
Black-box optimization of mixed

discrete-continuous optimization problems

Doctoral Thesis

at the TU Dortmund University

for obtaining the degree Doktor der Naturwissenschaften

Submitted to the Faculty of Statistics

of the TU Dortmund University

by

Momchil Halstrup

Dortmund, 14.07.2016

1. Referee: Prof. Dr. Sonja Kuhnt

2. Referee: Prof. Dr. Claus Weihs

Contents

1 Introduction 1

2 Meta-models with uncertainty predictors 11

2.1 The Kriging model . 12

2.2 Kernel interpolation . 18

2.3 Comparison of Kriging and kernel interpolation 22

2.4 Designs for computer experiments . 27

3 The efficient global optimization (EGO) algorithm 34

3.1 Classic EGO algorithm . 34

3.2 General architecture of EGO . 39

4 Robust model-based optimization 41

4.1 Deep drawing sheet metal forming experiment 42

4.2 EGO with kernel interpolation . 46

5 Parallel optimization based on functional decomposition 58

5.1 TII and FANOVA decomposition . 59

5.2 Parallel optimization . 68

5.3 Optimization of a deep drawing process 80

i

ii Contents

6 Metamodels for mixed qualitative-quantitative data 89

6.1 Classification and regression trees . 92

6.2 Treed Gaussian processes . 94

6.3 Black-box modeling with CART and random forests 104

6.4 Categorical regression splines . 106

6.5 A special Kriging correlation function for mixed discrete-continuous spaces108

6.6 Kriging models with a Gower distance covariance function 112

6.6.1 Mixed-input EGO algorithm with Gower Kriging 119

6.6.2 Excursion: Parallel Optimization for mixed data - a generaliza-

tion of the ParOF algorithm . 120

7 Model-based sequential optimization with mixed data 125

7.1 Designs for mixed data . 127

7.2 EI optimization in the mixed space . 128

7.3 Benchmark study . 130

8 Conclusion and outlook 141

A Notations 144

B Data 148

C Additional figures for the benchmark study 165

Bibliography . 167

1. Introduction

The topic of (statistical) computer experiments is a relatively new field of research.

Many researchers consider the work of Sacks et al. (1989) to be the seminal paper

on computer experiments. Since then the subject has become increasingly popular in

recent years, partly due to the constantly increasing computing capabilities, allowing

for a more accurate representation of physical phenomena.

The general concept of computer experiments refers to the notion of using cheap com-

puter simulation to substitute expensive, or even impossible to produce in a laboratory,

real/physical experiments. Ideally, this surrogate computer simulation is an approx-

imately accurate representation of the real process. Santner et al. (2003) point out

one of the qualities of computer experiments, which distinguishes them from physical

experiments — a simulation is (usually) deterministic, producing identical outputs for

an experiment run twice with the same input data. This means that computer simu-

lations have no random error/noise. Note, however, that randomness can intentionally

be imbedded in the code in order to produce a noisy simulation (Knowles et al., 2009)

— these kind of stochastic simulations are not considered in this thesis. The absence

of random noise has several implications. First of all, some of the classical techniques

used for designing experiments — like repeating runs as well as randomizing the order

of the design runs and/or blocking into groups are irrelevant for computer experiments.

In effect, a class of design for computer experiments, different from the conventional

design of experiments is needed to study simulations. One very famous class of designs

for computer experiments are the so-called space filling designs (Santner et al., 2003).

Apart from being deterministic, characteristic for simulation experiments is that they

1

2 Introduction

represent highly complex computer code that is often very computationally intensive.

As a result, computer experiments have long run-times — in some cases the com-

putational time needed for performing a single simulation run can take many hours

(Bates et al., 2006). For this reason, computer experiments are usually not analyzed

directly, but instead are represented as black-boxes (Jones et al., 1998; Kleijnen, 2009).

These black-boxes are assumed to be able to produce output information for given

inputs only on a selected, finite set of runs. Then instead of working with the original

code, an approximate model — a so-called surrogate model or metamodel, which is

faster to run is used (Fang et al., 2006). With the help of this approximate model,

a variety of statistical analyses, like screening, sensitivity analysis and in particular

— optimization, which are otherwise computationally-infeasible to perform directly on

the computer code, can be carried out. This thesis focuses exclusively on the topic of

optimization of simulation experiments, while assuming the simulation is a black-box.

This concept has been studied a lot in the past, particularly by Jones et al. (1998),

who devised a metamodel-based optimization procedure, called the efficient global op-

timization (EGO) method. The EGO methodology developed by Jones et al. (1998)

plays a central role in this thesis — many of the methods discussed in this work follow

the EGO scheme.

Computer experiments have been applied successfully in a very wide band of appli-

cation fields — like in prototype development — engine design, car crash tests, fluid

dynamics, robotics, performance testing for prosthetic devices in medical applications

or even in more exotic fields like seismic analysis and volcanic activity among many

more (Santner et al., 2003; Fang et al., 2006; Levy and Steinberg, 2010). In this thesis

we also present a practical example of the use of simulations in industry — we study

a simulation of a deep drawing process. This simulation was developed in the course

of the collaborative research center SFB 708 “3D Surface Engineering of Tools for the

Sheet Metal Forming”, project C3, which was concerned with reducing undesirable

effects, like springback or tearing of the sheet, in sheet metal forming. This thesis is

3

partly developed in collaboration with the SFB 708, C3 project and the sheet metal

forming theme plays a substantial role in parts of this work.

Most of the existing work on simulation experiments is concerned solely with the case

of continuous input variables. In many simulation applications it can safely be assumed

that all of the input parameters are purely continuous/quantitative. In other cases,

where discrete/qualitative variables are present, a continuous relaxation of a discrete

parameter can be performed in order to transform the problem into a continuous one.

Continuous problems are easier to handle and optimize from a theoretical and algo-

rithmic point of view, this is why dealing with discrete inputs is undesirable. However,

considering quantitative variables is sometimes unavoidable and a continuous relax-

ation is not always possible. Neumann and Deymann (2008) present a recent example

of a computer experiment with mixed qualitative and quantitative inputs. They in-

vestigate a forwarding facility with the help of simulations, considering different truck

loading/unloading strategies in the facility as input parameters. Each distinct strat-

egy leads to a different output of the simulation — the idle time of packages in the

facility, but quantifying the strategy parameter is not straightforward — analyzing the

forwarding facility example requires a methodology which is capable of modeling the

simulation output and also finding the optima. Some further examples discussing ap-

plication fields of simulation experiments with mixed inputs include the works of Qian

et al. (2008) — they present a case study of a data center design which has mixed inputs

and Hutter et al. (2011), which perform algorithm configuration under consideration

of mixed inputs. This thesis is concerned with studying mixed qualitative-quantitative

inputs more extensively. This current work is part of the research training group GRK

1855 “Discrete optimization of technical systems under uncertainty” which is concerned

also with optimization in the mixed case. The analysis of mixed-input computer exper-

iments has only very recently started to receive more attention and is still a relatively

new field of research.

This thesis is split in two parts — one part is devoted to the analysis of experiments

4 Introduction

with purely continuous inputs: we strive to enhance the rich field of optimization of

computer experiments with continuous inputs. Our goal, in particular, is to produce

a general optimization procedure, which is able to deal with the sheet metal forming

simulation developed in the SFB 708, C3 project. This procedure should be able to

build on the well accepted EGO algorithm and ideally be able to circumvent some of

the inherent problems of the classical EGO method. The second part of this work

is concerned with simulations with mixed-input variables. We aim to systematically

assess and compare the state of the art methods for the analysis and optimization of

mixed experiments, as well as to develop new methods for this class of simulations. We

are interested in creating new metamodels for the modeling and prediction in the mixed

case, whereas the emphasis lies primarily on developing an optimization procedure and

comparing it to existing work.

Computer experiments having only continuous inputs, have been relatively well studied

in the past. There is a wide variety of different metamodels which can be used in the

analysis of such simulations — some of the more prominent models include polynomial

regression models, the spline method, support vector machines, Kriging models, radial

basis function networks (artificial neural networks), smoothing spline ANOVA models

and more (Fang et al., 2006; Steinwart and Christmann A., 2008; Montgomery, 2009;

Levy and Steinberg, 2010).

Concerning sheet metal forming simulations in particular, many of these metamodels

have been used to analyze and optimize the output of such experiments. One of the

most famous modeling alternatives is the common regression model (Box and Wilson,

1951). Regression is a very popular approach used by many researchers for the analysis

and optimization of complex computer simulations, in particular in sheet metal forming

and structural optimization (Jansson et al., 2003; Naceur et al., 2006; Hu et al., 2008;

Wei and Yuying, 2008). Applying polynomial regression models is appealing because of

their simplicity and low computational demand. But regression models are not ideally

suited for computer experiments — since simulations are deterministic, metamodels

5

which interpolate the known data points are more appropriate than a regression curve.

Moreover, Sacks et al. (1989) argue that computer simulations per definition represent

very complex and highly non-linear and multimodal processes — this is particularly

true for the sheet metal forming simulation we study, which cannot adequately be rep-

resented with low order polynomials. More sophisticated metamodels have recently

been used in sheet metal forming optimization like the Kriging model (Jakumeit et al.,

2005; Henkenjohann et al., 2005; Wessing et al., 2014), support vector machines (Tang

and Chen, 2009) and (artificial) neural networks (Kitayama et al., 2013; Wessing et al.,

2014).

Selecting a good metamodel is an important part in the modeling of simulation exper-

iments, but sequential black-box optimization is even more demanding and requires

an intelligent use of the surrogate model. In particular, Jakumeit et al. (2005) and

Tang and Chen (2009) use sophisticated metamodels — the Kriging model and sup-

port vector machines respectively, for model-based optimization in sheet metal forming,

but they optimize the predictive surface directly. This direct optimization approach

is referred to as local search and there is a high probability that it produces a local

optimum. The aforementioned EGO algorithm takes additional information about the

uncertainty of the predictor in order prevent the optimization from getting stuck in a

local optimum. The EGO method uses the information provided by the metamodel

— Kriging in its classical form (Jones et al., 1998), not only about prediction but also

about the uncertainty of the prediction in order to balance between local and global

search.

The EGO algorithm plays a central role throughout this thesis — it is a very well

established method for sequential black-box optimization. The classical EGO imple-

mentation with the Kriging model is generally efficient and works well even with a

reduced simulation budget (Knowles et al., 2009). Nevertheless the algorithm has sev-

eral weaknesses. For example, the Kriging model is not robust to the distribution

assumptions, and this lack of robustness is naturally transmitted to the EGO method.

Moreover, the EGO algorithm uses a search criterion, called the expected improvement,

6 Introduction

which suggests a candidate optimum in each iteration. This criterion also heavily relies

on the normality assumption. Furthermore, another limitation of the EGO method is

that it produces only one candidate optimum in each iteration, restricting the user to

only performing one time costly simulation at a time in each iteration, instead of several

in parallel. One vital problem of the classical EGO procedure is that it is not at all able

to deal with input variables which are not continuous. Fortunately, the EGO approach

is very flexible — in its classical form it is fine-tuned to function best with the Kriging

metamodel, but it is not restricted to it. In principle, any metamodel which provides

an uncertainty estimator of the prediction and a predictor can be adapted to the EGO

algorithm. The EGO architecture theoretically allows for parts of the algorithm to be

substituted. This would allow us to preserve the good qualities of the method, while

hopefully alleviating some of the problems. By applying this scheme, we are interested

in this thesis in addressing all of the issues listed above by constructing modifications

of the classical EGO method.

In order to address the first issue — the strong dependency of EGO on underlying

assumptions, like the normality assumption and stationarity, we aim at constructing

a robust variation of the EGO algorithm. In particular, the main components of the

classical EGO method — the Kriging model and the expected improvement search

criterion are both very susceptible to assumption violations. A robustification may be

achieved by employing assumption-robust components.

Finding a good and robust replacement of the Kriging model is not an easy task since

it is a well established method which generally produces good prediction results. It

is an interpolation model, which treats the (predicted) discrepancies at the predicted

outputs as realizations of a Gaussian process. This gives a high degree of flexibility

to the model with a reasonably low amount of model parameters, while keeping its

interpolation qualities. Moreover, Jakumeit et al. (2005) show that using Kriging as a

metamodel produces better optimization results than using polynomials and Wessing

et al. (2014) show that Kriging produces better prediction results than neural networks

7

for sheet metal forming experiments. The Gaussian process assumption also makes it

possible for Kriging to provide a measure of its own uncertainty at predicted unknown

locations in a very natural way. The uncertainty predictor provided by the Kriging

model, sometimes referred to as the mean squared error (MSE) of the predictor (see

Santner et al. (2003)), separates it from many other metamodels, for which it is not

trivial to construct such an uncertainty measure. At the same time the uncertainty

measure of the metamodel is crucial for the ability of the EGO algorithm to search

globally for an optimum, instead of only locally.

The few notable metamodels which have an uncertainty measure include, next to

the Kriging model, polynomial regression splines, for which an asymptotic formula

for the uncertainty predictor can be derived (Huang, 2003) and a recently developed

metamodel called kernel interpolation (KI) (Mühlenstädt et al., 2012), which has a

non-parametric measure of its uncertainty. However, Ben-Ari and Steinberg (2007)

show that Kriging consistently outperforms regression splines. Furthermore, regression

splines also rely on a distribution assumption, especially in order to produce an uncer-

tainty measure. This is undesirable, when an assumption robust alternative to Kriging

is to be constructed. The KI metamodel on the other hand shows a lot of promise.

Mühlenstädt et al. (2012) show that KI has a better goodness of fit for small designs

sizes. The KI model is non-parametric and assumption-free, thus fitting the KI model

does not require parameter optimization. Furthermore, because of the architecture of

the KI model, it does not require tedious matrix inversions for the fitting process or

for doing predictions with it. Moreover, Mühlenstädt (2010) argues that the Kriging

goodness of fit may not be very robust to the choice of the starting design structure.

That, plus the fact that a falsely assumed normality of the underlying mode, mani-

fested in the Gaussian process assumption, justifies the need for a robust alternative

to Kriging — which the KI method provides. As such, this model is viewed in this

thesis as a robust competitor to Kriging. Both models are discussed in more detail in

Chapter 2.

The classical EGO algorithm with all of its components — the expected improvement

8 Introduction

and its implementation with the Kriging model is presented in Chapter 3. The subse-

quent Chapter 4 is concerned primarily with the construction of a robust alternative to

the EGO algorithm and the corresponding building blocks of such an alternative. For

example, the statistical lower bound criterion (Jones, 2001) presents a good alternative,

as a robust criterion with which to replace the expected improvement. The statistical

lower bound criterion is generally outperformed by the expected improvement. Never-

theless, it has other important qualities, like being distribution-assumption free, which

makes it an ideal choice for a robust decision criterion alternative. In Chapter 4.2 the

robust variation of the EGO algorithm is tested on the mentioned sheet metal forming

experiment, which is described in Chapter 4.1.

The second issue we aim to address in this work is the somewhat restrictive one-

simulation-at-a-time structure of the classical EGO method. Parallel computations

and the use of several simulation machines/computers (or just simulators for short)

simultaneously is a very appealing idea (Ginsbourger et al., 2010). Naturally, evaluat-

ing more than one simulation run in parallel leads to time and cost savings. Jakumeit

et al. (2005) do preliminary work towards parallel optimization using metamodels —

they study the effect of performing the starting design runs on independent simulators

in parallel. This simple strategy can be applied in any situation, in which we have

several simulators at our disposal. But although it is effective, and advisable, to do

this, this strategy does not extend to the actual optimization iterations. Further papers

on the topic of parallel sequential black-box optimization include Ginsbourger et al.

(2010) and Bischl et al. (2014). Both of these contributions primarily concentrate on

generating a batch of several candidate optima with the metamodel in each iteration,

instead of one as in the classical EGO method, which can be evaluated with the help

of independent simulators in parallel. In this thesis we present a conceptually different

strategy, developed in the course of this work (and already partly presented in Ivanov

and Kuhnt (2014)), which apart from parallelizing the problem, reduces its dimen-

sionality. It is a data driven method based on techniques from the sensitivity analysis

9

toolbox — the so-called functional analysis of variance (FANOVA) graph (Mühlenstädt

et al., 2012). The parallel procedure we develop is concerned with using the FANOVA

graph method to estimate the structure of the (unknown) real function. The FANOVA

method measures the interactions between variables in a function and is able to recog-

nize if the function has an block-additive structure. If a function has such an additive

interaction structure, the blocks can be simultaneously optimized independent of each

other on different simulators. Besides the parallelization, this also constitutes a dimen-

sionality reduction — since each block would be an independent optimization problem

with dimensionality lower than that of the original problem. Furthermore, this proce-

dure is very flexible and may be even be adapted to the mixed case. This method is

the topic of Chapter 5. Furthermore, in the same chapter the procedure is applied to

the sheet metal forming simulation (from Chapter 4.1) and the results are presented.

Let us now consider simulation experiments which have mixed quantitative and qual-

itative inputs. The goals we pursue with mixed data simulations are the same as for

continuous experiments — modeling and sequential optimization. However, this case is

clearly a broader generalization of the purely continuous (quantitative) inputs case and

as such requires new models and methods. Furthermore, as it turns out, for analyzing

computer experiments with mixed inputs, the choice of metamodels is far more limited

than in the continuous case (Han et al., 2009).

Han et al. (2009) are among the first to construct a Kriging-based metamodel which

can predict mixed inputs. However, their method is less suitable for practical appli-

cations with more than a few qualitative variables. Furthermore, their method does

not properly account for interaction effects among qualitative variables. Only very

recently, there has been more development concerning mixed-input simulation experi-

ments. Of particular practical interest are the following: Qian et al. (2008) propose a

Kriging variation for the mixed case, which was later enhanced by Zhou et al. (2011),

Ma et al. (2014) present a spline based method for categorical variables. Gramacy

and Lee (2008) take a different approach and propose using treed Gaussian processes,

10 Introduction

where a bigger emphasis is put on the structure of the input data. Similarly, Hutter

et al. (2011) make use of random forests in order to take the structure of the input

data into account to make predictions. Swiler et al. (2014) present a review of some

existing methods — in particular the Kriging model by Zhou et al. (2011), the treed

Gaussian process model and regression based models. They demonstrate that these

models perform well in goodness of fit tests (Swiler et al., 2014). However, Swiler et al.

(2014) only examine lower-dimensional examples with just a few qualitative variables.

Furthermore, they only test the prediction quality of metamodels in the mixed case

and are not concerned with optimization.

Implementing metamodel-based, sequential, black-box optimization in the mixed-input

case is studied very little so far in the existing literature — to the best of my knowledge

almost no methods for optimization exist, apart from the work of Hutter et al. (2011),

who use a random forest based optimization method for algorithm calibration. There

is also no existing work (again to the extent of my knowledge) which systematically

studies and compares the quality of different metamodel based black-box optimizers in

the mixed case.

In this thesis we take on the ambitious task of studying and developing the method-

ology needed to do predictions and (EGO-like) black-box optimization of experiments

with both qualitative and quantitative factors. In Chapter 6 we present some of the ex-

isting metamodels and also aim at constructing our own metamodel based on a special

distance measures able to quantify distance between non-quantifiable objects. We are

only interested in metamodels, which can be used for global sequential optimization —

all the models presented and developed in this work are required to have an uncertainty

measure. The construction of generalizations to the classical EGO algorithm for the

mixed case is of great interest in this work — this addresses the issue of the classical

EGO-algorithm only being able to work with continuous data. Chapters 6 and 7 are

concerned with the study of EGO-like methods for mixed-inputs as well as presenting

a comparative benchmark study on the application of the different methods on several

synthetic examples, ranging from a low to a moderate number of qualitative inputs.

2. Meta-models with uncertainty predictors

Let us consider a function f : D → R, with D — the feasible domain of f . In the field

of analysis of computer experiments, it is assumed that f is a black-box function — a

function which we can evaluate at select locations, usually with high costs, but which

is analytically unknown. The notion of metamodels, sometimes referred to as response

surfaces, surrogate models, emulators, can formally be described as (Kleijnen, 2009):

Definition 2.1 (Metamodels):

A metamodel is an analytical function f̃ : D → R, which is an approximation of the

true function f , implied by the simulator. A metamodel is fitted to known/observed

data produced by the black-box simulation.

Using metamodels as an approximation to the true function allows us to conduct other-

wise very costly, or impossible to do directly on f , statistical and mathematical analysis,

like visualization, prediction, optimization and sensitivity analysis, among others (Fang

et al., 2006).

In this chapter it is always assumed that the feasible set of the black-box function f is

continuous, i.e. D ⊆ Rd, but a more general choice of the feasible set to accommodate

non-continuous inputs is also possible (see Chapter 6). Let y = f(x) denote the black-

box response at some location x ∈ D. Then the basic concept of metamodels is to use

data from a finite, moderately small, set of observations
{(

xTi , yi
)
| i = 1, . . . , n

}
⊆ D×

R, sometimes called training/learning data set, whereas D = {xi | i = 1, . . . , n} ⊆ D

is refereed to as design (of experiments). This known data set is used to estimate

the relationship between the input x ∈ D and the output y with the help of the

11

12 Meta-models with uncertainty predictors

metamodel f̃ and to subsequently make predictions about untried locations over the

whole feasible set D (Sacks et al., 1989). In this work, besides taking interest in the

predicting capabilities of a metamodel, we are mainly interested in its usefulness in

optimization. Performing sensitivity analysis is also of importance for this thesis, as a

tool for sequential parallel optimization (Chapter 5)

In the following we present the Kriging model and discuss some of its properties. The

kernel interpolation (KI) method is introduced in the subsequent section. The Kriging

model provides a measure of its uncertainty at unobserved points in contrast to most of

the other existing metamodels. This makes Kriging useful for sophisticated optimiza-

tion procedures (see Chapter 3 and Chapter 6.6.1), and is thus of great interest in this

work. The KI metamodel likewise allows for uncertainty predictions (Mühlenstädt and

Kuhnt, 2011) and can therefore be applied in model-based optimization. The KI model

has the advantage of being very parsimonious in its assumptions, presenting potential

for constructing an assumption-robust alternative to Kriging. This is the reason why

we concentrate our attention on the KI method in the continuous-input case, rather

than look at some of the few other Kriging alternatives which have an uncertainty

measure — like splines for example (Huang, 2003). In the case of categorical inputs,

which is the topic of Chapter 6 — we discuss other alternatives.

Our aim in this chapter is to show that the KI model is a contender to Kriging in

certain modeling situations and also to show its potential for the use in optimization

— this is discussed in more detail in Chapter 4.2. In the last part of this chapter we

briefly discuss the notion of statistical design for computer experiments — choosing

the experimental scheme in the simulation experiments environment.

2.1 The Kriging model

The Kriging metamodel was first introduced by the geologist Krige (1951) to model

geological data. The Kriging model has been made popular for the use in computer

2.1 The Kriging model 13

experiments by the seminal work of Sacks et al. (1989). Besides being an interpolation

method and being able to measure its own uncertainty, Kriging also shows good pre-

diction qualities, even for highly non-linear functions (Fang et al., 2006).

Let D0 = {xi | i = 1, . . . , n} ⊆ D be a chosen experimental design of experiments

(often only called design for brevity). Kriging models the outcome of the unknown

black-box function at a point xi as a realization of a Gaussian process Y (xi):

Y (xi) = gβ (xi) + Z (xi) , i = 1, . . . , n. (2.1)

Here Z(·) is a stationary Gaussian process with mean 0, variance σ2 and covariance

Cov(Z(xi), Z(xj)) = σ2Rθ(xi,xj), where θ is a vector of covariance parameters and

Rθ(·) is a correlation function, also called kernel. We often use the equivalent, under the

stationarity assumption, notation Rθ(xi,xj) = Rθ(xi − xj), since the correlation func-

tion depends only on the distance between two elements. The choice of the correlation

structure and the role of the covariance parameters are briefly discussed below. In the

general case, it is assumed that gβ(x) =
∑k

j=1 βjfj(x), for x ∈ D and given functions

fj(·) — this is referred to as the universal Kriging model. The function gβ represents

the mean, or trend, of the Kriging model. In this work, unless stated otherwise, the

simple Kriging model is being used, which assumes that gβ(x) = µ, where µ is just a

constant. Jones et al. (1998) argue that modeling the correlation by a Gaussian process

is so powerful that it can be afforded to drop the regression term gβ and substitute it

with a constant term µ, without a dramatic loss of prediction accuracy. Furthermore,

by fitting a constant term µ as a trend parameter, we avoid overfitting and having to

estimate the additional parameters βj, j = 1, . . . , k.

Equation (2.1) vaguely mimics a standard regression model, in the sense that it consists

of a trend part, in the case of simple Kriging — the constant µ, and an error term Z(·).

Since computer experiments are assumed to be free of stochastic error, all deviation of

the model from the true function is due to modeling error and inaccuracy. The main

difference between classic regression models and Kriging is that the error terms in

the Kriging model are correlated, whereas the behaviour of the correlation is modeled

14 Meta-models with uncertainty predictors

by the kernel function R. It makes sense to assume that the correlation is based on

distance, since regions which are close to already known data points are assumed to be

better known than farther regions (Jones et al., 1998).

Correlation kernels

Some common correlation functions for a one-dimensional Gaussian process Z(x), x ∈

R, are listed in Table 2.1. Since the process Z(·) is assumed to be stationary, it is

sufficiently described by the difference h = x1 − x2 for two x1, x2 ∈ R.

Exponential Rθ(h) = exp
(
− |h|

θ

)
, θ > 0

Gaussian Rθ(h) = exp
(
− |h|

2

θ2

)
, θ > 0

Power exponential Rθ(h) = exp
(
− |h|

p

θp

)
, θ > 0, 0 < p ≤ 2

Matérn
(
5
2

)
Rθ(h) =

(
1 +

√
5|h|
θ

+ 5|h|2
3θ2

)
exp

(
−
√
5|h|
θ

)
, θ > 0

Table 2.1: Commonly used correlation functions

The generalization to the multidimensional case is often achieved with the tensor prod-

uct of multiple one-dimensional kernels:

Rθ(h) =
d∏
i=1

Rθi(hi) (2.2)

with h = x1 − x2 = (h1, . . . , hd)
T ∈ Rd and θi > 0 for i ∈ {1, . . . , d}.

Throughout this thesis, the covariance kernel which is used is the Matérn with pa-

rameter ν = 5
2

(see Rasmussen and Williams (2006) and Table 2.1), unless stated

otherwise or in the cases, in which mixed discrete-continuous data is modeled. The

Matérn kernel is strongly supported in the literature (Stein, 1999; Gneiting et al., 2010;

Apanasovich et al., 2012). It is superior to other commonly used kernel functions be-

cause of its flexibility regarding the degree of differentiability and smoothness. For

arbitrary x1,x2 ∈ D ⊆ Rd, with h = x1 − x2 = (h1, . . . , hd)
T , the multidimensional

2.1 The Kriging model 15

Matérn
(
5
2

)
kernel has the following form:

Rθ(h) =
d∏
i=1

(
1 +

√
5 |hi|
θi

+
5 |hi|2

3θ2i

)
exp

(
−
√

5 |hi|
θi

)
. (2.3)

Estimating covariance parameters

In the universal Kriging equation (Equation (2.1)), with mean function gβ(x) =

f(x)Tβ =
∑k

j=1 βjfj(x), variance σ2 and correlation kernel Rθ(·) — the parame-

ters (β, σ2,θ) are unknown and are estimated from known data. Let D0 × y ={(
xi
T , yi

)
| i = 1, . . . , n

}
represent a data sample, consisting of a design D0 and the

observed outputs at these locations — y and let F be the matrix representation of the

vectors f(x1), . . . , f(xn). Furthermore, let (Rθ(xi,xj))(i=1,...,n;j=1,...,n) = R(θ) denote

the n× n correlation matrix. Since we assume that the Kriging model is governed by

a Gaussian process, we are assuming normality for the model. Under the normality

assumption, the log-likelihood function is given by:

lLF
(
β, σ2,θ

)
=

− n

2

(
log σ2 + log 2π

)
− 1

2
log |R(θ)| − 1

2σ2
(y − Fβ)T R(θ)−1 (y − Fβ) . (2.4)

Where |R(θ)| denotes the determinant of the correlation matrix.

Directly optimizing the log-likelihood function provides us with the maximum likeli-

hood estimate
(
β̂, σ̂2, θ̂

)
of the parameter tuple (β, σ2,θ). Direct optimization is not

always the best strategy, because in some cases the matrix R(θ) might be nearly singu-

lar. A better solution might be to implement the so-called concentrated log-likelihood

(Roustant et al., 2012). The maximum likelihood estimate of β can be written in closed

form, for a given θ:

β̂ =
(
F TR(θ)−1F

)−1
F TR(θ)−1y (2.5)

16 Meta-models with uncertainty predictors

Now, for a given θ and with the estimated β̂, we can also get the closed form expression

for the maximum likelihood estimate for σ2:

σ̂2 =
1

n

(
y − F β̂

)T
R(θ)−1

(
y − F β̂

)
(2.6)

With the analytical expressions for β̂ and σ̂2, maximizing the likelihood function from

Equation (2.4) is equivalent to maximizing the concentrated log-likelihood over θ:

lcLF

(
β̂, σ̂2,θ

)
= −n

2
log 2π − n

2
log σ̂2 − 1

2
|R(θ)| − n

2
(2.7)

Equation (2.7) can be optimized by using standard iterative algorithms like Newton’s

method.

Prediction with Kriging

After the unknown parameters of the Kriging model have been estimated, the next step

is to use the model for predictions. Let x∗ ∈ D be an arbitrary, not yet evaluated point,

i.e. x∗ /∈ D0. Kriging adopts the normality assumption, by modeling the response

Y (xi), ∀ xi ∈ D0, as a Gaussian process Z(·). It is therefore naturally assumed that

Y (x∗) is also represented by a Gaussian process. Thus we get that Y (D0), representing

the responses of the set D0, and Y (x∗) are jointly normally distributed:Y (x∗)

Y (D0)

 ∼ N
f(x∗)Tβ

Fβ

 , σ2

 1 rTθ (x∗)

rθ(x∗) R(θ)

 , (2.8)

with rθ(x∗) = (Rθ(x∗,x1), . . . , Rθ(x∗,xn))T . A prediction for x∗ is then given by the

conditional expectation, conditioned on the sample (Sacks et al., 1989):

E (Y (x∗)|Y (x1), . . . , Y (xn)) = f(x∗)Tβ + rθ(x∗)TR(θ)−1 (y − Fβ) . (2.9)

Substituting with the estimated parameters provides us with the Kriging predictor

ŷ(x∗) = f(x∗)T β̂ + rθ̂(x∗)TR(θ̂)−1
(
y − F β̂

)
.

2.1 The Kriging model 17

Uncertainty estimation of the prediction

A very useful characteristic of the Kriging model is its ability to measure the quality

of its prediction. As a measure of the quality, usually the uncertainty of the inter-

polation at unknown locations is taken. This property of the Kriging model is an

important building block of the expected improvement criterion (see Chapter 3). The

uncertainty at x∗ ∈ D, denoted by s2(x∗) is represented by the mean squared error

(MSE) of the predictor MSE(ŷ(x∗)). Similar to the predictor ŷ(x∗), the uncertainty

measure s2(x∗) represents the conditional variance V ar (Y (x∗)|Y (x1), . . . , Y (xn)) given

the sample (Sacks et al., 1989; Santner et al., 2003):

s2(x∗) = σ2

1−
(
f(x∗)T , rθ(x∗)T

)0 F T

F R(θ)

−1 f(x∗)

rθ(x∗)

 . (2.10)

Substituting with the estimated parameters provides us with the uncertainty measure.

In the equation above it is easy to see that s2(x) = 0 for xi ∈ D0; i = 1, . . . , n, i.e.

the output values at known data points are not subject to uncertainty. This simple

fact coincides with the assumption of the deterministic nature of simulations — once a

simulation is run for a given setting, its true value is known and not uncertain in any

way. This trivial property ensures that the well-known EGO algorithm (see Chapter 3)

will not suggest looking for optima among already known points. Another interesting

property of the uncertainty predictor s2(·) is that it is bounded from above by σ2.

This is also easy to see, since the expression in the brackets in Equation (2.10) goes to

1 for rθ(x∗) → 0 — the matrix-vector multiplication inside the brackets respectively

goes to zero in this case. The term rθ(x∗) going to zero is equivalent to a diminishing

correlation, which corresponds to a data point x∗ which is “moving” farther away from

D0. For the same reason, the Kriging predictor from Equation (2.9) tends to return

the mean f(x∗)Tβ as a prediction with decreasing correlation (Jones et al., 1998).

The Kriging method has a few disadvantages. Most of them stem from the model

assumptions. Stationarity is not always a plausible assumption in applications. One of

18 Meta-models with uncertainty predictors

the implications of the stationarity is for example the boundedness of the uncertainty

predictor — which theoretically weights points which are far away from the observed

values with a similar, or same, uncertainty. This fact might play a role since the

uncertainty measure is important as an ingredient for sequential optimization search

algorithms. Furthermore the normality assumption is also one of the critical ingredi-

ents of Kriging, which may be violated. In case of a false normality assumption, the

Kriging parameter estimation via maximizing the likelihood becomes unstable, since

maximum likelihood estimation is not very robust regarding the normality assumption

(Stein, 1999).

Granted that Kriging can possibly be modified to overcome some of its shortcom-

ings, for example by using cross validation to estimate the parameters (Rasmussen

and Williams, 2006), we would nevertheless like to have a plausible alternative, which

retains the qualities of Kriging which make it a good choice for advanced optimiza-

tion procedures — like the uncertainty predictor. In the next chapter we present a

more robust, in a sense, alternative metamodel, called kernel interpolation. It does not

suffer the dependency on a particular distribution and also possesses an uncertainty

predictor.

In this thesis we use the R-package DiceKriging (Roustant et al., 2012) for fitting the

classical Kriging model.

2.2 Kernel interpolation

The kernel interpolation (KI) metamodel, developed by Mühlenstädt (Mühlenstädt,

2010; Mühlenstädt and Kuhnt, 2011), employs the concept of fitting many linear func-

tions locally and combining them into a global non-linear predictor. The general idea

of the KI method is to use a Delaunay triangulation (Okabe et al., 2000) of the sample

data into simplices and fit piecewise linear functions which interpolate the observed

response on the simplices. The Delaunay triangulation plays an important role in the

2.2 Kernel interpolation 19

fitting of the KI method — in the following paragraphs we introduce the essential the-

ory — for a more detailed introduction of the Delaunay triangulation we refer to Okabe

et al. (2000). In the latter parts of this section, we introduce the predictor function

and the uncertainty measure of the KI model.

Delaunay Triangulation

The Delaunay triangulation is often defined as the dual structure of the so-called

Voronoi diagram (Okabe et al., 2000). In this short paragraph we introduce the Delau-

nay triangulation in terms of the so-called circumsphere (see Definition 2.2), following

the notation of Mühlenstädt (2010). Furthermore, with the help of the Delaunay tri-

angulation we derive piecewise linear functions which interpolate a given set of data.

These functions are a pivotal element of the KI model.

Let us consider a set of points D0 = {x1, . . . ,xn} ⊂ Rd with n ≥ d+ 1. A (Delaunay)

triangulation splits the convex hull of a set D0 in N simplices S1, . . . , SN for which

the end-nodes/vertices of the simplices are contained in D0 (Rajan, 1994). Note that

a d-dimensional simplex is defined by its d + 1 vertices. We denote the vertices of

each simplex Sj by
{
xj0, . . . ,x

j
d

}
⊂ D0. The Delaunay triangulation of D0, in short,

is defined as the triangulation for which the circumsphere of every simplex in the

triangulation contains no point from D0 in its interior (Rajan, 1994). For a formal

introduction of the Delaunay triangulation, we require the following definitions:

Definition 2.2 (Circumsphere):

Consider the points x0, . . . ,xd ∈ Rd, so that the simplex with vertices x0, . . . ,xd has

non-empty content. The circumsphere C with radius r and center point c is the uniquely

defined ball, so that ‖c− xi‖ = r, i = 0 . . . , d.

