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Abstract 

 

Endophytes are microorganisms that colonize living, internal tissues of host plants for at least a part of 

their life cycle without causing any immediate, visible manifestation of disease. Endophytic 

microorganisms as a promising source of antibacterial natural products have attracted considerable 

attention. The main objective of this study was isolation, identification and antibacterial evaluation of 

secondary metabolites from endophytic fungi harbored in Chinese medicinal plants Xanthium sibiricum, 

Mahonia fortunei, and Lonicera japonica, which have been used in Traditional Chinese Medicine (TCM) 

for treating bacterial infection-related ailments.  

 

An endophyte, Eupenicillium sp. LG41 was isolated from the root of X. sibiricum. Twenty-two 

secondary metabolites including six decalin motif-containing compounds (five new) (16), two new 

sirenin derivatives (7 and 8), three pigments (one new) (911), eight paraconic acids and alkylitaconic 

acids (three new natural products) (12, 14, 16, 19, and 2124), and three other known compounds 

(2527), were isolated from the rice, PDB or modified PDB medium using the OSMAC approach. Four 

methylated derivatives (13, 15, 17, and 20) and an isomerization product (18) of paraconic acids were 

obtained for structure-activity relationship (SAR) analysis.  

 

The endophytic fungus Diaporthe sp. LG23 which was isolated from the leaves of M. fortunei collected 

from Shanghai, China, produced twelve metabolites including a novel tetracyclic triterpenoid with an 

aromatic B-ring system (28), seven biosynthetically related known steroids (2935), together with four 

aromatic or glycosylated compounds (one new) (3639). Further isolation and identification of 

endophytic fungi from M. fortunei (stem) collected from a different location, Guangdong, China, 

afforded an endophyte, Fusarium decemcellulare LG53. Chemical investigation led to the identification 

of eight compounds: three new cyclic pentapeptides (4042), two cyclic lipopeptides (one new) (43 and 

44), a new pyrone derivative (45), a known xanthone derivative (46), and a reported triterpenoid (47).  

 

Alternaria sp. LG19 was derived from the leaves of L. japonica. It was discovered to produce two 

aromatic metabolites (48 and 53), four well-known Alternaria mycotoxins including altenuene (49), 

isoaltenuene (50), alternariol (51) and altertoxin I (52), as well as a dicarboxylic acid (54).  
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Altogether, forty-nine compounds were isolated from the above four endophytic fungi and five semi-

synthetic derivatives were experimentally produced. Among the isolated compounds, fifteen compounds 

have new structures and three are new natural products which were reported as synthetic products in the 

literature. Their planar and relative structures were determined by the interpretation of spectroscopic 

data, such as IR, UV, HRMS
n
 and NMR, and/or the single crystal X-ray diffraction study, and/or 

13
C 

NMR calculation. Their absolute configurations were deduced by one or more of following methods, 

ECD and optical rotation data, ECD and ORD calculations, Marfey’s method, and the single crystal X-

ray diffraction study with a Cu-Kα radiation.   

 

The antibacterial efficacies of new compounds were investigated against several Gram-positive and 

Gram-negative bacteria obtained as clinical or environmental strains. For decalin-containing metabolites, 

eupenicinicol B (3) had the same efficacy as that of gentamicin against clinically relevant bacterium 

Staphylococcus aureus at the concentration of 1.0 µg/mL, while eupenicinicol D (5) was more active 

than 3 with an MIC value of 0.1 µg/mL. These data support the notion that altering the substitution at C-

11 could drastically increase the inhibitory activity. The paraconic acid (2S,3R,4S)-4-methyl-5-oxo-2-

pentyl-tetrahydro-furan-3-carboxylic acid (12) was discovered to only inhibit tested Acinetobacter spp., 

especially the multi-drug resistant strain Acinetobacter baumannii. The above data indicated a genus-

specific antibacterial compound with a preferred stereochemical configuration. The novel tetracyclic 

triterpenoid 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (28) showed pronounced 

antibacterial efficacy against all the tested organisms, especially against the clinical isolates 

Streptococcus pyogenes and Pseudomonas aeruginosa. 5 and 28 also demonstrated marked cytotoxicity 

against human acute monocytic leukemia cell line (THP-1), while 12 exhibited no cytotoxic activity.  

 

The results reported in this thesis provide several antibacterial secondary metabolites worthy of further 

investigation, especially the paraconic acid (12, termed pacbactin), underlining the potential of 

endophytic fungi as a source of diverse antibiotics. 
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Zusammenfassung 

 

Endophyten sind Mikroorganismen, die lebende innere Gewebe von Wirtspflanzen für zumindest einen 

Teil des Lebenszyklus besiedeln, ohne sichtbare Erkrankungen auszulösen. Endophytische 

Mikroorganismen haben beträchtliche Aufmerksamkeit als eine vielversprechende Quelle für 

antibakterielle Naturprodukte erregt. Das Ziel dieser Forschung war die Isolierung, Identifizierung, und 

antibakterielle Bewertung der Sekundärmetaboliten endophytischer Pilze aus den chinesischen 

Heilpflanzen Xanthium sibiricum, Mahonia fortunei und Lonicera japonica, welche in der traditionellen 

chinesischen Medizin (TCM) zur Behandlung von bakteriellen Infektionen verwendet werden. 

 

Ein Endophyt, Eupenicillium sp. LG41 wurde aus der Wurzel von X. sibiricum isoliert. 22 

Sekundärmetaboliten, darunter sechs Decalin Motiv-enthaltende Verbindungen (fünf neu) (16), zwei 

neue SireninDerivate (7 und 8), drei Pigmente (ein neues) (911), acht Paraconsäuren und 

Alkylitaconsäuren (drei neue Naturprodukte) (12, 14, 16, 19 und 2124), und drei weitere bekannte 

Verbindungen (2527), wurden aus Kultivierung mit Reis, PDB oder modifiziertem PDB Medium unter 

Verwendung des OSMAC-Ansatzes isoliert. Vier methylierte Derivate (13, 15, 17 und 20) und ein 

Isomerisierungsprodukt (18) der Paraconsäure wurden zur Struktur-Aktivitäts-Beziehungs (SAR) -

Analyse erhaltet. 

 

Der endophytische Pilz Diaporthe sp. LG23, der aus den Blättern von M. fortunei aus Shanghai, China 

isoliert wurde, produzierte zwölf Metaboliten einschließlich eines neuartigen tetracyclischen Triterpens 

mit einem aromatischen B-Ringsystem (28), sieben biosynthetisch verwandte und bekannte Steroide 

(2935) zusammen mit vier aromatischen oder glycosylierten Verbindungen (eine neu) (3639). Des 

Weiteren wurde der endophytische Pilz Fusarium decemcellulare LG53 aus M. fortunei (Stamm) von 

Guangdong, China isoliert. Chemische Untersuchungen führten zur Identifizierung von achten 

Verbindungen: drei neue cyclische Pentapeptide (4042), zwei zyklische Lipopeptide (eins neu) (43 und 

44), ein neues Pyron-Derivat (45), ein bekanntes Xanthon-Derivat (46) und ein Triterpenoid (47). 

 

Alternaria sp. LG19 wurde aus den Blättern von L. japonica isoliert. Es wurde gezeigt, dass dieser 

Endophyt zwei aromatische Metaboliten (48 und 53), vier bekannte Alternaria-Mykotoxine 



Zusammenfassung  
 

  

 

XIII  

einschließlich Altenuen (49), Isoaltenuen (50), Alternariol (51) und Altertoxin I (52), sowie eine 

Dicarbonsäure produziert (54). 

 

Insgesamt wurden 49 Verbindungen aus den genannten endophytischen Pilzen isoliert und fünf 

halbsynthetische Derivate experimentell hergestellt. Unter den isolierten Verbindungen besitzen 15 

Verbindungen neue Strukturen und drei Stoffe konnten als Naturprodukte identifiziert werden, die 

bisher als synthetische Produkte in der Literatur berichtet wurden. Ihre relativen Strukturen wurden 

durch die Auswertung spektroskopischer Daten, wie beispielsweise IR, UV, NMR und HRMS
n
, 

Einkristall-Röntgenstrukturanalyse und/oder 
13

C-NMR-Berechnung bestimmt. Ihre absoluten 

Konfigurationen wurden durch eine oder mehrere Verfahren wie ECD und Drehwinkel, ECD und ORD 

Berechnungen, Marfey-Analyse und Einkristall-Röntgenbeugungsanalyse mit Cu-Kα-Strahlung 

bestimmt.  

 

Die antibakterielle Aktivität der neuen Verbindungen wurden für verschiedene Gram-positive und 

Gram-negative Bakterien die als klinische oder Wild-Stämme gelten untersucht. Der Decalin-haltige 

Metabolit Eupenicinicol B (3) hatte die gleiche Wirkung wie Gentamicin gegen das Bakterium 

Staphylococcus aureus in einer Konzentration von 1,0 µg/mL, während Eupenicinicol D (5) mit einem 

MIC-Wert von 0,1 µg/mL aktiver war als 3. Diese Daten unterstützen die Vorstellung, dass eine 

Änderung der Substitution an C-11 die inhibitorische Aktivität drastisch erhöht. Die Paraconsäure 

(2S,3R,4S)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carbonsäure (12) konnte Acinetobacter spp., 

insbesondere den resistenten Stamm Acinetobacter baumannii, hemmen. Die Ergebnisse zeigen eine 

gattungsspezifische antibakterielle Verbindung mit einer bevorzugten stereochemischen Konfiguration. 

Das neuartige tetracyclische Triterpenoid 19-Nor-Lanostan-5(10),6,8,24-tetraen-1α,3β,12β,22S-Tetraol 

(28) zeigte eine ausgeprägte antibakterielle Wirksamkeit gegen alle getesteten Organismen, vor allem 

gegen die klinisch-relevanten Srämme Streptococcus pyogenes und Pseudomonas aeruginosa. Die 

Stoffe 5 und 28 zeigten zusätzlich deutliche Zytotoxizität gegen die menschliche akute monozytäre 

Leukämie-Zelllinie (THP-1), während 12 keine zytotoxische Aktivität besaß. 

 

Die in dieser Arbeit berichteten und strukturell aufgeklärten antibakteriellen Sekundärmetaboliten 

sollten weitergehend untersucht werden. Insbesondere die Paraconsäure (12, pacbactin) unterstreicht das 

Potential endophytischer Pilze als Quelle für Antibiotika. 
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1.1 Antibiotics-state of the art 

 

1.1.1 Antibiotic resistance 

Antibiotics (also called antibacterials) belong to a class of antimicrobial agents and are employed to 

prevent or treat a bacterial infection by either killing or inhibiting the growth of bacteria (Littmann, 

2014). Antibiotic resistance is the continued growth of a microorganism in the presence of antibiotics 

with cytotoxic concentrations that was originally effective for treatment of infections caused by it 

(Wright, 2007; WHO, 2014). Antibiotics have been present in the environment for millennia and are not 

a human invention (MacDougall and Polk, 2005). Their role is to secure the ecological niche of 

producers teeming with competitors and expose other species in the selection of resistance (MacDougall 

and Polk 2005). Antibiotic production and emerging antibiotic resistance are important to stabilize 

microbial communities, leading to microbial biodiversity (Kelsic et al., 2015). In certain environments, 

bio-active molecules from fungi, plants and other microorganisms enabled bacteria to develop highly 

sophisticated series of counter-measures to avoid toxic compounds (Wright and Poinar, 2012). The 

important genes encoding resistance to several clinically useful classes of antibiotics such as β-lactam, 

tetracycline, glycopeptide and vancomycin are common in metagenomes of ancient sediments or 

samples and predate our use of antibiotics (D’Costa et al., 2011). The antibiotic resistome, a collection 

of all the antibiotic resistance genes and their precursors in pathogenic and non-pathogenic bacteria, 

strongly revealed the extensive diversity of resistance (Wright, 2007; D’Costa et al., 2006). Therefore, 

antibiotic resistance is an ancient and natural phenomenon widespread in the environment (D’Costa et 

al., 2011; Kelsic et al., 2015; Blair et al., 2015).  

 

1.1.2 Discovery of antibiotics 

Most antibiotics introduced into human medicine were derived from antibiotic-producing cultivable 

microorganisms (Blair et al., 2015). Microorganisms are occupying most of living and nonliving niches 

on earth (Sánchez and Olson, 2005). It has to be noted that less than 1% of bacterial species and less 

than 5% of fungal species are currently known, indicating that millions of microbial species are the 

largely untapped resource and remain to be discovered (Gunatilaka, 2006). In addition, uncultured 

bacteria account for approximately 99% of all species in the external environment (Ling et al., 2015).  

Following the discovery of best-known antibiotic penicillin from the fungus Penicillium notatum in 

1928 by Alexander Fleming (Tan and Tatsumura, 2015) (Table 1.1.2.1 and Figure 1.1.2.2), the golden 
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era of discovering and using new antibiotics really began in the 1940s (Lewis, 2012). Most currently 

used antibacterials are derived from a natural product lead (Table 1.1.2.1 and Figure 1.1.2.2) (Butler, 

2005; Butler, 2008; Torok et al., 2009; Butler et al., 2013; Butler et al., 2014). This implies that most 

antibiotics can be naturally occurring metabolites (even produced synthetically for the market) (natural 

products, NP), semi-synthetic compounds from a natural product template (SS NP), or synthetic 

compounds inspired from a natural product template (NP-derived) (Butler et al., 2014). “S” is totally 

synthetic drug. By the end of year 2014 (Butler et al., 2014; Newman and Cragg, 2016), there were 

around 20 antibacterial classes in which 15 (75%) are derived from a NP lead (NP, SS NP or NP-derived) 

while 5 (25 %) are synthetically derived (Table 1.1.2.1). There are also a surprising number of 

representative antibiotics which are unmodified for approval as drugs (Table 1.1.2.1). Moreover, 12 

(80 %) of 15 NP-derived antibiotic lead compounds (by class) were isolated from soil-dwelling 

actinomycetes and 3 (20 %) from fungi.    

An excellent updated review on natural products as sources of new drugs from 1981 to 2014, including 

antibacterial drugs from 1/1/1981 to 12/31/2014, was published by Newman and Cragg (2016). During 

this time period, 113 small molecules were approved as antibacterial drugs with 11 unaltered natural 

products (corresponding to NP) and 71 natural product derivatives (corresponding to SS NP) accounting 

for just over 72% of them (Figure 1.1.2.1) (Newman and Cragg, 2016). Therefore, the influence of 

natural product structures on antibiotic discovery is quite marked.   

 

  

Figure 1.1.2.1 All new approved antibiotics 19812014 (bar graph, left; pie chart, right).  
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Table 1.1.2.1 Timeline of the introduction of main antibiotic classes and related antibiotics 1935-2014 

(Butler, 2005; Butler, 2008; Torok et al., 2009; Butler et al., 2013; Butler et al., 2014; Newman and 

Cragg, 2016).   

No. 
Year 

introduced 
Drug class 

Year 

discovered 
Representative drug name Classification Natural product lead source  

1 1935 Sulfonamide 1932 Prontosil S  

2 1942 β-Lactam 1928 Penicillin NP Penicillium notatum (fungus) 

3 1944 Aminoglycosides 1943 Streptomycin NP Streptomyces griseus (soil bacterium) 

4 1948 Tetracyclines 1940s  
Chlortetracycline 

(Aureomycin) 
NP Streptomyces aureofaciens (soil bacterium) (Nelson and Levy, 2011) 

5 1949 Chloramphenicol 1947 Chloramphenicol NP Streptomyces venezuelae (soil bacterium) 

6 1952 Macrolides 1949 Erythromycin NP Saccharopolyspora erythraea (soil bacterium) 

7 1955 Streptogramins 1953  Virginiamycin NP 
Streptomyces graminofaciens (Charney et al., 1953) (Walsh and Wright, 

2005) 

8 1958 Glycopeptides 1952  Vancomycin NP Streptomyces orientalis (soil bacterium) (Levine, 2006) 

9 1959 5-Nitroimidazole 1950s Metronidazole NP-derived 
Inspired from azomycin (2-nitroimidazole, 1953) isolated from an 

unidentified streptomyces (Dougherty and Pucci, 2012) 

10 1964 Cephalosporins 1945 Cephalosporin SS NP 
Most cephalosporins are semi-synthetic derivatives of cephalosporin C 

from fungi of genus Acremonium (known as Cephalosporium). 

11 1965 Lincosamides 1962  Lincomycin NP 
Streptomyces lincolnensis (soil bacterium) (de Haen, 1965; Argoudelis et 

al., 1969) 

12 1967 Quinolone 1960s 
Ciprofloxacin (1987 

introduced) 
S Nalidixic acid is the first member (Dougherty and Pucci, 2012) 

13 1968 Rifamycins 1959  Rifampicin SS NP 
Amycolatopsis mediterranei (soil bacterium) (Sensi, 1983; Floss and Yu, 

2005) 

14 1968 Trimethoprim 1960s Trimethoprim S  

15 1985 Carbapenem 1976-1979 Imipenem/cilastin SS NP 
Thienamycin as the lead compound from Streptomyces cattleya (soil 

bacterium) 

16 2000 Oxazolidinone 1990s Linezolid S  

17 2003 Lipopeptides 1980s Daptomycin NP Streptomyces roseosporus (soil bacterium) 

18 2007 Pleuromutilin 1950 
Retapamulin (for human) 

(Novak et al., 2010) 
SS NP 

Pleuromutilin as the lead compound from fungus Clitopilus 

passeckerianus. Tiamulin (for animals, 1979); Valnemulin (for the animal, 

1999). 

19 2011 Tiacumicin 1975  
Fidaxomicin 

(Tiacumicin B) 
NP Dactylosporangium aurantiacum (soil bacterium) (Erb and Zhu, 2013) 

20 2012 Diarylquinoline 2005 Bedaquiline S  

 

 

https://en.wikipedia.org/wiki/Streptomyces_aureofaciens
https://en.wikipedia.org/wiki/Streptomyces_lincolnensis
https://en.wikipedia.org/wiki/Streptomyces_cattleya
https://en.wikipedia.org/w/index.php?title=Clitopilus_passeckerianus&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Clitopilus_passeckerianus&action=edit&redlink=1
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Figure 1.1.2.2 Structures of representative antibiotics as indicated in Table 1.1.3.1.  
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Figure 1.1.2.2 Continued.  
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1.1.3 Antibiotics-future challenge 

As a result of the widespread use of antibiotics in human medicine, livestock or other usages, the 

evolutionary pressure for the emergence of antibiotic resistance is great (Blair et al., 2015). Many 

bacteria which were previously susceptible to common or new antibiotics were reported to have 

acquired or developed resistance rapidly, even for antibiotics designed to evade the original mechanisms 

of resistance or synthesized agents (MacDougall and Polk 2005). When new antibiotics were introduced 

into clinical use over the past 70 years, bacteria adapted to their environment through developing 

resistance to newer antibiotics in the clinic, posing a major challenge in treating serious infections 

caused by these bacteria (Wright and Poinar, 2012; Alanis, 2005). More seriously, the indiscriminate 

and inappropriate use of antibacterial drugs in outpatient clinics, hospitalized patients, and animal 

husbandry, accelerated the emergence and selection of resistant strains. Poor sanitation and control 

practices enabled further emergence and spread of antibacterial resistance (Alanis, 2005; Aarestrup, 

2012; Gilbert, 2012; Editor, 2013; Mole, 2013).  

The threat posed by the spread of antibiotic resistance is enhanced by an alarming decline in the 

discovery and development of new classes of antibiotic with new biologically active pharmacophores 

(Editor, 2013; Butler et al., 2014). There are only two new natural product-drug pharmacophores 

(deoxyactagardine B and PM060184) that were discovered in the last 10 years (Butler et al., 2014). 

Considering the high cost during a decade or longer time from discovery of active molecules in vitro 

into the clinical use, as well as the broad and ancient resistome for rapid antibiotic resistance, many 

large pharmaceutical companies or institutes have abandoned research and development on antibiotics 

(Copper and Shlaes, 2011). As a result, only few new classes of antibiotics have been approved in the 

past 40 years (Table 1.1.3.1) (Copper and Shlaes, 2011). Finally, fewer and fewer antibiotics will remain 

broadly effective due to the failure to afford new drugs as quickly as their predecessors face with diverse 

resistance mechanisms and then lose efficacy (Carroll et al., 2014; Liu et al., 2016).  

According to the first global report on antimicrobial resistance (AMR) released by World Health 

Organization (WHO, 2014), we are heading for a post-antibiotic era if the current rate of increase in 

antibiotic resistance continues without urgent action. As stated by WHO, in a post-antibiotic era far from 

being an apocalyptic fantasy, common infections and minor injuries can kill.  

 

1.1.4 Global strategy 

As antibiotic resistance is a global health crisis, it needs the global coordinated actions from 
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governments, companies, and academic institutions. First of all, a better framework for global 

surveillance of antibiotic resistance, better training about health care, and careful use of antibiotics to 

treat bacterial infections are crucial (Editor, 2013; WHO, 2014). More funding from governments (push) 

and more expertise and marketing reach from larger companies (pull) are also supportive (Copper and 

Shlaes, 2011). Furthermore, increasingly shared knowledge about mechanisms of resistance and their 

development is necessary to evaluate the potential for the emergence of resistance and facilitate the 

development of antibacterial molecules (Liu et al., 2016). Fortunately, modern available technologies 

have promised us to understand the mechanisms behind the intrinsic resistance or acquiring resistance to 

antibiotics. Blair et al. (Blair et al., 2015) summarized the mechanisms as three main groups: (1) the 

prevention of access to drug targets by minimizing the intracellular concentrations based on reduced 

permeability or increased efflux; (2) changes in the structure and protection of antibiotic targets by 

mutation or modification of targets; together with (3) the direct modification or inactivation of 

antibiotics through hydrolysis or addition of chemical groups to antibiotics. Moreover, concerning the 

antibiotic resistome and its ancient origin, Wright and Poinar (Wright and Poinar, 2012) provided 

several additional solutions: (1) identification of molecular targets and a systematic search for pre-

existing countermeasures to develop semi-synthetic derivatives (also called generations of antibiotics) 

that avoid the proved resistance mechanisms; (2) synthesis of natural product-like molecules that have 

more penetrating ability and avoid efflux; and (3) combination use of antibiotics and/or bioactive 

molecules mimicking natural product complex in microbes. Finally, based on many antibacterial 

screening programs or available methods, global efforts are required to identify new drug 

pharmacophores and make them through pre-clinical drug development (Butler et al., 2014). Natural 

products from largely untapped endophytes should be paid more attention and could be the resource of 

antibiotics with new pharmacophores (Newman and Cragg, 2016).  

 

1.2 Endophytes 

 

1.2.1 Endophytic microorganisms 

Endophytes are microorganisms that colonize living, internal tissues of host plants for at least a part of 

their life cycle without causing any immediate, visible manifestation of disease (Stone et al., 2000; 

Kusari et al., 2012). This definition is widely accepted and broad enough to include virtually all 

microbes capable of occupying the intercellular spaces of leaves, twigs, stems, and roots of healthy 
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plants (Strobel and Long, 1998). These endophytic microbes can be divided into 11 major groups 

according to their plant organ source (Stone et al., 2000; Bills et al., 2004): (1) endophytic 

Clavicipitaceae; (2) fungal endophytes of dicots; (3) endophytic fungi; (4) other systemic fungal 

endophytes; (5) fungal endophytes of lichens; (6) endophytic fungi of bryophytes and ferns; (7) 

endophytic fungi of tree bark; (8) fungal endophytes of xylem; (9) fungal endophytes of root; (10) 

fungal endophytes of galls and cysts; (11) prokaryotic endophytes of plants (includes endophytic 

bacteria and actinomycetes) (Stone et al., 2000; Bills et al., 2004; Zhang et al., 2006). As indicated by 

the above classification, diverse endophytic fungi, as the most frequently encountered endophytes, are 

ubiquitous and no study has yet reported the existence of a plant species without endophytes (Staniek et 

al., 2008; Nisa et al., 2015). Endophytes have attracted considerable attention from chemists and 

biologists owing to their ecological and biotechnological potential as depicted by the steady increase of 

publications in this field (Zhang et al., 2006; Kharwar et al., 2011; Kusari and Spiteller, 2011; Kusari et 

al., 2012).  

 

1.2.2 The origin of endophytes 

The term ‘endophyte’ (Gr. endon, within; phyton, plant) was first introduced in a book by de Bary 

(1866). First reports regarding the presence of endophytic microbes (fungi) date back to the turn of the 

nineteenth and twentieth century when the regular presence of endophytic mycelium in carpels and 

seeds of asymptomatic plants was discovered (Guerin, 1898; Freeman, 1902; White et al., 1993). 

Evidence of plant-associated microbes has been discovered in the fossilized tissues of stems and leaves 

(Taylor and Taylor, 2000; Redecker et al., 2000), revealing endophyte-plant associations may have 

begun to evolve from the time higher plants first appeared on the earth (Strobel and Daisy, 2003). 

However, except for few studies, it was not until the end of the twentieth century when endophytes 

began to obtain more attention from chemists and biologists (Tan and Zou, 2001; Zhang et al., 2006; 

Kusari and Spiteller, 2012).  

 

1.2.3 The evolution and biodiversity of endophytes 

Endophytes, residing in the plant tissues under a micro-environment, adapted to both biotic and abiotic 

selection pressures in their ecological niches over a long co-evolutionary period with hosts (Kusari et al., 

2013). Basic chemical communication strategies of endophytes with their host plants and with other 

endophytes (both fungi and bacteria) are summarized by Kusari et al. (2012) as follows: (1) plant-
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endophyte interactions, (2) plant-endophyte interspecies crosstalk, and (3) endophyte-endophyte 

interspecies crosstalk. Through a long time communication, evolutionary adaptation of endophytes in 

plants to the complex environment enabled them to have a tremendous biosynthetic capability. There are 

approximately 300,000 different plant species inhabiting our planet and it can be expected that each 

individual one hosts a complex community of one to many endophytic microorganisms (Strobel and 

Daisy, 2003). The above biosynthetic capability over the co-evolutionary process as well as microbial 

biodiversity allowed the discovery of novel natural products with interesting biological activities. An 

overview of publications suggested that 51% of bioactive compounds isolated from fungal endophytes 

were previously unknown, compared to 38% from soil fungi (Kharwar et al., 2011). Ecological aspects 

of endophytes (such as an antagonistic and mutualistic relationship), and endophytes as a potential 

source of discovery of bioactive metabolites for therapeutic agents have become the two major driving 

forces for better understanding and applicability of promising endophytic microorganisms (Kusari and 

Spiteller, 2012).   

 

1.2.4 Rationale for plant selection 

Since there are a great number of plant species, creative, imaginative and reasonable strategies should be 

applied to quickly narrow the search for endophytes which are novel at the genus, species or biotype 

level (Myers et al., 2000; Strobel and Daisy, 2003). Further exploitation of these endophytes would 

provide the best opportunities for discovering novel bioactive secondary metabolites, and even 

associated plant natural products. Several reasonable methods and rational widely accepted for plant 

selection strategy are as follows (Strobel and Daisy, 2003; Kusari and Spiteller, 2012).  

(1) Plants from distinct ecological niches, especially those with an uncommon biology, and possessing 

unusual strategies for subsistence are seriously considered (Strobel and Daisy, 2003). A representative 

case of such a plant is Hypericum perforatum with an uncommon biology (dark glands) (Onelli et al., 

2002). An endophytic fungus isolated from this plant was capable of producing plant metabolites 

hypericin and emodin (Kusari et al., 2008; Kusari et al., 2009).  

(2) Plants which have an ethnobotanical history that is associated with specific practices or applications 

of interest (such as for treating bacterial infections) are seriously chosen (Strobel and Daisy, 2003). 

These plants could be used by indigenous people and are selected either via local literature or by direct 

touch with local people. Traditional Chinese medicine (TCM) is a system of ancient medical practice 

which has developed over thousands of years and plays an important role in the health maintenance of 
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the people in Asia (Cheung, 2011). Traditional medicinal plants are hence a source for potent 

endophytes producing pharmaceutical lead compounds, as is evidently supported by the increasing 

publications concerning bioactive metabolites from endophytes harbored in the Chinese medicinal plants 

(Tan and Zou, 2001; Zhang et al., 2006; Miller et al., 2012; Li et al., 2014; Li et al., 2015).  

Xanthium sibiricum (Asteraceae) (Figure 1.2.4.1) could be mentioned here as a suitable example. This 

plant, as an important medicinal plant, has been used in TCM for decades (Kan et al., 2011). X. 

sibiricum is commonly distributed in China, and its fruit (Cang Er Zi), leaves and roots have been 

utilized in TCM for treating several ailments, for example, fever and dysentery (Zhang et al., 2006; Kan 

et al., 2011). Earlier investigations of this plant have led to the isolation of sesquiterpene lactones, which 

are recognized as the chemical markers for Xanthium species (Zhang et al., 2006; Li et al., 2014). 

Another example to describe this rationale is the medicinal plant Mahonia fortunei (Berberidaceae) 

(Figure 1.2.4.1) endemic to China. M. fortunei (Chinese name “Shi da gong lao”), a heat-tolerant, pest-

resistant plant, has been employed in TCM for treating pneumoconiosis, psoriasis and coughs, in 

addition to being a potent antimicrobial medicinal resource (Li et al., 2007; Li et al., 2015). Lonicera 

japonica (Caprifoliaceae) (Figure 1.2.4.1), as a further case, is mainly produced in eastern Asia and has 

been in use as traditional medicine in China for the treatment of fever and headache (Yu et al., 2011; 

Choi et al., 2007; Xiong et al., 2013). The above three plants are related to bacterial infection-related 

ailments.  

 

 

Figure 1.2.4.1 Three traditional Chinese medicinal plants: (a) X. sibiricum (b) M. fortunei (c) L. 

japonica.  

 

An endophytic fungus isolated from Camptotheca acuminata, a plant used as Chinese traditional 

medicine for psoriasis, liver and stomach ailments and common cold (Sung et al., 1998), had the 
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attractive capability of producing plant compounds camptothecin and analogs, which are important 

antineoplastic agents (Kusari et al., 2009; Kusari et al., 2011). The production of anticancer compound 

deoxypodophyllotoxin found in a medicinal plant, Juniperus communis, by an endophyte Aspergillus 

fumigatus in the host was also observed (Kusari et al., 2009).  

(3) Endemic and endangered plants that have an unusual longevity or have occupied a certain ancient 

land mass, are also more likely to harbor endophytes with active natural products than other plants 

(Strobel, 2004; Kusari and Spiteller, 2012). (4) Plants growing in areas of abundant biodiversity also 

have more possibility of containing endophytes with great biodiversity (Strobel, 2004; Kusari and 

Spiteller, 2012).   

 

1.2.5 Rationale for bioprospecting of endophytes for antibiotics 

Many natural products from endophytes harbored in traditional medicinal plants of treating bacterial 

infection-related ailments, have been observed to exhibit inhibitory and lethal effects on many tested 

bacteria (Tan and Zou, 2001; Strobel and Daisy, 2003; Strobel et al., 2004; Zhang et al., 2006; Li et al., 

2014; Li et al., 2015). Several advantages of endophytic microbes as sources of new natural products are 

as follows (Kusari, 2010): (1) the vast diversity of endophytic microorganisms in traditional medicinal 

plants (Verma and Gange, 2014); (2) the considerable architectural and functional group complexity of 

secondary metabolites (Zhang et al., 2006); (3) natural products with diverse biological functions due to 

co-evolution with hosts to adapt to the environmental factors or selection pressure, such as invasive 

bacterial pathogens (Zhang et al., 2006); (4) the optimized fermentation using controlled fermentation 

conditions to obtain economical, environment-friendly and reproducible yield (Kusari and Spiteller, 

2011); (5) combinatorial biosynthesis and biotransformation to generate the natural product libraries for 

drug development; (6) genome mining and metagenomics to understand the biosynthesis of natural 

products and manipulating the genes of antibiotic biosynthetic pathway to yield new products with novel 

properties and strong antibacterial efficacies (Kayser and Warzecha, 2012).  
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The aim of this thesis focuses on isolation, identification and antibacterial evaluation of secondary 

metabolites from endophytic fungi harbored in Chinese medicinal plants Xanthium sibiricum, Mahonia 

fortunei, and Lonicera japonica, which are effective to bacterial infection-related ailments. Moreover, 

this study provides some insights into the potential pharmaceutical use of new antibacterial metabolites, 

and the plausible ecological roles of the endophyte. 

 

The goals of this work are composed of the following steps: 

 

(1) Sampling of traditional medicinal plants X. sibiricum, M. fortunei, and L. japonica from different 

locations of China.  

(2) Isolation of endophytic fungi harbored in different tissues of the plants, and extraction of plant 

organs for the analysis of natural products.  

(3) Pre-screening, identification and large-scale fermentation of endophytic fungi using an OSMAC 

(One Strain MAny Compounds) approach, and comparison of natural products from endophytes and 

host plants.  

(4) Isolation, purification, and structural elucidation of secondary metabolites from fungal endophytes, 

as well as structural modification of targeted compounds.  

(5) Antibacterial evaluation of compounds, and cytotoxicity assessment of potential antibiotics. 
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3.1 Collection of plant samples 

Plant materials, which are used in TCM, were collected from different locations in the People’s 

Republic of China. Different parts of plants, such as leaves and stems, were obtained and washed briefly 

using normal tap water to remove any dirt sticking to them. These fresh tissues were packed carefully 

and then transported to TU Dortmund, Germany within 24 h of collection. Duty Exemption Certificates 

for the import of plants were issued by the Chamber of Agriculture NRW under Directive 2008/61/EC. 

The plants have been identified and authenticated by the respective collection centers or experienced 

experts. Table 3.1.1 shows the detailed information regarding the names, sample codes and sampling 

sites of four selected plants. These plants or specimens are currently maintained at the respective 

collection centers.  

 

Table 3.1.1 Names, codes, and sampling locations of four plants  

Latin name Family Sample  code Source 

Xanthium sibiricum Asteraceae X.sibiricum/Taian 
Shanggang village, Taian, Shandong Province, 

People’s Republic of China 

Mahonia fortunei Berberidaceae 

M.fortunei/Shanghai 
Shanghai Botanical Garden, Shanghai,  

People’s Republic of China 

M.fortunei/Guangdong 
South China Botanical Garden, Guangdong 

Province, People’s Republic of China  

M.fortunei/Jinan 
Quancheng Park, Jinan, Shandong Province, 

People’s Republic of China 

Lonicera japonica Caprifoliaceae 

L. japonica/Jinan 
Shandong University campus, Jinan, Shandong 

Province, People’s Republic of China 

L. japonica/Taian 
Shanggang village, Taian, Shandong Province, 

People’s Republic of China 

Isatis indigotica Brassicaceae 

I.indigotica/Jinan 
Shandong University campus, Jinan, Shandong 

Province, People’s Republic of China 

I.indigotica/Taian 
Shanggang village, Taian, Shandong Province, 

People’s Republic of China 

 

3.2 Isolation, cultivation and storage of endophytic isolates 

The isolation of the endophyte was done following a previously reported method (Kusari et al., 2008). 

The plant tissues, such as leaves, stems and roots, were thoroughly washed with normal tap water and 

cut into small tissue fragments, each measuring approximately 10 mm (length) by 5 mm (breadth). 
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Surface sterilization of these fragments was carried out by their sequential immersion in 70% ethanol for 

1 min, 1.3 M sodium hypochlorite (4% available chlorine) for 3 min, 70% ethanol for 30 s and sterile 

double-distilled water for 1 min to avoid any possible contamination. These surface-sterilized fragments 

were then placed on sterile paper to remove excess water. Finally, these tissues were evenly placed on 

water agar (WA) medium (DIFCO, cat. no. 214530) containing 100 mg/L streptomycin in Petri dishes 

(Greiner Bio-One GmbH, Germany) (Figure 3.2.1). The Petri dishes were sealed with Parafilm (Bemis 

Company Inc., Neenah, WI, U.S.A.) and kept at 28 ± 2 ºC in an incubator. The cultures in Petri dishes 

were checked every day to analyze the growth of endophytic fungi. After 1 or 2 weeks, fungal hyphal 

tips which were growing out from plant fragments, were selected and subcultured onto Sabouraud agar 

(SA; DIFCO, cat. no. 210950) or potato dextrose agar (PDA; DIFCO, cat. no. 213400) in Petri dishes. 

All fungal strains were incubated at 28 ± 2 ºC in an incubator. Further purification processes were 

performed in case a mixture of endophytes or contamination occurred (Figure 3.2.1). Finally, many pure 

cultures were obtained and coded. This was followed by cryopreservation with 20% (v/v) glycerol at 

80 ºC in the internal culture collection at INFU, TU Dortmund, Germany for long-term storage.   

 

 

Figure 3.2.1 The isolation and culture of endophytic fungi. (a) The surface-sterilized roots of plant X. 

sibiricum (collected from Shandong) on water agar, and the growth of endophytic fungal colonies from 

tissue segments. (b) The sub-culture onto SA media. (c) Purified endophyte, LG41, growing on PDA 

media. (d) The surface-sterilized stems of plant M. fortunei (collected from Guangdong) on water agar, 

and the growth of endophytic fungal colonies from tissue segments. (e) The sub-culture onto PDA media. 

(f) Purified endophyte, LG53, growing on PDA media. (g) The endophytic fungus, LG23 (from the 
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leaves of M. fortunei collected from Shanghai), growing on PDA media. (h) The endophytic fungus, 

LG19 (from the leaves of L. japonica collected from Jinan, Shandong), growing on PDA media.   

 

3.3 Pre-screening, selection of fungi and large-scale fermentation 

The pre-screening for the study of metabolite profile and rapid identification of known compounds is 

crucial for the discovery of novel natural products. The endophytic isolates were taken from ˗80 ºC 

fridge and subcultured onto PDA. After one week of incubation at 28 ± 2 ºC, agar plugs were cut into 

small pieces under aseptic conditions. For each endophytic fungus, four pieces were used to inoculate 2 

flasks (250 mL), one of which containing 100 mL potato dextrose broth (PDB) and the other one having 

40 g rice and 60 mL water. The flasks containing PDB medium were maintained at 28 ± 2 ºC for one 

month (or more based on the growth rate of cultures) in a shaker incubator (150 rpm) (INFORS HT 

Multitron 2, Einsbach, Germany), while others containing rice medium were incubated at room 

temperature for one month. These small-scale fermentation cultures afforded enough biological 

materials, which were extracted with EtOAc and then subjected to liquid chromatography-high 

resolution mass spectrometry (LC-HRMS) analysis for metabolite profiling. LC-HRMS can provide not 

only the reliable UV/vis spectra but also the accurate mass and rich adduct as well as the fragmentation 

information within the nanogram range. Sensitive LC-MS screening with ESI or APCI ionization 

revealed the structural information of the compounds present in a mixture. LC-HRMS data with the help 

of few powerful databases, such as Antibase (Laatsch, 2010) and Scifinder
®
, as well as several useful 

literature which summarized the MS data for many secondary metabolites from microorganisms 

(Nielsen et al., 2011; El-Elimat et al., 2013), enabled the dereplication, identification and analysis of 

fungal metabolites. In effect, the pre-screening ensured that several fungal strains producing unknown 

compounds or interesting metabolites were chosen.  

For the purpose of large-scale fermentation, four endophytic fungi coded LG19, LG23, LG41, and LG53 

were selected based on the analysis of pre-screening (Figure 3.2.1). It has to be noted that, after new or 

interesting compounds were obtained from the endophytes, many different media or cultural conditions, 

such as using PDA and czapek-dox broth (CDB), static culture or adding chemicals, have been applied 

to these fungi to keep checking their metabolite profiles.  

Endophytic fungus LG41 (Figure 3.2.1), was fermented for three times based on results from the pre-

screening and following modification of culture media or conditions. For the first time, it was cultured in 

two flasks (250 mL) each containing 100 mL of PDB to get seed broth for further use. This culture was 
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incubated on a shaker at 150 rpm at 30 °C for 7 days. Furthermore, the seed broth (5 mL) was added to 

20 flasks (500 mL) each containing 80 g of rice, 0.3 % peptone, and 120 mL of water (Li et al., 2014b). 

The cultures were incubated for 7 weeks at room temperature (RT). This fungus LG41 was also 

subjected to a large-scale fermentation using PDB medium. Agar plugs were cut into small pieces and 

40 pieces were selected to inoculate 40 Erlenmeyer flasks (500 mL) each containing 250 mL of PDB. 

The cultures were incubated at 28 °C on a rotary shaker (150 rpm) for 28 days. In the last fermentation, 

endophytic fungus LG41, was cultivated in 35 Erlenmeyer flasks (500 mL) each containing 250 ml of 

PDB supplemented with 15 mg/100 mL of nicotinamide (Sigma-Aldrich, USA) (Asai et al., 2013). 

These flasks were maintained at 28 °C for one month under shaking (150 rpm) on a rotary shaker. 

For each fungus LG19, LG23, or LG53 (Figure 3.2.1), agar plugs from one week-old culture grown on 

PDA at 28 ± 2 °C, were cut into many small pieces under an aseptic environment, and 40 pieces were 

used to inoculate 20 flasks (1 L) each containing 80 g of rice, 0.3 % peptone, and 120 mL of water (Li et 

al., 2015). The cultures were incubated at RT for up to two months. 

