
 

 

PhD Thesis- 

“Involvement of the WNT pathway in 

endometriosis.” 

In Zusammenarbeit mit 

 
 
 
 
 
 

 
DISSERTATION 

 
ZUR ERLAGNUNG DES AKADEMISCHEN GRADES DES DOKTORS DER  

NATURWISSENSCHAFTEN (DR. RER. NAT) 

DER FAKULTÄT FÜR CHEMIE UND CHEMISCHER BIOLOGIE 

DER TECHNISCHEN UNIVERSITÄT DORTMUND 

 

VORGELEGT VON 

 

JULIANE HUNDT 
 

DORTMUND, 2016 

 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 

VERÖFFENTLICHUNG ALS DISSERTATION IN DER FAKULTÄT 

CHEMIE UND BIOLOGISCHE CHEMIE 
 
 

DER TECHNISCHEN UNIVERSITÄT DORTMUND 
 
 

DORTMUND, 25.11.2016 
  



Erstgutachter: Prof. Dr. Med. Jan Hengstler 
Leibniz-Institut für Arbeitsforschung 

Technische Universität Dortmund 
Ardeystraße 67 

44139 Dortmund
hengstler@ifado.de 

Zweitgutachter: Prof. Dr. Frank Wehner 
Fakultät für Chemie und Chemische Biologie 

Technische Universität Dortmund & 
Max-Planck-Institut für molekulare Physiologie 

Otto-Hahn-Staße 11 
44227 Dortmund 

frank.wehner@mpi-dortmund.mpg.de

Tag der Disputation: 25.11.2016 



 

I 
 

STATEMENT ON OATH 

 

Hereby I attest that this thesis has been prepared and written solely by me, Juliane Hundt. 

No other references and materials than what is cited in the paper were used or consulted. 

 

Juliane Hundt 

 

Dortmund, 01.09.2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

II 
 

ACKNOWLEDGEMENTS 

First of all, I would like to thank Prof. Dr. med. Jan Hengstler for the committed supervision 

of my PhD Thesis as well as for being my first examiner. Moreover, I would also like to thank 

Prof. Dr. Frank Wehner to be my second examiner and all remaining members of the 

Technical University Dortmund for giving me support and help at any time. 

Furthermore, I want to thank Bayer and especially PD Dr. Thomas Zollner and Dr. Jens 

Burmeister for providing such an interesting and challenging topic for my PhD thesis. 

Additionally, I would particularly like to thank Dr. Eva Simon, Dr. Mathias Gehrmann and 

Dr. Maik Obendorf for the excellent and professional supervision, for the support and help at 

any time and as for the revision of my PhD thesis. Moreover, very special thanks goes to my 

colleagues Anne Yakubu, Monika Kindler, Andrea Seipp and Iris Fuchs, who provided 

important assistance and technical advice throughout the entire time, Sandra Kuhr, Annika 

Korth and Kathrin Sonnenburg, who were an extential help with the in vivo experiments 

and Dr. Janina Boyken, Dr. Jens Nagel, Dr. Markus Koch, Dr. Nicole Schmidt and Dr. 

Walter Weichel who gave essential support by always lending a helping hand or by giving 

advises and proposed solutions. Moreover, I would like to thank Dr. Barbara Ingold-

Heppner for the professional evaluation of the histological samples. Finally, I want to thank 

the entire staff of the Departement of Gynecological Therapies in Berlin and Bioanalytics in 

Leverkusen for the friendly admission in their team, the terrific work atmosphere and the 

countless cheerful moments within the past 3 years. 

Last but not least, very special thanks are directed to my family, my boyfriend and my friends 

who promoted and accompanied me at all times and were there for me whenever it was 

necessary.  

 

 

 

 

 

 
 



 

III 
 

SUMMARY 

Endometriosis is a common gynecological disorder defined by the presence of endometrial 

tissue outside the uterus causing among others chronic pelvic pain and infertility. The definite 

pathogenesis of endometriosis is still unknown but the most accepted theory is the 

retrograde menstruation. Due to the lack of reliable biomarkers, the gold standard for 

diagnose and treatment is still the removal of lesions via surgery. The WNT (wingless-type 

MMTV integration site family) pathway is essentially implicated in embryogenesis and in 

stem cell self-renewal of various different adult stem cell types. It has been already 

implicated in various diseases such as cancer. Several studies have also demonstrated a 

potential role of dysregulated WNT signaling in endometriosis. This study aimed to 

systematically investigate the impact of the WNT pathway in the pathogenesis of 

endometriosis. 

Based on a previous clinical study (EMMA – Endometriosis Marker Austria), that revealed 

dysregulated WNT signaling in endometriosis, several particularly noticeable WNT pathway 

members were selected and further examined. TaqMan analyses with the same patient 

cohort confirmed elevated WNT2B, WNT7A, LGR5, RSPO1, and FZD7 mRNA levels in 

lesions. Manipulations of mRNA or protein levels of these WNT candidate genes in 

endometrial stromal cells (ESCs) already indicated a functional relevance of the WNT 

pathway in endometriosis. Increased levels of LGR5 led to increased WNT activity, viability, 

and migration activity and decreased cell death rate and caspase activity. Reduced mRNA 

levels exhibited reverse results suggesting that changes of LGR5 essentially influence WNT 

activity which consequently affects several cellular functions. Finally, when the WNT inhibitor 

LGK974 was applied in a retrograde menstruation model for endometriosis in mice, a 

significant reduction of disease burden in terms of lesion size and number was observed. 

Moreover, many WNT pathway genes that do also play a role in migration, proliferation, and 

vascularization were downregulated upon WNT inhibition. 

All these data suggest that the WNT pathway is implicated in the pathogenesis of 

endometriosis. Herein, LGR5 seems to play a particular role. It has also been described as 

an adult endometrial stem cell marker. So possibly, endometrial stem cells reach the 

peritoneal cavity through retrograde menstruation, where they differentiate and form lesions. 

However, pharmaceutical targeting of the WNT pathway most likely would have pleiotropic 

effects, thereby limiting the therapeutic potential of WNT inhibitors in endometriosis. But 

eventually, several WNT pathway members, especially LGR5, might serve as a potential 

biomarkers that would allow non-invasive early stage diagnosis, helping to improve patient’s 

quality of life.  
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ZUSAMMENFASSUNG 

Endometriose ist eine häufige gynäkologische Erkrankung, die definiert ist durch die Präsenz 

von endometrialen Zellen außerhalb der Uterushöhle, was unter anderem starke 

Unterleibsschmerzen und Infertilität verursacht. Die Pathogenese ist noch nicht vollkommen 

geklärt, wobei die Theorie der retrograden Menstruation am meisten akzeptiert wird. Da noch 

keine zuverlässigen Biomarker gefunden wurden, ist der Goldstandard für die Therapie und 

Diagnose immer noch das Entfernen der Läsionen durch eine Operation. Der WNT 

Signalweg (wingless-type MMTV integration site family) ist essentiell für die Embryogenese 

und Stammzellselbsterneuerung von verschiedensten adulten Stammzellen. Er wurde auch 

schon mit vielen verschiedenen Erkrankungen in Verbindung gebracht. Verschiedene 

Studien haben auch demonstriert, dass WNT-Proteine ebenfalls bei der Pathogenese von 

Endometriose eine Rolle spielen könnten. Die vorliegende Studie adressierte die genauere 

Untersuchung dieser Hypothese.  

Basierend auf einer vorherigen klinischen Studie (EMMA – Endometriosis Marker Austria), 

die ergab, dass der WNT Siganlweg tatsächlich in Endometriose dereguliert sein könnte, 

wurden einige besonders auffällige Mitglieder des WNT-Signalwegs ausgewählt und näher 

untersucht. TaqMan-Analysen derselben Patientenkohorte bestätigten, dass WNT2B, 

WNT7A, LGR5, RSPO1 und FZD7 in Läsionen hochreguliert sind. Manipulationen von 

mRNA-Leveln dieser WNT-Kandidatengene lieferten erste Hinweise auf einen Einfluss des 

WNT-Signalwegs in pathologisch relevante Mechanismen. Insbesondere erhöhte mRNA-

Level von LGR5 steigerten die WNT-Aktivität, Viabilität und Migrationsaktivität und 

verringerten die Zelltodrate und Caspaseaktivität in endometrialen Stromazellen (ESCs). 

Reduzierte mRNA-Level führten zu umgekehrten Effekten, was darauf hinweist, dass 

Veränderungen von LGR5 direkt die WNT-Aktivität und somit auch dadurch regulierte 

zelluläre Funktionen beeinflusst. Schließlich wurde noch der WNT-Inhibitor LGK974 in einem 

retrograden Menstruationsmodell für Endometriose in Mäusen angewandt. Hier konnte eine 

signifikante Reduktion der Krankheitslast in Bezug auf Läsionsgröße und –anzahl beobachtet 

werden. Außerdem wurden viele WNT-Signalweggene, die auch eine Rolle bei Migration, 

Proliferation oder Vaskularisierung spielen, durch die WNT-Inhibition runterreguliert. 

All diese Daten weisen darauf hin, dass der WNT Signalweg essentiell in die Pathogenese 

von Endometriose impliziert ist. Dabei spielt LGR5 wohl eine besondere Rolle. Es wurde 

bereits als adulter endometrialer Stammzellmarker beschrieben. Demzufolge ist es 

wahrscheinlich, dass adulte endometriale Stammzellen durch die retrograde Menstruation in 

das Peritoneum gelangen, wo sie ausdifferenzieren und Läsionen bilden. Allerdings hätte 

das pharmakologische Beeinflussen des WNT Signalweges pleiotrope Effekte, weshalb 
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dessen therapeutische Adressierung bei Endometriose wohl limitiert ist. Allerdings könnten 

möglicherweise einige WNT Signalwegmitglieder und vor allem LGR5 als Biomarker dienen, 

um eine frühzeitige, nicht-invasive Diagnose zu ermöglichen und somit durch eine 

zielgerichtete Therapie die Lebensqualität der Patientinnen zu verbessern.  
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1 INTRODUCTION 

1.1 The menstrual cycle 

The menstrual cycle is the development of a follicle from the ovary to establish a fertile 

oocyte in women. The entire process takes about 28 days and recurs every month between 

the menarche and menopause marking the fertile years of women. Each menstrual cycle 

starts with the menses, where low levels of estrogen (E2) and progesterone cause the 

endometrium (lining of the uterus) to break down and to shed as menstrual blood and cellular 

debris when an oocyte was not fertilized (figure 1). Now, the proliferative (follicular) phase 

begins and the pituitary gland in the hypothalamus produces increasing amounts of follicle 

stimulating hormone (FSH). It in turn promotes the development of several follicles 

containing one oocyte each from which only one will reach maturity. Rising levels of E2 

secreted from the ovaries cause thickening of the endometrium. At approximately day 14 the 

proliferative phase ends with the ovulation which is provoked by the surge of lutenizing 

hormone (LH) from the pituitary. This facilitates the mature follicle to bulge out from the 

surface of the ovary and to burst. Thereby it releases the oocyte which travels through the 

fallopian tube into the uterus. This marks the beginning of the secretory or luteal phase, 

where the ruptured follicle develops into the corpus luteum. From then on it secretes 

increasing amounts of progesterone in large quantities. This hormone causes further 

thickening and decidualization of the endometrium as a preparation for the potential 

implantation of the fertilized oocyte after 6 or 7 days of ovulation. After successful 

implantation, the corpus luteum starts to produce chorionic gonadotropin (HCG) pregnancy 

hormone which maintains progesterone secretion by the corpus luteum to obtain pregnancy. 

If the oocyte was not fertilized, the corpus luteum degenerates about 14 days after ovulation 

causing the levels of progesterone and E2 to drop. Consequently, the endometrium breaks 

down and sheds, marking the start of the next menstrual cycle [1]. 
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Figure 1: The menstrual cycle. The 

menstrual cycle starts with the 
shedding of the endometrium 
(uterine lining) as menstrual blood 
marking the beginning of the 
proliferative phase. The pituitary 
gland secretes rising amounts of 
follicle stimulating hormone (FSH) 
triggering the development of 
follicles with oocytes. The ovaries 
produce increasing levels of 
estrogen (E2) resulting in the 
thickening and decidualization of the 
endometrium. The surge of 
lutenizing hormone (LH) at around 
day 14 provokes the ovulation by 
releasing the oocyte and the 
secretory phase begins. The 
ruptured follicle develops into the 
corpus luteum secreting rising 
amounts of progesterone causing 
further thickening of the 
endometrium. In case of succsessful 
implantation of a fertilized oocyte, 
the corpus luteum begins to produce 
chorionic gonadotropin (HCG) 
pregnancy hormone to maintain the 
progesterone secretion by the 
corpus luteum. If the oocyte was not 

fertilized, the corpus luteum degenerates about 14 days after ovulation and the levels of progesterone and E2 
drop. That provokes the endometrium to break down and the menstrual cycle starts all over again. Figure kindly 
provided, adapted, and modified from [2]. 

1.2 Endometriosis 

1.2.1 Epidemiology 

Endometriosis is a common, benign, estrogen-dependent, chronic gynecological disorder 

defined by the presence of endometrial tissue outside the uterus (also designated as ectopic 

tissue, lesions or implants) – mainly on the pelvic peritoneum, but also in decreasing order, 

on the ovaries, on the rectovaginal septum, on the bladder, and upper abdomen (figure 2) [3, 

4]. The symptoms range widely from asymptomatic to extensive pelvic adhesions and 

distortion of pelvic anatomy potentially leading to chronic pelvic pain, dyspareunia, 

dysmenorrhea, bladder/bowel symptoms, and infertility depending on the stage of the 

disease [3, 4]. Generally, three different clinical forms of endometriosis exist: (I) peritoneal 

superficial endometriosis (SUP), which is defined by lesions that are on the surface of the 

peritoneum or the ovaries, (II) endometrioma (OMA), which consists of ovarian endometriotic 

“choclate” cysts, and (III) deeply infiltrating endometriosis (DIE) which exhibits lesions that 

are infilitrating muscularis propria of structures surrounding the uterus (vagina, bladder, 

bowel, or uterus) [5]. Deeply infiltrating endometriosis is frequently reinforcing discomforts 

such as pelvic pain through invasion into vital pelvic organs [6]. Histologically the disease is 
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also characterized by dense fibrous tissue mainly composed of collagen type I contributing to 

the severe clinical symptoms, as e.g. chronic pelvic pain or infertility [3, 7].  

The association between endometriosis and infertility is well documentated in literature, but 

the definite cause-effect relationship remains to be elucidated [4]. The estimated prevalence 

is up to 10 – 15 % in the general female population of reproductive age [8]. The prevalence 

of endometriosis increases dramatically to 25 – 50 % in infertile women and 30 – 50 % of 

women with endometriosis suffer from infertility [9]. In normal reproductive women the 

fecundity rate is estimated to be around 15 – 20 %, while the fecundity rate in women with 

untreated endometriosis is only about 2 – 10 % [10, 11].  

The American Society for Reproductive Medicine (ASRM) has established a staging system 

for endometriosis. The disease is classified into one of four stages (I-minimal, II-mild, III-

moderate, and IV-severe) based on location, amount, extent, and depth of endometrioc 

lesions as well on presence and severity of adhesions and presence and size of ovarian 

implants. Most women exhibit minimal or mild endometriosis, which is characterized by 

superficial implants and mild adhesions. Moderate and severe endometriosis is characterized 

by chocolate cysts and more severe adhesions. Nevertheless, the stage of endometriosis 

does not necessarily correlate with the presence or severity of the symptoms, but with stage 

IV endometriosis, infertility has a high likelihood [12].  

The time elapsed from onset of symptoms to diagnosis of the disease can be very long 

(mean 11.7 years in the USA and 8.0 years in the UK) due to a broad variability in symptoms 

and their severity that might cause confusion with other disorders [3]. Surgical assessment 

and removal of ectopic lesions by laparoscopy or laparotomy is still the gold standard for 

diagnosis and treatment. The lack of potent biomarkers is the reason why no non-invasive 

diagnostic tests are available so far. Regarding treatment, several other therapeutic options 

were established (see chapter 1.2.3). 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

4 
 

 

 

 

 

 

 

 

 

 

Figure 2: Common sites of endometriosis. Endomteriosis is a disease defined by the presence of endometrial 

implants outside the uterus causing among others chronic pelvic pain and infertility. Ectopic endometrial lesions 
are mainly found on the pelvic peritoneum, on the ovaries, on the rectovaginal septum, the bladder, or the 
fallopian tubes. Figure kindly provided, adapted, and modified from [13]. 

1.2.2 Pathogenesis 

The definite pathogenesis of endometriosis is still unknown. Several theories exist including 

the retrograde menstruation, altered immunity, coelomic metaplasia, and metastatic spread 

theory which try to explain the occurrence of endometrial tissue outside the uterus [4]. Newer 

research is also proposing stem cell and genetic influence on the disease. But also 

environmental factors seem to play a role in the pathogenesis of endometriosis [3]. 

Retrograde menstruation 

The most widely accepted theory was proposed by Sampson in 1927 stating that the 

endometrial tissue is transported in a retrograde fashion through the fallopian tubes into the 

peritoneal cavity during menstruation [3, 14]. The loose endometrial cells then attach to the 

peritoneal mesothelial cells, invade into the tissue, establish blood supply, proliferate and 

develop into endometrial implants [4]. Subsequent research provided good support for this 

theory. Patients with endometriosis have higher volumes of refluxed menstrual blood and 

endometrial tissue fragements than healthy women [4, 15]. Moreover, endometriosis can be 

induced in baboons by ligation of the cervix that enables the endometrial fragements to have 

access to the pelvis [16]. The incidence of endometriosis is increased in young girls with 

outflow obstruction leading to elevated tubal reflux and retrograde menstruation [4, 17]. But 

nevertheless, the occurrence of retrograde menstruation is also common in women with and 

without endometriosis so that this theory alone can not explain the pathogenesis of 

endometriosis. In fact the underlying mechanisms are most likely multi-factorial.  
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Besides this more general accepted theory of retrograde menstruation as a pre-requisite of 

endometriosis further theories exist. 

Coelomic metaplasia and metastatic spread (implantation) 

Ferguson’s theory of coelomic metaplasia was proposed in the 1960’s and claims that 

endometriosis originates from the metaplasia of specialised cells that are present in the 

mesothelial lining of the visceral and abdominal peritoneum [18, 19]. Another theory states 

that menstrual cells travel in a metastatic manner from the uterine cavity through the 

lymphatic channels and veins to distant sites where they establish implants [20]. This 

implantation approach would explain the exceptionel presence of endometrial tissue far away 

from the pelvic cavity for example in the brain or the lung [21, 22]. 

Altered immunity 

Several studies show that women with endometriosis have an altered immunity, preventing 

the by retrograde menstruation refluxed endometrial cells to be eliminiated by the immune 

system [4, 23]. That would provide an explanation why some women with retrograde 

menstruation develop endometriosis and others do not. Eventually, the cell-mediated 

immunity is deficient in patients with the disorder. Women with endometriosis have increased 

levels of leukocytes and macrophages in and around the ectopic lesions and in the peritoneal 

fluid but most likely they are unable to detect and to remove endometrial tissue outside its 

normal location in the uterus [4, 23]. Some studies also propose less cytotoxicity of defective 

natural killer cells (NK-cells) to endometrial cells [24]. These cells secrete large amounts of 

cytokines and growth factors such as IL-1, 6 and 8 (interleukin 1, 6 and 8) and TNF (tumor 

necrosis factor), RANTES (regulated on activation, normal T cell expressed and secreted), 

and VEGF (vascular endothelial growth factor) into the peritoneal milieu inducing the 

recruitment of surrounding blood vessels and leukocytes [25-27]. All these conditions lead to 

higher proliferation and survival of the implants and improved vascular supply. So 

endometriosis is not only characterized by reduced immunocompetence that prevents 

ectopic tissue from removal via the immune system, it also exhibits constant low level 

inflammation that potentiates the establishment of implants [4]. Furthermore, as has been 

shown by e.g. Mc Allister et al., Gruen et al., or Laux-Biehlmann et al., painful endometriosis 

certainly originates also from a mixture of inflammatory and neuropathic pathological 

conditions [28-31]. Therefore, also the therapeutic targeting of inflammatory pain might be 

appropriate for endometriosis [28, 32]. 
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Stem cells 

For tissue homeostasis, adult stem cells exist in the basalis layer of the endometrium [33, 

34]. Endometrium-derived stem/progenitor cells residing in the basalis layer can be shed 

through the fallopian tube to the peritoneal cavity through retrograde menstruation, where 

they establish endometriotic implants [35, 36]. 

Newer research also suggests de-novo development of endometrial tissue from endogenous 

stem cells [37, 38]. These findings help to explain the occurrence of ectopic lesions far away 

from the uterine cavity. This theory is supported for instance by a study where female 

allogenic bone marrow transplant recipients received marrow from a single antigen 

mismatched related female donor that allows the determination of the origin of any cell by the 

HLA (human leukocyte antigen) type [39]. In endometrial biopsy samples from all bone 

marrow recipients, donor-derived cells could be detected proposing that endometrial cells 

can originate from bone marrow derived stem cells [39]. However, the theory of de-novo 

development of endometrial tissue from endogenous stem cells is not widely accepted 

owend to the fact that the retrograde menstruation theory is regarded as more plausible. 

Genetics 

The heritable feature of endometriosis is known for over 20 years, when the risk factor for 

first-degree relatives of patients with severe endometriosis was reported to be six times 

higher than that for relatives of healthy women [3, 40]. Familial aggregation has been 

demonstrated in studies with monozygotic twins, in clinical, and population-based and non-

human primate based studies [40-44]. Although the contribution of genetic polymorphisms to 

endometriosis is not yet clear, they may cause dysregulated expression of genes in the 

endometrium of both human and non-human primates [45-47].  

Genes that are aberrantly expressed in endometriosis include aromatase and 17-beta 

hydroxysteroid dehydrogenase 2 (HSD17B2) [48, 49]. Aromatase catalyzes the conversion of 

androstenedione to E2 but due to overexpression of the aromatase in eutopic and ectopic 

endometrium, high local levels of E2 exist (figure 3) [50, 51]. Usually, the progesterone-

dependent HSD17B2 enables the conversion of E2 to the less estronic estrone in the 

secretory phase [50, 51]. However, the enzyme is downregulated in lesions of affected 

women causing the E2 dependent growth of implants [50, 51]. Moreover, overexpression of 

estrogen receptor 2 (ESR2) in ectopic tissue triggers the expression of target genes 

promoting cellular growth and survival [52]. High levels of E2 also induce increased 

conversion of arachidonic acid (released by phospholipase A2) to prostaglandin E2 (PGE2) 

through cyclooxygenase 2 (COX-2) causing inflammation and elevated expression of the 
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aromatase [50, 51]. Consequently, COX-2 expression levels are also increased in diseased 

eutopic endometrium and ectopic lesions of diseased women [50, 51]. Endometriosis is also 

characterized by progesterone resistance coming from downregulation of progesterone 

receptors (PGR) isofroms PGR-A and PGR-B [53, 54]. Lack of progesterone leads to 

decreased expression of its target gene HSD17B2 causing the high levels of E2 and the 

progesterone resistance in lesions [55, 56]. Epigenetics may also play a role in the aberrant 

expression of ESR1, ESR2, and aromatase. A study by Xue et al. revealed that elevated 

gene expression of ESR2 results from hypomethylation of the promotor region [52]. 

Moreover, Wu et al. showed that hypermethylation of the PR-B promotor region causes 

decreased gene expression which contributes to progesterone resistance [57]. The nuclear 

receptor steroidogenic factor 1 (SF1) is also overexpressed in endometriotic tissue due to its 

strong hypermethylation of the promoter region [58]. This protein is activated through PGE2 

and triggers the expression of aromatase [50].  

 
Figure 3: Aberrant gene expression and protein levels in endometriosis. Proteins marked in red are higher 

and in blue are lower expressed in endometriosis. In normal endometrium cholesterol is converted to 
androstenedione and estrone, which is further processed to estrogen (E2) through 17-beta hydroxysteroid 
dehydrogenase 1 (HSD17B1). To elimitate the high potential of E2, progesterone triggers via its receptors A and 
B (PGR-A and PGR-B) the expression of hydroxysteroid dehydrogenase 2 (HSD17B2), which in turn reconverts 
E2 to estron. E2 binds to its nuclear receptors 1 and 2 (ESR1 and ESR2) activating the gene expression of 
cyclooxygenase 2 (COX-2). This enzyme processes arachidonic acid to prostaglandin E2 (PGE2). It mediates 
inflammation and the gene expression of aromatase via the nuclear receptor steroidogenic factor 1 (SF1). 
Aromatase further triggers the production of androstenedione and therefore also estrone. Aberrant gene 
expression in endometriosis leads to disruped regulation of the entire process resulting in progesterone 
resistence and high levels of E2 that mediate growth, survival, and inflammation and aromatase expression. 
Figure reproduced with permission from [50]. Copyright Massachusetts Medical Society. 
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Environmental factors 

Severeal non-primate models have provided important information about environmental 

factors and their potential impact on endometriosis [3]. A study by Fanton et al. revealed that 

rhesus monkeys exposed to whole-body proton irradiation have a higher frequency of 

endometriosis than controls (53 % vs. 26 %) [3, 59]. Rhesus monkeys exposed to 5 – 25 

ppm dioxin per day for 4 years also established endometriosis in a dose-dependent manner 

in staging [3, 60]. These data may explain why Belgium with the highest dioxin pollution in 

the world has not only the highest incidence of endometriosis but also the highest prevalence 

of severe endometriosis [61]. However, two subsequent prospective studies from Italy and 

Belgium did not deliver proof that the significantly increased risk to develop endometriosis in 

Belgium can be attributed to dioxin exposure [62, 63]. In summary, up to date there is no 

epidemiological study definitely linking one class of chemicals to the risk of endometriosis, 

although estrogen-like compounds in the environment have been proposed [3, 64]. People 

are exposed to a multiplicity of chemicals, with mechanisms of action that may vary in dose, 

timing of exposue (in utero, childhood, peripubertally, or adult), route of exposure, and 

synergy with other chemicals, all acting in accordance with an unique genetic background [3, 

64].  

1.2.3 Treatment 

Medical needs are relief of pain, improvement of fertility, or both [3]. By reducing ectopic 

endometrial implants and restoring normal pelvic anatomy, these medical needs are 

addressed [4, 65]. Since the growth of the lesions is dependent on ovarian steroid 

production, endometriosis is an estrogen-dependent benign inflammatory disease of young 

reproductive women between menarche and menopause [66]. Concerning the dysregulated 

hormonal conditions of endometriosis, common medical therapies are primarily used to treat 

on a hormonal basis. For example, gonatropin-releasing hormone (GnRH) reduces the 

release of FSH and LH and consequently also reduces the ovarian secretion of E2 [50, 51]. 

Thus, the use of GnRH agonists is one therapeutic option. Other therapies include combined 

oral contraceptive steroids, prostagens, and androgens, such as danazol, and non-steroidal 

anti-inflammatory agents [3, 4]. Newer therapies involve selective progesterone-receptor 

modulators, selective estrogen-receptor modulators, aromatase inhibitors, and 

antiangiogenic agents [3, 67].  

Although all hormonal related approaches are more or less effective by attenuating lesion 

growth, they translate only late into improvement of pain relief. Fast effects on pain relief by 

e.g. NSAIDs (non-steroidal anti-inflammatory drugs) such as COX-2 inhibitors are limited due 

to side effect risks in longterm treatments. Moreover, hormonal related approaches are either 
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contraceptive itself, or due to potential teratogenic effects they’ll need contraceptives in 

addition.  

Another common treatment option is to remove lesions via surgery through laparoscopy or 

laparotomy which commonly only provides temporary relief for women with pelvic pain. 

However, symptoms recur in up to 75 % of women within 2 years [3, 68-70].  

In general, therapies for pain are not effective for subfertility treatment [3, 71]. Assisted 

reproduction including controlled ovarian hyperstimulation and intrauterine insemination, or 

in-vitro fertilisation and embryo transfer are beneficial especially after surgical removal of 

existing lesions [3, 72-76].  

1.3 The WNT pathway 

1.3.1 Overview and historical background 

WNT (wingless-type MMTV integration site family) proteins are essentially implicated in 

organismal patterning throughout the animal kingdom during embryogenesis [77]. Apart from 

that, WNT signaling has been also implicated in adult tissue homeostasis [78]. WNT signals 

are pleiotropic affecting mitogenic stimulation, cell fate specification, and differentiation [78]. 

Many studies showed that the WNT pathway is clearly involved in stem cell self-renewal of 

various different adult stem cells types (for overview [77]).  

The Wnt1 gene, originally named Int-1, was discovered in 1982 as a gene activated by the 

integration of mouse mammary tumor virus proviral DNA in virally induced breast tumors [79]. 

The Drosophila Wingless (wg) gene, which controls segment polarity during larval 

development, was identified as a homolog of Wnt1 later on from which the term WNT as a 

combination of Int-1 and wg originates [80, 81]. The investigations of relationships among 

segment polarity mutations were performed by epistasis experiments in 1994 outlining the 

core of this developmental signal transduction cascade in Drosophila [e.g. Porcupine, 

Dishevelled, and Armadillo (β-catenin)] [77, 82, 83]. The first assay to study the WNT 

pathway in vertebrates was established through the injection of mouse Wnt1 RNA into early 

frog embryos which caused a duplication of the body axis in Xenopus [77, 84]. The combined 

observations from Drosophila and Xenopus uncovered a highly conserved singaling pathway, 

commonly designated as the canonical WNT pathway [77]. In the following years more 

detailed information about the signaling cascade was gained like the identification of T-cell 

factor/lymphoid enhancer factor (TCF/LEF) transcription factors as WNT nuclear effectors or 

the identification of frizzleds (FZDs) as WNT receptors working together wih lipoprotein 

receptor-related proteins (LRPs) as coreceptors [85-88]. 
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In the early 1990s, the WNT pathway was directly connected with human diseases for the 

first time. Kinzler et al. and Nishido et al. discovered the adenomatous polyposis coli (APC) 

gene independently in a hereditary cancer syndrome named familial adenomatous polyposis 

(FAP) in 1991 [89, 90]. Shortly afterwards, it was identified that the large cytoplasmic APC 

protein is interacting with β-catenin [91, 92]. Within the last two decades, additional pathway 

components and disease connections were identified indicating the WNT pathway as one of 

the most important signal transduction pathways in the pathogenesis of many diseases [77]. 

1.3.2 The canonical WNT pathway 

The WNT secretion machinery  

WNT proteins have a size of ~ 40 kDa and contain many conserved cysteines [93]. Although 

WNTs have been discovered almost 30 years ago, their efficient production and biochemical 

characterization remain challenging [77]. Willert et al. were the first ones who successfully 

purified mouse Wnt3a in 2003 and they discovered that WNT proteins are lipid modified [94]. 

These lipids are essential for efficient signaling and may also play a role in WNT secretion 

(figure 4) [94-96]. Especially Procupine (PORCN) is required for WNT secretion and 

represents a highly conserved component of the WNT pathway wich is only active in WNT-

producing cells. PORCN is a multipass transmembrane O-acetyltransferase in the 

endoplasmic reticulum (ER) which is essentially involved in the WNT lipid modification and 

maturation [77, 97, 98]. Loss of PORCN function leads to the retention of Wnt3a in the ER 

thereby blocking Wnt3a secretion in the Drosophila embryo [98, 99].  

The seven-transmebrane (7TM) protein Wntless (WLS) plays an essential but less 

understood role in WNT secretion by possibly serving as a sorting receptor, taking WNTs 

from the Golgi to the plasma membrane [77, 100-102]. Other proteins and complexes 

involved in maturation and trafficking such as the retromer are also important for WNT 

signaling [77, 103, 104].  

 

 

 

 

 

 

 



INTRODUCTION 

11 
 

 

 

 

 

 

Figure 4: The WNT secretion machinery. WNT 

proteins are lipid modified by porcupine (PORCN) in the 
endoplasmic reticulum (ER). The Evi/Wntless (WLS) 
seven-transmembrane proteine ensures further 
transportation of WNTs to the plasma membrane. The 
retromer complex plays an essental role in the recycling 
of WLS endosomal vesicles. Figure kindly provided, 
adapted, and modified from [77]. 

 

The WNT – receptor interaction 

After secretion, WNTs bind a heterodimeric receptor complex consisting of a FZD and a 

LRP5/6 protein (figure 5) [77]. In summary, there are 10 FZD proteins representing 7TM 

receptors with large extracellular N-terminal cysteine-rich domains (CRD) providing the core 

of WNT binding [87, 105, 106]. The WNT-FZD interaction is promiscuous because a single 

WNT can bind several FZDs and vice versa [77, 87, 106]. In vertebrates, activated FZDs 

interact with the single-pass transmembrane molecule LRP5 or LRP6 [107, 108]. The ligand-

induced dimerization of FZD and LRP leads to a conformational change followed by a 

phosphorylation step of the key target proteins. Axin binds to the cytoplasmic tail of LRP6 

regulated by the phosphorylation of the LRP6 tail by at least two separate kinases, glycogen 

synthase kinase 3 (GSK3) and casein kinase 1-gamma (CK1γ) [109-111]. GSK3 further 

phosphorylates serines in several WNT components such as β-catenin, Axin, or APC [112]. 

The cytoplasmic part of FZD cooperates with Dishevelled (Dvl) triggering the interaction 

between the LRP tail and Axin [113]. Dvl and Axin also bind to each other through the DIX 

domain and multimers of receptor-bound Dvl-Axin molecules might further facilitate the FZD-

LRP dimerization [114, 115]. The WNT-induced LRP6 phosphorylation titrates Axin away, 

which is a negative regulator, so that the signal transduction is rather a stoichiometric than a 

catalytic mechanism [77].  

Another small family of 7TM receptors is involved in canonical WNT signaling, the leucine-

rich repeat-containing G-protein coupled receptor (LGR) family of receptors. LGRs group B 

members (LGR4-6) bind with high affinity R-spondins (RSPOs) that essentially leads to the 

enhancement of WNT signaling especially in low-dose WNT conditions [116-119]. As co-

receptors they mediate into WNT signaling through association with the FZD-LRP complex 



INTRODUCTION 

12 
 

[117]. LGRs are related to the G-protein coupled receptors (GPCRs) for thyroid-stimulating 

hormone (TSH), FSH, and LH and they have a large N-terminal extracellular leucine-rich 

repeat domain providing the platform for glycoprotein binding [77, 120]. Although they bind 

RSPOs through their large ectodomain, they do not recruite G-proteins [116, 117]. RSPOs 

are small secreted proteins with two N-terminal furin domains and a thrombospondin domain 

[77]. The vertebrate genome encodes 4 different RSPOs (RSPO1-4) [77]. Figure 5 gives an 

overview about WNT-receptor interaction.  

Natural WNT inhibitors exist to restrict WNT signaling to prevent overproportional effects. 

Among these are secreted frizzled-related proteins (SFRPs) and the WNT inhibitory protein 

(WIF) which can bind WNTs and therefore block the interaction between WNTs and FZDs 

[77, 121]. Other WNT inhibitors include proteins of the dickkopf (DKK) family, which can 

disrupt WNT-induced FZD-LRP6 complex formation [77, 122-124].  

