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Abstract

In this thesis we introduce a robust optimization approach which is based
on a binary min-max-min problem. The so called Min-maz-min Robust Op-
timization extends the classical min-max approach by calculating k£ different
solutions instead of one.

Usually in robust optimization we consider problems whose problem param-
eters can be uncertain. The basic idea is to define an uncertainty set U which
contains all relevant problem parameters, called scenarios. The objective is
then to calculate a solution which is feasible for every scenario in U and
which optimizes the worst objective value over all scenarios in U.

As a special case of the K-adaptability approach for robust two-stage prob-
lems, the min-max-min robust optimization approach aims to calculate k
different solutions for the underlying combinatorial problem, such that, con-
sidering the best of these solutions in each scenario, the worst objective value
over all scenarios is optimized. This idea can be modeled as a min-max-min
problem.

In this thesis we analyze the complexity of the afore mentioned problem for
convex and for discrete uncertainty sets U. We will show that under further
assumptions the problem is as easy as the underlying combinatorial problem
for convex uncertainty sets if the number of calculated solutions is greater
than the dimension of the problem. Additionally we present a practical exact
algorithm to solve the min-max-min problem for any combinatorial problem,
given by a deterministic oracle. On the other hand we prove that if we fix
the number of solutions k, then the problem is NP-hard even for polyhedral
uncertainty sets and the unconstrained binary problem. For the case when
the number of calculated solutions is lower or equal to the dimension we
present a heuristic algorithm which is based on the exact algorithm above.
Both algorithms are tested and analyzed on random instances of the knapsack
problem, the vehicle routing problem and the shortest path problem.

For discrete uncertainty sets we show that the min-max-min problem is NP-
hard for a selection of combinatorial problems. Nevertheless we prove that it
can be solved in pseudopolynomial time or admits an FPTAS if the min-max
problem can be solved in pseudopolynomial or admits an FPTAS respectively.



Zusammenfassung

In dieser Arbeit fiihren wir einen Ansatz in der robusten Optimierung ein,
der auf einem bindren Min-max-min Problem basiert. Die sogenannte Min-
maz-min robuste Optimierung erweitert die klassische robuste Optimierung,
indem k verschiedene Losungen anstatt einer Einzigen berechnet werden.

Im Allgemeinen betrachtet man in der robusten Optimierung Probleme,
deren Problemparameter unsicher sein konnen. Die Grundidee ist eine Un-
sicherheitsmenge U zu definieren, die alle relevanten Problemparameter ent-
hélt, die man auch Szenarien nennt. Das Ziel ist es eine Losung zu berechnen,
die fiir alle Szenarien in U zulassig ist und die den schlechtesten Zielfunk-
tionswert beziiglich aller Szenarien in U optimiert.

Als Spezialfall des K-adaptability Ansatzes fiir zweistufige robuste Probleme,
ist es das Ziel des robusten Min-max-min Ansatzes k verschiedene Lésungen
fiir das zugrundeliegende kombinatorische Problem zu berechnen, sodass der
schlechteste Fall iiber alle Szenarien optimiert wird, wahrend wir fiir jedes
Szenario die beste der k Losungen betrachten. Diese Idee kann als Min-max-
min Problem modelliert werden.

In dieser Arbeit untersuchen wir die Komplexitit des zuvor beschriebenen
Problems fiir konvexe und fiir diskrete Unsicherheitsmengen U. Wir zeigen,
dass das Problem fiir konvexe Unsicherheitsmengen unter weiteren Voraus-
setzungen genau so einfach ist wie das zugrundeliegende kombinatorische
Problem, falls die Anzahl der zu berechnenden Losungen grofier als die Di-
mension des Problems ist. Desweiteren prasentieren wir einen praktischen ex-
akten Algorithmus, der das Min-max-min Problem fiir alle kombinatorischen
Probleme 16st, die durch ein Orakel gegeben sind. Andererseits beweisen wir,
dass das Problem fiir eine feste Anzahl von Losungen NP-schwer ist, sogar fiir
polyedrische Unsicherheitsmengen und das unrestringierte binare Problem.
Fir den Fall, dass die Anzahl der Losungen kleiner oder gleich der Dimen-
sion des Problem ist, prasentieren wir einen heuristischen Algorithmus, der
auf dem zuvor erwahnten exakten Algorithmus basiert. Beide Algorithmen
wurden an zufélligen Instanzen des Rucksackproblems, des Vehicle-Routing-
Problems und des kiirzesten Wege Problems getestet und analysiert.

Fiir diskrete Unsicherheitsmengen zeigen wir, dass das Min-max-min Prob-
lem NP-schwer ist fiir eine Auswahl an kombinatorischen Problemen. Den-
noch konnten wir zeigen, dass das Problem in pseudopolynomieller Zeit gelost
werden kann bzw. in polynomieller Zeit beliebig genau approximiert werden
kann, falls das zugehorige min-max Problem die jeweilige Eigenschaft hat.
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Chapter 1

Introduction

Combinatorial optimization problems occur in many real-world applications
e.g. in the industry or in natural sciences and are intensively studied in
the optimization literature. A wide range of problems has been solved yet
and the algorithms are continuously improved to run faster and to solve
larger instances. A famous problem which is often solved e.g. in the logistic
industry is the vehicle routing problem. Consider a parcel service which owns
a fleet of vehicles and which has to deliver parcels to its customers every
day. The vehicle routing problem calculates a tour for each vehicle such that
each customer is served by one vehicle and such that on each tour the total
demand of the customers does not exceed the capacity of the vehicle. The
objective is to find such a set of tours which has minimal cost e.g. minimal
travel time. This problem is known to be hard to solve in practice in the
sense that an optimal solution can not be calculated in a reasonable time for
high-dimensional instances. In this case often approximation algorithms or
even heuristic algorithms are used.

In this thesis we study combinatorial problems which can be formulated as

T
M
min ¢ + o, (M)
where X C {0,1}" are the incidence vectors of all feasible solutions of the
problem, ¢ € R" is a cost-vector and ¢y € R a constant. We call (M) the
deterministic problem or the underlying combinatorial problem.

If we want to solve a combinatorial problem in a real-world application we
often have to deal with uncertainty in the problem parameters. For example
the traveling times of a vehicle can be uncertain because every day a different
traffic situation can occur. Depending on the size of the problem, calculat-
ing an optimal solution for the vehicle routing problem in the morning after
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the traffic scenario is observed, can be inefficient. One approach to tackle
uncertainty in the problem parameters is the robust optimization approach.
Here for an uncertainty set U which contains all relevant scenarios of the
uncertain parameters, the objective is to find a solution which is feasible for
every scenario and which optimizes the worst objective value over all scenar-
ios. In this thesis we assume that the uncertainty only affects the objective
function, i.e. every scenario is given by a cost vector (c,cp) € U C R"HL
Then the robust counterpart of (M) is the problem

min max c'z 4+ c. (M?)
z€X (c,c0)€U

This problem is known to be NP-hard for several combinatorial problems
and several classes of uncertainty sets. Furthermore in practical applications
an optimal solution of (M?) is often too conservative in the sense that its
objective value can be very bad in many scenarios. Especially in practical
applications robust solutions are often not useful.

In the robust optimization literature many different approaches have been
presented to find less conservative solutions for problems with uncertain pa-
rameters. For example the K-adaptability approach aims to calculate K dif-
ferent solutions to approximate a robust two stage problem [41]. Here the
variables of the problem are divided into first-stage variables = which have
to be calculated before the scenario is known and second-stage variables y
which can be calculated afterwards. In this thesis we consider the special case
where only one stage exists and propose to solve deterministic problems (M)
with uncertain objective functions (¢, ¢g) € U by adressing the problem

min max min ¢ % + ¢ (M3)
W) L z®eX (ce0)eU i=1,...,k

where k € N is a given number of solutions. Clearly the approach is an ex-
tension of the min-max approach (M?), which is obtained for k& = 1, and
yields a better objective value in general. As a motivation consider the par-
cel service again. Instead of calculating a solution every morning after the
scenario is known, by Problem (M?) a set of k solutions can be calculated
once in a perhaps expensive preprocessing. Afterwards each morning when
the actual scenario is known the best of the calculated solutions can be easily
chosen by comparing the objective values. Furthermore the min-max-min ap-
proach (M?3) hedges against uncertainty in a robust way and even gives more
flexibility to the user, since he can choose the solution which has most of the
properties which he prefers from his personal experience and the solutions
do not change over time.



In this thesis the main objective is to analyze the complexity of Problem (M?)
for several combinatorial problems and uncertainty classes. In Chapter 2 we
present all necessary definitions and results for linear, multicriteria and con-
vex optimization problems and we define all combinatorial problems which
we will study in this thesis. Furthermore we give a short introduction to com-
plexity theory. In Chapter 3 we will present a selection of robust optimization
approaches and discuss the complexity of the related robust counterparts.
The main contribution of this thesis is the analysis of the complexity of
Problem (M?) for convex uncertainty sets in Chapter 4 and for discrete un-
certainty sets in Chapter 5. Additionally to the theoretical results we provide
several algorithms to solve Problem (M?) for the specific uncertainty classes
and for several combinatorial problems. Finally in Chapter 6 we present the
results of our experiments for the knapsack problem, the shortest path prob-
lem and the vehicle routing problem and give a practical proof that the
algorithms presented in Chapter 4 work well on random instances for the
afore mentioned problems.
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Chapter 2

Preliminaries

2.1 Linear Optimization

In this section we will give a short introduction to linear optimization and
polyhedral theory. We will quote basic definitions and results which are used
in the following chapters. For a detailed description of the results in this
section see [45, 40, 54].

We define a linear program as a minimization problem of the form

min ¢z
st. Ax <b (P)
r e R"?

where ¢ € R", A € R™" and b € R™. Any =z € R", which fulfills the
constraints, i.e. it is contained in the set P := {x € R™ | Az < b}, is called a
feasible solution. Note that by the transformation

minc'z = —max —c' x

zeP zeP
any linear program of the form (P) can be transformed to an equivalent
maximization problem. The main objective in linear programming is to find
an optimal solution of problem (P). Here a feasible solution z* € P is called
optimal solution if ¢'z* < c¢'x for all x € P. We then say v := c¢'z* is
the optimal value of (P). The function f : P — R with f(z) = ¢’ is
called objective function. If no feasible solution exists, i.e. P is empty, then
the problem is called infeasible. The problem is called unbounded if for any
a € R there exists an z € P with ¢'z < a. We then define the optimal value

by —oc.
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Example 2.1. Consider the linear program

max X+ To

st. —x14+22<0
r; <1 (2.1)
— Ty <2
r1,T0 € R

which is of the form (P). The unique optimal solution is (z1,z5) = (1,1)
with an optimal value of 2 (see Figure 2.1).

¢

LAN

Figure 2.1: The feasible set and the optimal solution of the Problem (2.1).

In literature many different methods and algorithms have been developed
to solve linear optimization problems. In general any linear program can
be solved theoretically efficient by the ellipsoid method [40]. But since this
method is not very practical to implement it is rarely used to solve problems
of the form (P). A practically efficient method to solve general linear prob-
lems is the simplex method which is very fast for many problems in practice
and which is easier to implement. Nonetheless in the worst case its theoretical
run-time can be exponential [40]. Besides the latter methods many problem-
specific algorithms have been developed, which make use of the structure and
the properties of (P) for a given problem.

2.1.1 Polyhedra and Cones

We now define two classes of sets, polyhedra and cones, which are of high
importance for optimization theory as well as for the framework of robust

6
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optimization. A polyhedron is a set of the form
P={xeR"| Ax < b} (2.2)

with a matrix A € R™*™ and a vector b € R™. A polyhedron is called polytope
if it is bounded, i.e. if there exists a radius R > 0 such that

P C Bg(0) :={z € R" | ||z||2 < R},

where || - ||2 is the Euclidean norm. The description (2.2) is called an outer
description of P. For a nonzero vector d € R" and § € R, we call a set of the
form
H:={zeR"|d'z=¢}
a hyperplane. Furthermore we define
H ={zeR"|d'z <}.

A face of Pisasubset F' C P such that a hyperplane H exists with F' = PNH
and P C H~. A face with a dimension of dim(P)—1 is called facet. A face with
dimension 0 is called vertex. The dimension here is defined by the concept of
affine independence. We say the vectors xg, 1 .. ., x are affinely independent

if 11 —x9, ...,z —xg are linearly independent. The dimension of a set S C R"
is then defined by

dim(S) := max {k e NU{0} | zo,..., 2z € S affinely independent}.

If the dimension is n, then the set S is called full-dimensional. For such a
full-dimensional set .S there always exists a point sq € S and a radius r > 0
such that

B,(so) :={z e R" | ||z — soll2 <r} CS.
We call B,.(sg) the ball around sy with radius r.
A set C' C R™ is called (convez) cone if for any xz,y € C and A, > 0 the
point Ax + uy is also contained in C'.

Example 2.2. The set
R? :={z € R" | z > 0}

is a cone. Furthermore R’} is a polyhedron with exactly one vertex 0 and
facets {x eRY | a; = O} foreachi = 1,...,n. Note that R’} is not a polytope
since it is not bounded. An example of a cone which is not a polyhedron is
the second-order cone

o {(xo,x) eR x R*! | o > ||a:||2}
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Both, cones and polyhedra, are convex sets. Here a set U C R" is convez if
for each x,y € U and 0 < A < 1 the point Az + (1 — \)y is also contained
in U. We define the convex hull of a set X C R" as

k k
conv (X) := {x:ZAixi | A >0, z; € X, Z)\izl, kJGN}
i=1 i=1

and the conic hull of X C R"™ as

k
cone (X) := {x:Z)\ixi | A >0, z; € X, kEN}.

i=1

The convex hull (conic hull) of X is the smallest convex set (cone) which
contains X. The famous Theorem of Carathéodory states that any point in
the convex hull of X C R"™ can be obtained as a convex combination of at
most n + 1 points in X.

Theorem 2.3 (Theorem of Carathéodory). For any set X C R™ and any
point x € conv (X) there exist xy,...,2, € X with & < n + 1 such that
x € conv (T, ...,Tk).

It is easy to verify that any polytope with vertices x1, ...,z is equal to the
set conv (x1, ..., xy). In particular a set P is a polytope if and only if it is the
convex hull of a finite set of points [45]. For general polyhedra the following
theorem holds [54].

Theorem 2.4 (Theorem of Weyl-Minkowski). A set P C R™ is a polyhedron
if and only if
P = conv (z1,...,xx) + cone (y1, ..., Ym) (2.3)

for 1, ..., T, Y1, ..., ym € R™

The representation (2.3) of P in the latter theorem is called inner description
of P. It is always possible to transform an outer description of a polyhedron
into an inner description of the same polyhedron and the other way round.

Nevertheless the size of the two descriptions can be different as the following
example shows.

Example 2.5. Consider the cube B := [0,1]" C R". Clearly an outer de-
scription of B is given by

B={zeR"|0<x <1}

8
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and B can therefore be described by 2n inequalities. On the other hand an
inner description of B is given by

B = conv ({0,1}")

which involves 2™ vectors. It is easy to see that no inner description exists
which uses a smaller number of vectors. To show the other direction if we
consider the inner description

P :=conv ({e;,—e; |1 =1,...,n}),

where ¢; is the i-th unit-vector, then it can be shown that P has an expo-
nential number of facets, and therefore any outer description must have an
exponential number of inequalities. But the inner description is given by 2n
vectors.

Since the run-time of an algorithm can depend on the size of the description
it is important to mention which type of description we use.

A polyhedron P is called rational if any face of P contains a rational point.
From the definition it follows directly that any vertex of P must be rational.
Therefore a polytope is rational if and only if it can be described as the convex
hull of rational points. Equivalently a rational polytope can be described by
an outer description which has only rational entries. We call a polyhedron P
well-described if an outer description

P={zeR"|a/z<b, i=1,..,m}

exists such that the binary encoding-length of each vector (a;, b;) is bounded
by a value ¢ € Q. We then say P has facet-complezity of at most ¢. The
following lemma shows a relation between the facet complexity and the en-
coding size of the vertices of P.

Lemma 2.6 ([40]). If there exists an inner description P = conv (V) +
cone (F) such that the binary encoding-length of each vector in V' and E is
bounded by v € Q, then P has facet-complexity of at most 3n?v.

As a corollary we obtain that if each vertex of a polytope P has encoding-
length of polynomial size, then P has facet-complexity of polynomial size.

Example 2.7. Consider the polytope P := conv (X) with X C {0, 1}". Since
the binary encoding length of each vertex in X is bounded by n it follows
from Lemma 2.6 that P has facet-complexity of at most 3n®. Therefore P is
well-described and an outer description of P exists such that each inequality
has encoding length of at most 3n3.
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Note that the definition of the facet-complexity above does not take into
account the number of inequalities m in the outer description. Hence if each
outer description of a polyhedron has an exponential number of inequalities,
it can still have a polynomial facet-complexity. We will go into detail about
this topic in Section 2.3.

2.1.2 Duality

Duality is an important concept which is applied to linear optimization prob-
lems but also to general optimization problems. For a given minimization
problem, the primal problem, the basic idea is to find a related, so called dual
problem, which computes the best lower bound on the optimal value of the
primal problem. Depending on the class of optimization problems one can
give conditions under which the optimal values of the dual and the primal
problem coincide. The dual problem of (P) is given by

max —b'y
st. Aly=—c (D)
y > 0.

In Section 2.2 we show how the dual problem can be derived for general
convex optimization problems and, as a special case, how (D) can be derived
for linear problems. Clearly for any feasible solution x of (P) and any feasible
solution y of (D) it holds

y'b<y'Ar=c'z
since y > 0 and y and x are feasible. Therefore the optimal value of the
dual problem gives always a lower bound on the optimal value of the primal

problem. In fact both optimal values are equal if both problems have feasible
solutions.

Theorem 2.8 ([45]).

(i) If (P) and (D) are both feasible, then their optimal values are the same.

(ii) If (P) has an optimal solution then (D) has an optimal solution and
both optimal values are the same.

(iii) If (P) is unbounded then (D) is infeasible and vice versa.

10
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Example 2.9. The dual problem of the problem in Example 2.1 is

min Yy, + 2ys3

st. —yr+y=1
n—ys=1
Y1,Y2,y3 = 0

with the optimal solution (1,2,0) and an optimal value of 2.

2.2 Convex Optimization

In this section we will give a short introduction to problems and tools of the
theory of convex optimization. For a detailed description of the topic see [22].

A general convexr optimization problem is a problem of the form

min  fo(z)
st filr) <0, i=1,...,m
Ar = b (COP)
xr eR”
where the functions fo,..., f., : R® — R are convex, i.e. they satisfy

filye + (1 =)y) <Afi(z) + (1 =) fi(y)

for all z,y € R™ and all v € [0,1]. Here A € RP*" and b € RP. There
are many sub-classes of convex problems which can be solved by special
methods and algorithms e.g. linear programs. Another sub-class are the so
called quadratically constrained quadratic problems which are of the form

min a:TPox—i—qOT:c—i—ro

s.t. xTPiJ:—FqZ-Tx—l—riSO, 1=1,....,m
Axr =b
reR"

(QCOP)

where each P; is a symmetric positive semidefinite n x n matrix, ¢; € R",
r; € R and A,b are defined like above. Note that because all P; are positive
semidefinite the functions

fi(x) = ' Px + q;x +r;

are convex and hence the latter problem is a convex problem.

11
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Example 2.10. Let E = {2 € R" | (z — Z) "S(z — ) < Q?} be an ellipsoid
with center-point x € R”, positive definite matrix > € R™"™ and 2 € R.
Then optimizing a linear function over the ellipsoid U can be modeled as

a (QCQP) by

max CTiL’
st. x'Sr—(285%) 24222 -2 <0
r eR".

It was shown in [40], that
e+ WeTn e

is the optimal value of the latter problem (see Figure 2.2).

Figure 2.2: Maximization of ¢c'z over E = {z € R" | (z — Z)"X(z — 7) < 1}.

A more general problem than (QCQP) is the second-order cone problem

min ch

st. |Px+agl.<c¢le+d, i=1,....m (SOCP)
Ar =10
reR"

where P; € R"*" ¢, € R", ¢; € R", d; € R and A, b are defined like above.
Note that each of the first m constraints describes a second-order cone in
dimension n; + 1. Since for any positive semidefinite matrix P there exists a
matrix B such that P = BT B, we can transform any quadratic constraint of
the form 2" Pz +q"z+r < 0 into the equivalent second-order cone constraint

H (%?) o ( 0 r>>

12

S%(l—qTa:—T).
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Hence (QCQP) is a special case of (SOCP). In general Problem (SOCP)
and therefore Problem (QCQP) can be solved in polynomial time by the
interior-point method up to an arbitrary accuracy [8].

2.2.1 Duality

In this section we will give an instruction how to dualize convex problems
and we will give a condition under which strong duality holds. For the convex
problem (COP) the Lagrange dual function L : R x R? — R is defined by

L\ v) = wieann (fo(as) + Z Aifi(z) + Z vi(a, © — b,))

where a; is the i-th row of A.

Lemma 2.11 ([22]). Let p* be the optimal value of problem (COP). Then
for any A € R and v € R” the inequality

LA v) <p’
is valid.

Hence the Lagrange dual function gives a lower bound on the optimal value
of Problem (COP) for any A € RT and v € RP. Now a natural question is:
what is the best of these lower bounds? The answer is the optimal value of
the so called Lagrange dual problem

max L(\,v)
st. AeRY (2.4)
v eRP

In the following let d* be the optimal value of (2.4). From Lemma 2.11 follows
d* < p*. The following theorem gives a sufficient condition, called Slater’s
Condition, under which strong duality holds, i.e. d* = p*.

Theorem 2.12 ([22]). If there exists a vector x € R™ such that f;(z) < 0
foralli=1,...,m and Ax = b then d* = p* holds.

In fact a weaker version of Slater’s condition can be proved. To obtain strong
duality it suffices if there exists a point x € R™ such that strict inequality
fi(x) < 0 holds for all non-affine functions f; while for the affine functions f;
only f;(z) <0 is required.

13
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In the following example we derive the dual problem (D) presented in Sec-
tion 2.1.2 for linear optimization problems. The idea of the following calcu-
lations will also be used in Section 4.1 to transform problem (M?).

Example 2.13. The Lagrange dual function of the primal problem (P) is
given by

LX) = inf (c'z+ A" (Az — 1))

xeR™

=-\'b+ inf (CT + )\TA) z

reR?
B {—ATb, T+ ATA=0

—00 otherwise

for all A > 0. Therefore the Lagrange dual problem is

max —\'b
st. ¢ ==-\"A
A>0

which is exactly problem (D). Note that either (P) has no feasible solution
or we can apply the weaker version of Slater’s condition and obtain strong
duality which was already given in Theorem 2.8.

Finally we will state a famous result from convex analysis called minimax
theorem, which allows us to dualize min-max problems.

Theorem 2.14 ([51]). Let X C R” and Y C R™ be non-empty closed convex
sets and let f: X XY — R be a continuous function which is concave in X
for every y € Y and convex in Y for every x € X. If either X or Y is bounded
then

inf sup f(x,y) = sup inf f(x,y).
yeyxe)gf( y) xegyeyf( y)

2.3 Complexity Theory

In this thesis our main objective is to analyze the complexity of problem (M?3).
Hence in this section we give a short introduction to complexity theory and
present results which we use in the following chapters. To get a precise and
detailed description of this topic see [45].

In complexity theory the aim is to analyze how difficult it is to solve a
problem. On the one hand if an algorithm to solve a problem is known, we

14
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are interested in upper bounds on the worst-case run-time of the algorithm to
get an idea how fast the algorithm is. On the other hand we want to classify
problems by their difficulty. If a problem A can be used to solve a different
problem B without doing additional expensive calculations, then we can say
that Problem B is not harder than Problem A, since we can always solve it
by solving Problem A.

In this thesis an algorithm is defined for a set of valid inputs and is a sequence
of instructions which calculate for any input a certain output in a finite
number of steps. A step in an algorithm can be arithmetic operations like
addition, subtraction, multiplication, division and comparison of numbers,
but also variable assignments. For an exact definition of this see the definition
of Turing machines in [45].

In the following let L := {0, 1}* be the set of all finite strings of 0’s and 1’s.
Any subset of L is called language. We will use L to describe all necessary
objects of our problems. For any © € L we define the size of x, denoted
by (x), as the number of 0’s and 1’s in z. For the description of numerical
values we assume the binary encoding scheme in this thesis, i.e. every value is
described by its binary string v € L. We say f : N — N is a run-time function
for an algorithm A if for any input ¢ € L of size n, the algorithm calculates
an output in at most f(n) steps. The algorithm is called polynomial-time
algorithm (or has polynomial run-time) if a run-time function f exists such
that f(n) < p(n) for all n € N for some polynomial p. An algorithm has
constant run-time if f(n) < ¢ for all n € N and a constant ¢ € N. We often
write O(f) to denote the run-time of an algorithm.

Given a language I C {0, 1}*, a function f : I — {0,1}* and an algorithm A
which calculates for any i € I the ouput f(i) € {0,1}*, then we say A com-
putes f.If for a given f a polynomial time algorithm exists which computes f
then we say f is computable in polynomial time. If f : {0,1}* — {0,1} and A
computes f then we say A decides the language

L':={le{0,1}* |f() =1}.
If a polynomial time algorithm exists which decides a language L’ then we
say L' is decidable in polynomial time.

We define an optimization problem as a quadruple IT = (1, (S;);er, (¢i)ier, goal)
where

e [ C {0,1}* is a language decidable in polynomial time;

e S; C {0,1}* is nonempty for each ¢ € I and a polynomial p exists
with (y) < p((i)) for all i € I and y € S;; furthermore the language
{(i,y) | i € I,y € S;} is decidable in polynomial time;

15
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e ¢;:S; — Qforeach i € I is a function computable in polynomial time;
e goal € {max, min}.