 

3.4 Identification of selected endophytic fungi 

The fungus, coded LG41, was identified as Eupenicillium sp. by Dr. Anja Schüffler on the basis of 

internal transcribed spacer (ITS) sequencing and morphology. The ITS sequence of the endophytic 

fungus was deposited at the EMBL-Bank (Accession No.: LN626295). The presence of brown 

cleistothecia and anamorphic conidiophores of Penicillium suggested that the strain LG41 belongs to the 

genus Eupenicillium (Li et al., 2014b). The ITS sequence of strain LG41 exhibited high homologies of 

99.8 % (in 547 bp) to Eupenicillium brefeldianum CBS 233.81 (GenBank Accession No.: GU981615) 

and 99.8 % (in 547 bp) to Eupenicillium meridianum CBS 443.75 (GenBank Accession No.: 

GU981616.1) (Li et al., 2014b). 

Other three selected endophytes (coded LG19, LG23, and LG53) were identified as Alternaria sp., 

Diaporthe sp., and Fusarium decemcellulare (teleomorph: Nectria rigidiuscula), respectively, by Dr. 

Parijat Kusari based on the following described method, suitably modified from case to case (Wang et 

al., 2015). The fungal strain was cultured on PDA for one week in an incubator at 28 ± 2 ºC. The total 

genomic DNA (gDNA) of the fungal strain was obtained from the in vitro cultures using peqGOLD 

fungal DNA mini kit (Peqlab Biotechnologie GmbH, Germany) under the manufacturer’s guideline. The 

DNA was then utilized for PCR amplification with primers ITS4 and ITS5 (White et al., 1990). ITS1, 

5.8S and ITS2 regions of the rDNA were included in the amplified fragment. The PCR reaction was 
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carried out in 50 µL reaction mixture with 45 µL Red Taq DNA Polymerase Master Mix (1.1x), 0.5 µL 

forward primer (100 μM), 0.5 µL reverse primer (100 μM), 3 µL template DNA as well as 1 µL sterile 

double-distilled water. The PCR cycling protocol consisted of an initial denaturation at 95 
o
C for 2 min, 

30 cycles of denaturation, annealing and elongation at 95 
o
C for 30 s, 54 

o
C for 40 s and 72 

o
C for 30 s. 

This was then performed by a final elongation step at 72 
o
C for 5 min. The template DNA as a negative 

control, was replaced by the sterile double-distilled water. The PCR amplified products spanning 

approximately 500-600 bp (base pairs) were monitored through gel electrophoresis. The PCR products 

were purified by GFXTM PCR DNA and Gel Band Purification kit (GE Healthcare Life Sciences) under 

the manufacturer’s guidance, and sequenced from both directions at GATC Biotech (Cologne, Germany). 

 

3.5 Fungal extraction 

At the end of the fermentation, the fungal culture in solid medium (for example, rice medium) was 

extracted with EtOAc by sonication (20 min) at room temperature with the solvent completely 

submerging mycelia. The extraction procedure was repeated 3 times with fresh organic solvent. The 

organic solvent was then combined and evaporated to dryness under reduced pressure to afford the crude 

extract for further isolation and purification. For the fermentation in liquid media (for example, PDB), 

the culture media was filtered to remove mycelia. The filtrate was evaporated under reduced pressure to 

afford the concentrated broth for extraction. EtOAc with the same volume as that of the broth was added, 

and the solution was extracted by sonication (20 min) at RT for 3 times. The mycelia were also extracted 

with EtOAc under sonication. The organic solvent was pooled and evaporated under reduced pressure to 

give the final crude extract.  

 

3.6 Isolation and purification of secondary metabolites 

The isolation and purification of secondary metabolites from fungi were carried out by several 

chromatographic techniques. Chromatography is based on the concept of different partition coefficients 

of compounds between the mobile and stationary phases, which results in traveling at different speeds 

for different constituents (retention time), and finally enables the separation of substances in a mixture. 

In this study, the general chromatographic methods are (1) thin layer chromatography (TLC) and (2) 

column chromatography including silica gel column, Sephadex LH-20 column, and reversed-phase 

column. While progressing with isolation, nearly all the fractions and subfractions were monitored by 

LC-HRMS for checking their composition or purities. Figures 3.6.13.6.6 showed the schematic 
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isolation of secondary metabolites from four fungal strains (coded LG19, LG23, LG41, and LG53). 

 

 

Figure 3.6.1 The schematic isolation of secondary metabolites from rice of Eupenicillium sp. LG41. 

 

 

Figure 3.6.2 The schematic isolation of secondary metabolites from PDB of Eupenicillium sp. LG41. 
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Figure 3.6.3 The schematic isolation of secondary metabolites from PDB culture with adding 

nicotinamide of Eupenicillium sp. LG41. 

 

 

Figure 3.6.4 The schematic isolation of secondary metabolites from rice culture of Diaporthe sp. LG23. 

 



Chapter 3: Materials and Methods  
 

  

 

23  

 

Figure 3.6.5 The schematic isolation of secondary metabolites from rice culture of F. decemcellulare 

LG53. 

 

 

Figure 3.6.6 The schematic isolation of secondary metabolites from rice culture of Alternaria sp. LG19.  

 

3.6.1 Chromatography 

 

3.6.1.1 Thin layer chromatography 

Thin layer chromatography (TLC) was performed on a piece of glass, plastic or aluminium foil, which is 

covered with a thin stationary phase, such as silica gel, aluminium oxide, or C18-silica gel material. 
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Glass or aluminum TLC plates precoated with a thin layer of silica gel 60 (Merck, Darmstadt, Germany) 

with a fluorescent background under ultraviolet (UV) light at 254 nm due to the presence of a 

fluorescent dye, was employed in this study. After the separation of the mixture on TLC plate was 

achieved, compounds were visualized under UV light. Dark spots on the TLC plates indicated that 

compounds absorb UV energy but do not fluoresce while fluorescence spots suggested compounds 

absorb light energy and fluoresce. In addition, TLC plates were visualized by spraying with H2SO4-

EtOH (1:9, v/v) followed by heating to reveal spots (Li et al., 2014b). Retardation factor (Rf), defined as 

the ratio of the distance passed by the center of a targeted spot to the distance simultaneously passed by 

the solvent front (IUPAC, 1997), was useful for determination of similar or same components under 

certain solvent condition.    

 

3.6.1.2 Column chromatography 

Column chromatography (CC, also called liquid chromatography) in this thesis included silica gel CC, 

sephadex LH-20 CC, and reversed-phase (RP) CC. Columns were made of glass or metal tube 

containing an absorbent known as the stationary phase. The top of the column was loaded with the 

mixture of compounds and was then eluted with either a pure solvent or a mixture of different solvents. 

However, considering the stationary materials silica gel, sephadex LH-20, and octadecyl carbon (C18)-

bonded silica, the separation mechanisms for them belong to absorption chromatography (normal phase, 

hydrophilic stationary phase, polar interaction), size-exclusion chromatography (molecule sizes) and 

absorption chromatography (reversed-phase, hydrophobic stationary phase, hydrophobic interaction), 

respectively.  

In this study, CC on silica gel 60 (70−230 mesh; AppliChem, GmbH, Darmstadt, Germany) was eluted 

with a gradient of CH2Cl2-MeOH or cyclohexane-EtOAc solvent system. The mobile phases for 

sephadex LH-20 column (25−100 μm; Amersham Biosciences) and RP column were methanol and 

methanol-water system, respectively. Two types of RP column system were used. The first one is the 

Bakerbond spe
TM

 polar plus C18 column (J.T.Baker, no. 7466-08), and the general mobile phase was a 

gradient elution with 20% MeOH, 40% MeOH, 60% MeOH, 80% MeOH and 100% MeOH. The 

separation was performed on a Baker spe-12G apparatus (J.T.Baker, no. 7018-94) in vacuum. The other 

one is Nucleodex beta-PM column (10 × 250 mm, 5 μm), Gemini column (10 × 250 mm, 10 μm), or 

Venusil XBP C18 (2) column (10 × 250 mm, 5 μm) in a semi-preparative high performance liquid 

chromatography (HPLC) system consisting of a Dionex Gina 50 autosampler, a Dionex DG-1210 
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degasser, a Gynkotek pump, and a Dionex UVD 340S detector. MeOH and H2O were used as the mobile 

phase for semi-preparative HPLC. During the separation of one mixture, the percentage of mobile phase 

for the RP column with a certain flow rate was kept constant and was modified case-to-case before use.   

 

3.6.2 LC-MS  

The HRMS experiment was carried out on an LTQ-Orbitrap spectrometer (Thermo Fisher, USA) 

equipped with a heated electrospray ionization (HESI) or an atmospheric pressure chemical ionization 

(APCI) source. The spectrometer was equipped with an Agilent 1200 HPLC system (Santa Clara, USA) 

including four pumps, photodiode array (PDA) detector, column oven (30 °C), and autosampler 

(injection volume 5 µL), as well as a Luna C18 (2) column (3 × 50 mm, 3 μm) (Phenomenex, Torrance, 

USA). The mostly used mobile phase is a linear gradient of acetonitrile (+ 0.1 % FA; B) and H2O (+ 

0.1 % FA; A) from 20 % B to 20 % B 1.0 min, 20 % B to 100 % B 18 min, 100 % to 20 %  0.5 min, and 

20 % to 20 % 5.5 min with a flow rate 0.35 mL/min. The spectrometer was operated in a positive mode 

(with nominal mass resolving power of 60,000 at m/z 400 with a scan rate of 1 Hz) to afford high-

accuracy mass measurements within 2 ppm deviation (Talontsi et al., 2013), or negative mode (ion trap).  

For the HESI source in positive mode, the following parameters were used for experiments: vaporizer 

temperature 400 °C, capillary temperature 350 °C, nitrogen sheath gas flow (arbitrary units) 60, nitrogen 

auxiliary gas flow (arbitrary units) 12, source voltage 4.6 kV, capillary voltage 25 V, tube lens 65 V. 

Moreover, the following parameters were used for APCI source in positive mode: APCI vaporizer 

temperature 450 °C, capillary temperature 190 °C, nitrogen sheath gas flow (arbitrary units) 50, nitrogen 

auxiliary gas flow (arbitrary units) 17, source voltage 6 kV, capillary voltage 35 V, tube lens 60 V. 

MS/MS experiments were achieved by using a fragmentation technique, collision-induced dissociation 

(CID, 35 eV) detected in the orbitrap mass analyzer. Ar was served as a collision gas. The LC-HRMS 

data was analyzed through the software Thermo Xcalibur 2.2 SP1.48 (Thermo Fisher Scientific Inc., 

USA). LC-HRMS can provide not only the reliable UV/vis spectra but also the accurate mass within 2 

ppm deviation, and rich adduct and fragmentation information. 
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3.7 Structural elucidation  

 

3.7.1 Determination of planar structure and relative configuration 

 

3.7.1.1 LC-MS 

For structural elucidation of a compound, LC-HRMS (see section 3.6.2) was employed to check the 

purity and provide the molecular weight and formula. MS/MS experiments were performed in CID 

mode to evaluate the structural features of compounds based on the fragmentation information.  

 

3.7.1.2 NMR 

The pure compounds were further submitted to nuclear magnetic resonance (NMR) measurements. 

Samples were analyzed with one-dimensional (1D) NMR spectroscopic techniques including 
1
H and 

13
C 

NMR, together with two-dimensional (2D) NMR spectroscopic techniques including correlation 

spectroscopy (COSY), heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond 

correlation (HMBC), and nuclear overhauser enhancement spectroscopy (NOESY). 1D NMR, COSY, 

HSQC and HMBC afforded the detailed information which was applied to assign the planar structure. In 

addition, NOESY was used to investigate the relative configuration or three-dimensional (3D) structure 

of the molecule. CDCl3 (Deutero GmbH, Kastellaun, Germany), methanol-d4 (CD3OD) (Deutero GmbH, 

Kastellaun, Germany), acetone-d6 (Sigma-Aldrich Chemie GmbH, Germany), DMSO-d6 (Sigma-

Aldrich Chemie GmbH, Germany), or pyridine-d5 (Sigma-Aldrich Chemie GmbH, Germany) were used 

as deuterated solvents and the internal locks in NMR experiments. The sample dissolved in NMR 

solvent was transferred to an NMR tube (5 × 203 mm) (Deutero GmbH, Kastellaun, Germany) and 

analyzed by the NMR spectroscopy. NMR spectra were recorded at 25 ºC on a 400 MHz Bruker Avance 

DRX-400, 500 MHz Bruker Avance DRX-500, 500 MHz Varian Unity Inova 500, or 600 MHz Varian 

Unity Inova 600 spectrometer.  

 

3.7.1.3 
13

C NMR calculation 

13
C NMR chemical shift prediction for some compounds was achieved using a multi-standard approach 

(MSTD) for gauge including atomic orbitals (GIAO) 
13

C NMR calculations (Sarotti and Pellegrinet, 

2009). A general procedure and detailed information are written in section 3.7.2.2. The calculated 
13

C 

NMR chemical shifts for a compound was in accordance with experimental values, supporting the 
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proposed planar and relative structure.  

 

3.7.1.4 X-ray diffraction study  

Single crystal X-ray diffraction experiment is used to identify the atomic and molecular 3D structure, 

and was performed on an Oxford diffraction Xcalibur Sapphire3 diffractometer at 150 K with graphite-

monochromated Mo-Kα radiation (λ = 0.71073 Å). With the aid of Olex2 (Dolomanov et al., 2009), the 

crystal structure was solved with the olex2.solve (Bourhis et al., 2015) structure solution program using 

Charge Flipping. The structure was refined with the SHELXL (Sheldrick, 2008)
 
refinement program 

with the Least Squares minimisation. Molecular graphics were accomplished with Ortep-3 (for Windows, 

Version 2014.1) (Farrugia, 2012).
 
Crystallographic data of compound 4 were deposited in the Cambridge 

Crystallographic Data Centre with a CCDC number 1440259. Copies of the data can be acquired, free of 

charge, from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK [fax: 

+44(0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk]. 

 

3.7.1.5 Other methods 

Infrared (IR) spectra (vibrational spectroscopy) were recorded using a Bruker Tensor 27 IR spectrometer. 

IR spectra exhibited many characteristic vibrational absorption bands which are associated with the 

absorption frequencies of functional groups. Ultraviolet-visible (UV-Vis) spectra were obtained from the 

photodiode array (PDA) detector in LC-HRMS. The UV-Vis absorptions in the region 200-800 nm 

indicated the electronic transitions from ground state to the excited state, which are related to the 

chromophores present in molecules.  

 

3.7.2 Determination of absolute configuration 

 

3.7.2.1 Optical rotation and CD 

Optical rotation is a phenomenon of turning the plane of a linearly polarized light which passed through 

a solution containing a chiral compound. Optical rotations were carried out on an A-Krüss Optronic 

polarimeter at a wavelength of 589 nm. The value was calculated according to the equation [α] = 

(α*100)/(c*d). The optical path length (d) is 1 dm, and the concentration (c) is in g/100 mL. MeOH or 

CHCl3 was employed as solvent at 20 °C or 22 °C. 

Circular dichroism (CD), as a powerful technique for stereochemical analysis, is the differences between 
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the absorption of left and right circularly polarized lights, which occurs due to the chirality present in 

chromophore-containing molecules. CD measurements were performed using a Jasco J-715 polarimeter 

(Tokyo, Japan). MeOH or CHCl3 was employed as solvent at RT to dissolve chiral molecule in a 0.1 cm 

quartz cuvette. The spectra ranged from 200-400 nm were obtained using a scan speed of 100 nm/min, a 

response time of 1 s, a resolution of 1 nm, and an accumulation of 5 scans.  

 

3.7.2.2 ECD and ORD calculations 

The calculation of electronic circular dichroism (ECD) and/or optical rotatory dispersion (ORD) is 

applied for absolute configuration and conformational study of compounds. The general calculation 

procedure is (1) to search all possible conformers which are further subjected to geometry optimization 

at a theory level, (2) to evaluate vibrational frequencies which afford detailed data for Boltzmann 

distribution at a theory level, (3) to perform ECD, ORD, and/or 
13

C NMR calculations (section 3.7.1.3) 

for the resultant conformers at a level of theory with or without solvent model, which gives ECD spectra 

of different conformers with a certain half bandwidth (eV), and (4) to simulate the overall ECD curve 

which are weighed by Boltzmann distribution and compare the calculated ECD spectrum with 

experimental one.  

The absolute configurations of eupenicisirenin A (7) and eupenicisirenin B (8) were calculated using 

semiempirical and ab initio methods. With SPARTAN'14 (SPARTAN '14, Wavefunction, Inc., Irvine, CA, 

2014) and using PM3 and the Monte Carlo technique, many starting geometries were calculated (Li et 

al., 2014b). A further geometry optimization with Gaussian g09 (Frisch et al., 2009) using density 

functional theory (DFT) calculations B3LYP (Becke's nonlocal three-parameter exchange and 

correlation functional with the Lee-Yang-Parr correlation functional)/6-311G(2d,p) afforded targeted 

conformers with Boltzmann factors > 0.001 (related to the states’ energy difference of E < 2.5 kcal/mol). 

The ECD spectra for all conformers were calculated at the same level of theory and then subjected to 

Boltzmann averaging according to their Boltzmann factors. ORD calculations were carried out at the 

wB97XD/6-311G(d,p) level.  

Conformational analysis, geometrical optimization, and vibrational evaluation were performed for 

absolute configurations of itaconic acids and paraconic acids. Conformers within a 50 kcal/mol Van der 

Waals (VDW) energy window from the global minimum were analyzed using Frog2 online version 

(Miteva et al., 2010). There were 50, 43, 43, and 50 conformations calculated for molecules (2R,3R,4S)-

4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (14), (2S,3R,4S)-4-methyl-5-oxo-2-pentyl-
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tetrahydro-furan-3-carboxylic acid (12), (-)-phaseolinic acid, and enantiomer of (2S,3R,4R)-4-methyl-5-

oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (16), respectively. For the sake of saving computational 

time and considering the limited effect of side chain remote from the chromophore (Berova et al., 2007), 

we neglected the conformers due to the spin of the side chain. Therefore, 2, 3, 2, and 3 conformers from 

the above conformations were left and further selected for geometrical optimization using the B3LYP at 

6-31G(d) basis set with the general atomic and molecular electronic structure system (GAMESS) 

package (Schmidt et al., 1993). The program received from GAMESS distribution is 1 MAY 2013 (R1) 

version for 64 bit Windows. The vibrational evaluation was performed at the same level to confirm 

minima of conformers. The ECD calculations were performed with a DALTON program package 

(DALTON 2015.0) (Aidas et al., 2014).
 
Time-dependent density functional theory (TDDFT) at the 

B3LYP/6-31G* level was applied to calculate the singlet electronic excitation energies and rotational 

strengths in the gas phase and in solvation PCM model for MeOH. Finally, the ECD curve for each 

conformer was simulated according to the equation 8d with a half-band of 0.4 ev (Stephens and Harada, 

2010).  

The geometry in cartesian coordinates obtained from the above method was the basis for the calculation 

of NMR chemical shift. An MSTD was used for GIAO 
13

C NMR calculations (Sarotti and Pellegrinet, 

2009). The NMR isotropic magnetic shielding values for a given molecule and a reference compound 

were calculated with a DALTON program package at an mPW1PW91/6-31G(d) level. The above 

magnetic shielding values were transformed to be chemical shift values according to the equation δ
X

calc 

= δref - δx + δref where δx and δref are the magnetic shielding values for the X carbon nucleus of the 

molecule, and the carbon atom in reference compound (sp
3
 for methanol, and sp-sp

2
 for benzene), 

respectively (Sarotti and Pellegrinet, 2009). Finally, the individual conformer values were summed 

according to their Boltzmann factors to afford a Boltzmann-weighted 
13

C NMR data. 

 

3.7.2.3 Marfey’s method 

The absolute configurations of three cyclic pentapeptides (40, 41, and 42) were defined by applying the 

Marfey’s method (Marfey, 1984; Song et al., 2014). Each compound (1 mg) was dissolved in 6 N HCl 

(1 mL) and kept in an oil bath at 110 °C for 24 h. The hydrolysates were evaporated to dryness under 

reduced pressure and further dissolved in 100 µL H2O. In addition, 1 N NaHCO3 (50 µL) was added to 

the above water solution containing hydrolysates. Further reaction with 100 µL of 1% (10 mg/1 mL 

acetone) 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide (FDAA, Sigma-Aldrich Chemie GmbH, Germany) 
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at 40 °C for 1 h to afford a yellowish mixture was carried out. After this reaction, 1N HCl (50 µL) was 

employed to terminate the reaction. MeOH was finally added to the above neutral mixture to give a total 

volume of 1 ml, which was submitted to LC-HRMS measurement with an injection volume of 1 µL. The 

LC-HRMS method was as described in previous section 3.6.2. Amino acid standards (enantiomer), such 

as L- and D-leucines, L- and D-isoleucines, and L- and D-valines, were purchased from Sigma-Aldrich 

Chemie GmbH (Steinheim, Germany) and were derivatized with FDAA in the same manner. These 

FDAA derivatized amino standards (diastereomers) were also submitted to LC-HRMS and had different 

retention time (Figure 3.7.2.3.1). The retention time for comparison of the above samples (from peptides) 

with standards revealed the absolute configuration of amino acids in the cyclic pentapeptides. In other 

words, if an LC peak (the derivatized product from the hydrolysate of peptides) had the same retention 

time with that for a derivatized amino acid standard, they have the same absolute configuration (see 

Figure 3.7.2.3.1 and Figure 4.3.1.8).   

 

 

Figure 3.7.2.3.1 The general scheme for Marfey’s method.  

 

3.7.2.4 X-ray diffraction study  

The single crystal X-ray diffraction analysis can also be used for assigning absolute configuration, for 

example, compound 40. The experiment was carried out on a Bruker Apex Duo, which was integrated 

with the Bruker SAINT software package using a narrow-frame algorithm. Data was collected at 100(2) 

K with graphite-monochromated Cu-Kα radiation (λ = 1.54178 Å). The multi-scan method (SADABS) 

was applied for data correction on absorption effects. The crystal structure was solved with intrinsic 

phasing using SHELXT2014 (Sheldrick, 2015) and refined with the SHELXL2014/7 (Sheldrick, 2008) 

refinement program by the full-matrix least-squares on F
2
 method. Molecular graphics were obtained 

using Ortep-3 (for Windows, Version 2014.1) (Farrugia, 2012).  
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3.8 MALDI-MS 

MALDI-imaging-HRMS were carried out with an atmospheric pressure scanning microprobe matrix-

assisted laser desorption/ionization source (AP-SMALDI) (TransMIT GmbH, Germany). AP-SMALDI 

was coupled with a Q Exactive high resolution mass spectrometer (Thermo Scientific Inc., Bremen, 

Germany). UV laser was generated from a pulsed 60 Hz N2 laser MNL 100 series (LTB Lasertechnik 

GmbH, Germany). An SMALDI Prep spray instrument (TransMIT GmbH, Germany) was utilized to 

obtain a uniform matrix layer on the sample. The images of samples were recorded on an optical 

microscope Leica S8APO (Leica Microsystems GmbH, Germany). 

 

3.9 Semi-synthesis for paraconic acids 

 

3.9.1 Esterification 

A chemically engineered approach for diversification of natural product extract or fraction was applied 

(López et al., 2007). A solution of mixture (paraconic acids and itaconic acids, 0.5 g) in 5 ml of dry 

acetone was added 750 mg K2CO3 and stirred for 0.5 h, followed by adding Me2SO4 (500 µL) 

(Chernaga et al., 1999). After 0.5 h and 2 h, further Me2SO4 (500 µL) was added and stirring continued 

for 4 h. Finally, 25 % NH3·H2O was used to quench the reaction. The reaction solution was further 

evaporated to dryness and extracted with EtOAc. The resulting residue (taking 250 mg) was separated 

by HPLC (MeOH/H2O containing 0.1% formic acid, 65:35, 2.5 mL/min) to afford (2S,3R,4S)-4-methyl-

5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (13, 120.0 mg, tR = 18.4 min), 

(2R,3R,4S)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (15, 20.0 mg, tR = 

14.5 min), (2S,3R,4R)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (17, 

13.0 mg, tR = 21.9 min), and (2S)-2,5-dihydro-4-methyl-5-oxo-2-pentyl-furan-3-carboxylic acid methyl 

ester (20, 1.5 mg, tR = 27.5 min).  

 

3.9.2 Thermodynamic equilibration 

A CH2Cl2 solution of 10 mg (2S,3R,4S)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid 

methyl ester (13) or (2R,3R,4S)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl 

ester (15) (0.047 mmol) was mixed with  20 µL DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) (0.13 mmol) 

and was stirred for 72 h at RT (Amador et al., 2006; Fournier et al., 2013). The reaction was monitored 

by LC-HRMS. The reaction mixture was evaporated to dryness and extracted with water and CH2Cl2. 
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The organic layer was collected and removed under vacuum. Based on the results of LC-HRMS, the 

product of 13 was directly submitted for 
1
H NMR and had an enriched 17. The organic extraction from 

the reaction of 15 was further purified by HPLC to afford (2R,3S,4S)-4-methyl-5-oxo-2-pentyl-

tetrahydro-furan-3-carboxylic acid methyl ester (18, 0.9 mg, tR = 21.5 min). The structure of compound 

18 was confirmed by 1D and 2D NMR data (Figures 4.1.18.1 and 4.1.18.2, Appendix A) as well as the 

positive optical rotation and CD spectra.   

 

3.10 Bioassay 

 

3.10.1 Compounds and microorganisms used for antimicrobial assay 

The in vitro antibacterial activities of the compounds were tested against a panel of standard pathogenic 

control strains (Leibniz-Institute DSMZ, Braunschweig, Germany). Three Gram-positive bacteria 

Staphylococcus aureus (DSM 799), Bacillus subtilis (DSM 1088) and Streptococcus pyogenes (DSM 

11728), and three Gram-negative bacteria Escherichia coli (DSM 1116), E. coli (DSM 682) and 

Pseudomonas aeruginosa (DSM 22644) were used in the antibacterial assay. In addition, five Gram-

negative Acinetobacter bacteria, Acinetobacter sp. (DSM 586), Acinetobacter baylyi (DSM 24193), 

Acinetobacter calcoaceticus (DSM 30006), Acinetobacter baumannii (DSM 30007) and Acinetobacter 

pittii (DSM 25618) were also included. The activation, maintenance, and preparation of working culture 

suspensions were carried out in accordance with established procedures (Kusari et al., 2009). The 

compounds tested were dissolved in HPLC-grade MeOH at a concentration range of 0.1 μg/mL to 10 

μg/mL (0.1 μg/mL, 1 μg/mL, 2 μg/mL, 5 μg/mL, and 10 μg/mL). Additionally, positive controls such as 

streptomycin (Sigma-Aldrich Chemie GmbH, Steinheim, Germany), gentamicin (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) and/or colistin (Dr. Ehrenstorfer GmbH, Augsburg, Germany), 

were used simultaneously as reference standards. The standards were also prepared at the same 

concentration range as the tested compounds in sterile double-distilled H2O. Furthermore, the fungi 

Colletotrichum circinans (DSM 62125) and Aspergillus aculeatus (DSM 2344) were used to test the 

antifungal activities for some compounds.  

 

3.10.2 Antibacterial assay 

According to the Clinical and Laboratory Standards Institute (CLSI) (Wikler, 2006), the disk diffusion 

method was applied for the determination of the antibacterial activities of the samples (Li et al., 2014b). 
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Agar plates were prepared by 90 mm sterile Petri dishes (TPP, Trasadingen, Switzerland) containing 22 

mL of agar, affording a final depth of 4 mm (nutrient agar (NA) for bacteria and PDA for fungi). Using 

the standard spread-plate technique, 200 µL inoculum suspension was spread on the solid media plates. 

The mycelia of fungi were first thoroughly macerated and ground in a sterile mortar-pestle to give a 

homogeneous inoculum for spreading on the media plates. These plates were stood at 4 ºC for 2 h. 

Sterile paper discs (Schleicher & Schuell GmbH, Dassel, Germany; 6.0 mm in diameter) were 

impregnated with 40 µL of the respective working solution, air-dried under the laminar airflow hood in 

the clean bench and placed on the inoculated plates. The plates were then incubated at 37 ºC for 24 h for 

bacteria or at 28 ºC for 48 h for fungi (Li et al., 2014b). Three negative control sets were prepared. The 

first control was the microorganism control and consisted of a seeded Petri dish without a sample. In 

addition, samples were applied to unseeded Petri dishes for checking sterility, which was used as the 

second control. In the third control, the solvent effect was monitored by a disk impregnated with 40 µL 

of HPLC-grade MeOH or with 40 µL of sterile double-distilled H2O (Li et al., 2014b). The standard 

antibiotics (see section 3.10.1) were employed to indicate the comparative antimicrobial efficacies of 

compounds against the tested organisms. The minimum inhibitory concentrations (MIC) of each tested 

compound and the reference antibiotics against each bacterium were calculated following the guidance 

of CLSI (Wikler, 2006). Each test was performed in triplicate. 

 

3.10.3 Cytotoxicity assay 

Cytotoxic assays of compounds against human acute monocytic leukemia cells (THP-1) in vitro were 

evaluated using a resazurin-based assay to measure the THP-1 mitochondrial metabolic inhibition as 

well as an ATPlite assay to measure the THP-1 cytoplasmic ATP depletion (Kusari et al., 2009). 

Untreated cells were used as a negative control. The semi-logarithmic representation of the fractional 

survival (FS in %) of THP-1 cells as a function of concentration was provided.
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RESULTS AND DISCUSSION 

  

Note: All the figures for structural elucidation of compounds 1–54 

can be found in Appendix A. 
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4.1 Secondary metabolites isolated from Eupenicillium sp. LG41 

 

The endophytic fungus, Eupenicillium sp. LG41, isolated from the root of Chinese medicinal plant X. 

sibiricum (from Taian, P. R. China), was investigated using the OSMAC approach. The metabolic 

profiles of the endophytic strain in different conditions were monitored (see section 3.3). Detailed 

fermentation or isolation process was described in Chapter 3. The isolation of a known decalin-

containing compound (Li et al., 2014a), eujavanicol A (1), together with five new decalin-containing 

compounds, eupenicinicols A–E (2–6) from rice or PDB medium were achieved.  

 

 

 

In addition to the above decalin motif-containing compounds, two new sirenin derivatives 

eupenicisirenin A and B (7 and 8) were obtained from the rice culture of Eupenicillium sp. LG41. 

Moreover, three polyketide pigments (9–11) including a new one (10), were isolated from the rice or 

PDB medium.  

 

 



Chapter 4: Results and Discussion  
 

  

 

36  

There are four paraconic acids (12, 14, 16, and 19), which were isolated and purified from the PDB 

medium amended with nicotinamide (Asai et al., 2013). Compounds 12, 14, and 16 are new naturally 

occurring secondary metabolites and have already been synthesized or reported as an intermediate 

(Amador et al., 2006; Jacobi and Herradura, 1996; Drioli et al., 1998). Four biologically related known 

alkylitaconic acids (21–24) were also isolated, in which 21 and 24 came from the rice culture of the 

endophytic strain. Furthermore, four semi-synthetic methyl esters (13, 15, 17, and 20) and an isomerized 

product (18) were successfully obtained.  

 

 

 

Finally, three other known compounds (25-27) were separated at the same time.  
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4.1.1 Eujavanicol A (1, known compound) 

 

 

 

Compound 1 (code: LG41-P4312), a white powder, has a molecular formula C19H32O4 as derived from 

its ESI-HRMS data ([M+H]
+
 at m/z 325.2375, [M+H-H2O]

+
 at m/z 307.2271, [M+H-2×H2O]

+
 at m/z 

289.2166, [M+H-3×H2O]
+
 at m/z 271.2059) (Figure 4.1.1.1). MS

2
 spectrum (Figure 4.1.1.2) showed the 

successive loss of up to four water molecules ([M+H-H2O]
+
 at m/z 307.2269, [M+H-2H2O]

+
 at m/z 

289.2160, [M+H-3H2O]
+
 at m/z 271.2053, and [M+H-4H2O]

+
 at m/z 253.1954). Furthermore, a 

characteristic fragment ion at m/z 217.1953 [M+H-C3H8O4]
+
 was found (Figure 4.1.1.2). 

1
H and 

13
C 

NMR data (Figure 4.1.1.3) determined it as the known decalin-containing compound eujavanicol A 

which was isolated from the same genus Eupenicillium (Table 4.1.1.1) (Nakadate et al., 2007). 

Moreover, compound 1 has a close optical rotation [α]
22

D +49.5 (c 0.22, MeOH) compared to [α]
22

D 

+49.9 (c 1.33, MeOH) for eujavanicol A, further supporting its known structure (Nakadate et al., 2007). 

In the course of searching for the derivatives of compound 1 with similar MS
n
 pattern, we checked the 

pre-screening in different cultural conditions using OSMAC approach and discovered some new decalin 

motif-containing derivatives depicted as follows.  

 

Table 4.1.1.1 NMR spectral data for compound 1.  

 

Position 

Compound 1  Eujavanicol A (Nakadate et al., 2007) 

C, mult.a H mult.b (J in Hz)  C, mult.d H mult.e (J in Hz) 

1 52.7, Cq   52.6, Cq  

2 52.4, CH 1.91 m  52.4, CH 1.94 m 

3 123.9, CH 5.66 ddd (3.0, 4.5, 10.5)  124.0, CH 5.71 ddd (2.7, 4.6, 10.7) 

4 126.3, CH 5.97 dt (2.5, 10.5)  126.1, CH 6.00 dt (2.0, 10.7) 

4a 39.1, CH 2.10 tq (2.0, 10.5)  39.1, CH 2.14 tq (2.4, 10.4) 

5 75.4, CH 3.38 dd (3.0, 10.5)  75.3, CH 3.44 br d (10.7) 

6 69.7, CH 3.99 m  69.7, CH 4.04 q (3.1) 

7α 41.4, CH2 1.80 dt (2.5, 14.5)  41.3, CH2 1.85 dt (2.9, 14.6) 
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7β  1.48 mc   1.52 ddd (2.6, 12.1, 14.6) 

8 30.6, CH 1.68 m  30.6, CH 1.73 m 

8a 43.2, CH 1.88 t (10.0)  43.1, CH 1.93 t (10.4) 

9 215.8, Cq    215.7, Cq   

10a 41.2, CH2 2.83 ddd (4.0, 7.5, 19.0)  41.2, CH2 2.86 ddd (3.9, 7.3, 18.9) 

10b  2.64 ddd (3.5, 6.0, 19.0)   2.66 ddd (3.7, 6.1, 18.9) 

11a 58.1, CH2 3.80 m  58.1, CH2 3.84 m 

11b  3.86 m   3.90 m 

1 37.3, CH 1.08 m  37.2, CH 1.13 m 

2a 24.5, CH2  1.44 mc  24.5, CH2  1.47 m 

2b  0.72 mc   0.76 m 

3 12.7, CH3 0.72 mc  12.6, CH3 0.76 m 

1-Me 19.5, CH3 1.21 s  19.4, CH3 1.25 s 

1-Me 19.4, CH3 0.89 d (7.0)  19.3, CH3 0.93 d (6.7) 

8-Me 22.5, CH3 0.55 d (6.5)  22.4, CH3 0.60 d (7.0) 

a Recorded in CDCl3 at 100 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. d Recorded in CDCl3 at 125 MHz. e Recorded in 

CDCl3 at 500 MHz. 

 

Eujavanicol A (1): white powder; []
22

D +49.5 (c 0.22, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 218, 288 nm; IR (film) vmax 3444, 1632, 1379, 1109, 1036 cm
1

; CD (MeOH) 194 

(Δε + 1.35), 291 (Δε – 0.04) nm; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 100 MHz), see 

Table 4.1.1.1. Positive ESI-HRMS m/z: 325.2375 [M+H]
+
 (calcd for C19H33O4, 325.2373).  

 

4.1.2 Eupenicinicol A (2, new compound) 

 

 

 

Eupenicinicol A (2, code: LG41-4133) (Li et al., 2014b), was obtained from the EtOAc extract of the 

rice medium of the endophytic fungus Eupenicillium sp. It was isolated as an optically active white 

powder with a molecular formula C19H30O4 as determined by ESI-HRMS ([M+H]
+
 at m/z 323.2216, 

calcd. 323.2217) and its fragment information ([M+H-H2O]
+
 at m/z 305.2111, [M+H-2H2O]

+
 at m/z 
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287.2006, and [M+H-3H2O]
+
 at m/z 269.1898; Figure 4.1.2.1). Moreover, MS

2
 data shown in Figure 

4.1.2.2 reveals the successive loss of up to four water molecules and/or a CO group ([M+H-2H2O]
+
 at 

m/z 287.2005, [M+H-3H2O]
+
 at m/z 269.1898, [M+H-4H2O]

+
 at m/z 251.1790; or [M+H-2H2O]

+
 at 

m/z 287.2005, [M+H-2H2O-CO]
+
 at m/z 259.2055, [M+H-3H2O-CO]

+
 at m/z 241.1949), indicating 

that there should be at least three hydroxyl functional groups and/or a carbonyl moiety in 2 (Li et al., 

2014b). Moreover, like compound 1, a characteristic fragment ion at m/z 217.1951 [M+H-C3H6O4]
+
 in 

MS
2
 spectrum was found. The 

1
H NMR data (Figure 4.1.2.3 and Table 4.1.2.1) suggested the presence 

of four methyls, two oxygenated methines, and four protons related to two double bonds. The 1D NMR 

data (Figure 4.1.2.3) with the help of the HSQC spectrum (Figure 4.1.2.4) showed four methyls, two 

methylenes, seven methines (two oxygenated), two cis-disubstituted double bonds (one oxygenated 

carbon), and two quaternary carbons. Interpretation of 
1
H–

1
H COSY NMR spectrum (Figures 4.1.2.4 

and 4.1.2.5) revealed the proton spin systems from C-2 to C-7, C-2 to C-3, 8-Me to C-4a, and C-10 to 

C-11 (Li et al., 2014b). Key HMBC correlations of Me-8/C-7, C-8 and C-8a, and Me-1/C-1, C-2 and C-

8a implied the connection of C-7 to C-8, and C-1 to C-2 and C-8a, and assigned Me-1 and Me-8 at C-1 

and C-8 respectively (Li et al., 2014b). Therefore, a decalin ring system was successfully determined (Li 

et al., 2014a). The remaining side chain was determined by the HMBC correlations of Me-1 and two 

protons of the 
10

-double bond to C-9 (Figure 4.1.2.5). Three hydroxy groups were located at C-5 (H 

3.47, C 75.4), C-6 (H 4.06, C 69.7), and C-11 (H 7.97, C 175.4), respectively based on their chemical 

shifts, which was also in accordance with its MS requirement. Accordingly, the planar structure of 

compound 2 was unambiguously determined as depicted. The relative configuration of 2 was verified by 

the NOESY correlations (Figure 4.1.2.6) of Me-1/H-2, H-4a, H-8, and H-10, H-8a/H-2b and H-5, H-

5/H-6 and H-7β. The above conclusions support that compound 2 has the same relative configuration 

with its analog, eujavanicol A (1) (Nakadate et al., 2007). Compound 2 exhibited an optical rotation of 

[]
22

D +47.8 (c 0.23, MeOH) compared to []
22

D +49.9 (c 1.33, MeOH) for 1 (Nakadate et al., 2007) 

and []D +30.3 (c 0.11, MeOH) for tandyukisin (Yamada et al., 2014) (Li et al., 2014b). Considering the 

same biosynthetic origin for 1 and 2, the absolute configuration of 2 should be same as that of 1 and 

tandyukisin.  
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Table 4.1.2.1 NMR spectral data for compound 2. 

Position C, mult.a H mult.b (J in Hz) COSYb HMBCb 

1 49.4, Cq    

2 54.0, CH 1.84 mc 1, 3, 4 1, 2, 1, 3, 4, 8a, 1-Me 

3 124.9, CH 5.75 dd (10.0, 3.0) 2, 4 1, 2, 4a 

4 126.3, CH 6.02 d (10.0) 2, 3, 4a 2, 4a, 5, 8a 

4a 39.1, CH 2.18 m 4, 5, 6, 8a 3, 4, 5 

5 75.4, CH 3.47 m 4a, 6  

6 69.7, CH 4.06 br s 5, 7 8 

7α 41.4, CH2 1.88 m 6 5, 6, 8, 8a 

7β  1.52 m   

8 30.3, CH 1.78 m 8a, 8-Me  

8a 43.3, CH 1.94 t (10.0) 4a, 8 1, 4a, 5, 7, 8, 1-Me 

9 205.7, Cq    

10 99.7, CH 5.83 d (5.0) 11 9, 11 

11 175.4, CH 7.97 d (5.0) 10 9, 10 

1 36.8, CH 1.33 m 2, 1-Me 2, 3 

2a 25.5, CH2 0.79 mc   

2b  1.56 m 1, 3 2, 1, 3, 1-Me  

3 12.6, CH3 0.80 mc 2 1, 2 

1-Me 19.8, CH3 1.21 s  1, 2, 8a, 9 

1-Me 19.6, CH3 0.92 d (7.0) 1 2, 1, 2 

8-Me 20.8, CH3 0.76 d (7.0) 8 7, 8, 8a 

a Recorded in CDCl3 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in CDCl3 at 500 MHz. c Signals 

overlapped.  

