, p) ∈ G× Snt0 we have to compute for X ∈ k

d

ds

∣∣∣
s=0

exp(sX)(g, p) =
( d

ds

∣∣∣
s=0

g exp(−sX),
d

ds

∣∣∣
s=0

(
exp(sX)p

))
=
( d

ds

∣∣∣
s=0

Lg(exp(−sX)), X∗m

)
=
(
− dLg(X), X∗m

)
=
(
−Xg, X

∗
m

)
,

where X∗m denotes the action �eld of Xm ∈ m. So

V(e,p) = {(Xh, 0) |Xh ∈ h} ⊕ {(−Xm, X
∗
m) |Xm ∈ m} .

To determine the horizontal space H(e,p) let (Y, V ) ∈ T(e,p)

(
G× Snt0

)
and compute

(
gϕ + gψ(t0)

)(
(−X,X∗m), (Y, V )

)
= gϕ(−Xh, Yh) + gϕ(−Xm, Ym) + gϕ(0, Ys) + gψ(t0)(X

∗
m, V )

= Q(−ϕ|hXh, Yh) +Q(0, ϕ|sYs) +Q(Xm, ψ(t0)V − ϕ|mYm) .

So we obtain

H(e,p) = {(Xs, 0) |Xs ∈ s} ⊕ {(ψ(t0)Xm, (ϕ|mXm)∗) |Xm ∈ m} .

In order to give the horizontal lift of a tangent vector X = Xm + Xs ∈ m⊕ s = p ∼=

19



T[eH]G/H we observe that

dπ((Xs, 0)) = Xs, and dπ((ψ(t0)Xm, (ϕ|mXm)∗)) = (ϕ|m + ψ(t0))Xm .

So one can check that the horizontal lift is

X̄ =
(
ψ(t0)(ϕ|m + ψ(t0))−1Xm +Xs , (ϕ|m(ϕ|m + ψ(t0))−1Xm)∗

)
.

Therewith π becomes a Riemannian submersion we get for Xm +Xs , Ym + Ys ∈ m⊕ s

gφ(t0)(Xs, Ys) = gϕ(Xs, Ys)

gφ(t0)(Xs, Ym) = 0

gφ(t0)(Xm, Ym) =
(
gϕ + gψ(t0)

) (
X̄, Ȳ

)
=
(
gϕ + gψ(t0)

)((
ψ(t0)(ϕ|m + ψ(t0))−1Xm, ϕ|m(ϕ|m + ψ(t0))−1X∗m

)
,(

ψ(t0)(ϕ|m + ψ(t0))−1Ym, ϕ|m(ϕ|m + ψ(t0))−1Y ∗m
))

= Q
(
ϕ|mψ(t0)(ϕ|m + ψ(t0))−1Xm, ψ(t0)(ϕ|m + ψ(t0))−1Ym

)
+Q

(
ϕ|mψ(t0)(ϕ|m + ψ(t0))−1Xm, ϕ|m(ϕ|m + ψ(t0))−1Ym

)
= Q

(
ϕ|mψ(t0)(ϕ|m + ψ(t0))−1Xm, Ym

)
,

from which the statements in the Lemma follow.

Remark 2.4. We especially have the following geometric feature for the metrics in Lemma 2.3.

For all t ∈ (0, R] the �bers of the homogeneous �bration

(K/H, gψ(t)) ↪→ (G/H, gφ(t))→ (G/K, gϕ)

are totally geodesic (cf. [BB]). We can prove this fact by using Corollary 1.10. The proof

itself is analogeous to that of Remark 1.9.

For the unnormalized curvature for a special form of a metric as in the previous lemma we

have

Proposition 2.5. Consider a submersion metric as in 2.3 with ϕ|m = c Id. Let Rgϕ denote

the curvature tensor of the metric gϕ and let Rgψ denote the curvature tensor of the metric
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gψ. Then for all X,Y ∈ m we have

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=Rgϕ

(
ϕ−1X,ϕ−1Y ;ϕ−1Y, ϕ−1X

)
+Rgψ

(
ψ−1Xm, ψ

−1Ym;ψ−1Ym, ψ
−1Xm

)
+

3

4
Q
(
(c+ ψ)−1

(
cBϕ

m +Aψm − ψBψ
m

)
, cBϕ

m +Aψm − ψBψ
m

)
+

3

4
c
∥∥Bϕ

h + c−1Aψh
∥∥2
,

(2.6)

where we use the abbreviations

Aϕ :=
[
ϕ−1X,Y

]
+
[
X,ϕ−1Y

]
Aψ :=

[
ψ−1Xk, Yk

]
+
[
Xk, ψ

−1Yk
]
∈ k

Bϕ :=
[
ϕ−1X,ϕ−1Y

]
Bψ :=

[
ψ−1Xk, ψ

−1Yk
]
∈ k

Cϕ :=
[
ϕ−1X,Y

]
−
[
X,ϕ−1Y

]
∈ s Cψ :=

[
ψ−1Xk, Yk

]
−
[
Xk, ψ

−1Yk
]
∈ k

The actual computations for verifying the validity of the formula given in Proposition 2.5

can be found in the appendix.

Remark 2.6. We work with twisting, i.e. we consider elements of the form φ−1X, φ−1Y as

in Proposition 2.5 rather than X,Y because the horizontal lifts can be handled much easier

when twisting is used. For a more detailed treatment of this feature see the appendix.
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Chapter 3

Cheeger Deformations

An important special case of Cheeger's construction as in (2.2) occurs if we take K = G

because then Cheeger's construction gives a deformation of the initial G-invariant metric

on M which is also G-invariant.

To make this process more precise let Q be an AdG-invariant inner product on the Lieal-

gebra g of G and denote the induced biinvariant metric by gQ. We consider the diagonal

action of G on G×M as in (2.1). By the map {e} ×M → G×GM , (e, p) 7→ G(e, p) with

inverse G×GM → {e}×M , G(g, p) 7→ (e, g(p)) we have an identi�cation of G×GM with

M ∼= {e} ×M .

Especially the composition of the submersion as in (2.2) and the di�eomorphism between

G×GM and M is nothing else than the usual action map of the G-action on M .

Legitimated by this construction we give

De�nition 3.1. Let (M, g) be a Riemannian manifold and let the situation be as above.

Then for t > 0, the metric gt on M for which the action map

(
G×M, t−1gQ ⊕ g

)
→
(
M, gt

)
becomes a Riemannian submersion is called a Cheeger deformation of g.

The next proposition states some properties of Cheeger deformations

Proposition 3.2 (cf. [S2], Proposition 2.2). Let g be a G-invariant metric on M and let

gt be the Cheeger deformation of g for t > 0.

1. lim
t→0

gt = g

2. If M = G/H is a homogeneous space with a G-invariant metric g then lim
t→∞

tgt = gQ
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Proof. Let p ∈M . Decompose the tangent space of M in p orthogonally w.r.t. g as

Tp(G · p)⊕ Sp ,

where G · p is the G-orbit through p.
Let H ⊂ G be the stabilizer of p, so that G · p = G/H. Consider the Q-orthogonal

decomposition g = h⊕m and write g 3 X = Xh + Xm, where Xh resp. Xm are the

projections onto h resp. m. We have the identi�cation m ∼= Tp(G · p) via action �elds

m 3 X 7→ X∗(p).

Let ϕ : m→ m be the Q-symmetric, positive de�nite, AdH - equivariant map such that

g
(
X∗(p), Y ∗(p)

)
= Q(ϕX, Y ) .

With analogeous computations as in the proof of Lemma 2.3 we get

V(e,p) =
{(
−X,X∗m(p)

) ∣∣Xm ∈ m
}
.

and

H(e,p) =
{(
ϕXm,

(
t−1Xm

)∗
(p)
) ∣∣Xm ∈ m

}
⊕ Sp .

Therefore we get for the horizontal lift of X∗(p),

(
ϕ
(
t−1 + ϕ

)−1
Xm,

(
t−1
(
t−1 + ϕ

)−1
Xm

)∗
(p)
)
.

So we obtain

gt|Sp = g|Sp , gt
(
Sp, Tp(G · p)

)
= 0, gt

(
X∗(p), Y ∗(p)

)
= Q

(
ϕ (tϕ+ 1)−1X,Y

)
. (3.1)

From this the statements in the proposition follow.

Remark 3.3. In view of 1. in Proposition 3.2 we will allow t for technical reasons in the

de�nition of Cheeger deformations to be 0. In this case the initial metric on M will stay

unchanged.

Next we are going to deal with the question when it is possible to apply a Cheeger de-

formation to a G-invariant metric on a homogeneous space G/H such that the Cheeger

deformed metric is nonnegatively curved.

We use the same notions as in the previous chapter. Here we have s = 0 and a Riemannian
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submersion

π :
(
G×G/H, t−1gQ ⊕ gψ

)
→
(
G/H, gφ

)
.

We are going to use the same abbreviations as in Proposition 2.5 and write A,B,C instead

of Aψ, Bψ, Cψ since here we just have one unspeci�ed map ψ. For the unnormalized

curvature of gφ we have according to Proposition 2.5

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

4
t3 ‖[X,Y ]‖2 +Rgψ

(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
(3.2)

+
3

4
t2Q

((
t−1 + ψ

)−1(
[X,Y ]m + t−1Am − t−1ψBm

)
, [X,Y ]m + t−1Am − t−1ψBm

)
+

3

4
t3
∥∥[X,Y ]h + t−1Ah

∥∥2
,

where X,Y ∈ m.

If [X,Y ] = 0, Ah = 0 and Am = ψBm all the terms coming from the Cheeger deformation

in (3.2) vanish. Moreover for Rgψ which is invariant under Cheeger deformations we obtain

in this case

Rgψ
(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
=

1

2
Q(A,B)− 3

4
Q(ψBm, Bm) +

1

4
Q
(
C,ψ−1C

)
−Q

([
ψ−1X,X

]
, ψ−1

[
ψ−1Y, Y

])
(3.3)

=
1

4
Q
(
Cm, ψ

−1Cm

)
− 1

4
Q
(
Am, ψ

−1Am

)
−Q

([
ψ−1X,X

]
, ψ−1

[
ψ−1Y, Y

])
,

where the h-part of C vanishes as shown in Remark 1.15. Moreover by using the de�nitions

of A and C we get by calculation

1

4
Q
(
Cm, ψ

−1Cm

)
− 1

4
Q
(
Am, ψ

−1Am

)
=

1

4
Q
([
ψ−1X,Y

]
m
−
[
X,ψ−1Y

]
m
, ψ−1

([
ψ−1X,Y

]
m
−
[
X,ψ−1Y

]
m

))
− 1

4
Q
([
ψ−1X,Y

]
m

+
[
X,ψ−1Y

]
m
, ψ−1

([
ψ−1X,Y

]
m

+
[
X,ψ−1Y

]
m

))
= −Q

([
ψ−1X,Y

]
m
, ψ−1

[
X,ψ−1Y

]
m

)
.

Taking (3.3) into account we see that

−Q
([
ψ−1X,Y

]
, ψ−1

[
X,ψ−1Y

])
−Q

([
ψ−1X,X

]
, ψ−1

[
ψ−1Y, Y

])
≥ 0
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is necessary for secgφ ≥ 0 for all X,Y ∈ m. Nevertheless this need not to be su�cient.

The next theorem gives an equivalent condition to the existence of a c > 0 such that

secgφ ≥ 0 for all X,Y ∈ m.

Theorem 3.4. There exists a Cheeger deformation of a homogeneous metric gψ on G/H

into a metric with nonnegative curvature if and only if there exists a constant r, such that

for all X,Y ∈ m

Rgψ
(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
≥ −r

(
‖[X,Y ]‖2 + ‖Ah‖2 + ‖Am − ψBm‖2

)
(3.4)

holds.

Proof. We have to show that (3.4) is equivalent to the nonnegativity of (3.2).

To see that (3.4) is su�cient for nonnegative curvature we �rst observe that there is a

constant c1 > 0 such that

Q
(
(t−1 + ψ)−1

(
[X,Y ]m + t−1Am − t−1ψBm

)
, [X,Y ]m + t−1Am − t−1ψBm

)
≥ c1t

∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2

and that we can write

1

4

∥∥[X,Y ]h
∥∥2

+
3

4

∥∥[X,Y ]h + t−1Ah

∥∥2

=
19

100

∥∥[X,Y ]h
∥∥2

+
∥∥∥ 9

10
[X,Y ]h +

5

6
t−1Ah

∥∥∥2
+

1

18
t−2
∥∥Ah

∥∥2
.

So

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
≥ t3

(
t−3Rgψ

(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
+

1

4

∥∥[X,Y ]m
∥∥2

+
19

100

∥∥[X,Y ]h
∥∥2

+
∥∥∥ 9

10
[X,Y ]h +

5

6
t−1Ah

∥∥∥2
+

1

18
t−2
∥∥Ah

∥∥2

+
3

4
c1

∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2
)

= t3
(
t−3Rgψ

(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
+

1

4

∥∥[X,Y ]m
∥∥2

+
19

100

∥∥[X,Y ]h
∥∥2

+
∥∥∥ 9

10
[X,Y ]h +

5

6
t−1Ah

∥∥∥2
+

1

18
t−2
∥∥Ah

∥∥2

+
3

4
c1

∥∥[X,Y ]m
∥∥2

+
3

2
c1Q

(
λ−1[X,Y ]m, λt

−1(Am − ψBm)
)

+
3

4
c1t
−2
∥∥Am − ψBm

∥∥2
)
.
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Applying the parallelogram inequality we get

3

2
c1Q

(
λ−1[X,Y ]m, λt

−1(Am − ψBm)
)
≥ −3

4
c1λ
−2
∥∥[X,Y ]m

∥∥2 − 3

4
c1λ

2t−2
∥∥Am − ψBm

∥∥2
.

Leaving out the nonnegative term
∥∥ 9

10 [X,Y ]h + 5
6 t
−1Ah

∥∥2
and using (3.4) we can state

that Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
is greater or equal to

t3
(
−rt−3

( ∥∥[X,Y ]
∥∥2

+
∥∥Ah

∥∥2
+
∥∥Am − ψBm

∥∥2 )
+
( 1

4
+

3

4
c1

)∥∥[X,Y ]m
∥∥2

+
19

100

∥∥[X,Y ]h
∥∥2

+
1

18
t−2
∥∥Ah

∥∥2

− 3

4
c1λ
−2
∥∥[X,Y ]m

∥∥2 − 3

4
c1λ

2t−2
∥∥Am − ψBm

∥∥2
+

3

4
c1t
−2
∥∥Am − ψBm

∥∥2
)

≥ t3
(( 1

18
t−2 − rt−3

)∥∥Ah

∥∥2
+
( 19

100
− rt−3

)∥∥[X,Y ]h
∥∥2

+
( 1

4
+

3

4
c1

(
1− λ−2

)
− rt−3

)∥∥[X,Y ]m
∥∥2

+
( 3

4
c1t
−2
(
1− λ2

)
− rt−3

)∥∥Am − ψBm

∥∥2
)
.

So for an appropriate choice of λ and a su�ciently large t nonnegativity can surely be

achieved.

Now suppose that we have nonnegative curvature but (3.4) does not hold. Then there are

sequences rn →∞, Xn → X and Yn → Y such that for all n ∈ N we have

Rgψ
(
ψ−1Xn, ψ

−1Yn;ψ−1Yn, ψ
−1Xn

)
< − rn

( ∥∥[Xn, Yn]
∥∥2

+
∥∥Anh∥∥2

+
∥∥Anm − ψBn

m

∥∥2)
.

First observe that

3

4
Q
(
t−1
(
t−1 + ψ

)−1(
[X,Y ]m + t−1Am − t−1ψBm

)
, [X,Y ]m + t−1Am − t−1ψBm

)
=

3

4

∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2 − 3

4
t
∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2

gφ

≤ 3

4

∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2
.

Moreover by the parallelogram inequality we have

3

4

∥∥[X,Y ]h + t−1Ah

∥∥2 ≤ 3

2

∥∥[X,Y ]h
∥∥2

+
3

2
t−2
∥∥Ah

∥∥2
,

and
3

4

∥∥[X,Y ]m + t−1Am − t−1ψBm

∥∥2 ≤ 3

2

∥∥[X,Y ]m
∥∥2

+
3

2
t−2
∥∥Am − ψBm

∥∥2
.
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So we obtain from (3.2),

0 ≤ 1

4

∥∥[Xn, Yn]
∥∥2

+
3

4

∥∥[Xn, Yn]h + t−1Anh
∥∥2

+ t−3Rgψ
(
ψ−1Xnψ

−1Yn;ψ−1Yn, ψ
−1Xn

)
+

3

4
t−1Q

((
t−1 + ψ

)−1(
[Xn, Yn]m + t−1Anm − t−1ψBn

m

)
, [Xn, Yn]m + t−1Anm − t−1ψBn

m

)
<

1

4

∥∥[Xn, Yn]
∥∥2

+
3

2

∥∥[X,Y ]h
∥∥2

+
3

2
t−2
∥∥Ah

∥∥2
+

3

2

∥∥[X,Y ]m
∥∥2

+
3

2
t−2
∥∥Am − ψBm

∥∥2

− t−3rn
(∥∥[Xn, Yn]

∥∥2
+
∥∥Anh∥∥2

+
∥∥Anm − ψBn

m

∥∥2)
=
( 7

4
− rnt−3

)∥∥[Xn, Yn]
∥∥2

+
( 3

2
t−2 − rnt−3

)∥∥Ah

∥∥2
+
( 3

2
t−2 − rnt−3

)∥∥Anm − ψBn
m

∥∥2
.