The elements of I are called instances. For each instance i € I we call S;
the set of feasible solutions and ¢; the objective function of i. Note that by
the assumptions given in the listing above we make sure that an algorithm
exists which can decide in polynomial time if a given string i € {0,1}* is a
valid instance of the problem and for any y € S; if y is a feasible solution.
Furthermore we assume that we can calculate the objective value for each
feasible solution in polynomial time.

An (ezact) algorithm A for II is an algorithm which computes for each in-
stance ¢ € I a feasible solution y € S; such that

ci(y) = goal{c;(v') : v/ € S;}.

The computed solution is called optimal solution and its objective function
value ¢;(y) is denoted by opt(i). We define the size of an instance ¢ of an
optimization problem by (i) = (S;) + (¢;) + 1. The size of the latter objects
depends on the description of the object which is used. As we have seen in
Example 2.5 the size of a description of the same object can vary a lot.

Example 2.15. For an inner description
P =conv (x1,...,2Z,) + cone (eq, ..., €)

the size of P is

m l
(P) = () + Y (e
i=1 i=1
If P is given by an outer description P = {z € R" | Az < b} then the size
of P is

m

(P) =3 ((a:.b).

i=1

As we have seen in Section 2.2 the feasible set can be an ellipsoid given by
E={zeR"|(z—2) X(z—2) <Q}.
Then the size of E is
(E) = (¥) + (7) + ().

If a feasible set U is given by a list of vectors U = {cy, ..., ¢, } then the size
of Uis (U) = > (¢;). The latter classes of sets of feasible solutions will be
studied later in this thesis.

16



2.3. COMPLEXITY THEORY

We say f : N — N is a run-time function for an optimization problem II if
for any instance i of size n, an algorithm for II exists which calculates an
optimal solution of instance ¢ in at most f(n) steps. Note that in general
the actual run-time for an instance of size n must not depend exactly on the
parameter n but can depend on a much smaller parameter which is part of the
instance description. For example as we will see later, certain problems over
a polyhedron P = {z € R" | Az < b} can be solved in polynomial time in
the maximum of ((a;, b;)) over all row-vectors (a;, b;). Therefore in contrast to
the size of P the run-time of the algorithm does not depend on the number of
rows in A. Note that the run-time of an algorithm can depend on additional
parameters given in the input which are not part of the instance description,
e.g. an accuracy parameter ¢ > 0 for the computations. In this case we have
to mention that the run-time function is given in the size of the instance and
the respective additional parameters.

The basic classes P and NP are originally defined for so called decision
problems. A decision problem is a pair II = (I,Y), where I C {0,1}* is a
language decidable in polynomial time, called instances, and Y C I are the
so-called yes-instances. An algorithm solves II if it decides for any instance
iel, ifieY orifieI\Y,ie. the algorithm computes the function

Fi1—{0,1}

with f(i) = 1if i € Y and f(i) = 0 otherwise. A detailed description of the
following results and an extensive list of decision and optimization problems
can be found in [37].

Definition 2.16. The class of all decision problems which can be solved by
a polynomial-time algorithm is denoted by P.

Definition 2.17. A decision problem IT = (I,Y’) belongs to the class NP
if there is a polynomial p and a decision problem II" = (I',Y”) in P where
I':={ic:i€ I cec{0,1}PCENI} such that

Y={yecl:3ce{0, 1} ycecy’}.
Here c is called a certificate for y.

In other words a problem is in NPif for any yes-instance y there exists a cer-
tificate of polynomial size, with the help of which we can decide in polynomial
time that y is a yes-instance.

Example 2.18. The subset-sum problem is defined as follows: An instance
is given by integers cy,...,c, € Z and K € 7Z and an instance is a yes-
instance if there exists a set S C {1,...,n} such that Y, c; = K. If we
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choose II' in the latter definition as the subset-sum problem as well then for
each yes-instance the set S is a certificate and by calculating > jes Cj We can
decide in polynomial time if the given instance is a yes-instance. Therefore
the subset-sum problem is in NP.

It is easy to prove that P C NP by choosing p = 0 and II' = II in Defini-
tion 2.17. On the other hand the question if P = NP or not, is one of the
most important open problems in complexity theory.

Since we will only work with optimization problems in this thesis we will omit
further definitions which are only related to decision problems. Substantial
results again can be found in [45].

Definition 2.19. A problem II; polynomially reduces to an optimization
problem Il = (I, (S;)icr, (¢i)icr, goal) if for a given function f defined by

f@) ={y € Si:caly) =opt(i)},

there exists a polynomial-time algorithm to solve II; using f, where calcu-
lating f(i) for any i is assumed to consume constant run-time.

In other words, if we have an oracle which solves problem I, in constant
time, then we can solve problem II; in polynomial time. A consequence of
the latter definition is that, if we have a polynomial-time algorithm for Iy,
then we can solve II; in polynomial time. On the other hand if we would know
that II; can not be solved in polynomial-time then II; can not be solved in
polynomial time since this would lead to a contradiction. It is easy to see
that the latter construction is transitive i.e. if II; polynomially reduces to Il
and II, polynomially reduces to II3 then II; polynomially reduces to II;.

Definition 2.20. An optimization problem II is called NP-hard if all prob-
lems in NP polynomially reduce to II.

The latter definition implies that the class of NP-hard problems contains the
optimization problems which are at least as hard as the hardest problems
in NP. To show that a problem II is NP-hard, by the transitivity of the
reduction, it suffices to reduce any NP-hard problem to II.

Proposition 2.21. If an NP-hard problem II; polynomially reduces to an
optimization problem IIy then Il is NP-hard.

If ¢ consists of a list of integers then in the following we denote by largest (i)
the largest of these integers.
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Definition 2.22. Let II be an optimization problem such that each instance ¢
consists of a list of integers. An algorithm for II is called pseudopolynomial
if its run-time is bounded by a polynomial in (i) and largest(:). An NP-hard
optimization problem for which a pseudopolynomial algorithm exists is called
weakly NP-hard.

In other words the run-time of a pseudopolynomial algorithm depends on the
values of the numbers in . It can have exponential run-time in its worst-case
even if all numbers can be encoded in polynomial size. But if the value of all
occurring numbers has polynomial size, the algorithm is a polynomial-time
algorithm.

Example 2.23. The knapsack problem, which we will define properly in
Section 2.4, is known to be NP-hard (see Theorem 2.46). Nevertheless there
exists a dynamic programming algorithm to solve the problem (see [44])
which has run-time O(nb) where b is the knapsack capacity. Clearly this is
a pseudopolynomial algorithm. Note that if we choose b = 2™ then the size
of b is linear in n, since we assume binary encoding, but the run-time of the
algorithm is n2™ in its worst-case which is exponential in the size of b.

Problems which can not have a pseudopolynomial algorithm, unless P = N P,
are the following:

Definition 2.24. Let II be an optimization problem such that each instance
consists of a list of integers and for any polynomial p let II, be the same
problem restricted to only the instances ¢ € I with largest(i) < p((i)). Prob-
lem II is called strongly NP-hard if there is a polynomial p such that II, is
NP-hard.

Lemma 2.25. Let II; and II; be optimization problems. If II; is strongly
NP-hard and polynomially reduces to the problem (II), for a polynomial p,
then Il is strongly NP-hard.

In other words the latter lemma states that if all the numbers used by the
reduction algorithm have polynomial size then reducing a strongly NP-hard
problem yields strongly NP-hardness. For problems which are hard to solve,
sometimes also non-optimal solutions are accepted by a user if we can give a
certain guarantee for the quality of the solution.

Definition 2.26. Let Il be an optimization problem with a non-negative
optimal value and € > 0. An algorithm A is an e-approzimation algorithm if
for any instance ¢ of II it calculates a feasible solution y € S; with

1+ SOPt(i) < ci(y) < (1 +¢)opt(i).
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Problem IT has a fully polynomial approximation scheme if for any € > 0 there
exists an e-approximation algorithm whose run-time as well as the maximum
size of any number occurring in the computation is bounded by a polynomial
in (i) + (¢) + L. We then say that IT admits an FPTAS.

2.3.1 Oracles

In Section 4.1.1 we will give an oracle-based algorithm which uses several
results from [40]. Therefore we will give a short introduction to the results
which we use later. For a detailed description see [40].

We define an oracle as an algorithm O with constant run-time which returns,
for an input o € {0,1}* of size n, an output of size at most p(n) for a
polynomial p. We can consider an oracle as a procedure which gives an answer
to a question or a solution for a problem without increasing the run-time
except by a constant number of steps. An oracle-polynomial algorithm A is
an polynomial-time algorithm which uses O. We also say A runs in oracle-
polynomial time. In Section 4.1.1 we will use oracles for optimization and
separation problems. The latter problems are defined as follows for convex
and compact sets K C R™

Problem 2.27 (The Strong Optimization Problem). Given a vector ¢ € R",
find a vector y € K that maximizes ¢' x over K or assert that K is empty.

Problem 2.28 (The Strong Separation Problem). Given a vector y € R",
decide whether y € K, and if this is not the case, find a vector ¢ € R™ such
that ¢y > max{c'z | € K} holds.

In fact the latter problem is to find a so-called cutting-plane, i.e. a hyper-
plane H which cuts off the point y if it is not contained in K. More precisely
we want to find a hyperplane H such that K C H~ but y ¢ H~ if it is not
contained in K.

Figure 2.3: Solution ¢ of the separation problem.

20



2.3. COMPLEXITY THEORY

Based on the latter two problems a very famous result from [40] can be cited,
which states that optimization and separation are polynomially equivalent. In
the following for a well-described polyhedron P C R"™ we define the facet-size
of P by (P)r = n+p, where ¢ is the facet-complexity of P. This is motivated
by the fact that the algorithms in [40] iteratively call the separation oracle or
the optimization oracle respectively a polynomial number of times no matter
how many inequalities are given in the description of P. The computations
only depend on an upper bound on the size of each inequality on its own.

Theorem 2.29 ([40]). Given an oracle for the strong separation (optimiza-
tion) problem, the strong optimization (separation) problem can be solved
in oracle-polynomial time in (P)p for any well-described polyhedron P.

Example 2.30. As we have seen in Example 2.7 the facet-complexity of
P := conv (X) with X C {0,1}" is at most 3n*. An optimization oracle for
the deterministic problem

minc'

rzeX

yields an optimization oracle for the equivalent problem

minc'z

zeP
and hence from Theorem 2.29 follows that we can solve the separation prob-
lem over P in time polynomial in 3n® + n.

Given an optimization oracle it is possible to calculate a convex combination
for any rational point in a well-described polyhedron in polynomial time.

Theorem 2.31 ([40]). For any well-described polyhedron P given by a strong
optimization oracle and for any rational vector yy € P, there exists an oracle-
polynomial time algorithm in (P)r + (yo), that finds affinely independent
vertices xo,..., T, of P and rational \g,..., Ay > 0 with Zf:o A; = 1 such

that Yo = Ef:o )\,LZ'Z

Note that since the vertices calculated by the latter algorithm are affinely in-
dependent the algorithm calculates at most n+ 1 vertices. The latter theorem
especially states that for each rational point z* € conv (X) we can calculate
a convex combination of points in X for x* in polynomial time if we can
linearly optimize over conv (X) in polynomial time, which is equivalent to
linear optimization over X.

For general convex problems the equivalence in Theorem 2.29 is not true. If we
are considering arbitrary convex sets K, we even have to take into account
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irrational values, which can occur for example if we consider expressions
involving a norm. Therefore we need a parameter ¢ > 0 which determines
the accuracy of calculations. We define

B.(K) :={x € R" | ||z —y|]2 < e for some y € K}

and
B .(K):={z€ K | B(x) C K}.

By definition B.(K') contains all points which have a distance to K of at
most €. The set B_.(K) contains all points which have a distance of at least ¢
to the boundary of K (see Figure 2.4). It always holds B_.(K) C K C B.(K).
Note that if K is not full-dimensional then B__(K) = ().

Figure 2.4: The sets B_.(K) and B.(K)

Using the latter definitions we define the weak version of the so called mem-
bership problem.

Problem 2.32 (The Weak Membership Problem). Given a vector y € Q"
and any rational value € > 0, assert that y € B.(K) or that y ¢ B_.(K).

Note that both conditions, y € B.(K) and y ¢ B_.(K) can be true at the
same time. If we can solve the strong separation problem it directly follows
that we can solve the weak membership problem.

In the following a full-dimensional compact convex set K is called a centered
conver body if the following information is explicitly given: the integer n
such that K C R", a positive rational number R such that K C Bg(0) and
a rational number r and a vector ag € Q" such that B,.(ay) C K. We then
write K (n, R,7,aq) and the size of K is

(K) := (n) + (&) + (R) + (r) + {ao) -

As mentioned before the equivalence of the strong optimization problem and
the strong separation problem is not true if we consider convex problems. But,
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as the following theorem states, if we consider convex objective functions,
given by an oracle and defined over a centered convex body, then solving
the weak membership problem in polynomial time yields a polynomial-time
optimization-algorithm in a weak version. More precisely:

Theorem 2.33 ([40]). Let ¢ > 0 be a rational number, K(n, R,7,ay) a
centered convex body given by a weak membership oracle and f: R" — R a
convex function given by an oracle which returns for every x € Q™ and 6 > 0
a rational number ¢ such that |f(x) — ¢t| < §. Then there exists a oracle-
polynomial time algorithm in (K) and (9), that returns a vector y € B.(K)

such that f(y) < f(x) 4+ ¢ for all z € B_.(K).

In other words the theorem states that we can find a vector almost in K which
almost maximizes the objective function over all vectors which are deep in K.
In Section 4.1.1 the latter theorem will be combined with a rounding proce-
dure. The idea is to round the point y which is calculated in Theorem 2.33 to
a denominator such that it is guaranteed to be contained in K. Under certain
assumptions, this can also be done in polynomial time, which is shown by
the following lemma.

Lemma 2.34 ([40]). Let P C R™ be a polyhedron such that for ¢y € N
we have (P)r < ¢ and let v € By-ene(P). Then we can calculate ¢ € Z
with 0 < ¢ < 2% and a vector w € Z" in polynomial time in {p) and (v)
such that

lgv —w|| < 27%

and such that %w is contained in P.

2.4 Combinatorial Optimization

In this section we will define the combinatorial optimization problems which
will appear in this thesis. While our results in Section 4 hold for any com-
binatorial problem which can be described through a set X C {0,1}", the
complexity results in Chapter 5 are proved for the combinatorial problems de-
fined in this section. We will not give explicit polyhedral formulations for the
feasible sets X C {0, 1}" of these problems. This is due to the fact that our
results in Section 4.1.1 can be applied to an arbitrary optimization routine
for the underlying combinatorial problem and therefore we do not need any
specific formulation of the feasible set X. A detailed analysis of the following
results can be found in [45, 54].
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Most of the combinatorial problems we are considering are defined on graphs.
An wundirected graph G = (V,E) consists of a finite set of nodes V =
{v1,...,v,} and a finite set of edges £ = {ey,...,e,}. An edge e = {v,w}
is a set of two nodes v, w € V. In a directed graph, each edge has a direction
i.e. it has a head v and a tail w. In this case we write e = (v, w) as a 2-tuple
to clarify that the order of the nodes has to be considered. An undirected
graph can be easily transformed into a directed graph by replacing each edge
e = {v,w} by two directed edges ¢; = (v,w) and es = (w,v). An undirected
graph is called complete if for any two nodes v,w € V there exists an edge
{v,w} € F or in the directed case if both edges (v, w) and (w,v) exist. Two
edges are called parallel if they are defined for the same pair of nodes and,
in the directed case, have the same direction. In this thesis we are consid-
ering only simple graphs i.e. graphs without parallel edges. Furthermore we
assume that no edges of the form (v,v) exist. Two edges are called adjacent
if they have a common node. An undirected graph is called bipartite if V'
can be partitioned in two disjunctive sets V; and V5 such that for each edge
{v,w} € E holds v € V; and w € V5. For any subset of edges X C F we
define the incidence vector 1x : E — {0,1} of X by

MO, ox

2.4.1 The Shortest Path Problem

Let G = (V, E) be a directed graph, ¢: F — R a cost function on the edges
of G and s,t € V two nodes. A path from s to t is a sequence of edges

DPst ‘= (617€2a o 7€l)

where the head of e; is s, the tail of ¢; is ¢ and the tail of e; is equal to the
head of ej;; for each j = 1,...,l — 1 while any node in V' is traversed at
most once. The cost of path py is defined by

) = 3 cley).

Jj=1

A graph is called connected if for any pair of vertices s,t € V a path from s
to t exists. A cycle C' in G is a sequence of edges (pg;, (£,s)) for a path pg.
A graph is conservative if each cycle has non-negative cost. The latter defi-
nitions can be applied analogously to undirected graphs. The shortest path
problem is defined as follows:
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Problem 2.35 (Shortest Path Problem). Given a conservative directed graph G
together with a cost function ¢ : F — R and two vertices s,t € V, find a
path from s to ¢ with minimal cost or decide that no such path exists.

Figure 2.5: The shortest path with cost 5

The set of all paths in G' can be described by a binary set Xgp C {0,1}¥
which contains all incidence vectors of paths in G:

Xsp ={1p | P C E is a path from s to ¢ in G}.

The following theorem gives two important complexity results on the shortest
path problem.

Theorem 2.36 ([54]). The shortest-path problem on conservative graphs
can be solved in polynomial time while for arbitrary cost functions it is NP-

hard.

Proof. Statement (i) can be verified among others by the by the Moore-
Bellmann-Ford Algorithm which has polynomial run-time. For further algo-
rithms see [54].

The second statement is proved by reducing the Hamiltonian path problem
to the shortest path problem. Given a directed graph G = (V, E) and s,t €
V', the Hamiltonian path problem gives an answer to the question if there
exists a path from s to ¢ in G which traverses each node in V' exactly once.
The Hamiltonian path problem is known to be NP-complete [54]. Define the
shortest path problem on G by defining cost ¢(e) = —1 on each edge e € E.
The shortest path then has cost |V| — 1 if and only if a Hamiltonian path
exists in G. O
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2.4.2 The Minimum Cut Problem

Let G = (V, E) be an undirected and connected graph and ¢: £ — R a cost
function on the edges of G. A cut in G is a set of edges of the form

5(S) ::{{v,w}eE|veS, weV\S}.

for any nonempty set of nodes S C V. For s,t € V an s-t-cut in G is a cut
d(S) where s € S and t € V'\ S. The cost of a cut are defined by

e€d(S)

Problem 2.37 (Minimum Cut Problem). Given an undirected and con-
nected graph G = (V, E') and a cost function ¢ : E — R, find a cut in G with
minimal cost.

Problem 2.38 (Minimum s-t-Cut Problem). Given an undirected and con-
nected graph G = (V, F), two nodes s,t € V and a cost function ¢ : £ — R,
find a s-t-cut in G with minimal cost.

Figure 2.6: The minimum s-¢ cut with cost 4

The set of all cuts in G can be described by a binary set X¢ C {0, 1}¥ which
contains all incidence vectors of cuts in G:

Xe={lss |0 #S5CV}

Theorem 2.39. The minimum cut problem and the minimum s-t-cut prob-
lem can be solved in polynomial time.
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Proof. By the famous Max-Flow-Min-Cut-Theorem the minimum s-t-cut
problem can be solved by the maximum flow problem in polynomial time [54].
On the other hand the minimum cut problem can be solved by calculating
the minimum s-t-cut for each pair of nodes s,t € V and return the cut
with minimum cost over all pairs. Note that the number of pairs of nodes is
IV (V] = 1) and is therefore polynomial in the input. O

2.4.3 The Minimum Spanning Tree Problem

Let G = (V, E) be an undirected graph and ¢ : E — R a cost function on
the edges of G. A spanning tree in G is a sub-graph T'= (V, E’) with £’ C FE
such that T" contains no cycles and is connected. The cost of a spanning-tree
is defined by ¢(T') := _ . c(e).

Problem 2.40 (Minimum Spanning Tree Problem). Given a connected undi-
rected graph G = (V, E) and a cost function ¢ : E — R, find a spanning tree
in G with minimal cost.

Figure 2.7: The minimum spanning-tree with cost 7

The set of all possible spanning trees in GG can be described by a binary set
Xsr C {0,1}¥ which contains all incidence vectors of spanning trees in G:

Xsr={1p | T = (V, E') is a spanning tree in G}.

Theorem 2.41 ([45]). The spanning-tree problem can be solved in polyno-
mial time.

Proof. The spanning-tree problem can be solved e.g. by the famous algorithm
of Kruskal which has polynomial run-time. ]

27



CHAPTER 2. PRELIMINARIES

2.4.4 The Matching Problem

Let G = (V, E) be an undirected graph and w : F — R a weight function
on the edges of G. A matching in G is a set of pairwise non-adjacent edges
M C E. A perfect matching in G is a matching M,, C E such that for each
node 7 € V there exists an edge e € M, with i € e. A perfect matching in a
bipartite graph is called assignment. The weight of a matching is defined by
w(M) := 3 o5 w(e). Inliterature different variants of the matching problem
are studied [45]. In this thesis we will consider the following two variants.

Problem 2.42 (Minimum Weight Perfect Matching Problem). Given an
undirected graph G and a weight function w : £ — R, find a perfect matching
M with minimum weight or decide that G has no perfect matching.

Problem 2.43 (Assignment Problem). Given a bipartite graph G, find a
perfect matching M, in G with minimum weight or decide that G' has no
perfect matching.

Figure 2.8: The minimum perfect matching with cost 5
The set of all perfect matchings in G can be described by a binary set X, C
{0,1}¥ which contains all incidence vectors of perfect matchings in G.
Xy ={1y | M C E is a matching in G}.

Theorem 2.44 ([45]). The minimum weight perfect matching problem and
the assignment problem can be solved in polynomial time.

Proof. The minimum weight perfect matching problem can be solved in poly-
nomial time by the famous algorithm of Edmonds [45]. The assignment prob-
lem is a special case of the minimum weight perfect matching problem which
proves the result. O

28



2.4. COMBINATORIAL OPTIMIZATION

2.4.5 The Knapsack Problem

The Knapsack Problem is defined as follows:

Problem 2.45 (Knapsack Problem). Given profits ci,...,c, € N, weights
ai,...,a, € N and a capacity b, find a subset S C {1,...,n} such that
Y jes @ <band Y. ¢ is maximal.

The set of all feasible subsets S can be described by a binary set Xgp C
{0, 1}", which contains all incidence vectors of feasible subsets S C {1,...,n}:

Xgp={ls | SC{L,....,n}: > a; <b}.

jeSs
Theorem 2.46 ([45]). The Knapsack Problem is weakly NP-hard.

Proof. To prove that Problem 2.45 is NP-hard we reduce the subset-sum
problem to the knapsack problem. For given c¢y,...,¢, € Z and K € Z
the subset-sum problem asks if there exists a set S C {1,...,n} such that
ZjeS ¢; = K. Define an instance of the knapsack problem by choosing
c1,...,C, as profits and setting a; = ¢; and b = K. Then the knapsack
problem has optimal value K if and only if the answer to the subset sum
problem is yes.

A pseudopolynomial algorithm for the knapsack problem which has a run-
time of O(nb) is given by a dynamic programming approach and can be found

in [44]. O

2.4.6 The Unconstrained Binary Problem

In this subsection we introduce the unconstrained binary problem. As we
will see the deterministic version of this problem can be solved trivially. But
since the robust version (M?) of the problem is NP-hard as we will see later
we will proof complexity results for the min-max-min version as well. The
unconstrained binary problem is defined as follows.

Problem 2.47 (Unconstrained Binary Problem). Given profits ¢i,...,¢, €
Q find a subset S C {1,...,n} such that ). s ¢; is minimal.

Since all subsets S C {1,...,n} are feasible, the set of feasible incidence
vectors is
Xyp ={0,1}".
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Theorem 2.48. The binary unconstrained problem can be solved in linear
time.

Proof. Clearly an optimal solution of the binary unconstrained problem is
S={ie{l,....,n} | ¢ <0}

which proves the result. O

2.5 Multicriteria Optimization

In Section 3.1.1 we derive a relation between robust optimization and multi-
criteria optimization which we will extend for Problem (M?) in Section 5.1.
Therefore we give a short introduction to multicriteria optimization in this
section. Detailed results about this topic can be found in [30, 31].

We define a linear multicriteria optimization problem by

2%1)1(1 (cfz,....cnx) (2.5)
where ¢; € R". Since in this thesis we are interested in combinatorial opti-
mization problems we assume X C {0, 1}". Obviously in general there does
not exist a point which minimizes all objective functions ¢; at the same time.
So the main objective in multicriteria optimization is to find efficient solu-
tions i.e. solutions for which no other solution exists which is better in every
criteria ¢;. Formally a solution = € X is called efficient if no other solution
y € X exists, such that ¢]y < ¢]z foralli =1...,m and chy < chx for at
least one objective function c;. If such a y exists, then x is called dominated
by y. One objective in multicriteria optimization can be to find the set of all
efficient solutions Xg. Note that for X C {0, 1}" the set Xg can have expo-
nential size, as it was shown for several combinatorial problems [31]. There
are several different methods to find efficient solutions for multicriteria prob-
lems. A well-studied method is the weighted-sum method [30]. Here the idea
is to solve the deterministic problem

m

min Y ¢/ (2.6)
reX Py

for \; > 0and > " | A\; = 1. It can be proved that any optimal solution of the
latter problem is efficient for the related multicriteria problem. Nevertheless
in general not for every efficient solution exists a A like above such that
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T
Ci T

Figure 2.9: Objective function values (¢ z,cqz) for non-efficient solutions

and efficient solutions z € X.

the solution is obtained as the minimum of Problem (2.6). The number of
solutions which can not be obtained by the weighted-sum method can even be
of exponential size. In this thesis we are interested in multicriteria problems
with an efficient set X of (pseudo)polynomial size, which can be calculated
in (pseudo)polynomial time. For most of the problems in Section 2.4 the latter
requirements are not fulfilled. One exception is the minimum cut problem.

