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• M. D. Campos, A. E. Cárcamo Hernández, H. Päs, and E. Schumacher.
Higgs → µτ as an indication for S4 flavor symmetry. Phys.Rev. D91 (2015) no.11,
116011. doi:10.1103/PhysRevD.91.116011 [2014]

• H. Päs, E. Schumacher. Common origin of RK and neutrino masses. Phys.Rev.
D92 (2015) no.11, 114025. doi:10.1103/PhysRevD.92.114025 [2015]

• F. F. Deppisch, S. Kulkarni, H. Päs, and E. Schumacher. Leptoquark
patterns unifying neutrino masses, flavor anomalies, and the diphoton excess.
Phys.Rev. D94 (2016) no.12, 013003. doi:10.1103/PhysRevD.94.013003 [2016]
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abstract

In this thesis we link the recent anomalies reported in B meson and h→ µτ decays to
the smallness of neutrino masses and aspects of the flavor puzzle, including the hierarchy
of the Yukawa couplings and the disparate fermion mixings. By formulating various
new models we attempt to shed light on the potential common origin of the distinct
measurements in the flavor sector. To this end, discrete symmetries are utilized in this
work as the governing principle behind all fermion interactions. The first two models
based on the S3 and the A4 symmetry, respectively, aim to unify the diverse fermion
masses and mixings. Special features separate the frameworks from the flavor models
in the literature that often lack testable predictions. While the first model provides
interesting flavor-violating signatures in top quark decays, the second one ties the flavor
to the grand unification scale in a novel way. In the three following models we focus on
the anomalies that hint at lepton flavor and universality violation. We propose that the
large flavor violation observed in h→ µτ decays is dictated by the scalar mixing of an
enlarged S4-symmetric Higgs sector. By constructing two leptoquark models we show
for the first time that leptoquark couplings shaped by a Froggatt-Nielsen mechanism
can accommodate the B meson anomalies and simultaneously generate naturally-small
neutrino masses. Emphasizing the importance of testability, we demonstrate how these
models can be probed by future diphoton resonances, using the recent 750 GeV excess
as an example scenario.

zusammenfassung

In dieser Arbeit verknüpfen wir die jüngsten Anomalien in B Meson- und h → µτ -
Zerfällen mit den verschwindend geringen Neutrinomassen und verschiedenen Aspekten
des Flavorproblems wie den hierarchischen Yukawa-Kopplungen und den ungleichen
Fermionmischungen. Indem wir diverse neue Modelle konstruieren, versuchen wir eine
mögliche gemeinsame Ursache der verschiedenen Messungen im Flavorsektor zu finden.
Dazu nutzen wir diskrete Symmetrien, um sämtliche Fermionwechselwirkungen in dieser
Arbeit zu modellieren. Die ersten zwei Modelle, basierend auf der S3- und der A4-
Symmetrie, zielen auf die Vereinheitlichung der Fermionmassen und -mischungen ab.
Besondere Eigenschaften differenzieren diese von bisherigen Flavormodellen, die oft
experimentell schwer zu unterscheiden sind. Während das eine Modell interessante
flavorverletztende Top-Quarkzerfälle aufweist, schlägt das andere den Bogen zu großen
vereinheitlichten Theorien. In drei weiteren Modellen betrachten wir die Anomalien,
die auf eine Verletzung von Leptonflavor und -universalität hindeuten. Wir nehmen
an, dass die Flavorverletzung in h→ µτ -Zerfällen die Folge zusätzlicher Higgs Bosonen
ist, deren Mischung durch eine S4-Symmetrie beschrieben wird. Weiterhin zeigen wir
erstmalig mithilfe eines Froggatt-Nielsen-Mechanismus, dass Leptoquarks nicht nur die
anomalen Zerfälle der B Mesonen, sondern gleichzeitig auch die leichten Neutrinomassen
erklären können. Um den Stellenwert von überprüfbaren Vorhersagen aufzuzeigen,
analysieren wir am Beispiel des 750 GeV Signals, wie diese Modelle in Hinblick auf
mögliche zukünftige Resonanzen im Diphotonkanal getestet werden können.
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Aber in Wirklichkeit bestand das Doktorandenleben natürlich nicht nur aus Kaffee und
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1
I N T RO D U C T I O N

Two recent Nobel Prizes in physics attest the great progress of the field of particle
physics and the success of the standard model (SM). After Peter Higgs and François
Englert were recognized for their proposal of the Higgs boson on October 3, 2013,
another Nobel Prize was awarded on October 6, 2015, to the particle physicists Takaaki
Kajita and Arthur B. McDonald for their key contributions to the experiments that
discovered neutrino oscillations. However, these outstanding achievements also exposed
that the theory is incomplete since neutrino masses, implied by their oscillations, do
not exist in the SM.
The current lack of evidence of new physics (NP) that could solve the remaining problems
questions some well-established theories and the naturalness of the SM itself. As a
result, an excess in the diphoton channel announced on December 14, 2015, motivated
hundreds of physicists to come up with an explanation for what soon after turned out to
be just a statistical fluctuation. However, other searches have revealed deviations from
the SM in rare meson and Higgs boson decays that are yet to be verified and concern
the origin of flavor.
This thesis addresses some of the issues directly related to the Nobel Prizes in physics of
2013 and 2015. The flavor problem referring to the peculiar patterns of fermion masses
and mixings is arguably one of the most striking puzzles of the SM. It is plausible
to assume that the distinct behavior of quarks and leptons, the smallness of neutrino
masses, and the recent flavor anomalies all have a common origin. To this end we
propose unified models, dealing with several of these problems at the same time.
The large leptonic mixing angles could be the first indication of the presence of a
discrete flavor symmetry. Such theories are intertwined with an extended particle
content that mediates flavor violation at detectable rates. This offers great model-
building opportunities both to explain the deviations in the flavor observables and
to provide testable predictions. The latter are crucial to distinguish between the
many possible extensions of the SM. We show that the experimental anomalies can be
connected with the diverse fermion mixings and the small neutrino masses by virtue of
flavor symmetries. We utilize the scalar sector to extract characteristic model features.
In this chapter we recapitulate the current status of the SM and outline its shortcomings
related to the flavor problem. Chapter 2 deals with the model-building tools at our
disposal, which include additional symmetries and enlarged Higgs sectors. In Chapter
3 we present models to unify the fermion masses and mixings, whereas the models
discussed in Chapter 4 attempt to combine the anomalies and the flavor problem. We
explore how the inclusion of resonances like the recent excess in the diphoton channel
can improve the testability of models in Chapter 5. The conclusions are presented in
Chapter 6.



4 introduction

1.1 the standard model of particle physics

The SM of particle physics is a widely accepted theory describing the elementary
particles and their interactions. It combines the electromagnetic, the weak, and the
strong force acting between particles by imposing local gauge invariance under the
symmetries SU(3)⊗ SU(2)⊗U (1) on the fundamental matter interactions.
Historically, the first steps towards the SM were taken when the electromagnetic
and the weak force were combined to the electroweak (EW) force described by the
SU(2)L ⊗ U(1)Y gauge symmetry in 1961 [1]. The Higgs mechanism explaining the
generation of masses was introduced in 1967 [2]. Since then the SM has been extremely
successful in predicting the missing pieces of the puzzle that complete the theory,
including the top quark [3] and the Higgs boson, discovered only recently in 2012 [4, 5].
The fermion content of the SM consists of six quarks, classified as up-type (u, c, t;
Q = 2/3) and down-type (d, s, b; Q = −1/3), and leptons, divided into charged lep-
tons (e,µ, τ ; Q = −1) and neutrinos (νe, νµ, ντ ; Q = 0) according to their electric
charge Q. Furthermore, a number of gauge bosons arise from gauge invariance under
SU(3)C ⊗ SU(2)L ⊗U (1)Y , where C,L, and Y stand for color, left, and hypercharge,
respectively. The strong force is characterized by the SU(3)C symmetry affecting all
particles that carry color charge, i.e., the quarks. Its mediators are the eight gluons.
The EW force is jointly described by the SU(2)L ⊗U(1)Y symmetries. Together they
have four generators, which only after breaking down to U(1)EM become the massive
gauge bosons W±,Z and the massless photon γ.
The breaking of SU(2)L ⊗ U (1)Y → U(1)EM is an integral part of the SM that is
achieved by introducing the Higgs boson, which is the remaining piece to complete the
self-consistent theory. The Higgs boson not only explains the masses of the W± and Z

bosons, it also generates the masses of all the SM fermions. Besides the discovery of
the Higgs boson, many predictions of the SM have been tested and confirmed at the
Large Hadron Collider (LHC) with excellent precision. In the following subsections, two
vital aspects of the SM are reviewed in detail, the Glashow-Salam-Weinberg theory (Sec.
1.1.1) and the Higgs-mechanism (Sec. 1.1.2). In its current state the SM is extremely
robust, yet some challenges remain that are discussed in Sec. 1.2 and are addressed in
the final chapters of this thesis.

1.1.1 Glashow-Salam-Weinberg-Theory

Although the electromagnetic and the weak force appear very different at low energies,
it was found that at a scale of around 100 GeV they unify to a single force, known as
the EW force. The corresponding energy where this takes place is referred to as the EW
scale. Besides embedding these forces above and below the EW scale, an appropriate
theory should account for why they diverge at low energies. This can be achieved by
the spontaneous SU(2)L ⊗U(1)Y → U(1)EM gauge symmetry breaking.
The SU(2)L symmetry plays a special role in the Glashow-Salam-Weinberg model, as it
distinguishes between fields with different chiralities. Left-handed fields are assigned
to SU(2) doublets, while their right-handed counterparts transform trivially under the
symmetry. The charged leptons and neutrinos are accommodated in three copies of
SU(2) doublets, classifying the SM fermions in terms of three families or generations.
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Similarly, each down-type quark is paired with one up-type quark, forming three
generations of SU(2) doublets. The explicit assignments of the SM fermions under
SU(3)C ⊗ SU(2)L ⊗ U (1)Y are summarized in Tab. 1.1. These quantum numbers
successfully accommodate the measured electric charges of the fields given by the
equality Q = T3 + Y /2.

Field SU(3)C SU(2)L Y T3 Qνe
e


L

,

νµ
µ


L

,

ντ
τ


L

1 2 −1
1/2

−1/2

0
−1u

d


L

,

c
s


L

,

t
b


L

3 2 1/3
1/2

−1/2

2/3

−1/3

eR, µR, τR 1 1 −2 0 −1
uR, cR, tR 3 1 4/3 0 2/3

dR, sR, bR 3 1 −2/3 0 −1/3

Table 1.1: SM fermions with their quantum numbers or assignments under the SM
symmetries, where Y denotes the weak hypercharge, T3 is the weak isospin, and Q is
the electric charge. L and R denote the left-handed and right-handed chirality of the
fields, respectively.

In order to describe the EW force realistically, the gauge symmetry has to be broken
spontaneously by a scalar field φ in a nontrivial representation of SU(2). Once this
scalar field acquires a vacuum expectation value (VEV), it will trigger the desired
breaking of SU(2)L ⊗ U (1)Y → U (1)EM. The physical properties of the EW theory
are a consequence of the local gauge transformation of φ and its interactions with the
generators. Imposing SU(2)L ⊗U(1)Y -invariance implies that φ transforms as

φ→ exp
(
i

3∑
a=1

αa(x)ta
)

exp
(
i
β(x)

2

)
φ(x) , (1.1)

where ta = σa/2 are the SU(2) generators. Therefore, the αa(x) denote the local
parameters of the SU(2) transformation, while β(x) corresponds to the U(1) symmetry.
Gauge invariance further requires introducing the covariant derivative

Dµ = ∂µ − ig
3∑

a=1
Aaµt

a − i

2g
′Bµ , (1.2)

where Aaµ and Bµ are the SU(2)L and the U(1)Y gauge bosons with their respective
couplings g and g′. The SU(2) structure is successfully broken once the field φ acquires
a nonvanishing VEV in one component of the doublet

〈φ〉 = 1√
2

(
0
v

)
, (1.3)
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which should happen at the EW scale and is known as the Higgs-mechanism. This VEV
v = 246 GeV [6] eventually gives masses to the gauge bosons W±,Z, and all the SM
fermions. Explicitly, we obtain the gauge boson masses from the kinetic term of the
Lagrangian

L ⊃ 1
2 (Dµφ)

2 =
1
2
v2

4
[
g2(A1

µ)
2 + g2(A2

µ)
2 + (−gA3

µ + g′Bµ)
2
]

(1.4)

yielding
W±µ =

1√
2
(A1

µ ∓ iA2
µ) ,

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) ,

Aµ =
1√

g2 + g′2
(g′A3

µ − gBµ) ,

(1.5)

with the masses

mW = g
v

2 , mZ =
√
g2 + g′2

v

2 , mA = 0 . (1.6)

The SM gauge bosons are actually a mixture of the SU(2)L ⊗U (1)Y generators, which
explains why the Z boson, unlike the W±, to some part also couples to right-handed
particles. The mixing angle of the A3

µ and the Bµ generators in the neutral sector is
defined by the Weinberg angle θW, i.e.,

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (1.7)

Using this definition, the parameter budget defining EW interactions can be reduced to
the three basic parameters e, θW, and mW since

g =
e

sin θW
, mW = mZ cos θW . (1.8)

These parameters have been measured with excellent precision, turning the Glashow-
Salam-Weinberg framework into a cornerstone of the SM. The latter equality is typically
defined as the ρ parameter

ρ ≡ mW

mZ cos θW
, (1.9)

which has been measured experimentally to be very close to 1, thereby tightly constrain-
ing all NP models that modify charged or neutral currents at the EW scale. At tree
level, ρ can also be expressed in terms of the weak isospin Ti and the hypercharge Yi [7]

ρ =

∑n
i=1

[
Ti(Ti + 1)− Y 2

i
4

]
vi

1
2
∑n
i=1 Y

2
i vi

. (1.10)

It is easy to verify that SU(2) singlets (Ti = 0,Yi = 0) and doublets (Ti = 1/2,Yi = 1)
preserve ρ = 1, while higher representations are subject to constraints from EW precision
measurements.



1.1 the standard model of particle physics 7

1.1.2 The Higgs-Mechanism and Flavor Mixing

In the most general case, the complex scalar doublet φ can be parametrized in terms of
real scalar fields with different CP properties

φ =
1√
2

(
η+ + iσ+

v+ h+ iA

)
, (1.11)

where h and A are the CP-even and CP-odd neutral scalars, respectively, and η+ and
σ+ are the corresponding charged components. Consequently, the scalar doublet has
in total four degrees of freedom, out of which only one remains after EW symmetry
breaking, the Higgs boson h. What happens to the other three fields?
The scalar field φ acquires its VEV due to its specifically shaped scalar potential

V (φ) = −µ2(φ†φ) + λ(φ†φ)2 (1.12)

that has a continuum of nonvanishing absolute minima at v2 = −µ2/λ. Choosing a
specific configuration in this potential breaks the initial symmetry.
By acquiring a VEV φ in turn gives masses to the EW gauge bosons. Being massive,
the gauge bosons each have one additional degree of freedom compared to massless
vector particles, corresponding to their longitudinal polarization. These extra degrees of
freedom are absorbed from the components of φ, leaving it with only the Higgs boson
h. Hence, the Goldstone bosons η+, σ+ and A manifest themselves as the longitudinal
polarizations of the EW force carriers W± and Z, respectively. The situation is different
in theories with several Higgs doublets, where more scalar fields are present than can
be “eaten” by the EW gauge bosons. Such models are discussed in Sec. 2.2.
Once φ acquires a VEV, it also gives masses to the fermions. These masses stem from
the Yukawa sector of the SM Lagrangian, which in first-generation notation reads

−LYuk = YuQLφ̃uR + YdQLφdR + YlLLφeR + h.c. , (1.13)

where QL denotes the left-handed SU(2) quark doublets, uR and dR are the right-
handed up-type and down-type quark singlets, respectively, and LL and eR are the
equivalent fields from the lepton sector. The constant Yukawa couplings are defined
by Yu,Yd, and Yl, while φ̃ ≡ iσ2φ

∗. In three generations the Yukawa couplings become
3× 3 matrices in flavor space that are connected to the fermion masses by

Mu,d,l =
1√
2
vYu,d,l . (1.14)

Note that these 3× 3 matrices are in general not diagonal; in fact Mu and Md cannot
be diagonalized at the same time. The mismatch between the up-type and down-type
quark sector is accounted for by the Cabibbo–Kobayashi–Maskawa (CKM) matrix.1
The CKM matrix enters charged current interactions mediated by the W+ boson

uLγ
µW+

µ dL = u′LVuγ
µW+

µ V
†
d d
′
L = u′Lγ

µW+
µ VCKMd

′
L , (1.15)

1 The corresponding matrix of the lepton sector is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
matrix, which is discussed in Sec. 1.2.1.
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where Vu,d are the unitary matrices transforming the fields uL and dL from the flavor
into the mass basis u′L and d′L, and

VCKM ≡ VuV †d =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.16)

Much like the ρ parameter, the elements of the CKM matrix have been determined
experimentally with percent-level precision or better, constraining all beyond the SM
(BSM) scenarios that modify quark flavor transitions. The uncertainty of the theory
lies in the origin of these elements and their peculiar hierarchy, which is discussed in
Sec. 1.2.1.
Note that the mixing does not appear in neutral currents involving the Z boson. Flavor-
changing neutral currents (FCNCs) are absent in the SM at tree level by virtue of the
Glashow-Iliopoulos-Maiani (GIM) mechanism and occur only at second order in the
weak interaction [8].

1.2 shortcomings and motivation for new physics

The fact that the SM describes only 5% of the matter content of the Universe implies that
there must be something else in the vast “desert” spanned by the 17 orders of magnitude
between the EW and the Planck scale, where the effects of gravity become relevant.
While pressing matters such as dark matter and gravity are prominent subjects in the
literature, this work is largely motivated by the flavor problem, which is introduced below.
Lepton flavor violation and universality are being tested at low-energy experiments as
well as the LHC and show interesting discrepancies between the measurements and the
SM expectations. Besides these deviations, we are puzzled by the Yukawa couplings,
the fermion mixings, and the source of neutrino masses as these are not predicted by
the SM.
This section deals with selected shortcomings of the SM in more detail and highlights
some promising channels to probe flavor models. We start by introducing the flavor
problem in Sec. 1.2.1. Different types of neutrino mass mechanisms are outlined in Sec.
1.2.2, while Sec. 1.2.3 deals with rare fermion decays, which are crucial for NP searches.
Finally, Sec. 1.2.4 reviews the diphoton anomaly that received a lot of attention from
the community in 2016.

1.2.1 The Origin of Flavor, Masses, and Mixings

The so-called flavor problem refers to many unanswered questions at the same time:
the puzzling pattern of Yukawa couplings defining the fermion masses and mixings is
well measured but not predicted by the SM; it does not explain where these parameters
come from, nor why the top quark is so much heavier than all the other fermions. The
seemingly random pattern of fermion masses is illustrated schematically in Fig. 1.1 and
the explicit experimental values are summarized in the Tabs. A.1, A.2, and A.3 of App.
A.1.
Aside from the large hierarchy between the top quark and the up quark mass, a special
feature of the quark sector is the hierarchical structure of the CKM matrix, reflected by
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Figure 1.1: Pattern of the SM fermion masses, depicted in a logarithmic plot to
accommodate the large hierarchies among them.

the values listed in Tab. A.4. This is in stark contrast with the large mixing present
in the PMNS matrix that appears almost anarchic. The fundamental difference of
the mixing matrices suggests a different origin of lepton and quark flavor. Until 2013,
when θ13 ' 9◦ was measured by the reactor experiments Reno, Daya Bay, and Double
Chooz [9–11], the lepton mixing data was in excellent agreement with tribimaximal
(TBM) mixing,

UTBM =


2√
6

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√
3

1√
2

 , (1.17)

corresponding to θ12 = 33◦, θ23 = 45◦, and θ23 = 0◦. This structure, first proposed in
Ref. [12], could very well be explained by a discrete symmetry acting on the lepton
families as discussed further in Sec. 2.1.4. As of today, the neutrino mixing angles have
been measured with great precision, resulting in increasingly contrived models that
attempt to resolve the parameter puzzle. New data on θ23 is expected to clarify whether
µ− τ mixing truly is maximal, which in turn will rule out a number of these models.
One could assume that nature chose all of these parameters randomly, but such an
anthropic solution is unsatisfying and defies naturalness: An origin by chance is highly
improbable due to the large hierarchies among the parameters. An overview of the
physical observables in the neutrino sector and the respective experiments that currently
measure them is given in Tabs. A.5 and A.6. For a detailed review see, e.g., Ref. [13].
A question closely related to the flavor puzzle concerns the origin of the neutrino masses.
Absent from weak interactions, right-handed neutrinos were originally excluded from the
SM. However, since the discovery of neutrino oscillations, they are known to be massive,
which begs the question of how their masses are actually generated. If neutrinos receive
their masses from the Higgs boson, their Yukawa couplings will be tiny, increasing the
large hierarchy of the parameters even further, e.g.,

Yν
Ye
∼ O

(
10−7

)
, Yν

Yt
∼ O

(
10−13

)
. (1.18)
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Many alternatives have been considered that rely on the unique Majorana nature of the
neutrino, some of which are highlighted in Sec. 1.2.2.
In the case that neutrinos are indeed Majorana particles, the PMNS matrix contains
two more unknown parameters, referred to as Majorana phases,

UPMNS = U †l UνP , with P = diag(1, eiα, eiβ) . (1.19)

Since neutrino oscillations are insensitive to these phases, they are very hard to track
experimentally. A notable observable that depends on the Majorana phases, is the
effective Majorana mass decisive for neutrinoless double-beta decay (0νββ), outlined in
Sec. 1.2.2.2

1.2.2 Neutrino Masses

First predicted in 1957 by Pontecorvo [15], it took until 2001 to prove that neutrinos
indeed oscillate, when the Sudbury Neutrino Observatory confirmed the deficit of solar
neutrinos due to neutrino oscillations [16]. Meanwhile, also Super-Kamiokande observed
a deficit in the atmospheric neutrino flux [17]. Only recently, both experiments were
recognized for their efforts with the Nobel Prize for Physics in 2015.
This groundbreaking result not only states the obvious that neutrinos can change their
flavor, it also implies that neutrinos must have masses, which are not yet embedded in
the SM. The probability for a neutrino with the flavor α to oscillate into the flavor β
can be expressed in terms of the neutrino mass squared differences ∆m2

ν ≡ m2
2 −m2

1.
For clarity, the transition probability can be written in the two-neutrino case as

P (να → νβ) = sin2(2θ) sin2
(

∆m2
νL

4E

)
(α 6= β) , (1.20)

where θ denotes the mixing angle between the neutrino flavors, L is the oscillation
length, and E defines the energy. To observe oscillations at all, ∆m2

ν must not vanish.
The actual observed mass squared differences are denoted as ∆m2

sol and ∆m2
atm (cf. Tab.

A.2), implying the existence of at least three neutrinos.3
As of today, the observation of neutrino oscillations is still the only indication of neutrino
masses. Direct detection experiments such as KATRIN aim to determine the absolute
mass explicitly, but so far are only able to place upper limits [19]. Such bounds on
the sum of the neutrino masses can also be inferred from observations of the cosmic
microwave background. Latest results from the PLANCK satellite predict that [18, 20]∑

i

mν
i . 0.183 eV . (1.21)

Aside from the absolute mass scale, also the mass ordering is unknown. The two possible
orderings that are determined by the sign of ∆m2

atm are referred to in the literature as
normal hierarchy (NH) and inverted hierarchy (IH):

NH: m1 < m2 � m3 , IH: m3 � m1 < m2 , (1.22)

which are illustrated schematically in Fig. 1.2.
2 It is also possible to probe the Majorana phases at colliders in charged lepton flavor-violating processes.

See, e.g., Ref. [14] for an analysis in the context of the seesaw mechanism type II.
3 The composition of elements in our early universe and today indicates that the number of light neutrinos

is likely three, to not interfere with big bang nucleosynthesis [18].
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νe νµ ντ

Figure 1.2: Schematic depiction of the normal (left) and the inverted neutrino mass
hierarchy (right). The colors denote the flavor compositions of each mass eigenstate,
while the height of the bars determines their masses relative to the other states.

Note that the lower limits on the sum of the neutrino masses for NH and IH are very
close to the upper limits determined by PLANCK [cf. Eq. (1.21)]∑

i

mν
i & 0.06 eV (NH) ,

∑
i

mν
i & 0.10 eV (IH) , (1.23)

implying that experiments should slowly close in on the neutrino masses in the near
future. For certain is that the neutrino mass is tiny compared to the other SM fermions,
yet its origin remains unclear. The most common neutrino mass mechanisms are
summarized in the following paragraphs.

L L

φφ

L νR

φ

Figure 1.3: Mass generation for the Dirac neutrino (left) and the Majorana neutrino
(right).

dirac masses: A straightforward possibility to generate neutrino masses is to intro-
duce right-handed neutrinos as singlets under the SM symmetries. The neutrino
masses are then generated the same way as all the other fermion masses in the
SM: via a coupling to the Higgs boson as depicted in Fig. 1.3. The respective
Dirac mass term for the neutrino reads

LD = −1
2yDL φ̃ νR + h.c. , (1.24)

where yD denotes the Yukawa coupling, with D standing for Dirac. While
technically correct, this method cannot explain the smallness of the neutrino



12 introduction

mass compared to the other SM fermions, which is why many theorists resort to
mechanisms relying on the unique Majorana property of the neutrino.

seesaw mechanism (i – i i i): The fact that neutrinos are electrically neutral
allows them to be their own antiparticles, which defines their Majorana nature.
The right-handed neutrinos required for the mass term can hence be replaced by
the complex conjugate left-handed counterparts, resulting in the nonrenormalizable
interaction known as the Weinberg operator [21]

Lν = −
y

Λ
(Lcφ̃)(φ̃†L) + h.c. , (1.25)

with a model-dependent constant y. Because of its higher mass dimension, the
operator is suppressed by the energy scale Λ, where the new particles come
into play to generate the neutrino masses. The three minimal ultraviolet (UV)
completions are denoted as the seesaw mechanisms I – III, emphasizing how the
light neutrinos are lifted by the weight of the heavy messenger particles [22]. The
respective diagrams are shown in Fig. 1.4, and the details about the messengers
are summarized in Tab. 1.2.

Seesaw Mediator SU(2)L D

I νR 1 3/2

II ∆ 3 1
III Σ 3 3/2

Table 1.2: Overview of the seesaw mechanisms I – III. D denotes the mass dimension of
the mediator, where 3/2 corresponds to a fermion, and 1 is a scalar field.

L LνR νR

φ φ

L L

φ φ

Σ Σ

φ φ

L L

∆

Figure 1.4: UV completions of the dimension five Weinberg operator, known as the
seesaw mechanism I (top left), II (right), and III (bottom left).
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By far the most common solution to the neutrino mass problem is to introduce
heavy right-handed neutrinos νR to the SM field content, corresponding to the
seesaw mechanism type I. In a simplified notation with one active and one right-
handed neutrino, the UV complete form of the Weinberg operator reads

LUV
ν = −1

2ν
c
LmD ν

c
R −

1
2νRmD νL −

1
2νRMR ν

c
R + h.c. , (1.26)

where mD ≡ yDv is the Dirac neutrino mass, and MR is the mass of the heavy
right-handed neutrino. For convenience this expression can also be written in
matrix form

LUV
ν = −1

2
(
νcL νR

)( 0 mD

mD MR

)(
νL
νcR

)
+ h.c. (1.27)

A back-of-the-envelope calculation of the neutrino masses then yields a light mass
eigenstate m1 suppressed by the heavy state MR

m1 ≈
m2
D

MR
, m2 ≈MR . (1.28)

By assuming that the right-handed neutrinos are extraordinarily heavy, one can
explain why the SM neutrinos are so much lighter than the other fermions. Indeed,
the neutrino mass comes out naturally in the sub-eV range for MR ∼ O(1015 GeV)

and yD ∼ O(1). Extending this framework to three active neutrinos is straightfor-
ward using three right-handed neutrinos to fit ∆m2

sol and ∆m2
atm.

radiative seesaw mechanism: Other realizations of the Weinberg operator are
plausible that go beyond the minimal seesaw mechanism. The fact that the heavy
messengers in the seesaw I – III are way beyond the reach of current or next
generation experiments, motivates ideas that invoke NP at a testable energy
scale, preferably even at the LHC. One such idea is to generate the neutrino
mass radiatively by producing it at loop level with messenger particles at the
TeV scale [23], as shown in Fig. 1.5. The smallness of the neutrino mass is then
primarily explained by the loop suppression.
The loop level neutrino mass is typically generated with scalar particles, but also
vector solutions are possible if the renormalization of the loop is taken care of.
Three types of mediators are presented in this thesis that generate neutrino masses
radiatively: Higgs-like scalar fields (Sec. 3.2), scalar leptoquarks (Sec. 4.3.1), and
vector leptoquarks (Sec. 4.3.2).

Note that the Weinberg operator violates lepton number by ∆L = 2 units, which is an
accidentally preserved but not a true symmetry of the SM. Lepton number violation
is a distinct feature of many theoretical NP models and is actively searched for by
various experiments. The most prominent among them are the 0νββ experiments.
According to the black-box theorem, if 0νββ decay is found, at least one neutrino has
to be a Majorana particle [24]. The rare process can occur if a neutrino is emitted and
simultaneously absorbed in the beta decays of two nuclei, as depicted in Fig. 1.6. The
0νββ decay rate is approximately given by

Γ0νββ = G|M |2|mββ |2 , (1.29)
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L νR νR L

η η

φφ

Figure 1.5: Example of a Majorana neutrino mass generated radiatively by a scalar field
η coupling to the SM Higgs φ.

n

n p

p

e

e

d u

ud
W−

W−

ν

Figure 1.6: 0νββ decay enabled by a Majorana neutrino mass insertion.

where G is the two-body phase space factor, M is the nuclear matrix element, and mββ

denotes the effective Majorana mass

mββ =
3∑
i=1

miU
2
ei . (1.30)

As seen from Eq. (1.29), the 0νββ decay is strongly suppressed by the small neutrino
masses entering mββ. Consequently, detecting this decay is in practice possible only
in elements that are stable against single-beta decay. This is the case for isotopes
with even-numbered protons and neutrons, which have increased stability due to the
spin coupling [25]. Observing the 0νββ decay is the key to understanding most of the
remaining neutrino properties because of its sensitivity to the absolute mass scale, the
Majorana phases and possibly also the mass ordering. Unfortunately, the reverse is not
true: nonobservation of 0νββ does not exclude Majorana neutrinos. As shown in Fig.
1.7, mββ can vanish in the NH case for a specific set of neutrino masses and Majorana
phases, although the neutrino itself could in fact be a Majorana particle.



1.2 shortcomings and motivation for new physics 15

mmin    [eV]

|m
β

β
| 
  
 [
e
V

]

NS

IS

C
o

s
m

o
lo

g
ic

a
l L

im
it

Current Bound

10
−4

10
−3

10
−2

10
−1

1

10
−4

10
−3

10
−2

10
−1

1

1σ
2σ
3σ

Figure 1.7: The effective Majorana mass mββ as a function of the lightest neutrino mass
depicted for NH and IH. Figure taken from Ref. [26].

Aside from mββ, also the nuclear matrix element |M | is a decisive factor for the 0νββ
decay rate, depending strongly on the considered nucleus. Typical materials used in 0νββ
experiments include 136Xe (EXO, KamLAND-Zen) and 76Ge (GERDA, MAJORANA).
Currently, the best limit for the half-life of 76Ge is provided by GERDA [27] with

T 0νββ
1/2 (76Ge) > 2.1× 1025 yr , (1.31)

while KamLAND-Zen predicts for 136Xe [28]

T 0νββ
1/2 (136Xe) > 1.07× 1026 yr (1.32)

at 90% C.L. Proposed experiments such as SuperNEMO and NEXT intend to push the
limit on the 0νββ half-life further to close in on the inverse neutrino mass hierarchy in
the near future [29,30].

1.2.3 Flavor Violation as a Probe of New Physics

With direct detection being limited to TeV scale energy ranges, decays of light fermions
are excellent tools to probe NP indirectly. Operating at low energies, indirect detection
experiments are complementary to direct collider searches. Heavy new particles are
produced only virtually and observed through their effect on well-known processes that
are suppressed or even forbidden in the SM. If NP indeed affects the flavor sector, it is
sure to manifest in rare meson decays or any lepton flavor-violating transitions.
Flavor experiments such as Belle and BaBar push the limits on new interactions involving
quarks and charged leptons. A number of deviations from the SM have been observed
in these experiments, which are discussed in the following subsections together with the
most interesting decay channels for NP searches.
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Rare B decays

Some meson decays are termed rare because of their strong suppression in the SM, which
allows to test energy scales even beyond the reach of the LHC, limited only by precision
and statistics. This suppression is due to large numbers of EW vertices or loops that
are required to mediate the rare process in the SM. New particles and interactions can
simplify the topology of the diagram and thereby result in an observable effect.
Searches for rare meson decays are historically motivated by the kaon channel K0

L → µµ

that lead to the discovery of the charm quark and thereby established the GIM mech-
anism. At the time, the decay was known to be induced by a box diagram involving
the up-quark (Fig. 1.8). However, only the contribution from the new charm quark
could explain the discrepancy between the theory prediction and the experimental
observations.

s

d

µ−

µ+

νu, c

W−

W+

K0
L

Figure 1.8: SM decay of K0
L → µµ.

While kaons were studied extensively in the past, the focus of today’s experiments are
B meson decays. The most notable experiments currently searching for rare B decays
are the hadron collider experiment LHCb, and the B-Factories BaBar and Belle. The
follow-up experiment Belle II located in Japan is expected to take new data in late fall
2018 [31]. The B-factories are experiments based at e+e− colliders that are specifically
designed to produce 10.6 GeV Υ(4S) resonances decaying into pairs of B mesons. As
such, the B mesons are easily identifiable, which is a powerful advantage in the search
for rare decays.
Some of the key channels are outlined in the following paragraphs with respect to their
current status and future prospects. A summary can be found in Tab. A.7. Similar
bounds can be obtained from kaon and lepton decays, which are summarized in Tabs.
A.8 and A.9. Measurements of D meson decays can constrain c→ u flavor transitions,
but the respective bounds are relatively weak, restricting the NP models in this thesis
barely beyond the limits from the down-type quark sector.

b→ sγ : The b→ sγ decay is dominated in the SM by a loop diagram with a W− and a
top or charm quark, respectively, as shown in Fig. 1.9. The current experimental
data is in very good agreement with the SM prediction [6, 32]

BSM(b→ sγ) = (3.36± 0.23)× 10−4 ,
Bexp(b→ sγ) = (3.49± 0.19)× 10−4 ,

(1.33)

imposing stringent bounds on NP models with couplings to down-type quarks.
Potential candidates are two-Higgs-doublet models (2HDMs), in which the W
boson line is replaced by a charged Higgs H+. The newest measurements indicate
that the charged Higgs mass in the 2HDM type II should be heavier than 500
GeV to comply with the constraint from b→ sγ [32].
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W− b s

γ

t t
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Figure 1.9: b→ sγ in the SM (left) and with a charged Higgs boson (right).

b→ sll : This lepton universal decay occurs at one-loop level with an equally dominant
box diagram depicted in Fig. 1.10. The observed branching ratios for l = e,µ and
the corresponding SM expectation are [33,34]

Bexp(b→ see) = (4.7± 1.3)× 10−6 ,
Bexp(b→ sµµ) = (4.3± 1.3)× 10−6 ,
BSM(b→ sll) = (4.15± 0.70)× 10−6 .

(1.34)

b s

γ, Z

t t

W−

l−

l+

b st

W− W−ν

l−

l+

Figure 1.10: SM contributions to b→ sll.

B0
(s) → µµ: In the SM this decay is induced by a box diagram, as shown in Fig. 1.11.

Again, a potential NP candidate is a charged Higgs that replaces the W line in the
diagram, coupling more strongly to heavier quarks. Once more, the measurements
are consistent with the SM, leaving a little more room for BSM contributions than
b→ sγ [35, 36]

BSM(B0 → µµ) = (1.06± 0.09)× 10−10 ,
Bexp(B

0 → µµ) = (3.9+1.6
−1.4)× 10−10 ,

BSM(B0
s → µµ) = (3.66± 0.23)× 10−9 ,

Bexp(B
0
s → µµ) = (2.8+0.7

−0.6)× 10−9 .

(1.35)

B → lν : Decays with ν final states are typically clean but experimentally challenging
as neutrinos appear only as missing energy. The decay B+ → l+ν is helicity
suppressed by the small lepton masses. Therefore, the only decay measured so far
is the channel involving the τ lepton [6, 37]

BSM(B+ → τ+ν) = (0.76+0.08
−0.06)× 10−4 ,

Bexp(B
+ → τ+ν) = (1.14± 0.27)× 10−4 .

(1.36)
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Figure 1.11: Dominant SM contributions to B0
(s) → µµ.

The Belle II experiment intends to close the gap left for NP models in this channel.

B → K(∗)ll : The exclusive decay B → K∗ll related to b → sll has a q2 dependence
with a longstanding anomaly in the angular observable P ′5 [38], corresponding to
a deviation of 3.7σ in the bins 4 GeV < q2 < 8 GeV.
The hadronic uncertainties of this channel cancel in the theoretically clean observ-
able

RK =
B(B → Kµµ)

B(B → Kee)
, (1.37)

which is very close to unity in the SM [39]

RSM
K = 1.0003± 0.0001 . (1.38)

Interestingly, the LHCb Collaboration has reported a 2.6σ deviation from the
SM in RK that hints at a violation of lepton universality, which has yet to be
confirmed by other experiments. The reported result amounts to [40]

RLHCb
K = 0.745+0.090

−0.074 ± 0.036 . (1.39)

b c

W− l−

ν

d d

b c
H−

l−

ν

B
0

D(∗)

Figure 1.12: Tree-level decay of b→ clν in the SM (left). Tree-level decay of B̄0 → D(∗)lν

induced by a charged Higgs boson in a multi-Higgs model (right).

B → D(∗)lν : A number of experiments have observed deviations [41–43] in the ratios

RD =
B(B → Dτν)

B(B → Dlν)
, RD∗ =

B(B → D∗τν)

B(B → D∗lν)
. (1.40)

Indicating lepton nonuniversality, the measurement has caused a lot of activity in
the field because of its high statistical significance. Currently the experimental
global average amounts to

Rexp
D = 0.388± 0.047 , Rexp

D∗ = 0.321± 0.021 , (1.41)
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Figure 1.13: Global average of RD and RD∗ based on data from BaBar, Belle, and
LHCb. Plot taken from Ref. [45].

which results in a 3.9σ deviation from the theory prediction [44]

RSM
D = 0.300± 0.010 , RSM

D∗ = 0.252± 0.005 , (1.42)

assuming a correlation of the ratios. See also Fig. 1.13 for an illustration of the
data in the RD - RD∗ plane. Since the decay is mediated at tree level in the SM,
the NP effects must be sizable to explain the data, which can cause tension with
other B decay channels.

Combining the b→ s channels in global fits shows that the current measurements prefer
NP in the coefficient C9, excluding the SM by at least 3σ (Fig. 1.14). The deviations
in b → sll and B → Kll point towards NP in muons, while RK alone could also be
explained with NP in electrons [46].
Closely related to the rare decays are neutral meson oscillations. These are historically
relevant since CP violation was first observed in K0 −K0 oscillations back in 1964 [47].
New particles can modify the meson mixing measured in K0 −K0, B0

(s) −B
0
(s), and

D−D. The oscillations are sensitive to the mean mass of the eigenstates, their lifetimes
and the CP mixing phase. Consequently, new particles can increase the decay rate and
thereby shorten the lifetime of the mesons, letting them decay too fast before they can
oscillate. The lowest order SM contribution to K0 −K0 mixing is depicted in Fig. 1.15.

Charged Lepton Flavor Violation

While rare decays of K and B mesons led the way for NP searches in the hadronic sector,
limits are pushed in the lepton sector by searches for charged lepton flavor violation
(CLFV). Since CLFV is forbidden in the SM, these processes are even more suppressed
than rare meson decays despite the flavor transitions due to neutrino oscillations. An
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Figure 1.14: Global fit of CNP
9 taking into account b → sll and B → Kll (a), and

assuming CNP
9 = −CNP

10 (b). The blue line denotes lepton flavor universality. Taking
into account data from b → sll and B → Kll points to NP in muons. Figures taken
from Ref. [46]
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Figure 1.15: Lowest order contribution in the SM to K0 −K0 oscillations.

estimate of B(µ → eγ) shows that the effect of massive neutrinos on the forbidden
processes is tiny. Its branching ratio with neutrino oscillations is given by [48]

BνSM(µ→ eγ) =
3α
32π

∣∣∣∣∣∑
l

U∗µlUel
m2
ν

m2
W

∣∣∣∣∣
2

∼ O(10−54) , (1.43)

where Uij denote the PMNS matrix elements and mν and mW are the masses of the
neutrino and the W boson, respectively. Being proportional to (mν/mW )4, the decay rate
is negligible as a consequence of the tiny neutrino mass. On the other hand, a lepton
flavor-violating Higgs coupling yeµ arising in multi-Higgs models affects the branching
ratio significantly (cf. Fig. 1.17) [49]

Bheµ(µ→ eγ) ≈ 10−12
(500 TeV

Λ

)4
(|yeµ|2 + |yµe|2) , (1.44)

which means that any observation of CLFV would be a smoking gun of NP.
Besides µ → eγ, notable limits on CLFV are provided by µ → 3e, µ → e conversion
in nuclei, and the various τ decay modes. Some of the most prominent channels are
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Figure 1.16: Dominating SM contribution to µ→ eγ with massive neutrinos.
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Figure 1.17: Leading order diagrams for µ → eγ with flavor-violating Higgs boson
couplings.

outlined as follows. A summary of the bounds on lepton decays with CLFV is given in
Tab. A.9.

l→ l′γ : The radiative decays l→ l′γ, including µ→ eγ, τ → µγ, and τ → eγ, currently
provide the strongest constraints on NP with charged leptons. The B factories
also produce a lot of tauons allowing for measurements of many flavor-violating τ
decay modes. The upper bounds reported by BaBar are

Bexp(τ → eγ) . 3.3× 10−8 ,
Bexp(τ → µγ) . 4.4× 10−8 .

(1.45)

A much stronger limit on µ decays is provided by the MEG experiment [50]

Bexp(µ→ eγ) . 5.7× 10−13 . (1.46)

Special attention has to be paid to higher order corrections, particularly in the
case of µ→ eγ, where the one-loop and two-loop corrections can be of the same
order of magnitude in some BSM scenarios [51].

LHCb and the upcoming experiment Belle II expect to improve their limits on
τ → lγ to O(10−10 − 10−9) [52]. Also MEG plans to increase their sensitivity to
µ→ eγ by another order of magnitude with their next upgrade [53].

l→ 3l′ : In analogy to l→ l′γ, the SM contribution to the decay l→ 3l′ is suppressed
by the tiny neutrino mass and is hence negligible (cf. Fig. 1.18). Alternatively
this decay could be mediated at tree level by a flavor-violating Higgs coupling of
a multi-Higgs model, as shown in the right diagram of Fig. 1.18 [51].
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Figure 1.18: l → 3l′ in the SM with neutrino masses (left) and with flavor-violating
Higgs couplings (right).

In the tauon sector, the best limits on τ → 3µ, and τ → 3e are given by Belle [54]

Bexp(τ → 3e) . 2.7× 10−8 ,
Bexp(τ → 3µ) . 2.1× 10−8 .

(1.47)

Once again, the bounds on µ are stronger [55]

Bexp(µ→ 3e) . 1× 10−12 . (1.48)

According to their proposal, the Mu3e experiment intends to push the limit on
µ→ 3e further to 10−16 [56].