As rn →∞ we are provided with a contradiction.

There are some Lemmas to follow which we prove using Cheeger deformations. Before that

we need

De�nition 3.5. A path of K-invariant metrics on K/H, given by g(s) = gψ(s), s ∈ [a, b] is

called diagonal if a �xed decomposition m = m1⊕ . . .⊕ mr provides a decomposition into

eigenspaces for each gψ(s).

Lemma 3.6. Let g1 be a K-invariant metric on K/H with positive curvature and suppose

that a normal homogeneous metric, denoted by gQ, is also positively curved. Then there is a

path, g(s), s ∈ [0, 1], of positively curved K-invariant metrics in K/H such that g(0) = gQ

and g(1) = g1. In particular this path is digonal.

Proof. Let ϕ1 : m → m be the self-adjoint, positive de�nite, AdH -equivariant linear map

which induces the K-invariant metric g1 on K/H. Consider the Cheeger deformation

(
K ×K/H, t−1gQ ⊕ g1

)
→
(
K/H, gt

)
.

The metrics gt areK-invariant and therefore induced by some self-adjoint, positive de�nite,

AdH -equivariant linear map ϕt : m → m. Moreover these metrics are positively curved

since we assume that the normal homogeneous metric is and Riemannian submersions

do not decrease curvature due to O'Neill's formula. Since ϕ1 is self-adjoint and positive

de�nite there exists a Q-orthonormal basis of m of eigenvectors {ei} with corresponding

positive eigenvalues {λi}. The linear maps ϕt are related to ϕ1 by

ϕt = ϕ1(Id + tϕ1)−1

as can be deduced from (3.1). Therefore the eigenvectors {ei} also form a Q-orthonormal
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basis for the maps ϕt. De�ne

g : [0, 1]→ Aut(m)

s 7→
(
(1− s)Id + sϕ−1

1

)−1
.

We have g(0) = Id, g(1) = ϕ1 and g is smooth. Moreover it can be checked that

g(s) = 1
s ϕ1−s

s
, so that the curvature of the metric induced by g(s) is positive for all

s ∈ [0, 1] and g induces a path as stated in the Lemma.

For the following statements suppose that a chain

H ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr = K

of Lie groups is given. Let Q be a AdK-invariant inner product on k and let

m = m1⊕ · · · ⊕mr ,

be the induced Q-orthogonal decomposition such that the Lie algebra ki of Ki is given by

ki = h⊕m1⊕ · · · ⊕mi for 1 ≤ i ≤ r .

Lemma 3.7. Let gϕ be a homogeneous metric on K/H with parameters (a2
1, a

2
2, . . . , a

2
r)

and let gϕ̃ be another homogeneous metric on K/H with parameters (ã2
1, ã

2
2, , . . . , ã

2
r).

Suppose that there exist t1, t2, . . . , tr ∈ R≥0 such that

ã2
j = a2

j

(( r∑
l=j

tl

)
a2
j + 1

)−1

, 1 ≤ j ≤ r .

Then we have secgϕ̃ ≥ secgϕ.

Proof. Consider the following iteration of Cheeger deformations.

Set ϕr := ϕ. For 1 ≤ m ≤ r do the Cheeger deformation

(
Kr−m+1 ×K/H, t−1

r−m+1 gQ ⊕ gϕr−m+1

)
−→

(
K/H, gϕr−m

)
,

where we use the constants t1, t2, . . . , tr ∈ R≥0 given in the lemma.

Since gϕr−m is constructed by means of a Cheeger deformation from gϕr−m+1 we obtain

secgϕr−m ≥ secgϕr−m+1
because Cheeger deformations are curvature nondecreasing.

Note that with this iteration we especially get ϕ0 = ϕ̃ from which the statement in the

lemma follows.
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Corollary 3.8. Let gϕ be a homogeneous metric on K/H with parameters (a2
1, a

2
2, . . . , a

2
r)

satisfying

a2
1 ≤ a2

2 ≤ . . . ≤ a2
r .

Then secgϕ ≥ 0.

Proof. The metric a2
rgQ has nonnegative curvature. Due to our assumption there exist

t1, t2, . . . , tr such that

a2
j = a2

r

(( r∑
l=j

tl

)
a2
r + 1

)−1

, 1 ≤ j ≤ r .

So the homogeneous metric gϕ can be constructed by an iteration of Cheeger deformations

from the nonnegatively curved metric a2
rgQ and so has nonnegative curvature by Lemma

3.7.

Remark 3.9. If a biinvariant metric on K/H is positively curved, then a metric as in the

previous lemma is also positively curved.

Corollary 3.10. For every homogeneous metric gϕ onK/H with parameters (a2
1, a

2
2, . . . , a

2
r)

there exists an iteration of Cheeger deformations such that the resulting metric has non-

negative curvature.

Proof. Choose t1, t2, . . . , tr ∈ R≥0 such that

ã2
j := a2

j

(( r∑
l=j

tl

)
a2
j + 1

)−1

satisfy

ã2
1 ≤ ã2

2 ≤ . . . ≤ ã2
r .

Then by Corollary 3.8 the metric with parameters (ã2
1, ã

2
2, . . . , ã

2
r) has nonnegative curva-

ture.

Lemma 3.11. Let gϕ be a homogeneous metric on K/H with parameters (a2
1, a

2
2, . . . , a

2
r)

satisfying a2
1 ≤ a2

2 ≤ . . . ≤ a2
r. Let gϕ̃ be another homogeneous metric on K/H with

parameters (ã2
1, ã

2
2, . . . , ã

2
r). Suppose that

ã2
j ≤ a2

j , for 1 ≤ j ≤ r
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and that

a2
i − ã2

i ≥ a2
j − ã2

j for 1 ≤ i < j ≤ r .

Then secgϕ̃ ≥ secgϕ.

Proof. With the conditions imposed we can �nd an iteration of Cheeger deformations as

in the proof of Lemma 3.7 such that (ã2
1, ã

2
2, . . . , ã

2
r) are the parameters of the resulting

metric. Namely we use the constants

tj =
a2
j − ã2

j

a2
j ã

2
j

−
a2
j+l − ã2

j+l

a2
j+l ã

2
j+l

> 0 , 1 ≤ j < l ≤ r,

for the Cheeger deformations.
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Chapter 4

Homogeneous Sphere Metrics

There are various ways to describe a sphere as a homogeneous manifold. A classi�cation

can be found in [MS]. We give the following complete list of almost e�ective transitive

actions by connected Lie groups on spheres in which it is also listed how the isotropy

representation decomposes where the notions coincide with that of Section 1.1.

K H dim(K/H) isotropy representation

1 SO(n+ 1) SO(n) n m = m1
∼= Rn

2 G2 SU(3) 6 m = m1
∼= C3

3 Spin(7) G2 7 m = m1
∼= Ca

4 SU(n+ 1) SU(n) 2n+ 1 m = m1⊕m2
∼= R⊕ Cn

5 U(n+ 1) U(n) 2n+ 1 m = m1⊕m2
∼= R⊕ Cn

6 Sp(n+ 1) Sp(n) 4n+ 3 m = m1⊕m2
∼= Im(H)⊕Hn

7 Sp(1) · Sp(n+ 1) Sp(1) · Sp(n) 4n+ 3 m = m1⊕m2
∼= Im(H)⊕Hn

8 U(1) · Sp(n+ 1) U(1) · Sp(n) 4n+ 3 m = m1⊕m2⊕m3
∼= R⊕ C⊕Hn

9 Spin(9) Spin(7) 15 m = m1⊕m2
∼= R7 ⊕ R8

For the rest of this work we will refer to the enumeration in this table when talking about

transitive action on spheres.

The following table lists the action of AdH on m,
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AdH |m1 AdH |m2 AdH |m3

1 can

2 can

3 can

4 id can

5 id can

6 id can

7 v 7→ qvq−1 X 7→ AXq−1

8 id v 7→ zvz−1 X 7→ Avz−1

9 ρ7 ∆8

where in 7 we have v ∈ Im(H), X ∈ Hn, q ∈ Sp(1) and A ∈ Sp(n). In 8 we have

v ∈ Im(H)\{iR}, X ∈ Hn, z ∈ U(1) and A ∈ Sp(n). Furthermore ρ7 resp. ∆8 denote the

standard representations of Spin(7) on R7 resp. R8.

Remark 4.1. Except in case 9 the action of AdH on the last summand of the isotropy

decomposition in fact coincides with the actual action of K on the corresponding sphere.

Furthermore we point out that in the cases 7 and 8 the action is not e�ective. In each case

the determination of the ine�ective kernel is immediate which is isomorphic to Z2. For

the matters of clarity we decided to include the discrete ine�ective kernel in the exposition

above.

As one sees the isotropy representation on the mi's is inequivalent in each case.

We want to work with homogeneous sphere metrics described via AdH -equivariant, pos-

itive de�nite Q-symmetric maps ψ : m → m as described in (1.11), where Q is a �xed

AdK-invariant inner product on the Lie algebra k of K. In case 6 however the isotropy

representation acts trivially on m1 = Im(H) and so on this 3-dimensional subspace the

metric can depend on six parameters in general. In the other cases all homogeneous metrics

can be decribed via metric inducing maps which are multiples of the identity restricted to

the irreducible summands, i.e.

ψ|mi = a2
i Id|mi .

In the upcoming we will describe homogeneous metrics on spheres just by giving the

constants a2
i . When doing so in case 6 we will assume that the metric is a multiple

of the identity on m1. This clearly just covers a small portion of homogeneous metrics

on Sp(n + 1)/Sp(n), namely the ones which are even invariant under the bigger group

Sp(1) · Sp(n+ 1) but this will be enough for the purpose of this work.
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It follows especially that in the cases 1, 2, 3 any invariant metric on the sphere is homothetic

to the round metric and threrefore has positive curvature. In what follows we will not

mention these cases anymore.

In the other cases except in case 6 we have an underlying chain of Lie groups such that

the isotropy decomposition happens to be exactly the decomposition induced by the chain.

These chains are the content of the following table

H K1 K2 K

4 SU(n) S(U(1)U(n)) SU(n+ 1)

5 U(n) U(1)U(n) U(n+ 1)

7 Sp(1)Sp(n) Sp(1)Sp(1)Sp(n) Sp(1)Sp(n+ 1)

8 U(1)Sp(n) U(1)U(1)Sp(n) U(1)Sp(1)Sp(n) U(1)Sp(n+ 1)

9 Spin(7) Spin(8) Spin(9)

These chains enable us to apply the results of Chapter 3 where an underlying chain of Lie

groups is supposed to exist to homogeneous sphere metrics.

Furthermore these chains give rise to a geometric description of homogeneous sphere met-

rics.

In the cases 4 and 5 we can associate to K1/H ↪→ K/H → K/K1 the Hopf �bration

S1 ↪→ S2n+1 → CPn . (4.1)

In case 7 we can associate to K1/H ↪→ K/H → K/K1 the Hopf �bration

S3 ↪→ S4n+3 → HPn . (4.2)

In case 9 we can associate to K1/H ↪→ K/H → K/K1 the Hopf �bration

S7 ↪→ S15 → S8 .

In case 8 we can associate to K2/H ↪→ K/H → K/K2 the Hopf �bration (4.2) and to

K1/H ↪→ K/H → K/K1 the Hopf �bration (4.1) for n = 2m+ 1.

The �bers of the Hopf �brations are in fact totally geodesic which follows from Remark 2.4.

For the homogeneous metrics on the spheres 5, 6, 7, 9 we can interpret a shrinking resp.

enlarging of a2
1 with shrinking resp. enlarging the �bers of the corresponding Hopf �bration.

For the homogeneous metric on sphere number 8 with 3 irreducible summands a shrinking

resp. enlarging of a2
1 can be identi�ed with shrinking resp. enlarging the �bers of the Hopf

33



�bration (4.1) and a simultaneous shrinking resp. enlarging of a2
1 and a2

2 can be identi�ed

with shrinking resp. enlarging the �bers of the Hopf �bration (4.2).

It is likely to take a AdK-invariant inner product on k as a basis for investigating invariant

metrics on homogeneous spaces. But this point of view comes with the disadvantage that

K can support more than one biinvariant metric. When dealing with spheres we have a

distinguished metric in the round metric so it is of natural interest what parameters we

have to take to obtain the round metric. The following proposition deals with that issue.

Proposition 4.2 (cf.[GZ2], Lemma 2.4). In the table the parameters for obtaining the

round metric on the sphere of radius 1 are listed, where in the �rst column we give the only

AdK-invariant inner product on k in each case up to scaling with a positive constant.

AdK-invariant inner product on k round metric

4 Q(A,B) = −1
2 Re (tr(AB))

(
a2

1, a
2
2

)
=
(

2n
n+1 , 1

)
5 Q(A1 +A2, B1 +B2) = −1

2 Re
(
tr
(
λ
nA1B1 +A2B2

)) (
a2

1, a
2
2

)
=
(
λ+1
λ

2n
n+1 , 1

)
6 −1

2 Re (tr(AB))
(
a2

1, a
2
2

)
= (2, 1)

7 Q((v,A), (w,B)) = −1
2

(
λRe (vw) +Re (tr(AB))

) (
a2

1, a
2
2

)
=
(
2 λ+1

λ , 1
)

8 Q((ix,A), (iy, B)) = 1
2

(
λxy −Re (tr(AB))

) (
a2

1, a
2
2, a

2
3

)
=
(
2 λ+1

λ , 2, 1
)

9 Q(A,B) = −1
2 Re (tr(AB))

(
a2

1, a
2
2

)
= (4, 1)

where in case 5 the metric is de�ned according to the decomposition u(n+1) = span{i Id}⊕
su(n+ 1), where A1, B1 ∈ span{i Id} and A2, B2 ∈ su(n+ 1).

The computation of the parameters can be found in the appendix.

Remark 4.3. The sequence of parameters for obtaining the round metric is decreasing in

each case. In the cases 4, 5, 6, 7, 9 there exists a t ∈ R>0 such that

a2
1

(
t a2

1 + 1
)−1

= 1 .

In case 8 there exist t1, t2 ∈ R>0 such that

a2
1

(
(t1 + t2) a2

1 + 1
)−1

= 1 a2
2

(
t2 a

2
2 + 1

)−1
= 1 .

That is in each case we obtain the parameters for the normal homogeneous metric induced

by the given biinvariant metric.
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From Lemma 3.7 it follows that secgQ ≥ secgcan > 0, i.e. a normal homogeneous metric on

the sphere has positive curvature. In particular we use the chain Sp(n) ⊂ Sp(1)Sp(n) ⊂
Sp(n+ 1) in case 6 for being able to apply Lemma 3.7 in this case.

This is a result �rst obtained by Berger in [B].

In [VZ] homogeneous sphere metrics with positive curvature have been analyzed. The

authors showed for the cases 4, 5, 7 that when taking the round metric on the total space

of the corresponding Hopf �bration the metric stays positively curved if and only if the

�bers are scaled with a positive factor less than 4/3.

Invariant metrics on sphere 6 have also been analyzed. We are not going to deal with this

case but as a special case we get the situation on sphere 8 which is the content of the

following

Proposition 4.4. Let the parameters for a homogeneous metric on sphere 8 be given as

a2
1 = 2µ1

λ+ 1

λ
, a2

2 = 2µ2, a2
3 = µ3

and let

q12 =
µ1

µ2
, q13 =

µ1

µ3
, q23 =

µ2

µ3
.

Then the metric has positive curvature if and only if

1. q12, q13, q23 <
4

3

2. 3 |q2
23 − 2q23 + q13| < q2

23 +
√

(4q23 − 3q13)(4− 3q13)

The next Proposition generalizes Proposition 3.3 in [STu]

Proposition 4.5. Let K ⊂ O(n+ 1) be a Lie subgroup acting transitively on Sn ⊂ Rn+1

and let H ⊂ K be the isotropy group at some point. Let g1 be a K-invariant metric on

K/H ∼= Sn with positive curvature. Then there is a diagonal path, g(t), t ∈ [0, 1], through

positively curved homogeneous metrics on K/H such that g(0) = g0 and g(1) = g1, where

g0 denotes the round metric.

Proof. Let gQ denote a normal homogeneous metric on the sphere which has positive

curvature as stated in Remark 4.3. The round metric on the sphere has also positive

curvature. Thus by Lemma 3.6 we can �nd a path of positively curved metrics between

g0 and gQ and between gQ and g1. Concatenating these paths gives a path of positively

curved metrics between g0 and g1 as stated in the Proposition. We obtain a diagonal path
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if we can choose the same orthonormal basis in m of eigenvectors for the inducing linear

maps appearing in the proof of Lemma 3.6 for g0 and g1.

Except for case 6 the isotropy representations decompose irreducibly so the m′i s in the list

above have to be eigenspaces for the inducing linear maps by Schur's Lemma so we can

choose the same basis of eigenvectors in these cases.