Now with the help of the circumsphere, we can introduce the Delaunay triangulation

in the following way:

20 Meta-models with uncertainty predictors

Definition 2.3 (Delaunay triangulation):

Consider the non-cocircular set of points D0 = {x1, . . . ,xn} ,xi ∈ Rd, where non-

cocircular means that no d+2 points from D0 lie on a d-dimensional ball. Consider fur-

thermore a triangulation of D0, denoted by T (D0), containing the simplices S1, . . . , SN

and the corresponding circumspheres C1, . . . , CN . T (D0) is a Delaunay triangulation,

iff for each simplex Sj, j = 1, . . . , N the following conditions hold:

(D1) For all simplices Sj with corresponding circumsphere Cj with center point cj and

radius rj it holds: ‖x− cj‖ ≥ rj,∀x ∈ D0, i.e. no points of D0 lie inside the

circumsphere Cj.

(D2) The only points that lie on the boundary of Cj are the vertices of the simplex Sj:

‖x− cj‖ = rj ⇔ x ∈
{
xj0, . . . ,x

j
d

}
, ∀x ∈ D0.

Note that the assumption of non-cocircularity is needed in order to ensure that the

Delaunay triangulation is unique — if this assumption is not fulfilled, several Delaunay

triangulations exist (Mühlenstädt and Kuhnt, 2011). However, Mühlenstädt and Kuhnt

(2011) point out that the resulting differences in prediction produced by the KI model

based on the different triangulations, in case of non-uniqueness, is negligible.

Now let D0 = {x1, . . . ,xn} be an experimental design with xi ∈ Rd, i = 1, . . . , n

and a corresponding output vector yT = (y1, . . . , yn) , yi ∈ R, i = 1, . . . , n. Let us

consider the Delaunay triangulation T (D0), with simplices S1, . . . , SN and let xj0, . . . ,x
j
d

denote the vertices of simplex j, j = 1, . . . , N with yj0, . . . , y
j
d — the corresponding

output values. With the help of the Delaunay triangulation T (D0), for every simplex

Sj, j = 1, . . . , N , a linear function which interpolates the data (xj0, y
j
0), . . . , (x

j
d, y

j
d) can

be fitted (Mühlenstädt and Kuhnt, 2011):

ŷj(x) = βj0 + xTβj. (2.11)

These linear functions ŷj(x) are unique if the corresponding simplex Sj has nonempty

content (Mühlenstädt and Kuhnt, 2011). Furthermore, the coefficients βTj =

2.2 Kernel interpolation 21

(
βj0, . . . , β

j
d

)
can be calculated by solving the system of linear equations for each

j = 1, . . . , N :

Ajβj = yj,

where the matrix Aj =
(
1,xj0, . . . ,x

j
d

)
contains the vertex vectors as columns and

the vector 1 ∈ Rd+1 in the first column, and yTj =
(
yj0, . . . , y

j
d

)
is the vector of values

corresponding to the vertices
{
xj0, . . . ,x

j
d

}
. Solving these equations corresponds to fit-

ting a polytope — a piecewise linear function which interpolates the vertices of the

corresponding simplex, to the data (Mühlenstädt and Kuhnt, 2011). These piecewise

linear functions are an important component in the construction of the predictor func-

tion and the uncertainty predictor of the KI model, to be introduced in the following

paragraphs.

Prediction and uncertainty estimation with kernel interpolation

The linear functions introduced in Equation (2.11) are assumed to be a good initial

approximation of the unknown function inside the corresponding simplex and in a

small environment around the simplex. However these piecewise linear functions are

not smooth and are incapable of modeling curvature. The aim of the KI methodology

is to combine these local interpolations into a smooth global predictor, capable of

modeling curvature. This is achieved with the help of a weight function gj(·):

ŷ(x) =


yi, for x = xi, i = 1, . . . , n;∑N

j=1 gj(x)ŷ
j(x)∑N

j=1 gj(x)
, elsewhere

(2.12)

A crucial part obviously is the choice of the weight function gj(·). Mühlenstädt and

Kuhnt (2011) suggest:

gj(x) =
νj(∏d

i=0

∥∥x− xji
∥∥)2 , (2.13)

22 Meta-models with uncertainty predictors

where νj stands for the volume of simplex Sj, j = 1, . . . , N , which produces a smooth

and differentiable predictor ŷ(·), ∀x /∈ D0.

The uncertainty estimate of KI is defined in the following way:

U(ŷ(x)) =


0, for x = xi, i = 1, . . . , n;√∑N

j=1 gj(x)σ
2
j (x)∑N

j=1 gj(x)
, elsewhere

(2.14)

with σ2
j = (ŷ(x)− ŷj(x))

2
. The idea of this uncertainty measure is to use the informa-

tion about the discrepancy between the piecewise linear functions, which are assumed

to be good local predictors, and the global predictor.

Defining the uncertainty measure in such a way, ensures that the local behavior of the

unknown black-box function is taken into account. Predicted ares of the domain are

identified as uncertain, if there is a strong disagreement between the local prediction,

given by the piecewise linear functions, and the global prediction — the weighted sum of

the local predictors. Such non-stationary, locally different behavior is not captured by

the Kriging method due to the stationarity assumption. Furthermore the uncertainty

measure of KI diverges if the unknown data point is “moving” away from the known

data points, whereas Kriging’s uncertainty measure converges as already discussed in

the previous section.

The practical implementation of the KI model employed in this thesis is based on a

(yet unpublished) R implementation, developed by Thomas Mühlenstädt and further

developed in the course of this work. The practical calculation of the Delaunay trian-

gulation is achieved with the help of the R-package geometry (Habel et al., 2015) and

the function delaunayn.

2.3 Comparison of Kriging and kernel interpolation

Mühlenstädt (2010) and Mühlenstädt and Kuhnt (2011) study the predictive qualities

of Kriging compared to KI and to other well-known metamodels. A comparison of

2.3 Comparison of Kriging and kernel interpolation 23

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

The function g_1

x

f(
x)

Figure 2.1: Plot of the test function g1

residual mean squared errors, shows an advantage of the Kriging method in many test

cases. However, the strength of KI lies with more irregular design schemes and lower

number of runs. Another situation where the KI method seems to have an advantage

over Kriging are highly non-stationary, multimodal functions. Let us consider the

example function g1 used by Xiong et al. (2007) to study the behaviour of Kriging

under the stationarity assumption:

g1(x) = sin(30(x− 0.9)4) · cos(2(x− 0.9)) +
x− 0.9

2

where x lives in the real interval [0, 1]. Xiong et al. (2007) argue that the

function g1 — shown in Figure 2.1, is a lot smoother in the interval [0.3, 1]

as compared to the interval [0, 0.3]. The authors point out that assuming a

stationarity in the model forces Kriging to estimate a stationary covariance

which represents the average smoothness over the whole interval, rather than

accurately interpret the local smoothness behavior. Let us now assume that

the function g1 is an unknown black-box function. We consider the design Dg1
0 =

24 Meta-models with uncertainty predictors

{0, 0.03, 0.05, 0.08, 0.11, 0.14, 0.16, 0.19, 0.22, 0.24, 0.27, 0.3, 0.33, 0.35, 0.38, 0.5, 0.67, 0.83, 1}

at which we have evaluated the function. Note that Dg1
0 has more design points in the

interval [0, 0.3], where g1 is less smooth. Next we interpolate g1 based on Dg1
0 with

both Kriging and KI. The results are shown in Figure 2.2. The points represent the

responses corresponding to the design Dg1
0 and the dashed curves show the respective

interpolation of the true function g1 — the red curve. It is easy to see that Kriging

approximates the highly nonlinear part of the function in the interval [0, 0.3] next

to perfect, whereas KI does a little worse. Conversely, the smooth transition of the

function in the interval [0.3, 1] is not captured very well by Kriging, whose instinct

tries to model the average behaviour of the function, which is supposed to be highly

multimodal, instead of the local behaviour — exactly the behaviour of the Kriging

model under the stationarity assumption described by Xiong et al. (2007). On the

other hand KI approximates the function more robustly, ignoring past information

and focusing more on the local behaviour, which helps KI to find a better fit in the

second part of g1. The overall fit of KI is less than perfect but more robust than that

of Kriging. This example shows the need for diversification of the available toolbox.

Remark 2.1 Note that the choice of starting design — Dg1
0 , represents a pathological

example constructed to demonstrate a structural flaw of the Kriging model. In this

pathological example we have (deliberately) assigned more data points in a specific region

of the domain. However, although less likely with a proper choice for the design of

experiments, this scenario is not completely unrealistic in practice. After employing a

more likely design scheme used in computer experiments — i.e. a uniform (equidistant)

starting design with the same amount of data points as in Dg1
0 is a good choice for this

one-dimensional problem (see Table B.1 in Appendix B), the interpolation results of

both methods are different from what we saw in Figure 2.2. Figure 2.3 shows the fitted

prediction curves produced by the Kriging model and the KI model respectively, with an

equidistant design. With an equidistant design of experiments, the smooth part of the

function (on the right) is predicted much better by both models. However, the irregular

2.3 Comparison of Kriging and kernel interpolation 25

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
Kriging

x

f(
x)

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

true
Kriging

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Kernel Interpolation

x

f(
x)

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

true
kernel int.

Figure 2.2: Kriging predictor compared to the kernel interpolation predictor

left part is not predicted as well. Overall we can see that both the Kriging model and

the KI model produce a similar prediction curve.

The different modeling philosophies of the two metamodels are also reflected by the

uncertainty measures — Kriging relies on distribution assumptions, whereas KI focuses

on the local behaviour. To illustrate these differences, we examine the smooth test

function g2 which exhibits moderate multimodal behaviour:

g2(x) = x sin(x), x ∈ [0, 10] .

We assume that g2 is a black-box function, for which we know the

output values for the uniformly (equidistantly) chosen sample Dg2
0 =

{0.95, 2.19, 3.42, 4.66, 5.89, 7.13, 8.36, 9.6}, where we have deliberately not placed

any points on the boundaries of the domain in order to inspect the behaviour of the

26 Meta-models with uncertainty predictors

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Kriging

x

f(
x)

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

true
Kriging

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Kernel Interpolation

x

f(
x)

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

true
kernel int.

Figure 2.3: Kriging predictor compared to the kernel interpolation predictor based on

an equidistant design of experiments

uncertainty measures. In Figure 2.4 we can see the true function g2, approximated

by the corresponding metamodels — the dashed lines, according to the starting

design Dg2
0 , represented by the black points. The uncertainty bounds are shown

as blue shades. The uncertainty measures of both methods are not one-to-one

comparable (Mühlenstädt and Kuhnt, 2011) — what is apparent from Figure 2.4 is

the boundedness property of the Kriging uncertainty measure and respectively the

divergence of the KI uncertainty measure at the ends. Also important to note is that

the true function lies, more or less completely, within the uncertainty bounds in both

cases.

The classical Kriging and the KI models approach distinct test situations differently

— as a result both of these models are useful for certain applications. This diversity

2.4 Designs for computer experiments 27

0 2 4 6 8 10

−
10

−
5

0
5

10
15

20

Kriging with uncertainty measure

x

f(
x)

●
●

● ●

●

●

●

true
Kriging
uncertainty

0 2 4 6 8 10

−
10

−
5

0
5

10
15

20

Kernel interpolation with uncertainty measure

x

f(
x)

●
●

● ●

●

●

●

true
kernel int.
uncertainty

Figure 2.4: Kriging predictors compared to the kernel interpolation predictor

is utilized to construct and study a model-based sequential optimization algorithm

presented in Chapter 4.2. It’s also important to mention that both methods, in the

form presented in this chapter, deal exclusively with continuous data and without being

specially modified are not capable of dealing with mixed discrete-continuous problems,

which are of particular interest in this thesis.

2.4 Designs for computer experiments

In this chapter so far, we have introduced the notion of metamodeling and presented

some important metamodels for this work. The concept of using a given data sample,

based on a design D0, for prediction and uncertainty quantification has been used

frequently in the previous paragraphs. In this section we elaborate on the specific

28 Meta-models with uncertainty predictors

techniques for choosing the design.

This thesis is concerned with the analysis of computer experiments as opposed to

real/physical experiments, which defines the choice of design. Traditionally, the mod-

eling of physical experiments is considered to be stochastic. This stochastic error

determines the modeling and the thus the type of design. For example the important

class of D-optimal designs (see Montgomery (2009)), often applied in physical experi-

ments, are founded on the assumption that the underlying model is subject to white

noise errors — normally distributed with zero mean and variance σ2, which is not the

case with computer experiments, since they are deterministic. The focus in the analysis

of simulation experiments is shifted towards finding a design scheme which covers the

feasible domain uniformly. This concept has named the designs for computer experi-

ments — they are often referred to as space filling designs (Santner et al., 2003). In

this work we concentrate on one of the most established classes of space filling designs

for computer experiments — the class of Latin hypercube designs (LHDs) developed

by McKay et al. (1979), a work which is considered to have pioneered designs for com-

puter experiments.

Without loss of generality we assume that our domain of definition is the unit interval

D = [0, 1]d, with d being the dimension of the problem. The LHD scheme is defined in

the following way:

Definition 2.4 (Random Latin hypercube):

A d-dimensional hypercube with n data points (runs), denoted by H(n, d), is an n× d

matrix, each column of which contains the numbers j
n−1 ; j ∈ {0, . . . , n− 1} exactly once

— i.e. each column is a permutation of the numbers 1, . . . , n normed to the interval

[0, 1].

Now with the help of a hypercube, we can construct a design of experiments, called a

Latin hypercube design (LHD):

2.4 Designs for computer experiments 29

Algorithm 2.1 (LHD construction) :

• Input:

– A set of independent permutations πj = (πj,1, . . . , πj,n) of the integers

1, . . . , n for j = 1, . . . , d, i.e. a (not yet normed to the interval [0, 1]) Latin

hypercube H(n, d), where d ∈ N+ is the number of input variables.

• Output:

– A Latin hypercube design D0 ⊂ D = [0, 1]d containing n runs.

For k = 1, . . . , n Do:

– Generate d i.i.d. uniform random numbers U j
k ∼ U(0, 1), j = 1, . . . , d.

– Set xjk =
πj,k−Ujk

n
, j = 1 . . . , d.

– Set xk =
(
x1k, . . . , x

d
k

)
– If k+1 = n, set D0 = {x1, . . . ,xn} then END, else set k = k + 1 and repeat.

Let us consider a small example of a random LHD containing five runs in two dimen-

sions — for two input variables. We calculate the random LHD with the R-package

lhs (Carnell, 2012) and the function randomLHS and denote it by Drnd2. Table 2.2

shows the numerical values of the five runs generated and Figure 2.5 depicts the points

in two dimensions. Figure 2.5 shows one of the qualities of the LHD class of designs

— in each column and each row in the plot there are no points overlapping, i.e. there

is a single point in each column and each row. This is one of the qualities, which

makes LHD an appealing class of designs — each input variable is sampled equally

often, regardless of the importance they turn out to have. McKay et al. (1979) derive

some desirable qualities of the LHD sampling. Consider the random variable f(X),

where X is uniformly distributed and f is a measurable function. Let us consider an

estimator 1
n

∑n
i=1 f(xi) of the expected value of f(X). Now, if f is monotone in all

components, McKay et al. (1979) shows that the estimator which uses values x1, . . . , xn,

30 Meta-models with uncertainty predictors

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latin hypercube design in two dimensions

Var1

V
ar

2

Figure 2.5: Example two-dimensional random LHD Drnd2 with 5 runs, plot of the runs

Var1 Var2

x1 0.930 0.086

x2 0.314 0.410

x3 0.423 0.253

x4 0.119 0.880

x5 0.672 0.767

Table 2.2: Example two-dimensional random LHD Drnd2 with 5 runs, table of values

generated via LHD sampling, has a smaller variance compared to the case if x1, . . . , xn

were generated by standard random sampling. Furthermore, Stein (1987) shows that

asymptotically, and without assuming monotonicity, the variance of an estimator for

the mean, having the form stated above, based on LHD sampling is always better or

at least not worse than random sampling. In this classical form the LHDs are easy

2.4 Designs for computer experiments 31

to generate and are generally very appealing, since they ensure that different portions

of the domain are sampled. Nevertheless this still does not mean that the classical

LHDs have good space filling qualities — some extreme examples can be constructed

which serve as a cautionary warning: if every one of the n columns happens to have

the same permutation of the numbers 1, . . . , n — this corresponds to a design which

places points only at the (hyper-)diagonal of the domain. Figure 2.6 depicts this patho-

logical example. Combining the LHDs with an additional (optimality) criterion, like

the maximin criterion for example, alleviates this problem. The maximin distance was

developed by Johnson et al. (1990) as a criterion for selecting among designs:

Definition 2.5 (Maximin criterion): For an n-point design D0 ⊂ D = [0, 1]d we

denote with Mm(D0) = minxi,xj∈D0 ‖xi − xj‖ the minimum distance in the design. A

maximin design maximizes this distance among all possible designs:

DMm
n,d = argmax

D0∈Dn
Mm(D0), (2.15)

where Dn is the set of all designs over D with n runs.

Note that the class of maximin LHDs is defined as:

DMm−LHD
n,d = argmax

D0∈Dn
Mm(D0), D0 is an LHD.

Another criterion for selecting optimal LHDs is the integrated mean squared error

(IMSE) criterion, introduced by Sacks et al. (1989). Let us consider a Kriging model

fitted with the help of a sample D0 = {x1, . . . ,xn} ⊂ D ⊆ Rd, and let ŷ(x) denote the

predictor function (see Equation (2.9)). Furthermore, we denote with MSED(ŷ(x))

the MSE of the predictor at some untried location x (see Equation (2.10)). Note that

the MSE of the predictor is dependent on the choice of the design D0, since the n× n

correlation matrix (Rθ(xi,xj))(i=1,...,n;j=1,...,n) = R(θ) depends on D0. Furthermore the

matrix F may, according to the choice of basis functions fj(x), depend on D0. Now

we can introduce the IMSE criterion as (Sacks et al., 1989):

IMSE(D0) =

∫
D
MSED(ŷ(x))dx.

32 Meta-models with uncertainty predictors

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latin hypercube design in two dimensions − bad example

Var1

V
ar

2

Figure 2.6: Pathological example two-dimensional random LHD Drnd2 with 5 runs

Minimizing the IMSE criterion with respect to the design D0 (from the class of LHDs)

provides us with an IMSE-optimal design.

Another popular criterion for design selection is the entropy criterion (Shewry and

Wynn, 1987). For a standard Kriging model with a covariance function Rθ, the entropy

criterion for choosing optimal LHDs suggests maximizing the following:

max
D0⊂D

log |Rθ|.

Unlike many other design selecting criteria, like D-optimality, the IMSE criterion as

well as the entropy criterion, the minimax criterion needs no assumptions about an un-

derlying model (John et al., 1995). Moreover, designs based on the maximin strategy

guarantee that no point in the domain is too far away from a design point, ensuring

reasonable predictions in the whole domain. Throughout this work, maximin LHDs

are used (from now on we just write LHD for brevity), unless stated otherwise, when

the problem under study is strictly continuous. For mixed discrete-continuous prob-

2.4 Designs for computer experiments 33

lems, a different design scheme is employed, which specifically generates designs in

the case of mixed discrete-continuous inputs (see Chapter 7.1). In this thesis, we use

the R-package lhs in order to calculate Latin hypercube designs for experiments with

continuous inputs. In particular, we employ the maximin LHD, calculated with the

function maximinLHS. The authors of the package have implemented a greedy strat-

egy for generating maximin LHDs — points, following the LHD sampling scheme, are

added to the design sequentially, such that the maximin criterion is satisfied.

Choosing the size n of the design is another important discussion topic. A popular

rule of thumb conditions the size of the design on the dimensionality d of the original

problem, stating that n = c · d. Jones et al. (1998) coined this rule and suggested

setting c = 10.

3. The efficient global optimization (EGO)

algorithm

The efficient global optimization (EGO) algorithm is a sequential statistical optimiza-

tion procedure introduced for the use in computer experiments by Jones et al. (1998).

It has become a popular tool for optimizing black box functions with the help of meta-

models. Since the EGO procedure is the stepping stone for many of the optimization

schemes featured in this work, a good part of this chapter is concerned with the clas-

sical EGO algorithm and its basic concepts. Subsequently the more general structure

of the algorithm is discussed and some of the issues with the classical framework, and

ways to prevent them are considered.

3.1 Classic EGO algorithm

One of the reasons for the popularity of the EGO algorithm is its symbiosis with the

prominent Kriging method (see Chapter 2). EGO critically relies on the ability of

Kriging to assess its own uncertainty, and also uses the fact that the base of this

metamodel is a Gaussian process. Theoretically any surrogate model can be used

instead of Kriging, provided it has an uncertainty predictor, but in its classic form

EGO is tailored to work best with Kriging. This topic is discussed in the next section

and in Chapter 4.2.

In order to motivate the philosophy of the EGO algorithm it is important to illustrate

34

3.1 Classic EGO algorithm 35

the difference between direct, or local optimization of the metamodel and choosing to

trust the information about the uncertainty which the model provides — i.e. putting

more emphasis on global exploration. Let us consider the one-dimensional example

function f1(x) = 6 (sin(0.85x+ 1) + cos(1.5x+ 1)) for x ∈ [0, 9]. We assume that f1(·)

is an unknown black box function. Let D1 = {0.7, 1.3, 2.8, 8} be a set of points, for

which the output of f1(·) is known — the starting design.

Remark 3.1 The starting design D1 is not a good design of experiments, since it does

not cover the domain of f1(·) uniformly — the gap between 2.8 and 8 is not favorable

for model fitting. In practice we should apply uniformly space filling designs, which try

to avoid situations like this (see Chapter 2.4). The aim of this small example is to

show how EGO reacts in this extreme situation.

Based on the design D1, we fit a Kriging model interpolating the, assumed to be

unknown, function f1(·) of the form: Y (x) = µ + Z(x), where the constant µ models

the mean, and Z(x) is a Gaussian process with mean 0, variance σ2 and the following

Matérn
(
5
2

)
covariance function (introduced in Equation (2.3)):

Rθ(h) =

(
1 +

√
5 |h|
θ

+
5 |h|2

3θ2

)
exp

(
−
√

5 |h|
θ

)
,

where h = x1−x2, for arbitrary x1, x2 from the domain of f1(·): [0, 9]. After performing

the Kriging parameter estimation with the help of maximum-likelihood maximization,

we get the following estimates: µ̂ = 5.77, σ̂2 = 24.97 and the covariance parameter

θ̂ = 1.18.

The example of this Kriging metamodel fitting the function f1(·) is shown in Figure 3.1,

where the points represent D1 based on which a Kriging metamodel is fit — represented

by the solid line. The punctured line shows the true function, and the purple area is

the corresponding model uncertainty bound given by the uncertainty predictor. We are

interested in minimizing f1(·), based on the information we have provided by Kriging.

It is easily seen that directly optimizing the fitted metamodel leads to a local minimum

at x = 1.67, whereas the true global optimum is at x = 5.33. The information about

36 The efficient global optimization (EGO) algorithm

0 2 4 6 8

−
15

−
10

−
5

0
5

10
15

x

f(
x)

●

●

●

●

predicted
true
uncertainty

Figure 3.1: A Kriging metamodel fitting the, assumed to be unknown, function f1(·)

the model uncertainty should have a significant role in the search for the potential

optimum.

Remark 3.2 In this thesis whenever we discuss optimization of some function f(·),

minimization is implied. The maximization case is trivially interchangeable, since

maxx f(x) = minx−f(x).

Putting all the emphasis on uncertainty indeed broadens the search globally, but in

doing so all the information about the current best value predicted by the surrogate

model is lost, making this approach just as dangerous as only relying on the model

fit. A good strategy is to use the information from the metamodel predictor and

uncertainty measure in a balanced way — combined into a scalar figure of merit, which

in turn suggests a potential optimum. The decision criterion which the classical EGO

algorithm uses is called the expected improvement (EI) — see below for a definition,

and as the name suggests it represents the predicted expected improvement brought

3.1 Classic EGO algorithm 37

by sampling at an unknown location. The basic scheme of the EGO algorithm is first

fitting a Kriging model according to the starting design, and then with the help of the

EI criterion find a point x
′

which shows the highest promise of improvement, i.e. a

point which improves upon our current best known solution. After that we evaluate x
′

with the true black-box function, which produces the output y
′
. Next we add the pair

(x
′
, y
′
) to the set of already known points and we iterate the procedure. The stopping

criterion of EGO is given most often by the maximum number of simulations which

we can conduct — the simulation budget. But the EI criterion presents us with a

theoretical stopping criterion — when the expected improvement gained by sampling

at a new location drops below a preset small threshold value α, for example α = 10−8.

A blueprint of the sequential EGO procedure can be seen in table 3.1.

Table 3.1: The EGO algorithm

EGO algorithm outline

1. Fit metamodel (Kriging) to the data

2. Calculate the point with the highest EI

3. Evaluate the black box function at the calculated location

4. Update the model with the new information

5. Iterate steps 1 to 4 while EI ≥ α

To introduce some notation — let y(xi) = y(i) be the corresponding output to xi, for

xi ∈ Rd, i = 1, . . . , n, the n design points, and let fmin = min
{
y(1), . . . , y(n)

}
denote

the current best function value. Furthermore, let ŷ(x) and s(x) respectively denote the

Kriging predictor and uncertainty measure for an arbitrary unknown point x ∈ D. The

EGO procedure considers the unknown functional value at x as a normally distributed

random variable Y (x) with parameters (ŷ(x), s(x)2).

Definition 3.1 (Expected improvement):

Formally, the improvement at the unknown point x ∈ D can be denoted as:

I (x) = max(fmin − Y (x) , 0). (3.1)

38 The efficient global optimization (EGO) algorithm

The expected improvement is defined as the expected value of the improvement:

E [I(x)] = E [max(fmin − Y (x), 0)] (3.2)

= (fmin − ŷ(x))Φ

(
fmin − ŷ(x)

s(x)

)
+ s(x)φ

(
fmin − ŷ (x)

s(x)

)
(3.3)

where φ and Φ denote standard normal density and distribution function.

The small example shown in Figure 3.1 is continued in figure 3.2, from the standpoint

of sequential optimization. In this initial step the EI criterion suggests sampling near

the current optimum.

−
15

−
5

0
5

10
15

x

y(
x)

●

●
●

●
true
predicted

−
15

−
5

0
5

10
15

0 2 4 6 8

0.
0

0.
4

0.
8

xpred

E
I

x

EI

0 2 4 6 8

0.
0

0.
4

0.
8

Figure 3.2: One-dimensional example of the EGO algorithm, step 1

The results after the first EGO step for this example can be seen in Figure 3.3. Here the

EI criterion suggest searching globally instead of trusting the predictor, which results

in sampling at a point very close to the true optimum in the second iteration.

3.2 General architecture of EGO 39

−
15

−
5

0
5

10
15

x

y(
x)

●

●
●

●

●

true
predicted

−
15

−
5

0
5

10
15

0 2 4 6 8

0.
00

0.
04

0.
08

xpred

E
I

x

EI

0 2 4 6 8

0.
00

0.
04

0.
08

Figure 3.3: One-dimensional example of the EGO algorithm, step 2

3.2 General architecture of EGO

In the previous section we introduced the classical building blocks of the EGO algorithm

— the Kriging metamodel and the EI criterion. However, the method is not restricted

to the choice of these two ingredients. Any metamodel which has an uncertainty

measure is suitable for constructing an EGO-like procedure. And the role of the EI in

the EGO algorithm, or any other decision criterion similar to the EI, is to solve the

bi-objective optimization problem (Ginsbourger et al., 2010): min (ŷ(x))

max (s(x))
(3.4)

where ŷ(·) stands for the metamodel predictor, and s(·) for the uncertainty measure.

There are studies that investigate the role of different decision criteria, besides the EI,

for the use in EGO. Two EGO-compatible decision criterion stand out in the literature

40 The efficient global optimization (EGO) algorithm

(see Jones (2001)):

• Statistical lower bound : minx∈D (ŷ(x)− κs(x)) , κ > 0 constant, where ŷ(x) is

the metamodel predictor, and s(x) is the uncertainty measure.

• Probability of improvement : maxx∈D

(
Φ
(
T−ŷ(x)
s(x)

))
, where T is a target value

which is lower than the best observed functional value up to now: T < fmin.

Obviously the EI criterion has prevailed as a better choice for the EGO algorithm. The

probability of improvement is known to have several disadvantages — it can produce a

very local search depending on the choice of T (see Ginsbourger et al. (2010)) and like

the EI it also depends on the normality assumption. Much more robust in the sense of

dependence on assumptions is the statistical lower bound (SLB). It has been dismissed

as an EI competitor for the classical EGO algorithm, since it is not as sophisticated as

the EI and is less suitable for a Kriging-based EGO implementation. However, recently

the SLB criterion has been a topic of study, mainly because it is easily implementable

in parallel computation and has good scalability qualities (Bischl et al., 2014). Apart

from that, the SLB criterion presents us with an ideal ingredient for a robustified

version of the EGO algorithm. It plays a central role in our robust version of EGO

introduced in Chapter 4.2.

4. Robust model-based optimization

The main strength of the EGO algorithm is that it combines information about pre-

diction and uncertainty provided by the underlying model in its sequential search for

the global optimum. The classical EGO algorithm is, however, subject to some mildly

restrictive assumptions. Both of the main EGO ingredients — Kriging and the EI

decision criterion, strongly rely on the normality assumption — Kriging uses Gaussian

processes and the EI criterion is defined through the normal distribution. Furthermore

Kriging also assumes stationarity of the underlying Gaussian process. When some, or

all of these assumptions are violated, the quality of the EGO algorithm is expected to

deteriorate. We have observed, for example, in Chapter 2.3 that the accuracy of the

Kriging predictor suffers when the stationarity assumption does not hold.

In this work, we aim at constructing an alternative EGO-like model-based sequential

optimizer, which is not burdened by strong assumptions and is robust in that sense. The

main ingredients needed is a metamodel with an uncertainty predictor and a decision

criterion, which are assumption-robust. We have mentioned Kriging alternatives, which

have an uncertainty measure — like regression splines that are however also subject to

a distribution (normality) assumption. The KI metamodel, on the other hand, is an

ideal candidate for the use in a robust sequential procedure — it has the advantage

of being purely data-driven and essentially assumption-free. Furthermore, the less

sophisticated but completely assumption-free SLB decision criterion (see Chapter 3.2)

is a robust alternative to the EI. Therefore, in this chapter we present a new EGO-like

algorithm for global optimization — one which relies on the KI metamodel instead of

Kriging and the SLB, as a decision criterion instead of the EI. The advantages of this

41

42 Robust model-based optimization

procedure are discussed as well as its shortcomings. The ultimate goal is to see if this

method has any merit in comparison to the benchmark — the classical EGO algorithm.

The new method is first tested on some well-known test functions. Consequently, a

case study on a simulation of an industrial sheet metal forming problem is shown and

the results are compared to the classical EGO algorithm. The technical details of the

sheet metal forming simulation are presented in the next section.

4.1 Deep drawing sheet metal forming experiment

Since the sheet metal forming experiment plays a central role for testing the algorithms

presented in this chapter and the next one, we begin by introducing this case study-

simulation.

The process of deep drawing is an essential technique for forming sheet metal parts

into complex shapes. It finds applications in many industries — like in the automotive

sector (Kitayama et al., 2013). It is a relatively simple process, in which the sheet

of metal, which is to be formed, is stabilized with the help of holders, called blank-

holders, while the metal is being drawn into a desired shape with the mechanical help

of a punch.

Sheet metal forming is a good example of the use of computer experiments in the de-

velopment stage of a part or machine — simulations are widely used in the automotive

industry to evaluate the performance of the car before a prototype is built (Jakumeit

et al., 2005). Furthermore, the physics of this metal forming process can be integrated

into standard Finite-Element (FE) model-based simulation softwares (Cwiekala et al.,

2011), like for example the specialized software LS-DYNA (Livermore Software Tech-

nology Corporation, 2005). It is convenient in such cases, to try and gather as much

information about the forming process of interest before starting with real experiments

or building a prototype.

Deep drawn parts are unfortunately often prone to geometrical defects after being

4.1 Deep drawing sheet metal forming experiment 43

Figure 4.1: Sheet metal forming press at the IUL (left), formed demonstrator part:

spring-back-free reference part on the left and defective part with spring back on the

right (right)

formed — such as spring back, wrinkling, tearing (thinning out) or fracture (Zhang

et al., 2005; Gösling et al., 2011). In the current study we are interested in the analysis

of a sheet metal forming experiment of a demonstrator part developed in the collab-

orative research center SFB 708. The objective of examining this demonstrator is to

be able to perfect the process of producing quality car parts — in particular the B-

pillar of car bodies, whose geometry this scale demonstrator mimics (ul Hassan et al.,

2013). Figure 4.1 shows the physical press at the “Institute of Forming Technology and

Lightweight Construction” (IUL) at the TU Dortmund university and an example of

the demonstrator part. The right side of Figure 4.1 shows one of the possible unwanted

effects that can occur after forming — the edges of the defective part (on the right)

are bent upward as compared to the reference part, which tightly “fits” the smooth

surface, indicating springback. Another very undesirable effect that can occur after

forming is the tearing of the sheet metal, rendering the formed part unusable. In this

case study we are interested in achieving an optimal forming of the sheet, in the sense

that the formed material is not unnecessarily thinned out. In order to achieve this

goal, we employ computer simulations of the sheet metal forming process, together

with metamodel-based optimization. We concentrate on the thickness reduction of

44 Robust model-based optimization

the material after being formed as an indicator for the structural integrity — i.e. the

thickness reduction is the target characteristic subject to optimization. In the current

sheet-metal forming simulation, we have varied the physical parameters: sheet layout

and sheet thickness, the process parameters- blank-holder force, friction coefficient and

the material parameters: flow stress and hardening exponent. Admittedly, not all of

these input variables are exactly adjustable to any given setting in practice. The hard-

ening exponent and sheet thickness parameters fall into that category. These variables

are mainly studied in order to gain a deeper theoretical understanding of their effect

on the thickness reduction in combination with the other variables. This is advanta-

geous for identifying the effects of the individual parameters and their interaction on

the final thickness of the formed elements. The domains in which all the inputs are

allowed to vary in this case study are shown in Table 4.1. It stands out that there are

three different friction coefficients considered in the experimental setting seen in the

table — these correspond to friction values in different stages of the forming process.

The friction coefficient is set to a value and then kept constant for the first third of

the process (F1). It is then varied to another value in the second third (F2) and kept

constant at that value. The same procedure applies to the third third (F3). The fric-

tion is also not exactly adjustable in practice, but it can be influenced during the deep

drawing by adding lubricant or removing it with high pressure air and oil removing

agents. In order to get a better understanding of the effect of friction on the thick-

ness reduction in different parts of the forming process, the different friction variables

are varied independently of each other in the experiment. Intuitively this might not

be completely accurate; however, this approach has proven to be very helpful for the

better process understanding — in particular in pinpointing the role of the friction in

the deep drawing process.

All of the computer simulations are made with the already mentioned LS-DYNA pro-

gram at IUL (TU Dortmund), and the statistical calculations are carried out with the

software R (R Core Team, 2015). The example output of the simulation of the formed

4.1 Deep drawing sheet metal forming experiment 45

Table 4.1: Variables and domains

Parameter Feasible Region

[1] Flow stress (FS) 100-200 MPa

[2] Initial sheet thickness (ST) 0.5-1.7 mm

[3] Blankholder force (BHF) 50-200 kN

[4] Friction; first third of process (F1) 0-0.14

[5] Friction; second third of process (F2) 0-0.14

[6] Friction; third third of process (F3) 0-0.14

[7] Hardening exponent (HE) 0.1-0.3

[8] Sheet layout (SL) 100%-150% (1-1.5 Scale)

demonstrator can be seen in Figure 4.2. The color scheme in the picture indicates the

difference in the thickness — the blue spot in the lower left corner as well as the spot

in the lower right corner indicate very thinned out areas of the part after forming. A

thickness reduction higher than 25%, compared to the initial thickness of the material

before forming, indicates a tear in the sheet metal. The goal of our analysis is to

eliminate this effect over the whole sheet. In order to achieve this, we minimize the

maximum thickness reduction after forming, i.e. we minimize the thickness reduction

in the area of the material which gets most thinned out.