µN → eN : Searches for µ→ e conversion in nuclei are a promising alternative to the
µ→ eγ channel with excellent future prospects. The current limit from SINDRUM
II [57]

BAu(µN → eN) . 7× 10−13 , (1.49)

is expected to improve significantly in the near future with the upcoming experi-
ments Mu2e at Fermilab [58], and COMET at J-PARC [59]. At the moment, both
µ→ eγ and µN → eN already probe scales up to 103 − 104 TeV.

gµ − 2: In the SM, the gyromagnetic ratio of the muon gµ is predicted by the Dirac
equation to be exactly 2. The deviation from this number is called the anomalous
magnetic moment and is caused by EW and hadronic loop-level effects [60]

aSM
µ =

gµ − 2
2 = 0.00116591814(51) . (1.50)

Even though the observed value [61]

aexp
µ = 0.00116592091(54)(33) (1.51)

differs from the prediction only by O(10−9), the result corresponds to a 3.4σ
deviation because of the excellent precision of both the theory prediction and the
measurement.
Loop corrections with new particles coupling to muons could compensate for this
discrepancy. However, fairly large effects are necessary that can cause tension
with other observables, including τ → µγ and µ → eγ [62]. Possible diagrams
generated by a scalar leptoquark coupling muons to top quarks are depicted in
Fig. 1.19.
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Figure 1.19: Possible loop corrections to the anomalous magnetic moment of the muon
from a scalar leptoquark S.

Flavor-Violating Higgs Boson Decays

Since diagonalizing the fermion mass matrices is equivalent to diagonalizing the fermion
Yukawa couplings, Higgs boson decays always preserve flavor in the SM. The Yukawa
couplings that define the Higgs decay rates in the SM are known very precisely

yij =
√

2mi

v
δij , (1.52)

where the diagonal couplings yii are proportional to the fermion mass mi. In general
BSM theories the Higgs decay rate into two arbitrary fermions is given by

Γ(h→ ψiψj) = Nc
mh

8π
(
|yij |2 + |yji|2

)
, (1.53)

where Nc is the color factor (Nc = 3 for quarks, Nc = 1 for leptons). Higgs decay
searches, therefore, directly constrain the absolute value of the Yukawa couplings, but
in many cases indirect searches of rare or flavor-violating decays can provide better
limits. As shown, e.g., in Fig. 1.17, typical channels to pin down the Higgs couplings
are the radiative decays l→ l′γ, which are easier accessible because the light fermions
can be produced in large numbers at low energies.
Since the discovery of the Higgs boson the LHC placed first limits on some Higgs decay
channels with fermionic final states to confirm the SM hypothesis, Eq. (1.52). ATLAS
and CMS reported the following best-fit values for the Yukawa couplings normalized to
the SM expectation [63–66]

µATLAS
hττ = 1.43+0.43

−0.37 (4.5σ) , µCMS
hττ = 0.78± 0.27 (3.7σ) ,

µATLAS
hbb

= 0.52± 0.56 (1.4σ) , µCMS
hbb

= 1.0± 0.5 (2.1σ) . (1.54)

Because of the limited LHC sensitivity to small Yukawa couplings, only an upper bound
could be placed on h→ µµ decays [67]

BATLAS(h→ µµ) < 1.5× 10−3 , or Bexp(h→ µµ)

BSM(h→ µµ)
< 7.0 . (1.55)

All the other fermion channels are far out of reach, being either polluted by QCD
background or just too rare to be observed at the LHC. An overview of the couplings
measured so far, based on the combined ATLAS and CMS data of Run 1 is shown in
Fig. 1.20.
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Figure 1.20: Measured Higgs decay rates normalized to the respective SM predictions
from a combined analysis of ATLAS and CMS data. All listed decay channels are
consistent with the SM expectation, the constraints on h→ bb and h→ ττ being the
weakest. Figure taken from Ref. [68].

Like in the case of the rare B and charged lepton decays, any signal in a Higgs decay
channel with a flavor-violating final state is a clear sign of BSM physics. The off-diagonal
Higgs couplings are only weakly constrained by experimental searches, allowing for
branching ratios of up to 10% with great model building opportunities in the lepton
sector [51]. The limits on quark couplings are generally stronger thanks to the extensive
searches for K and B meson decays. The ybs coupling has the weakest bounds, allowing
for [69]

B(h→ bs) . 2× 10−3 , (1.56)

which is still far too small to ever be observed at the LHC because of the large QCD
background.
In 2014, the CMS Collaboration presented preliminary results from a h→ µτ search
indicating CLFV in Higgs decays with a 2.4σ statistical significance [70]. The anomaly
caused a lot of excitement in the field as it requires the SM to be changed fundamentally
in order to accommodate the data. If confirmed, the best-fit branching ratio

BCMS(h→ µτ ) = (0.84+0.39
−0.37)% , (1.57)

would likely be caused by NP at the EW scale to have such a large effect. Potential new
particles would either be well hidden, or should be found very soon in the LHC data.
In 2015, also ATLAS published their result [71]

BATLAS(h→ µτ ) = (0.77± 0.62)% , (1.58)
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neither confirming, nor disproving the CMS signal. With first data from LHC Run 2,
these branching ratios were updated in May 2016 [72]

BCMS(h→ µτ ) = (−0.76+0.81
−0.84)% , BATLAS(h→ µτ ) = (0.53± 0.51)% , (1.59)

suggesting that the excess might just be a statistical fluctuation. However, since the
updated limits are still consistent with the original claim, the situation remains unclear.
If not h→ µτ , then h→ eτ might still exhibit large flavor violation. The preliminary
results [72,73]

BATLAS(h→ eτ ) < 1.04% , BCMS(h→ eτ ) < 0.69% (1.60)

at 95% C.L. do not exclude large flavor violation in eτ final states yet.

1.2.4 The 750 GeV Diphoton Excess

On December 15, 2015, the CMS and ATLAS collaborations presented new data
regarding a potential excess in pp→ γγ at the invariant mass of around 750 GeV with
3.4σ and 3.9σ local significance, respectively [74,75]. The deviation reduced to 1.6σ
and 2.3σ taking into account the look-elsewhere effect.
Although the significance was rather low, the signal received a lot of attention for the
fact that it appeared in both experiments in the same invariant mass region. Updated
results with slightly improved statistics were presented during Moriond 2016, further
encouraging research on the resonance. The huge activity in the field amounted to 545
and counting publications to date that attempt to explain the data provided by CMS
and ATLAS. On August 5, 2016, new LHC Run 2 results were presented at ICHEP,
Chicago, finally clarifying the picture [76, 77]. Even though the excess turned out to
be merely a statistical fluctuation, the potential signal led to a plethora of interesting
models that allow for extensive studies of future diphoton resonances. Given that also
the Higgs boson was first observed in h → γγ, the diphoton final state is still a very
promising channel to discover NP.
The most common explanation was given by the so-called “everybody’s model” [78],
which is the simplest interpretation of the resonance as a scalar singlet field z coupling
to exotic color particles that decay into gg and γγ. The production and decay of the
resonance in the everybody’s model is shown schematically in Fig. 1.21.

γ

γ

g

g

̥
Q Q

Figure 1.21: Production and decay of a singlet scalar resonance z coupling to color
charged particles Q.
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A number of properties of z could be deduced from the first measurements presented
by CMS and ATLAS, which are summarized below based on the review [78]. Since
it was observed in the γγ final state, the resonance had to be either a spin-0 or a
spin-2 state. The latter was disfavored for predicting a similar signal in leptons, i.e.,
σ(pp→ z→ e+e− + µ+µ−) = σ(pp→ z→ γγ).
Explicitly, the total diphoton cross section of a boson with spin J , Mass M and width
Γtot can be written in the narrow-width approximation in terms of its production and
decay rate [78]

σ(pp→ z→ γγ) =
2J + 1

M · Γtot · s
∑
q

CqqΓ(z→ qq)Γ(z→ γγ) , (1.61)

where s is the center-of-mass energy and q = {u, d, s, c, b, g}.
In order to achieve a large z production rate, the field had to couple to colored particles
enabling the production at the LHC through gluon fusion. The high luminosity of
gluons compared to quarks increases the total diphoton cross section significantly, which
allows for a relatively small Γ(z→ γγ) (cf. Tab. 1.3).

√
s [TeV] Cbb Ccc Css Cdd Cuu Cgg

8 1.07 2.7 7.2 89 158 174
13 15.3 36 83 627 1054 2137

Table 1.3: Quark and gluon luminosity factors at the LHC [78].

The charged particles mediating the decays into gg and γγ are typically heavy exotic
quarks or (color) charged scalars which enhance the diphoton cross section through
large hypercharges or Yukawa couplings. They could not be SM particles, which would
couple to the resonance at tree level and, therefore, lead to observable signals in other
decay channels dominating the z width. Particles in larger SU(2) representations
couple to the EW gauge bosons and are further constrained by nonobservation of
z→WW ,ZZ,Zγ.
Furthermore, as a neutral scalar, z can also mix with the SM Higgs boson. However,
the corresponding mixing angle should be tiny since Γ(z→ ZZ) . Γ(z→ γγ).
While CMS favored a narrow decay width, the width predicted by ATLAS was large
with a best fit of about 45 GeV, or equivalently Γ/Mz ≈ 0.06. From the theory point of
view, the narrow width is strongly favored as models predicting a wide width come with
a number of problems: The broad width entails a large diphoton decay rate of the order
Γγγ/Mz ∼ 10−4 − 10−3, which requires either a large Yukawa coupling, a high electric
charge, or a large number of fields running in the loop. Sizable couplings can become
nonperturbative and hit a Landau pole at high energies, whereas the multi-fields solution
is disfavored for modifying the running of the gauge couplings sharply. Therefore, most
theoretical models consider only the narrow width predicted by CMS.
In this thesis, two variations of the everybody’s model are explored that provide a joint
explanation of the 750 GeV diphoton excess and other anomalies of the SM: a flavor
symmetry-based model (Sec. 5.1) and a vector leptoquark solution (Sec. 5.2).
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M O D E L B U I L D I N G

New symmetries and fields can alter well-known SM observables and thereby explain
the unanswered questions and anomalies outlined in the previous chapter. The process
of working out theoretical models that determine and predict the behavior of the (B)SM
particles is referred to as model building.

The following subsections focus on some of the most frequently used model-building
tools: discrete and continuous symmetries (Sec. 2.1), extended Higgs sectors (Sec. 2.2)
and unification (Sec. 2.3).

2.1 discrete and continuous symmetries

Symmetry groups are essential tools in particle physics to explain the fundamental
properties of the SM. Continuous gauge symmetries have been proven to describe the
SM fermions and their interactions with percent-level precision and better. On the
other hand, many of the fundamental symmetries such as charge conjugation C, parity
P , and time reversal T are discrete. Therefore, discrete and continuous symmetries are
both motivated by the SM but in practice employed for different purposes.

While gauge symmetries describe the fundamental SM interactions, they do not explain
the origin of the Yukawa couplings. Instead, so-called “flavor symmetries” can make sense
of the SM flavor puzzle by reducing the number of free parameters of the theory. Suitable
flavor symmetries are typically discrete subgroups of SU(3) with triplet representations
to unify the three families of the SM, including but not limited to A4, S4, and ∆(27).

An exception is the symmetric group S3, which is a popular choice in model building
for being the simplest nonabelian flavor symmetry [79]. Two fermion families can
be accommodated in the doublet representation, which is useful, e.g., to describe an
approximate µ− τ symmetry. This doublet representation also complements two-Higgs-
doublet models well, which are discussed in Sec. 2.2.

Since no Goldstone or gauge bosons appear in the breaking of discrete symmetries, they
are less constrained by experimental data, but at the same time difficult to rule out
for their lack of distinguishable features. Therefore, their fundamental properties have
been studied extensively for unique model predictions, see, e.g., Refs. [80–82].

The most prominent symmetries in (flavor) model building are outlined in the subsections
2.1.2 to 2.1.4. First, the necessary vocabulary for the use of groups in particle physics is
introduced in Sec. 2.1.1.
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2.1.1 A Short Group Theory Primer

The following introduction is based on Ref. [83] focusing on the group properties relevant
for the application in particle theory. For a comprehensive review, see also Ref. [84].

A group G is defined by a set of elements and the operation • satisfying the following
fundamental axioms:

closure: If a, b ∈ G then ab ∈ G.

associativity: For all a, b, c ∈ G, (ab)c = a(bc).

identity: There exists an identity element e ∈ G such that ea = a, ∀a ∈ G.

inverse: For every a ∈ G there exists an inverse element a−1 ∈ G with a−1a = e.

The order of a group is defined by its number of elements and can be finite or infinite.
If these elements commute, the group is called abelian, otherwise nonabelian. A simple
example of a nonabelian group is the SO(3) describing rotations in three dimensional
space.
Noncontinuous changes in a system are described by discrete symmetries. While a
circle possesses a continuous rotation symmetry, a square keeps its original shape only
if rotated by multiples of 90 degrees.
A subset H of G is a subgroup of G if H is also a group. A representation maps the
elements g ∈ G onto matrices D(g) acting on the representation space. Its dimension
n corresponds to the dimension of the representation space. Representations can be
reducible or irreducible depending on whether they have an invariant subspace, i.e., H is
an invariant subspace of G if v ∈ H, g ∈ G, then D(g)v ∈ H. The number of irreducible
representations is equal to the number of conjugacy classes, which comprise the sets
of elements g−1ag, a, g ∈ G that are conjugate to a. A special property of irreducible
representations is that they are indecomposable. Particle multiplets can be decomposed
into a direct sum of irreducible representations, which define their properties on a
fundamental level.

2.1.2 U(1) and the Froggatt-Nielsen Mechanism

The Froggatt-Nielsen (FN) mechanism was first proposed in Ref. [85] to explain the
large fermion mass ratios and the hierarchical mixing of the CKM matrix. Since then it
has become a popular model building tool to shape the mass and mixing matrices of
the quark sector.
To suppress the Yukawa couplings of the light fermions, the mechanism employs an
additional U(1) flavor symmetry with nontrivial fermion field charges. The Yukawa
Lagrangian is not invariant under this symmetry, unless a new scalar field η is taken
into account that cancels the sum of the fermion field charges. This scalar field typically
carries a U(1) charge (−1) so that invariant mass terms are obtained with several
insertions of η, depending on the sum of the fermion charges. Consequently, the now
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Figure 2.1: Schematic diagram of a quark mass term in the FN mechanism with n

flavon insertions above (left) and below the energy scale Λ (right).

nonrenormalizable Yukawa interactions are suppressed by the energy scale Λ, where
the flavon field η receives its mass. The resulting (lepton) Yukawa terms take the form

yijLiHej

(〈η〉
Λ

)nij
, (2.1)

with nij = qj − qi, where qi denotes the FN charge q of the particle i.
Once the flavon acquires a VEV, it will break the U(1) symmetry and suppress the
fermion interactions by powers of

(
〈η〉
Λ

)nij . Traditionally, this energy scale Λ is chosen
such that it is out of reach of current experiments to avoid implications of a new massive
gauge boson that accompanies the broken gauge symmetry.
Since only the ratio 〈η〉/Λ is phenomenologically sensitive, there is some freedom in
the choice of 〈η〉. The ratio

〈η〉
Λ

= λ , with λ ≈ 0.22 , (2.2)

is motivated by the Wolfenstein parametrization of the CKM matrix [86]

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (2.3)

and reproduces the Cabibbo mixing angle θC ≈ 0.22.
Note that the FN mechanism determines couplings only up to O(1) coefficients, ac-
counting merely for hierarchies among them. Additional tools are necessary to predict
specific relations between observables that are of the same order of magnitude, e.g.,
mb/mτ ≈ 2.5 . Neglecting the O(1) coefficients, the fermion masses and mixing matrices
are determined only by their fermion U(1) charges, i.e.,

mi

mj
∼ λ|q

R
i −q

L
i |−|q

R
j −q

L
j | , and V

L(R)
ij ∼ λ|q

L(R)
i −qL(R)

j | , (2.4)

where qL(R)i denotes the U(1) charge q of the left-handed (right-handed) fermion i, and
V
L(R)
ij defines the matrix element mixing the left-handed (right-handed) fermions i and
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j. Since the left-handed quarks are combined into an SU(2) doublet, they share the
same U(1) FN charge, which implies

V u,L
ij ∼ V d,L

ij ∼ V CKM
ij ∼ λ|qQi−qQj | , (2.5)

where V u and V d denote the rotation matrices for the up- and down-type quarks,
respectively.
The FN charges of the fermions then have to reproduce the experimentally observed
fermion mass hierarchies (normalized to mt)

mu : mc : mt ≈ λ8 : λ4 : 1 ,
md : ms : mb ≈ λ7 : λ5 : λ3 ,
me : mµ : mτ ≈ λ9 : λ5 : λ3 .

(2.6)

On the other hand, they should accommodate the observed CKM mixing, placing
additional constraints on the choice of quark charges

Vus ≈ λ , Vub ≈ λ3 , Vcb ≈ λ2 . (2.7)

No such constraint applies to the PMNS matrix since the origin of neutrino masses and
mixings is unknown in the SM. The freedom in the choice of the U(1) lepton charges
opens up model building opportunities, for instance, in leptoquark UV completions,
which are discussed in Sec. 4.3.
The FN mechanism comes with a number of caveats that are summarized in the following:

1. If the U(1) FN symmetry is treated as a gauge symmetry, it can give rise to chiral
anomalies, i.e., divergent triangular loop diagrams. A specific choice of fermion
charges can ensure cancellation of these diagrams, which in the case of a U (1)
gauge symmetry is given by [87] ∑

i

q3
i = 0 , (2.8)

where qi denotes the U(1) charge q of the fermion i. Anomaly cancellation is often
ignored in FN models, given that the issue can be evaded, either by promoting
the U(1) to a global symmetry, or by imposing a discrete symmetry instead.

2. A broken gauge symmetry leads to massive gauge bosons, which are subject to
constraints from ongoing collider searches as well as low-energy flavor experiments
since additional gauge bosons can mediate new flavor transitions.

3. If the symmetry is not gauged, its breaking entails a massless Goldstone boson
unobserved in experiments.

These caveats can be evaded by using a discrete ZN symmetry in place of the U(1),
which for large enough N behaves almost like a continuous symmetry without its typical
drawbacks. Instead, the breaking of a discrete symmetry leads to domain walls, which
can influence early structure formation and the cosmic microwave background. However,
these effects are negligible if the symmetry is broken after the cosmological inflation is
complete [88].
The FN mechanism is utilized in all models of this thesis, realized in most cases by a
discrete ZN symmetry. We do not consider anomaly cancellation in the U (1)-based
models knowing that the issue can be avoided by using a cyclic symmetry instead.
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Figure 2.2: Cyclic graphs of ZN symmetries compared to continuous U(1) symmetry.
The graphs become approximately circular for large N .

2.1.3 Cyclic Groups ZN

Cyclic groups are abelian groups, where each group element can be generated by powers
of a single element g

〈g〉 =
{
g0, g1, . . . , gN−1

}
, (2.9)

and gN = g0 for a group of order N . All subgroups of cyclic groups themselves are
cyclic.
The ZN symmetry can be visualized as an n-sided polygon, where each vertex denotes one
of the N complex roots of unity that comprise the elements of the ZN group. Therefore,
with increasing number of N , the cyclic groups become approximately continuous (cf.
Fig. 2.2), which makes them a convenient model building tool to replace a U(1) FN
symmetry.
Cyclic symmetries find use in many fields of BSM physics, e.g., Z2 symmetries are
commonly used to stabilize dark matter particles, and R-parity, preventing rapid proton
decay in supersymmetric models, is also essentially a Z2 symmetry.

2.1.4 Symmetric and Alternating Groups SN and AN

Nonabelian family symmetries had their breakthrough with the experimental discovery
of neutrino oscillations [16, 17] and the measurements of the large parameters in the
PMNS matrix. Until 2013, when the remaining mixing angle θ13 was measured [9–11],
θ12 and θ23 were in excellent agreement with TBM mixing, corresponding to θ12 = 33◦,
θ23 = 45◦, and θ13 = 0, cf. Eq. (1.17). First proposed in Ref. [12], this structure
could be explained exceptionally well using the discrete family symmetries A4 and
S4. Pioneering works like Refs. [89, 90] led the way for model building with discrete
symmetries. Even though the TBM mixing pattern has been ruled out by θ13 6= 0, the
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groups A4 and S4 are still popular choices today, not only to explain the large PMNS
mixing angles, but also to shed light on SM anomalies such as h→ µτ or RD [91, 92].
With respect to neutrino masses and mixings, a typical ansatz is to start from symmetries
that predict TBM, “golden ratio” [93] or “bimaximal” [94] mixing, and to explain the
data by the subsequent breaking of the symmetries. The small corrections of the mixing
angles are hence linked to the symmetry breaking parameters, forming stronger ties
between group theory and phenomenology. In all cases, making sense of the flavor
puzzle usually requires intricate models with complex breaking patterns that may seem
arbitrary and unappealing. The fact that the origin of the masses and mixings cannot
be explained in a simple way has caused authors to consider also anarchic neutrino
mixing and anthropic solutions, see, e.g., Refs. [95, 96].
In this thesis, the symmetric and alternating groups SN and AN are prime tools to
address some of the reported SM anomalies. Therefore, their basic properties and
differences are outlined in the following subsections.

Symmetric Group S3

The symmetric group S3 consists of all possible permutations of three objects and is
represented geometrically by an equilateral triangle, as shown in Fig. 2.3. The order of
SN groups is N !, i.e., six in the case of S3. Since the smallest symmetric group S1, with
only one element, is trivial, and the group S2 is equivalent to the cyclic group Z2, S3 is
among the most studied groups in the literature as the smallest nonabelian symmetric
group. See, e.g., Refs. [97–105] for fermion mixing models in the context of S3 since the
measurement of θ13. The elements of S3 can be denoted as

(xi,xj ,xk) , (2.10)

which is short for the permutation

(x1,x2,x3)→ (xi,xj ,xk) , (2.11)

with i, j, k ∈ [1, 2, 3] and i 6= j 6= k. Explicitly, the six elements of S3 are

e : (x1,x2,x3) , a3 : (x1,x3,x2) ,
a1 : (x2,x1,x3) , a4 : (x3,x1,x2) ,
a2 : (x3,x2,x1) , a5 : (x2,x3,x1) ,

(2.12)

which can be expressed entirely in terms of a1 = a and a2 = b

{e, a, b, ab, ba, bab} (2.13)

since a1a2 = a5, a2a1 = a4, and a3 = a2a1a2. They form the three conjugacy classes

C1 : {e} , C2 : {ab, ba} , C3 : {a, b, bab} . (2.14)

Consequently, the group consists of the three irreducible representations 1, 1′, and 2. A
proof can be found in the literature [83].
In models with discrete symmetries, the particle content is assigned to the fundamental
representations of the group. In order to construct a Lagrangian invariant under this
symmetry, the representations are contracted with tensor products. Denoting the basis



2.1 discrete and continuous symmetries 33

Figure 2.3: Geometrical representations of the nonabelian symmetries S3, S4, and A4,
respectively. The red lines denote rotation axes of the symmetry transformations.

vectors for two S3 doublets as (x1,x2)
T and (y1, y2)

T and y′ a nontrivial S3 singlet, the
S3 multiplication rules are [83]:

(
x1
x2

)
2
⊗
(
y1
y2

)
2
=

(
x2y2 − x1y1
x1y2 + x2y1

)
2
⊕ (x1y1 + x2y2)1 ⊕ (x1y2 − x2y1)1′ ,(

x1
x2

)
2
⊗ (y′)1′ =

(
−x2y

′

x1y
′

)
2

, (x′)1′ ⊗ (y′)1′ = (x′y′)1 ,
(2.15)

or in short

2⊗ 2 = 1⊕ 1′ ⊕ 2 , 2⊗ 1′ = 2 , 1′ ⊗ 1′ = 1 . (2.16)

The multiplication rules [Eq. (2.16)] are basis independent, i.e., the physics do not
change under unitary transformations of the form U †D(g)U , where g is any element
of the group. However, the components of the representations in Eq. (2.15) may be
written in a different way depending on the choice of basis.

Symmetric Group S4

The S4 group is appealing for being the smallest symmetric group with a fundamental
triplet representation. The S4 symmetry and the TBM mixing scheme are strongly
intertwined, which has been shown with purely group theoretical arguments [106–108]
as well as in explicit flavor models [109–111]. This makes the S4 group a popular tool
in model building with leptons.
Geometrically, the S4 symmetry is represented by a cube as depicted in Fig. 2.3.
The 24 group elements form five conjugacy classes, resulting in the five irreducible
representations 1, 1′, 2, 3, and 3′. The S4 multiplication rules can be found in App.
B.1.
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Alternating Group A4

The alternating groups AN are obtained by taking only the even permutations of the
symmetric groups SN . Alternating groups, therefore, consist of N !/2 elements. As an
example, the group A3 is composed of the three even permutations of S3

e : (x1,x2,x3) , a4 : (x3,x1,x2) , a5 : (x2,x3,x1) . (2.17)

Since (a4,5)2 = a5,4 and (a4,5)3 = e, the group is isomorphic to the cyclic group Z3.
Consequently, the smallest alternating group considered in the literature is A4 with
4!/2 = 12 elements, corresponding to the symmetry of a tetrahedron shown in Fig. 2.3.
The 12 elements are classified in four conjugacy classes, resulting in the four irreducible
representations 1, 1′, 1′′, and 3. The fact that the A4 group has one triplet and
three distinct singlet representations makes it particularly attractive for model-building
purposes, since those representations accommodate the three SM fermion families nicely.
See Refs. [112–115] for a selection of A4 models since the measurement of θ13.
The product rules for the A4 group used in the construction of the models in this thesis
are given in App. B.2.

2.2 extended higgs sectors

The family symmetries describing the fermion masses and mixings eventually have to
be broken by higher dimensional scalar representations. These comprise distinct fields
for each vector component in the symmetry space, implying that the scalar sector has
to be extended with respect to the SM. The scalars breaking the symmetry are typically
called ”flavons”. As such, they can be trivial or nontrivial SU(2)L multiplets.
The VEVs of SU(2)L singlet scalars preserve the SM symmetry, i.e., the flavor symmetry
is completely separated from the EW scale and can be broken at a much higher energy.
The exotic fields attributed to this symmetry breaking then acquire unobservably large
masses beyond the reach of current experimental searches.
Alternatively, SU(2)L doublet flavons simultaneously break the flavor and the EW
symmetry resulting in at least one or more Higgs copies at the EW scale. Such models
are usually referred to as multi-Higgs models (NHDMs), where N denotes the number
of scalar SU(2)L doublets in the theory. The additional light messengers entailed by
the low breaking scale induce dangerous FCNCs that are a typical feature of NHDMs.
Therefore, by relating the flavor symmetry to the EW scale, these models are subject
to tight constraints but in turn become more predictive. This is helpful to distinguish
and consequently rule out the plethora of models on the market through experimental
searches.
Extending the SM field content with just one extra Higgs doublet is appealing not just
for its simplicity; among the many motivations to study 2HDMs, the most compelling
one is supersymmetry, which makes the 2HDM one of the most studied extensions of the
SM. A second Higgs doublet must be present in all supersymmetric theories to cancel
the gauge anomalies induced by its fermionic superpartner.
On the other hand, 3HDMs often appear in combination with discrete symmetries that
accommodate the three fermion families in triplet representations. Symmetries such as
A4 and S4 have been particularly successful in describing the lepton phenomenology,
thereby motivating multiple Higgs doublets from a bottom-up perspective.
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For these reasons, NHDMs are utilized in this thesis towards their potential to explain
some of the recent SM anomalies, e.g., the 2.4σ excess in h→ µτ decays observed by
CMS [70].
The general properties of NHDMs, of which most are easiest described in terms of
2HDMs, are discussed in Sec. 2.2.1. The overview concludes with 3HDM-specific details
in Sec. 2.2.2. A comprehensive review on 2HDMs can also be found in Ref. [116].

2.2.1 2HDMs

In the presence of two scalar fields, the fermion mass matrices generally receive con-
tributions from two Higgs bosons, which cannot be simultaneously diagonalized. As a
consequence, NHDMs typically have tree-level FCNCs unless prevented by an additional
mechanism. One possibility is to couple each fermion to only one of the Higgs bosons,
which can for instance be achieved by applying a discrete symmetry. Such frameworks
are referred to as Yukawa alignment models or models with natural flavor conservation
and belong to the class of flavor-conserving NHDMs [117,118].
2HDMs in particular are usually classified according to their fermion-Higgs couplings
into types I – III, where I and II conserve and III violates flavor. In type I, the fermions
acquire their masses from only one of the scalars, while in type II, one scalar is responsible
for up-type and the other for down-type quark masses. As it is closely related to the
minimal supersymmetric SM, type II is the most studied type of 2HDM. For the sake
of brevity, the flavor-conserving variations called “flipped” and “lepton-specific” [116]
are omitted in this review.
From a model building perspective, type I and type II are implemented easily by
imposing a discrete Z2 symmetry: To obtain a type I model, one of the scalars has to
be odd under a Z2 transformation, preventing interactions of the scalar with all other
SM particles; Type II on the other hand is implemented by charging one scalar and the
down-type quarks under this symmetry. An overview of the three standard types of
2HDMs is shown in Tab. 2.1, where the fermion-Higgs couplings can be inferred from
the Z2 charge assignments.

2HDM φ1 φ2 uR dR eR

I − + + + +

II − + + − −
III + + + + +

Table 2.1: Overview of the 2HDMs and the corresponding Z2 parities of the fields in
the first-generation notation. Conventionally, φ2 is chosen to couple to up-type quarks.

The models discussed in this thesis do not correspond to any of the classic types of
2HDMs as the couplings are dictated by intricate symmetries and hence do not follow
the simplified classifications. Since the models generally allow for FCNCs, they resemble
to some extent the type III 2HDM with modified fermion and gauge boson couplings.
Flavor-violating models face stringent constraints from meson oscillations as well as
rare meson decays. The best-measured channels typically involve kaon decays, which
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are induced by d→ s quark transitions. In the lepton sector the strongest limits come
from searches of µ→ eγ. For more details see Sec. 1.2.3.
In this thesis we do not concern ourselves with the effects of additional sources of CP
violation. Therefore, only CP-conserving models are considered to simplify the large
parameter space of extended Higgs sectors. The scalar potential of a CP-conserving
2HDM is given by [116]

V (φ1,φ2) = µ2
1φ
†
1φ1 + µ2

2φ
†
2φ2 − µ2

12(φ
†
1φ2 + φ†2φ1) +

λ1
2 (φ†1φ1)

2 +
λ2
2 (φ†2φ2)

2

+ λ3φ
†
1φ1φ

†
2φ2 + λ4φ

†
1φ2φ

†
2φ1 +

λ5
2
[
(φ†1φ2)

2 + (φ†2φ1)
2
]

,
(2.18)

where the couplings µi and λi are real parameters.
The two complex scalar doublets have eight degrees of freedom, which can be decomposed
as

φl =

(
ϕ+
l

1√
2 (vl + ρl + iηl)

)
, l = 1, 2 , (2.19)

where ϕ+
l denotes the complex charged scalar, and ρ and η are the CP-even and CP-odd

neutral scalars, respectively. The Higgs doublets acquire VEVs vl that define the mixing
angle β of the charged and CP-odd neutral scalars

tan β =
v2
v1

with vSM =
√
v2

1 + v2
2 . (2.20)

Three of the eight degrees of freedom are absorbed by the masses of the SM gauge
bosons W± and Z after the EW symmetry breaking. The remaining massive states
form two CP-even neutral scalars h and H, one CP-odd neutral scalar A, and a complex
charged scalar H±. Assuming that CP is conserved, the CP-even and CP-odd scalars
do not mix, resulting in 2× 2 dimensional mixing matrices with(

h

H

)
=

(
sinα − cosα
− cosα − sinα

)(
ρ1
ρ2

)
, (2.21)(

G0
A

)
=

(
cosβ sin β
sin β − cosβ

)(
η1
η2

)
, (2.22)(

G±

H±

)
=

(
cosβ sin β
sin β − cosβ

)(
ϕ±1
ϕ±2

)
, (2.23)

where the linear combinations G0 and G± correspond to the massless Goldstone bosons.
The angle α is defined by the mixing of the CP-even neutral scalar fields and can be
expressed as a function of their masses

tan 2α =
2m2

12
m2
ρ1 −m2

ρ2

, (2.24)

where m12 denotes the off-diagonal element of the CP-even neutral scalar mass matrix.
Because of the few free parameters in the scalar potential, the charged and pseudoscalar
mass eigenstates are related to each other and are given by

m2
A =

v2

v1v2

[
µ2

12 − 2λ5v1v2
]

,

m2
H+ = m2

A + (λ5 − λ4)v
2 .

(2.25)
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The CP-even scalar sector is slightly more complicated and, being model-dependent,
omitted for the sake of brevity.
For µ12 = λ5 = 0 the pseudoscalar A becomes massless, leading to a model with too
many Goldstone bosons. This is the case if the scalar potential preserves an additional
global U(1) due to the discrete symmetry [116]. A soft breaking of this symmetry in the
scalar sector is required to obtain a viable model. An example is discussed in Chapter
3.1.
Using the angles α and β to parametrize the fermion-Higgs interactions, the 2HDM
Yukawa couplings can be neatly expressed in terms of only two parameters in the
flavor-conserving cases. For the 2HDMs type I and II the couplings are summarized in
Tab. 2.2. In the literature, limits are typically presented as a function of tan β. However,
as indicated by Tab. 2.2, these bounds depend crucially on the fermion couplings with
widely differing results for each 2HDM.

2HDM yhu yhd yhl yHu yHd yHl yAu yAd yAl

I cα/sβ cα/sβ cα/sβ sα/sβ sα/sβ sα/sβ 1/tβ −1/tβ −1/tβ

II cα/sβ -sα/cβ -sα/cβ sα/sβ cα/cβ cα/cβ 1/tβ tβ tβ

Table 2.2: Diagonal Yukawa couplings in the 2HDMs type I and II normalized to the
corresponding SM couplings with sin ≡ s, cos ≡ c, and tan ≡ t. The light and heavy
CP-even neutral scalars are denoted by h and H, respectively, and A is the CP-odd
neutral scalar.

The Higgs-gauge boson interactions confine the Higgs parameter space the most since
they are well measured as opposed to the Yukawa couplings (compare Fig. 1.20). As
seen from

Lkin = |Dµφ1|2 + |Dµφ2|2 ⊃
1
2g

2WµW
µ(v1ρ

0
1 + v2ρ

0
2) , (2.26)

the scalar-gauge boson couplings relative to the SM Higgs depend only on the mass basis
transformation of the scalars. These transformations are independent of the fermion
sector, i.e., they are the same for all types of 2HDMs. For convenience, the couplings
can again be expressed in terms of the mixing angles α and β. Normalized to the
corresponding SM coupling, they read

ghWW = sin(β − α) , ghZZ = sin(β − α) ,
gHWW = cos(β − α) , gHZZ = cos(β − α) ,
gAWW = 0 , gAZZ = 0 .

(2.27)

Note that the pseudoscalars do not couple to SM gauge boson pairs, and hence are
not constrained by searches in these channels. Possible decay channels to look for
pseudoscalars include, e.g., H → ZA, and A → Zh, depending on the mass mA

compared to the other states.



38 model building

It is convenient to rotate into a basis in which one scalar doublet behaves exactly like
the SM doublet φ, while the other accounts for all the BSM effects due to the extended
scalar sector. This is the so-called Higgs basis(

H1
H2

)
=

1
vSM

(
v1 v2
−v2 v1

)(
φ1
φ2

)
, (2.28)

with

H1 =

(
G+

1√
2 (vSM + hSM +G0)

)
, H2 =

(
H+

2
1√
2
(
H0

2 +A2
) ) . (2.29)

A distinct feature of the Higgs basis is that only one of the doublets acquires a VEV,
which, consequently, is the only one giving masses to the fermions. Therefore, the H1
Yukawa couplings can be exactly diagonalized, leaving all potential FCNCs in the model
to H2. By denoting the SM Yukawa couplings Y u,d

ij and the new BSM couplings ηu,d
ij

the Yukawa Lagrangian can be written as

−Lyuk ⊃ QiLyuijH̃1ujR +QiLy
d
ijH1djR +QiLη

u
ijH̃2ujR +QiLη

d
ijH2djR

= muu′iLu
′
jR +mdd

′
iLd
′
jR + u′iLη̃

u
ijH

0∗
2 u′jR + d

′
iLη̃

d
ijH

0
2d
′
jR ,

(2.30)

with

V u,d
L

†
yu,dV u,d

R =
1
v
mu,d , and V u,d

L

†
ηu,dV u,d

R = η̃u,d . (2.31)

Using this basis, it is easy to verify that the off-diagonal Yukawa couplings can always
be rotated away if only one Higgs field is associated with one type of fermion.

2.2.2 3HDMs

The properties of 3HDMs are very similar to 2HDMs. However, because of the large
parameter space, the mass eigenstates and the mixing angles are difficult to determine
analytically without a mechanism to simplify the scalar potential. The models in
this thesis employ discrete nonabelian symmetries that allow for compact analytical
expressions to describe the scalar sector of the 3HDM. For example, the symmetries
A4,S4, and ∆(27)1 have a common set of terms, here denoted by V0

V0 =
3∑
i=1

[
−µ2

iφ
†
iφi + α(φ†iφi)

2
]
+

3∑
i,j=1

[
β(φ†iφi)(φ

†
jφj) + γ(φ†iφj)(φ

†
jφi)

]
, (2.32)

while the additionally allowed terms that distinguish the potentials are

VA4 = δ
3∑

i,j=1
(φ†iφj)

2 (i 6= j) , (2.33)

V∆(27) = δ
3∑

i 6=j 6=k
(φ†iφj)(φ

†
iφk) (i 6= j 6= k) . (2.34)

1 Note that the ∆(27)-symmetric 3HDM potential also extends to ∆(54) [119].
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The S4 potential can be obtained from VA4 by assuming δ to be real. Consequently,
the 3HDM potential can have even fewer parameters than the general 2HDM one [Eq.
(2.18)] by virtue of the flavor symmetries.
The additional Higgs doublet adds four degrees of freedom to the scalar sector compared
to the 2HDM, implying that after EW symmetry breaking a total of nine states become
massive. However, discrete symmetries with certain vacuum alignments can further
reduce the huge parameter space of 3HDMs by predicting specific relations between the
masses of the scalars. These alignments ensure that the chosen VEVs correspond to an
actual global minimum of the 3HDM potential, which have been determined by means
of geometric minimization for A4,S4, and ∆(27) [120] and are

v(0, 0, 1) , v(1, 1, 1) , v(eiπ/3, e−iπ/3,±1) , v(1, i, 0) , (2.35)

and permutations thereof.
Once the scalar fields acquire VEVs in one of these alignments, they will either preserve
a remnant (or residual) subgroup of the flavor symmetry, or break it entirely. In
the case of A4,S4, and ∆(27), the CP conserving alignments v(0, 0, 1) and v(1, 1, 1)
break the symmetry down to a residual Z2 and Z3 subgroup, respectively [119]. These
leftover symmetries can be utilized to predict fermion masses and mixings or to suppress
unwanted FCNCs. For example, the Majorana neutrino mass matrix respects the Klein
symmetry Z2 ×Z2 [121], suggesting that the flavor symmetry should be broken in the
neutrino sector by the VEV alignment v(0, 0, 1). On the other hand, a remnant Z3
symmetry in the charged lepton sector can preserve flavor on a renormalizable level,
known as lepton flavor triality (LFT) [122]. This triality is exploited to explain the
h→ µτ anomaly in an S4 symmetric 3HDM discussed in Sec. 4.1.
Reproducing the large PMNS mixing angles requires a mismatch between the symmetries
of the charged leptons and the neutrinos, implying that these leptons are associated with
distinctly aligned flavons. Consequently, any symmetry solution to the flavor problem
demands a multitude of new particles and cannot be simple. Extending the framework
possibly even to quarks with a reasonable amount of additional field content becomes a
highly involved endeavor to balance elegance and predictivity.
It is again useful to change into the Higgs basis, where only one of the doublets acquires
a VEV. Explicitly, the Higgs basis doublets take the form

H1 =

(
G+

1√
2 (vSM + hSM +G0)

)
, H2,3 =

(
H+

2,3
1√
2

(
H0

2,3 + iA2,3
) ) . (2.36)

In this basis only H1 generates fermion masses ∝ yu,d
ij v which can be diagonalized to

yield the SM fermion masses. The H2 and H3 couplings ηu,d
ij and ξu,d

ij , respectively, are
then in general nondiagonal matrices inducing FCNCs. Interestingly, the Goldstone
bosons G+ and G0 are already gathered in the doublet H1, hence only one more 2D
rotation is required to obtain the charged scalar and pseudoscalar mass eigenstates from
H+

2,3 and A2,3.
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Let u = (v1, v2, v3)T and w = (v, 0, 0)T , then the Higgs basis transformation rotating u
into w corresponds to a 2D rotation around the normal u×w. This orthogonal matrix
(v2

23 ≡ v2
2 + v2

3)

Rv1v2v3 =
1

v2
23v

 v1v
2
23 v2v

2
23 v3v

2
23

−v2v
2
23 v1v

2
2 + v2

3v v2v3(v− v1)

−v3v
2
23 v2v3(v− v1) v1v

2
3 + v2

2v

 (2.37)

depends only on the VEVs v1,2,3 and is therefore valid in any 3HDM without specifying
the potential. The typical VEV alignments favored by flavor symmetries v(0, 0, 1) and
v(1, 1, 1) result in the rotation matrices Rv00 = I and

Rvvv =
1√
3

 1 1 1
−1 1

2 (1 +
√

3) 1
2 (1−

√
3)

−1 1
2 (1−

√
3) 1

2 (1 +
√

3)

 . (2.38)

The Higgs basis notation is particularly useful for charged scalar interactions, which are
completely determined by the matrices η and ξ. This feature is exploited in Sec. 4.2 to
study the RD(∗) anomaly in the 3HDM.

2.3 unification

Besides aesthetic reasons, the main purpose of unification is to find a single framework
describing the SM gauge groups and the fermion interactions. So-called grand unified
theories (GUTs) proclaim the SM symmetries as remnants of one larger gauge group
and thereby motivate their common origin. This section deals with advances in GUTs,
outlining some viable candidates and their shortcomings in Sec. 2.3.1.
The unification of quark and lepton interactions in particular is phenomenologically
interesting. Leptoquarks can mediate B- and L-violating processes that are relevant also
at low energies and, if found, could shed light on some of the unresolved SM anomalies.
Sec. 2.3.2 focuses on the implications of leptoquarks and how they can emerge from
GUTs.

2.3.1 Grand Unified Theories

The idea of GUTs is to unify the three distinct gauge interactions of the SM into a
single force arising from one larger gauge group. The three, seemingly uncorrelated
couplings of the SM hence emerge in the breaking of this larger gauge symmetry from
one unified coupling constant. Ideally, the SM couplings converge in a single point
thereby defining this unification scale. The running depends not only on the considered
gauge group, but also on the additional particles affecting the evolution of the gauge
couplings. While specific statements are strongly model-dependent, the running of the
SM gauge couplings generally suggests that the scale of unification lies shortly below
the Planck scale around MGUT & 1015 GeV [123], implying that the expected NP is way
beyond the reach of current or next-generation experiments. Implications of GUTs are
therefore testable mostly indirectly, e.g., through their predictions for the half-life of
the proton.
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By uniting the SM fields in common multiplets GUTs also unify matter interactions
and explain the peculiar assignments of fermions to the representations of the SM
symmetries. Finally, they shed light on the quantized nature of the electric charge, and
why the charges of the electron and the proton cancel each other to a high precision.
Embedding the SM symmetries into a larger, unified framework fixes the arbitrary
choice of the U(1)Y hypercharge to allow only for discrete electric charges that are
exact multiples of 1/3. Indeed, explaining the electric charge quantization was one of
the main motivations to construct the SU(5) GUT [124].
Common issues of GUTs lie in their specific predictions for gauge and Yukawa unification.
The unification of quark and lepton interactions allows for B and L violating mediators
that can shorten the lifetime of the proton, which is measured by experiments to be
longer than the age of our current universe. Furthermore, the most appealing candidates
such as the SU(5) fall short of unifying the gauge couplings in their most minimal,
nonsupersymmetric versions, as will be explained below.
As it stands, unified theories fail to simplify the rather intricate SM, which is why
there is no generally accepted GUT model. In the following the most popular GUT
groups, the SU(5) and the SO(10), are reviewed with respect to their features and
shortcomings.

