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Abstract

This work presents a method for a computer vision-based detection of biological viruses in
PAMONO sensor images and, related to this, methods to explore cyber-physical systems
such as those consisting of the PAMONO sensor, the detection software, and processing
hardware. The focus is especially on an exploration of Graphics Processing Units (GPU)
hardware for “General-Purpose computing on Graphics Processing Units” (GPGPU)
software and the targeted systems are high performance servers, desktop systems, mobile
systems, and hand-held systems.

The first problem that is addressed and solved in this work is to automatically detect
biological viruses in PAMONO sensor images. PAMONO is short for “Plasmon Assisted
Microscopy Of Nano-sized Objects”. The images from the PAMONO sensor are very
challenging to process. The signal magnitude and spatial extension from attaching viruses
is small, and it is not visible to the human eye on raw sensor images. Compared to the
signal, the noise magnitude in the images is large, resulting in a small Signal-to-Noise
Ratio (SNR).

With the VirusDetectionCL method for a computer vision-based detection of viruses,
presented in this work, an automatic detection and counting of individual viruses in
PAMONO sensor images has been made possible. A data set of 4000 images can be
evaluated in less than three minutes, whereas a manual evaluation by an expert can take
up to two days. As the most important result, sensor signals with a median SNR. of two
can be handled. This enables the detection of particles down to 100 nm.

The VirusDetectionCL method has been realized as a GPGPU software. The PAMONO
sensor, the detection software, and the processing hardware form a so called cyber-physical
system. For different PAMONO scenarios, e.g., using the PAMONO sensor in laboratories,
hospitals, airports, and in mobile scenarios, one or more cyber-physical systems need to be
explored. Depending on the particular use case, the demands toward the cyber-physical
system differ.

This leads to the second problem for which a solution is presented in this work: how can
existing software with several degrees of freedom be automatically mapped to a selection
of hardware architectures with several hardware configurations to fulfill the demands to
the system? Answering this question is a difficult task. Especially, when several possibly
conflicting objectives, e.g., quality of the results, energy consumption, and execution time
have to be optimized.

An extensive exploration of different software and hardware configurations is expensive
and time-consuming. Sometimes it is not even possible, e.g., if the desired architecture is
not yet available on the market or the design space is too big to be explored manually in
reasonable time. A Pareto optimal selection of software parameters, hardware architectures,
and hardware configurations has to be found.

To achieve this, three parameter and design space exploration methods have been
developed. These are named SOG-PSE, SOG-DSE, and MOGEA-DSE. MOGEA-DSE
is the most advanced method of these three. It enables a multi-objective, energy-aware,
measurement-based or simulation-based exploration of cyber-physical systems. This can
be done in a hardware/software codesign manner. In addition, offloading of tasks to a



vi

server and approximate computing can be taken into account. With the simulation-based
exploration, systems that do not exist can be explored. This is useful if a system should
be equipped, e.g., with the next generation of GPUs. Such an exploration can reveal
bottlenecks of the existing software before new GPUs are bought.

With MOGEA-DSE the overall goal—to develop a method to automatically explore
suitable cyber-physical systems for different PAMONO scenarios—could be achieved. As
a result, a rapid, reliable detection and counting of viruses in PAMONO sensor data using
high-performance, desktop, laptop, down to hand-held systems has been made possible.

The fact that this could be achieved even for a small, hand-held device is the most
important result of MOGEA-DSE. With the automatic parameter and design space
exploration 84 % energy could be saved on the hand-held device compared to a baseline
measurement. At the same time, a speedup of four and an F} quality score of 0.995 could
be obtained. The speedup enables live processing of the sensor data on the embedded
system with a very high detection quality.

With this result, viruses can be detected and counted on a mobile, hand-held device
in less than three minutes and with real-time visualization of results. This opens up
completely new possibilities for biological virus detection that were not possible before.
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CHAPTER 1

Introduction
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1.1 Systems for Biological Virus Detection ... ............ 1
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1.6 Acknowledgment . ... ... ... ... ... 11

This work presents methods for a fast automatic computer vision-based detection
and counting of biological viruses and methods of how the parameter space and design
space of cyber-physical systems can be explored with the aim to find suitable systems for
virus detection. The focus is on a multi-objective, energy-aware exploration of graphics
processing unit architectures with suitable hardware and software parameters for biological
virus detection scenarios.

1.1 Systems for Biological Virus Detection

Rapidly detecting viruses is of huge importance, “faster, portable and more accurate
diagnostic methods” [MREQ9] are needed. To make this possible, systems for a virus
detection have to be explored and developed. Basically, a system for an automatic detection
of biological viruses can be constructed from three parts: a sensor, a detection software,
and a processing hardware. In this thesis, a novel virus detection sensor is considered,
a novel computer vision-based detection method is developed, and suitable processing
hardware is explored.

The sensor can make individual viruses indirectly visible by using only common optics
and a simple setup. This sensor is named PLASMON ASSISTED MICROSCOPY OF NANO-
s1zeD OBJECTS (PAMONO). The computer vision-based detection method presented
in this work, is able to handle the very demanding sensor data and can automatically
detect and count individual viruses attaching to the PAMONO sensor. The hardware
needs to be able to process the sensor images from the PAMONO sensor fast enough
with the detection software. GRAPHICS PROCESSING UNITs (GPUs) have shown to be
very well suited for that task as they are designed to process huge amounts of data in
parallel. GPU hardware of different size and processing power is considered. To utilize the
processing power of the GPU hardware, GENERAL-PURPOSE COMPUTING ON (GRAPHICS
PROCESSING UNITS (GPGPU) is used. With GPGPU, tasks that are usually processed
on CENTRAL PROCESSING UNITs (CPUs) can be processed on GPUs. Sensor, detection
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Figure 1.1: Different scenarios for the detection of biological viruses.

software, and processing hardware combined form a so called CYBER-PHYSICAL SYSTEM
(CPS). CPSs are “integrations of computation and physical processes” [Lee07].

The PARAMETER SPACE EXPLORATION (PSE) and DESIGN SPACE EXPLORATION
(DSE) methods from this work can be used to explore these CPSs. PSE is the exploration
of different parametrizations toward one or more objectives. DSE is the exploration
of design alternatives, e.g., different software designs, design of new hardware, suitable
existing hardware architectures, or hardware configurations toward one or more objectives.

The overall problem is to identify suitable CPSs for all scenarios of how the PAMONO
sensor can be used in practice. A Pareto-optimal selection of software parameters, hardware
architectures, and hardware configurations has to be found.

Therefore, the common thread running through the thesis consists of the different
PAMONO scenarios. Figure 1.1 shows the five scenarios for the PAMONO sensor use case
that are inspected in this work. These are named SCN1[ap, SCN2granp-arone, SCN3Locar,
SCN4croup, and SCNSHogprrar-

Scenario SCN1p,,5 shows the laboratory use case. Stationary desktop systems are used
independently without need of a central server.

Scenario SCN2granp-arone Shows mobile processing with a single, independent hand-
held device. This case can happen if a small, hand-held device is used and no connection
to a server or other devices is available. Without the possibility to offload work, all
calculations have to be done locally without consuming too much energy. By taking
approximate computing into account, detection quality can be traded off against energy
consumption.

Scenarios SCN3p,ocar shows mobile processing with other available PAMONO devices
in a local network. The other devices are usually battery driven but also devices with
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a power supply may be available. Calculations can be offloaded to other devices if the
battery in the mobile devices runs low.

Scenario SCN4cpoup shows mobile processing with the possibility to offload work to the
cloud where the calculations are done on one or more servers. A mobile data connection
like LoNnG TERM EvoruTioN (LTE) is used.

Finally, scenario SCNb5ogpirar, sShows a typical setup for hospitals or airports. Several
stationary or mobile devices can be used to take measurements where needed. Data can
be processed locally or offloaded to a server in the local network. A server is available,
e.g., to provide additional processing power for the mobile devices as needed.

For each application scenario the system has several degrees of freedom, and different,
possibly conflicting requirements need to be fulfilled. The degrees of freedom and the
requirements define an optimization problem.

As soon as the system exceeds a certain level of complexity, usually, no easy solution
to this problem exists. Manually exploring the space of possible solutions can be very
time-consuming or even infeasible. To address these issues, automatic PSE and DSE
methods are examined in this work.

For the virus detection application, throughout the development process, regular
changes were made on the physical setup of the sensor, on the used hardware in the
sensor, on the capabilities of the detection software, and on the target hardware. Ideally,
changes in one part of the system are reflected by the other parts within a short time.
This requires steady changes of the system and its parametrization and an automatic
evaluation of the objectives. With the PSE and DSE methods from this work, a feedback
can be automatically obtained that loops back into the development process. The methods
enable a hardware/software codesign and can be used in a SOFTWARE-IN-THE-LOOP (SIL),
HARDWARE-IN-THE-LoOP (HIL) [Marll], or HIL simulation [San02] manner.

Figure 1.2 shows an example of how such a hardware/software codesign with feedback
might look like for the virus detection. Systems for the four considered examples are
shown, i.e., systems for using the sensor in laboratories, hospitals, as a mobile device, and
as a hand-held device. Each system has different demands to the sensor, needs different
processing methods and parametrization and needs different processing hardware. Each line
represents one CPS and its configuration. Over time the sensor and the detection software
are improved. As new fields of application and use cases arise or if new hardware becomes
available the target hardware changes. Even after the design of a CPS is completed the
demands to the system can change dramatically depending on the use case, e.g., regarding
detection quality, processing speed, energy consumption, and size of the hardware.

With the PSE and DSE methods an automatic optimization can be performed both on
the software configuration and the target hardware. Additionally, bottlenecks and needed
changes can be detected and treated early in the development. For example, for the virus
detection use case it could be shown in this work that the noise in the sensor data is a
limiting factor for detecting smaller viruses. This resulted in an improved physical setup
of the PAMONO sensor with better cameras and in improved noise reduction and signal
restoration methods for the detection software.

Overall, the PSE and DSE methods in this work can be used to automatically explore
software configurations and hardware architectures toward several objectives. This is
demonstrated on a real world use case, the detection of biological viruses.
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Figure 1.2: Design process for four systems for laboratory, hospital, mobile, and hand-
held sensor data processing. The systems share the same processing al-
gorithms but with different sensor setups, algorithmic configurations, and
target architectures. Over time (t) the systems are changed. Every change
requires that the system reflects these changes. The methods from this work
can be used to automatically explore suitable configurations and suitable
target hardware and can provide feedback for further improvements.

1.2 Automatic System Optimization

The PSE and DSE methods in this work can be used to explore CPSs for the virus detection
use case and many other use cases. In our digitized world CPSs, which bridge the gap
between the physical and digital domain, are becoming more and more important. Their
importance has grown significantly in the recent years and is still increasing especially in
the context of Health 3.0 [Nas08] and Industry 4.0 [BFK+-14].

In this work, the focus is on heterogeneous CPSs including GPUs as target architectures.
The size of the examined systems ranges from large HIGH-PERFORMANCE COMPUTING
(HPC) systems, to desktop, laptop, down to hand-held devices. Heterogeneity and
concurrency play an important role for all these systems: additional powerful processors,
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power efficient processors, special purpose processors, or GPUs are included, e.g., for signal
processing or computer vision tasks. MULTIPROCESSOR SYSTEM-ON-CHIpPs (MPSoCs)
and GPUs open up entirely new possibilities for CPSs. However, at the same time, the
complexity to design software and to explore suitable parameters and architectures for
these systems increases, especially if several possibly conflicting objectives and additional
constraints need to be satisfied.

GPGPU enables the execution of all kinds of tasks on GPU hardware that was originally
designed to process only graphics. With GPGPU, the processing power of GPUs is made
available for various applications. To utilize the huge amount of processing cores of a
GPU, concurrency is essential. As Sutter stated in 2005: “Concurrency is the next major
revolution in how we write software.” [Sut05] And up to now, everything indicates that he
was right. Even for hand-held devices concurrency is becoming more and more important.

However, concurrency does not come for free. As an example, a simple minimum and
maximum calculation on an array of numbers takes about six lines of C' code, but an
optimized minimum and maximum calculation on a GPU takes about 50 lines of GPGPU
code plus about 90 lines of host code. This includes a global and local parallel reduction,
efficient use of local memory, synchronization barriers, several kernel calls, and error
handling. The initialization and cleanup of the GPU memory and the GPU itself is not
included in this calculation.

In addition to the overhead of concurrency in the software design, GPGPU code and
GPU hardware need to fit to each other. Actually, a GPGPU programming language
should abstract from the hardware whereas in practice both are interdependent to a greater
degree. This is especially true if the systems need to be optimized toward performance or
toward a low energy consumption.

With the PSE and DSE methods the mapping to the architecture and the target
architecture itself can be automatically explored and new insights to massively parallel
programs can be gained.

Identifying a well suited combination of parameter values can be a difficult task. The
link between parameter and design space and the objective space can be highly non-linear.
Known or unknown dependencies might exist among the parameters.

A manual exploration is usually time-consuming and costly to conduct. Even if only a
few variables are considered, the explored space can grow very quickly making a manual
exploration infeasible. Already a few considered variables with a few possible values can
span a space of thousands of points. If dependencies exist between these variables it is
usually not possible to tune just one variable after the other. Instead, the depending
variables have to be tuned jointly. Even if a suitable parameter set is found, small
changes that affect the explored space often require that at least parts of the PSE and
DSE must be repeated. If, for example, the setup, the field of use, or demands to the
quality of the output change, the architecture and software need to reflect these changes.
Especially if hardware and software are designed simultaneously in a hardware/software
codesign manner, frequent changes with the need of repeated evaluation are common.
A hardware/software codesign is often mandatory for EMBEDDED SySTEMs (ESs) and
CPSs [Marl1].

Figure 1.3 shows a general view of what kind of systems can be explored with the
PSE and DSE methods from this work. Target architectures from large and powerful
down to small and mobile can be explored. For each of these architectures, an exploration
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Figure 1.3: Overview of hardware systems of different size and with different abstraction
levels and how they can be explored with methods from this work.

of these systems might start with a different abstraction level. For larger and more
expensive architectures, the exploration might start with a high abstraction level and then
continuously evolve toward the actual system. The abstraction levels might span from the
simulation of not yet existing hardware, to simulation of existing hardware, and toward
measurements of actual hardware. For a small and cheap architecture, the exploration
might start directly with measurements of the actual device.

In addition to this separated view, an exploration might start with one system and
from this basis the exploration leads toward other devices of larger and smaller sizes.
This approach is indicated by the arrows in the figure with a desktop at a medium
abstraction level as starting point. The size of the target architectures changes over time or
if additional fields of application should be explored. Lessons learned from the exploration
of architecture can be incorporated for the explorations of other architecture sizes. The
systems can be explored in a hardware/software codesign manner. Software developed for
one architecture can be reused and adapted to other hardware. Such a process of exploring
target architectures of different size at different abstraction levels and suitable software
toward actual systems can be supported with the PSE and DSE methods from this work.

As the complexity of computer systems increases, automatic methods are needed to
explore these. Currently, Moore’s law [Moo98] still holds: the number of transistors is
raises exponentially. This trend also seems to hold for GPU systems. For example, the
NVIDIA®GEFORCE™GTX Titan [NVI15d] has 7.1 billion transistors, twice as many as the
NVIDIA®*GEFORCE"GTX 680. With the increasing number of transistors the performance
of these systems raises. However, this also leads to new challenges concerning a proper
utilization of the available resources and concerning the energy consumption. Leng et al.
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highlight that for the exploration of new GPU architectures, tools are needed to optimize
the energy consumption of GPUs [LHE+13]. According to Rofouei et al. [RSR+08], there
is “a huge potential of research in the field of energy-aware high performance computing
with GPUs”. This motivates why automatic PSE and DSE methods such as these from
this work are important.

1.3 Contribution of this Work

The original contribution to knowledge provided in this work consists of the five methods
VirusDetectionCL, RFC-Gen, SOG-PSE, SOG-DSE, and MOGEA-DSE as explained in
the following.

VirusDetectionCL

VIRUS DETECTION witH OPENCL (VirusDetectionCL) is a method for an automatic
detection and counting of individual viruses in PAMONO sensor data.

VirusDetectionCL is the first method that achieved an automatic detection and counting
of individual viruses in soft real-time on small, hand-held devices. Soft real-time refers to
a buffered processing of the recorded images that is on average fast enough to meet or
exceed the speed of the camera.

This has been made possible by incorporating several existing and new methods for
noise reduction, signal restoration, feature extraction, segmentation, and classification.
The main focus of the methods is to achieve a good detection quality while at the same
time the execution of VirusDetectionCL should reach or exceed the frame rate of the
camera and be able to provide low energy consumption if needed.

The most important contribution with the VirusDetectionCL method is that virus
infections can be analyzed and detected on a mobile, hand-held device in less than three
minutes. The CPS of a mobile PAMONO sensor combined with the VirusDetectionCL
method and a small, hand-held processing device opens up completely new possibilities
for a virus detection that were not possible before.

The next important result is that sensor signals with a median SIGNAL-TO-NOISE
RATIO (SNR) slightly below two can be handled. This enables the detection of smaller
virus particles down to 100 nm. Most methods that are to some extent comparable to the
VirusDetectionCL method can handle an SNR down to four [CWGO1] or larger or equal
to two [SLN-+09].

Another important contribution is that the PAMONO sensor combined with the
VirusDetectionCL approach reduces the diagnostic gap, between a sick person becoming
contagious and the production of a sufficient amount antibodies, that can be detected. As
soon as viruses in sufficient concentrations can be found within the sample, the PAMONO
sensor can detect them, whereas with methods that detect antibodies, one has to wait
until antibodies show up in sufficient concentrations within the sample. In contrast to the
SURFACE PLASMON RESONANCE (SPR) sensor, which detects, like PAMONO, viruses
and not antibodies, the PAMONO sensor can detect viruses in samples with lower virus
concentration.

With VirusDetectionCL, an evaluation of the sensor images only takes about three
minutes instead of several hours or even days, as with a manual evaluation by an expert. In
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result, the PAMONO sensor combined with VirusDetectionCL can detect acute infections
earlier.

RFC-Gen

RANDOM FOREST CODE GENERATION (RFC-Gen) is a method for automatic GPU code
generation for the application of Random Forest models. Instead of loading a Random
Forest model to the GPU and evaluate it with fixed code, RFC-Gen generates combined
GPGPU code for the model and the evaluation. Hence, the model and the evaluation
become closely interwoven. Additionally, matching host code is generated, which provides
the needed features to the GPGPU code.

The most important contribution for this method is that optimized GPGPU code for
the evaluation of Random Forest models is generated. The RFC-Gen method is used
within VirusDetectionCL.

SOG-PSE

SINGLE-OBJECTIVE GPGPU PARAMETER SPACE EXPLORATION (SOG-PSE) is a single-
objective PSE method for the exploration of parameters of given applications. A parameter
space is defined by all combinations of parameter values that should be considered. The
parameter space can then be explored toward an objective like quality of the result or
execution time.

The SOG-PSE is the prior method of SINGLE-OBJECTIVE GPGPU DESIGN SPACE
EXPLORATION (SOG-DSE) and MULTI-OBJECTIVE GPGPU ENERGY-AWARE DESIGN
SPACE EXPLORATION (MOGEA-DSE). Important insights could be obtained from this
method. The need of a global optimization for VirusDetectionCL could be shown. This
influenced the development of MOGEA-DSE. Additionally, the influence of the noise
to the detection quality could be shown. This influenced both a further development
of the PAMONO sensor and a further development of the noise reduction methods for
VirusDetectionCL.

SOG-DSE

SOG-DSE is a single-objective DSE method for the exploration of GPU architectures
for given GPGPU programs. SOG-DSE explores GPU architectures by making use of a
GPU simulator and a GPU energy model. Different performance-, power-, or energy-based
measures can be considered as objective.

The SOG-DSE is the prior method of MOGEA-DSE. The most important contribution
for SOG-DSE is that GPU architectures can be explored automatically. A manual
exploration of GPU architectures is time-consuming and expensive. With SOG-DSE, GPU
architectures for laptop, desktop and HPC systems could be explored. For several GPGPU
programs an optimized GPU architectures could be explored. Not only suitable GPUs
could be found but also how they need to be configured. For VirusDetectionCL also an
optimization of hardware related parameters was part of the evaluation.

For the exploration of HPC hardware, the power consumption has been considered.
Such an exploration is important to integrate GPUs in existing HPC systems and to design
new HPC systems. The power consumption of the GPUs is also important if a certain
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THERMAL DESIGN POWER (TDP) of a system has to be met. This led to new objectives
for MOGEA-DSE.

Additionally, the need of multi-objective optimization and a speedup of the evaluation
time for simulated GPUs became obvious with SOG-DSE. Both is considered in MOGEA-
DSE.

MOGEA-DSE

MOGEA-DSE is a hybrid multi-objective PSE and DSE method for the simultaneous
exploration of GPGPU software and GPU hardware.

The most important contributions for MOGEA-DSE are: it combines PSE and DSE to
support a hardware/software codesign development process, it supports an energy-aware
and multiple-objective DSE; it integrates two GPU simulators, it can take offloading of
tasks into account, it integrates approximate computing, and it can perform measurements
of actual ES hardware. As a unique feature, MOGEA-DSE is the first DSE method that
can explore GPU architectures for HPC servers, desktop systems, mobile systems, down
to ESs.

MOGEA-DSE can automatically explore hardware and software configurations toward
the objectives execution time, energy consumption, and detection quality. This includes
automatic measurements of the actual target hardware.

As a result, with MOGEA-DSE the soft real-time processing of VirusDetectionCL on
ESs has been made possible. This enables a fast, accurate, and mobile virus detection
with small, hand-held devices. A speedup of 4.1 and energy savings of 84 % could be
achieved when compared to a baseline measurement that has been optimized for desktop
systems. On the ES the same very good detection quality as on the desktop system could
be obtained. The frame rate could be increased from 7.5 fps to 30.8 fps which is more than
sufficient to enable soft real-time processing on the considered small ES.

Additionally, with MOGEA-DSE offloading of work to other devices and approximate
computing can be taken into account. For offloading of work, different offloading points at
different stages of the image processing pipeline of VirusDetectionCL have been examined.
Some amount of work is processed on the local device on a mobile GPU and the remaining
work is processed on a HPC server.

With offloading energy savings up to 95% could be achieved. However, with full
offloading the execution time increases from 0.5s to 27.8s. Therefore, also partial offloading
has been explored. With partial offloading, 77 % energy could be saved while the execution
time only increased to 0.87s.

For approximate computing it has been examined, whether by allowing a reduced
detection quality large savings in energy consumption and large speedups are possible for a
CPS with an ES as target hardware. Without approximate computing with MOGEA-DSE
84 % energy could be saved and a speedup of 4.1 was possible compared to the baseline
experiment. With approximate computing but still with a very good detection quality, the
energy consumption could be reduced by another 50 % and a speedup of 8.1 was possible.
By reducing the detection quality even further, but still reasonable for some use cases, a
speedup of 12.0 could be obtained.
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1.4 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 introduces the PAMONO sensor. This provides the necessary biological and
physical background and the application scenario for the VirusDetectionCL method.

Chapter 3 provides related work for the methods in this thesis.

Chapter 4 introduces basics for the following chapters. This includes an introduction to
GPGPU, image processing notations and definitions, how the detection quality of the sensor
system can be measured and quantified, an introduction to EVOLUTIONARY ALGORITHMS
(EAs), and a brief introduction to the SYNTHESIS/ OPTIMIZATION/ANALYSIS (SynOpSis)
approach [SLW+14; Siel6].

Chapter 5 presents the VirusDetectionCL method for detecting and counting of
individual viruses in PAMONO sensor data. This method is used for several experiments
in the following chapters.

In Chapter 6 the RFC-Gen method is introduced. This method can be used to
automatically generate GPU code for the application of Random Forest models.

Chapter 7 introduces the SOG-PSE and SOG-DSE methods. The first method is an
automatic PSE for the exploration of parameters and the second method is a DSE for the
exploration of GPU hardware architectures.

Chapter 8 is the most important chapter in this thesis. It introduces the MOGEA-DSE
method. This method combines SOG-PSE and SOG-DSE to a hybrid multi-objective
approach.

Finally, Chapter 9 provides summary, future work, and conclusion of this thesis.

1.5 Author’s Contribution to this Thesis

In this section the publications of the author are presented in chronological order. For
each publication the author’s contributions are listed.

Parts of this work are built upon the author’s diploma thesis [Lib11]. This includes
parts of the description of the PAMONO sensor in Section 2.1 and a few parts of the
VirusDetectionCL software in Chapter 5. Although most of the VirusDetectionCL method
is new, some basic pre-processing, the marching squares algorithm, some basic polygon
features, a simple threshold-based classification, the concept of the overall pipeline structure,
and parts of the visualization are no new contributions.

Some preliminary work for this thesis has been done in cooperation with Timm [Tim12].
For this the author provided an early version of VirusDetectionCL as a use case. An
exploration of work group sizes has been made possible in cooperation with Timm. The
work from Timm clearly influenced the PSE and DSE methods in this thesis.

For the co-authored publication [SWL+11], the feature extraction methods have been
developed in cooperation with Siedhoff. The classification, feature selection, and the
evaluations have not been done by the author.

The publication [LWT12] is the most relevant for the SOG-PSE method. In this
publication the denoising algorithms, the PSE, and the experiments have been conducted
by the author.

For the publication [LST+13a], the fuzzy detection methods and the corresponding
experiments have been developed and performed by the author. The other enhancement in
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the detection pipeline and the real time and energy measurements were done in cooperation.
[LST+13b] is a German short version of [LST+13a].

For the co-authored publication [SLW+14], the SynOpSis approach was mainly devised
by Siedhoff. However, the author provided the interface to VirusDetectionCL and some
improvements on both SynOpSis and VirusDetectionCL are the result of this cooperation.
The sensor model in [SLW+14] has been mainly developed by Siedhoff and by Zybin.
The author implemented the application of the sensor model in VirusDetectionCL. This
includes the parallel GPU implementation.

For the co-authored publication [SLW+14], the author only contributed to a lesser
extent. The author provided VirusDetectionCL for the evaluations and implemented the
sensor model.

The publications [LSW14; LMS+14; LKD+14; NLE+15] are the relevant publications
for the MOGEA-DSE method. For the publication [LSW14; LMS+14], the author has
contributed the DSE methods and constructed and conducted the experiments.

A cooperative paper has been done with the Communication Network Institute about
offloading [LKD+14] where the author has done more than half of the work. The author
integrated the LTE simulator from Dusza et al. into the MOGEA-DSE and set up and
conducted all experiments.

A cooperative paper [NLE+15] has been done with Neugebauer. An equal amount
of work has been contributed by the first two authors. The measurement software in
Section 8.5.1 has been mostly developed by Neugebauer. The author provided interface,
bug fixes, testing of the software and some small extensions and also conducted the
experiments.

In the co-authored publication [STM+15] a specificity measurement of the PAMONO
sensor has been conducted where the author provided measurements with the VirusDetec-
tionCL method.

The methods for the VirusDetectionCL approach in Chapter 5 have been developed in
cooperation with Siedhoff [SWL+11; LWT12; LST+13a; LST+13b; SLW+14; SFL+14].
Therefore, methods from VirusDetectionCL are also part of his Ph.D. thesis [Siel6]. The
parallel design and the GPU implementations have been done solely by the author.
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CHAPTER 2

Biomedical PAMONO Sensor
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This chapter describes the PLASMON ASSISTED MICROSCOPY OF NANO-SIZED OB-
JECTS (PAMONO) sensor, invented by Zybin [Zyb10; Zyb13], and the PAMONO sensor
data. The PAMONO sensor is a biomedical sensor that can be used to detect individual
viruses. Fields of application are rapid detection of the spreading of diseases, medical
diagnostics, research on viruses and antibodies, and development of new antiviral drugs.

This chapter is the basis for the automatic virus detection method in Chapter 5.
Different application scenarios with the PAMONO sensor lead to the considered use cases
in this thesis and are used to motivate the PARAMETER SPACE EXPLORATION (PSE) and
DESIGN SPACE EXPLORATION (DSE) methods in Chapter 7 and Chapter 8.

Parts of this introduction have already been published in the author’s publica-
tions [Lib11; LMS+14] and the co-authored publication [STM+15].

2.1 PAMONO Sensor

The PAMONO sensor [ZBM+-07; ZSS+16] is a biomedical sensor to detect viruses and
other nano-particles in liquids. Viruses down to about 50 nm in diameter are detectable.
In contrast to other bio-sensors, e.g., the SURFACE PLASMON RESONANCE (SPR) sensor,
the PAMONO sensor is able to detect individual viruses. This enables the detection of
viruses in samples with low virus concentration, more precise concentration measurements,
and examination of binding processes in real time.

The PAMONO sensor has been developed at the INSTITUTE FOR ANALYTICAL SCIENCE
(ISAS) by Zybin and is patented by European and American patents [Zyb10; Zyb13]. To
detect individual viruses the sensor uses common optics and cameras. This is a unique
feature of the PAMONO sensor. In general viruses are too small to be depicted with
optical systems. How this is possible with the PAMONO sensor is stated in the following
quotation. The PAMONO sensor is

“depicting the radiation reflected by the sensor surface on the detector, char-
acterized in that the resolution capability of the observation optics and of the
detector is larger than the resolution that can be obtained by the deflection-
limited radiation source.” [Zybl13]

13
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Figure 2.1: Schematic of the PAMONO sensor, with a SUPER-LUMINESCENT DIODE
(SLD) on the left, the flow cell, gold plate, and prism in the center, and the
camera on the right. Virus particles are flowing through the flow cell and
possibly attach to antibodies, indicated by a thin coating on top of the gold
layer. The reflected light is slightly brighter at positions where viruses have
attached to antibodies. Lenses left and right of the prism have been omitted
for reasons of clarity. Figure is based on [Lib11; LMS+14].

In other words, the sensor can indirectly make particles visible that are smaller than the
resolution limit of the optics by making use of the secondary effect of the reflected light.

In the following the functioning of the PAMONO sensor is described. First it is
described briefly and then in more detail. A schematic of the sensor is shown in Figure 2.1.
The schematic shows the five main parts of the sensor: a light source, a prism, a gold
plate, a flow cell, and a camera, which are also shown in the detail view. In addition to
these parts, two lenses are used, which have been omitted in the schematic for reasons of
clarity but are shown in Figure 2.2a. One lens is located between the light source and
the prism for an even illumination of the sensor and the other between the prism and the
camera for magnification and focusing.

Basically, the sensor detects viruses as follows. The gold layer is mounted on a prism,
which is illuminated by the light source and reflects some light into a camera. The sample
that should be tested is pumped through the flow cell on the other side of the gold layer.
Viruses attach to the gold layer, which is covered with antibodies. Attaching viruses
change the amount of reflected light on the other side of the gold layer. This change in
intensity can be recorded by a camera. The images can be analyzed automatically by a
software or manually by an expert and the signal of the attached viruses can be detected.

Figure 2.2 shows a laboratory setup of the PAMONO sensor. The individual parts of
the sensor are mounted separately on a laboratory bench to support a fast reconfiguration.
A mobile setup is shown in Figure 2.4. The mobile setup is much smaller. As it is not
mounted on a stabilized laboratory bench, it is protected from vibrations with a stabilizing
platform as shown in Figure 2.4a. The individual parts of the sensor are mounted closer
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(a) An experimental PAMONO (b) First version of the mobile PAMONO setup consisting of a laptop
setup, which is mounted on for the analysis on the left and a (not so) mobile PAMONO
a stabilized laboratory bench. sensor. The base area of this setup is 650 mm x 400 mm.

Figure 2.2: A fixed and a mobile PAMONO sensor setup. Both with SLD, mirror, rotary
pump, the PAMONO sensor with the flow cell, lens, and camera.

together as shown in Figure 2.4b. Because the setup is still in a prototype state, further
miniaturization can be achieved easily.

In more detail, the sensor works as follows. The gold plate is usually covered with
antibodies so that only desired viruses attach to the antibodies. The antibodies bound the
viruses near the sensor surface, which is important for the detection. Only objects very
close to the gold layer can be detected. The prism is reflecting the light into the camera.
Samples are pumped through the flow cell, with 300 pnl capacity [Zyb13], to the gold plate.

The sensor is illuminated by an SLD, see Figure 2.3d, or a laser diode. Both SLD
and laser diode emit monochromatic light but an SLD causes fewer speckles in the
light [Zyb13] and results in a more even illumination of the gold layer. A Kretschmann
configuration is used for the arrangement of SLD, gold layer, and camera [SEM+11]. With
the Kretschmann configuration the light causes so called surface plasmon waves on the
surface of the gold layer to appear. Thus, some light is transformed to surface plasmon
waves and is not reflected. How much light is transformed into plasmon waves and how
much is reflected depends on the wavelength, thickness of the gold layer and the angle of
light source and gold layer [ZSS+16]. In contrast to the classical SPR approach, the so
called plasmon resonance or incident angle is not set to the minimum resonance but to a
smaller angle [Zyb13]. If a virus or particle is attaching to the sensor, a shift in resonance
occurs. The shift in resonance causes also a shift in resonance wavelength as shown in
Figure 2.5. The wavelength can shift, e.g., from a to b. As a result, the reflected signal
increases, e.g., from ¢ to d. Although the virus is very small, for instance, only 100 nm,
the change in reflected signal is on a larger scale, e.g., a few micrometers in size. This
change in reflected light can then be detected with common optics. More details on the
physics of the plasmon resonance effect is given in [Pat05; ZBM+07; ZSS+16].
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(a) Top view of the PAMONO sensor. It shows a mirror reflecting (b) Lateral view of the PAMONO
the SLD light to the sensor in the middle, a retro mounted lens sensor with prism, gold plate
for magnification on the left side, and inlet and outlet tubes on (not visible), and flow cell.
the right side.

(c) Gold plate and prism disassembled from the (d) A QPHOTONIC®QSDM-680-9 SUPER-LUMINES-
PAMONO sensor. A ruler is shown as scale. CENT DIODE in a THORLABS®TCLDMY9 cooled
laser mount.

Figure 2.3: Detail views of the PAMONO sensor. Flow cell, gold plate, prism, and
SUPER-LUMINESCENT DIODE (SLD) are shown.

Figure 2.6 shows the preparation of samples and how they are provided to the sensor.
Samples can be prepared in test tubes as shown in Figure 2.6a. Afterward, they can
be provided to the sensor with a rotary pump as shown in Figure 2.6b. The tubes are
connected to the flow cell. If size and weight of the system matter, a syringe can be used
instead of a rotary pump. However, a rotary pump has the advantage that it provides a
more even flow.

The actual setup of the PAMONO sensor varied over time as it has been improved
several times. The latest setup, as shown in Figure 2.4, uses a QSDM-680-9 SLD from
QPHOTONIC® [QPh15] with a wavelength of 680nm [Zyb13] and a power consumption of
0.64 W. A THORLABS’LDC205C 500mA 10V laser diode driver [Thol5a; Thol5b], with
a maximum power consumption of 30 W, operates the diode. The diode itself is fitted in a
THORLABS*TCLDMY cooled laser mount [Thol5¢; Thol5b], see Figure 2.3d.
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(a) The mobile PAMONO setup placed on a stabi- (b) Interior view of the mobile PAMONO setup.
lizing platform.

Figure 2.4: Mobile PAMONO sensor setup. The base area is 450 mm x 300 mm.

The laser mount uses a Peltier element to keep the laser at a controlled temperature
and has a maximum power consumption of 20 W. A THORLABS®TED200C temperature
controller [Thol5d; Thol5b| constantly measures the current temperature of the diode
and accordingly drives the current of the Peltier element with a control range of -2 A to
2 A and a maximum output power of 12 W. The light of the SLD is altered with a zero
order half wave waveplate for 670 nm [Thol5e|. A collimator lens is used to distribute the
light evenly onto the sensor.

Several industrial monochrome cameras with COMPLEMENTARY METAL-OXIDE-SEMI-
CONDUCTOR (CMOS) or CHARGE COUPLED DEVICE (CCD) sensor [The08] were tested
and used within the PAMONO setup. The latest setup uses a THE IMAGING SOURCE* DMK
23UP031 [Thel5] monochrome industrial camera. The camera has a 5 Mpx MT9P006
CMOS chip from APTINA"with 2.2 pm pixel size and a frame rate of 15 fps at full resolution.
A second camera, currently in use, is the ALLIED VISION Guppy Pro F-503BC [All15a]
with the same APTINA"MTIP006 CMOS chip as in the THE IMAGING SOURCE®camera
but with an IEEE 1394 interface. It has a frame rate of 13 fps at full resolution and a
power consumption of 3 W.

Another camera, which was used for some older experiments, is the ALLIED VI-
SION ProsiLica GC 2450 [All15b]. The PROSILICA camera has a monochrome 12 bit
SONY®ICX625 CCD chip with 5 Mpx. It has a GigE interface and a frame rate of 15 fps
at full resolution and a power consumption of 3.8 W.

Finally, the Kappa DX 40-1020 FW [Kapl5] camera was used for early experiments,
which is a 1 Mpx monochrome CCD camera with a frame rate of 16 fps at full resolution
and a power consumption of 3.4 W. All three cameras can achieve a frame rate of 25 fps
with a slightly reduced resolution.

The main reason to use industrial cameras is the bit depth of at least 12 bit. A 200 nm
polystyrene particle causes a brightness increase of about 6 %. To detect this brightness
change, a high pixel depth of at least 12 bit is recommended. With 8 bit depth as with
consumer grade cameras, the greater quantization error would make a detection of a
change in brightness more difficult.
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Reflected signal

T T >
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Figure 2.5: A resonance shift for an attaching virus or particle on the PAMONO sensor.
The reflected signal at wavelength A\ should be considered. If a virus or
particle attaches to the sensor it shifts the resonance wavelength, e.g., from
a to b. This causes a large increase in signal at wavelength A, e.g., from ¢ to
d. The shift is exaggerated for clarity. Adapted from [Zyb13].

The necessary magnification of the image is achieved by a retro mounted lens, see
Figure 2.3. A reversed mounted lens acts as a magnifying optics. The latest setup uses
a retro mounted CANON®EF 50mm f/2.5 compact macro lens [Canlb], with modern
anti-reflexion coatings, which makes the lens suited for the use with digital cameras. Older
setups contained a retro mounted CANON®FD 24mm f/2.8 lens from about 1970, see
Figure 2.4b or a retro mounted MINOLTA®MD Rokkor 50 mm f/1.7 lens from about 1975.
The anti-reflexion coatings of these two lenses were not designed to be used with digital
cameras.

Figure 2.3 shows detail views of the parts of the PAMONO sensor. The core components
of the sensor, prism and flow cell, are shown in Figure 2.3a and Figure 2.3b. The gold
plate is mounted between prism and flow cell. A disassembled gold plate and prism are
shown in Figure 2.3c.

The size for the latest mobile PAMONO setup is 450 mm x 300 mm x 200 mm, whereas
older mobile setups were 650 mm x 400 mm x 500 mm in size. However, although it is
already a mobile setup, the setup was designed to be used in the laboratory, in hospitals
or at airports and not hand-held without any power supply nearby. Currently it contains
a lot of empty space. As already mentioned, further miniaturization, toward a hand-held
device, is possible.

What differs the PAMONO sensor from the SPR sensor is that for the SPR sensor
only the overall brightness is measured, which is usually done with a single photo diode.
As a consequence, only the overall amount of attaching viruses can be measured. For the
PAMONO sensor on the other hand, the brightness changes from individual virus are
measured with a camera. These changes in brightness are much smaller than the change
of the overall brightness caused by thousands of viruses measured by the SPR sensor.

From the design of the PAMONO sensor several new challenges arise for the processing
of the sensor signal. The main challenge is the low SIGNAL-TO-NOISE RATIO (SNR),
cf. Definition 29. The signal of the viruses is only a little larger than the noise level of
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(a) Samples are prepared in (b) The rotary pump, providing a constant flow rate of the sample to
test tubes and can then pro- the flow cell of the PAMONO sensor.
vided to the PAMONO sen-
Sor.

Figure 2.6: Preparation of the samples and how they are pumped to the PAMONO
sensor. The pump and test tube can be replaced by a syringe if the setup
needs to be smaller.

the camera. The signal of the viruses is also much smaller than the empty background
signal achieved from the sensor without any particles. However, if the challenges for the
processing are solved, the PAMONO sensor can be used for a fast and simple detection
and counting of individual viruses in laboratories, hospitals, at airports, and outdoors.

2.2 PAMONO Sensor Data

For the evaluation of the PAMONO sensor use case, several data sets are used. Basically,
the data sets divide into signals from VIRUS LIKE PARTICLEs (VLPs), signals from
polystyrene particles, and synthetic signals derived from real signals. Table 2.1 shows a
list of the most important data sets. The names are used to identify the data sets in the
following chapters, the type states if it is real signal recorded from the PAMONO sensor
or generated synthetic signal, and the particle type describes which particles were used.

Figure 2.7 shows example images for four exemplary data sets of the list. The shown
images were processed to remove noise over time and to remove the unwanted background
signal to make the particles visible. A sliding window approach was used which calculates
two images with reduced noise from 30 images for the background signal and 30 images for
the particle signal. No spatial noise reduction has been applied. The average brightness
has been increased to a medium gray level and the contrast has been enhanced with a
gain factor of 15.

The data sets listed in Table 2.1 are described in the following. The data set
Dslyry.vLps contains signals from HUMAN IMMUNODEFICIENCY VIRUS (HIV)-VLPs.
This is the most difficult data set that was analyzed. In Figure 2.7a the PAMONO signal
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Table 2.1: List of PAMONO sensor data sets.

Data set name Data set type Particle type Reference
Ds1yv-vLps Real 100nm to 120nm HIV VLPs [ZKG+09]
DS29795p13-2 Real & synthetic 100 nm polystyrene particles  [SZS+14a]
Ds3975rp13-3 Real & synthetic 100 nm polystyrene particles  [SZS+14b]
Ds419apr13-1 Real & synthetic 200 nm polystyrene particles  [SZS+14c]
DS511Apr13-1 Real & synthetic 200 nm polystyrene particles — [SZS+14d]
Ds611Apr13-2 Real & synthetic 200 nm polystyrene particles  [SZS+14e]
DS7poiy200nm-1  Real 200 nm polystyrene particles  [LST-+13a]
Ds8poiy200nm-2 Real 200 nm polystyrene particles -
Ds9porvasonu Real 280 nm polystyrene particles -
Ds1020onu-ig — Real 200 nm polystyrene particles  [Siel6]
Ds1laponu-mq — Real 200 nm polystyrene particles  [Siel6]
Ds12900nu-1.g  Real 200 nm polystyrene particles  [Siel6]
Ds131ponu-ng ~— Real 100 nm polystyrene particles  [Siel6]
Ds14iponu-g  Real 100 nm polystyrene particles [Siel6]

with four very slightly visible HIV-VLPs is shown. Without further image enhancement
the VLPs are very difficult to see. VLPs are used instead of real viruses because they can
be handled without risk outside of a high-security laboratory. VLPs are very similar to
real viruses but cannot replicate and are not pathogenic. They can attach to antibodies
and PAMONO sensor signals from VLPs are indistinguishable [ZKG+09] from signal of
real viruses. In [ZKG+09] further details on these VLPs can be found.

Each data set has been labeled by an expert. For every virus in the data set, a polygon
is created that surrounds the virus and the frame number of the first occurrence is recorded.
As the viruses are not visible on the raw sensor data, the images have to be pre-processed
to make them visible.

It is very time-consuming to manually evaluate the PAMONO sensor data. Even for
an experienced expert, it can take several hours to label a small data set with low virus
concentration and up to one week to label a large data set with high virus concentration.
If the used concentration of viruses in the sample is high, several thousand viruses attach
to the sensor surface within just a few minutes. With a frame rate, e.g., of 25fps, a 5min
recording contains 7500 images that need to be analyzed. Therefore, also synthetically
generated data sets are used.

The data sets DS297ggp13-2 t0 DS611apr13-2 contain 100 nm and 200 nm polystyrene
particles. Polystyrene particles are much easier to handle as no antibodies are needed to
bind them on the sensor surface. A slight electric charge of the particles is sufficient to
bind them. These particles are commercially available in different sizes. Although the
particles are made of a synthetic material, a resulting signal of the PAMONO sensor is
almost indistinguishable from a signal of real viruses. Because of a missing antibody layer,
the signal is slightly stronger than that of real viruses of the same size. Besides the directly
recorded signal, these data sets also contain synthetically generated data generated by
using the SYNTHESIS/OPTIMIZATION /ANALYSIS (SynOpSis) approach [SLW+14], see
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(a) Dslurv-vips (b) Ds2a7sep13-2

(c) Dsb511apr13-1 (d) DSs9Ypory28om

Figure 2.7: Example images of size 250 px x 150 px for different data sets. All data sets
have been processed with the same settings to make the particles visible. In
each image at least two particles are shown.

Section 4.5. For the synthetically generated signal, an accurate labeling was generated.
Figure 2.7b shows four 100 nm particles from DS25755p13-2 and Figure 2.7¢ shows two
of the 200nm from DS511apr13-1- The data sets DS29795p13.2 to DS611Apr13-2 have been
made publicly available [SZS+14a; SZS+14b; SZS+14c; SZS+14d; SZS+14e] and the
documentation for these data sets is also available [Siel4].

The data set DS7pory200nu-1 contains 200 nm polystyrene particles. It is used to
measure the influence of different image sizes to execution time and energy consumption.

Finally, two data sets with polystyrene particles DS8poryo0onm-2 and DS9poryvagonu are
used. These are the most easy data sets that are evaluated. They contain 200 nm and
280 nm polystyrene particles. For the data set DS9pgiyas0nu, & single processed image is
shown in Figure 2.7d with six visible particles.

