
L A M P U N G H A N D W R I T T E N C H A R A C T E R R E C O G N I T I O N

Dissertation
zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Universität Dortmund
am Fachbereich Informatik

von

akmal junaidi

Dortmund

2016

Tag der mündlichen Prüfung: 19 October 2016

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr.-Ing. Gernot A. Fink

Prof. Dr. Heinrich Müller

Akmal Junaidi: Lampung Handwritten Character Recognition, © October 2016

A B S T R A C T

Lampung script is a local script from Lampung province Indonesia. The script is a
non-cursive script which is written from left to right. It consists of 20 characters. It
also has 7 unique diacritics that can be put on top, bottom, or right of the character.
Considering this position, the number of diacritics augments into 12 diacritics. This
research is devoted to recognize Lampung characters along with diacritics. The
research aim to attract more concern on this script especially from Indonesian
researchers. Beside, it is also an endeavor to preserve the script from extinction.
The work of recognition is administered by multi steps processing system the so
called Lampung handwritten character recognition framework. It is started by a
preprocessing of a document image as an input. In the preprocessing stage, the input
should be distinguished between characters and diacritics. The character is classified
by a multistage scheme. The first stage is to classify 18 character classes and the
second stage is to classify special characters which consist of two components. The
number of classes after the second stage classification becomes 20 class. The diacritic
is classified into 7 classes. These diacritics should be associated to the characters to
form compound characters. The association is performed in two steps. Firstly, the
diacritic detects some characters nearby. The character with closest distance to that
diacritic is selected as the association. This is completed until all diacritics get their
characters. Since every diacritic already has one-to-one association to a character, the
pivot element is switched to a character in the second step. Each character collects
all its diacritics as a composition of the compound characters. This framework has
been evaluated on Lampung dataset created and annotated during this work and
is hosted at the Department of Computer Science, TU Dortmund, Germany. The
proposed framework achieved 80.64% recognition rate on this data.

iii

A C K N O W L E D G M E N T S

I would like to express my deep gratitude to all the people who have supported
me both professionally and personally during the development of this dissertation
and without whom this work would not have been possible. First, I would like
to thank my principal supervisor, Prof. Dr.-Ing. Gernot A. Fink, for his patient
guidance, enthusiastic encouragement and useful critiques of this research work. I
would also like to appreciate of his trust on the job of digitizing post cards of World
War I, which is very convenient. Likewise, I thank Prof. Dr. Heinrich Müller as my
co-examiner who always provided valuable advice for the research and dissertation
improvements. I also thank Prof. Dr. Peter Buchholz and Dr.-Ing. Anas Toma for
being the committee of my final defense. I also wish to thank Dr. Szilárd Vajda
who always share some fresh ideas for enhancing the research quality and solutions
when I found some obstacles during my technical and non-technical works.

My grateful thanks are also extended to my current and former colleagues in
the research group Pattern Recognition in Embedded Systems, Dr.-Ing. Jan Richarz,
Marius Hennecke, Leonard Rothacker, René Grzeszick, Axel Plinge, Irfan Ahmad,
Sebastian Sudholt, Fabian Naße, Julian Kürby, and Eugen Rusakov for their valuable
support and constructive recommendations in this work.

My thanks are also devoted to the administrative staff of our group, Claudia
Graute, for all the help, from distributing office supplies and tools, the preparation
of all administrative documents, up to guiding me on issues of my health insurance.

I would also like to thank the Directorate of Higher Education, Ministry of
Education and Culture, Republic of Indonesia, for securing my scholarship, students
of Grade 10th and 11th of the year 2010− 2011, SMKN 4 Bandar Lampung who
have provided Lampung handwritten documents, and my bachelor students of the
Mathematics Department and Computer Science Department in contribution of a
new batch of Lampung handwritten documents.

A special thank goes to my ”WG mates” a.k.a mitbewohners in Mülheim an der
Ruhr, Joe, Reza, Vembi, Raffi, and Pak Iman, from whom I got encouragement
during the writing of this dissertation. I would never forget the time together during
watching movies, talking, shopping, cooking, eating, and all the fun we have had in
the last two years. I greatly value the friendship of you guys.

In the work that spanned the years, the failures and sadness always appeared in-
fluencing my spirit. In this moment, the support of the family is really unchangeable.
First and foremost, these were my parents and my parents in law who always devote
their prayers for me. Likewise, my special thanks are dedicated to my beloved wife,
Novilia, my brilliant sons Muhafiz Almas and Muhammad Fazli Haaziq, and my
cute daughter Naureen Samara, who always shared the happy moments all the time.
Thank you that you are all my inspiration in achieving this success.

v

C O N T E N T S

1 Introduction 1

1.1 Objectives and Motivations of Lampung Handwritten Character Research 2

1.2 Research Methodology . 4

1.3 Overview of the Thesis . 5

2 Foundation of A Handwritten Character Recognition System 7

2.1 Image Acquisition . 8

2.2 Preprocessing . 9

2.2.1 Noise Removal . 9

2.2.2 Binarization . 11

2.2.3 Character Normalization . 13

2.3 Segmentation . 16

2.3.1 Line Segmentation . 16

2.3.2 Connected Components (CCs) 17

2.4 Feature Extraction . 20

2.5 Classification . 22

2.5.1 Neural Network . 23

2.5.1.1 Single Layer Neural Network 25

2.5.1.2 Multilayer Neural Network 26

2.5.1.3 Network Training . 28

2.5.2 Support Vector Machine . 31

2.5.2.1 SVM Learning Algorithm 31

2.5.2.2 Non-Linear Data SVM 34

2.5.3 Gaussian Mixture Model . 35

2.5.4 Multistage Classification . 36

3 Properties of Lampung Script 39

3.1 Script Utilization . 39

3.2 Characters . 41

3.3 Diacritics . 42

3.3.1 Top diacritics . 42

3.3.2 Bottom diacritic . 43

3.3.3 Right diacritic . 44

3.4 Compound Character . 45

3.5 Punctuation Marks . 48

3.6 Special Attributes of Lampung Script 50

3.6.1 Non-cursive . 50

3.6.2 No Uppercase . 50

3.6.3 Character with Two Unconnected Components 51

3.6.4 Diacritic with Two Unconnected Components 51

3.6.5 Diacritic Resembles Character 52

4 Survey of Related Works 55

4.1 Water Reservoir Feature . 55

vii

viii contents

4.1.1 Water Reservoir (WR) Principle 55

4.1.2 Some Applications of WR principle 56

4.2 Diacritic-based Works . 57

4.2.1 French . 57

4.2.2 Vietnamese . 58

4.2.3 Arabic . 58

4.3 Multistage Classification . 58

5 Lampung Handwritten Character Recognition 61

5.1 Preprocessing . 61

5.1.1 Binarization . 62

5.1.2 Connected Components . 62

5.1.3 Separation of Connected Component (CC) 63

5.1.4 Normalization . 63

5.2 Labeling Characters . 64

5.2.1 Data Abstraction . 65

5.2.2 Clustering and Labeling . 66

5.2.3 Voting . 66

5.3 Recognition of the Text . 67

5.3.1 Basic Character . 68

5.3.1.1 Feature Representation 68

5.3.1.2 Character Classification 75

5.3.2 Character-Diacritic Pair . 75

5.3.2.1 Feature Representation of Pairing 76

5.3.2.2 The Association Model 77

5.3.3 Syllable Level . 78

5.3.3.1 Recognition of Basic Components 79

5.3.3.2 Recognition of Two-components Character 82

5.3.3.3 Association Scenarios 83

5.3.4 Remarks . 84

6 Evaluation 87

6.1 Dataset . 87

6.1.1 Dataset of Initial Labeling . 88

6.1.2 Dataset of 11 Character Classes 88

6.1.3 Dataset of 18 Character Classes 89

6.1.4 Dataset of 7 Diacritic Classes . 89

6.2 Preprocessing . 90

6.2.1 Binarization . 90

6.2.2 Separation of Connected Components (CCs) 91

6.2.2.1 Character Separation 91

6.2.2.2 Diacritic separation . 94

6.2.3 Normalization . 96

6.3 Annotation . 97

6.3.1 Initial Experiment . 97

6.3.2 Result Analysis and Further Experiment 98

6.4 Recognition of Basic Elements . 99

6.4.1 Recognition of 11 Character Classes 100

contents ix

6.4.1.1 Experiment . 100

6.4.1.2 Discussion of the Result 102

6.4.2 Recognition of 18 Character Classes 106

6.4.2.1 Experiment . 106

6.4.2.2 Discussion of the Result 109

6.4.3 Recognition of Diacritics . 111

6.4.3.1 Experiment . 111

6.4.3.2 Discussion of the Result 112

6.4.4 Recognition of Two-components Character 114

6.4.4.1 Experiment . 115

6.4.4.2 Discussion of the Result 116

6.5 Recognition of Compound Characters 118

6.5.1 Simple Association . 118

6.5.1.1 Experiment . 118

6.5.1.2 Discussion of the Result 120

6.5.2 Complete Association . 123

6.5.2.1 Experiment . 123

6.5.2.2 Discussion of the Result 124

6.5.3 Remark . 129

7 Conclusion 131

7.1 Summaries . 131

7.2 Outlook . 132

bibliography 135

a Appendices 141

a.1 Character Distribution of 11 classes . 141

a.2 Character Distribution of 18 classes . 142

a.3 Diacritic Distribution of 7 classes . 143

L I S T O F F I G U R E S

Figure 1 A simple document analysis processing. Each stage may consist
of some sub-stages depending on the approach used within
the stage. The segmentation stage is optional and it can be
omitted for some circumstances. 8

Figure 2 An example of color image of a German stamp and its conver-
sion to gray-scale and binary image. 12

Figure 3 Binary image of the Lampung character Ja in its original size
and several normalized size. 15

Figure 4 CCs of characters vs non-characters. CCs of characters are sur-
rounded by cyan bounding boxes. Some of cyan boxes also
contain unknown marks or noise like some on the right side.
The small mark in red boxes indicate the CC of non-character
symbols such as diacritics, unknown marks like double vertical
strips in the beginning both sentences, or punctuation marks
at the end of both sentences. 18

Figure 5 The shape structure of encountered neighbors during checking
of neighbors in the first pass of Connected Components (CCs)
extraction. 19

Figure 6 A projection profiles of the Lampung handwritten character
text in horizontal direction. 20

Figure 7 A sample of end points and branch point of the Lampung
handwritten character text. The blue dots indicate end points
while the red pentagons indicate branch points. 21

Figure 8 A basic neuronal model consists of three elements, synapses,
summing unit, and activation unit. This simple model denotes
a single layer neural network with a single output where the
value of this output can classify inputs into a class among a
limited number of classes. 23

Figure 9 The model of a single layer neural network with multiple
outputs. The single layer refers to the output layer which one
and the only layer in the network. Multiple outputs indicate
that the network serves as a processor of the input to assign
one class among multiple classes possibility 25

Figure 10 Multi layers neural network composed by three layers with
multiple outputs. The layer between input layer and output
layer is called hidden layer. 26

Figure 11 SVM classifier for binary classification. Decision for a separat-
ing hyperplane is chosen such that the margin is maximum
distance to the nearest data points. 31

x

List of Figures xi

Figure 12 Sample of the texts in Bahasa Indonesia transcribed using
Lampung script. The texts consist of the basic characters and
particular marks around this character that so-called diacritics. 40

Figure 13 Lampung script consist of 20 basic characters. The character
name is taken from the syllabic pronunciation of the character
itself. 41

Figure 14 All unique diacritics of the Lampung writing system. 42

Figure 15 The set of diacritics that can be placed on the top of the character.43

Figure 16 The set of diacritics that can be placed on the bottom of the
character. 43

Figure 17 The set of diacritics that can be placed on the right of the character.44

Figure 18 Punctuation marks in Lampung writing system. Ngemula is
a mark to start a sentence. Beradu is equal to full stop. Kuma
represents the comma. Ngulih is a question mark. And tanda
seru is an exclamation mark. 49

Figure 19 The design of multistage classification for Marathi compound
characters [50]. 59

Figure 20 General view of Semi-automatic Labeling of the Lampung
character (Taken from [57]). 65

Figure 21 The sample of branch points and end points in zoning areas
on the image skeleton of character a. 70

Figure 22 The algorithm of cavities searching on the image skeleton of
character na to be assigned for the WR-based feature represen-
tation. 71

Figure 23 Different types of reservoirs in some samples of characters [20]. 73

Figure 24 Feature representation of a Water Reservoir (WR) with five
tuples for a Lampung character. 74

Figure 25 Sample of two compound characters of Lampung handwriting
[21] (a) the compound character bur built by the basic character
ba and a top and a bottom diacritic and (b) the compound
character nuh formed by the basic character na with a bottom
and a right diacritic. 76

Figure 26 Integer codes for each direction in a chain code. Left and right
direction are represented by code 1, diagonal of 45o and 225o

direction are represented by code 2, upper and lower direction
are represented by code 3, and diagonal of 135o and 315o

direction are represented by code 4 79

Figure 27 A sample of the diacritic in its original size with the definition
of some characteristics. Those characteristics are set to be the
feature representation of the diacritic. 81

Figure 28 The Lampung handwritten character recognition framework. . 85

Figure 29 Sample of a Lampung document image, containing degraded
illumination, folded track, and noise by overwriting. 87

Figure 30 Binary images produced by performing Otsu, Niblack, and
modified Niblack algorithm. 91

xii List of Figures

Figure 31 Comparison of the average diacritic and diacritic with the same
height as the height of the character. 94

Figure 32 Samples of confused characters during handwritten character
recognition by using the feature of Water Reservoir (WR). Each
sample consist of three images, on the left is gray scale in
original size, on the center is binarized image in normalized
size, and on the right is skeletonized image in normalized size. 103

Figure 33 Some samples of character sa confuse to be character ga and a
sample of character sa and ga which is correctly recognized. . . 110

Figure 34 The sample of character da confuse to be character ga and its
comparison to a correct recognition of character da and ga . . . 110

Figure 35 The sample of confusion among the diacritic class 3 and 5 . . . 114

Figure 36 Samples of 2-components characters which are incorrectly
recognized as 2-components characters by classifier 116

Figure 37 Samples of 2-components characters which are unknown after
classification of two-components characters by classifier 117

Figure 38 Distribution of diacritics around character of training set where
each dot indicates coordinate of a diacritic over the character.
The geometric center of the character lies at the coordinate of
origin [21]. 119

Figure 39 Association process of a diacritic around characters by apply-
ing Gaussian Mixture Model (GMM) [21]. 119

Figure 40 Incorrect association of a diacritic to the character: (a) due to
domination of the diacritic position, (b) due to a less data sample.121

Figure 41 The first snippet of a document image indicates various types
of incorrect associations of diacritics and characters 126

Figure 42 The second snippet of an image document indicates various
type of incorrect association of diacritics and characters 127

L I S T O F TA B L E S

Table 1 The usage of diacritics on the top, the bottom, the right, or
combinations of them around the character. The table contains
some examples of words in Bahasa Indonesia (except item no.
18 that is in Lampungnes) which are written in Lampung script. 53

Table 2 The extracted values for computing two-components character
performance . 83

Table 3 Statistical summary of raw data 88

Table 4 Connected Components of Character 94

Table 5 Connected Components of Diacritic 96

Table 6 Summary of Dataset for Labeling Works 97

Table 7 Confusion matrix for Lampung using a K-nearest neighbor
(K = 1) . 99

Table 8 Confusion results for branch points, end points and pixel densities100

Table 9 Confusion results using water reservoir based descriptors . . . 101

Table 10 Confusion results for branch points, end points, pixel density
and water reservoirs [20] . 102

Table 11 Recognition improvement for the recognition by using the fea-
ture representation of 1Branch point, end points, pixel density.
2Water reservoir. 3Concatenation of 1 & 2 104

Table 12 The sample of incorrect characters and their reduction for
the feature representation of 1branch point, end points, pixel
density. 2Water reservoir. 3Concatenation of 1 & 2 104

Table 13 Summary of the NN experiment for Lampung handwritten
character recognition for 11 character classes. The feature rep-
resentation is 1Branch point, end points, pixel density. 2Water
reservoir. 3Concatenation of 1 & 2 105

Table 14 The performance of Neural Network (NN) classification with
the feature combination of the branch points, end points, pixel
densities, and water reservoir (BED-WR) for 18 character classes.107

Table 15 The performance of Support Vector Machine (SVM) classifica-
tion with the feature combination of the branch points, end
points, pixel densities, and water reservoir (BED-WR) for 18
character classes. 108

Table 16 The performance of Support Vector Machine (SVM) classifica-
tion with the feature the chain codes for 18 character classes. . 108

Table 17 Confusion matrix of basic character recognition by SVM for 18

classes . 109

Table 18 The performance of Support Vector Machine (SVM) classifica-
tion of each feature F1 and F2 for 7 diacritic classes. 112

xiii

xiv List of Tables

Table 19 The performance of Support Vector Machine (SVM) classifica-
tion with concatenation of the feature F1 and F2 for 7 diacritic
classes. 113

Table 20 Confusion matrix of diacritic recognition in 7 classes by SVM . 113

Table 21 The experiment outcomes of two-components character 116

Table 22 Experiment of mixture model with the global parameters. . . . 121

Table 23 Experiment of mixture model with replacements the local to
global parameters . 122

Table 24 Performance of consecutive works prior to complete association124

Table 25 Detail of diacritic number in compound characters of the test
set for ground truth and outcome of the classifier 124

Table 26 The accuracy of compound characters based on the group of
specific element . 125

Table 27 Character distribution in 11 classes 141

Table 28 Character distribution in 18 classes 142

Table 29 Diacritics distribution in 7 classes 143

A C R O N Y M S

CC Connected Component

CCs Connected Components

DAR Document Analysis and Recognition

EM Expectation Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model

LBP Linear Binary Pattern

MST Minimum Spanning Tree

NN Neural Network

OCR Optical Character Recognition

PCA Principal Component Analysis

RBF Radial Basis Function

SVM Support Vector Machine

WR Water Reservoir

xv

1
I N T R O D U C T I O N

The invention of the writing system facilitated humanity to generate handwritten
texts for storing and transmitting ideas or information. Handwritten text has been
spread over the large geographical area spanning the whole part of continents. Some
places have their own scripts while other places share the same script. The unique-
ness of those scripts make them differentiable with each other. Some significant
distinguished script can be observed among Roman, Cyrillic, Chinese, Kana/Kanji,
Arabic, Devanagari, etc.

In the past, many handwritten manuscripts were created on a media like stones,
leafs, woods, animal skins, animal bones, etc. Latterly the medium of handwriting
was shifted to paper because it is more practical. These manuscripts were found in
every part of the world as ancient relics. These pieces of old media with texts on it
are considered as ancient relics which can reveal the history of mankind. Nowadays,
it becomes a high concern to interpret ancient manuscripts for supporting historians.

Since a machine-print technology has been introduced, documents were not only
written by hand but mostly produced by machines on paper. The production of
text significantly increased because machines can perform a massive printing work
in high speed process. As a result, the quality of text created by machine is more
consistent in size and shape such that various types of printing media appeared for
example books, magazines, newspapers, and others. However, printing machines can
not replace handwriting completely. Therefore, the handwriting is still demanding
because the usage of handwriting is simpler, more practical, and real time. In
contrast to printing machine, it does need electrical power, machine operator, space
for machines, etc.

With the huge activities in handwriting or printing texts, there is a need of
automatic offline character recognition concerning those documents. The term offline
character recognition refers to a recognition of text in which the text is captured
from in a static digital image defined in a pixel or bit-map representation. In the
1960’s, researchers started developing systems for analysis and recognition of the
text in documents. The field is called Document Analysis and Recognition (DAR).
The term DAR can be considered as one field of pattern recognition that focuses on
the research of the document and its kind. This involves the analysis and recognition
of texts and especially characters produced by humans or machines. With respect
to this production, there are two major fields of research concern, the group of
handwritten and printed character recognition. Both research directions have been
developed for long time so that the state-of-the-arts of research in those two fields
has been accelerating to advanced level.

The maturity of the research of offline handwritten character recognition is oc-
curred to the scripts which are frequently used in the world like Roman, Chinese,
and Arabic. Its success can improve many applications where large volumes of hand-
written data are needed to be processed. For instance the recognition of addresses

1

2 introduction

and postcodes or letters in a postal system, recognition of digits and handwriting on
bank cheques, recognition of handwritten characters in form-filling sheet, are some
of its application.

In contrary, a sparse-distributed script is less interesting to be explored because
it will impact only to a few people in small area. It will automatically get no
support in the research of handwritten character recognition if there is no awareness
from researchers who are members of society that own the script. This is what has
happened to Lampung script in Lampung province, Republic of Indonesia. Realizing
this situation, the research that will be presented in this thesis can be considered as
an initiative to increase the opportunity of Lampung script to be used as an object
of research in DAR.

With the widespread of various approaches in handwritten character recognition
nowadays, the research of Lampung handwritten character recognition can benefit
from them. The existing approaches can be adopted or adapted for the purpose of
Lampung handwritten character recognition.

1.1 objectives and motivations of lampung handwritten character

research

Indonesians are familiar using Roman script because it is the official script of writing.
However, some places in Indonesia like North Sumatera (Batak script), western
part of South Sumatera (Rejang script), Lampung (Lampung script), West Java
(Sundanese), Java (Hanacaraka), Bali (Balinese), South Sulawesi (Bugiesse) have
their own scripts. Lampung script is not a popular ethnic script as other traditional
Indonesian scripts like Javanese and Balinese. It is used by a limited number of
natives in several areas in Lampung province. As other users of traditional scripts in
Indonesia, the number of users of the Lampung script is small since the script was
gradually abandoned since Roman script was introduced for writing.

With the decreasing number Lampung script users, the local government predicts
that this script will be extinct in the near future. To raise more users, the local
government have addressed the Lampung script as a lesson material of students
in elementary and high school in Lampung province. The local government seems
to start the effort in saving the script by educating the young students about the
Lampung script. This is expected to increase the people who know and understand
the script.

As another endeavor of preserving the Lampung script, the research of the Lam-
pung characters had been introduced as an alternative support beside educating
young students. The research aims to target the academic communities and to put
the Lampung characters as the object of the research in the field of DAR. With the
advances of computer technology, sooner or later the demand of recognition system
for the non-cursive text like Lampung handwritten text will be more interesting and
attractive. At this time, the Lampung handwritten text recognition has been initiated
to get larger attention. It will drive many local or regional researchers to deal with
the Lampung handwritten text into a broad scope of the research.

The motivations behind the research of Lampung handwritten character recogni-
tion are two-fold

1.1 objectives and motivations of lampung handwritten character research 3

• Promotion of the Script
The research can be a way to start promoting the script into a larger area.
By the research, dataset of Lampung script will be available to attract more
researchers of the wider communities particularly from Indonesia.

• The Heritage Preservation
The Lampung script is originated from the ancient Brahmi script [47] which
is mostly used in India to establish the writing system of many languages
in India. As part of the script inherited from an ancient script, the Lampung
script now becomes a part of a cultural heritage of Lampung’s society. This
historical aspects can be considered an added value for conducting the research
of Lampung script in the field of DAR.

The main objectives to be achieved from this research are to derive a framework of
offline Lampung handwritten character recognition based on the general principle
of handwritten character recognition. With a large set of developed approaches
and methods in handwriting recognition research of Roman script, Chinese, Arabic,
this research will exploit those approaches and methods to be a basis for the
development of the framework. Through a complete chain of this framework, the
Lampung handwritten character image can be transformed into a machine readable
text.

This broad objective serves as a main focus of this research. It can be realized into
some separated research goals as follows:

• To provide Lampung a dataset which can be freely downloaded for the purpose
of the DAR research. A dataset is a basic resource to support research on
handwritten character recognition. The datasets often become a big obstacle to
start a handwritten character recognition because preparing them will require
much time and cost. With the existence of such resources, researchers will have
no initial barrier for conducting their research.

• To explore existing approaches on each milestone in a general handwritten
character recognition to be adaptively applied for Lampung handwritten
character recognition. The developed approaches will serve as a foundation of
the framework that is explorable for further expansion.

• To investigate an approach which is capable to associate diacritics to a character.
Lampung script is one example of a script with a rich set of diacritics. Although
a main character can have no diacritic, most of the text documents contain
diacritics. The diacritics in the text are important to change pronunciation
of the basic character into a desired syllable. The presence of diacritics lets
the research to study the coherence of diacritics toward a character during
recognition. The big challenge is that the place and number of diacritics around
the character are very sensitive to the composed syllable. Different position and
number of diacritics will produce a different syllable. Therefore, determination
of position and number of diacritics around a character must be done carefully.

4 introduction

1.2 research methodology

The research about Lampung handwritten character recognition is a big work which
can not be conducted in one shot. It must be split into a set of tasks for the sake of
simplicity and compatibility. Hence, this research can be broken into some sequential
operations based on the basic methodology in the research of handwritten character
recognition. These operations consist of four fundamental stages as follows:

1. Data preparation
Handwritten documents are very crucial for conducting research of handwrit-
ten character recognition. Unfortunately, there is no former data of Lampung
handwriting for the purpose of this research. Preparation consists of collecting,
acquisition, and then storing the raw data. During the creation of this thesis, a
dataset has been semi-supervised annotated and then visually checked for cor-
rectness of the annotation. To provide this data publicly available, the dataset
is hosted on the website of Pattern Recognition in Embedded Systems Group,
Department of Computer Science, TU-Dortmund, Germany 1.

2. Preprocessing
After data preparation, some processes may be carried out in a consecutive
order to transform the raw data into another form. Each process has a specific
goal to prepare readiness of the data to some extent. These processes are the
extraction of connected components, segmentation, noise reduction, labeling,
categorization of connected components (into train, test and validation set), etc.
Any other tasks may be involved in preprocessing if it is considered necessary.

3. Feature Extraction
Feature representations are extracted from normalized connected components.
The existing feature representations which have already been developed in
other works for example chain-code, pixel densities, etc., or existing feature
representations from other works that are adapted to Lampung script will be
employed for Lampung handwritten character recognition. However, feature
representations have to be carefully selected with a consideration that they can
give a good impact in recognition.

4. Recognition
Feature representations extracted from connected components are recognized
to their classes by classifying them respectively based on their feature rep-
resentations. Therefore, the role of a classifier is important such that each
representation can be recognized correctly. Among many classifiers, NN and
SVM are utilized in this research. Another statistical-based classifier like GMM

is also applicable for recognition step.

5. Post Processing
Post processing deals with injecting of an additional context into the processing
chain during recognition. This is usually done after performing a complete

1 Available online on: http://patrec.cs.tu-dortmund.de/cms/en/home/Resources/index.html

1.3 overview of the thesis 5

recognition pipeline and evaluating the result. The aim of post processing is
to improve the performance rate of the recognition or to provide a power-
ful approach to recognize more complex structures. The post processing of
this research can be a context for assigning double-element characters and
associating diacritics.

Another point of view that is also important in the field of DAR is about cursive
and non cursive term. Both seem to create a dichotomy in the research, but they
have the same level of importance. In case of the Roman-based text, the style of
handwriting is most likely a cursive handwriting. Many researchers explore more
on the cursive mode for handwritten recognition because the cursive text is more
complex so it has more challenge rather than non-cursive text. In contrast to Roman-
based script, Lampung script is not a cursive text but it still posses challenges in
recognition. Beside to recognize Lampung characters, the recognition must also
handle two other tasks, first recognizing diacritics and then associating them to the
correct character.

1.3 overview of the thesis

This thesis mainly discusses about Lampung handwritten character recognition as a
new challenging topic in DAR. Each chapter provides a comprehensive study of some
aspects in Lampung script as well as some key components during the development
of such a platform. The remaining thesis is organized as follows:

• Chapter 2 describes a simple document analysis pipeline which can also be
regarded as a character recognition process, applicable either for machine-print
or handwriting. In general there are five main processing steps in the pipeline,

1. Image acquisition

2. Preprocessing

3. Segmentation

4. Feature extraction

5. Classification

Each will be elaborated in a subsection. Although each part of this chapter
only consists of a brief theoretical background, it covers the main methods and
approaches in handwritten character recognition.

• Chapter 3 is focused on all information regarding the writing system of Lam-
pung script. In the beginning, the utilization of Lampung script is explained
and why its popularity is far behind the utilization of Roman script. Then, basic
characters and their shapes are described. Lampung script also employs dia-
critics and those are explained in a separated subsection. As for the characters,
this subsection describe the shape of diacritics and also their positions around
a basic character. The last two parts contain discussions about punctuation
marks and special attributes of Lampung script.

6 introduction

• Chapter 4 reviews related works which have strong relevance or are rather
similar to main work of this research. Some of these works are the water
reservoir approach for feature components which is recognized as a novelty
approach in document analysis, identification of the writer based on diacritics
only, recognition of some scripts where diacritics are part of these scripts, etc.

• Chapter 5 presents the core aspect of this research that develop Lampung
handwritten character recognition. It is designed according to the process
described in chapter 2. The topic encompasses from the preprocessing phase
in the beginning, to the recognition phase at end. Each of them is explored in
the context of Lampung handwritten character recognition. The discussion in
this chapter also supplies some issues that were discovered during the work.

• Chapter 6 is devoted for data and facts of practical works. The source of the
raw data is explained and how it is collected. The chapter also provides the
result of each experiment proposed in chapter 5. The output of each approach
is presented, discussed, and evaluated.

• Chapter 7 is the last chapter of the thesis summarizing all the works and
discussing future directions and ideas for further research.

2
F O U N D AT I O N O F A H A N D W R I T T E N C H A R A C T E R
R E C O G N I T I O N S Y S T E M

Research and development of the first Optical Character Recognition (OCR) system
has been introduced in early 1950s [8] with the introduction of a character reader
device (scanner). In that period, the scanner processed documents slowly and was
limited to one line at a time instead of the full page. With the development of
technology, the OCR hardware was considerably improved. Nowadays, scanners,
cameras, video recorders and any other optical devices are the common tools to
capture data from a source with reasonable speed and capacity so that the output of
those devices is more reliable for a recognition system.

In the domain of DAR, printed and handwritten text are the main object of the
research. Unlike printed text, the challenge in handwritten text recognition is much
higher due to fluctuation in the unconstrained handwritten style of the person
who wrote the text. Some issues in this respect are the variation of skew angle,
overlapping/touching lines, character size, variability of intra and inter-line.

The study of handwritten character recognition as a part of OCR research has
grown progressively since the beginning of the 1990’s [5]. Since that time, many
publications in related journals focused on that field, for example International Jour-
nal of Document Analysis and Recognition (IJDAR), Pattern Analysis and Machine
Intelligence (PAMI), etc. Furthermore, there was also an increasing demand of rele-
vant workshops and conferences exploring various topics of handwritten character
recognition. The high demand of these workshops and conferences indicates that
the growth of handwriting recognition research is increasing as well.

Handwriting recognition is referred to a process of transformation a group of
graphical marks of a particular language written on a spatial medium by hand into
a set of defined symbols [46]. Most approaches of the character recognition refers to
the traditional paradigm of pattern recognition [5]. It consists of a few stages which
are data acquisition, feature extraction, and classification/recognition [30]. However
in more refined paradigm, the framework may contain of more stages as can be seen
in Fig. 1. Based on this framework, a handwritten text recognition system consists of
several main stages:

• Image Acquisition

• Preprocessing

• Segmentation

• Feature Extraction

• Classification

• Post Processing

7

8 foundation of a handwritten character recognition system

Figure 1: A simple document analysis processing. Each stage may consist of some sub-stages
depending on the approach used within the stage. The segmentation stage is
optional and it can be omitted for some circumstances.

This framework is basically inherited from the framework of the pattern recogni-
tion system. It is a sequential process which is not rigid to be refined. Each stage
may be enhanced by sub-stages to commit some specific functions during processing.
These sub-stages can be considered as an enrichment attempt to improve the perfor-
mance of each stage. Beside multiple sub-stages, each stage may contain multiple
options of algorithmic implementation [30]. This gives a freedom to researchers
for selecting the best approach during accomplishment of the stage. To have an
illustrative description of all stages, the following sections explain each stages in a
sequential order.

2.1 image acquisition

The first step in pipeline is the image acquisition. An image can be captured by an
optical device via a sensor attached to the device. Based on the type of the sensor,
there are three groups of image acquisition devices, with a single sensor, with sensor
strips, and with sensor arrays [15].

A device with a single sensor has only one sensor that can scan the source
document by moving the sensor head to the left and right before changing to next
row by moving the sensor. Usually, this kind of device can produce high-resolution
images with inexpensive costs because the mechanical motion can be controlled.
However, since the device only has one sensor, the acquisition will be slow.

The second device employs many sensors that are set as an in-line strip. This strip
is functioned as a receptor instrument of the device to capture the input image by
moving the strip row-wised over the image source. A typical device which works
in this manner is a flat bed scanner. Beside in-line arrangement, some devices have
mounted the strip into a ring configuration. In this configuration, the output signal
needs to be reconstructed by an algorithm to produce meaningful cross-sectional
images. This is the basis of what so-called computerized axial tomography (CAT)
imaging which is mainly used in the medical or industrial sectors.

2.2 preprocessing 9

The third class is an optical device using sensor arrays for image acquisition.
Sensors are arranged inside the device in a certain rectangular dimension such that
those sensors is run as an element of arrays. The dimension of the array can be in
4000 x 4000 elements or more. With this large array representation, the motion of the
sensors during acquisition over the image source is not necessary because the array
size will be large enough to cover the object. A digital camera is a typical device
which operates these sensor arrays to produce images.

The use of the acquisition device depends on the target object. For example, if the
acquisition is targeted to documents, a flat bed scanner is a good choice although a
digital camera is also possible. While to capture landscape images and 3D objects, a
digital camera will be an appropriate choice, whereas a scanner cannot do that.

The final concern in the sequence of image acquisition is compression format of
the output acquisition. Whatever the device, the image must be represented in a
format that preserves the original information of the image. The format using a lossy
image compression must be avoided since it will degrade information of the image
which will impact the performance of other stages hereinafter.

2.2 preprocessing

A preliminary step in handwritten character recognition is called preprocessing. It is
a series of operations performed after the image acquisition in order to achieve a
certain level of image quality. The raw image of the handwritten document in this
step is transformed into an intermediary image which minimizes variabilities that
are not important for its recognition so that useful features can be extracted and the
recognition is improved. According [2], the goals of preprocessing in general are:

1. Minimize the noise

2. Normalize the data

3. Compress the data

To accomplish these goals, preprocessing steps may involve a number of sub
tasks such as noise removal, slant estimation and normalization, size normalization,
binarization, thinning, etc. Since there are no specific standard methods for prepro-
cessing, they will differ from one system to another system. Some of those methods
are needed in one system while others are flexible to be used, depending on initial
physical judgment of the documents that have to be processed or a prior knowledge
of the data. Moreover, some of those sub tasks may be carried out simultaneously by
a scheme or some may be overlapped with each other.

The following subsections describe some of those tasks that are often used during
preprocessing, i.e. noise removal, normalization, and binarization. For additional
schemes, the reader can explore further methods in references, like in [2], [8], [15].

2.2.1 Noise Removal

The quality of handwritten document input will affect the performance of handwrit-
ten character recognition outcome at the end of the process-chain. A bad quality

10 foundation of a handwritten character recognition system

handwriting will generate a low recognition rate but in contrast, a good quality
handwritten source will achieve a better accuracy rate. In fact, the image enhance-
ment by noise minimization of the input image or document would always be an
advantage for the whole recognition system, whether or not the input image or
document is in a bad quality.

The noise removal is necessary since many factors can degrade and distort hand-
written documents. Some of degradation and distortion on documents may be
caused by the quality of paper, aging of documents, quality of ink etc. which unin-
tentionally generate artifacts in document images. This can produce imperfection in
document images which are considered as a noise. The second type of noise that
may be introduced is due to reproduction and transmission of image during its
acquisition process by the hardware. The first type of noise is called high level noise
while the second type that is a side effect of the acquisition hardware is called low
level noise [16].

The methods to reduce the noise can be divided into three major groups, filtering,
morphological operations, and noise modeling [2]. Filtering is done by performing a
convolution between a filter mask (a convolution kernel) and the image to specify a
value to a corresponding input pixel as a function of the values of its surrounding
pixels. During convolution process, the mask will be moved like a sliding window
from pixel to pixel on the image. For each pixel, a corresponding value will be
calculated as a sum product between the mask and appropriate pixel with its
neighborhood pixels. While morphological operations are a similar mechanism but
the role of convolution is done by logical operators. Typical operators in this regard
are adopted from the main operator in set theory i.e. AND, OR, and NOT [15].
Therefore, the morphological operation with operator AND and OR can only occur
between two images in binary format. Whereas the operator NOT can be executed
on a single binary image.

