
Distributed Analysis of
Vertically Partitioned Sensor Measurements

under Communication Constraints

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Marco Stolpe

Dortmund

2017



Tag der mündlichen Prüfung: 31. Januar 2017

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr. Katharina Morik

Prof. Dr. Jakob Rehof

Prof. Dr. Ulf Brefeld



Acknowledgements
This thesis couldn’t have been created without support. First of all, I’d like to express
my gratitude to my supervisor, Prof. Dr. Katharina Morik. Finishing this thesis would
have been impossible without her continuous encouragement and never ending trust in
my person. Also, I’d like to thank the other reviewers of this thesis, Prof. Dr. Jakob
Rehof and Prof. Dr. Ulf Brefeld, for taking the time of reading it and writing the final re-
views. I thank my colleagues at the Artificial Intelligence Group for the many interesting
collaborations, discussions and all the fun we had. I also received great support by the
members of the SFB 876, who always had an open ear, patiently listened to my questions
and gave valuable advice. Especially, I thank our partners in project B3, Daniel Lieber
in particular, for the intensive collaboration on data acquisition, storage and the pre-
processing of value series. Also, I thank our industrial partner for providing data about
the processing of steel blocks. I further recognize that my research would not have been
possible without the financial support by the Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876, project B3.

I thank Dr. Kamalika Das and Dr. Kanishka Bhaduri for the insightful discussions
about distributed data mining here at our chair and the many collaborations following.
I appreciate the time they spent with me in countless phone calls and during the night
before our ECML submission. Further, I’d like to thank other guests, like Giorgio
Patrini, for their interesting talks and the discussions we had about them afterwards.

Finally, I acknowledge the support from my family, in particular my wife, who en-
dured my absence while I was writing on this thesis or thought about its content. I
thank you very much, Dörte, for all your patience and encouragement throughout these
years!





Contents

List of Figures vi

List of Tables viii

1 Introduction 1

I Fundamentals 5

2 The Internet of Things (IoT) 7
2.1 Data-Driven IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Transportation and Distribution . . . . . . . . . . . . . . . . . . . 13
2.1.3 Energy and Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Public Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Healthcare and Pharma . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Data Analysis Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Security and Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Algorithmic Challenges . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Distributed Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Data Centers and Cloud Computing . . . . . . . . . . . . . . . . . 23
2.3.2 Communication-constrained Scenarios . . . . . . . . . . . . . . . . 24

2.4 Types of Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Communication Costs and Efficiency . . . . . . . . . . . . . . . . . 31
2.5.2 Distributed Setting and Components . . . . . . . . . . . . . . . . . 31
2.5.3 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



ii CONTENTS

3 Basic Principles and Methods 37
3.1 Machine Learning and Data Mining . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Instances, Concepts and Labeled Examples . . . . . . . . . . . . . 38
3.1.2 Training and Test Error . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 PAC Learnability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.4 Supervised Function Learning . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Empirical vs. Structural Risk Minimization . . . . . . . . . . . . . 44
3.1.6 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.7 Validation and Model Selection . . . . . . . . . . . . . . . . . . . . 46
3.1.8 The CRISP-DM Process . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.9 Propositional Representation . . . . . . . . . . . . . . . . . . . . . 49

3.2 Supervised Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 k-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Decision Tree Induction . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.5 Support Vector Method (SVM) . . . . . . . . . . . . . . . . . . . . 54

3.3 Outlier and Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Support Vector Data Description (SVDD) and 1-class SVM . . . . 57
3.3.2 Core Vector Machine (CVM) . . . . . . . . . . . . . . . . . . . . . 59

3.4 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 k-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Distributed Data Mining 65
4.1 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Parallel vs. Distributed Computing . . . . . . . . . . . . . . . . . . 66
4.1.2 Layered Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Communication Types . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.4 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.5 High Performance vs. Pervasive Computing . . . . . . . . . . . . . 73

4.2 Distributed Clustering of Sensor Nodes . . . . . . . . . . . . . . . . . . . . 74
4.3 Horizontally Distributed Data Analysis Algorithms . . . . . . . . . . . . . 78

4.3.1 Local Preprocessing, Central Analysis . . . . . . . . . . . . . . . . 78
4.3.2 Model Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Fusion of Local Models . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.4 Fusion of Local Predictions . . . . . . . . . . . . . . . . . . . . . . 92
4.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Vertically Distributed Data Analysis Algorithms . . . . . . . . . . . . . . 95
4.4.1 Local Preprocessing, Central Analysis . . . . . . . . . . . . . . . . 96
4.4.2 Model Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.3 Fusion of Local Predictions . . . . . . . . . . . . . . . . . . . . . . 101
4.4.4 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.5 Related Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS iii

4.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Challenges of Learning on Vertically Partitioned Data . . . . . . . . . . . 107

4.5.1 Estimation of Probabilities . . . . . . . . . . . . . . . . . . . . . . 107
4.5.2 Distance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5.3 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.4 Calculation of Splitting Points . . . . . . . . . . . . . . . . . . . . 112
4.5.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Preprocessing Case Study 115
5.1 Real-Time Quality Prediction in a Hot Rolling Mill Process . . . . . . . . 115
5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Value Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.2 Problems of Representation . . . . . . . . . . . . . . . . . . . . . . 120
5.2.3 Problems of Preparation . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2.4 Learning from Vertically Partitioned Value Series . . . . . . . . . . 123

5.3 Standard Methods of Value Series Preprocessing . . . . . . . . . . . . . . 124
5.3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2 Choice of Representation . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Preprocessing of Value Series from Production . . . . . . . . . . . . . . . 129
5.4.1 Data Assessment and Storage . . . . . . . . . . . . . . . . . . . . . 131
5.4.2 Data Preparation Steps . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.3 Choice of Representation and Features . . . . . . . . . . . . . . . . 133

5.5 Data Analysis and Prediction Results . . . . . . . . . . . . . . . . . . . . 135
5.6 Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . 137

II Algorithms 141

6 Learning from Label Proportions 143
6.1 The Problem of Learning from Label Proportions . . . . . . . . . . . . . . 144
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3 Difficulty of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.4 Loss and Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.5 Learning from Label Proportions by Clustering . . . . . . . . . . . . . . . 163

6.5.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.2 The LLPC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.3 Labeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.5.4 Run-time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.5.5 Generating a Prediction Model . . . . . . . . . . . . . . . . . . . . 167

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.6.1 Prediction Performance Experiments . . . . . . . . . . . . . . . . . 168
6.6.2 Prediction Performance Results . . . . . . . . . . . . . . . . . . . . 169
6.6.3 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . 171



iv CONTENTS

6.6.4 Run-time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.7 Summary, Conclusions and Outook . . . . . . . . . . . . . . . . . . . . . . 173

7 Decentralized Training of Local Models from Label Counts 175
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3 Global vs. Local Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.4 Communication of Label Counts . . . . . . . . . . . . . . . . . . . . . . . 180
7.5 Distributed Training of Local Models from Label Counts . . . . . . . . . . 181
7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.7 Summary, Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . 188

8 Vertically Distributed Core Vector Machine 191
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.3 Vertically Distributed CVM (VDCVM) . . . . . . . . . . . . . . . . . . . 193

8.3.1 Distributed Furthest Point Calculation . . . . . . . . . . . . . . . . 195
8.3.2 The VDCVM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 197
8.3.3 Analysis of Run-Time and Communication Costs . . . . . . . . . . 199

8.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

9 Summary, Conclusions and Questions 209
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.3 Open Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Appendices 221

A Programming with RapidMiner 223
A.1 Java Operators vs. RapidMiner Processes . . . . . . . . . . . . . . . . . . 223
A.2 Definition of Variables with Basic Data Types . . . . . . . . . . . . . . . . 225
A.3 Definition of Variables with Complex Types . . . . . . . . . . . . . . . . . 226

A.3.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.3.2 Associative Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.3.3 Storage and Retrieval of Complex Data Types . . . . . . . . . . . 231
A.3.4 Recursive Definition of Complex Data Types . . . . . . . . . . . . 232

A.4 Control Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.4.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.4.2 Looping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

A.5 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234



CONTENTS v

A.6 Process Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.7 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Bibliography 243



List of Figures

2.1 Sophistication levels of IoT applications . . . . . . . . . . . . . . . . . . . . . 9
2.2 Relationship between data analysis and control . . . . . . . . . . . . . . . . . 10
2.3 Increase of M2M connections in Verizon’s network from 2013 to 2014 . . . . . 11
2.4 Comparison of computing environments and device types . . . . . . . . . . . 22
2.5 Common types of data partitioning . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Combinations of feature subsets and target concept . . . . . . . . . . . . . . . 28
2.7 Problem setting and distributed components . . . . . . . . . . . . . . . . . . 32

4.1 Examples of binary classification problems . . . . . . . . . . . . . . . . . . . . 108
4.2 Examples of outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Hot rolling mill process with prediction and decision/control modules . . . . 116
5.2 Routes that blocks A and B could take through some process chain . . . . . . 118
5.3 Sensor measurements for blocks A and B . . . . . . . . . . . . . . . . . . . . 119
5.4 Database schema for hot rolling mill case study . . . . . . . . . . . . . . . . . 131
5.5 Segmentation of value series and extraction of features . . . . . . . . . . . . . 133
5.6 The value series from different sensors as a single fixed-length vector . . . . . 134
5.7 Similarity relationships between feature vectors . . . . . . . . . . . . . . . . . 136
5.8 Decision tree for predicting the final size of steel bars . . . . . . . . . . . . . . 137

6.1 Example of label proportion problem . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 Election results from 2009 for the districts 100-105 . . . . . . . . . . . . . . . 146
6.3 Relationship between blocks and rods getting lost . . . . . . . . . . . . . . . . 147
6.4 Prediction performance of LLPC vs. other classifiers . . . . . . . . . . . . . . 170
6.5 Run-time of LLPC vs. other classifiers . . . . . . . . . . . . . . . . . . . . . . 173

7.1 Distributed local models in a restricted neighborhood . . . . . . . . . . . . . 178
7.3 Accuracy of LLPClsm for different bag sizes . . . . . . . . . . . . . . . . . . . 187

vi



List of Figures vii

8.1 Distributed components of the VDCVM . . . . . . . . . . . . . . . . . . . . . 197
8.2 Synthetic datasets for the evaluation of VDCVM . . . . . . . . . . . . . . . . 201
8.3 Performance of VDCVM vs. VDSVM and central model . . . . . . . . . . . . 203
8.4 Communication costs of VDCVM vs. VDSVM . . . . . . . . . . . . . . . . . 205

A.1 The Set Macro operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.2 The Extract Macro operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
A.3 The Generate Macro operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
A.4 The Generate Data operator for arrays . . . . . . . . . . . . . . . . . . . . . . . 227
A.5 The Select Attributes operator for deleting the label attribute . . . . . . . . . . 227
A.6 Example Set resembling an array . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.7 Setting a value with the Set Data operator . . . . . . . . . . . . . . . . . . . . 228
A.8 Reading an array value with the Extract Macro operator . . . . . . . . . . . . . 229
A.9 Operators for manipulating the rows of an ExampleSet . . . . . . . . . . . . . . 229
A.10 Process for constructing an associative array . . . . . . . . . . . . . . . . . . 230
A.11 Operators for manipulating the columns of an ExampleSet . . . . . . . . . . . . 231
A.12 Operators for storing and retrieving IOObjects . . . . . . . . . . . . . . . . . . 231
A.13 The Branch operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.14 Subprocess view of the Branch operator . . . . . . . . . . . . . . . . . . . . . . 233
A.15 The Loop operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
A.16 The Execute Process operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.17 Process to be called . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.18 Process library for time series preprocessing . . . . . . . . . . . . . . . . . . . 235
A.19 Loop Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.20 The Edit Parameter Settings dialog of operator Loop Parameters (Parallel) . . . . . . . 237
A.21 A generic design for the Loop Parameters (Parallel) subprocess . . . . . . . . . . . 237



List of Tables

2.1 Data transfer rates of different technologies . . . . . . . . . . . . . . . . . . . 25

6.1 UCI data sets used for the experiments . . . . . . . . . . . . . . . . . . . . . 169
6.2 Average rank of LLPC vs. other classifiers . . . . . . . . . . . . . . . . . . . . 171
6.3 Average rank of LLPC (centroid models) vs. other classifiers . . . . . . . . . 172

7.1 Prediction results for STRF and kNN, time slices of 30 min. . . . . . . . . . . 184
7.2 Prediction results for kNN and LLPClsm (b = 50), slices 15 min., 1 month . . 185

8.1 Maximum number of observations for VDCVM . . . . . . . . . . . . . . . . . 200
8.2 Number of data points for VDCVM experiments . . . . . . . . . . . . . . . . 202
8.3 Results of VDCVM vs. other methods on real world datasets . . . . . . . . . 204

A.1 Parameters of the process for constructing an associative array . . . . . . . . 230

viii







Chapter 1
Introduction

Every day, data is generated by humans using devices as diverse as personal computers,
company servers, electronic consumer appliances or mobile phones and tablets. Due to
tremendous advances in hardware technology over the last few years, nowadays even
larger amounts of data are automatically generated by devices and sensors, which are
embedded into our physical environment. They measure, for instance,

• machine and process parameters of production processes in manufacturing,

• environmental conditions of transported goods, like cooling, in logistics,

• temperature changes and energy consumption in smart homes,

• traffic volume, air pollution and water consumption in the public sector or

• pulse and blood pressure of individuals in healthcare.

The collection and exchange of data is enabled by electronics, software, sensors and
network connectivity, that are embedded into physical objects. The infrastructure which
makes such objects remotely accessible and connects them, is called the Internet of
Things (IoT). In 2010, already 12.5 billion devices were connected to the IoT [Eva11], a
number about twice as large as the world’s population at that time (6.8 billion).

The IoT revolutionizes the Internet, since not only computers are getting connected,
but physical things, as well. The IoT can thus provide us with data about our physical
environment, at a level of detail never known before in human history [Ora15b]. Under-
standing the generated data can bring about a better understanding of ourselves and
the world we live in, creating opportunities to improve our way of living, learning, work-
ing, and entertaining [Eva11]. Especially the combination of data from many different
sources and their automated analysis may yield new insights into existing relationships
and interactions between physical entities, their environment and users. This facilitates
to optimize their behavior. Automation of the interplay between data analysis and con-
trol can lead to new types of applications that use fully autonomous optimization loops.
Examples will be shown, indicating their benefits.

1



2 CHAPTER 1. INTRODUCTION

However, IoT’s inherent distributed nature, the resource constraints and dynamism
of its networked participants, as well as the amounts and diverse types of data are
challenging even the most advanced automated data analysis methods known today.
In particular, the IoT requires a new generation of distributed algorithms which are
resource-aware and intelligently reduce the amount of data transmitted and processed
throughout the analysis chain.

Distributed data analysis algorithms developed for the IoT can be divided into two
main types. The first type targets data centers created for high performance cloud com-
puting. The second type targets pervasive systems consisting of small devices connected
in wireless networks. Both kinds of environments will be part of the IoT. In pervasive
systems, like wireless sensor networks, resources are much more scarce than in data cen-
ters for high performance computing. The most important difference are constraints on
communication, since wireless connections have low bandwidth, and the transmission
of data is known to be the most expensive operation for battery-powered devices like
mobile phones or smart sensors. However, there are other examples of communication-
constrained scenarios, for instance the real-time analysis of data streamed by high
throughput applications, or settings in which the privacy of data needs to be preserved,
not allowing for the transmission of data to other networked nodes.

A particularly challenging setting for the distributed analysis of data in an IoT con-
text, with many relevant applications, is the vertically partitioned data scenario. Here,
information about single observations is distributed over different physical nodes. The
learning of accurate prediction models and prediction itself may thus require the combi-
nation of information from different nodes, necessarily leading to communication. The
main question is how to design communication-efficient algorithms for the scenario, while
at the same time preserving sufficient accuracy. This thesis focuses on the distributed
analysis of sensor measurements in the vertically partitioned data scenario under com-
munication constraints.

The first part, "Fundamentals", introduces important definitions, concepts, notations,
algorithms and problems in so far as they serve the understanding of the second part.

Chapter 2 gives an overview of the IoT and its many applications, with a spe-
cial focus on data analysis. It then explains the important differences between high
performance cloud computing and much more communication-constrained settings, like
pervasive distributed systems or high throughput applications. The vertically parti-
tioned data scenario is described in more detail, together with applications. Challenges
of designing communication-efficient algorithms for the scenario are stressed. This re-
sults in a list of important research questions which have driven the development of
algorithms introduced in the second part of this thesis.

Chapter 3 introduces the topic of machine learning and data mining, from a theo-
retical perspective, as well as a practical one, giving examples of learning algorithms.

Chapter 4 gives an introduction into distributed systems and stresses the differences
between parallel and distributed computing. A selection of different approaches for
the distributed analysis of data is discussed in more detail, and should give a good



3

impression of the underlying problems, principles and techniques used by different classes
of distributed algorithms. Finally, the specific challenges of the vertically partitioned
data scenario are reviewed from a learning perspective.

Chapter 5 discusses the important task of preprocessing time-related sensor mea-
surements, in the context of a smart manufacturing case study. In particular, it is
described how sensor measurements assessed during a hot rolling mill process are pre-
processed before analysis. The results of the case study are presented, and conclusions
are drawn, which serve as a motivation for the algorithms developed in the second part
of this thesis.

The second part, "Algorithms", introduces new algorithms for distributed learning
in the vertically partitioned data scenario.

Chapter 6 first discusses the relatively novel problem of learning from label propor-
tions and how it relates to smart manufacturing and issues of privacy. A new algorithm
for the learning task is developed and evaluated, the Learning from Label Proportions by
Clustering (LLPC) algorithm. The algorithm’s performance is compared to three other
state-of-the-art approaches, in terms of accuracy and running time. It can be shown that
the algorithm’s accuracy is similar to the accuracy of its competitors, or significantly
higher in the case of larger bag sizes, where learning is more difficult. At the same time,
LLPC’s asymptotic running time is only linear, while the running time of its competitors
is at least quadratic. The proposed algorithm comes with many other benefits, like ease
of implementation and a small memory footprint. It is shortly explained how algorithms
developed for the scenario may be used for the communication-efficient transmission of
labels, motivating the next chapter.

Chapter 7 proposes a communication-efficient decentralized in-network classifica-
tion algorithm, the Training of Local Models from (Label) Counts (TLMC). The method
reduces communication by only transferring aggregated label information between nodes,
namely the counts of labels. At each local node, it transforms label counts into propor-
tions and learns from them with the previously introduced approach for learning from
label proportions. Feasibility of the approach is demonstrated by evaluating the algo-
rithm’s performance in the application context of traffic flow prediction. It is shown that
TLMC is much more communication-efficient than centralization of all data, but that
accuracy can nevertheless compete with that of a centrally trained global STRF model.

Chapter 8 introduces a communication-efficient distributed algorithm for anomaly
detection, the Vertically Distributed Core Vector Machine (VDCVM), which is based
on distributing kernel calculations of the Core Vector Machine (CVM). It can be shown
that the proposed algorithm communicates up to an order of magnitude less data during
learning, in comparison to another state-of-the-art approach or training a global model
by the centralization of all data. Nevertheless, in many relevant cases, the VDCVM
achieves similar or even higher accuracy on several controlled and benchmark datasets.

Chapter 9 summarizes the thesis and draws conclusions. Further research opportu-
nities are discussed by listing some open questions concerning the developed algorithms
and learning in the vertically partitioned data scenario in general.





Part I

Fundamentals

5





Chapter 2
The Internet of Things (IoT)

The IoT consists of physical objects (or "things") which embed electronics, software,
sensors, and communication components, enabling them to collect and exchange data.
Physical things are no longer separated from the virtual world, but connected to the
Internet. They can be accessed remotely, i.e. monitored, controlled and even made to
act.

Ideas resembling the IoT reach back to the year 1988, starting with the field of ubiq-
uitous computing. In 1991, Mark Weiser framed his ideas for the computer of the 21st
century [Wei91]. Weiser envisioned computers being small enough to vanish from our
sight, becoming part of the background, so that they are used without further thinking.
Rooms would host more than 100 connected devices, which could sense their environ-
ment, exchange data and provide human beings with information similar to physical
signs, notes, paper, boards, etc. Devices would need self-knowledge, e.g., of their loca-
tion. Many of Weiser’s original ideas can still be found in current definitions of the IoT
and requirements for according devices. For example, Mattern and Floerkemeier [MF10]
enumerate similar capabilities needed to bridge the gap between the virtual and physi-
cal world. Objects must be able to communicate and cooperate with each other, which
requires addressability, unique identification, and localization. Objects may collect in-
formation about their surroundings and they may contain actuators for manipulating
their environment. Objects can embed information processing, featuring a processor or
microcontroller, and storage capacity. Finally, they may interface to and communicate
with humans directly or indirectly. In a report by Verizon [Ver15], the IoT is defined
as a machine to machine (M2M) technology based on secure network connectivity and
an associated cloud infrastructure. Things belonging to the IoT follow the so called
three "A"s. They must be aware, i.e. sense something. They must be autonomous, i.e.
transfer data automatically to other devices or to Internet services. They also must
be actionable, i.e. integrate some kind of analysis or control.

The history of the IoT itself started in 1999, with the work on Radio-frequency
identification (RFID) technology by the Auto-ID Center of the Massachusetts Institute
of Technology (MIT) [MF10, Eva11]. The term "Internet of Things" was first literally

7



8 CHAPTER 2. THE INTERNET OF THINGS (IOT)

used by the center’s co-founder Kevin Ashton in 2002. In a Cisco white paper, Dave
Evans [Eva11] estimates that the IoT came into real existence between 2008 and 2009,
when the number of devices connected to the Internet began to exceed the number of
human beings on earth. Many of such devices were mobile phones, after in 2007, Steve
Jobs had unveiled the first iPhone at Macworld conference. Since then, more and more
devices are getting connected. It is estimated that by 2020, the IoT will consist of almost
50 billion objects [Eva11].

The World Wide Web (WWW) fundamentally changed in at least four stages [Eva11].
First, the web was called the Advanced Research Projects Agency Network (ARPANET)
and foremost used by academia. The second stage was characterized by companies
acquiring domain names and sharing information about their products and services.
The "dot-com" boom may be called the third stage. Web pages moved from static
to interactive transactional applications that allowed for selling and buying products
online. The "social" or "experience" web marks the current fourth stage, enabling people
to communicate, connect and share information. In comparison, Internet’s underlying
technology and protocols have gradually improved, but didn’t change fundamentally.
Now, connecting billions of physical things, crossing borders of entirely different types of
networks poses new challenges to Internet’s technologies and communication protocols.
This is why the IoT was called the first evolution of the Internet [Eva11].

As did the Internet, the IoT has the potential to change our lives in fundamental
ways. Gathering and analyzing data from many different sources in our environment
may provide a more holistic view on the true relationships and interactions between
physical entities, enabling the transformation of raw data and information into long-
term knowledge and wisdom [Eva11]. The timely identification of current trends and
patterns in the data could further support proactive behavior and planning, for instance
by anticipating natural catastrophes, traffic jams, security breaches, etc. The IoT may
also create new business opportunities. Potential benefits for companies are improved
customer and citizen experience, better operation of machines and quality control, ac-
celerating growth and business performance, as well as improving safety and a reduction
of risk. Verizon estimates that by 2025, companies having adopted IoT technology may
become 10% more profitable. Other sources predict profit increases by up to 80%. It
is further estimated that the number of business to business (B2B) connections will
increase from 1,2 billion in 2014 to 5,4 billion by 2020 [Ver15].

Many surveys about the IoT (for instance, [AIM10, GBMP13, PK13, XHL14]) dis-
cuss IoT’s underlying technologies, others [RZL13, Fle15] security and privacy issues.
Data analysis’ role and related challenges are only covered shortly, if at all. Some sur-
veys [AAS13, BdDPP16, CDW+15, DMR16] mention the problem of big data analysis
and propose centralized cloud-based solutions, following the paradigm of parallel high
performance computing. The authors of [GBA+13], [TLV14] and [QSF+16] take a more
things-centric perspective and argue for the analysis and compression of data before
its transmission to a cloud. [BYX10] identify the need for decentralized analysis algo-
rithms, in addition. [TLCY14] present existing applications of well-known data analysis
algorithms in an IoT context, highlighting decentralized data analysis as open issue



2.1. DATA-DRIVEN IOT APPLICATIONS 9

Sophistication of IoT Applications

Degree of Sensing

Efficiency: 
Control and 
react

Visibility: 
Connect and 
monitor

Innovation: 
Transform and 
explore

Agility: 
Predict and 
adaptD

eg
re

e 
of

 A
ct

io
n

Figure 2.1: Sophistication levels of IoT applications [104]

concerning infrastructure. However, they do not address an algorithmic perspective.
To the best of our knowledge, our following survey is the first one dealing with

differences between cloud-based and decentralized data analysis from an algorithmic
perspective. In Sect. 2.1, we show, how advanced levels of data analysis could enable
new types of applications. Section 2.2 presents the challenges of data analysis in the
IoT and argues for the need of novel data analysis algorithms. Like many other authors,
we see the convenience and benefits of cloud-based solutions. However, we want to
move further and enable data analysis even in resource-restricted situations (Sect. 2.3).
In Sect. 2.4, we argue in favor of data reduction and decentralized algorithms in highly
communication-constrained scenarios which existing surveys largely neglected, so far.
We focus on communication-efficient distributed analysis in the vertically partitioned
data scenario, which covers common IoT use cases. Section 2.5 presents research ques-
tions and directions, many of which are dealt with in later parts of this thesis, having
driven the development of communication-efficient algorithms presented there. Finally,
we summarize and draw final conclusions.

2.1 Data-Driven IoT Applications
In [MBC+09, CLR10], IoT applications are categorized by their level of information
and analysis vs. their level of automation and control. A similar distinction is made
in [Ver15], which measures the sophistication of IoT applications by two factors, namely
the degree of action and the degree of sensing (see Fig. 2.1). Applications falling into
the lower left corner of the diagram in Fig. 2.1 already provide benefits given the ability
to connect to and monitor physical things remotely. Giving objects a virtual identity
independent of their physical location highly increases their visibility and can facilitate



10 CHAPTER 2. THE INTERNET OF THINGS (IOT)

Levels of Data Analysis and Control

Instrumentation 
Measuring, automatic 
gathering of data 

Simple Remote Monitoring 
Human monitoring and control 
of single sensors and actuators

Information Fusion 
Aggregation, dimensionality 
reduction, visualization

Advanced Remote Monitoring 
Human monitoring of state and 
system changes

Predictive Maintenance 
Human or hard-coded intervention 
before failures even occur

Autonomous Adaptation 
Automatic optimization and 
adaptation to new situations

Level of Data Analysis

Level of Control

Batch Analysis 
Preprocessing, feature 
engineering, supervised and 
unsupervised modeling

Embedded Analytics 
Adaptation of models to concept 
changes, active learning and 
hypothesis testing

provides

provides

Insight

Feature weights, 
correlations and 
patterns

Knowledge

Cause-effect 
relationships

provides
provides

Summary

enables

enables

enables

enables

Forecast

Online Analysis and Prediction 
Real-time analysis of distributed 
streaming data

Data

enables

provides

Predictions and 
confidences

Automatic Failure Detection 
Issuing of warnings whenever 
critical states are reached

Diagrams and 
reports

Raw data plots

State of the Art

Current and Future Research

Figure 2.2: Relationship between data analysis and control

decision making based on smart representations of raw data. Applications located in
the upper left corner of Fig. 2.1, in addition, use embedded actuators. Beyond pure
monitoring, they enable remote control of physical things, thereby easing their manage-
ment. Applications that analyze IoT generated data fall into the lower right corner of
Fig. 2.1. Here, especially the combination of data from different physical objects and
locations could provide a more holistic view and insights into phenomena that are only
understood poorly, so far.

Though we agree with the previously presented categorizations, they don’t show
the dependency of advanced control mechanisms on data analysis. Data analysis could
turn data into valuable information, which can then be utilized for building long-term
knowledge and proactive decision making. Finally, merging analysis and control may
lead to innovative new business models, products and services. We therefore propose
the scheme in Fig. 2.2 which stresses the analysis. We structure the field along the
dimensions of control and data analysis. The diagonal shows the milestones on the path
to fully embedded analytics, which is put to good use in automatic system optimization.

The data gathered from single sensors for analysis enables simple remote monitoring
applications. Here, the informed choice and placement of sensors during instrumentation
depend on a well-defined analysis goal [ZSS+16, SBM16]. Advanced applications move
from the observation of single sensors to the monitoring of system and process states.



2.1. DATA-DRIVEN IOT APPLICATIONS 11

IoT by the numbers

Sector
Manufacturing
Finance & Insurance
Media & Entertainment
Home Monitoring
Retail & Hospitality
Transportation & Distribution
Energy & Utilities
Public Sector & Smart Cities
Health Care & Pharma

204%
128%

120%
89%
88%

83%
49%
46%

40%

Increase of M2M connections from 2013 to 2014

Figure 2.3: Increase of M2M connections in Verizon’s network from 2013 to 2014 [104]

This monitoring is based on the visualization of summary information obtained with the
help of data analysis from multiple types of sensors and devices. The batch analysis of
historical records finds correlations between features and relate them to a target value.
Insights gained from this step may lead, for instance, to a better understanding of critical
failure conditions and their automated detection. Prediction models derived from batch
analysis may also be deployed for real-time forecasts. This is current state-of-the-art.

However, depending on the amount and rate of generated measurements, their pre-
processing may become infeasible. Hence, current research focuses on distributed stream-
ing analysis methods and the intelligent reduction of data directly at the sensors and
devices themselves (see Sect. 2.2.3 and Sect. 2.3.2). Data analysis which is embedded into
all parts of an IoT system will finally require the real-time derivation of models and an
adaptation to changes in underlying data distributions and representations. This would
in turn allow for a continuous and automated monitoring of changes in correlations.
The full integration of data analysis and control introduces an automated conduction
of cause-effect analysis by active testing of hypotheses, moving beyond the detection of
correlations. Knowledge about causal relationships may then be used to autonomously
adapt the relevant parameters in new situations. Limiting models and their use to a
small selection of parameters saves memory, computing, and energy resources.

Figure 2.3 shows the increase of M2M connections for different business sectors in
Verizon’s network from 2013 to 2014. In the following, we present examples of specific
IoT applications from the sectors mentioned at the beginning: Manufacturing, trans-
portation and distribution, energy and utilities, the public sector and smart cities, as
well as healthcare and pharma. We have ordered examples of each sector according to
the different levels of data analysis and control as shown in Fig. 2.2 and have identi-
fied three main application types: Predictive maintenance, sustainable processes saving
resources and quality control.



12 CHAPTER 2. THE INTERNET OF THINGS (IOT)

2.1.1 Manufacturing
The manufacturing sector supports the development of IoT by the provision of smart
products. For instance, 43 million wearable bands were shipped in 2015 [Can14], and
it is estimated that 20 million smart thermostats will ship by 2023 [Nav14]. By 2016,
smart products will be offered by 53% of manufacturers [Oxf13].

The sector not only produces devices, but also uses IoT technology itself. According
to Fig. 2.3, the manufacturing sector is seeing the largest growth in terms of M2M
connections in Verizon’s network. Following the levels of Fig. 2.2, we now present types
of industrial applications.

Simple remote monitoring applications increase visibility by embedding location-
aware wireless sensors into products and wearables [Ver15]. This allows for a continuous
tracking of persons and assets, like available stock and raw materials, on- and offsite over
cellular or satellite connections. [Ver15] further mentions sensors which can detect haz-
ards or security breaches by the instrumentation of products and wearables. Embedding
sensors into production machinery will allow for the monitoring of individual machines
with high granularity along the process chain. It should be added, however, that the
automatic detection of such events necessarily requires an analysis and interpretation of
measurements.

The aggregation of data from the same type of sensors supports the confidence in
the accuracy of analysis results. Moreover, the fusion of data from different types of
sensors advances remote monitoring of larger units, like systems, processes and their
environment. For instance, [SBM16] visually identify and quantify different types of
productions modes in steel processing by summarizing multi-dimensional sensor data
with algorithms for dimensionality reduction.

Models derived from heterogenous data sources by batch analysis may provide in-
sights into the correlations between multiple dimensions of process parameters and a
target value. According to [Ver15], the timely identification of failure states can lead to
less disruption and increase uptime in comparison to regular human maintenance visits
and inspections. It should be added that once trained, data analysis models can often
be made directly operational, and be used, for instance, for the automatic detection of
critical patterns. For instance, learned models may be deployed early in the process
for the automatic real time prediction of a product’s final quality [SBM16], allowing for
timely human intervention. Here, resources might be saved by omitting further process-
ing of already defect products. Based on human knowledge, control parameters might be
adjusted such that a targeted quality level can still be reached. In the context of main-
tenance, the quantity to be predicted is machine wear or failure. The timely detection
of anomalies and machine wear can help with reducing unplanned downtime, increasing
equipment utilization and overall plant output [SBM16, Ver15]. However, depending
on the amount of generated data, batch analysis as well as preprocessing all data in
real-time can be challenging [SMK+11]. Advanced applications therefore require the
development of new kinds of data analysis algorithms (see Sect. 2.2.3 and Sect. 2.3.2).

Making data acquisition and analysis an integral part of production systems could



2.1. DATA-DRIVEN IOT APPLICATIONS 13

finally allow for the long time observation of changes in correlations between process
parameters and target variables. The importance of manufacturing for the adoption of
IoT is emphasized by the German initiative "Industrie 4.0". It fosters the integration of
production processes, IoT technology and cyber-physical systems into a so called smart
factory. In this future type of factory, products can communicate with their environ-
ment, for instance with other products, machines and humans. In contrast to fixed
structures and specifications of production processes that exist today, Reconfigurable
Manufacturing Systems (RMS) derive case-specific topologies automatically based on
collected data [BFKR14]. Hence, production will become more flexible and customized.
Reactions to changes in customer demands and requirements may take only hours or
minutes, instead of days. RMS might further support the active testing of hypotheses
and targeted generation of new observations. The resulting variability of large numbers
of observations might then help with automatically distinguishing between random cor-
relations of parameters and those the target variables truly depend on. Such knowledge
could then be used for the automatic optimization and autonomous real-time adapta-
tion of production processes and their parameters to new situations. The intelligent
combination of data analysis and control can thereby lead to more sustainable systems
which allow for major reductions in waste, energy costs and the need for human inter-
vention [CLR10, SBM16].

2.1.2 Transportation and Distribution
The sector of transportation and distribution belongs to the early adopters of IoT.
Here, according to [Ver15], important factors for the adoption of IoT technology are
regulations and competition which force higher standards of efficiency and safety, as
well as expectations of greater comfort and economy. From 2013 to 2014, the sector has
seen a 83% increase of M2M connections in Verizon’s network (see Fig. 2.3).

The instrumentation of vehicles enables simple remote monitoring applications that
make it easier to locate and instruct fleets of cars, vans or trucks [Har15]. Logging driver’s
working hours, speed and driving behavior can improve safety and simplify compliance
with regulations [Ver15]. Customers can be regularly informed about the delivery times
of anticipated goods. Even containers themselves are now equipped with boards of very
restricted capacities, which open up opportunities of tracing and organizing the goods
in a logistic chain of storage and delivery [VRR+15].

Another example for new types of applications is the UBER smartphone app which
indicates the location of passengers calling a taxi to nearby drivers and uses surge pricing
to fulfill demands for more taxis.

Advanced remote monitoring applications use data analysis to aggregate data and
may provide summaries of fleet movements on a larger scale, like the average number of
vehicles traveling certain routes, thereby facilitating resource planning [KBL+04].

Instrumentation allows car manufacturers deeper insights into the use of their cars.
Models derived by the batch analysis of data gathered from many cars could automat-
ically be deployed inside cars to identify or predict failure conditions. These models



14 CHAPTER 2. THE INTERNET OF THINGS (IOT)

may also provide information about the relationships between failures and underlying
causes. According to [Ver15], such information would allow to preemptively issue re-
calls, improve designs to iron out problems, and better target new features to driver and
market preferences. Intelligence built into vehicles, like proximity lane sensors, auto-
matic breaking, head lamps, wipers, and automated emergency calls can increase road
safety [Ver15].

Advanced applications, like autonomously driving vehicles [BW16], require the em-
bedded real-time analysis of data directly inside the vehicle. In addition, information
sent by nearby infrastructure, like traffic signals, traffic signs, street lamps, road works or
local weather stations might be taken into account (see also Sect. 2.1.4). For navigation,
vehicles may remotely access current information on street maps.

At a larger scale, data gathered from many vehicles and infrastructure could be
analyzed and used to instruct vehicles beyond their individual driving decisions. [KSG10]
developed a sophisticated distributed analysis of local data from vans of a fleet, which
allows to manage the overall fleet. Work orders can be allocated in real-time more
efficiently, adopting to drivers, reacting to order changes, or other events. The effects
on cutting fuel costs, leading to more sustainable vehicles and distribution systems has
been shown [MBK12]. Similarly, through timely diagnostics, predictive analytics, and
the elimination of waste in fleet scheduling, the rail industry is looking to achieve savings
of 27 billion dollars globally over 15 years [EA12].

2.1.3 Energy and Utilities
In the sector of energy distribution, IoT applications range from telematics for job
scheduling and routing, to bigger ones extending the life of electricity infrastructure [Ver15].
According to Fig. 2.3, the energy sector has seen an estimated growth of 49% in the num-
ber of M2M connections from 2013 to 2014.

Concerning remote monitoring, the energy sector was the first to introduce SCADA
(supervisory control and data acquisition). Smart meters increase visibility by providing
more granular data. Thereby they reduce the inconvenience and expense of manual meter
readings or estimated bills. Further, advanced remote monitoring provides more accurate
views of capacity, demand and supply over different smart homes, made possible by
visualizing summary information obtained from data analysis [MK11, KMS+16, ZY16].
Based on such information, sustainability may be improved through better resource
planning and cutting energy theft. According to [Ver15], in 2014, 94 million smart
meters were shipped worldwide and it is predicted that by 2022, the number of smart
meters will reach 1.1 billion. One target of the European Union is to replace 80% of
meters by smart meters by 2020, in 28 member countries.

Beyond monitoring applications, the batch analysis of data from smart homes may
help with giving recommendations for saving energy and enable more sophisticated en-
ergy management applications [ZY16]. Oil and gas companies can cut costs and increase
efficiency by early predicting the failure of artificial components, local weather condi-
tions, and the automated start up and shutdown of equipment [Ver15]. On a larger



2.1. DATA-DRIVEN IOT APPLICATIONS 15

scale, the smart grid connects assets in the generation, transmission and distribution
infrastructures. Especially in recent years, energy use has become harder to predict,
due to a decentralization of energy production. The prediction of wind power [THK16]
and photovoltaic power [WLK16] is important in order to better understand grid utiliza-
tion. Data analysis may increase efficiency and optimize the infrastructure [KMS+16].
The embedded real-time analysis of data could enable even more sustainable distributed
energy generation models in which highly autonomous systems react dynamically to
changes in energy demand and distribute energy accordingly.

2.1.4 Public Sector
In the public sector, M2M connections have grown by 46% from 2013 to 2014 according to
Fig. 2.3. It is estimated that by 2050, 66% of humans will live in urban areas [Uni14] and
75% of world’s energy use is taking place in cities [Ver15]. The IoT promises the delivery
of more effective services to citizens, like citizen’s participation, controlling crime, the
protection of infrastructure, keeping power and traffic running, and building sustainable
developments with limited resources [Ver15]. The IoT thus enables municipal leaders
to make their communities safer and more pleasant to live, and to deal better with
demographic changes [Ver15].

The instrumentation of cities with sensors may lead to more sustainable resource
usage by simple remote monitoring applications. For instance, currently it takes 20
minutes on average to find a parking space in London [Ver15] and 30% of congestion
in cities is caused by people looking for a parking space [Sho11]. The smart city of
Santander [Sma16] has instrumented, among others, parking lots. Their space utiliza-
tion could be tracked and provided as information to smart phone apps. Advanced
applications may also identify trends and anomalies in parking data [ZRLP14]. Sim-
ilar tracking apps could support car-sharing or unattended rental programs that offer
on-demand access to vehicles by the hour [Ver15]. More advanced remote monitoring
applications could indicate the crowdedness of neighboring cities by aggregating data
with the help of data analysis. Using real-time analysis, they might as well give direct
recommendations, for instance which city to visit for more relaxed shopping.

Resource savings can also be expected from a more sustainable management of water.
IBM offers an intelligent software for water management that uses data analysis for
visualization and correlation detection [IBM16]. According to IBM, the software helps
to manage pressure, detect leaks, reduce water consumption, mitigate sewer overflow
and allows for a better management of water infrastructure, assets and operations.

Currently, up to 40% of municipal energy costs come from street lighting [Woo12].
The European Union has set a target to reduce CO2 emissions of professional lighting
by 20 million tons by 2020 [Ver15]. Predictive models obtained through data analysis
enable smart streetlights that automatically adjust their brightness according to the
expected volume of cars and weather conditions. In a case study it was shown that the
city of Lansing, Michigan, could thereby cut the energy and maintenance costs of street
lighting by 70% [Ste12, Ver15].



16 CHAPTER 2. THE INTERNET OF THINGS (IOT)

Further resources might be saved by using more intelligent transportation and traffic
systems. Predicting traffic flow on the basis of past data that has been measured by
sensors in the streets offers drivers an enhanced routing. The German government
estimated a daily fuel consumption in Germany due to traffic jams of 33 millions of
liter, a waste of time in the range of 13 million hours and concludes that traffic jams
are responsible for an economic loss of 259 million Euro per day. For instance, the
SCATS system [SCA13] provides traffic flow data for different junctions throughout
Dublin city. Simple remote monitoring can provide data about the current traffic flow
to individual drivers by plotting counts of cars on a digital street map. The batch
analysis of traffic data could help with determining factors causing traffic jams, which
in turn might be used by traffic managers to adapt the street network accordingly. For
the City of Dublin, traffic forecast derived from a spatiotemporal probabilistic graphical
model, was exploited for smart routing [LPBM14]. In the future, such recommendations
may be as well given to autonomously driving vehicles (see also Sect. 2.1.2).

Embedding data analysis everywhere in a city and combining the data from multiple
heterogenous systems and other cities may even provide larger value. Such combination
could provide a holistic view of everything, like energy use, traffic flows, crime rate
and air pollution [Ver15]. Correlations and relationships between seemingly unrelated
variables are not necessarily obvious. For instance, according to the broken windows
theory, the prevention of small crimes such as vandalism helps with preventing more
serious crimes. However, critics state that other factors have more influence on crime
rate. Up to now, such theories are hard to test and validate, since studies conducted by
humans can only focus on a limited number of influence factors and might be biased.
The instrumentation of many different cities and areas could increase the number of
observations and help with obtaining more objective and statistically significant results.
Long time observation of many different variables and active hypothesis testing, for
instance by giving recommendations to city planners, may help with the detection of
causes that underly phenomena. The insights gained may then enable better policy
decisions.

2.1.5 Healthcare and Pharma
According to Fig. 2.3, healthcare has seen the smallest growth in M2M connection from
2013 to 2014. Similarly, Gartner estimates that it will take between five and 10 years
for a full adoption of the IoT by health care. This slow adoption rate may be explained
by strict requirements for keeping data of patients private and secure [Gla15], with the
IoT posing many challenges for privacy and security (see also Sect. 2.2). Despite such
difficulties, the number and possible impact of IoT applications in healthcare is large.

The instrumentation of healthy citizens as well as patients, devices or even whole
hospitals with different kinds of sensors enables different kinds of remote monitoring
applications. It starts with consumer-based devices for personal use. In two years,
there will be 80 million wearable health devices [Gla15], like fitness trackers and smart
watches. New kinds of devices are able to monitor not only the number of steps taken



2.2. DATA ANALYSIS CHALLENGES 17

or calories, but also pulse rate, blood pressure, or blood sugar levels. The aggregation
of these kinds of different information requires data analysis [Faw16]. Monitoring might
promote healthy behavior through increased information and engagement [KNK+15]. In
addition, physicians may get more holistic pictures of their patients’ life styles, which
eases diagnosis [BZ11].

Monitoring can be done remotely and continuously in real time, beyond office visits,
with patients staying at home [BZ11, MSDPC12, CLR10]. Emergencies can be detected
early, like with breath pillows for children or Ion mobility spectrometry combined with
multi-capillary columns (MCC/IMS) that can give immediate information about the
human health status or infection threats [HSP+12]. In the case of chronic illnesses,
practitioners get early warning of conditions that would lead to unplanned hospitaliza-
tions and expensive emergency care [CLR10, Har15, KNK+15, Gla15]. Monitoring alone
could reduce treatment costs by a billion dollars annually in the US [CLR10]. According
to [Gla15], estimates show a 64% drop in hospital readmissions for heart failure patients
whose blood pressure and oxygen saturation levels were monitored remotely. Similarly,
at-risk elderly individuals may longer stay in their own homes. Here, remote monitoring
can reassure loved ones by detecting falls or whether an individual got out of bed in the
morning, or whether an individual took his or her medicine [KNK+15].

Monitoring may as well help with drug management and the detection of fraudulent
drugs in the supply chain, by incorporating RFID tags in medication containers and
finally embedding technology in the medication itself [Har15]. In hospitals, medical
equipment like MRIs and CTs can be connected and remotely monitored, helping with
maintenance, replenishing supplies and reducing expensive downtime [Gla15].

While conditions based on a few measurements may be detected automatically based
on hard-wired rules, the detection of more complex patterns necessarily requires the
analysis of data.

Data analysis is also needed, if we want to identify critical patterns in patient’s vital
parameters [IFGL03, LG10] or in movements through hospitals and optimize flow [Gla15].
The analysis of multi-dimensional data is necessary for discovering dependencies between
many variables, like, e.g., the duration of treatments and waiting times at other wards.
Data analysis provides doctors with insights of scientific value, taking the data gathered
by many individuals as population-based evidence [KNK+15]. Clinical and nonclinical
data of larger population samples may help to understand the unique causes of a disease.
Finally, data analysis that was directly embedded into devices like electrocardiograms
(ECG) or wireless electrocardiograms (WES) could help with the detection of emergency
cases in real-time [CMW+13].

2.2 Data Analysis Challenges
The previous section has given many examples of applications in diverse sectors, showing
that advanced levels of control not only require the instrumentation of devices, but also
an analysis of the acquired data. These examples support our view expressed in Fig. 2.2



18 CHAPTER 2. THE INTERNET OF THINGS (IOT)

that it is data analysis which enables advanced types of control. Unfortunately, the IoT
poses new challenges to data analysis. The following sections present problems in terms
of security and privacy, technical issues as well as algorithmic challenges which require
research on new types of data analysis methods.

2.2.1 Security and Privacy
Despite IoT’s anticipated positive effects, it also poses risks for our security and privacy.
Especially sectors that deal with highly personalized information, such as healthcare
(see Sect. 2.1.5), require according means for the secure and privacy-preserving process-
ing of data. Apart from having to make existing data analysis code more secure, analysis
can as well provide solutions to decrease existing threats.

Security The biggest security risk of IoT stems from its biggest benefit, namely the
connection of physical things to a global network. In the past, security breaches were
mostly restricted to the theft and manipulation of data about physical entities. However,
the IoT allows for a direct control of the physical entities themselves, many of which
belonging to critical infrastructures in sectors previously mentioned. Without security
measures, malware like viruses could easily spread through many of IoT’s connected
networks, potentially resulting in disasters at a global scale [Fle15, Dix15].

Data analysis algorithms can be made secure by design. However, existing code bases
weren’t necessarily designed and implemented with security in mind. In the past, algo-
rithms could be expected to run mostly in environments which weren’t publicly accessed.
Further, the way how data has been input into analysis software was relatively controlled.
With the IoT, analysis code will run on devices directly exposed to an open network en-
vironment and is thus susceptible to malicious hacking attempts. It will be much harder
to ensure that data originates from trustworthy sources and is in appropriate format.
Hackers might gain access to sensors and other embedded devices [RZL13, Fle15, Dix15],
or install rogue devices that interfere with existing network traffic [RZL13]. Hence, it
becomes more and more important to make data analysis code more robust by penetra-
tion testing [Eng13] and differentiate hacking attempts from usual sensor failure. Also,
legal liability frameworks must be established for algorithms whose decisions are fully
automated [CLR10].

At the same time, data analysis might provide solutions for the automatic detec-
tion or even prevention of security breaches. For instance, outlier and novelty detection
algorithms which examine deviations from normal behavior have already been used suc-
cessfully in fields like intrusion or malware detection [BG15, BAM09].

Privacy Another of IoT’s challenges is the protection of citizens’ privacy. As Mark
Weiser already stated in 1991, "hundreds of computers in every room, all capable of
sensing people near them and linked by high-speed networks, have the potential to make
totalitarianism up to now seem like sheerest anarchy" [Wei91]. Since it became known
that intelligence agencies of democratic states are spying at other friendly states and



2.2. DATA ANALYSIS CHALLENGES 19

their citizens [Tap15], the topic of privacy has developed an especially high brisance. It
also plays a large role in business sectors where data is highly personalized. For instance,
data in healthcare must be especially protected.

One problem is that with small embedded devices vanishing from our sight, people
might not even recognize that data about them is getting acquired. Further, it may
not be entirely clear how data given away will be combined later on and what can then
be derived from it. For instance, as research on learning from label proportions [SM11,
PNCR14] suggests, information that seems harmless all by itself, like public election
results, may become problematic once it is combined with data from other sources, such
as social web sites.

It is important to mention, however, that several of the aforementioned benefits from
data analysis can be achieved without highly personalized data [GP07]. For instance,
disease research based on population-based evidence (see Sect. 2.1.5) would yield the
same results with anonymized observations. If that doesn’t suffice and enough samples
are present, data can further be aggregated to guarantee k-anonymity [Swe02]. Related
is the problem of learning from label proportions [SM11, PNCR14]. Where more privacy
is needed, the challenge consists of developing distributed analysis algorithms that derive
a model without exchanging individualized records between different networked nodes
(for instance, see [DBK09]).

2.2.2 Technical Challenges
Technical challenges of IoT mainly concern networking technology, devices interoper-
ability, as well as increasing the life-time and range of wireless battery-powered devices.
Here, we list the technical problems that every application of data analysis has to face.

Data Understanding One envisioned scenario for the analysis of IoT generated data
is that as people connect new devices to the IoT, their data is automatically getting
analyzed, together with the data of other already existing devices. Data analysis being
successful, however, depends much on the correct preprocessing of data, which in turn
depends on the types and ranges of features of observations. This information can be
estimated from the data. However, it can be difficult to assess the quality of such esti-
mations without ground truth. For instance, outlier detection algorithms may indicate
measurements which occur only seldom. However, without additional background knowl-
edge provided by experts, it is impossible to determine automatically if values are still
inside physically meaningful ranges or caused by sensor failure. Similarly, peak detec-
tion algorithms might wrongly identify noise as relevant patterns. These problems could
easily be solved if manufacturers made their sensors and embedded devices queryable
and provided meta data, e.g. meaningful ranges and noise levels of theirs sensors.

Standardization The ability to query sensors and devices for meta information re-
quires standardized protocols. A similar standardization is needed for the exchange of



20 CHAPTER 2. THE INTERNET OF THINGS (IOT)

raw data. Especially in industry, closed systems with proprietary data formats compli-
cate the exchange of data between distributed components and make automated data
analysis unnecessarily difficult [SBM16]. Similarly important would be a standardiza-
tion of user interfaces for data analysis tools. As Mark Weiser already noted in [Wei91],
technology becomes unobtrusive once its user interfaces are as uniform and consistent
as possible. In contrast, today the user interface of operating systems and applications
often is their most distinguishing property and therefore a unique selling point. Hence,
a wide adoption of common standards requires that profits made from IoT technology
outweigh potential losses caused by the lacking individualization of products.

Porting existing code bases As Sect. 2.2.1 already discussed, existing code bases
for data analysis must be made more robust to operate in hostile network environments.
In addition, as more and more data analysis algorithms can be expected to run directly
on embedded and mobile devices, existing code and related libraries need to be ported
to these platforms. The implementation language of choice for embedded devices is
C/C++. In contrast, much data analysis code is written in Java and Python, whose
virtual machines and interpreters require too many resources to run on small embedded
devices like sensors. Currently, the same algorithms must therefore be implemented
in many different versions, making the reuse of existing code more difficult. Beyond
modification of existing code bases, the IoT poses several challenges that require research
on new algorithms, as described in the next section.

2.2.3 Algorithmic Challenges
Manual inspection of IoT generated data is possible only in simple cases. Normally,
since the amount of data generated by single sensors becomes too high, the analysis
needs to be fully automated. Further, the combination of data from many heterogenous
sources leads to high-dimensional datasets that cannot be easily visualized or examined
by humans.

Automated data analysis methods have been developed in the fields of signal pro-
cessing and computer vision [Dav12], statistics [HTF09], artificial intelligence [RN13],
machine learning [Mit97], data mining [HK06] and databases [GMUW13], to name just
some text books. Among them are sophisticated methods that can generalize over raw
data, deriving models that describe patterns and relationships which statistically hold
on expectation also for unseen observations. Such methods will be called learning al-
gorithms in the following. Unsupervised learning algorithms find general patterns and
relationships in the data. Supervised algorithms find such patterns in relation to a spec-
ified target value, which at best should be given as label for each observation. The
difficulty in both cases is that the model must be derived only from a given finite sample
of the data, while the probability distribution generating the data is unknown (for a
more formal definition of the problem, see [HTF09]). Many learning algorithms assume
the sample to be given as a single batch which can be processed in a random access



2.3. DISTRIBUTED DATA ANALYSIS 21

fashion, potentially making several passes over the data. Observations are assumed to
have a relatively homogenous structure and fixed representation.

The IoT poses new challenges to data analysis. At the data generating side, devices
are often highly resource-constrained in terms of CPU power, available main memory,
external storage capacity, energy and available bandwidth. Algorithms working at the
data generating side must take these constraints into account. Also the underlying data
distribution may change which is known as concept drift [ŽPG16]. For instance, due to
wear, the accuracy of sensors may decrease.

At the receiving side, e.g. a data center, the combination of data from many different
sources may create huge masses of heterogenous data. It is estimated that in total,
the IoT will generate 4.4 trillion GB by 2020 [Ora15a]. Hence, the problem consists
of having to analyze big data [MW14, Ora15b], which is characterized by large volume
(terabytes or even petabytes of data), heterogenity (different sources and formats) and
velocity (speed of generated data). High volume and velocity prohibit several passes
over the data, and thus require new types of algorithms. In addition to the big data
problem, the analysis of IoT data are distributed and asynchronous. Just to illustrate
an effect of this particular setting, let us look at IoT devices dynamically entering or
leaving the network. This contradicts an assumption underlying almost all data analysis
approaches, namely that the representation of observations, e.g. the number of features,
does not change over time.

2.3 Distributed Data Analysis
The requirements of algorithms for the analysis of IoT generated data are largely de-
termined by the hardware and network environment in which they are expected to run.
Depending on volume and rate of data generation, as well as the particular analysis
problem, data must either be already preprocessed and analyzed at the generating side,
on network middleware or sent to a data center. Each scenario comes with its own set
of advantages and disadvantages, constraints and particular challenges. Based on spec-
ifications found on websites of cloud providers and manufacturers, we have compiled a
list of computing environments and device’s properties for a quick and easy comparison
in Fig. 2.4.

The current focus is on the centralization of data in the cloud and its analysis by
high performance computing [GBMP13, Bur14, CDW+15, Ora15b, DMR16]. Cloud
computing allows for highly scalable distributed systems that solve tasks in parallel by
means of virtualization. Virtual instances of nodes in a network are independent from
the particular physical nodes they run on. Hence, new instances can easily be added
and removed depending on current computational demands. Computation follows the
paradigm of parallel computing in so far as modern frameworks shield programmers
as much as possible from the intricate details of distributed systems. For instance, the
scheduling and execution of code, the creation of threads or processes, synchronization as
well as message passing are handled automatically. Failures that can occur in distributed



22 CHAPTER 2. THE INTERNET OF THINGS (IOT)

Comparison of Networked Devices

Data Center Devices Small Embedded Devices and Sensors

• Unlimited power supply 
• CPU in the GHz range 
• Multiple cores 
• Gigabytes of main memory 
• Terabytes of secondary storage 
• Local Area Network 
• Relatively reliable network 
• Bandwidth is GB/s 
• Free choice of data partitioning 
• Standard OS + arbitrary 
   programming language

• Battery-powered or unlimited 
• CPU in the MHz range 
• Single core 
• Kilobytes or megabytes of main memory 
• Gigabytes of secondary storage 
• LAN, wireless or mobile phone network 
• Reliable or unreliable network 
• Bandwidth is kB/s or MB/s 
• No choice of data partitioning 
• Tiny OS + C/C++, Assembler, FPGA

Mobile and Larger Embedded 
Devices, Network Middleware

• Battery-powered or unlimited 
• CPU in the MHz to GHz range 
• Multiple cores or single core 
• Few gigabytes of main memory 
• Gigabytes of secondary storage 
• Wireless or mobile phone network 
• Unreliable network 
• Bandwidth is kB/s or MB/s 
• No choice of data partitioning 
• Phone OS, embedded OS + 
   JAVA or C

Figure 2.4: Comparison of computing environments and device types

systems are taken care of by redundancy and the automatic rescheduling of processes.
The main task for programmers is to divide their problem into smaller subproblems which
can be worked on in parallel. How and where code is executed is mostly transparent,
giving the impression of a single big machine instead of many nodes.

As more and more devices are getting connected, existing network hardware and
infrastructure will no longer suffice to handle the expected network traffic [MSDPC12,
CLR10, Bur14, Ora15b, Com15]. Whenever the rate of data generation is higher than
available bandwidth, data must be analyzed on the generating devices themselves or
at least be reduced before transmission into the cloud [GBA+13, TLV14, QSF+16]. In
the following, algorithms that process or analyze data directly where it is acquired will
be called decentralized. In case they need another node for coordination, data and
computation are at least split between local nodes and the coordinator. Decentralized
algorithms which need no coordinator and exchange information only with local peer
nodes will be called fully decentralized. Ideally, decentralized analysis algorithms should
exchange less information than all data between nodes.

The next section presents the ideas and constraints of current cloud-based data
analysis approaches in more detail, while the following section discusses the need for
decentralized data analysis algorithms in more communication-constrained scenarios.



2.3. DISTRIBUTED DATA ANALYSIS 23

2.3.1 Data Centers and Cloud Computing
One option for the analysis of IoT generated data is its centralization at a data center.
Cloud computing solutions are offered by different service providers. They allow for an
easy and cost-efficient upscaling of computing and storage resources. Depending on the
rate of data generation, there exist two different models of data processing: Data may
either be stored and analyzed as a batch, or it must be processed directly as a stream.

Batch analysis Huge data masses which do not fit in one server require the distribu-
tion of data over different connected storage devices. This is, for instance, accomplished
by saving chunks of arriving data in a distributed file system such as HDFS [SKRC10].
Once the data is stored, it can be analyzed as a batch by distributed algorithms that
solve tasks cooperatively. Each machine in a data center may have multiple cores, which
algorithms can exploit for parallel execution. CPUs are in the gigahertz (GHz) range
and main memory has several gigabytes. Machines are usually connected in a local area
network (LAN) where connections are relatively reliable. Technologies such as Infini-
Band and 100 Gigabit Ethernet allow for high bandwidths which are comparable to
direct main memory accesses. Reading from dynamic random access memory (DRAM)
can be about one order of magnitude faster than reading from external storage mediums,
like solid-state drives (SSDs). A reorganization of data would therefore be an expensive
operation. Hence, it is desirable to read data from disk only once. This can be achieved
by moving code to the machine storing the data and executing it locally.

The distributed batch analysis of data is currently supported by different frameworks.
Hadoop [Whi11] is a popular framework. It follows the map and reduce paradigm known
from functional programming, where the same code is executed on different parts of the
data and the results are then merged. Map and reduce is especially well-suited for
problems that are data parallel. This means that tasks can work independently from
each other on different chunks of data, reading it only once, without synchronization
or managing state. The paradigm lends itself well for data analysis algorithms which
process subsets of observations or features only once. Some algorithms for counting,
preprocessing and data transformation fall into this category.

More advanced data analysis algorithms, especially learning algorithms, often require
the combination of data from different subsets. They also need to make several passes
over the data, and synchronize shared model parameters. For instance, the k-Means
clustering algorithm [Mac67] repeatedly assigns observations to a globally maintained
set of centroids. Similarly, many distributed optimization algorithms used in data anal-
ysis maintain a globally shared set of model parameters (see also [BPC+11]). In map
and reduce, distributed components are assumed to be stateless. One way to maintain
state between iterations would be to access, for instance, a database server which is
external to the Hadoop framework. However, this would require the unnecessary and
repeated transmission of state over the network. For the implementation of stateful
components, lower level frameworks like the Message Passing Interface (MPI) [Arg15]



24 CHAPTER 2. THE INTERNET OF THINGS (IOT)

or ZeroMQ [Hin13] are usually better suited. These frameworks allow for long running
stateful components and full control over which data is to be sent over the network.

Distributed variants of well-known data analysis algorithms, like k-Means cluster-
ing [Mac67] and random forests [Bre01], have been implemented in the Apache ma-
hout [The15b] framework that works on top of Hadoop. However, the framework con-
tains only few algorithms, as research on distributed data analysis algorithms for high
performance computing is still ongoing.

Analysis of streaming data Whenever batch processing isn’t fast enough to provide
an up-to-date view of the data, it must be processed as a stream [Com15, Boc15]. The
Lambda architecture by Marz [MW14] is a hybrid of batch and stream processing. The
batch layer regularly creates views on historical data. The speed layer processes current
data items which come in while batch jobs are running, and creates up-to-date views for
this data. Both views are combined at a service layer, which provides a single view on
the data to users. A disadvantage of the Lambda architecture is that algorithms must
be designed and implemented for different layers. Kreps [Kre14] therefore proposed the
Kappa architecture, in which all data is treated as a stream.

Several frameworks support the development of streaming algorithms (for one frame-
work and an overview, see [Boc15]). Related analysis algorithms are still an active area
of research [Gam10] and are currently implemented in different frameworks [BHKP10,
DFMB15, The15a].

The centralization of all data in the cloud offers several benefits. The often compli-
cated network infrastructure needed for distributed computing as well as the correspond-
ing machines are fully managed by the provider. Due to providers’ expert knowledge,
security risks might decrease. Customers pay only for those services they really use, such
that it becomes easier and less costly to accommodate to spikes in network traffic. As
long as the data analysis algorithms to be executed and their components can be fully
parallelized, scalability is just a matter of adding new machines.

However, the centralization of all data also poses risks for privacy and may have
disadvantages. In the case of data theft, all data may suddenly become accessible.
Further, the cloud itself poses a single point of failure. Whenever data is generated at a
higher rate than can be transmitted, either due to a limited bandwidth or high latency,
the cloud can become a bottleneck for real-time analysis and control. Such cases require
the local processing and reduction of data directly at the data generating side, as argued
for in the next section.

2.3.2 Communication-constrained Scenarios
A central analysis of IoT generated data requires its transmission over a network. How-
ever, due to technical limitations, the transmission of all data to a central location, like
a data center, is not always possible. Either the data generating devices themselves



2.3. DISTRIBUTED DATA ANALYSIS 25

Table 2.1: Data transfer rates of different technologies

Technology Rate Type

EDGE 29.6 kB/s Mobile Phone
UMTS 3G 48.0 kB/s Mobile Phone
LTE 40.75 MB/s Mobile Phone
802.15.4 (2.4 GHz) 31.25 kB/s Wireless
Bluetooth 4.0 3.0 MB/s Wireless
IEEE 802.11n 75.0 MB/s Wireless
IEEE 802.11ad 900.0 MB/s Wireless
Solid-state drive (SSD) 600.0 MB/s Storage
eSATA 750.0 MB/s Peripheral
USB 3.0 625.0 MB/s Peripheral
VDSL2 12.5 MB/s Broadband
Ethernet 1.25 MB/s Local Area
Gigabit Ethernet 125.0 MB/s Local Area
100 Gigabit Ethernet 12.5 GB/s Local Area
Infiniband EDR 12x 37.5 GB/s Local Area
PC4-25600 DDR4 SDRAM 25.6 GB/s Memory

are highly communication-constrained, or the available bandwidth is too limited. More-
over, there exist cases where privacy concerns, security concerns, business competition
or political regulations prohibit the centralization of all data.

Communication-constrained devices One of mobile devices’ biggest constraint is
that they are battery powered. Devices having much less computational power, like
embedded devices or smart sensors, can be battery powered as well, even if they aren’t
mobile. Sending and receiving data is known to be one of the most energy draining
operations on mobile devices [CH10] and smart sensors [LSFB15]. Hence, communication
must be traded off against computation.

Limitations of bandwidth There exist several scenarios in which the available band-
width does not suffice to transmit all data to a central location. IoT generated data may
stem from devices that are connected wirelessly. Table 2.1 shows typical transfer rates
for different kinds of network technologies and bus systems. It becomes apparent that
wireless networks provide much lower bandwidths than LANs which are used in data cen-
ters. For instance, ZigBee networks based on IEEE 802.15.4, a specification for personal
area networks consisting of small, low-power digital radios, have a data transmission
rate of only 31.25 kB/s. Mobile devices, like smartphones or tablets, are relatively pow-



26 CHAPTER 2. THE INTERNET OF THINGS (IOT)

erful in terms of computation and available main memory (see also Fig. 2.4). They
easily may generate data at higher rates than can be transmitted over mobile telephone
interfaces. Other applications, like those in earth science [ZRDZ07] or telescopes in
physics [BBB+15], produce masses of data whose transmission over satellite connections
is in the range of years. Masses of data are also generated by high throughput ap-
plications, like Formula One racing [Sti14], which require a real-time analysis of large
amounts of data [Com15]. Similarly, analysis and control in manufacturing can have
real-time constraints [SMK+11, SBM16]. In cases where reaction times lie in the range
of a few seconds, it seems risky to send production parameters first into the cloud for
preprocessing and analysis, which then computes an answer. Depending on latency,
which can be high with Internet based services, the answer may come too late. Finally,
bandwidth becomes more limited with more network participants. With the IoT, those
will likely increase as more and more devices are getting connected to the same network
segments [Ora15b]. According to [MSDPC12], "how to control the huge amount of data
injected into the network from the environment is a problem so far mostly neglected in
the IoT research".

Privacy concerns and regulations Privacy concerns and regulations may entirely
prohibit the transmission of data to a central location. Or, privacy-preserving algorithms
may transmit data, but not the original records. Further, network usage might be con-
strained by political or business regulations, such that data cannot be centralized. Other
issues concern security and fail-safe operation. Centralized systems pose single points
of failure. The more control is depending on data and its analysis, the more important
it is to guarantee its delivery. In the cloud computing scenario, service provider and
client may secure their end points, but usually have no control over the transmission of
packets in between. A smart factory sending all its data into the cloud, depending on a
timely analysis for real-time operation, might come to a complete standstill in case of a
network failure. Even if the cloud is not available, continuous local operation should at
least be possible.

In all of the aforementioned cases, data must be directly analyzed on the generat-
ing devices themselves and be reduced before transmission (see also [BYX10, GBA+13,
Com15, QSF+16]). For instance, as shown in [LSFB15], the reduction of data before
transmission with the help of autoregressive models reduced the energy consumption of
smart sensors (MEMS) by factors up to 11. Similar reductions could be achieved with
edge mining [GBA+13], whose authors argue purely in favor of local data preprocess-
ing. However, local transformations and models may not suffice to capture dependencies
between highly correlated measurements from different sensors. In such cases, decen-
tralized algorithms are needed which build a global model based on messages exchanged
between peer nodes or with a coordinator node. Such algorithms will necessarily need
to be designed differently from distributed algorithms running in a data center. There,
network technology allows for transfer rates resembling those of main memory accesses.
Moreover, it may be freely decided how data is getting stored and partitioned across



2.4. TYPES OF DATA PARTITIONING 27

Partitionings of Propositional Data

Data table

(a) Original data table as a whole

Node 1 Node 2 Node m

(c) Vertical partitioning across nodes (column-wise)

Node 1

Node 2

Node m

(b) Horizontal partitioning across nodes (row-wise)

Figure 2.5: Common types of data partitioning

machines. New storage and compute nodes may be dynamically added to the network,
based on demand. However, on the data generating side, the kind of data partitioning
as well as the network structure are usually application dependent and given as fixed.
Especially the type of data partitioning can have a large influence on learning and the
amount of data that needs to be communicated, as shown in the following section.

2.4 Types of Data Partitioning
Data for learning is often given as a sample S of n observations, i.e. S = {x1, . . . ,xn}.
For the following discussion, w.l.o.g. it is assumed that observations are represented
in propositional form, i.e. described by a finite set of p different features A1, . . . , Ap
(also called attributes). Feature values are stored in columns of a data table, with one
observation per row (see Fig. 2.5a). In distributed settings, data from this table may be
spread across nodes in two different ways [CSH00b].

Horizontal partitioning In the horizontally partitioned data scenario (see Fig. 2.5b),
data about observation, i.e. rows of the data table, are distributed across nodes j =
1, . . . ,m. All observations share the same features.

Horizontally partitioned sets of observations may be seen as skewed subsamples of
a dataset that would result from centralizing and merging all observations. Hence, the
distributed learning task consists of building a global model from such local samples,
with as few communication between nodes as possible. Observations may be assumed to
be independent and identically distributed, which for instance is exploited by learning
algorithms that merge summary information independently derived from each subsam-
ple. In general, there exist many distributed learning algorithms for the scenario (for



28 CHAPTER 2. THE INTERNET OF THINGS (IOT)

Node 1 Node 2 Node m

 1: feature selected, 0: feature not selected

Problem of Distributed Feature Selection

Label

1

1

1

1

1

1 1 1

1

0 0 0
0 00

0

0.312

0.128

0.842

0.714

Figure 2.6: Which features provide most information about the target concept?

instance [DBK09, MK11, BGS+12, KBK+14]), though only few algorithms are truly
suited for small devices (for a more detailed treatment, see [BS13, SBD15]). Commu-
nication costs for the scenario are well understood in the sense that bounds have been
established for different classes of learning problems [BBFM12, ZDJW13]. For instance,
[BBFM12] show that a distributed perceptron, which is a linear classifier, can find a
consistent hypothesis in at most O(k(1 + α/γ2)) rounds of communication, k being the
number of nodes, supposed that data is α-well-spread and all points have margin at least
γ with the separating hyperplane.

An example task for learning in the horizontally partitioned data scenario is link
quality prediction in wireless sensor networks (WSNs). We may assume that factors
influencing link quality are the same across different wireless sensor nodes, i.e. recorded
features provide information about the same underlying concept to be learned. However,
the distributions of observations may differ for different parts of the network. For in-
stance, in certain parts the link quality could be better than in other parts. The question
is how to learn a global model which represents the distribution over all observations
across nodes, without having to transfer all observations to a central node.

Vertical partitioning In the vertically partitioned data scenario (see Fig. 2.5c), fea-
ture values of observations, i.e. columns of the data table, are distributed across nodes
j = 1, . . . ,m. Shared is only the index column, such that it is known which features
belong to which observation. This might require a continuous tracking of objects, which
in the IoT would be realized through globally unique identifiers for each entity.

The columns distributed over nodes constitute subspaces of the whole instance space.
These subspaces and their individual components (e.g. features), in supervised learning
including the target label, have a dependency structure that is usually unknown before
learning. Learning in the scenario may thus be seen as a combinatorial problem of
exponential size: Which subset of features provides the most information about the



2.4. TYPES OF DATA PARTITIONING 29

target concept (see also Fig. 2.6)? In supervised learning, this is also known as the
feature selection [SJ15] problem, whereas in unsupervised learning similar problems occur
in subspace clustering [KKZ09]. Several techniques have been developed to tackle the
exponential search space [KJ97]. Most of them are highly iterative and assume that
features can be freely combined with each other. In a decentralized setting, however,
such combination requires the costly transmission of column information between nodes
in each iteration step and is thus prohibited. Hence, current approaches [DBV11, LSM12,
SLM15] circumvent such problems by making explicit assumptions on the conditional
joint dependencies of features, given the label.

In the context of the IoT, learning in the vertically partitioned data scenario is rel-
evant and common. The problem occurs whenever a state or event is to be detected
or predicted, based on feature values assessed at different nodes. What exactly con-
stitutes a single observation then is application dependent. A common use case are
spatiotemporal prediction models, which use measurements of devices at different loca-
tions. Measurements may be related to each other by the time interval in which they
occur. The following list gives examples of applications:

• In manufacturing, one is interested in predicting the final product quality as early
as possible [SMK+11, SBM16], based on process parameters and measurements
at different production steps. Similarly, the optimization of process flow could
benefit from a prediction of the time it takes to assemble a product, based on
the current filling of queues and machine parameters at different locations on a
shop floor. In both cases, a single observation consists of features, like sensor mea-
surements and machine parameters, that are distributed and assessed at different
locations. Depending on the granularity of control to be achieved, predictions must
be either given after minutes, seconds or maybe also milliseconds. The more time-
constrained the application, the more it might benefit from decentralized local
processing.