It should be especially emphasized that in the following chapters only the term virus
is used, even though methods for the detection can also detect other particles like fine
dust and in some experiments synthetic particles or VLPs are used. For the experiments
it is made clear which data set was used.

2.3 Summary

In this chapter the PAMONO sensor has been presented. This sensor enables the detection
and counting of individual viruses with common optics and in real-time. This is a unique
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feature of the PAMONO sensor. Viruses are usually too small to be detected optically.
The PAMONO sensor, however, uses an indirect detection with help of plasmon waves
and therefore making the effects of attaching viruses visible.

The PAMONO sensor has a relatively simple setup. A prism with a gold layer is the
heart of the sensor. The gold layer is coated with antibodies to only bind the wanted
viruses to the surface. Liquid samples with viruses are pumped through a flow cell and
they can attach to the antibodies. The gold layer is illuminated with laser light, which
causes plasmon waves in the gold layer. Attaching viruses disturb the plasmon waves in
the gold layer. Thus, more light is reflected. Finally, the reflected light is recorded by a
camera.

In this work different scenarios are inspected of how the PAMONO sensor can be used
in practice. These scenarios motivate the methods that are introduced in the following
chapters.
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In this chapter the related work for the topics PAMONO sensor, image processing,
medical image processing, computer vision, blob detection, particle tracking, Random
Forest, code generation, optimization, PSE, DSE, and offloading is given. The order in
which the related work is listed is the same as the topics appear in the thesis.

3.1 PAMONO Sensor

The PAMONO sensor for detection of biological viruses plays an important role throughout
this thesis. This section provides the related work of the PAMONO sensor with focus on
how it discriminates from other viruses sensors.

Very briefly, the PAMONO sensor [ZBM+07; ZSS+16], cf. Chapter 2, works as follows.
It uses a gold surface coated with antibodies to bind viruses. The viruses are detected by
indirect effects that requires no labeling of the viruses. These indirect effects are caused
by plasmon resonance and enable the detection and counting of individual viruses. Details
of the functioning of the PAMONO sensor are given in the patent description [Zyb10;
Zyb13] and in [ZKG+09; Zyb10; GTU+11; STM+15; ZSS+16]. The physics of plasmon
resonance is described in [Pat05; ZBM+07; ZSS+16]. Boecker et al. have described a signal
model for PAMONO [BZH+07]. Binding of different particles to a spotted PAMONO
sensor has been investigated by Scherbahn, Nizamov, and Mirsky [SNM16]. In the Ph.D.
thesis of Siedhoff [Siel6] the PAMONO sensor is described in detail, a signal model has
been designed, and methods for virus detection in PAMONO sensor images have been
considered.

23
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For the detection of viruses, other sensors than PAMONO exist. The most important
sensors and methods are SURFACE PLASMON RESONANCE (SPR), SURFACE PLASMON
RESONANCE IMAGING (SPRi) [SS01], POLYMERASE CHAIN REACTION (PCR) [BS03],
plaque assay [Dul54], and ENZYME-LINKED IMMUNO-SORBENT AssAy (ELISA) [GP13].

The SPR sensor and the SPRi sensor are the ancestors of the PAMONO sensor, with
SPRi as the most similar sensor. Overall, the functioning of both sensors is likewise to
the PAMONO sensor. All three sensors make use of the plasmon resonance effect and
do not need labeling to make the viruses visible. A comprehensive overview about the
plasmon resonance effect is given by Pattnaik [Pat05]. All three sensors can be used for
concentration measurements. What discriminates the sensors is that SPR and SPRi are
not able to detect individual viruses as they measure the intensity change of attaching
viruses on a much larger scale than PAMONO. Basically, SPR and SPRi measure the
overall intensity change caused by all attaching viruses combined. With the intensity
change over the whole area, a rough assessment of the number of viruses can be obtained.
In contrast to this, PAMONO measures the small intensity change of individual viruses.
The image processing and detection for PAMONO is a more challenging task than for
SPRi.

SPRi has found wide application and has been presented by several authors [BLB+08;
CMF+04; GBH+99; NSB+03; SEM+11]. A survey on SPR-based sensors was done by
Steiner and Salzer. They state [SSO1] that SPRi-based methods are especially important
because they show specific bounds of unlabeled molecules under in-situ conditions. The
same holds for the PAMONO sensor.

Naimushin et al. have shown how an SPR sensor can be made portable [NSB+4-03]. They
used a Peltier module with a fan and a temperature controller to keep the temperature
of the sensor within a range of 23.5°C £ 0.03°C. Another interesting result is that they
could double the binding of Staphylococcus to antibodies by increasing the temperature
from 23 °C to 42°C. As each binding of antibody and antigen has an optimal temperature
range at which it binds best, this can be part of further research. Likewise, there might
be a temperature range for the PAMONO sensor at which the sensor and the detection
software give faster or better results.

PCR [BS03] amplifies virus DEOXYRIBONUCLEIC ACID (DNA) using a polymerase
enzyme. In each step the number of DNA strings that should be detected is doubled.
This approach is very useful as it detects the virus DNA directly and does not rely on the
detection of antibodies in the sample like in an HIV rapid antibody test. RIBONUCLEIC
Acip (RNA) can also be detected with PCR with an additional pre-processing step.

Plaque assay [Dul54] is a long established method for concentration measurement
of viruses in a sample. Basically, a prepared layer of cells in a Petri dish is infected
with the viruses in the sample. After about 24 h the infected cells can be seen macro-
scopically as plaques because surrounding cells are also infected. However, besides the
time-consuming process, this is limited to virus types that cause detectable change in the
infected cells. [Dul54]

ELISA [GP13] is a widely used and highly sensitive method to detect antibodies or
antigens in samples. It binds the antibodies or antigens to a surface and then detects
them by using an enzyme-mediated color change. For the detection of antigens, a capture
antibody is used to bind the antigen, then a second, enzyme-labeled antibody is bound to
the antigen, which can then be detected. For the detection of antibodies in the sample,
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an antigen is used to capture the antibodies in the sample. Afterward, a second, enzyme-
labeled antibody is bound to the first antibody, which can then be detected. [GP13]

In summary, several other methods for the detection of viruses exist. Some have certain
advantages over PAMONO. For example, PCR can detect the DNA or RNA of viruses and
plaque assay can observe viruses in cells. However, no method combines the advantages of
PAMONO: the fast, label-free detection of individual viruses.

3.2 Image Processing, Computer Vision, and Pattern Recog-
nition

The VIRUS DETECTION wiTH OPENCL (VirusDetectionCL) method in Chapter 5
for the automatic virus detection is mainly in the context of medical image processing,
computer vision, and pattern recognition. Therefore, the focus of this related work is
on medical image processing, computer vision, and blob detection. Blob detection and
particle tracking methods are especially in focus as image processing methods that are
most related to the virus detection task.

Target platforms for processing are GRAPHICS PROCESSING UNiTs (GPUs) on HiGH-
PERFORMANCE COMPUTING (HPC), desktop, laptop, and EMBEDDED SYSTEMs (ESs),
which are inspected in Chapter 7 and Chapter 8.

3.2.1 Terminology

Image processing, computer vision, and pattern recognition are closely related terms that
can not be strictly separated from each other. Chen and Kumar et al. discriminates the
terms as follows [Chel4; KSR+16].

For image processing usually the steps image enhancement, restoration, and segmenta-
tion have to be performed. Often, the goal of image processing is to extract important
features from the image data. The results are then interpreted by an expert.

In computer vision also the steps image enhancement, restoration, and segmentation
have to be performed. But in contrast to image processing, computer vision also interprets
the results. Often, the goal of computer vision is to achieve the same results as an expert.

Pattern recognition is also closely related to image processing and computer vision.
Basically, the steps in pattern recognition are feature extraction, pattern description,
learning, and decision making. The main goal of pattern recognition is to make correct
decisions or classifications based on the patterns and regularities in the signal. [Chel4;
KSR+16]

3.2.2 Image Processing

The most related image processing methods for the PAMONO virus detection are medical
image processing methods. Medical image processing has been found wide application in
the research community [Banl4; BF14; SG14; Sinl4; TJ15; KSR+16]. The field of medical
image processing is still gaining importance [EDF+13; KSR+-16].

A well written survey on medical image processing on GPUs has been done by Eklund
et al. [EDF+13]. They show several applications for GENERAL-PURPOSE COMPUTING
ON GRAPHICS PROCESSING UNITS (GPGPU) medical image processing: optical imaging,
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microscopy, ultrasound, medical physics, image registration, image segmentation, image
denoising, computer tomography, positron emission tomography, magnet resonance imaging,
and diffusion-weighted imaging.

A survey on medical image processing with fuzzy techniques, important for Section 5.3.4
and Section 5.4.4, is presented by Chaira [Chal5].

3.2.3 Computer Vision

Same as medical image processing, computer vision has been found wide distribution and
great importance in the recent years [FP03; Mor04; SHB08; Chel4; Klel4] and for mobile
computing computer vision is expected to be “the next big thing” [BRF15].

Image processing and computer vision using GPGPU has been presented by Fung and
Mann in a survey [FMO8]. They give a more broad view of the use of GPUs.

For the performance of computer vision applications on ESs, which plays an important
role in this thesis, Backes, Rico, and Franke state that computer vision applications are
usually very demanding for an ES [BRF15]. They have investigated different computer
vision applications on ESs [BRF15]. They also inspected how OPEN COMPUTING LAN-
GUAGE (OpenCL) can be used to optimize the KinectFusion computer vision application
running on Mali GPUs of the Odroid-XU3 and an Exynos 5250 ARNDALE®board and on
different inputs.

Sinha et al. perform GPGPU feature tracking and matching in video data [SFP+11].
Frame rates and image sizes are comparable to the PAMONO sensor images. However,
the field of application is completely different, as they do feature tracking by calculating
and matching of interest points in natural scenes.

3.2.4 Pattern Recognition

The most related pattern recognition methods for the PAMONO virus detection are blob
detection and particle tracking methods. Both are very similar tasks to the PAMONO
virus detection as small particles need to be identified in gray-scale images. In contrast
to these, in PAMONO images the particles appear and then do not move, particles are
not visible without any pre-processing, and they show some wave like patterns around the
blob like structure in the center.

For blob detection and particle tracking, several publications exist. Comprehensive
surveys on particle tracking methods have been done, for example, by Chenouard et
al. [CSC+14] and Meijering, Dzyubachyk, and Smal [Meil2; MDS12].

Blob like structures that show similar characteristics to the blobs in single, preprocessed
PAMONO images are those in breast ultrasound images. Moon et al. proposed a method
for an automatic tumor detection. They use convolution of partial derivatives of a Gaussian
distribution with the input images to build their features for blob detection [MSB+13].
Related to this is the work of Liu, White, and Summers [LWS10]. They also use derivatives
of a Gaussian distribution for their blob features. They use their method to detect blobs
in natural scenes and conclude that it can be used for the detection of blobs in medical
images.

Blobs in images from fluorescence microscopy also show some characteristic of the
blobs in PAMONO images. A survey on methods for tracking of single fluorescent particles
has been done by Cheezum, Walker, and Guilford [CWGO01]. They compared different
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tracking algorithms under realistic conditions. The methods focus on the tracking and not
on the detection of the blobs. Interesting are the results for the needed SNR. SNRs of
down to 1.3 have been examined but the four inspected algorithms could only successfully
process images with SNRs down to four. However, for the PAMONO signal even SNRs
below two need to be handled for the most difficult data sets.

Smal et al. [SLN+-09] have considered different spot detection methods for live-cell
fluorescence microscopy in a survey. Different supervised and unsupervised detection
methods, for example, the use of Haar features [JZK+07] for a blob detection in fluorescence
microscopy signal, have been evaluated on synthetic and real sensor data with different
SNRs. They state that most of the classical methods break down at an SNR below four
or five. For the better methods they show, that these are useful for SNRs of two. As a
conclusion they recommend supervised machine learning methods for SNRs of two and
lower, however, the unsupervised methods are more easy to use in practice and should
also be considered. Olivo-Marin use a translation invariant wavelet transform to detect
blobs of a certain size in fluorescence microscopy images [Oli02].

In general, this leads to the conclusion that, even if tracking of particles seems to be
a very similar problem to the analysis of PAMONO images, particle tracking methods
can not easily be transferred to the PAMONO context because the particles do not move
and can have a lower SNR. However, some blob detection methods have also shown to be
useful to calculate spatial features for PAMONO.

3.3 Random Forest and Code Generation

In Chapter 6 the code generation method RANDOM FOREST CODE GENERATION (RFC-
Gen) is presented that generates GPU code for the application of Random Forest models.
Therefore, this section lists the related work for Random Forest and for code generation.

Sharp [Sha08] has presented a Random Forest implementation for the GPU, using
pixel shaders. A pixel-wise object class recognition task is performed. Both, training and
classification have been done on the GPU. Similar to the author’s approach, the forest is
evaluated for every pixel position. However, a two-dimensional texture is used to store the
trees, with two loops every thread is traversing all trees. As the trees are stored in global
memory, this causes unnecessary global memory accesses from the different threads.

Another GPU Random Forest implementation, named CUDARF, has been presented by
Grahn et al. [GLL+11]. As its name suggests, it is implemented with CoMPUTE UNIFIED
DEVICE ARCHITECTURE (CUDA). They parallelized the training and the classification
phase. The main difference to the author’s RFC-Gen approach is that they use one GPU
thread to classify a single tree within the forest. To calculate the result for the whole
forest, the classification results for the trees are downloaded to the host memory and the
result is calculated on the CENTRAL PROCESSING UNIT (CPU). In the author’s approach
the result is calculated on the GPU and kept on the GPU. Another difference is that
trees need to be uploaded to the GPU using the global memory, whereas in the author’s
approach trees are part of the code and fixed. As the same forest is used to classify various
queries the forest does not need to be uploaded to the GPU several times nor be loaded
into the local memory of the STREAMING MULTIPROCESSORs (SMPs).

Code generation for GPGPU has been done by Klockner et al. [KPL+12]. It is a
scripting approach, which uses a high-level scripting language to generate CUDA and
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OpenCL code, named PYCUDA and PYOPENCL. Another approach for the generation
of GPGPU code is the SAGE approach by Samadi et al. [SLJ+14]. They automatically
generate CUDA code with various levels of approximation. To speed up the calculation by
scarifying QUALITY OF RESULT (QoR), their method stores input buffers with fewer bits,
skips threads and interpolates the results from these threads, and selectively skips certain
operations. As a result, QoR and performance can be traded against each other by the
user.

3.4 Optimization

This section provides related work for optimization in general and in particular for the
PARAMETER SPACE EXPLORATION (PSE) and DESIGN SPACE EXPLORATION (DSE)
methods SINGLE-OBJECTIVE GPGPU PARAMETER SPACE EXPLORATION (SOG-PSE),
SINGLE-OBJECTIVE GPGPU DESIGN SPACE EXPLORATION (SOG-DSE), and MULTI-
OBJECTIVE GPGPU ENERGY-AWARE DESIGN SPACE EXPLORATION (MOGEA-DSE) in
Chapter 7 and Chapter 8. It should be noted that PSE is often called parameter tuning
in the literature. In this work the term PSE is preferred in accordance to the term DSE.

Optimization methods divide into exact and heuristic approaches. Here, heuristic
approaches are considered, which in turn divide into problem dependent heuristic and
metaheuristic methods. As the PSE and DSE methods in this work should be applicable
to a wide variety of problems, metaheuristic methods are most suited in this context.

Optimization methods also divide into model-based and model-free methods depending
of whether they use meta models or surrogate models. Additionally, they can also be
divided in three categories [MA04] depending on if preferences for the optimization are
specified a priori, a posteriori, or not at all. The methods in this thesis are mainly in the
second category but a combined objective can also be formulated a priori.

Metaheuristics are the main field of stochastic optimization. They can find good
solutions even it is unknown how an optimal solution might look like. A comprehensive
overview about all kind of metaheuristics has been done by Luke [Luk13]. This mainly
covers but is not limited to evolution-based methods.

Detailed surveys of optimization methods are provided by several authors [MAO04;
Meh05; CP07]. Marler and Arora, for example, compare several optimization methods like
weighted global criterion, weighted sum, lexicographic method, goal programming methods,
bounded objective function method, physical programming, normal boundary intersection
method, normal constrain method, or several genetic algorithms. The authors conclude
that GENETIC ALGORITHMs (GAs) can be effective in obtaining the Pareto-optimal set.

In this work the focus of single-objective and multi-objective optimization is on
EVOLUTIONARY ALGORITHMs (EAs). This set of algorithms is called MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHMSs (MOEAs). Coello, Deb as well as Konak, Coit, and
Smith provide a comprehensive description of multi-objective optimization with EAs and
GAs [Coe99; Deb02; Coe06; KCS06]. STRENGTH PARETO EVOLUTIONARY ALGORITHM 2
(SPEA-2) and NON-DOMINATED SORTING GENETIC ALGORITHM-II (NSGA-II) are both
EA-based methods and are used for multi-objective optimization throughout this work.
SPEA-2 has been developed by Zitzler, Laumanns, and Thiele [ZLT01] and NSGA-II
by Deb et al. [DAP+00]. For NSGA-II also the extension NON-DOMINATED SORTING
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GENETIC ALGORITHM-IIT (NSGA-III) [DJ14] is available. The motivation to use EAs is
discussed in Section 4.4.1.

A survey on optimization of image processing is provided by Siarry [Sia09]. It covers
optimization with GAs, EAs, particle swarms, artificial ants, Bayesian inference, Markov
models, and several other methods.

Beume, Naujoks, and Emmerich have developed the S-METRIC-SELECTION EvO-
LUTIONARY MULTI-OBJECTIVE OPTIMIZATION ALGORITHM (EMOA) (SMS-EMOA)
approach [BNEO7], which uses an S-metric to steer the direction of the multi-objective
optimization. The approach is especially suited for more than three objectives and has
the advantage that the population is guaranteed to convert toward the actual Pareto
front. However, it has the drawback that the calculation of the S-metric is expensive. If
this drawback is of any importance in practice, highly depends on how long the fitness
evaluations take.

Deb, Mohan, and Mishra have proposed e-MOEA [DMMO03]. The e-MOEA makes use
of the e-dominance. They divide the search space into hyper-boxes and each hyper-box
can only be occupied by one individual, which ensures diversity.

Smith has studied multi-objective simulated annealing techniques in his Ph.D. the-
sis [Smi06]. The simulated annealing method is compared to SPEA-2 and NSGA-II.
Bergstra and Bengio have presented a method for hyper-parameter optimization that uses
random search [BB12]. As an interesting detail, they have shown that Grid-Search is less
efficient than random sampling.

Nam and Park have compared simulated annealing with EAs [NP00]. The authors have
shown that for some problems simulated annealing performs better than EAs and for other
problems it is the other way round. They also state that simulated annealing has often the
drawback of a long evaluation time. In conclusion, they state that simulated annealing is
a powerful algorithm with good properties to solve multi-objective optimization problems.

3.4.1 Parameter Space Exploration

A PSE is a special case of an optimization task. With a PSE a parameter space is explored
in order to improve the QoR. Eiben and Smith provide an introduction to parameter tuning
methods [ES15]. They compared parameter tuning methods EVOLUTIONARY STRATEGY
WITH CO-VARIANCE MATRIX ADAPTATION (CMA-ES), SEQUENTIAL PARAMETER OPTI-
MIZATION (SPO), RELEVANCE ESTIMATION AND VALUE CALIBRATION ON PARAMETERS
(REVAC) for tuning of EA parameters. In general, all PSE methods work according to the
principle of generate and test. New parameters are generated and then tested according
to their quality. For each test the parameters are set and remain fixed during the run.
This distinguishes parameter tuning from parameter control. With parameter control the
parameters are tuned during the run.

Mantovani et al. compared different tuning algorithms for the optimization of SUPPORT
VECTOR MACHINE (SVM) parameters [MRV+15]. This includes random search, grid
search, GAs, particle swarm optimization, and estimation of distribution algorithms. Two
parameters of an SVM have been tuned. They concluded that random search can provide
good results, similar to the other methods and that no significant differences between
GAs, particle swarm optimization, and estimation of distribution algorithms could be
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found. However, the problem of tuning two SVM parameters might be just to simple to
determine differences in the methods.

A meta-learning PSE has been developed by Molina et al. [MVR+12]. They optimized
two parameters of a tree-based learning algorithm on several data sets. They evaluated
the accuracy of several meta-learning algorithms. However, only a single step in the PSE
is evaluated. Their study is more a comparison of different learning algorithms than a
PSE.

Akay and Karaboga used an artificial bee colony algorithm for a PSE [AK12]. They
extended an existing artificial bee colony algorithm and compared their method to several
other approaches like differential evolution, particle swarm optimization, EAs, and GAs.

Simulated annealing is also a well established method for parameter optimization [Smi06;
BSM-+08; LLO08|. Simulated annealing mimics the physical process of cooling. New
individuals are generated and accepted with a probability that is based on the fitness and
the current temperature. Eiben and Smith have shown that simulated annealing can also
be seen as an evolutionary process [ES15].

An online parameter tuning method has been developed by Chau et al. [CTB+14]. In
an offline step they optimize parameters for an object tracking algorithm with exhaustive
search, enumerative search, or with a GA. Afterward, their approach uses, in an online
step, information from the tracking context to select a previously tuned parameter set
that matches the conditions.

Model-based optimization [JSW98; RKB+16] is another interesting method for PSE.
It is especially suited for expensive evaluations. It is an iterative optimization that uses a
regression model to steer the direction of the optimization. However, this method does
not benefit as much as other methods from a higher degree of parallelization.

A sequential parameter optimization toolbox has been developed by [BLP10]. They
use meta models to predict new points in the search space. The approach is mainly used
to tune optimization methods like hidden Markov models or EAs.

The SynOpSis approach [Siel6; SLW+14], developed by Siedhoff, is a multi-objective
PSE with different detection quality measures as objectives. It can simulate the considered
sensor to synthetically generate training and testing data. The SynOpSis approach is also
suitable for a PSE of VirusDetectionCL as has been shown in [Siel6] and the co-authored
publication [SLW+14]. The SynOpSis approach is further described in Section 4.5.

3.4.2 Design Space Exploration

In contrast to PSE a DSE explores design alternatives and not parameters. In this work the
focus is in particular on energy-aware DSE of GPU architectures and CYBER-PHYSICAL
SyYsTEMs (CPSs) in a hardware/software codesign manner.

DSE in General

In general, DSE methods divide into simulation-based and measurement-based approaches.
In this thesis both simulation- and measurement-based approaches considered. A survey
of different simulation-based and measurement-based approaches can be found in [AR12].
Ahmad and Ranka surveyed energy-aware computing in general.

Calborean and Vintan proposed FRAMEWORK FOR AUTOMATIC DESIGN SPACE
EXPLORATION (FADSE), a framework for DSE of multi-core architectures [CV10]. In
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FADSE they integrated different multi-objective optimization methods and three simulators
for simulation of multi-core architectures. They argued that automatic DSE is becoming
more and more important if the number of cores in architectures rises. At the same time
the complexity of the simulators and the simulation time rises. They also highlighted the
importance of hardware/software codesign and that the processor design methods need to
be adapted to the emerging challenges.

MclIntosh-Smith et al. have observed that with the number of transistors also the power
consumption of CPUs and GPUs increased exponentially until about 2004 [MWI+12].
From this date on, the power consumption was getting close to an upper bound. As
the number of transistors is still increasing exponentially, a lower voltage was the main
measure to keep the power consumption down to a reasonable level. However, as they
stated the voltage is reaching a lower bound, too, so that the consideration of power
consumption is increasingly challenging. [MWI+12]

Chis, Vintan, and Vintan compared different optimization methods for multi-objective
DSE [CVV13]. The methods include SPEA-2, NSGA-II, a particle swarm optimization, and
FADSE. FADSE includes the methods CONTROLLED ELITIST NON-DOMINATED SORTING
GENETIC ALGORITHM-IT (CNSGA-II) and MULTI-OBJECTIVE CROSS GENERATIONAL
ELITIST SELECTION, HETEROGENEOUS RECOMBINATION AND CATACLYSMIC MUTATION
(MOCHC) and allows a distributed evaluation of individuals. The DSE was performed for
a grid ARITHMETIC Locic UNIT (ALU) processor, which enables asynchronous execution
on a grid of ALUs. Five parameters of the grid ALU processor have been optimized and
as objectives they chose clocks per instruction and hardware complexity.

Field, Anderson, and Eder have developed the ENERGY AWARE COMPUTING FRAME-
WORK (EACOF) for energy-aware software design [FAE14]. With EACOF, several energy
measurements can be gathered and combined and then provided to several consumers.
How an energy measurement is performed is encapsulated in a provider, which reads and
processes the energy information from a data source.

Dosanjh et al. considered DSE of exascale systems in a hardware/software codesign
manner to achieve the next generation of supercomputing [DBD+14]. They explored the
best CPU and memory for given applications. They conclude that validated hardware/-
software codesign tools are needed and that simulations can provide valuable insights
regarding the best configurations.

Ferrandi et al. use ANT COLONY OPTIMIZATION (ACO) for a DSE of heterogeneous
ESs [FLP+10]. They considered mapping, scheduling, and communication of different
applications. A model of the target architecture must be provided as input. As only
objective, they focused on overall execution time. An interesting aspect of their work is
that they used a model of a MULTIPROCESSOR SYSTEM-ON-CHIP (MPSoC) developed on
a FIELD PROGRAMMABLE GATE ARRAY (FPGA).

To speed up a DSE, for example, the following techniques are feasible. Jahr et al.
developed a DSE framework [JCV+12] that is based on NSGA-IT and includes additional
fuzzy rules to guide the optimization. With the fuzzy rules, expert knowledge can be
incorporated, which can lead to a speedup. Ogzisikyilmaz, Memik, and Choudhary use
machine learning techniques to speed up their DSE [OMCO08]. Deb, Zope, and Jain have
shown how distributed computing can be used to calculate Pareto-optimal solutions with
EAs [DZJ03]. Distributed optimization is important if a local evaluation is not feasible,
e.g., if the local computer does not provide enough processing power. They have proposed
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a method of how several processors can calculate only parts of the Pareto solution, with
only a minimum amount of overlap and without missing points by the partitioning.

Fei et al. compare multi-objective optimization methods for wireless sensor net-
works [FLY+16]. The most important objectives for wireless sensor networks are energy
efficiency, network lifetime, and reliability. The authors state that in the past often
only one objective has been optimized and the others have been treated as additional
constraints. This may be unfair or unrealistic. Instead, multi-objective optimization
should be preferred.

DSE for GPUs

For DSEs of GPUs, performance is often the only objective. However, several au-
thors [RSR+408; MWI+12; LHE+13] emphasize that power or energy consumption should
also be taken into account as this is becoming more and more important. Therefore, in
this work power and energy consumption are used as additional objectives alongside with
performance.

For the simulation-based approaches for GPUs, GPGPU-Sivm [BYF+09] by Bakhoda
et al., GPUWATTCH [LHE+13] by Leng et al., and GPUSIMPow [LLA+13] by Lucas
et al. play an important role. The GPGPU-SiM simulator is a simulator for GPGPU. It
is clearly the most influential simulator in the field in the recent years. Bakhoda et al.
use their GPGPU-SiM simulator to explore different GPU design parameters but only
targeting execution time, not energy consumption. Both, Leng et al. [LHE+13] and Lucas
et al. [LLA+13] extended GPGPU-S1M with a model for the power consumption. The
first mentioned is called GPUWATTCH and the second GPUSIMPow. However, these
approaches are no automatic DSEs. An exploration of different target platforms has
to be performed fully manual. All three methods, GPGPU-SiM, GPUWATTCH, and
GPUSIMPow, are used within the automatic, simulation-based DSE in this thesis.

Another power and performance model for GPUs has been developed by Hong and
Kim [HK10]. Their method is called INTEGRATED POWER AND PERFORMANCE (IPP).
In contrast to GPGPU-SiM, GPUWATTCH and GPUSIMPOW it does not rely on cycle
accurate simulation to estimate the execution time of a GPU program but rather predicts
the execution time with a timing model. They varied the number of active SMPs to
inspect how this influences the power and energy consumption. They showed that the
performance is saturated for some applications at a certain number of SMPs.

Kasichayanula et al. also developed a power model for GPUs [KTL+12]. They con-
sidered the power for the micro-architectures on the GPU. They built their models by
measuring actual GPUs with micro benchmarks, which is similar to what has been done
for GPUWATTCH and GPUSIMPow.

A regression-based GPU DSE was performed by Jia, Shaw, and Martonosi in [JSM12].
Their approach is named STARGAZER. Randomly selected GPUs from the design space are
sampled, and from these samples a model of the execution time is constructed using step
wise regression. An interesting statement from them is that a DSE for CPUs is usually
inefficient or unsuitable for a DSE of GPUs. Mirsoleimani, Karami, and Khunjush [MKK14]
also employ a linear regression model, which was used to find the most important GPU
parameters affecting the run time of different GPGPU programs. Jooya, Baniasadi, and
Dimopoulos [JBD13] presented an approach to find the GPU configuration that delivers
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the best execution time under a given transistor budget. It uses the Plackett-Burman
design to set up the experiments and solves a knapsack problem. The most important
difference between these three publications and the DSE in this thesis is that they do not
considered an evaluation of energy consumption.

Mittal and Vetter provide a detailed survey [MV14] on methods that consider energy
efficiency of GPUs in general. They state that for several applications the use of GPUs
is more energy efficient than the use of CPUs or FPGAs and that considering energy
efficiency of GPUs is very important. They categorize the methods into DyNAMIC
VOLTAGE AND FREQUENCY SCALING (DVFS) techniques, CPU-GPU workload division
techniques, architectural techniques, techniques that exploit workload variations, and
application specific and programming level techniques for improving the energy efficiency of
GPUs. The SOG-DSE and MOGEA-DSE methods from this work belong to the categories
architectural and application specific techniques.

Park et al. performed a power and energy-aware DSE for GPUs [PKS+13]. Their
approach is measurement-based. They considered a simple GPGPU application as input
and explored different mapping of work to the processing cores of one target GPU. This
is a very simple DSE as only two hardware related parameters were optimized and the
whole design space was sampled.

Liu et al. considered energy-aware task mapping to large scale GPU clusters [LDX+11].
They use a simple GPU energy model to estimate the energy consumption of the tasks
before they are mapped to the GPU hardware. They optimize three hardware related
parameters, i.e., dynamic voltage scaling, dynamic resource scaling, and partial execution
of GPU sub-tasks on the CPU. Their objective is to save as much energy as possible while
still meeting all given deadlines for the tasks. Compared to MOGEA-DSE this method is
more a scheduling method.

An energy-aware optimization of streaming tasks on GPUs has been done by Maghazeh
et al. [MBH+14]. They considered different mappings of tasks to the cores on the GPU.
They optimized the task size and the scheduling of the tasks. For the optimization they
use a heuristic that includes a data stream model and a simple energy model of the GPU.
They evaluated two small GPU programs, an encryption program and a convolution, on
an ES. Although it is an interesting method, the energy model is too simple to be useful
for real world applications. It simply assumes that the energy consumption of the GPU
decreases with increasing job size down until a certain level is reached. This works for
their small programs because the programs do not utilize the GPU very well. The authors
only considered job sizes of 10kB for the encryption and 20 px x 20 px for the convolution
and varied the number of jobs that are passed to the GPU from 1 to 100.

Cebrian, Guerrero, and Garcia state that there is a need for new designs and opti-
mizations to make GPGPU more energy efficient, especially for mobile GPUs as target
platform [CGG12]. In their work they run eleven GPGPU programs on two NVIDIA®GPUs
with different core clock frequencies. They measured the power consumption of the GPUs.
A drawback of their work is that they measured only desktop GPUs although they
stated that mobile GPUs should be especially in focus. Additionally, the limitations of a
measurement-based DSE becomes obvious. Measurements are time-consuming and buying
several architectures is also expensive. They only measured two GPUs and evaluated only
a few, small programs.
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Yi et al. [YTW+10] optimized a single application toward a given HPC GPU ar-
chitecture. Their approach is measurement-based and they considered execution time
and energy consumption as objectives. For their GPGPU application they achieved a
speedup of 8.7 and could save 83 % energy compared to a parallel CPU implementation.
However, all optimizations were performed manually. Therefore, this is more a case study
on optimization techniques and not an automatic DSE.

Timm has presented a multi-objective DSE for an energy-efficient mapping of exist-
ing GPU code to a given GPU hardware platform [Tim12]. Two DSE methods have
been presented MULTI-OBJECTIVE LOCAL INSTRUCTION SCHEDULING (MOBLIS) and
FEEDBACK-BASED AND MEMORY-AWARE GLOBAL INSTRUCTION SCHEDULING (FALIS).
GPU code is optimized with local and global instruction scheduling for the objectives
energy consumption and execution time. Optimizations are performed with SPEA-2 and
NSGA-II on the code level and evaluated with actual measurements of GPUs. A testbed
has been developed. The explored GPUs need to be switched manually. Additionally,
two manual explorations have been performed. The first manual exploration considered
different work group sizes for a given GPU application on selected GPUs. The second
manual exploration considered the power consumption of running programs either on the
CPU or the GPU of a low power PC. What discriminates the MOGEA-DSE from the
MOBLIS and FALIS methods is that with MOBLIS and FALIS GPU code is optimized and
not the parameters or the GPUs. The considered hardware/software codesign is actually
an automatic platform-based design with manual switching of target architectures.

Overall, MOGEA-DSE is the only GPU DSE method for the multi-objective exploration
of CPSs from large HPC servers down to small, hand-held ESs. Additionally, MOGEA-
DSE offers simulation-based and measurement-based evaluation, can integrate offloading
strategies, and integrates approximate computing.

DSE for CPSs and ESs

For a DSE of CPSs and ESs, often more than one objective has to be optimized and
additional constraints have to be met. This makes a DSE for these systems particularly
challenging.

A DSE for CPSs has been done by several authors. Canedo and Richter developed a
design automation tool for CPSs in the automotive sector [CR14]. They combine different
simulation components to explore different architectures. Green computing solutions for
distributed CPSs has been examined by Abbasi et al. [AJB+13]. A multi-objective rule-
based DSE has been proposed by Abdeen et al. [AVS+14]. The authors also make use of
NSGA-II to guide the optimization. They optimize a CPS for a smart building application.
The authors integrate multi-objective optimization into a model-driven rule-based DSE
framework.

A multi-objective DSE for SYSTEM-ON-A-CHIPs (SoCs) with GAs has been performed
by Palesi and Givargis [PG02]. They map software to parameterizable SoCs to meet timing
requirements and a power budget. To speed up the evaluation, clusters of interdependent
parameters are explored and independently optimized using GAs or exhaustive search. In
a subsequent step the results are merged and again optimized using GAs or exhaustive
search. This is somehow similar to the two stage optimization in Section 7.3 but different to
how the parameter dependencies are handled in Section 8.2.2. An application specific DSE
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for SoCs has been done by Ascia et al. [ACD+07]. They use EAs to explore configurations
of a SoC platform. The presented approach can be on multiple objectives and includes
software and hardware parameters in the optimization. Also, pruning of the design space
and other speedup techniques. A multi-objective DSE of CPUs of SoCs combined with
source code transformations has been done by Agosta, Palermo, and Silvano [APS04]. The
energy consumption and performance approximation is done with the WATTCH simulator.

Pham et al. proposed a framework for DSE of MPSoCs [PSK+13]. They considered
energy and throughput as objectives to map applications to MPSoCs. Their approach
also include an online step where the generated mappings are used and refined at runtime.
This approach only considers mapping and no hardware/software parameters. Shao et al.
also proposed a framework for DSE of MPSoCs [SRW-+14] but on a much lower level.
They use a simulation-based approach to explore accelerator and memory hardware for
given programs. They consider performance, power, and area as objectives.

An EA-based allocation and scheduling for an XMOS®MPSoC has been examined by
Bankovié¢ and Lopez-Garcia [BL15]. A more general approach has been done by Erbas,
Cerav-Erbas, and Pimentel. They used EAs to map applications to MPSoCs [ECP06].
Castrillén et al. map Kahn process networks to MPSoCs [CTL+12]. Another DSE for
MPSoCs has been done by Angiolini et al. [ACL+06]. Even wider, Cannella et al. compose
MPSoCs according to multiple objectives by using EAs [CDF+11].

The Odroid-XU3 MPSoC, cf. Section 8.5, has also been used by Gensh et al. as a hard-
ware platform for energy and performance measures [GAR+15] and by Backes, Rico, and
Franke as a platform for computer vision applications for performance measures [BRF15].

Mariani et al. use additional meta models to predict which individuals should be
evaluated [MPS+09; MBP+10]. They use NSGA-II for a multi-objective DSE of MPSoCs.
An artificial neural network is included in the optimization to speed up the evaluation by
building a meta model. An evolutionary strategy is used to decide, based on the output of
the meta model, if a simulation should be performed or not. Another model-based DSE
approach has been proposed by Basten et al. [BBG+10]. They map different tasks to CPU,
GPU, FPGA, and one or more memories. They use throughput as objective. However, as
a major drawback they only abstractly model the mapping on the hardware components.
For every task the needed resources and dependencies are described in textual form. The
hardware is also only described in textual form. The DSE is then performed on this
abstract description.

Mohanty et al. presented a method for DSE of heterogeneous ESs [MPN+02]. Their
method is a hierarchical approach from a very abstract DSE on a large design space down
to a very detailed DSE on a smaller design space. Constraints are described with the
OBJECT CONSTRAINT LANGUAGE (OCL). On the coarsest level of the DSE functional
simulators are used to verify the functionality of the application. Then, high level power
and performance estimators are used to reduce the design space. Finally, cycle accurate
simulation is used on the most detailed level.

A DSE of ESs especially for image processing applications is examined by Keinert and
Teich [KT11]. For a given image processing application, their approach works as follows:
First, the data flow of the application is specified. Second, the system is verified. Third, the
automatic DSE is performed and the memory is analyzed on a system level. Fourth, based
on the previous steps a system is synthesized. Finally, the complete ES is constructed.
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Although GPUs are very suited for many kinds of image processing applications, the
authors did not consider GPUs on ESs as target architectures.

In contrast to the existing approaches, here, a multi-objective PSE and DSE is con-
ducted, cf. Chapter 8, which can be used for different hardware and software configurations.
Multiple and possibly conflicting objectives can be chosen, such as energy consumption,
power consumption, number of core cycles, run time or the energy delay product. The
presented optimization is done in a hardware/software codesign to identify hardware and
software configurations that meet the constraints.

3.4.3 Approximate Computing

With approximate computing, two or more objectives, usually quality and performance,
can be traded against each other by using more or less accurate computation. Typical
approximate computing methods are presented in a detailed survey by Mittal [Mit16].
The author examined several methods: precision scaling, loop perforation, load value
approximation, memorization, skipping tasks, skipping memory accesses, multiple inexact
program versions, inexact or faulty hardware, voltage scaling, reducing branch divergence
in SINGLE INSTRUCTION MULTIPLE DATA (SIMD) architectures, and neural network-based
acceleration.

Approximated computing with the objective of saving energy has been investigated
by Baek and Chilimbi [BC10]. Based on an annotated source code of an algorithm and
additional calibration data a quality model is built and a solution that meets the desired
quality is provided to the user. They use loop and function approximation as methods for
approximated computing.

3.5 Offloading

Offloading approaches for mobile devices are quite common. Kumar and Lu [KL10] have
shown that cloud computing can save energy on hand-held devices, but not all applications
are suitable saving energy using the cloud. They conclude that offloading approaches for
mobile devices have to provide energy savings and this has to include also the overhead
for privacy, security, and reliability.

Li, Wang, and Xu [LWXO01] have shown how computation offloading can be used on
hand-held devices that are connected via WIRELESS LoCcAL AcCESS NETWORK (W-LAN)
to a server. An adaptive computation offloading for battery powered devices has been
shown by Xian, Lu, and Li [XLLO7].

Toma and Chen [T'C13] have shown computation offloading for real-time tasks. Rudenko
et al. [RRP+99] describe a framework to automatically migrate tasks to a server to receive
the results. An introduction into how offloading decisions can be made on bandwidth data
have been done by Wolski et al. [WGK+08]. They formulated computation offloading as a
statistical decision problem, which incorporates different network bandwidth predictors.
However, the local and remote execution time of tasks is supposed to be known by the
scheduler.
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In this chapter basic explanations and definitions are provided, which are used in the
following chapters. It is left to the reader whether this chapter is read beforehand or only
upon demand as references are provided in the following chapters toward this chapter.

The structure of this chapter is as follows. In Section 4.1 an introduction GPGPU
is given. This includes several definitions of terminology, an introduction to efficient
processing on GPUs and also special characteristics of the GPU hardware. In Section 4.2
all needed definitions for the image processing methods in Chapter 5 are given. In
Section 4.3 measures of detection quality for virus detection methods on PAMONO sensor
data is introduced. In Section 4.4 an introduction to EAs and in Section 4.5 a brief
introduction to SynOpSis approach is given.

4.1 General-Purpose Computing on Graphics Processing
Units

GENERAL-PURPOSE COMPUTING ON GRAPHICS PROCESSING UNITS (GPGPU) has become
more and more important in the last years. With GPGPU, tasks that are usually processed
on CPUs can be processed on GPUs. However, to utilize all cores of a GPU is a complex
task. Modern desktop CPUs are equipped with up to ten CPU cores, with up to ten
threads or 20 hyper threads, while modern GPUs are equipped with hundreds or thousands
cores that can hold thousands of active threads. The cores in GPUs are called STREAMING
PROCESSORs (SPs), lightweight processing units. For example, the INTEL*CORE "i7-
6950X [Int16], released 2016, is currently the only desktop CPU from INTEL®with ten or

37
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Figure 4.1: The NVIDIA®GK-110B KEPLER architecture. A GK-110B GPU consists
of 15 SMPs, each with 192 SPs and a local memory. For example, the
NVIDIA®GEFoORCE"GTX Titan Black is based on the GK-110B architec-
ture. Adapted from [NVI12a].

more cores and the NVIDIA®GEFORCE" GTX Titan Black GPU has 2880 SPs [NVI15e;
NVI12a]. Each SP is processing one lightweight GPU thread. SPs are grouped into SMPs,
15 SMPs in the example of the GTX Titan. SMPs are physical units not just logical units.
Within one SMP, all SPs share a local memory, some constant memory, and a program
counter.

An example of an NVIDIA®GK-110B KEPLER “architecture [NVI12a] is shown in
Figure 4.1. This architecture, as used in the NVIDIA®GEFORCEGTX Titan Black,
consists of 15 SMPs, each with 192 SPs and a shared local memory. In total, 2880 SPs
are available for processing.

A GPU architecture like this is especially suited to work with the SIMD programming
paradigm. The same instruction is performed on different parts of the data. For example,
for image processing each image can be partitioned into rectangular parts and each part can
be mapped and processed on different SMPs. On the SMPs the image can be partitioned
again and mapped to the SPs. On the SPs one thread processes the assigned chunk of
data. Each of the threads executes the same code, for example a convolution, but on
different sets of input and output data.

Several challenges for GPGPU exist [NVI09b; NVI15b]:

o The algorithms need to be parallelized in order to utilize the SPs.

e It needs to be specified how the work is distributed, an optimal distribution might
differ on different hardware.

e The available hardware structures, for example the local memory, should be utilized
if possible.

o As global memory accesses need to be minimized as they are expensive, with respect
to needed cycles and energy consumption.

o Access patterns to global memory need to match underlying hardware.

e Threads within one work group may need to be synchronized, especially if local
memory is used.
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e Usually global memory cannot be synchronized within one kernel call. If a global
synchronization is needed, the kernel needs to be divided and two kernel calls have
to be scheduled one after the other.

This is only a small excerpt of existing challenges for GPGPU, several other constraints
need to be fulfilled which are not listed here. To mention another example, threads on
NVIDIA®GPUs are organized in so called warps and half warps. The threads within
one half warp can work concurrently without synchronization. Memory accesses can be
executed combined into one single operation if all threads within one half warp access the
memory in the right manner. As memory accesses are executed in aligned segments of size
64 B, 128 B, or 256 B on modern GPUs, the threads within one half warp should access the
memory in such a way that the least amount of segments are needed [NVI15b]. All memory
operations that fall into the same segment can be executed coalesced. In Chapter 5 some
solutions to these problems are presented. The following sections introduce OpenCL,
needed GPGPU definitions, the OpenCL memory hierarchy, how it is used efficiently, and
what other constraints exist in the OpenCL context.

This section is based on the OpenCL specification [Khr12] and on the OpenCL best
practice guide [NVI09b].

4.1.1 OpenCL

This section provides an overview of OPEN COMPUTING LANGUAGE (OpenCL) and to
which details particular attention should be paid. OpenCL is an open, portable, vendor
independent parallel programming language specified by the KHRONOS “group [Khr(09;
Khrlla; Khr12; Khr14]. OpenCL programs can be executed, without modification, on
GPUs, CPUs, DIGITAL SIGNAL PROCESSORs (DSPs), FPGAs, and some other accelerator
hardware for desktop, mobile, and ES hardware. All GPU applications presented in
Chapter 5 and Section 6.1 are solely written in OpenCL and are therefore portable to a
huge amount of devices.

In the following the platform model, memory model, execution model, and programming
model of OpenCL are introduced based on the OpenCL specification [Khr12].

Platform Model

The platform model of OpenCL consists of a host and one or several compute devices. A
single compute device contains one or more compute units and each compute unit contains
one or more processing elements. An OpenCL application runs on a host, which submits
work to the devices which then execute the work on the processing elements. SINGLE
INSTRUCTION MULTIPLE DATA (SIMD) is the main programming concept of OpenCL,
all processing elements execute the same instruction on different data. However, it is
possible that different threads execute different paths. The second programming concept
of OpenCL is SINGLE PROGRAM MULTIPLE DATA (SPMD) where a single program is
executed independently on different data on several processing elements.

