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1.  General Intoduction 

 

One of the leading objectives of chemical biology is the identification of bioactive small 

molecules that serve as efficient tools for studying biological phenomena 1. The chemical 

space covered by small molecules is really huge and due to time and matter constraints it is 

unfeasible to cover it by means of organic synthesis 2, 3. Therefore it is crucial to identify and 

explore the biologically relevant fraction of the chemical space.  

Natural products are a major source of inspiration as they co-evolved with proteins and are 

chemical entities that often show biological activities. The pronounced biological activity 

shown by natural products while participating in their biological role is attributed to their 

interaction with multiple proteins as substrates and targets. Nature is very economical in its 

design and synthesis of proteins and metabolites and exploits only a small fraction of the 

chemical space. Thus the chemical space used by natural products is not only compatible with 

protein structural space but also the size of such structural regions in the chemical space is 

limited. Thus the space used by natural products is enriched with bioactive structures that are 

regarded as biologically relevant and prevalidatd 4. Natural products bind to a variety of 

proteins during biosynthesis and often show diverse biological activities. These insights 

suggest that the structural parameters required for binding to evolutionary protein binding 

sites may lie in the core scaffold of the natural product which is fine tuned by substituent 

decoration. Thus scaffolds characteristic of natural product classes are ideal starting points for 

compound library synthesis for chemical biology and medicinal chemistry investigations 5-7. 

Natural product based synthesis employs the core structure of natural product as scaffolds for 

library synthesis. Natural product derived molecules employ frameworks identical to the core 

structure of a natural product in which different substituents are introduced at exactly the 

same positions as predetermined by nature. But in case of natural product inspired synthesis 

closely related frameworks of natural products can be employed in library synthesis. In this 

approach the relative positions, nature of substituents as well as the relative stereochemistry 

patterns can be varied, which enables to cover a larger chemical space of a particular 

structural class 8. 

To satisfy the ever increasing number and types of biological targets, bioactive small 

molecules must be available in the form of libraries of pure and well characterized molecules. 
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Hence there is great demand for efficient synthetic methodologies that can yield libraries of 

bioactive small molecules in fewer chemical steps and in a stereoselective manner. 

This thesis is based on the synthesis of natural product inspired compound collections. The 

second chapter describes the synthesis of compound collection based on indole derived 

indoloquinolizine and related analogs like harmicine scaffolds. The third chapter describes the 

asymmetric synthesis of a compound collection based on the tetrahydroxanthone scaffold. 
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2.1  Introduction 
 

The indole subunit (1) is a near-ubiquitous component of biologically active natural products, 

and its study has been a major focus of research for generations 9-12. The indole scaffold is 

termed as a “privileged scaffold” because of its ability to bind to multiple receptors, which has 

led to substituted indoles being termed as privileged structures which have applications across 

a wide range of therapeutic areas 13-16.  

 

Scheme 1 - Naturally occuring indole structures 

 

The indole ring system has become an important building block or intermediate in the 

synthesis of vast number of biologically active natural and synthetic products which comprise 

of simple to complex indole derived scaffolds, having a wide range of therapeutic targets, 

such as anti-inflammatories, phosphodiesterase inhibitors, 5-hydroxytryptamine receptor 

agonists and antagonists, cannabinoid receptors agonists, HMG-CoA reductase inhibitors and 

many more 17-19. 

An important class of indole derived scaffolds are the tetracyclic tetrahydro-β-carboline ring 

systems like harmicine, indoloquinolizine and related analogues as depicted in Scheme 2. The 

indoloquinolizine scaffold and analogues have the tetrahydro-β-carboline ring fused to a 6-

membered ring as the core scaffold e.g. yohimbine (5), vallesiachotamine (6) and 10-

hydroxyaugustine (7) while the harmicine alkaloid 20 (9) has the tetrahydro-β-carboline ring 

fused to a 5-membered ring as the core scaffold as depicted in Scheme 2. Establishing new 

methodologies for the facile synthesis of the indole derived indoloquinolizine and related 

analogues is a highly demanding and challenging goal for the synthetic organic community. 

Compound collections built upon these complex scaffolds might afford diversly bioactive 

small molecules as drug and probe candidates. 
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Scheme 2 - Natural and synthetic small molecules with the tetracyclic tetrahydro-β-carboline as core scaffold 
 

Selected examples from the methods known for the synthesis of the indoloquinolizine and 

harmicine scaffolds are depicted in the following section. 

 

In 1976 Wenkert et al. 21 reported a general two step procedure for the synthesis of 

indoloquinolizine wherein a dithionite reduction of the pyridinium salt (10) (formed by 

alkylation of the appropriate pyridines with trytophyl bromide) resulted in a 1,4-

dihydropyridine derivative (11), which without isolation is converted into the tetracyclic 

indoloquinolizine (12) on mild acid treatment in high yields. Despite the presence of two 

enamine units in the intermediate the reaction proceeded regiospecifically (Scheme 3a). This 

was followed by a report in 1989 by Lounasmaa et al. 22 where they reported the reduction of 

the pyridinium salts (13) with NaBH4 followed by cyanide trapping resulting in α-

aminonitriles (14) which on treatment with AcOH yielded the desired indoloquinolizine (15) 

in moderate yield (Scheme 3b). 

Scheme 3 – Indoloquinolizine synthesis starting from pyridinium salts 
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In 1992 Waldmann et al. 23 reported the synthesis of indolo[2,3-a]quinolizidin-2-ones (19) 

(Scheme 4a),  wherein a Schiff base derived from tryptamine (16) reacted with a Danishefskys 

diene (17) in the presence of ZnC12 to give enaminone (18) which was subjected to an acid 

catalyzed cyclization resulting in indolo[2,3-a]quinolizidin-2-ones (19) in trans/cis ratio of 4-

5 : 1 and in moderate to high yields. These tetracyclic aminoketones may serve as viable 

intermediates in the construction of complex alkaloids. In 2013 J. Carlos Menndez et al. 24 

reported a cerium(IV) ammonium nitrate (CAN)-catalyzed sequential multicomponent 

reaction between tryptamine (3), α,β-unsaturated aldehydes (21), and β-dicarbonyl 

compounds (20) affording highly substituted indolo[2,3-a]quinolizines (24) in moderate to 

good yields in a single synthetic operation. The reaction mechanism proceeded via CAN 

catalyzed formation of β-enaminone (22) derived from tryptamine and the β-dicarbonyl 

compound, which underwent a Michael addition with the α,β-unsaturated aldehyde (21) 

followed by a 6-exo-trig cyclization resulting in a hemiaminal (23) which undergoes a Pictet-

Spengler cyclization affording the indoloquinolizine in excellent diastereoselectivity. In case 

of an electon deficient indole ring the reaction lead to N-indolylethyl-1,4-dihydropyridines 

(25), which was cyclized to the corresponding indolo[2,3-a]quinolizines (24)  in the presence 

1:1 mixture of 35% aqueous HCl in methanol as depicted in Scheme 4b. 

 

Scheme 4 – Synthesis of indoloquinolizines via enaminones 
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In 2007 King 25 developed a racemic synthesis of harmicine, via a simple three-step procedure 

in which the indole amide (26) (obtained from N,N'-dicyclohexylcarbodiimide (DCC) 

coupling between indole-3-acetic acid and 4-aminobutyraldehyde diethyl acetal, 95% yield) 

was treated with BF3·Et2O, forming an acyliminium salt which then underwent a Pictet-

Spengler reaction to give δ-lactam (27). Reduction of δ-lactam with alane (formed in situ from 

LiAlH 4 and sulfuric acid) gave the desired (±)-harmicine (28) in 69% overall yield (Scheme5). 

 

 

Scheme 5 - Synthesis of harmicine via N-acyliminium stratergy 

 

In 2007 D. J. Dixon et al. 26 also came up with a N-acyliminium ion stratergy for the synthesis 

of harmicine and indoloquinolizidine analogs. They developed a Au(I) (Au(PPh3)OTf 

(1mol%)) catalyzed  one pot cascade sequence between linear alkynoic acids (29) and 

tryptamine (3), wherein a cyclic enol ester (30) (formed by gold activation of the alkyne (29) 

followed by intramolecular cyclization with the carboxylic acid) would undergo aminolysis 

with tryptamine (3) followed by bronsted acid (Au(I) itself) catalyzed N-acylimminium ion 

formation (31). Finally nucleophillic addition of the indole onto the iminium ion 31 provided 

the desired product (32). High yields were obtained when both hexynoic (29b) and pentnoyic 

(29a) acids were employed (Scheme 6a). In 2013 Hong Liu et al. 27 reported a similar one pot 

cascade polycylization reaction where non-linear aromatic 2-ethnyl benzoic acid (33b) or 2-

ethnyl phenyl acetic acids (33a) were employed in place of linear alkynoic acids with 

tryptamine (3) in the presence of Au(I) (Au[P(t-Bu)2(o-biphenyl)][CH3CN]SbF6) (5mol%) 

and TFA (20mol%) resulting in the formation of polycylic analogues of harmicine (35a) and 

indoloquinolizidine (35b)  in good to moderate yields. The reaction mechanism was similar to 

the one described by Dixon et al. (Scheme 6b). 

 

In 2012 Ramanathan et al. 28 reported a Bischler–Napieralski approach towards harmicine 

synthesis, where instead of POCl3, triflic acid in combination with molecular sieves (MS) was 

used for the dehydrative cyclization of imides. (±)-Harmicine (39a) was obtained in this 

manner, wherein condensation of tryptamine (3) with succinic anhydride (36a), followed by 

imide (37a) cyclization using the triflic acid/MS protocol followed by in situ reduction with 
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NaBH4 yielded the γ-lactam (38a). The lactam was finally reduced with LiAlH4 yielding the 

desired harmicine alkaloid (39a). Use of glutaric anhydride (36b) in place of succinic 

anhydride would lead to indoloquinolizidine (39b) based scaffolds following the similar 

procedure as depicted in scheme 7. 

Scheme 6 – Synthesis of polycylic harmicine and indoloquinolizine analouges using linear and non-linear 
alkynoic acids 

 

 

Scheme 7- Bischler–Napieralski approach towards harmicine alkaloids.
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2.2  Aim of the project 
 

Organic synthesis has exploited only a limited natural product space in its collection of small 

molecules. Efficient synthesis of complex natural product based frameworks and compound 

libraries based on these scaffolds are formidable challenges. However novel and privileged 

polycyclic frameworks might yield molecules with the most diverse physical, chemical and 

biological properties. The fusion of several rings leads to geometrically well-defined rigid 

polycyclic structures and thus holds the promise of a high functional specialization resulting 

from the ability to orient substituents in three dimensionalsspace. Therefore, efficient 

methodologies resulting in polycyclic structures from biologically active heterocyclic 

templates are of interest to both organic and medicinal chemists. 

 

In view of importance of the indoloquinolizine scaffold as a biologically active heterocyclic 

template, and a keen interest in finding new methods that are not only viable for synthesis but 

would also generate more diversity around the indoloquinolizine scaffold, a retrosynthetic 

approach for the synthesis of the desired indoloquinoizine scaffold 40 was devised as depicted 

in Scheme 8.  

 

 

Scheme 8 - Retrosynthetic analysis of the indoloquinolizine scaffold. 

  

The desired indoloquinolizine 40 was dissected at two points on retrosynthetic analysis. The 

first dissection at point a yielded the tetrahydro-β-carboline ring tethered to an alkyne (42). 

The compound 42 on being further dissected at point b yielded simple precursors whose 

synthetic equivalents turned out to be tryptamine (3) and acetylenic aldehydes (43). It was 

envisioned that the acetylenic aldehydes and tryptamines would cyclize in a Pictet-Spengler 

reaction to yield the tetrahydro-β-carboline (42), which under suitable 
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reaction conditions would undergo hydroamination to provide the desired indoloquinolizine 

(40). 

 

2.3  Pictet-Spengler cyclization 

The reaction was discovered in 1911 by Ame Pictet and Theodor Spengler. The Pictet-

Spengler reaction, in its simplest form, consists of the condensation of a beta-arylethylamine 

with a carbonyl compound to yield a tetrahydroisoquinoline or tetrahydro-β-carboline. This 

reaction is best carried out under acidic or neutral conditions, although examples under basic 

conditions are also reported 29-31.  
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Scheme 9 – General mechanism of the Pictet-Spengler cyclization 

 

The mechanism of the reaction begins with the protonation of the carbonyl oxygen (46) by the 

acid which is subsequently attacked by the amine of the tryptamine (3). Proton transfer steps 

and loss of water molecule results in a protonated imine intermediate (47), which then 

undergoes a 6-endo-trig cyclization reaction followed by a final deprotonation restoring the 

aromaticity of the indole ring and resulting in the tetrahydro-β-carboline product (49) 

(Scheme 9).  

Nucleophillic aromatic rings such as indole and pyrrole result in good yields of the product 

under mild conditions, while the less nucleophilic aromatic rings such as benzene or indoles 
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with electron withdrawing substituents on the benzene ring give poor yields even under harsh 

conditions. 

The PS reaction has been established as one of the most powerful methods for the synthesis of 

1,2,3,4-tetrahydro-β-carboline and tetrahydroisoquinoline cores. The tetrahydro-β-carboline 

template possesses multiple sites for modification, allowing it to be ideally suited for 

combinatorial elaboration; hence combinations of various reactions with Pictet–Spengler 

condensation in a sequential tandem fashion have been studied by several research groups for 

synthesis of complex indole scaffolds. 32, 33 

The importance of this reaction as one of the key steps in the synthesis of indole alkaloids 

having the β-carboline core incorporated in them has led synthetic organic chemists to find 

new catalysts or condensation agents as well as methods for the synthesis of this heterocycle. 

Over the years this reaction has been extensively modified to different variants and promoted 

by various catalysts described in many reviews. A few examples of the achiral catalyst 

employed in the PS reaction  over the years; we have protic acids like TFA 34, HCl 35, H2SO4 

36; Lewis acids like BF3.Et2O 37, AuCl3/AgOTf 38 and lately lanthanide triflates 39-41  have also 

come up as efficient Lewis acid catalysts; halosilanes like chlorotrimethylsilane 42 and 

molecular iodine 43 are also used as efficient condensation agents for the PS reaction. The PS 

cyclization reaction has also been subjected to different conditions from classic room 

temperature and heating conditions, to being subjected to microwave 44 and ultrasound 

treatment 45 to obtain better conversions and yields. 

In accordance with the retrosynthetic analysis and based on a sound literature overview, the 

Pictet-Spengler cyclization was found to be the key method for the synthesis of the 

tetrahydro-β-carboline core required to lead to the desired indoloquinolizine scaffold (40). 

 

2.4 Hydroamination of alkynes 

 

Hydroamination of alkynes is one of the most desirable transformations in organic chemistry. 

It represents the most atom economic process for the formation of enamines (55) and imines 

(56) which are important building blocks in organic synthesis (Scheme 10). Hydroamination 

is the direct addition of ammonia or primary and secondary amines across a carbon-

carbon multiple bond of an alkene (50), alkyne (53), diene, or allene.  
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Scheme 10 – Hydroamination reaction of alkyne and alkene 

 

Amines generally do not react spontaneously with alkynes (as long as they are not activated 

by electron withdrawing substituents) due to electrostatic reasons as both species may be 

regarded as electron rich. As a consequence, hydroaminations of alkynes is generally achieved 

in the presence of electrophilic catalysts. 

Over the years there have been many reviews on the hydroamination of alkynes, stating the 

developments with regard to newer catalysts (especially metals) used to catalyze this reaction 
46-49. As a short overview of the different metals used over the years from these reviews, we 

have stoichiometric Hg, Ca compounds, late transition metals like Ir, Pt, Rh, Ru, Ni and Pd; 

group 4 metals (early transition metals) Ti , Zr and Hf ; Lanthanides (La, Sm and Nd) and 

actinides (U and Th). Some of the drawbacks encounterd with the use of these metals are as 

follows; Hg and Th are higly toxic elements, lanthanide and actinide metals as well as early 

transition metals are higly sensitive to air and moisture needing higly anerobic conditions, and 

lastly as compared to early transition metals the late transition metals show decreased 

sensitivity to air and moisture as well as better functional group tolerance, but are expensive.   

An important metal that came up during the quest for finding a better catalyst for the 

hydroamination reaction was gold 50. Gold catalysis has lately from the year 2000 attracted 

great interest. A few characteristic that have rendered gold catalyzed reactions synthetically 

attractive are the diverse range of reactions it can catalyze, mild reaction conditions, Au(I) is 

generally tolerant of oxygen, minimum use of additives, straight forward workups, easily 

available precatalysts, orthogonal reactivity to many transition metal cataylzed processes as 

well as providing significant increase in the molecular complexity of the formed product. 

Gold complexes behave as strong Lewis-acids with exceptional ability to activate π-systems 

which has been attributed to relativistic effects 51. A diverse range of transformations in gold 

catalysis is based on the activation of the alkyne by gold salts and complexes especially for 

nucleophilic attacks as depicted in Scheme 11. The nucleophile adds trans to the coordinating 

gold complex (58) and results in a Markonikov product (60) in most cases. 
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Scheme 11 – Activation of alkyne towards nucleophillic attack 

 

Gold catalyzed intramolecular hydroamination of alkynes has been identified as an important 

synthetic reaction for the synthesis of various five- and six-membered N-heterocycles such as 

indoles, pyrroles, quinolones, and isoquinolines in an efficient and atom-economic manner 

and has received considerable attention. A few examples of the hydroamination rection via 

gold catalyzed 6-endo-dig cyclization in literature are described below. 

In 2008 Takemoto et al. 52 reported the synthesis of hydroisoquinoline via a Au(I) catalyzed 

hydroamination reaction, wherein N-Boc-o-alkynylbenzylamine (61) on treatment with 

1mol% of Au(PPh3)NTf2 in 1,2-dichloroethane as solvent with 5 equivs of EtOH at room 

temperature, underwent  hydroamination  reaction via 6-endo-dig mode yielding the desired 

1,2-dihydroisoquinoline (62). The reaction resulted in good yields with aromatic substituents 

on the alkyne but was not effective for alkyl substituents. Other protecting groups such as 

Cbz, Ms in place of Boc were also well tolerated. This reaction also showed the importance of 

EtOH as an additive for the acceleration of the desired hydroamination reaction (Scheme 12). 

 

 

Scheme 12 - Synthesis of 1,2-dihydroisoquinolines through hydroamination 

 

In 2010 Hong Lui et al. 53 reported a silver and gold mediated intramolecular cyclization 

(hydroamination in this case) to substituted tetracyclic isoquinolizinium hexafluorostilbates 

(65). A mixture of o-alknyl phenyl tetrahydroisoquinoline (63) with 100mol% AgSbF6 and 

10mol% Au(PPh3)Cl in toluene as solvent was refluxed for 12h yielding the desired 

tetracyclic isoquinolizinium stilbates (65). Mechanistically the reaction proceeded by the 

initial activation of the alkyne by the gold catalyst followed by nucleopillic attack by amine 

(hydroamination reaction) via 6-endo-dig mode forming the intermediate (64), which on 

subsequent oxidative aromatization followed by complexation with hexafloroantimonate 
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anion generated the desired stilbates (65). The reaction tolerated aromatic as well as aliphatic 

substitutents on the alknyl group (Scheme 13). 

 

 

Scheme 13- Synthesis of tetracyclic isoquinolizinium hexafluorostilbates 

 

In 2009 Liu-Zhu Gong et al. 54 developed a reaction which directly transformed 2-(2-

propynyl) aniline (66) derivatives into tetrahydroquinolines (70) in one operation with 

excellent enantioselectivity under the relay catalysis of an achiral Au complex (Au(PPh3)CH3 

(5mol%) and a chiral phosphoric acid (68). The reaction was a consecutive catalytic process 

consisting of a Au-catalyzed intramolecular hydroamination (via 6-endo-dig cyclization) 

furnishing the 1,4-dihydroquinoline 67, followed by isomerization of 67 by chiral bronsted 

acid (68) and ultimately the assymetric transfer hydrogenation with a Hantzsch ester (69) 

producing optically active 70. The reaction tolerated aromatic and aliphatic substituents on the 

alkyne as well as electron donating and withdrawing substituents on the aniline moiety 

resulting in very good yields and enantioselectivities (Scheme 14). 

  

Scheme 14- Synthesis of tetrahydroquinolines with good enantioselectivity 

 

Inspired by these above results on gold catalyzed intramolecular hydroamination of alkynes 

via 6-endo-dig cyclization and many other reports in literature describing similar reactions,  
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gold was pursued as a catalyst for the hydroamination step in the reaction sequence leading to 

the desired indoloquinolizine (40) as in Scheme 8. 

 

2.5  Results and Discussion  
 

Based on a sound literature overview on the devised retrosynthetic approach (as in Scheme 8), 

Pictet-Spengler cyclization was employed for the synthesis of the tetrahydro-β-carboline core 

(42) followed by the gold catalyzed hydroamination reaction yielding the desired 

indoloquinolizine core (40). 

Hereafter is described the synthesis of precursors and optimizations leading to the three 

different indole based scaffolds achieved in the course of this project.  

 

2.5.1  Synthesis of indoloquinolizine based indole scaffold  

In accordance with the retrosynthetic plan o-alknyl benzaldehydes 72 and tryptamines 71 

were employed as starting precursors to achieve the synthesis of the desired indoloquinolizine 

scaffold (75). The starting materials were expected to cyclize in an Pictet-Spengler reaction 

(step a) to yield the tetrahydro-β-carbolines (73), which under suitable reaction conditions 

would undergo a hydroamination reaction (step b) with the alkyne to give the desired 

indoloquinolizine scaffold 75 (Scheme 15). 

 

Scheme 15- Proposed route for the synthesis of the desired indoloquinolizine  
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2.5.1.1  Optimization of individual steps (a and b)  

 

Optimization of Pictet-Spengler cyclization step a 

In an attempt to find a suitable catalyst for the Pictet-Spengler cyclization, o-alknyl phenyl 

benzaldehyde 76 and tryptamine 3 were used as model substrates. The starting materials were 

subjected to acid catalysis which is a classic condition for effecting the Pictet-Spengler 

reaction (Scheme 16) as depicted in Table 1 and Table 2. 

 

Scheme 16 – Pictet-Spengler cyclization for the synthesis of 77 

 
Table 1 Optimization of the Pictet-Spengler cyclization step catalyzed via Brϕnsted acids 

aIsolated yield of the Pictet-Spengler product, bThe RM was stirred at RT for 12 h followed by heating at 500C 
for 12h 

 

Treatment of the starting materials with 1 equiv of trifloroacetic acid  in DCM (Table 1, entry 

1)  led to only 20% yield of the PS product (77) and even heating the reaction mixture to 50oC 

in toluene  (entry 2) resulted only in 40% yield of 77. Meanwhile other Brϕnsted acids such as 

p-TSA did not improve the yield of 77 (entry 4), while benzoic acid resulted in no reaction 

(entry 3). Subjecting the starting materials to a stronger Brϕnsted acid such as TfOH (entry 5) 

also resulted in low yield of the PS product (77). 

 
 
 

Entry Catalyst 
(equiv) Temperature (0C) Solvent Time  

(h) 
Result / Yielda 

(%) of 77 

1 TFA (1) RT DCM 24h 20 

2  50 Toulene 24h 40 

3 Benzoic acidb (1) RT to 50 Toulene 24h NR 

4 p-TSAb (1) RT to 50 Toulene 24h 30 

5 TfOHb (0.5) RT to 50  Toulene 12h < 10 
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Table 2  Optimization of the Pictet-Spengler cyclization step catalyzed via Lewis acids 

Entry 
Catalyst 
(mol% ) 

Tempeature  (oC) Solvent 
Time 
(h) 

Result  / Yielda 
(%) of 77 

1 
BF3.Et2O  
(1 equiv) 

RT to 50 Toulene 24 Low yielding  

2 Yb(OTf)3 (10) MW, 120 DCM 1 12 

3 
Yb(OTf)3 (10), 

IL b 
RT DCM 24 65 

4 
Yb(OTf)3 (10), 

IL b 
MW, 120 DCM 1 74 

aIsolated yield of the PS product, MW – Microwave, bIL- ionic liquid [bmim]Cl-AlCl3 – (0.32 ml/ mmol of 3) 

 

Without much success with Brϕnsted acids as catalyst for the PS cyclization, Lewis acid 

catalysts were next employed to catalyze the PS cyclization (Table 2). As depicted in Table 2 

treating the starting materials with 1 equiv of BF3.Et2O resulted in low yields of 77. During 

optimization, a literature overview on catalysts employed for PS cyclization, led to reports on 

the use of lanthanide triflates as Lewis acid catalysts by Ganesan et al. 39 

N
H

NH2
+

R1
O

R2 Yb(OTf)3 (10 mol%), DCM

MW, 120oC, 1h

N
H

R1

R2

( R1 = H, CO2Me ) ( R2 = Ph )
80, yields (89 - 96%)

78 79
 

 

This study established Yb(OTf)3 as a highly effective achiral Lewis acid catalyst for PS 

cyclization of tryptophans and tryptamine (78) with the latter needing the addition of 50 mol% 

of ionic liquid [bmim]Cl-AlCl3. Motivated by the above results starting materials 3 and 76 

were treated with 10 mol% of Yb(OTf)3 and subjected to microwave irradiation resulting in 

very low yield of the PS product (Table 2, entry 2). However addition of 50 mol% of ionic 

liquid to the reaction mixture at room temperature enhanced the yield of 77 to 65% (entry 3) 

and on microwave irradiation the yield of 77 was further improved to 74% (entry 4). Thus 

Yb(OTf)3 proved to be an effective catalyst for the PS cyclization with substrates 3 and 76 in 

the presence of ionic liquid as an additive. 
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Optimization of the hydroamination step b 

 

Scheme 18 – Hydroamination step resulting in the desired indoloquinolizine. 

 

With successful optimization of the first step ie the Pictet-Spengler cyclization the next task 

was to find a suitable catalyst for the second step i.e. intramolecular hydroamination of the 

alkyne in 77 with the secondary amine via a 6-endo-dig mode of cyclization yielding product 

81 or via 5-exo-dig mode of cyclization yielding product 82.  The PS product 77 was screened 

with a few homogeneous silver and gold catalysts at room temperature in particular the latter 

due to its high alkynophilicity for terminal and internal triple bonds rendering them active for 

nucleophillic attack. 

Table 3  Optimization of the hydroamination step b. 

Entry Catalyst  
(mol %) Solvent Time (h) Yielda (%) of 

81 

1 AgOTf (10) DCE 24 trace 

2 AgSbF6 (10) DCE 24 trace 

3 AuCl(SMe2) (10) DCE 1 25 

4 Au(PPh3)OTf (10) DCE 1 40 

5 Au(PPh3)SbF6(10) DCE 1 35 

6 AuCl3 (10) DCE 1 37 

7 Cat Y DCE 1 62 

8 Cat X DCE 1 42 

9 Cat Y CH3CN 1 48 

10  Toulene 1 NR 
aIsolated yield , all the reactions were performed at 0.1 mmol scale in 2 ml of solvent 
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As depicted in Table 3 both silver salts AgOTf and AgSbF6 (Table 3, entry1 and 2) failed to 

provide any hydroamination product. The reaction was next examined with selected gold 

complexes. Treatment of 77 with 10 mol% of AuCl(SMe2) at room temperature resulted in 

25% yield of the hydroamination product 81, but even on heating the reaction mixture to 50oC 

the reaction never went to completion. Resorting to cationic Au(I) phosphine complexes 

(entry 4) Au(PPh3)OTf  generated in situ resulted in an improvement in the yield of 81. Under 

the same reaction conditions Au(PPh3)SbF6 (entry 5) and AuCl3 (entry 6) were similarly 

effective at room temperature. The use of stable cationic Au(I) complexes with bulky 

biphenyl-based phosphines ie catalysts Y and X (entries 7 and 8) at room temperature were 

found to be effective hydroamination catalysts. In DCE Catalyst Y provided a good yield 

(62%) of the indoloquinolizine 81. However its catalytic efficiency in CH3CN was 

comparatively lower. Owing to very low solubility of catalyst Y in toluene no hydroamination 

product was observed. The screenings with gold complexes in all cases resulted exclusively in 

the formation of 6-endo-dig product 81 (confirmed through 1H NMR) and no 5-exo-dig 

product 82 was observed. Two important observations noted while monitoring the reaction 

were, firstly longer reaction times resulted in reduced yields of 81 and secondly loss of 

compound 81 was observed over normal silica gel column chromatography. Basified silica gel 

didn’t show any improvement in the yields, due to which the crude reaction mixture was 

subjected to fast column chromatographic purification. These observations were attributed to 

the lower stability of the hydroamination product 81. 

 

2.5.1.2  Attempted one-pot synthesis of indoloquinolizine 81. 

With successful optimization of the two individual steps (a and b), the next challenge was to 

develop a one-pot synthesis yielding product 81, with both the catalytic cycles working 

sequentially (Scheme 19). 
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Scheme 19 - One-pot process for the synthesis of indoloquinolizine 81 

 

Table 4   Efforts for the one-pot cascade synthesis of indoloquinolizine 81 
 

.aIsolated yield, bIL- Ionic liquid [bmim]Cl.AlCl3 (0.32ml/ mmol of 3), cthese reactions were also performed at  
RT but failed to provide the hydroamination product. 

 

As shown in Table 4 the catalysts for the optimized conditions (entries 1 and 2) of steps a and 

b were mixed and screened under different conditions to establish a cascade/one-pot process. 

A mixure of the substrates 3 and 76 in the presence of 10mol% of Yb(OTf)3 and ionic liquid 

along with catalyst Y (10 mol%) in DCM at room temperature (entry 3) resulted only in the 

Entry Catalyst (mol %) Solvent Temp (oC) Time 
(h) 

Yielda (%) 

77 81 

1 Yb(OTf)3 (10)+ ILb DCM MW, 120 1 74 - 

2 Cat Y (10) DCE RT 1 - 62 

3 Yb(OTf)3 (10)+ILb + Cat Y (10) DCM RT 24 50 - 

4 Yb(OTf)3 (10)+ILb + Cat Y (10) DCE reflux 24 30 - 

5 Yb(OTf)3 (10) +ILb + Cat Y (10) DCE MW, 120 1.5 28 - 

6c Yb(OTf)3 (10) +ILb + Cat Y (10) 
DCE:EtOH 
(5 equiv) 

MW, 120 1.5 20 - 

7c Yb(OTf)3 (10) +ILb + Cat Y (10) i-PrOH MW, 120 1.5 15 - 

8 
Yb(OTf)3 (10) +ILb + Au(PPh3)OTf 

(10) 
DCE RT to reflux 24 20 - 

9 Yb(OTf)3 (10)+TMSCl (1 equiv) 
DCM:THF 

(4:1) 
RT 24 75 - 

10 Yb(OTf)3  (10) +TMSCl (1 equiv)  
+ Cat Y (10) 

DCM:THF 
(4:1) 

RT to reflux 24 30 - 
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PS product 77 and no hydroamination product 81 was observed. Refluxing the reaction 

mixture in 1,2-dichloroethane (entry 4) or subjecting it to microwave irradiation (entry 5) at 

120oC also resulted only in product 77. Use of solvents like iPrOH or DCE with 5 equivalents 

of ethanol also failed to provide the product 81 (entries 7 and 6). Use of Au(PPh3)OTf as a 

catalyst in place of catalyst Y also resulted in the Pictet-Spengler adduct 77 (entry 8). Using 1 

equivalent of TMSCl as an additive with Yb(OTf)3 in place of ionic liquid, which is also 

known to catalyse the PS reaction (entry 9), resulted in product 77. 

An important criterion for a cascade reaction is the compatibility between the reacting 

substrates, solvent and especially the different catalysts involved. Literature reports showed 

Au as a catalyst working in harmony with Yb complexes 55 as well as with ionic liquids 56. In 

order to check the compatibility of the various reacting species in the present system (Scheme 

20) some control experiments were set up to realize the conversion of the Pictet-Spengler 

product 77 into indoloquinolizine 81 as depicted in Table 5. 

 

Scheme 20 – Control experiments to realize the conversion of 77 into 81. 

Table 5   Control experiments 

Entry Condition Yield a (%) 81 

1. PS Product + Cat Y (10 mol%) 62  

2. 
PS Product + Cat Y (10 mol%) +  

Yb(OTf)3 (10 mol%) 
 59  

3. PS Product + ILb + Cat Y (10 mol%) NR 

4. 
PS Product + ILb + Cat Y (10 mol%) + 

 Yb(OTf)3 (10 mol%) 
NR 

aIsolated yield, bIL- Ionic liquid [bmim]Cl.AlCl3 (0.32ml/ mmol of 3), the reactions were carried out in DCE as 
solvent at 0.1 mmol scale,  
 

Addition of 10 mol% of Yb(OTf)3 (entry 2) to the reaction mixture (in entry 1) resulted in 

product 81 without much difference in the yield of the isolated product. Surprisingly addition 
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of (IL) ionic liquid [bmim]Cl.AlCl3 (0.32ml/ mmol of 3) (entry 3) to the reaction mixture (in 

entry 1) failed to give the hydroamination product 81 either at room temperature or by 

refluxing the reaction mixture in DCE. Similar results were also observed when 1 equivalent 

of TMSCl was used as an additive in place of the ionic liquid. Based on the above 

observations it was concluded that ionic liquid was important for the Pictet-Spengler 

cyclization but was not compatible with the hydroamination step and hence impeded the one-

pot process (entry 4).  Thus a two-step reaction sequence was developed to synthesize the 

desired indoloquinolizine 81. 

 

2.5.1.3  Scope of the Reaction 

With successful optimization of a two-step protocol for the synthesis of indoloquinolizine 81, 

the scope of this two-step procedure was investigated. 

 

Synthesis of O-Alknyl benzaldehydes 

o-Alknyl benzaldehydes were prepared following the known procedure 57 in which o-bromo 

benzaldehyde and the corresponding terminal alkyne were subjected to a Sonogashira reaction 

resulting in the desired o-alkynyl benzaldehydes (Scheme 21). 

 

Scheme 21 – Scope of the sonogashira reaction, isolated yields depicted in brackets 

 

Using the literatue procedure four different alknyl benzaldehydes with the acetylene bearing 

neutral (85), electron rich (86) and electron poor (87) aryl moiety as well as a cyclopropyl 

(88) moiety were prepared in good yields.  
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Scope of the Pictet-Spengler cyclization (step a) 

Using the optimized reaction conditions developed for the Pictet-Spengler cyclization (step a), 

a mixture of tryptamine/5-substituted tryptamines (71a-c) and o-alkynyl benzaldehydes (85-

88) were treated with 10 mol% Yb(OTf)3 and ionic liquid (0.32ml/ mmol of 3) and the 

reaction mixture was subjected to microwave irradiation at 120oC yielding the Pictet-Spengler 

products 73 (Scheme 22). 

 

Scheme 22- Scope of the Pictet-Spengler reaction, depicting isolated yields 

 

As depicted in Scheme 22, the reaction tolerated neutral (71a) and electron rich 5-OMe (71b) 

tryptamines yielding the corresponding PS products in good yields. Surprisingly electron poor 

5-Cl tryptamine (71c) which is known to be a poor substrate for PS cyclization requiring 

harsh conditions and resulting in lower yields of the PS product as compared to its electron 

rich counterparts, under the optimized condition resulted in moderate yield of 90. This 

demonstrated the synthetic utility of the reaction sequence. Varying substituents on the 

acetylene also provided good yields of the corresponding PS products (91-93). 
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Scope of the hydroamination reaction (step b) 

The pure PS products 73 were treated with 10 mol% of catalyst Y in 1,2-dichloroethane as 

solvent at room temperature and the reaction was monitored using TLC for completion. The 

hydroamination reaction followed the 6-endo-dig mode of cyclization yielding product 75 

(Scheme 23). 

 

Scheme 23- Scope of the hydroamination reaction, yields in brackets depict combined yields over two synthetic 
steps 

 

As depicted in Scheme 23 the reaction sequence tolerated tryptamines with electron rich and 

poor substitutents on the indole ring affording products (81, 94-95) in moderate yields. 

Electron rich (96) and poor aryl groups (97) on the acetylene were similarly effective, 

pleasingly cyclpropyl group on the acetylene also resulted in moderate yields of 98.  

Thus, the synthesis of the first indole derived Indoloquinolizine scaffold 75 via a catalytic 

two-step process with varied substarte scope was successfully achieved. 
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2.5.2  Synthesis of tetrahydro-β-carboline ring fused to a spirooxindole ring 
system giving rise to hexacyclic indoloquinolizines 

Having successfully established the synthesis of indoloquinolizines 75, the utility of this two 

step process was investigated for the synthesis of more complex hexacyclic 

indoloquinolizines embodying a tetrahydro-β-carboline ring fused to a spirooxindole ring 

system. In this system instead of acetylenic aldehydes (72) acetylenic istains (99) were 

employed with typtamines (71) 

 

Scheme 24-  A two step protocol for the synthesis of hexacyclic indoloquinolizines. 

As depicted in Scheme 24, it was expected that tryptamines (71) and acetylenic isatins (99) 

would cyclize in a Pictet-Spengler reaction to yield products 100, which on treatment with a 

gold catalyst would undergo a hydroamination reaction either via a 6-endo-dig mode of 

cyclization yielding product 102 or a 5-exo-dig mode of cyclization yielding product 101. 