In this chapter we present the outcome of several optimization studies applied to the

described deep drawing black-box problem. Throughout the chapter we use the results

produced with the classical EGO algorithm as a comparison benchmark for the novel

procedures presented in the coming sections.

46 Robust model-based optimization

Figure 4.2: Output of the forming simulation: dark colors indicate thinned out spots

in the material — e.g. the spots in the lower left and right corners. The “warm” colors,

from yellow to red, indicate spots in the material which have gained thickness after

forming — e.g. the upper left and right corners.

4.2 EGO with kernel interpolation

We have already discussed in Section 2.2 the robustness qualities of the KI metamodel

and also that it provides an uncertainty estimator, making it a good candidate for

EGO-like optimization. We therefore combine the KI and the SLB into a new robust

algorithm — the kernel interpolation EGO (keiEGO), which is completely free of the

normality and stationarity assumptions. Table 4.2 summarizes the keiEGO procedure.

It follows exactly the same scheme as the classical EGO but with essentially different

ingredients. The intuitive expectation is that EGO will perform more efficiently in

situations where the black-box follows a smooth, stationary pattern and that keiEGO

will have the upper hand in highly non-stationary examples.

One very important detail in the keiEGO procedure that should be carefully regarded

is the choice of the κ parameter in the SLB criterion. It obviously controls the de-

4.2 EGO with kernel interpolation 47

Table 4.2: The keiEGO algorithm

keiEGO algorithm outline

1. Fit metamodel (kernel interpolation) to the data

2. Calculate the point with the lowest SLB: ŷ(x)− κs(x)

3. Evaluate the black box function at the calculated location

4. Update the model with the new information

5. Iterate steps 1 to 4 until simulation budget is exhausted

gree of exploration vs. exploitation — a higher κ steers keiEGO more into exploring

the unknown part of the search domain, whereas a lower κ would promote a greedy

behaviour. A logical option would be to choose several κ in every single iteration.

This choice of the κ weights automatically produces a parallel procedure and allows

for parallel computations. Some recent publications, which have discussed the use of

the SLB criterion in optimization, have used this strategy for achieving parallelization

— see for example Hutter et al. (2012) and Bischl et al. (2014). However, we still need

a good way of choosing the κ when parallelization is not an issue or is not possible

and/or desirable. The architecture of the KI metamodel dictates that it is better for

the keiEGO to produce fewer, rather than many, points per iteration since fitting the

KI is not as computationally cheap as for example fitting a Kriging model. One idea

would be to fix a value for the weights in advance and use it in every iteration. This

strategy is not ideal, as Jones notes in his initial work on this topic (Jones, 2001).

We would therefore like to choose different κ in every iteration, which would ensure a

better balance between exploration and exploitation.

The distance-based nature of KI’s uncertainty predictor, as well as empirical analysis,

suggest that much of KI’s modeling imprecision at an unknown location x is captured

well within a ±1 · U(ŷ(x)) uncertainty bound, where U is the uncertainty measure of

KI. We expect that in most cases, the true value of the unknown function will be within

the estimated uncertainty interval. Note that the same cannot as easily be said about

48 Robust model-based optimization

the Kriging uncertainty predictor, since it is bounded by the stationarity assumption

as we discuss in Section 2.1. This property of KI’s uncertainty measure hints to the

choice of a scaling parameter κ — to preferably choose a value from the interval [0, 1].

Nevertheless we would also like to include the possibility of extreme changes of direc-

tion in the black-box function which might not be captured within ±1 the uncertainty

bound. Such values, which are not contained inside the standard uncertainty bound

are expected to occur rarely — we call these “extreme events”. From our empirical

experience with the KI method, a compromise upper bound for κ for capturing extreme

events is ±3 · U(ŷ(x)) . Capturing extreme events with the KI predictor corresponds

to exploration, but on the other hand we also need to focus on the exploitation part of

the keiEGO algorithm. Thus we set the feasible interval for κ to be [0, 3], but we want

to choose values for κ from the [0, 1] sub-interval with substantially higher probability.

We develop a heuristic strategy that sets the κ parameter randomly in each iteration,

according to a statistical distribution function. The chosen distribution focuses on

setting values for κ which alternate between moderate exploitation (κ ∈ [0, 1]) and

“extreme exploration” (κ ∈ [2, 3]).

A scaled Beta(2, 5) distribution has proven to be a good choice of a generating dis-

tribution which satisfy our conditions.The beta distribution is defined on the interval

[0, 1] which makes it very easy to adapt to our preferences — by scaling the values

generated by the distribution with a positive integer, we can define how many times

the uncertainty bound of KI we would like to have at most as an extreme event. If we

let higher values of the CDF represent extreme events, it is obvious that the probabil-

ity of an extreme event is very low, which is also true for values very close to 0. As

mentioned, we set 3 times the uncertainty bound to be the scale value which represents

the upper (extreme event) bound of the uncertainty intervals.

Let us now look at some basic properties of the random variable Y = 3 · X, where

X ∼ Beta(2, 5). For the mean we get: E (Y) = 3 · 2
2+5
≈ 0.857. Furthermore

P (Y ∈ [0, 1]) = 0.6489, P (Y ∈ (1, 2]) = 0.3333 and P (Y ∈ (2, 3]) = 0.0178. The

random variable Y exhibits all the qualities we want the parameters κ to have — it is

4.2 EGO with kernel interpolation 49

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Density of the random variable Y

x

D
en

si
ty

 fu
nc

tio
n

of
 Y

Figure 4.3: Density function of the random variable Y = 3 ·X, where X ∼ Beta(2, 5)

centered around 0.857 ∈ [0, 1] and most of the values of Y , close to 2
3

(64.89%) fall into

the interval [0, 1]. This ensures that in most cases at most one uncertainty bound will

be considered in the optimization of the SLB. Nevertheless the case of more extreme

uncertainties is also covered by the Y variable — the probability its value being in

(1, 2] is roughly 1
3
. The extreme case that a weight κ falls into the interval (2, 3] is

represented with a probability of 1.78%. Figure 4.3 shows the density function of the

random variable Y = 3 ·X. Overall, this generator for the κ parameter offers a good

balance between exploration and exploitation, while also considering bigger values and

even extreme event values — higher than 2 times the uncertainty bound. The latter

ensures that (extreme) exploration is promoted and should prevent the keiEGO from

getting stuck in a local optimum.

50 Robust model-based optimization

Example applications of keiEGO

Before we get to the applications of the new keiEGO method in the sheet metal forming

process introduced in 4.1, we first test it on a few lower-dimensional, synthetic bench-

marks. We have chosen two well-known global optimization problems, the Schwefel

and the Branin functions — see Definitions 4.2 and 4.1.

Definition 4.1 (Branin function):

The two-dimensional (standardized) Branin function is defined on the unit square

(x1, x2) ∈ [0, 1]2, as:

fb (x1, x2) =

(
x2 · 15− 5

4π2
(x1 · 15− 5)2 +

5

π
(x1 · 15− 5)− 6

)2

+ 10

(
1− 1

8π

)
cos (x1 · 15− 5) + 10

The Branin function has three equal valued global optima:

x∗ = (0.9616520, 0.15) , (0.1238946, 0.8166644) and (0.5427730, 0.15) with fb (x∗) =

0.397887 and has no local optima.

Definition 4.2 (Schwefel function):

For n ∈ N and for x ∈ [−500, 500]n, the n-dimensional Schwefel function is defined

as:

fs(x) =
n∑
i=1

−xi · sin(
√
|xi|)

The Schwefel function can be defined for any number of dimensions n. For an arbitrary

n the Schwefel function has a single global optimum at x∗ = [420.9687, . . . , 420.9687]T ,

with fs (x∗) = −418.9829 and many local minima and maxima. For ease of repre-

sentation we concentrate on the two-dimensional case. If we plot the Branin and the

4.2 EGO with kernel interpolation 51

x2

x1

y

Figure 4.4: The Branin function

x1

x2

y

Figure 4.5: The Schwefel function in two dimensions

Schwefel functions, we see that they represent two distinct classes of problems — see

Figure 4.4 and Figure 4.5. Both functions are highly non-linear, where the Branin

function is a lot smoother and regular, stationary in a sense, in comparison to the

extremely multimodal Schwefel function. Both have multiple optima — three global

for Branin and one for Schwefel and many local ones, making them interesting and

challenging problems for global optimization.

52 Robust model-based optimization

 10

 10 10 20

 20

 20

 30

 30

 40

 40

 50

 50

 60

 60

 70

 70

 80

 80

 90

 90

 100

 100

 110

 110

 120

 120

 130

 130

 140

 140

 150

 150

 160

 160

 170

 170

 180

 180

 190

 190

 200

 200

 210

 210

 220

 230
 250

 260

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Branin function and standard EGO

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
1

23

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2122
23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

Figure 4.6: Contour plot of the EGO-optimization results of the Branin function —

the blue triangles represent the design sample, the red dots are the (enumerated)

optimization iterations

In order to test the effectiveness of the keiEGO method, we compare its performance to

the classical EGO algorithm. To ensure comparability, we use the same initial design

for fitting the models, and we assign the same budget towards optimization, following

the schemes described in Tables 3.1 and 4.2.

We begin our test with the Branin function. According to the black-box sequential

optimization scheme, the first step is to generate data from the black-box — in this

case, the assumed to be unknown Branin function, according to a design. For this

experiment, we use a 25-points LHD to fit both models — the Kriging and the KI

metamodels — Table B.2 (in Appendix B) shows the calculated design. Next, we iterate

both the EGO and the keiEGO algorithms for a total of 40 additional optimization runs,

4.2 EGO with kernel interpolation 53

 10

 10 10 20

 20

 20

 30

 30

 40

 40

 50

 50

 60

 60

 70

 70

 80

 80

 90

 90

 100

 100

 110

 110

 120

 120

 130

 130

 140

 140

 150

 150

 160

 160

 170

 170

 180

 180

 190

 190

 200

 200

 210

 210

 220

 230
 250

 260

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Branin function and keiEGO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

25

26

27

28

29

30

31

32
33 34

35

36

37

38

39

40

Figure 4.7: Contour plot of the keiEGO-optimization results of the Branin function

— the blue triangles represent the design sample, the green dots are the (enumerated)

optimization iterations

which serve as a budget/stopping criterion. Figure 4.6 and Figure 4.7 show contour

plots (vertical cuts of the surface) of the initial design and the optimization runs of

both procedures. The blue triangles represent the starting design in both cases and the

red and green dots represent the optimization runs of EGO and keiEGO respectively.

It can be seen in the figures that in this case both algorithms do a good job of finding

all the three global optima — the three basins seen in the plots. Both algorithms do

an efficient job in finding the optimal areas, investing only a limited amount of the

simulation budget into exploring non-optimal areas.

Next, we investigate the two-dimensional Schwefel function with the two algorithms.

Since this function seems more challenging, we allocated a bigger initial design — 35-

54 Robust model-based optimization

 −800

 −750

 −650
 −650

 −650

 −600 −
60

0

 −600

 −
55

0

 −550

 −550

 −550

 −
550

 −550

 −550

 −
50

0

 −
500

 −500

 −500

 −500

 −500

 −
50

0

 −500

 −500

 −450

 −
450

 −450

 −450

 −450

 −
45

0

 −450

 −450

 −450

 −
45

0

 −450

 −
40

0

 −400

 −400

 −400

 −400

 −400 −
40

0

 −400

 −400

 −400

 −
40

0

 −400

 −400

 −350

 −350

 −
35

0

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −
30

0

 −
30

0

 −300

 −300

 −300

 −300

 −300

 −300

 −300
 −300

 −300

 −300

 −300

 −300

 −300

 −300

 −
30

0

 −250

 −250

 −
25

0

 −
25

0

 −250

 −250

 −250

 −250

 −250

 −250

 −250

 −
250

 −250

 −250

 −250

 −250

 −250

 −
20

0

 −
20

0

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −
150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −
15

0

 −150

 −
15

0

 −150

 −150

 −100

 −100
 −

100

 −
100

 −100

 −100

 −100

 −100

 −100

 −100

 −100

 −100

 −
10

0

 −100

 −100

 −100

 −100

 −100

 −100

 −100

 −50

 −50

 −
50

 −50 −50

 −50

 −50

 −50

 −50

 −50

 −50

 −50
 −50

 −
50

 −50

 −50

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 0

 0

 0

 0

 0

 0

 0

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 5
0

 1
00

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 1
00

 100

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 1
50

 1

50

 200 200

 200

 200

 200

 200

 200

 200

 200

 200

 200
 200

 200

 200

 200

 200

 2
00

 250

 250

 250

 250

 250

 250

 25
0

 250

 250

 250

 250

 250

 250

 250

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300
 300

 300

 300

 300

 3
00

 300

 3
00

 350

 350

 350

 350

 350

 350

 350

 350
 350

 350

 350

 350

 350

 400

 400

 400

 400

 400

 400

 400

 400

 400
 400 400

 400

 400

 400 4
50

 450

 450

 450

 450

 450

 450

 450

 500

 500

 500

 5
00

 500

 550

 550
 550

 600

 600

 600

 650
 650 700 8

00

−400 −200 0 200 400

−
40

0
−

20
0

0
20

0
40

0

Schwefel function and standard EGO

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Figure 4.8: Contour plot of the EGO-optimization results of the 2D-Schwefel function

— the blue triangles represent the design sample, the red dots are the enumerated

optimization iterations, and the green circle in the upper right corner is the global

optimum

sampling points. Again, we choose a LHD-scheme for this task — see Table B.3 (in

Appendix B). Similar to the experiment above, we assign 40 runs for optimization as

stopping criterion. Figures 4.8 and 4.9 show the contour plots of the optimization

results — again the blue triangles represent the starting design in both cases and the

red and green dots represent the optimization runs of EGO and keiEGO respectively.

Additionally, the circle in the upper right corner shows the global optimum — in green

for EGO and in red for keiEGO. It can be seen that both algorithms invest much of the

optimization budget in exploration and they go close to a few of the local optima along

the way. What immediately becomes apparent however, is that the EGO algorithm

4.2 EGO with kernel interpolation 55

 −800

 −750

 −650
 −650

 −650

 −600 −
60

0

 −600

 −
55

0

 −550

 −550

 −550

 −
550

 −550

 −550

 −
50

0

 −
500

 −500

 −500

 −500

 −500

 −
50

0

 −500

 −500

 −450

 −
450

 −450

 −450

 −450

 −
45

0

 −450

 −450

 −450

 −
45

0

 −450

 −
40

0

 −400

 −400

 −400

 −400

 −400 −
40

0

 −400

 −400

 −400

 −
40

0

 −400

 −400

 −350

 −350

 −
35

0

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −350

 −
30

0

 −
30

0

 −300

 −300

 −300

 −300

 −300

 −300

 −300
 −300

 −300

 −300

 −300

 −300

 −300

 −300

 −
30

0

 −250

 −250

 −
25

0

 −
25

0

 −250

 −250

 −250

 −250

 −250

 −250

 −250

 −
250

 −250

 −250

 −250

 −250

 −250

 −
20

0

 −
20

0

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −200

 −
150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −150

 −
15

0

 −150

 −
15

0

 −150

 −150

 −100

 −100
 −

100

 −
100

 −100

 −100

 −100

 −100

 −100

 −100

 −100

 −100

 −
10

0

 −100

 −100

 −100

 −100

 −100

 −100
 −100

 −50

 −50

 −
50

 −50 −50

 −50

 −50

 −50

 −50

 −50

 −50

 −50
 −50

 −
50

 −50

 −50

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 0

 0

 0

 0

 0

 0

 0

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 50

 5
0

 1
00

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 1
00

 100

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 150

 1
50

 1

50

 200 200

 200

 200

 200

 200

 200

 200

 200

 200

 200
 200

 200

 200

 200

 200

 2
00

 250

 250

 250

 250

 250

 250

 25
0

 250

 250

 250

 250

 250

 250

 250

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300

 300
 300

 300

 300

 300

 3
00

 300

 3
00

 350

 350

 350

 350

 350

 350

 350

 350
 350

 350

 350

 350

 350

 400

 400

 400

 400

 400

 400

 400

 400

 400
 400 400

 400

 400

 400 4
50

 450

 450

 450

 450

 450

 450

 450

 500

 500

 500

 5
00

 500

 550

 550
 550

 600

 600

 600

 650
 650 700 8

00

−400 −200 0 200 400

−
40

0
−

20
0

0
20

0
40

0

Schwefel function and keiEGO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●
●
●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9
10

11

12
13

14

15

16

17

18

19

20

2122

23

24

25

26 27

28

29
30

3132 3334

35

36

37

38

39

40

Figure 4.9: Contour plot of the keiEGO-optimization results of the 2D-Schwefel func-

tion — the blue triangles represent the design sample, the green dots are the (enumer-

ated) optimization iterations, and the red circle in the upper right corner is the global

optimum

fails to find the global optimum in the upper right corner, whereas keiEGO manages to

adequately explore the optimal region. This might be explained with the more robust

nature of the KI metamodel, compared to the stationary classical Kriging.

This small optimization study based on the two synthetic functions, described above,

shows that the keiEGO method can be a competitor to the EGO method, in some cases

even surpassing it in performance. The results of these experiments give a little more

merit to our assumption that using the robust KI metamodel is advantageous in cases

where the black-box function under study is highly non-stationary and multimodal. It

should be mentioned that using the keiEGO is a bit more computationally costly than

56 Robust model-based optimization

the EGO method.

Sheet metal forming simulation case study

In this section we present the results of an optimization study of the sheet metal forming

problem described in Section 4.1. It is an 8-dimensional black-box problem, with the

parameters, with their respective definition domains, summarized in Table 4.1. The FE

Simulation of the deep drawing process, performed with LS-DYNA, is fairly complex

and computationally costly — each individual run takes about 60 minutes to complete

— on a small computer cluster. This computer-time limitation has been taken into

account in the planning of the simulation study and also for setting the experimental

budget. A total of 50 simulations were allocated as design runs. This initial design

was calculated with the statistical software R according to an LHD scheme (see Table

B.4 in Appendix B). The budget for actual optimization is set to at most 30 additional

simulations for each of the EGO and keiEGO procedures. This modest optimization

budget was chosen to accommodate the computational expense of the deep drawing

process simulation and also the computational intensity of fitting the KI metamodel in

each iteration.

The benchmark results produced with the EGO algorithm can be seen in Table B.5 in

Appendix B, and the results of keiEGO are shown in Table B.6. Note that we used

the full budget of 30 simulations for the classical EGO and only 27 for keiEGO. The

results are somewhat surprising, as keiEGO manages to find a much better solution

than the EGO algorithm. The keiEGO method finds a point with a maximum thickness

reduction of only 0.0755 (7.55%) inside the given budget, compared to the best solution

found with EGO: 0.0906 (9.06%). Note that as mentioned, a thickness reduction of

25% or more indicates a tear in the sheet metal. It should be noted that the experiment

in the initial design with the best thickness reduction of 24.16% just barely manages

to stay below the fracture bound, so achieving a reduction of under 10% just inside the

4.2 EGO with kernel interpolation 57

small 30 simulations budget is a good result.

This case study of a realistic sheet metal forming simulation has shown the advantage

the novel keiEGO algorithm has over the classical EGO. This was already seen, to a

smaller extent, with the help of the synthetic examples in the previous section. What

is even more astounding is that the keiEGO algorithm manages to get to a very good

solution of the complex 8-dimensional black-box problem in a very small simulation

budget of under 30 simulations.

Apart from the advantages of the keiEGO algorithm we have observed and discussed,

there is a drawback of this procedure — the computational cost of the KI metamodel.

The predictor function of the KI method relies on the simplices produced by the De-

launay triangulation — and their number grows fast with increasing dimensionality or

number of observed data points (Mühlenstädt et al., 2012). In turn, the cost of fitting

the KI model grows with the number of simplices.

5. Parallel optimization based on functional

decomposition

Parallel optimization in the black-box context has been studied in some recent works.

Ginsbourger et al. (2010) make the first steps towards calculating a batch of multiple

points per iteration with the help of the so-called q-EI criterion. Once a string of q

(for q ∈ N+) points is generated, it can be evaluated in parallel in each iteration. The

complexity involved in calculating this criterion, however, is a limiting factor. Chevalier

and Ginsbourger (2013) have addressed the complexity issues of the q-EI criterion, but

an autonomous algorithm which produces a q-EI optimal sequence in each iteration

is still to be constructed. However, Ginsbourger et al. (2010) suggest a few greedy

heuristic strategies for selecting a string of q 1-EI (i.e. the standard EI criterion)

optimal points in each iteration. One of these strategies is the “Kriging believer” — it

starts by evaluating a single point based on the EI criterion, just like standard EGO,

and then forces the model to treat the predicted value at this location as simulator

output — i.e. “believe” the predictor, in order to calculate a second point which is EI

optimal. This continues until q points are found. A similar strategy is the “constant

liar” heuristic. Instead of believing the predictor, it assumes that the true values at

the suggested 1-EI optimal locations are equal to a low constant value — the “lie”, in

order to generate a sequence of q points.

Another parallel strategy studied by Bischl et al. (2014) is to use the SLB criterion

(see Chapter 3.2) and to use a sequence of different κ values, each of which leads to a

different SLB-optimal point. These points can then be evaluated with the black-box

58

5.1 TII and FANOVA decomposition 59

in parallel.

In this chapter a novel parallel optimization procedure closely related to the EGO

algorithm is introduced. The parallel approach considered here follows a very different

strategy compared to the q-EI or the multiple κ SLB. This new method is based on a

technique from the sensitivity analysis toolbox, called functional analysis of variance

(FANOVA) graph (Mühlenstädt et al., 2012) based on the total interaction index (TII).

The FANOVA graph method analyzes the interactions of the variables for the black-box

function and is able to recognize a block-additive interaction structure if it is present.

Given an additive interaction structure the blocks can be simultaneously optimized

independent of each other by an algorithm of choice — in this work we use the EGO

algorithm, but the method is not restricted to EGO. Furthermore, it turns out that

by uncovering the additive blocks, besides achieving parallelization, we are also able to

reduce the dimensionality of the original problem as it would become apparent in the

following Section.

In this chapter we introduce the mentioned TII and FANOVA graphs and discuss some

details about the estimation and fitting of the graphs as well as practical applications.

Next we concentrate on the use of the TII in parallel optimization and dimensionality

reduction — this gives rise to an algorithmic procedure, which we called ParOF —

which stands for Parallel Optimization based on FANOVA. The whole methodology is

demonstrated on some test examples as well as on the deep drawing simulation from

the automobile industry described in Chapter 4.1.

5.1 TII and FANOVA decomposition

Sensitivity analysis belongs to the standard techniques for analyzing experiments. How-

ever, its role is rather the screening and effect interpretation of experimental factors

(Saltelli et al., 2000), which is not generally thought of as part of the optimization

process. Our aim is to show an elegant way to use techniques from the field of sen-

60 Parallel optimization based on functional decomposition

sitivity analysis in order to parallelize black-box optimization. With the help of the

already mentioned TII we can analyze the interaction structure between factors. The

TII measures the effect on the output of any pair of input variables in our model and

their interactions. This can be seen as a generalized screening process — screening for

interactions and not for main effects. This is motivated by the fact that we would like to

avoid taking inactive interactions into consideration in the modeling and optimization

phases. Note that disregarding inactive interactions is not self-evident or trivial in any

way. If we recall the structure of the Kriging covariance kernel from Equation (2.2) it

becomes apparent that the Kriging model implicitly assumes that all interactions are

active whether they are in the real model or not. This is a pretty conservative but

nevertheless safe assumption — this becomes clearer in the following paragraphs.

Now we present a short overview of the most important concepts concerning the

FANOVA decomposition. The works of Sobol’ (1993), Mühlenstädt et al. (2012) and

Fruth et al. (2014) provide a deeper insight and a more detailed introduction to the

FANOVA decomposition.

Let us consider the set of independent random variables {X1, . . . , Xd}, and let ν be the

probability measure for the vector XT = (X1, . . . , Xd). For every function f ∈ L2(ν),

i.e. square integrable with respect to ν, there exists a unique decomposition into addi-

tive terms — the FANOVA decomposition (Sobol’, 1993):

f(X) = µ0 +
d∑
i=1

µi(Xi) +
∑
i<j

µij(Xi, Xj) + . . .+ µ1,...,d(X1, . . . , Xd) (5.1)

Efron and Stein (1981) show that this decomposition is unique if all the terms on the

right hand side of Equation (5.1) have zero mean:

E(µI(XI)) = 0, I ⊆ {1, . . . , d},

and the conditional expectations satisfy the following identities:

E(µi,j(Xi,j)|Xi) = E(µi,j(Xi,j)|Xj) = E(µi,j,k(Xi,j,k)|Xi, Xj) =

= · · · = E(µ1,...,n(X1,...,n)|X1, . . . , Xn−1) = 0.

5.1 TII and FANOVA decomposition 61

The functions µ• can be introduced recursively:

µ0 = E(f(X))

µi = E(f(X)|Xi)− µ0

µi,j(Xi, Xj) = E(f(X)|Xi, Xj)− µi(Xi)− µj(Xj)− µ0

. . .

µI(XI) = E(f(X)|XI)−
∑
I′(I

µI′(XI′), I ∈ P ({1, . . . , d})

The functions (µi (Xi))i∈{1,...,d} can be seen as representing the main effects of the

variables and (µi,j (Xi, Xj))i<j the second-order interactions. Analogously for any index

set I ∈ P ({1, . . . , d}) the terms µI (XI) represent higher-order interactions.

This additive representation provides us with a decomposition of the overall variance:

D = Var (f(X))

=
d∑
i=1

Var(µi(Xi)) +
∑
i<j

Var(µij(Xi, Xj)) + . . .+ Var(µ1,...,d(X1, . . . , Xd))

The single variances DI = Var (µI(XI)), used to measure the effect of input variables,

and their corresponding interactions are prominently known as the (unscaled) Sobol

indices (Sobol’, 1993). With this notation we are equipped to introduce an important

sensitivity index — the TII (Fruth et al., 2014):

Definition 5.1 (Total interaction index):

Consider the two independent variables Xi and Xj; i, j ∈ {1, . . . , d}; i 6= j. The TII

for these variables is defined as

Di,j = Var

 ∑
I ⊇{i,j}

µI(XI)

 =
∑

I ⊇{i,j}

DI (5.2)

The TII encapsulates the joint contribution of a pair of variables Xi, Xj to the variance

— this includes second order direct interaction as well as all higher order interactions

which contain these two variables.

62 Parallel optimization based on functional decomposition

The TII is at the center of the so-called FANOVA graph procedure (Mühlenstädt et al.,

2012; Fruth et al., 2014). This technique is useful for detecting the interaction structure

of a function and the visualization of the structure in the form of a connected graph.

The FANOVA graph routine firstly calculates or estimates the TIIs — this will be the

topic of discussion in the coming paragraphs, and then uses the estimates to produce

a graph structure that visualizes the information about the interactions, contained in

the TIIs (see Example 5.1 and Figure 5.1). In the graph the variables are depicted as

nodes and the edges represent the interactions between the corresponding variables.

The FANOVA graph procedure is available for the statistical software R (R Core Team,

2015) in the package fanovaGraph (Fruth et al., 2013).

TII estimation

Before we devote ourselves to the topics of the practical applications of the TII — and

ultimately, parallel optimization with the help of the FANOVA graph, we would like

to address some important points concerning the estimation of the TII. Fruth et al.

(2014) provide an excellent review of the TII estimation process.

One of the most direct ways to estimate the interaction structure (the expected values

resulting from Equation (5.1)) of a black-box function is to use Monte Carlo integration.

First, we demonstrate how the expected value of a function f(X) can be calculated by

Monte Carlo integration. The estimation of the TII follows the same principle.

We initially generate a big number of random Monte Carlo runs x(1), . . . ,x(l), drawn

from the distribution ν of X, where l is typically not less than 1000 · d. Then we can

asymptotically approach the expected value of f(X):

1

l

l∑
k=1

f(x(k))
l→∞−−−→

∫
f(X) dν(X) (5.3)

Estimation of the TII can also be done by directly applying numerical integration to

calculate DI , for each I ∈ {J | {i, j} ⊆ J} for every pair of input variables with indices

5.1 TII and FANOVA decomposition 63

i, j ∈ {1, . . . , d}, by using the following relation (Fruth, 2015):

DI =

|I|∑
M=1

(−1)|I|−M
∑
J⊆I,
|J |=M

DC
J ,

where DC
J = Var (E[f(X)|XJ]) represent the so-called closed indices.

More direct ways to estimate the TII are presented by Fruth et al. (2014). They derive

a formula based on the work of Liu and Owen (2006), which allows us to write the TII

as:

Di,j =
1

4
E
[(
f(Xi, Xj,X−{i,j})− f(Xi, Zj,X−{i,j})

−f(Zi, Xj,X−{i,j}) + f(Zi, Zj,X−{i,j})
)2]

,
(5.4)

where −{i, j} denotes the index set containing all indices except i and j, i.e. −{i, j} =

{1, . . . , d} \ {i, j} and Zi (resp. Zj) represents an independent copy of Xi (resp. Xj).

Now we can use Equation (5.4) in order to estimate the TII, using numerical integration

(Monte Carlo) in the same manner as in Equation (5.3):

D̂i,j =
1

4
× 1

l

l∑
k=1

[
f(xki , x

k
j ,x

k
−{i,j})− f(xki , z

k
j ,x

k
−{i,j})

−f(zki , x
k
j ,x

k
−{i,j}) + f(zki , z

k
j ,x

k
−{i,j})

]2
. (5.5)

This estimator is called the Liu and Owen estimator. Other estimators for the TII

can also be derived but in this work we use the Liu and Owen estimator, since it has

many good properties, like being unbiased, asymptotically efficient as well as asymp-

totically normal distributed. It was also shown that the Liu and Owen estimator is

generally superior to competing estimators (Fruth et al., 2014). Note, however, that

with increasing dimensionality, the complexity issue of calculating the TII has to be

taken into account. Apart from the metamodel costs (fitting and predicting with the

model) associated with the TII estimation, in the case we are dealing with a black-box

function — which will be discussed in more length at the end of this section, it can

be shown that a good choice of an estimation procedure guarantees a linear increase

64 Parallel optimization based on functional decomposition

of complexity with increasing dimension (Fruth et al., 2014). The Liu and Owen esti-

mator is not the best to use with very high dimensional problems but it is still a good

competitor (Fruth et al., 2014). The Liu and Owen estimator is implemented in the

R-package fanovaGraph in the function estimateGraph.

The FANOVA graph method

Now we demonstrate the FANOVA graph method and its applications — like visualiza-

tion and the additive decomposition it provides, with the help of a small test function.

Example 5.1 :

Consider the 6-dimensional function f0 : [0, 1]6 → R; f0 (x) = x1 ·x2 ·x3 ·α+x4 ·x5 ·x6
with α = 0.6. This function has an obvious interaction structure — the variables

x1, x2 and x3 interact with each other but not with x4, x5 and x6 — f0 is an additive

conjunction of the two variable blocks. And since we assume a uniform distribution

of the input values, it is also evident that the block {x1, x2, x3} contributes less to the

overall variance, because of the scaling factor α.

Note that in this example, the TII is calculated given the true function is known. This

allows us to use (numerical) integration of the true function f0 (see the paragraph about

thresholding at the end of this section). The estimated values of the TII for the function

f0 are depicted in Table 5.1. Note that the usual case in practice is that underlying

function is unknown (black-box). Figure 5.1 portrays the FANOVA graph visualization

for f0. We can see that the interaction structure is accurately depicted. The thickness

of the edges also contains information about the TII — thicker edges indicate higher

values of TII between the respective variables. The FANOVA graph representation of

the TII can be seen in Figure 5.1. Note that the block {x1, x2, x3}, accurately has lower

TII values (thinner lines in Figue 5.1) because of the scaling factor α.

5.1 TII and FANOVA decomposition 65

1

2

3
4

5

6

Figure 5.1: FANOVA graph for the function f0

The construction of FANOVA graphs is a sort of special case of a more general result

implied by the TII — the ability to detect the block additive structure of a given

function f . This is equivalent to finding disjoint subgraphs in the FANOVA graph

plot.

Remark 5.1 Let B ⊂ P ({1, . . . , d}) be a finite set, which contains information about

disjoint clusters: B = {I1, . . . , Im} ,m ∈ N+, with Ik ∩ Il = ∅; k, l ∈ {1, . . . ,m} , k 6= l

and
⋃m
l=1 Il = {1, . . . , d}. The additive decomposition of f can be written as:

f(x1, . . . , xd) =
∑
I∈B

fI(xI) (5.6)

The next example shows the implication of this decomposition in practical situations.

Example 5.2 (Example 5.1 continued):

We see the direct application of an additive decomposition described in Remark 5.1 by

66 Parallel optimization based on functional decomposition

Interaction between TII

X1*X2 0.028097

X1*X3 0.029579

X1*X4 0.000000

X1*X5 0.000000

X1*X6 0.000000

X2*X3 0.029094

X2*X4 0.000000

X2*X5 0.000000

X2*X6 0.000000

X3*X4 0.000000

X3*X5 0.000000

X3*X6 0.000000

X4*X5 0.082990

X4*X6 0.080164

X5*X6 0.081782

Table 5.1: Total interaction index of the simple function f0, calculated with numerical

integration given f0 (Example 5.1)

looking at the example function f0. First of all we can write the information about the

additive parts in the following way:

B = {I1, I2}, with I1 = {1, 2, 3}, I2 = {4, 5, 6}.

Then we can write:

f0(x) = fI1(xI1) + fI2(xI2) = fI1(x1, x2, x3) + fI2(x4, x5, x6),

where fI1(xI1) = x1 · x2 · x3 · α and fI2(xI2) = x4 · x5 · x6 are both R3-functions.

5.1 TII and FANOVA decomposition 67

Thresholding

In the TII estimation formula from Equation (5.5) we may or may not have information

about the true function f . If the function f is known, the Liu and Owen estimator

can be calculated straightforwardly by Monte Carlo integration. If f is unknown — as

it is the case with black-box functions, we can still use the Liu Owen estimator. We

just need to substitute f with the estimator function f̂ provided by some metamodel.

This option is also implemented in the fanovaGraph and the estimateGraph function.

For example with the Kriging model we can supply the function kmPredictWrapper as

an input parameter: estimateGraph(kmPredictWrapper,...). Note, however, that

relying on an approximating metamodel involves an additional degree of uncertainty,

since the approximation is in itself uncertain. For this reason the estimated TII is of-

ten obscured by noise. In fact, sometimes interactions which are not present in reality

are estimated as (weakly) active due to this noise. We refer to these interactions as

“phantom” interactions or noise interactions — they represent edges in the FANOVA

graph which consist only of noise effects. In order to be useful, the FANOVA graph

method should be able to distinguish the noise interactions from the “plausible” in-

teractions and be able to effectively filter out such noise interactions. Since the TII

of the phantom interactions usually has comparatively low values, it is customary to

discard (set the value of the corresponding TII to 0) any interaction effects, which have

a TII below a certain value — a so-called threshold. The whole procedure is called

thresholding and is best described by Mühlenstädt et al. (2012) and Fruth et al. (2013),

which also present strategies for choosing the threshold value. The thresholding con-

cept which we have applied in this thesis uses the properties of an additive Kriging

kernel and the changes in the model brought by applying different additive decom-

positions to the kernel. This technique, introduced by Mühlenstädt et al. (2012), is

used to provide information about the dangers (or the benefits) of cutting off a given

edge. In the fanovaGraph package, different threshold values (which produce differ-

ent decompositions of the same problem) are observed and the effect on the Kriging

68 Parallel optimization based on functional decomposition

prediction error (quantified with the help of cross-validation) is taken as a measure of

the plausibility of the different decompositions. The thresholding procedure is imple-

mented in the fanovaGraph package and the function thresholdIdentification. It

is demonstrated first, in a small practical example later on in this chapter, before being

applied to study the sheet metal forming simulation.