 

Eupenicinicol A (2): white powder; []
22

D +47.8 (c 0.23, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 226, 274 nm; IR (film) vmax 3452, 1632, 1114 cm
1

; CD (MeCN) 194 (Δε + 4.21), 

290 (Δε – 0.09), 343 (Δε + 0.11) nm; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 125 MHz), see 

Table 4.1.2.1; Positive ESI-HRMS m/z: 323.2216 [M+H]
+
 (calcd for C19H31O4, 323.2217) (Li et al., 

2014b).  
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4.1.3 Eupenicinicol B (3, new compound) 

 

 

 

The minor component 3 (code: LG41-4135) was also purified as a white powder (Li et al., 2014b). A 

molecular formula of C20H32O4 was determined from its quasimolecular ion at m/z 337.2373 [M+H]
+
 

and its fragment information ([M+H-H2O]
+
 at m/z 319.2268 and [M+H-2H2O]

+
 at m/z 301.2162, 

Figure 4.1.3.1). The MS
2
 pattern of 3 was very close to that of compound 2, especially in the abundant 

fragment ion at m/z 217.1948 [M+H-C4H8O4]
+
, except that a lost CH3OH molecule was observed 

([M+H-CH3OH]
+
 at m/z 305.2111, or [M+H-H2O]

+
 at m/z 319.2262, [M+H-H2O-CH3OH]

+
 at m/z 

287.2001, Figure 4.1.3.2). The fragmentation pattern suggested that the structure of compound 3 was 

similar to that of 2, except for an additional methoxy group in 3 (Li et al., 2014b). Unlike compound 2, 

the 
1
H NMR spectrum of 3 (Figure 4.1.3.3) exhibited a large coupling constant (J = 12.0 Hz in 3; J = 5.0 

Hz in 2) between H-10 and H-11, and a methoxy singlet (H 3.77), indicating a trans-disubstituted 

double bond and locating the methoxy group at C-11. Unfortunately, due to the limited amount of 3 

available for NMR experiment, 
13

C, HSQC, and HMBC spectra were not clear for structural elucidation. 

However, for the moiety substituted by the methoxy group, assigning the NMR data to 3 (for OMe-11, 

H 3.77, C 58.0; for C-11, H, 7.59, C 163.5) is still possible from key HMBC correlations of OMe-11 

to C-11, and H-11 to OMe-11. 
1
H–

1
H COSY NMR spectrum also supported the whole structure (Figure 

4.1.3.3). From a biosynthetic view, compound 3 should have the same absolute configuration as 2.    

 

Eupenicinicol B (3): white powder; []
22

D +16.0 (c 0.05, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 226, 258 nm; IR (film) vmax 3444, 1640, 1109 cm
1

; 
1
H NMR (CDCl3, 500 MHz) 

see Figure 4.1.3.3; Positive ESI-HRMS m/z: 337.2373 [M+H]
+
 (calcd for C20H33O4, 337.2379) (Li et al., 

2014b).  
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4.1.4 Eupenicinicol C (4, new compound) 

 

 

 

In the course of searching for compounds with similar MS
n
 pattern as that of 13, we noted that a pure 

compound (4, code: LG41-P5334) interestingly displayed two peaks with different retention times in 

semi-preparative HPLC and LC-HRMS systems (Figure 4.1.4.1). In addition, each collected single peak 

reinjected immediately changed to two signals, which was in accordance with the original 

chromatographic profile. Both signals shared the same molecular formula, C20H32O4N2 (6 double bond 

equivalents), as established by ESI-HRMS ([M+H]
+
 365.2438, calcd. 365.2435, Figure 4.1.4.1). 

Therefore, a proposed kinetic equilibrium between two diastereomers was noted to be strongly favored. 

The MS
2
 spectrum (Figure 4.1.4.1) of 4 also possessed the characteristic fragment ion at m/z 217.1949, 

which was present in co-occurring decalin motif-containing secondary metabolites 13. The above MS 

data revealed a preferred cleavage of the side chain located at C-1 in 4 to give a fragment [M+H-

C4H8O4N2]
+
 without any nitrogen. Further detailed analysis of MS

2
 spectrum (Figure 4.1.4.1) supported 

the presence of an urea moiety in the above side chain from fragment ions at m/z 348.2168 [M+H-NH3]
+
, 

322.2381 [M+H-CHON]
+
, and 305.2114 [M+H-CH4ON2]

+
, and two hydroxyl groups from other product 

ions at m/z 287.2006 [M+H-CH4ON2-H2O]
+
, and 269.1900 [M+H-CH4ON2-2×H2O]

+
. The 1D NMR 

spectra of 4 (Figures 4.1.4.2 and 4.1.4.5) showed similar structural features to those of 13, except for 

the observed chemical shift differences due to the side chain. The construction of side chain of 4 was 

determined from its 
1
H-

1
H COSY data and key HMBC correlations of 1-Me with C-9, and H-10 and H-

11 with C-9, together with HMBC correlations from H-11 (δH 7.38) to C-12 (δC 157.5) and the chemical 

shifts of C-11 (δC 140.7) and C-12, placing the urea moiety at C-11 (Figures 4.1.4.3-4.1.4.5). 

Specifically, the chemical equilibrium between isomeric forms of 4 as suggested by the LC-MS was 

further confirmed by 
1
H NMR spectrum coupled with 

1
H-

1
H COSY spectrum. The coupling constants 



Chapter 4: Results and Discussion  
 

  

 

43  

between H-10 and H-11 supported the cis (J = 9.0)- or trans (J = 13.5)-di-substituted double bond at C-

10 (Figure 4.1.4.2 and Table 4.1.4.1). It would be convincing that the formation of hydrogen bond 

between the carbonyl group at C-9 and the nitrogen of urea is responsible for forming the dominant 

conformation. The relative configuration of 4 was same as that of 13 based on the NOESY correlations 

of Me-1/H-2, H-4a, H-8 and H-10, H-8a/H-2b and H-5, H-6/H-5 and H-7β (Figure 4.1.4.4). Finally, a 

single-crystal diffraction experiment further confirmed its gross structure and relative configuration 

(Figure 4.1.4.6). 4 should have same absolute configurations as 13 considering their optical rotation 

data and biosynthetic pathway. Therefore, the structure of compound 4 was established and named as 

eupenicinicol C.  

 

Table 4.1.4.1 The NMR data for compound 4 (in CD3OD). 

 

Position 

4 

C, mult.a H mult.b (J in Hz) 

1 52.8, Cq  

2 54.4, CH 1.89 mc 

3 125.5, CH 5.72 br d (10.0) 

4 128.7, CH 6.05 br d (10.0) 

4a 40.2, CH 2.17 br t (10.5) 

5 76.7, CH 3.32 mc 

6 70.9, CH 3.94 m 

7α 

7β 

42.9, CH2 1.78 m 

1.43 br t (12.0) 

8 31.2, CH 1.76 m 

8a 44.1, CHd 1.92 mc 

9 208.2, Cq  

10 99.6, CH (80%) 5.79 d (9.0); 6.23 d (13.5)e 

11 140.7, CH (80%) 7.38 d (8.5); 7.95 d (13.5)e 

12 157.5, Cq  

1 37.7, CH 1.32 m 

2a 

2b 

26.5, CH2 0.78 mc 

1.58 m 

3 13.0, CH3 0.78 mc  

1-Me 20.4, CH3 1.26 s 

1-Me 20.0, CH3 0.90 d (7.0) 

8-Me 22.2, CH3 0.66 d (6.5) 
a Recorded at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 500 MHz. c Signals overlapped. d 

Proposed by HMBC correlation. e Observed from Δ10-E-configuration.   

 

Eupenicinicol C (4): white powder; []
20

D +87.3 (c 0.15, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 222, 292 nm; IR (film) vmax 3333, 1645, 1568 cm
1

; 
1
H NMR (CD3OD, 500 MHz) 
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and 
13

C NMR (CD3OD, 125 MHz), see Table 4.1.4.1. Positive ESI-HRMS m/z: 365.2438 [M+H]
+
 (calcd 

for C20H33O4N2, 365.2435).  

Crystal data of eupenicinicol C (4): the colorless crystals were obtained from an acetone solution; 

crystal size 0.15 × 0.10 × 0.05 mm
3
, orthorhombic crystal system, space group P212121, a = 9.0781(4) Å, 

b = 9.8882(5) Å, c = 26.0188(13) Å, V = 2335.60(19) Å
3
; Z = 4, T = 150 K, µ(Mo Kα) = 0.084 mm

-1
, 

Dcalc = 1.202 g/cm
3
; 20307 reflections measured with 2θ ranged from 4.406 to 51.994°; 4579 unique 

reflections (Rint = 0.0483, Rsigma = 0.0396). R1 = 0.0446, wR2 = 0.1041 (all data). Crystallographic data of 

eupenicinicol C (4) was deposited in the Cambridge Crystallographic Data Centre with supplementary 

publication number CCDC 1440259. Copies of the data can be acquired, free of charge, from Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0)1223 336033 or e-

mail: deposit@ccdc.cam.ac.uk]. 

 

4.1.5 Eupenicinicol D (5, new compound) 

 

 

 

Similar to compound 4, eupenicinicol D (5, code: LG41-P532, LG41-C2, or LG41-626), which was 

purified as a white powder, showed three un-isolated diastereomers observed in LC-HRMS experiment 

(Figure 4.1.5.1). All of them exhibited the same molecular formula of C38H59O6N (10 double bond 

equivalents) as verified by a positive ESI-HRMS pseudomolecular ion at m/z 626.4427 [M+H]
+ 

(Figure 

4.1.5.1). In order to get clear 1D NMR data of 5, we tried several common NMR solvents acetone-d6, 

CD3OD and DMSO-d6 except for CDCl3 where it was not soluble (Figure 4.1.5.2). Unfortunately, the 
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signals of three isomeric forms were always observed as exhibited by the overlapping or several minor 

signals (especially chemical shifts ranged from δH 5.5 to 8.0) in 
1
H NMR spectrum (Figure 4.1.5.2) and 

some triple-splitting signals in 
13

C NMR spectrum of 5. However, these 1D NMR data and further 2D 

NMR experiments of 5 led us to roughly figure out its structural characters as similar to that of 

compound 4. Therefore, we predicted that two monomers like 4 were coupled through their side chains 

to form a dimer structure 5, which was also partly supported by its MS
2
 analysis (Figure 4.1.5.1). Finally, 

we selected pyridine-d5 as NMR solvent and recognized that only one major isomer was observed in 
1
H 

NMR spectrum (Figure 4.1.5.2). Surprisingly, after the sample was dried, it could be easily dissolved in 

CDCl3 to obtain clear NMR spectra (Figure 4.1.5.3). The above solvent optimization and results 

indicated that the pyridine-d5 and CDCl3 can be used to obtain a single molecule diastereomer (in this 

case, the most stable isomer). Considering that NMR data of compounds 13 were measured in CDCl3, 

herein we mainly described the structural elucidation of 5 using NMR data in CDCl3. The 1D NMR data 

(Figure 4.1.5.3 and Table 4.1.5.1) with the help of HSQC spectrum (Figure 4.1.5.4), revealed the 

presence of four methyls, two methylenes, seven methines (two oxygenated), two cis-disubstituted 

double bonds, and the remaining two quaternary carbons, accounting for 27 
1
H and 19 

13
C signals. A 

dimeric structure for 5 was constructed based on the requirement of MS data. The above analysis 

indicated very similar structural features as that of 14, except for the significant differences due to the 

side chain. The side chain was assembled by 
1
H-

1
H COSY correlations of H-10/H-11 and the HMBC 

correlations from Me-1 to C-1 and C-9, from H-10 to C-9 (Figures 4.1.5.4 and 4.1.5.5). The coupling 

constant of H-10/H-11 (J = 8.4 Hz) implied a Z-configured double bond (Table 4.1.5.1). The key 
1
H-

1
H 

COSY correlation between H-11 and NH and MS requirement suggested the connection of two 

monomers through a nitrogen linkage, which is further supported by MS
2
 spectrum with abundant 

fragment information in the mass range 250-400 Da (Figure 4.1.5.1). Based on this proposed structure, 

two hydrogen bonds should play a very important role in the stability of this cis isomer. This also led us 

to further explain the occurrence of three isomers in other solvents. Taking the NMR experiment in 

acetone-d6 as an example, detailed analysis of the side chain at C-1 using 
1
H NMR and 

1
H-

1
H COSY 

data showed that 5 existed as a mixture of three isomers derived from the cis- or trans-disubstituted 

double bonds (Figure 4.1.5.6). Therefore, the planar structure of compound 5 was confirmed as depicted. 

The relative configuration of 5 was assigned through the NOESY correlations (Figure 4.1.5.7) of Me-

1/H-2, H-4a, H-8, and H-10, H-8a/H-2b and H-5, H-6/H-5, which was consistent with that of 

compounds 14. Compound 5 was optically active with []
20

D +37.3 (c 0.60, CHCl3), excluding the 
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possibility of mesomer. Considering its optical rotation data and the biosynthetic pathway, 5 should have 

the same absolute configuration as 14.  

 

Table 4.1.5.1 The NMR data for compound 5 (in CDCl3).  

 

Position 

 5 

 C, mult.a H mult.b (J in Hz) 

1  51.3, Cq  

2  53.3, CH 1.84 mc 

3  125.4, CH 5.74 m 

4  126.4, CH 5.99 d (10.2) 

4a  39.5, CH 2.12 br t (9.0) 

5  75.7, CH 3.46 dd (3.0, 10.2)  

6  70.0, CH 4.03 m 

7α 

7β 

 

 

41.3, CH2 1.81 br d (13.8) 

1.56 mc  

8  30.5, CH 1.70 m 

8a  43.3, CH 2.12 mc 

9  203.5, Cq  

10  99.2, CH 5.66 d (8.4) 

11  144.6, CH 6.58 t (8.4) 

12    

1  36.8, CH 1.27 mc  

2a 

2b 

 

 

25.3, CH2 0.72 mc 

1.59 mc  

3  12.9, CH3 0.73 mc 

1-Me  20.6, CH3 1.24 s  

1-Me  19.9, CH3 0.86 d (6.6) 

8-Me  21.7, CH3 0.65 d (6.0)  

NH   13.35 br s 
a Recorded at 150 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 600 MHz. c Signals overlapped.   

 

Eupenicinicol D (5): white powder; []
20

D +37.3 (c 0.60, CHCl3), []
20

D –64.0 (c 0.10, MeOH); LC-UV 

[(Acetonitrile (aq) in H2O/0.1% FA)] max 218, 358 nm; IR (film) vmax 3376, 2956, 2918, 2849, 1644, 

1577, 1465, 1061 cm
1

; CD (CHCl3) 245 ( +0.86), 261 ( 0.78), 278 ( 0.99), 295 ( +0.46), 

326 ( 1.10), 349 ( 0.05), 355 ( +0.22), 366 ( 0.23), 382 ( 0.91) nm; CD (MeOH) 238 

(Δε +3.99), 314 (Δε +1.80), 361 (Δε  –1.70) nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR (CDCl3, 

150 MHz), see Table 4.1.5.1. Positive ESI-HRMS m/z: 626.4427 [M+H]
+
 (calcd for C38H60O6N, 

626.4415).   
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4.1.6 Eupenicinicol E (6, new compound) 

 

 

 

Compound 6 (code: LG41-P4222) was isolated as a white powder with a molecular formula C25H35O3N 

deduced from APCI-HRMS ([M+H]
+
 at m/z 398.2693, calcd. 398.2690) (Figure 4.1.6.1). MS

2
 spectrum 

showed the loss of two water molecules (m/z 380.2587 [M+H-H2O]
+ 

and 362.2483 [M+H-2×H2O]
+
) and 

an abundant product ion at m/z 146.0600 [M+H-C16H28O2]
+ 

(Figure 4.1.6.1). 
1
H NMR spectrum 

exhibited similar structural features to those of compounds 15 (Figure 4.1.6.2). The differences 

between them were found and attributed to the side chain. Unfortunately, due to the limited amount of 6 

available for NMR experiment, 
13

C, HSQC, and HMBC spectra were not clear for structural elucidation. 

However, compared to compounds 24, an aniline motif attached to C-11 as the structural difference in 

the side chain, was established on the basis of the 
1
H NMR and 

1
H-

1
H COSY spectra (Figure 4.1.6.2). A 

chemical equilibrium of two isomers due to a hydrogen bond was also indicated by the 
1
H-

1
H COSY 

spectrum and the coupling constant (J = 8.0 or 12.5 Hz) between H-10 and H-11 in 
1
H NMR spectrum 

(Figure 4.1.6.2 and Table 4.1.6.1). The whole structure was proposed as shown, which was supported by 

MS
2
 spectrum with a key fragment ion [M+H-C16H28O2]

+ 
(= [C9H8ON]

+
) (Figure 4.1.6.1).  

 

Table 4.1.6.1 
1
H NMR data for compound 6 (in CD3OD).  

 

Position 
6 

H mult.a (J in Hz) 

3 5.69 mb 

4 6.05 br d (9.0) 

5 3.35 mb 

6 3.94 m 

10 5.73 m,b,c or 6.15 d (12.5) 

11 7.56 d (8.0),c or 8.09 d (12.5) 

13, 17 6.98-7.14 mb 

14, 16 7.29-7.36  mb 

15 6.98-7.14 mb  
a Recorded at 500 MHz.  b Overlapped. c Main isomer.  



Chapter 4: Results and Discussion  
 

  

 

48  

 

4.1.7 Eupenicisirenin A (7, new compound) 

 

 

 

The molecular formula of compound 7 (code: LG41-511331) (Li et al., 2014b) was determined as 

C15H22O3 with 5 double bond equivalents on the basis of ESI-HRMS (m/z 251.1638, [M+H]
+
, calcd. 

251.1642; m/z 233.1536, [M+H-H2O]
+
, calcd. 233.1536, Figure 4.1.7.1). The ESI-HRMS

2
 spectrum of 7 

(Figure 4.1.7.1) indicated the presence of a carboxyl or lactone group from fragment ions at m/z 

215.1426 [M+H-2H2O]
+
, 197.1320 [M+H-3H2O]

+ 
and 187.1477 [M+H-H2O-CH2O2]

+
, and of a 2- (or 

3)-methylpent-2-ene moiety corresponding to other product ions at m/z 177.0907 [M+H-H2O-C4H8]
+
, 

163.0751 [M+H-H2O-C5H10]
+ 

and 149.0598 [M+H-H2O-C6H12]
+ 

(Li et al., 2014b). 1D NMR spectra in 

combination with HSQC data of 7 (Figures 4.1.7.2 and 4.1.7.3, and Table 4.1.7.1) verified the presence 

of three methyls, three methylenes, three methines (one oxygenated), one quaternary carbon signal, and 

four olefinic carbons. Detailed HMBC correlations of H-4β to C-2, C-3, and C-15, and H-2 to C-15 

(Figure 4.1.7.4), indicated an ,-unsaturated carboxylic acid or lactone, supported partly by MS
2
 

analysis (Figure 4.1.7.1). Furthermore, the 
1
H-

1
H COSY correlations of H-1/H-2, H-1/H-6, H-5/H2-4, 

and H-5/H-6 confirmed the presence of a six-membered ring system in 7 (Figure 4.1.7.4). Another 
1
H-

1
H spin system of CH2(8)-CH2(9)-CH(10) as well as the HMBC correlations of H3-12/C-10, C-11 and 

C-13, and H3-13/C-10, C-11 and C-12 verified a 2-methylpent-2-ene moiety as suggested by MS
2
 data 

(Figure 4.1.7.4). The connection of C-7 to C-1, C-6, C-8 and C-14 was revealed by the HMBC 

correlations from H3-14 (H 1.04, s) to C-1, C-6, C-7, and C-8. Finally, a hydroxy and a carboxyl group 

were located at C-5 and C-3, respectively through the analysis of chemical shift of C-5 (C 65.6) and the 

MS requirement. Thus, the planar structure was confirmed. The key NOESY correlations of H-4 (H 

1.83)/H3-14, H-10/H3-12, and the strong NOESY correlation between H-4β (H 3.01) and H-5 enabled 

the determination of its relative configuration as depicted (Figure 4.1.7.5) (Li et al., 2014b).  

The absolute configuration of 7 was calculated using semiempirical and ab initio-methods (Li et al., 

2014b). With SPARTAN'14 (SPARTAN '14, Wavefunction, Inc., Irvine, CA, 2014) and using PM3 and 
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the Monte Carlo technique, 648 starting geometries were calculated, affording 100 conformers within 

6.9 kcal above the global minimum. 53 conformers with Boltzmann factors >0.001 (corresponding to an 

energy difference of E < 2.5 kcal/mol) were further obtained by the geometry optimization with 

Gaussian g09 (Frisch et al., 2009) using DFT calculations B3LYP/6-311G(2d,p). At the same theoretical 

level, the ECD spectra (Figure 4.1.7.6) of all conformers were calculated. The ECD values of individual 

conformer were summed according to their Boltzmann factors. The calculated ECD spectrum reflected 

the experimental CD data correctly (Figure 4.1.7.6), so that the absolute configuration of 7 is confirmed 

as depicted. Furthermore, ORD calculations with WB97XD/6-311G(d,p) showed a positive optical 

rotation of []D +1.06° (measured ([]D +2.7°) and confirmed the absolute configuration.  

 

Table 4.1.7.1 
1
H and 

13
C NMR data for compound 7 (in CDCl3). 

 

Position 
7 

C, mult.a H mult.b (J in Hz) 

1 28.1, CH 1.66 mc 

2 141.4, CH 7.37 dd (3.0, 5.5) 

3 124.6, Cq  

4α 

4β 

32.1, CH2 1.83 ddd (3.0, 8.5, 17.5) 

3.01 dd (8.5, 17.5) 

5 65.6, CH 4.28 ddd (5.5, 8.5) 

6 32.8, CH 1.54 mc 

7 34.7, Cq  

8 43.5, CH2 1.54 mc, 1.28 m 

9 25.7, CH2 2.16 m 

10 123.9, CH 5.14 t (7.0) 

11 131.9, Cq  

12 25.6, CH3 1.72 s 

13 17.7, CH3 1.65 s 

14 13.4, CH3 1.04 s 

15 169.5, Cq  

a Recorded at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 500 MHz. c Signals overlapped.  

 

Eupenicisirenin A (7): white powder; []
22

D +2.7 (c 0.11, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 250 nm; IR (film) vmax 3415, 1643, 1375, 1321, 1101 cm
1

; CD (MeOH) 209 (Δε – 

1.11), 260 (Δε + 1.54) nm; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 125 MHz), see Table 

4.1.7.1; Positive ESI-HRMS m/z: 251.1638, [M+H]
+
 (calcd for C15H23O3, 251.1642); 233.1536 [M+H-

H2O]
+
 (calcd for C15H21O2, 233.1536) (Li et al., 2014b). 
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4.1.8 Eupenicisirenin B (8, new compound) 

 

 

 

Compound 8 (code: LG41-511332) (Li et al., 2014b) was isolated as a white solid. Product ions at m/z 

195.06, 151.07 and 107.03 in negative ESI-MS, MS
2
 and MS

3 
(Figure 4.1.8.1) corresponded to [M-H]


, 

[M-H-COO]
 

and [M-H-2COO]

 respectively, indicating two carboxyl or lactone groups in 8. Thus, 

based on the 
1
H NMR data (Table 4.1.8.1 and Figure 4.1.8.2), its molecular formula was assigned as 

C10H12O4. Like 7, a similar ring system was also found in compound 8, which was confirmed by the 
1
H-

1
H COSY correlations of H-1/H-2, H-1/H-6, and H-4β/H-5 and the HMBC correlations from H-1 to C-

3 and C-7, from H-2 to C-1 and C-4, from H2-5 to C-3 and C-6, and from H3-9 to C-6 and C-7 (Figures 

4.1.8.3 and 4.1.8.4) (Li et al., 2014b). Two carboxylic acids (C 170.5 and 178.2) suggested by MS 

analysis, were placed at C-3 and C-7, respectively. The above assignment was supported by the HMBC 

correlations of H-1 to C-8, H-2 to C-10, and H3-9 to C-8. NOESY correlations of H3-9/H-4 (H 2.05), 

H3-9/H-5 (H 1.88), and H-1/H-6 (Figure 4.1.8.5) revealed the relative configuration of 8. 

As fewer degrees of freedom for internal rotations observed in compound 8 compared to 7, 

SPARTAN'14
 
calculation obtained only 12 conformers. All were within a range of 2.1 kcal above the 

global minimum. A further optimization of the individual geometries with Gaussian g09 (Frisch et al., 

2009) using the same DFT calculation as that for compound 7 reduced the energy range to < 1 kcal. 

Based on the relative configuration, the identical curve trends of experimental and calculated ECD 

spectra (Figure 4.1.8.6) determined that the new compound 8 is (1R,6S,7R)-configured (Figure 4.1.8.6). 

This was further confirmed by the negative sign of the calculated optical rotation ([]D 43°) compared 

to experimental value ([]
22

D 27.3°).  

Regarding the NOE data of compounds 7 and 8, the chirality centers in them share the same relative 

configuration. As the hydroxy group in 7 had no effect on the chromophoric system, the similar 

experimental and calculated ECD spectra of 7 and 8 were expected. However, their optical rotations 

showed opposite signs and also differed strongly in their absolute values (Li et al., 2014b). Out of the 53 

conformers populated at RT in 7, 26 with a negative sign contributed 1.54° to the optical rotation. This 
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was compensated by 27 conformers with a positive rotation value, contributing to +2.60° to the optical 

rotation. Finally, the above data resulted in a positive optical rotation of []D +1.06° for compound 7. As 

shown in Figure 4.1.8.7, the conformation of the prenoid side chain in 7 is responsible for this effect. 

Obviously, exciton interactions of these chromophores can significantly influence the optical rotation of 

7. An even stronger effect has been discovered for the E- and Z-nitriles calyculins A and B and was 

termed as π-mediated intramolecular communication between the chiral centers and the terminal nitrile 

group (Kondru et al., 2000; Li et al., 2014b). 

 

Table 4.1.8.1 
1
H and 

13
C NMR data for compound 8 (in CD3OD). 

 

Position 
8 

C, mult.a H mult.b (J in Hz) 

1 26.1, CH 2.18 dd (5.5, 8.5) 

2 136.5, CH 7.10 m 

3 132.5, Cq
d  

4α 

4β 

22.3, CH2 2.05 m  

2.39 m 

5 17.2, CH2 2.01 mc, 1.88 α, m  

6 25.7, CH 1.97 mc  

7 34.0, Cq
d  

8 178.2, Cq
d  

9 10.1, CH3 1.15 s 

10 170.5, Cq
d  

a Recorded at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 500 MHz. c Signals overlapped. d  

Proposed by HMBC correlations.    

 

Eupenicisirenin B (8): white solid; []
22

D 27.3 (c 0.15, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 246 nm; IR (film) vmax 3452, 1627, 1380 cm
1

; CD (MeOH) 207 (Δε – 4.80), 253 

(Δε + 1.19) nm; 
1
H NMR (CD3OD, 500 MHz) and 

13
C NMR (CD3OD, 125 MHz), see Table 4.1.8.1; 

Negative ESI m/z: 195.06 [MH]

, 151.07 [M-H-CO2]


, and 107.03 [M-H-2CO2]

 
(Li et al., 2014b).  

 

4.1.9 Xanthomegnin (9, known compound) 
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Compound 9 (code: LG41-31), a red powder, had the molecular formula C30H22O12 as determined by 

ESI-HRMS (m/z 575.1191, [M+H]
+
, calculated 575.1184, Δ 1.1773, Figure 4.1.9.1). However, there 

were only fifteen carbon signals (some split) in 
13

C NMR spectrum (Figure 4.1.9.2), indicating that 

compound 9 is dimeric. In 
1
H NMR spectrum (Figure 4.1.9.2), two methyls (one oxygenated), a 

methylene, an oxygenated methine and an olefinic proton, as well as an exchangeable proton around δH 

13.1 were found. After checking several MS databases (Nielsen et al., 2011) and comparing its NMR 

data (Table 4.1.9.1) with that in the literature (Höfle et al., 1978), compound 9 was established as 

xanthomegnin. 

 

Table 4.1.9.1 
1
H and 

13
C NMR data for compound 9 (in CDCl3). 

 

Position 
9  Xanthomegnin 

(Höfle et al., 1978) 

C, mult.a 

(splitting signals) 

H mult.b (J in 

Hz) 

 C
c 

1 180.2, Cq   179.7 

2 158.3, Cq   157.9 

3 123.1, Cq 

(123.3) 

  122.7 

4 186.3, Cq   186.1 

5 163.0, Cq   162.0 

6 117.8, Cq 

(117.9) 

  117.2 

7 148.4, Cq 

(148.5) 

  148.2 

8 117.1, CH 7.49 s  116.8 

9 134.9, Cq 

(135.0) 

  134.6 

10 114.9, Cq 

(115.0) 

  114.5 

11 162.5, Cq   161.9 

12 36.3, CH2 

(36.4) 

3.04 m  35.8 

13 74.6, CH 4.67 m  74.4 

14 20.7, CH3 (20.8) 1.54 d (6.0)   20.4 

2-OMe 61.7, CH3 4.15 s  61.2 

OH  13.14 (13.16) s   
a Recorded at 100 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 500 MHz. c Recorded at 67.88 MHz 

(Bruker WH 270 spectrometer) in DMSO-d6-CDCl3 (1:4).  
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4.1.10  7'-O-Desmethyl-viomellein (10, new compound) 

 

 

 

Compound 10 (code: LG41-P342) was also isolated as a red powder. Its molecular formula C29H22O11 

was determined through ESI-HRMS (m/z 547.1244, [M+H]
+
, calculated 547.1235, Δ 1.6992). In 

1
H 

NMR spectrum (Figure 4.1.10.1), two secondary methyls (δH 1.58, d, J = 6.0 Hz; 1.59, d, J = 6.0 Hz), 

one oxygenated methyl group (δH 4.16), two methylenes (δH 3.07), two oxygenated methines (δH 4.72 

and 4.81) and three olefinic protons (δH 6.94, 7.07 and 7.67) were present in 10. The above analysis 

indicated that compound 10 was also a naphthoquinone derivative like compound 9. Analysis of its 

HSQC and HMBC spectra (Figures 4.1.10.2 and 4.1.10.3) confirmed the key structural units as 

exhibited in a known compound viomellein. Further analysis of HMBC correlation from 7-OMe to C-7 

(Figure 4.1.10.3) and the comparison of their NMR data (Table 4.1.10.1) established the structure of 

compound 10 (Stack et al., 1979). The difference between compound 10 and the known compound 

viomellein is the hydroxy group at C-7´ in 10 instead of a methoxy in viomellein.  

 

Table 4.1.10.1 
1
H and 

13
C NMR data for compound 10 (in CDCl3). 

 

No. 

10  

 

No. 

Viomellein (Stack et al., 1979) 

C, 

mult.a 

H 

mult.b 

(J in 

Hz) 

No. 

C, 

mult.a 

H 

mult.b 

(J in 

Hz) 

 C, 

mult.c 

H 

mult.d 

(J in 

Hz) 

No. 

C, 

mult.c 

H 

mult.d 

(J in 

Hz) 

1 170.6  1' -   1 171.2  1' 162.4  

2   2'    2   2'   

3 76.2 4.81 m 3' 74.7 4.72 m  3 76.5 4.63 3' 74.1 4.63 

4 35.3 3.07 m 4' 36.3 3.07 m  4 34.6 3.02 4' 36.3 3.02 

4a 137.3  4'a 148.8   4a 134.0  4'a 147.9  

5 115.7 7.07 s 5' 117.1 7.67 s  5 116.0 6.96 5' 116.4 7.50 

5a -  5'a -   5a 140.5  5'a 134.4  

6 103.2 6.94 s 6' 172.8   6 97.8 6.66 6' 180.1  

7 156.4  7' -    7 160.1  7' 158.2  

8 113.5  8' -   8 99.9  8' 123.6  

9 158.3  9' -   9 161.3  9' 188.3  

9a 106.9  9'a 116.6   9a 105.1  9'a 114.8  

10 161.3  10' 164.0   10 155.3  10' 162.8  

10a 102.6  10'a 117.8    10a 107.9  10'a 117.6  



Chapter 4: Results and Discussion  
 

  

 

54  

11 21.0 1.59 d 

(6.0) 

11' 20.8 1.58 d 

(6.0) 

 11 20.7 1.56 11' 20.7 1.34 

10-OH  12.81 s 10'-

OH 

 13.40 s  9-OH  9.80 10'-OH  13.44 

7-OMe 56.5 4.16 s     10-OH  13.88 2 

×OMe 

55.9, 

60.3 

3.84, 

3.90 
a Recorded at 100 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded at 500 MHz. c Recorded at 25.2 MHz in 

CDCl3. 
d Recorded at 100 MHz in CDCl3.  

 

4.1.11 Viridicatumtoxin (11, known compound) 

 

 

 

Compound 11 (code: LG41-22) was purified by column chromatography on silica gel and afforded a red 

powder. ESI-HRMS was applied to assign its molecular formula C30H31NO10 based on MS information 

(m/z 565.1940, [M]
+
, calcd. 565.1943, Δ -0.4660, Figure 4.1.11.1). The 

1
H NMR spectrum (Figure 

4.1.11.2) of 11 displays signals for four tertiary methyls (one oxygenated) (δH 0.47, 0.91, 1.53, and 3.87) 

and several methylenes or methines. The 
13

C NMR spectrum (Figure 4.1.11.2) of 11 exhibited 30 signals. 

Compound 11 was confirmed as viridicatumtoxin through a detailed comparison of NMR data of 11 

with that of viridicatumtoxin (Table 4.1.11.1) (Inokoshi et al., 2013).  

 

Table 4.1.11.1 
1
H and 

13
C NMR data for compound 11 (in CDCl3). 

 11  Viridicatumtoxin (Inokoshi et al., 2013) 

Position C, mult.a H mult.b (J in Hz)  C, mult.a H mult.b (J in Hz) 

1 190.6, Cq   190.4, Cq  

2 99.7, Cq   99.5, Cq  

3 193.0, Cq   192.8, Cq  

4 40.5, CH2 2.75 dd (19.2)  40.3, CH2 2.76 dd (20.0) 

 2.82 dd (18.8)   2.82 dd (18.0) 

4a 71.7, Cq   71.5, Cq  

5 71.8, CH 4.50 br s  71.6, CH 4.50 br s 

5a 124.0, Cq   123.8, Cq  
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6 137.2, Cq   137.0, Cq  

6a 147.3, Cq   147.1, Cq  

7 122.8, Cq   122.6, Cq  

8 160.9, Cq   160.7, Cq  

9 100.0, CH 6.65 s  99.9, CH 6.65 s 

10 158.1, Cq   157.9, Cq  

10a 105.6, Cq   105.4, Cq  

11 166.1, Cq   165.9, Cq  

11a 105.2, Cq   105.0, Cq  

12 195.3, Cq   195.2, Cq  

12a 80.3, Cq   80.1, Cq  

13 172.9, Cq   172.7, Cq  

14 41.3, CH2 2.93 d (17.2)  41.1, CH2 2.93 d (20.0) 

 3.47 d (16.8)   3.44 d (20.0) 

15 60.2, Cq   60.1, Cq  

16 136.7, Cq   136.6, Cq  

17 121.5, CH 5.51 br s  121.3, CH 5.51 br s 

18 23.0, CH2 2.03 m  22.8, CH2 2.02 m 

 2.21 m   2.20 m 

19 34.0, CH2 1.34 dd (6.0, 13.6)  33.8, CH2 1.34 dd (6.0, 13.0) 

 1.83 ddd (6.4, 13.6, 13.6)   1.84 ddd (3.0, 13.0, 13.0) 

20 38.7, Cq   38.5, Cq  

21 24.1, CH3 1.53 s  23.9, CH3 1.53 s 

22 25.6, CH3 0.47 s  25.4, CH3 0.47 s 

23 21.2, CH3 0.91 s  20.9, CH3 0.91 s 

24 55.7, CH3 3.87 s   55.5, CH3 3.87 s  

3-OH  -   17.9 s 

4a-OH  4.10 br s   4.15 s 

5-OH  3.01 br s   3.04 br d (10.0) 

10-OH  8.68 br s   8.68 br s 

11-OH  14.78 br s   14.79 br s 

12a-OH  5.30 s   5.28 br s 

13-NH2  5.98 br s, 9.07 br s   5.92 br s, 9.08 br s 

a Recorded at 100 MHz in CDCl3. 
b Recorded at 400 MHz in CDCl3.   
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4.1.12 (2S,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (12, new natural 

product) 

 

 

 

Compound 12 (code: LG41-C322) was obtained as a white solid. Its molecular formula was determined 

as C11H18O4 according to ESI-HRMS at m/z 215.1277 [M+H]
+
 (Figure 4.1.12.1), indicating 3 double 

bond equivalents. The 
1
H NMR spectrum (Figure 4.1.12.2) of 12 suggested the presence of a changeable 

proton, two methyl groups, and three methine protons (one oxygenated). The 1D NMR data (Figure 

4.1.12.2) coupled with HSQC spectrum (Figure 4.1.12.3) of 12 revealed two methyls, four methylenes, 

three methines (one oxygenated), and two carbonyl groups, accounting for 2 of the 3 degrees of 

unsaturation. The remaining double-bond equivalent was due to a multi-substituted furan ring, a γ-

lactone, which was confirmed by the HMBC correlations (Figures 4.1.12.3 and 4.1.12.4) from H3-6' to 

C-3, C-4 and C-5, from H-3 and H-4 to C-2 and C-5, and from H-2 to C-5, and the chemical shifts of C-

2 (δC 79.8) and C-5 (δC 177.8). The strong correlations of both H2-2' and H3-5' with C-3' and C-4', H2-1' 

with C-2' and C-3' in the HMBC spectrum verified the presence of a pentyl side chain (Figure 4.1.12.4). 

In addition, this side chain was located at C-2 through the analysis of HMBC correlations from H-2 and 

H-3 to C-1'. A carboxyl acid group was positioned at C-3 based on the HMBC correlations between H-2, 

H-3 and H-4 and C-7', and the MS requirement. Compound 12 possesses three asymmetric carbon 

centers: C-2, C-3, and C-4. The stereochemical relationships within 12 were mainly assigned by the 

analysis of 1D NOE and NOESY experiments (Figures 4.1.12.5-4.1.12.7). The key and significant 

correlations of H-2/H3-6', H-2/H2-1', and H-3/H2-1' indicated that the Me-6', carboxyl acid and H-2 are 

in the same orientation. The absolute configuration of 12 was determined by comparing its optical 

rotation sign and value with those reported for similar structures (Figure 4.1.12.8) (Amador et al., 2006; 

Drioli et al., 1998; Banks et al., 1995; Jacobi et al., 2001; Huneck et al., 1992; Mulzer et al., 1993; 

Howell et al., 2006; Mulzer et al., 1991; Maier et al., 1999; Deska et al., 2009). The major difference 

between them is the length of side chain, which exhibited limited influence on their optical rotation. It 

should be emphasized that the short-side-chain as possessed in naturally occurring compounds sotolon 
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and maple furanone, resulted in the opposite optical rotation signs (Nakahashi et al., 2011). In order to 

support the assignment of absolute configuration for this compound, we applied the TDDFT CD 

calculation and found it shows a positive cotton effect which is consistent with the experimental or 

literature data (Figure 4.1.12.9). The above analysis for the CD band around 220 nm conceivably allied 

with the n-π* transition of lactone chromophore, is in accordance with the empirical chirality rule of the 

γ-lactone ring (Beecham, 1968).  Therefore, compound 12 was determined to be (2S,3R,4S)-4-methyl-5-

oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid. To the best of our knowledge, 12 was isolated as a 

natural product for the first time even though its synthesis (as a mixture) was achieved in 2006 (Amador 

et al., 2006).
   

 

Table 4.1.12.1 
1
H and 

13
C NMR data for compound 12 (in CDCl3). 

Position 
12 

C, mult.a H mult.b (Hz) 

2 79.8, CH 4.68 dt (6.0) 

3 50.0, CH 3.14 dd (6.0, 8.0) 
4 37.1, CH 3.02 qd (8.0) 

5 177.8, Cq   

1’ 34.7, CH2 1.66 m 
2’ 25.1, CH2 1.38 m, 1.46 m 

3’ 31.4, CH2 1.29 mc 

4’ 22.5, CH2 1.29 mc 
5’ 14.0, CH3 0.87 t (6.0) 

6’ 11.9, CH3 1.27 d (7.5) 

7’ 175.4, Cq  
COOH  9.23 s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. 

 

(2S,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (12): white solid; []
20

D -77.1 

(c 0.21, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 218 nm; IR (solid) vmax 3164, 2955, 

2928, 1760, 1729, 1180 cm
1

; CD (MeOH) 215 (Δε + 1.93) nm; 
1
H NMR (CDCl3, 500 MHz) and 

13
C 

NMR (CDCl3, 125 MHz), see Table 4.1.12.1. Positive ESI-HRMS m/z: 215.1277 [M+H]
+
 (calcd for 

C11H19O4, 215.1278, Δ -0.4376 ppm).    
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4.1.13 (2S,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (13, 

semi-synthetic compound) 

 

 

 

Compound 13 (code: LG41-C32M3), as a methyl ester, was obtained by the reaction between dimethyl 

sulfate in acetone and a fraction (containing compounds 12, 14, 16, and 19) using a chemically 

engineered approach for diversification of natural product extract or fraction (section 3.9.1). Its 

molecular formula C12H20O4 was determined on the basis of ESI-HRMS (m/z 229.1436, [M+H]
+
, 

calculated 229.1434, Δ 0.5184 ppm, Figure 4.1.13.1). Detailed analysis of its 1D NMR spectra of 13 

(Figure 4.1.13.2 and Table 4.1.13.1) in comparison with those of compound 12 confirmed its structure 

as a methyl ester of compound 12. Thus, the preparation of methyl ester of carboxyl acid group was 

achieved, which was also supported by the MS/MS analysis (Figure 4.1.13.1). Its absolute configuration 

was further assigned using the same way as that for compound 12 (Figure 4.1.12.8). 

