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Chapter 1

Introduction

A randomized controlled clinical trial is considered to be the gold standard
for clinical trials. If it is possible, the randomized clinical trial should be
masked or blinded for both physicians as well as patients before and after
the treatment and is therefore called double-blind. In this thesis a new
framework for the assessment of randomization procedures with respect to
several objectives on a two-armed clinical trial with parallel group design
is presented. The objectives of particular interest are the susceptibility
of a randomization procedure to both selection and chronological bias. It
is assumed that each objective (for example a type of bias) is measured
on the basis of a corresponding criterion or even several criteria. The new
framework is based on desirability functions, which have been first introduced
by Harrington Jr. (1965) with the aim to ensure the quality of produced
goods. In general, a desirability function maps the values of a criterion to a
dimensionless scale in the interval [0, 1]. Afterwards, the desirability scores
of several criteria are combinable with the geometric mean. In this way a
unified score for several objectives, which are reflected by the corresponding
criteria, is derived. On the basis of the desirability scores the objectives are
linked and it is possible to assess the objectives of a randomization procedure
simultaneously. One major aim of this thesis is to start a scientific discussion
about the choice of an appropriate randomization procedure dependent on
the clinical trial and its objectives.
The thesis focuses on the application of the new framework to two types of
bias, which have already been discussed extensively in the literature: The
selection bias (see Proschan, 1994; Tamm et al., 2012; Kennes et al., 2011;
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Berger, 2005b) and the chronological bias (see Rosenkranz, 2011; Tamm and
Hilgers, 2014; Rosenberger and Lachin, 2016). Both the potential and the
occurrence of selection bias in clinical trials without concealment after the
treatment (which can be impossible or even neglected) are investigated. The
potential of selection bias is measured on the basis of the expected proportion
of correct guesses. A correct guess is completed if the next to be assigned
treatment (before its execution) is predicted correctly with the knowledge of
past treatment allocations. In the ICH E9 (1998) guideline it is recommended
to measure the influence of bias on the test decision. Therefore, the influence
of selection bias on the test decision of Student’s t-test, which is conducted to
detect a difference in the effects of the given treatments, in dependency of a
given strength of selection bias η is determined (see Proschan, 1994; Kennes,
2013). In contrast to Langer (2014) a more general approach for deriving
the influence of bias on the test decision of Student’s t-test is examined.
Beside the susceptibility of a randomization procedure to selection bias its
susceptibility to chronological bias is investigated. Chronological bias is
assumed to be caused by long recruitment times of patients or a learning
curve/effect of a surgeon (see Hopper et al., 2007). The only possibility to
correct the analysis of a randomized clinical trial for chronological bias is
to consider the observed bias in the analysis. However, the true form of
the bias is often unknown and thus randomization can be used to limit the
influence of chronological bias on the distorted treatment effect estimation.
Chronological bias is treated as an unobserved covariate in a linear model
which consists of a general mean and the treatment effect. The influence of
chronological bias on the test decision of Student’s t-test, which is performed
to detect a difference in the effects of the given treatments, is computed. The
resulting criteria for assessing chronological bias are the distorted type-I-error
probability and power conducting Student’s t-test in the analysis, which is
assumed to be conducted unadjustedly for a predefined time trend.
Two approaches for the assessment of randomization procedures are con-
trasted: The sequence-based approach and the average-based approach.
The first approach measures the investigated criteria conditioned on the
individual randomization sequences of a randomization procedure, whereas
the second approach assesses the average values of the criteria of a given
randomization procedure. The above mentioned criteria use different scales,
hence adjustable desirability functions are used to map the values of the
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criteria or the criteria‘s mean values to the interval [0, 1]. The transformed
values are summarized with the (weighted) geometric mean to a unified score.
In this way the performance of a randomization procedure with respect to
multiple criteria can be investigated. Both the sequence-based approach and
the average based approach are used for the assessment of randomization
procedures in the presence of selection as well as chronological bias. Finally,
the derived results from both approaches are compared.
The structure of the thesis is as follows: In Chapter 2 the work on random-
ization in clinical trials in the literature is reviewed. First, the notation and
terminology is introduced. Therefore, various randomization procedures are
presented; these are: Permuted Block Randomization, Randomized Permuted
Block Randomization, Random Allocation Rule, Truncated Binomial De-
sign, Complete Randomization, (see for these five randomization procedures
Rosenberger and Lachin, 2016, Chapter 3), Efron’s Biased Coin Design (see
Efron, 1971), and Big Stick Design (see Soares and Wu, 1983). The last three
mentioned randomization procedures belong to the class of the generalized
biased coin design presented in Chen (1999). Afterwards, the properties of
several randomization procedures are discussed and additional terms are
defined. In the third section of Chapter 2, the homogeneous population
model and the requirements for the evaluation of a randomized clinical trial
with Student’s t-test are presented. The chapter closes with the definition of
the population models affected by selection and chronological bias.
For the investigation of chronological and selection bias on the basis of the
type-I-error probability, as it is recommended in the ICH E9 (1998) guideline,
theoretical derivations are necessary. Chapter 3 presents the foundation
for the assessment of both chronological and selection bias on the basis of
the distorted rejection probability under Student’s t-test conditioned on the
randomization sequence. It is assumed that Student’s t-test is conducted
to detect a difference in the effects of the given treatments. This treatment
comparison is conducted unadjustedly for the present bias. The exact distri-
bution of the test statistic of Student’s t-test conditioned on a randomization
sequence is derived. Therefore, it is assumed that the treatment effects are
interfered with a bias vector, which is not considered in the analysis. The
derived distribution of the test statistic conditioned on a randomization
sequence is a doubly-noncentral t-distribution with noncentrality parameters
δ and λ. Particularly, the effect of chronological bias on the noncentrality
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parameters is discussed and some dependencies are shown. Furthermore,
the influence of δ and λ on the density function of the doubly-noncentral
t-distribution is examined and visualized exemplarily for a linear time trend.
The first section of Chapter 3 closes with an example, which shows the
impact of an unadjusted linear time trend on the distorted test decision of
Student’s t-test conditioned on the randomization sequence. In the second
section of Chapter 3 the derived results for modelling chronological bias are
transferred to the situation of selection bias. In the last section of Chapter 3
a more general bias model is considered under the Random Allocation Rule.
In contrast to Rosenkranz (2011) it is derived that the pooled variance of
the two treatment groups is an unbiased and not an asymptotically unbi-
ased estimator for the variance of the difference between the two treatment
groups under the assumption that the clinical trial is affected by a fixed bias.
Furthermore, it is shown that if the bias in a clinical trial suffices the central
limit theorem for samples from a finite population according to Hajek (1960),
the test statistic of Student’s t-test is asymptotically normally distributed.
Finally, for a linear time trend and a step time trend some asymptotical
results concerning the rejection probability under the Random Allocation
Rule using Student’s t-test are derived.
Chapter 4 introduces the class of desirability functions according to Derringer
and Suich (1980). To give an example, a desirability function is applied on a
given criterion of randomization procedure. Afterwards, the combination of
several desirability scores is discussed. Chapter 4 closes with the presentation
of the properties of desirability scores. A sensitivity analysis of the new
framework is carried out in Chapter 5. Initially the sample size N = 4 is con-
sidered to show how the new framework works. The randomization procedure
Efron’s Biased Coin Design is assessed. The sensitivity analysis is performed
for both the sequence-based approach and the average-based approach. An
extensive sensitivity analysis is conducted for the sample size N = 12. The
sample sizes N = 50 and N = 200 are only discussed briefly because many
results are transferable from the situation with N = 12. In Chapter 6 the
new framework is used to assess several settings of randomization procedures
in the presence of both selection and chronological bias. In repetitive manner
the sequence-based as well as the average-based approach are investigated for
the sample sizes N ∈ {12, 50, 200}. For the sample size N = 12 all possible
randomization sequences of the randomization procedures are assessed and
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for the larger sample sizes N = 50 and N = 200 simulations are used to
reflect the behavior of the corresponding randomization procedures. The
thesis closes with a discussion of the results in Chapter 7.





Chapter 2

Literature review

In the beginning of this chapter the notation and terminology is introduced.
Unless explicitly stated otherwise, throughout this thesis a two-armed trial
with parallel group design and a continuous endpoint is considered. Further-
more, the sample size N is assumed to be even. In the second section of the
chapter various randomization procedures and their properties are presented.
In the third section the homogeneous population model is introduced and the
evaluation of a randomized clinical trial is discussed. Finally, the assumed
models for selection bias as well as chronological bias are described and the
impact on the homogeneous population model is shown.

2.1 Notation and terminology

Let ΓN := {−1, 1}N be the space of all possible randomization sequences in
a two-armed clinical trial with parallel group design and a total number of
N patients. Let T = (T1, . . . , TN )T be a random vector which takes values
in ΓN . A randomization sequence t = (t1, . . . , tN )T ∈ ΓN is a realization
of T and its according probability of occurrence is denoted as pt ∈ [0, 1].
Furthermore, Tn defines the nth element of T and tn the nth element of t
with n = 1, . . . , N . When the nth patient is entering the trial, he or she is
assigned in the following manner:

Tn =

 1, thus treatment E is assigned to the nth patient

−1, thus treatment C is assigned to the nth patient
, (2.1)
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where treatment E defines the experimental treatment and treatment C the
control treatment. Let NE(n,T ) = 1/2

∑n
i=1 (Ti + 1) be a random variable

denoting the number of patients assigned to treatment E after n ≤ N

allocations and NC(n,T ) = n−NE(n,T ) be a random variable denoting the
number of patients assigned to treatment C after n ≤ N allocations. If t is
a realization of T , the term Nj(n, t) with j ∈ {E,C} denotes the number of
patients assigned to treatment E or alternatively treatment C after n ≤ N
allocations. In the strict sense, Nj(n, t) with j ∈ {E,C} depends only on
the first n < N elements of t. To be concise Nj(n, t) with j ∈ {E,C} is
used instead of Nj(n, (t1, t2, . . . , tn)T ). This terminology holds for all further
defined terms and expressions. Below, random variables for the allocation
ratios, the imbalance, the number of returns to origin, and the number of
deterministic allocations are defined.

Definition 2.1:

a) The allocation ratios for treatment E and treatment C after n ≤ N

assigned patients with t ∈ ΓN are defined as:

ARE(n, t) = NE(n, t)
n

and ARC(n, t) = NC(n, t)
n

. (2.2)

b) The imbalance in the number of patients assigned to the treatments E
and C after n ≤ N assigned patients with t ∈ ΓN is defined as:

D(n, t) = NE(n, t)−NC(n, t) =
n∑
i=1

ti . (2.3)

c) The number of returns to origin (nro) after n ≤ N assigned patients with
t ∈ ΓN is defined as:

nro(n, t) =
n∑
i=1

1{D(i,t)=0} , (2.4)

where 1{D(i,t)=0} is one if D(i, t) = 0 and zero otherwise.

d) The number of deterministic allocations (nda) after n ≤ N assigned
patients with t ∈ ΓN is defined as:

nda(n, t) =
n∑
i=1

1{P (Ti=1|T1=t1,T2=t2,...,Ti−1=ti−1)∈{0,1}} , (2.5)
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where 1{P (Ti=1|T1=t1,T2=t2,...,Ti−1=ti−1)∈{0,1}} is one if P (Ti = 1|T1 = t1, T2 =
t2, . . . , Ti−1 = ti−1) ∈ {0, 1} and zero otherwise.

2.2 Overview of various randomization procedures

In this section the following randomization procedures are introduced: Per-
muted Block Randomization, Randomized Permuted Block Randomization,
Random Allocation Rule, Truncated Binomial Design, Complete Random-
ization (see for these five randomization procedures Rosenberger and Lachin,
2016, Chapter 3), Efron’s Biased Coin Design (Efron, 1971), and Big Stick
Design (Soares and Wu, 1983). Furthermore, the most specific properties of
the randomization procedures are discussed and at the end of the section
additional terms are defined.

2.2.1 Random Allocation Rule

If the the total sample number N is known and it is desired that the treatment
groups are equally sized at the end of the clinical study, it is imaginable to
assign randomly both treatments E and C N/2 times – randomly means that
all possible randomization sequences with balanced groups at the end of the
the trial are equiprobable. In the literature this kind of randomization is
called Random Allocation Rule (RAR) (see Rosenberger and Lachin, 2016,
pp. 38-39). The Random Allocation Rule can be described by a simple urn
model. An urn is filled with N/2 black and N/2 white balls. For the first
selected patient one ball is drawn randomly and not replaced. If the drawn
ball is black, the patient will be assigned to treatment group E, if not, the
patient will be part of treatment group C. For the second patient one ball is
drawn from the left balls in the urn and so on. All possible allocation paths
of the Random Allocation Rule are presented on the left in Figure 2.1 with
N = 8. In the figure the imbalances D(n) := D(n, t) (see Equation (2.3)) are
plotted for all randomization sequences against their corresponding patient
number n. Afterwards, the points (n,D(n)) of each randomization sequence
are connected. The diagram visualizes all possible randomization sequences.
Furthermore, one particular randomization sequence is highlighted in heavy
bold.



10 CHAPTER 2. LITERATURE REVIEW

(a) Possible paths of RAR with N = 8 in
light bold. A particular path is highlighted
in heavy bold.

(b) Possible paths of PBR(4) with N = 8 in
light bold. A particular path is highlighted
in heavy bold.

Figure (2.1): The subfigures show all possible allocation paths of RAR
and PBR(4) with N = 8.

2.2.2 (Randomized) Permuted Block Randomization

In comparison to the Random Allocation Rule, the (Randomized) Permuted
Block Randomization has an additional (random) blocking factor. Patients
with the same blocking factor form a unit during the randomization process.
Let k ∈ N be even and N/k = K be a positive integer. Thus, the corresponding
Permuted Block Randomization consists of K blocks with block length k.
Permuted Block Randomization with block length k is denoted by PBR(k).
In each block of PBR(k) half of the patients are assigned to the treatment
groups E and C, respectively. All randomization paths are equiprobable.
Thus, Permuted Block Randomization is the same as conducting K times
the Random Allocation Rule. Figure 2.1 shows alle possible allocations paths
of Permuted Block Randomization with block length four and N = 8.
Because of its simple feasibility and its good balancing behavior Permuted
Block Randomization is probably the most commonly used randomization
procedure in randomized clinical trials. Permuted Block Randomization
is already reviewed extensively in the literature (see for example Zelen,
1974) and even the covariance matrix of the patients’ allocations of this
randomization procedure is derived (see Rosenberger and Lachin, 2016). In
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contrast to the Random Allocation Rule the total sample size N can be
unknown at the beginning of the clinical trial and it is even possible that the
last block is unfilled. A block is termed as unfilled when only i < k patients
are assigned to one block with length k.
The ICH E9 (1998) guideline recommends using two or more different block
lengths selected randomly for each block in order to prevent selection bias. In
Shao and Rosenberger (2016) Randomized Permuted Block Randomization
(RPBR) is reviewed. In a similar manner to the PBR(k) one block length
k, where k is an even integer, is defined. Afterwards, blocks of the lengths
2, 4, 6, . . . , k are selected equiprobablely until all N patients are included
into the clinical trial. The used randomization procedure is denoted by
RPBR(k). In comparison to the Random Allocation Rule the property of
equally sized treatment groups at the end of the clinical trial is not ensured
for Randomized Permuted Block Randomization. The maximal possible
absolute value of the final imbalance in the number of patients assigned to
the treatments E and C is k/2.

2.2.3 Truncated Binomial Design

Blackwell and Hodges Jr. (1957) presented the Truncated Binomial Design
(TBD) as an alternative to the Random Allocation Rule to fullfil the aim to
assign exactly half of the patients to each treatment group. The conditional
allocation probability P (Tn+1 = 1|T1 = t1, . . . , Tn = tn) of the Truncated
Binomial Design is given by:

P (Tn+1 = 1|T1 = t1, . . . , Tn = tn) =


1, if 1/2

∑n
i=1(ti − 1) = −N/2

0, if 1/2
∑n
i=1(ti + 1) = N/2

0.5, else

.

(2.6)

Consequently, a fair coin is tossed for both treatment groups as long as each
treatment is assigned less than N/2 times. Afterwards, the randomization list
would be filled with the opposite treatment until N patients are included.
Blackwell and Hodges Jr. (1957) have proven that this randomization pro-
cedure is the least susceptible one to their model for selection bias. The
model that they used is introduced in Section 2.3.2. The possible paths of
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the Truncated Binomial Design are the same as for the Random Allocation
Rule. The different probabilities of the individual randomization sequences
are the only difference between these two randomization procedures. For
the Truncated Binomial Design not all possible randomization sequences are
equiprobable, which is one property of the Random Allocation Rule.

2.2.4 Generalized biased coin design

In this section the generalized biased coin design defined by Chen (1999)
is presented. The generalized biased coin design is described as follows:
A fair coin for the allocation of the (n + 1)th patient is tossed if the sum
of the first n < N allocations is zero, otherwise a biased coin is tossed if
the difference in the number of patients assigned to each of the treatment
groups does not exceed a prespecified fixed tolerated imbalance boundary.
In the literature this boundary is called the maximum tolerated imbalance
(MTI). If the absolute value of the difference in the number of patients
assigned to each of the treatment groups exceeds the MTI, a deterministic
allocation for the (n+ 1)th patient is completed, so that the absolute value
of the imbalance in patient numbers in the two treatment groups is reduced.
Let p ∈ [0.5, 1] and MTI ∈ N, hence the conditional allocation probability
P (Tn+1 = 1|T1 = t1, . . . , Tn = tn) of the generalized biased coin design
introduced by Chen (1999) is given by:

P (Tn+1 = 1|T1 = t1, . . . , Tn = tn) =



1, if
∑n
i=1 ti = −MTI

p, if 0 >
∑n
i=1 ti > −MTI

0.5, if
∑n
i=1 ti = 0

1− p, if 0 <
∑n
i=1 ti < MTI

0, if
∑n
i=1 ti = MTI

.

(2.7)

The generalized biased coin design represents three randomization proce-
dures, which are of particular interest in this thesis. First, let MTI =∞ and
p = 0.5, thus Equation (2.7) describes a fair coin toss for each patient. The
corresponding randomization procedure is called Complete Randomization
(CR) – every patient allocation is done completely random. One property
of Complete Randomization is, that the random variables Ti and Tj with
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(a) Possible paths of CR and EBC(p) with
N = 8 in light bold. A particular path is
highlighted in heavy bold.

(b) Possible paths of BSD(2) with N = 8 in
light bold. A particular path is highlighted
in heavy bold.

Figure (2.2): The subfigures show all possible allocation paths of CR,
EBC and BSD(2) with N = 8.

i 6= j and i, j ∈ {1, 2, . . . , N} are independent. Consequently, the covariance
matrix of Complete Randomization is the identity matrix (see Rosenberger
and Lachin, 2016, pp. 38-39). One disadvantage of using Complete Ran-
domization is, that there is a non-negligible probability of realizing a high
absolute value of the final imbalance concerning patient numbers in the
clinical trial. In particular, this is a problem for small clinical trials. In
order to prevent this problem Efron (1971) presented Efron’s Biased Coin
Design (EBC(p)), which is dependent on the parameter p ∈ [0.5, 1] according
to Equation (2.7). Efron suggested in his work to set the parameter p to
2/3 while keeping MTI = ∞ as in the setting of Complete Randomization.
Thus, the probability of realizing undesired high absolute values of of the
final imbalance concerning patient numbers in the clinical trial is minimized,
but not ruled out. Twelve years later, Soares and Wu (1983) introduced
Big Stick Design (BSD). This special design only deals with the MTI and
p is set to 0.5 as in the setting for Complete Randomization. A Big Stick
Design with a fixed MTI is denoted by BSD(MTI). Figure 2.2 shows the
possible paths of Complete Randomization, Efron’s Biased Coin Design, and
BSD(2) with N = 8. The only difference between Complete Randomization
and Efron’s Biased Coin Design is that the probabilities of occurrence of the
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individual allocation paths are different. These probabilities are not visible
in the printed graphs.

2.2.5 Properties of randomization procedures

A randomization procedure (RP) is a probability distribution over the set
ΓN := {−1, 1}N . Thus, a randomization procedure is uniquely defined by
the probability of occurrence of the individual randomization sequences.
Below, the set of possible randomization sequences of a given randomization
procedure is specified.

Definition 2.2: (Set of possible randomization sequences of an RP)
Let t ∈ ΓN and pt := pRP

t ∈ [0, 1] be the probability of occurrence of the
randomization sequence t dependent on a given randomization procedure RP .
Thus, the set of possible randomization sequences of a given randomization
procedure ΓRPN ⊆ ΓN is defined as follows:

ΓRP
N := {t ∈ ΓN |pt > 0} . (2.8)

If a randomization sequence is an element of the set ΓRP
N , the randomization

sequence t is said to be produced or generated by the randomization procedure
RP.

Two randomization procedures are the same if all possible randomization
sequences have the same probability of occurrence. Below, the maximal
tolerated imbalance, the average number of returns to origin, the average
number of deterministic allocations, and the probability for Tn = 1 with
fixed n for a given randomization procedure are defined.

Definition 2.3:

a) The maximal tolerated imbalance (MTI) of a given randomization proce-
dure RP is defined as:

MTIRP := max
n=1,2,...,N
t∈ΓRP

N

|D(n, t)| . (2.9)



15 CHAPTER 2. LITERATURE REVIEW

b) The average number of returns to origin (avnro) of a given randomization
procedure RP is defined as:

avnroRP :=
∑
t∈ΓRP

N

pt nro(N, t) . (2.10)

c) The average number of deterministic allocations (avnda) of a given ran-
domization procedure RP is defined as:

avndaRP :=
∑
t∈ΓRP

N

pt nda(N, t) . (2.11)

d) The probability for Tn = 1 with fixed n ∈ {1, . . . , N} of a given random-
ization procedure RP is defined as:

PRP(Tn = 1) =
∑
t∈ΓRP

N

1{tn=1} pt , (2.12)

where 1{tn=1} is one if tn = 1 and zero otherwise.

If PRP(Tn = 1) = ARE holds for all n = 1, 2, . . . N with ARE ∈ [0, 1], the
randomization procedure preserves a fixed target allocation ratio of the
experimental treatment ARE . Unless explicitly stated otherwise, throughout
this thesis the target allocation ratios of the treatments E and C are assumed
to be 0.5. That means no treatment arm is preferred during the whole clinical
trial and the two treatments are equiprobable for every enrolled patient
independent of his or her enrollment number n. Complete Randomization
serves as an example that not every final allocation ratio ARE(N, t) for each
randomization sequence of a given randomization procedure has to attain its
target allocation ratio. For this randomization procedure the final allocation
ratio is maintained, although there exists one randomization sequence where
each patient is assigned to the treatment group E or alternatively to the
treatment group C. The final allocation ratio 0.5 is maintained only on
average.
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2.3 Evaluation and assumptions of an (un)biased
clinical trial

At the beginning of this section the homogeneous population model and its
evaluation according to Lachin (1988) are introduced. In the second and
third subsection the assumed models and the measurements of both selection
and chronological bias are presented. Furthermore, the impact of selection
as well as chronological bias on the evaluation of a randomized clinical trial
is shown. Particularly, the influences of selection as well as chronological
bias on the homogeneous population model are discussed.

2.3.1 Homogeneous population model and its evaluation

The population model presented by Lachin (1988) assumes that the sample
of patients included into a clinical trial is representative of a reference
population. Furthermore, the target values, which are measured on the
patients after the treatments, are independent and identically distributed
(i.i.d.) according to some probability function Hψj (y). The parameter vector
ψj of Hψj (y) is dependent on the given treatment j ∈ {E,C}. The term Yn,j

with j ∈ {E,C} defines a random variable for the nth patient’s response. In
the homogeneous population model for a two-armed clinical trial with parallel
group design discussed by Lachin (1988) there is one population assumed,
from which all included patients are taken. After the assignment to treatment
E or alternatively treatment C according to the corresponding element of
the randomization list, the nth patient’s response is distributed according
to some probability function Hψj (y) with j ∈ {E,C} (written Yn,j ∼ Hψj ).
The assumed homogeneous population model is shown in Figure 2.3, where
Nj := Nj(N,T ) with j ∈ {E,C} is the final number of patients assigned
to the treatment group E or alternativeley treatment group C. Due to the
fact that the nth patient is allocated randomly to one of the two treatment
groups either the corresponding response yn,E or the corresponding response
yn,C is observable.
In Lachin et al. (1988) it is pointed out that under the assumption of a
homogeneous population model the randomization process is ignored in the
analysis. If the distribution Hψj (y) with j ∈ {E,C} is specified, optimal
estimators for the parameters ψC and ψE can be constructed and an optimal
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Homogeneous population model

Population
Yn

i.i.d.∼ Hψ

?

Allocation
at random

�
�
�	

@
@
@R

NE patients
Yn,E

i.i.d.∼ HψE

NC patients
Yn,C

i.i.d.∼ HψC

Figure (2.3): The homogeneous population model according to Lachin
(1988).

test for the hypothesis H0 : ψE = ψC against H1 : ψE 6= ψC can be derived.
Throughout this thesis Hψj (y) describes the distribution function of a normal
distribution with parameter vector ψj = (µj , σ2)T and j ∈ {E,C}. The
variance σ2 ∈ R+ is assumed to be unknown and the same in both treatment
groups. Thus, the investigated hypotheses are:

H0 : ψE = ψC vs. H1 : ψE 6= ψC

⇔ H0 : µE = µC vs. H1 : µE 6= µC . (2.13)

For the test problem in Equation (2.13) Student’s t-test is the uniformly
most powerful unbiased test. However, when Student’s t-test is used the
randomization process itself is not taken into account in the analysis. In
order to include the randomization process in the analysis, the randomization
model introduced by Lachin (1988) should be used.
For later derivations a regression model in the situation of a homogeneous
population model is used. Therefore it is assumed that the observed patient
responses y1, . . . , yN are realizations of stochastically independent random
variables Y1, . . . , YN dependent on T , which satisfy the following model:

Yn = a(Tn)Tθ + εn , (2.14)
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where εn with n = 1, 2, . . . , N is an independent and identically normally
distributed random variable with expectation zero and variance σ2 ∈ R+.
The vector θ ∈ Rp is an unknown parameter vector and a : Tn → R

p a
known regression function. With Y = (Y1, . . . , YN )T , ε = (ε1, . . . , εN )T ,
and A = (a(T1)T , a(T2)T , . . . , a(TN )T )T the Model (2.14) can be written as
follows:

Y = Aθ + ε , (2.15)

where ε ∈ RN is a vector of independent and identically normally distributed
random variables with expectation zero and variance σ2 ∈ R+. The matrix
A ∈ RN×p is called the design matrix. Transferring Model (2.15) to the
homogeneous population model presented in Figure 2.3 the parameter vector
θ = (θ0, θ1)T consists of two elements. The parameter θ0 defines the intercept
and the parameter θ1 distinguishes between the two treatments E and C.
Let a(Tn) = (1, Tn) in the Model (2.14), thus it follows:

Y =


1 T1

1 T2
...

...
1 TN


(
θ0

θ1

)
+


ε1

ε2
...
εN

 =
(
1N ,T

)︸ ︷︷ ︸
A

θ + ε , (2.16)

where the vector 1N ∈ RN contains the number one N times and T is a
random variable taking values in {−1, 1}N (see Section 2.1).

2.3.2 Definition and model of selection bias

According to Berger (2005a) selection bias can be divided in four different
types. First-order selection bias might occur either when patients are allowed
to choose their own treatment group or the investigator is able to choose
the treatment group for each patient after learning about his characteristics.
If the clinical trial is randomized, but the randomization list is known to
the investigator, he or she could influence the enrollment or the exclusion
of suitable patients due to soft inclusion or exclusion criteria. This type of
selection bias is called second-order selection bias. Consider a clinical trial
which is randomized but only future allocations are concealed, thus the inves-
tigator might be able to predict future allocations based on past assignments
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due to restrictions of the randomization method. Bias which arises in this
manner is denoted as third-order selection bias. If the investigator is blinded
to future allocations and past allocations are masked, then the clinical trial
is only susceptible to fourth-order selection bias. This bias occurs despite
masking and blinding and is also called residual selection bias (see Berger,
2005a).
Throughout this thesis clinical trials which are susceptible to third-order
selection bias are of primary interest. This quantity of clinical trials includes
at least all those clinical trials where the treatment concealment after its
execution is not possible. This is the case in all surgical trials and in all
clinical trials where the compared treatments have different obvious side-
effects. In Joppi et al. (2012) 66 clinical trials for orphan drugs are reported,
of which 22 were planned open label. One third of those presented clinical
trials would be highly susceptible to third-order selection bias. In this thesis
a two-armed clinical trial is considered because this class of clinical trials
is the most susceptible one to third-order selection bias. All randomization
sequences exist of only two different elements. Thus, the investigator assumes
that both treatments E and C occur equiprobablely and in this way he or
she can guess correctly for each patient in 50% of the cases the corresponding
treatment allocation, before the patient is included. If there are some known
restrictions of the randomization method to the investigator, he or she can
increase this value enormously. Below, the correct guesses dependent on a
guessing strategy are defined.

Correct guesses

If the investigator will not have any premonition about the randomization
process, he or she will not be able to select the included patients in the clinical
trial consciously. In the setting of third-order selection bias it is assumed that
the investigator knows past treatment allocations. Furthermore, due to the
power aspect of the treatment comparison the investigator assumes equally
sized treatment groups at the end of the trial. Under these circumstances
it is in accordance with Blackwell and Hodges Jr. (1957) opportune for the
investigator to guess the nth allocation of a given randomization sequence
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according to the following guess function:

GCS(n, t) =


1, if NE(n− 1, t) < NC(n− 1, t)

2B(0.5)− 1, if NE(n− 1, t) = NC(n− 1, t)

−1, if NE(n− 1, t) > NC(n− 1, t)

, (2.17)

where B(p) defines a random variable from the Bernoulli distribution with
success probability p = 0.5. For n = 1 the terms NE(0, t) and NC(0, t) are
assumed to be zero. The guessing strategy presented in Equation (2.17) is
called convergence strategy (CS) because the investigator assumes that the
sum of the elements of the randomization sequence convergences to zero.
Below, the expected number of correct guesses dependent on a guess function
G of a given randomization procedure RP is defined.

Definition 2.4: (Expected number of correct guesses of an RP)
Let G : {1, 2, . . . , N} × ΓN → {−1, 1} be a guess function and pt be the
probability of occurrence of the randomization sequence t ∈ ΓN dependent on
a given randomization procedure RP . Then, the expected number of correct
guesses dependent on G of a given randomization procedure RP is defined as:

CGRP(G) =
∑
t∈ΓRP

N

N∑
n=1

E
(
1{tn=G(n,t)}

)
pt (2.18)

=
∑
t∈ΓRP

N

CG(t) pt ,

where CG(t) defines the expectation of correct guesses of a given randomiza-
tion sequence. The bar in the term CGRP(G) indicates that a weighted average
value for the correct guesses of all randomization sequences is calculated.

Due to the fact that the probabilities of occurrence of the randomization
sequences are strictly dependent on a given randomization procedure, the
expected number of correct guesses differs dependent on the randomization
procedure. In the later analysis, the expected proportion of correct guesses
is often used instead of the expected number of correct guesses. Therefore,
two more terms are defined as

propCGRP(G) = CGRP(G)
N

(2.19)
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and propCG(t) = CG(t)
N

. (2.20)

One advantage of the expected proportion of correct guesses is that if N in-
creases, the term will not increase The expected proportion of correct guesses
takes values in the interval [0, 1] - in the one extreme case the investigator
guesses correctly for all elements of all randomization sequences of a ran-
domization procedure and in the other extreme case the investigator guesses
wrongly for all elements of all randomization sequences of a randomization
procedure.
The expectation of the correct guesses of a given randomization sequence
from Definition 2.4 under the guess function GCS from Equation (2.17) can
be written as follows:

CG(t) =
N∑
n=1

E
(
1{tn=GCS(n,t)}

)
with

E
(
1{tn=GCS(n,t)}

)
=


1, if D(n− 1, t) 6= 0 ∧ |D(n− 1, t)| > |D(n, t)|

0.5, if D(n− 1, t) = 0

0, otherwise

.