Theorem 2.49 ([9]). For a fixed number m of objective functions, the set
of efficient solutions Xg for the multicriteria minimum cut problem can be
calculated in pseudopolynomial time.

If the set Xg has exponential size one may also be interested in approx-
imations of this set, i.e. subsets of Xp such that each efficient solution is
approximated by one of the solutions in the subset. Formally the latter ap-
proximation concept for multicriteria problems is described as follows.

Definition 2.50. For an instance of a multicriteria problem of the form (2.5)
with positive objective values ¢, z for each feasible solution x € X, we say
an algorithm A is an e-approzimation algorithm if it calculates a set FF C X
of solutions such that for each efficient solution x € X there exists a solution
y € F with

cjy<(l+e)e/xz Vi=1,...,m.

A multicriteria problem has a fully polynomial approximation scheme if for
any € > 0 there exists an e-approximation algorithm whose run-time as well
as the maximum size of any number occurring in the computation is bounded
by a polynomial in (z)+(¢)+1. We then say problem (2.5) admits an FPTAS.

Note that the polynomial run-time of the algorithm includes that the calcu-
lated set F' has polynomial size. In literature several approximation methods
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have been presented. Two general approaches to obtain approximation algo-
rithms are local search methods in the objective space and population based
methods ([31]). Furthermore it has been proved that some of the combina-
torial problems presented in Section 2.4 admit an FPTAS.

Theorem 2.51 ([50, 34]). For a fixed number m of objective functions Prob-
lem (2.5) admits an FPTAS for the shortest path problem, the minimum
spanning tree problem and the knapsack problem.
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Chapter 3

Combinatorial Robust
Optimization

In this section we will give an introduction to the robust optimization frame-
work and present a selection of different models which are studied in robust
optimization literature.

In many real world applications the input data of an optimization problem
can be subject to uncertainty. For example the travel times for the shortest
path problem, the traveling salesman problem, or the vehicle routing problem
can be uncertain because of unknown traffic situations. Other problems can
be influenced by measurement or rounding errors while many financial op-
timization problems use information about uncertain demands or uncertain
returns of assets.

In the literature there are three main approaches to tackle uncertainty in
optimization problems. On the one hand there is the approach of stochastic
optimization, which requires a probability distribution on the uncertain data
and which aims to optimize the expected value of the objective function [52].
A well known class of stochastical optimization problems are the stochastic
two-stage problems where the variables are divided into first-stage variables x
and second-stage variables y. A stochastic two-stage problem is of the form
min /(z) + Ez (g(, )

with feasible set X C R", objective function f : X — R, a probability
vector ¢ : 2 — R™ with probability distribution P and Ep denoting the
expected value under P. The function g : X x R” — R is of the form

r,c)= min h(z,y,c
gwe) = min hlr.y.0
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where ¢ € R" is any outcome of the probability vector ¢ and Y (z,¢) C
R™ is the feasible set which depends on the first-stage solution x and the
outcome c. Hence for each first-stage solution x and each outcome ¢ the best
second-stage solution is selected for a given objective function h and under
all feasible solutions Y (z,c). The expected value of this best second-stage
value is optimized over all first-stage solutions . Often the latter two-stage
problem is considered to have uncertainty in the constraints which is modeled
by so called chance-constraints. A chance constraint is of the form

P(f(x,a) >v) <a

with f : X x R" — R and given parameters a € (0,1) and v € R. Here
a : 2 — R” is another probability vector with probability distribution P.
If we choose f(z,a) := @'z then the chance constraint guarantees that the
linear constraint @'z < v is violated with probability of at most a. One of
the main drawbacks of the stochastic optimization approach in practice is to
find a probability distribution which models the uncertain data properly.

The approach of distributional robustness avoids the latter problem by assum-
ing that only the expected value or some other parameters of the unknown
probability distribution are given. The objective in this approach is to op-
timize the expected value of the worst-case probability distribution under
all which have the required parameters [58, 28]. Formally a combinatorial
distributionally robust problem is of the form

min sup Ep (¢’ z) (3.1)

zeX pep
where P is a set of probability distributions of the probability vector c¢. Of-
ten instead of the linear objective function ¢’z other functions are consider
e.g. disutility functions (see [42]). The main task in the latter approach is to
define the ambiguity set P. There are numerous different definitions of ambi-
guity sets in literature. Often the set includes only probability distributions
which have a given expected value and a given support set. Mostly additional
parameters on the probability distribution are required e.g. bounds on given
moments, bounds on the probability over given subsets of the support set and
many more. A very general definition of P can be found in [58]. Surprisingly
many problems of the form (3.1) for appropriate sets P can be reformulated
by using conic optimization duality which yields problems which are often
closely related to the robust optimization approach which is mainly studied
in this thesis.

The robust optimization approach was first introduced by Soyster [56] in
1973. The idea is to define an uncertainty set U which contains all relevant
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scenarios of the uncertain parameters. The aim is to find a solution which
is feasible for all scenarios in U and which optimizes the worst-case value
over all scenarios in U. The robust optimization approach received increas-
ing attention the first time in the late 1990s. Kouvelis and Yu studied the
robust optimization approach for problems with finite sets of scenarios for
several combinatorial optimization problems in [46]. Almost at the same time
Ben-Tal and Nemirovski analyzed the approach for convex problems where
the uncertainty set is a cone or an ellipsoid [14, 15]. Furthermore El Ghaoui
et al. studied semi-definite problems and least-square problems with uncer-
tain data [33, 32]. Some years later Bertsimas and Sim introduced budgeted
uncertainty sets and described and analyzed what they call the Price of Ro-
bustness [19].

The main difference in robust optimization compared to stochastic optimiza-
tion is that we do not assume the uncertain parameters to behave according
to a probability distribution. The uncertainty set U, for example, can con-
tain all relevant observed scenarios but can also be modeled as an infinite
set. Instead of optimizing the expected value we optimize the worst objective
value which a solution can have considering all scenarios in U. For the so
called deterministic problem

min  fe(z)

3.2
st. x € X (3:2)

where the objective function and the feasible set depend on the uncertain
parameters & € U, the robust counterpart of the problem is defined by

min max  fe(%)

st.xeXe VEeU.

In other words we are looking for solutions which are feasible for every sce-
nario £ € U, i.e. x is contained in X for all £ € U. Under all these solution
we want to minimize the worst case objective value. i.e. we want to minimize
the objective function

giﬂX£—>R
1%

— .
z > max fe(z)

Depending on the properties of f¢, X¢ and U, many different classes of the lat-
ter general problem can be defined and are studied in the robust optimization
literature [15]. In this thesis for the deterministic problem we always consider
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linear combinatorial problems of the form (M) where the uncertainty only
affects the cost vector i.e. problems of the form (3.2) where f¢(z) = £z + &
and X¢ = X. Since each scenario for (M) in this case is given by an explicit
cost vector (¢, cp) € U C R™! instead of using the parameter £ we formulate
the robust counterpart as problem (M?).

Uncertainty Sets

In the literature different classes of uncertainty sets are studied. The most
common classes will be presented in the following. Since we assume the cost
vector (c,cp) € R™™! in (M) to be uncertain, we define all uncertainty sets in
the space R"*1. For each ¢ € R""! we always assume the last entry c,,; to
be the constant cg.

A natural way to define scenarios is given by discrete uncertainty sets, where
U={c,...,cn} C R is a finite set of scenarios. Furthermore there are
several classes of infinite uncertainty sets. One well-studied class in literature
are polyhedral uncertainty sets where U is either given by an outer description

U={ceR"| Ac < b}
with A € R™*™ and b € R™, or by an inner description
U = conv (V) 4 cone (F)

where V, E C R""! are finite sets. If U is bounded we also say that U is a
polytopal uncertainty set. As we have seen in Example 2.5 the size of both
descriptions can be substantially different and since U is part of the input
for most of the algorithms in this thesis we always have to mention by which
description U is given. A special case of polyhedral uncertainty sets are the
interval uncertainty sets where

U =|a,b] ::{CER”+1|a§c§b}

for a,b € R"*1. As we have seen in Example 2.5, the box U can be described
by an outer description given by 2(n + 1) inequalities or by an inner descrip-
tion given by 2"*! vertices. Another special case of polyhedral uncertainty
sets are the so called budgeted uncertainty sets. Here for a given parameter
I' € N the uncertainty set is given by

n+1
U={é=c+5Td|0§5j§1, Vi=1,...,n+1; Zéjgr}

j=1
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where ¢ € R"*! is the mean vector and d € R"*! the deviation vector. Note
that in our case, where X C {0, 1}", for minimization problems it suffices to
restrict to deviation vectors d > 0, while for maximization problems we can
assume that d < 0. The idea is to restrict the maximum number of uncertain
parameters which are allowed to deviate from their mean value at the same
time by a parameter I', since it is very unlikely in practice that all uncertain
parameters deviate at the same time. The latter set is therefore an extension
of interval uncertainty, which can be obtained by choosing I' = n + 1.

Another well-studied class of uncertainty sets are ellipsoidal uncertainty sets
where

U={ceR"™|(c—0)'Z(c—¢) <Q°}

with a symmetric positive definite matrix ¥ € R™+Dx0+D "5 given center
point ¢ € R"*! and Q € R. Note that since ¥ is positive definite, U is always
full-dimensional and bounded. In some applications we also want to allow flat
ellipsoids, i.e. an ellipsoid which is contained in a lower dimensional affine
subspace of R™"!. For example this is the case if we assume that not every
entry of the cost vector ¢ is uncertain. Therefore we also allow sets U’ C R
which are the image of a full-dimensional ellipsoid U C R"*! defined like
above under an affine embedding B : R"*' — R! with [ > n + 1. If U is an
axis-parallel ellipsoid then we call U an uncorrelated ellipsoidal uncertainty
set. Note that for full-dimensional ellipsoids in the definition above U is axis-
parallel if and only if ¥ is a diagonal matrix.

Robust solutions can be very conservative and not very effective in practice
since every scenario in U is considered with the same probability, even if
it is very unlikely to happen. Furthermore as we will see in Section 3.1, the
robust counterparts are NP-hard for many tractable combinatorial problems.
To address these drawbacks many new robust models were introduced in
literature. A selection of approaches is given in the following.

3.1 Strict Robustness

The main idea of robust optimization, which was already described above,
is also known as strict robustness. In our case, when the deterministic prob-
lem (M) is only affected by uncertainty in the objective function, the strictly
robust counterpart is the problem

min max c¢'z 4+ c. (M?2)
z€X (c,c0)€U
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Most of the results in literature, which we present in the following sections,
are shown for problems of the form

min max c' x (M2)
xeX ceU
i.e. for Problem (M?) without an uncertain constant. In the following we prove
that this case is equivalent to Problem (M?) for all combinatorial problems
which we defined in Section 2.4.

Lemma 3.1. Problem (M?) is equivalent to problem (M2) for the shortest
path problem, the minimum spanning-tree problem and the minimum perfect
weighted matching problem.

Proof. Given an instance of problem (M?), i.e. a graph G = (V, E) such that
X C {0,1}¥ is the set of incidence vectors of all feasible solutions of the
underlying problem and an uncertainty set U C RIFI+1 define the following
instances of the respective problems in dimension |E| + 1 by extending G as
follows: for the shortest path problem define the graph Ggp = (Vsp, Esp)
with Vgp =V U{t'} and Egp = F U {(¢,t')}. For the spanning tree problem
define Gsr = (Vsr, Esr) with Vor = V U {w} and Esy = EU {{v,w}} for
one arbitrary node v € V. For the matching problem define G, = (Viy, Eny)
with Vy = VU {v,w} and Ey = EU{{v,w}} (see Figure 3.1).

t f fw Ve——e W
Figure 3.1: The graphs Gsp, Gsr and G;.

Note that the new graphs are constructed such that each feasible solution
must use the added edge. Hence an optimal solution of problem (M?) for the
respective problem can be obtained by solving (M32) on the respective new
graph with the same uncertainty set U and projecting the optimal solution to
the edges of GG. Here the shortest path problem has to be solved for the new
target node ¢'. On the other hand any instance of Problem (M2) can be solved
by solving problem (M?) with U’ = U x {0}. Note that for all uncertainty
classes defined in the previous section U’ remains in the same class as U.
This also holds if we consider general convex uncertainty sets U. O]

The same result holds for further combinatorial problems of Section 2.4 if
the uncertainty set is bounded.
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Lemma 3.2. If U is bounded, then Problem (M?) is equivalent to Prob-
lem (M3) for the minimum (s-t-)cut problem, the knapsack problem and the
unconstrained binary problem.

Proof. Let U C Bg(0) for a radius R > 0. Given an instance of problem (M?)
for the respective underlying problem in dimension n, define the following
instances for the respective problems in dimension n + 1. For the minimum
(s-t-)cut problem extend the given connected graph G' = (V, E) to the graph
Ge = (Ve, Ec) with Vo =V U {w} and Ec = EU {{v,w}} where v € V is
an arbitrary node (see Figure 3.2). Note that G¢ is still connected.

Figure 3.2: The graph G¢.

For the instance of the knapsack problem, given by weights a € R™ and a
capacity b, define the new instance by the weight-vector a = (a,0) € R*™! and
capacity b = b. For the unconstrained binary problem just add one dimension.
First note, that for any feasible solution x € X of the original instance
the vectors (z,1) and (x,0) are feasible for the new generated instances in
dimension n 4+ 1. We define

U ={(c,eco— (R+1)) | (¢,c0) €U}

Then any optimal solution z* of (M3) over U’ and X’ C {0,1}"*!, where X’
is the set of all feasible solutions in dimension n + 1 of the instances created
above, fulfills 27, ; = 1. To see this let  be any solution with x,,; = 1 and
y=1o — e,q1. Let ¢, € U’ be the maximum scenario of . Then we have

maxc'y —maxc' x> c;ry — czx =—(cz)o+ R+1>0
celU’ celU’

and hence y can not be optimal. Therefore we have

minmaxc'z + R+ 1=min max ¢ z + ¢.
€X'’ cel’ z€X (c,c0)€U

The other direction is proved by the observation that any instance of Prob-
lem (M2) can be solved by solving problem (M?) with U’ = U x {0}. O

In the following subsections we give an overview of recent complexity results
of Problem (M?) regarding discrete and convex uncertainty sets.
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3.1.1 Discrete Uncertainty

The discrete uncertainty case was intensively studied in [46]. It was shown
that for discrete uncertainty sets U = {cy,..., ¢, } Problem (M3) is weakly
NP-hard for several combinatorial problems if the number of scenarios is
constant and strongly NP-hard if the number of scenarios is non-constant
i.e. it is part of the input. One exception here is the minimum cut problem.
Surprisingly Problem (M2) even has different complexity for the minimum
cut and the minimum s-t-cut problem, while the deterministic versions of
both problems are closely related [9, 5]. Recently it was shown that even
for the unconstrained binary problem (M2) is NP-hard, although the deter-
ministic version can be solved trivially [12]. Furthermore it was shown that
for several combinatorial problems (M3) admits an FPTAS if the number of
scenarios is constant [3]. An overview of the complexity results regarding the
combinatorial problems introduced in Section 2.4 can be found in Table 3.1.
All reductions and proofs can be found in the references shown in the table.
The results for the shortest path problems were proved for non-negative sce-
narios and the approximation results were proved for a constant number of
scenarios. An overview of the discrete min-max problem can also be found
in [7]. Note that all results in the table were shown for Problem (M32) but can
be extended to (M?) by Lemma 3.1, 3.2 and Corollary 3.4. To the best of my
knowledge no results exist for the entries marked with a question mark.

Problem Constant |U| Non-constant |U| Approximation
Shortest Path | weakly NP-hard [46] strongly NP-hard [46] | FPTAS [3]
Spanning Tree | weakly NP-hard [46][3] strongly NP-hard [46] | FPTAS [3]
Assignment NP-hard [46] strongly NP-hard [4] |7

Knapsack weakly NP-hard [46] strongly NP-hard [46] | FPTAS [3]
Min-Cut polynomial [9] strongly NP-hard [5] | FPTAS

Min s-t-Cut strongly NP-hard [5] strongly NP-hard [5] |7
Unconstrained | NP-hard [12] NP-hard [12] ?

Table 3.1: Complexity of problem (M?) for discrete U. All NP-hardness re-
sults for constant |U| even hold for |U| = 2.

To extend the approximation results in [3] to Problem (M?), we will prove
the following theorem, which was already proved in [3] for Problem (M3).

Theorem 3.3. For a given uncertainty set U = {(c1, (¢1)0), - -, (¢m, (¢m)o)}
Problem (M?) has a fully polynomial approximation scheme if the multicri-
teria problem

gél)r(l (clT:E, e ,c;x)

has a fully polynomial approximation scheme.

40



3.1. STRICT ROBUSTNESS

Proof. Without loss of generality we may assume that (¢;)g > 0 for all i =
1,...,m, since otherwise, if we define

M := max {[(c;)o|}

i=1....m
and U’ = U + Me,; we have

min max ¢'z4+cy=—M +min max c¢'z+ ¢
z€X (c,c0)€U z€X (c,c0)€U’

and (¢;)o + M > 0 for all i« = 1,...,m. By assumption for any € > 0 there
exists an e-approximation algorithm for the multicriteria problem, i.e. there
exists an algorithm which calculates a set ¥ C X in polynomial time in
n+ (U) + (g) + 1, such that for cach efficient solution € X there exists a
solution y € F' with

cy<(l+e)/z Vi=1,...,m.

Note that F must have polynomial size since it has been calculated in poly-
nomial time. At least one optimal solution z of (M?) must be an efficient
solution of the multicriteria problem since, if not, there exists an efficient
solution y € X which dominates = and therefore

cjy + (¢i)o < cZ-T:c + (¢i)o

for all i = 1...,m. But then y is optimal for (M?) which is a contradiction.
So let #* be an optimal solution of (M?) which is efficient. Then there exists
ay € F with

cy<(l+e)/a* Vi=1,...,m.
Now choose the solution z € F' with minimum value max.ev c'z + ¢

under all solutions in F', which can be done in polynomial time in the input.
Then we have

max ¢ z+ cp < max cTy + ¢
(e,c0)€U (e,c0)€U
< max (1+¢)c' 2" + ¢
(e,c0)€U

<(l1+¢) ( max c'z* + co>
(e,c0)€EU

while the last inequality holds since ¢y > 0. Therefore z is a an e-approximate
solution of (M?). O
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Corollary 3.4. Problem (M?) admits an FPTAS for the shortest path prob-
lem, the minimum spanning tree problem and the knapsack problem if the
number of scenarios is fixed.

Proof. By Theorem 2.51 the multicriteria versions of the listed problems
have fully polynomial approximation schemes for a constant number of linear
objective functions. The result follows by Theorem 3.3. [

3.1.2 Convex Uncertainty

The strictly robust problem (M2) has been intensively studied for ellipsoidal
uncertainty sets in [14, 15, 20] and for budgeted uncertainty in [19, 18, 55].
It is well known that for general ellipsoidal and polyhedral uncertainty sets
Problem (M32) is at least as hard as the same problem for discrete uncertainty
sets. In this section we will present extensions to Problem (M?) for two well-
known proofs of the latter two results. On the other hand we will show some
special cases for which Problem (M?) can be solved in polynomial time.

Polyhedral Uncertainty

If we consider polyhedral uncertainty sets U = {c € R" | Ac < b} then the
strictly robust problem (M?) can be reformulated as

min 2z

s.t. max ¢z + co < z
(c,c0)€U
re X, zeR.

The maximum expression in the first constraint is a linear program with
variables (¢, ¢p) and can therefore be dualized (see Section 2.1.2) which leads
to the equivalent constraint

min  y'b<z.
yTA=(z", )T
yERT

The latter constraint is fulfilled if and only if there exists a feasible solution y
of the minimization problems which has objective value y'b < z. Hence
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Problem (M?) is equivalent to the problem

min z
s.t. yTb <z
y'A=(z",1)"

reX, zeR, yeRY

which is a linear problem with continuous variables z,y and binary vari-
ables z. To prove the NP-hardness of Problem (M?) for several combinatorial
problems we first show that we can reduce the discrete uncertainty case to
the polytopal uncertainty case.

Theorem 3.5. Problem (M?) with |U| = 2 can be reduced to the same
problem with polytopal uncertainty given by an inner description or by an
outer description.

Proof. Let

min max ¢ z+ Co

z€X (c,c0)€U
with U = {(a, ag), (b,by)} be an instance of the problem with two scenarios.
Then this is equivalent to the same problem with U = conv ((a, ap), (b, by)).
The latter set is a polytope given by an inner description and can also be
described by an outer description of polynomial size which shows the result.

]

We now extend the well known result that Problem (M3) is as easy as the
underlying deterministic problem if U is a box to Problem (M?).

Theorem 3.6. Problem (M?) with interval uncertainty is equivalent to the
underlying deterministic problem.

Proof. Let U = [(a,ap), (b,by)] € R**!. Since X C {0,1}" and hence z > 0
for any x € X, the maximum over U in direction x is obtained in scenario
(b, bo) (see Figure 3.3), and therefore

min max c¢'z4c=min b x+ by
z€X (c,c0)€U zeX

which proves the result. O
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Figure 3.3: Maximization over a box in direction x.

The latter theorem includes that Problem (M?) with interval uncertainty can
be solved in polynomial time for all problems discussed in Section 2.4, except
for the knapsack problem.

Another important special case of polyhedral uncertainty sets are the bud-
geted uncertainty sets, which were first introduced by Bertsimas and Sim
in [19]. The interval uncertainty approach allows every parameter to vary in
a given range independently of each other. This often leads to solutions which
are too conservative and far from optimal in many scenarios. Furthermore
in practice it is very unlikely that all uncertain parameters attain the worst
value at the same time. The idea in the budgeted uncertainty approach is to
fix a parameter I' and allow at most I' many parameters to differ from their
nominal value. The parameter I' controls the so called price of robustness,
which is the trade-off between the probability that more than I' uncertain pa-
rameters differ from their mean value and the effect to the optimal value. For
deterministic combinatorial problems of the type (M), the robust counterpart
with budgeted uncertainty is the problem

min max c¢'x+ ¢ (BR)
T€X (c,c0)€UT

where
n+1
Urz{ézc+5Td|O§5j§1, Vi=1,....,n+1; Zéjgr}

with ¢,d € R"™! and I' € R,. Note that U is a polyhedron and therefore
Problem (BR) is a special case of Problem (M?) with polyhedral uncertainty
(see Figure 3.4). The outer description of UT' is given by

n+1 n+1
1z _ S
Z 36 =T Z 4
i=1

=1

UF:{EE [e,c+d]

and can therefore be described by 2n + 1 constraints. On the other hand the
inner description has exponential size since it can be proved that for each
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subset S C {1,...,n+ 1} with |S| =T the point

{cj+dj ifjes
Vs =

Cj otherwise

is a vertex of UT. Therefore U has O(n') vertices.

Figure 3.4: The set U in two dimensions for I = 1.

The important difference to general polyhedral uncertainty is that Prob-
lem (BR) can be solved very efficiently for tractable combinatorial problems.

Theorem 3.7 ([18]). Problem (BR) for budgeted uncertainty can be solved
by solving a deterministic version (M) of the same underlying problem n + 1
times.

It follows directly from the latter theorem that if the deterministic prob-
lem can be solved in polynomial time, then Problem (BR) can be solved
in polynomial time. An overview of complexity results of the combinatorial
problems described in Section 2.4 for the presented classes of polyhedral un-
certainty sets can be found in Table 3.2. The results follow from the theorems
in this section together with the results from Table 3.1 in the last section.
For the shortest path problem we always assume U C R”. To the best of
my knowledge no complexity results were presented in the literature for the
entry marked with a question mark.

Problem Polyhedral U Interval U Budgeted U
Shortest Path | NP-hard polynomial polynomial
Spanning Tree | NP-hard polynomial polynomial
Assignment NP-hard polynomial polynomial
Knapsack NP-hard weakly NP-hard weakly NP-hard
Min-Cut ? polynomial polynomial

Min s-¢t-Cut strongly NP-hard polynomial polynomial
Unconstrained | NP-hard polynomial polynomial

Table 3.2: Complexity of Problem (M?) for polyhedral classes of U.
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Ellipsoidal Uncertainty

We now analyze the case where

U= {(c, co) € R™ | ((¢,¢0) — (8,6))T S (¢, co) — (&,)) < Q?}

is an ellipsoid with positive definite matrix ¥ € R®+Dx®+D " center point

(¢,c0) € R™! and 2 € R. As we have seen in Example 2.10 the objective
function of (M?) can then be reformulated as

max ¢ x+co=¢ x4+ /(27,15 1(zT,1)T.
(e,c0)EU

Since Y71 is a positive definite matrix there exists a matrix B € R**! such
that ¥~' = BT B and therefore the latter expression can be reformulated as

clr+e+ QB 1),
Hence (M?) is equivalent to the problem

min 2z
s.t. QHB(:}UT,I)TH2 <z—¢'x— ¢
re X, zeR

which is of the form (SOCP) with binary variables x and continuous vari-
able z. As in the polyhedral case this reformulation gives us a possibility to
solve Problem (M?). Before we prove the NP-hardness for several combinato-
rial problems under ellipsoidal uncertainty we give an example for a problem
from financial optimization which can be transformed to a problem of the
form (M?) with ellipsoidal uncertainty.