The following example demonstrates the effect that noise interactions have on the

estimation of the TII values.

Example 5.3 (Example 5.1 continued):

Let us again consider the simple function f0 but this time regard it as a black-box

function. We fit a Kriging model to f0 according to a 60 points LHD. In Figure 5.2

we see the estimated graph of f0. We see a lot of apparent noise interactions, which

obviously do not exist in reality — see Table B.12 in Appendix B for the estimated TII

values. It is clearly evident that the TII values on the edges between variables which

do not interact are much lower, than on the edges which show the actual interactions.

This again encourages the idea of setting a threshold value for the TII and letting all

other values vanish. In the example in Figure 5.2, choosing a proper (small) threshold

cut value, reveals the true interactions structure as seen in Figure 5.1.

5.2 Parallel optimization

In this section the parallel optimization algorithm based on the FANOVA graph is

discussed. As already mentioned our algorithm takes a different approach to par-

allelization than the already described idea of the q-EI. Rather than looking to the

metamodel and relying on the underlying assumptions or the EI criterion, our method

uses the additive decomposition provided by the TII, should such a decomposition ex-

ist.

Equation (5.6) presents one of the essential results in this chapter — providing informa-

5.2 Parallel optimization 69

1

2

3

4

5

6

Figure 5.2: Approximate data-estimated FANOVA graph of the function f0

tion about the additive decomposition of the black-box function allows us to produce

a parallel optimization procedure. Closely related to the additive decomposition is the

following equivalence — For any f ∈ L2(ν) decomposable in additive parts, denoted

by the index set B, it holds:

min
x1,...,xd

(f(x1, . . . , xd)) =
∑
I∈B

min
xI

fI(xI) (5.7)

Equation (5.7) reveals the connection between the additive decomposition and parallel

optimization — it states that optimizing a function f is equivalent to optimizing the

non-interacting, lower-dimensional functions fI . Reducing the problem dimensionality

naturally leads to a reduced overall problem complexity since the complexity does not

grow linearly but exponentially with dimension — a phenomenon known as the curse

of dimensionality. Furthermore, the equation provides us with the ready ingredients

for a parallel optimization procedure — independent functions to optimize separately.

However, the drawback is that knowledge is required of the functions fI , which are

usually unknown. Equation (5.7) has to be altered before the additive decomposition

70 Parallel optimization based on functional decomposition

is ready for use in optimization. In order to do this, we exploit the fact that f has a

block additive structure, making it affine invariant in the “inactive dimensions”. We

start by defining an index-permutation function:

Definition 5.2 (Index-permutation function):

Let the function πdu : Rd → Rd, represent the canonical index function in the following

way:

πdu(xτ(1), . . . , xτ(d)) = (x1, . . . , xd)
T .

for every permutation τ = (τ(1), . . . , τ(d))T of the elements {1, . . . , d}.

The permutation function πdu is a necessary formality — it represents the canonical

permutation, which maps the coordinates of a vector, which have been reordered by

any permutation, to the canonical form (x1, . . . , xd). With the help of this technical

definition, we can introduce the following proposition:

Proposition 5.1 Let f ∈ L2(ν) be a d-dimensional function decomposable in additive

parts, denoted by the index set B. Let D ⊆ Rd be the domain of f . Furthermore, let

c ∈ D be arbitrary but fix constants, and let fI be defined as in Equation (5.6). Then

the following representation of the additive decomposition holds true:

min
x∈D

f (x) =
∑
I∈B

min
xI

fI (xI) = f

(
πdu

(⋃
I∈B

argmin
xI

f (xI , cIc)

))
, (5.8)

where Ic = B\I is the complement of I and c = πdu(cI ∪ cIc)

Proof Lets assume D = Rd for ease of notation. Showing the validity of the equation

is almost straightforward, we only need to show that min fI (xI) = min f (xI , cIc) ;∀I ∈

B. It holds that xI ∈ R|I| and cIc ∈ Rd−|I|. To not further complicate notation, we drop

the function πdu, by assuming that (xI , cIc) has proper indexing — i.e. f (xI , cIc) =

f (x).

Now, since I ∩ J = ∅; for every pair, I, J ∈ B, I 6= J , it follows that xI ∩ xJ = ∅;

5.2 Parallel optimization 71

∀xI ,xJ from the feasible sets of fI and fJ respectively. Recall that the constant vector

c was chosen on the design space of f , thus fJ (cJ) is well defined ∀J ∈ B. Thus, with

Equation (5.6) described in Remark 5.1, it holds for an arbitrary (fix) I ∈ B:

f (xI , cIc) = fI(xI) +
∑
J∈B\I

fJ(cJ)

Furthermore, because the cJ are all constant, it holds for the term on the right hand

side:
∑

J∈B\I fJ(cJ) = C, where C is constant. Thus this term can be excluded from

the optimization, from which it follows that min fI (xI) = min f (xI , cIc). By extension

this result also holds for the argmin. Now we apply this result for every I ∈ B, and

we combine the individual solutions vector-wise, reorder with πdu, and we get Equation

(5.8).

In this rather technical proposition we have managed to derive a formula, which is

equivalent to Equation (5.7) but only relies on the original function f and does not

require any information about the unknown fI . The role of the constants c is to act

as a sort of placeholder for the dimensions in the space of f , which represent the

inactive interactions, for the respective I ∈ B. The idea of using c in the “inactive”

dimensions stems from the additive nature of the blocks defined by the elements of B.

The mentioned affine invariance is also closely related to this fact and is manifested

by
∑

J∈B\I fJ(cJ) = C. It means that the functional form of fI (xI) and f (xI , c
c
I), for

an index set I ∈ B and fix cc
I , are equivalent. Furthermore the functional values are

equal up to a constant value — as we have seen in the above proof. Most importantly,

using the cI to “fill up” the inactive dimensions does not alter with the dimensionality

of the optimization problem, since as fix constants they are not being optimized —

keeping the problem complexity the same as in Equation (5.7). The dimensionality of

each independent optimization block is given by the cardinality |I|; ∀I ∈ B.

Equation (5.8) provides us with the last ingredient needed for our parallel optimiza-

tion procedure — a representation of the disjoint blocks only depending on the initial

function f . Table 5.2 shows a brief outline of the individual steps of the method we

72 Parallel optimization based on functional decomposition

propose. The ParOF algorithm (see Ivanov and Kuhnt (2014)) starts with a sort

of a preprocessing step (phase I.). In this phase data is first gathered by evaluating

the black-box simulation on a set of locations according to a statistical design. Sec-

ond, the (additive) structure of the black-box function is estimated with the help of a

metamodel, fit corresponding to the collected data and the FANOVA graph method,

respectively the TII. If the TII, after thresholding, provides evidence that the func-

tion is decomposable into disjoint subproblems, we proceed to the second phase of the

ParOF algorithm — global optimization. In this phase we again have to gather data

according to a statistical design but this time about the separate, disjoint subprob-

lems, using several simulators in parallel. Each lower-dimensional subproblem is then

independently modeled. Subsequently, an optimization procedure of our preference is

performed on the disjoint lower-dimensional blocks. The definition of the blocks in a

closed form is provided by Equation (5.8):

argmin
xI

f (xI , c
c
I) , I ∈ B

The choice of the algorithm is flexible at this stage — we can either for example use

the already discussed EGO (see Chapter 3) or the KI-based version of EGO presented

in Section 4.2 or something entirely different. Note, furthermore that the first phase

(preprocessing) of the ParOF algorithm is also flexible, since if no useable decompo-

sition is found in phase I., the data generated for this phase can just be invested into

standard black-box optimization. By performing phase I., we are not sacrificing any

information or simulation time. We can decide if a parallel optimization is suitable in

the particular case after seeing the decomposition.

At this point we wish to address a rather trivial but important issue. In order for

parallel optimization of computer experiments to be feasible, we need to assume that

simulation time is the major limiting factor and not the hardware at our disposal:

Remark 5.2 In order for parallel optimization to be practical, we assume that com-

putational time is limited, the number of simulators is not.

5.2 Parallel optimization 73

Table 5.2: The ParOF — Parallel Optimization algorithm

ParOF — algorithm outline

Phase I. Preprocessing

1. Generate data about the black-box function

2. Fit a metamodel to the data

3. Build the FANOVA graph (estimate the TII)

4. Decompose the graph by thresholding

Phase II. Parallel Optimization (if step 4. produces disjoint subgraphs)

5. Generate data for the separate/disjoint problems

6. Fit separate metamodels to the disjoint problems (use data from step 5.)

7. Perform separate optimizations on the disjoint subgraphs

These simulator machines can be computers on which we run our simulations for ex-

ample. If this assumption is violated, i.e. if our simulation capacity is insufficient, the

efficacy of parallel optimization might also be limited.

Test example with ParOF

The rest of this chapter is devoted to studying the practical application potential of

the ParOF algorithm. For the sake of convenience, both computational and implemen-

tational, throughout this chapter we use the Kriging model and the EGO algorithm

as components of the ParOF algorithm (see Table 5.2). Note that these choices of

metamodel and optimization procedure are not in any way obligatory — a different

metamodel and a different optimization procedure (for example the KI and keiEGO)

can be applied with the ParOF algorithm instead.

To illustrate the ParOF algorithm, we once again look at the Schwefel function. As

discussed in Section 4.2, it has a global optimum x∗ = [420.9687, . . . , 420.9687]T ∈ Rn

74 Parallel optimization based on functional decomposition

for any n ∈ N. If we do an independent analysis of the function, under the assumption

that we know its true functional form, we can exploit the fact that the Schwefel function

is completely additive without any interactions. In this ideal case, when we take

advantage of our knowledge of the analytical form of the function, we can decompose

the n-dimensional problem, into n 1-dimensional problems and optimize separately:

x∗ = argmin
x∈Rn

n∑
i=1

−xi · sin
(√
|xi|
)

≡
(

argmin
x1∈R

−x1 · sin(
√
|x1|), . . . , argmin

xn∈R
−xn · sin(

√
|xn|)

)
In this analytical example the functions fI from Equation (5.8) can also be clearly

distinguished- they are represented by the one-dimensional functions xi · sin(
√
|xi|).

This (theoretical) decomposition of the Schwefel function does not only allow us to

find the global optimum using parallel computation, but it also severely reduces the

complexity of the problem, since as discussed — complexity increases exponentially

with increasing dimension.

The analytical consideration above is unrealistic, since in real applications we are deal-

ing with black-box functions, which obviously do not provide information about the

fI functions. In black-box situations, we have to estimate the block structure from a

limited amount of experimental data. We wish to test the ParOF algorithm on a chal-

lenging benchmark problem, therefore we apply it to the eight-dimensional Schwefel

function, this time assuming it to be a black-box function. We start by estimating the

interaction structure (phase I — see Table 5.2) — i.e. we estimate the TIIs. Since we

are in the black box context, we need to estimate a metamodel — in this case a Krig-

ing model. Since the Schwefel function is pathologically irregular and hard to model,

we assign a simulation budget (i.e.functional evaluations of the 8D Schwefel function)

twice as big as suggested by Jones et al. (1998)’s rule of thumb — i.e. 2 · 10 · 8 = 160

simulations, generated according to a LHD scheme. Figure 5.3 shows the result of the

initial estimation of FANOVA graph — the estimated values of the TII can be seen

in Table B.13 in Appendix B. As was suggested previously, noise plays a role in the

5.2 Parallel optimization 75

1

2

3

4

5

6

7

8

Figure 5.3: Data-estimated FANOVA graph of the 8D Schwefel function

estimation of the indices — there should be no active edges in the graph. To solve this

issue, we next search for the threshold cut, which filters out unnecessary interactions

and brings us closer to a better description of the true interactions structure. Choosing

the threshold value is a tricky process — it can be shown that for modeling it is far

more problematic to cut off an interaction which is present in reality (Mühlenstädt

et al., 2012), than assuming a false interaction in the model. The same is true for

optimization — if we falsely assume an interaction is not active, this would (fatally)

compromise the assumption of affine invariance and Proposition 5.1 (and respectively

Equation (5.8)) would no longer hold. Instead, if we falsely assume that an interaction

is active, this would not affect the optimization or the optimum. But it would never-

theless make the parallelization procedure less efficient.

In our 8D Schwefel function example, we conduct the thresholding procedure with the

help of the R function thresholdIdentification, described in Fruth et al. (2013).

The method starts by selecting the threshold values leading to the biggest jumps, where

a jump is defined as the absolute difference between two consecutive TII values in the

76 Parallel optimization based on functional decomposition

graph, after a particular threshold has been used. The intuitive idea is that bigger

jumps lead to a graph, which has all the low-valued, noise interactions filtered out

and has only the higher-valued interactions together with the lower valued, but real,

interactions. These jumps can be visualized with the function plotDeltaJumps from

the same package — fanovaGraph. The threshold values of 0 — corresponding to no

change in the graph and 1 — corresponding to a completely disjoint graph are also de-

faultly included in the search procedure, implemented in thresholdIdentification.

For our example of the 8D Schwefel function, we have chosen to test the three threshold

values corresponding to the three biggest jumps in the graph and also the values 0 and

1 — which is the default setting of thresholdIdentification. Figure 5.4 shows the

output of the thresholding process. In the figure we can see the effect that different

threshold values — the values are depicted as a title to each separate plot, have on the

Kriging predictor. Each threshold value corresponds to a different decomposition of

the graph, which in each case is used in order to decompose the Kriging kernel in ad-

ditive blocks, corresponding to the decomposition defined by the threshold. Then with

the help of cross validation the RMSE of each additively decomposed Kriging model is

measured. The idea is that the closer a given decomposition is to the true (unknown)

decomposition, the better prediction results the corresponding additive kernel will pro-

duce. A result that supports this theory was presented by Mühlenstädt et al. (2012).

In this example, the thresholding procedure (rightly) concludes that there should be

no active interactions in the true function. It is apparent from Figure 5.4 that a model

with threshold value equal to 1 (corresponding to no interactions) has the best cross-

validation predictions — the corresponding FANOVA graph is shown in Figure 5.5

Estimating the decomposition concludes the first part of the ParOF algorithm. In the

second phase (phase II from Table 5.2) we optimize the 8 one-dimensional clusters

separately (in parallel) using the EGO algorithm for each one. In this most ideal case

where we managed to uncover the fully additive nature of the Schwefel function, in the

second phase we only need about 15 additional simulations — since the EGO algorithm

needs about that many to find the global optimum of the 1D Schwefel function. These

5.2 Parallel optimization 77

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

−1000 −500 0 500 1000

−
15

00
−

10
00

−
50

0
0

50
0

10
00

15
00

threshold = 0

y

cr
os

sv
al

id
at

ed
 y

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00
15

00

threshold = 0.05

y

cr
os

sv
al

id
at

ed
 y

●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00
15

00

threshold = 0.08

y

cr
os

sv
al

id
at

ed
 y

●
●

●

●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00
15

00

threshold = 0.13

y

cr
os

sv
al

id
at

ed
 y ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00
15

00

threshold = 0.3

y

cr
os

sv
al

id
at

ed
 y

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

−1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00
15

00

threshold = 1

y

cr
os

sv
al

id
at

ed
 y

Figure 5.4: Testing different threshold values based on cross-validation with the Kriging

model

1

2

3

4

5 6

7

8

Figure 5.5: FANOVA graph of the 8D Schwefel after thresholding

78 Parallel optimization based on functional decomposition

1

2
3

4

5

6

7
8

Figure 5.6: FANOVA graph of the 8D Schwefel after thresholding with a lower threshold

15 simulations include training the Kriging model. Thus if we have 8 computers at our

disposal, we can do 8 parallel optimizations simultaneously and our overall time cost

will be the cost of the 15 simulations.

Note that the threshold identification procedure is sometimes dependent on the choice

of randomness — e.g. the choice of set.seed in R. In order to rule randomness out,

we conducted the threshold identification 10 additional times independently and cal-

culated the median and mean of the respective best threshold values in each of the

10 iterations. In median, the best threshold value remains 1, corresponding to no in-

teractions, but the mean value is 0.665. Figure 5.4 also suggests that the true, but

unknown, threshold might be between 0.3 and 1. If we choose to be a bit more con-

servative, which is advisable, and instead take the lower threshold value 0.3, we get

the FANOVA graph depicted in Figure 5.6 and from here we continue with the opti-

mization phase. Because the Schwefel function is a challenging problem even in lower

dimensions, we allocate a preset time (simulation budget) of a 150 simulations for the

2D cluster we get after thresholding. We assume that the 1D clusters are optimized

in the background on parallel machines, thus the costs for the smaller clusters can be

ignored (this is due to the assumption in Remark 5.2), i.e. the actual overall time costs

are only equal to the costs of the biggest cluster (the {4, 8} block). Note that in our

parallelization procedure, in the optimization phase, the majority of the simulation

5.2 Parallel optimization 79

budget goes to fitting the Kriging models for the different blocks, since it is until now

not possible to reuse information from the first phase. Nevertheless within the given

optimization budget of 150 simulations (including model fitting), the ParOF algorithm

finds a solution which is only numerically slightly different than the global optimum

— the solution found is only 6.566368 · 10−6% away from the true optimum.

In order to establish a baseline, we next apply the standard EGO algorithm to the same

8D Schwefel problem. To ensure comparability between the two procedures, we use the

data generated for the ParOF algorithm (for phase I) for the start of the EGO algo-

rithm — the 160 simulations generated with a LHD are used to train the Kriging model

needed for EGO. Furthermore we allocate the same budget for (actual) optimization

— 150 simulations — as we had for the ParOF, again with the idea of comparing the

results as best as possible. The best solution found by the standard EGO algorithm

within the budget is much worse than the one we found with the ParOF procedure and

is nowhere near the global optimum. Thus, within the same simulation time budget,

the ParOF procedure finds the true optimum whereas the EGO algorithm does not

come close — see Table 5.3 for the best results by both optimizations compared to the

true optimum. Note also that standard EGO does not take the extra step to estimate

the TIIs.

The benchmark test example shows the potential advantage our parallelization algo-

rithm may have when compared to more traditional methods in the field of black-box

optimization, since using Kriging-based optimization itself has already been shown

to produce better results than for example polynomial-based optimization (Jakumeit

et al., 2005). We chose the dimension 8 for the Schwefel function, because the sheet

metal forming process simulation we want to study and optimize is eight-dimensional.

80 Parallel optimization based on functional decomposition

Table 5.3: ParOF algorithm vs. EGO algorithm applied to the 8D Schwefel function

Variable/Target EGO solution/Result ParOF solution/Result True opt.

x1 425.7080 420.8039 420.9687

x2 381.9776 420.8039 420.9687

x3 174.1868 420.8039 420.9687

x4 450.1670 420.8039 420.9687

x5 16.4449 420.8039 420.9687

x6 76.5190 420.8039 420.9687

x7 −163.6688 421.0547 420.9687

x8 −152.6754 421.0322 420.9687

y −1108.148 −3351.841 −3351.863

5.3 Optimization of a deep drawing process

In this section we focus on the deep drawing process described in Section 4.1 (see Table

4.1 for a list of the parameters and their domains). Similar to the case study of the same

process at the end of Section 4.2, the goal here is to optimize the thickness reduction

in this black-box problem with the ParOF procedure and compare its results to the

benchmark results, which are generated with the classical EGO. For both methods

we use the same 50 points LHD already mentioned in Section 4.2 (see Table B.4 in

Appendix B) as a starting design to be used for both algorithms accordingly — for the

EGO to fit the initial Kriging model and for ParOF — to estimate the interactions

structure of the black-box function. For both methods we set a simulation (time) limit

of maximum 60 additional experiments for the optimization phase. This relatively small

simulation budget corresponds to the high time-cost of performing a single simulation

— about 60 minutes, performed on a small cluster.

Within the 60 simulation runs allocated to EGO runs (step 2-4 from Table 3.1), the

algorithm finds a very good solution for the maximum thickness reduction after forming

— 0.0783 or 7.83% — this solution is depicted in Table 5.4 (see Table B.7 in Appendix

5.3 Optimization of a deep drawing process 81

Table 5.4: EGO algorithm result for the deep drawing simulation

Parameters/Target Value Machine Settings/Result

[1] Flow stress (FS) 110.62 MPa

[2] Initial sheet thickness (ST) 0.5 mm

[3] Blankholder force (BHF) 73.12 kN

[4] Friction; first-third of process (F1) 0.01

[5] Friction; second-third of process (F2) 0.14

[6] Friction; third-third of process (F3) 0

[7] Hardening exponent (HE) 0.119

[8] Sheet layout (SL) 100.34%

[9] Thickness Reduction 0.0783

1

2

3

4

5

6

7

8

Figure 5.7: Data-estimated FANOVA graph of the deep drawing experiment before

thresholding

B for the whole string of sequentially generated candidate optima).

Now with the ParOF algorithm we first need to estimate the interactions structure

(phase I. in Table 5.2) of the deep drawing problem before we can decide if parallel

optimization (phase II.) is beneficial in this case. Based on the same 50 data points

used by EGO in the previous paragraphs (Table B.4 in Appendix B) we fit a Kriging

model and use it to estimate the TII of the FANOVA graph method. Looking at the

82 Parallel optimization based on functional decomposition

initial estimation of the FANOVA graph, depicted in Figure 5.7, we cannot say a lot,

but it looks like many of the interactions are noise and only a few of them are strong,

real interactions — for example the interactions between X2 and X4 as well as between

X4 and X7, as estimated by the TII, are close to 0 — see Table B.14 in Appendix

B for the estimated TII values. Note that in the picture and in the data table in the

appendix, the numbering of the nodes corresponds to the numbering of the variable as

seen in Table 4.1. Next, we perform thresholding with the R-package fanovaGraph in

order to filter out the phantom interactions, as discussed at the end of Section 5.1. We

state here again for completeness that the goal of the thresholding procedure is to find

the threshold value which cuts out the noise interactions, while improving the fit of

the metamodel. The output of the thresholding step, performed with the R-function

thresholdIdentification is shown in Figure 5.8. We look at seven candidate thresh-

old values, besides the extreme cases of a threshold equal to 0 or 1. As explained earlier,

these seven values are the threshold values corresponding to the biggest jumps. Just

by looking at the picture, we can rule out a lot of the candidate values, whereas the

values 0.004 and 0.03 seem to produce the best improvement in the Kriging fit. This

assumption is also confirmed by looking at the RMSE values — Table 5.5. The two

values mentioned are close contenders, both having very similar RMSE values. Figure

5.9 and Figure 5.10 show the trimmed FANOVA graphs according to the threshold

values 0.004 and 0.03 respectively. Both values produce a set of separate graphs, which

are ideal for the ParOF algorithm. The presence of many one-dimensional clusters is

particularly beneficial for the parallel procedure, since it is assumed that they can be

optimized more cheaply. By looking at the graphs corresponding to both thresholds,

it is tempting to choose the one corresponding to the 0.03 value, since its structure

is less complex and at the same time it provides more independent clusters, which is

good for parallel optimization. But we chose the more conservative value 0.004 for

this optimization study, corresponding to the less clustered graph (Figure 5.9). As we

mentioned earlier in the previous sections, if there is any doubt, the more conservative

value should be taken, since we can do less harm by falsely assuming a phantom inter-

5.3 Optimization of a deep drawing process 83

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

threshold = 0

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
3

0.
5

0.
7

0.
9

threshold = 0.003

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
5

0.
7

0.
9

threshold = 0.004

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
3

0.
5

0.
7

0.
9

threshold = 0.01

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold = 0.03

y

cr
os

sv
al

id
at

ed
 y

●

●
●

●

●
●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

● ●

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
5

0.
6

0.
7

0.
8

threshold = 0.038

y

cr
os

sv
al

id
at

ed
 y

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
4

0.
6

0.
8

1.
0

threshold = 0.05

y

cr
os

sv
al

id
at

ed
 y

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
3

0.
5

0.
7

0.
9

threshold = 0.1

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold = 1

y

cr
os

sv
al

id
at

ed
 y

Figure 5.8: Testing different threshold values based on cross-validation with the Kriging

model

action is active.

The thresholded FANOVA graph provides us with the independent clusters (which

correspond to the independent parts on the right hand side of Equation (5.8)) for the

ParOF procedure. This disjoint graph also presents a notable dimensionality reduction

of the original problem in three one-dimensional sub-problems and one five-dimensional.

The next step is to begin with the optimization phase (step II. in Table 5.2) of the

algorithm, whereas the preset simulation budget of 60 additional runs is the stopping

criterion.

In order for the parallel optimization phase to make sense, we have to assume that Re-

84 Parallel optimization based on functional decomposition

threshold RMSE

0.00000 0.82058

0.00300 1.00452

0.00400 0.77598

0.01000 0.95782

0.03000 0.77554

0.03800 1.25261

0.05000 0.98988

0.10000 1.19937

1.00000 1.25733

Table 5.5: Quality of the Kriging fit measured based on the RMSE, according to

different threshold values

1

2
3

45

6

7

8

Figure 5.9: FANOVA graph of the deep drawing simulation after thresholding, with

threshold value = 0.004

5.3 Optimization of a deep drawing process 85

1

2

3

4

5

6

7

8

Figure 5.10: FANOVA graph of the deep drawing simulation after thresholding, with

threshold value = 0.03

mark 5.2 holds true: simulation time is limited, but simulation machines are not. This

effectively means that the actual time costs of our optimization are equal to the costs of

the biggest cluster — in this case the {1, 3, 5, 6, 8} block, since the smaller clusters are

optimized independently on different simulators for a smaller time amount. Thus the

60 experiments time budget is invested in optimizing the biggest independent block.

Note that phase II. of the algorithm corresponds to applying EGO to the indepen-

dent clusters. Tables B.8 to B.11 in Appendix B show the results for the optimization

of the separate clusters — note that all the tables contain the starting design and

the optimization runs in one table, separated by a line in the middle. We take the

best solutions for each of the four separately optimized clusters and combine them

coordinate-wise into one common optimum (as it is postulated in Proposition 5.1 and

Equation (5.8)). The new combined solution has to be evaluated with the simulator

at the end. This last simulation was taken into consideration when the simulation

budget was assigned — thus we allocated a total of 59 simulations to the optimization

86 Parallel optimization based on functional decomposition

Table 5.6: ParOF algorithm result for the deep drawing simulation

Parameters/Target Value Machine Settings/Result

[1] Flow stress (FS) 100 MPa

[2] Initial sheet thickness (ST) 0.5 mm

[3] Blankholder force (BHF) 87.96 kN

[4] Friction; first-third of process (F1) 0

[5] Friction; second-third of process (F2) 0.129

[6] Friction; third-third of process (F3) 0.002

[7] Hardening exponent (HE) 0.143

[8] Sheet layout (SL) 100.86%

[9] Thickness Reduction 0.0786

of the biggest cluster — {1, 3, 5, 6, 8}, where we used 40 simulations for the starting

design and 19 for optimization runs (as can be seen in Table B.11). This leaves one

free simulation for the evaluation of the combined solution at the end. The smaller

clusters have budget allocations as follows: all of the one-dimensional clusters have a

limit of 10 optimization iterations. Furthermore the clusters {4} and {7} have starting

designs with 10 runs and the cluster {2} has 15 starting design runs. Note, however,

that because of Remark 5.2, these costs were not included in the 60 simulations budget

for the optimization phase of ParOF.

The final, combined optimal solution found with the ParOF, i.e. the best machine set-

ting found by the procedure, can be seen in Table 5.6. The solution for the thickness

reduction found with the algorithm: 0.0786 (7.86%) is very similar to the results of the

classical EGO procedure. The deviation in accuracy between the two found solutions

is negligibly small and might be due to numerical errors in the simulation.

5.3 Optimization of a deep drawing process 87

Discussion of the case study optimization results

In the previous sections we have seen the outcome of the powerful EGO algorithm,

applied to the sheet metal forming experiment. The achieved thickness reduction of

about 0.07832 is a very good result. The ParOF algorithm proposed in this paper has

also performed very well and efficiently. The achieved thickness reduction of 0.07863

is comparable to the result obtained with the classical EGO algorithm.

Based on this optimization study of the deep drawing simulation, we can conclude that

both the EGO and the ParOF algorithms perform very well and find a pleasing can-

didate optimum within the given time budget. In this particular problem the parallel

optimization algorithm manages to find a good decomposition of the problem in four

disjoint clusters, the biggest of them being five-dimensional. Nevertheless the more

conservative choice of a threshold value might have hindered the full potential of the

procedure. As we have seen, there are strong indications that the Variable [3] — BHF

might not be interacting with the cluster of variables {1, 5, 6, 8} (see Figures 5.9 and

5.10). Choosing a less-conservative threshold value will logically lead to a further com-

plexity reduction and quite possibly to a more efficient optimization with the ParOF

procedure. Furthermore, by cutting off an inactive edge, we are guaranteed at least a

linear reduction of the number of simulations needed for fitting the Kriging metamodel

for the biggest cluster, if we follow Jones’s 10 · d (where d is the problem dimension)

rule of thumb for the statistical design (see Chapter 2.4 and Jones et al. (1998)). The

efficiency and run-time of the optimization step is likewise likely to improve, since the

search domain shrinks rapidly with the dimension — the (reverse) curse of dimensional-

ity. Nevertheless incorrectly cutting off an active edge can have negative consequences.

In conclusion, it is interesting to note that using 110 simulation to globally optimize an

eight-dimensional black-box simulation seems to be a modest investment. Were we to

follow Jones’s classical rule for statistical designs, we would need about 80 simulations

only for model training and parameter estimation of this eight-dimensional problem.

Therefore we are able to show that within a modest simulation budget both the EGO

88 Parallel optimization based on functional decomposition

benchmark and our novel parallel procedure are able to find good solutions for the

thickness reduction of the sheet metal forming problem.

6. Metamodels for mixed

qualitative-quantitative data

Experiments with both qualitative and quantitative factors occur in many applica-

tions. In particular in business operations applications, computer simulation experi-

ments containing qualitative and quantitative factors occur, where variables like gender

are qualitative (Qian et al., 2008). Another recent example of a simulation experiment

with mixed factors is presented by Neumann and Deymann (2008). They consider the

problem of optimally managing a logistic facility. Beside the continuous parameters like

distance, they deal with the question of finding an optimal strategy for the allocation

of incoming vehicles — for example the first-in-first-out or last-in-first-out strategies,

as well as assignment strategies for the available forklifts among other.

The problem of modeling discrete inputs is sometimes circumvented in practice by

considering continuous relaxations — forcing a discrete variable to be treated as con-

tinuous. However, this common strategy is not applicable in the presence of unordered

qualitative variables — i.e. not measurable in distinct units, like the choice of a differ-

ent strategy. In the case of black-box problems with mixed qualitative and quantitative

data, we are faced with the challenge of finding suitable metamodels, capable of dealing

with such inputs.

Let us consider the general premise under study in this chapter — we are inter-

ested in a problem taking input values from the d-dimensional space D × Z ={(
xT , zT

)T | x = (x1, . . . , xq)
T ; z = (z1, . . . , zm)T

}
, where q + m = d, D ⊆ Rq repre-

sents the space of continuous input values and Z is an m-dimensional space containing

89

90 Metamodels for mixed qualitative-quantitative data

possible discrete/categorical values. Each zj, j = 1, . . . ,m has mj ∈ N+ levels. For

ease of notation we set F = D × Z to be the d-dimensional mixed space. Thus we

can formally denote the black-box function under study as f : F → R. Similar to

the continuous data case, we now search for a metamodel function f̃ : F → R which

approximates f . Besides being able to model mixed input data, this metamodel should

be able to estimate its modeling uncertainty, so that it is compatible with EGO-like

procedures (see Chapter 3 for the EGO algorithm in the continuous case). In general,

for this whole chapter we denote with D0 = {pi | pi ∈ F ; i = 1, . . . , n} the set of known

design points and with yT = (y1, . . . , yn) the corresponding vector of known responses.

An intuitive solution of the modeling problem in the mixed case is independent mod-

eling, i.e. fitting an independent metamodel for each discrete variable and each level

separately. Qian et al. (2008) discuss the concept of independent modeling and the

issues that arise in this process. They point out that this method ignores possible

correlations between the categorical factors, which is a big loss of information if the

correlations are influential. Qian et al. also mention the apparent complexity problem

— if we consider 3 categorical variables with 4 levels each, a total number of 43 = 64

independent metamodels have to be fit. This requires large amounts of training data,

making this methodology practically infeasible.

A better concept than independent modeling is using an informative partitioning of

the initial data, with the help of binary tree structures — the so-called classification

and regression trees (CART) methodology (Breiman et al., 1984). It presents us with a

flexible way to group and partition the qualitative features into disjoint clusters — the

terminal-nodes of the tree, and model the output data independently in these nodes.

The CART strategy has been further developed in more recent works — a version of

CART which fits a separate Kriging model to each terminal node has been developed

by Gramacy and Lee (2008) — this extension is of particular interest for this thesis,

as it allows for a natural adaptation of the EGO algorithm to the mixed-inputs case.

Further useful adaptations of trees to sequential optimization with mixed-inputs is the

91

use of random forests, as shown by Hutter et al. (2011).

A different strategy to modeling mixed-data, which does not involve partitioning, is

presented by Qian et al. (2008) and further enhanced by Zhou et al. (2011). They de-

velop an approach of adapting the standard Kriging model to the case where qualitative

data is present with the help of an adjusted correlation function.

Another possible way to approach the modeling of mixed-input problems is by applying

regression splines. Regression splines is a well established and broadly studied tech-

nique for modeling. A recent development in the class of regression spline methods is

presented by Ma et al. (2014) who introduce the so-called categorical regression splines,

which are well capable of modeling mixed data.

In this chapter we also introduce a novel metamodeling approach for mixed data,

developed in the course of this thesis. It represents a modification of the Kriging

model, refitted with a new class of correlations functions, which are suited to handle

mixed-inputs. We have called this novel metamodel Gower Kriging, in reference to

the special distance measure developed by Gower (1971), which is being used in the

construction of our metamodel. This new method shows very promising results in

prediction and optimization in the mixed case.

The topic of modeling experiments with mixed qualitative and quantitative inputs

has received increasingly more attention in recent years. Nevertheless there is still

comparatively very little choice of models for this case. There is even less systematic

work concerning sequential, model-based black-box optimization. Hutter et al. (2011)

study optimization in the mixed cased, based on random forests. If we again consider

the EI equation (see Equation (3.2))

E [I (x)] = (fmin − ŷ (x))Φ

(
fmin − ŷ (x)

s (x)

)
+ sφ

(
fmin − ŷ (x)

s (x)

)
we see that it only depends on the predictor ŷ (x) and the uncertainty measure s (x) for

some x. In the classical EGO algorithm these values are supplied by the Kriging model.

But, as mentioned before, any metamodel which produces an uncertainty measure and

92 Metamodels for mixed qualitative-quantitative data

a predictor can be used in the EI formula. Hutter et al. (2011) use the random forest

model to generalize the EGO algorithm and the EI decision criterion respectively. We

have used the same scheme in order to produce an optimization procedure — for any

metamodel, suitable for mixed data, we can derive an appropriate EI formula, just by

substituting the proper s and ŷ values, provided the model has both an uncertainty

measure and a predictor.

For the rest of this chapter we look at the models mentioned above and discuss their

usefulness for sequential optimization — the most promising methods participate in an

optimization benchmarking study, the results of which are the topic of the subsequent

chapter.

6.1 Classification and regression trees

The classification and regression trees (CART) methodology is a flexible and intuitive

way to deal with mixed qualitative and quantitative inputs (Breiman et al., 1984).

The idea is to partition the input domain F into smaller disjoint regions in which local

predictions are made. The partitioning is done with the help of a binary tree structure,

often called the tree, which represents a recursive split of the input space — for exam-

ple by distinguishing whether for a given observed value x the cases xI ∈ A or xI ∈ Ac

holds, for an index subset I and some set A, which can also be discrete or qualitative.