The cytoplasmatic signaling 

The destruction complex plays the key role in canonical WNT signaling. It is responsible for 

the cytoplasmic stability of β-catenin [77]. The tumor suppressor protein Axin builds the 

scaffold of the destruction complex by interacting with β-catenin, the tumor suppressor 

protein APC, and two constitutively active serine-threonine kinases (CK1α/δ and GSK3α/β) 

(figure 5) [77]. APC presents a large protein that interacts with both β-catenin and Axin [77]. 

When FZD-LRP receptors are not occupied, CK1 and GSK3 sequentially phosphorylate Axin-

bound β-catenin [77]. The phosphorylated motif is then recognized by the F box/WD repeat 

protein (β-TrCP) as a part of the E3 ubiquitin ligase complex [77]. Consequently, β-catenin is 

ubiquitinated and targeted for rapid destruction by the proteasome [77, 125]. After activation 

of WNT signaling through binding of WNTs to the receptors, Axin is recruited to the 

phosphorylated tail of LRP [77]. This relocalization causes the inhibition of β-catenin 

ubiquitination within the destruction complex [77]. Consequently, the complex becomes 

saturated by phosphorylated forms of β-catenin because ubiquitination by β-TrCP is blocked, 

so newly synthesized β-catenin can accumulate, translocate to the nucleus, and activate 

gene expression of β-catenin target genes [77, 126].  

Additional positive regulation of WNT signaling is mediated by the protein phosphatase PP2A 

through direct dephosphorylation of β-catenin through its regulatory subunit PR55α [127]. 

Moreover, tankyrases (TNKS) also trigger WNT signaling through destabilization of Axin by 

ADP ribosylation thereby creating a dysfunctional distruction complex which causes β-

catenin to stabilize and to activate gene expression [128]. Inhibition of TNKS achieves 

reverse results by stabilizing Axin and therefore also the destruction complex ensuring the 

ubiquitination and proper destruction of β-catenin [128].  
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Figure 5: WNT signaling at the receptors and in the cytoplasm. In the abscence of WNTs the destruction 

complex resides in the cytoplasm, where it binds, phosphorylates, and ubiquitinates β-catenin by β-TrCP. The 
proteasome finally degrades β-catenin. WNT binding causes the receptors FZD and LRP5/6 to dimerize. The 
coreceptors LGR4/5 additionally associate with the FZD-LRP complex upon RSPO binding facilitating WNT 
signaling. The phosphorylation of LRP5/6 leads to the recruitment of Axin therefore stopping β-catenin 
ubiquitination within the destruction complex. The complex still captures β-catenin but ubiquitination by β-TrCP is 
blocked. Newly synthesized β-catenin can accumulate and translocate to the nucleus where it activates gene 
expression of β-catenin target genes. Figure kindly provided, adapted, and modified from [77]. 

WNT signaling in the nucleus 

WNT signaling ultimately acts through gene activation controlled by β-catenin and TCF/LEF 

(figure 6) [77]. After WNT activation, β-catenin accumulates in the cytoplasm and travels into 

the nucleus, where it binds DNA-associated TCF/LEF transcription factors [77, 85, 86]. The 

consensus TCF/LEF motif is conserved among vertebrates and Drosophila consisting of the 

AGATCAAAGG base sequence [77, 129]. If WNT is not activated, TCF/LEF interacts with the 

corepressor Groucho to prevent gene transcription [77, 130, 131]. Upon WNT activation, the 

interaction of β-catenin and TCF/LEF leads to the phosphorylation and activation of the 

transcription factor, thereby inducing gene expression of target genes [77, 132, 133]. AXIN2 

is a global target gene and therefore a general indictaor of WNT activity, while most target 

genes are development stage and tissue specific [134].  

The C-terminus of β-catenin acts as a transcriptional activation domain as it binds histone 

modifiers such as CBP (CREB-binding protein) and Brg-1 (ATP-dependent helicase 

SMARCA4) or its homolog Cdc73 (cell division cycle 73) [77, 129, 135, 136].  
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Figure 6: The WNT 
signaling in the nucleus. In 

abscence of WNT signals, 
TCF/LEF is associated with 
the transcriptional 
corepressor Groucho 
preventing gene expression. 
In presence of WNT signals, 
β-catenin replaces Groucho 
from TCF/LEF and recruites 
transcriptional coactivators 
such as Brg1, CBP, Cdc73, 
Bcl9, and Pygopus to activate 
target gene expression. 
Figure kindly provided, 
adapted, and modified from 
[77]. 

Direct targets of WNT signaling are defined by the TCF/LEF binding motif and include many 

genes as cyclin D1 (CDK1), E-cadherin (CDH1), matrix metallopeptidase 2 and 9 (MMP2, 

MMP9), survivin, VEGF, and octamer-binding transcription factor 4 (OCT4) that are involved 

in processes such as proliferation, migration, invasion, cell survival, vascularization, and 

embryonic stem cellness [137-145]. Additionally, several distinct WNT pathway members like 

WNT3A, RSPO2, LRP6, LGR5, and FZD7 are also direct targets of WNT signaling 

constituting positive feed-forward circuits that amplifies WNT signaling [146-150]. Other direct 

or indirect target genes such as SFRP2, DKK1, and AXIN2 provide an autoregulatory 

negative feedback loop to prevent outranged WNT signaling [134, 151-156]. These various 

WNT pathway self-regulatory loops mostly occur in a cell-specific manner, generating 

additional complexity in controlling the amplitude and duration of WNT responses [157].  

1.3.3 The non-canonical WNT pathway 

The β-catenin-independent WNT signaling is called non-canonical WNT pathway and is 

transduced through FZD reseptors without involvement of LRPs [158]. Several WNT ligands 

including WNT4A, WNT5A, WNT7A, WNT11, and WNT16 have been shown to activate the 

non-canonical WNT pathway [159-161]. WNT5A is the most intensively studied ligand and 

although it usually activates non-canonical WNT signaling, it can also trigger the canonical 

WNT pathway under certain conditions [162-166]. Non-canonical WNT signaling includes the 

WNT/PCP (planar cell polarity) and WNT/Ca2+ pathways (figure 7) [167].  

The WNT/PCP pathway requires the WNT/FZD interaction, which in turn promotes the 

activation of PI3K (phosphatidylinositol 3-kinase) which then activates the AKT/mTOR 

pathway resulting in increased protein synthesis (shown in green) [158]. The other PCP 

pathway (colored in blue) leads to the activation of the small GTPase protein Rac (Ras-

related C3 botulinum toxin substrate), which in turn induces the ROCK (Rho-associated 
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protein kinase) pathway and the JNK (c-Jun N-terminal kinase) kinase cascade that finally 

activates AP1-mediated target gene expression (demonstrated in blue) [168-170].  

The WNT/calcium pathway (illustrated in yellow) includes the complex formation between 

FZD/DVL and G-proteins resulting in PLC (phosphor lipase C) activation which in turn 

cleaves PIP2 (phosphatidyl inositol 4,5 biphosphate) into DAG (diacylglycerol) and IP3 

(inositol 1,4,5-triphosphate) [168]. Consequently, PKC (protein kinase C) gets activated 

through DAG while IP3 initiates calcium release from the ER enhancing the phosphorylation 

and activation of PKCs [168]. Moreover, the activation of Ca2+-calmodulin-dependent 

calcineurin (CN) and CAMKII (Ca2+-calmodulin dependent kinase II) is promoted causing 

NFAT (nuclear factor of activated T-cells) and NLK (nemo like kinase) translocation [168]. 

NFAT acts as a transcription activator for appropriate target genes while NLK serves as a 

canonical WNT pathway inhibitor since it degradates TCF/LEF transcription coactivators 

[168, 171]. If not stated differently, in this study WNT signaling generally means the canonical 

WNT pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The canonical and the non-canonical WNT pathway. Interaction of WNT/FZD leads to either JNK, 

ROCK or AKT/mTOR activation (PCP pathway), or PKCs activation through the cleavage of PIP2 to DAG by 
PLCs with subsequent NFAT transactivation caused by the calcium release by IP3, or inhibition of β-catenin 
activity through Ca2+ dependent binding of NLK to TCF/LEF (WNT/Ca2+ pathway). Figure kindly provided and 
adapted from [158]. 
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1.3.4 Canonical WNT signaling in disease 

Several studies connect WNT signaling with e. g. bone biology and disease [77, 172]. For 

example LRP5, LRP6, and FZD9 mutations are associated with hereditary disorders that are 

characterized among others by osteoporosis, coronary artery disease, and metabolic 

syndrome [77, 173-175]. In addition, dysfunctional WNT proteins contribute to an impaired 

bone development like mutated WNT3 or WNT7A proteins that cause among others limb-

malformations with various degrees of limb aplasia/hypoplasia [176, 177]. Since WNT 

activates osteoblasts and influences bone mass, secreted WNT agonists have become 

attractive targets for antibody therapy in osteoporosis [77].  

Mutations in RSPOs have been found in two human hereditary disorders so far [77]. RSPO1 

dysfunctions cause XX sex reversal and skin abnormalities with predisposition to squamous 

cell carcinomas and disrupted RSPO4 is associated with anonychia and severe hypoplasia 

of finger- and toenails [77, 178, 179]. Mutations of RSPO2 have not yet been associated with 

human diseases, but Rspo2 knock out mice show diverse developmental defects involving 

limbs, lung, and craniofacial anatomy [77, 180-182]. Furthermore, inactivating mutations in 

the PORCN gene have been shown to cause a X-linked disorder with skin and digital 

malformations and additional ocular and dental dysfunctions [183, 184]. Since the gene is X-

linked, mutations in PORCN are lethal in male causing early embryonic lethality coming from 

gastrulation defects observed in mouse knockout embryos [77, 185, 186]. Females can 

survive with focal defects because of random X inactivation [77].  

Also defects of LGR5 have been investigated. Lgr4 and Lgr5 were neonatal lethal in mutant 

knockout mice. Pleiotropic phenotypes were identified in male reproductive organs, eye, gall 

bladder, kidney, hair follicles, and a varity of other organs for Lgr4 [77, 187]. In contrast, Lgr5 

mutant mice showed only a single abnormality of the lower jaw and tongue [187]. A strong 

genetic interaction between Lgr4 and Lgr5 was identified in the gut of double-mutant mice 

[117, 188]. Lgr5 marks adult stem cells in a varity of actively self-renewing organs, including 

the intestinal tract and hair follicles [189, 190]. This together with the fact that it also acts as a 

coreceptor in WNT signaling through the binding of RSPOs, suggests a strong connection 

between WNT signaling and the activation of adult stem cells [77]. Therefore, LGR5 has 

been implicated in colon cancer and also serves as a target gene in this disease [191]. 

Not only LGR5 is involved in cancer. Since WNT signaling generally plays an important role 

in adult stem cell biology, it is not surprising that various WNT pathway mutations are 

frequently associated to cancer, especially in tissue that depends on WNT for self-renewal 

and repair [77]. Loss-of-function mutations of APC result in hereditary cancer syndrome FAP 

or sporadic colorectal cancer [77, 89, 90]. A global exome-sequencing study confirmed that 
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the overwhelming majority of colorectal cancer patients carry inactivating mutations in the 

APC gene [192]. This study also revealed a rare but recurrent fusion of VTI1A (vesicle 

transport through interaction with t-SNAREs 1A) and TCF7L2 (the gene coding TCF4) in 

colon cancer [193]. In other rare cases of colon cancer and hepatocellular carcinomas, 

AXIN2 or β-catenin are mutated [77, 194, 195]. Defective β-catenin has also been implicated 

in various other solid tumors such as melanomas or pilomatricomas [77, 196].  

Also metabolic diseases were linked to WNT signaling. For example specific single-

nucleotide polymorphisms (SNPs) in WNT5B, WNT10B, and TCF7L2 were associated with 

an increased risk for type II diabetis [197-199].  

1.3.5 WNT signaling in endometriosis 

Since many WNT-associated genes are essentially involved in mechanisms such as cell 

proliferation, migration, and invasion, the connection with endometriosis is likely [3, 200]. 

Indeed, several studies have demonstrated that dysregulated WNT signaling may contribute 

to the pathophysiology of endometriosis (for overview [201]). The abnormal activation of the 

WNT pathway in the menstrual endometrium of diseased women might promote the 

development of endometriosis through increased cell migration and invasion. Moreover, the 

aberrant activation of WNT signaling may also enable the growth of lesions through 

increased invasiveness and resistance to apoptosis of endometriotic cells. Furthermore, the 

dysregulated WNT pathway might also cause the persistence of the proliferative phenotype 

resulting in impaired decidualization in the mid-secretory endometrium of infertile 

endometriosis patients. Abnormal activation of WNT signaling may be also the molecular and 

cellular mechanism leading to fibrosis in endometriosis. Upon treatment with a small 

molecule WNT inhibitor, the progession of fibrosis could be reversed in a xenograft model of 

endometriosis in immunodeficient nude mice [202]. Finally, there are several in vivo 

experiments proposing a potential contribution of WNT signaling in the molecular 

mechanisms that underly chronic pelvic pain in endometriosis (for overview [201]). Altogether 

these findings suggest an important role of the WNT pathway in the pathogenesis of 

endometriosis [201]. 

1.3.6 Small molecule canonical WNT modulators 

The extensive involvement of the WNT pathway in the pathogenesis of many diseases and 

especially in cancer has promoted the research to target WNT signaling with small 

molecules. Table 1 lists a selection of published molecules. The most effective and selective 

target would be the complex between TCF/LEF and β-catenin. But research proved that this 

target is rather elusive since its structure consists of a large binding surface which cannot be 
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easily disrupted by chemical compounds [203]. Compounds such as PKF115-584 have been 

suggested to inhibit WNT signaling at this level. However, although they potently antagonize 

cellular effects of β-catenin activities in vitro and in vivo, their specifity and efficacy have to be 

further established so that no clinical trails were initiated so far [77, 204]. Consequently, 

compounds are needed that target the WNT pathway upstream.  

The most specific and most upstream located target to block WNT signaling is the inhibition 

of PORCN which is the enzyme that catalyses acetylation of WNT proteins and therefore 

enables their secretion in adjacent cells. IWP is able to inactivate PORCN with a high degree 

of selectivity [205]. However, its use is limitied to in vitro experiments, because its 

hydrophobicity excludes the usage in vivo. Nevertheless, the variant C56 and its advanced 

derivate LGK974 from Novartis are useful for this application and they did also show effective 

inhibition of WNT signaling resulting in decreased tumor growth in vivo [206, 207]. LGK974 is 

currently tested in a phase I clinical trial to treat pancreatic adenocarcinoma, rapidly 

accelerated fibrosarcoma (BRAF) mutant colorectal cancer and other tumor types with 

documented genetic alterations (clinical trial registry number: NCT01351103).  

Some chemical compounds activate WNT signaling trough blockade of natural WNT 

inhibitors. WAY-316606 is a small molecule which prevents SFRP1 to bind to FZD receptors 

[208]. Therfore, WNTs can easily interact with the FZD receptors leading to increased WNT 

signaling and bone formation in murine calvarial organ culture assay [208].  

Other small molecules such as XAV939 or NVP-TNKS656 function by stabilizing AXIN and 

therefore destabilizing β-catenin through inhibition of TKNS [128, 209]. IWR is a small 

molecule directly interacting with AXIN promoting its stabilization [205]. Whereas IWR and 

XAV939 have been only tested successfully in vitro, NVP-TNKS656 has been reported to 

also cause more robust apoptosis and antitumor activity both in vitro and in vivo [210]. 

The most widely used strategy to affect WNT signaling is to target GSK3β. Chemicals such 

as lithiumchlorid (LiCl) can activate the enzyme leading to phosphorylation of AXIN-bound β-

catenin which in turn initiates its degradation [77]. In contrast, SB-216763 inhibits GSK3β 

causing the activation of the WNT pathway and therefore inducing the expression of a β-

catenin-TCF/LEF reporter gene in HEK293 cells [77, 204]. However, GSK3β is involved in 

various signaling events in cells and its targeting has pleiotropic effects [77]. Another 

activator is IQ1, a small molecule that targets PP2A which facilitates the direct 

dephosphorylation of β-catenin [211]. QS11 certainly increases the WNT pathway through 

affecting protein trafficking by inhibiting the GTPase activating protein of ADP-ribosylation 

factor 1 (ARFGAP1) [212].  
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ICG-001 operates more downstream in the WNT pathway by inhibiting the transcriptional 

coactivator CBP [213]. The small molecule selectively induces apoptosis in transformed 

colon cells, reduces growth of colon carcinoma cells in vitro, and shows efficacy in the Min 

mouse and nude mouse colon cancer xenograft models in vivo [213]. 

In summary, a small set of chemical compounds to target WNT signaling is available allowing 

further investigation of the pathway. However, their use is limited and screens for further 

molecules are ongoning. Since our understanding of the WNT pathway is still incomplete, 

much space for improving new small molecules is left. Furthermore, most compounds are 

only suitable for in vitro studies showing the urge to develop molecules that can be also 

applied in vivo. 

Table 1: Small molecule modulators of the WNT pathway. 

Molecule Structure Target 
Effect on 

target 

Effect on 

signaling 
Reference 

IWP 

 

PORCN inhibits inhibits 

Chen et al., 

2009 

[205] 

C59 

 

PORCN inhibits inhibits 

Proffitt et al., 

2013 

[206] 

LGK974 

 

PORCN inhibits inhibits 

Liu et al., 

2013 

[207] 

WAY-316606 

 

SFRP1 inhibits activates 

Bodine et al., 

2009 

[208] 

XAV939 

 

TNKS1/2 inhibits inhibits 

Huang et al., 

2009 

[128] 



INTRODUCTION 

20 
 

NVP-

TNKS656 

 

TNKS2 inhibits inhibits 

Shultz et al., 

2013 

[209] 

IWR 

 

AXIN2 activates inhibits 

Chen et al., 

2009 

[205] 

SB-216763 

 

GSK3β inhibits activates 

Coghlan et 

al., 2000 

[214] 

IQ1 

 

PP2A activates activates 

Miyabayashi 

et al., 2007 

[211] 

QS11 

 

ARFGAP1 activates activates 

Zhang et al., 

2007 

[212] 

ICG-001 

 

CBP inhibits inhibits 

Emami et al., 

2004 
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1.4 Aim of the work 

Goal of the thesis was to investigate the involvement of the WNT pathway in endometriosis. 

Broadening our knowledge in this field can contribute to disease understanding and may help 

to discover new therapeutic options. Finally, the need for biomarkers for a non-invasive 

diagnosis of endometriosis shall be addressed. 

A previous clinical study (EMMA – Endometriosis Marker Austria) using laser capture 

microdissection (LCM) and gene arrays indicated that WNT signaling was dysregulated in 

endometriosis. Several WNT pathway members, that were particularly noticeable, were 

selected and further examined. Firstly, the gene array data of the WNT candidate genes 

WNT2B, WNT7A, FZD7, LGR5, and RSPO1 needed to be validated within the same patient 

cohort via TaqMan and within a different cohort via immunohistochemistry. Moreover, mRNA 

expression of the clinical samples concerning additional genes associated with e.g. migration 

or proliferation were measured with TaqMan, since these mechanisms are also implicated in 

endometriosis and might be regulated by WNT signaling. Furthermore, the selected WNT 

candidate genes were examined in endometrial stromal cells (ESCs) in vitro. Manipulation of 

mRNA and protein levels ought to give information about their impact on WNT activity, 

viability, cell death rate, and caspase and migration activity to determine whether they affect 

WNT signaling and corresponding cellular responses. Additionally, an in vivo experiment with 

a small molecule that targets WNT signaling in a retrograde menstruation model for 

endometriosis in mice has been carried out to elucidate the effect of WNT inhibition on the 

establishment of the disease. Therefore, disease burden in terms of lesion size and number 

was measured. Finally, the mRNA expression of WNT pathway genes, that are involved in 

e.g. migration, proliferation, or vascularization was measured in the ex vivo samples, to draw 

a direct connection between the WNT pathway and mechanisms that could contribute to 

endometriosis.  
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2 MATERIALS  

The following section lists all chemicals, buffers, kits, TaqMan probes, siRNAs, expression 

plasmids, antibodies, cell culture media and supplements, consumables, technical devices, 

and softwares that were used in this study. 

2.1 Chemicals and buffers 

1 x PBS Gibco, Carlsbad, CA, USA 

10 x PBS Gibco, Carlsbad, CA, USA 

2-Mercaptoethanol Gibco, Carlsbad, CA, USA 

Acetic acid  Sigma Aldrich Corp., St. Louis, MO, USA 

Albumin Standard  
Thermo Fisher Scientific, Braunschweig, 
Germany 

BD FACS Flow™ BD Bioscience, San Jose, USA 

BD FACS™ Accudrop Beads  BD Bioscience, San Jose, USA 

BD™ CompBeads Anti-Mouse Ig K  BD Bioscience, San Jose, USA 

BD™ CompBeads Negative Control  BD Bioscience, San Jose, USA 

Bovine serum albumin, 30% in PBS Sigma Aldrich Corp., St. Louis, MO, USA 

Calcein-AM Invitrogen GmbH, Darmstadt; Germany 

Celsior® organ storage solution  Genzyme, Cambridge, USA 

Complete Tablets Mini EDTA-free,  
EASY Pack  

Roche, Basel, Switzerland 

Cytomation Target Retrieval Solution, 
pH 9  

Dako, Jena, Germany 

DAB Peroxidase (HRP) Substrate Kit 
(with Nickel), 3,3’-diaminobenzidine 

Vector Laboratories, Burlingame, CA, USA 

DAKO Real™Antibody Diluent Dako, Jena, Germany 

DAPI (1 mg/ml) 
Thermo Fisher Scientific, Braunschweig, 
Germany 

Destilled Water Gibco, Carlsbad, CA, USA 

Dual Endogenous Enzyme Block Dako, Jena, Germany 

Ehanol 70 Vol-%, reinst Bernd Kraft GmbH, Duisburg, Germany 

EnVision + System-HRP labelled  
Polymer Anti-Mouse 

Dako, Jena, Germany 

EnVision + System-HRP labelled  
Polymer Anti-Rabbit  

Dako, Jena, Germany 

Ethanol Sigma Aldrich Corp., St. Louis, MO, USA 

Eukitt®  
O. Kindler GmbH, Freiburg im Breisgau, 
Germany 

FACS Flow ™ BD Bioscience, San Jose, USA 

Fluoromount™ Aqueous Mounting 
Medium 

Sigma Aldrich Corp., St. Louis, MO, USA 

Formalin solution, neutral buffered, 10% Sigma Aldrich Corp., St. Louis, MO, USA 

Mayer´s Hematoxylin (Lillie´s 
Modification) 

Dako, Jena, Germany 
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Histoacryl ® tissue adhesive B. Braun, Melsungen, Germany 

HyClone HyPure™ Molecular Biology  
Grade Water 

GE Healthcare, Little Chalfont, UK 

Ketavet®, 100 mg/ml Zoetis, Berlin, Germany 

Lipofectamine® 2000  Life Technologies, Carlsbad, CA, USA 

Methanol Sigma Aldrich Corp., St. Louis, MO, USA 

Passive Lysis Buffer, 5 x Promega, Madison, WI, USA 

Permanent AP Red Kit  Zytomed Systems GmbH, Berlin, Germany 

Pierce® RIPA Buffer  
Thermo Fisher Scientific, Braunschweig, 
Germany 

Pierce™ BCA Protein Assay  
Reagent A and B  

Thermo Fisher Scientific, Braunschweig, 
Germany 

Poly(ethylene glycol) 400  Fluka, St. Louis, MO, USA 

Protease inhibitor cOmplete ULTRA  
Tablets, Mini, EASYpack 

Roche, Basel, Switzerland 

Protein Block, Serum-Free, Ready-To-
Use 

Dako, Jena, Germany 

Recovery™ Cell culture Freezing 
Medium  

Gibco, Carlsbad, CA, USA 

Rompun, 2% Bayer Health Care, Berlin, Germany 

Sodium azid Sigma Aldrich Corp., St. Louis, MO, USA 

TBS Fisher Scientific GmbH, Schwerte, Germany 

Trypan Blue Biochrom GmbH, Berlin, Germany 

Tween® AppliChem, Darmstadt, Germany 

Water, sterile Merck Millipore, Darmstadt, Germany 

Xylol Sigma Aldrich Corp., St. Louis, MO, USA 

ZytoChem Plus AP Polymer anti-Mouse Zytomed Systems GmbH, Berlin, Germany 

2.2 Kits 

Agilent 6000 Nano Reagents Part I  Agilent Technologies Inc., Santa Clara, USA 

Agilent 6000 Pico Reagents Part I  Agilent Technologies Inc., Santa Clara, USA 

ApoTox-Glo™ Triplex Assay Promega, Madison, WI, USA 

CellTiter-Glo® Luminescent Cell Viability 
Assay 

Promega, Madison, WI, USA 

Cignal TCF/LEF Reporter Assay Kit 
(LUC) 

Qiagen, Hilden, Germany 

Dual-Luciferase® Reporter Assay 
System  

Promega, Madison, WI, USA 

MinElute Reaction Cleanup Kit  Qiagen, Hilden, Germany 

Ovation PicoSL WTA System V2 Kit 
NuGEN Technologies, Inc., San Carlos, CA, 
USA 

Peggy Sue or Sally Sue-Mouse (12-230 
kDa)  
Size Separation Master Kit (anti-mouse-
HRP) 

ProteinSimple, San Jose, USA 

RNeasy Micro Kit Qiagen, Hilden, Germany 

RNeasy Mini Kit Qiagen, Hilden, Germany 
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Super Script® VILO™ Invitrogen GmbH, Darmstadt; Germany 

TaqMan® 2X Universal PCR Master Mix  Thermo Fisher Scientific 

TaqMan® Fast Universal PCR Master Mix  
Thermo Fisher Scientific, Braunschweig, 
Germany 

Tumor Dissociation Kit (Human) 
Miltenyi Biotec, GmbH, Bergisch Gladbach, 
Germany 

2.3 TaqMan probes 

All TaqMan probes were obtained from Thermo Fisher Scientific, Braunschweig, 

Germany. 

18s rRNA Hs99999901_s1 

Axin 2 Mm00443610_m1 

BAX Hs00180269_m1 

Bax Mm00432051_m1 

BCL2 Hs00608023_m1  

Bcl2 Mm00477631_m1 

CAV1 Hs00971716_m1 

Cav1 Mm00483057_m1 

CD10 Hs00153510_m1 

Cdh1 Mm01247357_m1 

Cdk1 Mm00772472_m1 

DKK3 Hs00951307_m1 

Dkk3 Mm00443800_m1 

EPCAM Hs00901885_m1 

ESR1 Hs00174860_m1 

Esr1 Mm00433149_m1 

ESR2 Hs00230957_m1  

Esr2 Mm00599821_m1 

FGF9 Hs00181829_m1 

Fgf9 Mm00442795_m1 

FZD7 Hs00275833_s1 

Fzd7 Mm00433409_s1 

GAPDH Hs99999905_m1 

Hif1a Mm00468869_m1 

KRT18 Hs02827483_g1 

LGR5 Hs00969422_m1 

Lgr5 Mm00438890_m1 

LRP1 Hs00233856_m1 

Lrp1 Mm00464608_m1 

MAPK10 Hs00373461_m1 

Mapk10 Mm00436518_m1 

MKI67 Hs01032443_m1  

Mki67 Mm01278617_m1 

MME (CD10) Hs00153510_m1 

MMP2 Hs01548727_m1 

Mmp2 Mm00439498_m1 
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MMP9 Hs00234579_m1 

Mmp9 Mm00442991_m1 

PGR Hs01556702_m1 

Pgr Mm00435628_m1 

Pou5f1/Oct4 Mm03053917_g1 

RSPO1 Hs00543475_m1 

Rspo1 Mm00507077_m1 

SFRP1 Hs00610060_m1 

Sfrp1 Mm00489161_m1 

SFRP2 Hs00293258_m1 

Sfrp2 Mm01213947_m1 

Snai2 Mm00441531_m1 

SOSTDC1 Hs00383602_m1 

TBX18 Hs01385457_m1 

Tbx18 Mm00470177_m1 

THY-1 Hs00174816_m1 

THY-1 (CD90) Hs00174816_m1 

Vcam1 Mm01320970_m1 

Vegfa Mm00437306_m1 

VIM Hs00174816_m1 

Vim Mm01333430_m1 

WIF1 Hs00183662_m1 

Wif1 Mm00442355_m1 

WNT2B Hs00921614_m1 

Wnt2b Mm00437330_m1 

WNT7A Hs01114990_m1 

Wnt7a Mm00437356_m1 

2.4 siRNAs 

All siRNAs were obtained from Dharmacon, Lafayette, CO, USA. 

FZD7 SMARTpool: siGENOME FZD7 siRNA 

LGR5 SMARTpool: siGENOME LGR5 siRNA 

Non-Targeting  siGENOME Non-Targeting siRNA #1  

RSPO1 SMARTpool: siGENOME RSPO1 siRNA 

WNT7A SMARTpool: siGENOME WNT7A siRNA 

2.5 Overexpression plasmids 

All overexpression plasmids were obtained from OriGene Technologies, Inc., 

Rockville, MD, USA. 

Control pCMV6-Entry, mammalian vector with C-terminal Myc- DDK Tag 

FZD7 (Myc-DDK-tagged)-Human frizzled family receptor 7  

LGR5 
(Myc-DDK-tagged)-Human leucine-rich repeat containing G protein-
coupled receptor 5   
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2.6 Antibodies  

ACE LSC105463, Genxbio, Shakarpur, India 

Anti-Mouse (GaM)-FITC 
1010-02, SouthernBiotech, Birmingham, AL, 
USA 

anti-Mouse Secondary Antibody 
Peggy Sue/Sally SueMaster Kit, 
ProteinSimple; San Jose, USA 

Anti-Rabbit (GaR)-PE 
Cat.: 4050-09S, SouthernBiotech, 
Birmingham, AL, USA 

Biotin-FITC 
130-090-857, Milteny Biotec, Bergisch 
Gladbach, Germany 

CACN1A-Biotin 
ABIN751305, Antibodies-online, Aachen, 
Germany 

CACN1A-PE 
ABIN751313, Antibodies-online, Aachen, 
Germany 

CD10-PE 
130-099-669, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

CD13-Biotin ab25723, Abcam, Cambridge, UK 

CD140B-Biotin (Mouse) 
130-096-272, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

CD140B-PE 323605, BioLegend, San Diego, CA, USA 

CD166-PE 
12-1668-41, Affymetrix eBioscience,  
Santa Clara, CA, USA 

CD248-Biotin 
ABIN677575, antibodies-online; Aachen, 
Germany 

CD34-PE 
130-098-140, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

CD36-PE 
130-100-149, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

CD45 
Clones 2B11 + PD7/26, DAKO, Jena, 
Germany 

CD74-FITC 
11-0748, Affymetrix eBioscience, Santa Clara, 
CA, USA 

CD90-PE 
130-097-932, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

CD9-Biotin 
13-0098-80, Affymetrix  eBioscience, Santa 
Clara, CA, USA 

CD9-FITC ab18241, Abcam, Cambridge, UK 

CLDN3-FITC 
FAB4620F, R&D Systems GmbH, Wiesbaden, 
Germany 

Cytokeratin orb43708, Biorbyt, Cambridge, UK 

E-Cadherin-Biotin 
13-3249, Affymetrix eBioscience, Santa Clara, 
CA, USA 

EpCAM-FITC 
130-098-113, Miltenyi Biotec, Bergisch 
Gladbach, Germany 

FAP ab28244, Abcam, Cambridge, UK 

Flex Negative Control Mouse Cocktail of  
mouse IgG1, IgG2A, IgG2B, IgG3 and 
IgM 

DAKO, Jena, Germany 

FZD7 
ARP41251_P050, Aviva Systems Biology, 
San Diego, CA, USA 

Gapdh 
NB300-221, Novus Biologicals, Littleton, CO, 
USA 
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IC IgG1-FITC 400137, BioLegend, San Diego, CA, USA 

IC IgG1-PE 
12-4714-81, Affymetrix eBioscience, Santa 
Clara, CA, USA 

IC IgG2A-Biotin ab97679, Abcam, Cambridge, UK 

KI67 M7240, DAKO, Jena, Germany 

LGR5 
Tier 2, monospezifischer  
IgG, Eva Simon [215] 

MUC-1-FITC 559774, BD Biosciences, San Jose, USA 

RSPO1 
HPA046154, Sigma, Sigma Aldrich Corp., St. 
Louis, MO, USA 

Streptavidin-PE 
7100-09M, SouthernBiotech, Birmingham, AL, 
USA 

TICAM2 ab77169, Abcam, Cambridge, UK 

TMEM87A 
MAB7966, R&D Systems GmbH, Wiesbaden, 
Germany 

TMEM97 ab126490, Abcam, Cambridge, UK 

TMEM9B ab122414, Abcam, Cambridge, UK  

Vimentin orb98455, IgG1, Biorbyt, Cambridge, UK  

WNT2B ab178418, Abcam, Cambridge, UK 

WNT7A 
PA5-28289, Thermo Scientific Pierce 
Antibodies, Braunschweig, Germany 

β-catenin 610153, BD Bioscience, San Jose, USA 

2.7 Recombinant proteins 

Recombinant human RSPO1  
(4645-RS-025) 

R&D Systems GmbH, Wiesbaden, Germany 

Recombinant human WNT3A  
(5036-WN/CF) 

R&D Systems GmbH, Wiesbaden, Germany 

Recombinant human WNT7A  
(3008-WN-025) 

R&D Systems GmbH, Wiesbaden, Germany 

Recombinant mouse WNT2B  
(3900-WN-025) 

Hölzel Diagnostika, Cologne, Germany 

2.8 Cell culture media and supplements 

DMEM + 4,5 g/l Glucose Gibco, Carlsbad, CA, USA 

DMEM/F-12 + GlutaMAX™  Gibco, Carlsbad, CA, USA 

GlutaMAX™, 100 x Gibco, Carlsbad, CA, USA 

Heat Inactivated Fetal Bovine Serum  Gibco, Carlsbad, CA, USA 

Human Insulin Biochrom, Berlin, Germany 

L-Glutamine, 100 x Gibco, Carlsbad, CA, USA 

McCoy's 5A  Gibco, Carlsbad, CA, USA 

MEM PAA Laboratories GmbH, Coelbe, Germany 

Non-Essential Amino Acids PAA Laboratories GmbH, Coelbe, Germany 

Opti-MEM™  Gibco, Carlsbad, CA, USA 

Penicillin/Streptomycin, 100 x Gibco, Carlsbad, CA, USA 

TrypLE™ Express  Gibco, Carlsbad, CA, USA 
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2.9 Consumables 

5 ml Polypropylene Round-Bottom 
Tubes (FACS) 