 

2.5.2.1  Optimization of the individual steps (a and b) 

 

Optimization of the Pictet-Spengler cyclization (step a)  

For the reaction optimization tryptamine (3) and N-methyl 4-ethnyl phenyl isatin (103) were 

employed as model substrates.  
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Scheme 25 –Pictet-Spengler cyclization step for synthesis of 104 

 

Initially the model substrates 3 and 103 were subjected to reaction conditions optimized for 

the synthesis of PS product 73 (Scheme 22), wherein the starting materials (3 and 103) were 

treated with 10 mol% of Yb(OTf)3 and ionic liquid [bmim]Cl.AlCl3 (0.32ml/ mmol of 3) in 

DCM. Subsequently the reaction mixture was subjected to microwave irradiation at 120oC for 

1h resulting in the PS product 104 in a moderate yield of 55%.  

 

 

In literature 58 reports of isatins undergoing PS cyclization with tryptamines in the presence of 

(S)-BINOL derived phosphoric acids as catalysts with good yields and enantioselectivities, 

inspired the use of TFA as an achiral Bronsted acid catalyst in the PS cyclization (as depicted 

in Scheme 25). As expected on treating the starting materials (3 and 103) with 1 equivalent of 

TFA for 24h at 50oC enhanced the yield of 104 to 76% in DCE, use of toluene as a solvent 

further improved the yield to 81%. Heating the reaction mixture to higher temperature of 80oC 

did not show any improvement in the yield of 104. These results established TFA as an acid 

catalyst for the PS cyclization in this system.  

 

Optimization for the Hydroamination ( step b) 

With TFA optimized as an acid catalyst for the PS cyclization (step a), finding a suitable gold 

catalyst for the hydroamination step (step b) was the next task. 
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Scheme 26 – The plausible hydroamination products that can be formed on treatment of 104 with Au catalyst. 

 

The PS product 104 was initially treated with 10 mol% of catalyst Y (the optimized catalyst 

for the hydroamination reaction yielding indoloquinolizines 75 (Scheme 23), yielding the 

desired hydroamination product 105 with no traces of product 106 (deterimed via crude 1H 

NMR). In the proton NMR of the isolated hydroamination product 105 presence of a side 

product 6-8% (determined by 1H NMR) rendered the isolation of the pure compound 105 

difficult. Hence, in order to avoid the formation of this undesired side product a small 

screening of the PS product 104 with selected gold complexes was set up as depicted in Table 

6. 

Table 6   Optimization of the hydroamination step b 

Entry Catalyst (mol %) Temperature  
(oC) Solvent Time (h) Yielda (%) of 

105 

1 Au(PPh3)OTf (10) RT DCE 2 43 

2 Au(PPh3)SbF6 (10) RT DCE 2 30 

3 AuCl3 (10) RT DCE 2 50 

4 AuCl(SMe2) (10) RT DCE 2 76 

5  RT Toulene 2 65 

6  RT CH3CN 2 50 
aIsolated yield of product 105 

 

All the gold complexes employed in the screening resulted in the formation of the 

hydroamination product 105 exclusively as a single diastereomer and formation of product 

106 was not observed. As seen in Table 6 Au(I) phosphine complexes Au(PPh3)OTf  (entry 1) 

and Au(PPh3)SbF6 (entry 2) resulted in moderate yields of 105 at room temperature. Use of 
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AuCl3 showed slight improvement in yield (entry 3), but pleasingly catalyst AuCl(SMe2) 

enhanced the yield of the product to 76% at room temperature. The efficiency of catalyst 

AuCl(SMe2) was maximum in DCE (entry 4) as solvent and dropped in toluene (entry 5) and 

acetonitrile (entry 6). Based on these results AuCl(SMe2) turned out to be the best catalyst for 

the hydromaination reaction yielding product 105. As was the case with indoloquinolizines 

(75) loss of compound was witnessed with longer reaction times as well as during purification 

using normal silica gel columns. In order to isolate the product 105 in maximum yield, the 

reaction was monitored by TLC for completion and the crude reaction mixture was subjected 

to fast column chromatography for purification. 

 

2.5.2.2    Scope of Reaction  

With catalysts optimized for both the individual steps (a and b), the scope of the reaction was 

investigated. 

 

Synthesis of Starting Materials 

Alknyl isatins were synthesized by Sonogashira coupling reaction between 4-Iodo-N-methyl 

isatin (107) and the corresponding terminal alkyne (108) in the presence of PdCl2(PPh3)2 and 

CuI as catalysts in a 1:1:1 mixture of degassed Toulene: Et3N: THF as solvent at 50oC. 4-

Iodo-N-methyl isatin was prepared according to the literature procedure 59 in 51% yield.  

 

Scheme 27 – Scope of the Sonogashira reaction along with isolated yields 
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The reaction showed tolerance for varied groups on the acetylene, such as neutral (103) and 

electron donating (109) aryl groups, electron withdrawing groups such as floro at para (110) 

and meta (111) position resulted in good to moderate yields respectively. Cyclopropyl (112) 

and isopropyl (113) groups on the acetylene were also obtained in moderate yields. In total six 

of these songashira coupling products were prepared (Scheme 27). 

 

Scope of the Pictet-Spengler cyclization (step a) 

The synthesized Sonogashira products 99 along with tryptamine/ 5-OMe tryptamine were 

treated with 1equiv of TFA in toluene at 50oC for 24h yielding the PS products 100 (Scheme 

28). 

 

Scheme 28 – Scope of the PS cyclization reaction with isolated yields 

As depicted in Scheme 28 the reaction tolerated varied substituents on the acetylene from 

electron donating (116) and withdrawing (117, 118) aryl groups to cyclopropyl (119) and 

isopropyl (120) groups, resulting in good to moderate yields of the PS product. Electron 

donating 5-OMe group on tryptamine resulted in 71% yield of the PS product (114), while the 
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electron withdrawing 5-Cl group on tryptamine resulted in trace amounts of the PS product 

under the optimized reaction condition. Refluxing the reaction mixture in toluene also resulted 

in trace amounts of 115. Resorting to Yb(OTf)3 and ionic liquid [bmim]Cl.AlCl3 as a catalyst 

system for the PS cyclization resulted in moderated yields of the desired product 115 (57%). 

Hence PS product 115 was obtained following the procedure established for formation of PS 

product 73 (Scheme 22). 

In a nutshell the reaction tolerated varied substituents on the acetylene as well as electron 

donating and neutral tryptamines; its only limitation was the inefficiency of TFA as an acid 

catalyst with electron withdrawing substituents on tryptamine. 

 

Scope of the hydroamination reaction ( step b ) 

The isolated PS products 100 were treated with 10 mol% AuCl(SMe2) in 1,2-dichloroethane 

at room temperature, affording the desired hydroamination product 102 via 6-endo-dig 

cyclization. 

 

Scheme 29 – Scope of the hydroamination reaction, yields depicted in the brackets are over two reaction steps 
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As depicted in Scheme 29 the hydroamination products (102) were obtained in good to 

moderate yields giving the desired hexacyclic spirooxindole scaffold. The reaction resulted in 

good yields with neutral and electron rich tryptamines whereas electron poor 5-Cl tryptamine 

led to a drop in the yield of 122 (60%). Substituents on the acetylene with electron donating 

(123) and withdrawing (124, 125) substituents on the aryl group were equally effective. 

Similarly cyclopropyl and isopropyl groups on the acetylene also gave the desired products 

126 and 127 respectively in good yields.  

With this we successfully achieved the synthesis of the second Indole derived hexacyclic 

indoloquinolizine scaffold 102, showing a varied substrate scope. 

 

2.5.3 Characterization of products 75 and 102 formed via 6-endo-dig 
cyclization of the corresponding Pictet-Spengler products. 

 

Scheme 30 – NMR evidence for the formation of 6-endo-dig product 

 

As depicted in Scheme 30 the  Pictet-Spengler product (128) would potentially undergo a 

hydroamination reaction either via a 6-endo-dig mode (path a) giving rise to an endocyclic 6 

membered ring (129) or a 5-exo-dig mode (path b) giving rise to an exocyclic 5-membered 

ring (130). The isolated product in both the scaffolds (75 and 102) was confirmed to be a 6-

endo-dig product via proton NMR. In order to explain this result substrates with the 

cyclopropyl group on the acetylene in both the scaffolds ie 98 and 126 were chosen. As 

shown in Scheme 30, in product 130 the enamine proton Ha is allylic to proton Hb resulting in 
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a splitting of both protons due to allylic coupling, whereas in product 129 absence of an 

allylic proton for the enamine proton Ha would result in the enamine proton not being split. 

The 1H NMR spectrum of 98 showed a singlet at 5.82 ppm (Figure 1) and 126 showed a 

singlet at 5.27 ppm (Figure 2) for the Ha proton in each case. The presence of the enamine 

proton as a singlet in the NMR spectrum of both substrates ruled out the formation of the 5-

exo-dig product and strongly suggested that the hydroamination reaction proceeds via a 6-

endo-dig pathway resulting in products 98 and 126.  

 

Figure 1:  NMR spectra of 98 in deuterated DCM 

 

 

Section of the NMR spectrum showing the enamine proton Ha as a singlet. 
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Figure 2:  NMR spectra of 126 in deuterated DMSO 

 

 

Section of the NMR spectrum showing the enamine proton Ha as a singlet. 
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2.5.4  Cascade polycylization of a designed β-carboline embodying a 1,5-
enyne providing analogs of the harmicine alkaloid. 
 

Cycloisomerization of 1,n-enynes has emerged as an efficient tool for the synthesis of 

complex structures in an easy one-pot process using a wide range of transition metal 

complexes 60-62. Selective activation of alkynes, wide range of functional group tolerance and 

mild reaction conditions are important properties that have established Au as a versatile 

catalyst for the intramolecular enyne metathesis for substrates with carbon-carbon triple bonds 
63-66.  

A variety of internal nucleophiles like phenols, carboxylic acids, sulfonamides, hydroxyl 

functions have been successfully employed in the gold mediated polycyclization of 1,5-

enynes 63, 64, 67, 68. However presence of a tetrahydro-β-carboline core as an internal 

nucleophile in gold mediated 1,5-enyne polycylizations is not known. In view of generating 

polycylic indole scaffolds with higher structural complexity a gold mediated polycylization of 

substarte 132 (having a tetrahydro-β-carboline core appended to a 1,5-enyne) was 

investigated. Herein the secondary amine in the tetrahydro-β-carboline core (132) was 

expected to behave as the terminating nucleophile in the polycylization process. 

 

 

Scheme 31 – Proposed route for the polycyclization of the designed substarte 132. 
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The designed model substate 132 has a tetrahydro-β-carboline tethered to a 1,5-enyne with a 

(E) configured alkene. This substrate could be obtained by a PS cyclization between 

tryptamine 71 and the non-enolisable aldehyde 131. A successful polycylization of 132 would 

ensure efficient access to indole polycycles with higher structural complexity. It was assumed 

that activation of the alkyne in the PS product 132 by gold complexes would trigger the 

addition of the alkene and a concomitant addition of the secondary amine in 132 to the more 

stabilized carbocationic position on the alkene (path a) to provide the yohimbine based 

alkaloid scaffold 136. Alternatively a step wise process leading to the nucleophilic opening of 

the cyclopropyl gold carbene 134, can either yield scaffold 136 (path b) or the harmicine 

analogue 135 (path c) (Scheme 31) 67. 

 

2.5.4.1  Optimization of the reaction steps (a and b) 

Optimization of the Pictet-Spengler cyclization step a 

 

Scheme 32 -  Pictet-Spengler cyclization step a. 

Model substrates tryptamine (3) and non-enoliazable aldehyde (131) were subjected to the 

two previously optimized conditions for PS cyclizations to get scaffolds 73 (Scheme 22) and 

100 (Scheme 28). In one condition the starting materials (3 and 131) were treated with 1equiv 

of TFA in toulene at 50oC for 24h which resulted in 50% yield of the PS product 137. 

Alternatively a mixture of the starting materials with 10mol% of Yb(OTf)3 and ionic liquid 

[bmim]Cl.AlCl3 (0.32ml/ mmol of 3) in DCM was subjected to microwave irradiation for 1h 

at 120oC resulting in 70% yield of 137. Use of DCE as solvent further enhanced the yield of 

137 to 84%. These results proved that Yb(OTf)3 and ionic liquid as a catalyst system were 

more effective in inducing the PS cyclization as compared to TFA in this system. 

 

Optimization of the hydroamination step b 

 

Scheme 33 – Gold mediated double cyclization of 137 leading to either of the plausible products. 
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A reaction screening for the catalytic double cyclization cascade was then attempted with 

Pictet-Spengler product 137 employing various gold complexes.   

 

Table 7   Screening of the Au mediated double cyclization cascade of PS product 137 

 
aIsolated yield of 139 (both the diastereomers together), bdr minor: major diastereomer determined using crude 
1H NMR spectra. 
 

As depicted in Table 7 the cascade double cyclization in the presence of Au(I)phosphine 

complexes Au(PPh3)OTf (entry 1) and Au(PPh3)NTf2 (entry 3) resulted in harmicine analogs 

139 embodying a cyclopentyl ring in moderate yields as a mixture of diastereomers. The same 

reaction at room temperature for 24h gave very low yield of product 139. Use of AuCl3 (entry 

2) gave no improvement in yields, but AuCl(SMe2) as a catalyst enhanced the yield of 139 

with best results in DCE (entry 4) as solvent. Intrestingly catalyst Y was again most effective 

for the synthesis of 139 when the reaction was perfomed at 80oC in DCE under microwave 

heating (entry 9). Subjecting the reaction mixture to 120oC in microwave (entry 10) resulted 

in lower yield of the product. In the optimization microwave heating (entry 9) at 80oC for 1 h 

proved to be more effective as compared to conventional heating (entry 8) at 80oC for 24h. 

The screening resulted in 139 as a mixture of diastereomers and formation of product 138 was 

not observed.  

 

Entry Catalyst (mol%) Solvent Temp (oC) Time (h) Yielda (%) dr b 

1 Au(PPh3)OTf (10) DCE 80 24 30 1 : 1.5 

2 AuCl3 (10) DCE 80 24 20 1 : 1.4 

3 Au(PPh3)NTf2 (10) DCE 80 24 33 1 : 1.4 

4 AuCl(SMe2) (10) DCE 80 24 43 1 : 1.4 

5 AuCl(SMe2) (10) i-PrOH 80 24 15 1 : 1.2 

6 AuCl(SMe2) (10) AcN 80 24 30 1: 1.3 

7 AuCl(SMe2) (10) 1.4-dioxne 80 24 24 1 : 1.2 

8 Catalyst Y (10) DCE 80 24 53 1 : 2 

9 Catalyst Y (10) DCE 80, MW 1 70 1 : 1.6 

10 Catalyst Y (10) DCE 120, MW 1 68 1 : 1.4 

11 Catalyst Y (10) DCE:Ethanol(5eq) 80, MW 1 43 1 : 1.2 
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2.5.4.2  Characterization of product 139 via NMR 

The double cyclization cascade reaction (Scheme 34) during optimization always resulted in 

the formation of product 139 as a mixture of diastereomers and formation of product 138 was 

not observed. The major and minor products formed in the double cyclization cascade 

reaction were diasteromers was established via a study of the NMR data of both the 

diastereomers which included 1H, 13C and 2-D NMRs such as gHMBC, gHSQC and gCOSy 

experiments. 

 
Scheme 34 – Plausible products of the gold mediated double cyclization of 137 

 

The NMR spectra of the major diastereomer of the double cyclization product was used to 

explain the formation of product 139 

 

Figure 3 – 13C, gHSQC and gCOSY spectra of the major diastereomer of the double 
cyclization product. 
 

Section of the 13C NMR spectrum of the major diastereomer, showing carbons e (71.46 ppm), 
b (67.48 ppm), f (54.71) and a (51.41 ppm) 
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Section of the gHSQC spectrum of the major diastereomer showing carbons; b and e (are not 
quaternary carbons); carbon f (is a quaternary carbon); double bond carbons i and j 

 

Section of the gCOSY spectrum of the major diastereomer, showing an absence of gCOSY 
coupling between protons He and H j 
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The spectra of the major diastereomer formed in the double cyclization cascade reaction 

(Scheme 34) depicted in Figure 3 favored the structure of product 139 due to the following 

conclusions; a) as depicted in the 13C and gHSQC spectra of the major diastereomer both 

carbons b and e were not quaternary carbons and both of them appeared downfield (at 71ppm 

and 67ppm respectively) due to the deshielding effect caused by the electronegative nitrogen 

atom present at α position to both the carbons as in product 139; b) absence of a gCOSY 

coupling (J3 coupling) between protons He and H j (in the gCOSY spectrum) that are attached 

to carbons (e and j respectively) α to each other in product 138 further supported the structure 

of product 139 

The above results helped us establish the formed double cyclization product as 139 for the 

major diastereomer. The structure of the minor diastereomer was also assigned on the basis of 

similar analysis of the NMR spectra. 

The syn configuration for the minor diastereomer of 139 was established by a nOe signal 

between Hb and He, whereas absence of this nOe signal in the major diastereomer of 139 

pointed towards an anti configuration (see Experimental Part 5.2.3.1 for 1-D NMR spectra). 

 

2.5.4.3  Mechanism of the reaction  

 

 Scheme 35- Proposed mechanism for the formation of product 139. 
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A mechanism was delineated to explain the double cyclization cascade reaction. In 

accordance with the proposal in Scheme 31, the results indicate that the polycyclization 

cascade was a stepwise process that occured via gold mediated 6-endo-dig cyclization 

furnishing the cyclopropyl gold carbene intermediate (140). The selective formation of 

harmicine analogues 139 suggests that the ring-closure by addition of the secondary amine in 

a 5-exo-tet mode was favoured over a 6-endo-tet pathway which is in accordance with 

Baldwin´s rules, affording analogs of harmicine alkaloid 139 (Scheme 35). 

 

2.5.4.4  Scope of the double cyclization cascade reaction  

Synthesis of the aldehyde 131 

The aldehyde 131 was synthesized starting from geranyl acetate over nine reaction steps with 

an overall yield of 14.6% 

 

Scheme 36 - Synthetic scheme for aldehyde 131 

Commerially available geranyl acetate (141) which already possesses a trisubstituted alkene 

with (E) configuration was initially subjected to epoxidation with mCPBA followed by 
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epoxide ring opening in the presence of HIO4 giving aldehyde 143 in 72% overall yield 

starting from geranyl acetate. The aldehyde 143 was subjected to Correy –Fuchs reaction 

resulting in the dibromoolefin (144) in 80% yield. Treatment of the dibromoolefin (144) to an 

acetate hydrolysis-elimination reaction resulted in product 146 in 54% overall yield. The 

compound 146 was subsequently transformed into the corresponding allylic chloride 147, 

treatment of the chloride with lithium methyl isobutyrate enolate resulted in 148 with 55% 

overall yield starting from 146. Subsequent reduction of the methyl ester in 148 to alcohol 

with DIBAL-H followed by swern oxidation resulted in the final aldehyde 131 in overall yield 

of 82% starting from 148 (Scheme 36).  

 

Scope of the polycyclization cascade reaction. 

Tryptamines (71) with varied substituents at 5 position along with aldehyde 131 were 

subjected to the optimized conditions for both the steps. 

 

Scheme 37 – Substarte scope for the double casade cylization reaction. 

 

As depicted in Scheme 37 the reaction tolerated electron donating and withdrawing 

substituents on the tryptamine for both the steps resulting in good to moderate yields of the 

harmicine analogs (139, 153-155) as a mixture of diastereomers. 
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With this, the synthesis of the third indole derived scaffold 135 yielding analogs of the 

harmicine alkaloid via a two step protocol was achieved. 

 

2.5 Summary 

In conclusion we successfully developed a two-step catalytic process, involving a Pictet-

Spengler cyclization step followed by hydroamination reaction yielding the desired 

indoloquinolizine (75) and hexacyclic indoloquinolizine (102) scaffolds. A Au(I) catalyzed 

cascade polycylization was also developed to get access to complex analogs of the harmicine 

alkaloid (135) via the two-step protocol. 
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Bifunctional N-Acyl-Aminophosphine Catalyzed Asymmetric 

[4+2] Annulation of Allenoates and 3-Cyano Chromones. 
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3.1  Introduction 

 

The Xanthone nucleus 156 comprises of a class of oxygenated heterocycles with 9H-xanthen-

9-one or xanthone as the parent compound. They are usually found as secondary metabolites 

in higher plants, fungi and lichens. Xanthone monomers occur as either fully aromatized 

dihydro- (157, 158), tetrahydro- (159, 160), or more rarely as hexahydroderivatives (161) as 

depicted in Scheme 38 69-71.  

 

Scheme 38 - Xanthone monomers. 

 

Xanthones have also been reccognised as “privileged structures” because of their ability to 

interact with a diverse range of target biomolecules resulting in pronounced biological activity 

within a broad spectrum of diseased states such as antimitotic, antimalarial, antiplatelet, 

antitumour, antioxidant etc. They also behave as adrenergic blocking agents, calcium agonists 

and are also known to show effects on enzymes such as acetylcholinesterase, aldose reductase, 

aromatase etc.72, 73  

 

Scheme 39 – a) Naturally occuring xanthone dervatives, b) Natural products with the tetrahydroxanthone units 
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A few examples of biologically active xanthone analogues are depicted in Scheme 39a and b 

(162-167). Scheme 39b in particular represents natural products containing the 

tetrahydroxanthone unit as for example in blennolide A 74 (165), 3,4-dihydroglobosuxanthone 

(166) and secalonic acids (167) 75. The study of xanthones and its derivatives has been of 

interest not only from a descriptive or synthetic point of view but also from a biological and 

pharmacological point of view. In literature the total synthesis of xanthone based natural 

products has mostly been limited to fully aromatized xanthones, whereas synthesis of the 

more challenging partially saturated xanthone core is less frequently reported 76. 

 

Selected examples from the literature for the synthesis of tetahydroxanthenone scaffold 160 

and its derivatives are described in the following section.  

 

In 1997 Hsung et al. 77 reported a highly stereoselective [4+2] cycloaddition reaction of 3-

cyanochromones (168) with electron rich dienes wherein the dienophile 3-cyano chromone 

(168a) and 1-methoxy-1,3-butadiene (169) in toluene were heated to 300oC in a sealed tube 

yielding the tetrahydroxanthone scaffold (170a), in good yields and with good endo 

selectivity. Presence of substituents at C-6 position of the chromone ring significantly affected 

the rate of the reaction and the endo selectivity. Electron withdrawing groups such as bromine 

or chlorine (168b) at C-6 position resulted in shorter reaction times, lower reaction 

temperatures and high endo selectivity (170b). On the contrary electron-donating groups such 

as the methyl group (168c) reduced the stereoselectivity and needed higher temperatures and 

longer reaction times (170c) (Scheme 40a). In 2011 Ramana et al. 78 reported a successful 

Diels-Alder reaction of 1,3,3-trimethyl-2-vinyl-1-cyclohexene (172) with chromones (171) in 

the presence of TiCl4 as a Lewis acid  resulting in the formation of the tetracyclic 

tetrahydroxanthones (173). The reaction was regio- and stereoselective (Scheme 40b). 

 

In 2011 Kumar et al. 79 reported a phosphine catalyzed [4+2] annulation of electron deficient 

3-formyl chromones (174) and α-alkyl substituted allenes (175) that followed a deformylation 

reaction resulting in the tricyclic cyclohexene-fused-chromone ring (176) in moderate to good 

yields and with good diastereoselectivites. The reaction tolerated differently substituted 

chromones and allenes. The stereodecorated common scaffold (176) was also subjected to 

further transformations to yield other naturally occurring benzopyrone and related scaffolds 

(Scheme 41). 
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Scheme 40 – Tetrahydroxanthone synthesis via Diels-alder reactions.  

 

 

Scheme 41 – Phosphine catalyzed [4+2] annulation resulting in the tetrahydroxanthone scaffold. 
 
 

 

 

Scheme 42 - Enantioselective synthesis of tetrahydroxanthones 

 

 



Aim of the Project 

 

48 

 

In 2012 Jorgensen et al. 80 reported a trienamine mediated enantioselective synthesis of 

tetrahydroxanthones which was based on a [4+2] cycloaddition between 2,4-dienals (178) and 

3-cyanochromones (177) as dineophiles. The substrates were treated with H-bond directing 

squaramide based organocatalyst (179) in the presence of N,N-diethylacetamide (DEA) as an 

additive in chloroform at 60oC yielding the tetrahydroxanthone scaffold (180). The reaction 

tolerated differently substituted chromones as well as substituted 2,4-dienals resulting in 

products (180) with good yields, high enantioselectivities and with excellent 

diastereoselectivities (>20:1) (Scheme 42).  

 

3.2  Aim of the Project 

 

The pronounced biological properties exhibited by the optically active tetrahydroxanthenone 

derivatives, their wide occurrence in nature and lack of asymmetric synthetic protocols to 

build this scaffold, inspired the development of a synthetic methodology that would offer a 

stereoselective access to a compound collection based on this naturally occurring scaffold. 

 

The importance of the preparation of optical isomers of small molecules is obvious from the 

fact that biological activity is often associated with one of the enantiomers in compounds of 

natural and synthetic origin. There are several methods known to obtain enantiomerically pure 

compounds like the classical chemical resolution procedure, but unfortunately it suffers from 

the disadvantage of obtaining a theoretical maximum of 50% yield of the optical isomer. The 

same problem exists with enzymatic resolution wherein the racemic mixture is treated with 

reagents of biological origin. In contrast asymmetric synthesis is a method that can provide a 

theoretical yield of 100% of one of the enantiomer 81. The importance and practicality of 

asymmetric synthesis for obtaining enantiomerically pure compounds has been acknowledged 

by synthetic organic chemists, and is also visible by the explosive boom in newer and more 

efficient methods being developed in this regard in the last decades 82-85. 

 

As already mentioned before (Scheme 41) in 2011 Kamal et al. reported a novel racemic 

synthesis of the tetrahydroxanthone scaffold (160) via PnBu3 catalyzed [4+2] annulation of 

electron deficient chromone and allenes 79. Absence of an asymmetric variant of the above 

reaction inspired the development of an asymmetric synthesis of a compound collection 

embodying the tetrahydroxanthone scaffold by using nucleophillic chiral phosphine catalysts 
86-88.  
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Nucleophillic phosphine catalysis of allenes with electrophiles like electron deficient alkenes, 

imines, ketones etc. is one of the most powerful and straight forward methods for the 

synthesis of highly functionalized carbo- and heterocyclic structural motifs present in 

bioactive natural products 89-96. The tremendous growth in nucleophilic phosphine as a Lewis 

base catalyst over the years is attributed to several important features such as a) the reactions 

are highly atom-economical and usually do not produce any byproducts, b) unique and fine 

tunable properties of trivalent phosphines, c) the reactions are metal-free allowing the reaction 

to be performed on large scale , d) the reaction topologies can be controlled by judicious 

choice of phosphine catalyst as well as structural variations of starting materials and e) 

trivalent phosphines are also known for their ability to stabilize adjacent carbanions to form 

ylides and also their ability to behave as a good leaving group.  

 

Despite that progress in the field of asymmetric organophosphine catalyzed reactions has been 

slow 86, 97 and remains unsubstantiated mainly due to the lack of suitable chiral catalysts 

available. Also the major part of successful work in asymmetric cycloaddition between 

electrophiles and allenes belongs to [3+2] 98-102 cycloaddition reactions whereas the [4+2] 103-

108 variants need to be further explored.  All these challenges acted as a motivation in 

developing a phoshine catalyzed asymmetric synthesis of the tetrahydroxanthone scaffold 

(160). 

 

As depicted in Scheme 43, the tetrahydroxanthone scaffold (160) could be dissected at 

positions a and b leading to simple precursors ie electron deficient chromones (181) and a 1,4-

dipole (182) that can be generated from α-substituted allenes (183) in the presence of an 

organophosphine catalyst (Scheme 43).  

 

Scheme 43 - Retrosynthetic approach for the synthesis of tetrahydroxanthone derivatives. 
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Chromones bearing electron withdrawing substituents at C-3 position are quite reactive 

molecules and behave as Michael acceptors, heterodienes, as well as dienophiles. A number 

of chromones have been reported to undergo nucleophilic addition reactions giving rise to 

heterocyclic compounds as condensation products 77, 78, 109-111. The electron deficient allene on 

the other hand behaves as a 1,4-dipole synthon when treated with catalytic tertiary phosphines 

and traps various dipolarophiles in [4+2] annulations.  

 

A few selected examples from literature depicting the assymetric [4+2] cycloaddition reaction 

between activated olefins and allenes catalyzed by organophosphine catalysts. 

In 2005 Fu et al. 108 reported an asymmetric synthesis of piperidine derivatives (187) via 

[4+2] annulation of imines (184) and allenes (185) catalyzed by the chiral phosphine (186). 

The reaction tolerated a range of imines resulting in excellent diastereo- and 

enantioselectivities. The [4+2] annulation proceeded best if the allene beared an R group that 

can stabilize an anion (eg ester or aryl). For an unsubstituted allene (R = H) moderate 

enantioslectivity was observed (Scheme 44). 

 

 
Scheme 44 – Chiral phosphine (186) catalyzed [4+2] annulation of imines and allenes furnishing piperidine 
derivatives (187) 

 
 
In 2012 Lu et al. 112 reported the first highly enantioselective [4+2] annulation of activated 

dicyano alkenes (188) with α-alkyl substituted allene (189) catalyzed by amino-acid based 

bifunctional phosphine (190) yielding optically enriched functionalized cyclohexenes (191). 

The reaction tolerated different aryl groups on the alkene resulting in moderate to good 

diastereoselectivities and excellent enantioselectivities. However alkenes derived from 

aliphatic aldehydes failed to provide the desired annulation. Similar reaction of isatin derived 

alkene (192) with allene (189) in the presence of a dipeptide based phosphine catalyst (193) 

afforded 3-spirocyclohexene-2-oxindole (194) in high yields with excellent diastreo- and 

enantioselectivities (Scheme 45a). 
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Scheme 45– Phosphine catalyzed assymetric [4+2] annulation between activated alkenes and  α-alkyl substituted 
allenes. 

 

In the same year Zhao et al. 113 described a similar [4+2] cycloaddition reaction between 

activated alkenes (195) and α-alkyl substituted buta-2,3-dienoate (175a) in the presence of N-

acyl aminophosphine catalyst (196) yielding the optically enriched cyclohexene adducts (197) 

with three contiguous stereogenic centres. The reaction tolerated differently substituted olefins 

yielding the corresponding adducts in good yields as well as with excellent diastreo- and 

enantioselectivities. Interestingly aliphatic substituent such as isopropyl in place of the R 

group (in 195) also resulted in 92% yield and 97% ee. This result stands out as in the previous 

study alkenes derived from aliphatic aldehydes were unable to undergo the [4+2] annulation 

(Scheme 45b). 
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3.3  Results and Discussion 

 

In view of the biological importance of the tetrahydroxanthone scaffold and its derivatives, a 

study on developing an organophosphine catalyzed assymetric [4+2] cycloaddition reaction 

between electron deficient chromones (181) and α-alkylsubstituted allenes (183) as depicted 

in Scheme 43 was initiated.  

 

Phosphine catalyzed [4+2] cycloaddition reaction with 3-cyano chromone 168a and α-
alkyl substituted allene 175a. 

3-Cyano chromone (168a) was chosen over 3-formyl chromone (Scheme 41) along with α-

alkyl substituted buta-2,3-dienoate 175a (Scheme 46) for the optimization of the [4+2] 

annulation reaction for primarily 2 reasons; a) the inherent instability of the β-formyl group 

tends to negatively influence the yield and diastereomeric ratio of the ensuing product and b) a 

cyano function would create an all-carbon-quaternary center in the desired 

tetrahydroxanthones which is a formidable synthetic challenge. Initially the reaction of 175a 

and 168a was tested with 30 mol% of PnBu3 as catalyst in DCM at room temperature for 12h. 

The cycloadduct (198) was obtained in 75% isolated yield and with good diastereoselectivity 

(11:1). Heating the reaction to reflux in DCM improved the yields to 90% but reduced the 

diastereoselctivity to 9:1. Use of toluene as a solvent for the reaction at room temperature for 

12h resulted in 80% yield of (198) but with a loss in diastereoselectivity (4:1). These results 

indicate the importance of the role of solvent in the [4+2] annulation, especially on the 

diastereoselectivity of the reaction. 

 

Scheme 46- PnBu3 catalyzed [4+2] annualtion reaction of 3-cyano chromone with allene 175a. 
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Characterization of the [4+2] annulation product 198 via NMR 

Nucleophillic addition of PnBu3 to allene 175a, results in the formation of the phosphonium 

dienolate intermediate 199, which can add to 3-cyano chromone via the γ-carbon yielding the 

[4+2] annulation product 198. Although it seems quite difficult, a conjugate addition of the 

phosphonium enolate in isomeric form 200 to 3-cyanochromone would furnish the [4+2] 

adduct 201. A similar conjugated addition of the ylide 200 may trap the chromone in a [3+2] 

annulation yielding adduct 202. 
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Scheme 47 – Possible products formed on phosphine catalyzed annulation of 175a and 168a 

The major and minor products formed in the [4+2]-annulation reaction were diastereomers of 

compound 198 resulting from the γ-addition of allene derived zwitterion. This was established 

via a study of NMR spectra of both the diastereomers which included 1H, 13C and 2-D NMRs 

such as gHSQC and gCOSy experiments.  

Proton NMR of the major diastereomer was used to explain the formation of a [4+2] adduct 

(either 198 or 201) and not a [3+2] adduct 202. The presence of CH2 protons Ha in the 1H 

NMR spectra of 198, as well as absence of a methyl peak as a singlet in the spectrum ruled 

out the formation of the [3+2] product 202 (Figure 6, 1H NMR).  

 

Figure 4 – Possible products of the phosphine catalyzed annulation 
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Figure 5 – 1H NMR and gHSQC spectra of the major diastereomer formed in the [4+2] 
annulation reaction. 

 

Section of the proton NMR spectrum of the major diastereomer formed in the [4+2] 
annulation reaction depicting protons Ha, Hb and Hc. 

 

Section of the gHSQC spectrum of the major diastereomer formed in the [4+2] annulation 
reaction depicting protons Ha as CH2 protons. 

 

2-D gCOSY spectra (Figure 6) of the major diastereomer was used to explain the formation of 

the [4+2] γ-addition product 198. As seen in Figure 6 a strong gCOSY coupling between the 

CH2 protons (Ha) and proton Hb (J3 coupling), and an absence of a gCOSY coupling in the 
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spectrum between protons Hb and Hc that are attached to carbons α to each other in product 

201, helped us establish the [4+2] adduct as a γ-addition product 198 for the major 

diastereomer. 

Figure 6 – Section of gCOSY spectra of the major diastereomer 198 depicting gCOSY 
coupling between protons Ha and Hb, and absence of gCOSY copling between protons Hb and 
Hc 

 

The structure of the minor diastereomer was also assigned on the basis of similar analysis of 

NMR spectra and further corroborated by single crystral X-ray structure of one of the adducts 

formed during our asymmetric reaction development. 

 

3.3.1  Optimization of the phosphine catalyzed asymmetric [4+2] annulation 
reaction between 3-cyano chromone and α-substituted allene esters. 
With promising results with the racemic version of the [4+2] annulation we went ahead to 

optimize the asymmetric version of the reaction. 

 

Chiral organophosphine catalysts 

The chiral organophosphine catalysts found in literature can be divided in two broad 

categories i.e. a) chiral phosphines without additional functionalities, b) chiral phosphines 

with hydrogen bond donors as depicted in Scheme 48 114.  
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Scheme 48 – Chiral phosphines used in nucleophilic phosphine catalysis 

 

[4+2] annulation of 3-cyano chromone with allenoate 175a catalyzed by chiral 
phosphines without additional functionality. 

 

Scheme 49 – [4+2] annulation in the presence of chiral organophosphine catalysts without additional 
functionality. 

 

In the initial screening starting materials 3-cyano chromone (168a) and α-alkyl substituted 

buta-2,3-dienoate 175a were treated with 10 mol% of chiral phosphines (as depicted in 

Scheme 49)  along with catalyst 203 and 204 (Scheme 48) in DCM at room temperature for 

24h. All the chiral catalysts without additional functionality failed to provide the desired [4+2] 
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adduct 209. Neither refluxing the reaction mixture in DCM for 24h nor changing the solvent 

to toluene (at room temperature or reflux) resulted in the desired [4+2] adduct. 

 

[4+2] annulation of 3-cyano chromone with allenoate 175a catalyzed by chiral 
phosphines with H-bond doners. 

 

Scheme 50 – [4+2] annulation in the presence of chiral phosphine 206 

 

With no success with chiral phosphine catalysts without additional functionality (203-204, 

210-212), chiral phosphines with hydrogen-bond doner functions were next employed to 

catalyze the [4+2] annulation (Scheme 50). Based on previous reports by Lu et al. 112 and 

Zhao et al. 113 (as depicted in Scheme 45) amino-acid derived chiral phosphines were 

employed as organophoshine cataysts in the desired [4+2] annulation between 3-cyano 

chromone and allene 175a 115. Treatment of a mixture of  168a and 175a with 10 mol% of the 

catalyst 206 (L-isoleucine based aminophosphine) in DCM at room temperature for 24h 

yielded the desired [4+2] annulation product 213 in 52% yield, with moderate 

diastereoselectivity 1: 3.5 and excellent enantioselectivity (93%)  for the major diastereomer. 