Example 3.8. Robust optimization problems under ellipsoidal uncertainty
often occur in financial optimization problems [27]. For example in portfolio
optimization the return of a set of n assets can be uncertain. We assume that
each asset has a price of w; and we have a total budget of B. If we assume
that the return vector r € R" of the assets is normally distributed with mean
1 € R™ and covariance matrix ¥ = AT A € R™ ™, then one problem could
be to find the maximum return value of a portfolio which can be realized by
the given budget such that the probability to fall below the return value is
at most € > (. This problem can be modeled by a binary problem with one
knapsack constraint and a chance constraint of the form

max z
s.t. P(TTQJ <z)<e
w'z < B
x € {0,1}".
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The chance constraint is equivalent to the constraint
<+ 0| Azl =p'r — 01 — )V TXx

where ® is the cumulative distribution function of the standard normal dis-
tribution. Therefore we can rewrite the problem as

max pu'x — & (1 —e)Va S
st. wx<B
z € {0,1}",

which by Example 2.10 is equivalent to

max min c¢'x

z€{0,1}™ ceU
st. w'z<B

where
U= {c ER"|(c—p)' T He—p) < (7' (1 - 5))2} .

The latter problem is a strictly robust knapsack problem under ellipsoidal
uncertainty.

We can show that Problem (M?) under ellipsoidal uncertainty is NP-hard
for most of the combinatorial problems we considered in the section before.
The following theorem was already proved for Problem (M) in [55].

Theorem 3.9. Problem (M?) with |[U] = 2 can be reduced to the same
problem with ellipsoidal uncertainty.

Proof. Given an instance of (M?) with U = {(a,ao), (b,by)} define U" =
conv ((a, agp), (b,by)). Then U’ is an one-dimensional ellipsoid since it is the
image of the affine embedding

B:{zeR|s*<1} - R"™

with 1 ]
B(e) = 5 ((a,a0) + (b, b)) + 5 ((a, a0) = (b, b)) & .
The result then follows analogously to the proof of Theorem 3.5. ]

Note that the unconstrained binary problem with general ellipsoidal uncer-
tainty is even strongly NP-hard, as it was shown in [12]. An interesting special
case is uncorrelated ellipsoidal uncertainty. In this case the the unconstrained
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binary problem as well as the spanning-tree problem can be solved in polyno-
mial time. An overview of complexity results of the combinatorial problems
described in Section 2.4 for the presented classes of ellipsoidal uncertainty
can be found in Table 3.3. If no citations are given, the result follows from
Theorem 3.9 in this section together with the results from Table 3.1 in the
last section. Again for the shortest path problem we always assume U C R
To the best of my knowledge no complexity results were presented in the
literature for the entries marked with a question mark.

Problem Ellipsoidal U Uncorr. ellips. U
Shortest Path | NP-hard ?

Spanning Tree | NP-hard polynomial [49]
Assignment NP-hard ?

Knapsack NP-hard NP-hard
Min-Cut ? ?

Min s-t-Cut strongly NP-hard ?

Unconstrained | strongly NP-hard [12] polynomial [12]

Table 3.3: Complexity of Problem (M?) for ellipsoidal classes of U.

3.2 Regret Robustness

In this section we introduce the regret robust approach. Most of the results on
this topic presented in the literature consider uncertainty which only affects
the objective function. The approach has been intensively studied for discrete
uncertainty sets in [46] and for interval uncertainty in [11, 43]. A survey can
be found in [7]. Besides the afore-mentioned uncertainty sets there are only
a few results for ellipsoidal uncertainty sets. Recently the complexity of the
regret robust problem for the unconstrained binary problem and the shortest
path problem was studied in [26]. The basic idea of regret robustness is to
find a solution which minimizes the worst-case deviation of the solution’s
objective value and the objective value of the optimal solution in a scenario.
Formally let x be the optimal solution of the certain problem

mine'z,
zeX

for scenario ¢ € U. Then the regret robust counterpart is

min max |c¢'z — ¢! z7]. (RR)
zeX ceU

While for discrete uncertainty sets (RR) has the same complexity as Prob-
lem (M?) for most of the problems introduced in Section 2.4, for interval
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uncertainty the regret robust versions are much harder to solve than the
strictly robust versions. An overview of the complexity results regarding the
combinatorial problems from Section 2.4 can be found in Table 3.2 and in [7].
To the best of my knowledge no complexity results were presented in the lit-
erature for the unconstrained binary problem.

Problem |U]| constant |U| non-constant Interval U

Shortest Path | weakly NP-hard [46] strongly NP-hard [46] strongly NP-hard [10]
Spanning Tree | weakly NP-hard [46][3] strongly NP-hard [3]  strongly NP-hard [10]
Assignment NP-hard [46] strongly NP-hard [4]  strongly NP-hard [4]
Knapsack weakly NP-hard [46] strongly NP-hard [3] ~ NP-hard

Min-Cut polynomial [5] strongly NP-hard [5]  polynomial [5]

Min s-t-Cut strongly NP-hard [5] strongly NP-hard [5]  strongly NP-hard [5]
Unconstrained | 7 ? ?

Table 3.4: Complexity of (RR) for different classes of U.

For general ellipsoidal uncertainty the authors in [26] prove that Problem (RR)
for the shortest path problem and the unconstrained binary problem is NP-
hard. Furthermore they show that it is polynomial for the unconstrained
problem if the ellipsoidal uncertainty is uncorrelated.

3.3 Light Robustness

In this section we present the approach of light robustness which was first
introduced in [35]. The main idea is to fix a nominal scenario &, which can
be chosen as the mean scenario of an uncertainty set (e.g. the center of the
ellipsoid), and to calculate a solution which is feasible for this scenario with
an objective value which deviates at most a given value p from the optimal
value in this scenario. The objective is then to find a solution which, addi-
tionally to the latter condition, minimizes the violation of the constraints for
all other scenarios. The optimal lightly robust solution therefore must not
be feasible for all scenarios. This approach was motivated by an application
in railway timetabling and was combined with the approach of budgeted un-
certainty [36, 35]. The constraints of timetabling problems can often include
restrictions depending on the delay time, where the delay time is an uncertain
parameter. Using a strictly robust approach for a timetabling problem would
lead to solutions which are feasible for every possible delay scenario which is
contained in U. Since this often yields very conservative solutions which are
not efficient in practical applications, the idea of the lightly robust approach
is to find a timetable which works well in the mean scenario when no dis-
turbances occur but which is allowed to be slightly infeasible for some delay
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scenarios. The authors in [35] analyze the approach for linear programs of the
type (P) with budgeted uncertainty which only appears in the constraints.
This approach was later extended for general types of optimization problems
and arbitrary uncertainty sets in [53]. This approach called generalized light
robustness assumes a deterministic problem of the form

min  f(z,¢)
st. Fi(x,§) <0 Vi=1,...,m
x € R™

where £ € U are the uncertain parameters and F; and f are functions which
map from R" x U to R for each ¢ = 1,...,m. The generalized lightly robust
counterpart of the latter problem is then defined as

min 7]
st f(z,0) < 24p

Fi(z,§) <v ¥§eU
reR" veRY

where || - || is an arbitrary norm, p € R and £ is the optimal value of the
deterministic problem in the nominal scenario é The first two constraints
ensure that the calculated solution x is feasible in scenario f and that its
objective value in scenario f deviates at most p from the optimal value in S
The remaining constraints make sure that the violation of the constraint for
all scenarios is bounded by the parameters «; which are minimized in an
arbitrary norm. The author proves the following theorem.

Theorem 3.10 ([53]). If the deterministic problem is of the form (P) with
polyhedral uncertainty in the constraints and || - || is a norm for which the
unit ball is a polytope then the generalized lightly robust counterpart of (P)
is a linear program. If we consider (P) with ellipsoidal uncertainty in the
constraints and if || - || is a norm for which the unit ball is an ellipsoid or a
polytope, then the lightly robust counterpart of (P) is a second-order cone
problem.

Examples of norms for which the unit ball is a polyhedron are

n
Izl = lail
i=1
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and
”x”oo ‘= 1nax |x1|
1= n

=1,...,

while for the Euclidean norm || - ||> and the ellipsoidal norm

|z||s == Va T3z

with positive definite ¥ € R"*" the unit ball is an ellipsoid.

3.4 Recoverable Robustness

The approach of recoverable robustness was first introduced in [48] and, be-
sides other problems, was used to solve timetabling problems. The approach
is similar to the stochastic two-stage approach in the sense that a solution
has to be calculated in the first stage and after the scenario is known this
solution can be adjusted under certain conditions. Formally the main idea
behind this approach is that a set A of recovery algorithms is given such that
each algorithm can be applied to a solution x and a scenario £ to construct
a feasible solution for the scenario. The objective is then to find a solution x
which is feasible in a nominal scenario é together with an algorithm A € A,
such that for every scenario & € U, the algorithm constructs a feasible so-
lution A(z,§) € X, and the worst-case objective value over all scenarios is
optimized. Formally for a given uncertain problem

min  fe(x)
st. x€ Xg

with & € U, the recoverable robust counterpart is the problem

i a Alz,

st. A(z,§) e Xe VEeU.

The complexity of the latter problem depends heavily on the underlying
problem and on the choice of A.

The concept was later applied to the shortest path problem in [25]. As a
motivating example consider a long-term construction process for a railway
system or a highway. In the first stage we have to find a construction plan
which minimizes the actual cost. But since during the construction process
the cost can change, it can be better to change the construction plan after the
future price scenario is known. In this case it would be efficient to consider
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possible changes of the cost in the future already in the first stage. For the
application in [25] in the first stage a path on a graph G is calculated before
the scenario is known. Afterwards, when the scenario is known, it is allowed to
change at most k£ edges of the calculated path. Formally the k-dist recoverable
robust shortest path problem is defined as follows: for a given directed graph
G = (V,A) and nodes s,t € V, let ¢' : P(A) — N be the first stage cost,
which has to be paid for the implementation of the calculated path before
the scenario is known. For each scenario s € .S, the cost is given by a function
¢® : P(A) — N. Let k be the given recovery parameter. Let P be the set of
all s-t-paths in G and for any path p € P define

Py={peP|IW\pl <k}
Then the problem can be formalized by

. 1 . S (!
. 3.3
min ¢ (p) +mex min ¢ (¥ (3.3)

Besides other results, the following theorem was proved in [25].

Theorem 3.11 ([25]). Problem (3.3) is strongly NP-hard for discrete, inter-
val and budgeted uncertainty.

3.5 Adjustable Robustness

Adjustable robustness was first introduced in [13] and is, like recoverable
robustness, a robust version of the two-stage approach in stochastic opti-
mization. The idea is to distinguish between here and now variables x which
have to be calculated in advance and wait and see variables y which can be
defined after the scenario is known. The z variables are also called first stage
solutions and y are the second stage solutions. The objective is to calculate
a solution z in the first stage such that for every possible scenario & there
exists a solution y such that (z,y) is feasible and such that (z,y) minimizes
the worst-case objective value over all scenarios. After the scenario is known
the best of the feasible solutions y is chosen. For a deterministic problem of
the form

min  fe(x,y)

st (z,y) € Xe x Y

with X C R™ and Yy C R" the adjustable robust counterpart is the problem

minmax  min x, AR
reX €U y:(zy)eXeXYe fg( y) ( )
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where the feasible set X is defined by

X::{xe ﬂXE|V§€U§|y€Y§:(x,y)€X§><Yg}.
£eU

In other words X contains all first stage solutions x such that z is feasible for
all scenarios £ and such that for each scenario £ there exists a second stage
solution y such that (x,y) is feasible for the scenario &.

Example 3.12. Consider the network design problem where for a given
graph G = (V, E) each edge e € E has a maximal capacity u. with total
price c.. Furthermore d;; are the uncertain demands of units which have
to be sent from node 7 to j. Each unit which is sent from 7 to j yields a
profit of p;;. In the first stage a fraction x. of u. can be bought by paying
the price x.c.. This fraction z.u. can then be used in the second stage to
send f. units over the edge where f. < x.u, must hold. In the second stage
when the demands d;; are known we can calculate the flow which satisfies all
demands and all capacities z.u, and which has the maximal profit. Therefore
the problem can be formulated as an adjustable robust problem with first
stage variables =, and second stage variables f, [17].

The adjustable robust problem is hard to solve in general, that is why there
are several variations and special cases of the problem which are considered
in the literature. One approach, which was presented in [13], is called affinely
adjustable robustness. In this approach the authors assume the wait and see
variables y to be given by an affine function of the uncertainty parameters,
ie.y=a+ A with A € R"*? and a € R". We consider the problem

min ¢z

(3.4)
s.t. Tgl’ + Wy < hé,

where £ € U C R?, Ty € R*™ W € R™*™ and he € R'. Here the uncertainty
parameters only occur in Ty and he and we assume that T and he are affine
linear in €. The authors prove the following theorem:

Theorem 3.13 ([13]). The adjustable robust counterpart of Problem (3.4),
where the second stage variables y are affine functions of the uncertain pa-
rameters, is equivalent to the strictly robust problem

min ¢'x

st. Bex+0b:2>0 VE€U

for a matrix B, € RY*™ and be € R and it has the same complexity as the
strictly robust problem for any U.
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For combinatorial problems of the form
min ¢ z4+d'y
st. (z,y) e X xY

where X C {0,1}" and Y C {0,1}" without uncertainty in the constraints
and (c,d) € U C R™" the adjustable robust counterpart reduces to the
min-max-min problem

min max min ¢'z +d'y.

2€X (c,d)€U yeY
Note that Problem (M?) has the same min-max-min structure and will be

analyzed later. In fact (M?) is a special case of the min-max-min problem
discussed in the following section.

3.5.1 K-Adaptability

As mentioned before the adjustable robust counterpart (RCR) is hard to
solve in general. One approach to approximate the latter problem is called
K -adaptability and was first introduced in [16] for general linear problems
with uncertainty in the objective function and in the constraints. The idea
of the approach is to choose K second stage solutions v, ..., yx in the first
stage and then choose the best of them after the scenario is revealed. The
authors analyze the gaps between the adjustable robust counterpart, the K-
adaptability problem and the strictly robust problem in [16] and give neces-
sary conditions to obtain a certain improvement. They also present a bilinear
optimization formulation to solve the 2-adaptability problem and prove that
the latter problem is NP-hard. Later the approach of K-adaptability was
analyzed for binary problems in [41]. We consider problems of the form

min ¢'Cx+£'Qy
st. Te+Wy<h
(x,y) e X XY

where £ € U = {£ € RY | A{ < b} are the uncertain parameters, X C R™ is
a bounded polyhedral set, Y C {0,1}", C € R>™ Q € R>" T € R>*™,
W € R>" and h € R.. The K-adaptability robust counterpart is then the
problem

. . T T A, (k)
C
i g, min, €702 +TQy

st. Te+Wy® <h k=1,... K (K-AR)
reX, y®Wey k=1,....K
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for a given positive integer K. Besides other results the authors prove the
following theorem.

Theorem 3.14 ([41]). For all
K > min {n,rank Q} + 1,

Problem (K-AR) has the same optimal value as the adjustable robust coun-
terpart

. : T T
C . 3.5
IR U e Ay €O QY )

Proof. Assume n < rank @ and let K = |Y| < co. Then Problem (3.5) and
(K-AR) are equivalent. The objective function of (K-AR) can be written as

K
max min &' Cz+ Z Ml Qy ™)

K. —
€eU AeRfeTA=1 =1

K
=max min £ Czx+&'Q Z ey

K., Ty—
€eU AeRE:eTA=1 P

Since

K
Y= Z Ay® € conv (y(l), e ,Z/(K))
k=1

and by the Theorem of Caratheodory 2.3 it follows that for any point y
it suffices to choose n + 1 solutions in {y(l), e ,y(K)} to describe y as a
convex combination. Since all ¥ are chosen in the first stage it suffices to
set K = n + 1 to reach the same optimal value which proves the theorem.
The case rank () < n can be proved analogously by considering the convex
combination

K
yi=> MQy™.
k=1

]

Furthermore the authors in [41] provide a mixed-integer linear program for-
mulation for Problem (K-AR).
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Theorem 3.15 ([41]). The K-adaptability robust counterpart (K-AR) is
equivalent to problem

min b«
st. Ala=Cr+ Z QzF
k=1,..K
A1 =

Te+Wy*<h k=1,....K
<k <N k=1, K
K>\ D1+ k=1,... K
ze€X,aeR,, NeRE

ey FeR” k=1,... K.

Problem (M?), which will be studied in Chapters 4 and 5, is the special case of
the Problem (K-AR) where no first stage exists, i.e. X = {0}. In Section 4.1.1
we will show that for convex U this case is tractable for all tractable com-
binatorial problems if we choose K > n + 1. Additionally we show that this
problem is NP-hard for any fixed K and for polyhedral uncertainty, which
also proves the NP-hardness of Problem (K-AR).

3.6 Bulk Robustness

The concept of Bulk Robustness was presented in [1] and studied for the
shortest path problem and the minimum matroid basis problem. In contrast
to the previous models, this approach considers a set of failure scenarios,
where each failure scenario is a set of edges which can break down simulta-
neously. The aim is to calculate a set of edges such that, if we remove the
edges of any failure scenario from this set, it still contains the edge set of
a feasible solution of the combinatorial problem. As an application consider
a railway system for which a shortest path has to be calculated. Because of
possible constructions or accidents it can happen that a section of the railway
system is not passable anymore. In this case we can use the bulk robust idea
to calculate a set of sections which always contain a feasible path no matter
which of the failure scenarios occurs. The optimal solution of the bulk robust
counterpart is a set of edges and must not be a solution of the deterministic
problem as it is the case in the previously presented robust approaches.

Given a deterministic combinatorial problem of the form (M) we define X C
{0,1}" as the set of feasible solutions of the bulk robust counterpart. We

26



3.6. BULK ROBUSTNESS

assume that X C X and that if 2; € X, then for any 25 > 1 also 2 € X.
Hence a feasible solutions in X must not be feasible for the deterministic
combinatorial problem as it was the case in the previous sections. But any
feasible solution of the bulk robust problem is always a superset of a feasible
solution of the deterministic problem. Given a cost vector ¢ € R™ and a
set of failure scenarios Q = {Fi,..., F,}, where F; C {1,...,n} for each
1=1,...,m, the bulk robust counterpart is defined as

min ¢' z

st.xp, € X VF, €Q (BR)
xz e {0,1}"

0 ifjeF
(mFi)j = {

r; otherwise.

where we define

As an example consider the graph in Figure 3.5 with failure scenarios Q =
{{e1},...,{e5}} i.e. in any scenario exactly one edge is not passable. The
optimal solution of the related bulk robust problem is shown in Figure 3.5.
Besides other results in [1] the authors present a polynomial-time approxima-

Figure 3.5: The optimal bulk-robust solution for the shortest path problem
and failure scenarios 2 with cost 12.

tion algorithm with an approximation guarantee of O (logm + logr) for the
minimum matroid basis problem. Furthermore a polynomial-time O (logm)-
approximation algorithm for the shortest path problem for fixed

k = max | F|
FeQ

is presented.

A two-stage version of the bulk robust approach was already presented in [2]
for the shortest-path problem. The idea is that in a second stage, after the
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failure scenario is known, it is allowed to add r edges to the pre-calculated
edge-set to connect the given nodes s and t. Formally for a given graph
G = (V,A) and s,t € V and f,r € Z,, the objective is to find a set of edges
X C A of minimum cardinality which connects s and ¢ such that for any
F C A with |F| < f there exists R C A with |R| < r such that s and ¢ are
connected in (X \ F') U R. In other words the set of failure scenario here is
Q={F CA||F| < f}and in the second stage it is possible to add at most r
arbitrary edges which are not contained in the actual scenario F' to obtain a
feasible path. The authors show that the latter problem in its general version
is NP-hard and that there does not exist a polynomial-time a-approximation
algorithm for the problem if a < 2 unless P = N P. Besides other results
they present a polynomial-time algorithm for the case f =r = 1.
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Chapter 4

Min-max-min Robustness
under Convex Uncertainty

The main contribution of this thesis is the analysis of problem

min max min ¢ 2% + ¢ (M3)
2 xR eX (c,e0)eU i=1,...k

where X C {0, 1}" is the set of incidence vectors of all feasible solutions of the
given deterministic problem (M) and U C R™"! is an uncertainty set which
contains all relevant cost-vectors (¢, ¢g) € R"™! of the deterministic problem.
The motivation behind this approach is to calculate £ € N solutions in a
perhaps expensive preprocessing before the actual scenario is known. This
preprocessing has to be performed only once and afterwards, when the sce-
nario is known, the best of the calculated solutions for the actual scenario can
be implemented. In contrast to the standard robust approach the objective
function for any scenario attains the best value of all k solutions under the
respective scenario which leads to a better objective value in general. Like in
the standard robust approach the worst case over all scenarios is considered.
Note that for & = 1 we obtain the min-max Problem (M?).

Obviously there is a relation between adjustable robustness and Problem (M?)
since both problems solve a similar min-max-min problem. In fact Prob-
lem (M3) is the special case of the K-adaptability problem (K-AR) when
no first stage exists i.e. if X = {0}. This case is appropriate for many com-
binatorial problems since many problems are modeled using only one stage
in general. As we will see, this case is even very interesting, since it is as
easy as the underlying problem if we calculate k& > n + 1 solutions. This is
exactly the number of solutions for which the K-adaptability problem yields
the exact value of the adjustable robust problem ( see Theorem 3.14). In this
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thesis we do not consider the more general objective function ¢’ Qz as in
Problem (K-AR) since we can replace the latter objective function by d'z
with d € QTU. The set Q'U remains convex if U is convex and therefore all
results in this section hold for sets of the form Q'U. The same idea holds
for the discrete case in the next chapter. Although Problem (M?3) is a special
case of K-adaptability, we propose to use it as a one-stage robust model to
solve combinatorial problems under uncertainty.

In this section we analyze the complexity of problem (M?) for convex uncer-
tainty sets U, which among others include polyhedral or ellipsoidal uncer-
tainty sets. We will show that Problem (M?) has the same complexity as the
underlying problem if we calculate £ > n + 1 solutions and if we can linearly
optimize over U. In contrast to this we will also show that the problem for
any fixed k£ € N is NP-hard even for a polyhedral uncertainty set given by
an inner description and for the unconstrained binary problem. We will also
present an exact algorithm to solve the problem for £ > n+1 and a heuristic
algorithm for any k£ < n + 1, which is mainly based on the algorithm of the
former case. An overview of the complexity results for convex uncertainty sets
can be found in Table 4.1. Again, for the shortest path problem we assume
that U C R’ Surprisingly Problem (M?) with k& > n + 1 can be solved
in polynomial time for every combinatorial problem which can be solved in
polynomial time, which is in contrast to the NP-hardness of Problem (M?)
for most of the problems (see Table 3.2 and 3.3). This even holds for general
convex uncertainty sets over which we can optimize linearly. Nevertheless,
if k is part of the input or if k is fixed, Problem (M3) is NP-hard. Most of
the results in this section were already published in [23] and are joint work
with Christoph Buchheim.

k>n+1 k constant k input
Problem Convex U Polyhedral U (i.d.) | Convex U
Shortest Path | polynomial ? NP-hard
Spanning Tree | polynomial ? NP-hard
Assignment polynomial ? NP-hard
Knapsack weakly NP-hard | NP-hard NP-hard
Min-Cut polynomial ? ?
Min s-t-Cut polynomial ? strongly NP-hard
Unconstrained | polynomial NP-hard strongly NP-hard

Table 4.1: Complexity of Problem (M?) for convex U.

The results in this section are based on the following reformulation which
also follows from a generalization of the proof of Theorem 1 in [41].
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Lemma 4.1. Let U C R™*! be a non-empty convex set. Then

min max min CTI(i)—i—CO = min max ¢'z+ ¢
(W xR eX (ce0)eU i=1,...k z€X (k) (c,c0)eU
where
X(k)={251 e x>0, S8 N =1, a;<i>eXforz':1,...k}

is the set of all convex combinations of & elements of X.

Proof. The main idea of the proof is to calculate the Lagrangian dual prob-
lem (see Section 2.2.1) of the inner maximization problem of (M?3). To this
end, for any fixed ™, ..., 2® we reformulate the problem by a level set
transformation as
max z
(me)mXU 'nllinch:U(i) +e= st. ¢ aD4e>z2 Vi=1,... .k
c,cp)€E 1=1,...,
(c,c0) €U, z€R.

The Lagrange dual function of the latter convex problem is

k
L(A)=  sup z+ Z i (ch(i) + o — 2)
(e,c0)€U,zER i=1

k k
= sup =z (1 — Z )\i> + Z )\i(ch(i) + ¢o)

(c,c0)€U,z€R

B {max(cco)eUc ZZ i+ ¢, if Zle A =1

00, otherwise

Therefore the Lagrange dual problem is

min max CTE Nz @ + ¢
A>0 (c,c0)€U

1=1

and by substituting the latter expression into Problem (M?) we obtain exactly
the problem given in the Lemma. Obviously Slater’s condition is fulfilled for
the primal problem, since z can be chosen arbitrarily in R. Therefore strong
duality holds which proves the result. O
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From now on, we will thus consider the problem

min  max ¢’z + co (M2[k])
z€X (k) (c,c0)€U

instead of Problem (M3?). Note that X(1) = X and for each k € N we
have X (k) € X(k + 1) (see Figure 4.1). Therefore the objective value of
Problem (M?[k]) decreases or remains constant with growing k.

1 1 1

Figure 4.1: The sets {0,1}2(1), {0,1}*(2) and {0,1}2(3).

Using the result from Lemma 4.1 we propose the following algorithm to solve
Problem (M?3).

Algorithm 1 Algorithm to solve Problem (M?) for k € N
Input: convex U C R""' X C {0,1}", ke N
Output: optimal solution of Problem (M?)

1: calculate an optimal solution z* of Problem (M?[k]).