BD Biosciences, San Jose, USA 

Bio-Bottle™ 
bio-bottle New Zealand Ltd, Auckland, New 
Zealand 

Biosphere® Filter Tips, 10 µl, 20 µl,  
200 µl, 1000 µl 

Sarstedt, Numbrecht, Germany 

Caps for glas vials, 13 mm 
WICOM Germany GmbH, Heppenheim, 
Germany 

CoolPack mini Coolike-Regnery GmbH, Bensheim, Germany 

Costar® Stripette Corning®, New, York, USA 

Countess® Cell Counting Chamber 
Slides 

Thermo Fisher Scientific, Braunschweig, 
Germany 

Coverslips  Menzel-Glaeser, Braunschweig, Germany 

Coverslips  Menzel-Glaeser, Braunschweig, Germany 

Cryo Tubes®  
Thermo Fisher Scientific, Braunschweig, 
Germany 

Cytofunnel™  Shandon, Braunschweig, Germany 

Cytospin Filter Crad Shandon, Braunschweig, Germany 

Falcon® Centrifuge Tubes 15 and 50 ml Corning®, New, York, USA 

gentleMACS C Tubes Miltenyi Biotec, Bergisch Gladbach, Germany 

Glas vials, 4 ml 
WICOM Germany GmbH, Heppenheim, 
Germany 

HTS FluoroBlok™ Multiwell Insert 
System, 
24 and 96 well, 3 µm 

Corning®, New, York, USA 

Invitrolon™ PVDF  Life Technologies, Carlsbad, CA, USA 

Matrix Tips 30 µl and 125 µl 
Thermo Fisher Scientific, Braunschweig, 
Germany 

Micro Amp® Optical 384-Well Reaction  
Plate with Barcode  

Applied Biosystems, Foster City, CA, USA 

Micro Amp™ Optical Adhesive Film  
Thermo Fisher Scientific; Braunschweig, 
Germany 

Microplates for Life Science Research, 
96 well 

PerkinElmer™, Waltham, MA, USA 

Needle 100 Sterican® GR B. Braun, Melsungen, Germany 

Nunc MaxiSorp® 96 well plate  
Affymetrix eBioscience,  
Santa Clara, CA, USA 

PCR Tube Strips 0.2 ml Eppendorf AG, Hamburg, Germany 

Precellys Lysing Kit CK14_0.5 ml Bertin Corp., Rockville, MD, USA 

Pre-sparation Filters 70 µm  Miltenyi Biotec, Bergisch Gladbach, Germany 

Reaction tubes 0.5, 1.5 and 2 ml Eppendorf AG, Hamburg, Germany 

RNA Nano Chips Agilent Technologies Inc., Santa Clara, USA 

RNA Pico Chips Agilent Technologies Inc., Santa Clara, USA 

Rotor Adapters  Qiagen, Hilden, Germany 

Single Use Syringes, 1 ml Codan, Lensahn, Germany 

Slides Super Frost Color Menzel-Glaeser, Braunschweig, Germany 

S-Monovette®  Sarstedt, Numbrecht, Germany 



MATERIALS 

29 
 

Sterican® Needle, 18G x 1 1/2  B. Braun, Melsungen, Germany 

Syringe Omnifix® ml B. Braun, Melsungen, Germany 

T25-, T75- and T162 Flasks Corning®, New, York, USA 

VWR® Disposable Pipetting Reservoirs VWR International, Darmstadt, Germany 

2.10 Devices 

Matrix Pipette,30 µl and 125 µl 
Thermo Fisher Scientific, Braunschweig, 
Germany 

2100 Bioanalyzer  Agilent Technologies Inc., Santa Clara, USA 

7900 HT Fast Real-Time PCR System  Life Technologies, Carlsbad, CA, USA 

-80°C Freezer Heraeus, Cologne, Germany 

8-Channel Multi-Pipette, 100 µl Eppendorf, Hamburg, Germany 

Automated cell counter Countess™ Invitrogen GmbH, Darmstadt; Germany 

Automated nucleic acid purificator 
QIAcube 

Qiagen, Hilden, Germany 

Binocular Stemi 2000-C Zeiss, Oberkochen, Germany 

Camera Power Shot A640 Canon, Tokio, Japan 

Cell sorter BD FACS Aria™ IIu BD Biosciences, San Jose, USA 

Centrifuge Biofuge Fresco Heraeus, Cologne, Germany 

Centrifuge Galaxy Mini  VWR International, Darmstadt, Germany 

Centrifuge Megafuge 1.0 
Thermo Fisher Scientific, Braunschweig, 
Germany 

Centrifuge Multifuge 3SR+  
Thermo Fisher Scientific, Braunschweig, 
Germany 

Clean Bench Hera Safe  Life Technologies, Carlsbad, CA, USA 

Coverslipper workstation Leica CV5030 Leica, Wetzlar, Germany 

Cycler T-Gradient Biometra, Goettingen, Germany 

Cytospin III Cytocentrifuge Shandon, Braunschweig, Germany 

FACS Aria II BD Biosciences, San Jose, USA 

Fluorescence microscope Olympus BH-
2 

Olympus, Tokio, Japan 

Fluorescence/lumiescence reader 
POLARstar Omega BMG 

Labtech International Ltd., East Sussex, UK 

Freezer Liebherr, Bulle, Germany 

Fridge Liebherr, Bulle, Germany 

Gentle MACS Dissociator Miltenyi Biotec, Bergisch Gladbach, Germany 

Glass chamber Assistenti 

Hermetically sealed chamber Santo Plastic, Hongkong, China 

Incubator HERAcell 240i 
Thermo Fisher Scientific, Braunschweig, 
Germany 

Micro Centrifuge 
Thermo Fisher Scientific, Braunschweig, 
Germany 

Microplate reader POLARstar Omega BMG Labtech, Ortenberg, Germany 

Microscope Primo Vert  Zeiss, Oberkochen, Germany 

Microwave Bosch, Stuttgart, Germany 

Mini Rocker-Shaker PR-30 Grant bio, Essex, UK 

NanoDrop® 8 Sample  
Spectrophotometer ND-8000 

Thermo Fisher Scientific, Braunschweig, 
Germany 
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Peggy Sue™  ProteinSimple, San Jose, USA 

Pipettes, 10 µl, 20 µl, 200 µl and  
1000 µl  

Eppendorf, Hamburg, Germany 

Pipettus Integra Bioscience, Biebertal, Germany 

Precellys 24 
Peqlab Biotechnology GmbH, Erlangen, 
Germany 

Roller Mixer SRT1 Stuart Scientific, Staffordshire, UK 

Shaker THERMOstar BMG Labtech, Ortenberg, Germany 

Slide clamps Shandon, Braunschweig, Germany 

Slide scanner Mirax Midi Zeiss, Oberkochen, Germany 

ULTRA-TURRAX®  Sigma Aldrich Corp., St. Louis, MO, USA 

Vortex Genie2  Scientific Industries, Inc., New York, USA 

2.11 Software 

2100 Expert Software, Bioanalyzer Agilent Technologies Inc., Santa Clara, USA 

BD FACSDiva Software v.8  BD Biosciences, San Jose, USA 

Compass V. 2.7.1 ProteinSimple, San Jose, USA 

Control Program for BMG  
LABTECH Omega Readers, 
Fluorescence Reader 

BMG Labtech, Ortenberg, Germany 

EndNote X7 Microsoft, Redmond, WA, USA 

Excel 2010 Microsoft, Redmond, WA, USA 

Ingenuity Pathway Analysis  Qiagen, Hilden, Germany 

ND-8000 V2.1.0, Nanodrop 
Thermo Fisher Scientific, Braunschweig, 
Germany 

POLARstar Omega, Fluorescence 
Reader 

BMG Labtech, Ortenberg, Germany 

PowerPoint Microsoft, Redmond, WA, USA 

Prism 6 GraphPad Software, Inc., La Jolla, CA, USA 

RQ Manager 1.2.1, TaqMan Applied Biosystems, Foster City, CA, USA 

SDS 2.4, TaqMan Applied Biosystems, Foster City, CA, USA 

Word 2010 Microsoft, Redmond, WA, USA 

Zeiss AxioVision 40 V4.6.3.0, 
Microscope 

Zeiss, Oberkochen, Germany 
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3 METHODS 

3.1 Patient characteristics and sample acquisition 

All patients offering samples for the different studies were pseudonymized and analyzed 

anonymously, so no individual-related data are contained in the database.  

In general, premenopausal women undergoing diagnostic or therapeutic laparoscopy 

because of suspected endometriosis, pelvic pain of unknown origin, benign adnexal masses 

or leiomyoma uteri were included in these studies. Only subjects between 18 and 50 years of 

age, who gave written, informed consent, were included. Known infectious or chronic 

autoimmune diseases, perioperative hormonal or anti-hormonal treatment, and preexisting 

malignant diseases were defined as exclusion criteria. 

3.1.1 TaqMan Arrays 

For the TaqMan analyses, patients were recruited by the Department of Gynecology and 

Obstetrics at the University Hospital in Vienna from 2010 – 2012. Approval for this study was 

obtained from the institutional ethics committee of the Medical University of Vienna (EK 

545/2010) and it was supported by Bayer Pharma AG. All samples were received as fresh 

frozen sample blocks. 

Eutopic endometrial tissue was obtained by curettages from 21 reproductive-aged women. 

They were subdivided into two groups by the presence (patients; n = 12) or absence (healthy 

controls; n = 9) of ectopic endometrial tissue in the peritoneal cavity (table 2). Ectopic 

peritoneal lesions were resected during surgery and diagnosed by a trained pathologist. 

Eutopic endometrial samples were assigned to the proliferative or the secretory cycle by 

histological examination (table 2). 
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Table 2: Patient characteristics for TaqMan analyses. 

 No endometriosis Endometriosis 

 Total Prolifera- 

tive 

Secretory Total Prolifera- 

tive 

Secretory 

Number (n) of 

patients  
9 5 4 12 5 7 

Mean age 

(range) 

36.1 

(27 – 49) 

35.6 

(27 – 49) 

36.8 

(32 – 44) 

34.0 

(25 – 46) 

33.0 

(25 – 38) 

34.7 

(28 – 46) 

Mean height 

(range), cm  

165.1 

(155 – 180) 

165.2 

(158 – 180) 

165.0 

(155 – 177) 

170.7 

(164 – 178) 

171.6 

(166 – 175) 

170.0 

(164 – 178) 

Mean weight 

(range), kg  

79.8 

(58 – 111) 

88.0 

(70 – 111) 

69.5 

(58 – 86) 

61.4 

(50 – 77) 

64.8 

(57 – 77) 

59.0 

(50 – 68) 

Mean BMI 

(range), kg/m2  

29.3 

(20 – 35) 

32.1 

(28 – 34) 

25.8 

(20 – 35) 

21.1 

(18 – 26) 

22.1 

(19 – 26) 

20.4 

(18 – 24) 

Mean gravity 

(range) 

1.5 

(0 – 4) 

2.4 

(0 – 4) 

0.0 

(0 – 0) 

0.5  

(0 – 2) 
0.0 

0.7 

(0 – 2) 

Mean ASRM 

stage (range) 
0.0 0.0 0.0 

2.5 

(1 – 4) 

2.8 

(1 – 4) 

2.3 

(1 – 3) 

Mean parity 

(range) 

2.0 

(0 – 3) 

2.0 

(0 – 3) 
0.0 0.0 0.0 0.0 

 

3.1.2 Fluorescence-activated cell sorting (FACS) 

For FACS, patients were recruited by the Department of Gynecology and Obstetrics at the 

Vivantes Humboldt Hospital in Berlin from 2014 – 2015. The local ethics committee 

Ärztekammer Berlin (Eth-02/14) gave approval for this study. All samples were received as 

fresh tissue samples. 

Eutopic endometrium was derived from curettages from 10 reproductive-aged women. They 

were subdivided into two groups by the presence (patients; n = 8) or absence (healthy 

controls; n = 2) of ectopic endometrial tissue in the peritoneal cavity (table 3). Eutopic 

endometrial samples were dedicated to the proliferative or the secretory cycle based on a 

histological assessment by an expert (table 3). 
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Table 3: Patient characteristics for FACS. 

 No endometriosis Endometriosis 

 Total Prolifera- 

tive 

Secretory Total Prolifera- 

tive 

Secretory 

Number (n) of 

patients  
2.0 1.0 1.0 8.0 6.0 2.0 

Mean age 

(range) 

44.0 

(44 – 44) 
44.0 44.0 

31.8  

(28 – 40) 

31.8  

(28 – 40) 

33.0 

(31 – 35) 

Mean height 

(range), cm  

157.0 

(154 – 160) 
154.0 160.0 

165.3  

(154 – 170) 

166.8  

(162 – 170) 

159.5 ( 

159 – 160) 

Mean weight 

(range), kg  

53.5  

(47 – 60) 
47.0 60.0 

62.8  

(52 – 98) 

59.5  

(52 – 73) 

77.0  

(56 – 98) 

Mean gravity 

(range) 

1.5  

(1 – 2) 
2.0 1.0 

2.2  

(0 – 5) 

2.3  

(0 – 6) 

2.5  

(0 – 5) 

 

3.1.3 Immunohistochemistry 

All tissue samples were obtained as tissue slides from Provitro GmbH (Berlin) originating 

from patients between 26 and 49 years of age.  

Eutopic endometrium obtained from resectates from 35 reproductive-aged women (table 4). 

They were subdivided into two groups by the presence (patients eutopic; n = 13) or absence 

(healthy controls; n = 22) of ectopic endometrial tissue in the peritoneal cavity. Ectopic 

peritoneal lesions (patients ectopic; n = 12) were resected during laparoscopy and examined 

by a trained pathologist. Eutopic endometrial samples were assigned to the proliferative or 

the secretory cycle phase resulting from a histological examination by a pathologist. 

 

Table 4: Patient characteristics for immunohistochemistry. 

 No endometriosis Endometriosis 

 Total Proliferative Secretory Total Proliferative Secretory 

Number (n) of 

patients  
22.0 12.0 10.0 25.0 11.0 14.0 

Mean age 

(range) 

38.0 

(29 – 49) 

39.5 

(33 – 49) 

36.9 

(29 – 44) 

36.2 

(26 – 47) 

36.0 

(26 – 47) 

36.4 

(30 – 47) 
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3.2 Molecular biological methods 

3.2.1 Immunohistochemistry 

Immunohistochemical staining 

Double immunostaining was carried out with antibodies against CD45, FZD7, KI67, RSPO1, 

WNT2B and WNT7A, whereas anti-CD45 always served as the second primary antibody 

(table 5). 

For deparaffinization, sections were incubated in xylene two times for 5 minutes each. 

Rehydration of sections was done by incubation in a descending ethanol gradient: absolute 

ethanol (two times for 2 minutes each) and 96 % and 70 % ethanol (one time for 2 minutes 

each). If necessary, sections were cooked in the microwave at 900 W for 2.5 minutes and 

180 W for 10 minutes in 1 X Target Retrieval Solution (DAKO). Before proceeding to the next 

step, sections were cooled down to room temperature (RT) and washed 3 times in Tris-

buffered saline with Tween20 (TBST, Fisher Scientific) for 5 minutes each. Subsequently, 

blocking with Dual Endogenous Enzyme Block (DAKO) for 10 minutes, threefold wash in 

TBST for 5 minutes each and 5 minutes treatment with Protein Block (DAKO) followed. All 

antibodies were diluted in DAKO Real™Antibody Diluent (table 5). The incubation with the 

primary antibody was performed in a moist chamber at 4 °C overnight. The next day, slides 

were washed 3 times with TBST for 5 minutes each followed by the incubation of the ready-

to-use polymer labelled secondary antibodies EnVision + System-HRP labelled Polymer Anti-

Rabbit or Anti-Mouse (DAKO) for 30 minutes at RT in a moist chamber. Immunoreactions 

were visualized with DAB Peroxidase Substrate Kit (Vector) according to the manufacturer’s 

instructions for 5 – 10 minutes at RT followed by 3 washing steps with TBST for 5 minutes 

each. For double staining of antibodies both originating from mice, the free binding sites of 

the polymers had to be blocked previous to staining of the second primary antibody (anti-

CD45) by incubating the slides with Flex Negative Control Mouse Cocktail (DAKO) for 20 

minutes at RT in the moisture chamber. Afterwards, anti-CD45 antibody was added to the 

samples for 1 hour at RT in the moisture chamber with subsequent 3 washing steps with 

TBST for 5 minutes each. The secondary ready-to-use polymer-linked antibody ZytoChem 

Plus AP Polymer anti-Mouse (Zytochem Systems) was incubated for 30 minutes at RT in the 

moisture chamber and the visualization of the immunoreactions was performed with the 

Permanent AP Red Kit (Zytomed Systems) following the manufacturer’s protocol. Omission 

of the primary antibody served as negative controls. 

The specimens were counterstained with hematoxylin (diluted 1:2 in destilled water, DAKO) 

for 30 seconds following blueing under running tab water for 3 minutes. Afterwards, slides 
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were dehydrated via an ascending alcohol series through 30 seconds 70 %, 96 %, and 2 x 

100 % ethanol each terminated with 2 x xylene for 2 minutes each. Finally, the tissue 

sections were covered with Eukitt® quick-hardening mounting medium (O. Kindler) and cover 

slips. 

Table 5: Antibodies used for immunohistochemical staining. 

Antigens 
(primary 

antibodies) 
Dilution Treatment 

Secondary 
antibodies 

Chomogen 

CD45 (DAKO) 1:400 

 

ZytoChem  
AP Polymer anti-

Mouse 
Permanent  

AP Red 

FZD7 (Aviva 
Systems Biology) 

1:100 Microwave 

EnVision HRP 
labelled  

Polymer Anti-Rabbit  

DAB 

DAB 

RSPO1 (Sigma) 1:20 

 

DAB 

WNT2B (Abcam) 1:100 

 

DAB 

WNT7A (Thermo 
Scientific) 

1:500 

 

DAB 

KI67 (DAKO) 1:75 Microwave 
EnVision HRP 

labelled  
Polymer Anti-Mouse 

DAB 

 

Evaluation of immunohistochemical stainings 

Immunostaining of eutopic and ectopic endometrial tissue were evaluated by a trained 

pathologist. Scoring was applied using a semiquantitative scoring system. Briefly, 

immunoreactivity of the glandular and stromal endometrial compartiments was displayed as 

percentage of immunoreactive cells. Staining pattern and intensity were very 

inhomogeneous. Therefore, immunohistology was disregarded. 

3.2.2 FACS of fresh tissue samples 

Tissue dissociation 

Curettages from patients were obtained as fresh tissue and transported in Celsior® organ 

storage solution (Genzyme) in 50 mL falcon tubes. The tissue was removed from the solution 

and cut into 1 mm pieces and dissociated with the Human Tumor Dissociation kit (Miltenyi 

Biotec) on the GentleMACS® Dissociator (Miltenyi Biotec) with several incubation steps at 

37°C according to the manufacturer’s protocol. The final single cell suspension was filtered 

through a 70 µm pre-separation filter. After centrifugation at 300 rpm for 5 minutes, the pellet 

was resuspended in 5-7 ml RPMI medium (Gibco), counted, and prepared for FACS. 
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Antibody staining 

Previously, all falcon tubes and FACS sorting tubes were blocked with fetal calf serum (FCS; 

Gibco) at RT for several minutes. 

Depending on the cell number 1 x 106 – 1 x 107 viable cells from the cell suspension were 

stained with fluorescently labelled antibodies for FACS. During the establishment of the 

procedure various antibodies for staining of stromal and epithelial cells were used according 

to table 6 following the manufacturer’s declarations. About 1 x 106 viable cells were either 

stained with an epithelial specific antibody or with a stromal specific antibody according to 

the protocol below. For selected antibodies of the most promising potential epithelial and 

stromal markers, isotype controls (IC) were performed to examine unspecific binding. They 

represented antibodies of the same isotype originating from the same species in combination 

with the same secondary antibody (table 7). ICs were commercially available and CD140B-

Biotin (Mouse) is an antibody which only binds murine antigens and therefore also serves as 

an appropriate IC for antigens of human origin. 

Later on anti-CD90 (Miltenyi Biotec) was used for sorting of stromal cells and anti-EpCAM 

(Miltenyi Biotec) for epithelial cells.  

The fluorescence intensity originating from every antibody bound to its antigen was 

normalized against its background fluorescence using a sample lacking antibodies. The 

resulting normalized fluorescence intensity gave information about the binding efficiency of 

the different antibodies. 

Table 6: Application of the different antibodies for the FACS sorting following the manufacturer’s 
instructions. 

Antigens 1 (primary 
antibodies) 

Application 
Antigens 2 
(secondary 
antibodies) 

Application 

ACE (Genxbio) 3 µl 
Anti-mouse (GaM)-

FITC (SouthernBiotech) 
1 µg 

CACNA1A-Biotin 
(Antibodies-online) 

1 µg 
Anti-rabbit (GaR)-PE 

(SouthernBiotech) 
0.5 µg 

CACNA1A-PE 
(Antibodies-online) 

1 µg 
Biotin-FITC (Miltenyi 

Biotec) 
10 µl 

CD10-PE (Miltenyi Biotec) 10 µl 
Streptavidin-PE 

(SouthernBiotech) 
0.5 µg 

CD13-Biotin (Abcam) 1 µg Isotype controls Application 

CD140B-PE (BioLegend) 5 µl 
IC IgG1-FITC 
(BioLegend) 

1 µg 

CD166-PE (eBioscience) 0.1 µg 
CD140B-Biotin 

(Mouse; Miltenyi Biotec) 
10 µl 

CD248-Biotin (Antibodies-
online) 

1 µg 
IC IgG1-PE IC 
(eBioscience) 

1 µg 
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CD34-PE (Miltenyi Biotec) 10 µl 
IC IgG2A-Biotin IC 

(Abcam) 
1 µg 

CD36-PE (Miltenyi Biotec) 10 µl     

CD74-FITC (eBioscience) 0.125 µg     

CD90-PE (Miltenyi Biotec) 10 µl     

CD9-Biotin (eBioscience) 0.5 µg     

CD9-FITC (Abcam) 20 µl     

CLDN3-FITC (R&D 
Systems) 

10 µl     

E-Cadherin-Biotin 
(eBioscience) 

0.25 µg     

EpCAM-FITC (Miltenyi 
Biotec) 

10 µl 
    

FAP (Abcam) 2 µg     

MUC-1-FITC (BD 
Bioscience) 

20 µl 
    

TICAM2 (Abcam) 1 µg     

TMEM87A (R&D Systems) 2.25 µg     

TMEM97 (Abcam) 0.05 µg     

TMEM9B (Abcam) 0.25 µg     

 

Table 7: Antibodies with their appropriate isotype control (IC) combinations. 

Antigens (antibody) Isotype Control (IC) 

EpCAM-FITC IC IgG1-FITC 

MUC-1-FITC IC IgG1-FITC 

CD9-FITC IC IgG1-FITC 

CD9 + Biotin-FITC CD140B (Mouse)+ Biotin-FITC 

CD90-PE IC IgG1-PE IC 

CD10-PE IC IgG1-PE IC 

CD13 + Strep-PE IC IgG2A + Strep-PE 

 

Firstly, the cells were centrifuged at 300 rpm for 5 minutes to remove RMPI medium. 

Subsequently, the pellet was resuspended in 100 µl FACS buffer and stained with 10 µl anti-

CD90-PE (or other potential stromal or epithelial markers) for stromal cells with an incubation 

time of 15 minutes on ice. Then 500 µl FACS buffer was added and a washing step with 

centrifugation for 5 minutes at 300 rpm followed. After the supernatant was discarded, the 

pellet was resuspended in 100 µl fresh FACS buffer and staining of epithelial cells via the 

addition of 10 µl anti-EpCAM-FITC antibody and the incubation on ice for 15 minutes was 

performed. Afterwards, 1 µg/ml DAPI (Thermo Fisher Scientific) was added to the cell 

suspension and a final washing step with 500 µl FACS buffer with a subsequent 

centrifugation step followed. According to the cell number, the pellets were resuspended in 1 
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– 2 ml fresh FACS buffer and transferred to FACS tubes after the supernatant was removed 

and the samples were ready for FACS. 

FACS 

For setup of the FACS Aria II (BD Bioscience) instrument, Accudrop Beads (BD Bioscience) 

were used to adjust the drop drive and drop delay. BD™ CompBeads Anti-Mouse Ig K and 

BD™ CompBeads Negative Control (BD Bioscience) helped to calibrate the sorter and to set 

the gates. Filter 1 was used to capture very small cells and 1 X PBS in FACS Flow™ (BD 

Bioscience) served as sheath buffer. Gate P1 of forward scatter (FSC) and sideward scatter 

(SSC) separated intact cells of desired size from cell debris. P2 from FSC-Width (FSC-W) 

versus FSC-Height (FSC-H) and P3 from SSC-Width (SSC-W) versus SSC-Hight (SSC-H) 

filtered single cells from duplets and triplets. P4 eliminated dead DAPI-positive cells. 

Epithelial and stromal cells were sorted through gate P5 [Fluorescein isothiocyanate (FITC)-

positive epithelial cells] and P6 [Phycoerythrin (PE)-positive stromal cells] into 500 µl RLT 

buffer (Qiagen).  

The laser settings were adjusted according to table 8 and the gating strategy is depicted in 

figure 8. 

Table 8: Laser settings used for FACS sorting. 

 

 

 

 

 

 

 

 

Figure 8: Sorting strategy used for 
sorting of epithelial and stromal cells. 
(A): Gate P1 for separating intact cells from 
cell debris through FSC versus SSC. (B) 
and (C): Gate P2 and P3 for filtering single 

cells through gates FSC-W against FSC-H 
and SSC-W against SSC-H. (D): Gate P4 
for removing dead DAPI-positive cells. (E): 

Gate P5 and P6 for sorting FITC-positive 
epithelial and PE-positive stromal cells. (F): 

Population hierarchy scheme. 

Laser Voltage Sort [V] 

FSC 0-30 
SSC 408 
FITC 520 
PE 400 
DAPI 330 
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3.2.3 RNA isolation  

For every 100 µl sorted cell suspension, 250 µl of RLT buffer (Qiagen) and 250 µl of 100 % 

EtOH were added to the sample and the RNA was isolated using the RNeasy® Micro Kit 

(Qiagen) according to the manufacturer’s manual. RNA quality and quantity were examined 

with RNA Pico Chips and appropriate kits (Agilent Technologies) on the 2100 Bioanalyzer 

instrument (Agilent Technologies) following the manufacturer’s protocol.  

For the RNA isolation of samples obtained from cell culture and depending on the cell 

amount, the RNeasy® Mini or RNeasy® Micro kit (Qiagen) were used respective the 

manufacturer’s instructions. RNA quality and quantity were examined by the NanoDrop® 

Spectrophotometer (Thermo Fisher Scientific). 

For isolation of RNA from ex vivo samples, tissue was homogenated in precellys vials (Bertin 

Corp.). Uteri were chopped and homogenated in 600 µl RLT buffer with the Precellys 24 

instrument (Peqlab Biotechnology GmbH) prior to the storage at -80°C. Up to two lesions 

were directly frozen in 400 µl RLT buffer at -80°C and homogenated after storage. 

Afterwards, RNA was isolated with the help of the RNeasy® Mini kit according to the 

manufacturer’s protocol. RNA quality and quantity was evaluated using the NanoDrop® 

Spectrophotometer. 

3.2.4 Preamplification and cDNA synthesis 

Prior to TaqMan analyses and depending on the RNA concentration, 300 – 0.1 ng of RNA 

from sorted cells were preamplified and converted to cDNA with the Ovation® PicoSL WTA 

Systems V2 kit (NuGen) according to the manufacturer’s instructions. The sample quality 

and quantity was assesed using the NanoDrop® Spectrophotometer. 

Preamplified cDNA was subsequently cleaned up with the MinElute Reaction Cleanup Kit 

(Qiagen) according to the manufacturer’s protocol. Quality and quantity of cDNA was 

assessed with the NanoDrop® Spectrophotometer. 

If RNA was not obtained from sorted samples, preamplification was not necessary. In this 

case and depending on the RNA concentration, 1 – 0.2 µg cDNA was synthezised with the 

help of the SuperScript® Vilo™ kit (Invitrogen) respective the manufacturer’s protocol.  

3.2.5 Quantitative real time polymerase chain reaction (qRT-PCR) 

Quantitative real time (qRT) PCR reactions were performed using the TaqMan technology as 

described elsewhere [216]. The entire TaqMan equipment including the probes was obtained 

from Thermo Fisher Scientific. For single TaqMan assays or standard TaqMan arrays the 2X 



METHODS 

40 
 

Universal PCR Master Mix was used according to tables 9 and 10. All TaqMan primer probes 

are listed in chapter 2.3. For single assays and depending on the amount of cDNA, 10 – 50 

ng per reaction and for the TaqMan arrays, 10-20 ng of cDNA per reaction was used. All 

arrays and assays ran on the ABI Prism 7900 HT (Life Technologies) instrument. The master 

mix conditions for single TaqMan assays and TaqMan arrays and the cycler settings are 

listed in tables 11 and 12. All samples ran as triplicates. 

Table 9: Master mix conditions for single TaqMan reactions. 

 

 

 

Table 10: Master mix conditions per port for the TaqMan arrays. 

 

‘ 

 

Table 11: Thermal cycler settings for single TaqMan reactions. 

‘ 

 

 

Table 12: Thermal cycler settings for TaqMan arrays. 

 

 

 

The relative mRNA content was normalized to glyderaldehyde-3-phosphate dehydrogenase 

(GAPDH) mRNA expression in human samples and to eukaryotic 18s rRNA mRNA 

expression in murine samples. Probes labelled with Mm detected murine genes and probes 

with Hs detected human genes (chaper 2.3). Using the 2-ΔΔCT method described by Livak et 

al. in 2001, the normalization of the mRNA expression of the gene of interest (GOI) with the 

house keeping genes (HKG) generated the ΔCT [217]. After 2-ΔCT transformation the relative 

gene expression of the GOI in comparison to the HKG could be obtained. For evaluating 

mRNA expression differences between treatment and control samples, the ΔΔCT had to be 

Reagent Volume 

2X Universal PCR Master Mix 5.5 µl 

Primer probes 0.5 µl 

cDNA (10 - 50 ng) x µl 

DEPC-Water to 12 µl 

Reagent Volume 

2X Universal PCR Master Mix 55 µl 

cDNA (20 - 30 ng) x µl 

DEPC-Water to 110 µl 

Step Temperature [°C] Time 
[min:sec] 

Repetit
ions 

1 50 2:00 0 

2 95 10:00 0 

3 95 0:15 39 

4 60 1:00 0 

Step Temperature [°C] Time 
[min:sec] 

Repetitions 

1 50 2 0 

2 94.5 10:00 0 

2 97 0:30 39 

3 59.7 1:00 0 
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calculated by subtracting the ΔCT of the control sample from the ΔCT of the treated samples 

followed by the 2-ΔΔCT transformation. By the calculation of [(2-ΔCT or 2-ΔΔCT) – 1] x 100, the fold 

change or percentage change of mRNA expression could be evaluated.  

The calculations for analyzing qRT-PCR results are listed in table 13. 

Table 13: Calculation steps for analyzing qRT-PCR results. 

3.2.6 Western blot analysis by Peggy Sue 

Protein isolation and quantification 

Ex vivo samples from the mouse experiment were stored in precellys vials at -80°C. After 

thawing of the samples, uterus fragments were homogenated in 250 µl and lesions in 100 µl 

RIPA buffer (Thermo Fisher Scientific) supplemented with protease inhibitor (Roche) (1 tablet 

in 7 ml buffer) using the Precellys 24 instrument for 30 seconds at 5200 rpm. Afterwards, the 

samples were centrifuged at 15,000 x g for 20 minutes at 4°C. The clear supernatant 

containing the solubilized proteins was obtained and the concentration was measured with 

the help of an albumin (BSA - Thermo Fisher Scientific) standard curve including 100 µl of 

0.8 mg/ml, 0.4 mg/ml, 0.2 mg/ml, 0.1 mg/ml, 0.05 mg/ml, and 0 mg/ml. The samples were 

diluted 1:10 – 1:50 in destilled water. Following the manufacturer’s instructions, bicinchoinic 

acid (BCA) Protein Assay Reagents A and B (Thermo Fisher Scientific) were mixed 50:1 and 

200 µl of the mixture were added to each well. After shaking the samples for several minutes 

at RT, the protein amount was measured at 532 nm and the concentration of the triplicates 

was quantified through the BSA standard curve.  

Peggy Sue Western blotting 

For Western blotting, the Peggy Sue system from PtoteinSimple was used allowing a size-

based separation of proteins in capillaries in a 96-well format with subsequent 

immunoblotting on the same plate in an automated fashion (figure 9) as established by 

Nguyen et al. in 2011 [218]. All steps were performed according to the manufacturer’s 

protocol. Therefore, the capillaries had to be prepared by loading the stacking and separation 

matrix followed by adding the samples into the cappillaries automatically with a concentration 

through the matrix. Then the separated proteins were immobilized to the capillary wall via a 

Formulas 

ΔCT = CT of gene of interest (GOI) – CT of house keeping gene (HKG) 

2-ΔCT = mRNA expression of GOI in comparison with HKG 

ΔΔCT = ΔCT Treatment – ΔCT Control 

2-ΔΔCT = difference of mRNA expression treatment vs. control 

[(2-ΔCT or 2-ΔΔCT) - 1] x 100= Fold change/percentage change mRNA expression 
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proprietary, photoactivated capture chemistry. Target proteins were detected using primary 

antibodies against β-catenin (BD Bioscience, dilution 1:50) and Gapdh (Novus Biologicals) 

as a HKG control (dilution 1:50). The immunodetection was performed using undiluted HRP-

conjugated anti-mouse secondary antibodies from the Peggy Sue or Sally SueMaster Kit and 

the appropriate chemiluminescent substrate. 

The consequent chemiluminescent signal in the form of peaks was identified in the capillaries 

and evaluated with the Compass software from ProteinSimple (figure 9). These peaks could 

be also depicted as lanes virtually. The peak height of a sample represents the abundant 

amount of the specific protein and is quantifiable. But first of all, the peak height of the target 

protein had to be normalized through devision with the related peak heigh of Gapdh (HKG) 

from the same sample. Afterwards, the resulting quotient is comparable between the different 

samples and allows statements of potential protein expression differences. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Chemiluminescent signals of the detected protein in the form of lanes and peaks using the 
Peggy Sue instrument. The height of the peaks represents the abundant amount of the specific protein and is 

quantifiable. After normalization of target genes with the HKG Gapdh, protein expression differences between 
different samples could be evaluated. 

Normalized protein expression = 
Peak height of sample 

Peak height of Gapdh (HKG) 
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3.3  Cell culture methods 

3.3.1 Cultivation of cell lines 

All cell lines were of human origin and cultured at 37°C and 5 % CO2 according to table 14. 

Appropriate media with respective supplements are listed in table 15. For splitting of the 

cells, medium was removed, cells were washed with sterile PBS (Gibco), detached with 

TrypLE (Gibco), and incubated at 37°C and 5 % CO2 for several minutes. Subsequently, cells 

were resuspended 1:1 in appropriate pre-warmed medium with respective supplements 

(Gibco, Biochrome or PAA Laboratories – see chapter 2.8). After they were centrifuged at 

500 x g for 5 minutes and the supernatant was removed, they were resuspended in 1 – 4 ml 

appropriate medium and splitted accordingly. For cell lines which were not splitted after 3 – 4 

days, the culture medium was changed with a washing step using sterile PBS in between.  

Table 14: Cell lines and cultivation conditions used. 