The asymmetric version of the [4+2] annulation yielded both the diastereomers as [4+2] γ-

addition products similar to the ones in the racemic reaction (established via proton NMR), 

however with a reversal of preferred diastereoselectivity ie the major diastereomer in the 

racemic reaction, turned out to be the minor one in the asymmetric variant of the reaction. 

Encouraged by the initial result with catalyst 206, a small library of amino-acid derived 

phosphine catalysts were synthesized to further improve the result. 

 

3.3.2   Synthesis of amino acid derived phosphine catalysts 

α-amino acid derived aminphosphines and there N-protected counterparts have been used as 

efficient chiral ligands in metal catalyzed reactions. Their modular backbones and 

bifunctional structures have also established them as efficient organocatalysts in recent years. 
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The general structural design of the amino-acid derived phosphine is depicted in Figure 7 

which consists of a modular chiral backbone and tunable H-binding site which is mostly 

responsible for the assymetric induction and a highly nucleophillic phosphine site.  

 

Figure 7 – Structural design for the amino-acid derived phosphine catalysts 

 

Based on the general structural design a small library of aminophosphines was synthesized to 

make a reaction screening and identify the best catalyst.  

 

Scheme 51 – a) Synthetic scheme for the preparation of isoleucine-, valine-, phenyl alanine derived 
aminophosphines; b) synthesis of aminophosphine 231 from the corresponding free amine. 

 

As depicted in Scheme 51, L-isoleucine-, L-tertleucine-, L-phenyl alanine based N- acyl 

aminophosphines could be easily accessed from the corresponding N-Boc protected amino 

alcohols in four synthetic steps. The amino alcohols (214- 216) were initially subjected to O-
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mesylation using MsCl (217-219), followed by treatment with potassium diphenylphosphine 

yielding the boc-protected aminophosphines (220-222). The boc-protected aminophosphines 

on treatment with TFA yielded the free amines (223-225), which were subjected to treatment 

with various acid chlorides or anhydrides resulting in a) acetyl-protected (226-228); b) 3,5-

(bistrifloromethyl)benzoyl protected (206, 229-230) and lastly c) 3,5-diflorobenzoyl (196) 

protected aminophosphines. Thiourea protected aminophosphine 231 was obtained by treating 

the corresponding free amine (223) with 3,5-bistrifloromethyl phenyl isothiocyanate at room 

temperature in DCM as solvent. 

 

Scheme 52 – Synthetic procedure for the synthesis of L-threonine based aminophosphines. 

 

The L- threonine based aminophosphines were synthesized according to the procedure 

depicted in Scheme 52. Commercially available N-Boc-L-threonine methyl ester (232) was 

treated with methoxypropene in the presence of camphor sulphonic acid yielding the 

oxazolidine ring (233), which was subjected to LAH reduction followed by mesylation  

furnishing the mesyl protected oxazolidine alcohol (234) 116. Compound 234 was treated with 

potassium diphenyl phosphine followed by treatment with 4M HCl in THF yielding the 

aminophosphine 236. The free amine in 236 was subjected to amide protection with 3,5-
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(bistrifloromethyl) benzoyl chloride yielding aminophosphine (237), followed by o-silylation 

with varied acid chlorides providing aminophosphines 238- 240.  

Following the synthetic procedures stated in Scheme 51 and 52 a small library of amino-

phosphines was synthesized as depicted in Scheme 53. 

 

Scheme 53- Amino acid derived N-acyl aminophosphines. 

 

3.3.3  Asymmetric [4+2] annulation of 3-cyano chromone with allenoate 
175a catalyzed by amino-acid derived phosphines. 
The catalytic efficiency of the amino-acid derived phosphines (Scheme 53) for the [4+2] 

annulation between 3-cyano chromone and allenoate 175a was studied and the results are 

presented in Table 8. The reactions were performed with 10 mol% of catalyst in DCM 

(resulting in 1M concentration of the reaction mixture) at room temperature for 24h. 

The influence of different N-protecting groups (Brønsted acid moieties) on the [4+2] 

annulation was examined with catalysts derived from L-isoleucine. Phosphines with free 

amine group (Table 8, entry 1) and strong hydrogen bond donating group ie thiourea (entry 2) 

failed to provide sufficient activation for the reaction and no [4+2] product 213 was formed. 

Phosphines with less acidic acetyl (entry 3) and carbmate (entry 4) groups were found to be 

better catalyst yielding the [4+2] adduct 213 with good enantioselectivites but poor yields and 

diastereoselectivities. Aminophosphine (206) bearing the 3,5(bistrifloromethyl)benzoyl group 

(entry 5) turned out to be the best in the group furnishing the cycloadduct 213 in moderate 

yield (52%) and diastereoselectivity (1: 3.5) but with excellent enantioselectivity (93%). 

Examination of catalysts with other chiral back bones such as L-phenyl alanine (entries 7-9), 
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L-tertleucine (entries 10-12), did not result in any improvement. It appears that the 

3,5(bistrifloromethyl)benzoyl group (entries 9 and 12) is a more efficient N-protecting group 

as compared to the carbmate (entries 7 and 10) and acetyl (entries 8-11). Among the three 

aminophosphines derived catalysts L-isoleucine (entry 5, 206), L-tertleucine (entry 12, 230) 

and L-phenyl alanine (entry 9, 229) bearing the 3,5-(bistrifloromethyl)benzoyl group, the one 

with L-isoleucine chiral backbone (206) was found to be the best catalyst in this asymmetric 

[4+2] annulation reaction. 

Table 8 – [4+2] annulation catalyzed by amino-acid derived phosphines. 

Entry Catalyst (10 mol%) Yielda % dr b 
(minor: major) eec (%) 

1 223 NR - - 

2 231 NR - - 

3 226 29 1 : 1.7 87 

4 220 30 1 : 1.2 72 

5 206 52 1 : 3.6 93 

6 196 60 1 : 3.5 91 

7 221 < 15 ND ND 

8 227 29 1 : 1.5 85 

9 229 32 1 : 2 89 

10 222 25 1 : 1 57 

11 228 30 1 : 1.2 63 

12 230 55 1 : 3 93 

13 238 NR - - 

14 237 83 1 : 3.5 95 
a isolated yield of product 213, b Determined via 1H NMR analysis of the crude poduct,c enantioselectivity of the 
major diastereomer was determined by chiral HPLC. 

 

o-silylated (TIPS) L-threonine based phoshine amide (entry 14, 238) that also supported by the 

3,5-(bistrifloromethyl)benzoyl group turned out to be the most effective catalyst yielding the 

[4+2] cycloadduct with excellent enantioselectivity (95%) and enhanced yield (83%). 

Unfortunately the reaction still suffered from poor diastereoselectivity. L-threonine based 

phoshine amide with a free –OH group (entry 13, 237) failed to catalyze the above [4+2] 

annulation reaction. 
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3.3.4  Effect of solvent on the [4+2] annulation. 

A catalyst screen in the earlier section revealed L- threonine based phosphine amide (238) to 

be the most effective catalyst for the above annulation yielding the [4+2] adduct 213 in good 

yield and with excellent enantioselectivity, but unfortunately the reaction suffered from poor 

diastereoselectivity. In order to improve the diastereoselectivity of the above reaction 

(Scheme 50) the effect of solvents on the aminophosphine 238 catayzed [4+2] annulation was 

investigated. The reaction was stirred at room temperature for 24 h, with 1 M concentration of 

the reaction mixture. 

Table 9 – Effect of solvent on the [4+2] annulation catalyzed by aminophosphine 238. 

Entry Solvent Yielda % dr b 
(minor: major) eec (%) 

1 CH2Cl2 83 1 : 3.5 95 

2 THF 51 1 : 5.6 93 

3 Toulene 43 1 : 4.5 97 

4 Ether <20 1 : 1.8 ND 

5 1,4-dioxane 81 1 : 11 96.7 

6 Ethyl acetate 35 1 : 4.8 93 
a isolated yield of product 213, b Determined via 1H NMR analysis of the crude poduct,c enantioselectivity of the 
major diastereomer determined by chiral HPLC. 

 

As depicted in Table 9, non-polar solvents such as DCM (entry 1), toluene (entry 3) and 1,4-

dioxane (entry 5) resulted in better yields, enantioselectivities and diastereoselectivities as 

compared to polar aprotic solvents such as THF (entry 2) and ethyl acetate (entry 6). The most 

prominent effect was displayed by 1,4-dioxane which yielded the [4+2] adduct in excellent 

enantioselectivity of 96.7%, high yield (81%) and importantly with very high 

diastereoselectivity (1:11).  

With solvent playing an important role in the reaction, the effect of solvent concentration on 

the [4+2] annulation reaction was studied as depicted in Table 10, in the presence of 10 mol% 

of catalyst 238 at room temperature for 24 h. 
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Table 10 – Effect of solvent concentration on the [4+2] annulation catalyzed by 
aminophosphine 238 

Entry Molarity Yield a % dr b 
(minor: major) eec (%) 

1 1 M 81 1 : 11 96.7 

2 2 M 72 1 : 11 96.6 

3 0.5 M 61 1 : 11 95 
a isolated yield of product 213, b Determined via 1H NMR analysis of the crude poduct,c enantioselectivity of the 
major diastereomer determined by chiral HPLC.  

All the earlier optimizations were carried out at 1 M concentration of the reaction mixture, 

increasing the concentration to 2 M (entry 2) or decreasing the concentration to 0.5 M (entry 

3) in both the cases resulted in a drop in the yield of the [4+2] annulation product without 

affecting the diastereo- and enantioselectivity. Hence further studies were performed with 1 M 

solvent concentration of the reaction mixture. Pleasingly addition of molecular sieves 3Å to 

the reaction mixture in entry 1 Table 10 resulted in an increase in the yield (93%) of the [4+2] 

adduct 213 without any change in the enantio- and diastereoselevtivity. 

 

3.3.5  Effect of o-protecting groups (on the L- threonine based phosphine 
amide) on the [4+2] annulation. 

 

Scheme 54 – Effect of o-protecting groups (on L- threonine based phoshine amides) on the [4+2] annulation (ee 
is depicted for major diastereomer and was determined using chiral HPLC). 

As depicted in Scheme 54, all the O-silylated L- threonine based phoshine amides bearing the 

3,5-(bistrifloromethyl)benzoyl group were equally effective and yielded the [4+2] adduct in 

excellent enantio-and diastereoselectivity. The reactions were performed in 1,4-dioxane 
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(resulting in 1M concentration of the reaction mixture), with 10 mol% catalyst loading at 

room temperature for 24 h in the presence of 3Å molecular sieves. 

In accordance with the above results reaction conditions for the enantioselective [4+2] 

annulation of 3-cyano chromones with allenoates was established. According to the reaction 

protocol, 3-cyano chromone and 10 mol% of the catalyst 238 in the presence of 3Å molecular 

sieves were dissolved in 1,4-dioxane (resulting in 1 M concentration of the reaction mixture), 

followed by addition of 1.3 equiv of allene ester 175a to the reaction mixture. The reaction 

mixture was stirred at room temperature for 24 h under an inert atmosphere yielding the 

desired [4+2] adduct 213, which could be purified using silica gel column chromatography. 

 

3.3.6  Scope of the asymmetric [4+2] annulation. 

Having established the optimal conditions for the [4+2] annulation reaction, the generality and 

scope of this reaction was explored. 

3.3.6.1  Synthesis of 3-cyano chromones 

Differently substituted 3-cyano chromones were synthesized according to the procedure 

depicted in Scheme 55, wherein various 2-hydroxy acetophenones were subjected to a 

Vilsmeier-Haack reaction with DMF and POCl3 at 0oC, followed by addition of hydroxyl 

amine hydrochloride to the reaction mixture at room temperature yielding the corresponding 

3-cyano chromones in moderate to good yields 117. 
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Scheme 55 – General procedure for the synthesis of 3-cyano chromones, isolated yields in brackets. 
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The reaction tolerated electron withdrawing substituents (244, 245, 247) and electron 

donating substituents (246, 248, 249) at positions R1, R2 and R3 yielding the desired 3- cyano 

chromones 242 in moderate yields.  

 

3.3.6.2  Synthesis of α-substituted allenes. 

α-Substitued allene esters were prepared via a Wittig reaction between triphenyl 

phosphonium salt 250 and an acid halide 251 as depicted in Scheme 56.  

 

Scheme 56 - General procedure for the synthesis of allenes, isolated yields over 2 steps in brackets. 

 

The reaction tolerated variations at positions R and R1, yielding the desired allenes 253 in 

good to moderate yields. 

3.3.6.3  Scope of the asymmetric [4+2] annulation reaction: Employing 
substituted electron deficient chromones. 

 

Scheme 57 – Scope of the reaction using varied cyano chromones 
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Table 11 – Scope of the [4+2] annulation with varied chromones. 

Entry Product R1 R2 R3 R4 Yielda 
% 

dr b 
(minor: major) eec (%) 

1 213 H H H H 93 8 : 92 96 

2 263 H F H H 91 10 : 90 95 

3 264 H Cl H H 91 9 : 91 96 

4 265 H Br H H 92 9 : 91 96 

5 266 H Me H H 81 20 : 80 93 

6 267 H CH(CH3)2 H H 80 25 : 75 86 

7d 268 H OMe H H 60 20 : 80 96 

8e 269 Benzene H H 81 16 : 84 91 

9 270 H H Me H 83 16 : 84 91 

10 271 H H F H 89 16 : 84 96 

11 272 H Cl Me H 89 16 : 84 95 

12 - F H H H NR - - 

13 - H Cl H Cl NR - - 
a isolated yields of product 262 (both the diastereomers together), b Determined via 1H NMR analysis of the 
crude poducts,c enantioselectivity of the major diastereomer was determined by chiral HPLC, d 20 mol% of  
catalyst 238 at RT for 48h, e15mol% of catalyst 238 at RT for 48h. 

 

A careful study of the scope of the reaction with varied cyanochromones revealed the 

following (Table 11), in general substrates bearing electron withdrawing and donating 

substituents on the phenyl ring of the chromone yielded the [4+2] adducts with excellent 

enantoselectivities and yields. The C-6 position of the chromone ring (ie R2) showed good 

tolerance for both electron donating and withdrawing substituents. While the electron 

withdrawing substituents at R2 (Table 11, entries 2-4) yielded the [4+2] adducts in excellent 

yields, as well as enantio-and diastereoselectivities, the electron donating counterparts (entries 

5-6) showed a loss in yield and diastreosoelectivity. Presence of highly electron donating 

substituents at R2 like methoxy (entry 7) and naphthalene based cyano chromones (entry 8) 

required higher catalyst loading (20 mol% and 15 mol% respectively) and longer reaction 

times (48h for both at room temperature), yielding the corresponding cycloadducts with 

excellent enantoselectivities and in moderate yields and diasteroselectivites. Heating the 

reaction mixture to 50oC for 24h did not show any improvement in either the yields or 
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reaction times in both the cases. Such results imply the importance of having sufficiently 

electron deficient chromones that can behave as Michael acceptors. Electron donating (entry 

9) and withdrawing substituents (entry 10) at C-7 position on the chromone ring (ie R3) 

behaved similarly yielding the [4+2] adduct in good yields and diastereoselectivites and with 

excellent enantioselectivities. Suprisingly electron withdrawing substituents at 5 and 8 

positions (Floro and chloro group respectively) of the chromone ring ie R1 and R4 failed to 

provide the the [4+2] annulation product. Heating the reaction mixture uptill 80oC also 

showed no effect on the reaction in both the cases.  

 

3.3.6.4  Scope of the asymmetric [4+2] annulation: Employing α-substituted 
allene esters. 
With an established scope of the [4+2] annulation with varied cyanochromones, the feasibility 

of the [4+2] reaction was checked with differently α-substituted allenes as depicted in Scheme 

58.  

 

Scheme 58 – [4+2] annulation of cyano chromone with differently α-substituted allenes. 

 

All the synthesized allenes as in Scheme 58 along with 3-cyano chromone were subjected to 

[4+2] annulation using the optimized reaction condition as depicted in Table 12. 

Employing various allenoates (Table 12, entries 1-5) in the [4+2] reaction with 3-cyano 

chromone resulted in the desired adducts 273 in good yields and with excellent 

enantioselectivities. Increase in the stearic bulk of the substituents on the ester moiety led to 

slightly lower diastereoselectivity (entry 3, 4 and 5). α-benzyl allene ester (entry 6) as well as 

α-methyl allene ester (entry 7) in the reaction with 3-cyano chromone failed to provide the 

desired [4+2] adducts. Heating the reaction mixture to 80oC or increasing catalyst loading had 

no effect in both the cases. Lastly an electron poor aromatic ring p-NO2Ph (entry 8) in place of 

the ester moiety at the β-postion of the allenoate resulted in low yield of the cycloadduct 278 

(determined via NMR) with almost no diastereoselectivity. These results led to the following 

conclusions; presence of an electron-poor moiety like an ester group at the β´-position of the 
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allenoate increases steric hinderance at that position thus favours the γ-addition to the C-2 

position of the chromone. Secondly presence of an ester group increases the acidity of the 

β´proton and thus facilitates the reaction discourse towards cyclization by attack of chromonyl 

enolate on the β´-postion of allene (Scheme 59, mechanism). 

Table 12 – Scope of the [4+2] annulation with allenes. 

Entry Product  R R1 Yielda % dr b 
(minor: major) eec (%) 

1 213 CO2Et CO2Et 93 8 : 92 96 

2 274 CO2Me CO2Et 88 10 : 90 96 

3 275 CO2Bn CO2Et 91 14 : 86 97 

4 276 CO2
tBu CO2Et 89 14 : 86 96 

5 277 CO2Et CO2
tBu 85 16 : 84 94 

6 - Ph CO2Et NR - - 

7 - H CO2Et NR - - 

8 278 p-NO2Ph CO2Et < 15 46 : 54 ND 
aisolated yields of both the diastereomers together (273), b Determined via 1H NMR analysis of the crude 
poducts,c enantioselectivity of the major diastereomer determined by chiral HPLC. 

 

3.3.7    Absolute configuration of the [4+2] annulation product 264 (major 
diastereomer) 

The absolute configuration of the annulation products was unambiguously assigned by 

determining  the  X-ray crystal structure of the major diastereomer of 264, formed in the 

reaction of 6-Cl-3-cyanochromone and allene ester 175a catalyzed by 10 mol% of amino 

phosphine 238. 
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Figure 8 - Absolute configuration of molecule 264 

 

The Crystals of compound 264 were obtained by dissolving 20mg of the compound 264 in 

0.5ml of DCM + 0.5ml of isohexane + 0.05ml of i-propanol. The solution was left to stand in 

a quiet corner for the solvent to evaporate slowly and yield the desired crystal. 

 

3.3.8   Proposed mechanism for the [4+2] annulation. 

The first step of the annulation reaction involves the formation of the phosphonium enolate 

279, by the nucleophillic addition of the aminophosphine to allene 175a. A γ-addition of the 

dienolate specie 279 to the electron deficient chromone ring 168a leads to the formation of the 

zwitterionic specie 280. In light of previous studies 101, 103, 113 a possible transition state for 

intermediate 280 is proposed in Scheme 60. The stabilization of the transition state is assisted 

by hydrogen bonding interaction between the amide NH of the catalyst and the enolate and a 

P-O interaction. A si-face attack by the dienolate on the chromone is preferred (TS-3, Scheme 

60) to avoid the stearic bulk of the triisopropyl group (catalyst backbone) as well as the two 

phenyl rings on the phosphine (TS-2 and 1, Scheme 60). Two consecutive proton transfer 

steps shuffle the proton on the β´-carbon to the β-carbon leading to the formation of an 

allyphosphonium zwitterionic specie 283. A conjugated addition of the chromonyl enolate 

followed by β-elimination of the aminophosphine furnishes the [4+2] cycloadduct 213 in 

excellent enantio-and diastereoselectivity (96% ee and dr - 1:11 respectively). 
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Scheme 59 – Mechanism of the [4+2] annulation between 3-cyano chromone and allene 175a. 

 

Scheme 60 – Possible transition state for 280 
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3.3.9   Feasability of the [4+2] annulation with 3-methyl ester chromone and 
allene ester 175a 

After studying the [4+2] annulation with various 3-cyano- chromones, the feasibility of the 

reaction with 3-methyl ester substituted chromone (284) as depicted in Scheme 61 was 

checked  

The 3-Methyl ester chromone (284) with allenoate 175a was subjected to the [4+2] annulation 

using the optimized reaction conditions for 3-cyano chromones. The reaction resulted in very 

low yield of the [4+2] cycloadduct 286 (<20%, determined via NMR) with no 

diastereoselectivity (1: 1.5). 

 

Scheme 61 – [4+2] annulation between 3-methyl ester chromone and allenoate 175a 

Increasing catalyst loading to 20 mol% or heating the reaction to higher temperatures (60oC 

and 80oC) showed only slight improvement in the yields of the reaction. Attempts with few 

more aminophosphines with different chiral backbones and having the 

3,5(bistrifloromethyl)benzoyl group as the N-protecting group (206, 229, 230) and also the 

ones derived from L-isoleucine having different N-protecting groups (220, 226), resulted in 

low or trace amounts of the [4+2] adduct 286. The feasibility of the [4+2] annulation in 

different solvents in the presence of 10 mol% of aminophosphine 238 was checked. Only in 

case of DCM as solvent the reaction showed around ~35% yield (determined via NMR) but 

with no diastereosectivity (1: 1). Lastly using ethyl ester chromone (285) with allenoate 175a 

for the [4+2] annulation also showed similar results like the methyl ester substituted 

chromone. Although its difficult to predict the cause of the low reactivity of the  ester 

substituted chromones 284-285 as compared to cyano substituted chromones, we assume that 

in a highly packed transition state of the complex 280 (TS-3, Scheme 60) does not prefer any 

bigger group that sterically interacts with the α-substitution on the allene ester resulting in 

very low yield of the product. 
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3.4   Summary 

In summary, an enatioselective [4+2] annulation reaction between electron deficient and 

differently substituted 3-cyano chromones and α-substituted allenoates catalyzed by amino 

acid derived phosphine catalyst was developed. The reaction yielded enantiomerically pure 

tetrahydroxanthones supporting three consecutive chiral centers including an all carbon 

quaternary center. A small compound collection following the optimized reaction conditions 

was built and shall be explored for its biological properties.  
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4.1   Summary 

 

Natural product inspired compound collections embody structural scaffolds derived from 

biologically relevant and prevalidated fractions of chemical structure space explored by 

nature. These structural scaffolds are also referred to as privileged given the fact that the 

number of structural motifs of protein and natural products is limited. The probability that 

compound libraries inspired by natural products, will be biologically relevant is high and is 

also a viable guiding principle for the identification of small molecules for chemical biology 

and medicinal chemistry research. 

This present work addresses the synthesis of compound libraries inspired by natural product 

scaffolds. The synthesis of a small library of indole derived indoloquinolizine and related 

scaffolds and the synthesis of an asymmetric compound collection based on the 

tetrahydroxanthone scaffold was developed. 

 

A compound library based on indole derived indoloquinolizine and related scaffolds. 

In view of the importance of the indoloquinolizine scaffold and related analogs like the 

harmicine scaffold as biologically active heterocyclic templates which occur widely in the 

alkaloid world, a two-step reaction sequence was devised, which involves a Pictet-Spengler 

cyclization followed by a Au(I) catalyzed intramolecular hydroamination reaction of 

acetylenes to access the desired indole derived scaffolds (75, 102, 135).  

The synthesis of the indoloquinolizine scaffold 75, was achieved via a two-step protocol, 

wherein acteylenic aldehydes (72) and tryptamines (71) cyclized in a Pictet-Spengler reaction 

catalyzed by (10 mol%) of Yb(OTf)3 in the presence of ionic liquid [bmim]Cl-AlCl3 (0.32 ml/ 

mmol of tryptamine) yielding the corresponding tetrahydro-β-carbolines (73). Treatment of 

the pure adducts 73 with (10 mol%) of the gold catalyst Y afforded the desired 

indoloquinolizines 75 (Scheme 62). The reaction showed tolerance for aryl and alkyl 

substituents on the acetylene yielding the corresponding indoloquinolizines 75 in moderate to 

good yields. Notably electron poor tryptamines like 5-chloro tryptamine (71c) that are poor 

substrates for the Pictet-Spengler cyclization also yielded the desired indoloquinolizine (95) in 

moderate yield under the conditions of the developed protocol. 
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With encouraging results with indoloquinolizines (75), the utility of this two-step protocol for 

the synthesis of hexacyclic indoloquinolizines (102) (Scheme 62) was examined. Herein 

acetylenic isatins (99) and tryptamines (71) were subjected to Pictet-Spengler cyclization in 

the presence of 1 equiv of TFA yielding the desired Pictet-Spengler adducts (100), which on 

treatment with (10 mol%) AuCl(SMe2) yielded the desired hexacyclic indoloquinolizines 

(102) in good yields over two synthetic steps. Only in case of 5-chloro tryptamine (71c) the 

Pictet-Spengler cyclization with TFA resulted in very poor yields of 115 and hence resorting 

to Ytterbium catalysis resulted in moderate yields of 115 (57%). The reaction in this case also 

showed good tolerance for varied aryl and alkyl substituents on the acetylene.  

 

Scheme 62 – Three different indole based scaffolds (75, 102, 135) were synthesized, a) the yields are depicted 
over two reaction steps for scaffolds 75 and 102, b) the yields depicted for scaffolds 135 are for the gold 
catalyzed polyclization cascade step. 
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In view of generating polycylic indole scaffolds with higher structural complexity acetylenic 

aldehyde of type 131 with tryptamines 71 were employed in the devised two-step protocol. 

The Pictet-Spengler cyclization between substrates 131 and 71 catalyzed by (10 mol%) 

Yb(OTf)3 in the presence of ionic liquid [bmim]Cl-AlCl3 (0.32 ml/ mmol of tryptamine) 

yielded the tetrahydro-β-carbolines (132) tethered to a 1,5 enyne with (E)- configured alkene. 

The designed substrates 132 on treatment with gold catalyst Y (10 mol%) underwent a double 

cascade polycyclization yielding harmicine analogs 135 as a mixture of diastereomers in good 

yields (Scheme 62). The reaction tolerated both electron donating and withdrawing 

substituents on the indole ring of the tryptamine. 

In conclusion a two-step catalytic reaction sequence was developed to afford indole derived 

indoloquinolizines (75) and hexacyclic indoloquinolizine scaffolds (102). A Au(I) catalyzed 

cascade polycylization gave efficient access to complex analogs of the harmicine alkaloid 

(135). 

 

N-acyl aminophosphine catalyzed asymmetric [4+2] annulation of allenoates and 3-
cyanochromones yielding enantiomerically pure tetrahydroxanthones. 

The wide occurrence of the tetrahydroxanthone scaffold in nature and among 

pharmacologically active compounds, as well as the profound biological activities showcased 

by the optically active tetrahydroxanthone derivatives inspired the development of a synthetic 

methodology that offers an easy stereoselective access to this class of compounds. We relied 

on an organophosphine mediated [4+2] annulation between electron deficient cyano 

chromones and α-allene esters yielding the desired optically active tetrahydroxanthone 

scaffold (289).  

Initially electron deficient 3-cyanochromone 168a and α-allene ester 175a were treated with 

various chiral organophosphines for catalyzing the [4+2] annulation. Amino acid derived 

aminophosphine (206) was found to be effective in catalyzing the [4+2] annulation affording 

the desired tetrahydroxanthone scaffold (213) as two diastereomers. The asymmetric version 

of the [4+2] annulation yielded both diastereomers as [4+2] γ-addition products similar to the 

ones in the racemic version of the reaction (determined via NMR), however with a reversal of 

preffered diastereoselectivity. A small library of aminophosphines was synthesized and 

screened for their catalytic efficiency in the [4+2] annulation between 3-cyano chromone 

168a and allenoate 175a. L-threonine derived aminophosphine 238 with 
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3,5(bistrifloromethyl)benzoyl group as the N-protecting group was found to be most effective 

in catalyzing the [4+2] annulation reaction affording the [4+2] adduct (213) in excellent 

enantioselectivity (95%) and yield (83%) but with moderate diastereoselectivity (1: 3.5) in 

DCM as solvent. Solvent played an important role in improving the diastereoselectivity of the 

reaction, wherein carrying out the [4+2] annulation in 1,4-dioxane (1M concentration of the 

reaction mixture) afforded the [4+2] adduct 213 in excellent enantioselectivity 96.7%, high 

yield (81%) and most importantly with very high diastereoselectivity (1:11) (Scheme 63). 

Lastly addition of 3Å molecular sieves to the reaction mixture further improved the yield to 

93% without any change in enantio- and diastereoselectivity.  

 

Scheme 63 – [4+2] annulation catalyzed by chiral aminophosphine 238 in different solvents, the 
enantioselectivity of the major diastereomer was determined by chiral HPLC. 

 

With an optimized reaction condition for the [4+2] annulation, the scope of this reaction was 

investigated. Initially differently substituted cyanochromones (261) were employed for the 

[4+2] annulation with allenoate 175a. The reaction showed good tolererance for electron 

donating and withdrawing substituents at R2 (C-6 position) and R3 (C-7 position) position on 

the chromone, yielding the [4+2] adducts (289) in excellent yields and enantioselectivities and 

with good to moderate diastereoselectivities (Scheme 64). Electron withdrawing substituents 

at position R1 and R4 failed to provide the desired [4+2] adduct. Next α-substituted allene 

esters (288) were tested for the [4+2] annulation with cyano chromone (168a) yielding the 

[4+2] adducts (289) in good yields and excellent enantioselectivities. A slight drop in 

diastereoselectivity was observed with increase in the stearic bulk of substituents on the ester 

moiety (R and R5). α-benzyl and α-methyl allene esters  failed to provide the desired [4+2] 

adduct 289. 
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Scheme 64 – [4+2] annulation with differently substituted 3-cyano chromones and α-substituted allene esters, 
the enantioselectivity of the major diastereomer was determined by chiral HPLC. 

 

In conclusion we successfully developed a N-acyl amino acid derived asymmetric [4+2] 

annulation reaction between differently substituted 3-cyano chromones and α-substituted 

allenoates, affording enantiomerically pure tetrahydroxanthones supporting three consecutive 

chiral centers including an all carbon quaternary center. 
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4.2   Zusammenfassung 

 

Von Naturstoffen inspirierte Substanzbibliotheken inkorporieren biologisch relevante und 

prävalidierte Bereiche des chemischen Strukturraums. Da die Anzahl an natürlichen 

Strukturmotiven von Proteinen und Naturstoffen begrenzt ist, werden die Grundgerüste 

solcher Substanzbibliotheken als privilegiert bezeichnet. Die Wahrscheinlichkeit, dass die von 

solchen privilegierten Grundgerüsten inspirierten Substanzbibliotheken biologisch relevante 

Wirkung zeigen, ist hoch. Somit ist die Synthese von naturstoffinspirierten 

Substanzbibliotheken ein leistungsfähiges Prinzip zur Identifikation biologisch aktiver  

niedermolekularer Substanzen für die chemische Biologie und die medizinalchemische 

Forschung. 

Die vorliegende Arbeit beschäftigt sich mit der Synthese von solchen naturstoffinspirierten 

Substanzbibliotheken. Sie beschreibt die Synthese einer kleinen Indol-basierten 

Indochinolizin-Bibliothek und verwandten Grundgerüsten und die Synthese einer 

asymmetrischen, auf dem Tetrahydroxanthongerüst basierenden Substanzkollektion.  

 

Eine auf dem Indolgerüst basierende Substanzbibliothek von Indolochinolizinen und 

verwandten Strukturen. 

Im Hinblick auf die biologische Relevanz des Indolochuinolizingerüsts und verwandter 

Analoga wie Harmicin als aktive heterozyklische Strukturen mit weiter Verbreitung in der 

Welt der Alkaloide wurde eine zweistufige Reaktionssequenz zum Aufbau dieser Strukturen 

(75, 102, 135) entwickelt. Diese beinhaltet eine Pictet-Spengler Zyklisierung, gefolgt von 

einer Au(I)-katalysierten intramolekularen Hydroaminierung von Acetylenen. 

Das Indolochinolizin 75 wurde in zwei Stufen erhalten, wobei acetylenische Aldehyde (72) 

und Tryptamine (71) durch eine Pictet-Spengler Reaktion unter Yb(OTf)3-Katalyse (10 

mol%) in Anwesenheit der ionischen Flüssigkeit [bmim]Cl-AlCl3 (0.32 ml/mmol des 

Tryptamins) zu Tetrahydro-β-carbolinen (73) zyklisiert wurden. Behandlung der 

aufgereinigten Produkte 73 mit 10 mol/% des Goldkatalysators Y führte zum gewünschten 

Indolochinolizin 75 (Abbildung 62) in moderater bis guter Ausbeute. Die Reaktion tolerierte 

sowohl Aryl- als auch Alkylsubstituenten am Acetylen. Auch elektronenarme Tryptamine wie 

5-Chlorotryptamin (71c), die nur schlechte Substrate für die Pictet-Spengler Zyklisierung 



Zusammenfassung 

 

80 

 

sind, führten zum gewünschten Indolochinolizin (95) in moderaten Ausbeuten unter diesen 

Bedingungen. 

Aufgrund der erfolgreichen Synthese von Indolochinolizinen (75) wurde die oben dargestellte 

Reaktionssequenz auf die Synthese von hexazyklischen Indolochinolizinen (102, Abbildung 

62) übertragen. Dazu wurden acetylenische Isatine (99) und Tryptamine (71) in der 

Anwesenheit von TFA durch Zyklisierung zum gewünschten Pictet-Spengler-Produkt (100) 

umgesetzt. Dieses führte nach anschließender Behandlung mit 10 mol/% AuCl(SMe2) zum 

gewünschten hexazyklischen Indolochinolizin (102) in zwei Schritten und mit guten 

Ausbeuten. Nur im Falle des 5-Chlorotryptamins gelang die Zyklisierung in Anwesenheit von 

TFA nicht und es wurde auf Ytterbiumkatalyse zurückgegriffen, womit 115 in moderater 

Ausbeute von 57% erhalten wurde. Auch in diesem Fall zeigte die Reaktion große Toleranz 

gegenüber verschiedenen Alkyl- und Arylsubstituenten am Acetylen. 
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Abbildung 62 – Drei im Rahmen dieser Dissertation hergestellte Indol-basierte Strukturen 
(75, 102, 135), a) Ausbeuten für 75 und 102 wurden über zwei Stufen, b) Ausbeuten für 135 
nach der goldkatalysierten Zyklisierung. 

 

Um polyzyklische Indolstrukturen mit höherer struktureller Vielfalt herzustellen, wurden 

acetylenische Aldehyde des Typs 131 mit Tryptaminen des Typs 71 den entwickelten 

Reaktionsbedingungen unterworfen. Die Pictet-Spengler Zyklisierung von 131 und 71 führte 

unter Yb(OTf)3 –Katalyse (10 mol/%) in Anwesenheit der ionischen Flüssigkeit [bmim]Cl-

AlCl 3 (0.32 ml/ mmol Tryptamin) zu dem mit einem 1,5 Eninverknüpften Tetrahydro-β-

carbolin 132 mit (E)-Konfiguration der Doppelbindung. 132 vollzog bei Behandlung mit 10 

mol% des Goldkatalysators Y eine zweifache Polycyclisierungskaskadenreaktion zum 

Harmicinanalogon 135 als Diastereomerengemisch und mit guter Ausbeute (Abbildung 62). 

Die Reaktion tolerierte sowohl elektronenziehende als auch elektronenschiebende 

Substituenten am Indolring des Tryptamins. 

Zusammenfassend wurde eine katalytische Reaktionssequenz zur Synthese von Indol-

basierten Indochinolizin- (75) und hexazyklischen Indochinolizingerüststrukturen (102) in 

zwei Stufen entwickelt.  Eine Au(I)-katalysierte Polyzyklisierungskaskade erlaubt den Zugang 

zu komplexen Harmicinanaloga (135).   

 

N-Acylaminophosphin-katalysierte asymmetrische [4+2]-Anellierung von Allenoaten 

und 3-Cyanochromonen zur Synthese enantiomerenreiner Tetrahydroxanthonen. 

Da das Tetrahydroxanthongerüsts in der Natur und unter pharmakologisch aktiven 

Verbindungen und insbesondere von optisch aktiven Tetrahydroxanthonderivaten weit 

verbreitet ist wurde eine Syntheseroute zu entwickelt, die einen einfachen stereoselektiven 

Zugang zu dieser Substanzklasse ermöglicht. Eine Organophosphin-vermittelte [4+3]-

Anellierungsreaktion zwischen elektronenarmen Cyanochromonen und  α-Allenoaten führte 

zu dem gewünschten optisch aktiven Tetrahydroxanthongerüst 289. 