In case 6, note that for g0, the normalizer NormO(4n+4)H = Sp(1) · Sp(n) operates by

isometries on the tangent space at [eH], whence the inducing linear map ϕ1 must be a

multiple of the identity on m1 and therefore m1 is an eigenspace for ϕ1. So we can choose

the same eigenvectors which diagonalize the inducing map of g1 as an orthonormal basis

of eigenvectors in m1 for ϕ1 and concatenate these paths to yield a diagonal path.
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Chapter 5

Curvature of Generalized Warped

Product Metrics

On I ×K/H consider the metric g := dt2 + gϕ(t), where I ⊂ R is an interval and gϕ(t) is a

K-invariant metric on K/H which is constructed by propagating the inner product

Qϕ(t)(X,Y ) := Q(ϕ(t)X,Y ) for X,Y ∈ m ,

where ϕ(t) : m→ m is a self-adjoint, positive de�nite, AdH -equivariant map. We call such

a metric a generalized warped product metric. The parameter t is omitted from now on

for the matters of clarity.

For analyzing the curvature of g = dt2 + gϕ(t) we use a formula developed in [STu] which

is the content of the next

Proposition 5.1. Let g = dt2 + gϕ(t) be a K-invariant metric on I ×K/H as above and

let u ∈ R, X,Y ∈ T[eH]K/H ∼= m. Then

Rg
(
u∂t +X,Y ;Y, u∂t +X

)
=Rg

(
X,Y ;Y,X

)
+ 2uRg

(
∂t, Y ;Y,X

)
+ u2Rg

(
∂t, Y ;Y, ∂t

)
=Rgϕ

(
X,Y ;Y,X

)
+

1

4

(
Q
(
ϕ̇X, Y

)2 −Q(ϕ̇X,X)Q(ϕ̇Y, Y ))
+

1

2
u
(

3Q
(
ϕ̇[X,Y ], Y

)
+Q

(
ϕ−1Y, ϕ̇

(
[X,ϕY ] + [Y, ϕX]

))
− 2Q

(
ϕ−1X, ϕ̇[Y, ϕY ]

))
− 1

4
u2Q

((
2ϕ̈− ϕ̇ϕ−1ϕ̇

)
Y, Y

)
,

where Rg denotes the curvature tensor of g and Rgϕ denotes the curvature tensor of gϕ(t).
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Remark 5.2. Note that it is necessary that ϕ̇ is bounded in order to get a nonnegatively

curved metric. We will assume this from now on. Furthermore we will assume that ϕ̇ is

positive semide�nite.

The curvature formula for a more special metric is stated in the next

Corollary 5.3. Let g̃ = dt2 + f(t)2g be a K-invariant metric on I ×K/H and let u ∈ R,
X,Y ∈ T[eH]K/H ∼= m. Then

R̃
(
u∂t +X,Y ;Y, u∂t +X

)
= −u2f̈f ‖Y ‖2g + f2

(
R(X,Y ;Y,X)− (ḟ)2 ‖X ∧ Y ‖2g

)
,

where R̃ denotes the curvature tensor of g̃ and R denotes the curvature tensor of g.

It follows that the curvature of (I × K/H, g̃) is positive (nonnegative) i� f̈ < 0 and

(ḟ)2 < inf(sec(K/H, g)),
(
f̈ ≤ 0 and (ḟ)2 ≤ inf(sec(K/H, g))

)
.

Some of the following results will deal with metrics if we have an underlying chain of Lie

groups and which are diagonal, i.e. we assume ϕ(t) is determined by

ϕ(t)|mi = f2
i (t) Id|mi 1 ≤ i ≤ r , (5.1)

for some �xed AdH -invariant Q-orthogonal decomposition m = m1⊕ · · · ⊕ mr and where

the fi's are smooth functions on I. For the �rst and second derivative of ϕ as in (5.1) we

have

ϕ̇|mi = 2fiḟi Id|mi and ϕ̈|mi = 2
(
(ḟi)

2 + fif̈i
)

Id|mi 1 ≤ i ≤ r .

Note that by Remark 5.2 the ḟi's have to be bounded.

We write X and Y in terms of an orthonormal basis {E1, . . . , Er} as X =
∑
Xi and

Y =
∑
Yj where Xi = aiEi and Yj = bjEj . We have

Proposition 5.4 (cf. [STu], page 11 Prop 4.3). Let the situation be as above. Then

Rg
(
u∂t +X,Y ;Y, u∂t +X

)
=Rgϕ

(
X,Y ;Y,X

)
−
∑
i

f2
i (ḟi)

2 ‖Xi ∧ Yi‖2 −
∑
i<j

fiḟifj ḟj ‖Xi ∧ Yj +Xj ∧ Yi‖2

+ 3u
∑

1≤k<i≤r
f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)
− u2

∑
i

fif̈iQ
(
Yi, Yi

)
.

Our main goal in the upcoming is to develop conditions under which there exists a

reparametrization σ(s) := ϕ(t(s)) such that we obtain nonnegative or rather positive cur-

vature for a generalized warped product metric. Let Rg̃ denote the curvature tensor of the
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metric g̃ := ds2 + gσ(s). Denoting di�erentiation w.r.t. t with ˙ and w.r.t. s with ′ we

get by calculation

Rg̃
(
u∂s +X,Y ;Y, u∂s +X

)
= Rgϕ

(
X,Y ;Y,X

)
− 1

4
(t′)2 ‖X ∧ Y ‖2gϕ̇ + 2ut′Rg

(
∂t, Y ;Y,X

)
+ u2

(
(t′)2Rg

(
∂t, Y ;Y, ∂t

)
− 1

2
t′′Q

(
ϕ̇Y, Y

))
.

(5.2)

Given an underlying chain of Lie groups and a diagonal metric this reads

Rg̃
(
u∂s +X,Y ;Y, u∂s +X

)
=Rgϕ

(
X,Y ;Y,X

)
− 1

4
(t′)2

(∑
i

f2
i (ḟi)

2 ‖Xi ∧ Yi‖2 +
∑
i<j

fiḟifj ḟj ‖Xi ∧ Yj +Xj ∧ Yi‖2
)

+ 3ut′
∑

1≤k<i≤r
f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)
− u2

(∑
i

fi
(
(t′)2f̈i + t′′ḟi

)
Q
(
Yi, Yi

))
.

Proposition 5.5. Suppose that there are constants C1, C2, C3 > 0 such that

Rgϕ ≥ C1

(
‖X ∧ Y ‖2gϕ̇ +

(
H(X,Y )

)2 )
(5.3)∣∣Rg(∂t, Y ;Y,X

)∣∣ ≤ C2 ‖Y ‖gϕ̇ ·
(
‖X ∧ Y ‖gϕ̇ +H(X,Y )

)
(5.4)

Rg
(
∂t, Y ;Y, ∂t

)
≥ −C3 ‖Y ‖2gϕ̇ , (5.5)

where H : m×m → R≥0 is some function. Then there is a reparametrization σ(s) =

ϕ(t(s)) such that ds2 + gσ(s) has nonnegative curvature.

Proof. Choosing a reparametrization where |t′| is su�ciently small we can surely guarantee

C1 − 1
4(t′)2 ≥ ε > 0 for some ε > 0. Therefore by using (5.3) we can estimate

Rgϕ
(
X,Y ;Y,X

)
− 1

4
(t′)2 ‖X ∧ Y ‖2gϕ̇ ≥ ε ‖X ∧ Y ‖

2
gϕ̇

+ C1

(
H(X,Y )

)2
≥ C

(
‖X ∧ Y ‖2gϕ̇ +

(
H(X,Y )

)2 )
,

where C := min{ε, C1}. Furthermore with condition (5.5) we have(
(t′)2Rg

(
∂t, Y ;Y, ∂t

)
− 1

2
t′′Q

(
ϕ̇Y, Y

))
≥
(
− (t′)2C3 −

1

2
t′′
)
‖Y ‖2gϕ̇ .
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Thus the coe�cient of u2 is nonnegative when choosing a reparametrization satisfying

− (t′)2C3 −
1

2
t′′ > 0 ⇐⇒ −t′′

(t′)2
> 2C3 ⇐⇒

(
1

t′

)′
> 2C3 . (5.6)

Moreover by this demand the coe�cient of u2 is zero if and only if ‖Y ‖gϕ̇ = 0 but then

the coe�cient of u is zero as well because of condition (5.4). For the time being consider

that (5.6) is given. Using the observations above and condition (5.4) we can state that the

discriminant of (5.2) is greater or equal to((
− (t′)2C3 −

1

2
t′′
)
C − (t′)2C̃2

)(
‖X ∧ Y ‖2gϕ̇ +

(
H(X,Y )

)2)‖Y ‖2gϕ̇ ,
where C̃ satis�es C2 ‖Y ‖gϕ̇ ·

(
‖X∧Y ‖gϕ̇ +H(X,Y )

)
≤ C̃ ‖Y ‖2gϕ̇

(
‖X∧Y ‖2gϕ̇ +(H(X,Y ))2

)
.

By performing similar manipulations to that in (5.6) we can state that this expression is

nonnegative if we demand for the reparametrization to satisfy(
1

t′

)′
>

2
(
C3C + C̃2

)
C

. (5.7)

Note that (5.6) is satis�ed if (5.7) is. Thus demanding for the reparametrization to have

a su�ciently small �rst derivative and to satisfy (5.7) gives the desired result.

Corollary 5.6. Let a chain of Lie groups be given and let ϕ induce a diagonal metric.

Moreover let p ∈ {1, . . . , r}. Then there is a reparametrization σ(s) = ϕ(t(s)) such that

ds2 + gσ(s) has nonnegative curvature if the following conditions are satis�ed

Rgϕ
(
X,Y ;Y,X

)
≥ C

(∥∥Xkp ∩m ∧ Ykp ∩m
∥∥2

+
∥∥[X,Y ]kp ∩m

∥∥2
)

for some C > 0 (5.8)

ḟk ≥ ξ for 1 ≤ k ≤ p for some ξ > 0 (5.9)

ḟk = 0 for p+ 1 ≤ k ≤ r (5.10)

f̈i ≤ δḟi for some δ > 0 (5.11)

Proof. We have to show that the conditions of Proposition 5.5 are satis�ed. Note that by

(5.9), ϕ̇ induces a metric on Kp . Therefore there are constants c1, c2 ∈ R+
∗ such that

c1‖Z‖gϕ̇ ≤ ‖Z‖gϕ ≤ c2‖Z‖gϕ̇ ∀Z ∈ kp . (5.12)
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Thus by (5.8) and (5.10) we have

Rgϕ
(
X,Y ;Y,X

)
≥ C1

(∥∥X ∧ Y ∥∥2

gϕ̇
+
∥∥[X,Y ]kp ∩m

∥∥2
)
,

for some constant C1 > 0.

Since we have an underlying chain of Lie groups the coe�cient of u is given as in Proposition

5.4 and we obtain by using (5.10)

3
∑

1≤k<i≤r
f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)
= 3

( ∑
1≤k≤p

∑
k<i≤r

f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)
+
∑
p<k≤r

∑
k<i<r

f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

))

= 3

( ∑
1≤k<i≤p

f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)
+
∑

1≤k≤p
ḟkfk

∑
p<i≤r

Q
(
Bi
k, Yk

))
. (5.13)

We set Dinf := inf{fi | 1 ≤ i ≤ p} and Dsup := sup{fi | 1 ≤ i ≤ p}.
Because of (5.9) and the general assumption that the ḟi's are bounded we can de�ne

Ĉ := sup
{
ḟi
ḟk

∣∣ 1 ≤ k < i ≤ p
}
and so we obtain

f2
k

∣∣∣∣ ḟkfk − ḟifi
∣∣∣∣ ≤ ḟkfk(1+

∣∣∣∣ ḟiḟk
∣∣∣∣∣∣∣∣fkfi

∣∣∣∣ ) ≤ ḟkfk(1+Ĉ
Dsup

Dinf

)
≤ ḟkfkC for k < i ≤ p , (5.14)

where we have set C := 1 + Ĉ
Dsup

Dinf
.

Moreover observe that we have
∥∥Bi

k

∥∥
gϕ
≤
∥∥Bi

∥∥
gϕ
≤ λ

∥∥Xi ∧ Yi
∥∥
gϕ
≤ λ

∥∥X ∧ Y ∥∥
gϕ
, where

λ is the norm of the linear map [, ] : Λ2 m → k arising from the universal property of

tensors. And since there is a constant c1 > 0 such that
∥∥Bi

k

∥∥
gϕ̇
≤ c1

∥∥Bi
k

∥∥
gϕ

we have

especially
∥∥Bi

k

∥∥
gϕ̇
≤ λ1

∥∥X ∧ Y ∥∥
gϕ

for some λ1 > 0. So by using (5.12), (5.14) and the

Cauchy-Schwarz inequality we can surely estimate∣∣∣∣ ∑
1≤k<i≤r

f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)∣∣∣∣ ≤ ∑
1≤k<i≤p

ḟkfkC
∣∣Q(Bi

k, Yk
)∣∣

=
C

2

∑
1≤k<i≤p

∣∣Qgϕ̇(Bi
k, Yk

)∣∣ ≤ C

2

∑
1≤k<i≤p

∥∥Bi
k

∥∥
gϕ̇

∥∥Yk∥∥gϕ̇ ≤ C̄2

∥∥X ∧ Y ∥∥
gϕ̇

∥∥Y ∥∥
gϕ̇
,

where the constant C̄ ful�lling the last estimate exists because of (5.12).

41



The second sum in (5.13) can be estimated as∣∣∣∣ ∑
1≤k≤p

ḟkfk
∑
p<i≤r

Q
(
Bi
k, Yk

)∣∣∣∣ =

∣∣∣∣ ∑
1≤k≤p

ḟkfk
∑
p<i≤r

Q
(
Bi, Yk

)∣∣∣∣
=

∣∣∣∣Q( ∑
p<i≤r

Bi,
∑

1≤k≤p
ḟkfkYk

)∣∣∣∣ =

∣∣∣∣Q([Xk⊥p ∩m, Yk⊥p ∩m
]
kp ∩m ,

∑
1≤k≤p

ḟkfkYk

)∣∣∣∣
=

1

2

∣∣Qgϕ̇([Xk⊥p ∩m, Yk⊥p ∩m
]
kp ∩m, Y

)∣∣ ≤ 1

2
‖Y ‖gϕ̇ ·

∥∥[Xk⊥p ∩m, Yk⊥p ∩m
]
kp ∩m

∥∥
gϕ̇

=
1

2
‖Y ‖gϕ̇ ·

∥∥[X,Y ]
kp ∩m −

[
Xkp ∩m, Ykp ∩m

]
kp ∩m

∥∥
gϕ̇

≤ C̃2 ‖Y ‖gϕ̇ ·
(
‖[X,Y ]kp ∩m‖+ ‖X ∧ Y ‖gϕ̇

)
,

where we used the triangle inequality and the above mentioned identities in the last esti-

mate and C̃ is an apprpriate constant ful�lling the last estimate.

So taking C2 := max{C̃2, C̄2} and

H(X,Y ) :=
∥∥[X,Y ]kp ∩m

∥∥
we see that conditions (5.3) and (5.4) of Proposition 5.5 are satis�ed. The validity of (5.5)

is guaranteed by (5.11).

Remark 5.7. If we make the above considerations modulo Cheeger deformations we can

replace condition (5.8) in Corollary 5.6 by the weaker condition

Rϕ
(
X,Y ;Y,X

)
≥ C

∥∥Xkp ∩m ∧ Ykp ∩m
∥∥2
. (5.15)

For this consider the Cheeger deformation

(
K ×K/H, λ−1gQ ⊕ gϕ

)
→
(
K/H, gφ

)
.

In Chapter 3 we have already computed the curvature of the metric gφ to be

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

4
λ3‖[X,Y ]‖2 +Rgϕ

(
ψ−1X,ψ−1Y ;ψ−1Y, ψ−1X

)
+

3

4
λ2Q

((
λ−1 + ψ

)−1(
[X,Y ]m + λ−1Am − λ−1ψBm

)
, [X,Y ]m + λ−1Am − λ−1ψBm

)
+

3

4
λ3
∥∥[X,Y ]h + λ−1Ah

∥∥2
.

For the argumentation here the detailed expansion of the O'Neill term, i.e. the last two
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lines in the above formula, is not important, just that the O'Neill term is of course non-

negative. The claim follows when choosing λ approriate since the the missing term in (5.8)

is contributed by the Cheeger deformation.

Furthermore when condition (5.8) is replaced by (5.15) the conditions in Corollary 5.6 are

equivalent for nonnegative curvature since if (5.15) is not satis�ed we can not even have

nonnegative curvature for planes tangential to the orbits (the case when u = 0).

If we are seeking for positive rather than nonnegative curvature, condition (5.3) of Propo-

sition 5.5 is not su�cient because if the right hand side of (5.3) vanishes we can not even

guarantee positive curvature for planes tangential to the orbits.

Instead we have

Proposition 5.8. Suppose that there are constants C1, C2, C3 > 0 such that

Rgϕ ≥ C1 ‖X ∧ Y ‖2gϕ (5.16)∣∣Rg(∂t, Y ;Y,X
)∣∣ ≤ C2 ‖X ∧ Y ‖gϕ ‖Y ‖gϕ̇ (5.17)

Rg
(
∂t, Y ;Y, ∂t

)
≥ −C3 ‖Y ‖2gϕ̇ . (5.18)

Then there is a reparametrization σ(s) = ϕ(t(s)) such that ds2+gσ(s) has positive curvature.