 

Table 4.1.13.1 
1
H and 

13
C NMR data for compound 13 (in CDCl3). 

Position 
13 

C, mult.a H mult.b (Hz) 

2 79.5, CH 4.63 m 

3 50.0, CH 3.07 dd (6.0, 9.0) 
4 37.1, CH 2.91 m 

5 177.2, Cq  

1’ 34.7, CH2 1.60 m 
2’ 25.0, CH2 1.34 m, 1.43 m 

3’ 31.4, CH2 1.26 mc 

4’ 22.4, CH2 1.26 mc 
5’ 13.9, CH3 0.83 t (7.5) 

6’ 11.9, CH3 1.15 d (7.5) 

7’ 170.6, Cq  
OMe 52.1, CH3 3.69 s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. 

 

(2S,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (13): oil; []
20

D -

63.4 (c 0.88, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 222 nm; IR (liquid) vmax 2954, 

2931, 2860, 1774, 1736, 1200, 1173 cm
1

;
 1

H NMR (CDCl3, 500 MHz) and 
13

C NMR (CDCl3, 125 
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MHz), see Table 4.1.13.1. Positive ESI-HRMS m/z: 229.1436 [M+H]
+
 (calcd for C12H21O4, 229.1434).    

 

4.1.14 (2R,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (14, new natural 

product) 

 

 

Compound 14 (code: LG41-C321 or LG41-C3212), a white solid, showed a pseudomolecular ion peak 

at m/z 215.1276 [M+H]
+
 in ESI-HRMS (Figure 4.1.14.1), indicating the molecular formula C11H18O4 

with 3 double bond equivalents. Analysis of its 1D NMR data (Figure 4.1.14.2) revealed the same 

structural characters to those observed in 12, except for several minor chemical shift differences arising 

from the influence of stereochemical relationship. 1D NOE studies showed significant interactions of H-

2/H-3, H-3/H-4, H-4/H-2, and no NOE interaction between H-3 and H2-1', verifying that the Me-6', 

carboxyl acid, and side chain are on the same side of furan ring (Figures 4.1.14.3 and 4.1.14.4). 

Furthermore, considering the optical rotation of 14 compared to its analogs and enantiomers (Figure 

4.1.12.8), the structure of 14 was established to be (2R,3R,4S)-4-methyl-5-oxo-2-pentyl-tetrahydro-

furan-3-carboxylic acid. Finally, ECD calculation (Figure 4.1.14.5) was applied to further support its 

absolute configuration. As far as we know, compound 14, as a reported synthetic intermediate (Jacobi 

and Herradura, 1996), is a new natural product isolated from a natural source. 

 

Table 4.1.14.1 
1
H and 

13
C NMR data for compound 14 (in CDCl3). 

Position 14 

 C, mult.a H mult.b (Hz) 

2 79.1, CH 4.43 m 

3 50.5, CH 3.32 dd (5.5, 7.0) 

4 39.3, CH 2.94 m 
5 177.2, Cq   

1’ 31.0, CH2 1.67 m, 1.83 m 

2’ 25.7, CH2 1.42 m, 1.53 m 
3’ 31.6, CH2 1.30 mc 

4’ 22.6, CH2 1.30 mc 

5’ 14.1, CH3 0.89 t (7.0) 
6’ 10.5, CH3 1.30 d (7.0) 

7’ 175.1, Cq  

COOH  7.46 br s 
a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. 
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 (2R,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (14): white solid; []
20

D + 

78.7 (c 0.21, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 218 nm; IR (solid) vmax 3000, 

2936, 2873, 1766, 1694, 1233, 1185 cm
1

;
 
CD (MeOH) 211 (Δε + 0.82) nm; 

1
H NMR (CDCl3, 500 MHz) 

and 
13

C NMR (CDCl3, 125 MHz), see Table 4.1.14.1. Positive ESI-HRMS m/z: 215.1276 [M+H]
+
 (calcd 

for C11H19O4, 215.1278).  

 

4.1.15 (2R,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (15, 

semi-synthetic compound)  

 

Compound 15 (code: LG41-C32M2), as a methyl ester, was obtained by the same strategy as compound 

13. Its molecular formula C12H20O4 was determined on the basis of ESI-HRMS (m/z 229.1435, [M+H]
+
, 

calculated 229.1434, Δ 0.1021 ppm), which was same to that for compound 13 (Figure 4.1.13.1). Further 

analysis of its 1D NMR spectra of 15 (Figure 4.1.15.1 and Table 4.1.15.1) in comparison with that of 

compound 14 confirmed its structure as a methyl ester of compound 14. Its relative configuration was 

supported through the analysis of 1D NOE correlations of H-2/H-3, H-3/H-4, H-4/H-2 (Figure 4.1.15.2 

and 4.1.15.3). Furthermore, the same strategy as compound 12 was applied to determine its absolute 

configuration (Figure 4.1.12.8). 

 

Table 4.1.15.1 
1
H and 

13
C NMR data for compound 15 (in CDCl3). 

Position 
15 

C, mult.a H mult.b (Hz) 

2 79.2, CH 4.39 m 

3 50.9, CH 3.30 dd (5.4, 7.8) 

4 39.3, CH 2.89 m 

5 177.3, Cq   
1’ 31.1, CH2 1.56 m, 1.72 m 

2’ 25.7, CH2 1.38 m, 1.50 m 

3’ 31.6, CH2 1.29 mc 
4’ 22.6, CH2 1.29 mc 

5’ 14.1, CH3 0.87 t (7.2) 

6’ 10.5, CH3 1.22 d (6.6) 
7’ 170.3, Cq  

OMe 51.9, CH3 3.72 s  
a Recorded in CDCl3 at 150 MHz. b Recorded in CDCl3 at 600 MHz. c Signals overlapped. 
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(2R,3R,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (15): white solid; 

[]
20

D + 71.6 (c 0.10, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 222 nm; IR (liquid) 

vmax 2950, 2929, 2866, 1777, 1729, 1176, 1130 cm
1

;
 1

H NMR (CDCl3, 600 MHz) and 
13

C NMR (CDCl3, 

150 MHz), see Table 4.1.15.1. Positive ESI-HRMS m/z: 229.1435 [M+H]
+
 (calcd for C12H21O4, 

229.1434).   

 

4.1.16 (2S,3R,4R)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (16, new natural 

product)  

 

 

 

Compound 16 (code: LG41-C323) has the molecular formula C11H18O4 as determined by the same 

strategy as above (Figure 4.1.16.1). As indicated in reference (Amador et al., 2006), this kind of 

compounds was sometimes isolated as a mixture. Under the progress of repeated purification of 

compound 16, we obtained it as a mixture with 13 (16:13 = 1:2) (Amador et al., 2006) and submitted it 

for NMR measurement. Analysis of the 1D NMR data (Figures 4.1.16.2 and 4.1.16.3, and Table 4.1.16.1) 

indicated that compound 16 was also a γ-lactone derivative. 2D NMR data (Figures 4.1.16.4 and 

4.1.16.5) confirmed that it possessed the same planar structure as shown in 12 or 14. The key NOE 

interactions between H-2 and H-4, and between H-3 and H2-1' in 1D NOE spectra of 16 allowed us to 

determine its stereo-configuration as 2S*, 3R*, and 4R* (Figures 4.1.16.6 and 4.1.16.7). For the purpose 

of verifying the absolute configuration of compound 16, we tried many methods and finally succeeded 

in purifying it using a different HPLC column (Venusil XBP C18 (2) column) and then measured 
1
H 

NMR to further confirm its structure as proposed (Figure 4.1.16.3). 16 was pure enough and utilized for 

the optical rotation measurement to compare with natural products (-)-roccellaric acid and (-)-

nephrosteranic acid, as well as the structurally related synthetic product (Figure 4.1.12.8). Finally, ECD 

calculation (Figure 4.1.16.8) was applied to further support its absolute configuration. Thus, the 

structure of 16 was assigned as (2S,3R,4R)-4-methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid. 
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And the NMR data of 16 as a new and pure natural isolate are consistent with its reported synthetic data 

(Amador et al., 2006; Drioli et al., 1998).   

 

Table 4.1.16.1 
1
H and 

13
C NMR data for compound 16 (in CDCl3).  

Position 
16 

C, mult.a H mult.b (J in Hz) 

2 79.6, CH 4.47 m 

3 54.1, CH 2.68 dd (9.6, 11.4) 

4 40.0, CH 2.97 m 

5 177.0, Cq   
1’ 35.0, CH2 1.70 m, 1.81 m 

2’ 25.1, CH2 1.39 m, 1.48 m 
3’ 31.5, CH2 1.30 mc 

4’ 22.6, CH2 1.30 mc 

5’ 14.1, CH3 0.88 t (7.2) 
6’ 14.7, CH3 1.35 d (7.2) 

7’ 175.1, Cq  
a Recorded in CDCl3 at 100 MHz. b Recorded in CDCl3 at 600 MHz. c Signals overlapped. 

 

(2S,3R,4R)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid (16): white solid; []
20

D -31.0  

(c 0.15, MeOH); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 218 nm; IR (liquid) vmax 3403, 2932, 

2861, 1746, 1173 cm
1

;
 
CD (MeOH) 217 (Δε - 0.42) nm; 

1
H NMR (CDCl3, 600 MHz) and 

13
C NMR 

(CDCl3, 100 MHz), see Table 4.1.16.1. Positive ESI-HRMS m/z: 215.1277 [M+H]
+
 (calcd for C11H19O4, 

215.1278).  

 

4.1.17 (2S,3R,4R)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (17, 

semi-synthetic compound) 

 

 

Compound 17 (code: LG41-C32M4), a colorless oil, was obtained through the same strategy as that for 

compound 13. Similarly, it has the similar MS and MS
2
 spectra as that for compounds 13 (Figure 

4.1.13.1). The same molecular formula of C12H20O4 with 3 double bond equivalents and same 

substructures were easily deduced from ESI-HRMS (m/z 229.1435 [M+H]
+
; calcd. 229.1434, Δ 0.2524 

ppm) and its MS
2
 spectra. Detailed analysis of its 1D NMR spectra of 17 (Figure 4.1.17.1 and Table 
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4.1.17.1) in comparison with that of compound 16 confirmed its structure as a methyl ester of 16. Its 

NOE spectra (Figures 4.1.17.2 and 4.1.17.3) showed the key interactions between H-2 and H-4, and 

between H-3 and H2-1', further supporting that it has the same stereo-configuration as that of compound 

16. Finally, optical rotations (Figure 4.1.12.8) of 16, 17, and their known derivatives was used for 

comparison to assign the absolute configuration of compound 17 as 2S, 3R, and 4R.   

 

Table 4.1.17.1 
1
H and 

13
C NMR data for compound 17 (in CDCl3). 

Position 
17 

C, mult.a H mult.b (J in Hz) 

2 79.8, CH 4.44 m 

3 54.4, CH 2.64 dd (9.6, 11.4) 
4 40.1, CH 2.95 m 

5 177.0, Cq   

1’ 35.0, CH2 1.69 m, 1.77 m 

2’ 25.1, CH2 1.39 m, 1.49 m 
3’ 31.6, CH2 1.30 mc 

4’ 22.6, CH2 1.30 mc 

5’ 14.1, CH3 0.88 t (6.6) 
6’ 14.7, CH3 1.32 d (7.2) 

7’ 171.4, Cq  
OMe 52.8, CH3 3.77 s 

a Recorded in CDCl3 at 150 MHz. b Recorded in CDCl3 at 600 MHz. c Signals overlapped. 

 

(2S,3R,4R)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (17): oil; []
20

D -

32.6 (c 0.10, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 222 nm; IR (liquid) vmax 2931, 

2859, 1779, 1738, 1201, 1174 cm
1

;
 1

H NMR (CDCl3, 600 MHz) and 
13

C NMR (CDCl3, 150 MHz), see 

Table 4.1.17.1. Positive ESI-HRMS m/z: 229.1435 [M+H]
+
 (calcd for C12H21O4, 229.1434). 

 

4.1.18 (2R,3S,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (18, 

semi-synthetic compound)  

 

 

 

Thermodynamic equilibration of 15 with DBU led to a major isomer, compound 18 (code: LG41-

C32M2-DBU-4), which displayed similar MS and NMR (Figures 4.1.17.1 and 4.1.18.1) features to that 
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of compound  17. The detailed comparison of their 1D NMR data (Table 4.1.18.1) indicated that they 

have the same planar structure and relative configuration. 2D NMR spectra (Figure 4.1.18.2) of 

compound 18 supported its structure. However, the signs of optional rotation for compound 17 and 18 

are opposite, suggesting that they are enantiomers.  

In order to investigate the absolute configuration of this kind of paraconic acids, we went back to check 

the optical rotations of compounds 1218 and ()-phaseolinic acid reported in the literature (Figure 

4.1.12.8). In addition, their CD spectra were also measured or collected from literature for their 

stereochemical analysis. Figure 4.1.18.3 showed all the possible eight structures based on compounds 12, 

14 and 16 (also suitable for compounds 13, 15, 17 and 18). These eight compounds are four pairs of 

enantiomers with stereo-configurational differences in the γ-lactone ring. Through the above data, we 

were able to obtain an empirical conclusion regarding the relationship between chiroptical data and 

stereochemical assignments for this type of paraconic acids (Figure 4.1.18.3). The stereo-configuration 

at C-2 appears to relate to the sign of optical rotation while the stereochemistry at C-4 influences the 

sign of cotton effect. In order to support our assignments of absolute configuration for this kind of 

compounds, the TDDFT CD calculation is consistent with the experimental or literature data (Figures 

4.1.12.9, 4.1.14.5 and 4.1.16.8). The above analysis for the CD band around 220 nm conceivably allied 

with the n-π* transition of lactone chromophore, is in accordance with the empirical chirality rule of the 

γ-lactone ring (Beecham, 1968). 

 

Table 4.1.18.1 
1
H and 

13
C NMR data for compound 18 (in CDCl3). 

Position 
17  18 

C, mult.a H mult.b (J in Hz)  C, mult.a H mult.b (J in Hz) 

2 79.8, CH 4.44 m  79.7, CH 4.45 (4.2, 8.4, 9.6) 

3 54.4, CH 2.64 dd (9.6, 11.4)  54.4, CH 2.65 dd (9.6, 11.4) 

4 40.1, CH 2.95 m  40.1, CH 2.96 m 

5 177.0, Cq    176.9, Cq   
1’ 35.0, CH2 1.69 m, 1.77 m  35.0, CH2 1.69 m, 1.77 m 

2’ 25.1, CH2 1.39 m, 1.49 m  25.1, CH2 1.40 m, 1.51 m 

3’ 31.6, CH2 1.30 mc  31.5, CH2 1.31 mc 
4’ 22.6, CH2 1.30 mc  22.6, CH2 1.31 mc 

5’ 14.1, CH3 0.88 t (6.6)  14.1, CH3 0.89 t (7.2) 

6’ 14.7, CH3 1.32 d (7.2)  14.6, CH3 1.32 d (7.2) 

7’ 171.4, Cq   171.4, Cq  

OMe 52.8, CH3 3.77 s  52.7, CH3 3.78 s 
a Recorded in CDCl3 at 150 MHz. b Recorded in CDCl3 at 600 MHz. c Signals overlapped. 

 

(2R,3S,4S)-4-Methyl-5-oxo-2-pentyl-tetrahydro-furan-3-carboxylic acid methyl ester (18): oil; []
20

D 

+28.0 (c 0.10, MeOH); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 224 nm; IR (liquid) vmax 2956, 
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1742, 1175 cm
1

;
 
CD (MeOH) 219 (Δε + 0.93) nm; 

1
H NMR (CDCl3, 600 MHz) and 

13
C NMR (CDCl3, 

600 MHz), are in consistent with its enantiomer, compound 17 (Figure 4.1.18.2). Positive ESI-HRMS 

m/z: 229.1435 [M+H]
+
 (calcd for C12H21O4, 229.1434).   

 

4.1.19 (2S)-2,5-Dihydro-4-methyl-5-oxo-2-pentyl-furan-3-carboxylic acid (Striatisporolide A, 19, 

known compound) 

 

 

 

The molecular formula of compound 19 (code: LG41-C21) was C11H16O4, which was determined by 

ESI-HRMS at m/z 213.1124 [M+H]
+ 

(calcd. 213.1121, Δ 1.0086 ppm, Figure 4.1.19.1). The MS of 

compound 19 showed that it should also be a paraconic acid derivative and have one more double bond 

equivalents than compounds 1218. Its 
1
H NMR spectrum (Figure 4.1.19.2) revealed the absence of two 

significant proton signals for C-3 and C-4 in compounds 1218. Further analysis of 
1
H NMR spectrum 

indicated a down-field shift of the methyl signal at C-6'. The above analysis suggested a double bond 

between C-3 and C-4, which indicated the known compound named striatisporolide A (Stewart et al., 

2005). Finally, the structure was readily confirmed on the basis of comparison of its 1D NMR data 

(Table 4.1.19.1 and Figure 4.1.19.2) with those reported in the literature (Stewart et al., 2005). 

Compound 19 showed an optical rotation of [α]
20

D -45.0 (c 0.10, CHCl3) compared to [α]
20

D -25.2 (c 

0.40, MeOH) for synthetic (S)-striatisporolide A (Deska and Bäckvall, 2009) and [α]D -24 (c 0.40, 

MeOH) for natural striatisporolide A (Stewart et al., 2005), confirming its absolute configuration as 

shown.  

 

Table 4.1.19.1 
1
H and 

13
C NMR data for compound 19 (in CDCl3).  

Position 
19 

 Striatisporolide A (Stewart et al., 2005; 

Deska and Bäckvall, 2009) 

C, mult.a H mult.b (J in Hz)  C, mult.d H mult.e (J in Hz) 

2 81.8, CH 5.12 dt (2.4, 8.0)  81.4, CH 5.12 br d (7.9) 

3 147.4, Cq   146.7, Cq  

4 139.6, Cq   140.1, Cq  
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5 173.3, Cq   172.7, Cq  

1’ 32.7, CH2 1.58 m, 2.11 m  32.7, CH2 1.60 m, 2.12 m 

2’ 24.5, CH2 1.38 m  24.4, CH2 1.40m 

3’ 31.4, CH2 1.27 mc  31.3, CH2 1.30 mc 

4’ 22.5, CH2 1.27 mc  22.4, CH2 1.30 mc 

5’ 14.0, CH3 0.84 t (6.8)  13.9, CH3 0.87 t (6.5) 

6’ 11.1, CH3 2.21 d (2.0)  11.1, CH3 2.24 s 

7’ 166.6, Cq   166.6, Cq  

COOH  10.76, s    
a Recorded in CDCl3 at 100 MHz. b Recorded in CDCl3 at 400 MHz. c Signals overlapped. d Recorded in CDCl3 at 150 MHz. e Recorded 

in CDCl3 at 600 MHz.  

 

4.1.20 (2S)-2,5-Dihydro-4-methyl-5-oxo-2-pentyl-furan-3-carboxylic acid methyl ester (20, semi-

synthetic compound)  

 

 

 

Compound 20 (code: LG41-C21-Re or LG41-C32M5) was obtained from the methylation reaction 

which was same to that for compounds 13, 15 and 17. Its MS and MS/MS (Figure 4.1.20.1), as well as 

NMR data (Figure 4.1.20.2 and Table 4.1.20.1) were in accordance with that for the synthetic product 

reported in the literature (Bang et al., 2015).  

 

Table 4.1.20.1 
1
H and 

13
C NMR data for compound 20 (in CDCl3). 

Position 
20  Literature (Bang et al., 2015) 

C, mult.a H mult.b (J in Hz)  C, mult.d H mult.e (J in Hz) 

2 81.6, CH 5.10 m  81.5, CH 5.07-5.10 m 

3 147.8, Cq   147.7, Cq  

4 137.7, Cq   137.5, Cq  

5 173.2, Cq   173.0, Cq  

1’ 32.9, CH2 1.56 m, 2.07 m  32.8, CH2 2.04-2.07 m 

2’ 24.6, CH2 1.39 m  24.5, CH2 1.25-1.58 m 

3’ 31.6, CH2 1.30 mc  31.4, CH2 1.25-1.58 m 

4’ 22.6, CH2 1.30 mc  22.5, CH2 1.25-1.58 m 

5’ 14.1, CH3 0.88 t (6.5)  14.0, CH3 0.86 t (6.9) 

6’ 11.1, CH3 2.19 d (1.5)  10.9, CH3 2.18 d (2.1) 

7’ 162.9, Cq   162.7, Cq  

OMe 52.6, CH3 3.89 s  52.4, CH3 3.87 s 
a Recorded in CDCl3 at 75 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. d Recorded in CDCl3 at 75 MHz. e Recorded in 

CDCl3 at 300 MHz.  
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(2S)-2,5-Dihydro-4-Methyl-5-oxo-2-pentyl-furan-3-carboxylic acid methyl ester (20): oil; []
20

D –14.2 

(c 0.15, CHCl3); LC-UV [(Acetonitrile (aq) in H2O/0.1% FA)] max 224 nm; IR (liquid) vmax 2955, 2927, 

2858, 1765, 1725, 1224 cm
1

; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 75 MHz), see Table 

4.1.20.1. Positive ESI-HRMS m/z: 227.1275 [M+H]
+
 (calcd for C12H19O4, 227.1278). 

 

4.1.21 (2S)-Hexylitaconic acid (21, known compound) 

 

 

 

For compound 21 (code: LG41-511X1), the fragment ions at m/z 215.1278 [M+H]
+
, 197.1173 [M+H-

H2O]
+
, 169.1225 [M+H-CH2O2]

+
, 151.1120 [M+H-CH2O2-H2O]

+
, and 123.1171 [M+H-2CH2O2]

+
 in 

APCI-HRMS, indicated the molecular formula C11H18O4 and two carboxylic acid moieties in the 

structure (Figure 4.1.21.1). 1D NMR spectra (Figure 4.1.21.2) of 21 showed the presence of a double 

bond with two olefinic protons, a down-field shift of C-2 (δH 3.42, δC 47.3), two carboxyl groups, and a 

side chain. With the help of databases, its 1D NMR spectral data (Figure 4.1.21.2) confirmed its 

structure as a known compound, hexylitaconic acid (Isogai et al., 1984). The absolute configuration at 

C-2 was established as S based on the value of the optical rotation ([]
22

D +3.2 (c 0.96, MeOH) and the 

R-()/S-(+) relationship (Nakahashi et al., 2009).   

 

Table 4.1.21.1 
1
H and 

13
C NMR data for compound 21 (in CDCl3). 

Position 
21  (2S)-Hexylitaconic acid (Isogai et al., 1984) 

C, mult.a H mult.b (J in Hz)  C, mult.d H mult.e (J in Hz) 

1 179.3, Cq   179.6, Cq  

2 47.3, CH 3.42 t (7.5)  47.0, CH 3.35 t (7.0) 

3 137.8, Cq   137.5, Cq  

4 171.5, Cq   171.7, Cq  

5 30.2, CH2 1.72 m, 1.93 m  29.9, CH2 1.80 m 

6 27.5, CH2 1.29 mc  27.4, CH2 1.25 mc 

7 29.2, CH2 1.29 mc  29.0, CH2 1.25 mc 

8 31.8, CH2 1.29 mc  31.7, CH2 1.25 mc 

9 22.8, CH2 1.29 mc  22.6, CH2 1.25 mc 
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10 14.2, CH3 0.87 t (7.0)  14.1, CH3 0.83 t (6.0) 

11 129.4, CH2 5.82 s, 6.50 s  129.6, CH2 5.80 s, 6.40 s 

2×COOH  6.12 br s   9.60 br s 
a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. d Recorded in CDCl3 at 100 MHz. 

e
 Recorded 

in CDCl3 at 100 MHz.  

 

(2S)-Hexylitaconic acid (21): white solid; []
22

D +3.2 (c 0.96, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 228 nm; IR (film) vmax 3428, 1635, 1112 cm
1

; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 125 MHz), see Table 4.1.21.1. Positive APCI-HRMS m/z: 215.1278 [M+H]

+
 (calcd 

for C11H19O4, 215.1278).   

 

4.1.22 (2R)-Hexylitaconic acid (22, known compound) 

 

 

Compound 22 (code: LG41-C326) has the similar MS and NMR data with that of compound 21 (Figure 

4.1.22.1). They should be the same compound or enantiomers. However, Compared to the []
23

D –17.9 

(c 0.50, MeOH) for (–)-hexylitaconic acid and []
20

D +15.3 (c 2.0, MeOH) for (+)-hexylitaconic acid 

(Klemke et al., 2004), the value of []
20

D –16.5 (c 0.65, CHCl3) for compound 22 indicated that it is R-

configurated.  

 

4.1.23 (2S)-Hexylitaconic acid mono methyl ester (23, known compound) 

 

 

 

Compound 23 (code: LG41-C328) has the molecular formula C12H20O4 as determined by ESI-HRMS at 

m/z 229.1434 [M+H]
+
; calcd. 229.1434, Δ -0.2495 ppm (Figure 4.1.23.1). Its fragment information 

([M+H-H2O]
+
 at m/z 211.1330, [M+H-CH3OH]

+
 at m/z 197.1173) revealed the possible presence of OH 
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and CH3O groups. The 1D NMR data (Figure 4.1.23.2) of 23 are very similar to those of 21, except for 

an oxygenated methyl (δH 3.68). Key HMBC correlations (Figure 4.1.23.3) confirmed that this methoxy 

due to the esterification of carboxylic acid was located at C-1, which was also supported by the down-

field shift of C-1 from δC 179.3 in 21 to 174.2 in 23, and the comparison of NMR data with that in 

literature (Table 4.1.23.1) (Isogai et al., 1984). Finally, Small []
20

D +0.48 (c 0.41, CHCl3) may indicate 

compound 23 was a mixture of two enantiomers, even through the R-(–)/S-(+) relationship (Nakahashi 

et al., 2009) suggested it was S-configured.  

 

Table 4.1.23.1 
1
H and 

13
C NMR data for compound 23 (in CDCl3). 

Position 
23 

 (2S)-Hexylitaconic acid mono methyl ester 

(Isogai et al., 1984) 

C, mult.a H mult.b (J in Hz)  C, mult.a H mult.b (J in Hz) 

1 174.2, Cq   173.8, Cq  

2 46.7, CH 3.49 t (7.5)  46.5, CH 3.35 t (7.0) 

3 138.4, Cq   138.1, Cq  

4 170.9, Cq   171.5, Cq  

5 31.4, CH2 1.67 m, 1.89 m  31.6, CH2 1.80 m 

6 27.6, CH2 1.29 mc  27.5, CH2 1.20 mc 

7 29.2, CH2 1.29 mc  29.0, CH2 1.20 mc 

8 31.8, CH2 1.29 mc  31.4, CH2 1.20 mc 

9 22.8, CH2 1.29 mc  22.6, CH2 1.20 mc 

10 14.2, CH3 0.87 t (7.0)  14.1, CH3 0.82 t (6.0) 

11 128.7, CH2 5.83 s, 6.46 s  129.1, CH2 5.80 s, 6.40 s 

OMe 52.3, CH3 3.68 s  52.1, CH3 3.55 s 
a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped. d Recorded in CDCl3 at 100 MHz. e Recorded in 

CDCl3 at 100 MHz.  

 

4.1.24 (2S)-Butylitaconic acid (24, known compound) 

 

 

 

The molecular formula C9H14O4 was assigned to compound 24 (code: LG41-511X2) by HR-MS (Figure 

4.1.24.1). It was observed that compound 24 had similar HR-MS fragment ions as 21, and one C2H4-

group less than 21 (Figure 4.1.24.1). Moreover, the 1D NMR data of compound 24 (Figure 4.1.24.2 and 

Table 4.1.24.1) revealed that its structure was similar to that of 21, except for the n-butyl side chain in 
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24, instead of the n-hexyl moiety in 21. Finally, concerning the optical rotation ([]
22

D +10.3 (c 1.04, 

MeOH)), the structure of 24 was determined as (2S)-2-butyl-3-methylene-succinic acid [(2S)-

butylitaconic acid] (Turner and Aldridge, 1983). 

 

Table 4.1.24.1 
1
H and 

13
C NMR data for compound 24 (in CDCl3). 

Position C, mult.a H mult.b (J in Hz) 

1 179.8, Cq  

2 47.1, CH 3.43 t (7.5) 

3 137.5, Cq  

4 171.8, Cq  

5 29.3, CH2 1.76 m, 1.95 m 

6 29.5, CH2 1.36 mc 

7 22.4, CH2 1.36 mc 

8 13.9, CH3 0.92 t (6.5) 

9 129.5, CH2 5.84 s, 6.54 s 

2 × COOH  9.32 br s 
a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Signals overlapped.   

 

(2S)-Butylitaconic acid (24): white solid; []
22

D +10.3 (c 1.04, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 214 nm; IR (film) vmax 3401, 1641, 1112 cm
1

; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 125 MHz), see Table 4.1.24.1. Positive ESI-HRMS m/z: 187.0966 [M+H]

+
 (calcd for 

C9H15O4, 187.0965).   

 

4.1.25 Cyclo (N
8
-(α,α-dimethylallyl)-L-Trp-6a'-(α,α-dimethylallyl)-L-Trp) (25, known compound) 

 

 

 

ESI-HRMS (m/z 509.2926 [M+H]
+
; calcd. 509.2911, Δ 2.8846 ppm; Figure 4.1.25.1) coupled with 1D 

NMR spectrum (Figures 4.1.25.2 and 4.1.25.3) of compound 25 (code: LG41-P4413) revealed the 

molecular formula C32H36N4O2 for 25. Interpretation of 
1
H-

1
H COSY spectrum (Figures 4.1.25.3 and 

4.1.25.5) indicated the connections from N-1 to C-3, from C-1' to N-3', between C-11 and C-12, 
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between C-4' and C-5', from C-4 to C-7, and from C-8' to C-11'. HMBC correlations (Figure 4.1.25.4, 

and Figure 4.1.25.5) of 1-NH/C-12', H-2'/C-12', H-2/C-9, and 3'-NH/C-9 determined a six-membered 

ring with two nitrogens in 25. Further analysis of HMBC spectrum indicated the correlations from H-8a 

to C-3, C-3a. C-3b and C-7a, from H-5 to C-3b, and from H-6 to C-7a, establishing an indole ring 

system. The nitrogen was substituted by an isoprene-derived unit, which was supported through HMBC 

correlations from H3-13 to C-10, C-11 and C-14, and from H3-14 to C-10, C-11 and C-13. Using a 

similar strategy for assigning the remaining substructure for 25 (Figure 4.1.25.5), the whole structure 

was finally constructed as shown. Compound 25 was Cyclo (N
8
-(α,α-dimethylallyl)-L-Trp-6a'-(α,α-

dimethylallyl)-L-Trp) (Shiono  et al., 1999), which was also suggested by the comparison of its NMR 

data with that in the literature (Table 4.1.25.1).  

 

Table 4.1.25.1 
1
H and 

13
C NMR data for compound 25 (in CDCl3). 

No. 
25  Literature (Shiono  et al., 1999) 

C, mult.a H mult.b (J in Hz) H mult.c (J in Hz)  C, mult.d H mult.c (J in Hz) 

2 55.3, CH 4.27 br d (9.5) 4.24 t (4.0)  56.8, CH 4.24 m 

3 30.5, CH2 2.92 dd (14.5, 9.5) 

3.56 dd (14.5, 3.5) 

3.20 m 

3.25 dd (14.5, 4.0) 

 30.9, CH2 3.20 dd (14.4, 6.1) 

3.25 dd (14.4, 4.3) 

3a 107.4, Cq    108.6, Cq  

3b 128.9, Cq    130.6, Cq  

4 121.7, CH 7.15 me 7.68 d (7.5)  120.2, CH 7.67 dd (7.0, 1.2) 

5 114.3, CH 7.52 m 7.04-7.12  119.6, CH 7.08 td (7.0, 1.2) 

6 119.1, CH 7.63 m 7.04-7.12  121.6, CH 7.05 ddd (8.2, 7.0, 1.2) 

7 119.7, CH 7.14 me 7.45 d (8.0)  114.5, CH 7.44 dd (8.2, 1.2) 

7a 136.1, Cq    136.3, Cq  

8a 124.8, CH 7.12 s 7.27 s  126.3, CH 7.26 s 

9 167.0, Cq    167.3, Cq  

10 59.4, Cq    59.7, Cq  

11 144.1, CH 6.13 dd (17.5, 10.5) 6.13 dd (17.5, 10.5)  145.2, CH 6.11 dd (17.4, 10.7) 

12 112.8, CH2 5.17-5.24 

 

5.13 d (11.0) 

5.16 d (17.0) 

 113.7, 

CH2 

5.12 dd (10.7, 1.2) 

5.15 dd (17.4, 1.2) 

13 28.0 or 28.1 

or 28.2, CH3 

1.77 s 1.75 s  28.4, CH3 1.73 s 

14 28.0 or 28.1 

or 28.2, CH3 

1.75 s 1.73 s  28.3, CH3 1.71 s 

1' 29.7, CH2 2.95 dd (14.5, 10.5) 

3.65 dd (15.0, 3.5) 

2.26 ddd (6.0, 10.0, 16.5) 

3.42 dd (14.5, 2.5) 

 31.6, CH2 2.24 dd (14.7, 10.4) 

3.42 dd (14.7, 2.8) 

2' 55.6, CH 4.31 br d (11.0) 4.06 br d (10.0)  57.9, CH 4.06 dt (10.4, 2.8) 

4' 113.9, CH2 5.17-5.24 5.03 d (10.5) 

5.04 d (17.5) 

 111.9, CH2 5.02 dd (10.7, 1.2) 

5.04 dd (17.4, 1.2) 

5' 145.9, CH 6.14 dd (17.5, 10.5) 6.13 dd (17.5, 10.5)  147.2, CH 6.12 dd (17.4, 10.7) 

6' 39.3, Cq    39.9, Cq  

6a' 141.6, Cq    141.7, Cq  

7a' 134.4, Cq    135.7, Cq  
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8' 110.8, CH 7.30 d (8.0) 7.23 d (8.0)  111.3, CH 7.24 dd (8.2, 1.2) 

9' 122.3, CH 7.16 me 6.98 t (7.0)  121.6, CH 6.97 ddd (8.2, 7.0, 1.2) 

10' 120.4, CH 7.06 t (7.0) 6.82 t (7.5)  119.9, CH 6.81 ddd (7.9, 7.0, 1.2) 

11' 118.5, CH 7.24 d (8.0) 6.75 d (4.5, 8.0)  119.3, CH 6.73 d (7.9) 

11a' 129.2, Cq    130.5, Cq  

11b' 104.9, Cq    106.5, Cq  

12' 167.8, Cq    168.2, Cq  

13' 28.0 or 28.1 

or 28.2, CH3 

1.55 s 1.51 s  28.1, CH3 1.51 s 

14' 28.0 or 28.1 

or 28.2, CH3 

1.55 s 1.51 s  28.2, CH3 1.51 s 

1-NH  5.71 s    7.24 br s 

3'-NH  5.85 s    6.30 d (2.8) 

7'-NH  8.03 s    9.79 br s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in acetone-d6 at 500 MHz. d Recorded in acetone-d6  at 

125 MHz. e Signals overlapped.   

 

4.1.26 7-Hydroxy-2-[2-hydroxypropyl]-5-methyl-4H-1-benzopyran-4-one (26, known compound) 

 

 

 

Compound 26 (code: LG41-P5333) has a molecular formula C13H14O4 as determined by ESI-HRMS 

(m/z 235.0964, [M+H]
+
; calcd. 235.0965, Δ -0.3320 ppm, Figure 4.1.26.1). 

1
H NMR spectrum (Figure 

4.1.26.2) exhibited the signals for two methyls (δH 1.28 and 2.72), a methylene, an oxygenated methine 

(δH 4.20), and three aromatic/olefinic protons (δH 6.07, 6.64 and 6.67). A carbon signal at δC 182.0 

indicated an unsaturated carbonyl (Figure 4.1.26.2). Three oxygenated aromatic/olefinic carbons are 

suggested to be present in 26 based on the 
13

C signals at δC 161.5, 163.0 and 167.1. A further search of 

database and comparison of NMR data (Table 4.1.26.1) of 26 with that in literature confirmed that it is 

7-hydroxy-2-[2-hydroxypropyl]-5-methyl-4H-1-benzopyran-4-one (Kashiwada et al., 1984; Xu et al., 

2009; Huang et al., 2014).  
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Table 4.1.26.1 
1
H and 

13
C NMR data for compound 26 (in CD3OD). 

Position 

26 

 7-Hydroxy-2-[2-hydroxypropyl]-5-methyl-4H-1-

Benzopyran-4-one (Kashiwada et al., 1984; Xu et 

al., 2009; Huang et al., 2014) 

C, mult.a H mult.b (J in Hz)  C, mult.c (DMSO-

d6) 

H mult.d (J in Hz) 

(CD3OD) 

1      

2 167.1, Cq   165.3, Cq  

3 112.5, CH 6.07 s  112.0, CH 5.97 s 

4 182.0, Cq   178.8, Cq  

5 143.7, Cq   141.9, Cq  

6 118.0, CH 6.64 d (2.4)  116.9, CH 6.47 s 

7 163.0, Cq   161.3, Cq  

8 101.7, CH 6.67 d (2.4)  101.1, CH 6.50 s 

9 161.5, Cq   159.7, Cq  

10 115.9, Cq   114.9, Cq  

1' 44.2, CH2 2.67 m  43.3, CH2 2.65 m 

2' 66.4, CH 4.20 m  64.6, CH 4.17 m 

3' 23.5, CH3 1.28 d (6.0)  23.9, CH3 1.25 d (6.3) 

5-CH3 23.1, CH3 2.72 s  22.9, CH3 2.66 s 
a Recorded in CD3OD at 125 MHz. b Recorded in CD3OD at 400 MHz. c Recorded in DMSO-d6 at 125 MHz. d Recorded in CD3OD  at 500 

MHz.  

 

4.1.27  2-Furancarboxylic acid (27, known compound) 

 

 

Compound 27 (code: LG41-P423) was isolated as a white powder. Its 
1
H NMR spectrum (Figure 

4.1.27.1) only displayed three aromatic/olefinic protons with a small coupling constant for each one. The 

13
C NMR spectrum showed five aromatic/olefinic carbon signals. Key HMBC correlations (Figure 

4.1.27.2) from H-3 to C-2, C-4, and C-5, from H-4 to C-3 and C-5, and from H-5 to C-2 and C-6 and 

considering the chemical shifts of C-2 (δH 147.7), C-5 (δH 147.3) and C-6 (δH 162.9) determined 

compound 27 as a known compound, 2-furancarboxylic acid (Table 4.1.27.1). 

 

Table 4.1.27.1 
1
H and 

13
C NMR data for compound 27 (in CD3OD). 

27 

Position C, mult.a H mult.b (J in Hz) 

1   

2 147.7, Cq   

3 118.1, CH 7.14 dd (0.5, 3.5) 

4 112.8, CH 6.55 dd (2.0, 3.5) 
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5 147.3, CH 7.67 m 

6 162.9, Cq  
a Recorded in CD3OD at 100 MHz. b Recorded in CD3OD at 500 MHz.  

 

4.2 Secondary metabolites isolated from Diaporthe sp. LG23  

 

A novel lanostanoid, 19-nor-lanosta-5(10),6,8,24-tetraen-1α,3β,12β,22S-tetraol (28), characterized by 

the presence of an aromatic B ring and hydroxylated at C-1, C-3, C-12, and C-22, was isolated from the 

rice culture of an endophytic fungus Diaporthe sp. LG23, inhabiting leaves of the Chinese medicinal 

plant M. fortunei (from Shanghai, P. R. China). Seven biosynthetically-related known steroids (29–35) 

were also isolated in parallel.  

 

 

 

Four aromatic or glycosylated compounds (36–39) including a new isoindole derivative (39) were also 

obtained.  
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4.2.1 19-Nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (28, new compound) 

 

 

 

Compound 28 (code: LG23-621-1) (Li et al., 2015) was obtained as a white powder with the molecular 

formula C29H44O4 (8 double bond equivalents) as assigned from the ESI-HRMS data ([M+H-H2O]
+
 at 

m/z 439.3207, [M+H-2H2O]
+
 at m/z 421.3102, [M+H-3H2O]

+
 at m/z 403.2995, and [M+H-4H2O]

+
 at 

m/z 385.2889; [2M+H]
+
 at m/z 913.6559, and [2M+H-2H2O]

+
 at m/z 877.6342; [3M+H]

+
 at m/z 

1369.9796, and [3M+Na]
+
 at m/z 1391.9616, Figure 4.2.1.1). The mass spectrum exhibits the loss of 

four water molecules, indicating the presence of four hydroxy groups in 28. The above analysis was also 

supported by the proposed fragmentation pathway on the basis of MS
2
 data (Figures 4.2.1.2 and 4.2.1.3) 

(Cabrera et al., 2007; Wang et al., 2015). The 
1
H and 

13
C NMR spectra (Figure 4.2.1.7 and Table 4.2.1.1) 

of 28 showed the presence of six tertiary methyls (H 0.70, 1.10, 1.14, 1.46, 1.70 and 1.78), one 

secondary methyl (H 1.16, d, J = 7.0 Hz) and four oxygenated methines (C 65.7, 70.7, 71.8 and 75.0) 

(Li et al., 2015). In addition to these structural characters, the 1D NMR data with the aid of 2D NMR 

spectra assigned five methylenes, two deoxygenated methines, three quaternary carbon signals, and 

eight aromatic/olefinic carbons including a cis-di-substituted double bond and a methine carbon (Li et 

al., 2015). These data revealed a tetracyclic triterpene skeleton of 28 (Ríos et al., 2012; Ríos et al., 2011; 

Liu, 2014). Detailed analysis of 
1
H-

1
H COSY NMR data confirmed the connection from C-1 to C-3, 

from C-6 to C-7, from C-11 to C-12, between C-15, 16, 17, 20, 22, 23 and 24, and from C-20 to C-21 

(Figures 4.2.1.4 and 4.2.1.8). HMBC NMR spectrum was further employed to determine the planar 

structure of 28 (Figures 4.2.1.4 and 4.2.1.9). In 28, the side chain with the connection to C-17 was 

verified from key HMBC correlations of H3-21 to C-17, C-20 and C-22, H3-26 to C-24, C-25 and C-27, 

as well as H3-27 to C-24, C-25 and C-26 (Li et al., 2015). The C and D rings of the tetracyclic skeleton 

of 28 were deduced on the basis of HMBC correlations from H-11 to C-8, C-9 and C-13, H3-18 to C-12, 
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C-13, C-14 and C-17, and H3-30 to C-8, C-13, C-14 and C-15. A benzene ring unit in the tetracyclic 

skeleton of 28 was determined and assigned as the B-ring by the correlations of H-6/C-8, H-6/C-10, H-

7/C-5, H-7/C-9 and H-11/C-10 in the HMBC spectrum (Figure 4.2.1.4). HMBC correlations of H3-28 to 

C-3, C-4, C-5 and C-29, H3-29 to C-3, C-4, C-5 and C-28, together with H-6 to C-4 in combination with 

the MS requirement identified an A-ring fusing to B-ring. Four hydroxy groups were placed at C-1, C-3, 

C-12 and C-22, which were consistent with MS data and the chemical shifts of oxygenated methines. 