Hierbei wurde das elektronenarme 3-Cyanochromon 168a mit dem α-Allenester 175a mit 

diversen chiralen Organophosphinen umgesetzt. Aminosäurebasierte Aminophosphine stellten 

sich dabei als effektive Katalysatoren für die [4+2]-Annelierung zur Herstellung des 

gewünschten Tetrahydroxanthongerüsts 213 als Gemisch zweier Diastereomere heraus. Die 



Zusammenfassung 

 

82 

 

asymmetrische Version dieser Reaktion führte zur Bildung beider Diastereomere als [4+2] γ-

Additionsprodukte, ähnlich wie die racemische Version (Bestimmung durch NMR), allerdings 

unter Inversion der relativen Stereochemie. Zudem wurde eine kleine Kollektion von 

Aminophosphinen hergestellt und auf ihre katalytische Effizienz in der beschriebenen 

Annelierungsreaktion getestet. Mit dem L-Threonin-basierten, mit 3,5-(Bistrifloromethyl)-

benzoylamid versehenen Aminosphosphin 238 konnte das [4+2]-Addukt 213 in 

Dichlormethan in exzellenter Enantioselektivität von 95%  und mit einer Ausbeute von 83%, 

jedoch lediglich mit moderater Diastereoselektivität (1: 3.5) erhalten werden. Die Wahl des 

Lösungsmittels erwies sich als kritischer Faktor bezüglich der Diastereoselektivität heraus. So 

konnte in 1,4-Dioxan (1M Konzentration des Reaktionsgemisches) eine exzellente 

Enantioselektivität von 96.7%, eine gute Ausbeute von 81% und eine sehr hohe 

Diastereoselektivität von 1:11 erreicht werden. Durch Zugabe von 3Ǻ-Molekularsieb konnte 

die Ausbeute unter Erhalt der Enantio- oder Diastereoselektivität auf 93% gesteigert werden. 

 

Abbildung 63 – Durch das chirale Aminophosphin 238 katalysierte [4+2]-Annelierung in 
verschiedenen Lösemitteln. Die Enantioselektivität wurde mittels chiraler HPLC bestimmt. 

 

Die optimierte Reaktion mit Allenoat 175a zeigte hohe Toleranz sowohl gegenüber 

elektronenziehenden als auch elektronenschiebenden Substituenten R2 (C-6 Position) und R3 

(C-7 Position) des Chromons. Dabei wurden die gewünschten [4+2]-Addukte 289 in 

exzellenten Ausbeuten, guter Enantioselektivität und mit guter bis moderater 

Diastereoselektivität erhalten. Mit elektronenziehenden Substituenten an der R1- oder R4-

Position wurde kein [4+2]-Addukt gefunden. In Bezug auf verschieden α-substituierte 

Allenoate (288)  wurden, dass bei der Reaktion mit Cyanochromon 168a gute Ausbeuten bei 

exzellenter Enantioselektivität erreicht werden. Eine leichte Verringerung der 

Diastereoselektivität wurde in Anwesenheit von Substituenten am Ester mit großem sterischen 

Anspruch beobachtet. Bei Verwendung von α-Benzyl- and α-Methylallenestern fand keine 

[4+2]-Annelierung statt.   
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Abbildung 64 – [4+2]-Annelierung mit verschieden substituierten 3-Cyanochromonen mit α-
substituierten Allenestern. Die Enantioselektivität für das Hauptdiastereomer wurde mittels 
chiraler HPLC bestimmt.  

Zusammenfassend wurde eine asymmetrische N-Acylaminophosphin-katalysierte [4+2]-

Annelierungsreaktion zwischen verschieden substituierten 3-Cyanochromonen und α-

substituierten Allenoaten zu enantiomerenreinen Tetrahydroxanthonen mit drei Stereozentren 

entwickelt, von denen eins ein quartäres Kohlenstoffatom trägt. 
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5.  Experimental Part 

 

5.1  General Methods and Materials  

 

Techniques: All reactions involving air or moisture sensitive reagents or intermediates were 

carried out under argon atmosphere. All the glassware’s were dried by heat gun under high 

vaccum prior to use. Concentration of the reaction mixture was performed under reduced 

pressure at 40oC at the appropriate pressure. Purified compounds were further dried under 

high vacuum.  

 

Solvents and reagents: Dichloromethane and Triethyl amine was distilled from CaH2. Dry 

acetonitrile, toluene and 1,4-dioxane, diehyl ether and ethyl acetate stored over molecular 

sieves were received from Aldrich and Acros and used without any further purification. All 

other solvents or reagents were purified according to standard procedures or were used as 

received from Aldrich, ABCR, Alfa-Aesar, Acros, Fluka, and TCI.  

 

TLC:  TLC was performed using precoated Merck silica gel 60 F254 glass plates, detection of 

compounds were performed by UV254 light and/or dipping into a solution of KMnO4 (1.5 g 

in 400 mL H2O, 5 g NaHCO3) followed by heating with a heat gun. 

 

Flash Chromatography: Was performed using silica gel Merck 60 (40-63 µm), argon 

pressure approximately 0.5 bar, eluent is given in parantheses. 

 

1H-NMR and 13C-NMR:  Were recorded on a Bruker DRX400 (400 MHz) and Bruker 

DRX600 (600 MHz), using CDCl3 or DMSO-d6 or CD2Cl2 as solvent. Data are reported in the 

following order: chemical shift (δ) values are reported in ppm with the solvent resonance as 

internal standard (CDCl3: δ = 7.26 ppm for 1H, δ = 77.16 ppm for 13C), (DMSO-d6: δ = 2.50 

ppm for 1H, δ = 39.52 for 13C), (CD2Cl2: δ = 5.32 ppm for 1H, δ = 53.84 for 13C), 

multiplicities are indicated br s (broadened singlet), s (singlet), d (doublet), t (triplet), q 
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(quartet), m (multiplet), dd (doublet of doublet), dt (doublet of triplet); coupling constants (J) 

are given in Hertz (Hz). 

 

MS: HRMS (ESI): Spectra were recorded on a LTQ Orbitrap mass spectrometer coupled to 

an Acceka HPLC-System (HPLC column: Hypersyl GOLD, 50 mm x 1 mm, particle size 1.9 

µm, ionization method: electron spray ionization. 

 

GC: Were recorded on a gas chromatograph (Agilent 7890 A, column DB-5MS) with 

downstream mass spectrometer (Agilent 5975 inert XL MSD) 

 

Microwave Reactions: were performed using CEM Intellivent Explorer 541416 machine at 

the desired temperature using 300 W power and 14 mbar pressure. 

 

Melting points: Were measured on a melting point device 540 by Büchi. All melting points 

are uncorrected. 

 

5.2  Experimental part for chapter 2  

5.2.1  Synthesis of indoloquinolizine based indole scaffold 

General Procedure 1 (GP1) for the synthesis of o-alkynyl benzaldehydes 72. 

2‐bromobenzaldehyde 83 (1 equiv) was dissolved in Et3N (0.25 M) and the reaction mixture 

was degassed for 5 min by argon bubbling. Then CuI (1 mol%) and PdCl2(PPh3)2 (2 mol%) 

were introduced and the mixture was further degassed for 10 min by argon bubbling. Finally, 

the corresponding alkyne 84 (1.2 equiv) was added and the reaction was stirred at 50 °C and 

monitored via TLC. After completion of the reaction, it was quenched by addition of distilled 

water and was extracted by CH2Cl2 (3 times). The combined organic layers were washed with 

brine, dried over MgSO4, filtrated and concentrated under reduced pressure. The crude 

reaction mixture was purified by column chromatography using silica gel with ethyl acetate 

and petroleum ether as eluents.  
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General Procedure 2 (GP2) for the synthesis of Pictet-Spengler Derivatives 73 

To a mixture of the corresponding tryptamine/5-substituted tryptamine 71 (0.36 mmol), O-

alkynyl benzaldehyde 72 (1.2 equiv, 0.43 mmol) and Yb(OTf3) (10 mol%, 22.51 mg) was 

added dry DCM (1.2 ml) under an argon atmosphere with stirring, followed by the addition of 

ionic liquid [bmim]Cl.AlCl3 (0.32 ml/mmol). The reaction mixture was then subjected to 

microwave irradiation for 60 min at 120 oC. The crude reaction mixture was directly purified 

by column chromatography using basified silica gel with methanol and dichloromethane as 

eluents.  

 

 

General Procedure 3 (GP3) for the gold catalyzed hydroamination reaction yielding 
indoloquinolizines 75. 
To a solution of the tetrahydro-β-carboline 73 (0.1 mmol) in dry DCE (2 ml) under argon 

atmosphere was added the gold Cat Y (10 mol%, 7.72 mg) and the reaction mixture was 

stirred at RT until the completion of the reaction monitored via TLC. The solvent was 

removed in vacuo and the crude reaction mixture was purified by flash chromatography using 

silica gel with petroleum ether and ethyl acetate as eluents. 
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2-(Phenylethynyl) benzaldehyde (85) 

 

Compound 85 was synthesized according to the GP1 as a yellowish liquid in 80% yield, RF = 

0.55 ( 5% EtOAc/ Petroleum ether );  1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 10.66 ( d, J = 

0.8 Hz, 1H ), 7.96 ( dd, J = 7.8, 1.4 Hz, 1H ), 7.67 – 7.64 ( m, 1H ), 7.61- 7.55 ( m, 3H ), 7.48 

– 7.43 ( m, 1H ), 7.41 – 7.37 ( m, 3H ); 13C NMR (100 MHz, 25 °C, CDCl3): δ 191.8, 136.0, 

133.9, 133.3, 131.8, 129.2, 128.7, 128.6, 127.4, 127.0, 122.4, 96.4, 85.0; HRMS (ESI): 

Calculated for C15H10O [M+H+]: 207.08044, Found: 207.08144. 

 

2-((4-Methoxyphenyl)ethynyl)benzaldehyde (86) 

 

Compound 86 was synthesized according to the GP1 as a pinkish solid in 86% yield, RF = 

0.56 ( 5% EtOAc/ Petroleum ether );  1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 10.63 ( s, 1H ), 

7.91 ( d, J = 7.9 Hz, 1H ), 7.67 – 7.57 ( m, 2H ), 7.55 – 7.51 ( m, 2H ), 7.45 ( t, J = 7.5 Hz, 1H 

), 6.96 – 6.89 ( m, 2H ), 3.84 ( t, J = 1.4 Hz, 3H ); 13C NMR (100 MHz, 25 °C, CD2Cl2): δ 

191.4, 160.3, 135.6, 133.6, 133.1, 132.9, 128.1, 127.0, 127.0, 114.2, 114.0, 96.2, 83.6, 55.2; 

HRMS (ESI): Calculated for C16H12O2 [M+H+]: 237.09101, Found: 237.09215. 

 

2-((4-Fluorophenyl)ethynyl)benzaldehyde (87) 

 

Compound 87 was synthesized according to the GP1 as a brownish yellow solid in 87% yield, 

RF = 0.54 ( 5% EtOAc/ Petroleum ether );  1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 10.67 – 

10.57 ( m, 1H ), 7.96 – 7.88 ( m, 1H ), 7.69 – 7.55 ( m, 4H ), 7.51 – 7.45 ( m, 1H ), 7.15 – 

7.08 ( m, 2H ); 13C NMR (100 MHz, 25 °C, CD2Cl2): δ 191.7, 163.3 ( d, JC-F = 250.2 Hz ), 
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136.3, 134.2, 134.1 ( d, J = 8.5 Hz ), 133.6, 129.1, 127.7, 126.8, 119.0 ( d, J = 3.5 Hz ), 116.2 

( d, J = 22.3 Hz ), 95.3, 85.1; HRMS (ESI): Calculated for C15H9FO [M+H+]: 225.07102, 

Found: 225.07181. 

 

2-(Cyclopropylethynyl)benzaldehyde (88) 

 

Compound 88 was synthesized according to the GP1 as a yellowish liquid in 88% yield, RF = 

0.6 ( 5% EtOAc/ Petroleum ether );  1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 10.53 – 10.43 ( 

m, 1H ), 7.83 ( d, J = 7.8 Hz, 1H ), 7.57 – 7.45 ( m, 2H ), 7.42- 7.33 ( m, 1H ), 1.58 – 1.48 ( 

m, 1H ), 0.97- 0.91 ( m, 2H ), 0.89 – 0.81 ( m, 2H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 

192.1, 136.5, 134.0, 133.6, 128.1, 127.2, 101.6, 71.7, 9.1, 0.5; HRMS (ESI): Calculated for 

C12H10O [M+H+]: 171.08044, Found: 171.08065. 

 

Compound 77 

 

Compound 77 was synthesized according to the GP2 as a sticky reddish brown solid in 74% 

yield, RF = 0.43 ( 10% MeOH/ DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.75 ( s, 1H, 

NH ), 7.54 ( m, 1H ), 7.47 ( m, 1H ), 7.40 ( m, 2H ), 7.28-7.23 ( m, 3H ), 7.23-7.15 ( m, 2H ), 

7.15-7.09 ( m, 2H ), 7.07-7.01 ( m, 2H ), 5.74 ( s, 1H ), 3.23 (m, 1H), 3.07 (m, 1H), 2.81 (m, 

2H), 2.20 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 143.7, 136.0, 134.0, 132.8, 

131.7, 128.8, 128.69, 128.67, 128.5, 127.9, 127.4, 122.9, 122.6, 121.7, 119.4, 118.2, 110.9, 

110.4, 94.5, 87.1, 55.4, 42.2, 22.5; HRMS (ESI): Calculated for C25H21N2 [M+H+]: 

349.16993, Found: 349.17088. 
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Compound 89 

 

Compound 89 was synthesized according to the GP2 as a sticky reddish brown solid in 70% 

yield, RF = 0.45 ( 10% MeOH/ DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.61 ( m, 1H 

), 7.57 ( s, 1H, NH ), 7.47 ( m, 2H ), 7.35-7.27 ( m, 5H ), 7.23 ( m, 1H ), 7.13 ( dd, J = 8.7, 0.5 

Hz, 1H ), 7.0 ( d, J = 2.4 Hz, 1H ), 6.8 ( dd, J = 8.7, 2.5 Hz, 1H ), 5.81 ( s, 1H ), 3.87 ( s, 3H ), 

3.33 ( m, 1H ), 3.18 ( m, 1H ), 2.86 ( m, 2H ), 2.05 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 

°C, CDCl3 ): δ 154.2, 143.6, 134.9, 132.9, 131.7, 131.1, 128.8, 128.73, 128.70, 128.5, 127.9, 

127.8, 122.9, 122.7, 111.64, 111.61, 110.2, 100.6, 94.5, 87.1, 56.1, 55.6, 42.4, 22.6; HRMS 

(ESI): Calculated for C26H23N2O [M+H+]: 379.18049, Found: 379.18026 . 

Compound 90 

 

Compound 90 was synthesized according to the GP2 as a sticky reddish brown solid in 60% 

yield, RF = 0.47 ( 10% MeOH/ DCM  ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 8.14( s, 1H, 

NH ), 7.63( m, 1H ), 7.49( d, J = 1.4 Hz, 1H ), 7.45( m, 2H ), 7.37-7.24( m, 5H ), 7.20( dd, J = 

7.2, 0.6 Hz, 1H ), 7.11( dd, J = 8.6, 0.6 Hz, 1H ), 7.04 ( m, 1H ), 5.76 ( s, 1H ), 3.27 ( m, 1H ), 

3.09 ( m, 1H ), 2.84 ( m, 1H ), 2.75 ( m, 1H ), 2.23 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 

°C, CD2Cl2 ): δ 143.9, 136.4, 134.7, 133.1, 131.9, 129.1, 129.0, 128.9, 128.89, 128.85, 128.2, 

125.1, 123.1, 122.9, 121.8, 117.9, 112.2, 110.3, 94.7, 87.3, 55.8, 42.5, 22.6; HRMS (ESI): 

Calculated for C25H20N2Cl [M+H+]: 383.13095, Found: 383.13142. 

Compound 91 
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Compound 91 was synthesized according to the GP2 as a sticky reddish brown solid in 71% 

yield, RF = 0.48 ( 10% MeOH/ DCM  ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.92 ( s, 1H, 

NH ), 7.61 ( m, 1H ), 7.42 ( m, 2H ), 7.29 ( m, 2H ), 7.26-7.18 ( m, 3H ), 7.08 ( m, 2H ), 6.87 ( 

m, 2H ), 5.80 ( s, 1H ), 3.81 ( s, 3H ) 3.30 ( m, 1H ), 3.13 ( m, 1H ), 2.85 ( m, 2H ), 2.03 ( bs, 

1H, NH ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 160.2, 143.8, 136.1, 134.5, 133.2, 132.6, 

128.6, 128.5, 127.8, 123.0, 121.6, 119.3, 118.2, 115.0, 114.2, 113.7, 110.9, 110.2, 94.5, 86.0, 

55.63, 55.53, 42.4, 22.6; HRMS (ESI): Calculated for C26H23N2O [M+H+]: 379.18049, 

Found: 379.18131. 

Compound 92 

 

Compound 92 was synthesized according to the GP2 as a sticky reddish brown solid in 70% 

yield, RF = 0.46 ( 10% MeOH/ DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.8 ( s, 1H, 

NH ), 7.61( m, 1H ), 7.55 ( m, 1H ), 7.42 ( m, 2H ), 7.28 ( m, 2H ), 7.23-7.18 ( m, 2H ), 7.13 ( 

m, 2H ), 7.02 ( m, 2H ), 5.78 ( s, 1H ), 3.32 ( dt, J = 12.2, 5.1 Hz, 1H ), 3.16 ( m, 1H ), 2.88 ( 

m, 2H ), 2.24 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 162.7( d, J = 250.2 Hz, 

CF ), 143.6, 136.0, 133.9, 133.6 ( d, J = 8.4 Hz, 2CH ), 132.8, 128.9, 128.7, 127.9, 127.4, 

122.5, 121.8, 119.5, 119.0 ( d, J = 3.5 Hz ), 118.3, 115.8 ( d, J = 22.1 Hz, 2CH ), 110.9, 110.4, 

93.4, 86.8, 86.7, 55.6, 42.3, 22.5; HRMS (ESI): Calculated for C25H20N2F [M+H+]: 

367.16050, Found: 367.16184. 

Compound 93 

 

Compound 93 was synthesized according to the GP2 as a sticky reddish brown solid in 70% 

yield, RF = 0.46 ( 10% MeOH/ DCM  );  1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.96  ( s, 

1H, NH ), 7.52 ( m, 1H ), 7.47 ( dd, J = 7.5, 1.1 Hz, 1H ), 7.26-7.12 ( m, 5H ), 7.07 ( m, 2H ), 

5.65 ( s, 1H ), 3.26 ( dt, J = 12.1, 5 Hz, 1H ), 3.10 ( m, 1H ), 2.88 ( m, 1H ), 2.80 ( m, 1H ), 
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2.22 ( bs, 1H, NH ), 1.48 ( m, 1H ), 0.88 ( m, 2H ), 0.76 ( m, 2H ); 13C NMR ( 100 MHz, 25 

°C, CD2Cl2 ): δ 144.2, 136.3, 134.8, 133.0, 128.6, 128.1, 127.9, 127.7, 123.6, 121.7, 119.4, 

118.3, 111.1, 110.2, 99.1, 73.7, 55.5, 42.5, 22.8, 9.02, 8.97, 0.58; HRMS (ESI): Calculated for 

C22H21N2 [M+H+]: 313.16993, Found: 313.17066. 

 

Compound 81 

 

Compound 81 was synthesized according to the GP3 as a orangish red solid in 62% yield, RF 

= 0.47 ( 5% EtOAc/Petroleum ether ); 
1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 8.03 ( bs, 1H, 

NH ),7.68 ( m, 2H ), 7.52 ( d, J = 7.8 Hz, 1H ), 7.4 ( m, 4H ), 7.26 ( m, 1H ), 7.21 ( m, 2H ), 

7.13 ( dd, J = 13, 4.7 Hz, 2H ), 7.11 ( m, 1H ), 6.25 ( s, 1H ), 5.53 ( s, 1H ), 3.23 ( m, 1H ), 

3.14 ( m, 1H ), 2.86 ( m, 1H ), 2.66 ( m, 1H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 149.9, 

137.4, 136.6 134.5, 132, 129.6, 128.9, 128.8, 128.3, 128, 127.7, 126.7, 125.2, 124.2, 122.1, 

119.8, 118.5, 111.3, 109.6, 108.3, 57.3,43.1, 22.2 ; HRMS (ESI): Calculated for C25H21N2 

[M+H+]: 349.16993, Found: 349.17038. 

Compound 94 

 

Compound 94 was synthesized according to the GP3 as a orangish red solid in 62% yield, RF 

= 0.45 ( 5% EtOAc/Petroleum ether ); 
1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 8.07 ( bs, 1H, 

NH ), 7.64 ( d, J = 8.7 Hz, 2H ), 7.53 ( d, J = 7.5 Hz,1H ), 7.41 ( d, J = 8 Hz, 1H ), 7.29-7.08 ( 

m, 6H ), 6.95 ( d, J = 8.6 Hz, 2H ), 6.26 ( s, 1H ), 5.45 ( s, 1H ), 3.85 ( s, 3H ), 3.13 ( m, 2H ), 

2.89 ( m, 1H ), 2.67 ( dd, J = 15.3, 3.9 Hz, 1H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 

160.6, 149.7, 136.6, 134.8, 131.9, 129.7, 129.6, 129.3, 128.1, 127.7, 126.4, 125.1, 124.0, 

122.1, 119.8, 118.6, 114.2, 111.3, 109.7, 107.5, 57.1, 55.7, 42.7, 22.3; HRMS (ESI): 

Calculated for C26H23ON2 [M+H+]: 379.18049, Found: 379.18127. 
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Compound 95 

 

Compound 95 was synthesized according to the GP3 as a yellowish orange solid in 53% 

yield, RF = 0.46 ( 5% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, (CD3)2SO ): δ 

11.37( s, 1H, NH ), 7.74 ( dd, J = 8.1, 1.3 Hz, 2H ), 7.51 ( d, J = 2.0 Hz, 1H ), 7.48-7.38 ( m, 

4H ), 7.31-7.20 ( m, 3H ), 7.11 ( dd, J = 8.6, 2.1 Hz, 2H ), 6.62 ( s, 1H ), 5.35 ( s, 1H ), 3.00-

2.79 ( m, 3H ), 2.62 ( m, 1H ); 13C NMR ( 100 MHz, 25 °C, (CD3)2SO ): δ 148.4, 135.9, 

134.7, 133.3, 133.2, 129.6, 128.7, 128.6, 127.6, 127.5, 127.0, 126.6, 125.2, 123.8, 123.1, 

120.8, 117.1, 112.6, 109.2, 107.5, 55.8, 41.3, 21.4; HRMS (ESI): Calculated for C25H20N2Cl 

[M+H+]: 383.13095, Found: 383.12930. 

Compound 96 

 

Compound 96 was synthesized according to the GP3 as a orangish yellow solid in 60% yield, 

RF = 0.43 ( 5% EtOAc/Petroleum ether ), 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.88 ( bs, 

1H, NH ), 7.68 ( dd, J = 8, 1.6 Hz, 2H ), 7.45-7.36 ( m, 3H ), 7.29-7.24 ( m, 2H ), 7.2 ( m, 2H 

), 7.14 ( d, J = 7.3 Hz, 1H ), 6.97 ( d, J = 2.4 Hz,1H ), 6.82 ( dd, J = 8.8, 2.5 Hz, 1H ), 6.22 ( s, 

1H ), 5.51 ( s, 1H ), 3.84( s, 3H ), 3.24 ( m, 1H ), 3.14 ( m, 1H ), 2.81 ( m, 1H ), 2.62 ( m, 1H 

); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 154.3, 149.7, 137.2, 134.2, 132.7, 131.4, 129.3, 

128.7, 128.6, 128, 127.9,127.8,126.4, 125, 124, 111.7,111.6, 109.2, 107.9, 100.6, 57.2, 55.9, 

43, 22; HRMS (ESI): Calculated for C26H23ON2 [M+H+]: 379.18049, Found: 379.18130. 
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Compound 97 

 

Compound 97 was synthesized according to the GP3 as a orangish red solid in 58% yield, RF 

= 0.45 ( 5% EtOAc/Petroleum ether ),  1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 8.03( bs, 1H, 

NH ), 7.69 ( m, 2H ), 7.53 ( dd, J = 7.8, 0.5 Hz, 1H ), 7.40 ( m, 1H ), 7.28 ( m, 1H ), 7.24-7.15 

( m, 4H ), 7.15-7.09 ( m, 3H ), 6.27 ( s, 1H ), 5.47 ( s, 1H ), 3.12 ( m, 1H ), 2.87 ( m, 1H ), 

2.66 ( dt, J = 15.4,4.3 Hz, 1H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 163.4( d, J = 247.2 

Hz, CF ), 148.9, 136.6, 134.4, 133.5 ( d, J = 3.2 Hz ), 131.8, 129.8 ( d, J = 8.2 Hz, 2CH ), 

129.7, 128.3, 127.7, 126.8, 125.2, 124.2, 122.1, 119.8, 118.6, 115.7 ( d, J = 21.6 Hz, 2CH ), 

111.3, 109.6, 108.6, 57.1, 42.8, 22.2 ; HRMS (ESI): Calculated for C25H20N2F [M+H+]: 

367.16050, Found: 367.16107. 

Compound 98 

 

Compound 98 was synthesized according to the GP3 as a orangish red solid in 50% yield, RF 

= 0.45 ( 2.5% EtOAc/Petroleum ether ),   1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.56 ( s, 

1H, NH ), 7.46 ( m, 1H ), 7.25-7.15 ( m, 3H ), 7.13-7.02 ( m, 3H ), 6.84 ( d, J = 7.6 Hz, 1H ), 

5.82 ( s, 1H ), 5.18 ( s, 1H ), 4.48 ( m, 1H ), 3.46 ( m, 1H ), 3.12 ( m, 1H ), 2.78 ( m, 1H ), 

1.66 ( m, 1H ), 0.82 ( m, 2H ), 0.71 ( m, 1H ), 0.56 ( m, 1H ); 13C NMR ( 100 MHz, 25 °C, 

CD2Cl2 ): δ 150.1, 135.9, 134.8, 134.0, 128.7, 128.2, 126.9, 125.5, 125.0, 123.4, 121.8, 119.7, 

118.2, 111.3, 108.8, 97.7, 59.0, 45.2, 21.7, 12.9, 6.5, 6.2; HRMS (ESI): Calculated for 

C22H21N2 [M+H+]: 313.16993, Found: 313.16868. 
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5.2.2  Synthesis of tetrahydro-β-carboline ring fused to a spirooxindole ring 
system giving rise to hexacyclic indoloquinolizines 

General Procedure 4 (GP4) for the synthesis of alknyl isatins 99. 

To a mixture of 4-Iodo-N-methylisatin 59 (500 mg, 1.74 mmol) and PdCl2(PPh3)2 (15 mol%, 

182.49 mg) under an argon atmosphere was added anhydrous Et3N (12 mL), anhydrous 

Toluene (12 mL), anhydrous THF (12 mL) followed by the addition of the corresponding 

terminal alkyne (1.4 equiv, 2.43 mmol). The above reaction mixture was stirred at RT for 10 

mins before the addition of CuI (10 mol%, 33.13 mg). The resulting reaction mixture was 

heated to 50 oC and stirred at that temperature until the completion of the reaction (monitored 

via TLC). The solvent was then removed in vacuo and the residue was purified by flash 

column chromatography using silica gel to yield the corresponding Sonogashira product as 

orange or red solids. 

 

 

General Procedure 5 (GP5) for the synthesis of Pictet-Spengler Derivatives 100 

To a mixture of  Tryptamine/5-OMe Tryptamine (0.25 mmol) and the corresponding 

Sonogashira product 99  (0.25 mmol) under an argon atmosphere was added 5 mL of toluene 

and the reaction  mixture was stirred at RT for 5 mins followed by the addition of  TFA (1 

equiv, 0.25 mmol) . The resulting reaction mixture was heated to 50 oC for 24 h. The solvent 

was then removed in vacuo and the residue was purified by flash column chromatography 

using basified silica gel with methanol and dichloromethane as eluents. 
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General Procedure 6 (GP6) for the gold catalyzed hydroamination reaction yielding 
hexacyclic indoloquinolizines 102. 
To a solution of the Pictet-Spengler compound 100 (0.1 mmol) in dry DCE (2 mL) under an 

argon atmosphere was added the gold catalyst AuCl(SMe2) (10 mol%, 0.01 mmol). The 

reaction mixture was stirred at RT until the completion of the reaction (monitored via TLC). 

The solvent was then removed in vacuo and the crude reaction mixture was purified by flash 

chromatography (silica gel) using petroleum ether and ethyl acetate as eluents.  

 

 

1-Methyl-4-(phenylethynyl)indoline-2,3-dione (103) 

 

Compound 103 was synthesized according to the GP4 as a red solid in 80% yield, RF = 0.30 ( 

30% EtOAc/Petroleum ether ); m.p. – 175.3- 175.6oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

7.68 ( m, 2H ), 7.54 ( m, 1H ), 7.39 ( m,1H ), 7.20 ( dd, J = 7.9, 0.8 Hz, 1H ), 6.82 ( dd, J = 

7.9, 0.7 Hz, 1H ), 3.26 ( s, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 181.2, 158.1, 151.3, 

137.3, 132.5, 129.5, 128.6, 127.4, 122.3, 122.1, 117.2, 109.1, 98.26, 85.6, 26.3; HRMS (ESI): 

Calculated for C17H12O2N [M+H+]: 262.08626, Found: 262.08669. 
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4-((4-Methoxyphenyl)ethynyl)-1-methylindoline-2,3-dione (109) 

 

Compound 109 was synthesized according to the GP4 as a reddish orange solid in 74% yield, 

RF = 0.32 ( 30% EtOAc/Petroleum ether ); m.p. – 178.3- 178.5oC; 1H NMR ( 400 MHz, 25 

°C, CDCl3 ): δ 7.63( m, 2H ), 7.51 ( m, 1H ), 7.16 ( dd, J = 8.0, 0.8 Hz, 1H ), 6.91 ( m, 2H ), 

6.78 ( dd, J = 7.9, 0.7 Hz, 1H ), 3.84 ( s, 3H ), 3.25 ( s, 3H ); 13C NMR ( 100 MHz, 25 °C, 

CDCl3 ): δ 181.3, 160.8, 158.3,151.5, 137.3, 134.3, 127.2, 122.7, 117.1, 114.5, 114.4, 108.7, 

99.0, 85.0, 55.58, 26.4; HRMS (ESI): Calculated for C18H14O3N [M+H+]: 314.07876, Found: 

314.07906. 

4-((4-Fluorophenyl)ethynyl)-1-methylindoline-2,3-dione (110) 

 

Compound 110 was synthesized according to the GP4 as a red solid in 80% yield, RF = 0.36 ( 

30% EtOAc/Petroleum ether ); m.p. – 202.2- 202.7 oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

7.68 ( m, 2H ), 7.54 ( td, J = 7.9, 1.0 Hz, 1H ), 7.18 ( dd, J = 7.9, 0.7 Hz, 1H ), 7.09 ( m, 2H ), 

6.83 ( m, 1H ), 3.26 ( d, J = 0.9 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 181.33, 

163.47 ( d, J = 251.6 Hz, CF ), 158.16, 151.6, 137.4, 134.6 ( d, J = 8.6 Hz, 2CH ), 127.3, 

122.0, 118.6( d, J = 3.6 Hz ), 117.3, 116.1 ( d, J = 22.2 Hz, 2CH ), 109.2, 97.2,85.4, 26.4; 

HRMS (ESI): Calculated for C17H11O2NF [M+H+]: 280.07683, Found: 280.07728. 
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4-((3-Fluorophenyl)ethynyl)-1-methylindoline-2,3-dione (111) 

 

Compound 111 was synthesized according to the GP4 as a red solid in 65% yield, RF = 0.35 ( 

30% EtOAc/Petroleum ether );  m.p. – 192.6- 192.9 oC;  1H NMR ( 400 MHz, 25 °C, CDCl3 ): 

δ 7.56 ( td, J = 7.9, 1.1 Hz, 1H ), 7,47 ( m, 1H ), 7.36 ( m, 2H ), 7.21 ( dd, J = 7.9, 0.8 Hz, 1H 

), 7.11 ( m, 1H ), 6.86 ( dd, J = 7.9, 0.7 Hz, 1H ), 3.27 ( d, J = 1.0 Hz, 3H ); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 181.2, 162.5 ( d, J = 247.1 Hz, CF ), 158.0, 151.6, 137.5, 130.3( d, J 

= 8.5 Hz ), 128.53 ( d, J = 3.1 Hz ), 127.5, 124.2 ( d, J = 9.5 Hz ), 121.6, 119.2 ( d, J = 22.1 

Hz ), 117.4, 117.0 ( d, J = 21.2 Hz ), 109.6, 96.6, 86.2, 26.4; HRMS (ESI): Calculated for 

C17H14O2NF [M+H+]: 280.07683, Found: 280.07705. 

4-(Cyclopropylethynyl)-1-methylindoline-2,3-dione (112) 

 

Compound 112 was synthesized according to the GP4 as a reddish orange solid in 70% yield, 

RF = 0.41 ( 30% EtOAc/Petroleum ether ); m.p. – 162.9- 163.3 oC; 1H NMR ( 400 MHz, 25 

°C, CDCl3 ): δ 7.46 ( m, 1H ), 7.02 ( dt, J = 10.8, 5.4 Hz, 1H ), 6.74 ( dd, J = 7.9, 0.7 Hz, 1H ), 

3.22 ( s, 3H ), 1.54 ( m, 1H ), 0.99 ( m, 4H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 181.2, 

158.2, 151.3, 137.1, 127.6, 123.2, 117.5, 108.2, 104.5, 72.4, 26.3, 9.7, 0.9; HRMS (ESI): 

Calculated for C14H12O2N [M+H+]: 226.08626, Found: 226.08631. 

1-Methyl-4-(3-methylbut-1-yn-1-yl)indoline-2,3-dione (113) 
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Compound 113 was synthesized according to the GP4 as a reddish orange solid in 67% yield, 

RF = 0.42 ( 30% EtOAc/Petroleum ether ); m.p. – 155.7- 155.9 oC; 1H NMR ( 400 MHz, 25 

°C, CDCl3 ): δ 7.47 ( m, 1H ), 7.06 ( m, 1H ), 6.76 ( dd,  J = 7.9, 0.7 Hz, 1H ), 3.23 ( s, 3H ), 

2.88 ( dt, J = 13.8, 6.9 Hz, 1H ), 1.32 ( m, 6H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 

181.2, 158.1, 151.3, 137.1, 127.8, 123.1, 117.5, 108.5, 105.8, 76.2, 26.3, 22.6, 21.7; HRMS 

(ESI): Calculated for C14H14O2N [M+H+]: 228.10191, Found: 228.10232. 

 

Compound 104 

 

Compound 104 was synthesized according to the GP5 as a reddish brown solid in 81% yield, 

RF = 0.45 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.57 ( m, 1H ), 7.48 

( s, 1H, NH ), 7.36 ( dd, J = 10.4, 5.4 Hz, 1H ), 7.25-7.11 ( m, 7H ), 6.87 ( dd, J = 8.3, 1.3 Hz, 

3H ), 3.95 ( m, 1H ), 3.31 ( m, 1H ), 3.24 ( s, 3H ), 2.92 ( m, 1H ), 2.78 ( m, 1H ), 2.35 ( bs, 

1H, NH ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 175.9, 144.7, 136.3, 131.7, 131.1, 130.1, 

129.3, 128.7, 128.2, 127.6, 126.6, 122.4, 122.0, 120.0, 119.7, 118.5, 113.4, 111.2, 108.5, 95.4, 

83.9, 61.2, 39.9, 26.6, 22.5; HRMS (ESI): Calculated for C27H22ON3 [M+H+]: 404.17574, 

Found: 404.17563. 

Compound 114 

 

Compound 114 was synthesized according to the GP5 as a reddish brown solid in 71% yield, 

RF = 0.48 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.29 ( m, 1H ), 7.26 

( s, 1H, NH ), 7.15 ( m, 1H ), 7.06 ( m, 3H ), 7 ( dd, J = 8.7, 0.5 Hz, 1H ), 6.94 ( d, J = 2.4 Hz, 

1H ), 6.81 ( m, 3H ), 6.71 ( dt, J = 8.8, 2.2 Hz, 1H ), 3.88 ( m, 1H ), 3.81 ( s, 3H ), 3.25 ( m, 
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1H ), 3.17 ( s, 1H ), 2.8 ( m, 1H ), 2.66 ( m, 1H ), 1.95 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 

25 °C, CDCl3 ): δ 175.9, 154.3, 144.7, 131.7, 131.5, 131.2, 130.2, 130.1, 128.7, 128.2, 128.0, 

126.6, 122.0, 120.1, 113.3, 112.3, 111.7, 108.5, 100.6, 95.4, 83.9, 61.3, 56.1, 39.9, 26.6, 22.6; 

HRMS (ESI): Calculated for C28H24O2N3 [M+H+]: 434.18630, Found: 434.18655. 

Compound 115 

 

Compound 115 was synthesized according to the GP2 as a reddish brown solid in 57% yield, 

RF = 0.5 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.95 ( s, 1H, NH ), 

7.53 ( m, 1H ), 7.37 ( m, 1H ), 7.28 ( m, 1H ), 7.19 ( m, 3H ), 7.07 ( m, 2H ), 6.91 ( m, 3H ), 

3.81 ( m, 1H ), 3.23 ( m, 1H ), 3.18 ( s, 3H ), 2.83 ( m, 1H ), 2.72 ( m, 1H ), 2.30 ( bs, 1H, NH 

); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 175.9, 145.1, 134.8, 131.77, 131.75, 131.2, 130.5, 

129.1, 128.8, 128.6, 126.8, 125.5, 122.7, 122.2, 120.2, 118.1, 113.3, 112.5, 109.0, 95.4, 84.3, 

61.4, 39.9, 26.7, 22.6; HRMS (ESI): Calculated for C27H21ON3Cl [M+H+]: 438.13677, Found: 

438.13722. 