The convergence strategy will always decide for the correct treatment, when-
ever the randomization sequence reduces the difference between the numbers
of patients assigned to each of the treatment groups. If the numbers of
assigned patients are equal, there is a 50% probability of guessing correctly.
Consequently, 0.75 is the maximal possible value. This value is reached for
any randomization procedure with the property D(n, t) = 0 for all possible
randomization sequences with n even. In the literature such randomization
sequences are called alternating sequences. The randomization procedure
PBR(2), which is introduced in Section 2.2.2, consists of only such alternating
randomization sequences. Thus, PBR(2) is the most susceptible random-
ization procedure to the presented convergence strategy. In the appendix
the following relationship between the expected number of correct guesses
with the guessing function GCS from Equation (2.17) and the number of
returns to origin from Equation (2.4) of a given randomization procedure
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RP is derived:

CGRP(GCS) =
∑
t∈ΓRP

N

N∑
n=1

E
(
1{tn=GCS(n,t)}

)
pt

=
∑
t∈ΓRP

N

(nro(N, t)
2 + N

2 − 1{|D(N,t)|>0}
|D(N, t)| − 1

2

)
pt .

(2.21)

Under the assumption of D(N, t) = 0 for all randomization sequences of
a given randomization procedure, the expected number of correct guesses
is strictly dependent on the number of returns to origin. Consequently,
minimizing the expected number of correct guesses from Equation (2.21) is
equivalent to minimizing the number of returns to origin of a randomization
procedure. The derived relationship helps to attain a deeper understanding
of the convergence strategy. To protect a clinical trial against selection bias
achieved by the convergence strategy, a randomization procedure should not
increase the number of returns to origin and should achieve a high value of
the absolute value of the final imbalance. However, this is a conflict with
the power aspect of clinical trial. The power for the treatment comparison is
maximized if the clinical trial is balanced at the end.
Other guess functions than GCS defined in Equation (2.17) are possible.
The divergence strategy (DS) (see Blackwell and Hodges Jr., 1957) forms
a contrast to the convergence strategy. In this scenario the investigator
assumes NE(N, t) > NC(N, t) or NE(N, t) < NC(N, t). Thus, the investi-
gator supposes that one treatment is favored by randomization at the end.
This strategy is important in response adaptive clinical trials (see Hu and
Rosenberger, 2006). With the divergence strategy the investigator would
maximize the expected number of correct guesses in such clinical trials. One
last strategy for the investigator is to guess deterministic allocations due to
the restriction of the randomization method. Randomization methods which
have restrictions due to its maximal tolerated imbalance are susceptible to
this guessing strategy. Finally, other guessing strategies for the investigator
are imaginable and even a combination of already presented strategies are
possible to maximize the expected number of correct guesses.
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Modelling selection bias

In accordance with Proschan (1994) the investigator can use a so called
biasing policy when selecting patients. Dependent on a guess function G the
investigator can select the nth patient in the following manner:

Yn ∼


N (µ+ η, σ2), if E(G(n, t)) = 1

N (µ− η, σ2), if E(G(n, t)) = −1

N (µ, σ2), else

, (2.22)

where G : {1, 2, . . . , N}×ΓN → {−1, 1} defines a guess function and η ∈ R is
the strength of selection bias. The parameter η can be interpreted as a shift
in the expectation µ ∈ R of the nth patient. In the presented Model (2.22)
it is assumed that the variance σ2 is not affected by η.

Influence of selection bias on the population model

Below, the influence of the selection bias model according to Proschan (1994)
on the homogeneous population model presented in Section 2.3.1 is discussed.
The population model affected by selection bias is illustrated in Figure 2.4.
It is assumed that the underlying population can be divided into three
subgroups: The good responders, the normal responders, and the poor
responders. The subgroup, the nth patient belongs to, is always chosen freely
by the investigator. Furthermore, this additional attribute of a patient’s
response is independent of the given treatment. In what follows, the guess
function according to the convergence strategy defined in Equation (2.17)
and the biasing policy presented in Equation (2.22) is considered. Thus,
the investigator enrolls a poorly responding patient into the clinical trial
if the occurred imbalance in the clinical trial is positive. If the occurred
imbalance is negative, it is assumed that the investigator enrolls a well
responding patient and alternatively if the occurred imbalance is zero, a
normally responding patient is included.
In this thesis unobserved selection bias is investigated. That means the
population model presented in Section 2.3.1 is assumed in the analysis, but
in fact the situation of a population model affected by selection bias is present.
Thus, in the evaluation of this thesis an analysis unadjusted for selection
bias for the test problem described in Equation (2.13) is undertaken. In
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the literature there are already several tests for selection bias available (see
Berger, 2005b; Kennes, 2013). However, always incorporating selection bias
in the analysis would lead to a loss of power in situations when the effects of
the treatments are different and the trial is not affected by selection bias.
Revisiting the regression model introduced in Equation (2.16), the situation
of a population model affected by selection bias can be expressed by the
function a(Tn) = (1, Tn, bn) with bn = sgn(D(n− 1,T )). The sign function
sgn(D(n− 1,T )) is one if the imbalance after the inclusion of n− 1 patients
is positive, minus one if the imbalance after the inclusion of n− 1 patients is
negative, and zero otherwise. Consequently, the following model is derived:

Y = ASBθ + ε =


1 T1 b1

1 T2 b2
...

...
...

1 TN bN



θ0

θ1

η

+


ε1

ε2
...
εN

 . (2.23)

For later derivations this model is often written as follows:

Y =


1 T1

1 T2
...

...
1 TN


(
θ0

θ1

)
+


b1

b2
...
bN

 η +


ε1

ε2
...
εN

 = Aθ +BSB η + ε , (2.24)

where the matrix A ∈ RN×2 is the design matrix of the homogeneous
population model (see Model (2.16)). The random vectorBSB ∈ RN defines a
general bias vector for modelling selection bias and takes values in {−1, 0, 1}N .
The strength of selection bias is expressed by the parameter η ∈ R.

2.3.3 Definition and model of chronological bias

The term chronological bias was first defined in Matts and McHugh (1978).
A chronologic bias may arise due to systematic temporal changes in for
example patient characteristics or changes of personnel. A long run of one
treatment may be particularly problematic. In Tamm and Hilgers (2014) it
is mentioned that the treatment effect can be biased if patients with a worse
prognosis are included at the beginning of a clinical trial and patients with a
better prognosis are included at the end of a clinical trial. In the literature



25 CHAPTER 2. LITERATURE REVIEW

several randomization procedures like the Maximal Procedure (see Berger
et al., 2003) and Hadamard Randomization (see Bailey and Nelson, 2003)
are discussed for controlling the imbalances in patient numbers between the
two treatment groups. The ICH E9 (1998) guideline explicitly recommends
the usage of randomization in blocks like Permuted Block Randomization
(see. Section 2.2.2) in situations when chronological bias is expected.
As pointed out in the introduction it is assumed that chronological bias
appears in form of time trends. Below, two possible functions for modelling
a time trend τϑ(n) dependent on the patient number n and the strength
ϑ of the time trend are defined. The presented time trends are reviewed
in Rosenkranz (2011) and Tamm and Hilgers (2014).

Definition 2.5: (Time trends)
Let n ≤ N be the number of the nth patient and ϑ ∈ R. Thus, the

a) Linear time trend is defined as:

τlin,ϑ(n) = n− 1
N

ϑ . (2.25)

b) Step trend is defined as:

τstep,ϑ(n) = 1{n≥s} ϑ , (2.26)

where 1{n≥s} is one if n ≥ s with s ∈ {1, . . . , N} and zero otherwise.

For practical applications a step trend represents the adaptation or relaxation
of inclusion criteria in a study. Further applications of a step trend are a
change of the attending physician or seasonal changes. The linear time trend
represents a linear increase in the patients’ characteristics.

Influence of chronological bias on the population model

In this section the influence of chronological bias on the homogeneous popu-
lation model introduced in Section 2.3.1 is presented. The population model
affected by chronological bias due to a time trend is shown in Figure 2.5. It
is assumed that the expectation of the nth patient’s response is shifted by a
time trend τϑ(n). Examples of possible time trend functions τϑ(n) are given
in Definition (2.5). The time trend is a fixed effect, which occurs additive to
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the the treatment effect. The variance σ2 is assumed to remain unaffected
by the time trend function τϑ(n).
In this thesis unobserved time trends are investigated. That means the
population model presented in Section 2.3.1 is assumed in the analysis, but
in fact the population model affected by chronological bias in form of a time
trend is present. Thus, in the later evaluation of this thesis the test problem
described in Equation (2.13) is investigated under the assumption that the
test decision is not adjusted for the additional time trend function τϑ(n).
Due to the fact that the time trend is assumed to be unobserved, relatively
small values for the time trend factor ϑ are considered.
Revisiting the regression model introduced in Equation (2.16), the situation
of a population model affected by chronological bias in form of a linear time
trend can be expressed by the function a(Tn) = (1, Tn, τlin,ϑ(n)). Thus, for
the design matrix it follows:

Y = ACBθ + ε =


1 T1 0
1 T2 1/N
...

...
...

1 TN (N−1)/N



θ0

θ1

ϑ

+


ε1

ε2
...
εN

 . (2.27)

For later derivations this model is often transformed in the following manner:

Y =


1 T1

1 T2
...

...
1 TN


(
θ0

θ1

)
+


0

1/N
...

(N−1)/N

ϑ+


ε1

ε2
...
εN

 = Aθ +BCB ϑ+ ε , (2.28)

where BCB = (0, 1/N, . . . , (N−1)/N)T defines a general bias vector for chrono-
logical bias dependent on the expected time trend function τlin,ϑ(n). The
matrix A ∈ RN×2 is again the design matrix of the homogeneous popula-
tion model (see Model (2.16)). In case of a step time trend introduced in
Equation (2.26) the vector BCB ∈ RN consists of s − 1 zeros followed by
N − s+ 1 ones.
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Population model affected by selection bias
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Figure (2.4): The population model affected by selection bias intro-
duced by Proschan (1994).

Population model affected by chronological bias
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Figure (2.5): The population model affected by chronological bias in
form of a a time trend τϑ(n).



Chapter 3

Measurement of selection
and chronological bias

The derivations in this chapter are based on the homogeneous population
model presented in Section 2.3.1. If not stated otherwise, a homogeneous
population is assumed and the regression model defined in Equation (2.16)
is investigated under misspecification for both a time trend parameter ϑ (see
Model (2.27)) and a selection bias effect η (see Model (2.23)). In accordance
with the ICH E9 (1998) guideline both an external time trend τϑ(n) and a
possible selection effect η is understood as bias in a clinical trial. The ICH
E9 guideline recommends that “the interpretation of statistical measures
of uncertainty of [. . . ] treatment comparisons should involve consideration
of [. . . ] bias to the p-value [. . . ].” Thus, the influence of chronological and
selection bias on the p-value of the test with the following hypotheses is
investigated:

H0 : θ1 = 0 vs. H1 : θ1 6= 0 , (3.1)

with θ1 defined in Model (2.16). These hypotheses are equivalent to:

H0 : µE = µC vs. H1 : µE 6= µC , (3.2)

where µE is the expectation of the effect associated with treatment E and
µC the expectation of the effect associated with treatment C. In what
follows, the errors in the models presented in Chapter 2 are assumed to
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be independent and identically normally distributed. The null hypothesis
presented in Equation (3.2) is tested with Student’s t-test. At the beginning of
this chapter the influence of a model affected by chronological bias presented
in Equation (2.28) on the distorted test decision of Student’s t-test is derived.
Therefore the rejection probability under Student’s t-test is investigated
conditioned on the randomization sequence t. In the situation of chronological
bias it is assumed that the analysis is not adjusted for the additional term
BCB ϑ. Afterwards, the results are transferred to the model affected by
selection bias presented in Equation (2.24). In this particular case, the
analysis is not adjusted for the additional term BSB η. At the end of
the chapter a more general bias model is investigated under the Random
Allocation Rule. For this randomization procedure the properties of the
central limit theorem for samples from a finite population, which was first
introduced by Hajek (1960), are used to show that the nominal significance
level α ∈ (0, 1) of Student’s t-test is controlled asymptotically in case of a
linear as well as a step time trend. Finally, asymptotical quantiles of the
rejection probability under Student’s t-test conditioned on the randomization
sequence t are compared to exact/simulated quantiles under the Random
Allocation Rule in case of a linear and a step time trend.

3.1 Influence of chronological bias on the test de-
cision

In this section, the parameter θ1 is tested to be zero, assuming Model (2.16).
Thus, the influence of an unadjusted linear time trend on the test decision
H0 : θ1 = 0 against H1 : θ1 6= 0 is investigated. At the end of this section
the derived results for a linear time trend are transferred to the situation in
which the clinical trial is affected by a step time trend.
Revisiting Model (2.28), the design matrix has the following structure: A =
(1N ,T ) ∈ RN×2, where 1N ∈ RN defines a vector containing the number
one N times. The random vector T = (T1, T2, . . . , TN )T takes values in
{−1, 1}N and represents a two level factor for the two treatments E and
C in a clinical trial. For the following calculations the case of Ti = Tj

for all i 6= j with i, j ∈ {1, 2, . . . , N} is explicitly excluded. Furthermore,
N ≥ 3 and N being even are assumed. Consequently, the rank of the matrix
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A ∈ RN×2 is considered to be two (written: rk(A) = 2) and it follows that
the inverse (ATA)−1 exists. In the analysis the model Y = Aθ + ε (see
Equation (2.16)) is wrongly assumed to be the correct one, although the
model Y = Aθ +BCB ϑ+ ε (see Equation (2.28)) holds. The parameter θ1

is tested to be zero. Hence, special emphasis is placed on the test statistic
W with:

W := θ̂1√
V̂ ar(θ̂1)

, (3.3)

where θ̂1 is the corresponding least square estimator for θ1 and V̂ar(θ̂1) the
corresponding estimator for the variance of θ̂1. It is well known from the
literature (see Fahrmeir et al., 2007, p. 120) that if the true parameter θ1 is
zero and the model Y = Aθ + ε is correctly assumed with an independent
and identically normally distributed random vector ε, that the test statistic
W is t-distributed with N − 2 degrees of freedom.
Below, the influence of an unadjusted analysis for the bias vector BCB ϑ on
the distribution of the test statistic W is investigated, when the analysis is
not adjusted for it. According to Fahrmeir et al. (2007, p. 92) the parameter
θ1 in the model Y = Aθ + ε (see Equation (2.16)) can be estimated by the
corresponding least-square estimator:

θ̂1 = kT (ATA)−1ATY , (3.4)

with k = (0, 1)T = e2 ∈ R2, where ei defines the unit vector with the number
one on the position i. Before the distribution of θ̂1 is derived, two more
lemmas are given.

Lemma 3.1: (see Searle, 1971, pp. 180–181)
A function of parameters kTθ in a linear model with Y = Aθ+ε is estimable,
if there is an l ∈ RN with lTA = kT .

Lemma 3.2:
Let A ∈ RN×p and (ATA)−1 exists (which is equivalent to rk(A) = p).
Then, in the model Y = Aθ + ε all combinations of kTθ with k ∈ Rp are
estimable.
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In a first step the distribution of the nominator of the test statisticW defined
in Equation (3.3) is derived. The estimator θ̂1 from Equation (3.4) can be
transformed as follows:

θ̂1 = kT (ATA)−1ATY

= lTA(ATA)−1ATY

= lTω(A)Y . (3.5)

The vector l ∈ RN is chosen according to Lemma 3.1 and the vector is not
explicitly specified. The matrix ω(A) = A(ATA)−1AT is the projection
matrix on the column span of A ∈ RN×2. The matrix ω(A) has the following
properties (see Fahrmeir et al., 2007, p. 93):

1. ω(A)ω(A) = ω(A)

2. ω(A)T = ω(A)

3. ω(A)A = A

Analogously to the projection matrix ω(A), the corresponding orthogonal
matrix ω⊥(A) = IN×N − ω(A), with identity matrix IN×N ∈ RN×N , is
defined. For ω⊥(A) the following properties hold:

4. ω⊥(A)A = 0

5. ω(A)ω⊥(A) = 0.

The distribution of θ̂1 = lTω(A)Y follows from a lemma found in Fahrmeir
et al. (2007, p. 464).

Lemma 3.3:
Let Y ∼ N (ν,Σ) with ν ∈ RN , d ∈ Rq, and D ∈ Rq×N . The covariance
matrix Σ ∈ RN×N is assumed to be positive definite. Then, for X = d+DY
it follows:

X ∼ N (d+Dν,DΣDT ) .

Particularly, Y ∈ RN has the dimension N and X ∈ Rq has the dimension
q.
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In what follows, the random vector ε in Model (2.28) is assumed to be
multivariate normally distributed with covariance matrix σ2 IN×N ∈ RN×N

and σ ∈ R+. For Y ∈ RN defined in Equation (2.28) it holds Y ∼ N (Aθ +
BCB ϑ, σ

2 IN×N ). Thus, applying Lemma 3.3 with D = lTω(A) ∈ R1×N

and d = 0 ∈ RN the distribution of θ̂1 can be transformed as follows:

lTω(A)Y ∼ N
(
lTω(A) (Aθ +BCB ϑ), lTω(A)σ2 IN×N (lTω(A))T

)
= N

(
lTω(A)Aθ + lTω(A)BCB ϑ, σ

2 lTω(A)ω(A)l
)

= N
(
lTAθ + δ̃, σ2 lTω(A)l

)
= N

(
kTθ + δ̃, σ2 lTA(ATA)−1AT l

)
= N

(
θ1 + δ̃, σ2 kT (ATA)−1k

)
, (3.6)

with δ̃ = lTω(A)BCB ϑ. Consequently, for θ̂1 = lTω(A)Y according to
Equation (3.5) it follows:

θ̂1√
σ2 kT (ATA)−1k

∼ N (δ, 1) , (3.7)

with δ = (θ1+δ̃)/(
√
σ2 kT (ATA)−1k) = (θ1+lTω(A)BCB ϑ)/(

√
σ2 kT (ATA)−1k) and

lTA = kT = (0, 1). Now, the parameter δ in the case that BCB ∈ RN is a
(random) vector is derived. Model (2.28) is transformed for the calculation
of ω(A), in the following manner:

Y = Aθ +BCB ϑ+ ε ⇔ Ỹ = Ãθ + B̃CB ϑ+ ε (3.8)

with Ã =
(
1NE 1NE

1NC −1NC

)
,

with NE := 1/2
∑N
i=1(Ti + 1) and NC := N − NE . Thus, Ỹ ∈ RN is an

ordered vector of Y ∈ RN such that at the beginning of the vector all entries
Yi with Ti = 1 are appearing with its corresponding bias element bi ∈ BCB

for i ∈ {1, . . . , N}. For Ã the vector l = 1/2 (e1 − eNE+1) ∈ RN with the
property lT Ã = (0, 1) = kT is assumed to be fixed. For ω(Ã) it follows:

ω(Ã) = Ã(ÃT
Ã)−1Ã

T
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= Ã

 N NE −NC︸ ︷︷ ︸
:=d

NE −NC N


−1

Ã
T

= 1
N2 − d2 Ã

(
N −d
−d N

)
Ã
T

= 1
N2 − d2 Ã

(
(N − d)1TNE (N + d)1TNC
(N − d)1TNE (−N − d)1TNC

)

= 1
N2 − d2

(
1NE×NE 2 (N − d) 0

0 1NC×NC 2 (N + d)

)

=

1NE×NE 2
(N+d) 0

0 1NC×NC
2

(N−d)


(1)
=

1NE×NE 1
NE

0
0 1NC×NC

1
NC

 . (3.9)

The matrix ω(Ã) depends on T only in the number of times assigning the
treatment E or C, respectively. Below, the parameter δ from Equation (3.7)
with l = 1/2 (e1−eNE+1) ∈ RN and B̃CB = (b̃1, b̃, . . . , b̃N )T ∈ RN is derived:

δ = θ1 + lTω(Ã)B̃CB ϑ√
σ2 lTω(Ã)l

= 1√
σ2

2

(
1
NE
1
T
NE
,− 1

NC
1
T
NC

)
l

(
θ1 +

( 1
NE

1
T
NE
,− 1

NC
1
T
NC

)
B̃CB

ϑ

2

)

= ϑ

2
√

σ2

4

(
1
NE

+ 1
NC

)(2θ1
ϑ

+ 1
NE

NE∑
i=1

b̃i︸ ︷︷ ︸
:= ˜̄BE

− 1
NC

N∑
i=NE+1

b̃i︸ ︷︷ ︸
:= ˜̄BC

)

= ϑ√
σ2
(
NE+NC
NENC

) (2θ1
ϑ

+ ˜̄BE − ˜̄BC
)

= ϑ

σ

√
NENC

NE +NC

(2θ1
ϑ

+ B̄E − B̄C
)
. (3.10)

The term B̄j with j ∈ {E,C} is the mean value of the elements of the
bias vector assigned to the corresponding treatment group j dependent

(1)N + d = NE + NC + NE − NC = 2NE and N − d = NE + NC − (NE − NC) = 2NC .
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on the randomization sequence. This mean value is independent of the
transformation used in Equation (3.8). Under the assumption H0 : θ1 = 0 it
follows that the noncentrality parameter δ is zero, if and only if B̄E = B̄C

holds - otherwise δ 6= 0. In summary, δ is shifted dependent on the parameter
θ1 as well as the allocation of the corresponding elements of the bias vector
to the two treatment groups.
In Fahrmeir et al. (2007, p. 102) an unbiased estimator for the denominator
V̂ar(θ̂1) according to Equation (3.3) is given:

V̂ar(θ̂1) = σ̂2 kT (ATA)−1k

= 1
N − r

Y T (IN×N − ω(A))Y kT (ATA)−1k

= 1
N − r

σ2 kT (ATA)−1 kY T 1
σ2 ω

⊥(A)Y , (3.11)

with k = e2 = (0, 1)T . The term r defines the rank of the matrix A ∈ RN×2,
which is two under the assumption of Model (2.16). For the derivation of
the distribution of V̂ar(θ̂1) the following lemma from Koch (2004, p. 146) is
applied.

Lemma 3.4:
LetX ∼ N (ν, σ2 IN×N ), thus ifD σ2 is an idempotent matrix thenXTDX ∼
χ2(h,νTDν) with h = rk(D), where χ2(h, λ) defines the χ2-distribution with
h degrees of freedom and noncentrality parameter λ.

Below, the distribution of the last term Y T 1/σ2 ω⊥(A)Y defined in Equa-
tion (3.11) is derived. For this, Lemma 3.4 with D = 1/σ2 ω⊥(A) is ap-
plied. The matrix D σ2 = ω⊥(A) is idempotent. Furthermore, Y ∼
N (Aθ + BCB ϑ, σ

2 IN×N ) with ν = Aθ + BCB ϑ is considered. Thus,
it follows:

Y T 1
σ2 ω

⊥(A)Y ∼ χ2
(
h, (Aθ +BCB ϑ)T 1

σ2 ω
⊥(A) (Aθ +BCB ϑ)

)
= χ2

(
h,

1
σ2
(
θT ATω⊥(A)︸ ︷︷ ︸

=(ω⊥(A)A)T=0

+ϑBT
CB ω

⊥(A)
)

(Aθ +BCB ϑ)
)

= χ2
(
h,

1
σ2

(
ϑBT

CB ω
⊥(A)BCB ϑ

))
= χ2

(
h,
ϑ2

σ2

(
BT

CB ω
⊥(A)BCB

))
, (3.12)
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with h = rk(ω⊥(A)) = N − rk(ω(A)) = N − 2. Finally, the noncentrality
parameter λ = ϑ2/σ2 (BT

CB ω
⊥(A) is simplified. The situation with A =

(1N ,T ) ∈ RN×2 and BCB = (b1, b2, . . . , bN )T ∈ RN is assumed. For the
following calculations the transformed Model (3.8) and the equality ω⊥(Ã) =
IN×N −ω(Ã) are used. The matrix ω(Ã) is derived in Equation (3.9). Now,
λ = ϑ2/σ2 (B̃T

CB ω
⊥(Ã)B̃CB) is transformed:

λ = ϑ2

σ2

B̃T
CBIN×N − B̃

T
CB

1NE×NE 1
NE

0
0 1NC×NC

1
NC

 B̃CB

= ϑ2

σ2

B̃T
CB −

1TNE 1
NE

NE∑
i=1

b̃i,1
T
NC

1
NC

N∑
i=NE+1

b̃i

 B̃CB

= ϑ

σ2

(
B̃
T
CB B̃CB −

(
1
T
NE

˜̄BE ,1TNC
˜̄BC
)
B̃CB

)
= ϑ2

σ2

 N∑
i=1

b̃2i −
˜̄BE

NE∑
i=1

b̃i − ˜̄BC
N∑

i=NE+1
b̃i


= ϑ2

σ2

NE∑
i=1

b̃2i −
˜̄BE

NE∑
i=1

b̃i +
N∑

i=NE+1
b̃2i −

˜̄BC
N∑

i=NE+1
b̃i


= ϑ2

σ2

NE∑
i=1

(
b̃2i − 2 ˜̄BE b̃i + ˜̄B2

E

)
+

N∑
i=NE+1

(
b̃2i − 2 ˜̄BC b̃i + ˜̄B2

C

)
= ϑ2

σ2

NE∑
i=1

(
b̃i − ˜̄BE

)2
+

N∑
i=NE+1

(
b̃i − ˜̄BC

)2


= ϑ2

σ2

(
(NE − 1)S̃2

E,b + (NC − 1)S̃2
C,b

)
= ϑ2

σ2

(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
, (3.13)

where S2
E,b = 1/(NE−1)

∑N
i=1 1{Ti=1}

(
bi − 1/NE

∑N
j=1 bj 1{Tj=1}

)2
is the vari-

ance of the elements of the bias vector allocated to treatment group E and
S2
C,b = 1/(NC−1)

∑N
i=1 1{Ti=−1}

(
bi − 1/NC

∑N
j=1 bj 1{Tj=−1}

)2
is the variance

of the elements of the bias vector allocated to treatment group C. Although
the noncentrality parameter λ is independent of the transformation of the
design matrix A ∈ RN×2 used in Equation (3.8), the noncentrality parameter
λ is strongly dependent on T . The noncentrality parameter λ is zero, if and
only if the variance of the elements of the additional bias term BCB ∈ RN

in both treatment groups E and C is zero. In particular, the noncentrality
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parameter λ is zero if all the patients’ responses of any given group are shifted
by a constant – otherwise it is not. Finally, the results are summarized and
the distribution of the test statistic W is derived:

W := θ̂1√
V̂ar(θ̂1)

=
θ̂1√

σ2 kT (ATA)−1k√
Y T 1

σ2 ω⊥(A)Y 1
N−2

=
1

2σ

√
NE NC
NE+NC θ̂1√

Y T 1
σ2 ω⊥(A)Y 1

N−2

∼ tN−r,δ,λ , (3.14)

with σ−1√(NE−NC)/(NENC) θ̂1 ∼ N (δ, 1) and
√
Y T σ−2 ω⊥(A)Y 1/(N−2) ∼

χ2
N−2,λ. In Equation (3.10) δ = ϑ/σ

√
(NENC)/(NE+NC)

(
(2 θ1)/ϑ + B̄E − B̄C

)
and in Equation (3.13) λ = ϑ2/σ2

(
(NE−1)S2

E,b +(NC −1)S2
C,b

)
with NE :=

1/2
∑N
i=1(Ti+1) and NC := N−NE are derived. After Searle (1971, p. 99) the

nominator and denominator are independently distributed. Thus, W follows
a doubly noncentral t-distribution tN−2,δ,λ with N − 2 degrees of freedom
and noncentrality parameters δ and λ. Both noncentrality parameters are
dependent on T . The properties of the doubly noncentral t-distribution are
discussed in more detail in Section 3.1.2. Below, the correlation between
the sum of the investigated noncentrality parameters δ and λ is more closely
investigated. Under the assumption of the model Y = Aθ + ε defined in
Equation (2.16) and H0 : θ1 = 0 the test statistic W is t-distributed. The
test statistic W is noncentral t-distributed if H1 : θ1 6= 0 and Model (2.16)
holds. Particularly, in this situation the noncentrality parameter λ is zero
and only the noncentrality parameter δ is shifted.

3.1.1 Properties of noncentrality parameters

Proposition 3.5:
Let Y = Aθ+BCB ϑ+ ε be the model defined in Equation (2.28) and θ1 = 0.
Then, for the noncentrality parameters δ = ϑ/σ

√
(NENC)/(NE+NC)

(
B̄E − B̄C

)
and λ = ϑ2/σ2

(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
with NE =

∑N
i=1 (Ti+1)/2 and
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NC = N −NE the following equality holds:

δ2 + λ = ϑ2

σ2 (N − 1)S2
BCB , (3.15)

with S2
BCB

= 1/(N−1)
∑N
i=1(bi − B̄CB)2 and B̄CB = 1/N

∑N
i=1 bi.

Proof

δ2 + λ = ϑ2

σ2
NE NC

NE +NC

(
B̄E − B̄C

)2

+ ϑ2

σ2

(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
= ϑ2

σ2

(
NE NC

N
B̄2
E − 2 NE NC

N
B̄E B̄C + NE NC

N
B̄2
C

+
NE∑
i=1

(
b̃i − B̄E

)2
+

N∑
i=NE+1

(
b̃i − B̄C

)2
)

= ϑ2

σ2

 NC

N NE

NE∑
i=1

b̃i

2

− 2
N

NE∑
i=1

b̃i

N∑
i=NE+1

b̃i + NE

N NC

 N∑
i=NE+1

b̃i

2

+
NE∑
i=1

b̃2i − 2 1
NE

NE∑
i=1

b̃i

NE∑
i=1

b̃i + 1
NE

NE∑
i=1

b̃i

2

+
N∑

i=NE+1
b̃2i − 2 1

NC

N∑
i=NE+1

b̃i

N∑
i=NE+1

b̃i + 1
NC

 N∑
i=NE+1

b̃i

2
= ϑ2

σ2

 NC

N NE

NE∑
i=1

b̃i

2

− 2
N

NE∑
i=1

b̃i

N∑
i=NE+1

b̃i + NE

N NC

 N∑
i=NE+1

b̃i

2

+
NE∑
i=1

b̃2i −
1
NE

NE∑
i=1

b̃i

2

+
N∑

i=NE+1
b̃2i −

1
NC

 N∑
i=NE+1

b̃i

2 .
The ordered elements b̃i with i ∈ {1, 2, . . . , N} of the bias vector BCB ∈ RN

are dependent on T (see Equation (3.8)). With some further transformations
the proposition follows:

δ2 + λ = ϑ2

σ2

 N∑
i=1

b̃2i −
1
N

− NC

NE

NE∑
i=1

b̃i

2

+ 2
NE∑
i=1

b̃i

N∑
i=NE+1

b̃i
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− NE

NC

 N∑
i=NE+1

b̃i

2

+ N

NE

NE∑
i=1

b̃i

2

+ N

NC

 N∑
i=NE+1

b̃i

2
= ϑ2

σ2

 N∑
i=1

b̃2i −
1
N

NE∑
i=1

b̃i

2 (
NE +NC

NE
− NC

NE

)
+ 2

NE∑
i=1

b̃i

N∑
i=NE+1

b̃i

+

 N∑
i=NE+1

b̃i

2 (
NE +NC

NC
− NE

NC

)
= ϑ2

σ2

 N∑
i=1

b̃2i −
1
N

NE∑
i=1

b̃i

2

+ 2
NE∑
i=1

b̃i

N∑
i=NE+1

b̃i +

 N∑
i=NE+1

b̃i

2

= ϑ2

σ2

 N∑
i=1

b̃2i −
1
N

NE∑
i=1

b̃i +
N∑

i=NE+1
b̃i

2


= ϑ2

σ2

 N∑
i=1

b̃2i −
1
N

(
N∑
i=1

b̃i

)2
= ϑ2

σ2

 N∑
i=1

b2i −
1
N

(
N∑
i=1

bi

)2
= ϑ2

σ2

 N∑
i=1

b2i −
2
N

(
N∑
i=1

bi

)2

+ 1
N

(
N∑
i=1

bi

)2
= ϑ2

σ2

(
N∑
i=1

b2i − 2 B̄CB

N∑
i=1

bi +N B̄2
CB

)

= ϑ2

σ2

N∑
i=1

(
bi − B̄CB

)2

= ϑ2

σ2 (N − 1)S2
BCB .