Proof. As in the proof of Proposition 5.5 we have show that there is a reparametrization

such that the discriminant of (5.2) is positive. Using the conditions in the proposition

we can make analogeous estimates as in the proof of Proposition 5.5 to get the desired

result.

Corollary 5.9. Let I be compact. Suppose that ϕ̇ induces a metric and that

Rϕ(X,Y ;Y,X) ≥ C1‖X ∧ Y ‖2gϕ̇ (5.19)

for some constant C1. Then there is a reparametrization σ(s) = ϕ(t(s)) such that ds2+gσ(s)

has positive curvature.

Proof. We have to show that the conditions of Proposition 5.8 are satis�ed. Since we

assume that I is compact and ϕ̇ induces a metric there are constants c1, c2 ∈ R+
∗ such that

for all t ∈ I

c1‖Z‖gϕ ≤ ‖Z‖gϕ̇ ≤ c2‖Z‖gϕ ∀Z ∈ k .

So the validity of condition (5.16) follows from (5.19). Moreover (5.17) follows once we
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observe that we have

2
∣∣Rg(∂t, Y ;Y,X

)∣∣ ≤ C2 ‖X ∧ Y ‖gϕ‖Y ‖gϕ ,

where C2 is the norm of the linear map

Λ2 m⊗m→ R

(X ∧ Y )⊗ Z 7→ Rg(∂t, Y ;Y,X) ,

arising from the universal property of tensors. Besides condition (5.18) follows from the

assumption that I is compact.

Corollary 5.10. Let a chain of Lie groups be given and let ϕ induce a diagonal metric.

Then there is a reparametrization σ(s) = ϕ(t(s)) such that ds2+gσ(s) has positive curvature

if the following conditions hold

secgϕ ≥ ε > 0 (5.20)

f̈i ≤ δḟi for some δ > 0 (5.21)

ḟi

ḟj
≥ cij for i < j and some constants cij > 0 (5.22)

Proof. The statement in the corollary is proven if we can show that with the properties

demanded for the fi's the conditions of Proposition 5.8 are satis�ed. (5.20) is equivalent

to (5.16). To show that (5.17) is satis�ed we have to show that there is a constant C2 > 0

such that ∣∣∣∣ 3

2

∑
1≤k<i≤r

f2
k

(
ḟk
fk
− ḟi
fi

)
Q
(
Bi
k, Yk

)∣∣∣∣ ≤ C2 ‖X ∧ Y ‖gϕ‖Y ‖gϕ̇ .

This is done analogeously to the estimate of the �rst sum in (5.13) in the proof of Corollary

5.6 once we observe that an analogue to the constant C there can also be de�ned here due

to assumption (5.22).

The validity of (5.18) is guaranteed by (5.21).

Proposition 5.11. Suppose that g has nonnegative curvature. Then g remains nonnega-

tively curved if we reparametrize g with a function satisfying |t′(s)| ≤ 1 and t′′(s) ≤ 0.

Proof. With the conditions imposed on the reparametrization it is easy to see that the dis-

criminant of (5.2) gets greater than if t(s) = s in which case the discriminant is nonnegative

because of our assumption.
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Remark 5.12. If g has nonnegative curvature then there is a reparametrization such

that the reparametrized metric is nonnegatively curved and the principal orbit on the

boundary is totally geodesic. For this we just have to choose a reparametrization ful�lling

the conditions of Proposition 5.11 with the additional property lims→b t
(k)(s) = 0, k ∈ N.

The following theorem generalizes Theorem 5.1 in [STu], where it was shown that there is

an extension of a normal homogeneous metric on the sphere to its interior, i.e. to the ball

with boundary the sphere in such a way that the metric is a warped product metric near

the boundary. Here a normal homogeneous metric is replaced by an arbitrary positively

curved metric on the sphere.

Theorem 5.13. Let K ⊂ O(n+1) be a Lie subgroup which acts transitively on Sn ⊂ Rn+1

and let H ⊂ K be the isotropy group at some point. Let g1 be a K-invariant metric on

K/H with positive curvature and let r(x) := ‖x‖ be the radius function on Rn+1.

Then there exists a K-invariant metric g on the unit ball B1(0) ⊂ Rn+1 with positive

curvature and an ε > 0 such that on r−1((1 − ε, 1)) we have g = dr2 + η(r)2 g1 where

η : (1− ε, 1)→ R satis�es η, η′ > 0.

Proof. Let [a, b] ⊂ R and consider a diagonal path ϕ(t) = diag {f2
i (t)} through positively

curved metrics with gϕ(a) = g0 and gϕ(b) = g1 which exists by Proposition 4.5. Impose the

additional condition

fi(t)|[a,a+ε) = const , fi(t)|(b−ε,b] = const ,

for some 0 < ε < a+b
2 . This additional condition does not change the fact that we have a

diagonal path through positively curved metrics. We consider the metric g = dt2 + gϕ(t)

which on [a, a+ε)×K/H takes the form dt2 +g0 and on (b−ε, b ]×K/H it takes the form

dt2+g1. For some δ > 0 de�ne ϕ̃(t) := diag{exp(2h(t))f2
i (t)} with a function h : [a, b]→ R

satisfying

h′(t) ≥ δ − f ′i(t)

fi(t)
for all 1 ≤ i ≤ r . (5.23)

Then f̃i(t) := exp(h(t))fi(t) satisfy f̃ ′i(t) ≥ δf̃i(t) and the condition of Corollary 5.9 is

satis�ed by the metric g̃ := dt2 + gϕ̃(t). Especially the metric g̃ is of the form dt2 +

exp (2h(t))g0 on [a, a + ε) × K/H and on (b − ε, b ] × K/H we have dt2 + exp (2h(t))g1.

Now an application of Corollary 5.9 yields a metric ds2 + gσ(s) on [ã, b̃ ] × K/H where

[ã, b̃ ] is in accordance with the reparametrization σ(s) = ϕ̃(t(s)) which has the form ds2 +

exp (2h(t(s)))g0 on [ã, ã+ ε̃)×K/H and the form ds2+exp (2h(t(s)))g1 on (b̃− ε̃, b̃ ]×K/H,

where ε̃ > 0. By virtue of Corollary 5.9 this metric has positive curvature. Therefore we

must have by Corollary 5.3 that d2

ds2
exp (h(t(s))) < 0 on the interval [ã, ã + ε̃). Moreover
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we can choose h such that d
ds exp (h(t(s))) > 0 because the obstruction (5.23) does not

con�ict this.

Let s0 ∈ [ã, ã + ε̃). For an appropriate choice of ã the existence of a smooth function

ζ : (0, ã+ ε̃)→ R with the following properties

ζ|(0,µ) = sin(s), ζ|(s0,ã+ε̃) = exp (h(t(s))), ζ ′′ < 0 ,

where µ > 0 is su�ciently small, is guaranteed. Now de�ne the O(n+ 1)-invariant metric

g := ds2 + ζ(s)2g0 on the Ball Bã+ε̃(0) ⊂ Rn+1. The standard metric on Sn+1 with

respect to the normal coordinate chart is given by ds2 + sin2(s)g0. Therefore the germ

of g at s = 0 is a smooth metric of constant curvature 1. Moreover since ζ ′′ < 0 and

ζ ′(s) < ζ ′(0) = 1 = min(sec(Sn, g0)) for all s > 0 we have by Corollary 5.3 that g

has positive curvature. Furthermore the germ of g coincides with the germ of the metric

ds2+gσ(s) at s = ã+ε̃ by construction. So we can glue these metrics to obtain a metric with

positive curvature on Bb̃(0) which on (b̃− ε̃, b̃ ]×K/H has the form ds2 + exp (2h(t(s)))g1.

Finally a scaling process gives the statement in the theorem.

Remark 5.14. Observe that in the construction of the function η in the proof of Theorem

5.13 we are free to prescribe its derivative by changing the auxiliary function h or the

reparametrization t.

Therefore given a positively curved metric g = dr2 + η(r)2 g1 on r−1((1 − ε, 1)) where

η : (1 − ε, 1) → R satis�es η, η′ > 0 for some ε > 0, we can extend this metric to a

positively curved metric on B1(0) ⊂ Rn+1

Remark 5.15. We can extend the resulting metric of Theorem 5.13 to a nonnegatively

curved metric on Rn+1 which outside a compact set BR(0) ⊂ Rn+1, R > 1, is of the form

dt2 + c2
0 g1 for some arbitrary large constant c2

0. For this observe that when extending η to

the interval (1 − ε,∞) by demanding η to be concave, the metric will stay nonnegatively

curved by Corollary 5.3. So given a constant c2
0 > 1 we obtain the statement claimed above

when we demand in addition for η to satisfy limr→R1 η(r) = c2
0 for some 1 < R1 < R.
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Chapter 6

Nonnegatively Curved Invariant

Metrics on Homogeneous Disc

Bundles

Next we are going to deal with nonnegatively curved invariant metrics on homogeneous

disc bundles G×K BR(0) with a totally geodesic principal orbit on the boundary. We will

work with the notions of Chapter 2.

Once we have constructed a nonnegatively curved invariant metric on G×K BR(0) we can

make the principal orbit on the boundary totally geodesic by Remark 5.12.

In [STa2] the authors considered nonnegatively curved invariant metrics on homogeneous

disc bundles with normal homogeneous collars. These are metrics that are G-equivariantly

isometric to
(
(R− ε,R]×G/H, dt2 + gQ

)
near the boundary for some ε > 0. They proved

the following result

Theorem 6.1 (cf. [STa2], p.5, Thm. 2.1). If there exists a C > 0 such that for all

X = Xm +Xs, Y = Ym + Ys ∈ p we have the inequality

∥∥Xm ∧ Ym
∥∥ ≤ C · ∥∥[X,Y ]

∥∥ , (6.1)

then G×K BR(0) admits a nonnegatively curved G-invariant metric with normal homoge-

neous collar.

Proof. The metric in question is constructed via Cheeger's method as a submersion metric.

Let ga be the AdK-invariant metric on G which is induced by the inner product

Qa := (1 + a)Q|k +Qs ,
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where a > 0. By Theorem 1.20, ga has nonnegative curvature for all planes contained in p

for su�ciently small a

Consider
(
G × Rn, ga + g̃

)
, where g̃ is the metric of Remark 5.15 with g1 replaced by

the biinvariant metric gQ. Denote by ĝ the metric on G ×K Rn arising from Cheeger's

construction. Then ĝ has nonnegative curvature since the horizontal lifts of all planes

in the base have nonnegative curvature so the planes in the base also have nonnegative

curvature due to O'Neill's formula.

Moreover we choose c2
0 = a+1

a so that (a−1 + c−2
0 )−1 = 1. Thus from Lemma 2.3 it follows

that outside a compact set ĝ has the form dt2 + gQ and the statement follows.

In fact in the same paper the authors show that (6.1) is almost necessary. Namely we have

Theorem 6.2 (cf. [STa2], p.7, Thm. 3.1). Let m1 ⊂ m be a non-trivial AdH-irreducible

subspace such that m contains no irreducible summand equivalent to m1 and let dt2 + gφ(t)

be an invariant metric on (0, R] ×G/H with nonnegative curvature and φ(R)|m1⊕ s = Id.

Then there exists a C > 0 such that for all X = Xm1 +Xs, Y = Ym1 +Ys ∈ m1⊕ s we have:

∥∥Xm1 ∧ Ym1

∥∥ ≤ C · ∥∥[X,Y ]
∥∥ . (6.2)

As a consequence we obtain

Corollary 6.3. Suppose that m decomposes irreducibly and that we have an underlying

chain of Lie groups. Furthermore suppose that the metric dt2 + gφ(t) on (0, R]×G/H has

nonnegative curvature. If φ(R)|mi = a · Id, a > 1, for an irreducible summand mi and

φ(R)|s = Id then for all X = Xmi +Xs, Y = Ymi + Ys ∈ mi⊕ s we have (6.2).

Proof. Let dt2+gφ(t) be the metric with the properties considered in the corollary. Consider

the Cheeger deformation

(
Ki ×G/H, λ−1gQ|Ki ⊕ gφ(R)

)
→
(
G/H, gλ

)
,

where Ki is the Lie group such that its Lie algebra ki contains mi. Then gλ is induced by

a linear map which on mi is given by a(λa+ 1)−1Id. Thus choosing λ = a−1
a > 0 yields a

metric on G/H which is given as in Theorem 6.2 and therefore we get (6.2).

The triples of Lie groups satisfying (6.2) have been (partially) classi�ed in [STa2].

We are going to deal with diagonal metrics dt2 +gφ(t) on (0, R]×G/H with φ|s = Id where

neither the situation of Theorem 6.2 nor the situation of Corollary 6.3 is given.

Furthermore we assume that the metrics can be realized as submersion metrics as follows.
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On G we take a biinvariant metric and on (0, R]×K/H we take a metric dt2 + gψ(t) where

ψ(t) is as in (1.16). By Lemma 2.3 we have

φ(t)|mi :=
a2
i (t)

1 + a2
i (t)

Id|mi for 1 ≤ i ≤ r , φ(t)|s := Id .

So for given φ(t) : p→ p with

φ(t)|mi := f2
i (t) Id|mi , f2

i (t) < 1 for 1 ≤ i ≤ r , φ(t)|s := Id (6.3)

we can always �nd functions a2
i (t), 1 ≤ i ≤ r such that

f2
i (t) =

a2
i (t)

1 + a2
i (t)

for 1 ≤ i ≤ r . (6.4)

For technical reasons we set

f2
r+1(t) ≡ 1 ,

therewith φ(t)|s = f2
r+1(t) Id.

Remark 6.4. Note that by the relation (6.4) the functions fi are monotoneous increasing

resp. decreasing if the functions ai are monotoneous increasing resp. decreasing and we

have

a2
i (t) =

f2
i (t)

1− f2
i (t)

.

The results of Chapter 5 can be applied to the metric dt2 +gψ(t) on I×K/H with functions

a2
i (t), 1 ≤ i ≤ r, as well as to the metric dt2 + gφ(t) on I × G/H with functions f2

i (t),

1 ≤ i ≤ r + 1.

We have

Theorem 6.5. Suppose that m decomposes irreducibly as m = m1⊕ . . .⊕ mr and that we

have an underlying chain of Lie groups. Let φ be as in (6.3). Furthermore suppose that

there exists a constant C > 0 such that

Rgφ(R)(X,Y ;Y,X) ≥ C
(
‖Xm1⊕...⊕mr−1 ∧ Ym1⊕...⊕mr−1‖2 + ‖[X,Y ]m1⊕...⊕mr−1‖2

)
. (6.5)

Then there exists a metric on G×KBR(0) with nonnegative curvature and a totally geodesic

principal orbit on the boundary.
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Proof. We have to prove the theorem in the cases r = 2 and r = 3, since the case r = 1 is

clear.

By abuse of notation we will not change the parameter or the interval from where a

parameter is when we reparametrize a metric.

We begin with the case r = 3.

For R2 < R de�ne auxiliary smooth functions λ1, λ2 with the following properties

For j ∈ {1, 2} let λj : [R2, R]→ R≥0 be with

(a) λj(R) = 0

(b) λ′j ≤ η < 0

(c) λ′′j ≥
3

2

a2
j (R)(λ′j)

2

1 + a2
j (R)(1 + λj)

+ δλ′j for some δ > 0

We are going to construct the functions as in (6.4) de�ning the desired metric in two steps.

Step 1. Extend on [R2, R] according to

a2
1(t) = a2

1(R)
(
(λ1(t) + λ2(t)) a2

1(R) + 1
)−1

a2
2(t) = a2

2(R)
(
λ2(t) a2

2(R) + 1
)−1

a2
3(t) = const ,

such that

(i) a2
1(R2) ≤ a2

2(R2) ≤ a2
3(R2)

(ii) a′1(R2) ≥ a′2(R2)

Note that by Corollary 3.8 and Remark 3.9 we have secgψ(R2)
> 0 and assuming (i) is

legitimated by Corollary 3.10. Condition (ii) is equivalent to

λ′2(R2)

λ′1(R2) + λ′2(R2)
≤
(
a1(R2)

a2(R2)

)3

and the functions λ1 and λ2 can surely be chosen such that this is valid.

With this extension condition (6.5) is valid for all t ∈ [R2, R]. This follows by construction

because by Lemma 3.7 we obtain secgψ(t)
≥ secgψ(R)

and therefore secgφ(t)
≥ secgφ(R)

for all

t ∈ [R2, R].

Moreover since the functions λ1, λ2 are demanded to satisfy λ′1, λ
′
2 ≤ η < 0 we get a′1, a

′
2 ≥

θ > 0 and with it f ′1, f
′
2 ≥ ξ > 0. Furthermore the condition λ′′j ≥ 3

2

a2
j (R)(λ′j)

2

1+a2
j (R)(1+λj)

+ δλ′j for

some δ > 0 yields f ′′j ≤ δf ′j for j ∈ {1, 2}.
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So the conditions of Corollary 5.6 are satis�ed and there is a reparametrization such that

the reparametrized metric has nonnegative curvature.