Compound 116 

 

Compound 116 was synthesized according to the GP5 as a reddish brown solid in 70% yield, 

RF = 0.49 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.57 ( m, 1H ), 7.43 

( s, 1H, NH ), 7.34 ( t, J = 7.9 Hz, 1H ), 7.2 ( m, 1H ), 7.13 ( m, 3H ), 6.86 ( dd, J = 7.9, 0.8 

Hz, 1H ), 6.8 ( m, 2H ), 6.65 ( m, 2H ), 3.96 ( m, 1H ), 3.77 ( s, 3H ), 3.33 ( m ,1H ), 3.25 ( s, 

3H ), 2.93 ( m, 1H ), 2.78 ( m, 1H ), 1.99 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 °C, CDCl3 

): δ 175.9, 160.0, 144.7, 136.3, 133.2, 130.8, 130.1, 129.4, 127.6, 126.5, 122.4, 120.5, 119.7, 
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118.4, 114.1, 113.9, 113.4, 111.2, 108.2, 95.7, 82.8, 61.2, 55.4, 39.9, 26.6, 22.5; HRMS 

(ESI): Calculated for C28H24O2N3 [M+H+]: 434.18630, Found: 434.18640. 

Compound 117 

 

Compound 117 was synthesized according to the GP5 as a reddish brown solid in 80% yield, 

RF = 0.51 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.55 ( m, 1H ), 7.48 

( s, 1H, NH ), 7.36 ( t, J = 7.9 Hz, 1H ), 7.19 ( m , 1H ), 7.16-7.11 ( m, 3H ), 6.88 ( dd, J = 7.9, 

0.8 Hz, 1H ), 6.83-6.78 ( m, 3H ), 3.95 ( m, 1H ), 3.32 ( m, 1H ), 3.25 ( s, 3H ), 2.93 ( m, 1H ), 

2.74 ( m, 1H ), 2.09 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 175.8, 162.7 ( d, 

J = 250.5 Hz, CF ), 144.8, 136.3, 133.6 ( d, J = 8.5 Hz, 2CH ), 131.1, 130.2, 129.3, 127.5, 

126.5, 122.5, 120.0, 119.7, 118.4, 118.1 ( d, J = 3.4 Hz ), 115.6 ( d, J = 22.1 Hz, 2CH ), 113.3, 

111.2, 108.6, 94.3, 83.6, 61.2, 39.8, 26.7, 22.5; HRMS (ESI): Calculated for C27H21ON3F 

[M+H+]: 422.16632, Found: 422.16615. 

Compound 118 

 

Compound 118 was synthesized according to the GP5 as a reddish brown solid in 75% yield, 

RF = 0.49 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.75 ( s, 1H, NH ), 

7.60 ( m, 1H ), 7.38 ( dd, J = 10.3, 5.5 Hz, 1H ), 7.20-7.10 ( m, 5H ), 6.97 ( m, 1H ), 6.92 ( dd, 

J = 7.9, 0.9 Hz, 1H ), 6.72 ( m, 1H ), 6.62 ( m, 1H ), 3.85 ( m, 1H ), 3.26 ( m, 1H ), 3.21 ( s, 

3H ), 2.91( m, 1H ), 2.78 ( m, 1H ), 2.09 ( bs, 1H, NH ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 

): δ 175.9, 162.3( d, J = 246.2 Hz, CF ), 145.0, 136.3, 131.6, 130.2, 130.0 ( d, J = 8.6 Hz ), 

129.7, 127.6 ( d, J = 3 Hz ), 127.3, 126.6, 124.0 ( d, J = 9.5 Hz ), 122.5, 119.8, 119.5, 118.5, 

118.2( d, J = 23.0 Hz ), 116.1( d, J = 21.2 Hz ), 113.2, 111.1, 109.1, 93.6 ( d, J = 3.4 Hz ), 
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85.1, 61.3, 39.8, 26.5, 22.6; HRMS (ESI): Calculated for C27H21ON3F [M+H+]: 422.16632, 

Found: 422.16617. 

Compound 119 

 

Compound 119 was synthesized according to the GP5 as a reddish brown solid in 65% yield, 

RF = 0.51 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.54( m, 1H ), 7.29 ( 

m, 2H ), 7.18-7.06 ( m, 3H ), 7.01 ( d, J = 7.9 Hz, 1H ), 6.81 ( d, J = 7.9 Hz, 1H ), 3.97 ( m, 

1H ), 3.36 ( m, 1H ), 3.21 ( s, 3H ), 2.96 ( m, 1H ), 2.88 ( m, 1H ), 2.03 ( bs, 1H, NH ), 1.06 ( 

m, 1H ), 0.54 ( m, 2H ), 0.22 ( m, 1H ), -0.01( m, 1H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): 

δ 175.9, 144.5, 136.3, 131.0, 129.9, 129.5, 127.4, 126.8, 122.2, 120.9, 119.5, 118.5, 113.0, 

111.0, 107.7, 100.3, 70.6, 61.1, 39.7, 26.6, 22.4, 8.5, 8.4, 0.05; HRMS (ESI): Calculated for 

C24H22ON3 [M+H+]: 368.17574, Found: 368.17656. 

Compound 120 

 

Compound 120 was synthesized according to the GP5 as a reddish brown solid in 76% yield, 

RF = 0.51 ( 10% MeOH/DCM  ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.73 ( s, 1H, NH ), 

7.55 ( m, 1H ), 7.31 ( m, 1H ), 7.11 ( m, 3H ), 7.04 ( m, 1H ), 6.82 ( dd, J = 7.9, 0.9 Hz, 1H ), 

3.84 ( m, 1H ), 3.29 ( m, 1H ), 3.15 ( s, 3H ), 2.90 ( m, 2H ), 2.41 ( dt, J = 13.8, 6.9 Hz, 1H ), 

2.24 ( bs, 1H, NH ), 0.80 ( d, J = 6.9 Hz, 6H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 

176.2, 144.9, 136.5, 131.3, 130.1, 127.6, 126.9, 122.4, 121.0, 119.6, 118.6, 113.1, 111.2, 

108.2, 102.4, 74.9, 61.4, 39.9, 26.6, 22.6, 22.45, 22.41, 21.3; HRMS (ESI): Calculated for 

C24H24ON3 [M+H+]: 370.19139, Found: 370.19219. 
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Compound 105 

 

Compound 105 was synthesized according to the GP6 as a white solid in 76% yield, RF = 

0.38 ( 25% EtOAc/Petroleum ether ); m.p. – 277.3 – 277.8oC; 1H NMR ( 400 MHz, 25 °C, 

(CD3)2SO ): δ 10.51 ( s, 1H, NH ),7.44-7.35 ( m, 4H ), 7.35-7.27 ( m, 3H ), 7.22 ( dd, J = 8.1, 

0.8 Hz, 1H ), 7.04 ( m, 1H ), 6.96 ( m, 2H ), 6.64 ( d, J = 7.8 Hz, 1H ), 5.39 ( s, 1H ), 4.39 ( m, 

1H ), 3.63 ( dd, J = 13.6, 3.9 Hz, 1H ), 3.18 ( s, 3H ), 2.43 ( m, 2H ); 13C NMR ( 150 MHz, 25 

°C, (CD3)2SO ): δ 176.3, 151.6, 141.9, 137.5, 136.0, 130.9, 130.5, 129.8, 127.9, 126.6, 121.4, 

118.6, 117.6, 116.9, 115.7, 111.4, 109.4, 106.5, 104.5, 61.2, 42.7, 26.3, 19.8; HRMS (ESI): 

Calculated for C27H22ON3 [M+H+]: 404.17574, Found: 404.17552. 

Compound 121 

 

Compound 121 was synthesized according to the GP6 as a white solid in 76% yield, RF = 

0.36 ( 25% EtOAc/Petroleum ether ); m.p. – 315.6 – 315.7 oC; 1H NMR ( 400 MHz, 25 °C, 

(CD3)2SO ): δ 10.33( s, 1H, NH ), 7.41( m, 3H ), 7.35-7.25( m, 3H ), 7.11 ( d, J = 8.7 Hz, 1H 

), 6.95 ( d, J = 7.8 Hz, 1H ), 6.87 ( d, J = 2.3 Hz, 1H ), 6.69 ( dd, J = 8.8, 2.5 Hz, 1H ), 6.64 ( 

d, J = 7.8 Hz, 1H ), 5.38 ( s, 1H ), 4.39 ( m, 1H ), 3.72 ( s, 3H ), 3.62 ( m, 1H ), 3.17 ( s,3H ), 

2.42 ( m, 2H ); 13C NMR ( 100 MHz, 25 °C, (CD3)2SO ): δ 177.0, 153.9, 152.3, 142.6, 138.2, 

131.7, 131.6, 131.2, 131.0, 128.6, 128.1, 127.6, 117.7, 116.3, 112.7, 112.1, 109.8, 107.1, 

105.1, 100.3, 62.0, 56.0, 43.4, 27.0, 20.6; HRMS (ESI): Calculated for C28H24O2N3 [M+H+]: 

434.18630, Found: 434.18653. 
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Compound 122 

 

Compound 122 was synthesized according to the GP6 as a white solid in 60% yield, RF = 

0.39 ( 25% EtOAc/Petroleum ether ); m.p. – 302.7 – 303.0 oC; 1H NMR ( 400 MHz, 25 °C, 

(CD3)2SO ): δ 10.75 ( s, 1H, NH ), 7.46-7.37 ( m, 4H ), 7.35-7.27 ( m, 3H ), 7.22 ( d, J = 8.6 

Hz, 1H ), 7.05 ( dd, J = 8.6, 2.1 Hz, 1H ), 6.98 ( d, J = 7.8 Hz, 1H ), 6.65 ( d, J = 7.7 Hz, 1H ), 

5.4 ( s, 1H ), 4.38 ( m, 1H ), 3.62 ( dd, J = 14.0, 4.7 Hz, 1H ), 3.18 ( s, 3H ), 2.4 ( m, 2H );13C 

NMR ( 150 MHz, 25 °C, (CD3)2SO ): δ 176.1, 151.5, 141.9, 137.4, 134.5, 131.7, 130.9, 130.6, 

128.0, 127.7, 123.3, 121.3, 117.1, 116.6, 115.8, 112.9, 109.4, 106.6, 104.6, 61.1, 42.5, 26.4, 

19.7; HRMS (ESI): Calculated for C27H21ON3Cl [M+H+]: 438.1367, Found: 438.13728. 

Compound 123 

 

Compound 123 was synthesized according to the GP6 as a white solid in 74% yield, RF = 

0.37 ( 25% EtOAc/Petroleum ether ); m.p. – 275.2– 275.6 oC; 1H NMR ( 600 MHz, 25 °C, 

(CD3)2SO ): δ 10.51 ( s, 1H, NH ), 7.37 ( d, J = 7.9 Hz, 1H ), 7.32-7.20 ( m, 4H ), 7.04 ( m, 

1H ), 6.96 ( m, 4H ), 6.62 ( m, 1H ), 5.33 ( s, 1H ), 4.38 ( m, 1H ), 3.79 ( s, 3H ), 3.62 ( m,1H 

), 3.18 ( s, 3H ), 2.44 ( m, 2H ); 13C NMR ( 150 MHz, 25 °C, (CD3)2SO ): δ 176.4, 158.8, 

151.4, 141.9, 136.0, 131.1 130.5, 129.8, 129.6, 126.6, 121.4, 118.6, 117.6, 116.8, 115.5, 

113.6, 111.4, 109.4, 106.3, 103.9, 61.2, 55.1, 42.7, 26.3, 19.8; HRMS (ESI): Calculated for 

C28H24O2N3 [M+H+]: 434.18630, Found: 434.18621. 
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Compound 124 

 

Compound 124 was synthesized according to the GP6 as a white solid in 72% yield, RF = 0.4 

( 25% EtOAc/Petroleum ether ); m.p. – 285.4 – 285.7 oC; 1H NMR ( 600 MHz, 25 °C, 

(CD3)2SO ): δ 10.53 ( s, 1H, NH ), 7.38 ( d, J = 7.7 Hz, 3H ), 7.3 ( t, J = 7.8 Hz, 1H ), 7.23 ( 

m, 3H ), 7.04 ( m, 1H ), 6.96 ( m, 1H ), 6.64 ( m, 1H ), 5.38 ( s, 1H ), 4.4 ( m, 1H ), 3.57 ( dd, 

J = 14.2, 4.9 Hz, 1H ), 3.18 ( s, 3H ), 2.44 ( m, 2H ); 13C NMR ( 150 MHz, 25 °C, (CD3)2SO 

): δ 176.3, 161.6 ( d, J = 244.9 Hz, CF ), 150.5, 141.9, 136.0, 133.8 ( d, J = 3.1 Hz ), 130.8, 

130.5, 129.7, 126.6, 121.4, 118.6, 117.6, 116.9, 115.7, 111.4, 109.3, 106.6, 104.7, 61.2, 42.6, 

26.3, 19.8; HRMS (ESI): Calculated for C27H21ON3F [M+H+]: 422.16632, Found: 422.16647. 

Compound 125 

 

Compound 125 was synthesized according to the GP6 as a white solid in 71% yield, RF = 

0.38 ( 25% EtOAc/Petroleum ether ); m.p. – 279.3 – 279.7 oC; 1H NMR ( 600 MHz, 25 °C, 

(CD3)2SO ): δ 10.54 ( s, 1H, NH ), 7.46 ( m, 1H ), 7.39 ( d, J = 7.9 Hz, 1H ), 7.3 ( m, 1H ), 

7.25- 7.15 ( m, 4H ), 7.04 ( m, 1H ), 6.99 ( m, 1H ), 6.96 ( m, 1H ), 6.66 ( m, 1H ), 5.46 ( s, 

1H ), 4.41 ( m, 1H ), 3.64 ( m, 1H ), 3.18 ( s, 3H ), 2.51 ( m, 1H ), 2.44 ( m, 1H ); 13C NMR ( 

100 MHz, 25 °C, CDCl3 ): δ 176.2, 150.23, 150.22, 141.9, 139.8( d, J = 8.0 Hz ), 136.0, 

130.6( d, J = 4.9 Hz ), 129.7, 126.6, 123.6, 121.4, 118.6, 117.7, 117.0, 115.8, 114.8, 111.4, 

109.4, 106.8, 105.2, 61.2, 42.7, 26.3, 19.9; HRMS (ESI): Calculated for C27H21ON3F 

[M+H+]: 422.16632, Found: 422.16645. 
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Compound 126 

 

Compound 126 was synthesized according to the GP6 as a white solid in 68% yield, RF = 

0.45 ( 25% EtOAc/Petroleum ether ); m.p. – 302.5 – 302.8 oC; 1H NMR ( 400 MHz, 25 °C, 

(CD3)2SO ): δ 10.43 ( s, 1H, NH ), 7.43 ( d, J = 7.6 Hz, 1H ), 7.22 ( m, 2H ), 7.03 ( dd, J = 

11.0, 4.0 Hz, 1H ), 6.97 ( t, J = 7.4 Hz, 1H ), 6.85 ( d, J = 7.7 Hz, 1H ), 6.54 ( d, J = 7.8 Hz, 

1H ), 5.27 ( s, 1H ), 4.53 ( m, 1H ), 4.30 ( dd, J = 14.2, 5.7 Hz, 1H ),  3.11 ( m, 4H ), 2.78 ( dd, 

J = 16.1, 4.7 Hz, 1H ), 1.76 ( m, 1H ), 0.79 ( m, 2H ), 0.66 ( m, 1H ), 0.34 ( m, 1H ); 13C NMR 

( 100 MHz, 25 °C, (CD3)2SO ): δ 176.6, 151.8, 142.0, 135.8, 131.7, 130.3, 130.2, 126.8, 

121.3, 118.5, 117.5, 116.8, 115.1, 111.3, 109.5, 105.5, 98.0, 61.3, 40.1, 26.2, 20.1, 12.5, 6.6, 

6.1; HRMS (ESI): Calculated for C24H22ON3 [M+H+]: 368.17574, Found: 368.17698. 

Compound 127 

 

Compound 127 was synthesized according to the GP6 as a white solid in 65% yield, RF = 

0.47 ( 25% EtOAc/Petrolether ); m.p. – 283.5 – 283.7oC; 1H NMR ( 400 MHz, 25 °C, 

(CD3)2SO ): δ 10.41 ( s, 1H, NH ), 7.41 ( d, J = 7.7 Hz, 1H ), 7.25 ( dd, J = 12.4, 4.7 Hz, 1H ), 

7.19 ( m, 1H ), 7.02 ( m, 1H ), 6.96 ( m, 1H ), 6.87 ( d, J = 7.8 Hz, 1H ), 6.59 ( d, J = 7.8 Hz, 

1H ),  5.39 ( s, 1H ), 4.58 ( m, 1H ), 3.81 ( dd, J = 14.4, 4.9 Hz, 1H ), 3.12 ( s, 3H ), 2.86 ( m, 

2H ), 2.75 ( dd, J = 16.0, 4.6 Hz, 1H ), 1.06 ( dd, J = 21.4, 6.6 Hz, 6H ),13C NMR ( 100 MHz, 

25 °C, (CD3)2SO ): δ 176.7, 156.7, 141.7, 135.8, 131.7, 130.5, 130.2, 126.6, 121.2, 118.5, 

117.5, 116.8, 115.1, 111.3, 109.6, 105.4, 96.2, 61.4, 40.8, 27.5, 26.2, 24.5, 20.5, 20.3; HRMS 

(ESI): Calculated for C24H24ON3 [M+H+]: 370.19139, Found: 370.19153. 
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5.2.3  Cascade polycylization of a designed β-carboline embodying a 1,5-
enyne providing analogs of the harmicine alkaloid. 

 

Synthesis of the aldehyde 131  

 

Procedure for the synthesis of compound 142 

To a solution of geranyl acetate (5g, 25.47 mmol) in CH2Cl2 (80 ml) at -20oC was dropwise 

added a solution of mCPBA (5.27g, 30.56 mmol) in CH2Cl2 (40 ml) over 60 mins. After 

stirring the reaction from -20 oC to RT over a period of 2 h, the reaction was quenched with 

saturated aqueous solution of NaHCO3 (80 ml). The aqueous layer was extracted with CH2Cl2 

(2 X 15 ml) and the combined organic layers were washed with brine dried over anhydrous 

MgSO4. The residue was purified by flash chromatography using EtOAc and petroleum ether 

as eluents. 

(E)-5-(3,3-Dimethyloxiran-2-yl)-3-methylpent-2-en-1-yl acetate (142) 

 

Compound 142 was obtained as a colourless oil in 80% yield, RF = 0.48 (20% 

EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ) : δ 5.35 (td, J = 7.1, 1.2 Hz, 

1H), 4.55 (d, J = 7.1 Hz, 2H), 2.66 (dd, J = 7.8, 4.7 Hz, 1H), 2.23 – 2.07 (m, 2H), 2.01 (s, 

3H), 1.69 (s, 3H), 1.66 – 1.59 (m, 2H), 1.26 (s, 3H), 1.22 (s, 3H); 13C NMR (100 MHz, 25 °C, 

CDCl3) : δ 171.0, 141.2, 119.0, 63.9, 61.2, 58.4, 36.2, 27.1, 24.8, 21.0, 18.8, 16.5; HRMS 

(ESI): Calculated for C12H20O3Na [M+Na+]: 235.13047, Found: 235.13150. 

 

Procedure for the synthesis of compound 143  

To a solution of periodic acid (6.9 g, 30.27 mmol) in water (30 ml) at 0 oC was added a 

solution of the compound (142) in THF (30 ml), after stirring the reaction mixture for 30 min 

the solution was diluted with an aqeous solution of NaHCO3 (40 ml) and stirred for an 

additional 15 min. The reaction mixture was filtered througha pad of celite, and the filter cake 
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was washed with ether (2 X 20 ml) and the combined filterates were extracted with ether 

washed with water, sat NaHCO3 and brine and dried over MgSO4. The residue was purified 

by column chromatography using EtOAc and petroleum ether as eluents. 

(E)-3-Methyl-6-oxohex-2-en-1-yl acetate (143)  

 

Compound 143 was obtained as a colourless oil in 90% yield, RF = 0.51 (10% 

EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 9.76 (t, J = 1.6 Hz, 1H), 

5.37 – 5.26 (m, 1H), 4.56 (dd, J = 7.0, 0.5 Hz, 2H), 2.62 – 2.46 (m, 2H), 2.43 – 2.30 (m, 2H), 

2.03 (s, 3H), 1.72 – 1.69 (m, 3H); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 201.7, 171.0, 

140.0, 119.4, 61.1, 41.8, 31.5, 21.0, 16.6.; GC-MS (m/z) : Calculated for C9H14O3  - 170.09, 

Found: 170.02. 

 

Procedure for the synthesis of compound 144 

To a solution of triphenyl phosphine (9.62 g, 37.17 mmol) in 60 ml of CH2Cl2 at 0 oC was 

dropwise added a solution of CBr4 (5.83 g, 17.7 mmol) in 15 ml of CH2Cl2. The reaction 

mixture was stirred for 5 mins followed by the addition of aldehyde 143 in 15 ml of CH2Cl2 

and the resulting solution was warmed to 0 oC. After stirring for 2 h the phosphonium salts 

were precipitated with pentane (60 ml) and filtered through celite. The resulting organic 

extracts were evaporated in vacuo and the residue was purified by flash chromatography using 

ethyl acetate and petroleum ether as eluents. 

(E)-7,7-Dibromo-3-methylhepta-2,6-dien-1-yl acetate (144) 
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Compound 144 was obtained as a yellow oil in 80% yield, RF = 0.61 ( 10% EtOAc/Petroleum 

ether ); the spectral data for the obtained compound are in agreement with the reported data.118 

 

Procedure for the synthesis of compound 145 

To a solution of the compound 144 (3 g, 9.2 mmol) in MeOH (8 ml) was added potassium 

carbonate (635 mg, 4.6 mmol) at room temperature. After stirring for 30 mins the potassium 

carbonate was filtered off and MeOH was evaporated. The reside was extracted with ether ( 2 

X 8 ml), washed with NH4Cl (10 ml) and brine (15 ml) and the organic extracts were dried 

over MgSO4. The solvent was removed in vacuo and used in the next step without further 

purification.  

(E)-7,7-Dibromo-3-methylhepta-2,6-dien-1-ol (145) 

 

Compound 145 was obtained as a yellow oil in 89% yield, RF = 0.34 ( 20% EtOAc/Petroleum 

ether ); the spectral data for the obtained compound are in agreement with the reported data.118 

 

Procedure for the synthesis of compound 146 

To a solution of compound (145) (24 mmol, 6.7 g), in dry THF (35 mL) was added a solution 

of n-BuLi (2.5 M, 74.4 mmol) at -78 oC. After 0.5 h, the mixture was allowed to reach room 

temperature and then quenched with a saturated solution of NH4Cl (35 mL) and extracted with 

ether (2×30 mL). The organic layer was washed twice with brine (60 mL) and dried with 

MgSO4 and the solvent was removed under reduced pressure, the residue was then subjected 

to flash column chromatography using silica gel with ethyl acetate and petroleum ether as 

eluents. 
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(E)-3-Methylhept-2-en-6-yn-1-ol (146) 

 

Compound 146 was obtained as a yellow oil in 60% yield, RF = 0.38 ( 20% EtOAc/Petroleum 

ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.46 ( m, 1H ), 4.15 ( d, J = 6.8 Hz, 2H ), 2.31 

( m, 2H ), 2.24 ( m, 2H ), 1.95 ( m, 1H ), 1.68 ( s, 3H ) ppm; 13C NMR (100 MHz, 25 °C, 

CDCl3): δ 137.6, 124.8, 83.9, 68.8, 59.3, 38.1, 17.3, 16.2 ppm; HRMS (ESI): Calculated for 

C8H13O [M+H+]:125.09609, Found: 125.09577.  

 

Procedure for the synthesis of compound 147 

To a solution N-chlorosuccinimide (7.57 mmol, 1.0 g) in dry DCM (31 mL) at -30 oC was 

added freshly distilled dimethyl sulfide (8.20 mmol, 0.6 mL) dropwise with a syringe. The 

mixture was warmed to 0 oC and maintained at that temperature for 5 mins and then again 

cooled to -40 oC. To the resulting milky white suspension was added 146 (6.31 mmol, 0.78 g) 

dissolved in dry DCM (3 mL). The suspension was warmed to 0 oC and stirred at that 

temperature for 2 h, then the suspension was allowed to warm to room temperature, and 

stirring was continued for additional 15 mins. The resulting clear colorless solution is washed 

with NaCl (30 mL) and extracted with pentane (2 × 50 mL), the pentane extracts are further 

washed with NaCl (60 mL) and dried over MgSO4. The residue was directly used for the next 

step. 

(E)-7-Chloro-5-methylhept-5-en-1-yne (147) 

 

Compound 147 was obtained as a yellow oil in 74% yield, RF = 0.48 ( 2.5% EtOAc/Petroleum 

ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.51 ( m, 1H ), 4.10( dd, J = 7.9, 0.5 Hz, 2H ), 
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2.36-2.25 ( m, 4H ), 1.96 ( t, J = 2.5 Hz, 1H ), 1.75 ( m, 3H ) ppm; 13C NMR ( 100 MHz, 25 

°C, CDCl3 ): δ 140.7, 121.7, 83.6, 69.0, 40.8, 38.1, 17.2, 16.0 ppm. 

 

Procedure for the synthesis of compound 148 

To a solution of diisopropylamine (6.5 mmol, 0.91 ml) in dry THF (12 ml) was added n-BuLi 

( 2.5 M in hexane, 6.45 mmol, 2.58 mL) dropwise at 0 oC . After stirring for 10 mins the 

reaction mixture was cooled to -78 oC and a solution of methyl isobutyrate (6.5 mmol, 0.74 

mL) in dry THF (4.5 mL) was added dropwise. The temperature was allowed to reach 0 oC for 

15 mins and then decreased again to -78 oC. To the resulting reaction mixture was added a 

solution of 147 (5.42 mmol, 0.77 g) in dry THF (2.5 mL) and the temperature was allowed to 

warm to RT. The reaction mixture was diluted with ether (20 mL) and washed with NH4Cl (2 

× 30 mL) and then brine (2 × 30 mL). The organic layer was dried over MgSO4 and the 

solvent was removed under reduced pressure and the crude mixture was purified by Flash 

Chromatography using silica gel with EA and petroleum ether as eluents. 

Methyl (E)-2,2,5-trimethylnon-4-en-8-ynoate (148) 

 

Compound 148 was obtained as a light yellow oil in 75% yield, RF = 0.49 ( 5% 

EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.16 ( m, 1H ), 3.65 ( s, 3H 

), 2.32-2.17 ( m, 6H ), 1.93 ( t, J = 2.5 Hz, 1H ), 1.61 ( m, 3H ), 1.17 ( s, 6H ) ppm; 13C NMR 

( 100 MHz, 25 °C, CDCl3 ): δ  178.4, 136.0, 121.4, 84.3, 68.6, 51.8, 43.2, 38.8, 38.6, 24.9, 

17.7, 16.0 ppm; GC-MS (m/z) : Calculated for C13H20O2 – 208.14, Found: 208.30. 

 

Procedure for the synthesis of compound 149 

To a solution of the 148 (5.3 mmol, 1.1 g) in  dry DCM (53 mL) at 0 oC was added DIBAL-H 

(1 M in THF, 13.2 mmol, 13.2 mL), the reaction mixture was stirred for 1 h. The reaction 

mixture was then diluted with ether, followed by the addition of MeOH (0.5 mL) and (0.5 

mL) H2O and was warmed to room temperature and stirred for 30 mins. A saturated solution 

of Na+/K+ Tartrate (55 mL) was added to the reaction mixture and stirred for 1 h at room 
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temperature. The mixture was then extracted with DCM (2 × 40 mL) and the organic layers 

were washed with brine (80 mL) and dried over MgSO4, the solvent was removed under 

reduced pressure and the compound purified by flash chromatography using silica gel with 

EA and petroleum ether as eluents. 

(E)-2,2,5-Trimethylnon-4-en-8-yn-1-ol (149) 

 

Compound 149 was obtained as a light yellow oil in 90% yield, RF = 0.38 ( 25% 

EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.31 ( m, 1H ), 3.34 ( s, 2H 

), 2.31 ( m, 2H ), 2.24 ( t, J = 7.1 Hz, 2H ), 1.98 ( d, J = 7.8 Hz, 2H ), 1.95 ( m, 1H ), 1.64 ( s, 

3H ), 0.90 ( s, 6H ) ppm; 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 135.2, 122.4, 84.4, 72.0, 

68.7, 38.8, 37.0, 36.4, 24.0, 17.6, 15.9 ppm; HRMS (ESI): Calculated for C12H21O [M+H+]: 

181.15869, Found:181.15858. 

 

Procedure for the synthesis of compound 131  

To a solution of oxalyl chloride (6 mmol, 0.51 mL) in dry DCM (39 mL) at -78 0C was added 

DMSO (12.5 mmol, 0.88 mL) dropwise. After stirring for 15 mins the reaction mixture was 

treated slowly with the compound 149 (5 mmol, 0.9 g) dissolved in dry DCM (7 mL), stirred 

for 20 mins and treated slowly with treithylamine (25 mmol, 0.58 mL). After 5 min the 

reaction was warmed to RT and stirred for additional 1 h.The reaction mixture was poured 

into water (45 mL) and extracted using DCM (2 × 40 mL), the organic layer was dried using 

MgSO4 and solvent removed under reduced pressure. The reaction mixture was purified by 

flash chromatography using silica gel with EA and petroleum ether as eluents. 
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(E)-2,2,5-Trimethylnon-4-en-8-ynal (131) 

 

Compound 131 was obtained as a light yellow oil in 89% yield, RF = 0.46 ( 10% 

EtOAc/Petroleum ether ); 1H NMR (400 MHz, 25 °C, CDCl3): δ 9.49 (m, 1H), 5.17 (m, 1H), 

2.28 (m, 2H), 2.20 (dd, J = 16.3, 7.1 Hz, 4H), 1.94 (m, 1H), 1.62 (s, 3H), 1.06 (s, 6H) ppm; 
13C NMR (100 MHz, 25 °C, CDCl3): δ 206.4, 136.5, 120.3, 84.2, 68.8, 46.7, 38.7, 35.4, 21.3, 

17.6, 16.1 ppm; HRMS (ESI): Calculated for C12H19O [M+H+]: 179.14304, 

Found:179.14268. 

 

General Procedure 7 (GP 7) for the synthesis of Pictet-Spengler derivatives 132  

 

To a solution of the corresponding amine 71 (0.28 mmol) and Yb(OTf)3 (10 mol%, 0.028 

mmol) in dry DCE (0.6 mL), was added the aldehyde 131 (0.28 mmol) dissolved in (0.4 mL)  

dry DCE followed by the addition of the ionic liquid [bmim]Cl-AlCl3 (0.32 mL/mmol of 

aldehyde). The resulting suspension was heated to 120 oC under microwave irradiation for 60 

mins, 300 W power and 14 mbar pressure. The solvent was removed in vacuo and the crude 

reaction mixture was purified by flash chromatography using basified silica gel with 

dichloromethane and methanol as elutants. 

 

General Procedure 8 (GP 8) for the gold-catalyzed double cyclization cascade. 

To a solution of the catalyst Y (10 mol%, 0.01 mmol) in dry DCE (1 mL) was added the 

corresponding Pictet-Spengler compound 132 (0.1 mmol) dissolved in 2 mL of dry DCE. The 

suspension was heated to 80 oC under microwave irradiaton for 60 mins. The solvent was 

removed in vacuo and the crude reaction mixture was purified using flash chromatography 

with petroleum ether and ethyl acetate as eluents. 
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Compound 137 

 

Compound 137 was synthesized according to the GP7 as a reddish brown thick oil in 84% 

yield, RF = 0.47 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.98 ( br s, 

1H ) , 7.48 ( d, J = 7.7 Hz, 1H ), 7.33 ( d, J = 8 Hz, 1H ), 7.13 ( t, J = 7.5 Hz, 1H ), 7.07 ( m, 

1H ), 5.43 ( t, J = 7.2 Hz, 1H ), 4.02 ( s, 1H ), 3.36 ( dt, J = 12.0, 4.0 Hz, 1H ) , 2.90 ( m, 1H ), 

2.74 ( m, 2H ), 2.59 ( br s, 1H ), 2.36-2.23 ( m, 5H ), 2.13 ( dd, J = 14.8, 7.6 Hz, 1H ) , 1.98 ( 

m, 1H ), 1.68 ( s, 3H ), 1.14 ( s, 3H ), 1.08 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, 

,CD2Cl2 ): δ 136.1, 135.9, 134.7, 127.6, 122.5, 121.7, 119.4, 118.1, 112.1, 110.9, 84.7, 68.9, 

60.8, 43.8, 39.8, 39.0, 38.2, 25.5, 24.9, 23.2, 17.8, 16.2 ppm; HRMS (ESI): Calculated for 

C22H29N2 [M+H+]: 321.23253, Found: 321.23308. 

Compound 150 

 

Compound 150 was synthesized according to the GP7 as a reddish brown thick oil in 75% 

yield, RF = 0.45 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.86 ( br s, 

1H ) , 7.20 ( d, J = 8.8 Hz, 1H ), 6.93 ( d, J = 2.4 Hz, 1H ), 6.76 ( dd, J = 8.8, 2.4 Hz, 1H ), 

5.40 ( t, J = 7.2 Hz, 1H ), 4.04 ( s, 1H ), 3.82 ( s, 3H ), 3.39 ( dt, J = 12.0, 4.0 Hz, 1H ), 3.10 ( 

br s, 1H ), 2.92 ( m, 1H ), 2.72 ( m, 2H ),  2.35-2.21 ( m, 5H ), 2.12 ( dd, J = 14.4, 7.2 Hz, 1H 

), 1.98 ( t, J = 2.4 Hz, 1H ), 1.66 ( s, 3H ), 1.13 ( s, 3H ), 1.09 ( s, 3H ) ppm; 13C NMR ( 100 

MHz, 25 °C, CD2Cl2 ): δ 154.4, 136.1, 134.9, 131.2, 127.9, 122.3, 111.8, 111.64, 111.63, 

100.4, 84.6, 68.9, 60.9, 56.1, 43.8, 39.8, 39.0, 38.1, 25.4, 24.9, 22.8, 17.8, 16.2 ppm; HRMS 

(ESI): Calculated for C23H31N2O [M+H+]: 351.24309, Found: 351.24369. 
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Compound 151 

 

Compound 151 was synthesized according to the GP7 as a reddish brown thick oil in 65% 

yield, RF = 0.5 ( 10% MeOH/DCM ); 1H NMR (400 MHz, 25 °C, CD2Cl2): δ 8.01 ( br s, 1H ) 

, 7.43 ( d, J = 2.0 Hz, 1H ), 7.24 ( m, 1H ), 7.07 ( dd, J = 8.6, 2.0 Hz, 1H ), 5.40 ( td, J = 7.4, 

1.2 Hz, 1H ), 3.96 ( t, J = 1.7 Hz , 1H ), 3.31 ( m, 1H ) , 2.86 ( m, 1H ), 2.65 ( m, 2H ), 2.34-

2.21 ( m, 5H ), 2.09 ( dd, J = 14.4, 7.2 Hz, 1H ), 1.95 ( t, J = 2.6 Hz, 1H ), 1.87 ( br s, 1H ), 

1.66 ( s, 3H ), 1.12 ( s, 3H ), 1.05 ( s, 3H ) ppm; 13C NMR (100 MHz, 25 °C, CD2Cl2): δ 

136.9, 135.9, 134.4, 128.8, 124.9, 122.4, 121.6, 117.6, 112.1, 111.9, 84.6, 68.8, 60.7, 43.6, 

39.8, 39.0, 38.2, 25.6, 25.0, 23.3, 17.8, 16.1 ppm; HRMS (ESI): Calculated for C22H28N2Cl 

[M+H+]: 355.19355, Found: 355.19429. 