• Products are assembled from parts delivered by different suppliers [WBX14]. Opti-
mal planning and scheduling of assembly steps depend on a correct and continuous
estimation of parts’ delivery times. Those again are determined by production and
transportation parameters of individual suppliers. For instance, the delivery of a
particular part might be delayed due to the maintenance of a single production
unit at one supplier. Assembly time of a product is thus a global function depend-
ing on local information (features) from different suppliers, i.e. observations for
learning this function are vertically partitioned. Even if it was technically feasible
to centralize the raw production and transportation data from all suppliers for
analysis, it would be unnecessary if the global function depended only on a few
local features. Moreover, due to privacy concerns, it is unrealistic that suppliers
would provide raw data about their processes. Hence, a decentralized algorithm is
needed that derives a global model from local data, at the same time preserving
privacy.



30 CHAPTER 2. THE INTERNET OF THINGS (IOT)

• The smart grid requires a continuous prediction of energy demand [MK11, KMS+16],
based on local information about energy usage at different smart homes [ZY16].
Here, observations might represent the whole state of the energy grid, and con-
sist of vertically partitioned features at different locations describing local states.
Instead of centralizing raw meter readings from ten thousands of households, com-
munication could be spared by an aggregation of local data or a combination of
predictions from locally trained models.

• Centralized traffic management systems analyze traffic based on data from a hard-
wired mesh of distributed presence sensors [SCA13]. While easy to design, cen-
tralized systems pose a single point of failure in case of an emergency. With the
addition of new sensors, they may become a bottleneck, due to limited bandwidth.
Further, the maintenance of hard-wired sensors can be expensive in case of failure,
due to required construction work. A more decentralized system could consist of
cheap wireless sensors. Those may be attached to existing infrastructure, like traf-
fic lights, signs and street lights. Traffic lights may then adjust themselves, based
on the prediction of traffic flow at neighboring junctions. The flow measurements
at each individual junction can be interpreted as vertically partitioned features of
a single observation describing the current state of all sensors. The learning task
is to derive prediction models from these distributed flow measurements, without
transmission of all data to a central server [SLM15].

• In healthcare, diagnoses of illnesses depend on many factors, like a patient’s health
care records, parents’ illnesses and current health parameters such as pulse, blood
pressure, measurements from a blood sample, an electroencephalogram or other
specialized information. With IoT technology, even more data becomes available
through fitness trackers or dieting apps (see also Sect. 2.1.5). The features de-
scribing a single patient are thus distributed over different locations, like several
physicians, medical centers, and now even devices or social websites. The central-
ization of all data poses a threat to patients’ privacy. Hence, the learning task is
to derive a global model for diagnosis from local data, without transmission of raw
data between locations. The features of diagnoses from different geographical lo-
cations over certain time intervals could then be combined to predict, for instance,
epidemics and their spread at a larger scale (see also [MZDM16]). Again, the
features from different locations over the same time intervals constitute vertically
partitioned observations.

2.5 Research Questions
The number of communication-efficient distributed data analysis methods for the ver-
tically partitioned is much smaller than those for horizontally partitioned data. There
are many open research questions, which mainly concern the relationship between ac-
curacy and communication costs. Therefore, we first define how communication costs



2.5. RESEARCH QUESTIONS 31

are measured and what it means for an algorithm to be communication-efficient. Then,
an overview of typical components that vertically distributed algorithms may consist of
is given. It is shown that the schema is general enough to cover common designs of
distributed algorithms. Finally, open issues and research questions are formulated that
concern communication-efficient learning.

2.5.1 Communication Costs and Efficiency
In most publications on distributed data analysis, communication costs are the total
payload transmitted measured in bits, i.e. excluding meta data, like packet headers.
The authors of [GBA+13] argue for a measurement of communication costs by the num-
ber of transmitted packets. Although the number of packets in certain cases might be a
more exact measure than the payload in bits, it is highly dependent on chosen network
protocols and the underlying network technology. Similar to measuring the run-time of
algorithms in seconds, it would make the comparison of results from different publica-
tions very difficult. A fair comparison would require building the exact same network
with the same hardware and configuration. A solution could be network simulators,
however, there doesn’t seem to exist a commonly agreed on standard between different
scientific communities. At least for batch transmissions of data, the number of packets
to be sent is proportional to the payload in bits. From there, we follow the argumenta-
tion in [GBA+13] that a reduction of packets may reduce congestion and collisions on
networks with large amounts of traffic. This in turn reduces the number of acknowl-
edgements and retransmissions, which should enable better use of available bandwidth
(i.e. higher transmission rates or more network participants).

Central analysis requires the transmission of all data (or at least all preprocessed
data) to the coordinator node. We define a learning method to be communication-
efficient if less data than the whole dataset (optionally after local preprocessing) is
exchanged between local nodes and an optional coordinator node. Method A is called
more communication-efficient than method B, if A is communication-efficient and its
communication costs are less than those of B.

The amount of data communicated per observation during learning may differ from
the amount communicated when making an actual prediction. It should be noted that
in the vertically partitioned data scenario, at least some data must be communicated for
detecting a global state or predicting a global event. Further, the supervised learning of
local models may require the transmission of label information from a coordinator. This
is different from a horizontal partitioning of data, where each local node contains all the
necessary information (i.e. feature values and often also the label).

2.5.2 Distributed Setting and Components
Figure 2.7 gives an overview of the setting in the vertically partitioned data scenario
and the distributed components that algorithms may be designed of. Given are m + 1
networked nodes j = 0, . . .m, where nodes 1, . . . ,m are called local nodes and j = 0 de-



32 CHAPTER 2. THE INTERNET OF THINGS (IOT)

Problem Setting and 
Distributed Components

Sensors

Local node j

Local data

Local features

Local model 

extract

learn

Coordinator node 

Global model
parameters

Global features

learn

Global data

extract

Local nodes

Other nodes

models

features

raw values

labels

Figure 2.7: Problem setting and distributed components

notes a coordinator node. No assumptions are made on network topology or technology.
Further, "local" and "coordinator" are to be understood as roles that physical nodes can
have, and may change depending on context.

Each local node acquires raw values, like sensor measurements. Those may be locally
preprocessed and transformed into features for learning. It is assumed that the features
of the same observations are vertically partitioned across the local nodes. Distributed
components of learning algorithms may do further local calculations on such features, and
might build or update local models. Once or iteratively, depending on algorithm, local
nodes will either transmit raw values, features, models or predictions of such models to
other nodes, which in turn may preprocess the received data, and do further calculations
on them, like build or update a global model, fuse predictions, etc. The setting as
described is general enough to cover the following common approaches for designing



2.5. RESEARCH QUESTIONS 33

distributed algorithms:

Central analysis Each local node transmits all of its raw values to a coordinator node
for further analysis. This may include the stages of preprocessing, feature extrac-
tion and model building. This is in principle what cloud-based data processing
proposes [GBMP13, Bur14, CDW+15, Ora15b, DMR16]: While the coordinator
may consist itself of distributed components and solve the analysis problem in par-
allel, from the perspective of local nodes it looks like a single machine where all
data is getting centralized. The design is not decentralized, as data and processing
aren’t split between local nodes and coordinator node, but all processing is done
at the coordinator node.

Local preprocessing, central analysis Local nodes preprocess raw values and trans-
form them into a representation for learning. The representations are sent to a
coordinator, which builds a global model based on them. While according to our
former definition, this design is decentralized, its form is very rudimentary, as
most of the processing is still done at the coordinator. Depending on the pro-
cessing capabilities of local nodes and the particular learning task, such a design
might be the only viable option. The design fits ideas mentioned in [GBA+13,
TLV14, QSF+16], whose authors’ propose to reduce data locally before sending
it to the cloud for analysis. Privacy-preserving Support Vector Machine (SVM)
algorithms like [MWF08, YLG09] also follow this design, but are not necessarily
communication-efficient.

Model consensus Local nodes iteratively try to reach consensus on a set of parameters
among each other (peer-to-peer), or on a set of parameters they share with a
coordinator node. At the end, each local node (or only the coordinator) has a
global model. As [BPC+11] demonstrate, many existing analysis problems can be
cast into a consensus problem and then be solved, for instance, with the Alternating
Direction Method of Multipliers (ADMM). Algorithms of this sort are working fully
decentralized, but are working iteratively and may transmit more than the original
data, depending on their convergence properties.

Fusion of local models Each local node preprocesses its own data and builds a lo-
cal model on it. Such models are then transmitted to a coordinator node or to
peer nodes, which fuse them to a global model. These algorithms are working
decentralized, as data and the load of processing are shared among all nodes. In
the vertically partitioned data scenario, using a global model usually requires the
transmission of feature values of observations whenever a prediction is to be made.
An example algorithm would be [HMM16].

Fusion of local predictions Each local node preprocesses its own data and builds a
local model on it. Whenever a prediction is to be made, only the predictions are
transmitted from local nodes, and fused at the coordinator or other peer nodes



34 CHAPTER 2. THE INTERNET OF THINGS (IOT)

according to a fusion rule. This could be, for instance, a majority vote over pre-
dictions. Local nodes each transmit only one value during prediction, but a fusion
rule may not be as accurate as a global model, depending on data distribution and
learning task. Examples would be [LSM12, SLM15].

While aforementioned approaches are common, there exist hybrids also covered by
the setting shown in Fig. 2.7. For instance, in [DBV11] local models are used to detect
local outliers, which are then checked against a global model that was derived from a
small sample of all data.

According to our previous definition, the examples of distributed algorithms given
above all learn from vertically partitioned data in a decentralized fashion. However,
not all are communication-efficient. Apart from the two mentioned privacy-preserving
SVMs which might send more data than the whole dataset, the model consensus based
algorithms may send more data as well, depending on the number of iterations during
optimization. The design of communication-efficient decentralized algorithms in the
vertically partitioned data scenario leaves many open research questions of which some
are presented in the following.

2.5.3 Open Questions
Despite first successes in the development of communication-efficient algorithms for the
vertically partitioned data scenario, there are still many open research questions left:

• Data analysis knows many different kinds of tasks, like dimensionality reduction,
classification, regression, clustering, outlier detection or frequent itemset mining.
How does the task influence communication costs when the data is vertically par-
titioned? And how does the design change with the task?

• As first results suggest, the accuracy of communication-efficient algorithms in the
vertically partitioned data scenario very much depends on the data being analyzed.
What influence have different data distributions on the communication costs and
accuracy of algorithms? How is the design of algorithms affected?

• What are bounds on communication, i.e. how much information must be at least
and at most communicated to learn successfully from vertically partitioned data?
What trade-off has to be made between communication and accuracy?

• How can the supervised learning of local models be made more communication-
efficient in cases where labels do not reside on the local nodes, but must first
be transmitted to them? For instance, how can we learn from aggregated label
information?

• Many existing data analysis algorithms can easily work on different numbers of ob-
servations, but expect the number of features to be fixed. How can algorithms that



2.6. SUMMARY 35

work on observations with features from different sensors deal with the dynamic
addition and removal of sensors, i.e. features?

Beyond those questions, there are open issues concerning distributed data analysis
algorithms in general, i.e. also those that work on horizontally partitioned data or
in the cloud. For instance, methods for feature selection, the optimization of hyper
parameters and validation are highly iterative and work on different subsets of features
and observations in each iteration. How can we adapt these algorithms in such a way
that the same data isn’t repeatedly sent over the network or read from external storage?
As the previous questions demonstrate, there is still a lot of research to do before data
analysis and the IoT will become seamlessly integrated.

2.6 Summary
After a short introduction to the IoT, it was argued for data analysis being an essen-
tial part of it. By giving examples from different sectors, it was shown that already
remote monitoring applications may benefit from a summarization of data with the help
of data analysis. Complex applications require more advanced and autonomous control
mechanisms. These in turn depend on advanced data analysis methods, like those that
can analyze data in real-time, adapt to changing concepts and representations and test
hypotheses actively. Beyond security, privacy and technical problems, especially algo-
rithmic challenges need to be tackled before such advanced applications will become a
reality.

Distributed cloud-based algorithms follow the paradigm of parallel high performance
computing. The cloud might seem like the most convenient and powerful solution for
the analysis of IoT generated big data, which is expected to have large volume, high
velocity and high heterogeneity. However, without substantial advances in network
technology, bandwidth will become more and more scarce with each new device getting
connected. The transmission of all data into the cloud can already be infeasible, due
to limited energy, bandwidth, high latency or due to privacy concerns and regulations.
Communication-constrained applications require decentralized analysis algorithms which
at least partly work directly on the devices generating the data, like sensors and embed-
ded devices. A particularly challenging scenario is that of vertically partitioned data,
which covers common IoT use cases, but for which not many data analysis algorithms
exist so far. The main research question is how to design communication-efficient de-
centralized algorithms for the scenario, while at the same time preserving the accuracy
of their centralized counterparts.





Chapter 3
Basic Principles and Methods

This chapter introduces basic notations, principles and methods which are needed for
a better understanding of the rest of this thesis. The first sections explain important
terms and principles from the fields of machine learning and data mining. Among them
are a more formal view on learning, how learning algorithms should be evaluated, how to
construct or choose a good model or hypothesis, and how many observations are needed
for learning. Further, the relationship between prediction error and model complexity
is elaborated upon. The CRISP-DM model provides an overview of the process of data
mining as a whole.

Then, in the sections following, supervised methods are described which derive pre-
diction models from a set of observations whose target values are provided by a teacher.
The problem of outlier and anomaly detection, together with according methods, is in-
troduced next. Afterwards, we have a look at the unsupervised problems and methods
of cluster analysis and dimensionality reduction. The discussion will be restricted to
methods either used for the analysis of datasets in experimental sections of this thesis,
or modified in algorithmic sections. In addition, whenever meaningful, it is explained
how concepts and methods relate to earlier introduced problems of data analysis in an
IoT context and the vertically partitioned data scenario.

3.1 Machine Learning and Data Mining
According to Tom M. Mitchell, "a computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance at
tasks in T , as measured by P , improves with experience E" [Mit97].

The kinds of tasks in machine learning can be broadly divided into the three cate-
gories of supervised learning, unsupervised learning and reinforcement learning [RN13].
In this thesis, we focus only on the first two kinds:

Supervised learning The goal of supervised learning is to learn a rule that maps
inputs to outputs, based on example inputs and their desired outputs (which are

37



38 CHAPTER 3. BASIC PRINCIPLES AND METHODS

also called labels). The labels are assumed to be given by an oracle or teacher.
In practice, this means they come either from domain experts, or that they are
automatically generated. If labels are discrete, one also speaks of a classification
task. If labels are numeric, one speaks of regression. The performance of supervised
learning algorithms is usually measured by the deviation of predicted output value
and the given label. The deviation (or error) should be minimized. For a more
precise characterization of error, see Sect. 3.1.2.

Unsupervised learning The task of unsupervised learning is to find some structure
in the given inputs, without getting any direct help (e.g. labels) from a teacher.
A performance measure is needed which implicitly tells a learning algorithm what
kind of structure is to be found and how well the algorithm has solved the task.
The final evaluation, i.e. if patterns found are meaningful, is usually done by
domain experts.

There are hybrid learning tasks that are neither purely supervised nor unsupervised.
For instance, in the case of outlier and anomaly detection, it might be known that a
subset of the given input examples belongs to a certain normal class, while the remaining
examples are unlabeled and could be anomalies or not. In semi-supervised learning, the
label is only known for a few of the given input examples. A novel kind of learning task
is that of learning from label proportions, where only statistical information about the
labels for groups of example inputs is given (see Sect. 6).

3.1.1 Instances, Concepts and Labeled Examples
The space X of possible inputs is called the instance space. A single element x ∈
X will be called an instance or example, independent of learning task (supervised or
unsupervised). For example, X might represent the set of all people, described by
attributes such as age, height and weight. A single instance then is a person with a
specific age, height and weight. It is assumed that the instances in X are generated
according to an underlying probability distribution D.

Let c ∈ C be a concept from a set C of possible concepts over X. Each c is a subset
of X, and can be thought of as a boolean-valued function c : X → {0, 1}. If x is a
positive example of c, c(x) = 1, and if x is a negative example, c(x) = 0. For example,
one concept might be the subset of "old people", whereas another concept might be the
subset of "overweight people".

We can now specify the task of supervised learning more formally. The task is to
learn a target concept c ∈ C, based on a sample sequence S = 〈(xi, yi)〉, i = 1, . . . , n,
where each element xi is an element of the instance space, drawn according to D, and
yi = c(xi) is a label which indicates if xi belongs to the target concept or not. A single
pair of instance and label is called a labeled example, and the label is assumed to be
provided by an oracle or teacher. Instances are assumed to be drawn independent and
identically distributed (i.i.d.), i.e. that they are all drawn from the same distribution
D and mutually independent. For instance, when observations are generated by an



3.1. MACHINE LEARNING AND DATA MINING 39

automatic process, it must hold that the generation of previous observations has no
influence on the generation of subsequent observations.

In unsupervised learning, the concept to be learned is unknown. Especially, no labels
are given. Intrinsic performance measures rather describe the structure of patterns that
might be interesting. For instance, unsupervised clustering algorithms as described
in Sect. 3.4 group examples based on their similarity. Depending on the similarity
measure used, a clustering algorithm may either detect the concept of "old people",
"overweight people" or an entirely different concept which doesn’t necessarily need to be
interesting. If the detected concepts are meaningful or not can usually only be decided
by domain experts, which makes unsupervised learning much more explorative than
supervised learning.

The following discussion of how to evaluate the performance of learning algorithms
and how to construct good hypotheses will mainly focus on binary, and later on non-
binary supervised learning tasks. The specifics of evaluating unsupervised learning
algorithms are discussed in the according sections on outlier and anomaly detection,
clustering and dimensionality reduction.

3.1.2 Training and Test Error
During training, a learner L may choose from a set of hypotheses H for learning the
target concept c from S. After training, L outputs one h ∈ H, which is an estimate of
c. A hypothesis h is also called a model for c. We want to maximize the performance of
h. This means that h should approximate the target concept c as good as possible. This
is equivalent to minimizing the true error of h, which is the expected error rate of h on
arbitrary instances drawn at random from X, according to the underlying probability
distribution D. More formally [Mit97]:
Definition 3.1.1 (True error) The true error errD(h) of hypothesis h with respect to
target concept c ∈ C and distribution D is the probability P that h will misclassify
an instance x drawn at random according to D:

errD(h) := Px∈D[c(x) 6= h(x)] (3.1)

The challenge of supervised learning is that the probability distribution D is un-
known, and that h must be derived from a finite sample S of labeled examples. In
contrast, the true error is measured over the whole instance space X, which can be even
infinite. Without knowing D, the true error cannot be calculated directly, but only be
estimated from the performance of h on examples in the given sample S [Mit97]:
Definition 3.1.2 (Sample error) The sample error errS(h), i.e. the error of hypothesis
h on all instances in sample S, is the fraction of misclassified examples in S:

errS(h) :=
∑
xi∈S

[yi 6= h(xi)] (3.2)



40 CHAPTER 3. BASIC PRINCIPLES AND METHODS

It can be shown that the sample error (also called the training error) is usually a bad
estimate of the true error [Mit97, HTF09]. Imagine an algorithm that simply memorizes
the mapping between inputs and outputs in S by rote learning. It would assign the
correct label to each x ∈ S, that is, it would achieve zero sample error. However, on
new instances which differ only slightly from the instances in S, it couldn’t perform any
better than random guessing. Rote learning or random guessing are usually not what we
mean when speaking of learning. What we want is that a learner L derives a hypothesis
h ∈ H that generalizes well over the instances in sample S, i.e. that performs well also
on previously unseen instances.

A much better estimate of the true error can be achieved by evaluating hypothesis
h ∈ H on an independent test set. Under the assumption that all we have are the
labeled examples in S, a test set can be randomly sampled from S. Learner L can then
be trained on the remaining examples, which is also called the training set, and the
performance of the resulting hypothesis h can be evaluated on the test set. The larger
the test set, the more accurate the estimate will be. For small samples S, there exist
special techniques, like cross validation (see Sect. 3.1.7), which make most economic use
of S for training and testing.

It should be noted that if we would know distribution D, we could construct an
optimal classifier, called the Bayes classifier. It assigns that class to an object which is
most probable. This decision rule is also known as the maximum-a-posteriori (MAP)
criterion and can be shown to be optimal for cost measures that create costs only in
the case of misclassifications, like the error measures defined above. The notion of an
optimal classifier is important in so far as no other classifier can achieve better prediction
performance, and even the optimal classifier cannot achieve zero true error, depending
on D. As such, it can be used as a baseline in cases where D is known. For instance,
imagine data that is generated by two different gaussian distributions. Data generated
by these distributions will necessarily overlap, and is not separable. We therefore cannot
expect the Bayes classifier or any other classifier to achieve zero error rate over arbitrary
independent test samples.

3.1.3 PAC Learnability
So far, it has been discussed how to measure the performance of learning algorithms,
but not how to choose or construct a good hypothesis. For instance, if there were any
heuristics or even proven methods for devising a good hypothesis, maybe we could spare
ourselves the difficult empirical estimation of the true error. Up to now, it isn’t even
clear what kinds of concepts can be learned at all. Further, as indicated by Mitchell’s
definition of learning, we’d expect a learning algorithm to perform better with more
experience, i.e. more training examples. However, it is unclear how many examples are
necessary and sufficient for learning. A field that tries to answer these kinds of questions
is computational learning theory. It has introduced the notion of PAC learnability, which
will be shortly described in the following.



3.1. MACHINE LEARNING AND DATA MINING 41

The treatment of PAC learnability in this thesis is central to understand the rela-
tionship between instance, model and sample complexity, as well as the bias variance
trade-off explained in Sect. 3.1.6. PAC learnability also provides a theoretical foundation
and motivation for the support vector machine (SVM) described in Sect. 3.2.5, whose
1-class variant is adapted for distributed learning in Chap. 8. The SVM is based on the
structural risk minimization principle, which in turn is closely related to a measure of
complexity, the Vapnik-Chervonenkis (VC) dimension, described in this section. Chap-
ter 6 discusses a theoretical work on learning from label proportions which has proven
bounds based on the concept of PAC learnability. The following presentation bases
on [Mit97].

PAC Learnability PAC learnability requires the hypothesis output by a learning
algorithm to be probably approximately correct. There is a nonzero probability that
a randomly drawn sample doesn’t represent the overall distribution D well. Probably
correct means that we allow a learner to fail on this kind of misleading samples, with
a probability bounded by some constant δ. In exchange for more training examples,
this constant can be made arbitrarily small. We further must allow a learner to be only
approximately correct, because there may be multiple hypotheses leading to zero sample
error. We therefore only require that the true error of a learner L is bounded by some
constant ε, which can be made arbitrarily small.
Definition 3.1.3 (PAC learnable) Consider a concept class C defined over a set of in-
stances X of length p and a learner L using hypothesis space H. C is PAC-learnable
by L using H if for all c ∈ C, distributions D over X, ε such that 0 < ε < 1/2, and
δ such that 0 < δ < 1/2, learner L will with probability at least (1 − δ) output a
hypothesis h ∈ H such that errD(h) ≤ ε, in time that is polynomial in 1/ε, 1/δ, p
and size(c).

The definition points to two quantities that weren’t discussed so far, namely the size
p of instances in X and the encoding length size(c) of c ∈ C. They relate to the fact that
instances, as well as concepts and hypotheses, are represented by words from different
languages.

Representation and Hypothesis Language Instances can be thought of as being
represented by words from a so called representation language LX , whereas concepts
and hypotheses are represented by words from a hypthesis language LH . For example,
people described by attributes such as age, height and weight could be represented
by three-dimensional real-valued vectors, i.e. X = R3. Here, the alphabet ΣX might
consist of digits, a character for the decimal point and a separator character for denoting
vector components. Hypotheses could be, for instance, axis-parallel hyper rectangles,
represented as pairs of coordinates describing two opposite corners, whose description
is based on a corresponding alphabet ΣH . Although LX and LH are not the same



42 CHAPTER 3. BASIC PRINCIPLES AND METHODS

languages, they are necessarily related. That is, it must be possible to map concepts
and hypotheses represented by words from LH to subsets of the instance space X.

The quantity p measures the length of words from LX . For instance, in the example
above, p could be chosen as the number of vector components, i.e. p = 3. The inherent
complexity of concepts and hypotheses is measured by size(c). For instance, pairs of
corners, each represented by three-dimensional vectors, would have size(c) = 6.

Efficient PAC learnability requires learning algorithms to finish in polynomial time.
This means that the time to process words from LX and LH must be polynomial in their
description length. A further requirement is that instances x ∈ X can be mapped to
concepts c ∈ C in polynomial time. That the time for learning is polynomial in 1/ε and
1/δ indirectly means that the sample complexity n(ε, δ), i.e. the number of instances
required for learning, which depends on ε and δ, must be polynomial, too.

Actually, to show that a class C of target concepts is PAC-learnable, one first proves
that each target concept in C can be learned from a polynomial number of training
examples and then demonstrates that the processing time per instance is bounded by a
polynomial.

Sample Complexity of Consistent Learners A learner is consistent if it outputs
hypotheses that perfectly fit the training examples in S, whenever possible. A gen-
eral bound can be proven for the number of training examples that are sufficient to
consistently learn any target concept in H [Mit97]:

n(ε, δ) ≥ 1
ε

(ln |H|+ ln(1/δ)) (3.3)

Here, n(ε, δ) grows linearly in 1/ε and logarithmically in 1/δ. It also grows logarith-
mically in |H|.

The bound usually overestimates the number of training examples required for learn-
ing. However, it points to an important general relationship between sample complex-
ity and the size of the hypothesis space: The more hypotheses a learner can choose
from, the more training examples are needed to guarantee that a hypothesis is proba-
bly approximately correct. Intuitively, if the sample size is staying constant, a larger
hypotheses space means that more hypotheses are consistent with the given training
examples. Therefore, the probability to choose a wrong hypothesis regarding the true
error increases. In turn, more training examples are needed to falsify wrong hypotheses.

Hypothesis Space Complexity and VC Dimension Another notion is that the
larger the space of different hypotheses, the more complex they can be. More complex
hypotheses allow for a more fine granular adaptation to the training examples, but can
lead to overfitting. This means they may adapt to patterns which are sample specific
and do not generalize over the whole instance space. In other words, more complex
hypotheses allow for the differentiation of ever smaller subsets of X. This idea has lead
to a measure for the complexity of hypotheses in H, the Vapnik-Chervonenkis dimension
(V C dimension, or V C(H), for short).



3.1. MACHINE LEARNING AND DATA MINING 43

Let T ⊆ H be a subset of instances. Each hypothesis h ∈ H partitions T into the
two subsets {x ∈ T |h(x) = 1} and {x ∈ S|h(x) = 0}.
Definition 3.1.4 (Shattering) We say that H shatters T if every possible partitioning of
S into two subsets can be represented by some hypothesis from H.

There are 2|T | possible partitionings, but H may only represent some of these.
Definition 3.1.5 (VC dimension) The Vapnik-Chervonenkis dimension, or VC dimension,
V C(H), of a hypothesis spaceH defined over instance spaceX is the size of the largest
finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered
by H, then V C(H) :=∞.

In other words, the VC dimension measures the number of distinct instances from
X that can be discriminated using H.

Assume that V C(H) = d. To shatter a set of d instances, H must contain 2d distinct
hypotheses. Hence, 2d ≤ |H|, and d = V C(H) ≤ log2 |H|. Therefore, whenever |H| is
finite, V C(H) ≤ log2 |H|. This observation usually allows for tighter bounds on sample
complexity (see below). Apart from that, VC dimension also allows for a characterization
of sample complexity given infinite hypothesis spaces, in contrast to the general bound
of (3.3).

Sample Complexity and VC Dimension Now that the complexity of H can be
measured by V C(H), tighter bounds on the number of samples required for learning
can be derived. The first bound is an upper bound, specifying the number of training
examples that are sufficient to learn any target concept in C probably approximately
correct, for any ε and δ [Mit97]:

n(ε, δ) ≥ 1
ε

(4 log2(2/δ) + 8V C(H) log2(13/ε)) (3.4)

The new bound grows log times linear in 1/ε, instead of linearly. More important, the
ln |H| term has been replaced by V C(H), where V C(H) ≤ log2 |H|), as shown earlier.

It is also possible to obtain a lower bound [Mit97] on the number of training examples
that are necessary for learning. For any concept class C with V C(C) ≥ 2, any learner
L, and any 0 < ε < 1

8 , and 0 < δ < 1
100 , there exists a distribution D and target concept

in C such that if L observes fewer examples than

max
[1
ε

log(1/δ), V C(C)− 1
32ε

]
, (3.5)

then with probability at least δ, L outputs a hypothesis h with errD(h) > ε. In
other words, no learner can PAC-learn every target concept in any C with fewer training
examples.

Though it can be difficult to derive the VC dimension of arbitrary concept classes, it
could be derived successfully for important classes like separating hyperplanes. It plays
an important role in choosing hypotheses according to the principle of structural risk



44 CHAPTER 3. BASIC PRINCIPLES AND METHODS

minimization (see Sect. 3.1.5), which is closely related to the support vector method
(SVM) explained in Sect. 3.2.5.

3.1.4 Supervised Function Learning
Up to this point, the concepts to be learned were subsets of the instance space X, which
can be thought of as a boolean-valued function c : X → {0, 1}. The corresponding
hypotheses were defined similarly as h : X → {0, 1}, indicating if a particular instance
x ∈ X belongs to the target concept to be learned or not. The decision was thus binary.

In the following, we’ll move from binary indicator functions to the supervised learning
of general functions f : X → Y , where Y may be either a set Y = {Y1, . . . , Yl} of discrete
labels (classification), or a real value, i.e. Y ⊆ R (regression). Function f(x) will denote
the true function to be learned, while f̂(x) denotes the function estimated from the data.
Definition 3.1.6 (Supervised function learning) The task of supervised function learning
aims at deriving a function f̂ : X → Y from a sample S = 〈(xi, yi)〉i=1,...,n of n
labeled examples (xi, yi) ∈ X × Y , drawn i.i.d. from an unknown joint probability
distribution P (X,Y ), such that the expected risk

Rexp =
∫
`(y, f̂(x))dP (x, y)

is minimized. Here, ` is a convex loss function ` : Y × Y → R+
0 which measures the

cost of assigning the wrong label to individual observations.

For classification, a common loss function is the 0-1 loss.

Definition 3.1.7 (0-1 loss) Given a function f̂ and discrete label space Y , the 0-1 loss
`01 counts misclassified examples as one and correctly classified examples as zero:

`01(y, f̂(x)) =
{

1 if f̂(x) 6= y

0 if f̂(x) = y
(3.6)

For the 0-1 loss, the expected risk is the same as the true error errD(h) of a hypothesis
h ∈ H (see Def. 3.1.1).

3.1.5 Empirical vs. Structural Risk Minimization
Like the true error, the expected risk cannot be calculated explicitly, since the joint
distribution of examples and labels is unknown. What can be directly calculated is the
empirical risk

Remp = 1
n

n∑
i=1

`(yi, f̂(xi)), (xi, yi) ∈ S



3.1. MACHINE LEARNING AND DATA MINING 45

which measures the loss of function f̂ on the examples in sample S. The empirical
risk is thus analogous to the sample error (see Def. 3.1.2), and, for classification with
0-1 loss, it is the same.

Intuitively, given two functions with the same empirical risk Remp, the less complex
function should generalize better and thus overfit less likely. This idea, which is in accor-
dance with the bounds presented in Sect. 3.1.3, gives rise to the definition of structural
risk.
Definition 3.1.8 (Structural risk) For a function class f̂(x,γ) with parameter vector γ,
the structural risk (also called regularized risk) is defined as

Rreg(γ) = Remp(γ) + λΩ(γ) ,

where Ω is a strictly monotonic increasing function which measures the capacity of
function class f̂(x,γ) depending on parameter vector γ. The trade-off between the
empirical training error and the capacity is managed by λ.

The capacity can, for example, be measured by the VC dimension (see Def. 3.1.5),
which yields a probabilistic bound for the regularized risk. It can be shown that after
having seen n examples, the structural risk is upper bounded with probability 1 − µ,
where η is the capacity [Vap95]:

Rreg(γ) ≤ Remp(γ) +

√√√√η
(
log

(
2n
η

)
+ 1

)
− log

(µ
4
)

n
(3.7)

The bound explains much better why, and in which cases, minimizing the empirical
risk does not suffice, i.e. why the sample error can be a bad estimate for the true error (see
also Sect. 3.1.2). The VC bound is getting smaller and smaller with growing sample size,
if we assume the capacity of the function class to be constant. In other words, if enough
observations are given or capacity is low, the sample error is a good estimate of the true
error. Intuitively, one can say that with a limited number of hypotheses, it becomes more
difficult to match the increasing variance of a large number of observations. Therefore, if
n/η is large, one may follow the principle of empirical risk minimization (ERM) [Vap95].
However, if a learner is allowed to choose arbitrarily complex hypotheses, it can always
adapt to such variability and match the given training examples with zero sample error.
Therefore, whenever only a small number of observations is given, we need a way to
control the capacity of the function class.

The idea behind the principle of structural risk minimization (SRM) [Vap95] is to
fit hypotheses from function classes of increasing capacity, η1 < η2 < . . ., and to choose
the hypothesis as optimal which minimizes the structural risk Rreg(γ), i.e. the empirical
risk and the VC bound. Derivation of the VC dimension can be difficult, depending
on function class. Nevertheless, the VC dimension has been derived for some function
classes, of which an important one is the class of separating hyperplanes. As we will
see, the support vector machine (SVM) described in Sect. 3.2.5 follows the principle of



46 CHAPTER 3. BASIC PRINCIPLES AND METHODS

structural risk minimization, controlling capacity by maximizing the margin between
observations lying on two sides of a separating hyperplane, at the same time minimizing
the number of observations lying in the wrong half space.

3.1.6 Bias and Variance
In the last section, we formulated the intuition that given two functions with the same
empirical risk Remp, the less complex function should generalize better and thus overfit
less likely. This intuition is backed up by the proven bounds of computational learning
theory discussed in Sect. 3.1.3, which state that all else staying the same, a larger or more
complex hypothesis space will lead to higher error probability. In the field of statistical
learning theory [HTF09], choosing a function which is complex enough to reflect the
target concepts to be learned, but does not overfit the training data, is known as the
problem of trading off bias against variance.

Let E denote statistical expectation and Var denote variance. Given a function
y = f(x) + ε, where E(ε) = 0 and Var(ε) = σ2

ε , the expected prediction error of a
regression fit f̂(X) at input point x = x0 can be expressed as follows when using squared-
error loss [HTF09]:

errD(x0) = E[(Y − f̂(x0))2|X = x0] (3.8)
= σ2

ε + [Ef̂(x0)− f(x0)]2 + E[f̂(x0)− Ef̂(x0)]2 (3.9)
= σ2

ε + Bias2(f̂(x0)) + Var(f̂(x0)) (3.10)
= Irreducible Error + Bias2 + Variance (3.11)

The irreducible error cannot be controlled. The bias term is the squared difference
between the true mean f(x0) and the expected mean estimate. The expectation averages
over the randomness in the training data. The variance term describes the expected
variance, i.e. noise, of our predictions.

The more we adapt to the training data, the more we tend to increase model complex-
ity. Adapting too much may thus lead to overfitting, i.e. the model will not generalize
well. The variance of our predictions will increase, i.e. the true error will be larger. As
we decrease model complexity, the squared bias tends to increase, and variance tends to
decrease. However, if the model is not complex enough to cover the target concept, it
will underfit and may have large bias. The goal of learning is thus to trade off bias with
variance, i.e. to choose model complexity, such that the true error is minimized.

3.1.7 Validation and Model Selection
The previous sections have introduced the problem of choosing an optimal model, given
different parameterized functions. Structural risk minimization, from the field of com-
putational learning theory, depends on the capacity of a class of functions, and provides



3.1. MACHINE LEARNING AND DATA MINING 47

a principled way for choosing an optimal model based on the upper bound of VC confi-
dence. The principle works without having to know the true error. In statistical learning
theory, the same problem is posed as having to trade off bias with variance, such that
the true error is minimized.

Whenever the capacity is hard to determine, there are two different ways to select
a good model, i.e. trade off bias with variance in an optimal way. The first may be to
assess models analytically, as done, for instance, by methods such as AIC, BIC or MDL
(for a more detailed discussion, see [HTF09]). The second is to estimate the true error
empirically based on independent test sets. The advantage of the second approach is that
it works as a black-box approach, and may be used for arbitrary learners. Especially, it
allows for the selection of models from different learners. All experiments in this thesis
therefore follow the empirical approach of model validation and selection.

As we have seen in Sect. 3.1.2, an empirical approach for obtaining a better estimate
of the true error (or Remp) is to evaluate the performance of a hypothesis on a hold-out
test set. In the case where we can vary the complexity of models based on a trade-
off parameter, we must be careful not to mix the sets used for testing and parameter
optimization (i.e. model selection), as this would introduce a bias into the estimation.
The given sample S is therefore usually divided into three different subsets [HTF09]: A
training set, a validation set and a test set. For model selection, we use the training
and validation set. The quality of the finally chosen model is then evaluated on the
hold-out test set. However, in practice, obtaining instances and corresponding labels
can be costly. Especially in cases where all that is given is sample S, the validation and
test set will need to be subsets of S. At the same time, we want to use as many instances
as possible for training. Therefore, if S is small, we need to use examples for training
and testing as economically as possible. One technique do to so is cross validation.

Cross Validation Cross validation [Koh95] is an estimation technique which divides
sample S into k disjunct and independent subsamples S1, . . . , Sk ⊆ S of about equal
size. These subsamples are also called folds, which is the reason why we speak of k-
fold cross validation. The cross validation is stratified if the original label ratios in S are
maintained in each of the folds. For estimation, in each of k rounds, a different fold is left
out for testing, while a combination of the remaining k−1 folds is used for training. The
total estimated performance is the average of the sample error (or another performance
value) over all k folds. A special case of cross validation is leave-one-out. Here, in each
fold, a learning algorithm is trained on all training examples, except for one that is
left out for testing, i.e. k = n. It can be shown that cross validation provides a good
estimate of the true error errD(h). In this thesis, models are select by cross-validation,
if not indicated otherwise.

It should be noted that, in a particular application, we are usually not interested in
an estimate of the true error (also called expected test error in [HTF09]), but in the so
called conditional test error or generalization error [HTF09], given a fixed sample S for



48 CHAPTER 3. BASIC PRINCIPLES AND METHODS

training:
errSD(h) = Px∈D[c(x) 6= h(x)|S] (3.12)

That is, before deployment of a classifier in a particular application, we would like
to use as many training examples as possible from a fixed sample S at hand, and then
estimate the performance of the resulting classifier. Cross validation doesn’t estimate
the conditional test error, given a fixed training set, but instead averages over different
training and test sets. Unfortunately, according to [HTF09], it does not seem possible
to estimate conditional error effectively, given only the information in the same training
set. However, for this thesis, the discrepancy between true error and test error doesn’t
play a role, since we are not interested in choosing the best method for a particular
application problem, but in the general performance of methods over different domains
and datasets.

3.1.8 The CRISP-DM Process
According to the Cross Industry Standard Process for Data Mining (CRISP-DM) [She00],
the process of data mining consists of the following common steps:

Business Understanding First of all, the data analysis problem has to be understood
from a business perspective. From there, a more concrete formulation of the data
mining problem can be derived, and particular objectives defined.

Data Understanding Data for analysis needs to be collected and understood, and its
quality must be assessed. What data types do occur? Is the data structured or
unstructured? Are there any values or features missing? What is the size of the
data? If it is stored in a database, how many relational tables and records are
there? If the data is unstructured, how many documents, images or whatever are
there and what is their size?

Data Preparation Once it is clear how the raw data looks like, it must be decided how
to prepare and transform the data for the modeling step, which comes next. For
instance, raw data spread over different relational database tables might somehow
need to be transformed into single observations. Missing values have to be replaced,
and the data might need to be normalized. Subsets of observations and features
have to be selected.

Modeling In this phase, different learning algorithms and models have to be evaluated,
and their parameters need to be adjusted accordingly. At the end, the model which
is best from a data analysis perspective is chosen and put to evaluation in the next
step.

Evaluation Here, it is checked if the model chosen also meets constraints and needs
from a business perspective.



3.1. MACHINE LEARNING AND DATA MINING 49

Deployment The insights gained into the data by the modeling step must be somehow
presented in the given business context, for instance in the form of reports. Maybe
it is also necessary to integrate or connect the data preparation and modeling steps
with existing software, such that they can be executed repeatedly.

In Chap. 2 on the IoT, many different business use cases for data analysis have
been described (business understanding) and it was discussed how data in the vertically
partitioned scenario might look like (data understanding). The rest of this thesis loosely
orients itself on the CRISP-DM phases as well. In Chap. 5, the form of IoT generated
data will be discussed in more depth and different techniques will be presented how to
transform the given raw data into a format for modeling. All steps have been applied
and evaluated in a case study, except for deployment. The chapter on learning from
label proportions, Chap. 6, is in a sense a mixture of data preparation and modeling:
Given only the proportions of labels for groups of observations, the individual labels
need to be reconstructed (data preparation) for learning (modeling). However, many
referenced algorithms do not reconstruct the labels first, but derive a model directly.
The remaining chapters then describe learning algorithms for the vertically partitioned
data scenario that may be used in the modeling step.

3.1.9 Propositional Representation
As discussed for PAC learning, observations are words from a representation language,
whereas hypotheses are words from a hypotheses language. Which languages, i.e. which
representations, to choose, depends on the particular learning problem. Hence, in ad-
dition to the problem of model selection for a specific representation and hypotheses
language, we have the problem of selecting the best languages for a learning problem.
Having to search for the best representation every time a new problem occurs would be
cumbersome. Over time, the fields of machine learning and data mining have therefore
established different canonical representations for common types of learning problems.
Such representations might not be optimal in each particular case, but work sufficiently
well on average. The advantage of canonical representations is that they ease the devel-
opment of learning algorithms, which can expect observations to have similar form.

A common representation of observations is the propositional representation. Obser-
vations are described by a fixed number of p features or attributes A1, . . . , Ap, which rep-
resent properties of entities. We have already seen examples, like people being described
by their age, height and weight. The values of attributes can be either numerical, ordinal,
or categorical. A set of observations with their attributes forms a so called data table,
in which observations are stored in rows, and their attribute values in corresponding
columns. The propositional representation is thus closely related to the representation
of records in relational database tables.

Many learning algorithms, like those presented in the next sections, work on ob-
servations given in propositional form. Distance based methods are more independent
from the particular representation. However, many accompanying distance measures,



50 CHAPTER 3. BASIC PRINCIPLES AND METHODS

like Euclidean distance, also expect observations to be in propositional form. In the rest
of this thesis, whenever we assume instances to be given in propositional form, we’ll
write x ∈ X instead of x ∈ X. The individual feature values will be denoted as x[j],
where j means the value of feature Aj .

In all cases where the raw data is represented differently, it must first be brought into
propositional form. In an IoT context, the raw data given are oftentimes time-related
sequences of real-valued measurements from one or different sensors. How to represent
time-related or spatiotemporal information in an optimal way for learning can be a non-
trivial problem [Mor00]. In Chap. 5, we show how series of sensor measurements may be
transformed into propositional form in the context of a smart manufacturing case study.

3.2 Supervised Learning Methods
The following sections give an overview and short description of supervised learning
methods. The methods were either applied in the experimental sections of this thesis,
or used and modified in the algorithmic sections.

The reasoning behind the selection for empirical evaluation is that chosen methods
cover different popular model classes, making different assumptions about the data.
The k-Nearest Neighbor method is distance-based and can model non-linear decision
boundaries. Naïve Bayes is a probabilistic classifier making specific assumptions on the
dependency structure between target value and attributes. This kind of assumption
also plays a large role for communication-efficient learning in the vertically partitioned
data scenario, as discussed in Sect. 4.5. Decision tree models are highly interpretable
and easy to understand, but can only model axis-parallel decision boundaries. Random
forests improve on the accuracy of decision trees by combining several of them in an
ensemble. The technique is similar, but not equivalent, to the learning of local models
in a vertically distributed setting. The support vector method (SVM) has a strong
theoretical foundation, following the principle of structural risk minimization, and can
be shown to have good generalization performance. The SVM allows for the modeling
of linear as well as non-linear decision boundaries by the use of kernel functions. Kernel
functions have been developed for a large variety of domains, making the SVM quite
general. Running the SVM on vertically partitioned data is therefore desirable. However,
as will be discussed in Sect. 4.5, the development of communication-efficient distributed
versions is non-trivial, depending on kernel function.

3.2.1 k-Nearest Neighbors
Given an observation x to classify, k-nearest neighbors (k-NN) [Aha92] finds a set Nk(x)
of k labeled observations in the training set which are most similar to x and assigns the
majority class (label) to x. To arrive at a unique decision, k should be an odd number.

For regression, k-NN averages the output values of all k nearest neighbors:



3.2. SUPERVISED LEARNING METHODS 51

f̂(x) = 1
k

∑
xi∈Nk(x)

yi (3.13)

In Rp, the similarity (or dissimilarity) of observations can easily be measured by a
metric, like Euclidean distance. According similarity measures can also be defined for
ordinal or nominal values.

The parameter k trades off bias against variance. If k is high, k-NN has high bias,
and low variance. Predictions are less noisy, but boundaries between classes are less
distinct. If k is small, bias is low and variance is high. Actually, setting k = 1 comes
closest to rote learning. k-NN performs well in many cases. A disadvantage is that
the model is instance-based and consists of all training examples, which can be a large
set. The time needed for prediction can be reduced by the creation of spatial index
structures. However, those do usually not perform well in higher dimensions.

Application of kNN in the vertically partitioned data scenario is rather non-trivial.
Independent distance calculations on different nodes, i.e. on local features only, may find
entirely different sets of k-nearest neighbors. At best, local nodes could send the partial
sums of all instances to a central node. This still has communication costs in the order
of the sample size, O(nm), where m is the number of nodes. However, this would need
to be done for each instance to be classified. In comparison, other methods which are
not instance-based, need to communicate only O(m) values per prediction.

3.2.2 Naive Bayes
Naïve bayes [JL95] is a probabilistic classifier. Given an instance x ∈ X in propositional
form, it determines probabilities P (Yv |x) for each of l classes, and decides which class
to assign, based on the estimated probabilities. The conditional probability P (Yv |x)
can be expressed using Bayes’ theorem as

P (Yv |x) = P (Yv)P (x |Yv)
P (x) for v = 1, . . . , l . (3.14)

For the decision, only the numerator is needed. It is equivalent to the joint proba-
bility model P (Yv,x[1], . . . ,x[p]). Using the chain rule for a repeated application of the
definition of conditional probability, it can be rewritten as

P (Yv,x[1], . . . ,x[p]) = P (x[1], . . . ,x[p], Yv)
= P (x[1] |x[2], . . . ,x[p], Yv) · P (x[2], . . . ,x[p], Yv)
= P (x[1] |x[2], . . . ,x[p], Yv) · P (x[2] |x[3], . . . ,x[p], Yv)·

P (x[3], . . . ,x[p], Yv)
= . . .

= P (x[1] |x[2], . . . ,x[p], Yv) · P (x[2] |x[3], . . . ,x[p], Yv) · . . .
P (x[p− 1] |x[p], Yv) · P (x[p] |Yv)P (Yv)



52 CHAPTER 3. BASIC PRINCIPLES AND METHODS

Naïve Bayes makes the "naïve" assumption that each feature Ai is conditionally
independent of every other feature Aj , i 6= j, given class Y . Therefore,

P (x[j] |x[j + 1], . . . ,x[p], Yv) = P (x[j] |Yv) . (3.15)

The conditional distribution over class Yv can then be expressed as

P (Yv |x[1], . . . ,x[p]) = 1
Z
P (Yv)

p∏
j=1

P (x[j] |Yv) (3.16)

Z = P (x) is a constant scaling factor dependent only on x[1], . . . ,x[p] and constant
if the feature values are known.

The individual probabilities can be estimated feature-wise. For numerical features,
one often makes a Gaussian assumption. The data is first segmented by class, and then
the mean and variance are estimated from the given feature values. For nominal feature
values, their relative frequencies are determined by counting.

The final decision rule for classification is often the MAP criterion, picking the most
probable hypothesis, which is also used in the optimal Bayes classifier (see Section 3.1.2):

f̂(x) = argmax
v∈{1,...,l}

P (Yv)
p∏
j=1

P (x[j] |Yv) . (3.17)

As will be discussed in Sect. 4.5, the conditional independence assumption plays an
important role for communication-efficient learning in the vertically partitioned data
scenario.

3.2.3 Decision Tree Induction
Decision trees classify instances in propositional form according to tests on attributes
along their nodes and branches. For features with nominal values, internal nodes ask
for the values of features, while outgoing arcs represent the different possible values of
features, i.e. test outcomes. For numerical features, nodes may represent binary tests
which ask if a feature value is greater (or smaller) than some threshold value. The arcs
are labeled with the two possible test outcomes, "yes" and "no". The leafs of a decision
tree represent the outcome of all tests along a path, which is the class to be assigned. For
classification, instances may take different paths through the tree, depending on their
particular feature values and test outcomes, and are finally assigned the class of the leaf
they end up in.

The learning task of decision tree induction consists of finding a tree that minimizes
the true error, i.e. the classification error on an independent test set, given a sample
S of instances. The search space over all possible trees is huge. For nominal features,
it is at least finite, but already exponential in the number of features. For numerical
features, the number of possible threshold values and therefore tests is even infinite.
Hence, decision trees are induced by heuristic strategies.



3.2. SUPERVISED LEARNING METHODS 53

A greedy heuristic for the induction of decision trees is the top-down induction of
decision trees (TDIDT). Each decision rule along a path splits instance space X into ever
smaller axis-parallel regions. A set of instances is thus split into ever smaller subsets.
The greedy heuristic works recursively. In each step, it is decided which attribute, and,
for numerical features, which threshold value, would provide the best split of instances,
as measured by some quality criterion. Tests on the same numerical features may appear
repeatedly along a path, but with different threshold values. The recursion either stops
when no more attributes are available, when a node’s associated subset contains only
instances of the same class, or when the split would yield an empty subset. The last
nodes are then turned into a leaf, which is labeled with the majority label of instances
contained in it’s associated subset.

A popular criterion for the quality of a split, the information gain, comes from
information theory. Let Pi be the probability for choosing item i from a discrete set X
of l items. The entropy I(X) is then defined as

I(X) = −
l∑

i=1
Pi log2 Pi (3.18)

Entropy is a measure of unpredictability of information content. Low entropy means
that an event is fairly predictable. For instance, if the probability that item i is getting
chosen is one, and all other events have probability zero, the event that item i will be
chosen is fully predictable. If, on the other hand, all probabilities Pi are similar, it is
much harder to predict which item will be chosen. Entropy is therefore high.

In the context of decision trees, entropy can be thought of as a measure of unpre-
dictability of the class label. For a set of instances, Pi is the probability that an instance
has class label i, and for a concrete set, can be estimated by relative frequencies. An
attribute with k different values splits a set of instances into k different subsets. The
total entropy over all subsets is then the sum of the subset’s individual entropies. The
information gain is the difference between the entropy of instances with and without
being split by a particular attribute. The attribute with the highest information gain is
chosen for the split, as it provides most information about the class label. One can say
that with each test along a path, more information is gained about an instance’s class
label. What cannot be avoided is that, since the algorithm is greedy, another choice of
parent attributes might have led to an even bigger information gain.

Information gain is highest if each subset resulting from a split is pure, i.e. it only
consists of instances having the same class. There are other criterions that measure
purity, like the Gini impurity. The most complex decision tree has only one instance in
each of its leafs, which are pure. To avoid overfitting, different techniques exist. The
tree can be pruned from the leafs, resulting in smaller trees. The maximum depth of
trees can be limited. In comparison to k-NN, where model complexity (and thereby the
bias variance trade-off) is controlled by only a single hyper parameter, the complexity
of decision trees might be controlled by several hyper parameters.



54 CHAPTER 3. BASIC PRINCIPLES AND METHODS

Given that there are different types of attributes, impurity measures, pruning tech-
niques, and ways to build trees, there exist different algorithms for the induction of
decision trees. Popular algorithms are ID3 [Qui86], CART [BFOS84], and C4.5 [Qui93].
Experiments in this thesis use the decision tree implementation from RapidMiner. With
modifications, decision trees can also be used for regression [BFOS84].

3.2.4 Random Forests
Random forests by [Bre01] combine many decision trees for classification in a so called
ensemble. As discussed, deep decision trees may easily overfit the training data, i.e. they
have low bias and high variance. Random forests try to reduce this variance by averaging
over the results of multiple deep decision trees. For classification, random forests make
a majority vote over the classes, as predicted by each individual tree. For regression,
the mean of outputs is taken.

In a procedure called tree bagging, the training set is sampled randomly with re-
placement T times, and a single tree is fitted to each sample. Variance is decreased
by averaging over the predictions of all trees, without increasing the bias, as long as
trees are uncorrelated. Bootstrap sampling (see [Koh95, HTF09]) ensures that trees are
trained on different training sets, and therefore decorrelated.

Despite the bootstrap sampling procedure, highly relevant features may still be se-
lected in different trees and may lead to correlation among trees. Therefore, random
forests combine tree bagging with feature bagging, by choosing from a random subset of
features in each recursive step of decision tree induction.

In many experiments over standard datasets, random forests perform similarly well
as support vector machines, or even better. Random forests were therefore used for
comparison in some experiments in this thesis.

3.2.5 Support Vector Method (SVM)
Large margin approaches, like the Support Vector Method (SVM) [Vap95, Vap99], have
a strong theoretical foundation as they follow the structural risk minimization principle
(see Sect. 3.1.5). The number of possible solutions and therefore the capacity of the
function class is reduced by maximizing a margin between a decision function and the
nearest data points.

Support Vector Classification Let observations be vectors consisting of p real-
valued components, i.e. xi ∈ X ⊆ Rp. Let further constrain Y to two values, -1
and +1, which is the problem of binary classification, and for simplicity assume that all
observations are linearly separable. Then there must exist a hyperplane

H = {h|〈w, h〉+ b = 0}



3.2. SUPERVISED LEARNING METHODS 55

with w being normal to H, bias b with |b|/||w|| being the perpendicular distance of H
to the origin and ||w|| being the Euclidean norm of w, such that

∀ni=1 yi(〈w,xi〉+ b) ≥ 0,

i.e. that all observations of a particular class are lying in the same half space as given
by H. Given w and b, observations x may be then be classified by function

f̂(x,w, b) = sgn(〈w,x〉+ b) .

The parameters w and b define the position and orientation of H and can be seen as the
parameter vector γ of function f̂ .

There are infinitely many hyperplanes which correctly separate positive and negative
training examples and thereby minimize the empirical risk Remp. However, there is only
one hyperplane which also minimizes the structural risk Rreg. This hyperplane separates
positive and negative observations with the largest possible margin, which is defined as
the perpendicular distance of points closest to the hyperplane. For normalized w, b such
that points xi closest to the hyperplane satisfy |〈w,xi〉+ b| = 1, the margin is given by
1/||w||. Instead of maximizing 1/||w||, we may as well minimize 1

2 ||w||
2. Furthermore,

one can allow for non-separable data points that lie inside the margin or even in the wrong
half space by introducing slack variables ξi and minimizing the sum of such errors.

Primal SVM Problem for Non-separable Data The primal optimization problem
for non-separable data then becomes

min
w

1
2 ||w||

2 + C
n∑
i=1

ξi (3.19)

s.t. ∀ni=1 : yi(〈w,xi〉+ b) ≥ 1− ξi .

In terms of structural risk minimization, parameter C in (3.19) trades off the empirical
risk (the sum over all slack variables) against the structural risk (the size of the margin).
This relationship can be even easier seen when replacing (3.19) by the hinge function
notation

min
w

n∑
i=1

[1− yi(〈w,x〉+ b)]+ + λ||w||2 , (3.20)

where ξi = [1 − yi(〈w,xi〉 + b)]+ is the so called hinge loss function. It can be shown
that this problem is a quadratic optimization problem with inequality constraints. Such
problems are sometimes easier to solve by introducing Lagrange multipliers αi, µi, i =
1, . . . , n for each inequality constraint, resulting in the Lagrangian

LP (w, b,α,µ) = 1
2 ||w||

2 − C
n∑
i=1

ξi −
n∑
i=1

αi(yi(〈w,xi〉+ b)− 1 + ξi)−
n∑
i=1

µiξi (3.21)



56 CHAPTER 3. BASIC PRINCIPLES AND METHODS

Dual SVM Problem for Non-separable Data By setting the partial derivatives of
LP for w and b to zero and inserting the solutions w =

∑n
i=1 αiyixi and 0 =

∑n
i=1 αiyi

into (3.21), one obtains the dual SVM problem for non-separable data

max
α

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉 (3.22)

s.t. ∀ni=1 : 0 ≤ αi ≤ C and
n∑
i=1

αiyi = 0

The solution w =
∑n
i=1 αiyixi is a linear combination of data points for which 0 ≤ αi ≤

C. Such data points are also called support vectors (SVs), as they sufficiently determine
the computed hyperplane.

Support Vector Regression (SVR) For real-valued outputs yi ∈ R, the primal
SVM problem can be stated like

min
w

1
2 ||w||

2 + C

(
n∑
i=1

ξi +
n∑
i=1

ξ′i

)
s.t. ∀ni=1 : 〈w,xi〉+ b ≤ yi + ε+ ξ′i and

〈w,xi〉+ b ≥ yi − ε− ξi .

The dual formulation then contains two αs, one for each ξi and ξ′i.

Kernel Functions For better or non-linear separation of observations, it may help
to map them to another space, called feature space, by a transformation function Φ :
X → H, sometimes also called a feature map. Space H has usually higher dimension
than X. Hence, an explicit calculation of the dot product in (3.22) on the mapped
observations can become quite time-consuming. However, it can be shown that for
certain mappings Φ, there exist kernel functions k(x,x′) = 〈Φ(x),Φ(x′)〉 with k : X ×
X → R which correspond to dot products in H. For this to work, H has to be an inner
product (Hilbert) space. Often, replacing 〈Φ(x),Φ(x′)〉 by k(x,x′) allows for a much
more efficient computation of the dot product. This replacement is also known as the
kernel trick. Apart from efficiency, the use of kernels has another advantage. Since the
dual problem only depends on values of the dot product, but not on the observations
themselves, instance space X may not only consist of real-valued vectors, but arbitrary
objects like strings, trees or graphs which have an associated similarity measure. Further,
there exist kernel functions with H being infinite.

Popular kernel functions are, for instance, the

Polynomial Kernel k(x,x′) = (κ〈x,x′〉+ δ)d , (3.23)

RBF Kernel k(x,x′) = e−
||x−x′||2

2σ2 and (3.24)
Sigmoid Kernel k(x,x′) = tanh(κ〈x,x′〉 − δ) . (3.25)



3.3. OUTLIER AND ANOMALY DETECTION 57

As will become clear in Sect. 4.5, non-linear classification by the use of kernel func-
tions is often difficult to achieve in distributed settings, especially in the vertically dis-
tributed scenario.

Solvers There exist several methods that solve the SVM problem. Interior point meth-
ods [BV04] replace the constraints with a barrier function. This results in a series of
unconstraint problems which can be solved efficiently with Newton or Quasi-Newton
methods. However, the general methods have a cubic run-time and quadratic mem-
ory requirements. More popular approaches are chunking and decomposition meth-
ods [OFG97, Pla99, Joa99], which work on a subset of dual variables at a time. Finally,
gradient methods like Pegasos and SVM-perf iteratively update the primal weights.
Their convergence rate is usually O(1/ε).

3.3 Outlier and Anomaly Detection
The task of outlier or anomaly detection can have different purposes. One purpose is the
cleansing of data in the data preparation step of the CRISP-DM model (see Sect. 3.1.8).
Here, outliers are often seen as undesirable infrequent patterns in the data, which de-
viate much from the overall distribution D of observations. The reason why they are
undesirable is that many performance measure, like for instance the squared quadratic
loss in regression, or distance measures, like Euclidean distance, are highly sensitive to
strong deviations in patterns. That is, outliers have much influence on the distance
calculation, although they do not occur often. Since they can skew analysis results, such
outliers are usually regarded as undesirable and not meaningful and should be excluded
from the modeling step. In other cases, however, outliers can be meaningful and inter-
esting. For instance, in production settings, failure patterns occur infrequently, and may
deviate much from the overall data distribution, but shall be predicted and described
by a model. Thus, the purpose of outlier or anomaly detection in the modeling step of
CRISP-DM is to derive a model-based characterization of outliers. This characteriza-
tion may yield insights, for instance, into how to adapt the process such that no or less
failures occur in the future.

A popular method for the detection of anomalies is the support vector data descrip-
tion (SVDD) method or 1-class SVM. Like the support vector classifier, it comes with
a strong theoretical foundation and is highly flexible, due to the use of kernel func-
tions. It will be described in the following, together with an efficient approximation
method, the core vector machine (CVM). In the context of this thesis (see Chap. 8),
the CVM will be adapted to work in the vertically partitioned data scenario, and its
communication-efficiency will be empirically demonstrated for a number of cases.

3.3.1 Support Vector Data Description (SVDD) and 1-class SVM
Supervised classifiers are trained on two or more classes. Their accuracy may suffer if
the distribution of observations over classes is highly imbalanced. For instance, this may



58 CHAPTER 3. BASIC PRINCIPLES AND METHODS

happen in applications where unusual events and therefore data about them is scarce,
like faults in machines, quality deviations in production processes, network intrusions
or environmental catastrophes. In all such cases, many positive examples are available,
but only few or even no examples of the negative class.

The task of data description, or 1-class classification [MKH93], is to find a model that
well describes the observations of a single class. The model can then be used to check
whether new observations are similar or dissimilar to the previously seen data points
and mark dissimilar points as anomalies or outliers. Support Vector Data Description
(SVDD) [TD04] computes a spherical boundary around the data. The diameter of the
enclosing ball and thereby the volume of the training data falling within the ball are
user-chosen. Observations inside the ball are classified as normal whereas those outside
the ball are treated as outliers or anomalies.

Primal SVDD Problem Given a sample of observations S = {x1, . . . ,xn} ⊆ X that
all belong to the same class, the primal SVDD problem is to find a minimum enclosing
ball (MEB) with radius R and center c around all data points xu ∈ S:

min
R,c

R2 : ||c− xu||2 ≤ R2, u = 1, . . . , n

Dual SVDD Problem Similar to the previously presented support vector methods,
kernel functions may be applied whenever observations are arbitrary objects or the deci-
sion boundary in the original space is non-spherical. The dual SVDD problem after the
kernel transformation then becomes

max
α

n∑
u=1

αuk(xu,xu)−
n∑

u,v=1
αuαvk(xu,xv) (3.26)

s.t. ∀nu=1 : αu ≥ 0,
n∑
u=1

αv = 1 .

The primal variables can be recovered using

c =
n∑
u=1

αuΦ(xu), R =
√
αTdiag(K−αTKα)

where K = (kuv) with kuv = k(xu,xv) is the n × n kernel matrix. Support vectors are
data points for which αu > 0. An observation x belongs to the training set distribution
if its distance from the center c is smaller than radius R, where distance is expressed by
the set of support vectors SV and the kernel function:

||c− Φ(x)||2 = k(x,x)− 2
|SV |∑
u=1

αuk(x,xi) +
|SV |∑
u,v=1

αuαvk(xu,xv) ≤ R2



3.3. OUTLIER AND ANOMALY DETECTION 59

It can be shown [TKC05] that for kernels k(x,x) = κ (κ constant) that map all input
patterns to a sphere in feature space, (3.26) can be simplified to the optimization problem
(where 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T )

max
α

−αTKα : α ≥ 0, αT1 = 1 (3.27)

Whenever the kernel satisfies k(x,x) = κ, any problem of the form (3.27) is an MEB
problem. For example, Schölkopf [SPST+01] proposed the 1-class ν-SVM that, instead of
minimizing an enclosing ball, separates the normal data by a hyperplane with maximum
margin from the origin in feature space. If k(x,x) = κ, the optimization problems of
the SVDD and the 1-class ν-SVM with C = 1/(νn) are equivalent, and yield identical
solutions.

3.3.2 Core Vector Machine (CVM)
Bǎdoiu and Clarkson [BC02] have shown that a (1 + ε)-approximation of the MEB can
be computed with constant time and space requirements. Their algorithm only depends
on ε, but not on the dimension p or the number of training examples n. In [TKC05],
this algorithm has been adopted for kernel methods like the SVDD.

Let S = {x1, . . . ,xn} ⊆ X be a sample of instances again. For an ε > 0, the ball
B(c, (1 + ε)R) with center c and radius R is an (1 + ε)-approximation of the MEB(S),
the minimum enclosing ball that contains all data points of S. A subset S ⊆ S is called
the core set of S if the expansion of MEB(S) by the factor (1 + ε) contains S.

The core vector machine (CVM) algorithm shown in Alg. 1 starts with an empty core
set and extends it consecutively by the furthest point from the current center in feature
space until all data is contained in an approximate MEB. The algorithm uses a modified
kernel function k̃ for the reason that optimization problem (3.26) yields a hard margin
solution, but can be transformed into a soft margin problem [KSBM00] by introducing
a 2-norm error on the slack variables, i.e. by replacing C

∑n
i=1 ξi with C

∑n
i=1 ξ

2
i , and

replacing the original kernel function k with a new kernel function k̃ : ϕ̃→ F̃ , where

k̃(xu,xv) = k(xu,xv) + δuv
C
, δuv =

{
1 : u = v

0 : u 6= v
(3.28)

The new kernel again satisfies k̃(x,x) = κ̃ with κ̃ being constant.
The furthest point calculation in step 2 takes O(|St|2 + n|St|) time for the tth iter-

ation. However, as is mentioned by Schölkopf [SS02], the furthest point obtained from
a randomly sampled subset S′ ⊂ S of size 59 already has a probability of 95% to be
among the furthest 5% points in the whole dataset S. By using this probabilistic speed-
up strategy, i.e. determining the furthest point on a small sampled subset of points in
each iteration, the running time for the furthest point calculation can be reduced to
O(|St|2). As shown in [TKC05], with probabilistic speed-up and a standard QP solver,
the CVM reaches a (1 + ε)2-approximation of the MEB with high probability. The total
number of iterations is bounded by O(1/ε2), the running time by O(1/ε8), and the space



60 CHAPTER 3. BASIC PRINCIPLES AND METHODS

Algorithm 1 Core Vector Machine (CVM) algorithm [TKC05]

S: training set, consisting of n examples
St ⊆ S: core set of S at iteration t
ct: center of the MEB around St in feature space
Rt: radius of the MEB

1. Initialization: Uniformly at random choose a point z ∈ S. Determine a point
za ∈ S that is furthest away from z in feature space, then a point zb ∈ S that is
furthest away from za. Set S0 := {za, zb} and the initial radius

R0 := 1
2

√
2κ̃− 2κ̃(za, zb)

2. Furthest point calculation: Find z ∈ S such that φ̃(z) is furthest away from
ct. The new core set becomes St+1 = St ∪ {z}. The squared distance of any point
from the center in F̃ can be calculated using the kernel function

||ct − φ̃(z`)||2 =
∑

zu,zv∈St
αuαvk̃(zu, zv)− 2

∑
zu∈St

αuk̃(zu, z`) + k̃(z`, z`)

3. Termination check: Terminate if all training points are inside the (1 + ε)-ball
B(ct, (1 + ε)Rt) in feature space, i.e. ||ct − φ̃(z)|| ≤ Rt(1 + ε).

4. MEB calculation: Find a new MEB(St+1) by solving the QP problem

max
α
−αT K̃α : α ≥ 0, αT1 = 1, K̃ = [k̃(zu, zv)]

on all points of the core set. Set Rt+1 :=
√
κ̃− αT K̃α.

5. t := t+ 1, then go to step 2.

complexity by O(1/ε4). The running time and resulting core set size are thus constant
and independent of the size of the whole dataset.

3.4 Cluster Analysis
The task of cluster analysis is to divide a given sample of observations into groups (or
clusters), such that the similarity of observations inside clusters is maximized, and the
similarity of observations between clusters is minimized.

The above formulation is general enough to cover particular variants of the prob-
lem. For instance, partitional clustering algorithms [Mac67] divide a given sample S of



3.4. CLUSTER ANALYSIS 61

observations into disjunct groups, while probabilistic [DLR77, WFH11] and fuzzy tech-
niques allow for overlapping clusters. Some algorithms measure similarity with the help
of a metric [Mac67], while others use the density of points [EKSX96, Han05]. Subspace
clustering algorithms [KKZ09] group observations based on their similarity on a subset
of features, while projectional and correlation clustering accounts for data sets that are
rotated. Some algorithms respect outliers, others do not. In this thesis, the focus is on
partitional clustering. It should be noted that the results of other types of clustering
algorithms usually can easily be transformed into a partitioning, except for those of
subspace clustering algorithms, where groups of instances depend on different subsets of
features.

Partitional clustering algorithms divide a given sample S of observations into clusters
C = {C1, . . . , Ck}, such that Ci ⊆ S and for all i 6= j, Ci ∩ Cj = ∅. The similarity
(or dissimilarity) of observations can, for example, be measured by their distance d :
X ×X → R+

0 , which is usually assumed to be a metric.
Given a distance measure, we can describe the task of partitional clustering more

formally. First, the dissimilarity of observations inside clusters, over all clusters, can be
measured by summing up their distances.
Definition 3.4.1 (Within cluster scatter) The within cluster scatter W (C) over all clusters
can be expressed as

W (C) = 1
2

k∑
i=1

∑
x∈Ci

∑
x′∈Ci

d(x, x′) . (3.29)

Similarly, we can measure the dissimilarity of observations between different clusters
by summing up their distances accordingly.
Definition 3.4.2 (Between-cluster scatter) The between-cluster scatter B(C) is the total
sum of distances between observations of different clusters, over all clusters:

B(C) = 1
2
∑
x∈Ci

∑
x′∈Cj

d(xi, xj) ∀i 6= j . (3.30)

Further, we can express the total scatter of all observations, by summing up the
distances between all observations.
Definition 3.4.3 (Total scatter) The total scatter T (S) of all observations in a sample
S is given as

T (S) = 1
2

n∑
i=1

n∑
j=1

d(xi, xj) . (3.31)

The total scatter can be written in terms of the within cluster scatter and between-
cluster scatter as follows:

T (S) = W (C) +B(C) . (3.32)



62 CHAPTER 3. BASIC PRINCIPLES AND METHODS

This matches an intuition behind our informal description of the task of cluster
analysis: An optimal grouping can either be achieved by maximizing the similarity
of observations inside clusters or by minimizing the similarity of observations between
clusters. Both criterions are equivalent. The problem of partitional clustering can thus
be seen as a combinatorial optimization problem, trying out all possible partitionings
of S and choosing that partitioning which minimizes, for instance, the within cluster
scatter. However, the number of possible combinations grows fast with higher n and
k [DH73, JW92]. For most practical cases, trying out all combinations would be infea-
sible. Algorithms that solve the problem of cluster analysis therefore cannot be exact,
but can at best approximate the optimal solution.

The number of clusters k is a user-specified parameter. Which choice of k is optimal
or meaningful is highly domain dependent. Without any information about class mem-
bership (i.e. labels) or domain-specific external quality measures, the automatic choice
of k is a difficult problem. Especially, the within cluster scatterW (C) cannot be used for
optimization, since the costs decrease with higher k, leading to the trivial solution k = n.
Quality measures like the Davies Bouldin or silhouette index are more independent of
k. However, the partitionings they produce don’t necessarily reflect the way in which
an expert would have grouped the observations. At best, there exist heuristics, like the
gap heuristic, which can facilitate the choice of k.

Proper choice of distance measure can be difficult as well. Especially the weighting of
features can have a large influence on clustering results [HTF09]. On the one hand, larger
ranges of values may lead to higher natural weightings of features and may require the
equalization of weights by proper normalization of all data points. On the other hand,
features might have different importance, which might get lost during normalization.
Supervised settings allow for the automatic selection or weighting of relevant features.
In an unsupervised setting, however, automatic selection or weighting of features is much
more difficult and must be based on additional assumptions of what is interesting.

3.4.1 k-Means Clustering
The k-Means clustering algorithm tries to minimize the within cluster scatter W (C)
directly, in a greedy fashion, by iterative descent. The within cluster scatter can be
written as

W (C) = 1
2

k∑
i=1

∑
x∈Ci

∑
x′∈Ci

d(x, x′) (3.33)

=
k∑
i=1

ni
∑
x∈Ci

d(x, x̄i) (3.34)

where x̄i is the mean vector of the i-th cluster and ni is the number of observations
in this cluster. Assigning all n observations to the k clusters such that within each clus-



3.4. CLUSTER ANALYSIS 63

Algorithm 2 Lloyd’s algorithm
1: procedure kMeans(S, k)
2: C1, . . . , Ck := ∅
3: Choose initial centroids c1, . . . , ck
4: repeat
5: ∀x ∈ S : Cj := Cj ∪ {x} with j := argmin1≤i≤k ||xi − ci||2
6: ∀ 1 ≤ i ≤ k : ci := 1

|Ci|
∑

x∈Ci x
7: until no assignment change
8: return C = {C1, . . . , Ck}, {c1, . . . , ck}
9: end procedure

ter, the average dissimilarity between observations and the cluster mean is minimized,
minimizes the whole criterion.