Memory Model

The memory model of OpenCL consists of different layers: global memory, constant
memory, local memory, and private memory. The first layer in this hierarchy consists
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of the global and constant memory accessible by all processing elements of the device.
Usually, they are located outside of the compute units on the device, e.g., in form of
DyNamic RANDOM AccCESS MEMORY (DRAM). The difference between the global and
constant memory is that the constant memory is initialized by the host and only read
access is possible by the processing elements. The constant memory may be part of the
global memory and both might be cached by the device. If a cache should be used, can be
decided by the vendor of the hardware.

The second layer is the local memory. It is shared among all processing elements within
one compute unit. Usually it is located on the compute units.

The third layer is the private memory. It is only accessible by one processing element
and is usually located on the processing elements, e.g., in form of registers.

In general, the global and constant memory are the largest but slowest memory within
the memory hierarchy. Constant memory may be faster than the global memory. Typical
sizes are 256 MB to 4 GB. The local memory is usually much faster than the global and
constant memory and ranges from 16 kB to 64 kB, which has to be shared among several
threads. Finally, the private memory is usually faster than the local memory and typically
ranges from 4kB to 64kB. However, the size and speed of each layer of the memory
hierarchy is not part of the OpenCL specification. The vendor of the device can decide
how it is realized in hardware.

Execution Model

The host is used for initialization and clean up of the OpenCL context and for submitting
work to the devices execute the actual program logic.

A function in OpenCL is called kernel. The programming language for the kernels is
a reduced set of C-99 without pointers and dynamic memory allocation and with some
extensions for the parallel programming, e.g., for identifying the current thread and for
synchronization.

A global index space has to be specified to execute an OpenCL kernel. The kernel
is instantiated for every index in the global index space. This instance is called global
work item. The index space in OpenCL can be one-, two-, or three-dimensional. As in
Chapter 5 only two-dimensional image data is processed, in the following the focus is only
on two-dimensional index spaces. The index space is evenly subdivided into so called work
groups. Each global work item is usually executed by a thread on a processing element.
Each work item is assigned to a work group and can be identified by the global index or
by the index of the work group and the local index within the work group.

If the kernel is ready for execution it is submitted by the host to the command queue of
the device. Also, other commands, e.g., for allocating memory on the device, are submitted
to the command queue. For each device one or more command queue can be manged so
that several programs can be executed in parallel. The device executes the commands in
the command queues. For each queue it can be specified if it should execute the commands
in order or out of order. A scheduling of the commands in the queue and a mapping of
tasks to different SMPs is done by the device.
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Programming Model

The programming model of OpenCL data parallel and task parallel execution with
data parallel execution as the main programming model. Results in memory can be
synchronized across processing elements in one compute unit or across all processing
elements. For example, threads within one work group can be used to load a sub-image
into the local memory that can afterward be read by all threads in the work group. Then
a synchronization barrier has to be set to assure that all threads have finished loading
parts of the sub-image into the local memory. With a barrier, threads in one work group
need wait until all threads in the work group have reached the barrier before any thread
continues. This prevents that threads read random memory values from memory that has
not been loaded.

It is important to note that a global synchronization across all threads or between
threads in different work groups is only possible by finishing a kernel call and submitting
another kernel. It is not possible that threads in one work group can access results in the
global memory, produced by threads in another work group within one kernel call even if
global memory barriers are used. The global memory barriers only assure that the global
memory is synced across the threads in the work group. Because the execution sequence
of work groups is scheduled by the GPU and cannot be influenced by the programmer,
it can not be guaranteed that a particular work group has written its results. Only if a
kernel is finished the global memory is synchronized across all threads.

A synchronization of commands within the command queues is also possible either
by barriers or by signals. These synchronizations are useful if kernels are executed out of
order. Barriers assure that all kernels are finished at the barrier. While the barriers can
only be used to synchronize commands within one command queue, the signals can also
synchronize commands in different command queues as one queue can wait until an event
from another queue is received.

In the following section the terms from this section are properly defined and the
mathematical notation is introduced.

4.1.2 GPGPU Notations and Definitions

This section defines OpenCL and GPGPU terms, which have been introduced informally
in Section 4.1.1. Additionally, some GPGPU notations are introduced to keep them
consistent throughout this work. All OpenCL specific names, descriptions, and definitions
are based on the OpenCL specification [Khr12]. They are introduced without further
reference to the OpenCL specification.

The parallelism of OpenCL is based on a few concepts. Briefly, an OpenCL kernel is a
function that can be executed on the OpenCL device. It describes the program code for a
single thread. Different data can be processed for each thread. The overall index space
defines how many threads should process the data. The index space is partitioned into
work groups and the work groups are partitioned into single threads called work items.
Each work item executes one instance of the OpenCL kernel. The work items are grouped
into work items and each work item within a work group executes the same command. As
every work item can be identified within the kernel, it can access for example different
data in an SIMD manner.
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Notation 1 (Width and Height). The width and height of the input images shall be
denoted as w and h. For reasons of simplicity, the width and height of the input images
shall be implicitly given in the following.

Definition 1 (OpenCL Kernel). An OpenCL kernel is a function that can be executed
on an OpenCL device.

In the following the terms OpenCL kernel, kernel code, or simply kernel refer to
OpenCL device code. OpenCL host code is explicitly labeled.

If an OpenCL kernel should be executed, a global index space needs to be defined.
This provides also the number of global work items.

Definition 2 (Global Index Space and Global Work Item). A two-dimensional global
index space is defined by the width wg € N and the height h, € N. For each (valid) index in
the global index space, a global work item is created. A global work item is defined as an
instance of an OpenCL kernel. The global work item at index (z,y) is denoted as i(z,y).
The set of all global work items in a global index space of width w, and the height h, can
be described by the set S:

S:={i(z,y) |z €{0,...,wy— 1} and y € {0,...,hy — 1}}. (4.1)
For reasons of simplicity, wg and hg shall be implicitly given throughout this work.

In addition to the definition of a global index space, a subdivision of the global index
has to be provided in order to execute an OpenCL kernel. With this subdivision the global
work items are grouped to work groups. All work items within one work group execute
the same code and share a local memory and the work group barriers for synchronization
purposes. On a GPU they are executed on the same SP.

Notation 2 (Width and Height of a Work Group). The width and height of a work group
is denoted as w; and h;, with wy, h; € N. For reasons of simplicity, w; and h; should be
implicitly given throughout this work.

Definition 3 (Two-Dimensional Work Group and Local Work Item). For a given subdivi-
sion wy € N and hj € N with hy mod hy =0 and hy mod h; =0, the two-dimensional global
index space can be equally divided. All global work items that are in the same subdivision
form a so called work group. A work group is denoted as W, ,,y with t € {0, ..., [wg/wi|-1}
and u € {0,...,|hg/M| - 1}. All work groups for the given subdivision are of the same
size. The global work items within a work group are named local work items. The local
work item at local index (x1,31) of the work group (¢,u) is denoted as i(; (1, %1), with
21€{0,...,w—1} and y; € {0,...,h; — 1}. A two-dimensional work group defined as the
set Wiy y):

W) = {i(t,u)(a:',y') |2'€{0,...,w -1} and v/ €{0,..., k) - 1}} (4.2)
The size of the set W,y is wy - hy.

Each global work item can either be accessed with the global index or with the work
group index and the local index. This identifies the same thread, although it is called
global work item and local work item. The indices of the local and global work items that
are assigned to the same thread can be mapped to each other according to the following
lemma.
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Lemma 1 (Local Work Item to Global Work Item). A local work item i ,,)(w1,%1) of the
work group (¢,u) with a width of w; and a height of h; can be mapped to the corresponding
global work item i(x,y) by setting

x:=t-w +x and (4.3)

yi=u-h+y. (4.4)
Proof. The work group index (¢,u) for the global work item (z,y) can be described as

t=|x/w| (4.5)
<t -w = [w/le - Wy

and

u=[y/m] (4.7)
< u-h =|y/h|- h. (4.8)

The local work group item (z1,;) for the global work item (z,y) can be described as

x1 = (z mod wp) and (4.9)
y1=(y mod hy). (4.10)

The global work item (z,y) can also be expressed as

x:=|z/w | w +(x modw) and (4.11)
Y= Ly/hlj : h1 + (y mod h]). (4.12)

Replacing |z/w | - w) with the left side of Equation (4.6) and replacing (z mod w;) with
the left side of Equation (4.9) results in Equation (4.3). Replacing |y/hi| - h with the
left side of Equation (4.8) and replacing (y mod h;) with the left side of Equation (4.10)
results in Equation (4.4). O

Definition 4 (Global Memory). The global memory is a memory that can be accessed by
all work items in all work groups. It may be a cached memory.

Definition 5 (Constant Memory). The constant memory is initialized by the host and
remains constant throughout the execution of an OpenCL kernel.

Definition 6 (Local Memory). The local memory is a memory that can be shared among
all work items within a work group. It can not be accessed by work items from other work
groups.

Definition 7 (Private Memory). The private memory can only accessed by a single work
item.

Notation 3 (Allocated Global GPU Memory). An allocated two-dimensional global
memory is denoted as G(x,y), with G : NgxNg - R, z € {0,...,wp, -1}, y€{0,..., hy—1},
width wy, € N, and height Ay, € N. In this work, the global memory size is for most cases
chosen equal to the size of the global index space, with wy, = wg and hy, = hg.
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Clamp to edge is a widely used technique [Khr12] to cover edge cases.

Definition 8 (Clamping). A clamp function clamp : Z x Z x Z — Z to clamp a value x to
the range [a, b] is defined as

clamp(z, a,b) := min ( max(z,a),b), (4.13)
with a <.

Definition 9 (Clamped Image). The clamped image I} mp (3 1)) : Zx Z - R, where every
coordinate is clamped to be within the image dimensions, is defined as

I (2,y) = I(clamp(,0,w - 1), clamp(y, 0, - 1)). (4.14)

Although memory can be considered as two- or three-dimensional, it is stored in a
one-dimensional array in the GPU memory. Two- or three-dimensional coordinates have
to be mapped to the one-dimensional array. For example, the two-dimensional coordinates
(x,y) can be mapped to a one-dimensional coordinate with help of the global ID function.

Definition 10 (Global ID). The global ID function gid : Ny x Ng x N - Ny maps a
two-dimensional coordinate to a one-dimensional array and is defined as

gid(z, y, wg) =y - wg + , (4.15)
with wg as the width of the two-dimensional memory.

For a memory of size wg x hg, the indices x and y are only valid if they are in the
interval {0,...,w—-1} and {0,...,~A—1}. A valid ID can be calculated by combining the
clamp function in Definition 8 with the calculation of the global ID in Equation (4.15):

Definition 11 (Global ID Clamped to Edge (gidcte)). The global ID with invalid indices
clamped to the nearest edge is given by the function gidcte:Z x Z x N x N x N - Ny with

gidcte(z, y, wg, w, h) := clamp(y,0,h - 1) - wg + clamp(z, 0, w - 1). (4.16)

For faster processing the local memory can be used. Threads in one work group can
share the local memory. Often, the size of the allocated local memory is chosen equal or
larger than the number of threads in the work group.

Notation 4 (Allocated Local GPU Memory). An allocated two-dimensional local memory
is denoted as L(z,y), with L: NgxNg - R, z € {0,...,wp -1}, y € {0,..., hp —1}, padded
width wyp) € N, and padded height A € N.

The padding region of the local memory is usually used to store some additional input
data in the local memory for fast access. For example, for image processing tasks often
some neighboring pixels are needed for the calculation of the output. If these pixels are
needed by more than one thread, it can be beneficial to store them in the local memory.
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4.1.3 Efficient Access to Global Memory

Although OpenCL has been designed as a hardware independent GPGPU programming
language, the best performance can be achieved if the underlying hardware is considered
during the design phase. In this section an overview is given of how efficient access to the
global GPU memory can be achieved.

In general, accesses to global memory have to be prevented if possible. This includes
the host to device transfer, device to host transfer, and read/write access to the global
memory throughout the execution of an OpenCL kernel.

For example, if for an image processing pipeline GPGPU should be used, it would
be inefficient to switch between GPU and CPU processing of the images several times
throughout the pipeline, because this requires the transfer of memory if the input of one
GPU kernel depends on the output of a previous CPU computation step or vice versa. In
the best case, the entire processing is done exclusively on the GPU even if this requires
some calculation overhead. In the best case, the only host to GPU transfer is to upload
new images to the GPU and, if required, to download the processed images afterward.

Further, within a kernel only the required global memory should be loaded and it
should be reused if possible. Also, it should be shared with help of the local memory if it
is needed by several work items in a work group. On NVIDIA®GPUs local memory has a
latency that is about 100 times [NVI09b] lower than for the global memory.

For an efficient access, the load and store of values in the global GPU memory should
be done coalesced. If memory accesses are done properly, coalescing combines several
memory accesses to one transaction. In more detail, with a coalesced memory access, up
to half warp many threads in one work group can load up to a half warp many words in
one transaction. A half warp is usually 16 or 32 threads depending on the GPU hardware
architecture. A word can be up to 128 bit of data, e.g., one 32 bit float value. For 32 bit
values, segments of 128 B are considered, with the first memory address of the segment
properly aligned by the segment size. All threads that have scheduled a transaction within
this segment can be processed with a single memory transaction. A transaction can either
be 128 B, 64 B, or 32 B. The transaction size is automatically adapted to operate as many
threads within the 128 B segment as possible but not larger than needed.

For example, gray-scale images are usually stored in the GPU memory as one-
dimensional arrays, one row of the image after the other and one pixel after the other.
The easiest and most efficient way to access these values with coalesced accesses is with
successive threads that access one value one after the other. The first row of work items
in the work group accesses work group width many pixels of a row of the image, the next
row of work items accesses work group width many pixels the next row of the image, and
so on. All work group widths should be chosen as a multiple of a half warp.

To further minimize the access to global memory, the local memory can be used. As
the same values from the global memory are sometimes used by several work items, the
local memory can be used to share these values among the work items. How the local
memory can be used efficiently is shown in the following section.

4.1.4 Efficient Use of Local Memory

The use of local memory is a key factor for fast and energy efficient GPU code. The local
memory is a small amount of memory, e.g., 16 kB, available on each of the SMPs and
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shared amount all threads within one work group. It can be seen as a scratchpad memory
and has to be manually managed by the application designer.

Global memory accesses can have a latency of several hundred clock cycles [NVIO9b].
Although, this latency can be hidden by other operations on the same SMP, global memory
accesses should be minimized. The same is true with regard to energy consumption. To
minimize global memory accesses, values from global memory or intermediate calculation
results can be stored in the local memory and used by different threads from the same
work group. Also, a non-coalesced memory access can be avoided with help of the local
memory: Instead of accessing the global memory directly with a non-coalesced access
pattern, global memory can be loaded with coalesced memory access into the local memory.
Then values in the local memory can be accessed more or less arbitrarily.

However, for the local memory also a few hardware details have to be taken into
account in order to realize the full potential. On NVIDIA®GPUs threads on an SMP
access the local memory by so called memory banks. For example, if each bank is 32 bit
wide, a 32bit word can be loaded with one bank. Words from different banks can be
loaded in parallel. For NVIDIA®GPUs it takes two cycles for a transfer to complete. As
an example, if successive words are in different banks, number of banks many successive
words can be loaded in just two cycles. In contrast, if two words are assigned to the same
bank, these can only be loaded sequentially, which is called bank conflict and should be
avoided. The worst case would be if several words from the same bank should be loaded
at the same time. To sum up, if a GPU has, e.g., 16 banks and each bank is 32 bit wide,
up to 16 times 32 bit can be loaded or stored in parallel. However, only if the application
designer ensured that no bank conflicts occur and if the available bank width is fully
utilized.

In the following, access pattern are investigated of how threads of a w; x h; sized work
group can fill a local memory of size wy) x hp. The considered local memory is larger than
the work group in both directions because the case where width and height of the local
memory are both equal or smaller than width and height of the work group is more or
less trivial as every thread only need load at most one element.

In the image processing domain often a neighborhood around each pixel is considered
for the calculation of the output pixel. As an example, a convolution with a u x v filter
kernel in the image domain requires « - v input pixels for the calculation of every output
pixel. Typical sizes for u x v range from 3 x 3 to 9 x 9.

The u x v neighborhood is centered around each pixel. Neighboring threads in a work
group process neighboring pixels in the image. If for every output pixel all input pixels are
loaded from global memory, this would be very inefficient. Some of the u x v pixels can be
shared within a work group as they are also needed by other work items. For example,
two threads one pixel apart in u-direction share (u—1)-v input pixels. Here, the use of
shared local memory is beneficial. If the u x v neighborhood should be available in local
memory for every thread in the work group, the local memory needs to be v — 1 pixels
larger in width and v — 1 pixels larger in height. For v and v as odd integer numbers, this
would result in a local memory 5 -1 pixels larger in both z-directions and 3 -1 larger in
both y-directions.

To load global memory into the local memory, efficient access patterns are needed for the
work items within a work group. The access pattern needs to maximize coalesced memory
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access and needs to minimize warp divergences and bank conflicts. These objectives are
potentially contrary to each other.

For the following experiments, a neighborhood, or filter size, of 5 x5 and a work group
a size of 8 x 8 is considered. For each pixel of the input image, the neighborhood around
these pixels needs to be loaded and processed. This results in a local memory size of
12 x 12. All three sizes are common for practical problems.

Three access patterns are chosen of how a work group of 8 x 8 threads can be used to
fill a 12 x 12 local memory. The threads are used to efficiently load values from the global
memory into the local memory. Figure 4.2 shows these access patterns. With the three
8 x 8 arrays, a representation of the threads are given. Each thread is marked with one
to four symbols, indicating how many memory operations a thread performs. With the
three 12 x 12 arrays, the local memory is shown, each entry is loaded by one thread as
indicated by the symbols. Areas of threads with one symbol are loading areas of local
memory marked with the same symbol. Threads with the same symbol can be executed
in the same warp.

For the experiments the half warp size and the bank size are 16. The local memory
has been created as a single one-dimensional array, one row after the other, beginning
with the upper left element. Successive elements in the one-dimensional local memory are
assigned to different banks. Every 16 entries the same bank is reached again. To avoid
bank conflicts each 16 thread accesses should be properly aligned with the banks. However,
as the local memory width is 12 and not 16, bank conflicts can not be avoided easily.

Coalesced global memory access is possible for successive entries in each row of the
local memory that are executed within the same half warp. In addition, the accesses need
to be aligned to the segments. Here, a segment size of 64 B is considered.

Figure 4.2a and Figure 4.2b show the first access pattern, which properly aligns global
memory accesses to the segments. It is the most simple access pattern, as no index shifting
is required. The work group sized center part of the local memory is loaded by all threads
in parallel. Then the borders are loaded one after the other and finally the corners are
loaded. The threads are properly aligned to the segments of the global memory. For the
local memory, 10 bank conflicts appear. However, this pattern is not very efficient because
it has eight branches where the threads diverge. In the four branches that fill the corners
only four threads are active.

Figure 4.2c and Figure 4.2d show the second access pattern. The thread block of 8 x 8
threads is shifted up in y-direction and left in x-direction. Only three more branches
are needed to load all values of the local memory. It has the least amount of branch
divergences and the most threads cooperating. Also, the number of bank conflicts is low.
Although more threads cooperate and only 9 bank conflicts appear, it is less efficient, due
to a misalignment of the threads to the global memory segments. As the 8 x 8 center block
of the local memory is aligned to match the segments of the global memory, the shift of
the threads in z-direction misaligns the threads. It is possible, to increase the number of
coalesced memory accesses by aligning the local memory consistent with the segments.
However, this alignment depends on the neighborhood size and needs to be adapted if
another neighborhood size should be used.

Figure 4.2¢ and Figure 4.2f show the third and best access pattern as used by
NVIDIA®in their examples [NVIO9b]. This pattern has fewer branch divergences than the
first one, only five instead of eight. Like in the first pattern, also 10 bank conflicts appear.
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Figure 4.2: Three different access patterns of how a work group of 8 x 8 threads can
efficiently initialize a local memory of size 12 x 12. Each thread loads one
to four global memory elements into the local memory as indicated by the
symbols. The third access pattern is based on [NVI09b].
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The key feature is, that first the 8 x 8 threads load a block in the local memory that is
shifted up in y-direction but not shifted in z-direction in contrast to the second pattern.
With the shift in y-direction, the number of branch divergences is reduced. By waiving a
shift in z-direction, the alignment to the segments is not changed.

It should be noted that all three access patterns are limited to a neighborhood, or
filter size, not larger than the size of the work group plus one in x- and y-direction. If
a larger neighborhood should be used, e.g., of size 11 x 11 for a work group of size 8 x 8,
additional branches have to be added to fill the 13 x 13 sized local memory, resulting in a
less efficient use of the local memory.

To conclude, if the local memory should be used efficiently, global memory accesses
should be aligned to the GPU segments, local memory accesses should be aligned to the
SMP banks, and the number of branches should be minimized. The third access pattern
has shown to be the best, although it does not minimize the branch divergences and has
some bank conflicts. It reduces the branch divergences compared to the first pattern and
increases the coalesced memory accesses compared to the second pattern. Both of these
two optimizations are important. The number of bank conflicts has shown to be less
important, each bank conflict adds a delay of only two cycles.

A specific example of how the access pattern to the local memory can be used is
provided in Section 5.4.3. The amount of saved global memory operations by using the
third access pattern is calculated for a typical input buffer and a 7 x 7 neighborhood.

4.1.5 Additional Constraints

Based on the considerations for an efficient memory use in Section 4.1.3 and Section 4.1.4
additional soft and hard constraints can be formulated for size of the global index space,
size of allocated memory, and size of the work groups. Also, the limitations of the hardware
causes some additional hard constraints. These soft and hard constraints are introduced
in the following, based on the definitions and notations as introduced in Section 4.1.2.

As explained in Section 4.1.3 a proper alignment of the memory to the work items or the
other way round is crucial for a coalesced memory access. The proper alignment depends
on the access pattern, the data type, the offset of the work items to the accessed memory
blocks, the work group size, the size of the global index space, and the hardware architecture
of the OpenCL device. Besides the access pattern and the underlying hardware, the width
of the work groups is usually the most important parameter with which a coalesced memory
access can be influenced.

Randomly accessing the pixels of an image in global memory is very inefficient. A
simple but efficient access pattern can be achieved, for example, if the image width is
divisible without remainder by the half warp size. Then the half warp size can be chosen
as the work group width and the global index space is chosen as the image dimensions.
The first global index is mapped to the upper left pixel in the image and the last global
index to the bottom right pixel. Every work item accesses the mapped pixel of the image.
As a result, work items in each line of a work group access a properly aligned partial line
of pixels of the image in the global memory. Hence, every half warp of work items can
perform a coalesced memory access.
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The first two hard constraints that should be introduced are that the global width wg
and height hg of the index space must be divisible without remainder by the work group
width and height w; and h;:

wg mod wy =0 (4.17)
hg mod hy = 0. (4.18)

These conditions hold trivial for w; = 1,w; = 1 and for wg = wy, hg = hy but these solutions
are in practice considered as inefficient and slow or even not possible due to limitations of
the hardware. As an example, if the w, and height h, are prime numbers and too large to
be chosen as work group width and height a work group of size one is the only possible
solution. Each SMP would only execute a single thread at once, most SPs would remain
unused and the threads can neither use coalesced memory accesses nor make efficiently
use of shared local memory.

Usually w; and h; have to satisfy more conditions to result in an efficient OpenCL
program. On NVIDIA®GPUs each work group is further divided into half warps as they
are executed on the GPU. The threads within one half warp can work concurrently, as
explained in Section 4.1.3. A half warp is 16 or 32 in current NVIDIA®GPUs. Therefore,
the work group size wj - by should be divisible without remainder by the half warp size s.
This leads to the following soft constraint:

(wy-h) mod s=0. (4.19)

In the best case, w; is also divisible without remainder by the half warp size because
then the memory accesses can be more easily be coalesced and bank conflicts are avoided,
formulated in the next soft constraint:

w; mod s =0. (4.20)

Another soft constraint is that the work group size should be large enough to utilize

all SPs on an SMP
#SPs

#SMPs’

with #S5SPs as the overall number of SPs and #5M Ps as the overall number of SMPs.
As all work items in a work group need to be processed, the work group size should

wy - hy > (4.21)

also be an integer multiply of the number of SPs per SMP, which prevents that some SPs
on an SMP have no work item to process:

(w-hy) mod 225 _ (4.22)

#SMPs

Also, it should be possible to distribute the work groups to the SMPs without SMPs
not being utilized, which can be achieved with

h
(% : —g) mod #SMPs =0, (4.23)
w
with #SM Ps as the number of SMPs.
Besides these soft constraints for efficiency, additional hard constraints are caused by
the capabilities of the OpenCL hardware device. The capabilities can be read out with
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clGetDeviceInfo(). The most important constraints for the work group size are given
in the values CL_DEVICE_MAX_WORK_GROUP_SIZE, CL_DEVICE_MAX_WORK_ITEM_ SIZES, and
CL_DEVICE_LOCAL_MEM_SIZE. With CL_DEVICE_MAX_WORK_GROUP_SIZE the overall work
group size is given, with CL_DEVICE_MAX_WORK_ITEM_SIZES[0] the maximum work group
width, and with CL_DEVICE_MAX_WORK_ITEM_SIZES[1] the maximum work group height.
These values limit the work group size as following;:

w, - by < CL_DEVICE_MAX_WORK_GROUP_SIZE (4.24)
w, < CL._DEVICE_MAX_WORK_ITEM_ SIZES[0] (4.25)
h; < CL_DEVICE_MAX_ WORK_ITEM_SIZES[1]. (4.26)

The overall available memory per work group in byte is given with CL_DEVICE_LOCAL_-
MEM_SIZE. If every work item consumes m bytes local memory, the following equation has
to be fulfilled:

m - (w; - hy) < CL_DEVICE_LOCAL_MEM_SIZE. (4.27)

The minimum value for CL_DEVICE_LOCAL_MEM_SIZE that is guaranteed to be supported
by every OpenCL device is 16 kB [Khr12]. The constant and private memory is also limited
on an OpenCL device. These values can also influence the maximal possible work group
size. However, they are usually not the limiting factor.

All these soft and hard constraints should be or must be considered by an application
designer in order to achieve an efficient OpenCL program. However, it might not be clear
which soft constraints are especially important and which can be ignored.

As shown in Equation (4.17) and Equation (4.18), the size of the index space strongly
restricts the size of the work groups. To make the choice of the work group size less
dependent of the index space size, some padding can be added to the width and height of
the index space so that the padded width and height is divisible without remainder. The
same can be done for the input or output data that should be processed. For example,
if one work item solely processes one element in the memory, in a one to one mapping
of work items to memory, the memory can also be padded with the same padding as the
global index space.

As more limitations are given for the work group size than to the global index size it is
more easy to set wy and h) to desired values that fulfill the dependencies and then adapt
wg and hg to the chosen values as the other way round. Instead of choosing w; according
to wg, w is chosen as the desired value and wy is adapted to the smallest integer multiply
of wj that is greater or equal to w and analogously for hg. This is expressed as

wy =min{w+w’ | w' €Ny and ((w+w’) mod w;) =0} (4.28)
hg =min{h+h" | k' €Ny and ((h+h') mod h) =0}, (4.29)

for given wy, hy, w, h € N. In other words, some amount of padding is added to the width
and height so that the global index space can easily be tiled into work groups.

For given w; and h;, the padded size of the index space can be automatically determined
as follows, adapted from [Ash10]:

wg = (w+w —1) - ((w+w -1) mod w) and (4.30)
hg=(h+h-1)=((h+m-1) mod h). (4.31)
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And the needed padding w’ € {0,...,w; -1} and k' € {0,...,0,h; — 1} in Equation (4.28)
and Equation (4.29) can be calculated with Equation (4.30) and Equation (4.31) as

w'z(wl—l)—((w+w1—1) mod w;) and (4.32)
B =(h-1)-((h+m-1) mod h). (4.33)

Sometimes, different work group sizes are chosen for different OpenCL kernels working
on the same input data. As an example, most kernels might use a work group size of
16 x 16 but for some kernels this size may be too big because if they use more local memory
the GPU would run out of local memory. Choosing different padded width and height
of the global index space or the memory would cause some additional overhead. As a
solution, if the work group sizes are chosen properly, a single padded width and height
can be set, which is divisible without remainder by any of the work groups, according to
the following lemma:

Lemma 2. If all work group widths are set as a power of two and wy is set as the maximum
of all work group widths then wg can be set according to Equation (4.30) and as a result
wg is divisible without remainder by any of the work group widths. The same applies to
he in Equation (4.31) with b set as the maximum of all work group heights.

Lemma 2 is true, as wg is divisible without remainder by wy. wj is the maximum of
all work group widths. Because all work group width are chosen as a power of two, w;
is divisible without remainder by any of the work group widths. Finally, because wg is
divisible without remainder by w; and w is divisible without remainder by any of the
work group width, wg is also divisible without remainder by any of the work group widths.
This analogously applies to hg.

However, padding introduces some overhead. The relative overhead o can be expressed

as
:wg-hg—w-h

w-h ’
with wg and hg as the padded width and height and w and h as the width and height
without padding.

0 (4.34)

If the global index space is padded, not needed work items are added. Depending
on the implementation they participate on the processing or not. In either way they
usually do not produce useful output. If the memory is padded, more memory is consumed.
Additionally, if the padded part of the memory is used for calculation, these parts have to
be loaded or stored which takes time and consumes energy.

For an actual implementation some decisions can be made. Either only the global
index space can be padded or global index space and memory. Padding only the memory
is not useful for most applications. Also, additional code can be added to save calculations
or memory operations, which can save execution time and/or energy. In the easiest case
both global index space and memory are padded, the padding is treated as normal input
or output and no additional code is added. If only the global index space is padded,
additional code has to be added to prevent invalid memory accesses. A simple check if the
work item is within the padded area and a return statement is usually enough. However,
this simple check requires that the actual width and height is known. As OpenCL does
not provide these parameters, two additional parameters have to be provided. These
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parameters have to be checked also by work items that are not assigned to the padded
area.

Another problem is that OpenCL barriers require that every work item in a work group
reaches the barrier before a function is allowed to continue. If some work items finish
before the barrier is reached, e.g., by a conditional return statement for some threads, the
whole function would lock up. In all cases where synchronization is needed, e.g., if some
local memory is filled and shared by several work items, work items can finish only after
the barriers, not before. Then, additional code has to be added to prevent that work items
assigned to the padded area access invalid memory. This can reduce the readability and
maintainability of the code and slows down the execution of all work items. As a solution,
in this work, if barriers are used, the global index space and the memory is padded and
no additional code is used for filling the local memory. Simply, all work items participate
in filling the local memory even if they load not needed chunks of the global memory into
the local memory. However, if neighborhood information is used, at some point after the
barriers additional checks need to be added to prevent the processing of invalid memory.

In general, all the decisions made for the work group sizes, the global index space, the
memory allocation, and how the data is processed influence how fast an application runs
and how much energy it consumes. A generally applicable statement of how these decision
should be taken can not be given as they also strongly depend, e.g., on which hardware
the application runs. This motivates the use of automatic PSE and DSE methods that
can help to make these decisions.

4.2 Image Processing Notations and Definitions

For the image processing methods in Chapter 5, some notations and definitions are
introduced in the following.

The PAMONO sensor produces a stream of images. The raw sensor images usually
have a bit depth of either 12 bit, 14 bit, or 16 bit depending on the used camera. Some
cameras also output 16 bit images although they record with depths of 12bit or 14 bit.
The width w and height h of the image, cf. Notation 1, depend on the used camera in the
sensor setup and are fixed during an experiment.

Individual images can be uniquely identified by the time ¢, also referred as the frame
number. A single image instance is then be given by Notation 5.

Notation 5 (Image). A gray-scale image at time ¢ with width w € N and height h € N is
denoted as I+(x,y). A single pixel of this image at position (z,y) is denoted as I+(x,y),
with I; : NgxNg > R, 2 € {0,...,w—-1}, y€{0,...,h—1}, and ¢ € N.

For example, I4(0,0) is the upper left pixel value of the first image and ;1 (w-1,h—-1)
is the bottom right pixel value of the ¢-th image.

To remove a dependency of the bit depth of the camera, all values are mapped to the
interval [0, 1] within the image processing software. The interval [0,1] is chosen because
the floating point numbers in the interval [0,1] are represented on a GPU with a high
precision and can be processed efficiently.

Additionally, the set of images I shall also be implicitly given to not always provide
images as argument.
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Notation 6 (Set of Images). An unsorted set of all gray-scale images {lo, I1, I2,...} is
denoted as I. All images in I have the same size w x h.

Typically, I contains all images of a single measurement with the PAMONO sensor.

Definition 12 (Image Queues). An ordered queue of to —t1 +1 gray-scale images is defined
as I[t1,t2] :Np x Ny - R*2=1+1) with

I[tth](fL'gy) = (Itl (xay)a It1+1(l‘,y), cee 7It2 ($7 y))T (435)

within the time interval {¢1,...,t2} and z € {0,...,w—-1}, y € {0,...,h =1}, t1,t2 € N, and
t1 < to.

To describe and apply a PAMONO signal model, in the following the terms background
signal, virus signal, artifact signal, and noise signal are defined.

First, the constant background signal Beongtant 0f the PAMONO sensor is introduced
as:

Definition 13 (Constant Background Signal). The constant background signal is caused
by the structure of the gold layer in the PAMONO sensor. A constant background signal
with width w and height h is denoted as Beonstant (%, y), With Beonstant : No x Ng = R,
xe{0,...,w—1},and y € {0,...,h—1}.

The virus signal holds the signal caused by virus adhesions to the PAMONO sensor.
For reasons of simplicity, the name and notation of the virus signal is also used for other,
non-virus, particles attaching to the sensor that should be detected.

Definition 14 (Virus Signal). The signal solely caused by viruses that are currently
attached to the PAMONO sensor is called virus signal. The virus signal at time ¢ with
width w and height h is denoted as Vi(z,y), with V; : Ngx Ny - R, x € {0,...,w -1},
ye{0,...,h—1}, and t € Ny.

The artifact signal holds all kind of unwanted signal, except for background and noise
signal.

Definition 15 (Artifact Signal). The artifact signal contains all kind of distortions in the
sensor signal except background and noise signal. This includes signals from air bubbles,
dust, cells, unspecific virus bindings, detaching viruses, and signal caused by movements
and unwanted vibrations of the sensor system. Some part of the virus signal might also be
considered as artifact signal. For example, some outer parts of the virus signal or old virus
signal might be considered as unwanted signal and therefore as artifact signal. An artifact
signal at time ¢ with width w and height h is denoted as A;(z,y), with A; : Ng x Ny - R,
xe{0,...,w—-1},ye{0,...,h—1}, and t € Ny.

The constant background signal combined with the artifact signal is called background
signal.

Definition 16 (Background Signal). The background signal at time ¢ with width w and
height h is denoted as B;(z,y) and consists of the constant background signal Beonstant,
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cf. Definition 13, multiplied [SLW+14] with the artifact signal A, cf. Definition 15. It is
defined as By : Ny x Ny - R with [SLW+14]

Bt($, y) = Bconstant(xa y) : At(x7 y) (436)
and with z € {0,...,w -1}, y€{0,...,h—-1}, and t € N.
The noise signal is defined as follows.

Definition 17 (Noise Signal). The noise signal consists of the noise caused by the
PAMONO sensor and the camera. A noise signal at time ¢ with width w and height A
is denoted as Ny(z,y), with Ny : Ngx Ny > R, 2 € {0,...,w—-1}, y€{0,...,h -1}, and
te No.

To reference the neighborhood around a given position in a stream of images, the 3D
neighborhood multiset N is introduced.

Definition 18 (3D Neighborhood). The 3D neighborhood N ﬁlfhnx p, 18 @ multiset of spa-
tiotemporal coordinates of a given volume of size wy x hy, X, around a given spatiotemporal
coordinate (x,y,t). It is defined as [LST+13a]

NEYt = {(clamp(m +2,0,w—1), clamp(y +4,0,h—1), max(t +1, 0)) e N3 (4.37)

Wpxhnxtn "
| e {[(wa=1)/2],., [(wa - 1)/2]},
e {[(hn-1)/2]....,[(hn - 1)/2]}, and
Pe {(ta-1)/2),. Lt - 1)21} ),

with the outermost {...} denoting a multiset, x,y,t € Ng, and wy, hy,t, € N. 3D neigh-
borhood multiset N contains all spatiotemporal coordinates within a volume of width
wy, height Ay, and depth ¢, around the input spatiotemporal coordinate (x,y,t). The
coordinates in the multiset are clamped to edge with the clamp function, cf. Definition 8,
to prevent invalid coordinates in the multiset.

Definition 19 (Average). The average of a distribution is denoted as p, and the average
approximation /i over n € N values z1,...,z, € R is calculated as [DK11]

~ L Z?:l T

= == (4.38)

Definition 20 (Standard Deviation). The standard deviation of a distribution is denoted
as o, and the standard deviation approximation & over n € N values x1,...,x, € R is
calculated as [DK11]

no (e )2
b= Mj (4.39)
n-1
with /i as the average approximation from Equation (4.38). The z; is a single realization

and n € N as the number of realizations.

Definition 21 (Variance). The variance of a distribution is given by the squared standard
deviation 2, and the variance approximation is given by the squared standard deviation
approximation 62 [DK11].
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Definition 22 (Gaussian Distribution). The Gaussian distribution g : RxR — R is defined

as [DK11] .
1 —(z-p)
9(z,0) := = ¢ = (4.40)

Definition 23 (Two-dimensional Gaussian Distribution). The two-dimensional Gaussian
distribution g, : R x R - R with zero mean is defined as [DK11]

1 —ena)®-(w-uy)?

e 207 . (4.41)

9o(2,y) 3= 55

Definition 24 (Poisson Distribution). The Poisson distribution p : Ny - R is defined
as [DK11]

xT

p(x) = %e”v (4.42)

with the distribution parameter A € R*, 2! as the factorial of z, and e as Euler’s number.
For a given sample, A is used instead of A and A is calculated as [DK11]

A= Zesti (4.43)

n
with z; as a single realization and n € N as the number of realizations.

In order to determine the k-th largest element of a multiset, the rank function r is
introduced.

Definition 25 (Rank). The k-th largest element of a multiset J = {ji ‘ ie{l,...,n},ne N},
with ke {1,...,|J|} is given by the rank function r(k,J) and is defined as [LST+13a]

r(k,J) = ji, where j12j22> ... 2jr 2 ... 2]y (4.44)
Based on this definition, the median can be defined:

Definition 26 (Median). The median of a multiset J = {j; | i € {1,...,n},n € N} is
denoted as median(.J) and is calculated as

median(.J) = T(WT”J J), (4.45)

with 7 as the rank function according to Equation (4.44) and |J| as the number of elements
in the set J.

A key concept of GPGPU is a partitioning of data so that it can be efficiently processed
in parallel. An image can be partitioned into tiles. Then, the tiles can be processed by
the SMPs on the GPU. The tiles might overlap.

Definition 27 (Image Tile). An image tile T, () (2",y") of size wije x wye from a

gray-scale image I is defined as Ty, ;) : No x Ng > R with

Tlt(%y)(x', y') = I;(clamp(z + 2',0,w - 1), clamp(y + 3,0, h - 1)), (4.46)
with the clamp function as defined in Definition 8, 2’ € {0, ..., wie—1}, ¥" € {0,. .., wie—1},

Wile, Wtile € N, and ¢ € Ny. In the following, the width wyje and height wye of image tiles
shall be implicitly given.
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The definition for an image tile is also used to define a template image—a cutout of a
virus signal. For the template image, the virus signal V; is used in Equation (4.46) instead
of I;.

To obtain a partitioning of an image instance into not overlapping image tiles, the
following set over tiles can be used.

Definition 28 (Set of Image Tiles or Partitioning of an Image). A set of not overlapping
image tiles is defined as

{TIt(z,y) (xlv y/) ‘ TE€ {0 * Wtile, 1- Wtile, 2- Wtiles - - -y Wg — Wtile — 1} and (447)

Yy € {0 * Wtile, 1- Wtile, 2- Wtiley « « + » hg — Wtile — 1}}7
with wg as the padded width of the memory and hg as the padded height.
Finally, the signal and noise can be set in relation with the SNR.

Definition 29 (Signal to Noise Ratio). The estimated SIGNAL-TO-NOISE RATIO (SNR)
for an object O and a background B is defined as [CWGO01]

SNR(O, B) := [l =I5l (4.48)
G0

with O as a multiset of object values, B as a multiset of background values, fi, as average
of O, cf. Equation (4.38), fip as average of B, and 6¢ as the standard deviation of O, cf.
Equation (4.39).

To calculate the noise approximation 6o only over the object O, results in a more
accurate estimate [CWGO1] of the SNR. The SNR is useful as quality measure of data.
Data with a high SNR is more easy to process. An SNR below four is considered as
difficult.

4.3 Quantifying the Detection Quality

To measure the detection quality of a bio-medical sensor, such as the PAMONO sensor,
several quality measures can be used. Which quality measures should be used, strongly
depends on the use case. For the PAMONO sensor different use cases are possible. The
sensor can be used for a simple (virus) test, which just measures if an analyte molecule
is present in the sample or not. It can be used to determine the exact concentration of
analyte molecules in the sample, which is the main use case. Also, binding speed, binding
rate over time or the ratio of specific to unspecific bindings can be measured. Real-time
analysis of the binding process is another use case.

For the PAMONO use case, individual viruses can be indirectly detected. The detection
can be provided automatically by a software or manually by an expert. In each case the
provided detections consists of positions and frame numbers where and when in the sensor
image viruses have been attached to the sensor. These detections can be checked against
a ground truth. The numbers of TRUE POSITIVES (TP), TRUE NEGATIVES (TN), FALSE
PosiTives (FP), and FALSE NEGATIVES (FN) can be counted as defined in the following.
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Definition 30 (True Positives). TRUE PosITIVES (TP) in the context of PAMONO is
defined as the number of particles found by the detector for which a corresponding particle
in the ground truth exists.

Definition 31 (True Negatives). For a true negative no particle is found by the detector
and also no corresponding particle exist in the ground truth. As in the PAMONO context
the true negatives cannot be counted, TRUE NEGATIVES (TN) is supposed to be zero.

Definition 32 (False Positives). FALSE PosITIVES (FP) in the context of PAMONO is
defined as the number of particles detected by the detector with no corresponding particle
in the ground truth.

Definition 33 (False Negatives). FALSE NEGATIVES (FN) in the context of PAMONO is
defined as the number of particles in the ground truth for which no corresponding particle
was detected by the detector in the sensor images.

An overview if a single event should be counted as TP, TN, FP, or FN can be found
in the confusion matrix [DGO6] in Table 4.1.

Table 4.1: Confusion Matrix

‘ Particle detected No particle detected
Particle present TP FN
No particle present FP TN

More details on how TP, TN, and FP are calculated for the PAMONO sensor use case
is given in Section 7.3.1.

Based on TP, TN, FP, and FN, several performance measures can be defined. In the
following, definitions for accuracy, precision, recall, F; score, and Matthews correlation
coefficient are given.

Definition 34 (Accuracy). Accuracy is defined as [DGO6]

TP + TN
TP+FP+FN+ TN’

(4.49)

accuracy :=

Definition 35 (Precision). Precision is defined as [DGO6]

TP

—_—. 4.
TP + FP (4:50)

precision :=

Definition 36 (Recall). Recall is defined as [DGO6]

TP
recall i= —————. (4.51)
TP +FN

Definition 37 (F; score). The F; score, also named F-Score and F-Measure, is defined
as a balance between precision and recall [CS93]:
2 - precision - recall

Fyi:= . 4.52
! precision + recall ( )
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Definition 38 (Positive Agreement). Positive agreement PA is defined as [KP03]

2-TP
PA = . (4.53)
2-TP+FP +FN
Lemma 3. F; score and positive agreement PA are equal.
Proof.
F, - 2- pre.c.ision -recall (4.54)
precision + recall
9. TP TP _
_ 2 TP+FP_TP+FN
- _TP_ TI; (4.55)
TP+FP © TP+FN
2TP?
- TP TP (4.56)
(TP +FP)(TP + FN) (75,55 * TpiFN
2-TP
= =PA. 4.57
2-TP+FP +FN ( )
O

Definition 39 (Matthews correlation coefficient). The Matthews correlation coefficient
mecc is defined as [Mat75]

TP-TN - FP-FN
V(TP +FP)- (TP + FN)- (TN + FP) - (TN + FN)

(4.58)

IMCC =

4.4 Evolutionary Algorithms

In this section an overview of EVOLUTIONARY ALGORITHMs (EAs) is given based on [Luk13].
EAs play an important role in Chapter 7 and Chapter 8 where they are used for single-
and multi-objective optimization. They are metaheuristic algorithms that are inspired by
evolution that can be used for black box optimization.

