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1. Introduction

The study of context-free games is motivated by issues that arose in the development of Active
XML (AXML), an extension of the XML framework [12]. AXML documents are documents where
some of the data is given explicitly while other parts are given by means of embedded calls to
web services [10]. These embedded calls can be invoked to materialize more data. As an example
(adapted from [10, 12]; see Figure 1.1), consider a document for the web page of a local newspaper.
The document may contain some explicit data, such as the name of the city, whereas information
about the weather and local events is given by means of calls to a weather forecast service and an
events service (see Figure 1.1a). By invoking these calls, the data is materialized, i. e. replaced
by concrete weather and events data (see Figure 1.1b). The data returned by the service call may
contain further service calls.

When exchanging AXML documents between two applications, data can be materialized either
by the sender before transferring the document or afterwards by the receiver. It is also possible that
some of the data is materialized by the sender, some by the receiver and some is not materialized
at all. In the example of Figure 1.1, data about the weather might be relevant only if there are
outdoor events and otherwise it does not need to be materialized. The choice which data needs to be
materialized by the sender and the receiver may be influenced by considerations about performance,
capabilities, security and functionalities and can be specified, for instance, by a DTD [10]. An
overview about AXML is given in [1].

An abstraction of this application are (active) context-free games, introduced by Muscholl,
Schwentick and Segoufin [12]. A context-free game is determined by a set of production rules and
a regular language (the target language). It is played on a string by two players, Romeo and Juliet,
and consists of several rounds. In each round, first Juliet selects a position of the current string;
then Romeo replaces the symbol at that position according to one of the production rules. Juliet
wins if she can reach a situation where the current string belongs to the target language. In terms

City

Name

Dortmund

Weather

@weather

Events

@events

(a) AXML document before invoking calls

City

Name

Dortmund

Weather

25°C, sun

Events

Indoor

@operas

Outdoor

Marathon

(b) AXML document after invoking calls

Figure 1.1.: An AXML document before and after the invocation of service calls
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of the application described above, the string models the AXML document and Juliet’s choice
of a position in the string corresponds to the invocation of a service call. The replacement word
chosen by Romeo corresponds to the return value of a service call. The target language represents
the specification which the document has to satisfy before it is sent to the receiver. The question
whether a document can be rewritten so that it satisfies the specification translates to the problem of
deciding whether Juliet has a winning strategy for a given input string in a given context-free game.

In the general case, it is undecidable for a given game and string whether a winning strategy
for Juliet exists [12]. However, the problem becomes decidable in several restricted cases or by
restricting Juliet to a certain type of strategy [12]. A strategy for Juliet is called left-to-right if she
never selects a position to the left of a previously selected position. In other words, Juliet traverses
the string from left to right and has to decide for each symbol whether to play Read (go to the next
symbol) or Call (select this symbol for Romeo to replace it). The decidability and complexity of
deciding whether a winning left-to-right or general strategy exists is determined in [12] for both the
general case and several restricted cases. Even for most of the decidable restricted cases studied in
[12], the complexity is very high.

Abiteboul, Milo and Benjelloun [3] imposed further restrictions on strategies by introducing
one-pass strategies. One-pass strategies are a special type of left-to-right strategies where the string
arrives in a streaming fashion; Juliet makes her decisions without seeing the suffix starting at the
immediate right of the position that she currently decides to read or call. The goal is to achieve
a more efficient document parsing because the document is processed in a single pass (hence the
name), without consideration of the symbols that have not been processed yet. Abiteboul et al. [3]
also introduced regular strategies, a particularly simple type of one-pass strategies that achieve this
goal with as little computational power as a finite state automaton (FSA).

Despite their advantages, one-pass strategies also entail several difficulties and challenges. For
instance, consider the example in Figure 1.2. At the start, Juliet only sees that the input word begins
with a. She must play Call on a to preserve her chance to reach a string that matches the target
language. Romeo can choose either b or bab as replacement word, but Juliet does not know which
replacement word he chooses. Initially, only the first symbol b of the replacement word is displayed
to her. She must play Read on b because b is not a function symbol (there are no rules to replace
b). So next, she sees that a is the symbol that follows b. But now – even if she knew that the input
word was aa – she is on the horns of a dilemma: If Romeo chose b as the replacement word for a,
then she better plays Read now because that will give her the win. On the other hand, if Romeo
chose bab, then she better plays another Call in order to win. The incomplete information means
that there is no winning one-pass strategy for the input word aa.

What makes the situation especially difficult in this example is that Romeo could choose between
two replacement words where one is a prefix of the other. In such a case, Juliet does not know
what the replacement word is even after seeing it completely. We call replacement languages
self-delimiting if this problem does not exist, i. e. if they contain no two words where one is a prefix
of the other. Note that this can easily be achieved in practice by suffixing strings with a special
end-of-file symbol.

The study of different types of one-pass strategies is the subject of this thesis.
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Rules:

a→ b

a→ bab

Target language:

{ba,bbba,bbabba}

aa

ba

baba

bbba

bbabba

Call 1st a

Call 1st a

Figure 1.2.: A context-free game and three plays on the input word aa where Juliet wins

1.1. Scope

In total, we consider five types of one-pass strategies. Besides the general set of all one-pass
strategies (type 1), we consider FSA-based strategies (type 2), strategies that do not make use of the
history of Calls (type 3) and strategies that satisfy both of these restrictions at once (type 4; these
are the regular strategies defined in [3]). An even more restricted class (type 5) are FSA-based
strategies where the FSA is a simplification of the minimal deterministic finite automaton (DFA) for
the target language. The FSA-based strategy types ensure efficient parsing, and especially type 5
guarantees that a specification of the strategy itself is not too complex. Ideally, one would wish to
have a type 5 strategy that is as good as the best type 1 strategies.

Besides winning strategies for a single word, we are particularly interested in strategies that
maximize the set of words on which they win. Roughly speaking, a strategy is optimum if it is at
least as good as any other strategy and it is optimal if no other strategy is strictly better (but strategies
may be incomparable). It was shown by Abiteboul et al. [3] that an optimum one-pass strategy does
not always exist for a context-free game, and it was asked whether an optimal one-pass strategy
always exists. It is also interesting to see whether the existence of a winning/optimum/optimal
strategy of one type implies the existence of a winning/optimum/optimal strategy of a restricted
type. Some questions of this kind were already considered in [3], but not fully resolved. Further
interesting questions are concerned with the complexity of deciding whether a given one-pass
strategy is winning (on a given word), optimum or optimal or whether a strategy exists that is
winning, optimum or optimal. We study these and related questions, obtaining answers to the
general case for some questions and to restricted cases for other questions.

1.2. Contributions

Towards the goal of having a type 5 strategy that is as good as the best one-pass strategy, we
obtain the following generalization of a result from [3]: If the rules are non-recursive or if the
target language is finite or if there are at most finitely many optimum one-pass strategies, then the
existence of an optimum one-pass strategy implies the existence of an equivalent strategy of type 5.
However, answering a question asked in [3], we show that even several weaker statements do not
hold in general. As another positive result we show that the existence of an optimum one-pass
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strategy implies the existence of an equivalent FSA-based strategy if replacement languages are
self-delimiting.

We also consider these questions for optimal strategies, i. e. we ask whether the existence of an
optimal strategy of one type implies the existence of an optimal strategy of a restricted type. It
turns out that even if the conditions hold that guarantee a positive answer in the case of optimum
strategies (non-recursiveness and a finite target language), the according implications and also
several weaker implications are still not guaranteed to hold for optimal strategies.

Regarding the question whether an optimal strategy exists for each context-free game, we obtain
a partial answer. We show that in games with non-recursive rules, games with self-delimiting
replacement languages, and games with a finite target language, an optimal one-pass strategy
always exists. More generally, we identify a condition that is sufficient for the existence of optimal
one-pass strategies. It is conceivable that all games satisfy this condition. Proving that this is the
case would be a means to show that an optimal one-pass strategy exists for each game, or disproving
it might be a step towards proving that an optimal one-pass strategy does not exist for each game.
For games with a finite target language, we show that even an optimal strategy that is FSA-based
(type 2) always exists.

Finally, we study the complexity of problems relevant in the context of one-pass strategies. Given
a game G, a word w and a strategy automaton A, it is PSPACE-complete to decide whether the
strategy specified by A wins on w in G. The problem becomes P-complete if the target language of
G is given by a DFA. Deciding whether a winning type 5 strategy exists for a word w in a game
G (with target language given by a DFA) is NP-complete. All of these hardness results hold even
if the set of rules is restricted to be finite and non-recursive. For comparison, the counterpart of
the latter problem for left-to-right strategies is EXPTIME-complete if the set of rules is finite and
PSPACE-complete if, additionally, the rules are non-recursive (as shown in [12]); so the complexity
is at least somewhat lower for type 5 strategies compared to left-to-right strategies (assuming that
NP 6= EXPSPACE and NP 6= PSPACE respectively).

It was stated by Abiteboul et al. [3] that the winning language of a type 4 strategy is regular and
a “universal FSA” recognizing the winning language can be constructed in polynomial time (if
the target language is given by a DFA). We extend the construction from their proof sketch so that
it is correct also for strategies that may lead to infinite play and prove the claim more generally
for type 2 strategies. Based on this we show that, for a target language given by a DFA, it is
PSPACE-complete to decide whether one given FSA-based strategy is at least as good as another
given FSA-based strategy.

1.3. Related work

Further background about AXML is given in [1, 2, 10]. Context-free games were introduced
in [11], which is the conference paper corresponding to [12]. The article studies the decidability
and complexity of deciding whether a winning unrestricted or left-to-right strategy exists for a word
in the general case and several restricted cases. One-pass strategies and regular strategies were
introduced in [3]. The complexity of deciding, for a given context-free game, whether Juliet has a
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winning left-to-right strategy for every word for which she has a winning unrestricted strategy is
studied in [4]. An extended setting of context-free games with nested words (resembling the tree
structure of (A)XML documents) is examined in [13].

1.4. Organisation

Most definitions are given in Chapter 2. We study sufficient conditions for the existence of optimal
strategies in Chapter 3. In Chapter 4, we identify conditions under which the existence of an
optimum, optimal or winning strategy of one type implies the existence of an optimum, optimal
or winning strategy of a restricted types. In Chapter 5 we construct an automaton recognizing the
language of words on which an FSA-based strategy wins, showing that this language is regular.
The computational complexity of several problems is examined in Chapter 6. Chapter 7 contains
an overview of results and open questions and a conclusion. Some variants of results of lesser
importance and alternative proofs are moved to an appendix.
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2. Preliminaries

We start with a few definitions that are not directly related to context-free games. For an alphabet Σ,
we denote the set of strings over Σ by Σ∗ and the set of non-empty strings over Σ by Σ+. For k ∈N0

we write Σk for the set of strings over Σ of length k and Σ≤k for the set of strings over Σ of length
at most k. We call a language L⊂ Σ∗ self-delimiting if for each u,v ∈ L where u is a prefix of v it
holds that u = v. In the sections below, we formally define context-free games, strategies for Juliet
and Romeo, and several related terms.

2.1. Context-free games

An (active) context-free game, or a game for short, is defined as a tuple G = (Σ,R,T ) consisting of

• a finite alphabet Σ,

• a set R ⊆ Σ×Σ+ of rules such that for each a ∈ Σ, the replacement language {v ∈ Σ+ |
(a,v) ∈ R} of a is a regular language,

• a nondeterministic finite automaton (NFA) T = (Q,Σ,δ ,q0,F), where Q is the set of states,
Σ the alphabet, δ : Q×Σ→P(Q) the transition function, q0 ∈ Q the initial state and F ⊆ Q
the set of accepting states.

The language L(T ) recognized by T is the target language. By Σ f = {a∈Σ | ∃v∈Σ+ : (a,v)∈R}
we denote the set of function symbols, i. e. the symbols occurring as the left hand side of a rule.
These are the symbols which can be called by Juliet. We assume that Σ f is non-empty to avoid
trivial cases. The set R of rules is encoded in terms of regular expressions Ra for each a ∈ Σ f ,
recognizing its replacement language L(Ra) = {v ∈ Σ+ | (a,v) ∈ R}. Note that the set L(Ra) of
replacement strings for a does not contain the empty string ε . To define Ra we will often write
a→ ri for i = 1, . . . ,n, where n ∈ N (mostly n = 1) and ri are regular expressions; this notation
means that Ra = r1 + · · ·+ rn, where + denotes alternation of regular expressions.

A game G = (Σ,R,T ) is called recursive if some symbol can be derived from itself by a sequence
of rules, i. e. there exist a0, . . . ,an ∈ Σ f , n ≥ 1, such that a0 = an and for each k = 1, . . . ,n there
exists a word in L(Rak−1) containing ak. Otherwise, G is called non-recursive. Subsequently, we
assume that a game G = (Σ,R,T ) is given.

We need more terms and notation to define how a game is played. Let Σ̂ f = {â | a ∈ Σ f } be
a disjoint copy of the set of function symbols Σ f , and let Σ = Σ ∪̇ Σ̂ f . A configuration is a tuple
(u,v)∈ Σ

∗×Σ∗. We call u the history string and v the remaining string. Intuitively, if the ith symbol
of the history string is a ∈ Σ then this shall denote that Juliet’s ith move was to read the symbol a,
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and if it is â ∈ Σ̂ f then this shall denote that Juliet’s ith move was to call a. The remaining string is
the string of symbols that have not been processed yet. To distinguish history strings from other
strings we denote them by u,ui,u′,v,vi etc. The read prefix of a configuration (u,v) is the string
obtained from u by removing all symbols that are in Σ̂ f , denoted \u. This is the string of symbols
that have been read and cannot be changed any more. To allow us to omit parentheses, we define
that \ has lower precedence than concatenation, i. e. \uv = \(uv) = \u\v. The set δ ∗(q0, \u) of states
of T reached after reading the read prefix is called the set of T -states of the configuration (u,v).
Here, δ ∗ : Q×Σ∗→P(Q) denotes the extended transition function of T , given by

δ
∗(q,v) =


{q}, if v = ε ,⋃
p∈δ ∗(q,u)

δ (p,a), if v = ua for u ∈ Σ∗ and a ∈ Σ.

If T is deterministic, i. e. δ (q,a) is a singleton for each q ∈ Q and a ∈ Σ, then we regard δ and
δ ∗ as functions Q×Σ→ Q and Q×Σ∗ → Q respectively and call δ ∗(q0, \u) the T -state of the
configuration (u,v). If v = av′ for a ∈ Σ and v′ ∈ Σ∗, then

• \ua is the visible prefix,

• a is the current symbol, and

• v′ is the invisible suffix

of the configuration (u,av′).
A play of a game in the one-pass setting1 is a finite or infinite sequence Π = (K0,K1,K2, . . .) of

configurations with the following properties:

(i) The initial configuration is of the form K0 = (ε,w), where w ∈ Σ∗ is called the input word.

(ii) If Kn = (u,av) with a ∈ Σ, then either Kn+1 = (ua,v) or Kn+1 = (uâ,xv) with x ∈ L(Ra).

(iii) If Kn = (u,ε), then Kn is the last configuration of the sequence. The history string u of Kn is
the final history string of Π and the read prefix \u of Kn is the final string of Π.

Observe that for any configuration Kn = (u,v) it holds that n = |u|, i. e. n is the length of the
history string. In our imagination, the decision whether the configuration Kn+1 in (ii) is (ua,v) or of
the form (uâ,xv) for some x is made by Juliet; in the latter case, the choice of x ∈ L(Ra) is made by
Romeo. If Juliet chooses (ua,v) as the next configuration after a configuration (u,av), then we say
she plays Read or she reads a; otherwise we say she plays Call or she calls a.

We think of the configurations of a play to occur over time. For an input word of the form ww′

with w,w′ ∈ Σ∗, we refer to the time of the first configuration with remaining string w′ as the time
when w is completely processed (if such a configuration exists, which might not be the case if the
play is infinite).

1The same definition could be used to define plays in the left-to-right setting. The only difference between the two
settings is that in the one-pass setting, Juliet’s decisions to call or to read in a configuration have to be defined
independently of the invisible suffix.

13



A play is winning (from Juliet’s point of view) if it is finite and its final string is in the target
language L(T ), i. e. the set of T -states of the last configuration intersects the set F of accepting
states. A play is losing if it is finite and its final string is not in L(T ), i. e. the set of T -states of the
last configuration is disjoint from F . An infinite play is neither winning nor losing.

A way to think about plays that is more visual and sometimes more suitable than a list of
configurations is via play trees. Play trees for context-free games are similar to derivation trees
for context-free grammars. The play tree T (Π) of a play Π has a node for each configuration in
Π except for the last configuration (if a last configuration exists, i. e. Π is finite), plus a root. The
inner nodes (except of the root) are marked with configurations where Juliet plays Call while the
leaves are marked with configurations where she plays Read. To allow for an easier terminology
we often pretend that a node is a configuration rather than that it is marked by one.

The children of the root of T (Π) are defined as follows. Let w = b1 . . .b` be the input word of
Π, where b1, . . . ,b` ∈ Σ. Let

i j = min{i ∈ N0 | Ki = (v,b j . . .b`) for some v ∈ Σ
∗}

be the index of the configuration when b1 . . .b j−1 is completely processed for j = 1, . . . ,k where
k ∈ {1, . . . , `} is the maximal value of j for which the minimum exists. So k = ` if and only if
Π is finite. The root of T (Π) has k children, which are marked – from left to right – with the
configurations Ki1 , . . . ,Kik . Informally, Ki j is the configuration where the jth symbol of the input
word becomes visible as the current symbol (however, Juliet might not know that this symbol comes
from the input word and not from a replacement word of a Call move).

The children of non-root nodes are defined similarly. Let Kn = (u,av) be a configuration in Π

for some u ∈ Σ
∗, a ∈ Σ and v ∈ Σ∗. If Kn+1 = (ua,v), then Kn has no children. If Kn+1 = (uâ,xv)

and x = b1 . . .b` for some b1, . . . ,b` ∈ Σ, ` ∈ N, let

i j = min{i ∈ N | Ki = (uâv,b j . . .b`v) for some v ∈ Σ
∗}

for j = 1, . . . ,k, where k ∈ {1, . . . , `} is the maximal value of j for which the minimum exists.
In this case, Kn has k children, marked with Ki1 , . . . ,Kik from left to right. Informally, Ki j is the
configuration where the jth symbol of the replacement string for a becomes visible.

There is indeed a node in T (Π) for each configuration Kn of Π (except for the last configuration,
if Π is finite); this can be seen by induction on n: If the current symbol of Kn comes from the input
word, then Kn is a root’s child. If the current symbol of Kn comes from a replacement string, then
Kn is a child of the configuration Kn′ where the Call was made. Since n′ < n, the node with marking
Kn′ exists by the induction hypothesis.

It is easy to see that a pre-order traversal of T (Π) yields the configurations in the order in which
they occur in Π.

The depth of Π is the depth of T (Π) minus 1. This is the nesting depth of Call moves; subtracting
1 ensures that the depth of a play that consists of only Read moves is 0. By König’s lemma, the
depth of Π is ∞ if and only if Π is infinite. Note that the depth of a play in a non-recursive game is
no more than |Σ f |. Therefore, every play in a non-recursive game is finite.
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root

K0 = (ε,aa)

K1 = (â,baba) K2 = (âb,aba)

K3 = (âbâ,bba)

K4 = (âbâb,ba)

K5 = (âbâbb,a)

Figure 2.1.: A play tree

2.1 Example. Consider again the context-free game from Figure 1.2 in the introduction with rules
given by a→ b+bab and target language L(T ) = {ba,bbba,bbabba}. A play tree of a play for
this game is shown in Figure 2.1. The input word of this play is aa, which can be deduced either
from the initial configuration K0 = (ε,aa) or because the current symbols of the root’s childs are
both a. Juliet plays Call in configuration K0 and Romeo chooses bab as the replacement word.
Accordingly, the children of K0 have b, a and b as their current symbols. Juliet plays Call again in
configuration K2 and this time Romeo chooses b as replacement word. All other moves are Read.
The last configuration of the play, K6 = (âbâbba,ε), is not part of the play tree. The final history
string is âbâbba and the final string is bbba. The play is winning because bbba is in the target
language. Its depth is 2.

Consider the configuration K4 = (âbâb,ba). Its history string âbâb shows that Juliet’s previous
moves were to call a, read b, call a and read b. Therefore, the read prefix is \âbâb = bb and the set
of T -states of K4 is the set of states of the target language automaton reachable by reading bb. The
remaining string of K4 is ba, the visible prefix is bbb and the invisible suffix is a. Juliet cannot see
the invisible suffix, so from her point of view it would also be possible that K4 = (âbâb,b) – e. g. if
the input word were aab and Romeo chose b as replacement word both times.

Observe that the history string and current symbol of a configuration Kn is uniquely determined
by the history string of Kn+1. Thus, the history string of a configuration contains the information
about the history strings and current symbols of all previous configurations. The restriction of
incomplete information in the one-pass setting means that Juliet must make her decisions to call or
to read based on only the history string and the current symbol of the current configuration. We
will define this formally in the next section.

2.2. Strategies for Juliet

We are interested in a certain type of strategies for Juliet, namely one-pass strategies. One-pass
strategies were introduced by Abiteboul et al. [3] as left-to-right strategies where Juliet can only
see the current symbol at all times. The authors impose no restrictions on Juliet’s memory. Thus,
Juliet has full knowledge of the symbols that she saw in the past and her decisions on them, i. e. she
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knows the history string. We will also consider a restricted type of one-pass strategies where Juliet
only remembers the symbols on which she played Read, i. e. she only knows the visible prefix. In
this section, we provide the formal definition of the most general type of one-pass strategies and
related terms.

A one-pass strategy is a map σ : Σ
∗× Σ f → {Call,Read}. We may sometimes simply say

strategy when it is clear from the context what kind of strategy is meant (and in fact, all strategies
for Juliet considered here are one-pass strategies).

A play of σ on w is a play Π = (K0,K1,K2, . . .) with input word w satisfying that

• if Kn = (u,av) and σ(u,a) = Read, then Kn+1 = (ua,v),

• if Kn = (u,av) and σ(u,a) = Call, then Kn+1 = (uâ,xv) for some x ∈ L(Ra).

A strategy is terminating if each of its plays is finite. The depth of σ is the supremum of depths
of plays of σ . Note that each strategy with finite depth is terminating. The converse, however, is
not true and it is easy to construct counter-examples of a game and a strategy σ where each play of
σ has finite depth but depths are arbitrarily large.

A strategy σ wins on a string w ∈ Σ∗ if every play of σ on w is winning. So a strategy wins if,
independently of Romeo’s replacement words, the input string will be rewritten to a string in the
target language. By L(σ) we denote the set of words on which σ wins. In contrast, σ loses on w
if there exists a losing play of σ on w. Note that σ neither wins nor loses on w if there exists an
infinite play of σ on w but no losing play of σ on w.

Two strategies σ and σ ′ are equivalent if they win on the same input words, i. e. L(σ) = L(σ ′).
Two strategies are semi-equivalent if there exists no string on which one strategy wins and the other
strategy loses. Note that two terminating one-pass strategies (e. g. any two one-pass strategies for
non-recursive games) are equivalent if and only if they are semi-equivalent.

A strategy σ is optimum if it is at least as good as any other strategy, i. e. L(σ ′)⊆ L(σ) for each
one-pass strategy σ ′. It was shown by Abiteboul et al. [3] that not every game has an optimum
one-pass strategy. A strategy σ is optimal if no strictly better strategy exists, i. e. there does not
exist σ ′ with L(σ)( L(σ ′). It is unclear whether each game has an optimal one-pass strategy, but
we will identify sufficient conditions for their existence. Of course, for games where an optimum
one-pass strategy exists, a strategy is optimal if and only if it is optimum. It is also clear from the
definitions that a strategy is optimum (or optimal) if and only if it is equivalent to a strategy that is
optimum (or optimal).

We cannot in general expect a one-pass strategy to be computable, since the set {(u,a)∈ Σ
∗×Σ f |

σ(u,a) = Call} might be undecidable. If σ is computable, then it is desirable to have an efficient
algorithm for it. This motivates the study of restricted classes of one-pass strategies. We will define
classes of strategies where the decisions whether to call or to read is performed by a finite state
automaton. Another interesting restriction, though it does not guarantee computability, is to require
strategies to make their decisions to call or to read independently of the history of Calls.
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2.3. Five types of one-pass strategies

In total we introduce five types of one-pass strategies. A study of their relationships constitutes
a major part of this thesis. A strategy of type 1 is exactly what we defined as a one-pass strategy
above. This is the most general of the five types; the types 2, 3, 4 and 5 are restricted types. We
will define the types 3, 4 and 5 first and type 2 last. The hierarchy of the five types is shown in
Figure 2.2.

A strategy is of type 3 if its decisions depend only on the visible prefix but not on the history of
Calls. Formally, σ is a strategy of type 3 if σ(u,a) = σ(\u,a) for each u ∈ Σ

∗ and a ∈ Σ f .
Strategies of type 4 and type 5 are strategies that can be specified by a DFA in the following

sense: A type 4 automaton is a DFA A= (QA,Σ,δA,q0,FA) where some transitions for function
symbols may be missing. We formalize this by allowing the transition function δA to be undefined
on some (q,a) ∈ Q×Σ f , which we denote by δA(q,a) =⊥. The strategy of a type 4 automaton
reads the input word like a standard DFA except that when reading a symbol a ∈ Σ f in a state that
has no transition for a, then a is called and replaced by the word from L(Ra) that Romeo selects.
Formally,

σA(u,a) =

Read, if δ ∗A(q0, \ua) 6=⊥,

Call, if δ ∗A(q0, \ua) =⊥,

where the extended partial transition function δ ∗A : QA×Σ∗→ QA is given by

δ
∗
A(q,u) =


q, if u = ε ,

δA(δ
∗
A(q,v),a), if u = va and δ ∗A(q,v) 6=⊥ for v ∈ Σ∗ and a ∈ Σ,

⊥, otherwise.

(2.1)

A strategy σ is of type 4 if σ = σA for a type 4 automaton A. Typ 4 strategies have already been
introduced by Abiteboul et al. [3] under the name regular strategies. It is immediate from the
definition that each type 4 strategy is also a type 3 strategy.

Of course, to compute δ ∗A(q0, \ua) when a decision to read or to call has to be made, it is
not necessary to start the computation from the initial state q0 each time. Rather, we define
q = δ ∗A(q0, \u) as the A-state of a configuration (u,v); if v = av′ for a ∈ Σ and v′ ∈ Σ∗ and the next
configuration is (ua,v′), then the new A-state δ ∗A(q0, \ua) can be computed as δA(q,a); if the next
configuration is of the form (uâ,xv′), then the new A-state is still q. Therefore, type 4 strategies
can be computed very efficiently.

A special case of type 4 strategies that was also already considered in [3] are type 5 strategies. A
type 4 automaton is called a type 5 automaton if it equals the minimal DFA for the target language
L(T ) except that some transitions may be missing. A strategy σ is of type 5 if σ = σA for a type 5
automaton A. By definition, a type 5 strategy is also a type 4 strategy.

Finally, let us define type 2 strategies. These strategies extend type 4 strategies in a natural way
such that history can be used for the decisions to call or read. A type 2 automaton is a deterministic
automaton A= (QA,Σ,δA,q0,FA) with a partial transition function such that for each q ∈ QA and
a ∈ Σ f , if δA(q,a) =⊥ then δA(q, â) 6=⊥. So a type 2 automaton is like a type 4 automaton with
the difference that if a state does not have a transition for a ∈ Σ f , then it has a transition for â. A
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Figure 2.2.: Hasse diagram showing the hierarchy of the five types of one-pass strategies

type 2 automaton computes a strategy just like a type 4 strategies, but if a function symbol a is
called in a state q then, instead of staying in state q, the transition for â is followed. This can be
formalized as

σA(u,a) =

Read, if δ ∗A(q0,ua) 6=⊥,

Call, if δ ∗A(q0,ua) =⊥

for δ ∗A defined as in (2.1) except that Σ is replaced by Σ. Note that the only difference of the
definition of σA compared to the previous definition is that we have written u instead of \u. A
strategy σ is of type 2 if σ = σA for a type 2 automaton A. The A-state of a configuration (u,v)
occurring in a play of a type 2 strategy σA is defined as δ ∗A(q0,u). Similarly as above, the A-state
and the decisions of a type 2 strategy can be computed very efficiently.

Observe that every type 4 automaton A= (QA,Σ,δA,q0,FA) can be transformed into a type 2
automaton for the same strategy by letting δA(q, â) = q for each q ∈ QA and â ∈ Σ̂ f . Thus, every
type 4 strategy is also of type 2.

A strategy automaton is a type 2 or type 4 automaton. We allow accepting states in strategy
automata even though they have no meaning for the strategy that they specify. Accepting states are
convenient, however, if they can be used to indicate the winner of a play. We say that a play Π of
σA terminates in A-state q if Π is finite and q is the A-state of the last configuration of Π. Observe
that a play of a type 5 strategy σA is winning if and only if it terminates in an accepting A-state
(because the A-state where it terminates is the state where the minimal DFA for L(T ) terminates
when reading the final string). For type 2 and 4 strategies it is also always possible to find a strategy
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automaton A such that this property holds (which was already mentioned for the case of type 4
automata in [3]).

2.2 Proposition. For each type 2 (or 4) automaton A for a game G = (Σ,R,T ) there exists a type
2 (or 4) automaton B such that σA = σB and a play of σB terminates in an accepting B-state if
and only if it is winning. If T is a DFA, then B can be constructed in polynomial time.