�

The result derived in Proposition 3.5 can be applied directly to the distribu-
tion of the test statistic W from Equation (3.14). Under the assumptions of
H0 : θ1 = 0 and a fixed bias vector BCB ∈ RN , it follows that the sum δ2 +λ

is independent of T . However, δ and λ themselves are strongly dependent
on T .
Below, the noncentrality parameter δ derived in Equation (3.10) is trans-
formed. Therefore, the true difference between the effects of the two treat-
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ments is considered to be an additional element of the bias vector BCB ∈ RN :

δ? = ϑ

σ

√
NE NC

NE +NC

(2 θ1
ϑ

+ B̄E − B̄C
)

= ϑ

σ

√
NE NC

NE +NC

((
B̄E + θ1

ϑ

)
−
(
B̄C −

θ1
ϑ

))

= ϑ

σ

√
NE NC

NE +NC

(
B̄?
E − B̄?

C

)
, (3.16)

with B̄?
E = 1/NE

∑NE
i=1

(
b̃i + θ1/ϑ

)
and B̄?

C = 1/NC
∑N
i=NE+1

(
b̃i − θ1/ϑ

)
, where

b̃i are the elements of the ordered vector B̃CB dependent on T (see Equa-
tion (3.8)). Analogously to Proposition 3.5 the following equality holds for
δ? = ϑ/σ

√
(NE NC)/(NE+NC)·

(
B̄?
E − B̄?

C

)
:

δ2
? + λ = ϑ2

σ2 (N − 1)S2
B?CB

, (3.17)

with B?
CB = BCB + T θ1/ϑ. Particularly, the noncentrality parameter λ =

ϑ2/σ2
(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
is independent of the constant shift

θ1 between the two treatment groups, but dependent on T in the number of
patients allocated to the two treatment groups treatment groups E and C.
In the next section, the boundary ϑ2/σ2 (N − 1)S2

BCB
for δ2 + λ in situations

of a linear time trend and a step trend is derived. For these calculations the
parameter θ1 is assumed to be zero.

Boundary for δ2 + λ in case of a linear time trend

Under the assumption of Model (2.28) with θ1 = 0 the bias vector has the
following form BCB = 1/N (0, 1, 2, . . . , N − 1)T . The term ϑ2/σ2 (N − 1)S2

BCB

defined in Proposition 3.5 is calculated as follows:

ϑ2

σ2 (N − 1)S2
BCB = ϑ2

σ2

N∑
i=1

(
bi − B̄CB

)2

= ϑ2

σ2

(
N∑
i=1

b2i − 2
N∑
i=1

bi B̄CB +N B̄2
CB

)

= ϑ2

σ2

 N∑
i=1

b2i −
2
N

(
N∑
i=1

bi

)2

+ 1
N

(
N∑
i=1

bi

)2
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= ϑ2

σ2

 N∑
i=1

b2i −
1
N

(
N∑
i=1

bi

)2
= ϑ2

N2 σ2

N−1∑
i=1

i2 − 1
N3

(
N−1∑
i=1

i

)2

(2)
= ϑ2

6N2 σ2 (N − 1)N (2N − 1)− 1
N3

((N − 1)N
2

)2

= ϑ2

6N σ2 (N − 1) (2N − 1)− 1
4N (N − 1)2

= ϑ2

N σ2

(1
6(2N2 − 3N + 1)− 1

4 (N2 − 2N + 1)
)

= ϑ2

12N σ2

(
4N2 − 6N + 2− 3N2 + 6N − 3

)
= ϑ2

12N σ2 (N2 − 1) . (3.18)

Assuming a linear time trend and NE ≥ 2 and NC ≥ 2, the term max(δ2) is
unequal to ϑ2/σ2 (N − 1)S2

BCB
. Particularly, the noncentrality parameter λ is

always unequal to zero. The bias vector BCB ∈ RN in case of a linear time
trend is not a constant shift in the expectations of the patients’ responses in
both treatment groups.

Boundary for δ2 + λ in case of a step time trend

In what follows, Model (2.28) with θ1 = 0 is assumed. Furthermore, the
bias vector has the following form BCB = (0TN−s,1Ts )T ϑ with s ∈ N and
0 < s < N . The parameter ϑ ∈ R defines the strength and s ∈ N the
length of the step time trend. Now, the term ϑ2/σ2 (N − 1)S2

BCB
according

to Proposition 3.5 is exactly calculated:

ϑ2

σ2 (N − 1)S2
BCB = ϑ2

σ2

N∑
i=1

(
bi − B̄CB

)2

= ϑ2

σ2

(
N∑
i=1

b2i − 2
N∑
i=1

bi B̄CB +N B̄2
CB

)

= ϑ2

σ2

 N∑
i=1

b2i −
2
N

(
N∑
i=1

bi

)2

+ 1
N

(
N∑
i=1

bi

)2
(2)∑N

i=1 i = N (N+1)
2 and

∑N

i=1 i2 = 1
6 N (N + 1) (2 N + 1)
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= ϑ2

σ2

 N∑
i=1

b2i −
1
N

(
N∑
i=1

bi

)2
= ϑ2

σ2

(
s− s2

N

)

= ϑ2

σ2 s

(
N − s
N

)
. (3.19)

Below, the maximum of t(s) = s − s2/N is derived. Therefore the first
derivative is set equal to zero (necessary condition for an extremum):

∂t(s)
∂s

= 1− 2 s
N

= 0

⇔ s = N

2 .

Due to the fact that the second derivative of t(s) is always smaller than zero,
the function t(s) has a maximum at the position s = N/2. Thus, the maximal
extend of δ2 + λ in case of a step trend is:

max
s∈{1,2,...,N}

(
ϑ2

σ2 (N − 1)S2
BCB

)
= ϑ2

σ2

(
N

2 −
N2

4N

)
= ϑ2N

σ2 4 . (3.20)

It is obvious, that as s → 0 or as s → N the term δ2 + λ approaches zero
(see Equation (3.19)). Provided that the analysis is unadjusted for the step
time trend, a step trend with moderate strength ϑ at the beginning or the
end of a clinical trial will not have any or just less influence on the analysis
of the clinical trial.

3.1.2 The doubly noncentral t-distribution

The doubly noncentral t-distribution is an extension of the noncentral t-
distribution. The noncentral t-distribution depends only on the noncentrality
parameter δ. Hence, the second noncentrality parameter λ is by default zero
for the noncentral t-distribution. According to Kocherlakota and Kocher-
lakota (1991) the distribution function of the doubly noncentral t-distribution
with h degrees of freedom and noncentrality parameters δ and λ can be ex-
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pressed as follows:

Fth,δ,λ(x) =
∞∑
k=0

fPoi(λ/2)(k) · Fth+2k,δ

x
√
h+ 2 k
h

 . (3.21)

The term fPoi(λ/2)(k) defines the density function of a Poisson distribution on
the position k with parameter λ/2 and Fth+2k,δ

(
x
√

(h+2 k)/h
)
defines the distri-

bution function of a noncentral t-distribution on the position
(
x
√

(h+2 k)/h
)

with h+ 2k degrees of freedom and noncentrality parameter δ. Analogously
to the characterization of the distribution function of the doubly noncentral
t-distribution, the corresponding density function can be expressed as follows:

fth,δ,λ(x) =
∞∑
k=0

fPoi(λ/2)(k) · fth+2k,δ

x
√
h+ 2 k
h

 . (3.22)

Both the density and the distribution function of the doubly noncentral
t-distribution at the position x depend on an infinite sum, which starts at
zero. For all presented results in this thesis, this infinite sum is evaluated
at the positions 0, 1, . . . , q, where q is the 99% quantile of the poisson
distribution function with parameter λ/2. A fixed value of the sum δ2 + λ

(see Proposition 3.5) is of particular interest in the later analysis. Figure 3.1
shows several density functions for a doubly noncentral t-distribution with
10 degrees of freedom and δ2 + λ = 12. In general, the figure shows that
the greater the noncentrality parameter δ is, the greater the shift of the
density function to the right becomes. Comparing the density function of the
t-distribution (δ = λ = 0) to the density function of the doubly noncentral
t-distribution with δ = 0 it becomes apparent that the density function of the
doubly noncentral t-distribution is narrower, whereas the tails of the density
function of the t-distribution are heavier. This behavior is derivable from the
density function presented in Equation (3.22). The smaller the noncentrality
parameter λ is, the greater the values of the density function of the Poisson
distribution for small values of the parameter k become. The values of the
Poisson density function can be interpreted as weights for the density function
of the noncentral t-distribution. The smaller the noncentrality parameter λ
is, the more weight is set on greater values of the noncentral t-distribution.
The term fth+2k,δ

(
x
√

(h+2 k)/h
)
approaches zero for growing k with x 6= 0

and moderate values of h and δ.
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Figure (3.1): Several settings of the density function of the doubly
noncentral t-distribution with 10 degrees of freedom and δ2 + λ = 12,
where δ and λ are the noncentrality parameters.

Implementation of the doubly-noncentral t-distribution in R

The doubly noncentral t-distribution does not belong to the standard imple-
mentation of statistical software. The software R (R Core Team, 2016), which
is used in this thesis, might have some inaccuracies with the calculation of
the density function or distribution function of the noncentral t-distribution.
Particularly for extreme noncentrality parameters (called ncp in the help
of the “The Student t-Distribution” in the R help) some inaccuracies may
occur:

»Supplying ncp = 0 uses the algorithm for the non-central distri-
bution, which is not the same algorithm used if ncp is omitted.
This is to give consistent behavior in extreme cases with values
of ncp very near zero. The code for non-zero ncp is principally
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intended to be used for moderate values of ncp: it will not be
highly accurate, especially in the tails, for large values.«

(R help from dt (distribution function of the t-distribution))

Despite warnings from R on using their own implemented function, it is
assumed that this problem does not affect any results in this thesis. All
functions using the distribution function or quantiles of the noncentral t-
distribution with “extreme” noncentrality parameters were cross-checked with
results from the literature (tables found in Kocherlakota and Kocherlakota
(1991)).

3.1.3 Conditional rejection probabilities

The type-I-error probability α ∈ (0, 1) or size of a test (for example of
Student’s t-test) is defined as the probability of a false rejection of the
null hypothesis H0 : µC = µE (see Equation (3.2)). The opposite of the
type-I-error probability is the type-II-error probability β ∈ (0, 1). The power
1− β of a test (for example of Student’s t-test) is the probability to reject
the null hypothesis and accept the alternative H1 : µC 6= µE , when the
alternative is true. In general, the power and the type-I-error probability
form a contrast. That means it is not possible to guarantee a high power
and a low type-I-error probability. In clinical trials the planned power is
often 80% and the size α is set to 5% beforehand. Thus, a false rejection
of the null hypothesis is allowed in 5% of the cases and in 80% of the cases
the alternative should be correctly accepted, if it is true. Section 3.1 shows
that under the assumption of a homogeneous population model Y = Aθ + ε
(see Model (2.16)) and 2 θ1 = µE − µC = 0 the test statistic W defined
in Equation (3.3) is t-distributed with N − 2 degrees of freedom. Thus, a
two-sided α-level test is derived by rejecting the null hypothesis if the test
statistic W is greater than the (1− α/2)-quantile of the t-distribution with
N − 2 degrees of freedom or the test statistic W is smaller than the α/2-
quantile of the t-distribution with N − 2 degrees of freedom. In the literature
this test is called two-sided two-sample Student’s t-test (see Student, 1908).
In this section the population model affected by chronological bias Y =
Aθ +BCB ϑ+ ε according to Equation (2.28) is considered. The situation
of conducting Student’s t-test without adjusting for the additional bias
vector BCB ∈ RN and its strength ϑ is investigated. On the one hand the
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planned size of the test α0 is distorted due to an unadjusted analysis for
the bias term BCB ϑ and on the other hand the planned power 1 − β0 is
distorted in the same manner. In Section 3.1 it was shown that the distortion
of the rejection probability under Student’s t-test is strongly dependent
on the randomization sequence. Under the assumption of the population
model affected by chronological bias (see Equation (2.28)), the type-I-error
probability αCB of Student’s t-test is determined as follows:

αCB = 1− FtN−2,δ,λ

(
t1−α0/2,N−2

)
+ FtN−2,δ,λ

(
tα0/2,N−2

)
, (3.23)

where the noncentrality parameters δ = ϑ/σ
√

(NE NC)/(NE+NC)
(
B̄E − B̄C

)
(see Equation (3.10)) and λ = ϑ2/σ2

(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
(see

Equation (3.13)) of the distribution function of the doubly noncentral t-
distribution are dependent on the bias vector BCB ∈ RN , its strength ϑ,
and T . The parameter θ1 in Model (2.28) is assumed to be zero, otherwise
αCB will not be a type-I-error. Table 3.1 shows the noncentrality parameters
and the corresponding type-I-error probabilities conditioned on the possible
randomization sequences under the Random Allocation Rule for N = 4 (see
Section 2.2.1). The nominal significance level α0 of the conducted test is
set to 5%. For the corresponding quantiles of the t-distribution it follows
t0.025,2 = −t0.975,2 = 4.303. In the presented setting it is assumed that the
clinical trial is affected by a comparatively strong linear time trend with ϑ = 4
(see Equation (2.25)). The term BT

CB ϑ is independent of the randomization
sequence and corresponds to the vector (0, 1, 2, 3)T . The boundary for δ2 +λ,
which is derived in Equation (3.18), is five for σ2 = 1.
Table 3.1 shows the realizations of the type-I-error probabilities and the
noncentrality parameters δ and λ conditioned on the randomization sequences
under the Random Allocation Rule for N = 4 (see Section 2.2.1). The
expected or average values of the investigated parameters can be calculated
by weighting the presented realizations with their probability of appearance.
Under the Random Allocation Rule all possible randomization sequences
are equiprobable. Thus, the mean values of the realizations of the type-I-
error probabilities and the noncentrality parameters δ and λ conditioned
on the randomization sequences correspond to the expected values under
the Random Allocation Rule. Only the average value of the type-I-error
probability in the situation of chronological bias has been assessed extensively
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i tTi BT
CB ϑ δi λi δ2

i + λi Ft2,δi,λi (−4.303) 1-Ft2,δi,λi (4.303) αCB(ti)
0 {(T1, T2, T3, T4) :∑4

i=1 Ti = 0}
(0,0,0,0) 0 0 0 0.025 0.025 0.050

1 (1,1,-1,-1) (0,1,2,3) -2 1 5 0.146 0.000 0.146
2 (1,-1,1,-1) (0,1,2,3) -1 4 5 0.016 0.001 0.016
3 (-1,1,1,-1) (0,1,2,3) 0 5 5 0.002 0.002 0.005
4 (1,-1,-1,1) (0,1,2,3) 0 5 5 0.002 0.002 0.005
5 (-1,1,-1,1) (0,1,2,3) 1 4 5 0.001 0.016 0.016
6 (-1,-1,1,1) (0,1,2,3) 2 1 5 0.000 0.146 0.146

average values: 0 3.333 5 0.028 0.028 0.056

Table (3.1): Realizations of αCB, δ, and λ conditioned on the ran-
domization sequences under RAR with N = 4, α0 = 0.05, ϑ = 4, and
σ2 = 1.

in the literature (see Rosenkranz, 2011; Rosenberger and Lachin, 2016).
Usually, this average value is time-intensively simulated. Tamm and Hilgers
(2014) conducted a worst case sequence analysis in situations of a population
model affected by chronological bias. A worst case randomization sequence
of a randomization procedure is defined as a randomization sequence, which
attains the greatest value of the type-I-error probabilities. Under the Random
Allocation Rule with N = 4 these are the randomization sequences t1 and
t6 (see Table 3.1) with the value αCB = 0.146. Table 3.1 shows that the
average value of the type-I-error probabilities under the Random Allocation
Rule in case of a strong linear time trend is 5.6%. This value does not differ
as much from the planned type-I-error probability α0 = 5%. Although any
type-I-error probability of any randomization sequence corresponds with the
nominal significance level of 5%, the nominal significance level is preserved
almost in average. This property of the Random Allocation Rule is more
closely investigated in Section 3.3.
Below, the setting when the alternative hypothesis H1 : µE 6= µC is true
is investigated. Analogously to the type-I-error probabilities, the power of
Student’s t-test conditioned on the randomization sequences of a particular
randomization procedure is calculated. When investigating the setting
under the alternative hypothesis, the difference between the effects of the
expectations of the two treatment groups has to be quantified. It is assumed
that the effect of the experimental treatment is superior to the effect of the
control treatment (i.e. µE > µC) and should be correctly detected with a
probability of 80%. For further calculations the effect size ∆0 = |µE−µC |/σ =
|2 θ1|/σ, which attains a power of 80%, has to be derived. For the setting
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N = 4, σ2 = 1, NE = NC = 2, α0 = 0.05, and 1− β0 = 80% an effect size
∆0 = 5.653 is computed with the statistical software R (R Core Team, 2016).
Under the assumption of the population model affected by chronological bias
defined in Equation (2.28), the power 1 − βCB of Student’s t-test can be
derived as follows:

1− βCB = 1− FtN−2,δ,λ

(
t1−α0/2,N−2

)
+ FtN−2,δ,λ

(
tα0/2,N−2

)
, (3.24)

with δ = ϑ/σ
√

(NE NC)/(NE+NC)
(

2 θ1/ϑ + B̄E − B̄C
)
(see Equation (3.10)) and

λ = ϑ2/σ2
(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
(see Equation (3.13)). The non-

centrality parameters δ and λ of the distribution function of the doubly non-
central t-distribution are strongly dependent on the bias vector BCB ∈ RN ,
its strength ϑ, the parameter θ1, and T . Furthermore, the term S2

BCB?

according to Equation (3.17) with B?
CB ϑ = BCB ϑ + T θ1 is not constant.

Table 3.2 shows the realizations of the power, δ, and λ conditioned on the
possible randomization sequences under the Random Allocation Rule with
N = 4 for θ1 = ∆0/2 = 2.83 and λ = 4. Again, it is assumed that the clinical
trial is affected by a comparatively strong linear time trend with ϑ = 4 (see
Equation (2.25)), which is not taken into account in the analysis. Table 3.2
shows that the values for the power 1−βCB, δ, and λ are strongly dependent
on the randomization sequence. A worst case randomization sequence is
defined as a sequence with the lowest value of the power 1 − βCB. Under
the Random Allocation Rule with N = 4 this is the randomization sequence
t2 with βCB = 0.231. Furthermore, neither the power of any randomiza-
tion sequence ti with i ∈ {1, . . . , 6} corresponds with the planned power
1−β0 = 0.8 nor the planned power is preserved in average. When the clinical

i tTi (B?
CB)T ϑ δi λi δ2

i + λi Ft2,δi,λi (−4.303) 1-Ft2,δi,λi (4.303) 1− βCB(ti)
0 {(T1, T2, T3, T4) :∑4

i=1 Ti = 0}
{(b1, b2, b3, b4) :
bi = Tiθ1|T }

5.653 0 31.753 0 0.8 0.8

1 (1,1,-1,-1) (2.83, 3.83, -0.83, 0.17) 3.653 1 14.348 0 0.368 0.368
2 (1,-1,1,-1) (2.83, -1.83, 4.83, 0.17) 4.653 4 25.655 0 0.231 0.231
3 (-1,1,1,-1) (-2.83, 3.83, 4.83, 0.17) 5.653 5 36.962 0 0.274 0.274
4 (1-,1,-1,1) (2.83, -1.83, -0.83, 5.83) 5.653 5 36.962 0 0.274 0.274
5 (-1,1,-1,1) (-2.83, 3.83, -0.83, 5.83) 6.653 4 48.269 0 0.476 0.476
6 (-1,-1,1,1) (-2.83, -1.83, 4.83, 5.83) 7.653 1 59.576 0 0.867 0.867

average values: 5.653 3.333 36.962 0 0.415 0.415

Table (3.2): Realizations of the power 1− βCB, δ, and λ conditioned
on the randomization sequences under RAR with N = 4, 1− β0 = 0.8,
ϑ = 4, σ2 = 1, and θ1 = 2.83.
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trial is affected by such a strong time trend, which is assumed not to be taken
into account in the analysis, the average power under the Random Allocation
Rule decreases to 0.415. In other words, the test statistic W of Student’s
t-test is distorted so much by the misspecification of the time trend, that it
is nearly impossible to detect an effect of the size ϑ1 = 2.83 in the difference
between the effects of the two treatment groups. As already pointed out the
realizations of the noncentrality parameter λ are independent of a difference
between the effects of the two treatment groups. Thus, the values of λi with
i ∈ {1, . . . , 6} are the same in Table 3.2 and Table 3.1. This property is of
particular interest in Section 3.3.

3.2 Influence of selection bias on the test decision

In this section the results from Section 3.1 and particularly from the Sub-
section 3.1.3 are transferred to the model Y = Aθ +BSB η + ε introduced
in Equation (2.24). Analogously to αCB the type-I-error probability αSB is
defined as follows:

αSB = 1− FtN−2,δ,λ

(
t1−α0/2,N−2

)
+ FtN−2,δ,λ

(
tα0/2,N−2

)
, (3.25)

where the noncentrality parameters δ = η/σ
√

(NE NC)/(NE+NC)
(
B̄E − B̄C

)
and λ = η2/σ2

(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
are defined in the Equa-

tions (3.10) and (3.13), respectively. The noncentrality parameters of the
distribution function of the doubly-noncetral t-distribution are dependent
on the bias vector BSB ∈ RN , its strength η, and T . The vector BSB ∈ RN

(see Equation (2.24)) is in contrast to BCB ∈ RN strongly dependent on
T . Thus, the equality δ2 + λ = η2/σ2 (N − 1)S2

BSB
(see Proposition 3.5)

holds, but S2
BSB

is not constant as it is in the presence of a known time
trend (see Table 3.1). Table 3.3 shows the realizations of the noncentrality
parameters and of the corresponding type-I-error probabilities conditioned
on the randomization sequences under the Random Allocation Rule with
N = 4 (see Section 2.2.1). The nominal significance level α0 of the test is set
to 5% and for the strength of selection bias the effect η = 1 is assumed. The
randomization sequences t2 and t5 attain with 0.091 a maximal elevation of
the type-I-error probability. Thus, these randomization sequences are the
worst case sequences. The average value of the type-I-error probabilities in
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i tTi BT
SB η δi λi δ2

i + λi Ft2,δi,λi (−4.303) 1-Ft2,δi,λi (4.303) αSB(ti)
1 (1,1,-1,-1) (0,-1,-1,-1) 0.5 0.5 0.75 0.008 0.041 0.049
2 (1,-1,1,-1) (0,-1,0,-1) 1.0 0.0 1.00 0.004 0.091 0.095
3 (-1,1,1,-1) (0,1,0,-1) 1.0 1.0 2.00 0.002 0.059 0.061
4 (1,-1,-1,1) (0,-1,0,1) 1.0 1.0 2.00 0.002 0.059 0.061
5 (-1,1,-1,1) (0,1,0,1) 1.0 0.0 1.00 0.004 0.091 0.095
6 (-1,-1,1,1) (0,1,1,1) 0.5 0.5 0.75 0.008 0.041 0.049

average values: 0.833 0.5 1.25 0.005 0.064 0.068

Table (3.3): Realizations of αSB, δ, and λ conditioned on the ran-
domization sequences under RAR with N = 4, α0 = 0.05, η = 1, and
σ2 = 1.

the presence of selection bias with the strength η = 1 is 0.068. Compared to
α0 = 0.05, the average type-I-error probability under the Random Allocation
Rule is increased significantly. Langer (2014) extensively reviewed the be-
havior of the Random Allocation Rule in the situation of selection bias with
N = 6 . Particularly, the behavoir of the individual randomization sequences
dependent on the strength of selection bias η is investigated.
Analogously to the power in a model affected by chronological bias (see
Section 3.1.3), for the calculation of the power in a model affected by
selection bias it follows:

1− βSB = 1− FtN−2,δ,λ

(
t1−α0

2 ,N−2

)
+ FtN−2,δ,λ

(
tα0

2 ,N−2

)
, (3.26)

with δ = ϑ/σ
√

(NE NC)/(NE+NC)
(

2 θ1/ϑ + B̄E − B̄C
)
(see Equation (3.10)) and

λ = ϑ2/σ2
(
(NE − 1)S2

E,b + (NC − 1)S2
C,b

)
(see Equation (3.13)). The non-

centrality parameters δ and λ of the distribution function of the doubly
noncentral t-distribution are dependent on the bias vector BSB ∈ RN , its
strength η, the parameter θ1, and T . Analogously to Table 3.2, the effect
size ∆0 = 5.653 is assumed in the setting for generating Table 3.4. This
effect size attains with N = 4 and NE = NC = 2 a power of 80% if and only
if the trial will not be affected by selection bias. For further calculations it
is assumed that µE > µC holds. Surprisingly, Table 3.4 shows that although
the investigator tries to select well responding patients using the convergence
strategy to the experimental group, the power will not exceed the prespecified
power 1 − β0 = 80% for all randomization sequences. The randomization
sequences t3 and t4 attain only a power of less than 78%. Thus, even here
worst case randomization sequences are found. The decreased power of
these two randomization sequences can be explained partly by the fact that
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i tTi (B?
SB)T η δi λi δ2

i + λi Ft2,δi,λi (−4.303) 1-Ft2,δi,λi (4.303) 1− βSB(ti)
1 (1,1,-1,-1) (2.83, 1.83, -3.83, -3.83) 6.153 0.5 38.365 0 0.786 0.786
2 (1,-1,1,-1) (2.83, -3.83, 2.83, -3.83) 6.653 0.0 44.269 0 0.890 0.890
3 (-1,1,1,-1) (-2.83, 3.83, 2.83, -3.83) 6.653 1.0 45.269 0 0.779 0.779
4 (1,-1,-1,1) (2.83, -3.83, -2.83, 3.83) 6.653 1.0 45.269 0 0.779 0.779
5 (-1,1,-1,1) (-2.83, 3.83, -2.83, 3.83) 6.653 0.0 44.269 0 0.890 0.890
6 (-1,-1,1,1) (-2.83, -1.83, 3.83, 3.83) 6.153 0.5 38.365 0 0.786 0.786

average values: 6.487 0.500 42.634 0 0.819 0.819

Table (3.4): Realizations of the power 1− βSB, δ, and λ conditioned
on the randomization sequences under RAR with N = 4, 1− β0 = 0.8,
η = 1, σ2 = 1, and θ1 = 2.83.

the investigator guesses incorrectly once. He or she enrolls a well (badly)
responding patient when a badly (well) responding patient would be the right
choice from his or her point of view. Mathematically Table 3.4 shows that the
randomization sequences t1 and t6 have the lowest noncentrality parameter
δ in comparison to the other randomization sequences. Additionally, the
noncentrality parameter λ for these randomization sequences is unequal to
zero. To attain a great value of the power, a great value of δ and a low
value of λ are required. The average value of the power under the Random
Allocation Rule in the presence of selection bias with strength η = 1 is 0.819.
Compared to the planned power 1− β0 = 0.8, the average value of 0.819 can
be interpreted as an increase in power.

3.3 Student’s t-test under Random Allocation Rule

In this section the standard Model (2.16), which depends on the parameters
θ0 and θ1, is investigated. The null hypothesis H0 : θ1 = 0 is tested against
the alternative hypothesis H1 : θ1 6= 0 with Student’s t-test. Furthermore,
it is assumed that in Model (2.16) a bias vector b = (b1, b2, . . . , bN )T ∈ RN

as additional fixed effect is present. The model is not adjusted for this
additional effect, so that the fixed effect b ∈ RN interferes the estimation
of θ1. Particularly, the test decision H0 : θ1 = 0 against H1 = θ1 6= 0 is
distorted. As randomization procedure the Random Allocation Rule (see
Section 2.2.1) is considered, so that half of the patients are allocated to each
treatment group. According to Lemma A.3 in the appendix the covariance of
two random allocations Ti and Tj with i 6= j and i, j ∈ {1, 2, . . . , N} under
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the Random Allocation Rule is given by:

Cov(Ti, Tj) = E(Ti Tj) = −1
N − 1 . (3.27)

In this section the regression models introduced for chronological and se-
lection bias in Chapter 2 are investigated more generally. Analogously to
the regression model for chronological bias defined in Equation (2.27) the
following model is assumed for further investigations:

Y =


1 T1

1 T2
...

...
1 TN


(
θ0

θ1

)
+


b1

b2
...
bN

+ σ


ε1

ε2
...
εN

 = Aθ + b+ σ ε . (3.28)

Formally, the presented model describes a fixed effects model. Alternatively,
the ith patient’s response can be expressed as Yi = θ0 +Ti θ1 + bi + σ εi. The
error terms εi with i ∈ {1, 2, . . . , N} are assumed to be normally distributed
with expectation zero and variance one. Furthermore, the error terms εi
with i ∈ {1, 2, . . . , N} of the vector ε are assumed to be independent and
identically distributed. Particularly, the random vector ε is independent of
the randomization sequence T . The (known and fixed) bias vector b ∈ RN

is a fixed effect and is independent of ε and T .
The test statisticW from Equation (3.14) can be transformed in the following
manner:

W := θ̂1√
V̂ar(θ̂1)

=
√

NE NC

NE +NC

ȲE − ȲC
Sp

(3.29)

with S2
p = (NE − 1)S2

E + (NC − 1)S2
C

N − 2 ,

where S2
p defines the pooled variance of the investigated treatment groups.

The term S2
E = 1/(NE−1)

∑N
i=1 1{Ti=1}

(
Yi − 1/NE

∑N
j=1 Yj 1{Tj=1}

)2
is the

variance of the patients’ responses in treatment group E and S2
C = 1/(NC−1)∑N

i=1 1{Ti=−1}
(
Yi − 1/NC

∑N
j=1 Yj 1{Tj=−1}

)2
is the variance of the patients’
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responses in treatment group C. Below, a lemma is given that the variance
within a treatment group is independent of the parameters θ0 and θ1.

Lemma 3.6: (Variance within a treatment group independent of θ0 and θ1)
Under the assumption of Model (3.28) and Yi = θ0 + Ti θ1 + bi + σ εi the
sampling variances S2

E = 1/(NE−1)
∑N
i=1 1{Ti=1}

(
Yi − 1/NE

∑N
j=1 Yj 1{Tj=1}

)2

and S2
C = 1/(NC−1)

∑N
i=1 1{Ti=−1}

(
Yi − 1/NC

∑N
j=1 Yj 1{Tj=−1}

)2
are inde-

pendent of the effects θ0 and θ1.