To put EAs into context, they are classified as optimization method in the most
general class and stochastic optimization in the next sub-class. For stochastic optimization
some degree of randomness is used to optimize. A subclass of stochastic optimization
are metaheuristics. Metaheuristics describes the field of optimization methods than can
find good solutions although it is unknown how an optimal solution might look like but
where some kind of quality measure can be assigned to each solution that is found. The
next class within metaheuristics toward EAs is EVOLUTIONARY COMPUTATION (EC),
population-based optimization methods that make use of concepts from the evolution. EC
covers all kind of evolution-based methods. Finally, each algorithm from the class EC is
called EA. [Lukl3]

In general, EAs are population-based optimization algorithms. Several candidate
solution called individuals form the population. For each individual in a population, a
fitness is calculated. Based on the fitness values, a new generation is formed by breeding
and joining. Typically, the breeding consist of selection, mutation, and recombination of
individuals. This is repeated for several generations. As an example, two common types
of EAs are GENETIC ALGORITHMs (GAs) and evolution strategies.
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In GAs gene like structures are used to code the parameters of individuals. A recombi-
nation is done by combining genes of two parents. For evolution strategies the breeding
process only includes selection and mutation but no recombination. The input of GAs is a
description of the genes, a fitness function, and a breeding function. The output is the
best solution, found by the GA. [Luk13]

4.4.1 Motivation to Use EAs

In this work, EAs are chosen for optimization as a good starting point to gain insights
into the inspected optimization problems and research issues. They are used to optimize
GPU hardware and software and hardware configurations for GPGPU tasks.

EAs have some benefits that may not be present in other optimization methods: they
are flexible, can handle a large input space, can be parallelized and solved with distributed
computing, can be used for single- and multi-objective optimization, do not require gradient
information, and can be easily adapted and extended. The main reasons EAs were chosen
is that EAs are able to search even highly non-linear search spaces and do not make
assumption on the characteristics of the search spaces.

It should be especially emphasized that this thesis is not a comparative study for
different optimization techniques. The focus is on the fitness evaluation and not on the
optimization. Also, the optimization concepts and methods that are introduced in this
work are not limited to the use of EAs. They can be replaced by other methods for
multi-objective optimization.

The main use case that is examined with EAs throughout this thesis is VirusDetec-
tionCL, cf. Chapter 5 and Chapter 7. This program has several parameters that can affect
the detection quality. With manual parameterization an optimal configuration is hard to
find, especially as some parameters have strong dependencies to each other. For example,
noise reduction strongly affects the segmentation thresholds, these affect the segmentation,
the segmentation affects the classification, and this affects the QoR. Additionally, there
are hidden side effects, which even an expert might not be aware of. For example, an
improved detection of the borders of the virus adhesions can also increase the number of
false positives, as more artifacts are considered as a possible virus adhesion.

In Chapter 8 more than one objective is considered for the exploration of CPSs with
VirusDetectionCL and different target GPU architectures. In addition to the QoR, energy
consumption and execution time are considered. This increases the difficulty of finding
good solutions in the parameter and design space. The optimization task becomes even
more difficult. Additional non-linear relationships have to be handled by the optimization.
EAs are able to cope with such challenges.

For example, Timm has shown that EAs work well on optimizing GPU code toward
the objectives execution time and energy consumption [Tim12]. This motivates the use of
EAs for the hardware exploration tasks in this work. Overall, the decision to use EAs is
somehow conservative but well founded.

4.4.2 FEA Definitions

To define the terms in the context of EAs, the well formulated definitions from Luke [Luk13]
are used in this work.
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Definition 40 (Individual). An individual is a candidate solution. [Luk13]

Definition 41 (Child and Parent). If a new, modified individual is created from other
individuals, the new individual is called child and the other individuals are called par-
ents. [Lukl3]

Definition 42 (Population). All individuals form a population. [Lukl3]

Definition 43 (Fitness and Fitness Evaluation). The fitness of an individual is used to
describe the quality of this individual. It is calculated by the fitness evaluation. [Lukl13]

Definition 44 (Genotype and Genome). The data structure of an individual is called
genotype or genome, which is used during breeding. [Luk13]

Definition 45 (Chromosomes and Genes). Chromosomes describe the genotype. A
chromosome consists of one or more genes. [Lukl3]

Definition 46 (Allele). A particular expression of genes is called allele. [Luk13]

Definition 47 (Evolutionary Cycle). A typical evolutionary cycle to generate new individ-
uals from the current population consists of the steps: evaluation, selection, recombination,
and mutation. Applying one of these cycles leads to a new generation of the population.
The selection is done by picking a number of individuals based on their fitness. Recombi-
nation or crossover combines the genome of two parents to produce new children. In the
mutation step the genes are altered. [Luk13]

Definition 48 (Tournament Selection). Tournament selection selects the best individual
out of a number of ¢ € N randomly picked individuals from the population. The ¢ is typically
chosen as 2. This step is repeated for the number of needed individuals. Tournament
selection is the most used selection operation for EAs. [Luk13]

Definition 49 (Dominated Individual). An individual ¢; is dominated by the individual
ig if 4o is in at least one objective better than i; and in all other objectives at least as
good as i;. [Lukl3]

Definition 50 (Non-dominated Individual). An individual is not dominated if no other
individual exists that dominates it. [Luk13]

Definition 51 (Pareto Front). A Pareto front consists of all non-dominated individu-
als. [Luk13]

4.5 The SynOpSis Approach

In this section the SYNTHESIS/OPTIMIZATION /ANALY SIS (SynOpSis) approach [SLW+14;
Siel6], developed by Siedhoff, is presented. SynOpSis can be used to generate synthetic
PAMONO sensor data and to optimize program parameters. The generated synthetic
sensor data is important for several experiments. For the co-authored publication [SLW+14]
and for the publication [Siel6], the VirusDetectionCL method, which is introduced in
Chapter 5, has been provided as the most important use case. Also, the interface of
VirusDetectionCL has been extended for the use with SynOpSis. In addition, several
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Figure 4.3: The SynOpSis approach with a real data-based synthesis of training and
testing data on the left, an automatic parameter optimization on the right
and the real time application of the optimized parameters on real sensor
data on the bottom. Adapted from [SLW+14].
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improvements on both SynOpSis and VirusDetectionCL are the result of this cooperation.
Therefore, SynOpSis is briefly presented in this work although it is no contribution of the
author.

As the name suggests, SynOpSis contains three stages: a synthesis stage, where
new synthetic data can be generated, an optimization stage, where parameters can be
automatically optimized, and an analysis stage, where the optimized parameters are used
to analyze real sensor data.

Figure 4.3 shows the synthesis stage on the left. The input is real sensor data with and
without viruses, a manual segmentation of viruses for the sensor data with viruses, and the
signal model. The sensor data without viruses can easily be provided by recording images
with the PAMONO sensor while only buffer solution, e.g. salt water, is pumped through the
flow cell of the sensor. The recording of the sensor data with viruses is done after a sample
with viruses has been inserted in the sensor. Subsequently to the recording, a manual
segmentation needs to be done by experts for a sufficient amount of viruses. SynOpSis
then generates synthetic training and testing data, with a synthetic object segmentation.
The signal of the segmented viruses is extracted and then synthetically injected into the
empty sensor data using the signal model. The first output of the synthesis stage is a
synthetic data set where the viruses are injected at random but known positions. The
second output is a synthetic object segmentation with a polygon segmentation and frame
number of every virus appearing in the synthetic data set. [SLW+14]

The figure also shows the optimization stage on the right, where the automatic
optimization of program parameters can be done. Here, the VirusDetectionCL program,
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which is introduced in Chapter 5, is optimized. As input, the synthetic object segmentation
and synthetic sensor data from the synthesis stage is used. The optimization stage makes
use of a GA to optimize the parameters on the synthetic sensor data. As the synthetic
object segmentation is also available, the fitness evaluation can easily be performed. As
output, an optimized parameter set for the program is provided. [SLW+14]

Finally, the figure shows the analysis stage with the application of optimized parameters
on real sensor data. In this stage new samples can be analyzed. The application of the
optimized parameters is usually fast, whereas the optimization of parameters may take
several hours and is done offline. [SLW+14]

In this work the synthesis stage of the SynOpSis approach is used for a HARDWARE-IN-
THE-LOOP (HIL) simulation. Instead of first process samples in the PAMONO sensor, then
evaluate them manually, and finally analyze them with the detection software, SynOpSis
can be used to synthetically generate annotated data.
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In this chapter a detection method for biological viruses is developed. The approach
is named VIRUS DETECTION witH OPENCL (VirusDetectionCL). It is a computer
vision-based approach, which can automatically detect and count individual viruses in
PAMONO sensor images.

This chapter is based on the author’s publications [LWT12; LST+13a; LST+13b;
LKD+14] and the co-authored publications [SWL+11; SLW+14; NLE+15; STM+15].

5.1 Introduction

The VirusDetectionCL approach consists of methods for signal restoration, feature ex-
traction, segmentation, and classification. With these methods the sensor data can be
processed and signals from individual viruses can be detected and counted.

The input for VirusDetectionCL is a stream of PAMONO sensor images and a parameter
set. The output is a list of the detected viruses including a segmentation and features for
every virus. Features are intended to create the segmentation and for the classification of
detected particles to sort out FP responses.

The PAMONO sensor produces images where the signal from viruses is not visible to
the human eye. The viruses are attaching to antibodies on a thin gold layer while the
signal is recorded by a camera viewing only the other side of this gold layer. Thus, with
the VirusDetectionCL approach signal needs to be analyzed from the other side of the
gold layer needs to be analyzed to “see” what is happening on top. That this is possible
in general is because with a light source plasmon waves are excited in the gold layer, the
viruses change the reflectivity of the gold layer, and this changes the amount of light
recorded by the camera at an area around an attached virus that is larger than a virus
itself as explained in Section 2.1. As a result, the existence of individual viruses in the
sample can be proven by detecting the indirect effects they cause.

However, several challenges for processing PAMONO sensor data exist that are handled
with the VirusDetectionCL method. The most important challenge is the very low SNR
for all particles below 200 nm. Even a median SNR below two is possible [Siel6] and needs
to be handled. Related methods for blob detection and cell tracking can only handle an
SNR down to four [CSG05] or down to two [SLN+-09], cf. Section 3.2.4.

Other important challenges are:

o small spatial extension of signal

o wave like structures around the center of the signal
« overlapping signals from different particles

« artifacts similar to the actual signal

e irregularities in thickness of the gold layer

e out of focus areas of the image

e overexposed spots

o only 40 ms processing time per frame

e heating of the sensor surface
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e vibrations
e the energy consumption of the system

All methods from this chapter are implemented as GPGPU kernels using OpenCL. To
emphasize the complexity of the VirusDetectionCL methods, it should be highlighted that
the GPGPU application consists of 14000 source lines of C' code and 4000 source lines of
OpenCL code.

The VirusDetectionCL GPGPU application is used as the main use case for the PSE
and DSE approaches in Chapter 7 and Chapter 8, e.g., for a combined software and
hardware exploration of VirusDetectionCL and different GPU hardware.

5.1.1 Motivation

Without automatic approaches an expert needs up to two days [Siel6] to evaluate a single
PAMONO data set with 4000 images, which is recorded in 160s. Although the recording
is fast, the long evaluation time makes the use of the PAMONO sensor as a fast virus
detection device infeasible. Two days evaluation time are too long for most of the use
cases, e.g., for an everyday use in a hospital. This limits the use of the PAMONO sensor
to cases where and the time and the costs for a two day evaluations are feasible. This is
the case for a laboratory use, e.g., regarding life threatening diseases or to develop new
antiviral drugs.

In contrast, with the VirusDetectionCL method the evaluation of 4000 images takes
less than three minutes on appropriate hardware. It is even possible to evaluate a data set
on-the-fly while it is recorded from the camera in the PAMONO sensor, which keeps the
overall evaluation time also below three minutes. This opens up entirely new prospects
and opportunities. By evaluating samples in parallel, an evaluation of several hundred
samples is possible within a few minutes. This might be useful to test samples from all
air passengers at a high risk airport, e.g., during a virus outbreak, just within the time
between security check and boarding, or to prophylactically test samples on a regular basis
in hospitals or doctor’s offices.

Additionally, with VirusDetectionCL a fast evaluation on small hand-held devices is
possible. This enables a mobile virus detection, e.g., to control disease outbreaks. If the
source of an outbreak can be identified, the surrounding population can be vaccinated or
a quarantine area can be established. Speed and detection quality are the most important
factors to make this work. Therefore, the focus of the VirusDetectionCL method is on
these two objectives.

5.1.2 Architectural Design of VirusDetectionCL

The VirusDetectionCL approach is designed as a streaming application with a pipeline
structure. The VirusDetectionCL pipeline is shown in Figure 5.1 in a simplified version.
Each new image, recorded by the camera in the PAMONO sensor setup, is streamed
through this pipeline. At any point only a limited number of previous frames is available.

Briefly, the VirusDetectionCL pipeline structure is as follows: First, a pre-processing
is applied. Then, the signal model is applied and noise is removed. On the enhanced
images several features are calculated. The parts of the image that show a possible virus
attachment are segmented and features are aggregated. Within the classification stage
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Figure 5.1: Simplified VirusDetectionCL pipeline. The sensor images are pre-processed
in the first pipeline stage. In the second pipeline stage the signal model is
applied and noise is removed. Afterward, features are calculated. The parts
of the image that possibly show a new virus attachment are segmented and
features are aggregated. Within the classification stage generated polygons
are classified with the calculated features. Finally, within the post-processing
stage the images are optionally processed to be visualized and saved to disk.

generated polygons are classified with the calculated features. The post-processing stage
can then prepare the images that should be saved or visualized.

This VirusDetectionCL pipeline is encapsulated as a GSTREAMER [GSt16] plug-in,
which makes it very flexible to use in different systems and on different operating systems
with many kinds of input sources. GSTREAMER provides the input stream to the pipeline
and handles the output stream. With additional GSTREAMER plug-ins, the recording,
loading, saving, decoding, and encoding of the images is done.

In more detail, the pre-processing stage consists of conversion steps to prepare the
input signal for the processing on the GPU. This includes uploading the images to the
GPU, scaling of the range of the images, and optionally a brightness correction and a
vibration detection.

The signal restoration stage is a very important part of the pipeline. As the SNR of
PAMONO signal can be very small, the noise must be handled and the actual virus signal
has to be extracted from the images to make the virus detection more robust.

The feature extraction stage is the most important part of the pipeline. In this stage
good features for the virus signal need to be extracted. With the features the virus signal
is distinguishable from the non-virus signal.

The segmentation stage combines per-pixel classifications to polygons that cover all
pixels of a possible virus detection. The segmentation stage is not clearly separated from
the feature extraction as some features require the segmentation and also per-pixel features
are combined to per polygon features. It is also not clearly separated from the classification
stage as a per-pixel classification is needed to create the polygons.

In the classification stage the actual decision is made which parts of the images contain
virus signal and which not. In the most simple design this is done by thresholds on the
feature values. In the most complex design this is done by a Random Forest.

Finally, the post-processing stage can prepare the image buffer to the desired output
and display format and optionally visualizes them or saves the images on the hard drive
for future use.

The overall philosophy of the design is a strictly streaming-based approach, with
detection quality and processing performance as the main objectives. All pipeline stages
use SIMD processing with OpenCL and the pipeline can be executed entirely on the
GPU. Beside desktop and HPC systems, also mobile and ESs are the target devices. For
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all target devices the soft real-time processing of the PAMONO sensor data should be
possible.

The frame rate of the used cameras in the PAMONO sensor varies from 5fps to
40 fps. Consequentially, for a soft real-time processing, each frame has to be processed in
200 ms to 25ms. VirusDetectionCL is able to achieve a so called interactive frame rate
if these limits are met. As for most data sets, a camera frame rate of 25fps was used,
a processing time of 40 ms per frame is assumed as soft real-time limit for processing.
This constraint influenced almost every design decision of VirusDetectionCL. Especially, if
VirusDetectionCL should be executed on an embedded device, 25 ms per frame is not much
time. In consequence, the number of pixels, accessed in every frame, needs to be small and
also the use of complex algorithms needs to be limited to enable a processing of the images
as fast as they are received from the PAMONO sensor. Hence, for VirusDetectionCL,
only algorithms with a complexity of O(n) in Bachmann-Landau notation, with n as the
number of pixels in a single PAMONO sensor image, are used.

The structure of this chapter is oriented toward the pipeline structure of VirusDetec-
tionCL. In Section 5.2 the pre-processing is explained, followed by the signal restoration in
Section 5.3, which includes noise reduction and the application of the signal model. In Sec-
tion 5.4 the different features on a pixel level are explained followed by the segmentation in
Section 5.5 and classification in Section 5.6. The last pipeline stage is the post-processing,
which is explained in Section 5.7. Afterward, the parameter of VirusDetectionCL are listed
in Section 5.8 and the chapter finishes with a short overview of the performed evaluations
in Section 5.9 and a summary in Section 5.10.

5.2 Pre-Processing

The pre-processing of the PAMONO sensor data consists of the steps input conversion,
brightness correction, vibration correction, and detection of overexposed spots as explained
in the following.

Every received image from the camera or from image files is uploaded to the GPU
memory. All succeeding steps are performed on the GPU.

5.2.1 Input Conversion

Within the first pre-processing step, the raw values from the PAMONO sensor images are
converted. The raw values are provided as packed integer values and are converted to
normalized float values. The conversion handles 8 bit, 16 bit, 24 bit and 32 bit depths with
both big endian and little endian byte order in the packed array.

Bit depths of 16 bit are processed, by accessing two successive bytes in the packed byte
array and shifting one of the bytes, depending if the bytes are packed big or little endian,
by one byte to the left and combine this two byte value with the not shifted byte. The
two single bytes then result in one 16 bit integer.

By dividing the resulting value by 2'~1, the input is mapped from the set {0,...,2'-1}
to the interval [0,1]. Many industrial cameras use a depth of 12bit internally, stretch
these values evenly to 16 bit and output 16 bit values. If however 12 bit values are stored
without adaption of the range in 16 bit values, the input has to be divided by 2'2 -1 to
get the correct intensity values.
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5.2.2 Brightness Correction

During a measurement the PAMONO sensor is illuminated by monochromatic light of a
SLD or a laser diode (cf. Section 2.1). The model assumptions of the PAMONO sensor
are that the intensity of the light should stay constant during a measurement and that the
sensor contains no moving parts. Therefore, the resulting image should stay constant if no
particles attach. However, this is not true in practice. Four main effects can influence the
resulting image. First, constant illumination of the sensor causes the gold layer to heat
up, which causes stronger plasmon waves, which then causes a drift in intensity toward a
brighter image. If measurements are short, e.g., one minute, an increased brightness level
does not affect the detection quality. For longer measurements an increased brightness
level has to be compensated. Second, the camera sensor and the camera electronic also
heat up and produce more noise. Third, a temporal misalignment of the sensor, e.g.,
through vibration, can cause that the sensor is no longer within the required surface
plasmon resonance angle, resulting in an increase or decrease of the overall brightness, cf.
Section 5.2.3. Fourth, it might occur that air bubbles within flow cell and tubes attach to
the gold layer and cause the image to be purely white.

To make longer measurements more accurate, e.g., longer than 5 min and to avoid false
positive detections at sudden brightness changes, a brightness correction was implemented.
The input of this algorithm is an image and a reference brightness. The output is a
corrected image with a brightness level same as the reference brightness.

To detect and correct the drift in intensity, the brightness of the input images needs to
be determined. However, the calculation of the actual brightness of an image is expensive.
Instead of calculating the actual brightness, a brightness estimation is used. This reduces
the number of pixel values that need to be loaded from the global memory.

The current brightness estimation b; for the t-th image I; is calculated by sampling
the image at work group size, cf. Definition 3, many points, summing up the values and
normalizing by the number of sampled points. To speed up calculation, only a work group
size as a power of two is valid. All threads within the work group load one sample point
of the global image. A parallel reduction [NVI12b; NBG+08] is then used on the local
memory to calculate the brightness.

It is worth highlighting that no reduction on the global memory is used, the global
brightness estimation is fully calculated by each work group. This introduces overhead,
as the global brightness of the image is the same for every work group and needs to
be calculated again for every work group but has shown to be fast. The complexity of
this approach is O(n) in Bachmann-Landau notation, with n as the number of pixels in
the input image. Only a single kernel call is needed. If, on the other hand, a parallel
reduction would be used to calculate the brightness of the image, the complexity would be
O(nlog(n)) and would require O(log(n)) many kernel calls, with additional overhead for
every kernel call.

The local memory Li(xy,y;), with ;€ {0,...,w; -1} and y; € {0,...,h — 1}, is filled
with values from the image I as

Li(x,y) = It(min ([xl i + 1 %J,wg),min (lyl . Fl + 3 EJ7 hg)). (5.1)

w2 w
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(a) Without brightness correction (b) With brightness correction

Figure 5.2: A brightness correction example. Without brightness correction (a), a sudden
brightness increase can result in false positive detections, which are difficult
to filter out. With brightness correction (b), an increase in intensity is
detected and corrected, resulting in fewer false positives. The example (b)
shows no false positives and no false negatives.

After synchronizing the local memory, the brightness estimation b; can be calculated
with a local reduction as

~ 1 w1—1 hl—l
byi=—— > > Li(x,u1)- (5.2)
wihy ;=0 y,;=0

The brightness corrected image I:Nyx Ny - R is then calculated by

50~1t~(w,y) i)t 0

Ii(2,y) = {It(;i ) else (5.3)

with b # 0.

For the concrete implementation, memory pointers of I and I are swapped, after the
brightness correction, so that following filters can just use I and no memory need to be
copied.

An example of how the brightness correction can result in better detection quality,
can be seen in Figure 5.2. In Figure 5.2a, an image is shown, where a sudden increase in
brightness occurred a few frames before. Several false positive responses are marked on
the image in addition to true positive detections. With brightness correction enabled, as
shown in Figure 5.2b, only true positive responses, cf. Definition 30, are detected and no
false positives, cf. Definition 32, appear.

5.2.3 Vibration Detection

A problem for the PAMONO sensor is the sensitivity to vibration. As background signal
is far greater than virus signal, even slight movements of parts in the system, can cause
an offset in the current background signal. A translation of the background signal of a
fraction of a pixel size can be enough to disturb the detection. As the background signal
also contains structures that are visually very similar to the virus signal, mostly small
variations in thickness of the gold layer, vibrations can cause virus like signals appearing
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in the images. Also, the time series show step like structures, similar to steps caused by
virus adhesions.

In the laboratory the PAMONO sensor is mounted on heavy laboratory benches as
shown in Figure 2.2a, which are decoupled from the floor. If, however, a mobile setup
should be used, this is not so easy to achieve. The mobile setup in Figure 2.4 is put onto an
anti-vibration device, which actively reduces vibrations transmitted from the floor to the
PAMONO sensor. In other setups visco-elastic Sorbothane feet AV2 from THORLABS®are
used, which passively dampens vibration. This reduces vibrations, transmitted from floor
or table into the PAMONO sensor. However, if the sensor itself vibrates, e.g., if it is
touched or if attached cables are transmitting vibrations into the system, neither the
active nor the passive vibration control are sufficient to prevent all vibrations. These
disturbances should to be detected.

To detect major disturbances of the sensor system, an OpenCL kernel has been
implemented. This kernel simply checks if the number of detected particles and artifacts is
within a reasonable range. As soon as the number exceeds a certain threshold, a number
of frames before and after the detection are marked as invalid. Particles and artifacts
appearing within this range are removed. Against expectations, even this simple kernel is
not easy to implement on a GPU. Simple operations in a single threaded program, like
calculating the minimum and maximum over an array, are much more complicated on a
GPU.

To count the number of viruses and artifacts in the current frame, a parallel reduc-
tion [NVI12b] is used. The complexity of this approach is O(nlog(n)) operations in
Bachmann-Landau notation, with n as the number of pixels in the input image. As in
each reduction step the remaining input is halved, log(n) reduction steps are needed. As
this exceeds the desired complexity of O(n) for VirusDetectionCL, it should only be used
if needed. Alternatively, the complexity can be reduced to O(n) if the detection is done
in an offline step after the processing.

Additionally, an anti-vibration control and not only a vibration detection might be
useful especially for hand-held devices. An anti-vibration control can be realized either in
software or hardware and might be able to reduce the influence of vibration to the images.
It might also be possible to prevent movements within the PAMONO sensor, as only
vibrations that affect the image need to be avoided. If the physical setup of SLD, prism,
gold layer, and camera is rigid, movements of the whole sensor setup do not influence the
sensor image quality. Because the current laboratory setup can be used without vibrations
in the system and a hand-held device might not need a vibration control if it is build more
rigid, a vibration control was saved for future work.

5.2.4 Detection of Overexposed Spots

To enhance the SNR in the images the signal, intensity of the SLD or laser diode, should
be as high as possible without losing information of the attaching particles. The maximum
brightness of the pixels in the camera has to be considered. The signal should be near the
maximum brightness but far enough away prevent the pixel values to be saturated if a
virus attaches.

If a few bright spots are on the image, e.g., caused by irregularities in the gold layer,
there are two possibilities to handle these: First, the overall intensity can be lowered such
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that the brightness of these spots is within the desired range. Second, the few bright spots
can be ignored and the brightness can be set higher to be more suitable for most of the
pixels.

In the first case, the overall SNR is lower but all pixel values are in the desirable range.
In the second case, the overall SNR is higher but a few overexposed spots are in the image.

Usually, a few overexposed spots would not be a problem for the detection as the
according pixels should have a constant signal over time. But the problem is that around
overexposed spots the risk of false positive detections is high because slight vibrations of
the sensor can shift the position of the bright areas into the surrounding darker areas.
This can cause an increase in intensity that is almost indistinguishable from an increase in
intensity from an attaching virus. Therefore, vibration of the sensor needs to be prevented
or detections near overexposed spots should be filtered out.

To detect overexposed spots a segmentation of all pixels with a too high brightness
level is performed. The same segmentation as in Section 5.5 is used. The output of this
segmentation are polygons around the bright spots in the image. This detection step has
to be done only once as the position of the bright spots does not change. The detected
spots can then be used to sort out false positive detections as described in Section 5.5.

5.3 Signal Restoration

The signal restoration consists of the application of the PAMONO signal model and noise
reduction. The output of this step is an approximated virus signal, where viruses should be
clearly visible. The application of the PAMONO signal model is crucial for all image-based
features because otherwise the virus signal would be dominated by the background signal.
A good noise reduction is especially important for a detection of smaller viruses below
200nm. With lower noise the SNR is larger and the low virus signal is more easily to
detect.

5.3.1 PAMONO Signal Model

The following empirical signal model is adopted from Siedhoff et al. [SLW+14]. The image
signal I; as defined in Notation 5 at time ¢ can be expressed as

It(x,y):Bt(l‘,y)-Vt(x,y)+Nt($,y), (54)

with B; as the background signal as defined in Definition 16, V; as the virus signal as
defined in Definition 14, and Ny as the additive noise signal as defined in Definition 17.
The background signal consists of a constant background signal Bconstant, as defined in
Definition 13, and an artifact signal A¢, as defined in Definition 15. More details on the
relation of signal, background, and noise are given in [ZSS+16].

The virus signal that is recorded by the camera V;: Ngx Ny — R at time ¢ is composed
of an actual virus signal V; from the sensor, convolved with a kernel K, [SLW14], which
models the influence of lenses and camera. The kernel is dependent of the y-coordinate in
the image because the camera within the PAMONO sensor is not orthogonal to the sensor
surface. Therefore, the virus signal is given as

Viz,y) = (Ve » Ky)(2,y), (5:5)
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with * denoting the convolution.

The noise signal N; at time t is a combination of shot noise from the PAMONO
sensor [BZH+07], fixed pattern noise and Gaussian distributed noise, cf. Definition 22,
from the camera sensor [SLW+14].

It should be noted that the intensity of the SLD or laser diode in the PAMONO sensor
mostly influences the virus signal and the background signal and only to a small degree
the noise. Therefore, the light source intensity should be set to a level with that the CCD
chip pixels nearly reach—but not exceed—their saturated capacity, e.g., to 90 % of the
saturated intensity [BZH+07]. This increases the intensity of the background signal and
virus signal and therefore results in a larger SNR.

5.3.2 Temporal Noise Reduction and Application of the Signal Model

With the signal model from Section 5.3.1, the virus signal can be extracted from the
PAMONO sensor signal. For a better approximation of the actual virus signal, temporal
noise is handled simultaneously. According to the signal model the image I consists of a
background signal B, multiplied with a virus signal V' and an additive noise term NV, see
Equation (5.4). If a single particle appears at time ¢, the virus signal is not present in all
previous images and present in the current and all following images. To extract the virus
signal from the sensor signal, the background signal before time ¢ and the current signal is
calculated. Each is calculated over one or more frames to reduce the noise in the signal.

The input of this method are two sliding windows of sensor images. One sliding
window of size a for the background approximation and one sliding window of size b for
the approximation of the current image. The output of this method is an approximated
virus signal at time ¢. Because a virus might not appear instantaneous, due to the binding
processes to the antibodies, and because the approximated virus signal should contain a
virus for a few frames to calculate the features, additionally a gap of size g can be specified.
In consequence, the g frames in {t — [%J, cot+ [g] — 1} are left out in the calculation.

The background signal B at time ¢ is approximated by calculating the median of some
values in the past. As the virus has not yet attached in the frames before time ¢, the
inspected image values in the time series contain only the background signal and possibly
some old virus signal.

Thus, the background approximation By : Ny x Ny - R is calculated as

By(z,y) = median({]tr(x,y) ‘ t'e {t - [gJ —-a,...,t— ng - 1}}), (5.6)

with a € N as size of the sliding background window, g € Ny as size of the gap and {...}
denoting a multiset.

An important aspect of the median filter is that the step characteristic of attaching
viruses is preserved. Additionally, the median filter reduces artifact signal A that is present
in less than § frames. The complexity of this approach is O(n), with n as the image size.
The number of inspected images is constant and therefore the median calculation for each
output pixel can be done in constant time.

As an alternative to the median, averaging over the values can be used to reduce noise
and artifact signal. A major advantage of using the average instead of the median is that
it can be implemented such that it can be calculated very efficient on the GPU: A sum
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over all values is stored. Then, the new average value can be calculated by subtracting
values from the oldest image and adding the values from the newest image and dividing
the updated sum by the number of images. For each pixel only three values have to be
read from the global memory.

However, averaging does not preserve the adhesion characteristic of the viruses over
time. In addition, an artifact signal in less than § frames is only dampened and not
removed. In Section 5.4.2 a method is presented to reflect the behavior of averaging and
adapt the features to this. As a result, even if the step characteristic is lost, the steps can
be detected.

The current image is approximated similar to the background signal. The current
image approximation Cy:NoxNy >R is given as

vefeefsleaegleo-alf) 6

with b € N as size of the sliding window, g € Ny as size of the gap and {...} denoting a

Ci(z,y) = median({[t/(a;, Y)

multiset.

The signal B contains a background signal with a reduced additive noise term. The
signal C'; contains a combined virus signal and background signal with a reduced additive
noise term.

Consequently, the virus signal approximation V : Ny x Ny - R is calculated as

Cvt(x7y) te

Vi(z,y) = = :
t( y) Bt(l‘ay)_'_8

(5.8)
with By(z,y) # 0 and € € Ryg. The ¢ value is added to the approximated current image
values and background image values to prevent a division by zero. For pixel depths of
16 bit, ¢ is set to ﬁ

Figure 5.3 shows the application of the signal model on a raw sensor image, cf.
Figure 5.3a, resulting in the virus signal approximation, cf. Figure 5.3b. A single virus is
visible on the left side in Figure 5.3b. For one pixel position of this virus, the corresponding
time series are plotted in Figure 5.3c and Figure 5.3d.

It should be noted that the division in Equation (5.8) might increase the additive noise,
left in the approximated background signal. This can be compensating by further spatial
noise reduction.

Under ideal conditions, a virus signal shows up in the approximated virus signal vV
for g —1+g+5+1 frames. As soon as the virus signal is present in the median of the
background signal, the application of the signal model removes it from the approximated
virus signal. As a result, only the recent viruses show up in V.

Some implementation details are given in the following because this method uses many
input images. If the needed memory accesses are not performed efficiently, this step in
the pipeline can strongly affect the overall performance. When calculations on time series
of pixel values are done, the data should be loaded cooperatively in every work group
one frame after the other. How data should be arranged in the GPU memory to achieve
coalescing depends on the access patterns to single data elements. Because the memory is
accessed one sub-image after the other and not one time series after the other, it is better
to store the data in a ring buffer like structure one image after the other and not as single
time series, one after the other. As a result, the memory accesses can easily be coalesced.
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(a) Raw sensor image. (b) Signal model applied to the raw image
from (a). An attached virus is visible
on the left side.
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Figure 5.3: Raw sensor image and processed sensor image with corresponding time series
of a virus pixel. Contrast of the processed image has been enhanced for
visualization.

For every new image the array of the ring buffer is updated by replacing the oldest
image with the newest. A queue implementation would be very inefficient, as the images
need to be shifted, resulting in unnecessary memory accesses. It should be noted that in
OpenCL it is not possible to use pointers to pointers. Consequently, the usual solution to
simply store pointers to the images in a list and update only the pointers if a new image
is added is not possible with OpenCL.

For the GPGPU calculation of the median, the images to filter are loaded into a private
memory array of constant size. Then, a Bubble-Select algorithm partially sorts the values
over time to determine the median value. For every pixel position in the image, a thread
on the GPU is launched, which shows to perform very well. Because the work group sizes
are selected as a multiple of a half warp, as explained in Section 4.1.2, array values can be
loaded coalesced.

For the inspected small, constant array sizes the complexity of the algorithms is of
minor importance. Of more importance is a low branch divergence of the threads. Here,
the Bubble-Select algorithm performed better than a Quicksort-based selection algorithm.
This is due to the fact that there is no branch divergence with the used Bubble-Select
algorithm, while the Quicksort and Quickselect algorithms diverge among threads in the
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same branch, with each different pivot element. On typical GPUs a branch divergence of
threads should be avoided, on CPUs in contrast, the influence of branch divergences can
be neglected.

5.3.3 Spatial Noise Reduction

With spatial noise reduction the remaining noise that is left after the application of the
signal model and the temporal noise reduction should be reduced. Spatial noise reduction
must be conducted on the approximated virus signal V; and not on the input images, as
the virus signal is very small in comparison to the background signal and can otherwise
easily be corrupted.

Three well known methods for noise reduction are considered: applying an average,
median, or Gauss filter to the image. These methods are no new contribution.

With the definition of a 3D neighborhood multiset N of width wy, height h,, and
length [ in Definition 18, the averaged output image I is calculated from the input images
I; as

1y = p({ (@) | (@0 ) e NTVE L)), (5.9)

with /i as defined in Definition 19 and {...} denoting a multiset.
Let N denote the 3D neighborhood as before. The median filtered output image I} is
then calculated from the input images [; as

I[(z,y) = median({[tr(x',y') ’ (z',y/ ) € sz;thnxl})’ (5.10)

with median as defined in Definition 26 and {...} denoting a multiset.
The Gauss filtered output I of the input image J with o € R+ is calculated with
Definition 23 as

Ii(x,y) = (9o * Ji)(z,y). (5.11)

Because the size of the needed neighborhood around every pixel should be small, the size
of the Gaussian kernel is limited to 20 in each direction. The energy is kept constant by
normalizing the output value in accordance to the sum of the Gaussian values.

Also, a FAST FOURIER TRANSFORM (FFT)-based noise reduction has been examined
and, in previous work [Lib11], a Haar wavelet-based noise reduction. Both approaches did
perform well on easy data sets but not well enough on more challenging data sets. Bublitz
has done a multi scale FFT-based pyramid filtering [Bub12] on the PAMONO sensor data.
The approach from Bublitz, although it produced good results on all data sets, was too
slow to be used within the soft real-time limits.

In Figure 5.4 an example for the spatial and temporal noise reduction is shown. To
produce these results a data set of artificially created test images with perfect steps has
been added to empty sensor data without any particles. The images are partitioned
in three areas. The first area contains steps with increased intensity, the second with
decreased intensity and the third area is the control image with no step. Figure 5.4a
shows an image before the steps occurred and Figure 5.4b shows an image after the steps
occurred. In Figure 5.4c the reference detection is given and in Figure 5.4d the detection
from VirusDetectionCL with enabled spatial and temporal noise reduction. The spatial
and temporal noise reduction was done with the median filter from Equation (5.7) and
Equation (5.10).
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(a) Before the up and down step occurred (b) After the up and down step occurred

(c) Reference detection (d) With spatial and temporal noise reduction

Figure 5.4: Artificially created test images, with perfect steps added to PAMONO images
without particles. In the left area up-steps, in the middle area down-steps
and in the right area no steps as control. In detail, the image before the
steps appear (a) and after the steps appeared (b) and a reference detection
(c) in comparison with a detection (d) by the VirusDetectionCL software,
where spatial and temporal noise reduction was enabled.

(a) With spatial and temporal noise reduction (b) With spatial noise reduction

(¢) With temporal noise reduction (d) Without noise reduction

Figure 5.5: Different noise reduction methods in comparison, with impact on the step
detection. Detection with spatial and temporal noise reduction (a), detection
with only spatial noise reduction (b), detection with only temporal noise
reduction (c) and detection with no noise reduction (d). A reference detection
is shown in Figure 5.4c.

Figure 5.5 shows different noise reduction methods in comparison. The input is the
same as for Figure 5.4 and in Figure 5.5a the same result of the combined spatial and
temporal noise reduction as in Figure 5.4d is given as base line. In Figure 5.5b only the
spatial median filter from Equation (5.10) was used, in Figure 5.5¢ only the temporal
median filter from Equation (5.7) was used, and in Figure 5.5d the same without any
noise reduction for comparison. As expected, the combined spatial and temporal noise
reduction provides the best overall results with 95.94 % correct classified pixels .
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5.3.4 Fuzzy Spatiotemporal Noise Reduction

The most sophisticated noise reduction method in this work is a fuzzy spatial noise
reduction, which uses fuzzy filters to remove noise. An overview of using fuzzy filters for
noise reduction is given by Nachtegael et al. [NWV+01].

M¢élange, Nachtegael, and Kerre have presented a fuzzy noise removal method, in
several variations [MNK10b; MNK10a; MNK11; MNS+11; NMK11]. In this thesis the
author has combined and adapted these methods, mainly from [MNK10a; MNS+11], to the
specific nature of the PAMONO sensor images. The fuzzy rules have been adapted to the
characteristics of the PAMONO sensor signal such that the noise is removed and the virus
signal is preserved as good as possible. As another contribution of the author, the methods
have been adapted for the GPU and implemented in OpenCL. Several optimizations have
been done to meet the soft real-time constraint.

The input is the current virus signal approximation V, and previously calculated filter
results from different points in time. The output is a new virus signal approximation
which should contain less noise without affecting the actual virus signal.

So called fuzzy sets are used to model the degree of membership to a certain class.
Here, the classes noise and noise-free are used. The range for the membership functions
for each set is [0,1]. The degree of membership is similar to a probability but membership
values can sum up to values larger or smaller than 1.

To build the fuzzy sets, the functions “ﬁg:})ositive and ugr’;\legative with the soft
thresholds 0 < 7y < o are used in the following. The function p "2 :R—[0,1] is

largePositive

defined as [MNK10a]

1 for v > my

1,72 — ) v-m

largePositive(U) - 7r2_7T11 for m <v <my. (5.12)
0 else

This function maps the input values to the interval [0,1] with a smooth transition
from zero to one for values between the soft thresholds. In the same way, the function

ugﬂ;ﬁ\legaﬁve :R - [0,1] is defined with the soft thresholds 0 < 71 < o [MNK10a]:
1 for v < —m9
Hg’;i]egative(v) = l:;'::_i for —mg <v< -7 . (513)
0 else

The filtering of the noise is done in four steps. The first step removes the obvious
noise and the following steps refine the filtering. Each filter step uses different results from
other filter steps. Within the filter steps a 3D neighborhood set N, xpn, xi(x,y,t) is used
as defined in Definition 18. The first step £ : R - R uses the PAMONO virus signal as
input:

fovt = Vi(x,y). (5.14)

The filter steps fi to f4 use various neighborhood values from previous filter steps and
from different times as input. With {...} denoting a multiset, their domain is given as
follows, adapted from [MNS-+11]:

ﬁc,y,t :Ayx By xCy > R (5.15)
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with
L= {5 @y ) e NG,
Bl—{f v ‘( 'y t)éNs;%ill}’ and
1={fi W | (2,9 1) e NS

f it : Ay - R (5.16)
with

AQ—{f W |($ay t)ENB;(ngl

fgx,y,t—l : Ag X B3 X Cg - R (517)
with
A3_{f2 vt | (9, t)ENngdn
{f e ‘(x,y t)ENg’xygill}v and
2
3:{f4 £ ‘($7y7t)ENg;<zgil .

frvtt Ay > R (5.18)
with
2= { Y (@Y 1) e NESIM (5.19)
To define the fuzzy rules, the rank function r from Definition 25 is used, which calculates

the k-th largest element. Also, the fuzzy operators AND, OR, and NOT are used, defined
as [MNS+11]

AND (z1,x2,...) =min(x, z2,...) (5.20)
OR (z1,x2,...) = max(z1,x2,...) (5.21)
NOT (z):=1-=,. (5.22)

Two membership functions are used to classify a pixel as noise free or noisy. The
membership of a pixel to the fuzzy set pnoise_free €Xplains how noise free the pixel is
considered, analogously for the fuzzy set pineise. To build these sets the characteristic of the
PAMONO signal is translated into fuzzy rules. Exemplary, the first fuzzy rule pineise—free—1
from the fuzzy set Lnoise-free 1S €xplained.

It is assumed that a pixel is noise free, if there are not at least four pixels in the
neighborhood that have a large difference to the current pixel. Or, if there are not at least
two pixels in the neighborhood with a large difference and not at least one pixel of two
previous filter steps in the past that at the same position and that have a large difference:

E(ljigjfree 1(8) - 7n( { NOT Mi;lrg:fpositive(lfgyi N CL|)}) OR (523)

(T(Q’ { NOT Mglrngositive(Ug’y’t B b|)}) AND



5.4. Feature Extraction 81

( NOT Iu7r177r2 (|f(i)v7y,t _ f;7y,t—1|) AND

largePositive

1,72 Tyt x7y7t_2
NOT 'ulargePositive(|f0 - f4 |))

with

a e {fg’”y,’t’ ‘ (z',y,t) € Néf’éil} and
! I 4!

be{fy V" | (' y ') e NTLL ),

with {...} denoting a multiset.

There are several rules to detect noise free or noisy pixels. All these sets are combined to
the fuzzy sets pinoise and finoise-free USing the AND operator. After these sets are evaluated,
the class of the pixel is assigned to the fuzzy set to which it has the highest membership.
Finally, the pixel is filtered or not:

z,y,t72+ x,y,t—1
fz,y,t . % for pinoise > finoise-free (5 24)
Lo z,y,t ' '
fo else

If noise is present, an average over two previous filter results is calculated, which results
in a signal that should be almost noise free. If no noise is present, the unmodified input is
used as output.

This procedure is then repeated with other fuzzy rules for the next three steps f; 7y’t,
I3 Yt and f{%'. For every step less noise needs to be filtered and the remaining noise is
possibly more easy to detect in the following steps. Overall, the filtering in several steps
should be easier than filtering all the noise in one step [MNS+11]. As information about
the PAMONO signal is used to build the fuzzy rules, this is an adaptive noise filtering
method. In the best case the virus signal is completely preserved while the noise is filtered.

Besides the adaptation to the PAMONO signal, the method has also been extended to
run on the GPU. Because a lot of neighborhood information is used by the fuzzy rules, an
extensive use of local memory is mandatory for an efficient GPU program. To achieve this
local memory with additional padding is used. The padding is chosen accordingly to the
neighborhood sizes. For each input array the needed neighborhood is loaded concurrently
into local memory, cf. Section 4.1.4. Early termination conditions are added that check if
the current pixel achieves a membership of 100 % to the noise free class in which case the
rules for the noise class do not have to be evaluated.

This fuzzy based noise reduction also has been extended to a method for spatiotemporal
fuzzy-based features as is presented in Section 5.4.3.

5.4 Feature Extraction

In this section different features for the virus detection are introduced. Features are
characteristics that can be used to describe the signal. Here, features are used to distinguish
between virus and non-virus signals on a per-pixel level. The per-pixel features consists
of spatial, temporal and spatial-temporal features and are presented in Section 5.4.1,
Section 5.4.2, and Section 5.4.3.



82 Chapter 5. Computer Vision-based Detection of Biological Viruses

It should be noted that additional per-polygon features are presented in Section 5.5.
The per-polygon features can only be calculated after the segmentation in Section 5.5
and therefore they are not presented in this section but in Section 5.5.2. Additionally,
the per-pixel features from this section are mapped to polygons resulting in per-polygon
features. This mapping is also not presented in this section but in Section 5.5.3.

5.4.1 Spatial Feature Extraction

Virus adhesions have a distinct appearance in the PAMONO sensor signal. A virus
adhesion shows as a blob-like structure with more or less wave-like patterns around the
center, cf. Figure 2.7. With spatial features the spatial appearance of structures and
patterns in the image can be analyzed. The spatial features in VirusDetectionCL include a
Gauss-Hesse feature, a Gauss-Hesse blob feature, a Hesse feature, and a template matching
feature. The spatial features are especially useful if the SNR in the PAMONO signal is
below four.

Gauss-Hesse Feature and Gauss-Hesse Blob Feature

Moon et al. have proposed a blob detection algorithm for tumor detection [MSB+13].
These blobs are similar to the blob like virus attachments in the PAMONO sensor data.

As the blob detection algorithm presented by Moon et al. was not designed to detect
viruses, not to be used as a streaming approach, and not to run on a GPU, the novel
contribution for this thesis is the transposition of the method to the requirements of the
PAMONO task.

The input of the adapted method is a single virus signal approximation V;. The output
consists of one or more per-pixel features.

With the two-dimensional Gaussian distribution g, (z,y), as defined in Definition 23,
the following partial derivatives gi.4, 92,0, 93,0, and gs» : R xR - R [MSB+13] can be
calculated.