Proof. If T = (Q,Σ,δ ,q0,F) is a DFA and A = (QA,Σ,δA,q′0,FA) is a type 2 automaton, then
define B = (Q×QA,Σ,δB,(q0,q′0),F×QA) with

δB((q,q′),a) =

(δ (q,a),δA(q′,a)), if δA(q′,a) 6=⊥,

⊥, if δA(q′,a) =⊥,

δB((q,q′), â) =

(q,δA(q′, â)), if δA(q′, â) 6=⊥,

⊥, if δA(q′, â) =⊥.

It is straightforward to verify correctness and polynomial construction time. The construction for
type 4 automata is similar. If T is an NFA, then it can be transformed into a DFA first.

The usefulness of this proposition is that it allows to ignore the target language automaton if a
strategy is specified by an automaton B like in the proposition. Next, we change the point of view
and consider strategies for Romeo.

2.4. Strategies for Romeo

We can think of Romeo as an antagonistic adversary who, unlike Juliet, can see the invisible
suffix and also knows what strategy Juliet uses to play by. Despite this, we can define even a
Romeo strategy as a map that does not take the invisible suffix into account, as we will justify
shortly. Namely, a Romeo strategy is a map τ : Σ

∗×Σ f → Σ+ where τ(u,a) ∈ L(Ra) for each
(u,a) ∈ Σ

∗×Σ f .
The play of σ against τ on w, denoted Π(σ ,τ,w), is the (unique) play (K0,K1,K2, . . .) of σ on

w satisfying that

• if Kn = (u,av) and σ(u,a) = Call, then Kn+1 = (uâ,τ(u,a)v).

A play of τ is a play of some one-pass strategy σ against τ on some input word.
The definition of Romeo strategies, which does not take the invisible suffix into account, is

justified by the following proposition.

2.3 Proposition. Let σ be a one-pass strategy for a game G = (Σ,R,T ) and let w ∈ Σ∗. Then for
every play Π = (K0,K1,K2, . . .) of σ on w there exists a Romeo strategy τ such that Π = Π(σ ,τ,w).

Proof. If Kn = (u,av) and σ(u,a) = Call then we define τ(u,a) as the string x ∈ L(Ra) with
Kn+1 = (uâ,xv). A straight-forward induction on n shows that the history string of configuration Kn

has length n. Therefore, so far we have defined τ(u,a) at most once for each u and a, i. e. there are
no contradictions in the definition. On other elements of the domain, τ can be defined arbitrarily. It
is immediate that Π is the play of σ against τ on w.
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A way to think about why Romeo is omniscient even though his strategies neglect the information
about the input word is that the dependency of his moves on the input word lies within his choice
of τ itself, rather than within τ .

Given a Romeo strategy and a configuration occurring in a play of this strategy, all previous
configurations are uniquely determined, as the next proposition shows.

2.4 Proposition. Let Π = (K0,K1,K2, . . .) and Π′ = (K′0,K
′
1,K

′
2, . . .) be plays of a Romeo strategy

τ in a game G = (Σ,R,T ) such that Ki = K′j for some indices i≤ j. Then i = j and Kn = K′n for all
n≤ i.

Proof. We show the proposition by induction on j. If j = 0 then the statement obviously holds.
For j > 0, the common history string of Ki and K′j is non-empty and we distinguish two cases
depending whether the last symbol of the history string is in Σ or in Σ̂ f .

If Ki = K′j = (ua,v) for some u ∈ Σ
∗, a ∈ Σ and v ∈ Σ∗, then Ki−1 = K′j−1 = (u,av) and the

statement follows from the induction hypothesis.
In the other case, Ki = K′j = (uâ,τ(u,a)v) for some u ∈ Σ

∗, a ∈ Σ f and v ∈ Σ∗. Again, Ki−1 =

K′j−1 = (u,av) and the statement follows from the induction hypothesis.

2.5. Operations on strategies

To have a precise terminology for strategies that are an adaptation or combination of other strategies,
we define operations on strategies. Namely we introduce the notions of a substrategy of a (one-pass
or Romeo) strategy and a concatenation strategy of two Romeo strategies.

For a one-pass strategy σ and a history string v ∈ Σ
∗, the substrategy of σ after v is the strategy

σ [v] defined by σ [v](u,a) = σ(vu,a). Intuitively, σ [v] is the strategy that plays like σ continues to
play if the previous part of the play has led to the history v. Analogously, for a Romeo strategy τ

and v ∈ Σ
∗, the substrategy of τ after v is the strategy τ[v] given by τ[v](u,a) = τ(vu,a).

If τ1 and τ2 are two Romeo strategies and w ∈ Σ∗, then the concatenation strategy τ1〈w〉τ2 is,
informally, the following strategy: The strategy τ1〈w〉τ2 starts to play like τ1. If w is a prefix of the
input word, then, once w is completely processed (if that happens), τ1〈w〉τ2 continues to play like
τ2 would play if the history up to this point had not happened.

Towards a formal definition of τ1〈w〉τ2, let M ⊆ Σ
∗ be the set of strings occurring as the final

history string of some play Π(σ ,τ1,w), where σ is a one-pass strategy. Then τ1〈w〉τ2 is defined via

(
τ1〈w〉τ2

)
(u,a) =

τ2(u2,a), if u = u1u2 for some u1 ∈M and u2 ∈ Σ
∗,

τ1(u,a), otherwise.

The next proposition states that the formal definition of τ1〈w〉τ2 captures exactly what the
informal definition describes.

2.5 Proposition. For Romeo strategies τ1 and τ2 in a game G = (Σ,R,T ) and w ∈ Σ∗, the
concatenation strategy τ1〈w〉τ2 is well-defined. Let σ be a one-pass strategy, w′′ ∈ Σ∗ and
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Π(σ ,τ1〈w〉τ2,w′′) = (K0,K1, . . .). If w′′ = ww′ for some w′ ∈ Σ∗ and Π contains a configura-
tion (u1,w′) for some u1 ∈ Σ

∗, with Kn being the first such configuration, then

• K0,K1, . . . ,Kn are the first n+1 configurations of Π(σ ,τ1,w′′), and

• for vi and vi with Kn+i = (u1vi,vi) for i≥ 0, the sequence ((v0,v0),(v1,v1),(v2,v2), . . .) is a
play of τ2.

Otherwise, Π(σ ,τ1〈w〉τ2,w′′) = Π(σ ,τ1,w′′).

Proof. To prove well-definedness we need to show that for each u there is at most one possible
choice for u1 ∈M and u2 ∈ Σ

∗ such that u = u1u2. This is true because M is self-delimiting. To see
this, note that M can be defined inductively by the rules

• w ∈M,

• if uav ∈M for u ∈ Σ
∗, a ∈ Σ f and v ∈ Σ∗, then uâτ1(u,a)v ∈M.

Suppose M is not self-delimiting, then there exist v1,v2 ∈ M where v1 is a proper prefix of v2.
Choose v1 and v2 such that the number of occurrences of elements of Σ̂ f in v2 is minimal. Clearly,
w does not have a proper prefix that is also in M. Thus, we have that v2 = uâτ1(u,a)v for some
u ∈ Σ

∗, a ∈ Σ f and v ∈ Σ∗. By the assumption of minimality, uav cannot have v1 as a proper prefix.
So v1 is a prefix of uâτ1(u,a)v but not of u. Hence, since v1 ∈M, we can write v1 = uâτ1(u,a)v′

for some v′ ∈ Σ∗ that is a proper prefix of v. But then uav′ and uav would also be two strings in M
where one is a proper prefix of the other, contradicting the minimality in the choice of v1 and v2.

We now prove the second part of the proposition. By definition of a play, the history string of
each configuration extends the history string of the previous configuration by one symbol. Thus,
once a configuration with a history string of the form u = u1u2 with u1 ∈M and u2 ∈ Σ

∗ occurs in
Π(σ ,τ1〈w〉τ2,w′′), all proceeding configurations also have a history string of this form. Moreover,
if a configuration with a history string of this form occurs in Π(σ ,τ1〈w〉τ2,w′′), then the first such
configuration is of the form (u1,w′) with u1 ∈ M and w′ ∈ Σ∗. This tells us, together with the
definition of τ1〈w〉τ2, that τ1〈w〉τ2 is a strategy that does the following: It starts to play like τ1.
Once a configuration (u1,w′) with u1 ∈ M and w′ ∈ Σ∗ occurs, τ1〈w〉τ2 changes to play like τ2

would play if the history string at this time were empty instead of u1. This proof is finished if we
can show the following:

(i) If w′′ = ww′ and a configuration (u1,w′) with u1 ∈ Σ
∗ occurs in Π(σ ,τ1〈w〉τ2,w′′), then

u1 ∈M for the first such configuration.

(ii) Conversely, a configuration Kn =(u1,w′) with u1 ∈M and w′ ∈Σ∗ occurs in Π(σ ,τ1〈w〉τ2,w′′)
only if w′′ = ww′.

For part (i), consider the history string u1 of the first configuration (u1,w′) with u1 ∈ Σ
∗ that

occurs in Π(σ ,τ1〈w〉τ2,w′′). Clearly, u1 must be the final history string of the play of σ against
τ1〈w〉τ2 on w (instead of ww′). Thus, u1 ∈M by definition of M.
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For part (ii), let σ ′ be a one-pass strategy such that u1 is the final history string of Π(σ ′,τ1,w)
(recall that σ ′ exists by definition of M). Then the configuration Kn = (u1,w′) also occurs in
Π(σ ′,τ1,ww′). By definition of τ1〈w〉τ2, the configurations K0, . . . ,Kn are also the first n+ 1
configurations of Π(σ ,τ1,w′′). Thus, by Proposition 2.4, w′′ = ww′.

Of course we can also build the concatenation of more than just two Romeo strategies. To
simplify notation we postulate that the concatenation operation is right-associative, meaning that
τ1〈w1〉τ2〈w2〉τ3 = τ1〈w1〉

(
τ2〈w2〉τ3

)
for Romeo strategies τ1, τ2 and τ3 and w1,w2 ∈ Σ∗. This

entails that τ1〈w1〉τ2〈w2〉τ3 plays as one would expect; namely, on an input word w1w2w3 for some
w3 ∈ Σ∗, it starts to play like τ1 until w1 is completely processed, then continues to play like τ2

would play if the history at this point were empty, and finally, once w1w2 is completely processed,
it plays like τ3 would play if the history at this point were empty.

When we use substrategies and concatenation strategies in proofs later on, we will usually think
of them in terms of their informal definitions. It is not difficult, though rather technical, to extend
the proofs to work directly with the formal definitions. The formal definitions inhibit any ambiguity
and justify that what we have defined informally exists as a Romeo strategy.
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3. Existence of optimal strategies

This chapter is devoted to the question whether an optimal one-pass strategy of type 1 is guaranteed
to exist for a context-free game. The answer to the analogous question for the case of optimum
instead of optimal is negative, as Abiteboul et al. [3, Theorem 2.3(2)] have shown that there exist
games for which no optimum one-pass strategy exists. This discriminates the one-pass setting from
the more general left-to-right setting and the even more general setting of unrestricted strategies for
context-free games [3, Theorem 2.3(1)]. Examples of games with no optimum one-pass strategy are
also implicit in the proofs of Theorems 4.17 and 4.18 of this thesis. The reason why an optimum
strategy does not always exist in the one-pass setting lies within the incomplete information that
Juliet has to deal with. However, the question whether an optimal one-pass strategy exists for each
game is still open.

In Section 3.1 we consider a setting where Juliet is slightly more powerful than in the one-pass
setting and give an alternative proof to a theorem by Abiteboul et al. [3] that an optimal strategy
always exists in this setting. In Section 3.2 we come back to the standard one-pass setting and
identify a sufficient condition for the existence of optimal one-pass strategies. We call this condition
the bounded depth property. Each non-recursive game and each game with a finite target language
has the bounded depth property, so an optimal one-pass strategy exists for each of these games.
In Section 3.3 we will show that also games with self-delimiting replacement languages have the
bounded depth property, and therefore an optimal one-pass strategy.

3.1. One-pass strategies with size

We now revisit a setting that was already considered and said to be relevant in practice by Abiteboul
et al. [3]. They introduce one-pass strategies with size, which are like one-pass strategies with the
difference that Juliet knows the length of the invisible suffix. This can be formalized by prefixing
the input word and each replacement word by a number indicating its size, which can be read
like a symbol of the alphabet. A one-pass strategy with size could then be defined as a map
(Σ∪N)∗×Σ f →{Call,Read}. By [3, Theorem 2.4], a computable optimal one-pass strategy with
size exists for each game. The proof is only sketched in [3] and the authors say that it is quite
involved. Neglecting the aspect of computability, we give a very simple non-constructive proof for
the existence of an optimal one-pass strategy with size. Our proof does not even make use of the
knowledge of the size of the replacement words but only of the size of the input string.

3.1 Proposition. For each game G = (Σ,R,T ) there exists an optimal one-pass strategy with size.

Proof. For k ∈ N let σk be a one-pass strategy with size that maximizes the number of input words
of length k on which it wins. Since Σk is finite, such a strategy exists. Consider the strategy σ
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defined by σ(ku,a) = σk(ku,a) for k ∈ N, u ∈ (Σ∪N)∗ and a ∈ Σ f and defined arbitrarily if the
history string does not begin with a number (which only happens in the initial configuration of a
play, where Juliet is forced to play Read anyway because the initial current symbol – a number – is
not in Σ f ). Clearly, σ is an optimal one-pass strategy with size.

The same basic idea – maximizing the number of input words of a fixed size on which a strategy
wins – can also be used in the normal one-pass setting (without size), at least if a game has the
bounded depth property, which we will consider in the next section.

3.2. Optimal strategies and the bounded depth property

The bounded depth property, of which we will show that it is sufficient for the existence of an
optimal one-pass strategy, is defined as follows.

3.2 Definition. A game G has the bounded depth property if there exists a sequence (Bk)k∈N0 ⊆ N
such that for each one-pass strategy σ for G and each k ∈N there exists a one-pass strategy σk such
that each play of σk on a word w ∈ L(σ)∩Σ≤k is winning and has depth at most B|w|.

Since each play in a non-recursive game has depth at most |Σ f |, it is clear that non-recursive
games have the bounded depth property – one can simply choose Bk = |Σ f | and σk = σ . We will
also show for games with a finite target language, and for games with self-delimiting replacement
languages (in Section 3.3), that they have the bounded depth property; even for these (Bk) can be
chosen as a constant sequence. The bounded depth property seems like a considerably weaker
condition, since it allows (Bk) to be an unbounded increasing sequence and it is only required that
a strategy σ can be adjusted to a strategy that wins and satisfies the depth bound for the finitely
many input words up to a given maximal length on which σ wins. It is unclear whether there even
exists a game that does not satisfy the bounded depth property.

We now prove the fundamental theorem of this chapter.

3.3 Theorem. For every game G = (Σ,R,T ) having the bounded depth property there exists an
optimal one-pass strategy.

Proof. Starting with the set of all one-pass strategies we will construct smaller and smaller sets of
one-pass strategies by ensuring that the strategies win on an optimal subset of Σ≤k for increasing k
and fixing the first i moves for increasing i. Only a single strategy will remain in the intersection of
all these sets, and we will show that this strategy is optimal.

Let (Bk)⊆ N be as in the definition of the bounded depth property. For k, i ∈ N0 we define sets
Sk,i of one-pass strategies such that the following properties hold for all k, i ∈ N0:

(i) For all σ ∈ Sk,0 it holds that Sk,0 is exactly the set of one-pass strategies σ ′ with L(σ)∩Σ≤k =

L(σ ′)∩Σ≤k satisfying that each play of σ ′ on a word w ∈ L(σ)∩Σ≤k+1 has depth at most
B|w|.

(ii) For σ ∈ Sk,i there exists no one-pass strategy σ ′ with L(σ)∩Σ≤k ( L(σ ′)∩Σ≤k, i. e. the
strategies in Sk,i win on the same maximal subset of Σ≤k.
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(iii) For all σ ,σ ′ ∈ Sk,i it holds that σ
∣∣
Σ
≤i−1×Σ f

= σ ′
∣∣
Σ
≤i−1×Σ f

, i. e. all strategies in Sk,i act the same
during their first i moves.

(iv) Sk,i+1 ⊆ Sk,i

(v) Sk+1,i ⊆ Sk,i

(vi) Sk,i is non-empty.

Let S0,0 be the set of all one-pass strategies for G. If Sk,0 is defined for k ∈N0, pick some σ ∈ Sk,0

that maximizes |L(σ)∩Σk+1| and let

Sk+1,0 =
{

σ
′ ∈ Sk,0

∣∣∣ each play of σ
′ on a word w ∈ L(σ)∩Σ

≤k+1 is winning and

has depth at most B|w|
}
.

This defines Sk,0 for all k ∈ N0. Note that Sk+1,0 is non-empty since G has the bounded depth
property. By induction on k it is clear that the properties (i), (ii) and (v) hold for k ∈ N0 and i = 0.
The properties (iii) and (iv) do not apply since we have defined Sk,i only for i = 0 so far. The proof
that Sk+1,0 is non-empty (property (vi)) is also by induction on k and uses that the one-pass strategy
σk+1 for which the bounded depth property says that it exists is automatically in Sk,0 due to the
properties (i) and (ii).

For i ∈ N0 such that Sk,i is defined for all k ∈ N0, we define Sk,i+1 as follows. We pick a
map σi+1 : Σ

≤i × Σ f → {Call,Read} such that for all k ∈ N0 there exists some σ ∈ Sk,i with
σ
∣∣
Σ
≤i×Σ f

= σi+1. Note that such σi+1 exists since Sk,i is non-empty for each k by property (vi) and

decreasing in k by property (v) and there are only finitely many maps Σ
≤i×Σ f → {Call,Read}.

For k ∈ N0 let

Sk,i+1 =
{

σ ∈ Sk,i

∣∣∣ σ
∣∣
Σ
≤i×Σ f

= σi+1

}
.

It is straightforward to check by induction on i that the properties (i)–(vi) are satisfied for all
k, i ∈ N0.

Consider the one-pass strategy σ that plays according to σi during its ith move, i. e. σ is given
by σ(u,a) = σ|u|+1(u,a). We claim that σ is optimal.

Suppose it is not, then there exists a one-pass strategy σ ′ with L(σ)( L(σ ′). Then there exists
k ∈ N such that L(σ)∩Σ≤k ( L(σ ′)∩Σ≤k. Due to the properties (i) and (ii) there exists a word w
of length at most k such that all the strategies in Sk,0 win on w but σ does not win on w.

Let Π = (K0,K1, . . .) be a play of σ on w that is not winning. Observe that the depth of Π is at
most B|w|: Otherwise, Π would contain a Call of nesting depth B|w|+1 between two configurations
Ki to Ki+1 for some i ∈ N. But σ plays according to σi+1 until Ki+1 is reached, and so do all
strategies in S|w|,i+1 by definition, which are contained in S|w|,0 by property (iv) – so we would
have a contradiction to property (i) if the depth of Π were greater than B|w|. By König’s lemma
this means that Π must be finite. Let Ki be the last configuration of Π. By the same arguments as
before, σ plays like any strategy in Sk,i until Ki is reached, so Π is also a play of σ ′′ ∈ Sk,i on w. But
σ ′′ ∈ Sk,0 by property (iv) and we said earlier that the strategies in Sk,0 win on w – contradiction!
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It can be deduced from the proof of Theorem 3.3 that σ is contained in all of the sets Sk,i and
in fact it is the only strategy contained in the intersection of all sets Sk,i. Note that we needed
the bounded depth property to ensure that certain plays of σ are finite. Justified by a later result
(cf. Lemma 3.10), we could also have chosen S0,0 as the set of terminating one-pass strategies.
However, if we omitted the depth requirement in the definition of Sk+1,0 and defined σ analogously,
then it would be conceivable that σ is not terminating (and not in S0,0), even though all strategies in
S0,0 are terminating.

The next lemma is a result about games that have finitely many rules or a finite target language.
In a following step we will deduce from this that every game with a finite target language has
the bounded depth property. There are simpler ways to show that an optimal strategy exists for
games with a finite target language than showing that they have the bounded depth property (it
can be shown directly, similarly to Proposition 3.1), but we will need the next lemma also later in
Chapter 4.

3.4 Lemma. Let G = (Σ,R,T ) be a game for which R or L(T ) is finite. For each one-pass strategy
σ for G and w ∈ L(σ) there exists Bσ ,w ∈ N such that every play of σ on w has at most Bσ ,w

configurations.

Proof. Consider the game tree of σ on w defined as follows: Like in a play tree, the nodes of the
game tree are configurations. Unlike play trees, where paths from the root to a leaf correspond to a
sequence of nested Calls within a single play, paths from the root to a leaf in a game tree correspond
to entire plays of σ on w. The root of the game tree is (ε,w), i. e. the initial configuration of plays
of σ on w. If (u,av) is a configuration occurring in the game tree and σ(u,a) = Read, then the
configuration (ua,v) is the only child of this configuration. If σ(u,a) = Call, then the configuration
(u,av) has a child (uâ,xv) for each x ∈ L(Ra). By definition, the plays of σ on w are exactly the
sequences of configurations on a path from the root to a leaf.

We claim that every node of the game tree has finite degree. If R is finite, then this is immediate.
Suppose this is not the case for a game where R is infinite but L(T ) is finite. Then there exists
a play of σ on w with a configuration in which Juliet plays Call and Romeo has infinitely many
options for the replacement word. If L(T ) is finite, then Romeo could choose a replacement word
that is longer than any word in L(T ). But then the play would not be winning, since the current
string (i. e. the concatenation of the read prefix and the remaining suffix; in the last configuration
this is the final string) can never shrink, since replacement words are non-empty by definition of
context-free games.

Therefore, every node has finite degree and, since each play of σ on w is finite (otherwise it
would not hold that w ∈ L(σ)), the game tree has no infinite path. By König’s lemma this implies
that the game tree has only finitely many nodes. If d is the depth of the game tree, then Bσ ,w = d+1
is a bound on the number of configurations of plays of σ on w.

We can now deduce that games with a finite target language satisfy a condition that is even
stronger than the bounded depth property.

3.5 Lemma. Let G = (Σ,R,T ) be a game for which L(T ) is finite. There exists B ∈N such that for
every one-pass strategy σ for G there exists a one-pass strategy σ ′ for G with L(σ)⊆ L(σ ′) and
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σ ′(u,a) = Read for each (u,a) ∈ Σ
∗×Σ f with |u|> B. Hence, G has the bounded depth property

with the constant sequence (Bk) = (B).

Proof. Let n be the maximal length of a word in L(T ). Since replacement words have length at
least 1, a one-pass strategy cannot win on an input word of length greater than n. LetW be the
set of sets W ⊆ Σ≤n for which a one-pass strategy σW with L(σW ) = W exists. For Bσ ,w as in
Lemma 3.4, we claim that the property stated in this lemma holds for B defined as

B = max{BσW ,w |W ∈W,w ∈W}.

Indeed, for a one-pass strategy σ we can choose σ ′ as the one-pass strategy defined via

σ
′(u,a) =

σW (u,a), if |u| ≤ B,

Read, otherwise,

where W = L(σ).

We conclude this section with the following theorem, which now follows easily.

3.6 Theorem. An optimal one-pass strategy exists for every non-recursive game and every game
with a finite target language.

Proof. Immediate from Theorem 3.3, Lemma 3.5 and the fact that non-recursive games have the
bounded depth property with Bk = |Σ f | and σk = σ .

In the next section, we will show that also games with self-delimiting replacement languages
have the bounded depth property, and therefore always an optimal strategy.

3.3. Games with self-delimiting replacement languages

Recall that a language is self-delimiting if it contains no two words where one is a proper prefix of
the other. By “games with self-delimiting replacement languages” we mean games G = (Σ,R,T )
where L(Ra) is self-delimiting for each a ∈ Σ f . This seems to be a realistic constraint in practice:
An important special case are games where replacement strings are suffixed by a special end-of-file
symbol. In this sense, every game G = (Σ,R,T ) can be transformed into a game G′ = (Σ′,R′,T ′)
with self-delimiting replacement languages by letting Σ′ = Σ ∪̇ {$} for some new symbol $ /∈ Σ

that shall denote the end of replacement strings, and further letting R′a = Ra$ for each a ∈ Σ f to
enforce that replacement words end with $ and adding a loop transition for the symbol $ to each
state of T (accomplishing that the symbol $ is “ignored” by the target language). Another special
case of games with self-delimiting replacement languages, which is similar to the one-pass with
size setting, are games where the alphabet Σ contains (besides other symbols) numbers 1, . . . ,N for
some N ∈ N and all replacement strings are of the form nx where x ∈ Σ+ and n = |x|.

We need some definitions and several lemmas before we obtain the result that games with self-
delimiting replacement languages have the bounded depth property. These results and definitions
will also be helpful later in Chapter 4. Some of them apply to context-free games in general and not
only games with self-delimiting replacement languages.
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3.7 Definition. For w ∈ Σ∗ let Hw be the set of final history strings of finite plays on w.

The next lemma says, intuitively, that in games with self-delimiting replacement languages, Juliet
“can tell” when a prefix of the input word is completely processed. Indeed, in a play on some input
word uv, the prefix u is completely processed when a configuration with a history string in Hu is
reached. Due to the next lemma, this configuration is unique for each play.

3.8 Lemma. Let G = (Σ,R,T ) be a game with self-delimiting replacement languages. For each
w ∈ Σ∗, the set Hw is self-delimiting.

Proof. We first consider the case that w is a single symbol. We show for each a ∈ Σ and w ∈ Ha

that there exists no w′ ∈ Ha such that w is a proper prefix of w′ or w′ is a proper prefix of w. The
proof is by induction on |w|.

The base case is that |w| = 1. In this case, w = a and any symbol in Ha that does not equal a
begins with â, so the statement is true.

If |w|> 1 then w = âu where u ∈ Hx for some x ∈ L(Ra). Suppose for the sake of contradiction
that there exists w′ ∈Ha such that w is a proper prefix of w′ or vice versa. Then w′= âv where v∈Hy

for some y ∈ L(Ra) and u is a proper prefix of v or vice versa. Let x = a1 . . .ak and y = b1 . . .b` with
ai,b j ∈ Σ. Then u = u1u2 . . .uk and v = v1v2 . . .v` where ui ∈ Hai for i = 1, . . . ,k and v j ∈ Hb j for
j = 1, . . . , `. Since u1 and v1 are non-empty and one must be a prefix of the other (not necessarily a
proper prefix), the first symbol of u1 must equal the first symbol of v1. But the first symbol of u1

is a1 or â1 and the first symbol of v1 is b1 or b̂1. Thus, a1 = b1. By the induction hypothesis, u1

cannot be a proper prefix of v1 or vice versa, therefore u1 = v1. By repeating the argument, we see
that ai = bi and ui = vi for each i = 1, . . . ,min{k, `} and x is a proper prefix of y or vice versa. But
this contradicts the premise that replacement languages are self-delimiting.

Now we consider the case that w ∈ Σ∗. Suppose there exist w,w′ ∈ Hw such that w is a proper
prefix of w′. Let w = a1 . . .an with ai ∈ Σ. Then w = u1u2 . . .un and w′ = u1 . . .uk−1uk

′ . . .un
′ where

uk,uk
′ ∈ Hak and uk is a proper prefix of u′k or vice versa. But this is not possible since we have

already shown that Hak is self-delimiting.

The previous lemma is helpful especially because it allows us to define one-pass strategies that
play in a certain way as soon as a particular prefix of the input word is completely processed. The
next lemma states that Juliet can even construct the play tree as she plays, provided replacement
languages are self-delimiting. Recall that this is not the case in general (cf. Example 2.1).

3.9 Lemma. Let Π = (K0,K1, . . .) be a play of a game G = (Σ,R,T ) with self-delimiting replace-
ment languages. The structure of the subtree of T (Π) containing the configurations K0, . . . ,Kn is
uniquely determined by G and the history string of Kn.

Proof. Recall that the history string of Kn contains all information about the history strings and
current symbols of the configurations K0, . . . ,Kn−1.

Since the sets Ha are self-delimiting by Lemma 3.8, the subtree rooted at a configuration with
history string u1 and current symbol a contains exactly the configurations that have a history string
u1u2 where u2 is a proper prefix of a string in Ha. The node Kn has no children in the considered
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subtree of T (Π). Thus, the history string of Kn (and G) determine the set of ancestors of each
configuration K0, . . . ,Kn. If two configurations Ki and K j have the same set of ancestors, then Ki is
placed to the left of K j if and only if i < j. The lemma follows easily.

The following lemma yields a convenient property of one-pass strategies that holds in general
and not only for games with self-delimiting replacement languages.

3.10 Lemma. For each one-pass strategy σ for a game G there exists a terminating strategy σ ′

with L(σ)⊆ L(σ ′).

Proof. The strategy σ ′ plays like σ except that once it is apparent that Romeo can force infinite
play against σ , all remaining moves of σ ′ are Read.

For a formal definition, consider some u ∈ Σ
∗ and a ∈ Σ f . If there exists a play Π of σ that

contains a configuration (u,av) for some v ∈ Σ∗ such that no later configuration with remaining
string v occurs in Π, then let σ ′(u,a) = Read and σ ′(uav,b) = Read for each v ∈ Σ

∗ and b ∈ Σ f .
For all elements of the domain Σ

∗×Σ f for which σ ′ is not already defined by this (for any u ∈ Σ
∗

and a ∈ Σ f ), we define σ ′ like σ .
Let τ be some Romeo strategy and w ∈ Σ∗. We need to show that Π(σ ′,τ,w) is finite and, if

w ∈ L(σ), then Π(σ ′,τ,w) is winning.
If Π(σ ,τ,w) is finite, then for each configuration (u,av) of Π(σ ,τ,w) there exists a later

configuration (uav,v) or uâv,v). Thus, Π(σ ,τ,w) = Π(σ ′,τ,w). So Π(σ ′,τ,w) finite and if
w ∈ L(σ) then Π(σ ′,τ,w) is winning.