The last method, –a noise modeling–, portrays a different approach compared to
the two previous schemes where their operations are explicitly applied to document
images. The noise modeling scheme does not seem to be a direct approach for tack-
ling the noise. In this regard, the noise is estimated by a mathematical formulation
and with the help of this model, the image is improved. Some noise models are
represented by probability density functions and are discussed in [15]. However,
building a noise model does not always succeed. In many cases of handwritten
character recognition applications, it is impossible to model the noise as noted in [2].

The noise removal process can be performed by a smoothing operation which
is one of the filtering approaches. The idea is that the image is blurred to reduce
the sharpness of the image as the random noise is indicated by sharp transitions
in gray levels. This particularly impacts in reducing the noise. Nonetheless, at the
same time smoothing has side effects. It will moderately diminish the detail of edges
on image which is undesirable since edges are the most desired features. Another
effect of smoothing is that it can bridge the gaps of a broken line or fill the empty
spot. Bridging the gaps or filling the empty spot may be either desired or undesired
features for the purpose of recognition. Therefore, the smoothing process must be
considered before it is applied in the sequence of preprocessing. For more details,
readers can refer to the noise removal in [15].

2.2 preprocessing 11

Some other methods of noise removal have been developed for specific noises
such as a clutter, a large black area in binary image around document image which is
dominantly generated during acquisition process like the scanning or photocopying.
Some examples are a massive copier border produced during photocopying, output
of scanning process between the gap of gutter and scanner, or output of scanning
process due to different illuminations between paper edges and scanner bed. The
other causes of a clutter are ink seeps, ink blobs, or punched holes. All those are
considerably large compared to a text image.

One simple approach to deal with this kind of noise was proposed in [51]. In this
work, the removal process is targeted to large black borders of image documents.
The approach uses projection profiles to estimate the location of massive black bor-
ders and cut them leaving only the text part. Initially, an image document must be
binarized to get a binary image. Then, smoothing is executed along with horizontal
and vertical direction by applying a smear method, Run Length Smoothing Algo-
rithm/RLSA [24]. With threshold 4 pixel, the algorithm can fill 4 white pixel hole
around foreground pixel into fully black pixel. Based on this result, the projection is
calculated for horizontal and vertical direction. The massive black borders will be
detected if the histogram is significantly large for several consecutive horizontal or
vertical pixel. In this situation, this border will be cut. Another approach to get rid of
clutter can be observed in [1]. Various other approaches are briefly reviewed in [13].

A more recent method of the noise removal can be found in [16]. In this work, the
noise removal and recognition are combined as a single optimization problem and la-
tent variables are incorporated into optimization process to store a priori knowledge
of the noise. This optimization problem is then solved by employing Expectation
Maximization (EM) algorithm in order to find the values of those variables. However,
the usage of latent variables will impact on a longer processing time when the initial
guess of these variables is not good enough. To accelerate the convergence solution,
the initialization as well as improvement of those variables is estimated by fuzzy
inference systems. The advantage of this method is a reduction in convergence time
of the algorithm. Moreover, the applicability of the method is not only for French
documents but it also flexible to other documents like Spanish, English, Arabic, etc.,
with no or little adaptation in the fuzzy inference systems.

2.2.2 Binarization

Within the preprocessing stage, it is often necessary to perform binarization that
converts a raw image into black and white each for the object and background
respectively. The goal of binarization is to sharpen the object as foreground against
its background. The mechanism behind the normalization is a threshold value that
becomes a parameter to group the pixel into either as foreground or background.

With respect to the threshold, binarization techniques can be distinguished be-
tween the global and the local binarization. The global binarization algorithms uses
a single threshold value which is calculated based on the heuristics or statistical
attribute of the entire image and then applied to the entire image. In contrast to
global binarization, the local technique uses the neighborhood pixels attributes to
compute the threshold and applies it only to the pixel where it was computed.

12 foundation of a handwritten character recognition system

(a) color image (b) gray-scale image (c) binary image

Figure 2: An example of color image of a German stamp and its conversion to gray-scale
and binary image.

To transform a raw image into binary image, the color raw image firstly has to be
converted into grayscale and then continued by a binarization algorithm. Several
algorithms that are most common used algorithm for binarization are Otsu [38],
Niblack [37], and Sauvola [49]. They will be explained briefly in the following.

• Otsu Algorithm
Otsu algorithm is one global technique for binarization. The threshold value
is computed such that the sum of foreground and background spreads at its
minimum. With another word the algorithm should compute the threshold
that minimizes interclass variance.

σ2 = ωb · σ2b +ωf · σ2f (2.1)

Where:
ωb is the weight of background pixel, which is computed as the probability of
background pixel.
ωf is the weight of foreground pixel, which is computed as the probability of
foreground pixel.
σ2b is the variance of background pixel.
σ2f is the variance of foreground pixel.

However, in practice, the computation of the σ2b and σ2f is relatively slow. To
handle this situation, the algorithm can simply use the mean without changing
the decision by shifting the term minimizing interclass variance by maximizing
between class variance. Then the formula 2.1 is adjusted as the following.

σ2 = ωb ·ωf · (µb − µf)
2 (2.2)

Where:
µb is the mean of of background pixel.
µf is the mean of of foreground pixel.

The advantage of Otsu algorithm is quick processing because it works directly
to the gray scale image. While the drawback is the poor result if it is applied
on the image with unbalanced object against its background.

2.2 preprocessing 13

• Niblack Algorithm
Niblack algorithm is a locally adaptive binarization method that computes the
threshold value based on a local region on the image. The region chosen should
be small enough to conserve the local attributes and at the same time should
be large enough to remove the noise. The threshold computation moves over
regions within the image like a sliding window. Then the mean and standard
deviation are calculated for each local region with the center (x,y) and size
w×w. The threshold for this center is computed by the formula:

T(x,y) = m(x,y) + k · s(x,y) (2.3)

Where:
m(x,y) is the mean of the region with the center (x,y).
s(x,y) is the standard deviation of the region with the center (x,y).
k is a user predefined constant which generally set to a negative value.

This algorithm performs well to distinguish the text region as foreground.
But in the meantime the algorithm can also generate an extreme amount of
noise anywhere else, particularly whenever the background part contains light
texture to some extent, such as gray zone, light spot, etc.

• Sauvola Algorithm
Sauvola’s algorithm [49] operates similar to the Niblack algorithm but with
a little modification to handle the problem of Niblack algorithm. The value
of k is still a fixed number, but it is set to a positive constant. In addition, the
computation is modified such that it behaves more dynamically with respect to
the each region. The former Niblack algorithm formula (equation 2.3) changes
to be a new one as follows:

T(x,y) = m(x,y) ·
[
1+ k ·

(
s(x,y)
R

− 1

)]
(2.4)

Where:
R is the dynamic range of standard deviation.
k is a constant.

By this new formula, the contribution of standard deviation becomes stronger
in determining the threshold but more adaptive at the same time. The m(x,y)
coefficient in the new formula will downscale the threshold which in fact can
diminish the noise produced on the background area by Niblack algorithm.
Their experiment indicated that the optimum result was achieved with R set
to 128 for 8-bit gray level images and k set to 0.5.

2.2.3 Character Normalization

As variability of handwritten characters is erratic in shape and size even handwritten
characters from a single person, it can strongly distress the performance rate of

14 foundation of a handwritten character recognition system

the recognition process. To have a standard size, the character images need to be
transformed such that all such character image instances are represented in the
same size. This process is called a normalization. There are several normalization
type such as skew normalization, slant normalization, and size normalization. The
difference of them lay in the target of the normalization. The two first types will be
briefly explained in the next two paragraphs and the latter will be covered more
detail in the rest of this subsection.

The skew normalization is performed toward the baseline of handwriting. The
baseline condition may be tilted during scanning of the document image. Another
fact that can be found on the document image is the curve of the baseline. It is the
nature that without line guides, human handwriting may turn up or down so the
handwriting baseline may fluctuate. The task of detecting and correcting them can
be accomplished by the skew normalization. A brief review of skew detection and
correction can be observed in [13].

The slant normalization refers to the process of returning of characters to upright
position. The tendency of most writers obliquely write their handwriting a little to
right side. Hence characters will make a small angle between characters and the
vertical direction. In this regard, a slant correction which is another term for the
slant normalization need to be carried out. To get an basic illustration of the slant
normalization, the reader can refer to [13].

The size normalization is also called the character normalization. The purpose of
the character normalization is to reduce the arbitrary shape variation of character
images by adjusting the original size into a predefined size, mostly into the same
size of height and width. There are some functions to carry out a normalization. In a
broad outlook, the normalization strategy can be distinguished into three categories
[28]. These categories are grouped based on boundary alignment (conventional
linear and nonlinear normalization), centroid alignment (moment normalization)
and curve fitting (combination of both).

In practice, a pixel of original image will be mapped to normalization image by a
certain function. For example, a simple mapping function of linear normalization
can be formed by the ratio of respected size dimensionality between the normalized
and original image. Let f(x,y) denotes the original image with width W1 and height
H1 respectively and g(x ′,y ′) denotes the normalized image with width W2 and
height H2 respectively, the transformation of an original image coordinate (x,y) to
a normalized coordinate (x ′,y ′) can be done by forward mapping and backward
mapping as follows:

x ′ = αx y ′ = βy (2.5)

and

x = x ′/α y = y ′/β (2.6)

where α and β represent transformation ratios, given by
α =W2/W1 β = H2/H1

An example of the normalization based on linear function is given in Fig. 3. In
this example, an image of a Lampung character in a different width and height is

2.2 preprocessing 15

normalized into three different copies each in a square size. The samples indicate
that in those three normalized images, the basic shape of the original image is
maintained similar to original one.

Beside a linear function applied to normalization, the method for normalization
can also be either in non linear function or moment function. However, a comprehen-
sive discussion of those methods beyond the scope of this research. The interested
readers can refer to [8] and [30] to expose the detail of non linear or moment function
normalization.

(a) original size 87x43 (b) normalized
20x20

(c) normalized
32x32

(d) normalized 48x48

Figure 3: Binary image of the Lampung character Ja in its original size and several normal-
ized size.

As the normalization is executed based on the size of the image, a normalization
process may be performed by a stretching or shrinking on width and height of
character images. This does not only have a requisite impact but also introduce some
negative effects like degradation of the shape, unbalance aspect ratio of the character,
shifting the proper slant, etc.

In order to cope with these problems, some techniques have been developed. One
of technique to solve those conventional problems is called aspect ratio adaptive
normalization (ARAN) [29]. This technique controls the aspect ratio of the normal-
ized image as a continuous function of aspect ratio of original image. Therefore, the
original image aspect ratio is preserved into normalized image. In applying this
strategy, the size of normalization image is not fixed but adaptively calculated based
on the aspect ratio of original image via aspect ratio mapping function. If W1 < H1,
H2 has a fixed standard height whereas W2 is centered and scaled according to
aspect ratio of original image. In contrast, when H1 < W1, W2 has a fixed standard
width whereas H2 is centered and scaled according to aspect ratio of original image.

Another technique is performing normalization by an ensemble process [28]. An
example of this technique as presented in [28], fourteen basic normalization functions
are chosen to build an ensemble normalization architecture and then doubled to
twenty eight by switching on/off slant correction. From those outputs features are
extracted and feed into a classifier. A decision combiner is employed at the end
of pipeline to determine the class. To reduce the complexity of the normalization
ensemble, a subset selection of the classifier is applied during the combination.

16 foundation of a handwritten character recognition system

2.3 segmentation

Segmentation is a technique to decompose a document image into sub-images
of individual symbols of a certain unit. In document analysis, the unit can be a
paragraph which means segmenting the document image into units of paragraphs
or a line segmentation which means extracting units of text lines, or on the level CCs

where the output of the segmentation are units of connected pixels. Fig. 4 provides
an example of the segmentation process toward a Lampung handwritten document.
In this example, output of segmentation indicates a few lines text containing CCs of
Lampung characters as well as the diacritics attached to them.

In the following subsections, the topic of the line and CCs segmentation will be
covered concisely. In the first subsection, several approaches of the line segmentation
are explained in general to provide a basic idea of the segmentation. While in the
subsequent part, the segmentation in the level CCs is portrayed in brief.

2.3.1 Line Segmentation

Line segmentation can be considered as a middle stage process before segmenting
the smaller units like words or characters. This means that the segmentation of the
words or characters relies on the line segmentation because it keeps track of sequence
of words and/or characters for each line. However not all text recognition process
will perform word or character segmentation after a line segmentation, especially
for cursive script. Beside, the usage of the classifier also clarifies whether the words
and/or characters segmentation need to be done after the line segmentation or not.
Even some techniques may require segmentation into unit smaller than characters.

Basically, there are three remarkable approaches for line segmentation. The ap-
proaches are the projection profiles, smear method, and Hough transform. Some
other general, modified, or hybrid methods also exist although they are not so
prominent. A few of them are the repulsive attractive network [39], or the minimum
spanning tree [61], etc.

Projection profiles explores the line based on the total foreground pixel of the
document image. The measurement is determined by counting the number of black
pixel for each horizontal row. The counting will find the peaks and valleys of the
foreground pixel. The peak indicates the massive foreground pixel which potentially
represents a baseline while the valley is the blank space between the line.

The projection profiles is the easiest method to be implemented. However it is
susceptible to curvilinear or oblique of text lines. Moreover, if the handwriting
document contains such a thing, the projection may contain inconsistent peaks
and valleys. It will consequently generate an incorrect segmentation. Touching
and overlapping handwriting will also influence the performance of the projection
profiles approach.

The smear method segments the lines by exploiting the local aggregate. In general
it consists of two steps. First, each pixel in the row is scanned to localize two
consecutive foreground pixels. Over those two consecutive pixels, the distance is
measured. If the distance is less than a given threshold, the area between those
two pixel must be switched to foreground. By this way, pixels are computed as a

2.3 segmentation 17

connected blob of foregrounds. However this task only computes the unconnected
spot of baseline. Therefore the next step is to concatenate the bunch such that
baseline can be generated completely.

The drawback of the smear method is that it is less robust to curved and large
skew lines. Another shortcoming occurs whenever the document contains touching
or overlapping lines. As the impact, those lines will be grouped together as one line
although it apparently should be two different lines.

As its name, Hough transform performs the line segmentation by employing
a transformation scheme. The image point in a Cartesian coordinate system is
transformed into a polar coordinate system. The generic scheme of Hough transform
works as follows. The coordinate of the points of edge segments (xi,yi) is used as
a parameter to calculate a new parameters (r, θ) with r > 0 and 0 6 θ 6 2π. The
transformation is done as follows. A tangent line is made through this point. Then
distance from the line to the origin is measured and represented by r. The angle θ is
the angle between the horizontal axes and the tangent line. The line equation that
passes through this point can be represented by:

y =

(
−
cosθ

sinθ

)
· x+

(r

sinθ

)
The formula can be rearranged as:

ri = xi · cosθ+ yi · sinθ (2.7)

For all the points along the pixels segment, the transformation is done which in
fact generates many (r, θ) parameters. To detect the line, this approach uses what is
called an accumulator which graphically is a representation of all (r, θ) in the Hough
space. All the points along the pixels segment that forms a collinear line will have a
peak point in the Hough space. With a threshold for the accumulator, a set of pixels
points can be detected as a nearly collinear for the purpose of line segmentation.

2.3.2 Connected Components (CCs)

CC is defined as regions of adjacent pixels that have the same input value or label
[53]. A set S of pixel is a CC if there is at least one path in S that joins every pair
pixel (p,q) of pixel in S. The joining pair of pixels in the set can be ruled by a
connectivity criteria to its neighbor pixels. There are two common connectivities for
the neighbor i.e. 4-connectivity or 8-connectivity. The 4-connectivity rule determines
a pixel connected if the neighbor pixel residing in one of four major compass points,
i.e. north, south, west, and east. While 8-connectivity rule determines that two pixel
connected if one pixel located exactly at the surrounding of the other pixel which is
one of 8 closest side positions.

The CCs can be in any meaning depending on the sort of text in the document. In
the cursive handwritten document, the isolation process into CC yields connected
pixel as a single word, while in the printed document, the process yield the characters.
As there is no perfect document, among generated CCs, there may also be unintended
objects like noise specks, groups of touching rows, parts of a character that is broken,
diacritics, etc.

18 foundation of a handwritten character recognition system

Figure 4: CCs of characters vs non-characters. CCs of characters are surrounded by cyan
bounding boxes. Some of cyan boxes also contain unknown marks or noise like
some on the right side. The small mark in red boxes indicate the CC of non-
character symbols such as diacritics, unknown marks like double vertical strips in
the beginning both sentences, or punctuation marks at the end of both sentences.

For particular situations, the CC can be directly passed through the next step in the
handwritten character recognition pipeline, but in other different situations probably
the CC still needs a further treatment before being processed by the next step.

To extract CCs from a binary image, two most common algorithms can be applied.
The first algorithm is called one-pass algorithm which sometimes is also called
flood-fill algorithm. In general, the algorithm extracts one CC at a time and continues
to another CC until all CC in an image are completely extracted. The process is
started by locating a foreground pixel of a component. This pixel is regarded as a
seed point during extraction. Then from this point, neighbor pixels are traversed
one by one to search connected foreground pixel based on the neighbor connectivity
definition. If a connected foreground pixel found, it is labeled as the same label as
the seed point. If it is not foreground, the process continues to another pixel around
the current position until no other connected pixels found. This process is restarted
by addressing the next seed point from another CC.

Beside one-pass algorithm, the extraction of CCs can also be extracted by the two-
pass algorithm. This algorithm is easier to be implemented. As the name implies,
this algorithm extracts CCs in two main steps which should be done consecutively.
Both are illustrated in the following.

1. The first step is temporarily assigning the label for each pixel in the image.
This labeling is started from the first pixel on the upper left and traversed to
the next pixel on the right of current pixel in the first row. It scans the pixel
from the left to the right and then continues to the next row until reaching the
last pixel in the last row. During this step, a label is assigned to foreground
pixels. To have a concise illustration, the pseudo code 1 explains the process of
labeling in this first pass.

Assume a single step in the first pass process is indicated in Fig. 5. During
checking the label of neighbors in the first pass, there is a possibility that labels
of neighbors can be more than one label. This causes a problem in decision of
label to be set on the current pixel. To deal with this problem, the current pixel
is labeled based on the pixel with the lowest label. Meanwhile, the structure
of encountered neighbors depends on the definition of connectivity, either
4-connectivity or 8-connectivity. Let the current pixel is marked as a symbol

2.3 segmentation 19

Algorithm 1 Labeling of the First Pass

1: scan pixel by pixel
2: while remaining pixel do
3: if foreground pixel is found then
4: check its direct neighbors
5: if neighbor had been labeled then
6: if All neighbors have a same label then
7: assign foreground with this label
8: else
9: assign foreground with the lowest label

10: end if
11: else
12: assign new label
13: end if
14: end if
15: end while

x. Referring to neighbors that already traversed and labeled around x, the
number of neighbors of the current pixel in configuration of 8-connectivity
is four pixels. Those neighbors are three pixels on the top and one pixel on
the left of the current pixel (Fig. 5a). While in the structure of 4-connectivity,
neighbors are only two pixel which are one on the top and one on the left of
the current pixel (Fig. 5b).

(a) The composition of neigh-
bor pixel in 8-connectivity

(b) The composition of neigh-
bor pixel in 4-connectivity

Figure 5: The shape structure of encountered neighbors during checking of neighbors in the
first pass of Connected Components (CCs) extraction.

2. As the first step only assigns labels temporarily, the second step must ensure
that temporary labels for each same blob must have a single label. Each single
blob that has been identified and labeled from the first step will be reset to the
lowest label inherited from labels within that blob. This new label is mapped
to all pixels belong to the blob as a final label. This relabeling process is done
for every blob in the image until all blobs are completely reset.

20 foundation of a handwritten character recognition system

2.4 feature extraction

Features are the measurements or attributes extracted from image that are used for
training (learning) and classifying this image into classes. This means that a feature
can be regarded as a representation of the image itself. The process to generate
features is called feature extraction. In this process, the input patterns of an image
are mapped onto points in a feature space.

The role of features in a handwritten character recognition framework is very
important because it will give a big impact in the overall performance of the
recognition. Therefore, the algorithm to extract the feature from image should
produce features which can group all images of the same class together while at the
same time they can discriminate the images in the different classes. In addition, the
algorithm should also be easily computable [20].

There are various features of handwritten character extracted by researchers. Most
of those features can be grouped into two major types [22], [58], [32]:

• Statistical feature.
The statistical feature is the feature that is generated as statistical measurements
of the image or regions of the image [32]. The statistical measurements of
this feature are usually derived from distributions (of the image attributes)
like pixel point. Features in this category include pixel densities, projection
profiles, histograms of chain code directions, image intensity, etc. A sample
of projection profiles in a horizontal direction can be seen in Fig. 6. Beside in
a horizontal direction, the projection profiles can also be extracted toward a
vertical direction. The choice of both options is usually depend on the purpose
of the projection profiles itself. The most application of the projection profiles,
particularly across a horizontal direction, is to help a task of line extraction in
handwritten character recognition.

Figure 6: A projection profiles of the Lampung handwritten character text in horizontal
direction.

• Structural feature.
The structural feature of handwriting is in general reflecting intuitive aspects
of writing. It can be generated from topological and geometrical properties
of the character image. This means that it can be various elements such as
maxima and minima, ascenders, descenders, cross points, branch points, end

2.4 feature extraction 21

points, dots, aspect ratio, loops, strokes and its direction, etc. The example
of end points and branch points are given in the Fig. 7. In term of the graph
theory, an vertex or node is called end point if its degree is one. A branch point
is a vertex or node with the degree three and a cross point is a vertex or node
which has degree more than three.

Figure 7: A sample of end points and branch point of the Lampung handwritten character
text. The blue dots indicate end points while the red pentagons indicate branch
points.

The crucial issue during feature extraction is how to generate an efficient feature
representation. This issue is rather difficult to be solved since the features will much
more depend on the image source that will not be identical case by case. Some
feature extraction algorithms will generate the best suited features for one problem
but those algorithms probably will not be appropriate for other problems. Here the
a prior knowledge of the character image (candidate) will be meaningful before
performing a feature extraction.

Another problem in handling the features is reducing dimensionality size of the
feature vector. The feature extraction algorithms mostly extract big feature vectors as
the impact of the operation on the pixel level. The big dimension of the feature vector
is not always good for the handwritten character recognition framework. The bigger
size of the feature vector, the longer time that will be needed to perform training
and recognition. Therefore, it is an advantage to utilize a smaller dimensionality
vector for representing the feature vectors. The way to reduce dimensionality is
by transforming feature vectors to be less in dimensionality but at the same time
still preserve the underlying structure of the original feature data. One approach
to perform this task is the widely used technique called Principal Component
Analysis (PCA). The reduction in PCA is done by transformation the basis of original
data points into a few orthogonal linear combinations, which is called principle
components (PCs), with the maximum variance. However, the maximum variance is
no guarantee that the data point in a new space contains appropriate discriminative
vectors. The new data space is built by a set of new orthogonal basis with less
dimensionality such that all original data points can be represented with minimum
loss of information. A detail description of PCA can be found in [4], [10].

22 foundation of a handwritten character recognition system

2.5 classification

As the final goal of a recognition process is assigning the class label, there is a task to
group primitive candidates of an image to a predefined class based on their identical
matching feature patterns. The group of candidates with identical feature patterns
lay in the same class since this similarity represent characteristic of the same group.
Then there is also a task to determine unknown input feature patterns into group
class members. These processes in the context of a handwritten character recognition
is called a classification. In general, the classification is defined as a work of deciding
extracted feature patterns of primitive candidates from an image into one of a given
set of classes.

The classification is performed by a classifier that uses a particular approach. This
classifier is necessarily trained according to the presence of samples with predefined
classes. This process where the samples are involved is called the classifier training.

The training phase aims at learning the nature of all character classes. Throughout
this phase, the classifier will inspect all possible classes via feature patterns and
collect some attributes or signatures that are owned by each class. Once the training
phase succeeded, the classifier noted and recorded the feature patterns of each
character class, which suppose to be unique for each class. However in a worst case,
the feature patterns might be incomplete whenever the training process does not
find some particular classes in the samples.

If the training phase has been completed to learn feature patterns of each class
in samples, another phase that is called testing is taken into account to tackle the
input features of unknown classes. The process is as follows. The classifier receives
the input features, and then the classifier identifies and verifies these input features
based on the information acquiring from the training phase. The classifier assigns
the class for each input feature during the testing phase.

Concerning the type, Authors in [54] divide classifiers into the Bayes-based, linear,
and non-linear classifier. However from a more general view point, the classifiers
can be roughly distinguished into two groups based on the training approach. Both
are the non-discriminative (statistical classifier) and discriminative classifier [27].

The key point of the non-discriminative classifier is the involvement of the statisti-
cal theory particularly the Bayes decision theory. In the non-discriminative group,
the classifier initially inspects all the input features of the samples during training
process. Then the classifier generates the model for each class from the training
samples. In order to get a representative model, the classifier estimates parameters
of classes in the samples by calculating underlying probabilities, for example, a
posterior probability by Bayes formula, of the model when the training process takes
place. The built model is then used to identify and verify a set of unknown input
features into a class in the group. The classifier decides to which class the given
input belongs. Several classifiers in this category are Gaussian Mixture Model [10]
which can be used with a Bayes classifier and Hidden Markov Model (HMM) [11].

In contrast, the discriminative approach does not build a model for class deter-
mination of unknown input features. Instead of generating an explicit model for
each character class, the classifier composes the decision boundary of each class
from training samples during the training process. This boundary then becomes the

2.5 classification 23

basis to directly map the unknown input features into one of the class label. This
approach does not depend on the probability counting from the training samples.
The classifiers of this category are NN and SVM [4], [10] [8], [54].

The next subsections only discuss an overview of NN and SVM. Each will describe
a brief introduction to the principle behind the approach as well as some important
aspects within the concept.

2.5.1 Neural Network

The idea of the NN classifier adopts the work of the human brain system. The brain
can accept some input signals simultaneously and then process them into an output
as a specific information. The representing system of this occurrence can be seen as
a simple neuronal network sketched in Fig. 8, which, in the simple case, represents
the model of a binary classification problem.

Figure 8: A basic neuronal model consists of three elements, synapses, summing unit, and
activation unit. This simple model denotes a single layer neural network with a
single output where the value of this output can classify inputs into a class among
a limited number of classes.

In this basic form, a single neuron composes a simple neural network that models
a single layer with single output as a three elements processing system. It comprises
several synapses as input sensors, a summing unit, an activation function and
one output. All input signals from synapses are processed by a summing unit
after multiplying respectively by particular weights. The role of the summing unit
is as a combiner of all weighted inputs from synapses such that it yields one
scalar value which is called the net activation. However, the value of this net
activation cannot be directly used as a criteria for classification of the input signal. To
adjust this net activation being ready as a basis of a classification decision, another
transformation must be carried out to control amplitude of this net activation
value. The transformation is generated by an activation function which is suitably
chosen based on the distribution of the target values. Hence, the final output of the
network will depend on the selected activation function. For example if the network
is dedicated for the system of a two classes classification problem, which can be
modeled as the network in Fig. 8, the output value can be mapped to a zero or one.
The output "zero" means that the input signal represents the first class, otherwise it
represents the other class.

24 foundation of a handwritten character recognition system

Suppose a feature representing the input signal consists of d numerical measure-
ments {x1, x2, . . . , xd}. This incoming input is accepted by the network via input unit
and multiplied by particular weight wi. The output of summing unit for this simple
model is formulated as a weighted combination of incoming inputs by the following
formula:

v =

d∑
i=1

wi · xi + b =

d∑
i=1

wi · xi +w0 · x0 =

d∑
i=0

wi · xi = wtx (2.8)

where:
v is a net activation
wi is the weight of input component i
b = w0 · x0 is a bias which can be considered as an input with a fixed signal x0 = 1

x is an input vector x with dimension (d+1)

This net unit value is fed into activation unit to delimit the output within a certain
bounded amplitude. In this circumstance, the activation function, denoted by σ(.),
can be either linear or non linear. For a simple linear function, one of the possibility
is using identity function as follows:

g(a) = σ(a) = a

Despite a linear function, the activation function can also be set to a non linear
function. This function is selected to accommodate non linear inputs so that the
function can manage a non-linear behavior. One simple example in this category is
a piecewise-constant function that is constructed by two discrete values based on
a certain threshold. This function is indeed employed to handle the classification
problem with two outputs (binary). The function is in form,

g(a) =

1, σ(a) > t

0, σ(a) 6 t

This piecewise-constant function can be approximated and smoothed by a sigmoid
function. The mathematical formula for sigmoid function is

g(a) = σ(a) =
1

1+ e−a

This sigmoid function is also common for activation function. The usage of a
sigmoid function as the activation function encompasses many benefits. First, it is a
non linear function so the network is capable to simulate a non linearity behavior
of the input. The function also has a minimum and maximum output value so that
the network can keep weights and activations bounded. Another advantage is that
the function is differentiable which enables gradient learning during training of the
classifier. The goal of this learning is to improve weight parameters such that the
optimal net activation value can be estimated for each iteration. Thus at the end
of iteration, a best net activation value can be obtained. With all those prominent
properties, the usage of sigmoid function for activation function will obtain those
advantages.

2.5 classification 25

2.5.1.1 Single Layer Neural Network

In a realistic scenario, the multiclass classification problems seem to dominate over
the binary classification problems. The model in Fig. 8 can be extended to handle
multiple outputs as representation of multiple classification problems. In fact, the
structure for new network becomes more complex than a simple model that was
introduced before. The new network can be constructed by augmenting the only one
output of the simple neuronal model in Fig. 8 to be multiple outputs as sketched in
Fig. 9. This new system is still a single layer network but having multiple outputs
as representation of multiple classes. All weighted input elements are combined to
generate values of each possible outputs. Consequently, all inputs have a certain
contribution in generating the value of outputs.

Figure 9: The model of a single layer neural network with multiple outputs. The single layer
refers to the output layer which one and the only layer in the network. Multiple
outputs indicate that the network serves as a processor of the input to assign one
class among multiple classes possibility

Recall the equation 2.8, a corresponding formulation of the function for multiple
outputs network is given as the following,

yk(x) = vk =

d∑
i=1

wki · xi + b =

d∑
i=1

wki · xi +wk0 · x0 =

d∑
i=0

wki · xi = wt
kx (2.9)

where:
yk is a net activation delivered to output unit of k-th
b = wk0 · x0 is bias which can also be regarded as an input at fixed signal x0 = 1

This value is fed into an activation function σ(.) that is purposely selected to suit
the criteria of the target. The net activation is then transformed to another scalar
according to this function such that

g(yk) = σ(yk)

26 foundation of a handwritten character recognition system

will fit to a certain distribution in a bounded scalar value as output of the network.
The classification is eventually decided based on this final output.

Note that the term output unit is also equivalent to output layer. That is the term
layer may replace the term unit and vice versa. They are exchangeable with each
other but the term "layer" is much more popular. Therefore the term layer frequently
appears in many discussions about NN.

2.5.1.2 Multilayer Neural Network

Considering a single layer neural network, the ability of the network to handle input
features from arbitrary sample is rather limited. Disregard of its learning algorithm
for counting weights, a single layer neural network always isolates any two classes
via a linear hyperplane decision boundary [8]. The problems appear if the samples
contain classes with a complicated distribution for which the decision boundary is
most likely non linear. In fact, the samples are not linearly separable and a single
layer neural network will be unable to separate classes of those samples.

Figure 10: Multi layers neural network composed by three layers with multiple outputs. The
layer between input layer and output layer is called hidden layer.

This problem can be definitely handled by employing non linear functions for
representing pattern features. Thus the network can deliver a linear combination of a
non linear function as the function of its original features inputs. However, to probe
the weights in a more dynamical way, more layers can be added at preceding output
layer. Note that the input unit is considered as an individual layer that is called input
layer. In fact, additional layers are placed between input layer and output layer.

These additional layers upgrade the network to be a multilayer neural network and
enhance the network operation to be more powerful for handling such a complicated
sample. The explanation behind this fact is that a multilayer neural network is able to
perform simple algorithms to learn non linearity of the training sample [10]. Hence,
the usage of multilayer network can adequately afford non linearity of the sample.

As these additional layers laid between input and output layer, their existence
look hidden from external view. Thus, the layers located between input and output
layer are called hidden layers. The example of multi layer neural network modeled
by three layers as an input layer, a hidden layer, and an output layer is shown in Fig.
10.

2.5 classification 27

Hidden layers provide a more flexible way to generate a better net activation
value for a subsequent layer. These hidden layers compute the weighted sum of its
inputs signal by using a particular function. The function can be either adaptive or
predefined. Suppose a three layer neural network in Fig. 10. The net activation value
of input layer can be computed as the following:

aj =

d∑
i=1

wji · xi + b =

d∑
i=1

wji · xi +wj0 · x0 =

d∑
i=0

wji · xi = wt
jx (2.10)

where:
aj is a net activation from input layer on output of j-th
wji is a weight of the input-to-hidden layer
b = wj0 · x0 is a bias which can be considered as an input with a fixed signal x0 = 1

Each net activation generated from input layer is transformed by a differentiable,
non linear activation function f(.) to deliver output to hidden layer j:

yj = f(aj) (2.11)

Since these net activations fed into hidden layer, the next computation is a repeti-
tion of the same process as the beginning. Each net activation from input layer is
linearly combined in hidden layer to produce net activation value of hidden layer:

ak =

m∑
j=1

wkj · yj + b =

m∑
j=1

wkj · yj +wk0 · y0 =

m∑
j=0

wkj · yj = wt
ky (2.12)

The activation function to be used in output layer can be the same function as in
hidden layer or a different function. Suppose the activation function on the output
layer is g(.). The final output of the network can be constructed by the following
formula:

zk = g(ak) (2.13)

The output zk can be indeed thought as the function of the input feature vector x.
The overall network function after substitution ak and aj is given by

hk(x) ≡ zk = g

 m∑
j=0

wkj · yj

 = g

 m∑
j=0

wkj · f

(
d∑

i=0

wji · xi

) (2.14)

The neural network computes the output as a linear discriminant measurement. If
there are c output units, the network computes c discriminant functions zk = hk(x).
The input is then classified based on the output from which discriminant function is
maximum.

28 foundation of a handwritten character recognition system

Note that a three layers neural network with a hidden layer between input and
output layer is able to approximate any function from input to output [10]. A hidden
layer play an important role during training since it provides an extended medium
to two primary existing layers which accordingly extend the learning capability and
capacity of such a network. Through hidden layer, the network accept incoming
inputs to compose arbitrary linear combinations of input components from training
data and sufficiently transfer them to output unit. However, the number of hidden
neurons within hidden layer must be an important concern during designing of
the network. Too many hidden neurons can impact the system to be over specified
but in contrast, too few number of hidden neurons can potentially reduce network
performance in fitting the input data into a representative model.

2.5.1.3 Network Training

Training of neural network aims to learn of weights according to input patterns
with assigned labels on them such that the corresponding layer can generate the
optimum net activation value. Technically speaking, the network learns weights
based on inputs of the training sample that are iteratively accepted by the network
and corresponding outputs as the response afterward. During training, the network
performs a corrective procedure which is called backpropagation to optimized compu-
tation outcome. In this procedure, the weights are adjusted and updated each time
the inputs come and outputs obtained.

In the beginning of the training, weights need to be initialized to guarantee that
the training step will continuously move forward to the next iteration. However, the
initialization by zeros will yield output values of the current layer to zeros which
in fact will set the error to be zero as well. The problem of this situation is that the
error will not impose the change of weights which is not desired. Therefore, initial
weights are set to random values to ensure that each iteration continued with proper
weights.

Assume the input xn represents the feature vectors of the training sample with
n = 1, . . . ,N indicate indexes of all data in training sample and desired output
tn represents corresponding target vectors. Suppose the output zk is generated
on output layer after an input sample xn executed by the network. The difference
between output zk and target tk is regarded as an error. The error function of the
network for xn can be computed as the total squared difference between the output
zk and the target tk as written in the following,

E =
1

2

M∑
k=1

(zk − tk)
2 (2.15)

When the training is carried out, all data in training sample are passed through
the network and adjustments of weights are iteratively made to reduce error. In this
respect, the process to evaluate minimum error value is done by a procedure that is
called gradient descent (see [4], [10]). On each new iteration p, weights of output unit
will be adjusted while reducing the error in the same time by:

∆wkj(p) = −η
∂E

∂w
(2.16)

2.5 classification 29

where η is learning rate which controls the relative size of weight and bias changes
during learning.