For the k-Means algorithm to work, it must be possible to calculate the arithmetic
mean of observations. Further, the mean calculation must be compatible with the chosen
dissimilarity measure, in the sense that the costs of a single cluster are minimized by
the cluster mean. This is, for instance, the case for observations represented as points
in Rp and the quadratic Euclidean distance as dissimilarity measure.

Algorithm 2 shows an iterative descent algorithm for the problem, given the afore-
mentioned instance space and distance measure. At the beginning, initial cluster centers
are chosen (line 3). There exist different strategies for that choice. A basic variant draws
k different cluster centers uniformly at random from the given sample of observations.
More sophisticated methods, like k-Means++, try to place cluster centers far apart, in
dense regions of the data space. The intuition is that different clusters should be max-
imally dissimilar, following (3.32). Next, all observations are assigned to their closest
cluster centers, according to the given distance measure (line 5). Then, cluster centers
are calculated anew, based on the current assignment of observations to clusters (line
6). The last two steps are repeated in an alternating fashion, until assignments (or the
total costs W (C)) do not change anymore.

For a random initialization of cluster centers, it can be shown that the algorithm is
guaranteed to stop in a local minimum. In each step, the costs W (C) are monotonically
decreasing. Since the quality of solutions is dependent on the particular initialization,
it is recommended to start the algorithm several times with different random choices of
cluster centers and take the solution with lowest costs W (C). For k-Means++ in Rp and
quadratic Euclidean distance, it can be shown that the expected costs deviate from the
globally optimal solution by a factor which is logarithmic in k.

It should be noted that k-Means can be seen as a partitional variant of expectation
maximization (EM) clustering [DLR77, WFH11]. EM clustering assumes the data to be
generated by a mixture of k gaussians, estimating their means and covariance structure.
Thereby, EM can account for elliptically formed clusters. In comparison, k-Means does
only estimate the cluster means. The resulting partitioning corresponds to a centroidal
Voronoi tessellation.





Chapter 4
Distributed Data Mining

All methods that were presented in the previous sections originally have been developed
to run on a single machine and process sample S as one batch of data. As already
described in Sect. 2.2.3, the IoT requires new types of distributed data analysis algo-
rithms. On the one hand, there is a need for algorithms which follow the paradigm of
cloud-based parallel high performance computing. On the other hand, there exist highly
communication-constrained IoT scenarios which require more decentralized solutions.

After a short introduction to distributed systems in Sect. 4.1 and sensor node clus-
tering in Sect. 4.2, the sections following give an overview of existing distributed data
analysis algorithms from the fields of distributed data mining and wireless sensor net-
works. Both fields are huge, which is the reason why only a selection of references and
methods can be presented here. Methods have either been included to illustrate and
discuss important and generic principles of distributed data analysis, or they are direct
competitors of the algorithms developed in this thesis. To the best of our knowledge,
in this regard, our list includes all relevant methods and algorithms. Especially, we will
pay close attention to distributed versions of the SVM. The algorithms are first grouped
by the type of data partitioning they work on, i.e. horizontal (Sect. 4.3) or vertical
(Sect. 4.4). Then, we follow the categorization introduced in Sect. 2.5.2, distinguishing
between different kinds of distributed approaches, from centralized to decentralized. In
each subsection, methods and algorithms are loosely ordered from supervised to unsu-
pervised. Based on a summary of algorithmic approaches in the vertically partitioned
data scenario, challenges of the scenario are discussed in more detail in Sect. 4.5.5.

4.1 Distributed Systems
A distributed system consists of components that can be located on physically different
networked machines, communicating and coordinating their actions by passing messages.
This makes distributed processes different from parallel processes or threads of execution,
which can usually share the same address space in main memory for communication. The
distinction is elaborated upon in Sect. 4.1.1. To understand each other, all processes

65



66 CHAPTER 4. DISTRIBUTED DATA MINING

in distributed systems must adhere to a predefined set of message formats and there
have to be regulations when to exchange which types of messages. A set of message
formats and a set of rules for the exchange is also known as a protocol in network
terminology. Sect. 4.1.2 deals with a common model for layers of protocols, known
as the OSI reference model. Moreover, it is possible to make a distinction between
several communication types, which are introduced in Sect. 4.1.3, like synchronous vs.
asynchronous communication. Networks can have different topologies, each coming with
their own advantages and disadvantages. Those are discussed in Sect. 4.1.4. Finally,
Sect. 4.1.5 stresses the difference between high performance and pervasive computing,
which is highly relevant for this thesis as already explained in Sect. 2.3. Most of the
following material is based on [TvS06], which is recommended for further details.

4.1.1 Parallel vs. Distributed Computing
Parallel and distributed systems share common properties, as they allow for the con-
current execution of different processes. However, both types of systems are also funda-
mentally different.

Parallel programs are assumed to run on different processors, but on the same ma-
chine. The components of parallel algorithms usually have access to shared memory
segments, which can be used for the coordination of different processes or threads of
execution. Communication is only as costly as reading from or writing to main memory.
Critical conditions, like program exceptions or hardware failures, will usually leave the
system in a well-defined state, which may also include shutdowns of the whole system.
Moreover, parallel processes share the same system clock.

In comparison, distributed components run (or at least are expected to run) on dif-
ferent physical entities. By definition, they cannot share the same memory and clock,
but have a local memory and clock. The only way to coordinate themselves is by ex-
changing messages with each other. The time needed for sending and receiving messages
over physical network communication links is usually several orders of magnitudes higher
than the time to access main memory, except for the most advanced types of underlying
network technology (see also Tab. 2.1 again). On battery-powered embedded or mobile
devices, communication usually also consumes lots of energy and thus doesn’t come for
free. Further, in distributed systems partial failures, i.e. failures of individual compo-
nents, are common and sometimes hard to distinguish from valid system states. For
instance, a sender may have difficulties to determine if other components have received
a message or not. A message may have been dropped due to failure of communication
lines that are not even directly linked to the sender, it may get lost due to a hardware
failure at the receiving end, or the receiver got the message, but cannot acknowledge it
in the required time frame, caused by a high computational load. It might also occur
that the message has been delivered, but the acknowledgement is getting lost on its way
back to the sender. In each case, it is hard for the sender to determine the state of the
receiving end, leading to difficult synchronization problems. Similar problems may be
caused by differing system clocks of different physical entities.



4.1. DISTRIBUTED SYSTEMS 67

Considering the differences of parallel and distributed systems, distributed algorithms
usually must be designed to be much more fault-tolerant and autonomous than parallel
algorithms. Moreover, in certain cases, communication costs must be taken explicitly
into account and possibly traded off for computation. With the advent of pervasive
systems, another limiting factor is the consumption of energy. Due to all of the afore-
mentioned differences, in Section 4.3 and Section 4.4 we will only focus on distributed
versions of data analysis algorithms instead of parallel versions that require a shared
memory implementation.

4.1.2 Layered Protocols
The communication between different parties necessarily requires standards for how
messages are to be exchanged and the format of messages. In other words, each party
must speak the same language. A definition of the rules and formats for the exchange
is also called a protocol. Protocols that can be negotiated dynamically when opening
a connection are also called connection oriented, while connectionless protocols don’t
require any kind of additional negotiation.

Standards are usually needed for different levels of abstraction. For example, on the
physical network layer, it must be agreed upon how many volts should be used to signal
the bits 0 and 1. On a somewhat higher level, it must be defined how the length or
end of a message should be encoded in bits. On an even higher level, every party must
encode numbers like integer and real values or strings in exactly the same way. These
data types must first be encoded by the sender and decoded by the receiver and then
be translated into the machine’s internal encoding for such types. Furthermore, for a
reliable communication between two end points, it must be decided how unique sequence
numbers are to be generated or when to retransmit messages.

The Open Systems Interconnection Reference Model (OSI model) developed by the
International Standards Organization (ISO) has identified seven different layers usually
involved in network communication. Such layers are organized in a so called protocol
stack. Messages are passed from top to bottom of the stack by the sender, sent over the
physical communication medium, and then passed from bottom to top by the receiver.
Each layer may add or remove information like headers and trailers to and from messages
of the previous layer. Such information may contain meta data, like the length of
a message or the physical network address of a target device. While the originally
developed protocols for the layers were never widely used, the OSI model itself builds
the foundation of today’s internet protocols, like TCP and IP. In the following, the layers
and their jobs are discussed in somewhat more detail.

Physical, Data Link and Network Protocols Protocols on the physical layer de-
fine how bits are to be transmitted from one end point to the other, i.e. the electrical,
mechanical and signaling interfaces. It also defines how many bits per second can be
sent and if a two-way communication is possible or not. The data link layer groups bits
into units called frames. It also appends a checksum to each frame, such that the receiv-



68 CHAPTER 4. DISTRIBUTED DATA MINING

ing end can calculate and check if any errors during the transmission have occurred. If
not, the sender is asked to retransmit the frame. Therefore, a unique sequence number
must be assigned to each frame. The network layer decides how machines in different
networks should be addressed and how to route messages over possibly several nodes be-
tween these networks. Currently, the connectionless Internet Protocol (IP) is the most
widely used network protocol.

Transport Protocols Protocols on the transport layer define how information can be
reliably sent from one end point to the other. The basic idea is that not every application
needs to handle their own error recovery, but to provide the functionality of a reliable
communication mechanism to all applications that need it. The transport layer therefore
splits messages given to it by the application layer into frames, assigns sequence numbers
and continuously keeps track of which messages have been received, which should be
retransmitted and if all frames of a message have been received. In cases where the
transport protocol is built on top of connection-oriented network services, all frames will
arrive in the correct sequence. However, if built on top of a connectionless protocol, the
transport layer also must put back all message frames into order once they are received.
The Transmission Control Protocol (TCP) is an internet protocol and currently the de
facto standard for reliable connection-oriented communication, whereas the Universal
Datagram Protocol (UDP) is a connectionless transport protocol for applications. Other
transport protocols exist, like the Real-Time Transport Protocol (RTP) for real-time
data transfer. It should be noted that this protocol just specifies the package formats
for real-time data, but doesn’t provide any mechanisms for guaranteeing the delivery of
the data.

Higher-Level Protocols Of the higher level protocols, in practice only the application
layer is ever used. Nevertheless, the concept of a session can be important in the
context of middleware systems. The presentation layer should usually deal with the
interpretation of structured information, like records of data, but at least in the Internet
protocol suite, no protocol has been specified for this layer.

Application-specific protocols also define the format of messages and rules for how
to exchange them, however, they usually are more oriented on queries or functions that
should be performed by another host and how to specify the corresponding parameters
and return values. For example, the Hypertext transfer protocol (HTTP) defines how
to ask another host for web pages based on Uniform Resource Locators (URLs), the
Post Office Protocol (POP) defines how emails can be downloaded from a corresponding
server and the File Transfer Protocol (FTP) defines how to upload and download files
to and from a remote host.

4.1.3 Communication Types
Whenever two entities communicate, one can differentiate between different types of
communication.



4.1. DISTRIBUTED SYSTEMS 69

Discrete vs. Streaming In some applications, it is only necessary to exchange single,
relatively short messages between applications. For example, a common paradigm for
client-server applications is to call procedures or functions on a remote server and get
their result as a response, also known as remote procedure call (RPC). The parameters
for the call must first be translated into a bit string for communication, whose size is
usually limited. Similarly, the response is also a bit string of limited size, which must be
translated into the return value on the receiver’s end. Once the messages are exchanged,
the procedure call is finished. A similar type of communication happens in message
queuing systems, where the distributed processes are even more decoupled.

In comparison, the continuous transmission of data over a communication channel
is called streaming. Examples would be copying a large file over the network or the
transmission of live video data. While the copy operation produces a finite stream, a
live video stream potentially could also be infinite. Moreover, copying a file over the
network does not necessarily need to happen in real time, while for a video stream, a
certain transmission rate must be guaranteed.

Point to Point vs. Broadcast If a network node sends data to another explicitly
specified network node, the communication is called point to point. In many cases, for
point to point communication, a dedicated connection between the nodes is established.
Sending data to several or all nodes in a network at once, potentially not even specifying
their network identifiers, is called multicast or broadcast communication.

The underlying network topology might differ from a logical topology and naming
system that are established on top of it (see Sect. 4.1.4). A similar distinction has to
be made regarding broadcast communication. A broadcast on the logical layer might
be realized by opening several individual point to point connections on the physical
layer. For example, broadcasting data to other nodes in a peer to peer network that
works on top of the internet usually involves sending messages between routers that
might be connected by dedicated cables. Similarly, what looks as a point to point
connection on the logical layer, might be realized as true broadcast communication on
the physical layer. For example, nodes connected to each other by a hub or a wireless
network necessarily receive all or some messages which are sent to other nodes, requiring
a filtering of messages based on the recipient’s identifier.

Since one of the goals of distributed systems is achieving transparency, how point
to point or broadcast communication is realized on the physical layer is often shielded
from the developer and end user. Nevertheless, it sometimes can be beneficial to raise its
algorithmic realization to the middleware layer of distributed applications. Moreover, in
distributed pervasive systems like wireless sensor networks, how broadcast communica-
tion is realized on the physical layer and the network topology play such an important
role for performance that oftentimes they need to be explicitly considered.

Transient vs. Persistent The communication between two or more nodes is called
transient if both participants need to be connected to each other or to the network



70 CHAPTER 4. DISTRIBUTED DATA MINING

at the time of communication. In contrast, a persistent communication between nodes
ensures that messages to other nodes are intermediately stored and delivered to them
once they connect again to the network. Thereby, the communication between nodes
becomes decoupled in the sense that not every participant must stay online all the time.
An example for a persistent communication mechanism is the mail system, where emails
to other recipients are stored on intermediate mail servers and delivered to the recipients
once they connect to the mail server.

Reliable vs. Unreliable The exchange of messages between physically different net-
work nodes can fail for several reasons. First of all, the hardware of the receiving nodes
or of intermediate nodes that route messages might fail. Other failures might be caused
by bugs in the software, like an infinite loop or wrong pointer arithmetic. Then, a high
process load on a node could render this node not responding. In such cases, it can
also happen that message queues run full and messages are automatically discarded.
Sometimes, it is also hard to automatically distinguish between these different types of
faults. Nevertheless, many applications require a reliable communication between nodes,
i.e. some guarantee that messages have reached their destination. Additional require-
ments can be that messages must arrive at the receiving end in order and at most only
once. The first problem can usually be solved by sending acknowledgements back to the
sender and the second one by giving each message a unique sequence number. Although
the TCP protocol provides a reliable point to point connection between nodes, it is
only transient and not robust against failure of any of the communication participants.
Therefore, depending on the purpose of a distributed system, it can be necessary to pro-
vide additional mechanisms for reliable communication on the middleware or application
layer. Moreover, since the actions to be performed in case of failures are often highly
application dependent, developers and end users sometimes must be prepared to handle
communication related errors. It should also be noted that realizing a reliable broadcast
between nodes in a network can be a difficult problem to solve.

In other cases, it might not be necessary to guarantee the delivery of messages at the
receiver, however. Unreliable communication doesn’t need to be a problem. Especially
in real time systems, for example, the resending of already outdated information often
makes no sense at all or can be restricted to a fixed time frame.

Synchronous vs. Asynchronous The communication between two or more nodes is
called synchronous if the sender waits for an answer before continuing with its execution.
An example would be calling a function on a remote host, waiting for the computation to
finish and getting the result. In contrast, calling the function asynchronously would mean
sending the request to another host, continuing with other tasks and getting somehow
notified about the result, e.g. by registering a handler. It should be noted that some
algorithms necessarily require some form of synchronization. Hybrid algorithms may
also require both types of communication.



4.1. DISTRIBUTED SYSTEMS 71

4.1.4 Topologies
The network topology determines the structure of a network, i.e. the nodes and how
they are linked to each other. Formally, it can be described as a graph G = (P,E) where
P is a set of different nodes and E is a set of edges between them. While a physical
topology describes the location of different types of devices and media and the layout
of the physical cabling between then, a logical topology describes the way data passes
through the network and its nodes. The logical topology must not necessarily match the
physical topology, potentially also leading to different distances and transmission rates
between nodes. For instance, nodes in an Ethernet network connected to a repeater hub
physically form a star topology, though logically the network has a bus topology.

The following subsections shortly explain eight common network topologies, as well
as their advantages and disadvantages.

Point to Point The point to point topology consists only of two nodes and a link
between them. The link can either be permanent (dedicated), like a cable connecting two
different end points, or dynamically configured, by circuit-switching or packet-switching
technologies. A direct link between two nodes is the fastest possible connection, as data
doesn’t need to travel over any other node. The number of nodes that are passed until
a message reaches its destination is called the number of hops, i.e. that the number of
hops for a point to point connection is always zero.

Bus The bus topology is mostly suited for local networks, also called local area networks
(LANs). Each node in the network is connected to a single cable. All nodes receive the
same signal. If data is only to be sent to a single node, all nodes must ignore the signal
that was not intended for them. This can be achieved by creating an addressing or
naming scheme for the nodes. The main advantage of a bus technology is its low cost,
since only a single cable is used. Moreover, the number of hops for each message is
zero. However, a disadvantage is that the cable can become a single point of failure. If
the cable is somehow damaged and breaks, the entire network is down. Moreover, the
management of nodes connected by a single cable, like adding new nodes to the cable,
can be impractical.

Star In networks with a star topology, the nodes are connected to a central device with
a point to point connection. The central device usually can either be a hub or switch.
If a node wants to communicate with other nodes, all data it sends is first transmitted
to the central device and than to one or more of the other connected nodes. Additional
nodes can easily be added to a star topology. However, as with the bus topology, the
central hub or switch can also become a single point of failure. A hybrid topology, also
called hierarchical star topology, can be created by connecting several hubs or switches.
In a distributed star topology, such hubs or switches are connected in a linear fashion,
with no central connection point. In a star topology, the number of hops depends on
how many switches are passed by a message.



72 CHAPTER 4. DISTRIBUTED DATA MINING

Linear and Ring If the nodes are connected in a chain, such that the end nodes are
not also connected to each other, the nodes form a linear topology. One also says that
the nodes are daisy chained. In this type of network, each node is a critical link between
two other nodes. In comparison, the nodes in a ring topology form a circle. Data is sent
along the ring, into one direction, until it reaches its destination. Each node on the ring
can receive data from the previous node and send data to the next node. The advantage
of a ring topology is that if one of the nodes fails, the data can still be sent into the other
direction along the ring and reach its destination. A disadvantage of both topologies is
that they do not scale to a large number of nodes, since the average number of message
hops increases linearly with each additional node.

Mesh In amesh topology, several nodes are connected to each other directly by point to
point links. The nodes are fully connected if they form a complete graph, i.e. each node
is directly connected with each other node. The main advantage of a fully connected
network are its performance (i.e. the number of hops for each message is zero) and the
redundancy of the links: Even if some of the links are failing, there is a high chance
that the network will remain at least connected. However, a disadvantage is that the
number of links grows quadratically with the number of nodes. This make fully connected
topologies impractical for large networks. A network is partially connected if at least
some of the nodes are connected to more than one other node in the network. Even a
partial connection of the nodes provides at least some redundancy, though the complexity
is not as high as it would be if the nodes were fully connected. Also the required number
of message hops to reach another node is usually small.

Tree If nodes are organized in a hierarchy, i.e. that there is a top level or root node
and every node has one or several child nodes, the topology is called a tree topology. All
links between nodes are point to point links. A tree topology must be at least three
levels deep, otherwise it would be a star topology. The number of child nodes is also
called the branching factor. The advantages of a tree topology are that the number of
links between nodes is linear in the number of nodes, that the network is scalable (the
number of message hops is restricted by the depth of the tree) and that additional nodes
can easily be added to the network. Its main disadvantage is that if any node fails, parts
of the network become disconnected. It also should be noted that in a tree topology,
nodes that are higher up in the hierarchy usually will have a higher communication
load than nodes on the periphery. For example, under the assumption that each node
communicates with each other node with equal probability, on expectation the top level
node would receive about half of the network traffic.

Hybrid If two different basic network topologies are connected to each other, the
resulting topology is called a hybrid topology. An example would be a star ring network,
where the central devices (hubs or switches) of several star networks are connected to
each other in a ring topology.



4.1. DISTRIBUTED SYSTEMS 73

4.1.5 High Performance vs. Pervasive Computing
Despite the differences between parallel and distributed systems, algorithms designed
for running in data centers often follow the paradigm of parallel high-performance com-
puting, as explained in Sect. 2.3.1 on cloud computing. This can be partly justified by
the control exerted over such systems, since machines in a cluster or cloud operate in a
well-defined and closed environment. In particular, it may be assumed that communica-
tion lines are reliable and have a high bandwidth which resembles that of direct memory
accesses. Also, the network topology stays the same during the run of a distributed
algorithm. The computational resources per node usually may be assumed to be at least
as high as that of contemporary hardware and furthermore, each node potentially may
use an unlimited amount of energy.

In comparison, pervasive distributed systems consist of low cost and low powered
small devices that communicate with each other in an ad-hoc fashion over sometimes
highly unreliable communication lines. An example would be wireless sensor networks
(WSNs) [DP10]. WSNs have a plethora of applications, like earth sciences, forest fire
detection, air pollution monitoring, oceanographic applications, system health monitor-
ing, or greenhouse monitoring, to name a few. WSNs may vary widely in their topology
from simple star or ring network to complicated multi-hop networks. Especially with
mobile devices, the network topology might change continuously. Each node works au-
tonomously using its own battery power. The nodes are thus constrained in terms of
sensing capability, computational power and transmission ability. In addition, wireless
networks have much lower bandwidth than, say, hardwired local area networks.

Sending all raw data to a central base station for post analysis incurs high com-
munication costs, at the same time running the risk of delayed analysis. Needed are
novel types of distributed algorithms which can analyze the data as much as possible
in situ, i.e. directly at the local nodes where measurements occur. At most they are
allowed to communicate in local environments, with their nearby peer neighbors or next
bigger nodes. Further, for the reduction of energy, communication channels should be
intelligently shut down whenever possible. Hence, algorithms for pervasive distributed
systems must be differently designed than their centralized counterparts or algorithms
for high-performance computing. The predominant concern often is not speed of com-
putation, but to increase the network’s life-time for monitoring purposes, and finding a
solution with satisfying accuracy at all, given limited resources.

The next section discusses shortly how techniques from the field of data analysis,
like cluster analysis (see Sect. 3.4), can be used for grouping sensor nodes, such that the
total energy consumption needed for communication is reduced. The topic of sensor node
clustering is included as it demonstrates the severe technological constraints under which
algorithms in pervasive distributed systems must operate. In addition, node clustering
algorithms use techniques which might be relevant for the development of distributed
data analysis algorithms that target such restricted environments.



74 CHAPTER 4. DISTRIBUTED DATA MINING

4.2 Distributed Clustering of Sensor Nodes
Continuous monitoring as well as intermittent querying of sensor networks involves
transmitting data from individual sensor nodes, the sources, to a single node, the sink.
Communication costs increase with higher distance r between sensor nodes, as ground
reflections from short antenna heights may cause a drop-off of the radio signal power
by r4 [PK00]. Therefore, hierarchical, tiered multi-hop architectures with shorter dis-
tances between relaying nodes are usually more energy-efficient than letting all sensors
communicate directly with some base station [EGPS01].

The sensor nodes in tiered multi-hop networks form clusters, which can be hierar-
chical. Certain nodes in each cluster are designated as cluster heads. Cluster heads
fulfill special roles, like relaying signals from local nodes in their cluster to other cluster
heads or a base station. They also can manage and restrict network access as well as
the life cycle of local nodes, or reduce the amount of data transmitted by aggregating
and pre-processing the signals from sensor nodes in their cluster.

Manual placement of sensors and routing through pre-determined paths are only
feasible for very small networks. However, typical applications of sensor networks, like
environmental monitoring, disaster management or military surveillance missions envi-
sion hundreds or even thousands of sensor nodes [AY07], possibly deployed randomly,
e.g. dropped by a helicopter. The network is usually left unattended for long periods
of time and batteries can’t be recharged. While some setups utilize mobile sensors,
sensor nodes are usually assumed to operate stationary after deployment. Nevertheless,
the network could change over time, since battery-operated sensors may run out of en-
ergy and harsh environmental conditions can damage network components. In these
scenarios, algorithms are needed that cluster sensor nodes and determine cluster heads
dynamically, forming the infrastructure in an ad-hoc manner. Also, they must be able
to reconfigure the network when necessary.

Clustering algorithms that have been developed for WSNs mainly differ in their
assumptions on the given network components, the desired topology, and in the goals
they try to achieve. These in turn influence the used methodologies and running times.

Regarding network components, clustering can become more constraint in heteroge-
nous networks where cluster heads have a higher capacity than sensor nodes. Here, the
available number of high capacity components will determine the maximum number of
cluster heads and therefore the number of clusters. Moreover, if communication costs
between cluster heads and sensor nodes are to be minimized, a stationary location of
cluster heads will lead to a static assignment of sensors to clusters, except for cases where
cluster heads fail and the network needs to be reconfigured. In comparison, in more ho-
mogenous networks, also regular sensor nodes can become cluster heads. Clustering
algorithms for these networks are usually more dynamic, as they need to continuously
balance the energy consumption across all nodes, based on their residual energy. Several
algorithms achieve this, for instance, by a regular rotation of cluster heads.

The required topology is largely dependent on the given distances between sensor
nodes, cluster heads and base stations. Depending on the placement of nodes, the



4.2. DISTRIBUTED CLUSTERING OF SENSOR NODES 75

network topologies that need to be considered can reach from fixed 1-hop [HCB02]
over fixed k-hop [YYYA06] to fully adaptive architectures [DHC05]. An important
objective is that network components remain connected, i.e. that sensor nodes are able
to reach their cluster heads and that cluster heads can reach a base station. Other
objectives like minimizing the intra-cluster energy-consumption may need to be traded
off with the goal of components staying connected, for example in cases where an energy-
optimal cluster head could no longer reach its base station. Taking into account several—
possibly contradicting—quality criteria thus turns clustering in WSNs into a multi-
objective optimization problem.

The main goals that cluster algorithms for WSNs try to achieve are maximal network
longevity, connectivity and fault-tolerance. Extending the operational life-time of a
WSN requires load-balancing strategies that prevent premature exhaustion of subsets of
sensor nodes and cluster heads. The goal of maintaining connectivity is concerned with
ensuring that the most important network components can reach each other, possibly
putting constraints on the clustering. Fault-tolerance deals with the failure of network
components and can be achieved by redundancy, rotating roles of network components
as well as re-clustering.

As a survey article [AY07] shows, the clustering algorithms for sensor nodes are quite
diverse and hard to categorize. Moreover, there already exist more algorithms than can
sufficiently be presented here, even in summary. Therefore, only two algorithms are
focused on in more detail. The algorithms were chosen as examples for demonstrating
how the same network topology can be achieved by entirely different means and with
different running times. At the end of this section, the reader is then pointed to further
algorithms.

Hierarchical Control Clustering The clustering scheme introduced in [BK01] forms
a hierarchical multi-hop network topology, where the number of layers is determined
automatically. The original problem statement is that given an undirected graph G =
(V,E) and a positive integer k with 1 ≤ k ≤ |V |, for each connected component clusters
V1, . . . , Vl with Vi ⊆ V should be found such that (1) all vertices are part of a cluster, (2)
all subgraphs induced by Vi are connected, (3) cluster size is bounded by k ≤ |Vi| < 2k,
(4) two clusters should only have few common vertices and (5) each vertex belongs to a
constant number of clusters. After demonstrating that requirement (5) could be violated
in general graphs, the problem is restricted to bounded disk graphs, as they are usually
given in WSNs. For Rmin and Rmax being the minimum and maximum transmission
radius over all nodes, (u, v) is an edge in G if and only if Rmin ≤ d(u, v) ≤ Rmax. The
algorithm then guarantees that no node is a member of more than O(log(Rmax/Rmin))
clusters. Furthermore, to fulfill requirement (4), it is necessary to allow a single cluster
in G to have a size smaller than k.

The distributed algorithm consists of two phases: cluster creation and cluster main-
tenance. The cluster formation process can be started by an arbitrary node in the
network, which becomes the root node of a Breadth-First-Search (BFS) tree. The ini-



76 CHAPTER 4. DISTRIBUTED DATA MINING

tiator with the least node ID takes precedence. Every t units of time, each node u
broadcasts a tree discovery message to nodes that are in its transmission radius. The
message contains a source ID, parent ID (initially not set), the ID of the root node, a
sequence number and the shortest (known) hop-distance to the root, r. A node v will
make u its parent and update its hop-distance if the route through u to r is shorter. The
root ID and sequence number are used to distinguish between multiple instances of the
cluster creation phase. Next, for cluster formation, the sent messages are extended by
additional fields representing subtree size and node adjacency. The size information is
aggregated bottom up. When the subtree size of a node w crosses the size parameter k,
it forms clusters on its subtree T (w). If |T (w)| < 2k, a single cluster containing T (w) is
created. Otherwise, children subtrees will be appropriately partitioned, using the node
adjacency information. The cluster assignments are propagated to the relevant nodes
by cluster assignment messages. Once clusters have been formed for T (w), w does not
include information about these nodes in subsequent messages. Nodes send a terminate
cluster message down their subtrees if subtree sizes have not changed for a fixed amount
of time. At the end, only the cluster assignments need to be maintained, while the BFS
information is unimportant. During cluster maintenance, a sensor node joining the net-
work may either be assigned to an existing nearby cluster Vi, if |Vi| < 3k− 1, or clusters
are split, like in the cluster creation phase. If existing nodes leave the network, clusters
can become disconnected. However, the number of remaining connected components
is bounded, since no node is a member of more than O(log(Rmax/Rmin)) clusters (see
above). The connected components are either made clusters of their own or, if their size
is < k, their nodes will try to join a neighboring cluster. The same is true in cases of
link outages and network partitions.

The algorithm converges in O(n) steps, where n is the number of sensor nodes.
In principle, it can work with mobile sensor nodes and recover from network failures.
It achieves the self-organization of sensor nodes into a multi-hop network and reduces
transmission distances, since parent nodes are chosen by the shortest known hop-distance
to the root.

DWEHC In [DHC05], a distributed weight-based energy-efficient hierarchical cluster-
ing protocol (DWEHC) has been proposed. The key idea is to elect cluster heads not
only based on distances from a node to all its neighbors, but also take into account
the residual energy of nodes. A basic observation here is that for devices with similar
antenna heights, the transmitter power required by distance r is rα. For three nodes
s, r and d, a direct transmission from s to d takes power ||sd||α + c, while relaying
transmission through a node r takes power ||sr||α + c + ||rd||α + c. In cases where
||sd||α + c > ||sr||α + c+ ||rd||α + c, relaying is more efficient. The neighbors Nα,c(s) of
a node s are defined as the set of nodes that lie in the transmission range of s and need
no relaying. The weight W (s) is then calculated as



4.2. DISTRIBUTED CLUSTERING OF SENSOR NODES 77

W (s) =

 ∑
u∈Nα,c(s)

(R− d)
6R

× Eresidual(s)
Einitial(s)

where R is the cluster range (the farthest distance nodes can be from their cluster
heads) and Einitial(s) and Eresidual(s) are the initial and residual energy of node s re-
spectively. The average number of neighboring nodes can be shown to be at most six
[DHC05]. Intra-cluster communication will be at minimum when the transmission graph
contains the shortest paths between all pairs of nodes in the cluster.

The protocol starts with each node u broadcasting its (x, y) coordinates, establishing
its local neighborhood Nα,c(u), calculating its weight W (s) and broadcasting it. A node
s sets level(s) = −1, indicating that it hasn’t joined any cluster yet. In the cluster
generation phase, the following procedure is repeated for a fixed number of six iterations.
Let i be the iteration number. A node s first checks if it is assigned to a cluster. If not,
it will become a temporary cluster head if its weight is largest among it neighbors,
otherwise the neighbor with the largest weight is chosen as a temporary head for s. The
ID of the temporary head is broadcasted to all neighbors of s. A node becomes a real
cluster head only if a percentage of (6 − i)/6 nodes elect the node as their temporary
cluster head. In this case, the information is broadcasted to all neighbors, including the
(x, y) coordinates, and the level of s is set to 0. There are three cases in which a node
doesn’t become a cluster head, but a child node:

1. When level(s) = −1, node s receives a broadcast message from its neighbor n,
including the (x, y) coordinates of its cluster head hn. If ||shn|| < R, s chooses hn
as its cluster head. level(s) := level(n) + 1 and the distance of s from its cluster
head is set to ||sn||+ ||nhh||.

2. If s receives a message from neighbor n and level(s) 6= −1, node s has already
chosen its cluster head. If n is assigned to a different cluster head hn whose
distance from s is in cluster range R and the previously calculated distance to its
current cluster head is greater than ||sn||+ ||nhn||, then h becomes the new cluster
head of s and level(s) := level(n) + 1.

3. If s receives a message from neighbor n, level(s) 6= −1 and the cluster heads of s
and n are the same, it is checked whether the distance of node s to its neighbor n
is less than the previously calculated distance. If it is, s will choose n as its parent
and set level(s) and the new distance as in the second case.

For finalization, the cluster generation is run a last (seventh) time. Afterwards, each
node is either a cluster head or a child node.

In comparison to hierarchical control clustering, DWEHC converges in a constant
number of iterations. Moreover, it not only respects the distance between nodes, but also
their residual energy. In contrast to previously proposed protocols like LEACH [HCB02],
DWEHC doesn’t require knowledge about the network size, density or homogeneity or



78 CHAPTER 4. DISTRIBUTED DATA MINING

about the number of levels, like HEED [YF04]. While cluster topologies generated by
HEED may not achieve minimum energy consumption in intra-cluster communication, it
was shown empirically that the energy savings of DWEHC outperform those or HEED.
Also, DWEHC produces more well-balanced clusters and a better distribution of cluster
heads, resulting in higher energy savings for inter-cluster communication.

Further Reading Hierarchical node clustering and DWEHC are only representatives
of several distributed clustering algorithms that have been developed for WSNs. The
survey article [AY07] gives a thorough summary of many additional algorithms. For ex-
ample, other clustering approaches that have a linear convergence rate are LCA [BE81],
CLUBS [NC98], RCC [NC98] and EEHC [BC03]. Approaches with a constant num-
ber of iterations are, for example, LEACH [HCB02], HEED [YF04], MOCA [YYYA06],
EECPL [BA10] or N-LEACH [TSV12].

4.3 Horizontally Distributed Data Analysis Algorithms
In comparison to algorithms that work on the level of sensor nodes, distributed data
analysis algorithms work on the level of data acquired by such nodes. The sensor mea-
surements which constitute a single observation can be partitioned either horizontally
or vertically (see also Sect. 2.4).

Let’s assume that observations are in propositional representation (see Sect. 3.1.9).
Then, observations can be thought of as being stored in a fixed-size n × p data matrix
D, whose rows store the p feature values of n observations in S. In the horizontally
partitioned data scenario [CSH00b], each node stores only a subset of observations. This
means for j = 1, . . . ,m nodes, we have samples Sj ⊆ S and S = S1 ∪ · · · ∪ Sm with
Su∩Sv = ∅ (u 6= v for u, v = 1, . . . ,m) and corresponding data matrices D1, . . . ,Dm. For
supervised learning, we may further assume a label to be stored with each observation.
At each node j, such labels are stored in a corresponding (p+ 1)th label column Yj .

The following subsections present a selection of algorithms for the scenario and dis-
cuss different principle design approaches for distributed algorithms, from centralized to
more decentralized architectures.

4.3.1 Local Preprocessing, Central Analysis
Distributed algorithms can balance load and may reduce communication costs by pre-
processing data locally, then sending the new representation to a central coordinator for
further processing.

Incremental Least Squares SVM [DP06] introduces a distributed SVM based on
a slightly different formulation of the SVM, the so called Least Squares SVM [SV99].
In the least squares formulation, the inequality constraints of the original primal SVM
problem (see Sect. 3.2.5) are replaced by equality constraints and a 2-norm error, leading



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 79

to the unconstraint optimization problem

min
w,b

1
2 ||w||

2 + λ

2 ||1−Y(Dw− 1b)||2 ,

where Y is a diagonal matrix with Yii = yi. Setting the gradient w.t.r. w and b to
zero, instead of a quadratic optimization problem one obtains a system of (p+ 1) linear
equations

[w b]T =
( 1
λ

I◦ + ETE
)−1

ETY1 ,

where E = [D−1] and I◦ denotes a (p+ 1)× (p+ 1) diagonal matrix whose (p+ 1)-th
diagonal entry is zero and the other diagonal entries are 1.

As the authors show, it is possible to solve this system of linear equations incremen-
tally:

[w b]T =

 1
λ

I◦ +
m∑
j=1

ET
j Ej

−1
m∑
j=1

ET
j Yj1 . (4.1)

In the distributed version of their algorithm, each node j computes the local sums
ET
j E and ET

j Yj1 independently from each other and communicates them to a central
coordinator. In other words, the original data is first preprocessed locally and reduced
to sums, which the coordinator can then sum up to globally solve the linear system of
equations (4.1).

The algorithm can speed up computations, because the sums involved in solving the
linear system of equations can be computed in parallel over different nodes j. With a
linear kernel, the algorithm is communication-efficient if n > p2, i.e. it sends less data
than the original dataset. For cases where p2 > n, the authors applied the Sherman-
Morrison-Woodbury formula to the linear system of equations, resulting in a n × n
instead of a (p + 1) × (p + 1) matrix. For non-linear kernels, the algorithm usually is
not communication-efficient, since the original data matrix D is replaced by the kernel
matrix K, resulting in an n-dimensional weight vector w and thus a system of n linear
equations.

Distributed Outlier Detection The authors of [SLMJ07] present a non-parametric
statistical technique to identify global outliers in WSNs. The method first derives data
histograms locally at each node and sends such statistics to a central coordinator (a base
station). The central coordinator uses the histograms to infer a data distribution and
filter out the non-outliers. The identification of outliers is achieved by a fixed threshold
distance or the rank among all outliers. One of the major drawbacks of this technique
is the ability to process only one dimensional data.

[SPP+06] and [PPKG03] use kernel density estimation for outlier detection. They fit
kernel densities at each observation instead of comparing all raw observations. Outlier
are then identified by user defined thresholds. The techniques achieve high accuracy



80 CHAPTER 4. DISTRIBUTED DATA MINING

in terms of quality of estimation and high detection rate, while having low memory
consumption and a small number of transmitted messages.

In statistical approaches, the task is to model the probability distribution of the
data using parametric or non-parametric approaches and then tag as outliers those
data points which do not fit the modeled distribution. Two local techniques for the
identification of outlying sensors are presented in [WCD+07]. Spatial correlation of the
readings existing among neighboring sensor nodes is used to detect bad sensors. Each
node computes the distance between its own reading and the median reading of its
neighboring sensors. One might say that each neighboring sensor provides a summary
statistic, i.e. preprocessed data. A node is considered as an outlying node if the absolute
value of the distance is sufficiently large compared to a user defined threshold. Accuracy
of these outlier detection techniques is relatively low, since they ignore the temporal
correlation of sensor readings.

Distributed Clustering USP2P (P2P k-Means Clustering Based on Uniform Node
Sampling) improves on a distributed k-Means clustering technique [BGM+06]. It selects
s nodes randomly uniformly by a random walk strategy [DK07] to update centroids in
each iteration. For a static network, USP2P provides an accuracy guarantee. Commu-
nication costs are upper bounded by O(Ms log(m)), where M denotes the maximum
allowed number of iterations by source node, s is the random walk length and m is the
number of nodes.

4.3.2 Model Consensus
Consensus algorithms iteratively exchange information between nodes until all nodes
have converged to the same values on a set of distributed (shared) variables. Such
algorithms can work with local nodes and a central coordinator, but may also work in
a peer-to-peer fashion. Basic consensus algorithms exist for the calculation of averages,
sums, max/min, etc. Communication costs mainly depend on the number of variables
on which consensus should be reached and the number of iterations until convergence.

Probabilistic Gossip-based Classification Probabilistic gossip based protocols are
simple in their implementation and asymptotically guarantee convergence. They reach
consensus on a set of variables by using gossip protocols in which a node randomly
chooses another node and exchanges information with it. This process continues for
some iterations. It can be shown that the error reduces exponentially at each iteration.
Due to their simplicity, such protocols have been used extensively for many distributed
algorithms in WSNs.

In [CFSZ11], an algorithm for distributed and classification in WSNs is proposed.
The data is modeled as

xi = θ + yi + νi



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 81

where xi’s are the measurements at each sensor node, θ ∈ R is the common (shared)
unknown parameter, yi ∈ {0, 1} are the unknown discrete terms which denote the class
label of each node, and νi’s are zero mean i.i.d. Gaussian random variables with finite
variance. The goal of each node is to estimate θ and yi. Parameter θ is estimated by a
consensus algorithm for maximum likelihood estimation over all nodes. Class labels are
inferred using a gossip based protocol. The paper further proposes an EM algorithm for
the case in which the yi’s are assumed to be i.i.d. Bernoulli trials. Experimental results
demonstrate that the proposed methods have convergence rates which are similar as
those of existing methods, but are more robust in various situations, like in the presence
of outliers.

Distributed Decision Trees [BWGK08] have proposed a decision tree learning al-
gorithm which can build the same tree on networked nodes in an asynchronous fashion.
The main building block of the algorithm is the scalable distributed majority voting
protocol first discussed in [WS04]. Given a pair of real numbers ai and bi at each node,
this algorithm decides if

∑
i ai >

∑
i bi in a very communication efficient fashion, with-

out needing a node to exchange messages even if ai and bi are changing. Based on this
protocol, first, the authors show that comparison of two features can be accomplished
by concurrently running 4 majority votes. The next step is to choose top 1-out-of-k
attributes and this can be easily accomplished by running the previous comparison per
attribute pair. Finally, the tree can be built asynchronously by performing this 1 out
of k comparison for each level of the tree. First of all, this algorithm is guaranteed to
converge to the globally correct solution. Extensive experimental results also show that
the algorithm is communication-efficient, even when the data is changing.

Alternating Direction Method of Multipliers (ADMM) The Alternating Di-
rection Method of Multipliers (ADMM) extensively described in [BPC+11] is a method
for consensus optimization which can be applied to a large variety of learning problems.
The approach followed in general solves the problem

min
v

f1(v) + f2(Av)

s.t. v ∈ P1,Av ∈ P2 ,

where f1 : Rp1 → R and f2 : Rp2 → R are convex functions, A is a p2 × p1 matrix,
while P1 ⊂ Rp1 and P2 ⊂ Rp2 denote non-empty polyhedral sets. The problem is made
separable by introducing an auxiliary variable ω ∈ Rp2 :

min
v,ω

f1(v) + f2(ω)

s.t. Av = ω,v ∈ P1,ω ∈ P2

Let α ∈ Rp2 denote the Lagrange multipliers corresponding to the constraint Av = ω.
The augmented Lagrangian is

L(v,ω, α) = f1(v) + f2(ω) + αT (Av− ω) + η

2 ||Av− ω||2 ,



82 CHAPTER 4. DISTRIBUTED DATA MINING

where η > 0 controls how much equality constraints may be violated. ADMM minimizes
L in an alternating fashion, i.e. first for the primal variable v and then for the auxiliary
variable ω. After each iteration, it updates the multiplier vector α. With t denoting
the current iteration, the ADMM iterates at t+ 1 are given by

vt+1 = argmin
v∈P1

L(v,ω(t),αt),

ωt+1 = argmin
ω∈P2

L(vt+1,ω,αt),

αt+1 = αt + η(Avt+1 − ωt+1)

The first two optimization problems may be solved on different processors or machines.
In a distributed setting, their results must be communicated over the network, such that
each node can update its multiplier vector α. It can be proven that after a finite amount
of iterations, the iterates αt will converge to the globally optimal solution α∗ of the dual
problem.

Distributed Consensus SVM In [FCG10], the standard SVM problem is divided
into a set of decentralized convex optimization problems which are coupled by consensus
constraints on the weight vector w. Thereby the SVM problem is cast into an ADMM
formulation. The network is modeled by an undirected graph G(P,E), where vertices
P = {1, . . . ,m} represent nodes and the set of edges E describes communication links
between them. The graph is assumed to be connected and each node j only communi-
cates with nodes in a one-hop neighborhood Nj ⊆ P . Each node j ∈ P stores a sample
Sj = {(xj1, yj1), . . . , (xjnj , yjnj )} of labeled observations, where xji is a p × 1 vector
from Rp and yji ∈ {−1,+1} is a binary class label. The original primal SVM problem
(see Sect. 3.2.5) is cast into the distributed ADMM framework by putting consensus
constraints on the weight vectors wj ,wl and bias variables bj , bl of each node j and its
one-hop neighboring nodes l ∈ Nj :

min
{wj ,bj ,ξji}

1
2

m∑
j=1
||wj ||2 +mC

m∑
j=1

nj∑
i=1

ξji

s.t. yji(〈wj ,xji〉+ bj) ≥ 1− ξji ∀j ∈ P, i = 1, . . . , nj
ξji ≥ 0 ∀j ∈ P, i = 1, . . . , nj
wj = wl, bj = bl ∀j ∈ P, l ∈ Nj .

For ease of notation, the authors define the augmented vector vj := [wT
j , bj ]T , the

augmented matrix Xj := [[xj1, . . . ,xjnj ]T ,1j ], the matrix Yj := diag([yj1, . . . , yjnj ])
of diagonal labels, and the vector of slack variables ξj := [ξj1, . . . , ξjnj ]T . Πp+1 is a
(p + 1) × (p + 1) matrix with zeros everywhere except for the (p + 1), (p + 1)-st entry.
It follows that wj = (Ip+1 −Πp+1)vj for [Πp+1](p+1)(p+1) = 1. With these vector and



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 83

matrix notations, the problem can be rewritten as

min
{vj ,ξj ,ωji}

1
2

m∑
j=1

vTj (Ip+1 −Πp+1)vj +mC
m∑
j=1

1Tj ξj

s.t. YjXjvj � 1j − ξj ∀j ∈ P
ξj � 0j ∀j ∈ P
vj = ωjl,ωjl = vl ∀j ∈ P,∀l ∈ Nj

where the auxiliary variables {ωjl} decouple parameters vj at node j from those of its
neighbors l ∈ Nj . The augmented Lagrangian for the problem is

L({vj}, {ξj}, {ωjl}, {αjlk}) = 1
2

m∑
j=1

vTj (Ip+1 −Πp+1)vj +mC
m∑
j=1

1Tj ξj

+
m∑
j=1

∑
l∈Nj

αTjl1(vj − ωjl) +
m∑
j=1

∑
l∈Nj

αTjl2(ωjl − vl)

+ η

2

m∑
j=1

∑
l∈Nj

||vj − ωjl||2 + η

2

m∑
j=1

∑
l∈Nj

||ωjl − vl||2 (4.2)

where the Lagrange multipliers αjl1 and αjl2 correspond to the constraints vj = ωjl and
ωjl = vl. The quadratic terms ||vj−ωjl||2 and ||ωjl−vl||2 ensure strict convexity, while
parameter η allows for trading off speed of convergence against approximation error.

The distributed iterations that solve (4.2) are

{vt+1
j , ξt+1

j } = argmin
{vj ,ξj}

L({vj}, {ξj}, {ωtjl}, {αtjlk})

{ωt+1
jl } = argmin

{ωjl}
L({vt+1

j }, {ξ
t+1
j }, {ωjl}, {α

t
jlk})

αt+1
jl1 = αtjl1 + η(vt+1

j − ωt+1
jl ) ∀j ∈ P,∀l ∈ Nj

αt+1
jl2 = αtjl2 + η(ωt+1

jl − vt+1
l ) ∀j ∈ P,∀l ∈ Nj .

For details of how to simplify these iterations further and how to formulate the corre-
sponding dual, see [FCG10]. In each iteration, each node j ∈ P must solve a quadratic
optimization problem that is similar to the original SVM problem, but the local datasets
Sj on which it needs to be solved can be considerably smaller than the whole dataset
S = S1 ∪ . . . ∪ Sm. After each iteration, nodes must communicate their local solutions
vj to each one-hop neighbor and then update their local multiplier vectors. Casting
the SVM problem into the ADMM framework guarantees that after a finite number of
iterations, the local solutions vj at each node j ∈ P equal the global solution w, b that
would have been found by training a centralized SVM classifier on all data S.

As long as the number of iterations is smaller than the total number of training
examples n, the algorithm communicates less than the whole dataset. On the MNIST



84 CHAPTER 4. DISTRIBUTED DATA MINING

dataset used for evaluation in [FCG10], the algorithm only needs about 200 iterations
for reaching a similar error as a centralized SVM.

Even although each local optimization problem is solved in its dual formulation,
only primal weight vectors are exchanged between nodes. The non-linear case is thus
much harder to solve, since direct application of the Φ transformation may lead to
high-dimensional weight vectors and therefore to high communication costs. Direct
application of the kernel trick is not possible. The authors of [FCG10] therefore propose
to enforce consensus of the local discriminants on a subspace of reduced rank. This
however requires preselected vectors common to all nodes, which introduce a subset
of basis functions common to all local functional spaces. The choice of such vectors
isn’t necessarily straightforward and potentially requires the algorithm to be run again
for each new classification query. Due to its complexity, the non-linear version is not
discussed here. For further details, see [FCG10].

Distributed Dual Ascend [HMS08] presents a method for distributed SVM learning
based on distributed dual ascend. Let Pj(d) with d = 0 be the solution of a standard
linear SVM with zero bias trained on the data Sj at node j:

Pj(d) = argmin
w[j]

λ

2m ||wj ||2 + wT
j d + 1

m

∑
(xi,yi)∈Sj

max{0, 1− yi〈wj ,xi〉} .

The proposed distributed scheme uses d 6= 0 for tying together the local results wj

while iterating over the local solutions Pj(·). At the beginning, the algorithm sets
λ

(0)
j = 0 and µ(0)

j = 0. Then, in each iteration, each node j computes updates λ(t)
j ←

−µ(t−1)
j − λ

mPj(µ
(t−1)
j ) and passes its solution to a central node, which calculates µ(t)

j ←
−λ(t)

j + 1
m

∑m
j=1 λ

(t)
j and communicates the solution back to each local node. The final

output at iteration T is w∗ = − 1
λ

∑m
j=1 λ

(T )
j .

The algorithm is based on principles of Fenchel Duality (see [HMS08] for further
details) and thus has a linear convergence rate, i.e. it takes O(log(1/ε)) iterations to get
ε-close to the optimal solution. With a linear kernel, only p scalars need to be transmitted
in each iteration. The authors have also extended the algorithm to non-linear kernels.
There, in the worst case, all components of vector α need to be exchanged, meaning that
each node j must transmit n/m scalars and receive all remaining αs in each iteration.
Therefore, if T > p, the algorithm is not communication-efficient.

Distributed Block Minimization For the linear SVM, [PSJ11] rewrite the dual
SVM problem (see Sect. 3.2.5) as

min
α

αTQα/2− 1Tα

s.t. ∀ni=1 : 0 ≤ αi ≤ C

where Quv = yuyvxuxv. [YHCL10] have shown that this problem can be used with
sequential block minimization (SBM), i.e. that at each iteration t, only a single block



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 85

Sj of matrix Q is considered. The authors show that when solving for the variables in
this block, the variables from other blocks don’t need to be kept in memory. Suppose
that αt is a solution after t iterations and that at t + 1, the focus is on block Sj ,
with dj = αt+1[j] − αt[j] being the direction for components of the α vector that are
associated with block Sj . Then, according to [PSJ11], dj may be obtained by solving
the optimization problem

min
dj

dTj Q[j, j]dj/2 + (wt)TUjdj − 1Tdj (4.3)

s.t. 0 � αt[j] + dj � C ,

where Q[j, j] is a submatrix of Q consisting only of entries associated with the training
examples in Sj and Uj is a p × |Sj | matrix where the i-th column is the i-th example
in Sj , multiplied by its label yi. For solving the problem, all that needs to be kept in
memory are the training examples in Sj and the p-dimensional vector wt. After solving
(4.3), wt is updated as wt+1 = wt +

∑
xi∈Sj dj [i]yixi.

The proposed distributed block minimization (DBM) with averaging scheme is then
straightforward: Instead of processing each block Sj sequentially, they are all optimized
in parallel. That is, given a central coordinator and j local nodes, per iteration t each
node j solves (4.3) for Sj , sends ∆wt

j =
∑

xi∈Sj dj [i]yixi to the central coordinator
and sets αt+1[j] = αt[j] + 1/m · dj . The central coordinator then computes wt+1 =
wt + 1/m

∑m
j=1 ∆wt

j from the deltas received by each local node. The new vector w
must then be transmitted to each local node, before a new iteration starts. The authors
also discuss another variant than averaging, using line search for updating w.

In each iteration, the algorithm communicates O(mp) values. The authors argue
that for a constant number of iterations, the communication complexity becomes inde-
pendent from the number of training examples n. However, they haven’t provided a
proof of global convergence or for the rate of convergence. Empirically, the number of
iterations needed to achieve sufficient accuracy on two different datasets was only 20.
On both tested datasets, one proprietary from Akamai with 79M training examples and
the other a public learning to rank dataset from Microsoft with 37M training examples,
the algorithm achieves a higher accuracy than LIBLINEAR-CDBLOCK (see [YHCL10])
in a much shorter time.

Distributed Consensus for Outlier Detection Nearest neighbor approaches use
distance to other points to compute an outlier. The widely used definition from [KNT00]
says that outliers are those points which are very far from their nearest neighbors,
according to some threshold. Many variants of this definition have been proposed,
depending on the used distance measure and threshold. One practical definition uses
Euclidean distance and a user defined threshold or the number of desired outliers. Such
a definition has been used in [BSG+06] to find global outliers in WSNs. Each node j
determines outliers in its local dataset Sj by a set of local rules and then broadcasts
them to other nodes for validation. The neighboring nodes repeat the procedure until all



86 CHAPTER 4. DISTRIBUTED DATA MINING

sensor nodes eventually agree on the global outliers. This technique can be flexible with
respect to multiple existing distance-based outlier detection techniques. It has two major
advantages: (1) it can be proven that the found outliers are the same as those found
by a centralized algorithm, and (2) the algorithm can easily adopt to data and network
changes. One drawback, however, is that the method requires a node to broadcast all
found outliers to all the other nodes for validation, which may require a large amount
of communication.

The distance-based technique proposed in [ZSGL07] identifies k global outliers in
continuous query processing applications of sensor networks. It overcomes the broadcast
issue of [BSG+06] by adopting the structure of an aggregation tree. Each node in the
tree transmits some useful data to its parent after collecting all the data sent from its
children. The root node then approximates the top k global outliers and sends them to
all the nodes in the network for verification. If any node disagrees on the global results,
it will send extra data to the root again. This procedure is repeated until all nodes
agree on the global results. A major drawback of this technique is that it requires a tree
topology to be overlaid on top of the network. Hence, it is not suitable for any kind of
topology.

Distributed Consensus Clustering Generally, clustering algorithms situated in and
developed for peer-to-peer networks are good candidates for use in WSNs, especially
those that mostly rely on local computations and communication with a limited number
of nearest neighbor nodes only. [DGK09] introduced two distributed variants of the k-
Means algorithm (see Sect. 3.4.1). The first variant, LSP2P (Local Synchronized-Based
P2P) k-Means, is based on a more general local algorithm for mining data streams in
distributed systems [WBK09]. It carries out repeated iterations of a modified k-Means at
each local node and collects newly calculated centroids and cluster counts only from its
immediate neighbors to produce the centroids for the next iteration. Nodes terminate if
these new centroids don’t differ substantially from the old ones. The algorithm requires
no global synchronization and can be extended to a dynamic environment, in which
nodes enter and leave the network. Communication costs are shown to be independent
of the number of observations to cluster and the total amount of communication is
O(mT (k + L)), where m is the number of nodes, T the number of iterations, k the
number of clusters and L the maximum number of neighbors. It was shown empirically
that the algorithm yields similar accuracy as a centralized version of k-Means, however,
proving convergence or bounds on the accuracy appears to be a hard problem.

A distributed expectation maximization algorithm for clustering data from a Gaus-
sian mixture distribution, DEM, has been introduced in [Now03]. The algorithm par-
ticularly focuses on sensor networks. DEM utilizes an incremental version of the EM
algorithm [NH99]. It repeatedly cycles through all nodes in a network and performs
incremental E- and M-steps at each node, using only locally stored data and summary
statistics passed from the previous node. DEM is guaranteed to converge to a local max-
imum and, as shown empirically, often more rapidly than the standard EM algorithm.



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 87

[Gu08] proposes to estimate the global sufficient statistics for the M-step by an
average consensus filter, diffusing the local sufficient statistics over the entire network
by communicating only with neighboring nodes. Thereby, each node gradually gains
global information, until the parameters to estimate can be accessed from any node in
the network. The local communication between neighbors which is inherently parallel
makes it more run-time efficient than DEM which repeatedly cycles over all nodes in the
network.

4.3.3 Fusion of Local Models
Techniques for the fusion of local models first learn models on the local data at each node
j. Such local models are then broadcast to peer nodes or sent to a central coordinator,
which fuse models in an intelligent way.

Fusion of Decision Trees The hierarchical decision tree classification technique pro-
posed in [CXPL10] first constructs a spanning tree over all nodes in a network. The
tree is built beginning with the leave nodes of the spanning tree, first building a decision
tree on local data, then sending this decision tree upstream to the parent nodes in the
spanning tree. The parent nodes of the spanning tree then build a new classifier by com-
bining all the classifiers they have received from their children. Therefore, a portion of
the dataset is subsampled with the same proportion of negative and positive examples.
These intermediate nodes then send the classifiers again upstream and the root node
(base station) builds a single classifier which represents all data over all the nodes. A
short but wide spanning tree increases the communication cost of sending the classifiers
to the next node, but reduces the overall accuracy due to a smaller number of hops. In
comparison, a tall and narrow tree suffers from the opposite effect. The paper presents
extensive experimental results on simulated wireless networks to show that this method
offers better accuracy and energy consumption compared to a baseline ensemble method.
Here, meta classifiers are learned independently at each node and then (majority) voting
is applied during the test phase.

Incremental SVMs There exist several distributed SVM approaches for horizontally
partitioned data that are based on the exchange of SVM models, e.g. the set of support
vectors. Many of such approaches are inspired by early incremental versions of the SVM
which repeatedly keep only the support vectors of previous learning steps for training.
More sophisticated versions have demonstrated that although support vectors are not
sufficient representations of a dataset, correct results can be achieved by exchanging
support vectors in multiple iterations or by keeping other relevant data points. In
following, the aforementioned incremental approaches are first described and then it is
discussed how to extend them to distributed methods.

Instead of learning on a single batch of data, the incremental SVM by [SHKS99]
assumes a training set S to be divided into disjunct subsets S1, . . . , Sm. The training
procedure works incrementally. In the initial first step t = 1, the algorithm trains a



88 CHAPTER 4. DISTRIBUTED DATA MINING

SVM on set S1, but only keeps the support vectors SV1. At each following time step
t, an SVM model f̂t is trained on the union St ∪ SVt−1 of the current training set St
and the support vectors SVt−1 found in the previous step. Empirical results on UCI
datasets suggest the incremental SVM achieves a similar performance as the standard
batch SVM trained on all data up to the corresponding time step t, i.e. also at the
end of training. The performance drops significantly if the SVM is only trained on a
subset (90%) of the determined support vectors, from which the authors conclude that
the incremental SVM finds a minimal set of support vectors. The authors further point
out that the incremental SVM can be seen as a lossy approximation of the chunking
method [OFG97], with the incremental approach considering each support vector only
once.

The incremental procedure appears plausible as long as the distributions of training
examples in each subset S1, . . . , Sm are similar to the distribution of data points in the
whole training set S. In cases where the training algorithm has full control over how
S is split into subsets, the aforementioned condition could be achieved by a uniform
sampling of examples from S. In a distributed setting, one could use a distributed
uniform sampling algorithm like the one introduced in [DK07] to adjust for the skewness.

A more specialized solution for the case where the statistical properties of each batch
S1, . . . , Sm may differ from those of S has been investigated, among others, by [R0̈1].
In contrast to detecting concept drift, the focus is on learning a single concept from
all data. However, though training examples in each batch consistently represent that
concept, their distributions differ. The author notes that while support vectors provide
a condensed and sufficient description of the learned decision boundary, they do not
represent the examples themselves. That is, in terms of empirical risk minimization,
the support vectors provide an estimate of P (X|Y ), but not of P (X). If the number
of support vectors is small in comparison to the number of examples in the next batch,
their influence on the decision boundary will be small. It is demonstrated how decision
boundaries can differ between an SVM trained on all data and one trained on a subset of
the data, with SVs from another subset added. The few support vectors are treated as
mere outliers, which the SVM is known to be robust against. Therefore, [R0̈1] proposes
to weight prediction errors on support vectors higher than errors on training examples
in the new batch by replacing the original primal SVM objective (see Sect. 3.2.5) with

min
w

1
2 ||w||

2 + C

(∑
i∈S

ξi + L
∑
i∈SV

ξi

)
,

where S is the set of new training examples, SV is the set of old support vectors and
L = 2 n

|SV | . It is shown that the modified incremental algorithm empirically achieves a
higher accuracy than the plain version proposed in [SHKS99].

Iterative Exchange of Support Vectors While [R0̈1] gives a counter example which
shows that local sets of support vectors may differ strongly from the global set of support
vectors, [CSH00a] includes a formal proof. Like [BC00], the authors further show that



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 89

points on the convex hull provide a sufficient statistic for SVM learning from distributed
data sources. However, for higher dimensions, computing the convex hull is exponential
and thus not efficient.

In [CCH05], the same authors propose a scheme that is, according to their reasoning,
efficient and exact. The idea consists of exchanging support vectors iteratively with a
central node. At iteration t, each local site j determines its current set of support vectors
SV t

j , based on the dataset Sj ∪GSV t−1, where Sj is the local data stored at node j and
GSV t−1 is the global set of support vectors j has received from the central node at the
previous iteration t− 1. Each node sends its local set of support vectors to the central
node, which merges them to the global set GSV t and communicates it to all local nodes.
The authors sketch a proof which shows that after a finite number of iterations, the local
sets of support vectors converge to the globally optimal set of support vectors.

Cascade SVM The Cascade SVM introduced in [GCB+05] is based on a similar idea
as the previously presented incremental SVMs, which is to identify and eliminate non-
support vectors as early as possible and only communicate support vectors between
distributed nodes. Proposed is a hierarchical binary tree topology of cascading SVMs.
At the beginning, disjunct subsets S1, . . . , Sm of S are distributed over the leaves of the
tree. An SVM is trained at each leaf and the resulting support vectors are communicated
to the parent node in the next layer of the hierarchy. At the parent nodes, SVMs are
trained on unions of support vectors of the previous layer. The root node communicates
the finally determined support vectors to each leaf, and each leaf decides if any of its
input vectors would become new support vectors. When the set of support vectors
has stabilized over all leaves, the algorithm stops, otherwise the hierarchical cascade is
traversed again. The algorithm thus includes a similar feedback loop as the approach
proposed in [CCH05], but due its hierarchical design, it may earlier filter data points
that are not in the global set of support vectors.

It is proven that the Cascade SVM converges to a set of support vectors that is
globally optimal in finite time. However, no bound is given for the total number of
iterations. For the standard datasets tested, like the MNIST dataset, the authors report
a low number of iterations between 3 and 5. Moreover, with 16 machines in a cluster,
the final number of support vectors and the size of subsets at each leaf is about 16 times
smaller than the total number of 1M data points. Training time was reduced from about
one day on a single machine to one hour with the distributed approach.

In practice, run-time and communication costs will largely depend on the ratio of
training examples to support vectors. Often, bad choices of hyperparameters, like C
or σ for the RBF kernel, result in an unnecessarily large number of support vectors.
Unfortunately, optimal hyperparameters are hard to determine in advance, but must be
found experimentally. Similarly, a high number of support vectors can be expected for
complicated non-linear decision boundaries.

[LR06] prove and demonstrate that the iterative exchange of support vectors con-
verges to the global optimum also in case of other network topologies. Particularly, they



90 CHAPTER 4. DISTRIBUTED DATA MINING

train local SVMs and exchange support vectors with their ancestors and descendants in
a strongly connected network. It is shown that the binary cascade proposed in [GCB+05]
is a special case of a strongly connected network and that a random strongly connected
network topology may lead to faster convergence. A ring topology has the slowest con-
vergence. Further tested are synchronous and asynchronous versions of the algorithm.
The synchronous implementation dominates in terms of training time, while the asyn-
chronous version leads to less data accumulation (number of exchanged support vectors)
in sparser networks.

Energy-efficient Distributed SVMs In [FBLT06], the incremental procedure pro-
posed in [R0̈1] is brought into the context of distributed wireless sensor networks. Subsets
of S are assumed to be stored at cluster heads. Such cluster heads may be determined
by already existing energy-efficient clustering network protocols (see Sect. 4.2). Similar
to the original incremental algorithm, models are consecutively trained on the data Sj
at cluster head j and support vectors received from the previous cluster head in a chain
of cluster heads. The authors regard varying distributions of observations by a different
weighting of examples and support vectors, as already proposed in [R0̈1]. Empirically
the algorithm is shown to be similarly accurate, but more energy-efficient than trans-
mitting all data to a central node and training a single SVM on all data. However, in
comparison to [CCH05, GCB+05], the algorithm is not guaranteed to find a globally
optimal solution. Moreover, it was only evaluated on a single synthetic two-dimensional
dataset consisting of two Gaussian distributions. Like the Cascade SVM, the commu-
nication costs will very much depend on the number of support vectors found. Here,
it may happen that cluster heads at the end of the chain always receive more support
vectors than those at the beginning. Balancing the network’s total energy consumption
would thus require a technique for changing the order of communication dynamically.

For solving the last problem, in [FBLT08] the same authors propose two gossip al-
gorithms that exchange summary information between one-hop neighboring nodes. A
single iteration of the minimum selective gossip algorithm (MSG-SVM) at time step t
consists of training SVMs at each node, based on the currently available local informa-
tion. Each node then communicates its current set of support vectors to all one-hop
neighbors and all nodes update their current model at time step t + 1. Although the
authors give no explicit stopping criterion for their algorithm, they argue that over time,
all nodes will converge to the same SVM model. However, they also argue that their
algorithm is sub-optimal and will not converge to the same solution as a centralized
SVM trained on all data. The idea of this proof is based on the same argument as
already given in [CSH00a]. It remains unclear if between iterations, nodes only keep
the determined support vectors or if exchanged support vectors are added to the already
available local data points. In the first case, data points that might later become support
vectors could be thrown away and would thus be missed. In the second case, however,
the iterative exchange of support vectors closely resembles the filtering mechanism and
feedback loops of the approaches introduced in [CCH05] and [GCB+05], which both



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 91

converge to the global optimum. The second proposed strategy, the sufficient selective
gossip algorithm (SSG-SVM), ensures convergence to the global optimum by exchang-
ing points that lie on the convex hull of each class. While this algorithm might work
efficiently on the synthetic two-dimensional datasets used for evaluation, it is inefficient
for higher dimensions (see [CCH05]).

In [FBLT09], the authors propose to trade-off communication costs for accuracy by
exchanging only a pre-determined percentage of observations between neighboring nodes.
The observations to be transmitted by each node are ranked by their distance from the
current determined local hyperplane. For a single type of synthetic data, consisting of
two 2-dimensional Gaussians, the authors demonstrate that accuracy can be increased
by transmitting slightly more observations than only the support vectors. While the
algorithm allows for trading off communication costs for accuracy, it remains unclear
how much accuracy decreases if much less is sent than the set of support vectors. Since
the number of support vectors may be high, it appears somewhat questionable that any
of the aforementioned approaches could truly work in highly energy-constrained systems
like WSNs.

Distributed Outlier Detection Given examples of two kinds, an outlier detection
problem can be transformed to a classification problem. This trick has been widely
explored in the data mining community [CBK09]. The classification techniques presented
here may thus as well be applied for outlier detection in WSNs. In [RLPB07], the 1-class
SVM (see Sect. 3.3.1) is used for outlier detection. First, a local model is trained at each
node. Then, points lying outside the decision boundary are labeled as outliers and sent
to a central coordinator, along with the model. The local outliers are then validated and
the global set is determined.

Fusion of Distributed Local Cluster Models The DMBC (Distributed Model-
Based Clustering) algorithm proposed in [KKPS05] assumes a Gaussian mixture distri-
bution. It first estimates the number of Gaussian clusters, their parameters (mean and
covariance matrix) and their weights at the local nodes, using the standard EM algo-
rithm. Then, the local parameters and weights are transferred to a central coordinator,
where similar Gaussians are joined to a compact global distribution. The similarity is
measured as the mutual support between two clusters Cu, Cv, which in addition to their
mean vectors also considers the variance of the clusters. For high dimensional data,
DMBC assumes attributes to be independent of each other, resulting in a reduction of
the p × p covariance matrices to p-dimensional variance vectors. For m nodes and a
maximum number of local clusters k, the total communication costs are thus bounded
by O(mk). It was shown empirically, for varying numbers of clusters and nodes, that
the clustering found by DMBC is highly similar to a central clustering, as measured by
the Rand Index.

Further algorithms exist, like a distributed version of density-based clustering [JKP04],
spectral clustering [SSB12] and solutions specialized on particular applications, like spa-



92 CHAPTER 4. DISTRIBUTED DATA MINING

tial [MS06] and time series clustering [YG08].
Only few algorithms for data clustering developed so far are truly resource-aware

and consider, for example, the residual energy of nodes or the CPU utilization explicitly.
An exception is ERA-cluster, proposed in [PGR07], which is based on the concept of
microclusters [AHWY03]. It can automatically adapt its sampling rate and the number
of examined microclusters based on the current battery, memory and CPU utilization
as measured by a resource monitor. EDISKCO [HMS09] solves the k-center clustering
problem and can also determine outliers. It works incrementally and only needs a single
pass over the input observations, without storing them. The local nodes keep a special
heap structure for storing their local k centers and z outliers, sorted according to cluster
counts. If a new point doesn’t fit the current clustering, a request for increasing the
radius is sent to a coordinator. The coordinator replies with the biggest radius it has
received from all other nodes. The local nodes maintain their heap such that the effect of
the most l dense clusters which appeared in history solutions is kept, but also such that
space is left for establishing new clusters if there is a new trend in the input stream. The
coordinator receives the local solutions Cj , radii Rj and radius increase requests from the
nodes. It continuously performs the Furthest Points algorithm on the solutions Cj and
keeps the largest radius received from all nodes. The base station (server side) rotates
the coordinator according to an estimate of the residual energy in each node. EDISKCO
determines a (4 + ε)-approximation of the optimal global clustering. Empirically, it was
shown that the algorithm outperforms the centralized Global Parallel Guessing algorithm
that was proposed in [CMZ07], with regard to accuracy as well as energy consumption.

4.3.4 Fusion of Local Predictions
Instead of fusing local models, it also possible to train local models across nodes j =
1, . . . ,m and then fuse only their predictions for final classification. A popular fusion
rule is majority vote, or in the case of probabilistic classifiers, the maximum a posteriori
(MAP) criterion (see comments on the optimal Bayes classifier in Sect. 3.1.2).

Collaborative Target Classification A classic application of WSNs is multi-vehicle
tracking and classification. Collaborative techniques bolster the inference of one node
using the posterior of the other node. If one node can validate a hypothesis, then it makes
sense to use it for subsequent inferencing rather than starting from scratch for each node.
In [MNR02], the idea is used for the identification and classification of vehicle types from
a convoy of vehicles. Using confidence boosting, which uses the posterior of one node
to do inference on the next node, the classification accuracy increases by 7%, while a
collaborative data driven approach boosts the accuracy by 9%. Finally, the paper shows
how collaborative mining techniques can help in identifying and isolating the effects of
multiple vehicles which is itself a very hard problem due to signal interference.

A similar approach is discussed in [DS03], introducing the concept of collaborative
signal processing (CSP). Two forms of CSP are discussed in the paper: (1) data fusion:
which exchanges low dimensional feature vectors between the correlated nodes for op-



4.3. HORIZONTALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 93

timal network performance, and (2) decision fusion: which exchanges likelihood values
among the independent nodes. The latter one is preferred in WSNs due to its low com-
putational and communication overhead. The paper studies CSP algorithms for single
target classification based on multiple acoustic signals measured at different nodes. One
of the ways sensor networks can save power is by using a region-based processing instead
of all nodes communicating to each other. A manager node is assigned to each region,
coordinating the communication among the nodes in its region and across regions. In
this model, single target classification consists of the following steps: (1) target detection
and classification: the first step is to use CSP algorithm to detect the region in which
the target is, and designate it as the active region, (2) target localization: this step is
used by the manager nodes to localize the target using the energy detected at each node,
(3) target location prediction: past estimates are used by the manager nodes to predict
future values, and (4) active location determination: when the target becomes close to
any other region, that region is designated as the new active region and this process is
repeated. The paper studies three classifiers: An optimal maximum likelihood classifier,
a data averaging classifier that treats all measurements as correlated, and a decision-
fusion classifier that treats each observation as independent. Experimental results on
DARPA SensIT program data show that the sub-optimal decision fusion classifier is the
most attractive model in a WSN context.