Let us denote with T the tree, consisting of nodes t (internal or end-nodes) — cor-

responding to subsets of F . Furthermore let T̃ denote the set of all end-nodes, also

called terminal nodes or leaves. Note that the terminal nodes represent subsets of the

domain F . Let us consider some terminal node t̃ ∈ T̃ — it consists of a collection of

sets: t̃ = At̃1 × At̃2 × · · · × At̃d, which uniquely describe a subset of elements of F —

i.e. for each p = (p1, . . . , pd)
T ∈ F , there is a l̃ ∈ T̃ , with pi ∈ Al̃i, ∀ i = 1, . . . , d. By

construction it holds
⋃
t̃∈T̃ t̃ = F and t̃ ∩ l̃ = ∅, t̃, l̃ ∈ T̃ . Fitting a separate model

inside each node of T̃ provides the advantage of fitting models, which respect the local

6.1 Classification and regression trees 93

structure of the data. Predictions with regression trees can be made using the following

simple scheme:

ŷT (p) =
∑
t̃∈T̃

ct̃1{t̃}(p) = ct̃ (6.1)

This formula allows the user to specify an arbitrary model for ct̃. For example, it is

possible to fit a Kriging model in each terminal node t̃ and set ct̃ to be the value of

the Kriging predictor in the region t̃ — this is discussed in Section 6.2. In theory, by

using this scheme we can construct an arbitrarily accurate predictive surface, given

enough data and enough partitions. In practice, we are limited by available data and

computational costs. Thus the classical CART predictor, described in the following

paragraphs, uses a more parsimonious predictor model.

The three important elements for constructing a tree T and determining a CART

regression predictor, as discussed by Breiman et al. (1984) are:

1. Select the split rule in every terminal node

2. Determining when a node is terminal

3. A rule to assign a value to every (terminal) node

The value we assign to each node t is set to the mean value y(t) = 1
N(t)

∑
pi∈t yi over

all data points from D0 falling into t, where N(t) = |t|. The values assigned to the

terminal nodes y(t̃), t̃ ∈ T̃ are used as predictors — i.e. ct̃ = y(t̃) in Equation (6.1).

In order to produce a decision rule for the splitting, we need a measure of accuracy

to optimize over. In CART, the averaged squared error R(t), for a given node t, is

considered: R(t) = 1
n

∑
pi∈t (yi − y(t))2, where n is the number of points in D0. Now

the average error over the tree T can be represented as R(T) =
∑

t∈T̃ R(t).

Given any set of splits S, Breiman et al. (1984) define the best split s∗ of t into tL and

tR as the split in S which decreases R(T) the most. More precisely they calculate s∗

as: ∆R(s∗, t) = max
s∈S

∆R(s, t) (6.2)

94 Metamodels for mixed qualitative-quantitative data

where ∆R(s, t) = R(t) − R(tL) − R(tR) (note that R(t) ≥ R(tL) + R(tR)). A CART

regression tree is grown by iteratively splitting nodes, maximizing the decrease in R(T).

The formally defined procedure Equation (6.2) constitutes a decision rule — in the

simplest case, when we consider a single variable var1 to split upon, this decision

rule is a split with some value m, separating the data into tL = {p|var1 ≤ m} and

tR = {p|var1 > m}. A linear combination of several variables to split on is also a

possible approach, but in our use of treed models we have restricted the implementation

to the simplest case of a single split variable — we use CART in the random forest

method (presented in Section 6.3). Using the criterion from Equation (6.2), the best

split at t is the split of the input variables that most pronouncedly separates the high

response values from the low values.

Setting a stopping criterion — a decision criterion for terminal nodes, is the last part of

CART regression. A simple strategy is to grow a maximum tree Tmax by sequentially

splitting and minimizing R(T) until for every t ∈ T̃max, N(t) ≤ Nmin, where Nmin is

the minimum node size. Afterwards a pruning step can be applied to cut down the

size of Tmax. For our purposes — the use of CART models within random forests, we

do not employ a pruning procedure.

The classical CART models are too simplistic for the purpose of analyzing complex

computer codes. However, the methodology represents a starting point for other useful

algorithms — like the mentioned treed models coupled with Kriging or the random

forest approach.

6.2 Treed Gaussian processes

Treed models are a natural extension of CART, where instead of only considering a

constant model in each terminal node, a more complex model is used. The work of

Alexander and Grimshaw (1996) is one of the earlier studies on treed models — in

their research they propose fitting a (simple) linear regression model, rather than just

6.2 Treed Gaussian processes 95

a mean response model in each end node as it is done in classic CART. However, their

concept is too simplistic to deal with complex simulations. The work of Gramacy

and Lee (2008) presents a more fitting solution. Inspired by the field of computer

experiments, where Gaussian process models (Kriging) are a standard tool for analysis,

Gramacy and Lee (2008) suggest using treed models with a Kriging model in every leaf

— they call this methodology (Bayesian) treed Gaussian processes (BTGP). They

use a Bayesian algorithm to grow their trees, following in the footsteps of Chipman

et al. (1998) and Chipman et al. (2002). Chipman et al. (2002) argue that using

the Bayesian methodology for finding good treed structures, instead of other popular

greedy heuristics, offers a more complete exploration of the treed model space.

The concept of Bayesian treed modeling as described by Chipman et al. (1998) and

Chipman et al. (2002) follows the scheme described in the next lines. We examine

a random variable of interest Y with explanatory variables p living in the mixed (or

strictly continuous) space F . A Bayesian treed model is a specification of the con-

ditional distribution of Y |p containing a binary tree T which represents a disjoint

decomposition of the space F (as seen in CART), and a parametric model(s) for Y

which corresponds to each subset of the decomposition. After selecting a tree, through

a growing and pruning procedure (described in more detail below) the tree T has b ∈ N

terminal nodes (leaves) each of which corresponds to a part of the disjoint decomposi-

tion. Then an independent parametric model for Y is associated to each of the b leaves.

For values p that fall into the partition defined by the i-th terminal node of T , the

conditional distribution of Y given p is modeled as Y |p ∼ g(y|p,θi) with parameters

θi and some known distribution g. With the notation Θ = (θ1, . . . ,θb), a general treed

model can be written as the pair (Θ, T). In one of the simplest cases, presented by

Chipman et al. (1998), the parametric model selected is just a constant model, similar

to classical CART. Then the equation above is boiled down to Y |p ∼ N (θi) with

θi = (µi, σ
2
i). The notion of fitting Kriging models instead, is a lot more complex and

will be introduced in more detail below.

96 Metamodels for mixed qualitative-quantitative data

The Bayesian approach to treed modeling starts by setting a prior probability distri-

bution p (Θ, T) for the treed model (Θ, T). This is best achieved by specifying a prior

p (T) on the space of possible trees and also a prior p (Θ|T) on the parameter space —

these can then be combined by using the formula p (Θ, T) = p (Θ|T) p (T). The next

subsections address the components of this equation.

Bayesian treed partitioning

A tree structure T is a partition of the input space into MT non-overlapping regions,

corresponding to different nodes, {tv}MT

v=1. Each region tv contains data Dv ⊂ D0, with

|Dv| = nv. Chipman et al. (1998) discuss the construction of the prior p (T) implicitly

as a tree-generating process, where each realization of this process — each instance

of a tree, is considered as a random draw from the prior. Starting with a null tree

(all data in one partition), a leaf η of the tree is split recursively with probability

pSPLIT (η, T) = α(1 + qη)
−β, where qη is the depth of η in T , and α, β are preset

parameters that control the size and the spread of the distribution trees. Gramacy and

Lee (2008) report of using the default values α = 0.5 and β = 2 often in practice —

these are also the values we use in the application of treed Gaussian processes in the

benchmark study presented in the next chapter. As a part of the process prior, a further

requirement can be imposed, which ensures that each new region has a predetermined

minimal number of data points, so that adequate models can be fit in the leaves.

Every split in the tree T is based on a randomly selected dimension uj ∈ 1, . . . , d and

a split criterion sj. The consequent two sub-partitions — one represents the points

in Dv, for which that parameter uj is less than sj and the other contains the points

≥ sj. The so described rules apply only to numeric variables — later on in that section

we present a dummy transformation on the initial data, which allows this scheme to

be applied also to categorical data. Chipman et al. (1998) denote the process for

generating splitting locations pRULE. The popular default choice for pRULE is to set

6.2 Treed Gaussian processes 97

the dimension u and the criterion s randomly (uniformly).

Chipman et al. (1998) propose a Metropolis-Hastings-based (MH) algorithm in order to

generate treed structures. Let X = (pi,j)i=1,...,d;j=1,...,n denote the matrix representation

— design matrix, of the known data points D0. Under the mild assumption that the

employed design matrix X and Θ are independent for a given T , Chipman et al. (1998)

use the following representation of the distribution of the output given a tree and an

observed data set:

p (y|X,T) =

∫
p (y|X,Θ, T) p (Θ|T) dΘ (6.3)

The specification of p (Θ|T) depends on the form of the model(s) under consideration —

in our case Kriging (this topic will be discussed in more detail later in this subsection).

The procedure constructed by Chipman et al. (1998) start with the null tree T 0 and then

simulate a Markov chain T 1, T 2, . . . which converges in distribution to the posterior of

interest p (T |y, X). The method simulates the transition from T i to T i+1 in two steps:

1. Create a candidate tree T ∗ with probability distribution q(T i, T ∗).

2. Choose T i+1 = T ∗ with probability

α
(
T i, T ∗

)
= min

{
q(T ∗,i)

q(T i, T ∗)

p(y|X,T ∗)p(T ∗)
p(y|X,T i)p(T i)

, 1

}
. (6.4)

Otherwise set T i+1 = T i.

In Equation (6.4), p(y|X,T) is obtained with the help of Equation (6.3). The distri-

bution q(T, T ∗) generates T ∗ by randomly choosing from the following operations:

• Grow: Pick a terminal node at random, and split into two new ones according

to the splitting rule pRULE used in the prior.

• Prune: Pick a parent node of two leaves, and turn it into a terminal node by

dropping the two child nodes.

• Change: Pick an internal node at random, and randomly reassign it a splitting

rule according to pRULE.

98 Metamodels for mixed qualitative-quantitative data

• Swap: Pick an internal parent-child pair at random. If they don’t have the same

splitting rule — swap their splitting rules. Otherwise swap the splitting rule of

the parent with that of both the outgoing leaves.

Gramacy and Lee (2008) modify the swap operation with a rotate procedure, described

in Cormen (2009). Let us, for example, examine the internal nodes e1 and e2, where

e2 is the right child node to the parent e1. The left-rotate procedure pivots on the

connecting edge, making e2 the new root of the subtree, with e1 now being the left

child node. The right-rotate operation is the reverse operation to left-rotate.

Chipman et al. (1998) argue that producing a long enough chain with the proposed

method is not computationally feasible. Instead, they suggest selecting the most

promising tree from the ones generated, which has the largest posterior probability.

Hierarchical Kriging models

Let us consider the particular tree T , using the notation from the beginning of the

section — the tree consists of {tv}MT

v=1 regions with nv observations in each region. We

denote the data corresponding to each region in matrix form [Xv,yv], where Xv is the

matrix representation of the known data points Dv ⊂ D0 for the region tv and yv are the

corresponding responses. Let d1 = d + 1 denote the number of explanatory variables

in the original problem plus an intercept. Now for each region tv the hierarchical

generative Kriging model is chosen as:

yv|βv, σ2
v , Rv ∼ Nnv

(
Fvβv, σ

2Rv

)
, (6.5)

β0 ∼ Nd1 (µ,B) , (6.6)

βv|σ2
v , τ

2
v ,W,β0 ∼ Nd1

(
β0, σ

2
vτ

2
vW
)
, (6.7)

τ 2v ∼ IG (ατ/2, qτ/2) , (6.8)

σ2
v ∼ IG (ασ/2, qσ/2) , (6.9)

W−1 ∼ W
(
(ρV)−1 , ρ

)
, (6.10)

6.2 Treed Gaussian processes 99

where Fv = (1, Xv), W is an d1 × d1 matrix, and N , IG and W are the normal,

inverse-gamma and Wishart distributions. The parameters µ,B, V, ρ, ασ, qσ, ατ , qτ are

assumed to be known. The local Kriging model described in Equations (6.5) to (6.10)

describes a multivariate normal likelihood with linear trend coefficients βv, variance

σ2
v and the nv × nv correlation matrix Rv. The linear trend coefficients are modeled as

coming from a common unknown mean β0 and region specific variance σ2
vτ

2
v .

The general framework used by Gramacy and Lee (2008) to describe the correlation

structure, can be captured in the equation:

Rv (pj,pk) = R∗v (pj,pk) + gvδj,k (6.11)

The correlation function R∗v (pj,pk) can have any appropriate form — for example any

of the correlation functions presented in Table 2.1. In particular, we use the Matérn

kernel in our implementation (see Chapter 2, where the benefits of the Matérn kernel

are discussed in more detail). Furthermore, Gramacy and Lee (2008) introduce the

small correction term gv, also called the nugget, to the diagonal of the correlation

matrix — note that δ·,· is the Kronecker delta function. This very general form allows

further assumed sources of uncertainty, like stochastic errors or simulator imperfections

for example, to be captured by the model, since the standard Kriging model does not

implicitly account for these type of situations.

In an attempt to maintain generality, Gramacy and Lee (2008) adopt the notation

p (Rv) for the prior of the parameters of the correlation matrix. In the more general

case we get p (Rv) = p (θv, gv), where θv are the correlation scale parameters. In this

case Gramacy and Lee propose a mixture of gammas as prior:

p (θ, g) = p(g)× 1

2
(G (θ|α = 1, β = 20) + G (θ|α = 10, β = 10)) (6.12)

100 Metamodels for mixed qualitative-quantitative data

Estimating the treed Kriging models

The Kriging parameters which need to be estimated are Θv = {βv, σ2
v , Rv, τ

2
v } for

v = 1, . . . ,MT . Conditional on the tree T , all the parameters to estimate are Θ =

Θ0∪
⋃MT

v=1 Θv, with Θ0 = {W,β} being the parameters from the hierarchical prior which

are also updated. Samples from the posterior distribution are generated by Markov-

Chain-Monte-Carlo (MCMC) by conditioning on the hierarchical prior and drawing

Θv|Θ0 for v1, . . . , vM and subsequently drawing Θ0 as Θ0|
⋃MT

v=1 Θv. The specification

of the parameter prior p(Θ|T) (Equations (6.5) to (6.10) and (6.12)), together with the

tree prior p(T) discussed earlier, concludes the prior specification for BTGP. The next

paragraph describes the practical estimation of the local Kriging parameters.

The derivation of the following equations have been described in Gramacy (2005).

The regression parameters βv and the common mean β0 have multivariate normal

conditional distributions: βv|rest ∼ Nm
(
β̃v, σ

2
vVβ̃v

)
and β0|rest ∼ Nm

(
β̃0, Vβ̃0

)
,

with

Vβ̃v =
(
F T
v R

−1
v Fv +W−1/τ 2v

)−1
, (6.13)

β̃v = Vβ̃v

(
F T
v R

−1
v yv +W−1β0/τ

2
v

)
, (6.14)

Vβ̃0
=

(
B−1 +W−1

MT∑
v=1

(σvτv)
−2

)
, (6.15)

β̃0 = Vβ̃0

(
B−1µ+W−1

MT∑
v=1

βv (σvτv)
−2

)
(6.16)

The linear variance parameter τ 2 follows an inverse-gamma distribution: τ 2v |rest ∼

IG ((ατ) /2, (qτ + bv) /2), with

bv = (βv − β0)
T W−1 (βv − β0) /σ

2
v . (6.17)

The covariance matrix of the linear coefficients W follows an inverse Wishart distribu-

tion W−1|rest ∼ Wm

(
(ρV + VW̃)−1 , ρ+MT

)
, where

VW̃ =

MT∑
v=1

1

(σvτv)2
(βv − β0) (βv − β0)

T . (6.18)

6.2 Treed Gaussian processes 101

Furthermore the marginal posterior for Rv can be calculated as:

p
(
Rv|yv,β0,W, τ

2
)

=

=


∣∣∣Vβ̃0

∣∣∣ (2π)nv

|Rv| |W | τ 2m

1/2

× (qσ/2)ασ/2Γ ((1/2)(ασ + nv))

((1/2) (qσ + ψv)(ασ+nv)/2Γ(ασ/2))
p (Rv) (6.19)

where

ψv = yTR−1v y + βT0W
−1βT0 /τ

2 − β̃
T

v V
−1
β̃v

β̃v. (6.20)

Finally, the conditional distribution of σ2
v has the following distribution:

σ2
v |yv, θv, g,β0,W ∼ IG ((ασ + nv)/2, (qσ + ψv)/2) . (6.21)

Prediction with the treed Kriging models

Prediction with the Bayes-estimated local Kriging models is very similar to the pre-

diction with Kriging described in Chapter 2. For some region tv ∈ {1, . . . ,MT} of the

tree T , the local predictions for an unknown point p∗ can be written as:

ŷ(p∗) = E (Y (p∗)|D0,y,p
∗ ∈ Dv) =

= f(p∗)T β̃v + rv(p
∗)TR−1v

(
yv − Fvβ̃v

)
(6.22)

furthermore the uncertainty predictor is:

σ̂2(p∗) = V ar (Y (p∗)|D0,y,p
∗ ∈ Dv) =

= σ2
v

[
r(p∗,p∗)− qv(p

∗)TC−1v qv(p
∗)
]

(6.23)

with

C−1v = (Rv + τ 2vFvWF T
v)−1, (6.24)

qv(p) = rv(p) + τ 2vFvW f(p), (6.25)

r(p1,p2) = Rv(p1,p2) + τ 2v f(p1)
TW f(p2) (6.26)

102 Metamodels for mixed qualitative-quantitative data

where f(p)T = (1,pT) and rv(p) is a nv vector with rv,j(p) = Rv(p,pj) ∀pj ∈ Xv.

The BTGP method allows a very natural extension of the classical Kriging method

and as such it is easy to adapt BTGP to the EGO algorithm — by using the provided

uncertainty measure and predictor.

Implementation

All the theory introduced in this section is implemented in the R-package tgp, which is

described in detail in Gramacy (2007). One thing to note is that the tgp package does

not explicitly handle mixed quantitative-qualitative data sets. The use of tgp for mixed

data has been made possible by another R-package — mlr (Bischl et al., 2015). The

BTGP method is implemented in the mlr package, which uses a simple but effective

way to transform qualitative data to numerical form — a dummy decomposition. Let

us examine the mixed space F = [0, 1] × {a, b} and a small design X generated from

this space having 5 runs — the design is also generated with the mlr package (for

more on these designs see Section 7.1). The R-console output of the design X can be

seen below — the column num1 represents the numerical inputs and the column disc

contains the information about the two-level qualitative input.

> X

num1 disc

1 0.1799650 a

2 0.8492175 a

3 0.2084119 a

4 0.6655841 b

5 0.5909007 b

Now a simple dummy coding allows us to turn the qualitative column(s) of this design

into one with numerical input, as depicted below.

6.2 Treed Gaussian processes 103

> Xsplit

num1 disc.b

1 0.1799650 0

2 0.8492175 0

3 0.2084119 0

4 0.6655841 1

5 0.5909007 1

Using the second representation, all the theory of the BTGP models is applicable —

a split on the qualitative components can now be made with the simple check disc.b

≤ 0 ∨ disc.b > 0.

The specficic parameter settings we have chosen for our application are as follows: we

use a Matérn
(
5
2

)
kernel with a constant trend parameter. Furthermore we have used

the default tgp settings for the mean parameters βv and β0, which forces W = ∞,

eliminating the need to specify a prior for W−1 and β0, essentially taking these param-

eters out of the estimation. Furthermore, the βv parameter is set to a starting value

of 0, instead of using the priors in Equations (6.6), (6.7) and (6.10). In our implemen-

tation we have also kept the default setting concerning the nugget parameter(s) gv,

which set a simple exponential prior for the nugget. In our experience with the tgp

package, turning off the nugget has a negative effect on the estimation procedure —

on the other hand, keeping the default nugget, produces estimation parameters very

similar to the MH estimated Kriging, applied to the same regional data.

Further parameters needed for the priors in Equations (6.8) and (6.9) are set to the

following values: σ2
v ∼ IG (5, 10) and τ 2v ∼ IG (5, 10). Furthermore, for the prior of

the weight parameters θv, we have used the values form Equation (6.12) as defaults.

Finally, we use a threshold value, which dictates what the minimal amount of data each

end node is allowed to contain. The value we have set for the threshold is min {10, n}.

We conclude this section with a word of caution concerning the method described above.

The BTGP methodology offers much more flexibility in modeling, than for example

104 Metamodels for mixed qualitative-quantitative data

CART models or even other forms of regression treed models, but this comes at the

price of a higher computational burden. The computational cost of treed models can be

a problem, as Alexander and Grimshaw (1996) noted in their work — the complexity

of the treed model becomes critical as the number of leaves grow. This is especially

true for the comparatively expensive Kriging models in each end partition in the BTGP

methodology. We have tried to limit the computational costs of fitting the local models

by considering constant trend local Kriging, instead of a linear trend which is used

by Gramacy and Lee (2008). Furthermore, we strive for comparability with the other

Kriging-based method we have used in our benchmark study — the Gower Kriging (see

Section 6.6), which were implemented with a constant trend. Gramacy and Lee (2008)

suggest that fitting a Kriging model in each leaf is not always necessary, but a more

parsimonious linear model may be enough. In any case, the computational efficiency

of fitting a BTGP model may be a limiting factor for this method. Nevertheless, we

use this procedure in our work and compare it with the other methods presented in

this chapter for mixed-input optimization.

6.3 Black-box modeling with CART and random forests

Regression type CART models have been known to perform well for categorical input

data. Furthermore, Breiman (2001) reports that growing a collection of CART mod-

els, according to a (partly) random growing rule, and then averaging the predicted

responses produced by all trees leads to a significant improvement in prediction quality

in comparison to a simple CART model. These random ensembles of CART models

are called random forests.

More recently, the random forest method has been successfully applied for black-box

sequential optimization by Hutter et al. (2011). They construct a heuristic strategy

that allows the implementation of random forests with the EGO algorithm. Their

method starts by constructing a random forest, consisting of B regression trees. Each

6.3 Black-box modeling with CART and random forests 105

of the trees is built from n data points, sampled randomly with repetition from the set

of known points D0. For each split in every tree a random set of dd · pe of the initial

inputs d is considered for splitting. In our implementation of the method — based on

the R-package randomForest (Liaw and Wiener, 2002) we have set the parameter p to

a default value of p = 1
3
. Furthermore, in the implementation of random forests we use

in the next chapter, we set B = 500. There is also the possibility to set a parameter

nodesize governing the minimal number of data points required to be in a node in

order for it to be split or else declared terminal. We have set the value of the nodesize

parameter to a default value of 1. Furthermore each tree is grown to maximum size

using the CART methodology and is not pruned.

For numerical variables, the randomForest package employs the standard CART rule

— data with values of the variable less than or equal to the splitting point (decision

rule) go to the left daughter node. Furthermore the package uses a binary series

representation in order to split on qualitative variables — the split point for some

qualitative variable selected for splitting is represented as
∑k

i=1 ai2
i−1, where k is the

number of levels of the variable and ai ∈ {0, 1}, i = 1, . . . , k. For example, let us look

at a categorical variable with four levels and a calculated split point of 13. The binary

expansion of 13 is (1, 0, 1, 1), because 13 = 1 · 20 + 0 · 21 + 1 · 22 + 1 · 23 — thus cases

with categories 1, 3 or 4 in this predictor get sent to the left and the rest to the right.

After the random forest has been grown, the method of Hutter et al. (2011) takes the

mean of the predicted values from all trees at a given unknown location p ∈ F as a

global predictor ŷ(p). The uncertainty of the prediction is quantified as the empirical

variance of the predictions at p — they set it to σ̂(p) — the uncertainty measure. With

this simple strategy all the ingredients needed for calculating the EI decision criterion

and constructing an EGO-type sequential approach are available.

This version of the EGO algorithm based on random forests is one of the few existing

black-box optimization algorithms. It is a state of the art method, and as such it a is

a very useful benchmark algorithm which we use in this thesis for comparison.

106 Metamodels for mixed qualitative-quantitative data

6.4 Categorical regression splines

Regression splines are a classical and flexible class of models used for analysis of ex-

periments. One very useful property of regression splines is that the variance of the

predictor function can be calculated with the help of local-asymptotic formulas (Huang,

2003). With the recently proposed categorical regression splines (CRS) by Ma et al.

(2014), which are able to deal with qualitative and quantitative inputs, we are pre-

sented with all of the necessary ingredients for sequential optimization with EGO-type

algorithms in the mixed case.

Let us consider again the design set X ⊆ F from the mixed space with pTi = (xTi , z
T
i) ∈

X, i = 1, . . . , n. The CRS methodology models the output of the black-box process

as:

Y (pi) = Y (xi, zi) = g(xi, zi) + σ(xi, zi)ε, i = 1, . . . , n, (6.27)

where g(·) is an unknown function, σ2(p) is the variance of Y (·) given the data, and

the noise ε satisfies the conditions E (ε|D0) = 0, E (ε2|D0) = 1.

In order to deal with the mixed-inputs situation, Ma et al. (2014) propose to estimate

g(·) with the help of tensor product polynomial splines (denoted by B(x)) weighted by

categorical kernel functions L : Z × Z ×R→ R. The authors use a univariate kernel

function l(vs, zs, λs) = λ
1{vs 6=zs}
s in order to define a product categorical kernel function

L(·):

L(v, z,λ) =
m∏
s=1

l(vs, zs, λs) =
r∏
s=1

λ
1{vs 6=zs}
s (6.28)

where λ = (λ1, . . . , λm)T is the vector of bandwidths for each of the categorical vari-

ables.

For the introduction of tensor product polynomial splines B(x) Ma et al. (2014) set

D = [0, 1]q (w.l.o.g.) and consider Gl = G
(ql−2)
l — the space of polynomial splines of

order ql and a pre-chosen integer Nl = Nn,l. Furthermore the interval [0, 1] is divided

6.4 Categorical regression splines 107

into Nl + 1 subinterval Ijl,l =
[
tjl,l,jl+1,l

)
, jl = 0, · · · , Nl−1, INl,l = [tNl,l, 1], with tjl,l be-

ing equidistant points — the interior knots. The space Gl consists of functions, which

are polynomials of degree ql − 1 on each sub interval Ijl,l and are ql − 2 continuously

differentiable on [0, 1].

Let Bl(xl) = {Bjl,l : 1− ql ≤ jl ≤ Nl} be a basis of Gl and let Kl = Nl + ql. Further-

more, let G = ⊗ql=1Gl denote the space of tensor product polynomial splines. G is a

linear space with dimension Kn =
∏q

l=1Kl and

B(x) =
{
Bj1,...,jq(x)

}
j1=1−m1...,jq=1−mq

= B1(x1)⊗ · · · ⊗Bq(xq) (6.29)

is a basis of G (for corresponding N1, . . . , Nq).

With the help of the notation above, we can now specify an estimator of g(·):

ĝ(x, z) = B(x)T β̂(z), (6.30)

where β̂(z) is a Kn × 1 vector which is a solution to the least squares equation:

β̂(z) = argmin
β(z)∈RKn

n∑
i=1

(
Y (pi)− B(xi)

Tβ(z)
)2
L(zi, z,λ). (6.31)

Now we denote with B =
[
(B(x1), . . . ,B(xn))T

]
n×Kn

. Furthermore let Lz =

diag {L(z1, z,λ), . . . , L(zn,v,λ)} be a diagonal matrix with L(zi, z,λ), i = 1, . . . , n

the diagonal entries for some z ∈ Z. Now with y denoting the response vector, we can

rewrite β̂(z) as:

β̂(z) =
(
n−1BTLzB

)−1 (
n−1BTLzy

)
. (6.32)

Ma et al. (2014) furthermore introduce a formula to calculate

V ar (ĝ(p)|p1, . . . ,pn). Let Σz,n = E
(
Bj1,...,jq(·)Bj′1,...,j′q(·)L

2(·, z,λ)σ2(·, ·)
)

and

Vz,n = E
(
Bj1,...,jq(·)Bj′1,...,j′q(·)L(·, z,λ)

)
. Then:

V ar (ĝ(p)|p1, . . . ,pn) = n−1B(x)TV −1z,nΣz,nV
−1
z,nB(x) (6.33)

Ma et al., moreover, derive in their work some useful asymptotic properties of

V ar (ĝ(p)|p1, . . . ,pn) for n→∞.

108 Metamodels for mixed qualitative-quantitative data

All of the theory presented above is implemented in the R-package crs (Racine

and Nie, 2014; Nie and Racine, 2012). Now we can use the values ĝ(·) and s(·) =

V ar (ĝ(·)|p1, . . . ,pn) to plug directly into the EI formula (3.2) and create a CRS-based

EGO algorithm.

From a practical point of view it is of interest how to choose the parameters governing

the described method — namely the degree of the polynomials p and the segment vector

N = (N1, . . . , Nq) for each continuous predictor and the bandwidth vector λ for the

discrete predictors. In our implementation of the regression splines with the package

crs, we estimate all of these unknown parameters via the cross validation procedure

implemented in the package (Ma et al. (2014)):

CV =
1

n

n∑
i=1

(
yi −Bp(xi)

T β̂−i(zi)
)2

(6.34)

where β̂−i(zi) denotes the leave-one-out estimate of β.

In our benchmark study in the next chapter, we use the preset default values for the

parameters p and N — which are set to a degree of 3 — cubic splines, and the number

of segments is set to 1. Since we use cross validation to estimate these parameters,

these default values are simply taken to be starting points for the cross validation.

Furthermore, the estimation procedure takes values for the spline degree between 0 and

10 and the split point can be chosen to be between 1 and 10. Also, the bandwidths λ

live in the real interval [0, 1].

6.5 A special Kriging correlation function for mixed discrete-continuous

spaces

Qian et al. (2008) are among the first to propose a Kriging extension for the mixed

case — they develop a correlation function which models mixed data. The problem

with their method is that it has to go through a tedious estimation procedure making

it less useful for practical applications. Recently, Zhou et al. (2011) have presented

6.5 A special Kriging correlation function for mixed discrete-continuous spaces 109

a method based on the work of Qian et al. (2008) — they have replaced the tedious

estimation procedure with an easier to compute transformation, based on a coordinate

transformation.

For an element p ∈ F , pT =
(
xT , zT

)
with x = (x1, . . . , xd)

T ∈ D, z = (z1, . . . , zm)T ∈

Z we set M =
∏m

j=1mj, where mj is the number of levels for the variable zj (j =

1, . . . ,m). Qian et al. (2008) use the standard Kriging equations (see Equation (2.1))

to represent the output of the computer experiment:

Y (p) = gβ(p) + Z(p),

where gβ is a known function representing the mean, and Z(p) represents a stationary

Gaussian process with mean 0, variance σ2 and some covariance function — just like

in the continuous case. The biggest challenge in the mixed-input case is to define

a proper correlation structure for Z(p). Let us denote with c1, . . . , cM the explicit

enumeration of the categories which correspond to the possible level combinations of

the factors in z. Now it is possible to represent any element p ∈ F as p = (x, cl) for

some l ∈ {1, . . . ,M}. Furthermore, if we consider two elements p1, p2 ∈ F , with the

help of the enumeration c1, . . . , cM , we can now equivalently write pi = (xi, cli) with

cli ∈ {c1, . . . , cM} for i = 1, 2. Now we introduce the main result of Qian et al. (2008)

— a Kriging covariance function capable of modeling mixed data:

Definition 6.1 (Kriging mixed correlation function):

Using the notation from above, we consider two elements p1, p2 ∈ F . Qian et al.

(2008) define the Kriging covariance function which is capable of modeling mixed inputs

as:

Cov(Z(p1), Z(p2)) = σ2R̃θ(p1,p2) = σ2τcl1 ,cl2Rθ(x1,x2), (6.35)

where Rθ(x1,x2) is a correlation function of the continuous inputs, σ2 is the variance

of the stationary Gaussian process Z(•) and τcl1 ,cl2 is the cross-correlation between the

categories cl1 and cl2.

110 Metamodels for mixed qualitative-quantitative data

Note that the correlation function Rθ(x1,x2) in the above definition represents a stan-

dard Kriging correlation function, which can be chosen among the classical Kriging

kernels (see Table 2.1). Defining the nature of the cross correlation coefficients τ•,•,

which are the fundamental component in the latter definition, represented by theM×M

matrix T =
(
τci,cj

)
, is the key element of the procedure described by Zhou et al. (2011).

Qian et al. (2008) remark that the matrix T has to be a positive definite matrix with

unit diagonal elements (PDUDE) in order for the function in Equation (6.35) to be

a valid covariance function. Zhou et al. (2011) propose representing and estimating

the T , with the help of a hypersphere decomposition, which satisfies the PDUDE

requirements.

Zhou et al. (2011) present their decomposition procedure of the matrix T in two steps.

First, they use a Cholesky-type decomposition: T = LLT , where L = (lr,s) is a lower

triangular matrix with strictly positive diagonal entries. Next, they model the rows of

L as the coordinates of surface points on an r-dimensional hypersphere in the following

way — for r = 1, l1,1 = 1 and for r = 2, . . . ,M they use the spherical coordinate

system:

lr,1 = cos (φr,1)

lr,s = sin (φr,1) · · · sin (φr,s−1) cos (φr,s) , for s = 2, . . . , r − 1

lr,r = sin (φr,1) · · · sin (φr,r−2) sin (φr,r−1)

with φr,s ∈ (0, π). We denote with Φ the set of parameters φr,s involved in the de-

composition. Zhou et al. (2011) argue that L is strictly positive. Furthermore they

show that τr,r =
∑r

s l
2
r,s = 1 (r = 1, . . . ,M). Thus their decomposition ensures that

T = LLT is a PDUDE.

Now for a sample Dp × y=
{(

pTi , yi
)T | i = 1, . . . , n

}
we can write the log-likelihood

function analogously to the continuous case (see Equation (2.4)):

−n
2

log σ2 − 1

2
log |R̃(θ,Φ)| − 1

2σ2
(y − Fβ)T R̃(θ,Φ)−1 (y − Fβ) .

6.5 A special Kriging correlation function for mixed discrete-continuous spaces 111

The parameters to be estimated are (β, σ2,θ) — same as for the continuous case, plus

additionally the parameter matrix Φ. The parameters β and σ2 can be estimated by

using the formulas from the standard Kriging case (see Equations 2.5 and 2.6) just by

substituting the standard covariance function with the one from Definition 6.1. The

remaining parameters can be obtained by constrained optimization:(
Φ̂, θ̂

)
= argmin

(Φ,θ)

(
n log

(
σ̂2
)

+ log |R̃(θ,Φ)|
)

As a natural generalization of the classical Kriging model, Zhou et al. (2011)’s model

can straightforwardly be used with the EGO method. Moreover, Swiler et al. (2014)

make a comparative study based on the prediction quality of the presented Kriging

extension from Zhou et al. (2011), a treed Gaussian process model and spline based

interpolation. They report in their work of being able to achieve good prediction

results using the Zhou et al. (2011) Kriging variation and also using the treed Gaussian

processes in some cases. Their study is based on low-dimensional test cases with

few categorical variables. However they don’t discuss the scalability of Zhou et al.’s

method with increasing number of categorical variables. Let us consider the number

of parameters needed for model fitting Zhou et al.’s Kriging method — it is equal to

the number of standard Kriging parameters: β, σ2 and the scale-parameters θ for the

continuous variables, plus the number of parameters for the categorical variables Φ.

Note that, because the matrix T is symmetric with unit diagonal elements, the unique

number of parameters in Φ to be estimated are (φr,s)r=2,...,M ; s=2,...,M−1 — which is

equal in number to the under-diagonal elements of the matrix L . More precisely, the

number of elements in Φ is equal to all pair combinations of the m possible levels,

excluding repetitions:
(
M
2

)
. Let us now look at a simple example with 3 categorical

variables z1, z2, z3 with respective levels m1 = 2,m2 = 2,m3 = 3, then we get M = 12.