2: determine zV, ..., z¥) € X such that z* € conv (z), ..., 2®).
k)

3: return x(l), . ,x(

Clearly following the proof of Lemma 4.1, Algorithm 2 calculates an opti-
mal solution of Problem (M3). It follows directly from Theorem 2.31 that
Step (2) only depends on the deterministic problem and can be calculated
in polynomial time if the deterministic problem can be solved in polynomial
time and if x* has polynomial size. Note that the algorithm which proves
the latter theorem in [40] computes a convex combination with the smallest
possible m. Hence for any k£ and z* € X(k), the algorithm returns at most
k solutions in X and therefore the related optimal solution of (M?). The
remaining task and the main part of Algorithm 1 which we are interested
in is therefore to calculate the optimal solution z* of problem (M?[k]). This
step depends, besides the set X, on the uncertainty set U. The complexity
of this step for different uncertainty sets will be analyzed in this thesis. Note
that solving (M?[k]) already yields the optimal value of Problem (M3).
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First we show in the following example that the difference of the objective
values of Problem (M?) and Problem (M?) can be arbitrary large.

Example 4.2. Consider the graph G = (V, A) with V = {s,t} and A =
{a1,as} where a; = (s,t) for each i

a1

sot

az

together with the ellipsoidal uncertainty set U, = {c ER? | '8 < 1} with
positive definite matrix

4+1 2-2
Yo = ° ) =9(x") ()" + Lov’
SHIELR TS
for « > 1. Here 2* = (2,3)" and v = (—1,2)". The corresponding ellipsoid

is shown in Figure 4.2. The parameter o can be used to scale the ellipsoid in
direction of its extreme ray v.

Figure 4.2: The ellipsoid U,.

The set of all paths in G’ can be modeled by X = {e;,es} where e; is the
i-th unit vector. As in Example 2.10, for any x € R™ we can reformulate the
maximum over the ellipsoid U by

maxc'z = \/zTY T (4.1)

ceU

The optimal solution of (M?) is then e; with an optimal value of +v/4+ o
which can be arbitrarily large for a > 1. A feasible solution of Problem (M?[k])
with k = 2 is .

t = (%, %) = %61 + %62 S X(2)
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with an objective value of % for any «. Therefore the difference between the
optimal values of (M?) and (M?) can be arbitrarily large if « is increased.

4.1 The Case k> n+1

If we consider the case £ > n + 1, then from Theorem 2.3 we immediately
obtain that X (k) = conv (X). This proves the following Corollary.

Corollary 4.3. For kK > n+1 and for each non-empty convex set U we have

min max min ¢ 2@ + Cp = min max cla+ Co .
2z xR eX (c,e0)eU i=1,....k z€conv(X) (c,c0)€U

In the special case where no uncertain constant ¢, is considered, it holds

maxc' (Ar) = Amaxc'x

ceU celU

and therefore an optimum is obtained over the boundary of conv (X). Since
the boundary of conv (X) is contained in X (n), Corollary 4.3 even holds for
k > n in the case where no uncertain constant is considered.

In general Corollary 4.3 implies that the objective value of Problem (M?) does
not improve if we consider more than n 4 1 solutions, which was also shown
n [41]. On the other hand, calculating £ = n + 1 solutions is a reasonable
choice since, after the scenario is known, the best of the pre-calculated n + 1
solutions can be determined in time O(n?) by calculating the n + 1 values
cTzM +c,..., ¢z 4 ¢ for the actual scenario (c,cp). Furthermore as
we will see the problem

min  max c¢'z+ ¢ (M?[n + 1])

z€conv(X) (¢,c0)€U

can be solved efficiently if the deterministic problem can be solved efficiently.
By Algorithm 1 we then obtain an efficient algorithm for Problem (M?). In the
following sections we will investigate the complexity of Problem (M?[n + 1])
for convex uncertainty sets and finally give another practical and oracle-based
algorithm to solve Problem (M?) for any combinatorial problem.

Remark 4.4. If k > n + 1, then Problem (M?[n + 1]) is a convex problem
and therefore the Minimax Theorem 2.14 can be applied. From this we obtain
the equality

min @ max ¢ x+c¢= max min ¢ 'z + ¢
zeconv(X) (¢,c0)€U (c,c0)€U zE€Cconv(X)

= max min ch+co.
(c,c0)eU X
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Hence there always exists a scenario (¢, c¢p) € U such that the optimal value
of Problem (M?) is equal to the optimal value of the deterministic problem
in scenario (¢, cp).

4.1.1 Complexity

In this section we will analyze the complexity of Problem (M?) for the case
k > n 4+ 1. In contrast to the NP-hardness of the strictly robust prob-
lem for many combinatorial problems (see Table 3.2 and 3.3) we show that
Problem (M?) is solvable in polynomial time for general convex uncertainty
sets U whenever the deterministic problem is solvable in polynomial time, if
k > mn+ 1 and if we can linearly optimize over U. The latter property holds
for polyhedral and ellipsoidal uncertainty sets.

Polyhedral Uncertainty

For polyhedral uncertainty sets U, we show that Problem (M?) has the same
complexity as the underlying problem if we choose & > n+1. Clearly if the un-
derlying deterministic problem is NP-hard, then Problem (M?) is NP-hard,
since we can solve the deterministic problem with cost vector ¢ by choosing
U = {c} in Problem (M?). On the other hand, if the deterministic problem
can be solved in polynomial time, then we can solve (M?) in polynomial time
which follows from the theorem below.

Theorem 4.5. Given an optimization oracle for the problem

c — min ch,
rzeX

for any polyhedron
U={(c,co) €R"™ | A(c",co)" < b}

with A € Q™™+ and b € Q™ and k > n+1 we can solve (M?) in polynomial
time in (U).

Proof. The basic idea of the proof is to dualize the inner maximization prob-
lem in (M?[n + 1]) to derive a linear minimization problem, which by The-
orem 2.29 can be solved in polynomial time if we can separate the corre-
sponding feasible set in polynomial time. Let A(c",cy)" = Ac + acy. Then
Problem (M?) is equivalent to

miI%X) max {c¢'x +co | Ac+acy < b, (c,co) € R™™} (4.2)
reconv

65



CHAPTER 4. MIN-MAX-MIN UNDER CONVEX UNCERTAINTY

for £ > n+ 1 by Corollary 4.3. The dual problem of the inner maximization
problem is

T
wip Ty
s.t. yT/_l =z
yTa =1

which can be derived by the results in Section 2.2.1. Substituting into Prob-
lem (4.2) we obtain the problem

min b' 4.3
Jnin by (4.3)

with
P:={(xz,y) e R" xR™ | z € conv (X), y'A=2z, yla=1, y>0}.

By Theorem 2.29 the latter problem can be solved in polynomial time in (P) g,
if we can solve the separation problem over P in polynomial time. By assump-
tion we have an oracle for the deterministic problem, which yields an oracle
for the equivalent problem

min  ¢'z.

z€conv(X)

Hence, again using Theorem 2.29, we can solve the separation problem over
conv (X) in polynomial time in (conv (X))r = 3n® 4+ n. On the other hand

Q:={(x,y) eR"xR" |y'A=x y'a=1, y >0}

is a rational polyhedron and every point (x,y) can be separated by check-
ing whether all equations are satisfied and if not choosing the corresponding
equation as separating hyperplane. This can be done in polynomial time
in (U). Both algorithms together yield a polynomial time separation algo-
rithm for P which proves that we can solve (4.2) in polynomial time in (U).
The optimal solution then is rational and has polynomial size in the input,
and by Theorem 2.31 the result follows. ]

Proposition 4.6. Assume we have an outer description of conv (X), i.e.
conv (X) ={z e R" | Tz < w},

and T € Q™" and w € Q' have polynomial size. Then following the latter
proof we obtain a linear problem in (4.3) which can be solved by the ellip-
soid method in polynomial time in (T") 4+ (w) + (U). Note that the result
in the theorem is much more general since every algorithm which solves the
deterministic problem in polynomial time yields a polynomial time algorithm
for (M?) even if the outer description above for conv (X) does not exist or is
not known.
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General Convex Uncertainty

In this section we prove that Problem (M?) with general convex uncertainty
has the same complexity as the underlying problem if we choose &k > n+1. By
the same reasoning as for polyhedral uncertainty sets Problem (M?) is NP-
hard if the underlying deterministic problem is NP-hard. In the following we
show that if the deterministic problem can be solved in polynomial time, we
can solve (M?) in polynomial time if the following assumptions are fulfilled:
we assume that U is a non-empty convex set for which we have a weak
optimization oracle, i.e., for a given x € Q" and a rational ¢ > 0 we can
compute in polynomial time a vector (c,cp) € U N Q" with

c'xdcg>d x+dy—e forall (d,dy) € U.
Furthermore, we assume that U is bounded by a constant M, i.e.
(e, co)lla < M for all (¢, cy) € U.

Note that the latter assumptions hold for polyhedral and ellipsoidal uncer-
tainty sets. In contrast to the case of polyhedral uncertainty, for general
convex uncertainty sets we will define an accuracy parameter £ > 0 for the
optimal value, since calculations involving irrational numbers can only be
done up to a given accuracy in finite time.

Theorem 4.7. Let conv (X) be full-dimensional, € € (0,1) and U as above.
Given an optimization oracle for the certain problem

¢ minc' z,
zeX

we can solve Problem (M?) up to an accuracy of at most € in time polynomial
in (n) + (M) + (e) it k >n+ 1.

To prove the latter theorem we need the following lemmata.
Lemma 4.8. Let f : R" — R be defined by

-
Tr):= max ¢ T+ ¢
f( ) (c,c0)€EU 0

where U is a convex set bounded by M. If z,y € R" with ||z — y|| < € then
flx) = fly) < Me.
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Proof. Let z,y € R" with ||z — y|| < e. We can reformulate
c'rtco=c (x—y)+c'y+co
and hence

max c'z4cy < max c'(r—y)+ max c'y+co.
(c,c0)€U (c,c0)€U (c,c0)€U

By the definition of f and the Cauchy-Schwarz inequality we obtain

f@) = fly) < max |c|lz—y| < Me
(e,c0)€U

which proves the result. O

The proof of Theorem 4.7 is mainly based on the result of Theorem 2.33. The
latter theorem calculates a solution which is (up to an accuracy of ¢ > 0)
optimal over all elements deep in the feasible set. To verify theorem 4.7 we
need to prove optimality over all feasible solutions. To this end we prove
in the following lemma that if we can optimize over all elements deep in
a convex set K with an arbitrary accuracy then we can optimize over all
elements in K with an arbitrary accuracy.

Lemma 4.9. Let f and U be defined as in Lemma 4.8. Let K be any convex
set for which we know R > 0 with K C Bg(0) and for which we know that K
contains a ball with radius r. Additionally, let 0 < ¢ < r and z* € B, (K)
such that for all y € B_. (K)

f@™) < fly) +e.
Then for all y € K
f@) < fly) +e (14 5EM)

Proof. For all 0 < ¢ < r formula (0.1.14) in [40], states that for all y € K
there exists a point z, € B_. (K) such that ||z, —y|| < 2£e. From Lemma 4.8
we obtain

flzy) = fly) < M2Ee .

By our assumption on z*, we derive
fl@) < flz) +e< fly)+e(1+2EM).

which proves the result. O

68



4.1. THECASEK > N +1

Proof of Theorem 4.7. Since k > n + 1, Problem (M3) is equivalent to

min  max ¢ x+ Co
z€conv(X) (c,co)€U

by Corollary 4.3. Define

o T
f(x) = (C%E;?Uc T + ¢

like above. As the maximum of affine-linear functions, f is a convex function.
The basic idea of the proof is to use Theorem 2.33 to calculate a point z* €
B./(conv (X)) which is optimal over all elements y € B_.(K) up to an
accuracy of & for an appropriately defined &’. Then we use Lemma 4.9 to
obtain optimality over all elements in K and afterwards we use Lemma 2.34
to round z* to a point in conv (X).

As X C {0,1}"™ and conv (X) is full-dimensional, there exist values r, R > 0
such that
B, (x) C conv (X) C Bg(0)

for a rational center point zy € conv (X ). By the results in [40] all parameters
r, R, xq can be determined in polynomial time and have polynomial size in n
i.e. conv (X) is a centered convex body. For an integer ¢, with 273¢ < 2=

we define
e —mind —2__ , 26y
{ 1+ 280

which has encoding length polynomial in (n)+(M)+(¢) since ¢ can be chosen
such that (p) is polynomial in (¢) + (M). Since we have an optimization
oracle for the deterministic problem, from Theorem 2.29 follows that we
can solve the separation problem for conv (X) in polynomial time (see also
Example 2.30) which also yields an oracle for the membership problem. Hence
by the latter results and the assumptions on U we can use Theorem 2.33
to compute a rational vector z* € B.(conv (X)) with f(z*) < f(y) + ¢
for all y € B_o(conv (X)), in polynomial time. To prove the theorem we
have to show that z* can be rounded to a vector 2’ € conv (X) such that
the inequality holds for all y € conv (X). First we may assume M, R > 1,
then ¢ < r so that we can apply Lemma 4.9 and it follows that

fa) < fly)+Q+2EM) < fly)+5 (4.4)

holds for all y € conv(X). To round z* to a point in conv (X) we use
Lemma 2.34 which provides a polynomial time algorithm in the input and (y)
to calculate ¢ € Z and w € Z" with ||gz* —w|| < 273% and 1 < ¢ < 2" such
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that o/ := %w is contained in conv (X) if z* € By-ene (conv (X)). The latter
condition is true since ¢/ < 275"¢ (see Figure 4.3). Moreover

lo* — /]| = Lllga* — w| < L2~

and by the choice of ¢ above we obtain 273 < ;= Hence |[z* — 2/|| < 357
and therefore by Lemma 4.8 we have f(2') — f(z*) < 5. Together with
inequality (4.4) we obtain

f@) < S+ 1) < fly) +e

for all y € conv (X). Since 2’ is rational and (z’) is polynomial in the input,

from Theorem 2.31 follows the result. O
2—6n<p
757"”"””":@;”
n -
conv (X)

Figure 4.3: The rounding procedure in the proof of Theorem 4.7. The nearly
optimal point z* € B. (conv (X)) is rounded to the point 2’ € conv (X).

In fact the result of the theorem even holds if conv (X) is not full-dimensional.
As explained in Section 6.1.2 in [40] we can achieve a separation algorithm
(and therefore a membership algorithm) for lower dimensional sets by the
following idea which we explain here for the case if conv (X) is (n — 1)-
dimensional. In [39] it was shown that we can calculate a hyperplane H C R"
which contains conv (X) in polynomial time by using a combination of the
ellipsoid method and diophantine approximation. Then every point which is
not contained in the hyperplane can be separated by using the hyperplane
itself. So the problem is reduced to the full-dimensional separation problem
in dimension n — 1 which is equivalent to the optimization problem in di-
mension n — 1. The latter results can then be applied to the appropriate
lower-dimensional space with a full-dimensional feasible set.

Proposition 4.10. Assume we have an outer description of conv (X), i.e.
conv (X)={z eR" | Tz <w},
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and let T € Q™™ and w € Q' have polynomial size. Then as in Example 2.10
we can reformulate Problem (M?[n + 1]) as

min ¢4 e+ Q\/(xT, 1)x-1 (m)
{zeR"|Tz<w} 1

for ellipsoidal uncertainty sets of the form

U= {(c, o) € R | ((e,¢0) — (&,2)) 2 ((¢,c0) — (€, E)) < 92} :

Analogously to Section 3.1.2 this can be transformed to problem

min 2z
s.t. QHB(Z’T,DTHQ <z—¢C'z—C
Tr <w

reR" zeR

where B is the matrix such that ¥~! = BT B. The latter problem is of the
form (SOCP) which can be solved in polynomial time in (B)+(2)4((¢, ¢o)) +
(T') + (w) by the interior point method up to an arbitrary accuracy. Note
that as it is the case for polyhedral uncertainty sets the result in the theorem
is much more general.

4.1.2 Exact Algorithm

The construction in the proof of Theorem 4.7 is mainly based on the results
in [40] which make use of the ellipsoid method. Thus the implicit algorithm
given in the proof is not very practical. In this section we present an algorithm
which is mainly based on the idea of column generation and which works very
well in practice though it is not guaranteed to have polynomial run-time.
In fact the main idea of the algorithm was already presented in [21]. The
algorithm uses two oracles, one for solving the deterministic problem (M)
in Step (5) and one for optimizing over U in Step (4). Hence the algorithm
works for any uncertainty set for which the latter problem can be solved,
e.g. for polyhedral and ellipsoidal uncertainty. Furthermore we can use every
combinatorial algorithm for solving the deterministic problem and therefore
no polyhedral description of conv (X)) is needed.

The algorithm, stated below, calculates besides the optimal solution z* of
Problem (M?[k]) the corresponding solution set {z(),... 2™} of Prob-
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lem (M3) and the coefficients \q, ..., A\,41 of the related convex combination

The latter are important for the heuristic algorithm in the next section, which
is based on Algorithm 2.

Algorithm 2 Algorithm to solve Problem (M?) for k > n + 1
Input: U Cc R*" X C {0,1}"
Output: optimal solution of Problem (M?) and Problem (M?[n + 1])
1: 1:=0
2: choose any x5 € X
3: repeat
4: calculate optimal solution (z*, ¢*, ¢f) of
max{z|ch;f+COZsz:O,...,z', z€R, (¢,c0) €U}

5: calculate optimal solution x},; of
min {(¢")'z + ¢} |z € X}
6: 1:=1+1
7 until (¢*)Ta} + ¢ > 2*
8: calculate a basic feasible solution of the linear system
=g =20 N () g g =1, A2 0
9: X*:={a} | \; >0, j=0,...,i}
10: return X* and z* := 370 Az

Theorem 4.11. Algorithm 2 is correct and terminates in finite time.

Proof. First note that for every subset X’ C X, by Theorem 2.14 and by
level set transformation we have

min max ¢ r+c¢ = max min ¢z + ¢
z€conv(X'’) (c,c0)€U (c,c0)€U xEconv(X')

= max {z]|z<c'z4 ¢ V€ conv (X')}
(e,c0)EU

= max {z|z<c'w+c Vre X'}
(e,c0)EU

After the termination of the loop in the algorithm (¢*)Tx + ¢} > 2* holds for
all z € X. Hence

max {z | zgch;f—i-co Vj=0,...,i} = max {z|z<c'z+coVrec X}
(e,c0)€U (e,c0)EU
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and therefore, by the equivalence above

min max ¢ x+ Cp = min max ¢ x+ Cop.
xEconV(:c(*),...,a:;‘) (c,c0)€U z€conv(X) (c,c0)€U
Any point z* € conv (zf,...,xf) which has objective value z* in scenario

(¢*,¢}) is an optimal solution of the problem on the left hand side and hence
of Problem (M?[n + 1]). Note that z* calculated by the algorithm has all the
latter properties which follows from the calculations in Step 8. Since A is a
basic solution of the linear system in Step 8, at most n+1 of the variables \;
are strictly positive and hence | X*| < n + 1. Finite run-time follows directly
from the finiteness of X. ]

Note that the dual problem which has to be solved in Step (4) is continuous.
In particular, for polyhedral uncertainty the problem is a linear problem and
for ellipsoidal uncertainty a quadratic constrained problem. These problems
can be solved very efficiently by standard solvers like CPLEX. In Section 6
the results of our implementations of the algorithm for some combinatorial
problems are presented.

4.2 The Case k<n+1

In the latter section we showed that Problem (M?) is as easy as the under-
lying problem if we choose k& > n + 1. A natural question is: what is the
complexity of Problem (M?) if & < n + 1?7 Here we have to distinguish be-
tween the cases where k is part of the input or not. Clearly, if k is part of the
input, then the case £ = 1 is a special case of the problem. From Table 3.2
and 3.3 we then obtain that Problem (M?) with ellipsoidal and polyhedral
uncertainty is NP-hard for most of the problems in Section 2.4. On the other
hand we will show in this section if k is fixed then Problem (M?) is NP-
hard, even for polyhedral uncertainty sets given by an inner description and
for the unconstrained binary problem. Note that both linear optimization
over a polyhedron given by an inner description and solving the determinis-
tic unconstrained binary problem can be done very efficiently. Even in this
elementary case Problem (M?) for any fixed k is NP-hard.

4.2.1 Complexity

Before we prove the latter result we consider the special case of interval
uncertainty.
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Proposition 4.12. If U = [(a,a), (b, by)] € R™"! then for any fixed k,
Problem (M?) is equivalent to the deterministic problem (M).

Proof. Clearly for any x € X the worst case in Problem (M?) is always
obtained in scenario (b,by) since X C {0,1}" and therefore > 0. Hence
Problem (M?[k]) is equivalent to the deterministic problem

minb' z + by.
zeX

which proves the result. O

From now on instead of (M?3) we consider the equivalent Problem (M?[k]) for
fixed k. As a special case of the latter problem we will show that the problem

. - ,
min max C X + Co , M k
2€{0,1}7(k) (c,c0)€U 0 (Mp[k])

is NP-hard for any fixed k if
U = conv (vy,...,v,) + cone (wy, . .., ws)

with vectors vy, ..., v, w,...,ws € R* ! In the main proof below we solve
Problem (M%[k]) over X (k)N B instead of X (k), where B is an appropriate
box. In other words, we add linear inequalities to the feasible set X (k). The
following Lemma shows that adding linear inequalities does not make the
problem harder.

Lemma 4.13. Let Y C R". Then the problem

min  max ¢z + ¢ (4.5)
z€Y, Az<b (c,c0)€U
with U = conv (vy, ..., v,) + cone (wy, . .., w;) is equivalent to the problem
min max c'z + ¢ (4.6)

z€Y (c,c0)eV
with V' = conv (vy,...,v,) + cone (wl, o ws, (ar, —b) T, (A, —bm)T).

Proof. Given an instance of Problem (4.5), let = be any solution of Prob-
lem (4.6). If + ¢ P := {z € R" | Az < b}, then there exists a row a; of A
with aiT x > b;. Hence for any A > 0

max ¢ x+co> A (aiTx — bi) > A
(e,c0)EV
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and therefore max ,)ev c¢'x + ¢y = oo. On the other hand, for any = € P
and for any scenario

(c,c0) =v+ Zﬂiwi + Z i (@i, —=b;) € V
i—1 i—1

where \;, p1; > 0 and v € conv (vy, ..., v,), the objective value is

c'rtcg=v :L‘—I—szw x+z/\ x—b <w x+2mwx

=1

Therefore the optimal solution is contained in P and its worst case scenario
is obtained in U, which proves the result. O

Remark 4.14. Following the proof we observe that the latter lemma is even
true if we replace conv (vy,. .., v,) by an arbitrary convex set C' C R"™!.

Note that if we add an exponential number of constraints to the problem,
then Lemma 4.13 states that we also have to add an exponential number of
vectors to U to obtain an equivalent problem without additional constraints.

Remark 4.15. The latter lemma allows to add problem-specific constraints
to the original problem. For example if we want to solve (M?) for the shortest
path problem and if we want all paths to use a certain edge e, we can solve the
problem over Y = Xgp(k) and add the constraint z. = 1. On the other hand
assume we have failure scenarios like in the bulk robust approach, e.g. we
know a set of edges 2 C E such that the failure scenarios are F, = {e} for all
e € € (see Section 3.6). Then we could calculate a set of k paths such that for
each edge e € () there always exists at least one of the paths, which does not
use the edge. This could be modeled by solving the problem over Y = Xgp(k)
and adding the constraints ., < 1 — ¢ for all e € ) for an appropriate small
e > 0. Let £ C E be the set which contains all edges which are used of
at least one z( in the solution of the min-max-min problem. Then E is a
feasible solution to the bulk robust shortest path problem.

The following result was already shown in Section 3.1.2 but can also be
obtained as a corollary of the latter lemma.

Corollary 4.16. Problem (M%[1]) is NP-hard.

Proof. The deterministic knapsack problem 2.45 can be formulated as

min  max ¢z + ¢
z€{0,1}" (c,c0)€U
a'z<b
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with U = {(¢,0)}. Applying Lemma 4.13 with Y = {0,1}" to the latter
reformulation, we can model the deterministic knapsack problem in the form
of Problem (M%[1]) with a polyhedral uncertainty set. O

The basic idea to prove that Problem (M%[k]) is NP-hard is to reduce (M%[k])
to (M%[k + 1]) and to conclude by induction together with Corollary 4.16.

(ME[1]) (ME[2]) e (M% [k-1]) (M [K])

Figure 4.4: Reduction of (M%[1]) to (M%[k])

In the proof below we will refer to the following result which was proved
in [40].

Lemma 4.17 ([40]). Let P be a polyhedron with facet-complexity of at
most ¢ and let y € Q" be a vector whose entries have a common denominator
which is bounded by ¢. If y € Biy—2,(P) then y € P.

In other words, if the facets of a polyhedron have a bounded encoding length,
then any point which is not contained in P must have at least a certain
distance to the polyehdron, depending on the common denominator of the
entries. We can now prove the following theorem which is the basic result of
this section.

Theorem 4.18. For any k € N, Problem (M%[k]) can be polynomially re-
duced to Problem (M%[k + 1]).

Proof. The idea of the proof is to reduce minimization over {0,1}"(k) to
minimization over {0,1}""!(k+1). Applying Lemma 4.17 to the center point
¢ =31 €{0,1}""(k +1) and the polyhedron P := conv (z,... a*+D)
which has facet-complexity of at most 3(n + 1)* by Example 2.7, we ob-
tain that either ¢ € P or the Euclidean distance between ¢ and P is at

least 276+’ Tp particular since

1
- >
wax (el ral) = el
we obtain from the latter observation that each set conv (z(V,... z(++1)

either contains ¢ or does not intersect the box

B:=le—Ldl,c+ tdi]n{z e R |y = L — 1d}

1
2
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where d := #12_6(”“)3_1. The encoding length of d is polynomial in n.

The main step in the proof is now to define an affine bijection
{0, 13"k +1)N B — {0,1}"(k) x {0}
with f(z) = (1—3)c+2z which is used to reduce minimization over {0, 1}"(k)

to minimization over {0, 1}"*(k+1)N B (see Figure 4.5). Using Lemma 4.13
to model the box B proves then the result.