The main focus of Eq. 2.16 is to compute ∂E/∂w. This factor can be re-written in
component form as ∂E/∂wkj to refer the derivative of error with respect to weight
of layer j to layer k. Due to E is not explicitly dependent to wkj, evaluation of this
factor must consider the error function E as a function of ak and ak as a function of
wkj. Thus, the differentiation can be derived by chain rule,

∂E

∂wkj
=
∂E

∂ak

∂ak
∂wkj

(2.17)

The factor ∂E/∂ak indicates the change of error over net activation of unit k. This
is called sensitivity of unit k and defined as

δk =
∂E

∂ak
(2.18)

However sensitivity δk is not explicitly dependent to net activation ak. Therefore,
the differentiation can be examined by chain rule by regarding ∂E/∂ak as a multi-
plication of ∂E/∂zk and ∂zk/∂ak. Then the overall multiplication can be solved by
differentiation of Eq. 2.15 and Eq. 2.13 and the result is,

δk =
∂E

∂ak
=
∂E

∂zk

∂zk
∂ak

= (zk − tk)g
′(ak) (2.19)

The formula of this sensitivity shows that the activation function g(.) is necessarily
differentiable to enable backpropagation running properly.

Back to the main concern of Eq. 2.17, the only remaining part is the last factor
∂ak/∂wkj which can be obtained from Eq. 2.12. The evaluation of ∂ak/∂wkj yields
yj. Thereby adjustment rate of weights is given by

∆w(p) = −ηδkyj = −η(zk − tk)g
′(ak)yj (2.20)

Likewise ∂E/∂wkj, the term ∂E/∂wji occurred on hidden layer will be evaluated
through a resemble process,

∂E

∂wji
=
∂E

∂aj

∂aj

∂wji
(2.21)

The factor ∂E/∂aj is considered as sensitivity of unit j on hidden layer. Since the
error function E is not directly derivable over the aj, the derivation of sensitivity
∂E/∂aj must be solved by using chain rule as follows,

δj =
∂E

∂aj
=
∂E

∂yj

∂yj

∂aj
(2.22)

30 foundation of a handwritten character recognition system

The first element of this sensitivity indicates that the differential of E must be
evaluated with respect to yj. The process to derive the solution of this part is as
follows,

∂E

∂yj
=

∂

∂yj

[
1

2

M∑
k=1

(zk − tk)
2

]

=

M∑
k=1

(zk − tk)
∂zk
∂yj

=

M∑
k=1

(zk − tk)
∂zk
∂ak

∂ak
∂yj

=

M∑
k=1

(zk − tk)g
′(ak)wkj

(2.23)

Since δk = (zk − tk)g
′(ak) as indicated in Eq. 2.19, the result of Eq. 2.23 can be

written as the following

∂E

∂yj
=

M∑
k=1

δkwkj (2.24)

The second part of Eq. 2.21 is ∂yj/∂aj which can be differentiated from Eq. 2.11

as f ′(aj). Therefore, the sensitivity of the unit j is given as follows

δj =
∂E

∂yj

∂yj

∂aj

=

[
M∑
k=1

δkwkj

]
f ′(aj)

(2.25)

To complete evaluation of Eq. 2.21, the last part ∂aj/∂wji is solved as xi according
to Eq. 2.10. Put them together as one term provides a formula to adjust weights on
hidden layer as,

∆wji(p) = −ηδjxi = −η

[
M∑
k=1

δkwkj

]
f ′(aj)xi (2.26)

By resolving the value of ∆w on both hidden layer and output layer into current
weights, the updating process will occur after iteration p by

w(p+ 1) = w(p) +∆w (2.27)

Note that the updating will in general be proportional to three factors which are
the match between the target value (tn) and the output value from the network, the
differentiable function of the net activation, and input value in unit layer. If output
value has been frequently matched to the target, there are no changes on the weight
which is a sign that the iteration may be able to be stopped due to achieving an
optimal result.

2.5 classification 31

2.5.2 Support Vector Machine

The foundation of SVM is firstly introduced in 1995 by Vapnik [59] as an application
of statistical learning theory to solve classification problems. Several successful
applications of SVM in classification, regression, and novelty detection [4] increased
the popularity of SVM because it can effectively do these tasks and at the same time
deliver a very promising accuracy. Regarding classification, its performance has been
proved better in many cases compared to other classifiers.

2.5.2.1 SVM Learning Algorithm

Basically, the SVM was developed for the case of binary classification problems where
the sample object is presumably linearly separable. The idea behind this classifier is
to separate objects with a hyperplane that is constructed by maximizing the distance
between a separator (separating hyperplane) and outermost boundaries of each class.
To learn how SVM works, Fig. 30 provides a geometric picture to help understanding
the approach behind the SVM in the case of a binary classification problem.

(a) Multiple separating hyperplanes. (b) An optimum separating hyperplane.

Figure 11: SVM classifier for binary classification. Decision for a separating hyperplane is
chosen such that the margin is maximum distance to the nearest data points.

Suppose all data points in Fig. 11 represent a problem that needs to be classified
into two classes. Intuitively, the rough solution for this classification problem is to
split the data points into two parts by composing a geometric line. This line in terms
of the SVM is called a separating hyperplane. Note that in the context of the two
dimensional domain, the separation can be handled by a line where the separator
can be expressed as a line function ax+ by = c. Whereas in a higher dimension, the
separation will be handled by hyperplanes.

In general, there are a lot of separating hyperplanes as solution to this classification
problem as sketched in Sub figure 11a. Then the question is how to decide for the
best one among multiple existing lines. As explicitly described in the beginning of

32 foundation of a handwritten character recognition system

this sub section, SVM will probe the outermost data points around the separating
hyperplane and compute their distances to the hyperplane. As there are many
possible hyperplanes, this probing will apparently find many configurations of
outermost data points. The separating hyperplane is selected in such a way so
that the distance between outermost data points for each class respectively to this
separating hyperplane is maximum. The scheme to solve this problem is called
Lagrange Optimization [4], [8], [10]. After this separating hyperplane has been found,
these outermost points are called support vectors while the distance from these
support vectors perpendicular to separating hyperplane is called margin (see sub
figure 11b for illustration).

The formation of the support vectors are used to define desired hyperplane. This
specifies a decision boundary for the SVM. From this decision boundary, a decision
function can be defined. It is characterized by two parameters, a weight vector w

that is orthogonal against separating hyperplane and a constant b that regulates
a bias or threshold. This decision function is represented in a pair (w,b) that is
formulated as the following,

f(x) = wT ·φ(x) + b (2.28)

Where:
w is a weight vector
b is a bias or threshold parameter
φ(x) is a fixed feature-space transformation function

Note that each data point xi, i = 1 . . .N in the sample has a corresponding target
label yi ∈ {−1, 1}. Given such a hyperplane (w,b), the classification process of new
data points x are based on the sign of f(x).

With the initial assumption that the classes are linearly separable, by definition
there will be at least one pair (w,b) such that the equation 2.28 satisfies f(xi) > 0
when yi = +1 that indicates the points in the class +1 and f(xi) < 0 when yi = −1

that indicates the points in the class −1. In a compact form, for all training data
points, both inequalities can be rewritten as,

yi(w
T ·φ(xi) + b) > 0 (2.29)

As the goal is to select the margin as wide as possible, the original problem is
basically an optimization task by maximizing the distance of support vectors (the
closest data points) to separating hyperplane. The geometric distance of the support
vectors (data points) perpendicular to separating hyperplane can be computed by
formula [4]:

d((w,b), xi) =
yi(w

T ·φ(xi) + b)
‖w‖

=
1

‖w‖
(
yi(w

T ·φ(xi) + b)
) (2.30)

The margin, in this case represented by the distance d, will be maximum if the
value of ‖w‖ is minimum. Unfortunately, a direct solution of this problem is not

2.5 classification 33

straight forward. The original problem should be transformed into another form
that expresses the same problem with a much easier solution. This can be done by
rescaling w→ λw and b→ λb which in principle will not change the distance d in
formula 2.30. This rescaling form is called a canonical representation of the decision
hyperplane. As this rescaling maintains a flexible way to assign value of the decision
function, the closest data point can be set to a certain value to define the margin.
Based on this freedom, the following equation

yi(w
T ·φ(xi) + b) = 1 (2.31)

is arranged for the points closest to the separating hyperplane. This explicitly selects
the closest data points to be support vectors from any data points as long as the
margin is equal to 1. Consequently, all data points xi will satisfy the constraints,

yi(w
T ·φ(xi) + b) > 1 (2.32)

From equation 2.30, it can be noted that the problem need to maximizing the
distance 1

‖w‖ . This maximization is equivalent although not in general to minimizing
‖w‖2. In fact the problem can be defined as,

minimize
1

2
‖w‖2

subject to yi(w
T ·φ(xi) + b) > 1, i = 1 . . .N

(2.33)

Note that the constant 1
2 is added for normalization. This minimization problem

is an example of quadratic programming. To solve this problem, some techniques
can be applied. The lagrange multiplier is an appropriate method to generate the
solution of quadratic programming. The reader can refer to [4], [8], [10] for the detail
of how this approach is used for solving the problem.

During construction of the solution, Lagrange multiplier introduces a constant α
and modifies the decision function to be:

f(xi) =

N∑
i

αiyik(x, xi) + b (2.34)

Here k(x, x ′) that is called a kernel function, is introduced by the Lagrange
multiplier during the construction of the quadratic programming solution. The term
k(x, x ′) is defined as a dot product φ(x)Tφ(x ′). The classification of new data points
is based on the model can be examined according to the sign of the decision function
as formulated in Eq. 2.34.

As the quadratic problem has been solved by obtaining α, the parameter b
is computed by considering all support vectors xn that satisfy the constraints
yif(xi) = 1 (constraint in Eq. 2.31). By substitution f(xi) from Eq. 2.34, the constraint
turns to be:

y(xi)

∑
j∈S

αiyik(x, xi) + b

 = 1 (2.35)

34 foundation of a handwritten character recognition system

Where:
S indicates the set of indices of the support vectors

To obtain parameter b, this equation can be solved by using an arbitrary support
vector xi. However, numerical computation by considering all support vectors and
then averaging them is much more stable [4] than a solution by only considering a
single support vector. With this rationale, the formulation of b can be resolved by

b =
1

NS

∑
i∈S

y(xi) −∑
j∈S

αiyik(x, xi)

 (2.36)

Where:
NS is the total number of support vectors

Note that the optimality of SVM is influenced by points close to separating hy-
perplane. These points, as aforementioned explanation, called support vectors. This
is a great strategy to solve the problem without involving the massive state space
searching. The solution is mainly derived from the contribution of those support
vectors only so that it can save processing time. This is one prominence of SVM

among other classifiers.

2.5.2.2 Non-Linear Data SVM

As mentioned previously, the basic assumption of applying an SVM for classification
is that the classes are linearly separable. Whereas in practice, most of the data samples
are far from linear and this can overturn the concept of SVM. In this circumstance,
the kernel trick has been introduced to deal with non-linear classification.

The indigenous principle of linearly separable in SVM is retained but the original
data points are transformed in such a way that the separation can be achieved
linearly in a new space. This can be done by exchanging the kernel function from a
linear function into a non-linear function. The most common kernel functions for
overcoming non-linearity data sample are:

• Sigmoid function

k(x, xi) = tanh (C · (x · xi) + θ)

Note that the SVM approach with a Sigmoid kernel function is essentially
similar to a NN with a Sigmoid function as the activation function.

• Polynomial function

k(x, xi) = (C · (x · xi) + 1)p

• Radial Basis Function (RBF)

k(x, xi) = exp
(
−
‖(x− xi)‖2

2σ2

)

2.5 classification 35

Each function rather works differently and may be problem dependent. A prudent
selection based on a few insights of samples prior to classification will help choosing
an appropriate kernel function.

Finally, some key points can be identified as characteristic of the SVM. One of them
is that the complexity of the SVM approach is defined by the number of the support
vectors rather than the dimensionality of the feature space. More dimensions imply
a higher dimension hyperplane and thus higher complexity due to the need of more
support vectors.

Another prominent bottom line of the SVM is because the solution of the classifica-
tion problem is reduced to design of a hyperplane. This will swap the model of the
objective function into a convex problems so that the solution can be generated in a
direct manner [4].

The obstacle of non-linearity is also anticipated moderately. By exchanging the
kernel function from linear to non-linear, this issue has been handled wisely without
sacrificing too much in the accuracy of the classifier.

The SVM is basically considered for a binary classification. While many problems
are also non-linear. To cope with multi class classification problems, it can be
extended by regarding the problem as multiple binary classification problem. This
multiple binary classification problem can be solved by a particular technique such
as one-versus-all or one-versus-one. More detail about these techniques, readers can
refer to [4] or [8].

2.5.3 Gaussian Mixture Model

In the Gaussian Mixture Model (GMM) classification approach [18, p. 188–190], a
density P(x|λj) is estimated for each class. The classification is done by selecting the
class with the highest score,

j = arg max
j

(P(x|λj)) (2.37)

Where:
x: the feature vector
λj: class j

The GMM [4, p. 430–439] is a density model using a weighted sum of Gaussians.
The classification uses such a model for each of the N classes. The probability of the
D-dimensional feature vector x given the class λj is defined as the mixture density
by,

P(x|λj) =

M∑
i=1

wi,jN(x|µi,j,Σi,j) (2.38)

Where:
M: is a number of components
wi,j: the weight of component i
N: the Gaussian normal distribution
µi,j: the mean of the component i
Σi,j: the covariance of the component i.

36 foundation of a handwritten character recognition system

Since the components are normally distributed, parameters of each component
are characterized by the means µ and covariances Σ as indicated in Eq. 2.38. The
dimension of the mean µi,j is Dx1 and the dimension of the covariance Σi,j is DxD.
Note that the weight of wi,j satisfies the constraint

∑M
i=1wi,j = 1 and 0 6 wi,j 6 1

for each class index j.
A classification based on GMM is a classification by modeling the classification

problem using GMM approach. During training phase, the component parameters of
GMM are estimated from train dataset. The estimation of the parameters of a mixture
can be handled by various techniques. The Expectation Maximization (EM)-algorithm
[9] is a well established approach for this estimation. This algorithm is an iterative
method for calculating maximum likelihood distribution parameters so that the best
match parameters can be obtained.

2.5.4 Multistage Classification

In ideal situation, the task of classification can be finished at once which means
that objects can be recognized at the end of the classification step. However, some
cases of classifications do not directly classify complete characters in one step but
only subset of character instead. Then, a further step is needed to refine each
subset. By performing the latter step, the overall classification task can be completed.
The scheme which consists of a classification in the beginning followed by further
classifications is categorized as a multistage classification scheme.

The multistage classification scheme is mostly applied to target objects with
the high complexity formation. Such objects need a great requirement for both
computation and storage if a single stage classification is performed. By splitting
object targets into some classification subsets, the whole classification can be broken
into several consecutive classifications. As the classification scope in each subset
becomes less complex, the cost of computation and storage would consequently be
reduced.

The multistage classification has been applied in classification of several scripts
in the field of Document Analysis and Recognition (DAR). Some of them are to
recognize the Roman script, Chinese, and Marathi script. The texts of these scripts
have complex structures in various different level. The last two scripts apparently
consist of many combination texts in very complicated structure.

The usage of multistage classification in Marathi script is intended to recognize
compound characters of handwritten Marathi [50]. The complexity of generating
compound characters become higher due to the combination of consonants and
vowels or consonants and consonants forming a new symbol. Based on the report in
[50], the compound character recognition can be improved by applying multistage
classification.

In the work of handwriting Chinese character recognition [60], the multistage
classification consists of three stages. The whole classes of Chinese handwriting are
divided into a set of subsets which are called groups. The first step is to search the
most representative prototype to globally initialized the desired groups. The second
step is performing optimization of the groups centroid. Finally, the fine classifiers are
trained by using local features after all groups have been decided. The performance

2.5 classification 37

of this approach is claimed better in term of the recognition accuracy and the time
of processing.

Another work of multistage is also applied to the recognition of the Roman
characters. The idea in the work of multistage classification in [17] is to split the
overall classification into several tasks with the goal to reduce the complexity. The
task of classification is broken into three smaller tasks. The role of the first task
is to classify the instance into upper and lower case. The second task is then to
classify instances from the first task into 15 cluster of characters. Each cluster in the
second task is designed to group Roman characters that are similar in shape as a
strategy for simplifying the complexity of the classification process. Then, the final
task is to classify the instance from second task into the complete Roman characters.
This means that the final classification refines 15 character classes into 52 character
classes.

3
P R O P E RT I E S O F L A M P U N G S C R I P T

It is not surprising that most of the scripts in the region of Southeast Asia like
Javanese, Balinese, Thai, Lao, and Burmese are descended of the same ancestor script
in India [14]. This is also true for Lampung script, the script used by indigenous of
Lampung in Lampung province, Indonesia. This script is originally derived from
the cluster of Brahmic script, an ancient script from South India.

It is believed that Lampung script had been used by native tribes in Lampung
provincial area since a long time ago. This is reflected by some ancient manuscripts
collected by individual, local museum, and also international museums. A few of
them are in Museum of Ruwa Jurai in Bandar Lampung, Indonesia, the National
Library in Jakarta, Indonesia, University of Leiden in Netherlands, the School of
Oriental and African Studies in London, United Kingdom, and the National Library
of India [47]. However, there is no certain information that the script ancestor,
Brahmic script, started reaching Lampung region, how it spread through out the
Lampung area, by whom it was delivered, and how the evolution occurred from
its ancestor. The only notable historical information about the script is its origin, as
stated in the first paragraph.

The Brahmic script family falls into the abugida [14] writing system class. Lampung
script is consequently categorized as the abugida class as well. In this type, each
character of the script indicates a particular syllable constructed by the consonant-
vowel composition. The vowel is inherently associated to the consonant unless it is
overridden by a sound modifier.

Lampung script is a non-cursive script which is written from left to right. The
characters suppose to be distinguished each others in both printed and handwritten
texts. Unlike the Roman script which can be written either in cursive or non-
cursive style, it is impossible to join two adjacent Lampung characters because
the combination will exchange characters to be a non-character symbol. Hence,
Lampung script is permanently a non-cursive script without a possibility to be
written in a cursive style.

3.1 script utilization

Lampung script is not a complicated and difficult script to be learned and used.
The local inhabitants in Lampung can easily write the script to produce some
texts. This easiness still does not encourage inhabitants to frequently use Lampung
script because Roman script is too dominant in their writings. As it is simply
understandable and applicable for writing, it can be dedicated to compose texts
not only in Lampungnes but also Bahasa Indonesia, the Indonesian language. The
sample of texts in Bahasa Indonesia written by using Lampung script can be seen
in Fig. 12. In this research, all handwritten texts are fully in Bahasa Indonesia and
written by using Lampung script.

39

40 properties of lampung script

(a) with folded artifact

(b) with guiding line

(c) with skewed line

Figure 12: Sample of the texts in Bahasa Indonesia transcribed using Lampung script. The
texts consist of the basic characters and particular marks around this character
that so-called diacritics.

At the recent time, the usage of Lampung script in writing nearly vanishes in
society. Each documented manuscript was found containing the Roman script instead
of Lampung script. The reason is neither because of Lampung inhabitants is illiterate
of the script nor ignorant to the script but rather inhabitants use a formal script
–Roman script– in their writing to communicate to other inhabitants. This is the way
of Lampungnes to respect other ethnic groups that live together in Lampung. As
information, Lampung provincial area had become one specific-purpose territory
of a local migration (transmigration) especially from Java and Bali island since the
Netherlands colonization until the Soeharto regime.

Looking at the current situation, the utilization of Lampung script is not really
significant and the script has to be protected from extinction. The threat is becoming
bigger and the script will probably not survive in the future if the users decrease.
The low frequent usage of Lampung script eventually tends to decrease the spirit of
preserving the script.

This fact alarms the local authorities –Lampung provincial government– to concern
about the script preservation. Although the Lampung provincial government does
not have outstanding program to revive the script, the government initiated a smart
endeavor to cope with that problem. The Lampung script learning was integrated

3.2 characters 41

as a course for local curriculum of the elementary school and junior high school in
Lampung. With this effort, the script will regularly be learned by students and it
will get much attention by young people.

3.2 characters

Although Lampung script descended of the Brahmic script family, all characters of
Lampung script are not as complex as their origin. The characters are much more
simpler in shape than its genuine characters. The recent script is the result of the
evolution of the original raw script during a long time period of its engagement in
the society. The list of characters in Lampung script is completely presented in Fig.
13.

Figure 13: Lampung script consist of 20 basic characters. The character name is taken from
the syllabic pronunciation of the character itself.

Lampung script only comprises 20 basic characters. Each of them corresponds
to a consonant-vowel syllable, except the character a () that purely represents a
single vowel. The major shape of all characters is the curvature. More precisely, each
character contains at least one cavity which can face up and/or down. These cavities
are not symmetrical so as the main orientation of characters seems not upright. Yet
every single character tends to have a backbone across the bottom left to upper right
side.

As clarified toward the abugida class in the beginning of this chapter, the basic
character transcribes a consonant with an inherent vowel and it eventually generates
a syllable with a specific pronunciation. In this context, all basic characters excluding
the single character a, are pronounced as the respected consonant with an inherent
vowel "a". In addition, the character pronunciation also serves as the name of the
character (see Fig. 13 for the detail).

Note that number of characters in Lampung script is less than characters in Roman
script. Thus Lampung script does not encompass all characters of the Roman script.
Some characters have never existed in Lampung script such as f, q, v, x and z
because those characters are not recognized in the writing of Lampungnes. If the
texts contain one of those characters, it can be replaced by a character that resembles
to it. For example, character f and v can be substituted by the consonant p from the
character pa, the character q can be substituted by the consonant k from the character
ka, and the character z can be substituted by the consonant j from the character ja.
The character x never exists both in either Lampungnes or Bahasa Indonesia. In case
the character is needed in the text, its role can be played by a combination of the
sound k and s from character ka and sa, of course after their vowel are muted.

42 properties of lampung script

For a frequent use of nasal voice, Lampung script provides two characters. The
voice of nasal palatal is represented by the character nga and nasal velar is repre-
sented by the character nya.

3.3 diacritics

As each basic character of Lampung script always transcribes a consonant with an
inherent vowel a, the syllable pronunciation of it will always end with the vowel
a, likewise as the pronunciation of the vowel a in word "but". Beside the vowel a,
other ending vowels frequently appear in the text during the writing. To set other
vowels, the Lampung writing system employs diacritics along the basic characters.
The presence of diacritics is essentially needed to override the inherent vowel of
the basic characters into another vowel. Thus diacritics play an important role as a
vowel sound modifier of the syllable formed by the basic character.

The appearance of diacritics along the character scatter in various positions, close
to the basic character. In the sample of the Lampung texts provided in Fig. 12,
diacritics can be found nearby the basic character on the top, the bottom, or the right
position solely. However, in some parts of the document , two or three diacritics may
simultaneously emerge in one character in a certain combination of positions. This
is an allowed operation in the Lampung writing system during the composition of
texts to form a certain syllable pronunciation. Having diacritics surrounding the
basic character will not affect the shape of the character itself since diacritics are
located narrow but not attached to the basic character. The addition of diacritics will
only control the modification of the vowel.

The overall diacritics in the Lampung writing system consist of seven shapes
regardless of their position. Each of them is geometrically unique so they are clearly
distinguishable from each other. These unique shape of diacritics can be seen in Fig.
14.

Figure 14: All unique diacritics of the Lampung writing system.

Moreover, the specific functionality of diacritics for overriding the vowel of the
basic character can be explored further according to their place around the basic
character. Among of seven diacritics, some of diacritics can appear only on one side
or a few of them can appear in two sides or three sides. If the diacritic is grouped
by considering these three positions, diacritics enlarge to be twelve diacritics due to
some shapes may appear on two or three different sides. The detail on which they
are distributed on each position is explained in the following.

3.3.1 Top diacritics

The majority of those unique diacritics as viewed in Fig. 14 are positioned on the top
of the character. In total six diacritics among them can occupy this position. Each of

3.3 diacritics 43

them is named by a particular term followed by an explicit vowel they generate. All
these diacritics along with their names are depicted in Fig. 15.

(a) ulan é (b) bicek e (c) ulan i (d) tekelubang
ang

(e) datas an (f) rejenjung ar

Figure 15: The set of diacritics that can be placed on the top of the character.

The first two diacritics, "ulan é" () and "bicek e" () can override the inherent
vowel of a basic character into the vowel e. Therefore, the differences of both can not
be inspected directly on the text but they can be detected in pronunciation of the
vowel e. For "ulan é", the pronunciation is like the vowel e in word dosen (English:
lecturer) while for "bicek e", the pronunciation is like the vowel e in sekarang (English:
now).

The diacritic "ulan i" (), as indicated at the name, can exchange the inherent
vowel of a basic character into the vowel i.

The last three diacritics in this category have a little specialty in their function.
They do override the inherent vowel of the basic character and at the same time
add an expansion at the end of the vowel by using a consonant or a nasal so as
producing a particular string. Those strings are ang for diacritic "tekelubang ang" (
), an for diacritic "datas an" (), and ar for diacritic "rejenjung ar" (). All those
strings frequently occur in the text of Lampungnes or Bahasa Indonesia.

Note that a special attention should be made about the top position. It can hold a
pair diacritics at once from the set of diacritics in Fig. 15 depending on the syllable
to be created. A few examples of this composition can be observed in Subsection 3.4.

3.3.2 Bottom diacritic

Diacritics which can be put beneath the character consist of three out of the seven
unique shapes. During the syllable construction, the occurrence of the diacritics in
pair at once on the bottom of the character is also possible. A proper illustration can
be observed in the Section 3.4.

(a) bitan u (b) bitan o (c) tekelungau
au

Figure 16: The set of diacritics that can be placed on the bottom of the character.

The diacritic "bitan u" () changes the inherent vowel of a character into the
vowel u. Meanwhile the diacritic "bitan o" () transforms the inherent vowel of a
character into the vowel o.

The role of the third diacritic "tekelungau au" () is different compared to the
other two diacritics in this category. Instead of one vowel replacement in a syllable,
the diacritic causes one vowel of the character to be converted into two vowels a

44 properties of lampung script

so-called diphthong. As indicated by its name, this diacritic change the vowel into
the diphthong au. This diphthong is often found within a syllable of Lampungnes
or Bahasa Indonesia respectively. To discover some real examples in texts, the reader
can refer to Section 3.4.

3.3.3 Right diacritic

The member of diacritics which can be situated at the right side of the character
comprise of three unique shapes. The right position of the basic character can only
be occupied by one right diacritic at once. The list of all these diacritics are pointed
out in Fig. 17.

The diacritic "tekelingai ai" () is also a diacritic for generating a diphthong. It
will substitute the inherent vowel of the basic character into the diphthong ai.

(a) tekelingai ai (b) keleniah ah (c) nengen

Figure 17: The set of diacritics that can be placed on the right of the character.

The diacritic "keleniah ah" () has the same role as the two mentioned diacritics
on the top, "datas an" and "rejenjung ar". It can exchange the vowel of the basic
character into the vowel a and at the same time add the consonant h at the end of
the vowel so that the whole composition turns to be string ah. This arrangement
is used to handle the tail part of the syllable in form of string ah which frequently
occurs in Lampungnes or Bahasa Indonesia.

Regarding the last mark, "nengen", there are two different point of views dis-
cussing about what kind of mark this symbol belong to. In [47], the author specifies
the mark as a punctuation mark, while in [48] the author characterizes it as being a
diacritic. Since its functionality is related to the alteration of the vowel of the basic
character, the role of this diacritic is closer to a diacritic rather than a punctuation
mark. Hence in this study, the mark is consequently considered as a diacritic.

The diacritic "nengen" () is categorized as one special diacritic in Lampung
writing system. This diacritic is used to tackle the inherent vowel of a basic character
as well but in a different way as other diacritics are. It is used to mute the inherent
vowel of the basic character so that the remaining part is only the consonant of the
basic character. Since its function is omitting the vowel, the diacritic "nengen" is
never used with other diacritics simultaneously.

The consonant as a result of this operation is not an independent syllable anymore.
According to the rule in Lampung or Bahasa Indonesia writing system, it must be
incorporated to the predecessor syllable. For example, the word bahasa (English:
language) consists of three syllables, ba, ha, and sa. The transcription of the word
in Lampung script is . With a diacritic "nengen" on the right end of the
character sa in this word, the transcription becomes which forms the word
bahas (English: discuss). If this word is separated based on its syllable, it constitutes
of two syllables, ba and has, where the consonant formed by adding the diacritic
"nengen" is merged to predecessor syllable.

3.4 compound character 45

3.4 compound character

Before discussing the text constructed by using Lampung script, it is important to
give a succinct explanation regarding the syllable construction in Bahasa Indonesia
by using the Roman script. This is essentially needed because all Lampung text
materials in this study are transcribed from documents in Bahasa by using the
Roman script.

Suppose that a vowel is shortly represented by V and a consonant by C. In general,
there are three most common syllable patterns in Bahasa Indonesia. Those are in
form of V , or CV , or CVC which dominate the used syllable in Bahasa Indonesia.
Note that the last pattern –CVC– can be extended into pattern like CCVC, CVCC,
and CCVCC. In some rare cases, the number of consonants can be three letters in the
left side. The words in Bahasa Indonesia can then be built by a combination some of
these syllables. The following are a few example of words in Bahasa Indonesia that
are separated into appropriate syllables according to those patterns. The syllable in
the words si-a-pa, i-ta-li-a, men-da-hu-lui, u-lang, e-mas, and ra-di-o complies to the
rule of character-separating in the writing system of Bahasa Indonesia. Nevertheless,
the character-separating manner will be different if the text will be transliterated by
using Lampung script. One general guidance is to split the text in Roman characters
in Bahasa Indonesia into sequences of consonants followed respectively by a vowel
if the vowel exists.

Likewise to Roman script, Lampung script is also able to transcribe the text in
Bahasa Indonesia. In a similar way as the Roman script composing the text by using
Roman characters, the Lampung writing system also employs Lampung characters
as a basis to generate texts. However, as noted before, texts written in Lampung
script will also be stipulated by diacritics around the basic character. In fact, the
most relevant thing to be investigated is how the combination of the character
and diacritics of Lampung script supports the transcription of the text in Bahasa
Indonesia.

The text written in Lampung script can be established by a sequence of basic
characters with or without the presence of diacritics nearby. The sequence of one
word may contain various combinations of the character and/or character-diacritics.
In addition, multiple diacritics in various positions lying around the character may
also occur during the production of the text. The composition of a character with
or without diacritics is called compound character. A compound character defines
a particular syllable required to build the text. Therefore, the syllable will always
depend on the character and certain diacritics with their positions. A different
composition will accordingly deliver a different syllable. The following illustration
provides some configurations of the compound character that can be interpreted as
a new string for replacement of the inherent vowel of the basic character.

• A Basic Character
The most simple form of the unit text in Lampung script is composed by only
a character without any diacritics. This unit text can be transcribed into Roman
script in form of string CV where the V is always interpreted by the vowel a.
Hence the sequence of Lampung characters will construct the text in sequence

46 properties of lampung script

of the string CVCV . . . CV . For example the text in Table 1 no. 1 consists of
three basic characters composing the word ca-ha-ya.

Among Lampung script characters, there are three characters that have the pat-
tern CCV while one character represents a pure vowel. Those three characters
are nga (), nya (), and gha (). One example of the word constructed by
this character is showed in Table 1 no. 2. The word consist of two character
forming the word nya-ta.

The only character representing a vowel in Lampung script is character a
(). The existence of this vowel is to afford the need of the vowel syllable in
Lampungnes which frequently occurred in texts. For example, the usage of
character a in the word a-sa can be transcribed as the text indicated in Table
1 no. 3. Note that as the single independent character symbol, the character
a has never been used as the inherent vowel part of other characters or other
strings

• A Basic Character and A Single Diacritic
Each diacritic on each position can be used as a single diacritic at the position
it supposes to be. Therefore, in general there are three group configurations
according to their basic positions and the overall configuration consist of twelve
particular forms distributed over individual positions. All samples of the text
with one surrounded diacritic are supplied by Table 1 no. 4-15.

The top group consist of six diacritics. The particular string forms produced by
this group are é, e, i, ang, an, and ar. The usage of this diacritic around the basic
character will override the vowel a of basic character into one of those strings.
For example in Table 1 no. 4, the basic character ma () changed to be string
me whenever the diacritic "ulan é" () appears on the top of the character.
Another example is the syllable kar in no. 9 of Table 1 which can be formed by
placing the diacritic "rejenjung ar" () on the top of character ka (). Other
examples with the rest of diacritics can be observed in Table 1 no. 5-8.

With the bottom diacritic, a vowel a of the basic character can be changed into
vowel u, vowel o, and diphtong au. Table 1 item no. 10-12 provide examples of
texts that use bottom diacritics. The character ca () can be converted to be cu
by adding the diacritic "bitan u" () on the bottom of the character. The same
way also holds to generate the vowel o of the basic character. This is done by
putting the diacritic "bitan o" () on the bottom of the basic character as seen
in the word kado in no. 11. The remaining examples indicate the usage of the
diacritic "tekelungau au" () to compose a special form consists of vowel a
and u as one element. In no. 12, the character nga is switched to be ngau after
the addition of the mark on the bottom of the character nga ().

Two out of three right diacritics can establish the string ai and ah as a part of
the whole syllable. The basic character la () with the diacritics "tekelingai
ai" () in the right position as presented in the Table 1 no. 13 is switched to
be the string lai. The second example in no. 14, the formation of string rah is
composed from character ra () after positioning the diacritic "keleniah ah" (

) on the right side. The last diacritic on the right side, the diacritic "nengen"

3.4 compound character 47

(), as mentioned before, is functioned to eliminate the inherent vowel of the
basic character. The usage of diacritic "nengen" is exemplified in Table 1 no. 15.
It eliminates the vowel a of the character la () to be a fully consonant l in
the word of halal.

• A Basic Character with Two Diacritics on The Top
In the Lampung writing system, there exists a consensus that the vowel a
in each possible string is always replaceable by another vowel represented
by a particular vowel diacritic not containing the vowel a. In fact, the typical
composition of two diacritics on the top of the character is to make the portion
of the string by overriding the vowel a in the string ang, an, and ar by the vowel
é, e, and i. The new created strings can be eng, ing, en, in, er, and ir where one
slot of the two places on the top of the basic character may be filled by one of
the first three of the top diacritics () and another slot by one of the rest (

).

For example, the diacritic "datas an" () generated the string an if it is solely
used. However, if another vowel diacritic on the top accompanies it, the vowel a
in string an may change to the vowel that represented by this new diacritic. One
example is presented in Table 1 no. 16 which uses a combination of diacritics
"ulan i" and "datas an" () on the top of a character to construct the string
in. Whenever both diacritics are placed on the top of the character pa (), they
form a string pin. Another example presents the string ner as a combination of
the character na (), the diacritics "ulan é", and "rejenjung ar" (). This
can be seen in the Table 1 no. 17.

• A Basic Character with Two Diacritics on The Bottom
There is only one possible combination for this composition by assigning the
diacritic "bitan o" () and "tekelungau au" () side by side on the bottom of
the character. This configuration will establish the string ou as a resultant of
the string au coming from the diacritic "tekelungau au" and the vowel o coming
from the diacritic "bitan o". The example on no. 18 of the Table 1 indicates the
character ca () with both diacritics generating the string cou.

• A Basic Character with Diacritics on The Top and The Bottom
The new string formed by these two diacritics is a new string as a combination
of the string from the top diacritic and string from the bottom diacritic. The
way of these diacritics combined is, as explained aforementioned, following
the consensus that the vowel a can always be overridden by other diacritics
containing the vowel except a. However, a combination can not be imposed if
both sides contain a diacritic represented a single vowel diacritic. Therefore
diacritic on the top representing the vowel é, e, and i can not be paired to a
single vowel diacritic on the bottom representing the vowel u and o.

With all possible combination diacritics, the new composed strings can be eu,
iu, ung, ong, aung, un, on, aun, ur, or, and aur. Two examples are performed by
Table 1 no. 19 and 20. The first one represents the string kor as the combination
of the character ka () and the string or. This rear string can be created by
joining the diacritic "rejenjung ar" (), and diacritic "bitan o" (). While

48 properties of lampung script

the second example indicates the use of diacritic "tekelubang ang" () and
diacritic "bitan u" () which generates string ung over the character ra ()
such that the outcome string is rung.