Therefore, the planar structure of compound 28 was confirmed as shown.  

The relative stereochemistry of 28 was characterized by analysis of the coupling constants and NOESY 

experiment (Table 4.2.1.1 and Figure 4.2.1.5) (Li et al., 2015). The NOESY correlations of H3-28/H-3, 

H3-29/H-2, and the coupling constants of H2-2/H-1 (J = 2.5) and H2-2/H-3 (J = 4.0, 12.0), together with 

the absence of NOESY correlation between H-1 and H-3 determined that two hydroxy groups located at 

C-1 and C-3 in A-ring are α and β configured, respectively (Kubota et al., 2012). The strong NOESY 

correlations of H-1/H-11β (H 2.69), and H3-18/H-11β, H3-18/H-15β (H 1.97), and H3-18/H-16β (H 

1.81) suggested the β-orientations of these protons. Furthermore, H-12 and H3-30 were located on 

opposite sides based on their cross correlations (Li et al., 2015). The key NOE correlations of H3-30/H-

17, H-12/H-17, and H3-18/H-20
 
revealed the β-orientation of the side chain and the S configuration of 

C-20 (Hsu et al., 2011), which were in accordance with general characteristics for the naturally 

occurring lanostane-type triterpenoids (Ríos et al., 2011; Ríos et al., 2012; Li et al., 2015).
 
From a 

biosynthetic standpoint, compounds possessing structural features similar to 28 (lanostane triterpenoids) 

are derived from a common intermediate lanosterol (Brown, 1998; Ríos et al., 2012; Quin et al., 2014; 

Li et al., 2015). The conversion of lanosterol into steroid derivatives in fungi has been investigated and 

reviewed (Brown, 1998; Quin et al., 2014; Li et al., 2015),
 
which implies their general stereo-

configurations. The 22S absolute configuration of 28 in the side chain was supported by the relatively 

small coupling constant of H-20/H-22 (J = 5.0 Hz) (Figure 4.2.1.6) (Isaka et al., 2013; Li et al., 2015), 

as well as the significant differences of 
13

C NMR values of the same side chain between 28 and fungus-

derived 22R inotodiol (Table 4.2.1.2) (Yusoo et al., 2002; Nakata et al., 2007; Li et al., 2015). 

Accordingly, compound 28 was determined as 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-

tetraol. 
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Table 4.2.1.1 
1
H and 

13
C NMR data for 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (28). 

 

Position 

Compound 28 

C, mult.a H mult.b (J in Hz) COSY HMBC 

1 65.7, CH 5.04 t  (2.5) 2  

2 37.0, CH2 2.13 m 1, 3  

3 70.7, CH 4.15 dd (4.0, 12.0) 2  

4 39.7, qC    

5 142.5, qC    

6 124.5, CH 7.21 d (8.0) 7 4, 8, 10 

7 125.5, CH 7.01 d (8.0) 6 5, 9, 14 

8 144.1, qC    

9 134.6, qC    

10 132.2, qC    

11α 34.1, CH2 3.63 dd (8.0, 18.0) 12 8, 9, 12, 13 

11β  2.69 dd (8.0, 18.0)  9, 10, 12 

12 71.8, CH 4.41 t (8.0) 11 17, 18 

13 49.6, qC    

14 53.2, qC    

15α 32.4, CH2 1.75 mc 16α  

15β  1.97 mc  16  

16α 28.3, CH2 2.07 mc 15α, 17  

16β  1.81 mc 17  

17 44.6, CH 2.41 dt (6.5, 9.0) 16,20 18 

18 11.4, CH3 0.70 s  12, 13, 14, 17 

20 41.0, CH 1.86 m 17,21, 22 13, 17, 21, 22 

21 15.3, CH3 1.16 d ( 7.0) 20 17, 20, 22 

22 75.0, CH 3.75 dt (5.0, 7.5) 20, 23 21, 24 

23 32.9, CH2 2.25 dd (7.5, 8.0) 22, 24 22, 24, 25 

24 120.4, CH 5.21 t (8.0) 23, 26, 27 26, 27 

25 136.0, qC    

26 18.1, CH3 1.70 s  24, 25, 27 

27 26.0, CH3 1.78 s  24, 25, 26 

28 27.1, CH3 1.46 s  3, 4, 5, 29 

29 23.7, CH3 1.14 s  3, 4, 5, 28 

30 28.0, CH3 1.10 s  8, 13, 14, 15 
a Recorded in CDCl3 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in CDCl3 at 500 MHz. c Signals 

overlapped.  

 

Table 4.2.1.2 The comparison of the NMR data between compound 28 and inotodiol.  

 

Position 

Compound 28  Inotodiol (Yusoo et al., 2002) 

C, mult.a H mult.b (J in Hz)  C, mult.a H mult.b (J in Hz) 

17 44.6, CH 2.41 dt (6.5, 9.0)  47.3 1.57 m 

18 11.4, CH3 0.70 s  15.7 0.72 s 

20 41.0, CH 1.86 m  41.8 1.80 m 

21 15.3, CH3 1.16 d ( 7.0)  12.6 0.94 d (1.23) 

22 75.0, CH 3.75 dt (5.5, 7.5)  73.5 3.65 m 

23 32.9, CH2 2.25 dd (7.5, 8.0)  27.3 --- 

24 120.4, CH 5.21 t (8.0)  121.4 5.19 t 

25 136.0, qC   135.0  

26 18.1, CH3 1.70 s  18.0 1.66 s 

27 26.0, CH3 1.78 s  26.0 1.57 s 

 a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. 

 



Chapter 4: Results and Discussion  
 

  

 

78  

19-Nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (28): white powder; []
20

D +18.3 (c 0.24, 

MeOH); LC-UV [(acetonitrile (aq) in H2O/0.1% formic acid)] max 222 nm; IR (solid) vmax 3352, 2929, 

1638, 1454, 1413, 1379, 1100, 1033 cm
1

; 
1
H NMR (CDCl3, 500 MHz) and 

13
C NMR (CDCl3, 125 

MHz), see Table 4.2.1.1; Positive ESI-HRMS m/z: 439.3207 [M+H-H2O]
+
 (calcd for C29H43O3, 

439.3207, Δ -0.0319 ppm), [2M+H]
+
 at m/z 913.6559 (calcd for C58H89O8, 913.6552, Δ 0.7386 ppm) (Li 

et al., 2015).  

 

4.2.2 Ergosta-5,7,22-trienol (29, known compound) 

 

 

Compound 29 (code: LG23-12) was isolated as a white crystal. The 
1
H NMR and 

1
H-

1
H COSY spectra 

(Figure 4.2.2.1) showed the presence of a trans-disubstituted double bond at H 5.17 (dd, J = 7.0, 15.0 

Hz) and 5.22 (dd, J = 7.0, 15.0 Hz), a cis-disubstituted double bond at H 5.38 (m) and 5.56 (dd, J = 2.5, 

5.5 Hz), and an oxygenated methine at H 3.63 (m). Two tertiary methyls (H 0.63 and 0.94) and four 

secondary methyls (H 0.82, 0.84, 0.91, and 1.03) were also observed. 
13

C NMR spectrum (Figure 

4.2.2.2) displayed twenty-eight signals including six olefinic carbons and an oxygenated carbon at C 

70.6. The above analysis indicated a basic sterol derivative. Further comparison with the data (Table 

4.2.2.1) in reference (Zhao et al., 2010) confirmed that compound 29 was ergosta-5,7,22-trienol 

(ergosterol).  

 

Table 4.2.2.1 1
H and 

13
C NMR data for compound 29.  

 

Position 
Compound 29  

Ergosta-5,7,22-trienol  

(Zhao et al., 2010) 

C, mult.a H mult.b (J in Hz)  C, mult.a H mult.b (J in Hz) 

1 38.6, CH2   38.5, CH2  

2 32.2, CH2   32.0, CH2  

3 70.6, CH 3.63 m  70.3, CH 3.60 m 

4 41.0, CH2   40.8, CH2  

5 140.0, qC   139.8, qC  

6 119.8, CH 5.56 dd (2.5, 5.5)  119.6, CH 5.57 dd (2.5, 6.6) 
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7 116.5, CH 5.38 m  116.3, CH 5.36 m 

8 141.5, qC   141.4, qC  

9 46.5, CH   46.3, CH  

10 37.2, qC   37.1, qC  

11 21.3, CH2   21.0, CH2  

12 39.3, CH2   39.5, CH2  

13 43.0, qC   43.0, qC  

14 54.8, CH   54.5, CH  

15 28.5, CH2   28.2, CH2  

16 23.2, CH2   23.0, CH2  

17 55.9, CH   56.0, CH  

18 12.2, CH3 0.63 s  12.0, CH3 0.63 s 

19 16.5, CH3 0.94 s  16.3, CH3 0.95 s 

20 40.6, CH   40.0, CH  

21 21.3, CH3 1.03 d (6.5)  21.1, CH3 1.02 d (6.6) 

22 132.2, CH 5.17 dd (7.0, 15.0)  132.0, CH 5.17 dd (6.6, 15.9) 

23 135.8, CH 5.22 dd (7.0, 15.0)  135.6, CH 5.24 dd (6.6, 15.9) 

24 43.0, CH   42.8, CH  

25 33.3, CH   33.1, CH  

26 19.8, CH3 0.82 d (7.0)  19.6, CH3 0.82 d (6.7) 

27 20.1, CH3 0.84 d (7.5)  20.0, CH3 0.84 d (6.6) 

28 17.8, CH3 0.91 d (7.0)  17.6, CH3 0.92 d (6.8)  
a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz.  

 

4.2.3 3β,5α,9α-Trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (30, known compound) 

 

 

 

Compound 30 (code: LG23-32322-2) was isolated as a white powder with a molecular formula 

C28H44O4 assigned from the ESI-HRMS (m/z 427.3205, calcd. for [M+H-H2O]
+
 427.3207, Figure 

4.2.3.1). The 
1
H NMR spectrum (Figure 4.2.3.2) also exhibited two tertiary methyls (H 0.61 and 0.99) 

and four secondary methyls (H 0.82, 0.84, 0.91, and 1.02) in addition to a trans-disubstituted double 

bond at H 5.15 (dd, J = 7.2, 15.2 Hz) and 5.23 (dd, J = 7.2, 15.2 Hz). Moreover, an olefinic hydrogen at 

H 5.63 (br s) was present. The 
13

C NMR spectrum (Figure 4.2.3.2) coupled with HSQC spectrum 

(Figure 4.2.3.3) showed an oxygenated methine and two oxygenated quaternary carbons, as well as an 

,-unsaturated carbonyl signal (C, 198.5). These data accounted for key 
1
H and 

13
C NMR resonances 

and revealed an ergosterol derivative. The planar structure was further constructed by HMBC 
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correlations with the help of 
1
H-

1
H COSY data (Figure 4.2.3.4). A search in SciFinder, together with the 

NMR data determined compound 30 to be 3β,5α,9α-Trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one. 

The comparison of the 1D NMR data with those reported in reference (Xiong et al., 2009) is shown in 

Table 4.2.3.1.  

 

Table 4.2.3.1 
1
H and 

13
C NMR data for compound 30.  

 

Position Compound 30  

3β,5α,9α-Trihydroxy-(22E,24R)-

ergosta-7,22-dien-6-one  

(Xiong et al., 2009) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 25.7, CH2 1.49 me, 2.33 t (13.2)  25.7, CH2  

2 30.2, CH2 1.44 me, 1.93 me   30.0, CH2  

3 67.4, CH 4.06 m  67.4, CH 4.04 m 

4 37.1, CH2 1.73 me, 2.08 me   36.8, CH2  

5 79.7, qC   79.6, qC   

6 198.5, qC   199.0, qC  

7 119.9, CH 5.63 br s  119.9, CH 5.61 br s 

8 165.1, qC   165.4, qC  

9 74.9, qC   74.9, qC   

10 41.9, qC   41.9, qC  

11 28.9, CH2 1.72 me, 1.88 me   29.8, CH2  

12 35.1, CH2 1.72 me, 1.86 me   35.1, CH2  

13 45.5, qC   45.5, qC  

14 52.0, CH 2.73 dd (6.4, 10.0)  52.0, CH  

15 22.6, CH2 1.46 me, 1.57 me   22.6, CH2  

16 28.1, CH2 1.34 me, 1.78 me   28.1, CH2  

17 56.2, CH 1.42 me    56.2, CH  

18 12.5, CH3 0.61 s  12.5, CH3 0.61 s 

19 20.6, CH3 0.99 s  20.5, CH3 0.98 s 

20 40.5, CH 2.01 me   40.5, CH  

21 21.3, CH3 1.02 d (6.4)  21.3, CH3 1.02 d (6.6) 

22 135.3, CH 5.15 dd (7.2, 15.2)  135.5, CH 5.16 dd (6.6, 15.3) 

23 132.6, CH 5.23 dd (7.2, 15.2)  132.6, CH 5.24 dd (6.9, 15.3) 

24 43.0, CH 1.84 me   43.0, CH  

25 33.3, CH 1.45 me   33.3, CH  

26 20.2, CH3 0.82 d (6.8)  20.2, CH3 0.82 d (6.6) 

27 19.9, CH3 0.84 d (6.8)  19.6, CH3 0.84 d (6.6) 

28 17.8, CH3 0.91 d (6.8)  17.8, CH3 0.92 d (6.9)  
a Recorded in CDCl3 at 100 MHz. b Recorded in CDCl3 at 400 MHz. c Recorded in CDCl3 at 75 MHz. d Recorded in CDCl3 at 300 MHz. 

e overlapped. 

 

4.2.4 3β,5α,9α,14α-Tetrahydroxy-(22E,24R)-ergosta-7,22-dien-6-one (31, known compound) 
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Compound 31 (code: LG23-32322-1) was obtained as a white powder. Its molecular formula was 

deduced as C28H44O5 as determined from ESI-HRMS (m/z 425.3056, calcd. for [M+H-2×H2O]
+
 

425.3050, Figure 4.2.4.1). The 
1
H NMR data coupled with HSQC spectrum of 31 (Figure 4.2.4.2) was 

closely related to those of 30, except for the absence of H-14 (δH 2.73) in 30 and the downfield shift of 

H-7 (δH 5.63 in 30; 5.94 in 31). Considering the MS requirement, compound 31 was proposed to have a 

hydroxyl group at C-14 and should possess the same structure as 3β,5α,9α,14α-tetrahydroxy-(22E,24R)-

ergosta-7,22-dien-6-one, which was further confirmed through the comparison of the NMR data of 31 

with reference data (Table 4.2.4.1) (Yaoita et al., 1998).  

 

Table 4.2.4.1 
1
H and 

13
C NMR data for compound 31.  

 

Position 
Compound 31 

 3β,5α,9α,14α-Tetrahydroxy-(22E,24R)-

ergosta-7,22-dien-6-one (Yaoita et al., 1998)  

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 24.7, CH2 2.35 ddd (14.5, 14.5, 5.0) 

1.49 m 

 25.7, CH2 α 2.70 ddd (14.0, 14.0, 3.8) 

2 31.3, CH2   31.3, CH2  

3 67.0, CH 4.09 m  66.6, CH 4.61 m 

4 36.5, CH2 1.67 m, 2.10 m  37.8, CH2 α 2.82 dd (12.0, 5.3) 

5 78.9, qCf   79.6, qC  

6 NSe   199.3, qC  

7 122.0, CH 5.94 s  122.1, CH 6.25 s 

8 NSe   158.9, qC  

9 76.7, qCf   77.2, qC   

10 42.5, qCf   42.8, qC  

11 29.8, CH2   31.0, CH2  

12 27.5, CH2   28.5, CH2  

13 46.7, qCf   47.3, qC  

14 87.1, qCf   86.2, qC   

15 26.2, CH2   27.4, CH2  

16 28.0, CH2   28.0, CH2  

17 49.9, CH   50.5, CH  

18 16.4, CH3 0.71 s  16.6, CH3 0.73 s 

19 20.1, CH3 1.02 s  20.2, CH3 1.13 s 

20 39.7, CH 2.09 m  40.4, CH 2.13 m 

21 21.1, CH3 1.03 d (8.0)  21.5, CH3 1.09 d (6.6) 

22 134.7, CH 5.19 dd (7.5, 15.0)  135.2, CH 5.26 dd (8.1, 15.4) 

23 132.5, CH 5.27 dd (7.5, 15.0)  132.4, CH 5.31 dd (7.3, 15.4) 

24 42.9, CH   43.1, CH  
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25 32.7, CH   33.3, CH  

26 19.5, CH3 0.83 d (7.0)  19.9, CH3 0.85 d (7.0) 

27 19.8, CH3 0.85 d (7.5)  20.2, CH3 0.86 d (6.6) 

28 17.5, CH3 0.92 d (6.5)  17.8, CH3 0.94 d (7.0)  

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in C5D5N at 150 MHz. d Recorded in C5D5N at 600 MHz. 

e Not assigned. f assigned from HMBC spectrum. 

 

4.2.5 (22E,24R)-Ergosta-7,9(11),22-triene-3β,5α,6α-triol (32, known compound) 

 

 

 

Compound 32 (code: LG23-32322-5) was purified as a white solid. A molecular formula of C28H44O3 

(seven double bond equivalents) was assigned from the ESI-HRMS (m/z 411.3251, calcd. for [M+H-

H2O]
+
 411.3258, Figure 4.2.5.1). The UV spectrum showed an absorption maximum at 228 nm. The 

above results are similar to that of compounds 30 and 31. Furthermore, detailed analysis of 
1
H NMR 

spectrum (Figure 4.2.5.2) revealed similar structural features such as two tertiary methyls (H 0.56 and 

1.11) and four secondary methyls (H 0.83, 0.85, 0.92, and 1.02). A trans-disubstituted double bond 

located in the side chain was verified by the presence of two olefinic protons at H 5.17 (dd, J = 8.5, 15.0 

Hz) and 5.25 (dd, J = 7.5, 15.0 Hz). In addition, the 3-OH was also proposed based on the observed 

oxygenated methine at H 4.03. These data suggested compound 32 was also an ergosterol derivative. 

Unfortunately, owing to the limited amount of 32 available for further NMR measurement, clear 
13

C 

NMR spectrum were not obtained but the strong correlations especially based on methyl groups in 

HMBC spectrum (Figure 4.2.5.3) was useful to connect the proposed structural units of 32. Therefore, 

according to these data and further comparison with the literature (Table 4.2.5.1) (Anastasia et al., 1979; 

Ishizuka et al., 1997), compound 32 was concluded to be (22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6α-

triol.  
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Table 4.2.5.1 
1
H and 

13
C NMR data for compound 32.  

 

Position 

Compound 32  (22E,24R)-Ergosta-7,9(11),22-

triene-3β,5α,6β-triol (Ishizuka et 

al., 1997) 

 (22E,24R)-Ergosta-

7,9(11),22-triene-3β,5α,6α-

triol (Anastasia et al., 1979)   

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz)  H mult.f (J in Hz)  

1 30.1, CH2   29.7, CH2    

2 30.6, CH2   30.8, CH2    

3 66.7, CH 4.03 m  67.7, CH 4.12 m  4.00 m 

4 37.4,g CH2   42.2, CH2 β 2.07 dd (12.8, 11.4)   

5 76.1, qC   75.3, qC    

6 70.4,g CH 3.99 m  74.0, CH 3.82 br s   

7 121.3, CH 5.17 me  118.2, CH 5.45 br d (5.6)  5.14 m 

8 137.2, qC   138.9, qC    

9 139.4, qC   140.0, qC    

10 41.1, qC   40.7, qC    

11 125.0, CH 5.69 br d (6.5)  126.4, CH 5.75 br d (6.3)  5.65 m 

12 42.2, CH2   42.5, CH2    

13 42.4, qC   42.5, qC    

14 51.3, CH   51.4, CH    

15 22.8, CH2   23.1, CH2    

16 28.6, CH2   28.7, CH2    

17 56.1, CH   56.0, CH    

18 11.2, CH3 0.56 s  11.5, CH3 0.60 s  0.53 s 

19 24.2,g CH3 1.11 s  26.3, CH3 1.28 s  1.06 s 

20 40.5, CH   40.3, CH    

21 20.4, CH3 1.02 d (6.5)  20.7, CH3 1.02 d (6.6)   

22 135.7, CH 5.17 dd (15.0, 8.5)  135.2, CH 5.16 dd (15.2, 7.8)  5.23 m 

23 132.5, CH 5.25 dd (15.0, 7.5)  132.3, CH 5.26 dd (15.2, 7.1)  5.23 m 

24 42.7, CH   42.8, CH    

25 32.9, CH   33.1, CH    

26 19.4, CH3 0.83 d (7.0)  19.6, CH3 0.83 d (6.8)   

27 19.8, CH3 0.85 d (7.0)  19.9, CH3 0.84 d (6.6)   

28 17.5, CH3 0.92 d (6.5)  17.6, CH3 0.92 d (6.8)   

a Assigned from HSQC and HMBC spectra at 500 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in CDCl3 at 150 MHz. d 

Recorded in CDCl3 at 600 MHz. e overlapped. f Recorded in CDCl3 at 100 MHz. g Had significant differences with that in literature.  
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4.2.6 Chaxine C (33, known compound)  

 

 

 

Compound 33 (code: LG23-222-7), as a white solid, has a molecular formula C28H40O4 as derived from 

ESI-HRMS (m/z 441.3005, calcd. for [M+H]
+
 441.2999, Δ 1.2233 ppm) (Figure 4.2.6.1). Two 

characteristic fragment ions at m/z 333.2425 [M+H-C7H8O]
+
 and 315.2319 [M+H-C7H10O2]

+
 were 

observed (Figure 4.2.6.1). It presented the UV absorption maximum at 224 nm. The 
1
H and 

13
C NMR 

spectra (Figure 4.2.6.2) in combination with the HSQC spectrum (Figure 4.2.6.3) established the 

presence of two tertiary methyls, four secondary methyls, six methylenes, five methines, two quaternary 

carbons (one oxygenated), six aromatic/olefinic carbons including a cis-disubstituted and a trans-

disubstituted double bonds, and three carbonyl carbons (one conjugated). These data accounted for all 

1
H and 

13
C NMR resonances. Interpretation of 

1
H-

1
H COSY spectrum (Figure 4.2.6.3) determined the 

connection from C-3' to C-6', from C-5 to C-6, from C-8 to C-11, and C-13 to C-17, as well as from C-

18 to C-20. Key HMBC correlations (Figure 4.2.6.4) from H3-12 to C-6, C-7, C-8, and C-11, from H3-

19 and H3-20 to C-17, from H2-5 to C-3 and C-4, and from H-2 to C-1, C-4, and C-8 indicated the C and 

D rings attached with a side chain. The above substructure is similar to that of ergosterol derivatives. 

However, further HMBC correlations (Figure 4.2.6.4) of H3-7'/C-1', H3-7'/C-2', H3-7'/C-3', H2-3'/C-1', 

and H-5'/C-1 determined a modified cyclohexanone motif. Considering the chemical shifts of C-1 (C 

164.4) and C-2' (C 81.4) and the MS requirement, the planar structure of compound 33 was constructed 

through an oxygen bridge between the two substructures mentioned above, which was also supported by 

the MS fragment information (Figure 4.2.6.1). Finally, through comparison with the literature data 

(Table 4.2.6.1) (Choi et al., 2009), compound 33 was elucidated as chaxine C. 
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Table 4.2.6.1 
1
H and 

13
C NMR data for compound 33. 

 

Position 

Compound 33  Chaxine C (Choi et al., 2009) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 164.4, qC   164.2, qC  

2 117.7, CH 5.64 d (2.5)  117.5, CH 5.65 d (1.5) 

3 156.4, qC   156.2, qC  

4 204.7, qC   204.6, qC   

5α 39.2, CH2 2.46 m  39.0, CH2 2.43 m 

5β  2.72 ddd (15.5, 13.5, 7.5)   2.70 ddd (13.4, 7.0, 7.3) 

6α 38.2, CH2 1.67 ddd (13.0, 13.0, 5.5)  38.0, CH2 1.65 ddd (13.4, 12.8, 5.5) 

6β  2.20 ddd (13.0, 7.5, 2.0)   2.18 m 

7 46.7, qC   46.5, qC  

8 58.0, CH 2.48 m  57.8, CH 2.44 m 

9 21.9, CH2 1.52 me, 1.58 me  21.8, CH2 1.46 m, 1.53 m 

10 29.2, CH2 1.48 me, 1.89 me  29.0, CH2 1.45 m, 1.86 m 

11 55.6, CH 1.42 me  55.3, CH 1.38 dd (18.3, 9.0) 

12 12.3, CH3 0.89 s  12.1, CH3 0.85 s 

13 40.3, CH 2.08 m   40.1, CH 2.06 m 

14 21.2, CH3 1.02 d (6.5)  21.0, CH3 1.00 d (6.4) 

15 134.8, CH 5.15 dd (15.0, 8.5)  134.6, CH 5.12 dd (15.3, 8.5) 

16 133.1, CH 5.26 dd (15.0, 8.0)  132.9, CH 5.23 dd (15.3, 7.6) 

17 43.0, CH 1.85 m  42.8, CH 1.84 m 

18 33.2, CH 1.47 m  33.0, CH 1.45 m 

19 19.8, CH3 0.84 d (7.0)  19.6, CH3 0.82 d (7.6) 

20 20.1, CH3 0.82 d (7.0)  19.9, CH3 0.80 d (7.6) 

21 17.8, CH3 0.92 d (7.0)  17.6, CH3 0.90 d (6.7) 

1' 195.9, qC   196.7, qC   

2' 81.4, qC   81.2, qC  

3' 32.3, CH2 2.02 me 

2.93 ddd (13.0, 11.0, 5.5) 

 32.1, CH2 2.01 m 

2.91 ddd (12.1, 6.1, 5.7) 

4' 25.0, CH2 2.43 m, 2.50 m  24.7, CH2 2.40 m, 2.45 m 

5' 149.0, CH 6.89 m  148.1, CH 6.86 m 

6' 128.3, CH 6.03 br d (10.5)  128.1, CH 6.01 d (10.5) 

7' 22.1, CH3 1.48 s  21.9, CH3 1.46 s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in CDCl3 at 125 MHz. d Recorded in CDCl3 at 500 MHz. e 

overlapped.  
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4.2.7 Demethylincisterol A3 (34, known compound) 

 

 

 

Compound 34 (code: LG23-222-5), a white solid, has a molecular formula C21H32O3 as determined by 

the ESI-HRMS (m/z 333.2425, calcd. for [M+H]
+
 333.2424, Δ 0.2139 ppm) (Figure 4.2.7.1). The MS 

also showed the loss of one water molecule (m/z 315.2321, calcd. for [M+H-H2O]
+
 315.2319, Δ 0.8247 

ppm), suggesting the possible presence of a hydroxy group in 34. As expected, 
13

C NMR spectrum 

(Figure 4.2.7.2) showed twenty-one carbon signals. Although the MS data of 34 is quite different from 

those of compounds elucidated before, the 
13

C and 
1
H NMR spectra (Figure 4.2.7.2) exhibited the same 

signals for the side chain to those of compounds 29–33. One more methyl singlet at H 0.61 and C 11.9 

was also observed, and one lactone group was proposed to be present in 34 on the basis of the chemical 

shifts (C 170.9) and MS requirement. The above analysis enabled us to obtain several important 

structural characters, which were further considered in a structure search using ‘Molecular Formula’ 

mode in Scifinder. Finally, a compound named demethylincisterol A3 was proposed to have the same 

structure as 34, which was successfully confirmed through the comparison of 1D NMR data of 34 with 

that reported in the literature (Table 4.2.7.1) (Togashi et al., 1998; Mansoor et al., 2005). 

 

Table 4.2.7.1 
1
H and 

13
C NMR data for compound 34. 

 

Position 

Compound 34  Demethylincisterol A3 (Togashi et al., 

1998; Mansoor et al., 2005) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

6 170.9, qC   171.8, qC  

7 112.5, CH 5.63 d (2.0)  112.0, CH 5.61 d (2.0) 

8 170.7, qC   171.2, qC  

9 104.9, qC    105.4, qC   

11α 35.5, CH2 2.28 ddd (2.0, 3.5, 14.0)  35.2, CH2 2.30 ddd (2.4, 3.9, 13.7) 

11β  NSf   1.84 ddd (4.9, 13.0, 13.7) 
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12α 35.3, CH2 NSf  35.1, CH2 1.63 ddd (3.9, 13.0, 13.2) 

12β  1.98 ddd (2.5, 5.0, 13.0)   1.96 ddd (2.4, 3.9, 13.7) 

13 49.0, qC   48.9, qC  

14 50.5, CH 2.65 ddd (1.5, 6.5, 11.5)  50.4, CH 2.66 ddd (2.0, 5.9, 11.2) 

15 21.6, CH2   21.4, CH2 α 1.72 m, β 1.48 m 

16 29.0, CH2   28.9, CH2 α 1.90 m, β 1.47 m 

17 55.6, CH   55.4, CH  1.50 m 

18 11.9, CH3 0.61 s  11.8, CH3 0.60 s 

20 40.3, CH   40.2, CH 2.05 m 

21 21.2, CH3 1.04 d (6.5)  21.0, CH3 1.04 d (6.8) 

22 134.8, CH 5.17 dd (7.5, 15.0)  134.7, CH 5.17 dd (8.3, 15.2) 

23 133.1, CH 5.26 dd (8.5, 15.0)  132.8, CH 5.26 dd (7.3, 15.1) 

24 43.0, CH   42.9, CH 1.86 m 

25 33.2, CH   33.1, CH 1.49 m 

26 19.8, CH3 0.83 d (6.5)  19.7, CH3 0.83 d (6.8) 

27 20.1, CH3 0.84 d (6.5)  20.0, CH3 0.84 d (6.8) 

28 17.8, CH3 0.92 d (7.0)  17.6, CH3 0.92 d (6.8) 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in CDCl3 at 150 MHz. d Recorded in CDCl3 at 600 

MHz. e overlapped. f Not assigned.  

  

4.2.8 Volemolide (35, known compound) 

 

 

 

The molecular formula of compound 35 (code: LG23-222-8) was established as C22H34O3 based on the 

ESI-HRMS information ([M+H]
+
 at m/z 347.2584, calcd. 347.2581, Δ 0.9240 ppm; [M+H-CH3OH]

+
 at 

m/z 315.2322, calcd. 315.2319, Δ 1.2119 ppm) (Figure 4.2.8.1). The comparison of UV and MS data 

between compounds 34 and 35 indicated that compound 35 was similar to 34. Further comparison of 

their 
1
H and 

13
C NMR spectra (Figure 4.2.8.2) enabled us to find a significant difference due to the 

existence of one methoxy in 35. As indicated in MS/MS data ([M+H-H2O]
+
 315.2318 in 34; [M+H-

CH3OH]
+ 

315.2321 in 35), the hydroxy group in 34 was replaced by the methoxy in 35. The whole 
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structure was confirmed by the comparison of 1D NMR data with literature data (Table 4.2.8.1) (Kobata 

et al., 1994) and was identical with the known compound volemolide (Kobata et al., 1994).  

 

Table 4.2.8.1 
1
H and 

13
C NMR data for compound 35. 

 

Position 

Compound 35  Volemolide (Kobata et al., 1994) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

6 170.9, qC   170.7, qC  

7 114.4, CH 5.75 d (1.5)  114.2, CH 5.75 d (1.7) 

8 169.3, qC   169.1, qC  

9 108.0, qC    107.8, qC   

11α 34.7, CH2 2.33 ddd (3.0, 4.0, 14.5)  34.5, CH2 2.33 ddd (2.2, 3.5, 13.3) 

11β  NS e   1.77 m 

12α 35.2, CH2    35.0, CH2 1.57 m 

12β     1.93 m 

13 49.1, qC   48.9, qC  

14 50.8, CH 2.41ddd (1.5, 6.5, 11.5)  50.6, CH 2.41ddd (1.7, 6.0, 9.4) 

15 21.5, CH2   21.3, CH2 α 1.73 m, β 1.49 m 

16 29.0, CH2   28.9, CH2 α 1.90 m, β 1.48 m 

17 55.7, CH    55.5, CH  1.50 m 

18 12.1, CH3 0.61 s  11.9, CH3 0.61 s 

20 40.3, CH   40.1, CH 2.06 m 

21 21.2, CH3 1.03 d (6.5)  21.0, CH3 1.03 d (6.6) 

22 134.8, CH 5.16 dd (8.5, 15.0)  134.7, CH 5.16 dd (7.3, 15.3) 

23 133.0, CH 5.25 dd (7.5, 15.0)  132.9, CH 5.26 dd (7.3, 15.3) 

24 43.0, CH   42.8, CH 1.87 m 

25 33.2, CH   33.0, CH 1.48 m 

26 19.8, CH3 0.82 d (7.0)  19.6, CH3 0.82 d (6.7) 

27 20.1, CH3 0.84 d (7.0)  20.0, CH3 0.84 d (6.7) 

28 17.8, CH3 0.92 d (7.0)  17.6, CH3 0.92 d (6.8) 

OMe 50.3, CH3 3.12, s  50.1, CH3 3.12, s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in CDCl3 at 62.5 MHz. d Recorded in CDCl3 at 250 MHz. 

e Not assigned.  

 

4.2.9 4-Hydroxybenzaldehyde (36, known compound) 
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Compound 36 (code: LG23-232) was obtained as a white powder. It has the well-resolved UV bands 

with maxima at 222 and 282 nm. ESIMS in the negative mode (Figure 4.2.9.1) provided an ion peak at 

m/z 120.70, corresponding to [M-H]
-
. The 

1
H NMR spectrum revealed a possible symmetrical structure 

owing to the double-integration of signals at H 6.91 and 7.77 compared to proton at H 9.76. Key 

HMBC correlations of H-2 and H-6 to C-4 and C-7, as well as H-3 and H-5 to C-1, is shown in Figure 

4.2.9.2. Accordingly, the structure of compound 36 was established as the known compound 4-

hydroxybenzaldehyde which has the identical NMR data with that of 36 (Table 4.2.9.1) (Shi et al., 

2014). 

 

Table 4.2.9.1 
1
H and 

13
C NMR data for compound 36. 

 

Position 

Compound 36  4-Hydroxybenzaldehyde 

(Shi et al., 2014) 

C, mult.a H mult.b (J in Hz)  H mult.c (J in Hz) 

1 130.0, qC    

2, 6 133.3, CH 7.77 d (8.5)  7.77 d (8.5) 

4 165.0, qC    

3, 5 116.8, CH 6.91 d (8.5)  6.91 d (8.5) 

7 192.5, CH 9.76 s  9.76 s 

a Assigned from HMBC spectrum in CD3OD at 500 MHz. b Recorded in CD3OD at 500 MHz. c Recorded in CDCl3 at 500 MHz. 

 

4.2.10 1H-indole-3-carbaldehyde (3-formylindole) (37, known compound)  

 

 

 

Compound 37 (code: LG23-3213) was isolated as a white powder. The interpretation of 
1
H-

1
H COSY 

spectrum (Figure 4.2.10.1) indicated the connection from C-4 to C-7. The benzene ring was constructed 

by HMBC correlations of H-4/C-7a and H-7/C-3a (Figure 4.2.10.2). The proton signal of aldehyde was 

correlated to C-3 and C-3a in HMBC spectrum (Figure 4.2.10.2). In addition, HMBC correlations from 

H-2 to C-3 and C-7a were observed. Considering the chemical shifts of C-2 and C-7a, and through the 

comparison of NMR data with that of reference data (Table 4.2.10.1), the structure was determined to be 

the known compound 1H-indole-3-carbaldehyde (Wang et al., 2013).  
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Table 4.2.10.1 
1
H and 

13
C NMR data for compound 37. 

 

Position 

Compound 37  1H-indole-3-carbaldehyde 

(3-formylindole) (Wang et al., 2013) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1      

2 139.8, CH 8.09 s  139.4, CH 8.26 d (2.3) 

3 119.9, qC   118.4, qC  

3a 125.7, qC   124.7, qC  

4 122.3, CH 8.16 d (7.5)  121.5, CH 8.07 d (7.6) 

5 123.6, CH 7.24 dd (7.0)  123.1, CH 7.19 dd (7.8, 7.6) 

6 124.8, CH 7.28 dd (7.5)  124.4, CH 7.24 dd (8.0, 7.8) 

7 113.0, CH 7.48 d (8.0)  113.2, CH 7.49 d (8.0) 

7a 138.9, qC   137.6, qC  

8 187.3, CH 9.89 s  185.5, CH 9.91 s 

a Assigned from HMBC spectrum in CD3OD at 500 MHz. b Recorded in CD3OD at 500 MHz. c Recorded in DMSO-d6 at 150 MHz. d 

Recorded in DMSO-d6 at 600 MHz.  

 

4.2.11 Uridine (38, known compound)  

 

 

 

Compound 38 (code: LG23-633) was isolated as a white powder with a molecular formula C9H12O6N2 

as derived from ESI-HRMS (m/z 245.0771, calcd. for [M+H]
+
 245.0768, Δ 1.0591 ppm, Figure 

4.2.11.1). 
1
H NMR spectrum (Figure 4.2.11.2) showed eight signals for cis-double bond protons at H 

5.70 (d, J = 8.0 Hz) and 7.99 (d, J = 8.0 Hz), together with six oxygenated protons including a down-

field shifted signal at H 5.90 (d, J = 5.0 Hz). Interpretation of 
1
H-

1
H COSY spectrum (Figures 4.2.11.2 

and 4.2.11.3) revealed the connection from C-5 to C-6, from C-1' to 2', and from C-3' to C-5'. Further 

analysis of HMBC spectrum (Figure 4.2.11.3) afforded the whole structure as a known compound 

uridine on the basis of key HMBC correlations of H-5/C-4, H-6/C-4, H-6/C-2, H-6/C-1', H-1'/C-2, H-
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1'/C-3', and H-1'/C-4'. The NMR data of compound 38 was consistent with that of known compound 

(Table 4.2.11.1) (Mantsch and Smith, 1973).  

 

Table 4.2.11.1 
1
H and 

13
C NMR data for compound 38. 

 

Position 

Compound 38  Uridine (Mantsch 

and Smith, 1973) 

C, mult.a H mult.b (J in Hz)  C, mult.c 

2 151.9, qC   152.3, qC 

4 165.7, qC   164.6, qC 

5 102.1, CH 5.70 d (8.0)  103.3, CH 

6 142.2, CH 7.99 d (8.0)  142.3, CH 

1' 90.0, CH 5.90 d (5.0)  89.3, CH 

2' 75.1, CH 4.18 t (5.0)  75.1, CH 

3' 70.7, CH 4.15 t (5.0)  71.4, CH 

4' 86.1, CH 4.01 m  86.3, CH 

5' 62.1, CH2 3.73 dd (2.5, 12.0) 

3.84 dd (3.0, 12.0) 

 62.4, CH2 

a Recorded in CD3OD at 125 MHz. b Recorded in CD3OD at 500 MHz. c Recorded in DMSO-d6 at 25.16 MHz.  

 

4.2.12  2-Acetyl-7-methoxy-4,6-dimethyl-1H-isoindol-1-one (39, new compound) 

 

 

 

Compound 39 (code: LG23-133) was isolated as a white solid with a molecular formula C13H15NO3 as 

determined by ESI-HRMS (m/z 234.1123, calcd. for [M+H]
+
 234.1125, Δ -0.6404 ppm, Figure 4.2.12.1). 

1D NMR data (Figure 4.2.12.2 and Table 4.2.12.1) coupled with HSQC spectrum revealed the presence 

of four methyl groups (one oxygenated), one methylene, six aromatic/olefinic carbons including an 

oxygenated quaternary carbon (δC 155.7) and a methine carbon (δH 7.26, δC 138.4), and two amide 

carbonyls (δC 166.6 and 171.6). The above data accounted for all NMR resonances. HMBC correlations 

(Figures 4.2.12.3 and 4.2.12.4) of H3-10 with C-3a, C-4 and C-5, H3-11 with C-5, C-6 and C-7, and H-5 

with C-3a and C-7 determined a benzene ring with two methyl groups. Furthermore, a methoxy group 

located at C-7 was confirmed by the HMBC correction between H3-12 and C-7. Key HMBC cross-peaks 



Chapter 4: Results and Discussion  
 

  

 

92  

(Figure 4.2.12.4) from H2-3 to C-1, C-3a and C-7a, together with the chemical shifts of C-1 and C-3 (δH 

4.63, δC 47.0) indicated a γ-lactam fused with the benzene ring. The nitrogen was further substituted 

with an acetyl unit, which was proved by the HMBC correlation from H3-9 to C-8, and the MS 

requirement. Finally, we applied the quantum chemical calculations to predict the 
13

C NMR chemical 

shifts (Sarotti and Pellegrinet, 2009). A comparison of the calculated 
13

C NMR values by GIAO method 

(gauge including atomic orbitals) at the B3LYP/6-31+G(d,p)//mPW1PW91/6-31+G(d) level and the 

corresponding experimental chemical shifts for compound 39 was shown in Table 4.2.12.1. A good 

matching between the experimental and calculated 
13

C NMR values supports the structure of 39. 