Derivative g1 4, as depicted in Figure 5.6a, is calculated by deriving g two times in
z-direction:

829, 22— o2

J10(2,y) = 5o (2,y) = ——— go(2,y). (5.25)

Derivative go 5, as depicted in Figure 5.6b, is calculated by deriving g two times in

y-direction:
2

8290 yZ_U
= - g (2, 9). 2
8y8y(m,y) i 9o(z.y) (5.26)

Derivative g3 -, as depicted in Figure 5.6¢, is calculated by deriving g first in z- and
then in y-direction:

92,0 (x,y) =

2

0795 Yy
o\L, = ) =7 Yo\ 1Y), 2
93,0(2,y) m,ay(fv Y) gl (7, y) (5.27)

Derivative g4 4, as depicted in Figure 5.6d, is calculated by deriving ¢ first in y- and
then in z-direction:

5%gs T
Gao(x,y) = 8ygm(l‘,y) = (yj—4 9o (2,y). (5.28)

Note that g4, is equal to g3, because of the symmetry of the multiplication.
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Figure 5.6: Different partial derivatives g1 3 (a), g2.3 (b), g33 (c), and gsa3 (d) of a 2-
dimensional Gaussian distribution g, (x,y) with o = 3. The partial derivatives
93,3 and g4 3 are equal.

Let §i0(Vi,2,y) : Vi xNgx Ny - R denote the convolution of g; ,(z',y") with the virus
signal V;(z,y) and i € {1,2,3,4}:

gi,o‘(vt,x,y> = (g’i,o * Vt)(l’,y) (529)
For reasons of clarity, the short notation §; to g4 is used instead of §170(‘~/t,x,y) to
G1,6(V¢,z,y) in the following equations.
The Hessian matrix H is then given as [MSB+13]

H=({J1 ?3). (5.30)
g4 92

Contrary to Moon et al., here, also the determinant det(H) and the trace tr(H) of

the Hessian matrix are used as features, similar to features in the SPEEDED UP ROBUST
FEATURES (SURF) [BTGO6] approach:

det(H) = g1- g2~ 93 0 (5.31)
tr(H) = g1 + 2. (5.32)
The trace of the Hessian matrix is also known as LAPLACIAN OF GAUSSIAN (LoG) in

literature [Gun99]. These two features can easily be calculated from intermediate results
of the Gauss-Hesse features.
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(a) Pre-processed input image. Two virus attach- (b) Intermediate result g3 3(V¢,x,y). Convolution
ments are slightly visible at lower left. of a partial derivative with the virus signal, cf.
Equation (5.29).

(c) Determinant of the Hesse matrix feature, cf. (d) Trace of the Hesse matrix feature, cf. Equa-
Equation (5.31). tion (5.32).

(e) The Gauss-Hesse blob likeness feature b1, c¢f. (f) The Gauss-Hesse blob likeness feature ba, cf.
Equation (5.34). Equation (5.35).

Figure 5.7: A noisy sensor image as input (a). Two virus attachments are slightly visible
at lower left. One intermediate results (b) and features of the determinant of
the Hessian matrix (c), the trace of the Hessian matrix (d), the Gauss-Hesse
blob feature (e), and the Gauss-Hesse feature (f), applied to the sensor image.
High values are visualized as white and low values are visualized as black.

Next, the eigenvalues A1 2 of the Hessian matrix are calculated with the pg-formula as

2
A = “(ZH ) 4 \J (tr(QH ) ) _ det(H). (5.33)

The Gauss-Hesse blob likeness feature b; is then calculated as [MSB+13]

% if A1, A2 < 0 and |A1] < [ Ao
br=1Re i A, Ao <0 and ] > Ao - (5.34)
0 else

In contrast to Moon et al., in the PAMONO sensor use case, bright spots instead of dark
spots need to be detected. Therefore, this equation has been modified to detect bright
spots by using A1, A2 < 0 in the condition and not Ai, Ao > 0.

The Gauss-Hesse blob feature by is calculated as [MSB+13]

W —\/ 22422
( *12). l—e 27 | if A <0and Ay <0
by = . (5.35)

0 else

Just the same as in Equation (5.34), this equation has also been modified to be used for
the detection of bright spots instead of dark spots. With «a, 5 € [0,1] a weighting can be
conducted. In [MSB+13] o and 3 are set to 0.5.
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(a) Without Gauss-Hesse Blob Feature (b) With Gauss-Hesse Blob Feature

Figure 5.8: Gauss-Hesse blob feature used for pixel classification. Comparison of a
segmentation with a time series-based feature (a) and the same time series-
based feature combined with the Gauss-Hesse blob feature (b).

Figure 5.7 shows how the four Gauss-Hesse features look like if they are visualized with
high feature values mapped to white and low feature values to black. The pre-processed
input image is shown in Figure 5.7a. Two virus attachments are slightly visible at the
lower left of the image. Intermediate results of the convolution of a partial derivative with
the virus signal are shown in Figure 5.7b. The determinant of the Hessian matrix is shown
in Figure 5.7c and the trace of the Hessian matrix is shown in Figure 5.7d. Finally, a
visualization of the Gauss-Hesse blob likeness feature is shown in Figure 5.7e and for the
Gauss-Hesse blob feature in Figure 5.7f. The two attaching viruses that are only slightly
visible on the pre-processed input image are clearly visible as bright spots in the visualized
feature images.

Additionally, the Gauss-Hesse features have been modified so that they can be used
both for a per-pixel classification of time series and as per-polygon features for classification
of polygons. To use the Gauss-Hesse features as per-polygon features, the Gauss-Hesse
feature is calculated for every pixel in every image. After the polygons are generated
for every polygon, the best feature value of the Gauss-Hesse features is searched in the
axis-oriented bounding box around the polygon, as described in Section 5.5.3. This is
an approximation for reasons of speedup. To search only within the polygon, the pixels
within the polygon need to be determined, which is more expensive. However, searching in
the axis-oriented bounding box is a valid approximation. Because the Gauss-Hesse feature
values that correspond to pixels within the bounding box but not to the polygon usually
have lower Gauss-Hesse values, this approximation will in most cases have no effect on the
classification.

Figure 5.8 shows the use case of a per-pixel classification in combination with a time
series-based temporal feature, cf. Section 5.4.2. With the Gauss-Hesse features, the
detection of viruses is focused more on the blob-like center of the virus and less on the
wave-like structures around the virus.

In addition to the single-scale approach, also a multi-scale feature approach has been
developed, very similar to the approach of Moon et al. [MSB+13]. The multi-scale feature
approach works as follows. Starting with a small sigma value for the first scale, e.g.,
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o =0.75, the sigma value is doubled for each of the higher scales. The features for each
scale are then calculated and stored in a three-dimensional array, which is number of
scales times the size as the array for the single-scale approach. The main differences
to [MSB+13] are that here the sigma values are doubled and that multi-scale features are
used independently and are not reduced to a single feature. With this the Random Forest
classifier, cf. Section 5.6.2, or other classifiers, can make use of all scales and not only of
the best scale. Moon et al. are simply using the maximum value of all calculated scales as
a feature [MSB+13]. They also calculate the maximum value over all sigma values within
a range, which is time-consuming.

To conclude, the enhanced Gauss-Hesse features show a good performance. Especially
if small viruses need to be detected they enhance the only slightly visible viruses very
well. If only a single virus size should be detected, the single-scale approach is well suited.
The sigma can be optimized for a known virus size. If more than one virus size should be
detected, the multi-scale approach is well suited.

A detection of different virus sizes in one sample is part of future work on the PAMONO
sensor. More than one antibody will be used on the same gold layer of the sensor. The
automatic processing software can then count the number of viruses for each virus size by
including the multi-scale features and applying a multi-class classification.

Hesse Feature

The Hesse feature [TRS+02] is another feature for detecting blob like structures. This
feature is similar to the Gauss-Hesse feature in Section 5.4.1. Same as for the Gauss-Hesse
feature partial derivatives are used. However, instead of g,, the virus signal Vt(x, y) is
used as input. The output is a feature value for every pixel position.

Derivative d; is calculated by deriving V; two times in z-direction:

di(z,y) = x(a:,y). (5.36)

Derivative ds is calculated by deriving V; two times in y-direction:

QVt

da(w,y) = 55 (@), (5.37)

Derivative ds is calculated by deriving V, first in 2- and then in y-direction:

927
V
d3(z,y) = :

( \Y)- (5.38)

Derivative dy is calculated by deriving V; first in y- and then in a-direction:

927
V
d3(z,y) = :

5 (O Y): (5.39)

The Hessian matrix H is then given as [TRS+02]

dy d3
H = . 5.40
(d4 d2) (5.40)
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Analogous to the Gauss-Hesse feature the determinant det(H) and trace tr(H) of the
Hessian H are calculated according to Equation (5.31) and Equation (5.32). Contrary to
[TRS+02], the determinant and the trace are also used as feature.

Finally, the Hesse feature hy, n, : No x Ng = R at time ¢ with filter size wy x hy, is
given as [TRS+02]

Bt (2,9) = det(H) - a({Vir(a'sy') | (2,0, t) e NG5 ), (5.41)

with {...} denoting a multiset, /i as the average approximation as defined in Definition 19,
and N as the multiset of neighborhood coordinates as defined in Equation (4.37).

In contrast to the Gauss-Hesse feature, the Hesse feature shows to be less robust to
noise. Additionally, it uses a rectangular average filter kernel, which is, in the PAMONO
context, inferior to a Gauss filter. An advantage of the Hesse feature is that it is slightly
faster than the Gauss-Hesse feature.

Template Matching Feature

The template matching feature uses previously identified viruses to detect viruses. Virus
adhesions have a specific appearance in the signal if the background is removed: a bright,
blob like center and wave like structures around this center. Under ideal conditions, the
center of the signal and the wave like structure around it would be perfectly circular.
Whereas in practice, the center is oval and the wave like structures are more pronounced
to one direction because of the angle between camera and gold plate and the orientation
of the camera. In Figure 5.8 a typical signal of a virus adhesion can be seen.

The characteristic of the PAMONO signal is the same for every particle of the same
size. On the sensor images however, this is only true for similar vertical positions because
on the sensor only horizontal lines are of the same sharpness. This is due to the angle
between the sensor surface and the camera. Consequently, templates of different sharpness
have to be used depending on the vertical position. Overall, very few templates are enough
to match almost every virus template in the images

The input to calculate the template matching feature is the current approximated
virus signal and one or more previously identified viruses given as templates. The output
is a per-pixel matching score of the best match from the templates.

A template T'(2',y"), with T : NgxNg - R, 2’ € {0,...,wje— 1}, and 3’ € {0, ..., wije —
1}, is usually given as a cutout of a virus signal of the same particle size as the one that
should be detected. It can be described as

T('rlayl) = TVg(a,b)('rlayIL (542)

with T Vi (ab) 38 defined in Definition 27 and (a,b) as the upper left position of a virus in
the virus signal V.
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To calculate the matching score S : Ny x Ng - R with template T, the slightly modified
normalized cross correlation method CV._TM CCORR_ NORMED from OPEN SOURCE
COMPUTER VISION (OpenCV) [Bra00] is used, given as

Wiile—1 Wjle— ~clamp

1
Z Z T(‘T,v y,) : Vt
y'=0

(o= 125 |+’ - | 25 )
z'=0
St(l', y) =

)
Weile =1 Weile—1 Weile =1 Weile=1 _ ] ) )
\} XX ThyRe X R V- [ty - |4y

z'=0 y'= z'=0 y'=0

(5.43)
~cl
with V; M as the clamped to edge virus signal value according to Definition 9.
For the actual OpenCL implementation, the local memory is heavily used. A local
memory of size wyp) x hp) with

wWpl =w] + Wyile — 1 and (5.44)
hpr =h1 + wipe — 1 (5.45)

is used and loaded according to the access pattern presented in Section 4.1.4. It stores a
cutout of the virus signal V;lamp. Once the threads in one work group have cooperatively
loaded the local memory and are synchronized, all calculations in the work group are done
completely in private and local memory.

In contrast to the virus signal V, the template T is not stored in global or local memory
but in the private memory. As the template is constant, this is the fastest way to access
the template values. However, the size of the private memory is limited and shared among
all threads in one work group. If the templates for all threads in the work group do not fit
in the private memory, the work group size needs to be reduced or the global and local
memory has to be used instead.

5.4.2 Temporal Feature Extraction

In addition to the spatial features, several temporal features are calculated on the time
series.

In Figure 5.9 two time series are shown: in Figure 5.9a a virus pixel position is shown
and in Figure 5.9b a non-virus pixel position for comparison. In the first time series a virus
attaches approximately at frame 230, which causes an increase in intensity. The noise
is quite high, which makes it complicated to calculate reliable features. The measured
SNR, as defined in Definition 29, is 1.55. In the second time series no virus attaches, only
noise is shown. If an SNR on the noise is calculated by assuming iz as the value for
background and /i~ as the value for signal plus background the conceived SNR is 0.2.

In Figure 5.10 a hard classification task is shown. A time series of a 100nm par-
ticle (Figure 5.10a) is almost indistinguishable from a time series without any particle
(Figure 5.10b).

Simple Threshold-based Counting

One of the simplest features on time series is to calculate the fraction of points in one part
of the time series that are in the expected range of a virus adhesion. This feature is no
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Figure 5.9: Example time series of a virus pixel (a) and a non-virus pixel (b). The
constant background signal was removed. SNR according to Equation (4.48).

new contribution. It has been developed by Zybin and is used for the manual evaluation
in [STM+15]. It is only listed here for the sake of completeness.

The input to the feature calculation are time series of the virus signal V, the output is
a matching score for every pixel. To calculate the matching score, the intensity change
in comparison to the average approximation ji on a previous part of the time series is
considered. The change in intensity must exceed a threshold « but not a threshold 3. If
this condition holds, the fraction is calculated by dividing by the number of elements n in
the first part of the time series. Finally, the matching score S : Ny x Ny - R is given as

n-1

1
St (T:9) = — D X-ia, (), (5.46)
i=0
with x : Ng x Ng - {0,1} as an indicator function:

1 ifa<Vi(z,y)-p<p
Xt,o,5,0(T: ) = { : (5.47)

0 else

Surprisingly, this simple method works well and is also quite robust to noise in the
data.

Temporal Template Matching

As the characteristic of an attaching virus in the time series is always very similar, this
characteristic can be used as a template to identify the time series corresponding to a
virus attachment. The time series template matching approach that is presented in this
section is an extended version of previous work [Lib11].

The input is a template vector and a series of virus signals. The output is a matching
score for every pixel position, specifying how strongly each time series resembles to the
template vector. In [Lib11] a simple Euclidean distance has been used to calculate the
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Figure 5.10: Example time series of a virus pixel position with a bad SNR (a) and a
non-virus pixel position (b) and the same positions with combined images
in (c) and (d). The constant background signal has been removed.

matching score. Here, the more sophisticated cosine similarity [DSJ06] is used as matching
score. With a given template vector
p:=(p1,p2,---,pn)",Vie[l,n]:p;e R and n > 1, (5.48)

the matching score S : Ny x Ny — [-1,1] for matching of a time series to a template is
given as

.
i= Vt—z'(xa y) " Pn—i
= 0 — (5.49)
\/ZZLO Visi(z,y)?- Ei% vy

St7p'(-'13, y) =

For the implementation it has to be assured that the square root is not zero, which can
happen on actual data. A matching score of zero is used as output in this case.
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Three different implementations of this algorithm have been examined, with the
templates stored in the private memory, constant memory, and global memory of the GPU.
For the implementation that uses private memory, the template is stored directly into
the code. For the implementation that uses constant memory, the template is stored in
a constant, two-dimensional floating point number array, which is globally defined and
accessed from within the kernel. Finally, for the implementation that uses the global
memory, a read-only global memory is allocated and the template values are uploaded to
this array. The use of global memory has the advantage, that templates can be updated
by a program argument, which is especially useful if the template is part of an automatic
optimization.

As expected, the implementation that stores the template in the private memory
is the fastest. The implementation that uses the global memory is the slowest but the
most flexible as templates can be changed by a parameter. On a desktop GPU this
implementation is also fast, but as can be seen in Section 8.5, the execution time on the
Odroid ES is not sufficient to meet the soft real-time conditions of 25 fps.

Automatic Adaption of Time Series Templates

As explained in Section 5.3.2, the temporal noise reduction can alter the step characteristic
of signals from attaching viruses. Especially, averaging on intervals of the time series or a
gap smaller than the template size results in altered signals. The templates need to reflect
this characteristic.

Therefore, a method has been developed, which automatically updates the template
regarding the used noise reduction methods and parameters. This is done by taking the
step templates and use it as input for the noise reduction pipeline. As the temporal noise
reduction algorithms need some frames for initialization, the first template value is used
to initialize the queues. Each template value is uploaded one after the other to the input
image and this image is treated as regular input to the pipeline. With this trick all noise
reduction filters are applied to the template values.

As a result, the step signal in the templates is processed and altered exactly the same
way as the step signal of the PAMONO sensor data. The altered templates are then used
for the template matching. This method can be used for all kind of templates.

Dynamic Time Warping

If the exact time information of an appearing viruses is not needed, DYNAMIC TIME
WARPING (DTW) [BC94] can be used to extract features from time series. DTW is
widely used for speech recognition and is also well suited for matching step templates.
With DTW, signals can be matched despite of being stretched or compressed in the time
domain. DTW uses a warping path, which aligns elements of a template vector to the
signal. [BC94]

As template vector the following simple pattern is used, that corresponds to a step
from -1 to 1:

pi=(-1,-1,1,1)" (5.50)

The time series of virus signals XN/[tm](a:,y) from time ¢; to time ty at position (x,y)
is defined according to Definition 12. To match the intensities in the time series with
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the intensities in the template vector, each time series is normalized to zero mean and
standard deviation one.

The used distance measure § : Ny x Ny - R between a single element of the template
vector and a single element of the time series V[thtﬂ(:):, y) is given as magnitude of the
difference [BC94]

5‘7[t1,t2]($:y),ﬁ(i7j) = “7'51”(:6’9) _pj" (5.51)

A warping path @ = (wi,...,w;)" can be defined with help of the following two
equations. First, the points in the path are defined with n =t5 — ¢ + 1 as the size of the
time series and m as the size of the template vector as [BC94]

(0,0) forl=1
wy =1 (a,b) for2<li<k-1, (5.52)
(n-1,m-1) forl=k

with a,b € Ny, 0 <a <n, 0<b<m. Second, in order to form a warping path out of the
points, the condition [BC94]

wpe{(a +1,0),(a,b' +1),(a’ +1,' +1) | (a',V') = w1} (5.53)

has to hold for all points w; € {wg, e ,wk}.
Finally, the dynamic time warping distance DTW is calculated by minimizing the
distance between the time series and the template over all valid warping paths w as [BC94]

k
DTW(V (4, 1], 0, W, 2, y) = ngn (l; 5V[t1,t2](x,y),ﬁ(wl)) . (5.54)

The best warping path @ can be calculated with help of dynamic programming. Cumulative
distances are calculated in a matrix of size (n+ 1) x (m + 1) and then the best path can
be found by tracing it back in the matrix. If, like in this case, only the distance is needed,
the back tracing can be left out. [BC94]

To speed up the calculation and to prevent that non-virus signals can achieve a high
matching score, only time series with a reasonable step height are matched. This is done
by checking if the step height of the time series, calculated by the difference of the average
value of the first half and the second half, is in the range of possible intensities for the
expected virus size. This ensures that the intensity is considered for the detection, even
though the time series are normalized to zero mean and standard deviation one.

With DTW the temporal location of the step is of only minor importance. The
downside of this is that the exact temporal information about the appearance of the virus
is lost. The advantage is that the DTW does not need to be calculated on every frame.
For example, if a time series of 16 values is matched, then the next check can be done 8
frames later.

In contrast, the temporal template matching as described in Section 5.4.2 can detect
the exact temporal location of the step but needs to be evaluated on every single frame.
However, the need to evaluate on every frame can be circumvented by ignoring an amount
of data in the middle of the time series, which also causes the exact time information to
be lost.
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Depending on the task, which should be performed with the PAMONO sensor, one
or the other temporal feature is more appropriate. If no virus should be missed and an
exact temporal information is not important, the DTW method, calculated on every few
frames, is well suited. The detection of a single virus is spread to more frames. If the
temporal information is important, time series matching and a temporal noise reduction
that preserves the step position can be used. To quantify the virus concentration, especially
if the concentration is high, the temporal template size needs to be small to separate viruses
attaching short one after the other at the same spot. For low and medium concentrations
and if the temporal information is not important, all presented temporal features can be
used. The same is true for evaluations of high concentrations, where the exact count of
particles is not needed.

Additional Temporal Features

To classify time series several features can be calculated. A set of time series features
by Janidarmian, Radecka, and Zilic [JRZ14] is used. They have compiled different
time series features, which they use for an automated diagnosis of knee pathology from
electromyography and goniometer sensor data. The patients walked wearing the sensors
and so produced a set of time series, which were classified using the features. As the
features are not application specific, they can be also used for the PAMONO sensor data.
Fight useful features are selected, explained in the following.

For given virus signals {Vt_(n_l), V), given z € {0,...,w-1}, ye{0,...,h -1}
and given a,b,t € Ng,t > k,0 <a <b<n, the vector ¢ holds k£ image values:

; = (Vt—(n—l)('x: y)7 SRR Vt—(n—a)(xv y): Vt—(n—b) (1’, y)a LR Vt(i[], y))T (555)

With this vector the following features can be calculated [JRZ14]:

i (5.56)

0: (5.57)
coefficientOfVariation : (5.58)
peakToPeak Amplitude : (5.59)
skewness := —— (5.60)

kurtosis := (5.61)
lagOneAutocorrelation := and (5.62)
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rootMeanSquare := (5.63)

The calculation of these features has been combined with the calculation of the time
series matching. This saves execution time and energy as the image values only need to be
loaded into the private memory once and do not need to be loaded from global memory
again. The eight features are stored in an array of the size eight times the image size.
They can be saved for an offline classification of time series but usually they are assigned
to polygons as a per virus feature for an online classification with Random Forest. The
mapping of per-pixel features to polygons is explained in Section 5.5.3. The classification
with Random Forest is explained in Section 5.6.2.

5.4.3 Spatiotemporal Fuzzy-Based Features

The temporal features in Section 5.4.2 do not make use of the spatial information in the
PAMONO sensor images. To make these features more robust, a fuzzy-based approach is
used. This approach extends ideas for noise removal in image sequences from Mélange,
Nachtegael, and Kerre [MNK11] to a segmentation task. It integrates spatial information
into the temporal features by taking adjoining temporal features into account. This section
is based on the author’s publication [LST+13a].

The main idea is that, although the temporal features are calculated per-pixel, the
virus adhesions affect more than one pixel. Therefore, neighboring information can be
used to decide if a temporal feature corresponds to a virus adhesion, the background, or
an artifact. With help of fuzzy rules, expert knowledge can easily be integrated into a
detection algorithm.

As introduced in Section 5.3.4, fuzzy rules are used to model the degree of membership
to a certain fuzzy set. In this context the fuzzy sets wvirus, background, noise, and artifact
are used to model viruses, background, noise, and artifacts in the PAMONO sensor images.
The degree of membership to a fuzzy set can be considered as feature. Based on these
features a classification can be obtained.

Let s(x,y,t) denote the cosine similarity values, cf. Equation (5.49), as

s(z,y,t) = Sep(x,y), (5.64)

with z,y as the spatial position and ¢t as the temporal position.
1,702

The mapping of the temporal features s(x,y,t) to the fuzzy set p for steps in the

step
signal and ugcl)";fsmp for down steps is done by using Equation (5.12), and Equation (5.13),

and the soft thresholds 0 < m < ma:
2 (s(zyyt)) = s o (s(zyy,t)) (5.65)
iustep Y MlargePosmve Y5
Mgé\?:r?Step(s(x’y’t)) = Mgigzl\legative(s('x’ y’t))' (566)

Five fuzzy rules have been defined to model the fuzzy set virus. The first fuzzy rule
maps the cosine similarity of the temporal template matching to a fuzzy set:

g (@95 1) = nZin? (s(x,y,1)). (5.67)
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For the following fuzzy rules, let {...} denote a multiset, let Ny, xp,xt, (z,y,t) denote
the 3D neighborhood multiset as defined in Definition 18, and let r denote the rank
function, which calculates the k-th largest element, as defined in Definition 25.

In order to use also Boolean algebra within the fuzzy rules the following function
t: B —{0,1} for a Boolean term B is defined as

1 forbist
(b = or b is true . (5.68)
0 else

The second rule includes the cosine similarity of a neighborhood around the current
pixel. If the current pixel has only a low step, then it is a candidate if there are more than
25 % of the neighborhood with a high step. This can be expressed as

Honss ™ (@,y,t) = 7(m1 < 5(x,y,t) <m2) AND (5.69)
i (12 | o e ) ).

with the fuzzy operator AND as defined in Equation (5.20).

The third rule deals with low steps in a neighborhood. If the current pixel has only a
low step, then it is a candidate if there are many adjacent pixels with a low step and at
least one pixel with a high step:

Mﬂ1,7r2,7r5,ﬂ'6 (x,y,t) = 7—(7[-1 < s(xjy,t) < 71'2) AND (570)

virus3

(T(25, {s(:c’,y’,t') ‘ (z,y' ') € N?f”?’il ) > 5 AND

K b 7t
MQZSG(T(L{S(:E’,@/’J’) | (', 1) e N7 )))
The fourth rule synchronizes detections from different frames, therefore the previous
and succeeding values at the same position are considered:
WELTET () = 7(m < s(a,9,8) < 72) AND (5.71)
(k3o (s(z, .t~ 1)) OR
MGt (s(z,y,t+ 1)),

with the fuzzy operator OR as defined in Equation (5.21).

The fifth rule considers also negative cosine values. The PAMONO signal of an attaching
virus shows wave like structures around the center, as already shown in Figure 5.8. This
information can be used to increase the detection of the center:

Hoiines” (@, y,) = 7(m1 < s(2,y,t) <m2) AND (5.72)

(ugzxsgtep(r(5,{s<x',y',t'> | (/) €Nz ) AN

M;géglo (T‘(5, {5(1',’ ylvt,) | (1',, y,7t,) € N;;y%il )))
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To combine these five rules to model the set virus, the fuzzy operator OR is used over
all rules. As a result, the fuzzy value of the best matching fuzzy rule is used as fuzzy value
for the entire set.

More rules are used to model the fuzzy sets artifact, noise and background. These are
left out for brevity as the concept should be clear with the five before mentioned rules.

In a last step, the set with the highest fuzzy value is used as result for the current
pixel position.

Finally, the fuzzy set with the highest membership value is chosen as output for each
pixel. If the set virus is assigned, a threshold-based per-pixel classification step can be used
to sort out pixels with low membership values. In addition to a per-pixel classification,
the fuzzy sets also be used for a per-polygon classification: the degree of membership
to the different fuzzy sets can be calculated for each polygon and used as features for
classification of polygons.

To meet the soft real-time constraint and to keep the energy consumption low, the
OpenCL implementation of this approach has been heavily optimized. The temporal
features are stored in a ring buffer, cf. Section 5.3.2. This enables a fast update and
coalesced memory access to neighboring entries, needed by the fuzzy rules. The local
memory is filled according to Section 4.1.4.

The rank is calculated for every pixel position and for every pixel position it is used
by multiple fuzzy rules and with different values of k. To not re-evaluate r for different
rank calculations of the same neighborhood, the first &’ values of .J are sorted with k" as
the maximal k for each neighborhood. With a complexity of O(|.J|-log|J|) for the used
algorithm, the rank function r(k, J) is computationally expensive. But as J <7-7-3 = 147
is bounded by a constant the overall complexity is still O(n).

For the actual OpenCL implementation, a three-dimensional local memory of size
(wy+wy—1)x (hy+hy—1) x3 is used for performance reasons. Each of the three dimensions
is loaded according to the access pattern presented in Section 4.1.4, one after the other.
They store a cutout of Si_13, Sip and Sir13. Once the local memory is loaded and
synchronized between the threads, all neighborhood sets for the fuzzy rules only need to
access the local memory. For local work groups of size w; x hj, the number of global memory
accesses per analyzed image is reduced to ([w/wi]-[h/h]) - (w) +wy —1) - (hy+hy—1) - 3.

As an example, for a typical PAMONO sensor image of size 1024 x 256 and typical
work group sizes, the use of local memory reduces the global memory accesses almost by a
factor of 26: with a neighborhood size of 7 x 7 x 3 and a work group size of 16 x 16, the
number of global memory accesses is reduced from 38,535,168 to 1,486, 848.

To conclude, the fuzzy-based spatiotemporal features are particularly useful to integrate
expert knowledge into the calculation of the features, that would otherwise remain unused.
With the explained optimizations these features can be calculated and evaluated under
soft real-time conditions.

5.4.4 Fuzzy-Based Combination of Features

To obtain a segmentation of the detected viruses, a per-pixel classification is needed with
the classes virus pizel and non-virus pizel. Several features can be important for a good
per-pixel classification. To combine several features a fuzzy-based combination of the
per-pixel features is used similar as for the fuzzy-based features in Section 5.4.3. A fuzzy
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set for the likeness of the pixel to be a virus pixel is calculated. This likeness can then be
used for classification.

For larger particles, e.g., of size 200nm, a single temporal feature, as shown in
Section 5.4.2, is usually enough for a good pixel classification. With the pixel classification
a segmentation can be achieved as shown in Section 5.5. Then, per-polygon features can
be calculated, as shown in Section 5.5.3. Finally, a polygon classification can be performed,
as shown in Section 5.6.1 and Section 5.6.2.

However, for smaller particles, e.g., below 150 nm, usually several features need to
be combined for a robust per-pixel classification. To achieve this all spatial features are
converted to fuzzy features, by mapping each of the n feature values from the feature
vector ¥ = {v1,v92,...,0,} to a fuzzy value vector i = (u1, 12, -, pn). The mapping is
done using the parameter vectors p = (p1,p2,...,pn) and G = (q1,q2,- -, qn)-

The mapping of each feature v; to p; is done using the parameters p; and ¢;, similar to
Equation (5.65):

1 for v; > g;
i = % for p; < v; < q; - (5.73)
0 else

For most of the features, u; is equal to v; as the feature values often can easily be interpreted
as a membership to a fuzzy set.

Finally, the fuzzy values of the vector fi = (u1, 2, - ., ptn) are combined to the fuzzy
set virus by

,“virus(:a) = AND(:&)? (5'74)

with the fuzzy operation AND given as the minimum value in the vector. Instead of the
fuzzy operation AND, other fuzzy operations can be feasible. Which operation is most
suitable, depends on how the features are configured. Alternatively, the fuzzy values can
be combined using fuzzy rules, as shown in Section 5.4.3.

It should be stressed that the fuzzy-based combination of features is only used to
generate a robust per-pixel classification for the segmentation. Once the segmentation
is created, cf. Section 5.5, the single features and not the combined features are used for
classification. In Section 5.5.3 the mapping of single features to polygons is shown and in
Section 5.6.1 and Section 5.6.2 the classification is explained.

5.5 Segmentation

With the segmentation step the spatial information of the virus signal is combined to
polygons. It uses the marching squares algorithm, the two-dimensional case of marching
cubes [LC87]. It is based on the author’s previous work [Lib11]. Therefore, the segmentation
method is no new contribution. However, the method has been extended with the
calculation of additional polygon features and the detection of overexposed spots.

To briefly sum up the existing segmentation method, the per-pixel classifications are
segmented to polygons by tracking the borders of coherent areas with the marching squares
algorithm, where all pixels correspond to the fuzzy class virus pizel by a certain degree.
Then, the polygons are matched over time and space to sort out double detections. In the
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best case, at this point only one polygon is left for every virus adhesion but as also some
artifacts may be detected the polygons are considered as virus candidates. [Lib11]

The matching step in the existing method has been extended to additionally handle
detections near overexposed spots. These detections are possibly false positives and need
to be sorted out, cf. Section 5.2.4. This is done by matching new polygons not only
to other polygons in the area but also to the polygons of the overexposed spots. The
detection of overexposed spots is described in Section 5.2.4. New polygons that are near
an overexposed spot are sorted out.

5.5.1 Memory Management for Polygons

For the management of the polygons in the GPU memory, a single array of fixed size is
used. For every pixel position of the used input image, only a single polygon can be saved
and the maximum polygon size is fixed, e.g., to 32 or 64 polygon points. If a polygon
exceeds the polygon size, it is simply closed as it reaches the limit of polygon points. Both
limitations are due to performance reasons. They limit the number of detectable viruses
and also the size of the viruses. In practice these limitations do not show to have any
negative effect on the detection quality. A maximum polygon size of 64 is large enough
for all virus sizes and typical image sizes. Only large artifacts can exceed the maximum
polygon size but these polygons are sorted out anyway. Also, usually viruses do not appear
exactly at the same spot and the array size is large enough for long measurements with a
high concentration of viruses in the sample.

The simple memory layout has the advantage that the parallel access of the work items
does not need to be synchronized as every work item can be assigned to a unique array
position. Also, the memory access can easily be coalesced.

However, if the virus concentration is the main objective and at the same time very
high concentrations of viruses should be measured in long experiments, this limitation
has to be removed. For example, this can be done by moving older detections to another
buffer or download the buffer from the GPU to the host memory from time to time.

5.5.2 Polygon Features

With polygon features, high level information of the virus signal can be gathered. In
VirusDetectionCL 16 polygon features are calculated. These are described in the following.

Ten shape-based polygon features from Landini [Lan06] are reused in VirusDetectionCL,
described in the author’s previous publication [Lib11] and only mentioned briefly. For
example, these include area, circumference, circularity, compactness, and roundness of a
polygon. As a virus adhesion is showing up as a round spot in the images and artifacts
are often more elongated, these features are suitable to separate the polygons caused by
viruses from these not caused by viruses.

To smooth out the shape of the polygons, the well known morphological operations
opening and closing could be performed. Opening is performed by running first an erosion
and then a dilatation operation on the polygons, closing on the other hand is performed
by running first a dilatation and then an erosion operation. With opening and closing,
noise on the contour can be removed.

However, simple shape-based features do not include the virus signal information
into the calculation. Therefore, two central moment features [JT81] and one elongation
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feature [JT81] from Jarvis and Tyson are used. They also include intensity information
and they use the intensity weighted centroid of a polygon as a reference. This makes them
translation invariant. Additionally, they are size and rotation invariant [JT81].

Using an intensity weighted centroid instead of the standard centroid has some advan-
tage in the PAMONO context. A centroid describes the center of gravity of a polygon.
If the asymmetrical waves around a virus adhesion are also covered by the polygon, the
centroid could be outside of the bright part of the virus adhesion, which is not desirable.
An intensity weighted centroid, on the other hand, is pulled to the brighter parts of the
segmentation and is therefore better aligned with the bright part of the adhesion.

For a given polygon P, the intensity weighted centroid (Z,y) is calculated as [JT81]
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with A(P) as the set of coordinates that are covered by the polygon P. In other words,
all pixel coordinates (z’,y") covered by the polygon are examined. The sum of 2’ and
y' weighted by the intensity V,(z’,3') is calculated. Both results are normalized by the
summed up intensities.

With the intensity weighted centroid (z,y), the central moments 4, ; can be calculated.
They are defined as [JT81]

pig= Y, (@ =D -g) Vi), (5.76)
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for i,j € Ny and A(P) as defined before.
Based on the central moments, the two central moment features and the elongation
feature can be calculated. First, the ¢y feature is calculated as [JT81]
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Second, the ¢4 feature is calculated as [JT81]
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Third, the elongation feature e is calculated as [JT81]
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These three features have shown to be well suited for the polygon classification task and
outperform the aforementioned shape-based features.

Finally, three more intensity-based polygon features are used: Average, maximum, and
standard deviation of the virus signal V; over all pixel positions covered by the polygon.
These can be calculated cheaply in conjunction with co, ¢4, and e as in both cases the
same virus signal values are considered.

For the OpenCL implementation the parallelization is done per polygon. A single
thread samples the values, covered by the polygon. The sampling is done row wise by
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using an existing polygon fill algorithm that uses an ordered edge list [AWS81]: A list
of the polygon lines is created and sorted according to the x-position. An active list is
created and pixels between node pairs need to be filled. Instead of filling the polygon, the
corresponding virus signal V is used for the calculation of the mentioned features.

To calculate the features each polygon position is sampled twice: First, to calculate
central moment fu0, the maximum, the average and the intensity weighted centroid (z,y).
Second, to calculate the standard deviation and the features co, ¢4, and e. Two steps are
needed, as the second step uses 1,0 and the average of the first step.

Overall, 16 features are calculated for every polygon. In the next section a mapping of
the per-pixel features to the polygons is presented.

5.5.3 Mapping Per-Pixel Features to Polygons

As already mentioned, the polygons form the set of virus candidates. The virus candidates
are classified according to the calculated features. However, several features are calculated
per pixel and not per polygon and need to be mapped to the virus candidates to use them
for classification. How this mapping can be done efficiently is explained in the following.

Usually, up to 35 per-pixel features are calculated: eight per-pixel features from
Section 5.4.2, four Gauss-Hesse features from Section 5.4.1 for each of the, e.g., five scales,
three Hesse features, up to three time series features from Section 5.4.2, and one template
matching feature from Section 5.4.1.

The per-pixel features are mapped to the polygons by assigning the best feature value
within the axis-aligned bounding box of each new polygon to the polygon. A more accurate
way to do this would be to get the corresponding best feature value for every pixel that is
covered by the polygon. Here however, for speedup reasons the best feature within the axis
aligned bounding box around the polygon is used. Identifying pixels within a bounding
box is faster than to identify pixels within a polygon, which would require running a scan
line algorithm for example. The chance of making an error is low, as pixels slightly outside
of the polygons usually have low feature values, e.g., for the Gauss-Hesse feature. However,
for the features maximum, average, and standard deviation of the polygon only pixels
within the polygon are considered as the bounding box is too inaccurate for these.

Interesting implementation details are that the parallelization is performed per polygon
and not per pixel, warp divergence is not avoided, voluntarily, the benefit of coalesced
memory accesses is waived, and no local memory is used. The optimization techniques
that are useful and recommended under normal conditions [NVI09b] are not useful here,
they are even harmful to the performance. As only very few viruses show up at the same
time if virus concentration and frame rate are on a reasonable level, a coalesced memory
access would load data from global memory, from which most is not needed.

Although usually warp divergence should be avoided [NVI09b], here warp divergence
is intentionally not avoided. Warp divergence appears, if threads within one warp access
different code. This can happen, e.g., within an if-statement that is only true for part
of the threads within the warp. As only one code line can be executed for all threads,
all the threads that are not in the active branch perform busy-waiting by executing NO
OPERATIONs (NOPs). Here, for most of the warps, there is no polygon to process. Only
a negligible amount of threads is performing NOPs because only for a few warps one or
more polygon needs to be processed. On the other hand, only submitting the threads
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to the GPU that have a polygon to process would require some kind of sorting, which is
slower than simply submitting all threads. To sum up, avoiding warp divergence would
require some overhead, which does not pay off. As only a few threads are affected by the
busy waiting, the calculation is faster with warp divergence.

The same is true for the use of local memory and for coalesced memory accesses.
Both requires overhead, which slows down most of the threads and speed up only a few
threads. These optimizations have been implemented but have shown to have a much
worse execution time. Therefore, neglecting these optimizations is the best optimization
for mapping features to polygons.

Another problem is how to synchronize the polygons with the features or the features
with each other. This is solved by extending the period how long the features are present
in the processed images. This is mainly controlled by parameters of the temporal noise
reduction and the application of the signal model. If, for example, the gap between the
current and background image is set to several frames, a virus adhesion is visible longer in
the processed images and consequently the image-based features are available on several
frames. However, if the gap is chosen too large, the accuracy of the appearance time is
lost and particles are possibly detected twice. Respectively, more effort has to be put into
the matching of similar polygons over time to prevent double detections.

5.6 Classification

After the segmentation and mapping of the features, virus candidates with assigned
features are available that need to be classified to sort out false positives. The classification
of the virus candidates can be done online or offline. For the online classification two
methods have been implemented: a simple threshold-based classification and a Random
Forest-based classification. The classes virus and non-virus are used, the classification is
therefore a two-class classification.

In the future the classification can be extended to also classify different virus sizes.
Preliminary work to extend the classes has been done. It has been presented in a
collaborative publication [STM+15].

5.6.1 Threshold-Based Classification

The first method for online classification is threshold-based. This threshold-based clas-
sification has been done in previous work [Lib11] and is no new contribution. Briefly
summarized, a simple and fast classification can be achieved with hard thresholds. For
each feature a desired range is defined. The virus candidate is classified as non-virus if at
least one feature is not in the desired range.

As an example, most false positives are either too small or too large and can be sorted
out by size. Another example is that false positives that are much brighter than actual
viruses can be easily be sorted out by the relative intensity. However, this simple method
reaches its limit if the false positives are similar to the true positives. This can happen if
viruses smaller than, e.g., 150 nm should be detected. Therefore, a Random Forest-based
classification has been implemented as explained in the following. The threshold-based
classification is also useful for a fast preliminary classification to sort out obvious false
positives.
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5.6.2 Random Forest-Based Classification

The second method for online classification uses Random Forest [Bre01]. Random Forest
combines several weak tree-based classifiers to build a strong classifier.

The use of Random Forest for the online classification is well justified: Siedhoff
has evaluated several methods for the classification of virus candidates generated with
VirusDetectionCL [Siel6]. Random Forest has been found to give the best results for an
offline classification. Liaw and Wiener state that the performance for classification and
regression of Random Forest is well, even if compared to support vector machines and
neural networks [LW02]. In addition, Random Forest do not tend to overfit if more trees
are used [Bre0Ol]. For an online classification the Random Forest is also well suited as it is
fast and can be executed in parallel on the GPU.

Breiman defines the Random Forest as a collection of tree-structured classifiers. Each
classifier is created with an independent identically distributed random vector. For each
given input the Random Forest then votes for the most popular class. [Bre01]

The input of a Random Forest classifier is a Random Forest model and a feature
vector that should be classified. The output is the assigned class for the feature vector.
In VirusDetectionCL all previously calculated features can be used as input. The input
consists of the polygons that need to be classified and the associated feature vectors.
The Random Forest model is given as a set of decision trees. As output the class virus
or non-virus is assigned to each polygon. Polygons that are classified as non-virus are
removed. The classification is done a few frames after the polygon is generated as viruses
and artifacts like air bubbles or those introduced by vibration take some time to appear
fully. Smaller polygons are automatically removed and only the largest are kept. These
polygons are then classified. Using this approach reduces the number of small polygons
that need to be classified. Especially artifact signals of the same size as viruses are hard
to distinguish from virus signals.

The Random Forest model for VirusDetectionCL has been trained and generated with
WAIKATO ENVIRONMENT FOR KNOWLEDGE ANALYSIS (WEKA) [HFH+09]. The author’s
method RFC-Gen, which is introduced in Chapter 6, has been used to generate OpenCL
device code and additional host code. As a result, all needed features are generated, the
Random Forest model is evaluated, and viruses are classified on the GPU.

It should be especially emphasized that the size of the data structure with virus
candidates is not reduced in order to keep the input of the Random Forest classification
small. Even if only one or two virus candidates are found in the current frame, the whole
global index space is submitted to the OpenCL device. The effect is, most work items
load their associated memory and then notice that there is no virus candidate to classify.
This introduces additional overhead. However, a previously performed compactification
would require an additional kernel call where also all entries need to be accessed at least
once. This would introduce more overhead. As a result, submitting a sparse matrix of
virus candidates and then find out which entries need to be processed is faster than to
previously find out which entries should be processed and to submit only these entries.

The evaluation for Random Forest in VirusDetectionCL is presented in Section 5.9.
More details on the Random Forest-based classification are given in Chapter 6 where the
RFC-Gen method for the automatic generation of OpenCL code for the application of
Random Forest models are presented.
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Figure 5.11: The VirusDetectionCL GUI.

5.7 Post-Processing

In the post-processing step, the desired output of the VirusDetectionCL application is
prepared. Usually, the output simply consists of the number of viruses but also several other
outputs can be generated: the classified viruses with the polygon segmentation, the same as
before with additional information about the viruses like intensity and other polygon-based
features, the same as before with a full feature vector, and also all unclassified virus
candidates with full feature vectors for offline classification.

Furthermore, several image buffers or feature buffers can be provided as output. In
most cases, the unmodified input images are used as output, especially if the image stream
is provided by a camera. Sometimes the approximated virus signal, feature arrays, or the
input image with enhanced SNR is needed. All this can be part of the output. The output
conversion is done vice versa to the input conversion explained in Section 5.2.1.

The processing of VirusDetectionCL can also be visualized live while the processing is
performed. For visualization an OPEN GRAPHICS LIBRARY (OpenGL) GRAPHICAL USER
INTERFACE (GUI) was implemented based on previous work [Lib11]. VirusDetectionCL
can visualize the attaching viruses live, while a data set is processed.

As the virus signal in the PAMONO sensor images is small compared to the background
and usually invisible to the naked eye, a contrast enhancement has to be done if the images
should be visually inspected. Otherwise, the output would be almost black.

For the contrast enhancement a method from Siedhoff is used. The contrast enhanced
image [ is calculated from the virus signal approximation V as

I(z,y) =m- clamp(g- (Vi(z,y) - (V) +0.5,0.0, 1.0), (5.80)

with [ as the average approximation as defined in Definition 19, g € R as a gain factor,
m as the desired maximum output value, and clamp as the clamp function as defined
in Definition 8. The virus signal that has extracted with help of the signal model is
distributed close to one. By subtracting the average the resulting signal is distributed
around zero. With the gain a contrast enhanced signal is obtained that is still distributed
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around zero. The gain factor is usually chosen in a range of 1.0 to 15. Afterward, an offset
of 0.5 is added to obtain a signal distributed around 0.5. The signal is then clamped to
clip the signal. Finally, the clamped signal is multiplied by the desired maximum output
for visualization, which is usually 255 for 8 bit gray-scale images.