• A Basic Character with Diacritics on The Top and The Right
Although there are six diacritics on the top, only a part of them can be
applied together with the right diacritics around the character as a pair. The
combinations produce new strings containing ei, éi, eh, éh, and ih. For example
in the word arbei in Table 1 no. 21, there is a string ei which can be created by
combining two strings ai + e from the diacritic "tekelingai ai" () on the right
and "bicek e" () on the top of the character ba () such that it yields the
string bei. In the second example in Table 1 no. 22, the string nih is composition
of the character na () and the string ih. Diacritics configuration for this string
are the diacritic "ulan i" () positioned on the top, and the diacritic "keleniah
ah" () positioned on the right of the character.

The set of diacritics that can not be joined is the string ang, an, ar versus ah, ai.
The reason is that both sides contain consonants such that the combination
is not feasible to be part of a syllable. Another impossible combination is the
vowel i as the diacritic "ulan i" () versus string ai as the diacritic "tekelingai ai"
(). This is not possible to happen because the final result will have two vowel
i which is not a valid syllable in either Lampungnes or Bahasa Indonesia.

• A Basic Character with Diacritics on The Bottom and The Right
In this arrangement, a few restrictions must be noticed during the pairing
of diacritics. The first one is that it is impossible to arrange two diphthong
diacritics concurrently in a pair. In fact, the diacritic "tekelungau au" ()
on the bottom and "tekelingai ai" () on the right have never been joined
together at once. Secondly, the diacritic "nengen" is employed to eliminate the
inherent vowel of the character which exclusively returning a pure consonant.
The role of this diacritic is likely the opposite task of the other diacritics
which controlling the vowel of the basic character. Consequently, the diacritic
"nengen" can never been paired to any other diacritics at the same time.

The rest of the combination comprises of four forms i.e. the string ui, oi, uh,
and oh. Two examples are given in Table 1 no. 23 and 24. The string luh is
constructed by the character la () and string uh which is constructed by the
diacritic "bitan u" () on bottom of the character, and the diacritic "keleniah
ah" () on the right of the character. Meanwhile, the second example shows
the string toh that consists of the character ta () and the rear string oh. The
latter is developed by the combination ah + o which basically formed by the
diacritic "bitan o" () on the bottom and "keleniah ah" () on the right.

3.5 punctuation marks

Beside characters and diacritics, the Lampung writing system also employs punctua-
tion marks. Compared to the Roman-based writing system, the Lampung writing

3.5 punctuation marks 49

system only has a few marks [48]. The total number of the punctuation marks consist
of five marks. The list of these punctuation marks can be seen in Fig. 18.

Figure 18: Punctuation marks in Lampung writing system. Ngemula is a mark to start a
sentence. Beradu is equal to full stop. Kuma represents the comma. Ngulih is a
question mark. And tanda seru is an exclamation mark.

Only the main punctuation marks, like a full stop, a comma, a question mark, an
exclamation mark, and a unique mark for starting a sentence are available in the
Lampung writing system. It does not recognize other marks like colon, semicolon,
apostrophe, double apostrophe, slash, hyphen, and brackets.

1. Ngemula
Ngemula is a special and unique mark in the Lampung writing system which
most likely cannot be found in other writing systems. Its function is to com-
mence a sentence. That is why the symbol to represent this mark like a shining
sun because it reflects the philosophy of the sun starting the day by shining its
light in the morning.

The functionality of ngemula is well defined and understandable. Nevertheless,
based on the observation in our original data collection (partially explained
in section 6.1), nobody used this punctuation mark to start a sentence. This
makes sense since the contributors have been custom with their daily writing
system, the Roman-based writing system that does not have this kind of mark.

2. Beradu
The function of the mark beradu is the opposite function of the mark ngemula.
It is put at the end of a sentence to complete it. The symbol of this mark is a
small circle with symmetrical shape in height and width. In practical, the size
of this mark is around half the height of the basic character.

It is unclear whether the mark beradu can also be used to mark abbreviation.
Both literature sources in [47] and [48] do not summarize this issue because
Lampungnes does not have particular abbreviation.

3. Kuma
The mark kuma is equivalent to a comma. As the function of the punctuation
mark comma, it is used to pause the sentence (somewhere in the middle) or
to separate the elements in a series of three or more things in one sentence.
In this context, the purpose of the mark kuma in a sentence by pausing or
separating is to avoid confusion or emphasize some important things.

4. Ngulih
The Lampung writing system also supports questions by supplying the mark
ngulih as a question mark. In its role as a question mark, it can be put at

50 properties of lampung script

the end of a sentence as a mark in this sentence containing a question about
something.

5. Tanda Seru
Tanda seru is a punctuation mark for expressing that a sentence contains an
interjection, a command or an emphatic declaration. This is the same function
as the exclamation mark in the Roman-based writing system. The mark is also
placed at the end of the such sentences. Note that although the mark consists
of two separated components, it is considered as one mark.

3.6 special attributes of lampung script

An early observation of the Lampung handwritten character is worth to be ad-
dressed prior to the development of the handwritten character recognition system.
This analysis can notice problems before the development phase. Those potential
problems can be mapped onto appropriate solutions during the development pro-
cess. The solutions will subsequently lead to a better design and the overall system
can hopefully reduce the possibility of failure during the operation of the system.

The following analysis emphasizes some important facts from observations regard-
ing the nature of Lampung script that can influence the design and development of
the Lampung character recognition system. The particular handling may be prepared
for such attributes in advance before the development of the system.

3.6.1 Non-cursive

As indicated in Fig. 12, all characters are separated from each other so that they
have their own visible boundaries. In a closer look, two adjacent characters of the
Lampung text are clearly unconnected. In the context of handwriting, this property
is called a non-cursive script.

This property has a positive as well as a negative impact on the design and
development of the Lampung handwritten character recognition system. The positive
impact is that the character segmentation will not be a big issue since the extraction
of the connected components (CCs) in the text (see chapter ..) will handle the
segmentation and result in entities which can be considered as characters to some
extent. A further evaluation and correction needs to be taken toward these entities
to acquire a final character segmentation output.

However, this property also introduces a drawback. The distance among two
adjacent characters, even in handwritten text, is equally uniform in length. It is
therefore unclear where the border of words is, which in fact complicates to separate
the words.

3.6.2 No Uppercase

Lampung script comprises of only a single shape for each character. The script does
not recognize the concept of the upper and lowercase characters like the most scripts
in Asia. Thus all Lampung characters appear in the text with the same role. Probably

3.6 special attributes of lampung script 51

the use of the punctuation mark ngemula as a sentence starter is to emphasize the
mark of the first character in the sentence.

From the perspective of character recognition, this property is a benefit. First it
only has to recognize one type of character, so that the design of the recognition
system will be less complex than one that must recognize lower and uppercase
character. Second, the fact that the number of character in Lampung script is only 20

characters and consists of one character type –no lower and uppercase character–,
are also an advantage. The exploration time of the character domain will become
lower compared to a recognizer of a script with both character case types.

3.6.3 Character with Two Unconnected Components

The basic characters in Lampung script generally consist of one component. However,
two of the characters are respectively composed by components. Both components
are separated from each other although they represent one character. Each compo-
nent apparently comes from another basic character with a single component which
are the characters ga () and pa (). For the sake of simplification, both characters
are respectively called the constructor character. Character with two components is
formed by mutually interrelating those two constructor characters such that they are
close each other.

The first character with two components is the character ra (). It is composed
by putting the line tip of the right end of the character ga () into the cavity of the
character pa () such that both constructor characters lay in parallel side by side
without touching each other.

The second character is the character gha () that is also constructed by the
character ga () and the character pa () but in a different way of placement. Both
constructor characters are formed by a line with two different stroke orientations
forming the character cavity. One stroke is a short line and another stroke is longer.
The longer stroke is skew with the slope orientation from the bottom-left to the
top-right direction. To form the character gha, the longer stroke of each the character
is put together such that the character pa () is positioned on top of the character
ga ().

Due to two component characters existing in Lampung script, a specific handling
must be carried out prior to the character recognition phase. One is the detection of
closeness of those two consecutive constructors. If their distance is within a certain
threshold, then both can be considered as one character. Another treatment is the
check of position of a constructor character relative to another constructor. The
configuration of this position will determine which character is represented by both
constructors, whether it is the character ra () or the character gha ().

3.6.4 Diacritic with Two Unconnected Components

The diacritic "datas an" () on the top position consists of two unconnected
components. The single component of this diacritic is also a diacritic with the shape
a horizontal line or a dash sign. The diacritic "datas an" can be formed by two

52 properties of lampung script

copies of this horizontal line diacritic. One copy is arranged above of the other such
that the shape of the diacritic "datas an" is similar to the symbol of equal sign in
mathematics.

The potential ambiguity on the recognition of this diacritic is whether the both are
together as one diacritic or respectively two separated diacritics. This will mainly
occur whenever the diacritic "datas an" is located between two character baselines.
To handle this double components diacritic, it first needs to be checked with specific
distance threshold. Then if it is in the range, both components first need to be bound.

3.6.5 Diacritic Resembles Character

In the Lampung writing system, the characters of Lampung script are unique as well
as the diacritics. However, the comparison among characters and diacritics signify
some almost similar instances between the basic character shape and the diacritic
shape. The following list denotes this resemblance:

1. The diacritic resembles to the character ga ().

2. The diacritic resembles to the character pa ().

3. The diacritic resembles to the character ha ().

As explained in the beginning of this chapter, the size of a diacritic is smaller than
the size of a character. Nonetheless, since the human handwriting is often fluctuating
and it cannot be controlled, even by the writer of handwriting, there is always a
likelihood that the a handwritten diacritic and character are nearly the same in size
and shape. Since the detection of character candidates is run automatically, a big
size diacritic in above list will be grouped as a character rather than a diacritic. This
fact is indeed difficult to be avoided.

Another potential problem between a character and a diacritic occurs during the
process of pairing both. The pairing of a character and a diacritic may lead to another
character. The following configurations of a character and a diacritic indicate this
possibility especially when the size of the diacritic nearly as big as the size of the
character:

1. The character pa () and the diacritic "ulan é" () on the top can generate
the character ra ().

2. The character ga () and the diacritic "tekelungau au" () on the bottom can
also generate the character ra ().

3. The character ga () and the diacritic "ulan i" () on the top can generate
the character gha ().

The recognition phase becomes more sensitive to errors due to all these problems.
For the purpose of the design and development of the Lampung handwritten
character recognition system, a particular concern on these problem solutions can
help overcoming these problems.

3.6 special attributes of lampung script 53

Table 1: The usage of diacritics on the top, the bottom, the right, or combinations of them
around the character. The table contains some examples of words in Bahasa In-
donesia (except item no. 18 that is in Lampungnes) which are written in Lampung
script.

No. Diacritics Position String Example Transcription English

1. no diacritic - a ca-ha-ya light

2. no diacritic - a nya-ta real or fact

3. no diacritic - a a-sa hope

4. top é me-ga cloud

5. top e ce-la-na pant

6. top i wa-ni-ta lady

7. top ang da-tang come

8. top an ka-ra-pan bull race

9. top ar pa-kar expert

10. bottom u cu-a-ca weather

11. bottom o ka-do gift or present

12. bottom au ba-ngau stork

13. right ai ba-lai hall

14. right ah ma-rah angry

15. right (muted) ha-lal halal

16. top-top in pin-tar clever or smart

17. top-top er ki-ner-ja performance

18. bottom-bottom ou ba-cou read

19. top-bottom or e-kor tail

20. top-bottom ung wa-rung stall

21. top-right ei ar-bei strawberry

22. top-right ih be-nih seed

23. bottom-right uh pe-luh sweat

24. bottom-right oh con-toh example

4
S U RV E Y O F R E L AT E D W O R K S

Recently, many approaches have been developed to solve many different tasks in
the field of Document Analysis and Recognition (DAR). Some of those approaches
are applicable for various scripts but others are only applied for specific scripts.

This chapter emphasizes several important approaches which are important for
development of the Lampung handwritten character recognition framework. These
approaches can be applied or modified as a preliminary foundation in the framework
as they are compatible to the characteristic of Lampung script. Each of approach is
concisely reviewed to introduce the basic idea of the methods along with the existing
work for dealing with handwritten character input. The discussion comprises a
topic about the feature vector, diacritics works, and the multistage classification of
handwritten character inputs. These subjects are illustrated in the following sections.

4.1 water reservoir feature

As handwritten character recognition requires appropriate feature representation,
various feature representations have been invented for dealing with recognition.
However, some of those feature representations are meaningful for recognition of
particular characters but some other are not. Therefore, feature extraction must be
compromised to the nature of the character. The following subsections describes the
Water Reservoir (WR) feature which is used in the first recognition of the Lampung
handwritten character.

4.1.1 Water Reservoir (WR) Principle

Water Reservoir (WR) is not a pure terminology in DAR field but considered as a
principle in the mechanical world. The idea behind the principle is that reservoirs
are used to store water by pouring it into them.

The principle of a water reservoir can be adopted into DAR research particularly
in the handwritten character recognition. With respect to this adaption, the research
essentially uses of the main characteristic of the reservoir which is the bin of the
reservoir itself. The bin is then translated as a cavity in the field of handwritten
recognition research. Each cavity has some attributes like area size, center of gravity,
the depth, and extension of them for example total number of reservoirs, type of the
cavity, etc.

The strategy for applying this principle into handwritten recognition research
is that the reservoir (also called the cavity as the same terminology and they are
replaceable with each other) is filled by the water until fully loaded. Whenever it
has been fully loaded, the volume capacity of the reservoir can be defined as the
area size, the center of mass of the reservoir can be defined as the gravity center and

55

56 survey of related works

the depth of the reservoir can be defined as the height. All these measurements can
be exported as features needed for recognition scheme.

4.1.2 Some Applications of WR principle

The principle of the WR in the field of DAR was firstly introduced by Pal et al. in 2001

[41]. In that work, the WR-based feature was used for a segmentation task of the
touching numerals. This approach is effectively applicable for segmentation due to
the property of WR principle that is producing a large cavity whenever two numerals
come into contact with. Therefore, the first step of segmentation task is the detection
of large cavities as an indication of touching numerals. If it was found, then the next
step is determining position of the cutting edge. After cutting, the segmentation
process is completed.

Beside a large cavity, touching numerals will also have more reservoirs than
isolated numerals. If the number of reservoir exceeds three, it can be concluded that
the component is a touching numerals. Then the segmentation should be done over
the component.

The WR approach is a convenient way to alert the touching numerals since it
does not need the thinning and normalization phase prior to the segmentation. In
their experiments, 94.35% of connected numerals are correctly segmented. The only
drawback of this approach is miss-segmentation. It occured when the proposed
method found a point break on the contour used as the boundary of the reservoir.

Since the usage of WR gives a good contribution in the field of DAR, the author
emphasized the prominent of this WR-based approach in the field of DAR by publish-
ing it into a journal in 2003 [42]. The authors encourage that the WR based concept
will offer a potential benefit for pattern recognition community.

The application of WR-based approach was also applied for Bangla [40]. In this
work, the WR-based approach was used for the segmentation as well. The task was
appropriate since the Bangla handwritten texts particularly the words contain many
touching characters. The connected part of the touching character is mostly occurred
through the head-line hence two closest characters will generate a large bottom
reservoir (reservoir with the open part face to down). In the first round, their work
aimed to segment the line which did not use of WR-based approach. In the second
round, the work was carried out to determine the isolated and touching characters.
Finally, the last round was dedicated to split the touching characters using WR-based
approach. Among of 1430 Bangla touching characters, 95.97% of them are correctly
segmented. The rest are errors due to the touching characters have multi-touching
points.

The different purpose of WR-based approach other than segmentation had been
utilized in Malayalam handwritten Numeral [43]. In this work, WR-based features
act as part of the features for recognition of the unconstrained Malayalam hand-
written Numeral. Some WR-based characteristics like number of reservoirs, size and
positions, water flow direction, ratio of the reservoir height to numeral height were
chosen to be the features of the recognition scheme. However, the authors built
a binary tree classifier to recognition the numerals which restrict their proposed
approach to be character specific rather than more general characters.

4.2 diacritic-based works 57

The WR-based approach raise more and more attention in various fields in DAR.
Its usage started to cover the problem in the postal automation [44]. In this work,
the WR-based approach handled the pre-segmentation task of the touching digits in
a postal document that contain multiple languages and multiple scripts. The idea
of segmentation process remains the same as previous works, by getting benefit
of the big cavity whenever the digits touched each other. In this way, the WR-
based approach was applied for pre-segmentation into components regarded as the
primitives of the candidate of the digits. The primitive components was merged into
digit of possible pin-code (post code). To obtain the optimized segmentation, the
Dynamic Programming was employed.

The applications of the WR-based approach keep moving forward into various
purposes of the document processing. One of the notable application is focused on
the orientation detection of the major Indian scripts [7]. The proposed scheme was
executed for detection of the text line of 11 different scripts. Initially, the authors
employed various features to detect orientation of the handwritten text including WR-
based feature. Each of such a feature had been evaluated and tested. The conclusion
indicates that the features generated from the WR concept can uniformly work out
for any major Indian scripts.

The WR principle is potential to be applied in various fields of DAR. However,
there is only a little works with respect to the application of this principle. Although
not all fields can engaged this principle, the chance to be involved in the field of
DAR is still opened.

4.2 diacritic-based works

In the world of writing, some scripts may have diacritics. These diacritics can
be found in some script for example French, Greek, German, Czech, Hungarian,
Spanish, Portuguese and Turkish from Europe, Arabic from the Middle East or Indic
scripts like Vietnamese and Lampung from Asia. However the development of the
handwritten recognition system concentrated more on the character rather than the
diacritic. In our best knowledge, only a few works were dedicated for handling the
diacritic.

4.2.1 French

A work on diacritic the French handwriting had been proposed in 2010 [55]. In
general, the idea is to split the system into several HCR systems with smaller amount
of the class member rather than only one system with the whole classes. By this
manner, the complexity of such a system will be less than the one with all class
members. Therefore, in this work the French handwritten characters were firstly
processed into two groups, the non diacritic characters class and the characters with
diacritic class. The further processing was done for the characters with diacritic.
In this regard, those characters can be seen as a composition of two parts i.e. the
character and the diacritic. Both were recognized separately in the beginning and
at the end both would be checked whether the character part and the diacritic part

58 survey of related works

could be constructed together or not. If it could, the composition character proposed
as character with diacritic. Otherwise it would be recognized as the character without
a diacritic.

4.2.2 Vietnamese

Vietnamese alphabet is basically compiled by the Latin alphabet with several addi-
tional small marks employed as diacritics. There are 9 diacritics in Vietnamese with
two functionalities. One group comprises of four diacritics is used for producing
an additional sound and another group consists of five diacritics is employed for
controlling the tone of each word. The tone in Vietnamese like low, high, sharp, fall,
or rise in tone is crucial to distinguish the meaning of the words.

The recognition of Vietnamese with their diacritics had been investigated for online
handwritten character in 2008 [36]. The main work focused on the design of an input
descriptor for Vietnamese recognition system. The descriptor was built based on
the optimized cosine descriptor with a modification at the level of character strokes.
Instead of using a vector with a small number of features, the proposed method
regenerated the vector by re-sampling points over all strokes of a handwritten
character and represented all of them in a single set of features. This input vector
is then delivered to a recognition system that consists of three different layers. The
first layer is designed for classifying of the main character. The second layer is for
classifying the circumflex diacritics. The last layer is to identify the tonal diacritics.

4.2.3 Arabic

The most specific work on diacritics, dedicated in Arabic can be found in [33]. The
work had shown a different perspective on handling of the document that consists
both of the character and diacritics. The usage of the diacritic without involvement
of the character was applied for identification of the writers. The features were solely
extracted from diacritics by calculating the Linear Binary Pattern (LBP) histogram.
The writer will be identified out of database whenever the distance between LBP

histogram of the unknown writer and the known writer in the database is minimum.
The proposed approach had been tested on the IFN/ENIT database [45] with
performance rate 97.56% from total 287 writers.

4.3 multistage classification

A typical script that require a multi-stage classification is a script which containing
complex structures or particular marks i.e. diacritics. But this complexity can not
be generalized for all cases. Some complex scripts can be principally classified by
a single classification task but some cannot. The example of the script with high
complexity is the group of Indic scripts. This group consists of various scripts which
are used on the Indian mainland such as Bengali, Devanagari, Gujarati, Gurmukhi,
Kannada, Malayalam, Oriya, Tamil, Marathi, and Telugu. Characters of those scripts
has a lot of variation with some curves as a dominant shape. With a possible

4.3 multistage classification 59

Character input

Pre-processing

Structural
Classification

Character
Normalization

Euclidean
Distance
Features

Pixel Density
Features

Modified
Wavelet Features

Neural NetworkNeural Network Neural Network

Recognized
Character

Figure 19: The design of multistage classification for Marathi compound characters [50].

combination among characters, the task of classification become more complex so
that one-level classification becomes difficult. Therefore, a multistage classification
can provide a feasible solution for this complexity problem.

One work of multistage classification had been done for Marathi script [50]. The
script consist of 52 characters with 36 consonants and 16 vowels. Each character has
a horizontal line on the top of each character. Characters are connected with each
other to form a word by joining their header lines. A consonant can be connected by
a vowel with a help of particular marks that can be located in line, at the top, or at
the bottom of a character in a word. Moreover, its complex writing system enable
to form a new specific symbol by combining two or more consonants. The last case
is then called a compound characters in Marathi script. This compound character
can be formed in several ways. The most common way is by removing header line
and connecting it on the right side of another character. Another way of joining
characters to produce a compound character is by joining both characters side by
side or one on the bottom of another character. This circumstance may impact a low
accuracy performed by a single level classification only. Therefore, to deal with this

60 survey of related works

complexity as proposed in [50], the classification of this compound character was
done as a multistage classification.

The idea of this multistage classification is explained in Fig. 19. There are two
main stages for the classification of Marathi compound character. The first stage
is called pre-classification by employing structural features. The use of structural
features is demanded as Marathi compound characters comprise of many structure
features such as vertical line, horizontal line, enclosed regions, end points, junction
points etc. To efficiently performing classification in this first stage, all those features
are initially grouped in two different types, the global and local features. The group
of global features consists of the presence of vertical line and its position in the
character, and the presence of enclosed regions in the character, while the group
of local features consists of end points and their position in the character. Both
groups are extracted as two consecutive sub-stages based on these groups. The first
sub-stage extracts global features followed by a classification. The results from this
sub-stage are then classified in the second sub-stage by using local features.

The second main stage is started by normalization the outcome of the first main
stage in a fixed size. The feature of the second main stage is extracted from this
normalized entity into three different features. Those three features are the pixel
density, Euclidean distance and modified approximation wavelet. All three features
vector are respectively fed into Neural Network (NN) resulting in three different
outcomes. A final decision is made based on the majority voting of those three
outcomes. In the case of all three outputs from networks are different, the decision is
made according to output from the network with modified approximation wavelet.
The accuracy of handwritten Marathi compound character by using this multistage
classification is 97.95%. For a further information, the reader can refer to [50].

5
L A M P U N G H A N D W R I T T E N C H A R A C T E R R E C O G N I T I O N

The idea of conducting research of the Lampung handwriting is encouraged by the
fact that the research will open a preliminary development of a Lampung handwrit-
ten character recognition framework. The research introduces a basic framework
containing fundamental approaches as pillars of the framework which may be en-
hanced in the future to be more powerful or extended to handle many problems or
even exchanged to provide flexibility.

As described in Chapter 3, the Lampung text is not cursive script, approaches
and methods from a general handwritten character recognition framework are not
directly applicable to Lampung handwriting recognition. The reason is that the most
of recent developments of offline handwritten character recognition is concentrated
on cursive handwriting rather than non-cursive text. This can be a merit on one side
but can also be a drawback on the other side. Hence, it is necessary to analyze and
modify these approaches or methods to fit Lampung script. Another concern is that
the Lampung characters are also accompanied by various diacritics. Each diacritic
plays an important role for composing overall texts. Thereby, the presence of these
diacritics should be modeled in the framework.

The following subsections describe a processing chain of Lampung handwrit-
ten character recognition in this framework. In each stage, specific methods or
approaches are given and intensively discussed to cope with the task in the stage.

5.1 preprocessing

The primary preprocessing tasks of the Lampung handwritten documents are
a binarization, a Connected Component (CC) generation, a grouping, and size
normalization. These four tasks can provide basic usable instances for the next stage
in the handwritten character recognition pipeline. Other tasks might be needed as
long as they support the goal of the current preprocessing task or they can give a
significant contribution to further stage of the handwritten character recognition.

However, due to the nature of Lampung script, some tasks that are often applied
to cursive script are not urgently done during preprocessing. For example, a slant
normalization is not needed because Lampung script is a typical script without
tendency of the slant. The Lampung character orientation mainly directs from left-
bottom to top-right sideways (see Fig. 13 of Lampung characters in Chapter 3).
Nevertheless, if someone writes Lampung texts with a slant handwriting style, his or
her handwriting would not significantly differ to a common handwriting. Another
task which can be switched on and off during preprocessing is the smoothing and
sharpening. As one goal of the smoothing and sharpening is to remove a noise
especially small spots, the smoothing and sharpening should not be executed when
the goal of preprocessing is also to extract diacritics not only characters. The reason

61

62 lampung handwritten character recognition

behind this idea is that the smoothing and sharpening will potentially remove
diacritics as their shape is small.

The major preprocessing tasks of the Lampung handwritten document will be
explained in detail in the following subsections. The order of tasks as explained in
this subsections indicates the most feasible order for preparing better primitives to
be fed into recognition.

5.1.1 Binarization

The raw image data is originally stored in RGB format. Thereby, the first step to be
done is a binarization. In order to perform this binarization task, the process after
the image acquisition is converting the raw image into gray scale and then it can be
continued by a binarization.

Some algorithms to accomplish a binarization task like Otsu [38], Niblack ([37],
cf. [23]), and Sauvola ([49], cf. [23]) are among the popular algorithms. The Niblack
algorithm is chosen with a consideration that it is more adaptive to the local pixel.
As explained in Subsection 2.2.2, the Niblack algorithm is a binarization algorithm
with locally calculated threshold based on surrounding pixels in the window during
computing operation. With this manner, binarization is expected to be more repre-
sentative according to local pixel and at the end producing the best result of these
algorithms. The realization of binarization in this work was done by utilizing the
algorithm offered by the ESMERALDA tool [12] that provides various approaches
for binarization. Among of them, the modified Niblack algorithm from this package
mainly produced the best result. Results of binarization are shown in subsection
6.2.1.

5.1.2 Connected Components

The lampung script is a non cursive writing system. Hence, from the source of the
handwritten document, each character as well as each diacritic can be contrasted
to its background as single components. In fact, the extraction of the Connected
Component (CC) from the document will implicitly complete the segmentation task
of the characters and diacritics.

However, there are exception for some cases. For example, the segmentation fails
if deformations occur such as two or more characters touch with each other, two
or more diacritics touch with each other, diacritics are connected to a character,
the noise is connected to characters or to diacritic, etc. In this case, an additional
effort is needed to separate those touching objects. Since the occurrence of this
case in Lampung handwritten document was presumably low, there was no extra
effort on behalf of separation after the generation of connected components. Those
deformation objects will be considered as the noise.

The extraction of CCs can be accomplished by two algorithms. First is called the
one-pass algorithm and the second algorithm is called two-pass algorithm. In this
work, CCs as representation of character or diacritic primitives including the noise

5.1 preprocessing 63

had been extracted by applying two-pass algorithm which has been discussed in
Sub Section 2.3.2.

All produced CCs were not altered. They were stored in their original shape and
size, just as they were obtained after generation from original document images. In
this form, CCs are flexible to be transformed in any other forms based on the needs
of the next step.

5.1.3 Separation of Connected Component (CC)

As the segmentation has been done at the level of CC’s extraction, the resulting CCs

would consist of two type of instances along with unwanted instances. Those two
instances are regarded as characters or diacritics along with unwanted instances as
noise. To distinguish these prospected instances, a separation procedure on all of
CCs is applied. This separation is accomplished for characters and diacritic instances
respectively through two independent procedures.

In the first turn, a separation scheme was applied to obtain the instance of
characters and drop others. The character and other CCs can be distinguished based
on its size, aspect ratio, and pixel density. Therefore those three parameters were
tuned to control separation process. To get a complete illustration regarding this
tuning, the reader can refer to Subsection 6.2.2.

The second round of separation process was run to discriminate diacritics and
discard others. The carefulness of this separation procedure becomes a big concern
in Lampung handwritten character recognition since the size of diacritics is relatively
small. Because of their size, diacritics potentially resemble noise and they may be
removed during this process. Another problem is that the separation could not be
run straightforward at once since there is one diacritic class which significantly
differs to other diacritic class. The distinction occurred among diacritic nengen ()
and six other diacritics, particularly the difference in aspect ratio. The height of a
diacritic nengen is like the height of a character but its width is like an ordinary
diacritic. Whereas the height and width of an ordinary diacritic is much shorter than
the height and width of a character. With this nature, the separation of diacritics can
not be finished all at once. Therefore, the task was necessarily run twice for each
possibility. The separation step along with parameters tuning are also provided in
Subsection 6.2.2.

5.1.4 Normalization

The outcome of the grouping is CCs with different height and width. All those CCs

have been stored in their original size and shape so that they are in the state of ”ready
to use” or ”ready to modify”. If they need to be modified into specific dimension prior
to feature extraction, they were mapped into particular dimension by applying a
linear normalization. Since CCs indirectly represent character and diacritic instances,
the normalization must be targeted for both.

Concerning character, initial analysis of bounding boxes of some CCs from every
document prior to normalization process had been conducted and noted. It could be

64 lampung handwritten character recognition

highlighted that sometimes the height is longer than the width and vice versa but
majority they are approximately close with each other. In other word, the aspect ratio
of bounding box is almost one. Based on this fact, it would be better to normalize
CCs by imposing the same length for height and width for output of normalization.
It can preserve the shape details as much as possible. Therefore, the process of
normalization reproduced all CC’s character bounding boxes into a square.

Similar to character instances, diacritic instances as the second instance within
the set of CCs also encountered a normalization process. In this turn, a visual
reasoning on CCs of diacritic instances indicated a risk of significant distortions after
normalization due to a tiny size of the original CCs and variability in aspect ratio.
To reduce this drawback, each CC’s bounding box was firstly extended by circling
its bounding box with one-extra pixel perimeter. The normalization of diacritic
instances were then applied over this new size CC’s bounding box.

The normalization purely relied on a linear function to map the pixel by using for-
mula 2.5 and 2.6 in subsection 2.2.3. After normalization, the character and diacritic
are in a fixed size determined prior to normalization. The size of normalization out-
put for character bounding boxes was estimated from the average size of all original
bounding boxes, while the size of normalization output for diacritic bounding boxes
was initially set to a fixed size from the beginning of normalization.

5.2 labeling characters

After the preprocessing the Lampung documents had been completed, a new collec-
tion of the Lampung handwritten characters has been documented for the purpose
of research. But the classic problem appears for new introduced character sets as
there are no labels for such collections while labels are needed for training and
testing recognizers. Hence, the labeling task has been addressed for the Lampung
dataset collection.

There is no fully automatic method for labeling but on the other hand it is too
naive if all character sets in the collection are labeled manually. Many datasets that
are publicly available for example in [3] [26] [35] mainly set the labels manually
which is very time consuming, tedious, and costly.

To reduce human involvement in the labeling task while keeping a reasonable
speed and cost as noted in [52], a semi supervised approach for character labeling of
the Lampung handwritten character was proposed in [57]. The main concept behind
the approach is to give the label for each cluster of each data representation and
then determine the label by voting to have a final label. By handling this way, the
human effort will be minimized during the labeling process. The complete process
of the approach consists of three consecutive stages as follows:

1. Compute different feature representations.

2. Cluster and label the sample in each representation.

3. Vote the label.

The general overview of the approach can be observed in Fig. 20 and the following
subsections describe the approach in more detail.

5.2 labeling characters 65

Figure 20: General view of Semi-automatic Labeling of the Lampung character (Taken from
[57]).

5.2.1 Data Abstraction

The initial step of the system is to compute some feature representations to get
different representations of the data. This strategy is implemented to provide diverse
input for a multi-view voting scheme so that complementary representations [25]
and classifiers can be ideally combined in a labeling system.

The number of feature representation is not restricted but it is clear that more
than one representation will be needed. The more the representation, the more
complementarity can be achieved during the labeling process.

As illustrated in Fig. 20, three kinds of representations are considered for labeling
the Lampung script. Besides to label as little as possible, the number of representation
was chosen three because to enable a simple majority voting scheme with a minimum
number of representations.

The first feature representation is using pixel values which explicitly represents
the value of foreground and background pixel of a binary image. This pixel value
is extracted after a binarization process on the original image following by a nor-
malization to 20x20 pixels. All pixel values of the image were concatenated forming
the series of 400 binary values. Although this representation looks very basic way, it
was inspired by successful works in digit recognition in [26] [56].

The second feature representation uses a reduction approach over the original
observation. In this regard, a simple and widely used method, PCA (cf. [4, p. 559-
570], cf. [10, p. 115-117] was chosen to transform the original pixel data such that the
dimensionality reduces and the first principal component preserves the maximum
variance.

The last feature representation also uses another reduction scheme that is called
autoencoder network [19]. The reduction strategy is based on a multilayer neural
network with the ability to reconstruct the original input during training. And at

66 lampung handwritten character recognition

the end of the operation, the overall procedure will generate a vector with small
dimensionality but still inherit the properties of the original pixel data.The reader
can go into detail about this scheme by referring the article [19].

Among those three representations, the pixel value representation indicates a
very raw image representation while the last two representations characterize two
different reduction strategies. All of them define three different type of character
representations of Lampung handwritten data. In fact, the certain level of comple-
mentarity in those representations can be assumed from the fact of those differences.

5.2.2 Clustering and Labeling

After creating the multiple representations, the process will be continued by a cluster-
ing to get agglomerations of the Lampung character candidates (see the third column
of Fig. 20). To facilitate this task without human involvement, each representation
from the first stage is agglomerated by using an unsupervised clustering method,
Lloyd algorithm [31], which is often also referred to k-means. The easiness and sim-
plicity are the spirit of use this algorithm instead of other algorithm for clustering.
The parameter k of k-means indicates the number of the clusters or agglomerations
for which the data representation need to be partitioned. The higher of k, the more
refined agglomerations can be reached.

Once the clustering has been finished, each sample data in each cluster will gain
the verdict of a character derived from the cluster centroid. However assigning
the Lampung character label to them can not be achieved during the clustering
process but it needs the human intervention because it is related to an expert that
can interpret each cluster by a visual examination as being a Lampung character.
In another word, the label of the cluster must be done manually by an expert for
total number of clusters indicated by parameter k of term k-means. In the case of
this work, the Lampung handwritten characters were labeled in 11 classes.

The overall process in this stage consisting of an unsupervised clustering and
a manual labeling is considered as a semi automatic process. The human effort
in labeling task is reduced to label the centroid of the cluster. The number of
labeling operations for each representation is only k which is insignificant compared
to the total Lampung data sample that might be thousands. Since there are 3

representations in this work, there will be in total 3k labeling operations for the
Lampung handwritten data.

5.2.3 Voting

The previous stages, as depicted in Fig. 20 at the second and third column, generated
three labels for each Lampung data sample. Considering those labels, a decision
must be done at the last stage (see last column in Fig. 20) to determine a final label
for each Lampung data sample by a voting scheme [25]. The voting output would
be accepted as the label for each data sample.

5.3 recognition of the text 67

Let the label be denoted as a d-dimensional binary vector [li,1, . . . , li,d]
T ∈ {0, 1}d,

i = 1, . . . C, where li,j = 1 if classifier Ci labels a samples p in class ωj and 0

otherwise.
The ensemble decision could be based on unanimity vote where the label will fall

to class ωk if all classifiers decided to class ωk. This decision is formulated by,

C∑
i=1

li,k = C. (5.1)

However, it might necessary to adopt another scenario as a second choice for an
ensemble decision such as simple majority vote. In this scenario, the label of a cluster
can be decided whenever the majority classifiers choose the same label. The formula
for this decision is in the form,

C∑
i=1

li,k > bC
2
c+ 1 (5.2)

Since this procedure use three different representations, those are regarded as
three different classifiers during labeling process. With the unanimity vote, a selected
label can be chosen if all those classifiers vote this label. Meanwhile, the simple
majority vote will consider the label if at least two classifiers have the same vote as
shown by equation 5.2.