{0,1}%(2)

(0,0) (1,0)

Figure 4.5: Bijection [ between {0,1}?(2) N B and {0,1}'(1) x {0}

To prove that f induces a bijection between the two sets {0,1}"**(k+1)NB
and {0,1}"(k) x {0} let 2* € {0,1}""'(k + 1) N B with 2* = S5 N,

Since z* € B, we obtain

1 1

(f(x*))mrl =(1- C—Z)En_,_l + C—Z(% — %d) = 0.

Moreover, by the observations above, the center point ¢ is contained in
conv (x(l), . ,x(k“)). Let ¢ = Zf;l iz Then

fla) =1 —=He+3a"=> (1= D+ 2xn) 20 (4.7)

i=1
Since @, > 0, there must exist some j with (29), 41 = 1. As (f(2*))n41 =
0, we derive (1 —2)p; + 2X; = 0 from (4.7). Hence f(z*) € {0,1}"*!(k) and
since f(z*),+1 = 0 we obtain f(z*) € {0,1}"(k) x {0}. To show the other
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direction, consider any y* € {0, 1} (k) with y*,, = 0. Let y* = SF_ vz,
then we have

k
=(1-1d)1 —|—dZVix(Z)
i=1
k
= (- 1d) (x(l) + x(l)) + dz vx®
i=1

where 7() is defined by .Tl(»l) =1- xz(l) for all 4. This is a convex combination
of the binary vectors ™, ..., 2®) (M hence f~'(y*) € {0, 1}"*1(k +1). It
is easy to verify that f~!(y*) € B. To conclude the proof, we have

min  max cy+c'x = min max cy+c' f(x)
z€{0,1}" (k) (c,c0)€U z€BN{0,1}*+1(k+1) (¢c,c0)€U
1 1
: T T
= min max cg+c c(l—=)+c —=x
z€BN{0,1}7+1(k+1) (c,co)eU 0 ( d) d
= min max ¢+ () 'z

z€BN{0,1}"*+1(k+1) (¢ ()€U’
where U’ is the image of U under the linear map
(¢,co) = (3e,co+ (1= 3)cTe) .

Together with Lemma 4.13, modeling the box B by linear inequalities, this
proves the result. O

By induction, the result of Theorem 4.18 together with Corollary 4.16 yields
the final result.

Corollary 4.19. Problem (M?) is NP-hard for any fixed k¥ € N, even if U is
a polyhedron given by an inner description and X = {0, 1}".

To conclude this section we remark that by the latter result we also obtain
NP-hardness of the K-adaptability problem (K-AR) for polyhedral uncer-
tainty sets, since (M%|[k]) is the special case where no first stage variables
exist.

4.2.2 Heuristic Algorithm

In the previous section we showed that Problem (M3) is NP-hard for any
fixed k, even for the binary unconstrained problem, which can be solved triv-
ially in linear time in its deterministic version. This gives the motivation for
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a heuristic algorithm to solve Problem (M3) for any k& < n+ 1. In our compu-
tations it is often the case that an optimal solution z* of Problem (M?[n + 1])
only uses significantly less than n + 1 solutions (see Chapter 6). This is the
case if the optimal solution x* is contained in a lower-dimensional convex hull
x* € conv (37(1), e ,x(m)) with m < n + 1. The main idea of the heuristic
algorithm which we present in this section is to first calculate an optimal
solution {z™, ..., ("D} of Problem (M?) for k = n + 1, which can be done
efficiently for tractable combinatorial problems. Afterwards we choose the k
vectors with the largest coefficients )\; in the convex combination of z* in
Step (2) of Algorithm 1.

Algorithm 3 Heuristic algorithm for Problem (M3) for k < n + 1
Input: convex U C R"™ X C {0,1}", ke Nwith1 <k <n+1,e€(0,1)
Output: feasible solution of Problem (M?)
1: calculate an optimal solution z* of (M?[n + 1]) up to accuracy ¢, using
Theorem 4.7
2: calculate 20, ... ™) € X coefficients Ai,...,App1 > 0 with
SN =1, 20 = S A using Lemma 2.31
3: sort the \; in decreasing order \;; > ... > A
4: return {z() . 20}

Int1

Theorem 4.20. Let k£ € {1,...,n} and ¢ € (0,1). Let conv (X) be full-
dimensional and U as in Section 4.1.1. Given an optimization oracle for the
certain problem

c — min ch,

zeX

Algorithm 3 calculates in polynomial time a solution of Problem (M?) with

an additive error of at most M W + €.

Proof. By Theorem 4.7 and 2.31, Algorithm 3 has polynomial run-time un-
der the given assumptions. Let x; € X (k) be an optimal solution for Prob-
lem (M?[k]) and let

n+1

k—1
rai= D A (DN )a € X (k).
j=1 j=k
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Since X (k) € X(n+ 1) and by the optimality of z*, we have

max cTa:a “+ co — maX chk +cyg < max CT% + cp — max cT:c* + o
(¢,c0)€U evu (c,c0)€EU (c,c0)€U
T *
< maxc (z, —z¥)

ceU

< X

< max||cf|[lzg — 7]
n+1

S !
j=k+1

By the decreasing order of \;;, we have );; < % Additionally, as X C {0,1}",
we know [|x() — z()|| < \/n. Therefore

n+1 +1—Fk
| 5 -t < v 5 5 < vt

j=k+1 j=ki1 kit
Together with the acurracy € > 0 from Step (1) this implies the result. [

For fixed U and n, the error bound given in Theorem 4.20 is strictly monoto-
nously decreasing with growing £ < n 4+ 1. For £ = n + 1, it coincides
with €. In Section 6.2 we give a practical proof that the heuristic algorithm
performs very well for the shortest path problem on the instances studied
n [41]. Nevertheless the following example shows that the additive error
from Theorem 4.20 can be arbitrarily large.

Example 4.21. Consider the set X = {z € {0,1}" | 1Tz < 1}, so
that conv (X) is a simplex. For a > 0, we define an ellipsoid

Uy={ceR"|(c+1)'Su(c+1) <1},
where the inverse matrix of X, is defined by
yol= l11T + « EH:U-U-T
« 4 P )

and 1,vs,...,v, is an orthogonal basis in R" (see Figure 4.6). Note that ¥_*
is positive definite. Then the objective function of Problem (M?[n + 1]) can
be reformulated as

max c'z = —1"x + %L(af:Tl)2 +a (Z(mTvi)Z). (4.8)

celU,
¢ i=2
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We define 1+ = {z € R" | 2"1 = 0}. Since conv (X) C R we have
1+ Nconv (X) = {0} .

Therefore any point « € conv (X) which is not 0 has a representation

Tr = )\11+i/\1’l}2

=2

with A; # 0. Substituting in (4.8) we obtain that for any « of the latter form
the vector z = A\11 has a strictly smaller objective value than x. Therefore
any optimal solution x* is of the form z* = A1 with A € R. Substituting
again in (4.8) we obtain that for an optimal solution A > 0 must hold and

1
T = ——
max ¢ (A1) = 2)\n < 0.

Then the unique A which minimizes the latter expression under the con-
dition that A1 € conv(X) is A = Z. Hence 2* = 11 is the unique op-
timal solution. The only possible representation as a convex combination
of elements of X is z* = Y I, %ei. Hence, for k < n, the heuristic will
choose a random set X* C {ey,...,e,}. Assume without loss of generality
that X* = {ey,...,er}. Since conv (X*) has at least a certain distance § > 0
to 1+ and to 0 there must exist a y > 0 such that for each z € conv (X*) at

least one v; exists such that 2 "v; > . From this observation follows that

Z(xTvi)Q > MQ

1=2

for each € conv (X*). Furthermore #'1 = 1 for each # € conv (X*),
and therefore the objective value of the heuristic solution X*, which is the
optimum of

min max CTZL‘7
zeX* (k) ceUa

becomes arbitrarily large with growing «. On contrary every X (k) contains
the zero vector with objective value zero.

81



CHAPTER 4. MIN-MAX-MIN UNDER CONVEX UNCERTAINTY

conv (X)

&
\/ AL

3 =

Figure 4.6: The ellipsoid U,
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Chapter 5

Min-max-min Robustness
under Discrete Uncertainty

In this section we analyze the complexity of Problem (M?) if the uncertainty
set U = {c1,...,cm} C R is finite. The strictly robust approach (M?) with
discrete uncertainty is NP-hard for many combinatorial problems, as we have
seen in Section 3.1. In this section we show that these results can be extended
to Problem (M?). This is in contrast to the results for convex uncertainty sets
in Section 4.1. Nevertheless we will show that for a fixed number of scenarios
a pseudopolynomial algorithm exists for all combinatorial problems whose
strictly robust version can be solved in pseudopolynomial time. Furthermore
we show that (M?) admits an FPTAS if the strictly robust version of the
problem admits an FPTAS or if the related multicriteria problem admits an
FPTAS. An overview of the complexity results proved in this section can be
found in Table 5.1. For the shortest path problem we assume U C ]Ri“.
Note that the approximation results are only valid for a constant number of
scenarios. Before we prove the before mentioned complexity results we give

Problem Constant |U] Non-constant |U| | Approximation
Shortest Path | weakly NP-hard  strongly NP-hard | FPTAS
Spanning Tree | weakly NP-hard  strongly NP-hard | FPTAS

Assignment NP-hard strongly NP-hard | 7
Knapsack weakly NP-hard  strongly NP-hard | FPTAS
Min-Cut polynomial strongly NP-hard | FPTAS
Min s-t-Cut strongly NP-hard strongly NP-hard | ?
Unconstrained | NP-hard NP-hard ?

Table 5.1: Complexity of problem (M?) for discrete U.

a motivating example which shows that Problem (M?) can yield an optimal
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value which is arbitrarily better than the optimal value of Problem (M?) even
for k = 2.

Example 5.1. Consider the graph G = (V, A) with V' = {s,t} and A =
{a1, as,as} where a; = (s,t) for each i:

al

=

as

Define the following scenarios U = {¢1, 2, c3}, where the j-th component
of ¢; is the cost of edge a; in scenario ¢,

1 m+1 1
1= m , G = m , 3= |1
m+1 1 1

where m is any positive integer. The optimal solution of Problem (M?) is ay
with objective value m. Problem (M?) with k& = 2 yields the optimal solu-
tion {a, a3} and an optimal value of 1.

5.1 Complexity

In this section we investigate the complexity of Problem (M?) for discrete
uncertainty sets. Note that the important result of Lemma 4.1, which is the
basis of the complexity results of Section 4.1.1, is not applicable for discrete
uncertainty sets, since U is not convex. For the strictly robust problem (M?)
it is possible to replace U by its convex hull (see Theorem 3.5) to obtain a
convex uncertainty set. This approach does not yield an equivalent problem
for (M?) as the following example shows.

Example 5.2. Consider again Example 5.1, with an optimal value of 1 for
the min-max-min problem (M?) with k = 2. If we replace U by its convex
hull and consider the scenario
] tm+1
5(01 +c) = m € conv (U) ,
%m +1
then we derive

1
max min{c'zW, ¢"2®P} > m+1
ceconv(U) 2
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for all 2, 2® € X which yields a strictly larger optimal value for any
m € N.

Finally we prove for all combinatorial problems defined in Section 2.4, except
for the general min-cut problem, that their min-max-min versions (M?) are
NP-hard for a fixed number of scenarios. All the proofs rely on the same idea.
We reduce Problem (M?) to Problem (M?) by adding & — 1 new solutions to
the given instance of the min-max version of the problem. Then we define new
scenarios, such that each of the k — 1 new solutions must be contained in an
optimal solution of (M?). For appropriately chosen scenarios the remaining
k-th solution in any optimal solution of (M?) is then the optimal solution
of Problem (M?). Since the latter construction depends heavily on the given
combinatorial problem, we show the result for all problems separately in the
following subsections. An easy observation which is true for any combinatorial
problem is the following.

Proposition 5.3. Let U = {(c1,(c1)0),-- -, (Cm, (cm)o)} C R If k& > m,
then Problem (M?) can be reduced to the underlying deterministic problem.

Proof. Let ) € X be an optimal solution of the deterministic problem

géi)I(l ¢z + (ci)o

for all © = 1,...,m. Then {x(l), . ,x(m)} is clearly an optimal solution of
Problem (M?3). O

Hence in the following we restrict ourselves to the case k < m.

5.1.1 Shortest Path Problem

Theorem 5.4. For the shortest path problem on a graph G and for a discrete
uncertainty set U = {ci, ..., ¢y}, we can polynomially reduce Problem (M?)
to Problem (M?) with at least m + k — 1 scenarios, for any fixed k& < m.

Proof. Instead of (M?) we consider the equivalent Problem (M2) (see The-
orem 3.1). For any given instance of the min-max shortest path problem,
i.e., a directed graph G = (V| E), nodes s,t € V and an uncertainty set
U={c,...,cm} with ¢; > 0 for all 4, we define the graph G;* := (V;*, E}?)
with V;* .=V U{vy,..., 041} and

EP :=FEU{l,=(s,v;),ri= (v, t):i=1,...,k—1}.
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In fact we add k& — 1 new paths p, := (l;,r;) to the graph G. The latter
construction is shown in Figure 5.1. The idea of the proof is to define scenarios
on G}’ that force the min-max-min problem to choose each of the new paths
as one solution. The remaining k-th solution then is the optimal min-max
solution in G. To this end, we define scenarios ¢y, . . ., ¢, on G}¥ by extending
every scenario ¢; € U by M on the edges ry, ..., 7,_1, where M is a sufficiently
large number that can be chosen as

m  |E|
M = Z Z(Ci)J +1
i=1 j=1
Then we add scenarios dy,...,dr_1 such that in scenario d; all edges in GG
and all edges rq,...,r,_1 have cost M, except for edge r; which has cost zero.
The edges [y, . .., [;_1 have zero cost in all scenarios. Note that we only added
the kK —1 new nodes and therefore the edges [y, ..., l;_1 to avoid multigraphs.

Now if we choose a solution {x(l), e x(k)} of the min-max-min shortest-path

Figure 5.1: The graph G}’ for k = 4.

problem on G3¥ where (V) ... 21 are the added paths p’, and = is any
feasible solution in GG then for the objective value holds

max min ¢’z < M,
ce{e1,Cm,di,dp_1} 1=1,....k

since on & the minimum is attained by z*) and therefore, by the definition
of M, it is strictly lower than M. On the other hand on d; the minimum is
attained by ¥ and hence is 0. So we know that every optimal solution of
the min-max-min problem on the graph G;” must contain the paths p’, since
otherwise, if for any i the path p% is not contained, then in scenario d;, the
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minimum min;—; g ¢z is greater or equal M and therefore

max min ¢ 2% > M
ce{C1,..,Cm,d1,.dp—1} =1,k

which cannot be optimal by the observation above. On the other hand,
by the same reasoning applied to the scenarios ¢;, in every optimal solu-
tion there must be contained a solution which only uses edges in G. So let
{x(l), e ,x(k)} be an optimal solution where w.l.o.g. z* is the path in G
and 21 is the path p, for i = 1,...k — 1. Then we have

max min ¢z =0
CE{dh...,dk_l} i=1,...,k

by definition of the scenarios {di, ..., d;_1}. On the other hand

T

max min ¢' 2% = max ¢"z® >0
ce{r,..em}t =1,k ce{ctyemem}
and therefore
min max min ¢'z® =min max ¢’z
2,2 EX cE{Er,mmmydrydi_1} i=1,k 2€X ce{ctyom}
and the min-max optimal solution must be contained in {:L'(l), e ,x(k)}. ]

Corollary 5.5. For any fixed k¥ € N and fixed m > k, Problem (M?) is
NP-hard for the shortest path problem for uncertainty sets U with |U| = m.

Proof. Problem (M?) for the shortest path problem is NP-hard for m > 2
(see Table 3.1). From Theorem 5.4 we derive that the min-max-min variant of
the same problem is NP-hard if the number of scenarios is at least k+1. [

Note that by Proposition 5.3 for & > m Problem (M?) can be solved in
polynomial time for the shortest path problem. Therefore the restriction to
m > k is necessary.

Corollary 5.6. For any fixed k¥ € N, Problem (M?) with discrete U is
strongly NP-hard for the shortest path problem.

Proof. The min-max variant of the shortest path problem is strongly NP-
hard if the number of scenarios is not constant (see Table 3.1). The result
follows since all numbers in the construction in the proof of Theorem 5.4 are
polynomial in |U]. O
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5.1.2 Spanning Tree Problem

Theorem 5.7. For the minimum spanning-tree problem on a graph G with
at least k nodes and for a discrete uncertainty set U = {c1,..., ¢}, we can
polynomially reduce Problem (M?) to Problem (M?) with at least m + &k — 1
scenarios, for any fixed k < m.

Proof. Instead of (M?) we consider the equivalent Problem (MZ) (see The-
orem 3.1). The proof is similar to the proof of Theorem 5.4. Let a graph
G = (V,E) with |V| > k and an uncertainty set U = {c1,...,cn} be
given. We then define the graph G§' := (V& E') with V' .= V U {w}
and Eff .= EU{f;={v,w}:i=0...,k—1} where the v; are arbitrary
pairwise different nodes in G. In fact we add one node and connect it to k
different nodes with exactly one edge. The latter construction is shown in
Figure 5.2. Again the idea of the proof is to define scenarios on G’ that force

Figure 5.2: The graph G§ for k = 3.

the min-max-min problem to choose solutions which use exactly one of the
new edges each. Note that a feasible solution could use all of the new edges
simultaneously. To this end, we define scenarios ¢y, . .., ¢, on G5 by extend-
ing every scenario ¢; € U by zero on fy and by 2M on the edges fi,..., fi_1,
where M can be chosen as

m |E|

i=1 j=1

Then we add scenarios dy, . .. dg_1 such that in scenario d; all edges in G have
cost M and all edges fo,..., fr_1 have cost (|V|+ 1) M, except for edge f;
which has cost —|V|M. Now if we choose a solution {z(®,...2* =D} of the
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min-max-min spanning-tree problem on G5!, where (Y uses edge f; and none
of the other new edges to connect node w, then for the objective value holds

max min ¢'z2% < M,
c€{C1,...,Cm,d1,...dg—1} 1=0,....k—1

since on ¢ the minimum is attained by 2(®) and therefore, by the definition
of M, it is strictly lower than M. On the other hand on d; the minimum is
attained by (¥ and is exactly —M since any spanning-tree in G uses exactly
|V| — 1 edges. Therefore we know that every optimal solution of the min-
max-min problem on the graph G§* must contain for each edge f; a solution
which only uses edge f; under the new edges. Otherwise, if for any f;, this
is not true, then, if ¢y > 1, in scenario d;, the minimum min,;—; AT
greater or equal to M and therefore

max min ¢'z® > M
c€{C1,...,Cm,d1,...dg—1} 1=0,....k—1

which cannot be optimal by the observation above. If ig = 0 by the same
reasoning applied to the scenarios ¢; every optimal solution must contain
a solution which only uses edge fy. So let {x(o), e ,x(k_l)} be an optimal
solution like above. Then we have

max min ¢ 2% =M
CE{dl,...,dk_l} 1=0,...,k—1

by definition of the scenarios {d,...,d;_1}. On the other hand

max min ¢ 2% = max 2@ > M
06{617---7E7n} iZO,...,k—l 66{017“'76’(”}

and therefore

min max min ¢'z® =min max ¢'z.
2. 2(B) € X c€{er,Cmdisendp_1} =1,k 2€X cefctyem}
and the min-max optimal solution must be contained in {x(o), e ,x(k_l)}.

Note that the spanning-tree problem on graphs with less than £ nodes can
be extended to graphs with at least k& nodes by adding extra nodes and
connecting them with exactly one edge to one of the nodes of the original
graph. A solution for the original problem can be obtained by projecting
the solution on the extended graph to the original graph. Therefore it is no
restriction to consider only graphs with at least &£ nodes.
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Corollary 5.8. For any fixed k& € N and fixed m > k, Problem (M?) is
NP-hard for the minimum spanning-tree problem for uncertainty sets U
with |U| = m.

Proof. Problem (M?) for the minimum spanning-tree problem is NP-hard
for m > 2 (see Table 3.1). From Theorem 5.7 we derive that the min-max-
min variant of the same problem is NP-hard if the number of scenarios is at
least k& + 1. O

Note that by Proposition 5.3 for k& > m Problem (M?) can be solved in
polynomial time for the minimum spanning-tree problem. Therefore the re-
striction to m > k is necessary.

Corollary 5.9. For any fixed k € N, Problem (M?) with discrete U is
strongly NP-hard for the minimum spanning-tree problem.

Proof. The min-max variant of the minimum spanning-tree problem is strong-
ly NP-hard if the number of scenarios is not constant (see Table 3.1). The
result follows since all numbers in the construction in the proof of Theo-
rem 5.7 are polynomial in |U]. O

5.1.3 Assignment Problem

Theorem 5.10. For the assignment problem on a graph G and for a discrete
uncertainty set U = {cy, ..., ¢}, we can polynomially reduce Problem (M?)
to Problem (M?) with at least m + k — 1 scenarios, for any fixed k < m.

Proof. Instead of (M?) we consider the equivalent Problem (M2) (see Theo-
rem 3.1). The proof is similar to the previous proofs. For a given instance of
the min-max assignment problem, i.e. a bipartite graph G = (V, W, E') and an
uncertainty set U = {cy, ..., ¢y}, we define the graph G§° := (V,#, W, E¢*)
with V@ .=V U{vy,...,vo_1}, W =W U{wy,...,wp_1} and

Egs :EU{fZ]:{U“w]}Z,jzl,,k—l}

The latter construction is shown in Figure 5.3. Note that any feasible solution
on GGf° must induce a perfect matching in G and a perfect matching in the

subgraph with nodes vy,...,v,_1 and wy,...,wg_1. The idea of the proof is
to define scenarios on G§° that force the min-max-min problem to choose k
solutions z® such that for each i = 1,...,k — 1 solution z® uses edge f;

but non of the edges f;; for j # ¢ and solution ™) uses all the edges fi;. To
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v1 w1
v2 w2
v3 w3

Figure 5.3: The graph G{* for k = 4.

this end, we define scenarios ¢y, ..., ¢, on G{° by extending every scenario
¢; € U by zero on the edges f;; foralle =1... k—1 and by 2M on all other
edges. Here M can be chosen as

m |B|

M=) > [(e);| + 1.

i=1 j=1

Then we add scenarios di,...d,—1 such that in scenario d; the edges fj;
have cost 3M for j # i and edge f;; has cost —2M. Furthermore for any i
each edge f;; for j = 1,...,k — 1 and j # ¢ has cost 3M. All other edges
have cost 0. Now we choose a solution {z(),... 2"} of the min-max-min
assignment problem on G¢°, such that for each : = 1,...,k — 1 solution z®
uses edge f; and none of the edges f;; for j # ¢ and solution z®) uses all
edges f;; for each 7 = 1,...,k — 1. Note that there always exists a perfect
matching in G§* with the latter properties if a perfect matching in the original
graph G exists. For solutions with the latter properties the objective value is

max min ¢' 2@ < M,
c€{C1,yeesCmyd1,..dp_1} 1=1,...k

since on ¢; the minimum is attained by ) and therefore, by the definition
of M, it is strictly lower than M. On the other hand on d; the minimum is
attained by (¥ and is smaller than —M. Therefore we know that every opti-
mal solution of the min-max-min problem on the graph G%° must contain for
each edge i = 1...,k — 1 a solution with the property of (¥ since otherwise
if this is not true every solution has to use one of the edges f;; with j # ¢
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which all have cost 3M in scenario d;. Therefore in scenario d; the minimum
ming—y clx® is greater than M and therefore
max min ¢ 2 > M
c€{C1,sCmydi,...d—1}i=1,....k

which cannot be optimal by the observation above. By the same reasoning
applied to the scenarios ¢;, in every optimal solution there must be contained
a solution which uses all edges f; fori=1,...,k— 1. So let {x(l), e ,x(k)}
be an optimal solution with the properties like above. Then we have

max min ¢' 2% < —M
CE{dh...,dk,l} i=1,...,k

by the reasoning above. On the other hand

max min ¢ 2 = max ¢ 2® > M
ce{c1,em} =1,k ce{ct,eem }
and therefore
min max min ¢'z® = min max ¢ x.
2@, 2B e X cefer, . Cmdiyendi1} i=1,k 2€X ce{ct,om}
and the min-max optimal solution must be contained in {33(1), e ,x(k)}. O]

Corollary 5.11. For any fixed & € N and fixed m > k, Problem (M?) is
NP-hard for the assignment problem for uncertainty sets U with |U| = m.

Proof. The Problem (M?) for the minimum assignment problem is NP-hard
for m > 2 (see Table 3.1). From Theorem 5.10 we derive that the min-max-
min variant of the same problem is NP-hard if the number of scenarios is at
least k + 1. O

Note that by Proposition 5.3 for k& > m Problem (M?) can be solved in
polynomial time for the assignment problem. Therefore the restriction to
m > k is necessary.

Corollary 5.12. For any fixed k& € N, Problem (M?) with discrete U is
strongly NP-hard for the assignment problem.

Proof. The min-max variant of the assignment problem is strongly NP-hard
if the number of scenarios is not constant (see Table 3.1). The result fol-
lows since all numbers in the construction in the proof of Theorem 5.10 are
polynomial in |U]. O

92



5.1. COMPLEXITY

5.1.4 Minimum Cut Problem

Theorem 5.13. For the minimum s-t-cut problem on a connected graph G
and for a discrete uncertainty set U = {cy,...,¢n}, we can polynomially
reduce Problem (M?) to Problem (M?) with at least m + k — 1 scenarios, for
any fixed k < m.

Proof. Instead of (M?) we consider the equivalent Problem (M3) (see Theo-
rem 3.2). The proof is similar to the proofs in the previous sections. Let a con-
nected graph G = (V, E) and an uncertainty set U = {cy,..., ¢} be given.
We then define the graph G := (V& E¢*) with Ve .= VU {vg, ..., vp_1}
and

EM = EU{l; = (s,v),r = (v;,t) i =0,...,k—1}.