Note that an example with this number of variables has been used in our benchmark

study (presented in Chapter 7). In this small example the number of parameters

needed for estimating the categorical part of Zhou et al.’s method is given by
(
12
2

)
=

66. In this calculation the symmetrical, unit diagonal nature of the matrix T has

112 Metamodels for mixed qualitative-quantitative data

already been taken into account — the 66 elements correspond only to the parameters

contained in the under-diagonal elements of the 12× 12 matrix L. This big number of

additional parameters, which need to be estimated from the data, reflects negatively

on the scalability of the method.

6.6 Kriging models with a Gower distance covariance function

In this section we develop a novel Kriging extension based on the Gower distance

metric. This new method is expected to show good scalability features, unlike for

example the Kriging variation of Zhou et al. (2011), presented in the previous section.

Let us recall the Kriging prediction formula (first introduced in Equation (2.9)):

E (Y (x∗)|Y (x1), . . . , Y (xn)) = f(x∗)Tβ + rθ(x∗)TR(θ)−1 (y − Fβ) .

It strongly relies on the correlation matrix Rθ, which is generated with the help of a

chosen correlation kernel. As the Kriging covariance function is assumed to be station-

ary it depends on the distance between two data points — this property is independent

of the specific choice of the correlation kernel. Thus the problem of generalizing the

Kriging method to be suitable for mixed data boils down to defining a distance function,

which is able to calculate distances between non-scalable objects, while simultaneously

measuring distance between continuous data points. A further desirable characteristic

for such a metric would be to be able to weight the input variables — this corresponds

to the θ parameters in the Kriging correlation function. These weights allow for data-

oriented and thus more precise predictions. The next section introduces the Gower

distance which has the described qualities.

6.6 Kriging models with a Gower distance covariance function 113

The Gower distance

The work of Gower (1971) presents a distance measure able to deal with mixed data.

Two objects p and t from the mixed space F are compared component-wise in each

dimension k (k ∈ {1, . . . , d}). For each comparison in k a score spktk is assigned, which

can roughly be seen as an if-else case distinction: for the dimensions k corresponding

to the qualitative variables, the score spktk is a binary count of the identical elements.

Analogously for the quantitative variables, the score spktk is a weighted Euclidean

distance between the two elements. The scores are averaged to a single number, by

taking into account the number of variables. Note that, in the original concept of the

similarity score, Gower (1971) assumes that some of the variables may contain missing

values. This special-case distinction is not necessary when dealing with a statistically

designed experiment — as is the case in our applications. More formally, the distance

is defined as:

Definition 6.2 (Gower (dis)similarity measure):

Let t,p ∈ F . Then the similarity between these two objects is defined as the averaged

score of all comparisons:

dGow(p, t) =

∑d
k=1 spktk
d

(6.36)

where

• spktk as score in case of discrete coordinates: spktk = 0, if p, t are equal in the

k-th dimension (pk = tk), or spktk = 1 else.

• spktk as score in case of quantitative coordinates: spktk = |pk−tk|
Rk

, where Rk is the

range of the input xk.

This measure has been constructed to quantify the similarity between the objects, but

it actually constitutes a distance measure in the mixed space F , which takes values

114 Metamodels for mixed qualitative-quantitative data

between 0 and 1. Logically a distance (dissimilarity) score of 1 means that the two

elements are far away in the numerical variables and in the categorical dimensions they

do not agree in any character — they are at a maximum distance from each other, as

measured by the Gower distance. Conversely, a distance of 0 means that the objects

coincide in every coordinate. Note that for numerical variables, the Gower distance is

just a scaled version — scaled through the ranges Rk, of the Euclidean distance in R.

The following proposition formalizes the use of this similarity measure:

Proposition 6.1 The set F of mixed qualitative and quantitative variables, together

with the Gower similarity measure from Definition 6.2 build a metric space
(
F , dGow

)
.

Proof All we need to show to prove the proposition, is that the Gower similarity

measure is a valid metric function dGow : F × F → R. We need to show that, for any

elements p, t,v ∈ F the following are true:

1. dGow(p, t) ≥ 0

2. dGow(p, t) = 0⇔ p = t

3. dGow(p, t) = dGow(t,p)

4. dGow(p,v) ≤ dGow(p, t) + dGow(t,v)

It is easy to see that the first three conditions are satisfied by construction of dGow —

it is a non-negative function which returns 0 iff the two compared elements are exactly

equal, and it is also symmetric. All that is left to show, is that the dGow function

satisfies the triangle inequality — condition 4.

Let us denote with the index sets I = {1, . . . , q} and J = {1, . . . ,m} the indices

corresponding to the numerical variables and the qualitative variables respectively. The

function dGow can be decomposed into a sum over the qualitative and the continuous

variables separately:

dGow(p,v) =
1

q +m

∑
i∈I

spivi +
1

q +m

∑
i∈J

spjvj

6.6 Kriging models with a Gower distance covariance function 115

The first part of the equation satisfies the triangle inequality, since it is just a sum over

Euclidean distances, which all satisfy the inequality. We still need to show that the

inequality holds for the sum over the qualitative variables.

We choose an arbitrary k ∈ J . There are only two possible outcomes for the similarity

score between pk and vk — either spkvk = 0, i.e. pk = vk or spkvk = 1. Now, in the first

case, it is always true that spkvk = 0 ≤ spktk + stkvk regardless of the values for spktk

and stkvk , e.g. for any tk.

Let us assume that pk 6= vk ⇒ spkvk = 1. The only case, in which the inequality

spkvk ≤ spktk + stkvk is not fulfilled, is when both terms on the right are equal to 0. But

this would imply: pk = tk ∧ tk = vk, while at the same time pk 6= vk .

Thus, for arbitrary p, t,v ∈ F it always holds spkvk ≤ spktk + stkvk for each k ∈ J .

Since this inequality holds for every index k, it also holds in the sum over all indices

in J . Altogether we get:

dGow(p,v) =
1

q +m

∑
i∈I

spivi +
1

q +m

∑
i∈J

spjvj

≤ 1

q +m

∑
i∈I

(spiti + stivi) +
1

q +m

∑
i∈J

(
spjtj + stjvj

)
= dGow(p, t) + dGow(t,v)

Let us now consider p1, . . . ,pn ∈ F . Gower shows that the matrix with elements:

Sij = dGow(pi,pj)

is positive semi-definite, in case there is no missing data. This property is important,

since our aim is to represent the correlation matrix of the Kriging model with the

Gower distance, and it has to be positive semi-definite.

With the help of the Gower distance metric we can now introduce our Kriging adap-

tation to the mixed case, we call it Gower Kriging.

116 Metamodels for mixed qualitative-quantitative data

Gower Kriging

McMillan et al. (1999) set the theoretical framework needed for Kriging for mixed

inputs. For some element of the mixed space p ∈ F they represent the model equation

in the following way:

Y (p) = f(p)Tβ + Z(p), (6.37)

where just like in the continuous case, f(p)Tβ describes the mean of the process, with

f(p) representing linear-model terms and β the corresponding coefficients. Further-

more, the residual term Z(p) is assumed to be a Gaussian process.

If we consider the starting design D0 = {p1, . . . ,pn} ⊂ F , with the corresponding

outputs at these locations denoted as the vector yT = (y1, . . . , yn), we can write the

mixed Kriging model from the latter equation in matrix notation as:

y = Fβ + Z, (6.38)

where F is the matrix containing the f(pi) as columns, and Z = (Z(p1), . . . , Z(pn))

is the vector of residuals — i.e. the stochastic process values at the n design points.

Specifically, it is assumed that:

Z ∼ N (0, σ2R(θ)), (6.39)

where σ2 denotes the variance, and R(θ) — the matrix containing the correlation of

two input vectors as elements: (R(θ))i,j = Rθ(pi,pj), i, j ∈ {1, . . . , n}, following the

notation introduced in Chapter 2.1. This implies that:

y ∼ N (Fβ, σ2R(θ)). (6.40)

The theoretical framework described by McMillan et al. (1999) and which we use in

this thesis, suggests that the mixed Kriging model can fully be characterized with the

help of the correlation function Rθ(pi,pj).

With the help of the Gower distance we can now define a correlation function for the

mixed case and be fully equipped to construct a Kriging model for mixed inputs, which

6.6 Kriging models with a Gower distance covariance function 117

follows the framework described in Equations (6.37) to (6.40). We choose p, t ∈ F and

denote with d ·
(
dGow(p1, t1), . . . , d

Gow(pd, td)
)T

= (sp1t1 , . . . , spdtd)
T ∈ Rd the Gower

distance vector of these two elements. We furthermore denote with RGow
θ (p, t) =

Cov(Z(p), Z(t)) · 1
σ2 the Gower-distance-based Kriging correlation function for two

elements p, t. Just as in the continuous Kriging model case, we implement the Gower

Kriging kernel as a tensor product of multiple one-dimensional kernels (see Equation

(2.2)):

RGow
θ (p, t) =

d∏
i=1

RGow
θi

(spiti) (6.41)

With the help of Equation (6.41) we can reformulate the classical correlation functions

described in Table 2.1 (see Chapter 2.1). In the most simple case — the exponential

kernel, the transformation and implementation is almost straightforward. For p, t ∈ F

we define the multidimensional Gower-exponential kernel as:

RGow−exp
θ (p, t) =

d∏
i=1

exp

(
− d
θi
· dGow(pi, ti)

)

=
d∏
i=1

exp

(
−spiti

θi

)

= exp

(
d∑
i=1

−spiti
θi

)

The flexibility of this approach allows us to adapt any classical kernel to the mixed

discrete-continuous case. We have made a case for the Matérn correlation function in

Chapter 2 — it seems only natural that we refit it for mixed data:

118 Metamodels for mixed qualitative-quantitative data

Definition 6.3 (Gower-Matérn correlation function):

For two data points p, t ∈ F the multidimensional Gower-Matérn kernel is defined as:

RGow−Mat
θ (p, t) =

=
d∏
i=1

(
1 +
√

5
d

θi
· dGow(pi, ti) +

5

3

(
d

θi
· dGow(pi, ti)

)2
)
exp

(
−
√

5
d

θi
· dGow(pi, ti)

)

=
d∏
i=1

(
1 +
√

5
spiti
θi

+
5

3

(
spiti
θi

)2
)
exp

(
−
√

5
spiti
θi

)

The parameters of the Gower Kriging method can be estimated the same way as for

classic Kriging — by maximizing the log-likelihood function shown in Equation (2.4).

And since we assume normality (see Equation (6.40)), we can use the maximum likeli-

hood estimators presented in Chapter 2.1 (McMillan et al., 1999). In particular, in our

implementation of the Gower Kriging method in R, we have used the concentrated log-

likelihood formula (see Equation (2.7)) and we have used a standard optimizer — the

algorithm genoud implemented in the R-package rgenoud (Mebane, Jr. and Sekhon,

2011), in order to find the solution to the concentrated log-likelihood optimization

problem.

The good scalability qualities of the Gower Kriging method stem from the fact that

we assign a single scale parameter to a qualitative variable, regardless of the number

of levels it has. As a result, the number of parameters which need to be estimated

for the Gower Kriging method grows only linearly with dimension — more precisely

the number required parameters is equal to the dimensionality of the problem d plus

the additional parameters needed to estimate the mean and variance of the Gaussian

process behind the Kriging model. This makes Gower Kriging far more parsimonious

than for example the method of Zhou et al. (2011) (see Section 6.5) which needs

in contrast
(
M
2

)
parameters only for estimating the parameters required to fit the

qualitative variables, where as we recall M =
∏m

j=1mj, where mj is the number of

levels for each qualitative variable.

6.6 Kriging models with a Gower distance covariance function 119

6.6.1 Mixed-input EGO algorithm with Gower Kriging

The generalization of the EGO algorithm to the case of mixed data with the help of our

Gower Kriging is almost straightforward, since all the EGO equations and formulations

from Section 3.1 apply. In particular the EI Equation (3.2) holds for the Gower Kriging

model. The only two details are, first that design of experiments has to be adapted

to the mixed space, and second that the EI optimization procedure needs to consider

optimal values in the mixed space F . In this thesis we use a heuristic scheme for

generating the designs, and we apply the focus search algorithm to optimize the EI

(introduced in Chapters 7.1 and 7.2 respectively).

The effectiveness of the discrete EGO procedure, which takes advantage of the Gower

Kriging model, is tested on a small but challenging synthetic function in the following.

The goal of this investigation is to see how the discrete EGO works and whether it can

manage to optimize mixed-input black-box problems. The test function under study

is a version of the Branin function fb (introduced in Definition 4.1), with an added

discrete part which governs the output — the discrete input can be thought of as a

strategy parameter. Note that here we use a scaled version of the Branin function,

defined as:

fb2(x) =
fb(x)− 54.8104

51.9496
(6.42)

The function fb2 has three global optima at the same points as fb -

x∗T = (0.9616520, 0.15) , (0.1238946, 0.8166644) and (0.5427730, 0.15) with fb2 (x∗) =

−1.4741. We now consider mixed inputs sT = (xT , xD) ∈ F , with x ∈ [0, 1]2;

xD ∈ {a, b, c}:

fcatbr(s) =


fb2(x1, x2), for xD = a

fb2(x1, x2) · 0.95, for xD = b

1.03 + x21 − 2x22 − log(
√
|fb2(x1, x2)|), for xD = c

(6.43)

The global minimum is achieved for s∗T = (0.619, 1, c) with fcatbr(s
∗) = −1.053. For

120 Metamodels for mixed qualitative-quantitative data

xD = a, fcatbr(s) has three minima, which are global in the xD = a plain: s∗1, s
∗
2, s
∗
3, with

fcatbr(s
∗
i) = −1.047, ∀i ∈ {1, 2, 3} — very close to the global optimum. For xD = b,

fcatbr(s) also has three minima, since this is just a scaled version of the case xD = a,

with respective values −0.995.

The discrete EGO algorithm was initiated with a mixed-input LHD design of experi-

ments with 36 runs, generated according to a special design scheme for mixed inputs

(see Chapter 7.1). Furthermore, 47 additional optimization runs were made with the

discrete EGO procedure. The starting design and the optimization runs for this ex-

ample can both be seen in Appendix B in Table B.15 and Table B.16 respectively.

The results are presented graphically, according to the value of the discrete variable

xD in Figures 6.1, 6.2 and 6.3. The blue dots represent the optimization iterations.

It is apparent that discrete EGO manages to approximately find the global optimum

for the synthetic function, achieved for xD = c — as can be seen in Figure 6.3, where

the global optimum is marked with a green circle. It is also interesting to observe how

the exploration capabilities of the EGO algorithm are preserved in the mixed case —

as we see the six local optima found for xD = a and xD = b are sufficiently explored.

Also interesting to note is that the less interesting local optima, achieved for xD = b,

although not neglected, are visited far less frequently than the more promising local

optima achieved for xD = a. These results show that the discrete EGO procedure,

implemented with Gower Kriging and the focus search algorithm, can very success-

fully be applied to mixed-input problems. What remains to be seen, is how it fares in

comparison to other existing methods.

6.6.2 Excursion: Parallel Optimization for mixed data - a generalization

of the ParOF algorithm

In the previous section we demonstrated the usefulness of the new Gower Kriging

method for optimization. Just as in the continuous case, we are also interested

6.6 Kriging models with a Gower distance covariance function 121

 −1

 −1

 −1

 −0.8

 −0.8 −0.8

 −0.6

 −0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.2

 0.4

 0.4

 0.6

 0.6

 0.8

 0.8

 1

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 2

 2

 2.2

 2.2

 2.4

 2.4

 2.6

 2.6

 2.8

 2.8

 3

 3

 3.2
 3.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gower Kriging results for category = a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.1: Optimization results with discrete EGO for fcatbr in the case xD = a

 −0.8

 −0.8 −0.8

 −0.6

 −0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.2

 0.4

 0.4

 0.6

 0.6

 0.8

 0.8

 1

 1

 1.2

 1.2

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8
 2

 2

 2.2

 2.2

 2.4

 2.4

 2.6

 2.6

 2.8

 2.8

 3
 3.2

 3.6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gower Kriging results for category = b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.2: Optimization results with discrete EGO for fcatbr in the case xD = b

 −1
 −0.8 −0.8

 −0.6
 −0.6

 −0.4
 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.2

 0.4

 0.4

 0.4

 0.6

 0.6

 0.6

 0.8

 0.8

 1

 1

 1.2

 1.2

 1.4

 1.4

 1.4

 1.6

 1.6

 1.8

 1.8

 1.8

 2

 2

 2

 2.2

 2.2

 2.4

 2.4

 2.6

 2.6

 2.8

 2.8

 3

 3 3.2

 3.2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gower Kriging results for category = c
● ●

●

● ●●●

Figure 6.3: Optimization results with discrete EGO for fcatbr in the case xD = c

122 Metamodels for mixed qualitative-quantitative data

whether black-box sequential optimization is feasible in the case of mixed qualitative-

quantitative inputs. In this short excursion section we demonstrate the generalization

of the parallel optimization procedure — the ParOF algorithm introduced in Section 5

to the mixed-input case with the help of the Gower Kriging. The ParOF algorithm has

already shown appealing qualities for optimization in the simulation study in Chapter 5,

in particular the dimensionality reduction and parallelization capabilities it possesses.

With the help of Gower Kriging, we can now extend the powerful parallel algorithm

to categorical problems. In addition to the already mentioned qualities, the ParOF

algorithm in the mixed case can have the added bonus of decomposing a given problem

into sub-problems, some of which might be purely continuous and easier to solve.

The main goal of this section is to show that we can decompose a function using the

FANOVA graph in the same way as for the purely continuous case. After the decompo-

sition each cluster can be separately optimized either with the standard EGO algorithm

(if the cluster is continuous) or with the discrete variant of EGO, which is described

in Section 6.6.1. We introduce the following test function which is to be decomposed

with FANOVA:

sT = (xT , xD),x ∈ [0, 1]4 ;xD ∈ {a, b, c}

fmix1(s) =


20 · x3 · x24 + fb2(x1, x2), for xD = a

fb2(x1, x2), for xD = b

fb2(x1, x2), for xD = c

where fb2 is the scaled Branin function (see Equation (6.42))

A closer look at the function fmix1(·) reveals the true interaction structure which we

are trying to estimate: from the construction of fmix1(·) it is apparent that variables

x1 and x2 interact with each other but do not interact with x3, x4 (except additively).

Furthermore x1, x2 are also autonomous from the choice of the qualitative variable xD,

since the contribution of these two variables to the output does not depend on the value

of xD. On the other hand the value of the categorical variable very strongly affects the

impact of x3 and x4 on the output of fmix1(·) (they are only active for xD = a). The

6.6 Kriging models with a Gower distance covariance function 123

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

0 5 10 15

0
5

10
15

threshold = 0

y

cr
os

sv
al

id
at

ed
 y

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

0 5 10 15

0
5

10
15

threshold = 0.03

y

cr
os

sv
al

id
at

ed
 y

●●

●

●

●

● ●

●

●

●

● ●

●● ●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

−5 0 5 10 15 20

−
5

0
5

10
15

20

threshold = 0.07

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

0 5 10 15

−
5

0
5

10

threshold = 0.1

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

0 5 10 15

−
5

0
5

10

threshold = 0.2

y

cr
os

sv
al

id
at

ed
 y

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

0 5 10 15

−
5

0
5

10

threshold = 1

y

cr
os

sv
al

id
at

ed
 y

Figure 6.4: Testing different threshold values, based on cross-validation with the Gower

Kriging model

two variables also obviously interact multiplicatively with each other.

Now we look at the FANOVA decomposition, estimated with the Gower Kriging. Same

as in the purely continuous case, the main issue is to construct a thresholding procedure

in order to filter out the false interactions in the FANOVA graph. For this example we

have used a continuous relaxation (i.e. coercing the categorical variable into a numeric

variable) which allows a straightforward implementation of the thresholding method

described in Chapter 5. The result of this adapted threshold identification is shown in

Figure 6.4. Using the threshold value 0.03, suggested clearly by the cross validation

with the Gower Kriging, produces the sub-graphs shown in Figure 6.5. The figure

124 Metamodels for mixed qualitative-quantitative data

x1

x2

x3

x4xD

Figure 6.5: FANOVA decomposition of the function fmix1(·)

shows that the discussed interaction behaviour of the function is captured exactly. In

this case this allows us to convert the more complicated mixed-input problem into two

independent lower-dimensional sub-problems, one of which is purely continuous.

This small example shows that the usefulness of the ParOF algorithm is not limited to

purely continuous problems and the method can be used for mixed-input experiments.

Nevertheless the application is not as straightforward as in the continuous case — in

this example we used 130 runs in the initial design in order to estimate a threshold value

which leads to the true decomposition. This is a relatively high number of experiments

for this problem. Further work on a threshold identification procedure which is better

adapted to mixed data is needed before this method is fully functional.

7. Model-based sequential optimization with

mixed data

In this chapter we look at applications of discrete EGO-variations. In the previous

chapter we presented several metamodeling schemes, which can be adapted for discrete

optimization: the CART methodology, an approach based on random forests, a treed

Kriging model — BTGP, a spline based method — CRS and two variations of the

Kriging model — the Gower Kriging and the method of presented by Zhou et al.

(2011), each of the two relying on a special kernel family to deal with the mixed

input. From the presented models, the CART method is too simplistic for model

based sequential optimization. Furthermore, the method of Zhou et al. (2011) has

some notable issues like bad scalability and the closely related computational and run-

time problems. These scalability issues make Zhou et al. (2011)’s Kriging intractable

for the use in sequential optimization applications with medium parameter size, which

is the target of this thesis. In order to illustrate this, we conduct a small empirical

study to compare the times needed for fitting the models, which are candidates for

the benchmarking study — the random forest method (randFor) — implemented in

the R-package randomForest, the BTGP (implemented in R in the package btgp),

the CRS (R-package crs), the method of Zhou et al. (2011) — based on our own

implementation in R — to the best of my knowledge, there is no commercial package

which implements their method, and finally — Gower Kriging, also based on our own

implementation. The small run-time study is based on a test function used in Zhou

125

126 Model-based sequential optimization with mixed data

et al. (2011):

fzh(x, z1) =


cos(6.8π x

2
), for z1 = 1

− cos(7π x
2
), for z1 = 2

cos(7π x
2
), for z1 = 3

where x ∈ [0, 1]. We use a starting design containing 24 runs for this small two-

dimensional problem, consisting only of a single categorical input with 3 levels, gener-

ated with the scheme described in Section 7.1. The average time needed for fitting a

CRS model to the starting design with the package crs, and recorded using the com-

mand system.time, is about 1.2 seconds. Analogously, fitting a BTGP model with the

package tgp takes only 0.42 seconds on average. The random forest method exhibits

the best fitting times — only 0.05 seconds on average. In contrast, the method of Zhou

et al. (2011) takes well over 500 seconds on average — over 8 minutes based on our

implementation. Our own, comparatively slow, Gower Kriging model, based on our

implementation in R, takes on average 3.016 seconds for the same example. For this

reason the method of Zhou et al. (2011) has not been included in the optimization

comparison-study performed in this chapter. Besides the four models which we chose

for the benchmarking, we also include a random search (rs) procedure as a rudimentary

baseline comparison.

The synthetic benchmark functions considered in this study are selected based on

the difficulty level — we start with very simple functions with just a few categorical

variables and move on to more complex functions with a moderate number of inputs.

All of the experiments were repeated six times for each test case for better comparability

of the results, and a plot of the best values found by each procedure in each repetition

is presented. This way we not only measure the ability of each method to search for the

optimum but also the consistency of the optimization results under different starting

conditions, since the starting design varies for each repetition. Similar to a box-plot,

the best values are depicted as gray points above the name of each method, written on

the x-axis, across the corresponding numerical value on the y-axis. We also included

7.1 Designs for mixed data 127

the median value of the six experiments, represented as a red cross. The global optimal

value for each synthetic test function is represented as a horizontal, green, dashed bar.

The closer the gray points and the red cross are to the green line, the better the

optimization performance of the corresponding method.

The size of the starting design and also the number of optimization iterations are chosen

according to the dimensionality of the mixed problem — for example a function taking

values from D × Z =
{(

xT , zT
)
| x = (x1, . . . , xq)

T ; z = (z1, . . . , zm)T
}

has dimension

d = q + m, regardless of the different level mj each of the zj variables may have. The

starting design for each experiment is a discrete LHD (introduced in the following),

chosen to have 10 · d runs, unless stated otherwise, according to the rule of thumb

discussed in Chapter 2.4. The number of additional optimization iterations varies for

the different problems. For each of the test cases we are interested in finding the

minimum — which we refer to as the optimum.

Before presenting the results in the last section of this chapter, two technical issues

need to be addressed — how to generate designs for problems with mixed inputs and

how to maximize the EI criterion over the mixed space F . The next two sections

present a couple of heuristic strategies we use in our work to solve these problems.

7.1 Designs for mixed data

Generating good designs for computer experiments with mixed qualitative and quanti-

tative inputs is not straightforward. Such designs should ideally retain the qualities of

the standard designs for this class of experiments — like being space filling and having

no repetitions. As the topic of mixed-input simulation experiments is still relatively

new, there is not much research on designs for these experiments. In this work we use

the strategy for generating designs for experiments with mixed inputs, implemented

in the R-package ParamHelpers (Bischl, Lang, Bossek, and Horn, Bischl et al.) under

the name generateDesign. It represents a heuristic but very systematic method for

128 Model-based sequential optimization with mixed data

building designs.

The procedure works as follows: let us consider the mixed space F = D × Z ={(
xT , zT

)
| x = (x1, . . . , xq)

T ; z = (z1, . . . , zm)T
}

, with q + m = d and let us assume

w.l.o.g. that D = [0, 1]q. The design generating procedure starts by first splitting

the real interval [0, 1] for each of the discrete variables zj (j = 1, . . . ,m) into mj

equidistant parts Ij =
[
0, 1

mj
, 2
mj
, . . . ,

mj−1
mj

, 1
]
, where mj is the number of levels of

variable zj. Then a standard LHD — X = {p1, . . . ,pn} with n runs is generated in

[0, 1]d, using a standard random LHD, generated with the help of the randomLHS from

the R-package lhs. For the q continuous inputs the process is concluded at this stage.

Next, we look at the m columns of X which correspond to the categorical variables.

For each column j, the n values pj1, . . . , pjn from X are projected onto the interval Ij

and get correspondingly coded, i.e. if pji falls into the sub-interval
[
l−1
mj
, l
mj

)
, then we

set pji = ml.

If after this step there are any duplicate points, they are removed and replaced by new

random runs — again generated with randomLHS, which are transformed in the same

way. The output of this procedure is a design for mixed-input data, which has the

desired preset number of runs. In this thesis, all the designs for mixed experiments are

generated by this scheme, unless stated otherwise.

7.2 EI optimization in the mixed space

One of the challenges in generalizing the EGO-algorithm to the mixed case is that

the maximization of the EI decision criterion has to be carried out in the mixed space

F . In this work we apply a heuristic algorithm for mixed-input problems, called focus

search — implemented in the R-package mlrMBO (Bischl, Bossek, Horn, and Lang,

Bischl et al.). The algorithm combines shrinking of the feasible domain and direct

search. It is fast and reliable but does not guarantee optimality. However, empirical

data suggests that focus search produces good solutions. The algorithm is shortly

7.2 EI optimization in the mixed space 129

described as pseudo-code in the following:

Algorithm 7.1 (Focus search) :

• Input:

– Search space F0 = D0×Z0 =
{(

xT , zT
)
| x = (x1, . . . , xq)

T ; z = (z1, . . . , zm)T
}

– Objective minp∈F0(f(p)) for the objective function f : F0 → R

– Number of iterations M ∈ N

• Output:

– Recursive series of nested spaces FM (FM−1 (. . .F0

– Optimal Value p∗M
T = (x∗M

T , z∗M
T) ∈ FM

For k = 0, . . . ,M Do:

– Generate finite grid Gk ∈ Fk — for example with the modified LHD pre-

sented in Section 7.1

– Calculate p∗k = argminp∈Gk f (p), p∗k
T = (x∗k

T , z∗k
T)

– Split Dk into two equal parts Dk1 and Dk2, with Dk1 = Dck2 (complementary

sets).

– Set Dk+1 = Dki, s.t. x∗k ∈ Dki, i ∈ {1, 2}

– Choose at random a level combination z
′ ∈ Zk, s.t. z

′ 6= z∗k component-wise

and set Zk+1 = Zk \
{
z
′}

.

– Set Fk+1 = Dk+1 ×Zk+1.

– If k + 1 = M END, else set k = k + 1 and repeat.

Remarks:

• Maximization with this procedure is supported by taking −f(·) as the objective

function.

130 Model-based sequential optimization with mixed data

• Because of the random component in the generation of the grid Gk and in the

choice of z
′

in each iteration, it is advisable to restart the focus search algorithm

several times and take the best solution over all restarts.

7.3 Benchmark study

The first test function we present for the benchmark study — ftrig — is a relatively sim-

ple mixed-input optimization problem. It consists of a mixture of two one-dimensional

trigonometric functions together with a two-level categorical variable which controls

the output:

sT = (x, xD), x ∈ [0, 1] ;xD ∈ {a, b}

ftrig(s) =

 sin(6(x2 − 1
4
)) + 1, for xD = a

sin(x) tan(x) + 0.1, for xD = b

The function ftrig has its global optimum at s∗T = (x∗, x∗D) = (0.9321, a) with

ftrig(s
∗) = 0. The behaviour of the function according to the two strategies (con-

trolled by xD) is depicted in Figure 7.2. As seen in the figure, both curves have a

clear upward trend in the interval [0, 0.6], with the dashed line — the sub-function

with xD = b having lower values. At the end of the domain the trend is reversed

for the function driven by strategy a, whereas the dashed function corresponding to

strategy b continues to increase. Subsequently the optimum is achieved by the strategy

xD = a. Although simple, this function has a confusing behaviour near the optimum.

We performed 10 · d (20) iterations for the optimization. The results are shown in the

plot in Figure 7.1, which summarizes the outputs of the repeated optimizations runs

with the different models and also the true optimum as well as the random search

results. As mentioned in the beginning of the chapter, the green, dashed is the optimal

value of the function ftrig, the gray points represent the best solutions in each trial of

each method and the red crosses symbolize the median values over the six repeated

7.3 Benchmark study 131

●

●

rs rndForest crs GowKm btgp

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Comparison of optimization methods for f_trig

Figure 7.1: Optimization results for the function ftrig

trials. Not surprisingly, guessing where the optimum lies — random search (rs), pro-

duces the worst and most variable results. Almost all other methods do an excellent

job in optimizing the ftrig function, except for the BTGP method, which has a lot of

variability in the found solutions. Note that the function ftrig has a local optimum at

s
′

= (0, b) with the value ftrig(s
′
) = 0.1, which is not that far from the true optimum

— see Figure 7.2. The optimization based on BTGP often finds suboptimal solutions.

A closer investigation reveals that the size of the starting design — the default value

of 10 · d = 20 runs for this example, is not sufficiently large enough in order for the

BTGP procedure to produce a good initial treed structure split. For this reason we

decided to increase the starting design by 50% — to 15 · d = 30 runs and repeat the

optimization experiment. This results in a dramatic improvement of the results pro-

duced by BTGP, which are now also optimal (see Figure C.1 in Appendix C). However,

increasing the size of starting design also allows the cheap brute-force rs method to

find approximately optimal solutions in median. Our goal is to keep the size of the

design as small as possible and still achieve good results.

Our next benchmark function is another simple test case with one real input variable

132 Model-based sequential optimization with mixed data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

The two subfunctions of f_trig

x

f_
tr

ig

x_D = a
x_D = b

Figure 7.2: The function ftrig

and one discrete input. This problem is a polynomial of order 4 or 5, depending on

the value of the categorical part:

sT = (x, xD), x ∈ [0, 1] ;xD ∈ {a, b}

fpoly(s) =

 (x− 0.3)2(x+ 2)(x+ 4)(x+ 0.1), for xD = a

(x+ 0.2)2(x− 1.1)2, for xD = b

The optimum of fpoly is achieved for (x∗, x∗D) = (0.3, a) with fpoly(x
∗, x∗D) = 0. For

this problem we invested 10 · d (20) iterations for the optimization. Figure 7.3 shows

the plot with the optimization results. The optimization with the BTGP method and

with Gower Kriging have the best and least variable results and the CRS method

also produces satisfactory solutions. Very surprising are the results coming from the

random forest method — in median, random-forest-based optimization is slightly better

the random search procedure, but the variability of the solutions is large. Note that

the region, where the optimum is achieved is very flat and there are many solutions

near the global optimum with low values — see Figure 7.4. This might be the reason

why less precise methods, like random forest, get stuck at an approximate optimum.

For this function we also tried increasing the starting design up to 15 · d = 30 points

(from the default of 20). Doing the optimization again with this increased initial design

7.3 Benchmark study 133

●

rs rndForest crs GowKm btgp0.
00

0
0.

00
5

0.
01

0
0.

01
5

Comparison of optimization methods for f_poly

Figure 7.3: Optimization results for the function fpoly

0.0 0.2 0.4 0.6 0.8 1.0−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

The two subfunctions of f_poly

x

f_
po

ly

x_D = a
x_D = b

Figure 7.4: The function fpoly

leads to much better absolute results for the random forest method (see Figure C.2

in Appendix C). But the same effect we observed for the previous example, is also

present here — the brute force rs method is able to find much better solutions with the

increase starting design. Furthermore, in relation the random forest method produces

comparable solutions to the rs in median. Moreover, the increased design size does not

seem to have any positive effect on the solutions produced by the CRS method, which

134 Model-based sequential optimization with mixed data

●

rs rndForest crs GowKm btgp

−
1.

0
−

0.
9

−
0.

8
−

0.
7

−
0.

6
Comparison of optimization methods for f_quad

Figure 7.5: Optimization results for the function fquad

has in comparison lost accuracy, since random forest and rs are more accurate with

larger starting designs. Gower Kriging and BTGP still produce the best solutions for

this example.

The last one-dimensional test function we present — fquad — is a very simple mixed-

input optimization problem — consisting of two one-dimensional quadratic functions:

sT = (x, xD), x ∈ [0, 1] ;xD ∈ {a, b}

fquad(s) =

 6(x− 0.5)2 − 0.5, for xD = a

−6(x− 0.5)2 + 0.5, for xD = b

The optimum of this function is achieved for (x∗, x∗D) = (1, b) with fquad(x
∗, x∗D) = −1.

We have performed 10·d (20) optimization iterations for this problem. The optimization

results are shown in Figure 7.5. Surprisingly, the BTGP and CRS methods often

find suboptimal solutions for this seemingly very simple example. The figure also

shows that random forests produce very good results, but the best and most consistent

solutions are achieved with Gower-Kriging-based optimization. Note that, although

the components of fquad are analytically simple, the mixed function exhibits extreme

7.3 Benchmark study 135

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

The two subfunctions of f_quad

x

f_
qu

ad

x_D = a
x_D = b

Figure 7.6: The function fquad

behaviour and might be confusing for some of the methods: according to the choice of

xD, the function has a completely antipodal structure — see Figure 7.6. This might

explain the comparatively worse results of some of the optimizers.

Now we look at a few more complex examples, starting with the mixed Branin function

fcatbr (introduced in Equation (6.43)). We already used this example in Section 6.6.1

to evaluate the optimization qualities of the Gower Kriging-based EGO. The plots of

the sub-functions can be seen in Figures 6.1, 6.2 and 6.3. To make results comparable

to the small case study we did in the previous section, we assign a starting design

with 36 runs for model fitting. We then do 25 · d additional optimization runs. The

results of the optimization study of fcatbr can be seen in Figure 7.7. For this more

sophisticated function, the Gower-Kriging-based EGO produces very consistent results,

all close to the true optimum at −1.053, although not exact. BTGP also does an

excellent job of finding very consistent solutions. The good results of both Kriging

based optimizers might be explained by the fact that the Branin function is a convenient

function for Kriging based modeling — it is fairly regular and smooth. Nevertheless

the true optimum of this mixed function lives in a narrow area on the border of the

domain, making it very hard to find the actual global optimum — see Figure 6.3. Of

136 Model-based sequential optimization with mixed data

the two other methods, random forest is also pretty consistent in finding at least a

local optimum. The CRS method also finds good results, although with a very high

variance and a worse median than the random forest based optimization.