Accordingly, the structure of compound 39 was determined as shown.  

 

Table 4.2.12.1 
1
H and 

13
C NMR data for compound 39. 

 

Position 

Compound 39  NMR calculation 

C, mult.a H mult.b  

(J in Hz) 

 C, mult.c deviationd 

1 166.6, qC   166.9 0.3 

2      

3 47.0, CH2 4.63 s  47.6 0.6 

3a 139.5, qC   141.5 2.0 

4 128.0, qC   127.9 -0.1 

5 138.4, CH 7.26 s  138.8 0.4 

6 131.9, qC   133.2 1.3 

7 155.7, qC   156.0 0.3 

7a 122.3, qC   123.3 1.0 

8 171.6, qC   171.7 0.1 

9 25.1, CH3 2.68 s  26.4 1.3 

10 17.0, CH3 2.26 s  18.2 1.2 

11 15.5, CH3 2.30 s  18.2 2.7 

12 62.1, CH3 3.97 s  59.1 -3 

a Recorded in CDCl3 at 150 MHz. b Recorded in CDCl3 at 600 MHz. cCalculated 13C NMR data. d The deviation between calculated and 

experimental 13C NMR data.  

 

2-Acetyl-7-methoxy-4,6-dimethyl-1H-isoindol-1-one (39): white powder; LC-UV [(acetonitrile (aq) in 

H2O/0.1% formic acid)] max 218, 306 nm; 
1
H NMR (CDCl3, 600 MHz) and 

13
C NMR (CDCl3, 150 

MHz), see Table 4.2.12.1. Positive ESI-HRMS m/z: 234.1123 [M+H]
+
 (calcd for C13H16NO3, 234.1125, 

Δ -0.6404 ppm). 
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4.3 Secondary metabolites isolated from Fusarium decemcellulare LG53 

 

Three new cyclic pentapeptides (4042), together with two cyclic lipopeptides (43 and 44) in which 44 

is a new compound, were isolated from the rice culture of an endophytic fungus, F. decemcellulare 

LG53, harbored in the stem of a traditional medicinal plant M. fortunei collected from Guangdong, P. R. 

China. 

 

 

 

A new pyrone derivative (45), a known xanthone derivative (46), as well as a known triterpenoid (47) 

were also isolated and purified in parallel. Moreover, compound 34 previously obtained from Diaporthe 

sp. LG23, was also found and isolated from F. decemcellulare LG53.   
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4.3.1 Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Ile) (40, new compound) 

 

 

 

Compound 40 (code: LG53-924) was isolated as a white amorphous powder with a molecular formula 

C30H55O5N5 (six double bond equivalents) as established from the ESI-HRMS information (m/z: 

566.4282 [M+H]
+
, calcd. 566.4276, Δ 1.1058 ppm, Figure 4.3.1.1). MS

2
 spectrum (Figure 4.3.1.1) 

showed three leucine/isoleucine (Leu/Ile) residues and an important fragment ion at m/z 227.1752 

[M+H-3×C6H11ON]
+ 

from the pseudomolecular ion at m/z 566.43 [M+H]
+
, which was same with that of 

cyclo-(L-Leu-L-Leu-L-Leu-L-Leu-L-Ile) (Taontsi et al., 2012). At the beginning of NMR measurement, 

we used CDCl3:CD3OD (1:3) as the NMR solvent. The 
1
H and 

13
C NMR data (Figure 4.3.1.2) displayed 

the similar structural features as that for cyclo-(L-Leu-L-Leu-L-Leu-L-Leu-L-Ile). Five amide carbonyls 

and five α-methines were clearly observed. In order to finally confirm the structure and considering the 

importance of NH groups for assigning the amino acids sequence, we measured NMR data of 40 in 

DMSO-d6 and found five down-field signals corresponding to amide protons (Figure 4.3.1.3 and Table 

4.3.1.1). Furthermore, four Leu residues and one Ile were defined based on correlations from amide 

protons, α-proton, and butyl groups in 
1
H-

1
H COSY and TOCSY spectra (Figure 4.3.1.4). Key HMBC 

correlations (Figures 4.3.1.5 and 4.3.1.6) of the α-proton and/or NH of one amino acid residue with the 

carbonyl carbon of the neighboring residue were observed for determining the amino acids sequence, 

which was also supported by the NOESY correlations (Figure 4.3.1.6). According to the requirement of 

MS, compound 40 as a peptide, should be cyclic. Finally, a single-crystal X-ray diffraction study 

allowed the assignment of its relative configuration as shown (Figure 4.3.1.7). The absolute 

configuration of 40 was also verified on the basis of the Flack parameter χ = 0.02 (7). Interestingly, the 
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crystal lattice displayed that three monomers were coupled together through several hydrogen bonds, 

affording a fascinating three-dimensional structure containing a channel inside. The absolute 

configuration of five amino acid residues was also defined by applying the Marfey’s method. The acid 

hydrolysate of 40 and amino acid standards were derivatized with Marfey’s reagent (FDAA). LC-MS 

analysis (Figure 4.3.1.8) showed that the configuration of one Leucine residue was D while that for 

others were L. The above analysis finally confirmed this pentapeptide as cyclo-(L-Leu-L-Leu-D-Leu-L-

Leu-L-Ile).  

 

Table 4.3.1.1 
1
H and 

13
C NMR data (in DMSO-d6) of compound 40.  

Unit No. C, mult.
a,d

 H mult.
b
 (J in Hz) Selected HMBC

b
 Selected COSY

b
 NOE 

Leu
1
 1 171.3, Cq     

2 52.2, CH 4.32, m 1, 3 3, Leu
1
-NH  

3 40.5, CH2 1.44, m
c
 

1.54, m
c
 

1 

1 

2  

4 24.8, CH 1.44, m
c
 2, 3, 5, 6   

5 22.9, CH3 0.88, m
c
    

6 22.7, CH3 0.90, m
c 
 3, 4, 5   

NH  7.20, d (6.5)  Leu
2
-1 (weak) 2 2 

       

Leu
2
 1 171.7, Cq     

2 52.5, CH 4.07, m 1, 3 3, Leu
2
-NH  

3 40.2, CH2 1.50, m
c
  2  

4 24.7, CH 1.59, m
c
 3, 5, 6   

5 21.0, CH3 0.77, d (6.0) 3, 4, 6   

6 23.4, CH3 0.86, m
c
 3   

NH  8.60, d (8.0) Leu
3
-1 2  Leu

3
-2 

       

Leu
3
 1 172.0, Cq     

2 52.4, CH 4.15, m 1, 3 3, Leu
3
-NH Leu

2
-NH 

3 39.0, CH2 1.37, m
c
 

1.49, m
c
 

1, 2, 4, 5 

1 

2  

4 25.1, CH 1.49, m
c
    

5 22.9, CH3 0.83, d (6.5) 3, 4, 6   

6 22.5, CH3 0.88, m
c
 3   

NH  8.73, d (6.0) Leu
4
-1 2 Leu

4
-2 

       

Leu
4
 1 173.1, Cq     

2 50.6, CH 4.44, m 1, 3, Ile-1 3, Leu
4
-NH  

3 42.1, CH2 1.36, m
c
 1, 2, 4 2  

4 25.0, CH 1.52, m
c
 2, 3   

5 23.6, CH3 0.88, m
c
 3, 4, 6   

6 22.2, CH3 0.88, m
c 
 3, 4, 6   

NH  7.86, d (8.5) Ile-1 (weak) 2 2, Ile-3 

       

Ile 1 171.6, Cq     

2 63.5, CH 3.30, m 1, 3, 4 (weak), 6 (weak) 3, Ile-NH  

3 33.6, CH 2.30, m  2   
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4 25.7, CH2 1.03, m 

1.41, m
c
 

3, 5, 6   

5 10.3, CH3 0.79, t (6.5) 3, 4   

6 15.9, CH3 0.80, d (6.5) 2, 3, 4   

NH  8.38, br s  2 2, Leu
1
-2 

(weak)  
a Recorded in DMSO-d6 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in DMSO-d6 at 500 MHz. c 

Signals overlapped. d Assigned by 2D NMR in DMSO- d6 together with the help of 13C NMR spectrum in CD3OD.  

 

Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Ile) (40): white powder; []
20

D –95.8 (c 0.12, MeOH); LC-UV 

[(Acetonitrile (aq) in H2O/0.1% FA)] max 224 nm; IR (liquid) vmax 3317, 2956, 1633, 1532, 1021 cm
1

; 

1
H NMR (DMSO-d6, 500 MHz) and 

13
C NMR (DMSO-d6, 125 MHz), see Table 4.3.1.1; 

1
H NMR 

(CDCl3:CD3OD 1:3, 500 MHz) and 
13

C NMR (CDCl3:CD3OD 1:3, 125 MHz), see Figure 4.3.1.2. 

Positive ESIHRMS m/z: 566.4282 [M+H]
+
 (calcd for C30H56O5N5, 566.4276, Δ 1.1058 ppm). 

Crystal data of 40: the colorless crystals were obtained from an CH2Cl2:DMSO (1:1, v/v) solution; 

crystal size 0.060 × 0.108 × 0.153 mm
3
, triclinic crystal system, space group P1, unit cell dimensions a 

= 13.594(4) Å, b = 14.583(3) Å, c = 15.223(3) Å, Volume 2477.2(10) Å
3
; Z = 3, T = 100(2) K, µ(Cu Kα) 

= 0.620 mm
-1

, Dcalc = 1.138 g/cm
3
; 62098 reflections collected with θ angel ranged from 3.35 to 67.99°; 

17320 independent reflections (Rint = 0.0418). R1 = 0.0461, wR2 = 0.1187 (all data); absolute structure 

parameter (Flack parameter) 0.02 (7) (Parsons et al., 2013).
 
Crystallographic data of 40 was deposited in 

the Cambridge Crystallographic Data Centre with a CCDC number. Copies of the data can be acquired, 

free of charge, from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, 

UK by fax: +44(0)1223 336033 or e-mail: deposit@ccdc.cam.ac.uk. 

 

4.3.2 Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Val) (41, new compound) 
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The molecular formula of 41 (code: LG53-922), C29H53O5N5 with six degrees of unsaturation, was 

established from ESI-HRMS at m/z 552.4124 [M+H]
+ 

(calcd for C29H54O5N5, 552.4120, Δ 0.8478 ppm, 

Figure 4.3.2.1). Each five α-protons, α-methine carbons, and amide carbonyls were present in 
1
H and 

13
C NMR (in CD3OD) spectra (Figure 4.3.2.2). The high N content of 41 and its five NH signals ranging 

from δH 7.0 to 9.0 in 
1
H NMR spectrum (in DMSO-d6) also indicated a pentapeptide (Figure 4.3.2.3 and 

Table 4.3.2.1). The interpretation of 
1
H-

1
H COSY and TOCSY data revealed the spin systems due to the 

amine protons (NH), α-protons, and additional high-field signals including methines, methylenes and 

methyl protons, defining one valine (Val) and four Leu residues (Figures 4.3.2.4 and 4.3.2.6). Moreover, 

these Val and Leu fragments were clearly observed in HR-CID (collision induced dissociation)-MS
2
 

experiment of 41 (Figure 4.3.2.1). Based on the requirement of molecular formula, the pentapeptide 

should also be cyclic.  

The amino acids sequence was confirmed by analysis of HMBC and NOESY data of 41 (Figures 4.3.2.5, 

4.3.2.6 and 4.3.2.7). Key HMBC correlations of the α-proton and/or NH of one amino acid residue with 

the carbonyl carbon of the neighboring residue were observed from δH 8.59 (Leu
2

NH) to 172.1 (Leu
3

C-1), 

from δH 8.71 (Leu
3

NH) and δH 4.17 (Leu
3

H-2) to 173.3 (Leu
4

C-1), from δH 7.86 (Leu
4

NH) and δH 4.43 

(Leu
4

H-2) to 171.7 (ValC-1), and from δH 8.42 (ValNH) to 171.5 (Leu
1

C-1). Cross-peaks of Leu
1

NH/Leu
2

NH, 

Leu
2

NH/Leu
3

H-2, Leu
3

NH/Leu
4

H-2, Leu
4

NH/ValH-3, and ValNH/Leu
1

H-2 in the NOESY spectrum of 41 finally 

determined the sequence as cyclo-(Leu
1
-Leu

2
-Leu

3
-Leu

4
-Val). The configuration of five amino acid 

residues was defined through applying the Marfey’s method. The acid hydrolysate of 41 and amino acid 

standards were derivatized with Marfey’s reagent (FDAA). LC-MS analysis showed that the 

configurations of Val and three Leu residues were L (Figure 4.3.2.8). The remaining Leucine unit was 

D-configurated and located between Leu-2 and Leu-4, which was same as that of compound 40 and 

supported by the key NOE cross peaks of Leu
1

NH/Leu
2

NH and Leu
2

NH/Leu
3

H-2 (Figure 4.3.2.7). Finally, 

the structure of 41 was established as cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Val). 
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Table 4.3.2.1 
1
H and 

13
C NMR data (in DMSO-d6) of compound 41.  

Unit No. C, mult.
a,d

 H mult.
b
 (J in Hz) Selected HMBC

b
 Selected COSY

b
 NOE 

Leu
1
 1 171.5, Cq     

2 52.2, CH 4.32, m 1, 3, 4 3, Leu
1
-NH NH,Val-NH 

3 40.6, CH2 1.44, m
c
 

1.55, m
c
 

1, 2, 4, 5 

1, 2, 4, 5 

2 

2 

 

 

4 25.1, CH 1.44, m
c
 2, 3, 5, 6   

5 22.6, CH3 0.90, m
c
 3, 4, 6   

6 23.1, CH3 0.86, m
c
 3, 5   

NH  7.21, br s   2 2, Leu
2
-NH 

       

Leu
2
 1 172.0, Cq     

2 52.6, CH 4.07, m 1, 3, 4 3, Leu
2
-NH  

3 40.4, CH2 1.51, m
c
 1, 2, 5 2  

4 24.8, CH 1.59, m
c
 2, 3, 5, 6   

5 21.1, CH3 0.78, d (6.5) 3, 4, 6   

6 23.5, CH3 0.87, m
c
 3, 5   

NH  8.59, d (8.0) Leu
3
-1, 2, 3 2  Leu

3
-2, Leu

1
-NH 

       

Leu
3
 1 172.1, Cq     

2 52.5, CH 4.17, m 1, 3, 4, Leu
4
-1 3, Leu

3
-NH Leu

2
-NH 

3 39.2, CH2 1.37, m
c
 

1.48, m
c
 

1, 2, 4 2  

4 24.8, CH 1.45, m
c
 2, 3, 5   

5 22.9, CH3 0.83, d (6.0) 3, 4, 6   

6 22.5, CH3 0.88, m
c
 3   

NH  8.71, d (6.5) Leu
4
-1, 2, 3 2 Leu

4
-2 

       

Leu
4
 1 173.3, Cq     

2 50.7, CH 4.43, m 1, 3, 4, Val-1 3, Leu
4
-NH NH, Leu

3
-NH 

3 42.2, CH2 1.37, m
c
 1, 2 2  

4 25.1, CH 1.51, m
c
 2, 3   

5 23.3, CH3 0.88, m
c
 3, 6   

6 22.3, CH3 0.88, m
c
 3, 5   

NH  7.86, d (8.5) Val-1 2 2, Val-3 

       

Val 1 171.7, Cq     

2 65.6, CH 3.20, t (8.5) 1, 3, 4, 5 3, Val-NH NH 

3 28.2, CH 2.50, m 1 (weak), 2, 4, 5 2, 4, 5  Leu
4
-NH 

4 19.8, CH3 0.83, d (6.0) 2, 3, 5 3  

5 20.1, CH3 0.83, d (6.0) 2, 3, 4 3  

NH  8.42, d (5.5) Leu
1
-1 2 2, Leu

1
-2 

       
a Recorded in DMSO-d6 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in DMSO-d6 at 500 MHz. c 

Signals overlapped. d Assigned by 2D NMR in DMSO- d6 together with the help of 13C NMR spectrum in CD3OD.  

 

Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Val) (41): white powder; []
20

D –87.4 (c 0.43, MeOH); LC-UV 

[(Acetonitrile (aq) in H2O/0.1% FA)] max 224 nm; IR (liquid) vmax 3306, 2957, 2928, 1634, 1532, 1037 

cm
1

; 
1
H NMR (DMSO-d6, 500 MHz) and 

13
C NMR (DMSO-d6, 125 MHz), see Table 4.3.2.1; 

1
H 
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NMR (CD3OD, 600 MHz) and 
13

C NMR (CD3OD, 150 MHz), see Figure 4.3.2.2. Positive ESIHRMS 

m/z: 552.4124 [M+H]
+
 (calcd for C29H54O5N5, 552.4120, Δ 0.8478 ppm).  

 

4.3.3 Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Leu) (42, new compound) 

 

 

 

For compound 42 (code: LG53-923) as a white powder, its quasimolecular ion at m/z 566.4281 [M+H]
+
 

(calcd for C30H56O5N5, 566.4276, Δ 0.8903 ppm, Figure 4.3.3.1) in ESI-HRMS spectrum indicated a 

molecular formula of C30H55O5N5, corresponding to the same molecular formula as 40 and one CH2 

group more than 41. In addition, HR-CID-MS
2
 spectrum (Figure 4.3.3.1) of 42, which showed the same 

fragment information as that of 40, exhibited the presence of five Leu/Ile residues without a Val moiety. 

1
H and 

13
C NMR data (in CD3OD, Figure 4.3.3.2) of 42 revealed similar structural features to those of 

40 and 41. Based on further comparison of NMR data (in DMSO-d6) for 41 and 42, the significant 

differences can be observed in the downfield shift of H-2 (Leu
5
, δH 3.77 in 42; Val, δH 3.20 in 41) in 

1
H 

NMR spectrum of 42, as well as the upfield shift of C-2 (Leu
5
, δC 56.3 in 42; Val, δC 65.6 in 41) and an 

additional methylene carbon signal (Leu
5
, δC 39.0 in 42) in 

13
C NMR spectrum (in DMSO-d6, Figures 

4.3.3.3 and 4.3.3.5, together with Table 4.3.3.1) of 42. The analysis above supported a pentapeptide 

made of five Leu/Ile residues. By utilizing the same strategy as 40 and 41, a combination of COSY, 

TOCSY, HSQC, HMBC, and NOESY analysis (Figures 4.3.3.4-4.3.3.7) and the Marfey’s method 

(Figure 4.3.3.7) determined the final structure of 42 as Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Leu).  
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Table 4.3.3.1 
1
H and 

13
C NMR data (in DMSO-d6) of compound 42.  

Unit No. C, 

mult.
a,d

 

H mult.
b
 (J in Hz) Selected HMBC

b
 Selected COSY

b
 NOE 

Leu
1
 1 171.5, Cq     

2 51.8, CH 4.31, m 1, 3, 4 3, Leu
1
-NH Leu

5
-NH 

3 40.1, CH2 1.54, m
c
 1 2  

4 25.0, CH 1.47, m
c
 2, 3   

5 22.4, CH3 0.86, m
c
 3   

6 23.1, CH3 0.90, m
c 
 3, 4, 5   

NH  7.27, br s   2 2, Leu
2
-NH 

       

Leu
2
 1 172.1, Cq     

2 52.4, CH 4.10, m 1, 3, 4 3, Leu
2
-NH  

3 40.4, CH2 1.50, m
c
 1 2  

4 24.7, CH 1.60, m
c
 2, 3, 5, 6   

5 21.1, CH3 0.78, d (6.5) 3, 4, 6   

6 23.6, CH3 0.86, m
c
 4,5   

NH  8.57, d (8.5) Leu
3
-1, 2, 3 2  Leu

3
-2 

       

Leu
3
 1 172.1, Cq     

2 52.5, CH 4.16, m 1, 3, 4, Leu
4
-1 3, Leu

3
-NH Leu

2
-NH 

3 39.1, CH2 1.38, m
c
 

1.50, m
c
 

1, 2, 4 

2 

2  

4 24.8, CH 1.46, m
c
 3   

5 22.9, CH3 0.83, d (5.5) 3, 4, 6   

6 22.5, CH3 0.88, m
c
 3   

NH  8.74, d (6.5) Leu
4
-1, 2, 3 2 Leu

4
-2 

       

Leu
4
 1 173.2, Cq     

2 50.8, CH 4.38, m 1, 3, 4 3, Leu
4
-NH NH, Leu

3
-NH 

3 42.3, CH2 1.37, m
c
 1, 2, 4 2  

4 25.1, CH 1.49, m
c
 2, 3   

5 23.3, CH3 0.88, m
c
 3, 4   

6 22.5, CH3 0.88, m
c
 3, 4   

NH  7.65, d (8.0) Leu
5
-1 2 2 

       

Leu
5
 1 172.8, Cq     

2 56.3, CH 3.77, m 1, 3, 4 (weak), Leu
1
-1 3, Leu

5
-NH NH 

3 39.0, CH2 1.54, m
c
 

1.82, m 

2 

1, 2, 4, 5, 6 

2  

2 

 

 

4 25.2, CH 1.53, m
c
 3   

5 22.0, CH3 0.83, d (5.5) 3   

6 23.1, CH3 0.88, m
c
 3   

NH  8.21, d (6.0) Leu
1
-1  2 2, Leu

1
-2 

       
a Recorded in DMSO-d6 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in DMSO-d6 at 500 MHz. c 

Signals overlapped. d Assigned by 2D NMR in DMSO- d6 together with the help of 13C NMR spectrum in CD3OD.    

 

Cyclo-(L-Leu-L-Leu-D-Leu-L-Leu-L-Leu) (42): white powder; []
20

D –90.6 (c 0.35, MeOH); LC-UV 

[(Acetonitrile (aq) in H2O/0.1% FA)] max 224 nm; IR (liquid) vmax 3300, 2930, 2871, 1630, 1540, 1050 

cm
1

; 
1
H NMR (DMSO-d6, 500 MHz) and 

13
C NMR (DMSO-d6, 125 MHz), see Table 4.3.3.1; 

1
H 
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NMR (CD3OD, 500 MHz) and 
13

C NMR (CD3OD, 125 MHz), see Figure 4.3.3.2. Positive ESIHRMS 

m/z: 566.4281 [M+H]
+
 (calcd for C30H56O5N5, 566.4276, Δ 0.8903 ppm). 

 

4.3.4 Fusaristatin A (43, known compound) 

 

 

 

Compound 43 (code: LG53-121-8) was obtained as an amorphous white powder with a molecular 

formula C36H58N4O7 as revealed through ESI-HRMS (m/z: 659.4387 [M+H]
+
, calcd. 659.4378, Δ 

1.3559 ppm, Figure 4.3.4.1). SciFinder search indicated that it may be fusaristatin A, which was 

supported by the possible presence of amino acids glutamine, dehydroalanine, and aminoisbutyric acid 

from fragment ions at m/z 513.3679, 428.3158 and 359.2941 in the ESI-MS
2
 spectrum (Figure 4.3.4.1). 

Finally, comparison of 1D NMR data (Figure 4.3.4.2 and Table 4.3.4.1) of 43 with that of fusaristatin A 

confirmed that they are the same compound (Shiono et al., 2007; Chaesung et al., 2010).  

 

Table 4.3.4.1 
1
H and 

13
C NMR data (in CDCl3:CD3OD = 1:3) of compound 43.   

No. 43  Fusaristatin A (in C5D5N) 

(Shiono et al., 2007) 

 Fusaristatin A (in CD3CN) 

(Chaesung et al., 2010) 

C, mult.
a
 H mult.

b
 (J in Hz)  C, mult.

c
 H mult.

d
 (J in Hz)  C, mult.

e
 H mult.

f
 (J in Hz) 

1 12.7, CH3   14.2, CH3 0.85 t (7.0)  14.5, CH3 0.88 m 

2 21.8, CH2   22.9, CH2 1.20-1.33  23.5, CH2 1.27 m 

3 30.7, CH2   32.1, CH2 1.20-1.33  32.2, CH2 2.25 m 

4 25.8, CH2   27.2, CH2 1.20-1.33  27.4, CH2 2.25 m 

5 28.8, CH2   29.9, CH2 1.20-1.33  30.4, CH2 1.27 m 

6 36.1, CH2   37.1, CH2 1.07-1.11 

1.20-1.33 

 37.6, CH2 1.27 m 

7 31.8, CH   32.8, CH 1.36-1.44  33.3, CH 1.27 m 

7' 18.2, CH3   19.7, CH3 0.87 d (6.4)  19.9, CH3 0.88 m 

8 35.4, CH2   36.5, CH2 1.20-1.33 

1.36-1.44 

 36.9, CH2 1.41 m 

9 25.7, CH2   26.9, CH2 2.13-2.22 m  27.3, CH2 2.25 m 

10 144.0, CH 6.03 t (7.0)  143.9, CH 6.00 t (7.2)  145.0, 

CH 

6.02 t (7.8) 
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11 132.5, Cq   133.5, Cq   134.2, Cq  

11' 10.6, CH3 1.82 s  12.2, CH3 1.80 s  12.5, CH3 1.80 s 

12 148.2, CH 7.27 d (15.5)  147.9, CH 7.50 d (15.7)  148.5, 

CH 

7.23 d (15.6) 

13 121.9, CH 6.20 d (15.5)  123.5, CH 6.36 d (15.7)  124.0, 

CH 

6.22 d (15.6) 

14 204.7, Cq   203.3, Cq   204.8, Cq  

15 42.9, CH 2.75 m  44.3, CH 2.95-3.04 m  44.6, CH 2.69 m 

15' 15.9, CH3 1.17 d (7.0)  17.2, CH3 1.09 d (6.9)  17.3, CH3 1.05 d (7.2) 

16 26.7, CH2   28.3, CH2 1.49-1.61 m 

1.88-2.00 

 28.8, CH2 1.27 m 

17 28.2, CH2   30.1, CH2 1.79-1.85 m 

1.88-2.00 

 30.5, CH2 1.27 m 

18 75.8, CH 5.00 m  77.1, CH 5.36-5.41 m  77.6, CH 4.94 m 

19 42.3, CH 2.88 m  44.2, CH 2.80-2.86 m  44.5, CH 2.83 m 

19' 13.6, CH3  1.20 d (7.5)  15.3, CH3  1.28 d (7.1)  15.1, CH3  1.11 m 

20 173.7, Cq   173.2, Cq   173.3, Cq  

22 136.2, Cq   138.9, Cq   138.1, Cq  

22' 114.9,CH2 5.89 s, 5.38 s 

6.18 s 

 114.1, CH2 5.58 s, 6.18 s 

6.18 s 

 115.1, 

CH2 

5.81 s, 5.39 s 

23 164.4, Cq   164.8, Cq   164.7, Cq  

25 41.2, CH2 3.51 m  42.5, CH2 3.70-3.79 m 

3.82-3.90 m 

 42.8, CH2 3.49 m, 3.38 m 

26 40.8, CH 2.61 m  42.3, CH 2.80-2.86  42.5, CH 2.49 m 

26' 13.1, CH3  1.11 d (7.0)  15.0, CH3  1.30 d (7.1)  14.6, CH3  0.88 m 

27 174.4, Cq   174.5, Cq   174.7, Cq  

29 51.4, CH 4.47 dd (8.5, 6.0)  53.2, CH 5.05 dd (14.0, 7.6)  53.6, CH 4.36 m  

30 170.0, Cq   171.9, Cq   172.3, Cq  

31 26.1, CH2   27.4, CH2 2.54-2.59 m  27.7, CH2 2.25 m 

32 31.1, CH2   32.4, CH2 2.66-2.71 m  32.7, CH2 1.27 m 

33 175.8, Cq    175.4, Cq    175.6, Cq   
a Recorded in CDCl3:CD3OD (1:3) at 125 MHz; Assignment of many signals might be interchangeable. b Recorded in CDCl3:CD3OD (1:3) 

at 500 MHz. c Recorded in C5D5N at 100 MHz. d Recorded in C5D5N at 400 MHz. e Recorded in CD3CN at 150 MHz. f Recorded in 

CD3CN at 600 MHz.  

 

4.3.5  Fusaristatin C (44, new compound) 
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Compound 44 (code: LG53-121-5) was obtained as an amorphous white powder with a molecular 

formula C34H54N4O7 as revealed through ESI-HRMS (m/z: 631.4074 [M+H]
+
, calcd. 631.4081, Δ 1.3988 

ppm, Figure 4.3.5.1). The above MS data indicated compound 44 has a C2H4 group less than that for 

compound 43. Amino acids glutamine, dehydroalanine, and aminoisbutyric acid was also present from 

fragment ions at m/z 485.3367, 400.2843, and 331.2628 in the ESI-MS
2
 spectrum (Figure 4.3.5.1). 

Finally, detailed HMBC correlations (Figures 4.3.5.2 and 4.3.5.3) confirmed its structure as shown. The 

difference between 43 and 44 was due to the side chain. 

 

4.3.6 Nocapyrone S (45, new compound) 

 

 

 

Compound 45 (code: LG53-731), was isolated as a white powder, possessed a molecular formula 

C17H28O3. Its molecular formula was deduced through ESI-HRMS at m/z 281.2107 [M+H]
+
 (calcd. 

281.2111, -1.6302 ppm, Figure 4.3.6.1). Two tertiary methyls (δH 1.83, 3.98), three secondary methyls 

(δH 1.21, 0.84, 0.79), and one triplet methyl (δH 0.86) were observed in 
1
H NMR spectrum of 45 (Figure 

4.3.6.2 and Table 4.3.6.1). Only one olefinic/aromatic proton (δH 6.06) was present in the structure of 45. 

The 
13

C NMR spectrum (Figure 4.3.6.2) exhibited seventeen carbon signals. Interpretation of 
1
H-

1
H 

spectrum (Figures 4.3.6.3 and 4.3.6.4) revealed the connections from C-6 to C-10, and from C-11 to C-

12. Detailed HMBC correlations (Figure 4.3.6.4) from H-4 to C-2, C-3, C-5 and C-6, from H3-13 to C-1, 

C-2 and C-3, from H3-15 to C-5, and from H3-12 to C-10 allowed the construction of the structure of 

compound 45. The methoxy was located at C-1 through a key HMBC correlation of H3-14/C-1 (Figure 

4.3.6.4). Therefore, the structure was confirmed as shown. However, the absolute configuration was still 

not assigned.  
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Table 4.3.6.1 
1
H and 

13
C NMR data (in CDCl3) of compound 45.   

Position C, mult.
a
 H mult.

b
 (J in Hz) 

1 163.0, Cq  

2 101.1, Cq  

3 181.7, Cq   

4 110.7, CH 6.06 s 

5 167.1, Cq   

6 35.6, CH 2.68 m 

7 43.0, CH2 1.40 m
c
, 1.48 m

c
 

8 28.0, CH 1.51 m
c
 

9 44.6, CH2 1.07 m 

10 31.9, CH 1.37 m
c
 

11 30.6, CH2 1.15 m, 1.26 m
c
 

12 11.6, CH3 0.86 t (7.5) 

13 6.8, CH3 1.83 s 

14 55.7, CH3 3.98 s 

15 18.6, CH3 1.21 d (7.0) 

16 19.7, CH3 0.84 d (6.5) 

17 19.1, CH3 0.79 d (6.5) 
a Recorded in CDCl3 at 125 MHz; 13C multiplicities were determined by HSQC experiment. b Recorded in CDCl3 at 500 MHz. 

 

Nocapyrone S (45): white powder; []
20

D –19.0 (c 0.93, MeOH); LC-UV [(Acetonitrile (aq) in 

H2O/0.1% FA)] max 222 nm; IR (liquid) vmax 2926, 1664, 1628, 1035 cm
1

; 
1
H NMR (CDCl3, 500 MHz) 

and 
13

C NMR (CDCl3, 125 MHz), see Table 4.4.6.1; Positive ESIHRMS m/z: 281.2107 [M+H]
+
 (calcd 

for C17H29O3, 281.2111, Δ -1.6302 ppm). 

 

4.3.7 Norlichexanthone (46, known compound) 

 

 

 

Compound 46 (code: LG53-76) was isolated as a yellow powder with a molecular formula C14H10O5 as 

established by ESI-HRMS information (m/z 259.0597, [M+H]
+
; calcd. 259.0601, Δ -1.4554, Figure 

4.3.7.1). Its UV spectrum displayed absorption maxima at 240 and 312 nm. The 
1
H NMR spectrum 

(Figure 4.3.7.2) showed four signals for aromatic protons ranging from δH 6.0 to 7.0 and one signal for 

an additional methoxy group at δH 2.77. With the help of 
13

C NMR spectrum (Figure 4.3.7.2) and 
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SciFinder search, compound 46 was a known compound named norlichexanthone. The comparison for 

their 1D NMR data is listed in Table 4.3.7.1. 

 

Table 4.3.7.1 
1
H and 

13
C NMR data (in CD3OD) of compound 46.   

Position 
Compound 46  Norlichexanthone (Qin et al., 2014) 

C, mult.
a
 H mult.

b
 (J in Hz)  C, mult.

a
 H mult.

b
 (J in Hz) 

1 144.7, Cq   143.3, Cq  

2 117.0, CH 6.59 s
c
  115.6, CH 6.61 s 

3 160.8, Cq   159.3, Cq  

4 101.6, CH 6.59 s
c
  100.1, CH 6.61 s 

4a 164.1, Cq   163.4, Cq  

5 94.2, CH 6.22 d (2.0)   92.8, CH 6.21 d (2.0) 

5a 166.0, Cq   164.6, Cq  

6 158.6, Cq   157.1, Cq  

7 98.8, CH 6.11 d (2.0)  97.3, CH 6.11 d (2.0) 

8 164.8, Cq   163.4, Cq  

8a 104.0, Cq   102.5, Cq  

9 183.5, Cq   182.0, Cq  

10 23.5, CH3 2.77 s  22.1, CH3 2.77 s 
a Recorded in CD3OD at 125 MHz. b Recorded in CD3OD at 500 MHz.  

 

4.3.8 Chaxine B (47, known compound) 

 

 

 

Compound 47 (code: LG53-735), as a white solid, has a molecular formula C28H42O5 as derived from 

ESI-HRMS information (m/z 459.3111, [M+H]
+
; 481.2927, [M+Na]

+
, Figure 4.3.8.1). Two 

characteristic fragment ions at m/z 333.2425 [M+H-C7H10O2]
+
 and 315.2318 [M+H-C7H12O3]

+
 were 

observed (Figure 4.3.8.1). The above MS pattern was very similar to that for chaxine C isolated from 

fungus Diaporthe sp. LG23 (Figure 4.2.6.1), and indicated that compound 47 was a derivative of 

chaxine C. The 
1
H and 

13
C NMR spectra (Figure 4.3.8.2) in combination with the HSQC spectrum 

(Figure 4.3.8.3 and Table 4.3.8.1) established the presence of two tertiary methyls, four secondary 
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methyls, seven methylenes, six methines (one oxygenated), two quaternary carbons (one oxygenated), 

four aromatic/olefinic carbons including a trans-disubstituted double bonds, together with three carbonyl 

carbons. These data accounted for all 
1
H and 

13
C NMR resonances. Interpretation of 

1
H-

1
H COSY 

spectrum (Figure 4.3.8.3) determined the connection as highlighted in Figure 4.3.8.4. Key HMBC 

correlations (Figure 4.3.8.4) from H3-12 to C-6, C-7, C-8 and C-11, from H3-19 and H3-20 to C-17, from 

H2-5 to C-3 and C-4, and from H-2 to C-1, C-4 and C-8 indicated the C and D rings attached with a side 

chain. The above substructure is closely related to that of chaxine C. However, the further HMBC 

correlations (Figure 4.3.8.4) of H3-7'/C-1', H3-7'/C-2', H3-7'/C-3' and H-6'/C-1 determined a modified 

cyclohexanone motif. Considering the chemical shifts of C-1 (C 165.5), and C-2' (C 82.8), as well as 

the MS requirement, a connection between C-1 and C-2' was proposed for the planar structure of 

compound 47, which was also supported by the MS fragment information (Figure 4.3.8.1). Finally, a 

hydroxyl group was located at C-5' (C 70.3). The comparison of NMR data of 47 with that in the 

literature (Table 4.3.8.1) (Choi et al., 2009) confirmed that compound 47 was chaxine B. 

 

Table 4.3.8.1 
1
H and 

13
C NMR data (in CDCl3) of compound 47.   

 

Position 

Compound 47  Chaxine B (Choi et al., 2009) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 165.5, qC   165.3, qC  

2 117.6, CH 5.58 d (2.5)  117.4, CH 5.55 d (2.4) 

3 156.1, qC   155.9, qC  

4 203.6, qC    203.5, qC   

5α 38.9, CH2 2.51 m  38.4, CH2 2.48 m 

5β  2.69 m   2.67 m 

6α 37.9, CH2 1.70 m  37.7, CH2 1.68 ddd (13.1, 13.1, 5.2) 

6β  2.23 m   2.20 m 

7 46.4, qC   46.2, qC  

8 57.7, CH 2.52 m  57.5, CH 2.50 m 

9 22.2, CH2 1.51 m, 1.60 m  22.0, CH2 1.47 m, 1.59 m 

10 29.1, CH2 1.48 m, 1.91 m  28.9, CH2 1.47 m, 1.89 m 

11 55.6, CH 1.44 m  55.4, CH 1.40 m 

12 12.3, CH3 0.88 s  12.1, CH3 0.86 s 

13 40.3, CH 2.08 m  40.1, CH 2.07 m 

14 21.2, CH3 1.04 d (6.5)  21.0, CH3 1.01 d (6.7) 

15 134.7, CH 5.16 dd (15.0, 7.5)  134.5, CH 5.13 dd (15.3, 8.5) 

16 133.2, CH 5.27 dd (15.0, 8.5)  133.0, CH 5.25 dd (15.3, 7.9) 
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17 43.0, CH 1.87 m  42.8, CH 1.84 m 

18 33.2, CH 1.48 m  33.0, CH 1.46 m 

19 20.1, CH3 0.84 d (6.5)  19.9, CH3 0.82 d (7.0) 

20 19.8, CH3 0.83 d (7.0)  19.6, CH3 0.80 d (7.0) 

21 17.8, CH3 0.92 d (7.0)  17.6, CH3 0.90 d (7.0) 

1' 204.7, qC    204.5, qC   

2' 82.8, qC   82.6, qC  

3' 33.4, CH2 1.55 m, 2.35 m  33.2, CH2 1.53 m, 2.32 m 

4' 29.8, CH2 1.94 m  29.6, CH2 1.90 m, 1.95 m 

5' 70.3, CH 3.95 m  70.1, CH 3.93 m 

6' 47.9, CH2 2.68 m, 2.88 (dd 13.0, 9.0)  47.7, CH2 2.67 m, 2.86 (dd 13.1, 8.9) 

7' 20.5, CH3 1.45 s  20.3, CH3 1.43 s 

a Recorded in CDCl3 at 125 MHz. b Recorded in CDCl3 at 500 MHz. c Recorded in CDCl3 at 125 MHz. d Recorded in CDCl3 at 500 MHz. e 

overlapped.  

 

 

4.4 Secondary metabolites isolated from Alternaria sp. LG19 

 

Four well-known Alternaria mycotoxins including altenuene (49), isoaltenuene (50), alternariol (51) and 

altertoxin I (52), and their derivative (48), as well as two known compounds (53 and 54) were isolated 

from the rice culture of an endophytic fungus Alternaria sp. LG19, occurring in the leaves of L. japonica 

collected from Jinan, Shandong, P. R. China.  
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4.4.1 Alternarienonic acid (48, known compound) 

 

 

 

Compound 48 (code: LG19-4211) was isolated as a white solid with a molecular formula C14H14O6 as 

determined by ESI-HRMS with a pseudomolecular ion [M+H]
+
 at m/z 279.0864 (calcd. 279.0863, Δ 

0.1795 ppm, Figure 4.4.1.1). The 
1
H NMR spectrum (Figure 4.4.1.2) displayed signals for two methyls 

(one oxygenated), a methylene, an oxygenated methine, together with two aromatic/olefinic protons. 

Interpretation of 
1
H-

1
H COSY spectrum (Figure 4.4.1.3) revealed correlations between C-3' and C-4'. A 

tetra-substituted benzene ring was constructed based on HMBC correlations from H-6 to C-2, C-4, C-5, 

and C-7, from H-4 to C-2 and C-6 (Figure 4.4.1.4). Meanwhile, a methoxy and a hydroxyl group were 

located at C-5 and C-7 respectively, through the analysis of chemical shifts at C-5 (δC 165.5) and C-7 

(δC 166.7), and HMBC correlation from 5-OCH3 to C-5. Further interpretation of the HMBC spectrum 

suggested key correlations of Me-2'/C-1', Me-2'/C-2', Me-2'/C-3', and H-3'/C-5', indicating a 

cyclopentenone substructure with a methyl and a hydroxy group located at C-2' and C-4' respectively. A 

key HMBC correlation (Figure 4.4.1.4) between H-4 and C-1' was used to link benzene ring and 

cyclopentenone. Based on the MS requirement of 48 and chemical shift values at C-1 (δC 173.4) and C-2 

(δC 106.3), a carboxyl group was attached to C-2. Finally, a comparison of NMR data with that for 

alternarienonic acid in the literature (Aly et al., 2008) confirmed that they share the same planar 

structure (Table 4.4.1.1). However, it has to be noted that the 
13

C NMR spectrum of 48 showed some 

doublet signals, indicating compound 48 may be the mixture of two isomers as shown in Figure 4.4.1.5. 