Distributed Vehicle Classification The application of vehicle classification inWSNs
is discussed in [DH04]. Each sensor is equipped with a microphone or a geophone. Upon
detection of a vehicle in the vicinity of the sensor, the on-board processor first extracts
features in the frequency domain using a Fast Fourier Transform (FFT). The next step is
to use a local classifier at each node to generate a preliminary hypothesis about the ob-
servation using only the data present at that node. The authors have experimented with
three classifiers: A k-NN based classifier, a maximum likelihood classifier, and an SVM
classifier. The local decision, together with the estimated probability of being a correct
decision is transmitted to a central coordinator, which can then use MAP to compute
the final classification. Extensive experimental results show that the MAP estimate with
the nearest neighbor as the local classifiers works well in vehicle classification.

Distributed Outlier Detection The technique presented in [BHL07] detects outliers
in WSNs for ecosystem monitoring applications. The method exploits the spatiotemporal
distribution of data to find outliers. The basic idea is to compare the measurement of
one sensor with those in the spatial vicinity and also with its measurements back in time.
Then, if the deviation of these values are greater than a user defined threshold (based
on a statistical significance test), a sensor detects an outlier. The obvious drawback of
this method is the choice of the outlier.



94 CHAPTER 4. DISTRIBUTED DATA MINING

4.3.5 Summary
In the previous sections, we have seen that distributed data analysis algorithms for
the horizontally partitioned data scenario use different techniques and architectures to
achieve their goals, which are either speed improvement or the reduction of communica-
tion costs.

Distributed algorithms that preprocess data locally and send the new representation
to a central coordinator share the work load of preprocessing and can be communication-
efficient. How much is communicated depends very much on the preprocessing techniques
used. The least squares regression SVM sends only O(p2) values (partial sums) per node,
however, only for the linear kernel. Statistical outlier detection techniques represent local
data compactly by histograms or the median of sensor readings. The accuracy of such
reductions depends then very much on the underlying data distribution.

Consensus algorithms share the work load during training and can be communication-
efficient if the number of shared variables and iterations T are not too large. For instance,
the distributed consensus SVM transmits only p+ 1 scalars in each iteration, and its to-
tal communication costs in experiments on the MNIST dataset are considerably smaller
than, for instance, those of the Cascade SVM which transmits about 60k p-dimensional
support vectors. Regarding convergence rates from a theoretical point of view, ADMM is
known to have slow convergence, while the dual ascend approach converges in O(log 1/ε)
steps to a global optimum. Distributed block minimization has no proof for the conver-
gence rate. However, all algorithms show good performance in practice, with regard to
prediction performance as well as the number of iterations. The communication costs of
the clustering algorithms presented are similarly independent of the number of training
examples, and mostly depend on convergence rate. It should be noted that in the case
of highly limited resources, iterations could be artificially restricted to a fixed number,
though it might come at the expense of accuracy or losing guarantees.

The communication costs of techniques which fuse models trained on local data ob-
viously depend on the complexity of such models. As explained in Sect. 3.1.5 on the
structural risk minimization principle and in Sect. 3.1.6 on the bias variance trade-off,
more complex models don’t necessarily minimize the true error. The complexity of mod-
els thus depends on how well they generalize, which in turn is highly dependent on the
underlying data distribution. Non-linear decision boundaries in many cases require more
complex hypotheses for their description. In the dual SVM formulation, more complex
models consist of a large number of support vectors. Therefore, distributed SVM algo-
rithms which exchange support vectors iteratively among nodes, like the Cascade SVM,
aren’t necessarily communication-efficient, especially for wrongly chosen hyperparame-
ters. In comparison, the presented methods for fusing cluster models estimate only a
fixed number of parameters per cluster. They are thus communication-efficient if the
number of clusters is not too large. However, for high-dimensional data, DMBC needs
to assume that features are independent from each other, since otherwise, covariance
matrices would become too large for transferal.

Methods which fuse only the predictions of local models trained on horizontally



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 95

partitioned datasets are most communication-efficient during training. Since all models
can be trained independently from each other, no data needs to be transmitted at all.
The communication costs for the prediction step depend on how many observations are
to be predicted. Depending on model size, if only a few observations need to be predicted,
it might be most beneficial to broadcast them to all local nodes, receive predictions for
them and apply the fusion rule. However, this is not communication-efficient, since all
feature values need to be transmitted for each observation. If the local models are small
enough, a better strategy can be to broadcast local models once to all other nodes or a
central coordinator, such that local models and the decision rule can be applied directly
where observations are acquired.

Remarks should be made on how the skewness of local datasets Sj , i.e. their devia-
tion from the global data distribution of S (see also Sect. 2.4), influences accuracy and
communication costs. Training of a global model on condensed representations of local
data shouldn’t be influenced by the skewness, since accuracy and communication costs
only depend on the quality of representation. In the case of consensus and model fusion
techniques, it depends. If model parameters estimate the data distribution, they might
be looked at as condensed data representations, and skewness shouldn’t have any influ-
ence again. If model parameters describe a decision boundary, however, the deviance
of locally determined boundaries increases with the skewness of local datasets. For the
original incremental SVM [SHKS99] this can lead to low accuracy. For iterative meth-
ods, like the Cascade SVM or distributed consensus SVM, it means that the number
of iterations increases, as more information needs to be exchanged until consensus on
a global model is reached. Communication costs increase. The accuracy of methods
which fuse predictions of local models may suffer if local datasets represent the global
data distribution badly. A solution might be to give such bad predictors lower weight
during fusion. Weights can be determined, for instance, by assessing the accuracy of
local classifiers on a hold-out test sample.

Finally, it should be noted that only very few algorithms exist which explicitly take
the resource limitations of sensor nodes or WSNs into account. From the selection of
algorithms, only ERA-cluster and EDISKCO account for the current battery, memory
and CPU utilization or the residual energy of nodes. EDISKCO further uses similar
techniques as sensor node clustering, like the rotation of nodes’s responsibilities, to save
energy and increase the network’s overall lifetime. Incorporating techniques from sensor
node clustering or integrating data analysis with such algorithms could thus provide for
many new research opportunities.

4.4 Vertically Distributed Data Analysis Algorithms
In the vertically partitioned data scenario [CSH00b], each node stores only partial in-
formation about observations, i.e. subsets of their features A1, . . . , Ap, but for all ob-
servations. Let x[j] ∈ Rpj denote a vector which contains pj features of observation x
available at node j. Columns of the data matrix D are thus split over the nodes, i.e.



96 CHAPTER 4. DISTRIBUTED DATA MINING

each node j stores a n×pj submatrix D[j] whose rows consist of vectors x1[j], . . . ,xn[j].
An individual feature q stored at node j can then be denoted by x[j][q].

As already discussed in Sect. 2.4, distributed learning in the vertically partitioned
data scenario can be particularly challenging, since each Dj constitutes a subspace of
the entire data matrix D and local features all by themselves might not contain enough
information about the target concept.

There exist some algorithms for the scenario, presented in the following. Only few
are communication-efficient. Algorithms developed in the context of privacy-preserving
data mining preprocess data locally and combine the new representations at a central
coordinator (see Sect. 4.4.1). Consensus models iteratively reach consensus on a set of
variables, in this case the predictions of labels (see Sect. 4.4.2). Hybrid solutions combine
local and global models (see Sect. 4.4.4).

After having presented all methods, their properties will be summarized in Sect. 4.5.5
and particular challenges of the scenario will be discussed in relation to the development
of new algorithms, like those that are going to be developed in this thesis.

4.4.1 Local Preprocessing, Central Analysis
One way to deal with vertically partitioned data is to process each dataset locally and
send the new representation to a central coordinator for further analysis. Transforming
data into a new representation is especially important when its privacy needs to be
preserved, as it is not allowed to communicate the original raw data between nodes.

Privacy Preserving SVMs [YVJ06, MWF08, YLG09] present privacy-preserving
SVMs that are mainly based on the communication of kernel matrices. A central ob-
servation in each work is that entries of the n× n kernel matrix K are separable in the
sense that

k( [ E F ] , [G H]T ) = k( E, GT ) + k( F, HT ) or (4.4)
k( [ E F ] , [G H]T ) = k( E, GT ) � k( F, HT ) (4.5)

where k : Rn×p×Rp×n → Rn×n denotes the kernel function for whole matrices, + denotes
standard addition and � denotes the Hadamard componentwise product of two matrices
with same dimensions. In [MWF08] it is shown that the linear dot product kernel
k(x,x′) = 〈x,x′〉 satisfies (4.4), while the RBF kernel (3.24) satisfies (4.5). Moreover,
separability can be extended to polynomial kernels (3.23).

In a distributed setting, D[j] is the n × pj data matrix whose rows consist of the
(partial) training examples Sj at each local node j and D the n× p data matrix for the
whole dataset S. Given kernel matrices K1, . . . ,Km with entries of the linear kernel for
data matrices D[1], . . . ,D[m] at m different nodes, the global kernel matrix K for D can
be calculated as

K = K1 + · · ·+ Km = D[1]D[1]T + · · ·+ D[m]D[m]T .



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 97

In [YVJ06], it is proposed that each local node j first calculates its local kernel matrix
Kj . Each node might then send Kj to a central coordinator, which builds K and trains
a centralized SVM on the full kernel matrix as usual. According to the authors, this
scheme preserves the privacy of each local data matrix D[j], since it doesn’t reveal the
original attribute values. For added privacy, i.e. not even revealing the entries of the
local kernel matrices, the authors propose an extended scheme with a secure addition
mechanism (for details, see [YVJ06]). There, m nodes communicate in a ring topology
where each node sends an n×n matrix to the next node and then back to the first node.

A slightly different approach is followed in [MWF08]. There, it is proposed to replace
the standard kernel by a reduced kernel k(D,BT ) : Rn×p ×Rp×ñ → Rn×ñ, where ñ < n
and B is a random matrix. The ñ columns of the random matrix are privately generated
in m blocks corresponding to the m nodes which hold the corresponding feature values
in their local data matrices D[1], . . . ,D[m]. Each node communicates its reduced local
kernel matrix to a central coordinator, which reconstructs the global (reduced) kernel
matrix Kr according to (4.4) or (4.5) and then trains a centralized SVM based on Kr

as usual. It is empirically shown for several standard datasets that learning with the
reduced kernel matrix achieves a similar error rate as a centralized SVM trained on the
full kernel matrix.

The authors of [YLG09] propose a similar scheme as [YVJ06] and [MWF08], but
argue that the secure addition procedure proposed in [YVJ06] or the reduced kernel are
not necessary for the preservation of privacy. Instead, local kernel matrices could be
sent directly to a central coordinator.

While all of the aforementioned approaches preserve the privacy of each local dataset,
according to their authors, only [MWF08] may improve the total run-time, due to a
reduced kernel matrix. None of the approaches is communication-efficient for most
practical purposes. The data matrix D[j] at node j consists of n × pj real values and
each kernel matrix Kj of n× n (or n× ñ) values. Only if pj > n (or pj > ñ), less data
is sent than transmitting the original data matrices D[j] to a central node. However,
usually pj � n, especially since the total number of features p is split among m different
nodes.

Ridge Regression with Random Projections In [HMM16] propose DUAL-LOCO,
which is a dual variant of their distributed ridge regression algorithm for vertically
partitioned data, LOCO [HMMK14]. The algorithm uses random projections to reduce
the number of features which need to be transmitted to worker nodes.

For random projection, the authors use the Subsampled Randomized Hadamard
Transform (SRHT). The projection matrix has the form Π =

√
τ/τsubsXHS, with S ∈

Rτ×τsubs being a subsampling matrix, X ∈ Rτ×τ being a diagonal matrix whose entries
are drawn independently from {−1, 1} and H being a normalized Walsh-Hadamard
matrix. The product between Π> and some vector u ∈ Rτ can be computed in O(τ log τ)
time, while never constructing Π explicitly.

Random projections have been used before to reduce the dimensionality of the data



98 CHAPTER 4. DISTRIBUTED DATA MINING

Algorithm 3 The DUAL-LOCO algorithm
1: procedure DualLoco(D,Y,m, τsubs, λ)
2: Partition D into m submatrices D[1], . . . ,D[m] of equal dimension τ .
3: for worker 1, . . . ,m do . in parallel
4: Compute and send random features D[j]Π[j].
5: Receive random features and construct D̃[j].
6: α̃j ← LocalDualSolver(D̃,Y, λ)
7: β̂j = − 1

nλD[j]>α̃j .
8: Send β̂j to central coordinator.
9: end for
10: Construct solution vector β̂ =

[
β̂1, . . . , β̂m

]
11: end procedure

before performing regression. The disadvantage of using random projections in the
primal formulation of ridge regression is that the solution vector is in the compressed
space and therefore hard to interpret. Instead of solving the primal problem, the authors
propose to solve the dual optimization problem

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2ηλα
>Kα , (4.6)

where f∗ is the conjugate Fenchel dual of f , λ > 0 and K = DDT . Using the squared
loss function fi(u) = 1

2(yi − u)2, one obtains f∗i = 1
2α

2 + αyi. The primal solution has
then the form

β∗(α∗) = − 1
nλ

X>α∗ . (4.7)

By defining K̃ = (DΠ)(DΠ)>, we obtain the dual in projected space as

max
α∈Rn

−
n∑
i=1

f∗i (αi)−
1

2ηλα
>K̃α . (4.8)

Under mild assumptions on the loss function, the solution of this problem, α̃, can be
mapped back to the original space as β̃(α̃) = − 1

nλD>α̃, which is a good approximation
of the solution to the original primal ridge regression problem.

The procedure proposed by the authors is shown in Alg. 3. For the derivation of
the local solver, see [HMM16]. The matrices of random features D̃[j] communicated to
other nodes have a dimension of τsubs and are therefore much smaller than the original
local data matrices. The algorithm has therefore communication costs of O(mτsubs).

The authors can show that the recovery error between the solution of DUAL-LOCO
and the solution of the primal optimization problem is bounded. As we will see in Sect. 4.5,
a problem for distributed learning from vertically partitioned data is taking into account
the conditional dependencies of features residing at different nodes, given the label. The
authors demonstrate in experiments that their algorithm does respect such dependencies.



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 99

4.4.2 Model Consensus
As already discussed in Sect. 4.3.2, consensus models exchange information between
nodes until the values of shared variables converge. In the following, first a distributed
algorithm for least squares regression is presented. Then, it is discussed how the SVM
with a linear kernel can be cast into an ADMM formulation.

Co-Regularised Least Squares Regression In the context of a semi-supervised
learning setting, the authors of [BGSW06] consider the problem of M-view learning. The
goal is to find M functions from different Hilbert spaces Hv such that the error of each
function on sample S and the disagreement between the functions on the unlabeled data
is small. In the problem posed, M ≥ 1, and the instances described by different views
may differ. GivenM finite sets of training instances Sv ⊆ X, |∪Mv=1 | labels y(x) ∈ R, and
a finite set of unlabeled instances S ⊆ X, f̂ = (f̂1, . . . , f̂M ) ∈ H1×· · ·×HM , fv : X → R
functions shall be found that minimize

Q(f̂) =
M∑
v=1

∑
x∈Sv

`(y(x), f̂v(x)) + ν||fv(·)||2
+ λ

M∑
u,v=1

∑
z∈S

`(f̂u(z), f̂v(z)) , (4.9)

where the norms are in respective Hilbert spaces and λ is a parameter weighting the
influence of pairwise disagreements between labels. By means of the representer theorem,
solutions can be expressed in terms of kernels as

f̂∗v =
∑

x∈Sv∪S
cv(x)kv(x, ·) , (4.10)

where kv(·, ·) is the reproducing kernel of the Hilbert space Hv. The vector of functions
(f̂v(x1), f̂v(x2), . . .)>xi∈Sv∪S can then be written as Kvcv, and ||f̂v(·)||2 as ctvKvcv, where
[Kv]ij = kv(xi, xj) and [cv]i = cv(xi). Kv forms a strictly positive definite kernel matrix.
Further, in the following, yv = (y(x1), y(x2), . . .)txi∈Sv .

With the squared loss `(y, ŷ) = (y − ŷ)2, which turns the optimization problem
into a ridge regression problem (also known as regularized least squares regression), it is
possible to rephrase (4.9) as the exact non-parametric coRLSR problem. However, the
problem has cubic run-time complexity not only in the number of labeled examples, but
also unlabeled examples. Since last number is assumed to be large, solving the problem
would need much time. In the following, only the formulation of a semi-parametric
approximation to the problem is presented, as formulated by the authors of [BGSW06],
which leads to a faster algorithm.

Given for each view v ∈ {1, . . . ,M} a strictly positive definite matrix Lv ∈ Rnv×nv ,
where nv is the number of training instances in view v, and an arbitrary matrix Uv ∈
Rm×nv . For fixed λ, ν ≥ 0, the semi-parametric coRLSR optimization problem is to
minimize

Q(c) =
M∑
v=1

[
||yv − Lvcv||2 + νctvLvcv

]
+ λ

M∑
u,v=1

||Uucu −Uvcv||2 (4.11)



100 CHAPTER 4. DISTRIBUTED DATA MINING

Algorithm 4 Distributed CoRLSR
procedure DistCoRLSR(L,U)

repeat
for each view v sequentially do

cv ← G−1
v

[
Ltvyv + 2λUt

v

∑
u6=v ŷu

]
ŷv ← Uvcv
send ŷv to all

end for
until convergence

end procedure

over c = (c1, . . . , cM ) ∈ Rn1 × · · · × RnM . For details on the form of Lv and Uv,
see [BGSW06]. The authors proof that this problem can be solved in time O(M3n2m),
where n = maxv nv.

The authors then show that the semi-parametric coRLSR problem can be solved with
an iterative distributed algorithm, using block coordinate descent, which iteratively only
communicates the predictions of each site for the unlabeled data (see Alg. 4, for matrix
Gv, see [BGSW06]). The idea behind this approach is that different companies may
have similar prediction problems, but don’t want to share the data or the predictions
on them. What they could share safely, however, is appropriately generated synthetic
data, exchanging their predictions on this set of unlabeled data, increasing prediction
performance.

It is shown that the algorithm converges in dlogδ 1/εe iterations to achieve an error
reduction factor of at least ε, where ∆ is a factor depending on the largest and smallest
eigenvalue of the Hessian. Therefore, communication costs are O(Mmdlog∆ 1/εe) for
broadcasting the labels, which are scalar values.

If we take the views to be subspaces of the whole data matrix D, the distributed
algorithm learns from vertically partitioned data.

Vertically Distributed Consensus SVM [BPC+11] casts the vertically distributed
SVM problem into the ADMM framework. The general problem of model fitting on ver-
tically partitioned data is posed in terms of structural risk minimization (see Sect. 3.1.5)
as

min
{w[j]}

l

 m∑
j=1

D[j]w[j]− y

+
m∑
j=1

rj(w[j]) ,

where y = (y1, . . . , yn ) is the vector of all labels, l measures the loss and w[j] is a partial
weight vector whose dimension corresponds to the number of features pj stored at node
j. Multiplication of the local n×pj data matrix D[j] with the partial weight vector w[j]
results in a vector of dimension n, which consists of the local predictions at node j for
the partial observations stored at j. The loss over all nodes should be minimized. The



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 101

regularization function r(x) is assumed to be separable. For solving with ADMM, the
authors introduce an auxiliary variable zj , resulting in the optimization problem

min
{w[j]}

l

 m∑
j=1

zj − y

+
m∑
j=1

rj(w[j])

s.t. D[j]w[j]− zj = 0, j = 1, . . . ,m .

For the SVM problem in particular, the distributed ADMM iterates are

wt+1[j] = argmin
w[j]

(
η

2 ||D[j]w[j]−D[j]wt[j]− zt + Dwt + ut||2 + λ||w[j]||2
)

zt+1 = argmin
z

(
1T (mz + 1)+ + η

2 ||z−D[j]−Dwt+1 − ut||2
)

ut+1 = ut + Dwt+1 − z̄t+1 ,

where the bar denotes averaging, η allows for trading off speed of convergence against
approximation error and λ controls the structural risk. Updates of the weight vector
w require solving local ridge regression problems at each node. The z updates can be
shown to split to the component level, i.e. they can be run on each node independently
from each other (for details, see [BPC+11]). What needs to be communicated to other
nodes in each iteration is vector Dw, which is the average of predictions over all nodes.

The communication costs will depend on the total number of iterations T . In compar-
ison to the horizontally distributed consensus SVM [FCG10] (see Sect. 4.3.2), consensus
is not to be reached on p components of the weight vector w, but on n predictions
after applying the partial weight vectors w[j] to local data. Therefore, in each iter-
ation n scalar values need to be communicated by each node. If Tm > p, already
more data would be transmitted than sending all data to a central node, which is not
communication-efficient. Unfortunately, the authors provide no empirical evaluation
of how many iterations the algorithm needs to reach a sufficient accuracy on different
datasets. In general, however, ADMM is known to have a slow convergence rate.

4.4.3 Fusion of Local Predictions
As already seen for the horizontally partitioned case, local models may be trained in-
dependently on each node, with their predictions being fused for final prediction. The
training of local models is among the most communication-efficient methods, since only
a single scalar needs to be sent from each node during prediction.

Separable SVM [LSM12] solves the primal SVM problem locally at each node with
stochastic gradient descent (SGD). The global optimization problem consists of learn-
ing a weighting for the combination of local predictions. While [LSM12] addresses the
tasks of 1-class learning, binary classification and regression, the following discussion is



102 CHAPTER 4. DISTRIBUTED DATA MINING

restricted to binary classification. The primal optimization problem to solve is denoted
in hinge function notation as

min
w∈H

λ

2 ||w||
2 + 1

n

n∑
u=1

max{0, 1− y〈w,Φ(xu)〉} , (4.12)

where feature mapping Φ : Rp → H induces a positive semidefinite kernel k(x,x′) =
〈Φ(x),Φ(x′)〉. (Here, without loss of generality, the intercept b is ignored). The kernel
function is split across nodes by definition of a composite kernel k, which is a conic
combination of local kernels kj : Rpj × Rpj → R defined on the partial feature vectors
xi[j], i = 1, . . . , n stored at node j:

k(x,x′) =
m∑
j=1

µ2
jkj(x[j],x′[j]) .

With Lagrange multipliers α, the optimization problem becomes

min
α∈Rn

λ

2

m∑
j=1

µ2
i

n∑
u=1

n∑
v=1

αuαvkj(xu[j],xv[j])

+ 1
n

n∑
u=1

max

0, 1− yu
m∑
j=1

µ2
j

n∑
v=1

αvkj(xu[j],xv[j])

 . (4.13)

Problem (4.13) points to the fundamental difficulty of distributing SVMs in the verti-
cally partitioned data scenario: All optimization variables α1, . . . , αn are coupled with
each node j = 1, . . . ,m, and therefore cannot be split over the nodes. In [LSM12],
separability of the problem is achieved by two different means. The first observation
is that the terms ||w||2 and 〈w,Φ(xu)〉 in the primal problem (4.12) become separable
over the components of w if w and Φ(xu) are in a finite dimensional space. The authors
therefore propose to replace local feature mappings Φj with approximate mappings ϕj
which can be directly constructed using the technique of random projections (for details,
see [LSM12]). The second observation is that the hinge loss can be upper bounded as
follows:

max

0,
m∑
j=1

µj(1− y〈w[j], ϕj(x[j])〉)

 ≤
m∑
j=1

µj(1− y〈w[j], ϕj(x[j])〉) . (4.14)

Summing up the inequalities (4.14) over training examples u = 1, . . . , n, the local objec-
tive solved by each node j = 1, . . . ,m becomes

min
w[j]

λ

2 ||w[j]||2 + 1
n

n∑
u=1

µj(1− y〈w[j], ϕj(xu[j])〉).

A global classifier may then be constructed by combining local predictions, i.e. 〈w, ϕ(x)〉 =∑m
j=1 µj〈w[j], ϕ(x[j])〉. Hence, for each test point, m scalars 〈w[j], ϕ(x[j])〉 need to be

transmitted.



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 103

Approximating the non-separable hinge loss by separable upper bounds necessar-
ily leads to a gap in accuracy. In addition to the local objectives, which are solved
by SGD, [LSM12] therefore poses a central quadratic optimization problem for finding
optimal weights µ1, . . . , µm. The problem is solved iteratively in an alternating fash-
ion. Per iteration, each node j solves its local objective and transmits predictions for
all n observations to the central node. The central node finds optimal weights µj and
transmits them back to the corresponding local nodes. The loop stops after a user-
specified number of iterations or if the central objective cannot be further improved.
The algorithm has been evaluated on synthetic data and five standard datasets. While
on one dataset, prediction accuracy could be improved by six percentage points with
the central optimization, improvement on the other datasets was marginal. The use
of random projections and a composite kernel reduces accuracy in the range of 5.5 to
27.8 percentage points. However, the method is highly communication-efficient, since
without the central optimization, no data needs to be transmitted during training. It is
also communication-efficient during application, since each node only transmits a single
scalar value per test point, instead of pj feature values.

4.4.4 Hybrid Methods
Hybrid methods combine different techniques and architectures for solving distributed
problems. The approach for anomaly detection presented in the following combines local
models with a global sampling strategy.

Distributed 1-class SVM [DBV11] introduces a synchronized distributed anomaly
detection algorithm based on the 1-class ν-SVM (see also Sect. 3.3.1). A local 1-class
model is trained at each local node and points identified as local outliers are sent to a
central coordinator, together with a small sample of all observations. A global model
trained on the sample at the central coordinator is then used to decide if the local outlier
candidates are true global outliers or not. The method cannot detect outliers which are
global due to a combination of attributes from different local nodes. However, the
algorithm shows good performance if global outliers are also local outliers. Moreover, in
the application phase, the algorithm is highly communication-efficient, since the number
of outlier candidates is often only a small fraction of the data.

A drawback of the method is that the fixed-size sampling approach gives no guar-
antees or bounds on the correctness of the global model. Moreover, during training, no
other strategies than sampling are used for a reduction of communication costs. The
algorithm is therefore extended and improved on in this thesis (see Sect. 8).

4.4.5 Related Approaches
There are several approaches which seem to be somehow related to distributed learning
in the vertically partitioned data scenario, but either do not fit it exactly, or are not
distributed, or do not respect communication costs. They are subsumed in this section.



104 CHAPTER 4. DISTRIBUTED DATA MINING

Co-Training The semi-supervised learning technique of co-training [BM98] assumes
sample S to consist of a small number of labeled observations, and a large number of
unlabeled observations. It further assumes that the training set can be divided into two
different feature sets, which are also called views. For learning to work, the views must
be conditionally independent, given the label. Moreover, each view must be sufficient,
such that the class of an instance can be accurately predicted from each view alone.

Two classifiers f̂1 and f̂2 are first independently trained on the labeled instances
from each view. The main idea of co-training then is to use both classifiers iteratively to
label unlabeled observations. In the original algorithm, in each of T iterations, a smaller
sample S′ is drawn from S. Then, both classifiers are allowed to label p positive and n
negative examples from S′ they are most confident about, independently of each other.
Each example labeled this way is then added to the set of labeled examples and S′ is
replenished by drawing 2p+ 2n examples from U at random. The classifiers are trained
anew on the now increased set of labeled examples.

While co-training itself isn’t distributed, it is making assumptions about the two
feature sets which are closely related to the ability to learn communication-efficient in
the vertically partitioned data scenario. For instance, the labels assigned to the unla-
beled observations could as well be exchanged between nodes. In [BS04], linear classifiers
are casted into a probabilistic framework, developing a co-EM version of the Support
Vector Machine. In experiments it is shown that the number of iterations needed for
learning is relatively low, perhaps about 30 iterations. Keeping the number of iterations
low is highly relevant in distributed learning from vertically partitioned data, when
predictions for all observations are exchanged between nodes. Note that the original
co-training algorithm does not even label all observations, but only those which classi-
fiers are confident about. The distributed least squares regression approach [BGSW06]
presented in Sect. 4.4.2 is also making use of co-training. However, there the labels for
all unlabeled observations are exchanged between nodes, in each iteration.

Co-training may be also seen as a form of multi-view learning. In [Bre15], the
author investigates the performance of the co-trained SVM and co-EM SVM on text
classification problems, in cases where the independence assumption is violated. It is
shown that even with random attribute splits, co-training can be beneficial for text
classification. Further, the error correlation coefficient Φ2 of the initial classifiers is
identified as a measure which might benefit multi-view learning.

Multiple Kernel Learning (MKL) In multiple kernel learning (MKL) [BZB04], one
considers a combination of t kernels

k(x,x′) =
t∑

o=1
βoko(x,x′), βo ≥ 0,

t∑
o=1

βo = 1 . (4.15)

The main idea is that multiple kernels may perform better than just one kernel, since
each kernel might specialize on different structures in the data, or certain kernels are
better suited for particular kinds of data. For instance, RBF-kernels with different γ



4.4. VERTICALLY DISTRIBUTED DATA ANALYSIS ALGORITHMS 105

values could take into account structures in the data at different levels of granularity.
Similarly, time series, images and video sequences may each require different types of
kernels. The βo weight the kernels according to their importance and should be optimized
automatically.

Using the standard formulation of the SVM with multiple kernels leads to a semi-
definite program (SDP) [LCB+02]. This is much harder to solve than the standard
SVM problem. For normalized kernels, i.e. ko(x,x) = 1, the problem can be reduced
to a quadratically constrained quadratic program, which can be solved more efficiently.
The formulation can be modified such that it leads to further improvements, resulting
in a semi-infinite linear program [SRSS06], a quadratic program, or faster interleaved
optimization using `p-norms [KBSZ11].

The general formulation allows for kernels which are calculated over all features, or
only (potentially overlapping) subsets of features. Of course, in a vertically partitioned
data scenario, it would be also possible to have kernels whose calculations are restricted
to features of each local node. In fact, applications which use multiple kernels suited for
different kinds of data make heavy use of this property. Here, each kernel can be said
to have a different view on a single observation, which might be described, for instance,
by text data and image data.

However, separable kernel functions do not automatically lead to a separable objec-
tive function. As shown in [LSM12], the objective function of MKL which leads, for
instance, to a quadratic program, is not separable over the nodes. All α variables are
coupled with each node, such that optimization cannot be easily distributed. While
it cannot be excluded that objective functions in MKL could be modified in a similar
way as demonstrated in [LSM12], to the best of our knowledge, there are no distributed
algorithms for MKL.

Bagging and Boosting Bagging and boosting (see [HTF09]) are both approaches
from ensemble learning. In bagging, the predictions of different regression or classification
models are combined according to some fusion rule. The technique of bagging has already
been described in the context of random forests, which combine tree bagging with feature
bagging. As we will see in Sect. 4.5.4, especially the technique of feature bagging may lead
to high communication costs in the vertically partitioned data scenario, because feature
values from different nodes are randomly drawn. A technique which draws samples of
whole observations instead would be more comparable to the horizontally partitioned
data scenario.

In boosting, a set of t weak learners is combined in the following form:

f̂(x) =
t∑

o=1
βof̂o(x) (4.16)

As long as performance of each weak learner is slightly better than random guessing,
total performance can be boosted to that of a strong learner. The idea is to produce
a sequence of weak classifiers, where each is applied to a differently weighted version



106 CHAPTER 4. DISTRIBUTED DATA MINING

of the same sample. More accurate classifiers are getting assigned higher βo weights.
At intermediate steps, observations that were misclassified by the previous classifier
have their weights increased for training the current classifier, and weights of correctly
classified observations are decreased. Thereby, over several iterations, observations which
are difficult to classify gain more and more influence. The next classifier must pay more
attention to correctly classify these observations, whereby total performance over time
is boosted. A popular boosting algorithm is AdaBoost.M1, but there are more recent
boosting algorithms, such as LPBoost.

Though boosting combines the predictions of different learners, it is unclear how it
would perform in the vertically partitioned data scenario. The point is that algorithms
like AdaBoost.M1 assume that each classifier has access to the full sample. In com-
parison, in the vertically partitioned data scenario, local weak classifiers would only see
subspaces of the whole data matrix D. As will be explained in Sect. 4.5.1, conditional
dependencies between feature sets of different nodes, given the label, can make learning
difficult. Therefore, it is not even clear if all classifiers in the ensemble could really
perform better than random guessing. Moreover, it is assumed that all weak classifiers
have access to the same weights. In a distributed setting, such weights would need to be
transmitted to the next local node in each iteration. However, it is unclear what such
weights could mean for observations described only by a subset of features. In sum-
mary, one might say that boosting was not created with a distributed setting in mind
and somehow doesn’t seem to fit the vertically partitioned data scenario. A similar
observation has been made in [LSM12].

4.4.6 Summary
As our previous discussion of distributed data analysis methods for the vertically parti-
tioned data scenario suggests, communication-efficiency is much harder to achieve than
for horizontally partitioned data.

The privacy-preserving SVM algorithms have a communication complexity of O(n2),
and thus communicate more than the entire data if n > p. Consensus approaches have
a communication complexity of O(Tmn), which is not efficient if Tm > p. For instance,
if 100 feature values are partitioned over 20 nodes, such algorithms could maximally
run five iterations before they transmit more than the original data. In comparison,
the algorithm for horizontally partitioned data communicates O(Tp) values and is no
longer efficient if T > n. The hybrid method for outlier detection is communication-
efficient during training, as it samples from all data. During prediction, it is highly
communication-efficient, since only outlier candidates are sent to a central coordinator,
instead of each observation. However, its accuracy may suffer in cases where being a
global outlier depends on a combination of features from different local nodes. Using
random projections to reduce the number of features transmitted is communication-
efficient, but in comparison the sampling approach, it transmits a reduced feature set
for all observations.



4.5. CHALLENGES OF LEARNING ON VERTICALLY PARTITIONED DATA 107

The next section describes the challenges and difficulties of the vertically partitioned
data scenario in more depth, by relating it to different learning primitives.

4.5 Challenges of Learning on Vertically Partitioned Data
Section 2.5.3 presented open questions of learning in the vertically partitioned data sce-
nario. Such questions mainly concerned the design of algorithms for different learning
tasks and the trade-off to be made between accuracy and communication costs. In this
section, we describe the challenges of distributed learning in the vertically partitioned
data scenario from the perspective of primitives that often occur in data analysis algo-
rithms, like the ones presented in Chap. 3.

4.5.1 Estimation of Probabilities
As discussed in Sect. 3.2.2 on the Naïve Bayes classifier, one way to look at learning on
propositional data with a categorical class variable is to think about it as estimating the
probability P (Y |X). In the same section, we shortly strived the assumption of features
being conditionally independent, given the class. In this section, we look at the notion of
conditional independence in more depth, and assess its meaning for distributed learning
in the vertically partitioned data scenario.
Definition 4.5.1 (Conditional independence) In probability theory, two events A and B
are conditionally independent given a third event C if and only if

P (A ∩B |C) = P (A |C) · P (B |C) ⇔
P (A |B ∩ C) = P (A |C) ⇔
P (B |A ∩ C) = P (B |C)

In other words, A and B are conditionally independent given C if and only if, given
the knowledge that C occurs, knowledge of whether A occurs provides no information
on the likelihood of B occurring, and knowledge of whether B occurs provides no infor-
mation on the likelihood of A occurring. Two examples might illustrate the notion of
conditional independence further.
Example 4.5.1 Let us assume we want to decide about a person being a woman or
man, based on the features hair-length and body size. If we already know a person to
be a woman, the probability of her having long hair is high, based on the number of
women having long hair in comparison to the number of men. Similarly, there is a high
probability that she is smaller than 170 cm. We wouldn’t assume the probability of
her having long hair to change if we knew in addition that she is smaller than 170 cm,
already knowing that the person is a woman. The reason is that both properties seem
not to depend on each other, given the class.



108 CHAPTER 4. DISTRIBUTED DATA MINING

Examples of Binary Classification Problems

(a) Overlapping distributions, 
     not separable 

-+ +-
+

- -
+

0 1

1

0.5

0.5

0 1

1

0.5

0.5

0 1

1

0.5

0.5

0 1

1

0.5

0.5

(b) Separable in one 
     dimension

(c) Separable in each of 
     two dimensions

(d) Separable in a combi- 
     nation of two dimensions

Figure 4.1: Examples of binary classification problems

It should be noted that conditional independence of features doesn’t mean that
taking into account the values of all features during prediction couldn’t give us more
evidence about the class. For this reason, in the Naïve Bayes classifier, we multiply
the conditional probabilities of all features, given the class. However, it isn’t necessary
to consider the conditional probabilities of features, given the class and other features.
Each feature provides information about the class on its own, independent of the values
of other features. This means that even if we had access to only one feature, we should
perform as well or better than random guessing in assigning the correct class label.
Example 4.5.2 Let us now consider the problem of deciding if a person is overweight,
based on the features of body weight and size. The underlying rule of thumb says
that someone is overweight if the body weight is higher than size, minus 100 cm. If we
know that a person is overweight and has a body weight of 80 kg, then we also know
that this person must be smaller than 180 cm. However, when all we know is that the
person is overweight, the person could as well be taller than 180 cm. In other words,
the probability for being smaller than 180 cm changes with additional information
about other features. This means that body weight and size are not conditionally
independent, given the label. In turn, to determine if someone is overweight, we need
to consider both features in combination. Each individual feature alone doesn’t give
us enough information to become much better than random guessing, except in those
cases where the body weight of a person is exceptionally high.

It can now be understood why the Naïve Bayes classifier described in Sect. 3.2.2
makes a "naïve" assumption. There are cases where the assumption doesn’t hold.
In Fig. 4.1, the problem is illustrated further for different binary classification prob-
lems.

In Fig. 4.1(a), examples of the positive class follow exactly the same distribution
as those of the negative class. The conditional independence assumption holds, since



4.5. CHALLENGES OF LEARNING ON VERTICALLY PARTITIONED DATA 109

knowledge about the class and the value of feature x[1] provides no information about
the value of feature x[2] (or the other way around). However, in terms of the optimal
Bayes decision rule (see Sect. 3.1.2), the probability that a given observation belongs
to the positive class equals the probability that this same observation belongs to the
negative class, and no classifier could get any better than random guessing.

In Fig. 4.1(b), positive examples can be separated from negative examples by the
rules "y = + if x[1] < 0.5" and "y = − if x[1] > 0.5". Given only values of the second
attribute x[2], one couldn’t do any better than random guessing again. The features are
conditionally independent, given the label, since the probabilities P (x[1] < 0.5 |+) = 1
and P (x[1] > 0.5 | −) = 1 don’t change if we know the value of x[2]. That is, feature
x[2] doesn’t add any further information. Similarly, we don’t get any information about
the value of x[2], if in addition to the class label we’d know the value of x[1].

In Fig. 4.1(c), positive and negative examples can already be separated if we only
know the value of x[1] or x[2] (or both). Again, the features are conditionally indepen-
dent, given the label, since the label alone already determines the range of values for
each feature. That is (probabilities of zero are excluded, but are analogous):

P (x[1] < 0.5 |x[2] < 0.5,−) = P (x[1] < 0.5 | −) = 1 (4.17)
P (x[1] > 0.5 |x[2] > 0.5,+) = P (x[1] > 0.5 |+) = 1 (4.18)
P (x[2] < 0.5 |x[1] > 0.5,+) = P (x[2] < 0.5 |+) = 1 (4.19)
P (x[2] > 0.5 |x[1] < 0.5,−) = P (x[2] > 0.5 | −) = 1 (4.20)

In Fig. 4.1(d), however, features are not conditionally independent, given the label.
Looking at the regions of positive and negative examples, one can see, for instance, that
P (x[1] < 0.5 |+) = 0.25, but P (x[1] < 0.5 |x[2] < 0.5,+) = 0.3̄. In other words, given
the label value, feature x[2] provides additional information about the value of x[1].
Further, knowing only the value of x[1] or x[2] all by itself doesn’t suffice to separate
positive and negative examples with zero error. However, if the values of both x[1] and
x[2] are known, examples can be perfectly separated from each other by a diagonal line.

Now that we understand conditional independence of all features, given the label,
we can assess its meaning for the vertically partitioned data scenario. We loosen the
requirement in the sense that conditional independence doesn’t need to hold for indi-
vidual features, but only for subsets of features stored at different nodes. That is, we
assume that all features in the subset of features stored at some node j are conditionally
independent from features stored at all other nodes, given the label.

Whenever the assumption holds, subsets of features stored at different nodes can
be treated independently from each other during estimation. This means that we can
train local models independently of each other, per node, without transmitting any
additional information between nodes. Individual estimations or decisions of local models
on the class label can then be merged by some fusion rule, like the MAP criterion or a
majority vote, with an according weighting of local decisions. Conditional independence
of features, given the class label, thus gives a justification for the architectural design of
distributed algorithms that combine the predictions of different local classifiers. They are



110 CHAPTER 4. DISTRIBUTED DATA MINING

highly communication-efficient during training, since no information has to be exchanged
between nodes at all. They are also communication-efficient when making predictions,
since only a single scalar (the prediction) needs to be transmitted for each observation,
instead of all feature values. However, if independence of features, conditioned on the
class, does not hold, accuracy might suffer. In this case, at least some information about
features residing at different nodes would need to be exchanged. In the following, we’ll
discuss what might be exchanged in the context of distance and kernel functions, as well
as determining splitting points like they occur in decision tree induction.

4.5.2 Distance Functions
How does the calculation of distances, as they occur in algorithms like k-NN, k-Means
clustering or outlier detection, relate to the vertically partitioned data scenario? As we
can see, Euclidean distance would be separable across features and nodes, except for the
final square root operation:

d(x,x′) =

√√√√ p∑
j=1

(x[j]− x′[j])2 (4.21)

However, since many algorithms are based on comparing relative distances only, the
absolute value doesn’t play any role, meaning that we can get rid off taking the square
root:

d(x,x′) =
p∑
j=1

(x[j]− x′[j])2 (4.22)

The individual elements of the sum can now be calculated independently from each
other, feature-wise, on different nodes, and be centrally summed up. An interesting
question is if also comparisons between distances can be made independently from each
other, i.e. feature-wise, and their results be finally merged somehow.

Consider the outlier detection problem in Fig. 4.2. In this case, a point x is to be
called an outlier if it lies outside a minimum enclosing ball around all normal points, i.e.
if its distance from center c is bigger than some radius R. Can we decide if point x is an
outlier or not only by looking at each dimension separately, and combining results later?
The global outlier shown in Fig. 4.2(a) can be correctly identified as one by looking at
each dimension separately, since it is also an outlier in each dimension. In Fig. 4.2(b)
and Fig. 4.2(c), the global outlier is an outlier in at least one of two dimensions. If
we see only one dimension, what can we do? One strategy might be to designate the
point as an outlier candidate, and check it later on both dimensions. This is what the
distributed 1-class ν-SVM by [DBV11] does: Send only outlier candidates to a central
coordinator and check them against a global model that was trained on a sample of all
data. However, we would still overlook the point in Fig. 4.2(d) being an outlier, since
it is neither an outlier in the first dimension, nor in the second. As the example shows,
it is not possible to determine all outliers correctly by looking at dimensions separately
from each other.



4.5. CHALLENGES OF LEARNING ON VERTICALLY PARTITIONED DATA 111

Examples of Outlier Detection

(a) Global outlier is outlier 
     in both dimensions

-
+

c

(b) Global outlier is 
     also outlier in x[1]

-

+

c

(c) Global outlier is 
     also outlier in x[2]

-
+

c

(d) Global outlier is no outlier 
      in any single dimension

-

+

c

R R R R

Figure 4.2: Examples of outlier detection

As long as we are interested in an exact algorithm, we might hope to distribute
the calculation of partial sums at least. That is, we might calculate the partial sums of
Euclidean distance, for instance, at each local node, and then sum them up centrally. We
could then run our algorithm centrally, with distributed distance calculations. For each
distance calculation, we would need to transmit at most one scalar per node, instead of
all attribute values. Unfortunately, many data analysis algorithms require a quadratic
number of distance calculations. For instance, the classification of new observations
with k-NN requires the calculation of distances to all other existing n observations. This
number might be reduced by the use of spatial index structures and sparing calculations
by exploiting the triangle inequality of metric distance functions. However, those might
not work well in higher dimensions.

4.5.3 Kernel Functions
Kernel functions are similar to distance functions in so far as the scalar product may be
seen as a measure of similarity between observations. However, kernel functions have
additional requirements to fulfill, as explained in Sect. 3.2.5. As can be seen, the partial
sums of the linear kernel

k(x,x′) =
p∑
j=1

x[j] · x′[j] (4.23)

can be calculated separately from each other at each node, like the partial sums of Eu-
clidean distance. As we have seen in previous sections, it is much harder to develop
distributed variants of algorithms when using non-linear kernels. In the vertically parti-
tioned data scenario, where features of observations are distributed over different nodes,
non-linear kernels are especially challenging. As explained in Sect. 3.2.5, kernel func-
tions are associated with a mapping φ : X×X → H, which in some cases, can explicitly



112 CHAPTER 4. DISTRIBUTED DATA MINING

represented. For instance, the explicit feature map for the polynomial kernel is given as

φ(x) = 〈x2
n, . . . , x

2
1,
√

2xnxn−1, . . . ,
√

2xnx1,√
2xn−1xn−2, . . . ,

√
2xn−1x1, . . . ,

√
2x2x1,√

2cxn, . . . ,
√

2cx1, c〉

What we see here is that the explicit feature map of the polynomial kernel combines
features from different nodes. In fact, non-linearity implies that different variables are
combined with each other. Can we somehow circumvent the problems of the explicit
representation, by using the implicit kernel function, and separating its calculation across
nodes? In other words, does the kernel trick maybe also help to spare us communication
costs?

Interestingly enough, non-linear kernels like the RBF kernel can be divided across
nodes:

k(x,x′) = e−γ||x−x′||2

= e−γ(x[1]−x′[1])2+...+−γ(x[p]−x′[p])2

= e−γ(x[1]−x′[1])2 · . . . · e−γ(x[p]−x′[p])2

This property is used by the privacy-preserving SVMs described in Sect. 4.4.1, which
combine the entries of kernel matrices from different local nodes. Unfortunately, kernel
matrices have quadratic size. As it seems, with kernels, we run into similar problems as
with distance functions. In Chap. 8 we will further see that kernel functions may appear
in contexts which makes them inseparable.

4.5.4 Calculation of Splitting Points
Decision trees (see Sect. 3.2.3) require the recursive determination of optimal splitting
points, based on the calculation of quality criteria defined on subsets of instances that
would result from the split. How to make decision trees work in the vertically distributed
scenario focused on in this thesis is not trivial. The combination of features from different
nodes on the same path through a decision tree necessarily requires communication. It
would need to be communicated which instances belong to which subset, given the
previous split. It is unclear how to do so efficiently. It seems that at least O(n) values
would need to be sent, for each split that crosses the border of nodes along a tree’s path.
In comparison, in the horizontally partitioned data scenario, distributed decision tree
algorithms only need to communicate the model to other nodes.

The procedure of feature bagging in random forests (see Sect. 3.2.4) looks highly
similar to the training of local models in the vertically partitioned data scenario and
combining their results by majority vote. However, both procedures are not equivalent.
Though local features may be seen as random subsets of all features, the original algo-
rithm of feature bagging has the chance to draw and combine features from different
nodes in each recursion step, for each tree. Without change of algorithm, this global



4.5. CHALLENGES OF LEARNING ON VERTICALLY PARTITIONED DATA 113

sampling of features may lead to high communication costs. However, whenever we can
make a conditional independence assumption on the features, given the label, we might
restrict the training of trees to local features only (see also Sect. 4.5.1).

4.5.5 Summary and Outlook
As the previous discussion has shown, the development of communication-efficient dis-
tributed data analysis algorithms for the vertically partitioned data scenario isn’t trivial.
The privacy preserving SVM algorithms are accurate, but need to send quadratic kernel
matrices. This is only communication-efficient if p > n. In the vertically partitioned
data scenario, the iterative nature of consensus algorithms leads to high communication
costs, since per iteration, already O(mn) scalars are transmitted. Much better suited for
the scenario are one pass algorithms, which either sample from the data or reduce it in a
single step, like the presented approach for distributed ridge regression does, using ran-
dom projections. The distributed 1-class ν-SVM, which is also based on such techniques,
is guaranteed to be communication-efficient. However, they come with a problem: The
number of points to sample and the size of a reduced subspace are user-defined and
usually unknown before learning.

In the next Chap. 5, the vertically partitioned data scenario is motivated by a case
study from smart manufacturing.





Chapter 5
Preprocessing Case Study

Digital sensors attached to IoT devices deliver continuous streams of real-valued mea-
surements, i.e. series of values. Other time-related data, like parameters or states of de-
vices, may be represented as value series as well. Before the modeling step (see Sect. 3.1.8),
the stream of raw measurements must be prepared for further processing, which includes
steps of data cleansing, alignment, the replacement of missing values, smoothing, nor-
malization and segmentation. It then has to be transformed and must be brought into
a representation which matches the learning task and the format of inputs expected by
accompanying learning methods.

In this chapter, we deal with the transformation of value series for learning in the
context of a case study from steel processing. In the following Sect. 5.1, the case study
and its goals are described in more detail. In Sect. 5.2, we state the problem of value
series representation and preparation more formally and, based on the case study, give
a concrete example of how series of sensor measurements may look like. Further, it is
explained how the problem relates to distributed learning in the vertically partitioned
data scenario. Then, in Sect. 5.3, a selective overview of standard methods from the
huge field of value series preprocessing is given, ordered by data preparation steps and
different representations for learning to choose from. In Sect. 5.4, it is described more
specifically how value series have been preprocessed in the context of the given case study,
and Sect. 5.5 presents results from the modeling step, which follows preprocessing. The
chapter finishes with a short summary, drawing conclusions and giving an outlook on
the second part of this thesis in Sect. 5.6.

5.1 Real-Time Quality Prediction in a Hot Rolling Mill Process
In project B3 of the Collaborative Research Center SFB 8761, the Artificial Intelligence
Group LS 8 and the APS chair at the institute for production systems (IPS) at TU
Dortmund University research new data mining and machine learning techniques for

1http://sfb876.tu-dortmund.de/SPP/sfb876-b3.html

115



116 CHAPTER 5. PREPROCESSING CASE STUDY

Heating!
furnace

Block!
roll

Finishing 
roll 1

Finishing 
roll 2 Cutting Ultrasonic 

tests

1 2 3 4

Figure 5.1: Hot rolling mill process with prediction (white squares) and decision/control
modules (grey squares)

smart manufacturing. As discussed in Sect. 2.1.1, the manufacturing sector is adopting
IoT technology at a fast pace. Embedding data analysis directly into the process chain
and integrating it with control may lead to more sustainable systems, allowing for major
reductions in waste, energy costs and the need for human intervention.

The particular focus of the case study is on interlinked production processes, more
specifically on a hot rolling mill process. Here, steel blocks move through a process chain
as the one shown in Fig. 5.1. Already casted blocks are first heated for up to 15 hours in
five different heating zones of a furnace. They are then rolled at the block roll and the
first finishing roll. The rolling in the second roll is optional. Each block usually moves
back and forth through a single roll for several times, where each of the rolling steps
takes only about a few seconds. The blocks are finally cut into smaller bars (also called
rods) whose quality is assessed by ultrasonic tests several days later.

Different sensors attached along the process chain provide online measurements about
how a steel block is currently processed. For example, in the furnace, every five minutes
sensors measure the air temperature in each of the five zones. From such measurements,
the core temperature of the blocks can be estimated by an already existing mathematical
model. At each roll, sensors provide measurements such as rolling force, rolling speed
and the height of the roll, with 10 values per second. Additional signals provide meta
information about the process itself, like the current number of rolling steps. The ultra-
sonic test results indicate the number of bars tested and, for each bar, the amount of
material containing defects, though not their exact position. Moreover, due to technical
reasons, most often it is not possible to reconstruct which of the final bars belonged to
which of the cut steel blocks. Learning from such statistical information about labels
leads to a relatively novel kind of learning problem (see Chap. 6).

According to the current technical state of the art, it is impossible to assess the
physical quality of hot steel blocks or smaller bars at intermediate steps of the process
chain. The blocks first must cool down before their final quality can be tested. In cases
where some of the blocks are, for example, already wrongly heated, energy, material and
human work force are wasted if blocks below a desired quality threshold nevertheless
move through the whole process chain. The goal is therefore the identification of quality-



5.2. PROBLEM DEFINITION 117

related patterns in the sensor data, and to predict the final quality of steel blocks as
early as possible during the running process, in real-time. Energy savings are already
to be expected if, depending on the predictions, blocks with defects could be sorted
out of the process early enough. For one thing, all of the following processing steps
could be spared. For another thing, blocks might be reinserted into the heating furnace
while still being hot, sparing the energy needed for a complete reheating. A reinsertion
into the heating furnace might even be entirely spared if, depending on the predictions,
parameters of subsequent processing stations could be adjusted such that the aimed-
at final quality level would still be reached. Concepts for the integration of prediction
models with control have already been developed by our project partners [KLD13].

However, before anything can be predicted at all, the continuous stream of measure-
ments must be preprocessed, and brought into a format which is suitable for analysis.
In the next section, data and problem will be described more formally. It will be further
made clear how the given data and learning task relate to distributed learning in the
vertically partitioned data scenario.

5.2 Problem Definition
In an IoT setting, there can exist a large variety of data sources. For instance, data may
be generated by sensors which measure conditions such as pressure, humidity, temper-
ature, gas, acceleration, force or light. Sensors can either be stand-alone devices, like
MEMS [LSFB15], or be embedded into other devices and things, like cars, home appli-
ances or smartphones. Hence, data may also stem directly from such devices, and reflect
their internal states, or events, like the information that a button has been pressed.
Another data source can be human generated data, like social network messages. In the
mentioned smart manufacturing case study, all types of data are present. The rolling
temperature, for instance, is measured by a sensor. The height of the roll is an internal
machine parameter (or state). A human operator may decide to rotate a steel block
along its longer axis during the rolling process, which is indicated by a binary signal.
The question is how to unify such heterogenous data types for learning.

What all of the aforementioned measurements, states, or signals have in common is
that they vary over time. A series of time-related values is called a time series. More
generally, one can also speak of a value series, as long as the sequence of values has an
inherent order. For instance, values of spectra can usually be ordered according to some
physical quantity. In the next Sect. 5.2.1, we give a definition of value series and describe
the format of data as given in the case study. In Sect. 5.2.2, we define the problem of
finding a good representation, i.e. a mapping between the raw data and observations in
propositional format. Then, in Sect. 5.2.3, some additional transformations are listed
which might be needed to bring value series into a proper format for learning. Finally,
in Sect. 5.2.4, the relationship between the case study and learning in the vertically
partitioned data scenario is discussed.



118 CHAPTER 5. PREPROCESSING CASE STUDY

1

3
2

4

5 6

7 8

1

3
2

4

5 6

7 8

Heating!
Furnace

Block Roll

Finishing!
Rolls

Cutting

Cooling

A B

Figure 5.2: Routes that blocks A and B could take through some process chain

5.2.1 Value Series
In [MM05], a general definition of value series is given as a mapping from natural numbers
to vectors with an index and value dimension. Here, we use a simpler definition as a list
of values instead, which is more in accordance with the data recorded by the technical
systems in our case study. The definition is more simple in so far as it ignores the
real-valued index dimension, assuming that all values are sampled at equidistant time
points, which is the case in the described hot rolling mill process.
Definition 5.2.1 (Value series) A value series is an ordered list of values v = [v1, v2, . . . , vp]
of arbitrary length p. An individual element vq of the list will be denoted as v[q]. If
a value at position q of the list is missing, we assign the special value "?", i.e. v[q] =?.

In our case study, a sample S of historical data about the processing of steel blocks
over a certain time period is then a set of tuples {(bu, ju, cu, su, ru, pu,vu)}u=1,...,nS ,
where bu is an ID for the steel block, ju is an ID for the machine (or processing station)
where the data has been assessed, cu is an ID for the particular data source (i.e. sensor),
called the channel, su is the absolute time point when recording has been started, ru
is the resolution with which the values have been sampled, and vu is the according
series of values with length pu. Absolute time and resolution might be given in seconds,
where ru = 1 means, for instance, that values were sampled each second, ru = 10 all
ten seconds, and ru = 0.1 each tenth of a second. While historical data is no streaming
data, the above notation is general enough to cover the streaming case: If we set pu = 1
and ru = 0, i.e. we allow for an infinite resolution, we may assume that the elements of



5.2. PROBLEM DEFINITION 119

t1 t2 t3 t4 t5 t7 t8 t9 t1 t2 t3 t4 t5t6 t6 t7

1

2

3

4

5

6

7

8

Block A Block B

Figure 5.3: Sensor measurements for blocks A and B

S, which are now single values, arrive in sequence such that s1 ≤ s2 ≤ . . ., i.e. the values
arrive ordered (or at least stamped) by the time point when they have been assessed.
Subsets of S may be created based on a given time interval, where

S[ts−te] := { (bu, ju, cu, su, ru, pu,vu) | su ≥ ts ∧ su + ru · pu ≤ te } (5.1)

Other subsets can be defined in a similar way. For instance, S[j] denotes all data for
machine j, the subset of all tuples where ju = j. S[c] denotes all data for channel c, the
subset of all tuples where cu = c. S[i] denotes all data for steel block i, the subset of all
tuples where bu = i. Such filters may also be combined. S[j,ts−te], for instance, is the
subset of all tuples belonging to machine j, restricted to the time interval [ts, te].
Example 5.2.1 We illustrate process chains and associated sensor measurements by an
example. Figure 5.2 shows how two different steel blocks, A and B, might have moved
through several processing stations: a heating furnace, a block roll, two finishing rolls,
a station for cutting the blocks, and two cooling stations. Each station, except for
the cutting station, has sensors attached. Steel block A is first heated up, rolled and
then moves through the first finishing roll. It is then cut into four parts. Three of
such parts move through the first cooling station while one moves through the second
one. Steel block B moves through the second finishing roll instead, is cut into two
parts afterwards, and such parts then move through the cooling stations in parallel.

The measurements that might have been recorded by each sensor over time are
shown in Fig. 5.3. The repeating patterns in many of the value series, for instance at



120 CHAPTER 5. PREPROCESSING CASE STUDY

the rolls, represent different rolling steps, i.e. a single steel block could move several
times through a roll. For instance, according to the measurements of sensor 2, steel
block A moved four times through the block roll and steel block B five times. Since
A moved through the first finishing roll, there are no measurements for the second
roll, while for B, there are values for the second roll, but none for the first.

During time intervals [t1, t2], [t5, t6] and [t7, t8], steel block A has moved from
one processing station to the other, as well as steel block B during time intervals
[t1, t2], [t4, t5] and [t6, t7]. For steel block A, the recording at the block roll starts
with sensor 3, while sensor 2 has a time lag of t3 − t2 and sensor 4 a lag of t4 − t2.
Similar lags occur during the processing of steel block B. Sensor 4 is an example of
a sensor whose values are not continuous, but discrete.

5.2.2 Problems of Representation
As the previous example shows, the data about the processing of a single steel block, like
block A, consists of value series from different machines and sensors. Before we come
to the problem of early quality prediction in real-time, and the vertically partitioned
data scenario, let’s assume for a moment that we are given all the data at once and
want to learn a prediction model for the quality of rods finally cut from each steel block.
For instance, we may be interested in finding correlations between patterns in the value
series and the given quality information. Then, it becomes apparent that the given data
deviates much from the canonical propositional representation of observation that has
been discussed in Sect. 3.1.9. Instead of a fixed-length vector of feature values, here the
processing of a single steel block is described by a whole set of value series with different
lengths, from different machines and sensors over different points in time. The raw data
as given cannot be used in the modeling step, as it does not fit the input representation
of many learning algorithms.

There are two options now. Either we invent new learning algorithms which are
tailored specifically to (collections of) value series data, or we try to transform the
data into propositional form such that it can be handled by most standard learning
algorithms. Let φt : X → X be a function which maps observation z ∈ X from instance
space X , represented in some language, to a new observation x ∈ X from instance
space X, represented in propositional form. In a supervised learning setting, in analogy
to supervised function learning (see Sect. 3.1.4), in the following we define the task of
finding or learning a good representation.
Definition 5.2.2 (Supervised Representation Learning) Given a sample Z = 〈(zi, yi)〉i=1,...,n
of n labeled examples (zi, yi) ∈ X ×Y , drawn i.i.d. from an unknown joint probability
distribution P (X , Y ), the task of supervised representation learning consists of finding
functions φt : X → X and f̂ : X → Y , such that observations xi = φt(zi) with xi ∈ X
are in propositional form and the expected risk

Rexp =
∫
`(y, f̂(φt(z)))dP (z, y)



5.2. PROBLEM DEFINITION 121

is minimized. Here, ` is a convex loss function ` : Y × Y → R+
0 which measures the

cost of assigning the wrong label to individual observations.

It is important to note that the definition of the task as given above is general enough
to cover also the case where the input examples zi are already given in propositional
form. We may then find a new representation, i.e. a new set of attributes with according
values, which is better suited for learning.
Example 5.2.2 In our case study, each observation zi is a collection of value series
for steel block i, i.e. zi = S[i]. Given function φt, we may create a new sample
S = 〈(φt(zi), yi)〉 for deriving a prediction model f̂ by supervised function learning.

As the example suggests, finding a good representation of raw data, which is some-
times also called feature extraction, can be seen as an iterative two step process. First,
some φt is chosen, and a new sample S from S is created by applying φt to each obser-
vation in S. Then, the best model f̂ is selected by training different learning algorithms
and evaluating them on a hold-out test set. If performance is sufficient enough according
to some quality criterion, φt and f̂ are taken, otherwise, the search continues.

Several studies, for instance [MK05, Mor99], have shown that changing the data
representation changes the ranking of learning methods substantially. Each learning
algorithm favors different features. For a model’s quality, feature extraction can therefore
be more important than the particular learning method. The given definition reflects the
fact that there is not one best method, but one best pair of method and representation.

In the case of value series, finding a good representation is often a manual, highly
heuristical ad hoc process. There exist only few approaches which have automated the
process, one of them being method trees [MM05]. Building trees for feature extrac-
tion follows a genetic programming approach, and has been successfully evaluated in
the context of music genre classification. Unfortunately, the method is hard to apply
in our case study, since our observations are not single value series, but sets of value
series. Currently, another strand of research focuses on the automatic building of deep
representations consisting of hierarchies of features [BCV13]. Deep learning has also
been discussed in the context of feature extraction from time series [LKL14]. However,
many of the approaches referred to are unsupervised, while we want to find a good
representation based on the given labels.

Finding good representations for learning in a fully automated fashion remains a hard
problem. One challenge is complexity from a computational point of view. Concatena-
tion of various operators for preprocessing leads to non-convex optimization problems.
The evaluation of fitness in a genetic programming approach like method trees may take
a long time, due to the evaluation of one or several classifiers. For this reason, even if the
search space is structured, not many combinations can be tried. Another challenge is
complexity from a learning point of view. With more preprocessing operators to choose
from, capacity of the function class increases. As discussed in Sect. 3.1.3, this may easily
lead to overfitting, requiring an even larger number of trials to minimize the true error
as estimated from a hold-out test set.



122 CHAPTER 5. PREPROCESSING CASE STUDY

In the literature, at least three popular ways to represent value series (not necessarily
in propositional form) can be found:

Raw The value series are left in raw form, comparing them based on distance measures
or kernel functions which have been specifically developed for value series. Another
way is to map the raw values to positions in a fixed-length propositional vector by
according scaling operations.

Numerical Numerical features are extracted from the value series and then mapped to
a fixed-length vector.

Symbolic Value series are transformed into a symbolic representation, from which in
turn numerical features can be extracted (or not, depending on the approach).

In Sect. 5.3.2, a selective overview of several standard approaches is given which
transform value series into one of the previously mentioned representations.

5.2.3 Problems of Preparation
While choice of representation can have large influence on learning, and therefore is one
of the most important steps in preprocessing, data quality is another important aspect.
For instance, features extracted from value series that contain missing values, or values
lying outside meaningful ranges, have certainly lower quality than features extracted
from an accordingly cleansed value series. In comparison to the function φt, which
maps observations from one representation to another, data preparation steps usually
don’t change representation, but only the values of observations. In the context of the
discussed case study, the following data preparation steps for the given value series could
be identified:

Cleansing Faulty sensor readings must be identified and handled accordingly, for in-
stance by replacing them with new values. Further, parts of the value series which
are definitely irrelevant for learning, like those where no processing happened, are
to be stripped off.

Imputation Missing sensor readings must be identified and replaced accordingly.

Alignment Value series might be shifted, due to missing or faulty synchronization of
clocks. They then have to be shifted such that parts with the same meaning are
properly aligned with each other. Similarly, they may come at different resolutions
and therefore must be scaled accordingly along the time dimension.

Smoothing Value series whose sensor readings contain lots of noise should be smoothed
before further processing.



5.2. PROBLEM DEFINITION 123

Normalization While scaling due to different resolutions along the time dimension is
called alignment in the following, normalization means the analogous scaling and
shifting of data along the value dimension.

Segmentation Value series may contain distinct parts or patterns from which features
should be extracted, like the different rolling steps, for instance. Segmentation
means the division of value series into such meaningful intervals.

The different steps are explained from a more general perspective in Sect. 5.3.1,
where also references to existing literature are given. In Sect. 5.4, it is explained in more
detail how value series data has been prepared in the context of the case study.

5.2.4 Learning from Vertically Partitioned Value Series
The learning task in our case study is not just to find correlations between patterns in
value series and related quality information, but to predict the final quality of the rods
which are cut from each steel block after processing as early as possible, in real-time.
This means that at a given time point t, only partial information about observations is
given.
Example 5.2.3 If processing of block A has started at t0, the data available for pre-
diction shortly after A has left the furnace is S[t0−t1,i=A], which is the data of sensor
c = 1 in the furnace (j = 1) (see Fig. 5.3). At a later point in time, for instance
t9, we have seen the data S[t0−t9,i=A], i.e. the data of sensors c = 1, . . . , 5 during the
heating and all rolling steps, and we also got a bit of data about the cooling (j = 5,
c = 7).

For simplicity, let us assume we want to predict the final quality of the rods after a
steel block has left a processing station. Then we may learn separate prediction mod-
els f̂j for each processing station, based on data from the previous processing stations
and j itself. This could be done in several ways. All measurements could be sent to a
central server for analysis. Or, maybe the quality could already be predicted sufficiently
just from combining the predictions of local models, i.e. f̂1, . . . , f̂j , directly trained at
each processing station. Maybe we could just send predictions from the previous node,
and build a classifier chain. Or, due to conditional dependencies between processing
steps, given the quality, some more information might need to be exchanged between
processing stations. In each case, we are in the vertically partitioned data scenario, since
information about the same observation (the processing of a single steel block) is parti-
tioned over different networked machines. This means we have all of the aforementioned
design options to distribute components across nodes.

Though the situation in the given case study doesn’t match some problems of learning
in the vertically partitioned data scenario exactly, due to processing’s sequential nature,
and though it isn’t as communication-constrained as the scenarios of WSNs we have
previously discussed, due to the use of high bandwidth connections, it is nevertheless
constraint by the time available for making predictions. The ultimate goal is to fully



124 CHAPTER 5. PREPROCESSING CASE STUDY

integrate data analysis with control, such that decisions about the further processing of
steel blocks can be made within a few milliseconds, based on the timely predictions of
trained models. If we increase the rate of making predictions, for instance predicting
quality after each rolling step, or even during rolling steps, we may also have to increase
the rate with which values are sampled. In other words, we have to process more data
in less time. The question then is what kind of data to process locally, and what kind of
data to send to a central server or directly to the next processing station. The problem
here isn’t necessarily bandwidth, but latency. The more packets we send, the more
probable collisions become, especially on a central bus connecting machines. Depending
on when packets arrive at the central server, or at the processing station, it might be
already too late for making a proper control decision. We think the tighter the feedback
loop between prediction and control modules becomes, the more we will arrive at similar
questions as those in learning from vertically partitioned data, namely which data is
needed at which networked node to make an accurate prediction, and which information
should be communicated to match the given real-time constraints.

5.3 Standard Methods of Value Series Preprocessing
The following subsections give an overview of the steps which are typically involved in
the preparation of value series (Sect. 5.3.1) and transforming them into a suitable format
for learning (Sect. 5.3.2).

5.3.1 Data Preparation
Before value series can be brought into a format that is appropriate for learning, like
the propositional representation, they usually must be processed by following the data
preparation steps identified in Sect. 5.2.3. These are described in more detail here.

Cleansing The first step of cleansing should get rid of parts of value series which
are not needed for learning and subsequent preprocessing steps. Depending on the
application, one may only be interested in measurements that indicate certain events.
For instance, in a production setting consisting of different processing steps, parts need a
certain amount of time to move from one processing station to the next. The particular
measurements assessed during such time intervals are usually irrelevant. If at all, the
only information that matters is the time a part needed to move from one station to
the next. As reasonable as stripping off irrelevant readings might sound, the task can
be non-trivial. Due to quantization errors caused by the sampling of analog signals and
noise, sensors may deliver different values even if the quantity that is measured didn’t
change. Simple solutions may mark changes as relevant only if the amount of change
exceeds a certain threshold.

In real production environments, sensors might provide also wrong readings or can
fail entirely. The quality of a sensor depends on how much its measurements are in-
fluenced by quantities it wasn’t designed for. Many sensors are sensitive to changes



5.3. STANDARD METHODS OF VALUE SERIES PREPROCESSING 125

in temperature. They can thus provide wrong readings [NRC+09]. Further, the older
sensors get, there can be a drift in sensor readings. Faulty sensor readings can only be
handled if they are detected. Such detection is easiest in cases in which sensor read-
ings lie outside physically meaningful ranges, as defined by accompanying meta data.
But there are also non-trivial cases, in which faulty readings overlap with the normal
data, requiring the automatic detection of faulty patterns. If such patterns cannot be
defined based on knowledge about the underlying hardware [JAF+06], or based on vi-
sual inspection, they might be derived automatically by supervised learning methods
(see Sect. 3.2). If the faults are highly irregular or not frequent, it is difficult to learn
their detection on the basis of given training examples. Models for the detection of
anomalies in production settings often describe only the normal data, marking patterns
as anomalies that deviate from the learned description (see Sect. 3.3). Nevertheless, the
correct definition of parameters, like threshold values, remains difficult with only a few
negative examples. Moreover, it can be difficult even for domain experts to identify such
negative examples correctly.

Alignment The time series of different sensors may have different resolutions, lengths
and offsets. Depending on the prediction task and methods, it can be necessary to
scale and shift time series correctly before they are further processed, such that parts of
different value series with corresponding meaning can be compared, for instance, with
according distance measures. In other words, the value series must be aligned. Correct
alignment is especially important for the subsequent step of segmentation, where indices
designating the intervals of segments may be derived from one value series, and applied
to another. Here, not taking into account the different resolutions, lengths and offsets
of value series may easily lead to incorrect segmentation results.

Imputation Once faulty readings or missing values are detected, there are different
possible ways to handle them. A simple strategy for the replacement of single or only
a few faulty values is to replace them by their predecessor value or based on ARMA
(auto-regressive moving average) models [BJR94]. Replacement of missing values is also
called imputation. In other cases, faulty values can be imputed based on prediction
models that were trained on other existing values. However, if many relevant values
are missing or whole sensors fail, the quality of the predictions may either decrease or it
might become impossible to provide a prediction at all. The challenge here is to estimate
the confidence of predictions correctly, since it is not always clear how missing or faulty
values in the raw sensor data will influence later preprocessing and model building steps.
Another challenge is that different types of sensors may require different strategies for
the handling of faults and that knowledge about the best strategy is often scarce.

Smoothing Finally, even correctly working sensors usually have some level of noise,
which may also be introduced by the production process itself, like sensors moving due to
vibrations. If the underlying noise model is known, it should be used. Otherwise, mea-



126 CHAPTER 5. PREPROCESSING CASE STUDY

surements can be filtered and smoothed, for instance with the same ARMA techniques
used for the replacement of missing values. However, finding the correct parameters for
filtering is not necessarily trivial, since it also interacts with subsequent preprocessing
and model building steps.

Normalization Depending on application and learning task, it can become necessary
to scale and shift value series also along their value dimension, for better comparison.
This is especially important in cases where the focus is not on the differences of values,
but form. For instance, in our case study, large differences in rolling force might skew the
results of distance calculations which should assess the similarity of rolling force patterns.
Scaling and shifting value series along the value dimension is known as normalization.