The classification of the per-pixel features and of the polygons is visualized as an
overlay of the contrast enhanced image of the viruses. In addition, VirusDetectionCL can
visualize most of the features, enabling deeper insights of how good the features perform.
If parameters are edited on-the-fly, changes can be seen immediately. The visualization
is especially useful for the use in a laboratory, as the qualified personnel receive a live
feedback during the measurement. Problems with the PAMONO sensor setup can be fixed
and also a detection feedback of changed physical parameters, like the laser intensity or
the gain of the signal, can be given. Also, if physical parameters of the PAMONO sensor
are changed for further research, instantaneous feedback of the changes can be seen and
adjustments to the sensor setup can be made interactively with the processing software.

Figure 5.11 shows the GUI of VirusDetectionCL. Several aspects can be seen. The
PAMONO sensor image with applied noise reduction and applied signal model is shown in
8 bit gray-scale image with enhanced brightness and gain. Detected viruses are visualized
with yellow polygons. Older detection are gradually faded out to not distract from the
new detections. Virus candidates are visualized with blue polygons. The virus candidate
pixel classification is visualized as orange to yellow pixels inside of the blue polygons.
Parameters can be displayed on the right. They can be edited even during the processing.

Additionally, some general characteristics of the PAMONO sensor signal can also be
seen in Figure 5.11. The displayed PAMONO image is dominated by an artifact covering
the whole image with strong concentric circles wave pattern. These artifacts often appear
in the sensor images, they can be caused by dust or air bubbles in the system. Some effort
has been spent to keep the detection uninfluenced by these distortions. Another aspect
that can be clearly seen in the image is that the virus signal appears to have different
shape depending on the y-position in the image. This is caused by the different focus of
the viruses. In the first horizontally quarter of the shown image the particles are out of
focus and show weak intensities, in the next quarter they are perfectly in focus and show
high intensities and in the last two quarter they are out of focus again. This is due to the
fact that the camera views the sensor in an angle as depicted in Figure 2.1.

5.8 Parameters

An excerpt of the most important parameters for VirusDetectionCL is shown in Table 5.1.
For each parameter the name, the range, and a short description is given. The table is
structured in five blocks that correspond to the pipeline design of pre-processing, signal
restoration, feature extraction, segmentation, and classification, cf. Figure 5.1. A full
version of this table is provided in Table A.1.

Exemplary, the parameters currentImageRefs and segmentationThreshold should be
explained. The parameter currentlmageRefs is used in the application of the PAMONO
signal model, as shown in Section 5.3.1, to approximate the PAMONO virus signal. To
reduce the noise in the PAMONO signal, usually several images are combined to obtain
a better approximation of the signal. With the parameter the number of images can be
specified that are used, cf. Equation (5.7). The resulting image is then used to apply
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Table 5.1: Excerpt of VirusDetectionCL parameters. For a full list see Table A.1.

Name

Range

Description

brightnessCorrection

detectOverexposedSpots

{0,1}
{0,1}

Flag to enable the brightness cor-
rection.

Flag to enable the detection over-
exposed spots.

temporalNoiseReductionOption N Option to select the temporal noise
reduction method.
currentImageRefs N Number of images to use for the
signal approximation.
backgroundImageRefs N Number of images to use for the
background approximation.
gaussImageSigma R* The o for the Gauss filter.
timeSeriesOption N Option to select the method for the
time series features.
timeSeriesDistancePatternSize N The size of the temporal pattern.
timeSeriesAuto UpdateVariablePatterns Ny Adapt ideal patterns with the signal
model.
timeSeriesDistanceMin/MazStep [0,1]  Range for the step sizes to detect
different virus sizes.
timeSeriesDistanceMin/MaxNegativeStep [-1,0] Range for the negative step sizes.
fuzzyDetectionEnhancementX1 [0,1]  Parameter for the fuzzy detection

templateMatchingFeature

gaussHesseFeature

enhancement.

Calculate the template matching
features.

Flag to calculate Gauss-Hesse fea-
tures.

gaussHesseFeatureSigma R* The o for the Gauss-Hesse feature.
gaussHesseFeature NumScales N Number of scales for the Gauss-
Hesse feature.
segmentationThreshold [0,1]  Influences which pixels are used for
segmentation.
mergingMazxDistance R* The maximum distance to combine
two virus detections.
mergingMaxFrameDistanceForPolygon Ny The maximum number of frames

between two detections to combine
them to one.

classifyWith Thresholds

classify WithRandomForest

{0,1}
{0,1}

Flag to use threshold-based classifi-
cation.
Flag to use Random Forest classifi-
cation.
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the PAMONO signal model. As a result, the virus signal approximation is obtained, cf.
Equation (5.8).

The parameter segmentationThreshold ranges from zero to one. With this parameter
the pixel classification is segmented into pixels that pertain to a virus adhesion or not.
For each pixel a fuzzy set for the virus pixel likeness is calculated, cf. Section 5.4.4.
The segmentation threshold is then a defuzzyfication threshold for the virus pixel fuzzy
set. Pixels with a membership to the virus pixel fuzzy set equal or greater than the
segmentation threshold are classified as virus pixels. Afterward, these pixels are enclosed
by a polygon.

5.9 Evaluation

In this section evaluations for execution time and detection quality are performed. Addi-
tional evaluations of VirusDetectionCL are provided in Chapter 7 and Chapter 8 as part
of the evaluation of the PSE and DSE methods.

5.9.1 Evaluation of the Execution Time

VirusDetectionCL has been tested on multiple operating systems and on multiple hardware
platforms. This includes several GPU platforms and also some CPU platforms. With
VirusDetectionCL the evaluation a PAMONO data set with 4000 images can be performed
in two minutes on an NVIDIA®GTX-480 GPU. For an expert a manual evaluation of the
same data set takes two days [Siel6].

On average, VirusDetectionCL can analyze images faster than the recording speed of
the camera of about 25 fps, cf. Section 7.4. Thus, the soft real-time constraint of processing
faster than 40 ms per frame could be achieved with an efficient parallel design and the use
of GPUs.

Regarding the execution time it should be especially emphasized that the VirusDe-
tectionCL pipeline has a complexity of O(n) in Bachmann-Landau notation, with n as
the number of pixels in the input images. Measurements on different hardware platforms
confirm that the run time scales linearly with the number of pixels in the images, e.g., as
shown in Table 7.2. The main reason to use only algorithms from this complexity class
is the soft real-time constraint. The second reason is to save energy, in particular on
embedded devices. In general, a lot of effort has been spent to achieve a good detection
quality, even with the restriction of a fast and energy efficient processing.

5.9.2 Evaluation of the Random Forest Classifier

The Random Forest classifier has been evaluated on one of the most difficult data sets,
which contains 100nm VLPs. A balanced training set with 462 virus class instances and
469 non-virus class instances has been generated by using the SynOpSis approach, see
Section 4.5. WEKA [HFH+09] has been used to train the Random Forest. The generated
Random Forest has then been applied to unseen testing data set by using the RFC-Gen
approach, which is introduced in Chapter 6.

It should be noted that this evaluation is a proof of concept. The training data set
has not been optimized to provide a good input to the Random Forest. By optimizing
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Table 5.2: Stratified 10-fold cross-validation for the Random Forest classifier on 931
samples.

Quality measure Virus class Non-virus class Weighted avg.

F1 Score 0.934 0.939 0.937
Precision 0.968 0.910 0.939
Recall 0.903 0.970 0.937
ROC Area 0.969 0.969 0.969

the parameters of the algorithms that generate the features, more useful features can
be generated which result in a better performance of the Random Forest classifier. The
performance of the Random Forest classification in VirusDetectionCL has also been
evaluated in more detail in [Siel6] with the optimization stage of the SynOpSis approach,
cf. Section 4.5.

Table 5.2 shows the results of a stratified 10-fold cross-validation [RPC84] on the
unseen testing data set. Fi score, precision, recall, and the area under the RECEIVER
OPERATING CHARACTERISTIC (ROC) curve have been evaluated. For the virus class an
Fy score, as defined in Definition 37, of 0.934 could be achieved and for the non-virus class
0.939. Precision and recall, as defined in Definition 35 and Definition 36, show similar
performance. For the ROC area [HTF13] for both classes 0.969 could be achieved. This is
a very good performance on this difficult data set.

Overall, the performed evaluation on one of the most difficult data sets confirms the
good performance of the Random Forest-based classification. The Random Forest-based
classification outperforms the simple threshold-based classification. For ESs the threshold-
based classification is still useful, because the evaluation of a Random Forest model on an
ES can easily consume too much memory and exceed the soft real-time limit.

5.9.3 Evaluation of Detection Quality with the SynOpSis Approach

The detection quality of VirusDetectionCL has been evaluated with the SynOpSis approach,
cf. Section 4.5, in the co-authored publication [SLW+14]. This evaluation has mainly
been performed by Siedhoff. Real sensor data from data set Ds41papr13-1, cf. Table 2.1,
was used to synthesize four new data sets with different virus template and background
characteristics and it was also used to validate the results. Four experiments are conducted:
EXPREAL/REAL7 EXPREAL/SYNTH7 EXPSYNTH/REAL’ and EXPSYNTH/SYNTH'

In EXPypar/rean Teal background and real virus templates are used, in EXPrpyp /synrn
real background and synthetic virus templates, in EXPgyypy/rpar, Synthetic background
and real virus templates, and in EXPgyypy/syntn Synthetic background and synthetic
virus templates. For the real background, frames without viruses are used from data set
Ds419apr13-1- For the synthetic background, a single frame from DS419apr13-1 is used to
generate every frame of the new data set with Gaussian noise added to each frame. The real
virus templates have been extracted from DS41gapr13-1 by manual segmentation of several
viruses. For the synthetic templates, a single virus signal is used for all templates. The
templates are positioned in the data set with a uniform distribution. As objective recall,
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Table 5.3: Evaluation of VirusDetectionCL with the SynOpSis approach on synthetically
generated sensor data. The data sets were generated by using real and
synthetic virus templates on real and synthetic background signal. Modified
version of [SLW+14].

Real background signal Synthetic background signal
Real virus Synthetic virus Real virus  Synthetic virus
Data Measure templates templates templates templates
. Precision 1.000 1.000 1.000 0.998
Training
Recall 0.948 0.953 0.980 0.898
Test Precision 1.000 1.000 1.000 0.998
Recall 0.943 0.927 0.987 0.855
Real Precision 0.967 0.948 0.953 0.949
Recall 0.929 0.954 0.929 0.834

cf. Definition 36, is used and as additional constraint a certain precision, cf. Definition 35,
needs to be achieved. In other words, the number of true positives should be maximized,
the number of false negatives should be minimized and not too much false positives should
be detected. A certain degree of false positives is acceptable because it might be possible
to sort them out afterward.

In Table 5.3 results from the single-objective optimizations with SynOpSis are shown.
The most interesting results are highlighted in bold font. For experiment EXPpg,ap /ppar 2
recall of 0.943 with a precision of 1.000 could be achieved on the testing data set and a
recall of 0.929 with a precision of 0.967 on manually the segmented data set DS419apr13-1
that was not generated with SynOpSis.

Additional evaluations of the detection quality of VirusDetectionCL have been per-
formed by Siedhoff [Siel6] which should be listed here only for the sake of completeness.
Thus, the following evaluations are no contribution of the author.

The detection quality has been evaluated with SynOpSis on data sets with 100 nm
and 200 nm particles. Table 5.4 shows the averaged result of a global optimization with
three folds per data set. VirusDetectionCL was optimized for recall, cf. Definition 36 and
a low double detection rate of particles. In the best case, all viruses are found and only
detected once. However, the number of false positives was not part of the optimization. In
theory, VirusDetectionCL could simply detect a virus candidate at every position at every
time and the recall would be 1.0. However, it has shown that this unwanted behavior
does not occur in practice. This is due to the process of how the polygons are created
and matched with other polygons as described in Section 5.5. If too many artifacts are
detected this would lead to less detected viruses as artifacts and viruses are combined to
one polygon. Thus, optimizing for recall shows good results. The classifier in SynOpSis, on
the other hand, was optimized with precision and recall as objectives. Hence, the classifier
is optimized to sort out false positives while keeping the true positives. [Siel6]

All evaluations are performed on real sensor data, which is more difficult than synthet-
ically generated data. The data sets are of different quality with regard to noise level and
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Table 5.4: Evaluation of VirusDetectionCL with the SynOpSis approach on real sensor
data. Averaged values over three folds. Adapted from [Siel6].

Detector Classifier Classifier Deviation

Data set recall precision recall rate

Ds10200xu-HQ 0.961 0.961 1.000 -0.067
Ds11200nu-MQ 0.884 0.925 0.998 -0.018
Ds12900nu-1.Q 0.814 0.909 0.968 -0.090
Ds13100nu-HQ 0.715 0.870 0.901 -0.241
Ds141p0xu-LQ 0.887 0.769 0.901 0.134

presence of artifacts. The quality of the data sets is indicated by HQ for high quality, M@
for medium quality, and L@ for low quality. [Siel6]

The detector recall varies from 0.715 to 0.961. This shows the overall performance
of VirusDetectionCL for being able to detect all viruses in the sensor data. Classifier
precision and recall show how good SynOpSis can classify the found virus candidates with
the generated features of VirusDetectionCL. The classifier precision is in a range of 0.769
to 0.901 and the classifier recall is in a range of 0.901 to 1.0. Finally, with the deviation
rate, that varies from —0.241 to 0.134, the overall analysis quality of VirusDetectionCL
combined with SynOpSis. The deviation rate provides the deviation to the ground truth.
It quantifies the relative deviation of the detected viruses from the actual number of viruses.
This indicates how much the actual number of viruses is over- or underestimated. [Siel6]

Finally, another important result is that VirusDetectionCL can handle an SNR. below
four. As has been shown by Siedhoff, viruses with a median SNR below 2 can be detected
with VirusDetectionCL. [Siel6]

5.10 Summary and Conclusion

In this chapter the VirusDetectionCL approach has been presented, which is a computer
vision-based method for the detection of biological viruses in PAMONO sensor images.
VirusDetectionCL can automatically detect and count individual viruses in PAMONO
sensor signal.

To sum up, VirusDetectionCL is a streaming approach with an image processing
pipeline that makes use of only a few previous sensor images. The pipeline consists of the
steps pre-processing, signal restoration, feature extraction, segmentation, classification,
and post-processing. The pipeline is reconfigurable with algorithmic options that replace
or extend steps.

The first step deals with changing brightness levels, vibration, and overexposed spots.
In the second step the virus signal is extracted from the PAMONO signal. This includes
application of the signal model and noise reduction. In the third step features are extracted
from the virus signal. This includes per-pixel features that can be used in the next steps.
In the fourth step a segmentation of virus candidates is performed. In this step also more
high level features are calculated for each polygon. The fifths step performs a classification
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of the virus candidates. This is done either by a threshold-based approach or with a
Random Forest. The last step consists of optional visual processing of the data and
creating the output.

As introduced in Section 5.1, several challenges exist to handle the PAMONO signal.
Small signal, noise, irregularities in the signal, overlapping signal, artifacts, irregularities
in the background, drift of intensity, vibrations, out of focus areas, and fast processing per
frame. All these challenges have been addressed.

Drift of intensity, vibrations, and irregularities in the background are handled by the
pre-processing step, cf. Section 5.2. To handle the small signal and the noise, several
methods for signal restoration and noise reduction have been introduced. Several spatial,
temporal, and spatiotemporal features are calculated that help to distinguish between
actual virus signal and artifacts.

With the segmentation methods, cf. Section 5.5, the spatial information of the virus
signal is combined to polygons, per-pixel features are combined to per-polygon features,
and overexposed spots and double detections are dealt with.

With the Random Forest and threshold-based classification, cf. Section 5.6, signals
from viruses and artifacts can be distinguished. Additionally, irregularities in the signal
and signals at out of focus areas can be addressed.

Regarding the fast processing speed, it could be shown that the automatic detection
and counting of viruses is more than 300 times faster than a manual evaluation by an
expert. A data set with 4000 images can be evaluated in less than three minutes. A
processing time below 40 ms per frame could be achieved with a common desktop GPU.
This fast processing also enables real-time processing of the sensor data as fast as it is
recoded by the camera. This could only be achieved by a careful design of every algorithm
in the detection pipeline. An accelerated diagnosis opens up the possibility to use the
PAMONO sensor as an epidemic early warning system or at places with a high passenger
volume, e.g., at airports. For a mobile use additionally the energy consumption plays an
important role. The foundation of low energy consumption has been made by considering
only algorithms with low complexity and by handling the memory accessed efficiently. It
is handled in more detail in Chapter 7 and Chapter 8.

Finally, the most important challenge of SNR below four could also be solved. With
VirusDetectionCL, viruses with a median SNR below 2 can be detected [Siel6]. This is a
very encouraging result because most methods for blob detection and cell tracking, which
are both similar to the virus detection task, can not handle an SNR below four [CSGO5;
SLN+09]. All this enables the detection of small viruses with a size down to 100 nm and
slightly below.
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This chapter introduces a method for automatic OpenCL code generation for the
application of Random Forest [Bre01] models. The method is called RANDOM FOREST
CoDE GENERATION (RFC-Gen).

As shown in Section 5.6.2, Random Forest is well suited to classify virus candidates in
the VirusDetectionCL pipeline. Once a Random Forest model is trained, it can be used to
classify several data sets. With the RFC-Gen method a trained Random Forest model can
be automatically translated to optimized OpenCL code for the application of the model.

The chapter is structured as follows. First, the RFC-Gen method is introduced in
Section 6.1. Second, limitations of the method are listed in Section 6.2. Last, the chapter
closes with summary and conclusion in Section 6.3.

6.1 The RFC-Gen Method

RANDOM FOREST CODE GENERATION (RFC-Gen) is an automatic OpenCL code gener-
ation for the application of Random Forest models. It uses the Random Forest implemen-
tation in WEKA [HFH+09] to train and evaluate Random Forests and then converts the
forests into optimized OpenCL code.

The input is a WEKA file with training data, optional a WEKA file with testing data,
and a description of some details of how the code should be generated. The output is an
OpenCL kernel with the code to apply the learned Random Forest, the needed host code
for this kernel, code for an automatic configuration of needed parameter settings, and a
performance evaluation of the Random Forest model on the given testing data.

To generate the OpenCL kernel, RFC-Gen performs the following steps. First, RFC-
Gen determines which features are needed to apply the Random Forest model. Second,
RFC-Gen generates an OpenCL kernel interface with the needed features provided as
parameters by using the additional description. With the description the features in the
Random Forest model can be mapped to the correct OpenCL global memory arrays. Third,

111
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needed index calculations are performed and counting variables are added for each output
class of the model, which is usually the virus and non-virus class. Fourth, a fast check
is added, if for the current work item a polygon needs to be processed. Every polygon
is only classified once. As a virus adhesion takes some frames, the classification is done
after a specified number of frames or after the last input image is processed. Fifth, the
needed features are loaded into local variables of the correct type. Which type is needed
and how the global memory needs to be accessed to load the feature is also included in the
description. The local variables are named equal to the feature names in the tree, which
makes the OpenCL code easily to generate and to read. Sixth, all trees are added. This is
done by first parsing the Random Forest model into a set of tree data structures. Each
tree is then translated into OpenCL code by traversing each tree with breadth-first search
and adding appropriate if-else conditions for the split criterion. The feature names are
equal to the local OpenCL variables. At the leaf level the corresponding class variable
is counted up. Lastly, code for the classification of the polygons is added. For the two
class classification, polygons that are classified as non-virus are removed from the set of
polygons.

To speed up the evaluation of the trees, RFC-Gen automatically generates termination
conditions to stop the evaluation of the trees early without scarifying accuracy. The first
termination condition is inserted after 50 % plus one trees, the second one at 60 % of the
trees for example, and so on. The termination conditions checks if more than 50 % of the
total trees vote for the virus or non-virus class. If this is true, the correct class has already
been found and can be returned. All the following trees do not have to be evaluated. The
spacing between checks can be modified up to one check after every tree. Depending on
the size of the trees, the overhead of additional checks can pay off.

If approximate computing should be used, the termination conditions of RFC-Gen can
be based on less than 50 % votes to one class. For example, if 20 % of the votes are for the
non-virus class and 1% for the virus class, it might be feasible to vote for the non-virus
class and skip the evaluation of 79 % of the trees. Good termination conditions can be
automatically identified by MOGEA-DSE, cf. Chapter 8. As the trees are generated with
a good portion of randomness, the error probability can be kept low.

What is also possible with RFC-Gen is an optimized access to global memory in a
hardware/software codesign manner. If, for example, one global memory access is only
needed in one of the last trees, it is probably not needed to be loaded most of the times as
enough votes might be counted before the tree needs to be evaluated. If the global assess is
delayed until it is needed, global memory accesses can be saved. This can save energy and
execution time, as global memory accesses are expensive and should be avoided [NVI09b].

Another strategy is to distribute the global memory accesses more evenly within the
code. There is a latency of 400-600 cycles for one memory read to complete [NVIO9b] on
NVIDIA®GPUs. If there is enough code, which can be processed in the kernel before the
memory entry is needed, this can provide a huge speedup [NVIO9b]. So the RFC-Gen can
assure that there is some independent calculation after the memory reads and before the
memory writes. This is part of future work on RFC-Gen, currently all memory reads are
done right in the beginning, which is usually a good strategy but might not be optimal.

The reordering of the trees and memory accesses is also possible and part of the future
work. If no approximate computing is used, reordering of trees does not affect the detection
quality. If however approximate computing should be used and decisions are made on less
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than 50 % of the votes for one class, it has to be asserted that the randomness of the order
of trees is still given. Otherwise, it could happen, that if weak trees are evaluated first the
early termination condition is only based on a lot of weak trees.

To generate the host code, RFC-Gen generates a C' function which can call the
generated OpenCL kernel. First, the needed parameters for the OpenCL kernel are set.
This includes the device memory with the polygons that should be classified and device
memories for all needed features. Second, error handling is added. Third, code to enqueue
the OpenCL kernel is added. Finally, code to submit the kernel is added. The generated
host code assures that only the needed features are loaded.

To generate the automatic configuration function for VirusDetectionCL, RFC-Gen
uses a description for each feature of how the feature calculation can be enabled and
configured if it is needed as input. RFC-Gen generates a C code configuration function,
where for each needed parameter the needed settings are chosen. For example, if the
multi-scale Gauss-Hesse feature, cf. Section 5.4.1, is used in the Random Forest model, the
configuration function enables this feature and determines the number of needed scales that
need to be calculated. If only a single scale is used, the single-scale Gauss-Hesse feature is
used. The resulting configuration function can be called within VirusDetectionCL.

As a result, the calculation of features does not need to be enabled or disabled
manually. If a new Random Forest model is trained and loaded that uses other features,
the dependencies are automatically updated. The configuration function assures that the
features, accessed by the Random Forest, are generated before the model is applied.

6.2 Limitations of the RFC-Gen Method

The RFC-Gen approach has limitations in some use-cases. First, all trees are stored in
program code and therefore two size limitations are given. The code needs to fit into the
program code memory of the GPU and it must fit into the program code memory of the
SMPs. Second, if the Random Forest changes, the GPU code has to be compiled again.
This can happen on-the-fly by the OpenCL compiler of the GPU driver but takes some
time. Third, it might be more efficient for some use cases to parallelize the evaluation of
the trees and not to parallelize the evaluation of the forest. RFC-Gen evaluates the whole
forest in parallel for several inputs. If the forest consists of many trees and the number of
parallel evaluations is small, a parallel evaluation of the trees is presumable faster. Also,
the warp divergence can be high for trees where threads in one half warp chose different
paths. However, for VirusDetectionCL warp divergence is not a problem as usually only a
few virus candidates are detected in each frame.

6.3 Summary and Conclusion

In this chapter the method RFC-Gen has been presented, which can be used to generate
GPU code for the application of Random Forest models.

A highlight of RFC-Gen is that a Random Forest model can be automatically coded
in OpenCL code that can be loaded by the GPU and shared among all threads, which is
a very fast solution. With RFC-Gen the model and the code can be kept separated and
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combined as required. Therefore, the RFC-Gen method combines maintainability with
performance, which can rarely be found in one method.

Another advantage of RFC-Gen is that it enables further opportunities for code
optimization. The order in which the trees are evaluated can influence the performance
because potentially not all trees need to be evaluated. If trees that are expensive to
evaluate are evaluated late, their evaluation can be possibly omitted. The order and the
position in the code of load operations also play an important role for the performance
which opens new opportunities for optimization.

Furthermore, RFC-Gen determines the needed features for the model and automatically
adapts the pipeline configuration such that these features are generated.

In conclusion, RFC-Gen is well suited to evaluate Random Forest models on a GPU.
Although the approach has some limitations, the advantages outweigh the disadvantages.
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This chapter presents a method for automatic single-objective PSE and a method for
automatic single-objective DSE. The first method is named SINGLE-OBJECTIVE GPGPU
PARAMETER SPACE EXPLORATION (SOG-PSE) and the second method is named SINGLE-
OBJECTIVE GPGPU DESIGN SPACE EXPLORATION (SOG-DSE). Additionally, a manual
DSE on hardware is performed, which is the foundation for the automatic DSE on simulated
hardware.

The structure of this chapter is as follows. First a general introduction to the presented
SOG-PSE and SOG-DSE is given in Section 7.1, followed by general methods for SOG-PSE
and SOG-DSE in Section 7.2. Then the SOG-PSE method is presented in Section 7.3.
Afterward, the focus switches from PSE to DSE with an introduction by a manually
performed DSE in Section 7.4. The SOG-DSE method is presented in the sections
Section 7.5 and Section 7.6. Finally, the chapter closes with limitations, summary, and
conclusion of the two methods in Section 7.7 and Section 7.8.

This chapter is based on the author’s publications [LWT12; LST+13a; LSW14;
LMS+14].

7.1 Introduction to SOG-PSE and SOG-DSE

SOG-PSE is an automatic, single-objective PSE method. PSE is the exploration of different
parametrizations toward one or more objectives. With SOG-PSE it is possible to optimize
software parameters for given programs. Typically, this is used to optimize QoR.

SOG-DSE is an automatic, single-objective DSE method. DSE is the exploration
of design alternatives, e.g., different software designs, design of new hardware, suitable
existing hardware architectures, or hardware configurations toward one objective. Typical
objectives are performance, energy consumption, and power consumption. With SOG-DSE
it is possible to optimize hardware parameters of GPU architectures for given GPGPU
programs. This is useful to identify suitable hardware for a given GPGPU program.

Several objectives can be explored. For SOG-PSE this is consists of different quality
measures to explore the QoR. For SOG-DSE execution time, power consumption, and
energy consumption are especially in focus.

The two most important research issues for this chapter are the following:

e How can parameters of a given GPGPU program be automatically explored?
e How can suited GPU hardware for a given GPGPU program be automatically
explored?

With SOG-PSE and SOG-DSE these research issues can be answered.
The SOG-PSE and SOG-DSE methods are the foundation for the MOGEA-DSE
approach in Chapter 8.
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Figure 7.1: Schematic of the general architectural design of SOG-PSE and SOG-DSE.
The additional parts of SOG-DSE are highlighted.

7.1.1 Motivation

The methods for PSE and DSE presented in this chapter are motivated by the PAMONO
sensor use case and the PAMONO scenarios in Section 1.1. The PAMONO sensor will
be used, e.g., in laboratories, hospitals, at airports, or in-the-field. For each scenario
a suitable CPS of PAMONO sensor, VirusDetectionCL processing software, and target
hardware needs to be found and configured. The requirements that the CPSs need to
fulfill in the scenarios differ substantially. For each CPS in the scenarios, the parameters
of VirusDetectionCL can be explored with SOG-PSE to ensure a good detection quality,
and suited hardware can be explored with SOG-DSE to ensure a fast and energy efficient
processing.

An exploration of parameters and hardware is not only important to find and configure
the actual systems that are used in practice but also for exploring systems during the
design phase in which hardware and software change frequently and the rest of the system
needs to be adapted to these changes.

However, the parameter and design space is difficult to explore. For VirusDetectionCL,
for example, the number of parameters is quite high. This program has 110 Boolean,
integer, and floating point number parameters, which can affect the detection quality.
Additionally, several dependencies exist between the pipeline steps, and for each pipeline
step a selection of different algorithms can be made. To explore this parameter space
manually is time-consuming. For the GPU hardware fewer configurations exist. However,
testing out various GPUs from the design space is also time-consuming.

As these tasks are also of interest for many other scenarios, this leads to the research
issue of how parameters and suitable hardware can be identified in general for all kind of
GPGPU programs.
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Figure 7.2: Different scenarios for the PAMONO sensor use case inspected in this chapter.

7.1.2 Evaluated Scenarios

In Section 1.1 several scenarios for the PAMONO sensor use case have been presented.
Figure 7.2 shows the three different scenarios that are inspected in this chapter: SCN1y,g,
SCN4croup, and SCNSHosprTaL-

Scenario SCN1y,,5 is a laboratory use case, where different stationary desktop systems
are used independently without the need of a central server. Each system processes
PAMONO tasks and probably other tasks. Detection quality is the most important
objective. Energy consumption and execution time are not crucial.

In scenario SCN4¢oup distributed computing using severs in the cloud is considered.
Several mobile devices offload work to the cloud, where it is processed by one or more
servers. In this chapter only the server part is considered. For the servers suitable GPU
hardware needs to be selected. Several tasks are processed on each server. Beside execution
time energy consumption, power consumption, thermal design power, or other objectives
can be considered.

Scenario SCNbyosprrar, Shows a typical setup for hospitals or airports. Usually, several
mobile devices can be used to take measurements where needed. Data can be processed
locally or offloaded to a server in the local network. Here, only the desktop, laptop, and
server part of this scenario is inspected. Hand-held devices and how offloading can be done
is considered in Chapter 8. For each inspected system different hardware and objectives
might be of importance.

In addition to the PAMONO sensor use case, 14 industrial, biological, and physical
applications are evaluated.
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7.2 General Methods for SOG-PSE and SOG-DSE

In the following general methods and design decisions for SOG-PSE and SOG-DSE
are introduced: the architectural design, handling of the parameter and design space,
single-objective optimization, and how several data sets can be considered for optimization.

7.2.1 Architectural Design of SOG-PSE and SOG-DSE

Figure 7.1 shows a general architectural design for SOG-PSE and SOG-DSE. The parts
that differentiate SOG-DSE from SOG-PSE are highlighted in the figure.

For SOG-PSE the architectural design is as follows. The main part consists of the
evaluation block with the optimization cycle, an evaluation manager, a quality evaluation,
and three databases for the search space, the parameters, and the evaluated results. The
inputs for the evaluation are: a definition of the search space, the desired objective for
the optimization, a quality evaluator, program parameters, and a configuration of the
optimization.

The evaluation manager is responsible for running the evaluation. It configures, starts,
and manages the optimization process. In addition, it also manages all inputs and provides
them to the optimization and the quality evaluation. The optimization process creates
new configurations from the design space and submits them to the quality evaluation.

All parameters are stored in a database as name and value tuple. The value is set
to the given start value. This parameter database can also hold parameters that are not
optimized.

The genes are built according to the provided definition of the search space and the
provided program parameters. For each gene the type and range is assigned. A mapping
of parameter name to gene position is stored in conjunction with the parameter space or
design space definition.

Quality evaluation evaluates individuals and assigns a quality to it. For each individual
that should be evaluated a parameter set is created. This set contains all parameters from
the parameter database with values updated according to the current allele of the genes.
The mapping of parameter names to gene position is done with the parameter space or
design space definition. Afterward, it runs the program that should be evaluated with the
current configuration and determines the quality of the result.

For speedup reasons a database with evaluated results is maintained throughout the
evaluation. Individuals with the same allele, the same expression of chromosomes, do not
need to be evaluated twice. As data structure a hash map is used with the allele as hash
key.

Before an individual is evaluated, a query to the database is done to check if its gene
configuration has already been evaluated. If this is true, the already evaluated result is
used as fitness value for this individual without running the fitness evaluation again.

If a fitness evaluation fails, the corresponding parameter set is stored in another
database. An evaluation can fail if the chromosome maps to an invalid parameter set that
is not accepted by VirusDetectionCL or if VirusDetectionCL crashes unexpectedly. The
stored parameter sets can be inspected later to fix errors.

For SOG-DSE four parts are added to the architectural design of SOG-PSE. As new
input one or more GPU configurations can be specified. These configurations are held in a
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GPU configuration database. The evaluation manager provides them to the optimization.
For the quality optimization a GPU simulator is added. It takes a GPU configuration as
input and can simulate the execution of GPGPU programs. Finally, a GPU code compiler
is added, which can provide GPU code if the program does not come with pre-compiled
GPU code.

Three limitations of this design are that it is not intended for multi-objective optimiza-
tion, that only a single quality evaluation takes place at the same time, and that a remote
evaluation of the quality is possible but not directly provided. A remote evaluation can
only be done by providing a quality evaluator that handles this. These limitations are
addressed in Chapter 8.

7.2.2 Parameter Space and Design Space Definition

The parameter space or design space that should be explored is the most important input
for SOG-PSE or SOG-DSE. This search space is spanned by all considered combinations
of software or hardware parameters. The defined parameter or design space should be
large enough to not limit the optimization to identify the best parameters or design but
small enough to keep the evaluation time low.

For each software or hardware parameter that should be optimized, a data type and a
valid range have to be provided. As data types integer numbers, floating point numbers,
and vectors are supported.

Listing 7.1 shows an example of how a parameter space is defined. The names of
the parameters are given in a simple text file. For reasons of simplicity, this text file
can also contain parameters that should not be optimized but for which a fixed value
should be provided. For each parameter the first given number is a flag if this parameter
should be optimizes or not, the second number gives a start value, e.g., based on previous
optimizations or chosen manually. Finally, the third and fourth number provide the valid
range of the optimization.

backgroundOption=1;1;0;1
backgroundGap=0;16;1;40
averagelmage=1;0;0;1
averagelmageKernelWidth=1;2;1;7
averagelmageKernelHeight=1;3;1;7
medianImage=1;0;0;1
medianImageKernelWidth=1;2;1;7
medianImageKernelHeight=1;3;1;7
gaussImage=1;0;0;1
gaussImageSigma=1;1.5;1.5;3.5

Listing 7.1: Parameter space

For example, the gaussImageSigma parameter in Listing 7.1 provides the o for the
Gaussian distribution in Equation (5.11). This parameter should be optimized, the
first individual starts with o = 1.5, and the range for the optimization is [1.5,3.5]. The
parameter backgroundGap influences the number of frames where on the images with applied
sensor model a current detection is visible. It is the distance between the background
approximation, cf. Equation (5.6), and the current image approximation, cf. Equation (5.7).
This parameter should be chosen small enough to keep only the current viruses visible
and large enough to be able to detect them. It is optimized in a range of [1,40].
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For the parameters that should not be optimized, the start value is used in all runs
and the given range is ignored. If the parameter should be optimized, the start value
is used to initialize only the first individual. All other individuals are initialized with a
random value within the valid range of the parameter.

Based on the definition of the parameter space or design space the genes of the EA
can be set up.

7.2.3 Single-Objective Optimization

The single-objective optimization in SOG-PSE and SOG-DSE is done with an EA. The
input to this EA is a population with several individuals. Each individual represents one
point in the parameter or design space that should be evaluated.

The optimization cycle, cf. Definition 47, is as follows: First, the fitness value for all
individuals in the population is evaluated toward the single objective. Second, with a
tournament selection, cf. Definition 48, a selection of individuals is made based on their
fitness value. Third, the selected individuals are recombined to produce new children.
Fourth, the gene expression of the children is mutated with a certain probability. Finally,
these children form a new population. If the concept of elitism is used, also some parents
might be part of the new population. This cycle is continued until a desired quality of the
result is achieved, the improvement of the population is below a threshold, or until the
maximum number of generations is reached.

For the actual implementation of SOG-PSE and SOG-DSE, the JAvA GENETIC
ALGORITHMS PACKAGE (JGAP) framework [MR11] from Meffert and Rotstan is used
to create and run this EA cycle. JGAP is a framework that integrates GA and genetic
programming methods.

7.2.4 Considering Several Data Sets for Optimization

To prevent overfitting to the input data, several data sets should be taken into account for
optimization. With SOG-PSE parameters can be optimized to match several data sets.
As not every data set has same degree of importance, a weighting factor for every data set
can be given. With several data sets and the weighting factors, the same program can be
evaluated on different data sets and each evaluated result is weighted according to the
importance of the data set.

Thus, for each data set a weighting factor wy € R is defined with d € [1,..., D] and
D €N as the number of data sets that should be evaluated. To determine the weighted
overall fitness value f € R, the sum over all weighted fitness values is calculated as

D
f=> wafa (7.1)

d=1
with f; € R as the fitness value for the evaluation of the d-th data set. If no weighting

factors are defined, each weighting factor wy is simply chosen as %.

7.3 Single-objective PSE with SOG-PSE

In this section the SINGLE-OBJECTIVE GPGPU PARAMETER SPACE EXPLORATION
(SOG-PSE) method is developed. SOG-PSE is an optimization method for parameter
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optimization. With this PARAMETER SPACE EXPLORATION (PSE), parameters for CPU
and GPU programs can be optimized toward a given objective.

Usually parameters for programs are manually tuned by an expert. However, with an
increasing number of parameters, the parameter space can grow rather quickly, making
manual tuning more and more difficult and time-consuming. This problem is aggravated if
the program or the input to this program change. Previously optimized parameters might
no longer be suited for the changed conditions. With SOG-PSE the parameter tuning can
be automated in both cases. This is especially suited for a codesign of processing software
and sensor hardware. With such an HIL, software and sensor hardware can be developed
continuously in small steps and with a fast feedback of the achievable QoR.

For the VirusDetectionCL use case, the detection quality is the most important
objective. What makes a parameter tuning toward this objective difficult is that within
the VirusDetectionCL pipeline several dependencies exist. For example, the spatial
and temporal noise reduction influences how the features can be generated, how the
segmentation looks, and how the classification has to handle the detections. The pipeline
configuration is also not fixed, elements can be left out or added or algorithms can be
switched. All this increases the complexity of the optimization task. As soon as a certain
level of complexity is exceeded, the time needed for manual tuning rises strongly because
large numbers of configurations have to be evaluated. Additionally, both VirusDetectionCL
and the PAMONO sensor setup changed quite often throughout the development. Better
methods have been added to VirusDetectionCL and the PAMONO sensor setup also
changed with other cameras, gold layers, and optics. If changes on the sensor setup are
made, it is often not clear if these changes actually improve the detection quality or even
deteriorate it. With SOG-PSE, parameters can be easily tuned or adapted to reflect
changed conditions. This provides a fast feedback for changes in software or hardware.

Overall, the SOG-PSE method is a starting point for the other PSE and DSE methods
in this work. In the following sections it is developed further toward a DSE and in the
next chapter toward a hybrid PSE and DSE.

The following research issues are examined:

e How can a parameter set that delivers a desired quality be automatically identified
for a given program?
e Does sequential optimization lead to the same result as a global optimization?

This section is based on the author’s publications [LWT12; LST+13a].

7.3.1 Methods

With SOG-PSE first concepts and methods for a PSE are introduced. First, the archi-
tectural design of SOG-PSE is explained, followed by the fitness evaluation, and the
calculation of the fitness value. Because most steps for a PSE are already explained in
Section 7.2, this section is rather short.

Architectural Design of SOG-PSE

The architectural design of the SOG-PSE approach is shown in Figure 7.3. The input of
SOG-PSE is a description of the parameter space that should be explored, the objectives
that should be optimized, a description for the fitness evaluation, a set of program
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Figure 7.3: Schematic of the architectural design of SOG-PSE.

parameters as default values for the parameter space, and a configuration of the EA. The
parameter space definition and the base parameters are stored in databases and provided
to the evaluation manager.

The evaluation manager drives the EA. Within the EA cycle new individuals are
generated, which are evaluated with the fitness evaluation. All evaluated parameter
configurations are stored with the results in a database so that the same gene configurations
do not need to be evaluated twice. In SOG-PSE both the EA and the evaluation run
locally.

Fitness Evaluation

For each new individual generated by the EA, the fitness needs to be calculated. The fitness
evaluation of VirusDetectionCL, other programs can be evaluated similarly, works as follows:
First, any previously calculated results are deleted. Second, the current chromosome is
converted to a list of arguments. Third, a program call to VirusDetectionCL with the
arguments is made. A timeout is used for this call to cancel non-terminating runs after
some time to keep the evaluation running. Forth, after the program call is completed the
fitness is calculated by matching the found viruses with the viruses in a gold standard file.
Fifth, if no elitism is used in the EA, even the best individuals can be removed from the
population. Hence, the current chromosome is stored if the current fitness is best. Finally,
to prevent that evaluations get lost if the evaluation is canceled or crashes, a checkpoint
of the current population is stored every generation. The optimization can be resumed
from this checkpoint if more evaluations are needed.

Calculation of the Fitness Value

Several performance measures can be used to calculate the QoR, which is used as fitness
value of individuals in the EA. For VirusDetectionCL the available performance measures
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include accuracy (Definition 34), precision (Definition 35), recall (Definition 36), Fy score
(Definition 37), positive agreement (Definition 38), and Matthews correlation coefficient
(Definition 39). Which performance measure is most suited, highly depends on the use
case of the PAMONO sensor.

Because each of the performance measures can be calculated from TP, TN, FP, and
FN, cf. Definition 30 to Definition 33, the main effort of the fitness calculation method is
how to determine these values. As already mentioned, TN is always zero for the PAMONO
use case.

To calculate TP, TN, and FP, the received result from VirusDetectionCL is matched
with a gold standard. The gold standard is created manually for real sensor data or
manually or automatically for synthetically generated sensor data. In the gold standard
every virus adhesion is marked as a polygon that is slightly bigger than the round center
of the adhesion. The wave like structures are not marked in the gold standard as they can
be much bigger than the center region of the adhesion.

A polygon is counted as TP, as successfully detected by the detector, if the spatial and
temporal position of the polygon is near to the spatial and temporal position of the gold
standard polygon. A spatial nearness is given if the center of gravity of the found polygon
is within the gold polygon. Alternatively, spatial nearness can be defined as if the distance
of the centroids of the two polygons is below a certain threshold. A temporal nearness is
given if only few frames are between the found polygon and the gold polygon. However, it
is difficult to specify what a few frames are. Also, depending on the processing methods,
some time information is lost if a polygon is detected by the processing software. Details
can be found in Section 5.4.2.

Within the processing software some effort has been made to estimate the exact time
of appearance of the particle. To not give an unfair advantage or disadvantage to the
processing software or to specific methods, the term temporal nearness is dynamically
adapted to the used method. In practice this has shown to give reliable results.

A polygon is counted as FP, as wrongly detected by the detector, if no gold polygon is
present near the found polygon.

Finally, gold polygons that are missed by the detector are counted as FN. It is
determined by the number of gold polygons that did not match to at least one found
polygon. If several polygons match to a single gold polygon, these are counted as double
detections.

7.3.2 Experiments

Two experiments are conducted for SOG-PSE named EXPlpyz,y and EXP2gianarSTrRENGTH-
These are described in the following.

For experiment EXP1py,,y the fuzzy method from Section 5.4.3 are in focus. SOG-PSE
is used to optimize sequentially the fuzzy detection parameters only and afterward the
detection parameters only using the optimized fuzzy parameters. This is compared to a
global optimization of the fuzzy and detection parameters combined.

The questions answered by experiment EXP1lyy,,y are:

e Does the fuzzy method improve the detection quality?
e Does sequential optimization lead to similar results as a global optimization?
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As baseline measurement, a manually optimized parameter set was used. This was
also the starting point for the automatic optimization with SOG-PSE.

Three manually annotated data sets are used, cf. Section 2.2. First, the data set
Dslyrv.vrps with images of size 1000 px x 295 px with 100nm HIV VLPs. Second, the
data set DS8pory2oon-2 With images of size 1000 px x 566 px with 200nm polystyrene
particles. Third, the data set DS9pgryosonm With images of size 1000 px x 367 px with
280 nm polystyrene particles. For each optimization SOG-PSE has been run for 800
generations with 20000 evaluations in total.

For experiment EXP2g;onarstrENGTr Particles with different signal strengths have been
simulated with two different noise sources. To create the data sets, the data driven
synthesis in SynOpSis, cf. Section 4.5, is used. The particle signal is extracted from
DsT7powy200nm-1 i Table 2.1. Four attenuation or gain factors are used: 2.0, 1.0, 0.75, and
0.5. This simulates particle sizes of approximately 400 nm, 200 nm, 150 nm, and 100 nm.
The size of particles is in a linear relation to the signal strength [ZKG+09].

The questions answered by experiment EXP2gcnarSTtrRENGTH AT€:

e How does the signal strength affects the detection quality?
e Is the fuzzy method more advantageous for lower signal strengths?
o How does the sensor noise affects the detection quality compared to Poisson noise?

For the background signal two noise sources are used: synthetically generated Poisson
noise and real sensor noise. The Poisson noise is generated with the Poisson distribution
as defined in Definition 24 and with the parameter A set according to Equation (4.43).
For every frame different Poisson noise is added to a single background image. The real
sensor noise is recorded directly from the PAMONO sensor without any viruses in the
system resulting in empty background images. The real sensor noise does not only contain
noise from the camera and the sensor but also other kind of distortions, e.g., caused by
vibration or air bubbles in the system and is therefore more challenging.

Same as in EXP1lgyy,y, the fuzzy method from Section 5.4.3 are part of the evaluation.
The detection with the fuzzy method is compared to a detection that does not use the
fuzzy method. However, here, the focus is more on the signal strength.