ECD calculation at B3LYP/6-31G(d)//B3LYP/6-31G(d) level using the GAMESS and DALTON 

program packages, was applied to assign the absolute configuration of 48. The CD values of five 

conformers were calculated and weighted according to their Boltzmann factors. Figure 4.4.1.6 shows 

that the calculated ECD curve is consistent with experimental one.  
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Table 4.4.1.1 
1
H and 

13
C NMR data (in CD3OD) of compound 48.   

 

Position 

Compound 48  Alternarienonic acid (Aly et al., 2008) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 173.4,e Cq   164.3, Cq  

2 106.3,e Cq   109.9, Cq  

3 137.5, Cq   137.3, Cq  

4 111.5, CH 6.16 br s  110.2, CH 6.07 d (2.5) 

5 165.5, Cq   164.3, Cq  

6 101.6, CH 6.48 d (2.0)  101.4, CH 6.40 d (2.5) 

7 166.7, Cq   166.0, Cq  

1' 141.9, Cq   142.5, Cq  

2' 167.1, Cq   165.2, Cq  

3' 41.8, CH2 3.03 dd (7.6, 18.0) 

2.50 br d (18.0) 

 41.8, CH2 3.00 dd (6.9, 17.3) 

2.49 br d (17.0) 

4' 73.1, CH 4.31 dd (3.2, 6.4)  73.2, CH 4.38 dd (2.8, 6.3) 

5' 208.6, Cq   209.0, Cq  

2'-CH3 17.8, CH3 2.03 s  17.8, CH3 1.99 s 

5-OCH3 56.0, CH3 3.82 s  55.8, CH3 3.78 s 

a Recorded in CD3OD at 100 MHz. b Recorded in CD3OD at 400 MHz. c Recorded in CD3OD at 125 MHz. d Recorded in CD3OD at 500 

MHz. e Corrected values compared to that in literature.  

 

4.4.2 (−)-(2R,3R,4aR)-Altenuene (49, known compound) 

 

 

 

ESI-HRMS of 49 (code: LG19-4212) showed the pseudomolecular ion [M+H]
+
 at m/z 293.1020 (calcd. 

293.1020, Δ 0.1895 ppm, Figure 4.4.2.1), confirming its molecular formula as C15H16O6. 1D NMR data 

(Figure 4.4.2.2) with the help of HSQC spectrum (Figure 4.4.2.3) indicated the presence of two methyls 

(one oxygenated), a methylene, two oxygenated methines, a quaternary carbon, three aromatic/olefinic 

methine carbons, and six aromatic/olefinic/carbonyl carbon signals. The observed correlations in 
1
H-

1
H 

COSY spectrum allowed the connection from C-1 to C-4 (Figure 4.4.2.4). In the HMBC spectrum 

(Figure 4.4.2.4), a methyl at C-4a was found to correlate to C-4, C-4a, and C-10b. Similarly, the proton 
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signal at δH 6.23 exhibited correlation with C-4a, which allowed the assignment for a six-membered ring. 

A further benzene ring was confirmed to be present on the basis of HMBC correlations from H-8 to C-7, 

C-7a, C-9 and C-10, and from H-10 to C-7a and C-8 (Figure 4.4.2.4). Two rings were connected through 

a C-10a/C-10b bond from the analysis of key HMBC correlations from H-1 to C-10a, and from H-10 to 

C-10b. Three hydroxyl groups and a methoxy were proposed and located at C-2, C-3, C-7 and C-9, 

respectively due to their corresponding chemical shifts and the HMBC correlation of 9-OCH3/C-9. 

Finally, a six-member lactone ring was placed in the middle of the ring system of 49, which was 

supported by the HMBC correlations from H-8 and H-10 to C-6, and the chemical shifts of C-6 (δC 

170.4) and C-4a (δC 82.5), as well as the MS requirement. Accordingly, compound 49 was identified to 

have the same planar structure as altenuene, and they also have similar 1D NMR data (He et al., 2012) 

(Table 4.4.2.1). The sign of optical rotation and the CD curve of 49 were identical to that for (−)-

(2R,3R,4aR)-altenuene (Altemöller et al., 2006) (Figure 4.4.2.5). 

 

Table 4.4.2.1 
1
H and 

13
C NMR data (in CD3OD) of compound 49.  

 

Position 

Compound 49  Altenuene (He et al., 2012) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 131.4, CH 6.23 d (2.8)  131.0, CH 6.30 d (3.3) 

2 72.3, CH 4.08 dd (5.6, 2.8)  69.5, CH 3.95 m 

3 70.7, CH 3.78 m  68.7, CH 3.70 dddd (8.0, 7.4, 3.8, 3.5) 

4 40.8, CH2 2.41 dd (14.4, 3.6) 

2.00 dd (14.4, 5.2) 

 38.6, CH2 2.26 dd (14.0, 3.5) 

1.95 dd (14.0, 7.4) 

4a 82.5, Cq   81.2, Cq  

6 170.4, Cq   168.2, Cq  

7 165.2, Cq   163.0, Cq  

7a 101.6, Cq   100.0, Cq  

8 101.8, CH 6.48 d (2.4)  100.9, CH 6.50 d (2.3) 

9 168.0, Cq   165.8, Cq  

10 103.7, CH 6.67 d (2.4)  102.3, CH 6.74 d (2.3) 

10a 140.8, Cq   139.2, Cq  

10b 134.8, Cq   131.8, Cq  

4a-CH3 28.0, CH3 1.51 s  27.4, CH3 1.47 s 

9-OCH3 56.3, CH3 3.88 s  55.8, CH3 3.86 s 

a Recorded in CD3OD at 100 MHz. b Recorded in CD3OD at 400 MHz. c Recorded in DMSO-d6 at 100 MHz. d Recorded in DMSO-d6 at 

400 MHz. 
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4.4.3 Isoaltenuene (50, known compound) 

 

 

 

By the same strategy as above, compound 50 (code: LG19-4213) has the same molecular formula 

C15H16O6 as that for 49 (Figure 4.4.3.1). Its 
1
H NMR spectrum (Figure 4.4.3.2) was close to that of 49 

except for small differences observed for the chemical shifts and coupling constants from H-1 to H2-4. 

The above analysis indicated that compounds 49 and 50 shared the same planar structure but had 

different relative configurations. 1D NOESY technique (Figures 4.4.3.2 and 4.4.3.3) was applied to 

assign the relative configuration of 50 as shown based on the 1D NOESY correlations of CH3-4a/H-3, 

CH3-4a/H-4β, and H-2/H-4α (Figure 4.4.3.4), together with their coupling constants (Table 4.4.3.1). 

Hence, 50 was established as a known compound isoaltenuene (Altemöller et al., 2006).  

 

Table 4.4.3.1 
1
H NMR data (in CD3OD) of compound 50.  

 

Position 

Compound 50  
Isoaltenuene  

(Altemöller et al., 2006) 
 Compound 49 

H mult.a (J in Hz)  H mult.b (J in Hz)  H mult.c (J in Hz) 

1 6.19 d (2.4)  6.12 d (2.4)  6.23 d (2.8) 

2 4.22 dd (7.8, 2.4)  4.39 dd (8.0, 2.4)  4.08 dd (5.6, 2.8) 

3 3.75 ddd (12.0, 8.4, 3.6)  3.79-3.90 m  3.78 m 

4 β, 2.27 dd (12.0, 3.6) 

α, 2.17 t (12.0) 
 

β, 2.37 dd (12.5, 3.8) 

α, 2.31 dd (12.5, 6.7) 
 

2.41 dd (14.4, 3.6) 

2.00 dd (14.4, 5.2) 

8 6.49 d (2.4)  6.46 d (2.3)  6.48 d (2.4) 

10 6.66 d (2.4)  6.56 d (2.3)  6.67 d (2.4) 

4a-CH3 1.56 d (0.6)  1.62 d (0.7)  1.51 s 

9-OCH3 3.87 s  3.79-3.90 m  3.88 s 
a Recorded in CD3OD at 600 MHz. b Recorded in CDCl3 at 500 MHz. cRecorded in CD3OD at 400 MHz. 
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4.4.4 Alternariol (51, known compound) 

 

 

 

The molecular formula C14H10O5 was assigned to compound 51 (code: LG19-35) through the analysis of 

ESI-HRMS information (m/z 259.0600, [M+H]
+
; calcd. 259.0601, Δ -0.2774, Figure 4.4.4.1). The 

1
H 

NMR spectrum (Figure 4.4.4.2) displayed five signals including four aromatic protons and a methyl at 

δH 2.66. It showed UV maximum absorption at 258, 288, 300 and 340 nm. The above analyses were in 

accordance with the data for alternariol (Nielsen et al., 2011; Gu, 2009) (Table 4.4.4.1).  

 

Table 4.4.4.1 
1
H NMR data (in DMSO-d6) of compound 51.  

 

Position 

Compound 51  

Alternariol 

(Gu, 2009) 

In DMSO-d6 

 

Alternariol  

(Aly et al., 2008) 

In CD3OD 

 

Alternariol  

(Tan et al., 2008) 

In acetone-d6 

H mult.a (J in Hz)  H mult.b (J in Hz)  H mult.c (J in Hz)  H mult.d (J in Hz) 

2 6.61 m  6.62 d (2.5)  6.65 d (2.5)  6.78 d (2.4)e 

4 6.69 m  6.70 d (2.4)  6.55 d (2.5)  6.69 d (2.4)e 

8 6.35 m  6.36 d (1.5)  6.32 d (2.0)  6.44 d (2.1) 

10 7.19 m  7.23 d (1.5)  7.20 d (2.0)  7.33 d (2.1) 

1-CH3 2.66 d (4.5)  2.69 s  2.71 s  2.77 s 
a Recorded in DMSO-d6 at 500 MHz. b Recorded in DMSO-d6 at 300 MHz. c Recorded in CD3OD at 500 MHz. d Recorded in acetone-d6 at 

300 MHz. e Maybe interchangeable.  

 

4.4.5 Altertoxin І (52, known compound) 
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Compound 52 (code: LG19-53), a pigment, has a molecular formula C20H16O6 as established by a 

pesudomolecular ion at m/z 353.1017 [M+H]
+
 (calcd. 353.1020, Δ -0.7934) in ESI-HRMS spectrum 

(Figure 4.4.5.1). The 
1
H NMR spectrum (Figure 4.4.5.2) exhibited the signals for two pairs of aromatic 

ortho hydrogens, an oxygenated methine, and seven saturated protons. The 
13

C NMR spectrum (Figure 

4.4.5.2) showed twenty carbon signals including two carbonyl groups and two oxygenated aromatic 

carbons. Interpretation of 
1
H-

1
H COSY spectrum (Figure 4.4.5.3) of 52 revealed correlations from C-1 

to C-2, from C-5 to C-6, from C-6b to C-8, and from C-11 to C-12. The above analysis indicated 

compound 52 was altertoxin І, which was often found in the fungus Alternaria spp. And its 1D NMR 

data are consistent with that for altertoxin І (Table 4.4.5.1) (Stack et al., 1986).  

 

Table 4.4.5.1 
1
H NMR data (in DMSO-d6) of compound 52.  

 

Position 

Compound 52  Altertoxin I (Stack et al., 1986) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 132.8, CH 8.03 d (8.5)  132.9, CH 8.1 d 

2 118.2, CH 7.03 d (8.5)  117.8, CH 7.1 d 

3 160.9, Cq   161.0, Cq  

3a 114.0, Cq   113.8, Cq  

4 206.2, Cq   206.0, Cq  

5 33.8, CH2 2.57 br d (17.5), Ca. 3.0 me  33.5, CH2 2.59 dt, Ca. 3.0 m 

6 34.9, CH2 2.29 dt (14.5, 3.0), Ca. 3.0 me  34.8, CH2 2.30 dt, Ca. 3.0 m 

6a 68.2, Cq   68.0, Cq  

6b 51.6, CH 2.90 me   51.4, CH 2.86 m 

7 64.8, CH 4.51 m  64.7, CH 4.50 d 

8 47.6, CH2 Ca. 3.0 me 

2.86 dd (15.5, 4.0) 

 47.5, CH2 Ca. 3.0 m 

2.86 m 

9 204.3, Cq    204.2, Cq  

9a 116.8, Cq   116.5, Cq  

9b 140.9, Cq   140.7, Cq  

10 160.4, Cq   160.4, Cq  

11 115.9, CH 6.94 d (8.5)  115.5, CH 6.9 d 

12 132.2, CH 8.00 d (8.5)  132.5, CH 8.0 d 

12a 125.2, Cq   124.8, Cq  

12b 123.9, Cq   123.5, Cq  

12c 138.5, Cq   138.4, Cq  
a Recorded in DMSO-d6 at 125 MHz. b Recorded in DMSO-d6 at 500 MHz. c Recorded in DMSO-d6 at 75 MHz. d Recorded in DMSO-d6 at 

300 MHz. e Signals overlapped.  

 



Chapter 4: Results and Discussion  
 

  

 

114  

4.4.6 Isoochracinic acid (53, known compound) 

 

 

The molecular formula of compound 53 (code: LG19-522) was confirmed by ESI-HRMS (m/z 209.0443 

[M+H]
+
; calcd. 209.0444, Δ -0.5888 ppm, Figure 4.4.6.1). Three proton signals (6.95, d, J = 7.8; 7.60, t, 

J = 8.4, 7.15, d, J = 7.8) in 
1
H NMR spectrum indicated a trisubstituted benzene ring (Figure 4.4.6.2). 

Detailed HMBC correlations from H-2 to C-4 and C-6, from H-3 to C-1 and C-5, and from H-4 to C-2 

and C-6 supported above analysis. HMBC correlations (Figure 4.4.6.3) observed from H-9 to C-5 and 

C-11, and from H2-10 to C-5, C-9 and C-11 allowed the connection of C-5/C-9/C-10/C-11 or C-5/C-

10/C-9/C-11. The HMBC correlation of H-2/C-7, and the chemical shifts (Table 4.4.6.1) of C-7 (δC 

169.6) and C-9 (δC 77.7) enabled us to confirm a five- or six-membered lactone ring fusing to the 

benzene ring. The last hydroxyl group was attached to C-1 based on its chemical shift (δC 156.7), which 

was in accordance with the MS requirement. Finally, compound 53 was identified as a known 

compound, isoochracinic acid with a five-membered lactone ring (Fan et al., 2012). 

 

Table 4.4.6.1 
1
H and 

13
C NMR data (in acetone-d6) of compound 53.  

 

Position 

Compound 53  Isoochracinic acid (Fan et al., 2012) 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz) 

1 156.7, Cq   156.4, Cq  

2 115.9, CH 6.95 d (7.8)  115.8, CH 6.93 d (8.2) 

3 136.9, CH 7.60 t (8.4)  136.5, CH 7.58 t (7.8) 

4 113.7, CH 7.15 d (7.8)  113.4, CH 7.12 d (7.5) 

5 151.0, Cq   150.6, Cq  

6 111.7, Cq   111.5, Cq  

7 169.6, Cq   169.5, Cq  

8 -   -  

9 77.7, CH 5.86 dd (7.8, 4.8)  77.5, CH 5.84 dd (7.9, 4.8) 

10 38.8, CH2 3.10 ddd (16.8, 4.8, 1.2) 

2.86 ddd (16.8, 7.8, 0.6) 
 

38.7, CH2 3.07 dd (16.8, 4.9) 

2.83 dd (16.8, 7.9) 

11 170.4, Cq   170.2, Cq  
a Assigned based on data from the HSQC and HMBC spectra at 600 MHz. b Recorded in acetone-d6 at 600 MHz. c Recorded in acetone-d6 

at 100 MHz. d Recorded in acetone-d6 at 400 MHz. 
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4.4.7 (2E)-Fumaric acid (54, known compound) 

 

 

 

Compound 54 (code: LG19-32) was confirmed as a known compound (2E)-fumaric acid based on the 

comparison of its 1D NMR data (Figure 4.4.7.1) with that reported in the literature (Table 4.4.7.1).  

 

Table 4.4.7.1 
1
H and 

13
CNMR data (in CD3OD) of compound 54.  

 

Position 

Compound 54  (2E)-Fumaric acid  (2Z)-Fumaric acid 

C, mult.a H mult.b (J in Hz)  C, mult.c H mult.d (J in Hz)  C, mult.e H mult.f (J in Hz) 

1,4 168.1, Cq   Ca. 168.0, Cq   Ca. 167.0, Cq  

2,3 135.2, CH 6.76 s  Ca. 135.0, CH Ca. 6.75 s  Ca. 130.0, CH Ca. 6.25 s 
a Recorded in CD3OD at 125 MHz. b Recorded in CD3OD at 500 MHz. c Recorded in CD3OD at 100 MHz obtained from Advanced 

Chemistry Development Inc. d Recorded in CD3OD at 400 MHz obtained from Advanced Chemistry Development Inc. e Recorded in 

DMSO-d6 at 75 MHz obtained from Advanced Chemistry Development Inc. f Recorded in DMSO-d6 at 300 MHz obtained from Advanced 

Chemistry Development Inc.  

 

 

4.5 Structural character and proposed biosynthetic pathways  

 

4.5.1 Decalin-containing compounds (16) 

 

Natural products containing a ‘decalin’ motif occur frequently in microorganisms and show diverse 

biological activities, including antimicrobial and anticancer activities (Li et al., 2014a). Compounds 16 

are polyketide decalin-derived secondary metabolites with a double bond between C-3 and C-4. A 

enzymatic or non-enzymatic intramolecular Diels-Alder (IMDA) cycloaddition could be responsible for 

the formation of decalin motif (Figure 4.5.1.1) (Li et al., 2014a). The unusual incorporation of an urea or 

aniline substructure into 2 might be a key biosynthetic step for the occurrence of new compounds 46 

(Ding et al., 2008). 
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Figure 4.5.1.1 Plausible biosynthetic pathway of compounds 16 (Li et al., 2014a; Ding et al., 2008). 

 

4.5.2 Sirenin derivatives (7 and 8) 

 

Sirenin acts as a fungal sexual pheromone as a low concentration (Nutting et al., 1968). It belongs to the 

class of sesquiterpenes (Nutting et al., 1968). Obviously, compounds 7 and 8 are the derivatives of 

sirenin (Figure 4.5.2.1). Three isoprenoid units were condensed into farnesyl pyrophosphate, followed 

by the cyclization and consequent oxidation to afford sirenin, as well as compounds 7 and 8. However, it 

is also possible that the new compound 8 was formed through the condensation, cyclization and 

oxidation of two isoprenoid building blocks, and is a monoterpenoid.   
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Figure 4.5.2.1 Plausible biosynthetic pathway of sirenin derivatives 7 and 8 (Nutting et al., 1968). 

 

4.5.3 Pigments (911) 

 

Natural products that have a naphthopyranone (1H-naphtho[2,3-c]pyran-1-one) core structure are widely 

found in fungi and bacteria (Donner, 2015). The class belongs to the family of polyketide and exhibited 

a diverse range of identified bio-activities, such as antimicrobial, cytotoxic and antioxidant activities 

(Donner, 2015). Generally, they are biosynthesized from acyl CoA precursors through polyketide 

synthases (PKSs). There are three types of bacterial PKSs are well-known to date (Shen, 2003). PKSs as 

the multienzyme complexes with a single set of iteratively acting activities, should be responsible for the 

biosynthesis of 911 (polycyclic and aromatic polyketides) (Shen, 2003). As shown in figure 4.5.3.1, 

seven building blocks (acetyl-CoA and malonyl-CoA) formed core structures 3-alkyl naphthopyranone 

and 6,9-naphthoquinone. Further methylation followed by oxidative coupling (dimerization) afforded 

compounds 9 and 10 (Bode et al., 2007). Viridicatumtoxin (11) is a rare fungal compound that is similar 

to the bacterial tetracycline antibiotics (Chooi, et al., 2010). It is a polyketide-isoprenoid hybrid product 

with a polyketide-derived tetracyclic scaffold and a spirobicyclic ring of geranyl origin (Chooi, et al., 

2012). A key prenyl transferase VrtC was proved to be involved in alkylation of the tetracyclic 

intermediate (Figure 4.5.3.2) (Chooi, et al., 2012). Further cyclization yielded the product 11.   
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Figure 4.5.3.1 Plausible biosynthetic pathway of 9 and 10 (Bode et al., 2007; Donner, 2015). 

 

 

Figure 4.5.3.2 Plausible biosynthetic pathway of 11 (Chooi, et al., 2010; Chooi, et al., 2012).  

 

4.5.4 Paraconic acids (12, 14, 16, and 19) and alkylitaconic acids (2123) 

 

Paraconic acids, as naturally occurring trisubstituted γ-butyrolactones (Seitz and Reiser, 2005),
 
have 

attracted considerable attention from organic and medicinal chemists owing to their interesting structural 

and biological properties (Amador et al., 2006).
 
The γ-butyrolactone scaffold is generally substituted 

with a methyl or methylene group at α-postion, a carboxyl group at β-position, and an alkyl chain at γ-

position. The alkyl chain of various lengths as well as the stereochemical relationship between these 
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substituents contribute to the significant structural differences (Amador et al., 2006). Biosynthetically, 

paraconic acids (for example, compound 19) might be assigned as cyclic products of corresponding 

alkylitaconic acids (Stewart et al., 2005) (Figure 4.5.4.1). For the backbone construction of bioactive 

alkylitaconic acids 21 or 22, it may include two steps (Figure 4.5.4.1) (Fujii et al., 2015). Firstly, fatty 

acid synthase or highly reducing iterative polyketide synthase (HR-PKS) might be involved in the 

formation of C8 fatty acyl chain. Furthermore, an oxaloacetic acid was proposed to be incorporated into 

the above fatty acyl chain by the citrate synthase homologue. 
 

 

 

Figure 4.5.4.1 Plausible biosynthetic pathway of alkyliaconic acids and paraconic acids (Fujii et al., 

2015).  

 

4.5.5  The tetracyclic triterpenoid (28), and steroids (2935)  

Compound 28 represents an unusual fungus-derived 19-nor-lanostane tetracyclic triterpene with an 

aromatic B-ring (Li et al., 2015). Furthermore, it seems that there is only one further natural 
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lanostane/cucurbitane derivative (19-nor-cucurbita-5(10),6,8,22(E),24-pentaen-3β-ol from plant) with an 

aromatized B ring (Hsu et al., 2011; Li et al., 2015). Compounds possessing structural features similar 

to 28 are biosynthesized from a common intermediate lanosterol (Figure 4.5.5.1) (Brown, 1998; Ríos et 

al., 2012; Quin et al., 2014). The “6-6-6-5” tetracyclic lanosterol is biosynthesized via cyclization of 

2,3-oxidosqualene followed by sequential backbone rearrangement (two methyl migrations and hydride 

shifts). It has to be noted that a stable intermediate with “6-6-5” rings is followed by the C-ring 

expansion concomitant with the formation of the D-ring to yield the “6-6-6-5” scaffold in lanosterol 

(Chen et al., 2015). Subsequent aromatization of the B-ring of lanosterol skeleton may be responsible 

for the loss of Me-19, followed by hydroxylation at C-1, C-12 and C-22 to afford 28 (Figure 4.5.5.1). 

The conversion of lanosterol into steroid derivatives 2935 in fungi is shown in figure 4.5.5.1 (Brown, 

1998; Quin et al., 2014). 
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Figure 4.5.5.1 Plausible biosynthetic pathway of tetracyclic triterpenoid (28), and steroids (2935) 

(Chen et al., 2015; Quin et al., 2014; Mansoor et al., 2005; Brown, 1998).  

 

4.5.6 Cyclic pentapeptides (4042) and cyclic lipopeptides (43 and 44) 

 

Nonribosomal peptides (NRPs) are a group of biologically active peptides, which were biosynthesized 

by large multimodular enzymes, nonribosomal peptide synthetases (NRPSs) (Strieker et al., 2010). The 

substrates for building the structures are not limited to the 20 proteinogenic amino acids. The 

nonproteinogenic building blocks or other acids are also frequently found and contribute to structural 

diversity of NRPs (Strieker et al., 2010). Cyclic pentapeptides (4042) are polypeptide chains with five 

amino acids, which were biosynthesized without free N- and C-terminal because of the cyclization from 

head to tail (Joo, 2012). The D-leucine discovered in NRPs (4042) can arise from the direct 

incorporation of D-amino acids or in situ epimerization of an L-aminoacyl C-α center (the more general 

route) (Stachelhaus and Walsh, 2000). Cyclic lipopeptides (43 and 44) consist of two parts, the peptide 

and the lipid. The first part was constructed by proteinogenic and nonproteinogenic amino acids, which 

was achieved by NRPSs (Sørensen et al., 2014). The second part was a fatty acid chain linked to the 

peptidyl backbone, which was formed by HR-PKS. Therefore, compounds 43 and 44 are hybrid peptide-

polyketide natural products (Sørensen et al., 2014).  

 

4.5.7 Alternaria mycotoxins (4951) 

 

Compounds 4951, as important mycotoxins from the Alternaria fungi, not only caused significant 

economic losses in agriculture, but also posed serious health risks to humans and livestock (Chooi et al., 

2015). The PKS gene is responsible for their biosynthesis (Saha et al., 2012). Figure 4.5.7.1 showed that 

the polyketide chain was converted to target products by two types of cyclization.  
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Figure 4.5.7.1 Proposed biosynthetic pathway for 4851 (Chooi et al., 2015; Saha et al., 2012). 

 

4.6 Biological activities 

 

Given an extensive use of the host plants in TCM, we embarked on a traditional knowledge-based de-

replication of the functional roles of the compounds isolated from endophytes (Li et al., 2015). Our 

focus was to correlate the traditional usage of the plant in TCM to the bioactivity of the actually isolated 

compounds produced by the endophytic fungi residing inside the host plant (Li et al., 2015). Chinese 

medicinal plants X. sibiricum, M. fortunei, and L. japonica for the isolation of endophytic fungi, have 

been used in TCM for treating bacterial infection-related ailments (see section 1.2.4). Therefore, the 

antibacterial efficacies of new compounds and selected known metabolites were investigated against 

several Gram-positive and Gram-negative bacteria obtained from clinical or environmental strains. 

Furthermore, in order to correctly interpret the high antibacterial efficacies of several compounds, a 

resazurin-based assay to measure the THP-1 mitochondrial metabolic inhibition and an ATPlite assay to 

measure the THP-1 cytoplasmic ATP depletion were used to evaluate the cytotoxicity of potential 

antibiotics. 

 

4.6.1 Antibacterial activity  

 

4.6.1.1 Compounds isolated from Eupenicillium sp. LG41 
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4.6.1.1.1 Decalin-containing compounds (15) 

 

Table 4.6.1.1.1.1 shows the minimum inhibitory concentrations (MIC) of five decalin-containing 

compounds against five bacteria [S. aureus, E. coli (DSM 1116, Risk-group 1, RG1), E. coli (DSM 682, 

RG2), B. subtilis, and Acinetobacter sp.] compared to the standard references streptomycin and 

gentamicin. Compound 3 had the same efficacy as that of gentamicin against clinically relevant RG2 

bacterium S. aureus at the concentration of 1.0 µg/mL (Table 4.6.1.1.1.1). Moreover, compound 5 was 

more active than 3 against S. aureus with an MIC value of 0.1 µg/mL (Table 4.6.1.1.1.1 and Figure 

4.6.1.1.1.1). An SAR investigation was explored. By comparing 5 with 2 and 3, the substitution at C-11 

could be noted to play an important role in increasing the antibacterial activity against the selected 

bacterium (Li et al., 2014b). These results reveal not only the importance of substitution at C-11, but 

also the potential of compounds 3 and 5 as potent compounds that could be developed into new 

derivatives to increase the antimicrobial efficacy. Decalin-motif containing compounds had weak or no 

antibacterial activities against other four selected Gram-positive and Gram-negative bacteria.  

 

Table 4.6.1.1.1.1 MIC of the compounds 15 (see page 35) against Gram-positive and Gram-negative 

bacteria compared to standard references (streptomycin and gentamicin).
a
  

organism  (DSMZ no.) 1 2 2b 3 4 5 streptomycin gentamicin 

Staphylococcus aureus (DSM 799) >10.0 >10.0 >10.0 1.0 >10.0 0.1 5.0 1.0 

Escherichia coli (DSM 1116) 5.0 5.0 >10.0 5.0 >10.0 >10.0 1.0 1.0 

Escherichia coli (DSM 682) >10.0 nt >10.0 nt >10.0 >10.0 1.0 1.0 

Bacillus subtilis (DSM 1088) >10.0 >10.0 10.0 >10.0 >10.0 >10.0 5.0 1.0 

Acinetobacter sp. (DSM 586) >10.0 10 >10.0 >10.0 >10.0 >10.0 10.0 5.0 

aAll values are in µg/mL and derived from experiments in triplicate. b The second time to test. nt: not tested.  

 

 

Figure 4.6.1.1.1.1 The observed zones of inhibition (ZOIs) of compound 5 against S. aureus at the 

concentration of 0.1 µg/mL.  
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4.6.1.1.2 Sirenin derivatives (7 and 8) and pigment (9) 

 

Table 4.6.1.1.2.1 exhibits the MIC of sirenin derivatives (7 and 8) and pigment (9) against four bacteria 

[S. aureus, E. coli (RG1), B. subtilis, and Acinetobacter sp.] compared to the standard references 

streptomycin and gentamicin. Compounds 79 exhibited strong efficacy against the soil bacterium 

Acinetobacter sp., being more potent than streptomycin and having the same efficacy as gentamicin. 

Figure 4.6.1.1.2.1 exhibits the zones of inhibition (ZOIs) of compound 9 against B. subtilis and 

Acinetobacter sp. 

 

Table 4.6.1.1.2.1 MIC of the compounds 79 (see page 35) against Gram-positive and Gram-negative 

bacteria compared to standard references (streptomycin and gentamicin).
a
  

organism  (DSMZ no.) 7 8 9 streptomycin gentamicin 
Staphylococcus aureus (DSM 799) >10.0 >10.0 nt 5.0 1.0 

Escherichia coli (DSM 1116) 5.0 10.0 nt 1.0 1.0 

Bacillus subtilis (DSM 1088) >10.0 >10.0 10.0 5.0 1.0 

Acinetobacter sp. (DSM 586) 5.0 5.0 5.0 10.0 5.0 

All values are in µg/mL and derived from experiments in triplicate. nt: not tested. 

 

 

Figure 4.6.1.1.2.1 The observed ZOIs of compound 9 against B. subtilis (a, 10 µg/mL) and 

Acinetobacter sp. (b, 5 µg/mL; c, 10 µg/mL).  

 

4.6.1.1.3 Paraconic acids (1220) and alkylitaconic acids (2124) 

 

The antibacterial activities of paraconic acids and alkylitaconic acids against Gram-positive and negative 

pathogenic bacteria such as S. aureus, S. pyogenes, and E. coli, as well as the soil-dwelling bacteria B. 

subtilis and Acinetobacter sp. were evaluated (Table 4.6.1.1.3.1). Most of paraconic acids and 

alkylitaconic acids selectively inhibited the soil bacterium Acinetobacter sp. and exhibited no inhibitory 
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activities against the other four Gram-positive and negative bacteria S. aureus, S. pyogenes, B. subtilis 

and E. coli (Table 4.6.1.1.3.1). Compounds 12, 17, 21, and 24 exhibited the most pronounced inhibitory 

effects on the soil bacterium Acinetobacter sp. at the concentration of 1.0 µg/mL, being more potent 

than that of both reference antibiotics streptomycin (10 µg/mL) and gentamicin (5 µg/mL) (Table 

4.6.1.1.3.1). By comparing compound 13 with 12, and 15 with 14, as well as 23 with 21, the free 

carboxyl group was beneficial for the high inhibitory activity against Acinetobacter sp. The contrary was 

observed from the comparison of compound 20 with 19. 

 

Table 4.6.1.1.3.1 MIC of the compounds (1217, and 1924) (see page 36) against Gram-positive and 

Gram-negative bacteria compared to standard references (streptomycin and gentamicin).
a
 

organism (DSMZ no.) 12 13 14 15 16b 17 19 20 21 22 23 24 streptomycin gentamicin 

Staphylococcus aureus (DSM 799) >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 5.0 1.0 

Escherichia coli (DSM 682) >10 >10 >10 >10 >10 >10 >10 >10 10 >10 >10 >10 1.0 1.0 

Bacillus subtilis (DSM 1088) >10 >10 >10 5.0 >10 >10 >10 >10 >10 >10 >10 >10 5.0 1.0 

Acinetobacter sp. (DSM 586) 1.0 5.0 10 >10 2.0 1.0 >10 5.0 1.0 >10 >10 1.0 10 5.0 

Streptococcus pyogenes (DSM 11728) >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 10 

a All values are in µg/mL and derived from experiments in triplicate. b a mixture (16:13 = 1:2) 

 

In order to further understand the inhibitory effects of paraconic acids and alkylitaconic acids on 

Acinetobacter species, four more Acinetobacter species (Table 4.6.1.1.3.2), of them A. baylyi and A. 

calcoaceticus were isolated from soil or water, and A. baumannii and A. pittii from the clinic, were 

tested. The soil bacterium Acinetobacter sp. was also included and parallelly tested (Table 4.6.1.1.3.2). 

A last-resort antibiotic colistin, as one of currently the best options for multi-drug resistant A. baumannii 

(Jung and Park, 2015), was employed as the positive control. 

  

Table 4.6.1.1.3.2 MIC of the compounds (1224) (see page 36) against five different strains of Gram-

negative Acinetobacter bacteria compared to a standard reference (colistin).
a 
 

organism (DSMZ no.) 12 13 14 15 16 17 18 19 20 21 22 23 24 colistin 

Acinetobacter baylyi (DSM 24193) 2.0 5.0 >10 >10 >10 5.0 >10 >10 >10 >10 >10 >10 2.0 10 

Acinetobacter calcoaceticus (DSM 30006) 5.0 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 5.0 

Acinetobacter baumannii (DSM 30007) 5.0 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 5.0 

Acinetobacter pittii (DSM 25618) 2.0 5.0 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 >10 5.0 

Acinetobacter sp. (DSM 586) 1.0 5.0 >10 >10 5.0 2.0 >10 >10 5.0 2.0 >10 >10 2.0 1.0 

a All values are in µg/mL and derived from experiments in triplicate.  
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As indicated by results in table 4.6.1.1.3.2, compound 12 was found to be highly active against all five 

Gram-negative Acinetobacter spp. (Acinetobacter sp., A. baylyi, A. calcoaceticus, A. baumannii and A. 

pittii), qualitatively effective in the same range as that of the last-resort antibiotic colistin. Therefore, 

compound 12 should be a genus-specific bioactive paraconic acid. Compound 13, as the methyl ester of 

12, showed the inhibitory activity against A. baylyi, A. pittii and Acinetobacter sp. at the concentration 

of 5 µg/mL (Table 4.6.1.1.3.2). On the basis of compound 12, the SAR for acids 1224 is investigated. 

A γ-lactone motif and a free carboxylic acid functional group are pivotal for the antibacterial efficacy of 

compound 12 against Acinetobacter spp. Furthermore, a critical comparison among metabolites 1220 

with a γ-lactone ring revealed that the stereo-configuration relationship at C-2, C-3 and C-4 are really 

important for their antibacterial effects. Fortunately, in the current work, a preferred stereochemical 

configuration (2S, 3R, 4S) exhibited in compound 12 was discovered and it would be worthy of further 

structural modification for studying the selective antibacterial activity. Acinetobacter, as a genus of 

gram-negative, oxidase-negative and strictly aerobic bacteria, live in diverse natural environments (Jung 

and Park, 2015).
 
In this genus, A. baumannii, a species with a multi-drug resistance trait and rapid 

resistance development is reported to have caused a wide range of infections, especially in hospital 

intensive care units (ICU) (Jung and Park, 2015; McConnell et al., 2013). The discovery and 

development of new antimicrobial agents are urgent (WHO, 2014). Admittedly, our results obtained 

from the disc diffusion assay only depict a qualitative in vitro susceptibility of the tested organisms 

against the isolated compounds, comparable to the standard reference antibiotics. In particular, it was 

interesting to note the sensitivity of the Acinetobacter species against compound 12 on solid agar 

medium as per the latest guidelines of the CLSI. However, it is important to consider the general 

drawbacks of the disc diffusion assay, in addition to its advantages, when interpreting the obtained 

results. Therefore, more in vitro as well as in vivo assays must be preformed to determine the therapeutic 

efficacy of compound 12 in actual practice before considering it as a lead compound for treating 

Acinetobacter infections. Nevertheless, our results provide a starting point for considering compound 12 

(termed pacbactin) as a promising lead compound for the treatment of Acinetobacter spp. 

 

4.6.1.2 Compounds isolated from Diaporthe sp. LG23 

 

The antibacterial efficacies of a tetracyclic triterpene (28) as well as six biosynthetically-related known 

ergosterol derivatives (3035) against the clinical risk-group 2 (RG2) human pathogens were evaluated 
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(Table 4.6.1.2.1). Gram-positive bacteria (S. aureus and S. pyogenes) as well as Gram-negative bacteria 

(E. coli and P. aeruginosa) were used. The Gram-positive soil bacterium B. subtilis (RG1) was also 

included.  

 

Table 4.6.1.2.1 MIC of the compounds 28, and 3035 (see page 74) against Gram-positive and Gram-

negative bacteria compared to standard references (streptomycin and gentamicin).
a 

organism (DSMZ no.) 28 30 31 32 33 34 35 streptomycin gentamicin 

Staphylococcus aureus (DSM 799) 5.0 >10 >10 >10 1.0 >10 >10 5.0 1.0 

Escherichia coli (DSM 682) 5.0 >10 >10 >10 >10 >10 >10 1.0 1.0 

Bacillus subtilis (DSM 1088) 2.0 5.0 >10 >10 5.0 >10 >10 5.0 1.0 

Pseudomonas aeruginosa (DSM 22644) 2.0 >10 >10 >10 >10 >10 >10 10.0 1.0 

Streptococcus pyogenes (DSM 11728) 0.1 >10 >10 >10 >10 >10 >10 >10 10.0 

aAll values are in μg/mL and derived from experiments in triplicate. 

 

Compound 28, an unusual fungus-derived 19-nor-lanostane tetracyclic triterpenoid with an aromatic B-

ring system, showed marked antibacterial efficacy against both Gram-positive and Gram-negative 

bacteria, especially the clinical isolates of S. pyogenes and P. aeruginosa as well as a human pathogenic 

strain of S. aureus (Table 4.6.1.2.1) (Li et al., 2015). Our results, therefore, indicate that 28 is a potent 

antibacterial compound. Compounds 30 and 33 were active against B. subtilis having a similar efficacy 

as that of the reference standard streptomycin. Compound 31, the hydroxylated product of 30 at C-14, 

showed no inhibitory activity, indicating that the substitution by a hydroxyl group is not beneficial to the 

activity. Compound 33 showed the same antibacterial efficacy as gentamicin against S. aureus with an 

MIC value of 1.0 µg/mL. Comparison of the MIC values of 33 with those of 3032, 34, and 35 

suggested that the A ring and/or seco-ring B system observed in 33 has a significant effect on the 

antibacterial efficacy.  

 

4.6.1.3 Compounds isolated from F. decemcellulare LG53 

 

The Gram-positive bacteria S. aureus and B. subtilis, as well as Gram-negative bacteria E. coli and 

Acinetobacter sp. were employed for biological test. Table 4.6.1.3.1 shows the MIC values of new 

cyclic pentapeptides 4042 compared to both standard antibiotics, streptomycin and gentamicin. None 

of the new cyclic pentapeptides 4042 exhibited inhibitory efficacies against the selected bacteria (Table 
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4.6.1.3.1). The cyclic lipopeptide, fusaristatin A (43), was well-known to be inactive against many tested 

bacteria and several fungi (Hegge et al., 2015). However, as indicated by the work on several 

cyclopeptides employed as “cross-talk” agents in plant (Wang et al., 2015), a further investigation is 

warranted to examine their functions in cross-talk.  

 

Table 4.6.1.3.1 MIC of the compounds 4042 (see page 93) against Gram-positive and Gram-negative 

bacteria compared to standard references (streptomycin and gentamicin).
a 

organism (DSMZ no.) 40 41 42 streptomycin gentamicin 

Staphylococcus aureus (DSM 799) >10.0 >10.0 >10.0 5.0 1.0 

Escherichia coli (DSM 1116) >10.0 >10.0 >10.0 1.0 1.0 

Escherichia coli (DSM 682) >10.0 >10.0 >10.0 1.0 1.0 

Bacillus subtilis (DSM 1088) >10.0 >10.0 >10.0 5.0 1.0 

Acinetobacter sp. (DSM 586) >10.0 >10.0 >10.0 10.0 5.0 

aAll values are in µg/mL and derived from experiments in triplicate.     