Cell 
type 

Cell line Origin/description 
Cultivation  

[splitting ratio] 
References 

E
p

it
h

e
li
a

l 

AN3-CA  Endometrial adenocarcinoma 
1:3 - 1:4 

every 3 - 4 days 
Dawe et al., 1964 

[219] 

ECC1 Endometrial adenocarcinoma 
1:3 - 1:5 

every 3 - 4 days 

Satyaswaroop and 
Tabibzadeh, 1991 

[220] 

EM42 

Endometrial cell line originating 
from benign proliferative 

endometrium 
spontaeously immortalised 

1:3 - 1:4 
every 3 - 4 days 

Desai et al., 1994 
[221] 

HEC-1-A Endometrial adenocarcinoma 
1:2 - 1:4 

every 3 - 4 days 
Kuramoto et al., 

1972 [222] 

Ishikawa Endometrial adenocarcinoma 
1:20 - 1:30 

every 5 - 7 days 
Nishida et al., 1985 

[223] 

KLE Endometrial adenocarcinoma 
1:2 

every 3 - 4 days 
Richardson et al., 

1984 [224] 

RL95-2 Endometrial adenocarcinoma 
1:2 - 1:4 

every 3 - 4 days 
Way et al., 1983 

[225] 

Z11 
SV40 immortalised endometrial 
cells originating from peritoneal 

lesions 

1:2 
every 5 - 7 days 

Zeitvogel et al., 
2001 [226] 



METHODS 

44 
 

 

Table 15: Media composition of the cell lines used. 

 

 

Z12 
SV40 immortalised endometrial 
cells originating from peritoneal 

lesions 

1:2 - 1:5 
every 3 - 4 days 

Zeitvogel et al., 
2001 [226] 

S
tr

o
m

a
l 

22B 
SV40 immortalised endometrial 
cells originating from peritoneal 

lesions 

1:2 
every 5 - 7 days 

Zeitvogel et al., 
2001 [226] 

ESC 
SV40 immortalised endometrial 

cells 
1:3 - 1:4 

every 3 - 4 days 
in-house 

MES-SA Uterus sarcoma cells 
1:2 - 1:4 

every 3 - 4 days 
Harker et al., 1983 

[227] 

Cell line Media composition 

22B, Z11, Z12 

DMEM 1g/L Glukose w/o Phenolrot 
10% FCS  

1 % L-Glutamine  
1 % Pen/Strep 

AN3-CA  
MEM 

10 % FCS 
1 % Pen/Strep 

ECC1 

DMEM + 4,5 g/L Glukose w/o Phenolrot 
5 % FCS 

1 % L-Glutamine  
1 % Human Insulin 

1 % Pen/Strep 

EM42, ESC, KLE 
DMEM/F-12 + GlutaMAX™ 

10 % FCS 
1% Pen/Strep 

HEC-1-A,  
MES-SA 

McCoy's 5A 
10% FCS  

1 % L-Glutamine  
1 % Pen/Strep 

Ishikawa 

MEM 
5 % FCS 

1 % L-Glutamine 
1 % Non-Essential Amino Acids 

1 % Pen/Strep 

RL95-2 
DMEM/F-12 + GlutaMAX™ 

1 % Human Insulin 
1 % Pen/Strep 
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3.3.2 Freezing and thawing of cells 

If necessary, cells were freezed. Therefore, with TypLE detached cells were resuspended 

1:1 in appropriate medium and counted. Afterwards, they were centrifuged for 5 minutes at 

500 x g, the supernatant was removed, and 1 x 106 viable cells were resuspended in 1 ml 

freezing medium (Gibco) and stored at -80°C. Longterm storage of cells was ensured by 

liquid nitrogen. 

For taking cryo conserved cells back in culture, they were thawed fastest possible at 37°C 

and resuspended in 6 ml culture medium with a subsequent centrifugation step at 500 x g for 

5 minutes to remove the freezing medium with DMSO in the supernatant. Afterwards, cells 

were resuspended in a T25-flask filled with about 6 ml fresh culture medium and cultivated 

accordingly. 

3.3.3 Counting of cells 

Cells were counted by using the Countess® automated cell counter (Invitrogen) which 

calculates the amount of viable cells per ml through trypane blue (Gibco) staining. Therefore, 

10 µl of a 1: 1 mixture of cells and trypane blue was loaded to Cell Counting Chamber Slides. 

With the help of digital image technology, the instrument took pictures and the software was 

able to analyse cell number, concentration per ml, size, and viability of the cells. 

3.3.4 Transfection 

All cell lines were transfected via liposomes delivering nucleic acids into a cell through 

merging with the cell membrane [228]. 

Around 3 x 105 viable cells were seeded into 12-well plates filled with 1 ml appropriate 

medium each 24 hours prior to transfection. The cells were cultivated as described before 

(see chapter 3.3.1). After 24 hours the culture medium was removed, wells were washed 

with 1 ml sterile PBS, and 1 ml pure Opti-MEM™ (Gibco) was added. The transfection 

approach was prepared by using 95 µl Lipofectamine® 2000 (Life Technologies) and 5 µl 

pure OptiMEM™ mixture according to table 16 followed by an incubation for 10 minutes at 

RT. Afterwards, the transfection mixture was added to the wells and the cells were cultivated 

at 37°C and 5 % CO2 for 24 hours before further use.  

Table 16: Transfection mixture used for 3 x 105 viable cells per well in a 12-well plate. 

 

 

 

Reagent Volume 

Lipofectamine® 2000 5 µl 

OptiMEM™ 95 µl 



METHODS 

46 
 

3.3.5 siRNA knockdown 

Knockdown of target genes was achieved by siRNA (small interfering RNA) knockdown as 

described elsewhere [229]. Complementary single stranded siRNA attaches to mRNA 

preventing it from transcription by initiating its degeneration through RISC (RNA-induced 

silencing complex). Therefore, cells had to be transfected with 60 pmol siRNA (Dharmacon) 

respective table 17.  

Table 17: Transfection mixture for siRNA knockdown experiments of 3 x 105 viable cells per well in a 12-
well plate. 

 

 

After 24 hours of incubation at 37°C and 5 % CO2, the medium was removed, cells were 

washed with 1 ml sterile PBS, detached with 250 µl TrypLE™ for 3 – 5 minutes at 37°C, and 

subsequently resuspended in 250 µl appropriate medium. They were counted and seeded in 

96-well plates with 1.5 x 104 viable cells per well for further experiments.  

Remaining cells were centrifuged at 500 x g for 5 minutes, resuspended in 350 µl RLT buffer, 

and stored at -80°C until RNA isolation, cDNA conversion, and qRT-PCR (see chapters 3.2.3 

– 3.2.5). 

SiRNA knockdown efficiency was calculated after qRT-PCR through dividing the 2-ΔΔ CT of 

the siRNA knockdown sample through the 2-ΔΔ CT of the “Non-Targeting siRNA” sample 

resulting in the fold change of RNA activity. The conversion [(normalized RNA activity- 1) x 

100] indicates the percentage change of RNA activity. 

Normalized RNA activity = 
2-ΔΔ CT siRNA sample 

2-ΔΔ CT „Non-Targeting“ siRNA 
sample 

 

Percentage change of RNA activity = (Normalized RNA activity – 1) x 100 

 

3.3.6 mRNA overexpression (transfection of expression plasmids) 

Through the transfection of expression plasmids of several WNT candidate genes their 

mRNA overexpression was achieved. 

Reagent Volume 

Lipofectamine® 2000 5 µl 

SiRNA(s) (2 µM  final 60 pmol) 30 µl 

OptiMEM™ to 100 µl 
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Therefore, cells had to be transfected with 1 µg expression plasmid (OriGene) according to 

table 18 and chapter 3.3.4.  

Table 18: Transfection mixture for overexpression experiments of 3 x 105 viable cells per well in a 12-well 
plate. 

 

 

 

After 24 hours of incubation at 37°C and 5% CO2, the medium was removed, wells were 

washed with 1 ml sterile PBS, and trypzinated with TypLE at 37°C and 5 % CO2 for several 

minutes. Afterwards, they were resuspended 1:1 in appropriate medium, counted, and 

respectively seeded in 96-well plates with 1.5 x 104 viable cells per well for further 

experiments. 

Remaining cells were centrifuged at 500 x g for 5 minutes, resuspended in 350 µl RLT buffer, 

and stored at -80°C until RNA isolation, cDNA conversion, and qRT-PCR (see chapters 3.2.3 

– 3.2.5). 

Overexpression efficiency was calculated after qRT-PCR through dividing the 2-ΔΔ CT of the 

overexpression sample through the 2-ΔΔ CT of the “Empty plasmid” sample resulting in the 

fold change of expression activity. The conversion [(normalized expression activity - 1) x 100] 

indicates the percentage change of expression activity. 

Normalized expression activity = 
2-ΔΔ CT overexpression sample 

2-ΔΔ CT „Empty plasmid“ sample 
 

Percentage change  
of expression activity = 

(Normalized expression activity – 1) 
x 100 

 

3.3.7 Cytospin 

T-flasks with adherent cells were washed with sterile PBS and detached with TrypLE as 

indicated previously. Subsequently, cells were resuspended 1:1 in appropriate pre-warmed 

medium and counted (see chapter 3.3.3). Cytospin elements (Shandon) were assembled 

(slide with Cytospin filter cards and Cytofunnel fixed with a respective clamp) and one 

Cytofunnel was loaded with 1 x 104 viable cells following centrifugation in an appropriate 

Cytospin cytocentrifuge (Shandon) for 5 minutes at 500 x g. Afterwards, cell spots were air-

dried for 10 – 20 minutes. Subsequently, cells were fixed and permeabilized with 95 %/5 % 

Reagent Volume 

Lipofectamine® 2000 5 µl 

Expression plasmid (1 µg) 10 µl 

OptiMEM to 100 µl 
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ethanol/acidic acid for 20 minutes at -20°C following a threefold washing step with PBS for 5 

minutes each in glass chambers. The liquid was removed entirely from the slides and they 

were put into a hermetically sealed chamber. About 50 µl of 1:10 diluted antibodies [anti-

Cytokeratin or anti-Vimentin (both from Biorbyt)] were added to the cell spots and incubated 

for 25 minutes with a subsequent threefold washing step with PBS for 5 minutes each in 

glass chambers. Finally, slides were covered with 40 µl Fluoromount (Sigma Aldrich) and a 

coverslip and analyzed under a fluorescent microscope.  

3.4 Functional cell culture based in vitro assays 

All functional cell culture based in vitro assays were performed in endometrial stromal cells 

(ESCs). These cells were tested for the WNT pathway and migration activity previously to 

ensure that they represent a suitable cell culture for these assays. Since they do not secrete 

WNTs naturally, the pathway had to be activated through WNT3A addition beforehand. 

3.4.1 WNT activity assay 

The TCF/LEF reporter assay kit (Qiagen) consists of the reporter representing a WNT 

responsive luciferase construct. It encodes the firefly luciferase reporter gene under the 

control of a minimal (m)CMV promoter and tandem repeats of the WNT specific TCF/LEF 

transcriptional response element (TRE) similar to the TOPflash plasmid [130]. The negative 

control is a construct of a non-inducible firefly luciferase gene lacking the CMV promotor and 

the positive control is constitutively expressing firefly luciferase [230]. If the WNT pathway is 

active, the WNT specific transcription factors TCF and LEF bind to TRE and activate the 

transcription of the luciferase reporter gene and WNT activity can be quantified through 

luminescence signals (figure 10). 
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Figure 10: Principle of the TCF/LEF reporter assay measuring the WNT activity. In case of active WNT 

signaling, β-catenin nudges the transcription factors TCF and LEF to bind to TCF/LEF transcriptional response 
elements (TRE) initiating the transcription of the luciferase reporter gene. Luciferase intensity indicates WNT 
activity. Figure adapted and modified from [230]. 

For the WNT activity assay, 1 µg of the constructs were transfected according to table 19 

following the procedure in chapter 3.3.4. In case of simultaneous transfection, 1 µg TCF/LEF 

reporter construct with either 60 pmol siRNA or 1 µg overexpression plasmids (see chapters 

3.3.5 and 3.3.6) for the transfection mixtures were used in accordance with tables 20 and 21. 

Table 19: Transfection mixture for the TCF/LEF reporter constructs. 

 

 

 

 

Table 20: Transfection mixture for the simultaneous transfection of TCF/LEF reporter constructs and 
siRNA. 

 

 

 

 

 

 

 

 

 

Reagent Volume 

Lipofectamine® 2000 5 µl 

TCF/LEF reporter or negative 
control or positive control 

10 µl (1 µg) 

OptiMEM to 100 µl 

Reagent Volume 

Lipofectamine® 2000 5 µl 

TCF/LEF reporter or negative 
control or positive control 

10 µl (1 µg) 

SiRNA (2µM  final 60 pmol) 30 µl 

OptiMEM to 100 µl 
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Table 21: Transfection mixture for the simultaneous transfection of TCF/LEF reporter constructs and 
overexpression plasmids. 

 

 

 

 

After 24 hours of incubation at 37°C and 5 % CO2, the medium was removed, wells were 

washed with 1 ml sterile PBS, and detached with 250 µl TrypLE™ for 3 – 5 minutes at 37°C. 

Afterwards, cells were resuspended in 250 µl appropriate medium and counted. Around 1.5 x 

104 viable cells per well were seeded in 96-well plates for further experiments. If necessary, 

the WNT pathway was activated through 400 ng/ml WNT3A (R&D Systems) per well. 

Without treatment (e. g in case of siRNA knockdown) the WNT activity was measured 22 

hours after WNT3A addition. In case of treatment with recombinant proteins or small 

molecules, treatment was performed after 5 hours of incubation with or without WNT3A 

followed by a 17 hour long incubation at 37°C and 5 % CO2. The next day, cells were lysed in 

25 μl 1 x Passive Lysis Buffer (Promega) per well and the luciferase activity was measured 

with the Dual Luciferase Reporter Assay System kit (Promega) according to the 

manufacturer’s instructions. The main procedure for measuring the WNT activity right away 

or after siRNA knockdown, overexpression, or treatment with compounds or recombinant 

proteins is summarized in figure 11. 

 

Figure 11: Protocol of the WNT activity 
measurement. Around 3 x 105 viable cells 

were transfected in 12-well plates with the 
TCF/LEF constructs and 60 pmol siRNA or 1 
µg expression plasmids if necessary. After 
24 hours of incubation at 37°C and 5 % CO2, 
culture medium was removed, cells were 
washed with PBS, and detached with 
TrypLE. Afterwards, they were resuspended 
1:1 in appropriate medium and counted. 
Around 1.5 x 104 viable cells per well were 
seeded in 96-well plates treated with WNT3A 
(400 ng/ml) for WNT pathway activation, if 
necessary. Either WNT activity was 
measured after 22 hours of incubation or 
cells were treated with recombinant proteins 
or small molecules after they were incubated 
for 5 hours with or without WNT3A. The 
measurement of the WNT activity followed 
after additional 17 hours of incubation with 
the Dual Luciferase Reporter Assay System 
kit according to the manufacturer’s 
instructions. 

 

Reagent Volume 

Lipofectamine® 2000 5 µl 

TCF/LEF reporter or negative 
control or positive control 

10 µl (1 µg) 

Expression plasmids (final 1 µg) 30 µl 

OptiMEM to 100 µl 
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WNT activity was evaluated through calculation of its fold increase or decrease (fold change 

= FC). All samples ran in triplicates. First of all, in one experiment a mean of the luciferase 

signals from the technical replicates of the sample “Reporter + WNT3A” was calculated. 

Afterwards, the fold change in WNT activity for every single replicate of all samples resulted 

from the quotient of the mean of sample “Reporter + WNT3A”, which marked 100% WNT 

activity. Generally, these single fold changes from several experiments were condensed in 

one graph, of which one mean and standard deviation was calculated. 

 

Normalized WNT activity [FC] = 
WNT activity of the replicate 

Mean WNT activity triplicates "Reporter + 
WNT3A" 

 

Percentage change of WNT 
activity = 

(Normalized WNT activity – 1) * 100 

 

3.4.2 ApoTox-Glo™ Triplex assay 

ApoTox-Glo™ Triplex Assay (Promega) was used to measure the cell death rate and 

apoptosis activity (caspase 3/7 activity) in the same well according to the manufacturer’s 

protocol (figure 12 and 13) [231]. In case of the measurement of the cell death rate, the cell 

impermeant dye bis-AAF-R110 can not enter the intact cell membrane of living cells. 

Consequently, it is not processed to the fluorescent dye R110 by the dead-cell proteases 

which are released from dead cells with perforated cell membranes. The fluorescence can be 

measured at 485EX/520EM. Afterwards, the cells are lysed and the caspase3/7 activity can be 

quantified by dissociated aminoluciferin causing the luciferase reaction and production of 

light. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Principle of the ApoTox-Glo™ assay measuring the cell death rate. In case of dead cells, the cell 

impermeant dye bis-AAF-R110 gets activated trough cleavage by the dead-cell proteases which are released 
from dead cells with perforated cell membranes. The resulting fluorescent dye can be quantified at a wavelength 
of 485EX/520EM. Figure adapted and modified from [231]. 
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Figure 13: Principle of the ApoTox-Glo™ assay measuring the caspase 3/7 activity. After quantifying the cell 

death rate, the cells are lysed enabling the measurement of the caspase 3/7 activity. Perforated cells release, if 
present, caspase 3/7 which dissociates aminoluciferin causing the luciferase reaction and production of light. 
Figure adapted and modified from [231]. 

Cells were prepared and transfected (with or without siRNA or expression plasmids but 

always with TCF/LEF reporter constructs) respective chapters 3.3.4 – 3.3.6 obtaining 96-well 

plates with 1.5 × 104 viable cells per well. Either cell death rate and caspase activity were 

measured after 22 hours of treatment with/without WNT3A or recombinant proteins or small 

molecules were added after 5 hours of WNT3A (400 ng/ml) addition and cells were incubated 

for further 17 hours. For the evaluation of the cell death rate and apoptosis activity, the 

ApoTox-Glo™ assay was performed according to the manufacturer’s protocol. The entire 

procedure of performing the assay is depicted in figure 14.  

Figure 14: Protocol of measuring the cell 
death rate and caspase 3/7 activity. Around 3 

x 105 viable cells were transfected in 12-well 
plates with the TCF/LEF constructs and 60 
pmol siRNAs or 1 µg expression plasmids if 
necessary. After 24 hours of incubation at 37°C 
and 5 % CO2, culture medium was removed, 
cells were washed with PBS, and detached with 
TrypLE. Afterwards, they were resuspended 1:1 
in appropriate medium and counted. Around 1.5 
x 104 viable cells per well were seeded in 96-
well plates and treated with or without WNT3A 
(400 ng/ml) for WNT pathway activation. Cell 
death rate and caspase activity were measured 
after 22 hours of incubation or cells were 
treated with recombinant proteins or small 
molecules after they were incubated for 5 hours 
with or without WNT3A. The measurement of 

cell death rate and caspase activity followed after additional 17 hours of incubation. The next day the ApoTox-Glo 
Triplex assay kit was performed according to the manufacturer’s instructions with quantifying the fluorescence 
resulting from dead cells at a wavelength of 485EX/520EM following cell lysis and measurement of the 
luminescence coming from the caspase 3/7 activity. 

Cell death rate and caspase activity were evaluated through calculation of its fold increase or 

decrease. All samples ran in triplicates. First of all, in one experiment a mean of the 
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fluorescent or luciferase signals from the technical replicates of the sample “Reporter + 

WNT3A” was determined. Afterwards, the fold change in WNT activity for every single 

replicate of all samples was calculated through the quotient of the mean of sample “Reporter 

+ WNT3A”, which marked 100% cell death rate or caspase activity respectively. Therefore, 

one graph consists of single fold changes of single assays with one common mean and 

standard deviation. 

 

Normalized 
cell death rate or caspase activity 

[FC] = 

Cell death rate or caspase activity of the 
replicate 

Mean cell death rate or caspase activity 
of triplicates "Reporter + WNT3A" 

 

Percentage change of cell death 
rate or caspase activity = 

(Normalized cell death rate or caspase 
activity – 1) * 100 

 

3.4.3 CellTiter-Glo® viability assay 

The CellTiter-Glo® assay (Promega) was used to measure the viability of cells [232]. 

Induced cell lysis releases ATP (adenosine triphosphate) from living cells enabling the 

conversion of beetle luciferin to oxyluciferin through UltraGlo™ luciferase which in turn 

causes the production of light which can be directly linked to the viability of the cells (figure 

15).  

 

 

 

 

 

 

 

 

Figure 15: Principle of the CellTiter-Glo® assay measuring the viability. Induced cell lysis releases ATP from 

living cells enabling the cleavage of beetle luciferin to oxyluciferin through UltraGlo™ luciferase causing the 
production of light which can be directly linked to the viability of the cells. Figure adapted and modified from [232]. 
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Cells were prepared and transfected (with or without siRNA or expression plasmids but 

always with TCF/LEF reporter constructs) respective chapters 3.3.4 – 3.3.6 generating 96-

well plates with 1.5 × 104 viable cells per well. Either viability was measured after 22 hours of 

treatment with/without WNT3A or recombinant proteins or small molecules were added after 

5 hours of WNT3A (400 ng/ml) addition and cells were incubated for further 17 hours. For the 

evaluation of the viability, the CellTiter-Glo assay was performed according to the 

manufacturer’s protocol. The entire procedure is represented in figure 16. 

Figure 16: Protocol of measuring the 
viability. Around 3 x 105 viable cells were 

transfected in 12-well plates with the TCF/LEF 
constructs and 60 pmol siRNAs or 1 µg 
expression plasmids if necessary. After 24 
hours of incubation at 37°C and 5 % CO2, 
culture medium was removed, cells were 
washed with PBS, and detached with TrypLE. 
Afterwards, they were resuspended 1:1 in 
appropriate medium and counted. Around 1.5 
x 104 viable cells per well were seeded in 96-
well plates and treated with or without WNT3A 
(400 ng/ml) for WNT pathway activation. Either 
viability was measured after 22 hours of 
incubation or cells were treated with 
recombinant proteins or small molecules after 
they were incubated for 5 hours with or without 
WNT3A. The measurement of the viability 

followed after additional 17 hours of incubation. The CellTiter-Glo® assay kit was performed according to the 
manufacturer’s instructions with quantifying the luminescence coming from the luciferase reaction activated 
through ATP from living cells. 

 

The viability was evaluated through calculation of its fold increase or decrease. All samples 

ran in triplicates. First of all, in one experiment a mean of the luciferase signals from the 

technical replicates of the sample “Reporter + WNT3A” was established. Afterwards, the fold 

change in WNT activity for every single replicate of all samples was determined through the 

quotient of the mean of sample “Reporter + WNT3A”, which marked 100% viability. 

Generally, these single fold changes from several experiments were resumed in one graph, 

of which one mean and standard deviation was calculated. 

 

Normalized viability [FC] = 
Viability of the replicate 

Mean viability of triplicates "Reporter + 
WNT3A" 

 

Percentage change of viability = (Normalized viability – 1) * 100 
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3.4.4 Migration assay 

Migration was investigated with a fluorescence based Boyden chamber assay [233]. The 

FluoroBlok transwell system (Corning®) allows the fluorescence measurement of calcein 

stained cells which migrate through the 3 µm pores of the membrane. The cells were seeded 

in the upper well with appropriate medium lacking FCS. The bottom well contained 

appropriate medium with FCS stimulating the migration of the cells. Once the cells traveled 

through the FluoroBlok membrane, they were stained by calcein (Invitrogen) which was 

added to the medium previously. The resulting fluorescence indicated the migration activity 

(figure 17). 

 

 

 

 

 

Figure 17: Principle of the migration assay. Cells were seeded in the upper wells with medium lacking FCS. 

The lower well contained medium with FCS stimulating the migration. Once cells traveled through 3 µm pores of 
the FluoroBlok membrane, they were stained with calcein (0.1 mg/ml) in the lower well. The resulting fluorescence 
indicated the migration activity after 22 hours. 

Cells were prepared and transfected (with or without siRNA or expression plasmids but 

always with TCF/LEF reporter constructs) respective chapters 3.3.4 – 3.3.6. After 24 hours of 

incubation with the transfection approaches, medium was removed, cells were washed with 

sterile PBS, and detached with TypLE at 37°C and 5 % CO2 for several minutes. Afterwards, 

cells were resuspended 1:1 in appropriate medium without FCS and counted. Around 2 – 3.5 

x 104 viable cells were seeded in the upper well of a 24-well plate and 1.5 x 104 viable cells 

were seeded in the upper well of a 96-well plate. Exactly 650 µl (24-well plate) or 225 µl (96-

well plate) appropriate medium with FCS and 0.1 mg/ml calcein was added to the lower 

wells. If necessary, the WNT pathway was activated with 400 ng/ml WNT3A per well. Either 

the migration activity was evaluated after 22 hours of incubation at 37°C and 5 % CO2 after 

WNT3A addition or small molecules or recombinant proteins were added after 5 hours of 

incubation with WNT3A following an incubation of further 17 hours at 37°C and 5 % CO2. The 

next day the fluorescence indicating the migration activity was measured at a wavelength of 

520 nm with the POLARstar Omega BMG device (Labtech). The entire procedure of the 

migration assay is represented in figure 18. 



METHODS 

56 
 

Figure 18: Protocol for the migration 
assay. Around 3 x 105 viable cells were 

transfected in 12-well plates with the 
TCF/LEF constructs and 60 pmol siRNAs or 
1 µg expression plasmids if necessary. After 
24 hours of incubation at 37°C and 5 % 
CO2, culture medium was removed, cells 
were washed with PBS, and detached with 
TrypLE. Afterwards, they were resuspended 
1:1 in appropriate medium and counted. 
Around 2 – 3.5 x 104 viable cells were 
seeded in the upper well of a 24-well plate 
and 1.5 x 104 viable cells were seeded in the 
upper well of a 96-well plate with 
appropriate medium without FCS. The lower 
wells contained appropriate medium with 
FCS and 0.1 mg/ml calcein. Cells were 
treated with or without WNT3A (400 ng/ml) 
for WNT pathway activation. Either 

migration activity was measured after 22 hours of incubation or cells were treated with recombinant proteins or 
small molecules after they were incubated for 5 hours with or without WNT3A. Then the measurement of the 
migration followed after additional 17 hours of incubation. 

The migration activity was evaluated through calculation of its fold increase or decrease. All 

samples ran in triplicates. First of all, in one experiment a mean of the luciferase signals from 

the technical replicates of the sample “Reporter + WNT3A” was determined. Afterwards, the 

fold change in WNT activity for every single replicate of all samples was calculated through 

the quotient of the mean of sample “Reporter + WNT3A”, which marked 100% migration 

activity. In general, one graph depicts these single fold changes from several experiments of 

which one mean and standard deviation was calculated. 

 

Normalized migration activity 
[FC] = 

Migration of the replicate 

Mean migration of triplicates "Reporter + 
WNT3A" 

 

3.5 In vivo methods 

3.5.1 Animals 

Female adult BALB/c mice (≈20 g, 8-12 weeks old) were purchased from Charles River 

Laboratories. They were allowed to acclimate for 1 week beforehand and maintained in a 12 

hours light/dark cycle with access to Altromin standard diet and water ad libitum. The animals 

were randomized and housed in groups of six per cage containing wood shavings, bedding, 

and a shelter. All experiments were performed in strict compliance with company, regional, 

and federal guidelines for the use of laboratory animals. The experiments were approved and 

Percentage change  
of migration activity = 

(Normalized migration activity – 1) * 100 
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executed in accordance with policies and directives of LAGESO (Landesamt für Gesundheit 

und Soziales Berlin; Germany) and all efforts were made to minimize suffering. 

3.5.2 Mice inoculation model for endometriosis 

The mice inoculation model was performed as established once by Somigliana in 1999 and 

was further defined in-house [29, 234]. Retrograde menstruation was mimicked by injecting 

uterus fragments in the peritoneum (endometrium challenge/inolculation) mimicking 

detached endometrial cells in the menstrual blood flowing back through the fallopian tubes 

into the pelvic cavity instead of out of the body [234]. 

For tissue removal, mice were anaesthetized using a ketamine (Ketavet, 100mg/ml from 

Zoetis) and xylazine (Rompun, 20mg/ml from Bayer) solution (ketamine:xylazine:water; 

1:1:8, 250µl/mouse). The uterine horns were removed and opened longitudinally on a 

suitable dish. The tissue was kept wet all the time with sterile PBS. Tissue punches were 

received using a sample corer (2 mm diameter) and suspended in 400µl sterile PBS (12 

punches/400µl PBS) afterwards.  

Recipient mice were anesthetized subcutaneously as described above and the abdomen 

shaved and desinfected. Into the peritoneal skin a cut of approximately 5 mm was made 

followed by the carefully lifting of the skin to expose inner skin lining of the peritoneal cavity. 

The exactly 12 tissue fragments containing solution was injected with a 18-gauge needle (B. 

Braun) directly into the peritoneum. Finally, the cut was closed with the help of Histoacryl® 

tissue adhesive (B. Braun). 

In the experiments using the WNT inhibitor, animals were randomized into treatment groups. 

Every group included 5 animals [LGK974 (Novartis) and vehicle control]. The compounds 

were formulated in PEG400/water 80:20 (Fluka/Millipore) and administered by oral gavage. 

LGK974 was dosed with 5 mg/kg twice a day. The peri oral route and drug dose used in this 

study have been previously reported for LGK974 by Jiang et al. in 2013 to be efficacious 

regarding tumor reduction [235]. 

Body weight was monitored once a week. On day 7 or 14 after inoculation mice were 

sacrificed. The abdomens were inspected, potential lesions were carefully removed, and their 

surface areas were measured using the Stemi 2000-C binocular (Zeiss) at magnification 1.0, 

the Power Shot A640 camera (Canon) and the AxioVision software (Zeiss). The Uteri were 

also removed. 

For RNA expression analyses up to two lesions were freezed at -80°C in 400 µl RLT buffer. 

Uteri were chopped and homogenated in precellys vials by adding 600 µl RLT buffer and 

using the ULTRA-TURRAX® instrument (IKA®) prior to freezing at -80°C. For protein 
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expression experiments, uteri fragments and lesions were quick-freezed with nitrogen in 

precellys vials and stored at -80°C. Blood samples at the day of sacrifice should give 

information about plasma concentration of the compound and was measured according to 

established Bayer guidelines in the Pharmocokinetics lab of Reinhard Nubbemeyer. Blood 

was taken from the vena cava. 

If limited amount of lesions were available, storage for RNA isolation was the highest priority 

and only remaining lesions could be freezed for protein expression analyses. 

The experimental design of the in vivo experiment is illustrated in figure 19. For the 

investigation of ex vivo samples, see chapter 3.2.  

 

Figure 19: Experimental design of the in vivo study using the mice inoculation model. Exactly 12 uterus 

tissue fragments of 2 mm diameter each of donor mice were injected at day 0 in syngenic recipient mice. Body 
weight was measured once a week. Mice were treated with LGK974 or vehicle at doses of 5 mg/kg twice a day. 
Every group contained 5 mice. After 7 or 14 days mice were sacrificed and the lesion were counted and surface 
areas were measured. Additionally, lesions and uteri were freezed for RNA and protein expression experiments in 
decreasing priority. 

3.6 Statistical analysis 

For statistical analysis GraphPad Prism (Version 6) was used. Data are either expressed as 

bars or scatter dot plot with mean and standart deviation in both directions, as bars with 

mean and standart deviation in one direction, or as box and whiskers ranging from Min 

(minimum) to Max (maximum) including the median and box bounderies at the 25th and 75th 

percentiles. Generally, to determine differences between samples, the unpaired t-test 

assuming Gaussian distribution was performed. For the analysis of the TaqMan arrays from 

the clinical study or the mouse experiment the unpaired Mann-Whitney test was used without 

multiple corrections.  

P-values below 0.05 (*) are indicated as significant, below 0.01 (**) as very significant, below 

0.001 (***) as extremely significant, and below 0.0001 (****) also as extremely significant. 
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4 RESULTS 

4.1 Confirmation of the gene array data in the same 

patient cohort 

4.1.1 TaqMan analyses confirmed most selected candidate genes from 

the gene array analysis in the same patient cohort. 

The previous clinical study (EMMA) had been performed to investigate the gene expression 

of eutopic and ectopic endometrium of diseased women in comparison to controls in order to 

find potential biomarkers or therapeutic targets. It included the separation of epithelial and 

stromal cells via LCM followed by mRNA expression analyses with Illumina gene arrays. 

Bioinformatic analysis revealed that the WNT pathway members WNT2B, WNT7A, LGR5, 

RSPO1, and FZD7 were upregulated in lesions from endometriosis patients. The same RNA 

should now be used to confirm the selected WNT candidate genes via the TaqMan method, 

which is considered to be more sensitive and precise.  

In TaqMan analysis all selected candidate genes were found to be elevated in endometriosis 

(figure 20). While the general trend of elevated mRNA expression was consistently observed, 

the significance as judged by p-value varied. In some cases TaqMan arrays revealed 

significant deregulated mRNA expression that showed only a strong trend previously 

(RSPO1) or the significant deregulated gene expression was not observed anymore in the 

TaqMan data. However, as emphasized above, the trend and direction of deregulation in 

mRNA expression is similar to the findings of the gene array analysis. Generally, the gene 

expression of the WNT candidate genes were increased in implants compared to diseased or 

healthy eutopic endometrium. Almost always the mRNA expression of eutopic endometrium 

of patients and controls did not differ, indicating that aberrant mRNA expression of WNT 

pathway genes might not play a relevant role in the eutopic endometrium. 

Frequently, the abnormal gene expression significantly correlated to cycle phase and cell 

type. 

WNT2B was higher expressed in endometrial lesions. 

As can be seen in figure 20, analysis of the gene arrays showed that WNT2B was highly 

expressed in all lesions of all cell types and cycle phases. It was always elevated compared 

to eutopic endometrium of endometriosis patients, except for epithelial cells of the secretory 
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phase, where WNT2B upregulation was observed in comparison to healthy tissue. 

Additionally, significantly increased mRNA expression of the WNT ligand was found in 

ectopic tissue compared to healthy eutopic endometrium in stromal cells of the proliferative 

phase. TaqMan analyses of corresponding samples confirmed significant upregulation of 

WNT2B in lesions compared to eutopic endometrium of patients in stromal cells of both cycle 

phases. However, most of the other significant aberrant gene expression findings of the gene 

array study showed a similar tendency and direction after TaMan analysis. 

WNT7A was upregulated in ectopic tissue. 

Results from the gene arrays suggested that WNT7A was significantly upregulated in all 

implants, except for stromal cells of the proliferative phase. Epithelial cells of both cycle 

phases showed significantly increased mRNA expression in comparison with eutopic 

diseased endometrium. Epithelial and stromal cells from the secretory cycle phase 

additionally revealed upregulation of the WNT ligand compared to healthy tissue. Upon 

TaqMan analyses, the significant elevated mRNA expression of WNT7A in epithelial cells of 

the secretory phase could be confirmed. The other significant deregulated gene expression 

findings of the gene array study exhibited also a similar trend after TaqMan measurement. 

The results of the experiments are summarized in figure 20. 

LGR5 was elevated in implants. 

In the gene arrays, LGR5 mRNA was significantly increased in all ectopic samples except for 

stromal cells of the proliferative cycle phase. Epithelial cells from both cycle phases exhibited 

elevated mRNA levels in comparison with eutopic endometrium of endometriosis patients, 

whereas epithelial and stromal cells from the secretory phase showed upregulation of the co-

receptor compared to controls. Via TaqMan, increased mRNA expression of LGR5 was 

confirmed in implants of epithelial cells of both cycle phases compared to eutopic diseased 

tissue. In addition, TaqMan analyses revealed raised LGR5 mRNA levels in secretory phase 

ectopic stromal cells in comparison to eutopic endometrium from patients (figure 20).  

FZD7 was increased in endometrial lesions. 

Results from gene arrays are presented in figure 20. They show that besides from the 

proliferative phase epithelial cells, FZD7 was significantly upregulalted in all ectopic samples. 