To measure the quality of the detection, the F; score, cf. Definition 37, is used. The
Fy score has the advantage that it penalizes both FP and FN. This is especially useful if a
virus concentration should be measured.

7.3.3 Results

In the following the results for the two experiments EXP1lyyz,y and EXP2gignaLStrRENGTH
are presented.

Figure 7.4 shows the results for EXPlpyzzy. Results for the different optimization
strategies compared to the manual baseline measurement are shown for the three evaluated
data sets. With manual the baseline measurement is given, with fuzzy the optimization
of the parameters for the fuzzy method, with detection the optimization of the detection
parameters, and with global the global optimization.

For the first data set, Dslyrv.vips, with 100nm HIV VLPs the accuracy could be
improved from 45 % for the manually tuned parameters to 48 % for optimization of the



126 Chapter 7. PSE and DSE with SOG-PSE and SOG-DSE

100 T T T
B anual
N fuzzy ] —
80 I | (] detection | | — -
[ Jglobal
S -
>
@)
g
=
3 40t _
<
20 7
0

VLP 100nm  Polystyren 200nm Polystyren 280nm

Figure 7.4: Detection quality for different single-objective optimizations. Three different
particles are inspected. The optimization was done manually (manual),
for the fuzzy filter (fuzzy), for the detection filters (detection), and finally
globally (global). Each step uses the results from the previous one. Adapted
from [LWT12].

fuzzy parameters, to 78 % for optimization of the detection parameters, and finally to
88 % for the global optimization of fuzzy and detections parameters.

For the second data set, DS8poiy200nm-2, With 200 nm polystyrene particles the accuracy
could be improved from 20 % for the manually tuned parameters to 21 % for optimization
of the fuzzy parameters, to 36 % for optimization of the detection parameters, and finally
to 80 % for the global optimization.

For the third data set, DS9pory2s0nu, With 280 nm polystyrene particles the accuracy
could be improved from 74 % to 86 % for the global optimization.

Table 7.1 shows results for EXP2genarstrenetn Mmeasured with Fq score. For all cases
the use of the fuzzy method results in an improved detection quality. Also, the signal
strength influences the detection quality.

For the data sets with Poisson noise, the Fy score could be improved from 0.995 to
1.000 for signal strength of 1.00, from 0.975 to 0.979 for signal strength of 0.75, and from
0.761 to 0.828 for signal strength of 0.50.

For the data sets with real sensor noise, the F1 score could be improved from 0.988 to
1.000 for signal strength of 2.00, from 0.917 to 0.970 for signal strength of 1.00, from 0.917
to 0.970 for signal strength of 0.75, and from 0.518 to 0.593 for signal strength of 0.50.

7.3.4 Discussion

In the first experiment, EXP1pyzzy, it could be shown that in all cases the automatic
optimization with SOG-PSE could obtain a better detection quality. The accuracy could
be improved by 12 to 60 percentage points. Additionally, it could also be shown that the
fuzzy method led to an accuracy of at least 80 %, which is a good result. It should be noted
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Table 7.1: Single-objective optimization for different sources of noise and attenuation
or gain factors of the virus signal. F; score is shown for fuzzy and non-fuzzy
detection. Extended version of [LST+13a].

Noise source Signal strength F; Score for non-fuzzy F; Score for fuzzy

Poisson 1.00 0.995 1.000
Poisson 0.75 0.975 0.979
Poisson 0.50 0.761 0.828
Sensor 2.00 0.988 1.000
Sensor 1.00 0.917 0.970
Sensor 0.75 0.801 0.873
Sensor 0.50 0.518 0.593

that this evaluation has been performed on a relatively early version of VirusDetectionCL
with a simple pipeline configuration. Due to several improvements, e.g., by the calculation
of additional features like the Gauss-Hesse feature, the full VirusDetectionCL method
exceed these results, cf. Section 5.9.

As expected, the sequential optimization led to worse results than the global optimiza-
tion of fuzzy and detection parameters combined. However, a surprising result is how
much better the global optimization works compared to the sequential optimization. In
all three data sets of EXP1pyzzy, the global optimization could improve the sequential
optimization by 6 to 44 percentage points. This clearly shows that a global optimization
of fuzzy and detection parameters is needed.

This can be especially seen for the bad detection results for the sequential optimization
for the data set DS8pory200nm-2 Of only 36 % compared to the global optimization with 80 %
accuracy. Here, the fuzzy parameters have been optimized according to the given manual
parameters that only achieved an accuracy of 20 % and therefore was a bad starting point.
The optimization of the fuzzy parameters led only to an accuracy of 21 %. Afterward, the
optimization of the detection parameters could not compensate the optimization of the
fuzzy parameters to achieve a good detection quality.

The need of a global optimization is somehow disappointing as the parameter space for
a global optimization can be much larger compared to the combined size of the parameter
space of sequential optimizations because for a global optimization the parameter spaces
are combined multiplicative instead of additive.

For the second experiment, EXP2gicnaLstrenetn, the influence of the noise type and
the signal strength to the detection quality could be shown. The use of the fuzzy method
is beneficial for all data sets. The improvement of detection quality is smaller for the
data sets with Poisson noise than for the data sets with real sensor noise. The average
improvement with the fuzzy method amounts to 2.5 percentage points. This is because
the SNR is better in the data sets with Poisson noise so that the fuzzy method produces
only a slight improvement.

For the data sets with sensor noise, the average improvement with the fuzzy method
amounts to 5 percentage points, which is a very good result. For the low SNR in the
data set with a signal strength of 0.5, an improvement of 7.5 percentage points could be
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achieved with the fuzzy method. This answers the research question if the fuzzy method
is more advantageous for lower signal strengths.

Regarding the research question of how the signal strength affects the detection quality
a quick falloff of detection quality could be observed if the signal strengths decreases.
This is in accordance with the signal model in Section 5.3.1. For the examined version
of VirusDetectionCL, a particle size of 150 nm shows a good detection quality while a
particle size of 100 nm still has a reasonable detection quality. Based on these observations
VirusDetectionCL has been updated in many details to successfully improve the detection
quality for smaller particle sizes.

Regarding the research issue of how the real sensor noise compares to the Poisson noise,
it could be shown that for Poisson noise the signal strength can be lower to achieve the
same detection quality. For example, an F; score of 0.970 could be achieved for the real
sensor noise for a signal strength of 1.0 while an F; score of 0.979 could be achieved for
the Poisson sensor noise for a signal strength of 0.75. This corresponds to an approximate
particle size of 150 nm for the Poisson noise and 200 nm for the real sensor noise. Similar
results could be observed for the other signal strengths. Consequently, if the real sensor
noise can be reduced to be more similar to Poisson noise, smaller particles can be detected
with the same quality. This can either be achieved with an improved physical setup of the
sensor or with a better noise reduction in VirusDetectionCL.

It could also be observed that the quality of the segmentation seems to be better if the
fuzzy method is used. The noise corrupted boundaries of a virus signal could be covered
more precisely. At the same time the number of FP does not increase. However, as no
gold standard is available for the segmentation, this is only a subjective impression. Such
an improved segmentation can be beneficial if the size of the viruses should be determined
not only by the signal strength but also by the shape.

Finally, it could be observed that with the fuzzy method, lower detection thresholds
can be used. This is a good indication that the detection is more easy with the fuzzy
method enabled. The same could be observed for a better noise reduction.

7.3.5 Summary and Conclusion

In this section the SOG-PSE approach has been presented. With SOG-PSE an automatic
parameter optimization can be performed regarding a single objective. For a given CPU or
GPU program, the best parameter configuration can be obtained automatically. For this
PSE the focus has been on a concrete application of the general methods that have been
introduced in Section 7.2. This included the architectural design, the fitness evaluation,
and the calculation of the fitness values.

VirusDetectionCL has been used for the evaluation. For this use case several parameters
need to be optimized to obtain a good detection of viruses in PAMONO sensor data.
A manual tuning of parameters is difficult as several dependencies exist between the
parameters. It could be shown that with SOG-PSE a better detection quality could be
achieved for VirusDetectionCL as with a manual optimization.

All research issues for SOG-PSE could be answered. Results from the first experiment
strongly indicate that a global optimization is needed for VirusDetectionCL. The global
optimization always resulted in a better detection quality than an optimization of the
pipeline steps one after the other. Results from the second experiment showed how the
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signal strength affects the detection quality and parameters could be optimized toward
different types of noise. In addition, the influence of the noise to the detection quality
could be demonstrated. It could be shown that the detection quality on data sets with
synthetically generated Poisson noise is better than on data sets with real sensor noise.

Overall, SOG-PSE is an important starting point for the DSE methods in the following
sections and chapters. Several valuable insights have been gained from SOG-PSE. In
the following SOG-PSE is extended toward a DSE for GPU hardware in Section 7.5.
Section 7.4 with a manually performed DSE is bridging toward this. In Chapter 8 ideas
from SOG-PSE are used to build a hybrid approach for a combined PSE and DSE.

7.4 Manually Performed DSE of Actual CPUs and GPUs

In this section a manually performed DSE on mobile and desktop CPUs and GPUs is
presented. This is a starting point for the automatic DSE method in Section 7.5. The
motivation behind this manual DSE is to find out if an energy-aware DSE on actual
hardware produces useful results. As use case the performance of a laptop equipped with
a mobile CPU and GPU is compared to the performance of a desktop system equipped
with a desktop CPU and GPU.

The research issues that should be answered are:

e How can a DSE on actual hardware be performed for a given application?

e How can energy consumption be integrated into a DSE?

e How does the performance of a laptop system compares to that of a desktop system?

e What is the speedup of using GPUs instead of CPUs?

e How does energy consumption of CPU processing compares to that of GPU process-
ing?

e How does the VirusDetectionCL approach perform in practice?

e Is the use of mobile GPUs reasonable with respect to the soft real-time constraint?

e How does the performance scale for different image sizes?

Manually performed DSE in this section provides the necessary basis for SOG-DSE
in Section 7.5 and finally leads to the hybrid PSE and DSE approach MOGEA-DSE
in Chapter 8. In addition, this chapter can be seen as an example of how application
designers usually chose a system without help of automatic DSE methods.

This section is based on the author’s publication [LST+13a).

7.4.1 Methods

For a manual DSE the most important challenge is the setup and conduction of the
measurements. To investigate the performance and scalability of the VirusDetectionCL
approach on CPU and GPU systems, different image sizes need to be considered. However,
to achieve a good comparability of different image sizes some effort has to be spent. Simply
taking a PAMONO sensor data set and using crops of different sizes out of this data set
to measure the execution time or energy consumption is not a good solution. If a set of
bigger images is simply subdivided into smaller images, not all parts of the image have
the same amount of viruses appearing, and not all viruses within the sensor image have
the same amount of defocus. As a result, smaller images would either have more or fewer
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Figure 7.5: Synthetically designed PAMONO sensor image of size 1024 px x 128 px with
16 x 2 identical sub-images of size 64 px x 64 px.

viruses per area in perfect focus, which would influence the number of detected viruses
per area and which ultimately results in differing execution time or energy consumption.

To solve this problem the number of viruses per area and the focus characteristic has
to be identical in each of the data sets. Therefore, a small crop of, e.g., 64 px x 64 px
with a well defined number of viruses appearing is used to construct bigger images by
simply repeating the small image along the x- and y-axis for each frame. To keep the
characteristic of the used data set, the appearing viruses in the sub-image should be fully
covered, be in good focus, and should represent a typical virus concentration. Using a
small image to construct bigger images has the advantage that the amount of viruses and
the focus within each region is equal. The number of detected viruses is proportional to
the image size which gives accurate results and makes the measurements comparable. The
only variable that is changed is the image size. Figure 7.5 shows an example image of
size 1024 px x 128 px that has been constructed with 16 x 2 identical sub-images of size
64 px x 64 px.

One target system for the mobile use of the PAMONO sensor and VirusDetectionCL is a
laptop. To measure the energy consumption of the laptop, the battery capacity information
is logged with the SYsFs file system before and after each run of VirusDetectionCL. The
difference of capacity in Ampere hours can be used to calculate the energy consumption
Eraptop in Joule by multiplying the Voltage of the system with the difference of the
capacity as

ELaptop =V (Cbefore - Cafter)a (72)

with Chefore as the capacity right before the measurement, Ciger as the capacity right after
the measurement, and V' as the voltage of the system.

7.4.2 Experiments

To answer the research issues raised in this section, the experiment EXP3pianuarL has been
conducted. For this experiment a mobile system is compared to two desktop systems.
On the mobile system, energy and execution time are measured. On the desktop system
only the execution time is measured because energy consumption is not important on
these systems. Different image sizes are considered. As already shown in Chapter 5, the
VirusDetectionCL approach has a complexity of O(n) in Bachmann-Landau notation,
with n as the image size. This experiment is conducted to show the performance and
scalability of VirusDetectionCL in practice.

As mobile system, a LENOVO™T510 laptop is used. The laptop is equipped with an
INTEL®CORE "i7-620M CPU, 4 GB RAM, an NVIDIA®Quadro NVS 3100M with 256 MB
RAM, and a battery with a capacity of 8.4 Ah at 11.1 V. The NVS 3100M GPU is a low
cost graphics card with only 16 SPs, a core clock of 600 MHz, and a thermal design power
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Table 7.2: Frame rate measurements for different CPUs and GPUs and for different
image sizes. A soft real-time limit of 30 fps should be met. The second column
indicates if the visualization was enabled. Extended version of [LST+13a].

Device Vis. 1024 x 128 1024 x 256 1024 x 512 1024 x 1024
INTEL®i17-620M CPU yes 16.0 fps 8.5 fps 4.6 fps 2.4 fps
INTEL®17-2600 CPU no 23.0 fps 20.1 fps 16.1 fps 11.5 fps
NVIDIA®3100M GPU yes 53.7 fps? 32.6 fps 16.0 fps 7.8 fps

NVIDIA®GTX 480 GPU yes 53.7fpst  53.7fps!  53.7fps! 40.3 fps
NVIDIA®GTX 560 Ti GPU  yes 53.7 fps? 53.7fpst  53.7fps! 26.8 fps
NVIDIA®GTX 480 GPU no 161.0fps®>  80.5 fps 80.5 fps 80.5 fps
NVIDIA®GTX 560 Ti GPU no 161.0fps?  161.0fps®>  161.0 fps? 80.5 fps

! Bounded by the synchronization to the monitor refresh rate of 60 fps.
2 Bounded by the speed of loading and decoding the images.

of 14 W. The i7-620M CPU has two cores with a core clock of 2.66 GHz, a turbo clock
rate of 3.333 GHz, and a thermal design power of 35 W.

For comparison purposes, two desktop systems are used. The first one with an
INTEL®Q9550 CPU, 8 GB RAM, and a GTX 480 GPU. The second one with an INTEL®i7-
2600 CPU, 16 GB RAM, and a more powerful GTX 560 Ti GPU. The GTX 480 has 480
SPs and is clocked at 700 MHz. The GTX 560 Ti has 384 SPs and is clocked at 822 MHz.

As data sets 160 images of 1024 px in width and 128 px, 256 px, 512 px, and 1024 px in
height have been generated as explained in Section 7.4.1. Each data set is generated from
160 64 px x 64 px sub-images from DS7poiy200nm-1, ¢f. Section 2.2. With the fixed width
and variable height, the image size is only doubled not squared within each step. Reducing
or increasing the height is also the best way to adapt the image size of the PAMONO
images in practice as always the full width should be used to keep as many viruses in focus
as possible. In contrast, if the image size is reduced in width, viruses perfectly in focus
are left out and more out of focus viruses are kept.

7.4.3 Results and Discussion

The results of the experiment EXP3panuar, are shown in Table 7.2. Achieved frame rates
are given for the different devices on the different image sizes. The first two columns show
results for the mobile CPU and the fastest desktop CPU. The third row shows the mobile
GPU and the last four rows show the desktop GPUs. As the visualization can influence
the measurements, the second column indicates if the visualization was enabled or not.
As the camera in the PAMONO setup is usually operated at 30 fps, this is considered as
the soft real-time limit the VirusDetectionCL software should meet.

A somehow surprising result is that both CPUs, mobile and desktop, are not able
to achieve the necessary frame rate of 30fps. Even for the smallest image size of
1024 px x 128 px only frame rates of 16 fps and 23 fps could be obtained. This image
size is only half of the size needed in practice.
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To further inspect why the CPUs are not able to meet the soft real-time limit, the
kernel run times of the INTEL°CORE"i7-620M CPU has been measured individually.
Exemplary, the 1024 px x 256 px data set has been inspected. The total execution time per
frame is 118 ms, resulting in a frame rate of 8.5 fps. It has been found that the marching
squares algorithm, explained in Section 5.5, is one of the limiting factors. The marching
squares execution time varied from 9 ms to 239 ms with an average execution time of 30 ms.
However, not one single factor could be identified, the CPU is slower than the GPUs
for every single kernel. Simply put, a CPU is not the best architecture for fast image
processing.

By using the mobile NVS 3100M GPU, the soft real-time limit could be achieved for
image sizes up to 1024 px x 256 px. This is also surprising, as this GPU has only 16 SPs
and is therefore not very powerful. For the larger images a slightly more powerful GPU
would be needed as for these the 3100M only achieved 16 fps and 7.8 fps. For example, a
NVS 4200M with 48 SPs or a NVS 5200M with 96 SPs should be sufficient for the larger
images.

The results for the mobile GPU also demonstrate that the VirusDetectionCL algorithm
scale almost linear. Images with half of the size can be processed with a doubled frame
rate. Only for the smallest image size the frame rate of 53.7 fps is not doubled in relation
to the 32.6 fps of the 1024 px x 256 px images. However, this is due to the visualization in
VirusDetectionCL with enabled synchronization to the monitor. This bounds the frame
rate by the monitor refresh rate of 60 fps. The synchronization to the monitor has been
disabled in a later version of VirusDetectionCL but still present in these experiments.

For the desktop GPUs GTX 480 and GTX 560 Ti, the soft real-time limit could be
achieved in all but one setup. Only the GTX 560 Ti is not able to process the biggest image
size in more than 30 fps. This might be because the 560 Ti has less memory bandwidth than
the GTX 480. For all other combinations of desktop GPU and image size, the 30 fps could
be exceeded easily. The entries with 53.7 fps are also bound by the vertical synchronization
in the visualization. Therefore, two more experiments without visualization are performed.
The last two rows in Table 7.2 show results for the desktop GPUs without visualization.
However, the visualization with synchronization to the monitor refresh rate is not the
only limiting factor. The desktop GPUs also exceeds the performance of the CPU image
decoding pipeline, which is used to load and decode the images for the analysis. As a
result, the maximum frame rate that could be measured in the experiments is 161 fps. In
the table the values are labeled accordingly, indicating if the frame rate is limited. If a
camera is used, the loading from the hard drive and the decoding are not needed. The
frame rates of 80.5fps are also limited by some factor, this has not been inspected any
further as such fast processing is currently not needed.

The results for the 1024 px x 1024 px images with desktop GPUs and without visualiza-
tion show that both desktop GPUs are more powerful than needed for the VirusDetectionCL
pipeline processing PAMONO sensor images within the soft real-time limit: both GPUs
reach more than 80 fps. Usually, the frame rate is limited by the camera. If however
recorded images are processed, a higher frame rate is useful, as experiments can be
performed faster.

For the LENOVO "T510 laptop, a comparison of the energy consumption of GPU
processing to CPU processing is shown in Figure 7.6. The energy consumption was
measured for the processing of 160 frames of 1024 px x 128 px, 1024 px x 256 px, and
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Figure 7.6: Energy consumption of a laptop system for the processing of 160 PAMONO
images of different sizes. Processing on a mobile INTEL®i7-620M CPU
compared to processing on a mobile NVIDIA®3100M GPU. Based on data
from [LST+13a.

1024 px x 512 px sized PAMONO images on the 620M CPU and on the 3100M GPU.
With help of the GPU, the energy consumption could be reduced by a factor of 3.74: with
processing on the CPU the whole system consumes 934.4J and with processing on the
GPU it consumes 249.6 J. Similar results were obtained for 1024 px x 128 px images and
1024 px x 512 px images.

The energy consumption, while processing the PAMONO sensor images on the laptop,
is 50 W h in average. With the battery capacity of 8.4 Ah and the operating voltage of
11.1V, this leads to two hours continuous processing depending on internal and external
conditions. As a result, 24 to 60 samples can be processed without recharging for a typical
length of two to five minutes for one data set.

7.4.4 Summary and Conclusion

In this section a manually performed DSE has been performed as preliminary experiments
toward an automatic DSE as in Section 7.5. It could be shown that with a fixed parame-
terization and a limited number of target platforms a manual DSE can be sufficient to
identify suitable hardware for a given software.

All raised research issues could be answered. The energy consumption could be
integrated in the DSE by evaluating the software several times on the target laptop
running on battery and logging the battery status with the LINUX®SYSFS interface. These
measurements show that processing of the PAMONO images on the GPU is not only
faster than a processing on the CPU but also more energy efficient.
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A surprising result is that the NVIDIA®3100M GPU with only 16 SPs is sufficient to
meet the soft real-time constraints of the VirusDetectionCL software. However, it could
also be shown that both inspected CPUs were not sufficient to meet this constraint. At
least for this experiment the processing on the GPU is not only faster but also more energy
efficient for the processing of PAMONO images.

To conclude, with this manually performed DSE provided several valuable insights.
The energy consumption and execution time on a laptop system can be reduced at the
same time if the GPU is used for processing. A mobile GPU is suitable to enable a fast
processing of PAMONO data with VirusDetectionCL. And CPUs are not useful to process
such image processing tasks. These insights motivate the automatic DSE method in the
following section.

7.5 Single-Objective Energy-Aware Hardware Design Space
Exploration with SOG-DSE

In this section a single-objective energy-aware DSE for GPU architectures is presented. The
method is called SINGLE-OBJECTIVE GPGPU DESIGN SPACE EXPLORATION (SOG-DSE).
The approach is based on SOG-PSE in Section 7.3.

The number of transistors in GPUs is increasing from generation to generation. The
NVIDIA®GEFORCE"GTX Titan [NVI15d] for example has 7.1 billion transistors, twice
as many as an NVIDIA®*GEFORCE"GTX 680. Currently still the Moore’s law [Mo098]
holds. The number of transistors is raising exponentially. Numerous challenges arise from
this ongoing trend.

With SOG-DSE it is possible to explore existing and not yet existing GPU hardware
under practical conditions in order to identify suitable GPUs for given programs. GPUs or
entire GPU architectures can be simulated using a parametric GPU model. The advantage
of simulating GPUs is that no actual hardware needs to be bought and measured. Extensive
testing of different hardware is expensive and time-consuming and sometimes not even
possible, e.g., if the desired GPU architecture is not yet available on the market.

The output of SOG-DSE is a Pareto front, cf. Definition 51, of best suited GPUs
for a chosen objective. Available objectives are power consumption, energy consumption,
number of core cycles, and execution time. Overall, it is possible to identify GPUs that
fulfill the requirements of a system without the need to switch hardware and before the
GPUs are bought or even exist.

If best suited GPU hardware should be identified for a given GPGPU program the
execution time is often the only objective that is considered. However, taking power or
energy consumption into account is becoming increasingly important [RSR+08; MWI+12;
LHE-+13]. For example, Leng et al. are arguing that to explore new GPU architectures,
tools are needed to optimize the energy consumption of GPUs [LHE+13]. With the manual
DSE in the previous section it could be shown that the use of GPUs can be more energy
efficient than the use of CPUs only. This has also been shown by Rofouei et al. [RSR+08].

The following research issues are considered in this section:

e How can suited GPU hardware for a given GPGPU program be automatically
explored?
e How can GPU architectures be explored efficiently?
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The structure of this section is as follows. First, an introduction to GPGPU-SIM is
given in Section 7.5.1. The extensions made on GPGPU-SiMm are presented in Section 7.5.3.
The power model GPUWATTCH, which can be used in conjunction with GPGPU-S1M, is
explained in the Section 7.5.2. Afterward, the methods for SOG-DSE are presented in
Section 7.5.3, followed by the description of the experiments in Section 7.5.4. Finally, the
section concludes with results, discussion, summary, and conclusion in Section 7.5.5 and
Section 7.5.6.

This section is based on the author’s publications [LSW14; LMS+14].

7.5.1 GPGPU-Sim Simulator

For SOG-DSE, simulation of GPGPU task should be made possible. Therefore, a GPU
simulator is integrated into the DSE method. As suitable simulator, the state-of-the-art
GPU simulator GPGPU-Smm [BYF+09] has been chosen. GPGPU-SIM is a simulator
for NVIDIA®GPUs, developed by Bakhoda et al. at the University of British Columbia.
GPGPU-S1M is a cycle accurate simulator, which simulates PARALLEL THREAD EXECU-
TION (PTX) and SOURCE AND ASSEMBLY (SASS) GPGPU code.

The input of GPGPU-SiM is PTX or SASS code of the GPU program and an actual
execution of the host code of this GPU program. Because for both OpenCL and CUDA the
high level code is translated to PTX and SASS code by the NVIDIA®driver, GPGPU-Sim
can run OpenCL code as well as CUDA code-based on the PTX or SASS code.

The output is the total GPU simulation cycles Cgpy and the number of operations,
memory reads, memory writes, and memory row buffer activations. Additionally, the
output contains activation factors «; with ¢ € {1,..., N} for each of the NN ¢ N GPU
components. With the additional outputs the power and energy consumption of the GPU
can be estimated with an additional GPU power model.

In the following a basic introduction to GPGPU-SiM should be given. As the CUDA
architecture and the OpenCL architecture model are very similar, only the already
introduced terminology and architecture of OpenCL from Section 4.1 is used in this section
instead of a mixed OpenCL and CUDA terminology. To briefly link the most important
terms, a grid is the same as the global index space, a cooperative thread array is the same
as a work group, and a thread is the same as a work item that is currently executed.

To repeat the GPU architecture, generally a GPU consists of SMPs and the global
memory, each SMP contains SPs and local memory. Several work items can be executed
on the SPs. The work items are grouped in a work group.

Broadly speaking, in GPGPU-SiMm an SMP is modeled with an SIMD pipeline that
contains the SPs, a warp scheduler that selects the warps of the work group which should
be executed on the SIMD pipeline, and a set of miss-status holding registers. The global
memory is modeled with several memory modules of DRAM memory. Each memory
module is driven by a memory controller. All memory controllers are connected via an
interconnection network to the SMPs. [BYF+09]

In more detail, an SMP contains an SIMD pipeline. A work group is scheduled to
an SMP. The work group is divided into warps. A warp is then scheduled to the SIMD
pipeline. The work items in the warp cooperate and execute the same instruction. The
pipeline is a 24 stage pipeline and consists of six logical stages: fetch, decode, execute,
memoryl, memory2, and writeback. The stages fetch, decode, and writeback are the same
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for all SPs because of the SIMD paradigm: all work items execute the same instruction
but on different data. The width of the pipeline depends on the architecture. For example,
the width is 8 for some NVIDIA®GPUs. All threads from one warp are processed with
groups of the size of the width of the pipeline one group after the other until the warp is
complete. Then the next warp is processed. [BYF+09]

The local memory is modeled as on chip memory that is shared by a work group.
This memory is, e.g., 16 kB in size, has a low latency and is structured in memory banks,
cf. Section 4.1. The global memory is modeled with several memory modules of DRAM
memory with a cache for global texture memory and global constant memory on every
SMP. [BYF+09]

To access global memory, constant memory, and per-thread off chip memory that is
currently not cached, each SMP contains so called miss-status holding registers. With these
registers many outstanding memory requests can be handled. Such a hardware support for
cache misses is essential for a massive parallel hardware like GPUs. For GPUs a far larger
number of outstanding memory requests need to be handled than for CPUs. [BYF+09]

It should be noted that, for NVIDIA®GPUs, the per-thread off chip memory is equal
to global memory that is only used by one thread. This memory is called local memory
in the CUDA terminology and is used, e.g., if there are not enough registers to hold the
private variables of the threads. This behavior is called register spilling and should be
avoided. [NVI0O9b]

For memory coalescing, the combined access of several threads to the global memory
as explained in Section 4.1.3, the memory accesses of up to a half warp of threads can be
combined. This is modeled in GPGPU-SiM. An intra-warp memory coalescing is also
modeled where memory accesses of up to a warp of threads can be combined. [BYF+09]

The interconnection network is modeled with memory controllers that are distributed
over the chip. Each memory controller is connected to two chips of the GRAPHICS DOUBLE
DatA RATE (GDDR) memory. Not every SP is connected directly to a memory controller.
For some of them the routing needs to be done through another SP. A 6 x 6 layout is used,
where 28 SPs are combined with 8 memory controllers. [BYF+09]

A loose round robin scheduling is used to select warps for the execution on the SMPs.
If enough warps are issued to an SMP, the long latency of the global memory accesses can
be hidden. [BYF+09]

To sum up, GPGPU-SIM is a cycle accurate simulator that can simulate PTX and
SASS code. Tt uses a detailed GPU model that has been developed for NVIDIA®GPUs.
The power model GPUWATTCH, which can be used in conjunction with GPGPU-S1M, is
explained in the following.

7.5.2 GPUWattch Simulator

GPUWATTCH [LHE+13] by Leng et al. is a power model for GPUs. The input of GPU-
WATTCH is a utilization of the hardware elements in the GPU and a description of the

GPU architecture. The output is then a detailed information about the power consumption
of the GPU.

GPUWATTCH can be tightly coupled with GPGPU-SiM. In this approach GPGPU-
SiM is used to determine utilizations of the different hardware elements of the GPU by
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simulating an actual workload. Based on these statistics GPUWATTCH can estimate the
power consumption of GPUs.

To estimate the power consumption, GPUWATTCH integrates the two tools MUL-
TICORE POWER, AREA, AND TIMING (McPAT) [SAS+09] and CACTI-D [TAM+08].
MCcPAT is used to model the power consumption of different circuits on the GPU. McPAT
was developed by Sheng et al. at IBM®. Because some of the GPU components are
considerably different from the components in CPUs, McPAT has been modified by Leng
et al. [LHE+13] to be able to model all GPU components. In addition, CACTI-D is used
to model the power consumption of the GPU memory. CACTI-D has been developed by
Thoziyoor et al. and is based on CACHE ACCESS AND CYCLE TIME MODEL (CACTI).

In the following an overview of how the power consumption of an GPU is calculated in
GPUWATTCH is given from coarse to fine. Overall, the estimated total power consump-
tion Pgpy of the GPU is modeled as a sum of static and dynamic power consumption
as [LHE+13]

ﬁGPU = Fstatic + jjdynamic- (7-3)

The estimated static power consumption ﬁstatic consists of [LHE+13]

Pstatic = Pprocileakage + Pmemileakage + PVRM + Pperipheralsa (74)

with P'pmcileakage as the leakage power of the processor, P'memileakage as the leakage power
of the main memory, Pyry as the power of the VOLTAGE REGULATOR MODULE (VRM),
and ?peripherals as the circuit power of all peripherals.

The dynamic power consumption ?dynamic is calculated as [LHE+13]

denamic = Pprocidynamic + Pmemfdynamim (75)

with Pproc dynamic as the dynamic power consumption of the processing elements and
Prem_dynamic @s the dynamic power consumption of the main memory.

The dynamic power consumption of the processing elements, Pproc dynamic is modeled
with activation factors for each of the components [LHE+13]

N

j‘jprocidynamic = Z 7 ﬁ?axa (76)
=1

with «; as an activation factor and fjinax as the peak power consumption of the i-th
processing component. The processing elements include the SMPs with the SPs, instruction
caches, L1 caches, texture caches, caches for constant memory, the memory coalescing
logic, the shared memory, shared memory banks, shared memory crossbar network, register
files, operand collectors, operand collection crossbar network execution units, floating
point units, and special function units. The activation factors a; € [0,1] are calculated by
GPGPU-SiM and the peak power consumption for the different components is calculated
with McPAT.

The dynamic power consumption of the memory, ﬁmem_dynamic, is modeled using
the counts n. and an energy approximation E, for the pre-charges (charge), row buffer
activations (rb_act), reads (read), and writes (write) of the GPU memory as [LHE+13]

51 _ Ncharge * Echarge + Nrb_act * Erbiact + Nread * Eread + Nwrite Ewrite
Pmemfdynamic = ) (77)
Tcpy
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Figure 7.7: Schematic of the architectural design of SOG-DSE.

with T'qpyu as the execution time.

The count of memory accesses are determined with GPGPU-SiM, same as for the acti-
vation factors. For the energy consumption of the GPU memory, the memory controller, the
on-chip memory controller, and the interconnection network McPAT is used. Array struc-
tures are modeled with CACTI-D. For the remaining memory components an empirical
model is used. For the overall remaining uncertainties, GPUWATTCH has been calibrated
using micro benchmarks, which stress certain components of the GPU. Additionally, false
assumptions can be compensated to a certain degree with this calibration. [LHE+-13]

Finally, GPUWATTCH has been verified with measurements on actual hardware. The
averaged modeling error for the inspected GPUs was 15.0% and 16.2 % for the micro
benchmarks and 9.9 % and 13.4 % for full benchmarks. [LHE+13]

7.5.3 Methods

In the following the methods for SOG-DSE are presented. As the SOG-DSE approach is
based on the SOG-PSE approach in Section 7.3, the focus is on the differences between
these methods. The main difference to SOG-DSE is that GPGPU-SiM and GPUWATTCH
are integrated to enable a DSE of GPUs. Additionally, the handling of hardware related
parameters and the calculation of hardware related fitness values is an important aspect
of SOG-DSE.

First, the architectural design of SOG-DSE is shown. Then the integration and
extension of GPGPU-SiM, the integration of GPUWATTCH, and the calculation of the
fitness values is described. Followed by the modeling of dependencies in the design space.
Finally, an extension of VirusDetectionCL is made to enable the access of hardware
parameters.
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Architectural Design of SOG-DSE

Figure 7.7 shows a schematic of the SOG-DSE approach. In contrast to the SOG-PSE, cf.
Figure 7.3, a GPU simulator and a GPU compiler are added. The GPU configurations
that should be optimized are provided as parameters and stored in the GPU configurations
database. The evaluation manager provides the GPU configurations to the EA. Within
the fitness evaluation the GPU simulator is used and the needed GPU code is compiled
by the GPU compiler. The GPU compiler to compile OpenCL and CUDA code can be
provided, e.g., by an installed GPU driver software of the host system.

Integration and Extension of GPGPU-Sim

To enable the simulation of GPUs for GPGPU processing, the GPGPU-SiM simulator,
cf. Section 7.5.1, is integrated into SOG-DSE. GPGPU-S1M can simulate the execution of
OpenCL and CUDA programs on different GPUs.

The integration of GPGPU-SiM into SOG-DSE works as follows. First, GPGPU-Sim
is installed on the evaluation machine, which has only to be done once. Second, the
GPGPU-SiM parameters are set up. Third, the OpenCL or CUDA code of the GPGPU
program that should be evaluated is compiled to PTX code by an NVIDIA®driver. Fourth,
the GPGPU-Sim library is linked to the GPGPU host program that should be run.
Hence, each GPU related call is redirected to the GPGPU-Sim library instead of the
GPU library and the GPU. Fifth, the GPGPU program is executed. Finally, the results
from GPGPU-SIM are used to calculate the necessary fitness values.

In order to make this integration work, some extensions and modifications had to be
done on GPGPU-S1iM, which are listed in the following. First, the OpenCL APPLICATION
PROGRAMMING INTERFACE (API) of GPGPU-SIM has been modified and extended. This
includes the adding of a few missing OpenCL API calls, missing cases within the calls,
and correction of wrong function signatures. Also, one API call was not fully implemented
according to the OpenCL specifications. According to the specifications a work group
size can be determined automatically by the OpenCL driver if it is not provided. One
evaluated program did make use of this missing feature and therefore did not run. The
feature has been added by automatically choosing the work group size in each direction as
the maximum possible power of two that also divides global work size without remainder.

Second, GPGPU-SiM offers the remote compilation of OpenCL and CUDA code.
This is especially useful if a compute server without GPUs is used to do the calculations.
However, GPGPU-SIM does not offer to reuse the PTX code that has been compiled by
a remote computer. The remote compilation uses a lot of time and SOG-DSE performs
several runs of GPGPU-S1M on the same OpenCL program. Therefore, GPGPU-SiM has
been extended to save and reuse the PTX code once it has been compiled. This speeds up
the evaluation especially if several threads on the compute server use the same remote
computer for compilation.

Third, as SOG-DSE can evaluate several hundred GPU configurations and not every
configuration is guaranteed to be valid, a mechanism of detecting software freezes of
GPGPU-SIM has been added. Every few minutes a file is written with the current status
of GPGPU-SiM. This can be checked from outside of GPGPU-Sim and GPGPU-S1im
can be canceled if a problem is detected. This keeps the overall evaluation running
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even if single runs fail. Each run that did not complete is logged with the current GPU
configuration for further debugging.

Fourth, the output of GPGPU-SIM has been modified to provide a file output with
all needed statistics and not only a system out text output.

Sixth, the output on the system out of GPGPU-SIM has been reduced to a minimum
to speed up the remote evaluation.

Finally, during the extension of GPGPU-SiM also a few bugs were found in the code.
Bug fixes, missing OpenCL API calls, missing cases within the API calls, correction of
wrong API function signatures, and the missing automatic work group calculation have
been provided to the authors of GPGPU-SiM.

Integration of GPUWattch

In order to make SOG-DSE energy-aware, GPUWATTCH, cf. Section 7.5.2, is integrated
into SOG-DSE. GPUWATTCH calculates the estimated energy consumption based on
an architecture model and a utilization of hardware elements. As GPGPU-SiM and
GPUWATTCH are build to work as one unit, the integration of GPUWATTCH is relatively
straight forward.

First, GPUWATTCH is installed on the evaluation machine, which has only to be done
once. Second, GPGPU-SIM is configured to use GPUWATTCH. Third, the GPUWATTCH
parameters are set up. Fourth, the GPGPU program is executed with GPGPU-SiM. The
output from GPGPU-SiM is automatically used as input for GPUWATTCH and afterward
the output of GPUWATTCH is calculated. Finally, the results from GPUWATTCH are
used to calculate the necessary fitness values.

The only difficulty is to keep the parameters for GPGPU-SiM and GPUWATTCH
consistent. Both programs use a different parameter representation and also slightly
different names for the parameters. To solve this, the needed GPGPU-SIM parameters
and the GPU configuration is automatically extracted from the databases by SOG-DSE,
modified accordingly, and provided to GPUWATTCH.

Calculation of the Fitness Values

For the seamless integration of the results from GPGPU-SiMm and GPUWATTCH, SOG-
DSE automatically calculates several fitness values from the output of GPGPU-Sim and
GPUWATTCH. GPGPU-SIM provides the needed cycles Capuy for the evaluated GPU
program and GPUWATTCH provides the estimated power consumption Papy. From these
two values the fitness values execution time, and energy consumption are calculated as
described in the following.

The execution time T'qpy is calculated with the known shader clock rate S and the
number of cycles Capu:

~ C
Tgpu = C;PU : (7.8)

With the execution time Tgpy, the energy consumption FEapu can be calculated:

Egpu =Tapu-Tapu. (7.9)
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Table 7.3: Evaluated FERMI GPU architectures. For each architecture the number of
SMPs, number of SPs, clock rates, and DRAM type are listed. Adapted
from [LSW14; LMS+14].

Architecture SMPs SPs Core clock DRAM DRAM clock
GF-108 1-2 48,96 700-810 MHz GDDR-3 400-450 MHz
GF-106 3-4 114,192 590-790 MHz GDDR-5 450-1000 MHz
GF-104 6-7 288,336 650-675 MHz GDDR-5 850-950 MHz
GF-100 11-15  352,384,416,448,480 610-780 MHz GDDR-5 800-1000 MHz

Modeling of Dependencies in the Design Space

One difficulty for the evaluation of different GPU architectures is that not all parameter
combinations map to valid GPUs. If this is not considered in the evaluation, not existing
GPUs can be identified as best suited with respect to the evaluated objectives. Thus,
dependencies need to be modeled appropriately.

As an example, the four NVIDIA®FERMI "architectures [NVI09a] from Table 7.3 shall
be considered. These are also used for the experiments in Section 7.5.4. Four different
classes of FERMI "architectures are listed in the table, namely: GF-108, GF-106, GF-
104, and GF-100. The different configurations from these architectures corresponds to
nine actual NVIDIA®GPUs that are available in the market, namely: GEFORCE"GT
420, GEFORCE"GT 430, GEFORCE"GT 440, GEFORCE"GTS 450, GEFORCE™ GTX 460,
GEFORCE"GTX 460 SE, GEFORCE"GTX 465, GEFORCE"GTX 470, and GTX 480. The
four architectures and which actual GPU uses which architecture is explained in the
following. A special case is the GEFORCE"GT 440 since it is available both with the
GF-108 and GF-106 architecture.

The GF-108 architecture has only one or two SMPs with 48 or 96 SPs in total but can
be clocked at the highest core clock rate of up to 810 MHz. For the DRAM only GDDR-3
is available, which is also clocked with the lowest DRAM clock of 400 MHz to 450 MHz.
The actual NVIDIA®GPUs in the market from this architecture are GEFORCE"GT 420,
GEFORCE"GT 430, and GEFORCE"GT 440.

The GF-106 architecture has three or four SMPs with 114 or 192 SPs in total. For the
DRAM it uses the faster GDDR-5. The GPUs from this architecture are GEFORCE" GT
440 and GEFORCE"GTS 450.

The GF-104 architecture has six or seven SMPs with 288 or 336 SPs. The GPUs from
this architecture are GEFORCE"GTX 460 and GEFORCE"GTX 460 SE.

Finally, the GF-100 architecture, the most powerful of the four, contains 11 to 15 SMPs
with up to 480 SPs in total. The core clock rate is in a range of 610 MHz to 780 MHz and
the GDDR-5 DRAM is clocked in a range of 800 MHz to 1000 MHz. The GPUs from this
architecture are GEFORCE" GTX 465, GEFORCE"GTX 470, and GTX 480.

It is not feasible to optimize for the complete parameter space that is spanned by
the ranges 1 to 15 SMPs, 48 to 480 SPs, a core clock of 590 MHz to 810 MHz, GDDR-3
or GDDR-5 memory, and a 400 MHz to 1000 MHz DRAM clock. The useful parameter
space is much smaller than this as several dependencies exist. As an example, for GF-108,
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GF-106, and GF-104 each SMP contains 48 SPs. For GF-100 each SMP contains 32 SPs.
As a consequence, a GF-104 GPU with 6 SMPs and 192 SPs does not exist.

The solution for modeling of dependencies in the design space is to define two design
spaces: a larger design space without dependencies and the actual design space for which
all dependencies are considered. Solutions for the larger design are easy to generate. These
solutions are then mapped to the actual design space. This is done by a nearest neighbor
matching of new parameter sets to the nearest valid parameter set. In more detail, a k-d
tree is build for the actual search space. For new parameter sets invalid configurations are
allowed and not prevented. Each new parameter set is then matched to the nearest valid
parameter set in the k-d tree. As distance measure, a normalized Euclidean distance is
used.

One drawback of this method is that the tree size grows quickly for larger design
spaces. Additionally, first generating not valid parameters and then matching to a valid
parameter set also introduces overhead that can be prevented if no invalid parameter sets
are generated in the first place.

Extension of VirusDetectionCL to Provide Hardware Parameters

VirusDetectionCL has been extended to enable access to hardware parameters of the
OpenCL program. This includes the size of some memory buffers, access to hardware
optimization options of the OpenCL compiler, and individual access to all work group
sizes of every kernel.

The memory sizes and the parameters for the OpenCL compiler are simply made
available as parameters whereas the work group sizes are more difficult to handle. These
are usually provided as constants in a header file. For the host code these values can be
variable but for the OpenCL code they are often required to be constant and cannot be
changed at runtime. This is because often some array sizes depend on these values and
the array sizes in OpenCL need to be constant and known during compilation. Therefore,
it is not possible to change these values after compilation.

The solution to this is to change these values and afterward compile the GPU code
again. While the device code can be compiled fast at runtime, a compiling of the host
program takes longer and should be avoided. Therefore, the same header file with the
work group sizes that is provided as device code is loaded and parsed dynamically at
runtime by the host program. As a result, the usually fixed sizes for the work group sizes
in the header file are made variable.

7.5.4 Experiments

For the SOG-DSE method the experiment EXP4gygray has been conducted. Within this
experiment the most energy efficient GPU architecture and GPU configuration for different
programs should be identified.

Different NVIDIA®FERMI " architectures are used as target architectures. Namely, the
architectures GF-108, GF-106, GF-104, and GF-100 as shown in Table 7.3. Each of these
four FERMI "architectures is available in different hardware configurations: The number of
SMPs varies from 1 to 15 and the number of SPs in a range of 48 to 480. The core clock
rate varies from 590 MHz to 810 MHz. The GF-108 GPUs use GDDR-3 memory with a
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Table 7.4: Evaluated programs for the single-objective optimization from benchmark
suits CUDA-SDK, GPGPU-S1M, and RopINIA. Adapted from [LMS+14].

Suite Program Language Description

CUDA-SDK  QUASIRANDOMGEN OpenCL  Random number generator

CUDA-SDK MATRIXMUL OpenCL  Parallel matrix multiplication
CUDA-SDK  VECTORADD OpenCL  Parallel vector addition
GPGPU-Sim  AES CUDA AES encryption algorithm
GPGPU-Sm CP CUDA Calculation of the Coulomb
potential physics simulation
GPGPU-Sim LPS CUDA Laplace discretization on a 3D
structured grid
GPGPU-Sim  RAY CUDA Raytracing simulation for ren-
dering of light effects
GPGPU-SiM STO CUDA MD5 hash calculation
Robinia BACKPROP OpenCL  Back propagation algorithm in
neural networks
RobiNiA HOTSPOT OpenCL  Processor temperature physics
simulation
RobiniA KMEANS OpenCL  K-Means clustering algorithm
RobiniA GAUSSIAN OpenCL  Gaussian elimination for solv-
ing systems of linear equations
RobDINIA NN OpenCL  Nearest neighbor location cal-
culation on hurricane data
Ropinia NW OpenCL  Needleman-Wunsch nonlinear
global optimization on DNA
sequences

clock rate of 400 MHz to 450 MHz and the other architectures use GDDR~-5 memory with
a clock rate of 450 MHz to 1000 MHz.