A common normalization for value series is the Z-transformation, recommended
in [KK03, RCM+12]. A value series v is called z-normalized if

µ := 1
p

p∑
j=1

v[j] = 0 and σ2 := 1
p

p∑
j=1

(v[j]− µ)2 = 1 . (5.2)

Segmentation Value series may contain parts with different meanings, and which
therefore should be treated differently in subsequent processing and feature extraction
steps. Finding such parts and dividing a value series into according intervals along the
index dimension is known as the preprocessing step of segmentation. The automatic
segmentation of value series can be a difficult task, since it depends on the correct
detection of patterns.

Many segmentation techniques have been developed for the preprocessing of image
data. There, the borders of segments usually indicate significant changes in basic prop-
erties of the pixels, e.g. their color. Once the segments are determined, features can
be extracted from them, like their average, minimum and maximum color, gradients
or textural features. SIFT features [Low04], which are translation, rotation and scale
invariant, have almost become a standard for the meaningful description of images.
The authors of [CRWS12] propose a salient features approach for the segmentation of
one-dimensional value series, transferring ideas from image segmentation and the extrac-
tion of SIFT features. Salient points in the value series are points which deviate much
from their surrounding values, and may be used for segmentation. Then, from each
segment, characterizing features are extracted. The method determines salient points
at different resolutions, allowing for a description of value series at different levels of
granularity. Another promising approach not only automatically divides value series
into their segments, but also clusters them, following the Minimum Description Length
(MDL) principle [RKLE12].

5.3.2 Choice of Representation
Section 5.2.2 already discussed the problem of finding a good representation of value
series in general, and especially in propositional format. In the following, the most



5.3. STANDARD METHODS OF VALUE SERIES PREPROCESSING 127

common representations of value series found in the literature are presented and shortly
discussed.

Representation by Raw Values The direct handling of value series with learning
algorithms that are heavily based on attributes in the propositional representation of
observations usually doesn’t make much sense. For instance, imagine the application
of decision trees to value series. Methods for the induction of decision trees recursively
determine splitting points, i.e. attributes and their values, according to a given quality
criterion. In the case of value series, this would result in choosing specific points along
the index dimension, which can be time. Taking an example from the presented case
study, this might then result in a rule which states that whenever the rolling force after
ten seconds of processing exceeds a specific threshold value, the final rods cutted from
a steel block will have low quality. Though the rule might sound sensible in itself, the
question is what happens when the value occurs only slightly shifted at ten seconds and
100 milliseconds, maybe due to alignment errors. Depending on the form of value series,
this rule might then no longer apply, resulting in an incorrect classification. Moreover,
we might be not just interested in single time points, but the form of value series over
longer intervals. With learning algorithms expecting observations in propositional repre-
sentation, it therefore makes much more sense to extract according features, as presented
in the following subsections.

However, the use of raw values can make sense with distance-based methods. If the
value series are correctly aligned, normalized and have the same length, their form may
be compared by standard Euclidean distance. For value series of differing lengths, more
specialized distance measures have been developed, like Dynamic Time Warping (DTW)
[M0̈7] or Longest Common Subsequence (LCSS) [DGM97] distance.

Numerical Representation Aggregation and summarization methods for value se-
ries reduce the amount of raw data as much as possible, while at the same time trying
to keep its most important characteristics. The amount of feasible reduction depends
on the prediction task. The simplest type of aggregation is the calculation of summary
statistics, like minimum and maximum values, the mean, median, standard deviation,
percentiles or histograms. According to our experience, such simple global features can
already be sufficient for prediction purposes (see also Sect. 5.5 and [SBM16]).

More sophisticated methods try to represent a given time series as the combina-
tion of a (usually fixed number) of basis series, like the Discrete Fourier Transform
(DFT) [FRM94] or the Discrete Wavelet Transformation (DWT) [MVW00]. The ap-
proach of mathematical models presented in [KKP+09] approximates time series Y by
a model Y = f(X, ~α) + ε, where f is an arbitrary mathematical function and X a fixed
set of basis functions. The basis functions can be derived, for example, by clustering
(see Sect. 3.4), while the coefficients ~α can be determined by least squares, such that the
random error ε is minimized. Instead of representing value series by their raw values,
they can then be represented by a fixed-length coefficient vector. A disadvantage is that



128 CHAPTER 5. PREPROCESSING CASE STUDY

such coefficients are usually much harder to interpret than the aforementioned simpler
summary statistics.

All of the aforementioned methods can also be extracted from smaller sized windows
which are shifted over value series. On top of them, the same methods might be used
again, being recursively applied. Together with the aforementioned data preparation
steps, there are then myriads of possible ways to preprocess value series and extract
meaningful features from them, as already discussed in Sect. 5.2.2. In addition, almost all
methods can be used with different parameterizations. Instead of trying and combining
all such methods and their parameters manually, the authors of [MM05] propose method
trees to learn promising combinations of preprocessing methods and their parameters.
Basis transformations, filters, mark-ups and a generalized windowing cover elementary
methods that can be combined in the form of a method tree. The tree applies the
operators (nodes) in a breadth-first manner, thus transforming a value series. The root
of each tree represents a windowing function, while the children of each parent node
form operator chains consisting of basis transformations, filters and a finishing functional.
Learning the feature extraction tree is done by a genetic programming algorithm. In each
iteration, the algorithm generates a new population of method trees, by mutation and
crossover operators that change and combine respective subtrees. Preprocessing results
in a fixed number of attributes being extracted, i.e. that observations are transformed
into propositional format. Therefore, the fitness of each method tree can be determined
by an arbitrary inner classifier. Complexity is reduced by limiting the number of possible
preprocessing operations and parameters that can be used, and structuring the search
space accordingly. The approach has been used successfully for the classification of music
by genre or the personal music taste, but should be applicable to value series from other
domains.

Symbolic Representation The symbolization of value series bridges the gap be-
tween numerical methods and those that work on symbols, like frequent item set mining
[AIS93] or text processing. For example, frequencies of symbols, sequences or words are
length-invariant features that already have been used successfully in areas such as text
classification or intrusion detection, where documents and records may have different
lengths and numbers of words.

Symbolic Aggregate Approximation (SAX) [LKWL07] first determines the elements
of a sequence C = (c1, . . . , cn) by piece-wise aggregate approximation and maps them
to a new sequence C’ with w < n:

c′i = n

w

n
w
i∑

j= n
w

(i−1)+1
cj

The elements c′i are then discretized by mapping them to a fixed number of symbols, pre-
serving the upper bounded Euclidean distance between all series. In [SM13], value series
are first symbolized with SAX and then transformed into a new propositional representa-



5.4. PREPROCESSING OF VALUE SERIES FROM PRODUCTION 129

tion according to the vector space model known from text processing. A gradient-based
approach for the symbolization of streaming sensor data has been proposed in [MW99].

Once value series are symbolized, several algorithms working on individual symbols
or sequences of symbols can be applied. For instance, the KRIMP method [SVvL06]
compresses a database of binary transactions by code tables. An open research question
is if such code tables could also be used as a condensed representation of value series. The
AprioriAll algorithm [AS95] finds frequent sequential patterns in transactions of items,
e.g. subsequences in symbolized value series. General Sequential Patterns (GSP) [SA96]
extend the previously mentioned approach by respecting constraints on the patterns.
Similarly, the WINEPI algorithm [MTV97] can find frequent episodes in event sequences.

Algorithms formotif discovery, like the probabilistic approach introduced in [CKL03],
not necessarily require a symbolic representation of value series, but try to find frequently
reoccurring subsequences directly. An interesting new direction is the supervised discov-
ery of motifs, like the shapelet approach [YK09], which can also take given class labels
into account.

5.4 Preprocessing of Value Series from Production
As the example in Sect. 5.2.1 has shown, the "features" of observations in our case study
are series of sensor measurements, machine states and events which describe how a single
steel block has been processed over time at different processing stations. Most of the
approaches referred to in Sect. 5.3 work on univariate value series. For instance, several
existing classification approaches, like the automated building of method trees, assume
that each observation in a sample is a single, one-dimensional value series. Alignment
and segmentation operations can either work on each observation independently, or take
all observations in the sample into account.

The data as given in the presented case study, however, differs much from the afore-
mentioned format of observations. In the context of production processes, each obser-
vation is not a single value series, but a set of value series which may have all different
lengths and offsets, which can overlap in time, which may contain different numbers of
segments at different levels of granularity and resolutions, and which may stem from
different machines and sensors. Though such a set of value series could be interpreted as
being a single multivariate value series, observations are not simply given in matrix form,
with each series in a row being correctly aligned already. Instead, each observation has
to be brought into this format first. For instance, all value series related to the process-
ing of block i, recorded at the same processing station j, i.e. S[i,j], have to be correctly
aligned for proper segmentation, before feature extraction. Thereby the measurements
from different sensors (channels) must each be treated differently. The preprocessing
of data from production processes is thus highly domain dependent and individualized,
and not directly covered by any standard approach. Of course, preprocessing modules
can build on existing methods and techniques presented in Sect. 5.3. However, the ex-
act combination of such methods and their parameterization depends on many different



130 CHAPTER 5. PREPROCESSING CASE STUDY

Algorithm 5 Preprocessing of Value Series from Production Processes
1: procedure PreprocessValueSeries(S)
2: S := ∅ . create new sample in propositional format
3: for i← 1, n do . for each product i (steel block)
4: for j ← 1,m do . for each production step j (processing station)
5: for c← 1, k do . for each sensor c (channel)
6: v := v ∈ S[i,j,c] . take value series
7: v := GlobalPreparationj,c(v) . clean, impute, align, etc.
8: xi := GlobalFeatures(v) . extract global features
9: G := Segmentationj(v) . segment series
10: for vg ∈ G do . for each segment vg
11: vg := LocalPreparationj,c(vg) . clean, impute, align, etc.
12: xi := xi ./ LocalFeatures(vg) . extract and join local features
13: end for
14: xi := xi ./ AggregateFeatures(xi) . aggregates of local features
15: end for
16: end for
17: S := S ∪ {xi} . add new observation to sample
18: end for
19: end procedure

factors like processing station, sensor type, the format of the steel block produced, etc.
In the end, the data from different preprocessing modules must all be brought together
in a single data table to learn from.

Algorithm 5 gives an overview of the procedure we propose for the preprocessing of
value series from production processes. The full procedure and its components have been
implemented as different processes calling each other in the data mining software Rapid-
Miner [MWK+06]. This has been done in close collaboration with our project partners,
who provided the necessary domain knowledge to implement the highly specialized se-
ries preparation operations. As can be seen by the indices attached to procedure names,
such operations depend very much on the particular processing step j and type of sensor
c. The rest of the process is kept as generic as possible. Especially, the global and local
feature sets extracted easily can be extended by additional features, without having to
touch any of the more specialized preparation operations. The only requirement is that
the number of features extracted is fixed, such that at the end, all observations added
to the new sample S are in propositional form and have the same number of attributes.
We think that the process is general enough to cover a whole lot of production scenarios,
for instance also discrete manufacturing settings, except for the domain-specific prepa-
ration operations, of course. The procedure has been designed such that the value series
from a single processing station j can be preprocessed independently of those from other
stations, which allows for a local execution per node j in the vertically partitioned data
scenario.



5.4. PREPROCESSING OF VALUE SERIES FROM PRODUCTION 131

Cast
cast_id: int!
material_nr: int!
casting_type: int

Order
order_id: int!
cast_id: int!
format: int!
nr_blocks: int!
nr_bars: intBlock

block_id: int!
order_id: int

Quality Check
result_id: int!
order_id: int!
date: datetime!
nr_blocks_ok: int!
...

QC Results
result_id: int!
block_id: int!
nr_of_bars: int!
error_type: int!
...

Furnace
block_id: int!
sensor_id: int!
segment_nr: int!
nr_values: int!
avg: real!
stddev: real!
min: real!
max:real

Block Roll
block_id: int!
...

Fin. Roll 1
block_id: int!
...

Fin. Roll 2
block_id: int!
...

Sensor
sensor_id: int!
name: varchar!
unit: int!
resolution: real

1 n 1 1

1

n

1n

n

m

m

m

n
m

n m

Figure 5.4: Database schema for hot rolling mill case study

The implementation in RapidMiner consists of about 100 processes for the prepro-
cessing of 17 different sensor types, attached to four different processing stations. Of
such processes, 42 have about 40 elementary operators. Complex data mining processes
cannot be realized by scripting anymore. They need a principled development process.
In appendix A it is explained how elementary data structures and operators of Rapid-
Miner can be mapped to well-known constructs from structured programming languages,
giving a better idea of how the processes in the case study have been realized.

In the following sections, it is explained in a bit more detail how the value series
have been preprocessed. Section 5.4.1 explains the first step, namely how data has been
assessed and stored. Then, in Sect. 5.4.2 the more specialized steps of data preparation
are described, like cleansing and segmentation. The process of feature extraction and
the different possible representations tested are explained in Sect. 5.4.3.

5.4.1 Data Assessment and Storage
During the period of one year, over one billion measurements from 30 different sensor
types have been recorded during the processing of about 10,000 steel blocks, together
with according quality information. Among the readings are the air temperature for each
furnace zone, the rolling speed, force, position and temperature, which domain experts
consider to be the most relevant quality-related parameters. For validation purposes
and guaranteeing the reproducibility of results, all data has been stored in a single SQL
database.

Figure 5.4 shows an excerpt of the database schema, representing the most important
tables and relationships. The steel blocks resulting from a single cast can be divided
according to different customer orders. Steel blocks from a single order are usually



132 CHAPTER 5. PREPROCESSING CASE STUDY

inserted into the furnace together. For each order, quality information about the bars
that were cut from each block is available. Each row consists of the test results for
several bars. In only a few cases it is possible to relate the bars back to the steel block
they originally were cut from, based on the last two digits of their ID. For the few
cases were such tracking is possible, our project partners have introduced a weighted
sum calculation that derives a single label from multiple types of quality information
available for all bars [KLD13].

A tool developed in the Java programming language allows for reading in the raw data
delivered in different files and formats and transforming them into the shown database
schema. Once imported, sensor measurements can be exported based on filters written
in SQL. Exported are several CSV files, where each contains all measurements recorded
by a particular sensor, at a particular processing station, for a single steel block. The
individual CSV files are then read in by the previously described RapidMiner process,
which preprocesses them as described in the following two subsections.

5.4.2 Data Preparation Steps
At first, all value series are correctly aligned. The alignment step mainly consists of
scaling operations, to bring value series of different resolutions to the same length. After
scale up, values between two original values were inserted by a simple linear interpolation.

Afterwards, the value series are cleansed. Irrelevant parts where no processing hap-
pened are cut away, as discussed in Sect. 5.3.1. The operation is highly dependent on
processing station and sensor type. For instance, at the block roll, intervals with a rolling
force appearing too low for any processing to happen are marked as irrelevant. The same
intervals are then cut away also from other value series at this processing station. At
other rolls, the height of the roll is a better indicator for no processing happening. This
type of cleansing must also be done for individual segments, before the extraction of
local features. Then, measurements lying outside meaningful value ranges are marked
as outliers and replaced by their predecessor value. Temperature measurements from
the block roll could not be used in many cases, because the sensor was defect. Value
series from this sensor therefore could not be processed any further.

The technical system from which value series are received already replaces missing
values, or takes the average of values in cases where the queried resolution is lower than
during recording. Therefore, no imputation is necessary. No value series is smoothed,
but many are normalized such that their values are in the [0, 1] range.

The value series are either segmented based on domain knowledge, or based on a
received signal which indicates the switch to another rolling step. In case of the heating
furnace, for instance, the five different heating zones make up natural borders for the
segments. Similarly, individual rolling steps seem to be natural divisions for all series
stemming from the three different rolls. At the block roll, a change in the signal counting
the number of rolling steps directly indicates the beginning of a new division. At the
finishing rolls, due to the aforementioned signal not being available, the rolling force
can be used accordingly, as longer segments with zero force indicate the period of no



5.4. PREPROCESSING OF VALUE SERIES FROM PRODUCTION 133

1 2 3 4 5 6 7 8

xA = (. . . , 0.75, 0.2, 0.0, 0.9, . . . , 0.55, 0.19, 0.0, 0.9, . . .)

mean   std. deviation   minimum   maximum

Figure 5.5: Segmentation of value series and encoding of descriptive statistics about
these segments in a fixed-length feature vector. Alternating gray values indicate the
segments.

processing between rolling steps. It should be noted here that in practice, even seemingly
simple tests like the ones described are not always easy to implement. For example,
the rolling force sensor will catch vibrations of the roll, even without any processing
happening. Therefore, it will not deliver values exactly equaling zero, but values that
oscillate around zero instead. In such cases, it sometimes can be difficult to manually
devise global thresholds that separate valid signals from background noise.

5.4.3 Choice of Representation and Features
The following subsections describe three different types of representations to which the
value series from our case study can be mapped. How performance, i.e. accuracy and
run-time, changes with representation is evaluated in Sect. 5.5.

Propositional Representation and Extracted Features The types of features
extracted from the value series in our case study are global features, local features and
aggregates of local features. Global means that features are extracted from the value
series as a whole, and local means that features are only based on individual segments.
Aggregates are features over combinations of local features, for instance over the features
from two consecutive segments.

Global and local features are simple statistics. Summary statistics are the mean, the
standard deviation, minimum and maximum values, the length of the series, and the
area under the curve. Other features are value differences between start and end point
of the series, and histograms. Aggregate features are calculated across segments, and
describe, for instance, the difference between the means of two consecutive segments,
the mean and standard deviation over the means of segments, or the mean of differences
between the means of segments, etc. Thereby the value series can be represented at
different levels of granularity.



134 CHAPTER 5. PREPROCESSING CASE STUDY

Block A

Block B

1 2 3 4 5 6 7 8

?
?

? ?
?

Figure 5.6: The value series from different sensors as a single fixed-length vector

In the end, features extracted from all value series associated with a single steel block
end up at predefined positions in a fixed length feature vector (see Fig. 5.5). The biggest
advantage of such an approach is that it is multivariate in the sense that features from
different value series and their parts, at different levels, may be combined in a highly
interpretable manner. For example, a classification rule that is formed based on such
features may read like "Predict the rods cut from a steel block as defect if it was heated
less than one hour at 900 degree Celsius and the maximum rolling force in the first rolling
step exceeds the value of 10,000". In Sect. 5.5 it will be shown that the features allow
for a meaningful interpretation of observations in terms of coarse grained patterns, like
processing modes. At the same time, the up to 60,000 raw series values from each steel
block are reduced to about 2,000 features. For the modeling steps described in Sect. 5.5,
this set of features is even further reduced to only 218 features, since features about
individual segments seem not to be correlated with quality.

Mapping of Series Values to a Fixed-Length Vector As explained in Sect. 5.3.2,
raw value series can also be compared with the help of different distance measures. One
popular distance measure is Euclidean distance, however, it only works with properly
aligned series of fixed length. The procedure shown in Alg. 5 can be used to output the
raw series values after data preparation, before extraction of the previously described
features. Once such value series are obtained, they can be projected to appropriate
(predefined) positions of a fixed-length vector, as shown in Fig. 5.6.

In theory, the resulting vectors may now be used with all kinds of distance based
methods, like k-NN, k-Means clustering, or the SVM with RBF-kernel. However, it is
unclear how to handle certain parts of the fixed-length vector. The first question that
arises is which values to assign to portions where no processing happened (the question
marks in Fig. 5.6), which could be, for instance, optional processing steps. A simple
approach might be to fill the missing portions with zeros or the last recorded value.
However, filling with zero values can easily lead to problems with several distance mea-
sures. For example, how similar are two value series, where steel block A moved through
a different finishing roll than did steel block B? When filling with zeros, both series
would be marked as highly dissimilar by Euclidean distance, although both blocks could



5.5. DATA ANALYSIS AND PREDICTION RESULTS 135

well lead to a similar final quality of the steel blocks. In such a case, the desired corre-
spondence between similar feature vectors and similar labels would be lost. Reserving
the same portion for both finishing rolls (sensors 5 and 6) in the fixed-length vector
seems to solve the problem, but it doesn’t take into account that both finishing rolls
might have somewhat different properties, e.g. value scales, which usually requires a
careful normalization. Moreover, the solution would not be transferable to a situation
where parts of a steel block are processed in parallel, like at the cooling stations (sensors
7 and 8). There are other methods to fill the missing portions, like inserting the mean
over all value series, however, this would introduce some kind of "ghost" processing which
never really happened. Similar problems result from different numbers of rolling steps
and according segments.

Although filling missing parts with zeros or the mean doesn’t look too promising,
the fixed-length vector representation of raw values has been used for comparisons in
the modeling step.

Concatenation of Value Series Instead of mapping all series values to a fixed-length
vector by rescaling, another option is to use distance measures that can handle value
series with different lengths, like DTW or LCSS. In principle, there are two approaches
for transforming the original time series appropriately. The first approach simply con-
catenates all value series belonging to the processing of a single steel block. The resulting
series might then be compared with one of the aforementioned distance measures. Given
data about the processing of two steel blocks, A and B, the second approach calculates
distance values for each value series of each sensor independently and then sums them
up to a total distance.

The described approach in principle leads to similar problems as the previous one,
in the sense that certain parts of the value series with entirely different processing of the
steel blocks are hard to compare. Nevertheless, the approach of concatenating all value
series has been compared with the extraction of simple statistics as features.

5.5 Data Analysis and Prediction Results
In the modeling step, a goal was to find out what can be predicted at all, knowing how
steel blocks were processed at all processing stations. If quality cannot be predicted
sufficiently with data from all processing stations, it is unlikely that it could be predicted
early with less information available.

For modeling, the feature vectors of 470 processes for which the relation between steel
blocks and the bars cut from them could be established were first analyzed with different
learning methods, like Naïve Bayes, Decision Trees, k-NN and the SVM (see Sect. 3.2).
It soon turned out that including features about the individual segments decreases ac-
curacy in comparison to only including global information about the value series and
segments. Features of individual segments were therefore excluded for the following
analysis, resulting in 218 remaining features. However, even with the reduced feature



136 CHAPTER 5. PREPROCESSING CASE STUDY

1V 2V 3V 4V 5V 6V 7V 8VOK NOK

40x30 SOM, Final quality of steel blocks 40x30 SOM, Final size of steel blocks

Figure 5.7: Similarity relationships between feature vectors

set, none of the classifiers mentioned before could reach a significantly better prediction
accuracy than the baseline, which predicts the majority label.

For getting a better impression of the data, the feature vectors were mapped to a
two dimensional Self-Organizing Map (SOM) [Koh89] and colored according to different
types of meta information (see Fig. 5.7). Points lying close to each other on the map
have similar feature vectors. The shading indicates a weighted distance between the
points, where lighter shades represent a larger distance.

In the SOM on the left hand side, the points represent the feature vectors of produc-
tion processes and their color the final quality of the resulting steel bars as discretized
values, “okay" (OK) and “not okay" (NOK). In many cases, processes leading to a low
final quality of the bars are lying very close to processes resulting in a high quality (see
also the zoomed area in Fig. 5.7), meaning they have highly similar feature vectors. As
it seems, the features extracted so far do not suffice to distinguish well between low and
high quality processes, explaining the previously mentioned prediction results.

In comparison, the SOM on the right hand side of Fig. 5.7 shows the final size of the
resulting steel bars. Here, processes resulting in the same size form large continuous areas
on the SOM, i.e. their feature vectors are similar. As it seems, the features extracted
are thus highly correlated with distinct operational modes for the different bar sizes
produced. The hypothesis could be verified by training a decision tree on features of the
first finishing roll (see Fig. 5.8). The accuracy as estimated by a 10-fold cross validation
is 90%, while k-NN (k=11) even achieves 97%. Most important for the decision is the
position of the roll (sensor 501). Domain experts have verified that the results reflect
the real modes of operation in the rolling mill.

Through concatenating raw series values and comparing them by using DTW dis-
tance, or projecting them to a fixed length vector, using Euclidean distance for com-
parison, processing modes could be predicted with similar accuracy. An advantage of
the distance based approach on raw values is that it requires no segmentation of value
series, which is highly domain specific and requires lots of expert knowledge. However,



5.6. SUMMARY, CONCLUSIONS AND OUTLOOK 137

503_sum_mean_diff_mean

505_max501_mean

501_min

501_length501_mean_mean

501_mean_mean

2V

> 0.14 ≤ 0.14

> 0.21 ≤ 0.21

> 0.42 ≤ 0.42

> 0.21 ≤ 0.21 > 0.79 ≤ 0.79

8V 5V 3V
> 0.46 ≤ 0.46

6V 7V

4V 1V

> 0.32 ≤ 0.32

Figure 5.8: Decision tree for predicting the final size of steel bars

using distances calculated on raw values also comes with two disadvantages. The first
is that the number of raw values is much higher than the number of extracted features
(60,000 vs. 218 in our case study). Given that distance based learning methods often
have quadratic running time, using raw values leads to a much higher running time. The
second disadvantage is that distances between raw series values can be hard to interpret.
In contrast, the statistics we extract are easier to interpret. Especially, the decision tree
has reduced the 218 features to an even smaller set of relevant features, which could be
discussed with the domain experts.

The description and prediction of operational modes has value in its own right. For
the first time, it has become possible to quantify deviations from the targeted processing,
which could be used, for instance, for automatic monitoring purposes. This kind of
information was previously unknown, and has been made available by a combination of
the proposed feature extraction approach and different kinds of learning methods, like
SOMs, decision trees and k-NN.

To improve on quality prediction, other feature extraction methods have been eval-
uated, like coefficients of the Discrete Fourier Transform (DFT) and the transformation
of value series into word vectors through symbolization. No extraction method tried has
lead to significantly better results than those presented so far. One hypothesis is that
the rolling alone cannot explain the differences in final quality. Therefore, the next step
is to combine data from the hot rolling process with data from melting, which comes
before rolling.

5.6 Summary, Conclusions and Outlook
IoT devices generate data which is time-related. At the beginning of this chapter, it
was shown how real-world data may look like, based on a hot rolling mill case study



138 CHAPTER 5. PREPROCESSING CASE STUDY

from the field of smart manufacturing. It has been made clear that values series have
a much different form than observations in propositional format. This has lead to a
more formal definition of value series and the general problem of feature extraction and
representation learning, which is a hard task. Several standard approaches for the pre-
processing of value series have been presented. However, not many of them are directly
applicable in our case study, since each observation is not a single value series, but a set
of value series. This difference has lead to the development of a preprocessing algorithm
for value series from production processes. The algorithm is highly modularized and
generic concerning the process of feature extraction. The only domain-specific parts are
data preparation processes which depend on the particular machine and sensor. Unfor-
tunately, for a given application, each machine and sensor may require a different kind
of data preparation, resulting in a large number of such processes. In the context of the
case study, all processes have been implemented in RapidMiner. Segmentation is based
on the signals of specific value series. The developed feature extraction process extracts
global features from the whole value series, local features from each segment, and ag-
gregates over local features. Features are mainly statistics which are easy to calculate
and interpret. In the modeling step, such features were used with different classifiers to
predict the quality of rods finally cut from each steel block. While quality was hard to
predict, through the use of SOMs, decision trees and k-NN it has become possible to
identify and quantify operational modes. The quantification of deviations from targeted
processing is information made available by data analysis, which previously didn’t exist
in this form. It could be used, for instance, for the automatic monitoring of processes.

As the results demonstrate, data analysis methods are able to detect meaningful
patterns in production processes. As the results also show, however, finding exactly
those features which are relevant for the prediction task is not always straightforward.
The next step is to gather data from the melting process, which comes before rolling,
and combine it with the sensor data which is already getting recorded.

One problem mentioned, but not having been discussed in more detail so far, is
how to deal with cases where quality information is not available for individual steel
blocks, but whole charges of blocks. In this case, we need to learn a model for predicting
individual labels based on summary statistics about the labels. This relatively novel
kind of learning problem is called learning from label proportions. The learning task is
defined and explained in more detail in the next Chap. 6, where a new algorithm for
the problem is going to be developed. Learning from aggregate data is an interesting
new field of research which has high relevance for smart manufacturing processes. In
fact, also data about the melting process will be aggregated over several charges of steel
blocks, while the information is needed for single steel blocks, leading to problems of
tracking object identity again.

Another problem mentioned is that the tighter the feedback loop between data anal-
ysis and control becomes, the less time will be available for making predictions. Con-
sidering that preprocessing takes also time, we expect to end up with similar questions
as in distributed learning from vertically partitioned data, namely which data to pro-
cess locally, and which data to send to a central server or the next machine for further



5.6. SUMMARY, CONCLUSIONS AND OUTLOOK 139

processing. Two communication-efficient algorithms for the scenario will be introduced
in Chap. 7 and Chap. 8, after discussing learning from label proportions. It will be
shown that both problems are even related, in the sense that learning from label counts
may reduce the communication between networked nodes. While sequential interlinked
production processes don’t match the problems of distributed learning in the vertically
partitioned data scenario exactly, the learning task is relevant in its own right. For in-
stance, production processes in discrete manufacturing are much more parallelized and
constraint, with many parts being concurrently processed and assembled. Similarly,
processes in logistics are highly distributed, concurrent and much more communication-
restraint, due to the use of small devices and wireless network technology. Further, we
will see how communication-efficient algorithms could lead to much more robust and
fault-tolerant traffic prediction systems. In general, the trend is to instrument more and
more devices with wireless sensors, requiring a run-time efficient automatic preprocess-
ing of sensor data and communication-efficient distributed algorithms which can learn
from the preprocessed data.





Part II

Algorithms

141





Chapter 6
Learning from Label Proportions

In a supervised learning scenario, we learn a mapping from input to output values, based
on labeled examples. Can we learn such a mapping also from groups of unlabeled obser-
vations, only knowing, for each group, the proportion of observations with a particular
label? Solutions have real world applications:

• In smart manufacturing settings like the one presented in the previous case study,
quality information is sometimes only given in statistical form, for samples of
products. Can we derive a model based on this information which assigns the
correct quality information to individual products?

• After democratic elections, the percentages of parties which were elected in each
district are published. Governmental agencies may obtain additional information
about people living in each district. Is it possible to reconstruct who voted for
which party, based on such information?

• In distributed settings, like the vertically partitioned data scenario, we might like
to reduce communication costs by transmitting only aggregated label information
between nodes. Can we learn a model that is sufficiently accurate in assigning
class labels to individual instances, only based on aggregated label information?

The problem of learning from label proportions not only deviates from that of su-
pervised learning, where we learn from individually labeled training examples, but also
from many other learning settings known in machine learning and data mining. It is
different from semi-supervised learning [CSZ06], where we are given at least some ex-
amples that are labeled. It is not strictly unsupervised learning, since we are given at
least some additional information about labels. It is different from anomaly and outlier
detection, where we might know about observations that belong to a normal class. It
comes close to multiple instance learning [WEH11], where whole bags of observations
are either labeled as positive or negative. However, learning from label proportions is
not exactly the same problem, since we are not given binary information on each bag,
but real-valued statistical information about the labels in each bag.

143



144 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

In the following Sect. 6.1, the task of learning from label proportions is defined more
formally and illustrated with more concrete examples. Then, Sect. 6.2 gives an overview
of related work. Since the problem is relatively novel in machine learning research, it
isn’t as well understood from a theoretical point of view as other learning tasks. Nev-
ertheless, as will be shown, some bounds have been proven. In Sect. 6.3, we discuss
the difficulty of the problem from a more Bayesian perspective. Afterwards, Sect. 6.4
defines loss functions for the scenario. Section 6.5, introduces a clustering approach and
variants that minimize aforementioned loss functions. The approach possesses many
positive properties which existing state-of-the-art methods don’t share to the same ex-
tent. In Sect. 6.6, we compare the algorithm’s prediction performance and run-time to
other existing methods. Finally, Sect. 6.7 gives a short summary, concludes, and gives
an outlook on learning from label proportions in the context of vertically partitioned
data.

6.1 The Problem of Learning from Label Proportions
To the best of our knowledge, [MCO07] were the first who formulated both the clas-
sification and regression tasks of the problem in a more formal way. We extend their
problem definition to multi-class problems and relate it to the unknown joint distribution
P (X,Y ) from which all observations and labels are drawn.
Definition 6.1.1 (Learning from label proportions) Let X be an instance space and Y be a
set of categorical class labels Y1, . . . , Yl. Let P (X,Y ) be an unknown joint distribution
on the instances and class labels. In the setting of learning from label proportions, we
are given a sample of unlabeled observations S = 〈x1, . . . , xn〉 with xi from instance
space X, drawn i.i.d. from P (X,Y ) and then having their label yi ∈ Y removed.
Furthermore, we are given a partitioning of S into h disjunct bags B1, . . . , Bh. For
each bag Bu and label Yv, we are also given the proportions πuv ∈ [0, 1] of that label
in bag Bu. Only based on this information, we seek a function (model) f̂ : X → Y
that predicts yi ∈ Y for an observation xi ∈ X drawn i.i.d. from P , such that the
expected risk

Rexp =
∫
`(y, f̂(x))dP (x, y)

is minimized. Here, ` is a convex loss function ` : Y × Y → R+
0 which measures the

cost of assigning the wrong label to individual observations.

The given label proportions πuv can more conveniently be written as a h× l matrix
Π = (πuv), where the values in a row Πu,· = (πu1, . . . , πul) sum up to one. The frequency
count µuv of observations with label Yv ∈ Y in bag Bu can easily be reconstructed by
multiplying the label proportion πuv with bag size |Bu|.

The proportion η(Π, Yv) of label Yv over the whole sample S can then be calculated
from Π as the sum of the frequency counts for bag u, divided by the total number of
observations n:



6.1. THE PROBLEM OF LEARNING FROM LABEL PROPORTIONS 145

Labeled examples (unknown)

Unlabeled examples (known)
n = 9

h = 3

l = 2

Label proportions (known)

Y = {0, 1}

⇧ =

0
@

0.33 0.67
0.50 0.50
1.00 0.00

1
A

y = 0 y = 1

⌘ 0.56 0.44

B1 = {(x1, 1), (x3, 1), (x7, 0)}
B2 = {(x2, 0), (x4, 0), (x5, 1), (x6, 1)}
B3 = {(x8, 0), (x9, 0)}

B1 = {x1, x3, x7}
B2 = {x2, x4, x5, x6}
B3 = {x8, x9}

|B1| = 3

|B2| = 4

|B3| = 2

Figure 6.1: Example for given bags of observations, a label proportion matrix, and
related notations

η(Π, Yv) = 1
n

h∑
u=1

µuv . (6.1)

In the following, the problem of learning from label proportions is illustrated by giving
different examples and applications, like the preservation of privacy in democratic free
elections and tracking objects in smart manufacturing.
Example 6.1.1 (Label proportion matrix) Figure 6.1 gives an example of the notations
previously introduced, the division of observations into disjunct bags, and the label
proportion matrix as derived from the original (now unknown) labels.

Example 6.1.2 (Democratic free elections) What can be learned from aggregated infor-
mation plays an important role in the field of privacy-preserving data mining. For
instance, consider democratic free elections. On the one hand, there is a demand
for privacy. It must remain secret what each individual citizen has voted for. On the
other hand, there is a demand for transperancy. It must be made clear how final sums
in the total election results were calculated from sums that stem from individual elec-
toral districts. Adhering to the demand for transparency, in Germany the individual
election results from all 299 districts are published in daily newspapers, usually on
the next day after the election. Is it possible to derive what individual citizens have
voted for, based on aggregated information about the votes per district?

The problem can be turned into the task of learning from label proportions if in
addition to the public election results, information about individuals in each district
can be obtained. Then, the districts can be seen as a division of all individuals x ∈ S
into disjunct bags B1, . . . , Bh, with the election results per district being the propor-
tion (or frequency count) of individuals having voted for each party (see Fig. 6.2).



146 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

112
113

126

124
128

129

127
130

131

132

133

134

135

137
136

146

147

148

149

150

99

97

9698

92

90

8887

89

109

108

110

111

114 115 
116 118

117

125 122

121123

105

102

103

139

138

100101
104

91

145

144142-143141

140119 
120

106
107

9394

95Nordrhein- 
Westfalen

Hessen

Rheinland- 
Pfalz

Baden- 
Würtemberg

Bayern

Niedersachsen

Schleswig- 
Holstein

Brandenburg

Thüringen

Sachsen- 
Anhalt

Sachsen

Mecklenburg- 
Vorpommern

Berlin

Hamburg

Bremen

Saarland

100
101
102
103
104
105

SPDCDU Die LinkeGrüneAnzahl

150,609 48.4% 27.8%

FDP

10.1% 8.8% 6.5%

166,669 50.0% 26.7% 8.3% 8.6% 5.2%
146,460 35.5% 37.1% 9.3% 7.8% 8.1%
145,089 35.8% 34.3% 9.3% 8.3% 10.5%
162,192 39.0% 34.3% 8.1% 8.7% 8.4%

...

...
150,715 33.8% 44.5% 7.1% 7.8% 5.6%

Ergebnisse der Bundestagswahl 2009 
für die Wahlkreise 100-105

Kreis

Figure 6.2: Election results from 2009 for the districts 100-105

Given that people provide more and more information about themselves in public
social networks or business contexts and data is gathered even without their knowl-
edge by governmental intelligence agencies, research on learning from label propor-
tions has a high actuality for citizen’s privacy. The biggest problem here is that
information which looks harmless all by itself, and which has been gathered in en-
tirely different contexts, like business transactions and during elections, could be
easily brought together and used for malicious purposes.

Example 6.1.3 (Tracking of object identity) In smart manufacturing, it can be difficult
to track products through the whole process chain. For instance, in the hot rolling
mill case study presented in Sect. 5, steel blocks are too hot to be stamped or to
be equipped with RFID chips. Once cut to smaller rods, tracking object identity,
i.e. which rods belonged to which block in which customer order (or charge), can
become a big technical and logistic challenge (see Fig. 6.3). In the scenario, quality
labels are usually given as percentages for whole charges, but not for individual blocks.
The task is to learn a model which predicts the final quality of individual blocks,
only based on the aggregated label information per charge. Formulated like this,



6.2. RELATED WORK 147

Block 1

Block 2

Block 3

Cutting

Rod 1-1 Rod 1-2 Rod 1-3 Rod 1-4

Rod 2-1 Rod 2-2 Rod 2-3 Rod 2-4

Rod 3-1 Rod 3-2 Rod 3-3 Rod 3-4

Order B

Preservation of the relationship between blocks and rods

Block 1

Block 2

Block 3

Cutting

Rod Rod Rod Rod

Rod Rod Rod Rod

Rod Rod Rod Rod

Order B

Loss of the relationship between blocks and rods

Figure 6.3: Relationship between blocks and rods getting lost

the problem maps directly to that of learning from label proportions, with customer
orders or charges dividing the set of all steel blocks into disjunct bags, and proportions
of quality labels given for each bag.

6.2 Related Work
When starting the work on learning from label proportions in 2010, only a few publica-
tions on the topic were available. Since then, more papers have been published and a
workshop on the more general topic of learning and privacy with incomplete data and
weak supervision has been held at the annual conference on Neural Information Pro-
cessing Systems (NIPS) in 2015. The following subsections present related work, in so
far as it seems relevant regarding the clustering approach going to be developed in this
chapter.

Related Semi-Supervised Methods There are some approaches which seem similar
to the scenario of learning from label proportions, but are in truth semi-supervised
learning tasks. For instance, the authors of [DKS02] first cluster the given data with
SOMs and then label the resulting clusters. However, labeled observations are given,
which are usually not available when learning from label proportions. In [DBBE99],
the k-Means optimization problem is adapted to respect labeled data. Again, this is a
semi-supervised setting, with labeled observations.



148 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

Basic Methods To the best of our knowledge, the authors of [KdF05] were the first
who introduced the problem of learning from label proportions. They propose a prob-
abilistic model trained by an efficient Markov-Chain-Monte-Carlo (MCMC) sampling
algorithm. The authors of [MCO07] were the first who defined the problem of learn-
ing from aggregate values for regression and classification tasks in a more formal way.
They modified well-known methods like k-NN [Aha92], backpropagation neural net-
works [Mit97] and the linear SVM [Vap99] to respect the given label proportions. Their
experimental results focus on regression tasks, while we are mainly interested in classi-
fication.

Mean Map The Mean Map method we use for comparisons in Sect. 6.6 has been
proposed in [QSCL09]. It estimates the conditional class probability P (Y |X, θ) by con-
ditional exponential models, using a joint feature map φ : X × Y → H that maps
observations x ∈ Rp and labels y ∈ Y = {Y1, . . . , Yv} into a new feature space H with
kernel k((x, y), (x′, y′)), and normalization function g:

P (Y |X,θ) = exp( 〈φ(X,Y ),θ〉 − g(θ|X) ) . (6.2)

The parameter θ can then be estimated by solving a convex maximization problem for
the conditional log-likelihood logP (Y |X,θ):

logP (Y |X,θ) =
n∑
i=1

[〈φ(xi, yi),θ〉 − g(θ|xi)] = n〈µXY ,θ〉 −
n∑
i=1

g(θ|xi) . (6.3)

It becomes apparent then that the conditional log-likelihood can be expressed in
terms of the so called mean operator defined as

µXY := EXY [φ(x, y)] . (6.4)

Although the authors derive their method for arbitrary feature maps φ(x, y), for ease
of notation let us assume the special case where φ(x, y) factorizes into Ψ(x) ⊗ ϕ(y).
Let’s further assume that Ψ(x) = x. Then, the mean operator can be expanded into its
bag-wise and label-wise components as follows:

µXY = EXY [φ(x, y)] (6.5)

=
h∑
u=1

|Bu|
n

EXY [φ(x, y)|u] (6.6)

=
h∑
u=1

|Bu|
n

l∑
v=1

ϕ(Yv)P (Yv|u)EXY [x|Yv, u] (6.7)

=
h∑
u=1

|Bu|
n

l∑
v=1

ϕ(Yv)πuvEXY [x|Yv, u] . (6.8)



6.2. RELATED WORK 149

Algorithm 6 Mean Map algorithm
1: procedure MeanMap(Π,S,B,Y ,λ)
2: for u← 1, h do
3: EXY [x|u]← 1

|Bu|
∑

x∈Bu x
4: end for
5: EXY [x|y]← (Π>Π)−1Π> EXY [x|u]
6: µXY ←

∑l
v=1 P (Yv)EXY [x|Yv]

7: Solve the minimization problem

θ∗ = argmin
θ

[
n∑
i=1

g(θ|xi)− n〈µXY ,θ〉+ λ||θ||2
]

8: return θ∗
9: end procedure

The only unknown quantities in the above formulation are the 2h p-dimensional
vectors EXY [x|y, u]. These vectors are the solution of a linear system which can be
expressed by means of the law of total probability as follows:

EXY [x|u] =
l∑

v=1
πuvEXY [x|Yv, u] (6.9)

The expectations EXY [x|u] on the left-hand side of the linear system can be estimated
from the data, without knowing the labels, and can be calculated as the average over
the feature vectors in each bag. The system has to be solved separately for each of the
p dimensions, such that the total number of equations is h× p. However, since there are
2h× p unknowns, the system is underdetermined.

The authors of Mean Map turn the system of equations into a well-formed system
with 2p unknowns by making a homogeneity assumption, which states the conditional
independence of feature vectors from bags, given the label:

∀u : EXY [x|y, u] = EXY [x|y] . (6.10)

In other words, the feature vectors to be expected, given an arbitrary label Yv ∈ Y ,
should be the same as the expected feature vectors when we know label Yv and the bag
Bu they are stemming from. Estimation of the mean operator then simplifies to

µ̂XY =
l∑

v=1
P (Yv)EXY [x|Yv] , (6.11)

with
EXY [x|y] = (Π>Π)−1Π> EXY [x|u] (6.12)



150 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

being the solutions of the linear system of equations as found by pseudo-inversion. The
quantity P (Yv) can be empirically estimated by taking the average over all proportions
given for label Yv. Once µXY is estimated, the parameter vector θ can be derived by
standard methods for maximum likelihood estimation. All aforementioned steps of the
Mean Map method are shown in Alg. 6.

In [QSCL09], Mean Map is compared to kernel density estimation, discriminative
sorting, and MCMC [KdF05]. Mean Map outperformed the related techniques in terms
of accuracy.

Laplacian Mean Map Mean Map’s homogeneity assumption is quite restrictive: It
assumes that the feature vectors in each bag are similarly distributed as the feature
vectors over all bags, given the label. This assumption doesn’t necessarily hold, for
instance, in the case of democratic free elections: Knowing which party a person has
voted for might give us an idea about the person’s income, but knowing in addition the
region or district this person is coming from would certainly also influence our decision.
In [PNCR14], the homogeneity assumption is therefore relaxed to

∀u, u′ if u ≈ u′ then EXY [x|y, u] ≈ EXY [x|y, u′] . (6.13)

In other words, whenever bags are similar to each other, it is assumed that also their
feature vectors are similarly distributed, given the label. The similarities between bags
are domain-specific, and assumed to be given as parameters vu,u′ ≥ 0. Another approach
would be, for instance, to measure the similarity of bags by the distance of their mean
feature vectors, as is also proposed by the authors.

The authors of [PNCR14] restrict themselves to a non-kernelized version of Mean
Map, dropping the joint feature map φ, and further to binary classification problems for
which Y = {−1,+1}. In the following, the proportion of positively labeled observations
in bag u will be denoted as πu, while 1 − πu is the proportion of negatively labeled
observations. Let Π = [DIAG(π)|DIAG(1−π)]> ∈ R2h×h be a matrix with proportions
for each label and bag, byu = EXY [x|y, u] denote the 2h unknown p-dimensional vectors
and bu = (1/|Bu|)

∑
x∈Bu x denote the h averages over all observations in bag u.

As in the original Mean Map method, µXY can be retrieved from the 2h bag-wise,
label-wise unknown averages byu:

µXY = 1
2

h∑
u=1

|Bu|
n

l∑
v=1

(2πu + Yv(1− Yv))bYvu . (6.14)

The system of linear equations in matrix form can then be stated as

B−Π>B± = 0, (6.15)

where B = [b1|b2| . . . |bn]> ∈ Rh×p and B± ∈ R2h×p is the matrix of unknowns

B± =
[
b+1

1 |b
+1
2 | . . . |b+1

n | b−1
1 |b

−1
2 | . . . |b−1

n

]>
. (6.16)



6.2. RELATED WORK 151

Algorithm 7 Laplacian Mean Map (LMM)
1: procedure LMM(Π,S,B,Y ,λ,γ,V)
2: B± ←

(
ΠDωΠ> + γL

)−1
ΠDωB

3: µXY ← 1
2
∑h
u=1

|Bu|
n

∑l
v=1(2πu + Yv(1− Yv))bYvu

4: θ∗ ← argminθ
∑n
i=1 g(θ|xi)− n〈µXY ,θ〉+ λ||θ||2

5: end procedure

As we have already seen for Mean Map, with h× p equations and 2h× p unknowns,
the system is underdetermined. Instead of making the aforementioned restrictive ho-
mogeneity assumption (6.10), however, the authors of [PNCR14] encode their relaxed
assumption (6.13) into the following regularized least squares minimization problem:

argmin
b+1
u ,b−1

u

∑
u

(bu − πub+1
u + (1− πu)b−1

u )2

+γ
∑
u,u′

vu,u′
[
(b+1

u − b+1
u′ )2 + (b−1

u − b−1
u′ )2

]
. (6.17)

The second part of the minimization problem enforces that the estimates for byu are close
together whenever the bags are similar, as given by the similarities vu,u′ . How much this
is enforced can be controlled by the regularization strength parameter γ ≥ 0.

The problem can be rewritten in matrix form by the Laplacian of the symmetric
matrix V ∈ Rh×h whose entries consist of the similarities between bags. The Laplacian
is defined as La = D−V, where D is a diagonal matrix such that Du =

∑
u′ vu,u′ . The

Laplacian can be seen as the adjacency matrix of the graph induced by the similarities
vu,u′ . By setting

L = εI +
[

La | 0
0 | La

]
∈ R2h×2h , (6.18)

the optimization problem becomes

B± = argmin
X∈R2h×p

tr
(
(B> −X>Π)Dω(B−Π>X)

)
+ γtr

(
X>LX

)
, (6.19)

with tr(·) denoting the trace of a matrix and Dω = DIAG(ω) being a bias matrix with
non-negative elements on the diagonal ω. Such entries allow for different weightings
of the importance of linear equations. As the authors show, the solution to the stated
optimization problem can be obtained in closed form:

B± =
(
ΠDωΠ> + γL

)−1
ΠDωB . (6.20)

The aforementioned steps are summarized in Alg. 7, the Laplacian Mean Map (LMM)
algorithm.

In [PNCR14], LMM is compared to Mean Map, Inverse Calibration (Invcal) and the
∝SVM (for an explanation, see next subsections). Further, LMM is compared to the



152 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

Alternating Mean Map (AMM) algorithm which improves on the solution of LMM and
has been proposed in the same work (for further details, see [PNCR14]). On simulated
data, where the homogeneity is violated, it can be shown that LMM and AMM perform
significantly better than Mean Map. On ten small datasets from the UCI standard
repository [AN07] and for bigger datasets from the same repository, LMM and AMM
outperformed Mean Map, Invcal, and the ∝SVM in terms of prediction performance and
run-time.

It should be noted that in [PNCR14], not only LMM and AMM, but also Mean Map
clearly outperformed the prediction performance of Invcal in almost all cases. This seems
to contradict the results of the original paper on Invcal [Rüp10], and our own findings
presented in Sect. 6.6.2, where Invcal outperforms Mean Map in many cases, on the
same datasets. One possible explanation might be that Invcal has only been tested with
the linear kernel in [PNCR14], while the results in [Rüp10] and our results are based
on trying Invcal (but also Mean Map) with linear and non-linear kernels. Since LMM
and AMM in comparison to the other methods are not kernelized, and can only handle
linear decision boundaries, LMM and AMM aren’t direct competitors of the clustering
approach that will be introduced in Sect. 6.5. We therefore have decided to compare only
to Mean Map, Invcal and AOC Kernel K-Means (see below), which are more powerful,
as they can handle also non-linear decision boundaries.

Inverse Calibration The author of [Rüp10] proposes the Inverse Calibration (Invcal)
method. The regression SVM (SVR) (see Sect. 3.2.5) is converted into a probabilistic
classifier by applying a scaling function σ to the outputs ŷ = f̂(x), such that σ(ŷ) is a
good estimate for p = P (y = 1|x). In learning from label proportions, we are given no
labels yi or estimates pi for individual observations xi ∈ S. Instead, in the case of binary
classification, we are given the label proportions πu for each bag u, i.e. the proportions
of positively labeled examples in bag u. According to the author, it is only required that
f̂ predicts yu = σ−1(πu) well on average:

∀u : 1
|Bu|

∑
x∈Bu

(wx + b) ≈ yu (6.21)

In other words, the predictions of the classifier should approximate the given label pro-
portions well, for each bag u. These constraints are integrated as auxiliary conditions
into the standard SVR optimization problem. The main idea is to restate the primal



6.2. RELATED WORK 153

SVR problem as

min
w

1
2 ||w||

2 + C

(
h∑
u=1

ξi +
m∑
u=1

ξ′u

)
s.t. ∀hu=1 : ξu, ξ′u ≥ 0

∀hu=1 : 1
|Bu|

∑
x∈Bu

(wx + b) ≥ yu − εu − ξu

∀hu=1 : 1
|Bu|

∑
x∈Bu

(wx + b) ≤ yu + εu − ξ′u .

As a large margin method, the formulation allows for the reduction of model complexity,
while the class probability estimates for Bu are kept close to the given label proportions
πu, with εu being the maximum tolerable error. The primal problem can be transformed
into its dual, and then solved with a standard solver for quadratic optimization.

It is shown empirically over twelve standard datasets from the UCI repository that
Invcal significantly outperforms Mean Map in terms of prediction accuracy.

∝SVM The ∝SVM proposed in [YLK+13] explicitly models the labels of individual
observations. Invcal treats the mean of each bag as some kind of super-instance, and gives
each bag a regression label that corresponds to the label proportions. In comparison,
the ∝SVM is based on the idea that the label proportions, as calculated from labels
assigned to individual observations, should match the given label proportions as close
as possible. This criterion is encoded as an additional term into the primal problem of
the standard SVM as follows:

min
Y,w,b

1
2 ||w||

2 + C
n∑
i=1

`(yi, 〈w,xi〉+ b) + Cπ

h∑
u=1

`π(π̂u(Y), πu)

s.t. ∀ni=1 : yi ∈ {−1, 1} .

Here, πu denotes the given proportion of positively labeled observations in bag u (bi-
nary classification), while π̂u(Y) is the proportion of positively labeled observations as
calculated based on Y. The task is to find a vector of labels Y such that the loss `
over individual observations is minimized, but also the loss `π over label proportions.
Since the vector of labels Y is not given, but part of the optimization, one may say that
minimizing over the standard loss ensures that observations lying on the same side of
the hyperplane will also be assigned the same label, depending on the particular values
of the trade-off parameters C and Cπ.

While the formulation seems intuitive, the optimization problem is an NP-hard non-
convex integer programming problem. The authors propose two different efficient algo-
rithms for solving it, one based on an alternating optimization strategy, and another
based on convex relaxation. For further details, see [YLK+13].

In experiments [YLK+13], the ∝SVM has been compared to Mean Map and Invcal.
The ∝SVM outperforms both methods in terms of accuracy on several datasets from



154 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

the UCI standard repository. However, the authors do not report which significance
test they used. It should be noted that in [PNCR14], results are not always in favor
of the ∝SVM in comparison to Invcal, even on the same datasets. Moreover, Mean
Map outperformed the ∝SVM in many cases, while Invcal outperformed Mean Map
in [Rüp10].

AOC Kernel K-Means The main idea of AOC (Aggregate Output Classification)
Kernel k-Means [CLQZ09] is to cluster the observations in S in such a way that clusters
correspond to classes, and the assignment of observations to clusters (classes) matches
the given label proportions. The authors present variants of k-Means and Kernel k-
Means [DGK04], which is a kernelized version of the original k-Means algorithm.

For clustering, we may assume that k = l and that cluster membership is given by a
k×n matrix T, with Tvi = 1 if observation xi is in cluster v and all other elements being
zero. The difference of Kernel k-Means to k-Means is that the cluster centers c1, . . . , ck
can no longer be written in explicit form, but have to be expressed in terms of a kernel
function k(x,x′) which is induced by a given feature map φ. The distance calculations
then become

||φ(xi)− cv||2 = k(xi,xi)− 2
∑n
j=1 Tvjk(xi,xj)∑n

j=1 Tvj

+
∑n
j=1

∑n
j′=1 TvjTvj′k(xj ,xj′)∑n
j=1

∑
j′=1 TvjTvj′

, (6.22)

which means that we need to calculate the distance of point xi not only to the cluster
mean cv, but that we compare xi to all points in cluster v in terms of the kernel function
(the last term in (6.22) is constant).

Let A be a h× n matrix where individual matrix elements denote if observation xi
belongs to bag u (Aui = 1) or not (Aui = 0). Let further Π be a h × l matrix (k = l)
containing the label counts (instead of proportions) of observations labeled as Yv in bag
u. Taking into account the label proportions, the authors propose to solve the following
minimization problem:

min
T

l∑
v=1

n∑
i=1

TviDvi + λ`(A,Π,T) (6.23)

s.t. Dvi = ||φ(xi)− cv||2 (6.24)
Tvi ∈ {0, 1} ∀v, i (6.25)
l∑

v=1
Tvi = 1 ∀i = 1, . . . , n , (6.26)

where D is a l × n square distance matrix between observations and clusters. The
first term in the objective function, TviDvi, is the same as in the original objective
function of Kernel k-Means, when written as a matrix factorization problem. However,



6.2. RELATED WORK 155

the second term `(A,Π,T) is a loss function which measures the deviance between
the label proportions that would result from the current assignment of observations to
clusters (classes), and the given label proportions. While the authors have proposed two
different loss functions, `1 and `2, here we present only the second one, which is a version
of quadratic loss:

`2(A,Π,T) = 1
2tr

(
(AT> −Π)(AT> −Π)

)
. (6.27)

In that way, the authors try to find a good clustering T, i.e. assignment of observations
to clusters (classes), such that the within cluster scatter (see Sect. 3.4) is minimized, but
at the same time also the given label proportions are matched as good as possible. The
trade-off between the two criterions can be controlled by parameter λ.

Although the two loss functions proposed in [CLQZ09] are convex for continuous T,
the elements of T are discrete, i.e. that standard tools for convex optimization cannot be
used. The authors therefore propose to solve the problem with an EM-like alternating
updating algorithm (see [DLR77]). First, D is calculated according to the current T,
and then a sub-optimization problem is solved to assign each observation to a cluster.
These steps are repeated until convergence. The authors show that the sub-optimization
problem for `1 can be solved efficiently with linear programming, and for `2 leads to a
standard quadratic optimization problem.

The authors have compared their method with the k-NN and neural network variants
for learning from label proportions (see basic methods [MCO07] above), on two datasets
from the UCI standard repository. In both cases, AOC Kernel k-Means outperformed
k-NN and neural networks in terms of accuracy. Moreover, AOC Kernel k-Means had
lower run-time than the neural networks.

The presented approach, called AOC-KK in the following, shares similarities with
the clustering approach (LLPC) developed in Sect. 6.5, but has some fundamental dif-
ferences. The first is that AOC-KK restricts the number of clusters to the number of
classes, while LLPC allows for classes being represented by more than one cluster. This
allows for a better control of bias vs. variance (see Sect. 3.1.6), by changing k. Another
difference is that AOC-KK combines the loss over label proportions with the original
Kernel k-Means objective in the same objective function, while LLPC first clusters ob-
servations as usual, and then tries to find a good assignment of labels to the resulting
clusters. LLPC thus has the advantage that it can be used with arbitrary partitional
clustering algorithms, while the approach taken in [CLQZ09] works only with k-Means
and Kernel K-Means. LLPC is compared to AOC-KK with loss `2 in Sect. 6.6.

Theoretical Results In an unpublished work [YKJC14], the task of learning from la-
bel proportions has recently be cast into the PAC learnability framework (see Sect. 3.1.3).
The driving question is: Can we learn from label proportions at all and if we can, under
which circumstances? In their work, the authors prove that under certain conditions,
the labels of individual observations can be predicted well when the label proportions
per bag (called bag proportions) can be predicted well. The generalization error over



156 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

bag proportions in turn can be bounded by the empirical proportion error if the number
of bags is large in relation to the VC dimension of the underlying hypothesis class H.

For the discussion in this section, we adapt the original problem setting (see Sect. 6.1)
slightly. Let us assume that bags b = {(xi, yi)} with labeled observations are generated
i.i.d. according to an underlying distribution D. Let S = 〈b1, . . . , bh〉 be a finite sample
of bags, and π(b) be a function which calculates the label proportions from a given bag
b. We want to derive a function f̂ ∈ H, being element of hypothesis class H, which min-
imizes loss ` over individual observations, only based on the bags in S, with their labels
removed, and the label proportions π(b) calculated from them. Let π̂(b) be a function
which calculates the label proportions from a bag b, not based on the given labels, but
based on applying function f̂ to each xi ∈ b instead, taking the predicted labels f̂(xi).
The result of π̂(b) may be seen as the model-based label proportions calculated from bag
b. Let `π be a loss function which measures the deviation between the model-based label
proportions π̂(b) and the given label proportions π(b), as already defined in a similar
way for the ∝SVM. The sample error errπS of f̂ and the true error errπD of f̂ over bags
can then be defined as follows:

errπS(f̂) := 1
h

h∑
u=1

`π(π̂(bu), π(bu)) , errπD(f̂) := Pb∈D `π(π̂(b), π(b)) (6.28)

The sample error (or empirical error) measures how well we match the given label pro-
portions of bags in S with hypothesis f̂ ∈ H, while the true error measures how well we
generalize, i.e. how well we can predict the label proportions of previously unseen bags,
drawn i.i.d. from D, based on the learned hypothesis f̂ ∈ H.

Similar to supervised learning, the question arises how well the empirical error reflects
the true error. As Sect. 3.1.5 has shown, if sample size is large enough in relation to
the capacity of the hypothesis class, the second term of the structural risk is small.
Risk is then largely determined by the empirical error, which justifies the empirical risk
minimization principle. Let Hπ be a bag proportion hypothesis class associated with
π̂(b), the function which predicts the label proportions of a given bag b. Based on the
idea that the capacity of the bag proportion class Hπ is dependent on the capacity
of hypothesis class H for individual observations, the authors of [YKJC14] bound the
covering number of Hπ by the covering number of the VC dimension of H. The authors
then prove the following theorem on the generalization error of learning bag proportions:

Theorem 1. For any 0 < δ < 1, 0 < ε < 1, h ∈ H, with probability at least 1 − δ,
errπD(f̂) ≤ errπS(f̂) + ε, if

h ≥ 64
ε2 (2V C(H) ln(12r/ε) + ln(4/δ)) , (6.29)

where V C(H) is the VC dimension of hypothesis class H for individual observations, h
is the number of training bags, and r is the bag size.



6.2. RELATED WORK 157

It follows that the generalization error of learning bag proportions is bounded if
there are enough bags for training in relation to the VC dimension of hypothesis class
H. Sample complexity further depends logarithmically on the bag size r.

A bag is called (1− β)-pure if at least a fraction of 1− β of all observations in this
bag have the same label. The authors then state and prove the following two lemmas:

Lemma 6.2.1 Let f̂ be a hypothesis satisfying Pb∈D(|π̂(b)−π(b)| ≤ ε) ≥ 1−δ for some
0 < ε, δ < 1. Assume that the probability that a bag is (1− β)-pure is at least 1− ρ
for some 0 < β, ρ < 1. Then for that bag, the probability that f̂ classifies correctly
at least a fraction (1− 2β − ε) of its instances is at least (1− δ − ρ).

Lemma 6.2.2 There exists a distribution D over all bags of size r and a learner f̂ such
that π̂(b) = π(b), each bag is (1− β)-pure, but f̂ misclassifies a fraction 2β instances
of each bag.

The first lemma implies that the probability for classifying instances in a bag correctly
increases with purity of the bag. The authors generalize this result to the case where
several bags are (1− β)-pure. The second lemma means that in extreme cases where all
label proportions are equal (i.e. they are the least pure), it can happen that a hypothesis
achieves zero bag proportion error, but nevertheless classifies all instances incorrectly.

In the rest of their work, the authors give further results on bounding the true error
of predicting individual instances by making additional assumptions on the distribution
of bags. For further details, see [YKJC14].

Other Works The authors of [HGInL13] apply a structural EM strategy to learn
Bayesian network classifiers from label proportions. They compare their method to Mean
Map and report lower error rate of their method for four of seven domains. However,
significance of results is not reported. In [FZY+14], a generative classifier called DNLP
is learned from label proportions by following a deep belief network approach. The
authors compare their method to Mean Map and Invcal on several standard datasets
from the UCI repository. In terms of prediction performance, they report no significant
differences. However, the run-time of DNLP is much lower than that of Mean Map and
Invcal. In [FT15], convolutional neural networks (CNN) are combined with probabilistic
graphical models trained by an EM approach to learn from label proportions in the
context of ice and open water classification from image data. Their algorithm shows
good performance in the context of the mentioned application, but isn’t evaluated on
other domains.



158 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

6.3 Difficulty of the Problem
In the following, we discuss the difficulty of learning from label proportions from a more
Bayesian perspective and relate it to different kinds of better known learning tasks, like
supervised, semi-supervised and unsupervised learning.

For the supervised learning scenario, as we have already seen in Sect. 3.1.2, the
optimal classifier that could be constructed if distribution P (X,Y ) was known is called
the optimal Bayes classifier. To repeat, it is based on the idea that from a Bayesian
perspective, a prediction model can be obtained from estimating the conditional class
density P (Y |X). Applying Bayes theorem, one recognizes that P (Y |X) may also be
estimated from other unknown densities—the class-conditional density P (X |Y ) and the
class prior density P (Y ):

P (Y |X) = P (X |Y ) · P (Y )
P (X) (6.30)

Here, P (X) doesn’t necessarily need to be known or estimated, since it can be cal-
culated from P (X |Y ) and P (Y ). P (Y ) may be estimated directly from the data, if the
number of data points is high enough. Moreover, if the joint distribution P (X,Y ) is
known, as is assumed by the optimal Bayes classifier, all other quantities can be derived
from it. For a given observation x ∈ X to classify, the optimal Bayes classifier would
predict the most probable class, which is also known as the MAP criterion. Here, opti-
mal means that the Bayes classifier is the best classifier over all possible classifiers for
the given data.

Best Case With respect to learning from label proportions, the class prior P (Yv) for
label Yv can be estimated as η(Π, Yv), the proportion of Yv over sample S. This is done,
for instance, by the Mean Map method presented in Sect. 6.2. Finding a good estimate
for P (X |Y ), however, is at least as difficult as in the supervised scenario and equates
to it if

1. each bag Bu only contains observations from a single class (i.e. ∃v : πuv = 1 and
∀z 6= v : πuz = 0) and

2. at least l bags contain observations from different classes.

In other words, if πuv = 1 appears in a row, all observations in the corresponding bag
must have the same label, which thus can be assigned to all observations in this bag. If
each bag only contains observations from a single class, this equates to all observations
being labeled and thus the supervised learning scenario. We may then choose from
many well-known supervised classifiers for learning. From the perspective of learning
from label proportions, where usually less information about labels is given than in the
supervised learning scenario, this may therefore be called the best case. Our intuition
matches lemma 6.2.1, which has only been recently proven and states that the probability



6.3. DIFFICULTY OF THE PROBLEM 159

of classifying instances correctly increases with the purity of the bags. When each bag
only contains examples from the same class, each bag is as pure as possible.

If only some bags (instead of all bags) are pure, the scenario resembles a semi-
supervised learning scenario: Some observations can be considered to be labeled, and
the whole rest of observations can be considered being unlabeled. However, the situation
doesn’t equate the semi-supervised learning scenario exactly, since there is additional
information given about the label proportions in bags of unlabeled observations. In the
following Sect. 6.4, it will be shown how to take labeled observations into account, while
at the same time respecting the given label proportions.

Worst Case In the worst case, all label proportions πuv in matrix Π are equal, i.e. least
pure, and labels can only be guessed correctly with probability 1/l. If sample size is large
enough, the worst case can only occur if also all class priors P (Yv) are equal, and the
label does not depend on the bag, i.e. P (Y |u) = P (Y ). Otherwise, we can estimate
P (Y ) from the data and at least predict the class that has highest probability to occur
(i.e. the majority class). In this case, the probability for predicting the correct label
would be higher than 1/l.

In this context, lemma 6.2.2 points to an important difference between supervised
learning and learning from label proportions. PAC learnability implies that the true
error of a hypothesis is bounded by ε for all distributions D over X with probability
at least 1 − δ (see Sect. 3.1.3). The hypothesis can be worse if a randomly drawn
sample doesn’t represent the overall distribution D well. In the scenario of learning
from label proportions, however, it may not only happen that a given sample leads to
a bad hypothesis, but also the way in which observations are distributed over the bags.
How likely is the worst case? Of course, it is hard to argue over all possible datasets
and analysis tasks, which is unknown. It is worth to mention, however, that all results
from [YKJC14] are based on probabilities, and not on relative frequencies. So even if
the probabilities that an observation has a specific label are all equal over the bags, for
a concrete sample we may expect the proportions in matrix Π to deviate slightly from
each other, depending on the size of bags and how we sample. Slight deviations of the
proportions may already help with making a correct decision about class labels. For
instance, the well-known Iris dataset contains the same number of 50 observations for
each of three different classes. With the clustering approach developed in Sect. 6.5, and
sampling observations randomly uniformly into bags, in almost all cases a hypothesis
can be found which classifies at least 96% of the observations correctly on average. It’s
only when we force all relative frequencies, i.e. proportions of observations in matrix
Π, to be equal or very close to each other, that prediction performance collapses to
random guessing. Hence, the worst case is especially important in the context of privacy-
preserving data mining, where we might have some control over the formation of bags
and want to make the reconstruction of original labels as difficult as possible. Relative
frequencies may further approach the true underlying probabilities with large sized bags,
following the law of large numbers known from probability theory. In general, a small



160 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

number of large sized bags can make the problem more difficult, according to theorem 1.

Average Case The interesting question is what performance we can expect in cases
where the label proportion matrix Π has a form which is different from best and worst
case. The intuition is that the problem becomes more difficult the more similar the label
proportions are over the bags. This idea follows the notion of entropy from information
theory, which was already introduced in the context of decision trees (see Sect. 3.2.3):
Bags which are more "pure", i.e. contain more instances of the same class, seem to pro-
vide more information. Lemma 6.2.1 shows that our intuition is correct, namely that
the probability of classifying individual instances correctly increases with the purity of
bags. It is important to realize, however, that lemma 6.2.1 only upper bounds the prob-
ability for misclassifying a fraction of individual observations incorrectly. Therefore, in
practice, it is possible that cases occur where we perform well, despite label proportion
matrix Π having high entropy, or badly, despite Π having low entropy. For instance,
in [PNCR14], the information content of Π is measured by the criterion of Gini entropy.
LMM and AMM sometimes performed well on domains where corresponding label pro-
portion matrices had high entropy (i.e. low information content). How might this be
explained?

While it is hard to tell the exact reason for a particular case, in general we note
that not only the labels provide information for learning, but also the observations.
Observations in bags with low information content in terms of labels may nevertheless
provide information about the underlying distribution of observations, P (X). As results
from semi-supervised learning show [CSZ06], getting more information about P (X) by
taking also unlabeled observations into account can increase prediction performance
when only a few labeled examples are given. So even in cases where the overall entropy
of Π is high, we might arrive at a well-performing classifier if at least some of the
bags provide sufficient information about labels. Conversely, even if a bag has high
information content in terms of labels, learning might not profit from it. In terms of
PAC learnability, we may say that the sample we got for learning doesn’t represent the
underlying distribution D well. For instance, the sample might only contain observations
being located far away from the true decision border, providing not sufficient information
for deriving a good hypothesis. Here, we can establish an interesting connection to
learning from horizontally partitioned data (see Sect. 4.3 and Sect. 4.3.5): Subsamples of
S, here the bags, can be skewed and may deviate much from the overall data distribution.

As the discussion shows, for practical cases, it is hard to find a measure of problem
difficulty. While it is easy to measure the entropy of Π, it is difficult to measure how well
bags reflect the overall data distribution given a concrete sample S, without knowing
the underlying data distribution—which is the crux of learning!



6.4. LOSS AND RISK 161

6.4 Loss and Risk
The biggest difference between supervised learning and learning from label proportions
is that in the supervised setting, the kind of quantity we want to minimize is the loss over
individual observations, while in learning from label proportions, all we can minimize
directly is the loss between model-based and given proportions, although in truth we
want to minimize the same quantity as in supervised learning. It is not exactly clear how
the quantity that can be minimized relates to the quantity that should be minimized.
Especially, many different label assignments may lead to the same label proportions and
therefore to the same loss calculated on them.

There are different possible ways to define loss functions over label proportions.
The first we define measures the quadratic deviation between the label proportions as
being derived from a previously trained prediction model f̂(X) and the given label
proportions. Applying the trained model to a set of observations xi ∈ S, the resulting
label proportions can be calculated by counting the number of observations xi with
f̂(xi) = Yv, in each bag for each label Yv ∈ Y and dividing such counts by the size of
their respective bag. This leads to a new matrix Γf̂ , containing the model-based label
proportions:

Γf̂ = (γf̂uv), γf̂uv = 1
|Bu|

∑
x∈Bu

I(f̂(x), Yv), I =
{

1 : f̂(x) = Yv
0 : f̂(x) 6= Yv

. (6.31)

Similarly to defining a loss function for individual observations, it is now possible to
define a loss function over individual matrix entries, for example by taking as loss the
squared error (πuv − γf̂uv)2. The total deviance between Π and Γf̂ can then be defined
as the average squared error over all matrix entries:

`MSE(Π,Γf̂ ) = 1
hl

h∑
u=1

l∑
v=1

(πuv − γf̂uv)2 (6.32)

The average squared error `MSE doesn’t take into account the relative group and
class sizes, nor can it catch the situation where two hypotheses f̂1 and f̂2 appear indis-
tinguishable from each other, because the total error sum over all matrix entries is the
same. In practice, it can make sense to measure the error between Π and Γf̂ by `Π,
which we define as the geometric mean of two different error measures `weight and `prior
which deal with the previously mentioned disadvantages:

`Π(Γf̂ ) =
√
`weight(Π,Γf̂ ) · `prior(Π,Γf̂ ) with (6.33)

`weight(Π,Γf̂ ) = 1
hl

h∑
u=1

l∑
v=1

η(Π, Yv)
|Bu|
n

(πuv − γf̂uv)2 and (6.34)

`prior(Π,Γf̂ ) = 1
l

l∑
v=1

(
η(Π, Yv)− η(Γf̂ , Yv)

)2
(6.35)



162 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

`weight weights the squared error of individual matrix entries by their relative group
and class size. `prior measures how well a chosen hypothesis matches the class priors, as
estimated by η(Π, Yv). The choice to include the prior in the loss function has been made
based on empirical evaluations and a close examination of the label proportion matrices
which have lead to misclassifications. What we have observed in our experiments has now
also a theoretical justification. As recently shown in [YKJC14], whenever a hypothesis
matches the class priors and observations in bags are distributed i.i.d., the probability
to misclassify a fraction of individual observations is bounded.