If Π(σ ,τ,w) is infinite, then it contains a configuration (u,av) such that no later configuration
(uav,v) or (uâv,v) for any v ∈ Σ

∗ occurs in Π(σ ,τ,w). If Π(σ ′,τ,w) also contains this config-
uration then all subsequent moves of σ ′ are Read, so Π(σ ′,τ,w) is finite. If Π(σ ′,τ,w) does
not contain this configuration, then σ ′ already started playing only Read moves in an earlier
configuration, so Π(σ ′,τ,w) is again finite. Since Π(σ ,τ,w) is infinite, w /∈ L(σ), so we are
done.

A concept that we will use in various proofs is the convergence of a sequence of one-pass
strategies.

3.11 Definition. A sequence (σk)k∈N of strategies converges to a strategy σ if for each n ∈N there
exists k0 ∈ N such that for each k ≥ k0 and (u,a) ∈ Σ

∗×Σ with |u| ≤ n it holds that σ(u,a) =
σk(u,a).

This is the same as the convergence in the metric space of strategies where the metric d is given by
d(σ ,σ) = 0 and d(σ ,σ ′) = 1

n for σ 6= σ ′, where n is minimal such that there exists (u,a) ∈ Σ
∗×Σ

with |u|= n and σ(u,a) 6= σ ′(u,a). A property of converging sequences of one-pass strategies is
given by the following Lemma.

3.12 Lemma. Let (σk)k∈N be a sequence of one-pass strategies that converges to some one-pass
strategy σ . If σ loses on a word w ∈ Σ∗ then infinitely many strategies of the sequence also lose on
w.
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Proof. Suppose σ loses on a word w ∈ Σ∗. Then there exists a losing (and thus finite) play
Π = (K0, . . . ,Kn) of σ on w. Let k0 ∈ N be such that for each k ≥ k0 and (u,a) ∈ Σ

∗×Σ with
|u| ≤ n it holds that σ(u,a) = σk(u,a). Since all configurations of Π have a history string of length
at most n, it follows that Π is also a play of σk on w for each k ≥ k0. So σk also loses on w for each
k ≥ k0.

3.13 Definition. For w ∈ Σ∗ and a one-pass strategy σ , let Hσ
w ⊆ Hw be the set of final history

strings of finite plays of σ on w. If T = (Q,Σ,δ ,q0,F) is a DFA (!) for the target language, we
define for q ∈ Q, w ∈ Σ∗ and a one-pass strategy σ the set states(q,w,σ) = {δ ∗(q, \w) | w ∈ Hσ

w }.
This is the set of T -states that can be reached at the end of a play of σ on w if the initial state of T
were q.

Since Hσ
w is a subset of Hw, the Lemmas 3.8 also holds for Hσ

w instead of Hw. Observe that if T
is a DFA and σ is terminating, then w ∈ L(σ) if and only if states(q0,w,σ)⊆ F .

Finally, we can show that games with self-delimiting replacement languages have the bounded
depth property. In fact, they have a stronger property:

3.14 Lemma. Let G = (Σ,R,T ) be a game with self-delimiting replacement languages and σ a
one-pass strategy for G. Then there exists a strategy σ ′ with depth bounded by |Σ f | · |Q| · (2|Q|−1)
and L(σ)⊆ L(σ ′), where |Q| is the number of states of the minimal DFA for L(T ).

Proof. By Lemma 3.10 we can assume that σ is terminating. Further, we assume without loss of
generality that T = (Q,Σ,δ ,q0,F) is already the minimal DFA for L(T ).

We associate with a configuration K of a play Π with history string u ∈ Σ
∗ and current symbol

a ∈ Σ the triple (p,a,S) consisting of

• the T -state p = δ ∗(q0, \u) of K,

• the current symbol a of K

• the set S = states(p,a,σ [u]) of possible T -states of the next configuration of Π that is not
part of the subtree of T (Π) rooted at K.

If a triple (p,a,S) with a ∈ Σ\Σ f is associated to a configuration that occurs in a play of σ , then
this configuration is a leaf of the play tree. Suppose the depth of σ is greater than |Σ f | · |Q| ·(2|Q|−1).
Since S is always non-empty, this means that there exists a play of σ such that the corresponding
play tree has a path starting at the root that contains two configurations (u1,av1) and (u1u2,av2v1)

with the same associated triple (p,a,S), where a ∈ Σ f . The idea of this proof is, roughly speaking,
to change σ so as to replace the subtree rooted at the upper node by the subtree rooted at the lower
node (see Figure 3.1).
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(u1u2u3u4,v1)

δ ∗(q0, \u1u2u3u4) ∈ S
(u1,av1)

p = δ ∗(q0, \u1)

(u1u2u3,v2v1)

δ ∗(q0, \u1u2u3) ∈ S
(u1u2,av2v1)

p = δ ∗(q0, \u1u2)

(a) A possible play of σ

(u1u3,v1)

δ ∗(q0, \u1u3) ∈ S
(u1,av1)

p = δ ∗(q0, \u1)

(b) A possible play of σ ′

Figure 3.1.: Schematic representation of possible plays of σ and σ ′ as constructed in the proof of
Lemma 3.14

For each q ∈ S we choose aq ∈ Hσ [u1]
a such that q = δ ∗(p, \aq). We define a one-pass strategy σ ′

via

σ
′(u,b) =



σ(u1u2u′,b), if u = u1u′ such that either (u′,b) = (ε,a) or u′ ∈ Σ
+ is

a proper prefix of some u3 ∈ Hσ [u1u2]
a ,

σ(u1aqu′,b), if u = u1u3u′ and q = δ ∗(p, \u3) for some u3 ∈ Hσ [u1u2]
a

and u′ ∈ Σ
∗,

σ(u,b), otherwise.

So σ ′ starts playing like σ , but once it reaches a configuration with history string u1 and current
symbol a, it continues to play as if the history were u1u2 instead of u1, simulating how σ would
play in the subtree rooted at (u1u2,av2v1); once that subtree is left and the T -state is some q ∈ S
(i. e. when a history u1u3 is reached with u3 ∈ Hσ [u1u2]

a and q = δ ∗(p, \u3)), σ ′ continues to play
like σ when the subtree rooted at K is left and the T -state is q. Note that σ ′ is well-defined since
Hσ [u1u2]

a is self-delimiting.

We show that σ ′ is terminating and that L(σ)⊆ L(σ ′). A play Π of σ ′ on some word w ∈ Σ∗ that
is not also a play of σ on w must contain a configuration (u1,av) for v ∈ Σ∗. Since σ is terminating,
Π also contains a configuration (u1u3,v) where u3 ∈ Hσ [u1u2]

a . It follows easily from the definition
of σ ′ and the fact that σ is terminating that Π is finite, hence σ ′ is terminating. Suppose that
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w ∈ L(σ) but Π is losing. Then, for q = δ ∗(p, \u3), it would hold that states(p,av,σ [u1])⊆ F but
states(q,v,σ ′[u1u3])* F . However, this is not possible since

states(q,v,σ ′[u1u3]) = states(q,v,σ [u1aq])

⊆
⋃

a∈Hσ [u1 ]
a

states(δ ∗(p, \a),v,σ [u1a]) = states(p,av,σ [u1]).

So we have shown that if a play of σ ′ on w ∈ L(σ) is not a play of σ on w, then it is still finite and
not losing, hence winning. Therefore, L(σ)⊆ L(σ ′).

In order to transform σ into a strategy with depth bounded by |Σ f | · |Q| · (2|Q|−1), we repeat this
kind of adjustment several times. For the first adjustment, we pick a play Π of σ and configurations
K = (u1,av1) and K′ = (u1u2,av2v1) as above such that |u1| is minimal and such that there exists no
play of σ that contains the configuration K′ and another configuration with associated triple (p,a,S)
in the subtree rooted at K′. Such K′ must exist: Suppose not, then Romeo could, after reaching
K′, select his replacement words so as to reach another configuration K′′ with triple (p,a,S) in the
subtree rooted at K′ and, after reaching K′′, choose the new replacement words to reach yet another
configuration with triple (p,a,S) in the subtree rooted at K′′ and so on. But if Romeo can repeat
this procedure ad infinitum, then there would exist an infinite play of σ , but this contradicts that σ

is terminating.

So the first adjustment of σ ensures that if a configuration K with current symbol a and history
string u1 occurs in a play of σ ′, then no configuration with the same associated triple can occur
in the subtree rooted at K. Moreover, any triple occurring in the subtree rooted at K could also
previously occur in the subtree rooted at K (namely in the subtree rooted at K′, which was part of
the subtree rooted at K), so they cannot cause any new duplicate triple on a path, since the possible
ascendants of K stay the same by Lemma 3.9. Also any other triple associated to a descendant of an
ascendant of K (to the right of K after the subtree rooted at K is left) could previously occur in the
same place of the play tree because the play of σ ′ after leaving the subtree rooted at K simulates a
play of σ after leaving this subtree. Therefore, since |u1| was chosen minimal, it is still not possible
for configurations with a history string of length less than |u1| to have a configuration with the same
associated triple in the subtree below them.

After making finitely many such adjustments (at most once for each combination of a current
symbol and a history string of length |u1|), it is not possible for any configuration with a history
string of length at most |u1| to have a configuration with the same associated triple in the subtree
below it. Inductively we can guarantee for any k ∈ N0 that there exists a terminating one-pass
strategy σk with L(σ) ⊆ L(σk) such that no configuration with a history string of length k has a
configuration with the same associated triple in the subtree below it. This induces a sequence
(σk) of one-pass strategies that converges to some strategy σ ′ which satisfies this property for
each k ∈ N0. Therefore, the depth of σ ′ is bounded as stated in the Lemma. If σ ′ loses on some
word w ∈ Σ∗, then it follows from Lemma 3.12 that w /∈ L(σk) for infinitely many k and therefore
w /∈ L(σ), since L(σ)⊆ L(σk). But σ ′ is terminating (due to its bounded depth), so it loses on any
word on which it does not win. Hence, L(σ)⊆ L(σ ′).
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It is possible to achieve a slightly better bound on the depth than the one proved in the lemma.
Similar to what will be done in Lemma 4.6, it would be possible to change σ to an at least as good
strategy for which there never occur two triples (p,a,S) and (p,a,S′) where S is a proper subset
of S′. Since the improved bound this would yield is still exponential in |Q|, we will settle for the
bound from Lemma 4.6 rather than dealing with more complicated terms.

With the results above, we can now state the following theorem.

3.15 Theorem. An optimal one-pass strategy exists for every games with self-delimiting replace-
ment languages.

Proof. Games with self-delimiting replacement languages have the bounded depth property with
Bk = |Σ f | · |Q| · (2|Q|−1) by Lemma 3.14. The result follows from Theorem 3.3.

In the next chapter, we will see – among other things – whether we can deduce from the existence
of an optimal type 1 strategy the existence of optimal strategies of restricted types.
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4. Implications between strategy types

Recall the five types of one-pass strategies defined in Section 2.2. In search of good one-pass
strategies, it would be helpful to know that one can restrict the search to one of the restricted types.
For instance, if it were clear for a game that there must be an optimum strategy of type 5 or else
there exists no optimum one-pass strategy at all, then it would be sufficient to compute all type 5
strategies, compare them and choose the best. Since there exist only finitely many type 5 strategies
for each game, this procedure would terminate (we will study the complexity of comparing two
automaton strategies in Chapter 6). Therefore, an interesting question is whether the existence of
an optimum (or optimal) strategy of one type implies the existence of an optimum (or optimal)
strategy of a more restricted type. Similarly one can ask whether, for a word w, the existence of a
strategy of one type that wins on w implies the existence of a strategy of a restricted type that wins
on w. We will study these questions in this chapter, obtaining some positive and some negative
results, while some questions remain open.

Let us first introduce some terminology. Let G = (Σ,R,T ) be a game and X ,Y ∈ {1,2,3,4,5}.
We say

the implication X =⇒ Y for optimum strategies holds for G

if the existence of an optimum strategy of type X for G implies the existence of an optimum strategy
of type Y for G. Worded differently, the implication X =⇒ Y for optimum strategies holds for
G if the existence of an optimum strategy of type X for G implies the existence of a strategy of
type Y for G that is equivalent to some optimum strategy (and therefore equivalent to all optimum
strategies). We say

the implication X =⇒ Y for optimum strategies semi-holds for G

if the existence of an optimum strategy of type X for G implies the existence of a strategy of
type Y for G that is semi-equivalent to some optimum strategy. We use the analogous definitions
where “optimum” is replaced by “optimal”. Note, however, that for an implication X =⇒ Y for
optimal strategies to (semi-)holds, we do not require that every optimal type X strategy has a (semi-
)equivalent type Y strategy, but only that at least one of them (if it exists) has a (semi-)equivalent
type Y strategy. This seems like a slightly weaker statement, since it is conceivable that there are
several inequivalent optimal type X strategies, but only some of them have a (semi-)equivalent
strategy of type Y . Finally, we say

the implication X =⇒ Y for winning strategies holds for G

if, for each w ∈ Σ∗, the existence of a type X strategy that wins on w implies the existence of a type
Y strategy that wins on w.
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In the sections of this chapter, we study which of these implications hold or semi-hold for games
with certain properties. Of course, an implication X =⇒ Y holds trivially if type X is a restriction
of type Y .

Without loss of generality, we assume for each game G = (Σ,R,T ) considered in this chapter
that T = (Q,Σ,δ ,q0,F) is the minimal DFA for the target language. Note that the existence of
strategies of the different types is not affected by how the target language is represented. We allow
T to be an NFA again in the next chapters when we deal with complexity questions, since the
representation of the target language will make a difference there.

4.1. Implications for optimum strategies

To prepare for our first theorem in this section, we need to define the notion of indistinguishability
of one-pass strategies.

4.1 Definition. Two one-pass strategies σ and σ ′ are indistinguishable if Π(σ ,τ,w) = Π(σ ′,τ,w)
for each Romeo strategy τ and w ∈ Σ∗. Since indistinguishability is an equivalence relation, we can
consider equivalence classes, which we call indistinguishability classes.

In other words, the decisions of indistinguishable strategies may only differ on pairs (u,a) ∈ Σ
∗

that do not occur as the history string and current symbol of any configuration of a play. Of
course, if two strategies are indistinguishable, then they are also equivalent (i. e. winning on the
same input words). In particular, if a strategy is optimum (or optimal), then all strategies of its
indistinguishability class are optimum (or optimal). The converse is not generally true, i. e. two
strategies may be equivalent but not indistinguishable. For a trivial counter-example consider
L(T ) = /0.

According to a theorem by Abiteboul et al. [3, Theorem 3.1], if a game has a unique optimum
strategy, then this is a type 4 strategy, and if a game has an optimum strategy at all then it is
semi-equivalent to a strategy of type 4; furthermore, provided a condition of “1-unambiguity” holds,
the type 4 strategy is even of type 5. The definition of semi-equivalence in [3] differs slightly from
ours, as they defined two strategies as semi-equivalent if they lose on the same strings. However, the
following example shows that an optimum strategy does actually not always have a semi-equivalent
(as per the definition in [3]) strategy of type 4 or even of type 3.

4.2 Example. Consider the game G = (Σ,R,T ) with Σ = {a,b}, R given by a→ aa and the target
language L(T ) consisting of all strings that start with aa and contain b. An optimum one-pass
strategy σ for G is given by

σ(u,a) =

Call, if u = ε

Read, if u 6= ε,

for u∈ {a,b, â}∗, i. e. σ plays Call once if the first symbol of the input word is a and otherwise Read.
This strategy wins on all strings that start with a and contain b, and it is clear that this is optimum.
A strategy σ ′ that is semi-equivalent to σ must satisfy σ ′(ε,a) = Call because otherwise σ ′ loses
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on ab ∈ L(σ). However, if σ ′ is of type 3 (and in particular if it is of type 4) then σ ′(u,a) = Call
for each u ∈ {â}∗. Then, any play of σ ′ on a is infinite, so σ ′ does not lose on a. But σ loses on a,
so σ and σ ′ are not semi-equivalent as per the definition in [3].

Barring our different definition of semi-equivalence, we can generalize the theorem by Abiteboul
et al. [3, Theorem 3.1]. It is possible to drop the condition of 1-unambiguity, and rather than
requiring a unique optimum strategy it suffices to require that there are only finitely many of them
in order for one of them to be of type 5. Besides finitely many optimum strategies we also obtain
two other sufficient conditions.

4.3 Theorem. For each game G = (Σ,R,T ), all implications for optimum strategies semi-hold.
Moreover, all implications for optimum strategies hold for G, if any of the following conditions is
satisfied:

• G is non-recursive.

• L(T ) is finite.

• Only finitely many indistinguishability classes of optimum strategies for G exist.

Proof. Since type 1 (all one-pass strategies) is the most general and type 5 the most restricted type,
it suffices to show the statements for the implication 1 =⇒ 5. We assume that an optimum one-pass
strategy exists because otherwise there is nothing to show.

Starting with some optimum strategy σ1, we will construct a sequence (σk) of optimum strategies
that is either finite and ends with a strategy that is indistinguishable from a type 5 strategy or is
infinite and converges to such a strategy. The plan is to define σk+1 by adjusting σk so as to postpone
the earliest possible configuration that is a witness of why σk is not indistinguishable from a type 5
strategy.

The sequence (σk) starts with an arbitrary optimum one-pass strategy σ1. Let σk be a strategy in
the sequence. We distinguish two cases.

If – for all q ∈Q and a ∈ Σ f and all configurations (u1,av1) and (u2,av2) with q = δ ∗(q0, \u1) =

δ ∗(q0, \u2) occurring in plays of σk – it holds that σk(u1,a) = σk(u2,a), then σk is the last strategy
of the sequence. In this case σk is indistinguishable from the strategy σA of the type 5 automaton
A= (Q,Σ,δA,q0,F), where

δA(q,a) =


⊥, if a ∈ Σ f and a configuration (u,av) with q = δ ∗(q0, \u) occurs in

some play of σk such that σk(u,a) = Call,

δ (q,a), otherwise

for q ∈ Q and a ∈ Σ. Indeed, due to the case we are considering, if δA(q,a) = ⊥, then all
configurations (u,av) with q = δ ∗(q0, \u) occurring in some play of σk satisfy that σk(u,a) = Call.
Therefore, if a configuration (u,av) occurs in a play of σk, then σk(u,a) = σA(u,a) by definition
of type 4 and 5 strategies. Hence, σk and σA are indistinguishable.

In the other case, there exist q ∈ Q and a ∈ Σ f and plays Π1 = (K1
0 ,K

1
1 ,K

1
2 , . . .) and Π2 =

(K2
0 ,K

2
1 ,K

2
2 , . . .) of σk such that K1

n1
= (u1,av1), K2

n2
= (u2,av2), q = δ ∗(q0, \u1) = δ ∗(q0, \u2) and
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σk(u1,a) 6= σk(u2,a) for some n1,n2 ∈ N0, u1,u2 ∈ Σ
∗ and v1,v2 ∈ Σ∗. We choose these such that

n1 ≤ n2 and (n2,n1) is lexicographically minimal. Informally, this means that σk acts like a type 5
strategy during the first n2 moves. We need the following claim.

4.4 Claim. The play Π1 starts with n1 Read moves, i. e. u1 = \u1 ∈ Σ∗.

Proof. First, we show that a play of σk on \u1 consists of only Read moves, i. e. σk(u,b) = Read
for each u,v ∈ Σ∗ and b ∈ Σ f with \u1 = ubv. Suppose not and choose u, v and b that constitute a
counter-example with u of minimal length. Let u,v ∈ Σ

∗ be such that u1 = ubv, \u = u and \v = v.
Then a play of σk on ub with its configuration (u,b) and the play Π1 with the configuration K1

|u|
would contradict the minimality of n2, since |u| ≤ |u|< |u1|= n1 ≤ n2.

Now we show that u1 = \u1. If this were not the case, then |\u1| < |u1| and we would obtain
a contradiction to the lexicographical minimality of (n2,n1) by considering a play of σk on \u1a
either instead of Π1, if σk(\u1,a) = σk(u1,a), or instead of Π2, if σk(\u1,a) = σk(u2,a).

We define σk+1 as the strategy that plays like σk except that if after n2 moves it reaches a configura-
tion with T -state q and current symbol a, then it continues to play like σk would play if the history
string were u1. Formally,

σk+1(v,b) =



σk(u1,a), if |v|= n2, δ ∗(q0, \v) = q and b = a,

σk(u1v2,b), if v = v1v2 for some v1,v2 ∈ Σ
∗ where |v1|= n2,

δ ∗(q0, \v1) = q and the first symbol of v2 is a or â,

σk(v,b), otherwise

for v ∈ Σ
∗ and b ∈ Σ f .

We prove by induction that all strategies in the sequence (σk) are optimum. The base case is
immediate from our choice of σ1. The following induction step is illustrated in Figure 4.1. Suppose
σk is optimum but σk+1 is not. Then there exist w ∈ L(σk) and a Romeo strategy τ such that
Π(σk+1,τ,w) is not winning. Thus, the plays of σk+1 and σk against τ on w reach a configuration
(v,av) after n2 moves with v ∈ Σ

∗ and v ∈ Σ∗ such that δ ∗(q0, \v) = q and σk does not win on u1av.
Since σk is optimum, no strategy wins on u1av. However, consider the strategy σk[u1/v] that we
define by

σk[u1/v](u,b) =

σk(u,b), if u1 is not a prefix of u,

σk(vu3,b), if u = u1u3 for some u3 ∈ Σ
∗.

This strategy does the following on the input word u1av:

• Initially, σk[u1/v] plays only Read moves until the prefix u1 is completely processed (just
like σk).

• Upon reaching the configuration (u1,av), the strategy σk[u1/v] starts playing like σk would
play after reaching the configuration (v,av).
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(ε,w) (v,av)
win

no win =⇒ u1av /∈ L(σk)

(ε,u1av) (u1,av)
no win

win =⇒ u1av ∈ L(σk[u1/v])⊆ L(σk)⇒⇐

σk

σk+1

σk

σk+1

σk

σk[u1/v]

σk

σk[u1/v]

Figure 4.1.: Illustration of the proof by contradiction that σk+1 is optimum in the proof of Theo-
rem 4.3

Since there exist plays of σk on w that contain the configuration (v,av) (e.g. Π(σk,τ,w)) and all
these plays are winning independently of Romeo’s subsequent moves, the strategy σk[u1/v] wins
on u1av. Contradiction! So as claimed, (σk) is a sequence of optimum strategies.

Let n2(k), a(k) and q(k) be the values of n2, a and q respectively used to define σk+1. The change
from σk to σk+1 does not affect the first n2(k) moves, i. e.

σk+1(v,b) = σk(v,b) for each v ∈ Σ
∗ and b ∈ Σ f with |v|< n2(k). (4.1)

Hence, n2(k) is monotonously non-decreasing. Moreover, the definition of σk+1 ensures that
(n2(k),a(k),q(k)) 6= (n2(`),a(`),q(`)) for all k < `. Thus, n2(k) increases by at least 1 per |Σ f ||Q|
iterations.

If the sequence (σk) is finite then it ends with an optimum strategy that is indistinguishable
from a type five strategy σA. In this case, σ1 is equivalent to σA. Since the strategies of the
sequence are pairwise not indistinguishable, the sequence must be finite if there are only finitely
many indistinguishability classes. This proves the statement of the theorem for the case that the
condition of the third bullet point is satisfied.

If (σk) is infinite, consider the strategy σ given by σ(u,a) = σk(u,a) where k is large enough
such that n2(k) > |u|. By property (4.1), σ is well-defined and σk converges to σ . Similarly as
earlier in this proof it can be seen that σ is indistinguishable from some type 5 strategy σA. We
claim that σ1 is semi-equivalent to σA: If σA loses on a word w, then so does σ . By Lemma 3.12
this implies that some σk does not win on w, so since σk is optimum also σ1 does not win on w.
Conversely, if σ1 loses on a word, then σA cannot win on it either, since σ1 is optimum. This
proves the first statement of the theorem. If G is non-recursive, σA is even equivalent to σ1 because
two strategies in a non-recursive game are equivalent if and only if they are semi-equivalent – as
already mentioned in Section 4.5. This proves the statement of the theorem for the case that the
condition of the first bullet point is satisfied.

Lastly, we consider the case that L(T ) is finite, which surprisingly seems to be the most difficult
to prove. Suppose σA is not optimum. The proof consists of two major steps. First, we show that
there must exist q ∈ Q, a1, . . . ,an,an+1 ∈ Σ f with an+1 = a1 and ai+1 ∈ L(Rai), a word w ∈ L(σ1)

and a Romeo strategy τ ′ such that Π(σA,τ
′,w) contains a configuration with T -state q where all

future configurations also have T -state q because all future moves by Juliet are to call some ai and
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Romeo keeps choosing ai+1 as the replacement word. The second major step is to construct an
optimum strategy σ ′1 such that, if we had chosen σ ′1 instead of σ1 as the first strategy of the sequence
(σk), then the strategy that the sequence converges to might still not be optimum, but at least it will
no longer be possible to choose the same q and a1, . . . ,an with the properties above. After finitely
many repetitions of this procedure, no possible combination of q and a1, . . . ,an remains. Thus, the
type 5 strategy that is semi-equivalent to the optimum strategies of the sequence must be optimum
itself (i. e. equivalent to the strategies of the sequence). We will describe the steps in more detail
below.

Since L(T ) is finite, T contains no directed circles except for circles in its error state, i. e. a
non-accepting state qe with δ (qe,a) = qe for all a ∈ Σ. We can assume that σ1 plays Read
whenever it is in a configuration with T -state qe because there is no way to win once that state
is reached. Thus, also σA plays Read whenever the T -state is qe. If σA is not optimum then
there exists w ∈ L(σ1) and a Romeo strategy τ such that Π(σA,τ,w) is infinite. Since the only
circles in T are in qe, this means that there exists some q ∈ Q\{qe} such that Π(σA,τ,w) contains
a configuration with T -state q where all subsequent configurations also have T -state q and all
subsequent moves by σA are Call (because on a Read the T -state would change, due to the
lack of circles). Let (u,a1v),(uâ1,a2x1v),(uâ1â2,a3x2x1v), . . . ,(uâ1â2 . . . ân,an+1xnxn−1 . . .x2x1v)
be consecutive configurations of Π(σA,τ,w) with T -state q such that ai, . . . ,an are pairwise distinct
and a1 = an+1. So ai ∈ Σ f , xi ∈ Σ∗ and ai+1xi ∈ L(Rai) for i = 1, . . . ,n. We claim that xi = ε for all
i = 1, . . . ,n.

Suppose not, then consider the Romeo strategy τ ′ given by

τ
′(v,a) =

ai+1xi, if u is a prefix of v and a = ai for some i = 1, . . . ,n,

τ(v,a), otherwise.

Let ` ∈ N be greater than the length of the longest word in L(T ). Note that the configuration
(u(â1 . . . ân)

`,an+1(xn . . .x1)
`v) occurs in the play Π(σA,τ

′,w). For k large enough, this configura-
tion also occurs in the play Π(σk,τ

′,w). But if xi 6= ε for some i ∈ {1, . . . ,n} then the remaining
string of this configuration is longer than the longest word in L(T ). So also the final string of
Π(σk,τ

′,w) is longer than the longest word in L(T ), thus w /∈ L(σk). But σk is optimum like σ1

and we said that w ∈ L(σ1). Contradiction!

Note that δ ∗(q0, \u) = q since we have said that q is the T -state of the configuration (u,a1v).
Also, on input words with prefix \u, the strategy σA plays only Read moves until \u is completely
processed because σA is of type 5 (and therefore of type 3) and we know that the configuration
(u,a1v) occurs in a play of σA (namely on w). Since (σk) converges to σ , we can choose k large
enough such that σ(v,a) = σk(v,a) for all (v,a) ∈ Σ

≤|u|×Σ f . As σ and σA are indistinguishable,
the choice of k implies that the configuration (u,a1v) occurs in the play Π(σk,τ,w) and the
configuration (\u,a1v) occurs in any play of σk on \ua1v. Since w ∈ L(σk), we have that \ua1v ∈
L(σ̃) for any one-pass strategy σ̃ that initially plays Reads on \ua1v until the configuration (\u,a1v)
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is reached and then continues to play like σk would play if the configuration were (u,a1v) instead,
i. e. σ̃ could be defined via

σ̃(v,a) =

Read, if \u is not a prefix of v,

σk(uv2,a), if v = (\u)v2 for some v2 ∈ Σ
∗.

Since σk is optimum it follows that \ua1v ∈ L(σk). We (re)define a Romeo strategy τ ′ similar to
above (when we showed that xi = ε) except that u in the former definition is now replaced by \u,
i. e.

τ
′(v,a) =

ai+1, if \u is a prefix of v and a = ai for some i = 1, . . . ,n,

τ(v,a), otherwise.

Consider the (winning) play Π(σk,τ
′, \ua1v). By choice of k it contains the configuration (\u,a1v).