Upregulation of the WNT receptor was observed in stromal cells of all cycle phases 

compared to both healthy and diseased eutopic endometrium. Epithelial cells from the 

secretory phase exhibited significantly elevated mRNA levels when compared to controls. 

Unless the last observation, which shows also a trend of deregulated mRNA expression 

respectively, all significant findings of the gene array study could be confirmed via TaqMan. 
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Moreover, TaqMan analyses showed decreased FZD7 mRNA expression in proliferative 

phase eutopic endometrium of diseased women compared to controls. 

RSPO1 was also upregulated in ectopic tissue. 

In gene arrays, RSPO1 was significantly upregulated in implants of epithelial or stromal cells 

from the proliferative phase or secretory phase respectively compared to healthy 

endometrium. These findings could not be confirmed via TaqMan. However, the TaqMan 

method revealed significantly increased mRNA levels of RSPO1 in ectopic samples of both 

epithelial and stromal cells of the proliferative phase compared to eutopic endometrium of 

patients. However, the trend of elevated mRNA expression of RSPO1 in proliferative ectopic 

epithelial and stromal cells in comparison to diseased eutopic tissue was already observed in 

the gene array study (figure 20). 
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Figure 20: Gene array versus TaqMan analyses of the selected WNT candidate genes WNT2B, WNT7A, 
LGR5, FZD7, and RSPO1 of the different cycle phases and cell types. Green bars indicate control eutopic 

endometrium, blue bars represent eutopic endometrium of endometriosis patients, and red bars demonstrate 
lesions. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. * indicates p < 0.05 
and ** p < 0.01. 

4.1.2 Further WNT pathway genes were dysregulated in 

endometriosis.  

With the RNA from the clinical study, TaqMan analyses were also performed for further WNT 

pathway genes that are either directly or indirectly regulated through WNT signaling. Direct 

WNT target genes contain TCF-binding sites and are immediately activated through WNT 

signaling [for overview see “the WNT homepage” from the Stanford University 

(http://web.stanford.edu/group/nusselab/cgi-bin/wnt/, last call 13.06.2016)]. Genes that are 

indirectly affected through WNT signaling were identified using the Ingenuity Pathway 

Analysis (IPA) by Qiagen. Other genes, without connection to the WNT pathway were chosen 

due to their potential role in endometriosis (e.g. hormone receptors). Generally, all these 

genes are associated with mechanisms such as migration, proliferation, or apoptosis that 

might play a role in lesion formation in endometriosis. Table 22 contains all genes and their 

appropriate annotations, of which the mRNA expression was measured.  

Table 22: Annotations of 23 genes measured by TaqMan in the clinical samples. All genes highlighted in 

orange are WNT pathway genes, which are either directly or indirectly regulated through WNT signaling according 
to IPA. If stated, they contain the TCF/LEF binding motif and are direct traget genes of WNT signaling. IPA = 
Ingenuity Pathway Analysis, BMP = bone morphogenetic proteins, ECM = Extracellular matrix, TF = Transcription 
factor. 

Gene Full name Annotation 

BAX Bcl-2-like protein 4 Apoptosis [236] 

BCL2 B-cell lymphoma 2 Anti-apoptosis [237] 

CAV1 Caveolin-1 Tissue growth (inhibition anoikis) [238] 

DKK3 
Dickkopf WNT signaling pathway 

inhibitor 3 
WNT inhibitor by disruption FZD/WNT interaction 
[239]  

ESR1 E2 receptor 1 Hormone receptor 

ESR2 E2 receptor 2 Hormone receptor 

FGF9 Fibroblast growth factor 9 Proliferation, cell survival [240] 

FZD7 Frizzled-7 WNT receptor [241], direct WNT target gene [149] 

LGR5 
Leucine-rich repeat-containing G-

protein coupled receptor 5 
WNT coreceptor, direct WNT target gene  [150, 
242] 

LRP1 
Low density lipoprotein receptor-

related protein 1 
WNT inhibitor by interacting with FZD1 [243], 
migration  [244, 245] 

MAPK10 Mitogen-activated protein kinase 10 Proliferation [246] 

MKI67 Marker of proliferation Ki-67 Proliferation [247] 

MMP2 matrix metalloproteinase 2 
ECM degradation  migration [248], direct WNT 
target gene [142] 

MMP9 matrix metalloproteinase 3 
ECM degradation  migration [249], direct WNT 
target gene [142] 

PGR Progesterone receptor Hormone receptor 

RSPO1 R-spondin 1 WNT ligand [250] 

SFRP1 Secreted frizzled-related protein 1 WNT inhibitor by binding WNTs [251] 
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SFRP2 Secreted frizzled-related protein 2 
WNT inhibitor by binding WNTs [251], eventually 
direct WNT target gene [151] 

SOSTDC1 Sclerostin domain containing 1 
BMP antagonist, inhibition 
proliferation/differentiation [252] 

TBX18 T-Box 18 TF  cell differentiation [253] 

WIF1 WNT inhibitory factor 1 WNT inhibitor by binding WNTs [251] 

WNT2B 
Wingless-type MMTV integration 

site family, member 2B 
WNT ligand [254] 

WNT7A 
Wingless-type MMTV integration 

site family, member 7A 
WNT ligand [254] 

Proliferative phase – epithelial cells 

The greatest difference in gene expression was observed between ectopic and matching 

eutopic endometrium of patients, whereas the mRNA expression of eutopic tissue from 

diseased women versus healthy controls was almost similar (figure 21 and table 23). 

The comparison of diseased eutopic tissue with controls revealed only DKK3 as significantly 

downregulated in the endometrium of patients. DKK3 is a WNT inhibitor and WNT signaling 

associated. 

Ectopic tissue compared to healthy or diseased eutopic endometrium exhibited significantly 

increased mRNA levels of SFRP2, CAV1, and SOSTDC1. In addition, lesions exhibited 

elevated mRNA expression of TBX18 compared to eutopic tissue of healthy women and 

LRP1, WIF1, SFRP1, and MMP2 compared to eutopic endometrium of endometriosis 

patients. All these genes are connected to the WNT pathway. SFRP1, SFRP2, and WIF1 are 

WNT inhibitors suggesting elevated WNT inhibition in lesions. TBX18 is a transcription factor 

that is essentially implicated in cell differentiation and CAV1 has been associated with tissue 

growth by inhibiting anoikis. Interestingly, SOSTDC1 plays a role in the inhibition of 

proliferation referring to reduced proliferation of ectopic epithelial cells. MMP2 and LRP1 are 

both involved in cell motility. MMPs are responsible for extracellular matrix (ECM) 

degradation and therefore cause cell migration. Consequently, increased mRNA levels of 

MMP2 and LRP1 propose elevated migration activity of ectopic cells. The results from this 

experiment are shown in figure 21 and summarized in table 23. 
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Figure 21: TaqMan mRNA expression analysis in proliferative phase epithelial cells. Green bars indicate 

control eutopic endometrium, blue bars represent eutopic endometrium of patients, and red bars demonstrate 
lesions. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. * indicates p < 0.05 
and ** p < 0.01. 

 
Table 23: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of proliferative 
phase epithelial cells. Rows highlighted in red indicate significant results. 

Proliferative phase – stromal cells 

Again, the greatest difference in mRNA expression is observed when comparing ectopic and 

matching eutopic endometrium of patients, whereas the mRNA expression of eutopic tissue 

from diseased women versus healthy controls did not differ (figure 22 and table 24). 

Ectopic tissue compared to healthy or diseased eutopic endometrium demonstrated 

significantly elevated mRNA levels of LRP1, WIF1, SFRP2, and TBX18. Moreover, lesions 

Gene FC p-Value Gene FC p-Value Gene FC p-Value

WNT2B 0.10 0.220 WNT2B 4.72 0.413 WNT2B 45.84 0.191

WNT7A 1.29 0.691 WNT7A 8.02 0.064 WNT7A 6.21 0.064

LGR5 0.73 0.670 LGR5 2.91 0.111 LGR5 3.98 0.032

FZD7 0.03 0.008 FZD7 0.21 0.286 FZD7 6.49 0.111

RSPO1 0.07 0.151 RSPO1 0.51 0.556 RSPO1 7.68 0.040

DKK3 0.10 0.008 DKK3 1.43 0.730 DKK3 14.98 0.286

LRP1 0.47 0.651 LRP1 1.99 0.191 LRP1 4.25 0.008

WIF1 0.30 0.222 WIF1 3.60 0.111 WIF1 12.02 0.016

FGF9 3.06 0.421 FGF9 1.64 0.206 FGF9 0.54 0.905

MAPK10 0.62 0.548 MAPK10 1.54 0.413 MAPK10 2.48 0.111

SFRP2 0.00 0.841 SFRP2 371.95 0.016 SFRP2 246802 0.016

TBX18 37.26 0.999 TBX18 749.12 0.016 TBX18 20.11 0.111

CAV1 0.72 0.691 CAV1 3.21 0.040 CAV1 4.44 0.016

SOSTDC1 0.45 0.580 SOSTDC1 15.14 0.016 SOSTDC1 33.76 0.016

SFRP1 0.50 0.452 SFRP1 2.26 0.413 SFRP1 4.49 0.016

BCL2 1.54 0.889 BCL2 2.75 0.064 BCL2 1.78 0.286

BAX 1.32 0.341 BAX 2.31 0.556 BAX 1.75 0.905

MMP2 0.53 0.222 MMP2 2.12 0.413 MMP2 3.99 0.032

MMP9 76.72 0.222 MMP9 338.40 0.111 MMP9 4.41 0.413

ESR1 0.83 0.738 ESR1 1.00 0.977 ESR1 1.21 0.905

ESR2 0.67 0.548 ESR2 0.43 0.413 ESR2 0.64 0.556

PGR 2.42 0.651 PGR 1.14 0.500 PGR 0.47 0.730

MKI67 1.70 0.999 MKI67 0.98 0.905 MKI67 0.58 0.905

Diseased eutopic vs. control Diseased ectopic vs. control Diseased ectopic vs. diseased eutopic
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compared to eutopic tissue of patients exhibited increased DKK3 and MAPK10 mRNA 

expression. Except for MAPK10, which plays generally a role in increased cell proliferation, 

all other genes are WNT pathway genes. LRP1 is involved in cell motility and TBX18 plays a 

role in cell differentiation. SFRP2, WIF1, and DKK3 are WNT inhibitiors (figure 22 and table 

24).  

When gene expression in epithelial and stromal cells from ectopic tissue is compared against 

those in corresponding cells derived from eutopic diseased tissue, genes involved in cell 

migration were upregulated in ectopic epithelial cells. On the other hand, in ectopic stromal 

cells MAPK10, which is important for cell proliferation, was significantly upregulated.  

 
Figure 22: TaqMan mRNA expression analysis in proliferative phase stromal cells. Green bars indicate 

control eutopic endometrium, blue bars represent eutopic endometrium of patients, and red bars demonstrate 
lesions. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. * indicates p < 0.05 
and ** p < 0.01. 
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Table 24: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of proliferative 
phase stromal cells. Rows highlighted in red indicate significant results. 

 

Secretory phase – epithelial cells 

Results from the TaqMan analysis with the secretory phase epithelial cell samples are 

demonstrated in figure 23 and table 25. Again, the greatest difference in gene expression 

exhibited ectopic versus matching eutopic endometrium of patients, whereas the mRNA 

expression of the eutopic tissue from diseased women versus healthy controls was almost 

similar. 

Comparison of control versus diseased eutopic endometrium revealed, that only CAV1 and 

BAX were significantly lower expressed in diseased patients.  

The comparison of implants with healthy or diseased eutopic endometrium exhibited 

significantly increased LRP1 and SFRP1 mRNA levels. Additionally, mRNA expression of 

LRP1, WIF1, FGFP9, MAPK10, SFRP2, TBX18, CAV1, SOSTDC, SFRP1, MMP2, and PGR 

was significantly increased in lesions compared to eutopic tissue of endometriosis patients. 

Except for MAPK10 and PGR, all these genes are associated to WNT signaling. SFRP1, 

SFRP2, and WIF1 are involved in WNT inhibition. LRP1 and MMP2 play a role in cell 

migration, FGF9 and MAPK10 in proliferation, and CAV1 in tissue growth through inhibition of 

anoikis. SOSTDC1 is implicated in the inhibition of proliferation. Interestingly, PGR was also 

significantly higher expressed in implants compared to diseased eutopic endometrium. That 

Gene FC p-Value Gene FC p-Value Gene FC p-Value

WNT2B 0.43 0.198 WNT2B 9.59 0.095 WNT2B 22.23 0.032

WNT7A 1.21 0.841 WNT7A 4.30 0.310 WNT7A 3.57 0.310

LGR5 0.64 0.421 LGR5 2.42 0.310 LGR5 3.78 0.111

FZD7 0.37 0.310 FZD7 6.71 0.032 FZD7 18.31 0.008

RSPO1 0.54 0.452 RSPO1 3.24 0.095 RSPO1 6.01 0.008

DKK3 0.52 0.210 DKK3 2.67 0.087 DKK3 5.18 0.016

LRP1 0.91 0.524 LRP1 1.98 0.032 LRP1 2.18 0.008

WIF1 0.64 0.421 WIF1 222.20 0.008 WIF1 344.55 0.008

FGF9 1.02 0.999 FGF9 4.70 0.064 FGF9 4.60 0.095

MAPK10 0.79 0.999 MAPK10 2.14 0.095 MAPK10 2.70 0.032

SFRP2 0.81 0.841 SFRP2 3861.04 0.008 SFRP2 4775.72 0.008

TBX18 2.11 0.691 TBX18 112.34 0.008 TBX18 53.25 0.008

CAV1 1.16 0.999 CAV1 3.60 0.310 CAV1 3.11 0.222

SOSTDC1 0.21 0.222 SOSTDC1 13.39 0.151 SOSTDC1 65.19 0.151

SFRP1 0.90 0.999 SFRP1 2.61 0.151 SFRP1 2.91 0.095

BCL2 0.75 0.841 BCL2 1.22 0.691 BCL2 1.63 0.421

BAX 1.12 0.968 BAX 1.35 0.397 BAX 1.20 0.421

MMP2 0.82 0.691 MMP2 1.86 0.421 MMP2 2.27 0.246

MMP9 53.04 0.310 MMP9 33.99 0.151 MMP9 0.64 0.841

ESR1 0.58 0.310 ESR1 0.60 0.246 ESR1 1.05 0.999

ESR2 0.43 0.841 ESR2 2.86 0.548 ESR2 6.62 0.310

PGR 1.03 0.999 PGR 1.16 0.548 PGR 1.13 0.999

MKI67 0.81 0.421 MKI67 0.71 0.421 MKI67 0.87 0.889

Diseased eutopic vs. control Diseased ectopic vs. control Diseased ectopic vs. diseased eutopic
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would contradict the progesterone resistance theory in endometriosis, which includes 

downregulation of PGR in lesions, causing progesterone insensitivity (see chapter 1.2.2).  

 

Figure 23: TaqMan mRNA expression analysis in secretory phase epithelial cells. Green bars indicate 

control eutopic endometrium, blue bars represent eutopic endometrium of patients, and red bars demonstrate 
lesions. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. * indicates p < 0.05 
and ** p < 0.01. 

Table 25: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of secretory phase 
epithelial cells. Rows highlighted in red indicate significant results. 

 

Gene FC p-Value Gene FC p-Value Gene FC p-Value

WNT2B 0.26 0.286 WNT2B 1.19 0.999 WNT2B 4.54 0.106

WNT7A 0.04 0.064 WNT7A 5.60 0.164 WNT7A 132.63 0.048

LGR5 0.16 0.191 LGR5 3.62 0.152 LGR5 22.12 0.003

FZD7 0.60 0.999 FZD7 14.69 0.067 FZD7 24.57 0.029

RSPO1 0.32 0.413 RSPO1 4.67 0.788 RSPO1 14.66 0.343

DKK3 0.19 0.286 DKK3 8.68 0.230 DKK3 44.55 0.268

LRP1 0.47 0.111 LRP1 2.74 0.039 LRP1 5.87 0.003

WIF1 0.03 0.910 WIF1 4.12 0.110 WIF1 121.17 0.010

FGF9 0.42 0.999 FGF9 5.51 0.152 FGF9 13.22 0.028

MAPK10 0.54 0.191 MAPK10 2.47 0.110 MAPK10 4.57 0.010

SFRP2 0.02 0.286 SFRP2 30.37 0.042 SFRP2 1262.45 0.030

TBX18 0.02 0.318 TBX18 27.56 0.110 TBX18 1271.32 0.030

CAV1 0.30 0.032 CAV1 2.16 0.927 CAV1 7.27 0.018

SOSTDC1 0.00 0.413 SOSTDC1 5.58 0.152 SOSTDC1 3330.00 0.015

SFRP1 0.46 0.556 SFRP1 4.78 0.110 SFRP1 10.41 0.018

BCL2 0.61 0.413 BCL2 1.32 0.688 BCL2 2.15 0.149

BAX 0.39 0.016 BAX 1.14 0.746 BAX 2.92 0.064

MMP2 0.69 0.318 MMP2 1.96 0.230 MMP2 2.84 0.048

MMP9 2.28 0.999 MMP9 1.81 0.527 MMP9 0.79 0.755

ESR1 0.67 0.381 ESR1 1.62 0.527 ESR1 2.40 0.097

ESR2 0.11 0.191 ESR2 0.46 0.530 ESR2 4.40 0.530

PGR 0.27 0.381 PGR 0.86 0.649 PGR 3.16 0.015

MKI67 3.05 0.286 MKI67 0.71 0.315 MKI67 0.23 0.135

Diseased eutopic vs. control Diseased ectopic vs. control Diseased ectopic vs. diseased eutopic
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Secretory phase – stromal cells 

Again, the greatest difference in mRNA levels was observed when ectopic tissue is 

compared to matching eutopic endometrium of diseased women, whereas the gene 

expression of eutopic cells from patients versus healthy controls was the same (figure 24 and 

table 26). 

As can be seen in figure 24 and table 26 the comparison of diseased ectopic tissue with 

either control or diseased endometrium revealed SFRP1 and SFRP2 as significantly 

upregulated. Furthermore, lesions compared to eutopic endometrium of endometriosis 

patients exhibited significantly increased mRNA levels of WIF1, FGF9, and TBX18. All these 

genes are associated with WNT signaling. WIF1, SFRP1, and SFRP2 function as WNT 

inhibitors. FGF9 is involved in proliferation and TBX18 plays a role in cell differentiation. 

When the gene expression results from ectopic versus eutopic diseased tissue from 

epithelial and stromal cells are compared, generally more WNT associated genes are 

deregulated in epithelial cells. Moreover, epithelial cells exhibited a greater number of 

aberrantly activated genes that are involved in proliferation or migration. 

 
Figure 24: TaqMan mRNA expression analysis in secretory phase stromal cells. Green bars indicate control 

eutopic endometrium, blue bars represent eutopic endometrium of patients, and red bars demonstrate lesions. 

Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. * indicates p < 0.05 and ** p 

< 0.01. 
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Table 26: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of secretory phase 

stromal cells. Rows highlighted in red indicate significant results. 

 

Summary of the gene expression analysis of clinical samples 

Generally, a high number of directly or indirectly regulated WNT pathway genes were 

deregulated in endometriosis, indicating that the WNT pathway indeed was affected. Already 

eutopic endometrium from diseased women exhibited upregulation of WNT associated genes 

in comparison to controls. However, the highest upregulations were observed in ectopic 

tissue compared to diseased eutopic endometrium. Furthermore, many of these genes are 

implicated in mechanisms such as migration or proliferation that are involved in the 

pathogenesis of endometriosis. 

In the eutopic endometrium of patients compared to healthy controls, more WNT associated 

genes were deregulated in the proliferative phase than in the secretory phase, raising the 

possibility that in this menstrual phase the WNT pathway might be stronger involved. In 

addition to the WNT pathway, further genes that are implicated in cell motility showed also an 

increased expression. However, diseased proliferative phase eutopic endometrium exhibited 

more deregulated mRNA expression than diseased secretory phase eutopic endometrium.  

Implants compared to matching eutopic endometrium of endometriosis patients showed even 

more WNT pathway genes that were significantly upregulated than diseased eutopic samples 

compared to healthy controls. That suggests that the WNT pathway is even more activated 

and therefore possibly more relevant in lesions. Also cell migration and proliferation were 

Gene FC p-Value Gene FC p-Value Gene FC p-Value

WNT2B 0.04 0.191 WNT2B 1.99 0.649 WNT2B 1.48 0.003

WNT7A 5.25 0.730 WNT7A 72.64 0.315 WNT7A 1.14 0.343

LGR5 0.23 0.079 LGR5 5.77 0.527 LGR5 1.25 0.048

FZD7 0.29 0.833 FZD7 13.46 0.018 FZD7 1.46 0.018

RSPO1 0.14 0.286 RSPO1 6.03 0.927 RSPO1 1.45 0.343

DKK3 0.32 0.413 DKK3 3.76 0.413 DKK3 1.12 0.267

LRP1 0.56 0.286 LRP1 1.02 0.961 LRP1 1.02 0.164

WIF1 0.01 0.413 WIF1 17.76 0.073 WIF1 18.85 0.030

FGF9 0.23 0.286 FGF9 3.35 0.109 FGF9 1.15 0.030

MAPK10 0.80 0.510 MAPK10 2.38 0.315 MAPK10 1.03 0.149

SFRP2 0.00 0.191 SFRP2 81.61 0.024 SFRP2 2703.17 0.003

TBX18 0.00 0.191 TBX18 45.94 0.230 TBX18 205.35 0.030

CAV1 0.31 0.111 CAV1 0.82 0.558 CAV1 1.03 0.115

SOSTDC1 0.03 0.556 SOSTDC1 21.90 0.527 SOSTDC1 8.22 0.202

SFRP1 0.60 0.413 SFRP1 6.73 0.043 SFRP1 1.11 0.006

BCL2 0.68 0.191 BCL2 0.88 0.527 BCL2 1.01 0.149

BAX 0.96 0.999 BAX 1.52 0.999 BAX 1.02 0.876

MMP2 0.88 0.413 MMP2 0.81 0.564 MMP2 1.01 0.321

MMP9 0.92 0.905 MMP9 0.05 0.412 MMP9 1.00 0.149

ESR1 0.75 0.318 ESR1 1.07 0.894 ESR1 1.01 0.249

ESR2 0.39 0.905 ESR2 1.27 0.927 ESR2 1.03 0.999

PGR 0.42 0.111 PGR 0.77 0.649 PGR 1.02 0.785

MKI67 1.09 0.905 MKI67 0.37 0.164 MKI67 1.00 0.149

Diseased eutopic vs. control Diseased ectopic vs. control Diseased ectopic vs. diseased eutopic
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affected, although there was a difference between the cycle phases and cell types. In ectopic 

epithelial cells from the secretory cycle, cell motility and proliferation seems to play a more 

important role than in their stromal counterparts, since more migration-associated genes 

were deregulated. In the proliferative phase this difference was not observed, since both cell 

types expressed different genes that are implicated in cell migration or proliferation. 
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4.2 Confirmation of the gene array data from the clinical 

study in a different patient cohort 

To confirm the findings of the clinical study, the involvement of the WNT pathway was 

investigated in additional patient samples. For that purpose, two approaches were chosen. 

On the one hand, protein expression analysis via IHC was performed and on the other hand, 

a protocol for separating stromal and epithelial cells via FACS with subsequent mRNA 

expression analysis was established. 

4.2.1 Confirmation of the results from the clinical study via IHC 

CD45 expressing immune cells showed a patient specific distribution 

independent from cycle phase, disease state and tissue type. 

CD45 is the common leukocyte antigen and is expressed by immune cells. In the clinical 

study, LCM only allowed the separation of the entire stromal compartment from epithelial 

cells. Consequently, the stromal cell population also included e. g. endothelial or immune 

cells. Therefore, the immunohistochemical staining should give information about the specific 

spatial distribution of CD45-positive immune cells in the eutopic and ectopic endometrium of 

endometriosis patients and controls.  

Generally, no difference in CD45-positivity between the proliferative or secretory phase or 

between lesions and eutopic endometrium of patients or healthy women was observed 

(figure 26). The amount and distribution of immune cells differed individually, ranging from 

very few to many CD45-positive cells that were either evenly dispersed or formed focal 

accumulations. All these findings were independent from cycle phase, disease state, and 

tissue type. Figure 25 summarizes these findings with 4 representative co-stainings together 

with KI67.  
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Figure 25: Immunohistochemical staining of CD45 (red) and KI67 (brown) in eutopic endometrium of 
patients and controls and in lesions. Representative examples of CD45 and KI67 protein expression in eutopic 
endometrium from (A) the proliferative cycle phase of a healthy women, (B) from the secretory cycle phase of a 
healthy woman, (C) from the proliferative cycle phase of an endometriosis patient, and (D) from the secretory 
cycle phase of a healthy woman. (E) Evaluation of the percentage of CD45-positive cells of all endometrial cells 

from all samples by a trained pathologist. Bars include mean and standard deviation. Original magnification x 100. 

Protein expression of KI67 tended to be higher in eutopic endometrium 

of endometriosis patients and was reduced in lesions. 

Results from the clinical samples indicated that the mRNA levels of the proliferation marker 

KI67 tended to be higher in secretory phase eutopic epithelial cells from endometriosis 

patients in comparison to respective controls from the same cycle phase. Lesions exhibited a 

trend to reduced mRNA expression of KI67 compared to diseased eutopic endometrium.  

The data from the immunohistochemistry experiments with KI67 are summarized in figure 26 

with 4 representative co-stainings together with CD45. The previous observations were 

largely also found in immunohistochemical stainings for all cell types and cycle phases. 

Diseased eutopic endometrium showed a trend of elevated proliferation as indicated by 

increased KI67 protein levels, whereas lesions tended to proliferate less. As expected, the 

proliferative phase exhibited more KI67-positive cells than tissue from the secretory cycle 

phase in general. Thereby, most of the KI67-positive cells occurred in epithelial glandular 

cells than in the surrounding stroma.  
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Figure 26: Immunohistochemical staining of KI67 (brown) and CD45 (red) in eutopic endometrium of 
patients and controls and in lesions. Representative examples of KI67 and CD45 protein expression (A) in 
eutopic endometrium of an endometriosis patient from the proliferative phase, (B) in a lesion from the proliferative 
phase, (C) in eutopic endometrium from the secretory phase of an endometriosis patient, and (D) in a lesion from 
the secretory phase. (E) Evaluation of the percentage of KI67-positive cells of all endometrial cells from all 

samples by a trained pathologist. Bars include mean and standard deviation. Green arrow marks one KI67-
positive glandular cell. Original magnification x 200.  

FZD7 was highly upregulated in lesions compared to eutopic tissue of 

diseased or healthy women from both cycle phases. 

Altogether, immunohistochemical stainings showed that in both cycle phases the protein 

expression of the WNT receptor FZD7 was highly increased in lesions. Eutopic endometrium 

exhibited very low FZD7 protein levels in general. These findings match the results from the 

previous clinical study. Interestingly, FZD7 staining was stronger in glandular cells than in the 

surrounding stroma, while FZD7 mRNA expression was higher in the stromal compartment in 

the clinical study. However, FZD7-staining was observed to vary widely between the different 

individuals. The results are summarized in figure 27 with 4 representative co-staings together 

with CD45.  
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Figure 27: Immunohistochemical staining of FZD7 (brown) and CD45 (red) in eutopic endometrium of 
patients and controls and in lesions. Representative examples of FZD7 protein expression in eutopic 
endometrium (A) from the secretory cycle phase of a healthy woman, and (B) from the secretory cycle phase of 
an endometriosis patient, and in lesions (C) from the secretory cycle phase, and (D) from the proliferative cycle 
phase. (E) Evaluation of the number of FZD7-positive cells of all endometrial cells from all samples by a trained 

pathologist. * indicates p < 0.05. Bars include mean and standard deviation. Original magnification x 200. 

WNT2B protein levels tended to be elevated in diseased eutopic 

endometrium and were further increased in lesions independent from 

cycle phase or cell type. 

The results from the clinical study of generally upregulated WNT2B mRNA levels in 

endometriotic implants tended to be confirmed on protein level in a different patient cohort 

(figure 28). Immunohistochemical stainigs revealed a gradually increase of the WNT ligand 

protein levels from controls to lesions independent from cell type or cycle phase. However, 

TaqMan analyses with the clinical samples exhibited elevated mRNA levels of WNT2B in 

stromal cells of lesions compared to eutopic endometrium of endometriosis patients of both 

cycle phases. Moreover, in contrast to these findings, WNT2B protein levels did not differ 

between stromal or epithelial cells upon immunohistochemical satining. However, also 

WNT2B-staining varied widely between the different individuals.  
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Figure 28: Immunohistochemical staining of WNT2B (brown) and CD45 (red) in eutopic endometrium of 
patients and controls and in lesions. Representative examples of WNT2B protein expression in eutopic 
endometrium (A) from the proliferative cycle phase of a healthy women, and (B) from the proliferative cycle phase 
of an endometriosis patient, and in lesions (C) from the secretory cycle phase, and (D) from the proliferative cycle. 
(E) Evaluation of the number of WNT2B-positive cells of all endometrial cells from all samples by a trained 

pathologist. Bars include mean and standard deviation. Original magnification x 200. 

WNT7A tended to be upregulated in diseased eutopic endometrium 

from the proliferative phase.  

TaqMan analyses of the clinical samples revealed significantly higher WNT7A mRNA 

expression in epithelial cells of lesions compared to diseased eutopic endometrium from the 

secretory phase. These results could not be confirmed with immunohistochemical stainings. 

However, a tendency of increased protein expression of the WNT ligand in the eutopic 

endometrium of endometriosis patients compared to controls or lesions from the proliferative 

cycle phase was observed. Moreover, the clinical study uncovered increased WNT7A mRNA 

expression in epithelial cells, but on protein level WNT7A -positive cells were observed to be 

ubiquitary present in both epithelial and stromal compartments. However, also WNT7A-

staining exhibited a wide variation between the different individuals. The results from the 

immunohistochemical stainings of WNT7A are summarized in figure 29 with 4 representative 

co-stainings.  
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Figure 29: Immunohistochemical staining of WNT7A (brown) and CD45 (red) in eutopic endometrium of 
patients and controls and in lesions. Representative examples of WNT7A protein expression in eutopic 
endometrium (A) from the proliferative cycle phase of a healthy women, (B) from the proliferative cycle phase of 
an endometriosis patient, and (C) from the secretory cycle phase of an endometriosis patient, and in an ectopic 
lesion (D) from the secretory cycle phase. (E) Evaluation of the number of WNT7A-positive cells of all endometrial 

cells from all samples by a trained pathologist. Bars include mean and standard deviation. Original magnification x 
200. 

RSPO1 tended to be generally upregulated in diseased eutopic 

endometrium and lesions. 

Both TaqMan data and immunohistochemical staining exhibited generally upregulated 

RSPO1 levels in lesions (figure 30). Furthermore, in both studies ubiquitous mRNA and 

protein levels of RSPO1 in both epithelial and stromal cells was detected. However, TaqMan 

analyses demonstrated a significant upregulation of RSPO1 in lesions compared to diseased 

eutopic endometrium of the proliferative phase, whereas IHC showed a trend of gradually 

increased RSPO1 protein levels from control to endometriotic tissue from both cycle phases. 

Also RSPO1-staining varied widely between the different individuals.  
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Figure 30: Immunohistochemical staining of RSPO1 (brown) and CD45 (red) in eutopic endometrium of 

patients and controls and in lesions. Representative examples of RSPO1 protein expression in eutopic 

endometrium (A) from the proliferative cycle phase of a healthy women, (B) from the proliferative cycle phase of 

an endometriosis patient, and (C) from the secretory cycle phase of an endometriosis patient and in a lesion (D) 

from the secretory cycle. (E) Evaluation of the number of RSPO1-positive cells of all endometrial cells from all 

samples by a trained pathologist. Bars inlcude mean and standard deviation. Original magnification x 200. 

Technical issues prevented the LGR5 staining to deliver reliable results 

for protein expression.  

For LGR5 two commercial available antibodies [bs-1117R (Bioss Inc.) and ab75732 

(Abcam)] and one by Eva Simon developed antibody (LGR5-11b, Tier 2) against LGR5 were 

tested on endometrial tissue slides obtained from the clinical study. Endometrium ought to be 

positive for LGR5 according to the Human Protein Atlas 

(http://www.proteinatlas.org/ENSG00000139292-LGR5/tissue; last call 26.07.2016) and the 

previous clinical study. However, no antibody could be identified to establish an appropriate 

staining and all examined slides were negative. 

 

  

http://www.proteinatlas.org/ENSG00000139292-LGR5/tissue
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4.2.2 Separation of epithelial and stromal cells of eutopic 

endometrium by FACS 

A FACS protocol was established in parallel to LCM as an alternative methodology to 

separate epithelial and stromal cells to enable subsequent mRNA expression analyses. LCM 

is hampered by the problem that only the entire stromal compartment can be obtained, which 

also includes e.g. endothelial or immune cells. FACS was expected to yield stromal cell 

populations of higher purity by using stromal cell-specific antibodies.  

For that purpose, epithelial and stromal cell lines had to be identified that allowed a cell 

separation via cell-type specific antibodies. Literature or the provider’s claim clearly defined 

the origin of the cell lines used in this study (table 27). Fluorescence staining of intracellular 

epithelial (cytokeratin) or stromal (vimentin) markers was performed to check the cell type of 

the different cell lines. Surprisingly, the cell type of various cell lines was obviously not always 

decisive. AN3-CA for example was obtained from the global biological materials resource 

ATCC who declared this cell line to be of epithelial origin which could not be confirmed in this 

study. On the contrary, the cells were clearly positive for vimentin, the stromal intracellular 

marker. Furthermore, some cell lines were positive for both intracellular markers (e.g. Z11). 

The results from this experiment are summarized in table 27. 

Table 27: Intracellular staining of epithelial (cytokeratin) and stromal (vimentin) markers of the available 
cell lines. The left column indicates the cell type definition based on literature or provider’s claim. Grey = negative 

staining, light orange = slightly positive staining, orange = strong positive staining, IC = isotype control. 

 

 

 

 

 

 

 

 

 

However, these results show that the identification of epithelial and stromal markers for the 

separation of these specific cell types is not trivial, since the cell lines did not always exhibit 

distinct phenotypes. Nevertheless, these cell lines were used to establish the FACS protocol. 

 
Cell line 

Pan-
Cytokeratin 

Vimentin IC IgG1 

E
p

it
h

e
li
a

l 

AN3-CA -1 1 -1 

Z11 1 1 -1 

Z12 1 0 -1 

EM42 1 0 -1 

KLE 1 -1 -1 

Ishikawa 1 0 -1 

ECC1 1 -1 -1 

HEC-1A 1 -1 -1 

RL95-2 1 -1 -1 

Stromal 

22 B -1 1 -1 

ESC -1 1 -1 

MES-SA -1 1 -1 
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For cell separation of stromal and epithelial cells from unfixed fresh tissue by FACS, cell 

specific epithelial and stromal surface antigens had to be identified first. Based on literature 

research various markers were identified (table 28). 

Table 28: Epithelial and stromal surface markers that were further analyzed by FACS for their ability to 
separate epithelial and stromal cells. 
 

 

With the help of the cell lines and appropriate fluorescently labelled antibodies these markers 

were further investigated via FACS for their ability to separate epithelial and stromal cells. 