 

4.6.2 Cytotoxicity  

 

In order to correctly interpret the antibacterial efficacies of compounds, a resazurin-based assay to 

measure the THP-1 mitochondrial metabolic inhibition and an ATPlite assay to measure the THP-1 

cytoplasmic ATP depletion were used to evaluate the cytotoxicity of selected highly active compounds 5, 

12, 13, and 28. Semi-logarithmic representations of the fractional survival (FS in %) of THP-1 cells in 

response to the concentration (µM) are as shown below (Figures 4.6.2.1-4.6.2.4). Compounds 5 and 28 

were highly cytotoxic in vitro against THP-1 cells (Figure 4.6.2.1 and 4.6.2.4). Because of the high 

cytotoxicities of 5 and 28, they cannot be used as antibacterial agents. Surprisingly, none of compounds 

12 and 13 displayed potential cytotoxic effects on THP-1 cells at high concentrations (Figures 4.6.2.2 

and 4.6.2.3). The above results indicated the potential of 12 as a promising lead compound.  

 

  

Figure 4.6.2.1 In vitro cytotoxic assays of compound 5 against THP-1 cells. 
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Figure 4.6.2.2 In vitro cytotoxic assays of compound 12 against THP-1 cells. 

 

   

Figure 4.6.2.3 In vitro cytotoxic assays of compound 13 against THP-1 cells. 

 

  

Figure 4.6.2.4 In vitro cytotoxic assays of compound 28 against THP-1 cells. 

 

4.7 Possible ecological role of endophyte 

 

Microorganisms rarely live in axenic conditions in nature and endophytes are no exception (Li et al., 

2015). Endophytic microorganisms typically co-evolve a plethora of ‘traits’ for surviving and 

functioning in their diverse ecological niches (Kusari et al., 2012). These traits emerge as a result of 

multifaceted multispecies interaction of endophytes with associated organisms (other endophytes, 

invading phytopathogens, invading pests and parasites, as well as the host plant), and range from 

production of antimicrobial chemical defense compounds to triggers for activating cryptic biosynthetic 

pathways, production of precursors, quorum sensing molecules, epigenetic modulators, and even direct 

physical organismal interactions (Kusari et al., 2013; Kusari et al., 2014; Kusari et al., 2015; Li et al., 
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2015). In the laboratory, all these chemical or molecular crosstalks between several organisms are really 

difficult to investigate in vitro. Normally, in vitro culture conditions are mostly different from in planta 

micro-environment where endophytic microorganisms live. Hence, there is no direct significance for 

quantitative estimation of production of a secondary metabolite by an endophyte in vitro and in planta 

(Kusari et al., 2014; Li et al., 2015). In addition, the in planta metabolic activity of an endophyte is 

mostly dictated by the interactions or communication strategies with coexisting microorganisms (Li et 

al., 2015). Therefore, endophytic microorganisms are known to stop or reduce production of certain 

secondary metabolites over repeated subculturing, mostly due to loss of suitable in planta triggers 

(Kusari et al., 2012; Li et al., 2015).   

Since the endophytic fungus Eupenicillium sp. LG41, was isolated from the roots of X. sibiricum, the 

ecological role of the endophyte was proposed (Li et al., 2014b). Some isolated compounds (for 

example, compound 12) exhibited significant inhibitory activities against the Gram-positive bacterium B. 

subtilis and the Gram-negative bacterium Acinetobacter sp., which typically inhabit soil and the 

rhizosphere (see section 4.6.1.1). Soil, especially the rhizosphere, is a microbial hot spot where 

multipartite interactions are intensified (Li et al., 2014b). It is thus reasonable to propose that the root-

endophyte provides defense to the host plant against specific soil bacteria. Our data also reveal the 

potential of Diaporthe sp. LG23 in aiding host plant defense against invading pathogens by secreting 

active antibacterial compounds (Li et al., 2015). Without a doubt, a further study is needed to evaluate 

the endophyte’s in planta metabolic processes to exemplify its true function in host plant.  

As indicated by the work on several cyclopeptides employed as “cross-talk” agents in plant (Wang et al., 

2015), an investigation for the possible functions of cyclopeptides 4043 from F. decemcellulare LG53, 

was carried out. As shown in figure 4.7.1A, antifungal evaluation against fungus LG52 (isolated from 

the same plant tissue with F. decemcellulare LG53) using PDA medium amended with compounds 

4043 with different concentrations showed that the growth of fungus LG52 was only inhibited on PDA 

medium containing fusaristatin A (43). It has to be noted that the inhibition was concentration-

dependent (Figure 4.7.1B). Moreover, MALDI-Imaging-HRMS was applied and showed that compound 

43 was secreted into the PDA medium around the fungal mycelia of F. decemcellulare LG53 (Figure 

4.7.2). More interestingly, compound 43 was accumulated outside F. decemcellulare LG53 with a 

higher ion intensity when the mycelia of two endophytic fungi came in physical contact (Figure 4.7.2). 

Thus, we assumed that compound 43 was secreted into the endophytic community in planta and might 

be employed to maintain the balance in the ecological niche. 
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Figure 4.7.1 Fungus LG52 was grown on PDA medium amended with compounds 4043. A: For each 

petri dish, there are total 400 µg pure compounds or mixture in 20 mL PDA medium (final concentration: 

20 µg/mL). B: Compound 43 with different concentrations was added into 20 mL PDA medium.  

 

 

 

Figure 4.7.2 Localization of compound 43 detected in MALDI-imaging-HRMS scan of the endophytic 

fungi isolated from the same plant tissue after 7 days. A,C The picture of co-culture between two 

endophytes and the area (red frame) selected for MS measurement. B,D Ion intensity map of mass m/z 

681.4198, C36H58O7N4Na, [M+Na]
+
 (compound 43).  
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Endophytes as one of ubiquitous, yet cryptic communities, show less manifest phenomena. The 

regulation of host defense, fungal virulence, and other environmental factors is complex, and difficult to 

investigate (Kusari et al., 2012). The fundamental aspects of their interactions with hosts and other 

inhabitants are poorly understood (Arnold at al., 2003; Kusari et al., 2012; Kusari et al., 2014b). Wang 

et al. (2015) discovered several cyclopeptides which were employed as “cross-talk” agents between two 

endophytes. Fusaristatin A (43), a cyclic lipopeptide, is well-known to be inactive against many tested 

bacteria and fungi (Hegge et al., 2015). However, compound 43 showed a concentration-dependent 

inhibition of the growth of an endophytic fungus (Figure 4.7.1), which was isolated from the same 

community with the producer of 43. It can be induced by a neighbor and then secreted into the 

environment (Figure 4.7.2). The above evidence strongly indicates a balanced antagonism in fungal 

endophytes of the host, which might also explain the presence of antimicrobial metabolites that 

endophytes synthesize (Schulz et al., 2015).  

 

 

4.8 Discussion  

In 1945, Alexander Fleming received the Nobel Prize in Physiology or Medicine for his discovery of 

penicillin, a fungus-derived antibiotic (Tan and Tatsumura, 2015). The golden era of discovering and 

using new antibiotics started then (Lewis, 2012). In 1952, Selman Waksman was awarded the same 

Nobel Prize for his contribution in the discovery of streptomycin, a bacterium-derived antibiotic active 

against tuberculosis (Woodruff, 2014). After 63 years, the prestigious Nobel Prize in Physiology or 

Medicine in 2015 was awarded to natural products discoverers again. The prize was shared by Youyou 

Tu for her discovery of the antimalarial agent artemisinin, and William Cecil Campbell and Ōmura 

Satoshi for their discovery of avermectin, which acts against infections caused by roundworm parasites 

(Kong and Tan, 2015). It has to be noted that the discovery of artemisinin was inspired by traditional 

Chinese medicine (TCM), while the avermectin was discovered from a soil streptomycete (Kong and 

Tan, 2015). The above facts not only promote the renaissance of natural products chemistry, but also 

attract more attention and enthusiasm on traditional medical practice and/or promising microorganisms 

in certain ecological niches to discover new drugs (Shen, 2015). With the recent advances in microbial 

genomics and metagenomics, a new golden age of natural products drug discovery is drawing (Shen, 

2015).   
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Since the emergence and spread of antibiotic resistance, the discovery and development of antibacterial 

agents with new natural product-drug pharmacophores are urgent (WHO, 2014). Endophytes, a distinct 

group of microorganisms, asymptomatically colonize living, internal tissues of host plants (Kusari et al., 

2012). They have been proved to have enormous biological diversity and a variety of biosynthetic 

capabilities due to their complex association with host plants and other organisms in their ecological 

niches (Kusari et al., 2012; Zhang et al., 2006). For example, they can produce bioactive plant 

compounds including the valuable anti-cancer agent paclitaxel (Taxol) (Stierle et al., 1993; Kharwar et 

al., 2011; Kusari et al., 2012). Traditional medicinal plants have an ethnobotanical history that is 

associated with specific medical practices or applications of interest (Strobel and Daisy, 2003). They 

harbor certain endophytic microorganisms that adapt to the environmental factors or selection pressure 

in planta over the co-evolutionary process, and might have desirable biosynthetic capabilites related to 

host plant (Zhang et al., 2006; Kusari and Spiteller, 2011; Kusari et al., 2012). From a traditional 

knowledge-based strategy (Li et al., 2015), endophytes isolated from traditional medicinal plants used 

for treating bacterial infection-related diseases could be a promising source for new antibiotics, as 

exemplified by the results in this thesis.  

The aim of this thesis focuses on the isolation, identification and antibacterial evaluation of secondary 

metabolites from four endophytes harbored in the traditional medicinal plants X. sibiricum, M. fortunei, 

and L. japonica, which were effective in the treatment of bacterial infection-related ailments (Zhang et 

al., 2006; Choi et al., 2007; Li et al., 2007; Kan et al., 2011; Yu et al., 2011; Xiong et al., 2013). More 

than fifty endophytic fungi were isolated from the above mentioned plants, supporting the evidence of 

the vast diversity of endophytic microorganisms (Verma and Gange, 2014). It has to be mentioned 

herein that the plant tissues collected from different locations in gardens or wild places (see section 3.1) 

nearly have the same compositions by the analysis of LC-MS. However, the chemical profiles for 

endophytes from these tissues had the major differences. Regarding this, another interesting finding is 

that Diaporthe sp. LG23 and F. decemcellulare LG53 from the leaves and stems of M. fortunei 

respectively, can produce the same degraded triterpenoid compound 34, in addition to the similar 

compound 33 or 47 with the same highly rearranged core structures. Further research to discover the 

possible influence of host plant M. fortunei on endophytes is necessary.  

From the selected four fungal endophytes, forty-nine secondary metabolites with diverse structures 

and/or functional groups including decalin-containing polyketides, aromatic polyketides, sesquiterpenes 

(sirenin derivatives), tetracyclic triterpenoid, steroids, naphthopyranone derivatives (pigments), 
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polyketide-isoprenoid hybrid pigment, trisubstituted ɤ-butyrolactone, unsaturated dicarboxylic acids, 

cyclic pentapeptides, and cyclic lipopeptides were isolated. Five semi-synthetic derivatives were also 

obtained for SAR investigation. Fifteen compounds (31%) have new structures and three (6%) are new 

natural products which have already been synthesized (Jacobi and Herradura, 1996; Drioli et al., 1998; 

Amador et al., 2006). The new compounds including new natural products account for 37% of isolated 

metabolites compared to reported 51% unknown bioactive compounds from endophytic fungi and 38% 

from soil fungi (Kharwar et al., 2011).   

Many major developments have been recognized and well employed in the field of natural products 

isolation and structural elucidation (Sticher, 2008; Bucar et al., 2013; Breton  et al., 2013; Seger et al., 

2013). The hyphenated instrumental analysis platforms (such as HPLC-MS or HPLC-NMR) have 

become powerful tools for the analysis and identification of constituents in raw materials (Seger et al., 

2013). LC-MS guided pre-screening and isolation in this thesis enabled the rapid identification of 

already known compounds (dereplication), and were crucial to the fast discovery of new antibiotics 

(Nielsen et al., 2011). However, some compounds with interesting activities may be undetected, 

untraceable, and/or difficult to isolate by modern techniques, even under bioassay-guided isolation 

sometimes (Bucar et al., 2013; Pettit et al., 2016). In addition, many wrong structural assignments of 

natural products by MS, NMR or even X-ray diffraction study are commonly found in literature 

(Nicolaou and Snyder, 2005; Suyama et al., 2011; Ayoup et al., 2014; Zhang and Timmermann, 2016). 

Modern quantum chemical calculations including ORD, ECD, and NMR calculations are successfully 

used in complex molecules to assign their stereo-configurations or planar structures (Tantillo, 2013), for 

example the structural elucidation of compounds 7, 8, 12, 14, 16, 39, and 48 in this thesis. In many cases, 

however, combinations of approaches may be required to fully characterize secondary metabolites.  

Antibacterial evaluation led to the discovery of highly active compounds 5, 12, and 28. However, owing 

to the high cytotoxicities of 5 and 28, they cannot be used as candidates for antibiotic development. 

Surprisingly, pacbactin (12) as a genus-specific bioactive paraconic acid, displayed no potential 

cytotoxic effects on THP-1 cells at high concentrations. Although the structure or configuration present 

in 12 ensure its high antibacterial activity against five Acinetobacter spp., five more stereoisomers of 

pacbactin (12) are necessary for a comprehensive SAR analysis of this kind of paraconic acids. 

Moreover, as indicated by its methyl ester derivative (13) with the attenuation of antibacterial activity, 

the structural modification to get a lot of semi-synthetic derivatives is needed for further determining the 

SAR (Nepali et al., 2014). Synthesis of compound 12-like molecules that have more penetrating ability 
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and avoid efflux is also preferred (Wright and Poinar, 2012; Blair et al., 2015). More importantly, 

modern technologies in molecular biology should be applied to identify the molecular target(s) and the 

mechanism-of-action of interesting compounds (Schenone et al., 2013). Without a doubt, a systematic 

analysis for pre-existing countermeasures to develop compound derivatives is needed to avoid the 

proved antibiotic resistance mechanisms (Wright and Poinar, 2012). 

Admittedly, our results obtained from the disc diffusion assay only depict a qualitative in vitro 

susceptibility of the tested organisms against the isolated compounds as per the latest guidelines of the 

CLSI, comparable to the standard reference antibiotics. In particular, it was attractive to discover the 

sensitivity of the Acinetobacter species against compound 12 on solid agar medium. However, the 

general drawbacks of the disc diffusion assay in addition to its advantages have to be considered when 

interpreting the obtained results. Therefore, in order to fully determine the therapeutic efficacy of 

compound 12 in actual practice before considering it as a lead compound for treating Acinetobacter 

infections, more in vitro as well as in vivo assays must be preformed. Nevertheless, our results provide a 

starting point for considering compound 12 (termed pacbactin) as a promising lead compound for the 

treatment of Acinetobacter spp. 
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Figure 4.1.1.1 Positive ESI-HRMS spectrum of compound 1.  

 

 

Figure 4.1.1.2 Positive ESI-HRMS/MS spectrum of compound 1.  
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Figure 4.1.1.3 
1
H (left) and 

13
C (right) NMR spectra of compound 1 in CDCl3. 

 

 

 

Figure 4.1.2.1 Positive ESI-HRMS spectrum of compound 2. 
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Figure 4.1.2.2  Positive ESI-HRMS/MS spectrum of compound 2.  

 

  

Figure 4.1.2.3 
1
H (left) and 

13
C (right) NMR spectra of compound 2 in CDCl3.  
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Figure 4.1.2.4 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 2 in CDCl3. 

 

     

Figure 4.1.2.5 HMBC spectrum (left) and key 
1
H-

1
H COSY and HMBC correlations (right) of 2. 

 

  

Figure 4.1.2.6 NOESY spectrum (left) and key NOESY correlations (right) of 2 in CDCl3. 

 



Appendix A  
 

  

 

158  

 

Figure 4.1.3.1 Positive ESI-HRMS spectrum of compound 3.  

 

 

Figure 4.1.3.2 Positive ESI-HRMS/MS spectrum of compound 3.  
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Figure 4.1.3.3 
1
H (left) and 

1
H-

1
H COSY (right) NMR spectra of compound 3 in CDCl3. 

 

     

Figure 4.1.4.1 The LC-MS chromatogram (left, m/z 365.2438) of 4 and positive MS/MS spectrum (right) 

of 4. The a-d indicated the proposed position of cleavage and the corresponding fragment ions. 

PDA 

m/z 365.2438 
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Figure 4.1.4.2 
1
H (left) and 

13
C (right) NMR spectra of compound 4 in CD3OD. 

 

  

Figure 4.1.4.3 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 4 in CD3OD. 

 

  

Figure 4.1.4.4 HMBC (left) and NOESY (right) NMR spectra of compound 4 in CD3OD. 
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Figure 4.1.4.5 Key 
1
H-

1
H COSY and HMBC correlations of 4.  

 

Figure 4.1.4.6 ORTEP drawing of 4.   
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Figure 4.1.5.1 The LC-MS chromatogram (left, m/z 626.4427) of 5 and positive MS/MS spectrum (right) 

of 5. The a-d indicated the proposed position of cleavage and the corresponding fragment ions. 

 

  

Figure 4.1.5.2 The comparison for 
1
H NMR spectra in acetone-d6, CD3OD, and DMSO-d6 (left), as well 

as the 
1
H NMR spectrum in pyridine-d5 (right).  

 

PDA 

m/z 626.4427 
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Figure 4.1.5.3 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 5. 

 

  

Figure 4.1.5.4 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 5 in CDCl3. 

 

  

Figure 4.1.5.5 HMBC (left) and key 
1
H-

1
H COSY and HMBC correlations (right) of 5. 



Appendix A  
 

  

 

164  

 

Figure 4.1.5.6 The partial 
1
H-

1
H COSY spectrum (in acetone-d6) of 5. The coupling constants of 

protons at double bonds are included. Observed 
1
H-

1
H COSY correlations (bold) and key HMBC 

correlations (arrow) are shown in the structures of three isomers (structures A, B and C in a kinetic 

equilibrium). 
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Figure 4.1.5.7 NOESY (left) spectrum and key NOESY correlations (right) of 5. 

 

  

Figure 4.1.6.1 The LC-MS chromatogram (left) and positive APCI-MS/MS spectrum (right) of 6.  

 

   

Figure 4.1.6.2 The partial 
1
H NMR spectrum (in CD3OD) (left) and partial 

1
H-

1
H COSY (in CD3OD) 

(right) NMR spectra of compound 6. 
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Figure 4.1.7.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of 7. 
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Figure 4.1.7.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 7. 

 

  

Figure 4.1.7.3 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 7 in CDCl3. 

 

   

Figure 4.1.7.4 HMBC spectrum (left) and key 
1
H-

1
H COSY and HMBC correlations (right) of 7. 
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Figure 4.1.7.5 NOESY (left) spectrum and key NOESY correlations (right) of 7. 

 

 

Figure 4.1.7.6  Experimental (red) and calculated (blue) ECD curves of 7. 
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Figure 4.1.8.1 The ESIMS, MS/MS
 
and MS

3
 spectra in negative mode of 8.  

 

  

Figure 4.1.8.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 8. 
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Figure 4.1.8.3 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 8 in CD3OD. 

 

  

Figure 4.1.8.4 HMBC (left) spectrum and key 
1
H-

1
H COSY and HMBC correlations (right) of 8. 

 

  

Figure 4.1.8.5 NOESY (left) spectrum and key NOESY correlations (right) of 8. 
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Figure 4.1.8.6 Experimental (red) and calculated (blue) ECD curves of eupenicisirenin B (8). 

 

  

 

Figure 4.1.8.7 Fitting of conformer 65 (top left) with the highest positive and of 66 (top right) with the 

highest negative Boltzmann-weighted contribution to the calculated optical rotation of eupenicisirenin A 

(7). The green areas in the aligned structures (bottom) are marking the double bond planes; they cut each 

other in the side chain at an angle of 60°.  
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Figure 4.1.9.1 Positive ESI-HRMS (left) and MS/MS (right) spectra of compound 9.  

 

  

Figure 4.1.9.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 9. 
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Figure 4.1.10.1 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 10. 

 

  

Figure 4.1.10.2 HSQC (left) and HMBC (right) NMR spectra (in CDCl3) of compound 10. 

 

 

Figure 4.1.10.3 Key HMBC correlations of 10.   



Appendix A  
 

  

 

174  

 

Figure 4.1.11.1 Positive ESI-HRMS spectrum of compound 11.  

 

  

Figure 4.1.11.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 11. 
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Figure 4.1.12.1 Positive ESI-HRMS spectrum of compound 12.  

 

  

Figure 4.1.12.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 12. 
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Figure 4.1.12.3 HSQC (left) and HMBC (right) NMR spectra of compound 12 in CDCl3.  

 

 

Figure 4.1.12.4 The key HMBC correlations of 12.   

 

  

Figure 4.1.12.5 NOESY (left) and 1D NOESY (right) NMR spectra of compound 12 in CDCl3.  
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Figure 4.1.12.6 1D NOESY NMR spectra of compound 12 in CDCl3.   

 

 

Figure 4.1.12.7 The key NOE correlations of 12. 
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Figure 4.1.12.8 The optical rotations for 12–20 and related paraconic acid derivatives. Compound A: (–

)-dihydroprotolichesterinic acid (Banks et al., 1995); B: 4-(S)-methyl-5-oxo-2-(R)-undecyloxolane-3-

(R)-carboxylic acid (Jacobi et al., 2001); C (Amador et al., 2006); D (Amador et al., 2006); E: 4-(R)-

methyl-5-oxo-2-(S)-undecyloxolane-3-(S)-carboxylic acid (Huneck et al., 1992);
 
F: (–)-nephrosteranic 

acid (Jacobi et al., 2001); G: (–)-roccellaric acid (Mulzer et al., 1993); H: lichesterinic acid (Huneck et 

al., 1992); I: (–)-phaseolinic acid (Howell et al., 2006); J: (–)-nephromopsinic acid (Huneck et al., 1992; 

Mulzer et al., 1991); K: (–)-dihydropertusaric acid (Maier et al., 1999). 
a
the data obtained from 

literature (Drioli et al., 1998; Deska et al., 2009).  
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A 

  

B 

  

C 
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D 

 

Figure 4.1.12.9 The ECD calculation for three conformers (A–C) of compound 12 and the Boltzmann-

averaged calculated CD [D from A (89.99%), B (1.56%) and C (8.45%)]. Experimental ECD (blue), 

calculated ECD in gas phase (black) and in MeOH (red).  
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Figure 4.1.13.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 13.  

 

  

Figure 4.1.13.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 13. 
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Figure 4.1.14.1 Positive ESI-HRMS spectrum of compound 14.  

 

  

Figure 4.1.14.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 14. 
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Figure 4.1.14.3 1D NOESY spectra of compound 14 in CDCl3.   

 

  

Figure 4.1.14.4 1D NOESY (left) spectrum and key NOE correlations (right) of compound 14.   

 

A  
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B 

  

Figure 4.1.14.5 The ECD calculation for two conformers (A and B) of compound 14. Experimental 

ECD (blue), calculated ECD in gas phase (black) and in MeOH (red).  

 

  

Figure 4.1.15.1 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 15. 

 

  

Figure 4.1.15.2 1D NOESY spectra of compound 15 in CDCl3.   
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Figure 4.1.15.3 1D NOESY spectrum of compound 15 in CDCl3.   

 

Figure 4.1.16.1 Positive ESI-HRMS spectrum of compound 16.  
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Figure 4.1.16.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 16. 

 

 

Figure 4.1.16.3 
1
H NMR spectrum of compound 16 after purification.  

 

  

Figure 4.1.16.4 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra (in CDCl3) of compound 16. 
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Figure 4.1.16.5 HMBC spectrum (left, in CDCl3) and key 
1
H-

1
H COSY and HMBC correlations (right) 

of compound 16.  

 

  

Figure 4.1.16.6 1D NOESY spectra of compound 16 in CDCl3.   

 

 

Figure 4.1.16.7 Key NOE correlations of compound 16. 
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A 

   

B 

  

C 

  

 

Figure 4.1.16.8 The ECD calculation for three conformers (A–C) of the enantiomer of compound 16: 

experimental ECD (blue) of 16, calculated ECD in gas phase (black) and in MeOH (red).  
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Figure 4.1.17.1 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 17. 

 

  

Figure 4.1.17.2 1D NOE NMR spectra of compound 17 in CDCl3.   

 

 

Figure 4.1.17.3 1D NOE NMR spectrum of compound 17 in CDCl3.   
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Figure 4.1.18.1 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 18. 

 

  

Figure 4.1.18.2 HSQC (left) and HMBC (right) NMR spectra (in CDCl3) of compound 18. 

 

 

Figure 4.1.18.3 The analysis of relationship between compound configurations and chiroptical data. 
a
 

The signs of optical rotation and CD data were proposed from compounds 16 and 18. 
b
The data was 

collected from the literature (Howell et al., 2006). 
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Figure 4.1.19.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 19. 
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Figure 4.1.19.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 19. 

  

Figure 4.1.20.1 Positive ESI-HRMS (left) and MS/MS (right) spectra of compound 20.  

 

  

Figure 4.1.20.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 20. 
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Figure 4.1.21.1 Positive APCI-HRMS spectrum of compound 21.  

 

  

Figure 4.1.21.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 21. 
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Figure 4.1.22.1 
1
H NMR spectrum (in CDCl3) of compound 22. 

 

 

Figure 4.1.23.1 Positive ESI-HRMS spectrum of compound 23.  
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Figure 4.1.23.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 23. 

 

 

  

Figure 4.1.23.3 The HMBC spectrum (left, in CDCl3) and key HMBC correlations (right) of compound 

23.  
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Figure 4.1.24.1 Positive ESI-HRMS spectrum of compound 24.  

 

  

Figure 4.1.24.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 24. 
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Figure 4.1.25.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 25.  

 



Appendix A  
 

  

 

198  

  

Figure 4.1.25.2 
1
H (left, in CDCl3) and 

1
H (right, in acetone-d6) NMR spectra of compound 25. 

 

  

Figure 4.1.25.3 
13

C NMR (left) and 
1
H-

1
H COSY (right) spectra (in CDCl3) of compound 25.  

 

  

Figure 4.1.25.4 HSQC (left) and HMBC (right) NMR spectra (in CDCl3) of compound 25. 
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Figure 4.1.25.5 
1
H-

1
H COSY and Key HMBC correlations of compound 25.  

 

 

Figure 4.1.26.1 Positive ESI-HRMS spectrum of compound 26.  
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Figure 4.1.26.2 
1
H and 

13
C NMR spectra (in CD3OD) of compound 26.  

 

  

Figure 4.1.27.1 
1
H and 

13
C NMR spectra (in CD3OD) of compound 27.  

 

  

Figure 4.1.27.2 HMBC spectrum and key HMBC correlations (500 MHz) of compound 27.  
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 Figure 4.2.1.1 Positive ESI-HRMS spectrum of 28. 

 

 

 Figure 4.2.1.2 Positive ESI-HRMS/MS spectrum (MS/MS of m/z 439.32) of 28. 
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Figure 4.2.1.3 Proposed collision-induced mass spectral fragmentation pathway of 28 in positive ESI 

mode.  

 

 

Figure 4.2.1.4 Key HMBC correlations of compound 28. 
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Figure 4.2.1.5 The key NOESY correlations of compound 28.  

 

 

Figure 4.2.1.6 The two possible configurations of C-17, C-20, C-21, C-22, and C-23 in 28.  

 

  

Figure 4.2.1.7 
1
H (left) and 

13
C (right) NMR spectra of compound 28 in CDCl3. 
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Figure 4.2.1.8 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra of compound 28 in CDCl3. 

 

  

Figure 4.2.1.9 HMBC (left) and NOESY (right) NMR spectra of compound 28 in CDCl3. 

 

   

Figure 4.2.2.1 
1
H (left) and 

1
H-

1
H COSY (right) spectra of compound 29 in CDCl3. 
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Figure 4.2.2.2 
13

C NMR spectrum of compound 29 in CDCl3. 

 

Figure 4.2.3.1 Positive ESI-HRMS spectrum of compound 30.  
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Figure 4.2.3.2 
1
H (left) and 

13
C (right) NMR spectra of compound 30 in CDCl3.  

 

  

Figure 4.2.3.3 The HSQC (left) and 
1
H-

1
H COSY (right) spectra of compound 30 in CDCl3.  

 

  

Figure 4.2.3.4 HMBC spectrum (left) and key 
1
H-

1
H COSY and HMBC correlations (right) of 

compound 30. 
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Figure 4.2.4.1 Positive ESI-HRMS spectrum of compound 31. 

   

 

Figure 4.2.4.2 
1
H (up, left) and HSQC (up, right) spectra together with the partial HMBC (bottom) 

spectrum of compound 31 in CDCl3. 
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Figure 4.2.5.1 Positive ESI-HRMS spectrum of compound 32.  

 

   

Figure 4.2.5.2 
1
H (left) and HSQC (right) spectra of compound 32 in CDCl3. 
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Figure 4.2.5.3 Partial HMBC (left) and 
1
H-

1
H COSY (right) spectra for compound 32 in CDCl3.   

 

 

Figure 4.2.6.1 Positive ESI-HRMS spectrum of compound 33. 
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Figure 4.2.6.2 
1
H (left) and 

13
C (right) NMR spectra of compound 33 in CDCl3.  

 

  

Figure 4.2.6.3 HSQC (left) and 
1
H-

1
H COSY (right) spectra of compound 33 in CDCl3. 

 

   

Figure 4.2.6.4 HMBC spectrum (left) , and key 
1
H-

1
H COSY and HMBC correlations of compound 33. 
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Figure 4.2.7.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 34. 



Appendix A  
 

  

 

212  

 

  

Figure 4.2.7.2 
1
H (left) and 

13
C (right) NMR spectra of compound 34 in CDCl3. 
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Figure 4.2.8.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 35. 

 

  

Figure 4.2.8.2 
1
H (left) and 

13
C (right) NMR spectra of compound 35 in CDCl3. 
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Figure 4.2.9.1 Negative ESI-HRMS spectrum of compound 36. 

 

  

Figure 4.2.9.2 
1
H (left) and partial HMBC (right) NMR spectra of compound 36 in CD3OD. 
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Figure 4.2.10.1 
1
H (left) and 

1
H-

1
H COSY (right) NMR spectra of compound 37 in CD3OD. 

 

  

Figure 4.2.10.2 HMBC (left) spectrum and key 
1
H-

1
H COSY and HMBC correlations (right) of 

compound 37. 
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Figure 4.2.11.1 Positive ESI-HRMS spectrum of compound 38.  

 

  

Figure 4.2.11.2 
1
H (left) and 

1
H-

1
H COSY (right) NMR spectra of compound 38 in CD3OD. 
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Figure 4.2.11.3 HMBC (left) spectrum and key 
1
H-

1
H COSY and HMBC correlations (right) of 

compound 38. 

 

Figure 4.2.12.1 Positive ESI-HRMS spectrum of compound 39.   
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Figure 4.2.12.2 
1
H (left) and 

13
C (right) NMR spectra of compound 39 in CDCl3. 

 

  

Figure 4.2.12.3 HSQC (left) and HMBC (right) NMR spectra of compound 39 in CDCl3. 

 

 

Figure 4.2.12.4 Key HMBC correlations of compound 39.  
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Figure 4.3.1.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 40.  
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Figure 4.3.1.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3:CD3OD = 1:3) of compound 40. 

 

  

Figure 4.3.1.3 
1
H (left) and 

13
C (right) NMR spectra (in DMSO-d6) of compound 40. 

 

  

Figure 4.3.1.4 
1
H-

1
H COSY (left) and TOCSY (right) NMR spectra (in DMSO-d6) of compound 40. 

 



Appendix A  
 

  

 

221  

  

Figure 4.3.1.5 HSQC (left) and HMBC (right) spectra (in DMSO-d6) of 40. 

 

  

Figure 4.3.1.6 NOESY spectrum (left, in DMSO-d6) and key 
1
H-

1
H COSY, HMBC, and NOESY 

correlations (right) of 40. The NOE cross-peaks marked in blue color indicated the small structural 

difference in solution compared to that of its crystal structure. 

 

  

Figure 4.3.1.7 The Ortep drawing of compound 40.  
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A： 

      

B： 

  

Figure 4.3.1.8 The Marfey’s method for assigning the absolute configurations of amino acid residues. A: 

Marfey’s reagent FDAA-derived amino acid standards. B: LC-MS for FDAA derivatives of the 

hydrolysis of 40 (left) and amino acid standards; enlarged LC-MS (right).  

 

Sample after reaction 

FDAA 
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Figure 4.3.2.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 41.  
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Figure 4.3.2.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 41. 

 

  

Figure 4.3.2.3 
1
H (left) and 

13
C (right) NMR spectra (in DMSO-d6) of compound 41. 

 

  

Figure 4.3.2.4 
1
H-

1
H COSY (left) and TOCSY (right) NMR spectra (in DMSO-d6) of compound 41. 
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Figure 4.3.2.5 HSQC (left) and HMBC (right) spectra (in DMSO-d6) of 41. 

 

  

Figure 4.3.2.6 NOESY spectrum (left, in DMSO-d6) and key 
1
H-

1
H COSY, HMBC, and NOESY 

correlations (right) of 41.  

 

 

Figure 4.3.2.7 Key NOESY correlations of compound 41. 
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A: 

 

B: 

 

Figure 4.3.2.8 The Marfey’s method for assigning the absolute configurations of amino acid residues. A: 

Marfey’s reagent FDAA-derivated amino acid standards. B: LC-MS for FDAA derivatives of the 

hydrolysis of 41 and amino acid standards.    

 

≈ 1:3:1 
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Figure 4.3.3.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 42.  
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Figure 4.3.3.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 42. 

 

  

Figure 4.3.3.3 
1
H (left) and 

13
C (right) NMR spectra (in DMSO-d6) of compound 42. 

 

  

Figure 4.3.3.4 
1
H-

1
H COSY (left) and TOCSY (right) NMR spectra (in DMSO-d6) of compound 42. 
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Figure 4.3.3.5 HSQC (left) and HMBC (right) spectra (in DMSO-d6) of 42. 

 

  

Figure 4.3.3.6 NOESY spectrum (left, in DMSO-d6) and key 
1
H-

1
H COSY, HMBC, and NOESY 

correlations (right) of 42.  
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A:  

 

B: 

 

Figure 4.3.3.7 The Marfey’s method for assigning the absolute configurations of amino acid residues. A: 

Marfey’s reagent FDAA-derivated amino acid standards. B: LC-MS for FDAA derivatives of the 

hydrolysis of 42 and amino acid standards. 

 

 

≈ 4:1 
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Figure 4.3.4.1 Positive ESI-HRMS (top), MS
2
 (medium) and MS

3
 (bottom) spectra of compound 43.  

 

  

Figure 4.3.4.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3:CD3OD = 1:3) of compound 43. 
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Figure 4.3.5.1 Positive ESI-HRMS (top), MS
2
 (medium) and MS

3
 (bottom) spectra of compound 44. 

 

  

Figure 4.3.5.2 
1
H (left) and HSQC (right) NMR spectra (in DMSO-d6) of compound 44.  
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Figure 4.3.5.3 HMBC spectrum (left, in DMSO-d6) and key HMBC correlations of 44. 
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Figure 4.3.6.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 45.  

 

  

Figure 4.3.6.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 45. 
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Figure 4.3.6.3 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra (in CDCl3) of compound 45. 

 

  

Figure 4.3.6.4 HMBC (left) spectrum (in CDCl3) and key 
1
H-

1
H COSY and HMBC correlations of 45.  

 

 

Figure 4.3.7.1 Positive ESI-HRMS spectrum of compound 46.  
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Figure 4.3.7.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 46. 

 

 

Figure 4.3.8.1 Positive ESI-HRMS spectrum of compound 47. 
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Figure 4.3.8.2 
1
H (left) and 

13
C (right) NMR spectra (in CDCl3) of compound 47. 

 

  

Figure 4.3.8.3 HSQC (left) and 
1
H-

1
H COSY (right) NMR spectra (in CDCl3) of compound 47. 

 

  

Figure 4.3.8.4 HMBC spectrum (left, in CDCl3) and key 
1
H-

1
H COSY and HMBC correlations (right) 

of 47. 
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Figure 4.4.1.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 48.  
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Figure 4.4.1.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 48. 

 

  

Figure 4.4.1.3 HSQC (left) and 
1
H-

1
H COSY (right) spectra (in CD3OD) of 48.  

 

  

Figure 4.4.1.4 HMBC (left) spectrum and key 
1
H-

1
H COSY and HMBC correlations (right) of 48. 
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Figure 4.4.1.5 NOESY (left) spectrum and key NOESY correlations (right) of 48.  

 

 

Figure 4.4.1.6 Experimental and calculated CD spectra of 48. 
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Figure 4.4.2.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 49.  
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Figure 4.4.2.2 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 49. 

 

  

Figure 4.4.2.3 HSQC (left) and 
1
H-

1
H COSY (right) spectra (in CD3OD) of 49.  

 

  

Figure 4.4.2.4 HMBC spectrum (left, in CD3OD), and key 
1
H-

1
H COSY and HMBC correlations of 49. 
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Figure 4.4.2.5 CD spectra for the natural (left) and synthesized (right, Altemöller et al., 2006) 49.   
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Figure 4.4.3.1 Positive ESI-HRMS (top), MS
2
 (medium) and MS

3 
(bottom) spectra of compound 50.  
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Figure 4.4.3.2 
1
H (left) and 1D NOESY spectra (right, in CD3OD) of compound 50. 

 

  

Figure 4.4.3.3 1D NOESY spectra (in CD3OD) of compound 50. 

 

 

Figure 4.4.3.4 Key NOE correlations of compound 50.  
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Figure 4.4.4.1 Positive ESI-HRMS (top) and MS/MS (bottom) spectra of compound 51.  
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Figure 4.4.4.2 
1
H NMR spectrum (in DMSO-d6) of compound 51. 
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Figure 4.4.5.1 Positive ESI-HRMS (top) and MS
3
 (bottom) spectra of compound 52.  

 

  

Figure 4.4.5.2 
1
H (left) and 

13
C (right) NMR spectra (in DMSO-d6) of compound 52. 
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Figure 4.4.5.3 
1
H-

1
H COSY NMR spectrum (left) and 

1
H-

1
H COSY correlations (right) of compound 

52. 

 

 

Figure 4.4.6.1 Positive ESI-HRMS spectrum of compound 53.  
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Figure 4.4.6.2 
1
H (left) and HSQC (right) NMR spectra (in acetone-d6) of compound 53. 

 

  

Figure 4.4.6.3 HMBC NMR spectrum (left, in acetone-d6) and key HMBC correlations (right) of 

compound 53.  

 

   

Figure 4.4.7.1 
1
H (left) and 

13
C (right) NMR spectra (in CD3OD) of compound 54. 
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List of Abbreviations 

 

Å Angstrom 

AMR         Antimicrobial resistance 

APCI           Atmospheric pressure chemical ionization 

bp  Base pairs 

ºC Degree Celsius 

CC Column chromatography 

CD Circular dichroism  

CDCl3 Deuterated chloroform  

CD3OD Deuterated methanol 

CHCl3 Chloroform 

CH2Cl2   Dichloromethane 

CID Collision induced dissociation 

CLSI Clinical and Laboratory Standards Institute 

CoA Coenzyme A 

COSY Correlation spectroscopy 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DFT Density functional theory 

DMSO        Dimethyl sulfoxide 

DMSO-d6 Deuterated dimethyl sulfoxide 

DNA     Deoxyribonucleic acid 

EtOAc    Ethyl acetate 

EtOH Ethanol  

g                               Gram 

GAMESS General atomatic and molecular electronic structure system 

GIAO Gauge including atomatic orbitals 

HCl Hydrogen chloride  

HESI        Heated electrospray ionization 

HMBC Heteronuclear multiple bond correlation 

H2O  Water 

HPLC High performance liquid chromatography 

H2SO4 Sulfuric acid 

HSQC Heteronuclear single quantum correlation 



Appendix B  
 

  

 

255  

Hz Hertz 

IR Infrared spectra 

ITS    Internal Transcript Spacer 

kcal/mol Kilocalorle per mole 

K2CO3 Potassium carbonate  

L    Liter 

LC-HRMS  Liquid chromatography-high resolution mass spectrometry 

MALDI-imaging-HRMS    
Matrix assisted laser desorption ionization imaging high-resolution 

mass spectrometry 

MeOH Methanol 

Me2SO4 Dimethyl sulfate 

mg/mL    Milligram per milliliter  

mg  Milligram 

MIC Minimum inhibitory concentration 

min  Minute 

mL  Milliliter 

mm Millimeter  

MSTD Multi-standard approach 

m/z Mass-to-charge ratio 

NA Nutrient agar 

NaHCO3 Sodium bicarbonate 

NB Nutrient broth 

NH3 Ammonia 

nm Nanometer 

NMR Nuclear magnetic resonance 

NOESY Nuclear overhauser enhancement spectroscopy 

NP                 Natural products 

NRPS Nonribosomal peptide synthetases 

ORD Optical rotatory dispersion 

PCR  Polymerase chain reaction 

PDA (HPLC) Photodiode array 

PDA    Potato dextrose agar 

PDB                          Potato dextrose broth 

PKS Polyketide synthase 

rpm        Revolutions per minute 

RP CC Reversed-phase column chromatography 
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Rf Retardation factor 

s Second 

SA    Sabouraud dextrose agar 

SAR Structure-activity relationship(s) 

SB Sabouraud dextrose broth 

SPE Solid-phase extraction 

TCM                                         Traditional Chinese Medicine 

TDDFT Time-dependent density functional theory 

THP-1 Human acute monocytic leukemia cells 

TLC  Thin layer chromatography 

tR Retention time 

µL   Microliter 

µM  Micromolar 

UV/vis        Ultraviolet/visible  

V Voltage 

VDW Van der Waals 

v/v Volume to volume 

WA Water agar 

WHO   World Health Organization 

ZOI Zone of inhibition 
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