The strategy σk must play Read at some point after reaching this configuration because otherwise
the play would be infinite instead of winning. By definition of τ ′, the next configuration where σk

plays Read is of the form ((\u)(â1 . . . ân)
jâ1 . . . âi−1,aiv) for some j ∈ N0, i ∈ {1, . . . ,n}. We claim

that the strategy σ ′1 given by

σ
′
1(v,a) =



σk((\u)(â1 . . . ân)
jâ1 . . . âi−1v2,a), if v = v1v2 for some v1,v2 ∈ Σ

∗ and

δ ∗(q0, \v1) = q and either (v2,a) = (ε,ai)

or v2 ∈ Σ
+ begins with ai,

σk(v,a), otherwise.

is optimum. This strategy plays like σk except that upon reaching a configuration with T -state
q and current symbol ai it will continue as if the history string were (\u)(â1 . . . ân)

jâ1 . . . âi−1. In
particular, σ ′1 always plays Read when the T -state is q and the current symbol is ai (much like a type
5 strategy). Note that due to the lack of circles in T , this can happen at most once in a play, so σ ′1 is
well-defined. Suppose σ ′1 were not optimum, then there would exist w′ ∈ L(σk)\L(σ ′1). A play of
σ ′1 on w′ that is not winning must contain a configuration (v1,aiv′) with T -state q, where v1 ∈ Σ

∗

and v′ ∈ Σ∗. Some play of σk on w′ also contains this configuration because σ ′1 plays like σk prior
to reaching this configuration. Since the play of σ ′1 is not winning after reaching the configuration
(v1,aiv′), it holds that \ua1v′ /∈ L(σk) by definition of σ ′1. On the other hand, since the play of σk

on w′ that contains the configuration (v1,aiv′) is winning (since w′ ∈ L(σk)), there exists a strategy
that wins on \uaiv′, namely any strategy that starts by playing Reads until the history string is \u
and then continues to play like σk would play if the history string were v1 instead of \u. Hence,
\uaiv′ ∈ L(σm) for all m ∈ N because the strategies σm are optimum. For m large enough, the play
Π(σm,τ

′, \uaiv′) contains the configuration (\uâi . . . ân,a1v′). Since this play is winning, it is easy
to construct a strategy that wins on \ua1v′ (with methods as above). But since σk is optimum this
would mean that \ua1v′ ∈ L(σk). Contradiction! So, as claimed, σ ′1 is optimum.

Consider the sequence (σ ′k) that we would have gotten instead of (σk) if we had started with the
optimum strategy σ ′1 instead of the optimum strategy σ1. Since σ ′1 always plays Read when the
T -state is q and the current symbol is ai, all other strategies of the sequence do the same. If the
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sequence is finite then we are done, like above. Otherwise, also the strategy σ ′ that the sequence
converges to plays Read whenever the T -state is q and the current symbol is ai and the same holds
for the type 5 strategy σA′ that is indistinguishable from σ ′. It could still be the case that σA′ is not
optimum, but if we repeat the procedure from above then it will not happen again that ai occurs in
the list of function symbols that are called infinitely often while the T -state is q. Therefore, after
finitely many repetitions of the procedure, no combinations of a state q ∈ Q and function symbols
a1, . . . ,an ∈ Σ f with the above properties is possible any more. We must have arrived at an optimum
type 5 strategy!

As we will see later, the implication 1 =⇒ 5 and even several weaker implications for optimum
strategies do not hold in general. However, the implication 1 =⇒ 2 holds for games with self-
delimiting replacement languages. This will be our next main result. We need several more lemmas
before we can prove it.

The next lemma further improves our understanding of games with self-delimiting replacement
languages. It augments the intuition given before Lemma 3.8: Juliet does not even need to know u
in advance in order to tell when a prefix u of the input word is completely processed. As soon as
that happens for some prefix u, she knows what u is.

4.5 Lemma. Let G= (Σ,R,T ) be a game with self-delimiting replacement languages and u,w∈ Σ∗.
If a configuration (u,v) ∈ Hu×Σ∗ occurs in a play Π on w, then w = uv.

Proof. Without loss of generality, all moves by Juliet after the configuration (u,v) is reached are
Read. Hence, the final history string of Π is uv. It is easy to see that there also exists a play Π′ on
uv with final history string uv.

Consider the play trees T (Π) and T (Π′). In T (Π), the current symbols of the root’s children
are the symbols of w. In T (Π′), the current symbols of the root’s children are the symbols of uv.
By Lemma 3.9, both play trees have the same structure. Moreover, the current symbol of each
configuration in the play tree is uniquely determined by the final history string, which is uv in both
cases. Thus, w = uv.

The following lemma allows us to assume that an optimum one-pass strategy σ in a game with
self-delimiting replacement languages satisfies two specific properties. Property (i) of the following
lemma says that the substrategy after completely processing some prefix u of the input word can be
such that the set of possible T -states reached when the next longest prefix ua of the input word is
completely processed depends only on

• the set S of states that could have been reached after completely processing u,

• the state p ∈ S that was really reached and

• the next symbol a of the input word.

This is the crucial property that allows Juliet to forget the exact history a completely processed
prefix and only remember S and p. Note that there are only finitely many possible combinations of
S⊆Q and p ∈ S, which is the key towards finitely many states in a strategy automaton. Property (ii)
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of the next lemma intuitively makes sense as follows: After completely processing a prefix of
the input word, it cannot be a bad idea to minimize the set of states reachable after completely
processing the next longest prefix of the input word.

4.6 Lemma. Let G = (Σ,R,T ) be a game with self-delimiting replacement languages for which an
optimum one-pass strategy exists. Then there exists a terminating, optimum strategy σ as follows:

Let P= {states(q0,w,σ) |w∈Σ∗}⊆P(Q). For S∈P there exist strings uS with S= states(σ ,uS)

and for p ∈ S history strings uS,p ∈ Hσ
uS

with δ ∗(q0, \uS,p) = p such that the following properties
are satisfied for each S ∈ P, p ∈ S and a ∈ Σ:

(i) For each u ∈ Σ∗ and u ∈ Hσ
u with S = states(q0,u,σ) and p = δ ∗(q0, \u) it holds that

states(p,a,σ [u]) = states(p,a,σ [uS,p]).

(ii) There exists no terminating strategy σ ′ with states(p,a,σ ′)( states(p,a,σ [uS,p]).

Proof. Let σ be an arbitrary terminating optimum one-pass strategy σ (it exists by Lemma 3.10).
We will make several adjustments to σ until it satisfies the properties that we wish to prove. The
adjustments consist of two major steps. The first step is given by Algorithm 4.1. This algorithm
adjusts σ and constructs a set P ⊆ P(Q) and strings uS for S ∈ P with S = states(σ ,uS) and
uS,p ∈ Hσ

uS
with δ ∗(q0, \uS,p) = p for S ∈ P and p ∈ S such that property (ii) of the lemma holds.

In a second step, we will change σ further so that P = {states(q0,w,σ) | w ∈ Σ∗} and property (i)
holds. During all the adjustments, σ remains an optimum terminating strategy. It should be noted
that Algorithm 4.1 cannot be executed by a computer because there is no finite representation for
one-pass strategies; the algorithm merely serves to define P, uS, uS,p and redefine σ .

Let us first explain the general structure of Algorithm 4.1. The algorithm initializes P as the
empty set. An auxiliary set W ⊆ P(Q) is used in which subsets of Q are stored temporarily before
they are added to P. Whenever a set S is added to W , the string uS is defined directly afterwards
(lines 2–3 and 18–19). The core of the algorithm is the while-loop, where in each iteration (lines
5–21)

• a set S is chosen (line 5),

• for each p ∈ S, the string uS,p is defined (line 7) and some more preparations are made (8–12)
in order to

• adjust σ (lines 13–14),

• possibly more sets will be added to W (lines 15–19) and

• eventually S is removed from W and added to P (lines 20–21).

We now examine the steps of Algorithm 4.1 in more detail. The first set that is added to W
(and will be added to P later) is {q0}, and u{q0} is defined as the empty string (lines 2–3). It is
clear that {q0} = states(q0,ε,σ), so we have not done anything wrong yet. The algorithm then
jumps into a while-loop over elements S ∈W and a nested for-loop over elements p ∈ S. Since
it will always hold that S = states(q0,uS,σ), it is possible to choose uS,p such as it is done in
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Algorithm 4.1
1: P := /0
2: W := {{q0}}
3: u{q0} = ε

4: while W 6= /0 do
5: Pick S ∈W
6: for all p ∈ S do
7: Pick uS,p ∈ Hσ

uS
such that δ ∗(q0, \uS,p) = p

8: for all a ∈ Σ do
9: Let σp,a be a terminating one-pass strategy that minimizes states(p,a,σp,a) ⊆

states(p,a,σ [uS,p]) under inclusion
10: for all q ∈ states(p,a,σp,a) do
11: Pick aq ∈ Hσ [uS,p]

a such that δ ∗(p, \aq) = q
12: Let σp be the one-pass strategy given by σp(u,b) = σp,a(u,b) where a ∈ Σ is such that

(u,b) = (ε,a) or u ∈ Σ
+ begins with a or â

13: Let σ ′ be the one-pass strategy defined by

σ
′(u,b) =



σp(u2,b), if u = u1u2 and p = δ ∗(q0, \u1) where u1 ∈ Hσ
uS

and

u2 is a proper prefix of a string in ∪a∈ΣHσp
a ,

σ(uS,paqu2,b), if u = u1au2, p = δ ∗(q0, \u1), q = δ ∗(p, \a) and a ∈ Σ

where u1 ∈ Hσ
uS

, a ∈ Hσp
a and u2 ∈ Σ

∗,

σ(u,b), otherwise

14: σ := σ ′

15: for all a ∈ Σ do
16: S′ := states(q0,uSa,σ)

17: if S′ /∈W ∪̇P then
18: W :=W ∪{S′}
19: uS′ := uSa.
20: W :=W \{S}
21: P := P∪{S}
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line 7. In line 9, a terminating one-pass strategy σp,a that minimizes states(p,a,σp,a) as a subset of
states(p,a,σ [uS,p]) is chosen. Note that if it is not possible to achieve a proper subset here, then
σp,a = σ [uS,p] is always a possibility. By definition of states(p,a,σ [uS,p]), it is also possible to
choose aq as in line 11. The strategy σp defined in line 12 is the strategy that plays like σp,a for
an input word that starts with a. In line 13, σ ′ is defined as the strategy that plays like σ unless
the input word starts with uSa for some a ∈ Σ; in that case, after uS is completely processed, σ ′

plays on the symbol a like σp (where p is the T -state reached when uS was completely processed)
and, once uSa is completely processed, σ ′ continues to play like σ would play if the history were
uS,paq after completely processing uSa (where q is the T -state reached when uSa was completely
processed). Note that σ ′ is well-defined because

• the sets Hσ
uS

and Hσp
a are self-delimiting by Lemma 3.8,

• the first symbol of u2 (if it is non-empty) or a determines the only possibility of a ∈ Σ such
that u2 could be a proper prefix of a string in Hσp

a or a ∈ Hσp
a ,

• the state q = δ ∗(p, \a) in the second case is in states(p,a,σp,a) by definition of σp, so aq

was defined previously in line 11.

We will prove soon that σ ′ is also a terminating, optimum strategy, which justifies redefining σ as
σ ′ in line 14. None of the changes to σ hereafter will affect its plays on input words uSa for a ∈ Σ.
Therefore, if a set S′ = states(q0,uSa,σ) is not already added to P or W , then it needs to be added
to W so that it will be added to P later. A string uS′ with S′ = states(q0,uS′ ,σ) can be chosen as
uS′ = uSa. All this happens in lines 15–19. Eventually, S is removed from W and added to P (lines
20–21) and the while-loop continues until W is empty.

The algorithm terminates because each subset of Q is added to W at most once and a set is
removed from W in each iteration of the while-loop. To show that the invariant holds that σ is
terminating and optimum we need to show that this is the case for the strategy σ ′ defined in line 13.

Suppose σ is terminating and optimum before some execution of line 13, but the strategy σ ′

defined in line 13 is not. A play Π of σ ′ against some Romeo strategy τ on some w ∈ Σ∗ can
differ from the corresponding play of σ only after a configuration (u1,av) with u1 ∈Hσ

uS
, a ∈ Σ and

v ∈ Σ∗ occurs. By Lemma 4.5 this means that w = uSav. Since σp,a is terminating (and hence also
σp), Π will contain a configuration (u1a,v) with a ∈ Hσp

a corresponding to the moment when uSa
is completely processed (where p = δ ∗(q0, \u1)). From this point onwards, σ ′ plays like σ if the
configuration were (uS,paq,v) instead of (u1a,v) (where q = δ ∗(p, \a)). Since such a configuration
can indeed occur in a play of σ (namely this is possible – depending on Romeo’s moves – if and
only if the input word uSav) and σ is terminating, Π must be finite; hence σ ′ is terminating. If σ ′ is
not optimum, then w and Π and can be chosen such that w = uSav ∈ L(σ) and Π is losing. But Π

is only losing if uSav /∈ L(σ). Contradiction!
Note that property (ii) of the lemma is satisfied, since the adjustment in lines 13–14 guarantee that

states(p,a,σ [uS,p]) = states(p,a,σp,a) and states(p,a,σp,a) was chosen minimal under inclusion.
Moreover, uS and uS,p are as specified by the lemma. However, it is not clear whether P =

{states(q0,w,σ) | w ∈ Σ∗} and whether property (i) holds; so far, (i) necessarily holds only for
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u = uS. We will therefore make further adjustments to σ to ensure that (i) holds for all u ∈ Σ∗

and P = {states(q0,w,σ) | w ∈ Σ∗}. We define a sequence (σk)k∈N0 of one-pass strategies that
converges to some strategy that has all the claimed properties.

Let σ0 be the strategy σ at the end of Algorithm 4.1. We define σk+1 via

σk+1(u,a) =


σ0(uS,pu2,a), if u = u1u2, p = δ ∗(q0, \u1) and S = states(q0,u1,σk)

where u1 ∈ Σk+1, u1 ∈ Hσk
u1

and u2 ∈ Σ
∗

σk(u,a), otherwise.

Informally, σk+1 plays like σk except that after a prefix u1 of length k+ 1 of the input word is
completely processed (with some history string u1 ∈ Hσk

u1
), σk+1 continues to play like σ0 if the

history string were uS,p instead of u1, where S is the set of states that could have been reached after
completely processing u1 and p ∈ S is the state that was really reached.

Note that σk+1(u,a) 6= σk(u,a) only if |u|> k, since history strings in Hσk
u1

have length at least
|u1|. Therefore, (σk) converges to the strategy, which we again call σ , given by σ(u,a) = σ|u|(u,a).

The definition of σk+1 ensures that σk+1 satisfies property (i) for all u = u1 of length at most
k+1. Therefore, σ satisfies property (i) for all u ∈ Σ∗. Also property (ii) and that uS and uS,p are as
specified in the lemma, which was already true for σ0, is still satisfied also for σ because σ plays
like σ0 on input words of the form uSa (observe that each prefix of uS is also of the form uS′ for
some S′ ∈ P by construction).

Since states(q0,uS,σ0) = S for all S ∈ P, we have that P = {states(q0,uS,σ0) | S ∈ P}. In fact,
we even have that P = {states(q0,uSa,σ0) | S ∈ P,a ∈ Σ} due to the for-loop in lines 15–19 of
Algorithm 4.1 and since each set that is added to W is added to P eventually. Combined with
property (i) and the fact that σ plays like σ0 on input words of the form uSa, we obtain that
P = {states(q0,w,σ) | w ∈ Σ∗}, as stated in the lemma.

It only remains to show that σ is terminating and optimum. Observe that an input word of length
k, the strategy σ plays exactly like σk. Therefore, it is enough to show that all the strategies σk are
terminating and optimum.

That σk is terminating follows from the fact that σ0 is terminating.
The proof that σk is optimum uses induction on k. We have shown before that σ0 is optimum.

Suppose σk is optimum but σk+1 is not. Then there exists a string u1v ∈ L(σk) \L(σk+1) with
u1 ∈ Σk+1 and v ∈ Σ∗. Since σk+1 loses on u1v, there must be a play of σk+1 on u1v that reaches a
configuration (u1,v) with u1 ∈Hσk

u1
where v is such that σk loses on uSv, where S = states(q0,u1,σk).

Since σk is optimum, this means that no one-pass strategy wins on uSv. But consider the strategy
that plays like σk except that after completely processing uS (with some history string u ∈ Hσk

uS
), it

continues as if the history string were u1 instead of u, where u1 ∈ Hσk
u1

is such that δ ∗(q0, \u1) =

δ ∗(q0, \u). Such u1 must exist, since states(q0,uS,σk) = S = states(q0,u1,σk). Since u1v ∈ L(σk),
this strategy wins on uSv. Contradiction!

We need two more lemmas before we can prove the theorem that the implication 1 =⇒ 2 for
optimum strategies holds for games with self-delimiting replacement languages. The following is
essentially a corollary of Lemma 3.14.
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q0
p,a,S δ (p,a)

Σ\{a}

a

Σ

Figure 4.2.: Construction of Ap,a,S in the proof of Lemma 4.8 if σp,a,S has depth 0

4.7 Lemma. Let G = (Σ,R,T ) be a game with self-delimiting replacement languages. For each
terminating one-pass strategy σ for G and each state p ∈ Q, symbol a ∈ Σ there exists a strategy
σ ′ with depth bounded by |Σ f | · |Q| · (2|Q|−1) and states(p,a,σ ′)⊆ states(p,a,σ).

Proof. Consider the game obtained from G by changing the initial state of T to p and the set of
accepting states to states(p,a,σ). The strategy σ wins on a in this game, so by Lemma 3.14 there
exists a strategy σ ′ that has depth bounded by |Σ f | · |Q| · (2|Q|−1) and also wins on a in this game.
Therefore, states(p,a,σ ′)⊆ states(p,a,σ) and the lemma follows, since σ ′ is also a strategy for
G.

The core of the construction of a type 2 automaton of an optimum strategy lies within the proof
of the following lemma. The strategy automata that we will construct make use of accepting states
as particular distinguished states; however, these states bear no relation to the acceptance semantics
of accepting states in “normal” FSAs that recognize a regular language.

4.8 Lemma. Let G = (Σ,R,T ) be a game with self-delimiting replacement languages. Let Z
be the set of triples (p,a,S) ∈ Q×Σ×P(Q) with the property that a strategy σp,a,S with finite
depth and S = states(p,a,σp,a,S) exists. For each (p,a,S) ∈ Z there exists a type 2 automaton
Ap,a,S = (Qp,a,S,Σ,δp,a,S,q0

p,a,S,Fp,a,S) with the following properties:

(i) The elements of S are a subset of the states of Ap,a,S, namely Fp,a,S = S.

(ii) Every play Π of σAp,a,S on a is finite. If u ∈ Σ∗ is its final string, then Π terminates in
Ap,a,S-state δ ∗(p,u) ∈ S and no previous configuration of Π has an Ap,a,S-state that is in S.
In particular, states(p,a,σp,a,S)⊆ S.

(iii) We call the states of Ap,a,S that are not in {q0
p,a,S}∪S the inner states of Ap,a,S. There are

at most ∑
d
k=1|Σ f |k−1|Q f |k|Q|k inner states, where d is the depth of σp,a,S and |Q f | is the

maximal number of non-error states of a minimal DFA of a replacement language L(Rb) for
b ∈ Σ f .

Proof. We choose σp,a,S as stated in the lemma such that its depth is minimal. We prove the lemma
by induction on the depth of σp,a,S. Note that the depth of σp,a,S is determined by the depth of its
plays on a, since σp,a,S could simply play Read moves if the history string is not a proper prefix of
a history string in Ha or if the history string is empty but the current symbol is different from a.

If σp,a,S has depth 0, then all moves of σp,a,S are Read. We define Ap,a,S as shown in Figure 4.2.
It is immediate that Ap,a,S satisfies the properties (i)–(iii).
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If σp,a,S has positive depth then Ap,a,S is composed of automata for strategies of less depths, as
we will describe below. The construction of Ap,a,S is sketched exemplarily in Figure 4.3.

Since L(Ra) is self-delimiting, its minimal DFA has a single accepting state fa and a single
error state ea (i. e. a non-accepting state where all outgoing transitions are loops) and all outgoing
transitions of fa lead to ea. Let (Qa,Σ,δa,q0

a,{ fa}) be the automaton obtained from the minimal
DFA for L(Ra) by removing the error state ea and its incident edges. Thus, fa no longer has any
outgoing edges. By definition, |Q f |= maxb∈Σ f |Qb|.

The states of Ap,a,S are initial state q0
p,a,S, the pairs in Q× (Qa \{ fa}), the elements of S, and

possibly further states coming from automata built into it. For s ∈ S we identify s with the pair
(s, fa), so we think of these pairs as states of Ap,a,S as well. The point of this is only to avoid case
distinctions later because we can treat these states in the same way as pairs in Q× (Qa \{ fa}). To
satisfy property (i), we define Fp,a,S = S∼= S×{ fa}.

The initial state has a transition for the symbol â leading to the state (p,q0
a). Further, the initial

state has transitions to itself for every symbol in Σ\{a}. For each (p′,qa) ∈ Q× (Qa \{ fa}) and
b ∈ Σ, the transitions determining the subsequent behavior of σAp,a,S when theAp,a,S-state is (p′,qa)

and the current symbol is b are defined as follows.

First check whether there exist u,v ∈ Σ∗ and u ∈ Hσp,a,S[â]
u such that ubv ∈ L(Ra), p′ = δ ∗(p, \u)

and qa = δ ∗a (q
0
a,u). If not, then the state (p′,qa) has a transition for b to itself. This transition will

never be used in a play of σAp,a,S on a and only serves to satisfy the definition of type 2 automata.

If such u, v and u do exist, let S′ = states(p′,b,σp,a,S[âu]). Observe that (p′,b,S′) ∈ Z and the
depth of σp′,b,S′ is less than the depth of σp,a,S. We use a copy of the automaton Ap′,b,S′ , which
exists by the induction hypothesis; we remove all transitions leaving its initial state except for the
transition for b or b̂, and remove all transitions leaving one of its accepting states; then we merge
its initial state with (p′,qa) and merge each of its accepting states s ∈ S′ with (s,δa(qa,b)). Note
that if δa(qa,b) = fa, then (s,δa(qa,b)) = s due to the aforementioned identification; indeed, s ∈ S
in this case by definition of S′ and because v = ε if δa(qa,b) = fa, since L(Ra) is self-delimiting.

To complete the construction and satisfy the definition of type 2 automata, we add for each s ∈ S
and b ∈ Σ a transition from s reading b to itself.

It remains to show that Ap,a,S satisfies the properties (ii) and (iii).

We first show (iii). The inner states of Ap,a,S are the pairs in Q× (Qa \ { fa}) plus the inner
states of automata Ap′,b,S′ built into Ap,a,S (other states of nested automata have been merged with
states of Ap,a,S). If b /∈ Σ f then σp′,b,S′ has depth 0 and therefore Ap′,b,S′ has no inner states. If
b ∈ Σ f , then σp′,b,S′ has at most ∑

d−1
k=1 |Σ f |k−1|Q f |k|Q|k inner states by the induction hypothesis.

Thus, Ap,a,S has at most

|Q|(|Qa|−1)+ |Q|(|Qa|−1)|Σ f |
d−1

∑
k=1
|Σ f |k−1|Q f |k|Q|k <

d

∑
k=1
|Σ f |k−1|Q f |k|Q|k

inner states, which proves (iii).

To prove (ii), consider a play of σAp,a,S on a. The first two configurations of this play are (ε,a) and
(â,w) for some w ∈ L(Ra), and the Ap,a,S-state of (â,w) is (p,q0

a). For (p′,qa) ∈ Q× (Qa \{ fa})
or (p′,qa) ∈ S×{ fa}, let Bp′,qa be the automaton obtained from Ap,a,S by changing the initial
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a,c

DFA for L(Ra):
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a,c
a,b,c

a,b,c

Ap,a,{q0,p}:

q0
p,a,S

(q0,q0
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(p,q0
a)

(p′,q0
a)

(q0,q1
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(p,q1
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(p′,q1
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q0

pâ
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b̂

b

Ap,c,{p}

A
p,a,{p ′} A p′ ,

b,{
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Ap,b,{q0,p}

Figure 4.3.: Exemplary construction ofAp,a,S in the proof of Lemma 4.8 if σp,a,S has positive depth,
for given T and a given DFA for L(Ra)

48



state to (p′,qa). The property (ii) follows from the following claim for p′ = p, qa = q0
a, v = w and

u = u = ε .

4.9 Claim. Let (p′,qa)∈Q×(Qa \{ fa}) or (p′,qa)∈ S×{ fa}, and let v∈ Σ∗. If there exist u∈ Σ∗

and u ∈ Hσp,a,S[â]
u such that uv ∈ L(Ra), p′ = δ ∗(p, \u) and qa = δ ∗a (q

0
a,u), then every play Π of

σBp′,qa
on v is finite. Moreover, if v is the final history string of Π, then Π terminates in Bp′,qa-state

δ ∗(p′, \v) ∈ S.

Proof. We show the claim by induction on |v|. Since the previous induction proof has not been
completed yet, we refer to the induction on the depth of σp,a,S as the outer induction and the
induction on |v| as the inner induction.

If |v| = 0, then u ∈ L(Ra), hence qa = fa. Furthermore, âu ∈ Hσp,a,S
a and therefore p′ =

δ ∗(p, \âu) ∈ S. So by our identification, (p′,qa) = p′. The (unique) play of σBp′,qa
on v = ε

is finite with final history string v = ε and terminates in Bp′,qa-state δ ∗(p′,ε) = p′ ∈ S.
For the induction step we have that v = bv′ for some b ∈ Σ and v′ ∈ Σ∗. Let Π be a play of

σBp′,qa
on bv′. Since L(Ra) is self-delimiting, it holds that u /∈ L(Ra), hence qa 6= fa. The premise

of the claim is also true if u and u are the same as those chosen in the definition of the transitions
determining the subsequent behavior of σAp,a,S when the Ap,a,S-state is (p′,qa) and the current
symbol is b, so we can assume they are the ones chosen before.

Let S′ = states(p′,b,σp,a,S[âu]), like in the definition of Ap,a,S. By the induction hypothesis of
the outer induction, the property (ii) holds for Ap′,b,S′ . So every play of σAp′,b,S′ on b is finite, and if
b is its final history string, then it terminates in Ap′,b,S′-state δ ∗(p′, \b) ∈ S′. Thus, due to the way
in which Ap′,b,S′ is built into Ap,a,S, every play of σBp′,qa

on b is finite, and if b is its final history
string, then it terminates in Bp′,qa-state (δ ∗(p′, \b),δa(qa,b)) ∈ S′×Qa. Therefore, Π contains a
configuration (b,v′) with Bp′,qa-state (s′,q′a), where s′ = δ ∗(p′, \b) ∈ S′ and q′a = δa(qa,b).

Since S′ = states(p′,b,σp,a,S[âu]), there also exists b
′ ∈ Hσp,a,S[âu]

b with δ ∗(p′, \b
′
) = s′, hence

ub
′ ∈ Hσp,a,S[â]

ub . Moreover s′ = δ ∗(p, \ub
′
) and q′a = δ ∗a (q

0
a,ub). We can apply the induction

hypothesis of the inner induction, which yields that every play of σBs′,q′a
on v′ is finite and if v′ is its

final history string, then it terminates in Bs′,q′a-state δ ∗(s′, \v′) ∈ S. Hence, the play Π is finite, and
if bv′ is its final history string, then it terminates in Bp′,qa-state δ ∗(p′, \bv′) ∈ S. This completes the
induction step of the inner induction and thereby proves the claim.

As stated above, Claim 4.9 implies property (ii). This completes the proof of Lemma 4.8.

Finally, we can prove the theorem announced earlier.

4.10 Theorem. The implication 1=⇒2 for optimum strategies holds for games with self-delimiting
replacement languages. More precisely, if there exists an optimum one-pass strategy in a game
G = (Σ,R,T ) with self-delimiting replacement languages, then there exists a terminating, optimum
one-pass strategy specified by a type 2 automaton with less than (|Σ f | · |Q f | · |Q|)E states, where
E = |Σ f | · |Q| · 2|Q| and |Q f | is the maximal number of non-error states of a minimal DFA of a
replacement language L(Ra) for a ∈ Σ f and |Q| is the number of states of the minimal DFA for
L(T ).
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Proof. Let σ be an optimum one-pass strategy for G. We can assume that σ satisfies the properties
of Lemma 4.6, and we choose P, uS and uS,p as in that lemma. We construct a type 2 automaton A
that satisfies the stated size bound such that σA is terminating and equivalent to σ .

The basic idea of the proof is that when reaching a configuration with history string u ∈ Hσ
u for

some u ∈ Σ∗, all the information contained in u can be forgotten except for the T -state δ ∗(q0, \u)
and the set states(q0,u,σ) of states that would have been possible as T -states after completely
processing u (depending on Romeo’s moves). The automaton A is built by connecting several
copies of the automata Ap,a,S from Lemma 4.8.

The type 2 automaton A has a state (S, p) for each S ∈ P and p ∈ S and possibly further states
coming from automata that are built into it. The initial state of A is ({q0},q0). A state (S, p) shall
be reached whenever a prefix u of the input string with S = states(q0,u,σ) is completely processed
and the T -state of the current configuration is p. The construction of A is completed by doing the
following for each S ∈ P, p ∈ S and a ∈ Σ.

Let S′ = states(p,a,σ [uS,p]). By Lemma 4.7 and property (ii) of Lemma 4.6, there exists a one-
pass strategy σ ′ with depth bounded by |Σ f | · |Q| · (2|Q|−1) and S′ = states(p,a,σ ′). Therefore,
the automaton Ap,a,S′ from Lemma 4.8 exists. We take a copy of Ap,a,S′ , remove all transitions
leaving its initial state except for the transition for a or â, and remove all transitions leaving one
of its accepting states. Then, we merge its initial state with (S, p) and for each s ∈ S′ we merge
its state s with (states(q0,uSa,σ),s). This is indeed a state of A, since s ∈ S′ ⊆ states(q0,uSa,σ).
Note that A is a well-defined type 2 automaton.