Note that the graph is constructed analogously to the graph G, in the proof
of Theorem 5.4 but we add one more path. The latter construction is shown
in Figure 5.4. Note that for any feasible solution 6(5) either the edge [; or the

Figure 5.4: The graph G§* for k = 3.

edge r; is contained in 0(.5) for each i = 0, ..., k—1, but not both. The idea of
the proof is to define scenarios on G§* that force the min-max-min problem
to choose k solutions which use only the edge r; for each i = 0,...,k — 1.
Note that a feasible solution could use all of the edges r; simultaneously. To
this end, we define scenarios ¢, ..., ¢, on G by extending every scenario
c; € U by zeroon ly,...,lx_1 and rqg and by 2M on rq,...,r,_1 and ly. Here

M can be chosen as
m  |E|

i=1 j=1
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Then we add scenarios dy,...dg_1 such that in scenario d; all edges in G

and all edges ly,...,l,_1 have cost 0 except edge l; which has cost 2M.

Furthermore all edges r¢,...,7rx_1 have cost 2M, except for edge r; which

has cost —M. Now if we choose a solution {z(©),... 2"V} of the min-max-
cut

min s-t-cut problem on G§“, where (¥ uses edge r; and all edges l; with
j # i, then for the objective value holds

max min ¢'z® < M,
CE{EI7---767n7d17---dk—1}izOv“’vk_l

since on ¢ the minimum is attained by z(®) and therefore, by the definition
of M, it is strictly lower than M. On the other hand on d; the minimum is
attained by #® and is exactly —M. Therefore we know that every optimal
solution of the min-max-min problem on the graph G§** must contain for each
edge r; a solution which only uses edge r; under the new edges rq, ...,k 1.
Otherwise, if for any r;, this is not true, then edge [;, must be used. In the
case if i9 > 1, in scenario d;, the minimum min;—; c¢"2® is then greater
or equal to M and therefore

max min ¢'z® > M
ce{c1,..,Cm,d1,...dg—1} i=0,...,k—1

which cannot be optimal by the observation above. In the case if 7o = 0 by
the same reasoning applied to the scenarios ¢;, in every optimal solution there
must be contained a solution which only uses edge . So let {x(o), e a:(k’l)}
be an optimal solution with the properties like above. Then we have

max min ¢ 2% = —M
c€{di,..dp_1}  i=0,....k—1

by the reasoning above. On the other hand

max min ¢ z% = max 2@ >_-M
ce{e1,....em } 1=0,....,k—1 ce{ct,yenCm }

and therefore

min max min ¢'2® =min max ¢ .

1(1)7,“’$(k)€X CE{El,...,Em,dL...dk,l} i=1,...,k rzeX CE{Cl,...,Cm}

and the min-max optimal solution must be contained in {x(o), e ,x(kfl)}.
O

Corollary 5.14. For any fixed k£ € N and fixed m > k, Problem (M?) is
strongly NP-hard for the minimum s-t-cut problem for uncertainty sets U
with |U| = m.
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Proof. Problem (M?) for the minimum s-t-cut problem is strongly NP-hard
for m > 2 (see Table 3.1). From Theorem 5.13 and since all numbers in the
proof remain of polynomial size, we derive that the min-max-min variant
of the same problem is strongly NP-hard if the number of scenarios is at
least k£ + 1. O

Note that by Proposition 5.3 for & > m Problem (M?) can be solved in
polynomial time for the minimum s-t-cut problem. Therefore the restriction
to m > k is necessary.

As we have seen in Table 3.1 Problem (M?) for the normal minimum cut
problem is strongly NP-hard if we assume the number of scenarios to be part
of the input. In the following we show that this also holds for Problem (M?).

Theorem 5.15. For the minimum cut problem on a connected graph GG and
for a discrete uncertainty set U = {c1,..., ¢y}, we can polynomially reduce
Problem (M?) to Problem (M?) with at least m + k — 1 scenarios.

Proof. The result can be proved analogously to the proof of Theorem 5.13
by using the graph G§** := (V& E¢*t) with V&' := V U {vp, ..., v%_1} and

EM = FEU{fi=(w,v):i=0,....,k—1}

for an arbitrary node w € V. The latter construction is shown in Figure 5.5.
O

Vo 1 V2

Figure 5.5: The graph G§* for k = 3.

Corollary 5.16. For any fixed k& € N, Problem (M?) is strongly NP-hard
for the minimum cut problem for discrete uncertainty sets U.
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Proof. Problem (M?) for the minimum cut problem is strongly NP-hard if the
number of scenarios is part of the input (see Table 3.1). From Theorem 5.13
and since all numbers in the proof remain of polynomial size, we derive that
the min-max-min variant of the same problem is strongly NP-hard if the
number of scenarios is at least k& + 1. O

5.1.5 Unconstrained Binary Problem

Theorem 5.17. For the unconstrained binary problem and for a discrete
uncertainty set U = {cy, ..., ¢y}, we can polynomially reduce Problem (M?)
to Problem (M?) with at least m + k — 1 scenarios, for any fixed k < m.

Proof. Instead of (M?) we consider the equivalent Problem (M3) (see Theo-
rem 3.2). The proof relies on the same idea as the previous proofs. Given an
instance of the min-max version of the unconstrained binary problem

min maxc'z
ze{0,1}" c€lU

where U = {c1,...,cn} C R™, we define an instance of the unconstrained
binary problem in dimension n 4+ k — 1 with the scenario set

U = {El, R ,ém,dl, e >dk:—1} C Rn+k_1.

Here we define the scenarios by

fori=1...,m and
di =2M1 _4M€n+i

fori=1,...,k —1 where 1 € R***~! The parameter M can be chosen as

m  |E|

i=1 j=1

Now consider a feasible solution {z(,...2®} < {0,1}"**=! of the min-
max-min problem

min max min ¢ z®
xR {0,1}n+k=1 c€U’ i=1,...k

.....
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with 2 = e,,; for each i = 1,...,k — 1 and a solution z®*) which fulfills
xg-k) =0forallj=n+1,...,n+k—1and¢ 2® <0foralli=1,...,m.
Since the zero vector is a feasible solution we can always find a solution which
fulfills the latter conditions. Then for the objective value holds

max min ¢’ z® <0,
c€{C1ysCmydi,...di_1} i=1,....k

since on ¢ the minimum is attained by x®*) and therefore it is lower or
equal to 0. On the other hand on d; the minimum is attained by z® and is
exactly —2M. If the optimal value of (M?) is 0 then an optimal solution of
Problem (M2) must be the zero vector since if there would exist a solution
with objective value strictly lower than 0 for (M2) we could replace z*) above
by this solution. This would yield a strictly negative objective value for (M?)
as well. In the case that the objective value of (M?) is strictly lower than 0
we can show that every optimal solution of the min-max-min problem must
contain all solutions e, ; for 7 = 1,...,k — 1. Otherwise, if any e,;, is not
contained, then in scenario d;, the minimum min;—; T ig greater or
equal to 0 and therefore

max min ¢'z® >0
c€{Cl e sCmyd1,..dp_1} 1=1,....k

which cannot be optimal by the assumption above. On the other hand a
solution z with z,,; = 0 for : = 1,...,k — 1 must be also contained in the
optimal solution by the same reasoning for scenarios ¢;. So let {x(l), e ,x(k)}
be an optimal solution with the properties like above. Then we have

max min ¢'z® = —2M
c€{dy,dp_1} =1,k

by the reasoning above. On the other hand

max min ¢'2® = max ¢ 2® > _2M
c€{C1,....Cm } i=1,...,k ce{ct,..,Cm }

by the definition of M and therefore

min max min ¢'z® =min max ¢’z
). x(® eX ce{ct,....em,d1,...dy—_1} i=1,...k z€X ce{cy,...,em}
and the min-max optimal solution must be contained in {x(l), e ,a:(k)}. O

Corollary 5.18. For any fixed k € N and fixed m > k, Problem (M?) is NP-
hard for the binary unconstrained problem for uncertainty sets U with |U| =
m.
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Proof. The Problem (M?) for the binary unconstrained problem is NP-hard
for m > 2 (see Table 3.1). From Theorem 5.17, we derive that the min-max-
min variant of the same problem is NP-hard if the number of scenarios is at
least &+ 1. O

Note that by Proposition 5.3 for k£ > m Problem (M?) can be solved in poly-
nomial time for the binary unconstrained problem. Therefore the restriction
to m > k is necessary.

5.1.6 Knapsack Problem

Theorem 5.19. For the knapsack problem and for a discrete uncertainty set
U ={ci,...,cm}, we can polynomially reduce Problem (M?) to Problem (M?)
with at least m + k — 1 scenarios, for any fixed k < m.

Proof. Instead of (M?) we consider the equivalent Problem (M3) (see Theo-
rem 3.2). The proof is very similar to the proof of Theorem 5.17. Given an
instance of the min-max version of the knapsack problem

min maxc'x
z€{0,1}" ccU
alz<b

where U = {¢y,...,¢n} C R™, we define an instance of the knapsack problem
in dimension n + k — 1 with weight vector a = (a,0) and the same b as for
the original instance. We define the scenario set

U ={¢,...,Cn,dy,... dp_1} CRVFI

where all scenarios are defined analogously like in the proof of Theorem 5.17
considering a maximization problem now. We can show analogously to the
proof of Theorem 5.17 that, if the optimal value is not 0, each optimal solution
of problem

min max min ¢ z®
77777 z(Fe{0,1}n c€lU’ i=1,...k
alz(D<b i=1,... k

must contain solution z” = e,; for each i = 1,...,k — 1 and a solution
%) which fulfills :E;k) =0forall j=n+1,...,n+k—1 and EiTx(k) <0
for all i = 1,...,m. Again we can show that z® projected to the first n

dimensions then has to be the optimal solution of (M2). If the optimal value
of the created min-max-min instance is 0 then again the zero vector must be
the optimal solution of Problem (M32). O

98



5.2. PSEUDOPOLYNOMIAL ALGORITHMS

Corollary 5.20. For any fixed k € N and fixed m, Problem (M?) is NP-hard
for the knapsack problem for uncertainty sets U with |U| = m.

Proof. Since the deterministic knapsack problem is NP-hard, we can reduce
it to the min-max-min problem by adding the given cost-vector of the de-
terministic problem to U and then by adding an appropriate number of re-
dundant scenarios to U. An optimal solution for any k£ then only contains
the optimal solution of the deterministic knapsack problem which proves the
result. ]

Note that by Proposition 5.3 for & > m Problem (M?) can be solved in
pseudopolynomial time for the knapsack problem.

Corollary 5.21. For any fixed k € N, Problem (M?) with a discrete uncer-
tainty set U is strongly NP-hard for the knapsack problem.

Proof. The min-max variant of the knapsack problem is strongly NP-hard
if the number of scenarios is not constant (see Table 3.1). The result fol-
lows since all numbers in the construction in the proof of Theorem 5.19 are
polynomial in |U]. O

5.2 Pseudopolynomial Algorithms

As we have seen in Table 3.1, Problem (M?) is weakly NP-hard for many
of the listed combinatorial problems if the number of scenarios is constant,
i.e. it can be solved in pseudopolynomial time for these problems. In this
section we show that we can reduce Problem (M?) to Problem (M?) if the
number of scenarios is constant. As a corollary we can solve Problem (M?) in
(pseudo-)polynomial time, if we can solve (M?) in (pseudo-)polynomial time.

Theorem 5.22. Algorithm 4 calculates an optimal solution for Problem (M?).

Proof. Let {x(l), . ,x(k)} C X be an optimal solution of Problem (M?3).
Choose a partition Uy, ..., U of U such that

U, C {(c, )€U ez 4eg<caW) 4 ¢ Ve {1,...,k}}

foralli = 1,..., k. Thus U, is the set of scenarios covered by the solution z(*).

Let {92(1), e ,a‘c(k)} be the solution calculated by Algorithm 4 and U, ..., U,
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Algorithm 4 Reduction from Problem (M?) to Problem (M?) for k < m

IHPUt: U= {(Cla (Cl)O)a R (Cﬂ"w (Cm)ﬂ)} C Rn+1a X g {Oa 1}n’ kE<m
Output: optimal solution {z(V),... 2®} of Problem (M?)

1: v:=00

2: for all k-partitions Uy, ..., U, of U do

3 if max;—1__x {mlnxex max(c,c,)el; c'x+ co} < v then

4 U = Max;—1,.. k minge x MaX(c,co)el; cle+ co}

5: 2 = argmin,c y maxcev; ¢ T +co Vi=1,....k
6 end if

7: end for

8: return {x(l), c. ,:z(k)}

be the related partition for which the () were calculated in Step (5). Then
for the objective value of {z(V),... 2} holds
max min ¢ zY) + Cp = max max_ mm Tzl 4 Co
(c,c0)€U j=1,....k i=1,....,k (¢c,co)€U; 3=1,.-..,k
§ max max c¢ x()—i—co
1,0k (c,c0)€U;

{ } (5.1)
= max < min max c x+co
i:17"'7k reX (C CO)GU

< max < min max cT:p+CO
i=1,...,k | z€X (c,c0)€U;

where the last inequality follows since Uy, ..., U} is the partition which min-
imizes the last expression according to Step (3). Furthermore we have

min max ¢ z+c¢ < min max ¢ 29 + ¢
z€X (c,c0)€U; j=1,....k (c,c0)€U;

< T .09
<, T 52

= max min c x()—i-co
(c,c0)el; j=1,.

where the last equality follows from the choice of the sets U;. Hence applying

the maximum on both sides of the latter inequality we obtain

max {min max ¢ x4+cp < max min ¢ 29 + ¢,
i=1,...,k | zeX (C7CO)EUZ' (C,C())EU j=1,...,k

where the right hand side is the optimal value of Problem (M?). Equa-
tion (5.1) together with the last inequality then proves that {:E(l), o ,:i(k)}
is an optimal solution of (M?). O
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Corollary 5.23. There exist pseudopolynomial algorithms for Problem (M?)
for the shortest path problem, the spanning tree problem, the perfect match-
ing problem in planar graphs, and the knapsack problem if the number of
scenarios is constant.

Proof. Algorithm (4) solves an instance of Problem (M?) a polynomial num-
ber of times if the number of scenarios is constant. By Table 3.1 and by [6]
there exist pseudopolynomial algorithms for all the problems listed in the
theorem which proves the result. ]

Corollary 5.24. There exists a polynomial time algorithm for Problem (M?)
with fixed number of scenarios for the minimum cut problem.

Proof. By Table 3.1 the min-max version of the minimum cut problem can
be solved in polynomial time for a fixed number of scenarios. By the same
argument as above Algorithm 4 provides a polynomial time algorithm for the
min-max-min version of the minimum cut problem. O

5.3 Approximation Complexity

In Section 5.1 we showed that Problem (M?) is NP-hard for many combina-
torial problems. Therefore it would be interesting to know if an FPTAS exists
for these problems. In this section we prove that an e-approximation algo-
rithm for Problem (M?) with uncertainty set U = {(c1, (¢1)0), - - - (¢m, (¢m)o) }
can be derived by replacing the exact min-max problems in Algorithm 4 by
any e-approximation algorithm for the min-max problem. To this end let A
be an e-approximation algorithm of Problem (M?) with a discrete uncertainty
set, i.e. an algorithm which returns for each discrete uncertainty set U and
each parameter € > 0 a solution Z := A(U, ¢) € X such that

max ¢' T+ cy < (1+¢) <min max c'z + co) .
(c,c0)€U x€X (c,c0)eU

In the following we define for any feasible solution x € X

val(z) := (cncloz)%U ¢’z + .

We prove in the following that under the latter assumptions Algorithm 5
calculates an e-approximate solution of Problem (M?).
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Algorithm 5 Approximation algorithm for Problem (M?)

Input: U = {(c1,(c1)0);-- -, (Cm, (cm)o)} TR, X C{0,1}", k<m,e>0
and an e-approximation algorithm A.

Output: e-approximate solution {z), ... z*} of Problem (M?)

1: v:i=00

2: for all k-partitions Uy, ..., U, of U do

3 if max;—y__ {val(A(U;,¢€))} < v then
4: v =max;—__j{val(A(U;,e))}

5 v = AU;,e) Vi=1,...,k

6 end if

7: end for

8: return {:1:(1), o ,x(k)}

Theorem 5.25. If A is an e-approximation algorithm defined like above,
then Algorithm 5 calculates a feasible solution {zV), ..., )} of Problem (M?)
such that

T (7

max min ¢ % 4co < (1+¢) min max min ¢ 2% + ¢
(cc0)€U 1=1,....k (B eX (c,c0)€U i=1,....k

.....

Proof. The result can be proved by following the proof of Theorem 5.22.
Let {zM,... 2™} C X be an optimal solution of Problem (M?). Choose a
partition Uy, ..., Uy of U such that

U; C{cco €U|cT @) —G—COSCT:L'(j)—FCOVjE{1,...,/{}}

foralli =1, ..., k. Thus U; is the set of scenarios covered by the solution z(*).

Let {f(l) :L'(k } be the solution calculated by Algorithm 5 and Uy, ..., Uy
be the related partition for which the ¥ were calculated in Step (5). Then
by equation (5.1) for the objective value of {5:(1), o ,i(k)} holds

max min ¢’z + ¢y < max {val(A(U;,¢))}.
(c,c0)€U j=1,....k i=1,.,

Furthermore by equation (5.2) we have

val(A(U;,e)) < (1+¢) (min max c'x+ co)

z€X (c,c0)€U;

§(1+5)(max min Ci()+co)
(c,c0)€U; j=1,....k
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Hence applying the maximum on both sides of the latter inequality like in
the proof of Theorem 5.22 we obtain

1(A(U; <(1 in ¢z
o (A 2D} < (1 2) (e min a4y

and together with the previous equation it follows

max min ¢ ¥ 4 ¢ < (1+¢) ( max min ¢ 29 + co)
(c,c0)€U j=1,....k (c,c0)€U j=1,...,k

which proves the result. O

Corollary 5.26. Problem (M?) admits an FPTAS for the shortest path
problem, the minimum spanning tree problem, and the knapsack problem if
the number of scenarios is fixed.

Proof. It was shown in [3] that the min-max versions of the problems listed
in the theorem admit an FPTAS if the number of scenarios is constant. Since
Algorithm (5) calls Algorithm A a polynomial number of times if the number
of scenarios is assumed to be constant, replacing A with the algorithms in [3]
proves the result. O

In fact in [3] an FPTAS for (M2) for the previous problems with scenario
set U = {c1,...,¢n} is derived by an FPTAS for the related multicriteria

problem
-

cl
min T (5.3)
T

as it was shown in Theorem 3.3 for Problem (M?). By an analogous proof
the same result can be proved for Problem (M?).

Theorem 5.27. If the multicriteria Problem (5.3) has a fully polynomial
approximation scheme, then Problem (M?) with fixed k and

U ={(c1,(c1)0), - (Cm, (cm)o)}

has a fully polynomial approximation scheme.

Note that the result of the latter theorem is stronger than the result of
Theorem 5.25 since by an FPTAS for the multicriteria problem an FPTAS
for Problem (M?) can be derived by Theorem 3.3. Nevertheless it can be
possible that the min-max version of a combinatorial problem admits an
FPTAS while the corresponding multicriteria problem does not and hence
both results are stated above.
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Chapter 6

Experiments

In this section we present practical experiments for the exact Algorithm 2
presented in Section 4.1.2 and for the heuristic algorithm presented in Sec-
tion 4.2.2. The former algorithm for Problem (M?) without an uncertain
constant was implemented for the knapsack problem and intensively studied
on benchmark instances of the vehicle routing problem, which we define later.
The heuristic algorithm was implemented for the shortest path problem and
tested on the instances of [41].

The different steps in Algorithm 2 were implemented as follows: the deter-
ministic oracle in Step (5) was solved by problem-specific algorithms which
we will explain in the related subsection. The dual problem which has to be
solved in Step (4) was implemented in CPLEX 12.5 for the computations of
the knapsack problem and the shortest path problems while it was imple-
mented in CPLEX 12.4 for the computations of the vehicle routing problem.
To obtain the coefficients A; of the convex combination in Step (8) of Algo-
rithm 2 we solved the continuous problem
T

minmaxc x
x ceU
i
_ ok
s.t.x = g )\sz‘j
j=0
i
E Aj=1
j=0
)\jZO, J=U,...,1

by CPLEX where x, . .., z} are the calculated solutions in Step (5). Note that
for ellipsoidal and polyhedral uncertainty the latter problem can be reformu-
lated as in Propositions 4.6 and 4.10 and can be implemented in CPLEX.
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All implementations regarding the specific problem and the uncertainty sets
are explained in the following sections.

6.1 Exact Algorithm

From Theorem 4.7 it follows that we can solve problem (M?) for any combi-
natorial problem, given by an oracle which solves the deterministic problem,
by a polynomial time algorithm. Since the algorithm given in the proof is
mainly based on the results in [40] which are again based on the ellipsoid
method, the algorithm is hard to implement and probably not very efficient.
In contrast to this we presented Algorithm 2 in Section 4.1.2 which is not
provably a polynomial time algorithm but easy to implement and still based
on an oracle for the deterministic problem. Additionally it uses a dual oracle
which depends on the uncertainty set. In the following we will show compu-
tational results for the knapsack problem and the vehicle routing problem
each for ellipsoidal and budgeted uncertainty.

6.1.1 Knapsack Problem

In the following we give some evidence that Algorithm 2 performs very well
in practice for the knapsack problem. We implemented it to solve (M?) for

X :={re{0,1}" |a"x <b}

where a € N" and b € N. As uncertainty sets we chose ellipsoidal and bud-
geted uncertainty for the profits with a certain constant. The ellipsoidal un-
certainty sets are given by

UP = {(c,0) e R | (c— &) 8 (e — ) <Q?}

where ¥ € Q™" is a symmetric positive semidefinite matrix, ¢ € Q™ a given
center point and 2 € N. The budgeted uncertainty sets are given by

[jF = {(C,O) S R | C; :El+5zdl, zn:(sl < F} ,

i=1
where I' is a given parameter, ¢ € Q" the mean vector and d € Q" the
deviation vector.

For our experiments, we created instances similar to those used in [20]. For
any n € {250,500,750} we created 10 random knapsack instances each
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with a random ellipsoid. The weights a; were chosen randomly from the
set {100, ...,1500} and b was set to 100n. For the ellipsoidal uncertainty
sets the ellipsoid center ¢ was chosen randomly with ¢; € {10000, ..., 15000}.
The extreme rays of the ellipsoid were calculated as random orthonormal
bases where the length of the rays were chosen as \/d;c;, where d; is a ran-
dom number in [0, 1]. Note that the resulting ellipsoids are not axis-parallel
in general and therefore more general than the ellipsoids in [20]. For any
instance, we scaled the ellipsoid by varying the parameter €2 from 1 to 5.

Additionally, to compare our algorithm to the mixed-integer linear problem
formulation given in Theorem 3.15, we implemented our algorithm for the
knapsack problem with gamma-uncertainty sets. Again we created 10 random
knapsack instances as above, each equipped with a gamma-uncertainty set.
As in [55], the mean vector ¢ was chosen randomly with

& € {10000, .. .,15000} ,

and d; was set to 0.1¢; for all i = 1,...,n. Each instance has been solved for
all values of T' from the set {0.05n,0.1n,0.15n,0.25n,0.5n}, rounded down if
fractional.

To solve the deterministic knapsack problem in Step (5) of Algorithm 2 we
used the dynamic programming algorithm mentioned in Example 2.23. The
dual problem which has to be solved in Step (4) is, in the case of ellipsoidal
uncertainty, a continuous quadratically constrained problem of the form

max z

s.t. ch’; >zVi=1,...,1
(c—¢)'2e—¢) < Q2
z€R,ceR"

while for budgeted uncertainty it is a continuous linear problem

max z
s.t. chjszjzl,...,i

n

Ss<r

i=1

z€R, ceR", §e0,1]".
We used CPLEX 12.5. to solve both problems.
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n Q diff |X* | iter tdual tcomb tiot
250 1| 6.3 7.2 9.8 1.1 0.7 2.5
21124 197 272 3.7 1.9 6.3
31183 444 548 8.3 3.9 13.0
41239 779 894 1438 6.3 220
51292 1355 1545 298 11.0 41.7
500 1| 45 105 139 9.5 39 185
21 89 265 338 259 9.6 41.2
31132 724 791 671 224 945
4 1174 1234 1347 1208 382 165.1
51215 1473 1949 1825 553 243.1
70 1| 3.6 149 191 426 124 69.8
21 72 487 548 1394 353 188.6
31107 1421 146.3 383.6 93.1 493.2
41142 163.2 168.8 457.3 107.5 5814
5175 243.0 252.0 808.8 160.7 986.8

Table 6.1: Results for the knapsack problem with ellipsoidal uncertainty.

The results of the computations are listed in Tables 6.1 and 6.2. For each
combination of n and €2 or n and I, respectively, we show the average over
all 10 instances of the following numbers (from left to right): the difference (in
percent) of the objective value of Problem (M?) to the value of the certain
problem with the ellipsoid center ¢ or the mean vector ¢, respectively, as
cost function; the number of solutions in the computed set X*; the number
of major iterations; the run-times used by the two oracles (tqua for the dual
problem in Step (4) and tomp for solving the certain combinatorial problem M
in Step (5)); and the total run-time. All times are given in CPU seconds, on
an Intel Xeon processor running at 2.5 GHz.

For ellipsoidal uncertainty the results show that run-times increase with 2
and (of course) n. However, even the hardest instances with n = 750 and Q2 =
5 could be solved within 16.5 minutes on average. Interestingly, the number
of solutions needed in order to solve Problem (M?) to optimality (and even
the number of iterations) usually remains well below n, in particular for small
uncertainty sets. The higher €2, i.e. the larger the size of the uncertainty set
is, the more solutions are calculated. This is quite intuitive since if there are
more uncertain scenarios there must be more solutions to keep the worst case
small. Here the oracle for the dual problem takes most of the run-time which
is in contrast to the results in the following section and to the results for
budgeted uncertainty in this section.