Although the ensemble decisions in this work seem to be very common tasks
but according to the approach explained above, there is a fundamental distinction
between this strategy and the other ensemble learning strategies. The difference
between other strategies and this current solution is on the purpose of the voting
scheme. Here, the voting scheme is actualized only to label the training data and
a classifier is built on top of this label information. Otherwise, voting schemes are
often used in classification ensemble. In summary, this method can be considered
as a novelty approach for semi-supervised labeling with less human involvement.
The analysis and evaluation of the result concerning this approach is discussed in
section 6.3.

5.3 recognition of the text

The Lampung handwritten character recognition is still in the beginning state of the
research. It is still a long way to reach mature state-of-the-art like the Roman-based
character recognition. However, it is undeniable that the Roman-based recognizer
may also impact the development of recognizer for Lampung handwritten character.

As explained in the beginning of this thesis, Lampung handwritten character is
non-cursive character where each Lampung character separately stands as a single
element in the character formation. There is no way to make them cursive like Roman-
based handwriting. This is indeed a positive circumstance during development of the
recognizer because the task of character segmentation from a bigger blob composition
at least do not have to be deployed. Therefore, it can reduce one work. Nonetheless,
the real challenge in development of Lampung handwritten character recognizer is

68 lampung handwritten character recognition

the presence of a tremendous amount of diacritics. They must be attached to their
respective characters which are not a simple task indeed.

The following subsections explains the works on recognition of the Lampung text,
particularly three independent tasks. The first one is the recognition of the basic
character with special feature representations. In this step, the discussion comprises
of the procedure of feature extraction, the chosen classifier with experiment setup
and the recognition. In the second step, the subsection discusses about the association
between characters and diacritics. The idea of this work starts by choosing diacritics
and selecting one character over some possible characters nearby. Then an approach
to associate a diacritic to a character is presented. The last step is focused on the
topic of building a recognizer for the complete Lampung handwritten text. In this
step, a basic character is associated to all possible diacritics nearby instead of only
one-to-one association as given in the second step. Accordingly, the product of this
association represents a complete model of the text composition in the Lampung
writing system. Therefore, the result of the last step plays an important role in
Lampung handwritten character recognition.

5.3.1 Basic Character

The recognition of the basic character of Lampung handwriting [20] is the second
milestone in the research on Lampung handwritten character recognition beside the
labeling work on Lampung Connected Components (CCs) [57] as the first one. The
success of this recognition had brought achievements on two aspects which are the
introduction of a novel feature representation for Lampung handwritten character
recognition and supplying the Lampung dataset for various research of Lampung
handwritten character recognition.

As described in section 3.2, Lampung script consists of 20 basic characters. There-
fore, the recognition of the Lampung handwritten text should be addressed by
identifying 20 character classes. Nevertheless, as illustrated in the early work of
Lampung character labeling in [57], some characters have only a tiny difference
between each other and for this reason, the labeling was not directly done for those
20 character classes but instead 11 character classes. The idea of this simplificatin as
reported in [57], was to group some resemblance characters as one class so that the
number of character classes to be recognized was reduced.

This recognition task would consider the same number of classes as used in that
work. Hence, the recognition of the Lampung handwritten text in this work has
been focused on identifying 11 character classes. The recognition of these character
classes as illustrated in [20] is explained in following subsections.

5.3.1.1 Feature Representation

Feature extraction is one of the important steps during the recognition scheme
because it generates feature representations which denote the character itself in the
form of a numerical pattern. During recognition, characters will be represented by
feature representations. Thus, feature representations become a critical point in a

5.3 recognition of the text 69

handwritten character recognition pipeline since it will affect the performance of the
overall recognition.

Feature representation in a recognition can be generated from well-developed
feature extractors by other researchers or invented as a new feature representation
or even combinations of both. An important thought when dealing with feature
representations is that they must be relevant as much as possible to the nature of the
character so that they can positively impact the performance in recognition. For Lam-
pung handwritten character recognition, the use of existing feature representations
is more reasonable to be applied.

Recently, various well-defined feature representations were introduced that can
be applied to the recognition task. From many kind of feature representations in
literature, four of them were selected for the recognition of the Lampung handwritten
text in this work. These feature representations are branch points [8], end points [8],
pixel densities, and the Water Reservoir (WR)-based [7], [40], [41], [42], [43], [44] feature.
The reason behind the decision of using the selected features are because a strong
correlation between the feature representations and the nature of the Lampung
character. In another word, the characteristic of selected features reflect the most-
related attributes of Lampung characters.

The branch point is good for representing the branch line in the body of the Lam-
pung character stroke while the end point can notice the end line of the Lampung
character which basically the effect of non cursiveness. Branch points or an end
points can be identified after converting image into a skeleton image. A pixel on the
skeleton is called a branch point if it surrounded by three pixel neighbors. While an
end point is defined as a pixel along the skeleton having only a single pixel neighbor.
In term of graph theory, a pixel or a vertex is called a branch if it has degree of three
while an end if it has degree of one. The pixel density would provide information
about the general concentration of the foreground pixel in some identical zones
within the character bounding box. And finally, the WR-based feature would be
a special feature due to each Lampung character contains at least one cavity that
resembles to that reservoir.

In order to extract the features of branch points, end points, pixel densities and
the WR-based features, each normalized CC needs to be transformed into a skeleton
before extraction. Then, the square area of each CC is partitioned into some smaller
zones to shift the level of computational complexity from a complete area into a
smaller scale zone which accordingly can simplify feature extraction procedures.
This mechanism is particularly applied for feature representations of branch points,
end points, and pixel densities.

Feature Extraction of Branch Point, End Point, and Pixel Density

Concerning the zone, a full area of the CC image with size 20x20 pixel was broken
into small zones with size 4x4 pixels. Hence, one CC has 25 identical zones which
each zone contains 16 pixels.

Fig. 21 shows a CC bounding box of the Lampung character ”a” along with its 25
zones. The writing order of the feature values is aligned to the direction starting
on the topmost level from left to right. After one level finished, this procedure is

70 lampung handwritten character recognition

Figure 21: The sample of branch points and end points in zoning areas on the image skeleton
of character a.

repeated to one level on the below until the last level on the bottom. From each
zone, the number of branch points, end points, and pixel densities were respectively
counted and then concatenated into a series of feature values. Take an example of
branch points in this figure. One branch point is located on the segment 8 and 12.
Consequently, the value on those position will be set to one. However, to provide a
scale invariant feature representations, those values were normalized by the total
number of pixels in each zone, which is 16 pixels. This normalization results the
values between 0 and 1. Moreover, end points in this figure can be found in four
segments, 4, 15, 21, and 22which respectively contain only one end point. This is also
normalized with respect to total number of pixel in each zone. The feature of pixel
densities is counted and normalized in the same manner. Since each representation
has 25 values obtaining from each zone, the concatenation of three representations
yields 75 values.

This feature representation was then used for the recognition experiment. The
experiment of using solely this representations is interesting since those features are
relatively simple to be extracted.

Feature Extraction of Water Reservoir (WR)
The idea of imitating the Water Reservoir (WR) principle in handwriting character
recognition is not a new approach. Some applications of WR principle can be noticed
from successful works in [7], [40], [41], [42], [43], [44]. As explained in those papers,
it was used as a segmentation method. In this work, the WR principle was used in a
fundamentally different manner. It is applied to Lampung handwritten character
recognition for serving the feature representation instead of segmentation.

To extract the WR-based feature, the zoning areas are not needed. The feature
representation can be extracted directly from the normalized CCs by applying an
invented algorithm that is named cavity-searching. The work of this method in general
is given in Algorithm 2. This cavity-searching works by tracking the skeleton of
character image pixel by pixel. More explanations about the algorithm are given in
the next paragraph with Fig. 22 illustrating how the algorithm accomplishes this
task.

5.3 recognition of the text 71

Figure 22: The algorithm of cavities searching on the image skeleton of character na to be
assigned for the WR-based feature representation.

Fig. 22 illustrates how the algorithm accomplishes this task.

• From the top-right cell of a character bounding box, the tracking is started.
It goes to downward unless it found a foreground pixel. In the case of a
foreground pixel is found, it will continue to inspect foreground pixels on its
neighbors until the last pixel on the character skeleton.

• The tracking process will record transitions of foreground pixels. Transitions
are grouped based on their direction which is downward, upward, and hori-
zontal.

• Set the pointer to upper right corner, and select a transition to downward from
the record buffer. The transition to downward can potentially be a candidate
of a cavity.

• A cavity is identified if the next transition is upward and the algorithm will
repeat the same process to the next processed pixels. While if the next transition
is a horizontal line, the algorithm will start identifying the change of transition
again. However, if the next process does not find a further foreground pixel,
the algorithm end.

In the analogy of a Water Reservoir (WR), each cavity is poured by water until the
water level reaches the lowest end point among of two end points in one cavity. The
area on the character skeleton that is full of water is then the so-called water reservoir.
To obtain a best understanding, Figures 23 provides a proper visual illustration.

Some measurements for feature representations were calculated during the inspec-
tion of all cavities in a character skeleton image. As indicated in aforementioned
algorithm, the height or the depth of the reservoir are noted during the inspection
of a cavity. The inspection was supposed to measure the width as well. Nevertheless,
the shape of reservoir unfortunately does not allow to measure it in straightforward
manner. To overcome this problem, alternatively the volume of each reservoir is
counted and then the width can be estimated by a division between the volume and
the height. And finally, the gravity center of the reservoir is also identified during

72 lampung handwritten character recognition

Algorithm 2 Cavity-Searching Algorithm

1: Put pointer to upper right corner
2: Track all pixels of skeleton
3: Record transitions
4: Set pointer to upper right corner
5: if no transition to downward left? then
6: stop
7: end if
8: Select a transition to downward
9: Identify the transition change

10: if upward then
11: cavity is found
12: reset parameter and go to line 5

13: else if horizontal then
14: go to line 9

15: else
16: reach the last pixel, no cavity and stop
17: end if

this inspection. The gravity center (x0,y0) of area in a binary image is computed
based on the formula,

x0 =

∑N
i=1

∑M
j=1 jB[i, j]
A

(5.3)

and

y0 =

∑N
i=1

∑M
j=1 iB[i, j]
A

(5.4)

Where A is the area of the region which can be computed by the following,

A =

N∑
i=1

M∑
j=1

B[i, j] (5.5)

Take a closer look on the skeleton character image with their reservoir(s) in Fig.
23, it can be concluded that there are two kinds of reservoir, the top and bottom
reservoir. A top reservoir, as shown in sub figure 23a, is opened to the top so the
water can be filled from upward. While a bottom reservoir, as indicated in sub figure
23b, is opened down enabling the pouring of water after rotating the reservoir to
180o. In feature representations, both types can be discriminated by a positive one
(1) for the top reservoir and a negative one (−1) for the bottom reservoir.

As all needed measurements had been gathered during the cavity-search algo-
rithm, the next step was to set them into a feature representation. To express a feature
representation of a reservoir, an arrangement of all measurements was formulated
as 6 consecutive numbers comprising of:

5.3 recognition of the text 73

(a) Top Reservoir

(b) Bottom Reservoir

(c) Top & Bottom Reservoir

Figure 23: Different types of reservoirs in some samples of characters [20].

• The first value symbolizes the type of the reservoir. As explained the type of a
reservoir can be either reservoir with the open part faces up represented by 1
or with faces down represented by −1.

• The second and third values are a pair x and y indicate the coordinate of the
reservoir’s gravity center after normalization with respect to the character
height and width. This normalization is to transform the coordinate into
a certain range value which represents a uniform measurement. This way
consequently change coordinates into a scale invariant value.

• The fourth value denotes the volume of the reservoir. Since the reservoir in this
case is only a 2-D object, the volume is represented by the number of pixels
inside the cavity.

• The last two values are assigned for the height and width of the reservoir.

74 lampung handwritten character recognition

Note that all those consecutive numbers are integers except the reservoir’s volume.
The value of reservoir volume is a floating point because the value of size is a result
of a normalization by the total pixels in the image.

Figure 24: Feature representation of a Water Reservoir (WR) with five tuples for a Lampung
character.

This integer series only represent one reservoir. Whereas Lampung script mainly
has more than one reservoir. Only three characters (ga(), pa(), and da())
have one reservoir and the rest have more. The observation on Lampung characters
shows that a character can have a maximum of 2 top and 3 bottom reservoirs.
Based on this fact, the feature representation must be constructed by 5 tuples as
a concatenation of those kind of reservoirs where each tuple consist of 6 values
representing the characteristic of one reservoir. In the overall series, the appearance
of top reservoirs precede the appearance bottom reservoirs. The total length of the
feature representation for the WR-based feature of each Lampung character in this
series is therefore 30 values. See Fig. 24 for the composition detail of the feature
representation.

Nevertheless, a further observation on characters in dataset pointed out that the
number of reservoir could be more than five. Reasons of this occurrence are due to
variation of personal writing styles, implication of normalization process, effect of
noise, etc. Since the tuples for feature representation are only 2 for the top reservoir
and 3 for the bottom reservoir, those are selected by their volume. The maximum
volume will be considered as reservoir to be inscribed in tuples. The argument for
this rule is that the big volume reservoirs really belong to character while a small
volume can be effect of aforementioned factors. Hence, small volume reservoirs
will be ignored whenever the tuples are already occupied. On the other hand, if a
character contains less reservoirs than the maximum number of provided tuples, the
remaining tuples can be set to zero. In a very bad situation, sometimes the feature
extraction procedure failed due to unconnected components as the result of size
normalization. In this case, a character does not have reservoir at all. To avoid a
distortion during recognition, that respective feature representation will be zero.

The feature of WR is also included in the recognition experiment as a complement
for the feature of branch points, end points, and pixel densities.

5.3 recognition of the text 75

5.3.1.2 Character Classification

From the feature extraction step, there were two group feature representations which
accordingly led to two experiment series, one for each representation. Moreover,
a new feature representation could be composed by concatenation both feature
representations. This new concatenated feature representation also led to the third
series of experiments.

To perform experiments, a multilayer perceptron Neural Network (NN) [4], [10]
[8], [54] was applied to train the different classifiers. The architecture of this NN

was organized as three layers network consisting of input layers, hidden layers,
and output layers. The algorithm for training was driven by the resilient back
propagation. While neurons use sigmoid function to handle the activation process.

The first experiment involved the first group of feature representations i.e. branch
points, end points, and pixel densities. In this regards, the input layer was set to 75
according to dimension of this feature representation. While the output was set to
11 since the recognition was done for only 11 character classes, simplified from the
total of 20 character classes of Lampung script. The reason of this simplification is
to combine some resembling characters into one class to reduce the complexity of
recognition tasks. For the purpose of informal experiment runs, the hidden layer
was set to several configurations as desired but at least equal to the number of input
layer.

In the second round, the WR-based feature representation became the target of
experiments. The input layer was assigned 30 neurons, equal to dimension of the
WR-based feature representation. The output of the network was still 11.

In the last configuration, both feature representations were merged into one piece
with a total of 105 values. Based on this dimension, the input layer was specified
to 105. This combination scheme aimed at observing how well the combination of
statistical features (pixel densities) and structural features (end points, branch points
and water reservoirs) could impact the performance of the recognition.

5.3.2 Character-Diacritic Pair

One critical challenge in a Lampung handwritten character recognition is to asso-
ciate a single diacritic or multiple diacritics onto a character. The problem in an
unsupervised character recognition is that any diacritics may be surrounded by
some characters which makes the binding of a character and diacritics a difficult
task. Consequently, one indispensable concern in the Lampung recognition is to
handle the association of the character and any dedicated diacritics as one com-
pound character in a complete recognition. However, a complete association of the
character and any diacritics as a compound character is not a simple task to be done
directly at once. Therefore, it is necessary to perform a less complicated association
work to bridge the task or at least to know the appearance of obstacles during the
association process such that a further process for handling a compound character
can be accomplished properly. In the following subsection, a simple association
model between a character and any diacritics is described as a pairwise instance.
The model is generally built as a one-to-one relation between the character and

76 lampung handwritten character recognition

a diacritic where each pairing is determined based on a statistical measurement
computed among the character and diacritic [21].

5.3.2.1 Feature Representation of Pairing

With respect to the association process as indicated in [21], the main point of view has
been shifted from a character-wise to a diacritic-wise. Thus the process is inverted by
firstly looking at the diacritic and then identifying the character as the companion
of this diacritic. The important issue during this association process is that there
are composition of characters with more than one diacritic nearby, but no diacritics
associated to more than one character. In this case, each diacritic will be handled
separately as one independent instances so that the number of independent instance
will be equal to the number of diacritics. As the pairwise instance always consists
of a single character and a diacritic, the character without any diacritics can be
considered as out of discussion for this subsection. Thus it can be excluded in this
analysis.

A pairwise instance can be represented by a feature vector which represents the
relation of a character and a diacritic in form of a numerical value. To assist of the
pairing process, the paired value can be obtained by the following procedures.

For the purpose of technical illustration, Fig. 25 will be treated as a visual aid
of the following explanation. A diacritic under consideration is selected and its
geometric center is computed.

(a) (b)

Figure 25: Sample of two compound characters of Lampung handwriting [21] (a) the com-
pound character bur built by the basic character ba and a top and a bottom diacritic
and (b) the compound character nuh formed by the basic character na with a
bottom and a right diacritic.

After localizing geometric center of the diacritic, the next step is switched to the
character. As for the diacritic, the center of this character is also examined and set
as a Cartesian coordinate (0, 0) to be an anchor of the character. Then a point to
point distance is computed between the center of the diacritic and the character. This
distance is projected along the X (dx) and Y (dy) axis. Each projected distance is
respectively normalized by dividing to the side length of parallel dimension of the
character. Hence the projection along the X (dx) axis is divided by the width W and

5.3 recognition of the text 77

the projection along the Y (dy) axis is divided by the height H of the character. The
mathematical formula produced by this procedure is represented as:

x =
dx

W
, y =

dy

H
(5.6)

Both values in Eq. 5.6 can be rewritten in form of a vector v = [x,y] which implicitly
represent the coordinate of the diacritic over the character in a two dimensional
normalized form. This vector is set as a feature representation of the character-
diacritic relation and becomes a basis of a further exploration to determine the
desired association.

5.3.2.2 The Association Model

The vector as described in the aforementioned subsection only represents one
character-diacritic relation. While near a diacritic, some characters may be close by
and among those only one should get associated to the diacritic. Hence the process
of pairing must consider all respective characters nearby the diacritic and compute
all vectors to them one by one. The role of the vectors is to indicate a relation with
the diacritics as a central point of inspection.

As not only one character but some characters are considered to be evaluated,
this will lead to a particular approach by involvement of those vectors to decide one
character over the other. For each candidate character cj, the probability of pairing is
computed in terms of a pairing probability by applying a Gaussian mixture model:

P(v|cj) =

kj∑
i=1

wi,jN(v|µi,j,Σi,j) (5.7)

Where:
kj: the number of components for character cj
wi,j: the weight of component i
N: the Gaussian normal distribution
µi,j: the mean of the component i
Σi,j: the covariance of the component i.

These elements are estimated from a training dataset during the training phase.
For an initial process, the training dataset is clustered by applying k-Means [34]
and then means and covariances are computed. To improve these parameters, an
additional optimization step is carried out with respect to the different character
distribution by applying EM-algorithm [9]. The usage of EM-algorithm is expected
to generate means and covariances that are much more representative of the data.

Since the diacritic is surrounded by many characters, only s characters are chosen
to be reviewed. The probability of pairing those characters with the diacritic are re-
spectively computed. All possible pairing probabilities are then examined with each
others and a decision is made by selecting the pair with the maximum conditional
likelihood probability,

s = arg max
s

(P(vs|cs)) (5.8)

78 lampung handwritten character recognition

Where:
vs: feature vector derived from the pair of a diacritic and the character candidate cs:
character candidate to be associated with the diacritic

This pair is considered as a correct association between character and diacritic un-
der an assumption that the maximum likelihood probability will lead to a minimum
error rate.

However, this approach can trigger a technical problem during parameter computa-
tion if the sample of a particular component is extremely small. In this circumstance,
such a computation can only generate parameters rather locally for that small sam-
ple. While during the estimation of unknown data, the usage of Gaussian mixture
with these parameters can introduce a bias which result a significant error of the
estimation. To cope with this situation, parameters of Gaussian mixture can be
approximated by computing complete training set. This can be formulated as the
marginal density of P(vj, cj) or approximated by estimating the model parameters
character independently:

P(v) =

|c|∑
j=1

P(cj)P(v|cj) ≈
n∑

i=1

wiN(v|µi,Σi) (5.9)

Here n denotes the number of mixture components computed on the complete
training set and |c| denotes the set of characters.

5.3.3 Syllable Level

The work of association character-diacritic of Lampung handwriting was previously
designed only for a simple composition as one-to-one relation between a character
and a diacritic. This association apparently does not fully characterize all complete
text units in Lampung writing system. A complete text unit in Lampung writing
system is in form of a syllable which can not be composed by only a character and a
diacritic. There are several possible compositions to form this syllable for example
a single character only, a character and a diacritic, a character and two diacritics,
or a character and three diacritics. In fact, the main topic of Lampung handwritten
character recognition is not only recognition of these two involved elements, i.e.
characters or diacritics, but also the most challenging task in this recognition is to
recognize syllables based on their building blocks as a representation of a complete
unit model.

As a unit model consists of some components, it can be considered as a com-
pound character which can be formed by one model among several compositions as
mentioned in previous paragraph. To recognize this compound character, several
elementary tasks must be performed one by one in a consecutive order. Each elemen-
tary task handles a specific target to simultaneously establish a recognizer of those
syllables. The following parts comprehensively explain each of those elementary
tasks with a necessary analysis and discussion.

5.3 recognition of the text 79

5.3.3.1 Recognition of Basic Components

In order to recognize a complete composition of characters and diacritics as a
building block of syllables, the recognition of each basic component is needed as
a baseline for the performance of the combination. The recognition of individual
component encompasses the recognition of characters, diacritics, and one-to-one
association of character-diacritic. Concerning this baseline, results from existing
work are reused during this sub-step as long as it meets the requirement.

1. Recognition of the Characters
Formerly, recognition of Lampung character had been done as reported in sub
section 5.3.1. However, this result could not be used as a baseline indicator
in this step since the recognition was counted only for 11 classes. While in
this task, the recognition needed to cover all 20 characters as many as total
characters in Lampung script. In practice, the recognition of character could
only be executed for 18 character classes since two of them were not counted
as basic characters so as both characters were excluded. Such a problem
occurred because both characters consist of two separated components and the
recognition task had never recognized both components in one piece. Instead,
the recognition regarded both components as two distinctive components
where each component coincidently resemble to another single-component
character. These characters are character ”ra” () and ”gha” () that are
formed by concatenation of character ”ga” () and ”pa” (). To deal with
this circumstance, a post-processing step is absolutely needed to link both
components. This is discussed in part 5.3.3.2 within this chapter.

The recognition of 18 character classes will re-apply the same characteristic
of the recognition of 11 character classes. Although a recognition without
enhancing features and with the expansion of classes from 11 to 18 may
deteriorate the performance, it is still worth to check its performance. Therefore,
the feature of Water Reservoir (WR) and branch points, end points, pixel
densities will be included as well.

Figure 26: Integer codes for each direction in a chain code. Left and right direction are
represented by code 1, diagonal of 45o and 225o direction are represented by
code 2, upper and lower direction are represented by code 3, and diagonal of
135o and 315o direction are represented by code 4

80 lampung handwritten character recognition

In order to anticipate the degradation of the recognition performance, the
feature representation for this recognition also uses the chain codes. They
are extracted from the contour of the normalized binary image. The contour
represents the outermost border of the character shape. The chain codes itself
is derived from the direction of the border edge of the contour in each their
pixel coordinate. Directions are grouped according to 4 or 8 directions. Each of
these directions is encoded by a number to represent a unique direction.

With respect to this work, chain codes with 4 directions are used. The chain
codes which are discovered from a Lampung character image can reflect the
nature of the character. It can transform the pixel body of the character into
values that identically represent the direction of the character shape boundary.
This characteristic can cause two consequences during the character recognition.
It enables a high accuracy on recognition, but on the other circumstance, it
can distort the performance when noise involved. The source of noise can be
originated from the raw image source or the effect of preprocessing.

The image sources for feature extraction are taken from the CC of the binary
images that are normalized with the dimension 32x32 pixels. Each of them
was sub-sampled from its original size into a small grid area with dimension
4x4 pixels. Hence, the total areas for a single image source is 64 zones with the
size 16 pixels.

As the type of chain codes is defined by its directions, the feature representation
in this work employs the chain codes of 4-directions with the codes and
directions are indicated in Fig. 26. Since there were 4 directions, the feature
representation is set in 4 consecutive parts. Each direction of the chain codes
will be counted from each small area over all 64 grid areas. Therefore, the total
length of the feature representation is 4x64 = 256. The first part will be filled
by the number of code 1 in all area 1− 64 and put on the first 1− 64 segment
of the representation. The second part will be filled by the number of code 2 in
all area 1− 64 and concatenated to the first representation in position 65− 128.
The same things are applied to the code 3 and 4 to fill the position of 129− 192
and 193− 256.

The recognition of the basic character is committed by tool LIBSVM [6]. Some
experiments with different categories were executed to provide some compara-
ble results. The complete settings, processes, and results are described in sub
section 6.4.2.

2. Recognition of the Diacritics
Lampung script has several diacritics as readers can see in Sec. 3.3. Although
there are 12 kinds of diacritics, but basically they only need to be recognized
as 7 classes. This occurs since a particular diacritic can be found in two or
three different positions. In term of its position around characters, one diacritic
glyph can be considered as two or three distinctive diacritics according to its
position, while in term of its geometric shape, the diacritic is regarded as one
identical diacritic.

5.3 recognition of the text 81

The feature to be used in the diacritic recognition should be selected in such a
way that the feature should contain the characteristics of this diacritic like; the
small size, variability in their dimension, less variation in shape, and usually
fewer classes as compared to characters. Concerning these constraints, two
binary image sources are considered to provide representative feature during
feature extraction. One part of feature was extracted from normalized CC

images while another part was extracted from original size CC images.

Feature representations that were merely extracted from normalized CC images
often got failed to classify some diacritics during recognition. Thereby, the fea-
ture extraction does not only rely on features from normalized CC images but
also original size CC images. From normalized CC images, pixel densities was
extracted. While From a binary image with original size, some characteristic
measurements of the diacritic in their realistic shape can be explored and used
for feature like major axis length, the minor axis length, orientation, aspect
ratio, and eccentricity.

Figure 27: A sample of the diacritic in its original size with the definition of some char-
acteristics. Those characteristics are set to be the feature representation of the
diacritic.

Figure 27 illustrates the representation of those characteristics for a diacritic
sample. Major axis length is the length of the major axis of the ellipse of the
diacritical circumscribing. Whereas, the minor axis length is the length of
its minor axis of the same region. Both values are necessary to estimate the
magnitude of the diacritical region which is measured along its own axes. The
orientation is a scalar that indicates the angle between the x-axis and the major
axis of the diacritical region. The range value of this parameter is between 90o

to −90o. However, in this representation, the value is converted into range from
0o to 180o. This parameter along with the aspect ratio can detect the diacritic
orientation relative to the horizontal axis. This means that both orientation
and aspect ratio can discriminate diacritics in form of horizontal-shape and
vertical-shape, that are frequently used in the text. The eccentricity feature
is defined as the ratio between the distance of two foci and major axis of
the circumscribing ellipse of a diacritic. The range value of the eccentricity
is between 0 and 1. The value of 0 for eccentricity means that the ellipse is a
circle, while the value 1 means that the ellipse represents a line segment. By
using this characteristic in the feature representation, diacritics with the shape

82 lampung handwritten character recognition

of proportional dimension or in form of a line segment regardless in horizontal
or vertical direction can be appropriately addressed.

To provide a variation of the feature representation, the pixel density feature
is also extracted from binary image with a normalized size of 20x20 pixels.
Before extraction, the bounding box area of a diacritic is sub sampled into
smaller areas with size 4x4 pixels resulting in 25 connected areas. From each
area, the pixel density is counted and then normalized with the total pixel in
each area.

The classifier for these experiments is SVM. The feature vectors are arranged
into the format of one SVM tool i.e. LIBSVM [6]. To generate several results,
some SVM executions are accomplished with different kernel types. The detail
of this execution can be found in sub section 6.4.3.

5.3.3.2 Recognition of Two-components Character

In recognition of the basic characters, the whole target of recognition were only
addressed for 18 characters with a single component blob. However, the official
Lampung character totally consists of 20 characters where two of them are respec-
tively assembled by two other single component characters in a specific position.
These characters are ”ra” () and ”gha” (). To recognize complete characters,
a classification should be performed in two stage. The first stage should deal with
the recognition of single component characters while the next stage should han-
dle characters with two separated components. The first stage has been discussed
within part 5.3.3.1 and this part concerns about the use of its results to classify two
components character.

As characters ”ra” () and ”gha” () are created by concatenation of character
”ga” () and ”pa” (), a general strategy of this step is to search both building
block characters from the output of the first classification stage (single blob classifi-
cation) and examine whether its neighbor characters should be attached or not. A
general procedure to handle two components character, as a part of the framework
of Lampung handwritten character recognition, is done as the following:

1. Classification of the single component character as preliminary step to get
all one component nominee. This step is previously explained in subsection
5.3.3.1.

2. Scanning of the component of character ”Ra” and ”Gha”. Both components
are respectively single blob of class 2 and 4. Therefore, this step is to isolate all
class 2 and class 4 among others from the recognition of the first step.

3. For each class 2 and 4 in the second step, identify the closest neighbors for
inspection and consider only class 2 and 4 as potential pair entity of character
”Ra” and ”Gha”.

4. Between each pairing entity, particular features that can reflect character ”Ra”
and ”Gha” as one unit character are extracted.

5.3 recognition of the text 83

5. With generated features, the recognition is performed by classifier and the
results are documented to be analyzed further.

This second stage experiments were also performed by SVM through LIBSVM tool
[6]. The task in this stage is intended to recognize a connected or unconnected type
between two CCs under consideration. The connected indicate that both components
represent a character and an unconnected type refers to a single character for
both components. To measure the performance, the outcome of classifier should be
arranged into table 2 as follows:

Table 2: The extracted values for computing two-components character performance

Classified pairing Classified nonpairing

Pairing class True Positive (TP) False Negative (FN)

Nonpairing class False Positive (FP) True Negative (TN)

This measurement is actually used for binary classification. The use of it in the
recognition of two-components character is still acceptable because recognition
outcomes can be represented as interrelation of those components. In a practical
context, the result can be mapped into ”correlated” for a decision of pairing and
”incorrelated” for those which are not pairing.

From the values in the table 2, the performance rate can highlighted in term of
precision, recall, and accuracy. The formula to compute those metrics are given in
the formula 5.10.

Precision =
TP

TP+ FP
;Recall =

TP

TP+ FN
;Accuracy =

TP+ TN

TP+ FN+ FP+ TN
(5.10)

Results of the experiment and discussion regarding two-components characters
are comprehensively described in section 6.4.4.

5.3.3.3 Association Scenarios

As Lampung writing system employs many diacritics, an association strategy be-
tween the character and diacritics must be addressed before the final recognition.
Although a preliminary association between a character and a diacritic had been
exposed in subsection 5.3.2, it is not enough to cover the complete model of the
Lampung handwriting. That work only assigns one-to-one associations between
a character and a diacritic which means a diacritic only associated to a character.
While the association may also appear in more than one relation.

To handle this problem, it is firstly important to understand the principle of
associating characters and diacritics. The task of associating is always initiated from
the diacritic side. This principle stems from the fact that a diacritic, if exists, is always
attached to a character but this is not applied in the opposite way. A character does
not always have one or more diacritic assigned to it. By using this principle, the
possibility of false association can be avoided as much as possible during the process
of association.

84 lampung handwritten character recognition

The association itself essentially consists of the pairing and combining task. The
pairing is the task of searching which character has to be selected to make diacritic-
character pair. The combining is the task of incorporating all diacritics that belong
to a character. The task of pairing had been introduced in sub section 5.3.2. In this
task, two schemes of pairing have been proposed to prepare a relation between a
diacritic and a character. The first scheme is relying on the closest distance between a
diacritic and a character as a parameter to connect them. The second scheme is using
Gaussian Mixture Model (GMM) to detect the connection between a diacritic and a
character. Results from this work can be served as a foundation of the combining
task. They can be fed into the combining task to produce a complete model of
characters and diacritics.

By the nature, diacritics from the searching task are already paired to characters. To
follow up this result, the task that left is to identify all diacritics to their appropriate
character and join them. At the end, a complete model of Lampung handwriting
can be obtained based on characters that are completely joined. Regarding this task,
three scenarios can be applied to form a complete model,

• Join all diacritics from the closest distance to characters they belong to.

• Identify all diacritics from the experiment of GMM and attach them to their
character pair.

• Attach all diacritics from the second scenario with some additional rules taken
from Lampung writing system particularly rules regarding the use of diacritics
around characters.

Those scenarios can be considered as the final line in the recognition chain since
the overall level of the Lampung handwritten character recognition will enter to
this phase. All performance of previous works will consequently contribute to the
performance of this work. A comprehensive outcome as well as the discussion of
this task are reported in sub section 6.5.2.

5.3.4 Remarks

The complete framework for Lampung handwritten character recognition is already
designed from this work. The target of this framework is to process the input of
the Lampung handwritten character images such that the compound characters as
the smallest unit can be recognized. The overall process in the framework can be
observed in Fig. 28.

This framework is still an underlying foundation so that it may offer a broad
opportunity to be explored. There are much open problems in this framework to be
solved by new approaches for example, separation of touching components, recon-
struction of the break-up components, baseline normalization, etc. There are also
some topics that has not been touched like writer identification, line segmentation,
skew detection, touching character, etc. A final procedure like the one occurs in the
work of composing the complete model also needs a further investigation especially
revert back to some former tasks which can affect the current performance. All

5.3 recognition of the text 85

Figure 28: The Lampung handwritten character recognition framework.

86 lampung handwritten character recognition

those are the prospective challenge for the future research of Lampung handwritten
character recognition.

The knowledge from this research can hopefully be useful as a learning source
with respect to framework of Lampung handwritten character recognition for future
researchers. The framework can be adapted, extended, or further developed for
improvement. This may ultimately bring a success for establishing the system for
recognizing of Lampung character.

6
E VA L U AT I O N

The purpose of this chapter is to provide a comprehensive assessment concerning
the proposed approaches in the framework of Lampung handwritten character
recognition as presented in Chapter 5. The performance of each approach was
characterized by experiments. The discussion may involve a necessary analysis of
some quantitative and qualitative results from those experiments.

The chapter is started by brief information of the primary data used in this work.
Then, the process of each part of the framework are described. Measurements were
documented and analyzed to know merits and drawbacks of respective approaches
as well as the solution proposed for the appearing drawbacks. Finally, experiments
has also listed some substantial hints for improvement in future works.

6.1 dataset

The primary data of this research had been prepared prior to research work in form
of handwriting scanned images. The raw Lampung handwritten text data had been
acquired and collected from local contributors in Bandar Lampung city, Indonesia.
All contributors are 10

th and 11
th grade students of a senior high school in Bandar

Lampung.
The sources of the texts were taken from Indonesian fairy tales written in Roman

characters. Then contributors had to transcribe these Roman texts into Lampung
handwriting on a sheet of A4 paper. To have proportional handwriting data in
one page, each page of source texts were controlled no more than 200 Indonesian
words. This constraint became a concern because the size of a single handwriting
Lampung character is usually bigger than a single printed Latin character. This
would consequently enable contributors to have enough space for transcribing of
fairy tales texts because a single A4 page approximately can conceive all characters
of those words. Fig. 29 shows a snippet of a document image from data collection.

Figure 29: Sample of a Lampung document image, containing degraded illumination, folded
track, and noise by overwriting.

Table 3 exhibits brief information regarding raw data. This list can implicitly
portray the actual fact of Lampung handwriting documents to be dealt with.

87

88 evaluation

Table 3: Statistical summary of raw data

Attributes Remark

Male Contributors 20 persons

Female Contributors 62 persons

Number of page samples 82 pages

Number of words 11,722

Collection Period December 2010

In general the Lampung document images are in good condition. However, the
quality of the documents is not entirely uniform. A few documents contain dirty
spots, typos, overwritten character, folded marks, and other type of noise. There is a
document with different sizes of characters i.e. normal size in several lines of the
beginning but smaller for the rest. In other documents, contributors made guiding
lines before start writing Lampung handwriting. A little example of this artifacts
has been given in Fig. 29 and others can be explored in Chapter 3 as can be seen in
Fig. 12.