Compound 152 

 

Compound 152 was synthesized according to the GP7 as a reddish brown thick oil in 71% 

yield, RF = 0.45 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.88 ( br s, 

1H ) , 7.26 ( s, 1H ), 7.21 ( d, J = 8.2 Hz, 1H ), 6.96 ( d, J = 8.0 Hz, 1H ), 5.41 ( t, J = 7.3 Hz, 

1H ), 4.02 ( s, 1H ), 3.37 ( dt, J = 12.1, 4.1 Hz, 1H ), 3.02 ( br s, 1H ), 2.90 ( m, 1H ), 2.70 ( 

m, 2H ), 2.44 ( s, 3H ), 2.35-2.22 ( m, 5H ), 2.12 ( dd, J = 14.5, 7.3 Hz, 1H ) , 1.98 ( m, 1H ), 

1.67 ( s, 3H ), 1.13 ( s, 3H ), 1.08 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 

135.8, 134.9, 134.4, 128.6, 127.8, 123.2, 122.5, 117.8, 111.6, 110.5, 84.7, 68.8, 60.9, 43.8, 

39.8, 39.1, 38.2, 25.5, 24.9, 23.3, 21.5, 17.8, 16.2; HRMS (ESI): Calculated for C23H31N2 

[M+H+]: 335.24818, Found: 335.24877. 
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Compound 139: Yield:  70%, dr 1 : 1.6, synthesized using the general procedure GP8 

 

 Minor Diastereomer: 

Obtained as a light yellow oil; RF = 0.6 ( 20% EtOAc/Petroleum ether );  1H NMR (400 MHz, 

25 °C, CD2Cl2): δ 7.79 ( br s, 1H ), 7.44 ( d, J = 7.6 Hz, 1H ), 7.32 ( d, J = 8.0 Hz, 1H ), 7.10 ( 

m, 1H ), 7.04 ( m, 1H ), 5.64 ( m, 1H ), 5.58 ( m, 1H ), 3.62 ( dd, J = 11.1, 5.8 Hz, 1H ), 3.23 ( 

s, 1H ), 2.83 ( m, 1H ), 2.65 ( m, 2H ), 2.41 ( m, 2H ), 2.27-2.12 ( m, 2H ), 1.78 ( dd, J = 12.8, 

9.2 Hz, 1H ), 1.7 ( m, 1H ), 1.56 (dd, J = 12.8, 8.0 Hz, 1H ), 1.37 ( s, 3H ), 1.03 ( s, 3H ), 0.97 

( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 140.9, 136.3, 134.9, 128.6, 127.6, 

121.3, 119.5, 118.2, 111.0, 110.7, 71.8, 69.9, 52.1, 48.8, 45.2, 37.5, 34.6, 32.1, 29.1, 26.3, 

23.4, 23.1 ppm; HRMS (ESI): Calculated for C22H29N2 [M+H+]: 321.23253, Found: 

321.23253. 

 

Major Diastereomer: 

Obtained as a yellow oil; RF = 0.35 ( 20% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.79 ( br s, 1H ), 7.47 ( d, J =7.8 Hz, 1H ), 7.33 ( d, J = 7.9 Hz, 1H ), 7.11 ( m, 

1H ), 7.05 ( m, 1H ), 5.68 ( m, 1H ), 5.60 ( m, 1H ), 3.92 ( s, 1H ), 3.14 ( m, 3H ), 2.71 ( m, 2H 

), 2.36 ( m, 2H ), 1.97 ( m, 1H ), 1.86 ( dd, J = 12.5, 7.3 Hz, 1H ), 1.55 ( m, 2H ), 1.32 ( s, 3H 

), 1.09 ( s, 3H ), 0.84 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 139.5, 136.7, 

134.2, 129.4, 127.1, 121.5, 119.4, 118.3, 111.0, 110.9, 71.6, 67.4, 54.7, 51.4, 44.6, 43.4, 33.3, 

32.3, 27.9, 25.0, 23.9, 22.1 ppm; HRMS (ESI): Calculated for C22H29N2 [M+H+]: 321.23253, 

Found: 321.23280. 
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Compound 153: Yield:  67%, dr 1 : 1.7, synthesized using the general procedure GP8

 

Minor Diastereomer: 

Obtained as a yellow oil; RF = 0.57 ( 20% EtOAc/Petroleum ether ), 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.67 ( br s, 1H ), 7.20 ( dd, J = 8.8, 0.4 Hz, 1H ), 6.90 ( d, J = 2.4 Hz, 1H ), 

6.73 ( dd, J = 8.8, 2.4 Hz, 1H ), 5.64 ( m, 1H ), 5.57 ( m, 1H ), 3.82 ( d, 3H, J = 0.7 Hz, 3H ), 

3.61 ( m, 1H ), 3.21 ( s, 1H ), 2.80 ( m, 1H ), 2.61 ( m, 2H ), 2.40 ( m, 2H ), 2.26-2.11 ( m, 2H 

), 1.77 ( dd, J = 12.9, 9 Hz, 1H ), 1.69 ( m, 1H ), 1.55 ( dd, J = 12.9, 7.9 Hz, 1H ), 1.35 ( s, 3H 

), 1.02 ( s, 3H ), 0.96 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 154.4, 140.8, 

135.8, 131.3, 128.6, 128.0, 111.5, 110.9, 110.5, 100.7, 71.9, 69.9, 56.1, 52.1, 48.8, 45.2, 37.5, 

34.6, 32.1, 29.1, 26.3, 23.4, 23.2 ppm; HRMS (ESI): Calculated for C23H31N2O [M+H+]: 

351.24309, Found: 351.24360. 

 

Major Diastereomer: 

Obtained as a yellow oil; RF = 0.34 ( 20% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.67 ( br s, 1H ), 7.21 ( d, J =.8.7 Hz, 1H ), 6.94 ( d, J = 2.4 Hz, 1H ), 6.75 ( 

dd, J = 8.7, 2.5 Hz, 1H ), 5.68 ( m, 1H ), 5.60 ( m, 1H ), 3.89 ( s, 1H ), 3.83 ( s, 3H ), 3.14 ( m, 

3H ), 2.67 (dd, J = 6.3, 4.5 Hz, 2H), 2.36 (m, 2H), 1.96 (m, 1H), 1.85 (dd, J = 12.5, 7.3 Hz, 

1H), 1.54 ( m, 2H ), 1.30 ( s, 3H ), 1.09 ( s, 3H ), 0.84 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 

°C, CD2Cl2 ): δ  154.4, 139.5, 135.2, 131.7, 129.4, 127.6, 111.5, 111.1, 110.7, 100.7, 71.6, 

67.5, 56.1, 54.7, 51.4, 44.6, 43.4, 33.3, 32.3, 27.9, 25.0, 23.9, 22.2 ppm; HRMS (ESI): 

Calculated for C23H31N2O [M+H+]: 351.24309, Found: 351.24357. 
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Compound 154: Yield:  49%, dr 1 : 1.5, synthesized using the general procedure GP8   

 

Minor Diastereomer: 

Obtained as a yellow oil; RF = 0.61 ( 20% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.85 ( br s, 1H ), 7.41 ( s, 1H ), 7.25 ( d, J = 8.5 Hz, 1H ), 7.05 ( dd, J = 8.6, 

1.7 Hz, 1H ), 5.64 ( m, 1H ), 5.56 ( m, 1H ), 3.61 ( dd, J = 11.0, 6.1 Hz, 1H ), 3.21 ( s, 1H ), 

2.79 ( m, 1H ), 2.62 ( m, 2H ), 2.40 ( m, 2H ), 2.26-2.09 ( m, 2H ), 1.78 ( dd, J = 12.9, 9.1 Hz, 

1H ), 1.69 ( m, 1H ), 1.56 ( dd, J = 14.2, 6.6 Hz, 1H ), 1.36 ( s, 3H ), 1.02 ( s, 3H ), 0.96 ( s, 

3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 140.8, 136.7, 134.6, 128.8, 128.7, 125.1, 

121.3, 117.8,  112.0, 110.6, 71.7, 69.8, 52.1, 48.6, 45.1, 37.5, 34.5, 32.1, 29.1, 26.3, 23.4, 23.0 

ppm; HRMS (ESI): Calculated for C22H28N2Cl [M+H+]: 355.19355, Found: 355.19403. 

 

Major Diastereomer: 

Obtained as a yellow oil; RF = 0.36 ( 20% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.86 ( br s, 1H ), 7.44 ( s, 1H ), 7.26( dd, J = 8.5, 0.5 Hz, 1H ), 7.07 ( m, 1H ), 

5.68 ( m, 1H ), 5.59 ( m, 1H ), 3.90 ( s, 1H ), 3.13 ( m, 3H ), 2.67 ( m, 2H ), 2.36 ( m, 2H ), 

1.94 ( m, 1H ), 1.85 ( dd, J = 12.5, 7.4 Hz, 1H ), 1.54 ( m, 2H ), 1.31 ( s, 3H ), 1.08 ( s, 3H ), 

0.83 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 139.4, 136.1, 135.0, 129.6, 

128.3, 125.0, 121.5, 117.8, 112.0, 110.8, 71.5, 67.3, 54.6, 51.1, 44.6, 43.4, 33.3, 32.3, 27.9, 

24.9, 23.9, 22.0; HRMS (ESI): Calculated for C22H28N2Cl [M+H+]: 355.19355, Found: 

355.19399 

 

Compound 155: Yield:  62%, dr 1 : 1.7, synthesized using the general procedure GP8 
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Minor Diastereomer: 

Obtained as a yellow oil; RF = 0.58 ( 20% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 

°C, CD2Cl2 ): δ 7.68 ( br s, 1H ), 7.20 ( m, 2H ), 6.92 ( d, J = 8.3 Hz, 1H ), 5.64 ( d, J = 5.6 

Hz, 1H ), 5.57 ( d, J = 5.5 Hz, 1H ), 3.60 ( dd, J = 10.7, 5.9 Hz, 1H ), 3.21 ( s, 1H ), 2.79 ( m, 

1H ), 2.61 ( m, 2H ), 2.40 ( m, 5H ), 2.25-2.11 ( m, 2H ), 1.77 ( dd, J = 12.9, 9.0 Hz, 1H ), 

1.70 ( m, 1H ), 1.55 ( dd, J = 12.9, 7.8 Hz, 1H ), 1.35 ( s, 3H ), 1.02 ( s, 3H ), 0.96 ( s, 3H ) 

ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 140.9, 135.0, 134.6, 128.7, 128.6, 127.9, 

122.8, 118.0, 110.6, 110.2, 71.9, 69.9, 52.1, 48.8, 45.2, 37.5, 34.6, 32.1, 29.1, 26.3, 23.4, 23.1, 

21.5 ppm; HRMS (ESI): Calculated for C23H31N2 [M+H+]: 335.24818, Found: 335.24871.  

 

Major Diastereomer: 

Obtained as a yellow oil; RF = 0.33 ( 20% EtOAc/Petrolether ); 1H NMR ( 400 MHz, 25 °C, 

CD2Cl2 ): δ 7.68 ( br s, 1H ), 7.26 ( s, 1H ), 7.21( d, J = 8.2 Hz, 1H ), 6.94 ( d, J = 8.2 Hz, 1H 

), 5.68 ( m, 1H ), 5.60 ( m, 1H ), 3.89 ( s, 1H ), 3.13 ( m, 3H ), 2.67 ( m, 2H ), 2.43 ( s, 3H ), 

2.36 ( m, 2H ), 1.96 ( m, 1H ), 1.85 ( dd, J = 12.5, 7.3 Hz, 1H ), 1.55 ( m, 2H ), 1.30 ( s, 3H ), 

1.09 ( s, 3H ), 0.83 ( s, 3H ) ppm; 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 139.5, 135.0, 

134.4, 129.4, 128.7, 127.4, 123.0, 118.1, 110.5, 110.4, 71.6, 67.5, 54.7, 51.4, 44.6, 43.5, 33.3, 

32.3, 27.9, 25.0, 23.9, 22.1, 21.5 ppm; HRMS (ESI): Calculated for C23H31N2 [M+H+]: 

335.24818, Found: 335.24844. 

 

5.2.3.1  1-D NOE experiments for product 139 

The double cyclization cascade reaction of PS product 137 yielded product 139 as a mixture 

of diastereomers (Scheme 65). The syn-configuration for the minor diastereomer of 139 was 

established by observation of a nOe signal between Hb and He (Figure 9), whereas absence of 

this nOe signal in the major diastereomer of 139 pointed towards an anti-configuration 

(Figure 10).    
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Scheme 65- Gold mediated double cyclization cascade of 137 affords product 139 as a 
mixture of diastereomers. 

 

nOe coupling 139 (minor diastereomer) 

 

Figure 9- Proton NMR spectra of 139 (minor diastereomer) in deteurated DCM, depicting 
signal enhancement due to nOe coupling beween protons He and Hb 

 

Section of the proton NMR spectrum of 139 (minor diastereomer) depicting protons Ha, Hb 
and He 

 

 

Proton Hb on irradiation shows 2% nOe signal enhancement via He
 and 1% nOe signal 

enhancement via Ha
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Proton He on irradiation shows 3% nOe signal enhancement via Hb
 and 2% nOe signal 

enhancement via Ha 

 

 

3D model depicting the nOe coupling for the minor diastereomer of 139 

 

nOe coupling 139 ( major diastereomer ) 

A TFA salt of the major diastereomer was used to determine the nOe coupling, in which 

protons Hb and He were well separated as seen in Figure 10. 

 

Figure 10 – Proton NMR spectrum of TFA salt of major diastereomer in deteurated DCM, 
depicting absence of signal enhancement due to nOe coupling beween protons He and Hb 
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Proton NMR spectrum of 139 (major diastereomer) depicting protons Hb and He 

 

Proton Hb on irradiation shows no nOe signal enhancement via He
 

 

Proton He on irradiation shows no nOe signal enhancement via Hb 
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5.3  Experimental part for chapter 3 

 

5.3.1  Synthetic scheme for the preparation of isoleucine-, valine-, phenyl 
alanine derived aminophosphines. 
 

General Procedure 9 (GP9) for the preparation of mesylates (217- 219) 

 

To an ice-cooled solution of the commercially available boc-protected amino alcohol (214- 

216) (13.8 mmol) and triethylamine (15.18 mmol, 1.1 equiv) in DCM (55 mL), a solution of 

methanesulfonyl chloride (14.35 mmol, 1.04 equiv) in DCM (27 mL) was added dropwise 

over a period of 30 min, After completion of the reaction monitored via TLC, the solvent was 

evaporated under vacuo and ethyl acetate (30 mL) and water (30 mL) were added to the 

residue. The organic layer was washed with aqueous 5% NaHCO3 (50 mL) and brine (50 mL), 

and dried over Na2SO4. The organic solvent was evaporated to give the corresponding 

mesylates (217- 219) as white solids in quantitative yields. 

 

General Procedure 10 (GP10) for the preparation of boc-protected aminophosphines 
(220- 222) 

 

Potassium diphenylphosphide (0.5 M THF solution, 63 mL, 28 mmol), was added dropwise to 

a solution of a corresponding mesylate (217- 219) (13.27 mmol) in THF (30 mL) at -40 °C 

under argon. The reaction mixture was stirred at that same temperature overnight.The solution 

was allowed to warm to room temperature and was filtered through celite. The reaction 

mixture was concentrated in vacuo. The residue was purified by silica gel column 

chromatography with EtOAc and petroleum ether as eluents to give the desired boc-protected 

aminophosphine (220- 222) as a viscous liquid. 
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General Procedure 11 (GP11) for the preparation of aminophosphines (223- 225) 

 

To a solution of the boc-protected aminophosphine (220- 222) (3.68 mmol) in CH2Cl2 (68 

mL) was added trifluoroacetic acid (13.5 mL, 177.15 mmol) at 0 °C under argon. The solution 

was stirred at 0 °C for 1 h and then at room temperature overnight. The reaction mixture was 

quenched with water (50 mL) and the biphasic mixture was separated. The aqueous layer was 

neutralized with 10 M NaOH solution and extracted with CH2Cl2 (3 X 75 mL). The combined 

organic layers were washed with saturated aqueous NaHCO3 (100 mL) and brine (100 mL), 

dried over MgSO4, and concentrated under vacuum to give aminophosphine as viscous liquid 

(223-225). 

 

(2S,3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentyl methanesulfonate (217) 

 

Compound 217 was synthesized according to the GP9 as a white solid in quantitative yield, 

RF = 0.37 ( 10% EtOAc/Petroleum ether );1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 4.67 ( d, J 

= 9.0 Hz, 1H ), 4.33 – 4.20 ( m, 2H ), 3.68 ( m, 1H ), 3.01 ( d, J = 1.9 Hz, 3H ), 1.65 – 1.47 ( 

m, 2H ), 1.43 ( s, 9H ), 1.22 – 1.09 ( m, 1H ), 0.96 – 0.86 ( m, 6H  ); 13C NMR ( 100 MHz, 25 

°C, CDCl3 ): δ 155.6, 79.8, 69.8, 53.8, 37.4, 35.7, 28.4, 25.3, 15.5, 11.2; HRMS (ESI): 

Calculated for C12H25O5NNaS [M+Na+]: 318.13456, Found: 318.13567. 

 

(S)-2-((tert-butoxycarbonyl)amino)-3-phenylpropyl methanesulfonate (218) 

 

Compound 218 was synthesized according to the GP9 as a white solid in quantitative yield, 

RF = 0.31 ( 10% EtOAc/Petroleum ether );1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.39 – 7.15 

( m, 5H ), 4.76 ( s, 1H ), 4.31 – 4.05 ( m, 3H ), 3.01 ( s, 3H ), 2.95 – 2.81 ( m, 2H ), 1.42 ( s, 

9H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 155.2, 136.7, 129.3, 128.8, 127.0, 80.0, 69.9, 

50.9, 37.3, 28.4; HRMS (ESI): Calculated for C15H23NO5NaS [M+H+]: 352.11891, Found: 

352.11994. 
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(S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutyl methanesulfonate (219) 

 

Compound 219 was synthesized according to the GP9 as a white solid in quantitative yield, 

RF = 0.34 ( 10% EtOAc/Petroleum ether); the spectral data for the obtained compound are in 

agreement with the data reported. 101 HRMS (ESI): Calculated for C12H25NO5NaS [M+Na+]: 

318.13456, Found: 318.13533. 

 

Tert-Butyl ((2S,3S)-1-(diphenylphosphanyl)-3-methylpentan-2-yl)carbamate (220) 

 

Compound 220 was synthesized according to the GP10 as a viscous colourless liquid in 58% 

yield, RF = 0.41 ( 10% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.48 

– 7.41 ( m, 4H ), 7.37 – 7.29 ( m, 6H ), 4.45 ( d, J = 7.8 Hz, 1H ), 3.67 ( s, 1H ), 2.27 ( dd, J = 

13.6, 3.5 Hz, 1H ), 2.16 – 2.04 ( m, 1H ), 1.65 ( s, 1H ), 1.46 – 1.34 ( m, 11H ), 1.12 – 0.99 ( 

m, 1H ), 0.88 – 0.77 ( m, 6H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 155.3, 138.2 ( d, JC-P = 

12.7 Hz ), 133.2 ( d, JC-P = 19.4 Hz ), 132.7 ( d, JC-P = 18.6 Hz ), 130.8 ( d, JC-P = 4.1 Hz ), 

130.7 ( d, JC-P = 3.9 Hz ), 128.9, 128.6 ( d, JC-P = 1.5 Hz ), 128.5 ( d, JC-P = 1.0 Hz ), 78.9, 52.6 

( d, JC-P = 14.4 Hz ), 39.4, 31.3 ( d, JC-P = 12.0 Hz ), 28.5, 25.2, 15.0, 11.7; 31P NMR ( 121 

MHz, 25 °C, CDCl3): δ -21.2; HRMS (ESI): Calculated for C23H33NO2P [M+H+]: 386.22434, 

Found: 386.22512. 

 

Tert-butyl (S)-(1-(diphenylphosphanyl)-3-phenylpropan-2-yl)carbamate (221) 

 

Compound 221 was synthesized according to the GP10 as a white solid in 51% yield, RF = 

0.45 ( 10% EtOAc/Petroleum ether ); the spectral data for the obtained compound are in 

agreement with the reported data.101; m.p. – 153.8- 154.2 oC; HRMS (ESI): Calculated for 

C26H31NO2P [M+H+]: 420.20869, Found: 420.20969. 
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Tert-butyl (S)-(1-(diphenylphosphanyl)-3,3-dimethylbutan-2-yl)carbamate (222) 

 

Compound 222 was synthesized according to the GP10 as a viscous colourless liquid in 52% 

yield, RF = 0.43 ( 10% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.49 

– 7.42 ( m, 4H ), 7.37 – 7.29 ( m, 6H ), 4.37 ( d, J = 10.4 Hz, 1H ), 3.58 – 3.47 ( m, 1H ), 2.42 

– 2.31 ( m, 1H ), 2.01 – 1.93 ( m, 1H ), 1.45 ( s, 9H ), 0.88 ( s, 9H ); 13C NMR ( 100 MHz, 25 

°C, CDCl3 ): δ 155.5, 139.4 (d, JC-P = 12.6 Hz), 138.2 (d, JC-P = 13.9 Hz), 133.3 (d, JC-P = 19.5 

Hz), 132.5 (d, JC-P = 18.7 Hz), 128.8, 128.5, 128.4, 128.3, 78.7, 56.3 (d, JC-P = 13.5 Hz), 35.7 

(d, JC-P = 6.3 Hz), 31.2 (d, JC-P = 12.4 Hz), 28.5, 26.2; 31P NMR ( 121 MHz, 25 °C, CDCl3): δ 

-20.3; HRMS (ESI): Calculated for C23H33O2NP [M+H+]: 386.22434, Found: 386.22567. 

 

(2S,3S)-1-(diphenylphosphanyl)-3-methylpentan-2-amine (223) 

 

Compound 223 was synthesized according to the GP11 as a viscous colourless liquid in 85% 

yield, RF = 0.38 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.53 – 7.44 ( 

m, 2H ), 7.44 – 7.36 ( m, 2H ), 7.36 – 7.27 ( m, 6H ), 2.83 – 2.73 ( m, 1H ), 2.43- 2.23 ( m, 3H 

), 2.03- 1.94 ( m, 1H ), 1.53 – 1.44 ( m, 1H ), 1.43 – 1.32 ( m, 1H ), 1.19 – 1.07 ( m, 1H ), 0.90 

( d, J = 6.8 Hz, 3H ), 0.80 ( t, J = 7.4 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 139.3 

( d, JC-P = 11.9 Hz ), 138.0 ( d, JC-P = 13.1 Hz ), 133.3 ( t, JC-P = 17.5 Hz ), 132.4 ( d, JC-P = 

18.1 Hz ), 131.9, 131.1 ( d, JC-P = 9.5 Hz ), 130.6 ( d, JC-P = 9.4 Hz ), 129.0, 128.8 ( d, JC-P = 

11.7 Hz ), 128.6 ( d, JC-P = 7.1 Hz ), 128.5 ( d, JC-P = 6.4 Hz ), 128.3, 53.0 ( d, JC-P = 13.6 Hz ), 

41.2 ( d, JC-P = 7.0 Hz ), 33.6 ( d, JC-P = 12.0 Hz ), 24.9, 14.8, 11.88; 31P NMR ( 121 MHz, 25 

°C, CDCl3 ): δ -20.3; HRMS (ESI): Calculated for C18H25NP [M+H+]: 286.17191, Found: 

286.17255. 
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(S)-1-(diphenylphosphanyl)-3-phenylpropan-2-amine (224) 

 

Compound 224 was synthesized according to the GP11 as a viscous colourless liquid in 87% 

yield, RF = 0.4 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.27 – 6.94 ( m, 

15H ), 2.98- 2.87 ( m, 1H ), 2.74 ( dd, J = 13.3, 5.1 Hz, 1H ), 2.47 ( dd, J = 13.3, 8.1 Hz, 1H ), 

2.21 – 2.14 ( m, 1H ), 1.92 ( ddd, J = 13.7, 8.4, 1.4 Hz, 1H ), 1.38 ( s, 2H ); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 139.1, 139.0 ( d, JC-P = 12.1 Hz ), 138.0 ( d, JC-P = 12.3 Hz ), 133.0 ( 

d, JC-P = 19.2 Hz ), 132.6 ( d, JC-P = 18.6 Hz ), 129.4, 128.8, 128.6, 128.5, 128.5, 128.4, 126.3, 

50.7 ( d, JC-P = 15.1 Hz ), 45.8 ( d, JC-P = 8.2 Hz ), 37.3 ( d, JC-P = 12.8 Hz ); 31P NMR ( 121 

MHz, 25 °C, CDCl3): δ -21.2; HRMS (ESI): Calculated for C21H23NP [M+H+]: 320.15626, 

Found: 320.15712. 

 

(S)-1-(diphenylphosphanyl)-3,3-dimethylbutan-2-amine (225) 

 

Compound 225 was synthesized according to the GP11 as a viscous colourless liquid in 83% 

yield, RF = 0.37 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.55 – 7.48 ( 

m, 2H ), 7.42 – 7.35 ( m, 5H ), 7.34 – 7.27 ( m, 3H ), 2.54 – 2.42 ( m, 2H ), 1.84- 1.75 ( m, 1H 

), 1.44 ( bs, 2H ), 0.88 ( d, J = 1.8 Hz, 9H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 139.9 ( d, 

J JC-P = 12.1 Hz ), 137.8 ( d, JC-P = 13.6 Hz ), 133.6 ( d, JC-P = 19.7 Hz ), 132.3 ( d, JC-P = 17.9 

Hz ), 129.1, 128.5 ( d, JC-P = 7.2 Hz ), 128.4 ( d, JC-P = 6.2 Hz ), 128.2, 57.8 ( d, JC-P = 12.3 Hz 

), 35.0 ( d, JC-P = 6.5 Hz ), 32.7 ( d, JC-P = 11.0 Hz ), 26.0; 31P NMR ( 121 MHz, 25 °C, 

CDCl3): δ -19.6; HRMS (ESI): Calculated for C18H25NP [M+H+]: 286.1719, Found: 

286.17248. 

 

General Procedure 12 (GP12) for the preparation of aminophosphines (196, 206, 226- 
230) 
To a solution of aminophosphine (223- 225) (0.2 mmol) and triethylamine (0.3 mmol) in 

CH2Cl2 (1.5 ml) at 0 oC, a solution of acyl chloride (0.3 mmol) in CH2Cl2 (1.5 mL) was added 

dropwise via a syringe at 0 oC and the mixture was then warmed to RT. The reaction was 

monitored by TLC for completion. On completion the reaction mixture was diluted with 
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CH2Cl2 (20 mL), washed with saturated NaHCO3 (10 mL) and dried over Na2SO4, and 

concentrated under reduced pressure. The residue was purified by silica gel chromatography 

using petroleum ether and EtOAc as the eluents to afford the desired aminophosphine. 

 

N-((2S,3S)-1-(diphenylphosphanyl)-3-methylpentan-2-yl)acetamide (226) 

 

Aminophosphine 223 was treated with acetyl chloride following GP12 yielding 

aminophosphine 226 as a white solid in 71% yield, RF = 0.35 ( 30% EtOAc/Petroleum ether);  

m.p. – 154.3– 154.9oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.00 ( s, 2H , 7.93 ( s, 1H ), 

7.57 – 7.38 ( m, 4H ), 7.34 – 7.23 ( m, 6H ), 6.34 ( s, 1H ), 4.39 – 4.27 ( m, 1H ), 2.59 – 2.42 ( 

m, 2H ), 1.96 – 1.82 ( m, 1H ), 1.59 – 1.42 ( m, 1H ), 1.24 – 1.12 ( m, 1H ), 0.98 ( d, J = 6.8 

Hz, 3H ), 0.89 ( t, J = 7.4 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): 163.8, 136.6, 133.0 

( d, JC-P = 8.1 Hz ), 132.8 ( d, JC-P = 8.1 Hz ), 132.0 ( q, JC-F = 33.8 Hz ), 129.6 ( d, JC-P = 9.6 

Hz ), 128.9 ( d, JC-P = 6.4 Hz ), 128.9 ( d, JC-P = 6.4 Hz ), 127.36 ( d, JC-P = 2.7 Hz ), 124.9, 

124.4, 121.7, 52.7 ( d, JC-P = 12.0 Hz ), 39.4 ( d, JC-P = 8.3 Hz ), 29.8 ( d, JC-P = 8.4 Hz ), 25.7, 

15.0, 11.6; 31P NMR ( 121 MHz, 25 °C, CDCl3 ): δ -22.5; HRMS (ESI): Calculated for 

C27H27NOF6P [M+H+]: 526.17290, Found: 526.17411. 

 

(S)-N-(1-(diphenylphosphanyl)-3-phenylpropan-2-yl)acetamide (227) 

 

Aminophosphine 224 was treated with acetyl chloride following GP12 yielding 

aminophosphine 227  as a white solid in 68% yield, RF = 0.38 ( 30% EtOAc/Petroleum ether 

); m.p. – 168.3– 168.4oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.37 – 7.05 ( m, 15H ), 5.30 

(d, J = 8.0 Hz, 1H ), 4.25 – 4.16 ( m, 1H ), 2.97 – 2.81 ( m, 2H ), 2.27 ( ddd, J = 14.1, 5.5, 1.5 

Hz, 1H ), 2.14 ( dd, J = 14.1, 7.7 Hz, 1H ), 1.66 ( s, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 

): δ 169.4, 138.1 ( d, JC-P = 11.3 Hz ), 137.9 ( d, JC-P = 11.6 Hz ), 137.7, 132.9 ( d, JC-P = 6.5 

Hz ), 132.8 ( d, JC-P = 6.3 Hz ), 129.6, 128.9 ( d, JC-P = 7.7 Hz ), 128.7 ( d, JC-P = 7.0 Hz ), 
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128.5, 126.6, 48.8 ( d, JC-P = 14.8 Hz ), 41.1 ( dd, JC-P = 26.5, 7.8 Hz ), 33.0 ( d, JC-P = 14.1 

Hz ), 23.3; 31P NMR ( 121 MHz, 25 °C, CDCl3): δ -22.7; HRMS (ESI): Calculated for 

C23H25NOP [M+H+]: 362.16683, Found: 362.16813. 

 

(S)-N-(1-(diphenylphosphanyl)-3,3-dimethylbutan-2-yl)acetamide (228) 

 

Aminophosphine 225 was treated with acetyl chloride following GP12 yielding 

aminophosphine 228  as a white solid in 65% yield; RF = 0.33 ( 30% EtOAc/Petroleum ether 

);  m.p. – 208.8 – 209.6oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.52 – 7.38 ( m, 4H ), 7.36 

– 7.28 ( m, 6H ), 5.18 ( d, J = 10.1 Hz, 1H ), 4.04 – 3.88 ( m, 1H ), 2.41- 2.33 ( m, 1H ), 2.06- 

1.97 ( m, 1H ), 1.77 ( s, 3H ), 0.88 ( s, 9H ); 13C NMR ( 101 MHz, CDCl3 ): δ 169.56, 139.0 ( 

d, J = 12.8 Hz ), 138.2 ( d, JC-P = 13.3 Hz ), 133.0 ( d, JC-P = 15.0 Hz ), 132.8 ( d, JC-P = 15.3 

Hz ), 128.8, 128.7, 128.6, 128.6 ( d, JC-P = 1.5 Hz ), 128.5, 54.9 ( d, JC-P = 14.0 Hz ), 35.5 ( d, 

JC-P = 6.9 Hz ), 30.6 ( d, JC-P = 13.0 Hz ), 26.3, 23.3; 31P NMR ( 121 MHz, 25 °C, CDCl3): δ -

19.6; HRMS (ESI): Calculated for C20H27ONP [M+H+]: 328.18248, Found: 328.18364. 

 

N-((2S,3S)-1-(diphenylphosphanyl)-3-methylpentan-2-yl)-

3,5bis(trifluoromethyl)benzamide (206) 

 

Aminophosphine 223 was treated with 3,5-(bistrifloromethyl)benzoyl chloride following 

GP12 yielding aminophosphine 206 as a white solid in 60% yield; RF = 0.41 ( 5% 

EtOAc/Petroleum ether ); m.p. – 117.9 – 118.4oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

8.00 ( s, 2H ) , 7.93 ( s, 1H ), 7.57 – 7.38 ( m, 4H ), 7.34 – 7.23 ( m, 6H ), 6.34 ( s, 1H ), 4.39 

– 4.27 ( m, 1H ), 2.59 – 2.42 ( m, 2H ), 1.96 – 1.82 ( m, 1H ), 1.59 – 1.42 ( m, 1H ), 1.24 – 

1.12 ( m, 1H ), 0.98 ( d, J = 6.8 Hz, 3H ), 0.89 ( t, J = 7.4 Hz, 3H ); 13C NMR ( 100 MHz, 25 
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°C, CDCl3 ): 163.8, 136.6, 133.0 ( d, JC-P = 8.1 Hz ), 132.8 ( d, JC-P = 8.1 Hz ), 132.0 ( q, JC-F = 

33.8 Hz ), 129.6 ( d, JC-P = 9.6 Hz ), 128.97 ( d, JC-P = 6.4 Hz ), 128.90 ( d, JC-P = 6.4 Hz ), 

127.36 ( d, JC-P = 2.7 Hz ), 124.9, 124.4, 121.7, 52.7 ( d, JC-P = 12.0 Hz ), 39.4 ( d, JC-P = 8.3 

Hz ), 29.8 ( d, JC-P = 8.4 Hz ), 25.7, 15.0, 11.6; 31P NMR ( 121 MHz, 25 °C, CDCl3 ): δ -22.5; 

HRMS (ESI): Calculated for C27H27NOF6P [M+H+]: 526.17290, Found: 526.17411. 

 

(S)-N-(1-(diphenylphosphanyl)-3-phenylpropan-2-yl)-3,5-bis(trifluoromethyl)benzamide 

(229) 

 

Aminophosphine 224 was treated with 3,5-(bistrifloromethyl)benzoyl chloride following 

GP12 yielding aminophosphine 229 as a white solid in 60% yield; RF = 0.47 ( 5% 

EtOAc/Petroleum ether ); m.p. – 166.5 – 167.1oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

7.85 ( s, 3H ), 7.41 – 7.27 ( m, 4H ), 7.24 – 7.12 ( m, 11H ), 6.38 ( s, 1H ), 4.57 – 4.41 ( m, 1H 

), 3.06 ( qd, J = 13.6, 6.8 Hz, 2H ), 2.58 – 2.41 ( m, 2H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 

): δ 163.9, 137.4, 136.5, 132.9 ( d, JC-P = 2.7 Hz ), 132.8 ( d, JC-P = 2.6 Hz ), 132.0 ( q, JC-F = 

33.9 Hz ), 129.6 ( d, JC-P = 9.5 Hz ), 129.5, 128.9 ( t, JC-P = 7.3 Hz ), 128.8, 127.3 ( d, JC-P = 

2.7 Hz ), 127.0, 124.9, 124.3, 121.6, 50.1 ( d, JC-P = 13.2 Hz ), 41.5 ( d, JC-P = 9.3 Hz ), 32.1 ( 

d, JC-P = 8.7 Hz ); 31P NMR ( 121 MHz, 25 °C, CDCl3): δ -23.7; HRMS (ESI): Calculated for 

C30H25NOF6P [M+H+]: 560.15725, Found: 560.15900. 

 

(S)-N-(1-(diphenylphosphanyl)-3,3-dimethylbutan-2-yl)-3,5-

bis(trifluoromethyl)benzamide (230) 

 

Aminophosphine 225 was treated with 3,5-(bistrifloromethyl)benzoyl chloride following 

GP12 yielding aminophosphine 230  as a a white solid in 57% yield; RF = 0.40 ( 5% 
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EtOAc/Petroleum ether ); m.p. – 172.3 – 173.0oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

8.24 ( s, 2H ), 7.95 ( s, 1H ), 7.73- 7.61 ( m, 4H ), 7.55 – 7.39 ( m, 6H ), 7.19 ( d, J = 9.3 Hz, 

1H ), 4.43- 4.34 ( m, 1H ), 2.74 – 2.61 ( m, 2H ), 0.99 ( s, 9H ); 13C NMR ( 100 MHz, 25 °C, 

CDCl3 ): δ 164.2, 136.9, 132.5 ( d, JC-P = 2.8 Hz ), 132.1 ( d, JC-P = 2.7 Hz ), 131.9 ( q, JC-F = 

33.8 Hz ), 130.8 ( d, JC-P = 9.5 Hz ), 130.5 ( d, JC-P = 9.5 Hz ), 129.0 ( d, JC-P = 8.7 Hz ), 128.9 

( d, JC-P = 8.6 Hz ), 127.7 ( d, JC-P = 3 Hz ), 124.7, 124.54, 121.84, 53.70 (d, JC-P = 6.0 Hz), 

36.72 (d, JC-P = 8.4 Hz), 30.29 ( d, JC-P = 8.3 Hz ), 26.3; 31P NMR ( 121 MHz, 25 °C, CDCl3): 

δ -23.5; HRMS (ESI): Calculated for C27H27ONF6P [M+H+]: 526.17290, Found: 526.17443. 