Proof
The proof is executed for the sampling variance of the experimental group
and can be easily transferred on the sampling variance of the control group.
Model (3.28) is assumed for Yi = θ0 +Ti θ1 + bi+σ εi. Thus, for S2

E it follows:

S2
E = 1

NE − 1

N∑
i=1
1{Ti=1}

Yi − 1
NE

N∑
j=1

Yj 1{Tj=1}

2

= 1
NE − 1

N∑
i=1
1{Ti=1}

(
θ0 + Ti θ1 + bi + σ εi

− 1
NE

N∑
j=1

(
(θ0 + Tj θ1 + bj + σ εj) 1{Tj=1}

))2

= 1
NE − 1

N∑
i=1
1{Ti=1}

(
θ0 + θ1 + bi + σ εi

− 1
NE

N∑
j=1

(
(θ0 + θ1 + bj + σ εj) 1{Tj=1}

))2

= 1
NE − 1

N∑
i=1
1{Ti=1}

(
bi + σ εi −

1
NE

N∑
j=1

(
(bj + σ εj) 1{Tj=1}

))2

= 1
NE − 1

N∑
i=1
1{Ti=1}

(
Ỹi −

1
NE

N∑
j=1

(
Ỹj 1{Tj=1}

))2
.

Hence, the variance of the experimental group depends only on Ỹi = bi + σ εi

and is independent of θ0 and θ1.

�
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A consequence of Lemma 3.6 is that the pooled variance S2
p is independent

of the parameters θ0 and θ1. This independence is given by the following
lemma.

Lemma 3.7: (S2
p independent of θ0 and θ1)

Under the assumption of Model (3.28) and Yi = θ0 +Ti θ1 +bi+σ εi the pooled
sampling variance S2

p = ((NE−1)S2
E+(NC−1)S2

C)/(N−2) from Equation (3.29) is
independent of the parameters θ0 and θ1.

Proof
From Lemma 3.6 it follows that S2

E and S2
C are independent of the parameters

θ0 and θ1. Consequently, S2
p is independent of the parameters θ0 and θ1.

�

Finally, under the Random Allocation Rule and its property NE = NC = N/2

the test statistic W can be expressed as:

W := ȲE − ȲC√
NE+NC
NE NC

Sp
= ȲE − ȲC√

N/2+N/2
N/2N/2 Sp

= ȲE − ȲC√
4
N Sp

= ȲE − ȲC√
2
N (S2

E + S2
C)

(3.30)

with S2
p = (N/2− 1)S2

E + (N/2− 1)S2
C

N − 2 = 1
2 (S2

E + S2
C) .

Rosenkranz (2011) and Tamm and Hilgers (2014) investigated the difference
between Var(ȲE − ȲC) and S2

p dependent on the randomization procedure
when the model Yi = θ0 + Ti θ1 + σ εi is assumed in the analysis, although
the true model is Yi = θ0 +Ti θ1 + bi+σ εi. Rosenkranz (2011) shows that S2

p

is an asymptotically unbiased estimator of Var(ȲE − ȲC) under the Random
Allocation Rule. However, the following result shows that S2

p is even an
unbiased estimator of Var(ȲE − ȲC) under the Random Allocation Rule

Theorem 3.8:
Under the Random Allocation Rule and Model (3.28) the squared denominator
2/N (S2

E + S2
C) of W defined in Equation (3.30) is an unbiased estimator for

Var(ȲE − ȲC).



55 CHAPTER 3. MEASUREMENT OF BIAS

For the proof of Theorem 3.8 the following two lemmas are necessary. First
the variance of the squared denominator 2/N (S2

E + S2
C) of W defined in

Equation (3.30) is derived and afterwards the expectation of Var(ȲE − ȲC)
is determined.

Lemma 3.9:
Under the assumption of Model (3.28) and conducting the Random Allocation
Rule, the variance of the numerator ȲE− ȲC of W defined in Equation (3.30)
is given by:

Var(ȲE − ȲC) = 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(
bi − b̄

)2
. (3.31)

Proof
Under the Random Allocation Rule the random variables ȲE and ȲC can be
written as follows:

• ȲE = 1
NE

N∑
i=1

Ti + 1
2 Yi = 2

N

N∑
i=1

Ti + 1
2 Yi

• ȲC = 1
NC

N∑
i=1

1− Ti
2 Yi = 2

N

N∑
i=1

1− Ti
2 Yi .

Thus, the difference J between the effects of the responses in the two
treatment groups under the assumption of Model (3.28) can be expressed as
follows:

J = ȲE − ȲC = 2
N

N∑
i=1

Ti Yi = 2
N

N∑
i=1

Ti(θ0 + Ti θ1 + bi + σ εi)

= 2
N

 N∑
i=1

Ti θ0︸ ︷︷ ︸
=0

+
N∑
i=1

T 2
i θ1︸ ︷︷ ︸

=N θ1

+
N∑
i=1

Tibi +
N∑
i=1

Ti σ εi



= 2 θ1 + 2
N

N∑
i=1

Ti bi + 2
N

N∑
i=1

Ti σ εi .
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Applying the law of total variance according to Weiss (2005, pp. 385-386),
the variance of J is given by:

Var(J) = E (Var(J |T )) + Var (E(J |T )) .

In order to dissolve the expected conditional variance, the conditional variance
Var(J |T = t) is calculated as follows:

Var(J |T = t) = Var
(

2 θ1 + 2
N

N∑
i=1

ti bi + 2
N

N∑
i=1

ti σ εi

)

= Var
(

2
N

N∑
i=1

ti σ εi

)
= 4σ2

N2

N∑
i=1

t2i︸︷︷︸
=1

Var(εi)︸ ︷︷ ︸
=1

= 4σ2

N
. (3.32)

The conditional variance Var(J |T = t) is constant. Consequently, it is
E (Var(J |T )) = (4σ2)/N. The conditional expectation E(J |T = t) can be
transformed as follows:

E(J |T = t) = E

(
2 θ1 + 2

N

N∑
i=1

ti bi + 2
N

N∑
i=1

ti σ εi

)

= 2 θ1 + 2
N

N∑
i=1

ti bi + 2
N

N∑
i=1

ti σ E(εi)︸ ︷︷ ︸
=0

= 2 θ1 + 2
N

N∑
i=1

ti bi =: d+ b(t) . (3.33)

The term Var(E(J |T )) = Var(b(T )) = E((b(T ))2)− (E(b(T ))2 = E((b(T ))2)
can be expressed as:

Var(b(T )) = Var
(

2 θ1 + 2
N

N∑
i=1

Ti bi

)
= 4
N2Var

(
N∑
i=1

Ti bi

)

= 4
N2E

( N∑
i=1

Ti bi

)2 = 4
N2E

( N∑
i=1

Ti bi

) N∑
j=1

Tj bj


= 4
N2E

 ∑
i,j∈{1,...,N}

Ti Tj bi bj


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= 4
N2E

 N∑
i=1

T 2
i b

2
i +

∑
i,j∈{1,2,...,N}

i 6=j

Ti Tj bi bj



= 4
N2

 N∑
i=1

E
(
T 2
i

)
︸ ︷︷ ︸

=1

b2i +
∑

i,j∈{1,2,...,N}
i 6=j

E (Ti Tj) bi bj



= 4
N2

 N∑
i=1

b2i +
∑

i,j∈{1,2,...,N}
i 6=j

E (Ti Tj) bi bj

 .

In Lemma A.3 in the appendix for the Random Allocation Rule E (Ti Tj) =
−1/(N−1) is derived. Furthermore, in Lemma A.2 in the appendix the following
equality is shown:

N∑
i=1

b2i −
1

N − 1
∑

i,j∈{1,2,...,N}
i 6=j

bi bj = N

N − 1

N∑
i=1

(bi − b̄)2 .

Thus, it follows:

Var(b(T )) = 4
N2

 N∑
i=1

b2i −
∑

i,j∈{1,2,...,N}
i 6=j

1
N − 1 bi bj



= 4
N (N − 1)

N∑
i=1

(
bi − b̄

)2
. (3.34)

Taking Equations (3.32) and (3.34) into account, the variance of J can be
computed as follows:

Var(J) = E(Var(J |T )) + Var(E(J |T ))

= 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(
bi − b̄

)2
.

The derived result is the same as Result 2 found by Rosenkranz (2011).

�

Lemma 3.10:
Under the Random Allocation Rule and the assumption of Model (3.28)
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the expectation of the squared denominator 2/N (S2
E + S2

C) of W defined in
Equation (3.30) is given by:

E

( 2
N

(S2
E + S2

C)
)

= 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(bi − b̄)2 . (3.35)

The term S2
E = 1/(NE−1)

∑N
i=1 1{Ti=1}

(
Yi − 1/NE

∑N
j=1 Yj 1{Tj=1}

)2
is the

variance of the patients’ responses in treatment group E and S2
C = 1/(NC−1)∑N

i=1 1{Ti=−1}
(
Yi − 1/NC

∑N
i=j Yj 1{Tj=−1}

)2
is the variance of the patients’

responses in treatment group C.

Proof
In a first step the property NE = NC = N/2 is used to simplify the term
S2
E + S2

C :

S2
E + S2

C =
N∑
i=1

( 1
N/2− 1

1 + Ti
2

(
Yi − ȲE

)2
+ 1

N/2− 1
1− Ti

2
(
Yi − ȲC

)2
)

= 2
N − 2

N∑
i=1

(1 + Ti
2

(
Y 2
i − 2Yi ȲE + Ȳ 2

E

)
+ 1− Ti

2
(
Y 2
i − 2Yi ȲC + Ȳ 2

C

))

= 2
N − 2

N∑
i=1

1 + Ti
2 Y 2

i + 1− Ti
2 Y 2

i − 2 1 + Ti
2 Yi

2
N

 N∑
j=1

Yj
1 + Tj

2


+ 1 + Ti

2
4
N2

[
N∑
k=1

Yk
1 + Tk

2

] N∑
j=1

Yj
1 + Tj

2

− 2 1− Ti
2 Yi

2
N

 N∑
j=1

Yj
1− Tj

2


+ 1− Ti

2
4
N2

[
N∑
k=1

Yk
1− Tk

2

] N∑
j=1

Yj
1− Tj

2


= 2
N − 2

 N∑
i=1

Y 2
i −

1
N

∑
i,j∈{1,2,...,N}

(1 + Ti) (1 + Tj)Yi Yj

+ 1
2N

∑
i,j∈{1,2,...,N}

(1 + Ti) (1 + Tj)Yi Yj −
1
N

∑
i,j∈{1,2,...,N}

(1− Ti) (1− Tj) ·

Yi Yj + 1
2N

∑
i,j∈{1,2,...,N}

(1− Ti) (1− Tj)Yi Yj


= 2
N − 2

 N∑
i=1

Y 2
i −

1
N

∑
i,j∈{1,2,...,N}

((1 + Ti) (1 + Tj) + (1− Ti) (1− Tj)) ·
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Yi Yj + 1
2N

∑
i,j∈{1,2,...,N}

((1 + Ti) (1 + Tj) + (1− Ti) (1− Tj)) Yi Yj


= 2
N − 2

 N∑
i=1

Y 2
i −

1
2N

∑
i,j∈{1,2,...,N}

Yi Yj ·

((1 + Ti) (1 + Tj) + (1− Ti) (1− Tj))

 .
According to Lemma 3.6 both variances S2

E and S2
C are independent of the

parameters θ1 and θ0 in Model (3.28). Consequently, the parameters θ1 and
θ0 do not influence the expectation E(S2

E + S2
C). Thus, in the following

calculations the easier model Ỹi = bi+σ εi instead of Yi = θ0 +Ti θ1 +bi+σ εi
is considered. Particularly, Ỹi is in comparison to Yi independent of Ti. For
the expectation E(S2

E + S2
C) it follows:

N − 2
2 E(S2

E + S2
C) =

N∑
i=1

E(Ỹ 2
i )− 1

2N
∑

i,j∈{1,2,...,N}
E(Ỹi Ỹj) ·

E ((1 + Ti) (1 + Tj) + (1− Ti) (1− Tj))

=
N∑
i=1

E(Ỹ 2
i )− 1

2N
∑

i,j∈{1,2,...,N}
E(Ỹi Ỹj) ·

E (1 + Tj + Ti + Ti Tj + 1− Ti − Tj + Ti Tj)

=
N∑
i=1

E(Ỹ 2
i )− 1

2N
∑

i,j∈{1,2,...,N}
E(Ỹi Ỹj) 2E (Ti Tj + 1)

=
N∑
i=1

E(Ỹ 2
i )− 1

N

∑
i,j∈{1,2,...,N}

i 6=j

E(Ỹi Ỹj)E (Ti Tj + 1)

− 1
N

N∑
i=1

E(Ỹ 2
i ) E(T 2

i + 1)︸ ︷︷ ︸
=2

=
(

1− 2
N

) N∑
i=1

E(Ỹ 2
i )− 1

N

∑
i,j∈{1,2,...,N}

i 6=j

E(Ỹi Ỹj)E (Ti Tj + 1)

= N − 2
N

N∑
i=1

E(Ỹ 2
i )− 1

N

∑
i,j∈{1,2,...,N}

i 6=j

E(Ỹi Ỹj)E (Ti Tj + 1) . (3.36)
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For Ỹi = bi + σ εi the individual terms can be expressed as:

•
N∑
i=1

E(Ỹ 2
i ) =

N∑
i=1

E(b2i + 2 bi σ εi + σ2 ε2i ) =
N∑
i=1

b2i +N σ2

• E(Ỹi Ỹj) = E ((bi + σ εi) (bj + σ εj)) = bi bj (i 6= j)

• E(Ti Tj + 1) = E(Ti Tj) + 1 = −1
N − 1 + 1 = N − 2

N − 1 .

For the last transformation the covariance Cov(Ti, Tj) = −1/(N−1) for the
Random Allocation Rule derived in Lemma A.3 in the appendix is used.
Taking the results presented above into account, it follows:

N − 2
2 E(S2

E + S2
C) = N − 2

N

(
N σ2 +

N∑
i=1

b2i

)
− 1
N

∑
i,j∈N
i 6=j

bi bj
N − 2
N − 1

= (N − 2)σ2 + N − 2
N

N∑
i=1

b2i −
N − 2

N (N − 1)
∑

i,j∈{1,2,...,N}
i 6=j

bi bj

= (N − 2)σ2 + N − 2
N

 N∑
i=1

b2i −
1

N − 1
∑

i,j∈{1,2,...,N}
i 6=j

bi bj

 .
The following equality is shown in Lemma A.2 in the appendix:

N∑
i=1

b2i −
1

N − 1
∑

i,j∈{1,2,...,N}
i 6=j

bi bj = N

N − 1

N∑
i=1

(bi − b̄)2 .

Using this equality the lemma follows:

N − 2
2 E(S2

E + S2
C) = (N − 2)σ2 + N − 2

N − 1

N∑
i=1

(bi − b̄)2

⇔ E(S2
E + S2

C) = 2σ2 + 2
N − 1

N∑
i=1

(bi − b̄)2

⇔ E

( 2
N

(S2
E + S2

C)
)

= 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(bi − b̄)2 .

This result is different to the one Rosenkranz (2011) presents in the appendix
of his paper. Even Result 3 in Rosenkranz (2011) is affected by this mistake.
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For the sake of completeness, Result 3 from Rosenkranz (2011) can be
corrected with Ti, Tj ∈ {−1, 1} as follows:

E(V̄ ) := E

( 2
N

(S2
E + S2

C)
)

= 4σ2

N
+ 4
N2

N∑
i=1

b2i −
4

N2 (N − 2)
∑

i,j∈{1,2,...,N}
i 6=j

bi bj E(Ti Tj + 1) .

Particularly, the first term (4σ2)/N differs from the result derived by Rosenkranz
(2011). The expectation E(Ti Tj + 1) has to be calculated dependent on the
randomization procedure.

�

The Theorem 3.8 follows directly from Lemma 3.9 and Lemma 3.10. In
contrast to Rosenkranz (2011) it is obvious that the denominator from
Equation (3.30) is an unbiased and not an asymptotically unbiased estimator
for the variance of the nominator.
Consequently, using Student’s t-test under the Random Allocation Rule the
squared denominator of the test statistic W (see Equation (3.30)) under
Model (3.28) is an unbiased estimator for the variance of the nominator. For
other randomization procedures like the Truncated Binomial Design this
property does not hold (see Rosenkranz (2011)). Tamm and Hilgers (2014)
extensively reviewed the Permuted Block Randomization. An explicit for-
mula for the difference between the terms Var(ȲE− ȲC) and E(2/N (S2

E+S2
C))

dependent on the block constellation is derived. Below, Model (3.28) is consid-
ered and the dependence of the test statistic W according to Equation (3.30)
on the randomization sequence T is of particular interest:

W (Y ,T ) := ȲE(T )− ȲC(T )√
2
N (S2

E(Y ,T ) + S2
C(Y ,T ))

=
2
N

(∑N
i=1(Ti θ0 + T 2

i θ1 + Ti bi + Ti σ εi)
)

√
2
N (S2

E(Y ,T ) + S2
C(Y ,T ))

=
2
N

(∑N
i=1(θ1 + Ti σ εi)

)
+ b(T )√

2
N (S2

E(Y ,T ) + S2
C(Y ,T ))
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=
2
N

(∑N
i=1(θ1 + σ εi)

)
+ b(T )√

2
N (S2

E(Y ,T ) + S2
C(Y ,T ))

(3.37)

with b(T ) = 2/N
∑N
i=1 Ti bi according to Equation (3.33). The last transfor-

mation is important, because the product Ti εi has the same distribution as
εi. A proof is given in Lemma A.4 in the appendix. For the distribution of
the expression 2/N

(∑N
i=1(θ1 + σ εi)

)
it follows:

2
N

(
N∑
i=1

(θ1 + σ εi)
)

= 2 θ1 + 2
N σ

N∑
i=1

εi ∼ N
(

2 θ1,
4σ2

N

)
. (3.38)

Next, it is shown that the term b(T ) is under the Random Allocation Rule
asymptotically normally distributed. For that, the properties of the Simple
Random Sampling are used.

Definition 3.11: (Simple Random Sampling (SRS))
Let N be the total sample number from which a subsample of size k < N is
randomly selected. For the Simple Random Sampling (see Hajek, 1981, pp.
49-52) the probability of inclusion of the ith patient with i ∈ {1, 2, . . . , N} in
the subsample is given by:

πi = k

N
for 1 ≤ i ≤ N .

For the probability of inclusion of two patients i and j with i, j ∈ {1, 2, . . . , N}
and i 6= j in the subsample it follows:

πij = k (k − 1)
N (N − 1) for 1 ≤ i 6= j ≤ N .

For k = N/2 it follows that the Simple Random Sampling leads to
( N
N/2

)
possible samples. All of these samples are equiprobable. These possible
samples correspond to the reference set of the Random Allocation Rule
defined in Section 2.2.1. Thus, the following corollary can be established.

Corollary 3.12: (Equality between RAR and SRS for k = N/2)
Let N be the total sample number from which a subsample of size k = N/2 is
selected. Hence, the Simple Random Sampling (SRS) with k = N/2 defined
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in Definition 3.11 has the same properties as the Random Allocation Rule
defined in Section 2.2.1.

A consequence of Corollary 3.12 is that the random allocation of the bias
vector b ∈ RN (see Model (3.28)) to the two treatments can be understood
as sampling from a finite population. The known and fixed bias vector
b ∈ RN in Model (3.28) is randomly distributed to the two treatment groups
dependent on T . In this section the random allocation of the bias vector to
the two treatment groups is investigated under the Random Allocation Rule.
For this random allocation the elements of b ∈ RN are distributed equally to
the two treatment groups. In the literature this approach is also termed as
completely randomized design or (randomized) complete block design (with
one block) (see Hinkelmann and Kempthorne, 2008, Chapter 6 and Chapter
9). Below, the central limit theorem for samples from a finite population,
which was first introduced by Hajek (1960), is presented.

Theorem 3.13: (Central limit theorem (see Lehmann, 1999, p. 116))
Considering Model (3.28) and let T be a random variable for a randomization
sequence generated by the Random Allocation Rule. Furthermore, let b =
(b1, b2, . . . , bN )T be fixed. Thus for the term B̄E = 2/N

∑N
i=1

Ti+1
2 bi the central

limit theorem holds:

B̄E − E(B̄E)√
Var(B̄E)

= B̄E − b̄√
Var(B̄E)

∼
asymp.

N (0, 1) , (3.39)

provided that

(1) both the total sample number N and the number of patients assigned to
treatment E tend to infinity

and the following condition is fulfilled:

(2)
(∑N

i=1
Ti+1

2

)
/N is bounded away from 0 and 1 as N →∞ and

max
i∈{1,2,...,N}

(
bi − b̄

)2

∑N
i=1

(
bi − b̄

)2 → 0 (N →∞) (3.40)

For the Random Allocation Rule the number of patients assigned to treatment
E is N/2. It follows that the condition 1 from Theorem 3.13 is fulfilled as
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N approaches infinity. Furthermore, the term
(∑N

i=1
Ti+1

2

)
/N is 0.5 under

the usage of the Random Allocation Rule. Consequently, for any b =
(b1, b2, . . . , bN )T , which satisfies Equation (3.40), the central limit theorem
for samples from a finite population holds.

Proposition 3.14:
Assuming a linear time trend defined in Model (2.28) with b = ϑ/N (0, 1, 2, . . . , N−
1)T , the condition 2 in Theorem 3.13 is fulfilled.

Proof
Under the assumption of a linear time trend, the following equality for the
nominator in Equation (3.40) holds:

max
i∈{1,2,...,N}

(
bi − b̄

)2
= max

i∈{1,2,...,N}

(
bi −

ϑ

N2
(N − 1)N

2

)2

= max
i∈{1,2,...,N}

(
bi −

(N − 1)ϑ
2N

)2

=
(

0− (N − 1)ϑ
2N

)2

= (N − 1)2

N2
ϑ2

4 →
ϑ2

4 (N →∞) .

Using the results from Equation (3.18), the denominator of Equation (3.40)
can be written as:

N∑
i=1

(
bi − b̄

)2
= ϑ2

12N (N2 − 1)→∞ (N →∞) .

Combining the derived results for the nominator and denominator, it follows
that the condition 2 of Theorem 3.13 is fulfilled.

�

Proposition 3.15:
Assuming a step time trend defined in Model (2.28) with a step of the strength
ϑ in the middle of a clinical trial and b = ϑ (0TN/2,1

T
N/2)T , the condition 2

in Theorem 3.13 is fulfilled.
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Proof
Under the assumption of a step time trend, the nominator of Equation (3.40)
can be expressed as:

max
i∈{1,2,...,N}

(
bi − b̄

)2
= max

i∈{1,2,...,N}

(
bi −

ϑ

2

)2

=
(

0− ϑ

2

)2
→ ϑ2

4 (N →∞) .

Using the results from Equation (3.20), the denominator of Equation (3.40)
can be written as:

N∑
i=1

(
bi − b̄

)2
= ϑ2N

4 →∞ (N →∞) .

Bringing the derived results for the nominator and denominator together, it
follows that the condition 2 of Theorem 3.13 is fulfilled.

�

The term b(T ) defined in Equation (3.37) can be transformed as:

b(T ) = 2/N
N∑
i=1

Ti bi = B̄E − B̄C .

For a fixed vector b = (b1, b2, . . . , bN )T with b̄ = 1
N

∑N
i=1 bi the following

equality holds:

b̄ = 1
2
(
B̄E + B̄C

)
⇔ B̄C = 2 b̄− B̄E .

Using this property it follows:

b(T ) = B̄E − B̄C = B̄E − 2 b̄+ B̄E = 2 B̄E − 2 b̄ .

For a linear time trend or a step time trend (see Definition 2.5) the term b̄ is
constant and Theorem 3.13 holds. Thus, for both of these time trends
the term b(T ) is asymptotically normally distributed with expectation
µ = E(2 B̄E − 2 b̄) = 0 and variance σ2 = Var(2 B̄E − 2 b̄) = 4Var(B̄E).
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Considering the test statistic W (Y ,T ) from Equation (3.37), it follows that
the nominator is the sum of a normally distributed random variable and an
asymptotically normally distributed random variable. Both random variables
are independent. Using characteristic functions and applying continuous
mapping theorem (see Billingsley, 1999, p. 21), it can be shown that the sum
of a normally distributed random variable and an independent asymptotically
normally distributed random variable is asymptotically normally distributed.
Thus, the nominator of the test statistic W (Y ,T ) from Equation (3.37) is
asymptotically normally distributed. According to Theorem 3.8 the denomi-
nator of W (Y ,T ) is an unbiased estimator for the standard deviation of the
nominator. Furthermore, the denominator is a consistent estimator for the
standard deviation σ (see Lehmann and Casella, 1998, p. 55). Finally, the
nominator of the test statistic is asymptotically normally distributed with
expectation 2 θ1 = µE − µC and variance σ2. The denominator converges
against the constant σ for large N . Applying the Slutsky-Theorem (see
Chow and Teicher, 2008, p. 272), it follows that the test statistic W (Y ,T )
is asymptotically normally distributed with variance σ2 = 1 and expectation
2 θ1 = µE − µC . Assuming 2 θ1 = µE − µC = 0 (the null hypothesis of
Student’s t-test), it follows that the test statistic W (Y ,T ) is asymptotically
normally distributed. Thus, the following lemma can be established.

Lemma 3.16: (Asymptotical control of the α-level under RAR)
Under the Random Allocation Rule and the assumption of a fixed bias vector
b ∈ RN which fulfills the central limit theorem (see Theorem 3.13), the test
statisic W (Y ,T ) from Equation (3.37) is asymptotically normally distributed
as N approaches infinity. Consequently, under the assumption of ϑ1 = 0
according to Model (3.28) the α-level with α ∈ (0, 1) of Student’s two-tailed
t-test (unadjusted for b ∈ RN) for testing H0 : θ1 = 0 vs. H1 : θ1 6= 0 is
asymptotically preserved.

Proof
Follows directly from the rejection probability of W (Y ,T ) according to
Equation (3.37) with ϑ1 = 0 using Student’s two-tailed t-test with level
α ∈ (0, 1):

P (|W (Y ,T )| > tN−2,1−α/2) → α (N →∞) .
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Two properties are used as N approaches infinity. First, the (1−α/2)-quantile
of the t-distribution with N − 2 degrees of freedom converges against the
z1−α/2 quantile, where z1−α/2 describes the (1− α/2)-quantile of the standard
normal distribution. Second, as N approaches infinity the central limit
theorem defined in Theorem 3.13 holds and W (Y ,T ) ∼

asymp.
N (0, 1). For

that, the property that the denominator of W (Y ,T ) in Equation (3.37) is a
consistent estimator (see Lehmann and Casella, 1998, p. 55) for the standard
deviation σ is used.

�

In Table 3.1 one example for N = 4 and b = (0, 1, 2, 3)T is provided. It shows
that the expected type-I-error probability of Student’s t-test conditioned on
the possible randomization sequences under the Random Allocation Rule is
not controlled. The asymptotical considerations of W (Y ,T ) do not hold for
such a strong bias vector b ∈ RN and such a small sample size. Particularly,
the term

(
max

i∈{1,2,...,N}
(bi−b̄)2)

/
(∑N

i=1(bi−b̄)
2) = 1.5/5 = 0.3 from Equation (3.40)

is clearly greater than zero for the considered situation. Thus, the central
limit theorem does not hold for N = 4 and b = (0, 1, 2, 3)T . Below, the
asymptotical and exact power of Student’s t-test is computed in situations
when the patients’ responses are affected by a linear time or a step trend.

Transferring the results to the situation of a linear time trend

In this subsection the theoretical considerations from above are transferred
to the situation of a linear time trend. Table 3.5 shows the effect size ∆0 :=
|µE−µC |/σ for a clinical trial which leads to a power of 80% using Student’s
t-test when the groups are equally sized at the end of the trial dependent
on N . If not explicitly stated otherwise, the planned variance σ ∈ R+ is
assumed to be one. If the clinical trial is not affected by chronological bias,

Sample size N
4 12 50 200 1000

∆0 5.6535 1.7955 0.8087 0.3981 0.1774

Table (3.5): Effect size ∆0 for achieving a power of 80% using Student’s
t-test, when the groups are equally sized at the end of a trial dependent
on N .
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the variance of ȲE − ȲC is σ2
0 = (4σ2)/N (see Equation (3.32)). In Table 3.6

the ratio of the caused variance by the linear time trend σ̃2 and σ2
0 dependent

on the strength ϑ and the sample size N is depicted. The caused variance by
the linear time trend σ̃2 (see Lemma 3.9) and the ratio σ̃2/σ2

0 are computed
dependent on the bias vector b = ϑ/N (0, 1, 2, . . . , N − 1)T :

Var
(
ȲE − ȲC

)
= 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(bi − b̄)2

︸ ︷︷ ︸
see Eq. (3.18)

= σ2
0 + 4

N (N − 1)
ϑ2

12N (N2 − 1)

= σ2
0 + (N + 1)ϑ2

3N2 = σ̃2 (3.41)

⇒ σ̃2

σ2
0

= 1 + (N + 1)ϑ2

3N2
N

4σ2 = 1 + (N + 1)ϑ2

12N σ2 . (3.42)

The derived result shows that σ̃2 is in comparison to σ2
0 inflated dependent

on ϑ and N . Thus, the linear time trend leads to a higher variability in the
data for the treatment comparison. The ratio σ̃2/σ2

0 for a linear time trend
for different shapes of ϑ, different sample sizes N , and fixed σ2 = 1 is shown
in Table 3.6. It is visible that the greater the parameter ϑ of the linear time
trend is, the greater the ratio σ̃2/σ2

0 becomes. Furthermore, as N approaches
infinity the ratio σ̃2/σ2

0 converges against the constant 1 + ϑ/(12σ2), which is
dependent on ϑ and σ ∈ R+ (see Equation (3.42)).

Sample size N
ϑ 4 12 50 200 10000
0.50 1.0260 1.0226 1.0212 1.0209 1.0209
1.00 1.1042 1.0903 1.0850 1.0837 1.0834
2.00 1.4167 1.3611 1.3400 1.3350 1.3337

Table (3.6): The ratio σ̃2/σ2
0 according to Equation (3.42) for a linear

time trend dependent on different shapes of ϑ, different sample sizes N ,
and fixed σ2 = 1.

In what follows, the influence of a linear time trend under the Random
Allocation Rule on the power of Student’s t-test is investigated. Analogously
to the presented average value of the power in Table 3.2, an asymptotical
value of the power under the Random Allocation Rule using Student’s t-test
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ϑ N = 4 N = 12 N = 50 N = 200 N = 10.000
exact asymp. exact asymp. sim. asymp. sim. asymp. asymp.