6.1.1 Dataset of Initial Labeling

The existence of labeled data is highly important for running this research experiment
as well as the recognition and evaluation. The initial labeling of this dataset is the first
endeavor to realize the framework. The process was accomplished by applying semi-
supervised labeling as proposed in [57]. Then, the labeling results were inspected to
ensure the correctness of the given label from this approach by displaying them for
a rapid visual check by a human expert. If there are CCs which do not belong to the
current class, then those CCs must be split and re-labeled as it is. The visual check
was done until all members of all classes had been completely checked. Hence, this
preparation had ensured that the dataset for experiments in this work has a set of
correct labels.

Note that experiments on labeling utilized data samples in 11 character classes. The
distribution of each character in samples is arbitrarily unbalanced. Some character
classes have a big proportion of at least 8000 samples while one of them has only
less than 300 samples. According to this distribution, the biggest proportion is
distributed in character class pa* with composition 24.52% (8629 samples) and the
lowest number of samples is distributed in character class wa which containing only
0.72% (254 samples). The overall distribution of the samples based on 11 character
classes is presented in Appendix A.1.

6.1.2 Dataset of 11 Character Classes

The total number of labeled data of characters to be utilized in this experiment
is 35193. The classifier for this classification is Neural Network (NN). To provide
an appropriate data samples for NN, the composition of data were divided into 3

6.1 dataset 89

different parts for train, test, and validation set respectively. The proportion of data
samples are respectively 60%, 30%, and 10% from total number of data respectively
for training, testing, and validation set. When these proportions are converted to the
number of samples, each of them are respectively 21122 samples dedicated for the
training set, 10547 samples dedicated for the test set and 3524 samples dedicated for
the validation set. As the whole data is not equally distributed into all classes, the
proportion of each character in this composition is also not equally distributed. Some
characters have a large samples while other has only a few samples, in particular
character ”wa” that falls below 1%.

6.1.3 Dataset of 18 Character Classes

Beside the composition of 11 classes, the more refined data samples were grouped
into 18 character classes. This composition was basically built from composition of
11 character classes by discriminating inner characters of classes with sign ”*” to
be some other classes. Within the class with this sign, there exists 2 or 3 resemble
character classes so that the character classes could be extended. However, the class
ne∗ in distribution of 11 character classes is not part of the character as indicated in
subsection 6.3.2 because this class collects all kind of noise generated by unwanted
conditions, for example touching characters, broken characters, some diacritics with
the same size as characters, etc. In fact, it was excluded in the group of 18 character
classes so that the total number of samples is 32140. The whole distribution of this
data sample extension can be observed in Appendix A.2.

The distribution of data samples in 18 character classes is also not equally dis-
tributed. The number of character class of ca and wa in this composition are less
than 300 samples. This is consequently impact of the nature of Bahasa in which the
transcription was written. In general, Bahasa contain less use of the character ”c” and
”w” compared to other characters.

The dataset for these experiments were arranged in document-based mode which
means that the sample distribution was grouped in a document-wise basis. Among
all 82 documents in the dataset, 52 documents were collected for training samples,
10 documents were used for validation sample, and the remaining 20 documents
were assigned for testing samples. The training set of 52 documents consists of 20141
samples. The validation set of 10 documents consists of 4146 samples. Finally, the
testing set of 20 documents consists of 7853 samples. The percentage of samples
in the training set contains 62.67%, validation set contains 12.90% and testing set
contains 24.43% of the whole samples in dataset.

6.1.4 Dataset of 7 Diacritic Classes

The total number of diacritics in dataset is 24775 samples. They consist of 7 classes
only with the class 6 () at the lowest rank. The sample distribution of diacritics is
shown in Appendix A.3.

Note that the class 6 probably will not appear in Appendix A.3 if contributors
perfectly wrote them as two components diacritics. Instead, it will be grouped as two

90 evaluation

separated components in class 5. Nevertheless, the class 6 still appears in Appendix
A.3 which indicates that both components of class 6 were somehow connected by a
tiny pixel so that during clustering, they are regarded as one class.

The dataset of the diacritic, as the experiment of character recognition in 18 classes,
was arranged in a document-wise basis. The training set consists of diacritics from 52

documents, the validation set consists of 10 and testing set consists of 20 documents.
From the total 24775 diacritic samples in dataset, there are 15516 samples derived
from training set, 3201 samples derived from validation set and 6058 samples derived
from testing set.

The distribution of diacritics for each class is not equally balanced. The class 5
occupied 34.73% of the testing data or 2104 samples as the biggest class. Whereas,
the class 6 is at the last position with 108 samples. The distribution number of each
classes in the testing set can be observed in Appendix A.3

6.2 preprocessing

As indicated in Chapter 5, the ESMERALDA tool was involved in the preprocessing
stage. Specifically, binarization and Connected Component (CC) extraction have been
performed as described in Section 5.1. A complete evaluation of these activities is
described in the following.

6.2.1 Binarization

The modeling of the document foreground over its background is difficult due to
various types of document degradation such as uneven illumination, image contrast
variation, bleeding-through, and smear. Some raw image data were chosen to be
used in initial binarization for the purpose of a qualitative evaluation. The images
were selected in such a way that all types of quality are included i.e. from the worst
upto the best image. This is important to enable performance comparison among
various algorithms of binarization.

During practical works, the Otsu [38], Niblack [37], and modified Niblack algo-
rithm of the ESMERALDA tool [12] were respectively executed to all chosen images.
The results of different algorithms for each image were compared to each other and
also to the original image data. These observations were only visual checks of the
result produced by two algorithms to ensure which algorithm would be used for the
rest of the raw image data which could generate the best quality.

From experiments, binarization of the best quality images returned almost the
same quality binary images from all algorithms. No significant differences appeared
between output images. However, for the worst images, all algorithms generated
a different level of quality. Results of the Otsu algorithm degraded in many parts
of the image. The Niblack algorithm also generated binary image with many noise
spots around a large empty area with a certain level of gray intensity according to
evaluation in [23]. The modified Niblack algorithm gave a best result for binarization
compared to other two algorithms. The visual output from those algorithm can be
observed in Fig. 30.

6.2 preprocessing 91

(a) Gray image sample (b) Binary image gener-
ated by Otsu algo-
rithm

(c) Binary image gener-
ated by Niblack al-
gorithm

(d) Binary image gen-
erated by modified
Niblack algoritm
from ESMERALDA
tool

Figure 30: Binary images produced by performing Otsu, Niblack, and modified Niblack
algorithm.

As there is no perfect binarization for all kind of image quality, the best result will
still depend on the original document. For the dataset of the Lampung handwritten
character recognition, binarization results produced by modified Niblack algorithm
generated the most precise binary images reflecting the original images.

6.2.2 Separation of Connected Components (CCs)

After collecting all CCs, measurements were carried out to them to obtain some
basic characteristics of CCs to be used for separation thresholds. These thresholds
encompass from the size, pixel density of bounding boxes, and aspect ratio of the
width and height. They are specifically computed for each document image. Since
those characteristics were solely computed for each document image, threshold
values differ from one document to another document. These thresholds were
ultimately used to perform a fully automatic CCs separation for each document
image so that all unwanted objects can be minimized.

As the target of separation is to obtain character primitives over diacritic primitives
and vice versa, while dropping other components like noise, the separation consists
of two different tasks. The first one is for retrieving characters and another one for
diacritics.

For a general treatment of both type of CCs, a fixed global threshold had been
applied for an initial selection of CCs. Threshold values are selected based on the
size of CC relatively to the size of respected document. In this regard, the accepted
CC for preliminary measurement must have the dimension between 5x5 pixels to
75% of the width and height of the document size. Other CCs that did not meet this
requirement were not considered for character or diacritic candidates.

6.2.2.1 Character Separation

Preparation and execution of the character separation respectively comprise of two
steps. In the first step, an elaboration of threshold values should be done through a
preliminary process. The threshold was computed for each document with respect
to minimum, maximum, and average of the width and height of all CCs. Since there
are three thresholds and each of them spans in a specific range such that a single
threshold value is within a range, a minimum and maximum bound, all those three

92 evaluation

thresholds will have six setting values for lower and upper bound. Then in the
second step, those thresholds were used to split CCs of characters among others.
Sometimes, a necessary adaptation to these thresholds is needed prior to separation
process to get more primitives rather than relies only on those thresholds without
any modification.

The first threshold value to be explored is the size of the bounding box which is
defined by the area of the components. The value of large area for this separation
was represented as an interval with a lower and upper bound value. To get a lower
and upper bound, a qualitative evaluation estimated the weight threshold for both
bounded limits respectively. The separation is specified by the following formula,

large_area = w · ave_width · ave_height (6.1)

where:
w represents the weight for large area, wmin = 0.5 and wmax = 9.0
ave_width represents the average of width of the bounding box
ave_height represents the average of height of the bounding box

Based on the qualitative evaluation, the weight threshold w of the lower bound
for large area is set to 0.5 while for the upper bound, the threshold is set to 9.0.
The weight factor for the upper bound seems high, but this factor is realistic since
it compensates the small size of diacritic primitives which contributes in reducing
the whole average of the width and height. With a high weight, the average is
presumably approximated to the real character primitives average.

Among extracted CCs based on separation by applying large area, there are also
possibilities that some of them can be considered as noise. For example, CCs with
either less or too much black pixels will likely be a noise rather than character
instances. To explore this characteristic, the pixel density of the bounding box is
employed. The pixel density is counted for the bounding box which defined as,

pixel_dens =
foreground pixel

total pixel
(6.2)

foreground pixel represents the number of foreground pixels
total pixel represents the total pixel in bounding box

Based on the computation of the density during a qualitative evaluation, a charac-
ter might have pixel density around 20− 30% of the large area. While the threshold
of large area cannot handle this situation since it only consider the size. Therefore
the pixel density was included as a separation threshold as well. To define a rep-
resentative pixel density threshold, the minimum, maximum, and average of pixel
density were counted and stored.

The lower bound of the pixel density can be computed as a composition of the
average and minimum pixel density with a certain weight for each of them. The

6.2 preprocessing 93

determination of the weight of each component was done via trial runs in informal
experiments. The formula for lower bound of the pixel density is represented as,

pix_densmin = ave_dens−
1

20
(ave_dens−min_dens)

=
19

20
ave_dens+

1

20
min_dens

(6.3)

where:
ave_dens represents the average pixel density of all CCs

min_dens represents a minimum pixel density from the set of CCs

Moreover, the weight for the upper bound of pixel density was also derived from
such experiments. The formula is composed by the same manner as formula 6.3
with involvement of the average of pixel density. While for another component, this
upper bound needs the value of the maximum pixel density instead of the minimum
pixel density. The formula of this upper bound is given by,

pix_densmax = ave_dens+
1

4
(max_dens− ave_dens)

=
3

4
ave_dens+

1

4
max_dens

(6.4)

where:
ave_dens represents the average pixel density of all CCs

max_dens represents the maximum pixel density from the set of CCs

The minimum value in formula 6.3 and maximum value in formula 6.4 represent
the value of a single CC over the whole extracted CCs. Both values are used as marks
for computing a valid range of the pixel density. An actual value of lower and
upper bound density must fall within this range. It is impossible for the density of
primitives to be less than the minimum density or more than the maximum density.

The factor 1
20 in lower bound as shown in formula 6.3 and 1

4 in upper bound
as shown in formula 6.4 are purely obtained after some trial runs of informal
experiments. These constants are the best approximation for all image documents in
this work. They will probably not be ideal to other documents since other documents
can contain different composition of diacritic and character primitives.

The third threshold for separation is aspect ratio. This threshold is defined as the
division of the bounding box width and height as given in the following,

aspect_ratio =
width

height
(6.5)

where:
width represents the width of the bounding box
height represents the height of the bounding box

In contrast to the two previous thresholds, aspect ratio was not directly computed
from document processing because the aspect ratio of characters mainly approxi-
mate to one as indicated in subsection 5.1.4. Consequently, the range between the

94 evaluation

lower and upper bound of the aspect ratio should have the value one in between.
Preliminary option for this interval were set to 0.5 and 2.0, respectively. However,
some handwritten documents contained character bounding box with ratio up to
4.0. Finally, the interval for aspect ratio became the following [20],

0.5 6 aspect_ratio 6 4.0 (6.6)

These interval could distinguish the noise, which resembled a long vertical line if its
ratio was less than 0.5 or a long horizontal line if its ratio was greater than 4.0. This
threshold was effective to remove some artifacts coming from folding, guiding line,
massive touching components, etc.

As a final remark, it can be said that separation is not always working perfectly.
As separation is fully executed in automatic mode, it still cannot split all kind of
noise and may possible remove character instances. As long as missing instances is
only a little, the output of this separation task is still tolerable.

Table 4: Connected Components of Character

Attributes Quantity

CCs of character primitives 35,193

Character primitives per page 429

Table 4 shows the statistic summary of the CC’s character after separation process
with aforementioned thresholds.

6.2.2.2 Diacritic separation

The procedure of diacritic separation was similar to procedure of character separa-
tion with a little adjustment to cope with diacritic matters. In this procedure, the
preliminary measurement considered the range from 5x5 pixels to 25% of the width
and height as CCs to be used for calculation of the threshold. Beyond that range,
instances were not accounted for calculation of the threshold.

(a)

Figure 31: Comparison of the average diacritic and diacritic with the same height as the
height of the character.

In general, the size of diacritics is smaller than characters. However, they can
essentially be distinguished into the following characteristics,

6.2 preprocessing 95

• Ordinary diacritics which are the most common diacritics. They have a pro-
portional size of width and height such that their aspect ratio are close to
one.

• The diacritic with specific dimension where the height is longer than its width.
The height is usually the same as the height of the character but the width is
like the width of the diacritic.

Fig. 31 shows samples of both types and confirms this indication. In this example,
two sample diacritics on the right side of characters have the same height as the
height of those characters but their width are equal to the common size of ordinary
diacritic. In other samples, two other diacritics indicate the sample of ordinary
diacritics. To explore more evidences, Fig. 12 in Chapter 3 provide three fragments of
three document images. Each of them displays many other samples of both diacritic
types coming from three different styles of writing.

To handle separation of each diacritic, parameters remain the same as ones applied
in character separation. They consist of the large area, pixel density, and aspect ratio
which need to be computed based on local characteristic of document images.

The weight formulation for diacritic separation is computed with the same manner
as the formula in character separation defined in Eq. 6.1, 6.2, and 6.5.

To obtain diacritics, settings are applied to all CCs of diacritics. Each setting is
usually built by at least two thresholds with a particular range. These thresholds are
described in the following.

1. The ordinary diacritic type can be grouped based on the combination of the
large area and aspect ratio. The setting of the lower and upper bound w in the
formula of large area as denoted in 6.1 are,

wmin = 0.1 wmax = 0.7 (6.7)

Those constants are still combined with the aspect ratio by the following
interval,

0.2 6 aspect_ratio 6 4.0 (6.8)

2. The pixel concentration of some ordinary diacritics is higher than characters.
For specific diacritics, it can contain almost 80− 90% of their bounding box.
With only above threshold settings, those diacritics will be dropped as being
not a diacritic. Therefore, the second option to handle this condition is to
set other thresholds by involving the pixel density. After analyzing the pixel
density of diacritic with massive concentration, the minimum pixel density
level was set to 0.5. Along with the previous aspect ratio, the threshold is given
as follow

aspect_ratio 6 4.0 pixel_dens > 0.5 (6.9)

96 evaluation

3. The second type of diacritic is only diacritic nengen (” ”). Due to handwriting
style of contributors in transcription, this diacritic may be seen in various
appearances. The aspect ratio of this diacritic is roughly between 0.2 and 0.6.
This threshold has been covered in formula 6.9. However, the pixel density
threshold in this formula only applied for a few of these diacritics. Since, the
this diacritic does not contain massive pixels, another threshold must be set. By
reviewing many samples of this diacritic type, the pixel density is set between
0.1 and 0.3. Therefore, another threshold of this diacritic is

0.2 6 aspect_ratio 6 0.6 0.1 6 pixel_dens 6 0.3 (6.10)

The separation of diacritics based on thresholds setting also has a weakness like
the separation of characters. There is a possibility that a small number of diacritics
will be discarded during the separation process because of a high variability in
writing style of the contributors. However, this is assumed really small compared
to the total samples of diacritics. The summary output generated by all settings is
outlined in Table 5.

Table 5: Connected Components of Diacritic

Attributes Quantity

CCs of diacritic primitives 23,534

Diacritic primitives per page 287

6.2.3 Normalization

A normalization was conducted to transform all CCs into a certain level of uniformity
so that features can be extracted easily. The CCs of Lampung characters and diacritics
were linearly normalized into a fixed square dimension.

The character CCs were respectively normalized into two different square size, the
small size with dimension 20x20 pixels and the moderate size with dimension 32x32
pixels. The first size of normalization is similar to normalization size of MNIST
dataset [26]. However, there is a little difference. The MNIST 20x20 images is a result
of normalization by preserving the aspect ratio, while in this work, the image 20x20
is a result normalized without preserving aspect ratio.

The MNIST bigger size is set to 28x28 with a reposition of the normalized image
such that the center of mass of the pixels positioned on the center of the bounding
box. Whereas in this work, the normalization size is addressed for 32x32 without
such a reposition.

Concerning the small size for normalized images, it is encouraged by two reasons.
First, the small size of normalized image will relatively require a little cost and time
during image operations. The small size means a small amount of pixel leading
to a small processing time. Second, the small size normalization was also desired
because it is closer to the actual size of the real character bounding box. The

6.3 annotation 97

moderate size normalization was merely chosen to provide a larger detail of character
blobs. Another component need to be normalized is the diacritics. In this case, the
diacritic CCs were only normalized to 20x20 pixels through linear normalization.
This dimension is sufficient as the real size of diacritic is small and less in variation.
As described in subsection 5.1.4, the process of the diacritic normalization was begun
by adding one-pixel perimeter surrounding to the raw CCs bounding box as an effort
to keep the original characteristic during the normalization process. Consequently,
normalized diacritic images were surrounded by one-pixel frame of background.

6.3 annotation

The labeling process of Lampung handwritten character dataset had been done
through the work of semi-supervised labeling [57] as reported in sub section 5.2.
The labeling strategy in this work initially covered 20 classes of Lampung characters.
From a description in part 5.3.3.1, there are essentially 18 basic characters, while
the remaining two classes in this composition define a ”miscellaneous classes”.
Both respectively represent a diacritic (class 19) and a collection of noise (class 20).
However, due to a tiny difference between some characters, the almost-similar shape
characters were merged in a class so that the total becomes 11 classes at the second
round of labeling. The concern of the labeling strategy in this work is not to achieve
a high score, but to emphasize potential benefits from this semi-automatic labeling
approach with less work and cost. This section discusses about some results and the
evaluation of this labeling procedure.

6.3.1 Initial Experiment

To assure such a labeling approach can work appropriately and show the potency,
the training and testing had been executed on the Lampung dataset. These data
consist of 35193 CC images of characters extracted from 82 Lampung handwritten
documents. About 20 characters from each document were labeled manually for the
purpose of testing resulting 1640 characters in total. The rest of 33553 CCs were set
for the purpose of training without any label attached to them. To easily check this
information, Table 6 provides a summary regarding this statistical data.

Table 6: Summary of Dataset for Labeling Works

Attributes Quantity

Number of document 82

Manual labeling 20 characters/document

Number of CCs images 35193

Total labeled samples 1640

Unlabeled samples 33553

The implicit labels for the training set were inferred during the training process by
aforementioned strategy as illustrated in section 5.2 which is considered as a semi-

98 evaluation

automatic labeling approach. After the training process, output of the final voting
were 45.44% sample agreed upon two classifiers and 45.99% sample agreed upon
all three classifiers. The rest of 8.57% samples were undecided due to all classifiers
voting differently. Supplying only the sample acquiring from the unanimity vote
(Eq. 5.1) over the testing, the accuracy of K-nearest neighbor classifier was 60%.
Performance of the approach was rather low rate because of the fact of the sample
agreed for unanimity vote on the training set less than half (45.99%) of its total.
In addition, the K-nearest neighbor is susceptible to small dissimilarities so that a
small disparity on the character shapes would not be enough to discriminate the
characters correctly.

6.3.2 Result Analysis and Further Experiment

Sensitivity of K-nearest neighbor on the distortion was visible with a closer look at
the test set after testing process. In this inspection, based on the confusion matrix
many character shapes of the CCs of the test set were really similar. The small
distinction among the shapes was just a short stroke, stripe or strip that frequently
occurred in Lampung handwritten texts. Realizing this fact, it is reasonable to merge
any resembling characters into a single class and then re-labeled them. The following
list is the group of characters (which contain the set of nearly-similar characters)
and their new classes,

• The characters ka(), ga() and sa() were merged into class ka∗.

• The characters nga(), a() and la() were merged into class nga∗.

• The characters pa(), ba() and ma() were merged into class pa∗.

• The characters na() and ja() were merged into class na∗.

• The characters ca() and ha() were merged into class ca∗.

• The diacritic nengen() and noises were merged into class ne∗.

Note that in this list, classes sometimes consist of two actual characters while
sometimes can be three actual characters. With this re-arrangement of classes, the
overall class reduced from 20 to 11 classes.

This relaxing technique by merging some similar characters indeed implied the
better performance than the one that reported from the initial experiment. After
further training with the new merged classes, the number of votes on the training set
with all classifiers agreeing (unanimity vote on formula 5.1) rose to 75.04% while the
vote for 2 classifiers (simple majority on formula 5.2) fell to 22.27%. The rest 2.33%
were undecidable as all classifiers respectively chose a different label. The detailed
classification results on the test set with confusion can be observed in Table 7.

The improvement of the rate in the latest training also influenced positively to the
performance of the recognition rate by k-nearest neighbor over the test set. Relying
only the training sample with all classes agreed (unanimity vote with formula
5.1), the recognition performance of the k-nearest neighbor classifier (k = 1) for 11

character classes improved to 86.21%. The rate is very promising compared to the

6.4 recognition of basic elements 99

ka∗ nga∗ pa∗ ta da na∗ ca∗ nya ya wa ne.∗

ka∗ 360 0 0 2 1 0 0 0 0 0 4

nga∗ 3 256 1 8 0 4 0 0 0 0 0

pa∗ 1 0 373 1 0 0 0 0 0 0 3

ta 9 14 0 133 2 0 0 0 0 0 3

da 8 1 1 19 66 1 0 0 0 0 8

na∗ 6 43 0 0 0 46 0 0 0 0 0

ca∗ 2 0 6 0 0 0 46 0 0 0 0

nya 0 13 3 2 0 2 0 0 6 0 0

ya 1 1 3 0 0 0 1 0 33 0 0

wa 1 5 2 5 0 0 0 0 0 0 0

ne∗ 10 6 6 5 1 0 1 0 1 0 93

Table 7: Confusion matrix for Lampung using a K-nearest neighbor (K = 1)

effort of manual labeling by an expert which were only 162 (3 representations * 54

clusters) instead of thousands of all data samples. The result table with a confusion
matrix can be seen in Table 7 [57].

In this table, the biggest portion of error is 43 on class na∗. The confusion occurred
between class na∗ (na () and ja()) and class nga∗ (nga(), a() and la()).
With a detail observation on both classes, the basic shape of both resemble with each
other. The main stroke of both classes share the same drift so that by sensitivity of
K-nearest neighbor, both character classes were recognized as being the same class.

The rationale to use unanimity vote instead of simple majority vote for this labeling
is indeed to ascertain a feasible guarantee toward the result. This labeling strategy
has been proven to be comparable to another dataset as reported in [57].

6.4 recognition of basic elements

After labeling work had been reported, the next task to be evaluated is the recognition
stage as had been explained in section 5.3. This discussions reviewed the result
of main recognition tasks with respect to characters, diacritics, and association of
both. Each topic was comprehensively elaborated to some extent to assess proposed
approaches or methods.

The subsection is started by a summary of the work, reviewed based on the number
of character classes. Then it is followed by the discussion of two recognition works of
Lampung handwritten characters with different focus on the total character classes
to be recognized. In the first part, recognition was targeted for 11 character classes
while another part targeted for 18 character classes. In addition, the recognition of
diacritics is also covered in this section.

100 evaluation

6.4.1 Recognition of 11 Character Classes

The first recognition task of the Lampung handwritten character was focused on
the set of character group which consists of 11 different classes. These groups are
shrunk from the complete character set since some of them resemble with each other
(see subsection 6.3.2).

This work is the first effort to build a preliminary rate for the Lampung handwrit-
ten character recognition. Since this is an early attempt, a small number of classes is
taken to simplify the whole process of recognition and be focused on the main task
with less problems. The result of this recognition provides a baseline performance
for Lampung handwritten character recognition. With this baseline performance, it
is expected that new methods or approaches can improve this performance.

6.4.1.1 Experiment

The classification task for 11 character classes in this part uses two group of features
as explained in sub subsection 5.3.1.1. These are branch points [8], end points [8],
pixel densities in the first group and the Water Reservoir (WR) [7], [40], [41], [42],
[43], [44] in the second place.

The Neural Network (NN) [4], [10] [8], [54] was chosen to perform classification
because it uses less threshold, less storage, and less computation so that it is easy to
be maintained.

Table 8: Confusion results for branch points, end points and pixel densities

ka∗ nga∗ pa∗ ta da na∗ ca∗ nya ya wa ne.∗

ka∗ 2334 11 2 5 28 17 9 3 0 0 13

nga∗ 3 1500 3 20 2 17 0 35 2 2 20

pa∗ 1 4 2555 4 1 0 5 1 4 1 12

ta 1 33 4 857 6 2 0 2 1 3 17

da 12 1 1 4 611 0 0 0 1 3 13

na∗ 14 20 0 2 3 480 0 2 1 0 4

ca∗ 4 0 4 0 0 2 402 0 1 0 4

nya 1 31 0 2 2 5 0 170 9 0 11

ya 0 0 11 0 0 0 2 2 178 0 5

wa 4 19 1 5 3 1 0 1 0 36 5

ne.∗ 31 47 33 36 17 12 12 15 0 4 707

The architecture of NN used in this work is multi-layer perceptron which consist
of three layers i.e. the input layer, hidden layer, and output layer. The input layer
always refers to the the size of feature vectors, while the output layer refers to the
number of target classes. Setting of hidden layers is more flexible compared to both
layers. Logically, the size of hidden layer can be assigned to a value in the range of
input layer and output layer. This consequently allows the NN to manage a various
combination values from input layer to output layer. However, assigning to another

6.4 recognition of basic elements 101

values outside of the interval input-output is still possible but it may impact to the
performance of the NN. If the size of hidden layer is below the lowest size, the NN

may lose some input combinations for supplying the output layer. In contrast, if
the size of hidden layer exceeds the biggest size, the NN may trigger an over fitting
before processing by the output layer.

Experiments were done at least three times by executing the NN in several network
setups to obtain robust results. The configuration setup comprises of adapting the
size of hidden layer and changing of learning rate. The setting of the value of the
hidden layer depends on the size of the input and output layer, while the learning
rate is set in the range 0.05− 0.3.

Table 9: Confusion results using water reservoir based descriptors

ka∗ nga∗ pa∗ ta da na∗ ca∗ nya ya wa ne.∗

ka∗ 2338 2 0 1 43 13 9 1 0 1 14

nga∗ 13 1461 6 42 0 31 2 14 0 4 31

pa∗ 0 2 2546 10 0 0 12 0 2 0 16

ta 1 51 14 810 10 1 2 1 1 0 35

da 61 3 1 17 536 2 2 0 0 4 20

na∗ 21 21 1 1 0 467 0 10 0 1 4

ca∗ 10 0 7 0 0 0 397 0 3 0 0

nya 0 20 1 3 0 6 0 185 7 0 9

ya 1 1 2 6 0 0 4 3 177 0 4

wa 5 17 0 1 9 0 0 0 0 34 9

ne.∗ 32 48 29 66 13 9 13 8 2 13 681

The first configuration deals with the feature representation of branch points, end
points, and pixel densities that are extracted from each CC with small grid areas.
These feature representations consist of a total of 75 values. Hence, the size of the
input layer is 75. A NN pattern for a complete layer configuration can be in the form
of 75− h− 11 where the variable of h indicates the size of hidden layer. During the
training of the NN, the variable h is set to some arbitrary numbers to experience
various results. Testing results indicate that the best rate can be achieved at the level
93.20% with the best parameter h = 75. The performance is reasonably accurate
and acceptable for easy-extracted features like branch points, end points, and pixel
densities. Therefore, the feature of branch points, end points, and pixel densities
is very potential for Lampung handwritten character recognition. The detailed of
confusion matrix is presented in Table 8.

The second round of this 11 classes recognition relies on the Water Reservoir (WR)
feature. This feature vector consists of 30 values as indicated at the structure in Fig.
24. Hence, the size of input layer of the NN is 30. The structure of the NN layering for
this training is 30− h− 11 with the variable h also representing the size of hidden
layers. The testing result by using this feature yields the rate 91.32% with the best
parameter h = 30. This rate is approaching the previous result with the feature

102 evaluation

Table 10: Confusion results for branch points, end points, pixel density and water reservoirs
[20]

ka∗ nga∗ pa∗ ta da na∗ ca∗ nya ya wa ne.∗

ka∗ 2358 11 1 0 18 17 6 1 2 0 8

nga∗ 5 1528 5 13 2 16 1 9 0 4 21

pa∗ 0 3 2559 3 0 0 4 3 3 2 11

ta 1 26 4 854 6 0 0 1 1 2 31

da 20 4 0 7 598 2 0 1 1 1 12

na∗ 18 15 0 0 0 484 0 4 0 1 4

ca∗ 6 0 4 1 0 1 397 0 3 1 4

nya 0 12 2 0 0 6 0 198 6 0 7

ya 2 0 6 2 1 0 1 2 182 0 2

wa 5 8 0 1 5 0 1 1 0 47 7

ne.∗ 25 39 19 37 18 12 5 12 3 6 738

branch points, end points, and pixel densities. To analyze the result, Table 9 shows
the confusion matrix with WR features.

For an extended experiment, both features are merged as one integrated feature
for the recognition task. With the size 75 from the first feature set and 30 from the
second one, the total dimension of this new feature is 105, which also indicates the
size of the input layer for the NN. Thereby, the complete structure of this NN layers
is 105− h− 11. This experiment is developed based on the two former experiments.
As for the two former experiments, this experiment round also executed several
configurations to see the performance of this combined features. These configurations
are generated by modifying the NN learning rate as ruled in the beginning of this
subsection and the size of hidden layer with value in between the value input-output
layer. The recognition rate of the NN with this concatenated features is 94.27% with
the best parameter h = 105. This achievement answers the assumption that the
merging of these features can improve their original performances. The confusion
matrix of the recognition with this merging features can be seen in Table 10.

All setting of those three experiments remain the same. The difference only occurs
at the size of input layer which is inferred from the dimension of the respected
feature vector.

6.4.1.2 Discussion of the Result

During the recognition of 11 character classes of Lampung handwriting, three
feature components i.e. branch points, end points, and pixel densities are used
in the first experiment. A combination of those three features achieved the rate
93.20% accuracy [20] which indicates a proper feature representation to the nature
of the character. This appropriateness can be testified from the fact that Lampung
characters are non cursive characters so each character will have at least one end
point. Moreover, branch points that can be identified from skeletonized character

6.4 recognition of basic elements 103

image are also frequently found in Lampung characters due to small strokes, blind
bows, intersection, etc. Both strong points are still enhanced by pixel densities that
represent local measurement so that all these representations together generate a
very promising recognition rate.

(a) The confusion between character ka* and da.
Character ka* is recognized as character da
(top) and vice versa (bottom)

(b) The confusion between character nga* and
ta. Character nga* is recognized as character
ta (top) and vice versa (bottom)

Figure 32: Samples of confused characters during handwritten character recognition by
using the feature of Water Reservoir (WR). Each sample consist of three images, on
the left is gray scale in original size, on the center is binarized image in normalized
size, and on the right is skeletonized image in normalized size.

From the confusion matrix of this recognition on table 8, it seems that the most
significant problem occurs for recognition of the character of the class nga* to the
class nya and vice versa. The number of the character of the class nga* which are
recognized as the character of the class nya is 35 and there are 31 confusions for the
other way around. Analyzing from the shape of both classes indicated that their
skeleton image contain the same amount of end points on the top and bottom side.
Those end points for both classes also appear in the same zone and this strongly
indicates the confusion between both classes. The same situation also appears for
the class nga* and the class ta. In this regard, both characters also have the same
situation as class nga* and class nya.

Meanwhile, Table 9 indicates the confusion of the recognition by using the feature
of the WR. The distribution of non-zero values in this table and the previous one
are relatively similar with each other. However, the source of the major problem
comes from recognition of two pair of classes, between the class ka* and the class
da and between the class nga* and the class ta. The number of the character of the
class ka* that are recognized as the character of class da is 43 and 61 characters of the
class da are recognized as the character of the class ka*. Moreover, the number of the
character nga* recognized as ta is 42 and there are 51 character ta recognized as nga*.

To see the confusion of two pair of classes, Fig. 32 shows four samples of the major
problem during the process of recognition by using the feature of WR. On the left
images, the confusion occurs between the character ka* and character da, and on the
right side the confusion occurs between character nga* and character ta.

In figure 32a, both characters in their original samples on the left part are clearly
distinguishable. However, the process of binarization, normalization, and skele-

104 evaluation

Table 11: Recognition improvement for the recognition by using the feature representation of
1Branch point, end points, pixel density. 2Water reservoir. 3Concatenation of 1 & 2

Character Correct recognition by

Class BED1 WR2 BED-WR3

ka∗ 2334 2338 2358

nga∗ 1500 1461 1528

pa∗ 2555 2546 2559

ta 857 810 854

da 611 536 598

na∗ 480 467 484

ca∗ 402 397 397

nya 170 185 198

ya 178 177 182

wa 36 34 47

ne.∗ 707 681 738

tonization had transformed each of them into the shape that are similar with each
other. Therefore, the feature of WR of both characters is the same for their number of
reservoirs and type of reservoir. While their gravity center (see the dot in the center
of WR in Sub fig. 32a), volume, and width-height of the WR are nearly the same. And
finally, the complete feature representations of the character ka* and da are identical.
This cause a confusion during recognition.

Table 12: The sample of incorrect characters and their reduction for the feature representation
of 1branch point, end points, pixel density. 2Water reservoir. 3Concatenation of 1

& 2

Character Recognized as
Incorrect recognition by

BED1 WR2 BED-WR3

nga∗ nya 35 14 9

nya nga∗ 31 20 12

nga∗ ta 20 42 13

ta nga∗ 33 51 26

ka∗ da 28 43 18

da ka∗ 12 61 20

The second sample of confusion is given in Sub fig. 32b. In the final image on
the right side, the shape of both characters are totally different. Character nga* (the
image on the top in Sub fig. 32b) has two reservoirs with type the top and the bottom.
This also occurs to character ta which also has the top and the bottom reservoirs.
With almost the same size and position in their water reservoirs, the probability of

6.4 recognition of basic elements 105

a misinterpretation is increasing. Hence, this occurrence becomes the source of a
confusion between the characters nga* and ta.

With a low size of input vector from the WR feature compared to the size of branch
points, end points, and pixel densities, the result of the NN with WR as the feature is
still competitive to the performance of the NN with features of branch points, end
points, and pixel densities. Although the performance of recognition by using the
WR feature is lower compared to performance of recognition by using the features
of branch points, end points, and pixel densities, the WR characteristic provides
a significant effectiveness during recognition of Lampung handwritten characters.
It is able to discriminate most of the characters in Lampung dataset although the
size of feature is only 30. This feature can be categorized as a distinctive feature for
Document Analysis and Recognition (DAR) of Lampung handwritten characters.

The confusion of each feature representation has been discussed previously. Each
feature representation brings some drawbacks as the impact of constructing the
feature from the original characters. The concatenation of both groups of features is
also used for the character recognition. The output of this recognition is given in
Table 10. From this table, the concatenation feature representation indicates some
improvements of the drawbacks that previously appeared in the output of a single
group of feature. It can be noted that the majority of the characters are improved.
A comparative result of the recognition between three feature representations can
be observed in Table 11. This table can be read as the number of correct characters
recognized from the perspective of each feature representation.