The following claim will help us to show that σA is optimum.

4.11 Claim. Let w ∈ Σ∗ and let Π be a play of σA on w. Then Π is finite (i. e. σA is terminating)
and if w ∈ Σ

∗ is the final history string of Π, then Π terminates in A-state (S, p) where S =

states(q0,w,σA) = states(q0,w,σ) and p = δ ∗(q0, \w).

Proof. The proof is by induction on |w|. The base case w = ε is immediate. For the induction step,
let w= ua with u∈Σ∗ and a∈Σ. By the induction hypothesis, Π contains a configuration (u,a) with
A-state (S′, p′), where S′= states(q0,u,σA) = states(q0,u,σ) and p′= δ ∗(q0, \u). By construction
of A, a play of σA[u] on a is the same as a play of σAp′,a,S′′ on a, where S′′ = states(p′,a,σ [uS′,p′ ]).
Therefore, Π is finite by property (ii) of Lemma 4.8. Let a ∈ Ha be such that w = ua is the final
history string of Π. By property (ii) of Lemma 4.8 and the way in which Ap′,a,S′′ is built into A, the
play Π terminates in A-state (S, p) where S = states(q0,uS′a,σ) and p = δ ∗(p′, \a) = δ ∗(q0, \w).
It remains to show that S = states(q0,ua,σA) = states(q0,ua,σ). Indeed,

states(q0,ua,σA) =
⋃

p′∈states(q0,u,σA)

states(p′,a,σ [uS′,p′ ])

=
⋃

p′∈S′
states(p′,a,σ [uS′,p′ ])

= states(q0,uS′a,σ)

= S

and the same equations hold when σA is replaced by σ (using property (i) of Lemma 4.6 for the
first equation then).
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From the claim it follows that

L(σA) = {w ∈ Σ
∗ | states(q0,w,σA)⊆ F}= {w ∈ Σ

∗ | states(q0,w,σ)⊆ F}= L(σ),

i. e. σA is equivalent to σ and therefore also optimum.
It only remains to show that the number of states of A is bounded as stated in the theorem. Note

that |Q f | ≥ 2 because the accepting state fa ∈ Qa is different from the initial state q0
a ∈ Qa for each

a, since ε /∈ L(Ra) by definition. We can also assume without loss of generality that |Q| ≥ 2, since
otherwise L(T ) = Σ∗ or L(T ) = /0 and it would be trivial to find a type 2 automaton with just a
single state that specifies a terminating, optimum strategy. There are less than |Q| ·2|Q| states of the
form (S, p) with S ∈ P and p ∈ S. For each of these states, we have added inner states of at most
|Σ f | automata of the form Ap,a,S that were built into it (again, if a /∈ Σ f then Ap,a,S has no inner
states). Since each σp,a,S has depth at most |Σ f ||Q|(2|Q|−1), the number of states of A adds up to
less than

|Q| ·2|Q| ·

1+ |Σ f |
|Σ f ||Q|(2|Q|−1)

∑
k=1

|Σ f |k−1|Q f |k|Q|k


=|Q| ·2|Q| ·
|Σ f ||Q|(2|Q|−1)

∑
k=0

(|Σ f ||Q f ||Q|)k

=|Q| ·2|Q| ·
(|Σ f ||Q f ||Q|)|Σ f ||Q|(2|Q|−1)+1−1

|Σ f ||Q f ||Q|−1

<|Q| · |Q f ||Q| ·
(|Σ f ||Q f ||Q|)|Σ f ||Q|(2|Q|−1)+1

|Q f |

≤(|Σ f ||Q f ||Q|)|Σ f ||Q|2|Q| .

We are done.

The remaining results in this section will be negative. We show that the implications 1 =⇒ 3,
2 =⇒ 4 and 4 =⇒ 5 for optimum strategies do not in general hold for games that satisfy none of
the three conditions of Theorem 4.3.

4.12 Theorem. There exists a game G for which the implications 1 =⇒ 3 and 2 =⇒ 4 for optimum
strategies do not hold.

Proof. Consider the game G = (Σ,R,T ) with Σ = {a}, the only replacement rule being a→ aa
and L(T ) = {ak | k ≥ 2}. We show that there exists an optimum type 2 strategy but no optimum
type 3 strategy for G. Since every type 2 strategy is also of type 1 and every type 4 strategy is also
of type 3, this implies the theorem.

An optimum one-pass strategy for G could play a single Call and followed by only Read moves.
This guarantees that the strategy wins on every non-empty input word. A type 2 automaton
specifying such a strategy is displayed in Figure 4.4

However, no optimum type 3 strategy for G exists. If σ is a type 3 strategy and σ(ε,a) = Call,
then σ(âk,a) = Call for each k ∈ N by definition of type 3 strategies. Each play of this strategy
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Figure 4.4.: Automaton of an optimum type 2 strategy for the game G in the proof of Theorem 4.12
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(b) Type 4 automaton A

Figure 4.5.: Automata T and A used in the proof of Theorem 4.13

on a non-empty input word would be infinite, so the strategy would not be optimum. On the other
hand, if σ(ε,a) = Read, then σ loses on a and is therefore also not optimum.

The proof of Theorem 4.12 may seem to suggest that left-recursion is a necessary property of a
counter-example, i. e. the possibility of deriving from a function symbol a word that begins with the
same function symbol. While it is true that recursion is necessary (due to Theorem 4.3), neither
left- nor right-recursion is necessary. An example (hence an alternative proof of Theorem 4.12) is
given in Theorem A.1 in the appendix. We chose a left-recursive game in the proof above because
it seems to be the simplest counter-example.

4.13 Theorem. There exists a game G for which the implication 4 =⇒ 5 for optimum strategies
does not hold.

Proof. Consider the game G = (Σ,R,T ) with Σ = {a,b,c,d}, rules R given by

a→ b

c→ ac

d→ bad

and the target language automaton T = (Q,Σ,δ ,q0,F) depicted in Figure 4.5a. We claim that the
strategy σA of the type 4 automaton A shown in Figure 4.5b is optimum.

Observe the correspondence of the states of A to states of T : For each e ∈ Σ and i, j = 1,2, if A
has a transition from qi or q′i to q j or q′j reading e, then also T has a transition from qi to q j reading
e. Moreover, the initial state of T and A is q0 both times. Therefore, for any configuration in a
play of σA it holds that its A-state is q0 or q′0 if and only if its T -state is q0, and its A-state is q1

if and only if its T -state is q1. So a play of σA never leaves the accepting states q0 and q1 of T ,
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and as such it is winning if and only if it is finite. We show that every play of σA is finite. Thus,
L(σA) = Σ∗ and σA is optimum.

Let Π = (K0,K1, . . .) be a play of σA and let Kn = (u,v) be a configuration in Π. We show by
induction on the length of v that Π is finite.

If v = ε , then, by definition, Kn is the last configuration of Π, so Π is finite.

If v = ev′ for some e ∈ Σ and v′ ∈ Σ∗, then it is easy to check (separately for each combination
of e ∈ {a,b,c,d} and A-states q ∈ {q0,q

′
0,q1} of Kn) that Π contains a configuration of the form

Km = (uv,v′), where m ∈ {n + 1, . . . ,n + 6} and v ∈ Σ
∗. Hence, Π is finite by the induction

hypothesis.

It remains to show that there exists no optimum type 5 strategy for G. Since the existence of the
previous strategy implies that an optimum strategy for G must win on all words of Σ∗, we need to
prove that for each type 5 automaton B it holds that L(σB)( Σ∗.

Let B = (Q,Σ,δB,q0,F) be any type 5 automaton, i. e. an automaton obtained from T by
removing transitions. We can assume that δ (q0,c) = δ (q1,a) = δ (q1,d) =⊥ since otherwise σB

would lose on c, ba or bd.

If δB(q0,a)= q0, then the unique1 play (K0,K1, . . .) of σB on ac is infinite, since K2k =((aĉ)k,ac)
for each k ∈ N0 by induction. On the other hand, if δB(q0,a) =⊥, then the play (K0,K1, . . .) of σB

on ad is infinite, since K4k = ((âbd̂b)k,ad) for each k ∈ N0, again by induction. Thus, ac /∈ L(σB)

or ad /∈ L(σB) and therefore σB is not optimum.

Note that the counterexamples in the proofs of Theorems 4.12 and 4.13 are ones where Juliet
basically plays alone because Romeo can never choose from a set of more than one replacement
word. So Juliet has complete information except that she does not know the input word. But even if
it were announced to her that the input word is a in the game of Theorem 4.12 or acad in the game
of Theorem 4.13 then there would not be a strategy of the respective restricted type that wins on
these words (it is not difficult to see this for acad). An overview of the implications for optimum
strategies is given in Figure 7.1 in the summary.

4.2. Implications for optimal strategies

Now, we will consider implications for optimal strategies. Recall that if an optimum strategy exists,
then a strategy is optimal if and only if it is optimum. Therefore, any implication of which we
can show that it holds for optimal strategies also holds for optimum strategies. Conversely, the
implications 1 =⇒ 3, 2 =⇒ 4 and 4 =⇒ 5 that do not in general hold for optimum strategies also
do not in general hold for optimal strategies. So the questions are: Under what (possibly stronger)
conditions do the implications that hold for optimum strategies also hold for optimal strategies?
Can we find conditions under which implications that hold for optimum strategies do not in general
hold for optimal strategies?

1For the game G at hand, a play is uniquely determined by the one-pass strategy and the input word, since |L(Re)|= 1
for each e ∈ Σ f .
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We begin with a positive result. It is a much weaker version of Theorem 4.3 for optimal strategies,
and says that for each optimal strategy there also exists an automaton based optimal strategy if the
target language is finite.

4.14 Theorem. The implications 1 =⇒ 2 and 3 =⇒ 4 for optimal strategies hold for games with a
finite target language.

Proof. Let σ be an optimal one-pass strategy for a game G = (Σ,R,T ) with finite target language
L(T ). We assume without loss of generality that L(σ) 6= /0. For w ∈ L(σ) let Bw be such that every
play of σ on w has at most Bw configurations (see Lemma 3.4). Let B be the maximum of these
numbers Bw, which are finitely many since L(T ) is finite. We construct a type 2 automaton or (if σ

is of type 3) a type 4 automaton A such that the plays of σ on a word w ∈ L(σ) are the same as the
plays of σA on w.

Let H ⊆ Σ
≤B be the set of history strings of configurations occurring in plays of σ on words from

L(σ). A type 2 automaton A that specifies a strategy σA that is equivalent to σ can be constructed
with H as its set of states as follows. The initial state is ε . If u,ua ∈ H with a ∈ Σ, then it has a
transition from u reading a to ua. Any remaining transitions required to satisfy the definition of
type 2 automata can be chosen arbitrarily (they will not be used in a play of σA on a word from
L(σ)). It is straightforward that for each w ∈ L(σ) the plays of σ on word a w are the same as the
plays of σA on w. Hence, L(σ)⊆ L(σA) and, since σ is optimal, L(σ) = L(σA).

If σ is even a type 3 strategy, then we can construct a type 4 automaton of an equivalent strategy
in much the same way except that state u and v with \u = \v are merged to a single state and
transitions for symbols in Σ̂ f are omitted. That is, the set of states is {\u | u ∈ H} and if u,ua ∈ H
then there is a transition from \u reading a to \ua, and any missing transitions for symbols in Σ\Σ f

are chosen arbitrarily. Using the definition of type 3 strategies it is easy to check that this specifies
an equivalent strategy.

Since we know already that an optimal type 1 strategy exists for each game with a finite target
language, it follows that there even exists an optimal type 2 strategy for these games.

4.15 Corollary. For each game with a finite target language there exists an optimal type 2 strategy.

Proof. Immediate from Theorem 3.6 and Theorem 4.14.

Recall from Theorem 3.15 that an optimal one-pass strategy exists for each game with self-
delimiting replacement languages. Therefore, if the analogon of Theorem 4.10 for optimal instead
of optimum strategies is true, then every game with self-delimiting replacement languages has an
optimal strategy of type 2. Indeed, it would be somewhat surprising if the implication 1 =⇒ 2 for
optimal strategies does not hold for games with self-delimiting replacement languages – because
not only the implication 1=⇒ 2 for optimum strategies but, as we will see later, also the implication
1=⇒2 for winning strategies holds for games with self-delimiting replacement languages. However,
it is an open problem whether the same is true for optimal strategies. We briefly discuss difficulties
in trying to answer this question.
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Figure 4.6.: Target language automaton T for Example 4.16

The proof in the case of optimum strategies was based on Lemma 4.6. In that lemma, we showed
that every optimum strategy can be changed to an equivalent strategy σ where the moves after
completely processing some prefix u of the input word (leading to a history string u ∈ Hσ

u ) depend
only on δ ∗(q0, \u) and states(q0,u,σ). The according statement is not true for optimal strategies,
as the following examples shows.

4.16 Example. Consider the game G = (Σ,R,T ) with Σ = {a,b,c}, rules a→ c and b→ c and the
DFA T as per Figure 4.6.

The strategy σ with σ(ε,a) = σ(ε,b) = Call and σ(u,a) = σ(u,b) = Read for u ∈ Σ
+ is

optimal with L(σ) =
{

dcke | d ∈ {a,b,c},k ∈ N0,e ∈ {a,b}
}

. Indeed, a it is not hard to check
that a strategy that wins on some word w /∈ L(σ) must lose on some other word that is in L(σ).
However, suppose there exists an equivalent strategy σ ′ such that for all u1,u2 ∈ Σ∗ and ui ∈ Hσ ′

ui

with δ ∗(q0, \u1)= δ ∗(q0, \u2) and states(q0,u1,σ
′)= states(q0,u2,σ

′) it holds that σ ′[u1] =σ ′[u2].
Since σ ′ wins on ab, it must hold that states(q0,a,σ ′) = {q0} and σ ′(âc,b) = Read. With u1 = a,
u1 = âc and u2 = u2 = ε it follows that σ ′(ε,b) = Read. But then σ ′ is not equivalent to σ , since
σ ′ loses on ba.

The example shows that not every optimal strategy in a game with self-delimiting replacement
languages has an equivalent strategy that satisfies the properties of Lemma 4.6 (barring the require-
ment of being optimum). However, it could still be the case that some optimal strategy satisfies
these properties. Further research is necessary to find out whether the implication 1 =⇒ 2 for
optimal strategies holds in games with self-delimiting replacement languages. The importance of
this question is that a positive answer would imply that every game with self-delimiting replacement
languages has an optimal strategy that is based on an automaton.

A similarly important question is whether the analogon of Theorem 4.3 is also true for optimal
instead of optimum strategies. Due to Theorem 3.6, a positive answer would mean that every
non-recursive game and every game with a finite target language has an optimal strategy that is
even of type 5. We can answer this question, but unfortunately the answer is negative. We will
show that the implications 1 =⇒ 3, 2 =⇒ 4 and 4 =⇒ 5 for optimal strategies do not in general
semi-hold even for non-recursive games with a finite target language and finitely many rules.

4.17 Theorem. There exists a non-recursive game G = (Σ,R,T ) with R and L(T ) finite such that
the implications 1 =⇒ 3 and 2 =⇒ 4 for optimal strategies do not semi-hold for G.

Proof. We will construct a non-recursive game with finite set of rules and finite target language
for which an optimal strategy of type 2 exists but no optimal strategy of type 3 exists. Since two
one-pass strategies for a non-recursive game are equivalent if and only if they are semi-equivalent,
this implies the theorem.
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Consider the game G = (Σ,R,T ) over the alphabet Σ = {a,b,c,d,e} with the set of rules R given
by

a→ b+ c

b→ cd

c→ e

and target language L(T ) = {e,cd}.
The existence of an optimal type 2 strategies for G is guaranteed by Corollary 4.15. However,

there exists no type 3 strategy for G that is optimal. Let σ be some type 3 strategy. We show
first that σ does not win on a. Suppose σ does win on a. Then σ(ε,a) = σ(ε,b) = Call. If
σ(ε,c) = Read, then the play

(ε,a),(â,c),(âc,ε)

of σ on a is losing – contradiction. If σ(ε,c) = Call, then the play

(ε,a),(â,b),(âb̂,cd),(âb̂ĉ,ed),(âb̂ĉe,d),(âb̂ĉed,ε)

of σ on a is losing – contradiction.
It is also easy to see that no strategy can win on a word that starts with a and has length at least 2.

A one-pass strategy σ ′ that wins on all words from L(σ) and also on a can be defined by

σ
′(u, f ) =


Call, if (u, f ) ∈ {(ε,a),(â,b),(â,c)},

Read, if (u, f ) = (âb̂,c),

σ(u, f ), otherwise

for u∈ Σ
∗, f ∈ Σ f = {a,b,c}. Since L(σ)( L(σ) ∪̇{a}= L(σ ′), it follows that σ is not optimal.

As mentioned above, also the implication 4 =⇒ 5 for optimal strategies does not in general hold
even for non-recursive games with a finite target language and finitely many rules.

4.18 Theorem. There exists a non-recursive game G = (Σ,R,T ) with R and L(T ) finite such that
the implication 4 =⇒ 5 for optimal strategies does not semi-hold for G.

Proof. Consider the game G = (Σ,R,T ) over the alphabet Σ = {a,b,c} with rules given by

a→ bb+ cbc

b→ cc

and target language automaton T as per Figure 4.7a. The finite target language is L(T ) =
{bbc,bcc,cbc,ccc}. Like in the proof of Theorem 4.17 it suffices to show that the implication
4 =⇒ 5 does not hold for G, since G is non-recursive.

We claim that the type 4 strategy σA specified by the type 4 automaton A shown in Figure A.2b
is optimal. It can be checked easily that L(σA) = {a,bb,bcc,cbc,ccc}. The only words that are not
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Figure 4.7.: Automata T and A for the proof of Theorem 4.18

in L(σA) even though a strategy exists that wins on them are bc, bbc and cb. However, a one-pass
strategy that wins on bc cannot win on bcc; a strategy that wins on bbc cannot win on bb; a strategy
that wins on cb cannot win on cbc. Therefore, every one-pass strategy that wins on a word on
which σA does not win also loses on a word on which σA wins. Hence, there exists no strategy σ

with L(σA)( L(σ), which means that σ is optimal.
It remains to show that there exists no optimal type 5 strategy for G. Obviously, T is the minimal

DFA for L(T ), so a type 5 automaton is obtained from T by removing transitions. Let B be a type
5 automaton specifying a type 5 strategy σB. Observe that σB cannot win on a: In order to win
on a, a strategy must play Call in the configurations (ε,a) and (âb,b) and it must play Read in the
configurations (â,bb) and (âc,bc). But a type 5 strategy must play the same in the configurations
(âb,b) and (âc,bc), because both have T -state q1 and current symbol b. However, we can find a
one-pass strategy σ with L(σB)( L(σB) ∪̇ {a}= L(σ). Indeed, such a strategy can be defined by

σ(u,d) =


Call, if (u,d) = (ε,a) or (u,d) = (âb,b),

Read, if (u,d) = (â,b) or (u,d) = (âc,b),

σB(u,d), otherwise

for u ∈ Σ
∗ and d ∈ Σ f = {a,b}. Hence, σB is not optimal.

For completeness, it shall be mentioned that there also exist non-recursive counter-examples for
the implication 4 =⇒ 5 where Juliet plays “alone”, i. e. L(Ra) is a singleton for each a ∈ Σ f . This
is shown in Theorem A.2 in the appendix.

We have seen in this section that, compared to the case of optimum strategies, a lot stronger
conditions are required to guarantee that implications for optimal strategies hold. Whereas all
implications hold for optimum strategies in non-recursive games or if the target language is finite,
we have shown that several implications for optimal strategies are not in general satisfied even if
even if the game is non-recursive and has a finite target language. Open questions in this area are
whether the implications 1 =⇒ 2 and 3 =⇒ 4 hold more generally than if the target language is
finite. As it stands it is even conceivable that these implications hold for all context-free games, but
a proof or a counter-example has yet to be found.
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A summary of our results for optimal strategies can be found in Figure 7.2 in the last chapter. In
the last section of this chapter we will take a look at implications for winning strategies.

4.3. Implications for winning strategies

Given our work on implications for optimal and optimum strategies, it is relatively easy to obtain
results for implications for winning strategies. A convenient result is that in the case of finitely
many rules or a finite target language, one can narrow the search to automaton strategies when
trying to determine whether a winning strategy on a given word exists.

4.19 Theorem. The implications 1 =⇒ 2 and 3 =⇒ 4 for winning strategies hold for games with
finitely many rules and for games with a finite target language.

Proof. The statement follows from Lemma 3.4 analogously to the of Theorem 4.14, except that
only a single word needs to be considered instead of all words in L(σ). Therefore, it is not required
that L(σ) is finite. That is why the theorem holds besides games with a finite target language also
for games with finitely many rules.

The next theorem is the counterpart of Theorem 4.10 for winning strategies.

4.20 Theorem. The implication 1=⇒ 2 for winning strategies holds for games with self-delimiting
replacement languages. More precisely, if G = (Σ,R,T ) is a game with self-delimiting replacement
languages and w ∈ L(σ) for some one-pass strategy σ , then there exists a type 2 automaton A
such that w ∈ L(σA) and A has at most |w| ·

(
|Σ f | · |Q f | · |Q|

)E states, where E = |Σ f | · |Q| ·2|Q|

and |Q f | is the maximal number of non-error states of a minimal DFA of a replacement language
L(Ra) for a ∈ Σ f and |Q| is the number of states of the minimal DFA for L(T ).

Proof. The proof is similar to that of the according implication for optimum strategies. Let
G = (Σ,R,T ) be a game with self-delimiting replacement languages. Let σ be a one-pass strategy
and let w = a1 . . .an ∈ L(σ) with ai ∈ Σ. We construct a type 2 automaton A with w ∈ L(σA).

By Lemma 3.14 we can assume that σ has depth at most |Σ f | · |Q| · (2|Q|−1). For i = 0, . . . ,n let
Si = states(q0,a1 . . .ai,σ). Note that S0 = {q0} and Sn ⊆ F . The automaton A has a state (p, i) for
each i = 0, . . . ,n and p ∈ Si and further states coming from automata nested into it.

A state (p,n) has a transition to itself for each a ∈ Σ. The outgoing transitions of a state
(p, i) with i < n are determined as follows. Let u ∈ Hσ

a1...ai
be such that δ ∗(q0, \u) = p. Let

S = states(p,ai+1,σ [u]). Note that the automaton Ap,ai+1,S from Lemma 4.8 exists. We take a copy
of it and remove all transitions leaving one of its accepting states s ∈ S. Then, we merge its initial
state with the state (p, i) of A, and for each s ∈ S we merge its state s with the state (s, i+1) of A.
Indeed, (s, i+1) is a state of A because S = states(q,ai+1,σ [u])⊆ states(q0,a1 . . .ai+1,σ).

Consider a play of σA on w. By induction on i one can see that every prefix a1 . . .ai of w will be
completely processed at some point, and if the T -state of the corresponding configuration is p, then
p ∈ Si and the A-state of the corresponding configuration is (p, i). For i = n this means that each
play of σA on w is finite and the T -state of the final configuration is in Sn. Since Sn ⊆ F , it follows
that w ∈ L(σA).
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Finally, let us estimate the number of states of A. We can assume that F ( Q because otherwise
the theorem is trivial. Since |S0|= 1 and |Sn| ≤ |F | ≤ |Q|−1, there are at most

1+(n−1) · |Q|+ |Q|−1 = n · |Q|

states of the form (p, i). For each of them, we added at most

|Σ f ||Q|(2|Q|−1)

∑
k=1

|Σ f |k−1|Q f |k|Q|k

more states, coming from inner states of the automata built into A. Using that |Q f | ≥ 2 (since
replacement languages do not contain ε), this makes in total at most

n · |Q| ·

(
1+

|Σ f ||Q|(2|Q|−1)

∑
k=1

|Σ f |k−1|Q f |k|Q|k
)

≤n · |Q| ·

(
1+ |Q f ||Q|

(
|Σ f ||Q f ||Q|

)|Σ f ||Q|(2|Q|−1)−1
|Σ f ||Q f ||Q|−1

)

≤n · |Q| ·

(
1+ |Q f |

((
|Σ f ||Q f ||Q|

)|Σ f ||Q|(2|Q|−1)−1
))

≤n ·
(
|Σ f ||Q f ||Q|

)|Σ f ||Q|2|Q|

states in A.

The remaining results in this section are negative. They are analogous to the negative results that
we showed for optimal strategies.

4.21 Theorem. There exists a non-recursive game G = (Σ,R,T ) with R and L(T ) finite such that
the implications 1 =⇒ 3 and 2 =⇒ 4 for winning strategies do not hold for G.

Proof. An example is the game from the proof of Theorem 4.17 with input word a.

4.22 Theorem. There exists a non-recursive game G = (Σ,R,T ) with R and L(T ) finite such that
the implication 4 =⇒ 5 for winning strategies does not hold for G.

Proof. An example is the game from the proof of Theorem 4.18 with input word a.

An overview of the results of this section is given in Figure 7.3.
This concludes our chapter about implications for one-pass strategies. Besides several positive

results for restricted cases, we showed that the implications 1 =⇒ 3, 2 =⇒ 4 and 4 =⇒ 5 do not
hold in general (neither for winning strategies, nor for optimum or optimal strategies). The general
case of the implications 1 =⇒ 2 and 3 =⇒ 4 is open.

In the next chapter, we will describe the language of words on which an automaton strategy
wins. The theorem proved in that chapter will also be helpful later to obtain upper bounds on the
complexity of decision problems.
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5. Winning sets of automaton strategies

We show that the language L(σA) of words on which the strategy of a automaton A wins is regular.
We will do so by constructing a universal finite automaton (UFA) that recognizes L(σA). A UFA is
the same as an NFA except that it accepts a word w if w is accepted in all possible runs (instead
of just some possible run). It is possible to construct a DFA that recognizes the same language
as a given UFA by using a powerset construction (analogously to how an equivalent DFA can be
found for a given NFA). Thus, the language recognized by a UFA is regular. If the target language
automaton T is deterministic, then the UFA can be constructed in time polynomial in the size of G
andA. This result was stated already by Abiteboul et al. [3, Proposition 3.1] for a type 4 automaton
A. However, the construction from their proof sketch does not take into account the possibility that
the play of σA may not terminate on some input words. We give a construction that also treats this
case and generalize the result to type 2 automata.

Intuitively, the universal quantification in the semantics of the UFA corresponds to the fact that
σA must win against all Romeo strategies in order to win on an input word.

5.1 Theorem. For a game G = (Σ,R,T ) and a type 2 or 4 automaton A, the set L(σA) is regular.
If T is a DFA, then a UFA U recognizing L(σA) can be constructed time polynomial in the size of
G and A.

Proof. It is enough to prove the theorem for type 2 automata since each type 4 automaton can be
transformed into a type 2 automaton. By Proposition 2.2 we can assume that A does the test for
the target language. This is the only step where we require T to be a DFA to ensure polynomial
running time. We do not need to consider T any more from now on. Let A= (Q,Σ,δ ,q0,F).

The UFA recognizing L(σA) is U = (Q ∪̇ {q∞},Σ,δU ,q0,F} for a transition relation δU that we
will define below. So U uses the same states as A plus an additional state q∞, and U has the same
initial state and the same accepting states as A. The state q∞ will be needed to treat the case that
σA might play infinitely long.

For a state q of A, let Aq denote the strategy automaton obtained from A by changing its initial
state to q.

Let E be the set of all subexpressions of the regular expressions Ra for a ∈ Σ f . We will define
a relation Move⊆ Q× (E ∪Σ)×Q, where a triple (q,a,q′) ∈Move with a ∈ Σ shall denote that a
play of σAq on a may terminate in Aq-state q (depending on Romeo’s strategy). These triples will
constitute the core of the transition relation of U . Note that the union E ∪Σ is not disjoint since
replacement words are non-empty by definition, so some alphabet symbols must occur as atomic
subexpressions.

For (q,r,q′)∈Q×(E∪Σ)×Q, we define inductively that (q,r,q′)∈Move if any of the following
conditions holds for some a ∈ Σ, r1,r2 ∈ E and q′′ ∈ Q:
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(i) r = a and q′ = δ (q,a)

(ii) r = a, δ (q,a) =⊥ and (δ (q, â),Ra,q′) ∈Move

(iii) r = ε and q = q′

(iv) r = r1r2 and (q,r1,q′′),(q′′,r2,q′) ∈Move

(v) r = r1 + r2 and (q,r1,q′) ∈Move

(vi) r = r1 + r2 and (q,r2,q′) ∈Move

(vii) r = r∗1 and q′ = q

(viii) r = r∗1 and (q,r1,q′′),(q′′,r∗1,q
′) ∈Move

The semantics of the Move relation is described by the following claim.

5.2 Claim. For q,q′ ∈ Q and r ∈ E ∪Σ, the following are equivalent:

• (q,r,q′) ∈Move

• There exist w ∈ L(r) and a Romeo strategy τ such that Π(σAq ,τ,w) terminates in Aq-state
q′.

The proof of this claim is postponed until the end of this proof.
If it were guaranteed that every play of σA is finite, then we could finish the construction of U by

letting δU = {(q,a,q′) ∈Move | a ∈ Σ}. However, this is problematic if a word w exists such that
every finite play of σA on w is winning, but there also exist infinite plays of σA on w. In this case,
σA does not win on w, but w would be universally accepted by U if we defined δU as suggested.
Hence, we need to pay special attention to the case that Romeo can force infinite play against σA.
We will do so by adding further transitions to U that ensure that if an infinite play of σA on w exists,
then there exists a run of U on w that terminates in the non-accepting state q∞.