0.50 0.7919 0.7919 0.7931 0.7913 0.7920 0.7917 0.7918 0.7918 0.7919
1.00 0.7680 0.7683 0.7655 0.7655 0.7671 0.7672 0.7679 0.7677 0.7679
2.00 0.6782 0.6837 0.6696 0.6717 0.6766 0.6774 0.6787 0.6790 0.6795

Table (3.7): Comparison (asymp. vs. exact/sim.) of the achieved
power of the Random Allocation Rule using Student’s t-test in case of
a linear time trend (assuming W (Y ,T ) ∼ tN−2). The planned power
1− β is 80%.

is computed. Afterwards, the exact/simulated average value of the power
is compared to the corresponding asymptotical value of the power. For
five different sample sizes the effect sizes, which lead to a power of 80%
when the groups are equally sized at the end of the clinical trial, are shown
in Table 3.5. The presented effect sizes ∆0 are calculated under σ2 (no
additional time trend in the data). The derived values for the effect size
∆0 lead to noncentrality parameters δ0 = ∆0

√
N/(4σ2) = ∆0/σ0 according

to Equation (3.10) with NE = NC = N/2 and ∆0 = 2 θ1. However, the
noncentrality parameter δ̃ = ∆0/σ̃ with σ̃ ∈ R+ from Equation (3.41) is
underlying in the data in the situation of a time trend.
As a first approach it is in concordance with Proposition 3.14 assumed that
as N approaches infinity, the test statistic W (Y ,T ) from Equation (3.37) is
normally distributed with variance one. Table A.1 in the appendix shows
the achieved average power (asymptotical and simulated/exact) for the
Random Allocation Rule using Student’s t-test dependent on the shape of
ϑ and the sample size N . For the exact values, the whole reference set of
the Random Allocation Rule is computed and the achieved power of the
individual randomization sequences is summarized (approach analogous to
Table 3.2). For larger sample sizes 100 000 randomization sequences from
the Random Allocation Rule are generated with the randomizeR package
(Schindler et al., 2015) and the average power of Student’s t-test is computed.
Table A.1 in the appendix shows that the asymptotical consideration does
not apply to small N including N = 50. Even for N = 200 the asymptotical
value for the power of Student’s t-test is inconsistent with the simulated
value. Table 3.7 shows the distribution of W (Y ,T ) approximated by the
t-distribution, whose density function has heavier tails in comparison to
the density function of the normal distribution. It is assumed that on the
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one hand the term b(T ) from Equation (3.37) is asymptotically normally
distributed and on the other hand the distribution of the test statistic itself
is t-distributed with N − 2 degrees of freedom. In contrast to the situation
before the distribution of the test statisticW (Y ,T ) did not converged against
a normal distribution, yet. From Table 3.7 it can be concluded that this
asymptotical consideration is the better type of asymptotical consideration
and even holds for a small sample size like N = 4. Due to the fact that δ0 is
greater than δ̃, the power is in comparison to the planned power of 80% in
all situations deflated. The greater the amount of ϑ of the linear time trend
is, the greater the deviation of the planned power 1− β = 0.8 becomes.
Next, the rejection probability of the test statistic W conditioned on the
distribution of b(T ) dependent on the strength ϑ of the bias vector b =
ϑ/N (0, 1, 2, . . . , N − 1)T is investigated. Proposition 3.14 proves that the
central limit theorem holds for the considered linear time trend. Thus,
corresponding asymptotical quantiles of the distribution of b(T ) according
to Equation (3.37) can be derived. The variance of b(T ) in case of a linear
time trend with b = ϑ/N (0, 1, 2, . . . , N − 1)T is given by:

Var(b(T )) =
Eq. (3.34)

4
N(N − 1)

N∑
i=1

(bi − b̄)2

︸ ︷︷ ︸
see Eq. (3.18)

= (N + 1)ϑ2

3N2 = σ2
linT . (3.43)

Under the assumption b(T ) ∼
asymp.

N (0, σ2
linT), the asymptotically greatest

absolute deviations of b(T ) from zero can be derived. Knowing worst case
deviations of b(T ) from zero the corresponding noncentrality parameter
δ under the null hypothesis and alternative hypothesis can be computed.
For a given δ the corresponding value of λ can be calculated according to
Proposition 3.5. The vector b = ϑ/N (0, 1, 2, . . . , N − 1)T and the parameter
ϑ are assumed to be known. The boundary for δ2 + λ = (ϑ2 (N2−1))/(12N σ2)

in case of a linear time trend is given by Equation (3.18). Table 3.8 shows
corresponding asymptotical quantiles for |b(T )| and the resulting parameters
δ and λ for N = 50 and ϑ = 1. The situation of a two-tailed Student’s
t-test is considered. Thus, under the null hypothesis (H0 : θ1 = 0) deviations
of δ from zero in both directions lead to the same distorted type-I-error
probability. Consequently, the distributions of |δ| and |b(T )| are of interest.
Table A.2 in the appendix shows the asymptotical quantiles of the noncen-



71 CHAPTER 3. MEASUREMENT OF BIAS

q̃0.01 q̃0.05 q̃0.25 q̃0.5 q̃0.75 q̃0.95 q̃0.99
|b(T )| 0.0010 0.0052 0.0263 0.0556 0.0949 0.1616 0.2124
δH0 0.0037 0.0183 0.0929 0.1966 0.3354 0.5714 0.7510
λ 4.1650 4.1647 4.1564 4.1263 4.0525 3.8385 3.6010

Table (3.8): Asymptotical quantiles for |b(T )|, δ, and λ. A linear
time trend is assumed for N = 50, ϑ = 1, and σ2 = 1 under the null
hypothesis (θ1 = 0).

trality parameters δ and λ for N = 50 under the alternative hypothesis
(planned power 80%). This table is derived analogously to Table 3.8.
The asymptotical quantiles of the noncentrality parameters presented in
Tables 3.8 and A.2 in the appendix are used to derive the corresponding re-
jection probabilities under Student’s t-test conditioned on the distribution of
b(T ). Table 3.9 shows for N ∈ {12, 50, 200} the quantiles of the asymptotical
and the exact/simulated rejection probability. For the exact values, the quan-
tiles of the whole reference set of the Random Allocation Rule are computed.
For larger sample sizes of N ≥ 50, 100 000 randomization sequences from
the Random Allocation Rule are generated with the randomizeR package
(Schindler et al., 2015) and the corresponding quantiles are calculated. It
is assumed that the clinical trial is planned with size α = 0.05 and power
1−β = 0.8. For the calculations of the asymptotical quantiles of the distorted
type-I-error probability αCB and power 1 − βCB the Equations (3.23) and
(3.24) are used. To given an example, for the derived asymptotical value
of the 0.95-quantile for αCB and N = 50 in Table 3.9 the noncentrality
parameters δ = 0.5714 and λ = 3.8385 from Table 3.8 are used. The greater
N is, the better the accordance between the simulated and the asymptotical
quantiles becomes. In general, the distributions of both the αCB values and
the 1− βCB values converge against stable distributions. The differences of
the values of the corresponding quantiles for N = 50 and N = 200 are only
marginal. Table A.3 in the appendix shows the quantiles of the rejection
probability under Student’s t-test conditioned on the distribution of b(T ) in
case of linear time trend with strength ϑ = 2. The asymptotical quantiles
of the rejection probabilities are in accordance with the exact/simulated
quantiles even for N = 12. Table 3.9 and Table A.3 in the appendix show
that the greater the value of the parameter ϑ is, the greater the range of the
distributions of both the αCB values and the 1− βCB values becomes.
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Quantile N = 12 N = 50 N = 200
αCB 1− βCB αCB 1− βCB αCB 1− βCB

exact asymp. exact asymp. sim. asymp. sim. asymp. sim. asymp. sim. asymp.
q̃0.01 0.0416 0.0415 0.5742 0.5482 0.0414 0.0413 0.5419 0.5374 0.0413 0.0413 0.5385 0.5362
q̃0.05 0.0416 0.0415 0.6319 0.6190 0.0414 0.0414 0.6158 0.6134 0.0414 0.0414 0.6123 0.6130
q̃0.25 0.0425 0.0423 0.7171 0.7131 0.0422 0.0422 0.7128 0.7140 0.0422 0.0422 0.7147 0.7144
q̃0.5 0.0450 0.0452 0.7707 0.7718 0.0451 0.0452 0.7747 0.7757 0.0452 0.0452 0.7769 0.7766
q̃0.75 0.0521 0.0525 0.8199 0.8243 0.0528 0.0526 0.8286 0.8294 0.0527 0.0527 0.8305 0.8303
q̃0.95 0.0740 0.0750 0.8829 0.8874 0.0747 0.0749 0.8905 0.8911 0.0749 0.0748 0.8917 0.8917
q̃0.99 0.0934 0.1018 0.9167 0.9223 0.0986 0.1006 0.9224 0.9239 0.0998 0.1002 0.9238 0.9241

Table (3.9): Quantiles of the rejection probability under Student’s t-
test conditioned on the distribution of b(T ) using the Random Allocation
Rule in case of a linear time trend with strength ϑ = 1, σ2 = 1, and
planned α = 0.05 and 1− β = 0.8.

Transferring the results to the situation of a step time trend

In comparison to the linear time trend the step time trend defined in Equa-
tion (2.26) depends on two parameters: The strength ϑ and the time point
of the step s ∈ N. In Equation (3.19) the following equality is derived for
b = ϑ (0Ts ,1TN−s)T :

N∑
i=1

(bi − b̄)2 = ϑ2 s

(
N − s
N

)
.

This term is maximized for s = N/2 with max
s∈{1,2,...,N}

(∑N
i=1(bi − b̄)2

)
= (ϑ2 N)/4

(see Equation (3.20)). The following calculations are based on this worst
case scenario of a step time trend. The caused variance by a step time trend
with s = N/2 and b = ϑ (0TN/2,1

T
N/2)T for the variance of ȲE − ȲC can be

Sample size N
ϑ 4 12 50 200 1000
0.50 1.0833 1.0682 1.0638 1.0628 1.0625
1.00 1.3333 1.2727 1.2551 1.2513 1.2500
2.00 2.3333 2.0909 2.0204 2.0050 2.0001

Table (3.10): The ratio σ̃2
0/σ2

0 according to Equation (3.45) for a step
time trend dependent on different shapes of ϑ, different sample sizes N ,
and fixed σ2 = 1.
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derived analogously to Equation (3.41):

Var
(
ȲE − ȲC

)
= 4σ2

N
+ 4
N (N − 1)

N∑
i=1

(bi − b̄)2

︸ ︷︷ ︸
see Eq. (3.20)

= σ2
0 + 4

N (N − 1)
ϑ2N

4

= σ2
0 + ϑ2

N − 1 = σ̃2 (3.44)

⇒ σ̃2

σ2
0

= 1 + ϑ2N

(N − 1) 4σ2 . (3.45)

As in the situation of a linear time trend, the caused variance by a step time
trend σ̃2 is inflated. An unadjusted step time trend in the data leads to a
higher variability for the treatment comparison. Table 3.10 illustrates the
ratio σ̃2

0/σ2
0 for a step time trend dependent on different shapes of ϑ, different

sample sizes N , and fixed σ2 = 1. As N approaches infinity, the ratio σ̃2
0/σ2

0

converges against the constant 1 + ϑ2/(4σ2). The greater the amount of the
step ϑ is, the greater the caused variance by the step time trend becomes.
For N = 200 and ϑ = 2 the caused variance σ̃2 by a step time trend is
already doubled in comparison to σ2

0.
Table 3.11 shows the achieved average power of the Random Allocation
Rule (asymptotical and simulated/exact) using Student’s t-test dependent
on the shape of ϑ and the sample size N . The table is derived analogously
to Table 3.7 and can be interpreted in the same manner. The planned
power 1 − β of the trial is 80%. Thus, a step time trend decreases the
power of Student’s t-test dependent on ϑ and N . For the calculations of
the exact/simulated values the randomizeR package (Schindler et al., 2015)

ϑ N = 4 N = 12 N = 50 N = 200 10.000
exact asymp. exact asymp. sim. asymp. sim. asymp. asymp.

0.50 0.7743 0.7745 0.7739 0.7738 0.7753 0.7753 0.7756 0.7757 0.7758
1.00 0.7011 0.7047 0.6995 0.7006 0.7055 0.7057 0.7066 0.7070 0.7075
2.00 0.4728 0.5128 0.4782 0.4933 0.5019 0.5045 0.5072 0.5074 0.5084

Table (3.11): Comparison (asymp. vs. exact/sim.) of the achieved
power of the Random Allocation Rule using Student’s t-test dependent
on the shape of ϑ and the sample size N in case of a step time trend
(assuming W (Y ,T ) ∼ tN−2).
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is used. In case of a simulated value 100 000 randomization sequences are
generated at random from the Random Allocation Rule. The greater N and
the lower ϑ are, the better is the accordance between the asymptotical and
exact/simulated value.
Finally, the variance of b(T ) in case of a step time trend Var(b(T )) =
ϑ2/(N−1) is used to derive asymptotical quantiles for the rejection probability
under Student’s t-test conditioned on the distribution of b(T ) (approach
analogous to Table 3.9). Table 3.12 shows the resulting quantiles (asymp.
and exact/sim.) of the rejection probability for the Random Allocation Rule
using Student’s t-test for a step time trend with strength ϑ = 1. Initially,
the corresponding asymptotical quantiles for the noncentrality parameter
δ are computed. Proposition 3.15 proves that the central limit theorem
holds for the considered step time trend. Afterwards the boundary for
δ2 + λ = (ϑ2 N)/(σ2 4) derived in Equation (3.20) is used to calculate the
corresponding value for λ. For the presented exact values, the quantiles of
the whole reference set of the Random Allocation Rule are computed. For
larger sample sizes the randomizeR package (Schindler et al., 2015) is used
to generate 100 000 randomization sequences from the Random Allocation
Rule and to compute the corresponding quantiles of the rejection probability
under Student’s t-test. Table 3.12 can be interpreted in the same manner
as Table 3.9. The asymptotical quantiles are in good agreement with the
corresponding simulated/exact quantiles. The greatest differences between
the asymptotical quantiles and their simulated/exact quantiles are observed
for N = 12. In general, the distribution of both the αCB values and the
1−βCB values seem to converge against a stable distribution. The differences

Quantile N = 12 N = 50 N = 200
αCB 1− βCB αCB 1− βCB αCB 1− βCB

exact asymp. exact asymp. sim. asymp. sim. asymp. sim. asymp. sim. asymp.
q̃0.01 0.0287 0.0285 0.3655 0.3048 0.0299 0.0284 0.2697 0.2919 0.0284 0.0284 0.3045 0.2906
q̃0.05 0.0287 0.0286 0.5311 0.4216 0.0299 0.0285 0.4672 0.4160 0.0284 0.0285 0.4079 0.4160
q̃0.25 0.0287 0.0304 0.5311 0.5983 0.0299 0.0304 0.5745 0.6051 0.0300 0.0304 0.6280 0.6070
q̃0.5 0.0531 0.0372 0.7105 0.7141 0.0426 0.0375 0.7693 0.7259 0.0348 0.0376 0.7282 0.7284
q̃0.75 0.0531 0.0552 0.8618 0.8144 0.0698 0.0557 0.8451 0.8256 0.0548 0.0558 0.8130 0.8277
q̃0.95 0.1464 0.1169 0.8618 0.9195 0.1144 0.1144 0.9027 0.9232 0.1153 0.1138 0.9270 0.9238
q̃0.99 0.1464 0.1992 0.9544 0.9633 0.1790 0.1866 0.9693 0.9621 0.1793 0.1842 0.9589 0.9620

Table (3.12): Quantiles of the rejection probability under Student’s t-
test conditioned on the distribution of b(T ) using the Random Allocation
Rule in case of a step time trend with strength ϑ = 1, σ2 = 1, and planned
α = 0.05 and 1− β = 0.8.
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of the values of the corresponding quantiles for N = 50 and N = 200
are only marginal. Table A.4 in the appendix shows the quantiles of the
rejection probability conditioned on the distribution of b(T ) under the the
Random Allocation Rule in case of step time trend with strength ϑ = 2.
The asymptotical quantiles of the rejection probabilities conditioned on the
distribution of b(T ) are still in good agreement with the exact/simulated
quantiles even for N = 12. Table 3.12 and Table A.4 in the appendix show
the greater the value of the parameter ϑ is, the greater the range of the
distribution of the αCB values and the 1− βCB values becomes.





Chapter 4

Desirability index

In Chapters 2 and 3 different criteria for the assessment of randomization
procedures in the presence of chronological and selection bias were introduced.
One aim of this thesis is to give a general statement of a randomization
procedure with respect to its behavior in the presence of both selection and
chronological bias. Up to now, the performance of a randomization procedures
is only investigated with respect to one objective like the susceptibility
to selection bias or balancing behavior. The objectives are not assessed
simultaneously. Neither Berger et al. (2015) nor Zhao et al. (2012) managed
to recommend a randomization procedure when both the susceptibility to
selection bias and the balancing behavior are important aspects. Antognini
et al. (2015) derived an optimal Efron’s biased coin design with respect to
balancing behavior and susceptibility to selection bias. Nevertheless, no
comparison to other randomization procedures is presented. Rosenberger
and Lachin (2016, Chapter 8) suggest to plot the mean values of two criteria’s
distributions against each other. A so called trade-off plot can be used to
find an appropriate randomization procedure in the situation of two criteria.
However, no solution is found for the situation when three or more criteria
are of importance.
The main difficulty is that the criteria use different scales. It remains unclear
how to combine the criteria to one optimality score. Furthermore, it would
be good if the importance of the criteria should be adjustable dependent
on the practical situation. In what follows, desirability functions and a
desirability index are introduced. Based on this index the different criteria
are combinable and it is possible to take the importance of the criteria into
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account. Below, the desirability function according to Derringer and Suich
(1980) is introduced. Two approaches of the application of a desirability
function on a criterion are discussed. When using the first approach, the
mean value of the criterion’s distribution is assessed and the second approach
applies the desirability function to the individual values of the criterion’s
distribution. The combination and properties of desirability scores are
discussed in the second and third section.

4.1 Desirability functions according to Derringer-
Suich

Definition 4.1: (Desirability function)
A function with the property d : R→ [0, 1] is called a desirability function.
The value d(x) is called desirability score or desirability value of x. The
desirability score of a given x should be chosen such that it can be interpreted
as recommended in Table 4.1.

In this thesis the main emphasis is put on the class of the desirability functions
introduced by Derringer and Suich (1980). The key property of this class is
that all x smaller/greater than a lower/an upper specified border are mapped
to zero. The upper specified border is called upper specification limit (USL)
and the lower specified border is called lower specification limit (LSL). If the
value of x corresponds to its optimal desired value, the desirability function
d(x) is one. This optimal desired value is called target value (TV). Below,

d(x) Meaning
1 Ultimate satisfaction - improvement beyond this value

has no benefit.
[0.8, 1) Excellent satisfaction.
[0.6, 0.8) Good satisfaction.
[0.4, 0.6) Acceptable, but poor satisfaction.
[0.3, 0.4) Borderline.
(0, 0.3) Unacceptable satisfaction.
0 Completely unacceptable satisfaction.

Table (4.1): Interpretation of desirability scores d(x) according to
Harrington Jr. (1965).
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the one-sided and two-sided desirability functions according to Derringer
and Suich (1980) are defined.

Definition 4.2: (Desirability functions after Derringer and Suich (1980))
Let x, TV, LSL, USL ∈ R and br, bl ∈ R+. Thus, the

a) Left-One-sided Derringer-Suich desirability function is defined as:

d(x) =


0, if x ≤ LSL[
x−LSL

TV−LSL

]bl
, if LSL < x < TV

1, if x ≥ TV

. (4.1)

b) Right-One-sided Derringer-Suich desirability function is defined as:

d(x) =


0, if x ≥ USL[

USL−x
USL−TV

]br
, if TV < x < USL

1, if x ≤ TV

. (4.2)

c) Two-sided Derringer-Suich desirability function is defined as:

d(x) =



[
x−LSL

TV−LSL

]bl
, if LSL ≤ x ≤ TV[

USL−x
USL−TV

]br
, if TV < x ≤ USL

0, if x > USL or x < LSL

. (4.3)

The values bl ∈ R+ and br ∈ R+ are exponential factors for weighting
standardized deviations from the target value. Figure 4.1 shows several
settings of the two-sided Derringer-Suich desirability functions with different
values of bl and br. For bl = br = 1 the desirability scores decrease linearly.
For bl = br = 0 every value of d(x) with x ∈ [LSL,USL] is mapped to one,
otherwise to zero.

Application of a desirability function

In this section two approaches of the application of a desirability function
on a given criterion are presented. Initially, a suitable desirability function
for the investigated criterion has to adjusted. The first approach applies the
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Figure (4.1): Exemplary settings of the two-sided Derringer-Suich
desirability function dependent on bl and br.

specified desirability function on the mean value of the criterion’s distribution.
When the full reference set of a randomization procedure is investigated, the
mean value is a (weighted) average – the values of the criterion are weighted
with their probability of occurrence. In later sections this approach of
applying a desirability function is called the average-based approach (see
Section 5.2.2). Considering the average-based approach, a high desirability
score associates that the mean value of a criterion’s distribution is desired.
The second approach applies the desirability function on the particular values
of the criterion’s distribution. Thus, the dependency between the criterion’s
values and the randomization sequences is taken into account. This advance
of applying a desirability function is called the (randomization) sequence-
based approach (see Section 5.2.1). In the sequence-based approach a high
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desirability score leads to the conclusion that the individual values of the
criterion’s distribution are desired.
In Chapters 2 and 3 several criteria for the measurement of selection and
chronological bias on a given randomization procedure are introduced. Ta-
ble 3.1 in Section 3.1.3 illustrates the realizations of the rejection probabilities
αCB(ti) with i ∈ {1, 2, . . . , 6} conditioned on the randomization sequences of
the Random Allocation Rule (see Section 2.2.2) under the null hypothesis
(H0 : θ1 = 0) in the presence of a linear time trend with strength ϑ = 4.
To give an example, a right-sided Derringer-Suich desirability function with
TV = α0 = 0.05, br = 1, and USL = 2α0 = 0.1 is applied on the mean value
ᾱCB = 0.056. Consequently, the desirability value 0.88 with respect to the
type-I-error probabilities in case of chronological bias for the Random Allo-
cation Rule is derived. Interpreting the desirability score d(ᾱCB) according
to Table 4.1, it can be concluded that the Random Allocation Rule is with
respect to its expected type-I-error probability an excellent randomization
procedure. Now, the previously defined right-sided Derringer-Suich desir-
ability function is applied on the type-I-error probabilities conditioned on
the randomization sequences of the Random Allocation Rule (presented in
Table 3.1). The results are shown in Table 4.2. Four randomization sequences
attain a type-I-error probability lower than the target value and are mapped
to one and the two worst case randomization sequences with αCB(ti) > 0.1
are mapped to zero. Hence, the average desirability of the sequence-based
approach d̄(αCB) = 1/6

∑6
i=1 d(αCB(ti)) corresponds to 2/3. Interpreting the

summarized desirability scores of the individual randomization sequences
according to Table 4.1, it can be concluded that the Random Allocation Rule
is a good randomization procedure in the presence of the assumed linear
time trend.
Desirability functions can easily be applied to other criteria, which were
presented in the previous chapters. An extensive sensitivity analysis is

i 1 2 3 4 5 6
tTi (1,1,-1,-1) (1,-1,1,-1) (-1,1,1,-1) (1,-1,-1,1) (-1,1,-1,1) (-1,-1,1,1)
αCB(ti) 0.146 0.016 0.005 0.005 0.016 0.146
d(αCB(ti)) 0 1 1 1 1 0

Table (4.2): A right-one-sided Derringer-Suich desirability function
with TV = 0.05, USL = 0.1, and br = 1 is used to map the αCB(ti)
values for RAR to the interval [0, 1].
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conducted in Chapter 5. In that chapter both the average-based approach
and the sequence-based approach are investigated in more detail to determine
an appropriate randomization procedure. The next section discusses the
combination of desirability scores.

4.2 Combination of desirability scores

The target value, the specification limits, and the weights of a desirability
function are set by a person’s point of view and should be chosen with
care. When establishing a suitable desirability function the central question
is, which values are desired for a given criterion and which values are not.
The fitted desirability function should give an informative answer to this
question. The class of the Derringer-Suich desirability functions presented in
Section 4.1 is only one class of possible desirability functions. Other classes
and forms of desirability functions are possible, for example the desirability
function according to Harrington Jr. (1965). One key property of the class
of the Derringer-Suich desirability functions is that completely undesired
values of a criterion are mapped to zero. This property does not hold for
any class of desirability functions, see for example the class of desirability
functions defined by Harrington Jr. (1965).
A desirability function d(x) maps the value x to a scale in the interval [0, 1].
This scale is dimensionless and represents the desirability of x dependent on
the target value, the specification limits, and the weights of the corresponding
desirability function. A value of zero is an undesired value and a value of one
is a completely desired value. In this thesis the situation of having several
objectives on one randomization procedure or on one randomization sequence
is investigated. These objectives are measured based on corresponding
criteria. Let l ∈ N be the number of different criteria. Furthermore, for
each criterion an individual desirability function is fixed. Hence, l different
desirability scores d1(x1), . . . , dl(xl) for the corresponding values x1, . . . , xl

are derived. The aim is to give a universal statement for the randomization
procedure or the randomization sequence and their values x1, . . . , xl. Thus,
the l desirability scores of a given randomization procedure or a given
randomization sequence are combinable with the weighted geometric mean
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according to Derringer (1994):

d̄geo := dω1
1 (x1) · dω2

2 (x2) · . . . · dωll (xl) , (4.4)

where ω1, . . . , ωl with
∑l
i=1 ωi = 1 are the weights of the desirability scores

d1(x1), . . . , dl(xl) of x1, . . . , xl. An important property of the geometric
mean d̄geo is that it is zero if and only if there is at least one i ∈ {1, . . . , l}
with ωi > 0, such that di(xi) = 0, i.e. that the corresponding desirability
score does not fulfill its criterion. Consequently, a summarized desirability
value with the geometric mean greater than zero is only possible if and
only if all di(xi) with wi > 0 are greater than zero for i ∈ {1, . . . , l}. A
randomization sequence which attains a summarized desirability value with
the geometric mean of zero is called undesired randomization sequence.
In Kim and Lin (2000) it is pointed out that a summarized desirability value
with the geometric mean does not allow a clear interpretation, except that
greater summarized desirability values with the geometric mean are preferred.
However, in the later analysis the summarized desirability scores with the
geometric mean are interpreted according to Table 4.1.

4.3 Properties of desirability scores

The combinability of desirability scores is the main reason why the trans-
formation to desirability scores is indispensable. The criteria presented in
Chapter 2 and Chapter 3 use different scales. Thus, it is not possible to
make a unified assessment of one randomization procedure with respect to
several criteria. By the usage of desirability functions it is possible to conduct
a multiobjective assessment of randomization procedures with respect to
several criteria. On the basis of the desirability scores the criteria are linked
and it is possible to investigate the criteria of a randomization procedure
simultaneously. It is obvious, that the randomization procedure with the
greatest desirability score can be classified as the best one.
Originally, Harrington Jr. (1965) recommended to summarize desirability
scores by the geometric mean with equal weight on each desirability score.
Later Derringer (1994) pointed out that when the desirability scores are of
different importance, a weighted geometric mean could be used. In Figure 4.2
the situation of two desirability scores is assumed, which are summarized
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(a) ω1 = ω2 = 1/2. (b) ω1 = 1/3 and ω2 = 2/3.

Figure (4.2): Contour plots when two desirability scores d1(x) and
d2(x) are summarized with the geometric mean.

with the geometric mean. The contour plot on the left shows the value of the
summarized desirability score when the desirability scores of the two criteria
are of equal importance (ω1 = ω2 = 1/2). For the generation of the contour
plot on the right, it is assumed that the importance of the desirability score
of the second criterion is doubled (ω1 = 1/3, ω2 = 2/3). Particularly in the
edges of the contour plots differences are visible. If both desirability scores
are more or less the same, the weight does not influence the summarized
desirability score that much.
For the adaptation of desirability functions the following situation should
be considered: Let l be large and all desirability functions of the different
criteria be chosen in that way, that there is only a small possibility to reach
a desirability value greater than zero. Furthermore, several criteria work in
opposite direction. Summarizing the desirability scores in this situation with
the geometric mean would lead to a d̄geo value of zero. The transformation
of the criteria to desirability scores would not bring any benefit. Thus, the
specification limits of the used desirability functions should be chosen as
liberal as necessary, but also not more liberal than necessary.
For the weights ωi with i ∈ {1, 2, . . . , l} of the geometric mean defined
in Equation (4.4) it is assumed that the sum of the weights is one. This
assumption is important in the situation when all desirability scores dj(xj) =
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dk(xk) for j, k ∈ {1, 2, . . . , l} are the same. Under the assumption that the
sum of the weights ωi with i ∈ {1, 2, . . . , l} is one, it follows:

d̄geo = d1(x1) = dω1
1 (x1) · dω2

2 (x2) · . . . · dωll (xl) .

Without the assumption that the sum of the weights ωi with i ∈ {1, 2, . . . , l}
is one, the equality d̄geo = d1(x1) would not hold. Although it is not necessary
that the sum of the weights is one, all presented investigations in this thesis
are based on the assumption that the sum of the weights is one.





Chapter 5

Sensitivity analysis of the
desirability index

One aim of this thesis is to make a general statement of a randomization
procedure with respect to its behavior in the presence of both selection and
chronological bias. In Chapters 2 and 3 different criteria for the assessment
of randomization procedures in the presence of chronological and selection
bias were introduced. Chapter 4 is the foundation for the assessment of
randomization procedures based on a desirability index. Below, the suscep-
tibility of a randomization procedure to selection bias is measured by the
expected proportion of correct guesses. The distorted rejection probabilities
(type-I-error probability and power in case of a linear time trend) serve as
criteria for the assessment of a randomization procedure in the presence of
chronological bias.
To give an example, the application of desirability functions is illustrated on
Efron’s Biased Coin Design with parameter p = 2/3 (see Section 2.2.4). For
the application of the desirability functions both the sequence-based approach
and the average-based approach, which were introduced in Section 4.1, are
extensively discussed. First, all randomization sequences for N = 4 are
considered. Afterwards, the sample sizes N ∈ {12, 50, 200} are investigated.
For N = 4 and N = 12 the full reference set of Efron’s Biased Coin Design
is assessed, while for N = 50 and N = 200 a simulation study with 100 000
randomization sequences of EBC(2/3) is conducted. For the presented figures
the additional R package ggplot2 (Wickham, 2009) is used.
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5.1 Assessment of Efron’s Biased Coin Design

i tTi pt propCG(ti) d(propCG(ti)) αCB(ti) d(αCB(ti)) 1− βCB(ti) d(1− βCB(ti)) d̄geo(ti)
1 (-1,-1,-1,-1) 0.019 0.125 1.000 0.000 1.000 0.000 0.000 0.000
2 (1,-1,-1,-1) 0.056 0.500 1.000 0.055 0.892 0.620 0.099 0.445
3 (-1,1,-1,-1) 0.056 0.500 1.000 0.045 1.000 0.637 0.187 0.571
4 (1,1,-1,-1) 0.074 0.625 0.500 0.060 0.804 0.730 0.649 0.639
5 (-1,-1,1,-1) 0.037 0.375 1.000 0.045 1.000 0.679 0.395 0.734
6 (1,-1,1,-1) 0.111 0.750 0.000 0.047 1.000 0.734 0.668 0.000
7 (-1,1,1,-1) 0.111 0.750 0.000 0.043 1.000 0.755 0.776 0.000
8 (1,1,1,-1) 0.037 0.375 1.000 0.055 0.892 0.620 0.099 0.445
9 (-1,-1,-1,1) 0.037 0.375 1.000 0.055 0.892 0.743 0.715 0.861
10 (1,-1,-1,1) 0.111 0.750 0.000 0.043 1.000 0.755 0.776 0.000
11 (-1,1,-1,1) 0.111 0.750 0.000 0.047 1.000 0.792 0.961 0.000
12 (1,1,-1,1) 0.037 0.375 1.000 0.045 1.000 0.637 0.187 0.571
13 (-1,-1,1,1) 0.074 0.625 0.500 0.060 0.804 0.842 1.000 0.738
14 (1,-1,1,1) 0.056 0.500 1.000 0.045 1.000 0.679 0.395 0.734
15 (-1,1,1,1) 0.056 0.500 1.000 0.055 0.892 0.743 0.715 0.861
16 (1,1,1,1) 0.019 0.125 1.000 0.000 1.000 0.000 0.000 0.000

average values: 0.597 0.481 0.047 0.951 0.702 0.605 0.344

Table (5.1): Overview and properties of the 16 randomization sequences
generated by EBC(2/3) for the sample size N = 4. The desirability
functions for the assessment of the criteria are set according to Table 5.2.