Moreover, if in addition to the label proportions, the true labels y(x) of a subset
T ⊆ S of observations x ∈ T are given, error criterion (6.33) can be easily extended to
include the average loss `T over these labeled training examples:

`Π = 3
√
`weight · `prior · `T with `T = 1

|T |
∑
x∈T

`(y(x), f̂(x)) (6.36)

Algorithms which optimize over `Π can thereby easily consider also labeled observa-
tions in addition to the given label proportions.

The idea of matching the given label proportions well has now also found support
from theory. Theorem 1 and lemma 6.2.1 together give a justification for minimizing the
deviation between the model-based and given label proportions in terms of empirical risk
minimization: If hypothesis f̂ matches the given bag proportions well, the risk of mis-
classifying a fraction of individual observations is bounded. As discussed in Sect. 3.1.5
and Sect. 6.2, empirical risk minimization only works in cases where the number of bags
is large enough in relation to the VC dimension of the chosen hypothesis class. If we
allow for arbitrarily complex hypotheses, we can always construct one which performs
well on the given training set, but doesn’t generalize well. In supervised learning, this
comes close to memorizing the mapping between examples and labels by rote learning.
Similarly, in learning from label proportions, we can always match the given label pro-
portions, for instance by randomly sampling exactly µuv many observations from each
bag Bu and assigning them label Yv. It is unlikely, however, that a random labeling will
be the correct one in terms of individual label assignments. Thus, even solutions which
fit the given label proportions optimally can be bad solutions regarding the true error
we want to minimize.

Especially in cases where the number of bags is small, there is a high risk to choose
a hypothesis which doesn’t generalize well. It is therefore important to control the
capacity of our hypothesis class. Although the authors of [YKJC14] don’t explicitly
mention it, based on their work it should be possible to derive a VC bound for learning
from label proportions, such that structural risk minimization can be applied. In cases
where it is hard to derive the VC dimension of a hypothesis class for model selection
and validation, the true bag proportion error might be estimated from a hold-out test
set or by a black box approach like bag-wise cross-validation. Unfortunately, though an
estimate of the true bag proportion error might help with model selection, it doesn’t give
us any more concrete information about the true error over individual observations other



6.5. LEARNING FROM LABEL PROPORTIONS BY CLUSTERING 163

than that the probability of misclassifying a fraction of them is bounded. In contrast,
estimating the true error from a hold-out test set in supervised learning gives us a much
more interpretable value. In the experimental Sect. 6.6, we have therefore used label
proportions to learn and optimize hyperparameters, but test sets of labeled observations
to evaluate the performance of algorithms in terms of prediction accuracy.

6.5 Learning from Label Proportions by Clustering
As discussed in the previous sections, the goal in learning from label proportions is to find
a hypothesis f̂ ∈ H which predicts the proportions of previously unseen bags as well as
possible, which in turn bounds the risk of misclassifying individual observations, as shown
in [YKJC14]. The authors pose this problem in terms of empirical risk minimization.
However, if we allow for arbitrarily complex hypotheses, we can always match the given
label proportions. Especially, if we tried all different possible labelings of observations
exhaustively, we could always find a set of labelings which minimizes one of the previously
introduced loss functions. We would expect only few of such labelings to also minimize
the empirical loss over individual observations, i.e. we somehow need to control the
capacity of our hypothesis class.

The approach for learning from label proportions proposed in the following works
under the assumption that observations lying close together in regions of the input space
also share the same class label. It first forms clusters of similar observations using an
arbitrary partitional clustering algorithm and according distance measure (see Sect. 3.4).
Instead of trying all possible labelings of observations, the algorithm heuristically tries
different labelings of clusters, such that a loss function over label proportions is mini-
mized. The capacity of the hypothesis space can be controlled by varying the number
of clusters k. A small number of clusters leads to high bias, but low variance. A larger
number of clusters allows for ever smaller divisions of sample S, and therefore leads to
low bias, but high variance.

The assumption that clusters represent classes is not necessarily correct. As shown
in [HTF09], especially the weighting of features can have an enormous influence on clus-
tering results. In fact, one advantage of supervised methods over unsupervised ones
is that they can determine the relevance of features in relation to the target variable.
We therefore allow for a certain flexibility in distance measures. Such measures should
respect weights wj ∈ [0, 1] for each feature Aj , as given by a vector w = (w1, . . . , wp).
Usually, such weights are specified by a domain expert. In the clustering approach intro-
duced in the following, however, the relevance weights can be approximated automati-
cally by an evolutionary strategy, based on one of the loss functions defined in Sect. 6.4
(or other loss functions for learning from label proportions). In the next Sect. 6.5.1,
the accompanying optimization problem is stated. Then, in Sect. 6.5.2, an approach for
solving it is described. The algorithm can be used with different labeling strategies pre-
sented in Sect. 6.5.3. The approach’s run-time is analysed in Sect. 6.5.4, while Sect. 6.5.5
explains how to classify new examples, based on a set of labeled clusters.



164 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

6.5.1 Optimization Problem
Let the vector λC = (λ1, . . . , λk) with λj ∈ Y represent a labeling for a clustering
C = {C1, . . . , Ck}. Let f̂λC : X → Y be a mapping that returns the label λi for a given
observation x ∈ Ci. Given a clustering C, we search for a labeling λC of the clusters
that minimizes the error, according to some error measure `λC(Π,Γf̂λC

), between the
model-based label proportions Γf̂λC

and the known label proportions Π:

min
λC

`λC(Π,Γf̂λC
) (6.37)

The error measure could be, for instance, the average squared error `MSE or a combined
error measure like `Π.

Let qw be a function which is able to assess the quality of a clustering based on a
similarity measure that respects feature weights. We are trying to solve the optimization
problem

min
w

`λC(Π,Γf̂λ∗C
), λ∗C = argmin

λC∗
`λC(Π,Γf̂λC∗

), C∗ = argmax
C

qw(C) , (6.38)

i.e. we are searching for a clustering C∗ which maximizes qw and whose labeling λ∗C
minimizes `λC , for all possible weight vectors w. As formulated, with arbitrary functions
qw and `λC , the problem is non-convex. Since we want to allow for flexibility in the choice
of such functions, in the following we approximate solutions by an evolutionary strategy.

6.5.2 The LLPC Algorithm
The LLPC (Learning from Label Proportions by Clustering) algorithm solves prob-
lem (6.38) by an evolutionary strategy. For each weight vector w, the sub-optimization
problem of maximizing qw is solved by an inner clustering algorithm, where the par-
ticular qw depends on the algorithm. The only prerequisite for the clusterer is that it
returns disjunct clusters and respects different feature weights. The sub-optimization
problem (6.37) is independent from the clusterer and currently can be solved by different
labeling strategies, of which two are introduced in Sect. 6.5.3.

In more detail, LLPC (see Alg. 8) takes a clustering algorithm clusterer, a labeling
algorithm labeler and an error measure `λC as parameters, in addition to Π, S, B =
{B1, . . . , Bh} and Y = {Y1, . . . , Yl}, which are related to the task of learning from label
proportions, and a set of parameters evo related to the evolutionary learning strategy.
LLPC then approximates the optimal weight vector and returns w∗, as well as the related
clustering C∗ and labels λ∗C for the clusters.

We use the evolutionary strategy described in [Mie08]. The evolutionary strategy
starts with a random population P of normalized weight vectors, wj ∈ [0, 1]. For each
individual in P , the clustering algorithm clusterer is called. The clusters are labeled
according to the given labeling algorithm labeler and the fitness is evaluated by criterion
`λC . If the fitness is higher than the best fitness seen so far, the newly found clustering,



6.5. LEARNING FROM LABEL PROPORTIONS BY CLUSTERING 165

Algorithm 8 The LLPC algorithm
1: procedure LLPC(Π,S,B,Y ,clusterer,k, labeler,`λC ,evo)
2: best_fit := −∞; generation := 0
3: Randomly initialize a population P of psize normalized weight vectors
4: while generation < maxgen do
5: for w ∈ P do
6: C := clusterer( S, k, w )
7: (λC , err) := labeler( C, B, Π, Y , `λC )
8: if best_fit < −err then
9: best_fit := −err; C∗ := C; λC

∗ := λC ; w∗ := w
10: end if
11: end for
12: generation := generation+ 1
13: if generation < maxgen then
14: Pcopy := P
15: Gaussian mutation of weights in Pcopy with variance mutvar
16: Pchildren := Uniform crossover on P ∪Pcopy with probability crossprob
17: P := Tournament selection with size tournsize on P ∪Pcopy∪Pchildren
18: end if
19: end while
20: return C∗, λC∗, w∗
21: end procedure

labeling and weight vector are memorized as the new best ones. In each generation, the
weight values in a copy of P are mutated by a Gaussian distribution and, with a certain
probability, exchanged with P by a crossover operator. The individuals then take part
in a tournament and only the best ones are kept in the next generation. This process is
repeated until the maximum number of generations as specified by the user is reached.

Using an evolutionary strategy as a wrapper has the advantage that it is not necessary
to integrate the error measure `λC into the optimization problem of the inner clustering
algorithm, like it was done in AOC-KK, for instance. The clustering algorithm can thus
be treated as a black box and easily exchanged, without any further adaptation. It
should also be noted again that in contrast to AOC-KK, LLPC allows for classes being
represented by more than just one cluster (k > l). Thereby LLPC allows for ever smaller
divisions of sample S, i.e. parameter k may be seen as a control parameter that trades
off bias against variance, as previously discussed.

The free choice of clustering algorithm allows for respecting different kinds of data
distributions. For example, LLPC was already run successfully with k-Means [Mac67],
Kernel k-Means [DGK04], EM clustering [DLR77, WFH11], DBSCAN [EKSX96], PRO-
CLUS [AWY+99] and Support Vector Clustering (SVC) [BHHSV02], without modifi-
cation. Moreover, LLPC can be used with different error measures, for instance with
criterion (6.36) that can respect individually labeled examples.



166 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

LLPC may therefore be looked at as a meta-algorithm for learning from label pro-
portions, which allows for the use of different clustering algorithms, labeling strategies
and loss functions. In a further step, one might also exchange the evolutionary strategy.
For instance, it might be adapted to not only minimize `λC over weight vector w, but
also over hyperparameters like k in the case of k-Means clustering, or C and the RBF
kernel γ in the case of SVC.

6.5.3 Labeling Strategies
The following two labeling algorithms solve the sub-optimization problem (6.37) and can
be used as the labeler in LLPC (see Alg. 8).

Exhaustive Labeling As long as k can be restricted to a small number and l = 2 for a
binary classification problem, trying lk possible labelings for a clustering C is no problem.
In experiments (see Sect. 6.6), good solutions often were found for 6 ≤ k ≤ 12. For each
labeling, we need to calculate errλC . For error measures like `MSE or `Π, this takes linear
time in the number of observations n. In case of the aforementioned error measures,
the calculations only involve basic operations like count, addition, multiplication and
division.

Local Search with Multistarts For cases where the number of clusters k > 12 or the
number of labels l > 2, a local search that is started multiple times with different random
combinations of labels is proposed (see Alg. 9). The local search greedily improves on
the current labeling of clusters by trying all possible labels at each component of the
labeling vector λC . Fitness measures how well the model-based label proportion matrix
Γf̂ , as calculated from the current labeling, matches the given label proportions Π. If
the fitness improves, the search starts from the first component of the labeling vector
λC , again. Otherwise, it resets the label at the current position kpos to the label of the
best (local) solution found so far. Returned is the best labeling found over all starts of
the different greedy searches.

In each iteration, the greedy search runs until no further improvement is possible
(which is a stopping criterion). Moreover, at each step of the algorithm, the fitness
either improves or is staying the same. Therefore, each search finds a local minimum.
Since the number of searches is finite, the returned labeling vector is also locally minimal.
In comparison to the exhaustive labeling strategy, it cannot be guaranteed that a globally
optimal solution is found. However, as will be shown in Chap. 7, in the context of a
real-world application like traffic flow prediction, LLPClsm provides good performance,
while having much lower run-time than the exhaustive search.

6.5.4 Run-time Analysis
The user-specified parameters maxgen, psize and tournsize in LLPC are constants.
They do not depend on the number of observations n and limit the number of iterations of



6.5. LEARNING FROM LABEL PROPORTIONS BY CLUSTERING 167

Algorithm 9 Labeling of clusters by local search with multistarts
1: function LocalSearchMultiStart(C, µ,Π, k, Y, `λC , starts)
2: best = −∞
3: for iteration← 1, starts do
4: λC ,λC

bestIter ← (λ1, . . . , λk) with λj ∈ Y chosen uniformly at random
5: start, bestIter ← −`λC (Π,Γf̂λC

) . Calculate initial fitness, based on error measure
6: improving ← true
7: while improving do
8: for kpos← 1, k do . At each position . . .
9: for lpos← 1, |Y | do . . . . try all labels . . .

10: λkpos ← Ylpos ∈ Y
11: fitness← −`λC (Π,Γf̂λC

) . Calculate fitness, based on error measure
12: if fitness > bestIter then
13: λC

bestIter ← λC ; start, bestIter ← fitness
14: break . Leave both for loops
15: else
16: λkpos ← λbestIter

kpos . Reset to best label found at kpos so far
17: end if
18: end for
19: end for
20: if bestIter = start then . Nothing better found
21: improving ← false
22: end if
23: end while
24: if bestIter > best then
25: best← bestIter; λC

best ← λC
bestIter . Remember best solution

26: end if
27: end for
28: return λC

best,−best
29: end function

the evolutionary strategy to be constant. As discussed in Sect. 6.5.3, the asymptotic run-
time of the labeling strategies is linear in n, as k and l are constants and the evaluation of
errλC usually takes linear time. The asymptotic run-time of LLPC will otherwise depend
on the used cluster algorithm. For example, if we allow for approximate solutions and
limit the number of iteration steps, k-Means has linear run-time. Hence, overall LLPC
has linear run-time. However, when used with an algorithm like Kernel k-Means, the
run-time of LLPC can also become quadratic, for instance.

6.5.5 Generating a Prediction Model
The LLPC algorithm returns labeled clusters of sample S. It is then possible to assign
labels to individual observations xi ∈ S with f̂λC . The question is how to predict the
labels of new observations, i.e. how to transform a clustering into a prediction model.

In the case of clustering algorithms which return a model-based description of clus-



168 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

ters, like k-Means which returns cluster means, one can simply use the model to assign
new observations to a cluster, and then predict the cluster’s corresponding class label.
For instance, in the case of k-Means, one can assign new observations to their clos-
est cluster mean and predict the corresponding class label, by applying function f̂λC .
Whenever a clustering algorithm is purely descriptive, i.e. in cases where it only returns
a clustering of S, but no model to assign new observations to clusters, one may use a
nearest neighbors approach like k-NN for classification.

In general, one option for getting a prediction model after running LLPC is to train a
standard classifier like Naïve Bayes [JL95] or a SVM [Vap99], based on the now labeled
observations. Taking this approach, LLPC may be looked at as a preprocessing step
before modeling, in which the missing labels of observations in sample S are restored,
based on the given label proportions.

6.6 Evaluation
In this section, the LLPC algorithm is compared to three state-of-the-art methods for
learning from label proportions: The Mean Map [QSCL09] method, Inverse Calibration
(Invcal) [Rüp10] and AOC Kernel k-Means (AOC-KK) [CLQZ09].

LLPC is written in Java and has been implemented in the form of several operators
in RapidMiner. All results are based on using Fast k-Means [Elk03] as inner clustering
operator, which is a variant of k-Means utilizing the triangle inequality for faster distance
calculations. As distance measure, we have used the weighted Euclidean distance

dw(x,x′) =
p∑
j=1

(w[j]x[j]−w[j]x′[j])2 . (6.39)

In all experiments, we used the exhaustive labeling strategy (see Sect. 6.5.3) with loss
function `Π (see Sect. 6.4).

AOC-KK has been implemented using a combination of Java, RapidMiner and Mat-
lab. For Mean Map and Invcal, R scripts were used which have been provided by the
author of Invcal [Rüp10].

6.6.1 Prediction Performance Experiments
The prediction performance (accuracy) of LLPC, AOC-KK, Invcal and Mean Map has
been assessed on the eight UCI [AN07] data sets shown in Table 6.1. Each possible value
of a nominal feature has been mapped to a binary numerical feature with values 0 or 1.
Numerical features were normalized to the [0, 1] interval. Table 6.1 shows the number
of features p after this preprocessing step.

In each single experiment, the accuracy has been assessed by a 10-fold cross-validation.
For learning from label proportions, we have partitioned the training set of a particu-
lar fold into bags of size σ, by uniform sampling of observations. While such uniform
sampling might not reflect the way in which bags are formed in a real-world setting, it



6.6. EVALUATION 169

Dataset n p Dataset n p

credita 690 42 sonar 208 60
vote 435 16 diabetes 768 8
colic 368 60 breast cancer 286 38
ionosphere 351 34 heartc 303 22

Table 6.1: UCI data sets used for the experiments

allows for a more homogeneous interpretation of results across different datasets than
domain-specific sampling based on feature values. We tried several bag sizes σ: 2, 4, 8,
16, 32, 64 and 128 (with the last bag smaller than σ, if necessary). The label propor-
tions were calculated and the individual labels removed. In each fold, the accuracy of
the learned prediction model has then been calculated on a labeled test set.

The kernel methods Mean Map, Invcal and AOC-KK have been tested with the
linear kernel, polynomial kernels of degree 2 and 3 and radial basis kernels (γ = 0.01,
0.1 and 1.0). LLPC has been tested for cluster sizes k ∈ [2, 12]. As parameters for the
evolutionary strategy, we used maxgen = 10, psize = 25, mutvar = 1.0, crossprob =
0.3 and tournsize = 0.25. Running LLPC with k-Means provides a prediction model
consisting of cluster means with associated class labels. The same is true for AOC-KK.
However, the cluster methods also assign labels to each observation in sample S, allowing
for a subsequent training of other classifiers, as described in Sect. 6.5.5. Based on such
labeled examples, we have trained models for Naïve Bayes [JL95], k-NN [Aha92], decision
trees [Qui86], random forests [Bre01], and the SVM [Vap99] with linear and radial basis
kernel. See Sect. 3.2 for a further explanation of these methods. The model parameters
of each method have been optimized by a grid or evolutionary search.

The combination of all datasets, bag sizes, classifiers, their variants and parameters
results in a total of 13.216 experiments: 672 for Mean Map and Invcal, 2.688 for AOC-KK
and 9.856 for LLP. For bag sizes 16, 32, 64 and 128 on the datasets colic and sonar,
and for bag size 128 on credita, we conducted additional experiments with LLP for
maxgen = 5 and psize = 100. In some cases, we got a better prediction accuracy. All
experiments took about three weeks. They were run in parallel on up to six machines
with an AMD Dual-Core or Quad-Core Opteron 2220 processor and a maximum of 4
GB main memory.

6.6.2 Prediction Performance Results
Figure 6.4 contains plots of the highest achieved accuracies for all data sets and bag sizes,
based on the best performing models of LLPC, AOC-KK, Invcal and Mean Map, over all
conducted experiments. LLPC shows a higher accuracy than Invcal for many bag sizes
on the data sets credita, vote, colic, sonar and breast cancer. On credita,
vote, ionosphere, sonar and diabetes, the variance of accuracy between bag sizes



170 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

bag size

LLPC

bag size

LLPC

bag size

LLPC

bag size

LLPC

bag size

LLPC

bag size

LLPC

bag size

LLPC

bag size

LLPC

Figure 6.4: Highest accuracies for all data sets and bag sizes, over all 13.216 runs
of LLPC, AOC-KK, Invcal and Mean Map (plus the additional runs of LLPC with
maxgen = 5 and psize = 100). Some values for Mean Map and bag size 128 are missing
in the plots, due to an error in the R script.



6.6. EVALUATION 171

σ 2 4 8 16 32 64 128
Average Ranks

LLPC 2.500 1.875 1.500 1.875 1.625 1.375 1.375
AOC-KK 2.000 2.750 3.000 2.875 2.625 2.375 2.000
Invcal 2.000 1.875 2.375 2.125 2.125 2.275 2.625
Mean Map 3.500 3.500 3.125 3.125 3.625 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK -0.500 0.875 1.500 1.000 1.000 1.000 0.625
Invcal -0.500 0.000 0.875 0.250 0.500 1.000 1.250
Mean Map 1.000 1.625 1.625 1.250 2.000 2.500 -

Table 6.2: Average ranks of classifiers by bag size, and their difference to LLPC’s rank,
based on the best models for each data set and bag size. Positive difference values
indicate a better performance of LLPC. Highest ranks and significant differences (higher
than CD) at the 10%-level are marked in bold.

is smaller for LLPC in comparison to the other methods. Mean Map performs worse
than LLPC and Invcal in many cases. The performance of AOC-KK varies, depending
on the data set. It shows good performance on breast cancer and heartc, but not
on the others. Except for the breast cancer and vote data set and a few other
accuracy values, the overall accuracy of all methods decreases with a larger bag size.
The results thus confirm the theory, as given by theorem 1: With larger sizes of bags,
without increasing the size of sample S, learning becomes more difficult.

6.6.3 Statistical Significance
For the comparison of multiple classifiers over multiple data sets, Demsar [Dem06] pro-
poses the Friedman test, which is a non-parametric equivalent of ANOVA. Used is
the adjusted version, with a test statistic distributed according to the F-distribution
(see [Dem06]). The Friedman test ranks the classifiers for each data set separately. Un-
der the null-hypothesis, the average ranks of the classifiers should be equal. In case
of a critical difference, the null-hypothesis can be rejected. According to the Friedman
test, we have found significant differences for all group sizes. One can then proceed with
a post-hoc test. We have decided for the two-tailed Bonferroni-Dunn test (again, see
[Dem06]), which is for comparing a single classifier (here, LLPC) to all others.

Table 6.2 shows the average ranks of the compared classifiers and their difference to
LLPC’s rank. Each rank was calculated based on the best performing models (including
the standard classifiers), over all conducted experiments. The table also shows the
critical difference (CD) values for the Bonferroni-Dunn test. The CD for σ = 128 is
different, because Mean Map was not included in the comparison, due to missing values.
LLPC has the highest rank in six cases, for σ > 2. At the 10%-level, LLPC is significantly



172 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

σ 2 4 8 16 32 64 128
Average Ranks

LLPC 2.375 2.375 2.000 2.250 2.250 1.750 1.375
AOC-KK 3.750 3.250 3.125 2.875 2.875 2.375 2.125
Invcal 2.125 1.625 2.125 1.750 1.625 2.000 2.500
Mean Map 2.750 2.750 2.750 3.125 3.250 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK 1.375 0.875 1.125 0.625 0.625 0.625 0.750
Invcal -1.000 -0.750 0.125 -0.500 -0.625 0.250 1.125
Mean Map 0.125 0.375 0.750 0.875 1.000 2.125 -

Table 6.3: Average ranks of classifiers by bag size, and their difference to LLPC’s
rank. Ranks are based on the best performing models of Invcal and Mean Map and the
best performing cluster mean models of LLPC and AOC-KK. Positive difference values
indicate a better performance of LLPC. Highest ranks and significant differences (higher
than CD) at the 10%-level are marked in bold.

better than AOC-KK for σ = 8, better than Invcal for σ = 128 and better than Mean
Map for σ = 4, 8, 32 and 64. In all other cases, LLPC performs equivalently.

The ranks in Tab. 6.3 are based on different models than those in Tab. 6.2. For LLPC
and AOC-KK, included were only the best performing cluster mean models. They were
compared to the best performing models of Invcal and Mean Map, i.e. to different kernels.
The cluster mean models perform significantly better than Mean Map for σ = 64 and
better than Invcal for σ = 128. In all other cases, they show an equivalent prediction
performance, but are faster to train and apply.

Concerning the performance and significance of the other classifiers, which were
trained based on the LLPC and AOC-KK cluster models, decision trees performed sig-
nificantly better than Invcal for σ = 128, better than Mean Map for σ = 64 and better
than AOC-KK for σ = 4 and σ = 32. Naïve Bayes, k-NN and random forest had a
performance similar to the cluster mean models. The linear SVM and the SVM with
radial basis kernels showed no significant differences to Invcal, Mean Map or AOC-KK.

6.6.4 Run-time Comparison
For an empirical run-time comparison of LLPC, Invcal, Mean Map and AOC-KK, we
have generated random data for a two Gaussian mixture classification problem (10.000
observations and 10 features, with values normalized to [0, 1]). Then, the average run-
time for training and the accuracy of the classifiers over 10 folds of a cross-validation
has been assessed for different samples of the data, with varying sizes (see Fig. 6.5). The
bag size for learning from label proportions has been σ = 16 for all runs. A radial basis
kernel with γ = 0.1 has been used for the kernel methods. LLPC has been run with the



6.7. SUMMARY, CONCLUSIONS AND OUTOOK 173

LLPC

LLPC

Figure 6.5: Average run-time and accuracy of 10-fold cross-validations with LLPC,
Invcal, Mean Map and AOC-KK on several samples of random data. The data was
generated for a two Gaussian mixture classification problem (n = 10000, p = 10, feature
values normalized to [0, 1]).

exhaustive labeling strategy and Fast k-Means (k = 6), with parameters maxgen = 3,
psize = 25, mutvar = 1.0, crossprob = 0.3 and tournsize = 0.25 for the evolutionary
optimization. Both LLPC and AOC-KK used the cluster mean model for prediction.

LLPC shows a high prediction performance for all sample sizes. Moreover, LLPC
has the lowest run-time. However, since the methods are implemented in different pro-
gramming languages (Java, Matlab, R), one should not compare the absolute times, but
the slope of the curves. The curve of LLPC’s run-time is very flat and almost a straight
line, while the slopes of the other curves indicate run-times that are faster growing.

6.7 Summary, Conclusions and Outook
Learning from label proportions has relevance for real world applications, like guaran-
teeing the privacy of democratic free elections, or the reconstruction of labels for objects
that are hard to track, like in smart manufacturing.

Presented has been a novel approach for learning from label proportions, the Learn-
ing from Label Proportions by Clustering (LLPC) algorithm. The approach is general
enough to accommodate for the use of different clustering algorithms, labeling strategies
and loss functions. With k-Means as the inner clustering algorithm and a constant num-
ber of iterations, LLPC has only linear worst-case training time and its cluster mean
models are small and fast to apply. This makes LLPC especially well-suited for running
on resource-constrained devices, as they occur in many of the aforementioned IoT ap-
plications (see Sect. 2.1). In comparison to state-of-the-art methods, which need more
training time, the cluster mean models show a significantly higher or equivalent predic-
tion accuracy in the conducted experiments. By training other classifiers on the labeled
clusters, the highest achieved accuracy of LLPC is significantly higher for even more bag
sizes. Here, LLPC has the highest average rank for all σ > 2. In addition, LLPC has
other beneficial properties that, to the best of our knowledge, other approaches don’t



174 CHAPTER 6. LEARNING FROM LABEL PROPORTIONS

possess all at once: (1) LLPC can handle non-linear decision boundaries, depending
on choice of clustering algorithm, (2) multiple classes, (3) additionally given labeled
observations, and (4) it can weight the relevance of features.

Beyond the tracking of objects in smart manufacturing, learning from label propor-
tions can also be related to distributed learning in an IoT context. So far, the missing
of labels for individual observations has been looked at as a problem. However, as the
empirical results presented demonstrate, in several cases accuracy is relatively high and
stable even for growing sizes of bags. The question arises if approaches for the learning
from label proportions can be combined with distributed approaches, such that only
aggregated label information needs to be communicated between nodes. In the follow-
ing Chap. 7, a fully decentralized algorithm for learning from vertically partitioned data
is introduced that only exchanges label counts between nodes. In the context of traf-
fic flow prediction, the algorithm reduces communication costs, while maintaining an
acceptable high accuracy.



Chapter 7
Decentralized Training of Local

Models from Label Counts

Traffic flow prediction allows intelligent control of traffic lights and other traffic signals.
Individual mobility benefits from predictions as well, since they allow for proactive,
smart decisions on individual travel plans like the avoidance of likely traffic hazards
[NZC+15, LPBM14]. In an IoT context, more and more cities are getting equipped with
smart sensors (see also Sect. 2.1.4) which, for instance, measure traffic flow, but also
provide other kinds of valuable information about traffic, like parking lot utilization.

The task of traffic flow prediction focused on in this chapter can be stated informally
as follows: Given the current traffic flow measurements and windows of previous mea-
surements from all sensors at time point t, predict the traffic flow measurements at all
sensors at some future time point t+ r, where r is the prediction horizon.

Centralization of all data and control can easily account for global traffic patterns
and relationships. However, a single point of failure poses high security risks facing
natural disasters or intended devastation. The server-side collection further may become
a bottleneck for real-time processing and is thus not scalable. The maintenance of
cable networks is costly regarding materials and construction work. Moreover, the area
of traffic management systems is often limited by the political area of homogeneous
network regulations. In contrast, cheap battery-powered wireless presence sensors that
work mostly autonomously could be easily attached to existing infrastructure like traffic
lights, signs or buildings, increasing coverage. Restricting the exchange of measurements
to local neighborhoods of topologically close sensors would lead to highly decentralized
systems. Decentralization could make traffic control more robust facing disasters, as
failures affect only locally confined parts of the whole system. For instance, traffic
lights could become more autonomous, basing their operation on traffic flow predictions
received from nearby sensors. Furthermore, costly construction work could be spared.
Also, restricting communication to local neighborhoods might increase response time
and can avoid the bandwidth bottlenecks of centralized systems.

Decentralized wireless networks consisting of small devices pose their own challenges

175



176 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

by putting severe constraints on data analysis tasks, as already discussed in Sect. 2.3.2.
Challenges involve questions of streaming data, dynamic network changes, concept drift,
and communication-efficient analysis by distributed components. Interpreting the sensor
measurements (or windows of measurements) over all sensors as a single observed state
from which we’d like to predict future measurements, one may say that the measurements
are vertically partitioned over the local sensor nodes. As we have seen in Sect. 4.5,
communication-efficient distributed learning in the vertically partitioned data scenario
is particularly challenging, especially if we want to take conditional dependencies between
features, given the label, into account.

In the following, a decentralized spatiotemporal in-network learning algorithm for
the vertically partitioned data scenario is proposed. For the training of local models, it
exchanges only space-time aggregated label counts between topologically close sensors.
Thereby it reduces communication costs almost by an order of magnitude in comparison
to a fully centralized analysis.

Section 7.1 gives a short overview of the state-of-the-art in traffic flow prediction.
Then, Sect. 7.2 defines the learning task focused on in this chapter more formally. Sec-
tion 7.3 discusses the advantages and disadvantages of an analysis of traffic flow measure-
ments in local neighborhoods of sensors in comparison to a centralized, global analysis.
Next, Sect. 7.4 proposes to exchange only aggregates of labels between nodes, reducing
communication costs. The final distributed algorithm for the decentralized training of
local models from label counts is introduced in Sect. 7.5, together with an analysis of
its communication costs. The algorithm is evaluated on traffic flow data from the city
of Dublin in Sect. 7.6. Finally, the chapter is summarized and conclusions are drawn
in Sect. 7.7, further giving an outlook on the following chapter.

7.1 Related Work
In the field of traffic flow prediction, most literature describes processes on central
servers. There are two major ways to model traffic: using a simulation [RN06] or apply-
ing an imputation model, trained on previous sensor measurements. Models are required
for the estimation of traffic flow at locations not being observed at all. Such imputation
is not the focus of our study, but the prediction of traffic flow at sensor locations. We
point the interested reader to methods of simulation (e.g. cellular automaton [RN06])
and model-based imputation (e.g. [LXMW12]). Most learning-based traffic flow predic-
tion methods analyze time series, where a popular model is based on auto-regressive
integrated moving average (ARIMA) [AC79].

In [LTT06], the traffic flow prediction of k-NN for a particular location is improved by
weighting measurements by their temporal distance to the prediction time. The Kriging
approach described in [WK09] also aims at taking spatial relations into account. Im-
provements to k-NN non parametric regression are made in [MHK+08]. Their proposed
algorithm is a spatial k-nearest neighbor approach that incorporates geometric distances
for estimation of an unknown segment: the closer a measured segment is to an unmea-



7.2. PROBLEM SETTING 177

sured one, the higher its impact. We utilize this idea to build local models based on
their closest sensors. More complex approaches investigate neural networks or support
vector machines for estimating a regression function for traffic forecast. Recently, an ap-
plication of a Gaussian Markov Model was proposed in [SLMM14], and more advanced
graphical models, namely Spatio-Temporal-Random-Fields (STRFs), were applied to
traffic modeling in [PLM13]. We use the latter as a baseline method for evaluation
(see Sect. 7.6).

The few existing distributed approaches for traffic flow prediction combine sketches of
neighboring sensors to get probabilistic estimates of the number of vehicles co-occurring
at different locations. Instead of counting and re-identifying individual vehicles, the ap-
proach introduced in the following only exchanges aggregated quantities between nodes.

7.2 Problem Setting
Here, the problem setting looked at is defined more formally. Given are m sensor nodes
j = 1, . . . ,m. It is assumed that each node j delivers an infinite series of real-valued
flow measurements . . . , vt−1(j), vt(j), vt+1(j), . . ., where t denotes the current time step
t and t − 1/t + 1 denote next and previous ones, assuming a constant sample rate.
Associated with each sensor is a spatial location. Labels are assumed to be discretized
flow measurements, since decisions on traffic signals often base on discrete flow categories,
achieved by a mapping ρ : R→ Y of raw measurements to categories Y = {Y1, . . . , Yl}.

Let each node j provide a dataset D(j) for supervised offline learning, contain-
ing n pairs (xi(j), yi(j)) of training examples xi(j) ∈ Rp and labels yi(j) ∈ Y . Each
xi(j) is created by sliding a window of size p with step size one over the stream of
measurements at node j. When recording from time step s, observations xi(j) =
[vs+i−1(j), . . . , vs+i−2+p(j)] are windows of measurements, and labels yi(j) are discretized
measurements ρ(vs+i−2+p+r(j)) lying r time steps ahead.

For each node j, we want to predict the traffic flow category y(j) at node j with hori-
zon r correctly, given the current measurement windows x(1), . . . , x(m). For learning
a corresponding model f̂ , available are all datasets D(1), . . . , D(m). Interpreting mea-
surement windows as features of single observations xi, the data is vertically partitioned,
since each node only stores partial information about xi, i.e. a subset of its features.

7.3 Global vs. Local Analysis
In a fully centralized data analysis setting, we would transfer all datasets to a central
node or data center. There, we could then learn a global model f̂ over all sensor locations
and their measurements. For instance, probabilistic graphical models like the Spatio-
Temporal-Random-Fields (STRFs) introduced in [PLM13] explicitly model the assumed
dependency structure between measurements at different locations and over different
time points. Thereby, they may also take into account conditional dependencies of traffic
flow measurements over different locations. For instance, such models may capture the



178 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

High

Low

High

t

t

t
0.23 0.34 0.10

0.82
0.82

0.21
0.35 0.72

0.10

...

...

...

. . .

. . .

. . .

...

High
High

Low

Neighbors around     sending predictions for the
label at     at time point          , based on their 
local sensor measurements.

t + r

High
t + r

with measurement windows from node 

b

label counts sent to
neighboring nodes
for learning

...

...

n1(j)

n2(j)

nc(j)

j

j
j

D(j) j

x1(j)

x2(j)

x3(j)

y(j)1 . . . p � 1 p

q1,low = 1

q1,high = 2

. . .

Figure 7.1: Distributed local models in a restricted neighborhood

situation in which traffic flow in the inner city depends on a combination of traffic flow
on several highways leading to that city, and the flow on such highways influences each
other. While the ability to model such dependencies is an advantage of global models,
it comes at the cost of needing to transfer all data to a central node or data center, with
all the disadvantages mentioned at the beginning of this chapter. The question is if we
really need to consider the traffic flow at all sensor locations at once.

In the case of traffic flow, it is important to observe that the flow at a particular loca-
tion doesn’t change immediately with changes of traffic flow at other locations, especially
those far away. It usually takes some time for changes to propagate through the street
network, since each car has a physical speed limit. Further, the flow of traffic obeys
additional rules. For instance, if we consider a particular junction, cars which reach that
junction certainly must have crossed one of the other junctions directly connected to it.
Hence, the question arises if taking into account dependencies between traffic flow of far
away locations is truly necessary, since they seem to have only marginal influence. If it
was possible to infer the traffic flow at node j only based on the traffic flow at connected
neighboring junctions, we could restrict learning to local neighborhoods of topologically
close sensors. As mentioned in Sect. 4.2 on clustering sensor nodes, the power needed
to transmit data wirelessly increases with distance, and is dα for distance d. Therefore,
restricting wireless communication to topologically close sensors would be especially
beneficial for the battery-powered sensors we assume.

Based on the aforementioned considerations, for every node j, we restrict learning
to j and c neighboring nodes with indices n1(j), . . . , nc(j). Given datasets at j and
its neighbors only, i.e. D(j), D(n1(j)), . . . , D(nc(j)), we now want to learn a local model
f̂(j) for node j that, given current windows x(j), x(n1(j)), . . . , x(nc(j)) of sensor readings
at node j and its neighboring nodes, predicts the traffic flow category y(j) at node j
with horizon r correctly. This situation is depicted in Fig. 7.1, showing node j with its
neighbors and an exemplary dataset.



7.3. GLOBAL VS. LOCAL ANALYSIS 179

As discussed in Sect. 4.5 on the challenges of learning from vertically partitioned data,
the architectural design of distributed algorithms in the scenario heavily influences their
inferential abilities and communication costs. For learning that is restricted to local
neighborhoods, we consider two different design choices.

Transmission of Measurements The first option is to transfer all datasets from
neighbors to j, join them to a single dataset, and combine the resulting collection of
observations with j’s labels. Based on this data, we can then learn f̂(j) at j. By
restricting communication and learning to local neighborhoods, we already have achieved
some of our goals. The system has become more robust to failures, and avoids the
bottleneck problems of transmitting all data to a central node. However, transmission of
all sensor measurements still has high communication costs in the order of O(np), during
training as well as in the prediction phase. That is, for prediction, we would continuously
need to exchange all raw measurements between nodes. Considering that we assume local
sensor nodes to be battery-powered, this would be highly energy-draining.

Transmission of Labels As second option, we consider sending labels yi(j) from
j to each of its local neighbors. We may then learn local models f̂j(q) at nodes
k = j, n1(j), . . . , nc(j), i.e. at node j and its neighbors, based on datasets Dj(q) =
{(xi(q), yi(j))}i=1,...,n. Model f̂(j) could then, for instance, be a majority vote over pre-
dictions at j and predictions received from its neighbors. From the perspective of j’s
neighboring nodes, one may also say that each neighbor learns a model for the traffic
flow at node j, based on the discretized sensor measurements yi(j) it receives from node
j, and its own measurement windows. Communication costs during training and model
application are in the order of O(n), i.e. they have become independent of the number
of features p, which is here the size of measurement windows. In practice, we would ex-
pect much lower communication costs in the prediction phase. The reason is that only
information about the traffic flow category is sent, which can be expected to change less
often than raw flow measurements. Much communication might be saved by restricting
transmission to changes of category.

While taking the second design option looks more beneficial, what do we lose? The
answer is that we lose inferential power. The first design allows us to respect conditional
dependencies between traffic flow measurements at local neighboring nodes, given the
label y(j), because we have transmitted all feature values from neighboring nodes to
j. In contrast, the second design option corresponds to the learning of independent
local models, without exchanging feature values, but only combining predictions from
each local model. Here, as discussed in Sect. 4.5.1, we have to make a conditional
independence assumption on the traffic flow values from different neighboring nodes,
given the label. In other words, we would need to assume that neighbors of j contribute
independently to the traffic flow at node j. In a densely connected street network, this
assumption is unlikely to hold. For instance, imagine a sensor measuring traffic flow at
some junction j and sensors at two connected neighboring junctions n1(j) and n2(j),



180 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

with traffic flowing in both directions. Since label y(j) itself denotes traffic flow, in the
following, let’s only focus on dependencies between measurements. Knowing the traffic
flow values x(n1(j)) and x(n2(j)) at j’s neighbors, we want to derive probabilities for
the traffic flow at node j itself. If the only way to reach n1(j) from n2(j) is over j,
we can estimate the conditional probabilities P (x(j) |x(n1(j))) and P (x(j) |x(n2(j)))
independently from each other and multiply the result at j, since the traffic flow from
both neighboring junctions should contribute independently to the flow at j. However,
if n1(j) and n2(j) are connected somehow, we can assume that traffic at both junctions
influences each other. Therefore, we would need to combine (i.e. communicate) traffic
flow measurements from both junctions, and estimate P (x(j) |x(n1(j)), x(n2(j))).

However, since our goal is the design of communication-efficient algorithms, for the
sake of lower communication costs, we may ignore aforementioned dependencies and
sacrifice accuracy. Therefore, from now on, we follow the second design approach. Un-
fortunately, communication costs during training are still in the order of O(n). This
points to an unsolved problem of training local models in the vertically partitioned data
scenario, namely that labels are not available at local nodes, but first need to be ex-
changed between local nodes, or to be transferred from a central node. In the following,
an idea is presented how to exchange only aggregated label information, namely counts
of labels, between nodes, thereby saving communication. We can then transform such
counts into proportions and choose from the many different methods for learning from
label proportions presented in Chap. 6.

7.4 Communication of Label Counts
Given a partitioning of observations x1, . . . , xn into batches Bu, u = 1, . . . , h and label
proportions πuv for each batch u and class Yv, algorithms for learning from label propor-
tions (see Chap. 6) learn model f̂ : X → Y that assigns labels to individual observations.
Instead of sending each individual label from j to its neighbors, communication may thus
be saved by only sending the counts of labels per batch.

A simple partitioning of dataset D(j) at each node j into b-sized batches is a division
over consecutive time intervals. Node j counts how often each class occurs in each batch
and sends these counts in a h × l matrix Q(j), h = dn/be, to its neighboring nodes.
These transform Q(j) into a label proportion matrix Π(j), yielding the original problem
of learning from label proportions at neighboring nodes of j.

In principle, arbitrary algorithms that learn from label proportions (see Chap. 6)
could be used as classifiers at each node j = 1, . . . ,m. The clustering approach developed
in Sect. 6.5 seems to be especially well-suited for learning on small devices. As demon-
strated, it has much lower run-time than other approaches, like Mean Map or Invcal.
Moreover, it has a very small memory footprint and can easily handle multiple classes,
like the flow categories in traffic flow prediction. For traffic flow prediction, we abstain
from the evolutionary optimization of attribute weights as described in Sect. 6.5.2. Also,
with l > 2, an exhaustive search over all labelings would consume too much time. In our



7.5. DISTRIBUTED TRAINING OF LOCAL MODELS FROM LABEL COUNTS181

Algorithm 10 Distributed Training of Local Models from Label Counts
1: procedure TLMC
2: for j ← 1,m do . in parallel over nodes
3: divide D(j) into batches B1, . . . , Bh
4: calculate label counts for each batch and store them in Q(j)
5: send Q(j) to nodes n1(j), . . . , nc(j)
6: for q ∈ {j, n1(j), . . . , nc(j)} do . in parallel over nodes
7: calculate Π(j) from Q(j)
8: train LLPClsm model f̂j(q) at node q, on D(q)
9: end for

10: end for
11: end procedure

experiments presented in Sect. 7.6, we therefore rely on the local search with a multi-
start strategy (see Alg. 9). The modified version of LLPC, i.e. without the evolutionary
optimization of attribute weights, using a local search strategy, will be called LLPClsm
in the following.

7.5 Distributed Training of Local Models from Label Counts
For the whole distributed learning algorithm, called Training of Local Models from
Counts (TLMC), see Alg. 10. The algorithm starts after local preprocessing (windowing)
at each node j. At the end, each node stores c + 1 different models, for itself and
each of its neighbors. All models are local in the sense that learning is restricted to
local neighborhoods and windows of local raw measurements. Moreover, the algorithm
works fully in-network, as no central coordinator is needed for local synchronization
and learning between peer nodes. The algorithm is communication-efficient, since it
exchanges less data between nodes than sending all data to a central node or data
center, as argued for in the next subsection.

It is important to note that although TLMC has been motivated by the application of
traffic flow prediction, the algorithm and underlying principles are not restricted to it. In
fact, TLMC is suited for all distributed classification tasks on vertically partitioned data
in which we may assume conditional independence of features, given the label, or are
ready to sacrifice accuracy in exchange for lower communication costs. Neighborhoods
of nodes can be defined depending on application and network topology.

Analysis of Communication Costs Each node j transmits a matrix Q to each of
its neighboring nodes, consisting of counts for each label Yv ∈ Y and batch. Such counts
may be assumed to be integers. The maximum value of each integer is b, which means we
need to reserve at most dlog2 be bits to encode the count for each label. The number of
batches, given n observations, is dn/be. The total number of bits zcnt which are needed



182 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

to encode matrix Q is therefore

zcnt =
⌈
n

b

⌉
|Y |dlog2 be . (7.1)

Given m nodes, the total payload transmitted in bits is thus O(mzcnt), if we assume
that label counts are broadcast to neighboring nodes. For topologically close wireless
sensors, this assumption is not unrealistic. All payloads reported in Sect. 7.6 base on
this assumption.

In comparison, the total payload transmitted by sending all measurements to a cen-
tral node or data center is mpn · 64 or mpn · 32, depending on the precision of floating
point numbers we choose (double or single precision). In many learning settings, it can
be assumed that p ≥ |Y |. Moreover, the number of bits needed to encode the label
counts, which are integer values, can be assumed to be smaller than the number of bits
needed to encode floating point numbers. This means we have n > dn/be, p ≥ |Y | and
32 > dlog2 be, and therefore np · 32 > dn/be|Y |dlog2 be.
Example 7.5.1 For m = 100, n = 4096, b = 256 and p = |Y | = 4, when sending all
measurements with single precision to a central node, the transmitted payload would
be about 52 MB. In comparison, when sending label counts, one order of magnitude
less data would need to be transmitted, namely only about 13 KB. Even taking into
account that windows can be created at the central node, setting p = 1, we would
still transmit one order of magnitude more data when sending all data to a central
node, namely about 13 MB instead of 13 KB.

Example 7.5.2 Local models may save much communication also in the prediction
phase, where we cannot send label counts, but must send individual labels instead.
As discussed in Sect. 7.3, communication can be especially saved in cases where the
number of features p is high. Consider the case where instead of presence sensors, we
are dealing with slightly more powerful wireless devices with cameras attached. The
cameras are capturing n = 15 images per second, each image consisting of 800x600
grey values, i.e. p = 480, 000. Let’s assume we want to fuse the data from m = 10
cameras for binary event detection (|Y | = 2). Monitoring, based on a central global
model, might require the continuous transmission of all image data, leading to a data
transmission rate of 72 MB/s. In comparison, since label information can be encoded
in only one bit per image, 20 Byte/s would need to be transmitted when fusing the
predictions of local models at some central node. This is 3.6 million times less data to
be sent. Looking into Tab. 2.1 in Sect. 2.3.2 shows that the transmission of all image
data would require advanced wireless network technologies, while the transmission
of binary event labels could be easily realized even over a slow EDGE connection.
Even when sending vectors of extracted features to a central node, where for instance
p = 16, the transmission of labels would still be more communication-efficient.



7.6. EXPERIMENTS 183

Adaptation to Other Settings As mentioned, TLMC and its underlying principle
are not restricted to the application of traffic flow prediction. In fact, Alg. 10 may be
easily adapted to different settings and network topologies in the vertically partitioned
data scenario. For instance, one special case would be having only a single "local"
neighborhood, comparable to the setup shown in Fig. 2.7 in Sect. 2.5.2. Node j = 0
would play the role of a central coordinator storing labels of observations, but no data
about the observations themselves. All neighboring nodes may play the role of local
nodes j = 1, . . . ,m, storing the vertically partitioned features of observations. Instead
of looping over all nodes, for training, we focus on the inner loop of the algorithm. The
central coordinator would inform all local nodes about batch size b and send according
label counts. Each local node could then transform the counts into label proportions and
learn an according model, restricted to its own local subset of features. In the prediction
phase, local nodes might then send their local predictions to the central coordinator,
which combines them by an according fusion rule, like a majority vote, for making the
final prediction.

It should also be noted that the algorithm might be adapted to settings where nodes
enter and leave the network dynamically. In comparison to a global model, which might
need to be completely retrained, here only local models of nearby sensors would need
to be retrained. Although dynamically changing neighborhoods could pose technical
challenges, they are no problem from the view point of data analysis.

7.6 Experiments
TLMC is evaluated on data of the city of Dublin. The Sydney Coordinated Adaptive
Traffic System (SCATS) provides information on vehicular traffic at over 750 fixed sensor
locations as spatiotemporal time series [McC14]. Sensors are attached to junctions over
the city of Dublin. The used data1 is a snapshot from January 2013, consisting of tuples
encoding the location of the observation, an index for the junction, the arm and the
lane number at which the sensor is located at, as well as the aggregated vehicle count
at sensor location since last measurement. A time stamp denotes the recording time.

For simplicity, data is getting aggregated at junction level. This step makes predic-
tion harder, since information on movement directions is getting lost. The measured
traffic flow at all arms of a junction is summarized by their mean value, resulting in 339
sensor locations. To be independent of traffic light affected fluctuations, traffic flow is
aggregated over 15 minute intervals, resulting in 2,976 time slices. After filtering out
sensor nodes with only zero or missing values, the final dataset of 296 sensor locations
can be obtained. For each sensor node, its c-nearest sensor nodes (c = 6) are deter-
mined, based on the Euclidean distance between sensor nodes’ WGS84 coordinates. For
each sensor node j, a dataset D(j) is created by moving a fixed-length window (p =
5) over the measurements and storing the windows as training examples, together with
labels gained by discretizing sensor measurements into five different ranges 0-5, 5-30,

1Data is publicly available at http://dublinked.ie .



184 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

Table 7.1: Prediction results for STRF and kNN, time slices of 30 min.

Global STRF model, 1 day, acc. 78.11%
true/pred. 0 1-5 6-20 21-30 31-60 61-485 precision

0 3.09% 0.19% 0.04% 0.02% 0.01% 0.00% 94.30%
1-5 0.01% 2.32% 1.83% 0.01% 0.00% 0.00% 55.60%

6-20 0.34% 0.57% 44.71% 7.37% 0.31% 0.09% 83.80%
21-30 0.12% 0.00% 4.49% 20.71% 2.64% 0.05% 73.90%
31-60 0.16% 0.00% 0.22% 3.28% 7.15% 0.11% 65.50%

61-485 0.00% 0.00% 0.06% 0.01% 0.05% 0.13% 53.00%
recall 83.30% 77.10% 87.10% 65.90% 70.50% 34.00%

Local kNN models, 1 month, acc. 85.73% +/- 6.99%
true/pred. 0 1-5 6-20 21-30 31-60 61-485 precision

0 0.35% 0.07% 0.04% 0.03% 0.03% 0.02% 66.12%
1-5 0.23% 1.64% 0.43% 0.01% 0.00% 0.00% 71.06%

6-20 0.04% 1.02% 10.89% 2.24% 0.45% 0.03% 74.24%
21-30 0.01% 0.01% 1.04% 3.53% 1.29% 0.04% 59.79%
31-60 0.05% 0.01% 0.29% 2.04% 14.98% 2.09% 76.97%

61-485 0.14% 0.00% 0.04% 0.08% 2.52% 54.34% 95.12%
recall 43.10% 59.71% 85.53% 44.54% 77.73% 96.15%

30-60, 60-150 and 150-260, shifting the label column by the prediction horizon r = 1 for
correct alignment. This means we want to predict the traffic flow category for the next
15 minutes, based on five previous time slices (75 minutes) of measurements at j itself
and each of j’s six neighboring nodes. Each local dataset D(j) thus consists of 2,971
real-valued examples with 5 attributes.

Local models are trained for each of the 296 sensor nodes and their nearest topological
neighbors. k-NN with k = 15 is used as a supervised baseline learner which receives all
individual labels, not just label counts. For learning from aggregated label counts,
LLPClsm is used, with k-Means as inner clustering algorithm (k = 15, 50 different
random starting points, 500 iterations at maximum) and the local search with multi-
start strategy (150 starts). Different batch sizes b = 25, 50, 75 and 100 are tried. The
accuracy of each method is assessed by a 10-fold cross validation, i.e. all models are
trained and evaluated for different hold-out sets 10 times. In total 296×7×10 = 20, 720
models for k-NN need to be evaluated and 296 × 7 × 10 × 4 = 82, 880 models trained
and evaluated for LLPClsm. The evaluation has been done offline in parallel on different
machines (about 36 CPU cores) and needed about a week.

The first question to answer is how the prediction accuracy of local models compares
to much more sophisticated models, like the STRF described in [PLM13]. Graphical
models may capture the whole joint-distribution between observations and labels. In
comparison, local models naïvely assume that features from different nodes are condi-
tionally independent, given the label. It can be expected that prediction performance
decreases whenever this assumption doesn’t hold.

The upper part of Tab. 7.1 shows the confusion matrix for an STRF trained on time



7.6. EXPERIMENTS 185

Table 7.2: Prediction results for kNN and LLPClsm (b = 50), slices 15 min., 1 month

Local kNN models, 84.27% +/- 5.76%
true/pred. 0-5 5-30 30-60 60-150 150-260 precision

0-5 4.96% 1.08% 0.02% 0.01% 0.00% 81.70%
5-30 2.16% 32.26% 2.89% 0.09% 0.01% 86.25%

30-60 0.09% 2.57% 26.41% 3.35% 0.01% 81.44%
60-150 0.07% 0.08% 2.94% 20.45% 0.31% 85.75%

150-260 0.00% 0.00% 0.01% 0.05% 0.19% 75.98%
recall 68.05% 89.64% 81.86% 85.40% 37.10%

Local LLPClsm (b = 50) models, 79.62% +/- 6.92%
true/pred. 0-5 5-30 30-60 60-150 150-260 precision

0-5 4.47% 1.64% 0.22% 0.11% 0.00% 69.39%
5-30 2.65% 30.43% 3.46% 0.19% 0.01% 82.82%

30-60 0.09% 3.81% 25.05% 4.04% 0.02% 75.90%
60-150 0.07% 0.10% 3.52% 19.48% 0.31% 82.96%

150-260 0.00% 0.01% 0.01% 0.13% 0.19% 56.24%
recall 61.35% 84.55% 77.64% 81.37% 36.39%

slices of 30 minutes over one day (the results originate from the study in [LPBM14]),
while the lower part shows results for locally trained kNN models, also for time slices
of 30 minutes, but one month. Further, for better comparison with [LPBM14], we have
adapted discretization ranges accordingly. Despite the differences, one can see that the
principal form of both tables is similar: Most observations are classified correctly, and
therefore counted on the diagonal of the matrix. In total, the local kNN models even
achieve a higher accuracy than the STRF, which might be explained by the STRF not
having seen as many examples. Considering that local models cannot capture joint
dependencies between features from different nodes, however, they perform quite well
and their results look sensible.

A reevaluation of the previously shown discretization ranges, by plotting the distri-
bution of traffic flow values over a whole month, suggest that an adaptation of ranges
and time slices of 15 minutes may be more beneficial for the task of traffic flow pre-
diction. Table 7.2 therefore shows the prediction results of k-NN and LLPClsm models
(b = 50) for the adapted ranges and time slices of 15 minutes, evaluated over a whole
month. Again, both matrices show a similar form and many observations are correctly
predicted, being counted on the diagonal of the matrix. LLPClsm trained on aggregated
label information has a lower recall than k-NN evaluated on all labels, but the rela-
tive differences in recall across columns are similar. With LLPClsm, precision suffers
when predicting lowest or highest discretization ranges. Although the total accuracy of
LLPClsm is lower by about five percentage points, its general performance in the setting
is still comparable to the performance of the much more complex STRF model.

Figure 7.2 shows the trade-off between accuracy and payload sent for k-NN and
LLPClsm trained on differently sized batches of aggregated labels. Besides the average
accuracy over all 10-fold cross-validations at each node, the bars in Fig. 7.2(a) also depict



186 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

 65

 70

 75

 80

 85

 90

 95

kNN LLP-25 LLP-50 LLP-75 LLP-100

ac
cu

ra
cy

 (%
)

model

Accuracy of kNN vs. LLP-lsm with different aggregations

(a) Accuracy

 0

 50

 100

 150

 200

 250

 300

 350

kNN LLP-25 LLP-50 LLP-75 LLP-100

Kb
yt

es

model

Payload of kNN vs. LLP with different aggregations

(b) Payload

Figure 7.2: Trade-off between accuracy and payload sent for kNN and LLPClsm

the standard deviation of accuracy over all nodes. LLPClsm’s accuracy decreases with
larger batch sizes, with a steeper decrease for the largest batch size 100. The standard
deviation of LLPClsm is slightly larger than that of k-NN. Figure 7.2(b) shows the total
payload transmitted by all nodes for the training of local models, under the assumption
that messages can be broadcast to neighboring nodes (otherwise numbers would only
change by the same constant factor for all models). The k-NN models at j’s neighboring
nodes and j itself use all available labels, while LLPClsm models are trained on aggregates
of j’s labels. When using LLPClsm with a batch size of 25 aggregated labels, nodes need
only send a third of the payload to their neighboring nodes in comparison to k-NN
sending and using all labels. For LLPClsm with b = 50, only about a fifth of all available
label information needs to be transmitted. LLPClsm with b = 100 even decreases the
payload sent by a factor of about 8.5. Experiments show that sending aggregated label
counts instead of all labels saves communication, while accuracy is still in the order of
STRF’s performance.

However, training a global model, like the STRF, requires the centralization of all
sensor measurements. In total, 28 MB would need to be transmitted, assuming a central
windowing, i.e. p = 1. In comparison, k-NN transmits only 330 KB using all labels,
and LLPClsm with b = 50 transmits only 67 KB using aggregated label counts. In other
words, local models with a supervised classifier like k-NN transmit 85 times less data
than would be required for training a global model at some central node or data center,
and LLPClsm with b = 50 transmits 418 times less data, yet maintaining an accuracy
which is comparable to a global model. In fact, the label counts transmitted by LLPClsm
with b = 100 would fit into a single SMS per node, for a whole month.

Finally, Fig. 7.3 compares the prediction accuracies of LLPClsm, b = 50 and k-NN for
different sensor nodes, mapped to the junctions on a street map of Dublin. In general,
LLPClsm performs slightly worse than k-NN, which can be seen by nodes on the upper



7.6. EXPERIMENTS 187

Figure 7.3: Accuracy of LLPClsm, b = 50 (upper map) in comparison to k-NN (below),
color ranges from red - low accuracy (50%), till green - high accuracy (99%) (best viewed
in color)



188 CHAPTER 7. TRAINING OF LOCAL MODELS FROM LABEL COUNTS

map having a slightly darker color than those on the map below. Nevertheless, there are
still many junctions for which the traffic flow is predicted quite well with LLPClsm. Some
locations have bad performance in both plots, the map reveals that these are locations of
parking areas, e.g. inner-city parking houses and recreational areas where many vehicles
stay for a long period of time.

7.7 Summary, Conclusions and Outlook
Complex global models which can capture the whole joint probability distribution of
observations and labels, like STRFs, allow for answering many different types of queries,
based on a single model. However, transmission of all data to a central node or data
center may lead to high communication costs for training and prediction. Further,
centralization can easily create single points of failure, and the use of cabled networks
for the transmission of sensor measurements may lead to high maintenance costs due to
construction work. A decentralized system consisting of cheap, battery-powered presence
sensors would be much more flexible. However, distributed data analysis in such a
setting, especially in the vertically partitioned data scenario, is very challenging.

An approach has been proposed which restricts learning to local neighborhoods of
topologically close sensors. At each node, a local model is trained, based on label
counts received from a fixed number of neighboring nodes. Here, learning from label
proportions, as introduced in Chap. 6, solves a problem which has been largely neglected
in the existing literature so far, which is the communication-efficient transmission of label
information to local nodes.

Scalable traffic flow prediction then involves a trade-off to be made between the ac-
curacy of models and the amount of communication between networked nodes. Using
local models, we assume conditional independence of features, given the label. This
assumption usually does not hold in a dense street network. Nevertheless, the approach
of training local models from label counts, TLMC, has been successfully evaluated on
traffic flow data from the city of Dublin and shows the feasibility of the proposed ap-
proach. Though accuracy drops by five percentage points in comparison to local k-NN
models, which use all labels, LLPClsm, which aggregates labels in bags of size b = 50,
still shows an accuracy comparable to a centrally trained global STRF model. At the
same time, LLPClsm transmits about five times less data than k-NN, and 418 times less
data that would need to be sent when centralizing all data. The data sent by LLPClsm
with bag size b = 100 would even fit into a single SMS, containing the label counts for
a whole month.

The results achieved demonstrate that the training of local models and combining
their predictions can lead to highly communication-efficient distributed algorithms for
the vertically partitioned data scenario which are nevertheless sufficiently accurate. Es-
pecially, in comparison to consensus algorithms, labels need to be exchanged only once
during training, and not iteratively. Restricting communication to topologically close
sensors is beneficial for wireless communication, where power consumption increases



7.7. SUMMARY, CONCLUSIONS AND OUTLOOK 189

with transmission distance. With adaptations, the approach might also respect dynami-
cally changing neighborhoods. TLMC makes use of LLPClsm, which should be especially
well-suited for small resource-constrained devices when using k-Means as inner clustering
algorithm. The number of k-Means’ iterations can be restricted such that it has linear
running time, and its operations consist mostly of distance calculations. Those are based
on simple arithmetic operations, like addition and multiplication. The local search with
multi-start strategy for the labeling of clusters is fast and achieved sufficient accuracy in
the conducted experiments. Moreover, k-Means has a small memory footprint of O(kp),
since its model consists of only k centroids which are p-dimensional.





Chapter 8
Vertically Distributed Core Vector

Machine

In Sect. 2.1, it has been discussed how more advanced IoT applications could be realized
by fully embedding data analysis into all parts of an IoT system. The automation of
processes which integrate data analysis and control also requires the automatic prepro-
cessing of data, which includes steps of data cleansing and the detection of abnormalities.
For instance, observations of physical processes suffer from instrument malfunction and
noise. In contrast, during modeling, rare events are not to be excluded, since they can
be the most interesting findings. For instance, faults in production processes occur rela-
tively seldom, but can have a large influence on the final quality of products. The earlier
such anomalies are detected, the more options remain to improve on the final quality.

In production, features about the processing of single products are usually assessed
at different machines, which resembles the vertical partitioning of data across networked
nodes. Each machine may generate a large number of process parameters. Although
bandwidth is high, due to the use of local area networks, the time for making decisions
can be limited. Local analysis and a reduction of data before transmission could en-
hance response times and reduce collisions and retransmissions over central buses. In
discrete manufacturing and logistics, more and more products are instrumented with
wireless sensors. Similarly, monitoring applications in earth science, like prediction of
rare volcanic outbursts, may build on vertically partitioned measurements from wireless
networked sensors. Intrusion detection needs to detect anomalies in large amounts of
network traffic [GKRB09]. In physics, the detection of rare astronomical events could be
improved by combining the data from several telescopes. However, these produce masses
of data [BBB+15] whose transmission over satellite connections would take several years.
In all aforementioned cases, communication is limited. The automatic detection of out-
liers or rare events in such scenarios therefore requires new kinds of communication-
efficient distributed anomaly detection algorithms.

As shown in Sect. 4.5.2, outlier detection in the vertically partitioned data scenario
can be especially challenging, since outliers may be determined by combinations of fea-

191



192 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

ture values from different nodes. In this chapter, a new algorithm for anomaly detection
on vertically partitioned data is proposed. It aggregates the data directly at the local
storage nodes using RBF kernels. Only a fraction of the data is communicated to a cen-
tral node. Through extensive empirical evaluation on controlled datasets, it is demon-
strated that the method can be an order of magnitude more communication-efficient
than state-of-the-art methods, achieving a comparable accuracy.

The rest of this chapter is organized as follows. In Sect. 8.1, work is shortly discussed
which is related to the task of outlier detection and wasn’t mentioned already in Chap. 4.
The distributed task for the vertically partitioned data scenario is defined more formally
in Sect. 8.2. In Sect. 8.3, the approach presented in [DBV11] is shortly reviewed, and
then improved on by developing a distributed version of the Core Vector Machine (CVM)
algorithm (see Sect. 3.3.2). The new approach is evaluated on several controlled and
standard datasets in Sect. 8.4. The chapter is shortly summarized and conclusions are
drawn in Sect. 8.5.

8.1 Related Work
Outlier or anomaly detection [CBK09] is the task of identifying abnormal or inconsistent
patterns in a dataset (see also Sect. 3.3). It is a well studied problem in the fields of data
mining, machine learning, and statistics. Outliers can be detected using unsupervised,
supervised, or semi-supervised techniques [HA04, CBK09]. In some cases, outliers are
looked at as undesirable data points which might disturb analysis. However, in other
cases, their identification and further analysis can be crucial to many tasks such as fraud
and intrusion detection [CFPS99], climate pattern discovery in Earth sciences [ZRDZ07],
quality control in manufacturing processes [HSSK06], and adverse event detection in
aviation safety applications [DMSO10].

In the field of distributed anomaly detection, researchers have mainly focused on the
horizontally partitioned data scenario. In [LA05], the PBay algorithm is proposed, where
a master node first splits the data into separate chunks for each processor. Then the
master node loads each block of test data and broadcasts it to each of the worker nodes.
Each worker node then executes a distance based outlier detection technique using its
local database and the test block. A parallel version of the basic nested loop algorithm
is presented in [HC02]. However, it is not communication-efficient, since it requires
the dataset to be exchanged among all the nodes. A distributed algorithm for mixed
attribute datasets is presented in [OGP06]. The algorithm introduced in [ABLS10] is a
distributed distance-based outlier detection algorithm based on the concept of solving
set which can be viewed as a compact representation of the original dataset. The solving
set is such that by comparing any data point to only the elements of the solving set, it
can be concluded if the point is an outlier or not. More recently, a distributed method
using an efficient parallel pruning rule has been proposed in [BMG11]. The authors
of [BGS+12] present a distributed algorithm for detecting outliers in streams.

To the best of our knowledge, only few communication-efficient algorithms have been



8.2. PROBLEM SETTING 193

proposed for the vertically partitioned scenario. This task is particularly challenging,
if the analysis depends on a combination of features from more than one node. To the
best of our knowledge, the only anomaly detection algorithm for the scenario is the
vertically distributed 1-class SVM introduced in [DBV11]. It trains one global 1-class
model at a central coordinator, reducing communication costs by sampling from the
local nodes. Then, it trains local 1-class models and reduces communication with a
central coordinator by a pruning rule. However, it comes with the disadvantage that
certain kinds of outliers might not be detected and the size of the global sample must be
user-specified. In the following section, the problem setting focused on is defined more
formally. Then, the distributed 1-class SVM is reviewed shortly and it is explained how
it can be improved using the Core Vector Machine (CVM) algorithm (see Sect. 3.3.2).

8.2 Problem Setting
The problem setting described in Sect. 4.5 is shortly reviewed here. We assume that
there is a single underlying distribution P (X) of observations consisting of p features,
but that each node stores only partial information about observations, i.e. subsets of
their features A1, . . . , Ap. Let x[j] ∈ Rpj denote a vector which contains pj features of
observation x available at node j. Columns of the data matrix D are then split over
the nodes, i.e. each node j stores a n× pj submatrix D[j] whose rows consist of vectors
x1[j], . . . ,xn[j] with xi[j] ∈ Rpj . In the following, an individual feature q stored at node
j will be denoted by x[j][q].

Given data matrices D[1], . . .D[m] stored at m different local nodes in a network,
the task is to detect global outliers in the data, without communicating all data (or
even more) to a central node or between nodes. In other words, the algorithm should be
communication-efficient. Here, global means that the observation deviates somehow from
the underlying distribution of (p-dimensional) observations. As explained in Sect. 4.5.2,
the development of communication-efficient algorithms for the detection of global outliers
is difficult, since outlier patterns may be determined by a combination of feature values
stored at different nodes, requiring communication.

8.3 Vertically Distributed CVM (VDCVM)
In [DBV11], a synchronized distributed anomaly detection algorithm for vertically par-
titioned data has been proposed. It is based on the 1-class ν-SVM (see Sect. 3.3.1). The
distributed version is called VDSVM in the following. The algorithm works as follows.

At each local node 1, . . . ,m, a local 1-class model is trained. Points identified as
local outliers are sent to a central coordinator node j = 0, together with a small sample
of all observations. At the central coordinator, a global 1-class model is trained, based
on the received sample. The global model is then used to decide if the outlier candidates
sent from the local nodes are global outliers or not. During prediction, only outlier
candidates are sent and then checked against the global model. While the algorithm is



194 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

highly communication-efficient during training and especially in the prediction phase, it
comes with two drawbacks.

The first drawback is that the algorithm can miss certain types of global outliers.
Although the authors of [DBV11] have shown that the probability to detect such global
outliers correctly increases with growing dimensions, missing such outliers can still hap-
pen. The problematic situation is depicted in Fig. 4.2(d) (see Sect. 4.5), where the global
outlier is no outlier in any of the dimensions. Especially, it should be noted that the
number of features p is a parameter which cannot be controlled, but is given. Stated in
terms of the 1-class SVM, the problem is that instead of a single global 1-class model,
we have several local models which were trained on entirely different subspaces of the
whole data matrix D, and therefore do not agree on the same set of support vectors. The
situation is thus similar to the Separable SVM presented in the previous chapter, where
also local models are trained. To reach consensus on predictions between local models,
approaches like the Alternating Direction Method of Multipliers (ADMM) iteratively ex-
change averages of such predictions and adapt local models accordingly (see Sect. 4.4.2).
However, none of the presented consensus methods was made specifically for the detec-
tion of outliers.

The second drawback of the approach presented in [DBV11] is that the accuracy
of the global model depends on the number of sample points, which is user-specified.
Unfortunately, how many observations are needed for learning a well-performing model
in practice depends on the dimension p and underlying distribution P (X), which is
unknown. Therefore, for a user it is very difficult to specify an according sample size in
advance.

As we have seen in Sect. 3.3.2, the Core Vector Machine (CVM) algorithm uses a
probabilistic speedup strategy to reach a (1+ε)-approximation of the minimum enclosing
ball (MEB) around all normal observations with high probability. It only samples as
many observations as needed to reach such approximation. Proposed are therefore two
modifications of the VDSVM:

1. The standard 1-class ν-SVM at the central coordinator should be replaced by the
CVM algorithm. The CVM can then sample as many observations as needed
from the local nodes, potentially saving communication. It should be noted that
by using the CVM, we remain communication-efficient, since the CVM cannot
sample more observations as given. In fact, the number of iterations, which is the
size of the core set, is bounded by some constant.

2. Instead of training local models at each node, the furthest point calculation of the
original CVM algorithm (see Alg. 1) can be replaced by a distributed computation
over local nodes. As will be shown, this modification can lead to a substantial
reduction of communication costs during training, depending on the total number
of iterations.

In Sect. 8.3.1, it is first shown how the furthest point calculation of the CVM can be
replaced by a distributed computation over local nodes, such that the amount of data



8.3. VERTICALLY DISTRIBUTED CVM (VDCVM) 195

which needs to be sent to a central coordinator is reduced. Section 8.3.2 presents the full
algorithm, the Vertically Distributed Core Vector Machine (VDCVM). The algorithm’s
properties, like communication costs, are analyzed in Sect. 8.3.3.

8.3.1 Distributed Furthest Point Calculation
In any iteration t, the original CVM algorithm (see Alg. 1) with probabilistic speedup
draws a fixed-sized sample of data points from the whole dataset. Let Vt denote the sam-
ple drawn at iteration t and |Vt| denote its size. From the sample, the CVM determines
the point zt furthest away from the current center ct in feature space by calculating the
squared distance ||ct − φ̃(z`)||2 for each sample point z` ∈ Vt:

||ct − φ̃(z`)||2 =
∑

zu,zv∈St
αuαvk̃(zu, zv)− 2

∑
zu∈St

αuk̃(zu, z`) + k̃(z`, z`) (8.1)

Since k̃(z`, z`) = κ̃ is constant and the sum
∑

zu,zv∈St αuαvk̃(zu, zv) does not depend
on the sampled points, the furthest point calculation at iteration t can be simplified to

z(t) = argmaxz`∈Vt

− ∑
zu∈St

αuk̃(zu, z`)

 (8.2)

Separability by Linear Kernel Let z[j] denote the components of vector z stored
at node j. With the linear dot product kernel k(zu, zv) = 〈zu, zv〉, the sum in (8.9) could
be written as

z(t) = argminz`∈Vt
∑

zu∈St
αu〈zu, z`〉 = argminz`∈Vt

m∑
j=1

∑
zu∈St

αu〈zu[j], z`[j]〉 (8.3)

Since the dot product kernel multiplies each component j of the z` and zu vectors
independently, at each node j we can calculate the partial sum

v`(j) =
∑

zu∈St
αu〈zu[j], z`[j]〉 (8.4)

for all random indices ` ∈ It and send these partial sums back to the coordinator.
The coordinator then aggregates the sums and determines the index `max ∈ It of the
furthest point:

`max = argmin`∈It
m∑
j=1

v`(j) (8.5)

Each local node thus only transmits a single numerical value, the partial sum v`(j),
which is a scalar, for each point of the random sample, instead of sending all attribute
values of the sampled points to the central coordinator node. Similar to using local
models, which send only a prediction per observation, communication between local



196 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

nodes and central coordinator has become independent of the number of features pj
stored at each node j.