The idea to detect the possibility of an infinite play is the following: For a play to be infinite there
must be a function symbol a ∈ Σ f and a state q ∈ Q such that a is called in q and in the “sub-play”
on the replacement word of a there occurs another configuration with A-state q and current symbol
a. To detect the possibility of such a play, we introduce a relation Next ⊆ Q× (E ∪Σ)×Q×Σ. A
tuple (q,r,q′,a) shall be in Next if and only if there exists a play of σAq on some word from L(r) that
contains a configuration withAq-state q′ and current symbol a. For (q,r,q′,a)∈Q×(E∪Σ)×Q×Σ,
we define inductively that (q,r,q′,a) ∈ Next if any of the following conditions holds for some b ∈ Σ,
r1,r2 ∈ E and q′′ ∈ Q:

(i) r = a and q = q′

(ii) r = b, δ (q,b) =⊥ and (δ (q, b̂),Rb,q′,a) ∈ Next

(iii) r = r1r2 and (q,r1,q′,b) ∈ Next
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(iv) r = r1r2, (q,r1,q′′) ∈Move and (q′′,r2,q′,a) ∈ Next

(v) r = r1 + r2 and (q,r1,q′,a) ∈ Next

(vi) r = r1 + r2 and (q,r2,q′,a) ∈ Next

(vii) r = r∗1, (q,r∗1,q
′′) ∈Move and (q′′,r1,q′,a) ∈ Next

5.3 Claim. For q,q′ ∈ Q, r ∈ E ∪Σ and a ∈ Σ, the following are equivalent:

• (q,r,q′,a) ∈ Next

• There exist w ∈ L(r) and a Romeo strategy τ such that Π(σAq ,τ,w) contains a configuration
with Aq-state q′ and current symbol a.

Also the proof of this claim will be provided later.
As a last ingredient before we can define δU , we define the relation Inf ∈ Q× (Σ∪E) that shall

contain a pair (q,r) if an infinite play of σAq on some word from L(r) exists. For q ∈ Q and
r ∈ E ∪Σ, we define inductively that (q,r) ∈ Inf if any of the following conditions holds for some
a ∈ Σ, r1,r2 ∈ E and q ∈ Q:

(i) r = a, δ (q,a) =⊥ and (δ (q, â),Ra,q,a) ∈ Next

(ii) r = a, δ (q,a) =⊥ and (δ (q, â),Ra) ∈ Inf

(iii) r = r1r2 and (q,r1) ∈ Inf

(iv) r = r1r2, (q,r1,q′) ∈Move and (q′,r2) ∈ Inf

(v) r = r1 + r2 and (q,r1) ∈ Inf

(vi) r = r1 + r2 and (q,r2) ∈ Inf

(vii) r = r∗1, (q,r∗1,q
′) ∈Move and (q′,r1) ∈ Inf

5.4 Claim. For q ∈ Q and r ∈ E ∪Σ, the following are equivalent:

• (q,r) ∈ Inf

• There exist w ∈ L(r) and a Romeo strategy τ such that Π(σAq ,τ,w) is infinite.

Again, the proof of the claim is postponed until later.
The transition relation of U is defined as

δU ={(q,a,q′) | (q,a,q′) ∈Move,a ∈ Σ}∪

{(q,a,q∞) | (q,a) ∈ Inf ,a ∈ Σ}∪

{(q∞,a,q∞) | a ∈ Σ}.

Observe that each state of U has at least one transition for every symbol.
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We argue briefly that U can be constructed in polynomial time. The bottleneck is the computation
of the relations Move, Next and Inf . The inductive definition of these relations can be implemented
naı̈vely with several nested loops. The outmost loop terminates when no new tuple was added
during its last iteration. Since Q, Σ and E are all of polynomial size, the entire computation can be
execute in polynomial time.

Apart from Claims 5.2, 5.3 and 5.4, it only remains to show that L(σA) = L(U). We prove both
inclusions separately.

“⊆”: Suppose w /∈ L(U) for some w = a1 . . .an with ai ∈ Σ. Then there exists a sequence
q1, . . . ,qn ∈ Q∪ {q∞} such that (qi−1,ai,qi) ∈ δU for each i = 1, . . . ,n and qn /∈ F . We
first consider the case that qi 6= q∞ for each i = 1, . . . ,n. Then (qi−1,ai,qi) ∈Move for each
i = 1, . . . ,n. By Claim 5.2 this implies that there exist Romeo strategies τ1, . . . ,τn such
that Π(σAqi−1

,τi,ai) terminates in Aqi−1-state qi for each i = 1, . . . ,n. Then the play of σA

against the concatenation strategy τ1〈a1〉τ2〈a2〉 . . .〈an−1〉τn on w terminates inA-state qn /∈F .
Therefore, w /∈ L(σA).

Now we consider the case that qi = q∞ for some i ∈ {1, . . . ,n}. Let i be minimal with
this property, then (q j−1,a j,q j) ∈ Move for each j = 1, . . . , i− 1 and (qi−1,ai) ∈ Inf . By
Claims 5.2 and 5.4 there exist Romeo strategies τ1, . . . ,τi such that Π(σAq j−1

,τ j,a j) termi-
nates in Aqi−1-state q j for each j = 1, . . . , i−1 and Π(σAqi−1

,τi,ai) is infinite. Thus, the play
of σA against τ1〈a1〉τ2〈a2〉 . . .〈ai−1〉τi on w is infinite (because it is already infinite on the
prefix a1 . . .ai of w). Hence, w /∈ L(σA).

“⊇”: Suppose w /∈ L(σA) for some w = a1 . . .an with ai ∈ Σ. Then there exists a Romeo strategy τ

such that Π(σA,τ,w) is either losing or infinite. If it is losing, let qi be theA-state of the con-
figuration (ui,ai+1 . . .an) at the time when a1 . . .ai is completely processed, for i = 1, . . . ,n,
and let u0 = ε (the history string of the initial configuration). Then Π(σAqi

,τ[ui],ai+1) termi-
nates in Aqi-state qi+1 for each i = 0, . . . ,n−1 (recall that τ[ui] is the substrategy of τ after
ui). Thus, by Claim 5.2, (qi,ai+1,qi+1) ∈Move for each i = 0, . . . ,n−1, so there exists a run
of U on w that terminates in qn. Since Π(σA,τ,w) is losing, qn /∈ F , so w /∈ L(U).

For the case that Π(σA,τ,w) is infinite, let a1 . . .a j be the longest prefix of w such that the
play Π(σA,τ,a1 . . .a j) is finite. Define q1, . . . ,q j like in the case where Π(σA,τ,w) is losing.
Like above, (qi,ai+1,qi+1) ∈Move for each i = 0, . . . , j−1. Let u be the history string of the
configuration of the time when a1 . . .a j is completely processed. Then Π(σAq j

,τ[u],a j+1) is
infinite, hence (q j,a j+1) ∈ Inf by Claim 5.4. Thus, by definition of δU , there exists a run of
U on w that terminates in the non-accepting state q∞. Therefore, w /∈ L(U).

We are still in debt to prove the Claims 5.2, 5.3 and 5.4. Each of these proofs is done by separately
showing the two implications of the claimed equivalence, where the implication from the first to
the second statement is shown by structural induction and the converse implication is shown by
induction on a less obvious variable.

Proof of Claim 5.2. We show both implications separately by induction.
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“=⇒”: The proof of the implication from the first to the second statement is by structural induction
on elements of Move.

If r = a ∈ Σ and q′ = δ (q,a), then the second statement holds for w = a and an arbitrary
Romeo strategy τ , since σAq plays Read on a.

If r = a ∈ Σ, δ (q,a) =⊥ and (δ (q, â),Ra,q′) ∈Move, then by the induction hypothesis there
exist w′ ∈ L(Ra) and a Romeo strategy τ ′ such that Π(σAδ (q,â) ,τ

′,w′) terminates in Aδ (q,â)-
state q′. The second statement holds for w = a and any Romeo strategy τ with τ(ε,a) = w′

and τ(âu,b) = τ ′(u,b) for u ∈ Σ
∗ and b ∈ Σ f . That is, if the input word is a and Juliet’s first

move is Call, then τ replaces a by w′ and continues to play like τ ′ plays on the input word w′.

If r = ε and q = q′, then the second statement holds for w = ε and any τ .

If r = r1r2 and (q,r1,q′′),(q′′,r2,q′) ∈Move, then by the induction hypothesis there exist
words w1 ∈ L(r1), w2 ∈ L(r2) and Romeo strategies τ1 and τ2 such that Π(σAq ,τ1,w1) ter-
minates in Aq-state q′′ and Π(σAq′′ ,τ2,w2) terminates in Aq′′-state q′. The second statement
holds for w = w1w2 and the concatenation strategy τ = τ1〈w1〉τ2.

The remaining cases are similar.

“⇐=”: Let w ∈ L(r) and a Romeo strategy τ be such that Π(σAq ,τ,w) terminates in Aq-state q′.
Let x ∈ Σ∗ be the final string of this play. For a ∈ Σ f , let na be the number of Calls of a
occurring during this play. We prove the implication by induction on |x|+ |r|+∑a∈Σ f

na|Ra|.
We distinguish several cases and deduce the first statement in each case either directly or by
applying the induction hypothesis.

• If r = ε , then w = ε and therefore q′ = q. Hence, (q,r,q′) ∈Move follows directly from
the definition, since condition (iii) is satisfied.

• If r = a ∈ Σ and δ (q,a) 6= ⊥, then w = a and q′ = δ (q,a). Again (q,r,q′) ∈ Move
follows directly, since condition (i) of the definition is satisfied.

• If r = a ∈ Σ and δ (q,a) = ⊥, then w = a and Π(σAδ (q,â) ,τ[â],τ(ε,a)) terminates in
Aδ (q,â)-state q′. We can apply the induction hypothesis and get (δ (q, â),Ra,q′) ∈Move.
Thus, (q,r,q′) ∈Move holds by condition (ii) of the definition.

• If r = r∗1 then we can write w = w1w2 . . .wn with n ∈N0 and w j ∈ L(r1)\{ε}. If n = 0,
then w = ε and q = q′, so (q,r,q′) ∈ Move by condition (vii). If n ≥ 1, let u be the
final history string of Π(σAq ,τ,w1) and let q′′ = δ (q,u) be the Aq-state in which this
play terminates. Since |r∗1| = |r1|+ 1 > |r1|, we can apply the induction hypothesis,
which yields (q,r1,q′′) ∈Move. Observe that Π(σAq′′ ,τ[u],w2w3 . . .wn) terminates in
Aq′′-state q′, and its final string is the string x′ with \ux′ = x. From |\u| ≥ |w1| > 0
it follows that |x| > |x′|, so another application of the induction hypothesis yields
(q′′,r∗1,q

′) ∈Move. We get (q,r,q′) ∈Move from condition (viii) of the definition.

• The cases r = r1r2 and r = r1 + r2 are similar to and slightly easier than the previous
case.
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Proof of Claim 5.3.

“=⇒”: The proof is by structural induction on elements of Next and uses the same techniques that
were already in the proof of the implication “=⇒” of Claim 5.2.

“⇐=”: Let w ∈ L(r) and τ be a Romeo strategy such that Π(σAq ,τ,w) contains a configuration
with Aq-state q′ and current symbol a and w is of minimal length with these properties. Let
u be the history string of the first such configuration. For b ∈ Σ f let nb be the number of
occurrences of b̂ in u, i. e. the number of Calls of b before this configuration is reached. The
proof is by induction on |r|+∑b∈Σ f

nb|Rb|. Note that w 6= ε , because the only configuration
in a play on ε is (ε,ε), which does not have current symbol a. So in particular r 6= ε . There
are several cases.

• If r = a and q = q′, then (q,r,q′,a) ∈ Next by condition (i) of the definition.

• If r = b ∈ Σ, but b 6= a or q 6= q′, then w = b and the initial configuration (ε,b) does
not have both Aq-state q′ and current symbol a. It is necessary that δ (q,b) = ⊥
because otherwise also the second and last configuration (b,ε) does not have current
symbol a. Thus, u = b̂v for some v ∈ Σ

∗ and Π(σA
δ (q,b̂)

,τ[b̂],τ(ε,b)) must have a
configuration with A

δ (q,b̂)-state q′ and current symbol a. By the induction hypothesis,

(δ (q, b̂),Rb,q′,a) ∈ Next. Hence, (q,r,q′,a) ∈ Next by condition (ii) of the definition.

• If r = r∗1, then, since w 6= ε by the argument above, w = w1 . . .wn for some n≥ 1 and
wi ∈ L(r1)\{ε}. By minimality of the length of w, the play Π(σAq ,τ,w1 . . .wn−1) must
be finite. Let q′′ be the Aq-state in which it terminates and v the final history string.
By Claim 5.2, (q,r∗1,q

′′) ∈Move. Moreover, Π(σAq′′ ,τ[v],wn) contains a configuration
with Aq′′-state q′ and current symbol a. By the induction hypothesis, (q′′,r1,q′,a) ∈
Next. It follows from condition (vii) of the definition that (q,r,q′,a) ∈ Next.

• The cases r = r1r2 and r = r1 + r2 are similar.

Proof of Claim 5.4.

“=⇒”: The prove is by structural induction on elements of Inf .

We first consider the case that r = a ∈ Σ, δ (q,a) =⊥ and (δ (q, â),Ra,q,a) ∈ Next. The idea
of a strategy for Romeo that achieves infinite play against σAq on a is to reach a configuration
with Aq-state q and current symbol a (like the initial configuration), and then to repeat the
moves from the beginning so that such a configuration occurs over and over again.

Let w ∈ L(Ra) and a Romeo strategy τ be such that the play Π(σAδ (q,â) ,τ,w) = (K0,K1, . . .)

contains a configuration Kn with Aδ (q,â)-state q and current symbol a. Such w and τ exist
by Claim 5.3. For i = 0, . . . ,n, let ui ∈ Σ

∗ and vi ∈ Σ+ be such that Ki = (ui,vi). Thus,
u0 = ε , v0 = w, δ ∗(q, âun) = q and vn = av for some v ∈ Σ∗. Let τ ′ be any Romeo strategy
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with τ ′((âun)
k,a) = w = v0 and τ ′((âun)

kâui,b) = τ(ui,b) for each k ∈ N0, b ∈ Σ f and
i = 0, . . . ,n−1. We claim that Π(σAq ,τ

′,a) is the infinite sequence

((âun)
0,av0),((âun)

0âu0,v0v0),((âun)
0âu1,v1v0), . . . ,((âun)

0âun−1,vn−1v0),

((âun)
1,av1),((âun)

1âu0,v0v1),((âun)
1âu1,v1v1), . . . ,((âun)

1âun−1,vn−1v1),

((âun)
2,av2), . . . .

The initial configuration is correct, since ((âun)
0,av0) = (ε,a). By induction on k ∈ N0 it is

clear that δ ∗(q,(âun)
k) = q. Therefore,

δ
∗(q,(âun)

ka) = δ (δ ∗(q,(âun)
k),a) = δ (q,a) =⊥,

so σAq plays Call in a configuration ((âun)
k,avk). The next configuration is therefore

((âun)
kâ,τ ′((âun)

k,a)vk) = ((âun)
kâ,wvk) = ((âun)

kâu0,v0vk),

which conforms to the sequence above.

Consider now a configuration K = ((âun)
kâui,vivk) for k ∈N0 and i∈ {0, . . . ,n−1}. We can

write vi = biv′i where bi ∈Σ and v′i ∈Σ∗. The strategy σAq plays Call if δ ∗(q,(âun)
kâuibi)=⊥,

i. e. if δ ∗(δ (q, â),uibi) =⊥, which is equivalent to σAδ (q,â) playing Call in the configuration
Ki = (ui,biv′i). In that case, ui+1 = uib̂i and vi+1 = τ(ui,bi)v′i = τ ′((âun)

kâui,bi)v′i. The
configuration after K is then ((âun)

kâui+1,vi+1vk), as above. Note that this also conforms
to the sequence for i = n−1 since vn = av. The other case is that σAq plays Read and in K
and σAδ (q,â) plays Read in Ki. This case is analogous. We have shown that if condition (i)
from the definition of Inf holds, then Π(σAq ,τ

′,a) is the infinite sequence from above. This
finishes the base case of the structural induction.

The inductive cases are considerably easier. If r = a ∈ Σ, δ (q,a) =⊥ and (δ (q, â),Ra) ∈ Inf ,
then by the induction hypothesis there exist w ∈ L(Ra) and a Romeo strategy τ such that
Π(σAδ (q,â) ,τ,w) is infinite. Consider a Romeo strategy τ ′ with τ ′(ε,a) = w and τ ′(âu,b) =
τ(u,b) for u ∈ Σ

∗ and b ∈ Σ f . The play Π(σAq ,τ
′,a) is clearly infinite. In the other inductive

cases, the second statement follows similarly from the induction hypothesis.

“⇐=”: Let w1 ∈ L(r) and a Romeo strategy τ1 be such that Π(σAq ,τ1,w1) is infinite. The idea
is to abuse that there must exist a pair (qm,am) ∈ Q×Σ such that Π(σAq ,τ1,w1) contains
infinitely many configurations with Aq-state qn and current symbol an.

Let u1 ∈ Σ∗ be the longest prefix of w1 such that Π(σAq ,τ1,u1) is finite. Let u1 ∈ Σ
∗ be the

final history string of Π(σAq ,τ1,u1) and let a1 ∈ Σ and v1 ∈ Σ∗ be such that w1 = u1a1v1. This
means that Π(σAq ,τ1,w1) contains the configuration (u1,a1v1) with Aq-state q1 = δ ∗(q,u1)

and, by maximality of u1, the play Π(σAq1
,τ1[u1],a1) is infinite. Thus, δ (q1,a1) = ⊥

and, letting τ2 = τ1[u1â1] and w2 = τ1(u1,a1), the play Π(σAδ (q1 ,â1)
,τ2,w2) must also be

infinite. By repeating the argument we obtain infinite sequences (wi),(ui),(vi)⊆ Σ∗, (ai)⊆ Σ,
(ui)⊆ Σ

∗, (qi)⊆ Q and (τi) of Romeo strategies such that

• wi+1 = τi(ui,ai) = ui+1ai+1vi+1,
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• τi+1 = τi[uiâi],

• Π(σAδ (qi ,âi)
,τi+1,ui+1) is finite with final history string ui+1,

• qi+1 = δ ∗(qi, âiui+1),

• Π(σAδ (qi,âi)
,τi+1,wi+1) is infinite and contains, for each j > i, a configuration with

Aδ (qi,âi)-state q j and current symbol a j,

• δ (qi,ai) =⊥

for each i ∈ N.

Since Q and Σ are finite but the sequences are infinite, there must exist m < n with (qm,am) =

(qn,an). We choose these such that (n,m) is lexicographically minimal and prove the
implication by induction on |r|+∑

n−1
i=1 |Rai |. It is clear that r 6= ε since a play on ε is never

infinite. There are several possible cases.

If r = a ∈ Σ, then w1 = a = a1, q1 = q, δ (q,a) = ⊥ and Π(σAδ (q,â) ,τ2,w2) is infinite and
contains a configuration with Aδ (q,â)-state qn and current symbol an. There are two subcases.

• If m = 1 then qn = q and an = a. By Claim 5.3 this means that (δ (q, â),Ra,q,a) ∈ Next.
Thus, condition (i) of the definition of Inf is satisfied and (q,r) ∈ Inf .

• If m> 1 then the induction hypothesis can be applied because the sequences (ai) and (qi)

for the play Π(σAδ (q,â) ,τ2,w2) are (a2,a3, . . .) and (q2,q3, . . .). Thus, (δ (q, â),Ra)∈ Inf
and condition (ii) of the definition yields (q,r) ∈ Inf .

If r = r1r2, r = r1 + r2 or r = r∗1, then (q,r) ∈ Inf follows similarly from the induction
hypothesis.

This completes the proof of Theorem 5.1.

Of course it is desirable to have not just a UFA but a DFA that recognizes L(σA). Since UFAs
can be transformed into DFAs with an exponential blow-up, the previous theorem implies that such
a DFA can be constructed in exponential time. It was shown by Abiteboul et al. [3, Proposition
3.2] that this is also a lower bound on the running time in the worst case, since there exist strategy
automata A such that any DFA for L(σA) must have a number of states exponential in the size of
A.

We will use the possibility of constructing a UFA recognizing L(σA) in polynomial time for our
complexity results in the next chapter.
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6. Complexity of decision problems

We will investigate the complexity of three (types of) problems. The first is to test for a given game,
input word and strategy whether the strategy wins on the input word. The second is similar, but the
strategy is not part of the input: The question in this case is whether a strategy exists that wins on
a given input word in a given game. The third problem is relevant in the context of determining
optimum or optimal strategies: Given a game and two strategies, is one strategy better than the
other? In the cases where a strategy is part of the input, we have to restrict to automaton strategies,
since strategies of type 1 and 3 do not in general have a finite encoding (since there are uncountably
many of them).

6.1. Testing if a strategy wins

For a set G of games and X ∈ {2,4,5} we consider the following decision problem:

ISWINNING(G,X )
Given: A game G = (Σ,R,T ) ∈ G, a word w ∈ Σ∗ and a type X automaton A for G
Question: Is w ∈ L(σA)?

For a target language given by a DFA, the problem is tractable:

6.1 Theorem. Let X ∈ {2,4,5}. The problem ISWINNING(G,X ) is P-complete if G is

• the set of games G = (Σ,R,T ) where T is a DFA or

• the set of non-recursive games G = (Σ,R,T ) where T is a DFA and replacement languages
are finite and self-delimiting.

Proof. The upper bound follows easily from our result of the last chapter: By Theorem 5.1 (and
since each type 5 automaton is also a type 4 automaton), a UFA U recognizing L(σA) can be
constructed in polynomial time. Then, the set of states of U that can be reached at the end of a run
on w can be computed in polynomial time by simulating the power set automaton. If all of these
states are accepting, then σA wins on w, otherwise σA does not win on w.

To prove the lower bound, we give a logarithmic space reduction from P-complete emptiness
problem for context-free grammars, i. e. the problem of deciding whether the language generated
by a given context-free grammar is empty (see [8, Corollary 11] and [6, Theorem 5.6.1]).

Let C = (V,Γ,P,S) be a context-free grammar, where V is the set of variables, Γ the set of
terminals, P⊂V × (V ∪Γ)∗ the set of production rules and S ∈V the start variable. We construct a
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Figure 6.1.: The automata T and A constructed in the reduction in the proof of Theorem 6.1

non-recursive game G = (Σ,R,T ) with finite and self-delimiting replacement languages, a word
w ∈ Σ∗ and a type 5 automaton A such that w ∈ L(σA) if and only if the language L(C) generated
by C is empty. By definition, the type 5 automaton A is also a type 4 automaton. Furthermore, it
can be transformed into a type 2 automaton by adding a loop for â ∈ Σ f to each state that has no
transition for a. Therefore, it suffices to prove the lower bound for the case X = 5.

We will argue first that we can assume without loss of generality that C is non-recursive and
that replacement languages (i. e. the sets of replacement words over V ∪Γ that can be derived
from a variable in one step) are self-delimiting and do not contain ε . The assumption that C is
non-recursive will guarantee that each play of the game we construct is finite. The assumption that
there are no ε-rules will ensure that the game we construct also has no ε-rules. This is necessary
because replacement strings in context-free games have to be non-empty by definition.

The reduction to the emptiness problem for context-free grammars presented by Gurari [6,
Theorem 5.6.1] already constructs a non-recursive grammar with self-delimiting replacement
languages, so the problem is P-hard even with these restrictions. Alternatively, consider Lemma A.3
in the appendix where it is shown that the emptiness problem for non-recursive context-free
grammars with self-delimiting replacement languages is P-hard.

To avoid ε-rules, any rule of the form A→ ε can be replaced by A→ x for some terminal x.
Clearly this only requires logarithmic space and does not affect whether the language generated by
the grammar is empty or not.

Henceforth, we can assume that C = (V,Γ,P,S) is already non-recursive, has self-delimiting
replacement languages and no ε-rules. We construct G = (Σ,R,T ), A and w as follows.

The alphabet of G is Σ = V ∪Γ and the set of rules is R = P. The target language automaton
T is displayed in Figure 6.1a. It has a non-accepting initial state q0 and an accepting state q1.
The transitions in q0 for a variable A ∈ V lead to q1. All other transitions are loops. The type 5
automaton A is obtained from T by removing the transitions from q0 to q1 for those variables that
actually appear on the left hand side of a production rule (see Figure 6.1b). The input word is the
start variable, i. e. w = S.

Clearly, G, A and w can be constructed using only logarithmic space. It remains to show that
L(C) = /0 if and only if w ∈ L(σA). We show that L(C) 6= /0 if and only if w /∈ L(σA).

If L(C) 6= /0, then there exists a word w′ ∈ Γ∗ that can be derived from S. Note that the strategy
σA plays Call whenever possible until a variable occurs that has no production rule. Consider a
play of σA on S. If Romeo chooses his replacement words according to a leftmost derivation of w′,
then all occurring symbols are either terminals or variables that have a production rule. Therefore,
the T -state q0 is never left and Juliet loses, i. e. w = S /∈ L(σA).
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Conversely, if w /∈ L(σA) then there exists a play Π of σA on w that is not winning. Hence
Π is losing because infinite plays are impossible in non-recursive games. The T -state of the last
configuration of Π must be q0, hence the final string w′ of Π is in Γ∗. Since w′ was derived from S
by applying rules of P, it holds that w′ ∈ L(C). Thus, L(C) 6= /0.

Theorem 6.1 also implies that the problem to decide whether some automaton strategy wins on a
word is tractable under data complexity, i. e. if the game G is fixed and not part of the input. This is
because for a fixed game, the target language automaton can always be transformed into a DFA
beforehand.

As the next theorem shows, the problem (with G as part of the input) becomes PSPACE-complete
if the target language automaton is given as an NFA. It should be noted that for the case of type 5
automata this scenario is somewhat artificial: In practice one would expect that the type 5 automaton
is constructed from the minimal DFA for the target language. Therefore, a DFA for the target
language is usually known when a type 5 automaton is known. In fact, the PSPACE-hardness in the
case of type 5 automata is also artificial. It stems only from the hardness of deciding whether the
strategy automaton given in the input is really a type 5 automaton, i. e. whether it can be obtained
from the minimal DFA for the target language by removing transitions (intuitively because this
requires computing the minimal DFA of the target language). In the case of Theorem 6.1 this was
not a problem because even if the target language DFA is not minimal, it can be minimized in
polynomial time.

If one could trust that the input of ISWINNING(G,5) were always encoded correctly (i. e. the given
strategy automaton is indeed a type 5 automaton) then the target language could be ignored because
its essential parts are implicit in the type 5 automaton; then the problem would be P-complete by
Theorem 6.1.

6.2 Theorem. Let X ∈ {2,4,5}. The problem ISWINNING(G,X ) is PSPACE-complete if G is

• the set of all context-free games or

• the set of non-recursive games with finite and self-delimiting replacement languages.

Proof. We first prove the upper bound. Let G = (Σ,R,T ) be a game with target language NFA
T = (Q,Σ,δ ,q0,F), let A be a strategy automaton and w ∈ Σ∗. As before we can assume that
A= (QA,Σ,δA,q′0,FA) is a type 2 automaton because type 4 automata can easily be transformed
into a type 2 automata.

Since PSPACE is closed under complementation and PSPACE = NPSPACE, we can prove the
upper bound by giving an algorithm that uses polynomial space and accepts non-deterministically
if σA does not win on w. The idea of this algorithm is to simulate a play of σA on w and guessing
Romeo’s replacement words along the way.

There are two challenges that we have to be careful about. First, the only plays of σA on w that
are not winning might be infinite and our simulation has to detect this in finite time. Second, if R
is infinite, then Romeo’s replacement words can be arbitrarily long. If a word is too long, then it
does not fit in the store of polynomial size at once, so the algorithm will guess replacement words
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symbol by symbol. But at some point Romeo needs to be stopped, to prevent him from producing a
replacement word of infinite length.

We will describe how we can overcome both of these challenges by proving several claims. The
issue with infinite plays is taken care of by the following claim:

6.3 Claim. If a play of σA on w with depth greater than |QA| · |Σ f | exists, then there exists an
infinite play of σA on w.

Proof. Let Π be a play of σA on w with depth greater than |QA| ·Σ f . Then there exist q ∈ QA and
a ∈ Σ f such that T (Π) has a path starting at the root that contains (at least) two configurations
with A-state q and current symbol a. Let K be the upper of these two configurations. Romeo can
force infinite play by repeating – whenever a configuration with A-state q and current symbol a is
reached – the moves that he would choose after reaching the configuration K. The details are very
similar to the proof of the implication “=⇒” in the proof of Claim 5.4.

Restricting the length of replacement words by Romeo takes a bit more effort. Let us first
introduce some notation.

For a ∈ Σ f let (Qa,Σ,δa,q0
a,Fa) be an NFA that recognizes the language L(Ra). Such an NFA

can be constructed from Ra in polynomial time by Glushkov’s algorithm [5]. For a state q ∈QA we
denote byAq the automaton obtained fromA by changing its initial state to q. Abusing notation we
denote by δ ∗ : P(Q)×Σ∗→P(Q) be the extended transition function of the powerset automaton
of the NFA T , given by

δ
∗(Q′,v) =


Q′, if v = ε ,⋃
q∈δ ∗(Q′,u)

δ (q,a), if v = ua for u ∈ Σ∗ and a ∈ Σ.