One property of Efron’s Biased Coin Design is that all imaginable random-
ization sequences are possible, but in contrast to Complete Randomization
they are not equiprobable. Table 5.1 shows all possible randomization se-
quences under EBC(2/3) for the sample size N = 4 with their corresponding
probability of appearance pt. In the fourth column of the table the ex-
pected proportion of correct guesses (see Section 2.3.2) under the usage of
the convergence strategy dependent on the corresponding randomization
sequence (propCG(ti) = CG(ti)/N) is presented. In the next column, this
value is assessed with a right-sided Derringer-Suich desirability function
(see Section 4.1) with the following settings: TV = 0.50, USL = 0.75, and
br = 1. The value of the upper specification limit corresponds to the maximal
possible value of the expected proportion of correct guesses achieved by the
convergence strategy. The target value is set to the prior probability of a
correct guess in a two-armed clinical trial. As already mentioned before,
this probability is 0.5. The column d(propCG(ti)) in Table 5.1 shows the
corresponding desirability value of the expected proportion of correct guesses.
The values in the columns of the conditional rejection probabilities (type-
I-error probability and power in case of a linear time trend) are derived in
analogy to Tables 3.1 and 3.2 in Chapter 3. The parameter ϑ of the linear
time trend is set to one (see Section 2.5). Thus, the time trend is assumed
to be a comparatively small one. For assessing the type-I-error probabilities
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j Criterionj TVj USLj/LSLj blj/brj ωj
1 propCG 0.50 0.75 1 1/3
2 αCB 0.05 0.10 1 1/3
3 1− βCB 0.80 0.60 1 1/3

Table (5.2): Standard setting of the desirability functions of the three
investigated criteria.

conditioned on the randomization sequences a right-sided Derringer-Suich
desirability function with TV = 0.05, USL = 0.10, and br = 1 is used. The
conditional values for the power in the situation of the assumed linear time
trend are mapped by a left sided Derringer-Suich desirability function with
TV = 0.80, LSL = 0.60, and bl = 1. The desirability values of the three
criteria are summarized with the geometric mean (see Equation (4.4)). All
of the three weights are set to one third. Table 5.2 summarizes the used
settings of the desirability functions and the used weights ωj for the three
criteria. The presented setting of the desirability functions is used for all
examples in this chapter. The row on the bottom in Table 5.1 shows the
mean or average values of the corresponding columns under EBC(2/3) for
N = 4. For that, every value in the corresponding column is weighted with
pt, which is the probability of appearance of the randomization sequence
under EBC(2/3). The average value of the summarized desirability scores is
0.344. As pointed out in Section 4.1 this value represents the average desir-
ability of the randomization sequences under EBC(2/3). The average value
of the summarized desirability scores is called d̄(RS) (average value of the
summarized desirability scores of the individual randomization sequences).
In this thesis this approach of summarizing desirability scores is called the
(randomization) sequence-based approach (see Section 4.1). The name
of the approach refers solely to the application of the desirability functions.
In this approach the desirability functions are directly applied on the re-
alizations of the criteria’s distributions conditioned on the randomization
sequences.
The desirability scores of the criteria’s average values under EBC(2/3) are
provided by Table 5.3. The same desirability functions as established for
the sequence-based approach are used to map the corresponding average
values of the criteria to the interval [0, 1] (see Table 5.2). Afterwards, the
three desirability scores of the criteria’s average values are summarized with
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propCG d(propCG) ᾱCB d(ᾱCB) 1− β̄CB d(1− β̄CB) d̄geo(AV)
0.597 0.611 0.047 1.000 0.702 0.509 0.678

Table (5.3): Desirability of the criteria’s average values under EBC(2/3)
for N = 4. The scores propCG, ᾱCB, and 1−β̄CB are derived in Table 5.1.
The geometric mean of the three desirability values of the criteria is
termed as d̄geo(AV).

the geometric mean. The weights of the geometric mean are again all set
to one third. The summarized desirability score of the criteria’s average
values under EBC(2/3) is 0.678. This score is called d̄geo(AV) (summarized
desirability score of the criteria’s average values). In this thesis this approach
of summarizing desirability scores is called the average-based approach
(see Section 4.1). The summarized desirability score reflects the behavior
of the criteria’s average values under a given randomization procedure.
The name average-based approach refers solely on the application of the
desirability functions. In the given example the desirability functions are
in the strict sense applied on the expected or mean values of the criteria’s
distributions. However, for larger sample sizes the mean values of the criteria’s
distributions are estimated by simulations. Let N be large, so that it is
not possible to assess all randomization sequences of a given randomization
procedure, thus the (weighted) arithmetic mean is an estimator for the
expected value of a criterion’s distribution. In this thesis no distinction
is made between whether a desirability function is applied on a simulated
average value or an expected value of a criterion’s distribution. Nevertheless,
it is always clearly pointed out whether the exact distribution of a criterion
is taken into account or simulations are used.
For EBC(2/3) and N = 4 the desirability of the criteria’s average values
is 0.678. This value is clearly greater than the average desirability of the
summarized desirability scores for EBC(2/3), which is 0.344 (see Table 5.1).
However, being 0.509, the desirability of the average power in case of the
assumed linear time trend value is smaller than the average of the desirability
scores derived in the sequence-based approach (see Table 5.1). Considering
the other two criteria, the desirability scores of the average values are greater
than the corresponding average values derived in the sequence-based approach
(see Table 5.1).
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Summarizing the results, the desirability scores of both approaches are clearly
greater than zero. Considering the three investigated criteria and the sample
size N = 4, no randomization procedure can be highly recommended. In
Table 5.1 it can be seen that six of sixteen possible randomization sequences
have a desirability score of zero. Thus, for a good randomization procedure
the probability of appearance of these six randomization sequences should
be minimized. The sample size N = 4 is very small. For this sample size
not all investigated trade-offs are solvable. The example is only selected to
show how the application of desirability functions on several criteria of a
randomization procedure works. The influence of different target values and
of the upper/lower specification limits on the desirability scores is investigated
in more detail based on the sample size N = 12 in the following section.

5.2 Parameters of the desirability functions

For the sample size N = 12 there are 212 = 4096 possible randomization
sequences under EBC(2/3). Consequently, it is not possible to discuss or show
the behavior of all randomization sequences in detail. As in the previous
section it is assumed that the clinical trial is affected by a linear time trend
with the strength one (ϑ = 1 according to Equation (2.25)). Furthermore, the
expected proportion of correct guesses reflects the susceptibility to the con-
vergence strategy. Table 5.4 shows a summary of all possible randomization
sequences under EBC(2/3) for N = 12. The values in the table are generated
with the randomizeR package (Schindler et al., 2015). Let cj(ti) = xi,j be
the value of the jth criterion with j ∈ {1, 2, 3} of the ith randomization
sequence ti, thus the expectation of the jth criterion is computed as follows:

E(Xj) =
∑

{i:ti∈ΓN}
xi,j · pti = x̄j , (5.1)

where pti is the probability of appearance of the ith randomization sequence ti.
The mean value of the jth criterion is computed by weighting the realizations
of a criterion with their probability of appearance. In situations when the set
of possible randomization sequences of a randomization procedure gets too
large, simulations are used to estimate the expected value of a criterion. In
these situations the randomization sequences are sampled from an algorithm,
which represents the corresponding randomization procedure. Afterwards, the
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(weighted) arithmetic mean of the criterion’s values is used as estimator for
the criterion’s expected value. When the whole reference set of randomization
procedure is assessed, the term x̄j stands for criterion’s expected value. In
situations when randomization sequences from a randomization procedure
are sampled, the term x̄j is an estimator for the expected value of the
corresponding criterion.
The variance of the jth criterion with I = |ΓN | is computed as follows:

s2(Xj) =
∑

{i:ti∈ΓN}
pt (xi,j − µ)2 =

∑
{i:ti∈ΓN}

pt (xi,j − x̄j)2 . (5.2)

where the different probabilities of occurrence of the realizations xi,j are
taken into account. The value of the maximum (max) and minimum (min)
in Table 5.4 is the maximum or the minimum value of the vector xj ∈ RI

of the jth criterion. The value x̃q,j with q ∈ [0, 1] is the q-quantile of the
vector xj ∈ RI of the jth criterion. Due to the fact that all imaginable
randomization sequences are possible under Efron’s Biased Coin, the depicted
values of the minimum/maximum in Table 5.4 show the maximal possible
range of the criteria. In case of the assumed linear time trend and in
comparison to the planned power of 80%, the average power of EBC(2/3)
is only slightly deflated. The worst case randomization sequence for the
power (twelve times the same treatment in a row) has a power of zero. The
average value of the expected proportion of correct guesses is 61.3% with
range [0.042, 0.750]. In the situation of the assumed linear time trend nearly
one quarter of the randomization sequences maintains an inflated type-I-error
probability. The nominal significance level α is set to 5%.
Based on the summary of EBC(2/3) presented in Table 5.4 several settings
of desirability functions are discussed. For assessing the distributions of
the expected proportion of correct guesses and the distorted type-I-error
probability in case of the linear time trend several settings of right-sided
Derringer-Suich desirability functions are investigated. For the evaluation

j Criterion x̄j s(Xj) max(xj) min(xj) x̃0.05,j x̃0.25,j x̃0.50,j x̃0.75,j x̃0.95,j
1 propCG 0.613 0.096 0.750 0.042 0.417 0.542 0.625 0.667 0.750
2 αCB 0.047 0.009 0.119 0.000 0.041 0.042 0.044 0.049 0.066
3 1− βCB 0.756 0.072 0.944 0.000 0.626 0.717 0.765 0.806 0.861

Table (5.4): Summary of the distributions of the criteria of the ran-
domization sequences produced by EBC(2/3) for N = 12.
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of the distribution of the distorted power in case of the linear time trend
several left-sided Derringer-Suich desirability functions are adjusted. In what
follows, both the sequence-based approach and the average-based approach
are investigated and the results are compared.

5.2.1 Sequence-based approach

The one-sided Derringer-Suich desirability function, which is presented in
Section 4.1, depends on three parameters: The upper/lower specification
limit, the target value, and the corresponding weight bl or alternatively
br. In what follows, the target values of the three criteria are fixed and
not changed anymore. The target values of the criteria are set as follows:
TVpropCG = 0.50, TVαCB = 0.05, and TV1−βCB = 0.80. Additionally to
the settings of the desirability functions, the choice of the weights ωj with
j ∈ {1, 2, 3} of the geometric mean, which is used for summarizing the three
desirability scores of the three criteria to a unified score, is investigated.
Table 5.2 shows the standard setting of the three desirability functions of
the three criteria and their weights ωj . If it is not explicitly stated otherwise,
all criteria are investigated in this section with respect to the values of the
standard setting. In this setting all criteria have a weight of ωj = 1/3. The
upper specification limit for the expected proportion of correct guesses is
set to 0.75, which is the maximal possible value of this criterion. For both
the planned type-I-error probability α0 = 0.05 and the planned type-II-
error probability β0 = 0.2 maximal a duplication in the presence of the
assumed linear time trend is allowed - otherwise the corresponding values are
mapped to zero. Thus, the specification limits for the type-I-error probability
and power in case of the assumed linear time trend are set to 0.10 and
0.60, respectively. In the standard setting the bl/br values of all desirability
functions are set to one (linear loss of deviations from the target value).
Table 5.5 shows the summary of the distribution of the (summarized) de-
sirability scores. The values of the criteria of the individual randomization
sequences are assessed with the desirability functions defined in the standard
setting. The criterion RS represents the distribution of the summarized
desirability scores of the individual randomization sequences (d̄geo(ti)). The
used weights ωj for the geometric mean are dictated in the standard setting
(see Table 5.2). The probability of generating an undesired value for the
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j Criterionj d̄(j) P (d(j) = 0) x̃0.05,d(j) x̃0.25,d(j) x̃0.50,d(j) x̃0.75,d(j) x̃0.95,d(j)
1 propCG 0.516 0.088 0.000 0.333 0.500 0.833 1.000
2 αCB 0.955 0.003 0.675 1.000 1.000 1.000 1.000
3 1− βCB 0.738 0.028 0.129 0.585 0.827 1.000 1.000
4 RS 0.611 0.117 0.000 0.522 0.667 0.794 0.941

Table (5.5): Summary of the desirability scores under the standard
setting for EBC(2/3) for N = 12.

distribution of the expected proportion of correct guesses is 8.8%. The
average value of the desirability of the expected proportion of correct guesses
corresponds to 0.516, which is an acceptable value (see Table 4.1). The quan-
tiles of the distribution function of the desirability scores of the four criteria
represent the distribution function of the desirability scores. The distribution
functions of the type-I-error probability and the power in case of the assumed
linear time trend are remarkable. For the desirability distribution of the
type-I-error probability the probability of a desirability score of one is 75%.
In other words, the probability of generating a randomization sequence with
a deflated or preserved type-I-error probability is greater than three quarters
(see Table 5.4). The probability of generating a randomization sequence with
an inflated or preserved power in case of the investigated linear time trend is
greater than 25%. In what follows, the influence of a change in the standard
setting with respect to the upper/lower specification limit, the bl or br value,
and the weights ωj with j ∈ {1, 2, 3} on both the average desirability score of
the distribution of the corresponding criterion and the average of the summa-
rized desirability scores is investigated. When the standard setting is used,
the probability of generating an undesired randomization sequence is 11.7%
and the average of the summarized desirability scores corresponds to 0.611.
Considering the standard setting of the desirability functions (see Table 5.2),
EBC(2/3) for N = 12 is a randomization procedure with good properties with
respect to selection and chronological bias. Below, the influence of the choice
of the upper/lower specification limits on the derived desirability scores is
investigated.

Influence of the specification limits on the desirability scores

In this section the specification limits (USL and LSL) of the criteria’s
desirability functions are altered successively. The criteria, which are not
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investigated, are always assessed with the desirability functions defined
in the standard setting (see Table 5.2). When assessing the upper/lower
specification limit of one criterion in the analysis, there are three values of
special interest:

1.) The expectation of the summarized desirability scores:

E(d(RS)) = d̄(RS) =
∑

{i:ti∈ΓN}
d̄geo(ti) pti ,

where d̄geo(ti) is the summarized desirability value of the ith randomiza-
tion sequence with the geometric mean.

2.) The expected desirability of the investigated criterion:

E(d(criterionj)) = d̄(criterionj) =
∑

{i:ti∈ΓN}
d(xi,j) pti ,

where d(xi,j) is the desirability of the value xi of the ith randomization
and the jth criterion.

3.) The probability of generating an undesired randomization sequence
dependent on the criterion:

P (d(criterionj) = 0) =
∑

{i:ti∈ΓN}
1{d(xi,j)=0} pti ,

where 1{d(xi,j)=0} is one if d(xi,j) = 0 and zero otherwise.

Figure 5.1 consists of three subfigures – one for each of the investigated
criteria: propCG, αCB, and 1− βCB. The three computed values of interest
are visualized in each subfigure dependent on the altered specification limit
of the investigated criterion. The influence of the upper specification limit
of the desirability function defined for the type-I-error probability in case
of the assumed linear time trend is assessed when the upper specification
limit 0.2 converges against the target value 0.05 of the criterion. The upper
specification limit for for the expected proportion of correct guesses is varied
between 0.75 and 0.5. The influence of the lower specification limit of the
desirability function defined for the power in case of the assumed linear
time trend is investigated when the lower specification limit lies anywhere
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Figure (5.1): Assessment of the three investigated criteria dependent
on different specification limits under EBC(2/3).

between 0.4 and the target value 0.8 of the criterion. Figure 5.1 shows that
the closer the specification limits are chosen to the corresponding target
value of the criterion, the greater the probability of generating an undesired
randomization sequence becomes. As mentioned above there is a probability
of less than 25% of generating a randomization sequence, which attains an
inflated type-I-error probability for the investigated linear time trend. The
expected proportion of correct guesses is the most susceptible criterion with
respect to the probability of generating an undesired randomization sequence
when the specification limit converges against the target value. Consequently,
the setting of the upper specification limit of the desirability function for
the expected proportion of correct guesses is the most sensitive with respect
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to the influence on the average of the summarized desirability scores under
EBC(2/3). Furthermore, the average of the summarized desirability scores
is more sensitive with respect to the setting of the lower specification limit
for the power than for the setting of the upper specification limit for the
type-I-error probability in case of the assumed linear time trend. Finally,
Figure 5.1 shows that the bigger the difference between the specification limit
and the target value of a criterion are, the greater the expected desirability
score of the corresponding desirability scores of the criterion becomes.
Summarizing the results shown in Figure 5.1 the specification limits (USL
and LSL) of the three criteria have strong influence on the derived desir-
ability scores under EBC(2/3). Particularly, the probability of generating
an undesired randomization sequence is determined by the setting of the
specification limits. The other parameters, which are investigated in the next
paragraph, will not have any influence on the probability of generating an
undesired randomization sequence. The settings of the other parameters only
influence the average values of the desirability scores of the individual criteria
and/or the expected desirability of the summarized desirability scores of the
individual randomization sequences.

Influence of the parameter b on the desirability scores

In this section the influence of the parameter b of the three one-sided desir-
ability functions on the desirability scores is investigated. The parameters of
the weights and of the specification limits are set in all situations according
to the standard setting (see Table 5.2). Figure 5.2 shows the influence of a
change of a b value on both the average desirability of a corresponding crite-
rion and the average of the summarized desirability scores under EBC(2/3).
Setting the parameter b to one corresponds to a linear decreasing of the
desirability function. If the parameter b is selected greater than one, the
desirability function is a convex one and the setting of a b value of smaller
than one corresponds to a concave decreasing of the desirability function (see
Figure 4.1). The subfigures of Figure 5.2 show the smaller the parameter
b of a criterion is, the greater the expected desirability of the summarized
desirability scores of the individual randomization sequences under EBC(2/3)
becomes. Selecting a linear desirability (b = 1) seems to be a good solu-
tion of weighting standardized deviations from the target value neither too
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Figure (5.2): Assessment of the three investigated criteria dependent
on the choice of the parameter b under EBC(2/3).

hard nor too soft. The desirability of the expected proportion of correct
guesses criteria is most sensitive concerning the setting of the parameter b.
The subfigure on the bottom right of Figure 5.2 shows the change of the
expected desirability of the summarized desirability scores of the individual
randomization sequences under EBC(2/3), when the b values of all three
investigated criteria are altered simultaneously. Change all b values means
that the parameters of all three desirability functions are changed at the same
time. Considering this setting, the average of the summarized desirability
scores decreases in form of a concave curve as the parameter b grows.
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Influence of the weights on the desirability scores

Figure (5.3): Assessment of the average of the summarized desirabil-
ity scores under EBC(2/3) dependent on the weights ωj of the three
investigated criteria.

The analysis of the weights ωj with j ∈ {1, 2, 3} of the three criteria is based
on the desirability functions defined by the standard setting (see Table 5.2).
Solely the summarized desirability scores of the individual randomization
sequences and therefore the expected desirability of the summarized desir-
ability scores of the individual randomization sequences depend on the choice
of the weights ωj . The expected desirability values of a criterion (d̄(criterion)
with criterion ∈ {propCG, αCB, 1 − βCB}) are determined by the standard
setting and do not differ from the statistics shown in Table 5.5.
Figure 5.3 shows three different graphs – one for each investigated criterion.
The average of the summarized desirability scores under EBC(2/3) is plotted
against a value for the weight ωj used for the jth criterion. Thus, the x-axis
shows a value for the weight for the corresponding criterion. All three weights
have to sum up to one. Hence, the values for the weights of the other two
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criteria are set both to (1−ωj)/2. Three settings are of special interest: If a
weight corresponds to the value one, the weights of the other two criteria are
zero – the expected desirability of the summarized desirability scores of the
individual randomization sequences corresponds to the expected desirability
of the jth criterion, which is shown in Table 5.5. Next, if a weight corresponds
to the value zero, the weight of the other two criteria is 0.5 – in this situation
the criterion itself is weighted with zero and thus the desirability of the
criterion does not influence the further analysis. If any criterion j has weight
ωj > 0, while its desirability is zero, then the whole desirability index is
zero, even if ωj → 0. However, when ωj = 0, then the influence of criterion
j vanishes completely. This explains the discontinuities of the graphs in
Figure 5.3. Finally, all criteria are equally weighted if ωj corresponds to 1/3

(standard setting). This is the point of intersection of the three lines in the
Figure 5.3.
Summarizing Figure 5.3 it is obvious, that the desirability of the expected
proportion of correct guesses is small in comparison to the other two criteria.
The smaller the influence of the expected proportion of correct guesses on the
desirability of the individual randomization sequences is, the greater both the
individual desirability values of the randomization sequences and the average
of the summarized desirability scores under EBC(2/3) become. Vice versa, the
greater the weight of the expected proportion of correct guesses is, the lower
the average of the summarized desirability scores under EBC(2/3) becomes.
Setting the weight ωj of the expected proportion of correct guesses to 1/2

and the weights of the other two criteria to 1/4, a summarized desirability
score of 0.57 is derived. In this setting selection and chronological bias are
equally weighted.

5.2.2 Average-based approach

In this section the behavior of the average values of the three criteria under
EBC(2/3) is investigated. A summary of the criteria’s average values is
shown in Table 5.4 for N = 12. The standard setting presented in Table 5.2
is used for assessing the behavior of the criteria’s average values under
EBC(2/3). Table 5.6 shows both the desirability of the criteria’s average
values under EBC(2/3) and their summarized value with the geometric mean.
The summarized desirability score of the criteria’s average values under
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the standard setting of EBC(2/3) is greater than 0.75. Hence, for N = 12
EBC(2/3) is a randomization procedure with good satisfaction. Table 5.6
shows that the expected type-I-error in case of the assumed linear time
trend is deflated under EBC(2/3). Thus, the right-sided Derringer-Suich
desirability function with target value 0.05, which is used for mapping the
expected type-I-error probability in case of the assumed linear time trend to
the interval [0, 1], is always one regardless of the setting of the weight b and
the upper specification limit. Consequently, the sensitivity analysis is solely
done for the other two criteria. The desirability of the expected type-I-error
probability in case of the investigated linear time trend is assumed to be one
below.
Figure A.1 in the appendix shows a sensitivity analysis of the desirability of
the average of the expected proportion of correct guesses and the average
power 1 − β̄CB. The figure depicts both the desirability score of the crite-
ria’s average values and the summarized desirability score of the criteria’s
average values with the weights ωj of the standard setting. The closer the
upper/lower specification limit is selected to the target value, the smaller
the desirability of the average value of the criterion becomes. Furthermore,
the smaller the desirability score of the average value of a criterion is, the
smaller the summarized desirability score of the criteria’s average values
becomes. If the upper/lower specification limit is selected lower/higher than
the average score of one criterion, the desirability value of both the criterion
and the summarized desirability score of the criteria’s average values is zero.
Figure A.2 in the appendix shows the influence of the parameter b of the
one-sided Derringer-Suich desirability function on both the desirability value
of the average value of the criterion and the summarized desirability score of
the criteria’s average values. The closer the value b is selected to zero, the
greater the desirability value of the average value of the criterion becomes.
The greater the desirability value of the criterion’s average value is, the
greater the summarized desirability score of the criteria’s average values

propCG d(propCG) ᾱCB d(ᾱCB) 1− β̄CB d(1− β̄CB) d̄geo(AV)
0.613 0.549 0.047 1.000 0.756 0.782 0.754

Table (5.6): Desirability of the behavior of the criteria’s average values
using the standard setting from Table 5.2 under EBC(2/3) for N = 12.
The scores propCG, ᾱCB, and 1− β̄CB are derived in Table 5.4.
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becomes. Figure A.3 in the appendix shows the influence of the weights ωj on
the summarized desirability score of the criteria’s average values. The figure
has to be interpreted analogously to Figure 5.3 presented in the previous
section. Again the summarized desirability score of the criteria’s average
values is mainly influenced by the choice of the weight ωj for the expected
proportion of correct guesses. Setting the weight ωj of the expected propor-
tion of correct guesses to 1/2 and the weights of the other two criteria to 1/4,
a summarized desirability score of the average values of the criteria of 0.70
is derived. Below, the desirability scores under EBC(2/3) are investigated for
the sample sizes N = 50 and N = 200.

5.3 Investigations of other sample sizes

In this section the desirability functions from the standard setting presented
in Table 5.2 are investigated for the sample sizes N = 50 and N = 200 under
EBC(2/3). Again the desirability scores of both approaches, the sequence-
based approach and the average-based approach, are of interest. For N = 12
Table 5.4 shows a summary of the distribution of the investigated criteria
under EBC(2/3). For N = 50 there are already 250 = 1.1259 · 1015 possible
randomization sequences under Efron’s Biased Coin Design. Thus, not the
full reference set of all possible randomization sequences is assessed. The
additional package randomiezR (Schindler et al., 2015) in R (R Core Team,
2016) is used for generating 100 000 randomization sequences under EBC(2/3)
for the sample sizes N = 50 and N = 200. The strength of the linear time
trend is for all sample sizes set to one (ϑ = 1 according to Equation (2.25)).
The assessed criteria are the average of the expected proportion of correct
guesses and the distorted rejection probabilities in case of the linear time
trend under the null hypothesis and under the alternative.
Tables A.5 and A.6 in the appendix show the results of the simulation study.
These tables are generated in analogy to Table 5.4. Tables 5.4, A.5, and
A.6 show the greater the sample size N is, the lower the variance in the
proportion of correct guesses becomes. The average value of the proportion
of correct guesses converges to a constant and does not differ much in the
presented tables. The variance of the rejection probabilities of the individual
randomization sequences (αCB(ti) and 1− βCB(ti)) in case of a linear time
trend of strength ϑ = 1 becomes lower as N grows. In other words, the



103 CHAPTER 5. SENSITIVITY ANALYSIS

behavior of the individual randomization sequences concerning the three
criteria becomes more homogenous as the sample size N grows. The average
values of the rejection probabilities are nearly on the same level for all
investigated sample sizes. Particularly, the average values of both the type-I-
error probability and power in case of the linear time trend are for all sample
sizes deflated. In the next step, the desirability functions from the standard
setting presented in Table 5.2 are applied to the simulated randomization
sequences for the sample size N = 50.

Desirability of EBC(2/3) for N = 50

The target values of the desirability functions are set according to the values
of the standard setting presented in Table 5.2. The desirability functions
are directly applied to the realizations of the criteria conditioned on the
randomization sequences from the simulation study. The realizations of
the criteria from the simulation study are summarized in Table A.5 in the
appendix. Table 5.7 shows a summary of the derived desirability scores
by the sequence-based approach for EBC(2/3) and N = 50. The average
desirability of the desirability scores of the expected proportions of the correct
guesses is the lowest. The proportion of undesired randomization sequences
is only 0.3%. The average desirability of the summarized desirability scores
of the individual randomization sequences in Table 5.7 under EBC(2/3) is
0.728. Thus, EBC(2/3) is a good randomization procedure concerning the
three investigated criteria. The desirability of the average values of the
criteria under EBC(2/3) is shown in Table 5.8. For that, the desirability
functions defined in the standard setting presented in Table 5.2 are used. The
summarized desirability score of the criteria’s average values under EBC(2/3)
for N = 50 is 0.761. The derived desirability values of both approaches are

j Criterionj d̄(j) P̂ (d(j) = 0) x̃0.05,d(j) x̃0.25,d(j) x̃0.50,d(j) x̃0.75,d(j) x̃0.95,d(j)
1 propCG 0.512 0.000 0.240 0.400 0.480 0.640 0.840
2 αCB 0.990 0.000 0.957 1.000 1.000 1.000 1.000
3 1− βCB 0.825 0.003 0.450 0.728 0.874 1.000 1.000
4 RS 0.728 0.003 0.565 0.661 0.731 0.804 0.896

Table (5.7): Summary of the desirability scores derived by the sequence-
based approach with the standard setting under EBC(2/3) for N = 50.
The results are based on 100 000 simulated randomization sequences.
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propCG d(propCG) ᾱCB d(ᾱCB) 1− β̄CB d(1− β̄CB) d̄geo(AV)
0.622 0.513 0.043 1.00 0.772 0.861 0.761

Table (5.8): Desirability of the average behavior of EBC(2/3) in case of
N = 50. The scores propCG, ᾱCB, and 1− β̄CB are derived in Table A.5
in the appendix.

very close to each other. Thus, both derived desirability scores lead to the
conclusion that EBC(2/3) for N = 50 is a good randomization procedure
with respect to the investigated criteria.

Desirability of EBC(2/3) for N = 200

As in the previous section, the desirability functions are set to the values
defined in the standard setting presented in Table 5.2. The desirability
functions are directly applied on the realizations of the criteria conditioned
on the randomization sequences from the simulation study. The realizations
of the criteria from the simulation study are summarized in Table A.6 in
the appendix. Table 5.9 shows a summary of the derived desirability scores
by the sequence-based approach for EBC(2/3) and N = 200. In general,
Table 5.9 is very similar to Table 5.7. In particular, the proportion of
undesired randomization sequences under EBC(2/3) for N = 200 is zero.
The desirability scores of the average values of the three assessed criteria
under EBC(2/3) for N = 200 are presented in Table 5.10. Both the average
desirability of the summarized desirability scores shown in Table 5.9 and
the summarized desirability score of the criteria’s average values derived in
Table 5.10 are equal to 0.76. Thus, both the sequence-based and the average-
based approach lead to the conclusion that EBC(2/3) is a good randomization
procedure with respect to chronological as well as selection bias.

j Criterion d̄(j) P̂ (d(j) = 0) x̃0.05,d(j) x̃0.25,d(j) x̃0.50,d(j) x̃0.75,d(j) x̃0.95,d(j)
1 propCG 0.504 0.000 0.370 0.440 0.500 0.560 0.650
2 αCB 1.000 0.000 1.000 1.000 1.000 1.000 1.000
3 1− βCB 0.870 0.000 0.677 0.811 0.883 0.952 1.000
4 RS 0.755 0.000 0.672 0.719 0.754 0.790 0.843

Table (5.9): Summary of the desirability scores derived by the sequence-
based approach with the standard setting under EBC(2/3) for N = 200.
The results are based on 100 000 simulated randomization sequences.
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propCG propCG ᾱCB d(ᾱCB) 1− β̄CB d(1− β̄CB) d̄geo(AV)
0.624 0.504 0.042 1.00 0.776 0.879 0.762

Table (5.10): Desirability of the average behavior of EBC(2/3) in case
of N = 200. The scores propCG, ᾱCB, and 1 − β̄CB are derived in
Table A.6 in the appendix.

5.4 Sensitivity analysis in a nutshell

The presented sensitivity analysis has shown that the desirability scores of
EBC(2/3) are strongly dependent on the specification limits and the used
weights of the desirability functions. Furthermore, the influence of the weights
for the geometric mean, which is used for summarizing the desirability scores
to a unified score, and the sample size N were examined. For EBC(2/3)
the specification limits are the most sensitive parameter with respect to
the desirability scores derived by both the sequence-based and the average-
based approach. The probability of generating an undesired randomization
sequence is solely dependent on the setting of the specification limit. The
standard setting presented in Table 5.2 is a robust setting for meaningful
desirability scores under EBC(2/3) for all sample sizes. The standard setting
neither weights standardized deviations from the corresponding target value
of a criterion to hard nor to soft. So the standard setting can be used for
both the sequence-based and the average-based approach.
In the following chapter several randomization procedures will be compared
based on the desirability functions given in the standard setting (see Table 5.2)
at the beginning of this chapter. For EBC(2/3) the derived desirability
scores of the two approaches in this chapter are very close to each other
in all investigated scenarios. In the next chapter the desirability of other
randomization procedures for both approaches (the sequence-based and the
average-based approach) is investigated.