SU(5)

The SU(5) GUT was first proposed by Georgi and Glashow in 1974 with the intent
to unify the SM gauge groups and their associated gauge couplings [124]. The SU(5)
symmetry is a very appealing candidate since it is the simplest group to include the SM
symmetries as a maximal subgroup. All known SM particles fit nicely into three copies
of the smallest fundamental representations of SU(5) with the correct observed electric
charges

5F =


dc1
dc2
dc3
e−

−ν

 , 10F =


0 uc3 −uc2 u1 d1
−uc3 0 uc1 u2 d2
uc2 −uc1 0 u3 d3
−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0

 . (2.39)

The condition of gauge coupling unification [125]

αGUT =
5
3αY = αW = αS (2.40)

leads to the model-independent prediction for the Weinberg mixing angle at the unifica-
tion scale

sin2 θW(ΛGUT) =
3
8 . (2.41)

Taking into account the renormalization group running between the EW and the GUT
scale, this value can be compared with the very precise measurement at the MZ scale [6]

sin2 θW(MZ) = 0.23126(5) (2.42)
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as opposed to sin2 θW(MZ) ∼ 0.20 expected by the minimal SU(5) GUT framework [125].
The deviation suggests that, if SU(5) is indeed realized in nature, additional particle
content is needed to modify the running of the couplings. Also supersymmetric extensions
are known to solve the problem [126].
The minimal Higgs sector of an SU(5) GUT includes a 5H containing the SM Higgs
doublet and the adjoint 24H inducing the SU(5) breaking

SU(5) 〈24H〉−−−−→ SU(3)C ⊗ SU(2)L ⊗U (1)Y
with 〈24H〉 =

v√
15

diag (2, 2, 2,−3,−3) .
(2.43)

The Yukawa Lagrangian then comprises only two fundamental interactions

−LY = 5FY510F5∗H +
1
8ε510FY1010F5H , (2.44)

reducing the number of Yukawa matrices from three to two compared to the SM.
This results in simple relations between the Yukawa interactions, referred to as the
Georgi-Jarlskog mass relations [127]

mb ∼ mτ , 3ms ∼ mµ , md ∼ 3me , (2.45)

which have to be fulfilled at the GUT scale. The Yukawa couplings are subject to
renormalization group running and therefore have to be evolved down to the EW scale
to be compared with experimental data. As it turns out, the above relations are far
from satisfied [123], e.g.,(

mb

mτ

)
SU(5)

∼ 0.8 ,
(
mb

mτ

)
exp
∼ 2.5 . (2.46)

This simple prediction excludes the minimal SU(5) as a valid candidate to unify the
gauge interactions.
One either has to resort to nonrenormalizable operators or to an extended Higgs sector
in order to relax the constraints from Yukawa unification. A common solution is to
complement the 5H representation with an additional 45H multiplet that allows to tune
the predicted fermion mass relations. To make a relevant contribution to the fermion
mass matrices, some of the states in the 5H and 45H multiplet must be relatively light,
while others are required to be heavy to avoid rapid proton decay. The implied fine-
tuning is an issue of most GUTs. Once the SU(5) is broken, the 5H Higgs representation
is decomposed into an SU(3)C triplet T and the SM Higgs SU(2) doublet H. The
masses of T and H should naturally be of the same order of magnitude since they
are part of the same multiplet. The T scalar, however, leads to proton decay due to
dimension six diquark operators of the form

LTd=6 = − 1
2m2

T

(qY10q)(lY5q)−
1
m2
T

(dcY5u
c)(ecY10u

c) + h.c. (2.47)

A typical SU(5) proton decay mode is p→ e+π0, which due to dimension six operators
has the expected partial half-life [128]

τp ∼
M4
X

α2
GUTm

2
p

= 1029 yr , (2.48)
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with MX ∼ 1014 GeV, where MX is the mass of the decay-inducing particle, and
mp is the proton mass. For comparison, Super-Kamiokande sets the lower bound
τp > 1.67× 1034 yr on the partial half-life of the proton in this channel [129], which
entails even larger values of MX . The fine-tuning required to explain the large mass
difference of T and H is referred to as the doublet-triplet splitting problem.
In conclusion, fixing the fermion mass ratios requires a plethora of new scalar fields
with a specific mass hierarchy that makes an SU(5) GUT less appealing. An upside of
the extended scalar sector is, however, that the many additional states can contribute
favorably to the running of the gauge couplings and thereby solve also the gauge
unification problem.
Alternatively, the issues of matter unification can be addressed with nonrenormalizable
operators, first proposed in [130]. The existence of higher-dimensional operators implies
that the theory is not complete and another breaking takes place somewhere between
ΛGUT and ΛPlanck ∼ 1019 GeV. The additional terms in the Yukawa Lagrangian modify
the predictions for the fermion mass ratios but do not affect the running of the parameters.
Realistic GUT models typically employ a combination of nonrenormalizable operators
and an extended particle content to address all the problems of the minimal SU(5)
GUT. An example is presented in Sec. 3.2. See also Refs. [131–135] for a selection of
GUT flavor models.
Finally, the SU(5) framework does not naturally provide right-handed neutrinos, hence
neutrino masses and mixings cannot originate from an SU(5) breaking. Another scale
beyond the GUT scale is needed to realize the Weinberg operator for neutrinos with a
seesaw mechanism.2

SO(10)

The SO(10) as a GUT was found independently by Fritzsch, Minkowski [138], and
Georgi [139]. An enticing feature of SO(10) is that all fermionic matter of the SM
is contained in the fundamental representation 16, reducing the number of Yukawa
matrices from three to a single matrix that describes all interactions. An SO(10) GUT
can be broken in various ways, yielding many possibilities to accommodate the SM
particles, including [140]

SO(10) 〈45〉,〈16〉−−−−−−→ SU(5) (standard SU(5))
SO(10) 〈45〉,〈16〉−−−−−−→ SU(5)⊗U (1)X (flipped SU(5))
SO(10) 〈54〉,〈16〉−−−−−−→ SU(4)⊗ SU(2)L ⊗ SU(2)R (Pati-Salam)

SO(10) 〈54〉,〈45〉,〈16〉−−−−−−−−−→ SU(3)C ⊗ SU(2)L ⊗U(1)Y (SM)

(2.49)

Aside from SU(5), an important subgroup of SO(10) is the SU(4)C ⊗ SU(2)L ⊗ SU(2)R
Pati-Salam group, where leptons and quarks are accommodated in the same multiplets.
The Pati-Salam framework has been studied extensively because of its potentially low
breaking scale, making it a viable candidate for leptoquark UV completions, see, e.g.,
Refs. [141–144].

2 A viable alternative is the “flipped” SU(5) [136], where νc and ec as well as uc and dc switch places
in the 5- and 10-plets. See, e.g., Ref. [137] for a realization of neutrino masses in the flipped SU(5)
framework.
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However, the appeal of the SO(10) GUT to provide only one Yukawa interaction
∼ 16F16F10H is also its drawback: the SM fermion mass relations cannot be accom-
modated at all without introducing a scalar 126H multiplet to modify them [145].
Consequently the SO(10) Higgs sector is even bigger than the SU(5) one. On the
positive side, the 126 generates naturally-small Majorana mass terms for the neutrinos
included in the 16-plet by virtue of a seesaw mechanism [146].

2.3.2 Leptoquarks

The so-called leptoquarks are typical byproducts of theories with unified Yukawa
interactions mediating transitions between quarks and leptons. They can appear as
spin-0 or spin-1 messengers, referred to as scalar or vector type, respectively. Scalar
leptoquarks arise as a consequence of an extended Higgs sector, while vector leptoquarks
correspond to the vector bosons of a broken gauge theory. In both cases, leptoquark
interactions can affect a variety of low energy and high energy processes, giving rise to
tightly constrained rare decays (cf. Sec. 1.2.3). If the leptoquark interactions are also
L- and B-violating, they can even induce rapid proton and 0νββ decays, both so far
unobserved.
Despite the constraints, leptoquarks could be the missing puzzle piece to resolve the
many anomalies in the flavor sector. To this end, two GUT frameworks are outlined in
this section which contain leptoquarks that can modify the anomalous flavor observables.
It is plausible that these leptoquarks are also responsible for neutrino masses. Two
specific model realizations exploring this idea are presented in Chapter 4.3.
A complete list of scalar and vector leptoquarks that can interact with the SM fermions
is given in Tab. 2.3. The corresponding interactions are [147]

−LSQL = λRS0
ucPReS

†
0 + λR

S̃0
dcPReS̃

†
0 + λRS1/2

uPLlS
†
1/2 + λR

S̃1/2
dPLlS̃

†
1/2

+ λLS0
qcPLiσ2lS

†
0 + λLS1/2

qPRiσ2eS
†
1/2 + λLS1

qcPLiσ2Ŝ
†
1l+ h.c. ,

−LVQL = λRV0
dγµPReV

†
0µ + λR

Ṽ0
uγµPReṼ

†
0µ + λRV1/2

dcγµPLlV
†

1/2µ
+ λR

Ṽ1/2
ucγµPLlṼ

†
1/2µ + λLV0

qγµPLlV
†

0µ

+ λLV1/2
qcγµPReV

†
1/2µ + λLV1

qγµPLV̂
†

1µl+ h.c. ,

(2.50)

where PL and PR denote the projection operators and σ2 is the Pauli matrix. The
leptoquark couplings λL,R

LQ are understood as 3× 3 matrices in the quark-lepton space.
The leptoquarks are typically assumed to couple exclusively to left-handed or right-
handed quarks as they otherwise affect the well-measured ratio B(π → eν)/B(π → µν)

[148]. Such leptoquarks are referred to as chiral.
Furthermore, leptoquarks are also often assumed to couple to only one generation of
fermions to avoid rare decays like KL → µe. Leptoquarks with generation-diagonal
couplings are appropriately labeled first, second, and third generation leptoquarks. We
will specifically allow cross-generation interactions in this thesis to explain the recently
reported flavor anomalies. Adopting this assumption imposes stringent constraints on
our model parameters, which are discussed in detail in Sec. 4.3.2.
Direct collider searches usually consider only leptoquarks with generation-diagonal
couplings. The latest results exclude first generation leptoquark masses below 1 TeV at
95% C.L. [149], which is often adopted as a conservative lower limit in model building
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with leptoquarks. A comprehensive collection of leptoquark interactions with their
respective bounds is given in Ref. [150].

Leptoquark (SU(3)C ,SU(2)L)U(1)Y QEM B L

S0 (3, 1)−1/3 −1/3 1/3 1
S̃0 (3, 1)−4/3 −4/3 1/3 1
S1/2 (3, 2)−7/6 (−2/3,−5/3) −1/3 1
S̃1/2 (3, 2)−1/6 (1/3,−2/3) −1/3 1
S1 (3, 3)−1/3 (2/3,−1/3,−4/3) 1/3 1

V0 (3, 1)−2/3 −2/3 −1/3 1
Ṽ0 (3, 1)−5/3 −5/3 −1/3 1
V1/2 (3, 2)−5/6 (−1/3,−4/3) 1/3 1
Ṽ1/2 (3, 2)1/6 (2/3,−1/3) 1/3 1
V1 (3, 3)−2/3 (1/3,−2/3,−5/3) −1/3 1

Table 2.3: Possible scalar and vector leptoquarks and their SM quantum numbers.

Leptoquarks in Pati-Salam Models

The simplest framework to unify quarks and leptons is provided by the SU(4)C Pati-
Salam gauge theory [151], in which the SM fermions of each generation are accommodated
in the same multiplets with leptons as the “fourth color”.3 The gauge group of Pati-Salam
models is extended and broken in two steps [152]

SU(4)C ⊗SU(2)L ⊗ SU(2)R
↓

SU(3)C ⊗SU(2)L ⊗U(1)Y (2.51)
↓

SU(3)C ⊗U(1)EM ,

while the SM fields are usually accommodated in the following representations under
(SU(4)C ,SU(2)L,SU(2)R):

fL = (4, 2, 1)L =

(
ur ug ub ν

dr dg db e

)
L

,

fR = (4, 1, 2)R =

(
ucr ucg ucb νc

dcr dcg dcb ec

)
R

.
(2.52)

However, variations of these assignments are possible, which require different scalar
representations to generate the fermion masses and initiate the breaking. For the

3 The fourth color is often called lilac to resemble the ”l” of leptons.
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purpose of this thesis we discuss only the general aspects of Pati-Salam models with
respect to leptoquark interactions.
A few comments are in order to clarify the breaking chain in Eq. (2.51):

1. Pati-Salam models achieve only partial unification as they do not attempt to
unify the gauge couplings, which usually pushes the breaking scale to around
MGUT ∼ 1015 GeV or higher. Without this constraint, the breaking scale can
be as low as a few TeV allowing Pati-Salam models to be tested at current or
next-generation experiments. The scale is then constrained only by low-energy
experiments and Yukawa unification. The latter predicts yτ ∼ yb at the unification
scale, which is consistent with the measured values at the MZ scale thanks to
renormalization group running if the gauge group is broken at a few TeV [142].

2. The SU(4)C alone breaks into SU(3)C ⊗ U(1)B−L. The SM U (1)Y is hence a
combination of the U (1)B−L and the broken SU(2)R [152]. A direct consequence
of the unbroken U(1)B−L subgroup is that the SU(4)C leptoquarks do not violate
B −L, i.e., they do not induce proton decay. This statement, however, does not
hold for scalar leptoquarks, which emerge from the scalar representations and are
unconstrained by the B −L symmetry.

The Pati-Salam framework is a possible UV completion of leptoquark models, providing
low-scale vector leptoquarks corresponding to the SU(4)C gauge bosons, see Refs.
[141–144] for a selection of models. The fifteen generators λa (a = 1 . . . 15) of SU(4)C
split into eight generators of SU(3)C , one messenger corresponding to U(1)B−L, and
six new states mediating quark and lepton transitions that preserve SU(3)C ⊗U (1)B−L

Aµ =
15∑
a=1

Aaµ
λa

2 ∼


SU(3)C

SU(3)C ⊗
U(1)B−L

SU(3)C ⊗U(1)B−L U(1)B−L

 . (2.53)

Since the SU(4)C symmetry is broken separately from SU(2)L, the exotic gauge bosons
appear as (3, 1)2/3 under the SM symmetries SU(3)C ⊗SU(2)L⊗U (1)Y , corresponding
to the vector leptoquark V0. A flavor model based on this leptoquark is presented in
Sec. 4.3.2.
The scalar leptoquarks reside in the multiplets that form invariants with the mat-
ter representations. These can be derived from the products (4, 2, 1)L ⊗ (4, 1, 2)R,
(4, 2, 1)L⊗ (4, 2, 1)L and (4, 1, 2)R⊗ (4, 1, 2)R. In Young-tableau notation the SU(4)C
product yields

4⊗ 4 = ⊗ = 1⊕ 15 . (2.54)
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The 15-plet can contain leptoquarks and decomposes under SU(3)C as

→

1 4
2
3︸ ︷︷ ︸

1

⊕

1 4
2
4 ,

1 4
3
4 ,

2 4
3
4︸ ︷︷ ︸

3

⊕

1 1
2
3 ,

1 2
2
3 ,

1 3
2
3︸ ︷︷ ︸

3

⊕

1 1
2
4 ,

1 1
3
4 ,

1 2
2
4 ,

1 2
3
4 ,

1 3
3
4 ,

2 2
3
4 ,

2 3
3
4 ,

3 3
3
4︸ ︷︷ ︸

8

,

(2.55)

i.e.,

15→ 1⊕ 3⊕ 3⊕ 8 . (2.56)

Since the SU(4)C symmetry is first broken down to SU(3)C ⊗U(1)B−L, the resulting
hypercharge Y is given by a linear combination of the U(1)B−L and SU(2)R charges [152]

Y =
1
2 (B −L) + I3R . (2.57)

SU(2)R singlets have I3R = 0, while doublets decompose into the states 1
2 ⊕−

1
2 .

Putting all the pieces together, the (SU(4)C ,SU(2)L,SU(2)R) representations (15, 2, 2),
(15, 1, 1), and (15, 3, 1) split into the following (SU(3)C ,SU(2)L)U(1)Y fields:

(15, 2, 2)→ (1, 2)±1/2 ⊕ (3, 2)1/6︸ ︷︷ ︸
S̃†1/2

⊕ (3, 2)7/6︸ ︷︷ ︸
S†1/2

⊕ (8, 2)±1/2 ⊕ (3, 2)−1/6︸ ︷︷ ︸
S̃1/2

⊕ (3, 2)−7/6︸ ︷︷ ︸
S1/2

,

(15, 1, 1)→ (1, 1)0 ⊕ (3, 1)1/3︸ ︷︷ ︸
S†0

⊕ (3, 1)−1/3︸ ︷︷ ︸
S0

⊕(8, 1)0 ,

(15, 3, 1)→ (1, 3)0 ⊕ (3, 3)1/3︸ ︷︷ ︸
S†1

⊕ (3, 3)−1/3︸ ︷︷ ︸
S1

⊕(8, 3)0 .

(2.58)

The (15, 2, 2) representation not only provides the leptoquarks S1/2 and S̃1/2 but also
gives masses to the SM fermions through the Higgs residing in its (1, 2)1/2 component. It
is therefore a common ingredient of Pati-Salam models. All remaining scalar leptoquarks
except S̃0 can be obtained from the SU(2)L singlet and triplet versions of the 15-plet.

Leptoquarks in SU(5) Grand Unified Theories

The requirements of gauge unification and proton stability typically entail a very high
breaking scale that would render all messenger particles unobservable. However, if
this condition is dropped, the SU(5) symmetry can be broken at a lower scale with
a mechanism that prevents rapid proton decay. The question of gauge unification is
then postponed until SU(5) emerges from another symmetry, e.g., in the breaking of
SO(10).
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When SU(5) is broken to its maximal subgroup SU(3)C ⊗SU(2)L⊗U(1)Y , the twenty-
four generators are divided into eight generators corresponding to the gluons of SU(3)C ,
the four EW SU(2)L ⊗ U(1)Y gauge bosons, and twelve additional mediators with
mixed SU(3)C ⊗ SU(2)L quantum numbers [124]

Aµ =
24∑
a=1

Aaµ
λa

2 ∼


SU(3)C

SU(3)C ⊗
SU(2)L

SU(3)C ⊗ SU(2)L SU(2)L

 . (2.59)

Specifically, the adjoint representation splits up into

24→ (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)−5/6 + (3, 2)5/6 , (2.60)

where the exotic gauge bosons (3, 2)−5/6 can be identified as the vector leptoquarks
V1/2. On the other hand, the flipped SU(5) is paired with an additional U(1)X , which
modifies the hypercharge of the exotic SU(5) gauge bosons. In this case the adjoint
representation 24 decomposes into [136]

24→ (8, 1)0 + (1, 3)0 + (1, 1)0 + (3, 2)1/6 + (3, 2)−1/6 (2.61)

yielding the (3, 2)1/6 vector leptoquarks Ṽ1/2.
To avoid rapid proton decay, leptoquark and diquark operators induced by the (3, 2)−5/6
and (3, 2)1/6 states must not be present at the same time, requiring an underlying
quantum number similar to R-parity to forbid one or the other interaction.
Scalar leptoquarks emerge in SU(5) models that rely on extended Higgs sectors to
address problems such as Yukawa unification and the proton decay. Since the quarks
and charged leptons are accommodated in the fundamental representations 10 and 5 of
SU(5), the leptoquark states should be found in the tensor products [153]

10⊗ 10 = 5⊕ 45⊕ 50 ,
10⊗ 5 = 5⊕ 45 ,
5⊗ 5 = 10⊕ 15 .

(2.62)

The resulting multiplets decompose under (SU(3)C ,SU(2)L)U(1)Y into [153]

5 = (1, 2)1/2 ⊕ (3, 1)−1/3︸ ︷︷ ︸
S0

,

10 = (1, 1)1 ⊕ (3, 1)−2/3︸ ︷︷ ︸
Ŝ0

⊕ (3, 2)1/6︸ ︷︷ ︸
S̃†1/2

,

15 = (1, 3)1 ⊕ (3, 2)1/6︸ ︷︷ ︸
S̃†1/2

⊕ (6, 1)−2/3 ,

45 ⊃ (3, 3)−1/3︸ ︷︷ ︸
S1

⊕ (3, 2)−7/6︸ ︷︷ ︸
S1/2

⊕ (3, 1)−1/3︸ ︷︷ ︸
S0

⊕ (3, 1)4/3︸ ︷︷ ︸
S̃†0

,

50 ⊃ (3, 1)−1/3︸ ︷︷ ︸
S0

⊕ (3, 2)−7/6︸ ︷︷ ︸
S1/2

,

(2.63)
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while the components of 5, 10, 15, 45, and 50 follow from complex conjugation of Eq.
(2.63). Consequently, most scalar leptoquarks are found in the 45 representation, which
is an integral part of nonminimal SU(5) models to fix the fermion mass ratios and
proton decay predictions. Another representation in addition to 45 is necessary in order
to incorporate the S̃1/2 leptoquark, which, as will be shown in Sec. 4.3.1, is relevant
for generating one-loop level Majorana neutrino masses. However, the fact that S̃1/2
resides in a different multiplet can be viewed as an advantage of SU(5) as it explains a
possible leptoquark mass splitting. This mass difference can prove useful to suppress the
leptoquark mixing in models where the smallness of the neutrino masses is explained
with leptoquark interactions, cf. Sec. 4.3.





3

M O D E L S A D D R E S S I N G T H E F L AVO R P RO B L E M

Various SM extensions with flavor symmetries have been proposed in the literature to
solve some of the most pressing issues of the SM: the smallness of neutrino masses, the
puzzling pattern of fermion masses and mixings, and the existence of the three families
of quarks and leptons. Since the mixing patterns of leptons and quarks are significantly
different, it is challenging to implement a unique symmetry, able to describe the small
quark mixing angles and the large leptonic ones at the same time. Indeed, flavor models
in the literature often lack distinguishing properties and predictions.
In this chapter we construct two new models that are aimed at combining the quark
and lepton masses and mixings in one unified framework: a 2HDM with the S3 flavor
symmetry (Sec. 3.1), and a grand unified model based on the SU(5) group (Sec. 3.2).
The S3 model can be tested with searches for top quark decays, and the SU(5) flavor
model links the gauge unification scale to the origin of the Yukawa couplings and fermion
mixings by virtue of an FN mechanism. The conclusions are presented in Sec. 3.3.

3.1 an S3 -symmetric flavor model

With neutrino experiments increasingly constraining the mixing angles in the leptonic
sector, many models focus on explaining the near TBM structure of the PMNS matrix
through a nonabelian symmetry. Discrete flavor symmetries have shown a lot of promise
and S3 in particular, as the smallest nonabelian group, has been studied considerably in
the literature since [79], with interesting results for quarks, leptons or both, and remains
a popular group [97–105].
In this section we make use of the S3 group to provide an elegant description of the
SM fermion masses and mixings in a 2HDM. By assigning the SM fermions under this
symmetry and using scalars transforming under the different irreducible representations
of S3, an existence proof of models is provided leading to the viable mixing-inspired
quark textures presented in Ref. [154].
The framework is extended to the lepton sector by modifying the down-type quark
texture for the charged leptons. Viable lepton masses and mixings are obtained with
the neutrino sector being completed with a type I seesaw mechanism.
The model itself can be tested through its specific predictions in the scalar sector. To
this end, the scalar potential is discussed in some detail with respect to processes that
constrain the parameters of the model such as t → ch and h → γγ. Moreover, it is
shown that the VEVs required to explain the fermion masses indeed correspond to a
natural minimum of the potential.
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In Sec. 3.1.1 the field and symmetry content of the model is described, followed by
a brief revision of the quark masses and mixing angles presented in Ref. [154] and
the equivalent analysis for the lepton sector in Sec. 3.1.2. Sec. 3.1.3 deals with the
implications of the extended scalar sector, presenting the Yukawa couplings, an analysis
of rare top decays, then considering the h→ γγ rate and the T and S parameters. We
relegate some technical discussions that are relevant for the model to App. C.1.

3.1.1 The Model

We consider an extension of the SM with additional scalar fields and discrete symmetries,
which reproduces the predictive mixing inspired textures proposed in Ref. [154]

MU =
v√
2

 c1λ
8 0 a1λ

3

0 b1λ
4 a2λ

2

0 0 a3

 , MD =
v√
2

 e1λ
7 f1λ

6 0
0 f2λ

5 0
0 0 g1λ

3

 , (3.1)

where ak (k = 1, 2, 3), b1, c1, g1, f1, f2, and e1 are O(1) parameters. We assume that all
of them are real except a1. The matrices in Eq. (3.1) provide an elegant understanding
of all SM fermion masses and mixing angles through their scaling by powers of the
Wolfenstein parameter λ = 0.225 with O(1) coefficients.
The Cabibbo mixing arises from the down-type quark sector, whereas the up-type quark
sector contributes to the remaining mixing angles. The distinct textures required by
the observed mismatch of the down-type and up-type quark mixings are obtained using
two Higgs doublets distinguished by a symmetry (in this model, a Z3).
Besides the Z3 symmetry, other discrete symmetries help to shape the patterns in Eq.
(3.1). The purpose of each is summarized in Tab. 3.1 and explained in the following.

Symmetry Function

S3 Connects Yukawa couplings and reduces parameters
Z3 Separates down-type from up-type quark mixing
Z ′3 Suppresses up quark and electron mass
Z14 Implements FN mechanism

Table 3.1: Summary of symmetries and their function in the model.

The 2HDM is embedded in an S3 flavor symmetry, which is particularly suitable for
our purposes as it is the smallest nonabelian group with a doublet representation. By
combining fields in this multiplet, we utilize the S3 symmetry to reduce the number of
free model parameters, unifying the corresponding couplings.
Additionally, a Z ′3 ⊗Z14 symmetry dictates the hierarchical structure of the fermion
masses and mixing matrices. Specifically, the Z14 functions as an FN symmetry,
being the smallest cyclic symmetry that can induce 11-dimensional operators. These
nonrenormalizable operators are crucial to explain the hierarchical fermion masses with
natural O(1) Yukawa couplings. To account even for the tiny up quark and electron
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masses, the Z ′3 then further suppresses the respective mass terms through additional
scalar insertions.
The full symmetry G experiences a two-step symmetry breaking:

G = SU(3)C ⊗ SU(2)L ⊗U (1)Y ⊗ S3 ⊗Z3 ⊗Z ′3 ⊗Z14

⇓ 〈χ〉 , 〈ζ〉 , 〈ξ〉 ∼ Λ

SU(3)C ⊗ SU (2)L ⊗U (1)Y ⊗Z3 (3.2)

⇓ 〈φ2〉 ∼ ΛEW

SU(3)C ⊗U (1)EM ,

where the different scales satisfy Λ� ΛEW with ΛEW = 246 GeV.
The particle content and the assignments under the symmetry groups are shown in
Tab. 3.2. In addition to the two Higgs doublets, four SU(2) singlet scalars shape the
fermion mass matrices, whose functions in the model are clarified as follows. Two scalars
are unified into an S3 doublet representation ξ. Its VEV breaks the S3 symmetry and
thereby generates a hierarchy between the first two rows of the down quark and charged
lepton mass matrices. Charged as (−1) under Z14, the scalar χ is responsible for the
hierarchical flavor structure as the flavon in the FN mechanism. Finally, the field ζ

breaks Z ′3 and suppresses mu and me once it develops its VEV.
Explicitly, the VEVs of these scalars are denoted by

〈ξ〉 = vξ (1, 0) , 〈χ〉 = vχ, 〈ζ〉 = vζ , (3.3)

i.e., the VEV of ξ is aligned as (1, 0) in the S3 direction. See App. C.1.4 for a discussion
of the minima in the scalar potential. To simplify the analysis we assume that these
VEVs have a common origin, manifesting at a the same scale Λ

vξ ∼ vζ ∼ vχ = λΛ . (3.4)

The two Higgs doublets are defined according to the typical conventions

φl =

(
ϕ+
l

1√
2 (vl + ρl + iηl)

)
, (3.5)

with

〈φl〉 =
(

0
vl√

2

)
, l = 1, 2 . (3.6)

Their VEVs should be in the same order of magnitude to obtain realistic fermion masses
and mixings, which is demonstrated in Sec. 3.1.2.
The assignments and symmetries shown in Tab. 3.2 lead to the following quark Yukawa
Lagrangians:

−LUY = ε
(u)
33 q3Lφ̃1u3R + ε

(u)
23 q2Lφ̃2u3R

χ2

Λ2 + ε
(u)
13 q1Lφ̃2u3R

χ3

Λ3

+ ε
(u)
22 q2Lφ̃1UR

ξχ3

Λ4 + ε
(u)
11 q1Lφ̃1UR

ξχ4ζ3

Λ8 + h.c. ,
(3.7)
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Field SU(2)L S3 Z3 Z ′3 Z14

q1L 2 1 0 0 −3
q2L 2 1 0 0 −2
q3L 2 1 1 0 0
UR 1 2 0 0 1
u3R 1 1 1 0 0
d1R 1 1 2 0 4
d2R 1 1 2 0 3
d3R 1 1 1 0 3

l1L 2 1 2 0 −3
l2L 2 1 0 0 0
l3L 2 1 0 0 0
l1R 1 1′ 1 2 4
l2R 1 1 0 0 5
l3R 1 1 0 0 3
ν1R 1 1 0 0 0
ν2R 1 1 0 0 0

φ1 2 1 0 0 0
φ2 2 1 1 0 0
ξ 1 2 0 0 0
χ 1 1 0 0 −1
ζ 1 1′ 0 1 0

Table 3.2: Full particle content and assignments under the flavor symmetries.



3.1 an S3 -symmetric flavor model 55

−LDY = ε
(d)
33 q3Lφ1d3R

χ3

Λ3 + ε
(d)
22 q2Lφ2d2R

χ5

Λ5 + ε
(d)
12 q1Lφ2d2R

χ6

Λ6

+ ε
(d)
21 q2Lφ2d1R

χ6

Λ6 + ε
(d)
11 q1Lφ2d1R

χ7

Λ7 + h.c. ,
(3.8)

where LUY and LDY refer to the up-type and down-type quark Yukawa interactions,
respectively. The invariant Yukawa terms LlY and LνY for the charged leptons and
neutrinos, respectively, are

−LlY = ε
(l)
33 l3Lφ1l3R

χ3

Λ3 + ε
(l)
23 l2Lφ1l3R

χ3

Λ3 + ε
(l)
22 l2Lφ1l2R

χ5

Λ5

+ ε
(l)
32 l3Lφ1l2R

χ5

Λ5 + ε
(l)
11 l1Lφ2l1R

χ7ζ

Λ8 + h.c. ,
(3.9)

−LνY = ε
(ν)
11 l1Lφ̃2ν1R

χ3

Λ3 + ε
(ν)
12 l1Lφ̃2ν2R

χ3

Λ3 + ε
(ν)
21 l2Lφ̃1ν1R

+ ε
(ν)
22 l2Lφ̃1ν2R+ε

(ν)
31 l3Lφ̃1ν1R + ε

(ν)
32 l3Lφ̃1ν2R

+M1ν1Rν
c
1R +M2ν2Rν

c
2R +M12ν1Rν

c
2R + h.c.

(3.10)

These interactions are the source of the fermion masses and mixings, which are discussed
in the following subsections.

3.1.2 Fermion Masses and Mixings

Quarks

Using Eqs. (3.7) and (3.8) we find the mass matrices for the up- and down-type quarks
in the form:

MU =
v√
2

 c1λ
8 0 a1λ

3

0 b1λ
4 a2λ

2

0 0 a3

 , MD =
v√
2

 e1λ
7 f1λ

6 0
e2λ

6 f2λ
5 0

0 0 g1λ
3

 , (3.11)

where the combinations of order one coefficients ε(u,d)
ij were redefined to resemble the

textures in Eq. (3.1). The down-type quark matrix deviates only in (MD)21, which is a
negligible perturbation of the original pattern.
The hermitian combinations MUM

†
U and MDM

T
D

MUM
†
U =

v2

2

 |a1|2 λ6 + c2
1λ

16 a1a2λ
5 a1a3λ

3

a∗1a2λ
5 a2

2λ
4 + b21λ

8 a2a3λ
2

a∗1a3λ
3 a2a3λ

2 a2
3

 , (3.12)

MDM
T
D =

v2

2

 λ14e2
1 + λ12f2

1 e1e2λ
13 + f1f2λ

11 0
e1e2λ

13 + f1f2λ
11 λ12e2

2 + λ10f2
2 0

0 0 λ6g2
1

 , (3.13)

are approximately diagonalized by the unitary rotation matrices VU and VD

V †UMUM
†
UVU = diag(m2

u,m2
c ,m2

t ) , V T
DMDM

T
DVD = diag(m2

d,m2
s,m2

b) ,

VU '

 c13 s13s23e
iδ −c23s13e

iδ

0 c23 s23
s13e

−iδ −c13s23 c13c23

 , VD =

 c12 s12 0
−s12 c12 0

0 0 1

 ,
(3.14)
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where cij ≡ cos θij , sij ≡ sin θij (with i 6= j and i, j = 1, 2, 3), while θij and δ are the
quark mixing angles and the CP violating phase, respectively. They are given by

tan θ12 ' f1
f2
λ , tan θ23 ' a2

a3
λ2 ,

tan θ13 ' |a1|
a3
λ3 , δ = − arg (a1) .

(3.15)

And consequently, the up- and down-type quark masses are approximately

mu ' c1λ
8 v√

2 , md ' |e1f2 − e2f1| λ
7
√

2v ,
mc ' b1λ

4 v√
2 , ms ' f2λ

5 v√
2 ,

mt ' a3
v√
2 , mb ' g1λ

3 v√
2 .

(3.16)

From a comparison with the Wolfenstein parametrization of the CKM matrix [cf. Eq.
(2.3)], we infer

a1 ' −A
√
ρ2 + η2eiδ ' −0.3eiδ , b1 ' mc

λ4mt
' 1.43 ,

a2 ' A ' 0.81 , c1 ' mu
λ8mt

' 1.27 ,
a3 ' 1 , δ = 67◦ .

(3.17)

To reproduce the Cabibbo mixing angle, the constants e2 and f2 in Eq. (3.1) should
be approximately equal. The remaining parameters e1, f1, f2, and g1 are fitted to the
down-type quark masses and mixing parameters. Note that the model has in total ten
free parameters to fit the ten observables of the quark sector, i.e., the six quark masses,
the three mixing angles, and the CP-violating phase δ. However, the large parameter
budget not only reproduces these observables, but also accounts for the hierarchies
among them without the need of fine-tuning. The values of the quark sector observables
shown in Tab. 3.3 correspond to the best fit

e1 ' 0.84 , f1 ' 0.4 , f2 ' 0.57 , g1 ' 1.42 . (3.18)

The results are consistent with the measurements, which were taken from Refs. [6, 155]
at the MZ scale.

Leptons

We have demonstrated that the S3 flavor model successfully produces the quark textures
proposed in Ref. [154]. The analysis is now extended to the lepton sector for a unified
description of quarks and leptons in one framework. The charged lepton mass matrix
follows from Eq. (3.9) and takes the form

Ml =
v√
2

 x1λ
8 0 0

0 y1λ
5 z1λ

3

0 y2λ
5 z2λ

3

 , (3.19)

where x1, y1, y2, z1, z2, are O(1) parameters, for simplicity assumed to be real. Like
the quark matrices, the symmetric product MlM

T
l can be diagonalized with a unitary

rotation matrix Vl according to

V T
l MlM

T
l Vl = diag(m2

e,m2
µ,m2

τ ) , Vl =

 1 0 0
0 cos θl − sin θl
0 sin θl cos θl

 , (3.20)
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Observable Model Measurement (±1σ)

mu [MeV] 1.47 1.45+0.56
−0.45

mc [MeV] 641 635± 86
mt [GeV] 172.2 172.1± 0.6± 0.9
md [MeV] 3.00 2.9+0.5

−0.4

ms [MeV] 59.2 57.7+16.8
−15.7

mb [GeV] 2.82 2.82+0.09
−0.04

sin θ12 0.2257 0.2254
sin θ23 0.0412 0.0413
sin θ13 0.00352 0.00350

δ 68◦ 68◦

Table 3.3: Model and experimental values of the quark sector observables at the MZ

scale. The measurements were taken from Refs. [6, 155].

with tan θl ' − z1
z2

. Consequently, the charged lepton masses are approximately given
by

me = x1λ
8 v√

2
, mµ '

|y1z2 − y2z1|√
z2

1 + z2
2

λ5 v√
2

, mτ '
√
z2

1 + z2
2λ

3 v√
2

. (3.21)

On the other hand, the neutrino masses are explained in this framework through a
seesaw mechanism type I with two heavy right-handed neutrinos. The complete 5× 5
neutrino mass matrix is

Mν =

 03×3 MD
ν(

MD
ν

)T
MR

 , (3.22)

with

MD
ν =


λ3ε

(ν)
11

v2√
2 λ3ε

(ν)
12

v2√
2

ε
(ν)
21

v1√
2 ε

(ν)
22

v3√
2

ε
(ν)
31

v1√
2 ε

(ν)
33

v3√
2

 , MR =

(
M1

1
2M12

1
2M12 M2

)
. (3.23)

Since (MR)ii � v, the light neutrino masses are approximately given by

MνL =MD
ν M

−1
R

(
MD
ν

)T
. (3.24)

The resulting real symmetric matrix can be diagonalized separately for the normal
and inverted neutrino mass hierarchy, predicting one mass eigenstate to be zero. The
remaining nonvanishing mass eigenstates in these cases are

mν∓ =
1
2

(
W 2 +X2 + Y 2 ∓

√
(W 2 −X2 + Y 2)2 − 4κ2X2 (W 2 + Y 2)

)
. (3.25)
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The definition of the parameters W ,X,Y , and κ, as well as the details of the computation
can be found in App. C.1.1. The leptonic mixing angles for NH and IH can also be
expressed as functions of these parameters and thus adjusted to the experimental data

NH: sin2 θ12 =
W 2 sin2 θν

Y 2 + (1− cos2 θν)W 2 , sin2 θ13 =
W 2 cos2 θν
W 2 + Y 2 ,

sin2 θ23 =

(√
W 2 + Y 2 sin θν cos θl − Y cos θν sin θl

)2

(1− cos2 θν)W 2 + Y 2 ,

(3.26)

IH: sin2 θ12 =
Y 2 sin2 θν

W 2 + (1− cos2 θν) Y 2 , sin2 θ13 =
Y 2 cos2 θν
W 2 + Y 2 ,

sin2 θ23 =

(√
W 2 + Y 2 sin θν cos θl −W cos θν sin θl

)2

(1− cos2 θν) Y 2 +W 2 .

(3.27)

The analysis is further simplified by setting

x1 = y2 = z1 , (3.28)

so that eventually the charged lepton masses are determined by the three dimensionless
effective parameters x1, y1, and z2, whereas the neutrino mass squared splittings and
mixing angles are controlled by the four parameters κ, W , X, and Y . Therefore, the
lepton sector has in total seven effective parameters to describe eight physical observables,
i.e., the three charged lepton masses, the two neutrino mass squared splittings and the
three leptonic mixing angles. The results shown in Tab. 3.5 correspond to the best-fit
values listed in Tab. 3.4

Hierarchy κ W [eV1/2] X [eV1/2] Y [eV1/2] x1 y1 z2

NH 0.444 0.12 0.11 0.18 0.43 1.57 0.58
IH 0.008 0.20 0.22 0.08 0.43 1.40 0.78

Table 3.4: Best-fit values that reproduce the observables in the lepton sector.

Given that the lightest neutrino is massless in this framework, the overall neutrino mass
scale is beyond the current experimental reach, including also the cosmological bound∑3
k=1mνk < 0.18 eV on the sum of the neutrino masses [18,20] and 0νββ decay.

The obtained masses and mixing angles are in excellent agreement with the experimental
data, bearing some fine-tuning of the parameter κ in the IH case. The IH parameter
set can fit mτ better, implying a slight preference for IH in this framework. Note that
for the sake of simplicity all leptonic parameters were assumed to be real. However,
by allowing one or several parameters in the neutrino mass matrix to be complex, a
nonvanishing CP-violating phase indicated by recent observations [13] can easily be
incorporated.
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Hierarchy Observable Model value Measurement (±1σ)

me [MeV] 0.491 0.487
mµ [MeV] 102.8 102.8± 0.0003

NH
IH

mτ [GeV]
1.45
1.77

1.75± 0.0003

∆m2
21 [eV2] 7.49× 10−5 7.49+0.19

−0.17 × 10−5

∆m2
31 [eV2] 2.53× 10−3 2.526+0.039

−0.037 × 10−3

NH sin2 θ12 0.308 0.308+0.013
−0.012

sin2 θ23 0.440 0.440+0.023
−0.019

sin2 θ13 0.0216 0.02163± 0.00074

∆m2
21 [eV2] 7.49× 10−5 7.49+0.19

−0.17 × 10−5

∆m2
13 [eV2] 2.51× 10−3 2.518+0.038

−0.037 × 10−3

IH sin2 θ12 0.308 0.308+0.013
−0.012

sin2 θ23 0.584 0.584+0.018
−0.022

sin2 θ13 0.0217 0.02175± 0.00075

Table 3.5: Model and experimental values of the lepton sector observables, for the
normal (NH) and inverted (IH) hierarchy using the best-fit values shown in Tab. 3.4.
The experimental values were taken from NuFit 2.2 (2016) [13].

3.1.3 Scalar Phenomenology

With the plethora of flavor models on the market, an analysis of the scalar sector,
including the mass hierarchies and decay channels, can be the most crucial tool to
distinguish between the viable frameworks.

In this section the scalar potential is analyzed with respect to the physical states and
their fermion couplings. To this end, the scalar sector is reduced to the low-energy field
content, which has the biggest impact on testable FCNCs. As shown in the following,
the model can be probed by searches for rare top decays, which have potentially large
branching ratios in the model and are weakly constrained by current experimental data.

Since vχ ∼ vξ ∼ vζ � vSM, the low-energy scalar sector consists only of the two Higgs
doublets, implying that the scalar degrees of freedom are the same as in any 2HDM.
Consequently, we expect two massive charged Higgses (H±), one CP-odd Higgs (A0)
and two neutral CP-even Higgs (h,H0) bosons. The scalar h is identified as the SM-like
126 GeV Higgs boson found at the LHC, while the neutral π0 and charged π± Goldstone
bosons are associated with the longitudinal components of the Z and W± gauge bosons,
respectively.
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The renormalizable scalar potential involving only the SU(2) doublets φi(i = 1, 2) reads

V (φi) = −
2∑
i=1

µ2
i (φ
†
iφi) +

2∑
i=1

κi(φ
†
iφi)

2 ,

V (φ1,φ2) = γ12(φ
†
1φ1)(φ

†
2φ2) + κ12(φ

†
1φ2)(φ

†
2φ1) ,

V (ξ,χ, ζ,φi) =
[
λξ(ξξ)1 + λχ(χ

†χ) + λζ(ζ
†ζ)
] 2∑
i=1

λ1i(φ
†
iφi) ,

(3.29)

whereas the remaining terms are

V (ξ) = −µ2
ξ(ξξ)1 + γξ,3(ξξ)2ξ + κξ,1(ξξ)1(ξξ)1 + κξ,2(ξξ)2(ξξ)2 ,

V (χ) = −µ2
χ(χ

†χ) + κχ(χ
†χ)2 ,

V (ζ) = −µ2
ζ(ζ
†ζ) + κζ(ζ

†ζ)2 ,
V (ξ,χ, ζ) = λ2(ξξ)1(χ

†χ) + λ3(ξξ)1(ζ
†ζ) + λ4(ζ

†ζ)(χ†χ) .

(3.30)

The high symmetry of the potential leaves an accidental ungauged U(1) intact that
results in an additional Goldstone boson, unobserved by experiments. Therefore, to
obtain a viable low-energy model with only three massless Goldstone bosons, the
following soft-breaking terms are considered

Vsoft(ζ,χ) = −µ2
χζ(ζχ+ ζ†χ†) ,

Vsoft(φi,φj) = −µ2
12

[(
φ†1φ2

)
+
(
φ†2φ1

)]
.