The following claim solves the issue of arbitrarily long replacement word at least for the case of
finite plays on input words of length 1.

6.4 Claim. Let Q0 ⊆ Q be a set of states of T . Let q ∈ QA, a Romeo strategy τ and a ∈ Σ be such
that Π(σAq ,τ,a) is finite with some final history string u. Then there exists a Romeo strategy τ ′

with |τ ′(v,b)| ≤ |Qb| · |QA| ·2|Q| for each v ∈ Σ
∗, b ∈ Σ f such that Π(σAq ,τ

′,a) is finite with some
final history string u′ ∈ Ha for which it holds that δ ∗(Q0, \u) = δ ∗(Q0, \u′).

Proof. The proof is by induction on the depth of Π(σAq ,τ,a). For b ∈ Σ f let xb ∈ L(Rb) be a word
of length at most |Qb|. Clearly such a word exists.

If the depth of the play Π(σAq ,τ,a) is 0 then the play consists of a single move by Juliet, which
is Read, and we can simply define τ ′ via τ ′(v,b) = xb for v ∈ Σ

∗ and b ∈ Σ f .
If the depth of Π(σAq ,τ,a) is positive, let a1 . . .an = τ(ε,a) ∈ L(Ra) be the first replacement

word that Romeo chooses in this play, where ai ∈ Σ. Let q0
A = δA(q, â) and for i = 1 . . . ,n, let

• ai ∈ Hai be such that (âa1 . . .ai,ai+1 . . .an) is the first configuration in Π(σAq ,τ,a) after the
initial Call that has remaining string ai+1 . . .an,

• qi
a ∈ δa(qi−1

a ,ai) be such that qn
a ∈ Fa,
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• qi
A = δ ∗A(q

i−1
A ,ai) and

• Qi = δ ∗(Qi−1, \ai).

If n > |Qa| · |QA| ·2|Q|, then there exist 0≤ i < j ≤ n such that (qi
a,q

i
A,Q

i) = (q j
a,q

j
A,Q

j). In this
case, a1 . . .aia j+1 . . .an ∈ L(Ra) and the Romeo strategy τ̃ given by

τ̃(v,b) =


a1 . . .aia j+1 . . .an, if (v,b) = (ε,a),

τ(âa1 . . .a jv2,b), if v = a1 . . .aiv2 for some v2 ∈ Σ
∗,

τ(v,b), otherwise,

also satisfies that Π(σAq , τ̃,a) is finite and, if u′ is its final history string, then δ ∗(Q0, \u) =
δ ∗(Q0, \u′). This allows us to gradually shorten Romeo’s replacement word for the initial a and we
can therefore assume that n≤ |Qa| · |QA| ·2|Q|.

By the induction hypothesis, there exist Romeo strategies τi for i = 1, . . . ,n with |τi(v,b)| ≤
|Qb| · |QA| ·2|Q| for each v∈ Σ

∗ and b∈ Σ f such that Π(σA
qi−1
A
,τi,ai) is finite with some final history

string ui ∈ Hai for which it holds that δ ∗(Qi−1, \ui) = Qi.
The Romeo strategy τ ′ given by

τ
′(v,b) =


a1 . . .an, if (v,b) = (ε,a),

(τ1〈a1〉τ2〈a2〉 . . .〈an−1〉τn)(v2,b), if v = âv2 for some v2 ∈ Σ
∗,

xb, otherwise,

has all the properties stated in the claim.

Finally, we will overcome both challenges at once with the following claim.

6.5 Claim. The following are equivalent:

• The strategy σA does not win on w.

• There exists a Romeo strategy τ with |τ(u,a)| ≤ |Qa| · |QA| ·2|Q| for each u ∈ Σ
∗, a ∈ Σ f such

that Π(σA,τ,w) is losing or has depth greater than |QA| · |Σ f |.

Proof. The implication from the second to the first statement follows from Claim 6.3.
Now suppose the first statement holds. We first consider the case that there exists a losing play

of σA on w. Let w = a1 . . .an, where ai ∈ Σ. If we define τ1, . . . ,τn like in the proof of the previous
claim, then the second statement is true for τ = τ1〈a1〉τ2〈a2〉 . . .〈an−1〉τn.

Otherwise, there exists an infinite play of σA on w. By König’s lemma, all infinite plays have
infinite depth, thus depth greater than |QA| · |Σ f |. Suppose the second statement does not hold. Let
τ be a Romeo strategy such that Π(σA,τ,w) is infinite and

m = min
{
|u|
∣∣∣ |τ(u,a)|> |Qa| · |QA| ·2|Q|,u ∈ Σ

∗
,a ∈ Σ f

}
is maximal. We can assume that |τ(u,a)| ≤ |Qa| for all combinations of u and a that do not occur as
the combination of history string and current symbol of a configuration in Π(σA,τ,w) where Juliet
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plays Call. Thus, a configuration (u,av) with u ∈ Σ
∗, a ∈ Σ f , v ∈ Σ∗, m = |u|, σA(u,a) = Call and

|τ(u,a)|> |Qa| · |QA| ·2|Q| occurs in Π(σA,τ,w). If the play Π(σA[u],τ[u],a) is finite, then – using
Claim 6.4 – we could adjust τ so as to obtain a contradiction to the maximality of m. Therefore,
Π(σA[u],τ[u],a) must be infinite. But then we can again obtain a contradiction to the maximality
of m: Let τ(u,a) = a1 . . .anbx where and a1, . . . ,an ∈ Σ, b ∈ Σ f and x ∈ Σ∗ are such that a1 . . .an is
the longest prefix of τ(u,a) for which Π(σA[uâ],τ[uâ],a1 . . .an) is finite. Let q0

A = δA(q′0,uâ) and
for i = 1 . . . ,n, let

• ai ∈ Hai be such that (a1 . . .ai,ai+1 . . .an) is the configuration of Π(σA[uâ],τ[uâ],a1 . . .an)

where a1 . . .ai is completely processed,

• qi
a ∈ δa(qi−1

a ,ai) be such that a state in Fa is reachable from state qn
a by reading bx,

• qi
A = δ ∗A(q

i−1
A ,ai) and

If n > |Qa| · |QA|, then there exist 0 ≤ i < j ≤ n with (qi
a,q

i
A) = (q j

a,q
j
A). Like in the proof of

Claim 6.4 it can be argued that the string a1 . . .an could be shortened. Therefore, we can assume
without loss of generality that n≤ |Qa| · |QA|. We can also assume that |x| ≤ |Qa|−1 because x
just needs to be any string for which a state in Fa is reachable from qn

a by reading bx. But then we
would have that

|τ(u,a)|= |a1 . . .anbx| ≤ |Qa| · |QA|+ |Qa| ≤ |Qa| · |QA| ·2|Q|,

a contradiction.

Thanks to Claim 6.5 it is now easy to give a polynomial space algorithm that decides the
complement of ISWINNING(G,2) non-deterministically. The algorithm simply tries to prove that
the second statement of Claim 6.5 holds by simulating a play of σA on w. At all times, the A-state
and the set of T -states of the configuration up to which the play has been simulated so far are
stored. When σA plays Call at some point when the current symbol is a, Romeo’s replacement
word x ∈ L(Ra) is guessed symbol by symbol. To ensure that the guessed word x is in L(Ra), a
run of the Glushkov-NFA for L(Ra) on x is guessed at the same time, i. e. a current state q ∈ Qa is
stored as well. A counter guarantees that the replacement word is not longer than |Qa| · |QA| ·2|Q|.
If a nested Call happens, q and the counter are pushed on a stack and pulled back once the play has
been simulated up to the end of the nested replacement word. Another counter keeps track of the
size of the stack. If it exceeds |QA| · |Σ f |, then the algorithm accepts because there exists a play of
σA on w of depth greater than |QA| · |Σ f |. If the simulated play is finite and the set of T -states of
the last configuration is disjoint from F , then the algorithm also accepts because a losing play has
been found. Otherwise the algorithm rejects.

Due to the bounds on the length of replacement words and the size of the stack, the algorithm is
guaranteed to terminate. Correctness of the algorithm and existence of a polynomial space bound
are straightforward. Thus, the complement of ISWINNING(G,2) is in NPSPACE and therefore
ISWINNING(G,X )∈ PSPACE for X ∈ {2,4}.

We still have to prove that ISWINNING(G,X ) is also PSPACE-hard. We show the hardness for
X = 4 and X = 5 simultaneously. The case X = 2 follows easily from the case X = 4. Our reduction
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is from the universality problem for NFAs, i. e. the problem of deciding whether a given NFA
over the alphabet {0,1} recognizes the entire language {0,1}∗. This problem is well-known to be
PSPACE-complete (see [9, Lemma 2.3] and [7, Proposition 2.4]).

Let N be an NFA over {0,1}. We construct a non-recursive game G = (Σ,R,T ) with finite
and self-delimiting replacement languages, a string w ∈ Σ∗ and a type 4 automaton A such that
w ∈ L(σA) if and only if L(N ) = {0,1}∗.

If the initial state of N is non-accepting, then we choose a dummy instance of (G,w,A) such
that that w /∈ L(σA). Otherwise, let n be the number of states of N . We define the alphabet Σ of G
as Σ = {0,1,a0, . . . ,an} and the set of rules R via

ai → ai+1ai+1 +0+1 for i = 0, . . . ,n−1

an→ 0+1

The target language automaton T is the same automaton asN except that a0, . . . ,an are added to its
alphabet (but there are no transitions for a0, . . . ,an). Let A be the type 4 automaton consisting of
a single state with loop transitions for 0 and 1 and no transition for a0, . . . ,an. For the reduction
for the case X = 5 we choose this state as accepting; therefore, A is a type 5 automaton for G if
and only if L(N ) = {0,1}∗. The input word is w = a0. Obviously, the construction takes only
polynomial time, G is non-recursive and replacement languages are finite and self-delimiting.

It remains to show that w ∈ L(σA) if and only if L(N ) = {0,1}∗.

If L(N ) = {0,1}∗, then the initial state of N is accepting, so (G,w,A) is not the dummy
instance. Since every symbol ai is called in a play of σA, the final string of any such play is in
L(T ) = L(N ) = {0,1}∗. Therefore, w ∈ L(σA).

Conversely, if w∈ L(σA), then (G,w,A) is again not the dummy instance, so the initial state ofN
is accepting and therefore ε ∈ L(N ). Romeo can choose his replacement words in a play of σA on
a0 such that an arbitrary string in {0,1}≤2n \{ε} is the final string of the play. So since a0 ∈ L(σA)

it follows that {0,1}≤2n ⊆ L(T ) = L(N ). Suppose L(N ) 6= {0,1}∗. Let u ∈ {0,1}∗ \L(N ) be of
minimal length and let q0,q1, . . . ,q|u| be the sequence of states of the minimal DFA of L(N ) visited
in a run on u. These states must be pairwise distinct because the shortest directed path from qi to
a non-accepting state has length |u|− i. Therefore, the minimal DFA of L(N ) has at least |u|+1
states, and |u| > 2n. But the minimal DFA of L(N ) has at most as many states as the powerset
automaton of N , i. e. at most 2n states. Contradiction! This finishes the proof of the lower bound
and therefore the proof of the theorem.

The only reason why we treated the case that the initial state of N is non-accepting separately is
that otherwise we would have had to define Ra as (0+1)∗, but replacement languages must not
contain the empty string by definition.

Rather than testing whether a given strategy wins, we will next study the complexity of deciding
whether a winning strategy exists.
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6.2. Existence of a winning strategy

We define for a set G of games and X ∈ {1,2,3,4,5} the following decision problem:

EXISTSWINNING(G,X )
Given: A game G = (Σ,R,T ) ∈ G and a word w ∈ Σ∗

Question: Does a type X strategy σ for G exist such that w ∈ L(σ)?

Observe that if type Y is a restriction of type X and the implication X =⇒Y for winning strategies
holds for all games in G, then EXISTSWINNING(G,X ) = EXISTSWINNING(G,Y ). For instance,
EXISTSWINNING(G,3) = EXISTSWINNING(G,4) if G is the set of games with a finite target
language.

Our first theorem in this section is the counterpart of Theorem 6.1 where we fix X = 5 and replace
ISWINNING by EXISTSWINNING. Unsurprisingly, the complexity rises from P-completeness to
NP-completeness.

6.6 Theorem. The problem EXISTSWINNING(G,5) is NP-complete if G is

• the set of games G = (Σ,R,T ) where T is a DFA or

• the set of non-recursive games G = (Σ,R,T ) where T is a DFA and replacement languages
are finite and self-delimiting.

Proof. The problem EXISTSWINNING(G,5) can be solved non-deterministically in polynomial
time as follows. Let G = (Σ,R,T ) and w ∈ Σ∗ be the input, where T is a DFA. First, min-
imize the DFA T in polynomial time. Second, guess a type 5 automaton A by removing
transitions from the minimal DFA for L(T ). Third, call the polynomial time algorithm for
ISWINNING(G,5), which exists due to Theorem 6.1, with input G, A and w. This algorithm
shows that EXISTSWINNING(G,5)∈ NP.

The lower bound, we give a reduction from an arbitrary problem K ⊆ {0,1}∗ that is in NP. The
reduction is inspired by (but more involved than) a reduction presented by Gurari [6, Theorem 5.6.1]
to prove P-hardness of the emptiness problem for context-free grammars (i. e. the problem that we
used in the reduction of Theorem 6.1).

Let M be a Turing machine for K that accepts or rejects after at most p(|x|) steps for an input
x#y with x,y ∈ {0,1}∗, where p is a polynomial. Given x ∈ {0,1}∗, we show how to construct in
polynomial time a game G = (Σ,R,T ) and an input word w ∈ Σ∗ such that a type 5 strategy A for
G with w ∈ L(σA) exists if and only if there exists y ∈ {0,1}∗ such that M accepts x#y. Intuitively,
Juliet’s role is to specify some y ∈ {0,1}∗ and Romeo’s goal is to prove that M rejects x#y. Juliet
(i. e. the strategy σA) wins if and only if Romeo fails to prove his claim.

Let S be the set of states of M, Γ the tape alphabet with {0,1,#,.} ⊆ Γ, ∆ the transition function
and s0 ∈ S the initial state of M. The symbol . ∈ Γ marks the left boundary of the tape. We assume
that M has a single accepting state + ∈ S and a single rejecting state − ∈ S and M halts as soon as
one of these states is reached. Let x = x1x2 . . .xn with xi ∈ {0,1} and let t = p(n). The initial string
of the Turing machine is .x#y for some y ∈ {0,1}∗ and the head starts at position 0, pointing at ..
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We can assume without loss of generality that t ≥ n+2 and y has length exactly t−n−1, i. e. the
bits of y occupy the tape positions n+2 to t.

The alphabet Σ of G is defined as

Σ ={0,1,a,b,C,c,D,d,E}∪{a j | j = n+2, . . . , t}∪

{Ai, j,W | i, j = 0, . . . , t, W ∈ Γ∪ (Γ×S)}.

The symbols E and Ai, j,W represent statements about a run of M on x#y for some y ∈ {0,1}t−n−1.
The symbol E represents the statement that the run is rejecting. This is what Romeo will try to
prove via his choice of replacement words. A symbol Ai, j,z with z ∈ Γ represents the statement that
after i steps, the jth symbol on the tape is z and the head does not point at position j. A symbol
Ai, j,(z,q) with (z,q) ∈ Γ×S represents that after i steps, the jth symbol is z, the current state is q and
the head points at position j. The remaining symbols will be used to check the validity of the initial
configuration of M and to force Juliet to choose a type 5 strategy that represents y ∈ {0,1}t−n−1 in
a well-defined way (as we will see later).

The set R of rules of G is given by

0 → b

1 → b

C → c1

D → d1d

E → Ai, j,(z,−) for i, j = 0, . . . , t, z ∈ Γ and the rejecting state “−” of M

A0,0,(.,s0)→ a

A0, j,x j → a for j = 1, . . . ,n

A0,n+1,# → a

A0, j,0 → a j0 for j = n+2, . . . , t

A0, j,1 → a j1 for j = n+2, . . . , t

Ai+1, j,W → Ai, j−1,X Ai, j,Y Ai, j+1,Z for i = 0, . . . , t−1, j = 0, . . . , t and

W,X ,Y,Z ∈ Γ∪ (Γ×S) if – according to the transition function ∆ – the

statements represented by Ai, j−1,X , Ai, j,Y and Ai, j+1,Z imply the statement

represented by Ai+1, j,W . For the boundaries, Ai,−1,X and Ai,t+1,Z shall

denote the empty string.

The rules of the form Ai+1, j,W → Ai, j−1,X Ai, j,Y Ai, j+1,Z are defined only based on the transition
function ∆ and regardless of whether there exists a run of M on x#y for some y for which the
represented statements can be true. We do not even forbid that the statements of Ai, j−1,X , Ai, j,Y

and Ai, j+1,Z contradict each other (e. g. by saying that the head is at two positions at once), but the
target language will be such that Romeo is better off not to choose a self-contradictory replacement
string. Note that the replacement languages are finite and self-delimiting and G is non-recursive.

The target language automaton T = (Q,Σ,δ ,q0,F) of G contains components Tj for j = n+
2, . . . , t, containing states j, f j, ` j and other states and transitions as specified by Figure 6.2. The
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Figure 6.2.: Component Tj of the automaton T in the proof of Theorem 6.6

component Tj corresponds to the jth symbol of the initial tape content, i. e. the ( j−n−1)st symbol
of y. Additional to the states in the components Tj there exists a non-accepting error state qe in T .
The set of accepting states is F = { fn+2, . . . , ft}. The construction of T is completed by adding the
following transitions:

• (` j−1,a j, j) for j = n+3, . . . , t (connecting Tj−1 and Tj)

• (q,a j, j) for each q ∈ Q\ (F ∪{qe, `n+2, `n+3, . . . , `t−1}) and j = n+2, . . . , t

• (q,Ai, j,W , ft) for each q ∈ Q\{qe} and i, j, W such that Ai, j,W ∈ Σ\Σ f

• (q,a,q) for each q ∈ Q\F

• All remaining transitions lead to the error state qe.

The initial state of T is the state n+2 of Tn+2.

The automaton T is the minimal automaton for L(T ) because all states are reachable from the
initial state n+2 and the states are pairwise non-equivalent:

• The error state is not equivalent to any other state because it is the only state from which no
accepting state is reachable.

• For any two states p and q with distinct roles within their components (p and q may belong
to the same component Tj or to two distinct components Tj and Tk with j 6= k) it is easy to
find some symbol e ∈ Σ such that δ (p,e) = qe and δ (q,e) 6= qe or vice versa.

• Two states q j and qk with the same role in their respective components Tj and Tk with
j < k are not equivalent: Let u ∈ {1,c,C,d,D,ak+1, . . . ,at}∗ be of minimal length such that
δ ∗(qk,u) = `t . Then δ ∗(qk,uan+2) = n+2 and δ ∗(q j,uan+2) = qe.

Thus, the type 5 automata for G are exactly the automata that can be obtained from T by removing
transitions for symbols from Σ f .
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The input word is defined as w = 0CDan+30CDan+40CD . . .at0CDE. Since t is polynomial in
n, the game G and the word w can be constructed in time polynomial in n. It remains to show the
following equivalence:

There exists a type 5 automaton A for G such that w ∈ L(σA).

⇐⇒ There exists y ∈ {0,1}t−n−1 such that M accepts x#y.

“=⇒”: LetA be a type 5 automaton for G with w ∈ L(σA). We will show for each j = n+2, . . . , t
that either the 0-transition of Tj or the 1-transition of Tj exists in A (but not both). Then we
will choose the bits of y according to the existent transition and show that M accepts x#y.

Consider a play of σA on w. We make a case-by-case analysis depending on whether A has
the 0-transition leaving its initial state n+2 or not.

If A has the 0-transition leaving n+2, then Juliet reads the first symbol 0 of w. Juliet also
reads the subsequent C because replacing it by c1 would mean that the error state qe is
reached upon reading c and the play of σA on w would be losing. The transition for D to qe

cannot exist – for the same reason. So D will be called and replaced by d1d. Juliet can only
read d, since it is not a function symbol, leading back to state n+2. Next, she calls 1 because
otherwise the subsequent d would lead to the error state. So 1 gets replaced by b, Juliet reads
b and d and the A-state after the prefix 0CD of w is completely processed is `n+2. In this
case, the 0-transition of Tn+2 exists in A and the 1-transition of Tn+2 does not exist in A.

If A does not have the 0-transition leaving n+2, then the initial 0 is called and replaced by
b, which will be read, and then C will be called and replaced by c1. After reading c and
coming back to state n+2, the remaining string starts with 1D. If Juliet calls 1 (getting b
as replacement), then she would have to call D as well (which gets replaced by d1d), but
then there would be no way to prevent reaching the error state because both the 1- and the
b-transition of `n+2 lead to the error state. So Juliet reads 1 and then she has to read D in
order to preserve her chance to win, reaching `n+2 like in the other case. In this case, the
1-transition of Tn+2 exists in A whereas the 0-transition is missing. In both cases, the A-state
when 0CD is completely processed is `n+2.

The next symbol of the input string is an+3, which will lead to state n+3 of Tn+3, and the next
symbols of w are again 0CD. By repeating the same arguments for the other components Tj

it follows that for each j = n+2, . . . , t, either the 0-transition or the 1-transition of Tj exists
in A. We define y j = 0 if A has the 0-transition of Tj and y j = 1 if it has the 1-transition of
Tj. We want to show that M accepts x#y.

Suppose M rejects x#y. Since w ∈ L(σA) by the premise, the A-state (which is the same as
the T -state) has to be accepting at the end of the play. However, we will show that Romeo
can choose replacement words such that the invariant holds that every configuration after the
prefix 0CDam+30CDam+40CD . . .at0CD of w is completely processed has a non-accepting
A-state and a remaining suffix of the form uv where v only consists of symbols representing
true statements about the run of M on x#y and u satisfies one of the following properties:

• u = ε ,
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• u = a,

• u = a jk for j ∈ {n+2, . . . , t} and k ∈ {0,1} and Juliet’s last move was to call A0, j,k, or

• u = k for k ∈ {0,1} and Juliet’s last two moves were to call A0, j,k and read a j for some
j ∈ {m+2, . . . , t}.

The invariant holds initially after the prefix 0CDam+30CDam+40CD . . .at0CD of w is com-
pletely processed because the A-state is `t and the remaining string is E, which represents
the true statement (by assumption) that the run of M on x#y is rejecting.

Suppose the statement holds at some point when the remaining string uv is non-empty
(i. e. before the end of the play).

If u = ε then the first symbol H of v represents a true statement about the run of M on x#y
on u and is therefore a non-terminal. Thus, its transition in T leads to the error state, so this
transition cannot exist in A and Juliet calls H. In all possible cases for H, Romeo can choose
a replacement so that the invariant holds again.

If u = a, Juliet will read a and loop in the current state. The invariant now holds with u = ε .

If u = a jk with k ∈ {0,1} and Juliet’s last move was to call A0, j,k, then Juliet will read a j and
the invariant holds again.

If u = k ∈ {0,1} and Juliet’s last two moves were to call A0, j,k and read a j for some j ∈
{m+ 2, . . . , t}, then the A-state is j. Since the invariant also held before Juliet’s last two
moves, before, A0, j,k represents a true statement about the run of M on x#y, i. e. y j = k. By
definition of y j this means that the k-transition in Tj exists in A. Thus, Juliet reads k and the
invariant holds again, completing the proof of the invariant.

The invariant implies that Romeo can choose the replacement words so that also the final
T -state is non-accepting. But we assumed that σA wins on w, a contradiction.

“⇐=”: Let y = yn+2 . . .yt with yi ∈ {0,1} be such that M accepts x#y. We define A as the
automaton obtained from T by removing

• for j = n+2, . . . , t and k ∈ {0,1} the k-transition from Tj if and only if k 6= y j,

• all transitions for function symbols leaving an accepting state and

• all transitions for function symbols in Σ f \{0,1,C,D} leaving a non-accepting state.

Suppose w /∈ L(σA), then there exists a Romeo strategy τ such that Π(σA,τ,w) is losing (it
cannot be infinite since G is non-recursive). We will obtain a contradiction by showing that
M rejects x#y.

Let K = (u,E) be the configuration of Π(σA,τ,w) when 0CDam+30CDam+40CD . . .at0CD
is completely processed. It is straightforward to check (like above) that the T -state of K is `t .
Observe that the T -state of all future configurations must be non-accepting because the only
transitions leading from an accepting to a non-accepting state that have not been removed
in A are the transitions for c and d, but these symbols cannot be derived from E. Also, the
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T -state of all future configurations cannot be in {`n+2, . . . , `t−1} because the only transitions
leading to these states are for D and d, which cannot be derived from E.

Let K′ = (uv,Hv) with v ∈ Σ
∗, H ∈ Σ and v ∈ Σ∗ be a configuration of Π(σA,τ,w) occurring

not before K and with a T -state different from qe. We prove that H is either a symbol
representing a true statement about the run of M on x#y or H ∈ {0,1,a,an+2, . . . ,at}. This
suffices to finish the proof, because the T -state of K is `t and E itself represents the statement
that M rejects x#y, which would be the desired contradiction. The proof is by induction on
the depth of Π(σA[uv],τ[uv],H), i. e. the depth of the subtree of T (Π(σA,τ,w)) rooted at
K′.

The base of induction is that the symbol H is read. The only transitions for function symbols
that exist in A are transitions for 0, 1, C and D. So any symbol that is read must be 0, 1, C, D
or in Σ\Σ f . But H cannot be C, D, c or d because these symbols cannot be derived from E.
Further, H cannot Ai, j,W ∈ Σ\Σ f because these transitions would lead to the accepting state
ft , since the A-state of K′ is different from qe by assumption. The only remaining possibility
for H to be a symbol in Σ\Σ f but not in {a,an+2, . . . ,at} would be that H = b. However, if
H = b then the symbol that was read before was a j for some j. Since the T -state of K′ is not
in F ∪{qe, `n+2, . . . , `t−1}, These symbols lead to the state j, but then reading b would lead
to the accepting state f j. So H cannot be b and it follows that H ∈ {0,1,a,an+2, . . . ,at}.

For the induction step, suppose H is called. By the induction hypothesis, the first symbol of
the replacement string for H is either a symbol representing a true statement about the run of
M on x#y or in {0,1,a,an+2, . . . ,at}. Therefore, H can only be E or of the form Ai, j,W .

If H = E, then Ai, j,(z,−) represents a true statement for some i, j and z (by the induction
hypothesis), and this statement implies that the run of M is rejecting, so E also represents a
true statement.

If H = A0, j,W with j 6= n+1, then H represents a true statement about the initial configuration
of M given the input x#y because otherwise A0, j,W could not have been called.

If H = A0, j,k for k ∈ {0,1} and j ∈ {m+ 2, . . . , t}, then Romeo replaces it by a jk. Subse-
quently, A will enter the state j upon reading a j. The k-edge leaving j must exist because
otherwise k would be replaced by b and the T -state after reading b would be the accepting
state f j. Thus, k = y j by construction of A. Hence, H = A0, j,k represents a true statement.

Finally, if H = Ai+1, j,W , then Romeo chooses some replacement string Ai, j−1,X Ai, j,Y Ai, j+1,Z .
By the induction assumption, Ai, j−1,X represents a true statement. The configurations reached
when the current symbol is Ai−1, j,Y and Ai−1, j+1,Z respectively will also have a T -state
different from qe because all symbols read until then are a or a symbol a j followed by 0 or
1 – none of which are possibilities to reach qe. Therefore, the induction hypothesis can be
applied to those symbols as well, meaning that the statements represented by Ai, j−1,X , Ai, j,Y

and Ai, j+1,Z are all true. By definition of R, this implies that the statement represented by
Ai+1, j,W is also true. This finishes the proof by induction and it follows that E represents a
true statement about the run of M on x#y. Contradiction!
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Since we have shown that EXISTSWINNING(G,5) is NP-hard and in NP, the theorem follows.

The situation is more difficult if the target language is specified by an NFA. We have the following
lower and upper bounds.

6.7 Proposition. The problem EXISTSWINNING(G,5) is PSPACE-hard and in NEXPTIME if G is

• the set of all context-free games or

• the set of non-recursive games with finite and self-delimiting replacement languages.

Proof. The problem can then be decided by applying the NP-algorithm from Theorem 6.6 to the
exponentially large input obtained by transforming the target language automaton into a DFA. This
shows that EXISTSWINNING(G,5)∈ NEXPTIME.

The lower bound follows from the same reduction that was used in Theorem 6.2 except that A is
not constructed. For the game constructed in the proof, a strategy that ever plays Read on some
symbol ai in a play on a0 is bound to lose. Therefore a type 5 strategy that wins on a0 exists if and
only the strategy constructed in the proof of Theorem 6.2 wins on a0. Hence, the reduction property
still holds.

It is not clear whether one of these bounds is tight. Note that if it is really possible to decide the
problem using polynomial space, then this would mean that it can be solved without ever storing
the type 5 automaton completely; but whenever the automaton is in some state q its behavior should
be the same; if the algorithm consists of simulating a play, then this would need to be achieved
without storing in the memory what the behavior in state q is. However, finding a stronger lower
bound also seems challenging. The reduction from Theorem 6.6 cannot be naı̈vely adjusted to
Turing machines that do not run in polynomial time because then the set of rules would already
be super-polynomially large. Another challenge in proving a stronger lower bound is that the
reduction would have to construct an NFA, but then the argumentation would be about the existence
of strategies obtained from the corresponding exponentially larger minimal DFA. We did not have
this difficulty in the proof of Theorem 6.6 because the A-state was always the same as the T -state.