Table 13: Summary of the NN experiment for Lampung handwritten character recognition
for 11 character classes. The feature representation is 1Branch point, end points,
pixel density. 2Water reservoir. 3Concatenation of 1 & 2

Features Dimension
Layer size Learning

Rate
Performance
of Test(%)Hidden Output

BED1
75 75 11 0.1 93.20

WR2
30 30 11 0.1 91.32

BED-WR3
105 105 11 0.2 94.27

Beside measuring the correct recognition from each feature representation, an
alternative evaluation can also be investigated from the incorrect recognition per-
spective, particularly the classes with significant mis-classification as previously
discussed. The concatenation of the feature of branch points, end points, pixel den-
sity, and WR contributes to a better recognition output. As expressed in Table 12,
some samples of misclassification characters can be reduced after a recognition by
using a concatenation of the feature of branch point, end points, pixel density and
WR.

This reduction stems from the fact that both feature representations concurrently
support each other during recognition. One feature representation capable to depre-
ciate some drawbacks of another feature representation and vice versa. For example,
by only using the feature of WR as presented in Figure 32b, the recognizer had
misclassified those characters. By adding the feature of branch point, end points, and

106 evaluation

pixel density, the position of branch points and end points along with pixel densities
can precisely be discriminated for both character. This can drive the classifier to
decide a correct character during recognition process.

To summarize of Lampung handwritten character recognition for 11 charac-
ter classes, Table 13 compares the performance of the recognition based on each
feature representation. A remark from this table is that the combination feature
between branch point, end points, pixel density with WR is able to upgrade the
final performance although the improvement is not large. Therefore, those feature
representations can be a suitable choice for recognition of Lampung handwritten
character recognition.

6.4.2 Recognition of 18 Character Classes

The previous recognition task that focuses on 11 character classes is a preliminary
recognition task of the Lampung handwriting in a basic level. The outcome is
usable but there is a lack of flexibility and may not be detailed enough for further
application. Therefore, a more refined character recognition is necessary to provide
an appropriate entity for Lampung handwritten character recognition.

The following subsection address the most complete recognition of the basic
character of Lampung. The recognition is done for 18 character classes. Besides
providing a first baseline for 18 character classes, this recognition also prepares
a necessary foundation for the next stage which is a task with a more complex
structure including the diacritics. With respect to this issue, the accuracy of the
recognition in this stage become very important for the next stage since it will
directly affect the accuracy of the next stage and it will ultimately influence the
overall accuracy of the framework. Therefore, it is necessary to strive with all efforts
to achieve the best accuracy for the recognition.

6.4.2.1 Experiment

Due to the classification of 18 character classes has to achieve the accuracy as
high as possible, some strategies have been applied to produce some results which
hopefully one of them has small error rate. The strategies are arranged with respect
to classifiers or features.

The first strategy reuses the former features i.e. the feature of BED-WR for a
classification of 18 character classes and keeps the use of Neural Network (NN)
as the classifier. The configuration of the NN is three layers with some variation
of its hidden layers. There are five settings of hidden layer respectively for each
separated classification with 85, 95, 105, 120, and 130 nodes. These five composition
is respectively evaluated over the validation set and the optimum one is then applied
to the testing set. Tabel 14 provides the evaluation of the NN with feature BED-
WR for various settings of the network configuration. The evaluation of the NN

toward the validation set returns the optimum performance at 92.57% with the
layer composition of 105− 95− 18. The rate of testing set by using this network
configuration produce the accuracy 94.50%. This rate serves as the baseline accuracy
of the 18 character classes.

6.4 recognition of basic elements 107

Table 14: The performance of Neural Network (NN) classification with the feature combina-
tion of the branch points, end points, pixel densities, and water reservoir (BED-WR)
for 18 character classes.

Features
Layer size Learning Accuracy(%)

Input Hidden Output rate Validation Set Testing Set

BED-WR 105 85 18 0.1 90.98%

BED-WR 105 95 18 0.1 91.56%

BED-WR 105 105 18 0.1 91.41%

BED-WR 105 120 18 0.1 91.61% 94.18%

BED-WR 105 130 18 0.1 91.41%

BED-WR 105 95 18 0.2 92.57% 94.50%

BED-WR 105 105 18 0.2 91.32%

BED-WR 105 120 18 0.2 91.77%

BED-WR 105 130 18 0.2 91.99%

The first effort achieved the accuracy at 94.50% which still remains the range
around 5% for an improvement. Another strategy could be applied to reduce the gap
by considering another classifier while keeping the use of BED-WR features as done
previously. The option for classifier is the use of SVM classifier which better than
NN in the case of input with high dimensional spaces. As some results should be
produced, various kernel functions in the SVM are applied during classification. There
are four widely used types of function to be employed as the kernel of the SVM i.e.
the linear, polynomial, radial basis, or sigmoid function [6]. All those functions were
involved in experiments with or without a scaling of the input. Scaling is basically
a process to convert data values of the feature vector into a particular interval that
are shrunk from its original values. With such an interval, some negative impact of
the original data processing can be minimized. For example, dominating the big
numerical ranges over smaller numerical ranges can be avoided by this restriction.
Also, a large calculation problem during inner product of the kernel from original
data can also be reduced. The output of this classification can be observed in Table
15.

The usage of a different classifier for classification positively contributes to the
classification accuracy although the improvement is not really significant. This
second effort indeed increases the accuracy from 94.50% to be 95.40%. A further
strategy is needed to raise a better accuracy for the next classification. Since the
switch of the classifier has been applied previously, the switch of features should be
the next strategy. In this turn, the feature of BED-WR is replaced by the feature of
chain codes of the contour. The extracted features consist of 256 values as the input
to the SVM classifier. Detail of the feature extraction can be found in part 5.3.3.1.

During practical works, several experiment runs were executed based on some
predefined settings of SVM classifier. This configuration deal with the setting of
the kernel functions and scaling of inputs. The performance of those results over
validation set were respectively noted and then compared with each other in order

108 evaluation

Table 15: The performance of Support Vector Machine (SVM) classification with the feature
combination of the branch points, end points, pixel densities, and water reservoir
(BED-WR) for 18 character classes.

Features
Kernel Scaling Accuracy (%)

function input Validation set Testing set

BED-WR Linear No scaling 92.91%

BED-WR Polynomial No scaling 92.96% 94.78%

BED-WR RBF No scaling 92.02%

BED-WR Sigmoid No scaling 44.36%

BED-WR Linear Scaling 93.46% 95.40%

BED-WR Polynomial Scaling 82.51%

BED-WR RBF Scaling 88.76%

BED-WR Sigmoid Scaling 87.89%

to find the best configuration. The evaluation on the validation set and testing set is
presented in Table 16.

Table 16: The performance of Support Vector Machine (SVM) classification with the feature
the chain codes for 18 character classes.

Features
Kernel Scaling Accuracy (%)

function input Validation set Testing set

Chain code Linear No scaling 93.39%

Chain code Polynomial No scaling 95.39%

Chain code RBF No scaling 95.73% 97.38%

Chain code Sigmoid No scaling 83.24%

Chain code Linear Scaling 94.60% 96.47%

Chain code Polynomial Scaling 84.11%

Chain code RBF Scaling 91.44%

Chain code Sigmoid Scaling 89.56%

The best rate of the recognition in these settings appeared from an experiment by
using the RBF kernel. The LIBSVM was run over the samples without performing a
scaling procedure to the input vectors. The best performance from experiments with
those configuration is 97.38%. A complete result of the character recognition and
their confusions are given in the Table 17.

The accuracy from the last effort indicates a good performance of the last strategy
for the classification of 18 character classes. The switch of the classifier from NN to
SVM and features from BED-WR to chain codes are success to generate an acceptable
accuracy for character classification as the foundation of the next stage in the
framework.

6.4 recognition of basic elements 109

Table 17: Confusion matrix of basic character recognition by SVM for 18 classes
ka ga nga pa ba ma ta da na ca ja nya ya a la sa wa ha

ka 743 4 0 0 0 0 1 3 2 0 0 0 0 0 0 4 0 0

ga 2 624 0 0 0 0 0 3 0 0 0 0 0 0 0 4 2 2

nga 1 3 161 0 0 0 0 0 0 0 0 0 1 0 4 0 0 1

pa 0 1 0 911 0 7 1 0 0 0 0 0 0 0 0 0 0 0

ba 0 0 0 5 451 0 0 0 0 0 0 0 0 0 0 0 0 2

ma 0 0 0 4 1 727 0 0 0 0 0 3 0 0 0 0 0 0

ta 0 0 0 0 0 0 771 0 0 0 1 0 0 3 3 0 0 0

da 2 7 1 0 0 0 2 511 0 0 0 0 0 1 0 1 1 0

na 1 0 2 0 0 0 1 2 280 0 5 3 0 1 1 1 0 0

ca 0 0 0 0 0 0 0 0 0 42 2 1 0 0 0 0 0 2

ja 1 0 0 0 0 0 0 0 2 0 141 1 0 3 0 0 0 0

nya 0 0 0 0 0 0 0 0 2 0 2 171 2 1 0 0 0 0

ya 1 0 0 0 0 0 0 0 1 0 2 3 164 0 1 0 0 1

a 5 0 1 0 0 0 0 0 0 0 4 0 0 670 5 0 0 0

la 0 1 3 0 0 1 2 1 3 0 0 1 0 2 385 0 0 0

sa 8 12 0 0 0 0 0 3 1 0 0 0 0 0 0 566 0 1

wa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 70 0

ha 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 1 1 275

6.4.2.2 Discussion of the Result

The chain codes work very well for recognition of the basic Lampung handwritten
characters in 18 classes. The majority of handwritten characters can be accurately
recognized. As stated previously, the performance of the SVM by employing the
chain code features obtains the accuracy of 97.38% which is the best result that had
ever been produced.

Although the majority of characters were successfully recognized, some small
misclassification characters still exist. According to confusion matrix in Table 17,
some problem occurred on the recognition of character sa (), da (), and pa ().

Character sa () confuses with character ka () in 8 samples. In addition,
character sa () also confuses with character ga () in 12 samples. This problem
happens because the main shape of those three characters is relatively identical
which are formed by character ga as the main shape. The only difference among of
them is a small tip attached in the middle of the body as can be seen in Fig. 33.

The confusion of the character sa to be character ga in this example tends to occur
because the small vertical tip on the top of the character sa is not identified as a
branch of the character body but as an integral unit of the shape in the upper right
zone of the character sa as can be seen in Subfig. 33a. In its feature representation,
the chain codes of the tip will appear in the upper right area and then by the SVM

classifier, those codes will be considered as the chain codes of the main body in
the upper right as well. Meanwhile, the chain codes in the middle area of character
sa where the tip should be located as can be observed in Subfig. 33c, consequently
become blank. As the impact, the likelihood of the chain codes representation of
character sa and ga being similar becomes increasing. As a consequence, the SVM

110 evaluation

(a) The character sa con-
fuses to character ga
due to the position of
its vertical tip

(b) The character sa con-
fuses to character ga
due to the tip is too
small

(c) A successful recogni-
tion of character sa

(d) A successful recogni-
tion of character ga

Figure 33: Some samples of character sa confuse to be character ga and a sample of character
sa and ga which is correctly recognized.

classifier can confuse the character sa in Subfig. 33a with the character ga in Subfig.
33d.

Another case of the confusion of character sa to be character ga is depicted in
Subfig. 33b. In this example, the vertical tip of the character sa is tiny so that
the edge boundary of this tip is also small. As the edge boundary of the tip is
considerably small, the chain code representation of such a tip will not provide
sufficient information to discriminate the character sa from ga. Thus, the character sa
is often recognized as ga.

The same phenomenon is also applied to the confusion of the character pa ()
as ma (). Both characters also have the same main shape which is formed by
character pa. The difference with the previous confusion is only the curve orientation
of characters. If the curve of the character ga in the previous analysis faces down,
the character pa has a curve in the opposite orientation: its curve faces up. Thus, the
problem of confusion between the character pa and ma has also happened in the
same manner as the confusion of sa and ga.

(a) The confusion of
character da as
character ga

(b) A successful recogni-
tion of character da

(c) A correct recognized
character da that is
properly written

(d) A successful recogni-
tion of character ga

Figure 34: The sample of character da confuse to be character ga and its comparison to a
correct recognition of character da and ga

The problem of confusion is also caused by the similarity of both characters in
the shape of their contour images. This case can be found between character da ()
and character ga (). One example of this confusion is shown in Subfig. 34a. If the

6.4 recognition of basic elements 111

contour of da in Subfig. 34a is compared to the contour of ga in Subfig. 34d, there is
a high level similarity between both characters. A little difference can be observed
on the right tail of the character. In the contour of the character ga in 34d, the right
tail is only in form of a straight vertical line. While in the contour of character da in
Subfig. 34a, the right tail is not a straight line but the tail is shifted a little to left. A
proper character da has the right tail with a left-shifted stroke shich is much longer
as can be seen in Subfig. 34b than the one which is shown in Subfig. 34a. Basically,
the character da can be distinguished to ga if some contributors of handwritings
wrote them properly. The difference between da and ga is really clear as can be
compared between Subfig. 34c and Subfig. 34d. However, the writing style of some
contributors, especially as shown by the sample in Subfig. 34a, enable them to be
confused.

6.4.3 Recognition of Diacritics

Diacritics are a special element in the Lampung writing system because they are
employed to accomplish a specific function. Particularly, they have an important
relation to characters in composing syllables of a word as illustrated in Section 3.4.
In fact, recognition of diacritics is also an essential task in Lampung handwritten
character recognition framework. Although diacritics have particular association to
characters, it is necessary to recognize them independently in one step to provide
prior information for the association step.

Since the recognition of diacritics in this work is the first recognition of Lampung
diacritics, no baseline of the diacritic recognition has been documented.

Note that as there is no specific name for diacritics in the absence of its position
to the character, the name of each diacritic glyph would be mentioned as class 1 to
class 7 as shown in Table 20.

6.4.3.1 Experiment

Experiments were performed using LIBSVM [6] to recognize 7 diacritic classes. Trials
had been executed several times based on some predefined combination of SVM

parameters as well as feature representations. The setting in this experiment consists
of various type of kernel functions and the scaling process for inputs.

The feature representation is arranged in two groups of feature. The first group
consists of the feature representation of the major axis length, minor axis length,
orientation, aspect ratio, and eccentricity (F1) generated from original size Connected
Component (CC). Then, the second one is composed by pixel densities only (F2)
extracted from normalized CC. Each group is executed by applying four kernel
functions and with or without scaling process of input samples. The kernel function
RBF dominate the optimum classification in both features. The best accuracy in this
configuration is performed by the classification with feature F2. The results of these
experiments are given in Table 18.

Due to a necessary improvement of the accuracy, the last scheme is to concatenate
the feature of F1 and F2 to be one single feature for classification. The configuration
setting with respect to kernel functions and scaling remains the same as previously.

112 evaluation

Table 18: The performance of Support Vector Machine (SVM) classification of each feature F1
and F2 for 7 diacritic classes.

Features
feature Kernel Scaling Accuracy (%)

size function input Validation set Testing set

F1 5 Linear No scaling 67.29%

F1 5 Polynomial No scaling 78.07%

F1 5 RBF No scaling 81.10% 83.18%

F1 5 Sigmoid No scaling 37.49%

F1 5 Linear Scaling 65.98%

F1 5 Polynomial Scaling 82.91%

F1 5 RBF Scaling 83.72% 85.96%

F1 5 Sigmoid Scaling 73.51%

F2 25 Linear No scaling 94.72%

F2 25 Polynomial No scaling 93.00%

F2 25 RBF No scaling 95.25% 96.47%

F2 25 Sigmoid No scaling 94.63%

F2 25 Linear scaling 94.91%

F2 25 Polynomial scaling 93.00%

F2 25 RBF scaling 95.47% 96.43%

F2 25 Sigmoid scaling 94.41%

With this configuration where both features are concatenated, the classification
produces some better results. The use of the multi groups of feature shows im-
provement of classification rates compared to the rate of the single group of feature.
The best rate was achieved by a concatenation of F1 and F2 by employing linear
function without scaling its inputs. The accuracy 97.61% of the diacritic classification
is sufficient to be used in the next stage of the framework. The detail of confusion
matrix of this classification can be observed in the Table 20.

6.4.3.2 Discussion of the Result

The difference accuracy between classification of the diacritic by single group of
feature F1 and F2 is rather big. The classification by using the feature F1 is not more
than 86%, while the classification by using the feature F2 can reach accuracy around
96%. A reason of the big gap between the accuracy of the classification by F1 and
F2 is that the size of the feature F1 is much smaller than the feature F2. A small
size of the feature representation means that the feature representation contains a
limited information about the characteristic of the diacritic. As the consequence, the
performance will not be significant as shown in table 18. The maximum performance
in this respect is 96.47%, achieved by the classification by using the feature F2.
Although this maximal accuracy is considered as a good result, the prerequisite

6.4 recognition of basic elements 113

Table 19: The performance of Support Vector Machine (SVM) classification with concatenation
of the feature F1 and F2 for 7 diacritic classes.

Features
feature Kernel Scaling Accuracy (%)

size function input Validation set Testing set

F1 and F2 30 Linear No scaling 96.13% 97.61%

F1 and F2 30 Polynomial No scaling 93.97%

F1 and F2 30 RBF No scaling 91.16%

F1 and F2 30 Sigmoid No scaling 37.77%

F1 and F2 30 Linear scaling 95.97%

F1 and F2 30 Polynomial scaling 94.16%

F1 and F2 30 RBF scaling 96.38% 97.31%

F1 and F2 30 Sigmoid scaling 95.50%

Table 20: Confusion matrix of diacritic recognition in 7 classes by SVM

Diacritic class 1 2 3 4 5 6 7

1 () 836 0 8 0 0 0 0

2 () 0 493 1 0 2 2 3

3 () 3 2 1014 0 31 2 0

4 () 0 0 1 1003 2 4 4

5 () 9 2 3 5 2083 0 2

6 () 0 0 2 1 5 96 4

7 () 0 5 2 6 0 4 418

of the framework should achieve the accuracy as high as possible. Therefore, the
accuracy should be improved in the further experiment because the accuracy can be
still improved in the range of 1%-3%.

Concerning the usage of kernel functions during classification, the effect on the
performance is relatively equal with each other except a few cases in the usage of
the sigmoid function. In the classification by the feature of F1 without scaling, the
performance is only 37.49%. The similar result also occurred in the classification by
concatenation of feature F1 and F2 without scaling. The performance of classification
only reach accuracy 37.77%.

The use of multi groups of feature with a proportional input size also enable the
feature representation to contain more relevant information so that the classifier
can recognize the diacritic in more accurate. This phenomenon can be observed
from the fact that combination of the F1 and F2 as shown in table 19 contributes to
the improvement of the performance. In the single group of feature, the feature F1
classified the diacritic with the performance of 85.96% and the feature F2 classified
the diacritic with the performance of 96.47%. When both feature representations are

114 evaluation

combined, the performance of recognition with the RBF kernel increases to 97.61%
which is the best rate in the classification of the diacritic.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 35: The sample of confusion among the diacritic class 3 and 5

The rate 98.10% of the diacritic recognition can be categorized as a high recognition
rate. However, there are still some error cases that need to be examined regarding
the occurrence of confusions. The Table 20 shows the detailed distribution of the
confusion among diacritic classes after recognition process. The first concern about
this table can be started from the highest confusion. There are 31 samples of the
diacritic class 3 () that is confused to be the class 5 (). Meanwhile, there are 3
samples of the class 5 confused to be the class 3. Some samples of these confusions
can be observed in the Fig. 35 where sub fig. 35a - 35e represent the confusion of
class 3 to be class 5 and sub fig. 35f - 35h represent the confusion of class 5 to be
class 3.

The first case of confusion occurred by the effect of noise on the body of the
diacritic. As shown in sub fig. 35a and 35b, both confusion occurred due to an excess
of tiny line at the right position of the main body of the diacritic. This tiny line
consequently ruin the proper feature representation of the class 3. The SVM classifier
recognized these samples as the class 5.

The next confusions in these samples is influenced by the writing style of contribu-
tors. The proper shape of class 3 is a small vertical line but many confusion samples
of this class are written slightly to the right. In fact, the stroke of the diacritic is no
longer vertical but it instead tends to form an angle around 45o relatively to vertical
axis or horizontal axis. As the classifier failed to identify the diacritic of class 3, then
the classifier consider them as closer to class 5. The sample of this confusion can be
observed in sub fig. 35c - 35e. This tendency also occurred during the recognition of
the class 5. Samples in sub fig. 35f - 35h indicate three samples of the class 5 that are
incorrectly identified as the class 3. The trigger for these confusions is similar to the
reason of previous confusion. The writing style of contributors cause the change the
correct stroke direction of diacritics. Instead of composing a small horizontal line as
the shape of the class 5 or a vertical line as the shape of class 3, contributors made
an angle around 30o − 45o to the horizontal axis which should not be happened.
Since both class 3 and 5 might be written with the same angle which eventually
form similar shapes as seen in Fig. 35, the classifier can recognize it as one of both
classes.

6.4.4 Recognition of Two-components Character

The pair component of character ’ra’ and ’gha’ is obtained from classification of basic
components. Therefore, combining of these components is an intermediate step after
classification of basic components before performing classification of the Lampung

6.4 recognition of basic elements 115

compound character. The procedure of construction for the pair has been explained
in part 5.3.3.2. However, that procedure only describes the task in a normative way.
Therefore, this sub section will describe this normative way into practical aspect so
that the execution can be carried out. In addition, the evaluation of classification is
also provided.

6.4.4.1 Experiment

The experiment is started by isolating class 2 () or 4 () that are a potential
component of character ”ra” () and ”gha” (). Then, a process to search another
pair entity from its surrounding is carried out. The first aspect to be concern in this
regard is the number of neighbor to be examined prior to feature extraction. In this
experiment, the number of the surrounding neighbors to be checked for pairing is
restricted to four closest neighbors. This number is determined according to trial
runs with the fact that execution of too many neighbors can be ineffective since the
target of searching is only one class. In fact, four neighbors are adequate to provide
a nominee for further pairing inspection.

The second aspect is the selection of feature representation of the pair. Since there
are two components to be classified as one character, the feature representation
should be a measurement such that it can represent a strong relation between two
components. Features that suit to this criteria are the distance of gravity center be-
tween both components and the overlapping area of both bounding boxes. Although
only two values, both values are powerful enough to determine the pairing.

The classification is addressed for three different classes. The first two classes
represent a positive pairing, which means that both components unite as a two-
components character. In this context, those relate to class 21 for character ”ra” and
class 22 for character ”gha”. The remaining class represents other than aforemen-
tioned classes which explicitly indicates two independent components. This means
that each component respectively represents a single component character.

A learning process of the pairing was run from training data with total sample
2377 pairs. Unfortunately, the number of character ”gha” is only 5 samples over total
samples which is only 0.2%. In fact, the classifier has less information to model the
character ”gha” during training phase. This condition is worse in the validation set.
Among of 455 samples in the validation set, none of them is coming from character
”gha”.

For the purpose of testing, pairs are composed from the basic character of class 2

and 4. The number of pairing nominee depend on how many character of class 2

and 4 detected during the basic character recognition. By considering these classes
as pivot, the pair is constructed from surrounding character classes. And the result
is compared to real pairs from ground truth.

The experiment utilizes Support Vector Machine (SVM) for classification. To provide
some comparative outputs, the dataset is run using several kernel function i.e. linear,
polynomial, Radial Basis Function (RBF), and sigmoid function. The performance
and analysis of the result is illustrated in the following subsection.

116 evaluation

6.4.4.2 Discussion of the Result

Outcomes after experiments are collected and recorded to measure the performance
of classification. The optimum outputs are generated by SVM classifier with linear
kernel function. The result of classification for two-components character can be
organized as illustrated in the table 21.

Table 21: The experiment outcomes of two-components character

Classified pairing Classified nonpairing

Pairing class 428 (True Positive/TP) 5 (False Negative/FN)

Nonpairing class 9 (False Positive/FP) 269 (True Negative/TN)

The performance is measured based on values in table 21. By applying formula
5.10 and the value in this table, the performance of two-components character
recognition can be computed as ”precision” and ”recall”. The computations are
given in the following.

Precision =
TP

TP+ FP
∗ 100% = 97.94%

This ”precision” describes the performance of the recognition proportional to classi-
fier outcomes. In this case, it shows that from the total pairing outcomes, 97.94% of
them are correct pairings. The remaining pairing outcomes i.e. 9 pairs are misclas-
sification. This misclassification occurred when a non-pairing class is classified as
a pairing class. The trigger of this pairing is that both components are nearby and
have an overlapping area as requiring by a two-components character. To see this
misclassification, some samples are given in Fig. 36.

(a) (b) (c)

Figure 36: Samples of 2-components characters which are incorrectly recognized as 2-
components characters by classifier

Subfig. 36a indicates two independent components, class 2 (character ga) and class
4 (character pa), which are correctly classified during single-component classification
and identified as non-pairing in ground truth. However, during classification of
pairing, classifier recognized them as a pair due to both are close with a sufficient
overlapping area.

The second sample in subfig. 36b is classified as a pairing. One of its component
is incorrectly recognized due to a touching diacritic on the top of class 2 (character
ga). This component is recognized as class 16 (character sa) which is consequently
impossible to construct a pair. Therefore, both components are regarded as two
independent classes in the ground truth.

The last sample in subfig. 36c shows a broken component of character a () into
two pieces. One piece is similar to class 2 and another piece is similar to class 4. Since

6.4 recognition of basic elements 117

both components are close each other and having overlapping area, the classifier
identifies them as a pair.

The next measurement is the ratio of the correct unit over the ground truth which
is called ”recall”. By supplying the values from table 21, this measurement can be
computing as,

Recall =
TP

TP+ FN
∗ 100% = 98.85%

By examining this formula, the correct pairing of recall is viewed as the correctness
from perspective of the total ground truth. From this context, there are 5 pairs of
misclassification and there is no further information from generated list by classifier.
This indicate that the classifier has been failed to establish pairing nominees by
particular reasons. To inspect them, Fig. 37 provide all pairs in this misclassification

(a) (b) (c) (d) (e)

Figure 37: Samples of 2-components characters which are unknown after classification of
two-components characters by classifier

The major problem in this situation is that one component has been detected
as other classes than class 2 and 4. In fact, the remaining component does not
have a proper pair. Therefore, the classifier considers the both components as two
independent components. This fact can be observed from samples in Fig. 37. In this
example, all cases of misclassification of pairing are caused by misclassification of
components class 2 as another classes i.e. class 8, 16, 17, and 18 due to the touching
of diacritic or noise.

Two aforementioned performance rates only rely on the correctness from the side
of true pairings. While, the element of true non-pairing nominees also involved in
classification process. As this component also contributes in overall classification
process, true non-pairing nominees can not be just ignored. It should be incorporated
in the measurement of the performance. The term of ”accuracy” is used to rate the
magnitude the overall of classification performance of two-component character. The
rate is compute as follows.

Accuracy =
TP+ TN

TP+ FN+ FP+ TN
∗ 100% = 98.03%

The achievement rate is 98.03% with respect to classification of two-components
character. At this level, the performance can be regarded as the overall performance.

Finally, misclassification always emerge during any classification including in this
work. Not much effort can be done to improve the rate since the classification in this
phase always depend on the previous classification. One possible solution of the
major problem in this case is to expand more features for pairing representation.

118 evaluation

6.5 recognition of compound characters

Since the Lampung writing system also contain diacritics, a recognition of its basic
form either the character or diacritic is only one part in the overall framework. The
final goal is to recognize the complex structure which is composed by the character
with or without diacritics. In more specific term, the final structure which contain
character, with or without diacritics as one unit is called a compound character.

The association process of the character and diacritics are elaborated in the
following subsections. The discussion concerns about two major topics regarding
this association work. First, one diacritic is assigned to a character and this is called
a simple association. Second, a compound character is specified from a character with
or without diacritics and this work is called a complete association. The explanation
covers experiment design as well as its process followed by a brief analysis of
misclassification.

6.5.1 Simple Association

This simple association can be considered as an attempt to provide preliminary keys
for handling a compound character because the structure of character and diacritic
from this simple association can be considered as a subset of a compound character.

With the respect to this association, the way to solve the problem is started from a
diacritic and then terminated to a character. This diacritic wise approach is more
appropriate than a character wise one since a diacritic can not be independent and it
is always issued by a character, while a character can stand independently without a
diacritic. Therefore, the association step will always be initiated from diacritic side.

6.5.1.1 Experiment

There are two approaches to establish a simple association of a diacritic to a character.
The first approach uses the nearest distance of a diacritic to a character as a basis of
the association. The process of association firstly identifies the geometric center of a
diacritic. From this point, the distance to the center of characters in proximity are
measured. The closest distance is then selected and set as the association between
a diacritic and a character. This process is completed until all diacritics get their
companion. The performance of this approach serves as a baseline indicator for the
simple association.

The second approach for this association is developed by a statistical method.
From observation of diacritics around characters, the distribution of all diacritics of
training data regardless of their classes is mainly accumulated over three different
areas. This is reasonable since the diacritic can be positioned over three positions
around a character. Figure 38 clarifies this distribution fact.

As the accumulation of diacritics distributes in three main areas, the number of
components for GMM is ideally set to three as well. Nonetheless, this consideration
will not always guarantee that an optimum solution could be achieved. Diacritics
may spread over the area probably with more than three spots of accumulation.
Therefore, the number of component for GMM can be still increased. For this reason,

6.5 recognition of compound characters 119

Figure 38: Distribution of diacritics around character of training set where each dot indicates
coordinate of a diacritic over the character. The geometric center of the character
lies at the coordinate of origin [21].

the number of component has been set to 5, 10, and 20 along with 3 components to
provide more alternative outcomes for the best result.

To have an association, a diacritic as an input item should be paired to a character.
However, a diacritic is regularly surrounded by many characters and each of them
has a same chance to be paired. To minimize processing time, they are restricted to
6 closest nominees only. The chosen number is based on trial runs.

Figure 39: Association process of a diacritic around characters by applying Gaussian Mixture
Model (GMM) [21].

For each character among of 6 nominees, a different feature vector of pairing
with a diacritic as pivot is computed according to formula 5.6 of part 5.3.2.1. Fig.
39 illustrates a single formation between a character and a diacritic among of
total 6 different pairings to be computed. Then the probability of a pairing can be
estimated by a GMM with formula 5.7. As there are 6 possible pairings, the decision
for association is taken based on a maximum probability by applying formula 5.8.

The experiment setup consists of 4 different composition with respect to the usage
of parameters of components. This composition is illustrated as follows.

120 evaluation

1. Parameters of the mixture model for each 3, 5, 10, and 20 densities are ob-
tained from training sample by K-Means clustering regardless of diacritic and
character classes. These parameters play the role of global parameter during
experiment.

2. Parameters are generated by the same configuration and method as in the
first setup, with an additional optimization technique by using Expectation
Maximization (EM) algorithm. Parameters from this setup are also regarded as
the global parameter.

3. The third scheme computes all parameters for each character specific distri-
bution of training samples. Since there are 20 characters, 20 set of parameters
are accordingly produced. In this case, parameters are considered as local
parameters.

4. The last scenario is duplication of the third scheme with a combination of
the global parameter. The procedure is to replace of the local component
parameters by the global parameter. The idea of this replacement is based on
the fact that some characters only have small samples. This may deteriorate
the value of parameters during computation. By replacement with the global
parameter, the risk of distortion for the lack of samples can be minimized. In
practical, the replacement is administered such that the first replacement is
zero parameter. This means that no parameter is replaced which is equivalent
to use full local parameters. In the next step, one local parameter is replaced
by the global parameter. The parameter to be replaced is from the component
with the lowest sample, while the rest of 19 parameters are kept unchanging.
The next replacement is a replacement of parameters from the first and second
lowest samples by the global parameter. Then, the next is three parameters
replacement from the first, second, and third lowest samples. This is done
until all parameters replaced. In case of all local parameters has been replaced
by the global parameter, the system configuration is equivalent to association
with the global parameter as one described at composition 2.

6.5.1.2 Discussion of the Result

The number of correct association pairs in the simple association with the nearest
distance is 5481 samples out of the total 6058 samples. Thus, this simple association
achieves the accuracy 90.5%. Since the rate is the first result, the rate is acknowledged
as a baseline indicator for simple association or one-to-one association of a diacritic
and a character.

Table 22 shows the output performance of the global model of the first and the sec-
ond composition. In the first part of the table, the clustering is purely done without
any optimization algorithms and the best performance is 91.9%. This performance is
generated from the clustering with 10 components.

The rate is a little better for simple association with GMM after applying EM

algorithm. This is given in the second part of the Table 22. The performance of the
simple association with clustering and EM algorithm achieve 92.1% accuracy. This
rate is recorded from the cluster with 20 components. However, the best trade-off

6.5 recognition of compound characters 121

Table 22: Experiment of mixture model with the global parameters.

Number of density Clustering method Correct association (%)

3 K-Means 91.5

5 K-Means 91.5

10 K-Means 91.9

20 K-Means 91.8

3 K-Means with EM 91.6

5 K-Means with EM 92.0

10 K-Means with EM 91.9

20 K-Means with EM 92.1

between association performance and model complexity occurred at 5 components
from 91.5% (without EM) to be 92.0% (with EM).

In the scheme where local parameters involved, samples are spread over 20

character classes. Concerning this situation, the number of sample in each GMM

component may vary. There is a possibility that several characters will not have
enough samples for each component. Therefore, the number of components for
experiments with local parameters is restricted to 3 and 5.

Table 23 provides the result of the simple association by using the local parameter
and a local parameter with specific replacement. In the first row, the computation is
totally generated by local parameters with respect to each character class. The best
accuracy of the association is 91.7% with 3 components. This performance is little
lower than the best result of the association by using the global parameter.

(a) (b)

Figure 40: Incorrect association of a diacritic to the character: (a) due to domination of the
diacritic position, (b) due to a less data sample.

As explained previously, the replacement is applied due to several classes only
have very less samples. The replacement can lower the risk of infeasible parameters.
The result of replacement can be observed in table 23. The term ”number of character
specific models” means the number of local parameters to be kept. For example,
”the number of character specific models 18”, means that local parameters to be
kept is 18 parameters and the remaining 2 parameters are replaced by the global
parameter. Accuracy of association with 3 components are gradually decreasing
from 91.7% to 78.0%. None of them exceed the maximum accuracy of the association
with the global parameter. A stable performance is demonstrated by the association

122 evaluation

Table 23: Experiment of mixture model with replacements the local to global parameters

Number of character Association rate of

specific models 3 densities 5 densities

20 (fully local parameter) 91.7 91.5

19 91.9 92.0

18 91.8 92.2

17 91.8 92.2

16 91.7 92.2

15 91.5 92.2

14 91.3 92.2

13 91.0 92.1

12 90.3 92.2

11 90.0 92.1

10 89.7 92.1

9 88.9 92.1

8 88.1 92.1

7 87.4 92.0

6 85.6 92.0

5 84.3 91.9

4 83.4 91.9

3 82.0 91.8

2 79.6 91.7

1 78.0 91.7

Global model 91.6 92.0

with 5 components. The performance rate of this association fluctuates in the range
91.5% and 92.2%. The maximum accuracy is generated by several replacement
compositions. They can be observed in the last column of the Table 23.

Two samples of incorrect association from the experiment are given in Fig. 40.
These samples identified from association configuration with five components.

The first sample in fig. 40a indicates that the diacritic should belong to character ka
(), but the classifier assigned this diacritic to character ta (). Misclassification of
this type will occurred between two characters where the diacritic is located between
both characters. Due to the concentration of diacritics in general is much more on
the top of the character (see the distribution in Fig. 38), a diacritic is dominantly set
as top diacritic of a character rather than other position. In this example, character
ta will be powerful then character ka since this diacritic laid on the bottom of the
character ka, while located on top for character ta. Thus the power of character ta to
admit the diacritic is stronger than character ka.

6.5 recognition of compound characters 123

Contrary to the first sample, the configuration of a character with a top diacritic
in fig. 40b is not superior. This situation will happen whenever a character in the
training set has very small number of samples compared to other characters. For this
case, the occurrence of character wa () is very low. This statistically means that
the probability of character wa is very small (converge to zero). Consequently, the
competition between character wa and character ta () to be paired on this diacritic
has been resolved to character ta.

6.5.2 Complete Association

The complete association is considered as the final stage in the Lampung handwrit-
ten character recognition framework. In this association, the smallest unit under
examination is called a compound character. The structure of a compound character
can be purely a character or a character with some diacritics. Both will be discussed
in the following based on the context of a complete association.