Step 2. Extend smoothly on [R1, R] such that

(i) a′3|[R1,R2) > 0

(ii) a′′i |[R1,R2) ≤ δa′i|[R1,R2) for 1 ≤ i ≤ 3 and some δ > 0

(iii) a′1 ≥ a′2 ≥ a′3

(iv) a′1|[R1,R1+η) = a′2|[R1,R1+η) = a′3|[R1,R1+η) for some η > 0

By construction, it follows from Lemma 3.11 that secgψ(t)
> 0 on [R1, R2] since we have

a2
1(R2) ≤ a2

2(R2) ≤ a2
3(R2) and the third condition implies pointwise the conditions of

Lemma 3.11.

Moreover the conditions are made up to satisfy the conditions of Corollary 5.10. Hence

there is a reparametrization such that the metric dt2 + gψ(t) has positive curvature on

[R1, R2]×K/H and therefore the metric dt2 +gφ(t) has nonnegative curvature on [R1, R2]×
G/H. Moreover when applying this reparametrization on the whole interval [R1, R] observe

that by the properties of the reparametrization, i.e. |t′| < 1 and t′′ < 0, we do not lose the

nonnegativity of the curvature on [R2, R] by Proposition 5.11. Furthermore by the demand

that a′1|[R1,R1+η) = a′2|[R1,R1+η) = a′3|[R1,R1+η) the metric has the form dt2 + f2(t)gψ(R1+η)

on [R1, R1 + η]×K/H for some smooth function f : (R1, R1 + η)→ R with f, f ′ > 0 and

can therefore be extended smoothly to a positively curved metric on BR1+η(0) by virtue

of Theorem 5.13 taking Remark 5.14 into account.

Finally an application of Remark 5.12 yields the statement in the theorem.

Note that in the case r = 2, (6.5) is exactly condition (5.8) of Proposition 5.5 for t = b

and p = 1.

The proof is analogeous to the proof in the case r = 3 when letting f2 take the part of f3

and f1 that of f2.

Next we are going to analyze to what extent a metric on the boundary of BR(0) can even

have negative curvature such that condition (6.5) is satis�ed in special cases.
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If ϕ = id in Lemma 2.3 then (2.6) becomes

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

4

∥∥[X,Y ]
∥∥2

+Rgψ
(
ψ−1Xm, ψ

−1Ym;ψ−1Ym, ψ
−1Xm

)
+

3

4
Q
(
(1 + ψ)−1

(
[X,Y ]m +Aψm − ψBψ

m

)
, [X,Y ]m +Aψm − ψBψ

m

)
+

3

4

∥∥[X,Y ]h +Aψh
∥∥2
.

(6.6)

Let r = 2. The second line of the right hand side of (6.6) can be computed to be

3

4

1

1 + a2
1

∥∥(1 + a−2
1

)
B1

1 +
(
1 + a−2

2

(
2− a2

1a
−2
2

))
B2

1 +Bs
1

∥∥2

+
3

4

1

1 + a2
2

∥∥(1 + a−2
2

)(
B2

2 +B12
)

+Bs
2

∥∥2
,

and for the third line of the right hand side of (6.6) we have

3

4

∥∥[X,Y ]h +Aψh
∥∥2

=
3

4

∥∥B1
0 +B2

0 +Bs
0 + 2 a−2

1 B1
0 + 2a−2

2 B2
0

∥∥2
.

Summarizing we obtain using (1.17)

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

4

∥∥[X,Y ]
∥∥2

+
3

4
a2

1

∥∥a−4
1 B1

0 + a−4
2 B2

0

∥∥2
+

1

4
a−6

1

∥∥B1
∥∥2

+
1

4
a−6

2

∥∥B2
2 +B12

∥∥2

+
1

2
a−2

1 a−4
2

(
3− 2 a2

1a
−2
2

)
Q
(
B1, B2

)
+ a−6

2

(
1− 3

4
a2

1a
−2
2

)∥∥B2
0 +B2

1

∥∥2

+
3

4

1

1 + a2
1

∥∥(1 + a−2
1

)
B1

1 +
(
1 + a−2

2 (2− a2
1a
−2
2 )
)
B2

1 +Bs
1

∥∥2

+
3

4

1

1 + a2
2

∥∥(1 + a−2
2

)(
B2

2 +B12
)

+Bs
2

∥∥2

+
3

4

∥∥B1
0 +B2

0 +Bs
0 + 2a−2

1 B1
0 + 2a−2

2 B2
0

∥∥2
.

(6.7)
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Proposition 6.6. Consider a homogeneous metric gφ on K/H = SU(n + 1)/SU(n) for

n ≥ 2.

Then Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
is nonnegative for

a2
1

a2
2

≤ 2n(4 + 3a2
2)

3(1− n)a4
2 + 2(3− n)a2

2 + 3(n+ 1)
if 0 < a2

2 <
−(n− 3) +

√
10n2 − 6n

3(n− 1)

a2
1 arbitrary if a2

2 ≥
−(n− 3) +

√
10n2 − 6n

3(n− 1)
.

Proof. Since m1 is abelian in the considered case, we obtain for (6.7)

Rφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

4

∥∥B2
0 +Bs

0

∥∥2
+

1

4

∥∥B2
1 +Bs

1

∥∥2
+

1

4

∥∥[X,Y ]m2

∥∥2
+

1

4

∥∥[X,Y ]s
∥∥2

+ a−6
2

∥∥B2
0

∥∥2
+

1

4
a−6

2

∥∥B2
2 +B12

∥∥2
+ a−6

2

(
1− 3

4
a2

1 a
−2
2

)∥∥B2
1

∥∥2

+
3

4

1

1 + a2
1

∥∥(1 + a−2
2

(
2− a2

1a
−2
2

))
B2

1 +Bs
1

∥∥2

+
3

4

1

1 + a2
2

∥∥(1 + a−2
2

)(
B2

2 +B12
)

+Bs
2

∥∥2

+
3

4

∥∥(1 + 2 a−2
2

)
B2

0 +Bs
0

∥∥2
.

This is nonnegative if

1

4

∥∥B2
0 +Bs

0

∥∥2
+

1

4

∥∥B2
1 +Bs

1

∥∥2
+ a−6

2

∥∥B2
0

∥∥2
+ a−6

2

(
1− 3

4
a2

1a
−2
2

)∥∥B2
1

∥∥2

+
3

4

1

1 + a2
1

∥∥(1 + a−2
2

(
2− a2

1a
−2
2

))
B2

1 +Bs
1

∥∥2
+

3

4

∥∥(1 + 2a−2
2

)
B2

0 +Bs
0

∥∥2 ≥ 0 .
(6.8)

Decompose Bs
k1

= µB2
k1

+ Z, where Z ∈ (B2
k1

)⊥ ∩ k1.

So (6.8) is valid if

1

4
(1 + µ)2

∥∥B2
0

∥∥2
+

1

4
(1 + µ)2

∥∥B2
1

∥∥2
+ a−6

2

∥∥B2
0

∥∥2
+ a−6

2

(
1− 3

4
a2

1a
−2
2

)∥∥B2
1

∥∥2

+
3

4

1

1 + a2
1

(
1 + a−2

2

(
2− a2

1a
−2
2

)
+ µ

)2∥∥B2
1

∥∥2
+

3

4

(
1 + 2a−2

2 + µ
)2∥∥B2

0

∥∥2

=
(
a−6

2 +
1

4
(1 + µ)2 +

3

4
(1 + 2a−2

2 + µ)2
)∥∥B2

0

∥∥2

+
(
a−6

2

(
1− 3

4
a2

1a
−2
2

)
+

1

4
(1 + µ)2 +

3

4

1

1 + a2
1

(
1 + a−2

2

(
2− a2

1a
−2
2

)
+ µ

)2)∥∥B2
1

∥∥2 ≥ 0 .
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Let

X2 :=

(
0 z

−z∗ 0

)
Y2 :=

(
0 w

−w∗ 0

)
.

For sphere number 4 with the metric induced by the inner productQ(X,Y ) = −1
2Re(tr(XY ))

it can be computed that

∥∥B2
0

∥∥2
= |z|2|w|2 −Re(zw∗)2 + Im(zw∗)2 − 2

n
Im(zw∗)2

∥∥B2
1

∥∥2
=

2(n+ 1)

n
Im(zw∗)2 .

So for a > 0 and b ∈ R we have

a
∥∥B2

0

∥∥2
+ b

∥∥B2
1

∥∥2
= a

(
|z|2|w|2 −Re(zw∗)2 +

(
1− 2

n
+
b

a

2 (n+ 1)

n

)
Im(zw∗)2

)
.

This is surely nonnegative if we can guarantee

1− 2

n
+
b

a

2(n+ 1)

n
≥ −1 ⇐⇒ b

a
≥ 1− n

1 + n
.

It follows that (6.8) is valid if

a−6
2

(
1− 3

4
a2

1a
−2
2

)
+

1

4
(1 + µ)2 +

3

4

1

1 + a2
1

(
1 + a−2

2

(
2− a2

1a
−2
2

)
+ µ

)2
≥ 1− n

1 + n

(
a−6

2 +
1

4
(1 + µ)2 +

3

4
(1 + 2a−2

2 + µ)2
)
.

After some elementary modi�cations this is seen to be equivalent to

a2
1

1 + a2
1

≤ 4

3

2n

1 + n

a2
2

1 + a2
2

(
1 +

µa4
2(a2

2(µ+ 1) + 1)

((1 + a2
2)2 + µa4

2)2

)
.

Now the function fa : R\{−(1 + a2)2/a4} de�ned by

fa(µ) := 1 +
µa4

2(a2
2(µ+ 1) + 1)

((1 + a2
2)2 + µa4

2)2

attains its minimum for µ = − (a2+1)2

a2(a2+2)
with fa(− (a2+1)2

a2(a2+2)
) = 1− a2

4(1+a2)
. So we can surely

guarantee the validity of (6.8) if

a2
1

1 + a2
1

≤ 4

3

2n

1 + n

a2
2

1 + a2
2

(
1− 1

4

a2
2

(1 + a2
2)

)
⇔ a2

1

1 + a2
1

≤ 1

3

2n

1 + n

a2
2(4 + 3a2

2)

(1 + a2
2)2

.

54



So demanding for a2
1 to satisfy

1

a2
1

≥ 3(n+ 1)

2n

(
1 + a2

2

)2
a2

2

(
4 + 3a2

2

) − 1 =
3(1− n)a4

2 + 2(3− n)a2
2 + 3(n+ 1)

2na2
2

(
4 + 3a2

2

) (6.9)

for given a2
2 yields (6.8). The right hand side of (6.9) is nonpositive for

a2
2 ≥

− (n− 3) +
√

10n2 − 6n

3(n− 1)
.

In this case we can choose a2
1 arbitrary. Otherwise if

0 < a2
2 <

−(n− 3) +
√

10n2 − 6n

3(n− 1)

the right hand side of (6.9) is positive and we have to demand for a2
1 to satisfy

a2
1 ≤

2na2
2(4 + 3a2

2)

3(1− n)a4
2 + 2(3− n)a2

2 + 3(n+ 1)
.

Remark 6.7. If m1 is abelian in the case r = 2, condition (6.5) in Theorem 6.5 becomes

Rgφ(R)
(
φ−1
R X,φ−1

R Y ;φ−1
R Y, φ−1

R X
)
≥ C ·

∥∥[X,Y ]m1

∥∥2
.

When choosing

a2
1(R)

a2
2(R)

<
2n(4 + 3a2

2(R))

3(1− n)a4
2(R) + 2(3− n)a2

2(R) + 3(n+ 1)

for 0 < a2
2(R) <

−(n− 3) +
√

10n2 − 6n

3(n− 1)

we can surely guarantee this. Moreover if we choose

4

3

2n

n+ 1
<
a2

1(R)

a2
2(R)

<
2n
(
4 + 3a2

2(R)
)

3(1− n)a4
2(R) + 2(3− n)a2

2(R) + 3(n+ 1)

for 0 < a2
2(R) <

−(n− 3) +
√

10n2 − 6n

3(n− 1)
,

we can construct a nonnegatively curved metric on (0, R]×G/H although

Rgψ(R)
(
ψ−1
R X,ψ−1

R Y ;ψ−1
R Y, ψ−1

R X
)
� 0.
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When choosing

a2
2 >
−(n− 3) +

√
10n2 − 6n

3(n− 1)

we can even construct a nonnegatively metric on (0, R]×G/H where

Rgψ(R)
(
ψ−1
R X,ψ−1

R Y ;ψ−1
R Y, ψ−1

R X
)
can take arbitrary negative values.

The next proposition is an analogue of Proposition 6.6 in the case of sphere number 5,

Proposition 6.8. Consider a homogeneous metric gφ on K/H = U(n+1)/U(n) for n ≥ 2.

De�ne

D :=
−λ(n− 3)− 4n+

√
2n
√
λ2(5n− 3) + λ(13n− 3) + 8n

3(λ(n− 1) + 2n)

Then Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
is nonnegative for

a2
1

a2
2

≤ 2(λ+ 1)n(4 + 3a2
2)

(3(1− n)λ− 6n)a4
2 + 2((3− n)λ− 4n)a2

2 + 3λ(n+ 1)
if 0 < a2

2 < D

a2
1 arbitrary if a2

2 ≥ D .

Proof. Following from similar argumentations as before we achieve nonnegative curvature

if we can guarantee

a−6
2

(
1− 3

4
a2

1a
−2
2

)
+

1

4
(1 + µ)2 +

3

4

1

1 + a2
1

(
1 + a−2

2

(
2− a2

1a
−2
2

)
+ µ

)2
≥
(

1− n
1 + n

− 1

λ

2n

n+ 1

)(
a−6

2 +
1

4
(1 + µ)2 +

3

4
(1 + 2a−2

2 + µ)2

)
.

From here on the proof of Proposition 6.6 carries out over verbatim with the obvious

replacement and we obtain the statement in Proposition 6.8

Remark 6.9. The limit in Proposition 6.8 is "better" than that of Proposition 6.6 as

was to be expected. We get an analogeous result to that of Remark 6.7 in the case of

Proposition 6.8.
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Chapter 7

Cohomogeneity One Manifolds

7.1 Topology of Cohomogeneity One Manifolds

A connected manifoldM is said to be a cohomogeneity one G-manifold if there is a compact

Lie group G acting on M such that dim(M/G) = 1.

So the orbit space can in fact be identi�ed with either an interval I or the sphere S1.

Denote the principal orbits by G/H, where H is the principal isotropy group of such an

orbit up to conjugacy. Let π : M → M/G denote the projection map. From the general

theory (see [Br]) it is known that the union of the principal orbits forms a dense open

subset of M which we denote by M0. In fact M0 = π−1(S1) in which case all orbits are

principal and π is a bundlle map, or M0 is the preimage of the interior of the interval I

w.r.t. π.

Furthermore the principal isotropy group H is conjugated to a subgroup of any other

isotropy group K of a nonprincipal orbit. More than that in [M] it is shown that K/H is

a sphere.

The nonprincipal orbits are the preimages of the endpoints of I w.r.t. π and their tubular

neighborhoods are homogeneous disc bundles. Denoting the nonprincipal isotropy groups

by K± in the case when we have two nonprincipal orbits we obtain the following list for

the shape of cohomogeneity one manifolds

(i) M/G = R M = R×G/H

(ii) M/G = [a,∞) M = G×K V

(iii) M/G = S1 M = R×Z G/H

(iv) M/G = [a, b] M = G×K− D− ∪G/H G×K+ D+ ,

where in case (iv) we glue the two tubular neighborhoods of the nonprincipal orbits along
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a common principal orbit. For the rest of this chapter we will refer to this list when a

cohomogeneity one manifold is said to be in some case.

Conversely suppose that we are given compact Lie groups H ⊂ {K−,K+} ⊂ G where

K±/H are spheres such that the diagram of inclusions

G

K−

j−
==

K+

j+
aa

H

i−

aa

i+

==

commutes. Then we can construct a cohomogeneity one G-manifold with principal orbit

type G/H and nonprincipal orbits G/K±. Here the cohomogeneity one G-action is given

by the canonical action of G on the homogeneous disc bundles G×K− D− and G×K+ D+,

see Chapter 2, action in (2.3).

Example 7.1 (Brieskorn varieties). Consider the the real algebraic submanifolds of Cn+1

given by

W 2n−1
d :=

{
z ∈ Cn+1

∣∣ zd0 + z2
1 + · · ·+ z2

n = 0, |z0|2 + · · ·+ |zn|2 = 1
}
.

These 2n − 1 dimensional manifolds are called Brieskorn varieties. We write elements of

W 2n−1
d as tupels (z0, Z) ∈ C⊕ Cn.

As was observed in [HH] the Brieskorn varieties carry a cohomogeneity one action by

G := U(1)×O(n) de�ned by

(eiθ, A) ∗ (z0, Z) :=
(
e2iθz0, e

idθA · Z
)

Since
∣∣e2iθ

∣∣ = 1 it follows that |z0| is invariant under this action. So we obtain immediately

that if (z0, Z) and (w0,W ) are in the same orbit then |z0| = |w0|.
Conversely if we have |z0| = |w0|, then z0 = e2iθ w0 and for (z0, Z), (w0,W ) ∈ W 2n−1

d we

obtain

Zt · Z = e2diθW t ·W and |Z|2 = |W |2 .