(3.31)

The mass matrices of the low-energy CP-even neutral scalars ρ1,2, the CP-odd neutral
scalars η1,2, and the charged scalars ϕ±1,2 can be written as

Mρ
1 =

1
2

(
2κ1v

2
1 +

v2
v1
µ2

12 γv1v2 − µ2
12

γv1v2 − µ2
12 2κ2v

2
2 +

v1
v2
µ2

12

)
, (3.32)

Mη
2 =

µ2
12
2

(
v2
v1
−1

−1 v1
v2

)
, (3.33)

Mϕ
3 =

µ2
12 + κ12v1v2

2

(
v2
v1
−1

−1 v1
v2

)
. (3.34)

According to the typical 2HDM conventions, the physical scalar mass eigenstates are
connected with the weak scalar states by the following relations [116,156](

h

H

)
=

(
sinα − cosα
− cosα − sinα

)(
ρ1
ρ2

)
, (3.35)(

π0

A0

)
=

(
cosβ sin β
sin β − cosβ

)(
η1
η2

)
, (3.36)(

π±

H±

)
=

(
cosβ sin β
sin β − cosβ

)(
ϕ±1
ϕ±2

)
, (3.37)

with

tan 2α =
2
(
γv1v2 − µ2

12
)

2 (κ1v2
1 − κ2v2

2) + µ2
12

(
v2
v1
− v1

v2

) , tan β =
v2
v1

. (3.38)
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The physical scalar masses are hence given by

m2
h =

1
2v1

(
κ1v

3
1 + κ2v1v

2
2 + µ2

12v2
)

−1
2

√
γ2v2

1v
2
2 − 2γµ2

12v1v2 + κ2
1v

4
1 − 2κ1κ2v2

1v
2
2 + κ2

2v
4
2 + µ4

12 ,

m2
H =

1
2v1

(
κ1v

3
1 + κ2v1v

2
2 + µ2

12v2
)

(3.39)

+
1
2

√
γ2v2

1v
2
2 − 2γµ2

12v1v2 + κ2
1v

4
1 − 2κ1κ2v2

1v
2
2 + κ2

2v
4
2 + µ4

12 ,

m2
A0 =

µ2
12
2

(
v2
v1

+
v1
v2

)
, m2

H± =
µ2

12 + κ12v1v2
2

(
v2
v1

+
v1
v2

)
,

where h corresponds to the SM-like Higgs boson observed at the LHC. In the following
section we determine the Yukawa couplings associated with each physical scalar to
identify the allowed ranges of α, β, and the scalar masses.

Yukawa couplings and FCNCs

Thanks to the specific shape of the Yukawa couplings dictated by the discrete symmetries,
the present model is flavor-conserving in the down-type and charged lepton sectors,
which is a special case of Yukawa alignment [117,157,158]. The scalar φ2 generates the
masses of the first two down-type quark generations, whereas φ1 is responsible only for
the bottom Yukawa; conversely, φ2 is associated only with the electron Yukawa, while
φ1 generates the masses of the remaining charged leptons. The Yukawa couplings of
both scalar doublets are therefore aligned in these sectors. Due to the lack of FCNCs in
the down-type sector, the tightly constrained K and B meson oscillations are protected
against neutral scalar contributions. Mixing occurs exclusively in the up-type sector,
where both φ1 and φ2 couple to the third generation of up-type quarks. Consequently,
top quark FCNCs arise that can probe NP since the associated processes are strongly
suppressed in the SM. Explicitly, we obtain the following structures for the up- and
down-type Yukawas in the scalar and fermion mass bases using the rotation matrices
(3.14), (3.20), (2.21) and the corresponding transformations of the right-handed fields:

Y h
d =

 yhdd yhds yhdb
yhsd yhss yhsb
yhbd yhbs yhbb

 =
√

2


− cαmd

vsβ
0 0

0 − cαms
vsβ

0
0 0 mbsα

vcβ

 , (3.40)

Y H
d =

 yHdd yHds yHdb
yHsd yHss yHsb
yHbd yHbs yHbb

 =
√

2


−mdsα

vsβ
0 0

0 −mssα
vsβ

0
0 0 − cαmb

vcβ

 , (3.41)

Y h
u =

 yhuu yhuc yhut
yhcu yhcc yhct
yhtu yhtc yhtt

 ' √2


musα
vcβ

0 mt
v VtbVub

(
cα
sβ

+ sα
cβ

)
0 mcsα

vcβ
mt
v VtbVcb

(
cα
sβ

+ sα
cβ

)
0 0 mt

v

(
V 2
tb
sα
cβ
−O(λ4)

)
 , (3.42)

Y H
u =

 yHuu yHuc yHut
yHcu yHcc yHct
yHtu yHtc yHtt

 ' −√2


cαmu
vcβ

0 −mt
v VtbVub

(
sα
sβ
− cα

cβ

)
0 cαmc

vcβ
−mt

v VtbVcb
(
sα
sβ
− cα

cβ

)
0 0 mt

v

(
V 2
tb
cα
cβ

+O(λ4)
)
 , (3.43)
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where the Vij denote the CKM matrix elements. Furthermore, the mixing angles α and
β are defined in Eq. (2.21). Like in other 2HDMs, the couplings depend crucially on
the parameters α and β, but should comply with the current bounds if tan β is neither
unnaturally large nor small, in which cases deviations from the bottom and top Yukawa
couplings with respect to the SM become very large. This agrees with the previous
statement that the fermion mass hierarchies and mixings are best explained by tan β
values of O(1). As explained above, FCNCs are absent in the down-type quark sector
since the matrices Y h,H

d do not have off-diagonal entries. The up-type Yukawa couplings
Y h,H
ut,ct, however, allow for the tree-level decays t → hq (q = u, c), whose branching

ratios are currently limited by ATLAS to B(t→ hq) < 0.79% @ 95% C.L. [159] and by
CMS to B(t→ hq) < 0.56% @ 95% C.L (observed limit) and B(t→ hq) < 0.65+0.29

−0.19%
(expected limit) [160]. Since yh,H

ut is negligibly small compared to yh,H
ct , we consider

only the stronger CMS constraint that can be interpreted as an upper bound on the
off-diagonal top Yukawas

√
|yhct|2 + |yhct|2 =

√
2mt

v

√√√√∣∣∣∣∣VtbVcb
(
sα
cβ

+
cα
sβ

)∣∣∣∣∣
2

< 0.14 , (3.44)

which translates to ∣∣∣∣∣cα−βcβsβ

∣∣∣∣∣ . 3.40 . (3.45)

The t→ ch channel is particularly interesting since its branching ratio B(t→ hc)SM '
10−15 is extremely suppressed in the SM [159]. As shown in Figs. 3.1 and 3.2, the model
predicts branching ratios of O(0.01%) in some regions of the α-β plane, which can be
probed at future collider experiments searching for flavor-violating top decays.
Recently an analysis of up-type FCNCs in the 2HDM type III has been performed [161]
parametrizing the flavor-violating yhct coupling as yhct = 1

vλct
√

2mtmc according to the
Cheng–Sher ansatz [162]. Focusing on the cc→ tt as well as the t→ cg channels, the
authors find that λct can still take values of up to 10− 20 depending on the neutral
heavy Higgs mass. With yhct ∝ 1

vVcbVtb
√

2mt our model corresponds to λct ≈ 1
2 and is

therefore well below the critical region. Indeed, following the analysis of [163], we find
numerically that the loop induced decays t→ cg, t→ cγ and t→ cZ are several orders
of magnitude below the current LHC sensitivity. The respective loop functions were
taken from Ref. [163] and are compiled in App. C.1.2. Explicitly, varying the free model
parameters α,β, and the scalar masses mH ,mA and mH± , we expect the branching
ratios to be approximately

B(t→ cg) ∼ O(10−9) , B(t→ cγ) ∼ O(10−12) , B(t→ cZ) ∼ O(10−13) , (3.46)

which are way below the current upper limits from ATLAS and CMS [164,165]

B(t→ cg) < 1.6× 10−4 , B(t→ cγ, cZ) < 5× 10−4. (3.47)

The largest branching ratio of the three channels in our model, B(t→ cg), is shown in
Fig. 3.3 as a function of α and β for fixed mH and mA, as well as for variable mH and
mA with fixed α and β in Fig. 3.4. As it turns out, the charged Higgs contribution is
tiny and does not affect the prediction for any values of mH± .
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Figure 3.1: B(t→ hc) [%] shown in the α-β plane. The flavor-violating yh,H
ct couplings

are enhanced for small β values leading to a potentially large B(t→ hc) observable at
future experiments.
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Figure 3.2: B(t→ hc) [%] shown as a function of α for β = π/10 (blue, solid), β = π/6
(red, dashed) and β = π/3 (yellow, dotted).
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Figure 3.3: B(t→ hg) depicted in the α-β plane with mH = mA = 500 GeV.
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Figure 3.4: B(t→ hg) shown as a function of mH and mA for α = π/3 and β = π/4.
The decay rate is to a large extent independent of the charged Higgs mass mH± .
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The charged lepton Yukawa matrices

Y h
l =

√
2

 yhee yheµ yheτ
yhµe yhµµ yhµτ
yhτe yhτµ yhττ

 =
√

2


− cαme

vsβ
0 0

0 mµsα
vcβ

0
0 0 mτ sα

vcβ

 , (3.48)

Y H
l =

√
2

 yHee yHeµ yHeτ
yHµe yHµµ yHµτ
yHτe yHτµ yHττ

 =
√

2


−mesα

vsβ
0 0

0 − cαmµ
vcβ

0
0 0 − cαmτ

vcβ

 (3.49)

are also free of FCNCs due to the vanishing off-diagonal Yukawa couplings. Consequently,
the h→ µτ channel is SM-like, which is not generally the case in multi-Higgs models
with discrete symmetries. An example model with Higgs-mediated flavor violation
explaining the h→ µτ anomaly is presented in Sec. 4.1.
Finally, the charged Higgs couplings that are relevant, e.g., for B0

s,d −B
0
s,d mixings and

the radiative decays b→ qγ (q = s, d), are given by

Y H±
L =

√
2

 ydu ydc ydt
ysu ysc yst
ybu ybc ybt

 =
√

2


Vud

V 2
tb
+V 2

cb
tβ
mu
v −Vus

Vtb
tβ
mc
v −V ∗td

mt
vtβ

Vus
V 2
tb
+V 2

cb
tβ
mu
v

Vud
Vtb
tβ
mc
v −V ∗ts mtvtβ

0 0 Vtbtβ
mt
v

 , (3.50)

Y H±
R =

√
2

 yud yus yub
ycd ycs ycb
ytd yts ytb

 =
√

2


Vud

md
vtβ

Vus
ms
vtβ

Vubtβ
mb
v

Vcd
md
vtβ

Vcs
ms
vtβ

Vcbtβ
mb
v

Vtd
md
vtβ

Vts
ms
vtβ

Vtbtβ
mb
v

 , (3.51)

Y eν
H± =

√
2me

vtβ
, Y µν

H± =

√
2mµ

v
tβ (cθl − sθl) , Y τν

H± =

√
2mτ

v
tβ (cθl + sθl) . (3.52)

The last equation is understood as a sum over the neutrino mass eigenstates, as the
neutrino flavor is typically inferred only from the signature of the corresponding charged
lepton. The mixing angle θl was defined in Eq. (3.20).
The 2HDM type II is disfavored as an explanation of the anomaly observed inB → D(∗)τν

decays [41]. However, flavor-violating 2HDMs provide two operators instead of one to
fit the observable. This new operator is represented here by the Y H±

L couplings, the
relevant entry ybc being zero. Hence, no deviation from 2HDMs of type II is expected
in this channel.
Recently the lower bound mH± > 480 GeV at 95% C.L. was derived from b → sγ

measurements for the 2HDM type II [32]. This constraint depends on higher-order QCD
corrections, therefore, computing the limit in the present framework is beyond the scope
of this analysis. Instead we adopt a conservative lower bound of mH± > 500 GeV in
the following sections.

Constraints from h→ γγ

In this model the h→ γγ decay receives additional contributions from loops with the
charged scalars H±, as shown in Fig. 3.5, and therefore constrains their masses as well
as the mixing angles α and β.
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Figure 3.5: One-loop Feynman diagrams in the unitary Gauge contributing to the
h→ γγ decay.

The explicit form of the h→ γγ decay rate is [166]

Γ (h→ γγ) =
α2

EMm
3
h

256π3v2

×

∣∣∣∣∣∣
∑
f

ahffNcQ
2
fF1/2 (%f ) + ahWWF1 (%W ) +

λhH±H∓v

2m2
H±

F0 (%H±)

∣∣∣∣∣∣
2

.
(3.53)

Here, %i are the mass ratios %i =
m2
h

4M2
i

, with Mi = mf ,MW , and mH± , αEM is the fine
structure constant, NC is the color factor (NC = 1 for leptons, NC = 3 for quarks),
and Qf is the electric charge of the fermion in the loop, which is dominated by the top
quark. Furthermore, λhH±H∓ is the trilinear coupling between the SM-like Higgs and a
pair of charged Higgses given by

λhH±H∓ = −γ12 + κ12
2 v sin 2β cos (α+ β) . (3.54)

The factors ahtt and ahWW are defined as the htt and the hW+W− coupling, respectively,
normalized by their SM expressions to measure the deviation from the SM. In terms of
α and β they read

ahtt '
sinα
cosβ , ahWW = sin (α− β) , (3.55)

where in ahtt we neglected the contribution suppressed by small CKM entries.
The dimensionless loop factors F0 (%), F1/2 (%), and F1 (%) for spin-0, spin-1/2 and
spin-1 particles in the loop, respectively, are [167,168]

F1/2 (%) = 2 [%+ (%− 1) f (%)] %−2 ,

F1 (%) = −
[
2%2 + 3%+ 3 (2%− 1) f (%)

]
%−2 ,

F0 (%) = − [%− f (%)] %−2 ,

(3.56)
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with

f (%) =


arcsin2√% , for % ≤ 1

−1
4

[
ln
(

1+
√

1−%−1

1−
√

1−%−1

)
− iπ

]2
, for % > 1 .

(3.57)

To determine the bounds imposed on the model by the Higgs diphoton channel, we
introduce the ratio Rγγ , which normalizes the γγ model prediction relative to the SM
expectation

Rγγ =
σ (pp→ h) Γ (h→ γγ)

σ (pp→ h)SM Γ (h→ γγ)SM
' a2

htt

Γ (h→ γγ)

Γ (h→ γγ)SM
. (3.58)

This ratio has been measured by CMS and ATLAS with the best-fit signals [169,170]

RCMS
γγ = 1.14+0.26

−0.23 , and RATLAS
γγ = 1.17± 0.27 . (3.59)

Fig. 3.6 shows the sensitivity of Rγγ under variations of the mixing angle α for
mH± = 500 GeV, γ12 + κ12 = 1 and different values of β. As the mixing angle β is
increased, the range of α consistent with LHC observations of h→ γγ moves away from
π/2. On the other hand, the decay rate is largely independent of the charged Higgs
mass or the sum of the couplings γ12 + κ12, which is consistent with the contribution
mediated by charged scalars to the process being a small correction. In fact we checked
numerically that it stays almost constant when mH± is varied from 500 GeV to 1 TeV
for fixed values of α,β, and the quartic couplings of the scalar potential. For the same
values of the charged Higgs mass and quartic couplings, we show in Fig. 3.7 the Z-shaped
allowed region in the α-β plane that is consistent with the h→ γγ decay rate at the
LHC, and overlay it with the relatively weak bound (3.45) that arises from top quark
FCNCs.
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Figure 3.6: The ratio Rγγ shown as a function of the scalar mixing angle α for
mH± = 500 GeV, γ12 + κ12 = 1 and different values of the mixing angle β; the blue, red
and green curves correspond to β set to 0, π6 and π

3 , respectively, and the horizontal lines
are the minimum and maximum values of Rγγ measured by ATLAS and CMS [169,170].
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Figure 3.7: The allowed region in the α-β plane consistent with the Higgs diphoton
decay rate at the LHC (purple), superimposed with the constraint (3.45) (red).

T and S Parameters

The additional scalars affect the oblique corrections of the SM parametrized in terms of
the two well-known quantities T and S, which are measured in high-precision experiments.
Consequently, they further confine the parameter space of the model. In this section we
calculate one-loop contributions to the oblique parameters T and S defined as [171]

T =
Π33

(
q2)−Π11

(
q2)

αEM (MZ)M2
W

∣∣∣∣∣
q2=0

, S =
2 sin 2θW
αEM (MZ)

dΠ30
(
q2)

dq2

∣∣∣∣∣
q2=0

. (3.60)

Π11 (0), Π33 (0), and Π30
(
q2) are the vacuum polarization amplitudes with the {W 1

µ ,W 1
µ},

{W 3
µ ,W 3

µ} and {W 3
µ ,Bµ} external gauge bosons, respectively, where q is their momen-

tum. Note that in the definitions of the T and S parameters, NP contributions are
assumed to be heavy compared to MW and MZ .
To analyze the deviations from the SM, the T and S parameters are split into an SM
and a BSM part T ≡ TSM + ∆T and S ≡ SSM + ∆S. The reader is referred to App.
C.1.3 for the Feynman diagrams contributing to the T and S parameters (Figs. C.1
and C.2) and the respective loop expressions.
The measurements of T and S confine the parameter space to an elliptic region in
the ∆S-∆T plane. These are the contours shown in Fig. 3.8 at 95% C.L., where the
origin ∆S = ∆T = 0 is the SM value with mh = 125.5 GeV and mt = 176 GeV. We
study the T and S parameter constraints by considering two benchmark scenarios, while
setting α− β = π

5 . In the first case the CP-even and CP-odd neutral Higgs bosons are
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assumed to have degenerate masses of 500 GeV. In this scenario, the T and S parameters
constrain the charged Higgs masses to the range 550 GeV ≤ mH± ≤ 580 GeV, which is
consistent with the lower bound mH± & 500 GeV obtained from b → sγ [32]. In the
second scenario, the charged and CP-even neutral Higgses have degenerate masses of
500 GeV. In this case, the limits are fulfilled if the CP-odd neutral Higgs boson mass
m0
A lies between 375 GeV and 495 GeV.
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Figure 3.8: The ∆S-∆T plane, where the ellipses define the experimentally al-
lowed region at 95% C.L. for α − β = π

5 . The figures (a) and (b) correspond to
mA0 = mH0 = 500 GeV and mH0 = mH± = 500 GeV, respectively. The charged Higgs
and CP-odd neutral Higgs boson masses vary between 550 GeV ≤ mH± ≤ 580 GeV
(a), 375 GeV ≤ mA0 ≤ 495 GeV (b). The nearly vertical lines going up towards the
ellipses define the values of ∆T and ∆S in our model as the masses are varied in the
aforementioned ranges.

3.2 fermion phenomenology in an SU(5) gut model

GUTs supplemented with global flavor symmetries are a promising setup for a unified
description of fermion interactions. This is motivated by the fact that leptons and
quarks are part of the same multiplets of the GUT group, which connects their masses
and mixings [172,173]. Various GUT models with flavor symmetries have been proposed
in the literature to unify the fermion interactions [131–135]. For a general review see
for example [121,174].
As pointed out in Sec. 2.3.1, the minimal SU (5) GUT with fermions in the 5̄+ 10 and
the scalars in the 5 + 24 representations, predicts the wrong fermion mass relations,
a short proton life-time, and the gauge unification is in tension with the values of αS,
sin θW, and αEM at the MZ scale.
Some of these problems can be solved by an extension of the model field content with
a scalar 45 representation [7,127,130,175–177]. However, this extended SU(5) GUT
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fails to shed light on the Yukawa coupling hierarchies. This motivates implementing
a generalized FN mechanism [178], where the fermion mass hierarchy is explained by
special U(1)f charge assignments of the SM fermions.
Consequently, we propose an extended version of the SU(5) GUT model with an
additional global flavor symmetry A4 ×Z2 ×Z ′2 ×Z ′′2 ×U(1)f . The discrete A4 and the
three different Z2 symmetries shape the fermion mass and mixing matrices, while the
U(1)f symmetry explains the hierarchies among them by virtue of a generalized FN
mechanism [178].
Addressing the flavor problem with an SU(5) GUT requires a significant extension of
the scalar sector. The role of each scalar field and the corresponding assignments under
the symmetry group of the model are explained in detail in Sec. 3.2.1.
On the other hand, the light neutrino masses are generated using only one right-handed
neutrino with a radiative seesaw mechanism. The smallness of the neutrino masses is
a consequence of the small one-loop contributions, implying that the TeV scale right-
handed neutrino is in LHC reach. For a general discussion on the radiative seesaw in
the context of flavor symmetries, the readers are referred to Ref. [179].
The model manages to describe the SM fermion masses and mixings with 14 free
effective parameters that reproduce 18 observables, i.e., the nine charged fermion masses,
two neutrino mass squared splittings, three lepton mixing angles, and the four CKM
parameters. Sec. 3.2.2 contains a comprehensive study of the fermion masses and
mixings in the model framework.

3.2.1 The Model

Besides the U(1)f FN symmetry, the model is supplemented with the tetrahedral
symmetry A4, which accommodates the three fermion families naturally in its triplet
and three singlet representations. Furthermore, three distinct Z2 symmetries are utilized
to shape the Yukawa interactions and fermion mixing matrices. Their specific role will
be clarified in the following paragraphs. The additional flavor symmetries and their
function in the model are summarized in Tab. 3.6.

Symmetry Function

SU(5) Grand unification
A4 Creates family structure and mixings
U(1)f Implements FN mechanism
Z2 Forbids tree-level neutrino masses
Z ′2 Reduces model parameters in scalar potential
Z ′′2 Separates down-type from up-type quarks for realistic CKM mixing

Table 3.6: Summary of symmetries and their function in the model.

The complete list of fields with their symmetry group assignments can be found in Tab.
3.7 and is explained as follows. All SM fermions are accommodated in three copies of
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Field SU(5) A4 Z2 Z ′2 Z ′′2 U(1)f

ψ = (ψ1,ψ2,ψ3) 5 3 1 1 −1 Qψ

Ψ1, Ψ2, Ψ3 10 1, 1′, 1′′ 1 1 1 QΨ
1 ,QΨ

2 ,QΨ
3

NR 1 1 −1 1 −1 0

H1 5 1 1 1 −1 QH1

H2,H3,H4 5 1′, 1′′, 1 1 1 1 QH2 ,QH3 ,QH4
Φ 45 1 1 1 −1 QΦ

Σ 24 1 1 −1 1 −1/2

ξ = (ξ1, ξ2, ξ3) 1 3 1 1 1 Qξ

χ = (χ1,χ2,χ3) 1 3 1 −1 1 0
S = (S1,S2,S3) 5 3 −1 1 1 QS

Table 3.7: Fields and their assignments under the additional symmetries.

the SU(5) representations 5 and 10, as shown in Eq. (2.39). The three quintuplets
ψ = (ψ1,ψ2,ψ3) are combined in a triplet representation of A4, while the three decuplets
Ψ1, Ψ2, and Ψ3 are assigned to the three distinct singlets 1, 1′, and 1′′, respectively.
To build Yukawa interactions for the down-type quarks and charged leptons, the scalar
sector contains a 5-plet H1, and an A4 triplet flavon ξ that contracts the A4 triplet ψ.
A total of three 5’s, H2,3,4 in different A4 singlets are responsible for the up-type quark
masses. The Z ′′2 symmetry is used to separate H1 from H2,3,4, which is necessary to
generate the nontrivial CKM mixing as demonstrated in Sec. 3.2.2.
Finally, to generate neutrino masses radiatively, two more scalar A4 triplets are intro-
duced, χ = (χ1,χ2,χ3) and S = (S1,S2,S3). A Z2 symmetry is exploited to forbid
interactions between S and the SM fermions except the neutrinos. The same Z2 also
prevents S from acquiring a VEV by demanding the Z2 to be preserved after EW
symmetry breaking. As a consequence, the neutrinos do not obtain masses at tree level.
The right-handed neutrino NR is a singlet under A4 as well as SU(5), which is crucial
to construct the necessary Majorana mass term.
Last but not least, the Σ field in the adjoint representation 24 simultaneously breaks
the SU(5) as well as the U(1)f symmetry, uniquely connecting the GUT scale with the
origin of flavor. The full symmetry G is hence broken in two subsequent steps

G = SU (5)⊗A4⊗Z2 ⊗Z ′2 ⊗Z ′′2 ⊗U(1)f

⇓ 〈Σ〉, 〈ξ〉 ∼ ΛGUT

SU (3)C ⊗ SU (2)L ⊗U (1)Y ⊗Z2 ⊗Z ′′2

⇓ 〈Hi〉, 〈Φ〉 ∼ ΛEW

SU (3)C ⊗U (1)EM ⊗Z2 ,

(3.61)
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where the first set of symmetries is broken at the GUT scale ΛGUT ∼ 1016 GeV. The
second breaking is induced by the VEVs of Hi and Φ residing at the EW scale. Since it
is not decisive for the breaking, the scalar χ may receive its VEV anywhere between
these two scales. However, a value around the TeV scale can prove useful for explaining
the small neutrino masses and TBM mixing, as will be clarified in Sec. 3.2.2.
The Z ′2 symmetry, broken at the GUT scale, forbids terms with odd powers of χ. Besides
reducing the number of parameters in the theory, the symmetry thereby selects a favored
VEV alignment for χ in the A4 space, cf. App. C.2.2.
With all these considerations, we find the Yukawa interactions given in App. C.2.1,
which are the basis for the discussions of the lepton and quark masses and mixings in
Sec. 3.2.2.
The lightest of the physical neutral scalars of H1,2,3,4 and Φ should be interpreted as the
SM-like 126 GeV Higgs observed at the LHC [5]. The SM Higgs receives its dominant
contribution from the CP-even neutral scalar of H3, which also dominates the top quark
mass, as shown in Sec. 3.2.2.
However, considering the large number of scalar representations required to break down
the intricate pattern of symmetries, the model is not predictive in the scalar sector.
The low-energy effective theory corresponds to an 8HDM with three scalar singlets
and one color octet, i.e., the model has a multitude of relatively light neutral scalars.
For comparison, the LHC signatures of TeV octet scalars in an SU(5) GUT model
extended with the 45 representation are studied in Ref. [180]. Further details on the
scalar potential and the VEV alignments are reserved for App. C.2.2.

3.2.2 Fermion Phenomenology

Leptons

The charged lepton mass matrix follows from Eq. (C.24) by using the A4 product rules
given in App. B.2,

Ml = V †lLdiag (me,mµ,mτ ) , (3.62)

with
me =

vξ√
2Λ

(α1κ
a1v

(1)
H − 6β1κ

b1vΦ) ,

mµ =
vξ√
2Λ

(α2κ
a2v

(1)
H − 6β2κ

b2vΦ) ,

mτ =
vξ√
2Λ

(α3κ
a3v

(1)
H − 6β3κ

b3vΦ) ,

(3.63)

and

VlL =
1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 , ω = e
2πi

3 . (3.64)

Since αi and βi (i = 1, 2, 3) are roughly of the same order of magnitude, and the VEVs
v
(1)
H and vΦ are of the order of the EW scale v ' 246 GeV, the hierarchy of the charged

lepton masses is largely explained by their FN charges ai and bi (Eq. C.25).
As the scalar S does not acquire a VEV, the neutrino masses are generated only at
one-loop level from radiative corrections by S interacting with the scalar χ, as depicted
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in Fig. 3.9. These interactions are caused by the quartic terms in the scalar potential

ν1,3 NR NR ν1,3
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1,3
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Figure 3.9: One-loop diagrams contributing to the neutrino mass matrix, where H0
i and

A0
i denote the CP-even and CP-odd neutral components of the scalars Si.

(assuming vχ � v)

V (S,χ) = λ
(Sχ)
1

(
SlS

l
)

1
(χχ)1 + λ

(Sχ)
3

(
SlS

l
)

3s
(χχ)3s

+ λ
(Sχ)
2

[(
SlS

l
)

1′
(χχ)1′′ +

(
SlS

l
)

1′′
(χχ)1′

]
+ λ

(Sχ)
4

[
ei
π
2
(
SlS

l
)

3a
(χχ)3s + h.c.

]
,

(3.65)

where the subscripts 1, 1′, 1′′, 3a, and 3s refer to the respective projection on the
component of the products.
For simplicity, the quartic couplings are assumed to be nearly universal, i.e.,

λ = λ
(Sχ)
2 = λ

(Sχ)
3 = λ

(Sχ)
1 − ε , (3.66)

where the deviation from universality is measured by the parameter ε. A nonzero value
of ε is necessary to generate the two mass squared differences, resulting in the neutrino
mass matrix [112]

Mν '

 Ae2iψ 0 A

0 B 0
A 0 Ae−2iψ

 , (3.67)

with

A ' y2
ν

16π2MN

{(
M2
A0

1
−M2

A0
2
+
εv2
χ

2

)[
D0

(
MH0

1

MN

)
−D0

(
MA0

1

MN

)]

+

(
M2
A0

3
−M2

A0
2
+
εv2
χ

2

)[
D0

(
MA0

3

MN

)
−D0

(
MH0

3

MN

)]}
,

B '
εy2
νv

2
χ

16π2MN

[
D0

(
MH0

2

MN

)
−D0

(
MA0

2

MN

)]
,

(3.68)
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and

tan 2ψ '

9
4

 M2
A0

3
−M2

A0
1

M2
A0

3
+M2

A0
1
− 2M2

A0
2

2

− 1


−1/2

, (3.69)

where MH0
i

and MA0
i

(i = 1, 2, 3) are the masses of the CP-even and CP-odd neutral
components of the SU(2) doublets Si. The function D0(x) is defined as [181]

D0(x) ≡
−1 + x2 − ln x2

(1− x2)2 . (3.70)

The neutrino mass matrix depends on the three effective parameters A, B and ψ, which
are different combinations of the model parameters. To obtain two massive neutrinos,
the parameters A and B must be nonzero, implying ε 6= 0, and mAi 6= mHi . While the
masses are determined solely by A and B, the PMNS matrix is fixed by the parameter
ψ, as will be shown below.
The complex symmetric Majorana matrix Mν is diagonalized by a unitary rotation of
the form

Vν =

 cos θ 0 sin θe−iφ
0 1 0

− sin θeiφ 0 cos θ

Pν , with

Pν = diag
(
eiα1/2, eiα2/2, eiα3/2

)
, θ = ±π4 , and φ = −2ψ ,

(3.71)

where αi(i = 1, 2, 3) are the Majorana phases. The system has two solutions θ = ±π
4 ,

which are shown in Tab. 3.8, where the positive and negative solution correspond to
NH and IH, respectively.

Hierarchy θ mν1 mν2 mν3 α1 α2 α3

NH π/4 0 B 2A 0 0 φ

IH −π/4 2A B 0 −φ 0 0

Table 3.8: Correlation between the model parameters and observables in the NH and
IH case.

With VlL [Eq. (3.64)] and Vν [Eq. (3.71)], we can determine the PMNS matrix

U = V †lLVν '



cos θ√
3 −

eiφ sin θ√
3

1√
3

cos θ√
3 + e−iφ sin θ√

3

cos θ√
3 −

eiφ+
2iπ

3 sin θ√
3

e−
2iπ

3√
3

e
2iπ

3 cos θ√
3 + e−iφ sin θ√

3

cos θ√
3 −

eiφ−
2iπ

3 sin θ√
3

e
2iπ

3√
3

e−
2iπ

3 cos θ√
3 + e−iφ sin θ√

3


Pν . (3.72)
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The mixing angles can be derived by comparing with the standard parametrization [6]

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1
2∓ cosφ ,

sin2 θ13 = |Ue3|2 =
1
3 (1± cosφ) ,

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

2∓ (cosφ+
√

3 sinφ)
4∓ 2 cosφ ,

(3.73)

where the upper sign corresponds to NH (θ = +π/4) and the lower one to IH (θ = −π/4).
Note that TBM mixing is best produced for φ = 0 (IH) and φ = π (NH). Since θ = ±π

4 ,
the Jarlskog invariant and the δ CP phase vanish in these limits

J = Im
(
Ue1Uµ2U

∗
e2U

∗
µ1

)
' − 1

6
√

3
cos 2θ = 0 , (3.74)

sin δ = 8J
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13

= 0 . (3.75)

The TBM ansatz is, however, only a first approximation to explain the actual data.
Hence, in the following we adjust the free parameters of the model to reproduce the
measurements given in Tabs. A.2, and A.5. It is noteworthy that, while A and B control
the two mass splittings ∆m2

sol and ∆m2
atm, only a single parameter φ determines all

three neutrino mixing parameters sin2 θ13, sin2 θ12 and sin2 θ23 as well as the Majorana
phases αi. Using the experimental values from Tabs. A.2, and A.5, we obtain the
best-fit results shown in Tab. 3.9 for NH and IH. The mixing angles θ13 and θ23 are
in good agreement with the data, while θ12 is within the 3σ range of its best-fit value.
The deviation is reasonable given that no fine-tuned couplings or large dimensionful
parameters were required to fit the observables.

Hierarchy mν1 mν2 mν3 sin2 θ12 sin2 θ23 sin2 θ13 φ

NH 0 meV 9 meV 51 meV 0.341 0.396 0.0214 −0.115π
IH 49 meV 50 meV 0 meV 0.341 0.605 0.0216 0.115π

Table 3.9: Approximate best-fit values of the observables in the neutrino sector.

With the values derived from neutrino oscillations, we can also predict the amplitude
for 0νββ decay, which is proportional to the effective Majorana neutrino mass mββ [Eq.
(1.30)]

mββ =
1
3

(
B + 4A cos2 φ

2

)
=

{
4 meV (NH)
50 meV (IH) . (3.76)

By comparing with the current limits on 76Ge and 136Xe, provided by GERDA and
KamLAND-Zen, respectively [cf. Eqs. (1.31) and (1.32)], we conclude that this
prediction is beyond the reach of the present and forthcoming 0νββ decay experiments.
Considering the proposals for ton-scale next-to-next generation 0νββ experiments with
136Xe [182] and 76Ge [183,184] claiming sensitivities over T 0νββ

1/2 ∼ 1027 yr, corresponding
to mββ ∼ 12− 30 meV, our estimate for T 0νββ

1/2 may be probed at next-to-next generation
0νββ experiments.
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Quarks

The Yukawa Lagrangian in App. C.2.1 gives rise to the following quark mass matrices:

MU =

 C F G

F D H

G H E

 , (3.77)

with

F = 2 (γ12 + γ21) κx12v
(3)
H , D = 4γ22κ

x22v
(2)
H ,

G = 2 (γ13 + γ31) κx13v
(2)
H , C = 4γ11κ

x11v
(4)
H ,

H = 2 (γ23 + γ32) κx23v
(4)
H , E = 4γ33κ

x33v
(3)
H ,

(3.78)

for the up-type quarks, and

MD = diag (md,ms,mb)
(
V †lL

)T
, (3.79)

with

md =
vξ√
2Λ

(α1κ
a1v

(1)
H + 2β1κ

b1vΦ) ,

ms =
vξ√
2Λ

(α2κ
a2v

(1)
H + 2β2κ

b2vΦ) ,

mb =
vξ√
2Λ

(α3κ
a3v

(1)
H + 2β3κ

b3vΦ) ,

(3.80)

for the down-type quarks.
In analogy to the lepton sector the dimensionless couplings αi,βi, γij(i, j = 1, 2, 3) are
roughly of the same order of magnitude, with the VEVs v(h)H (h = 1, 2, 3, 4) and vΦ

residing at the EW scale v ' 246 GeV. Then, the hierarchy among the quark masses
can again be explained by the different combinations of U(1)f charges shown in Eq.
(C.25). For the down-type quarks this hierarchy is approximately described by

md : ms : mb ≈ λ4 : λ2 : 1 , mb ≈ λ3mt , (3.81)

which can be reproduced using the values

a1 = b1 = 6 , a2 = b2 = 4 , a3 = b3 = 2 , v
(1)
H ∼ vΦ ∼

v√
2

, (3.82)

and vξ = λΛ. Furthermore, setting

β1 = β3 = −β2, (3.83)

we assume that the Yukawa couplings are approximately equal to reduce the number of
free parameters. The down-type quarks and charged lepton masses are then determined
by the four dimensionless parameters α1, α2, α3, β1. We fit these parameters to
reproduce the masses of the down-type quarks and charged leptons at the MZ scale.
For the best-fit values

α1 = 1.36 , α2 = 2.06 , α3 = 3.77 , β1 = 0.18 , (3.84)
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Observable Model Measurement (±1σ)

md [MeV] 2.91 2.9+0.5
−0.4

ms [MeV] 57.1 57.7+16.8
−15.7

mb [GeV] 2.73 2.82+0.09
−0.04

me [MeV] 0.487 0.487
mµ [MeV] 102.8 102.8
mτ [GeV] 1.75 1.75

Table 3.10: Best-fit values of the down-type quark and charged lepton masses compared
with the measurements at the MZ scale. The experimental values were taken from
Ref. [155].

we obtain the results shown in Tab. 3.10, which are in good agreement with the
measurements.
The rotation matrices VU and VD entering the CKM matrix VCKM = V †UVD can be
derived from

V †UMUM
†
UVU = diag

(
m2
u,m2

c ,m2
t

)
, V †DMDM

†
DVD = diag

(
m2
d,m2

s,m2
b

)
. (3.85)

We immediately conclude VD = 13×3, since

MDM
†
D = diag

(
m2
d,m2

s,m2
b

)
, (3.86)

following from Eq. (3.79). Consequently, the CKM matrix is solely determined by the
up-type quark sector.
Instead of computing VU , which is analytically challenging, we exploit this special
property of the model to relate MUM

†
U directly to the CKM matrix. This can be

accomplished by using

MUM
†
U = V †CKMdiag

(
m2
u,m2

c ,m2
t

)
VCKM

' m2
t

 |Vtd|
2 V †tdVts V †tdVtb

V †tsVtd |Vts|2 V †tsVtb
V †tbVtd V †tbVts |Vtb|2

 ,
(3.87)

and by comparing this result with MUM
†
U expressed in terms of the model parameters.

The details of this computation are shown in App. C.2.3. The results of the fit to the
Wolfenstein parametrization of the CKM matrix (Eq. [C.38)] are listed in Tab. 3.11 and
are compared with the experimental values taken from Refs. [6,155] at the MZ scale. All
observables are in excellent agreement with the measurements, except for mu, and mc,
which reproduce the corresponding experimental values only with order-of-magnitude
accuracy.
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Observable Model value Experiment (±3σ)

mu [MeV] 5.4 1.45+0.56
−0.45

mc [MeV] 284 635± 86
mt [GeV] 173.4 172.1± 0.6± 0.9∣∣∣Vud∣∣∣ 0.974 0.97425+0.00022

−0.00023∣∣∣Vus∣∣∣ 0.225 0.22542+0.00101
−0.00097∣∣∣Vub∣∣∣ 0.00348 0.00371+0.00027
−0.00020∣∣∣Vcd∣∣∣ 0.225 0.22529+0.00100
−0.00090∣∣∣Vcs∣∣∣ 0.973 0.97339+0.00024
−0.00024∣∣∣Vcb∣∣∣ 0.0422 0.04180+0.00097
−0.00164∣∣∣Vtd∣∣∣ 0.00872 0.00868+0.00027
−0.00058∣∣∣Vts∣∣∣ 0.0415 0.04107+0.00094
−0.00161∣∣∣Vtb∣∣∣ 0.999 0.99912+0.00007
−0.00004

J 2.95× 10−5 (2.96+0.20
−0.16)× 10−5

δ 66◦ 68◦

Table 3.11: Model values and the corresponding measurements of the up-type quark
masses and CKM parameters at the MZ scale. Experimental values taken from Refs.
[6, 185].

3.3 conclusions

To shed light on the flavor puzzle, we have constructed two flavor models utilizing
discrete family symmetries and extended scalar sectors: a two-Higgs doublet extension
of the SM based on an S3 flavor symmetry and an extended SU(5) GUT model.
Overall, the models can fit the observed masses, CKM and PMNS mixing angles very
well. The S3 model has in total 17 effective free parameters, which are fitted to reproduce
the 18 observables in the quark and lepton sectors. One neutrino is predicted to be
massless in both NH and IH. Consequently, the effective Majorana neutrino mass,
relevant for 0νββ decay, is beyond the reach of next generation 0νββ decay experiments.
The additional scalars mediate FCNCs, but due to the specific shape of the Yukawa
couplings dictated by the flavor symmetry these processes occur only in the up-type
quark sector. Furthermore, the enlarged field content of the model is constrained by
both rare top decays and the h → γγ rate, which deviate from the SM prediction.
Among the flavor-violating top decays, t→ ch is a particularly promising channel for
NP searches as its branching ratio can reach O(0.01%) in our model. With respect to
h→ γγ, the dominant top quark and vector boson contributions allow for additional
constraints on the mixing angles α and β that are much stronger than the limits from
up-type quark FCNCs. In conclusion, the analysis of the scalar sector has revealed
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distinct features of the model that can be probed at future collider experiments and set
it apart from the various other flavor models.
To make the minimal SU(5) framework phenomenologically viable, a multitude of scalar
fields and additional symmetries were employed, which address also the issue of proton
decay. A special feature of the model is that the same representation that breaks the
SU(5) symmetry is also responsible for the fermion mass hierarchies.
The model uses only 14 effective parameters to fit 18 observables from the distinct
fermion sectors, and the solution is not fine-tuned. The lepton sector is particularly
elegant since the PMNS matrix is reproduced by varying only one parameter.
However, considering that one of the main incentives to study GUTs is to simplify the
SM gauge groups and fields, the model is highly intricate. Because of the large scalar
sector, a thorough analysis of the scalar phenomenology is impossible due to the many
free parameters in the potential.





4

M O D E L S E X P L A I N I N G F L AVO R A N O M A L I E S

As pointed out in Sec. 1.2.3, any observation of CLFV is a smoking gun of NP that is
generally realized by virtue of new particles and symmetries. It is therefore imperative
not only to search for CLFV, but also to study models extensively for flavor-violating
predictions. Indeed, many flavor models resort to extended scalar sectors combined
with additional symmetries to explain the origin of flavor. It is reasonable to assume
that the same NP is responsible for the flavor violation reported in multiple observables
over the past years. The anomalies in RK ,RD(∗) , and h→ µτ indicating either lepton
nonuniversality, flavor violation, or both, have received a lot of attention in particular,
see, e.g., Refs [92,186–191].
In this chapter we build explicit models aimed at explaining the observed anomalies from
a bottom-up approach and explore whether the measurements could have a common
origin.
The large amount of flavor violation reported by CMS in h→ µτ calls for NP at the EW
scale, which is most easily realized by a multi-Higgs model. Such frameworks face tight
constraints from rare flavor decays that can be utilized to confine the Higgs parameter
space. A possible solution based on an S4-symmetric 3HDM is presented in Sec. 4.1.
The deviations in the B meson sector, RK and RD(∗) , can both be explained with NP at
the TeV scale, suggesting that the anomalies have a common source. Viable candidates
studied by many authors include leptoquark mediators. In this chapter we show that the
same leptoquarks can also generate naturally-small neutrino masses through a ∆L = 2
coupling to the SM Higgs boson. Before delving into leptoquark frameworks combining
RK , RD(∗) and neutrino masses in Sec. 4.3, we study in Sec. 4.2 if the ratio RD(∗) could
also be accommodated by 3HDMs. We conclude the analyses in Sec. 4.4.