The second example we examine that has two continuous inputs is more complex,

having two qualitative inputs, with 2 and 3 levels respectively. We first introduce the

auxiliary function faux1(x) = 0.5x21x
2
2− 0.5x31 + 0.2x32 + 0.17x21− x22− x1x20.5 + 0.5x1 +

0.3x2 − 0.45, for x ∈ [0, 1]2. We also refer to the scaled Branin function fb2 from

Equation (6.42). Now the mixed-categorical function we wish to optimize is:

sT = (xT , zT),x ∈ [0, 1]2 ; z ∈ {a, b} × {d, e, f}

fcatmix1(s) =



faux1(x), for z = (a, d)

faux1(x) · 0.9, for z = (a, e)

faux1(x) · 1.05, for z = (a, f)

0.5x31 − 0.25x21 − 0.025x2 − 0.86 + 0.04, for z = (b, d)

fb2(x), for z = (b, e)

0.5x21x
2
2 − 0.5x31 + 0.2x32+

0.17x21 − x22 − x1x20.5 + 0.5x1 + 0.3x2 − 0.42, for z = (b, f)

The three global optimuma of fcatmix1 are achieved for z∗T = (b, e) and x∗T =

(0.9616520, 0.15) , (0.1238946, 0.8166644) and (0.5427730, 0.15) — which are the three

global optima of the scaled Branin function (see Equation (6.42)) with the correspond-

ing output at these locations: −1.04741. For this problem we assigned a budget of

20 ·d optimization runs. The plot of the optimization results can be seen in 7.8. Again

we see the superiority of Gower Kriging and BTGP which both manage to find the

optimum of faux1 at −1.04741. However, the random-forest-based optimization is not

far behind, showing a little more variance in the solutions and a little worse results.

The last example we want to present is a fairly complex function with three categorical

inputs with 3, 2 and 2 levels respectively, plus 5 continuous input variables. First we

define the following five-dimensional auxiliary continuous function:

faux2(x) =
∑5

i=1 (5xi + (1− xi))2 2
i−1
d−1 − 2.75. Then we define the mixed function

7.3 Benchmark study 137

fcatmix2 as:

sT = (xT , zT),x ∈ [0, 1]5 ; z ∈ {a, b, c} × {d, e} × {f, g}

fcatmix2(s) =



faux2(x), for z = (a, d, f)

faux2(x) + 0.2, for z = (a, d, g)

faux2(x) · 0.9, for z = (a, e, f)

faux2(x) + 0.25, for z = (a, e, g)

faux2(x) + 0.5, for z = (b, d, f)

faux2(x) · 0.8, for z = (b, d, g)

faux2(x) · 0.5, for z = (b, e, f)

faux2(x) + 0.8, for z = (b, e, g)

faux2(x) + 0.9, for z = (c, d, f)

faux2(x) · 0.5, for z = (c, d, g)

faux2(x) + 1, for z = (c, e, f)

faux2(x) + 1.25, for z = (c, e, g)

The global minimum of the fcatmix2 function is achieved for s∗T =

(0.5, 0.5, 0.5, 0.5, 0.5, a, d, f) with fcatmix2(s
∗) = −2.75. This is the most complex

function considered in this benchmarking study — it is also the most computationally

expensive to optimize. For this reason we assign a relatively small optimization

budget of 15d (120) runs for optimization. For model fitting we assign the usual 10 · d

(80) number of experiments. The familiar plot containing the optimization results is

depicted in Figure 7.9. For this challenging benchmark function, all of the methods

participating in the study have difficulties finding the global optimum within the

assigned budget. Nevertheless, some of the methods manage to consistently find a

local optimum — more notably the BTGP and Gower Kriging, which have shown

consistency in most of the previously seen test cases. Note also that in this case the

CRS produces better solutions in median than the BTGP and almost identical median

solutions with Gower Kriging, although with a higher variance in comparison.

The small optimization comparison study in this chapter has shown that solving black-

138 Model-based sequential optimization with mixed data

box problems with mixed inputs of the type we presented can be overwhelmingly chal-

lenging even for sophisticated models and even when the function has seemingly simple

analytical structure and is lower-dimensional. From the benchmark tests on synthetic

functions we have seen so far in this chapter, the model-based optimization procedures,

based on the Gower Kriging and BTGP, lead to better and more constant results in

most cases. In all of the test cases however, the optimization aided by Gower Kriging

has consistently outperformed all of the other methods. The results produced with

optimizers based on CRS and random forest are also very satisfactory in most cases.

When comparing these two methods, there is no clear front-runner and they both have

strengths and weaknesses according to the test case.

This benchmark study is not concerned with systematically studying the computa-

tional costs associated with each method. However, from empirical comparison we can

conclude that optimization based on random forest is by far faster than the rest of the

methods, followed by BTGP, CRS and Gower Kriging, based on their implementation

in the software R. We have seen similar results based on the time needed for model

fitting in the small preliminary example in the beginning of this chapter. The run-time

of the optimization is a credible concern only for the last test function — fcatmix2,

where the speed advantage of the random forest method comes into play. There is still

work to be done on the implementation of the Gower Kriging optimization method in

order to improve its runtime.

7.3 Benchmark study 139

●

●

rs rndForest crs GowKm btgp

−
1.

05
−

1.
03

−
1.

01

Comparison of optimization methods for f_catbr

Figure 7.7: Optimization results for the function fcatbr

●

●

●

●

rs rndForest crs GowKm btgp−
1.

05
−

1.
00

−
0.

95
−

0.
90

Comparison of optimization methods for f_catmix1

Figure 7.8: Optimization results for the function fcatmix1

140 Model-based sequential optimization with mixed data

rs rndForest crs GowKm btgp

−
2

0
2

4
6

Comparison of optimization methods for f_catmix2

Figure 7.9: Optimization results for the function fcatmix2

8. Conclusion and outlook

The general field of research of this thesis was the optimization of black-box functions

with the help of metamodels, both black-box functions with purely continuous inputs,

as well as more generally — functions with mixed quantitative-qualitative inputs, were

considered. Three major methods for sequential black-box optimization were developed

in the course of this work, and their effectiveness was studied in comparison to the well

established EGO algorithm. All of the newly developed methods share their close

relation to the powerful EGO algorithm and constitute, in principle, enhancements

thereof capable of overcoming some of the shortcomings of the original method.

Concerning functions (experiments) which have only continuous inputs we developed

the keiEGO algorithm — a robust optimization method, in the sense of reliance on a

distribution assumption. The keiEGO algorithm is a completely data-driven method,

which does not require any restrictive assumptions or tedious parameter estimation

procedures. It represents an EGO variation, capable of finding the optima of highly

irregular functions with higher success than the classical EGO.

For experiments with mixed inputs, we proposed the Gower Kriging — a new varia-

tion of the prominent Kriging model, which is built with the help of a special class

of Kriging kernels, based on the Gower distance. Besides enabling the modeling and

prediction of data with mixed quantitative-qualitative inputs, the Gower Kriging al-

lows the construction of an EGO generalization capable of producing globally optimal

solutions for mixed-input problems.

In this work we also introduced the ParOF algorithm for parallel optimization. The

141

142 Conclusion and outlook

ParOF algorithm uses sensitivity analysis techniques in order to decompose the original

function under study into several additive functions, which can then be optimized in

parallel. Moreover, the ParOF algorithm reduces the dimensionality of the original

problem, making it easier to solve. We developed the ParOF algorithm initially as a

method fit for functions with continuous inputs. However, in the course of this work

it was shown that the ParOF method is applicable for mixed-input functions as well.

The keiEGO method and the ParOF algorithm were tested against the EGO algorithm

with the help of synthetic test functions. Furthermore, both methods were compared

to the EGO algorithm, based on a sheet metal forming experiment concerned with

reducing the tearing of the formed material, by minimizing the thickness reduction.

The keiEGO and the ParOF have both proven to be good contenders to the classical

EGO method. In many of the test cases both methods produced similar or even

better optimization results than EGO. In the optimization of the sheet metal forming

process, in particular, the best results of all three competing methods were produced

with the keiEGO method, which also needed the least amount of simulations to find the

solution. The ParOF algorithm and EGO were able to find a solution, which reduces

the thickness reduction by virtually the same amount.

In the mixed optimization case, we performed a benchmark study of several EGO-

related, metamodel-based methods, with the help of various synthetic test functions of

varying complexity. In almost all of the cases the EGO based on the Gower Kriging

was the best of the competing methods, based on optimization results.

All the three developed methods have proven to be very valuable for black-box op-

timization, often producing better results than comparable methods. Nevertheless,

there is still room for improvement and/or further research regarding all three meth-

ods. One of the weaknesses of the keiEGO method is its computational complexity —

keiEGO strongly relies of the calculation of the Delaunay triangulation, which becomes

exponentially big with increasing dimensionality and number of known data points. A

possible solution to this problem is to produce a fast but only approximate Delaunay

143

triangulation — for example as proposed by Bowers et al. (1998) or by discarding the

simplices which have a negligibly small volume. This will likely result in computation-

ally more efficient but less accurate predictions with the KI method. This is a good

topic for further research and development of the keiEGO algorithm, which has shown

great promise in the field of black-box optimization. Concerning the ParOF algorithm,

one notable issue is that the data sample, used initially for the estimation of the ad-

ditive structure of the function, is discarded immediately after the estimation process.

This lavish use of the initial data is not efficient in the context of costly simulation

experiments. In order to solve this problem, it is conceivable to develop a completely

new class of design of experiments, which allow the reuse of much, or all, of the initial

runs in the subsequent parallel optimization problems. For the EGO algorithm for

mixed data, based on the Gower Kriging, it would be of great interest to apply the

method to a simulation problem with mixed inputs and to compare it to other state of

the art methods. One further line of research are special correlation functions, which

take into account ordered data. This may possibly be achieved by further developing

the Gower distance or by introducing a new class of Kriging kernels.

A. Notations

144

145

symbol description

mathematical notations

R the set of real numbers

R≥0 the set of positive real numbers

N the set of natural numbers

N+ the set of positive natural numbers without zero

Lp(ν) space of functions that are p times integrable with respect to

measure ν

‖x‖ Euclidean norm over vector x

|Q| for a matrix Q, determinant of Q

A \B {x|x ∈ A and x /∈ B}, difference of sets A and B

Ac complementary set of the set A — i.e. A = U \ A, for A ⊆ U

∅ the empty set

defined notation (general)

D0 starting design of experiments

n number of runs of the starting design

d number of input variables/dimensionality of a function

x = (x1, . . . , xd)
T vector of real inputs

y = (y1, . . . , yn)T vector of real outputs

z = (z1, . . . , zm)T vector of qualitative inputs

p = (p1, . . . , pd)
T vector of mixed qunatitative-qualitative inputs

θ = (θ1, . . . , θm)T Kriging parameter vector

Rθ(•, •) Kriging covariance kernel

R(θ) Kriging covariance matrix

y, Y specific output value and corresponding random variable

f underlying black-box function

D domain of f , for f having continuous inputs

146 Notations

F domain of f , for f having mixed quantitative-qualitative inputs

defined notation in Chapter 2

lLF (•) log-likelihood function

C, c circumsphere with center c

T (A) Delaunay triangulation of the set A

N Number of simplices in a Delaunay triangulation

H(n, d) Latin hypercube in d dimensions with n runs

Mm(D0) minimum distance in the design D0

DMm−LHD
n,d maximin-LHD design in d dimensions with n runs

defined notation in Chapter 3

I(x), E [I(x)] improvement and expected improvement brought by x

φ, Φ density and distribution function of the standard normal dis-

tribution

defined notation in Chapter 4

fb Branin function

fs Schwefel function

x∗ global optimum of a function

defined notation in Chapter 5

I set of variable indices, subset of {1, . . . , d}

xI ,XI input setting and variable for all input variables in I

fI additive term of f in FANOVA decomposition

µI(XI) components of the FANOVA decomposition

D overall variance of f(X)

DI unscaled Sobol index

Di,j total interaction index

D̂i,j (Liu and Owen) estimator of the total interaction index

147

defined notation in Chapter 6

q number of continuous inputs

m number of qualitative inputs

mj number of level of qualitative variable j, j ∈ {1, . . . ,m}

M product over the number of levels mj

T , T̃ tree and the set of end-nodes of the tree

t, t̃ an internal node and an end-node of a tree

|t| the number of elements in the node (set) t

b number of trees in a treed model

(Θ, T) general treed model, with parameter set Θ = (θ1, . . . ,θb)

L(•) categorical regression splines kernel function

1A indicator function of the set A

Gl space of polynomial splines of order ql

Bl basis of Gl

β̂−i leave-one-out estimate of β

R̃θ(p1,p2) correlation function for the method of Zhou et al. (2011), where

p1,p2 ∈ F

T M ×M matrix containing correlation information for the cat-

egorical variables for the method of Zhou et al. (2011)

Φ parameter matrix, corresponding to the (under-diagonal) ele-

ments of the matrix T

dGow(p, t) Gower distance for p, t ∈ F

RGow
θ (p, t) covariance function of the Gower Kriging

RGow−Mat
θ the Gower Kriging version of the Matern covariance kernel

B. Data

148

149

x

1 0.0000

2 0.0556

3 0.1111

4 0.1667

5 0.2222

6 0.2778

7 0.3333

8 0.3889

9 0.4444

10 0.5000

11 0.5556

12 0.6111

13 0.6667

14 0.7222

15 0.7778

16 0.8333

17 0.8889

18 0.9444

19 1.0000

Table B.1: Equidistant design for the comparison example of Kriging and KI (see

Remark 2.1)

150 Data

x1 x2

1 0.89258 0.50601

2 0.33018 0.71831

3 0.79237 0.18625

4 0.16397 0.78934

5 0.40617 0.56299

6 0.26472 0.96549

7 0.09452 0.07726

8 0.58917 0.32516

9 0.22846 0.41112

10 0.74185 0.26475

11 0.53867 0.72489

12 0.71600 0.85237

13 0.64122 0.11220

14 0.37864 0.38428

15 0.80038 0.61355

16 0.28366 0.64787

17 0.03592 0.23744

18 0.13571 0.91082

19 0.86942 0.02688

20 0.63892 0.55561

21 0.94544 0.81026

22 0.50576 0.15631

23 0.46174 0.94598

24 0.98783 0.29864

25 0.05718 0.46938

Table B.2: Initial latin hypercube design for the Branin optimization experiment

(Chapter 4.2)

151

x1 x2

1 -359.82872 282.65997

2 148.94972 -314.54275

3 50.26065 48.11358

4 359.95928 -271.86627

5 -116.32557 -451.45801

6 -225.92349 24.98250

7 318.39104 376.26364

8 162.81656 -107.07771

9 -396.90406 -350.54256

10 -15.18280 -249.85166

11 -49.72091 122.26388

12 -346.29581 82.77514

13 -182.40105 -225.53692

14 80.70996 454.41316

15 -289.93766 352.44235

16 -432.66034 214.78758

17 339.92299 -15.13088

18 258.15063 129.65294

19 272.25042 -201.16523

20 -307.91510 -170.39678

21 1.34810 250.48300

22 215.51665 -388.27609

23 416.70203 186.62571

24 -137.05960 -89.61786

25 191.49499 326.14952

26 463.84414 -151.27628

27 -206.81822 180.07381

28 34.61892 -376.08001

29 -486.77559 408.92213

30 -245.76532 -416.80121

31 126.48916 2.28867

32 -93.82073 489.76797

33 389.22508 -494.79748

34 496.58098 437.59926

35 -456.31278 -51.90688

Table B.3: Initial latin hypercube design for the Schwefel optimization experiment

(Chapter 4.2)

152 Data

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

1 175.5102 0.9898 50.0000 0.0000 0.0914 0.0314 0.2102 134.6939 0.2821

2 100.0000 1.5286 147.9592 0.1171 0.0371 0.0429 0.2225 104.0816 0.5137

3 151.0204 0.8429 151.0204 0.0257 0.0857 0.0371 0.1000 102.0408 0.2536

4 153.0612 1.1367 77.5510 0.0029 0.0429 0.0714 0.1082 121.4286 0.6289

5 118.3674 1.5776 92.8571 0.0514 0.0686 0.0914 0.2878 143.8776 0.8150

6 157.1429 1.6510 187.7551 0.0743 0.0743 0.1200 0.2796 138.7755 0.8278

7 112.2449 0.7939 126.5306 0.0371 0.0571 0.0286 0.2918 110.2041 0.4281

8 148.9796 1.0878 175.5102 0.1000 0.0286 0.1343 0.1694 112.2449 0.7314

9 200.0000 1.7000 181.6327 0.0771 0.1000 0.1086 0.1449 129.5918 0.8185

10 120.4082 1.4061 184.6939 0.0714 0.1171 0.1000 0.1367 148.9796 0.8804

11 185.7143 1.3082 74.4898 0.0314 0.0971 0.1371 0.1531 119.3878 0.8598

12 155.1020 1.5041 59.1837 0.0914 0.0829 0.0771 0.2020 106.1225 0.4078

13 138.7755 1.3326 193.8776 0.0571 0.0800 0.0143 0.2388 131.6327 0.6437

14 130.6122 0.9653 53.0612 0.1057 0.0629 0.1286 0.1490 137.7551 0.7054

15 161.2245 1.6020 65.3061 0.1400 0.1229 0.1400 0.1122 118.3674 0.8476

16 122.4490 1.2347 154.0816 0.0171 0.1200 0.1057 0.2592 132.6531 0.8787

17 106.1225 1.4306 120.4082 0.1314 0.1114 0.0600 0.1163 130.6122 0.8080

18 177.5510 1.0143 172.4490 0.0057 0.1371 0.0343 0.2265 123.4694 0.8563

19 197.9592 0.9163 157.1429 0.0400 0.0171 0.1171 0.1326 101.0204 0.4143

20 183.6735 1.1857 141.8367 0.0600 0.0029 0.0629 0.2061 125.5102 0.5995

21 171.4286 1.5531 132.6531 0.0800 0.0400 0.0400 0.1204 150.0000 0.6777

22 140.8163 0.6714 80.6122 0.0829 0.0000 0.0743 0.1735 113.2653 0.4457

23 167.3469 1.0388 56.1225 0.1143 0.0229 0.0229 0.2714 122.4490 0.4120

24 114.2857 1.6755 105.1020 0.0657 0.0143 0.0971 0.1571 126.5306 0.5424

25 189.7959 1.6265 114.2857 0.0429 0.1029 0.0057 0.1776 120.4082 0.6269

26 134.6939 0.8918 102.0408 0.0629 0.0543 0.0086 0.1408 136.7347 0.7283

27 146.9388 1.2837 135.7143 0.1086 0.1314 0.0800 0.2837 116.3265 0.8093

28 128.5714 0.5735 200.0000 0.0486 0.1343 0.0943 0.2184 114.2857 0.8677

29 136.7347 1.0633 111.2245 0.0943 0.0314 0.1257 0.3000 108.1633 0.6944

30 191.8367 0.5000 178.5714 0.1114 0.0457 0.0457 0.2755 139.7959 0.4572

31 195.9184 0.5490 68.3674 0.1257 0.0600 0.0200 0.1653 124.4898 0.3742

32 159.1837 1.2102 117.3469 0.1343 0.0086 0.0029 0.1245 115.3061 0.5054

33 104.0816 1.3571 144.8980 0.0686 0.1400 0.0829 0.1816 107.1429 0.4304

34 173.4694 0.6224 83.6735 0.0143 0.0114 0.0657 0.2633 140.8163 0.4466

35 181.6327 1.1122 166.3265 0.0114 0.0714 0.1143 0.1857 142.8571 0.8553

36 193.8776 0.8184 108.1633 0.0543 0.1257 0.1114 0.2306 100.0000 0.2416

37 126.5306 0.7449 98.9796 0.0886 0.1143 0.0686 0.2959 146.9388 0.8804

38 142.8571 0.9408 71.4286 0.1286 0.1286 0.0171 0.1980 141.8367 0.8622

39 110.2041 0.5980 89.7959 0.0857 0.1057 0.0886 0.2551 111.2245 0.6971

40 116.3265 0.6959 95.9184 0.0229 0.0943 0.0857 0.1041 147.9592 0.8663

41 102.0408 1.1612 138.7755 0.0086 0.1086 0.0257 0.1612 127.5510 0.8061

42 179.5918 0.7204 169.3878 0.0457 0.0514 0.0114 0.2429 105.1020 0.3377

43 163.2653 1.2592 190.8163 0.0343 0.0057 0.0000 0.1286 117.3469 0.4839

44 132.6531 0.7694 196.9388 0.1229 0.0657 0.0514 0.2143 103.0612 0.4160

45 169.3878 1.4551 62.2449 0.1371 0.0200 0.1029 0.1898 133.6735 0.4775

46 187.7551 1.4796 123.4694 0.1200 0.0771 0.0543 0.2469 144.8980 0.7633

47 144.8980 1.3816 163.2653 0.0200 0.0343 0.0571 0.2673 109.1837 0.5016

48 108.1633 0.8673 160.2041 0.0971 0.0257 0.0486 0.2347 145.9184 0.7730

49 124.4898 0.6469 129.5918 0.0286 0.0486 0.1229 0.1939 128.5714 0.4776

50 165.3061 0.5245 86.7347 0.1029 0.0886 0.1314 0.2510 135.7143 0.8165

Table B.4: Initial latin hypercube design for the deep drawing simulation case study

(Chapter 4.2)

153

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y

184.6567 1.0415 114.4097 0.0244 0.1160 0.0724 0.1532 100.4543 0.2802

200.0000 0.5000 50.0000 0.0000 0.0662 0.0339 0.3000 133.2798 0.3673

168.1258 0.7989 99.4704 0.0352 0.1050 0.0671 0.1871 100.0000 0.1902

161.0478 0.7088 84.4420 0.0142 0.1044 0.0585 0.2200 100.0000 0.1506

152.3822 0.6309 85.8363 0.0316 0.1194 0.0663 0.2876 100.0058 0.1470

178.8907 0.5000 50.2258 0.0016 0.0924 0.0313 0.2860 102.0408 0.1664

176.6123 0.5000 64.6159 0.0000 0.0976 0.0465 0.3000 100.0058 0.1039

167.9044 0.5000 55.8716 0.0000 0.0816 0.0638 0.3000 100.0679 0.1203

150.8095 0.5000 57.4357 0.0196 0.0808 0.0203 0.3000 100.0058 0.1001

196.9520 0.5001 62.1807 0.0198 0.0866 0.0040 0.3000 100.0679 0.0919

173.3759 1.0977 53.8147 0.0000 0.0908 0.0062 0.3000 100.0640 0.2071

175.3056 0.5000 95.7308 0.0443 0.0810 0.0131 0.2968 100.0679 0.1121

191.3395 0.5000 50.0000 0.0727 0.0921 0.0241 0.2752 100.0000 0.1051

177.6008 0.5000 50.4893 0.0101 0.0687 0.0006 0.2246 100.1326 0.0925

181.8108 0.5000 54.0858 0.0210 0.0772 0.0005 0.2680 100.7060 0.0923

196.8111 0.5000 64.4829 0.0133 0.0535 0.0024 0.3000 100.2705 0.0982

137.9754 0.5000 61.9502 0.0000 0.0228 0.0000 0.1721 100.7028 0.1056

169.5789 0.5000 60.3317 0.0063 0.0409 0.0000 0.2289 101.0057 0.1001

169.8824 0.6132 64.5857 0.0253 0.0668 0.0000 0.2688 100.0000 0.1100

100.0083 0.5000 70.0144 0.0000 0.0736 0.0000 0.1000 100.9026 0.0911

102.1673 0.5000 113.5672 0.0000 0.0653 0.0000 0.1488 100.6424 0.1017

106.7481 0.5000 77.7166 0.0000 0.0588 0.0297 0.1000 100.3329 0.1102

100.0047 0.8127 70.0095 0.0000 0.0895 0.0000 0.1256 100.2415 0.1379

127.0881 0.5000 70.7165 0.0000 0.0665 0.0000 0.1632 100.7675 0.0916

100.0000 0.5000 69.4108 0.0000 0.0173 0.0000 0.1000 105.8396 0.2983

102.1887 0.5000 107.6137 0.0392 0.1289 0.0019 0.1000 100.0000 0.0915

200.0000 1.7000 50.0000 0.0000 0.0670 0.0000 0.2699 134.6618 0.6830

100.0000 0.5227 83.7609 0.0000 0.1006 0.0000 0.1000 100.0000 0.0906

100.0000 0.5000 75.5914 0.0723 0.0857 0.0000 0.1000 100.0000 0.1040

100.0000 0.5000 93.1933 0.0263 0.1009 0.0000 0.1000 100.6864 0.0921

Table B.5: Optimization results for the classical EGO algorithm for the deep drawing

simulation case study, used to compare to the results of keiEGO (Chapter 4.2)

154 Data

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y

200.0000 1.7000 162.0042 0.0000 0.0000 0.0000 0.3000 150.0000 0.5476

200.0000 1.7000 60.4971 0.1400 0.1400 0.1400 0.3000 119.7147 0.8299

128.4411 1.7000 199.7893 0.1400 0.0000 0.1400 0.1000 109.4006 0.4910

138.5075 1.7000 50.0000 0.0000 0.0000 0.0000 0.1000 103.5349 0.7125

157.8831 0.5000 150.3546 0.0000 0.0000 0.0000 0.1000 100.0000 0.1314

134.9765 1.7000 164.2506 0.0000 0.0000 0.0000 0.1000 100.0000 0.8700

157.8854 0.5000 144.5197 0.1400 0.0000 0.1400 0.1000 103.9546 0.4722

200.0000 0.5000 200.0000 0.1400 0.0000 0.0000 0.3000 100.0000 0.2836

154.0626 0.5000 153.6186 0.0000 0.1400 0.1400 0.1000 100.0000 0.2541

154.5258 1.7000 145.1336 0.1400 0.1400 0.0000 0.3000 100.0000 0.6364

175.3980 1.7000 153.5824 0.0000 0.0000 0.1400 0.3000 103.4202 0.4343

133.8478 0.5000 155.4432 0.1400 0.1400 0.0000 0.3000 100.9033 0.1624

148.0938 0.5000 151.2940 0.0000 0.1400 0.0000 0.1000 104.3299 0.1290

127.4129 0.5000 157.1227 0.1400 0.1400 0.0000 0.1000 100.0000 0.1637

158.7191 0.5000 153.5188 0.0000 0.1400 0.0000 0.1000 100.0000 0.0771

171.8322 0.5000 147.1449 0.0000 0.1400 0.0000 0.1000 100.0000 0.0755

163.9205 0.5000 152.6557 0.0000 0.1400 0.0000 0.1000 104.5476 0.2295

199.5283 0.5000 177.5036 0.1400 0.0000 0.0000 0.3000 103.9984 0.3152

157.1052 0.5000 162.0956 0.0000 0.1400 0.0000 0.3000 100.0000 0.0802

149.1293 0.5000 159.4710 0.0000 0.0000 0.0000 0.3000 100.0000 0.1487

156.6045 0.5000 156.0782 0.0000 0.1400 0.0000 0.3000 100.0000 0.0758

153.4285 0.5000 153.1357 0.0000 0.1400 0.0000 0.1000 100.0000 0.0760

200.0000 0.5000 156.7691 0.0000 0.0000 0.0000 0.1000 150.0000 0.4054

117.3434 0.5000 114.9813 0.0000 0.0000 0.0000 0.1000 108.8693 0.3225

154.9751 0.5000 141.1007 0.0000 0.1400 0.0000 0.1000 100.0000 0.0765

200.0000 0.5000 148.8163 0.0000 0.0000 0.0000 0.3000 100.0000 0.1386

200.0000 0.5000 127.2724 0.1400 0.0000 0.0000 0.3000 100.2798 0.2485

Table B.6: Optimization results for the keiEGO algorithm for the deep drawing simu-

lation case study (Chapter 4.2)

155

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

184.6567 1.0415 114.4097 0.0244 0.1160 0.0724 0.1532 100.4543 0.2802

200.0000 0.5000 50.0000 0.0000 0.0662 0.0339 0.3000 133.2798 0.3673

168.1258 0.7989 99.4704 0.0352 0.1050 0.0671 0.1871 100.0000 0.1902

161.0478 0.7088 84.4420 0.0142 0.1044 0.0585 0.2200 100.0000 0.1506

152.3822 0.6309 85.8363 0.0316 0.1194 0.0663 0.2876 100.0058 0.1470

178.8907 0.5000 50.2258 0.0016 0.0924 0.0313 0.2860 102.0408 0.1664

176.6123 0.5000 64.6159 0.0000 0.0976 0.0465 0.3000 100.0058 0.1039

167.9044 0.5000 55.8716 0.0000 0.0816 0.0638 0.3000 100.0679 0.1203

150.8095 0.5000 57.4357 0.0196 0.0808 0.0203 0.3000 100.0058 0.1001

196.9520 0.5001 62.1807 0.0198 0.0866 0.0040 0.3000 100.0679 0.0919

173.3759 1.0977 53.8147 0.0000 0.0908 0.0062 0.3000 100.0640 0.2071

175.3056 0.5000 95.7308 0.0443 0.0810 0.0131 0.2968 100.0679 0.1121

191.3395 0.5000 50.0000 0.0727 0.0921 0.0241 0.2752 100.0000 0.1051

177.6008 0.5000 50.4893 0.0101 0.0687 0.0006 0.2246 100.1326 0.0925

181.8108 0.5000 54.0858 0.0210 0.0772 0.0005 0.2680 100.7060 0.0923

196.8111 0.5000 64.4829 0.0133 0.0535 0.0024 0.3000 100.2705 0.0982

137.9754 0.5000 61.9502 0.0000 0.0228 0.0000 0.1721 100.7028 0.1056

169.5789 0.5000 60.3317 0.0063 0.0409 0.0000 0.2289 101.0057 0.1001

169.8824 0.6132 64.5857 0.0253 0.0668 0.0000 0.2688 100.0000 0.1100

100.0083 0.5000 70.0144 0.0000 0.0736 0.0000 0.1000 100.9026 0.0911

102.1673 0.5000 113.5672 0.0000 0.0653 0.0000 0.1488 100.6424 0.1017

106.7481 0.5000 77.7166 0.0000 0.0588 0.0297 0.1000 100.3329 0.1102

100.0047 0.8127 70.0095 0.0000 0.0895 0.0000 0.1256 100.2415 0.1379

127.0881 0.5000 70.7165 0.0000 0.0665 0.0000 0.1632 100.7675 0.0916

100.0000 0.5000 69.4108 0.0000 0.0173 0.0000 0.1000 105.8396 0.2983

102.1887 0.5000 107.6137 0.0392 0.1289 0.0019 0.1000 100.0000 0.0915

200.0000 1.7000 50.0000 0.0000 0.0670 0.0000 0.2699 134.6618 0.6830

100.0000 0.5227 83.7609 0.0000 0.1006 0.0000 0.1000 100.0000 0.0906

100.0000 0.5000 75.5914 0.0723 0.0857 0.0000 0.1000 100.0000 0.1040

100.0000 0.5000 93.1933 0.0263 0.1009 0.0000 0.1000 100.6864 0.0921

127.8653 1.3571 64.7969 0.0249 0.1400 0.0000 0.1247 100.0000 0.5053

100.0013 0.5000 64.4700 0.0101 0.0809 0.0000 0.1757 100.0000 0.0903

100.6647 0.5000 87.9236 0.0619 0.1400 0.0000 0.1915 100.0000 0.0920

199.9991 0.9265 50.0000 0.0000 0.0117 0.0000 0.3000 132.1748 0.3266

144.7294 0.5000 90.8653 0.0668 0.1400 0.0000 0.1955 100.0000 0.0940

104.4526 0.5000 96.5233 0.0343 0.1115 0.0000 0.1532 100.0000 0.0929

100.0000 0.5000 63.5759 0.0763 0.1400 0.0054 0.1000 100.0000 0.0906

136.5853 0.5000 91.0976 0.1400 0.1400 0.0213 0.1413 100.0000 0.1355

200.0000 0.5000 91.7054 0.0534 0.1400 0.0070 0.1000 100.0000 0.0946

179.9733 0.5000 73.2225 0.0429 0.1400 0.0164 0.1936 100.0000 0.0923

136.1311 0.6469 58.6700 0.0000 0.0598 0.0000 0.2561 100.5118 0.1208

199.9953 0.5000 103.0354 0.0588 0.0608 0.0000 0.1000 100.6462 0.1163

141.5288 0.5000 82.1036 0.0541 0.1400 0.0000 0.1000 100.0000 0.0878

200.0000 0.7693 51.0038 0.0562 0.1400 0.0125 0.3000 100.2415 0.1118

197.8441 0.5000 75.3907 0.1053 0.1400 0.0000 0.1000 100.8735 0.0986

199.9891 0.6599 53.3798 0.0372 0.1026 0.0000 0.1162 100.9026 0.1067

179.3216 0.5000 103.8678 0.0612 0.1400 0.0000 0.1000 100.8297 0.0940

190.8999 0.5000 89.4875 0.0680 0.1258 0.0000 0.1441 100.2705 0.0969

200.0000 0.5000 65.1780 0.0106 0.0805 0.0029 0.1844 100.8708 0.0914

100.0165 0.5000 112.3776 0.0000 0.0000 0.0401 0.3000 100.7823 0.1830

110.6160 0.5000 73.1239 0.0146 0.1400 0.0000 0.1186 100.3395 0.0783

200.0000 0.9052 50.0000 0.0000 0.0000 0.0679 0.1000 132.4119 0.3911

200.0000 0.8666 50.0000 0.0000 0.0287 0.0000 0.2363 101.1414 0.1677

100.0005 0.5991 71.4915 0.0279 0.1400 0.0000 0.1000 100.5757 0.0868

200.0000 0.9531 50.0000 0.0000 0.1400 0.0000 0.1000 106.0460 0.1972

200.0000 0.7449 50.0000 0.0000 0.0000 0.0000 0.1000 111.2560 0.4032

104.6382 0.8412 50.0000 0.1400 0.1400 0.0000 0.1000 103.3857 0.1980

100.0000 0.5000 50.0000 0.1396 0.0000 0.0754 0.3000 124.4053 0.4340

200.0000 0.5000 55.3716 0.0000 0.1400 0.0706 0.1000 100.0000 0.1003

113.9095 0.5000 82.2607 0.0000 0.1400 0.0000 0.3000 100.0000 0.0800

Table B.7: Optimization results for the EGO algorithm for the deep drawing simulation

case study, compared to the results of the ParOF algorithm (continued for the second

experiment in Chapter 5)