In each case, the linear kernel ensures separability of the furthest point calcula-
tion (8.9) over local nodes. However, the CVM requires the kernel k̃(x,x) to be constant.
The linear kernel does not fulfill k̃(x,x) = κ̃. Can we replace the linear kernel by the
RBF kernel k(zu, zv) = e−γ||zu−zv ||2 , which fulfills the requirement and is usually used
with the CVM? Unfortunately, as the following subsection shows, the standard RBF
kernel makes the furthest point calculation non-separable over nodes.

Non-separability by RBF-Kernel In Sect. 4.5.3, it has been shown that the RBF
kernel is separable over vector components:

k(x,x′) = e−γ||x−x′||2 (8.6)

= e−γ(x[1]−x′[1])2+...+−γ(x[p]−x′[p])2 (8.7)

= e−γ(x[1]−x′[1])2 · . . . · e−γ(x[p]−x′[p])2 (8.8)

This property has been used by the privacy-preserving SVMs presented in Sect. 4.4.1,
which first transfer local kernel matrices to a central coordinator node and then use the
Hadamard componentwise product to multiply the entries of such kernel matrices, result-
ing in the global kernel matrix. Despite separability, such methods need to communicate
quadratic kernel matrices, which is not communication-efficient.

While the RBF kernel itself is separable, in case of the furthest point calculation it
appears in the following sum:

−
∑

zu∈St
αue

−γ||zu−z`||2 (8.9)

Following (8.8), this sum can be rewritten as follows

−
∑

zu∈St
αue

−γ||zu−z`||2 = −
∑

zu∈St
αu
(
e−γ(zu[1]−z`[1])2 · . . . · e−γ(zu[p]−z`[p])2) (8.10)

What we see here is that, although each individual factor could be computed inde-
pendently from each other across local nodes, the products in the sum cannot. The
products must be calculated before summation, and the factors in each summand base
on information from different local nodes. The sum has as many summands as points
in the core set at iteration t. Of course, we could transmit s|St| (s = |Vt|) scalars to
the central node, which could sum them up for each point in St. However, as with the
privacy-preserving SVMs, this would lead to quadratic communication costs, which is
not communication-efficient.

Separability by Combination of RBF-Kernels Since the standard RBF kernel
makes the furthest point calculation non-separable over nodes, leading to high com-
munication costs, we propose to use a combination of RBF kernels, as it was already



8.3. VERTICALLY DISTRIBUTED CVM (VDCVM) 197

introduced in the previous chapter:

k(zu, zv) =
m∑
j=1

e−γj ||zu[j]−zv [j]||2 (8.11)

For the combination of RBF kernels, k̃(zu, zv) = κ̃, since each summand is constant, and
a sum of constants is constant again. With a combination of RBF kernels, the furthest
point calculation finally becomes

z(t) = argminz`∈Vt

m∑
j=1

∑
zu∈St

αue
−γj ||zu[j]−z`[j]||2 , (8.12)

which is separable over the local nodes.

8.3.2 The VDCVM Algorithm
Based on our previous discussion, in this section, we introduce the distributed compo-
nents of the Vertically Distributed Core Vector Machine (VDCVM) and accompanying
operations. The components are shown in Fig. 8.1. The Coordinator communicates with
Worker components at each local node which have direct access to a local data repos-
itory. This means that local nodes can access the values of all locally stored features
directly, without any network communication. While the termination check and the QP
optimization (steps 3 and 4 of the CVM algorithm, see Alg. 1) are still done centrally by
the Coordinator, the sampling and furthest point calculations are combined in a single
step and done in parallel by the Worker components, as described in the following.

During initialization, the Coordinator retrieves user-defined parameters, like C and
γ1, . . . , γm and the number s of points to sample in each iteration, from the client,
and meta information attached to the local data matrices from all Data Repository
components, like the total number of rows n and the numbers of columns pj . The
coordinator initializes its internal data structures. The components of an initial (center)

Client

...

Central Node P0

Coordinator

Data Node P1

Worker

Data Repository

Data Node Pk

Worker

Data Repository

0

m1

Figure 8.1: Distributed components of the VDCVM



198 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

Algorithm 11 Operations of the VDCVM Coordinator
on workerInitialized:

if received message from all workers then
Determine random index set I0 for data points.
Send getPartialSums(I0) to all workers.

on getPartialSumsAnswer( v`(j) ∀` ∈ It ):
Store partial sums received from worker j.
if received message from all workers then
`max = argmin`∈It

∑m
j=1 v`(j)

Send getData(`max) to all repositories.
on getDataAnswer( zt[1 . . . pj ] ):

Store attribute values received from repository j.
if received message from all repositories then

Construct furthest point zt from attribute values.
if ||ct − φ(zt)|| ≤ (1 + ε) ·Rt then

Return model to client.
else
St+1 := St ∪ {zt}.
Calculate new MEB(St+1). (Solve QP problem.)
Rt+1 :=

√
κ̃− αT K̃α.

Determine random index set It+1 for data points.
Send getPartialSums(It+1, αs,`max) to workers.
t := t+ 1.

Algorithm 12 Operations of the VDCVM Worker

on getPartialSums(It, αs, `max):
if t > 0 then store new αs.
if t > 0 then St+1 := St ∪ {z`max [1 . . . pj ]}.
Calculate v`(j) ∀` ∈ It — see (8.4) and (8.5)

point z are all set to 0.5, under the assumption that feature values of all observations
are normalized to the [0, 1] range. Thereby, z does not need to be sampled from the
network. Then, the constant κ̃ is precomputed. Finally, C, γj and κ̃ are sent to each
local node j, for j = 1, . . . ,m. Each Worker in turn initializes its own data structures. It
signals being finished by sending a workerInitialized message to the Coordinator, which
can then start with the first iteration.

The main part of the Coordinator beyond initialization is shown in Alg. 11. The
indices It of |Vt| = s random data points are sampled and sent to the workers in a
request for the partial sums v`. When the Coordinator has received all partial sums,



8.3. VERTICALLY DISTRIBUTED CVM (VDCVM) 199

it can calculate the index `max of the furthest point zt and ask the repositories for its
feature values. If the termination criterion is fulfilled, it returns the model (i.e. the
core set points). Otherwise, the coordinator goes on with solving the QP problem and
calculates the new radius Rt+1. It then determines a new random index set It+1 and
requests the next partial sums from the workers. It furthermore transmits all updated
α values and the index of the previously determined furthest point, `max.

Each Worker (see Alg. 12) gets the local components of point zt by its furthest
index `max and updates its own local core set accordingly. Based on the updated αs
it received, it then calculates v`(j) for all random indices ` ∈ It received from the
Coordinator, according to (8.5). The partial sums are then sent back to the Coordinator
which continues with the main algorithm.

8.3.3 Analysis of Run-Time and Communication Costs
The VDCVM performs exactly the same calculations as the original CVM algorithm.
It therefore inherits all properties of the CVM, including the constant bound on the
total number of iterations (see Sect. 3.3.2) and the probabilistic (1 + ε)2-approximation
guarantee for the calculated MEB.

Regarding communication costs, we assume that messages with same content can be
broadcast to all nodes, that observation’s indices are represented by 4 bytes and real
numbers by 8 bytes. The total number of bytes transferred (excluding initialization and
message headers) when sending all p attributes of n points in a sample to a central server
for training (as does VDSVM) is

zcentral(n) = n · 4 + n · p · 8
In contrast, the bytes transferred by VDCVM up to iteration T are

zVDCVM(T ) = [T · s · 4 + T · s ·m · 8] + [T · 4 + T · p · 8] +
[
T (T + 1)

2 · 8
]

The coordinator at the central node first broadcasts s index values of observations
for which partial sums should be calculated to all local nodes (first summand in first
bracket). It then receives different partial kernel sums for each observation, from m local
nodes (second summand in first bracket). Then, the index value of the furthest point
is broadcast to all local nodes (first summand in second bracket) and the coordinator
receives its p feature values (second summand in second bracket). The total number of
αs transmitted is quadratic in the number of iterations (last bracket).

Although the transmission of αs leads to quadratic communication costs over all iter-
ations, there is a big difference to the quadratic costs which would result from using the
original RBF kernel and transferring s|St| scalars in each iteration (see equation (8.10) in
the previous section). With the RBF kernel, communication costs would be quadratic in
the total number of examples sampled over iterations, i.e. O((Ts)2). In comparison, by
using a combination of RBF kernels, which makes the furthest point calculation separa-
ble over local nodes, communication costs are quadratic in the number of core set points,



200 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

Table 8.1: Maximum number of observations up to which the VDCVM is more
communication-efficient than sending all n observations to a central node, for differ-
ent numbers of nodes m and attributes p, s = 59.

p m=1 m=2 m=5 m=10 m=25
10 61,478 54,516 33,630 0 -
25 164,138 157,176 136,290 101,480 0
50 335,238 328,276 307,390 272,580 168,150

100 677,438 670,476 649,590 614,780 510,350
250 1,704,038 1,697,076 1,676,190 1,641,380 1,536,950
500 3,415,038 3,408,076 3,387,190 3,352,380 3,247,950

i.e. O(T 2). In each iteration, just a single core set point is added. This means that for a
combination of RBF kernels, the costs are growing slower by a constant factor s, which
is the number of points to sample in each iteration. This is a standard parameter of the
CVM and user-specified.

Due to the quadratic communication costs, there exists a number of iterations from
which on the VDCVM would become less communication-efficient than transmitting
each single observation to the central coordinator node. This break even point Tworse
can be calculated by setting zcentral(n) with n = Ts equal to zVDCVM(T ), solving for T :

Tworse = 2 · p · (s− 1)− 2 ·m · s (8.13)

This means that, given a fixed number of nodes m and sample size s, communication
costs largely depend on the number of features stored over the nodes. Table 8.1 contains
values of s · Tworse, i.e. the maximum number of observations that can be analyzed
with the VDCVM, while still being more communication-efficient than transmitting all
observations to a central node, for different numbers of local nodes m and numbers of
attributes p.

The first point to note is that the maximum number of observations that can be
analyzed in a communication-efficient way with the VDCVM already exceeds the size
of half of the datasets found in the original CVM paper [TKC05]. If we set s = 150,
i.e. allow for more observations being sampled in each iteration, we could even handle
all datasets listed in the CVM paper communication-efficiently, except for checkerboard,
which has only two dimensions. Note that all such datasets are considered to be large
scale, since the CVM itself has been developed for large scale datasets.

The second point to note is that the table shows themaximum number of observations
that can be handled communication-efficiently, but not the actual number which would
need to be sampled to reach a (1 + ε)-approximation of the MEB with high probability.
In practice, the number of observations actually being sampled can be much lower,
depending on the difficulty of the domain. For instance, when running the experiments
described in Sect. 8.4, much smaller sample sizes were needed for datasets where outliers
are easy to separate from the normal observations.



8.4. EXPERIMENTAL EVALUATION 201

x2

x1

SepBox

x2

x1

Gaussian

x2

x1

Box

x2

x1

Linear

Figure 8.2: Generated normal data (grey) and outliers (black) in two dimensions.

8.4 Experimental Evaluation
In this section, we demonstrate the performance of the VDCVM on a variety of datasets
and compare it to the VDSVM and a single central 1-class ν-SVM model. In 1-class
learning, the ground truth about the outliers is often not available. For a systematic
performance evaluation of the algorithms, synthetic data containing known outliers was
therefore generated. In addition, the methods also have been evaluated on three real
world datasets with known binary class labels.

Synthetic Data Figure 8.2 visualizes the generated datasets for two dimensions.
The points were generated randomly in a unit hypercube of m dimensions (for m =
2, 4, 8, 16, 32, 64). The different types of data pose varying challenges to the algo-
rithms when vertically partitioned among network nodes, according to the discussion
in Sect. 4.5. The easiest scenario should be the one in which each attribute reveals all
information about the label, represented by SepBox. For Gaussian, the means µ+,− and
standard deviations σ+,− of two Gaussians were chosen randomly and independently for
each attribute (with µ+,− ∈ [0.1, 0.9] and σ+,− ∈ [0, 0.25]). If the Gaussians overlap
in each single dimension, they may nevertheless become separable by a combination of
attributes. Moreover, with more attributes, such an overlap becomes more improba-
ble. In the Box dataset, an outlier is a point for which ∃x[i] > ρ with ρ = 0.5(1/m)

(i.e. the normal data lies in half the volume of the m-dimensional unit hypercube).
Separation is only given by all dimensions in conjunction. The same is true for the
Linear dataset, where the normal data is separated from the outliers by the hyperplane
h = {x |x/||m|| − 0.5||m|| = 0}.

Real World Data All real world data was taken from the CVM authors’ web site1.
The letter dataset consists of 20,000 data points for the 26 letters of the latin alphabet,
each represented by 16 attributes. For the experiments, 773 examples of the letter G were
taken as normal data and 796 of letter T extracted as outliers. The KDDCUP-99 data
consists of 5,209,460 examples of network traffic described by 127 features. The task
is to differentiate between normal and bad traffic patterns. The extended MIT face

1http://c2inet.sce.ntu.edu.sg/ivor/cvm.html



202 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

Table 8.2: Number of data points (total, training, test and validation set)

Dataset Total Training Test Validation
normal outliers normal outliers

Random datasets 60,000 20,000 10,000 10,000 10,000 10,000
letter 1,000 400 150 150 150 150

kddcup-99 60,000 20,000 10,000 10,000 10,000 10,000
face 20,000 10,000 2,500 2,500 2,500 2,500

dataset contains 513,455 images consisting of 19x19 (361) grey scale values. The task is
to decide if the image contains a human face or not.

8.4.1 Experimental Setup
VDCVM was implemented in Java using the Spread Toolkit2. VDSVM was implemented
in Python using LibSVM. Also the results for the central 1-class ν-SVM model were
obtained with LibSVM.

Table 8.2 shows that 60,000 points were generated for each of the random datasets.
From each of the real-world datasets, only a random sample was taken (column Total),
because the LibSVM would have had problems to handle datasets with such a large
number of observations. The samples were randomly split further into independent sets
for training, validation (i.e. parameter optimization) and testing, with sizes as shown (see
also Sect. 3.1.7 on validation). The central and local VDSVM models were trained on the
whole training set, while VDCVM was allowed to sample up to the same amount of data.
The methods require different parameters γ and ν (or C), since VDSVM uses a standard
RBF kernel and the 1-norm on its slack variables, while VDCVM uses the 2-norm and
a combination of local kernels. For VDSVM, 75 random parameter combinations were
tested, and for VDCVM 100 combinations, alternatingly conducting a local and global
random search. All error rates reported were obtained from a single run on the test set,
with parameters tuned on the validation set.

8.4.2 Experimental Results
The plots in Figure 8.3 compare the performance of VDCVM to a single central 1-
class model with standard RBF kernel and to VDSVM, i.e. local 1-class models which
communicate only outlier candidates to the central coordinator for testing. The error
rates are averaged over the results obtained for different numbers of nodes (2, 4, 8, 16,
32), with error bars indicating the standard deviation.

Prediction Performance on Synthetic Data All methods, including the central
1-class model, show high error rates trying to separate outliers from normal data for

2http://www.spread.org



8.4. EXPERIMENTAL EVALUATION 203

Error rate Comm. costs, k=2 Comm. costs, k=8
Bo

x
Li

ne
ar

G
au

ss
ia

n
Se

pB
ox

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 32 64

er
ro

r r
at

e 
(%

)

attributes

Central Model
VDSVM
VDCVM

0M
1M

5M

10M

2 4 8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

0M
1M

5M

10M

8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

 0

 10

 20

 30

 40

 50

 60

2 4 8 16 32 64

er
ro

r r
at

e 
(%

)

attributes

Central Model
VDSVM
VDCVM

0M
1M

5M

10M

2 4 8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

0M
1M

5M

10M

8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 16 32 64

er
ro

r r
at

e 
(%

)

attributes

Central Model
VDSVM
VDCVM

0M
1M

5M

10M

2 4 8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

0M
1M

5M

10M

8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

 0

 1

 2

 3

 4

 5

 6

2 4 8 16 32 64

er
ro

r r
at

e 
(%

)

attributes

Central Model
VDSVM
VDCVM

0M
1M

5M

10M

2 4 8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

0M
1M

5M

10M

8 16 32 64

by
te

s 
tra

ns
fe

rre
d

attributes

VDSVM
VDCVM max
VDCVM real

    2          4            8          16          32        64     2          4            8          16          32        64     8               16                32                64

    8               16                32                64

    8               16                32                64

    2          4            8          16          32        64

    2          4            8          16          32        64

    2          4            8          16          32        64

    2          4            8          16          32        64

Error rate Comm. costs, m=2 Comm. costs, m=8

Figure 8.3: Performance of VDCVM, VDSVM and a central model with standard RBF-
kernel on the generated datasets. Note that communication costs for central model and
VDSVM are the same, due to equal sample size.

the Linear and Box datasets in higher dimensions. It could not be verified that the
VDSVM performs well with higher dimension, as stated in [DBV11]. In low dimen-
sions, the combined RBF-kernel has worse error rates than a standard RBF-kernel and
VDSVM’s ensemble of local classifiers. However, the error rates of VDSVM are still high
compared to those of the central 1-class model. On the datasets whose attribute values
provide more information about the label locally, i.e. Gaussian and SepBox, VDCVM
shows similar or even better prediction performance than its competitors. This might be
explained by the lower number of support vectors it achieves, due to small core set size.
Such less complex models might generalize better than more complex ones. Another



204 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

Table 8.3: Results on real world datasets (p: attributes, m: nodes, err: error rate in %,
bytes: amount of bytes transferred).

Dataset p m Central model VDSVM VDCVM
err Kbytes err Kbytes err Kbytes

letter 16 2 10.000 54 9.333 54 6.500 9
4 11.000 54 9.333 54 10.500 16

kddcup-99 127 2 0.285 20,401 0.220 20,401 0.000 1,206
4 0.450 20,401 0.290 20,401 0.002 1,526

face 361 2 6.220 29,006 7.900 29,006 4.940 808
4 5.580 29,006 6.880 29,006 5.100 969

explanation could be that better hyperparameters were found during tuning.

Communication Costs on Synthetic Data With growing dimension, VDCVM
becomes more and more communication-efficient than sending the full sample to a central
node for analysis. For the largest dimension p = 64 and m = 2, it communicates about
10 times less data than the other methods. For Gaussian and SepBox, which are easier
to separate than the other datasets, VDCVM sampled less observations than maximally
allowed in several cases (compare VDCVM max to VDCVM real).

Performance on Real-World Data All methods achieve similar error rates on the
real world datasets (see Table 8.3), with VDCVM sometimes performing a bit better.
Again, this might be explained by the less complex models it produces, or by better
hyperparameters found with the random tuning strategy. VDCVM transmits less data
than its competitors. For instance, in case of the face dataset vertically partitioned
over four nodes, the payload transmitted by VDCVM is 30 times smaller. Note that the
face dataset has already been reduced from 513,455 observations to 20,000, such that
LibSVM could handle it properly. Sending the whole dataset would result in a payload of
about 186 MB, considering that grey scale values can be encoded in a single byte. With
four nodes, VDCVM achieves an error rate as low as 5.1%, but communicates about
191 times less data between local nodes and the central coordinator as if the whole face
dataset would have been centralized for analysis.

Number of Iterations vs. Communication Costs The plots in Figure 8.4 show
how the number of transmitted bytes grows with the number of iterations, for a fixed
number of features, and from when on VDCVM becomes less communication-efficient
than VDSVM. Note that communication costs are shown on a log scale. As shown in
the left figure for 10 features, the crossover occurs at 1,000 iterations (corresponding to
about 59,100 observations). The right figure plots the transmitted bytes for 500 features.
Here, the VDCVM is at least an order of magnitude more communication-efficient for



8.5. SUMMARY AND CONCLUSIONS 205

1K

10K

100K

1M

10M

100M

 0  500  1000  1500  2000  2500  3000

by
te

s 
tra

ns
fe

rre
d 

(lo
g 

sc
al

e)

T (iteration)

Communication costs, m=10

VDSVM
VDCVM 1K

10K

100K

1M

10M

100M

1G

 0  500  1000  1500  2000  2500  3000

by
te

s 
tra

ns
fe

rre
d 

(lo
g 

sc
al

e)

T (iteration)

Communication costs, m=500

VDSVM
VDCVM

Figure 8.4: Bytes transferred (log scale) by VDSVM and VDCVM with a growing
number of sample size and iterations (T), for 10 (left) and 500 (right) attributes, s = 59,
m = 1.

all plotted iterations of the algorithm. In general, the more attributes are stored at each
local node, the more can be saved in comparison to centralizing all data.

8.5 Summary and Conclusions
The VDSVM, a distributed version of the 1-class ν-SVM for vertically partitioned data,
has two drawbacks. The first is that it might miss global outliers which are not also local
outliers in at least one dimension. Here, the problem is that local models are trained
on different subspaces of the whole data matrix, which may result in largely differing
local models in terms of support vectors. The second drawback is that the size of a
sample the VDSVM transmits to a central coordinator node must be specified by the
user. Specification of the size in advance is difficult, since sample complexity depends
on the underlying data distribution, which is unknown. The approach proposed in
this chapter is to replace the central model by a CVM model, which samples only as
many observations as needed to reach a (1+ε)-approximation of the minimum enclosing
ball (MEB). Further, it has been proposed to replace the training of local models by a
distributed furthest point calculation over the local nodes. Since there exists just a single
model managed at the coordinator, there exists also only one set of support vectors.

As has been demonstrated, a communication-efficient distributed computation of the
furthest point cannot be achieved for arbitrary kernel functions. The linear kernel is not
normalized, and therefore cannot be used with the CVM. The RBF-Kernel, which is
usually used with the CVM, leads to an expression for the furthest point calculation
which is not separable over local nodes. It would lead to communication costs that
are asymptotically quadratic in the number of observations n. Therefore, it has been
proposed to use a combination of RBF-Kernels. This allows for the development of
a more communication-efficient distributed algorithm, called the Vertically Partitioned
Core Vector Machine (VDCVM).



206 CHAPTER 8. VERTICALLY DISTRIBUTED CORE VECTOR MACHINE

Analysis of VDCVM’s communication costs shows that they are asymptotically quad-
ratic in the number of iterations T , where T � n. Hence, the VDCVM with a combi-
nation of RBF-Kernels is more communication-efficient than using the standard RBF-
Kernel. Nevertheless, due to the transmission of updated α-values in each iteration,
there is a break even point where the VDCVM becomes less efficient than sending indi-
vidual observations instead of partial sums. However, as long as the number of features
stored per node is high enough, communication costs grow only slowly with iterations.
Therefore, in many cases, the maximum number of observations the VDCVM can han-
dle in a communication-efficient manner corresponds to large datasets of about a million
observations. As demonstrated in the experiments, the number of observations sam-
pled in practice can be even much lower than this theoretical maximum. For instance,
on the extended MIT face dataset, the VDCVM reaches an error rate as low as 5.1%,
but communicates about 191 times less data than needed when centralizing all data for
analysis.

In all experiments conducted, the VDCVM is more communication-efficient than its
direct competitors, the central 1-class ν-SVMmodel and the VDSVM, except for very low
numbers of attributes. In many cases, the savings in communication do not come at the
expense of accuracy. To the contrary, there are some cases where the VDCVM performs
even slightly better than the other tested algorithms. This might be either explained by
CVM’s models being less complex, or a better tuning of hyperparameters. Nevertheless,
there are some cases where the VDCVM performs worse in terms of accuracy, namely on
the synthetic datasets which contain conditionally dependent features, given the label.
As it seems, the combined RBF-Kernel cannot capture such dependencies. However, it
should be noted that at least in higher dimensions, no method performs well, even not
the 1-class ν-SVM with standard RBF-kernel.

Finally, some comments should be made on the suitability of the VDCVM for highly
resource-constrained settings, like pervasive distributed systems. Continuous transmis-
sion of data may consume lots of energy, while the connection must be kept up. With
the VDCVM, depending on application, the local nodes could send their partial sums
infrequently in short bursts, whenever they have gathered s sample points. In between,
the sensors would not need to stay connected to the central node, saving resources. Once
s points are gathered, sensors could forget about such points, keeping only a single point
which belongs to the core set. Though the algorithm’s operation is not exactly that of
a streaming algorithm, since the memory consumption is not constant, it comes close
to (infrequent) streaming. The memory footprint on all nodes is relatively low at least,
considering that only the core set needs to be stored, which is usually much smaller than
the total number of observations. In terms of CPU and battery power, local nodes need
not to be powerful, since computations only consist of kernel calculations. The central
coordinator node, however, needs more resources, since solving the central QP problem
can be very demanding. In a wireless sensor network with hierarchical topology, maybe
it could be operated on cluster heads, which are more powerful than sensor nodes. Fol-
lowing ideas from sensor node clustering (see Sect. 4.2), the coordinator could be rotated
over cluster heads, for fairer distribution of energy usage. Due to the small size of the



8.5. SUMMARY AND CONCLUSIONS 207

core set, it could be transferred from one cluster head to the next. Prediction after
training is also communication-efficient, since only partial sums need to be sent to the
central coordinator. These are single scalars per node and observation, and independent
of the number of dimensions.

Based on aforementioned considerations, the VDCVM may have good chances to
be applicable in resource-constrained pervasive environments, in contrast to other sup-
port vector machine algorithms developed for the vertically partitioned data scenario
(see Sect. 4.4). Especially, such algorithms have either high communication costs, like
the privacy-preserving SVMs, or they would need to solve QP problems directly on sensor
nodes, like consensus algorithms or the VDSVM. They are thus much more demanding
than the VDCVM, which uses only kernel calculations at local nodes, which could be
sensors. In fact, the VDCVM has already been run successfully fully distributed on three
Raspberry Pis connected wirelessly, with one Raspberry Pi being the central coordinator
node and the other two devices being the local nodes.





Chapter 9
Summary, Conclusions and

Questions

The following subsections first summarize this thesis, then draw conclusions and finally
give an outlook on future research opportunities.

9.1 Summary
Opportunities for Data Analysis in the Internet Of Things This thesis started
with giving an overview of the IoT and its many applications. It stressed several kinds
of applications which can only be enabled with the help of data analysis. Here, highly
sophisticated applications would embed data analysis fully into an IoT system, and
integrate analysis as much as possible with control. In this way, it would be possible
to create fully closed optimization loops, where data analysis builds models based on
what’s really there, and gives control the necessary information to adapt parameters
of running processes to the changing circumstances, enabling the system as a whole to
reach its goals. As discussed, being able to adapt to a changing environment in real-time
could lead to optimized systems which are much more sustainable than current ones,
reducing waste and saving valuable resources like energy.

Cloud Computing vs. Communication-constrained Settings Applications in
the IoT are of a highly distributed nature. Currently, there exist mainly two different
types of distributed systems. The first type of systems are data centers following the
paradigm of parallel high-performance computing. The second type are pervasive dis-
tributed systems, which consist of small devices connected in a wireless network. Such
systems are much more communication-constrained than devices operating in a data
center, where network technology achieves bandwidths comparable to main memory ac-
cesses. For battery-powered devices, transmitting data is one of the most expensive
operations in terms of energy, and wireless connections today have a much lower band-

209



210 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

width than local area networks. However, pervasive distributed systems, like wireless
sensor networks, are not the only kind of systems which suffer from severe communica-
tion constraints. Another example are high throughput applications which require the
real-time analysis of continuous streaming data, like Formula One racing, or those where
data masses are so huge that they cannot be transmitted over existing communication
lines, like applications in physics or earth sciences.

The Horizontally Partitioned Data Scenario Today, there exist many distributed
algorithms for the horizontally partitioned data scenario, where subsets of observations
are distributed over the nodes. There are some algorithms which are communication-
efficient, like consensus algorithms, which for instance solve the primal SVM problem
by an iterative exchange of weights between nodes. The number of weights exchanged is
usually much smaller than the number of observations. Another communication-efficient
algorithm is the least squares regression SVM, which transmits only O(p2) for the linear
kernel. Admittedly, communication-efficient solutions for non-linear kernels seem to be
much harder to obtain. But there exist other communication-efficient distributed algo-
rithms, like for decision tree induction or clustering. Some of such distributed algorithms
even take the severe resource-constraints of wireless sensor networks into account.

The Vertically Partitioned Data Scenario The vertically partitioned data sce-
nario, which has many relevant applications in an IoT context, seems to be more chal-
lenging. Here, not observations are distributed over nodes, but features of observa-
tions. Not many communication-efficient algorithms for the scenario exist. For instance,
privacy-preserving SVMs have quadratic communication costs, and consensus algorithms
require the iterative transmission of predictions for all observations. Depending on the
number of iterations, they might therefore transmit more data than the original dataset.
As we have seen, the biggest challenge of the scenario are conditional dependencies be-
tween the features from different nodes, given a target value to be predicted. Respecting
such conditional dependencies would require to look at combinations of features from
different nodes, potentially leading to high communication costs. We arrived at the
main problem of this thesis, namely how to realize communication-efficient distributed
learning algorithms for the vertically partitioned data scenario.

A Hot Rolling Mill Case Study The vertically partitioned data scenario has been
motivated with a case study from smart manufacturing. In a hot rolling mill, data about
the processing of steel blocks is assessed by different kinds of sensors attached along the
process chain. The quality of rods finally cut from the steel blocks should be predicted
as early as possible, in real-time, such that unnecessary processing could be spared and
resources be saved. Data about a single observation, which is the processing of a single
steel block, are sets of value series partitioned over different physical machines (process-
ing stations). The tighter the feedback loop between prediction and control becomes, the
less time will be available for the preprocessing of value series and making predictions.



9.1. SUMMARY 211

Apart from the data being vertically partitioned, the real-time constraints may lead to
questions which are typical also for the distributed learning from vertically partitioned
data. Which data should be processed locally, to match the real-time constraints, and
which data must be sent to a central node, preserving accuracy? Which data can be
sent to the next station in the process chain?

The preprocessing of value series poses a problem in its own right, not only in the
context of production processes, but for IoT generated data in general, which is usually
time-related. As discussed, finding a good representation of value series in propositional
form for learning, which is the problem of feature extraction, is a hard task. Only few
automated methods for the feature extraction from value series exist, and those that do
exist, like method trees, assume to be given a collection of single one-dimensional value
series of the same type. In comparison, observations in production processes are sets of
highly heterogenous value series. Given the heterogenous nature of IoT devices, the value
series in our case study may come close to the kind of data which will be received also in
other IoT applications. Each series has its own requirements for data preparation, like
cleansing, imputation, alignment, normalization, and segmentation. In the context of
our case study, such processes have been implemented in RapidMiner. They are part of
a proposed algorithm for the preprocessing of value series in production settings, which,
except for the domain-specific subroutines, is highly generic and might be also used,
with small adaptations, in other production settings or maybe IoT applications.

Features extracted in the context of the case study are simple statistics and numeri-
cal values, extracted from whole value series (global), their segments (local) and over the
features of segments (aggregates). Thereby value series can be represented at different
levels of granularity. All features are gathered in a single vector in propositional form,
such that all observations have the same number of attributes. Based on such features,
we could successfully identify and quantify operational modes, as verified by the do-
main experts. Quantification of deviations from targeted processing is new information
which has been made available by data analysis. It can be used, for instance, for the
automatic monitoring of processes. We also tried to predict the final quality of rods by
training different classifiers. As it seems, quality is hard to predict, but not only with
these features, but also with many other extracted types of features. It could be that
information from the rolling process alone doesn’t suffice to predict the final quality of
rods sufficiently well. It is therefore planned to combine the data from rolling with data
about the previous processing step, which is melting.

Technically, it is difficult to associate data about the melting process with the casting
of individual steel blocks. The melting data is therefore aggregated information about
different charges of blocks, while we would need data about individual blocks. Similar
problems occur with available quality information, where often only the proportions of
labels are given for whole charges of steel blocks. Aggregated label information motivates
a relatively novel kind of learning task, the problem of learning from label proportions.



212 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

Learning from Label Proportions by Clustering (LLPC) The problem of learn-
ing from label proportions has not only relevance for production processes, but also for
privacy-preserving data mining. For instance, we may ask what can be derived from
aggregated election results given for districts, when governmental agencies can obtain
data about individuals living in these districts. Such questions are, of course, closely
related to privacy issues posed by the IoT, whose devices may also collect data about
individuals.

A new algorithm for the task has been proposed, the Learning from Label Propor-
tions by Clustering (LLPC) algorithm. The algorithm’s performance is compared to
three other state-of-the-art approaches, in terms of accuracy and running time. The
algorithm’s accuracy is similar to the accuracy of its competitors, or significantly higher
in the case of larger bag sizes, where learning is more difficult. At the same time, LLPC’s
asymptotic running time is only linear, while the running time of its competitors is at
least quadratic.

The proposed algorithm comes with many other benefits. It is easy to understand
and implement. It can handle multiple classes, and labeled observations, if they are
given. It can handle many different data distributions, by a simple exchange of inner
clustering algorithm. In fact, the algorithm has already been used successfully with many
different clustering algorithms, like k-Means, EM clustering, Kernel k-Means, density-
based clustering, Support Vector Clustering, and projectional clustering. Similarly, the
labeling strategy can be exchanged, as can be the loss function over the label proportions.
The evolutionary strategy for the optimization of attribute weights should be easy to
exchange as well. The algorithm follows ideas which at the time of its publication were
novel and not well-explored, but recently have been proven by other authors to be valid
ideas from a view point of learning theory. For instance, it has been recently proven that
the ability to predict bag proportions well depends on the capacity of the used hypothesis
class. In LLPC, the capacity can be controlled by changing the number of clusters, and
matching the label proportions well can bound the probability of classifying individual
instances incorrectly, according to theory. Further, the proposed loss function measures
how well the class priors are matched. Recently it has been shown by other authors
that whenever the class priors are matched, the error made on individual observations
is bounded, in cases where observations, given the bag, are identically independently
distributed. Also, the formulated ideas about best and worst case of the scenario are
now proven by other authors. Used with k-Means, the algorithm has a small (and
constant) memory footprint. Therefore, there is a chance that the algorithm might also
run on resource-constrained devices as they are typical for the IoT, at least at the data
generating side.

Interestingly, the problem of learning from label proportions is closely related to the
communication-efficient transmission of labels in the vertically partitioned data scenario,
which has been a largely neglected problem so far. The idea of reducing communication
by sending label counts is realized in the algorithm that has been proposed next.



9.1. SUMMARY 213

Training of Local Models from Label Counts (TLMC) In the context of the IoT,
more and more cities are getting instrumented with sensors. Such smart cities may save
resources based on information obtained from different kinds of monitoring applications.
One important application is the prediction of traffic flow, which promises large savings
in terms of fuel if traffic jams could be predicted correctly. Current traffic prediction
systems are highly centralized. This poses risks in case of disasters, since centralized
systems can easily become single points of failure. Moreover, the maintenance of hard-
wired sensors is costly, due to related construction work. Also, central systems pose
a bottleneck in terms of bandwidth. A decentralized system like the one we propose,
consisting of cheap battery-powered presence sensors that might be easily attached to
existing infrastructure, could be much more fault-tolerant, and easier to maintain. As we
have seen, decentralized systems consisting of battery-powered sensors pose challenges
for data analysis in their own right, especially if communication is constraint by the use
of wireless network technology.

For the scenario proposed has been a decentralized in-network classification algo-
rithm, the Training of Local Models from (Label) Counts (TLMC). The method reduces
communication by only transferring aggregated label information between nodes in local
neighborhoods of topologically close sensors. It has been discussed that exchanging only
labels between nodes can be much more communication-efficient than the transmission
of measurements. Thereby communication costs become independent of the numbers
of features stored at each node. Even more communication-efficient is the transmission
of aggregated label information, in most cases. Hence, it has been proposed to send
only the counts of labels for whole batches of observations. At each local node, TLMC
transforms such label counts into proportions and learns from them with the previously
introduced approach for learning from label proportions.

Feasibility of the approach has been demonstrated by evaluating the algorithm’s per-
formance in the application context of traffic flow prediction. It is shown that TLMC is
much more communication-efficient than centralization of all data, or sending all labels,
but that accuracy can nevertheless compete with that of a centrally trained global STRF
model. This is a bit surprising, since TLMC does not respect conditional dependencies
between nodes, given the label. Such dependencies certainly exist in a densely connected
street network. However, as it seems, the nodes nevertheless provide enough information
on their own, such that conditional dependencies involving combinations of features may
be ignored.

The Vertically Distributed Core Vector Machine (VDCVM) Anomaly detec-
tion is an important analysis task in many fields of application, like smart production
processes, logistics, physics, earth sciences, disaster management, to name a few. In the
case of production processes, anomalies or outliers can be interesting patterns that are
not to be discarded, but need to be further analyzed and modeled. For instance, in
production processes like the hot rolling mill process in our case study, patterns which
deviate much from the usual processing may be highly correlated with a low quality of



214 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

final products. Quality deviations in production processes occur only seldom, which is
the reason why the class distribution in such settings is highly imbalanced. A popular
classifier for learning from such imbalanced data is the 1-class ν-SVM.

For the vertically partitioned data scenario, there exists a communication-efficient
anomaly detection algorithm based on the 1-class ν-SVM. The algorithm comes with two
disadvantages. The first is that it might not detect global outliers which are no local
outliers in at least one dimension. The second is that the size of a sample transmitted
to a central coordinator node has to be user-specified. Specifying the size of the sample
in advance is difficult, since the number of observations needed to learn depends heavily
on the underlying data distribution, which is unknown.

In the algorithm proposed in this thesis, the Vertically Distributed Core Vector Ma-
chine (VDCVM), the 1-class ν-SVM at the central node is replaced by the Core Vector
Machine (CVM). The CVM with probabilistic speedup strategy samples only as many
observations as needed to reach a (1 + ε)-approximation of the minimum enclosing ball
(MEB) around all observations, with high probability. Sampling all feature values of
observations, however, can be avoided by distributing CVM’s furthest point calculation
across nodes. As has been shown, this makes only sense with kernels which make the
furthest point calculation separable over nodes. The standard RBF-kernel should not
be used, since it would lead to quadratic communication costs in the number of obser-
vations. Therefore, it has been proposed to use a combination of RBF-kernels. Using
such combination leads to communication costs which are quadratic in the size of the
core set, since updated α values need to be transmitted for each core set point. The
size of the core set, however, grows only slowly by a single observation in each iteration.
It has been shown that the number of observations which can be analyzed, until the
algorithm becomes less communication-efficient than transmitting all feature values per
observation, is large enough for many applications.

In experiments it has been shown empirically that the VDCVM communicates up to
an order of magnitude less data during learning, in comparison to the previously men-
tioned distributed state-of-the-art approach, or training a global model 1-class model
by the centralization of all data. Nevertheless, in many relevant cases, the VDCVM
achieves similar or even higher accuracy on several controlled and benchmark datasets.
The only disadvantage of the VDCVM might be that it cannot be used with the stan-
dard RBF-kernel, which would lead to quadratic communication costs in the number of
observations sampled. Instead, the VDCVM uses a combined RBF-kernel, which seems
to have difficulties to capture conditional dependencies between the features of different
nodes, given the label. However, it should be noted that at least in higher dimensions,
also the global model of the 1-class ν-SVM with a standard RBF-kernel didn’t perform
well on the same controlled datasets.

Only the central coordinator node has to solve a QP problem, which is resource-
demanding, while the local nodes execute simple kernel calculations. We therefore think
that the VDCVM might be the first SVM algorithm for the vertically partitioned data
scenario which has a chance to be realized in a truly resource-constrained setting, like
wireless sensor networks. The algorithm has already been successfully run in a network



9.2. CONCLUSIONS 215

of Raspberry Pis, which are small devices, and whose resources are comparable to those
of modern mobile phones. Therefore, the algorithm should be able to run on mobile
phones at least, whose most expensive operation, in terms of energy, is the transmission
of data, which the VDCVM reduces.

9.2 Conclusions
In this section, we shortly return to the research questions formulated at the beginning of
this thesis, which have mainly driven the development of distributed algorithms for the
vertically partitioned data scenario. We first take an algorithmic perspective, afterwards
discuss implications of results presented for the IoT, and then come to applications which
might be enabled by the developed algorithms.

Algorithmic Perspective The first questions we wanted to answer was how the
learning task influences communication costs when the data is vertically partitioned,
and how the design of algorithms changes with learning task. By reviewing related
work, discussing the challenges of the vertically partitioned data scenario from a learning
perspective, and designing two distributed algorithms for different learning tasks, the
answer which might be given is the following. Communication costs do not depend so
much on task, but rather on conditional dependencies of features from different nodes,
given the label. These dependencies underly all learning tasks, and are therefore a
general problem of learning in the scenario. Experiments on controlled datasets which
simulate the difficult cases show that the problem really exists and may lead to a complete
failure of algorithms which do not respect such dependencies. The distributed 1-class
ν-SVM (VDSVM) has high error on one of the datasets, although it checks local outliers
against a global model. The experiments indicate that the algorithm might miss global
outliers which are no local outliers in at least one dimension. In case of the VDCVM,
the combined RBF-kernel seems to have problems with capturing such dependencies.
However, in experiments on the datasets from real domains, the problem did not occur.
Especially, TLMC, which ignores conditional dependencies between features of different
nodes, performed well on a densely connected street network, where such dependencies
should exist. The phenomenon might be compared to the success of the Naïve Bayes
classifier, which makes the same naïve assumption about the data, but nevertheless
performs well in many relevant cases.

The second question was how data distribution affects communication costs and the
accuracy of algorithms, and how the design of algorithms could change depending on dis-
tribution. The problem of making a naïve assumption has been discussed above already.
Therefore, there should be made a few remarks on VDCVM’s number of iterations. It
could be observed that on datasets in which the outliers are easy to separate from the
normal observations, the number of iterations, and therefore core set points and support
vectors, was much lower in comparison to the total number of observations. On the
difficult controlled datasets, where separation is hard to achieve, the VDCVM sampled



216 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

many more observations. This behavior can be easily explained by the fact that highly
irregular decision borders, as they are given in the non-separable case, usually need more
support vectors for their description. It should be noted that the same behavior can also
occur when the data is easy to separate, but the decision border is highly non-linear.
In general, non-linearities pose problems for learning in the vertically partitioned data
scenario, since they involve the necessity to combine features from different nodes. For
instance, use of a non-linear kernel would make the furthest point calculation of the
VDCVM non-separable over the nodes, leading to quadratic communication costs in
the number of observations. From the viewpoint of data distribution, highly non-linear
decision borders may easily lead to situations in which observations can no longer be
separated from each other with small error by looking only at single dimensions. In a
single dimension, non-linear regions of normal observations and outliers can have high
overlap, making separation difficult.

The third question concerned bounds on communication, and how much informa-
tion must be transmitted to learn successfully from vertically partitioned data. Though
no bounds have been proven in this thesis, some remarks can be made, based on the
empirical results obtained and the insights gained on the problem. If the data con-
tains conditional dependencies between features, given the class, it becomes necessary
to transmit feature values of different nodes. In principle, it would suffice to transmit
only those features which are dependent. Unfortunately, which dependencies exist is
often not known before learning. In the worst case, all features might be conditionally
dependent on each other, given the label. Then we have to transmit all of them, for as
many observations as needed. For the number of observations to be sampled, there exist
the standard bounds from learning theory. When there are no conditional dependen-
cies, we can transmit much less data to learn successfully, as shown by the experiments
conducted. Especially, with TLMC, we could obtain sufficient accuracy, in comparison
to a global model, by transmitting the labels of all observations for the training of local
models only once. In comparison, existing consensus methods would send predictions
for all observations in several iterations until convergence. The VDCVM transmits the
scalar value of a partial sum for each observation and node, and updated α values and
feature values for each core set point. As long as the core set stays small, only a small
number of observations are analyzed and sampled in relation to the total number of
given observations. In such cases, the VDCVM transmits much less data in comparison
to existing methods, which send a single value for each observation, maybe even repeat-
edly. At the same time, as experimental results evaluating the VDCVM have shown,
there was no trade-off to be made concerning accuracy.

The fourth question was how the supervised learning of local models can be made
more communication-efficient in cases where labels do not reside on the local nodes.
Proposed has been to transmit only aggregated label information, in the form of label
counts, and use methods for learning from label proportions at each local node. The
feasibility of the idea has been shown by evaluating TLMC successfully in the application
context of traffic flow prediction. Further experiments on other domains would need to
be conducted to show the generality of the approach empirically. However, the successful



9.2. CONCLUSIONS 217

evaluation of LLPC on several standard datasets and the performance of other methods
for learning from label proportions show that learning from aggregated label information
can be successful also in the context of other domains.

The fifth and final question was how distributed data analysis algorithms in the
vertically partitioned data scenario might handle the addition and removal of sensors.
In turn, this would lead to numbers of features changing dynamically during learning,
and prediction, while standard methods expect a fixed number of features. Based on
our discussion of TLMC one might say that the training of local models and combining
their predictions by a fusion rule should be highly robust against such changes. During
learning, local models trained for failing sensors might be simply discarded. They can
be trained again when sensors reenter the network. During prediction, if only a few
sensors fail, it may happen that the fusion rule combines a fewer number of predictions.
This might affect accuracy badly when the models of failing sensors are well-performing
models. Nevertheless, making a prediction would be still possible at least.

There were other questions posed. These concerned research questions which are
still open and which will be discussed in Sect. 9.3.

Implications for the IoT In the chapter about the IoT, the difference between dis-
tributed high performance computing and distributed pervasive systems has been dis-
cussed. It has been argued that there exist highly communication-constrained scenarios,
not only for pervasive systems, which don’t allow for the centralization of all data in
the cloud. The results presented in this thesis seem highly promising for such sce-
narios. For settings in which conditional dependencies between features don’t exist or
play only a marginal role for estimation, TLMC’s local models can be trained in very
communication-efficient ways, with sufficient accuracy. As shown using k-NN, for higher
accuracy, the labels of all observations may be transmitted, still yielding communication
costs which are independent of the number of features stored at each node. VDCVM is
communication-efficient for large numbers of observations, with realistic choices for the
number of nodes and features. Using any of the presented methods, there were cases
where communication costs could be reduced by an order of magnitude in comparison
to centralizing all data. There are counter examples. On the difficult synthetic datasets,
VDCVM’s accuracy suffered, which means that there might be also real-world scenarios
where communication-efficient learning won’t work.

In situations where we are not as communication-constrained, and have the choice
between centralizing all data and more local processing, it depends. If we expect many
conditional dependencies between features, we might opt for reducing risk and centralize
all data. However, as has been shown, in many settings not much data needs to be
communicated to obtain a high prediction accuracy.

The previous observation concerns a hot topic in data mining today, which is big
data. In fact, big data is expected to be especially generated by the IoT. It is discussed
very much how the big data masses produced can be handled by data analysis. As
experimental results of the proposed methods suggest, data analysis algorithms don’t



218 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

necessarily need to be run in a data center. They could as well operate directly on small
devices, which generate the data, or on slightly more powerful intermediate nodes, reduc-
ing the amount of data which needs to be transmitted to a central location. This suggests
that the big data problem might be handled much better by decentralization, instead of
centralization. Especially, the variety of big data, which means the heterogeneity of its
data sources, might be handled much better locally. As experiences with our case study
show, heterogenous value series require highly individual processing. Manufacturers of
IoT devices or the machines used in production know their devices best. If they would
ensure that the data coming from their sensors and machines is already in appropriate
format for learning, i.e. cleansed, aligned, and segmented, for instance, the intensive
work of data preparation could be spared.

Nevertheless, even with properly prepared data, there are still many open questions
left concerning data analysis in decentralized systems, presented in Sect. 9.3.

Application Perspective As already pointed out at the beginning of this thesis,
and throughout the text, there exist many potential applications for communication-
efficient distributed algorithms. Examples reach from telescopes producing huge data
masses in physics, over earth sciences transmitting image data for analysis over satellite
connections, to high-throughput applications like Formula One racing and decentralized
traffic prediction systems. The smart manufacturing case study presented in this thesis
focuses on a hot rolling mill process, where predictions need to be made under real-time
constraints.

As consultancy during data acquisition for our smart manufacturing case study has
shown, the trend goes to instrumenting more and more devices in production with sen-
sors. The hope is to extract useful information from the data recorded. As has been
demonstrated, data analysis can help with the extraction of such information. Through
learning from the recorded data of newly attached sensors, for the first time it has be-
come possible to quantify deviations from targeted processing. The learned models could
now be used for the automatic and continuous monitoring of such production processes.

Talking to people from the field of manufacturing also shows that the problems we
tackle in our case study occur in many different kinds of production processes. The
biggest problem seems to be that simulations alone no longer suffice for the planning of
production processes, which have become highly individualized. There are cases which
cannot be covered by simulations. What’s more, existing simulations have a long running
time, and cannot be used for real-time prediction or planning. Further, they are not
based on what happens, but on what is assumed to happen. Simulations might therefore
optimize the behavior of a production system on average, but they cannot account for
situations which occur during the running process itself or react to such situations in a
timely manner. Data analysis directly embedded into the process chain could therefore
help with providing the necessary information to improve on existing simulations, but
also with making more timely control decisions. Thereby, waste could be reduced and
valuable resources like energy could be saved.



9.3. OPEN RESEARCH QUESTIONS 219

9.3 Open Research Questions
This section first lists open research questions concerning the algorithms presented in
this thesis. It then treats questions concerning distributed data analysis as a whole.

Further Research on Algorithms The distributed algorithms presented all learn
from batches of data. The data generated from IoT devices, however, will be continuous
data. The question is if any of the proposed algorithms could be turned into a streaming
version.

The VDCVM already works incrementally, but is no streaming algorithm, because it
cannot handle concept drift. In theory, it has a constant memory usage, because the size
of the core set is limited by a constant. However, this constant can be too large for prac-
tical cases. Can the VDCVM be turned into a full streaming version? As our discussion
of the incremental SVMs suggests, at least without making any further assumptions on
the data distribution, this is unlikely to work. Throwing away support vectors, which
would be necessary to keep memory usage constant, might lead to insufficient accuracy.

Creating a streaming version of TLMC seems to be more promising. It would require
to turn LLPC into a streaming version. There already exist streaming clustering algo-
rithms. Most of such algorithms are based on creating summary statistics from clusters,
instead of keeping individual observations. In addition to the means and radiuses of
microclusters, and the number of observations stored in them, one might perhaps add
additional statistics, about the number of observations stored in each bag, per cluster.
Whenever a cluster is getting labeled, based on such statistics, it should still be pos-
sible to calculate the label proportions. Another interesting question for TLMC is if
by dividing the observations into batches more intelligently, even further reductions of
communication costs could be achieved.

It would be nice if there was some way to replace the combined RBF-kernel with
the standard RBF-kernel when using the VDCVM. Maybe this could be achieved by
approximating parts of the non-separable furthest point calculation, thereby making it
separable. Further, there exists a generalized CVM for binary classification which can
also use linear kernels. It would be interesting to see if the generalized CVM can be
turned into a communication-efficient distributed algorithm for binary classification.

It has been indicated that the proposed algorithms have a chance to run on resource-
constraint small devices. An interesting question is how the savings in communication
translate to savings in energy. To answer that question, the algorithms would need to be
implemented on small devices and their energy consumption would need to be measured.

Open Research Questions of Distributed Data Analysis The distributed algo-
rithms which have been proposed are communication-efficient being trained on a given
set of features, and with given optimal hyperparameters. Unfortunately, as we have seen
in the hot rolling mill case study, the real problem which needs to be tackled is to find
a good representation of raw data, like value series, for learning. Also, the performance
of algorithms can depend very much on the chosen hyperparameters. For instance, in



220 CHAPTER 9. SUMMARY, CONCLUSIONS AND QUESTIONS

case of the VDCVM, wrongly chosen hyperparameters may not allow for easy separa-
tion between outliers and normal data, leading to a large number of observations being
sampled.

Today, it is rather unclear how to realize the processes of hyperparameter opti-
mization or representation learning, or even only feature selection, in a communication-
efficient manner. Existing wrapper approaches for both problems would repeatedly call
a distributed algorithm with different hyperparameters and sets of features. Each call
would lead to the new transmission of data between nodes.

The question is if knowledge about the model could help with reducing communi-
cation, at least in the case of hyperparameter optimization. For instance, changing the
value of γ in the RBF-kernel in some cases may lead only to slight deviations in the
set of support vectors. If we would know which support vectors will change, or could
estimate that at least, maybe we could spare, for instance, the costly transmission of
similar α values in the VDCVM.

The problems addressed not only concern hyperparameter optimization and rep-
resentation learning, but also the evaluation of learning algorithms. Usually, in the
aforementioned wrapper approaches, the true error needs to be estimated based on cross-
validation or a large enough validation set. Therefore, there are also communication-
efficient techniques needed for distributed validation and testing.



Appendices

221





Appendix A
Programming with RapidMiner

One advantage of RapidMiner over other popular data mining tools, like R and Matlab, is
that average users can build simple data mining processes without having to learn a full-
fledged programming language. Most power and complexity is hidden in the operators,
which are implemented in the Java programming language by experts and either built
in or available as additional packages.

Unfortunately, complex data mining processes sometimes require constructs which
are usually known from programming, like variables or the conditional or repeated execu-
tion of subprocesses. Another need that arises is the reuse of processes. In collaborative
work, not all participants are computer scientists or programmers. They have learned
a structured programming language perhaps, and can write a script, if at all, but work-
ing with a full-fledged Integrated Development Environment (IDE) like Eclipse, as is
almost required today for complex object-oriented languages like Java, might be entirely
new to them and involves a steep learning curve. Since they may have some knowledge
about programming, but don’t necessarily want to write RapidMiner plugins in the Java
programming language, it could be very helpful for them to see how what they already
know maps to RapidMiner operators and other constructs.

The following sections present how the abstraction mechanisms of structured pro-
gramming languages, like the subroutine concept, can be mapped to and realized by
combinations of existing RapidMiner operators. It is then discussed how to build, based
on such mappings, highly modular and maintainable data mining processes and libraries
with RapidMiner.

A.1 Java Operators vs. RapidMiner Processes
In RapidMiner, an operator encapsulates functionality that is generic enough to be used
more than once, e.g. a machine learning algorithm. Operators take inputs and deliver
outputs over so called ports. In a graphical user interface, the output ports of operators
can be connected to the input ports of other operators, thereby specifying an execution

223



224 APPENDIX A. PROGRAMMING WITH RAPIDMINER

order and data flow. The parameters of an operator, which are usually basic data types,
provide additional information on the processing.

Implementing often used building blocks in a compiled language such as Java has
the advantage that execution can be faster than the repeated interpretation of Rapid-
Miner processes consisting of low level operators. However, the creation of an extension
consisting of operators written in Java might not always be the most appropriate way
for building reusable modules:

1. Creating a RapidMiner extension not only requires knowledge of (structured) pro-
gramming, but also of fairly advanced concepts and technologies, like object ori-
ented programming, integrated development environments, build tools, version
control systems and XML. When a user already knows RapidMiner and struc-
tured programming, but not about the other mentioned technologies, having to
learn them may seem disproportionate if the number of subroutines to be imple-
mented is only small.

2. In comparison to the more direct change and test cycles of interpreted languages,
the additional building steps of compiled languages such as Java may lead to an
increased development time. Even though it is no longer necessary to restart
RapidMiner after code changes, the code of an extension every time needs to
be compiled and built using Ant. In cases where the focus is more on rapid
prototyping than speed of execution, being able to change and run a RapidMiner
process without any additional steps can thus be beneficial.

3. Once data mining processes are becoming themselves more complex, the question
arises how common patterns can be factored out and reused. Such patterns exist on
the process and not on the operator level. Therefore, mechanisms are needed which
allow for the encapsulation of common patterns in parameterized subprocesses, not
operators. Similarly, complex data mining processes may require control structures
like loops and branches.

4. In comparison to extensions, processes consisting only of built in RapidMiner op-
erators are more robust against changes of RapidMiner’s underlying Java code, like
changes in the application programming interface. Moreover, working together on
a set of processes, e.g. in one of RapidMiner Analytics’ shared repositories, can be
easier than distributing updated versions of an extension, since all users share the
same view.

The following subsections describe how operator like functionality can be realized on
the process level, using exclusively already existing RapidMiner (version 5.3) operators
instead of Java.



A.2. DEFINITION OF VARIABLES WITH BASIC DATA TYPES 225

A.2 Definition of Variables with Basic Data Types
Programming languages usually allow for the definition of named variables that may
hold different values of a certain data type. Such variables are often used to store (user)
inputs or the intermediate results of calculations. Basic data types are, for instance,
boolean values, numbers (integer and real values) and strings. In Java, variables of the
aforementioned types would be defined like the following:

boolean isActive = True;
int counter = 0;
double sqrt2 = 1.41;
String text = "Hello World!";

In RapidMiner, variables having a basic type are called macros and can be defined
by the Set Macro and Extract Macro operators.

(a) (b)

Figure A.1: The Set Macro operator

With Set Macro, a named variable can be introduced and assigned a constant initial
value. The variable’s data type is determined by the assigned value. For example,
Fig. A.1 demonstrates the parameter settings for introducing the boolean isActive
variable from the previous Java code example.

(a) (b)

Figure A.2: The Extract Macro operator

With the Extract Macro operator, the initial value is taken from values or meta data
of an ExampleSet, and can be for instance the number of examples (see Fig. A.2), the
mean of a particular column or the value of a particular cell in the data table. The type
of the variable is determined by the type of the corresponding data cell.

Often it is necessary to calculate new values from existing variables. The following
code shows how the accuracy of a classifier could be calculated in Java from the total
number of examples and the number of correctly classified examples:



226 APPENDIX A. PROGRAMMING WITH RAPIDMINER

int total = 200;
int correct = 180;
double accuracy = ( (total-correct) / (double)total ) * 100.0;

For such calculations, RapidMiner provides the Generate Macro operator. It assigns
the result of calculations on previously defined macro values either to a new or already
existing macro.

(a) (b)

Figure A.3: The Generate Macro operator

Figure A.3 shows the Generate Macro operator’s dialog for the definition of macros based
on function expressions. Existing macro values can be inserted into such expressions by
putting the macro’s name into round brackets, prefixed with a percent sign: %(. . .).
This kind of replacement almost works in any dialog’s fields. For example, it is even
possible to create macro names based on the values of other macros.

Once defined, macros can be deleted if necessary by the Unset Macro operator.
Variables in programming languages can have either global or local scope. Global

scope means that the variable can be accessed and manipulated by all parts of a program.
Local scope means that access to the variable is restricted to a certain part of the
program, e.g. the subroutine in which it was defined. In RapidMiner, the scope of a
macro is defined at run time by the execution order of operators: The macro is visible
after the corresponding macro operators are executed. From then on, the macro’s scope
is global, meaning that it is visible and can be manipulated from all subsequent operators
in the process in which it was defined. In processes consisting of many operators, it is
thus vital to name macros carefully, since otherwise it may happen that already existing
macros are unintentionally overwritten.

A.3 Definition of Variables with Complex Types
Most programming languages allow for the definition of more complex data types, like
arrays and records.



A.3. DEFINITION OF VARIABLES WITH COMPLEX TYPES 227

A.3.1 Arrays
An array can be thought of as an enumeration of values with either a basic or complex
data type. A particular value can be accessed by its position in the array. For example,
the following Java code defines an array of 10 double values, assigns 23.5 to the second
array position (indices start with 0 here) and then reads this value into another variable:

double[] values = new double[10];
values[1] = 23.5;
double single_value = values[1];

On the process level, complex data types, such as arrays, are not natively supported
by RapidMiner. However, the most widely used data structure in RapidMiner, the
ExampleSet, can easily be treated like an array, as shown in the following.

(a) (b)

Figure A.4: The Generate Data operator for arrays

First of all, the Generate Data operator can be used to create an ExampleSet which only
consists of a single column (see Fig. A.4).

(a) (b)

Figure A.5: The Select Attributes operator for deleting the label attribute



228 APPENDIX A. PROGRAMMING WITH RAPIDMINER

It must be followed at least by the Select Attributes operator with parameter settings as
shown in Fig. A.5, because Generate Data also creates a label column which is not needed
in the given context.

Figure A.6: Example Set resembling an array

Figure A.6 shows the resulting ExampleSet. Optionally the name of the column att1
could be changed to another one, like value, with the Rename operator. Also the type of
the column could be adapted with one of the operators in the Data Transformation →Type
Conversion group.

(a) (b)

Figure A.7: Setting a value with the Set Data operator

Cells of an ExampleSet can be assigned values with the Set Data operator, as shown in
Fig. A.7, resembling the assignment of values to particular cells of an array. Replacement
of macro names by their values also works in this case, allowing for the assignment of
previously calculated values to cells of an ExampleSet.

A value in the cell of an ExampleSet can be read and assigned to a macro with the
previously mentioned Extract Macro operator. For instance, Fig. A.8 shows how to access
the value in the second row of an ExampleSet, resembling the reading of array values at a
particular array position.

Since a RapidMiner ExampleSet is a dynamic data structure, already existing Exam-
pleSets can also be manipulated with more powerful operations. The Append operator
(Fig. A.9a) concatenates the rows of two or more ExampleSets connected to its input ports



A.3. DEFINITION OF VARIABLES WITH COMPLEX TYPES 229

(a) (b)

Figure A.8: Reading an array value with the Extract Macro operator

(a) (b) (c)

Figure A.9: Operators for manipulating the rows of an ExampleSet

and delivers the merged rows as a new ExampleSet on its output port. The Filter Example
Range operator (Fig. A.9b) selects a subset of rows, based on the indices of the first and
last example. With the Filter Examples operator (Fig. A.9c) it is also possible to select
rows based on other criteria, like a condition on an ExampleSet’s attribute values.

A.3.2 Associative Arrays
Like an array, an associative array holds several elements of basic or complex types, but
such elements are accessed by a symbolic key, not their position in the array. Associative
arrays are sometimes also called dictionary, map or hash table. Some languages natively
support associative arrays with a fixed number of keys already known at compile time,
like Pascal and Ada (there called records) or C and C++ (there called structs). In Java,
a hash table with keys of type String and values of arbitrary type can be constructed like
the following:

HashMap<String,Object> person = new HashMap<String,Object>();
person.put( "name", "Vladimir Vapnik" );
person.put( "age", 61 );
person.put( "affiliation", "Test" );
String name = (String)person.get( "name" );

Values can be inserted into a HashMap with put and accessed with the get method.
As with arrays, RapidMiner doesn’t provide associative arrays on the process level,

but an ExampleSet consisting of only a single row resembles the data structure quite closely.
As already demonstrated in the section about arrays, a new ExampleSet with the desired



230 APPENDIX A. PROGRAMMING WITH RAPIDMINER

number of rows (only one) and columns (resembling the keys of an associative array)
can be constructed with the Generate Data operator. After construction, the attributes of
the ExampleSet can be renamed with the Rename operator and their types may be changed
with operators from the Data Transformation→Type Conversion group. Values can be set with
the Set Data operator by setting the row number to 1 and providing the name (key) of
the column to change. Similarly, values can be read and assigned to a macro with the
Extract Macro operator.

Figure A.10: Process for constructing an associative array

Table A.1: Parameters of the process in Fig. A.10

Operator Parameter Value
Generate Data target function random

number examples 1
number of attributes 3

Select Attributes attribute filter type single
attribute label
invert selection true
include special attributes true

Rename old name att1
new name name
old name (2) att2
new name (2) age
old name (3) att3
new name (3) affiliation

Numerical to Polynomial attribute filter type subset
attributes (1) name
attributes (2) affiliation

Set Data example index 1
attribute name name
value Vladimir Vapnik
attribute name (2) age
value (2) 60
attribute name (3) affiliation
value (3) TU Dortmund

Figure A.10 shows a process which constructs the same data structure as the previ-
ously shown Java code. The parameters of the operators are shown in Table A.1.

New attributes can be added to an existing ExampleSet with the Generate Empty Attribute
(see Fig. A.11a) or Generate Copy (see Fig. A.11b) operators. Moreover, with the Generate
Attributes operator (see Fig. A.11c) it is possible to fill the column with values that are



A.3. DEFINITION OF VARIABLES WITH COMPLEX TYPES 231

(a) (b) (c)

(d)

Figure A.11: Operators for manipulating the columns of an ExampleSet

calculated from other attributes in the same row. The Union operator (see Fig. A.11d)
further allows to merge the columns of two or more ExampleSets connected to its input
ports, delivering a new ExampleSet with the merged columns at its output port.

A.3.3 Storage and Retrieval of Complex Data Types

(a) (b) (c)

(d)

Figure A.12: Operators for storing and retrieving IOObjects

So far it was only shown how complex data structures can be created with Rapid-
Miner, but not how they can be assigned to macros. The fact is that macros can only
store values having a basic data type. Instead, complex data structures like Example-
Sets, i.e. any object derived from the IOObject class, can be stored in and retrieved from
main memory with the Remember (see Fig. A.12a) and Recall (see Fig. A.12b) operators.
The operators take a name as a parameter under which the IOObject is to be stored
and retrieved. The Recall operator in addition allows for removing the object from main
memory. In comparison to a temporary storage of objects in memory, the Store (see



232 APPENDIX A. PROGRAMMING WITH RAPIDMINER

Fig. A.12c) and Retrieve (see Fig. A.12d) operators also allow for a persistent storage and
retrieval of IOObjects under a path in a RapidMiner repository.

A.3.4 Recursive Definition of Complex Data Types
A restriction of the ExampleSet in comparison to complex data types in most programming
languages is that its data cells can only contain basic types. A recursive definition
of complex data structures that contain complex data structures again is not directly
supported. However, since IOObjects can be stored and accessed by name, as previously
explained, it is possible to store such names as references instead of the original objects
in a data cell. All that is needed is a proper convention for a unique naming of objects.

A.4 Control Structures
In addition to the definition of differently typed variables, programming languages usu-
ally allow for changing the program flow depending on the current state of such variables.
Also RapidMiner contains operators which can test for conditions and change the flow
of a process accordingly. In the following, the Branch and Loop operators are shortly
explained.

A.4.1 Branching
A well-known construct from programming languages are branch statements like the if-
then-else statement. For example, the following Java code tests if the value of a variable
x equals zero. If it does, the code in curly brackets after the if is executed, otherwise the
code in curly brackets after the else is run:

if( x == 0 ) {
System.out.println( "x is zero!" );

} else {
System.out.println( "x is not zero!" );

}

(a) (b)

Figure A.13: The Branch operator



A.4. CONTROL STRUCTURES 233

Figure A.14: Subprocess view of the Branch operator

RapidMiner provides the same functionality for processes with the Branch operator.
Since expressions for the condition may also contain references to macros, as shown in
Fig. A.13, the flow of processes can be changed depending on previously defined macro
values. If the expression evaluates to true, the subprocess in the Then box (see Fig. A.14)
is executed, otherwise that in the Else box.

A.4.2 Looping
Another important mechanism in programming languages is the so called loop which
allows for the repeated execution of code. The behavior of the code may change in each
iteration of the loop, based on the current state of variables. A condition is checked for
determining when a loop should stop.

(a) (b)

Figure A.15: The Loop operator

RapidMiner provides the Loop operator (see Fig. A.15) which repeatedly executes the
subprocess contained in it for a specified number of times. The number of the current
iteration can be automatically assigned to a macro that could then be used, for example,
in a Branch operator. Other operators can loop, for instance, over examples or attributes
of an ExampleSet, filenames in a directory or until an ExampleSet meets certain criteria, like
containing more than a maximum number of attributes.



234 APPENDIX A. PROGRAMMING WITH RAPIDMINER

A.5 Subroutines
Similar to computer programs, complex data mining processes usually consist of two
different kinds of parts: Those being too specialized for using them in other contexts
and those whose functionality might be generalized and reused also in other processes
or projects. In software engineering, the basic dictum that aims at reuse and reduc-
ing duplication of information in a program is also known as the abstraction principle.
Benjamin C. Pierce has formulated this principle in his work "Types and Programming
Languages" from 2002 as follows:

Each significant piece of functionality in a program should be implemented
in just one place in the source code. Where similar functions are carried out
by distinct pieces of code, it is generally beneficial to combine them into one
by abstracting out the varying parts.

Keeping the same type of information at a single place has the advantage that code
becomes less repetitive, shorter and thereby more maintainable. The most basic mecha-
nism of control abstraction in programming languages is a function or subroutine. Both
may take arguments, also called parameters, whose values should be read or modified.
Values can have either basic data types or complex types. A subroutine’s signature con-
sists of its name, the number and order of parameters and (in typed languages) their
data types. As long as the signature of a subroutine does not change, errors in its con-
trol flow can usually be corrected without affecting any other parts of the code. The
subroutine mechanism can therefore be seen as a first step towards more maintainable
software systems.

(a) (b)

Figure A.16: The Execute Process operator

RapidMiner’s Execute Process operator (see Fig. A.16) comes closest to the concept
of calling a subroutine in a programming language. Parameters can be provided in



A.6. PROCESS LIBRARIES 235

two different forms: Either as macro values or, for complex types, as IOObjects over the
operator’s input ports. The process to be run can either be specified as an absolute path
or as a relative path to an existing entry in a RapidMiner repository (parameter process
location in Fig. A.16). For performance reasons, the process may optionally be cached in
main memory, avoiding a time consuming reload in case of repeated executions (e.g. in
a loop).

Figure A.17: Process to be called

Operators in the process to be called must connect to the input and output ports of
the process (see Fig. A.17) for every input parameter and output that should be returned
to the calling process.

A.6 Process Libraries
Programming languages usually have a mechanism for hierarchically grouping subrou-
tines that deal with similar data structures or functionality into so called modules, li-
braries or packages. For example, in Java, mathematical functions like the sinus function
sin can be found in class Math which resides in the java.lang package.

Figure A.18: Process library for time series preprocessing



236 APPENDIX A. PROGRAMMING WITH RAPIDMINER

Since RapidMiner processes that are called from other processes reside in standard
RapidMiner repositories, they can also be grouped into a hierarchy of folders and named
accordingly. For example, Fig. A.18 shows a folder structure for processes that deal with
the preprocessing of time series. Processes can then be either referenced with relative
paths from the current process or with absolute paths. Repositories of processes can
also be easily shared with others by putting them onto a RapidMiner Analytics server.

A.7 Multithreading
Today, machines that come with more than a single CPU are no longer an exception,
but the norm. Modern programming languages therefore must support the utilization
of multiple CPUs or cores. A common mechanism for parallel execution is the creation
of so called threads. Depending on the number of CPUs or cores, statements which are
executed in different threads can either run fully in parallel or, if the number of CPUs
is smaller than the number of threads, they are interleaved at the machine instruction
level. Access to variables that are shared between threads must be synchronized. Modern
programming languages usually provide several mechanisms for this synchronization, like
locking or semaphores.

RapidMiner does not directly support the concept of threads or any synchronization
mechanisms on the process level. However, several of its operators, like cross valida-
tion and parameter optimization, support the parallel execution of subprocesses. In the
following it is shown how the Loop Parameters (Parallel) operator can be used for achieving
a parallel execution of processes together with the previously introduced Execute Process
operator. It is important to note that while many RapidMiner operators provide a pa-
rameter for parallelization, currently only the operators in the Parallel Processing extension
are making use of the parameter and really run their subprocesses in parallel.

(a) (b)

Figure A.19: Loop Parameters

The Loop Parameters (Parallel) operator expects the number of threads as one of its
parameters (see Fig. A.19). The subprocess itself does not need to be parallelized. The
Edit Parameter Settings dialog (see Fig. A.20) allows for listing parameters that should be



A.7. MULTITHREADING 237

Figure A.20: The Edit Parameter Settings dialog of operator Loop Parameters (Parallel)

set for operators inside the Loop Parameters (Parallel) operator’s subprocess. Here, the Set
Data operator’s parameter value is set to the values 501, 503, 504 and 505.

Figure A.21: A generic design for the Loop Parameters (Parallel) subprocess

Figure A.21 shows a generic design for the subprocess inside the Loop Parameters (Parallel)
operator. At first, an ExampleSet consisting of only a single row is generated. It is then
copied with the Multiply operator. The Select Attributes operator removes the generated
label column and the Rename operator renames all attributes beginning with att to their
proper names. The Set Data operator then assigns values to each attribute. The process
thus follows the standard procedure for generating an associative array (for a direct
comparison, see Fig. A.10). The associative array is then given to the process called
from Execute Process. For each thread/run, the Loop Parameters (Parallel) operator inserts a
different value from the list that was specified in its Edit Parameter Settings dialog into the
Set Data operator’s value parameter. This value is then given to the process that is run
with Execute Process via the constructed ExampleSet. The question arises why, instead of



238 APPENDIX A. PROGRAMMING WITH RAPIDMINER

having to construct an ExampleSet, the value cannot simply be defined as a macro and
then be given to the subprocess to be executed. The reason is that, because a macro’s
scope is global, access to a macro’s value is not thread-safe. Since any of the threads
created by the Loop Parameters (Parallel) operator could change the macro’s value before the
Execute Process operator is even run, its state would be undefined. The ExampleSet that is
constructed instead is local to each of the threads, solving the problem of concurrent
access. The called process, however, may read any value from the ExampleSet given to it
with the Extract Macro operator, since macros can only be seen inside the processes they
were defined in.