6.5.2.1 Experiment

The experiment of the complete association is a task of building compound characters
from basic characters, diacritics, and their associations. Based on the presence of its
diacritics, the structure of a compound character can be distinguished as,

• A character.

• A character with a diacritic.

• A character with two diacritics.

• A character with three diacritics.

• A character with four diacritics.

To have compound characters, the nearest distance is applied as the foundation
of the association between character and diacritic. This technique is chosen due
to its simplicity during association process. The outcome of the nearest distance
has been confirmed from the simple association as described in Subsection 6.5.1
and the current phase can benefit from it. Therefore, the current experiment is just
the same step as in the simple association with an additional task for grouping
characters with or without diacritics. In this grouping, the pivot of the process is
switched from a diacritic wise approach in the previous association to a character
wise approach in the current association. Each character is then examined whether
having diacritics or not. If it has no diacritic, this character is solely acknowledged as
a compound character. If it has diacritics, the algorithm marks all diacritics attached
to this character and unites them as a compound character.

The number of diacritics may vary from one compound character to another
compound character. The lack or excess of diacritics in a compound character could
still occur after the association process.

124 evaluation

6.5.2.2 Discussion of the Result

As the task in this stage is apparently a final step from successive tasks, the perfor-
mance of this work is consequently an accumulation of the previous performances.
Therefore, the performance is concurrently derived by elements such as the basic
character classification, diacritic classification, two-components character classifi-
cation, and the simple association of the character and diacritics. To review those
works, table 24 summarizes the performance of each task.

Table 24: Performance of consecutive works prior to complete association

Order of the work Recognition Target Performance

1 Basic Characters 97.38%

2 Diacritics 97.61%

3 Two-components Character 98.03%

4 Simple Association of Character-Diacritic 90.50%

With respect to complete association, the number of compound characters in the
test set is 7568 samples and with the nearest distance scheme for the complete asso-
ciation, the number of correct compound characters is 6103. Hence, the performance
of the complete pipeline is 80.64%.

Table 25: Detail of diacritic number in compound characters of the test set for ground truth
and outcome of the classifier

Source
Character
type

Number of diacritics
Total Percentage

0 1 2 3 4

Ground truth
Single component 2773 3611 633 118 5 7140 94.34%

Two components 136 262 23 7 0 428 5.56%

Total 2909 3873 656 125 5 7568

Classifier
(correct)

Single component 2054 3080 507 90 5 5736 80.34%

Two components 125 219 18 5 0 367 85.75%

Total 2179 3299 525 95 5 6103 80.64%

Incorrect
Single component 719 531 126 28 0

Two components 11 43 5 2 0

Since the complete association is composed by some elements as stated previously,
the accuracy can be refined by considering individual elements with their accuracy
as indicated in Table 24. In a coarse category, there are two groups of compound
character which are respectively composed by the single component and two com-
ponents characters. Then, each group can be refined according to the number of its
diacritics. By using the result from the table 25, the accuracy of each specific part
is computed. All performance results are presented in table 26. It seems that the
accuracies are a lower than expected due to many incorrect compound characters

6.5 recognition of compound characters 125

during the association process. A concise analysis of the reason for this problem is
explained by guidance of Fig. 41 and 42.

Table 26: The accuracy of compound characters based on the group of specific element

Character
type

Number of diacritics

0 1 2 3 4

Single component 74.07% 85.29% 80.09% 76.27% 100%

Two components 91.91% 83.59% 78.26% 71.43% -

The figures show two snippets of document images containing compound charac-
ters resulting of the complete association. In this sample, the bounding box indicates
a compound character. The line indicates an existing pair between a diacritic and a
character. The symbol ”T” (true) and ”F” (false) in the upper left of bounding box
respectively indicate the correct and incorrect association based on the ground truth.
In general, an incorrect association can be caused by three issues as follows:

1. Incorrect association due to a misclassification of the basic character:
The main element in a compound character is built by a basic character. If the
involved character in a compound character has been stated as a misclassifica-
tion from the former stage, the complete association will be incorrect. This is a
direct consequence. A misclassification of the character automatically forwards
the error to the compound character. The discussion regarding this topic has
been addressed in subsection 6.4.2.

2. Incorrect association due to a misclassification of the diacritic:
A typical similar occurrence can also be driven by a diacritic. A compound
character with a misclassified diacritic will be interpreted as a different pattern
compared to the one from the ground truth. As a distinction pattern indicates
an incorrect formation, the result of the complete association automatically
becomes incorrect as well. To review the result of this classification, the reader
can refer to subsection 6.4.3.

3. Incorrect association as a result of an incorrect assignment of a diacritic to a character:
The most sensitive problem of the complete association is the correlation of
diacritics around the character. The incorrect association of a diacritic has
a multiplier effect for the performance of the complete association. It can
contribute to misclassification multiple times, proportionally to the number
of diacritics. This can happen as follows. Assume there is a character with two
diacritics and they form a compound character based on the ground truth.
During basic recognition, all of the individual entity are correctly classified.
However, during process of the association, one diacritic is assigned to another
character close by. As a consequence, this association triggers two mistakes
at once. First, the character under inspection lost one of its diacritic and in
turn becomes incorrect. Second, this diacritic will be reassigned to another
compound character. When this diacritic is attached to a correct compound
character, the resolved compound character turns to be incorrect because it

126 evaluation

Figure 41: The first snippet of a document image indicates various types of incorrect associa-
tions of diacritics and characters

should not have an additional diacritic. Therefore, the more diacritics in a
compound character, the higher probability of incorrect association may occur.
These errors are imposed by the following two common problems and both
may influence each other.

a) The first problem is characterized by an inappropriate number of diacritics
in a compound character. Typically, this case comprises of the loss of any
diacritics, less or more assigned diacritics.

The reason of lost diacritics is because this diacritic is regarded as noise
so it will never be found during the association process. One sample of
this case can be observed in Fig. 41 at bounding box 215. The diacritic
on the right of the character is detected as noise. During the association
process, it cannot be found and no association can be made. Therefore,
the character is solely left unrelated. Another possibility is caused by the
size of the diacritic. In some cases, the diacritic may almost be similar
to the size of a character due to the writing style of contributors. In a
condition where the shape of a diacritic resembles to a character, these
diacritics are further grouped as the instance of characters. In fact, it does
not present as a diacritic during the association process. The sample of
this compound character can be observed in Fig. 41 at bounding box 271.
An s-shape diacritic is written on the right of the character la () almost
as big as the character. It also resembles to character ha (). Due to both
facts, the diacritic is not grouped as a diacritic but instead is grouped as
character ha.

The association of less or more diacritics usually occurs because the
diacritic is shifted to a closed compound character during the association
process. In fact, the holding compound character of this diacritic lost

6.5 recognition of compound characters 127

Figure 42: The second snippet of an image document indicates various type of incorrect
association of diacritics and characters

its diacritic and the neighbor compound character got more diacritics.
Figure 42 at bounding box 63 and 64 shows samples of this association. A
horizontal line diacritic in bounding box 63 is incorrectly associated to the
character in bounding box 64. Hence, the holding character in bounding
box 63 lost its horizontal line diacritic while the character in bounding
box 64 gained one extra diacritic. This loss and gain occurrence is the
main source of a significant error illustrated by table 25. Both compound
characters, the one that lost as well as the one that gained the diacritic will
turn into incorrect. This means that the number of errors will be twice
the error for each incorrect association. Note that this occurrence will be
called ”loss and gain” hereinafter.

Another specific case of surplus the diacritic could also arise with respect
to the noise. The surplus occurs whenever the noise is detected as a
diacritic and attached to a compound character during the association
process. Hence, this compound character accepts a new diacritic which
should never exist in the ground truth. The sample of this association can
be seen in Fig. 42 at the character in bounding box 67. In this sample, the
noise was derived by a hyphenation mark which is similar in shape to a
diacritic and resides on the right position of the character.

b) The second issue is an incorrect association due to a misplaced position of
diacritics. Some particular diacritics can only be put on a specific position
around the character. Whereas the complete association with the nearest
distance scheme only assures an association to a character and there is no
concern with respect to the position of those diacritics. Thus, the position
of the diacritic could be anywhere in the proximity of the character. A
typical case of this error can be observed in Fig. 42 at bounding box 13
and 14. The diacritic nengen () should be located on the right of the

128 evaluation

character. In this sample, the diacritic nengen is assigned to the character in
bounding box 14. This means that the diacritic is positioned on the left of
the character in bounding box 14 which is not valid position for diacritic
nengen. Whereas the character in bounding box 13 lost its diacritic. This
situation also occurred between characters in bounding box 35 and 36
and bounding box 61 and 62.

The big part of incorrect associations are produced by the single component
characters without diacritics and single characters with one diacritic with an
accuracy 74.07% and 85.29% respectively. According to table 25, the number of
incorrect associations for both are 719 and 531, while the rest are respectively
156. The accuracy of the single component character without diacritic should
not be far from the accuracy of the basic character recognition i.e. 97.38%
(see table 24). Likewise, the accuracy of the single component character with
one diacritic should not be far from the accuracy of the simple association of
character and diacritic i.e. 90.50% (see table 24).

Based on the inspection on 4 document images of the test set as samples, the
reason of this situation is dominantly caused by the occurrence of the ”loss
and gain” of the diacritics. To support this rationale, a simulation of the ”loss
and gain” of the diacritics is performed. Assume that all loss occurrences
contribute to incorrect association of the single component characters without
diacritic. It also presumes that the incorrect single component characters with
1,2,3, and 4 diacritics (see table 25) only lost one diacritic such that those
single component characters only cause one incorrect factor toward the single
component characters without diacritic. Therefore, the total incorrect gain
for single component character without diacritic is 531+ 128+ 28+ 0 = 685.
Thereby, the source of 719 incorrect derives from 685 of single character with
one or more diacritics. There is only 34 remaining.

The reason of this significant deviation is not only the ”loss and gain” of the
diacritics. Another source of the incorrect association is the unidentified char-
acters during preprocessing phase. The sample of these unidentified characters
can be observed in Fig. 41 at bounding box 247 and 272 and Fig. 42 at bound-
ing box 20. During inspecting the test set, these unidentified characters are
triggered by broken characters, touching characters, or character with diacritics.
All these factors apparently contribute to degradation of the accuracy in the
association diacritics to characters. From total 7568 compound characters in
the test set, there are 418 unidentified characters or 5.52%. Among of those 418,
only 94.34% (see table 25) or around 394 samples belong to single component
character. Since there are 5 parts (comprising of 0, 1, . . . , 4 diacritics) and only
4 of them contain incorrect associations (compound characters with 4 diacritics
are 100% correct), the average loss of characters during preprocessing for each
part is 394/4 ≈ 98. In fact, it is most likely that the remaining 34 of incorrect
compound character derives from these 98. The excess 64 of incorrect from
unidentified characters could already be scattered in 685 of the ”loss and gain”.

Considering the problem of incorrect association, some alternative solutions
can be proposed for improvement of the association performance. One of

6.5 recognition of compound characters 129

them is by applying additional rules during the association of a diacritic to a
character. Rules can be established based on association rules in the Lampung
writing system to deal with the legitimate association and the evidence of the
samples in dataset to notice the actual characteristic of the data.

6.5.3 Remark

The discussion of the complete process of the Lampung handwritten character
recognition framework has been finished. The results and assessments of each
stage have been given. Finally, the completed framework has become a substantive
groundwork to guide further developments in Lampung handwritten character
recognition.

7
C O N C L U S I O N

The accomplishment of the Lampung handwritten character recognition framework
is an important milestone for the beginning of Lampung handwritten character
recognition research. The opportunity has been opened for everyone who is inter-
ested to do research in this area. The researchers will have chances to improve the
framework.

The following sections highlight some important issues inferred from the work of
Lampung handwritten character recognition research. Each section highlights several
results or emphasizes some aspects need to be paid attention. Section summary
contains outcomes or remarks on the research. While, section outlook contains
statement on some future works and potential development of the framework in the
future.

7.1 summaries

Social and Culture Impacts: Lampung script emerged since long time ago. The
existence of Lampung script is a proof that the Lampung people in the past have
been living with a tradition of writing. Some old manuscripts have been discovered.
Some of them were stored in museums and some others were owned by people.
Those manuscripts indicate that many writing activities have been done in the past.
Lampung script is rarely used recently, especially after Roman script was introduced
as the official script. The Lampung script is just regarded as an ornament with less
applying in writings. This research can be considered as one endeavor to emphasize
the importance of the script for society and also an effort to save the script from
extinction.

In the last decade, there were very limited research regarding Lampung script
with respect to Document Analysis and Recognition (DAR). Such a research only
relies on a limited number of datasets and the results have never been successfully
published for the international community. In fact, it is hard to carry out the research
since there is no preceding knowledge or dataset available to support the research
on this Indic related script. This work, beside publishing some results, has also
pioneered an initial dataset for the purpose of the research in the area of DAR. This
dataset is stored at the website of LS XII - Department of Computer Science, TU
Dortmund, Germany1). With the existence of this dataset, it is expected that more
researchers will be attracted and more researches will be triggered.

The Framework: The complete framework of Lampung handwritten character
recognition has been defined. The main structure of the framework is character-
ized by three tasks, annotation, recognition of basic elements, and recognition of
compound characters.

1 http://patrec.cs.tu-dortmund.de/cms/en/home/Resources/index.html

131

132 conclusion

Annotation with semi-supervised approach in this work is very promising for the
labeling task. The role of human expert in this labeling can be reduced significantly
without sacrificing much of the quality. The complexity of the approach much
more depends on the number of clusters during clustering process rather than on
number of samples. By labeling only 0.48% of the samples represented by cluster,
the accuracy can reach the rate 86.21%. The achievement rate is considered to be
reasonable especially with respect to the number of samples to be labeled.

The basic elements in this work are the character and diacritic recognition. The
characters are initially recognized into 18 classes and then completed to be 20
classes by post-recognizing of two-components characters from those 18 classes. The
chain code directions of the character contour were used as features and the SVM

was employed in classification of 18 classes. The recognition rate is 97.38% for 18
classes recognition task. Having the result of 18 classes, a further recognition is
then performed to identify two-components characters. The usage of the distance
of the gravity-center between both components and the overlapping area of both
bounding boxes as the feature of two-components character classification gives the
recognition rate of 98.03%. Meanwhile, the diacritic classification uses combination
features which are extracted from diacritic in original and in normalized size. The
performance of diacritic classification into 7 classes, regardless of its position around
the character, is 97.61%.

The final task in the framework is to compose a compound character by association
of the character with the diacritics. The task is started by a one-to-one association
between a diacritic and a character. Then in the second round, every character is
reviewed for having diacritics nearby or not. With the closest distance between
diacritics and a character as the association criteria, the forming of compound
characters achieves performance of 80.64%.

7.2 outlook

During completion of the framework, some new challenges arose in many levels of
the framework. The framework could be enhanced by resolving some of these issues.
Among those issues are the following:

1. Line extraction is not conducted in this work due to preventing a higher
complexity of the work. One advantage of supplying definitive line separations
for character is that it can assist the location of diacritics. There are many
approaches to perform line extraction. One possible approach to fulfill the line
extraction task is by applying the Minimum Spanning Tree (MST) concept [61]
from graph theory. The concept is appropriate because Lampung character is a
type of non-cursive script.

2. A character bounding box can be enlarged vertically to cover the area on the
top and the bottom of the character. It can then partitioned horizontally into 3
regions as a new strategy for handling diacritics. This way could probably help
to identify the diacritic around the character. The top diacritic can be found in
the upper baseline region and the bottom diacritic can be found in the lower
baseline region. The right diacritic can be located within the baseline.

7.2 outlook 133

3. Features used for identifying two-component characters in the present work
are only the distance of gravity-center and the overlapping area. Other features
can be added for example, the position of one component relatively to another.
This feature can be used to discriminate the left and right component of the
character so that every two-components class can be classified accurately.

4. This work employs Neural Network (NN) and Support Vector Machine (SVM)
as the single classifier systems. Those utilized classifiers, as well as other
classifiers, can be combined as multi-classifier system for this framework.
The multi-classifier system can lead to a new results and is expected to be a
potential improvement of the single-classifier classification.

5. The most challenging task in this framework is to recognize the final com-
pound character that consists of a character with or without diacritics. In the
framework, the task is divided into two steps. First, the association of a diacritic
and a character is assigned as one-to-one mapping by using closest distance.
Later, the pivot is shifted to the character and associate to all nearby diacritics.
The closest distance can be combined with additional rules for preventing
any improper association which can improve the performance. Beside adding
rules, the association criteria can also be altered by using Gaussian Mixture
Model (GMM).

B I B L I O G R A P H Y

[1] M. Agrawal and D. S. Doermann. Clutter Noise Removal in Binary Document
Images. In Proceedings of the 2009 10th International Conference on Document
Analysis and Recognition, pages 556–560. IEEE Computer Society, 2009. (Cited
on page 11.)

[2] N. Arica and F. T. Yarman-Vural. An Overview of Character Recognition
Focused on Off-line Handwriting. Transactions on Systems, Man and Cybernetics –
Part C, 31(2):216–233, May 2001. (Cited on pages 9 and 10.)

[3] U. Bhattacharya and B. B. Chaudhuri. Databases for Research on Recognition
of Handwritten Characters of Indian Scripts. In Proceedings of the 2005 8th
International Conference on Document Analysis and Recognition, volume 2, pages
789 – 793, 2005. (Cited on page 64.)

[4] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., 223 Spring Street, NY, USA, 2006.
(Cited on pages 21, 23, 28, 31, 32, 33, 34, 35, 65, 75, and 100.)

[5] H. Bunke. Recognition of Cursive Roman Handwriting - Past, Present and
Future. In Proceedings of the 2003 7th International Conference on Document Analysis
and Recognition, volume 1, pages 448–459. IEEE Computer Society, 2003. (Cited
on page 7.)

[6] C. -C Chang and C. -J Lin. LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. (Cited
on pages 80, 82, 83, 107, and 111.)

[7] B. B. Chaudhuri and S. Ghosh. Orientation Detection of Major Indian Scripts. In
Proceedings of the International Workshop on Multilingual OCR, MOCR ’09, pages
8:1–8:7, New York, NY, USA, 2009. ACM. (Cited on pages 57, 69, 70, and 100.)

[8] M. Cheriet, N. Kharma, C. -L. Liu, and C. Y. Suen. Character Recognition Systems:
A Guide for Students and Practitioners. Wiley-Interscience, 2007. (Cited on pages 7,
9, 15, 23, 26, 32, 33, 35, 69, 75, and 100.)

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–22, 1977. (Cited on pages 36 and 77.)

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley & Sons, Inc.,
New York, NY, USA, 2nd edition, 2001. (Cited on pages 21, 22, 23, 26, 28, 32,
33, 65, 75, and 100.)

[11] G. A. Fink. Markov Models for Pattern Recognition, From Theory to Applications.
Advances in Computer Vision and Pattern Recognition. Springer, London, 2

edition, 2014. (Cited on page 22.)

135

136 bibliography

[12] G. A. Fink and T. Plötz. Developing Pattern Recognition Systems Based on
Markov Models: The ESMERALDA Framework. Pattern Recognition and Image
Analysis, 18(2):207–215, June 2008. (Cited on pages 62 and 90.)

[13] B. G. Gatos. Imaging Techniques in Document Analysis Processes. In D. Do-
ermann and K. Tombre, editors, Handbook of Document Image Processing and
Recognition, pages 73–131. Springer London, 2014. (Cited on pages 11 and 14.)

[14] D. Ghosh, T. Dube, and A. P. Shivaprasad. Script Recognition – A Review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12):2142 –2161, dec.
2010. (Cited on page 39.)

[15] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 2nd edition, 2002. (Cited on pages 8, 9, and 10.)

[16] M. Haji, T. D. Bui, and C. Y. Suen. Removal of Noise Patterns in Handwritten
Images Using Expectation Maximization and Fuzzy Inference Systems. Pattern
Recognition, 45(12):4237–4249, December 2012. (Cited on pages 10 and 11.)

[17] N. Hajj and M. Awad. Isolated Handwriting Recognition via Multi-stage
Support Vector Machines. In 6th IEEE International Conference on Intelligent
Systems, IS 2012, Sofia, Bulgaria, September 6-8, 2012, pages 152–157, 2012. (Cited
on page 37.)

[18] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning :
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New
York, 2001. (Cited on page 35.)

[19] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data
with Neural Networks. Science, 313(5786):504–507, July 2006. (Cited on pages 65

and 66.)

[20] A. Junaidi, S. Vajda, and G. A. Fink. Lampung - A New Handwritten Character
Benchmark: Database, Labeling and Recognition. In Proceeding of the Joint
Workshop on Multilingual OCR and Analytics for Noisy Unstructured Text Data,
pages 105–112, Beijing, China, 2011. ACM Press. (Cited on pages xi, xiii, 20, 68,
73, 94, and 102.)

[21] A. Junaidi, R. Grzeszick, S. Vadja, and G. A. Fink. Statistical Modeling of the
Relation between Characters and Diacritics in Lampung Script. In Proceedings of
the 2013 12th International Conference on Document Analysis and Recognition, pages
663–667, Washington DC, USA, August 2013. IAPR, IEEE Computer Society.
(Cited on pages xi, xii, 76, and 119.)

[22] A. Kacem, N. Aouïti, and A. Belaïd. Structural Features Extraction for Hand-
written Arabic Personal Names Recognition. In ICFHR - 13th International
Conference on Frontiers in Handwriting Recognition - 2012, pages 268–273, Bari,
Italy, September 2012. IEEE. (Cited on page 20.)

bibliography 137

[23] K. Khurshid, I. Siddiqi, C. Faure, and N. Vincent. Comparison of Niblack
Inspired Binarization Methods for Ancient Documents. In K. Berkner and
L. Likforman-Sulem, editors, DRR, volume 7247 of SPIE Proceedings, pages 1–10.
SPIE, 2009. (Cited on pages 62 and 90.)

[24] K. Kise. Page Segmentation Techniques in Document Analysis. In D. Doermann
and K. Tombre, editors, Handbook of Document Image Processing and Recognition,
pages 135–175. Springer London, 2014. (Cited on page 11.)

[25] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, 2004. (Cited on pages 65 and 66.)

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. In Intelligent Signal Processing, pages 306–351. IEEE
Press, 2001. (Cited on pages 64, 65, and 96.)

[27] C. -L. Liu and H. Fujisawa. Classification and Learning for Character Recog-
nition: Comparison of Methods and Remaining Problems. In International
Workshop on Neural Networks and Learning in Document Analysis and Recognition,
2005. (Cited on page 22.)

[28] C. -L Liu and K. Marukawa. Normalization Ensemble for Handwritten Char-
acter Recognition. In Ninth International Workshop on Frontiers in Handwriting
Recognition, volume 0, pages 69–74, Los Alamitos, CA, USA, 2004. IEEE Com-
puter Society. (Cited on pages 14 and 15.)

[29] C. -L. Liu, M. Koga, H. Sako, and H. Fujisawa. Aspect Ratio Adaptive Normal-
ization for Handwritten Character Recognition. In T. Tan, Y. Shi, and W. Gao,
editors, ICMI, volume 1948 of Lecture Notes in Computer Science, pages 418–425.
Springer, 2000. (Cited on page 15.)

[30] C. -L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten Digit Recogni-
tion: Investigation of Normalization and Feature Extraction Techniques. Pattern
Recognition, 37(2):265–279, 2004. (Cited on pages 7, 8, and 15.)

[31] S. P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982. (Cited on page 66.)

[32] L. M. Lorigo and V. Govindaraju. Offline Arabic Handwriting Recognition: A
Survey. IEEE Trans. Pattern Anal. Mach. Intell., 28:712–724, May 2006. (Cited on
page 20.)

[33] M. Lutf, X. You, and H. Li. Offline Arabic Handwriting Identification Using
Language Diacritics. In 20th International Conference on Pattern Recognition, pages
1912 –1915, August 2010. (Cited on page 58.)

[34] J. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. In L. M. L. Cam and J Neyman, editors, Proc. Fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–296,
1967. (Cited on page 77.)

138 bibliography

[35] S. Mozaffari, K. Faez, F. Faradji, M. Ziaratban, and S. M. Golzan. A Comprehen-
sive Isolated Farsi/Arabic Character Database for Handwritten OCR Research.
In Tenth International Workshop on Frontiers in Handwriting Recognition, La Baule
(France), 2006. (Cited on page 64.)

[36] D. K. Nguyen and T. D. Bui. Recognizing Vietnamese Online Handwritten
Separated Characters. In International Conference on Advanced Language Processing
and Web Information Technology, volume 0, pages 279–284, Los Alamitos, CA,
USA, 2008. IEEE Computer Society. (Cited on page 58.)

[37] W. Niblack. An Introduction to Digital Image Processing. Strandberg Publishing
Company, Birkeroed, Denmark, 1985. (Cited on pages 12, 62, and 90.)

[38] N. Otsu. A Threshold Selection Method from Gray-level Histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1):62–66, January 1979. (Cited on
pages 12, 62, and 90.)

[39] E. Öztop, A. Y. Mülayim, V. Atalay, and F. Yarman-Vural. Repulsive Attractive
Network for Baseline Extraction on Document Images. Signal Process., 75:1–10,
May 1999. (Cited on page 16.)

[40] U. Pal and S. Datta. Segmentation of Bangla Unconstrained Handwritten Text.
In Proceedings of the 2003 7th International Conference on Document Analysis and
Recognition, volume 2, pages 1128–1132, Washington, DC, USA, 2003. IEEE
Computer Society. (Cited on pages 56, 69, 70, and 100.)

[41] U. Pal, A. Belaïd, and C. Choisy. Water Reservoir Based Approach for Touching
Numeral Segmentation. In Proceedings of the 2001 6th International Conference on
Document Analysis and Recognition, ICDAR ’01, pages 892–896. IEEE Computer
Society, September 2001. (Cited on pages 56, 69, 70, and 100.)

[42] U. Pal, A. Belaïd, and C. Choisy. Touching Numeral Segmentation Using Water
Reservoir Concept. Pattern Recognition Letters, 24(1-3):261–272, January 2003.
(Cited on pages 56, 69, 70, and 100.)

[43] U. Pal, S. Kundu, Y. Ali, H. Islam, and N. Tripathy. Recognition of Unconstrained
Malayalam Handwritten Numeral. In ICVGIP, pages 423–428, 2004. (Cited on
pages 56, 69, 70, and 100.)

[44] U. Pal, R. K. Roy, K. Roy, and F. Kimura. Indian Multi-Script Full Pin-code String
Recognition for Postal Automation. In Proceedings of the 2009 10th International
Conference on Document Analysis and Recognition, ICDAR ’09, pages 456–460,
Washington, DC, USA, 2009. IEEE Computer Society. (Cited on pages 57, 69, 70,
and 100.)

[45] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze, and H. Amiri. IFN/ENIT
- Database of Handwritten Arabic Words. In Proc. of CIFED 2002, pages 129–136,
October 2002. (Cited on page 58.)

bibliography 139

[46] R. Plamondon and S. N. Srihari. On-Line and Off-Line Handwriting Recogni-
tion: A Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1):63–84, January 2000. (Cited on page 7.)

[47] T. Pudjiastuti. Aksara dan Naskah Kuno Lampung dalam Pandangan Masyarakat
Lampung Kini. Department of Education and Culture, Republik of Indonesia,
Jakarta, 1997. (Cited on pages 3, 39, 44, and 49.)

[48] S. Sa. Lampung Pepadun dan Saibatin/Pesisir – Dialek O/Nyow dan Dialek A/Api.
Buletin Way Lima Manjau, Jakarta, 2012. (Cited on pages 44 and 49.)

[49] J. Sauvola, T. Seppänen, S. Haapakoski, and M. Pietikäinen. Adaptive Document
Binarization. In Proceedings of the 1997 4th International Conference on Document
Analysis and Recognition, volume 1, pages 147–152. IEEE Computer Society,
August 1997. (Cited on pages 12, 13, and 62.)

[50] S. Shelke and S. Apte. Multistage Handwritten Marathi Compound Character
Multistage Handwritten Marathi Compound Character. Journal of Pattern
Recognition Research, 6(2):253–268, 2011. (Cited on pages xi, 36, 59, and 60.)

[51] N. Stamatopoulos, B. Gatos, and A. Kesidis. Automatic Borders Detection
of Camera Document Images. In 2nd International Workshop on Camera-Based
Document Analysis and Recognition, Curitiba, Brazil, pages 71–78, 2007. (Cited on
page 11.)

[52] N. Stamatopoulos, G. Louloudis, and B. Gatos. Efficient Transcript Mapping
to Ease the Creation of Document Image Segmentation Ground Truth with
Text-Image Alignment. In Proceedings of the 2010 12th International Conference
on Frontiers in Handwriting Recognition, pages 226–231, Washington, DC, USA,
November 2010. IEEE Computer Society. (Cited on page 64.)

[53] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag New
York, Inc., New York, NY, USA, 1st edition, 2010. (Cited on page 17.)

[54] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, Inc.,
Sand Diego, CA, USA, third edition edition, 2006. (Cited on pages 22, 23, 75,
and 100.)

[55] D. C. Tran, P. Franco, and J. Ogier. Accented Handwritten Character Recognition
Using SVM - Application to French. In Proceedings of the 2010 12th International
Conference on Frontiers in Handwriting Recognition, pages 65 –71, November 2010.
(Cited on page 57.)

[56] S. Vajda and G. A. Fink. Exploring Pattern Selection Strategies for Fast Neural
Network Training. In 2010 20th International Conference on Pattern Recognition,
pages 2913 –2916, August 2010. (Cited on page 65.)

[57] S. Vajda, A. Junaidi, and G. A. Fink. A Semi-Supervised Ensemble Learning
Approach for Character Labeling with Minimal Human Effort. In Proceedings of
the 2011 11th International Conference on Document Analysis and Recognition, pages

140 bibliography

259–263, Beijing, China, September 2011. IAPR, IEEE Computer Society. (Cited
on pages xi, 64, 65, 68, 88, 97, and 99.)

[58] G. Vamvakas, B. Gatos, and S. J. Perantonis. Handwritten Character Recognition
Through Two-stage Foreground Sub-sampling. Pattern Recognition, 43(8):2807–
2816, August 2010. (Cited on page 20.)

[59] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995. (Cited on page 31.)

[60] L. Xu, B. Xiao, C. Wang, and R. Dai. Neural Information Processing: 13th Interna-
tional Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006. Proceedings,
Part II, chapter A Novel Multistage Classification Strategy for Handwriting Chi-
nese Character Recognition Using Local Linear Discriminant Analysis, pages
31–39. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. (Cited on page 36.)

[61] F. Yin and C. -L. Liu. Handwritten Text Line Extraction based on Minimum
Spanning Tree Clustering. In International Conference on Wavelet Analysis and
Pattern Recognition, 2007. ICWAPR ’07., volume 3, pages 1123 – 1128, November
2007. (Cited on pages 16 and 132.)

A
A P P E N D I C E S

a.1 character distribution of 11 classes

Table 27: Character distribution in 11 classes

Class Number of Samples % of distribution

ka∗ 8077 22.95%

nga∗ 5352 15.21%

pa∗ 8629 24.52%

ta 3092 8.79%

da 2157 6.13%

na∗ 1756 4.99%

ca∗ 1394 3.96%

nya 773 2.2%

ya 660 1.88%

wa 254 0.72%

ne.∗ 3049 8.66%

Total 35193 100%

141

142 appendices

a.2 character distribution of 18 classes

Table 28: Character distribution in 18 classes

Class Number of Samples % of distribution

ka 3131 9.74%

ga 2633 8.19%

nga 695 2.16%

pa 3802 11.83%

ba 1957 6.09%

ma 2874 8.94%

ta 3093 9.62%

da 2164 6.73%

na 1201 3.74%

ca 238 0.74%

ja 563 1.75%

nya 772 2.4%

ya 660 2.05%

a 2928 9.11%

la 1715 5.34%

sa 2305 7.17%

wa 254 0.79%

ha 1155 3.59%

Total 32140 100%

A.3 diacritic distribution of 7 classes 143

a.3 diacritic distribution of 7 classes

Table 29: Diacritics distribution in 7 classes

Class Number of Samples % of distribtuion

1 () 3470 14.01%

2 () 1548 6.25%

3 () 4763 19.23%

4 () 4145 16.73%

5 () 8607 34.74%

6 () 465 1.88%

7 () 1777 7.17%

Total 24775 100%

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Objectives and Motivations of Lampung Handwritten Character Research
	1.2 Research Methodology
	1.3 Overview of the Thesis

	2 Foundation of A Handwritten Character Recognition System
	2.1 Image Acquisition
	2.2 Preprocessing
	2.2.1 Noise Removal
	2.2.2 Binarization
	2.2.3 Character Normalization

	2.3 Segmentation
	2.3.1 Line Segmentation
	2.3.2 Connected Components (CCs)

	2.4 Feature Extraction
	2.5 Classification
	2.5.1 Neural Network
	2.5.1.1 Single Layer Neural Network
	2.5.1.2 Multilayer Neural Network
	2.5.1.3 Network Training

	2.5.2 Support Vector Machine
	2.5.2.1 SVM Learning Algorithm
	2.5.2.2 Non-Linear Data SVM

	2.5.3 Gaussian Mixture Model
	2.5.4 Multistage Classification

	3 Properties of Lampung Script
	3.1 Script Utilization
	3.2 Characters
	3.3 Diacritics
	3.3.1 Top diacritics
	3.3.2 Bottom diacritic
	3.3.3 Right diacritic

	3.4 Compound Character
	3.5 Punctuation Marks
	3.6 Special Attributes of Lampung Script
	3.6.1 Non-cursive
	3.6.2 No Uppercase
	3.6.3 Character with Two Unconnected Components
	3.6.4 Diacritic with Two Unconnected Components
	3.6.5 Diacritic Resembles Character

	4 Survey of Related Works
	4.1 Water Reservoir Feature
	4.1.1 Water Reservoir (WR) Principle
	4.1.2 Some Applications of WR principle

	4.2 Diacritic-based Works
	4.2.1 French
	4.2.2 Vietnamese
	4.2.3 Arabic

	4.3 Multistage Classification

	5 Lampung Handwritten Character Recognition
	5.1 Preprocessing
	5.1.1 Binarization
	5.1.2 Connected Components
	5.1.3 Separation of Connected Component (CC)
	5.1.4 Normalization

	5.2 Labeling Characters
	5.2.1 Data Abstraction
	5.2.2 Clustering and Labeling
	5.2.3 Voting

	5.3 Recognition of the Text
	5.3.1 Basic Character
	5.3.1.1 Feature Representation
	5.3.1.2 Character Classification

	5.3.2 Character-Diacritic Pair
	5.3.2.1 Feature Representation of Pairing
	5.3.2.2 The Association Model

	5.3.3 Syllable Level
	5.3.3.1 Recognition of Basic Components
	5.3.3.2 Recognition of Two-components Character
	5.3.3.3 Association Scenarios

	5.3.4 Remarks

	6 Evaluation
	6.1 Dataset
	6.1.1 Dataset of Initial Labeling
	6.1.2 Dataset of 11 Character Classes
	6.1.3 Dataset of 18 Character Classes
	6.1.4 Dataset of 7 Diacritic Classes

	6.2 Preprocessing
	6.2.1 Binarization
	6.2.2 Separation of Connected Components (CCs)
	6.2.2.1 Character Separation
	6.2.2.2 Diacritic separation

	6.2.3 Normalization

	6.3 Annotation
	6.3.1 Initial Experiment
	6.3.2 Result Analysis and Further Experiment

	6.4 Recognition of Basic Elements
	6.4.1 Recognition of 11 Character Classes
	6.4.1.1 Experiment
	6.4.1.2 Discussion of the Result

	6.4.2 Recognition of 18 Character Classes
	6.4.2.1 Experiment
	6.4.2.2 Discussion of the Result

	6.4.3 Recognition of Diacritics
	6.4.3.1 Experiment
	6.4.3.2 Discussion of the Result

	6.4.4 Recognition of Two-components Character
	6.4.4.1 Experiment
	6.4.4.2 Discussion of the Result

	6.5 Recognition of Compound Characters
	6.5.1 Simple Association
	6.5.1.1 Experiment
	6.5.1.2 Discussion of the Result

	6.5.2 Complete Association
	6.5.2.1 Experiment
	6.5.2.2 Discussion of the Result

	6.5.3 Remark

	7 Conclusion
	7.1 Summaries
	7.2 Outlook

	Bibliography
	A Appendices
	A.1 Character Distribution of 11 classes
	A.2 Character Distribution of 18 classes
	A.3 Diacritic Distribution of 7 classes