156 Data

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

1 150 1.49603 125 0.07000 0.07000 0.07000 0.20000 127 0.73629

2 150 1.45369 125 0.07000 0.07000 0.07000 0.20000 127 0.74498

3 150 0.60810 125 0.07000 0.07000 0.07000 0.20000 127 0.54680

4 150 1.10025 125 0.07000 0.07000 0.07000 0.20000 127 0.79970

5 150 1.16250 125 0.07000 0.07000 0.07000 0.20000 127 0.79603

6 150 0.75284 125 0.07000 0.07000 0.07000 0.20000 127 0.80578

7 150 1.58924 125 0.07000 0.07000 0.07000 0.20000 127 0.72146

8 150 0.87183 125 0.07000 0.07000 0.07000 0.20000 127 0.81336

9 150 0.96370 125 0.07000 0.07000 0.07000 0.20000 127 0.80643

10 150 1.04822 125 0.07000 0.07000 0.07000 0.20000 127 0.80361

11 150 0.71043 125 0.07000 0.07000 0.07000 0.20000 127 0.79401

12 150 1.24195 125 0.07000 0.07000 0.07000 0.20000 127 0.78535

13 150 1.34610 125 0.07000 0.07000 0.07000 0.20000 127 0.76645

14 150 1.69982 125 0.07000 0.07000 0.07000 0.20000 127 0.71271

15 150 0.50692 125 0.07000 0.07000 0.07000 0.20000 127 0.42040

16 150 0.50000 125 0.07000 0.07000 0.07000 0.20000 127 0.42091

17 150 0.51904 125 0.07000 0.07000 0.07000 0.20000 127 0.42114

18 150 0.50954 125 0.07000 0.07000 0.07000 0.20000 127 0.41971

19 150 0.50950 125 0.07000 0.07000 0.07000 0.20000 127 0.42117

20 150 0.50918 125 0.07000 0.07000 0.07000 0.20000 127 0.42251

21 150 0.50861 125 0.07000 0.07000 0.07000 0.20000 127 0.42130

22 150 0.50860 125 0.07000 0.07000 0.07000 0.20000 127 0.42129

23 150 0.50856 125 0.07000 0.07000 0.07000 0.20000 127 0.42096

24 150 0.50000 125 0.07000 0.07000 0.07000 0.20000 127 0.42120

25 150 0.50854 125 0.07000 0.07000 0.07000 0.20000 127 0.42397

Table B.8: ParOF optimization results on the separate clusters for the sheet metal form-

ing experiment: results for the optimization of the variable X2 sheet thickness

(ST) — note that all other variables are set to a default constant value. The line in

the middle separates the starting design (first part) from the optimization runs (results

for the ParOF vs EGO comparison for the sheet metal forming experiment in Chapter

5)

157

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

1 150 1.10000 125 0.10126 0.07000 0.07000 0.20000 127 0.80241

2 150 1.10000 125 0.11852 0.07000 0.07000 0.20000 127 0.80406

3 150 1.10000 125 0.04572 0.07000 0.07000 0.20000 127 0.79175

4 150 1.10000 125 0.06801 0.07000 0.07000 0.20000 127 0.79725

5 150 1.10000 125 0.07064 0.07000 0.07000 0.20000 127 0.79938

6 150 1.10000 125 0.02019 0.07000 0.07000 0.20000 127 0.78537

7 150 1.10000 125 0.01118 0.07000 0.07000 0.20000 127 0.78705

8 150 1.10000 125 0.08571 0.07000 0.07000 0.20000 127 0.79970

9 150 1.10000 125 0.13385 0.07000 0.07000 0.20000 127 0.80788

10 150 1.10000 125 0.03089 0.07000 0.07000 0.20000 127 0.78835

11 150 1.10000 125 0.00000 0.07000 0.07000 0.20000 127 0.78320

12 150 1.10000 125 1.188322e-15 0.07000 0.07000 0.20000 127 0.78410

13 150 1.10000 125 2.704407e-15 0.07000 0.07000 0.20000 127 0.77925

14 150 1.10000 125 3.759358e-15 0.07000 0.07000 0.20000 127 0.78346

15 150 1.10000 125 4.933796e-15 0.07000 0.07000 0.20000 127 0.78703

16 150 1.10000 125 6.012656e-15 0.07000 0.07000 0.20000 127 0.78322

17 150 1.10000 125 7.511450e-15 0.07000 0.07000 0.20000 127 0.77495

18 150 1.10000 125 8.644391e-15 0.07000 0.07000 0.20000 127 0.77794

19 150 1.10000 125 9.775391e-15 0.07000 0.07000 0.20000 127 0.78171

20 150 1.10000 125 1.235397e-14 0.07000 0.07000 0.20000 127 0.78039

Table B.9: ParOF optimization results on the separate clusters for the sheet metal

forming experiment: results for the optimization of the variable X4 friction in

the first third of the process (F1) — note that all other variables are set to a

default constant value. The line in the middle separates the starting design (first part)

from the optimization runs (results for the ParOF vs EGO comparison for the sheet

metal forming experiment in Chapter 5)

158 Data

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

1 150 1.10000 125 0.07000 0.07000 0.07000 0.24466 127 0.79770

2 150 1.10000 125 0.07000 0.07000 0.07000 0.26932 127 0.79492

3 150 1.10000 125 0.07000 0.07000 0.07000 0.16532 127 0.79685

4 150 1.10000 125 0.07000 0.07000 0.07000 0.19716 127 0.79753

5 150 1.10000 125 0.07000 0.07000 0.07000 0.20092 127 0.80045

6 150 1.10000 125 0.07000 0.07000 0.07000 0.12884 127 0.79653

7 150 1.10000 125 0.07000 0.07000 0.07000 0.11598 127 0.80014

8 150 1.10000 125 0.07000 0.07000 0.07000 0.22244 127 0.79648

9 150 1.10000 125 0.07000 0.07000 0.07000 0.29122 127 0.80030

10 150 1.10000 125 0.07000 0.07000 0.07000 0.14413 127 0.79709

11 150 1.10000 125 0.07000 0.07000 0.07000 0.26932 127 0.79757

12 150 1.10000 125 0.07000 0.07000 0.07000 0.26932 127 0.79697

13 150 1.10000 125 0.07000 0.07000 0.07000 0.26932 127 0.80092

14 150 1.10000 125 0.07000 0.07000 0.07000 0.14379 127 0.79685

15 150 1.10000 125 0.07000 0.07000 0.07000 0.10486 127 0.79746

16 150 1.10000 125 0.07000 0.07000 0.07000 0.15315 127 0.79949

17 150 1.10000 125 0.07000 0.07000 0.07000 0.20392 127 0.80126

18 150 1.10000 125 0.07000 0.07000 0.07000 0.28072 127 0.79727

19 150 1.10000 125 0.07000 0.07000 0.07000 0.18588 127 0.79948

20 150 1.10000 125 0.07000 0.07000 0.07000 0.23068 127 0.79762

Table B.10: ParOF optimization results on the separate clusters for the sheet metal

forming experiment: results for the optimization of the variable X7 hardening

exponent (HE) — note that all other variables are set to a default constant value.

The line in the middle separates the starting design (first part) from the optimization

runs (results for the ParOF vs EGO comparison for the sheet metal forming experiment

in Chapter 5)

159

X1 (FS) X2 (ST) X3 (BHF) X4 (F1) X5 (F2) X6 (F3) X7 (HE) X8 (SL) y (Thick. red.)

1 169.23077 1.10000 88.46154 0.07000 0.07538 0.06462 0.20000 103.84615 0.28690

2 189.74359 1.10000 123.07692 0.07000 0.12923 0.05026 0.20000 150.00000 0.87121

3 123.07692 1.10000 196.15385 0.07000 0.08256 0.07179 0.20000 111.53846 0.62655

4 107.69231 1.10000 115.38462 0.07000 0.10410 0.02872 0.20000 105.12821 0.30382

5 120.51282 1.10000 130.76923 0.07000 0.03949 0.12923 0.20000 101.28205 0.38082

6 158.97436 1.10000 150.00000 0.07000 0.11487 0.01436 0.20000 117.94872 0.66248

7 141.02564 1.10000 169.23077 0.07000 0.01077 0.11128 0.20000 141.02564 0.73443

8 174.35897 1.10000 142.30769 0.07000 0.02513 0.12564 0.20000 108.97436 0.50380

9 200.00000 1.10000 126.92308 0.07000 0.06821 0.10410 0.20000 133.33333 0.83964

10 133.33333 1.10000 50.00000 0.07000 0.05744 0.04667 0.20000 143.58974 0.29421

11 130.76923 1.10000 92.30769 0.07000 0.02872 0.11487 0.20000 144.87179 0.77961

12 153.84615 1.10000 200.00000 0.07000 0.07179 0.12205 0.20000 124.35897 0.84409

13 105.12821 1.10000 69.23077 0.07000 0.10769 0.09692 0.20000 137.17949 0.88235

14 102.56410 1.10000 103.84615 0.07000 0.07897 0.02513 0.20000 134.61538 0.78135

15 161.53846 1.10000 73.07692 0.07000 0.12205 0.00718 0.20000 110.25641 0.36268

16 192.30769 1.10000 100.00000 0.07000 0.00359 0.01795 0.20000 125.64103 0.52506

17 110.25641 1.10000 96.15385 0.07000 0.08974 0.10051 0.20000 112.82051 0.71934

18 112.82051 1.10000 157.69231 0.07000 0.05385 0.07897 0.20000 147.43590 0.82783

19 143.58974 1.10000 119.23077 0.07000 0.05026 0.01077 0.20000 129.48718 0.57644

20 115.38462 1.10000 184.61538 0.07000 0.04667 0.02154 0.20000 119.23077 0.54464

21 100.00000 1.10000 76.92308 0.07000 0.01436 0.06821 0.20000 107.69231 0.43204

22 156.41026 1.10000 61.53846 0.07000 0.06462 0.14000 0.20000 116.66667 0.81683

23 125.64103 1.10000 161.53846 0.07000 0.12564 0.11846 0.20000 138.46154 0.89943

24 117.94872 1.10000 153.84615 0.07000 0.03231 0.08974 0.20000 123.07692 0.68953

25 194.87179 1.10000 188.46154 0.07000 0.03590 0.10769 0.20000 128.20513 0.79290

26 146.15385 1.10000 80.76923 0.07000 0.09692 0.13282 0.20000 146.15385 0.88624

27 179.48718 1.10000 53.84615 0.07000 0.04308 0.08256 0.20000 132.05128 0.39853

28 166.66667 1.10000 138.46154 0.07000 0.11846 0.13641 0.20000 126.92308 0.89432

29 138.46154 1.10000 173.07692 0.07000 0.13282 0.00359 0.20000 142.30769 0.84864

30 176.92308 1.10000 146.15385 0.07000 0.02154 0.05744 0.20000 115.38462 0.65777

31 151.28205 1.10000 57.69231 0.07000 0.06103 0.00000 0.20000 120.51282 0.37489

32 182.05128 1.10000 107.69231 0.07000 0.13641 0.09333 0.20000 114.10256 0.75548

33 171.79487 1.10000 180.76923 0.07000 0.01795 0.04308 0.20000 139.74359 0.63525

34 135.89744 1.10000 65.38462 0.07000 0.14000 0.06103 0.20000 121.79487 0.86367

35 184.61538 1.10000 192.30769 0.07000 0.00000 0.07538 0.20000 100.00000 0.38181

36 197.43590 1.10000 84.61538 0.07000 0.09333 0.03590 0.20000 130.76923 0.79361

37 164.10256 1.10000 165.38462 0.07000 0.08615 0.08615 0.20000 106.41026 0.54623

38 148.71795 1.10000 111.53846 0.07000 0.00718 0.03231 0.20000 102.56410 0.35513

39 128.20513 1.10000 134.61538 0.07000 0.11128 0.05385 0.20000 148.71795 0.85894

40 187.17949 1.10000 176.92308 0.07000 0.10051 0.03949 0.20000 135.89744 0.83748

41 165.80292 1.10000 76.15656 0.07000 0.08654 0.00000 0.20000 100.00000 0.28967

42 167.60935 1.10000 50.00000 0.07000 0.00000 0.01290 0.20000 138.31863 0.38160

43 147.22679 1.10000 92.29187 0.07000 0.07211 0.02814 0.20000 102.40260 0.26548

44 183.87149 1.10000 93.47749 0.07000 0.11119 0.03941 0.20000 100.00000 0.29001

45 200.00000 1.10000 50.00000 0.07000 0.06739 0.01699 0.20000 105.44721 0.27319

46 130.65350 1.10000 60.21577 0.07000 0.09601 0.01734 0.20000 103.73098 0.24647

47 200.00000 1.10000 65.45763 0.07000 0.04445 0.06641 0.20000 100.00000 0.33866

48 149.43795 1.10000 70.44223 0.07000 0.09019 0.00000 0.20000 105.24597 0.30128

49 100.00000 1.10000 83.12154 0.07000 0.08438 0.03861 0.20000 100.00000 0.23254

50 136.66077 1.10000 50.00002 0.07000 0.08708 0.03949 0.20000 100.15050 0.35857

51 100.00000 1.10000 102.11111 0.07000 0.07436 0.02947 0.20000 100.00000 0.29284

52 100.00287 1.10000 86.22448 0.07000 0.12422 0.01632 0.20000 100.88632 0.16684

53 100.00000 1.10000 85.45404 0.07000 0.14000 0.00982 0.20000 100.20913 0.19281

54 100.00001 1.10000 83.80404 0.07000 0.13217 0.02244 0.20000 101.13721 0.16427

55 100.00000 1.10000 82.12958 0.07000 0.13063 0.02603 0.20000 101.65495 0.21649

56 100.00000 1.10000 89.31575 0.07000 0.13266 0.00000 0.20000 100.85157 0.17082

57 100.00000 1.10000 87.95714 0.07000 0.12946 0.00224 0.20000 100.86312 0.15850

58 100.00000 1.10000 87.34824 0.07000 0.12702 0.00000 0.20000 100.92932 0.15954

59 200.00000 1.10000 50.00000 0.07000 0.04669 0.00000 0.20000 150.00000 0.30148

Table B.11: ParOF optimization results on the separate clusters for the sheet metal

forming experiment: results for the optimization of the cluster of variables

{X1, X3, X5, X6, X8} — all other variables are set to a constant value (results for the

ParOF vs EGO comparison for the sheet metal forming experiment in Chapter 5)

160 Data

Interaction between TII

X1*X2 0.015977

X1*X3 0.015338

X1*X4 0.000116

X1*X5 0.003331

X1*X6 0.001485

X2*X3 0.018569

X2*X4 0.000882

X2*X5 0.001002

X2*X6 0.000284

X3*X4 0.001477

X3*X5 0.000787

X3*X6 0.000665

X4*X5 0.063504

X4*X6 0.063930

X5*X6 0.035317

Table B.12: Total interaction index of the simple function f0, estimated with the help

of a Kriging metamodel (Example 5.3 from Chapter 5.1)

161

Interaction between TII

X1*X2 0.000249

X1*X3 0.000163

X1*X4 0.010320

X1*X5 0.000723

X1*X6 0.003344

X1*X7 0.003136

X1*X8 0.016472

X2*X3 0.000179

X2*X4 0.003515

X2*X5 0.000417

X2*X6 0.000949

X2*X7 0.001615

X2*X8 0.013271

X3*X4 0.010649

X3*X5 0.000364

X3*X6 0.000903

X3*X7 0.004858

X3*X8 0.013949

X4*X5 0.009483

X4*X6 0.066103

X4*X7 0.091210

X4*X8 0.401391

X5*X6 0.003774

X5*X7 0.005212

X5*X8 0.029293

X6*X7 0.025038

X6*X8 0.105701

X7*X8 0.161656

Table B.13: Total interaction index of the Schwefel function (from an example shown

in Chapter 5.2)

162 Data

Interaction between TII

X1*X2 0.000321

X1*X3 0.000666

X1*X4 0.000133

X1*X5 0.003957

X1*X6 0.037653

X1*X7 0.000073

X1*X8 0.039108

X2*X3 0.000023

X2*X4 0.000007

X2*X5 0.001637

X2*X6 0.000354

X2*X7 0.000008

X2*X8 0.001289

X3*X4 0.000083

X3*X5 0.000520

X3*X6 0.001056

X3*X7 0.000020

X3*X8 0.005012

X4*X5 0.000466

X4*X6 0.000448

X4*X7 0.000005

X4*X8 0.002577

X5*X6 0.017873

X5*X7 0.000245

X5*X8 0.118889

X6*X7 0.000916

X6*X8 0.054000

X7*X8 0.002653

Table B.14: Total interaction index for the FANOVA decomposition of the sheet metal

forming experiment (Chapter 5)

163

x1 x2 xD y

1 0.83783 0.27366 a -0.66467

2 0.28028 0.42183 b -0.67752

3 0.20699 0.69512 b -0.85901

4 0.80051 0.46723 c 2.54498

5 0.48001 0.62558 a -0.21703

6 0.65312 0.87645 c -0.38388

7 0.72444 0.37726 a -0.29507

8 0.14653 0.30994 b -0.13329

9 0.46091 0.12304 c 1.27804

10 0.58801 0.73310 b 0.58872

11 0.27297 0.67701 c 0.42885

12 0.62668 0.16166 a -0.90282

13 0.93282 0.41456 a -0.70933

14 0.86159 0.79722 b 1.16843

15 0.41707 0.89047 c -0.27474

16 0.37369 0.94807 b 0.85168

17 0.32189 0.65515 a -0.43783

18 0.00955 0.35086 c 0.51392

19 0.06583 0.60636 a -0.42637

20 0.67518 0.28214 b -0.58440

21 0.98584 0.77015 a 0.43983

22 0.56371 0.54024 c 1.31646

23 0.53079 0.07872 c 1.29195

24 0.23647 0.04416 b 0.34906

25 0.04796 0.56092 b -0.05570

26 0.51423 0.20753 a -1.02628

27 0.39590 0.51588 b -0.53787

28 0.70909 0.98462 b 2.72090

29 0.96467 0.00186 b -0.88189

30 0.82485 0.83627 c 0.05773

31 0.33381 0.81103 a 0.05666

32 0.09911 0.17096 a 1.13693

33 0.91367 0.24827 c 1.77249

34 0.11792 0.10846 c 0.91871

35 0.18400 0.92857 c -0.49049

36 0.75303 0.47640 a 0.02580

Table B.15: Starting design for the example optimization of the mixed-input variation

of the Branin function fcatbr (design for the example at the end of Chapter 6.6)

164 Data

x1 x2 xD y

37 0.97791 0.24008 b -0.97461

38 0.93596 0.15865 b -0.98135

39 0.98660 0.04375 a -0.94544

40 0.97510 0.16210 a -1.04274

41 0.90062 0.33826 b -0.73177

42 0.42545 0.07306 a -0.66012

43 0.56764 0.02507 a -0.98380

44 0.99869 0.14199 b -0.95531

45 0.72481 0.02361 b -0.64806

46 0.42181 0.26107 a -0.81722

47 0.00241 0.99708 c -0.80062

48 0.99292 0.16801 a -1.02468

49 0.00226 0.99486 a -0.72581

50 0.99958 0.99913 c -0.24689

51 0.88235 0.07086 a -0.92462

52 0.03140 0.99199 b -0.83398

53 0.96888 0.14090 a -1.04235

54 0.05621 0.86258 b -0.84540

55 0.97515 0.28451 a -0.99333

56 0.97311 0.19894 a -1.04219

57 0.53596 0.11528 a -1.03888

58 0.96334 0.17148 a -1.04724

59 0.48152 0.19996 b -0.92581

60 0.00361 0.89047 c -0.26586

61 0.55376 0.11668 b -0.98974

62 0.56766 0.22343 b -0.94964

63 0.53250 0.29893 a -0.96148

64 0.57599 0.99874 c -1.04077

65 0.13959 0.88280 b -0.94763

66 0.53381 0.01139 b -0.90403

67 0.13424 0.92984 a -0.96490

68 0.11342 0.80385 a -1.03825

69 0.74295 0.99991 c -0.97359

70 0.18357 0.66432 a -0.97685

71 0.17571 0.73570 a -0.98851

72 0.52637 0.15742 a -1.04159

73 0.63254 0.99940 c -1.04927

74 0.14248 0.86733 a -1.00282

75 0.50687 0.32091 b -0.89097

76 0.07997 0.99970 c -0.95547

77 0.14052 0.76493 b -0.98880

78 0.14701 0.78385 a -1.03467

79 0.57166 0.15090 a -1.02857

80 0.06433 0.99189 b -0.92722

81 0.12169 0.83785 a -1.04643

82 0.14460 0.73463 a -1.03333

83 0.13366 0.81400 a -1.04388

Table B.16: Sequential optimization runs with the adapted for the mixed case EGO

algorithm, based on Gower Kriging, for the example optimization of the mixed-input

variation of the Branin function fcatbr. Note that this is a continuation of Table B.15

(optimization results for the example at the end of Chapter 6.6)

C. Additional figures for the benchmark study

165

●

rs rndForest crs GowKm btgp0.
00

0
0.

01
0

0.
02

0
Comparison of optimization methods for f_trig; more design points

Figure C.1: Optimization results for the function ftrig with an increased starting design

●

rs rndForest crs GowKm btgp

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Comparison of optimization methods for f_poly; more design points

Figure C.2: Optimization results for the function fpoly with an increased starting design

Bibliography

Alexander, W. P. and S. D. Grimshaw (1996). Treed regression. Journal of Computa-

tional and Graphical Statistics 5 (2), 156–175.

Apanasovich, T. V., M. G. Genton, and Y. Sun (2012). A valid Matérn class of cross-

covariance functions for multivariate random fields with any number of components.

Journal of the American Statistical Association 107 (497), 180–193.

Bates, R. A., R. S. Kenett, D. M. Steinberg, and H. P. Wynn (2006). Achieving robust

design from computer simulations. Quality Technology and Quantitative Manage-

ment 3 (2), 161–177.

Ben-Ari, E. N. and D. M. Steinberg (2007). Modeling data from computer experiments:

an empirical comparison of Kriging with MARS and projection pursuit regression.

Quality Engineering 19 (4), 327–338.

Bischl, B., J. Bossek, D. Horn, and M. Lang. mlrMBO: Model-Based Optimization for

mlr. R package version 1.0.

Bischl, B., M. Lang, J. Bossek, and D. Horn. ParamHelpers: Helpers for parameters

in black-box optimization, tuning and machine learning. R package version 1.5.

Bischl, B., M. Lang, J. Richter, J. Bossek, L. Judt, T. Kuehn, E. Studerus, and L. Kot-

thoff (2015). mlr: Machine Learning in R. R package version 2.3.

Bischl, B., S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs (2014). MOI-MBO:

Multiobjective infill for parallel model-based optimization. In P. M. Pardalos, M. G.

167

Resende, C. Vogiatzis, and J. L. Walteros (Eds.), Learning and Intelligent Opti-

mization, Volume 8426 of Lecture notes in computer science, pp. 173–186. Cham:

Springer International Publishing.

Bowers, P. L., W. E. Dietz, and S. L. Keeling (1998). Fast algorithms for generat-

ing Delaunay interpolation elements for domain decomposition. Karl-Franzens-Univ.

Graz & Techn. Univ. Graz.

Box, G. and K. Wilson (1951). On the experimental attainment of optimum conditions.

Journal of the Royal Statistical Society. Series B (Methodological) 13 (1), 1–45.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984). Classification and

regression trees. CRC Press.

Carnell, R. (2012). lhs: Latin Hypercube Samples. R package version 0.10.

Chevalier, C. and D. Ginsbourger (2013). Fast computation of the multi-points ex-

pected improvement with applications in batch selection. In Proceedings of the

LION7 conference, Lecture notes in computer science.

Chipman, H. A., E. I. George, and R. E. McCulloch (1998). Bayesian CART model

search. Journal of the American Statistical Association 93 (443), 935–948.

Chipman, H. A., E. I. George, and R. E. McCulloch (2002). Bayesian treed models.

Machine learning 48 (1-3), 299–320.

Cormen, T. H. (2009). Introduction to algorithms. MIT Press.

Cwiekala, T., A. Brosius, and A. E. Tekkaya (2011). Accurate deep drawing simulation

by combining analytical approaches. International Journal of Mechanical Sciences 5,

374–386.

Efron, B. and C. Stein (1981). The jackknife estimate of variance. The Annals of

Statistics 9 (3), 586–596.

Fang, K., R. Li, and A. Sudjianto (2006). Design and modeling for computer ex-

periments. Computer science and data analysis series. Boca Raton and London:

Chapman & Hall/CRC.

Fruth, J. (2015). New methods for the sensitivity analysis of black-box functions with

an application to sheet metal forming. Ph. D. thesis, TU Dortmund University.

Fruth, J., O. Roustant, and S. Kuhnt (2014). Total interaction index: A variance-

based sensitivity index for second-order interaction screening. Journal of Statistical

Planning and Inference 147, 212–223.

Fruth, J., O. Roustant, and T. Mühlenstädt (2013). The fanovagraph package: Visual-

ization of interaction structures and construction of block-additive Kriging models.

Online: http://hal.archives-ouvertes.fr/hal-00795229.

Ginsbourger, D., R. Riche, and L. Carraro (2010). Kriging is well-suited to parallelize

optimization. In Y. Tenne and C.-K. Goh (Eds.), Computational intelligence in

expensive optimization problems, pp. 131–162. Berlin and New York: Springer.

Gneiting, T., W. Kleiber, and M. Schlather (2010). Matérn cross-covariance func-

tions for multivariate random fields. Journal of the American Statistical Associa-

tion 105 (491), 1167–1177.

Gösling, M., H. Kracker, A. Brosius, S. Kuhnt, and A. E. Tekkaya (2011). Strategies

for springback compensation regarding process robustness. Production Engineering

Research and Development, Annals of the German Academic Society for Production

Engineering WGP 5 (1), 49–57.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties.

Biometrics 27 (4), 857–871.

Gramacy, R. B. (2005). Bayesian treed Gaussian process models. Ph. D. thesis, Uni-

versity of California Santa Cruz.

Gramacy, R. B. (2007). tgp: an R package for Bayesian nonstationary, semiparamet-

ric nonlinear regression and design by treed Gaussian process models. Journal of

Statistical Software 19 (9), 6.

Gramacy, R. B. and H. K. H. Lee (2008). Bayesian treed Baussian process models with

an application to computer modeling. Journal of the American Statistical Associa-

tion 103 (483), 1119–1130.

Habel, K., R. Grasman, R. B. Gramacy, A. Stahel, and D. C. Sterratt (2015). geometry:

Mesh Generation and Surface Tesselation. R package version 0.3-6.

Han, G., T. J. Santner, W. I. Notz, and D. L. Bartel (2009). Prediction for computer

experiments having quantitative and qualitative input variables. Communications

in Statistics - Theory and Methods 51 (3), 278–288.

Henkenjohann, N., R. Göbel, M. Kleiner, and J. Kunert (2005). An adaptive sequential

procedure for efficient optimization of the sheet metal spinning process. Quality and

Reliability Engineering International 21 (5), 439–455.

Hu, W., L. Yao, and Z. Hua (2008). Optimization of sheet metal forming processes by

adaptive response surface based on intelligent sampling method. Journal of Materials

Processing Technology 197 (1), 77–88.

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. The Annals

of Statistics 31 (5), 1600–1635.

Hutter, F., H. Hoos, and K. Leyton-Brown (2011). Sequential model-based optimiza-

tion for general algorithm configuration. In Proceedings of the conference on Learning

and Intelligent OptimizatioN (LION 5), pp. 507–523.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2012). Parallel algorithm configuration.

In Learning and Intelligent Optimization, pp. 55–70. Springer.

Ivanov, M. and S. Kuhnt (2014). A parallel optimization algorithm based on FANOVA

decomposition. Quality and Reliability Engineering International 30 (7), 961–974.

Jakumeit, J., M. Herdy, and M. Nitsche (2005). Parameter optimization of the sheet

metal forming process using an iterative parallel Kriging algorithm. Structural and

Multidisciplinary Optimization 29 (6), 498–507.

Jansson, T., L. Nilsson, and M. Redhe (2003). Using surrogate models and response

surfaces in structural optimization–with application to crashworthiness design and

sheet metal forming. Structural and Multidisciplinary Optimization 25 (2), 129–140.

John, P. W., M. E. Johnson, L. M. Moore, and D. Ylvisaker (1995). Minimax dis-

tance designs in two-level factorial experiments. Journal of Statistical Planning and

Inference 44 (2), 249–263.

Johnson, L. M., L. M. Moore, and D. Ylvisaker (1990). Minimax and maximin distance

designs. Journal of Statistical Planning and Inference 26 (2), 131–148.

Jones, D., M. Schonlau, and W. Welch (1998). Efficient global optimization of expensive

black-box functions. Journal of Global optimization 13 (4), 455–492.

Jones, D. R. (2001). A taxonomy of global optimization methods based on response

surfaces. Journal of Global optimization 21 (4), 345–383.

Kitayama, S., S. Huang, and K. Yamazaki (2013). Optimization of variable blank

holder force trajectory for springback reduction via sequential approximate opti-

mization with radial basis function network. Structural and Multidisciplinary Opti-

mization 47 (2), 289–300.

Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European

Journal of Operational Research 192 (3), 707–716.

Knowles, J., D. Corne, and A. Reynolds (Eds.) (2009). Noisy multiobjective optimiza-

tion on a budget of 250 evaluations: Evolutionary Multi-Criterion Optimization.

Springer.

Krige, D. (1951). A statistical approach to some basic mine valuation problems on the

witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South

Africa 52 (6), 119–139.

Levy, S. and D. M. Steinberg (2010). Computer experiments: A review. AStA Advances

in Statistical Analysis 94 (4), 311–324.

Liaw, A. and M. Wiener (2002). Classification and regression by randomForest. R

News 2 (3), 18–22.

Liu, R. and A. B. Owen (2006). Estimating mean dimensionality of analysis of variance

decompositions. Journal of the American Statistical Association 101 (474), 712–721.

Livermore Software Technology Corporation (2005). LS-DYNA 970. California, USA.

Ma, S., J. S. Racine, and L. Yang (2014). Spline regression in the presence of categorical

predictors. Journal of Applied Econometrics 30 (5), 705–717.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code. Communications in Statistics - Theory and Methods 21 (2), 239–

245.

McMillan, N. J., J. Sacks, W. J. Welch, and F. Gao (1999). Analysis of protein

activity data by Gaussian stochastic process models. Journal of Biopharmaceutical

Statistics 9 (1), 145–160.

Mebane, Jr., W. R. and J. S. Sekhon (2011). Genetic optimization using derivatives:

The rgenoud package for R. Journal of Statistical Software 42 (11), 1–26.

Montgomery, D. (2009). Design and analysis of experiments: 7th ed (7 ed.). Hoboken

and NJ: Wiley-Blackwell.

Mühlenstädt, T. (2010). Neue Konzepte für die Planung und Analyse von Computer-

experimenten. Ph. D. thesis, TU Dortmund, Dortmund.

Mühlenstädt, T. and S. Kuhnt (2011). Kernel interpolation. Computational Statistics

& Data Analysis 55, 2962–2974.

Mühlenstädt, T., O. Roustant, L. Carraro, and S. Kuhnt (2012). Data-driven Kriging

models based on FANOVA-decomposition. Statistics and Computing 22 (3), 723–738.

Naceur, H., Y. Q. Guo, and S. Ben-Elechi (2006). Response surface methodology

for design of sheet forming parameters to control springback effects. Computers &

structures 84 (26), 1651–1663.

Neumann, L. and S. Deymann (2008). Transsim-node - a simulation tool for logistics

nodes. In Proceedings of the Industrial Simulation Conference 2008, pp. 283–287.

Nie, Z. and J. S. Racine (2012). The crs package: nonparametric regression splines for

continuous and categorical predictors. The R Journal 4 (2), 48–56.

Okabe, A., B. Boots, K. Sugihara, and S. N. Chiu (2000). Spatial tessellations: Con-

cepts and algorithms of Voronoi diagrams. Wiley series in probability and statistics.

Applied probability and statistics. Chichester: J. Wiley & Sons.

Qian, P. Z. G., H. Wu, and C. J. Wu (2008). Gaussian process models for computer

experiments with qualitative and quantitative factors. Technometrics 50 (3), 383–

396.

R Core Team (2015). R: A Language and Environment for Statistical Computing.

Vienna, Austria: R Foundation for Statistical Computing.

Racine, J. S. and Z. Nie (2014). crs: Categorical Regression Splines. R package version

0.15-24.

Rajan, V. (1994). Optimality of the delaunay triangulation in Rd. Discrete & Compu-

tational Geometry 12 (2), 189–202.

Rasmussen, C. and C. Williams (2006). Gaussian processes for machine learning.

Cambridge and Mass: MIT Press.

Roustant, O., D. Ginsbourger, and Y. Deville (2012). Dicekriging, Diceoptim: Two R

packages for the analysis of computer experiments by Kriging-based metamodeling

and optimization. Journal of Statistical Software 51 (1), 1–55.

Sacks, J., S. B. Schiller, and W. J. Welch (1989). Design for computer experiments.

Communications in Statistics - Theory and Methods 31, 41–47.

Sacks, J., W. Welch, T. Mitchell, and H. Wynn (1989). Design and analysis of computer

experiments. Statistical Science 4, 409–435.

Saltelli, A., K. Chan, and E. Scott (2000). Sensitivity analysis. Wiley series in proba-

bility and statistics. Chichester: Wiley.

Santner, T., B. Williams, and W. Notz (2003). The Design and analysis of computer

experiments. Springer series in statistics. New York: Springer.

Shewry, M. C. and H. P. Wynn (1987). Maximum entropy sampling. Journal of Applied

Statistics 14 (2), 165–170.

Sobol’, I. (1993). Sensitivity estimates for nonlinear mathematical models. Mathemat-

ical Modeling and Computational Experiment 1, 407–414.

Stein, M. (1987). Large sample properties of simulations using latin hypercube sam-

pling. Technometrics 29 (2), 143–151.

Stein, M. (1999). Interpolation of Spatial Data: Some Theory for Kriging. New York:

Springer.

Steinwart, I. and Christmann A. (2008). Support vector machines. New York: Springer.

Swiler, L. P., P. D. Hough, P. Qian, X. Xu, C. Storlie, and H. Lee (2014). Surrogate

models for mixed discrete-continuous variables. In Constraint Programming and

Decision Making, pp. 181–202. Springer.

Tang, Y. and J. Chen (2009). Robust design of sheet metal forming process based on

adaptive importance sampling. Structural and Multidisciplinary Optimization 39 (5),

531–544.

ul Hassan, H., J. Fruth, M. Ivanov, S. Kuhnt, A. Güner, and A. E. Tekkaya (2013).

Springback reduction of deep drawn parts by the use of variable blankholder force and

tools with adjustable stiffness based on numerical simulations. In W. Tillmann and

I. Baumann (Eds.), SFB 708 - 6. öffentliches Kolloquium. Dortmund: Praxiswissen.

Wei, L. and Y. Yuying (2008). Multi-objective optimization of sheet metal forming

process using pareto-based genetic algorithm. Journal of Materials Processing Tech-

nology 208 (1), 499–506.

Wessing, S., G. Rudolph, S. Turck, C. Klimmek, S. C. Schäfer, M. Schneider,

U. Lehmann, and Z. Zhou (2014). Replacing fea for sheet metal forming by sur-

rogate modeling. Cogent Engineering 1 (1), 950853.

Xiong, Y., W. Chen, D. W. Apley, and X. Ding (2007). A non–stationary covariance–

based Kriging method for metamodelling in engineering design. International Journal

for Numerical Methods in Engineering 71 (6), 733–756.

Zhang, W., Z. Q. Sheng, and R. Shivpuri (Eds.) (2005). Probabilistic design of alu-

minum sheet drawing for reduced risk of wrinkling and fracture, Volume 778.

Zhou, Q., P. Z. G. Qian, and S. Zhou (2011). A simple approach to emulation for

computer models with qualitative and quantitative factors. Technometrics 53 (3),

266–273.

	Introduction
	Meta-models with uncertainty predictors
	The Kriging model
	Kernel interpolation
	Comparison of Kriging and kernel interpolation
	Designs for computer experiments

	The efficient global optimization (EGO) algorithm
	Classic EGO algorithm
	General architecture of EGO

	Robust model-based optimization
	Deep drawing sheet metal forming experiment
	EGO with kernel interpolation

	Parallel optimization based on functional decomposition
	TII and FANOVA decomposition
	Parallel optimization
	Optimization of a deep drawing process

	Metamodels for mixed qualitative-quantitative data
	Classification and regression trees
	Treed Gaussian processes
	Black-box modeling with CART and random forests
	Categorical regression splines
	A special Kriging correlation function for mixed discrete-continuous spaces
	Kriging models with a Gower distance covariance function
	Mixed-input EGO algorithm with Gower Kriging
	Excursion: Parallel Optimization for mixed data - a generalization of the ParOF algorithm

	Model-based sequential optimization with mixed data
	Designs for mixed data
	EI optimization in the mixed space
	Benchmark study

	Conclusion and outlook
	Notations
	Data
	Additional figures for the benchmark study
	Bibliography