4.1 flavor-violating higgs decays in S4

LFV Higgs decays have been advocated as a harbinger of flavor symmetries explaining
the large amount of lepton flavor mixing [192–195]. Indeed, substantial LFV Higgs
couplings can arise naturally in such models as a consequence of the maximal atmospheric
µ− τ mixing in the PMNS matrix. To manifest itself in the physical mass basis, a
misalignment of the Higgs doublets, typically utilized to yield a realistic symmetry
breaking pattern, is necessary. While the scalar sector in Refs. [192–195] decomposes
into an SM-like Higgs doublet and new exotic scalars experiencing LFV decays, in the
following we present an S4 flavor model where these states mix, resulting in sizable
LFV decays of the SM-like Higgs boson. This is particularly interesting after the recent
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report by the CMS Collaboration of a 2.4σ anomaly in the h→ µτ channel with a best
fit of B(h→ µτ ) ≈ 0.84% [70].
The S4 symmetry, chosen as the basis of this model, naturally reproduces the TBM
mixing scheme [106–108]. This makes the group the ideal starting point for a realistic
description of leptons in particular. To evade bounds from the tightly constrained
radiative decays lα → lβγ, we consider the special case in which S4 is broken down to
a residual Z3 subgroup. In the literature this case has also been referred to as LFT,
e.g., in the context of the symmetry groups A4, T7, and ∆(27) [193]. The discrete Z3
symmetry is obtained when scalar doublets in the irreducible triplet representation 3′ of
S4 are aligned as (1, 1, 1) in the S4 space [109]. To explain LFV Higgs decays by virtue
of scalar mixing, we consider perturbations caused by other S4 triplets that eventually
break the Z3 symmetry. These additional scalars arise if the framework is extended to
quarks and neutrinos.
The large LFV Yukawa couplings required to explain h→ µτ are in tension with the
limits from rare lepton decays such as τ → µγ, τ → eµ, and also µ → eγ. To find a
possible solution, we search the Higgs parameter space for a window where |yµτ |2 + |yτµ|2
is large enough to accommodate the h → µτ CMS report and respects the radiative
decay bounds at the same time.
The section is structured as follows. We introduce the concept of LFT in Sec. 4.1.1,
which is followed by an explicit model with realistic fermion masses and mixings in Sec.
4.1.2. The breaking of LFT and its consequences for LFV Higgs decays with focus on
h→ µτ are analyzed in Sec. 4.1.3.
Some technical details are relocated to the appendix, including the discussion of the
quark sector (App. C.3.1), the consequences of the breaking on the lepton mixing (App.
C.3.2), and the loop expressions to compute precision observables (App. C.3.4).

4.1.1 Lepton Flavor Triality

The notion of LFT was first introduced in Ref. [122], inspired by the success of flavor
symmetries in reproducing the approximate TBM mixing in the lepton sector. Accom-
modating the data (before θ13 6= 0) was easiest accomplished by embedding the lepton
fields in the A4 tetrahedral symmetry such that A4 is broken down to Z3 in the charged
lepton sector, and to Z2 in the neutrino sector [89, 90]. The residual Z3 symmetry can
be used to test the A4 flavor model through its specific predictions for charged lepton
decays.
A typical feature of the TBM flavor models is the unique structure of the charged lepton
mass matrix Ml, revealing that the mass eigenstates are also distinct Z3 eigenstates1

Ml = v
1√
3

 1 1 1
1 ω2 ω

1 ω ω2

diag(ye, yµ, yτ ) (4.1)

1 This was substantiated further in Ref. [193] using the symmetry groups T7 and ∆(27).
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with ω = e2iπ/3 = −1
2 + i

√
3

2 . Moreover, also the scalars that break A4 and give masses
to the fermions are pure Z3 eigenstates, resulting in the Yukawa interactions

−LLFT = v−1
{(
mτLττR +mµLµµR +meLeeR

)
φ0(

mτLµτR +mµLeµR +meLτeR
)
φ1 (4.2)(

mτLeτR +mµLτµR +meLµeR
)
φ2
}
+ h.c.

The corresponding Z3 properties of each field are summarized in Tab. 4.1. Only a few
selected lepton decay channels are actually allowed by the remnant Z3 symmetry

τ+ → µ+µ+e− , τ+ → e+e+µ− , (4.3)

excluding entirely the rare radiative decays l→ l′γ. In triality models the scalar sector,
usually involving three Higgs doublets, separates into an SM-like Higgs boson h, and new
exotic scalars ψ1,2 with exciting flavor-violating signatures. These unique predictions can
easily be tested, e.g., through the decay mode h→ ψ0

2ψ
0
2 → (τ−e+)(τ−µ+), provided

that 2mψ2 < mh [193].
Note that also permutations of the matrix (4.1) yield a triality model with interchanged
Z3 quantum numbers, which may result in different collider signatures. An example
model is presented in the following section based on the S4 flavor symmetry.

Field e µ τ u c t d s b φ0 φ1 φ2

Z3 1 ω2 ω 1 ω2 ω 1 ω2 ω 1 ω ω2

Table 4.1: Example of Z3 quantum numbers in triality models after the breaking of the
global flavor symmetry.

Flavor triality can also extend to quarks in a scenario where both up- and down-type
quarks are Z3 invariant. In this case the CKM mixing is trivial, which is a good
first order approximation of the small quark mixing angles. Quark flavor triality has
interesting implications for rare meson decays, favoring the flavor-violating modes

B0 → τ+e−, µ+τ−, e+µ− , D0 → τ−e+, e−µ+ ,
B0
s → τ+µ−, µ+e−, e+τ− , K0 → µ+e− . (4.4)

Extensive searches for K and B meson decays tightly constrain triality models by placing
lower bounds on the masses of the new mediators. The measurement of K0

L → µ±e∓ in
particular leads to [122]

mψ1mψ2√
m2
ψ1

+m2
ψ2

> 510 GeV . (4.5)

Assuming LFT alone, the exotic scalars can be even lighter than the SM Higgs boson
because the leptonic bounds are comparatively weak.



84 models explaining flavor anomalies

4.1.2 The Model

In the following the charged lepton sector is used as a starting point to introduce the
relevant scalar content. Some of the additional scalars needed to accommodate quarks
and neutrinos affect the lepton phenomenology, which we can exploit to explain the
excess in h→ µτ reported by CMS, as will be discussed in Sec. 4.1.3.

Charged Leptons

The necessary ingredients to build a triality model in S4 are three scalar SU(2) doublets
φi in the triplet representation 3′ of S4. Together with the charged leptons, these scalars
are the foundation of the model and jointly give masses to the fermions by acquiring
VEVs at the EW scale. Furthermore, two EW scalar singlets, η1 and η2 are introduced
to describe the charged lepton mass hierarchy through a Z12 FN symmetry. These fields
acquire the VEVs vη1,2 = λΛ, where λ ≈ 0.22 and Λ � ΛEW is a high scale defining
the breakdown of the effective theory. The particle content and charge assignments of
this minimal model are summarized in Tab. 4.2.

Field SU(2)L S4 Z12

L = (Le,Lµ,Lτ ) 2 3′ 0
τR 1 1 3

lR = (eR,µR) 1 2 5

φ = (φ1,φ2,φ3) 2 3′ 0
η1 1 1 −1
η2 1 1′ −1

Table 4.2: Minimal field content for a realistic charged lepton model with lepton flavor
triality in S4.

The assignments lead to the following charged lepton Yukawa terms

−Llyuk ⊃ y1
Λ3 [Lφ]1 τR(η

3
1 + ε0η1η

2
2)

+
y2
Λ5 [Lφ]2 lR(η

5
1 + ε1η

3
1η

2
2 + ε2η1η

4
2) (4.6)

+
y3
Λ5 [Lφ]2 lR(η

5
2 + ε3η

3
2η

2
1 + ε4η2η

4
1) + h.c.

Like in the models presented in Chapter 3, the mass hierarchies are ensured by suitable
Z12 charges for the charged leptons. In this case, the tau and muon masses arise
from seven- and nine-dimensional Yukawa terms, respectively. The smallness of the
electron mass on the other hand is explained by the destructive interference of two
nine-dimensional operators.
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Assuming that the SU(2) singlets ηi are heavy, their mixing with the EW doublets φi
is minimized. For simplicity the scalar potential can be reduced to its low-energy part

V (φ) =− µ2
1

3∑
i=1

φ†iφi + α

( 3∑
i=1

φ†iφi

)2

+
3∑

i,j=1,i 6=j

[
β(φ†iφi)(φ

†
jφj) + γ|φ†iφj |

2 + δ(φ†iφj)
2
] (4.7)

which coincides with the general CP-conserving S4-invariant 3HDM potential. Expand-
ing the fields as

φj =

(
φ+j

1√
2

[
v√
3 + φ0

jR + iφ0
jI

] ) , (4.8)

the scalar content includes three CP-even neutral scalars φ0
jR (j = 1, 2, 3), three CP-odd

neutral scalars φ0
jI , as well as three complex charged scalars (φ+j ), of which three degrees

of freedom are absorbed by the W± and Z gauge boson masses. The corresponding
physical mass spectrum reads

m2
φ0
(a,b)R

= −v2

3 κ , m2
φ0
cR

= v2

3 (3α+ 2κ) , m2
φ0
cI

= 0 ,

m2
φ0
(a,b)I

= −v2δ , m2
φ±
a,b

= −v2(κ− β) , m2
φ±c

= 0 ,
(4.9)

with κ ≡ β + γ + δ.
The mass eigenstates φa,b,c are given by the following linear combinations of the S4
basis scalars φ1,2,3:

φa = 1√
2 (φ3 − φ2) ,

φb = 1√
6 (2φ1 − φ2 − φ3) ,

φc = 1√
3 (φ1 + φ2 + φ3).

(4.10)

These equations hold for the charged, CP-even and CP-odd components of φ implying
that

〈φa〉 = 〈φb〉 = 0 and 〈φc〉 = v. (4.11)

The fact that φc is the only mass eigenstate of the S4 triplet acquiring a VEV is essential
for LFT. It suggests that φ0

cR can be identified as the SM Higgs particle found at the
LHC with a mass of approximately 125 GeV.
Consequently, φc is also the only scalar giving masses to the SM gauge bosons, i.e.,
decaying via φ0

cR → W+W− and φ0
cR → ZZ. This can be confirmed from the kinetic

terms of the Lagrangian and the resulting three-point interactions. As a result, the
masses of the exotic scalars (e.g., φ0

(a,b)R) are not constrained by the usual Higgs searches
in the gauge boson channels performed in the LEP and LHC experiments [196,197].
The charged lepton mass matrix follows from Eq. (4.7)

Ml =
1√
2

 v1 (ỹ2 − ỹ3) λ5 v1 (ỹ2 + ỹ3) λ5 v1ỹ1λ
3

v2ω
2 (ỹ2 − ỹ3) λ5 v2ω (ỹ2 + ỹ3) λ5 v2ỹ1λ

3

v3ω (ỹ2 − ỹ3) λ5 v3ω
2 (ỹ2 + ỹ3) λ5 v3ỹ1λ

3


= v

1√
6

 1 1 1
ω2 ω 1
ω ω2 1

diag((ỹ2 − ỹ3) λ
5, (ỹ2 + ỹ3) λ

5, ỹ1λ
3) ,

(4.12)
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with v1 = v2 = v3 = v√
3 , ω = e2iπ/3 and ỹ1, ỹ2, ỹ3 given by

ỹ1 = (1 + ε0) y1 , ỹ2 = (1 + ε1 + ε2) y2 , ỹ3 = (1 + ε3 + ε4) y3 , (4.13)

where the dimensionless couplings y1, y2, y3, ε0, ε1, ε2, ε3 and ε4 are O(1) parameters.
Consequently, the charged lepton masses are

me = (ỹ2 − ỹ3) λ
5 v√

2
, mµ = (ỹ2 + ỹ3) λ

5 v√
2

, mτ = ỹ1λ
3 v√

2
, (4.14)

which explain the observed mass hierarchy through their suppression by powers of λ.
Eq.(4.12) shows a characteristic feature of LFT that the mass basis of the charged
leptons coincides with the Z3 basis; i.e., the charged lepton fields can be identified as
the Z3 eigenstates e ∼ 1,µ ∼ ω2, τ ∼ ω.
In the mass eigenstate basis the Yukawa matrices read

Ya =
i

v
√

2

 0 mµω
2 −mτω

−meω 0 mτω
2

meω
2 −mµω 0

 , (4.15)

Yb =
1

v
√

2

 0 mµω
2 mτω

meω 0 mτω
2

meω
2 mµω 0

 , (4.16)

Yc =
1
v

 me 0 0
0 mµ 0
0 0 mτ

 . (4.17)

Since φc couples only diagonally to the charged leptons it should be uncharged under
Z3, preserving the group after EW symmetry breaking. This can be understood by
expressing the fields φa,b,c in terms of the Z3 eigenstates φx,y,z ∼ (1,ω,ω2) φx

φy
φz

 =
1√
3

 1 1 1
1 ω2 ω

1 ω ω2


 φ1
φ2
φ3

 , (4.18)

and consequently realizing that

φc = φx, φb =
1√
2
(φy + φz), φa =

1√
2
(φy − φz). (4.19)

In conclusion, Z3 remains unbroken at this point since only φc, in the trivial Z3 eigenstate,
acquires a VEV. Note that the remnant Z3 symmetry prevents mixing of φc with the
other scalars. Therefore, as it stands, the model is robust against FCNC constraints
but cannot account for the h→ µτ anomaly since the SM-like Higgs boson couples only
diagonally to leptons. In the following we extend the framework to the other fermion
sectors, eventually breaking LFT.

Neutrinos

To generate the neutrino masses via a type I seesaw mechanism, we add two heavy
Majorana neutrinos N1R and N2R to the SM particle content as well as four S4 triplets
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scalar fields χ, ξ, σ and ζ, which are singlets under SU(2). Because of the simplicity
of the charged lepton sector, an intricate pattern of specifically aligned scalar fields
is necessary to break the S4 symmetry in the desired direction and at the same time
obtain two massive neutrinos. Additionally, we employ two Z2 symmetries to enforce a
specific mass pattern and decouple the scalars from interactions with the other fermion
sectors. The corresponding S4 ⊗Z2 ⊗Z ′2 ⊗Z12 assignments are shown in Tab. 4.3.

Field SU(2)L S4 Z2 Z ′2 Z12

N1R 1 1 1 0 0
N2R 1 1 1 1 0

χ 1 3′ 1 0 0
ξ 1 3 1 0 0
σ 1 3′ 1 1 0
ζ 1 3 1 1 0

Table 4.3: The additional field content and symmetries required to implement neutrinos.

Therefore the relevant S4 ⊗Z2 ⊗Z ′2 ⊗Z12 -invariant neutrino Yukawa terms read

−Lνyuk ⊃ y
(ν)
1 [Lφ]3′ N1R

χ

Λ
+ y

(ν)
2 [Lφ]3N1R

ξ

Λ
+ y

(ν)
3 [Lφ]3′ N2R

σ

Λ

+ y
(ν)
4 [Lφ]3N2R

ζ

Λ
+
y
(ν)
5
Λ

L [φχ]3′ N1R +
y
(ν)
6
Λ

L [φξ]3′ N1R

+
y
(ν)
7
Λ

L [φσ]3′ N2R +
y
(ν)
8
Λ

L [φζ]3′ N2R +M1N1RN
c
1R +M2N2RN

c
2R .

(4.20)

With the VEV patterns of the scalar fields χ, ξ, σ and ζ

〈χ〉 = vχ (1, 0, 0) , 〈ξ〉 = vξ (1, 0, 0) ,
〈σ〉 = vσ (0, i, 0) , 〈ζ〉 = vζ (0, 1, 0) ,

(4.21)

and assuming that
y
(ν)
1 = y

(ν)
2 = y

(ν)
5 = y

(ν)
6 = y(ν) , (4.22)

the full 5× 5 neutrino mass matrix is

M
(ν)
L =

 03×3 MD
ν(

MD
ν

)T
MR

 , (4.23)

where

MD
ν =

 0 aeiτ

b 0
0 ae−iτ

 v√
3

, MR =

(
M1 0
0 M2

)
, (4.24)
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with
a = λ

√(
y
(ν)
4 + y

(ν)
6

)2
+
(
y
(ν)
3 + y

(ν)
7

)2
,

b = 4λy(ν) ,

τ = arctan

−y(ν)3 + y
(ν)
7

y
(ν)
4 + y

(ν)
6

 .

(4.25)

Since (MR)ii � v, the light neutrino mass matrix arises from a type I seesaw mechanism
and is given by

M
(ν)
L =

 Ae2iτ 0 A

0 B 0
A 0 Ae−2iτ

 , (4.26)

with
A = a2 v2

3M2
, B = b2

v2

3M1
. (4.27)

Hence, the neutrino mass matrix depends only on the three effective parameters A,
B, and τ . The lepton phenomenology at this point coincides with the SU(5) flavor
model discussed in Sec. 3, the technical details of which can be found in Sec. 3.2.2.
In conclusion, the model can accommodate the lepton observables well, predicting one
massless neutrino as well as a small CP-violating phase δLCP.

Quarks

To obtain realistic quark masses and mixings, the scalar sector has be extended even
further. The new fields include two S4 triplets, ρ, and ϕ, and three S4 singlets Ω1, Ω2
and Ω3 aligned as

〈ρ〉 = vρ (i, 0, 0) , 〈ϕ〉 = vϕ (1, 0, 0) ,
〈Ω1〉 = vΩ1 , 〈Ω2〉 = vΩ2e

iθΩ , 〈Ω3〉 = vΩ3

(4.28)

in the S4 space. Again we use a Z ′′2 symmetry to decouple these scalars from the
other fermion sectors, whereas a Z6 symmetry accounts for the top and bottom mass
hierarchy. The S4 ⊗ Z ′′2 ⊗ Z6 ⊗ Z12 assignments are given in Tab. 4.4. Note that
previously introduced symmetries are omitted here if they do not affect the quark sector.
A complete list of the entire field content and all the flavor symmetries can be found in
Tab. C.1 in App. C.3.
Applying the S4 multiplication rules listed in App. B.1 to the Yukawa interactions
(C.44) and (C.45), it follows that the quark mass matrices are given by

Mq =

 Cqe
iθ1q 0 0

Dqe
−iθ2q Eqe

−iθ3q Fqe
−iθ4q

Dqe
iθ2q Eqe

iθ3q Fqe
iθ4q

 , q = U ,D. (4.29)

The matrix Jq ≡MqM
†
q can be rewritten as

Jq =

 Xq Yq Yq
Yq Uq Vq
Yq Vq Uq

 , (4.30)
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Field SU(2)L S4 Z ′′2 Z6 Z12

Q = (Q1,Q2,Q3) 2 3′ 1 0 0
uR 1 1 0 0 6
cR 1 1 0 0 0
tR 1 1 0 0 0
dR 1 1 0 3 6
sR 1 1 0 3 0
bR 1 1 0 3 0

ρ 1 3′ 1 0 0
ϕ 1 3 1 0 0

Ω1 1 1 0 0 3
Ω2 1 1 1 0 2
Ω3 1 1 0 1 0

Table 4.4: The quark fields and the scalars required to implement them.

which is a modification of the Fukuyama-Nishiura texture proposed in Ref. [154]. Since
this pattern appeared previously in the S3 flavor model in Chapter 3.1, the reader is
referred to App. C.3.1 for a detailed discussion of the quark mixings and the Yukawa
interactions.

4.1.3 Z3 Breaking

Scalar Sector

The S4 symmetry of the model is broken down to a residual Z3 symmetry once the S4
triplet φ acquires VEVs in the direction v(1, 1, 1). However, perturbations can arise
without a mechanism to protect the necessary VEV alignments; e.g., due to a scalar
triplet χ acquiring a VEV in the vχ(1, 0, 0) direction to generate neutrino masses and
mixings [cf. Eq. (4.21)]. These perturbations are caused by quartic interactions of the
form (φ†φ)(χ†χ) that always appear in the scalar potential since the combinations φ†φ
and χ†χ cannot be forbidden by a flavor symmetry.
Several scalars responsible for the mixings in the quark and neutrino sectors cause
deviations from the v(1, 1, 1) alignment through quartic interactions with φ. If we
assume a VEV hierarchy among those scalars to simplify the discussion, i.e., vρ, vϕ �
vχ, vξ, vσ, vζ , the perturbations coming from scalars involved in neutrino interactions
can be neglected. The remaining fields

ρ : (3′, 1) , ϕ : (3, 1) ,
〈ρ〉 = vρ (i, 0, 0) , 〈ϕ〉 = vϕ (1, 0, 0) ,

(4.31)
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lead to the cross couplings in the scalar potential

Vint ⊃
∑

i=1,2,3,3′
(φ†φ)i

[
λρi(ρ

†ρ)i + λϕi(ϕ
†ϕ)i

]
, (4.32)

where i = 1, 2, 3, 3′ denotes the corresponding S4 projection. Eventually only the
2-contractions, e.g.,

3∑
j,k=1,j 6=k

2|φj |2|ρj |2 − |φj |2|ρk|2,

result in perturbations of the VEV alignment v(1, 1, 1). The other contractions are
invariant under the Z3-conserving generator after the scalars ρ and ϕ acquire their
VEVs. Therefore, it suffices to consider only the following terms in the scalar potential
to analyze the breaking of Z3:

Vint ⊃ (φ†φ)2
[
λρ(ρ

†ρ)2 + λϕ(ϕ
†ϕ)2

]
=

3∑
j,k=1,j 6=k

|φj |2
[
λρ(2|ρj |2 − |ρk|2) + λϕ(2|ϕj |2 − |ϕk|2)

]
.

(4.33)

Assuming for simplicity that the coupling constants are the same order of magnitude,
i.e., λρ ≈ λϕ ≡ λs/2, the VEV alignment of the triplet φ is approximately shifted by a
perturbation ε in the following way

〈φ〉 = v(1 + 2ε, 1− ε, 1− ε), (4.34)

where the contributions from ρ and ϕ are summarized in the parameter ε. Doing so, we
adopt a similar approach as the authors of Ref. [91], who recently analyzed a triality
model based on an A4 flavor symmetry.
As a consequence, one of the physical Higgs doublets which was inert before the breaking
of Z3, 〈φb〉 = 0, now acquires a small VEV depending on the size of the perturbation
parameter ε 〈φa〉〈φb〉

〈φc〉

 =


0 − 1√

2
1√
2√

2√
3 − 1√

6 − 1√
6

1√
3

1√
3

1√
3




v√
3 (1 + 2ε)
v√
3 (1− ε)
v√
3 (1− ε)

 = v

 0√
2ε
1

 . (4.35)

Following Ref. [91] we use the parametrization

〈(φa,φb,φc)T 〉 = v(0, sin θ, cos θ) , (4.36)

where θ is given by a combination of parameters from the scalar potential to account
for the deviation from LFT.
The breaking of Z3 induces new mixing of the doublets φb and φc, which were mass
eigenstates prior to the breaking. The CP-odd neutral scalars φ0

(b,c),I and the charged
scalars φ+b,c mix via (

H±

π±

)
=

(
cθ sθ
−sθ cθ

)(
φ±b
φ±c

)
,(

η0
I

π0
I

)
=

(
cθ sθ
−sθ cθ

)(
φ0
b,I
φ0
c,I

)
,

(4.37)
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where π± and π0
I are the massless Goldstone bosons, sin θ ≡ sθ and cos θ ≡ cθ. In

the case of the CP-even neutral scalars the situation is more complicated and the
mixing results in a mass splitting of the initially degenerate scalars. The complete mass
spectrum reads

m2
φ0
a,I

= m2
η0
I
= −v2δ , m2

φ0
a,R

=
1
6v

2(−2 + 2
√

2cθsθ + s2
θ)κ ,

m2
φ±a

= m2
H± = −v2(κ− β) , m2

h =
1
2 (v

2α−m2
φ0
a,R

)− ∆ ,

m2
π± = m2

π0
I
= 0 , m2

H =
1
2 (v

2α−m2
φ0
a,R

) + ∆ ,

(4.38)

with

∆ =
1
6v

2
√

9(α+ κ)2 + 3κsθ
[
2
√

2cθ(α+ κ)− 3sθ(5α+ 3κ)
]
+O(s3

θ) . (4.39)

Note that only the masses of the CP-even scalars depend on the perturbation parameter
θ. Hence Z3 breaking in this direction does not affect the phenomenology of the CP-odd
and charged scalars in our triality model. In the triality limit θ → 0 the mixing vanishes
and the original mass spectrum is recovered

m2
h
θ→0−−−→ m2

φ0
c,R

, m2
H

θ→0−−−→ m2
φ0
b,R

= m2
φ0
a,R

. (4.40)

Therefore, the scalar h should play the role of the SM-like Higgs with mh ≈ 125 GeV,
whereas H will be a new heavy Higgs as in regular 2HDMs. The mixing angle ϑ between
the CP-even neutral scalars is defined by(

H

h

)
=

(
cϑ sϑ
−sϑ cϑ

)(
φ0
b,R
φ0
c,R

)
and

tan 2ϑ = − 4sθ[
√

2κsθ − 2cθ(3α+ κ)]

6(−1 + 2s2
θ)α+ (−6− 2

√
2cθsθ + 11s2

θ)κ

(4.41)

with ϑ→ 0 for θ → 0 in the unbroken triality limit.
For the analysis the angle ϑ is more conveniently expressed in terms of the masses mh

and mφ0
a,R
≡ ma. The full expression can be found in Eq. (C.54) of App. C.3.2. Since

mh is fixed, the mixing angle ϑ depends only on the two parameters ma and θ. Through
the relation m2

a = v2α− (m2
h +m2

H) one can alternatively display the results in terms
of mH .
In the following we identify the new charged lepton mass eigenstates after Z3 breaking
to extract the relevant LFV Yukawa couplings for the h→ µτ analysis.

Consequences for Leptons

As a result of the perturbed alignment v(0, sθ, cθ) the mass matrix of the charged leptons
takes the form

Ml =
v

2Uω


√

2cθ(ỹ2 − ỹ3)λ5 sθ(ỹ2 + ỹ3)λ5 sθỹ1λ

sθ(ỹ2 − ỹ3)λ5 √
2cθ(ỹ2 + ỹ3)λ5 sθỹ1λ

3

sθ(ỹ2 − ỹ3)λ5 sθ(ỹ2 + ỹ3)λ5 √
2cθỹ1λ

3

 ,

with Uω =
1√
3

 1 1 1
ω2 ω 1
ω ω2 1

 .

(4.42)
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Hence with off-diagonal elements that vanish in the limit θ → 0 it is no longer diagonal
in the Z3 basis of the charged leptons. The perturbed charged lepton mass matrix can
be diagonalized to a good approximation by

V †LMlVR = diag(me,mµ,mτ ) (4.43)

with

VR '


1 −

√
2sθ(ỹ2−ỹ3)

(ỹ2+ỹ3)
−
√

2sθ(ỹ2−ỹ3)λ2

ỹ1√
2sθ(ỹ2−ỹ3)

(ỹ2+ỹ3)
1 −

√
2sθ(ỹ2+ỹ3)λ2

ỹ1√
2sθ(ỹ2−ỹ3)λ2

ỹ1

√
2sθ(ỹ2+ỹ3)λ2

ỹ1
1

 ,

VL ' UωRO23(θ)R
TO12(αL), R =


− 1√

2
1√
2 0

1√
2

1√
2 0

0 0 1

 ,

(4.44)

where Oij are rotation matrices in the ij-plane and

tan 2αL =
sθ
(
4
√

2c3θ + 12
√

2cθ − 7s3θ − 3sθ
)

10c3θ + 6cθ + 8
√

2sθ3 . (4.45)

Using the rotation matrices VL and VR we find the charged lepton Yukawa couplings
yll′(l, l′ = e,µ, τ ) that eventually lead to flavor violation in the lepton sector. With

(L1,L2,L3) = (Le,Lµ,Lτ )V †L ,
(e1, e2, e3)

T = VR · (e,µ, τ )T , (4.46)
(φ1,φ2,φ3)

T = Us · (φa,H,h)T ,

where

Us ≡


0

√
2
3

1√
3

− 1√
2 − 1√

6
1√
3

1√
2 − 1√

6
1√
3

 ·
 1 0 0

0 cϑ −sϑ
0 sϑ cϑ

 , (4.47)

we can identify the coefficients of hlLl′R as the Yukawa couplings yll′ . In leading order,
i.e., me � mµ � mτ , the dominant flavor-violating couplings are

yeτ ' −
mτ

v
(cαL − sαL)sϑ+θ ,

yµτ ' −
mτ

v
(cαL + sαL)sϑ+θ ,

yeµ '
mµ

4v
{

2cϑ
[
cαL

(
cθ − 2sθ2 − 1

)
− sαL

(
cθ − 2sθ2 + 1

)]
(4.48)

− sϑ
(
cαL

[
cθ
(
4sθ +

√
2
)
− 2sθ +

√
2
]

+ sαL

[
−cθ

(
4sθ +

√
2
)
+ 2sθ +

√
2
])}

.

The remaining off-diagonal couplings are negligibly small and therefore irrelevant for
the discussion since

yτe � yeτ , yµe � yeµ , yτµ � yµτ , (4.49)
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which means that yµτ dominates the h→ µτ decay channel in our model.
The perturbation of the PMNS matrix due to the Z3 breaking is negligible for sufficiently
small values of θ. Explicitly, rotating by θ modifies the charged lepton contribution to
the PMNS mixing matrix approximately as follows

VL = UωWL with WL '


1 θ√

2 −
3θ2

4
θ√
2

− θ√
2 +

3θ2

4 1 θ√
2

− θ√
2 − θ√

2 1

 . (4.50)

As will be pointed out in Sec. 4.1.3, the values required to explain the h → µτ

measurement are in the region |θ| . 0.10 @ 95% C.L. The limiting factor is the mixing
angle θ12, which quickly exceeds the experimental 3σ bounds for positive values of the
breaking parameter, resulting in θ . 0.02. On the other hand, for negative θ values the
fit to θ12 actually improves compared to the unbroken model. By varying φ for θ = 0.02
and θ = −0.08 we obtain the best-fit results shown in Tab. 4.5. The full PMNS matrix
and the deviations of the mixing angles caused by the perturbation θ are given in Eqs.
(C.55), and (C.56) - (C.57) of App. C.3.2.
The breaking of Z3 also affects the Jarlskog invariant as follows

J ≈ cos(2ψ)
6
√

3
+

1
12θ

(√
6 sin(2ψ) cos(φ)−

√
2 sin(2ψ) sin(φ)

)
+

1
24θ

2
(
−3
√

3 cos(2ψ)− sin(2ψ) sin(φ) +
√

3
)

,
(4.51)

and therefore induces CP violation in neutrino oscillations. Since the obtained Jarlskog
invariant can be of the order 10−2 (compare Tab. 4.5), the Z3 symmetry breaking can
generate a sizable CP phase of about δLCP ≈ 0.3 in the case of negative θ values.

θ Hierarchy sin2 θ12 sin2 θ23 sin2 θ13 J φ

0.02
NH
IH

0.349
0.388
0.599

0.0214
0.0216

4.7× 10−3

3.0× 10−3

−0.219π
0.551π

−0.08
NH
IH

0.302
0.447
0.615

0.0217
0.0216

−1.8× 10−2

−1.2× 10−2

−0.234π
0.570π

Table 4.5: Approximate values of the PMNS mixing angles and the Jarlskog invariant J
after Z3 breaking for the benchmark points θ = 0.02 and θ = −0.08. The best fit was
obtained by varying φ.

Flavor-Violating Higgs decays

The CMS measurement of h→ µτ is equivalent to a bound on the off-diagonal Yukawa
couplings [198]

0.0019(0.0008) <
√
|yµτ |2 + |yτµ|2 < 0.0032(0.0036) @ 68%(95%) C.L. , (4.52)
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assuming for simplicity that h → µτ is the only additional contribution to the SM
Higgs decay width. The result in Eq. (4.52) is compatible with the current bounds
B(τ → µγ) < 4.4× 10−8 @ 90% C.L. and B(τ → eγ) < 3.3× 10−8 @ 90% [6]. However,
while small compared to yµτ , yeµ is tightly constrained by B(µ→ eγ) < 5.7× 10−13 [199],
which consequently restricts the allowed values of θ and ma (or mH). The corresponding
diagrams mediating these processes in our model are shown in Fig. 4.1. Analytically,
the branching ratio of l→ l′γ is given by [51]

B(l→ l′γ) =
τlαEMm

5
l

64π4

(
|cL|2 + |cR|2

)
, (4.53)

where cL and cR are the Wilson coefficients denoting left-handed and right-handed scalar
currents, respectively. To calculate cL and cR, one-loop (see Fig. 4.1) and two-loop
contributions are taken into account, since the latter can dominate the branching ratio
in certain regions of the parameter space. The full set of equations is shown in Eqs.
(C.60)-(C.63) of App. C.3.4 and was taken from Refs. [51, 200].

l l l l′

γ

s

l l′ l′ l′

γ

s

Figure 4.1: Leading order diagrams for l → l′γ with flavor-violating Higgs boson
couplings, where s = h,H, a, η and l, l′ = e,µ, τ .

Using Eqs. (C.54), (4.45), and (4.48) we determine numerically the allowed values of θ
and mH that can explain the 2.4σ anomaly in h→ µτ and at the same time respect the
bound on B(µ→ eγ). Scanning the parameter space for negative and positive values
of θ, we find that a window opens up for rather light masses of the extra scalars H
and η in the vicinity of the SM Higgs boson mass, where the regions complying with
either B(µ → eγ) or B(h → µτ ) overlap, as shown in Figs. 4.2. In these regions the
contributions of the Higgs h to B(µ→ eγ) are partly canceled by the contributions of
the neutral scalars H and η, allowing for larger flavor-violating Yukawa couplings. The
viable parameter space at 68% C.L.(95% C.L.) and mη = 200 GeV

θ ∈ [0.002 (0.001), 0.090 (0.104)] ∩ mH ∈ [126 (126), 204 (214)] GeV ,
−θ ∈ [0.001 (0.004), 0.082 (0.082)] ∩ mH ∈ [127 (126), 190 (190)] GeV , (4.54)

is practically symmetric around θ = 0, while the analysis of the lepton mixing showed a
slight preference for negative θ, as pointed out in the previous subsection.
Like in Sec. 3.1.3, the T and S parameters measuring the oblique corrections to the SM
can be used to confine the scalar mass spectrum. By requiring that ∆T and ∆S lie inside
the experimentally determined ellipsis, as seen in Fig. 4.3, we can derive the allowed
masses of the charged scalars mH± for the given range of 126 GeV . mH . 200GeV
and mη = 200 GeV. The parabolic shape denotes the values of ∆T and ∆S, which stay
inside the ellipsis for 116 GeV < mH± < 240 GeV. The loop expressions used for the
computation (replacing the scalar couplings) can be found in App. C.1.3.
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Figure 4.2: Parameter values leading to |yµτ | required by CMS data on h → µτ in
brown (68% C.L.) and yellow (95% C.L.) for positive and negative θ, respectively. The
parameter regions shaded in blue are allowed by B(µ→ eγ) < 5.7× 10−13. The solid
(dashed) lines mark the 1σ (2σ) intervals of |yµτ | where the excess in h → µτ and
B(µ→ eγ) can be accommodated simultaneously.
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Figure 4.3: The ∆S-∆T plane, where the ellipsis denotes the experimentally allowed
region at 95% C.L. [201]. The origin ∆S = ∆T = 0 corresponds to the SM value, with
mh = 125.5 GeV and mt = 176 GeV. The shape inside the ellipsis denotes the values
of ∆T and ∆S as the scalar mass is varied in the range 126 GeV . mH . 200 GeV.
Requiring that ∆T and ∆S stay inside the experimental limits yields the allowed mass
range 116 GeV < mH± < 240 GeV.

Using the determined 1σ parameter ranges [Eq. (4.54)], we can make predictions for
other rare decays, including the decays l→ l′γ and l→ 3l′. The flavor-violating modes
B(τ → 3µ) < 2.1× 10−8, B(τ → 3e) < 2.7× 10−8, and B(µ→ 3e) < 1.0× 10−12 [6] are
approximately given by

B(l→ 3l′) = −τlα
2
EMm

5
l

72(2π)5

[
12 log m

′
l
2

m2
l

+ 29 + 6 log 4
] (
|cL|2 + |cR|2

)
, (4.55)

assuming that loop diagrams in the spirit of Fig. 4.1 (γ decays into l+l−) dominate
over the tree-level exchange of a neutral scalar field [51].
Our predictions for 0.01 . θ . 0.09, 126 GeV . mH . 204 GeV (mη = 200 GeV),

B(τ → µγ) ∈ (0.3− 1.3)× 10−8 , B(τ → eγ) ∈ (0.3− 1.3)× 10−8 ,
B(τ → 3µ) ∈ (1.9− 8.1)× 10−10 , B(τ → 3e) ∈ (0.9− 4.1)× 10−9 ,
B(h→ eτ ) ∈ (0.4− 1.2)× 10−2 , B(h→ eµ) ∈ (1.5− 4.2)× 10−5 ,
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and for −0.08 . θ . −0.01, 127 GeV . mH . 190 GeV,

B(τ → µγ) ∈ (0.3− 1.2)× 10−8 , B(τ → eγ) ∈ (0.3− 1.2)× 10−8 ,
B(τ → 3µ) ∈ (2.0− 7.6)× 10−10 , B(τ → 3e) ∈ (1.1− 4.1)× 10−9 ,
B(h→ eτ ) ∈ (0.5− 1.4)× 10−2 , B(h→ eµ) ∈ (1.5− 4.1)× 10−5 ,

are throughout below the current bounds, but not too small to be out of reach for future
experiments. A measurement of the h→ eτ channel using the newest LHC data should
be the fastest way to rule out this model in the near future, as our prediction for this
channel is unambiguously connected to h→ µτ and expected to be the same order of
magnitude. This is shown by the ratio

B(h→ µτ )

B(h→ eτ )
≈ |yµτ |

2

|yeτ |2
≈ (cαL + sαL)

2

(cαL − sαL)2 , (4.56)

which is approximately 1 for small values of θ. Using Eqs. (3.75) and (4.51), we also
predict a nonvanishing leptonic CP phase δLCP ≈ 0.3 at θ = −0.08, the maximal value
still in agreement with the lepton mixing angles. MINOS and NOvA are planning to
measure δLCP in the near future. The latest results from T2K, however, point towards
nearly maximal CP violation in the lepton sector with δLCP = [−3.13,−0.39] (NH),
[−2.09,−0.74] (IH) at 90% C.L. [202].
While the neutral scalars H and η may be well hidden thanks to their tiny Yukawa
couplings, it becomes increasingly unlikely that light scalar states remain undetected in
the accumulating LHC Run 2 data. Together with the updated measurements of h→ µτ ,
the rather fine-tuned parameter space indicates that the initial CMS report may indeed
just be a statistical fluctuation. The T and S parameters also point to light charged
scalars, while the study of h → γγ in App. C.3.3 could not provide complementary
limits on the Higgs parameter space. Furthermore, although not excluded yet, our
distinct prediction B(h→ eτ ) ∼ B(h→ µτ ) is already in tension with first searches for
LFV in the h→ eτ channel [73]. To conclude, a multi-Higgs model would be the most
logical solution to explain the large flavor violation reported in h→ µτ . However, while
it is possible to find a viable region in parameter space, the corresponding predictions
should manifest themselves at the LHC right now.

4.2 charged scalars, discrete symmetries, and RD(∗)

Among the many unresolved anomalies, the deviation in RD(∗) is particularly intriguing
since it has a high statistical significance of more than 4σ after combining all existent
measurements. It is intuitive to explain this charged current anomaly that seems to
prefer τ over e and µ final states with charged Higgses, whose couplings typically scale
with the fermion masses (see Fig. 1.12).
The widely studied 2HDM type II, however, cannot fulfill the requirements imposed
by experimental data, calling for more elaborate extensions [41]. A possibility is to
consider a more general flavor structure realized by the 2HDM type III [203] or a third
Higgs doublet. In this section we study whether 3HDMs with flavor symmetries can
shed light on the excess in B → D(∗)τν decays.
After reviewing the challenges in 2HDMs in Sec. 4.2.1, we extend the framework in
Sec. 4.2.2 to 3HDMs focusing on the charged scalar interactions to make predictions for
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RD(∗) . We further discuss how the most popular discrete flavor symmetries with triplet
representations affect these predictions and apply the framework to the S4 flavor model
presented in Sec. 4.1.

4.2.1 2HDM type II and III

The challenges of building a model to explain RD(∗) go way beyond modifying the
B → D(∗)τν channel. In fact, the NP model should not only accommodate RD,RD∗
and B → τν at the same time, but also the B0

s,d −B
0
s,d oscillations and the radiative

decays b→ qγ, q = s, d. Multi-Higgs extensions typically affect all of these observables
simultaneously without an additional mechanism to forbid specific couplings. In that
respect discrete flavor symmetries are particularly useful. The task becomes even more
challenging when taking into account the shape of the measured q2 distribution provided
by BaBar [41].
One of the most studied extensions of the SM, the 2HDM type II requires particularly
large values of tan2 β

m2
H±

to accommodate the excess in RD(∗) [41]. Such large tan β values

modify the q2 spectra of B → D(∗)τν in an undesired fashion and thereby disfavor the
2HDM type II. Moreover, the model provides only one scalar operator which cannot fit
the three observables RD, RD∗ and B(B± → τν) at the same time.
To accommodate the channels simultaneously, a more general flavor structure with both
Higgses coupling to all quarks is necessary.2 The relevant effective Hamiltonian is

Heff = CSMOSM +CROSR +CLOSL, (4.57)

with
OSM = [cγµPLb][τγµPLντ ] ,
OSR = [cPRb][τPLντ ] ,
OSL = [cPLb][τPLντ ] ,

(4.58)

in the limit of massless neutrinos. While the 2HDM type II provides only CR in addition
to CSM, the type III also allows for a nonzero CL, which can be used to explain the
data. In type III the ratios are modified in the following way [203]:

RD = RSM
D

(
1 + 1.5Re

[
CR +CL
CSM

]
+ 1.0

∣∣∣∣CR +CL
CSM

∣∣∣∣2
)

,

RD∗ = RSM
D∗

(
1 + 0.12Re

[
CR −CcbL
CSM

]
+ 0.05

∣∣∣∣CR −CLCSM

∣∣∣∣2
)

,
(4.59)

where RSM
D(∗) is the SM value of the respective observable. The Wilson coefficients in

turn are determined by the charged scalar Yukawa couplings ΓL(R)H
±

CR(L) = −
1

M2
H±

ΓL(R)H
±

cb ΓLH
±

ντ

∗
, CSM =

4GF√
2
Vcb , (4.60)

which can be extracted from the respective Yukawa Lagrangian.
2 Anomalously enhanced charged Higgs couplings in the flipped 2HDM are another possibility [204].
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Figure 4.4: Constraints on CR - CL from RD (blue) and RD∗ (red) narrow the parameter
space down to tiny viable regions. The gray dot marks the SM value.

Depicting the constraints from RD and RD∗ in the CR - CL plane (see Fig. 4.4), we
find that explaining both ratios simultaneously may require fine-tuning even in 2HDMs
with flavor violation. A full flavor analysis based on the 2HDM type III has been done
in Ref. [203].

4.2.2 3HDMs with Flavor Symmetries

The additional charged scalars and mixing angles of the 3HDM result in a more
complicated charged scalar Lagrangian. Specific assumptions about the flavor structure
simplify the couplings at the expense of less freedom to fit the observables. Alternatively,
discrete flavor symmetries can be exploited to obtain relations among the scalar mixing
angles by simplifying the 3HDM scalar potential.
The charged scalar interactions are easiest described in the Higgs basis, where

〈φh1,0〉 = v, 〈φh2,0〉 = 0, and 〈φh3,0〉 = 0 (4.61)

with v2 = v2
SM = v2

1 + v2
2 + v2

3 and the Higgs basis doublets take the form

φh1 =

(
G+

1√
2 (v+H1 +G0)

)
, φh2,3 =

(
H+

2,3
1√
2 (H2,3 + iA2,3)

)
. (4.62)

In this notation the Goldstone bosons G0 and G+ that are absorbed by the gauge bosons
are located in the doublet φh1 . As shown in Sec. 2.2.2, the charged Higgs couplings are
then described by nondiagonal matrices η and ξ that vanish in the SM limit. The Higgs
basis rotation depends only on the VEV alignment preferred by the 3HDM potential
and is given by Eq. (2.37).
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The charged scalar Lagrangian for the quarks is then written as

−L±ud =ui(V
CKM
ik η̃dkjPR − η̃u∗ik V CKM

kj PL)djH
+
2

+ui(V
CKM
ik ξ̃dkjPR − ξ̃u∗ik V CKM

kj PL)djH
+
3 + h.c. ,

(4.63)

where
V u,d
L ηu,d

ij V
u,d
R

†
= η̃u,d

ij , V u,d
L ξu,d

ij V
u,d
R

†
= ξ̃u,d

ij . (4.64)

The matrices V u,d
L,R entering η̃u,d and ξ̃u,d transform the fermions into their mass bases

and can be derived from

V u,d
L yu,d

ij V
u,d
R

†
=

1
v
mu,d and VCKM = V u

L V
d,†
L , (4.65)

where yu,d
ij are the couplings of the doublet φh1 . In the same fashion the charged lepton

couplings read (V PMNS ≡ U)

−L±l = νiL
[
UTikη̃

l
kjH

+
2 + UTikξ̃

l
kjH

+
3

]
ljR + h.c. (4.66)

Keeping in mind that the H±2,3 fields still have to be transformed into the mass basis(
H±2
H±3

)
=

(
cos ρ sin ρ
− sin ρ cos ρ

)(
H±b
H±c

)
, (4.67)

we can derive the couplings ΓL(R)H
± for quarks from Eq. (4.63)

Γ
LH±

b
cb = V CKM

ck (η̃dkb cos ρ− ξ̃dkb sin ρ) ,

ΓLH
±
c

cb = V CKM
ck (η̃dkb sin ρ+ ξ̃dkb cos ρ) ,

Γ
RH±

b
cb = −(η̃u∗ck cos ρ− ξ̃u∗ck sin ρ)V CKM

ki ,

ΓRH
±
c

cb = −(η̃u∗ck sin ρ+ ξ̃u∗ck cos ρ)V CKM
kb ,

(4.68)

where we implicitly use the Einstein notation for repeated indices. In the charged lepton
sector we have (after summing over the neutrino states)

Γ
LH±

b
ντ =

3∑
f=1

UTfk

[
η̃lkτ cos ρ− ξ̃lkτ sin ρ

]
,

ΓLH
±
c

ντ =
3∑

f=1
UTfk

[
η̃lkτ sin ρ+ ξ̃lkτ cos ρ

]
.