From the �rst equation it follows that Z = ediθ B ·W for some B ∈ O(n;C) and from

the second equation we can extract Z = B̃ · W for some B̃ ∈ U(n) whence we obtain

Z = e
diθ
2 A ·W for some A ∈ O(n) since O(n;C) ∩ U(n) = O(n).
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So we can deduce that G acts with cohomogeneity one on W 2n−1
d .

Observe that |z0| ∈ [0, t0] where t0 is a real solution of td+ t2 = 1. That the minimal value

which |z0| can attain is zero follows from the fact that there are elements in W 2n−1
d with

z0 = 0. For determining the upper bound let t = |z0|. We have

td = |Zt · Z| ≤ |Z|2 = 1− t2 ⇐⇒ td + t2 ≤ 1 .

Since there are elements in W 2n−1
d ful�lling td + t2 = 1 the positive real solution of this

equation is the upper bound for |z0|.
Hence W 2n−1

d /G ∼= [0, t0] with t0 as above. Denote by π : W 2n−1
d → [0, t0] the projection

onto the orbit space. Then the preimages π−1(t) for t ∈ (0, t0) constitute the principal

orbits whereas the preimages π−1(0) and π−1(t0) constitute the singular orbits.

Next we are going to determine the groups H ⊂ {K−,K+} for the group diagram. For

the principal isotropy group we determine the isotropy group of (z0, z1, z2, 0, . . . , 0) with

|z0| ∈ (0, t0).

H =


(
ε,diag

(
1, 1, B

))
for d even(

ε,diag
(
− ε,−ε, B

))
for d odd ,

where ε = ±1 and B ∈ O(n− 2). So we have H ∼= Z2 ×O(n− 2).

The isotropy group K− of an element in π−1(0), say (0, z1, z2, . . . , 0) is given by

K− =
(
e−iθ,diag

(
eiθ, eiθ, B

))
,

where B ∈ O(n− 2). Therefore we have K− ∼= U(1)×O(n− 2).

Finally the isotropy group K+ of an element in π−1(t0), say (q, i
√
qd, 0, . . . , 0) can be

computed to be

K+ =


(
ε,diag(1, B)

)
for d even(

ε,diag(−ε, B)
)

for d odd ,

where ε = ±1 and B ∈ O(n− 1). So we can deduce that K+
∼= O(n− 1).

The dimension of the singular orbit G/K− is 2n− 3 therefore its codimension is 2 whereas

dimension of the singular orbit G/K+ is n therefore its codimension is n− 1.

For n and d odd the Briekorn manifolds are known to be homeomorphic to spheres and

even di�eomorphic if d = ±1 mod 8. If otherwise d = ±3 mod 8 they are di�eomorphic to

the Kervaire sphere, which is an exotic sphere.
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We will come back to this example later.

7.2 Nonnegatively Curved Invariant Metrics on Cohomogene-

ity One Manifolds

In the cases (i), (ii) and (iii) the existence of nonnegatively curved metrics is guaranteed.

This statement in obvious in the cases (i) and (iii) and for putting a nonnegatively curved

metric on a cohomogeneity one manifold as in (ii) we can use the results of Chapter 6.

Case (iv) is the most interesting one.

Here one way of putting a nonnegatively curved invariant metric on the cohomogeneity one

manifold is to de�ne nonnegatively curved metrics on each half which are G-equivariantly

isometric to each other near the boundary so that they can be glued along their common

boundary

So it seems likely to seek for the metrics being G-equivariantly isometric to
(
(R− ε,R]×

G/H, dt2+gQ
)
near the boundary for some ε > 0, where gQ denotes a normal homogeneous

metrics on G/H and to construct the metrics on each half with Cheeger's construction.

In [GZ1] it is shown that this is possible when the codimension of the singular orbits is at

most 2.

Observe that in this case we have dimK±/H ≤ 1 so that especially the tangent space to

K±/H can be identi�ed with a at most 1-dimensional subspace of the Lie algebra g of G.

Then the condition of Theorem 6.1 is satis�ed since the left hand side of (6.1) vanishes and

the existence of a nonnegatively curved normal homogeneous collar metric on each half is

guaranteed.

This situation is especially apparent for the Brieskorn varieties for n = 3. Therefore we

get the existence of a U(1)×O(3)-invariant metric on W 5
d .

If the codimension of at least one singular orbit is greater than 2 the existence of a non-

negatively curved invariant metric is not ensured. Let `− resp. `+ denote the codimension

of the singular orbit G/K− resp. G/K+.

In fact we have

Theorem 7.2. For each pair (`−, `+) with (`−, `+) 6= (2, 2) and `± ≥ 2 there exist in-

�nitely many cohomogeneity one G-manifolds that do not admit a G-invariant metric with

nonnegative curvature.

For instance the Brieskorn varieties do not support an U(1)×O(n)-invariant metric with

nonnegative curvature for n ≥ 4 and d ≥ 3, because in this case the codimension of one of

the singular orbits is greater than 2.
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Appendix

In the upcoming we are going to present the computations to obtain the curvature formula

stated in Lemma 1.16. For X,Y ∈ m we have

1

2
Q
([
ψ−1X,Y

]
+
[
X,ψ−1Y

]
,
[
ψ−1X,ψ−1Y

])
− 3

4
Q
(
ψ
[
ψ−1X,ψ−1Y

]
,
[
ψ−1X,ψ−1Y

])
+

1

4
Q
([
ψ−1X,Y

]
−
[
X,ψ−1Y

]
, ψ−1

([
ψ−1X,Y

]
−
[
X,ψ−1Y

]))
− Q

([
ψ−1X,X

]
, ψ−1

[
ψ−1Y, Y

])
=
∑

0≤k≤r

(
1

2
Q
(

2
∑

1≤i≤r
a−2
i Bi

k +
∑

1≤i<j≤r

(
a−2
i + a−2

j

)
Bij
k ,
∑

1≤i≤r
a−4
i Bi

k +
∑

1≤i<j≤r
a−2
i a−2

j Bij
k

)
− 3

4
a2
kQ
( ∑

1≤i≤r
a−4
i Bi

k +
∑

1≤i<j≤r
a−2
i a−2

j Bij
k ,
∑

1≤i≤r
a−4
i Bi

k +
∑

1≤i<j≤r
a−2
i a−2

j Bij
k

)
+

1

4
a−2
k Q

( ∑
1≤i<j≤r

(
a−2
i − a

−2
j

)([
Xi, Yj

]
k
−
[
Xj , Yi

]
k

)
,

∑
1≤i<j≤r

(
a−2
i − a

−2
j

)([
Xi, Yj

]
k
−
[
Xj , Yi

]
k

))
− a−2

k Q
( ∑

1≤i<j≤r

(
a−2
i − a

−2
j

)[
Xi, Xj

]
k
,
∑

1≤i<j≤r

(
a−2
i − a

−2
j

)[
Yi, Yj

]
k

))
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=
∑

0≤k≤r

(
1

2
Q
(

2
∑
k≤i≤r

a−2
i Bi

k +
∑

1≤i<k

(
a−2
i + a−2

k

)
Bik,

∑
k≤i≤r

a−4
i Bi

k +
∑

1≤i<k
a−2
i a−2

k Bik
)

− 3

4
a2
kQ
( ∑
k≤i≤r

a−4
i Bi

k +
∑

1≤i<k
a−2
i a−2

k Bik,
∑
k≤i≤r

a−4
i Bi

k +
∑

1≤i<k
a−2
i a−2

k Bik
)

+
1

4
a−2
k Q

( ∑
1≤i<k

(
a−2
i − a

−2
k

)([
Xi, Yk

]
−
[
Xk, Yi

])
,

∑
1≤i<k

(
a−2
i − a

−2
k

)([
Xi, Yk

]
−
[
Xk, Yi

]))
− a−2

k Q
( ∑

1≤i<k

(
a−2
i − a

−2
k

)[
Xi, Xk

]
,
∑

1≤i<k

(
a−2
i − a

−2
k

)[
Yi, Yk

]))

For �xed k we obtain for the expression in the last line

−Q
( ∑

1≤i<k

(
a−2
i − a

−2
k

)[
Xi, Xk

]
,
∑

1≤i<k

(
a−2
i − a

−2
k

)[
Yi, Yk

])
= −

∑
1≤i<k

∑
1≤l<k

(
a−2
i − a

−2
k

)(
a−2
l − a

−2
k

)
Q
([
Xi, Xk

]
,
[
Yl, Yk

])
= −

∑
1≤i<k

∑
1≤l<k

(
a−2
i − a

−2
k

)(
a−2
l − a

−2
k

)(
−Q
([
Xi, Yk

]
,
[
Xk, Yl

])
+Q

([
Xi, Yl

]
,
[
Xk, Yk

]))
= Q

( ∑
1≤i<k

(
a−2
i − a

−2
k

)[
Xi, Yk

]
,
∑

1≤i<k

(
a−2
i − a

−2
k

)[
Xk, Yi

])
−Q

( ∑
1≤i<j≤k

(a−2
i − a

−2
k

)(
a−2
j − a

−2
k

)
Bij +

∑
1≤i<k

(
a−2
i − a

−2
k

)2
Bi, Bk

)
,

where we have used the ad-skew-symmetry of Q and the the Jacobi identity from the third

to the forth line as

Q
([
Xi, Xj

]
,
[
Yk, Yl

])
= −Q

(
Xj ,

[
Xi,
[
Yk, Yl

]])
= Q

(
Xj ,

[
Yk,
[
Yl, Xi

]])
+Q

(
Xj ,

[
Yl,
[
Xi, Yk

]])
= −Q

([
Xi, Yl

]
,
[
Xj , Yk

])
+Q

([
Xi, Yk

]
,
[
Xj , Yl

])
.

62



With this manipulation at hand we get

1

4
a−2
k Q

( ∑
1≤i<k

(
a−2
i − a

−2
j

)([
Xi, Yk

]
−
[
Xk, Yi

])
,
∑

1≤i<k

(
a−2
i − a

−2
k

)([
Xi, Yk

]
−
[
Xk, Yi

]))
− a−2

k Q
( ∑

1≤i<k
(a−2
i − a

−2
k )[Xi, Xk],

∑
1≤i<k

(a−2
i − a

−2
k )[Yi, Yk]

)
=

1

4
a−2
k Q

( ∑
1≤i<k

(
a−2
i − a

−2
k

)
Bik,

∑
1≤i<k

(
a−2
i − a

−2
k

)
Bik
)

− a−2
k Q

( ∑
1≤i<j<k

(
a−2
i − a

−2
k

)(
a−2
j − a

−2
k

)
Bij +

∑
1≤i<k

(
a−2
i − a

−2
k

)2
Bi, Bk

)
.

We continue computing

Rḡψ
(
ψ−1X,ψ−1Y, ψ−1Y, ψ−1X

)
=
∑

0≤k≤r

(
Q
( ∑
k≤i≤r

a−2
i Bi

k,
∑
k≤i≤r

a−4
i Bi

k

)
− 3

4
a2
kQ
( ∑
k≤i≤r

a−4
i Bi

k,
∑
k≤i≤r

a−4
i Bi

k

)
+ a−2

k Q
( ∑
k≤i≤r

a−2
i Bi

k,
∑

1≤i<k
a−2
i Bik

)
+

1

2
Q
( ∑

1≤i<k

(
a−2
i + a−2

k

)
Bik,

∑
k≤i≤r

a−4
i Bi

k

)
+

1

2
a−2
k Q

( ∑
1≤i<k

(
a−2
i + a−2

k

)
Bik,

∑
1≤i<k

a−2
i Bik

)
− 3

2
Q
( ∑
k≤i≤r

a−4
i Bi

k,
∑

1≤i<k
a−2
i Bik

)
− 3

4
a−2
k Q

( ∑
1≤i<k

a−2
i Bik,

∑
1≤i<k

a−2
i Bik

)
+

1

4
a−2
k Q

( ∑
1≤i<k

a−2
i Bik,

∑
1≤i<k

a−2
i Bik

)
− 1

2
a−4
k Q

( ∑
1≤i<k

a−2
i Bik,

∑
1≤i<k

Bik
)

+
1

4
a−6
k Q

( ∑
1≤i<k

Bik,
∑

1≤i<k
Bik
)

− a−2
k Q

( ∑
1≤i<j<k

(
a−2
i − a

−2
k

)(
a−2
j − a

−2
k

)
Bij +

∑
1≤i<k

(
a−2
i − a

−2
k

)2
Bi, Bk

))

=
∑

0≤k≤r

(
1

4
Q
( ∑
k≤i≤r

a−4
i Bi

k,
∑
k≤i≤r

a−2
i (4− 3a2

ka
−2
i )Bi

k

)
+Q

( ∑
k<i≤r

a−2
i

(
a−2
k − a

−2
i

)
Bi
k,
∑

1≤i<k
a−2
i Bik

)
+

1

2
a−2
k Q

( ∑
k≤i≤r

a−4
i Bi

k,
∑

1≤i<k
Bik
)

+
1

4
a−6
k Q

( ∑
1≤i<k

Bik,
∑

1≤i<k
Bik
)

− a−2
k Q

( ∑
1≤i<j<k

(
a−2
i − a

−2
k

)(
a−2
j − a

−2
k

)
Bij +

∑
1≤i<k

(
a−2
i − a

−2
k

)2
Bi, Bk

))
.

After some simpli�cations and taking the O'Neill term of the canonical submersion into
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account we �nally get

Rgψ
(
ψ−1X,ψ−1Y, ψ−1Y, ψ−1X

)
=

∑
1≤i≤r

a−6
i

∥∥Bi
0

∥∥2
+

∑
1≤i<j≤r

a−4
j a−2

i

(
3− a2

i a
−2
j

)
Q
(
Bi

0, B
j
0

)
+
∑

1≤k≤r

( 1

4
a−6
k

∥∥Bk
k +

∑
1≤i<k

Bik
∥∥2

+
1

2
Q
( ∑
k<j≤r

a−4
j a−2

k

(
3− 2a2

ka
−2
j

)
Bj
k, B

k
k +

∑
1≤i<k

Bik
)

+
1

4

∑
k<i≤r

a−6
i

(
4− 3a2

ka
−2
i

)∥∥Bi
k

∥∥2

+
1

2

∑
k<i<j≤r

a−4
j a−2

i

(
6− 3a2

ka
−2
i − 2a2

i a
−2
j

)
Q
(
Bi
k, B

j
k

))
=

∑
1≤i≤r

a−6
i

∥∥Bi
0

∥∥2
+

∑
1≤i<j≤r

a−4
j a−2

i

(
3− a2

i a
−2
j

)
Q
(
Bi

0, B
j
0

)
+

1

4
a−6
r

∥∥∥Br
r +

∑
1≤i<r

Bir
∥∥∥2

+
∑

1≤k≤r−1

1

4
a−6
k

∥∥∥Bk
k +

∑
1≤i<k

Bik
∥∥∥2

+
1

2

∑
1≤k<j≤r

a−4
j a−2

k

(
3− 2a2

ka
−2
j

)
Q
(
Bj
k, B

k
k +

∑
1≤i<k

Bik
)

+
1

4

∑
1≤k<i≤r

a−6
i

(
4− 3a2

ka
−2
i

)∥∥Bi
k

∥∥2

+
1

2

∑
1≤k<i<j≤r

a−4
j a−2

i

(
6− 3a2

ka
−2
i − 2a2

i a
−2
j

)
Q
(
Bi
k, B

j
k

)
=

3

4
a2

1

∥∥∥ ∑
1≤i≤r

a−4
i Bi

0

∥∥∥2
+

1

4

∑
1≤i≤r

a−6
i

(
4− 3a2

1a
−2
i

)∥∥Bi
0 +Bi

1

∥∥2

+
1

2

∑
1≤i<j≤r

a−4
j a−2

i

(
6− 3a2

1a
−2
i − a

2
i a
−2
j

)
Q
(
Bi

0 +Bi
1, B

j
0 +Bj

1

)
+
∑

2≤k≤r

( 1

4
a−6
k

∥∥∥Bk
k +

∑
1≤i<k

Bik
∥∥∥2

+
1

4

∑
k<i≤r

a−6
i

(
4− 3a2

ka
−2
i

)∥∥Bi
k

∥∥2

+
1

2
Q
( ∑
k<j≤r

a−4
j a−2

k

(
3− 2a2

ka
−2
j

)
Bj
k, B

k
k +

∑
1≤i<k

Bik
)

+
1

2

∑
k<i<j≤r

a−4
j a−2

i

(
6− 3a2

ka
−2
i − a

2
i a
−2
j

)
Q
(
Bi
k, B

j
k

))
and this is the formula given in Lemma 1.16.
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For verifying that the given formula for the unnormalized curvature in Proposition 2.5 is

right we �rst consider the submersion

π : (G×K, gϕ ⊕ g̃ψ)→ (G, g̃φ) , (7.1)

where g̃ψ denotes the K-invariant metric on K inducing the metric gψ by means of the

canonical projection. Then we look at the canonical projection

(G, g̃φ)→ (G/H, gφ) . (7.2)

This twofolded approach is possible because we get the same inducing map φ as if we had

taken pointwise the submersion from Lemma 2.3 as can be checked. We point out that the

canonical projection only a�ects φ in restricting on p. That the range is also restricted to p

is due to the general properties inducing maps have to ful�ll when inducing homogeneous

metrics.

The computation of the vertical space, the horizontal space and the horizontal lifts of ele-

ments in g for the submersion in (7.1) carry out over verbatim from the proof of Lemma 2.3.