For budgeted-uncertainty, the results are even more positive, with much
shorter run-times, less iterations, and significantly smaller solution sets X*.
Contrarily to the computations with ellipsoidal uncertainty, here the combi-
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n T diff |X* ‘ iter tdual tcomb ttot
250 12 | 1.8 1.8 3.0 000 02 03
25| 36 30 46 000 03 04
37 | 52 40 59 000 04 05
62 82 89 14.7 0.00 1.0 1.1
1251100 1.0 82 0.00 06 0.7
500 25 1.8 55 10.6 0.00 3.0 3.3
50 | 3.6 93 21.1 000 59 6.3
7 | 52 126 30.0 0.01 85 89
125 | 82 185 50.7 0.02 143 14.7
250 | 10.0 1.0 9.8 0.00 27 3.1
750 37 1.8 54 99 0.00 6.3 7.0
7 | 3.6 10.1 285 0.01 18.0 189
112 | 5.3 144 408 0.02 259 26.7
187 | 83 252 823 0.07 525 53.5
3751100 1.0 7.2 000 46 53

Table 6.2: Results for the knapsack problem with gamma-uncertainty.

natorial oracle takes most of the total run-time, while the dual oracle runs
less than a tenth of a second for all instance sizes. This is because instead of
the quadratic problem here CPLEX has to solve a linear problem which can
be done more efficiently. For comparison, we also performed experiments us-
ing the formulation of Theorem 3.15. It turned out however that CPLEX was
not able to solve the corresponding problem within hours even for n = 20.

To obtain some insight into the typical structure of an optimal solution com-
puted by Algorithm 2, we picked one instance with ellipsoidal uncertainty
and counted in how many of the computed solutions a given object is used.
The result is shown in Figure 6.1, where objects are sorted (from left to right)
by the number of appearances. It turns out that more than half of the objects
are never used, about one fifth is used in every computed solution, while only
the remaining objects are used in a non-empty proper subset of the solutions.
Similar pictures are obtained when considering other instances.

6.1.2 Vehicle Routing Problem

As mentioned in the introduction a typical practical motivation for prob-
lem (M?) is a parcel service which has to deliver parcels to the same customers
every day. Depending on the traffic situation every day the company wants
to find the best solution to serve all customers with the available fleet of
vehicles. This so called vehicle routing problem which we will define properly
later is very hard to solve in practice for high dimensions even in the deter-
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Figure 6.1: One instance for the knapsack problem in dimension 250. The
number of calculated solutions is 214; the y-axis shows the number of solu-
tions in which an item ¢ is selected.

ministic case. A set of benchmark instances can be found in [29]. Several of
the latter instances have not been solved to optimality yet. One advantage of
problem (M?) is that it can be solved in a preprocessing which can take a long
time but afterwards the best of the pre calculated solutions depending on the
traffic situation can be chosen every day. This can be done easily by compar-
ing the objective values of the calculated solutions. Moreover Problem (M?3)
hedges against uncertainty in a robust way but is not as conservative as the
normal min-max problem (M?). In this section we will present a case study
on our computations for Problem (M?) on some small benchmark instances
of the deterministic capacitated vehicle routing problem presented in [29].

In the literature many different variants of the vehicle routing problem were
presented [47, 57]. For our computations we will concentrate on the capac-
itated vehicle routing problem, which is defined in the following. Let G =
(V,E) be a directed complete graph with nodes V' = {0,1,...,n} and ¢ :
E — R a cost function on the edges of G where the cost can be interpreted
as traveling times. Node 0 represents the depot and the nodes V' \ {0} repre-
sent the customers. Each customer i € V'\ {0} has a positive demand d; € R
while we set dy = 0. Furthermore we have a set of vehicles K = {1,...,m}
where each vehicle has the same capacity C € Ry. A tour T'C EF in G is a
cycle in G which traverses the depot 0. This can be interpreted as a tour of
a vehicle which starts in the depot and supplies a subset of customers before
it returns to the depot. The cost of a tour is defined by

ecT

and the demand of a tour is the sum over all demands of the customers which
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are passed by the tour, i.e.

d(T) = > dy.

{veV: 3 e=(v,w)eT}

The capacitated vehicle routing problem is now to find a set of m tours which
minimize the total cost such that the sum of all demands on each tour does
not exceed the capacity of the vehicle. Formally we define the problem as
follows.

Problem 6.1 (Capacitated Vehicle Routing Problem (CVRP)). Let G =
(V, E) be a complete directed graph and ¢ and d defined like above. Find a
set of distinct tours T1,...,T,, C E with d(T;) < C for i = 1,...,m and
with minimal cost

Ty, ..., Tp) =c(Th) + ...+ c(T)

such that each customer i € V'\ {0} is traversed by exactly one of the tours.

Note that in Problem (6.1) every vehicle has to be used. The same problem
with variable number of vehicles is also studied in the literature. In this
case often extra costs for each vehicle are defined which have to be paid by
the company if it makes use of the vehicle. Another assumption we make is
that the graph has to be directed. This is due to the fact that in real-world
applications the travel time from A to B can be different than the travel time
from B to A.

Theorem 6.2 ([47]). The capacitated vehicle routing problem is NP-hard.

Figure 6.2: A feasible solution of instance E-n7-k2 with m = 2.

In the literature several methods and algorithms were presented to solve the
capacitated vehicle routing problem. Besides dynamic programming methods
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one way to solve the CVRP is to formulate it as an integer program and then
solve it by Branch & Bound methods. In Algorithm 2 we use an integer
programming formulation called Miller- Tucker-Zemlin formulation to solve
the deterministic oracle in Step (5) (see [38]). Here we identify each edge
e = (i,j) € E with a variable z;; € {0,1} which has value one if the edge
is contained in any of the m tours and zero otherwise. Additionally we add
variables u; > 0 for each customer ¢ = 1,...,n which represent the total
demand a vehicle supplied up to the point immediately after it lefts i. The
Miller-Tucker-Zemlin problem is then of the form

min ¢'x (6.1)
st > wy= Y wp=1Vji=1..n (6.2)
i€V, it i€V,
Z Tig = Z To;p =m (6.3)
i€V,i#0 i€V,i#0
uj—u;+C(1—wy;) > q; Vi, j € V\{0}, i#j (6.4)
¢ <u; <C VieV\{0} (6.5)
z;; €{0,1} 4,5=1,...,n (6.6)
weRLi=1,...,n (6.7)

Here the constraints (6.2) and (6.3) make sure that each customer is visited
exactly once on a tour and that exactly m vehicles leave the depot and return
to it. The constraints (6.4) ensure that if the edge (i, j) is passed by a vehicle
then u; = u; + ¢; holds and otherwise constraints (6.5) ensure that u; does
not exceed the capacity and has at least the value g;. It can be easily proved
that each feasible solution of the latter problem induces a feasible solution
for Problem (6.1) and that each feasible solution for Problem (6.1) is feasible
for the latter problem.

In the following we present our results on Problem (M?) for the CVRP.
As mentioned before this problem is very hard to solve in practice even in
its deterministic version. Since Algorithm (2) has to solve the deterministic
problem several times, clearly our algorithm is at most as efficient as the
algorithm for the underlying deterministic version. Especially the instances
which have not been solved to optimality yet in its deterministic version
can not be solved by our algorithm as well. To improve the run-time of Al-
gorithm 2 we adjusted the algorithm as follows. In the first loops of the
algorithm instead of calculating an exact solution for the deterministic prob-
lem in Step (5) we used a heuristic algorithm to find any feasible solution. If
this solution does not satisfy the stopping criteria of the loop we go on using
the heuristic algorithm. If no such solution is found anymore we switch back
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to the exact algorithm. Clearly in the last loop the exact algorithm is used
to obtain an exact solution of Problem (M?). Furthermore we ran a further
variant of the algorithm which only uses the heuristic algorithm without ever
switching back to the exact algorithm. By this idea we obtain a heuristic al-
gorithm for Problem (M?). For the computations below we implemented the
original Algorithm 2 and the two variants of it which are explained above.
As a heuristic for the deterministic problem we used the open source library
VRPH (https://projects.coin-or.org/VRPH) while for the exact algorithm
we implemented the Miller-Tucker-Zemlin formulation in CPLEX 12.4. The
dual problem in Step (4) was also implemented in CPLEX. All computations
were calculated on a cluster of 64-bit Intel(R) Xeon(R) E5-2670 processors
running at 2.60 GHz with 20MB cache.

For our computations we chose several instances from [29] and similar to the
instances in the previous sections we created 10 ellipsoidal and 10 budgeted
uncertainty sets for each instance. To this end as the mean cost vector ¢ we
chose the Euclidean distances between the coordinates of the nodes given by
the instances. If no coordinates are defined then we chose the edge-weights
which are given by the instance.

The ellipsoidal uncertainty sets are then given by
U :={(c,0) eR"" | (c—¢) S (c—e) <O},

where ¥ € Q™" is a symmetric positive semidefinite matrix, ¢ € Q™ defined
like above and 2 € N. The extreme rays of the ellipsoids were calculated
as random orthonormal bases where the length of the rays were chosen as
\/0;c¢;j, where §; is a random number in [0, 1]. Note that the resulting ellipsoids
are not axis-parallel in general and therefore more general than the ellipsoids
in [20]. For any instance, we scaled the ellipsoid by varying the parameter €2 €
{1,3,5}.

The budgeted uncertainty sets are given by
UF = {(C,O) € RnJrl ‘ C;i =G +5zdw Z&Z S F} s
i=1

where I' is a given parameter, ¢ € Q" defined like above and d € Q™ is the
deviation vector. Here we chose d; randomly between 0 and ¢; for all 1 =
1,...,n. Each instance has been solved for all values of I" from the set

{0.15(n +m),0.5(n +m),0.75(n +m)} ,

rounded down if fractional. The latter choice is motivated by the fact that
each feasible solution of Problem (M?) uses exactly n+m edges in the graph.
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For I' > n + m our computations showed that often only one solution is
calculated which is the optimal robust min-max solution.

exact oracle exact & heuristic oracle
Inst. n o m diff | | X*|  iter tiot fdwal  teompb | |[X*| iter. iter, tiot  tdual  teomb
E-n7-k2 6 2 14.4 | 11.8 14.5 0.3 0.0 0.3 ] 11.8 8.5 8.4 0.7 0.0 0.6

35.8 | 13.7 18 03 00 03] 139 101 10.7 0.8 0.0 0.7
56.0 | 16.3 20.2 03 0.0 03] 178 124 139 1.0 0.1 0.8
11.0| 179 235 1255 1.1 1243|232 148 222 98.1 1.9 96.0
28.8 1285 446 2666 2.0 2644|304 276 444 2015 3.8 1975
44.1 | 348 577 2586 2.8 255.7|36.0 358 57.0 2154 50 2102
11.0 | 145 16.8 21.8 2.0 19.6 | 14.7 127 85 23.1 2.7 20.0
30.3 | 21.6 26.1 284 29 252|212 189 143 29.3 39 25.0
48.5 | 22.6 29 258 3.3 222255 236 196 323 5.3 26.7
26.8 | 189 23.9 619 38 577|194 231 10.0 69.5 5.2 63.8
64.3 | 33.5 56.7 560.2 9.1 550.7 | 33.0 43.6 423 5815 16.1 564.9
94.9 | 40.5 67.4 13474 11.8 1335.1| 43.1 46.7 67.8 1463.8 23.2 1440.0

E-nl3-k4 12 4

P-n16-k8 15 8

gr-nl7-k3 16 3

LW HUWwWRolw R ow =D

Table 6.3: Results of Algorithm 2 for CVRP with ellipsoidal uncertainty.

In the Tables 6.3, 6.4, 6.5 and 6.6 we list the computational results for a
selection of instances. For each combination of n and € or n and I', respec-
tively, we show the average over all 10 instances of the following numbers
(from left to right): the difference (in percent) of the objective value of Prob-
lem (M?) to the value of the certain problem with the ellipsoid center ¢ or the
mean vector ¢, respectively, as cost function; the number of solutions in the
computed set X*; the number of major iterations; the run-times used by the
two oracles (fqua for the dual problem in Step (4) and tcomp for solving the
certain combinatorial problem (M) in Step (5)) and the total run-time tt.
Furthermore for the variant of the algorithm where we use both, the exact
and the heuristic oracle we show the number of calls of the exact oracle in
column iter, and the number of calls of the heuristic oracle in column iter,.
Table 6.5 and 6.6 which show the results for the second variant of the algo-
rithm, which only uses the heuristic algorithm, includes the column diff,. In
this column the difference (in percent) of the objective value of the calcu-
lated heuristic solution and of the optimal value of Problem (M?) is shown
if the latter could be calculated. All times are given in CPU seconds and all
numbers are rounded to one decimal.

In Table 6.3 we show the results of Algorithm 2 implemented with the exact
oracle and with a combination of the exact oracle together with the heuristic
oracle for ellipsoidal uncertainty sets. The number of calculated solutions and
the number of iterations clearly grows with increasing €2. The same holds for
the difference of the objective value. Note that in instance gr-n17-k3 the
difference is nearly 95% for 2 = 5. Furthermore the total run-time as well as
the number of solutions increase with the dimension. Instance P-n16-k8 could
be solved very fast compared to the other instances since the deterministic
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exact oracle exact & heuristic oracle

diff | | X*|  iter tiot tdual  feomb | |X*| itere iter, tiot tdual  teomb
4.8 | 11.2 184 76.7 0.0 76.7 | 11.3 11.0 9.7 55.3 0.0 55.3
13.6 | 17.7 344 1426 0.0 1426|179 23.0 275 1099 0.0 109.8
182 | 187 36.7 150.7 0.0 150.7| 186 27.5 32.0 138.0 0.0 137.9
9.0 6.2 84 3.3 0.0 33| 55 54 6.2 4.0 0.0 3.9
22.5 | 12.2 227 104 0.0 104 | 125 16.6 13.3 125 0.0 124
29.0 | 13.3 234 10.0 0.0 10.0 | 13.4 19.0 14.0 13.5 0.0 134
7.1 4.7 6.2 3.3 0.0 32| 48 46 4.8 4.7 0.0 4.5
20.2 | 16.1 25.3 68.4 0.0 68.3 | 16.1 25.1 13.3 783 0.0 78.1
26.2 | 189 336 1186 0.0 1186 189 30.5 17.2 123.0 0.0 1229
6.0 | 11.9 16.7 389.0 0.0 3889|119 125 13.7 3580 0.0 357.8
14.5 | 21.1 37.0 2259.8 0.0 2259.7 | 21.1 24.7 372 1860.3 0.0 1860.1
18.8 | 26.9 53.1 4537.0 0.0 4537.0 | 26.8 33.6 47.0 39054 0.0 3905.1

Inst. nom
En13-k4 12 4

P-n16-k8 15 8

gr-nl7-k3 16 3

P-n20-k2 19 2

— — — —
o W R oG D w g oo

Table 6.4: Results of Algorithm 2 for CVRP with budgeted uncertainty.

versions were solved faster by the MTZ-formulation. In contrast to the results
for the knapsack problem in the previous section here the deterministic oracle
takes most of the run-time, while the dual oracle could be solved in a few
seconds. Note that the combination of the exact oracle and the heuristic
oracle does only improve the run-time in instance E-n13-k4. This is possibly
due to the fact that the heuristic solutions do not improve the dual problem
significantly in each loop and the resulting higher number of loops increases
the run-time. Nevertheless it turned out that for instances with more than 16
customers we could not solve all configurations for the 10 ellipsoidal instances
in days.

heuristic oracle

dlﬂh ‘X*‘ iter ttot tdual tcomb
44 46 59 02 00 0.1
11.7 51 6.1 02 0.0 0.2
196 48 59 02 0.0 0.1
1.6 82 11.0 15 04 0.9
42 98 123 16 04 1.0
83 103 127 16 0.5 1.0
37 42 53 16 0.5 0.8
54 55 65 18 06 0.9
10.7 39 51 14 05 0.6
76 50 72 27 09 1.3
6.3 144 21.7 78 3.5 3.9
76 155 214 7.7 35 3.7
- 58 87 68 34 2.4

- 144 177 144 85 4.8

- 186 24.8 21.2 135 6.5

Inst.
E-n7-k2

3
3

D
[\

E-nl13-k4 12 4

P-n16-k8 15 8

gr-nl7-k3 16 3

gr-n21-k3 20 3

T W Ul W R OlwHotwRow~D

Table 6.5: Results of Algorithm 2 with heuristic oracle for CVRP with ellip-
soidal uncertainty.

The results for budgeted uncertainty in Table 6.4 are very similar but the
total run-time is much lower. Again the combination of exact and heuris-
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tic algorithm is only faster in instance P-n16-k8. Overall the total run-time
is much lower than for ellipsoidal uncertainty sets which is here due to the
lower number of iterations which also leads to a lower number of calculated
solutions. In contrast to ellipsoidal uncertainty sets we could solve all config-
urations for instance P-n20-k2. Nevertheless it turned out that for instances
with more than 19 customers we could not solve all configurations for the 10
budgeted uncertainty instances in days.

heuristic oracle
dlffh ‘X*l iter tiot  tdual Teomb
48 35 51 05 0.0 0.5
76 7.1 106 1.0 0.0 0.9
89 7.0 11.2 1.1 0.0 1.0
49 26 40 05 0.0 0.5
94 38 6.1 0.8 0.0 0.7
8.7 40 6.0 0.8 0.0 0.7
96 25 45 1.0 0.0 0.8
114 58 83 1.6 0.0 1.5
89 83 125 24 0.0 2.3
191 6.1 94 21 0.0 1.9
426 69 93 20 00 1.8
278 66 91 19 0.0 1.8
- 36 57 18 0.0 1.6
7.7 104 31 0.0 2.8
9.9 139 40 0.0 3.8

Inst. n o m
Enl3-k4 12 4

P-n16-k8 15 8

gr-nl7-k3 16 3

P-n20-k2 19 2

gr-n21-k3 20 3

[ [E— — [ —
S = Plao R R ONG @ T

Table 6.6: Results of Algorithm 2 with heuristic oracle for CVRP with bud-
geted uncertainty.

The results for the heuristic variant of the algorithm are very promising.
Both for ellipsoidal and budgeted uncertainty sets the total run-time and the
number of calculated solutions is very low compared to the exact versions
above. In average the total run-time never exceeded 22 seconds. Furthermore
the difference to the exact value is often not higher than 12 % in average.
Nevertheless for instance P-n20-k2 it is nearly 43% for I' = 10. We could
even solve instance gr-n21-k3 in at most 22 seconds in average for ellipsoidal
uncertainty sets, while we were not able to solve all the configurations for
the exact version to optimality in days.

In the following we present all solutions of an exact optimal solution of Prob-
lem (M?) for a selected instance. Since we assumed a directed graph which can
have different costs on edges (i, 7) and (j, ) for any customers i, 7 € V\ {0} it
can happen that in one optimal solution one set of tours can occur more than
once but at least one tour is oriented in a different direction (see solution 8
and 10 in Figure 6.3).
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Figure 6.3: The optimal solution of Problem (M?) for instance P-n16-k8 with
a budgeted uncertainty set.
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6.2 Heuristic Algorithm

In Section 4.2.2 we presented a heuristic algorithm which is mainly based
on the algorithm given in Theorem 4.7. Though we presented an example
which shows that the error bound in Theorem 4.20 can be arbitrary large, in
this section we provide some computational results showing that the heuris-
tic Algorithm 3 often calculates solutions that are close to optimal even for
small k. To this end, we replace the theoretically fast algorithm of Theo-
rem 4.7 by the practically fast Algorithm 2. We applied our heuristic to the
instances of the shortest path problem used in [41]. The authors create graphs
on 20,25, ...,50 nodes, corresponding to points in the Euclidean plane with
random coordinates in [0, 10], and choose a budgeted uncertainty set of the
form

== {&j €[0,1] [ 32, < F}

where the cost on the edges is set to ¢;;(§) = (1 + %)dw and d;; is the
Euclidean distance of node i to node j. No uncertain constants are consid-
ered in the objective function. The parameter I" is chosen from {3,6}. For
more details see Section 4.2 in [41]. Again we solved the linear dual problem
in Algorithm 2 by CPLEX 12.5. Here we also implemented the oracle for
the deterministic problem using the linear programming formulation for the
shortest path problem in CPLEX.

In Table 6.7, the computational results for Algorithm 3 are shown. In columns
indicated by #, we find the number of instances (out of 100) for which the
problem was solved to optimality by the authors of [41] within a time limit
of two hours. For the latter instances, in columns marked Ay, we state
how far our heuristic solution value is above the exact minimum, on average
(in percent). Similarly, for all 100 instances, we denote by A, how far our
heuristic solution value is above the best solution value found by the authors
of [41] within the time limit, i.e., this number includes the instances which
could not be solved to proven optimality in [41]. For every type of instance,
the run-time for our heuristic was at most one CPU second on average, and
is thus not reported in the table. Note that we are able to calculate heuristic
solutions for all £ up to n + 1 at one stroke.

Table 6.7 shows that for every instance size considered, the mean of the
differences A,y with respect to the best known solutions is within 8 %. In
Figure 6.4, we illustrate the mean differences in dependence of the problem
size and k. Not surprisingly, the gap grows with the number of nodes, whereas
a larger number k leads to better solutions. This is also due to the fact that
the exact problem (M?) is much harder to solve for larger k and therefore
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6.2. HEURISTIC ALGORITHM

20 nodes 25 nodes 30 nodes 35 nodes
r k # Asol Aall # Asol Aall # Asol Aall # Asol A;311
3 1|100 4.1 41]100 46 4.6/|100 54 54|100 6.5 6.5
21100 19 19| 99 24 25| 69 28 30| 17 26 34
3] 97 08 08] 31 05 12 6 0.1 1.8 0 - 22
4| 51 02 05 6 01 06 0 - 09 0 - 1.3
6 1|100 53 53|100 48 48100 52 522|100 6.7 6.7
21100 37 37| 99 46 47| 67 48 52| 16 71 58
31 97 23 23| 38 23 31 6 07 35 0 - 4.1
41 55 1.0 14 7 05 20 0 - 23 0 - 3.2
40 nodes 45 nodes 50 nodes
r k # Asol Aall # Asol Aall # Asol Aall
3 1|100 70 70}100 73 73100 80 8.0
2 6 31 39 0 - 39 0 - 43
3 0 - 25 0 - 24 0 - 28
4 0 - 16 0 - 16 0 - 19
6 1|100 72 772|100 78 778|100 78 78
2 5 50 6.6 0 - 71 0 - 70
3 0 - 45 0 - 49 0 - 49
4 0 - 33 0 - 3.7 0 - 3.7

Table 6.7: Computational results for Algorithm 3.

the best known solution after the time limit has a worse objective value.
In contrast to this our heuristic solution is obtained by the same optimal
solution of the Problem (M?[n + 1]) for all .

Aan in %
Aan in %
10f
1
8 k=1 k=1
6/ k=3
4 e k=2 k=4
nodes ; ; f f f —> nodes
20 25 30 35 40 45 50 20 25 30 35 40 45 50

Figure 6.4: Difference to the best known solution in % for I' = 3 (left) and
I' = 6 (right)
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Chapter 7

Outlook

In this thesis we intensively studied Problem (M?) for discrete uncertainty
sets and convex uncertainty sets. We proved that for convex uncertainty sets
Problem (M?) is as easy as the underlying problem if the number of calcu-
lated solutions is greater than the dimension of the problem. Furthermore we
showed that for any fixed number of solutions the problem is NP-hard. The
NP-hardness was also shown for several combinatorial problems with discrete
uncertainty sets. Overall most of the relevant complexity questions regarding
convex and discrete uncertainty sets have been answered for Problem (M?)
in this thesis.

Nevertheless there are still a lot of interesting open questions regarding Prob-
lem (M?). First of all the algorithm given in Theorem 4.7 heavily depends on
the ellipsoid method and the results in [40] and is therefore not efficient to
implement. Furthermore the exact algorithm 2 has not provably polynomial
run-time. Therefore it would be interesting to find a polynomial time algo-
rithm for Problem (M?), at least for several combinatorial problems with con-
vex uncertainty sets, which is not based on the ellipsoid method and easier to
implement. Another open question is how to practically solve Problem (M?)
for any £ < n+ 1 which is an interesting case for practical applications since
the number of calculated solutions can be chosen to be small. Our compu-
tations, which make use of the MILP formulation in Theorem 3.15, and the
computations in [41] showed that even in small dimension the problem can
not be solved in hours.

Further interesting problems could be different variants of problem (M?) e.g.
with uncertainty also occuring in the constraints similar to the problems
studied in [41]. One could also apply the idea of Problem (M?) to other
robust approaches presented in Chapter 3, e.g., to regret robustness.



CHAPTER 7. OUTLOOK

One very promising variant of Problem (M3) is a distributionally robust
version of the problem. The approach of distributional robustness received
increasing attention in the last years and has been intensively studied in
the literature. The K-adaptability approach which was studied in [41] for
two-stage robust problems was also applied to distributionally robust prob-
lems [42]. Similar to the two-stage version the K-adaptable approach is used
to approximate the distributionally robust problem. Here besides other re-
sults, the authors show a very similar result to Theorem 3.14. It is proved that
if the number of calculated solutions K is greater or equal to a certain value
which depends on the dimension of the problem and other problem parame-
ters then the K-adaptability problem calculates an exact solution. This result
can be easily adapted to a distributionally robust version of Problem (M?)
which is the problem

min  sup Ep | min ez
zD) xR eX pep

i=1,...,

where P is a given set of probability distributions of the probability vector c.
Similar to the result of Corollary 4.3 using the idea of the proof in [42] we can
transform the latter problem into a continuous linear program if the number
of calculated solutions k is greater or equal a certain value. Therefore under
the latter assumption this problem can be solved in pseudopolynomial time.
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