(4.69)

Finally, in the Higgs mass basis the relevant Wilson coefficients are

CR(L) = −

 1
m2
H±
b

Γ
L(R)H±

b
cb Γ

LH±
b

ντ

∗
+

1
m2
H±c

ΓL(R)H
±
c

cb ΓLH
±
c

ντ

∗
 , (4.70)

which we can combine with Eqs. (4.68) and (4.69) to estimate the impact on RD(∗) . To
make more specific predictions we study in the following how discrete symmetries affect
the charged Higgs interactions in the 3HDM.
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Discrete Symmetries

For this analysis we assume that the three scalar doublets are unified into a triplet
representation of a flavor symmetry. The scalar interactions can then be studied for the
VEV alignments that minimize the scalar potential. These were derived systematically for
the A4-, S4- and ∆(27)-symmetric 3HDM potentials using geometric minimization [120].
Their global minima are

v(1, 0, 0) , v(1, 1, 1) , (4.71)

plus two complex VEV alignments for each of the groups. Discussing the additional
source of CP violation entailed by these complex VEVs is beyond the scope of this work.
Focusing therefore on the real alignments we obtain the Higgs basis rotations Rv00 = I

and Rvvv given in Eq. (2.38).
The shape of the scalar potential decides over the global minimum and also determines
the scalar mass eigenstates fixing the angle ρ in the charged Higgs interactions. Quartic
couplings in the scalar potential can lead to deviations from these alignments, which,
for the sake of simplicity, are neglected here as they produce only subleading effects.
The general A4-symmetric 3HDM potential [119]

V (φ) = −µ2
3∑
i=1

φ†iφi + α

( 3∑
i=1

φ†iφi

)2

+
3∑

i,j=1,i 6=j

(
β(φ†iφi)(φ

†
jφj) + γ|φ†iφj |

2
)

+
(
δ
[
(φ†1φ2)

2 + (φ†2φ3)
2 + (φ†3φ1)

2
]
+ h.c.

)
(µ,α,β, γ, δ,σ ∈ R) .

(4.72)

extends to S4 in the case that δ is real, which we adopt in the following. Hence, most
statements regarding the A4 potential also apply to S4 and vice versa. An interesting
feature of the S4 potential is that the VEV alignments v(1, 1, 1) and v(1, 0, 0) and
their respective Higgs basis rotations already diagonalize the charged Higgs couplings
without further ado. As a consequence, the mixing angle ρ is zero and the charged
scalar couplings can simply be derived from the Higgs basis Lagrangian with

v1 = v2 = v3 : m2
H±1,2

= m2
H±
b,c

= −v2(γ + δ),

v2 = v3 = 0 : m2
H±1,2

= m2
H±
b,c

= v2(γ − δ). (4.73)

Therefore, in both alignments the Wilson coefficients CR(L) reduce to

CR = − 1
m2
H±
b,c

3∑
m=1

V CKM
cn

[
η̃dnbU

†
mkη̃

l∗
kτ + ξ̃dnbU

†
mkξ̃

l∗
kτ

]
, (4.74)

CL =
1

m2
H±
b,c

3∑
m=1

[
η̃ucnV

CKM
nb U †mkη̃

l∗
kτ + ξ̃ucnV

CKM
nb U †mkξ̃

l∗
kτ

]
(4.75)

and since the contributions of H±b and H±c are indistinguishable because of their mass
degeneracy, we can further replace η̃+ ξ̃ → η̃′ yielding

CR = − 1
m2
H±
b,c

3∑
m=1

V CKM
cn η̃d′nbU

†
mkη̃

l′∗
kτ , (4.76)

CL =
1

m2
H±
b,c

3∑
m=1

η̃u′cnV
CKM
nb U †mkη̃

l′∗
kτ . (4.77)
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For the ∆(27) symmetric potential

V (φ) = −µ2
3∑
i=1

φ†iφi + α

( 3∑
i=1

φ†iφi

)2

+
3∑

i,j=1,i 6=j

[
β(φ†iφi)(φ

†
jφj) + γ|φ†iφj |

2
]

+
(
δ
[
(φ†1φ2)(φ

†
1φ3) + (φ†2φ3)(φ

†
2φ1) + (φ†3φ1)(φ

†
3φ2)

]
+ h.c.

) (4.78)

with µ,α,β, γ ∈ R, δ ∈ C, the charged Higgs masses are

v1 = v2 = v3 : m2
H±1,2

= m2
H±
b,c

= −v2(γ + Re δ) ,

v2 = v3 = 0 : m2
H±1,2

= m2
H±
b,c

= −v2β . (4.79)

Thanks to the discrete symmetry, also here the Higgs basis transformations diagonalize
the charged Higgs Yukawa couplings with ρ = 0. Therefore the Wilson coefficients
CR(L) are again given by Eqs. (4.76) and (4.77).
In conclusion, the highly symmetric VEV alignments of symmetries with triplet repre-
sentations greatly simplify the charged Higgs couplings of 3HDMs. Since the charged
Higgs bosons are degenerate in mass, the 3HDM is reduced by the flavor symmetry to
an effective 2HDM type III. This generic feature disfavors some of the most popular
models based on A4 or S4 that are motivated by neutrino mixing data as candidates
to explain the RD(∗) anomaly. An example using the S4 flavor model of Sec. 4.1 is
discussed in the following subsection.

S4 Model Example

Using the S4 model of Sec. 4.1 as an example, the matrices ηl, ξl,VL, and VR are derived
easily from the basic structure of the charged lepton sector. The scalar triplet φ acquires
VEVs in the alignment v√

3 (1, 1, 1), hence the Lagrangian is transformed into the Higgs
basis via the Rvvv rotation given in Eq. (2.38). The φh1 couplings are given by the
matrix yl, which has to be diagonalized yielding the unitary matrices V l

L,R. Explicitly,

yl =
1
v

√
2
3

 me mµ mτ

ω2me ωmµ mτ

ωme ω2mµ mτ

 , ω = e
2iπ

3 , (4.80)

is diagonalized by a bi-unitary transformation VLy
lV †R with

VL =
1√
3

 1 ω ω2

1 ω2 ω

1 1 1

 and VR = diag(1, 1, 1) . (4.81)

The matrices VL and VR in turn determine the entries of η̃l and ξ̃l that eventually fix
the charged Higgs couplings. In agreement with Eq. (4.73) the charged scalar masses
are degenerate, therefore their couplings cannot be distinguished in an experiment and
we can redefine η̃l + ξ̃l ≡ η̃l′, which is precisely

η̃l′ = −
√

2
v

 0 mµ mτ

me 0 mτ

me mµ 0

 . (4.82)
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(a) (b)

Figure 4.5: Constraints from RD (blue) and RD∗ (red) in the V CKMη̃d′ - η̃u′V CKM plane
with ΓLH

±
ντ = −2

√
2

v mτ ,mH± = 200 GeV (a) and ΓLH
±

ντ = −1,mH± = 500 GeV (b).

In conclusion, the sum of the charged lepton contributions ΓLH
±

ντ entering the Wilson
coefficients CR(L) is

ΓLH
±

ντ = −
√

2mτ

v

2∑
i=1

3∑
j=1

Uij = −a
√

2mτ

v
, (4.83)

where a is an order one coefficient defined by the sum of the PMNS matrix elements.
Using this result (assuming for simplicity a ≈ 1) and the constraints from RD and RD∗ ,
Eq. (4.59), we can determine the values of η̃d,u′ required to explain the ratios. As
Fig. 4.5 (a) shows, the anomaly could be explained by pure up-type flavor violation
in some region of the parameter space. However, η̃u′ has to be at the minimum order
1, which implies flavor-violating couplings at least of the order of the top Yukawa for
mH± = 200 GeV. More realistically though, the charged Higgs masses should be much
heavier to avoid tension with rare B decays and direct searches via decays into W±
gauge bosons. This in turn would require even larger η̃u′ couplings to account for RD(∗) .

Fig. 4.5 (b) depicts an alternative scenario with order one lepton couplings and charged
Higgs masses of 500 GeV. In this scenario up-type flavor violation may be much smaller,
but the large LFV should be checked against processes such as µ→ eγ.

Since Higgs couplings to fermions are typically of the order of mf/vSM � 1, it is difficult
to explain the origin of such large flavor-violating couplings in a multi-Higgs framework
with discrete symmetries. We therefore conclude that charged scalars may not be the
ideal candidates to explain the RD(∗) anomaly and take another approach to the B
meson puzzle in the following section.
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4.3 common origin of B decays and neutrino masses

TeV scale leptoquarks modifying b→ sll and b→ clν transitions are among the most
prominent solutions to the flavor puzzles posed by low-energy precision B physics. Viable
candidates to explain the observables RK and RD(∗) include the scalar leptoquarks S0
and S1 [186, 205–211], and the vector leptoquarks V0 and V1/2 [212–214]. Attempts
have been made using leptoquarks to draw connections beyond B physics to other
unexplained phenomena, such as neutrino masses [147,215–222], 0νββ decay [223,224],
g − 2 [62, 225, 226], h → µτ [226, 227], and even the diphoton excess near 750 GeV
reported in 2015 [228, 229]. Vector leptoquarks in particular have been shown to
be excellent candidates to explain the latter without the need of introducing many
additional fermions [228,230]. For a recent review on leptoquark physics, see Ref. [231].
Conveniently, constraints from B-physics force the leptoquarks into a testable range,
1 TeV . M . 50 TeV, with an upper bound on their mass dictated by the Bs −Bs

mixing phase [205].
In this section we explore the possibility of such TeV scale leptoquarks being respon-
sible for low-scale neutrino masses, thereby connecting several currently unresolved
phenomena of the SM. The idea of leptoquarks as the origin of neutrino masses has
been considered before, but previous attempts expected lighter leptoquarks with small
couplings or involve two loops, where one of the leptoquarks cannot be linked to the B
anomalies as it couples only to up-type quarks. Explaining RK and RD, on the other
hand, requires sizable couplings to down-type quarks and charged leptons, posing a
challenge to combine the seemingly distinct observables.
To this end we propose viable flavor patterns based on an FN framework for the scalar
leptoquarks S1 and S1/2, and for the vector leptoquarks V0 and V1/2 to accommodate the
B physics anomalies and neutrino masses. Even the diphoton excess can be addressed
in this model, which is discussed in chapter 5.2. The FN mechanism reproduces the
fermion mass hierarchies and the quark mixing in good agreement with experimental
data [85], while the neutrino-leptoquark interactions give rise to the large leptonic
mixing angles.
We introduce the necessary tools in the context of the scalar leptoquark model with S1
and S1/2 in Sec. 4.3.1 and discuss under which conditions this model can accommodate
the RK anomaly and neutrino masses. For the sake of clarity, a more thorough analysis
using the vector leptoquarks V0 and V1/2 is postponed to Sec. 4.3.2. These leptoquarks
additionally account for the observed deviations in RD(∗) and consequently require a
more intricate model realization.

4.3.1 A Scalar Leptoquark Model for RK and Neutrino Masses

The mixing of two leptoquarks induced by a ∆L = 2 Higgs boson coupling is not
only crucial for generating Majorana neutrino masses, it can also affect the B meson
observables if these two leptoquarks both contribute to down-type quark transitions. To
explore whether the B meson anomalies and neutrino masses can actually be combined
in one framework, we start from a minimal model based on the scalar leptoquarks S1
and S1/2. The section is divided into three parts. First we study the leptoquark mixing
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and their effects on RK , then we discuss the generation of neutrino masses, and finally
we propose some ideas to combine the two processes.

Leptoquark Mixing and RK

As shown in Ref. [205], the deviation in RK is best explained by (axial) vector operators
that, unlike scalar operators, affect B → Kll but leave Bs → ll unchanged. Due to Fierz
rearrangement [150], the desired vector operators are induced by scalar leptoquarks with
electric charge 2/3 or −4/3 that couple to down-type quarks and charged leptons. In
light of neutrino mass generation we focus only on the 2/3 leptoquarks, whose mixing
can induce a Majorana mass as depicted in Fig. 4.7. Their corresponding quantum
numbers are listed in Tab. 4.6.

Leptoquark (SU(3)C ,SU(2)L)U(1)Y QEM B L

S1/2 (3, 2)1/6 (−1/3, 2/3) 1/3 −1
S1 (3, 3)−1/3 (2/3,−1/3,−4/3) 1/3 1

Table 4.6: Quantum numbers of the scalar leptoquarks with electric charge 2/3 that
can account for the RK anomaly as well as neutrino masses. B and L here refer to
baryon and lepton number, respectively.

b l−

S̃i

s l+

b l−

Ṽi

s l+

Figure 4.6: b → sll transition mediated by the scalar S̃i (i = 1, 2) (left) and vector
leptoquark Ṽi (i = 1, 2) mass eigenstates (right), defined in Eq. (4.90) and Eq. (4.127),
respectively.

To study effects on RK it is convenient to work with a flavor-changing |∆B| = |∆S| = 1
effective Hamiltonian, integrating out the heavy degrees of freedom

Heff = −4GF√
2
VtbV

∗
ts

αe
4π
∑
i

CiOi , (4.84)

where GF is the Fermi constant, αe the electromagnetic coupling, Vud the CKM matrix
elements, and Ci are the Wilson coefficients of their operators Oi.
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By adding the leptoquarks listed in Tab. 4.6 to the SM field content we can write down
interactions of the form

−LSLQ = λRS1/2
dPLLS1/2 + λLS1Q

cPLiτ2S
†
1L+ h.c. (4.85)

After Fierz rearrangement these leptoquarks generate the effective (axial) vector opera-
tors

O9 = [sγµPLb]
[
lγµl

]
,

O10 = [sγµPLb]
[
lγµγ5l

]
,

(4.86)

and their chirality flipped counterparts O′9,10 by interchanging the chiral projectors PL
and PR. A comparison with Eq. (4.84) yields (l = e,µ),

S1 : C l9 = −C l10 =
π

αe

(
λLsl

)∗
λLbl

VtbV
∗
ts

√
2

2m2
S1
GF

,

S1/2 : C ′l10 = −C ′l9 =
π

αe

λRsl

(
λRbl

)∗
VtbV

∗
ts

√
2

4m2
S1/2

GF
,

(4.87)

where the ql indices denote one element of the matrix λL.
As shown in Refs. [147,232], two leptoquarks sharing the same electric charge Q will
eventually mix through a coupling with the SM Higgs boson via

V (Si,H) = −(m′2Si − gSiH
†H)S†i Si

+hSHiτ2S1S
†
1/2 + h.c. (i = 1, 1/2) ,

(4.88)

with m2
Si
≡ m′2Si − gSiv

2
SM. The last term, in particular, accounts for the mixing and

hence induces neutrino masses if hS 6= 0.
The resulting leptoquark mass eigenstates are a mixture of flavor states with the QEM
charges 2/3, −1/3, and a distinct −4/3 state

M2
2/3 = M2

−1/3 =

(
m′2S1
− gS1v

2
SM hSvSM

hSvSM m′2S1/2
− gS1/2v

2
SM

)
,

M2
−4/3 = m′2S1

− gS1v
2
SM .

(4.89)

The rotation angle α diagonalizing the M2
2/3 matrix is determined by(

S̃1
S̃2

)
= R

(
S1
S1/2

)
2/3

, R =

(
cosα − sinα
sinα cosα

)
(4.90)

and tan 2α =
2hSvSM

m2
S1/2
−m2

S1

, (4.91)

where S̃i denotes the leptoquark mass eigenstates. The mixing shifts the absolute lepto-
quark masses and induces additional (pseudo-)scalar and tensor operators potentially
affecting B(Bs → ll) and B(B → Kll). Their Wilson coefficients are

CS = CP =
πλRsl

(
λLbl

)∗
4αe
√

2GFVtbV ∗ts
sin 2α

(
1
m2
S̃2

− 1
m2
S̃1

)
(4.92)
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with similar expressions for C ′P and C ′S directly depending on the mixing angle α. For
m2
S1/2
� m2

S1
the coefficients simplify to

CS = CP ≈ −
π

4αe
√

2GFVtbV ∗ts

hSvSMλ
R
sl

(
λLbl

)∗
m2
S1/2

m2
S1

, (4.93)

−C ′P = C ′S ≈ −
π

4αe
√

2GFVtbV ∗ts

hSvSMλ
L
sl

(
λRbl

)∗
m2
S1/2

m2
S1

, (4.94)

CT = (CS +C ′S)/4 , CT5 = (CS −C ′S)/4 . (4.95)

The Wilson coefficients CS,P ,T are suppressed by a factor hSvSM/|∆m2
S |, with ∆m2

S ≡
m2
S1/2
−m2

S1
, and are therefore less relevant at low energies, but should be taken into

account in the case of degenerate leptoquark masses. In the limit of small mixing, the
shift of the leptoquark masses also becomes negligible for determining RK .
As shown, e.g., in Ref. [218], the dimensional parameter hS cannot be arbitrarily
large, but is in fact limited by the condition of positive leptoquark masses and the
perturbativity of the theory to

hS ≤ mS1mS1/2 /vSM . (4.96)

The RK measurement by LHCb implies at 1σ [205]

0.7 . Re [Xe −Xµ] . 1.5 , with X l = C l9 −C l10 = 2C l9 . (4.97)

Hence, with the combination of S1 and S1/2 we obtain in the case of small leptoquark
mixing

Xe −Xµ =
π√

2αeGFVtbV ∗ts

{
2
m2
S1

[(
λLse

)∗
λLbe −

(
λLsµ

)∗
λLbµ

]
− 1
m2
S1/2

[
λRse

(
λRbe

)∗
− λRsµ

(
λRbµ

)∗]}
.

(4.98)

By considering all constraints on leptoquark couplings to down-type quarks and charged
leptons, the authors of Ref. [186] came up with a “data-driven” pattern that complies
with all current bounds and can produce a visible signal in b→ sll processes:

λql ∼ λ0

 ρdκ ρd ρd
ρκ ρ ρ

κ 1 1

 (4.99)

with the allowed parameter ranges (assuming λ0 ≈ 1)

ρd . 0.02 , κ . 0.5 , 10−4 . ρ . 1 ,
κ

ρ
. 0.5 , ρd

ρ
. 1.6 .

(4.100)

The constraints leading to this pattern are summarized explicitly in Sec. 4.3.2. The
overall scale λ0 is fixed by Eqs. (4.97), (4.98), and the leptoquark masses mSi , where
λ0 ' O(10−2) corresponds to light leptoquarks of a few TeV, while λ0 ≈ 1 implies heavy
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leptoquarks. Assuming for simplicity that both λL and λR follow this pattern – many
other possibilities are plausible, too – Eq. (4.98) simplifies to

Xe −Xµ =
π√

2αeGFVtbV ∗ts
λ2

0ρ(κ
2 − 1)

(
2
m2
S1

− 1
m2
S1/2

)
. (4.101)

This can be matched perfectly well to Eq. (4.97) for a suitable choice of couplings
and leptoquark masses. If, e.g., the leptoquark masses are strongly hierarchical with
mS1/2 � mS1 , the mixing between them is minimized, thereby rendering additional
(pseudo-)scalar and tensor operators negligible. RK is then almost exclusively determined
by S1. It is noteworthy that, if S1/2 indeed contributes significantly to RK , the
measurement of RK∗ will be a smoking gun of NP since right-handed currents lead to
deviations in the double ratio RK∗

RK
6= 1 [206].

Generating Neutrino Masses

If at least two leptoquarks with couplings to the same type of quarks are present, a
Majorana neutrino mass as depicted in Fig. 4.7 can be obtained at one-loop level. As
pointed out in Refs. [147,233], this mass term is generated by leptoquark mixing with
the Higgs boson and depends on the leptoquark couplings λL,R as well as on the strength
of their mixing. This is particularly interesting in models where a combination of two
leptoquarks is considered to explain the measured B meson anomalies.

νν

H

S̃i
†

S̃i

b b

Figure 4.7: Majorana neutrino mass generated at one-loop level through a ∆L = 2
leptoquark-Higgs coupling.

Assuming that the scalar leptoquarks S1 and S1/2 are used simultaneously to reproduce
RK , the contributions to the neutrino mass matrix read

Mν
ii′ =

3
16π2

∑
j=1,2

∑
k=d,s,b

mkB0(0,m2
k,m2

Sj )Rj1Rj2

×
[(
λRS1/2

)
ki

(
λLS1

)
ki′

+
(
λRS1/2

)
ki′

(
λLS1

)
ki

]
where Rjl are the elements of the rotation matrix diagonalizing the leptoquark mass
matrix. Following Ref. [217], we consider only the finite part of the Passarino-Veltman
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function B0 since the divergences cancel out due to R11R12 = −R21R22 = sin 2α. In
the relevant leptoquark mass range 1 TeV . mSj . 50 TeV B0 is limited to

B0(0,m2
k,m2

Sj ) =
m2
k log(m2

k)−m2
Sj

log(m2
Sj
)

m2
k −m2

Sj

. 8 . (4.102)

Starting from the data-driven pattern shown in Eq. (4.99), we can estimate the absolute
neutrino mass scale generated by the leptoquark couplings. The pattern is strongly
hierarchical in terms of quark families since the light generations are tightly constrained
by kaon phenomenology. Therefore, it is clear that the bottom quark will dominate the
loop assuming that λL and λR have a similar structure. The latter does not have to be
the case, and other plausible scenarios are discussed in the remainder of this section.
Considering only the dominant bottom quark loop we obtain

Mν
ii′ ≈

3
16π2mb sin 2α∆B0︸ ︷︷ ︸

≡a

[(
λRS1/2

)
bi

(
λLS1

)
bi′

+
(
λRS1/2

)
bi′

(
λLS1

)
bi

]
(4.103)

with

∆B0 ≡
[
B0(0,m2

b ,m2
S1/2

)−B0(0,m2
b ,m2

S1)
]

, (4.104)

and after inserting Eq. (4.105)

Mν
ii′ ∝ a · λ2

0

 κ2 κ κ

κ 1 1
κ 1 1

 , (4.105)

while the neutrino mass eigenstates in terms of the leptoquark couplings are given by

mν
1 = 0 , mν

2(3) = a

∑
i

λLbiλ
R
bi
−
(+)

√∑
i

(
λLbi
)2∑

i

(
λRbi
)2 , (4.106)

with λRS1/2
≡ λR, λLS1

≡ λL, and i = e,µ, τ . In agreement with Ref. [217], one mass
eigenstate is exactly zero if either only down-type or up-type quarks generate neutrino
masses.
Judging from Eqs. (4.105) and (4.106), a small breaking of the µ− τ symmetry of the
original pattern is required to obtain two nonzero neutrino masses, and – if leptoquarks
are the sole origin of lepton mixing – to reproduce the PMNS mixing matrix observed
in neutrino oscillations. Since we perform only an order-of-magnitude estimation, this
problem is ignored for the moment.
Moreover, the rough estimate using the data-driven pattern yields an eigenvalue of order
one times the bottom quark mass, which lies in the GeV range. Taking into account that
λ0 can be as small as O(10−2), we can suppress the neutrino mass scale by another four
orders of magnitude. It then comes down to explaining the smallness of the parameter
a to reduce the mass scale by another five orders of magnitude. We can either attribute
this to a tiny mixing of the leptoquarks with the SM Higgs, or a degeneracy among the
leptoquark masses, for which the difference of Passarino-Veltman functions

∆B0 ≈ log
[
m2
S1/2

m2
S1

] (
m2
b � m2

Si

)
(4.107)
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approaches zero. In this limit tan 2α [cf. Eq. (4.91)] goes to infinity leading to maximal
mixing among the leptoquarks. As a result sin 2α = 0.5 will take its maximal but
finite value. As stated earlier, however, with |∆m2

S | becoming small, additional scalar,
pseudoscalar and tensor b → sll-inducing operators become relevant that have to be
taken into account in the computation of RK .
Interestingly, the mixing is minimized in the opposite scenario with strongly hierarchical
leptoquark masses mS1/2 � mS1 . The extent is limited by the upper bound on the
leptoquark mass mS . 50 TeV to comply with the phase measured in B0

s −B
0
s mixing.

∆B0 ≈ 7.8 then takes its maximal value, while tan 2α is suppressed by a factor of up to
2500. Last but not least, one can also argue with the smallness of hSvSM compared to
∆m2

S to reduce the mixing by a few orders of magnitude.
In the following section we concentrate on alternative setups to suppress the absolute
neutrino mass by adopting different structures for the coupling matrices λL and λR,
including an FN mechanism.

Alternative Setups

As stated above, λL and λR need not necessarily have the same pattern. Distinct
couplings together with a slight breaking of the µ− τ symmetry are actually favored
by neutrino oscillation experiments requiring two nonzero neutrino mass eigenstates
and large mixing angles. The latter dictate certain relations between the leptoquark
couplings to explain the hierarchy of the mixing angles θ13 < θ12 < θ23, assuming that
leptoquarks alone are responsible for the leptonic mixing [217]:

λLqeλ
R
qτ + λLqτλ

R
qe � λLqµλ

R
qτ + λLqτλ

R
qµ ,

λLqµλ
R
qτ + λLqτλ

R
qµ & λLqµλ

R
qµ − λLqτλRqτ .

(4.108)

Furthermore, the couplings in λL and λR do not have to be the same order of magnitude.
One or the other could have significantly smaller couplings to the SM fermions, effectively
rendering the corresponding leptoquark redundant for the explanation of theRK anomaly,
while at the same time reducing the absolute neutrino mass scale considerably.
In the case that only one leptoquark contributes to the B meson sector, a third
possibility opens up that forces one of the leptoquarks to couple exclusively to lighter
quark generations, e.g.,

λ '

 ηde ηdµ ηdτ
0 0 0
0 0 0

 , λ '

 0 0 0
ηse ηsµ ηsτ
0 0 0

 . (4.109)

The ηsl and ηdl entries are constrained to be small by experimental data and will,
therefore, lower the neutrino mass scale. Moreover, the mass scale is further suppressed
by the light quark masses ms,md � mb now dominating the loop. Consequently, the
requirements for the leptoquark-Higgs mixing are much more relaxed compared to the
previous scenarios.
Finally, if one leptoquark couples solely to up-type quarks while the other one does
not, neutrino masses can be generated only at two-loop level [218]. This mechanism
sufficiently suppresses the neutrino mass scale, but is independent of the B meson
anomalies.
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A quick numerical example will demonstrate that some reasonable choice of parameter
values can indeed combine the RK measurement with the light neutrino mass scale at
one-loop level. Starting from the patterns

λLS1 ∼ λ0

 ρdκ ρd ρd
ρκ ρ ρ

κ 1 1

 , λRS1/2
∼

 ηde ηdµ ηdτ
ηse ηsµ ηsτ
ηbe ηbµ ηbτ

 , (4.110)

where the ηql are arbitrary constants, the neutrino mass matrix Mν
ii′ is approximately

given by

Mν
ii′ ≈ a

 2ηbeκ κηbµ + ηbe κηbτ + ηbe
κηbµ + ηbe 2ηbµ ηbτ + ηbµ
κηbτ + ηbe ηbτ + ηbµ 2ηbτ


with a =

3λ0
16π2mb sin 2α log

[
m2
S1/2

m2
S1

]
.

(4.111)

In the limit mS1 ≈ 1 TeV � mS1/2 ≈ 50 TeV, S1 will be the dominant contribution to
RK . Choosing λ0,κ and ρ ∼ O(ε) with ε ≈ 0.2 will then comply with flavor physics
precision measurements and yield 0.7 . Re [Xe −Xµ] . 1.5 implied by RK at 1σ.
By using a specific ansatz for the leptoquark couplings, e.g., ηql ' mqml/v2

SM, we are
able to pin down the neutrino masses. Such hierarchical patterns are motivated by
and easily obtained in FN-type flavor models, where the fermion mass hierarchies are
explained through an additional U(1)FN family symmetry.
As an example, let us consider the fermion and leptoquark charges listed in Tab. 4.7,
which can reproduce the SM fermion mass hierarchies (ε ≈ 0.2)

mu : mc : mt ≈ ε8 : ε4 : 1 ,
md : ms : mb ≈ ε7 : ε5 : ε3 ,
me : mµ : mτ ≈ ε9 : ε5 : ε3 ,

(4.112)

with some minor deviations in the CKM mixing matrix. We denote the Wolfenstein
parameter here ε instead of λ to avoid confusion with the leptoquark matrices λL,R.
The FN charges can be expressed in terms of the free parameter QFN(τ ) ≡ qτ , which
always cancels out in the leptoquark interactions of Eq. (4.85). Furthermore, demanding
U (1)FN invariance of the interaction Hiτ2S1S

†
1/2 essential for neutrino masses, dictates

the FN charge assignment Q(S1) = Q(S1/2), provided that the Higgs charge Q(H) = 0.
This implies qτ = 6 but does not affect the leptoquark-fermion couplings.
The resulting leptoquark textures are the following:

λLS1 '

 ε4 ε3 ε3

ε3 ε2 ε2

ε2 ε ε

 , λRS1/2
'

 ε3 ε2 ε2

ε6 ε5 ε5

ε9 ε8 ε8

 , (4.113)

which correspond to λ0 ≈ ε, ρ ≈ ε, ρd ≈ ε2 and κ ≈ ε of the data-driven pattern,
cf. Eq. (4.105). Note that the charges were chosen such that one of the patterns
is inverse hierarchical in terms of quark generations, i.e., coupling strongly to d and
weakly to b quarks. This has some interesting phenomenological implications not only
for neutrino masses. By accommodating the two leptoquarks simultaneously in the FN
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Field Q1 Q2 Q3 d s b u c t

U(1)FN 2 1 0 9 6 3 10 5 0

Field L1 L2 L3 e µ τ S1 S1/2 H

U(1)FN qτ + 1 qτ qτ qτ + 10 qτ + 5 qτ + 3 qτ − 1 11− qτ 0

Table 4.7: Possible U(1)FN quantum numbers consistent with the SM fermion mass
hierarchies and VCKM to obtain the patterns discussed in Eq. (4.113). The condition
Q(S1) = Q(S1/2) implies qτ = 6.

flavor symmetry, one of the leptoquarks always suppresses the strong couplings of the
other, consequently leading to naturally-light neutrino masses. Since

ms ≈ mbε
2 , md ≈ mbε

4 , (4.114)

and therefore

mqλ
R
qiλ

L
qi′ ≈ mbε

9 (q = b, s, d) , (4.115)

all quark loops contribute equally to Eq. (4.102), resulting in an additional factor of 3
in our estimate of the neutrino mass scale. For hS = 1 TeV, we find

mν
3 ≈ 0.30 eV, mν

2 ≈ 0.01 eV, mν
1 = 0, (4.116)

which approximates the expected neutrino mass scale quite well. The structure shown in
Eq. (4.111) also guarantees three nonzero mixing angles implying that leptoquarks could
very well be the sole origin of neutrino masses and mixings. Obtaining the observed
mass squared differences ∆m2

atm and ∆m2
sol and the exact mixing angle values, however,

would require an explicit model realization, which is reserved for the vector leptoquarks
discussed in Sec. 4.3.2.
Note that the leptoquark patterns should be rotated into the mass bases of the respective
fields before analyzing their impact on flavor observables. Since we make only order-of-
magnitude estimates, the rotation matrices are neglected in this discussion keeping in
mind that due to the FN mechanism the mixing matrices are approximately diagonal.
With that said, the mass basis transformations are taken into account in the more
detailed analysis of the vector leptoquark model in Sec. 4.3.2.
Inverse hierarchical patterns like in Eq. (4.113) can induce 0νββ decay and the resulting
limits can be even more stringent than those from LHC searches [215, 223]. This is
particularly interesting since one of the leptoquarks interacts strongly with the first
quark generation. The 0νββ decay requires leptoquark couplings to up-type quarks that
in our framework are only provided by S1. Consequent mixing with S1/2 then generates
the operator [223]

λLuνλ
R
de

hSvSM
m2
S1/2

m2
S1︸ ︷︷ ︸

≡C

[νPRe
c] [uPRd] . (4.117)
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which is because of our limited leptoquark content the only contribution to the 0νββ
decay. Hence, the expression for the half-life simplifies to

T 0νββ
1/2 =

(
|MGT |2ã

2
G2
F

C2
)−1

, (4.118)

where MGT is the nuclear matrix element and ã is a function of the electron mass and
the nuclear radius. For 76Ge, |MGT |2ã = 6.52× 10−10 was obtained numerically in
Ref. [223] and afterwards corrected by a factor of 4 in Ref. [234].
The best bound on the half-life of 76Ge is currently provided by GERDA [27] with

T 0νββ
1/2 (76Ge) > 2.1× 1025 yr. (4.119)

Using the leptoquark patterns shown in Eq. (4.113), we obtain λL11λ
R
11 = ε7 and

consequently

T 0νββ
1/2 (76Ge) ≈ 2.5× 1021 yr

(sin 2α)2

m4
S1/2

m4
S1

∆m4
S(TeV)4 . (4.120)

For our numerical example with mS1/2 ' 50 TeV, mS1 ' 1 TeV and hS = 1 TeV, the
0νββ half-life results in

T 0νββ
1/2 (76Ge) ≈ 9.7× 1029 yr . (4.121)

If the hierarchy of λRS1/2
is even stronger, i.e., md ≈ mbε

5, it is possible to suppress the
neutrino mass scale while getting dangerously close to the current 0νββ bound. In the
scenario of almost degenerate leptoquark masses, mS1 ' 1 TeV and mS1/2 ' 2 TeV, S1/2
still does not contribute to RK due to its tiny s and b quark couplings. Yet, as opposed
to the previous example, the mixing is now significantly enhanced with α ≈ 0.01 for
hS = 0.1 TeV. The extra suppression of λRS1/2

then compensates for the strong leptoquark
mixing to keep the neutrino masses in the eV range. These values thus yield

T 0νββ
1/2 (76Ge) ≈ 2.7× 1026 yr , (4.122)

which lies within the expected sensitivity of GERDA phase II. We conclude that the
0νββ limit is respected thanks to the small leptoquark mixing, but could in principle
allow for an observation of the 0νββ decay in the near future. Another interesting and
important task would be to study the washout effect on the baryon asymmetry of the
Universe but this is beyond the scope of the present analysis [235].

4.3.2 RK ,RD(∗) and Neutrino Masses with Vector Leptoquarks

While scalar leptoquarks can be used to combine RK with neutrino masses, their vector
counterparts can additionally accommodate RD(∗) and the 750 GeV diphoton excess
recently observed by CMS and ATLAS [74, 75]. In fact, also scalar leptoquarks can
easily provide the large O(1) couplings necessary to account for the deviation in RD(∗) .
However, such couplings are in tension with B → Xsνν measurements, implying that
possible solutions are strongly fine-tuned [211]. The vector leptoquark V0 plays a special
part in the anomaly puzzle by providing all the vital interactions for RD(∗) and RK
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while not coupling down-type quarks to neutrinos, which is crucial for B → Xsνν. A
model exploiting this unique property of V0 is presented in the following section.
First we review how RK and RD(∗) can be explained with the vector leptoquarks V0
and V1/2, highlighting the differences and caveats compared to the scalar leptoquark
framework. After summarizing the flavor constraints briefly, we embed the vector
particles in an FN symmetry to obtain appropriate hierarchical patterns. The neutrino
masses and the favored model parameter space are discussed in the final part of the
section.

RK and RD(∗)

Recently, an analysis based on a U (2)5 flavor symmetry also concluded that among
the many possible leptoquark mediators, the (3, 1)2/3 vector leptoquark V0 is the most
suitable to explain the anomalies in the B meson sector [214]. Here we take a different
approach to shaping the leptoquark couplings by embedding them into a U(1) FN
framework. While Ref. [214] focused on constraints from the flavor sector, we study
in addition how these patterns affect neutrino masses and even the diphoton excess
(see Sec. 5.2). To extend the framework to neutrino masses, we introduce a second
leptoquark V1/2 that mixes with V0 through a ∆L = 2 Higgs boson coupling. The
quantum numbers of these leptoquarks are summarized in Tab. 4.8.

Leptoquark (SU(3)C ,SU(2)L)U(1)Y QEM B L

V1/2 (3, 2)1/6 (2/3,−1/3) 1/3 1
V0 (3, 1)2/3 2/3 1/3 −1

Table 4.8: Quantum numbers of the considered leptoquarks with electric charge 2/3
that can account for the RK and RD anomalies as well as neutrino masses. B and L

here refer to baryon and lepton number, respectively.

Adding V1/2 and V0 to the SM field content leads to the following interactions

−LVLQ = λLV0Qγ
µLV0,µ + λRV1/2

ucγµLV †1/2,µ + h.c. (4.123)

Note that the V1/2 leptoquark shares its quantum numbers with the gauge bosons
arising in SU(5)→ SU(3)C ⊗ SU(2)⊗U (1)Y breaking. To avoid rapid proton decay,
which is a typical feature of minimal SU(5) models, we assume an underlying symmetry
that forbids dangerous diquark operators emerging with V1/2.
Like the scalar leptoquarks, the vector particles sharing the same electric charge
eventually mix via

V (Vi,H) =− (m′2Vi − gViH
†H)V †i,µV

µ
i

+ hVHiτ2V
µ

1/2V
†

0µ + h.c. (i = 0, 1/2) ,
(4.124)

where hV 6= 0 is crucial for nonzero neutrino masses and m2
Vi
≡ m′2Vi − gViH

†H. Again,
the hV parameter is limited by the condition of positive leptoquark masses and the
perturbativity of the theory to

hV ≤ mV0mV1/2 /vSM . (4.125)
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The leptoquark mass eigenstates are a mixture of flavor states with QEM charge 2/3
and a distinct −1/3 state stemming from V1/2,

M2
2/3 =

(
m′2V0
− gV0v

2
SM hV vSM

hV vSM m′2V1/2
− gV1/2v

2
SM

)
,

M2
−1/3 = m′2V1/2

− gV1/2v
2
SM .

(4.126)

The rotation angle α mixing the 2/3 states is here given by(
Ṽ1
Ṽ2

)
= R

(
V0
V1/2

)
, tan 2α =

2hV vSM
m2
V1/2
−m2

V0

≡ 2hV vSM
∆m2

V

, (4.127)

where Ṽi denotes the mass eigenstates.
The left-handed currents induced by V L

0 are sufficient to explain the SM deviations so
that V1/2 only acts as an auxiliary particle to induce neutrino masses. The leptoquark
V1/2 itself does not couple directly to down-type quarks, but will do so through its
mixing with V0. However, as the leptoquark mixing is required to be small in order
to generate naturally-light neutrino masses, any effects on RK or RD(∗) from V1/2 are
negligible, which implies also that RK∗ = RK .
With these considerations, the computation of RK is simplified compared to the scalar
leptoquark case since V1/2 does not contribute to the B meson sector. The comparison
with Eq. (4.84) yields (l = e,µ),

C l9 = −C l10 =
π

αe

λLsl
∗
λLbl

VtbV
∗
ts

√
2

2m2
V0
GF

, (4.128)

Hence, we obtain

Xe −Xµ =
π√

2αeGFVtbV ∗tsm2
V0

(
λL∗se λ

L
be − λL∗sµλLbµ

)
, (4.129)

which is equivalent to

λL∗se λ
L
be − λL∗sµλLbµ ' (1.8± 0.7) · 10−3 m

2
V0

TeV2 . (4.130)

In conclusion, if the leptoquark mass is around 1 TeV, the corresponding product of
couplings has to be of the order ε4 to accommodate the RK data.
While a variety of operators contribute to the tree-level process b→ clν depicted in Fig.
4.8, several authors pointed out that the vector operator OV gives an excellent fit to
the RD(∗) data [212,213,236],

OV = [cγµPLb] [lγµνl] . (4.131)

In leptoquark UV completions this operator can be provided by both the (3, 3)2/3 and
(3, 1)2/3 vector leptoquarks V1 and V0. The scalar operators OSL and OSR can also
explain the data but are fine-tuned and in tension with the measured q2 spectra. This
disfavors, e.g, generic 2HDM solutions with a charged scalar contribution as argued
in Sec. 4.2. In our framework the purely left-handed couplings of the leptoquark V0
generate OV with the Wilson coefficient

CcbL,lν =
1

2
√

2GFVcbm2
V0

λLblλ
L∗
cν , (4.132)
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which translates to the constraint [212,213]

λLbτλ
L∗
cντ − λ

L
bµλ

L∗
cνµ ' (0.18± 0.04)

m2
V0

TeV2 . (4.133)

Explaining the measurement hence requires a mild hierarchy between the second and the
third column of λL with O(1) third generation couplings. Furthermore, any explanation
of RD(∗) must also accommodate the SM-like branching ratio of B → τν [237], requiring
further suppression of leptoquark couplings to up quarks.

b τ−

S̃i

c ν

b τ−

Ṽi

c ν

Figure 4.8: The b → cτν decay induced by the scalar S̃i (i = 1, 2) (left) and vector
leptoquark Ṽi (i = 1, 2) mass eigenstates (right).

Constraints

Besides the B → Xsνν measurement, which is evaded strategically by utilizing the
V0 leptoquark, lepton flavor- and universality-violating processes involving down-type
quarks have to be considered in leptoquark model building. Rare kaon decay data places
stringent constraints on the first two quark generations [150],

|λLdµλL∗sµ | .
m2

LQ
(183 TeV)2 . (4.134)

Assuming mLQ ≈ 1 TeV, this implies |λLdµλL∗sµ | . ε6 with ε ' 0.2. The couplings required
to explain RK and RD can also be combined to induce flavor violation. These final
states are limited for instance by B− → K−µτ [213,238],

|λLbτλLsµ|+ |λLbµλLsτ | . ε
m2

LQ

TeV2 . (4.135)

On the other hand, constraints from flavor-violating top decays such as t→ bτντ are
rather weak,

|λLbτλLtντ | . 4.8
m2

LQ

TeV2 , (4.136)



4.3 common origin of B decays and neutrino masses 117

as opposed to the flavor-violating lepton decay µ → eγ, measured by MEG, which
constrains [186,199]

|λLqeλLqµ| .
m2

LQ
(34 TeV)2 . (4.137)

Thus |λLqeλLqµ| . ε4, assuming again mLQ ≈ 1 TeV.
Summarizing the above constraints, an ideal pattern (excluding possible texture-zero
solutions) to account for RK and RD(∗) and to comply with experimental searches would
read

λL '

 ε6 ε4 ε3

ε4 ε3 ε

ε3 ε 1

 . (4.138)

The matrix λL is a priori a general matrix. The symmetric pattern in Eq. (4.138) is
chosen for simplicity while satisfying the experimental constraints. In the following
section we study possible U(1) charge assignments to generate such a pattern in an FN
framework based on the two leptoquarks V0 and V1/2.