The operators in the lower part of the process shown in Fig. A.21 are just dummy
operators without any specific function. They create an IOObject of type Performance which
is delivered over the per port, since the Loop Parameters (Parallel) operator expects such an
object and RapidMiner would not run the process otherwise.

A.8 Summary
As shown in the previous sections, RapidMiner includes several operators which can be
used for achieving similar effects as mechanisms otherwise only known from full-fledged
programming languages. In fact, due to the macro and loop operators, any WHILE
program could be realized with RapidMiner. Since WHILE programs are known to be
turing complete, RapidMiner processes are turing complete, i.e. that any computable
function could be realized with RapidMiner’s operators. In addition, it has been demon-
strated how common elements in large data mining processes can be moved into their
own processes, which then may be called with the Execute Process operator. In this way,
highly complex data mining processes can be realized in a structured and principled
way, only relying on RapidMiner’s inbuilt operators. Thereby the steep learning curve
of having to learn a full-fledged object-oriented programming language like Java and its
tools can be avoided, which is an advantage in collaborations with people who are not
computer scientists or programmers. Discussing what we have done with our project
partners, who are mostly industrial engineers, on the level of Java code would have been
very difficult. Using RapidMiner, however, after some time our project partners were
able to implement some of the more specialized data preparation operations pointed to
in Sect. 5.4 also on their own, creating new opportunities for more advanced collabora-
tion.



Publications, Joint Work and
Collaborations

This chapter gives an overview of publications, and in how far material from them has
been included in this thesis. It further states the collaborations and contributions of
other authors to this work. Whenever "the author" appears, the author of this thesis is
meant.

Included in this Thesis
Distributed Support Vector Machines: An Overview [SBD15] Large parts of
this publication have been included in Chap. 4. All descriptions of distributed support
vector machines surveyed have been created by the author. Descriptions of the basics of
distributed systems are by the author.

Sustainable Industrial Processes by Embedded Real-Time Quality Predic-
tion [SBM16] From this publication, several parts have been included in Chap. 5.
All included parts have been written by the author, and for this thesis, new material
has been added. The publication [SBM16] and therefore also Chap. 5 include material
which has been previously published in "Quality Prediction in Interlinked Manufacturing
Processes based on Supervised & Unsupervised Machine Learning" (see below).

Distributed Traffic Flow Prediction with Label Proportions: From in-Network
towards High Performance Computation with MPI [LSM15] This publication
is an extended version of "Communication-efficient learning of traffic-flow in a network
of wireless presence sensors" (see below). Material from [LSM15] has been included and
extended in Chap. 7. The idea for the TLMC algorithm and the algorithm itself are by
the author, as well as its description, and analysis of communication costs. Experiments
and comparisons have been conducted by the author. The data and its description have

239



240 APPENDIX A. PROGRAMMING WITH RAPIDMINER

been provided by Thomas Liebig. Data has been preprocessed by our student assistant,
Jan Czogalla. The analysis of privacy is by Thomas Liebig, as well as the bibliographic
references concerning traffic and the extension of the algorithm to MPI.

Communication-efficient learning of traffic-flow in a network of wireless pres-
ence sensors [SLM15] Parts of this publication have been included in Chap. 7. For
further information, see description above. Thomas Liebig provided the plots for the
city map of Dublin.

Quality Prediction in Interlinked Manufacturing Processes based on Super-
vised & Unsupervised Machine Learning [LSK+13] Material from this publica-
tion has been included in Chap. 5. The author had the idea for the generic algorithm
for preprocessing value series from production processes. Large parts of the algorithm’s
implementation in RapidMiner are also by the author. Daniel Lieber has provided all the
necessary domain knowledge for the creation of the highly specialized data preparation
operations and also created some of such operations on his own. Daniel Lieber also im-
plemented the extraction of aggregated features over segments. Experiments have been
conducted and described by the author, including results, the data has been provided
by Daniel Lieber.

Distributed Data Mining in Sensor Networks [BS13] Almost all parts of this
publication are included in Chap. 4 and have been slightly adapted for presentation in
this thesis. The descriptions of all clustering-based approaches are by the author. The
descriptions of distributed classification approaches and outlier detection algorithms are
by Kanishka Bhaduri.

Anomaly Detection in Vertically Partitioned Data by Distributed Core Vec-
tor Machines [SBDM13] Chapter 8 is based on this publication. Most of the mate-
rial has been included, and slightly modified and extended for this thesis. The bibliog-
raphy (related work) has been provided by Kanishka Bhaduri and Kamalika Das. Also,
they edited the text, mostly language-wise. The idea for the VDCVM algorithm, the
analysis of its communication costs, its implementation and the experiments are all by
the author.

Separable Approximate Optimization of Support Vector Machines for Dis-
tributed Sensing [LSM12] A short summary of the algorithm is given in Sect. 4.4.3.
The summary in this thesis has been created by the author. Concerning the publica-
tion, the author conducted some experiments. The whole rest of the publication has been
created by Sangkyun Lee, who had the idea for the algorithm and its implementation.

Learning from Label Proportions by Optimizing Cluster Model Selection [SM11]
Almost all parts of this publication have been included in Chap. 6, and the material has



A.8. SUMMARY 241

been heavily extended for this thesis. Especially, the local search strategy has been
developed for running the TLMC algorithm, but has not been published so far. The
surveys of the Mean Map and LMM/AMM algorithms are based on intensive discussions
with Giorgio Patrini, the author of LMM/AMM. He also provided a tutorial manuscript
for Mean Map and LMM/AMM, which the description in this thesis loosely follows.

Not Included in this Thesis
Using a Clustering Approach with Evolutionary Optimized AttributeWeights
to Form Product Families for Production Leveling [BSDM13] This publica-
tion is collaborative work with our project partners. The evolutionary algorithm for
optimizing attribute weights has been successfully applied in a slightly different applica-
tion context from smart manufacturing, namely the clustering of products into families.

Sustainable Interlinked Manufacturing Processes through Real-Time Quality
Prediction [LKD+12] In collaboration with our project partners, it is described how
production processes can be made more sustainable with the help of data analysis.

Challenges for Data Mining on Sensor Data of Interlinked Processes [SMK+11]
In this publication, which has been also created in collaboration with our project part-
ners, the focus is more on the challenges of analyzing data from production processes.

Towards Adjusting Mobile Devices To User’s Behavior [FJM+10a, FJM+10b,
FJM+11] The work [FJM+10a] had been published at a workshop first, was then
resubmitted [FJM+10b], and then extended to a book chapter [FJM+11]. The content of
such publications is closely related to the topic of this thesis, namely learning on battery-
powered devices like mobile phones. It hasn’t been included in this thesis, however,
because it doesn’t deal directly with distributed learning.

Implementing Hierarchical Heavy Hitters in RapidMiner: Solutions and
Open Questions [FS10] A paper about the efficient implementation of the Hierar-
chical Heavy Hitter algorithm in RapidMiner. Peter Fricke provided the implementation
and all experimental results.

Prognosemodelle zur Ermittlung der Produkteigenschaften - Einsatz von
Data-Mining-Verfahren im Walzwerk [MSD+10] A collaborative work with our
project partners on the opportunities of using data analysis for predicting the quality of
products in smart manufacturing applications.

Automatic Selection of Machine Learning Models for WCET-aware Compiler
Heuristic Generation [LSMM10] A paper in collaboration with colleagues from our
embedded systems group. Determination of the Worst Case Execution Time (WCET)



242 APPENDIX A. PROGRAMMING WITH RAPIDMINER

is highly relevant for real-time constraint systems. Data analysis is used to improve on
the time a compiler needs to calculate the WCET.



Bibliography

[AAS13] C.C. Aggarwal, N. Ashish, and A. Sheth. The Internet of Things: A Survey
From The Data-Centric Perspective. In C.C. Aggarwal, editor, anaging and
Mining Sensor Data. Springer, Berlin, Heidelberg, 2013.

[ABLS10] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. A Distributed Approach to
Detect Outliers in Very Large Data Sets. In Proc. of European Conf. on
Parallel Processing (Euro-Par), pages 329–340, 2010.

[AC79] M.S. Ahmed and A.R. Cook. Analysis of Freeway Traffic Time Series
Data Using Box and Jenkins Techniques. University of Oklahoma, School
of Civil Engineering and Environmental Science, 1979.

[Aha92] D. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-based
learning algorithms. Int. J. of Man-Machine Studies, 36(2):267–287, 1992.

[AHWY03] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu. A Framework for Clustering
Evolving Data Streams. In Proc. of the 29th Int. Conf. on Very Large Data
Bases (VLDB), pages 81–92, 2003.

[AIM10] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.
Comput. Netw., 54(15):2787–2805, 2010.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules be-
tween Sets of Items in Large Databases. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 207–216, Washington, D. C., May
1993.

[AN07] A. Asuncion and D. J. Newman. UCI Machine Learning Repository, 2007.

[Arg15] Argonne National Laboratory. The Message Passing Interface (MPI) stan-
dard. http://www.mcs.anl.gov/research/projects/mpi/, 2015. [On-
line; accessed 2015-12-15].

243



244 BIBLIOGRAPHY

[AS95] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the
11th Int. Conf. on Data Engineering (ICDE), pages 3–14, Washington, DC,
USA, Mar. 1995. IEEE.

[AWY+99] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park. Fast
Algorithms for Projected Clustering. In Proc. of the 1999 ACM SIGMOD
Int. Conf. on Management of Data, SIGMOD ’99, pages 61–72, New York,
NY, USA, 1999. ACM.

[AY07] A.A. Abbasi and M. Younis. A survey on clustering algorithms for wireless
sensor networks. Comput. Commun., 30(14–15):2826–2841, Oct. 2007.

[BA10] F. Bajaber and I. Awan. Energy efficient clustering protocol to enhance
lifetime of wireless sensor network. Journal of Ambient Intelligence and
Humanized Computing, 1:239–248, 2010.

[BAM09] C. Bockermann, M. Apel, and M. Meier. Learning SQL for Database In-
trusion Detection Using Context-Sensitive Modelling. In U. Flegel, , and
D. Bruschi, editors, Proc. of the 6th Int. Conf. on Detection of Intrusions
and Malware (DIMVA), pages 196–205. Springer, Berlin, Heidelberg, 2009.

[BBB+15] C. Bockermann, K. Brügge, J. Buss, A. Egorov, K. Morik, W. Rhode, and
T. Ruhe. Online Analysis of High-Volume Data Streams in Astroparticle
Physics. In Proc. of the European Conf. on Machine Learning (ECML),
Industrial Track. Springer, 2015.

[BBFM12] M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed Learning,
Communication Complexity and Privacy. In JMLR: Workshop and Con-
ference Proceedings, 25th Annual Conference on Learning Theory, pages
26:1–26.22, 2012.

[BC00] K.P. Bennett and C. Campbell. Support Vector Machines: Hype or Hal-
lelujah? SIGKDD Explor. Newsl., 2(2):1–13, Dec. 2000.

[BC02] M. Bǎdoiu and K.L. Clarkson. Optimal Core Sets for Balls. In DIMACS
Workshop on Computational Geometry, 2002.

[BC03] S. Bandyopadhyay and E.J. Coyle. An Energy Efficient Hierarchical Clus-
tering Algorithm for Wireless Sensor Networks. In Proc. of the 22nd Annual
Joint Conf. of the IEEE Computer and Communications Societies (INFO-
COM), volume 3, pages 1713–1723, Apr. 2003.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Re-
view and New Perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1798–1828, Aug. 2013.



BIBLIOGRAPHY 245

[BdDPP16] A. Botta, W. de Donato, V. Persico, and A. Pescapé. Integration of Cloud
computing and Internet of Things: A survey. Future Gener. Comp. Sy.,
56:684–700, 2016.

[BE81] D. Baker and A. Ephremides. The Architectural Organization of a Mobile
Radio Network via a Distributed Algorithm. IEEE Trans. on Communica-
tions, 29(11):1694–1701, Nov. 1981.

[BFKR14] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg. How Vir-
tualization, Decentralization and Network Building Change the Manufac-
turing Landscape: An Industry 4.0 Perspective. Int. Journ. of Mechan-
ical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering,
8(1):37–44, 2014.

[BFOS84] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software,
Monterey, CA, 1984.

[BG15] A. Buczak and E. Guven. A Survey of Data Mining and Machine Learning
Methods for Cyber Security Intrusion Detection. IEEE Communications
Surveys & Tutorials, 2015.

[BGM+06] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and
S. Datta. Clustering Distributed Data Streams in Peer-to-Peer Environ-
ments. Information Sciences, 176(14):1952–1985, 2006.

[BGS+12] J.W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kargupta. In-
network outlier detection in wireless sensor networks. Knowl. Inf. Sys.,
34(1):23–54, 2012.

[BGSW06] U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient Co-regularised
Least Squares Regression. In Proc. of the 23rd Int. Conf. on Machine
Learning (ICML), pages 137–144, New York, NY, USA, 2006. ACM.

[BHHSV02] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support Vector
Clustering. J. Mach. Learn. Res., 2:125–137, Mar. 2002.

[BHKP10] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online
Analysis. J. Mach. Learn. Res., 11:1601–1604, Aug. 2010.

[BHL07] L.M.A. Bettencourt, A.A. Hagberg, and L.B. Larkey. Separating the Wheat
from the Chaff: Practical Anomaly Detection Schemes in Ecological Ap-
plications of Distributed Sensor Networks. In Proc. of the 3rd IEEE Int.
Conf. on Distributed Computing in Sensor Systems (DCOSS), pages 223–
239, 2007.



246 BIBLIOGRAPHY

[BJR94] G.E.P. Box, G. Jenkins, and G.C. Reinsel. Time Series Analysis. Forecast-
ing and Control. Prentice Hall, Englewood Cliffs, 3rd edition, 1994.

[BK01] S. Banerjee and S. Khuller. A Clustering Scheme for Hierarchical Control
in Multi-hop Wireless Networks. In Proc. of the 20th Annual Joint Conf.
of the IEEE Computer and Communications Societies (INFOCOM), pages
1028–1037, 2001.

[BM98] A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with
Co-training. In Proc. of the 11th Ann. Conf. on Computational Learning
Theory, pages 92–100, New York, NY, USA, 1998. ACM.

[BMG11] K. Bhaduri, B. L. Matthews, and C. Giannella. Algorithms for Speeding
up Distance-based Outlier Detection. In Proc. of the 17th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, pages 859–867, 2011.

[Boc15] C. Bockermann. Mining Big Data Streams for Multiple Concepts. PhD
thesis, TU Dortmund, Dortmund, Germany, 2015.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Op-
timization and Statistical Learning via the Alternating Direction Method
of Multipliers. Found. Trends Mach. Learn., 3(1):1–122, Jan. 2011.

[Bre01] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[Bre15] U. Brefeld. Multi-view Learning with Dependent Views. In Proc. of the
30th Annual ACM Symposium on Applied Computing (SAC), pages 865–
870, New York, NY, USA, 2015. ACM.

[BS04] U. Brefeld and T. Scheffer. Co-EM Support Vector Learning. In Proc.
of the 20th Int. Conf. on Machine Learning (ICML), pages 121–128, New
York, NY, USA, 2004. ACM.

[BS13] K. Bhaduri and M. Stolpe. Distributed Data Mining in Sensor Networks.
In C.C. Aggarwal, editor, Managing and Mining Sensor Data, chapter 8.
Springer, Berlin, Heidelberg, 2013.

[BSDM13] F. Bohnen, M. Stolpe, J. Deuse, and K. Morik. Using a Clustering Approach
with Evolutionary Optimized Attribute Weights to Form Product Families
for Production Leveling. In Katja Windt, editor, Robust Manufacturing
Control, Lecture Notes in Production Engineering, pages 189–202, Berlin,
Heidelberg, 2013. Springer-Verlag.

[BSG+06] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and H. Kargupta. In-
Network Outlier Detection in Wireless Sensor Networks. In Proc. of the
26th IEEE Int. Conf. on Distributed Computing Systems (ICDCS), page 51,
2006.



BIBLIOGRAPHY 247

[Bur14] D. Burrus. The Internet of Things is Far Bigger Than Anyone Re-
alizes. http://www.wired.com/insights/2014/11/the-internet-of-
things-bigger/, 2014. [Online; accessed 2016-02-16].

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004.

[BW16] W. Bernhart and M. Winterhoff. Autonomous Driving: Disruptive Innova-
tion that Promises to Change the Automotive Industry as We Know It. In
J. Langheim, editor, Energy Consumption and Autonomous Driving: Proc.
of the 3rd CESA Automotive Electronics Congress. Springer, 2016.

[BWGK08] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta. Distributed Decision
Tree Induction in P2P Systems. Stat. Anal. and Data Mining, 1(2):85–103,
2008.

[BYX10] S. Bin, L. Yuan, and W. Xiaoyi. Research on Data Mining Models for the
Internet of Things. In Proc. of the Int. Conf. on Image Analysis and Signal
Processing (IASP), pages 127–132, 2010.

[BZ11] N. Bui and M. Zorzi. Health Care Applications: A Solution Based on the
Internet of Things. In Proc. of the 4th Int. Symp. on Applied Sciences in
Biomedical and Communication Technologies, ISABEL ’11, pages 131:1–
131:5. ACM, 2011.

[BZB04] J. Bi, T. Zhang, and K.P. Bennett. Column-generation Boosting Methods
for Mixture of Kernels. In Proc. of the 10th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, pages 521–526, New York, NY,
USA, 2004. ACM.

[Can14] Canalys. Wearable band shipments set to exceed 43.2 million units in
2015. http://www.canalys.com/newsroom/wearable-band-shipments-
set-exceed-432-million-units-2015, 2014. [Online; accessed 2016-04-
04].

[CBK09] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Comput. Surv., 41(3):15:1–15:58, Jul. 2009.

[CCH05] C. Caragea, D. Caragea, and V. Honavar. Learning Support Vector Ma-
chines from Distributed Data Sources. In Proc. of the 20th National Conf.
on Artificial Intelligence (AAAI), volume 4, pages 1602–1603. AAAI Press,
2005.

[CDW+15] F. Chen, P. Deng, J. Wan, D. Zhang, A. Vasilakos, and X. Rong. Data
Mining for the Internet of Things: Literature Review and Challenges. Int.
J. Distrib. Sen. Netw., 2015:12:12–12:12, Jan. 2015.



248 BIBLIOGRAPHY

[CFPS99] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed Data Mining
in Credit Card Fraud Detection. IEEE Intelligent Systems, 14:67–74, 1999.

[CFSZ11] A. Chiuso, F. Fagnani, L. Schenato, and S. Zampieri. Gossip Algorithms
for Simultaneous Distributed Estimation and Classification in Sensor Net-
works. J. Sel. Topics Signal Processing, 5(4):691–706, 2011.

[CH10] A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smart-
phone. In Proc. of the 2010 USENIX Conf. on USENIX Ann. Technical
Conf. (USENIXATC), USA, 2010. USENIX Association.

[CKL03] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic Discovery of Time Se-
ries Motifs. In Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 493–498, New York, NY, USA, 2003.
ACM.

[CLQZ09] S. Chen, B. Liu, M. Qian, and C. Zhang. Kernel K-means Based Framework
for Aggregate Outputs Classification. In Proc. of the IEEE Int. Conf. on
Data Mining Workshops (ICDMW), pages 356–361, 2009.

[CLR10] M. Chui, M. Löffler, and R. Roberts. The Internet of Things.
http://www.mckinsey.com/insights/high_tech_telecoms_internet/
the_internet_of_things, Mar. 2010. [Online; accessed 2016-02-16].

[CMW+13] M. Chen, Y. Ma, J. Wang, D.O. Mau, and E. Song. Enabling Comfortable
Sports Therapy for Patient: A Novel Lightweight Durable and Portable
ECG Monitoring System. In IEEE 15th Int. Conf. on e-Health Networking,
Applications and Services (Healthcom), pages 271–273, 2013.

[CMZ07] G. Cormode, S. Muthukrishnan, and Wei Z. Conquering the Divide: Con-
tinuous Clustering of Distributed Data Streams. In Proc. of the 23rd IEEE
Int. Conf. on Data Eng. (ICDE), pages 1036–1045, Apr. 2007.

[Com15] F. Combaneyre. Understanding Data Streams in IoT. http:
//www.sas.com/en_us/whitepapers/understanding-data-streams-
in-iot-107491.html, 2015. [Online; accessed 2016-02-23].

[CRWS12] K.S. Candan, R. Rossini, X. Wang, and M.L. Sapino. sDTW: Comput-
ing DTW Distances using Locally Relevant Constraints based on Salient
Feature Alignments. Proc. VLDB Endow., 5(11):1519–1530, Jul. 2012.

[CSH00a] D. Caragea, A. Silvescu, and V. Honavar. Agents that Learn from Dis-
tributed Dynamic Data Sources. In Proc. of the Workshop on Learning
Agents, 2000.



BIBLIOGRAPHY 249

[CSH00b] D. Caragea, A. Silvescu, and V. Honavar. Towards a Theoretical Frame-
work for Analysis and Synthesis of Agents That Learn from Distributed Dy-
namic Data Sources. In Proc. of the Workshop on Distributed and Parallel
Knowledge Discovery. ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, 2000.

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. MIT
Press, Cambridge, MA, 2006.

[CXPL10] X. Cheng, J. Xu, J. Pei, and J. Liu. Hierarchical distributed data classifi-
cation in wireless sensor networks. Comput. Commun., 33(12):1404–1413,
2010.

[Dav12] E.R. Davies. Computer and Machine Vision: Theory, Algorithms, Practi-
calities. Academic Pr, Inc., 2012.

[DBBE99] A. Demiriz, K. Bennett, K.P. Bennett, and M.J. Embrechts. Semi-
Supervised Clustering Using Genetic Algorithms. In Proc. of Artificial
Neural Networks in Engineering (ANNIE), pages 809–814. ASME Press,
1999.

[DBK09] K. Das, K. Bhaduri, and H. Kargupta. A Local Asynchronous Distributed
Privacy Preserving Feature Selection Algorithm for Large Peer-to-Peer Net-
works. Knowledge and Information Systems, 24(3):341–367, 2009.

[DBV11] K. Das, K. Bhaduri, and P. Votava. Distributed Anomaly Detection Us-
ing 1-class SVM for Vertically Partitioned Data. Stat. Anal. Data Min.,
4(4):393–406, Aug. 2011.

[Dem06] J. Dems̆ar. Statistical Comparisons of Classifiers over Multiple Data Sets.
The Journal of Machine Learning Research (JMLR), 7:1–30, 2006.

[DFMB15] G. De Francisci Morales and A. Bifet. SAMOA: Scalable Advanced Massive
Online Analysis. J. Mach. Learn. Res., 16(1):149–153, Jan. 2015.

[DGK04] I.S. Dhillon, Y. Guan, and B. Kulis. Kernel k-Means: Spectral Clustering
and Normalized Cuts. In Proc. of the 10th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 551–556, New York, NY,
USA, 2004. ACM.

[DGK09] S. Datta, C. Giannella, and H. Kargupta. Approximate Distributed K-
Means Clustering over a Peer-to-Peer Network. IEEE Trans. on Knowl.
and Data Eng., 21(10):1372–1388, Oct. 2009.

[DGM97] G. Das, D. Gunopulos, and H. Mannila. Finding Similar Time Series.
In Principles of Data Mining and Knowledge Discovery, volume 1263 of



250 BIBLIOGRAPHY

Lecture Notes in Computer Science, pages 88–100. Springer, Berlin, Hei-
delberg, 1997.

[DH73] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wi-
ley, 1973.

[DH04] M.F. Duarte and Y.H. Hu. Vehicle classification in distributed sensor net-
works. J. Parallel Distrib. Comput., 64(7):826–838, Jul. 2004.

[DHC05] P. Ding, J. Holliday, and A. Celik. Distributed Energy-Efficient Hierarchical
Clustering for Wireless Sensor Networks. In Proc. of the 1st IEEE Int.
Conf. on Distributed Computing in Sensor Systems (DCOSS), pages 322–
339. Springer, 2005.

[Dix15] J. Dixon. Who Will Step Up To Secure The Internet of
Things? http://techcrunch.com/2015/10/02/who-will-step-up-to-
secure-the-internet-of-things/, 2015. [Online; accessed 2016-02-16].

[DK07] S. Datta and H. Kargupta. Uniform Data Sampling from a Peer-to-Peer
Network. In Proc. of the 27th IEEE Int. Conf. on Distributed Computing
Systems (ICDCS), page 50, 2007.

[DKS02] R. Dara, S. Kremer, and D. Stacey. Clustering Unlabeled Data with SOMs
Improves Classification of Labeled Real-world Data. In Proc. of the 2002
Int. Joint Conf. on Neural Networks (IJCNN), volume 3, pages 2237–2242,
2002.

[DLR77] A.P. Dempster, M.N. Laird, and D.B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 39:1–38, 1977.

[DMR16] M. Díaz, C. Martín, and B. Rubio. State-of-the-art, challenges, and open
issues in the integration of Internet of things and cloud computing. Journal
of Network and Computer Applications, 2016.

[DMSO10] S. Das, B. Matthews, A. Srivastava, and N. Oza. Multiple Kernel Learn-
ing for Heterogeneous Anomaly Detection: Algorithm and Aviation Safety
Case Study. In Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 47–56, 2010.

[DP06] T.-N. Do and F. Poulet. Classifying one billion data with a new distributed
SVM algorithm. In Int. Conf. on Research, Innovation and Vision for the
Future, pages 59–66, Feb. 2006.

[DP10] W. Dargie and C. Poellabauer. Wireless Sensor Networks: Technology,
Protocols, and Applications. John Wiley & Sons, 2010.



BIBLIOGRAPHY 251

[DS03] A. D’Costa and A.M. Sayeed. Collaborative Signal Processing for Dis-
tributed Classification in Sensor Networks. In Proc. of the 2nd Int. Conf.
on Information Processing in Sensor Networks, volume 2634 of Lecture
Notes in Computer Science, pages 558–558. Springer, 2003.

[EA12] P.C. Evans and M. Annunziata. Industrial Internet: Pushing the Bound-
aries of Minds and Machines. http://www.ge.com/docs/chapters/
Industrial_Internet.pdf, 2012. [Online; accessed 2016-04-04].

[EGPS01] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting The
World With Wireless Sensor Networks. In Proc. of the 27th IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2001.

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In Proc.
of the 2nd Int. Conf. on Knowledge Discovery and Data Mining, pages
226–231. AAAI Press, 1996.

[Elk03] C. Elkan. Using the Triangle Inequality to Accelerate k-Means. In Proc.
of the 20th Int. Conf. on Machine Learning (ICML), 2003.

[Eng13] P. Engebretson. The Basics of Hacking and Penetration Testing. Else-
vier/Syngress, 2nd edition, 2013.

[Eva11] D. Evans. The Internet of Things – How the Next Evolution of the Inter-
net Is Changing Everything. https://www.cisco.com/web/about/ac79/
docs/innov/IoT_IBSG_0411FINAL.pdf, Apr. 2011. [Online; accessed 2015-
11-19].

[Faw16] T. Fawcett. Mining the Quantified Self: Personal Knowledge Discovery as
a Challenge for Data Science. Big Data, 3(4):249–266, Jan. 2016.

[FBLT06] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Training a SVM-based
Classifier in Distributed Sensor Networks. In EUSIPCO 2006, 2006.

[FBLT08] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Distributed Consensus
Algorithms for SVM Training in Wireless Sensor Networks. In EUSIPCO,
2008.

[FBLT09] K. Flouri, B. Beferull-Lozano, and P. Tsakalides. Optimal Gossip Algorithm
for Distributed Consensus SVM Training in Wireless Sensor Networks. In
16th Int. Conf. on Digital Signal Processing, pages 1–6, Jul. 2009.

[FCG10] P.A. Forero, A. Cano, and G.B. Giannakis. Consensus-Based Distributed
Support Vector Machines. J. Mach. Learn. Res., 11:1663–1707, Aug. 2010.



252 BIBLIOGRAPHY

[FJM+10a] P. Fricke, F. Jungermann, K. Morik, N. Piatkowski, O. Spinczyk, and
M. Stolpe. Towards Adjusting Mobile Devices to User’s Behaviour. In
Proc. of the Int. Workshop at ECML/PKDD on Mining Ubiquitous and
Social Environments (MUSE), pages 7–22, 2010.

[FJM+10b] P. Fricke, F. Jungermann, K. Morik, N. Piatkowski, O. Spinczyk, and
M. Stolpe. Towards Adjusting Mobile Devices to User’s Behaviour. In
M. Atzmueller, D. Benz, A. Hotho, and G. Stumme, editors, Lernen, Wis-
sen & Adaptivität (LWA) – Workshop Proceedings, pages 51–58, 2010. (re-
submission).

[FJM+11] P. Fricke, F. Jungermann, K. Morik, N. Piatkowski, O. Spinczyk, M. Stolpe,
and J. Streicher. Towards Adjusting Mobile Devices To User’s Behaviour.
In M. Atzmueller, A. Hotho, M. Strohmaier, and A. Chin, editors, Analysis
of Social Media and Ubiquitous Data, volume 6904 of Lecture Notes in
Computer Science, pages 99–118. Springer-Verlag, Berlin, Heidelberg, 2011.

[Fle15] D. Fletcher. Internet of Things. In M. Blowers, editor, Evolution of Cyber
Technologies and Operations to 2035, pages 19–32. Springer International
Publishing, 2015.

[FRM94] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence
Matching in Time-Series Databases. In Proc. of the 1994 ACM SIGMOD
Int. Conf. on Management of Data, pages 419–429, New York, NY, USA,
1994. ACM Press.

[FS10] P. Fricke and M. Stolpe. Implementing Hierarchical Heavy Hitters in Rapid-
Miner: Solutions and Open Questions. In Proc. of the RapidMiner Com-
munity Meeting And Conference (RCOMM), 2010.

[FT15] L. Fan and G. Taylor. Alter-CNN: An Approach to Learning from Label
Proportions with Application to Ice-Water Classification. In Workshop
on Learning and privacy with incomplete data and weak supervision at the
annual conf.on Neural Information Processing Systems (NIPS), 2015.

[FZY+14] K. Fan, H. Zhang, S. Yan, L. Wang, W. Zhang, and J. Feng. Learning
a Generative Classifier from Label Proportions. Neurocomput., 139:47–55,
Sep. 2014.

[Gam10] J. Gama. Knowledge Discovery from Data Streams. Chapman & Hall/CRC,
1st edition, 2010.

[GBA+13] E.I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and R. Rednic.
Edge Mining the Internet of Things. IEEE Sensors Journal, 13(10):3816–
3825, 2013.



BIBLIOGRAPHY 253

[GBMP13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things
(IoT): A Vision, Architectural Elements, and Future Directions. Future
Gener. Comput. Syst., 29(7):1645–1660, Sep. 2013.

[GCB+05] H.P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel
Support Vector Machines: The Cascade SVM. In L.K. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information Processing Systems
(NIPS), volume 17, pages 521–528. MIT Press, 2005.

[GKRB09] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld. Active Learning for Network
Intrusion Detection. In Proc. of the 2nd ACM Workshop on Security and
Artificial Intelligence (AISec), pages 47–54, New York, NY, USA, 2009.
ACM.

[Gla15] J. Glaser. How The Internet of Things Will Affect Health
Care. http://www.hhnmag.com/articles/3438-how-the-internet-of-
things-will-affect-health-care, Jun. 2015. [Online; accessed 2016-
02-23].

[GMUW13] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Com-
plete Book. Pearson Education Limited, 2nd edition, 2013.

[GP07] F. Gianotti and D. Pedreschi, editors. Mobility, Data Mining and Privacy.
Springer, 2007.

[Gu08] D. Gu. Distributed EM Algorithm for Gaussian Mixtures in Sensor Net-
works. IEEE Trans. on Neural Networks, 19(7):1154–1166, Jul. 2008.

[HA04] V. Hodge and J. Austin. A Survey of Outlier Detection Methodologies. A.
I. Review, 22(2):85–126, 2004.

[Han05] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., 2005.

[Har15] B. Harpham. How the Internet of Things is changing health-
care and transportation. http://www.cio.com/article/2981481/
healthcare/how-the-internet-of-things-is-changing-healthcare-
and-transportation.html, Sep. 2015. [Online; accessed 2016-02-16].

[HC02] E. Hung and D. Cheung. Parallel Mining of Outliers in Large Database.
Distrib. Parallel Databases, 12:5–26, 2002.

[HCB02] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan. An
application-specific protocol architecture for wireless microsensor networks.
IEEE Trans. on Wireless Communications, 1(4):660–670, Oct. 2002.



254 BIBLIOGRAPHY

[HGInL13] J. Hernández-González, I. Iñaki, and J.A. Lozano. Learning Bayesian net-
work classifiers from label proportions. Pattern Recognition, 46(12):3425–
3440, 2013.

[Hin13] P. Hintjens. ZeroMQ. O’Reilly, USA, 2013.

[HK06] J. Han and M. Kamber. Data Mining. Morgan Kaufmann, 2nd edition,
2006.

[HMM16] C. Heinze, B. McWilliams, and N. Meinshausen. DUAL-LOCO: Distribut-
ing Statistical Estimation Using Random Projections. In A. Gretton and
C.C. Robert, editors, Proc. of the 19th Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), volume 51 of JMLR: Workshop and Conference
Proceedings, pages 875–883, 2016.

[HMMK14] C. Heinze, B. McWilliams, N. Meinshausen, and G. Krummenacher.
LOCO: Distributing Ridge Regression with Random Projections. In NIPS
Workshop on Distributed Machine Learning and Matrix Computations,
2014.

[HMS08] T. Hazan, A. Man, and A. Shashua. A Parallel Decomposition Solver for
SVM: Distributed dual ascend using Fenchel Duality. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, Jun. 2008.

[HMS09] M. Hassani, E. Müller, and T. Seidl. EDISKCO: Energy Efficient Dis-
tributed In-Sensor-Network K-center Clustering with Outliers. In Proc.
of the 3rd Int. Workshop on Knowl. Discovery from Sensor Data (Sen-
sorKDD), pages 39–48, 2009.

[HSP+12] A.-C. Hauschild, T. Schneider, J. Pauling, K. Rupp, M. Jang, J.I. Baum-
bach, and J. Baumbach. Computational Methods for Metabolomic Data
Analysis of Ion Mobility Spectrometry Data - Rviewing the State of the
Art. Metabolites, 2(4):733–755, 2012.

[HSSK06] J. Harding, M. Shahbaz, Srinivas, and A. Kusiak. Data Mining in Manu-
facturing: A Review. J. Manuf. Sci. Eng, 128(4):969–976, 2006.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2nd edition,
2009.

[IBM16] IBM. IBM Intelligent Water: Water management software with analyt-
ics for improved infrastructure and operations. http://www-03.ibm.com/
software/products/en/intelligentwater, 2016. [Online; accessed 2016-
04-01].



BIBLIOGRAPHY 255

[IFGL03] M. Imhoff, R. Fried, U. Gather, and V. Lanius. Dimension Reduction for
Physiological Variables Using Graphical Modeling. In AMIA 2003, Ameri-
can Medical Informatics Association Annual Symposium, Washington, DC,
USA, November 8-12, 2003, 2003.

[JAF+06] S.R. Jeffery, G. Alonso, M.J. Franklin, W. Hong, and J. Widom. Declarative
Support for Sensor Data Cleaning. In Pervasive Computing, Lecture Notes
in Computer Science, pages 83–100, Berlin, 2006. Springer.

[JKP04] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. Scalable Density-Based Dis-
tributed Clustering. In Proc. of the 8th European Conf. on Principles
and Practice of Knowl. Discovery in Databases (OKDD), pages 231–244.
Springer, 2004.

[JL95] G.H. John and P. Langley. Estimating Continuous Distributions in
Bayesian Classifiers. In Proc. of the 11th Conf. on Uncertainty in Arti-
ficial Intelligence, pages 338–345, San Francisco, 1995. Morgan Kaufmann.

[Joa99] T. Joachims. Transductive Inference for Text Classification using Support
Vector Machines. In Proc. of the 16th Int. Conf. on Machine Learning
(ICML), pages 200–209, San Francisco, CA, 1999. Morgan Kaufmann.

[JW92] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis.
Prentice Hall, Inc., 3rd edition, 1992.

[KBK+14] M. Kamp, M. Boley, D. Keren, A. Schuster, and I. Scharfman.
Communication-Efficient Distributed Online Prediction by Decentralized
Variance Monitoring. In T. Calders, F. Esposito, E. Hüllermeier, and
R. Meo, editors, Proc. of the European Conf. on Machine Learning and
Principles and Practice of Knowledge Discovery (ECML/PKDD), pages
623–639. Springer, 2014.

[KBL+04] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, S. Bushra, J. Dull,
K. Sarkar, M. Klein, M. Vasa, and D. Handy. VEDAS: A Mobile and
Distributed Data Stream Mining System for Real-Time Vehicle Monitoring.
In Proc. of the SIAM Int. Conf. on Data Mining (SDM), chapter 28, pages
300–311. 2004.

[KBSZ11] M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. `p-Norm Multiple Kernel
Learning. Journal of Machine Learning Research (JMLR), 12, 2011.

[KdF05] H. Kueck and N. de Freitas. Learning about individuals from group statis-
tics. In Uncertainty in Artificial Intelligence (UAI), pages 332–339, Arling-
ton, Virginia, 2005. AUAI Press.

[KJ97] R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.



256 BIBLIOGRAPHY

[KK03] E. Keogh and S. Kasetty. On the Need for Time Series Data Mining Bench-
marks: A Survey and Empirical Demonstration. Data Mining and Knowl-
edge Discovery, 7(4):349–371, 2003.

[KKP+09] H.-P. Kriegel, P. Kröger, A. Pryakhin, M. Renz, and A. Zherdin. Ap-
proximate Clustering of Time Series Using Compact Model-based Descrip-
tion, volume 4947 of Lecture Notes in Computer Science, pages 364–379.
Springer, Berlin, Heidelberg, 2009.

[KKPS05] H.-P. Kriegel, P. Kröger, A. Pryakhin, and M. Schubert. Effective and
Efficient Distributed Model-Based Clustering. In Proc. of the 5th IEEE
Int. Conf. on Data Mining (ICDM), pages 258–265, 2005.

[KKZ09] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering High-dimensional Data:
A Survey on Subspace Clustering, Pattern-based Clustering, and Correla-
tion Clustering. ACM Trans. Knowl. Discov. Data, 3(1):1:1–1:58, Mar.
2009.

[KLD13] B. Konrad, D. Lieber, and J. Deuse. Striving for Zero Defect Produc-
tion: Intelligent Manufacturing Control through Data Mining in Contin-
uous Rolling Mill Processes. In Robust Manufacturing Control (RoMaC),
Lecture Notes in Computer Science, pages 215–229, Berlin, Heidelberg,
2013. Springer.

[KMS+16] A.R. Khan, A. Mahmood, A. Safdar, Z.A. Khan, and N.A. Khan. Load
forecasting, dynamic pricing and DSM in smart grid: A review. Renew.
Sust. Energ. Rev., 54:1311–1322, 2016.

[KNK+15] R.J Krawiec, J. Nadler, P. Kinchley, E. Tye, and J. Jarboe. No appoint-
ment necessary: How the IoT and patient-generated data can unlock health
care value. http://dupress.com/articles/internet-of-things-iot-
in-health-care-industry/, Aug. 2015. [Online; accessed 2016-02-16].

[KNT00] E.M. Knorr, R.T. Ng, and V. Tucakov. Distance-based outliers: algorithms
and applications. The VLDB Journal, 8(3-4):237–253, Feb. 2000.

[Koh89] T. Kohonen. Self-Organization and Associative Memory. Springer, Berlin,
1989.

[Koh95] R. Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estima-
tion and Model Selection. In Proc. of the 14th Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 1137–1143, USA, 1995. Morgan Kaufmann.

[Kre14] J. Kreps. Questioning the Lambda Architecture. http://radar.oreilly.
com/2014/07/questioning-the-lambda-architecture.html, 2014. [On-
line; accessed 2015-12-15].



BIBLIOGRAPHY 257

[KSBM00] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. A Fast
Iterative Nearest Ppoint Algorithm for Support Vector Machine Classifier
Design. IEEE Transactions on Neural Networks, 11(1):124–136, 2000.

[KSG10] H. Kargupta, K. Sarkar, and M. Gilligan. MineFleet R©: An Overview of a
Widely Adopted Distributed Vehicle Performance Data Mining System. In
Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, pages 37–46, 2010.

[LA05] E. Lozano and E. Acuna. Parallel Algorithms for Distance-Based and
Density-Based Outliers. In Proc. of the Int. Conf. on Data Mining (ICDM),
pages 729–732, 2005.

[LCB+02] G.R.G. Lanckriet, N. Christianini, P. Bartlett, L.E. Ghaoui, and M.I. Jor-
dan. Learning the Kernel Matrix with Semidefinite Programming. In Proc.
of the 19th Int. Conference on Machine Learning (ICML), 2002.

[LG10] V. Lanius and U. Gather. Robust online signal extraction from multivariate
time series. Comput. Stat. Data An., 54(4):966–975, 2010.

[LKD+12] D. Lieber, B. Konrad, J. Deuse, M. Stolpe, and K. Morik. Sustainable
Interlinked Manufacturing Processes through Real-Time Quality Predic-
tion. In D.A. Dornfeld and B.S. Linke, editors, Leveraging Technology
for a Sustainable World, pages 393–398, Berlin, Heidelberg, 2012. CIRP,
Springer-Verlag.

[LKL14] M. Längkvist, L. Karlsson, and A. Loutfi. A Review of Unsupervised Fea-
ture Learning and Deep Learning for Time-Series Modeling. Pattern Recog-
nition Letters, 42:11–24, 2014.

[LKWL07] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a Novel
Symbolic Representation of Time Series. Data Mining and Knowledge Dis-
covery, 15(2):107–144, 2007.

[Low04] D.G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Int. J. Comput. Vision, 60(2):91–110, Nov. 2004.

[LPBM14] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik. Predictive Trip
Planning - Smart Routing in Smart Cities. In Proc. of the Workshops of
the EDBT/ICDT Joint Conference, volume 1133, pages 331–338. CEUR-
WS.org, 2014.

[LR06] Y. Lu and V. Roychowdhury. Parallel Randomized Support Vector Ma-
chine. In W.-K. Ng, M. Kitsuregawa, J. Li, and K. Chang, editors, Ad-
vances in Knowledge Discovery and Data Mining, volume 3918 of Lecture
Notes in Computer Science, pages 205–214. Springer, 2006.



258 BIBLIOGRAPHY

[LSFB15] J. Long, J.K. Swidrak, M.Y. Feng, and O. Buyukozturk. Smart Sensors:
A Study of Power Consumption and Reliability. In E. Wee Sit, editor,
Sensors and Instrumentation, Volume 5: Proc. of the 33rd IMAC, A Conf.
and Exposition on Structural Dynamics, pages 53–60. Springer, 2015.

[LSK+13] D. Lieber, M. Stolpe, B. Konrad, J. Deuse, and K. Morik. Quality Pre-
diction in Interlinked Manufacturing Processes based on Supervised & Un-
supervised Machine Learning. In Procedia CIRP - 46th CIRP Conf. on
Manufacturing Systems, volume 7, pages 193–198. Elsevier, 2013.

[LSM12] S. Lee, M. Stolpe, and K. Morik. Separable Approximate Optimization of
Support Vector Machines for Distributed Sensing. In P.A. Flach, T. De Bie,
and N. Christianini, editors, Proc. of the European Conf. on Machine
Learning and Knowledge Discovery in Databases (ECML/PKDD), volume
7524, pages 387–402, Berlin, Heidelberg, 2012. Springer.

[LSM15] T. Liebig, M. Stolpe, and K. Morik. Distributed Traffic Flow Prediction
with Label Proportions: From in-Network towards High Performance Com-
putation with MPI. In Proc. of MUD2, volume 1392, pages 36–43. CEUR-
WS, 2015.

[LSMM10] P. Lokuciejewski, M. Stolpe, K. Morik, and P. Marwedel. Automatic Se-
lection of Machine Learning Models for WCET-aware Compiler Heuristic
Generation. In Proc. of the 4th Workshop on Statistical and Machine Learn-
ing Approaches to ARchitecture and compilaTion (SMART), 2010.

[LTT06] W. H. K. Lam, Y. F. Tang, and M. Tam. Comparison of two non-parametric
models for daily traffic forecasting in Hong Kong. Journal of Forecasting,
25(3):173–192, 2006.

[LXMW12] T. Liebig, Z. Xu, M. May, and S. Wrobel. Pedestrian Quantity Estimation
with Trajectory Patterns. In Machine Learning and Knowledge Discovery
in Databases, pages 629–643. Springer, 2012.

[M0̈7] M. Müller. Dynamic Time Warping. In Information Retrieval for Music
and Motion, pages 69–84. Springer, Berlin, Heidelberg, 2007.

[Mac67] J.B. MacQueen. Some Methods for Classification and Analysis of Multi-
variate Observations. In Proc. of the 5th Berkeley Symp. on Mathematical
Statistics and Probability, pages 281–297, 1967.

[MBC+09] M. May, B. Berendt, A. Cornuejols, J. Gama, F. Giannotti, A. Hotho,
D. Malerba, E. Menesalvas, K. Morik, R. Pedersen, L. Saitta, Y. Saygin,
A. Schuster, and K. Vanhoof. Research Challenges in Ubiquitous Knowl-
edge Discovery. In Kargupta, Han, Yu, Motwani, and Kumar, editors, Next
Generation of Data Mining (NGDM), pages 131–151. CRC Press, 2009.



BIBLIOGRAPHY 259

[MBK12] K. Morik, K. Bhaduri, and H. Kargupta. Introduction to data mining for
sustainability. Data Min. Knowl. Disc., 24(2):311–324, Mar. 2012.

[McC14] B. McCann. A Review of SCATS Operation and Deployment in Dublin.
In Proc. of the 19th JCT Traffic Signal Symposium & Exhibition. JCT
Consulting Ltd, 2014.

[MCO07] D.R. Musicant, J.M. Christensen, and J.F. Olson. Supervised Learning by
Training on Aggregate Outputs. In Proc. of the 7th Int. Conf. on Data
Mining (ICDM), pages 252–261, Oct. 2007.

[MF10] F. Mattern and C. Floerkemeier. From the Internet of Computers to the
Internet of Things. In K. Sachs, I. Petrov, and P. Guerrero, editors, From
Active Data Management to Event-based Systems and More, pages 242–259.
Springer-Verlag, Berlin, Heidelberg, 2010.

[MHK+08] M. May, D. Hecker, C. Körner, S. Scheider, and D. Schulz. A Vector-
Geometry Based Spatial kNN-Algorithm for Traffic Frequency Predictions.
In Data Mining Workshops, Int. Conf. on Data Mining (ICDM), pages 442–
447. IEEE Computer Society, 2008.

[Mie08] I. Mierswa. Non-Convex and Multi-Objective Optimization in Data Mining.
PhD thesis, Technische Universität Dortmund, 2008.

[Mit97] Tom Mitchell. Machine Learning. Mcgraw-Hill Education Ltd, 1997.

[MK05] K. Morik and H. Köpcke. Features for Learning Local Patterns in Time-
Stamped Data. In K. Morik, J.-F. Boulicaut, and A. Siebes, editors,
Local Pattern Detection: International Seminar, Dagstuhl Castle, Ger-
many, April 12-16, 2004, Revised Selected Papers, chapter 7, pages 98–114.
Springer, 2005.

[MK11] R. Mallik and H. Kargupta. A Sustainable Approach for Demand Predic-
tion in Smart Grids using a Distributed Local Asynchronous Algorithm. In
Proc. of the Conf. on Data Understanding (CIDU), pages 1–15, 2011.

[MKH93] M. Moya, M. Koch, and L. Hostetler. One-class classifier networks for target
recognition applications. In Proc. World Congress on Neural Networks,
pages 797–801. International Neural Network Society, 1993.

[MM05] I. Mierswa and K. Morik. Automatic Feature Extraction for Classifying
Audio Data. Machine Learning Journal, 58:127–149, 2005.

[MNR02] C. Meesookho, S. Narayanan, and C.S. Raghavendra. Collaborative clas-
sification applications in sensor networks. In In Proc. of the 2nd Sensor
Array And Multichannel Signal Processing Workshop (SAM), pages 370–
374, 2002.



260 BIBLIOGRAPHY

[Mor99] K. Morik. Tailoring Representations to Different Requirements. In
O. Watanabe and T. Yokomori, editors, Proc. of the 10th Int. Conf. on Al-
gorithmic Learning Theory (ALT), Lecture Notes in Artificial Intelligence,
pages 1–12. Springer, 1999.

[Mor00] K. Morik. The Representation Race - Preprocessing for Handling Time
Phenomena. In L.R. de Mántaras and E. Plaza, editors, Proc. of the 11th
Europ. Conf. on Machine Learning (ECML), pages 4–19. Springer, 2000.

[MS06] A. Meka and A.K. Singh. Distributed Spatial Clustering in Sensor Net-
works. In Proc. of the 10th Int. Conf. on Advances in Database Technology
(EDBT), pages 980–1000. Springer, 2006.

[MSD+10] K. Morik, M. Stolpe, J. Deuse, F. Bohnen, and U. Reichel. Prognosemod-
elle zur Ermittlung der Produkteigenschaften – Einsatz von Data-Mining-
Verfahren im Walzwerk. stahl und eisen, 10:80–82, 2010.

[MSDPC12] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of things:
Vision, applications and research challenges. Ad Hoc Networks, 10(7):1497–
1516, 2012.

[MTV97] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of Frequent
Episodes in Event Sequences. Data Mining and Knowledge Discovery,
1(3):259–290, Nov. 1997.

[MVW00] Y. Matias, J.S. Vitter, and M. Wang. Dynamic Maintenance of Wavelet-
Based Histograms. In Proc. of the 26th Int. Conf. on Very Large Data
Bases (VLDB), pages 101–110, San Francisco, CA, USA, 2000. Morgan
Kaufmann.

[MW99] K. Morik and S. Wessel. Incremental Signal to Symbol Processing. In
Making Robots Smarter, pages 185–198. Springer, 1999.

[MW14] N. Marz and J. Warren. Big Data - Principles and best practices of scalable
realtime data systems. Manning, 2014.

[MWF08] O.L. Mangasarian, E.W. Wild, and G.M. Fung. Privacy-preserving Classi-
fication of Vertically Partitioned Data via Random Kernels. ACM Trans.
Knowl. Discov. Data, 2(3):12:1–12:16, Oct. 2008.

[MWK+06] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE:
Rapid Prototyping for Complex Data Mining Tasks. In T. Eliassi-Rad, L.H.
Ungar, M.C., and D. Gunopulos, editors, Proc. of the 12th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages 935–
940, New York, USA, Aug. 2006. ACM Press.



BIBLIOGRAPHY 261

[MZDM16] R. Moss, A. Zarebski, P. Dawson, and J.M. McCaw. Forecasting influenza
outbreak dynamics in Melbourne from internet search query surveillance
data. Influenza and Other Respiratory Viruses, page n/a, Feb. 2016.

[Nav14] Navigant Research. Shipments of Smart Thermostats Are Expected to
Reach Nearly 20 Million by 2023. https://www.navigantresearch.
com/newsroom/shipments-of-smart-thermostats-are-expected-to-
reach-nearly-20-million-by-2023, 2014. [Online; accessed 2016-04-04].

[NC98] R. Nagpal and D. Coore. An Algorithm for Group Formation in an Amor-
phous Computer. In Proc. of the 10th Int. Conf. on Parallel and Distributed
Computing Systems (PDCS), 1998.

[NH99] R.M. Neal and G.E. Hinton. A View of the Em Algorithm that Justifies
Incremental, Sparse, and other Variants. In M.I. Jordan, editor, Learning
in Graphical Models, pages 355–368. MIT Press, 1999.

[Now03] R.D. Nowak. Distributed EM algorithms for density estimation and cluster-
ing in sensor networks. IEEE Trans. on Signal Processing, 51(8):2245–2253,
Aug. 2003.

[NRC+09] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava. Sensor Network Data
Fault Types. ACM Transactions on Sensor Networks (TOSN), 5(3):1–29,
2009.

[NZC+15] X. Niu, Y. Zhu, Q.g Cao, X. Zhang, W. Xie, and K. Zheng. An Online-
Traffic-Prediction Based Route Finding Mechanism for Smart City. Inter-
national Journal of Distributed Sensor Networks, 2015.

[OFG97] E. Osuna, R. Freund, and F. Girosi. An Improved Training Algorithm for
Support Vector Machines. In Proc. of the 1997 IEEE Workshop on Neural
Networks for Signal Processing, pages 276–285. IEEE, 1997.

[OGP06] M. Otey, A. Ghoting, and S. Parthasarathy. Fast Distributed Outlier Detec-
tion in Mixed-Attribute Data Sets. Data Min. Knowl. Discov., 12:203–228,
2006.

[Ora15a] Oracle Corporation. Energize Your Business with IoT-Enabled Appli-
cations. http://www.oracle.com/us/dm/oracle-iot-cloud-service-
2625351.pdf, 2015. [Online; accessed 2016-02-16].

[Ora15b] Oracle Corporation. Unlocking the Promise of a Connected World: Using
the Cloud to Enable the Internet of Things. http://www.oracle.com/us/
solutions/internetofthings/iot-and-cloud-wp-2686546.pdf, 2015.
[Online; accessed 2015-12-15].



262 BIBLIOGRAPHY

[Oxf13] Oxford Economics. Manufacturing Transformation: Achieving
competetive advantage in changing global marketplace. http:
//www.oxfordeconomics.com/Media/Default/Thought%20Leadership/
executive-interviews-and-case-studies/PTC/Manufacturing%
20Transformation%20130607.pdf, 2013. [Online; accessed 2016-04-04].

[PGR07] N.D. Phung, M.M. Gaber, and U. Rohm. Resource-aware Online Data Min-
ing in Wireless Sensor Networks. In IEEE Symp. on Comput. Intelligence
and Data Mining (CIDM), pages 139–146, Apr. 2007.

[PK00] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors. Com-
mun. ACM, 43(5):51–58, May. 2000.

[PK13] D. Partynski and S.G.M. Koo. Integration of Smart Sensor Networks into
Internet of Things: Challenges and Applications. In Proc. of the IEEE Int.
Conf. on Green Computing and Communications (GreenCom) and IEEE
Internet of Things (iThings) and IEEE Cyber, Physical and Social Com-
puting (CPSCom), pages 1162–1167, 2013.

[Pla99] J.C. Platt. Fast Training of Support Vector Machines Using Sequential
Minimal Optimization. In B. Schölkopf, C.J.C. Burges, and A.J. Smola,
editors, Advances in Kernel Methods, pages 185–208. MIT Press, Cam-
bridge, MA, USA, 1999.

[PLM13] N. Piatkowski, S. Lee, and K. Morik. Spatio-Temporal Random Fields:
Compressible Representation and Distributed Estimation. Machine Learn-
ing, 93(1):115–139, 2013.

[PNCR14] G. Patrini, R. Nock, T. Caetano, and P. Rivera. (Almost) No Label No
Cry. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 190–198. Curran Associates, Inc., 2014.

[PPKG03] T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos. Dis-
tributed Deviation Detection in Sensor Networks. SIGMOD Rec., 32(4):77–
82, Dec. 2003.

[PSJ11] D. Pechyony, L. Shen, and R. Jones. Solving Large Scale Linear SVM with
Distributed Block Minimization. In NIPS 2011 workshop on Big Learning:
Algorithms, Systems and Tools for Learning at Scale., 2011.

[QSCL09] N. Quadrianto, A.J. Smola, T.S. Caetano, and Q.V. Le. Estimating Labels
from Label Proportions. J. Mach. Learn. Res., 10:2349–2374, Dec. 2009.

[QSF+16] Y. Qin, Q.Z. Sheng, N.J.G. Falkner, S. Dustdar, H. Wang, and A.V. Vasi-
lakos. When things matter: A survey on data-centric internet of things. J.
Netw. Comput. Appl., 64:137–153, 2016.



BIBLIOGRAPHY 263

[Qui86] J.R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,
1986.

[Qui93] J.R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.

[R0̈1] Stefan Rüping. Incremental Learning with Support Vector Machines. In
Proc. of the 2001 IEEE Int. Conf. on Data Mining (ICDM), pages 641–642,
2001.

[RCM+12] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh. Searching and Mining Trillions of Time
Series Subsequences Under Dynamic Time Warping. In Proc. of the 18th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages
262–270, New York, NY, USA, 2012. ACM.

[RKLE12] T. Rakthanmanon, E. Keogh, S. Lonardi, and S. Evans. MDL-Based Time
Series Clustering. Knowl. and Inf. Systems, 33(2):371–399, 2012.

[RLPB07] S. Rajasegarar, C. Leckie, M. Palaniswami, and J.C. Bezdek. Quarter
Sphere Based Distributed Anomaly Detection in Wireless Sensor Networks.
In Proc. of the IEEE Int. Conf. on Communications (ICC), pages 3864–
3869, 2007.

[RN06] B. Raney and K. Nagel. An Improved Framework for Large-Scale Multi-
Agent Simulations of Travel Behavior. Towards better performing European
Transportation Systems, pages 305–347, 2006.

[RN13] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2013.

[Rüp10] Stefan Rüping. SVM Classifier Estimation From Group Probabilities. In
Proc. of the 27th Int. Conf. on Machine Learning (ICML), 2010.

[RZL13] R. Roman, J. Zhou, and J. Lopez. On the features and challenges of se-
curity and privacy in distributed internet of things. Computer Networks,
57(10):2266–2279, 2013.

[SA96] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations
and Performance Improvements. In Proc. of the 5th Int. Conf. on Extending
Database Technology, volume 1057 of Lecture Notes in Computer Science,
pages 3–17, London, UK, Mar. 1996. Springer.

[SBD15] M. Stolpe, K. Bhaduri, and K. Das. Distributed Support Vector Machines:
An Overview. In S. Michaelis, N. Piatkowski, and M. Stolpe, editors, Solv-
ing Large Scale Learning Tasks: Challenges and Algorithms. Springer In-
ternational Publishing, 2015.



264 BIBLIOGRAPHY

[SBDM13] M. Stolpe, K. Bhaduri, K. Das, and K. Morik. Anomaly Detection in Ver-
tically Partitioned Data by Distributed Core Vector Machines. In H. Bloc-
keel, K. Kersting, S. Njissen, and F. Železný, editors, Proc. of the European
Conf. on Machine Learning and Knowledge Discovery in Databases (ECM-
L/PKDD), pages 321–336, Berlin, Heidelberg, 2013. Springer.

[SBM16] M. Stolpe, H. Blom, and K. Morik. Sustainable Industrial Processes by
Embedded Real-Time Quality Prediction. In Computational Sustainability,
pages 201–243. Springer, 2016.

[SCA13] SCATS. Sydney Coordinated Adaptive Traffic System. http://www.
scats.com.au/, 2013. [Online; accessed 2015-08-19].

[She00] C. Shearer. The CRISP-DM Model: The new blueprint for data mining.
Journal of Data Warehousing, 5(4):13–22, 2000.

[SHKS99] N.A. Syed, S. Huan, L. Kah, and K. Sung. Incremental Learning with
Support Vector Machines. In Proc. of the Int. Joint Conf. on Artificial
Intelligence (IJCAI), 1999.

[Sho11] D. Shoup. Free Parking or Free Markets. Cato Unbound - A Journal of
Debate, 2011. [Online; accessed 2016-04-04].

[SJ15] U. Stanczyk and L.C. Jain, editors. Feature Selection for Data and Pattern
Recognition. Studies in Computational Intelligence. Springer, 2015.

[SKRC10] K. Shvachko, Hairong K., S. Radia, and R. Chansler. The Hadoop Dis-
tributed File System. In IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10, 2010.

[SLM15] M. Stolpe, T. Liebig, and K. Morik. Communication-efficient learning of
traffic flow in a network of wireless presence sensors. In Proc. of the Work-
shop on Parallel and Distributed Computing for Knowledge Discovery in
Data Bases (PDCKDD 2015), CEUR Workshop Proceedings, page (to ap-
pear). CEUR-WS, 2015.

[SLMJ07] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier Detection in Sensor Net-
works. In Proc. of the 8th ACM Int. Symp. on Mobile ad hoc networking
and computing (MobiHoc), pages 219–228, 2007.

[SLMM14] F. Schnitzler, T. Liebig, S. Mannor, and K. Morik. Combining a Gauss-
Markov model and Gaussian process for traffic prediction in Dublin city
center. In Proc. of the Workshops of the EDBT/ICDT Joint Conference,
volume 1133, pages 373–374. CEUR-WS.org, 2014.



BIBLIOGRAPHY 265

[SM11] M. Stolpe and K. Morik. Learning from Label Proportions by Optimizing
Cluster Model Selection. In D. Gunopulos, T. Hofmann, D. Malerba, and
M. Vazirgiannis, editors, Proc. of the European Conf. on Machine Learning
and Knowledge Discovery in Databases (ECML/PKDD), pages 349–364.
Springer, Berlin, Heidelberg, 2011.

[SM13] P. Senin and S. Malinchik. SAX-VSM: Interpretable Time Series Classifi-
cation Using SAX and Vector Space Model. In IEEE 13th Int. Conf. on
Data Mining (ICDM), pages 1175–1180, Dec. 2013.

[Sma16] SmartSantanderSantander. Future Internet Research & Experimentation.
http://www.smartsantander.eu, 2016. [Online; accessed 2016-04-01].

[SMK+11] M. Stolpe, K. Morik, B. Konrad, D. Lieber, and J. Deuse. Chal-
lenges for Data Mining on Sensor Data of Interlinked Processes. In
Proc. of the Next Generation Data Mining Summit (NGDM), 2011.
http://www.kd2u.org/NGDM11/schedule.html.

[SPP+06] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online Outlier Detection in Sensor Data Using Non-
Parametric Models. In Proc. of the 32nd Int. Conf. on Very Large Data
Bases (VLDB), pages 187–198, 2006.

[SPST+01] B. Schölkopf, J.C. Platt, J.C. Shawe-Taylor, A.J. Smola, and R.C.
Williamson. Estimating the Support of a High-Dimensional Distribution.
Neural Comp., 13(7):1443–1471, 2001.

[SRSS06] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale Mul-
tiple Kernel Learning. J. Mach. Learn. Res., 7:1531–1565, Dec. 2006.

[SS02] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, 2002.

[SSB12] T. Sahai, A. Speranzon, and A. Banaszuk. Hearing the clusters of a graph:
A distributed algorithm. Automatica, 48(1):15–24, Jan. 2012.

[Ste12] W.D. Stephenson. IntelliStreets: Digital Scaffolding for ’Smart’
Cities. http://www.huffingtonpost.com/w-david-stephenson/
intellistreets_b_1242972.html, 2012. [Online; accessed 2016-04-04].

[Sti14] Jeremy Stierwalt. Formula 1 and HANA: How F1 Racing is Pioneering Big
Data Analytics. http://jeremystierwalt.com/2014/01/29/formula-
1-and-hana-how-f1-racing-is-pioneering-big-data-analytics/,
2014. [Online; accessed 2016-02-16].

[SV99] J.A.K. Suykens and J. Vandewalle. Least Squares Support Vector Machine
Classifiers. Neural Processing Letters, 9(3):293–300, 1999.



266 BIBLIOGRAPHY

[SVvL06] A. Siebes, J. Vreeken, and M. van Leeuwen. Item Sets That Compress. In
Proc. of the 6th SIAM Int. Conf. on Data Mining, pages 395–418, 2006.

[Swe02] L. Sweeney. K-anonymity: A Model for Protecting Privacy. Int. J. Uncer-
tain. Fuzziness Knowl.-Based Syst., 10(5):557–570, Oct. 2002.

[Tap15] J. Tapper. Obama administration spied on German media as well as its
government. http://edition.cnn.com/2015/07/03/politics/germany-
media-spying-obama-administration/index.html, 2015. [Online; ac-
cessed: 2016-03-30].

[TD04] David M. J. Tax and Robert P. W. Duin. Support Vector Data Description.
Mach. Learn., 54:45–66, 2004.

[The15a] The Apache Software Foundation. Apache Flink: Scalable Batch and
Stream Data Processing. http://flink.apache.org/, 2015. [Online; ac-
cessed 2015-12-15].

[The15b] The Apache Software Foundation. mahout. http://mahout.apache.org/,
2015. [Online; accessed 2016-03-30].

[THK16] N.A. Treiber, J. Heinermann, and O. Kramer. Wind Power Prediction
with Machine Learning. In J. Lässig, K. Kersting, and K. Morik, editors,
Computational Sustainability, volume 9570 of Lecture Notes in Computer
Science. Springer, 2016.

[TKC05] I. Tsang, J. Kwok, and P. Cheung. Core Vector Machines: Fast SVM
Training on Very Large Data Sets. J. Mach. Learn. Res., 6:363–392, Dec.
2005.

[TLCY14] C.-W. Tsai, C.F. Lai, M.C. Chiang, and L.T. Yang. Data Mining for In-
ternet of Things: A Survey. IEEE Communications Surveys & Tutorials,
16(1):77–97, 2014.

[TLV14] C.-W. Tsai, C.-F. Lai, and A.V. Vasilakos. Future Internet of Things: open
issues and challenges. Wirel. Netw., 20(8):2201–2217, 2014.

[TSV12] R.K. Tripathi, Y.N. Singh, and N.K. Verma. N-LEACH, a balanced cost
cluster-heads selection algorithm for Wireless Sensor Network. In National
Conf. on Communications (NCC), pages 1–5, Feb. 2012.

[TvS06] A.S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall, 2nd edition, 2006.

[Uni14] United Nations. World Urbanization Prospects. http://esa.un.org/
unpd/wup/Publications/Files/WUP2014-Report.pdf, 2014. [Online; ac-
cessed 2016-04-04].



BIBLIOGRAPHY 267

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[Vap99] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
2nd edition, 1999.

[Ver15] Verizon. State of the Market: The Internet of Things 2015.
http://www.verizonenterprise.com/state-of-the-market-
internet-of-things/, 2015. [Online; accessed 2015-10-22].

[VRR+15] A. K. Ramachandran Venkatapathy, A. Riesner, M. Roidl, J. Emmerich,
and M. ten Hompel. PhyNode: An intelligent, cyber-physical system with
energy neutral operation for PhyNetLab. In Proc. of the Europ. Conf. on
Smart Objects, Systems and Technologies, Smart SysTech, 2015.

[WBK09] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic Local Algorithm for
Mining Data Streams in Large Distributed Systems. IEEE Trans. on
Knowl. and Data Eng., 21(4):465–478, Apr. 2009.

[WBX14] C. Wang, Z. Bi, and L. D. Xu. IoT and Cloud Computing in Automation
of Assembly Modeling Systems. IEEE T. Ind. Inform., 10(2):1426–1434,
2014.

[WCD+07] W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng. Localized
Outlying and Boundary Data Detection in Sensor Networks. IEEE Trans.
on Knowl. and Data Eng., 19(8):1145–1157, Aug. 2007.

[WEH11] I.H. Witten, F. Eibe, and M.A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. The Morgan Kaufmann series in data
management systems. Elsevier, Inc., Burlington, MA, 3rd edition, 2011.

[Wei91] M. Weiser. The Computer for the 21st Century. Sci. Am., 265(9), 1991.

[WFH11] I.H. Witten, E. Frank, and M.A. Hall. Data Mining. Morgan Kaufmann,
3rd edition, 2011.

[Whi11] T. White. Hadoop: The Definitive Guide. O’Reilly, USA, 2nd edition, 2011.

[WK09] X. Wang and K.M. Kockelmann. Forecasting Network Data: Spatial Inter-
polation of Traffic Counts from Texas Data. Journal of the Transportation
Research Board, 2105(13):100–108, 2009.

[WLK16] B. Wolff, E. Lorenz, and O. Kramer. Statistical Learning for Short-Term
Photovoltaic Power Predictions. In J. Lässig, K. Kersting, and K. Morik,
editors, Computational Sustainability, volume 9570 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, 2016.



268 BIBLIOGRAPHY

[Woo12] E. Woods. Smart Street Lights Face Financial Hurdles. https:
//www.navigantresearch.com/blog/smart-street-lights-face-
financial-hurdles, 2012. [Online; accessed 2016-04-04].

[WS04] R. Wolff and A. Schuster. Association Rule Mining in Peer-to-Peer Systems.
IEEE Trans. on Systems, Man and Cybernetics - Part B, 34(6):2426–2438,
Dec. 2004.

[XHL14] L.D. Xu, W. He, and S. Li. Internet of Things in Industries: A survey.
IEEE Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

[YF04] O. Younis and S. Fahmy. HEED: a hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks. IEEE Trans. on Mobile
Computing, 3(4):366–379, 2004.

[YG08] J. Yin and M.M. Gaber. Clustering Distributed Time Series in Sensor
Networks. In Proc. of the 8th IEEE Int. Conf. on Data Mining (ICDM),
pages 678–687, 2008.

[YHCL10] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large
Linear Classification when Data Cannot Fit in Memory. In Proc. of the
16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 833–842, New York, NY, USA, 2010. ACM.

[YK09] L. Ye and E. Keogh. Time Series Shaplets: A new Primitive for Data
Mining. In Proc. of the 15th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 947–956, New York, NY, USA, 2009.
ACM.

[YKJC14] F.X. Yu, S. Kumar, T. Jebara, and S.-F. Chang. On Learning with Label
Proportions. CoRR, abs/1402.5902, 2014.

[YLG09] H. Yunhong, F. Liang, and H. Guoping. Privacy-Preserving SVM Classi-
fication on Vertically Partitioned Data without Secure Multi-party Com-
putation. In Proc. of the 5th Int. Conf. on Natural Computation (ICNC),
volume 1, pages 543–546, Aug. 2009.

[YLK+13] F.X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang. ∝-SVM for Learn-
ing with Label Proportions. In Proc. of the 30th Int. Conf. on Machine
Learning (ICML), pages 504–512, 2013.

[YVJ06] H. Yu, J. Vaidya, and X. Jiang. Privacy-Preserving SVM Classification
on Vertically Partitioned Data. In Proc. of the 10th Pacific-Asia Conf.
on Advances in Knowledge Discovery and Data Mining (PAKDD), pages
647–656, Berlin, Heidelberg, 2006. Springer-Verlag.



BIBLIOGRAPHY 269

[YYYA06] A. Youssef, M. Younis, M. Youssef, and A. Agrawala. Distributed Forma-
tion of Overlapping Multi-hop Clusters in Wireless Sensor Networks. In
IEEE Global Telecommunications Conf. (GLOBECOM), pages 1–6, Dec.
2006.

[ZDJW13] Y. Zhang, J. Duchi, M.I. Jordan, and M.J. Wainwright. Information-
theoretic lower bounds for distributed statistical estimation with commu-
nication constraints. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems (NIPS), volume 26, pages 2328–2336. Curran Associates,
Inc., 2013.

[ŽPG16] I. Žliobaitė, M. Pechenizkiy, and J. Gama. An Overview of Concept Drift
Applications. In Nathalie Japkowicz and Jerzy Stefanowski, editors, Big
Data Analysis: New Algorithms for a New Society, pages 91–114. Springer
International Publishing, 2016.

[ZRDZ07] J. Zhang, D. Roy, S. Devadiga, and M. Zheng. Anomaly detection in
MODIS land products via time series analysis. Geo-spatial Information
Science, 10(1):44–50, 2007.

[ZRLP14] Y. Zheng, S. Rajasegarar, C. Leckie, and M. Palaniswami. Smart car park-
ing: Temporal clustering and anomaly detection in urban car parking. In
Proc. of the 9th IEEE Int. Conf. on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), pages 1–6, 2014.

[ZSGL07] K. Zhang, S. Shi, H. Gao, and J. Li. Unsupervised Outlier Detection in
Sensor Networks Using Aggregation Tree. In Proc. of the 3rd Int. Conf. on
Advanced Data Mining and Applications (ADMA), pages 158–169, 2007.

[ZSS+16] Y. Zhao, R. Schwartz, E. Salomons, A. Ostfeld, and H.V. Poor. New
formulation and optimization methods for water sensor placement. Envi-
ronmental Modelling & Software, 76:128–136, 2016.

[ZY16] K. Zhou and S. Yang. Understanding household energy consumption be-
havior: The contribution of energy big data analytics. Renew. Sust. Energ.
Rev., 56:810–819, 2016.