 

N-((2S,3S)-1-(diphenylphosphanyl)-3-methylpentan-2-yl)-3,5-difluorobenzamide (196) 

 

Aminophosphine 223 was treated with 3,5-diflorobenzoyl chloride following GP12 yielding 

aminophosphine 196  as a white solid in 69% yield; RF = 0.45 ( 5% EtOAc/ Petroleum ether ); 

m.p. – 118.4 – 118.7oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.50 – 7.39 ( m, 4H ), 7.35 – 

7.28 ( m, 6H ), 6.98 – 6.92 ( m, 2H ), 6.90 - 6.84 ( m, 1H ), 5.83 ( d, J = 8.7 Hz, 1H ), 4.35 – 

4.20 ( m, 1H ), 2.44 – 2.29 ( m, 2H ), 1.92 - 1.80 ( m, 1H ), 1.54 - 1.42 ( m, 1H ), 1.22 – 1.09 ( 

m, 1H ), 0.94 ( d, J = 6.8 Hz, 3H ), 0.89 ( t, J = 7.4 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, 

CDCl3 ): δ 164.2, 164.1, 164.0, 161.6 ( d, JC-P = 12.0 Hz ), 138.4 ( d, JC-P = 12.3 Hz ), 138.2 ( 

d, JC-P = 3.7 Hz ), 138.1, 138.0, 133.0 ( d, JC-P = 19.3 Hz ), 132.8 ( d, JC-P = 19.2 Hz ), 129.0 ( 

d, JC-P = 6.7 Hz ), 128.8 ( d, JC-P = 5.8 Hz ), 128.7 ( d, JC-P = 5.9 Hz ), 110.1 ( d, JC-P = 26.3 Hz 

), 110.0 ( d, JC-P = 11.2 Hz ), 106.6 ( t, JC-F = 25.3 Hz ), 52.6 ( d, JC-P = 13.6 Hz ), 39.2 ( d, JC-P 

= 8.0 Hz ), 30.4 ( d, JC-P = 14.7 Hz ), 25.6, 14.9, 11.7; 31P NMR ( 121 MHz, 25 °C, CDCl3): δ 

-22.2; HRMS (ESI): Calculated for C25H27NOF2P [M+H+]: 426.17928, Found: 426.18036 
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Synthetic scheme for the synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)-3-((2S,3S)-1-
(diphenylphosphanyl)-3-methylpentan-2-yl)thiourea (231) 

 

To a solution of aminophosphine 223 (300 mg, 1.05 mmol) in CH2Cl2 (10 mL), 3,5-

bistrifloromethyl phenyl isothiocyanate (241.68 mg, 1.26 mmol) was added. The reaction 

mixture was stirred for 4h at RT. The solvent was removed in vacuo and the crude reaction 

mixture was directly purified by silica gel column chromatography with EtOAc and petroleum 

ether as eluents yielding the aminophosphine 231 as a white solid in 68% yield; RF = 0.43 ( 

5% EtOAc/Petroleum ether ); m.p. – 167.5- 167.8, 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 

8.41 ( s, 1H ), 7.67 ( s, 2H ), 7.64 ( s, 1H ), 7.46 – 7.37 ( m, 4H ), 7.35 – 7.27 ( m, 6H ), 6.31 ( 

s, 1H ), 4.66 ( s, 1H ), 2.53 – 2.46 ( m, 1H ), 2.23- 2.21 ( m, 1H ), 1.94 ( s, 1H ), 1.49 – 1.37 ( 

m, 1H ), 1.19 – 1.06 ( m, 1H ), 0.92 ( d, J = 6.8 Hz, 3H ), 0.86 ( t, J = 7.4 Hz, 3H ); 13C NMR 

( 100 MHz, 25 °C, CDCl3 ): δ 179.8, 138.9, 137.4 ( d, JC-P = 11 Hz ), 137.0 ( d, JC-P = 9 Hz ), 

133.1 ( d, JC-P = 19.3 Hz ), 132.7, 132.6 ( d, JC-P = 18.7 Hz ), 129.4, 129.0, 128.8 ( dd, JC-P = 

7.0, 3.9 Hz ), 122.9 ( q, JC-F = 271 Hz ), 123.3, 119.0, 57.4 (d, JC-P = 12.3 Hz), 38.6, 29.9, 

25.8, 15.0, 11.5; 31P NMR ( 121 MHz, 25 °C, CDCl3 ): δ -22.9; HRMS (ESI): Calculated for 

C27H28N2F6PS [M+H+]: 557.16095, Found: 557.16282. 

 

5.3.2  Synthesis of L-threonine based aminophosphines 

 

Aminophosphine 236 was synthesized according to literature procedure over 4 synthetic steps 
116 as a colourless sticky oil, RF = 0.35 ( 10% MeOH/DCM ); 1H NMR ( 400 MHz, 25 °C, 

CDCl3 ): δ 7.50 – 7.38 ( m, 4H ), 7.37 – 7.29 ( m, 6H ), 3.63- 3.55 ( m, 1H ), 2.74 ( s, 3H ), 

2.67 – 2.57 ( m, 1H ), 2.43 – 2.36 ( m, 1H ), 2.1- 2.02 ( m, 1H ), 1.14 ( d, J = 6.3 Hz, 3H ); 13C 

NMR (100 MHz, 25 °C, CDCl3): δ 138.6 ( d, JC-P = 11.3 Hz ), 137.5 ( d, JC-P = 12.3 Hz ), 

133.2 ( d, JC-P = 19.5 Hz ), 132.6 ( d, JC-P = 18.4 Hz ), 129.2, 128.7 ( dd, JC-P = 10.7, 6.9 Hz ), 

70.8 ( d, JC-P = 8.4 Hz ), 55.0 ( d, JC-P = 13.3 Hz ), 34.3 ( d, JC-P = 12.3 Hz ), 20.1; 31P NMR ( 

121 MHz, 25 °C, CDCl3): δ -22.0; HRMS (ESI): Calculated for C16H21NOP [M+H+]: 

274.13553, Found: 274.13636. 
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Procedure for the synthesis of N‐((2S,3R)‐1‐(Diphenylphosphino)‐3‐hydroxybutan‐2‐yl)‐
3,5‐bis(trifluoromethyl)benzamide (237) . 

 

To a solution of aminophosphine 236 (546 mg, 2 mmol) and Et3N (417 µl, 3 mmol) in 

anhydrous CH2Cl2 (30 mL) was added dropwise a solution of 3,5‐bis(trifluoromethyl)benzoyl 

chloride (360 µl, 2 mmol) in CH2Cl2 (30 mL) at ‐50oC over 30 min. The resulting reaction 

mixture was stirred at the same temperature for 1h and then warmed to room temperature. 

Water (45 mL) was added to the reaction mixture and the aqueous phase was extracted with 

CH2Cl2 (2 x 15 ml). The combined organic layers were washed with brine (45 ml) and dried 

over Na2SO4. Solvent was removed in vacuo and the residue was purified by column 

chromatography on silica gel with EtOAc and petrolether as eluents to afford the desired 

aminophosphine 237 as a white solid in 75% yield; RF = 0.38 ( 20% EtOAc/Petroleum ether ); 
1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.91 ( s, 2H ), 7.87 ( s, 1H ), 7.43 – 7.32 ( m, 4H ), 

7.25 – 7.13 ( m, 6H ), 6.44 ( d, J = 7.3 Hz, 1H ), 4.28 – 4.08 ( m, 2H ), 2.50 ( d, J = 6.8 Hz, 

3H ), 1.14 ( d, J = 6.3 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 164.5, 136.3, 132.9 ( 

d, JC-P = 8.7 Hz ), 132.7 ( d, JC-P = 8.6 Hz ), 132.0 ( q, JC-F = 33.9 Hz ), 129.2 ( d, JC-P = 2.7 

Hz ), 128.8 ( d, JC-P = 1.4 Hz ), 128.7 ( d, JC-P = 1.5 Hz ), 127.35 ( d, JC-P = 2.8 Hz ), 125.0, 

124.3, 69.6 ( d, JC-P = 8.6 Hz ), 53.7 ( d, JC-P = 14.2 Hz ), 31.8 ( d, JC-P = 13.9 Hz ), 20.8; 31P 

NMR ( 121 MHz, 25 °C, CDCl3 ): δ -22.73; HRMS (ESI): Calculated for C25H23NO2PF6 

[M+H+]: 514.13651, Found: 514.13736. 

 

General Procedure 13 (GP13) for the synthesis of o-silylated L-threonine based 
aminophosphines (238- 240)  

 

To a solution of aminophosphine 237 (150 mg, 0.29 mmol) in dry DMF (1 ml) was added 

imidazole (60.41mg, 0.87 mmol) and triisopropylsilyl chloride (77µl, 0.36 mmol) at room 
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temperature under N2. The solution was stirred at RT and monitored via TLC for completion. 

The reaction mixture was directly purified by column chromatography on silica gel with 

EtOAc and petroleum ether as eluents affording the desired aminophopshine 238. 

 

N‐((2S,3R)‐1‐(Diphenylphosphino)‐3‐(triisopropylsilyloxy)butan ‐2‐yl)‐3,5‐

bis(trifluoromethyl)benzamide (238) 

 

Aminophosphine 238 was synthesized according to the GP13 as a white solid in 78% yield, 

RF = 0.54 (5% EtOAc/Petroleum ether); m.p. – 122.9 – 123.4oC; 1H NMR ( 400 MHz, 25 °C, 

CDCl3 ): δ 8.09 ( s, 2H ), 7.98  ( s, 1H ), 7.61- 7.53 ( m, 2H ), 7.43 – 7.36 ( m, 2H ), 7.36 – 

7.27 ( m, 6H ), 6.61 ( d, J = 8.5 Hz, 1H ), 4.50 ( q, J = 6.2 Hz, 1H ), 4.20 ( dd, J = 15.1, 8.0 

Hz, 1H ), 2.72- 2.62 ( m, 1H ), 2.45- 2.35 ( m, 1H ), 1.23 ( d, J = 6.2 Hz, 3H ), 1.14 – 1.10 ( 

m, 21H ); 13C NMR ( 101 MHz, CDCl3 ) δ 163.6, 136.6, 133.1 ( d, JC-P = 19.6 Hz ), 132.6 ( d, 

JC-P = 18 Hz ), 132.2 ( q, JC-F = 33.9 Hz ), 129.1, 128.7 ( d, JC-P = 6.9 Hz ), 128.6 ( d, JC-P = 

6.8 Hz ), 127.2 ( d, J JC-P = 2.8 Hz ), 124.9, 124.4, 69.8 ( d, JC-P = 10.3 Hz ), 54.0 ( d, JC-P = 

16.3 Hz ), 32.0 ( d, JC-P = 14.1 Hz ), 21.4, 18.3 ( d, JC-P = 7.7 Hz ), 12.8; 31P NMR ( 121 MHz, 

25 °C, CDCl3 ): δ -22.0; HRMS (ESI): Calculated for C34H43NO2F6PSi [M+H+]: 670.26994, 

Found: 670.27268. 

 

N‐((2S,3R)‐3‐(tert‐Butyldiphenylsilyloxy) ‐1‐(diphenylphosphino)butan‐2‐yl)‐3,5‐

bis(trifluoromethyl)benzamide (239) 

 

Aminophosphine 239 was synthesized according to the GP13 ( using tert‐butyldiphenylsilyl 

chloride ) as a white solid in 73% yield, RF = 0.58 ( 5% EtOAc/ Petroleum ether ); m.p. – 

154.3 – 154.9; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.04 ( s, 2H ), 7.97 ( d, J = 7.4 Hz, 1H 

), 7.73 – 7.67 ( m, 2H ), 7.66 – 7.60 ( m, 2H ), 7.49 – 7.33 ( m, 8H ), 7.30 – 7.22 ( m, 8H ), 

6.49 ( d, J = 8.8 Hz, 1H ), 4.35 – 4.29 ( m, 1H ), 4.27 – 4.17 ( m, 1H ), 2.63 – 2.53 ( m, 1H ), 
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2.24 ( dd, J = 13.9, 5.8 Hz, 1H ), 1.11 ( s, 9H ), 1.08 ( d, J = 6.3 Hz, 3H ); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 163.7, 136.6, 135.9 ( d, JC-P = 1.4 Hz ), 133.7, 133.2, 133.0 ( d, JC-P = 

19.6 Hz ), 132.6 ( d, JC-P = 19 Hz ), 132.2 ( q, JC-F = 33.8 Hz ), 130.1 ( d, JC-P = 7.6 Hz ), 

129.1, 128.7 ( d, JC-P = 6.8 Hz ), 128.6, 128.6 ( d, JC-P = 6.9 Hz ), 127.9 ( d, JC-P = 16 Hz ), 

127.2 ( d, JC-P = 2.9 Hz ), 124.9, 124.4, 71.4 ( d, JC-P = 10.4 Hz ), 53.8 ( d, JC-P = 15.7 Hz ), 

32.4 ( d, JC-P = 13.9 Hz ), 27.2, 21.2, 19.5; 31P NMR ( 121 MHz, 25 °C, CDCl3 ): δ -21.87; 

HRMS (ESI): Calculated for C41H41NO2F6PSi [M+H+]: 752.25429, Found: 752.25747. 

 

N‐((2S,3R)‐3‐(tert‐Butyldimethylsilyloxy) ‐1‐(diphenylphosphino)butan‐2‐yl)‐3,5‐

bis(trifluoromethyl)benzamide (240) 

 

Aminophosphine 240 was synthesized according to the GP13 ( using tert‐butyldimethylsilyl 

chloride ) as a white solid in 74% yield, RF = 0.55 ( 5% EtOAc/ petroleum ether ); m.p. – 

137.5 – 138oC; 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.10 ( s, 2H ), 7.98 ( s, 1H ), 7.61 – 

7.55 ( m, 2H ), 7.42 – 7.28 ( m, 8H ), 6.64 ( d, J = 8.5 Hz, 1H ), 4.36- 4.30 ( m, 1H ), 4.21 – 

4.10 ( m, 1H ), 2.69 – 2.60 ( m, 1H ), 2.31- 2.23 ( m, 1H ), 1.16 ( d, J = 6.2 Hz, 3H ), 0.95 ( s, 

9H ), 0.16 ( s, 3H ), 0.14 ( s, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 163.6, 136.6, 

133.0 ( d, JC-P = 19.4 Hz ), 132.7 ( d, JC-P = 18.8 Hz ), 132.3 ( q, JC-F = 33.0 Hz ), 129.2, 

128.9, 128.8 ( d, JC-P = 7.1 Hz ), 128.7 ( d, JC-P = 6.9 Hz ), 127.2 ( d, JC-P = 2.7 Hz ), 125.0, 

124.4, 69.3 ( d, JC-P = 10.7 Hz ), 53.5 ( d, JC-P = 15.9 Hz ), 32.2 ( d, JC-P = 13.6 Hz ), 25.9, 

21.4, 18.0; 31P NMR ( 121 MHz, 25 °C, CDCl3): δ -22.43, HRMS (ESI): Calculated for 

C31H37NO2F6PSi [M+H+]: 628.22299, Found: 628.22483. 

 

5.3.3 General Procedure 14 (GP14) for the synthesis of differently 
substituted 3-cyano chromones 242 

A mixture of dimethylformamide (46.8 mmol, 3.76 mL) and phosphorus oxychloride (23.4 

mmol, 2.17 mL) was stirred at 0 oC for 30 min. To this a solution of the corresponding 2-

hydroxyacetophenone 241 (5.86 mmol) was added dropwise at 0 oC. The reaction mixture 

was stirred at room temperature for 4 h. After completion of the reaction as indicated by TLC, 
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the reaction mixture was diluted with dichloromethane (22 mL). The resulting reaction 

mixture was cooled to 0 oC followed by addition of hydroxylamine hydrochloride (17.58 

mmol, 1.2g) in DMF (6 mL) and the reaction mixture was stirred at room temperature for 3–4 

h. After the reaction was complete, as indicated by TLC, it was diluted with cold water (58 

mL) and extracted with DCM (2 X 29 mL). The combined organic phases were washed with 

water (2 X 29 mL), saturated NaHCO3 solution (10 mL) and finally with water (29 mL). The 

combined organic extracts were dried over anhydrous Na2SO4. The solvent was removed in 

vacuo and the residual solid was directly crystallized from methanol to give the desired cyano 

chromone 242. 

 

 

6-Chloro-7-methyl-4-oxo-4H-chromene-3-carbonitrile (243) 

 

Compound 243 was synthesized according to the GP14 as a yellowish brown solid in 51% 

yield, RF = 0.43 ( 30% EtOAc/Petroleum ether); m.p. – 175.6 – 176.1oC; 1H NMR ( 400 

MHz, 25 °C, CDCl3 ): δ 8.36 ( s, 1H ), 8.10 – 8.09 ( m, 1H ), 7.58 ( s, 1H ), 2.49 ( s, 3H ); 13C 

NMR ( 100 MHz, 25 °C, CDCl3 ): δ 171.8, 162.0, 154.1, 142.1, 136.4, 127.4, 121.8, 118.9, 

112.0, 103.3, 19.9; LCMS (ESI): Calculated for C11H6NClO2 [M+H+]: 219.00, Found: 220.13. 

6-Fluoro-4-oxo-4H-chromene-3-carbonitrile (244) 

 

Compound 244 was synthesized according to the GP14 as a yellowish orange solid in 57% 

yield, RF = 0.52 ( 30% EtOAc/Petroleum ether ); m.p. – 173.6 – 174.3oC; 1H NMR ( 400 

MHz, 25 °C, CDCl3 ): δ 8.44 ( s, 1H ), 7.88 ( dd, J = 7.8, 3.0 Hz, 1H ), 7.59 ( dd, J = 9.2, 4.1 
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Hz, 1H ), 7.54- 7.48 ( m, 1H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 171.8 (d, J = 2.4 Hz), 

162.2, 160.5 ( d, J = 250.8 Hz, CF ), 152.1 ( d, J = 2.0 Hz ), 124.8 ( d, J = 7.8 Hz ), 123.7 ( d, 

J = 25.4 Hz ), 121.0 ( d, J = 8.3 Hz ), 112.0, 111.5 (d, J = 24.4 Hz), 102.5; HRMS (ESI): 

Calculated for C10H4NFO2 [M+H+]: 190.02988, Found: 190.02978. 

 

7-Fluoro-4-oxo-4H-chromene-3-carbonitrile (245) 

 

Compound 245 was synthesized according to the GP14 as a yellowish solid in 55% yield, RF 

= 0.53 ( 30% EtOAc/Petroleum ether); m.p. – 159.9 – 160.3oC; 1H NMR ( 400 MHz, 25 °C, 

CDCl3  ): δ 8.40 ( s, 1H ), 8.31 – 8.26 ( m, 1H ), 7.29 – 7.22 ( m, 2H ); 13C NMR ( 100 MHz, 

25 °C, CDCl3 ): δ 171.43, 166.48 ( d, J = 259.1 Hz, CF ), 162.27, 156.90 ( d, J = 13.3 Hz ), 

129.17 ( d, J = 10.7 Hz ), 120.41 ( d, J = 2.7 Hz ), 116.15 ( d, J = 22.8 Hz ), 111.90, 105.71 ( 

d, J = 25.9 Hz ), 103.59; HRMS (ESI): Calculated for C10H4NFO2 [M+H+]: 190.02988, 

Found: 190.02977. 

 

1-oxo-1H-benzo[f]chromene-2-carbonitrile (246) 

 

Compound 246 was synthesized according to the GP14 as a pale white solid in 69% yield, RF 

= 0.41 ( 30% EtOAc/Petroleum ether ); m.p. – 182.7 – 183.1oC; 1H NMR ( 400 MHz, 25 °C, 

CDCl3 ): δ 9.89 ( d, J = 8.7 Hz, 1H ), 8.43 ( s, 1H ), 8.20 ( d, J = 9.1 Hz, 1H ), 7.95 ( d, J = 8.1 

Hz, 1H ), 7.84- 7.79 ( m, 1H ), 7.72 – 7.66 ( m, 1H ), 7.55 ( d, J = 9.1 Hz, 1H ); 13C NMR ( 

100 MHz, 25 °C, CDCl3 ): δ 173.8, 159.7, 157.3, 137.4, 131.3, 130.4, 129.9, 128.6, 127.9, 

127.3, 117.3, 117.0, 112.5, 105.8; HRMS (ESI): Calculated for C14H7NO2 [M+H+]: 

222.05496, Found: 222.05530. 

 

5-Fluoro-4-oxo-4H-chromene-3-carbonitrile (247) 

 

Compound 247 was synthesized according to the GP14 as a orangish solid in 51% yield, RF = 

0.54 ( 30% EtOAc/Petroleum ether ); m.p. – 164.8 – 165.3oC; 1H NMR ( 400 MHz, 25 °C, 
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CDCl3 ): δ 8.36 ( s, 1H ), 7.74 ( td, J = 8.4, 5.4 Hz, 1H ), 7.39- 7.34 ( m, 1H ), 7.21- 7.15 ( m, 

1H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 170.2 ( d, J = 1.8 Hz ), 161.5, 160.5 ( d, J = 267 

Hz, CF ), 156.5 ( d, J = 3.1 Hz ), 135.7 ( d, J = 10.7 Hz ), 114.5 ( d, J = 4.6 Hz ), 114.3 ( d, J = 

20.3 Hz ), 114.0 ( d, J = 10.6 Hz ), 111.8, 104.2; HRMS (ESI): Calculated for C10H4NFO2 

[M+H+]: 190.02988, Found: 190.02980. 

 

6-Methoxy-4-oxo-4H-chromene-3-carbonitrile (248) 

 

Compound 248 was synthesized according to the GP14 as a yellowish solid in 50% yield, RF 

= 0.54 ( 30 % EtOAc/Petroleum ether ); m.p. – 188.0 – 188.4oC; 1H NMR ( 400 MHz, 25 °C, 

CDCl3 ): δ 8.39 ( s, 1H ), 7.57 ( d, J = 3.1 Hz, 1H ), 7.48 ( d, J = 9.2 Hz, 1H ), 7.34 ( dd, J = 

9.2, 3.1 Hz, 1H ), 3.91 ( s, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 172.5, 161.7, 158.3, 

150.7, 125.2, 124.3, 120.1, 112.5, 105.5, 102.2, 56.2; HRMS (ESI): Calculated for C11H7NO3 

[M+H+]: 202.05017, Found: 202.04987. 

 

7-Methyl-4-oxo-4H-chromene-3-carbonitrile (249) 

 

Compound 249 was synthesized according to the GP14 as a pale yellow solid in 50% yield, 

RF = 0.38 ( 30 % EtOAc/Petroleum ether ); m.p. – 189.8 – 190.3oC; 1H NMR ( 400 MHz, 25 

°C, CDCl3 ): δ 8.36 ( d, J = 0.8 Hz, 1H ), 8.15 – 8.10 ( m, 1H ), 7.37 – 7.30 ( m, 2H ), 2.52 ( s, 

3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 172.3, 161.9, 156.0, 147.3, 128.7, 126.1, 121.2, 

118.3, 112.4, 103.1, 22.1; HRMS (ESI): Calculated for C11H7NO2 [M+H+]: 186.05496, 

Found: 186.05474. 

 

5.3.4  General Procedure 15 (GP15) for the synthesis of α-substituted 
allenes 253. 
 

To a stirred solution of (ethoxycarbonylmethylene)triphenylphosphorane (5g, 14.36mmol) in 

chloroform (40 mL) was added 1.3 equivalents of the ethyl bromoacetate at room temperature. 

The reaction mixture was refluxed and monitored via TLC for completion and then 
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concentrated to give the phosphonium bromide as a brown solid. To the resulting 

phosphonium salt was added dichloromethane (50 mL) and 2.2 equivalents of triethylamine 

(4.4 mL) and the mixture was stirred for 2 h. Acetyl chloride (1.1 equivalents, 1.1 mL) in 

dichloromethane (5 mL) was added dropwise over 1 h and the reaction mixture was stirred 

overnight. The resulting reaction mixture was poured into a buchner funnel that was packed 

with silica gel and was washed with dichloromethane for several times. The combined filtrate 

was concentrated and the residue was subjected to flash column chromatography with ethyl 

acetate and petroleum ether as eluents. 

 

Diethyl 2-vinylidenesuccinate (175a)  

 

Compound 175a was synthesized according to the GP15 as a colourless oil in 70% yield, RF 

= 0.47 ( 10% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.21 (t, J = 2.2 

Hz, 2H), 4.24 – 4.13 (m, 4H), 3.25 (t, J = 2.2 Hz, 2H), 1.29 – 1.23 (m, 6H); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 214.6, 170.6, 166.4, 94.8, 79.6, 61.4, 61.0, 34.9, 14.3, 14.3;  HRMS 

(ESI): Calculated for C10H14O4Na [M+Na+]: 221.07843, Found: 221.07915. 

 

1-Ethyl 4-methyl 2-vinylidenesuccinate (254) 

 

Compound 254 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

methyl bromoacetate) as a colourless oil in 69% yield, RF = 0.44 ( 10% EtOAc/Petroleum 

ether ); 1H NMR ( 400 MHz, 25 °C, CDCl 3): δ 5.23 – 5.20 ( m, 2H ), 4.25- 4.17 ( m, 2H ), 

3.70 ( d, J = 1.1 Hz, 3H ), 3.28- 3.26 ( m, 2H ), 1.27 ( td, J = 7.1, 1.1 Hz, 3H ); 13C NMR ( 

100 MHz, 25 °C, CDCl3 ): δ 214.6, 171.0, 166.4, 94.6, 79.6, 61.5, 52.2, 34.7, 14.3; GC-MS 

(m/z) : Calculated for C9H12O4  - 184.07, Found: 184.0. 

 

4-Benzyl 1-ethyl 2-vinylidenesuccinate (255) 

 

Compound 255 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

benzyl bromoacetate) as a colourless oil in 65% yield, RF = 0.44 ( 10% EtOAc/Petroleum 
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ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.39 – 7.30 ( m, 5H ), 5.20 ( t, J = 2.2 Hz, 2H 

), 5.15 ( s, 2H ), 4.19 ( q, J = 7.1 Hz, 2H ), 3.33 ( t, J = 2.2 Hz, 2H ), 1.25 ( t, J = 7.1 Hz, 3H ); 
13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 214.6, 170.4, 166.3, 135.9, 128.6, 128.3, 94.6, 79.7, 

66.8, 61.5, 34.9, 14.3; HRMS (ESI): Calculated for C15H16O4Na [M+Na+]: 283.09408, Found: 

283.09439. 

 

4-(tert-Butyl) 1-ethyl 2-vinylidenesuccinate (256) 

 

Compound 256 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

t-butyl bromoacetate) as a colourless oil in 60% yield, RF = 0.51 ( 10% EtOAc/Petroleum 

ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 5.20 ( td, J = 2.2, 0.6 Hz, 2H ), 4.24- 4.17 ( m, 

2H ), 3.17 ( td, J = 2.2, 0.7 Hz, 2H ), 1.45 ( d, J = 0.7 Hz, 9H ), 1.30 – 1.24 ( m, 3H ); 13C 

NMR ( 100 MHz, 25 °C, CDCl3 ): δ 214.6, 169.8, 166.5, 95.2, 81.2, 79.4, 61.4, 36.0, 28.1, 

14.3; HRMS (ESI): Calculated for C12H18O4Na [M+Na+]: 249.10973, Found: 249.10995. 

 

1-(tert-Butyl) 4-ethyl 2-vinylidenesuccinate (257) 

 

Compound 257 was synthesized according to the GP15 (using 14.36 mmol of (tert-

butoxycarbonylmethylene)triphenylphosphorane and 1.3 equiv of ethyl bromoacetate) as a 

colourless oil in 59% yield, RF = 0.49 ( 10% EtOAc/Petroleum ether ); 1H NMR ( 400 MHz, 

25 °C, CDCl3 ): δ 5.16 ( td, J = 2.2, 1.0 Hz, 2H ), 4.19 – 4.10 ( m, 2H ), 3.21 ( td, J = 2.2, 1.0 

Hz, 2H ), 1.46 ( d, J = 1.1 Hz, 9H ), 1.28 – 1.23 (m, 3H); 13C NMR ( 100 MHz, 25 °C, CDCl3 

): δ 214.6, 170.6, 166.4, 94.8, 79.6, 61.4, 61.0, 34.9, 14.3, 14.3; HRMS (ESI): Calculated for 

C12H18O4Na [M+Na+]: 249.10973, Found: 249.10987 

 

Ethyl 2-benzylbuta-2,3-dienoate (258) 

 

Compound 258 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

benzyl bromide) as a pale yellow oil in 54% yield, RF = 0.45 ( 5% EtOAc/Petroleum ether ); 
1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.31 – 7.17 ( m, 5H ), 5.09 ( t, J = 2.6 Hz, 2H ), 4.23 – 

4.15 ( m, 2H ), 3.57 ( t, J = 2.6 Hz, 2H ), 1.28 – 1.24 ( m, 3H ); 13C NMR ( 100 MHz, 25 °C, 
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CDCl3 ): δ 214.5, 166.9, 139.2, 129.00, 128.3, 126.4, 100.4, 79.3, 61.2, 35.0, 14.3; GC-MS 

(m/z) : Calculated for C13H14O2  - 202.09, Found: 202.1. 

 

Ethyl 2-methylbuta-2,3-dienoate (259) 

 

Compound 259 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

methyl iodide) as a yellow oil in 47% yield, RF = 0.5 ( 5% EtOAc/Petroleum ether ); 1H NMR 

( 400 MHz, 25 °C, CDCl3 ): δ 5.06 ( q, J = 3.2 Hz, 1H ), 4.20 ( q, J = 7.1 Hz, 1H ), 1.87 ( td, J 

= 3.2, 0.7 Hz, 1H ), 1.30 – 1.25 ( m, 1H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 214.1, 

167.7, 95.6, 77.9, 61.1, 14.8, 14.4; GC-MS (m/z) : Calculated for C7H10O2  - 126.06, Found: 

126.0. 

 

Ethyl 2-(4-nitrobenzyl)buta-2,3-dienoate (260) 

 

Compound 260 was synthesized according to the GP15 (14.36 mmol scale using 1.3 equiv of 

p-nitro benzyl bromide) as a colourless oil in 63% yield, RF = 0.48 ( 10% EtOAc/Petroleum 

ether ); 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.10 ( d, J = 8.2 Hz, 2H ), 7.37 ( d, J = 8.2 Hz, 

2H ), 5.13 ( s, 2H ), 4.15 ( q, J = 7.1 Hz, 2H ), 3.63 ( s, 2H ), 1.22 (dd, J = 7.1, 6.6 Hz, 3H); 
13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 214.3, 166.3, 146.9, 146.7, 129.7, 123.5, 99.1, 79.7, 

61.3, 34.8, 14.1; GC-MS (m/z) : Calculated for C13H13NO4  - 247.08, Found: 247.0. 

 

5.3.5  General Procedure 16 (GP16) for the asymmetric  [4+2] annulation 
reaction between differently substituted 3-cyano chromones (261) and α-
substituted allenes (253). 
 

To a mixture of 3-cyano chromone or analogs 261 (0.175 mmol, 1 equiv), 3Å powdered 

molecular sieves (30mg) and aminophosphine catalyst 238 (0.01 equiv, 11.75 mg) dissolved 

in anhydrous 1,4-dioxane (1.75 mL) in a well dried schlenk flask charged with argon was 

added the α-substituted allene 253 in one portion via a microsyringe. The resulting reaction 

mixture was vigorously stirred at RT for 24h. The reaction mixture was then directly purified 

by column chromatography with EtOAc and petroleum ether as eluents to yield the desired 

[4+2] adduct. The diastereoselectivity of the reaction was determined via analysis of the 
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proton NMR spectrum of the crude reaction mixture. The enantioselectivity for the major 

diastereomer was determined via chiral HPLC. 

 

Compound 213  

 

Compound 213 was synthesized according to the GP 16(using commerially available 3-cyano 

chromone and allenoate 175a) as a colourless thick oil in 93% yield (both the diastereomers 

together) with dr  = 8 : 92 and ee = 96% ( for the major diastereomer ), RF = 0.42 ( 25 % 

EtOAc/ petroleum ether, minor diastereomer), RF = 0.40 ( 25% EtOAc/Petroleum ether, major 

diastereomer),  

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.00 - 7.96 (m, 1H), 7.56 – 

7.50 (m, 1H), 7.32 – 7.27 (m, 1H), 7.17 – 7.11 (m, 1H), 6.99 - 6-95 (m, 1H), 4.88 – 4.79 (m, 

1H), 4.30 – 4.16 (m, 3H), 3.68 (dq, J = 10.8, 7.1 Hz, 1H), 3.14 (dq, J = 10.8, 7.2 Hz, 1H), 3.07 

– 2.91 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); 13C NMR ( 100 MHz, 25 °C, 

CDCl3 ): δ 183.5, 167.0, 164.6, 160.3, 137.1, 136.0, 128.1, 126.2, 123.2, 119.2, 118.2, 116.0, 

74.3, 62.0, 61.4, 49.4, 43.4, 29.6, 14.2, 13.4; HRMS (ESI): Calculated for C20H19NO6 

[M+H+]: 370.13034, Found: 370.12851; [α]20
D = -312 ( CHCl3, c = 1 ); HPLC conditions: 

CHIRAPAK IC column, ethanol/ iso-hexane = 20/100, flow rate = 1 ml min-1, major 

enantiomer: tR = 21.0 min; minor enantiomer: tR = 17.2 min. 

 

Compound 263 

 

Compound 263 was synthesized according to the GP16 (using commerially available 6- floro 

3-cyano chromone and allenoate 175a) as a colourless thick oil in 91% yield (both the 

diastereomers together) with dr  = 10 : 90 and ee = 95% ( for the major diastereomer ), the 

diastereomers are separated by reverse phase HPLC ( using the C18 column with a gradient of 

20/100 AcN / (Water/TFA = 1000/1) to 100% AcN over a period of 30mins) they are 

inseparable via column chromatography. 



Experimental Part 

 

143 

 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.63 ( dd, J = 7.9, 3.2 Hz, 1H 

), 7.30 – 7.22 ( m, 2H ), 6.98 ( dd, J = 9.1, 4.1 Hz, 1H ), 4.83 ( dd, J = 4.0, 0.8 Hz, 1H ), 4.28 

– 4.17 ( m, 3H ), 3.73 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.29 ( dq, J = 10.7, 7.1 Hz, 1H ), 3.11 – 

2.92 ( m, 2H ), 1.31- 1.25 ( m, 3H ), 0.98- 0.90 ( m, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 

): δ 183.0 ( d, J = 2.0 Hz ), 165.7 ( d, J = 243.9 Hz  ), 159.3, 156.9, 156.54 ( d, J = 1.8 Hz ),  

135.8, 126.1, 124.6 ( d, J = 24.6 Hz ), 120.0 ( dd, J = 7.2, 4.4 Hz ), 115.8, 113.0 ( d, J = 24.0 

Hz ), 74.6, 62.1, 61.4, 49.2, 43.3, 29.5, 14.2, 13.5; HRMS (ESI): Calculated for C20H18NFO6 

[M+H+]:  388.11909, Found: 388.12066; [α]20
D = -300 ( CHCl3, c = 1.1 ); HPLC conditions: 

CHIRAPAK IC column, iso-propanol / iso-hexane = 20/100, flow rate = 1 mL min-1, major 

enantiomer: tR = 25.3 min; minor enantiomer: tR = 22.2 min. 

 

Compound 264 

 

Compound 264 was synthesized according to the GP16 (using commerially available 6- 

chloro 3-cyano chromone and allenoate 175a) as a colourless thick oil in 91% yield (both the 

diastereomers together) with dr  = 9 : 91 and ee = 96% ( for the major diastereomer ), the 

diastereomers are separated by reverse phase HPLC ( using the C18 column with a gradient of 

20/100 AcN / (Water/TFA = 1000/1) to 100% AcN over a period of 30mins) they are 

inseparable via column chromatography. 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ) :  δ 7.93 ( d, J = 2.6 Hz, 1H ), 

7.47 ( dd, J = 8.8, 2.6 Hz, 1H ), 7.28 ( t, J = 3.8 Hz, 1H ), 6.94 ( d, J = 8.8 Hz, 1H ), 4.85 - 

4.80 ( m, 1H ), 4.27 – 4.18 ( m, 3H ), 3.73 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.28 ( dq, J = 10.8, 7.1 

Hz, 1H ), 3.14 – 2.92 ( m, 2H ), 1.26 ( t, J = 7.1 Hz, 3H ), 0.94 ( t, J = 7.2 Hz, 3H ); 13C NMR 

( 100 MHz, 25 °C, CDCl3 ):  δ 182.8, 167.0, 164.5, 158.7, 136.9, 135.8, 129.0, 127.3, 126.2, 

120.3, 119.9, 115.8, 74.6, 62.3, 61.6, 49.3, 43.4, 29.6, 14.3, 13.5 ppm; HRMS (ESI): 

Calculated for C20H18NClO6 [M+H+]: 404.08954, Found: 404.09108; [α]20
D = -316.2 ( CHCl3, 

c = 1.06 ); HPLC conditions: CHIRAPAK IC column, EtOH / iso-hexane = 20/100, flow rate 

= 1 mL min-1, major enantiomer: tR = 46.6 min; minor enantiomer: tR = 42.4 min. 

 

Compound 265 
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Compound 265 was synthesized according to the GP16 (using commerially available 6- 

bromo 3-cyano chromone and allenoate 175a) as a colourless thick oil in 92% yield (both the 

diastereomers together) with dr  = 9 : 91 and ee = 96% ( for the major diastereomer ), the 

diastereomers are separated by reverse phase HPLC ( using the C18 column with a gradient of 

20/100 AcN / (Water/TFA = 1000/1) to 100% AcN over a period of 30mins) they are 

inseparable via column chromatography. 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.14 – 8.01 ( m, 1H ), 7.60 ( 

dd, J = 8.8, 2.5 Hz, 1H ), 7.29- 7.25 ( m, 1H ), 6.93 – 6.83 ( m, 1H ), 4.85 – 4.75 ( m, 1H ), 

4.32 – 4.17 ( m, 3H ), 3.72 ( dq, J = 10.8, 7.2 Hz, 1H ), 3.27 ( dq, J = 10.2, 6.9 Hz, 1H ), 3.12 

– 2.90 ( m, 2H ), 1.26 ( t, J = 7.1 Hz, 3H), 0.94 ( t, J = 7.2 Hz, 3H ); 13C NMR ( 100 MHz, 25 

°C, CDCl3 ): δ 182.5, 166.9, 164.5, 159.1, 139.6, 135.7, 130.4, 126.1, 120.6, 120.1, 116.0, 

115.6, 74.5, 62.2, 61.5, 49.1, 43.39, 29.53, 14.2, 13.4; HRMS (ESI): Calculated for 

C20H18NBrO6 [M+H+]: 448.03903, Found: 448.04035; [α]20
D = -278.4 ( CHCl3, c = 1.13 );  

HPLC conditions: CHIRAPAK IC column, EtOH / iso-hexane = 20/100, flow rate = 1 mL 

min-1, major enantiomer: tR = 29.9 min; minor enantiomer: tR = 32.0 min. 