Vector Leptoquark Model

Like in the scalar leptoquark model, the left-handed quark charges are fixed by the CKM
matrix, whereas the fermion mass hierarchies, cf. Eq. (4.112), dictate the corresponding
right-handed field charges. As long as the origin of neutrino masses is unclear, some
freedom remains in the choice of the leptonic FN charges. Furthermore, the interaction
Hiτ2V

µ
1/2V

†
0µ essential for neutrino masses and mixing, implies Q(V0) = Q(V1/2) if the

Higgs charge Q(H) = 0.
Evidently, obtaining the ideal pattern given in Eq. (4.138) requires the Qi charges
(3, 1, 0). Such choice of charges, however, leads to a small Cabibbo angle and large mixing
among the second and third quark generations contrary to experimental observations.
Bearing a little fine-tuning to explain RD(∗) we will therefore focus on the Qi charges
(3, 2, 0), which are a better fit to the CKM matrix.
The resulting charge assignments can again be expressed in terms of Q(L3) ≡ qτ ,
allowing one to suppress the right-handed couplings λR by choosing different integer
values for qτ ,

λLV0 '

 ε6 ε4 ε3

ε5 ε3 ε2

ε3 ε 1

 , λRV1/2
'

 ε8+2qτ ε6+2qτ ε5+2qτ

ε5+2qτ ε3+2qτ ε2+2qτ

ε3+2qτ ε1+2qτ ε2qτ

 , (4.139)

e.g., for qτ = 5 we obtain

λRV1/2
'

 ε18 ε16 ε15

ε15 ε13 ε12

ε13 ε11 ε10

 . (4.140)

Note that in the present scenario both patterns are hierarchical resulting in interesting
phenomenological consequences. As opposed to the scalar leptoquark case, the free
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parameter qτ does not cancel in the leptoquark interactions involving V1/2, leading to
a severe suppression of the corresponding couplings. Large integer values of qτ not
only explain the small neutrino masses, but also render V1/2 negligible in all flavor
processes. The 0νββ half-life is also way beyond the reach of current or next-generation
experiments due to the suppressed first generation couplings.

Field Q1 Q2 Q3 d s b u c t

U (1)FN 3 2 0 4 3 3 5 2 0

Field L1 L2 L3 e µ τ V0 V †1/2 H

U (1)FN qτ + 3 qτ + 1 qτ qτ − 6 qτ − 4 qτ − 3 −qτ qτ 0

Table 4.9: Possible U(1)FN quantum numbers to obtain a flavor model with natural
fermion mass hierarchies and approximate CKM mixing in good agreement with experi-
mental data. Choosing qτ = 5 results in the vector leptoquark patterns shown in Eq.
(4.140), while larger values of qτ > 5 will gradually suppress λR couplings even further.

The FN charges yield the following fermion mass matrices up to O(1) coefficients

Mu '

 ε8 ε5 ε3

ε7 ε4 ε2

ε5 ε2 1

 , Md '

 ε7 ε6 ε6

ε6 ε5 ε5

ε4 ε3 ε3

 , Ml '

 ε9 ε7 ε6

ε7 ε5 ε4

ε6 ε4 ε3

 . (4.141)

The fermion mixing matrices that are required to rotate λL,R into the mass basis follow
directly from Tab. 4.9 and are approximately given by

V L
u,d '

 1 ε ε3

ε 1 ε2

ε3 ε2 1

 , V L,R
l '

 1 ε2 ε3

ε2 1 ε

ε3 ε 1

 ,

V R
u '

 1 ε3 ε5

ε3 1 ε2

ε5 ε2 1

 , V R
d '

 1 ε ε

ε 1 1
ε 1 1

 .

(4.142)

Although the mixing between the second and third lepton generation is enhanced, the
FN mechanism is not feasible to explain the large PMNS mixing angles. Instead, the
fundamental difference between the hierarchical CKM and the anarchic PMNS matrix
is attributed to neutrino-leptoquark interactions.
The patterns λL,R have to be rotated into their respective mass bases to account for
the CKM and PMNS mixing. These new matrices are defined as follows:

λ̃Ldl = V L
d λ

L
V0
V L†
l , λ̃Luν = V L

u λ
L
V0
V L†
ν ,

λ̃Rul = V R
u λ

R
V1/2

V L†
l , λ̃Ruν = V R

u λ
R
V1/2

V L†
ν .

(4.143)

Since all relevant mixing matrices of Eq. (4.142) are approximately diagonal, the general
structure of the leptoquark patterns λL,R remains unchanged when rotating from the
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symmetry into the fermion mass basis. We can henceforth assume λ̃L,R ' λL,R, with
one exception being λ̃Luν that receives large mixing from V L

ν . The magnitudes of the
mixing parameters in V L

ν can be derived from the experimentally observed PMNS
mixing matrix combined with our predictions for V L

l . From

UPMNS = V L†
l V L

ν ⇔ V L†
ν = U †PMNSV

L†
l (4.144)

we infer

V L†
ν ∼

 1 1 ε

1 1 1
ε 1 1

 , λ̃Luν '

 ε4 ε3 ε3

ε3 ε2 ε2

ε 1 1

 . (4.145)

All of the obtained patterns are valid only up to O(1) coefficients, allowing us to estimate
the extent of tuning required to accommodate the observables RK and RD(∗) . Including
the O(1) coefficients aql, the relevant coupling matrices read

λ̃Ldl =

 adeε
6 adµε

4 adτ ε
3

aseε
5 asµε

3 asτ ε
2

abeε
3 abµε abτ

 , λ̃Luν =

 aueε
4 auµε

3 auτ ε
3

aceε
3 acµε

2 acτ ε
2

ateε atµ atτ

 . (4.146)

By comparing with Eq. (4.130) we deduce

a∗bµasµ ' −(1.1± 0.4)
m2
V0

TeV2 , (4.147)

which is a perfect match with RK data for mV0 ≈ 1 TeV. On the other hand, the
measurement of RD(∗) demands [Eq. (4.133)]

abτa
∗
cτ − 0.2 · abµa∗cµ ' (4.5± 1.0)

m2
V0

TeV2 , (4.148)

which requires a little more fine-tuning that can be accommodated easily with couplings
mildly larger than 1.
Since the λ̃Luν couplings are slightly enhanced due to the large neutrino mixing, it is
suggestive to study up-type flavor transitions to make predictions for D meson decay
channels with dineutrino final states. Charm constraints are relatively weak compared
to those from the kaon sector, cf. Ref. [239].
In our framework, the most promising channel to search for BSM physics is D+ → π+νν,
governed by the couplings |λ̃Lcν λ̃Luν | ≈ ε5, while predictions for other channels involving
charged lepton final states suffer more severe suppression to comply with K physics.

Generating Neutrino Masses

Like in the scalar leptoquark case, the ∆L = 2 coupling of the vector leptoquarks to
the SM Higgs boson generates Majorana neutrino masses at one-loop level as shown in
Fig. 4.9.
The magnitude of the neutrino mass depends on the leptoquark mixing, governed by
the dimensionful parameter hV , and on the leptoquark couplings λL,R. Explicitly, the
contribution to the Majorana neutrino mass from V0 and V1/2 is given by [217]

Mν
ii′ =

3
16π2

∑
j=1,2

∑
k=u,c,t

mkB0(0,m2
k,m2

Vj )Rj1Rj2
[
λRkiλ

L
ki′ + λRki′λ

L
ki

]
, (4.149)
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νν

H

Ṽi
†

Ṽi

t t

Figure 4.9: One-loop Majorana neutrino mass generated by Higgs-leptoquark mixing.

where mVj is the mass of the leptoquark Vj and mk is the quark mass, while B0 denotes
the finite part of the Passarino-Veltman function. A few comments regarding the loop
regularization are in order. As seen, for instance, in the unitary gauge

−i
k2 −m2

V

[
gµν +

kµkν
m2
V

]
, (4.150)

the vector leptoquark propagator causes divergences that result in a bad UV behavior.
Analogous to the Higgs and the W± bosons in the SM, a heavy Higgs giving masses
to the leptoquarks can cancel these divergences. The details, however, depend on the
specific UV completion. An example where neutrino masses are mediated by a massive
gauge boson is given in Ref. [240]. Here, massive bosons emerge through the breaking of
a SU(3)C ⊗SU(3)L⊗U(1)X gauge group and the UV behavior is well defined. Another
example is shown in Ref. [241] for an SU(2)N extension of the SM, where the SU(2)N
gauge bosons generate a nonzero neutrino mass.
The remaining infinities contained in the Passarino-Veltman function drop out when
summing over both leptoquarks like in the scalar leptoquark case. The function B0,
therefore, takes into account only the finite part of the Passarino-Veltman integral.
Stringent constraints can arise if the UV completion does not entail additional particles
to cancel the divergences of the vector boson propagator. Such limits, e.g., from radiative
charged lepton decays l→ l′γ, are studied in Ref. [214] based on the vector leptoquark
(3, 1)2/3 in a U(2)5 flavor model.
Using the leptoquark patterns discussed in Eqs. (4.139) and (4.140), we can estimate the
absolute neutrino mass scale generated by the leptoquark couplings. Since the patterns
are strongly hierarchical in terms of quark families, we consider only the dominating
top quark contribution to Mν

ii′ . Hence, we obtain

Mν
ii′ ≈

3
32π2mt sin 2α∆B0︸ ︷︷ ︸

≡a

[
λRtiλ

L
ti′ + λRti′λ

L
ti

]
, (4.151)

with

∆B0 ≡ B0(0,m2
t ,m2

V1/2
)−B0(0,m2

t ,m2
V0), (4.152)
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and the neutrino mass eigenstates

mν
1 = 0, mν

2(3) = a

∑
i

λLtiλ
R
ti
−
(+)

√∑
i

(
λLti
)2∑

i

(
λRti
)2 (4.153)

with i = e,µ, τ . Since again one neutrino mass eigenstate is zero, the model predicts a
normal neutrino mass hierarchy with a small effective Majorana mass beyond the reach
of current 0νββ experiments.
Inserting Eqs. (4.139) and (4.140) into Eq. (4.151) yields

Mν
ii′ ∝ a ·

 ε16 ε14 ε13

ε14 ε12 ε11

ε13 ε11 ε10

 , and mν
3 ∼ a · ε10 . (4.154)

Therefore, the factor a must be sufficiently small to push the neutrino mass scale below
eV, which is achieved by virtue of small leptoquark mixing. In the limit of small α the
parameter a can be approximated as

a ≈ 3
16π2mt

hV vSM
∆m2

V

log
[
m2
V1/2

m2
V0

]
, (4.155)

implying

hV vSM
∆m2

V

log
[
m2
V1/2

m2
V0

]
. 0.9× 10−3 (4.156)

to make neutrino masses sufficiently light. The smallness of a can be attributed to
the smallness of the dimensionful coupling hV or a large mass splitting ∆m2

V of the
contributing leptoquarks. Possible solutions of Eq. (4.156) are depicted in Fig. 4.10 for
different powers of λR ∼ ε8, ε10, and ε12. In Fig. 4.11 we plot mν

3 in terms of mV1/2 for
λR ∼ ε10 and hV = 0.1, 0.5, and 1 TeV, showing that light neutrino masses favor a large
leptoquark mass splitting with natural values of hV .
Since one neutrino mass eigenstate is exactly zero, one can solve the eigenvalue equation
Mνv0 = 0 with

vT0 =
(1,−w,w′)√
1 +w2 +w′2

(4.157)

to obtain analytical expressions for the neutrino mixing angles as a function of the
leptoquark couplings λL,R

tν , assuming that the charged leptons are approximately diagonal
[217]. It is

w =
λRtτλ

L
te − λRteλLtτ

λRtτλ
L
tµ − λRtµλLtτ

≈ t12
c23
c13

+ t13s23 , (4.158)

w′ =
λRtµλ

L
te − λRteλLtµ

λRtτλ
L
tµ − λRtµλLtτ

≈ t12
s23
c13
− t13c23 , (4.159)

where sij = sin θij , cij = cos θij , and tij = tan θij , with the PMNS angles θ12, θ23, θ13.
Hence, to explain the large PMNS mixing w and w′ both should be nonzero and sizable.
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Figure 4.10: Allowed regions of the trilinear leptoquark-Higgs coupling hV and mV1/2

requiring that the largest neutrino mass eigenstate mν . 0.3 eV and mV0 ' 1 TeV. The
three distinct regions correspond to different powers of the dominating coupling λRtν ' ε8
(red, dashed), ε10 (blue, solid) and ε12 (yellow, dotted).
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Figure 4.11: The largest neutrino mass as a function of mV1/2 for mV0 = 1 TeV, λRtν ' ε10

and hV = 1 TeV (blue, solid), 0.5 TeV (red, dashed), and 0.1 TeV (yellow, dotted). The
horizontal, dashed line defines a conservative upper limit on the absolute neutrino mass
scale.
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By evaluating w and w′ for Eqs. (4.139) and (4.140) we find that their values depend
heavily on the undetermined O(1) FN parameters

w =
y31 − y13
y32 − y23

ε2 , w′ =
y21 − y12
y32 − y23

ε3 , (4.160)

where the yij denote products of O(1) coefficients from λL,R. Because of the possible
cancellation in the denominator, w and w′ can oscillate quickly with small changes of
the O(1) parameters, explaining also large neutrino mixing easily by permitting some
extent of tuning.
With many free O(1) FN parameters to match to only five physical observables (∆m2

atm,
∆m2

sol, θ12, θ13, θ23), the system is underconstrained and has many viable solutions. On
condition that all coefficients in Eq. (4.141) are approximately O(1), the benchmark
point

λLte ≈ 5.1 ε3 , λRte ≈ 3.0 ε13 ,
λLtµ ≈ 1.4 ε , λRtµ ≈ 2.1 ε11 ,
λLtτ ≈ 0.2 , λRtτ ≈ −0.8 ε10 ,

(4.161)

provides a good fit to neutrino oscillation data, yielding

∆m2
atm = 2.5× 10−3 eV2, ∆m2

sol = 7.6× 10−5 eV2,
θ12 = 33.3◦, θ13 = 8.5◦, θ23 = 42.0◦ . (4.162)

The model parameter space can be confined further by extending the framework to
account for other BSM phenomena. This includes resonances in the diphoton channel,
such as the 750 GeV excess reported recently by CMS and ATLAS, which could forebode
novel leptoquark interactions. A model connecting the vector leptoquarks V0 and V1/2
with the 750 GeV diphoton resonance is discussed in Sec. 5.2.
It should be noted that the vector leptoquark setup cannot be considered complete as we
do not discuss the mechanism of mass generation for the vector leptoquarks. This could
for example be accomplished through the breaking of a larger gauge group under which
the vector leptoquarks are charged or by interpreting them as composite states [242].
Possible gauge groups that give rise to leptoquarks were discussed in Sec. 2.3.2.

4.4 conclusions

To address the recently reported anomalies in h → µτ , RK , and RD(∗) we have con-
structed models based on extended Higgs sectors as well as leptoquark mediators.
We explain the h → µτ data using a 3HDM with LFT, where strongly constrained
FCNCs are suppressed by virtue of a residual Z3 symmetry. A small breaking of this
symmetry can give rise to LFV Higgs decays, occurring naturally in the model due to
SU(2) singlet scalars in the scalar potential. The sizable signal in h→ µτ channel is
a consequence of the mixing between an SM-like Higgs and an exotic neutral scalar
accounting for the 2.4σ deviation from the SM. The model predicts large branching
fractions for h→ eµ and h→ eτ as well, where the latter will be a decisive measurement
for its exclusion.
Although the multi-Higgs framework is an intuitive choice to explain the h → µτ

anomaly, the solution is restricted by µ → eγ to a rather fine-tuned region in the
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parameter space. Only if the additional neutral scalars are light they can partly cancel
Higgs-loop contributions to l→ l′γ, allowing for large flavor-violating Yukawa couplings.
The first searches in the h → eτ channel are consistent with the SM prediction and
support the updated results of h→ µτ [73]. Furthermore, the absence of light exotic
scalars in the new LHC Run 2 data indicates that the initial excess is likely to be a
statistical fluctuation.
Charged scalars arising in multi-Higgs models are also potential candidates to explain the
observed deviation manifest in the ratio RD(∗) . We studied charged Higgs interactions
in 3HDMs with respect to the excess in B → D(∗)τν decays for constraints on the
flavor-violating couplings and the charged Higgs masses. We find that the required
values are fine-tuned and in tension with experimental searches involving charged scalars.
Applying the popular discrete symmetries A4, S4, and ∆(27) to the 3HDM scalar
potential does not provide further insight on the origin of such parameter values, and
instead disfavors them as an explanation for RD(∗) .
A more promising approach to solving the B meson flavor puzzle are leptoquark models.
Two scalar leptoquarks can generate neutrino masses at one-loop level and simultaneously
explain the anomalies in RK and RD(∗) . This is possible if these leptoquarks mix weakly
with the SM Higgs boson to induce a ∆L = 2 effective Majorana mass term. We have
demonstrated this by constructing two models based on the scalar leptoquarks S1 and
S1/2, and the vector leptoquarks V0 and V1/2, respectively.
By exploiting an FN mechanism to modify the leptoquark couplings we have shown
that addressing several issues at the same time is entirely feasible and need not be
overly fine-tuned. Weak Higgs-leptoquark mixing will lead to naturally small neutrino
masses and protect the tightly constrained B decays from additional flavor-changing
|∆B| = |∆S| = 1 scalar and tensor operators. At the same time, the leptoquark couplings
to b and s quarks may still be strong enough to produce visible signals in B → Kll

decays, with leptoquark masses confined to the testable region 1 TeV . M . 50 TeV.
The vector leptoquark model can even provide the large O(1) couplings needed to
explain RD(∗) without interfering with other rare decays. The total additional field
content includes no more than two leptoquarks and one SM singlet scalar. Only one
additional symmetry is required to shape the fermion mass matrices and leptoquark
couplings to comply with experimental data.
Our analysis shows that a mild mass hierarchy of the leptoquarks is favored to explain
the lightness of neutrino masses. In Sec. 5.2 we explore how this prediction can be
combined with a potential excess in the diphoton channel, taking the 750 GeV resonance
as an example to confine the parameter space of leptoquark masses.
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Recently, the ATLAS and CMS collaborations reported an excess of events above the
expected background in the diphoton final state [74,75]. This was very promising as
both collaborations observed the excess at an invariant mass of about 750 GeV, and
with a local statistical significance of 3.9σ (ATLAS) and 3.4σ (CMS).
This diphoton resonance has generated much activity in the community, amounting to
more than 500 publications on the topic, including both model-independent studies of the
excess as well as interpretations of the resonance itself. The most popular explanations
are summarized in Ref. [78], reviewing the progress of the field since the announcement
of the excess.
Despite the resonance being just a statistical fluctuation, the diphoton final state can be
a powerful tool for NP searches thanks to its clear signature over the low background.
The Higgs discovery in 2012 in the same channel further emphasizes the importance of
this particular decay mode.
In this chapter we use the 750 GeV diphoton excess to explore different model inter-
pretations of diphoton resonances. To this end we tie the resonance to the model field
content and symmetries, exploiting it for unique predictions. Both frameworks presented
here fall into the everybody’s model category outlined in Sec. 1.2.4, although some
exceptional properties separate them from the standard scenario. In Sec. 5.1, we extend
the S3 flavor model of Sec. 3.1 to interpret the excess as the FN flavon, thereby linking
the origin of the fermion masses and mixings to the resonance scale. In Sec. 5.2 we
demonstrate how vector leptoquarks can naturally enhance the diphoton cross section
without a plethora of new particles or excessive fine-tuning. In both frameworks, the
diphoton resonance pinpoints where the NP is manifest in the model, setting the stage
for targeted experimental searches.

5.1 the excess in light of the S3 flavor symmetry

The first analysis of the diphoton resonance is based on the S3 flavor model proposed in
Sec. 3.1, which is modified to account for the reported excess at 750 GeV. To this end,
the fermion sector is extended with four exotic quarks with electric charge 5

3 , grouped
into two S3 doublets, i.e., TL = (T1L,T2L), TR = (T1R,T2R). The exotic fields are color
charged and thereby enhance the production rate of the resonance through gluon fusion.
The decay rate into the diphoton final state is then further increased by their large
electric charge.
The present framework differs from the generic everybody’s model outlined in Sec. 1.2.4
by the pattern of flavor symmetries shaping the Yukawa interactions. Charging the
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exotic quark fields under the Z14 symmetry ties them to the FN scale with the flavon χ
acting as the scalar resonance at 750 GeV. This unique link between the flavor puzzle
and the diphoton channel allows for immediate testing of the flavor symmetry and the
involved exotic particles.
Since charged stable particles would interfere with early structure formation [243], the
model is supplemented with a charged scalar ρ+ that permits the exotic quarks to
decay into SM fermions. The assignments of the new fields to the symmetry groups
are summarized in Tab. 5.1. The original particle content and the purpose of the
symmetries were specified in Tabs. 3.2 and 3.1.

Field SU(3)C SU(2)L QEM S3 Z3 Z ′3 Z14

TL = (T1L,T2L) 3 1 5/3 2 0 0 0
TR = (T1R,T2R) 3 1 5/3 2 0 0 1

ρ+ 1 1 1 1 0 0 0

Table 5.1: New particle content and assignments under the flavor symmetries to account
for the diphoton excess at 750 GeV.

The new particle content gives rise to the following Yukawa Lagrangian

−LqY = yTTLTRχ+ ερq3Lφ2TR
ξχρ−

Λ3 + y1ρTLURρ
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+ ζ
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where LqY and LlY denote the quark and lepton interactions, respectively, omitting for
simplicity Yukawa interactions with ρ+ of dimension nine and higher.
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Figure 5.1: Preferred decay chain for the detection of the exotic quarks TL,R at the
LHC (q = u, c, t). Being pair-produced, the heavy particles should result in an excess of
events in the dilepton opposite-sign final state, accompanied by six jets and missing
energy.
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Following Eq. (5.1), TL and TR decay dominantly into up-type quarks and ρ+, which
in turn preferably decays into top and bottom quarks since the lepton decay channels
are either suppressed by λ6 v2

Λ2 , or kinematically forbidden as MνR > mρ+ . Conse-
quently, the top partners can be searched at the LHC through their decay channel
T1(2) → ρ+u(c)→ tbu(c)→Wbbu(c)→ l+3j 6ET , as depicted in Fig. 5.1. Being pair
produced via gluon fusion (cf. Fig. 5.2), the exotic quarks should hence appear as an
excess of events in the dilepton opposite-sign final state.

g

g
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TiL

TiR T iL
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Figure 5.2: Dominant production mechanism of the top partners TL,R at the LHC.

The Z14 breaking scalar χ attributed to the resonance is predominantly produced
via gluon fusion through triangular loop diagrams with T1 and T2. The scalar can
subsequently decay through the same loops into the diphoton final state, as depicted in
Fig. 5.3. The corresponding total cross section σγγ ≡ σ(pp → χ → γγ) is a function
of the gluon production rate Γ(gg → χ) and the consequent decay rate into photons
Γ(γγ → χ)

Γ(gg → χ) = Kgg α
2
sm

3
χ

32π3v2
χ

∣∣∣∣∣F1/2(xT )

∣∣∣∣∣
2

, (5.2)

Γ(γγ → χ) =
α2m3

χ

64π3v2
χ

∣∣∣∣∣NcQ
2
TF1/2(xT )

∣∣∣∣∣
2

, (5.3)

where mχ ' 750 GeV denotes the resonance mass, xT = 4m2
T/m2

χ, mT = yT vχ, and
Kgg ∼ 1.5 accounts for higher order QCD corrections. F1/2(x) is the fermion loop
function contributing to h→ γγ, which is used here to compute σγγ . This loop function
is given by

F1/2(x) = 2x
[
1 + (1− x)f(x)

]
, f(x) =

(
arcsin

√
1/x

)2
(5.4)

with xT > 1⇔ 4mT > mχ. Finally, we obtain

σγγ ≡ σ(pp→ χ→ γγ) =
π2

8s
Γ(γγ → χ)Γ(gg → χ)fgg

mχΓtot
(5.5)

with Γtot as the total decay width of χ, and the gluon luminosity function fgg, evaluated
at
√
s = 13 TeV using MSTW2008 [244]

fgg =
∫ 1

m2
χ/s

fg(x)fg(m
2
χ/(xs))

dx
x

= 2141.7 , (5.6)
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Figure 5.3: Complete process of production and decay of the scalar resonance χ to
explain the observed signal in the diphoton final state.
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Figure 5.4: Total cross section σ(pp→ χ→ γγ) as a function of vχ for different values
of the exotic quark Yukawa couplings yTi ∼ 0.5 (blue), 1 (red) and 1.5 (green), assuming√
s = 13 TeV and αs(mχ/2) ' 0.1. The horizontal lines denote the experimentally

allowed limits of the original diphoton signal given by ATLAS and CMS, which amount
to 10 ± 3 fb and 6± 3 fb, respectively.

where fg is the gluon distribution function.
We assume for simplicity unified and natural Yukawa couplings of the exotic quarks
yTi ∼ 1, amounting to σγγ ≈ 8 fb with vχ ≈ 1.2 TeV. This is well within the limits given
by the ATLAS and CMS experiments [245]

σATLAS = 10± 3 fb , σCMS = 6± 3 fb . (5.7)

The total cross section is shown in Fig. 5.4 as a function of vχ for different values of the
exotic quark Yukawa couplings. The cross section depends crucially on the VEV vχ as
well as on the Yukawa couplings, which if sizable can also enhance σ significantly in
particular for lower vχ values.
If we further require that σ be within the experimental limits given by ATLAS and
CMS, we predict vχ to be smaller than 2 TeV, which on the one hand sets the Z14
breaking scale Λ . 10 TeV, and on the other hand forces the expected particle masses
of χ and the exotic quarks Ti into a testable region.
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5.2 diphoton resonance with vector leptoquarks

A plethora of explanations has been considered by various authors since the announce-
ment of the excess until its dismissal, among them also leptoquark mediators. While
pure scalar leptoquark solutions face difficulties regarding unitarity, vector leptoquarks
can explain the signal rather elegantly thanks to a sizable loop factor. The beauty of
the vector leptoquark solution is that it does not come with numerous exotic fermions
to artificially enhance the diphoton decay mode. We demonstrate this using the vector
leptoquark model presented in Sec. 4.3.2 and not only explain but also utilize the excess
to pin down the leptoquark masses.
The vector leptoquarks in our model can interact with the scalar resonance χ through
the hypothetical interaction

−LV χ = κViχV
†
µ,iV

µ
i + h.c. , (5.8)

where i = 0, 1
2 . The scale of the dimensionful parameter κVi is thus far undetermined,

however bounded from above by unitarity constraints. The scale where the theory
breaks down can be roughly inferred from elastic Vi,µV i,µ → Vi,µV

i,µ scattering, given
by
√
s ∼ 4

√
πm2

Vi
/|κVi | [228]. In the following we will assume natural TeV-scale values

for κVi to comply with perturbative unitarity.
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Figure 5.5: Dominating diagrams contributing to σ(pp→ χ).
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Figure 5.6: Diagrams contributing to Γ(χ→ γγ).

In the narrow width approximation, the total cross section σγγ is a product of the χ
production and its subsequent decay rate into two photons. χ production from qq initial
states is possible, however, strongly suppressed either by small leptoquark couplings
[cf. Eqs. (4.139) and (4.140)] or small values of the parton distribution functions
at
√
s = 13 TeV [245] (Tab. 1.3). The only partly competitive channel in terms of

luminosity, dd→ χ, is additionally suppressed compared to gluon fusion by a factor of
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|λLdτ |2 = ε6 due to the FN symmetry. Hence, since χ is predominantly produced via
gluon fusion we can compute σγγ via Eq. (5.5) with

Γgg ≡ Γ(χ→ gg) =
α2
sm

3
χK

gg

128π3

∣∣∣∣∣∑
i

κViF1(τVi)

m2
Vi

∣∣∣∣∣
2

, (5.9)

Γγγ ≡ Γ(χ→ γγ) =
α2
em

3
χ

256π3

∣∣∣∣∣∑
i

κViNcQ
2
Vi
F1(τVi)

m2
Vi

∣∣∣∣∣
2

, (5.10)

where i = 0, 1
2 . We furthermore approximate Γtot ≈ Γgg. Like in the previous analysis,

fgg = 2141.7, Nc = 3 for the vector leptoquarks running in the loop and αs is the strong
coupling constant. F1(τ ) denotes the loop factor for a spin-1 particle given by [168]

F1(τ ) =
1
τ2

[
2τ2 + 3τ + 3(2τ − 1) arcsin2√τ

]
, (5.11)

and τVi = m2
χ/(4m2

Vi
) < 1. The loop factor F1(τ ) was originally computed in Ref. [167]

to account for the W± gauge boson contribution to the radiative decay h→ γγ in the
SM. The unphysical degrees of freedom of the vector bosons can cause loop divergences
that have to be dealt with. These divergences were regularized using the nonlinear Rξ
gauge [246], in which the vector-boson propagator reads

−i
k2 −M2

V

[
gµν +

(ξ − 1)kµkν
k2 − ξM2

V

]
. (5.12)

It is shown in Ref. [246] that all divergences cancel out separately in the vector-boson
and the Faddeev-Popov ghost sector, resulting in a finite and gauge-independent theory.
F1(τ ) acquires large values for vector leptoquarks compared to scalar particles. Assuming
leptoquark masses ranging from ∼ 0.8 to 50 TeV as dictated by RK ,RD(∗) and the
Bs −Bs mixing phase, the loop factors remain near constant with

|F1(τ )|
|F0(τ )|

≈ 20 , |F1(τ )|
|F1/2(τ )|

≈ 5, (5.13)

in the relevant mass region.
Depending on the dimensionful couplings κVi , typical values of Γgg/mχ and Γγγ/mχ are
O(10−4) and O(10−6), respectively. In our setup, at the benchmark point κVi = 4

3mVi ,
mV0 = 1 TeV and mV1/2 = 20 TeV we have

Γgg
mχ
' 2 · 10−4 , Γγγ

mχ
' 8 · 10−7 , σγγ ' 4 fb . (5.14)

Therefore, the estimated dijet cross section at 13 TeV is 4 pb, leading to a cross section
' 0.8 pb at 8 TeV. Currently the ATLAS and CMS collaborations do not provide dijet
limits at

√
s = 13 TeV for resonance masses below 1 TeV. The

√
s = 8 TeV ATLAS and

CMS analyses presented in Refs. [247,248] set a limit of σjj < 1 pb for a 1 TeV resonance
coupling dominantly to gg. For a mass of 750 GeV the limit shown by ATLAS is of the
order of 10 pb. Hence within the interesting region of parameter space considered here,
the dijet limits are satisfied.
As V0 and V1/2 carry hypercharge, they necessarily decay via χ → Zγ and χ → ZZ.
Limits on these final states from experimental collaborations already exist. Here we
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Figure 5.7: Parameter regions yielding σγγ ∈ (3, 13) fb as measured by ATLAS and
CMS, where σγγ is shown as a function of the leptoquark masses mV0 and mV1/2 for
different values of the dimensionful couplings κVi = 10

3 mVi (green, dashed) and 4
3mVi

(blue, solid). The constraint (5.15) with r = 0.28 from WW , ZZ and Zγ limits is
superimposed in red.

take a rather simplistic viewpoint and assess the viability of our scenario without
explicitly calculating the cross sections for Zγ, and ZZ final states. This can be
done by estimating the ratios of χ partial widths. The partial widths χ → Zγ and
χ→ ZZ are suppressed compared to Γγγ by 2 tan2 θW and tan4 θW , respectively, and
existing bounds on these channels can be easily evaded. More importantly, V1/2 is an
SU(2) doublet with enhanced rates ΓZγ/Γγγ ≈ 2/ tan2 θW , ΓZZ/Γγγ ≈ 1/ tan4 θW . In
addition, the decay to two W bosons is possible as well with a strongly enhanced rate
ΓWW/Γγγ ≈ 2/ sin2 θW [245]. The experimental limits are satisfied for

|κV1/2 |
m2
V1/2

< r× |κV0 |
m2
V0

, (5.15)

with r ≈ 3.1 if the κ couplings have the same sign and r ≈ 0.28 if they have opposite
signs. The difference arises due to constructive or destructive interference from the
contribution of SU(2) and U(1) coupling components to the decay widths. By using
this constraint we quantify the impact of diboson final-state limits in our analysis.
The width of χ is dominated by the decay to gluons and is typically small, Γtot ≈ Γgg ≈
0.3 GeV. We make no attempt to explain a potentially large width as suggested by
ATLAS within this setup.
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Figure 5.8: Parameter regions yielding σγγ ∈ (3, 13) fb as measured by ATLAS and
CMS. σγγ as a function of the effective parameters κVimχ/m2

Vi
. The lines denote values

of constant σγγ in fb. The constraint Eq. (5.15) with r = 0.28 (light shade) and r = 3.1
(dark shade) from WW , ZZ and Zγ limits is superimposed in red.

In the following we determine the allowed parameter ranges of κVi and mVi to reproduce
the total cross sections measured by ATLAS and CMS in the diphoton channel near
750 GeV, cf. Eq. (5.7).
Taking into account that mV0 ∼ 1 TeV is needed to reproduce the RK and RD data, we
obtain the allowed parameter regions displayed in Figs. 5.7 and 5.8 as a function of the
dimensionful couplings κVi and the leptoquark masses mVi , respectively. The parameter
space favoring the diphoton cross section opens up notably if the second leptoquark is
much heavier, yielding a large ∆m2

V that is also favored by neutrino mass generation.
Fig. 5.7 shows σγγ in the range of 3− 13 fb, for two different values of dimensionful
couplings κVi . The parameter space excluded by WW ,ZZ, and Zγ searches is depicted
in red. This constraint is derived using Eq. (5.15). In Fig. 5.7 only the more stringent
constraint, applicable if the κ couplings have opposite signs, is shown; the case of same
sign exhibits no appreciable constraint.
In Fig. 5.8 we depict σγγ as a function of κVimχ/m2

Vi
. We fix the loop factor F1(τ ) ∼ 7,

after explicitly verifying that F1(τ ) varies only by 3% in the relevant region of the
parameter space. The residual dependence on the masses from the loop function is hence
small and is ignored. As κV0mχ/m2

V0
and κV1/2mχ/m2

V1/2
increase, the corresponding

diphoton cross section increases and the observed excess can be explained with, e.g.,
κV0mχ/m2

V0
≈ 1 and κV1/2mχ/m2

V1/2
< 0.8. The shaded red areas denote the parameter

space excluded by WW ,ZZ, and Zγ searches derived from Eq. (5.15). The darker shade
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Figure 5.9: σγγ as a function of mV0 for mV1/2 = 5 TeV (blue, solid), 10 TeV (red,
dashed), 50 TeV (yellow, dotted) with κVi = 4

3mVi . The horizontal, dashed lines
correspond to the lower limit given by the ATLAS and CMS diphoton measurements.

applies in the case of same-sign κ couplings resulting in the limits κV0mχ/m2
V0

& 0.2
and κV1/2mχ/m2

V1/2
. 1.2. The more constraining case of opposite-sign κ couplings is

depicted in light red giving the limits κV0mχ/m2
V0

& 0.7 and κV1/2mχ/m2
V1/2

. 0.4
In Fig. 5.9 we show the behavior of σγγ in terms of mV0 for different choices of mV1/2

with κVi =
4
3mVi . The diphoton cross section decreases with large leptoquark masses

and a mass mV0 ≈ 1 TeV is preferred in good agreement with the input from rare B
decays. For a given value of mV1/2 , the diphoton cross section requirement yields an
upper bound on mV0 . In the case mV1/2 = 50 TeV, mV0 > 1.1 TeV results in a too low
diphoton cross section, while mV1/2 = 5 TeV requires mV0 < 1.5 TeV.
The benchmark point mV0 = 1 TeV, mV1/2 = 30 TeV, κVi = 4

3mVi yields σ ≈ 4.0 fb
conforming to Eq. (5.7). Intriguingly, the combined results of neutrino mass generation
and the 750 GeV diphoton excess point to a similar region in the parameter space of
leptoquark masses. As shown in Fig. 5.10 the overlay of all constraints points at a light
leptoquark mV0 ≈ 1 TeV together with a heavy mV1/2 & 20 TeV, depending on the size
of the trilinear couplings κVi and hV .
By embedding the diphoton resonance in the leptoquark framework, we are able to
place upper bounds on the leptoquark masses that are more stringent than the limits
from the flavor sector or neutrino masses. This result shows that a full understanding
of the diphoton final state is vital for model predictions, i.e., future resonances in this
channel may prove crucial for distinguishing between the viable frameworks.

5.3 conclusions

Future resonances in the diphoton channel can probe a variety of models. Inspired by
the 750 GeV excess, we have illustrated this using the model based on the discrete S3
flavor symmetry and the vector leptoquark model supplemented with the U(1)FN.
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Figure 5.10: Fit results of the 750 GeV diphoton excess (yellow) superimposed with
constraints from neutrino mass generation (blue) in the leptoquark parameter space
for κVi = 4

3mVi and hV = 0.2 TeV (dotted), 0.5 TeV (dashed), 1 TeV (solid). The
cyan overlay (dotted/dashed) denotes regions favored by low-energy B physics. The
constraints favor a combination of a light V0 and a heavy V1/2 with mV0 ≈ 1 TeV and
mV1/2 & 20 TeV, depending on the scale of the trilinear couplings κVi and hV . The
constraint (5.15) with r = 0.28 from WW , ZZ and Zγ limits is superimposed in red
excluding all mV0 > 1.5 TeV.

By introducing heavy exotic fermions charged under Z14 we connected the flavon of the
S3 model with the 750 GeV scalar resonance. The diphoton cross section then dictates
the size of the flavon VEV and consequently the exotic fermion masses as well as the
Z14 breaking scale. The NP scale should be no higher than 10 TeV implying that the
framework could be probed in the near future.
In the second model the vector leptoquarks couple to the resonance scalar, thereby natu-
rally enhancing the diphoton cross section. Here the resonance provides complementary
constraints to neutrino mass generation and confines the parameter space of leptoquark
masses. It is shown that mV0 ≈ 1 TeV and mV1/2 ≈ 30 TeV fit the data well, whereas
mV0 > 1.5 TeV is excluded by diboson searches.
These results indicate that if the 750 GeV excess were not a statistical fluctuation it
could provide valuable input on the model parameters. Future signals in this channel
can therefore help to sift through the large number of flavor models.
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Since the LHC started taking data in 2008, all measurements have been consistent with
the SM predictions, rapidly closing in on models with new physics at the electroweak
or even TeV scale. Despite this incredible success, some questions remain unclear. In
this thesis we attempted to tackle issues regarding the origin of flavor: the disparate
quark and lepton mixings, the hierarchies of the Yukawa couplings, and the source
of the neutrino masses. Besides these concerns, recent experiments uncovered several
anomalies hinting at a possible violation of lepton flavor and universality. These include
a signal in h→ µτ decays and deviations in the ratios RK and RD(∗) , which indicate
NP in the lepton sector. Motivated by the diverse measurements in the flavor sector,
we used model building as a means to find a possible common origin of the anomalies
and the flavor puzzle.
In Chapter 3 we constructed two models to unify the masses and mixings of the SM
fermions. Special features and predictions distinguish the frameworks from the many
flavor models existing in the literature. The first model utilizes the nonabelian S3
symmetry with two Higgs doublets to separate the interactions in the different fermion
sectors. The fermion mass hierarchies are explained with natural order one Yukawa
couplings thanks to a Z14 FN symmetry. Due to a special case of Yukawa alignment
the framework is free of FCNCs in the down-type and the charged lepton sector and
thus evades rare decay constraints effortlessly. However, the model can be probed with
searches for t → cg and t → hc in the future, where sizable flavor violation is still
possible.
The second model is an extended SU(5) GUT supplemented with an A4 ×U(1) flavor
symmetry, which attempts to address problems of grand unification as well as the flavor
puzzle simultaneously. The link between the flavor and the unification scale is achieved
by promoting the SU(5) adjoint representation 24 to the FN flavon. The model contains
several light scalars that should be observable in experiments, but due to the many free
parameters it is difficult to provide testable predictions.
Both models can accommodate the experimental data very well. However, the large
parameter space shows that it is challenging to find an elegant model accounting for
the discrepancy between the quark and lepton mixings.
In Chapter 4 we focused on the flavor anomalies and proposed three models based on
extended Higgs sectors and leptoquark mediators to explain the observables B(h→ µτ ),
RK , and RD(∗) . NP at the EW scale is necessary to generate the large signal in h→ µτ ,
which can be provided by additional Higgs doublets. We explore a 3HDM and utilize the
S4 symmetry to relate the large leptonic mixing to the flavor-violating Higgs decays. The
allowed region where h→ µτ and the constraints from µ→ eγ can be accommodated
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at the same time is small and forces the additional scalar states to be in the region
of 200− 300 GeV. This prediction is already in tension with experimental searches,
which will increase if evidence of NP remains absent in the accumulating LHC Run 2
data. Furthermore, large flavor violation is also expected in h→ eτ in this framework,
which has not been reported yet by experiments. Although multi-Higgs models are an
intuitive approach to the anomaly, our solution is fine-tuned and supports the hint that
the excess might disappear in the near future.
Besides h→ µτ , also the anomaly in RD(∗) could be attributed to charged Higgs bosons
arising in 3HDMs. We studied how the flavor symmetries A4,S4, and ∆(27) shape the
charged scalar interactions with respect to b− c and τ − ν couplings and concluded that
the large deviation reported in RD(∗) cannot originate from flavor symmetries.
Two models based on the scalar leptoquarks S1 and S1/2 and the vector leptoquarks V0
and V1/2, respectively, are viable alternatives to explain the B meson anomalies. Of all
the models formulated in this thesis, the vector leptoquark model is the most successful
in combining several phenomena with a small amount of field content and symmetries.
For the first time we were able to connect the anomalies RK and RD(∗) with the small
neutrino mass scale and the large PMNS mixing. An FN mechanism dictates sizable
leptoquark couplings to b−µ and b− τ , while the weak leptoquark-Higgs mixing induces
naturally-small neutrino masses. This is possible if the leptoquark masses reside at
∼ 1 TeV and & 30 TeV, respectively, which implies that one leptoquark should manifest
in the LHC data soon.
The fact that the flavor problem can be tackled with such fundamentally different
frameworks makes testable predictions crucial. It is therefore imperative to study the
scalar phenomenology of each model extensively. An attractive channel to probe NP
scenarios is the diphoton final state because of its low background at the LHC. We find
that the h→ γγ channel places the most stringent bounds on the parameter space of
the S3 flavor model (Sec. 3.1).
Other resonances in the diphoton channel can further constrain the parameter space
if they are linked to the model phenomenology. In chapter 5 we utilized the 750 GeV
diphoton excess reported in December 2015 to show how incorporating possible future
signals in this final state can increase the models’ predictivity. By extending the S3 and
the vector leptoquark flavor models to account for the resonance we were able to confine
the parameter space of the exotic field content. In the S3 model the FN flavon acted
as the scalar resonance and thereby connected the excess with the flavor symmetry
breaking scale and the exotic particle masses. The Z14 symmetry responsible for the
fermion masses and mixing patterns should be broken below 10 TeV to accommodate
the resonance at 750 GeV. In the second example, the vector leptoquarks enhanced the
diphoton signal through their dimensional coupling to the scalar resonance and their
large loop factor. By requiring that the vector leptoquarks reproduce the total cross
sections reported by ATLAS and CMS, we were able to pinpoint their masses.
In summary, it is possible to accommodate the different measurements in the flavor sector
with model building. However, finding a simple yet elegant framework is challenging
and leads to many solutions which vary in complexity and predictivity. The models
introducing NP at the TeV or even the EW scale will soon be put to the test by LHC
Run 2 data.
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a.1 masses and mixing angles

In this section we collect the experimental values of SM parameters referred to in the
models of this thesis. The quark, lepton, and neutrino masses are listed in Tabs. A.1
and A.2. Information on the CKM and PMNS mixing angles can be found in Tabs.
A.3 – A.6.

Mass Value Mass Value Mass Value

md 0.0029+0.0005
−0.0004 mu 0.00145+0.00056

−0.00045 me 0.00051
ms 0.0577+0.0168

−0.0157 mc 0.635± 0.086 mµ 0.10565
mb 2.820+0.090

−0.040 mt 172.1± 0.6± 0.9 mτ 1.77686± 0.00012

Table A.1: Experimental values of the fermion masses at the MZ scale in GeV [155].