The tangent space to a �ber (vertical space) at (g, k) is given as

V(g,k) = {(−dLg(X), dRk(X)) |X ∈ k} ⊂ T(g,k)(G×K) ∼= TgG⊕ TkK .

So we have

V(e,e) = {(−X,X) |X ∈ k} ⊂ T(e,e)(G×K) ∼= g⊕ k .

The horizontal space is given by

H(e,e) = (s, 0)⊕ {(ψX, cX) |X ∈ k} .

Because of the form of the elements in V(g,k) and the fact that we obtain a left invariant

metric by Cheeger's construction it follows that we have to extend the G-coordinate to a

left invariant vector �eld and the K-coordinate to right invariant vector �eld of an element

in H(e,e) in order to describe H(g,k).

The horizontal lift of X = Xk +Xs, where the subscripts denote the projections onto the

corresponding subspaces of g, is given by

X̄ =
(
ψ(c+ ψ)−1Xk +Xs, c(c+ ψ)−1Xk

)
,
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and the inducing endomorphism for the metric g̃φ is given as

φ|k = cψ(c+ ψ)−1 and φ|s = ϕ|s .

Especially we can write the horizontal lift of X = Xk +Xs in terms of φ as follows

X̄ =
(
c−1φXk +Xs, ψ

−1φXk

)
and in particular we have

φ−1X =
(
ϕ−1X,ψ−1Xk

)
.

Since the horizontal lift of φ−1X is easier to handle with in the computations we are going

to work with twisted elements.

On the one hand we have by the O'Neill formula

Rg̃φ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=Rgϕ⊕g̃ψ

(
φ−1X,φ−1Y ;φ−1Y , φ−1X

)
+

3

4

∥∥[φ−1X,φ−1Y
]v∥∥2

gϕ⊕g̃ψ

=Rgϕ⊕g̃ψ
((
ϕ−1X,ψ−1Xk

)
,
(
ϕ−1Y, ψ−1Yk

)
;
(
ϕ−1Y, ψ−1Yk

)
,
(
ϕ−1X,ψ−1Xk

))
+

3

4

∥∥[ (ϕ−1X,ψ−1Xk

)
,
(
ϕ−1Y, ψ−1Yk

) ]v∥∥2

gϕ⊕g̃ψ

=Rgϕ
(
ϕ−1X,ϕ−1Y ;ϕ−1Y, ϕ−1X

)
+Rg̃ψ

(
ψ−1Xk, ψ

−1Yk;ψ
−1Yk, ψ

−1Xk

)
+

3

4

∥∥[ (ϕ−1X,ψ−1Xk

)
,
(
ϕ−1Y, ψ−1Yk

) ]v∥∥2

gϕ⊕g̃ψ
.

On the other hand we have by Püttmann's formula

Rg̃φ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=

1

2
Q
([
φ−1X,Y

]
+
[
X,φ−1Y

]
,
[
φ−1X,φ−1Y

])
(7.3)

− 3

4
Q
(
φ
[
φ−1X,φ−1Y

]
,
[
φ−1X,φ−1Y

])
(7.4)

+
1

4
Q
([
φ−1X,Y

]
−
[
X,φ−1Y

]
, φ−1

([
φ−1X,Y

]
−
[
X,φ−1Y

]))
(7.5)

−Q
([
φ−1X,X

]
, φ−1

[
φ−1Y, Y

]
) . (7.6)
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For the matters of clarity we use the abbreviations

Aϕ :=
[
ϕ−1X,Y

]
+
[
X,ϕ−1Y

]
Aψ :=

[
ψ−1Xk, Yk

]
+
[
Xk, ψ

−1Yk
]
∈ k

Bϕ :=
[
ϕ−1X,ϕ−1Y

]
Bψ :=

[
ψ−1Xk, ψ

−1Yk
]
∈ k

Cϕ :=
[
ϕ−1X,Y

]
−
[
X,ϕ−1Y

]
∈ s Cψ :=

[
ψ−1Xk, Yk

]
−
[
Xk, ψ

−1Yk
]
∈ k ,

which are also given in the formulation of Proposition 2.5 and point out that we have

φ−1X = ϕ−1X + ψ−1Xk .

Furthermore by Püttmann's formula we have using the above abbreviations

Rgϕ
(
ϕ−1X,ϕ−1Y ;ϕ−1Y, ϕ−1X

)
=

1

2
Q
(
Aϕ, Bϕ

)
− 3

4
Q
(
ϕBϕ, Bϕ

)
(7.7)

+
1

4
Q
(
Cϕ, ϕ−1Cϕ

)
−Q

([
ϕ−1X,X

]
, ϕ−1

[
ϕ−1Y, Y

])
and

Rg̃ψ
(
ψ−1Xk, ψ

−1Yk;ψ
−1Yk, ψ

−1Xk

)
=

1

2
Q
(
Aψ, Bψ

)
− 3

4
Q
(
ψBψ, Bψ

)
(7.8)

+
1

4
Q
(
Cψ, ψ−1Cψ

)
−Q

([
ψ−1Xk, Xk

]
, ψ−1

[
ψ−1Yk, Yk

])
.

Note that by the AdK-equivariance of ϕ we have

[ϕXs, Yk] = ϕ [Xs, Yk] ∀Xs ∈ s, Yk ∈ k .

This property of the Lie bracket will be needed in the upcoming calculations. Especially

we point out that we obtain

[ϕXs, Ys]k = [Xs, ϕYs]k .
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For (7.3) we get

1

2
Q
([
φ−1X,Y

]
+
[
X,φ−1Y

]
,
[
φ−1X,φ−1Y

])
=

1

2
Q
([
ϕ−1X + ψ−1Xk, Y

]
+
[
X,ϕ−1Y + ψ−1Yk

]
,
[
ϕ−1X + ψ−1Xk, ϕ

−1Y + ψ−1Yk
])

=
1

2
Q
(
Aϕ +

[
ψ−1Xk, Ys

]
+
[
Xs, ψ

−1Yk
]

+Aψ, Bϕ +
[
ϕ−1X,ψ−1Yk

]
+
[
ψ−1Xk, ϕ

−1Y
]

+Bψ
)

=
1

2

(
Q
(
Aϕ, Bϕ

)
+Q

(
Aψ, Bψ

)
+Q

(
Aϕ,

[
ϕ−1X,ψ−1Yk

]
+
[
ψ−1Xk, ϕ

−1Y
]

+Bψ
)

+Q
([
ψ−1Xk, Ys

]
+
[
Xs, ψ

−1Yk
]

+Aψ, Bϕ +
[
ϕ−1X,ψ−1Yk

]
+
[
ψ−1Xk, ϕ

−1Y
]))

.

For (7.4) we have

−3

4
Q
(
φ
[
φ−1X,φ−1Y

]
,
[
φ−1X,φ−1Y

])
= −3

4
Q
(
φ
[
ϕ−1X + ψ−1Xk, ϕ

−1Y + ψ−1Yk
]
,
[
ϕ−1X + ψ−1Xk, ϕ

−1Y + ψ−1Yk
])

= −3

4
Q
(
ϕ
(
Bϕ

s + ϕ−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
, Bϕ

s + ϕ−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
−3

4
Q
(
cψ(c+ ψ)−1

(
Bϕ

k +Bψ + c−1Aψ
)
, Bϕ

k +Bψ + c−1Aψ
)
.

For (7.5) we obtain

1

4
Q
([
φ−1X,Y

]
−
[
X,φ−1Y

]
, φ−1

([
φ−1X,Y

]
−
[
X,φ−1Y

]))
=

1

4
Q
([
ϕ−1X + ψ−1Xk, Y

]
−
[
X,ϕ−1Y + ψ−1Yk

]
,

φ−1
([
ϕ−1X + ψ−1Xk, Y

]
−
[
X,ϕ−1Y + ψ−1Yk

]))
=

1

4
Q
(
Cϕ +

[
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]

+ Cψ,

ϕ−1Cϕ + ϕ−1
([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
])

+ c−1Cψ + ψ−1Cψ
)

=
1

4

(
Q
(
Cϕ, ϕ−1Cϕ

)
+Q

(
Cψ, ψ−1Cψ

)
+ 2Q

(
Cϕ, ϕ−1

([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]))

+Q
([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]
, ϕ−1

([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]))

+ c−1
∥∥Cψ∥∥2

)
.
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And for (7.6) we have

−Q
([
φ−1X,X

]
, φ−1

[
φ−1Y, Y

])
=−Q

([
ϕ−1X + ψ−1Xk, X

]
, φ−1

[
ϕ−1Y + ψ−1Yk, Y

])
=−Q

([
ϕ−1X,X

]
+
[
ψ−1Xk, Xs

]
+
[
ψ−1Xk, Xk

]
,

ϕ−1
[
ϕ−1Y, Y

]
+ ϕ−1

[
ψ−1Yk, Ys

]
+ c−1

[
ψ−1Yk, Yk

]
+ ψ−1

[
ψ−1Yk, Yk

])
=−Q

([
ϕ−1X,X

]
, ϕ−1

[
ϕ−1Y, Y

])
−Q

([
ψ−1Xk, Xk

]
, ψ−1

[
ψ−1Yk, Yk

])
−Q

([
ϕ−1X,X

]
, ϕ−1

[
ψ−1Yk, Ys

])
−Q

([
ψ−1Xk, Xs

]
, ϕ−1

[
ϕ−1Y, Y

])
−Q

([
ψ−1Xk, Xs

]
, ϕ−1

[
ψ−1Yk, Ys

])
− c−1Q

([
ψ−1Xk, Xk

]
,
[
ψ−1Yk, Yk

])
.

For relating this with the former results we have to modify some expressions. For this we

use the Jacobi identity and ad-skew-symmetry of Q to perform

Q([X1, X2], [Y1, Y2]) = −Q(X2, [X1, [Y1, Y2]])

= Q(X2, [Y1, [Y2, X1]]) +Q(X2, [Y2, [X1, Y1]])

= −Q([X1, Y2], [X2, Y1]) +Q([X1, Y1], [X2, Y2]) .

So

−Q
([
ϕ−1X,X

]
, ϕ−1

[
ψ−1Yk, Ys

])
=−Q

(
c−1
[
Xk, Xs

]
+
[
ϕ−1Xs, Xk

]
+
[
ϕ−1Xs, Xs

]
,
[
ψ−1Yk, ϕ

−1Ys
])

= c−1Q
(
ϕ−1

[
Xk, Ys

]
,
[
Xs, ψ

−1Yk
])
− c−1Q

([
Xk, ψ

−1Yk
]
,
[
Xs, ϕ

−1Ys
])

+Q
([
Xk, ψ

−1Yk
]
,
[
ϕ−1Xs, ϕ

−1Ys
])
−Q

([
Xk, ϕ

−1Ys
]
,
[
ϕ−1Xs, ψ

−1Yk
])

+Q
([
ϕ−1Xs, ϕ

−1Ys
]
,
[
Xs, ψ

−1Yk
])
−Q

([
ϕ−1Xs, ψ

−1Yk
]
,
[
Xs, ϕ

−1Ys
])

as well as

−Q
([
ψ−1Xk, Xs

]
, ϕ−1

[
ϕ−1Y, Y

])
=−Q

([
ψ−1Xk, ϕ

−1Xs

]
, c−1

[
Yk, Ys

]
+
[
ϕ−1Ys, Yk

]
+
[
ϕ−1Ys, Ys

])
= c−1Q

([
ψ−1Xk, Ys

]
,
[
ϕ−1Xs, Yk

])
− c−1Q

([
ψ−1Xk, Yk

]
,
[
ϕ−1Xs, Ys

])
+Q

([
ψ−1Xk, Yk

]
,
[
ϕ−1Xs, ϕ

−1Ys
])
−Q

([
ψ−1Xk, ϕ

−1Ys
]
,
[
ϕ−1Xs, Yk

])
+Q

([
ψ−1Xk, Ys

]
,
[
ϕ−1Xs, ϕ

−1Ys
])
−Q

([
ψ−1Xk, ϕ

−1Ys
]
,
[
ϕ−1Xs, Ys

])
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and

−Q
([
ψ−1Xk, Xs

]
,
[
ψ−1Yk, ϕ

−1Ys
])

= Q
([
ψ−1Xk, ϕ

−1Ys
]
,
[
Xs, ψ

−1Yk
])
−Q

([
ψ−1Xk, ψ

−1Yk
]
,
[
Xs, ϕ

−1Ys
])
,

− c−1Q
([
ψ−1Xk, Xk

]
,
[
ψ−1Yk, Yk

])
= c−1Q

([
ψ−1Xk, Yk

]
,
[
Xk, ψ

−1Yk
])
− c−1Q

([
ψ−1Xk, ψ

−1Yk
]
,
[
Xk, Yk

])
.

As a consequence we arrive at

−Q
([
φ−1X,X

]
, φ−1

[
φ−1Y, Y

])
=−Q

([
ϕ−1X,X

]
, ϕ−1

[
ϕ−1Y, Y

])
−Q

([
ψ−1Xk, Xk

]
, ψ−1

[
ψ−1Yk, Yk

])
+ c−1Q

(
ϕ−1

[
Xk, Ys

]
,
[
Xs, ψ

−1Yk
])

+ c−1Q
([
ψ−1Xk, Ys

]
, ϕ−1

[
Xs, Yk

])
+Q

([
ϕ−1Xs, ϕ

−1Ys
]
,
[
ψ−1Xk, Ys

]
+
[
Xs, ψ

−1Yk
])

+Q
(
ϕ−1

[
ψ−1Xk, Ys

]
,
[
Xs, ψ

−1Yk
])

−Q
([
X,ϕ−1Ys

]
, ϕ−1

[
Xs, ψ

−1Yk
])
−Q

([
ϕ−1Xs, Y

]
, ϕ−1

[
ψ−1Xk, Ys

])
− c−1Q

(
Aψ,

[
Xs, ϕ

−1Ys
])
− c−1Q

(
Bψ,

[
Xk, Yk

])
+ c−1Q

([
ψ−1Xk, Yk

]
,
[
Xk, ψ

−1Yk
])

+Q
(
Aψ,

[
ϕ−1Xs, ϕ

−1Ys
])
−Q

(
Bψ,

[
Xs, ϕ

−1Ys
])
.

Collecting all expressions coming from the s-part and neither arising in (7.7) nor in (7.8)

we get

1

2
Q
(
Aϕs , ϕ

−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
+

1

2
Q
([
ψ−1Xk, Ys

]
+
[
Xs, ψ

−1Yk
]
, Bϕ

s + ϕ−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
− 3

4
Q
(
ϕ
(
Bϕ

s + ϕ−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
, Bϕ

s + ϕ−1
([
Xs, ψ

−1Yk
]

+
[
ψ−1Xk, Ys

]))
+

1

2
Q
(
Cϕ, ϕ−1

([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]))

+
1

4
Q
([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]
, ϕ−1

([
ψ−1Xk, Ys

]
−
[
Xs, ψ

−1Yk
]))

+ c−1Q
(
ϕ−1

[
Xk, Ys

]
,
[
Xs, ψ

−1Yk
])

+ c−1Q
([
ψ−1Xk, Ys

]
, ϕ−1

[
Xs, Yk

])
+Q

([
ϕ−1Xs, ϕ

−1Ys
]
,
[
ψ−1Xk, Ys

]
+
[
Xs, ψ

−1Yk
])

+Q
(
ϕ−1

[
ψ−1Xk, Ys

]
,
[
Xs, ψ

−1Yk
])

−Q
([
X,ϕ−1Ys

]
, ϕ−1

[
Xs, ψ

−1Yk
])
−Q

([
ϕ−1Xs, Y

]
, ϕ−1

[
ψ−1Xk, Ys

])
= 0 .

For the expressions coming from the k-part and neither arising in (7.7) nor in (7.8) we
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obtain

1

2
Q
(
Aϕk , c

−1
([
Xk, ψ

−1Yk
]

+
[
ψ−1Xk, Yk

])
+Bψ)

+
1

2
Q
(
Aψ, Bϕ

k + c−1
([
Xk, ψ

−1Yk
]

+
[
ψ−1Xk, Yk

]))
− 3

4
Q
(
cψ(c+ ψ)−1

(
Bϕ

k +Bψ + c−1Aψ
)
, Bϕ

k +Bψ + c−1Aψ
)

+
1

4
c−1
∥∥Cψ∥∥2 − c−1Q

(
Aψ,

[
Xs, ϕ

−1Ys
])
− c−1Q

(
Bψ, [Xk, Yk]

)
+ c−1Q

([
ψ−1Xk, Yk

]
,
[
Xk, ψ

−1Yk
])

+Q
(
Aψ,

[
ϕ−1Xs, ϕ

−1Ys
])
−Q

(
Bψ,

[
Xs, ϕ

−1Ys
])

=
3

4
c
(
−
∥∥Bϕ

k

∥∥2 − c−1Q
(
ψBψ, Bψ

)
+ c−1Q

(
(c+ ψ)−1

(
cBϕ

k +Aψ − ψBψ
)
, cBϕ

k +Aψ − ψBψ
))
,

where −3
4 c
∥∥Bϕ

k

∥∥2
in fact belongs to (7.7) and −3

4 Q
(
ψBψ, Bψ

)
belongs to (7.8). This is

why the O'Neill term is given as

3

4
Q
(
(c+ ψ)−1

(
cBϕ

k +Aψ − ψBψ
)
, cBϕ

k +Aψ − ψBψ
)
.