 

Compound 266 

 

Compound 266 was synthesized according to the GP16 (using commerially available 6-

methyl 3-cyano chromone and allenoate 175a) as a colourless thick oil in 81% yield (both the 

diastereomers together) with dr  = 20 : 80 and ee = 93% ( for the major diastereomer ), RF = 

0.46 ( 25% EtOAc/ Petroleum ether, minor diastereomer), RF = 0.43 ( 25% EtOAc/Petroleum 

ether, major diastereomer)  

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.78 – 7.74 ( m, 1H ), 7.35 – 

7.31 ( m, 1H ), 7.28 ( t, J = 3.8 Hz, 1H ), 6.86 ( d, J = 8.5 Hz, 1H ), 4.79 ( dd, J = 4.5, 0.9 Hz, 

1H ), 4.28 – 4.17 ( m, 3H ), 3.69 ( dq, J = 10.8, 7.2 Hz, 1H ), 3.19 ( dq, J = 10.8, 7.2 Hz, 1H ), 

3.08 – 2.92 ( m, 2H ), 2.33 ( s, 3H ), 1.27 ( t, J = 7.1 Hz, 3H ), 0.90 ( t, J = 7.2 Hz, 3H ); 13C 

NMR ( 100 MHz, 25 °C, CDCl3 ): δ 183.7, 167.1, 164.6, 158.4, 138.1, 136.0, 133.0, 127.6, 

126.2, 118.9, 117.9, 116.2, 74.3, 62.0, 61.4, 49.5, 43.4, 29.7, 20.6, 14.2, 13.4; HRMS (ESI): 

Calculated for C21H21NO6 [M+H+]: 384.14416, Found: 384.14606; [α]20
D = -292.33 ( CHCl3, 

c = 0.72 ); HPLC conditions: CHIRAPAK IC column, EtOH / iso-hexane = 20/100, flow rate 

= 1 mL min-1, major enantiomer: tR = 46.6 min; minor enantiomer: tR = 42.5 min. 
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Compound 267 

 

Compound 267 was synthesized according to the GP16 (using commerially available 6-

isopropyl 3-cyano chromone and allenoate 175a) as a colourless thick oil in 80% yield (both 

the diastereomers together) with dr  = 25 : 75 and ee = 86% ( for the major diastereomer ), RF 

= 0.45 ( 25 % EtOAc/ petroleum ether, minor diastereomer), RF = 0.43 ( 25% 

EtOAc/Petroleum ether, major diastereomer)  

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.81 ( d, J = 2.0 Hz, 1H ), 

7.40 ( dd, J = 8.6, 2.4 Hz, 1H ), 7.30 ( t, J = 3.8 Hz, 1H ), 6.90 ( d, J = 8.5 Hz, 1H ), 4.81 ( dd, 

J = 2.5, 2.0 Hz, 1H ), 4.33 – 4.11 ( m, 3H ), 3.68 ( dq, J = 10.7, 7.1 Hz, 1H ), 3.11 – 2.97 ( m, 

3H ), 2.90 ( dq, J = 13.6, 6.9 Hz, 1H ), 1.32 – 1.18 ( m, 9H ), 0.88 ( t, J = 7.2 Hz, 3H ); 13C 

NMR ( 100 MHz, 25 °C, CDCl3 ): δ 183.7, 167.1, 164.6, 158.5, 144.0, 136.2, 136.0, 126.2, 

124.9, 118.7, 118.1, 116.2, 74.2 ( d, J = 2.1 Hz ), 61.96, 61.4, 49.5, 43.3, 33.5, 29.6, 23.9, 

23.8, 14.2, 13.4; HRMS (ESI): Calculated for C23H25NO6 [M+H+]: 412.17546, Found: 

412.17727; [α]20
D = -282.1 ( CHCl3, c = 0-92 );  HPLC conditions: CHIRAPAK IC column, 

iso-propanol / iso-hexane = 30/100, flow rate = 1 mL min-1, major enantiomer: tR = 30.7 min; 

minor enantiomer: tR = 19.3 min. 

 

Compound 268 

 

Compound 268 was synthesized according to the GP16 (using 3-cyano chromone 248 and 

allenoate 175a and 20mol% of the catalyst 238 for 48 h) as a colourless thick oil in 60% yield 

(both the diastereomers together) with dr  = 20 : 80 and ee = 96% ( for the major diastereomer 

), the diastereomers are separated by reverse phase HPLC ( using the C18 column with a 

gradient of 20/100 AcN / (Water/TFA = 1000/1) to 100% AcN over a period of 30mins) they 

are inseparable via column chromatography. 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.36 ( d, J = 3.1 Hz, 1H ), 

7.30- 7.26 ( m, 1H ), 7.12 ( dd, J = 9.1, 3.2 Hz, 1H ), 6.90 ( d, J = 9.1 Hz, 1H ), 4.82 – 4.75 ( 

m, 1H ), 4.28 – 4.17 ( m, 3H ), 3.82 ( s, 3H ), 3.72 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.24 ( dq, J = 

10.8, 7.2 Hz, 1H ), 3.09 – 2.91 ( m, 2H ), 1.28 ( t, J = 7.1 Hz, 3H ), 0.92 ( t, J = 7.2 Hz, 3H ); 

13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 183.7, 167.0, 164.6, 155.3, 154.9, 136.0, 126.3, 
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126.2, 119.5, 119.3, 116.2, 108.0, 74.5, 62.0, 61.4, 56.0, 49.4, 43.4, 29.7, 14.2, 13.5; HRMS 

(ESI): Calculated for C21H21O7NNa [M+H+]: 422.12102, Found: 422.12241; [α]20
D = -357.8 ( 

CHCl3, c = 1.13 );  HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

30/100, flow rate = 1 mL min-1, major enantiomer: tR = 43.9 min; minor enantiomer: tR = 28.6 

min. 

 

Compound 269 

 

Compound 269 was synthesized according to the GP16 (using 3-cyano chromone 246, 

allenoate 175a and 15mol% of the catalyst 238 for 48 h) as a colourless thick oil in 81% yield 

(both the diastereomers together) with dr  = 16 : 84 and ee = 91% ( for the major diastereomer 

), RF = 0.40 ( 25% EtOAc/Petroleum ether, minor diastereomer), RF = 0.37 ( 25% 

EtOAc/Petroleum ether, major diastereomer) 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 9.45 ( d, J = 8.7 Hz, 1H ), 

7.97 ( d, J = 9.0 Hz, 1H ), 7.78 ( d, J = 8.0 Hz, 1H ), 7.74 – 7.69 ( m, 1H ), 7.51 ( t, J = 7.5 Hz, 

1H ), 7.33 ( t, J = 3.7 Hz, 1H ), 7.06 ( d, J = 9.0 Hz, 1H ), 5.05 – 4.96 ( m, 1H ), 4.31 – 4.11 ( 

m, 3H ), 3.50- 3.40 ( m, 1H ), 3.15 – 2.97 ( m, 2H ), 2.66 ( dq, J = 10.8, 7.2 Hz, 1H ), 1.26 ( q, 

J = 6.9 Hz, 3H ), 0.53 ( t, J = 7.2 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ): δ 184.0, 

167.4, 164.6, 162.6, 139.0, 136.0, 131.1, 130.7, 129.7, 128.9, 126.4, 126.0, 125.8, 118.1, 

116.5, 110.5, 73.8 ( d, J = 3.5 Hz) , 61.9, 61.4, 50.3, 43.7, 29.56, 14.22, 12.9; HRMS (ESI): 

Calculated for C24H21NO6 [M+H+]: 420.14416, Found: 420.14594; [α]20
D = -379.6 ( CHCl3, c 

= 1 );  HPLC conditions: CHIRAPAK IA column, iso-propanol / iso-hexane = 20/100, flow 

rate = 1 mL min-1, major enantiomer: tR = 14.1 min; minor enantiomer: tR = 16.1 min. 

 

Compound 270 

 

Compound 270 was synthesized according to the GP16 (using 3-cyano chromone 249 and 

allenoate 175a) as a colourless thick oil in 83% yield (both the diastereomers together) with 

dr  = 16 : 84 and ee = 91% ( for the major diastereomer ), RF = 0.43 ( 20% EtOAc/Petroleum 

ether, minor diastereomer), RF = 0.40 ( 25% EtOAc/Petroleum ether, major diastereomer) 
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Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.85 ( d, J = 8.1 Hz, 1H ), 

7.30 – 7.27 ( m, 1H ), 6.96- 6.92 ( m, 1H ), 6.80 – 6.73 ( m, 1H ), 4.85 – 4.76 ( m, 1H ), 4.28 – 

4.17 ( m, 3H ), 3.69 ( dq, J = 10.7, 7.1 Hz, 1H ), 3.16 ( dq, J = 10.7, 7.2 Hz, 1H ), 3.08 – 2.91 

( m, 2H ), 2.35 ( s, 3H ), 1.27 ( t, J = 7.1 Hz, 3H ), 0.91 ( t, J = 7.2 Hz, 3H ); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 183.1, 167.1, 164.6, 160.3, 149.1, 136.1, 127.9, 126.2, 124.6, 118.1, 

116.8, 116.2, 74.2, 62.0, 61.4, 49.3, 43.4, 29.6, 22.1, 14.2, 13.4; HRMS (ESI): Calculated for 

C21H21NO6 [M+H+]: 384.14416, Found: 384.14606; [α]20
D = -292.1 ( CHCl3, c = 1.72 );  

HPLC conditions: CHIRAPAK IA column, iso-propanol / iso-hexane = 20/100, flow rate = 1 

mL min-1, major enantiomer: tR = 11.1 min; minor enantiomer: tR = 27.6 min. 

  

Compound 271 

 

Compound 271 was synthesized according to the GP16 (using 3-cyano chromone 245 and 

allenoate 175a) as a colourless thick oil in 89% yield (both the diastereomers together) with 

dr  = 16 : 84 and ee = 96% ( for the major diastereomer ), RF = 0.46 ( 20% EtOAc/Petroleum 

ether, minor diastereomer), RF = 0.43 ( 25% EtOAc/Petroleum ether, major diastereomer) 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 8.00 ( dd, J = 8.9, 6.3 Hz, 1H 

), 7.29 – 7.25 ( m, 1H ), 6.88- 6.82 ( m, 1H ), 6.66 ( dd, J = 9.3, 2.4 Hz, 1H ), 4.89 – 4.84 ( m, 

1H ), 4.29 – 4.16 ( m, 3H ), 3.72 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.27 ( dq, J = 10.8, 7.2 Hz, 1H ), 

3.09 – 2.93 ( m, 2H ), 1.27 ( t, J = 7.1 Hz, 3H ), 0.94 ( t, J = 7.2 Hz, 3H ); 13C NMR ( 100 

MHz, 25 °C, CDCl3 ): δ 182.2, 167.7 ( d, J = 256 Hz, CF ), 166.9, 164.5, 162.0 ( J = 3.7 Hz ), 

135.7, 130.7 ( d, J =11.3 Hz ), 126.1, 116.1 ( d, J = 2.6 Hz ), 115.8, 111.9 ( d, J = 24.7 Hz ), 

105.2 ( d, J = 24.7 Hz ), 74.7, 62.1, 61.5, 49.1, 43.4, 29.4, 14.2, 13.5; HRMS (ESI): 

Calculated for C20H18NFO6 [M+H+]: 388.11909, Found: 388.12036; [α]20
D = -295.4 ( CHCl3, 

c = 1.1 );  HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 30/100, 

flow rate = 1 mL min-1, major enantiomer: tR = 36.3 min; minor enantiomer: tR = 19.5 min. 

 

Compound 272 

 

Compound 272 was synthesized according to the GP16 (using 3-cyano chromone 243 and 

allenoate 175a) as a colourless thick oil in 89% yield (both the diastereomers together) with 
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dr  = 16 : 84 and ee = 95% ( for the major diastereomer ), RF = 0.46 ( 25% EtOAc/Petroleum 

ether, minor diastereomer), RF = 0.43 ( 25 % EtOAc/Petroleum ether, major diastereomer) 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ):  δ 7.82 ( d, J = 0.5 Hz, 1H ), 

7.30 – 7.22 ( m, 1H ), 7.00 ( s, 1H ), 4.85 – 4.76 ( m, 1H ), 4.83 – 4.77 ( m, 1H ), 4.28 – 4.18 ( 

m, 3H ), 3.73 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.32 ( dq, J = 10.8, 7.2 Hz, 1H ), 3.09 – 2.90 ( m, 

2H ), 2.37 – 2.32 ( m, 3H ), 1.27 ( t, J = 7.1 Hz, 3H ), 0.94 ( t, J = 7.1 Hz, 3H ); 13C NMR ( 

100 MHz, 25 °C, CDCl3 ): δ 182.9, 167.0, 164.5, 158.5, 143.4, 135.7, 131.8, 129.2, 126.1, 

118.5, 117.9, 115.94, 74.7, 62.1, 61.5, 49.3, 43.4, 29.5, 19.3, 14.2, 13.4; HRMS (ESI): 

Calculated for C21H20NClO6 [M+H+]: 418.10519 , Found: 418.10688; [α]20
D = -283 ( CHCl3, c 

= 1.53 );  HPLC conditions: CHIRAPAK IA column, ethanol / iso-hexane = 30/100, flow rate 

= 1 mL min-1, major enantiomer: tR = 16.5 min; minor enantiomer: tR = 30.0 min. 

 

Compound 274 

 

Compound 274 was synthesized according to the GP16 (using commerially available 3-cyano 

chromone and allenoate 254) as a colourless thick oil in 88% yield (both the diastereomers 

together) with dr  = 10 : 90 and ee = 96% ( for the major diastereomer ), RF = 0.45 ( 25% 

EtOAc/Petroleum ether, minor diastereomer), RF = 0.42 ( 25% EtOAc/Petroleum ether, major 

diastereomer). 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ) δ 7.97 ( dd, J = 7.9, 1.7 Hz, 1H 

), 7.56- 7.50 ( m, 1H ), 7.30 ( dd, J = 4.3, 3.4 Hz, 1H ), 7.17 – 7.11 ( m, 1H ), 7.00 – 6.95 ( m, 

1H ), 4.84 ( dd, J = 4.4, 1.7 Hz, 1H ), 4.29 – 4.17 ( m, 3H ), 3.11 – 2.94 ( m, 5H ), 1.27 ( t, J = 

7.1 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, CDCl3 ) δ 183.5, 167.4, 164.5, 160.0, 137.1, 136.2, 

128.0, 126.0, 123.3, 119.0, 118.1, 115.9, 74.1, 61.4, 52.3, 49.4, 43.3, 29.6, 14.2; [α]20
D = -

320.3 ( CHCl3, c = 1.13 );  HRMS (ESI): Calculated for C19H17NO6 [M+H+]: 356.11286, 

Found: 356.11425; HPLC conditions: CHIRAPAK IA column, iso-propanol / iso-hexane = 

30/100, flow rate = 1 mL min-1, major enantiomer: tR = 17.4 min; minor enantiomer: tR = 28.2 

min. 

 

Compound 275 

 



Experimental Part 

 

149 

 

Compound 275 was synthesized according to the GP16 (using commerially available 3-cyano 

chromone and allenoate 255) as a colourless thick oil in 91% yield (both the diastereomers 

together) with dr  = 14 : 86 and ee = 97% ( for the major diastereomer ), RF = 0.47 ( 25% 

EtOAc/Petroleum ether, minor diastereomer), RF = 0.44 ( 25% EtOAc/Petroleum ether, major 

diastereomer). 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CDCl3 ): δ 7.86 ( dd, J = 7.9, 1.7 Hz, 1H 

), 7.55 – 7.49 ( m, 1H ), 7.34 – 7.27 ( m, 4H ), 7.12 – 7.03 ( m, 3H ), 6.98 – 6.91 ( m, 1H ), 

4.86 ( dd, J = 4.5, 1.8 Hz, 1H ), 4.68 ( d, J = 12.6 Hz, 1H ), 4.32 ( d, J = 0.8 Hz, 1H ), 4.19 – 

4.11 ( m, 2H ), 4.08 ( d, J = 12.6 Hz, 1H ), 3.15 – 2.95 ( m, 2H ), 1.19 ( t, J = 7.1 Hz, 3H ); 13C 

NMR ( 100 MHz, 25 °C, CDCl3 ) δ 183.5, 166.9, 164.4, 160.1, 137.1, 136.2, 134.4, 128.5, 

128.3, 128.1, 127.8, 126.0, 123.2, 119.0, 118.08, 116.01, 74.1, 67.4, 61.4, 49.4, 43.5, 29.6, 

14.1; HRMS (ESI): Calculated for C25H21NO6 [M+H+]: 432.14416, Found: 432.14632; [α]20
D 

= -249.2 ( CHCl3, c = 1.26 );  HPLC conditions: CHIRAPAK IA column, iso-propanol / iso-

hexane = 30/100, flow rate = 1 mL min-1, major enantiomer: tR = 10.7 min; minor enantiomer: 

tR = 16.9 min. 

 

Compound 276 

 

Compound 276 was synthesized according to the GP16 (using commerially available 3-cyano 

chromone and allenoate 256) as a colourless thick oil in 89% yield (both the diastereomers 

together) with dr  = 14 : 86 and ee = 96% ( for the major diastereomer ), RF = 0.42 ( 20% 

EtOAc/Petroleum ether, minor diastereomer), RF = 0.39 ( 20% EtOAc/Petroleum ether, major 

diastereomer). 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C,  CD2Cl2 ): δ 7.99 ( dd, J = 7.9, 1.7 Hz, 

1H ), 7.58- 7.51 ( m, 1H ), 7.23 – 7.15 ( m, 2H ), 7.01 – 6.97 ( m, 1H ), 4.85 – 4.81 ( m, 1H ), 

4.24 – 4.16 ( m, 3H ), 3.08- 2.99 ( m, 1H ), 2.98- 2.90 ( m, 1H ), 1.31 – 1.26 ( m, 3H ), 0.97 ( 

s, 9H ); 13C NMR ( 100 MHz, 25 °C, CD2Cl2 ): δ 184.3, 166.0, 165.0, 161.1, 137.2, 135.4, 

128.4, 127.0, 123.7, 120.5, 118.7, 116.7, 83.3, 75.2, 61.6, 50.0, 44.6, 29.9, 27.1, 14.3; HRMS 

(ESI): Calculated for C22H23O6NNa [M+Na+]: 420.14176, Found: 420.14299; [α]20
D = -277.6 ( 

CHCl3, c = 1.03 ); HPLC conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 

20/100, flow rate = 1 mL min-1, major enantiomer: tR = 25.3 min; minor enantiomer: tR = 22.3 

min. 
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Compound 277 

 

Compound 277 was synthesized according to the GP16 (using commerially available 3-cyano 

chromone and allenoate 257) as a colourless thick oil in 85% yield (both the diastereomers 

together) with dr  = 16 : 84 and ee = 94% ( for the major diastereomer ), RF = 0.38 ( 20% 

EtOAc/Petroleum ether, minor diastereomer), RF = 0.35 ( 20% EtOAc/Petroleum ether, major 

diastereomer). 

Major Diastereomer = 1H NMR ( 400 MHz, 25 °C, CD2Cl2 ): δ 7.94 ( dd, J = 7.9, 1.7 Hz, 1H 

), 7.58 – 7.52 ( m, 1H ), 7.20 – 7.12 ( m, 2H ), 6.99 – 6.95 ( m, 1H ), 4.90 – 4.80 ( m, 1H ), 

4.14 ( d, J = 0.9 Hz, 1H ), 3.60 ( dq, J = 10.8, 7.1 Hz, 1H ), 3.16 ( dq, J = 10.8, 7.2 Hz, 1H ), 

3.07 – 2.88 ( m, 2H ), 1.45 ( s, 9H ), 0.91 ( t, J = 7.2 Hz, 3H ); 13C NMR ( 100 MHz, 25 °C, 

CD2Cl2 ): δ 184.0, 167.3, 163.6, 160.4, 137.2, 135.1, 128.0, 127.4, 123.2, 119.1, 118.2, 116.3, 

81.9, 74.3, 62.0, 49.5, 43.8, 29.6, 27.8, 13.4; HRMS (ESI): Calculated for C22H23O6NNa 

[M+Na+]: 420.14176, Found: 420.14251; [α]20
D = -208.3 ( CHCl3, c = 0.92 );  HPLC 

conditions: CHIRAPAK IC column, iso-propanol / iso-hexane = 30/100, flow rate = 1 mL 

min-1, major enantiomer: tR = 15.4 min; minor enantiomer: tR = 12.0 min. 
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5.4 Absolute configuration of the [4+2] annulation product 264 (major 
diastereomer): Crystal Structure data 
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Table 1 Crystal data and structure refinement for 3128.  
Identification code  3128  

Empirical formula  C20H18ClNO6  

Formula weight  403.80  

Temperature/K  150(2)  

Crystal system  orthorhombic  

Space group  P212121  

a/Å  7.4088(2)  

b/Å  12.5634(3)  

c/Å  20.4594(7)  

α/°  90  

β/°  90  

γ/°  90  

Volume/Å3  1904.36(10)  

Z  4  

ρcalcg/cm3  1.408  

µ/mm-1  0.238  

F(000)  840.0  

Crystal size/mm3  ? × ? × ?  

Radiation  MoKα (λ = 0.71073)  

2Θ range for data collection/° 5.136 to 56  

Index ranges  -9 ≤ h ≤ 9, -16 ≤ k ≤ 16, -26 ≤ l ≤ 26 

Reflections collected  38821  

Independent reflections  4580 [Rint = 0.0411, Rsigma = 0.0266] 

Data/restraints/parameters  4580/0/255  

Goodness-of-fit on F2  1.045  

Final R indexes [I>=2σ (I)]  R1 = 0.0331, wR2 = 0.0720  

Final R indexes [all data]  R1 = 0.0388, wR2 = 0.0741  

Largest diff. peak/hole / e Å-3 0.23/-0.25  

Flack parameter -0.030(17) 
 
 
 
Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement 
Parameters (Å2×103) for 3128. Ueq is defined as 1/3 of of the trace of the orthogonalised 
UIJ tensor. 
Atom x y z U(eq) 
Cl1 6009.5(9) 11431.8(4) 6137.0(4) 41.13(17) 

O1 5953.1(19) 6857.7(11) 6724.5(6) 18.4(3) 

O2 4242(2) 7771.8(11) 4923.1(6) 22.1(3) 

O3 1459(2) 5962.3(12) 6840.4(7) 29.6(4) 

O4 1841.3(18) 7413.9(11) 6216.7(6) 18.6(3) 

O5 651(2) 4195.3(12) 5676.0(8) 30.4(4) 
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O6 2158(2) 3044.0(11) 6320.3(7) 25.4(3) 

N1 6116(3) 5253.4(15) 4615.7(9) 28.5(4) 

C1 5953(3) 10073.1(15) 6308.1(11) 25.2(5) 

C2 5462(3) 9375.6(16) 5819(1) 21.0(4) 

C3 5459(2) 8284.7(15) 5952.3(9) 16.4(4) 

C4 5933(3) 7923.4(15) 6575.4(9) 17.0(4) 

C5 6374(3) 8641.4(18) 7067.1(10) 23.3(4) 

C6 6390(3) 9719.1(18) 6931.8(11) 27.4(5) 

C7 4850(3) 7520.3(15) 5448.5(9) 15.0(4) 

C8 5035(3) 6328.5(15) 5640.0(9) 14.7(4) 

C9 6489(2) 6207.2(15) 6175.3(9) 16.4(4) 

C10 6731(3) 5066.0(15) 6402.5(10) 21.4(4) 

C11 5098(3) 4375.1(16) 6333.8(10) 19.4(4) 

C12 3534(3) 4686.2(15) 6083.3(9) 17.3(4) 

C13 3212(3) 5815.9(15) 5855.3(9) 15.2(4) 

C14 5649(3) 5737.2(15) 5052.2(9) 17.7(4) 

C15 2109(3) 6402.3(16) 6375.9(9) 17.2(4) 

C16 582(3) 8006.1(16) 6631.6(10) 20.7(4) 

C17 1537(3) 8513(2) 7200.1(12) 30.6(5) 

C18 1959(3) 3967.0(16) 5999.1(10) 19.8(4) 

C19 734(3) 2256.6(17) 6221.5(12) 34.0(5) 

C20 1034(3) 1379.0(17) 6701.8(11) 31.5(5) 

  

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3128. The Anisotropic 
displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U 12+…]. 

Atom U11 U22 U33 U23 U13 U12 
Cl1 37.9(3) 16.0(2) 69.4(4) -7.7(3) -0.7(3) -3.4(2) 
O1 20.3(7) 22.0(6) 12.7(6) -0.3(5) -0.4(5) 1.3(6) 

O2 29.6(8) 21.5(7) 15.4(7) 2.6(5) -1.6(6) 2.1(6) 

O3 36.4(9) 25.8(8) 26.5(8) 7.7(6) 14.7(7) 7.5(7) 

O4 18.3(7) 17.9(6) 19.6(7) 1.5(5) 4.3(6) 4.5(5) 

O5 25.4(8) 26.7(8) 39.0(9) 6.3(7) -6.7(7) -5.6(7) 

O6 25.6(8) 17.7(7) 33.0(8) 3.6(6) -1.4(6) -6.2(6) 

N1 35.3(11) 26.3(9) 23.9(9) -5.9(8) 5.6(8) -0.2(8) 

C1 17.2(10) 15.8(9) 42.6(13) -5.2(9) 3.0(9) -0.8(8) 

C2 16.3(9) 20.2(9) 26.4(11) -0.7(8) 2.8(8) 0.7(8) 

C3 12.8(9) 16.5(9) 19.8(9) -1.8(7) 1.6(7) -0.8(7) 

C4 11.9(8) 20.7(9) 18.3(9) -1.9(7) 2.3(7) -0.1(8) 

C5 15.3(10) 33.8(11) 20.7(10) -7.8(9) 0.1(8) 0.2(8) 

C6 18.1(11) 30.4(11) 33.9(12) -18.1(10) -0.7(9) 0.0(9) 
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C7 13.9(9) 16.5(9) 14.6(8) 1.8(7) 2.3(7) 1.0(7) 

C8 15.8(9) 15.2(9) 13.0(8) -0.3(7) 0.3(7) 0.3(7) 

C9 16.1(9) 17.8(9) 15.3(9) 0.8(7) 0.3(7) 1.0(7) 

C10 18.4(9) 20.1(10) 25.6(10) 5.2(8) -1.0(8) 2.1(8) 

C11 23.2(10) 15.3(9) 19.6(10) 3.0(8) 3.7(8) 1.4(8) 

C12 20(1) 15.5(8) 16.3(9) 0.2(7) 3.4(7) 0.0(7) 

C13 14.9(8) 15.8(9) 15.0(9) 1.2(7) -0.8(7) -0.4(7) 

C14 18.9(9) 16.1(8) 18.1(9) 2.9(8) 1.0(8) -1.7(8) 

C15 14.1(9) 19.2(9) 18.4(9) 1.4(8) -2.6(7) 1.2(7) 

C16 17.9(10) 20.3(10) 23.8(10) 0.3(8) 4.7(8) 6.2(8) 

C17 23.8(11) 33.0(11) 35.0(12) -13.1(10) 6.0(9) -1.7(9) 

C18 21.6(10) 17.5(9) 20.4(10) -2.2(8) 3.2(8) -0.3(8) 

C19 35.8(13) 23.7(11) 42.6(14) 2.2(10) -1.6(11) -14.9(10) 

C20 39.4(13) 22.4(10) 32.7(12) -0.5(9) 10.2(10) -8.6(10) 

  

Table 4 Bond Lengths for 3128. 
Atom Atom Length/Å   Atom Atom Length/Å 
Cl1 C1 1.743(2)   C3 C7 1.479(3) 

O1 C4 1.373(2)   C4 C5 1.390(3) 

O1 C9 1.445(2)   C5 C6 1.382(3) 

O2 C7 1.208(2)   C7 C8 1.554(3) 

O3 C15 1.200(2)   C8 C14 1.485(3) 

O4 C15 1.327(2)   C8 C9 1.543(3) 

O4 C16 1.464(2)   C8 C13 1.560(3) 

O5 C18 1.207(3)   C9 C10 1.518(3) 

O6 C18 1.341(2)   C10 C11 1.495(3) 

O6 C19 1.461(3)   C11 C12 1.326(3) 
N1 C14 1.134(3)   C12 C18 1.486(3) 

C1 C2 1.379(3)   C12 C13 1.513(3) 

C1 C6 1.390(3)   C13 C15 1.531(3) 

C2 C3 1.397(3)   C16 C17 1.503(3) 

C3 C4 1.398(3)   C19 C20 1.494(3) 

  

Table 5 Bond Angles for 3128. 
Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
C4 O1 C9 112.43(14)   C9 C8 C13 111.30(15) 

C15 O4 C16 116.07(15)   C7 C8 C13 113.10(15) 

C18 O6 C19 115.99(16)   O1 C9 C10 109.17(15) 

C2 C1 C6 121.63(19)   O1 C9 C8 107.72(14) 
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C2 C1 Cl1 118.89(18)   C10 C9 C8 113.14(15) 

C6 C1 Cl1 119.48(16)   C11 C10 C9 115.09(17) 

C1 C2 C3 118.83(19)   C12 C11 C10 124.90(18) 

C2 C3 C4 119.74(18)   C11 C12 C18 123.50(18) 

C2 C3 C7 120.09(18)   C11 C12 C13 122.24(18) 

C4 C3 C7 120.08(17)   C18 C12 C13 114.26(16) 

O1 C4 C5 117.98(18)   C12 C13 C15 108.72(15) 

O1 C4 C3 121.47(17)   C12 C13 C8 109.74(15) 

C5 C4 C3 120.54(18)   C15 C13 C8 117.38(15) 

C6 C5 C4 119.5(2)   N1 C14 C8 177.6(2) 

C5 C6 C1 119.69(19)   O3 C15 O4 125.13(18) 

O2 C7 C3 124.34(18)   O3 C15 C13 122.91(18) 

O2 C7 C8 120.64(17)   O4 C15 C13 111.70(15) 

C3 C7 C8 115.02(16)   O4 C16 C17 111.34(17) 

C14 C8 C9 108.15(15)   O5 C18 O6 124.21(19) 

C14 C8 C7 107.75(15)   O5 C18 C12 123.31(18) 

C9 C8 C7 109.62(15)   O6 C18 C12 112.48(17) 

C14 C8 C13 106.71(15)   O6 C19 C20 107.53(19) 

  

Table 6 Torsion Angles for 3128. 
A B C D Angle/˚   A B C D Angle/˚ 
C6 C1 C2 C3 -1.9(3)   C7 C8 C9 C10 178.77(16) 

Cl1 C1 C2 C3 178.51(15)   C13 C8 C9 C10 52.9(2) 

C1 C2 C3 C4 0.6(3)   O1 C9 C10 C11 92.7(2) 

C1 C2 C3 C7 176.88(18)   C8 C9 C10 C11 -27.3(2) 

C9 O1 C4 C5 -147.21(17)   C9 C10 C11 C12 1.5(3) 

C9 O1 C4 C3 33.7(2)   C10 C11 C12 C18 177.60(18) 
C2 C3 C4 O1 -179.71(17)   C10 C11 C12 C13 -2.2(3) 

C7 C3 C4 O1 4.0(3)   C11 C12 C13 C15 -102.1(2) 

C2 C3 C4 C5 1.3(3)   C18 C12 C13 C15 78.1(2) 

C7 C3 C4 C5 -175.05(17)   C11 C12 C13 C8 27.5(3) 

O1 C4 C5 C6 179.13(18)   C18 C12 C13 C8 -152.28(16) 

C3 C4 C5 C6 -1.8(3)   C14 C8 C13 C12 66.12(19) 

C4 C5 C6 C1 0.5(3)   C9 C8 C13 C12 -51.7(2) 

C2 C1 C6 C5 1.3(3)   C7 C8 C13 C12 -175.58(14) 

Cl1 C1 C6 C5 -179.04(16)   C14 C8 C13 C15 -169.14(16) 

C2 C3 C7 O2 -4.3(3)   C9 C8 C13 C15 73.1(2) 

C4 C3 C7 O2 172.04(19)   C7 C8 C13 C15 -50.8(2) 

C2 C3 C7 C8 175.96(17)   C16 O4 C15 O3 -3.0(3) 

C4 C3 C7 C8 -7.7(3)   C16 O4 C15 C13 171.33(15) 
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O2 C7 C8 C14 39.6(2)   C12 C13 C15 O3 -8.0(3) 

C3 C7 C8 C14 -140.58(17)   C8 C13 C15 O3 -133.3(2) 

O2 C7 C8 C9 157.10(17)   C12 C13 C15 O4 177.48(15) 

C3 C7 C8 C9 -23.1(2)   C8 C13 C15 O4 52.2(2) 

O2 C7 C8 C13 -78.1(2)   C15 O4 C16 C17 89.0(2) 

C3 C7 C8 C13 101.73(19)   C19 O6 C18 O5 4.6(3) 

C4 O1 C9 C10 172.18(16)   C19 O6 C18 C12 -175.32(17) 

C4 O1 C9 C8 -64.60(19)   C11 C12 C18 O5 -167.3(2) 

C14 C8 C9 O1 175.24(15)   C13 C12 C18 O5 12.5(3) 

C7 C8 C9 O1 58.01(18)   C11 C12 C18 O6 12.7(3) 

C13 C8 C9 O1 -67.86(18)   C13 C12 C18 O6 -167.54(16) 

C14 C8 C9 C10 -64.0(2)   C18 O6 C19 C20 -170.41(18) 

  

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters 
(Å2×103) for 3128. 
Atom x y z U(eq) 
H2 5133 9632 5399 25 

H5 6661 8393 7493 28 

H6 6700 10216 7264 33 

H9 7666 6476 6002 20 

H10A 7730 4742 6150 26 

H10B 7096 5074 6868 26 

H11 5188 3660 6481 23 

H13 2438 5771 5456 18 

H16A -361 7516 6797 25 

H16B -19 8565 6369 25 

H17A 2119 7961 7464 46 
H17B 662 8901 7469 46 

H17C 2454 9010 7038 46 

H19A 781 1975 5770 41 

H19B -465 2585 6292 41 

H20A 2248 1084 6642 47 

H20B 135 818 6632 47 

H20C 917 1659 7147 47 
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5.5 Representative NMRs 

NMR of compound 77 measured in CDCl3 as solvent, 400MHz  
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NMR of compound 81 measured in DCM as solvent, 400MHz 
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NMR of compound 103 measured in CDCl3 as solvent, 400MHz 
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NMR of compound 104 measured in CDCl3 as solvent, 400MHz 
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NMR of compound 105 measured in DMSO as solvent 400MHz (1H) and 600MHz (13C). 
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NMR of compound 131 measured in CDCl3 as solvent, 400MHz 
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NMR of compound 137 measured in DCM as solvent, 400MHz 
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NMR of compound 139 

(Minor Diastereomer), NMRs measured in CD2Cl2 as solvent, 400 MHz 
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 (Major Diastereomer), NMRs measured in CD2Cl2 as solvent, 400 MHz  
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NMR of compound 175a measured in CDCl3 as solvent, 400MHz  
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NMR of aminophosphine 238 measured in CDCl3 as solvent, 400MHz 
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NMR of compound 213 ( major diastereomer ) measured in CDCl3 as solvent, 400MHz 
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I  List of Abbreviations 

 

Ac Acyl 

Au (I) Au in oxidation state I 

Au (III) Au in oxidation stat III 

Boc tert-butoxycarbonyl 

Bn Benzyl 

CDCl3 Deuterated chloroform 

CHCl3 Chloroform 

CSA Camphor sulphonic acid 

DCM Dichloromethane 

DCE Dichloroethane 

DMF Dimethyl formamide 

DMSO Dimethyl sulfoxide 

E E isomer 

ee Enantiomeric excess 

ESI Electron spray inonisation 

Et Ethyl 

Et2O Diethylether 

Equiv Equivalent 

GC-MS Gas chromatography mass spectrometry 

gCOSY Gradient enhanced correlation spectroscopy 

gHMBC Gradient enhanced hetronuclear multiple bond correlation 

HPLC High performance liquid chromatography 
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HR-MS High resolution mass spectroscopy 

iPr isopropyl 

IL Ionic liquid 

J Coupling constant 

L Ligand 

LAH Lithium Aluminium Hydride 

M Metal 

mCPBA meta chloro perbenzoic acid 

Me Methyl 

MeCN Acetonitrile 

MeOH Methanol 

MHz Megahertz 

Ms Mesyl 

MW Microwave 

NCS N-chloro succinimde 

NMR Nuclear manetic resonance 

NOE Nucler overhauser effect 

NR No reaction 

Nu Nuclophile 

Ph Phenyl 

PS Pictet-Spengler 

RF Retention factor 

RT Room temperature 

T Temperature 
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TBDPS tert-butyldiphenylsilyl chloride 

TBSCl tert-butyl dimethylsilyl chloride 

tBu tert-butyl 

THF Tetrahydrofuran 

TIPSCl Triisopropylsilyl chloride 

TLC Thin Layer Chromatography 

Ts Tosyl group 

THF Tetrahydrofuran 

UV Ultaviolet 

W Watt 

Z Z- Isomer 
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