Chapter 6

Assessment of randomization
procedures

As pointed out at the beginning of Chapter 4, in the literature, there is no
advice for the choice of a randomization procedure in the presence of both
selection and chronological bias given. Even the ICH E9 (1998) is contra-
dictory in itself. In order to prevent chronological bias it is recommended
to choose small block lengths under the usage of the Permuted Block Ran-
domization, whereas greater (random) block lengths should be preferred to
prevent selection bias. The situation when both selection and chronological
bias are present remains unclear. In this chapter, several settings of different
randomization procedures are assessed when both selection and chronological
bias are present. Selection bias is measured by the expected proportion of
correct guesses and chronological bias is assessed by the distorted type-I-
error probability and power of Student’s t-test in the situation of a linear
time trend. On the basis of these three criteria several settings of different
randomization procedures are assessed for the sample sizes N ∈ {12, 50, 200}.
Both the sequence-based approach and the average-based approach are in-
vestigated and the results of both approaches are compared. The chapter
closes with a general conclusion of the derived results.
In the previous chapter a sensitivity analysis of the desirability index under
EBC(2/3) was conducted. In the sensitivity analysis the standard setting
from Table 5.2 was investigated. This setting was shown to be a robust
setting for meaningful desirability scores under EBC(2/3). In this chapter,
randomization procedures are assessed in the presence of selection as well
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j Criterionj TVj SLj blj/brj ωj
1 propCG 0.50 0.75 1 1/2
2 αCB 0.05 0.10 1 1/4
3 1− βCB 0.80 0.60 1 1/4

Table (6.1): Setting of the desirability functions and the weights ωj
for the comparison of the randomization procedures for the investigated
samples sizes N ∈ {12, 50, 200}.

as chronological bias. In the following assessment it is assumed that both
objectives (selection and chronological bias) are of equal importance. Thus,
half of the weight ωj is put on each objective. The investigated selection bias
is measured on the basis of the expected proportion of correct guesses. Hence,
the corresponding weight ωj for this criterion is set to 1/2. Chronological bias
is assessed by the distorted test decision conducting a two-sided Student’s
t-test with level α = 0.05 without adjusting for a linear time trend in the
analysis. Therefore, both the distorted type-I-error probability αCB in the
situation of H0 : θ1 = 0 (see Model (2.27)) and the distorted power 1− βCB

in the situation of H1 : θ1 6= 0 are assessed in the presence of a linear time
trend with the strength ϑ = 1 (see Equation (2.25)). The weights for both
of these two criteria are set to 1/4, so that the sum of all three weights is
one. Table 6.1 summarizes the choice of the parameters for the desirability
functions and the weights that are used for the following assessment of the
randomization procedures. The upper/lower specification limits and weights
bl/br of the desirability functions are set according to the standard setting,
because in the sensitivity analysis it was shown that the standard setting is
reliable for all investigated sample sizes N ∈ {12, 50, 200}. Below, several
settings of different randomization procedures for the sample size N = 12
are investigated with respect to their susceptibility to both selection and
chronological bias.

6.1 Investigation of the sample size N = 12

Table 6.2 shows a detailed overview of the assessed randomization proce-
dures and their parameters for N = 12. For all investigated randomization
procedures up to the Randomized Permuted Block Randomization the full
distribution of possible randomization sequences with their corresponding
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Design d̄geo(AV) d̄(RS)
(sd)

P (d(RS) = 0) ᾱCB
(sd)

1− β̄CB
(sd)

propCG
(sd)

BSD(2) 0.7244 0.6704
(0.185)

0.0195 0.0462
(0.006)

0.7618
(0.061)

0.6042
(0.063)

BSD(3) 0.8121 0.7287
(0.211)

0.0291 0.0485
(0.009)

0.7585
(0.073)

0.5648
(0.071)

BSD(4) 0.8653 0.7159
(0.241)

0.0527 0.0501
(0.011)

0.7476
(0.083)

0.5319
(0.093)

CR 0.8890 0.6503
(0.302)

0.1331 0.0500
(0.011)

0.7250
(0.106)

0.5000
(0.127)

EBC(2/3) 0.6970 0.5673
(0.266)

0.1167 0.0473
(0.009)

0.7563
(0.072)

0.6126
(0.096)

PBR(4) 0.3919 0.3199
(0.222)

0.2963 0.0425
(0.001)

0.7699
(0.029)

0.7083
(0.034)

PBR(6) 0.4952 0.4338
(0.218)

0.1600 0.0437
(0.003)

0.7692
(0.042)

0.6833
(0.044)

PBR(12)\
RAR

0.6237 0.5199
(0.211)

0.0942 0.0500
(0.012)

0.7654
(0.079)

0.6430
(0.058)

RPBR(6)∗ 0.4573 0.3699
(0.247)

0.2666 0.0437
(0.003)

0.7669
(0.042)

0.6928
(0.048)

RPBR(8)∗ 0.5268 0.4426
(0.248)

0.1871 0.0446
(0.005)

0.7657
(0.050)

0.6738
(0.057)

RPBR(12)∗ 0.5996 0.5092
(0.24)

0.1256 0.0466
(0.008)

0.7636
(0.063)

0.6506
(0.065)

TBD 0.6654 0.5029
(0.252)

0.1548 0.0594
(0.020)

0.7603
(0.111)

0.6128
(0.058)

Table (6.2): Summary of the behavior of the investigated randomization
procedures for N = 12. The whole reference set of the presented
randomization procedures is used for the assessment.

probability of appearance is evaluated. For Randomized Permuted Block
Randomization 100 000 randomization sequences are generated at random
with the R package randomizeR (Schindler et al., 2015). The last three
columns of Table 6.2 show the expected values of the investigated criteria
and their standard deviation dependent on the randomization procedure. For
the average-based approach these three values are mapped with desirability
functions to the interval [0, 1]. Afterwards, the three desirability scores of
the three expected values of the criteria are summarized with the weighted
geometric mean. The desirability functions and weights are set according to
Table 6.1. The summarized desirability score of the average-based approach
d̄geo(AV) is provided in the second column of Table 6.2. A detailed overview
of the desirability values of the expected values of the criteria is shown in
Table A.7 in the appendix. The column of the d̄(RS) values in Table 6.2
∗Values are based on 100 000 simulated randomization sequences.
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represents the average desirability of the summarized desirability scores of
the individual randomization sequences (desirability of the sequence-based
approach). For that, the summarized desirability scores of the individual
randomization sequences are weighted with their corresponding probability
of appearance. In brackets the standard deviation (see Equation (5.2)) of
the desirability values attained by the individual randomization sequences is
given. The probability of generating an undesired randomization sequence
(i.e. a randomization sequence with a d̄geo(ti) value of zero) is shown in the
fourth column of Table 6.2.
The results presented in Table 6.2 are used for the assessment of the ran-
domization procedures. First, the expected or average values of the three
criteria of the investigated randomization procedures are assessed (average-
based approach). For Complete Randomization the expected proportion of
correct guesses is 0.5. For all other randomization procedures this average
value is inflated. Under the assumption of a linear time trend with strength
ϑ = 1, the Random Allocation Rule (PBR(12)), BSD(4), and Complete
Randomization preserve the type-I-error probability of Student’s t-test (size
of the test is 0.05). For all other investigated randomization procedures
up to the Truncated Binomial Design the type-I-error probability in case
of the assumed linear time trend is deflated. For Complete Randomization
the expected power in the presence of the assumed linear time trend is the
lowest. PBR(4), which is the most susceptible investigated randomization
procedure to the convergence strategy, attains the greatest value of the
power in case of the assumed linear time trend. For the Big Stick Design
and the (Randomized) Permuted Block Randomization the following rule
holds: The greater the maximal tolerated imbalance/(maximal possible)
block length is, the lower the average of the expected proportion of correct
guesses, the lower the average of the power in case of the assumed linear
time trend, and the lower the deflation of the average of the type-I-error
probability in case of the assumed linear time trend become. That means
the greater the restrictions on the randomization process are, the greater the
average of the expected proportion of correct guesses, the lower the average
of the type-I-error probability in case of the assumed linear time trend, and
the greater the average of the power in case of the assumed linear time
trend become. Due to the fact that Complete Randomization maintains the
type-I-error probability in average and has in expectation a proportion of 0.5
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correct guesses, it is the most desired randomization procedure for N = 12.
The desirability scores for both the average of the type-I-error probability in
case of the assumed linear time trend and the average proportion of correct
guesses for Complete Randomization are one (see Table A.7 in the appendix).
In general, the desirability scores of the average scores lead to the conclusion
that the smaller the restrictions on the randomization procedure are, the
greater the desirability of the randomization procedure in the investigated
setting becomes. Small (random) block lengths seem to be the greatest
restriction on the randomization process and a boundary for the maximal
tolerated imbalance seems to be the smallest restriction. Particularly, the
class of the Big Stick Design has better properties than the investigated
EBC(2/3) and the Truncated Binomial Design.
The results of the assessment of the randomization procedures on the basis
of the sequence-based approach differ a bit from the results derived on the
basis of the average-based approach. First, the column of the probability of
generating an undesired randomization sequence is considered. Although
PBR(4) has the greatest average value of the power in case of the assumed
linear time trend, more than 30% of its generated randomization sequences
are undesired. Table A.7 in the appendix shows that for PBR(4) all of
these undesired randomization sequences are caused by the criterion of the
expected proportion of correct guesses. The lowest probability of generating
an undesired randomization sequence has BSD(2). The greater the (maximal
possible) block length of the (Randomized) Permuted Block Randomization is,
the lower the probability of generating an undesired randomization sequence
becomes. The probability of generating an undesired randomization sequence
using Complete Randomization is greater than 13%. Among the assessed
randomization procedures in Table 6.2 all investigated Big Stick Designs,
EBC(2/3), PBR(12), and RPBR(12) have less probability of generating an
undesired randomization sequence than Complete Randomization. However,
the average desirability of the summarized desirability scores of the individ-
ual randomization sequences under Complete Randomization is the fourth
highest of the assessed randomization procedures. Solely the investigated
Big Stick Designs with MTIs of two, three, and four have greater average
desirability scores of the summarized desirability scores of the individual
randomization sequences than Complete Randomization. EBC(2/3) performs
better than the investigated settings of the (Randomized) Permuted Block
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Randomization and the Truncated Binomial Design. Altogether, in the class
of the (Randomized) Permuted Block Randomization the Permuted Block
Randomization with only one block (Random Allocation Rule/PBR(12))
seems to handle the investigated criteria the best. The properties of the
Random Allocation Rule are better than the properties of the Truncated
Binomial Design, too.
Summarizing the results for N = 12 the class of the Big Stick Design and
Complete Randomization have the best properties. Complete Randomization
maintains two of the three target values of the criteria. However, Table 6.2
shows that the variance of the three criteria using Complete Randomization
is the greatest of all investigated randomization procedures. Dealing with
the parameter of the maximal tolerated imbalance is a good approach to
reduce the risk of realizing undesired randomization sequences. The greater
the parameter of the MTI is, the lower the expected proportion of correct
guesses and the lower the power in case of the investigated linear time trend
become. If the expected proportion of correct guesses is the main criterion
on the randomization process, greater values of the MTI should be chosen.
However, if the power in case of a linear time trend is the main criterion
smaller values of the MTI should be chosen. The type-I-error probability in
case of the assumed linear time trend is maintained or deflated on average
for all investigated Big Stick Designs.

6.2 Investigation of the sample size N = 50

The performance of several randomization procedures for N = 50 is depicted
in Table 6.3. In comparison to the situation for N = 12, some additional
settings of the randomization procedures are investigated. The performance
of the randomization procedures is quite similar to the one for N = 12. The
presented results in the table are based on 100 000 simulated randomization
sequences generated for each randomization procedure with the randomizeR

package (Schindler et al., 2015). The average values of the criteria of the
randomization procedures are assessed with the same desirability functions
used for N = 12 (see Table 6.1). The summarized desirability of the criteria’s
average values of Complete Randomization is 0.9438. For Complete Ran-
domization the average values of both the type-I-error probability in case of
the assumed linear time trend and the expected proportion of correct guesses
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Design d̄geo(AV) d̄(RS)
(sd)

P̂ (d(RS) = 0) ᾱCB
(sd)

1− β̄CB
(sd)

propCG
(sd)

BSD(2) 0.6965 0.6875
(0.075)

<0.0001 0.0425
(0.001)

0.7741
(0.031)

0.6200
(0.026)

BSD(3) 0.7976 0.7828
(0.084)

<0.0001 0.0433
(0.003)

0.7730
(0.041)

0.5790
(0.032)

BSD(4) 0.8485 0.8146
(0.113)

0.0024 0.0454
(0.005)

0.7701
(0.059)

0.5548
(0.036)

BSD(5) 0.8739 0.8220
(0.142)

0.0092 0.0468
(0.007)

0.7688
(0.068)

0.5422
(0.039)

BSD(6) 0.8933 0.8163
(0.178)

0.0226 0.0484
(0.009)

0.7663
(0.077)

0.5312
(0.043)

CR 0.9438 0.7984
(0.228)

0.0515 0.0499
(0.012)

0.7587
(0.087)

0.4999
(0.067)

EBC(2/3) 0.6899 0.6611
(0.125)

0.0034 0.044
(0.005)

0.7721
(0.048)

0.6217
(0.045)

PBR(4) 0.4182 0.4060
(0.090)

0.0050 0.042
(0.001)

0.7746
(0.024)

0.7032
(0.019)

PBR(6) 0.5191 0.5084
(0.088)

0.0004 0.0422
(0.001)

0.7745
(0.027)

0.6779
(0.023)

PBR(8) 0.5767 0.5660
(0.088)

0.0001 0.0424
(0.001)

0.7741
(0.030)

0.6609
(0.026)

PBR(50)\
RAR

0.7903 0.7058
(0.182)

0.0408 0.0499
(0.012)

0.7672
(0.084)

0.5792
(0.037)

RPBR(6) 0.4315 0.4197
(0.094)

0.0046 0.0418
(0.001)

0.7749
(0.019)

0.7002
(0.020)

RPBR(8) 0.4937 0.4826
(0.094)

0.0011 0.0419
(0.001)

0.7749
(0.022)

0.6849
(0.024)

RPBR(10) 0.5378 0.5266
(0.094)

0.0005 0.0421
(0.001)

0.7744
(0.025)

0.6726
(0.026)

RPBR(12) 0.5719 0.5602
(0.095)

0.0001 0.0423
(0.001)

0.7743
(0.028)

0.6624
(0.028)

TBD 0.7437 0.5740
(0.327)

0.2216 0.0667
(0.033)

0.7529
(0.139)

0.5563
(0.036)

Table (6.3): Summary of the behavior of the investigated randomization
procedures for N = 50. For each presented randomization procedure
100 000 randomization sequences are generated for the assessment.

correspond nearly to their according target values of the used desirability
functions. The greater the parameter of the MTI of the investigated Big
Stick Design is, the greater the summarized desirability value of the criteria’s
average values becomes. The summarized desirability of the criteria’s average
values for the Truncated Binomial Design is greater than for EBC(2/3). The
Random Allocation Rule has a summarized desirability value of the criteria’s
average values of greater than 0.75. All other summarized desirability val-
ues of the average values of the criteria under the (Randomized) Permuted
Block Randomization are lower than 0.6. The greater the (possible) block
length of the (Randomized) Permuted Block Randomization is, the greater
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the summarized desirability values of the criteria’s average values become.
A detailed overview of the desirability values of the three criteria of the
investigated randomization procedures is given in Table A.8 in the appendix.
For all randomization procedures up to the Truncated Binomial Design the
desirability score of the average of the type-I-error probability in case of the
assumed linear time trend is one. All average values for the power in case
of the assumed linear time trend are nearly on the same level in Table 6.3.
The lower specification limit of the desirability function for the power in
case of the assumed linear time trend is set to 0.6 and the target value is set
to 0.8, thus the desirability function is not sensitive in detecting differences
in values around 0.77 ± 0.01. Finally, the summarized desirability value
of the criteria’s average values is mainly influenced by the desirability of
the average value of the expected proportion of correct guesses. Complete
Randomization maintains the target value 0.5, which is used for assessing the
expected proportion of correct guesses. Hence, for Complete Randomization
the desirability of this criterion is one. In general, the desirability scores
for the average value of both the type-I-error probability and the power in
case of the assumed linear time trend of the randomization procedures do
not distinguish a lot. In this way, Complete Randomization – considering
the average-based approach – is the most recommendable randomization
procedure.
The probability of generating an undesired randomization sequence sheds
light on the distribution of the criteria. For Complete Randomization the
probability of generating an undesired randomization sequence is greater
than 5%. Only for the Truncated Binomial Design this value is greater with
22.16%. For all other investigated randomization procedures the probability
of generating an undesired randomization sequence is less than 4.1%. BSD(5)
has the greatest average desirability score of the summarized desirability
scores of the individual randomization sequences. The attained value of 0.822
is almost on the same level than for the Big Stick Design with MTIs of three,
four, and six and for Complete Randomization. The best randomization
procedure of the class of the (Randomized) Permuted Block Randomization
is again the Random Allocation Rule, which has nearly the same average
desirability score of the summarized desirability scores of the individual
randomization sequences than EBC(2/3). The Truncated Binomial Design
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attains an average desirability score of the summarized desirability scores of
the individual randomization sequences of 0.574 and performs adequately.
Finally, it should be pointed out that the derived probability of generating
an undesired randomization sequence under the Random Allocation Rule
presented in Table 6.3 coincides with the asymptotical results derived in
Section 3.3. Table 3.9 shows that 99% of the generated randomization
sequences under the Random Allocation Rule attain asymptotically a type-
I-error probability in case of the assumed linear time trend smaller than
10.06%. Thus, defining a Derringer-Suich desirability function with an
upper specification limit of 10% for the type-I-error probability in case
of the assumed linear time trend would lead to nearly 1% randomization
sequences with a desirability score of zero. The simulated value of generating
an undesired randomization sequence under the Random Allocation Rule
corresponds to 0.92% (see Table A.8 in the appendix). Thus the asymptotical
results under the Random Allocation Rule coincide with the simulated results
already for N = 50. Furthermore, Table 3.9 shows that 95% randomization
sequences under the Random Allocation Rule attain asymptotically a power
of more than 61.34% in case of a linear time trend with strength ϑ = 1. This
value is close to the used specification limit 0.6 for the desirability function
of the power in case of the linear time trend. In the simulation study, which
is presented in Table A.8 in the appendix, the Random Allocation Rule has
3.65% undesired randomization sequences concerning the power in case of
the assumed linear time trend. The asymptotical results coincide with the
simulated results.

6.3 Investigation of the sample size N = 200

The performance of several randomization procedures for N = 200 is shown
in Table 6.4. As for N = 50 a simulation study of 100 000 randomization
sequences for each randomization procedure is conducted. Considering
the average-based approach, again Complete Randomization is the best
randomization procedure. In general, the performance of all investigated
randomization procedures with respect to the criteria αCB and 1− βCB is
nearly the same as for the sample size N = 50. Table A.9 in the appendix
shows that
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Design d̄geo(AV) d̄(RS)
(sd)

P̂ (d(RS) = 0) ᾱCB
(sd)

1− β̄CB
(sd)

propCG
(sd)

BSD(2) 0.6884 0.6869
(0.038)

<0.0001 0.0416
(<0.001)

0.7763
(0.015)

0.6238
(0.013)

BSD(3) 0.7936 0.7913
(0.041)

<0.0001 0.0417
(<0.001)

0.7761
(0.018)

0.5822
(0.015)

BSD(4) 0.8423 0.8364
(0.048)

<0.0001 0.0422
(0.001)

0.7755
(0.028)

0.5607
(0.017)

BSD(5) 0.8692 0.8601
(0.053)

<0.0001 0.0427
(0.002)

0.7749
(0.034)

0.5480
(0.018)

BSD(6) 0.8871 0.8721
(0.063)

<0.0001 0.0435
(0.003)

0.7739
(0.043)

0.5391
(0.019)

CR 0.9531 0.8367
(0.221)

0.0464 0.0501
(0.012)

0.7653
(0.086)

0.5000
(0.034)

EBC(2/3) 0.6871 0.6815
(0.062)

<0.0001 0.0420
(0.001)

0.7758
(0.024)

0.6241
(0.022)

PBR(4) 0.3956 0.3935
(0.040)

<0.0001 0.0414
(<0.001)

0.7765
(0.002)

0.7084
(0.008)

PBR(6) 0.5053 0.5033
(0.042)

<0.0001 0.0416
(<0.001)

0.7763
(0.013)

0.6820
(0.011)

PBR(8) 0.5614 0.5598
(0.042)

<0.0001 0.0414
(<0.001)

0.7765
(0.004)

0.6661
(0.012)

PBR(200)\
RAR

0.8729 0.7875
(0.197)

0.0426 0.0500
(0.012)

0.7676
(0.085)

0.5419
(0.021)

RPBR(6) 0.4240 0.4216
(0.044)

<0.0001 0.0414
(<0.001)

0.7764
(0.009)

0.7021
(0.010)

RPBR(8) 0.4855 0.4833
(0.045)

<0.0001 0.0415
(<0.001)

0.7764
(0.011)

0.6872
(0.011)

RPBR(12) 0.5626 0.5603
(0.046)

<0.0001 0.0415
(<0.001)

0.7763
(0.013)

0.6657
(0.013)

TBD 0.7606 0.5982
(0.372)

0.2576 0.0717
(0.042)

0.7504
(0.153)

0.5282
(0.020)

Table (6.4): Summary of the behavior of the investigated randomization
procedures for N = 200. For each presented randomization procedure
100 000 randomization sequences are generated for the assessment.

the main difference between the randomization procedures is caused by
different average values of the expected proportion of correct guesses. With
the exception of the Truncated Binomial Design all presented randomization
procedures maintain or reduce the average type-I-error probability in the
presence of the investigated linear time trend. The Truncated Binomial
Design attains with an average power of about 75% the lowest power in
the presence of the assumed linear time trend of all assessed randomization
procedures. All other presented randomization procedures have an average
power between 76.5% and 77.7%. The summarized desirability of the criteria’s
average values under the Random Allocation Rule is 0.8729. This value is close
to the corresponding value for BSD(6). All other investigated settings of the
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(Randomized) Permuted Block Randomization have a summarized desirability
of the criteria’s average values which is lower than 0.57. The summarized
desirability of the criteria’s average values under the Truncated Binomial
Design is greater with 0.76 than the corresponding value for EBC(2/3) with
0.69.
Altogether, for N = 200 there are only three investigated randomization
procedures left, which have a measureable proportion of undesired random-
ization sequences. The probability of generating an undesired randomization
sequence using the Truncated Binomial Design is the greatest with more than
25%. For Complete Randomization and the Random Allocation Rule the
probability of generating an undesired randomization sequence is less than
5%. Thus, for these randomization procedures the probability of generating
an undesired randomization sequence is nearly the same as for N = 50. The
greatest average desirability score of the summarized desirability scores of
the individual randomization sequences of all investigated randomization
procedures has BSD(6) with 0.8721. Excluding the Random Allocation Rule,
all investigated settings of the (Randomized) Permuted Block Randomization
have an average desirability score of the summarized desirability scores of
the individual randomization sequences less than 0.57. Considering the
sequence-based approach, it turns out that EBC(2/3) is better than the Trun-
cated Binomial Design. The average desirability score of the summarized
desirability scores of the individual randomization sequences of the Trun-
cated Binomial Design is greater than the one for EBC(2/3). The average
desirability score of the summarized desirability scores of the individual
randomization sequences value for Complete Randomization is 0.8367. This
score is at the same level as the corresponding value for BSD(4).
For the Random Allocation Rule the proportions of undesired randomization
sequences in the simulation study with respect to both the type-I-error prob-
ability and the power in case of the assumed linear time trend are depicted in
Table A.9 in the appendix. These simulated values coincide with the derived
asymptotical 99% quantile or alternatively 5% quantile in Table 3.9. As
already pointed out in Section 3.3 the asymptotical distributions of both the
type-I-error probability and the power in case of a linear time trend under
the Random Allocation Rule converge against constant distributions. Conse-
quently, under the Random Allocation Rule the proportion of randomization
sequences, which attain greater/lower values for both the type-I-error proba-
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bility and the power in case of a linear time trend than a given specification
limit, is constant. Finally, it seems that both rejection probabilities (αCB

and 1− βCB) under Complete Randomization converge against a constant
value as it is the case for the Random Allocation Rule (see Tables A.8 and
A.9). For all other investigated randomization procedures in Table 6.4 this
property does not hold.

6.4 Summary and conclusion

Aggregating the results for all sample sizes the class of the Big Stick Design
has the best performance under the used settings of the desirability functions.
In general, the class of the Big Stick Design with moderate values of the
MTI has a low probability of generating undesired randomization sequences
and attains high average desirability values of the summarized desirability
scores of the individual randomization sequences. The greater the MTI
is, the lower the expected proportion of correct guesses and the lower the
average value of the power in the presence of the investigated linear time
trend become. Due to the fact that the weight for the criterion of the
expected proportion of correct guesses is with 1/2 the greatest, the summarized
desirability of the criteria’s average values is very sensitive for the criterion
of the expected proportion of correct guesses. Complete Randomization
corresponds to the randomization procedure described by BSD(N). Under
Complete Randomization the target values of the expected proportion of
correct guesses and of the type-I-error probability in case of the investigated
linear time trend are maintained. However, the variances of these criteria
(shown in brackets in Tables 6.2, 6.3, and 6.4), which are not assessed, are the
greatest ones of the investigated randomization procedures. Furthermore, the
probability of generating undesired randomization sequences is greater for
Complete Randomization than for any Big Stick Design with a moderate value
of the MTI. Although Complete Randomization has the greatest summarized
desirability values of the criteria’s average values for all investigated sample
sizes, the class of the Big Stick Design with moderate values of the MTI is
more recommendable. This is reflected by the fact that on the one hand the
class of the Big Stick Design with moderate values of the MTI has a lower
or even zero probability of generating undesired randomization sequences
and on the other hand the Big Stick Design attains partly greater average
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desirability values of the summarized desirability scores of the individual
randomization sequences than Complete Randomization.
For the class of the widespread used (Randomized) Permuted Block Random-
ization it holds that the greater the (possible) block length is, the greater the
derived desirability scores for both the average-based and the sequence-based
approach becomes. Thus, the Random Allocation Rule (PBR(N)) performs
the best of this class. Due to the fact that the susceptibility of the Ran-
dom Allocation to the convergence strategy decreases as N increases, the
desirability of the Random Allocation Rule increases in N - the distributions
of both rejection probabilites (αCB and 1− βCB) converge against constant
distributions (see Section 3.3). For N = 12 the Random Allocation Rule is
less desired than EBC(2/3) and for N = 200 the Random Allocation Rule
performs better than EBC(2/3). However, under the Random Allocation Rule
there is a non-negligible probability of generating an undesired randomization
sequence. If N increases, the Random Allocation Rule has in comparison
to the Truncated Binomial Design a worse performance of the expected
proportion of correct guesses and a better performance with respect to crite-
ria concerning the rejection probability in case of the assumed linear time
trend. Overall, the Truncated Binomial Design performs somewhere between
EBC(2/3) and the Random Allocation Rule. Nevertheless, the Truncated
Binomial Design should be used carefully in situations of a linear time trend,
due to its clearly elevated type-I-error probability in case of the investigated
linear time trend.





Chapter 7

Discussion

In the beginning of this thesis a review on the work on randomization
procedures in the literature is given. Inter alia the notation and terminology is
introduced and the later investigated randomization procedures are presented.
Furthermore, the evaluation and assumptions of an (un)biased randomized
clinical trial are described. For that, the population models affected by
selection as well as chronological bias are introduced. One criterion of
measuring selection and chronological bias is the influence of the according
bias on the distorted test decision. This type of assessment is recommended
in the ICH E9 (1998) guideline.
In Chapter 3 a two-armed clinical trial is investigated which is planned to be
evaluated with the two sample Student’s t-test to detect a difference between
the effects of the given treatments. For the assessment of chronological
bias the influence of a time trend on the test statistic of Student’s t-test
is derived. The analysis is assumed to be conducted unadjustedly for this
time trend. It is shown that in the presence of a time trend and a possible
difference between the effects of the treatments the test statistic of Student’s
t-test is doubly-noncentral t-distributed. Based on this result the rejection
probability of Student’s t-test in the presence of a (linear) time trend and
a difference between the effects of the two treatments is computed. It is
assumed that all randomization sequences, which are generated by a given
randomization procedure, are affected in the same manner by a (linear) time
trend. Furthermore, both scenarios with and without a difference between the
effects of the two treatments are investigated. It is shown that the rejection
probability of the null hypothesis of Student’s t-test in the situation of a time
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trend is strongly dependent on the realized randomization sequence. Thus, an
expected rejection probability for a fixed randomization procedure is derived
by weighting the rejection probabilities of the individual randomization
sequences with their probability of appearance. Additional to the rejection
probability of a randomization procedure, the standard deviation and even a
density function of the rejection probabilities is derived. Finally, the results
for chronological bias are transferred on the model assumed for selection bias.
At the end of Chapter 3, the central limit theorem for samples from a finite
population according to Hajek (1960) is applied on occurring chronological
bias under the Random Allocation Rule. The asymptotical behavior of the
rejection probability of Student’s t-test under the Random Allocation Rule
is derived for a linear time trend and a step trend.
Based on the theoretical results derived in Chapter 3 the aim of this thesis
is to assess several settings of restricted randomization procedures with
respect to their susceptibility to selection as well as chronological bias. Thus,
in Chapter 4 a desirability index is introduced, which is applicable on all
imaginable criteria measured on randomization sequences or randomization
procedures. A generalization of the presented framework is depicted in
Figure 7.1. At the top of the figure the clinical study with its corresponding
objectives on the randomization process is depicted. Afterwards, the criteria,
which are used for measuring the objectives, and suitable desirability functions
have to be selected. Finally, a unified assessment score can be used for
the comparison of different randomization procedures. In this thesis the
investigated objectives on the randomization process are the susceptibility
to selection as well as chronological bias. The measured criteria are the
expected proportion of correct guesses, and the biased rejection probabilities
under both the null hypothesis and the alternative hypothesis in case of
a small (linear) time trend. The desirability functions are selected from
the class of the desirability functions introduced by Derringer and Suich
(1980). Furthermore, two approaches of applying desirability functions on the
criteria are contrasted - the sequence-based approach and the average-based
approach. In the sequence-based approach the criteria are considered to be
problems handled conditioned on the individual randomization sequences and
in the average-based approach the average behavior of a criterion conditioned
on a randomization procedure is assessed. In both approaches the derived
values for the criteria are evaluated with desirability functions. The derived
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Figure (7.1): Generalization of the presented framework for the assess-
ment of randomization procedures dependent on the clinical study and
its objectives on the randomization process.