So

Rg̃φ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
=Rgϕ

(
ϕ−1X,ϕ−1Y ;ϕ−1Y, ϕ−1X

)
+Rg̃ψ

(
ψ−1Xk, ψ

−1Yk;ψ
−1Yk, ψ

−1Xk

)
+

3

4
Q
(
(c+ ψ)−1

(
cBϕ

k +Aψ − ψBψ
)
, cBϕ

k +Aψ − ψBψ
)
.

Now consider the submersion (7.2). We again have by O'Neill's formula

Rgφ
(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
= Rg̃φ

(
φ−1X,φ−1Y ;φ−1Y, φ−1X

)
+

3

4

∥∥[φ−1X,φ−1Y ]h
∥∥2

g̃φ
.

where 3
4 ‖[φ

−1X,φ−1Y ]h‖2g̃ is the O'Neill term because the vertical space of the canonical

submersion from G to the homogeneous space G/H is h. In the upcoming calculations we

will still work with the introduced abbreviations but we have to pay attention that now Xk

resp. Yk has to be replaced by Xm resp. Ym. We can compute the O'Neill term analogeous
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to the computation of (7.4) to be

3

4
Q
(
φ
[
φ−1X,φ−1Y

]
h
,
[
φ−1X,φ−1Y

]
h

)
=

3

4
Q
(
cψ(c+ ψ)−1

(
Bϕ

h +Bψ
h + c−1Aψh

)
, Bϕ

h +Bψ
h + c−1Aψh

)
.

We have

3

4
Q
(
(c+ ψ)−1

(
cBϕ

h +Aψh − ψB
ψ
h ), cBϕ

h +Aψh − ψB
ψ
h

)
+

3

4
Q
(
cψ(c+ ψ)−1

(
Bϕ

h +Bψ
h + c−1Aψh

)
, Bϕ

h +Bψ
h + c−1Aψh

)
=

3

4
c
∥∥Bϕ

h + c−1Aψh
∥∥2

+
3

4
Q
(
ψBψ

h , B
ψ
h

)
,

where 3
4Q(ψBψ

h , B
ψ
h ) is especially is the O'Neill term of the canonical submersion

(K, g̃ψ)→ (K/H, gψ) .

Putting all together yields the formula given in Proposition 2.5.

Proof of Proposition 4.2. Up to scaling Q(A,B) = −1
2Re(tr(AB)) is the only AdSU(n+1)-

invariant inner product on su(n + 1) because there are no nontrivial AdSU(n+1)-invariant

subspaces of su(n+ 1) and since Q(A,B) = −1
2Re(tr(AB)) is a AdSU(n+1)-invariant inner

product on su(n+ 1) it follows by Schur's Lemma that it is the only one up to scaling.

The Lie algebra of the isotropy group

H =

{(
1 0

0 M

)
∈ SU(n+ 1)

∣∣M ∈ SU(n)

}

in p0 = (1, 0, · · · , 0) ∈ S2n+1 ⊂ Cn+1 is given by

h =

{(
0 0

0 A

)
∈ su(n+ 1)

∣∣A ∈ su(n)

}
.

It can be checked that

h⊥ = span {diag(−ni, i, · · · , i)}︸ ︷︷ ︸
=:m1

⊥
⊕
{(

0 z

−z∗ 0

)
∈ su(n+ 1)

∣∣ z ∈ Cn}︸ ︷︷ ︸
=:m2

,

where m1 and m2 are the AdH -invariant subspaces with m1⊥m2.
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We compute

‖diag(−ni, i, · · · , i)‖2Q =
n(n+ 1)

2
and

∥∥∥∥
(

0 z

−z∗ 0

)∥∥∥∥2

Q

= |z|2 . (7.9)

Now consider Tp0S
2n+1. According to the identi�cation of Tp0S

2n+1 with m1⊕m2 via

action �elds we get

d

dt

∣∣∣
t=0

exp(t diag(−ni, i, · · · , i))(p0) = (−ni, 0, · · · , 0)

and
d

dt

∣∣∣
t=0

exp

(
t

(
0 z

−z∗ 0

))
(p0) = (0, z) .

We have

‖(−ni, 0, · · · , 0)‖2gcan = n2 and ‖(0, z)‖2gcan = |z|2 .

Comparing this with (7.9) yields the parameters a2
1 = 2n

n+1 and a2
2 = 1 for obtaining the

round metric.

For determining the AdU(n+1)-invariant inner products on u(n+ 1) we observe that

span {i Id} and su(n+ 1)

are AdU(n+1)-invariant subspaces of u(n+ 1) and there are no further AdU(n+1)-invariant

subspaces. So we obtain by Schur's Lemma that

Q(A1 +A2, B1 +B2) = −1
2Re

(
tr
(
λ
nA1B1 +A2B2

))
for A1 +A2, B1 +B2 ∈ span{i Id} ⊕ su(n+ 1), λ ∈ R>0

is up to scaling the only AdU(n+1)-invariant inner product on u(n+ 1).

The Lie algebra of the isotropy group in p0 = (1, 0, · · · , 0) ∈ S2n+1 ⊂ Cn+1,

H =

{(
1 0

0 M

)
∈ U(n+ 1)

∣∣M ∈ U(n)

}

is given by

h =

{(
0 0

0 A

)
∈ u(n+ 1)

∣∣A ∈ u(n)

}
.
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For computing h⊥ we �rst observe that an element in h decomposes as

h 3

(
0 0

0 A

)
=

(
0 0

0 A

)
− tr(A)

n+ 1
Id︸ ︷︷ ︸

∈su(n+1)

− i tr(A)

n+ 1
Id︸ ︷︷ ︸

∈ span {i Id}

.

Now let B1 +B2 ∈ span {i Id} ⊕ su(n+ 1) and decompose B2 ∈ su(n+ 1) as

B2 = b2 diag(−ni, i, · · · , i)︸ ︷︷ ︸
=:D

+

(
0 z

−z∗ 0

)
+

(
0 0

0 B

)
with b2 ∈ R, z ∈ Cn, B ∈ su(n) .

So we get

Q

(
− i tr(A)

n+ 1
i Id +

(
0 0

0 A

)
− tr(A)

n+ 1
Id , b1i Id + b2D +

(
0 z

−z∗ 0

)
+

(
0 0

0 B

))

= − 1

2n

((
λ b1 + b2n

)
i tr(A) + nRe

(
tr(AB)

))
.

This vanishes for all b1 ∈ R and A ∈ u(n) if and only if b1 = −n
λ b2 and B = 0. Therefore

we get

h⊥ = span {ni Id− λ diag(−ni, i, · · · , i)}︸ ︷︷ ︸
=:m1

⊥
⊕
{(

0 z

−z∗ 0

)
∈ u(n+ 1)

∣∣ z ∈ Cn}︸ ︷︷ ︸
=:m2

,

where m1 and m2 are the AdH -invariant subspaces with m1⊥m2.

We compute

‖ni Id− λ diag(−ni, i, · · · , i)‖2Q =
n(n+ 1)λ(λ+ 1)

2
and

∥∥∥∥
(

0 z

−z∗ 0

)∥∥∥∥2

Q

= |z|2 .

Now consider Tp0S
2n+1. According to the identi�cation of Tp0S

2n+1 with m1⊕m2 via

action �elds we get

d

dt

∣∣∣
t=0

exp
(
t (ni Id− λ diag(−ni, i, · · · , i))

)
(p0) =

(
n(λ+ 1)i, 0, · · · , 0

)
and

d

dt

∣∣∣
t=0

exp

(
t

(
0 z

−z∗ 0

))
(p0) = (0, z) .
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We have

(
n(λ+ 1)i, 0, · · · , 0

)
‖2gcan = n2(λ+ 1) and ‖(0, z)‖2gcan = |z|2 .

Comparing this with the corresponding norms in the metric Q yields the parameters a2
1 =

λ+1
λ

2n
n+1 and a2

2 = 1 for obtaining the round metric.

For determining the AdU(1)Sp(n+1)-invariant inner products on u(1)sp(n + 1) we observe

that

u(1) and sp(n+ 1)

are naturally AdU(1)Sp(n+1)-invariant subspaces of u(1)sp(n + 1) and there are no further

AdU(1)Sp(n+1)-invariant subspaces. Hence by Schur's Lemma it follows that

Q
(
(ix,A), (iy, B)

)
= −1

2

(
λxy +Re(tr(AB))

)
for (ix,A), (iy, B) ∈ u(1)sp(n+ 1), λ ∈ R>0

is up to scaling the only AdU(1)Sp(n+1)-invariant inner product on u(1)sp(n+ 1).

The Lie algebra of the isotropy group in p0 = (1, 0, · · · , 0) ∈ S4n+3 ⊂ Hn+1,

H =

{(
z,

(
z 0

0 M

))
∈ U(1)Sp(n+ 1)

∣∣ z ∈ U(1), M ∈ Sp(n)

}
∼= U(1)Sp(n)

is given by

h =

{(
ix,

(
ix 0

0 A

))
∈ u(1)sp(n+ 1)

∣∣x ∈ R, A ∈ sp(n)

}
.

Decompose B̃ ∈ sp(n+ 1) as

B̃ =

(
v 0

0 0

)
+

(
0 z

−z∗ 0

)
+

(
0 0

0 B

)
with v = iv1 + jv2 + kv3 ∈ sp(1),

z ∈ Hn, B ∈ sp(n) .
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Then

Q

((
ix,

(
ix 0

0 A

))
,

(
iy,

(
v 0

0 0

)
+

(
0 z

−z∗ 0

)
+

(
0 0

0 B

)))
=

1

2

(
λxy + xv1 −Re

(
tr(AB)

))
.

This vanishes for all x ∈ R and A ∈ sp(n) if and only if y = − 1
λ v1 and B = 0. Therefore

we get

h⊥ =

{(
− 1
λ iv1,

(
v z

−z∗ 0

))
∈ u(1)sp(n+ 1)

∣∣ v = iv1 + jv2 + kv3 ∈ sp(1), z ∈ Hn
}
.

An AdH -invariant decomposition of m := h⊥ is given by m = m1

⊥
⊕ m2

⊥
⊕ m3 with

m1 =

{(
− 1
λ iv1,

(
iv1 0

0 0

))
∈ u(1)sp(n+ 1)

∣∣ v1 ∈ R
}
,

m2 =

{(
0,

(
jv2 + kv3 0

0 0

))
∈ u(1)sp(n+ 1)

∣∣ jv2 + kv3 ∈ Im(H) \ {iR}
}
,

m3 =

{(
0,

(
0 z

−z∗ 0

))
∈ u(1)sp(n+ 1)

∣∣ z ∈ Hn} .
We compute∥∥∥∥(− 1

λ iv1,

(
iv1 0

0 0

))∥∥∥∥2

Q

=
1

2

λ+ 1

λ
v2

1,

∥∥∥∥(0,

(
jv2 + kv3 0

0 0

))∥∥∥∥2

Q

=
1

2
(v2

2 + v2
3),

and

∥∥∥∥
(

0 z

−z∗ 0

)∥∥∥∥2

Q

= |z|2 .

Consider Tp0S
4n+3. According to the identi�cation of Tp0S

4n+3 with m1⊕m2⊕m3 via
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action �elds we get

d

dt

∣∣∣
t=0

exp

(
t

(
− 1
λ iv1,

(
iv1 0

0 0

))
(p0) =

d

dt

∣∣∣
t=0

exp

(
t

(
iv1 0

0 0

))
(p0)

(
exp
(
t
(
− 1
λ iv1

)))−1

=
( λ+ 1

λ
iv1, 0, · · · , 0

)
d

dt

∣∣∣
t=0

exp

(
t

(
0,

(
jv2 + kv3 0

0 0

))
(p0) =

(
0, jv2, kv3, 0, · · · , 0

)
and

d

dt

∣∣∣
t=0

exp

(
t

(
0 z

−z∗ 0

))
(p0) = (0, z) .

Computing

‖
(
λ+1
λ iv1, 0, · · · , 0

)
‖2gcan = v2

1

(
λ+1
λ

)2
, ‖

(
0, jv2, kv3, 0, · · · , 0

)
‖2gcan = v2

2 + v2
3

and ‖(0, z)‖2gcan = |z|2

and comparing this with the corresponding norms in the metric Q yields the parameters

a2
1 = 2 λ+1

λ , a2
2 = 2 and a2

3 = 1 for obtaining the round metric.

The computations for determining the constants for the round metric in the cases 6, 7 are

similar to the computuations above and are therefore left out.

Nevertheless we observe that for sphere number 7 we have the isotropy group

H =

{(
q,

(
q 0

0 M

))
∈ Sp(1)Sp(n+ 1)

∣∣ q ∈ Sp(1), M ∈ Sp(n)

}
∼= Sp(1)Sp(n)

in p0 = (1, 0, · · · , 0) ∈ S4n+3 ⊂ Hn+1 with Lie algebra

h =

{(
v,

(
v 0

0 A

))
∈ sp(1)sp(n+ 1)

∣∣ v ∈ sp(1), A ∈ sp(n)

}
.

Then an AdH -invariant decomposition of m := h⊥ is given by m = m1

⊥
⊕ m2 with

m1 =

{(
−v,

(
λv 0

0 0

))
∈ sp(1)sp(n+ 1)

∣∣ v ∈ sp(1)

}
∼= Im(H) ,

m2 =

{(
0,

(
0 z

−z∗ 0

))
∈ sp(1)sp(n+ 1)

∣∣ z ∈ Hn} ∼= Hn .

For a detailed treatment of case 9 see [GZ2].

77



Bibliography

[B] M. Berger, Les variétés Riemanniennes homogènes normales simplement con-

nexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa 15 (1961),

179-246

[BB] L. Bérard-Bergery, Sur certaines �brations d'espaces homogènes riemanniens,

Compositio Math 30, 1975, 43-61

[Be] A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und iherer Gren-

zgebiete 10, Springer-Verlag, Berlin 1987

[Br] G. E. Bredon, Introduction to compact transformation groups, Pure ans Applied

Mathematics 46, Academic Press, New York 1972

[C] J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Di� Geom.

8, (1973) 623-628

[CE] J. Cheeger, D. G. Ebin, Comparison theorems in Riemannian geometry, AMS

Chelsea Publishing, Reprint 2008

[GVWZ] K. Grove, L. Verdiani, B. Wilking, W. Ziller Non-negative curvature obstructions

in cohomogeneity one and the Kervaire spheres, Ann. del. Scuola Norm. Sup. 5

(2006), 159-170

[GZ1] K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math.

(2) 152 (2000), 331-367

[GZ2] K. Grove, W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature,

Inv. Math. 149 (2002), 619-649

[HH] W.-C. Hsiang, W.-Y. Hsiang, On a compact subgroup of the di�eomorphism

groups groups of Kervaire spheres, Ann. of Math. (2) 85 (1957), 359-369

78



[HT] J. Huizenga, K. Tapp, Invariant metrics with nonnegative curvature on SO(4)

and other Lie groups, Michigan Math. J., Volume 55, Issue 3 (2007), 609-630

[Pe] P. Petersen, Riemannian Geometry, Springer GTM 171 (2000)

[Pü] T. Püttmann, Optimal pinching constants of odd dimensional homogeneous

spaces, Inv. Math. 138 (1999), 631-684

[MS] D. Montgomery, H. Samelson Transformation groups of spheres, Ann. of Math.

44 (1943), 454-470

[M] P. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65

(1957), 447-455; Errata, Ann. of Math. 66 (1957), 589

[S1] L. J. Schwachhöfer, A remark on left invariant metrics on compact Lie groups,

Archiv der Mathematik, Vol. 90, No.2, 158 - 162 (2008)

[S2] L. J. Schwachhöfer, Nonnegative curvature on disk bundles, London Mathe-

matical Society, Lecture Note Series 394, Variational Problems in Di�erential

Geometry (2011)

[STa1] L. J. Schwachhöfer, K. Tapp, Homogeneous Metrics with nonnegative curvature,

Journal of Geometric Analysis Vol. 19, 929-943 (2009)

[STa2] L. J. Schwachhöfer, K. Tapp, Cohomogeneity one disk bundles with normal

homogeneous collars, Proceedings of the London Mathematical Society (3), Vol.

99 No. 3, 609 - 632 (2009)

[STu] L. J. Schwachhöfer, W. Tuschmann, Almost nonegative curvature ans cohomo-

geneity one, Preprint 62, Max-Planck-Institut für Mathematik in den Natur-

wissenschaften, Leipzig (2001)

[VZ] L. Verdiani, W. Ziller, Positively curved homogeneous metrics on spheres, Math.

Zeitschrift 261 (2009), 473-488


	Introduction
	Preliminaries
	Invariant Metrics on Homogeneous Manifolds
	Curvature of Homogeneous Metrics

	Cheeger's Construction
	Cheeger Deformations
	Homogeneous Sphere Metrics
	Curvature of Generalized Warped Product Metrics
	Nonnegatively Curved Invariant Metrics on Homogeneous Disc Bundles
	Cohomogeneity One Manifolds
	Topology of Cohomogeneity One Manifolds
	Nonnegatively Curved Invariant Metrics on Cohomogeneity One Manifolds

	Appendix
	Bibliography