For X ∈ {1,2,3,4}, it is not even known whether EXISTSWINNING(G,X ) is decidable if G is
the set of all context-free games. The problem here is that type 2 and 4 automata can be arbitrarily
large, so we cannot simply guess one as easily as in the case of type 5 automata, of which there exist
only finitely many. However, there are some interesting cases, where we can bound the necessary
number of strategy automata. The next theorem states upper bounds on the complexity for several
such cases.

6.8 Theorem. For X ∈ {1,2}, the problem EXISTSWINNING(G,X ) is in

• 3NEXPTIME if G is the set of games with self-delimiting replacement languages,

• 2NEXPTIME if G is the set of games with self-delimiting replacement languages where the
target language automaton is a DFA.

Further, for X ∈ {1,2,3,4}, the problem EXISTSWINNING(G,X ) is in
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• 2NEXPTIME if G is the set of non-recursive games with finitely many rules,

• NEXPTIME if G is the set of non-recursive games with a finite target language

Proof. Let G = (Σ,R,T ) ∈ G be a game and w ∈ Σ∗ a word. The approach is the same in all cases:
We show that if a strategy exists that wins on w, then there exists a strategy automaton A of k-fold
exponential size such that w ∈ L(σA). A kNEXPTIME-algorithm then works as follows:

1. Guess A in k-fold exponential time.

2. Construct a DFA T ′ recognizing L(T ) in exponential time.

3. Test whether w ∈ L(σA) in time polynomial in the size of (Σ,R,T ′), w and A, i. e. in time
k-fold exponential in the size of G and w.

The time bound on the 3rd step follows from Theorem 6.1. For the rest of this proof, we only need
to show that if a type X strategy exists that wins on w, then there exists a strategy automaton A
as stated above – with A being of type 2 if X ∈ {1,2} and of type 4 if X ∈ {3,4}. Note that the
converse of the last statement is trivial, since each type 2 strategy is also a type 1 strategy and each
type 4 strategy is also a type 3 strategy.

For the two cases where all games in G have self-delimiting replacement languages, the existence
of such A of 3-fold and 2-fold exponential size respectively is immediate from Theorem 4.20.

We consider now the cases that G is non-recursive. Then any play tree of a play on w has depth
at most |Σ f |+1. The root has |w| children.

If R is finite, then the number of children of a non-root node in a play tree is bounded by the
maximal length of a replacement word; this is bounded by maxa∈Σ f |Ra|. Thus, the number of nodes
of a play tree in the case that R is finite is bounded by

B = |w| ·max
a∈Σ f
|Ra||Σ f |+1 +1.

The set of states of the type 2 and 4 automata in the proof of Theorem 4.19 is a subset of Σ
≤B.

Clearly this is 2-fold exponential in the size of the input (with the bottleneck being the maximal
recursion depth |Σ f |).

If L(T ) is finite, then the length of a word in L(T ) is less than |Q|, i. e. the number of states of T .
Therefore, a strategy σ that wins on w plays less than |Q| Reads in a play on w. Thus, the play tree
of a play of σ on w has less than |Q| leaves. So altogether, such a play tree has at most

B = (|Σ f |+1) · |Q|

nodes. Therefore, the size of the type 2 and 4 automata in the proof of Theorem 4.19 is bounded
exponentially in the size of G (independently of w).

It should be noted that the data complexity of these problems is much lower, i. e. the complexity
if the game is fixed and the input consists only of w. In the case of self-delimiting replacement
languages, the upper bound drops to NP under data complexity, and for non-recursive games with
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finitely many rules it drops to NEXPTIME. This can be seen easily by analyzing the last proof. For
games with a finite target language the problem can even be solved in constant time because the set
of words for which a winning strategy exists is finite.

One could argue that the problems studied in this and the last section violate the idea of one-pass
strategies, since they require an input string as part of their input. In the one-pass setting, Juliet has
to choose a one-pass strategy without knowledge of the input word. In the next section, we will
study a problem that requires as input only a game and two strategy automata.

6.3. Comparing two strategies

Perhaps even more interesting than the complexity of determining whether a winning strategy for a
single word exists is the complexity of determining whether an optimal/optimum strategy exists
or whether a given strategy is optimal/optimum. For this, it is helpful to determine which of two
strategies is better. For a set G of context-free games and X ∈ {2,4,5}, we define the comparison
problem as follows.

COMPARE(G,X )
Given: A game G ∈ G and type X automata A1 and A2 for G
Question: Is L(σA1)⊆ L(σA2)?

The main theorem of this section states that the comparison problem is PSPACE-complete for
games with a target language DFA – even if restrictions are imposed that are a lot stronger than
non-recursiveness and finite, self-delimiting replacement languages.

6.9 Theorem. For X ∈ {2,4,5}, the problem COMPARE(G,X ) is PSPACE-complete if G is

• the set of games G = (Σ,R,T ) where T is a DFA or

• the set of games G = (Σ,R,T ) where T is a DFA, all replacement words have length 1 and G
is non-recursive such that all plays have depth at most 2

Proof. We first show the upper bound. Let G ∈ G be a game and let A1 and A2 be type X automata
for G. By Theorem 5.1, UFAs U1 and U2 recognizing L(σA1) and L(σA2) respectively can be
constructed in polynomial time. We need an algorithm that tests whether L(U1) ⊆ L(U2) using
polynomial space. IfN1 andN2 are NFAs obtained from U1 and U2 by swapping accepting and non-
accepting states, then a word is accepted by Ui (under UFA semantics) if and only if it is not accepted
byNi (under NFA semantics). Therefore, L(U1)⊆ L(U2) is equivalent to L(N2)⊆ L(N1). This can
be tested using polynomial space, since the containment problem for NFAs is PSPACE-complete
[7]. Therefore, COMPARE(G,X )∈ PSPACE.

We prove the lower bound by a reduction from the universality problem for NFAs (given an NFA
N over the alphabet {0,1}, does L(N ) = {0,1}∗?). As mentioned in the proof of Theorem 6.2,
this problem is PSPACE-complete [9, 7]. Like in earlier proofs it suffices to show the hardness for
the case X = 5.
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Let N = (QN ,{0,1},δN ,q0,FN ) be an NFA. We construct a game G = (Σ,R,T ) and type 5
automata A1, A2 for G such that L(N ) = {0,1}∗ if and only if L(σA1)⊆ L(σA2). If q0 /∈ FN , then
ε /∈ L(N ) and (G,A1,A2) can be chosen as a dummy No-instance. We therefore assume in the
following that q0 ∈ FN . We also assume without loss of generality that all states ofN are reachable
from the initial state q0 (otherwise, unreachable states can be removed).

We construct G = (Σ,R,T ) with {0,1} ⊂ Σ and automata A1 and A2 such that

(i) L(N ) = {0,1}∗ \L(σA1), i. e. N recognizes the language of words in {0,1}∗ on which σA1

does not win.

(ii) L(σA2) = Σ∗ \{0,1}∗, i. e. σA2 loses on exactly the words in {0,1}∗.

Note that this implies the reduction property: It holds that L(N ) = {0,1}∗ if and only if L(σA1)⊆
Σ∗ \{0,1}= L(σA2). So it suffices to show that we can construct G, A1 and A2 with (i) and (ii) in
polynomial time. An example of the subsequently described construction is shown in Figure 6.3.

For k ∈ {0,1} let
nk = max

q∈QN
|δN (q,k)|

be the maximum number of k-transitions leaving some state of N . We define the alphabet of G as

Σ = {0,1}∪{ki | k ∈ {0,1}, i = 1, . . . ,nk}∪{$q | q ∈ QN }.

The set R of rules of G is given by

k → k1 + · · ·+ knk for k ∈ {0,1}

ki→ $q0 for k ∈ {0,1} and i = 1, . . . ,nk

$q→ $q0 for q ∈ QN \{q0}.

Note that G is non-recursive with these rules and all plays have depth at most 2.
The target language automaton of G is T = (Q,Σ,δ ,q0,F), where Q = QN ∪̇ {q f } for some

new state q f /∈ QN , the set F = {q f } ∪̇QN \FN of accepting states consists besides q f of the
non-accepting states of N and the transition function δ is given as follows:

• For q ∈ QN and k ∈ {0,1}, the transitions for the symbols k1, . . . ,k|δN (q,k)| leaving q are
distributed so that each of them reaches a distinct state of δN (q,k),

• δ (q,k) = q for q ∈ QN and k ∈ {0,1},

• δ (q,$q) = q0 for q ∈ QU \{q0},

• all remaining transitions lead to the state q f .

The automaton T is in fact the minimal DFA for L(T ) because its states are reachable (by
assumption on N ) and pairwise non-equivalent: The two states q0 and q f are non-equivalent
because q f is accepting and q0 is non-accepting (since q0 is accepting in N by assumption). Each
remaining state q ∈ QU \{q0} is not equivalent to any other state of T because it is the only state
from which reading $q leads to a non-accepting state (namely q0).
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q1

q2

0

0

0

1

(a) NFA N

0 → 01 +02

1 → 11

01 → $q0

02 → $q0

11 → $q0

$q1 → $q0

$q2 → $q0

(b) Set of rules R

q0

q1

q2
q f

0,1

01

02

0,1,01

$q1 11

02,$q0 ,$q2

0,1

$q2

01,02,11,$q0 ,$q1

Σ

11,$q0 ,$q1 ,$q2

(c) Target language DFA T

q0

q1

q2
q f

01

02

01

11

02

01,02,11

01,02,11

11

(d) Type 5 automaton A1

q0

q1

q2
q f

0,1

Σ

$q0

(e) Type 5 automaton A2

Figure 6.3.: Example of an NFA and the rules, target language DFA, and strategy automata con-
structed from it in the proof of Theorem 6.9
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So, since T is minimal, we need to define the type 5 automataA1 andA2 like T except that some
edges are missing. The idea to achieve property (i) is that Romeo’s choice of replacement words
in a play of σA1 on an input word w ∈ {0,1}∗ shall correspond to the choice of a run of N on w;
Romeo shall have a chance to win on w if and only if there exists an accepting run of N on w.

To this end, we define A1 as the automaton obtained from T by keeping only the ki-edges (for
k ∈ {0,1} and i = 1, . . . ,nk). The automaton A2 is obtained from T by keeping only the transitions
for 0, 1 and $q0 leaving q0 and the loop transitions of q f .

The construction of G = (Σ,R,T ), A1 and A2 clearly requires only polynomial time. It only
remains to show that the properties (i) and (ii) hold.

Proof of (i): For the inclusion L(N )⊆ {0,1}∗ \L(σA1) let w be a word in L(N ). Since {0,1}
is the alphabet of N , clearly w ∈ {0,1}∗. Since w ∈ L(N ), there exists an accepting run of N
on w. Let q0, . . . ,q|w| be the sequence of states of this run. The strategy σA1 plays Call on each
symbol k ∈ {0,1}∗ from the input word, followed by a Read on the replacement symbol ki. If k
is the jth symbol of w, then induction on j shows that Romeo can choose ki so that the T -state
after the following Read is q j. So the T -state of the last configuration is q|w|. Since that state is
accepting in N , it is non-accepting in T by definition. Therefore, such a play is losing for Juliet,
hence w /∈ L(σA1).

To see the other inclusion, let w ∈ {0,1}∗ \L(σA1). There must exist a losing play of σA1 on w.
None of the configurations of this play can have T -state q f because q f is accepting and there are
no transitions leaving q f . Using the arguments from above in reverse direction, the sequence of
T -states of this losing play induces an accepting run of N on w. Hence, w ∈ L(N ).

Proof of (ii): Consider a play of σA2 on a word w ∈ Σ∗. If w ∈ {0,1}∗, then the strategy σA2

plays only Read moves and the A2-state is q0 all the time. Since, as mentioned above, we could
assume that q0 ∈ FN , it follows that q0 /∈ F and therefore A2 loses on words from {0,1}∗. This
shows that L(σA2)⊆ Σ∗ \{0,1}∗.

Conversely, if w ∈ Σ∗ \{0,1}∗, let x ∈ Σ\{0,1} be the first symbol in w that is not in {0,1}. If
x 6= $q0 then σA2 calls x and x gets replaced by $q0 . If x = $q0 or once x has been replaced by $q0 ,
the strategy σA2 reads $q0 and the new T -state is q f . This state cannot be left any more, and since it
is accepting, the play is winning. Thus, w ∈ L(σA2), which proves the other inclusion.

For the case that the target language is specified by an NFA, the previous result implies an
EXPSPACE upper bound for the comparison problem; if the strategy automaton is of type 5, then
the problem remains PSPACE-complete:

6.10 Corollary. Let G be the set of all context-free games. The problem COMPARE(G,X ) is
PSPACE-complete for X = 5 and in EXPSPACE for X ∈ {2,4}.

Proof. The EXPSPACE upper bound holds because the target language automaton can be trans-
formed into a DFA of exponential size and then the PSPACE-algorithm from Theorem 6.9 can be
applied.

For the case X = 5, the lower bound is immediate from Theorem 6.9. For the upper bound it
suffices to show that the problem is in NPSPACE. Let G = (Σ,R,T ), A1 and A2 be an input for the
problem. An algorithm can guess which transitions to insert into A1 so as to obtain a standard DFA
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T ′. Then it can be checked using polynomial space whether T ′ is the minimal DFA for the target
language [7] and whether also A2 can be obtained from T ′ be removing transitions. If that is the
case, the PSPACE-algorithm from Theorem 6.9 is applied with input G′ = (Σ,R,T ′), A1 and A2.
Otherwise the algorithm rejects. It is obvious that this algorithm accepts non-deterministically if
and only if A1 and A2 are type 5 automata for G and L(σA1)⊆ L(σA2).

Interesting open questions that are connected to the comparison problem are concerned with
the complexity of finding an optimal/optimum strategy. Like in the case of winning strategies, it
is not even clear whether it is decidable whether an optimum strategy exists. Even testing for a
given strategy whether it is optimal or optimum seems difficult. The natural approach would be to
guess an automaton of a strategy that is strictly better or incomparable to the given strategy; but the
problem is – again – that an upper bound on the necessary size of the guessed strategy automaton
would be needed.
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7. Summary

We studied several questions concerning the existence of optimum, optimal and winning strategies
of five types of one-pass strategies as well as the complexity of related problems. This chapter
contains a summary of the results and open questions, followed by a conclusion.

7.1. Results and open questions

The results regarding implications for optimum strategies are summarized in Figure 7.1. We showed
that in non-recursive games, games with a finite target language and games with at most finitely
many indistinguishability classes of one-pass strategies, the existence of an optimum one-pass
strategy guarantees the existence of an optimum strategy that is of type 5. However, if none of these
three conditions is satisfied, then the implications 1 =⇒ 3, 2 =⇒ 4 and 4 =⇒ 5 do not in general
hold – even if all replacement languages are singletons. It remains open whether the existence of an
optimum type 1 (or 3) strategy implies the existence of an optimum type 2 (or 4) strategy. We could
show that if replacement languages are self-delimiting, then this is the case for the implication
1 =⇒ 2.

We have shown that optimal strategies always exist in non-recursive games, games with a finite
target language and games with self-delimiting replacement languages. More generally, they exist
in games that have the bounded depth property. Perhaps one of the most important open questions
to which an answer could considerably improve the understanding of one-pass strategies is whether
every context-free game has this property. If this were the case, a direct consequence would be
that there always exists an optimal one-pass strategy; indirectly, this might also entail further
results that, so far, we were able to show only in the case of non-recursiveness or self-delimiting
replacement languages. In the case of finite target languages, even an optimal type 2 strategy is
guaranteed to exist because the implication 1 =⇒ 2 holds for these games; also the implication
3=⇒ 4 holds for games with a finite target language. It is open whether these two implications hold
more generally. Especially for the implication 1 =⇒ 2 there is hope that it holds at least for games
with self-delimiting replacement languages, and it might be possible to show this by adjusting the
arguments due to which this implication holds for optimum and winning strategies. A positive
answer would imply that every game with self-delimiting replacement languages has an optimal
type 2 strategy. The remaining implications for optimal strategies, however, do not in general hold
even if the conditions are satisfied under which they hold for optimum strategies. An overview of
our results regarding the existence of optimal strategies of the five types is given in Figure 7.2.

Finally, we have considered implications for winning strategies, i. e. whether for each input
word the existence of a winning strategy of one type implies the existence of a winning strategy
of a restricted type. The results are similar to those for optimal strategies, but additionally we
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could show that the implications 1 =⇒ 2 and 3 =⇒ 4 hold in the case of finitely many rules,
and the implication 1 =⇒ 2 also holds in the case of self-delimiting replacement languages. The
implications for winning strategies are summarized in Figure 7.3.

An overview of most of our complexity results is given in Table 7.1. We showed that deciding
whether an automaton strategy wins on an input word in a game is, in general, PSPACE-complete.
The problem is tractable, namely P-complete, if the target language is specified by a DFA. The
upper bound in this case follows from the possibility of constructing in polynomial time a universal
automaton recognizing the (regular) language of words on which the automaton strategy wins.
The lower bounds in both cases hold even if the game is restricted to be non-recursive and have
self-delimiting and finite replacement languages.

Further, deciding whether a type 5 strategy exists that wins on a given word in a given game is
NP-complete if the target language is specified by a DFA. If it is specified by an NFA, then the
problem becomes harder (presuming standard assumptions about distinctness of complexity classes)
and the complexity lies between PSPACE-hardness and NEXPTIME. For the case of strategies of
type 1, 2, 3 and 4 it is not clear whether the according problem is even decidable in the general
case. It is decidable, but presumably of high complexity, if conditions are satisfied that guarantee
that the implications 1 =⇒ 2 and 3 =⇒ 4 respectively for winning strategies hold and that allow an
upper bound on the necessary size of a strategy automaton. A result not listed in Table 7.1 is that
EXISTSWINNING(G,X ) is in NEXPTIME if G is the set of non-recursive games with a finite target
language.

Towards determining optimum or optimal strategies, it is useful to decide which of two automaton
strategies is better. Therefore, we defined the comparison problem. It is PSPACE-complete for the
case of type 5 automata or if the target language is given by a DFA. It seems likely that the problem
is harder in the case of type 2 and 4 automata if the target language is given by an NFA.
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R finite,
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limiting

R finite,
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ISWINNING(G,2)
ISWINNING(G,4)
ISWINNING(G,5)

PSPACE-complete P-complete

EXISTSWINNING(G,1)
EXISTSWINNING(G,2)

∈ 3NEXP ∈ 2NEXP ∈ 2NEXP ∈ 2NEXP

EXISTSWINNING(G,3)
EXISTSWINNING(G,4)

∈ 2NEXP ∈ 2NEXP

EXISTSWINNING(G,5) PSPACE-hard, ∈ NEXP NP-complete
COMPARE(G,2)
COMPARE(G,4)

∈ EXPSPACE
PSPACE-complete

COMPARE(G,5) PSPACE-complete

Table 7.1.: Complexity results

Further interesting open questions are concerned with the decidability and complexity of whether
an optimum one-pass strategy exists for a given game or whether a given strategy is optimum or
optimal. While some upper bounds for restricted cases can be deduced from the results above, the
general case as well as lower bounds remain open. One could soften the definitions of optimum and
optimal by saying that a strategy is type-5-optimum/optimal if it is optimum/optimal only among all
type 5 strategies (and not among all one-pass strategies). Since there exist only finitely many type 5
strategies for a game, a type-5-optimal strategy must exist. For the case that the target language is
given as a DFA, a PSPACE upper bound for determining whether a type-5-optimum strategy exists
or whether a given type 5 strategy is type-5-optimum/optimal follows easily from our results for
COMPARE(G,5); it is unclear whether this bound is tight.

7.2. Conclusion

We have seen that in several cases it is possible to use a one-pass strategy that is based on an
automaton and there is hope that this is possible in general. However, we can negate the hope that
one could restrict to strategy automata as simple as type 5 automata without losing strategic power.
The advantage of automaton strategies is, as mentioned in [3], that their moves can be computed
very efficiently. On the other hand, however, we have also seen that it is not generally possible to
find good strategies efficiently.

An issue with the original, unrestricted strategies for context-free games defined in [12] is that
it is undecidable whether a winning unrestricted strategy for a given word exists. This problem
is eliminated by left-to-right strategy, but it might arise again for one-pass strategies due to the
new aspect of incomplete information. This issue is certainly avoided if a game has self-delimiting
replacement languages. Indeed, self-delimiting replacement languages seem to be a realistic
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solution in practice because they can be achieved easily and with almost no overhead by suffixing
replacement words with an end-of-file symbol. Another setting in which many positive properties
hold is if the target language is finite. While finiteness of the target language may seem like a very
strong restriction, this is often the case in practice according to the discussion in [12].
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A. Appendix

We prove some further results that were mentioned above.

A.1 Theorem. There exists a game G that is neither left- nor right-recursive for which the implica-
tions 1 =⇒ 3 and 2 =⇒ 4 for optimum strategies do not hold.

Proof. Consider the game G = (Σ,R,T ) with Σ = {a,b}, the only rule being a→ bab and the
target language L(T ) = {uabv | u,v ∈ Σ∗} consisting of all strings with substring ab.

A type 2 automaton specifying an optimal strategy for G is given in Figure A.1. It wins on all
words containing the symbol a.

However, there exists no optimum type 3 strategy for G. For the sake of contradiction, suppose
σ were an optimum type 3 strategy for G. There must exist k ∈ N0 such that σ((âb)k,a) = Read
because otherwise the (unique) play of σ on a would be infinite. Since σ is a type 3 strategy, this
implies that σ(bk,a) = Read. But then σ loses on bka, and therefore σ is not optimum.

A.2 Theorem. There exists a non-recursive game G = (Σ,R,T ) with |L(Ra)|= 1 for each a ∈ Σ f

such that the implication 4 =⇒ 5 for optimal strategies does not semi-hold for G.

Proof. Consider the game G = (Σ,R,T ) over the alphabet Σ = {a,b,c,d} with rules given by

a→ dbcbd

b→ d

and target language automaton T as per Figure A.2a. Like in the proof of Theorem 4.17 it suffices
to show that the implication 4 =⇒ 5 does not hold for G, since G is non-recursive.

Since Romeo can never choose from more than one replacement word, a play is uniquely
determined by a one-pass strategy and the input word. Note that the state q2 of T is an error state,
so if it is entered during some play, then Juliet will surely lose.

The rest of this proof consists of two parts. First, we show that there exists an optimal type 4
strategy for G. Then we show that there exists no optimal type 5 strategy for G.

Existence of an optimal type 4 strategy:

b

â

a+b

Figure A.1.: Automaton of an optimum type 2 strategy for the game G in the proof of Theorem A.1
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Figure A.2.: Automata T and A for the proof of Theorem A.2

Consider the type 4 automaton A depicted in Figure A.2b. Note the correspondence between
states of A and states of T : When A is in state pi or p′i during a play of σA, then T is in its state qi.

We claim that σA is optimal. Suppose it is not, then there exists a type 1 strategy σ with
L(σA) ( L(σ). Let w ∈ L(σ) \L(σA) and let Π be the losing play of σA on w. Let K = (u,ev)
with u ∈ Σ

∗, e ∈ Σ f = {a,b} and v ∈ Σ∗ be the last configuration of Π up to which Π could also be
a play of σ , i. e. the first configuration with σ(u,e) 6= σA(u,e). There are several possibilities:

• If e = a, then σ would read a next, since σA always calls a. But then the error state q2 of T
is entered immediately and σ would lose on w. Contradiction.

• If e = b and the A-state of K is p1, then σ would lose again by reading b because the q2 is
entered. Contradiction.

• If e = b and the A-state of K is p′0, then the symbol that was read last was c. The current
symbol b is either the b in forth position in the replacement string dbcbd of a or from the
input word. In the former case, the next symbol of the current string is d. The strategy σ

would enter q1 upon reading b and then the error state q2 upon reading d, so σ would lose on
w. If the current b is from the input word w, then the invisible suffix of K is also from the
input word, i. e. w = ubv for some u ∈ Σ∗. Consider the (unique) plays of σ and σA on ub.
Both will have the configuration (u,b) with T -state q0. But σ loses on ub since the T -state
after reading b will be the non-accepting state q1, whereas σA wins on ub because the last
configuration will be (ub̂d,ε) with T -state q0. Hence ub ∈ L(σA)\L(σ), in contradiction to
L(σA)⊂ L(σ).

• If e = b and theA-state of K is p0, then the current symbol b is either the b in second position
in the replacement string dbcbd of a or from the input word, i. e. w = ubv for some u ∈ Σ∗.
In the former case, σ would lose because the error state q2 is reached after calling b and
reading d and c. In the latter case, it follows similarly to above that ubc ∈ L(σA)\L(σ), in
contradiction to L(σA)⊂ L(σ).

So we have a contradiction in each case and therefore σA is optimal.
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Nonexistence of an optimal type 5 strategy:
Let B be an arbitrary type 5 automaton for G. Since T is clearly the minimal DFA for L(T ), the

automaton B is obtained from T by removing edges. We construct a strategy σ that plays like σB

on input words not starting with a but differently on input words starting with a. The construction
will guarantee that σ wins on all words on which σB wins and additionally on a (and some other
words starting with a).

We first show that σB does not win on any word that starts with the symbol a. For the sake of
contradiction suppose σB does win on a word au with u ∈ Σ∗. Like before, σB must avoid entering
q2 in order to have a chance of winning. The strategy σB must first call a because otherwise q2

would be entered immediately. The d at the start of the replacement string dbcbd can only be read.
The configuration hereafter is (âd,bcbdu) with T -state q0. Here, σB must read b to avoid entering
q2 upon reading c later on. After reading b and then reading c, the new configuration is (âdbc,bdu)
and the T -state is again q0. Since σB is a type 5 strategy and σB played Read the last time when
the T -state were q0 and the current symbol was b, it must play Read again. But then the T -state
will be the error state q2 when the configuration (âdbcbd,u) is reached. Thus, σB does not win on
au in contradiction to out assumption.

A strategy σ that is strictly better than σB can be defined informally as follows:

• If the input word starts with a, then σ first calls a (so it gets replaced by dbcbd), then reads
d, b and c, calls b (so it gets replaced by d) and reads all remaining symbols (the first two of
which are both d).

• If the input word does not start with a, then σ plays like σB.

Since σ plays like σB on all input words not starting with a, so in particular on all strings in
L(σB), it also wins on all strings in L(σB). However, σ also wins on input a (and on some other
strings starting with a). So we have L(σB) ( L(σB) ∪̇ {a} ⊆ L(σ), which shows that σB is not
optimal.

A.3 Lemma (cf. [6, Theorem 5.6.1]). The emptiness problems for context-free grammars is P-
hard even if grammars are restricted to be non-recursive and replacement languages self-delimiting
(i. e. for each variable A, the language of strings that appear on the right hand side of rules for A is
self-delimiting).

Proof. We give a reduction from the P-hard emptiness problem for context-free grammars without
the stated restrictions (see [8, Corollary 11] and [6, Theorem 5.6.1]).

Let C = (V,Γ,P,S), where V is the set of variables, Γ the set of terminals, P⊂V × (V ∪Γ)∗ the
set of production rules and S ∈V the start variable. We will construct a non-recursive grammar with
self-delimiting replacement languages that describes the empty language if and only if C describes
the empty language.

We can achieve self-delimiting replacement languages as follows. If C contains two A→ u and
A→ uv for some A ∈V , u ∈ (V ∪Γ)∗ and v ∈ (V ∪Γ)+, then we remove the rule A→ uv. Clearly,
if the language of C is empty, the language of the new grammar is still empty because there exist
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fewer rules. Conversely, if it is possible to derive a word from S using the rules of C, then it is also
possible to derive a word from S without making use of the rule A→ uv. Hence, this adjustment
does not affect whether the language described by the context-free grammar is non-empty.

A Turing machine only requires logarithmic space to compute the context-free grammar that is
obtained by perform this adjustment repeatedly until replacement languages are self-delimiting:
The Turing machine iterates pairs of positions in the encoding of the context-free grammar. If both
positions denote the beginning of an encoding of a rule for the same variable A, the Turing machine
compares the two right hand sides symbol by symbol to check if one is a proper prefix of the other.
If that is the case, the rule with the longer right hand side needs to be removed. For this, the Turing
machine outputs the context-free grammar consisting of only those rules A→ u for which there
exists no rule A→ uv with a strictly longer right hand side.

To achieve non-recursiveness, observe that if L(C) is non-empty, then it also contains a string
that has a derivation tree of depth at most |V |. Indeed, in a derivation tree of depth greater than
|V |, some variable must occur twice (or more) on a path from the root to a leaf. This path can be
shortened by replacing the subtree rooted at the upper occurrence of the variable by the subtree
rooted at the lower occurrence, leading to a derivation tree for some other word. After repeating this
often enough, a derivation tree of depth at most |V | for a word in L(C) is obtained. A non-recursive
grammar C′ = (V ′,Γ′,P′,S′) with L(C′) = /0 if and only if L(C) = /0 can be constructed as follows:

• Define V ′ =
{

Ai
∣∣ A ∈V, i ∈ {1, . . . , |V |}

}
.

• For each rule A→w of P and all i = 1, . . . , |V |−1, introduce for P′ the rule Ai→wi+1, where
wi+1 is the string obtained from w by replacing each variable B in w by Bi+1. If w consists of
only terminals, also introduce the rule A|V |→ w.

• Define Γ′ = Γ and S′ = S1.

It is straightforward to check, due to the arguments above, that L(C′) = /0 if and only if L(C) = /0.
Further, the construction of C′ requires only logarithmic space.

The statement of the lemma follows, since the concatenation of two logarithmic space computable
functions can be computed using logarithmic space.
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