The fluorescence intensity emerging from every antibody bound to its antigen on the cell 

surface was measured and normalized against the background fluorescence obtained from a 

sample lacking antibodies. This resulting normalized fluorescence intensity gave information 

about the binding efficacy of the antibodies. This procedure was performed for every cell line 

(see table 27) and every marker (see table 28). The results are depicted in figure 31. For the 

most promising epithelial markers MUC1, EpCAM, and CD9 and stromal markers CD90, 

CD10, and CD13 appropriate isotype controls were performed to investigate unspecific 

binding. As can be seen in figure 32, almost no unspecific binding occurred, indicating that 

the antibodies bound their epithelial or stromal antigens specifically.  

 

 

Stromal markers Epithelial markers 

Name Name 

CACNA1A Calcium channel, voltage-dependent ACE Angiotensin I converting enzyme 

CD10 Neprilysin  CD9 
Cell growth-inhibiting gene 2 protein  
or Tetraspanin-29 

CD13 Alanyl aminopeptidase CD74 

HLA class II histocompatibility antigen  
gamma chain 

CD34 
Hematopoietic progenitor  
cell antigen CD34 CD133 Prominin 1 

CD36 Thrombospondin receptor CD166 Activated leukocyte cell adhesion molecule 

CD90 Thymus cell antigen 1 CLDN3 Claudin-3 

CD140B Platelet-derived growth factor receptor E-Cad E-Cadherin 

CD248 Endosialin EpCAM Epithelial cell adhesion molecule 

FAP Fibroblast activation protein 

MUC1 Mucin 1 

TICAM2 Toll-like receptor adaptor molecule 2 

TMEM87A Transmembrane protein 87A 

TMEM97 Transmembrane protein 97 

TMEM9B Transmembrane protein 9B 
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Figure 31: Normalized fluorescence intensity of specific antibodies bound to potential epithelial and 
stromal cell surface markers. Blue bars indicate cell lines defined as epithelial and red bars indicate cell lines 

defined as stromal.  
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Figure 32: Normalized fluorescence intensity of specific antibodies against the the most promising 
potential epithelial and stromal cell surface markers. Blue bars indicate cell lines defined as epithelial and red 

bars indicate cell lines defined as stromal. IC = Isotype control.  

The next step to validate these markers was to isolate cells from murine uteri, to sort them 

via FACS with the help of the selected epithelial and stromal markers, and to stain them with 

anti-cytokeratin or anti-vimentin to examine the success of cell sorting. Due to severe 

technical problems with the isolation and sorting of murine cells in addition to altered 

antibody affinities, these experiments could only give hints about the sorting efficiency of the 

different antibodies (data not shown). However, in this context CD90 and EpCAM were the 

most suitable antigens for this approach. Therefore, they were chosen to test the isolation 

and separation of epithelial and stromal cells from human endometrium.  
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The entire procedure from tissue dissociation, single cell isolation, cell separation, and RNA 

isolation with subsequent quality and quantity examination from unfixed fresh tissue was 

tested exemplarily with a curettage of patient NID55. Subsequently, TaqMan analysis was 

done with epithelial and stromal specific probes against KRT18 and EpCAM and CD90 and 

CD10 respectively to evaluate the purity of the obtained sorted populations. 

As can be seen in figure 33, high quality RNA (RIN ~ 9) could be obtained from the curettage 

of patient NID55 upon cell separation via FACS. Moreover, subsequent TaqMan analysis 

confirmed that the sorted cell populations were of high purity. Anti-EpCAM antibodies were 

able to enrich epithelial cells to a high degree, whereas anti-CD90 antibodies were so 

stringently binding stromal cells that the epithelial cells were entirely eliminated from this 

population. So both antigens were suitable for separating these cell types and the resulting 

high quality RNA would enable proper RNA expression analyses (figure 34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Cell separation of epithelial and stromal cells via FACS using the epithelial marker EpCAM and 
the stromal marker CD90 with subsequent mRNA isolation. A curettage from patient NID55 has been used to 

test this approach. Sample „Prior“ indicates unsorted cells; P = Sorting gate. 
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Figure 34: TaqMan analyses with stromal and epithelial specific probes to evaluate the purity of the cell 
popualtions obtained by FACS. Green bars indicate unsorted cell population (prior), blue bars indicate sorted 

epithelial cells using EpCAM, and red bars indicate sorted stromal cells using CD90. KRT18 and EpCAM were 
used as epithelial and CD90 and CD10 as stromal specific TaqMan probes.  

The purity of FACS separated cell populations was significantly higher than those separated 

by LCM. Generally, the comparison of epithelial or stromal cell populations with the 

unseparated control group or with each other revealed more significant differences between 

the FACS-related samples than between the LCM-related samples. These results indicate 

that FACS is more suitable for the separation of epithelial and stromal cells. Figure 35 

demonstrates these results and significant differences are indicated accordingly. However, 

during the establishment of the method it turned out, that this procedure was only suitable for 

eutopic endometrium, since ectopic samples often contained insufficient cell numbers.  

 
Figure 35: TaqMan analyses with epithelial and stromal specific probes to evaluate the purity of the cell 
populations obtained by FACS or by LCM. Bars include mean and standard deviation. * indicates p < 0.05, ** 

represents p < 0.01, *** indicates p < 0.001 and **** p < 0.0001.  

Finally, the protocol has been successfully established and for the in-depth investigation of 

eutopic samples, FACS is the more favourable approach than LCM. However, since in this 

study also ectopic samples should be investigated, this procedure was not suitable and 

immunohistochemistry was used instead. Nevertheless, this approach has been applied to 
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clinical samples, but the number of recruited samples was not sufficient to enable proper 

statistical analysis (data not shown). 

4.3 Investigation of the WNT pathway in vitro 

Based on the clinical study, WNT candidate genes WNT2B, WNT7A, FZD7, LGR5, and 

RSPO1 were selected for further investigation of their potential involvement in endometriosis. 

TaqMan analyses and immonhistochemistry already confirmed that their mRNA and protein 

levels were increased in lesions. Now, the WNT candidate genes were particularly examined 

in endometrial stromal cells (ESCs) in vitro. This cell line has been once established from a 

human sample internally by Florian Prinz. Their mRNA levels were manipulated through 

siRNA knockdown or overexpression by transfection of expression plasmids. Furthermore, 

cellular perturbation studies were performed by the addition of recombinant WNT ligands to 

WNT receptors expressing ESCs. The impact on WNT activity and its subsequent influence 

on viability, cell death rate, caspase activity, and migration activity were then analyzed.  

4.3.1 Targeting of the selected WNT pathway genes via siRNA 

knockdown, overexpression, or recombinant proteins 

For the WNT receptors LGR5 and FZD7 siRNA knockdown and transfection with an 

overexpression plasmid were performed. Since the WNT ligands WNT2B, WNT7A, and 

RSPO1 are not expressed in ESCs, whereby transfection approaches would not be feasible, 

they were tested through the addition of the respective recombinant proteins to the cells. 

Both receptors and ligands were tested in WNT3A activated cells. However, WNT ligands 

were also examined in non-activated cells, since their own activation potential, synergies with 

the prototypic activator WNT3A, or inhibition should be evaluated.  

First, WNT activity was measured to show that the WNT pathway was affected. In 

conjunction with siRNA knockdown or overexpression experiments, the mRNA expression of 

the respective genes was also examined to calculate the knockdown or overexpression 

efficiency. Afterwards functional assays to quantify viability, proliferation, apoptosis, and 

migration were performed. 

Generally, controls were performed to prove the integrity of the WNT activity assay. Negative 

controls with inoperative mCMV promoters were used to investigate, whether the emerging 

signals were WNT specific. Moreover, either non-targeting (NT) siRNAs, empty backbone 

plasmids, or BSA (for recombinant proteins) were used to evaluate, if the appearing WNT 

signals or functional readouts were specific for the individual candidate genes.  
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LGR5 significantly influenced WNT activity, viability, cell death, caspase 

activity, and migration activity of endometrial stromal cells. 

Upon siRNA knockdown, the WNT activity could be significantly reduced by ~ 59 % or 

increased by ~ 72 % after LGR5 overexpression. RNA expression levels confirmed that 

knockdown and overexpression efficiency were significant. Generally, the negative controls 

had no influence on the WNT activity suggesting that the emerging signals were WNT 

specific. Results of the WNT activity assay with LGR5 are summarized in figure 36. 

After siRNA knockdown of the WNT co-receptor LGR5, a significant reduction of the viability 

and an increase in cell death rate appeared. Overexpression exhibited reverse results. 

Reduced levels of LGR5 also led to significantly increased caspase activity indicating 

activated apoptosis. However, overexpression of LGR5 did not reduce caspase activity 

accordingly (figure 37). The migration activity was not changed significantly but siRNA 

knockdown led to a reduced migration by trend, whereas elevated LGR5 mRNA levels 

tended to result in increased migration of ESCs (figure 38). Non-targeting siRNAs did 

generally not affect functional readouts proposing that observed effects were specifically 

influenced by changing levels of the WNT receptor. 

Altogether these results demonstrate that altered mRNA levels of LGR5 change the WNT 

activity accordingly, resulting in modified viability, cell death rate, and/or apoptosis and 

migration activity in ESCs.  
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Figure 36: WNT activity and knockdown/overexpression efficiency after LGR5 siRNA knockdown or 
overexpression. (A) WNT activity assay. (B) Knockdown and overexpression efficiency. NT = non-targeting, Neg 

= Negative control of WNT activity assay, Empty = empty backbone plasmids. Fold changes (FC) were calculated 
versus (siRNA NT or Empty)/Reporter + WNT3A. Scatter dot plots and bars include mean and standard deviation. 
* indicates p < 0.05, ** represents p < 0.01, *** indicates p < 0.001 and **** p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Results of the cell based assays after siRNA knockdown or overexpression of LGR5. NT = non-

targeting, Empty = empty backbone plasmids. Fold changes (FC) were calculated versus (siNT or 
Empty)/Reporter +WNT3A. Bars include mean and standard deviation. ** represents p < 0.01, *** indicates p < 
0.001 and **** p < 0.0001. 
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Figure 38: Migration activity after siRNA knockdown or overexpression of LGR5. NT = non-targeting, Empty 

= empty backbone plasmids. Fold changes (FC) were calculated in comparision to „siNT/Empty + WNT3A“ 
control. Fold changes (FC) were calculated versus (siNT or Empty)/Reporter +WNT3A. Bars include mean and 
standard deviation. 

Both, siRNA knockdown or overexpression of FZD7 significantly 

decreased WNT activity and influenced viability, cell death, caspase 

activity, and migration activity. 

After siRNA knockdown the WNT activity could be significantly reduced by ~ 63 %. The RNA 

expression did also significantly decrease by ~ 57 % respectively indicating a high 

knockdown efficiency. However, although RNA levels of FZD7 significantly increased by ~ 3 

% upon transfection with the FZD7 expression plasmid, the appropriate WNT activity did not 

raise. On the contrary, the WNT activity significantly dropped by ~ 52 %. Changes of the 

WNT activity were WNT pathway specific as indicated by the negative control (figure 39). 

The viability significantly declined after siRNA knockdown of the WNT receptor FZD7, 

whereas the cell death rate did not exhibit changes, although a significant elevation of the 

caspase activity suggests activated apoptosis. Overexpression of the receptor by 

transfection with the FZD7 expression plasmid resulted in significantly increased viability and 

decreased cell death rate accordingly. But unaltered caspase activity proposes that no 

apoptosis was involved in the reduced cell death rate (figure 40). The migration activity was 

not changed dramatically but siRNA knockdown showed a tendency of reduced migration, 

whereas increased FZD7 mRNA levels resulting from plasmid transfection led to significantly 

increased migration activity (figure 41). Effects on the functional readouts were FZD7 specific 

as indicated by the non-targeting siRNA control.  
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Figure 39: WNT activity and knockdown/overexpression efficiency after FZD7 siRNA knockdown or 
overexpression. (A) WNT activity assay. (B) Knockdown and overexpression efficiency. NT = non-targeting, Neg 

= Negative control of WNT activity assay. Fold changes (FC) were calculated versus (siRNA NT or 
Empty)/Reporter +WNT3A. Scatter dot plots and bars include mean and standard deviation ** represents p < 0.01 
and **** p < 0.0001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Results of cell based assays after siRNA knockdown or overexpression of FZD7. NT = non-

targeting, Empty = empty backbone plasmids. Fold changes (FC) were calculated versus (siNT or 
Empty)/Reporter +WNT3A. Bars include mean and standard deviation. ** represents p < 0.01, *** indicates p < 
0.001 and **** p < 0.0001. 

 



RESULTS 

90 
 

 

 

 

 

 

 
 
 
 

Figure 41: Migration activity after siRNA knockdown or overexpression of FZD7. NT = non-targeting, Empty 

= empty backbone plasmids. Fold changes (FC) were calculated in comparision to „siNT/Empty + WNT3A“ 
control. Fold changes (FC) were calculated versus (siNT or Empty)/Reporter +WNT3A. Bars include mean and 
standard deviation. * indicates p < 0.05. 

RSPO1 had no significant effects on WNT activity, viability, cell death 

rate, and caspase or migration activity. 

Interestingly, the WNT ligand alone was not able to elevate WNT activity, but in combination 

with WNT3A, the WNT pathway was significantly increased by ~ 60 % compared to the 

“Reporter + WNT3A” control, which marked 100 % WNT activity. But if samples “BSA + 

WNT3A” and “RSPO1 + WNT3A” are compared, no significant difference in WNT activity can 

be noticed, although the WNT activity of the BSA sample does not significantly differ from 

that of the sample “Reporter + WNT3A”. In general, the negative control indicates that 

emerging effects on the WNT activity assay were WNT pathway specific. The results from the 

WNT activity assay are demonstrated in figure 42. 

Generally, in the experiments with recombinant proteins it was observed, that there was only 

a tendency of increased viability of ESCs after WNT3A addition. That would suggest just a 

minor role of the activated WNT pathway in the viability of endometrial cells. All other 

functional readouts regarding cell death rate or caspase and migration activity were not 

altered through WNT3A activation. However, BSA affected viability and migration activity 

positively. The viability was elevated by BSA in both WNT-activated and non-activated ESCs. 

Regarding the migration, BSA alone was not able to have an effect, whereas in combination 

with WNT3A, BSA significantly increased the migration activity of ESCs. These observations 

suggest that viability might be influenced by BSA in a WNT-independent manner, whereas 

the migration activity induced by BSA depended on WNT signaling. However, effects on 

viability by BSA were little and not significant, while the shift in migration activity after BSA 

treatment was distinct and significant.  
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RSPO1 treatment did not change cell viability. Eventually, in combination with WNT3A, cells 

tended to show an enhanced viability level comparable to that of BSA controls. But since the 

viability of WNT-activated cells did not vary between BSA or RSPO1 treatment, this effect is 

not of relevance. Only in non-activated ESCs, a significant increase of the viability upon 

RSPO1 treatment compared to BSA controls was demonstrated (figure 42).  

Concerning the cell death rate, caspase or migration activity, no relevant effects could be 

observed. Although the cell death rate and caspase activity were slightly but significantly 

decreased upon RSPO1 addition in WNT-activated cells in comparison to the sample 

“Reporter + WNT3A”, no distinction to the respective BSA control was demonstrated. The 

migration activity could be significantly enhanced by ~ 60 % after RSPO1 and 30 % after 

BSA treatment in WNT3A-activated cells. Nonetheless, the variation in migration activity 

between these two proteins was not significant. In non-activated cells no alterations at all 

were exhibited in any of these functions. All these findings are illustrated in figures 42 and 

43. 

 

Figure 42: WNT activity and results of the cell based assays after treatment with recombinant RSPO1. (A) 
WNT activity assay. (B) Cell based assays measuring viability, cell death rate, and caspase activity. Neg = 

Negative control of WNT activity assay. Fold changes (FC) were calculated versus „Reporter +WNT3A“ and 
significant results are indicated through grey stars. Black horizontal bars indicate differences between respective 
samples. Black stars present significant differences. Scatter dot plots and bars include mean and standard 
deviation. * indicates p < 0.05, ** represents p < 0.01, *** indicates p < 0.001 and **** p < 0.0001, ns = not 
significant. 
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Figure 43: The migration activity of ESCs after 
treatment with recombinant RSPO1. Fold 

changes (FC) were calculated versus „Reporter 
+WNT3A“ and significant results are indicated 
through grey stars. Black horizontal bars indicate 
differences between respective samples. Bars 
include mean and standard deviation. * indicates p 
< 0.05 and ** p < 0.01, ns = not significant. 

 

To sum up, although WNT activity, cell death rate, and caspase and migration activity could 

be significantly altered through the ligand in WNT3A-activated cells in comparison to 

“Reporter + WNT3A” samples, the direct relation to BSA controls revealed that these effects 

were not relevant. 

WNT2B significantly reduced WNT signaling, viability, and migration 

activity but did not show pronounced effects on cell death or caspase 

activity. 

Surprisingly, addition of recombinant WNT2B did significantly decrease WNT signaling by ~ 

25 % in WNT-activated cells compared to “Reporter + WNT3A”, which marked 100 % 

activity. Even in relation to “BSA + WNT3A”, the reduction is still significant and as indicated 

by the negative control, WNT pathway specific. The addition of the WNT ligand alone was 

not able to affect the WNT activity. In figure 44 the resulting WNT activity upon WNT2B 

treatment is illustrated. 

Treatment with WNT2B did not only show a significant decrease of viability and migration 

activity when compared to “Reporter + WNT3A” but also in relation to BSA controls in cells 

activated with WNT3A, indicating relevant findings. These alterations might be a 

consequence of the reduced WNT activity. In non-activated ESCs no significant observations 

were made. That would mean that the drop in viability and migration activity upon WNT2B 

addition was WNT pathway-dependent. Interestingly, enhanced cell death rate and caspase 

activity should follow reduced viability, but that could not be demonstrated in this experiment 

in either WNT-activated or non-activated cells (figures 44 and 45).  
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Figure 44: WNT activity and results of the cell based assays after treatment with recombinant WNT2B. (A) 
WNT activity assay. (B) Cell based assays measuring viability, cell death rate, and caspase activity. Neg = 

Negative control of WNT activity assay. Fold changes (FC) were calculated versus “Reporter +WNT3A” and 
significant results are indicated through grey stars. Black horizontal bars indicate differences between respective 
samples. Black stars present significant differences. Scatter dot plots and bars include mean and standard 
deviation. * indicates p < 0.05, ** represents p < 0.01, *** indicates p < 0.001 and **** p < 0.0001, ns = not 
significant. 

 

 

 

 

 

 

 

Figure 45: The migration activity of ESCs after 
treatment with recombinant WNT2B. Fold 

changes (FC) were calculated versus „Reporter 
+WNT3A“ and significant results are indicated 
through grey stars. Black horizontal bars indicate 
differences between respective samples. Black 
stars present significant differences. Bars include 
mean and standard deviation. * indicates p < 0.05, 
** represents p < 0.01 and *** p < 0.001, ns = not 
significant. 

WNT7A dramatically decreased viability, whereas no significant effects 

on WNT activity, cell death rate, and caspase and migration activity were 

observed. 

The addition of the recombinant protein alone was not able to affect WNT activity. In 

combination with WNT3A, the WNT pathway was significantly enhanced by ~ 34 % 

compared to the sample “Reporter + WNT3A”, marking 100 % WNT activity. But in relation to 

the BSA control of WNT-activated cells, the difference was not significant and therefore not 
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relevant anymore. Figure 46 illustrates the resulting WNT activity after addition of the WNT 

ligand. 

However, after WNT7A treatment a dramatically decrease by ~ 36 % in the viability of WNT-

activated and non-activated cells was observed, which was still significant in comparison to 

respective BSA controls. Interestingly, significantly reduced cell death rate and/or caspase 

activity and increased migration activity were not observed in relation to BSA controls but in 

comparison to “Reporter + WNT3A” samples (figures 46 and 47).  

In summary, only the viability of ESCs was affected through treatment with the WNT ligand, 

but in a WNT independent manner. Moreover, subsequent elevated cell death rate and 

caspase activity were absent, indicating that no apoptosis or cell death in general occurred.  

 
Figure 46: WNT activity and results of the cell based assays after treatment with recombinant WNT7A. (A) 
WNT activity assay. (B) Cell based assays measuring viability, cell death rate, and caspase activity. Neg = 

Negative control of WNT activity assay. Fold changes (FC) were calculated versus “Reporter +WNT3A” and 
significant results are indicated through grey stars. Black horizontal bars indicate differences between respective 
samples. Black stars present significant differences. Scatter dot plots and bars include mean and standard 
deviation. * indicates p < 0.05, ** represents p < 0.01, *** indicates p < 0.001 and **** p < 0.0001, ns = not 
significant. 
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Figure 47: The migration activity of ESCs after 
treatment with recombinant WNT7A. Fold 

changes (FC) were calculated versus „Reporter 
+WNT3A“ and significant results are indicated 
through grey stars. Black horizontal bars indicate 
differences between respective samples. Bars 
include mean and standard deviation. * indicates p 
< 0.05 and ** p < 0.01, ns = not significant. 

With the WNT activity assay and the functional assays also natural WNT inhibitors SFRP1, 

SFRP2, SFRP4 and WIF1 were investigated but these experiments did not reveal striking 

findings (data not shown). 
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4.3.2 Screening of small molecules revealed activity of C59, NVP-

TNKS656, ICG-001 and PKF115-584 in endometrial cells in vitro. 

So far, this study revealed that LGR5 is the most promising candidate, since altered mRNA 

expression showed large effects on WNT activity, viability, cell death, caspase activity, and 

migration activity of ESCs. These are all mechanisms that might also play a role in lesion 

formation in endometriosis. Moreover, as a co-receptor, LGR5 marks an important interface 

within the WNT pathway by dramatically influencing WNT activity. Due to the lack of LGR5 

specific antibodies or small molecules, the protein could not be specifically targeted in vivo. 

LGR5 null mice exhibit 100% neonatal lethality characterized by gastrointestinal tract dilation 

[255]. Conditional Lgr5 knockout mice in the female reproductive organs by progesterone 

receptor-Cre have been described before, but were not available [256]. Consequently, 

various compounds, that influence WNT signaling on different levels, were screened in vitro 

in ESCs to identify chemicals that would allow further investigation of the WNT pathway in 

vitro and in vivo later on. Table 29 lists all small molecules that were tested.  

Table 29: List of all small molecules that were tested in vitro in ESCs.  

Molecule Target 
Effect on 

target 

Effect on 

signaling 
Reference 

IWP PORCN inhibits inhibits Chen et al., 2009 [205] 

C59 PORCN inhibits inhibits Proffitt et al., 2013 [206] 

WAY-316606 SFRP1 inhibits activates Bodine et al., 2009 [208] 

XAV939 TNKS1/2 inhibits inhibits Huang et al., 2009 [128] 

NVP-TNKS656 TNKS2 inhibits inhibits Shultz et al., 2013 [209] 

IWR AXIN2 activates inhibits Chen et al., 2009 [205] 

SB-216763 GSK3β inhibits activates Coghlan et al., 2000 [214] 

IQ1 PP2A activates activates Miyabayashi et al., 2007 [211] 

QS11 ARFGAP1 activates activates Zhang et al., 2007 [212] 

ICG-001 CBP inhibits inhibits Emami et al., 2004 [213] 

PKF115-584 
TCF/LEF/ 

β-catenin 
inhibits inhibits Lepourcelet et al., 2004 [204] 
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All compounds were found by literature review and tested in the WNT activity assay first to 

evaluate their effects on the WNT pathway. 

The controls proved the integrity of the WNT activity assay. LiCl is known to further facilitate 

WNT signaling, but was not able to initiate the WNT pathway on its own. The highest 

concentration of DMSO used in the compound screen (10 µM) did not affect WNT activity 

suggesting that the effects observed in the single assays were specific to the small 

molecules. Moreover, negative controls, which contained an inoperative mCMV promoter, 

demonstrated that the emerging signals were indeed WNT specific (figure 48). 

For the screening of the WNT inhibitors, WNT signaling had to be activated through WNT3A 

to investigate their inhibitory potential. WNT inhibitors tested included IWP, C59, XAV939, 

NVP-TNKS656, IWR, ICG-001, and PKF115-584. Most of the compounds were able to 

effectively inhibit WNT signaling. The concentration of 1 µM of IWP was able to significantly 

decrease WNT activity by ~ 64 %, whereas the treatment with a higher concentration of the 

compound did only show a tendency of reduced WNT signaling by ~ 36 %. The 

concentration of 1 µM of XAV939 only slightly decreased WNT signaling by ~ 2.5 %. 

Surprisingly, 10 µM of XAV939 significantly increased the WNT pathway by ~ 39 %. The 

concentration of 10 µM of ICG-001 or PKF115-584 significantly decreased the WNT pathway 

by ~ 86 % or ~ 96 % accordingly. The tankyrase inhibitor NVP-TNKS-656, IWR, and C59 

exhibited WNT inhibition in a dose-dependent manner. The concentration of 1 µM or 5 µM of 

NVP-TNKS-656 resulted in a decrease of ~ 32 % and ~ 41 % respectively. For IWR, 1 µM of 

the small molecule significantly inhibited WNT signaling by ~ 71 % and 10 µM increased the 

effect to 85 % WNT inhibition. 10 nM of C59 by trend reduced WNT signaling by ~ 4 %, 100 

nM showed already significantly decerased WNT activity by ~ 48 % and 1 µM even increased 

the effect to 97 % WNT inhibition. The results of the screening of WNT inhibitors in the WNT 

activity assay are summarized in figure 48. 

WNT activators were tested in both WNT-activated and non-activated cells to examine their 

own activating potential and eventual synergistic or inhibitory effects. Tested WNT activators 

included WAY-3166061, SB-216763, IQ1, and QS11. Generally, only few WNT activators 

were able to effectively initiate or increase WNT signaling. Some of them even reduced the 

WNT activity. Except for WAY-3166061 and SB-216763 at concentrations of 100 nM or 10 

µM respectively, no other compound could initiate the WNT pathway. In combination with 

WNT3A and depending on the concentration, the assay measured either a trend of or 

significantly elevated or reduced WNT activity. WAY-3166061 decreased WNT signaling by ~ 

15 % (10 nM) or significantly lowered WNT activity by ~ 85 % (100 nM) or 50 % (1 µM). SB-

216763 only tended to enhance WNT signaling by ~ 288 % at 10 µM but at 1 µM the 

compound even inhibited the WNT pathway by ~ 31 %. Also IQ1 exhibited a WNT reduction 
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of ~ 17 % and ~ 76 % at 1 µM and 10 µM respectively. QS11 demonstrated a significantly 

decrease of WNT activity by ~ 65 % at lower concentration (2 µM) and a tendency of 

elevated WNT signaling by ~ 34 % at higher concentration (10 µM). The screening of WNT 

activators in the WNT activity assay is demonstrated in figure 49. 

 
Figure 48: WNT activity after the treatment with controls and selected WNT inhibitors. Fold changes (FC) 

were calculated versus “Reporter +WNT3A” and significant results are indicated through grey stars. Scatter dot 
plots include mean and standard deviation. * indicates p < 0.05, ** represents p < 0.01 and *** p < 0.001. 
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Figure 49: WNT activity after the treatment with selected WNT activators. Fold changes (FC) were calculated 

versus “Reporter +WNT3A” and significant results are indicated through grey stars. Scatter dot plos include mean 
and standard deviation. * indicates p < 0.05, ** represents p < 0.01 and *** p < 0.001. 

In summary only few compounds exhibited appropriate effects on WNT activity, restricting the 

number of suitable small molecules for potential in vivo usage.  

4.3.3 Dose response experiments revealed NVP-TNKS656 for the 

potential use in vivo. 

Due to their promising inhibitory effects on the WNT pathway, C59, NVP-TNKS656, ICG-001, 

and PKF115-584 were further investigated in vitro. Dose response experiments were 

performed using WNT-activated ESCs to determine the half maximal inhibitory concentration 

(IC50), which represents the concentration of the compound, which is required to inhibit 50 % 

of a maximum effect (figure 50). From the activators no small molecule was selected for 

further examination due no favourable activating effects. 
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Figure 50: Dose response experiments with WNT-activated ESCs and small molecule inhibitors C59, NVP-
TNKS656, ICG-001 and PKF115-584. IC50 = maximal inhibitory concentration. 

From the dose response experiments an IC50 of 1.5 µM for C59, 6.3 nM for NVP-TNKS656, 

0.9 µM for ICG-001, and 2.9 µM for PKF115-586 was calculated.  

Based on the literature, all compounds have already been applied in vivo without showing 

high toxicity. C59 blocked the progression of mammary tumors in MMTV-WNT1 transgenic 

mice while downregulating Wnt/β-catenin target genes without exhibiting apparent toxicity 

[206]. NVP-TNKS656 demonstrated more robust apoptosis and antitumor activity in a 

xenograft model with SW480 colon cancer cells in female athymic nude mice [210]. ICG-001 

was efficacious in Min mouse and nude mouse xenograft models of colon cancer by initiating 

programmed cell death through downregulation of survivin, which inhibits apoptosis [213]. 

PKF115-584 for instance was tested in a chronic lymphatic leukaemia (CLL)-like xenograft 

model in nude mice and tumor inhibition of 57% was observed when compared with vehicle-

treated controls and the intervention was well tolerated [257]. 

However, except for NVP-TNKS656, the IC50 values detected were relatively high, rising the 

concerns, that for visible effects in an in vivo endometriosis model, required doses of the 

compounds would be high and might therefore cause severe side effects. Furthermore, C59 

as a PORCN inhibitor blocks WNT secretion. ESCs are not able to secrete WNTs in an 

autocrine fashion, so there is no basis for WNT inhibition at this level in these cells. 

Consequently, the small molecule should not show any effects in these cells. Indeed, dose 

response-dependent inhibition of WNT activity by C59 was observed, suggesting, that these 

effects might be unspecific. But its derivative LGK974, which has the same mechanism of 

action, was more specific since it did not show any effects in ESCs (data not shown). 

Moreover, it has been already successfully used in several in vivo studies at well-tolerated 

doses [207, 235]. It demonstrated induced tumor regression in a MMTV-WNT1 murine breast 

cancer model and inhibition of proliferation and induction of differentiation of RNF43-mutant 

pancreatic adenocarcinoma xenograft models [207, 235].  
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4.3.4 NVP-TNKS656 significantly reduced viability, cell death rate and 

migration activity in endometrial cells in vitro. 

Based on the results from the dose response experiments and the consequent 

considerations, NVP-TNKS656 was selected for further examination in vitro in terms of 

viability, cell death, caspase, and migration activity before its usage in vivo. LGK974 has 

been also shortlisted but could be not pre-tested in ESCs. It acts on PORCN consequently 

blocking WNT secretion but ESCs are not able to secrete WNTs naturally. 

The WNT pathway activity in WNT-activated cells was significantly decreased by ~ 36 % 

upon NVP-TNKS656 treatment in comparison to the respective DMSO control. As indicated 

by the negative control, this effect was WNT pathway specific. As expected, the compound 

alone was not able to affect WNT signaling in non-activated ESCs. DMSO alone could also 

not influence the WNT pathway (figure 51). 

After the treatment of WNT-activated ESCs with the small molecule, the viability significantly 

decreased by ~ 22 % in relation to the appropriate DMSO sample as illustrated in figure 51. 

Consequently, the cell death rate significantly increased by ~ 19 % respectively in WNT-

activated cells. Interestingly, also in non-activated cells the viability dropped by ~ 20 % 

compared to DMSO upon NVP-TNKS656 treatment. Moreover, the caspase activity did not 

reveal any alterations through any of the conditions suggesting that programmed cell death is 

not responsible for the raised cell death rate. 

The migration activity of WNT activated and non-activated cells was significantly decreased 

by ~ 28 % and 33 % respectively through the tankyrase inhibitor NVP-TNKS656 in relation to 

DMSO controls (figure 52).  

To sum up, NVP-TNKS656 had an impact on WNT activity and viability, cell death rate, and 

migration activity respectively. Interestingly, the caspase activity did not change suggesting 

that apoptosis was not involved in increased cell death.  
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Figure 51: WNT activity and results of the cell based assays after treatment with NVP-TNKS656. (A) WNT 
activity assay. (B) Cell based assays measuring viability, cell death rate, and caspase activity. Neg = Negative 

control of WNT activity assay. Fold changes (FC) were calculated versus „Reporter +WNT3A“ and significant 
results are indicated through grey stars. Black stars indicate significant differences between respective samples. 
Scatter dot plots and bars include mean and standard deviation.* indicates p < 0.05, ** represents p < 0.01, *** 
indicates p < 0.001 and **** p < 0.0001, ns = not significant. 
 

 

 

 

 

 

 

 

 

Figure 52: The migration activity of ESCs after the 
treatment with NVP-TNKS656. Fold changes (FC) 

were calculated versus „Reporter +WNT3A“ and 
significant results are indicated through grey stars. 
Black stars indicate significant differences between 
respective samples. Bars include mean and standard 
deviation. * indicates p < 0.05 and ** represents p < 
0.01. 
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4.4 Investigation of the WNT pathway in vivo  

Based on the in vitro results, NVP-TNKS656 and LGK974 were chosen for the in vivo 

experiment. However, a pilot study with both small molecules in mice revealed that NVP-

TNKS5656 treatment caused a high mortality. Therefore further in vivo experiments with this 

compound were not reasonable (data not shown). Nevertheless, the pilot study with LGK974 

was promising allowing a final in vivo experiment with the mice inoculation model for 

endometriosis. An advantage of the PORCN inhibitor LGK974 is that it acts further upstream 

within the WNT pathway than the tankyrase inhibitor NVP-TNKS656 enabling a broader 

inhibition of WNT signaling. Moreover, since it blocks WNT secretion, it also affects the WNT 

pathway further upstream than the WNT receptors and ligands LGR5, FZD7, WNT2B, 

WNT7A, and RSPO1. Consequently, potential observed effects might be also attained in a 

similar way through inhibition of these WNT candidate genes. 

Mice were inoculated with 12 uterine fragments on day 0 and treated with 5 mg/kg LGK974 

or vehicle twice a day by oral gavage, as described in chapter 3.5.2. Body weight was 

measured once a week and mice were sacrificed 7 or 14 days after inoculation. Number and 

size of lesions were measured to evaluate disease burden. Blood samples taken on the day 

of sacrifice should give information about plasma concentrations of the compound. 

Furthermore, mRNA expression of the selected WNT candidate genes, additional WNT 

associated genes and genes without connection to WNT siganling was investigated due to 

their described or potential role in endometriosis (e.g. hormone receptors). Moreover, protein 

levels of β-catenin were also measured to evaluate β-catenin degradation indicating WNT 

activity.  

4.4.1 LGK974 significantly reduced disease burden in the mice 

inoculation model in vivo. 

Upon 7 days of treatment with LGK974, the lesion number tended to be reduced, although 

the morphology of the lesions did not vary between the control and the compound group. On 

day 14, lesion number as well as total lesion size significantly decreased by ~ 47 % and 71 

% respectively upon LGK974 treatment. Also the morphology of the lesions did change. 

While lesions from the control group were big and cystic, samples from the compound group 

were small and degraded. Consequently, the disease burden could be reduced through WNT 

pathway inhibition.  