Observable ∆m2
21(10−5eV2) ∆m2

31(10−3eV2)

Best fit (±1σ) 7.49+0.19
−0.17

NH: +2.526+0.039
−0.037

IH: −2.518+0.038
−0.037

3σ 7.02→ 8.08
NH: +2.413→ +2.645
IH: −2.634→ −2.406

Table A.2: Neutrino mass squared splittings for normal and inverted hierarchy, respec-
tively. The values were taken from the newest NU-Fit 2.2 data [13].
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Observable sin θ12 sin θ23 sin θ13 δ

Best fit 0.2254 0.0413 0.00350 68◦

Table A.3: Experimental values of the CKM mixing angles and the CP phase δ obtained
from the NU-Fit 2.2 data [13].

Element Central ± 3σ Element Central ± 3σ Element Central ± 3σ∣∣∣Vud∣∣∣ 0.97425+0.00022
−0.00032

∣∣∣Vcd∣∣∣ 0.22529+0.00100
−0.00098

∣∣∣Vtd∣∣∣ 0.00868+0.00027
−0.00058∣∣∣Vus∣∣∣ 0.22542+0.00101

−0.00097

∣∣∣Vcs∣∣∣ 0.97339+0.00024
−0.00024

∣∣∣Vts∣∣∣ 0.04107+0.00094
−0.00161∣∣∣Vub∣∣∣ 0.00371+0.00027

−0.00020

∣∣∣Vcb∣∣∣ 0.04180+0.00097
−0.00164

∣∣∣Vtb∣∣∣ 0.99912+0.00007
−0.00004

Table A.4: Experimental values of the CKM matrix elements. Each matrix element
is constrained by various channels independently, which are taken into account in the
global fit performed by CKMfitter [185].

Observable sin2 θ12 sin2 θ23 sin2 θ13

Best fit (±1σ) 0.308+0.013
−0.012

NH: 0.440+0.023
−0.019

IH: 0.584+0.018
−0.022

NH: 0.02163+0.00074
−0.00074

IH: 0.02175+0.00075
−0.00074

3σ 0.273→ 0.349
NH: 0.388→ 0.630
IH: 0.398→ 0.634

NH: 0.01938→ 0.02388
IH: 0.01950→ 0.02403

Table A.5: Leptonic mixing angles for normal and inverted hierarchy, respectively. The
values were taken from the newest NU-Fit 2.2 data [13].
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Type Experiments Dominant Important

Solar SNO θ12 ∆m2
sol, θ13

Reactor long baseline KamLAND ∆m2
sol θ12, θ13

Reactor medium baseline
Daya-Bay, Reno
Double-Chooz

θ13 |∆m2
atm|

Atmospheric SuperKamiokande θ23 |∆m2
atm|, θ13

Accelerator νµ disappearance Minos, NOνA, T2K |∆m2
atm| θ23

Accelerator νe appearance Minos, NOνA, T2K δCP θ13, θ23, ±∆m2
atm

Table A.6: Overview of experiments that currently measure neutrino oscillation param-
eters and the observables they are sensitive to [13].
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a.2 rare and forbidden decay rates

This appendix contains summary tables of the rare decay branching ratios relevant for
this thesis. These are separated into B meson (A.7), K meson (A.8), and lepton decays
(A.9).

Channel Bexp BSM

b→ sγ (3.49± 0.19)× 10−4 (3.36± 0.23)× 10−4

b→ see (4.7± 1.3)× 10−6 (4.15± 0.70)× 10−6

b→ sµµ (4.3± 1.3)× 10−6 (4.15± 0.70)× 10−6

B0 → µµ (3.9+1.6
−1.4)× 10−10 (1.06± 0.09)× 10−10

B0
s → µµ (2.8+0.7

−0.6)× 10−9 (3.66± 0.23)× 10−9

B+ → τ+ν (1.14± 0.27)× 10−4 (0.76+0.08
−0.06)× 10−4

Observable Experiment SM expectation

RK 0.745+0.090
−0.074 ± 0.036 1.0003± 0.0001

RD 0.388± 0.047 0.300± 0.010
RD∗ 0.321± 0.021 0.252± 0.005

Table A.7: Summary of current measurements in the B meson sector [6, 6, 32, 33, 35–37,
40–43].
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Channel Bexp BSM

KL → µµ (6.84± 0.11)× 10−9 ∼ (6.64± 0.07)× 10−9

KL → ee (8.7+5.7
−4.1)× 10−12 ∼ 9× 10−12

KL → µe < 4.7× 10−12

KL → π0µe < 7.6× 10−11

KL → π0µe < 1.7× 10−10

K+ → π+µ+e− < 1.2× 10−11

K+ → π+µ−e+ < 5.2× 10−10

Table A.8: Overview of constraints on rare K decays at 90% C.L. The decays with
lepton flavor-violating final states are forbidden in the SM without massive neutrinos.
The measurements were taken from Ref. [6]

Channel Bexp

µ→ eγ < 5.7× 10−13

µN → eN < 7.0× 10−13

µ→ eee < 1.0× 10−12

τ → eγ < 3.3× 10−8

τ → µγ < 4.4× 10−8

τ → eee < 2.7× 10−8

τ → eµµ < 1.7× 10−8

τ → eeµ < 1.8× 10−8

τ → µµµ < 2.1× 10−8

Table A.9: Summary of current limits on processes with CLFV [50,54,55,57,249].
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T E N S O R P RO D U C T RU L E S

Here we append the group multiplication rules for A4 and S4 used in the models of Secs.
3.2 and 4.1.

b.1 multiplication rules of S4

The S4 product rules can be written as [83]

3⊗ 3 = 1⊕ 2⊕ 3⊕ 3′ , 2⊗ 2 = 1⊕ 1′ ⊕ 2 , 3⊗ 1′ = 3′ ,
3′ ⊗ 3′ = 1⊕ 2⊕ 3⊕ 3′ , 2⊗ 3 = 3⊕ 3′ , 3′ ⊗ 1′ = 3 ,
3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′ , 2⊗ 3′ = 3′ ⊕ 3 , 2⊗ 1′ = 2 .

(B.1)

Explicitly, in the basis adopted in this thesis, which corresponds to Ref. [83], the tensor
products read

(A)3 ⊗ (B)3

= (A ·B)1 ⊕
(

A · Σ ·B
A · Σ∗ ·B

)
2
⊕

 {AyBz}{AzBx}
{AxBy}


3

⊕

 [AyBz ]

[AzBx]

[AxBy]


3′

,

(A)3′ ⊗ (B)3′

= (A ·B)1 ⊕
(

A · Σ ·B
A · Σ∗ ·B

)
2
⊕

 {AyBz}{AzBx}
{AxBy}


3

⊕

 [AyBz ]

[AzBx]

[AxBy]


3′

,

(A)3 ⊗ (B)3′

= (A ·B)1′ ⊕
(

A · Σ ·B
−A · Σ∗ ·B

)
2
⊕

 {AyBz}{AzBx}
{AxBy}


3′

⊕

 [AyBz ]

[AzBx]

[AxBy]


3

,

(B.2)

(A)2 ⊗ (B)2 = {AxBy}1 ⊕ [AxBy]1′ ⊕
(
AyBy
AxBx

)
2

, (B.3)
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(
Ax
Ay

)
2
⊗

 Bx
By
Bz


3

=

 (Ax +Ay)Bx
(ω2Ax + ωAy)By
(ωAx + ω2Ay)Bz


3

⊕

 (Ax −Ay)Bx
(ω2Ax − ωAy)By
(ωAx − ω2Ay)Bz


3′

,

(
Ax
Ay

)
2
⊗

 Bx
By
Bz


3′

=

 (Ax +Ay)Bx
(ω2Ax + ωAy)By
(ωAx + ω2Ay)Bz


3′

⊕

 (Ax −Ay)Bx
(ω2Ax − ωAy)By
(ωAx − ω2Ay)Bz


3

,

(B.4)

with
A ·B = AxBx +AyBy +AzBz,

{AxBy} = AxBy +AyBx,
[AxBy] = AxBy −AyBx,

A · Σ ·B = AxBx + ωAyBy + ω2AzBz,
A · Σ∗ ·B = AxBx + ω2AyBy + ωAzBz,

(B.5)

where ω = e2πi/3 is a complex square root of unity.

b.2 multiplication rules of A4

The A4 multiplication rules are

3⊗ 3 = 3s ⊕ 3a ⊕ 1⊕ 1′ ⊕ 1′′ ,

1⊗ 1 = 1 , 1′ ⊗ 1′′ = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ ,
(B.6)

where 3s and 3a define the symmetric and antisymmetric triplet combinations, re-
spectively. In terms of the two basis vectors (x1, y1, z1) and (x2, y2, z2), the A4 triplet
products read:

(3⊗ 3)1 = x1y1 + x2y2 + x3y3 ,
(3⊗ 3)1′ = x1y1 + ωx2y2 + ω2x3y3 ,
(3⊗ 3)1′′ = x1y1 + ω2x2y2 + ωx3y3 ,
(3⊗ 3)3s = (x2y3 + x3y2,x3y1 + x1y3,x1y2 + x2y1) ,
(3⊗ 3)3a = (x2y3 − x3y2,x3y1 − x1y3,x1y2 − x2y1) ,

(B.7)

with ω = ei
2π
3 .
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M O D E L D E TA I L S

c.1 phenomenology of the S3 flavor model

This appendix contains the detailed computations of the neutrino masses and the PMNS
mixing matrix (C.1.1). We also give the loop expressions used in the analysis of the
scalar sector, including the rare top decays induced by the exotic scalars (C.1.2) and
the T and S parameters (C.1.3). App. C.1.4 deals with the minimization of the scalar
potential and the VEV alignment.

c.1.1 Neutrino Sector

In this model, the light neutrino mass eigenstates are obtained from a 5× 5 dimensional
neutrino mass matrix that follows from Eq. (3.10). In the seesaw mechanism type I the
light neutrino mass scale is a consequence of the suppression by the heavy Majorana
masses, so that

MνL =MD
ν M

−1
R

(
MD
ν

)T
=

 A F

B E

C D


 − 4M2

M2
12−4M1M2

2M12
M2

12−4M1M2
2M12

M2
12−4M1M2

− 4M1
M2

12−4M1M2

( A B C

F E D

)

≡

 W 2 WX cosϕ WY cos (ϕ− %)
WX cosϕ X2 XY cos %

WY cos (ϕ− %) XY cos % Y 2

 ,

(C.1)

with

W 2 = −4(M2A2−M12AF+M1F 2)
M2

12−4M1M2
, WX = 2(BFM12−2ABM2−2FEM1+AEM12)

(M2
12−4M1M2) cosϕ ,

X2 = −4(M2B2−M12BE+M1E2)
M2

12−4M1M2
, XY = 2(BDM12−2BCM2+CEM12−2DEM1)

(M2
12−4M1M2) cosϕ ,

Y 2 =
4(M2C2−M12CD+M1D2)

M2
12−4M1M2

, WY = 2(CFM12−2ACM2−2FDM1+ADM12)
(M2

12−4M1M2) cos(ϕ−%) ,

and
 A F

B E

C D

 ≡

λ3ε

(ν)
11

v2√
2 λ3ε

(ν)
12

v2√
2

ε
(ν)
21

v1√
2 ε

(ν)
22

v3√
2

ε
(ν)
31

v1√
2 ε

(ν)
33

v3√
2

 . (C.2)
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For simplicity we set ϕ = % and κ ≡ cosφ, resulting in

MνL =

 W 2 κWX WY

κWX X2 κXY

WY κXY Y 2

 . (C.3)

A matrix with this structure can be diagonalized with a rotation matrix Vν , which for
NH is given by

V NH
ν =


− Y√

W 2+Y 2
W√

W 2+Y 2 sin θν W√
W 2+Y 2 cos θν

0 cos θν − sin θν
W√

W 2+Y 2
Y√

W 2+Y 2 sin θν Y√
W 2+Y 2 cos θν

 ,

with tan θν = −

√
m3 −X2

X2 −m2
,

(C.4)

while for IH it is

V IH
ν =


W√

W 2+Y 2 − Y√
W 2+Y 2 sin θν − Y√

W 2+Y 2 cos θν
0 cos θν − sin θν
Y√

W 2+Y 2
W√

W 2+Y 2 sin θν W√
W 2+Y 2 cos θν

 ,

with tan θν = −

√
m2 −X2

X2 −m1
.

(C.5)

Finally, the corresponding two nonvanishing neutrino masses in these cases are

mν∓ =
1
2

(
W 2 +X2 + Y 2 ∓

√
(W 2 −X2 + Y 2)2 − 4κ2X2 (W 2 + Y 2)

)
. (C.6)

The smallness of the active neutrinos masses is a consequence of their scaling with
the inverse of the large Majorana neutrino masses, as expected from the type I seesaw
mechanism.
The PMNS matrix now follows directly from VPMNS = V †l Vν using Eq. (3.20), and Eqs.
(C.4) and (C.5) for NH and IH, respectively,

VPMNS =





− Y√
W 2+Y 2

Wsθν√
W 2+Y 2

Wcθν√
W 2+Y 2

Wsθl√
W 2+Y 2 cθlcθν +

Y sθlsθν√
W 2+Y 2

Y cθν sθl√
W 2+Y 2 − cθlsθν

Wcθl√
W 2+Y 2

Y cθlsθν√
W 2+Y 2 − cθνsθl sθlsθν +

Y cθlcθν√
W 2+Y 2


(NH)



W√
W 2+Y 2 − Y sθν√

W 2+Y 2 − Y cθν√
W 2+Y 2

Y sθl√
W 2+Y 2 cθlcθν +

Wsθν sθl√
W 2+Y 2

Wsθlcθν√
X2+Y 2 − cθlsθν

Y cθl√
W 2+Y 2

Wsθν cθl√
W 2+Y 2 − cθνsθl sθlsθν +

Wcθlcθν√
W 2+Y 2


(IH)

. (C.7)

By comparing with the standard parametrization we can derive the mixing angles for
NH and IH, shown in Eqs. (3.26) and (3.27).
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c.1.2 Loop-Induced Top Quark Decays

The loop-induced top quark decays studied in Sec. 3.1.3 were calculated using the loop
factors provided in Ref. [163]. For completeness, the analytic expressions for the decay
rates are summarized in this appendix.
The radiative decays t→ cV (V = γ,Z, g) can be expressed in terms of the form factors
A(V ),B(V ),C(V ),D(V ). Each form factor F = A,B,C,D in turn contains a sum of five
different contributions

F (V ) = F
(V )
h + F

(V )
H + F

(V )
A + F

(V )
C + F

(V )
M , (C.8)

where the lower index denotes the contributing scalar (C for ”charged” and M for
”mixed” h-A contributions), and the upper index corresponds to the outgoing gauge
boson.
In this notation the decay rates are given by

Γ(t→ cγ) =
1

(16π2)2
1

8π
(
|Cγ |2 + |Dγ |2

)
, (C.9)

Γ(t→ cZ) =
1

(16π2)2
1

16πmt

(
1− M2

Z

m2
t

)(
m2
t

M2
Z

− 1
)

×
[
(m2

t + 2M2
Z)
(
|AZ |2 + |BZ |2

)
− 6M2

Z(A
Z∗CZ −BZ∗DZ) (C.10)

+ M2
Z

(
M2
Z

m2
t

+ 2
)(
|CZ |2 + |DZ |2

)]
,

Γ(t→ cg) =
1

(16π2)2
1

8π
N2 − 1

2N
(
|Cg|2 + |Dg|2

)
. (C.11)

The reader is referred to Ref. [163] for the complete expressions of each form factor
F (V ).

c.1.3 Loop Expressions for the T and S Parameters

This section deals with the technical details of the T and S parameter analysis. To
emphasize the contributions arising from new physics, the T and S are split into
T ≡ TSM + ∆T and S ≡ SSM + ∆S, where TSM and SSM are the SM contributions given
by

TSM = − 3
16π cos2 θW

ln
(
m2
h

m2
W

)
, (C.12)

SSM =
1

12π ln
(
m2
h

m2
W

)
, (C.13)
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while ∆T and ∆S contain all the contributions involving the exotic heavy scalars

∆T ' −3 cos2 (α− β)
16π cos2 θW

ln
(
m2
H0

m2
h

)

+
1

16π2v2αEM(MZ)

[
m2
H± − F

(
m2
A0 ,m2

H±

)]
+

sin2 (α− β)
16π2v2αEM(MZ)

[
F
(
m2
h,m2

A0

)
− F

(
m2
h,m2

H±

)]
+

cos2 (α− β)
16π2v2αEM(MZ)

[
F
(
m2
H0 ,m2

A0

)
− F

(
m2
H0 ,m2

H±

)]
,

(C.14)

∆S ' 1
12π

[
cos2 (α− β) ln

(
m2
H0

m2
h

)
+ sin2 (α− β)K

(
m2
h,m2

A0 ,m2
H±

)
+ cos2 (α− β)K

(
m2
H0 ,m2

A0 ,m2
H±

)]
,

(C.15)

with the functions [250]

F
(
m2

1,m2
2

)
=

m2
1m

2
2

m2
1 −m2

2
ln
(
m2

1
m2

2

)
, lim

m2→m1
F
(
m2

1,m2
2

)
= m2

1, (C.16)

K
(
m2

1,m2
2,m2

3

)
=

1
(m2

2 −m2
1)

3

{
m4

1

(
3m2

2 −m2
1

)
ln
(
m2

1
m2

3

)

− m4
2

(
3m2

1 −m2
2

)
ln
(
m2

2
m2

3

)

− 1
6
[
27m2

1m
2
2

(
m2

1 −m2
2

)
+ 5

(
m6

2 −m6
1

)]}
,

(C.17)

and the properties
lim

m1→m2
K(m2

1,m2
2,m2

3) = K1(m
2
2,m2

3) ,

lim
m2→m3

K(m2
1,m2

2,m2
3) = K2(m

2
1,m2

3) ,

lim
m1→m3

K(m2
1,m2

2,m2
3) = K2(m

2
2,m2

3) ,

(C.18)

where
K1(m

2
2,m2

3) = ln
(
m2

2
m2

3

)
,

K2(m
2
1,m2

3) =
1

6 (m2
1 −m2

3)
3

(
−5m6

1 + 27m4
1m

2
3 − 27m2

1m
4
3

+ 6
(
m6

1 − 3m4
1m

2
3

)
ln
(
m2

1
m2

3

)
+ 5m6

3

)
.

(C.19)

The corresponding Feynman diagrams contributing to ∆T and ∆S are shown in Figs.
C.1 and C.2, respectively.

c.1.4 Decoupling and S3 VEVs

The full symmetry is broken in two subsequent steps taking place at different energy
scales. The respective SU(2) singlet scalars inducing the breaking of the flavor symmetry



C.1 phenomenology of the S3 flavor model 149

W 1 W 1

π1

B

W 3 W 3

H0

B

W 3 W 3

H0

A0

W 3 W 3

H1

H2

W 1 W 1

H0

H2

W 1 W 1

H1

A0

Figure C.1: One-loop Feynman diagrams contributing to the T parameter. The fields
H1 and H2 are linear combinations of the charged Higgses H±, similarly to how the
W± gauge bosons are defined in terms of W 1 and W 2. Likewise, the fields π1 and π2

are linear combinations of the charged Goldstone bosons π±.
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W 3 B

π1

π2

W 3 B

H1

H2

W 3 B

π0

H0

W 3 B

H0

A0

Figure C.2: One-loop Feynman diagrams contributing to the S parameter. The fields
H1 and H2 are linear combinations of the charged Higgses H±.

are assumed to acquire VEVs much larger than the EW breaking scale. According to
the method of recursive expansion [251], the mixing between the scalar SU(2) singlets
and doublets is of the order of v1,2

λΛ with v1,2 ∼ O(100 GeV) and Λ� ΛEW. Since the
mixing is strongly suppressed by the new breaking scale Λ, the singlet scalars effectively
decouple from the Higgs doublets and are therefore negligible in the analysis of the
low-energy scalar potential. We also checked numerically that the masses of the SU(2)
doublet scalars are nearly unaffected by SM singlet VEVs of O(500 GeV) and higher.
For simplicity we assume a CP invariant scalar potential with only real couplings. In
the regime where the VEVs decouple, the relevant terms for determining the direction
of the ξ VEV in the S3-space are

V (ξ) = −µ2
ξ(ξξ)1 + γξ,3(ξξ)2ξ + κξ,1(ξξ)1(ξξ)1 + κξ,2(ξξ)2(ξξ)2 + κξ,3 [(ξξ)2 ξ]2 ξ,

(C.20)
From the minimization conditions of the high-energy scalar potential, we find the
following relations:

∂ 〈V 〉
∂vξ1

= 2vξ1

[
µ2
ξ + 2 (κξ,1 + κξ,2 + κξ,3)

(
v2
ξ1 + v2

ξ2

)]
+ 3γξ,3

(
v2
ξ2 − v

2
ξ1

)
= 0 ,

∂ 〈V 〉
∂vξ2

= 2vξ2

{[
µ2
ξ + 2 (κξ,1 + κξ,2 + κξ,3)

(
v2
ξ1 + v2

ξ2

)]
+ 3γξ,3vξ1

}
= 0 .

(C.21)
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The analysis of the minimization equations yields for a large range of the parameter
space the following VEV direction for ξ:

〈ξ〉 = vξ (1, 0) . (C.22)

Inserting the vacuum configuration (C.22) into Eq. (C.21), we find the relation between
the parameters and the magnitude of the VEV

µ2
ξ = −

vξ
2 [2 (κξ,1 + κξ,2 + κξ,3) vξ − 3γξ,3] , (C.23)

which can be fulfilled in a large region of the parameter space. These results shows that
the VEV direction for the S3 doublet ξ in Eq. (3.3) is consistent with a global minimum
of the scalar potential of our model.

c.2 fermion masses and mixings in SU(5)

This appendix deals with the details of the SU(5) GUT model presented in Sec. 3.2,
starting with the complete expressions for the fermion Yukawa interactions (App. C.2.1),
followed by discussions of the scalar sector (App. C.2.2), and the CKM mixing (App.
C.2.3).



152 model details

c.2.1 Yukawa Lagrangian

The particle content and symmetry assignments listed in Tab. 3.7 lead to the following
Yukawa interactions:

LνYuk = λν
(
ψiSi

)
1
NR +MNNRN

c
R + h.c. ,

Ld,l
Yuk =

α1
Λ

(
Σkl Σlk

Λ2

)a1 (
ψiξ

)
1
Hj(1)Ψ(1)

ij +
α2
Λ

(
Σkl Σlk

Λ2

)a2 (
ψiξ

)
1′′
Hj(1)Ψ(2)

ij

+
α3
Λ

(
Σkl Σlk

Λ2

)a3 (
ψiξ

)
1′
Hj(1)Ψ(3)

ij +
β1
Λ

(
Σkl Σlk

Λ2

)b1 (
ψiξ

)
1

Φjk
i Ψ(1)

jk

+
β2
Λ

(
Σkl Σlk

Λ2

)b2 (
ψiξ

)
1′′

Φjk
i Ψ(2)

jk +
β3
Λ

(
Σkl Σlk

Λ2

)b3 (
ψiξ

)
1′

Φjk
i Ψ(3)

jk ,

LuYuk = εijklp
{
γ12

(
Σmn Σnm

Λ2

)x12

Ψ(1)
ij H

(3)
p Ψ(2)

kl

+ γ22

(
Σmn Σnm

Λ2

)x22

Ψ(2)
ij H

(2)
p Ψ(2)

kl + γ11

(
Σmn Σnm

Λ2

)x11

Ψ(1)
ij H

(4)
p Ψ(1)

kl

+ γ23

(
Σmn Σnm

Λ2

)x23

Ψ(2)
ij H

(4)
p Ψ(3)

kl + γ32

(
Σmn Σnm

Λ2

)x32

Ψ(3)
ij H

(4)
p Ψ(2)

kl

+ γ13

(
Σmn Σnm

Λ2

)x13

Ψ(1)
ij H

(2)
p Ψ(3)

kl + γ31

(
Σmn Σnm

Λ2

)x31

Ψ(3)
ij H

(2)
p Ψ(1)

kl

+ γ33

(
Σmn Σnm

Λ2

)x33

Ψ(3)
ij H
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p Ψ(3)

kl + γ21

(
Σmn Σnm
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Ψ(2)
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(3)
p Ψ(1)

kl

}
,

(C.24)

where LνYuk, Ld,l
Yuk, and LuYuk correspond to the neutrino, down-type, and up-type quark

Yukawa terms, respectively. Since the down-type quarks and charged leptons are in the
same SU(5) multiplets, the Ld,l

Yuk Lagrangian also generates the charged lepton masses.
The projection of the triplets on the corresponding singlet is denoted by the subscripts
1, 1′, 1′′. The dimensionless couplings αi, βi and γij (i, j = 1, 2, 3) are O(1) parameters.
And finally, the Froggatt-Nielsen charges fulfill the following relations:

ai = QΨ
i +Qψ +QH1 +Qξ , bi = QΨ

i +Qψ +QΦ +Qξ ,
x12 = x21 = QΨ

1 +QΨ
2 +Q

(3)
5 , x33 = QΨ

3 +QΨ
3 +Q

(3)
5 ,

x13 = x31 = QΨ
1 +QΨ

3 +Q
(2)
5 , x22 = QΨ

2 +QΨ
2 +Q

(2)
5 ,

x23 = x32 = QΨ
2 +QΨ

3 +Q
(4)
5 , x11 = QΨ

1 +QΨ
1 +Q

(4)
5 .

(C.25)

Since the scalar S participates only in neutrino interactions, we choose for its FN charge

QS = −Qψ (C.26)

to cancel the lepton charge separating the neutrino masses from the FN mechanism.
To relate the quark masses with the quark mixing parameters, we set:

κ =
Σkl Σlk

Λ2 =
15v2

Σ
2Λ2 =

ΛGUT

Λ
= λ . (C.27)

where λ = 0.225 corresponds to Wolfenstein parameter of the CKM matrix.
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c.2.2 Scalar Sector

We consider the following VEV patterns of the scalars fields in the model. The VEV
alignment known to break SU(5) down to the SM group is [252]〈

Σij
〉
= vΣ diag

(
1, 1, 1,−3

2,−3
2

)
, i, j = 1, 2, 3, 4, 5. (C.28)

The fields H (h) (h = 1, 2, 3, 4) and Φ then induce the EW symmetry breaking by
acquiring the VEVs [127,253]〈

H
(h)
i

〉
= v

(h)
H δi5 ,〈

Φp
p5

〉
= vΦ = −1

3
〈
Φ4

45
〉

, p = 1, 2, 3, 5,〈
Φi
j5

〉
= vΦ

(
δij − 4δi4δ4

j

)
, i, j = 1, 2, 3, 4, 5 .

(C.29)

Since the Z2 symmetry is unbroken, the VEV of the A4 triplet S must vanish

viS = 0, i = 1, 2, 3. (C.30)

The A4 potential is minimized by the following alignments of χ and ξ:

〈χ〉 = vχ√
2
(−1, 0, 1) , 〈ξ〉 = vξ√

3
(1, 1, 1) . (C.31)

Note that the flavons are aligned in different directions of the group space to generate
the mismatch between the neutrino and the charged lepton mixings, required by the
large PMNS mixing angles. The vacuum 〈ξ〉 preserves a Z3 subgroup of A4, which has
been extensively studied by many authors (see, e.g., Refs. [90, 254, 255] or Sec. 4.1 for a
detailed study of the Z3 subgroup).
Finally, to induce the breaking shown in Eq. (3.61), the VEVs of the scalars fulfill the
hierarchy

ΛEW ∼ vH , vΦ � vχ � vξ, vσ ∼ ΛGUT . (C.32)

Because of the many uncorrelated parameters, the scalar potential can be adjusted to
yield the required pattern of scalar masses evading experimental searches. Therefore,
also the loop effects of the heavy scalars to certain observables can be suppressed by an
appropriate choice of parameters. Fortunately, all these adjustments do not affect the
charged fermion and neutrino sector, which is completely controlled by the fermion-Higgs
Yukawa couplings and the combinations of U (1)f FN charges. Since the model is not
predictive in the scalar sector, the full expression for the scalar potential is omitted
from this section. A complete study of the scalar sector, also with respect to possible
dark matter candidates, is reserved for a future publication.

c.2.3 CKM matrix

As demonstrated in Sec. 3.2.2, the CKM matrix is solely determined by the up-quark
sector. It can be shown that

MU = mt

 yλ10 fλ9eiτσ bλ3

fλ9eiτσ aλ4eiσ(1+τ ) cλ2eiσ

bλ3 cλ2eiσ deiσ

 (C.33)
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is an appropriate structure to reproduce the CKM elements as well as J and the CP
phase δ, where y, a, b, c, d and f are O(1) parameters. This structure can be obtained
by setting the FN charges to

x11 = 10 , x12 = 9 , x13 = 3 ,
x23 = 2 , x22 = 4 , x33 = 0 , (C.34)

and assuming

v
(2)
H ∼ v

(3)
H ∼ v

(4)
H ∼

v√
2

, |γij | ∼
1
4 , i, j = 1, 2, 3. (C.35)

Consequently, we obtain

1
m2
t

MUM
†
U =

 b2λ6 bcλ5e−iσ bdλ3e−iσ

bcλ5eiσ c2λ4 cdλ2

bdλ3eiσ cdλ2 d2

 (C.36)

+

 λ18 (f2 + y2λ2) fλ13 (e−iστyλ6 + ae−iσ
)

λ11
(
byλ2 + ceiσ(τ−1)f

)
fλ13 (eiστyλ6 + aeiσ

)
λ8 (f2λ10 + a2) eiστλ6 (bfλ6 + ac

)
byλ13 + ce−iσ(τ−1)fλ11 e−iστλ6 (bfλ6 + ac

)
λ4 (c2 + b2λ2)

 ,

where the first term is the leading order contribution to MUM
†
U , while the second one

is crucial to generate the up and charm quark masses.
Since VCKM is determined only by VU , another expression can be used to relate Eq.
(C.36) directly to the CKM matrix

MUM
†
U = V †CKMdiag

(
m2
u,m2

c ,m2
t

)
VCKM

' m2
t

 |Vtd|
2 V †tdVts V †tdVtb

V †tsVtd |Vts|2 V †tsVtb
V †tbVtd V †tbVts |Vtb|2

 ,
(C.37)

where Vtq(q = d, s, b) denote the respective elements of the CKM matrix.
By using the Wolfenstein parameterization of the CKM matrix [86]

VCKM '

 1− λ2

2 λ Wλ3(ρ− iη)
−λ 1− λ2

2 Wλ2

Wλ3(1− ρ− iη) −Wλ2 1

 , (C.38)

with

λ = 0.22535± 0.00065 , W = 0.811+0.022
−0.012 ,

ρ = 0.131+0.026
−0.013 , η = 0.345+0.013

−0.014 , (C.39)

and

ρ ' ρ
(

1− λ2

2

)
, η ' η

(
1− λ2

2

)
, (C.40)

we can connect the model parameters with the experimental observables.
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As a result, we obtain for

MUM
†
U '

m2
t

 W 2λ6 [η2 + (ρ− 1)2] W 2λ5(−iη+ ρ− 1) Wλ3(iη− ρ+ 1)
W 2λ5(iη+ ρ− 1) W 2λ4 −Wλ2

Wλ3(−iη− ρ+ 1) −Wλ2 1

 ,
(C.41)

Comparing Eqs. (C.36) and (C.41), we find the following relations:

b 'W
√
η2 + (ρ− 1)2 , c ' −W , d ' 1 , σ ' arctan

(
− η

1− ρ

)
. (C.42)

Since d ' 1, the quark mixing in our model is described by the effective dimensionless
parameters b, c, σ, τ and λ, where the latter is fixed by the ratio of the grand unification
scale ΛGUT and the cutoff Λ of our model.
We fit the remaining O(1) parameters in Eq. (C.33) to reproduce the up-type quark
mass spectrum and quark mixing parameters. The results are shown in Tab. 3.11 for
the best-fit values

y = 0.2 f = 0.39 , a = 0.26 , τ = 2.9 . (C.43)

c.3 details of the S4 triality model

In this appendix we discuss the technical details of the S4 flavor model with LFT,
including a comprehensive study of the quark masses and mixings (App. C.3.1), the
consequences of the Z3 breaking (App. C.3.2), and the computation of the radiative
decays (App. C.3.4). A complete overview of the model content can be found in Tab.
C.1.

c.3.1 Quark Masses and Mixings

Following from Tab. 4.4, the relevant S4 ⊗Z ′′2 ⊗Z6 ⊗Z12 -invariant Yukawa terms for
the up-type quark sector are

−L(U) = y
(t)
1 [Qφ]3′ tR

ρ

Λ
+
y
(t)
2
Λ
Q [φρ]3′ tR + x

(t)
1 [Qφ]3 tR

ϕ

Λ
+
x
(t)
2
Λ
Q [φϕ]3′ tR

+ y
(c)
1 [Qφ]3′ cR

ρ

Λ
+
y
(c)
2
Λ
Q [φρ]3′ cR + x

(c)
1 [Qφ]3 cR

ϕ

Λ
+
x
(c)
2
Λ
Q [φϕ]3′ cR

+ x
(u)
0 [Qφ]1 uR

Ω3
2

Λ3 + y
(u)
1 [Qφ]3′ uR

ρΩ2
1

Λ3 + y
(u)
2 Q [φρ]3′ uR

Ω2
1

Λ3

+ x
(u)
1 [Qφ]3′ uR

ϕΩ2
1

Λ3 + x
(u)
2 Q [φϕ]3′ uR

Ω2
1

Λ3 ,

(C.44)
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Field SU(2)L S4 Z2 Z ′2 Z ′′2 Z6 Z12

L = (Le,Lµ,Lτ ) 2 3′

τR 1 1 3
lR = (eR,µR) 1 2 5

N1R 1 1 1
N2R 1 1 1 1

Q = (Q1,Q2,Q3) 2 3′ 1
uR 1 1 6
cR 1 1
tR 1 1
dR 1 1 3 6
sR 1 1 3
bR 1 1 3

φ = (φ1,φ2,φ3) 2 3′

η1 1 1 −1
η2 1 1′ −1
χ 1 3′ 1
ξ 1 3 1
σ 1 3′ 1 1
ζ 1 3 1 1
ρ 1 3′ 1
ϕ 1 3 1

Ω1 1 1 3
Ω2 1 1 1 2
Ω3 1 1 1

Table C.1: The complete particle content and symmetries used in the model. The empty
entries denote uncharged fields.
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and for the down-type quarks

−L(D) = y
(b)
1 [Qφ]3′ bR

ρΩ3
3

Λ4 +
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2
Λ
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3
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1Ω3

3
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2 Q [φρ]3′ dR
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1Ω3

3
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+ x
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ϕΩ2
1Ω3

3
Λ6 + x

(d)
2 Q [φϕ]3′ dR

Ω2
1Ω3

3
Λ6 .
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Then the quark mass matrices shown in Eq. (4.29) satisfy the following relation:

MqM
†
q ≡

 Xq Yqe
iθaq Yqe

iθbq

Yqe
−iθaq Uq Vqe

iθcq

Yqe
−iθbq Vqe

−iθcq Uq

 (C.46)

where Xq, Yq, Vq and Uq are real parameters and

θaq = θ1q + θ2q , θbq = θ1q − θ2q . (C.47)

For the sake of simplicity we assume θcq = θbq − θaq, so that the relevant physical part
of the quark mass matrices can be rewritten as follows:

MqM
†
q = PqJqP

†
q , Pq = diag(1, e−iθaq , e−iθcq ) , Jq =

 Xq Yq Yq
Yq Uq Vq
Yq Vq Uq

 . (C.48)

The matrix Jq corresponds to a modification of the Fukuyama-Nishiura texture proposed
in [154] and is diagonalized by an orthogonal matrix Rq as follows:

RqJqR
T
q = diag

(
−m2

q1 ,m2
q2 ,m2

q3

)
, Rq =


cq sq 0
− sq√

2
cq√

2 − 1√
2

− sq√
2

cq√
2

1√
2

 , (C.49)

where

cq =

√√√√ m2
q2 −Xq

m2
q2 +m2

q1

, sq =

√√√√ m2
q1 +Xq

m2
q2 +m2

q1

, (C.50)

with the quark masses

−m2
q1 =

1
2

(
Uq + Vq +Xq −

√
(Xq −Uq − Vq)2 + 8Y 2

q

)
,

m2
q2 =

1
2

(
Uq + Vq +Xq +

√
(Xq −Uq − Vq)2 + 8Y 2

q

)
,

m2
q3 = Uq − Vq .

(C.51)
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Furthermore, for the CKM matrix we obtain

VCKM = OTUPUDOD (C.52)

=


cUcD + 1

2sUsD
(
eiϑ + ei%

)
cUsD − 1

2sUcD
(
eiϑ + ei%

)
1
2sU

(
eiϑ − ei%

)
sUcD − 1

2cUsD
(
eiϑ + ei%

)
sUsD + 1

2cUcD
(
eiϑ + ei%

)
1
2cU

(
ei% − eiϑ

)
1
2sD

(
eiϑ − ei%

)
1
2cD

(
ei% − eiϑ

)
1
2

(
eiϑ + ei%

)
 ,

where PUD = P †UPD = diag
(
1, eiϑ, ei%

)
, with ϑ = θaU − θaD and % = θbU − θbD.

Using the values of the quark masses at the MZ scale shown in Table A.1 and varying
the parameters XU ,D, ϑ and % we fit the magnitudes of the CKM matrix elements, the
CP-violating phase and the Jarlskog invariant J to the experimental values shown in
Table C.2.

Observable Model value Experiment (±1σ)∣∣∣Vud∣∣∣ 0.974 0.97425+0.00022
−0.00032∣∣∣Vus∣∣∣ 0.225 0.22542+0.00101
−0.00097∣∣∣Vub∣∣∣ 0.00351 0.00371+0.00027
−0.00020∣∣∣Vcd∣∣∣ 0.225 0.22529+0.00100
−0.00090∣∣∣Vcs∣∣∣ 0.973 0.97339+0.00024
−0.00024∣∣∣Vcb∣∣∣ 0.0412 0.04180+0.00097
−0.00164∣∣∣Vtd∣∣∣ 0.00867 0.00868+0.00027
−0.00058∣∣∣Vts∣∣∣ 0.0404 0.04107+0.00094
−0.00161∣∣∣Vtb∣∣∣ 0.999 0.99912+0.00007
−0.00004

J 2.95× 10−5 (2.96+0.20
−0.16)× 10−5

δ 69.2◦ 68◦

Table C.2: Model values and the corresponding measurements of the up-type quark
masses and CKM parameters at the MZ scale. The experimental values were taken
from Refs. [6, 155].

For the values
XU = 2.90× 10−3 GeV2 , ϑ = 87.9◦ ,
XD = 1.38× 10−4 GeV2 , % = 92.6◦ ,

(C.53)

the obtained magnitudes of the CKM matrix elements, the CP-violating phase and the
Jarlskog invariant are in excellent agreement with the experimental data.

c.3.2 Z3 Breaking

In this section we append the full expressions used to determine the consequences of
the perturbed VEV alignment. After Z3 breaking the new mixing angle ϑ between the
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CP-even neutral scalars can be expressed in terms of the scalar masses mh ≈ 125 GeV
and mφ0

a,R
≡ ma

tan 2ϑ =
A

B
with

A = sθ{cθ[4m2
am

2
hs

2
θ(2− 7s2

θ) + 4m4
h(4 + 4s2
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− 8m4
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√
2sθ[4m4
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2
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θ + 4

√
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θ + 4
√
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θ))

+m4
a(−4 + 12s2

θ − 11s4
θ + 5s6

θ − 2
√

2cθsθ(4− 14s2
θ + 13s4

θ)) .

(C.54)

The PMNS matrix receives corrections caused by the perturbation of the VEV alignment.
These are approximately given by

U '


cψ√

3 −
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2iπ
3 sψ√
3

e
2iπ
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3

e−
2iπ

3 cψ√
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cψ√
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2iπ

3 sψ√
3

e−
2iπ

3√
3

e
2iπ

3 cψ√
3 +

e−iφsψ√
3

cψ√
3 −

eiφsψ√
3

1√
3

cψ√
3 +

e−iφsψ√
3

 (C.55)

+ θ
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whereas the deviations in the mixing angles caused by the perturbation θ are accounted
for by
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with
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c.3.3 Limits from h→ γγ

In the spirit of Sec. 3.1.3, where a thorough analysis of the scalar sector was crucial to
exclude large parts of the parameter space, we perform a study of the h→ γγ channel
in the present framework.
As shown in the previous section, small Z3 breaking perturbations allow to successfully
accommodate the experimental CMS data on the h → µτ excess. Consequently and
in order to make definite predictions, it is reasonable to neglect these perturbations in
the computation of the Higgs diphoton decay rate. Here, the h → γγ decay receives
additional contributions from loops with charged scalars φ±(a,b) resulting in a potential
diphoton excess, cf. Fig. 3.5 in Sec. 3.1.3. The Γ(h→ γγ) decay rate as well as the loop
expressions coincide with those given in Eqs. (3.53) and (3.56). The relevant trilinear
coupling entering Γ(h→ γγ) is

λhφ±s φ∓s =
2
3 (3α+ 2β − γ − δ) v =

2
(
m2
h −m2

φ±s

)
v

, s = a, b. (C.58)

The ratio Rγγ , defined in Eq. (3.58) is compared with the respective measurements
from CMS and ATLAS, Eq. (3.59), to limit the charged scalar masses.
Fig. C.3 shows the sensitivity of the ratio Rγγ under variations of the charged Higgs
masses mφ±s

(s = a, b), between 200 GeV and 1 TeV. Requiring that the h→ γγ signal
stays within the range 1.14 . Rγγ . 1.17 (the central values of the recent CMS and
ATLAS results, respectively), yields the bound 200 GeV. mφ±

a,b
. 205 GeV for the

charged Higgs boson masses. However, considering the large experimental errors of the
measurements, the masses are barely constrained at all by the h→ γγ rate. This is due
to the fact that the diphoton cross section is dominated by the SM particles, which
behave SM-like in the unbroken Z3 limit. A back-reaction of the Z3 breaking on the
quark sector could possibly modify the top quark coupling and thereby cause deviations
from the measured h → γγ rate. A thorough study of the quark sector is, however,
beyond the scope of this work.

c.3.4 Computation of the Radiative Decays l→ l′γ

The radiative decays l→ l′γ provide the strongest bounds on flavor-violating Yukawa
couplings in our model, therefore it is imperative to compute these decays with reasonable
precision. The branching ratio of l→ l′γ can be written as

B(l→ l′γ) =
τlαEMm

5
l

64π4

(
|cL|2 + |cR|2

)
, (C.59)
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Figure C.3: The ratio Rγγ is shown as a function of mφ±s
(s = a, b) for ahtt = 1. The

horizontal lines correspond to the central values of the Rγγ measurements by CMS and
ATLAS, equal to 1.14+0.26

−0.23 and 1.17± 0.27, respectively [169,170].

where in the following the Wilson coefficients cL,R are calculated up to order two.
Because of the strong hierarchy of the Yukawa couplings in our model |yl′l| � |yll′ |
the contributions from cL to B(l → l′γ) can be neglected. The one-loop expressions
corresponding to the diagrams in Fig. 4.1 are given by [51]

c1Loop
R ' 1

4ml

∫ 1

0
δ(1− u− v−w) v wml yl′l y

∗
ll + (u+ v)ml yl′l yll

wm2
s − v wm2

l + (u+ v)m2
l − u v q2du dv dw

(C.60)
with s = h,H, ηI ,φa,R,φa,I . Specifically in the case of µ→ eγ the two-loop contributions
with a top quark and a W boson running in the loop have to be taken into account as
they can dominate the cross section in certain regions of the parameter space [51,200].
The analytical expressions for the top-loops are
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16s2
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] (C.61)

with θW ' 28.74◦ and
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The W -loop expressions on the other hand are

cWγ
R = κ yµτ
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3f(zWs) + (5 + 3

4 )g(zWs) +
3
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(C.63)

The corresponding diagrams of these loop contributions can be found in, e.g., Fig. 12 of
Ref. [51].
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