desirability scores for the criteria are summarized with the geometric mean,
which serves as linked optimization criterion. In this way a unified assessment
score is derived. This assessment score is used for the selection of an
appropriate randomization procedure dependent on the objectives of a clinical
study. In Chapter 5 a sensitivity analysis of both approaches is conducted for
EBC(2/3). Therefore, the sample sizes N ∈ {4, 12, 50, 200} are investigated.
The assessment of several settings of different randomization procedures with
respect to their susceptibility to selection as well as chronological bias is
carried out in Chapter 6. Both the average-based approach and the sequence-
based approach are used to assess randomization procedure. Therefore, the
derived settings of the desirability functions in the sensitivity analysis are
taken into account. Due to the low probability of generating undesired
randomization sequences (at least one desirability score of one of the criteria
conditioned on a randomization sequence corresponds to zero) the Big Stick
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Design is a highly recommendable randomization procedure. Furthermore,
the Big Stick Design with its parameter MTI is easily adjustable for the
different sample sizes. The greater the sample size becomes, the greater the
parameter of the MTI should be selected. When summarizing the derived
desirability scores of the criteria with the geometric mean to one unified
score, half of the weight is put on the expected proportion of correct guesses
and the other half is split equally between the type-I-error probability and
power in the presence of the assumed linear time trend.
Under Complete Randomization the allocations of the patients to the treat-
ment groups are independent. There is no increased probability for the
investigator to guess future allocations with the knowledge of past patient
allocations. The expectation of the proportion of correct guesses is 0.5.
Consequently, Complete Randomization has the best properties with respect
to the expected proportion of correct guesses. One disadvantage of using
Complete Randomization is the probability of the realization of randomiza-
tion sequences which lead to high imbalances within the numbers of patients
assigned to the two treatment groups at the end of a clinical trial. This
objective on the randomization process is not reflected enough by the derived
desirability scores. Solely, the derived value of the power in the presence of a
(linear) time trend takes this objective partially into account. Considering the
average-based approach Complete Randomization is the best randomization
procedure. However, the sequence-based approach reveals that there is a
non-negligible probability of generating an undesired randomization sequence
using Complete Randomization independent of the investigated sample sizes.
The investigated settings of the (Randomized) Permuted Block Randomiza-
tion are the most susceptible to the convergence strategy. The key property
of the Permuted Block Randomization, which is the realization of always
equally sized treatment groups at the end of a clinical trial, is not reflected
enough by the desirability scores. The class of the investigated Randomized
Permuted Block Randomization introduced in Rosenberger and Lachin (2016,
Chapter 3) does not have the property of equally sized treatment groups at
the end of a clinical trial. In general, this class has a lower expected propor-
tion of correct guesses in comparison to the Permuted Block Randomization,
but does not perform better in case of the investigated linear time trend. In
summary, the performance of the class of the (Randomized) Permuted Block
Randomization is the worst of the investigated randomization procedures.
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Solely, the Random Allocation Rule seems to have adequate properties with
respect to its susceptibility to the investigated selection and chronological
bias. The Truncated Binomial Design, which is the only randomization
procedure with an inflated type-I-error probability in case of the assumed
linear time trend, and EBC(2/3) perform worse than the class of the Big Stick
Designs and better than the investigated settings of the class of the (Ran-
domized) Permuted Block Randomization, except the Random Allocation
Rule.
It is hard to say which approach of applying desirability functions is opti-
mal. Both the sequence-based and the average-based approach have their
own advantages and disadvantages. All in all, it is permittable to use both
approaches for the assessment of randomization procedures. It should be
pointed out that the results and consequences of both approaches are dif-
ferent and should be interpreted differently. In any case, the probability of
generating an undesired randomization sequence should be an important
criterion for the assessment of randomization procedures. If for example
one half of the randomization sequences of a randomization procedure is
undesired, the randomization procedure cannot be a desired one even if the
target value is maintained. Last but not least an undesired randomization
sequence is defined by self-adjustable desirability functions. Thus, the core
for the validity of both approaches are the defined desirability functions
for the criteria. The used desirability functions according to Derringer and
Suich (1980) form only one suitable class of desirability functions. Other
forms of desirability functions like the class of desirability functions intro-
duced in Harrington Jr. (1965) are imaginable. Nevertheless, the class of the
Derringer-Suich desirability functions provide a huge flexibility to define a
suitable desirability function for any presented criterion on a randomization
sequence or a randomization procedure.
One criticism on the investigated criterion of the expected proportion of
correct guesses could be, that this criterion has no direct influence on the
the rejection probability of the test used in the analysis. Investigations
with the randomizeR package (Schindler et al., 2015) have shown that
the criterion of the expected proportion of the correct guesses is strongly
correlated with other criteria of measuring selection bias. Including the
distorted type-I-error probability researched by Tamm et al. (2012) in case
of selection bias with a strength η dependent on the planned effect size
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∆0 instead of the expected proportion of correct guesses would lead to
nearly the same recommendations as derived in Chapter 6. Furthermore, the
correct guesses are strongly dependent on the guessing strategy. For Complete
Randomization and the Big Stick Design the used convergence strategy is even
the wrong guessing strategy. However, for these randomization procedures
in this thesis as also in the literature, it is assumed that the investigator is
wrongly assuming a balanced clinical trial. Investigating the Big Stick Design
with the correct guessing strategy (guess only deterministic allocations) leads
to nearly the same recommendations as presented in Chapter 6. For Complete
Randomization even no best guessing strategy is possible - it would be the
random guess for every patient. The conclusion would be that Complete
Randomization would be even more desired than it is already in the extensive
analysis of this thesis. The presented recommendation of an appropriate
randomization procedure in this thesis in the presence of chronological bias is
strongly dependent on the assumed (small) linear time trend in the analysis.
The presented approach for measuring the influence of an unadjusted time
trend on the test decision of Student’s t-test is transferable to any imaginable
time trend or even any unobserved covariate in the presented linear model. It
is obvious, that if a stronger/smaller linear time trend is assumed to affect the
data, the upper/lower specification limits of the used desirability functions of
the according criteria should be adjusted. Further investigations concerning
a step time trend in the middle of a clinical trial instead of the linear time
trend would lead to nearly the same recommendations of the randomization
procedures as presented in this thesis. Only the scale and range of the
desirability scores would be changed. In Chapter 3 the asymptotical behavior
of Student’s t-test under the Random Allocation Rule is derived. For these
calculations no time costly simulations are necessary. Thus it is imaginable
to use the behavior of the Random Allocation Rule as benchmark for other
randomization procedures. In this way useful boundaries for the desirability
functions can be established.
Last but not least, the ICH E9 (1998) guideline suggests to incorporate
the randomization process itself in the analysis. For the Permuted Block
Randomization it is imaginable that the analysis is performed adjustedly for
the used block lengths. Tamm and Hilgers (2014) investigated such a scenario
under the presence of chronological bias and showed that incorporating the
used block length in the analysis leads to a preserved type-I-error probability.
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Unfortunately, no statement with respect to the impact on the power is given.
However, the aspect of incorporating a randomization procedure itself in the
analysis was not of major interest in this thesis.
Finally, the flexibility of the presented framework, which is shown in Fig-
ure 7.1, for the assessment of randomization procedures with the help of
desirability functions should be pointed out again. It is imaginable that
selection and chronological bias are assessed with other criteria as presented
in this thesis. Even the inclusion of further criteria is imaginable. As pointed
out above one could favor the Permuted Block Randomization due to its
good balancing behavior and punish the high possible imbalances of Com-
plete Randomization. The loss (see Atkinson, 2001) in the estimation of the
treatment difference would be an excellent criterion for the assessment of the
balancing behavior. In the R package randomizeR (Schindler et al., 2015) all
presented randomization procedures in this thesis are implemented and the
printed results in the Chapters 5 and 6 in this thesis can be repeated with
other/more criteria. Additionally, the desirability scores can be visualized in
a so called radar plot.
For all practical purposes it is recommended that before starting a clinical
trial the statistician and the physician determine together both the objectives
and its corresponding criteria for the assessment of randomization procedures.
Afterwards, they adjust on the one hand the desirability functions for the
selected criteria and on the other hand the weights for the summary of
the single desirability values with the geometric mean. In this way, several
randomization procedures are compared on the basis of the unified assessment
criterion. At the end, the randomization procedure with greatest unified
assessment score for the planned clinical trial is selected. The process of
selecting an appropriate randomization procedure should be part of the trial
and analysis plan of any planned clinical trial. On the basis of the presented
framework in this thesis a scientific choice of an appropriate randomization
procedure dependent on a clinical trial and its objectives is possible.





Appendix A

Additional derivations,
graphics, and tables

A.1 Derivations

Proposition A.1:
Under the assumption that the coin is tossed fairly in case of balance between
the two treatment groups, the relationship between the average proportion of
correct guesses under the convergence strategy introduced in Equation (2.17)
and the number of returns to origin defined in Equation (2.4) is given by:

CGRP(GCS) =
∑
t∈ΓRP

N

N∑
n=1

E
(
1{tn=GCS(n,t)}

)
pt

=
∑
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(nro(N, t)
2 + N

2 − 1{|D(N,t)|>0}
|D(N, t)| − 1

2

)
pt,

where D(N, t) according to Equation 2.3 defines the imbalance of assigned
patients to the two treatment groups.

Proof
Basis:
Without loss of generality the proposition is shown for any arbitrary fixed
t ∈ ΓN . Afterwards, the Proposition (A.1) follows directly. Below, the
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following equality is proven with mathematical induction:
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Let N = 1, thus it follows:
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Inductive step:
Let N → N + 1 and t ∈ {−1, 1}K with K ≥ N + 1, thus it follows:
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Hence, for the mathematical induction it is necessary to show:
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(A.1)



131 APPENDIX A. DERIVATIONS, GRAPHICS, AND TABLES

Now, the following three cases must be differentiated:

E
(
1{tN+1=GCS(N+1,t)

)
=


1 ⇔ tN+1 = GCS(N + 1, t) (1)

0.5 ⇔ GCS(N + 1, t) = 2B(0.5)− 1 (2)

0 ⇔ tN+1 6= GCS(N + 1, t) (3)

⇒


NE(N, t) 6= NC(N, t) ⇔ |D(N, t)| ≥ 1 (1)

NE(N, t) = NC(N, t) ⇔ |D(N, t)| = 0 (2)

NE(N, t) 6= NC(N, t) ⇔ |D(N, t)| ≥ 1 (3)

Considering the case (1) which means that the (N + 1)th patient is assigned
to the treatment group with fewer included patients before his enrollment.
Two further differentiations must be done for |D(N + 1, t)| to show the
equality in Equation (A.1) assuming case (1):

|D(N + 1, t)| > 0⇔ |D(N, t)| > 1 (1.a)

|D(N + 1, t)| = 0⇔ |D(N, t)| = 1 (1.b)

For the first case (1.a) it follows:
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For the second case (1.b) it follows:
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Considering the case (2) one further differentiation is not necessary and it
holds |D(N, t)| = 0 and |D(N+1, t)| = 1. The equality in Equation (A.1) can
be shown analogously to the case (1). Finally, the equality in Equation (A.1)
for the last case (3) must be shown. For this, it holds |D(N + 1, t)| =
|D(N, t)| + 1 and the equality in Equation (A.1) follows directly. Thus,
Equation (A.1) holds for all t ∈ ΓN and the Proposition (A.1) is shown.
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Lemma A.2:
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Lemma A.3: (Covariance under RAR)
Assuming ΓN := {−1, 1}N , the covariance of two random allocations Ti and
Tj with i 6= j and i, j ∈ {1, 2, . . . , N} under the Random Allocation Rule,
which is introduced in Section 2.2.2, is given by:

Cov(Ti, Tj) = E(Ti Tj) = −1
N − 1 . (A.2)

Proof
Under the Random Allocation Rule the expectation of any Ti with i ∈
{1, 2, . . . , N} is given by E(Ti) = 0. The expectation of Ti Tj with i, j ∈
{1, 2, . . . , N} and i 6= j can be expressed as follows:

E(Ti Tj) = P (Ti = 1|Tj = 1)P (Tj = 1) + P (Ti = −1|Tj = −1)P (Tj = −1)

− P (Ti = 1|Tj = −1)P (Tj = −1)− P (Ti = −1|Tj = 1)P (Tj = 1)

= 2P (Ti = 1|Tj = 1)P (Tj = 1)− 2P (Ti = 1|Tj = −1)P (Tj = −1) .

For the Random Allocation Rule P (Ti = 1|Tj = 1) = P (Ti = −1|Tj = −1)
holds. Below, for the Random Allocation Rule the following calculations are
carried out:

• P (Ti = 1|Tj = 1)P (Tj = 1) =
N/2− 1
N − 1 ·

1
2 = N − 2

4 (N − 1)

• P (Ti = 1|Tj = −1)P (Tj = −1) =
N/2

N − 1 ·
1
2 = N

4 (N − 1) .
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Thus, E(Ti Tj) can be written as:

E(Ti Tj) = 2
(

N − 2
4 (N − 1)

)
− 2

(
N

4 (N − 1)

)
= 2

( −2
4 (N − 1)

)
= −1
N − 1 .

For the covariance Cov(Ti, Tj) = E(Ti Tj) − E(Ti)E(Tj) with E(Ti) =
E(Tj) = 0 Equation (A.2) follows.

�

Lemma A.4: (Distribution of ε T )
Let Γ := {−1, 1} and T be a random variable which takes values in Γ with
P (T = 1) = P (T = −1) = 0.5. The random variable ε is assumed to be
standard normally distributed and is independent of T . Then, for P (T ε ≤ a)
with a ∈ R it follows:

P (T ε ≤ a) = P (ε ≤ a) .

Proof

P (T ε ≤ a) = P (T = 1)P (ε ≤ a) + P (T = −1)P (−ε ≤ a)

= 1
2 (P (ε ≤ a) + 1− P (ε > −a))

= 1
2 (P (ε ≤ a) + 1− 1 + P (ε ≤ a))

= P (ε ≤ a) .

�
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A.2 Graphics

Figure (A.1): Assessment of the desirability scores of the criteria’s
average values under EBC(2/3) for N = 12 dependent on different speci-
fication limits.
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Figure (A.2): Assessment of desirability scores of the criteria’s average
values under EBC(2/3) for N = 12 dependent on the choice of the
parameter b.
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Figure (A.3): Assessment of the summarized desirability score of the
average values under EBC(2/3) for N = 12 dependent on the weights ωj
of the three criteria.

A.3 Tables

ϑ N = 4 N = 12 N = 50 N = 200 N = 10.000
exact asymp. exact asymp. sim. asymp. sim. asymp. asymp.

0.50 0.7919 0.9999 0.7931 0.8677 0.7920 0.8077 0.7918 0.7957 0.7920
1.00 0.7680 0.9997 0.7655 0.8458 0.7671 0.7838 0.7679 0.7717 0.7680
2.00 0.6782 0.9974 0.6696 0.7598 0.6766 0.6950 0.6787 0.6832 0.6796

Table (A.1): Comparison (asymp. vs. exact/sim.) of the achieved
power under the Random Allocation Rule using Student’s t-test in case
of a linear time trend (assuming W (Y ,T ) ∼ N (0, 1)).
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q̃0.01 q̃0.05 q̃0.25 q̃0.5 q̃0.75 q̃0.95 q̃0.99
b(T ) -0.1918 -0.1356 -0.0556 0.0000 0.0556 0.1356 0.1918
δH1 2.1810 2.3797 2.6626 2.8592 3.0559 3.3388 3.5375
λ 3.7050 3.9350 4.1263 4.1650 4.1263 3.9350 3.7050

Table (A.2): Asymptotical quantiles using the Random Allocation
Rule for b(T ), δ, and λ. A linear time trend is assumed for N = 50,
ϑ = 1, and σ2 = 1 under the alternative hypothesis with ∆0 = 0.8087
and 1− β = 0.8.

Quantile N = 12 N = 50 N = 200
αCB 1− βCB αCB 1− βCB αCB 1− βCB

exact asymp. exact asymp. sim. asymp. sim. asymp. sim. asymp. sim. asymp.
q̃0.01 0.0240 0.0238 0.2888 0.2776 0.0236 0.0236 0.2199 0.2218 0.0236 0.0236 0.2161 0.2132
q̃0.05 0.0240 0.0239 0.3851 0.3779 0.0237 0.0237 0.3435 0.3464 0.0237 0.0237 0.3404 0.3418
q̃0.25 0.0262 0.0260 0.5590 0.5524 0.0259 0.0259 0.5536 0.5568 0.0260 0.0260 0.5586 0.5586
q̃0.5 0.0331 0.0340 0.6813 0.6811 0.0348 0.0343 0.6977 0.6997 0.0345 0.0344 0.7036 0.7036
q̃0.75 0.0539 0.0556 0.7933 0.7987 0.0566 0.0564 0.8206 0.8184 0.0567 0.0566 0.8228 0.8221
q̃0.95 0.1288 0.1339 0.9175 0.9215 0.1315 0.1303 0.9294 0.9298 0.1286 0.1295 0.9310 0.9312
q̃0.99 0.2074 0.2426 0.9647 0.9689 0.2229 0.2238 0.9695 0.9698 0.2209 0.2201 0.9694 0.9700

Table (A.3): Quantiles of the rejection probability under Student’s t-
test conditioned on the distribution of b(T ) using the Random Allocation
Rule in case of a linear time trend with strength ϑ = 2, σ2 = 1, α0 = 0.05,
and 1− β0 = 0.8.

Quantile N = 12 N = 50 N = 200
α 1− β α 1− β α 1− β

exact asymp. exact asymp. sim. asymp. sim. asymp. sim. asymp. sim. asymp.
q̃0.01 0.0055 0.0055 0.0413 0.0146 0.0074 0.0055 0.0103 0.0118 0.0056 0.0056 0.0142 0.0115
q̃0.05 0.0055 0.0055 0.1554 0.0571 0.0074 0.0056 0.0892 0.0533 0.0056 0.0056 0.0492 0.0532
q̃0.25 0.0055 0.0076 0.1554 0.2399 0.0074 0.0079 0.2075 0.2541 0.0075 0.0080 0.2951 0.2582
q̃0.5 0.0446 0.0165 0.4548 0.4676 0.0262 0.0178 0.6076 0.5017 0.0140 0.0182 0.5087 0.5094
q̃0.75 0.0446 0.0492 0.8304 0.7193 0.0845 0.0517 0.7969 0.7510 0.0500 0.0523 0.7206 0.7573
q̃0.95 0.3321 0.2289 0.8304 0.9495 0.2121 0.2121 0.9189 0.9521 0.2137 0.2093 0.9570 0.9528
q̃0.99 0.3321 0.5166 0.9872 0.9937 0.4157 0.4388 0.9948 0.9912 0.4117 0.4262 0.9889 0.9909

Table (A.4): Quantiles of the rejection probability under Student’s t-
test conditioned on the distribution of b(T ) using the Random Allocation
Rule in case of a step time trend with strength ϑ = 2, σ2 = 1, α0 = 0.05,
and 1− β0 = 0.8.

j Criterionj x̄j s(xj) max(xj) min(xj) x̃0.05,j x̃0.25,j x̃0.50,j x̃0.75,j x̃0.95,j
1 propCG 0.622 0.045 0.750 0.340 0.540 0.590 0.630 0.650 0.690
2 αCB 0.044 0.005 0.179 0.041 0.041 0.042 0.042 0.044 0.052
3 1− βCB 0.772 0.048 0.969 0.396 0.690 0.746 0.775 0.803 0.844

Table (A.5): Summary of the properties of the randomization sequences
generated by EBC(2/3) for N = 50. The results are based on 100 000
simulated randomization sequences.
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j Criterionj x̄j s(xj) max(xj) min(xj) x̃0.05,j x̃0.25,j x̃0.50,j x̃0.75,j x̃0.95,j
1 propCG 0.625 0.021 0.685 0.550 0.588 0.610 0.625 0.640 0.660
2 αCB 0.042 0.001 0.053 0.041 0.041 0.041 0.042 0.042 0.044
3 1− βCB 0.775 0.025 0.863 0.671 0.731 0.761 0.777 0.792 0.814

Table (A.6): Summary of the properties of the randomization sequences
generated by EBC(2/3) for N = 200. The results are based on 100 000
simulated randomization sequences.

Design d(ᾱCB) d̄(αCB)
(sd)

P (d(αCB)
= 0)

d(1− β̄CB) d̄(1− βCB)
(sd)

P (d(1−βCB)
= 0)

d(propCG) d̄(propCG)
(sd)

P (d(propCG)
= 0)

BSD(2) 1.0000 0.9763
(0.069)

0.0000 0.8092 0.7609
(0.246)

0.0039 0.5833 0.5807
(0.245)

0.0156

BSD(3) 1.0000 0.9470
(0.126)

0.0000 0.7926 0.7287
(0.284)

0.0134 0.7407 0.7209
(0.259)

0.0156

BSD(4) 0.9983 0.9202
(0.17)

0.0034 0.7379 0.6756
(0.320)

0.0354 0.8724 0.7799
(0.268)

0.0156

CR 0.9998 0.9195
(0.177)

0.0059 0.6248 0.6150
(0.355)

0.1145 1.0000 0.7941
(0.271)

0.0156

EBC(2/3) 1.0000 0.9554
(0.130)

0.0028 0.7817 0.7380
(0.279)

0.0275 0.5495 0.5161
(0.314)

0.0878

PBR(4) 1.0000 1.0000
(<0.001)

0.0000 0.8496 0.8394
(0.128)

0.0000 0.1667 0.1667
(0.136)

0.2963

PBR(6) 1.0000 0.9970
(0.018)

0.0000 0.8459 0.8193
(0.172)

0.0000 0.2667 0.2667
(0.177)

0.1600

PBR(12)\
RAR

0.9992 0.9191
(0.179)

0.0087 0.8272 0.7467
(0.290)

0.0206 0.4278 0.4278
(0.231)

0.0693

RPBR(12)∗ 1.0000 0.9655
(0.112)

0.0021 0.8181 0.7702
(0.249)

0.0107 0.3974 0.3963
(0.255)

0.1138

RPBR(6)∗ 1.0000 0.9951
(0.028)

0.0000 0.8345 0.8125
(0.182)

0.0002 0.2289 0.2289
(0.194)

0.2664

RPBR(8)∗ 1.0000 0.9885
(0.051)

0.0000 0.8285 0.7971
(0.208)

0.0027 0.3049 0.3047
(0.229)

0.1844

TBD 0.8119 0.7744
(0.316)

0.0703 0.8014 0.6799
(0.368)

0.0884 0.5488 0.5488
(0.234)

0.0312

Table (A.7): Summary of the desirability scores for all investigated
randomization procedures for N = 12. The whole reference set of the
presented randomization procedures is used for the assessment.

∗Values are based on 100 000 simulated randomization sequences.
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Design d(ᾱCB) d̄(αCB)
(sd)

P̂ (d(αCB)
= 0)

d(1− β̄CB) d̄(1− βCB)
(sd)

P̂ (d(1−βCB)
= 0)

d(propCG) d̄(propCG)
(sd)

P̂ (d(propCG)
= 0)

BSD(2) 1.0000 1.000
(<0.001)

<0.0001 0.8706 0.8542
(0.133)

<0.0001 0.5199 0.5199
(0.106)

<0.0001

BSD(3) 1.0000 0.9986
(0.01)

<0.0001 0.8649 0.8349
(0.167)

<0.0001 0.6840 0.6840
(0.126)

<0.0001

BSD(4) 1.0000 0.9833
(0.057)

<0.0001 0.8505 0.7955
(0.229)

0.0024 0.7806 0.7784
(0.141)

<0.0001

BSD(5) 1.0000 0.9670
(0.091)

<0.0001 0.8438 0.7746
(0.260)

0.0092 0.8313 0.8242
(0.145)

<0.0001

BSD(6) 1.0000 0.9457
(0.132)

0.0012 0.8317 0.7533
(0.287)

0.0219 0.8750 0.8554
(0.147)

<0.0001

CR 1.0000 0.9203
(0.183)

0.0092 0.7936 0.7218
(0.314)

0.0471 1.0000 0.8927
(0.149)

<0.0001

EBC(2/3) 1.0000 0.9898
(0.057)

0.0004 0.8605 0.8251
(0.191)

0.0032 0.5131 0.5123
(0.176)

<0.0001

PBR(4) 1.0000 1.0000
(<0.001)

<0.0001 0.8732 0.8625
(0.105)

<0.0001 0.1871 0.1871
(0.075)

0.0050

PBR(6) 1.0000 1.0000
(<0.001)

<0.0001 0.8724 0.8592
(0.118)

<0.0001 0.2885 0.2885
(0.093)

0.0004

PBR(8) 1.0000 1.0000
(<0.001)

<0.0001 0.8704 0.8555
(0.127)

<0.0001 0.3565 0.3565
(0.104)

0.0001

PBR(50)\
RAR

1.0000 0.9198
(0.183)

0.0092 0.8359 0.7504
(0.300)

0.0365 0.6831 0.6831
(0.148)

<0.0001

RPBR(6) 1.0000 1.0000
(<0.001)

<0.0001 0.8745 0.8688
(0.085)

<0.0001 0.1991 0.1991
(0.081)

0.0046

RPBR(8) 1.0000 1.0000
(0.001)

<0.0001 0.8747 0.8666
(0.099)

<0.0001 0.2606 0.2606
(0.095)

0.0011

RPBR(12) 1.0000 0.9998
(0.004)

<0.0001 0.8717 0.8591
(0.121)

<0.0001 0.3503 0.3503
(0.112)

0.0001

TBD 0.6661 0.7096
(0.370)

0.1320 0.7647 0.6614
(0.394)

0.1559 0.7749 0.7749
(0.144)

<0.0001

Table (A.8): Summary of the desirability scores for all investigated
randomization procedures for N = 50. For each presented randomization
procedure 100 000 randomization are generated for the assessment.

Design d(ᾱCB) d̄(αCB)
(sd)

P̂ (d(αCB)
= 0)

d(1− β̄CB) d̄(1− βCB)
(sd)

P̂ (d(1−βCB)
= 0)

d(propCG) d̄(propCG)
(sd)

P̂ (d(propCG)
= 0)

BSD(2) 1.0000 1.0000
(<0.001)

<0.0001 0.8814 0.8808
(0.075)

<0.0001 0.5048 0.5048
(0.051)

<0.0001

BSD(3) 1.0000 1.0000
(<0.001)

<0.0001 0.8807 0.8777
(0.088)

<0.0001 0.6711 0.6711
(0.061)

<0.0001

BSD(4) 1.0000 1.0000
(<0.001)

<0.0001 0.8775 0.8639
(0.121)

<0.0001 0.7574 0.7574
(0.068)

<0.0001

BSD(5) 1.0000 0.9999
(0.002)

<0.0001 0.8746 0.8526
(0.143)

<0.0001 0.8079 0.8078
(0.072)

<0.0001

BSD(6) 1.0000 0.9976
(0.015)

<0.0001 0.8697 0.835
(0.174)

<0.0001 0.8438 0.8437
(0.075)

<0.0001

CR 0.9986 0.9180
(0.187)

0.0100 0.8266 0.7436
(0.306)

0.0416 0.9999 0.9448
(0.078)

<0.0001

EBC(2/3) 1.0000 0.9999
(0.004)

<0.0001 0.8791 0.8702
(0.105)

<0.0001 0.5035 0.5035
(0.087)

<0.0001

PBR(4) 1.0000 1.0000
(<0.001)

<0.0001 0.8827 0.8827
(0.010)

<0.0001 0.1666 0.1666
(0.033)

<0.0001

PBR(6) 1.0000 1.0000
(<0.001)

<0.0001 0.8813 0.8811
(0.067)

<0.0001 0.2720 0.2720
(0.044)

<0.0001

PBR(8) 1.0000 1.0000
(<0.001)

<0.0001 0.8826 0.8826
(0.018)

<0.0001 0.3355 0.3355
(0.049)

<0.0001

PBR(200)\
RAR

1.0000 0.9194
(0.184)

0.0091 0.8378 0.7514
(0.302)

0.0382 0.8325 0.8325
(0.083)

<0.0001

RPBR(6) 1.0000 1.0000
(<0.001)

<0.0001 0.8819 0.8819
(0.046)

<0.0001 0.1914 0.1914
(0.039)

<0.0001

RPBR(8) 1.0000 1.0000
(<0.001)

<0.0001 0.8819 0.8817
(0.054)

<0.0001 0.2510 0.2510
(0.045)

<0.0001

RPBR(12) 1.0000 1.0000
(<0.001)

<0.0001 0.8816 0.8807
(0.064)

<0.0001 0.3371 0.3371
(0.053)

<0.0001

TBD 0.5656 0.6770
(0.390)

0.1662 0.7518 0.6580
(0.402)

0.1736 0.8872 0.8872
(0.079)

<0.0001

Table (A.9): Summary of the desirability scores for all investigated ran-
domization procedures for N = 200. For each presented randomization
procedure 100 000 randomization are generated for the assessment.



Appendix B

Acronyms and notations

B.1 Acronyms

General

Acronym Meaning
AR Allocation ratio
C (Treatment of) the control group
CB Chronological bias
CG Correct guesses
CS Convergence strategy
E (Treatment of) the experimental group
linT Linear time trend
ncp Noncentrality parameter
prob Probability
prop Proportion
RP Randomization procedure
SB Selection bias
TT Time trend
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Randomization procedures

Acronym Meaning
BSD(MTI) Big Stick Design with parameter MTI
CR Complete Randomization
EBC(p) Efron’s Biased Coin Design with parameter p
PBR(k) Permuted Block Randomization with block

length k
RAR Random Allocation Rule
RPBR(k) Randomized Permuted Block Randomization

with maximal block length k
TBD Truncated Binomial Design

B.2 Notations

General

Notation Meaning
1n(×n) ∈ Rn(×n) Vector/matrix containing the number one n(×n)

times
α, α0 (Planned) type-I-error probability
B(p) Bernoulli distribution with success probability p
β, β0 (Planned) power
cj(t) Value of the jth criterion of a randomization

sequence t
χ2(h, λ) χ2 distribution with h degrees of freedom and

noncentrality parameter λ
∆, ∆0 (Planned) effect size of a clinical trial
δ, λ Noncentrality parameters of the doubly noncen-

tral t-distribution
ei ∈ RN Unit vector with a one at position i
F (x) Distribution function
f(x) Density function
Hψ(x) Probability mass function of a distribution H

dependent on the parameter vector ψ
µC , µE Expectation of the patients assigned to C/E
N Total number of patients included into the trial



143 APPENDIX B. ACRONYMS AND NOTATIONS

Notation Meaning
N (µ,Σ) Normal distribution with expectation vector µ

and covariance matrix Σ
Poi(λ) Poisson distribution with parameter λ
sgn(x) Sign function for x ∈ R
tα,n,δ,λ α-quantil of the doubly noncentral t-distribution

with n degrees of freedom and noncentrality pa-
rameters δ and λ

tn,δ,λ(x) Density of the doubly noncentral t-distribution
with n degrees of freedom and noncentrality pa-
rameters δ and λ at the position x ∈ R

τϑ(n) Time trend function dependent on the patient
number n with the strength ϑ

W Test statistic of Student’s t-test

Randomization

Notation Meaning
ARC(n,T ), ARE(n,T ) Allocation ratio of treatment group C/E after n

assigned patients dependent on T
avndaRP Average number of deterministic allocations of a

given randomization procedure
avnCGRP(G),
avpCGRP(G)

Average number/proportion of correct guesses of
a given randomization procedure dependent on
the guessing function G

avnroRP Average number of returns to origin of a given
randomization procedure

D(n,T ) Imbalance between C and E after n assigned
patients dependent on T

η Strength of selection bias
G(n, t) Guessing function for the nth patient dependent

on t ∈ ΓN

ΓN , ΓRPN Space of all possible randomization sequences (of
a given randomization procedure) in a two-armed
clinical trial with N included patients
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Notation Meaning
MTI, MTIRP Maximal tolerated imbalance (of a given random-

ization procedure)
NC(n,T ), NE(n,T ) Number of patients assigned to C/E after n

allocations dependent on T
NC , NE Final number of patients assigned to C/E
nda(n,T ) Number of deterministic allocations after n as-

signed patients dependent on T
nro(n,T ) Number of returns to origin after n assigned

patients dependent on T
pRP
t , pt Appearance probability of t dependent on the

randomization procedure RP
T Random vector for a randomization sequence,

which takes values in ΓN
t ∈ ΓN Realized randomization sequence

Linear model

Notation Meaning
A−1, A− (g-)Inverse of the matrix A
A Design matrix
a(Tn) Regression function for Tn
BSB, BCB Bias vector for modelling selection/chronological

bias
ε Random vector for error terms, which takes val-

ues in RN

In×n ∈ RN×N Identity matrix with dimension n× n
r = rk(A) Rank of the matrix A
σ2 Variance
S2
C , S2

E Sampling variance of the treatment group C/E
θ ∈ Rp Vector of regression coefficients
ω(A) = A(ATA)−1AT Projection matrix on the column span of A
Y Random vector for the patients’ responses, which

takes values in RN

y ∈ RN Vector of the observed patients’ responses
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Desirability terms

Notation Meaning
bl, br Left/right sided weight for the desirability func-

tion
d̄geo(AV) Summarized desirability score of the average-

based approach
d(RS), d̄(RS) (Average) desirability of the randomization

sequence-based approach
d(x) Desirability function at the position x ∈ R
LSL Lower specification limit
TV Target value
USL Upper specification limit
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