Figure 53 depicts lesions taken form day 7 and 14 of treatment with LGK974. Three 

representative samples were chosen for each condition. Lesion number and total lesion sizes 

on day 7 and 14 are demonstrated in figure 54. 
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Figure 53: Lesions taken 7 or 14 days after endometrium challenge of the compound and the vehicle 
group. (A) Lesions taken on day 7 after treatment. (B) Lesions taken on day 14 after treatment. Samples “A” 

were collected from the vehicle group and “B” from the compound group. Samples to the left of the line indicate 
loose lesions, and samples to the right of the line present adherent lesions. 

 
Figure 54: Lesion number and total lesion size after 7 or 14 days of treatment with LGK974 or the vehicle. 

D = days. Black stars indicate significant differences between respective samples. Bars include mean and 
standard deviation. * indicates p < 0.05 and ** represents p < 0.01. 

The molecular mode of action from the in vivo study was also examined. Generally, 

expression levels of the direct WNT target gene Axin2 demonstrated that it was 

downregulated upon LGK974 treatment. In the uterus, already after 7 days the Axin2 mRNA 

expression was significantly reduced compared to controls. But after 14 days an increase in 

variability of Axin2 expression did not allow to measure significant effects anymore, though 

the degree of downregulation was comparable to day 7. In lesions, Axin2 mRNA expression 

showed a trend of reduction after 7 days and a significant reduction after 14 days in relation 
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to the vehicle group suggesting that the WNT pathway might be generally inhibited in 

implants through LGK974 (figure 55B).  

The overall β-catenin protein levels were expected to drop upon WNT inhibition. Protein 

isolation was only possible from the uteri and some samples had to be excluded due to 

degradtion. However, protein levels of overall β-catenin did not change in the uteri at either 

day 7 or day 14 after treatment with LGK974 (figure 55A).  

Plasma concentrations of LGK974 proved that the levels were sufficient to assume that the 

observed effects could indeed result from drug action. An IC50 value of 0.4 nM had been 

previously determined by Liu at al. in a relative luciferase WNT co-culture assay [207]. Since 

ESCs do not secrete WNT3A in an autocrine fashion, the IC50 could not be investigated in a 

comparable way in this study (figure 55C). 

The compound was well tolerated as illustrate in figure 56. Although the mice lost body 

weight of about 5 % compared to the vehicle group at day 5 of the treatment, they entirely 

recovered and expressed high vitality afterwards.  

 
Figure 55: Molecular mode of action of LGK974 in the mice inoculation model for endometriosis. (A) 
Protein levels of overall β-catenin. (B) Axin2 mRNA expression. (C) Plasma concentrations of LGK974. The 

cellular IC50 value of 0.4 nM was taken from the literature [207]. d = days, samples “A”, were collected from the 
vehicle group and “B” from the compound group. Black stars indicate significant differences between respective 
samples. Bars include mean and standard deviation. * indicates p < 0.05 and ** represents p < 0.01. 
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Figure 56: The body weight of mice on day 5 
and 13 after treatment with LGK974 or the 
vehicle.  

 

4.4.2 After 14 days of treatment with LGK974, the mRNA expression of 

many WNT pathway genes and genes that are involved in 

migration or vascularization were reduced. 

With the ex vivo samples TaqMan analyses were performed for WNT pathway genes and 

also for genes that are connected to mechanisms such as migration, proliferation, or 

apoptosis which might also play a role in lesion formation in endometriosis. Table 30 lists all 

genes, of which the mRNA expression was anaylzed.  

Table 30: Annotations of 29 genes measured by TaqMan in the ex vivo samples. All genes highlighted in 

orange are WNT pathway genes, which are either directly or indirectly regulated through WNT signaling according 
to IPA. If stated, they contain the TCF/LEF binding motif and are direct target genes of WNT signaling. IPA = 
Ingenuity Pathway Analysis, ECM = Extracellular matrix, EMT = Epithelial mesenchymal transition, TF = 
Transcription factor. 

Gene Full name Annotation 

Bax Bcl-2-like protein 4 Apoptosis [236] 

Bcl2 B-cell lymphoma 2 Anti-apoptosis [237] 

Cav1 Caveolin-1 
Metastatic growth (inhibition anoikis) 
[238] 

Cdh1 E-Cadherin 
Adhesion [258], direct WNT target gene 
(inverse regulated) [138, 139] 

Cdk1 Cyclin D1 
Proliferation [259], direct WNT target 
gene [137] 

Dkk3 
Dickkopf WNT signaling pathway 

inhibitor 3 
WNT inhibitor by disruption FZD/WNT 
interaction [239] 

Esr1 E2 receptor 1 Hormone receptor 

Esr2 E2 receptor 2 Hormone receptor 

Fgf9 Fibroblast growth factor 9 Proliferation, cell survival [240] 

Fzd7 Frizzled-7 
WNT receptor [241], direct WNT target 
gene [149] 

Hif1a Hypoxia-inducible factor 1-alpha Angiogenesis [260] 

Lgr5 
Leucine-rich repeat-containing 
G-protein coupled receptor 5 

WNT coreceptor, direct WNT target 
gene [150, 242] 

Lrp1 
Low density lipoprotein receptor-

related protein 1 
WNT inhibitor by interacting with FZD1 
[243], migration  [244, 245] 
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Mapk10 
Mitogen-activated protein kinase 

10 
Proliferation [246] 

Mki67 Marker of proliferation Ki-67 Proliferation [247] 

Mmp2 matrix metalloproteinase 2 
ECM degradation  migration [248], 
direct WNT target gene [142] 

Mmp9 matrix metalloproteinase 3 
ECM degradation  migration [249], 
direct WNT target gene [142] 

Pgr Progesterone receptor Hormone receptor 

Pou5f1/Oct4 
Octamer-binding transcription 

factor 4 
Stem cell self-renewal [261], direct 
WNT target gene [262] 

Rspo1 R-spondin 1 WNT ligand [250] 

Sfrp1 
Secreted frizzled-related protein 

1 
WNT inhibitor by binding WNTs [251] 

Sfrp2 
Secreted frizzled-related protein 

2 

WNT inhibitor by binding WNTs [251], 
eventually direct WNT target gene 
[151] 

Snai2 Snail family zinc finger 1 Represses Cdh1  Migration [263] 

Tbx18 T-Box 18 TF  cell differentiation [253] 

Vcam1 Vascular cell adhesion protein 1 Adhesion immune cells[264] 

Vegfa 
Vascular endothelial growth 

factor A 
Angiogenesis [265], direct WNT target 
gene [144] 

Wif1 Wnt inhibitory factor 1 WNT inhibitor by binding WNTs [251] 

Wnt2b 
Wingless-type MMTV integration 

site family, member 2B 
WNT ligand [254] 

Wnt7a 
Wingless-type MMTV integration 

site family, member 7A 
WNT ligand [254] 

 

LGK974 versus vehicle after 7 and 14 days of treatment 

The gene expression of uteri and lesions from the in vivo experiment were measured via 

TaqMan and compared between treatment and control group after 7 and 14 days.  

After 7 days the uteri of mice treated with the small molecule exhibited many WNT pathway 

genes that were downregulated. One of them is the direct WNT target gene and pathway 

member Lgr5. Further genes were Sfrp2 and Wif1, which are involved in WNT pathway 

inhibition, Cdk1 that triggers proliferation, Vegfa, which is responsible for angiogenesis and 

the transcription factor Tbx18 that plays a role in cell differentiation. Mki67 and Pgr are not 

WNT pathway genes, but they were also downregulated in the uteri of the compound group. 

Interestingly, after 14 days the gene expression of the uteri recovered and normalized. 

Except for Cdh1, compound and vehicle group did not differ in mRNA expression anymore. 

Cdh1 was significantly upregulated in the uteri form mice treated with LGK974. It is a direct 

target gene and inversely regulated by the WNT pathway. Cdh1 encodes E-cadherin, which 

plays a role in adhesion. Figure 57 and table 31 summarize these results. 

In lesions, the direct target gene Lgr5 was 100 fold downregulated after 7 and 14 days of 

treatment with LGK974. In addition, after 7 days the WNT inhibitor Wif1 exhibited a 100 fold 

reduction in mRNA expression. Moreover, the non-WNT associated genes Bcl2, which has 

antiapoptotic functions, and Esr2 showed a tendency of decreased mRNA levels upon WNT 



RESULTS 

108 
 

inhibition. After 14 days the gene expression pattern of lesions changed. Except for Lgr5, 

different genes were deregulated when compared to the samples after 7 days of treatment. 

The WNT pathway genes Rspo1, Sfrp2, Sfrp1, and Cdk1 were downregulated in the 

compound group. Sfrp1 and Sfrp2 are WNT inhibitors and decreased mRNA levels of Cdk1 

suggest reduced proliferation in implants upon WNT inhibition. Moreover, Pgr mRNA, which 

is not a WNT pathway gene, was also almost significantly decreased in ectopic tissue upon 

LGK974 treatment for 14 days (figure 58 and table 32). 

Altogether, many WNT pathway or non-WNT associated genes were downregulated upon 

WNT inhibition. After 7 days of treatment the effect seemed to be higher on uteri than on 

lesions, since more genes were deregulated. Interestingly, after 14 days the gene expression 

pattern changed. In the uteri, the mRNA expression normalized, so that mRNA levels did not 

strongly differ between treatment and control group. By contrast, the number of 

downregulated genes in lesions of the compound group increased. However, except for Lgr5 

different genes were deregulated in lesions after 14 days of treatment.  
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Figure 57: TaqMan mRNA expression analysis of ex vivo uteri after 7 and 14 days of treatment with 
LGK974 compared to the vehicle group. Blue bars indicate vehicle group and red bars indicate compound 

group. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. d = days. * indicates 
p < 0.05 and ** represents p < 0.01. 
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Table 31: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of ex vivo uteri 
after 7 and 14 days of treatment with LGK974 compared to the vehicle group. Red highlighted rows indicate 

significant results and orange highlighted rows indicate mRNA expression differences with trend to significance. 

 

 

 

 

 

 

 

 

Gene FC p-Value Gene FC p-Value

Wnt2b 1.10 0.841 Wnt2b 0.99 0.841

Wnt7a 0.87 0.548 Wnt7a 0.98 0.841

Lgr5 0.26 0.008 Lgr5 0.08 0.421

Fzd7 1.07 0.841 Fzd7 0.71 0.691

Rspo1 1.15 0.999 Rspo1 1.76 0.310

Dkk3 0.74 0.222 Dkk3 1.03 0.999

Lrp1 0.94 0.999 Lrp1 0.84 0.691

Wif1 0.32 0.056 Wif1 0.12 0.548

Fgf9 0.91 0.691 Fgf9 1.65 0.548

Mapk10 0.88 0.548 Mapk10 1.13 0.999

Sfrp2 0.36 0.008 Sfrp2 0.48 0.691

Tbx18 0.66 0.008 Tbx18 0.37 0.691

Cav1 0.85 0.548 Cav1 1.16 0.881

Sfrp1 0.81 0.999 Sfrp1 1.05 0.999

Bcl2 0.75 0.135 Bcl2 1.39 0.691

Bax 0.85 0.421 Bax 0.74 0.691

Mmp2 0.77 0.421 Mmp2 0.79 0.841

Mmp9 0.71 0.548 Mmp9 0.91 0.841

Esr1 1.02 0.889 Esr1 0.93 0.841

Esr2 2.05 0.310 Esr2 1.16 0.999

Cdh1 0.90 0.151 Cdh1 1.79 0.032

Mki67 0.14 0.008 Mki67 0.55 0.841

Pou5f1 1.62 0.651 Pou5f1 0.76 0.999

Snai2 1.24 0.548 Snai2 1.32 0.548

Pgr 0.61 0.095 Pgr 0.80 0.691

Cdk1 0.14 0.008 Cdk1 0.52 0.841

Vcam1 0.82 0.286 Vcam1 1.63 0.151

Hif1a 0.82 0.310 Hif1a 0.61 0.548

Vegfa 0.49 0.016 Vegfa 0.72 0.691

7 days 14 days

LGK974 uterus vs. vehicle uterus
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Figure 58: TaqMan mRNA expression analysis of ex vivo lesions after 7 and 14 days of treatment with 
LGK974 compared to the vehicle group. Blue bars indicate vehicle group and red bars indicate compound 

group. Box boundaries: 25th and 75th percentiles; solid line: median; whiskers: Min to Max. d = days. * indicates 
p < 0.05 and ** represents p < 0.01. 
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Table 32: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of ex vivo lesions 

after 7 and 14 days of treatment with LGK974 compared to the vehicle group. Red highlighted rows indicate 

significant results and orange highlighted rows indicate mRNA expression differences with trend to significance. 

 

 

 

 

 

 

 

 

Gene FC p-Value Gene FC p-Value

Wnt2b 0.95 0.999 Wnt2b 0.91 0.556

Wnt7a 1.30 0.548 Wnt7a 0.57 0.413

Lgr5 0.09 0.056 Lgr5 0.11 0.064

Fzd7 0.91 0.310 Fzd7 0.59 0.191

Rspo1 0.83 0.548 Rspo1 0.12 0.064

Dkk3 0.77 0.548 Dkk3 0.78 0.905

Lrp1 1.09 0.841 Lrp1 0.69 0.318

Wif1 0.01 0.032 Wif1 0.03 0.413

Fgf9 1.64 0.421 Fgf9 0.67 0.286

Mapk10 0.51 0.167 Mapk10 0.59 0.286

Sfrp2 0.80 0.421 Sfrp2 0.28 0.032

Tbx18 0.84 0.841 Tbx18 1.40 0.905

Cav1 0.75 0.421 Cav1 0.89 0.595

Sfrp1 1.04 0.841 Sfrp1 0.35 0.111

Bcl2 0.45 0.095 Bcl2 0.94 0.905

Bax 0.97 0.548 Bax 0.97 0.730

Mmp2 0.59 0.151 Mmp2 0.83 0.905

Mmp9 2.21 0.151 Mmp9 0.34 0.191

Esr1 0.54 0.151 Esr1 0.76 0.960

Esr2 0.34 0.095 Esr2 0.27 0.111

Cdh1 0.94 0.999 Cdh1 0.75 0.556

Mki67 0.81 0.548 Mki67 0.60 0.191

Pou5f1 0.60 0.310 Pou5f1 1.93 0.191

Snai2 1.00 0.999 Snai2 0.60 0.286

Pgr 0.45 0.151 Pgr 0.07 0.064

Cdk1 0.64 0.151 Cdk1 0.34 0.016

Vcam1 1.14 0.841 Vcam1 1.75 0.730

Hif1a 1.38 0.548 Hif1a 0.77 0.730

Vegfa 0.73 0.310 Vegfa 0.79 0.365

7 days 14 days

LGK974 lesion vs. vehicle lesion
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Lesion versus uteri – vehicle and LGK974 after 7 and 17 days of 

treatment 

After 7 days, the comparison between lesions and uteri from the control group revealed both, 

the significant reduction and elevation of the gene expression of many WNT pathway genes. 

Wnt7a, Lgr5, Wif1, Fgf9, Sfrp2, and Vegfa were significantly expressed at lower levels. 

Wnt7a and Lgr5 are WNT pathway members, Wif1 and Sfrp2 are WNT inhibitors and Fgf9 is 

involved in proliferation and cell survival. Nevertheless, other WNT pathway genes showed 

increased mRNA levels. Sfrp1 and Mmp9 were significantly increased. Sfrp1 is a WNT 

pathway inhibitor and Mmp9 is implicated in ECM degradation and therefore could contribute 

to cell invasion. Cdh1 mRNA expression, which is inversely regulated through WNT signaling 

and plays a role in migration, was significantly reduced in implants. Consequently, its 

downregulation could also support cell migration in implants. Vegfa downregulation in lesions 

proposes reduced vascularization. Other genes without connection to WNT signaling were 

also deregulated in endometriotic implants. Vcam plays a role in the adhesion of immune 

cells and was significantly upregulated. Consequently, elevated mRNA expression of Vcam 

would suggest that immune cells increasingly adhere to ectopic tissue. Elevated mRNA 

levels of Esr2 and decreased mRNA expression of Pgr and Esr1 were also observed. After 

14 days, all emerging deregulated WNT pathway genes in lesions exhibited invariably 

elevated mRNA expression (Wnt2b, Rspo1, Dkk3, Lrp1, Cav1, Sfrp1, Mmp9, and Snai2). 

That suggests that the WNT pathway is indeed hyperactive in lesions. Rspo1 and Wnt2b are 

WNT pathway members and Dkk3 and Sfrp1 function as WNT inhibitors. Cav1, Mmp9, Lrp1, 

and Snai2 are all implicated in cell migration suggesting elevated migration activity of 

endometriotic cells (figure 59 and table 33). 

Lesions compared to uteri taken from mice treated with LGK974 exhibited similar results 

after 7 days of treatment. Again, many WNT pathway genes were expressed at lower and 

higer levels in implants. Wnt2b, Wnt7a, Lgr5, Rspo1, Lrp1, Wif1, Fgf9, and Vegfa exhibited 

reduced mRNA levels, while the mRNA expression of Tbx18, Sfrp1, Mmp9, and Cdk1 was 

increased. Tbx18 is involved in cell differentiation. Although dropped levels of Fgf9 indicate 

reduced proliferation in lesions, raised mRNA expression of Cdk1 and the non-WNT pathway 

gene Mki67 suggest increased proliferation in ectopic cells. Cdh1, which is inversely 

regulated through the WNT pathway, was significantly decreased. Other genes without 

association to WNT signaling were also deregulated in implants. Vcam1 and Hif1a mRNA 

levels were increased, while Pgr, Esr1, and Hif1 gene expression was significantly 

decreased. Although dropped levels of Vegfa in the implants of LGK974 treated animals 

suggest decreased angiogenesis, elevated Hif1a mRNA expression may have supported this 

process. Moreover, reduced Bcl2 mRNA expression proposes increased apoptosis of 
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endometriotic cells. After 14 days the number of deregulated genes dropped upon WNT 

inhibition making uterus and lesion more similar in terms of mRNA expression. Except for 

Cdh1, the gene expression of most of the WNT pathway genes recovered and normalized. 

Wif1 and Mmp9 for example just exhibited a tendency of deregulated gene expression. The 

direct WNT target gene Pou5f1/Oct4 was significantly expressed at higher levels in lesions of 

the compound group proposing increased self-renewal of stem cells. Redarding non-WNT 

pathway genes the mRNA expression of Esr2, Mki67, and Vcam1 was increased. In 

comparison to 7 days of treatment with LGK974 the proliferation of ectopic cells as indicated 

by Mki67 was reduced. The adhesion of immune cells and consequent altered immunity 

mediated through elevated mRNA levels of Vcam1 might have been raised. Gene expression 

of Esr2 was also raised after 14 days in relation to 7 days of treatment (figure 60 and table 

34). 

In summary, ectopic samples from both the vehicle and the compound group showed, that 

the WNT pathway was rather downregulated in the beginning but aberrantly activated at a 

later time point. Additionally, many genes, which are implicated in migration, angiogenesis, 

proliferation, immunity, or apoptosis exhibited deregulated mRNA expression levels in both 

groups after 7 days. However, after 14 days, treatment with LGK974 normalized the gene 

expression of many WNT pathway genes in lesions and therefore also positively influenced 

mechanisms such as migration or proliferation.  
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Figure 59: TaqMan mRNA expression analysis of ex vivo lesions versus uteri of the vehicle group after 7 
and 14 days. Blue bars indicate vehicle group and red bars indicate compound group. Box boundaries: 25th and 

75th percentiles; solid line: median; whiskers: Min to Max. d = days. * indicates p < 0.05 and ** represents p < 
0.01. 
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Table 33: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of ex vivo lesions 
versus uteri of the vehicle group after 7 and 14 days. Red highlighted rows indicate significant results and 

orange highlighted rows indicate mRNA expression differences with trend to significance. 

 

 

 

 

 

 

 

 

 

 

Gene FC p-Value Gene FC p-Value

Wnt2b 0.54 0.151 Wnt2b 4.01 0.064

Wnt7a 0.24 0.008 Wnt7a 0.80 0.905

Lgr5 0.22 0.008 Lgr5 1.13 0.730

Fzd7 1.15 0.548 Fzd7 1.71 0.413

Rspo1 0.66 0.156 Rspo1 13.88 0.016

Dkk3 1.25 0.222 Dkk3 2.54 0.064

Lrp1 2.23 0.156 Lrp1 3.95 0.016

Wif1 0.04 0.008 Wif1 0.13 0.413

Fgf9 0.15 0.008 Fgf9 1.52 0.556

Mapk10 1.56 0.841 Mapk10 2.67 0.191

Sfrp2 0.31 0.008 Sfrp2 1.48 0.413

Tbx18 1.47 0.222 Tbx18 1.08 0.905

Cav1 1.37 0.156 Cav1 3.27 0.016

Sfrp1 14.14 0.016 Sfrp1 13.71 0.016

Bcl2 0.81 0.691 Bcl2 2.07 0.191

Bax 1.13 0.421 Bax 1.34 0.730

Mmp2 3.01 0.151 Mmp2 2.27 0.111

Mmp9 9.69 0.008 Mmp9 7.25 0.064

Esr1 0.73 0.095 Esr1 1.26 0.905

Esr2 9.19 0.008 Esr2 18.81 0.016

Cdh1 0.35 0.008 Cdh1 0.80 0.905

Mki67 1.16 0.548 Mki67 2.75 0.064

Pou5f1 1.75 0.206 Pou5f1 2.60 0.286

Snai2 1.56 0.151 Snai2 3.71 0.016

Pgr 0.43 0.008 Pgr 10.34 0.111

Cdk1 1.34 0.548 Cdk1 2.16 0.111

Vcam1 4.75 0.032 Vcam1 9.05 0.016

Hif1a 1.28 0.151 Hif1a 1.62 0.191

Vegfa 0.34 0.008 Vegfa 1.19 0.683

7 days 14 days

Vehicle lesion vs. vehicle uterus
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Figure 60: TaqMan mRNA expression analysis of ex vivo lesions versus uteri of the compound group after 
7 and 14 days. Blue bars indicate vehicle group and red bars indicate compound group. Box boundaries: 25th 

and 75th percentiles; solid line: median; whiskers: Min to Max. d = days. * indicates p < 0.05 and ** represents p < 
0.01. 
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Table 34: Fold changes (FC) and p-values from the TaqMan mRNA expression analysis of ex vivo lesions 
versus uteri of the compound group after 7 and 14 days. Red highlighted rows indicate significant results and 

orange highlighted rows indicate mRNA expression differences with trend to significance. 

 

 

 

 

 

 

 

  

Gene FC p-Value Gene FC p-Value

Wnt2b 0.47 0.056 Wnt2b 3.68 0.310

Wnt7a 0.37 0.095 Wnt7a 0.47 0.421

Lgr5 0.07 0.032 Lgr5 1.58 0.421

Fzd7 0.99 0.999 Fzd7 1.42 0.691

Rspo1 0.47 0.032 Rspo1 0.93 0.999

Dkk3 1.31 0.548 Dkk3 1.91 0.548

Lrp1 2.58 0.095 Lrp1 3.28 0.151

Wif1 0.00 0.008 Wif1 0.03 0.095

Fgf9 0.27 0.008 Fgf9 0.61 0.222

Mapk10 0.90 0.310 Mapk10 1.38 0.548

Sfrp2 0.69 0.151 Sfrp2 0.85 0.999

Tbx18 1.86 0.016 Tbx18 4.04 0.151

Cav1 1.21 0.841 Cav1 2.51 0.421

Sfrp1 18.16 0.008 Sfrp1 4.53 0.151

Bcl2 0.49 0.016 Bcl2 1.40 0.421

Bax 1.29 0.222 Bax 1.76 0.151

Mmp2 2.30 0.151 Mmp2 2.38 0.691

Mmp9 29.95 0.008 Mmp9 2.70 0.095

Esr1 0.39 0.008 Esr1 1.03 0.841

Esr2 1.54 0.452 Esr2 4.42 0.016

Cdh1 0.36 0.016 Cdh1 0.34 0.016

Mki67 6.91 0.008 Mki67 3.02 0.095

Pou5f1 0.65 0.691 Pou5f1 6.63 0.032

Snai2 1.26 0.421 Snai2 1.69 0.691

Pgr 0.31 0.016 Pgr 0.85 0.999

Cdk1 5.92 0.008 Cdk1 1.40 0.841

Vcam1 6.62 0.008 Vcam1 9.73 0.008

Hif1a 2.16 0.032 Hif1a 2.04 0.151

Vegfa 0.50 0.032 Vegfa 1.30 0.600

7 days 14 days

LGK974 lesion vs. vehicle uterus
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5 DISCUSSION 

5.1 The WNT pathway is globally involved in 

endometriosis. 

A clinical study to investigate the mRNA expression of healthy and diseased human eutopic 

and ectopic samples via gene arrays exhibited upregulation of the WNT pathway in 

endometriosis. Stromal and epithelial tissue was separated via LCM previously to gain a 

higher resolution of the gene expression. TaqMan analysis with the same samples confirmed 

these findinigs. 

This study enabled the detection of new genes dysregulated in endometriosis such as 

SFRP2 or WIF1. It was discovered that selected WNT pathway members LGR5, FZD7, 

RSPO1, WNT2B, and WNT7A were significantly upregulated in ectopic samples compared 

to matching diseased or healthy eutopic endometrium. Some of the WNT members were 

found to be dysregulated in endometriosis for the first time (figure 20). These findings are 

supported by a recent study by de Mattos et al. which also reports significantly increased 

WNT activity in endometriotic lesions compared to matching eutopic endometrium in a rat 

model of endometriosis [266]. The gene expression of Wnt4 and Wnt7b were significantly 

increased and the gene expression of Gsk3β and Cdh1 were decreased [266]. Furthermore, 

upregulated WNT signaling was indicated by significantly elevated levels of stromal and 

nuclear β-catenin in these implants compared to matching eutopic tissue [266]. Altogether, 

these findings support the theory of the involvement of the WNT pathway in endometriosis. 

In our study, apart from the selected WNT pathway members, many inhibitory WNT 

downstream genes such as DKK3, SFRP2, SFRP1, or WIF1 were elevated indicating 

upregulation of the WNT pathway in diseased eutopic endometrium compared to healthy 

controls or in lesions compared to eutopic endometrium of patients (figures 21 – 24 and 

tables 23 – 26). All these genes are regulated through WNT signaling. WNT pathway 

inhibitory genes AXIN2 and DKK1 have been previously described as direct WNT target 

genes by containing the TCF/LEF motif and they are activated through WNT signaling [153, 

156]. It was suggested that they participate in an autoregulatory negative feedback loop to 

limit outraged WNT activity [153, 156]. DKK3 also contains the TCF/LEF motif. Therefore, it 

is conceivable that DKK3 and all the other inhibitory genes are upregulated to counter-

regulate aberrantly upregulated WNT activity in endometriosis. Moreover, SFRP1 has been 

also previously described to be significantly increased in endometriotic tissue compared to 

controls [267]. Potentially, hyperactivation of the WNT pathway causes numerous WNT 
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facilitating genes to be excessively active but possibly less mediators of the negative 

feedback loops exist and therefore activation of WNT signaling exceeds its inactivation. 

However, this had to be measured on the endpoints of WNT pathway activation by the 

investigation of proliferation, cell death, or migration. 

Generally, mRNA expression levels of the eutopic endometrium of endometriosis patients 

were already slightly different from that of healthy controls, a finding that corroborates 

previous reports [268, 269]. However, the greatest distinction in gene expression was found 

between diseased eutopic endometrium and lesions, which has been also already described 

by other studies (e.g. [270, 271]). Since healthy and diseased eutopic endometrium exhibit 

an almost comparable gene expression, the search for potential biomarkers enabling non-

invasive diagnosis is challenging. 

5.1.1 WNT pathway members indicative for migration and 

proliferation are higher expressed in endometriosis patients. 

In this study, further WNT pathway genes, that might contribute to the establishment and 

maintenance of endometriotic implants by affecting migration (CAV1, MMP2 or LRP1) or 

proliferation (MAPK10 or FGF9) were deregulated in endometriosis (see for annotation table 

22 and [238, 240, 244-246, 248]) upon gene array or TaqMan analysis of the mRNA 

expression in clinical samples (figures 21 – 24 and tables 23 – 26). Most of them were found 

to be dysregulated for the first time. 

LRP1 and CAV1 for example were not yet directly linked to endometriosis. Their expression 

levels have been described to be highly elevated in endometrial carcinomas previously [272, 

273]. Moreover, LRP1 induced the expression of MMP2 in human glioblastoma U87 cells and 

MMP2 increased the migration activity of endometrial cells [245, 274, 275]. It was shown that 

the total and active forms of this protein were significantly higher in menstrual epithelial and 

stromal cells of endometriosis patients compared to those of healthy individuals [275]. 

Generally, endometriotic epithelial and stromal cells were more invasive than those of 

matching eutopic endometrium of the same diseased women and their invasiveness could be 

significantly decreased by the treatment with a WNT inhibitor [275]. These results are in 

agreement with previous findings, where ectopic cells showed invasive and metastatic 

phenotypes similar to carcinoma cells [226, 276]. After treatment with a WNT inhibitor, levels 

of active MMP2 in endometrial epithelial cells and levels of total and active MMP9 in 

endometrial stromal cells were significantly reduced compared to those of matching eutopic 

endometrium [275]. That proposes a decrease of the invasive phenotype and that aberrant 

WNT signaling might be involved in this process [275]. Therefore, it is likely that also LRP1, 

which is described to operate upstream from MMP2, and CAV1 contribute to the invasive 
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phenotype in this disease. Generally, these findings are in accordance with the implantation 

theory postulating that migration and invasion appear to be critical in the pathogenesis of 

endometriosis and aberrant activation of WNT signaling may be involved in these 

mechanisms [3, 201]. 

In our study, for the first time elevated mRNA levels of MAPK10 and FGF9 were observed in 

endometriosis that might contribute to increased proliferation of lesions. MAPK10 is a 

member of Ras/Raf/MEK/ERK signaling (MAPK10 has been originially named ERK - MAPK 

(mitogen-activated protein kinases, originally called ERK - extracellular signal-regulated 

kinases), which is apart from cell cycle transition, implicated in many other cellular processes 

such as apoptosis and differentiation [277]. So upregulated MAPK10 might cause increased 

Ras/Raf/MEK/ERK signaling (or MAPK signaling respectively) which in turn leads to 

dysregulated proliferation, apoptosis, and differentiation that potentially further contributes to 

the formation and establishment of implants. MAPK10 itself has not yet been directly linked 

to endometriosis or endometrial cancer so far but Yotova et al. observed increased 

Ras/Raf/MEK/ERK (MAPK) signaling in endometrial stromal cells of patients with 

endometriosis [278]. FGF9 has been described as an endometrial growth factor [279]. 

Ovarian endometrioid adenocarcinomas have a connection to endometriosis and Hendrix et 

al. have already discovered FGF9 as a key factor and downstream target of WNT signaling in 

this disease [280]. Moreover, FGF9 has been found to be elevated in endometriotic implants 

and its expression and mitogenic effect was regulated by aberrant production of E2 [279, 

281]. So possibly, both upregulated WNT signaling and aberrant E2 production in 

endometrial cells contribute to elevated FGF9 protein levels and Ras/Raf/MEK/ERK signaling 

respectively. Both increase proliferation and could result in ectopic lesion formation and 

maintenance. Elevated proliferation of implants has been already demonstrated in previous 

studies (e.g. [282]). All these finding support the theory that in endometriotic cells the 

menstrual cycle phases are abrogated and that they are stuck in the proliferative phase. 

However, immunohistochemical stainings of KI67 revealed decreased proliferation in lesions 

compared to eutopic endometrium of diseased or healthy women contrary to the notion of 

raised proliferation in endometriotic implants (figure 26). TaqMan analyses of the clinical 

samples exhibited hints of reduced proliferation in implants as well. These results are in 

agreement with other studies and might explain the small size of many lesions [283, 284]. 

Also the study by Matsuzaki et al. proposed that WNT signaling might not be essential for cell 

proliferation of endometriotic cells since the inhibitory effect of WNT compounds on cell 

proliferation of ovarian, deep infiltrating, and superficial peritoneal endometriotic tissue was 

lower than on matching eutopic endometrium of the same patients [275]. SOSTDC1 inhibits 

proliferation and was upregulated in some samples of endometriotic implants compared to 
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diseased or healthy eutopic controls in our clinical study [252]. Either it was increased due to 

reduced proliferation in implants, or its upregulation was also due to outraged WNT pathway 

activation. SOSTDC1 (also known as WISE) is also able to inhibit the canonical WNT 

signaling in a context-dependent fashion through interacting with LRP6 [285]. So potentially, 

it also contributes to auto-regulatory negative feedback loops through WNT signaling 

indicating that the WNT pathway is aberrantly active in endometriosis.  

In our study immunohistochemical stainigs of KI67 did not show differences between eutopic 

endometrium of diseased or healthy women and quantification of immunohistochemical 

signals are tricky. However, some studies revealed increased proliferation of diseased 

eutopic endometrium compared to healthy controls (e.g. [286]). Also TaqMan analyses of the 

clinical samples gave hints into that direction. This might be the basis of lesion formation, 

since these hyperproliferative endometrial cells could reach the peritoneum through 

retrograde menstruation. Previous findings suggest that the WNT pathway might be 

aberrantly activated in the eutopic endometrium of infertile patients during the mid-secretory 

phase [201, 287-289]. Matsuzaki et al. also showed that the basal cell proliferation of 

endometrial stromal and epithelial cells in the mid-secretory phase of patients with 

endometriosis is significantly higher compared to healthy individuals [275]. Moreover, the 

mRNA expression of the WNT target gene CDK1 was significantly elevated in endometrial 

epithelial cells in the mid-secretory phase of diseased women compared to healthy controls 

[275]. Already a previous study has demonstrated that CDK1 tended to be expressed at 

higher levels in the secretory phase stromal cells of patients with endometriosis [290]. Upon 

treatment with a WNT inhibitor, CDK1 gene expression and cell proliferation could be 

effectively decreased in epithelial and stromal cells of patients with endometriosis [275]. 

CDK1 is a direct WNT target gene supporting the theory that this increased proliferation of 

the uterine lining is WNT driven. Potentially, proliferation then drops upon lesion 

establishment but the WNT pathway may still be dysregulated and promotes further 

processes such as vascularization or invasion. Consequently, the WNT pathway may not be 

as involved in cell proliferation of diseased ectopic cells than in diseased eutopic endometrial 

cells [201].  

However, it has to be noticed that besides from the cycle phase, the mRNA expression also 

depends on the cell type underlining the importance of previous cell separation as done in 

this study. Particularly, the stromal compartment is characterized by further heterogeneity. 

Not only stromal cells, but also e.g. endothelial or immune cells reside there, which hardly 

can be separated via LCM. This hast o be kept in mind during the analysis and interpretation 

of the results. To circumvent these limitations, another protocol using FACS was established 

and the separation of epithelial and stromal cells through cell type specific antibodies was 
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achieved with high purity. But due to technical reasons, this procedure was only applicable 

for eutopic endometrial cells but this study was supposed to adress the investigation of 

eutopic and ectopic tissue. But for in-depth examination of eutopic samples, FACS is the 

more favourable approach than LCM and might also enable the identification of biomarkers. 

5.1.2 In vivo study in mice further supports the involvement of the 

WNT pathway in endometriosis. 

LGK974 is suitable for in vivo usage. 

Several compounds were pretested in ESCs regarding their ability to influence WNT 

signaling, viability, cell death rate, caspase activity, and migration activity in order to identify 

one small molecule that might be suitable for the usage in the mice inoculation model to 

investigate the WNT pathway in vivo.  

The tankyrase inhibitor NVP-TNKS656 exhibited a desirable IC50 of 6.3 nM, showed 

promising effects on viability, cell death rate, and migration activity in vitro and was already 

successfully used in a mouse model (figures 50-52). However, hints of mortality from a pilot 

study led to the decision to abandon the small molecule from in vivo usage in this study 

[210]. LGK974 did not exhibit an increased mortality. On the contrary, mice were highly vital 

(figure 56). To understand why the PORCN inhibitor LGK974 was less toxic than NVP-

TNKS656 it is worthwhile to take a look at the mode of action. Possibly, LGK974 acts more 

WNT-specific compared to NVP-TNKS656. Tankyrases are ADP-ribosyltransferases and they 

catalyse the transfer of an ADP-ribose from the co-substrate NAD+ on a target proteins 

leading to the attachment of one or several ADP-ribose (ADPr) molecules to the target 

proteins [291, 292]. Therefore, tankyrases are involved in numerous posttranslational 

processes. Consequently, they have been not only linked to WNT signaling but also to 

additional cellular signaling pathways that mediate processes such as mitotic progression, 

glucose metabolism, stress granule formation, and possibly proteasome regulation [293-

297].  

The WNT pathway is downregulated in an early stage and upregulated in 

later stages of endometriosis in vivo. WNT inhibition through LGK974 

dramatically reduces disease burden. 

LGK974 has been used in the mice inoculation model for endometriosis to investigate its 

effect on disease burden and gene expression. Lesion number and lesion size were 

significantly decreased upon WNT inhibition indicating reduced disease burden (figures 53 

and 54). Although β-catenin protein levels did not alter upon treatment with LGK974, 
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decreased mRNA expression of the direct target gene Axin2 indicates successful WNT 

inhibition (figures 55). The investigation of WNT pathway genes revealed that aberrant 

activitiy of WNT signaling occurs to a later time point during the development of the disease 

(figures 59 – 60 and tables 33 - 34).  

Reduced disease burden was specific for biochemical PORCN inhibition. Plasma 

concentration of free LGK974 of ~ 117 nM was sufficient in comparison to the IC50 of 0.4 nM 

(figure 55) [207]. These very high levels might raise the suspicion that also OFF-target 

effects may have caused the results. The measurement of mRNA of the direct target gene 

Axin2 and protein levels of β-catenin in comparison between vehicle and compound group 

should give information about the degree of WNT inhibition [134]. The mRNA expression of 

Axin2 was significantly reduced in uteri of the compound group after 7 days of treatment and 

in lesions after 14 days of treatment in relation to controls suggesting ON-target effects 

(figure 55). Moreover, the applied concentration of the drug was in accordance with a 

previously published study, in which this concentration was used successfully without 

exhibiting toxicity [207]. Furthermore, the body weight values of the experiment demonstrate 

high vitality of the mice (figure 56) [207].  

The mRNA expression of Axin2 and protein levels of β-catenin give information about the 

degree of WNT inhibition. In the uteri of compound treated mice, the Axin2 mRNA expression 

was significantly reduced after 7 days compared to the controls. After 14 days the Axin2 

mRNA expression only exhibited a trend of decreased expression compared to the vehicle 

group. However, the mean of the Axin2 mRNA expression of the treatment groups after 7 and 

14 days was comparable. Either Axin2 mRNA expression was also decreased through 

LGK974 after 14 days and the significance was eliminated through the huge scatter or it was 

not decreased anymore due to an eventual counter-regulation in the uterus ensured the 

recovery and subsequent maintenance of constant WNT activity. When the vehicle group 

and treatment group are compared, overall mRNA expression of the uteri after 14 days did 

not show substantial differences anymore, supporting the theory of counter-regulation. 

Moreover, overall β-catenin protein levels both after 7 or 14 days of treatment did not change 

between control and compound group (figure 55). Unaltered protein expression after 14 days 

might be due to counter-regulation in the uterus. WNTs are essential in the uterine 

development in mice. Defects of Wnt ligand genes (Wnt4, 7a and 5a) or Wnt pathway 

components (β-catenin or Lef-1) cause developmental defects in uterine glands [298-305]. 

Conditional Lgr4 knockout mice are subfertile with impaired development of the embryo in 

the oviduct during early pregnancy [306, 307]. Histologically, the uteri of Lgr4(K5 KO) mice 

have altered epithelial differentiation, reduced expression of morphogenesis regulatory 

genes related to WNT signaling, and the uteri failed to undergo decidualization [306, 307]. 
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Many studies show, that the WNT pathway plays an essential role in uterine development 

and function, so precise regulation is necessary to ensure proper function in terms of gland 

formation, decidualization, and implantation [308]. The reason why overall β-catenin protein 

levels did not drop after 7 days of treatment, although Axin2 mRNA expression was already 

significantly reduced, could not be investigated in this study. Phosphorylation of β-catenin is 

more dynamic than overall protein levels and would give more exact information about the 

state of β-catenin [77]. However, β-catenin phosphorylation was not analysed. Nonetheless, 

β-catenin protein levels can also be influenced through a WNT-independent fashion. 

Increased E2 levels in endometriosis cause increased conversion of arachidonic acid to 

PGE2 through COX-2 [50, 51]. PGE2 then activates protein kinase A (PKA) and increases 

the transcriptional activity of TCF in HEK293 cells [309]. Hin et al. discovered, that activation 

of PKA increases cytoplasmatic and nuclear β-catenin protein levels through direct 

phosphorylation of β-catenin, thereby inhibiting its ubiquitination and consequent degradation 

[310]. Consequently, increased E2 levels in endometriosis do not only possibly increase 

WNT signaling and induce mechanisms such as migration, proliferation, and angiogenesis, 

they also influence β-catenin protein levels. Possibly, increased β-catenin protein levels 

through PKA and decreased β-catenin protein levels through LGK974-mediated WNT 

inhibition were balanced in the uteri of the mice in this study. Technical difficulties hampered 

protein isolation from lesions to obtain sufficient protein of good quality to perform Western 

blots to investigate the amount of β-catenin. 

To sum up, regardless unaltered β-catenin protein levels, Axin2 mRNA expression levels 

indicate successful WNT inhibition. After 7 days a trend and after 14 days significant 

reduction of Axin2 gene expression upon LGK974 treatment was demonstrated. 

Furthermore, effective WNT inhibition was identified through significant downregulation of 

WNT candidate genes (Lgr5) and WNT inhibiting genes (Wif1 and Sfrp2) in uteri and lesions 

after 14 days also suggesting autoregulatory feedback loops (figures 57-58 and tables 31-

32). These findfings are also in accordance with significantly reduced disease burden in 

terms of lesion size and number (figures 53 and 54). 

Outraged WNT pathway activity occurs to a later time point in the development of 

endometriosis. The comparison of lesions and uteri of the vehicle group or the compound 

group respectively revealed that both groups were alike after 7 days. Similar genes were 

dergulated in lesions compared to matching uteri (figures 57-58 and tables 31-32). Moreover, 

genes of the WNT pathway were expressed at a lower level (significantly: Wnt7a, Lgr5, 

Rspo1, Wif1, and Sfrp2, by trend: Wnt2b) in lesions compared to uteri after 7 days. However, 

after 14 days the WNT pathway was significantly upregulated in lesions compared to uteri of 

the vehicle group (significantly: Rspo1 and Sfrp1, by trend: Wnt2b and Dkk3) (figure 59 and 
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table 33). Lesions compared to uteri of the compound group showed no elevated expression 

of WNT pathway members suggesting that WNT inhibition was successful (figure 60 and 

table 34). Consequently, these data propose that in the early stage of the disease WNT 

signaling is not elevated. Successively aberrant upregulation of the WNT pathway over time 

may finally lead to the establishment and maintenance of the disease. Consequently, WNT 

inhibition through LGK974 successfully returned WNT signaling to a normal eutopic level and 

significant reduction of disease burden and changes in gene expression after 14 days 

occurred. Possibly, these effects would have been even more pronounced after a longer 

treatment time. In summary, the WNT pathway seemed to be slightly downregulated in 

lesions in the beginning of experimental endometriosis. Over time, WNT signaling 

significantly increased in lesions and could be therefore effectively targeted by LGK974 

leading to decreased disease burden. So far there are no studies published proving this 

theory and the investigation of lesions taken from women with endometriosis would not give 

insight in the establishment of the implants. Only one other mouse study for endometriosis 

with a WNT inhibitor (CGP049090) has been performed so far [202]. They demonstrated, 

that no significant differences in fibrosis between endometrium and endometriotic implants on 

day 0 or 7 was visible, but fibrosis significantly increased in endometriotic cells after 14 days 

and was even further increased after 28 days compared to the eutopic endometrium at the 

onset of the experiment [202]. They did not evaluate WNT pathway genes, so no statement 

can be made about WNT signaling activity but possibly also an increase in WNT signaling 

over time occurred. The situation is different in several cancer entities. Cancer generally 

exhibits very strong aberrantly active WNT signaling, so effects upon WNT inhibition such as 

decreased tumor growth can be investigated very early in according mouse models, while for 

endometriosis in vivo studies an extended time frame should be chosen [207]. 

Altogether, in our study WNT activity increased over time of the disease progession. 

Consequently, rising WNT signaling possibly aggravates symptoms of endometriosis.  

WNT inhibition through LGK974 reduces mechanisms such as migration, 

proliferation or angiogenesis. 

The measurement of mRNA expression of genes associated with mechansisms such as 

migration, proliferation, or angiogenesis revealed that WNT inhibition through LGK974 

generally decreased their expression levels, possibly contributing to reduced disease burden. 

Interestingly, after 7 days of treatment, differences in mRNA expression of genes associated 

with e.g. migration or proliferation between vehicle and treatment group were only visible in 

uteri and not in lesions (figures 57-58 and tables 31-32). This might be a consequence of 
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lower mRNA expression of the WNT pathway members in lesions in the early stage of the 

experiment.  

Uteri treated with LGK974 for 7 days exhibited already less mRNA expression of proliferation 

(Mki67 and Cdk1) and angiogenesis (Vegfa) markers compared to controls (figure 57). Mki67 

and Cdk1 are reliable markers for proliferation, which is a mechanism that has been 

associated with endometriosis previously and was already discussed (see chapter 5.1.1) [3, 

247, 259]. After 14 days of WNT inhibition, Cdk1 was still significantly reduced in lesions 

(figure 59). Vegfa plays an important role in angiogenesis and is even a direct target gene of 

the WNT pathway [144, 265, 311]. In healthy eutopic endometrium, VEGF expression is 

enhanced by E2 and cyclic changes throughout the menstrual cycle with maximal expression 

in the secretory phase and menstruation occur (for overview [311]). However, endometriotic 

cells can also synthesize and secrete VEGF and some studies demonstrated increased 

concentration of VEGF in endometriotic tissue, peritoneal fluid, and eutopic glandular 

epithelium of endometriosis patients [311, 312]. Our study revealed decreased levels of 

Vegfa mRNA in the uteri of animals treated with LGK974. It has to be considered that not 

only endometrial cells are able to express and secrete VEGF, but also activated 

macrophages and neutrophils [313, 314]. In endometriosis a constant low level inflammation 

is observed, so infiltration of proinflammatory immune cells into the eutopic endometrium is 

likely (for overview [4]). Since the entire uteri were obtained and no tissue or cell separation 

was performed, also the mRNA expression of immune cells that resided in the endometrium 

and myometrium was included. One could therefore speculate that WNT inhibition either also 

reduced Vegfa mRNA expression of the infiltrated uterine immune cells and endometrial and 

myometrial cells, or led to a decreased infiltration of immune cells in general, therefore 

creating an environment with less inflammation.  

E-cadherin (Cdh1) increases cell-cell adhesion and consequently reduces cell migration and 

invasion [258]. Loss of E-cadherin has been associated with the initiation and progression of 

many human tumors including endometrial carcinomas [315, 316]. Additionally, E-cadherin is 

a direct WNT target gene and its expression is inversely regulated by the WNT pathway, 

whereby inhibition of WNT signaling should result in elevated E-cadherin mRNA expression 

levels [138]. After 14 days of treatment, E-cadherin was significantly elevated in the uteri 

upon WNT inhibition (figure 57 and table 31). Although some studies did not find altered E-

cadherin protein levels in peritoneal endometriotic lesions compared to matching eutopic 

endometrium, our study reveals that a connection to endometriosis is likely. Some studies 

reported, that loss of E-cadherin causes local aggressiveness and invasiveness of peritoneal 

implants [315, 317-319]. Indeed, a study by de Mattos et al. revealed decreased mRNA 

levels of E-cadherin in implants in an endometriosis rat model [266]. Moreover, β-catenin and 
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Cdh1 proteins are directly linked to each other in epithelial cell–cell adhesions and are 

together included in the maintenance of tissue architecture [318].  

Altogether these results are in accordance with previous finding from our clinical study. Other 

studies also showed, that mechanisms such as proliferation, angiogenesis, and migration are 

strongly correlated with endometriosis (for overview [3]). Moreover, the comparison of uteri 

and lesions from both groups of the in vivo study further confirms that these mechanisms 

obviously play a role in lesion formation, since mRNA expression levels of certain genes 

were dysregulated respectively in implants especially after 7 days of endometrium 

inoculation (figures 58-59 and tables 33-34). Upon WNT inhibition with LGK974 these 

processes could be positively influenced, which may have also caused the reduction in 

disease burden after 14 days of treatment.  

In summary, the WNT pathway seems to be essentially involved in the pathogenesis of 

endometriosis and many genes associated with mechanisms such as migration, proliferation, 

and angiogenesis and the WNT pathway are also significantly dysregulated. Upon WNT 

inhibition the mechanisms could be altered, consequently leading to a decrease in disease 

burden. However, from a clinical point of view, endometriosis is a benign disease of young 

women. The WNT pathway is involved in numerous processes so its pharmacological 

targeting would have pleiotropic effects. Especially potential side effects on stem cell 

maintenance and tissue homeostasis have to be considered and the therapeutic use of WNT 

inhibitors in young patients with a potential desire to have children has to be profoundly 

analysed in further studies [201, 320, 321]. WNT inhibition is more restricted to usage in 

malignant diseases such as cancer, where several compounds are already implicated in 

clinical trials. Nevertheless, several WNT pathway members may serve as potential 

biomarkers for endometriosis allowing non-invasive diagnose, which would improve patient’s 

quality of life. Moreover, this study helped to broaden our understanding of the underlying 

pathological mechansims in the disease. 

5.2 Involvement of LGR5 and its ligand RSPO1 in the 

pathogenesis of endometriosis 

5.2.1 LGR5 plays an important role in endometriosis through 

dysregulated WNT signaling and may serve as a biomarker. 

In vitro, increased or decreased WNT signaling induced via elevated or reduced levels of 

LGR5 mRNA accordingly resulted in respective effects on viability, cell death rate, caspase 

activity, and migration activity in endomtrial cells (figures 36-38). Hence, the WNT co-
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receptor directly influences WNT signaling and further regulates functional processes. In 

clinical samples, the WNT co-receptor mRNA was significantly upregulated in lesions 

compared to matching diseased eutopic endometrium suggesting a potential involvement in 

the pathogenesis of the disease (figure 20). However, this could not be analysed by 

immunohistochemistry, since no appropriate antibody could be established. The mouse study 

exhibited significantly reduced Lgr5 mRNA expression in lesions compared to uteri in both 

groups at the beginning. But the mRNA levels normalized later on (figures 59-60 and tables 

33-34). So in the retrograde menstruation mouse model, WNT signaling indicated by Lgr5 

was initially reduced but recovered over time. Assuming that the time course plays a relevant 

role in dysregulated WNT signaling, the observed time frame within the experiment was 

potentially too short to establish aberrantly high mRNA levels of Lgr5. Unfortunately this 

theory cannot be proven in clinical samples taken from patients with well-established 

endometriosis. However, upon WNT inhibition Lgr5 was further decreased in uteri and 

lesions of the compound group compared to controls after 7 days of treatment, so Lgr5 

mRNA expression was directly affected through WNT inhibition (figures 57-58 and tables 31-

32). This again suggests a potential implication of the co-receptor in lesion establishment. 

But after 14 days, in the uteri of both groups Lgr5 did not show aberrant mRNA expression 

anymore compared to lesions suggesting a potential counter-regulation (figures 59-60 and 

tables 33-34).  

For uterine function, LGR5 seems to play an important role. A study by Sun et al. discovered, 

that Lgr5 is highly expressed in the uterine epithelium of immature mice and it is dramatically 

downregulated as soon as mice resume estrous cycle [322]. The downregulation is mediated 

through E2 and progesterone via their cognate nuclear receptors [322]. They speculate that 

this might also be causative for the observed increase of Lgr5 expression after ovariectomy 

[322]. In many publications endometriosis is characterized by progesterone resistance (see 

chapter 1.2.2). Decreased levels of progesterone receptor signaling might cause increased 

LGR5 expression and WNT activity, which in turn induces mechanisms such as migration, 

proliferation, and angiogenesis that facilitate lesion formation and maintenance.  

Adult stem cells have been found in the human uterus [35, 323-326]. Gil-Sanchis et al. 

proposed that Lgr5 might serve as an endometrial stem cell marker [327]. Altogether these 

studies are in line with Sampson’s retrograde menstruation theory. Possibly, endometrial 

stem cells as indicated through LGR5 reach the peritoneum by retrograde menstruation. 

Upon differentiation of these misplaced cells, they form endometriotic lesions. Another study 

further substantiated this theory. It revealed that the WNT target gene SOX9 is also 

expressed in human endometrial basal glandular epithelial cells containing a rare 

subpopulation of cells with nuclear β-catenin [201, 328]. These findings suggest that the 
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WNT pathway is already activated in the basal epithelium of patients. Lesions also expressed 

SOX9 and the expression pattern matched those of the basal epithelium in the eutopic 

endometrium suggesting that implants might be originating from the basalis before being 

disseminated by retrograde menstruation [328]. Most likely the WNT pathway is essentially 

involved in this process providing a novel therapeutic strategy for prevention and treatment of 

endometriosis [201]. In cancer, LGR5 was also defined as an adult stem cell marker that 

often plays a role in cancer stem cells [150, 329]. Among others, overexpression correlates 

with poor survival of colon cancer in mice as well as in patients [150, 329]. Therefore, LGR5 

has been described as a promising biomarker for stage I and II gastric cancer and as a 

predictive marker in colon cancer patients treated with 5-fluorouracil-based adjuvant 

chemotherapy [330, 331]. Since therapeutic targeting of LGR5 will be challenging due to 

expected severe side effects, LGR5 might at least serve as a biomarker to reliably diagnose 

endometriosis non-invasively. However, in the examinated patient cohort, LGR5 was 

upregulated in peritoneal lesions and not in the eutopic endometrium of endometriosis 

patients compared to healthy women. Consequently, non-invasive diagnostic tests would not 

be applicable. Since in our study Lgr5 was also affected by LGK974-mediated WNT inhibition 

in the uteri of mice, an involvement and potential role of LGR5 also in the eutopic 

endometrium is likely and has to be further investigated. Although plenty of studies on 

endometriosis biomarkers have been performed thus far, neither a single biomarker nor a 

panel of biomarkers has been validated for non-invasive diagnostic tests with sufficient 

sensitivity and specificity so far [332, 333].  

5.2.2 RSPO1 might be involved in the pathogenesis of endometriosis. 

RSPO1 is the ligand of the co-receptor LGR5 and was significantly upregulated in 

endometriotic lesions compared to diseased and healthy eutopic endometrium in our clinicial 

study (figure 20). In immunohistochemical stainings RSPO1 showed only slightly elevated 

levels in ectopic tissue compared to eutopic endometrium in general (figure 30). However, 

evaluation of protein levels by immunohistochemistry was generally not suitable. The 

establishment and performance of the method was challenging due to difficulties to receive 

adequate samples of good quality. The histological samples were obtained commercially and 

no detailed information about fixation or further processing of the tissue was available. 

Unfortunately, tissue and resulting staining quality was often dissatisfying and even caused 

the dismissal of various samples leading to the very small sample size. Generally, it has to be 

noticed that the results of the immunohistochemical stainings varied greatly between the 

different individuals proving that endometriosis is most likely a multifactorial disease and the 

WNT pathway dysregulation strongly depends on the individual background referring to such 

as environmental factors or genetics.  
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Results from the in vivo experiment show that in lesions of the vehicle group, Rspo1 mRNA 

levels were not altered after 7 days but significantly upregulated after 14 days of inoculation 

compared to uteri (figure 59 and table 33). In lesions of the compound group, the ligand was 

significantly downregulated after 7 days but normalized after 14 days of treatment (figure 60 

and table 34). Accordingly, Rspo1 gene expression was reduced by trend upon WNT 

inhibition after 14 days in lesions compared to controls (figure 58 and table 32). So 

successful WNT inhibition normalized Rspo1 mRNA levels and might have contributed to a 

reduced lesion maintenance over a longer period of time. That would fit to the clinical 

findings from our previous study. In vitro treatment with recombinant RSPO1 caused no 

changes in cell death rate, caspase, and migration activity, but statistically significantly 

decreased viability in non-activated ESCs compared to the respective BSA control (figures 

42-43). RSPO1 was not expressed in ESCs and no other cell line expressing the ligand 

could be found. So possibly, the WNT pathway regarding this protein is insufficiently 

represented and e.g. potential interaction partners are also not expressed. Consequently, 

targeting through recombinant proteins would not activate WNT signaling and therefore not 

influence cellular functions in ESCs.  

In line with the findings of our study, there are other reports indicating a potential role in 

gender-related pathways in the female reproductive tract. In the ovar RSPO1 is expressed in 

somatic cells and regulates the WNT4 signaling pathway that is essential for ovarian 

determination [334-336]. Loss of RSPO1 causes 46XX female-to-male sex reversal and 

46XY individuals with duplication of the region of chromosome 1 encompassing the RSPO1 

and WNT4 genes, suffer from male-to-female sex reversal [178, 336, 337]. This hints to 

direct or indirect hormonal control of RSPO1 activity and fits to the results of this study as 

endometriosis as an E2-driven disease.  

In cancer, also a relationship to RSPO1 was described. In one study RSPO1 regulated 

keratinocyte proliferation and differentiation and rendered keratinocytes prone to squamous 

cell carcinoma [178, 338]. Coi et al. introduced RSPO1 as a prognostic marker in invasive 

ductal breast cancer for disease-free survival [338].  

In summary, our study revealed a potential connection of RSPO1 with endometriosis for the 

first time helping to broaden our understanding of the pathogenesis of the disease. But again 

therapeutic targeting of RSPO1 will be challenging due to expected severe side effects. 

Since in the clinical study RSPO1 was not significantly altered in diseased eutopic 

endometrium compared to healthy samples, it is probably not a suitable biomarker for a non-

invasive diagnosic. 
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5.3 The role of the receptor FZD7 and its ligands WNT7A 

and WNT2B  

WNT2B and WNT7A have been described to be ligands of FZD7 In the intestine or the 

skeletal muscle respectively [339-341]. In our study, these WNT candidate genes were found 

to be significantly upregulated in ectopic samples (figure 20). Immunohistochemical staining 

confirmed increased protein expression of FZD7 in lesions (figure 27). WNT2B protein levels 

were slightly increased in ectopic samples and WNT7A did not exhibit changed protein 

expression in lesions (figures 28 and 29). Again it is notable that the results of the 

immunohistochemical stainings varied greatly between the different individuals. In the mouse 

model of endometriosis Wnt7a was significantly and Wnt2b slightly reduced in lesions 

compared to uteri after 7 days of inoculation. Fzd7 showed no altered gene expression. 

Wnt7a mRNA expression levels normalized after 14 days and Wnt2b exhibited increased 

mRNA levels (figures 59-60 and tables 33-34). So in this study downregulation of mRNA 

expression of several WNT candidate genes in an early stage and normalization in later 

stages of endometrium challenge could be demonstrated. However, aberrantly upregulated 

expression of Fzd7, Wnt7a or Wnt2b could not be confirmed in the in vivo experiments, 

possibly because the time course of the experiment was too short. Consequently, their 

expression levels were not affected by LGK974 treatment (figures 57-58 and table 31-32). 

Fzd7 is even a direct target gene of the WNT pathway by containing the TCF/LEF binding 

motif and should show decreased mRNA expression upon WNT inhibition [149]. This could 

not be observed in this experiment. Auto-regulatory negative feedback loops in terms of Fzd7 

mRNA expression for counter-regulation of WNT inhibition in uteri and lesions might be an 

explanation.  

In vitro, both efficient knockdown and overexpression of FZD7 mRNA levels in ESCs 

successfully decreased WNT activity (figure 39). Knockdown of the receptor led to a 

significant reduction of cell viability and elevation of caspase activity (figure 40). 

Overexpression led to significantly increased cell viability and migration activity and 

decreased cell death rate (figures 40 and 41). It is notable, that upon mRNA overexpression, 

the mRNA levels only increased by about 3 %. Possibly, cellular functions react very senstive 

on slightest changes of FZD7 mRNA levels, so that an increase of 3 % is sufficient to affect 

viability and migration activity. So how can an increase in viability and migration activity and 

decreased cell death rate be explained in combination with a concurrent drop in WNT activity 

despite FZD7 overexpression? Possibly, FZD7 expression is highly sensitive, so that 

slightest increases in mRNA levels cause inhibition of the WNT pathway as a consequence 

of negative regulatory feedback loops to limit outraged WNT signaling. A study by Le Grand 
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et al. discovered that FZD7 together with its ligand WNT7A also activates the non-canonical 

PCP pathway to control the homeostatic level of satellite stem cells for the regulation of the 

regenerative potential of muscle through symmetric cell division [340]. This pathway has for 

example also been implicated in the migration of neuronal cells [342]. Moreover, it has been 

shown that FZD7/WNT7A signaling also directly activates the non-canonical Akt/mTOR 

anabolic growth pathway in skeletal muscle [341, 343]. This has been already linked to 

mechanisms such as cell survival, proliferation, and metabolism [341, 343]. So these 

conditions might explain increased migration and cell survival in FZD7 overexpressed ESCs 

despite decreased WNT activity that potentially comes from negative auto-regulatory 

feedback loops. However, this has to be further investigated. 

Since WNT7A and WNT2B are both ligands of the receptor FZD7 and therefore may also 

activate canonical and non-canonical WNT signaling, similar effects could be expected for 

them in vitro. Indeed, they were not observed. Recombinant WNT7A did not alter WNT 

activity, cell death rate and caspase and migration activity accordingly (figures 46 and 47). 

However, the viability of both WNT3A-treated and non-treated cells significantly dropped by 

WNT7A compared to the appropriate BSA controls (figure 46). Obviously, in this experiment 

decreased cell viability was WNT–independent. So eventually, this was unspecific and/or 

somehow regulated through the non-canonical Akt/mTOR anabolic growth pathway, which 

influences cell survival independent from β-catenin signaling. Potentially, this non-canonical 

WNT pathway also has auto-regulatory feedback loops that cause aberrantly increased 

levels of WNT7A to downregulate the signaling in order to maintain cell integrity. However, 

this was not analysed in this study. Concerning canonical WNT activity, possibly ESCs were 

not suitable to study this pathway in regard to WNT7A. This ligand, as well as WNT2B, is not 

expressed in ESCs and therefore e.g. potential interaction partners are underrepresented, so 

that for these ligands the pathway is not well represented. Other cell lines, which express all 

or at least the remaining WNT candidate genes, were screened but none exhibited desirable 

WNT7A or WNT2B mRNA expression levels or behaviour in the functional assays. 

WNT2B did affect WNT signaling and cellular functions. The recombinant protein decreased 

WNT signaling and viability and migration activity consequently (figures 44 and 45). Reduced 

WNT activity might be a result of counter-regulation of outraged WNT signaling provoked by 

too high concentrations of WNT2B. In this study also a higher concentration of 5 µg/ml 

recombinant protein was used in the WNT activity assay and exhibited further downregulated 

WNT signaling by ~ 10 % (data not shown). This would support the theory of counter-

regulation. This process might be mediated through squelching. This process has been 

mainly described for transcription activators who bind other transcription activators in order to 

inhbit the gene expression of their target genes [344]. Possibly, WNT2B also binds 
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transcription factors of its own pathway to restrict disproportionately activation. Since WNT2B 

has been also described as a ligand of FZD7, it is also possible that these effects may be 

mediated through the non-canonical PCP or Akt/mTOR anabolic growth pathway. However, 

no study has directly linked WNT2B to non-canonical WNT signaling so far.  

Up to date, only WNT7A has been associated with endometriosis previously. Cooke et al. 

performed Wnt7a knockout experiments in mice and observed uterine adenogenesis 

dysfunction of endometrial glandular cells in infertile adult females underlining the importance 

of Wnt7a in uterine development [298]. In accordance with our study, Gaetje et al. also 

described WNT7A upregulation in lesions compared to diseased eutopic endometrium mainly 

in epithelial cells (figure 20) [345]. For the in vitro experiments ESCs were used for the in 

vitro experiments. Because they are of stromal origin, potentially increased protein levels of 

WNT7A could not affect cellular functions. Gaetje et al. postulated the theory of lesion 

formation through coelomic metaplasia, since patients with endometriosis expressed higher 

levels of WNT7A in the peritoneum than healthy women [346]. Possibly, they also included 

endometriotic cells in the peritoneal samples explaining the elevated WNT7A expression. 

Another study by Santamaria et al. observed that cells that migrated from endometriotic 

implants back to the eutopic endometrium in a mouse model exhibited increased Wnt7a 

expression not only in the epithelium but also in the stroma [347]. However, our study only 

revealed significantly increased WNT7A mRNA expression in epithelial ectopic cells (figure 

20). Possibly, the species difference can explain the difference between our and 

Santamaria’s study. However, the mouse experiment performed in our study did also not 

exhibit effects on Wnt7a mRNA expression in lesions or uteri upon WNT inhibition. In human 

endometrial carcinoma, WNT7A plays definitely an essential role, since WNT7A inhibition 

through SFRP4 reduced proliferation in endometrial cancer cells and its expression is of 

prognostic significance and [348, 349]. In terms of uterine function, only one study included 

WNT2B and none referred to FZD7 so far [350]. Downregulation of WNT2B has been 

described to cause estrogen-induced disruption of endometrial adenogenesis in the neonatal 

ewe [350].  

Altogether, the results from the clinical study suggest a potential role of FZD7, WNT7A, and 

WNT2B in the pathogenesis of endometriosis. Immunohistochemical stainigs could partly 

confirm these findings. Results from the in vitro experiments were inconsistent, whereby it is 

uncertain, whether observed effects were mediated through canonical or non-canonical WNT 

signaling to some extent. WNT7A has been already connected to the pathogenesis of 

endometriosis in another study, whereas WNT2B and FZD7 were found to be potentially 

associated with the disease for the first time. So overall, the role of these WNT candidate 

genes in the disease remains uncertain and needs to be further investigated.  
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Finally, in comparison to the other WNT candidate genes, pharmaceutical intervention 

through targeting of FZD7, WNT72B, and WNT7A would even cause worse side effects since 

apart from canonical WNT signaling they are also able to activate non-canonical WNT 

siganling. 

5.4 Progesterone resistance through PGR downregulation 

is only partially involved in endometriosis but is 

directly linked to aberrant WNT signaling. 

Progesterone resistance in endometriosis is defined by reduced PGR expression causing 

elevated E2 levels (see chapter 1.2.2) [56]. In the present clinical study, a downregulation of 

the PGR was not observed. To the contrary, in secretory phase epithelial cells of ectopic 

lesions, mRNA expression of PGR was even significantly elevated (figure 23 and table 25). 

About 9 % of women with endometriosis do not respond to therapeutic progestins due to 

unknown reasons and the relief of pain though progestin therapy appears to be relatively 

short-termed [57, 351, 352]. Consequently, progesterone resistance might have played a 

limited role in our patient cohort.  

But in the mouse experiment progesterone resistance was noticed suggesting that this 

process might be implicated. Pgr mRNA expression was significantly downregulated in 

lesions compared to matching uteri of both groups after 7 days of inoculation (figures 59-60 

and tables 33-34). Additionally, Esr2 was significantly increased in lesions of the vehicle 

group after 7 and 14 days of endometrium challenge contributing to progesterone resistance 

(figure 59 and table 33). For the treatment group, mRNA expression of Esr2 was also 

significantly upregulated in lesions after 14 days (figure 60 and table 34). However, after 14 

days of endometrium challenge, Pgr was downregulated in lesions originating from the 

treatment group compared to the vehicle group. An explanation would be that the amount of 

endometrial cells in lesions of the compound group decreased through WNT inhibition. 

Therefore, less endometrial cells are present causing significantly less abundant Pgr mRNA 

expression.  

Generally, hormonal changes during the normal menstrual cycle are directly connected to the 

WNT pathway. E2 enhances Wnt/β-catenin signaling in the proliferative phase, while 

progesterone inhibits Wnt/β-catenin signaling, thus reducing E2 proliferative actions during 

the secretory phase resulting in counter-balanced estrogen-induced proliferation and 

enhanced differentiation (figure 61) [201, 353, 354]. Moreover, a mouse study discovered 

that stabilization of β-catenin in the uterus caused endometrial glandular hyperplasia and a 
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lack of decidual response [201, 303]. These mice exhibited increased levels of Esr1 in the 

epithelium [303]. In case of enhanced or unopposed E2 signaling, constitutive activation of 

Wnt/β-catenin signaling might trigger endometrial hyperplasia, which possibly develops 

further into endometrial cancer and might also be involved in endometriosis [353]. So 

progesterone resistance in endometriosis might fail to inhibit WNT activation and additionally 

elevated levels of E2 might cause the persistence of the proliferative phenotype with 

impaired decidualization in the endometrium of infertile patients [201]. Also migration activity 

of endometrial cells, WNT signaling, and increased E2 levels are associated to each other. A 

study from Zhang et al. demonstrated that the association of MMP9 and WNT signaling might 

be regulated by E2 in proliferative phase endometrial stromal cells from patients with 

endometriosis [355]. After E2 treatment, protein levels of MMP9 and β-catenin increased 

concurrently in a time- and dose-dependent manner [355]. Since MMP9 is a direct target 

gene of the WNT pathway, which can be increased through elevated E2 levels, these results 

are consistent. In the our study Mmp9 was also significantly increased in lesions of both 

groups after 7 days of inoculation. So the high hormonal levels of E2 in the endometrium of 

patients directly regulate the WNT pathway and therefore lead to increased gene expression 

of genes promoting cell migration. Finally, these results are in accordance with the 

implantation theory [3]. 

 

Figure 61: Connection between progesterone resistance and WNT signaling in endometriosis. 

Proteins/pathway marked in red are higher and in blue are lower expressed in endometriosis. In healthy 
endometrium, estrogen (E2) enhances WNT signaling and proliferation of the eutopic endometrium in the 
proliferative cycle phase. In the secretory cycle phase progesterone (PR) reduces WNT signaling and causes 
decidualization and differentiation of eutopic endometrial cells. Progesterone resistance in endometriosis disrupts 
this counter-balance especially in lesions. 

Although progesterone resistance through reduced PGR expression was not seen in all 

endometriosis patients of our clinical study, it has been observed in the mouse experiments. 

Moreover, it is obviously directly linked to WNT signaling. Both processes potentially enhance 

each other and facilitate mechanisms such as migration, proliferation, or vascularization that 

may contribute to the pathogenesis of endometriosis. 
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