Programs from three different benchmark suites are used for the evaluation to show
the generality of SOG-DSE: the CUDA SOFTWARE DEVELOPMENT KIT (SDK) [NVI15¢]
by NVIDIA®, GPGPU-Simm [BYF+09] from Bakhoda et al., and RopiNia [CBM+-09]
from Che et al. The benchmarks and the evaluated programs from the benchmarks are
listed in Table 7.4 and are explained in the following.

The NVIDIA®CUDA SDK contains a set of CUDA and OpenCL benchmarks, for
example, price prediction of options, a hidden Markov model, a random number generator,
a sum reduction on large arrays, or a parallel matrix multiplication. The benchmark
programs are highly optimized for GPUs. The GPGPU-SiM benchmarks provide a wide
range of applications from different authors, for example, encryption, graph traversal,
physics simulation, neural networks, or weather prediction. All benchmark programs from
GPGPU-SM are only available for CUDA devices. RODINIA consists of several parallel
programs from a wide field of application and from different authors: image processing,
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Figure 7.8: The most energy efficient GPU configurations for different programs (cf.
Table 7.4). The name of the identified GPU is provided in brackets. As
baseline the NVIDIA®GTX 480 with GF-100 architecture is shown. Evalu-
ated for the architectures GF-108, GF-106, GF-104, and GF-100. Adapted
from [LMS+14].

medical imaging, bioinformatics, physics, data mining math, pattern recognition, and
others. Parallel implementations for CUDA, OpenCL, and OPEN MULTI-PROCESSING
(OpenMP) are available.

Short descriptions of the programs are provided in Table 7.4. For example, the program
HOTSPOT is a well known physics simulation of heat distribution on CPUs. The Nw
program uses a Needleman-Wunsch algorithm to calculate the similarity of two DNA
sequences and finding the best alignment of these two sequences. GAUSSIAN refers to the
Gaussian elimination algorithm, used for solving systems of linear equations. MATRIXMUL
is a highly optimized parallel matrix multiplication and CP is a physics simulation for the
calculation of the Coulomb potential.

The evaluation was performed on a compute server with four AMD OPTERON 6272
CPUs and 256 GB RAM with DEBIAN "LINUX®as host operating system. Each of the
OPTERON "CPUs has 16 cores, resulting in 64 cores in total. Because the GPUs were
simulated, the compute server did not need to have GPU hardware installed. As guest
operating system LINUX®UBUNTU'12.10 for servers was used, which has been executed in
a KERNEL-BASED VIRTUAL MACHINE (KVM) on the host.

7.5.5 Results and Discussion

The results for experiment EXP4pyeray, the single-objective evaluation of the benchmark
programs, are shown as bar plot with the configurations of the single-objective evaluation
in Figure 7.8. The first entry shows the baseline GPU configuration with a GTX 480 GPU
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with GF-100 architecture. Afterward, the most energy efficient GPU configurations for
thirteen programs are shown. The programs QUASIRANDOMGEN to Nw are listed and
described in Table 7.4. Each shown configuration can be mapped unambiguously to the
architectures with help of Table 7.3.

Overall, the GF-100 architecture with the GPUs GEFORCE" GTX 465, GEFORCE"GTX
470, and GTX 480 shows to be the best for all but one inspected program. The actual
GPU and actual configuration of the GF-100 architecture varies for the programs. The
number of SMPs for the GF-100 architectures is in a range from eleven to fifteen, the core
clock in a range of 760 MHz to 780 MHz, and the DRAM clock in a range of 800 MHz to
1000 MHz.

The only program for which the GF-100 architecture has not been chosen is GAUSSIAN.
For this program the GEFORCE"GT 420 GPU with GF-108 architecture was the most
energy-efficient. This GPU has only one streaming multiprocessor, a low core clock of
700 MHz, and a low DRAM clock of 40 MHz. This indicates that the GAUSSIAN program
cannot fully utilize GPUs with more SMPs at least for the considered input size.

A surprising result is, that the most powerful GPU, the GEFORCE™GTX 480, has only
been chosen for MATRIXMUL and AES. And for both the DRAM clock is reduced. As a
result, actually no program uses the most powerful GPU configuration that was chosen as
baseline. This also indicates that a proper utilization of the GPU plays an important role.

The remaining GPU architectures GF-106 and GF-104 have not been chosen for any of
the programs. Except for the GAUSSIAN program, the more powerful GF-100 architecture
is a better choice regarding energy consumption.

7.5.6 Summary and Conclusion

In this section the SOG-DSE method has been presented. With SOG-DSE a single-
objective DSE of GPU architectures can be performed. For a given GPGPU program,
the best suited GPU architecture can be obtained. The objective can be number of
cycles, execution time, power consumption, or energy consumption of the inspected GPU
on the given workload. The GPU architectures can be simulated cycle-accurately with
GPGPU-SIM, and the power or energy consumption can be obtained with GPUWATTCH.

SOG-DSE has been evaluated on a variety of different programs from three different
benchmarks. Exemplary, four different FERMI" GPU architectures have been inspected.
The configurations of the four architectures result in eleven actual NVIDIA®GPUs.
Additionally, for each of the four architectures, a frequency scaling of the core clock and
DRAM clock has been inspected. As a result, the most energy efficient GPU configurations
have been identified for the given GPGPU programs.

For most of the programs, the GPU configuration with the fastest core clock speed
and highest number of SPs is also the most energy efficient. However, there is no general
rule for this as not all programs could make use of the maximum number of SPs or the
maximum clock speed. For one program a GPU with only very few SPs has been identified
as most suited. Overall, it could be shown that the SOG-DSE method can be used to
automatically identify well suited GPU architectures for given GPGPU programs.

In Section 7.6 the SOG-DSE method is extended toward a DSE of high performance
GPU architectures. And in Chapter 8 ideas from SOG-PSE and SOG-DSE are combined
to a hybrid PSE and DSE approach.
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7.6 Single-Objective Power-Aware Hardware Design Space
Exploration of GPUs for HPC Systems with SOG-DSE

In this section SOG-DSE is extended toward a DSE of GPU architectures of HIGH-PER-
FORMANCE COMPUTING (HPC) systems. High performance GPUs can be explored and
best suited GPU parameters like the core clock and DRAM clock can be obtained regarding
one or more objectives.

If a new HPC system should be equipped with GPUs, it would be beneficial to know
ahead, which type of GPU is the most power or energy efficient for the GPGPU tasks that
need to be solved while, at the same time, the desired processing speed can be achieved.
This knowledge is especially advantageous to design a system for green computing.

For HPC systems other objectives are of interest than for desktop systems. In addition
to the performance and energy consumption, the THERMAL DESIGN POWER (TDP) of an
HPC system is of importance. Either the cooling system of an HPC system needs to be
designed appropriately to the TDP or the GPU has to fulfill the constraint of a certain
maximum TDP.

In both cases it would be beneficial if the energy and power consumption of a GPU is
known in advance, especially if an HPC system is planned long ahead and the GPUs for
the system are not yet available on the market.

The following research issues are considered:

e Which performance measures are needed for HPC systems?
e How can typical server loads be modeled?

This section is based on the author’s publication [LSW14].

7.6.1 Motivation

In HPC systems more and more GPUs are integrated and used for calculations resulting
in GPGPU on HPC systems becoming more and more important [HTW-+10]. However,
choosing suitable GPUs is a difficult task as several, possibly conflicting objectives and
constraints need to be fulfilled.

In context of the PAMONO sensor use case HPC systems are important if the PAMONO
sensor is used as a mobile, hand-held device outdoors or in a hospital or at airports and
the images are offloaded to an HPC system for processing. Related scenarios are the cloud
computing scenario SCN4cpoup and the hospital scenario SCNSgogprrar, from Figure 7.2.
In both of these scenarios an HPC server is used to process PAMONO sensor images.

Especially for a mobile use, the energy consumption on a hand-held device should be
low to enable several measurements without the need to recharge the battery. To achieve
this offloading of work to an HPC system can be used in order to save energy on the device.
For a mobile use in hospitals or at airports, the energy consumption is not as crucial as
for a mobile outdoor use but with offloading, a fast processing speed can be achieved with
smaller and less powerful hand-held devices. In both use cases several PAMONO devices
can share one HPC server and the server can be used to not only process PAMONO sensor
data but also other tasks.
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In this section the server side of these scenarios is inspected and in Section 8.4 the
client side. Here, the HPC systems are evaluated for general use cases while in Section 8.3
the actual PAMONO use case is evaluated.

7.6.2 Methods

To extend SOG-DSE toward a DSE of GPUs for HPC, two extensions are necessary.
First, the introduction of new fitness values, which are especially suited for HPC. Second,
modeling of different server loads to simulate not only a single program.

The architectural design is the same as explained in Section 7.5.3. The modeling of
high performance GPUs is not part of this section but part of Section 8.3.

Calculation of the Fitness Values

In Section 7.5.3 it has been shown how the fitness values power consumption, energy
consumption, cycles, and execution time are calculated. Additionally, for HPC systems
also other objectives might be of interest. Therefore, five additional fitness values are
introduced: peak power consumption, cycles to power ratio, power to cycles ratio, energy
delay product, and power delay product.

For the TDP of a system, the peak power consumption P™ and the average power
consumption Pgpy are of interest. Both values can be received from GPUWATTCH.
GPUWATTCH uses McPAT and CACTI-D to calculate the peak power consumption
while the average power consumption is calculated with the activation factors calculated
by GPGPU-SiM. The peak power consumption is especially useful to determine the TDP
of HPC systems for GPUs that do not yet exist.

With the used cycles Cqpu, provided by GPGPU-SIM, and the estimated power
consumption ?GPU, cf. Equation (7.3), the cycles to power consumption ratio fitness value
can be calculated as

C
CyclesToPowerRatio = =11 | (7.10)
Papy

Analogously, the power consumption to cycles ratio fitness value can be calculated as
P/GPU

PowerToCycleRatio = ——. (7.11)
Capu

Another useful fitness value for HPC is the energy delay product, which permits
a weighting of energy consumption and execution time. The energy delay product is
calculated as [SCR+13]

EnergyDelayProduct = (Egpu)® - (Tapu)?, (7.12)

with «, 3 € R* as weights.
In the same manner the power delay product can be calculated as

PowerDelayProduct = (Pgpu)® - (Tapu)”, (7.13)

with «a, 8 € R* as weights.
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Modeling of Typical Server Loads

On an HPC system usually several applications are executed. Each application might have
different demands for the GPU hardware. This should be reflected in a DSE. Therefore,
SOG-DSE is extended such that it can model typical server loads by using the same
approach as for the optimization concerning several data sets in Section 7.2.4.

For each program a weighting factor can be defined. For P € N evaluated programs,
the weighted overall fitness value f € R for all programs can be calculated as the sum over
all weighted fitness values for each individual program as

P
f=> wy fp, (7.14)
p=1

with w, € R as a weighting factor for the p-th program and f, € R as the fitness value for
the evaluation of the p-th program. If no weighting factor is defined w,, is simply chosen
as % for each p.

7.6.3 Experiments

In HPC servers often simply the fastest GPU is chosen that fits the budget. However,
if the HPC system uses mainly the CPU for processing and the GPU is only used by a
few programs, the TDP of the GPUs can be more important than the speed. The overall
TDP of an HPC system influences how the power supply and the cooling of the system is
set up. If GPUs are integrated in an existing HPC system, they have to stay within the
overall TDP.

Therefore, the experiment EXP5powrr has been conducted that compares the fastest
GPU with power efficient GPUs. Specifically, the fastest GPU configuration of the
FERMI "architecture, an NVIDIA®GTX 480 GPU, has been compared to all other GPUs
with FERMI "architecture. The evaluated architectures are the GF-108, GF-106, GF-104,
and GF-100 as listed in Table 7.3. These GPU architectures are explored regarding their
power consumption.

An excerpt of four programs from the RODINIA benchmark is used: HOTSPOT, K-
MEANS, NN, and NW. A description of the programs is provided in Table 7.4.

The evaluation has been performed on a PC with four INTEL®Xeon E5-2690, each
CPU with eight cores, 64 GB RAM and WINDOWS™7 OPERATING SYSTEM (OS). An
INTEL®Atom D510 with UBUNTU"OS has been used as remote compiler for the OpenCL
code to provide the PTX code.

7.6.4 Results and Discussion

The optimized power consumptions for experiment EXP5powrr are shown in Figure 7.9 and
the corresponding optimized GPU configurations are shown in Figure 7.10. The optimized
results are in comparison to the NVIDIA®GTX 480 GPU with GF-100 architecture.

For HOTSPOT the GEFORCE™GT 420 GPU with GF-108 architecture has been found
to be best. The identified hardware configuration of this architecture uses 48 SPs, a core
clock rate of 700 MHz and a DRAM clock rate of 450 MHz. With this configuration the
power consumption has been reduced from 49.7 W to 11.5 W, which is a reduction by 77 %.
For NN the same GT 420 GPU with a slightly different configuration has been identified.
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Figure 7.9: The average power consumption for four different programs (cf. Table 7.4)
with the proposed method, compared to an NVIDIA®GTX 480 as baseline.
Evaluated for the architectures GF-108, GF-106, GF-104, and GF-100. Lower
values are better.

Only the DRAM clock rate is slightly lower. The power consumption for NN is reduced by
85 % for this configuration.

For the K-MEANS program a GEFORCE"GT 450 GPU with GF-106 architecture with a
configuration with 115 SPs and low clock rates has been identified with a power reduction
by 71 %.

Finally, for the Nw program a much faster GTX 470 GPU with GF-100 architecture
with 384 SPs has shown to be best but a configuration with low clock rates has been
identified. As the configuration for Nw is similar to the baseline, the power saving is only
18 %.

An interesting result can be found, by comparing the hardware configurations from
this section with the configurations from Section 7.5.5. For the power-aware optimization,
slower GPUs are identified in all cases, compared to the energy-aware optimization. The
power-aware hardware configurations use less SPs and a reduced core clock and DRAM
clock rate.

For example, for the HOTSPOT program a GT 420 GPU with GF-108 architecture
with only 48 SPs has been identified in the power-aware optimization and a GTX 465
GPU with GF-100 architecture with 352 SPs in the energy-aware optimization. Also, the
core clock is 700 MHz, compared to 780 MHz and the GDDR-3 clock rate is reduced to
450 MHz, compared to the 990 MHz of the GDDR-5 clock rate. The results for K-MEANS
and NN are similar. Surprisingly, the NW tool uses the same GF-100 architecture and
slightly more SPs in the power-aware optimization: 384 SPs, instead of 352 SPs. However,
the clock rates are reduced from 780 MHz and 990 MHz to 690 MHz and 800 MHz.
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Figure 7.10: The most power efficient GPU configurations for different programs (cf.
Table 7.4). The name of the identified GPU is provided in brackets.
Evaluated for the architectures GF-108, GF-106, GF-104, and GF-100.

Usually, the power-aware optimization should identify slow hardware as the most power
efficient hardware. But this is not true if the hardware demands of the software exceed
the capabilities of the slow hardware. The most important demands are to the local and
global memory. For example, some GPUs provide 64 kB local memory and others only
16 kB. If an OpenCL program uses 16 floating point values per thread and a work group
size of 16 x 16 threads, the 16 kB local memory is already fully utilized.

7.6.5 Summary and Conclusion

In this section a single-objective energy- or power-aware DSE for HPC systems has been
presented. SOG-DSE has been extended with the fitness values peak power consumption,
cycles to power ratio, power to cycles ratio, energy delay product, and power delay product.
These values are suited for HPC systems. The modeling of different server loads is another
extension of SOG-DSE.

The evaluation has been done with power consumption as objective. A surprising
result is that not always the slowest GPU with the least amount of SPs is identified as
the most power efficient GPU. As can be seen for the NW and K-MEANS program, the
hardware requirements of the software can limit the applicable design space.

This single-objective DSE for HPC systems is the basis for the multi-objective DSE for
HPC systems in Section 8.3. Usually, power consumption is not the only objective for HPC
systems. Performance and energy consumption are important and should be considered
both. During the performed evaluation, this limitation of SOG-DSE has become very
obvious. In the following all limitations of SOG-PSE and SOG-DSE are discussed.
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7.7 Limitations of SOG-PSE and SOG-DSE

The SOG-PSE and SOG-DSE approaches have some limitations. Some of these were
known during the design of the method and some did not become apparent until the
performance of the experiments or until new aspects got into focus of research.

The most important limitation is that both approaches can only handle one single
objective. This is well suited to optimize, for example, the detection quality or the energy
consumption for a given program. However, to optimize for both objectives first the
detection quality has to be optimized with SOG-PSE and then the energy consumption
with SOG-DSE or the other way round. But this two pass optimization does not necessarily
lead to a good result for both objectives.

A combined PSE and DSE for a hardware/software codesign is also not possible.
SOG-PSE and SOG-DSE can be used sequentially, first optimizing the software and then
the hardware parameters or vice versa, but this approach can prevent that an optimal
solution can be found.

Another important issue is that the simulation of GPUs is very time-consuming.
Running GPGPU programs on a GPU simulator can easily be by a factor of 4000 slower
than running them on an actual GPU. This has been observed during the experiments for
SOG-DSE. However, SOG-DSE lacks methods to speed up this time-consuming evaluation.

A related limitation is that distributed evaluation can be very important to achieve
reasonable evaluation times. This was also not obvious during the design of SOG-DSE
and is therefore not handled. If the evaluation is not distributed, the evaluation time is
quickly limited by the performance of a single computer. Effortlessly integrating other
available systems is not possible.

Additionally, the handling of dependencies in the design space has also not been solved
particularly well. Especially for GPU architectures several dependencies exist that need
to be modeled. Simply matching a parameter set to the nearest valid parameter set as in
SOG-PSE and SOG-DSE introduces overhead that can be prevented.

Finally, the evaluation of ESs is not supported with SOG-DSE. This has to be integrated
manually. The same applies to energy and performance measurements of actual GPU
hardware and the integration of offloading methods.

7.8 Summary and Conclusion of the SOG-PSE and SOG-
DSE Methods

In this chapter two methods have been presented, the single-objective PSE SOG-PSE and
the single-objective DSE SOG-DSE. Also, a manually performed DSE has been conducted
as a starting point for the automatic DSE methods.

The first method, SOG-PSE, is a single-objective PSE. This method can be used to
optimize parameters for a given program regarding several objectives. The experiments
provided valuable insights to the parametrization of the VirusDetectionCL use case. With
SOG-PSE better detection results than with manual tuning of the parameters have been
achieved. That the automatic SOG-DSE methods outperforms a manual tuning this
clearly has not been expected at all. This is a highlight and shows the advantages of the
SOG-PSE method.
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The experiments also led to the insight that a global optimization of the parameters
of VirusDetectionCL is needed as the parameters clearly influence each other. Simply
optimizing one pipeline step after the other always led to worse results than with the
global optimization.

Parameters for different noise sources and signal strengths could be explored automati-
cally. This also provided insights about the difficulty of the inspected noise sources and
how this noise is handled. It could be shown that the real sensor noise is more difficult to
handle than synthetically added Poisson noise.

A manual DSE has been performed on mobile and desktop CPUs and GPUs as prelim-
inary experiment for SOG-DSE. This manual DSE showed that for the VirusDetectionCL
use case, the use of a GPU on a mobile system not only made real time processing possible
but also saved energy compared to the use of the CPU only. This positive result motivated
the development of SOG-DSE.

The second method, SOG-DSE, is an optimization method for single-objective DSE
of GPU architectures. It integrates GPGPU-SiMm and GPUWATTCH to enable a cycle
accurate simulation of GPGPU programs and the application of the power model of
GPUWATTCH based on the utilization provided by GPGPU-SiM. GPU hardware can be
explored regarding several objectives such as energy consumption, power consumption,
execution time, number of cycles, cycle to power ratio, power to cycle ratio, energy delay
product, and power delay product. The seamlessly integration of simulation of GPUs into
an automatic DSE method is clearly a highlight of this work.

The first experiment with SOG-DSE identified energy efficient GPUs for programs
from three benchmarks suites. This includes also the actual GPU configuration with
number of SMPs, core clock, DRAM architecture, and DRAM clock. The integration
of simulation shows to be very beneficial as several GPU architectures can be explored
without buying of GPUs and costly measurements.

The second experiment explored high performance GPUs for an HPC system. SOG-
DSE can be used to model different server loads. Here, four programs were evaluated
regarding their power consumption on the selected GPU hardware and the optimized
GPU hardware has been compared to the fastest GPU. A surprising insight from this
experiment is that not always the slowest GPU is the most power efficient for a given
program. With this experiment also the need of a multi-objective DSE became clear. For
the practical problem of identifying a high performance GPU for an HPC, more than
one objective, e.g., performance, energy consumption, and maximum power consumption,
needs to be considered.

Overall, three of the five PAMONO sensor scenarios, cf. Section 1.1 and Figure 1.1, have
been considered in the performed experiments: the laboratory scenario with desktop and
laptop systems, the server part for the cloud computing scenario, and the local processing
part for the hospital and airport scenario.

The insights and learned lessons from this chapter strongly influenced the direction
of research in the following. Both, SOG-PSE and SOG-DSE are the foundation for the
multi-objective hybrid PSE and DSE approach that is presented in the next chapter. The
goal of this method is to combine the advantages of SOG-PSE and SOG-DSE without
their limitations.
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In this chapter the MULTI-OBJECTIVE GPGPU ENERGY-AWARE DESIGN SPACE
EXPLORATION (MOGEA-DSE) method is developed, which is a novel hybrid PSE and
DSE approach for the exploration of GPGPU programs and GPU architectures. This
approach combines PSE and DSE in one method, uses multi-objective optimization, is
energy-aware, and can be conducted with actual or simulated GPU hardware as target
systems. MOGEA-DSE can be used to optimize software and hardware parameters in a
hardware /software codesign manner.

A unique feature of MOGEA-DSE is that target architectures for HPC systems, desktop
systems, mobile systems, down to ESs can be explored. This makes it widely applicable as
the size of explored target architecture can be scaled depending on the particular field of
application. MOGEA-DSE is the most advanced PSE and DSE method within this thesis.

MOGEA-DSE is especially suited to explore CPSs, like those considered for the
PAMONO sensor use case, toward a wide variety of application scenarios. Different
application scenarios usually require well suited target hardware and a tuning of parameters
toward the objectives that are important in this case. With MOGEA-DSE software
parameters and target architectures can be automatically explored for several, possibly
conflicting objectives. Hardware and software of the CPSs are considered as a unit and
are explored jointly.

To show that MOGEA-DSE can be used to explore all kind of systems, it is evaluated
on various physical, biological, and industrial applications and for several different target
systems. The main focus is on the PAMONO sensor use case, as exploring CPSs for the
several PAMONO scenarios is especially challenging.

The following research issues are investigated in this chapter:

o Is it beneficial to combine the PSE and DSE methods to enable a hardware/software
codesign?

o How much energy and/or execution time can be saved if the hardware and software
parameters are optimized jointly?

e How can dependencies in the parameter and design space be handled properly?

e Can the time-consuming DSE of simulated GPUs be accelerated without losing
accuracy in the results?

e How can actual energy measurements be integrated?

e How can physical MPSoC hardware be explored?

e Can the demanding soft real-time limits of VirusDetectionCL be met on a small
hand-held device?

o (Can offloading of work to a server save energy or run time on mobile devices?

e How can approximate computing be used to save energy or execution time on ESs?

The structure of this chapter is as follows. Section 8.1 gives an introduction to MOGEA-
DSE followed by general methods and concepts in Section 8.2. Afterward, three DSEs
with MOGEA-DSE are presented: Section 8.3 presents a multi-objective DSE for different
medical and industrial applications, explored on simulated GPUs. Section 8.4 presents a
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DSE that integrates offloading using a mobile data connection. Section 8.5 presents a DSE
for actual and not simulated hardware. Finally, Section 8.6 summarizes and concludes
this chapter.

This chapter is based on the author’s publications [LMS+14; LKD+14; NLE+15].

8.1 Introduction to MOGEA-DSE

MOGEA-DSE is a method for multi-objective, hybrid PSE and DSE of GPGPU programs
with the possibility for hardware/software codesign and energy measurement of actual
and simulated GPU hardware.

The first important feature of MOGEA-DSE is the combination of the SOG-PSE and
SOG-DSE methods to a hybrid approach. This enables a hardware/software codesign of
architectures and software.

The second important feature is that GPU target architectures for HPC systems,
desktop systems, mobile systems, and ESs can be evaluated. This enables an exploration
of target architectures from the largest down to the smallest systems. With MOGEA-DSE
all target architectures for the PAMONO sensor use case can be explored.

The third important feature is that multiple objectives can be optimized and combined
with additional constraints. This includes the objectives execution time, number of
cycles, power to cycles ratio, cycles to power ratio, energy consumption, dynamic energy
consumption, energy delay product, dynamic energy delay product, power consumption,
dynamic power consumption, several quality measures for the VirusDetectionCL task, and
generic objectives specified by the user. For the constraints, for example, an execution
time limit can be defined to ensure that a soft real-time constraint can be met.

The fourth important feature of MOGEA-DSE is that offloading can be incorporated
and evaluated, e.g. the best stage to offload intermediate results to a server can be
determined automatically with respect to different objectives. If mobile and hand-held
devices are low on battery or are too weak to perform processing by themselves, offloading
of work to a powerful server or other devices nearby is useful.

The fifth important feature is that automatic measurements of actual systems can
be performed with MOGEA-DSE. Within SOG-DSE and for the previous experiments
for MOGEA-DSE only simulation is used. The measurements are performed for small
ESs because for these systems, an accurate evaluation of execution time and energy
consumption is especially important. Small errors in the simulation can cause the actual
systems to miss deadlines or to consume more energy than expected.

8.1.1 Motivation

The new aspects that are considered with the MOGEA-DSE method and are motivated
by the PAMONO sensor use case and the learned lessons from SOG-PSE and SOG-
DSE. First, a combination of PSE and DSE into one method. Second, exploration of
target architectures of all sizes, integration of multi-objective optimization, evaluation of
offloading, and integration of actual measurements and not only simulations of hardware.

The importance of multi-objective hardware/software codesign became clear during
the design of SOG-PSE and SOG-DSE and during the performance of the experiments for
SOG-PSE and SOG-DSE. With SOG-PSE and SOG-DSE, a PSE and DSE can only be
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performed one after the other. Although two objectives can be optimized, this proceeding
can make finding a global optimum impossible. For example, several parameter vectors
might produce an optimal result in the PSE but only a few vectors might produce an
optimal result for the considered hardware. If bad decisions are made in the PSE, the
parameters can not be changed in the DSE and the result can be far away from the global
optimum. With MOGEA-DSE the PSE and DSE are combined.

As have been shown in Section 4.1.3 to Section 4.1.5, for an efficient use of the GPU
several, possibly conflicting constraints have to be fulfilled and at least two levels of memory
hierarchy have to be considered. Consequently, an exploration of GPU architectures is not
an easy task.

The need for exploring GPU target architectures from the largest down to the smallest
systems became clear as new fields of use for the PAMONO sensor opened up with the
development of VirusDetectionCL. Not only a laboratory or hospital use became possible
but also a mobile use with laptops or ESs as target hardware and with the additional
possibility of offloading work to an HPC system. As a consequence, the same application
needs to be mapped to a variety of hardware each with other requirements.

The need of energy and performance measurements of actual GPU hardware became
important for ESs as target systems for VirusDetectionCL. GPU simulators might deviate
from actual hardware. For ESs small deviations between a simulation and the actual
hardware might play an important role, e.g., if the simulated system meets deadlines and
the actual system misses them or if the energy consumption of the actual system is higher
than of the simulated.

With the hybrid PSE and DSE, the need for distributed evaluation became obvious.
Evaluating several hundred configurations in a GPU simulator is time-consuming. With
distributed computing large design spaces can be explored in a reasonable time.

Overall, the MOGEA-DSE method combines the advantages of SOG-PSE and SOG-
DSE and resolves their most important limitations, cf. Section 7.7. Several new features
are integrated into MOGEA-DSE that enable the exploration of all considered CPSs for
the PAMONO sensor use case and also of many other applications.

8.1.2 Evaluated Scenarios

For the conducted experiments of MOGEA-DSE, all PAMONO scenarios from Section 1.1
and several industrial, biological, and physical use cases are considered. The evaluated
PAMONO scenarios are shown in Figure 8.1: SCN1pap, SCN2granp-srones SCN3Locar,
SCN4croup, and SCNSyesprrar- For each scenario different requirements to the software,
the QoR, and the GPU hardware have to be fulfilled.

For scenario SCN1y,,5, the laboratory use case, stationary, independent desktop systems
are used to process PAMONO tasks. The virus detection is done, e.g., for the development
of new drugs or to analyze samples that are sent to a laboratory. The main objective is
the detection quality. The detection quality has already been inspected in Section 7.3. In
this chapter the focus lies on identifying the best suited GPU hardware for these systems.

In scenarios SCN2granp-srone 10 SCNDHHospirar, PAMONO tasks are processed on
mobile devices indoors and outdoors. As an example, it is conceivable that the virus
detection is used as an early warning system for epidemics. In scenario SCN2granp-aronE
a stand-alone hand-held device is used for the processing of PAMONO tasks. All data
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Figure 8.1: Different scenarios for the PAMONO sensor use case inspected in this chapter.

has to be processed on the device. In scenario SCN3pgca, and scenario SCN4cpoup,
tasks can be partially or fully offloaded to other available devices. In SCN3y,ocay, they
are offloaded to other PAMONO devices in the area. An example is the deployment of
several devices in the same area and they form a local network to share resources. The
devices in the area might run on battery or have a power supply. For these two scenarios
the energy consumption on the hand-held devices is especially important while execution
time and detection quality are additional objectives. In SCN3y,ocar the offloading part is
exemplary evaluated for offloading to a device with a powerful GPU and a power supply.
The scenarios can dynamically change if new PAMONO devices are becoming available or
leave the area.

In scenario SCN4cyoup the cloud computing scenarios are shown. Mobile and hand-held
devices can offload work to the cloud to save energy. One or more servers are available
to process the offloaded tasks. Usually, the servers are processing different tasks and not
only PAMONO tasks. A mobile data connection is used to connect the mobile devices
to the cloud. Offloading to other devices in the area instead to the server is not part
of this scenario. However, if the connection to the server is lost, scenario SCN4coup
changes to one of the scenarios SCN2grsnp-arone OF SCN3[ocar depending on whether
other PAMONO devices are in the area and if they can be used as an offloading target
instead of the cloud.

In scenario SCN5yogprrar, the hospital or airport scenarios are shown. Different devices
are used, from ES, to laptops and desktop systems. A server is available for processing of
data from mobile or hand-held devices. The server is used to process several samples in a
short time and a fast local network is used, which is always available. The server part
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of these two scenarios has been evaluated in Section 7.6 but the evaluation is extended
further in this chapter.

In addition to the PAMONO sensor use cases, a wide variety of industrial, biological,
and physical applications are inspected for different scenarios. For a desktop system
as target architecture, this includes BLACKSCHOLES, HISTOGRAM, QUASIRANDOMGEN,
REDUCTION, MATRIXMUL, MERSENNETWISTER, and VECTORADD. For a mobile system
as target architecture, this includes AES, BFS, CP, LPS, NN, NQU, RAY, and STO.
And for an HPC system use case this includes BACKPROP, GAUSSIAN, HOTSPOT, NN, and
NW. For example, BLACKSCHOLES is a model for price prediction, QUASTIRANDOMGEN is
a random number generator, AES is an encryption algorithm, NN is a neural network
program on the GPU, and HOTSPOT is a temperature physics simulation for processors.
These applications are explained in more detail in Section 8.3.2, cf. Table 8.1.

8.2 General Methods and Concepts of MOGEA-DSE

In this section the general methods and concepts of MOGEA-DSE are introduced. This
includes the realization of important insights that were gained during the design of SOG-
PSE and SOG-DSE. First, an introduction to the architectural design of MOGEA-DSE is
given. Then methods for multi-objective optimization, parameter space and design space
representation, and handling of dependencies in the parameter space and design space
are presented. This is followed by a description of GPUSIMPOW and the extension of
GPUSmMPow, which plays an important role for MOGEA-DSE. Finally, the calculations
of the fitness values are shown.

8.2.1 Architectural Design of MOGEA-DSE

The overall philosophy of the architectural design of MOGEA-DSE is a centralized, modular,
and flexible main evaluation with an optionally decentralized quality evaluation. In the
main evaluation the decisions can be made on a global basis and at the same time, the
processing power of several heterogeneous systems can be used for the time-consuming
quality evaluation.

Figure 8.2 shows the general architectural design of the MOGEA-DSE approach
with a parallel local evaluation. The input of MOGEA-DSE consists of a definition of
the parameter and design space, the objectives, a quality evaluator, program and file
dependencies, program parameters, a configuration of the optimization, and the GPU
architecture. These inputs are held by the main evaluation in databases.

Within the main evaluation the central management of the hybrid PSE and DSE takes
place. The quality evaluation is strictly separated from the main evaluation. The main
evaluation consists of the optimization, an evaluation manager, a GPU code compiler, and
five databases for design space, dependencies, program parameters, GPU configurations,
and evaluated results.

The optimization cycle is based on a heavily modified version of A JAVA-BASED
EVOLUTIONARY COMPUTATION RESEARCH SYSTEM (ECJ) [LPB+14]. The cycle can be
set up as a simple, single-objective GA or as a multi-objective optimization. ECJ provides
methods for both cases.
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Figure 8.2: Schematic of the architectural design of MOGEA-DSE in a basic configura-
tion.

In MOGEA-DSE software parameters of the program and hardware parameters of the
GPU architecture are handled by loading all files that contain parameters into databases.
The parameter files are automatically parsed to extract the names and values of the
parameters. MOGEA-DSE supports files with name value pairs or EXTENSIBLE MARKUP
LANGUAGE (XML) files.

Fach parameter is uniquely identified by its name and, if needed, by the filename
of the corresponding parameter file. Parameters can easily be updated in the database.
This includes the current allele of the parameters that are optimized and parameter
dependencies that can be automatically resolved. The updated parameter files are then
created within the main evaluation and transferred to the client on which the evaluation
is performed.

8.2.2 Parameter Space and Design Space Definition

An important feature of a PSE and DSE is how the parameter spaces and design spaces is
handled. This strongly influences which problems can be solved. In contrast to SOG-PSE
and SOG-DSE, cf. Section 7.2.2, MOGEA-DSE can handle even very complex definitions
of the parameter space and design space.
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The input of MOGEA-DSE consists of one or more text files with all software and
hardware parameters that are used and a formal description of how the parameter and
design space can be spanned based on these parameters. From this input the definition of

the parameter and design space is derived and finally coded as gene configuration for the
EA.

Data Types

For the parameters several data types are supported. This includes the data types from
SOG-PSE, SOG-DSE and all data types from ECJ. In addition, MOGEA-DSE supports
some special gene types that are useful for DSE of GPUs and for optimizing GPGPU
applications.

The following types are available for the gene values i,j € N and x € R and the output
oeR:

« INTEGER_TYPE with o:=1

e FLOAT_TYPE with o0:=z

« INTEGER_POWER_OF_TWO_TYPE with o := 2°
o FLOAT_POWER_OF_TWO_TYPE with o := 2%

o INTEGER_MUL_10Y _TYPE with o:=i-10/

o INTEGER_DIV_10’_TYPE with o:= ﬁ

e GPGPU_SIM_CLOCK_DOMAINS_TYPE

o GPGPU_SIM_SHADER_CORE_PIPELINE_TYPE

The first two types in this list are the regular ECJ types for integer and floating point
numbers, whereas the following types are part of MOGEA-DSE.

Powers of two are often needed for buffer sizes or work group sizes in GPGPU programs.
Thus, instead of optimizing the o in o := 2¢, the i in this equation is optimized.

The types where the integer value is multiplied with an integer power of ten are useful,
for example, if frequency scaling is used. Clock rates only can be varied in 100 kHz steps
on some devices. Therefore, simply the i value in the equation i-10’ can be optimized,
the j can be set to 2, and the minimum and maximum of the range for the optimization
can be divided by 100.

The types with integer values divided by powers of ten are useful if the accuracy of
floating point values is not needed. Instead of optimizing floating point numbers, integer
values are optimized that are afterward converted to floating point numbers with the
%j are considered. This approach is equal to
using fixed point numbers with j fractional decimal digits. This has the advantage that

needed accuracy. Only numbers of type

very small changes in the gene values are not possible. These small changes would require
a new evaluation but would not change the result.

Finally, two GPGPU-S1M types are introduced to handle the clock and shader core
configuration of GPGPU-SiM that are stored in a proprietary format. In this format
several numbers are packed, separated by colons, into one string that is parsed automatically

by MOGEA-DSE.
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Simple Parameters

Based on the data types, a formal description of the parameter and design space can be
made. A reference to a parameter, the type of the parameter, a range of valid values, and
a start value have to be given. This defines the parameter and design space if it is provided
for all parameters. This definition can be directly translated to a gene configuration of
the EA.

The following Listing 8.1 shows an excerpt of two parameters from the parameter
space, which are coded into genes.

pop.subpop.0.species.segment.l.start = 3

pop.subpop.0.species.gene-name.3 = gausslmage
pop.subpop.0.species.gene-type.3 = INTEGER_TYPE
pop.subpop.0.species.min-gene.3 = 0

pop.subpop.0.species.max-gene.3 = 1
pop.subpop.0.species.gene-start-value.3 = 1
pop.subpop.0.species.gene-name.4 = gaussImageSigma
pop.subpop.0.species.gene-type.4 = INTEGER_DIV_1000000_AS_FLOAT_TYPE
pop.subpop.0.species.min-gene.4 = 1500000
pop.subpop.0.species.max-gene.4 = 3500000
pop.subpop.0.species.gene-start-value.4 = 1500000

Listing 8.1: Gene configuration

In the listing, first, a new segment that groups the genes to chromosomes is given.
Then two genes are defined. The first gene is a flag if the Gaussian noise reduction,
cf. Equation (5.11), should be enabled. This parameter has the name gaussImage and
its boolean value is codes as the integer numbers 0 and 1. The second gene defines
that the sigma from Equation (5.11) should be optimized. The parameter is named
gaussImageSigma. This value is optimized as a fixed point number with 6 fractional
decimal digits. The range of the optimization is from 1.5 to 3.5 and the start value for the
first individual is 1.5 for the sigma.

The next section describes how parameter dependencies and more difficult ranges can
be handled.

Modeling of Dependencies

For MOGEA-DSE a method for handling dependencies in the parameter and design space
is introduced. This method is useful to handle complex parameter and design spaces and
is also useful for search space pruning.

If several types of GPUs or GPU architectures are to be examined, several hardware
parameters need to be varied. For example, in this work the following GPU parameters
are varied: the number of SMPs, the number of SPs, the clock rates for core, shader,
interconnect DRAM, and cache, the DRAM bus width, the number of RASTER OPERATION
PROCESSORs (ROPs), and the number of TEXTURE MAPPING UNITs (TMUs). Most of
these parameters heavily depend on each other. The number of SMPs in a GPU affects
the total number of SPs, ROPs, and TMUs. Additionally, some software parameters might
also be dependent on the target architecture. Current approaches do not make use of
these dependencies.
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As simple genes can not model dependencies of values, the genes might express all valid
but also some invalid configurations. In SOG-DSE dependencies of hardware parameters
for the exploration of GPU architectures are handled by mapping invalid gene configuration
to the nearest valid parameter set in the design space, cf. Section 7.5.3. This results in a
design space that is only effectively smaller. The problem with this method is that it does
not keep the overall design space small. Also, several invalid configurations might match
to the same valid configuration. This introduces overhead and influences how the design
space is sampled.

One solution to this problem is to enhance the process of creating new individuals in a
way that only valid values are generated in the fitness function. However, this requires that
the fitness function needs to be rewritten and recompiled if the parameter dependencies
change. However, here, a different approach is chosen. The main objective is to keep the
design space small. Therefore, the number of genes is reduced to a number of necessary
genes and the rest of the parameters is derived from these genes. With this approach all
kind of parameter dependencies can be handled.

Listing 8.2 shows an example of how simple parameter dependencies can be resolved.
The work group width and height can be formulated as a power of two and the size of the
work group as a dependency of the width and height that can be resolved by multiplying
width and height. If parameters from different parameter files should be optimized, the
file name can be appended to the parameter name.

pop.subpop.0.species.segment.14.start = 36
pop.subpop.0.species.gene-name.36 =
#define_MARCHING_SQUARES_WORK_GROUP_WIDTH@config.h

pop.subpop.0.species.gene-type.36 = INTEGER_POWER_OF_TWO_TYPE
pop.subpop.0.species.min-gene.36 = 1
pop.subpop.0.species.max-gene.36 = 3
pop.subpop.0.species.gene-start-value.36 = 3
pop.subpop.0.species.gene-name .37 =

#define_MARCHING_SQUARES_WORK_GROUP_HEIGHTQconfig.h

pop.subpop.0.species.gene-type.37 = INTEGER_POWER_OF_TWO_TYPE
pop.subpop.0.species.min-gene.37 = 1
pop.subpop.0.species.max-gene .37 = 3
pop.subpop.0.species.gene-start-value.37 = 3
pop.subpop.0.species.parameter ~dependency -name .0 =

#define MARCHING_SQUARES_WORK_GROUP_SIZE@config.h
pop.subpop.0.species.parameter ~-dependency-type.0 = INTEGER_TYPE
pop.subpop.0.species.parameter ~dependency-operation.0 = MULTIPLY_OPERATION
pop.subpop.0.species.parameter ~-dependency-operand0.0 =

#define_MARCHING_SQUARES_WORK_GROUP_WIDTH@config.h
pop.subpop.0.species.parameter ~-dependency-operandl .0 =

#define MARCHING_SQUARES_WORK_GROUP_HEIGHT@config.h

Listing 8.2: Parameter dependencies

For simple dependencies the following operations are available for the operands a,b,c € R
and the output o e R:

IDENTITY_OPERATION with o:=a

e ADD_OPERATION with o:=a+b

e SUB_OPERATION with o:=a -0

e MULTIPLY_QOPERATION with o:=a-b
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o DIV_OPERATION with o:=a/b
o MAD_OPERATION with o:=a-b+c
o POWER_OF_TWO_OPERATION with o :=2°

The operands can be numbers or other parameters. The output is casted to the correct
type of the parameter.

To model more complex dependencies, a JAVASCRIPT®interpreter is integrated into
MOGEA-DSE. As a result, the full JAVASCRIPT®language can be used to calculate the
dependencies. The JAVASCRIPT®interpreter can be addressed with EVAL_OPERATION as
the operation of the dependency.

For example, if the NVIDIA®architectures GF-108 to GF-100, cf. Table 8.2, should
be evaluated, the number of SPs per SMP is 48 for GF-108, GF-106, and GF-104 and 32
for GF-100. This needs to be reflected by the parameters. Because the architecture is
uniquely identified by the number of SMPs, the number of SPs per SMP can be formulated
as a dependency of the number of SMPs. Also, other parameters vary with the selected
architecture and can therefore be derived from the number of SMPs. As a result, the
design space and therefore the evaluation time can be smaller.

An example of some dependencies of the NVIDIA®architectures GF-108 to GF-100 is
given in Listing 8.3 as pseudo code: the number of SPs per SMP, the DRAM bus width,
the shader clock speed, the number of TMUs, and the number of ROPs.

num_SP_per_SM = (number_of_sm < 11) 7 48 : 32;

dram_buswidth = (number_of_sm >= 3) ? 4 : 2;
shader_clock = 2 * target_core_clockrate;
num_tmus = 4 * number_of_sm;

num_rops = 3 * number_of_sm;

Listing 8.3: Parameter dependencies as pseudo code

Listing 8.3 shows how hardware parameters for the GF-108, GF-106, and GF-104
architectures depend on each other. In line one for all architectures with less than 11
SMPs, the number of SPs per SMP is set to 48 and for the GF-100 with 11 or more SMPs
it is set to 32. Additionally, the slower GPUs use slower DRAM. The DRAM bus width is
four for all GPUs with three or more SMPs and two for all the others as stated in line
two. The shader clock rate is twice the core clock rate, cf. line three. Finally, there are
four TMUs on every SMP and three ROPs as described in the last two lines. This pseudo
code can easily be translated to parameter dependencies in MOGEA-DSE.

pop.subpop.0.species.parameter ~dependency-name.7 = num_SP_per_SM
pop.subpop.0.species.parameter ~dependency-type.7 = INTEGER_TYPE
pop.subpop.0.species.parameter ~-dependency-operation.7 = EVAL_OPERATION

pop.subpop.0.species.parameter ~dependency-operand0.7 =
(@@number_of_sm@@ < 11) 7 48 : 32

pop.subpop.0.species.parameter ~-dependency -name .8 = dram_buswidth

INTEGER_TYPE

pop.subpop.0.species.parameter ~dependency-operation.8 = EVAL_OPERATION

pop.subpop.0.species.parameter ~-dependency-operand0.8 =
(@@number_of_sm@@ >= 3) 7 4 : 2

pop.subpop.0.species.parameter ~dependency-type .8

Listing 8.4: More complex parameter dependencies

Listing 8.4 shows how this is done. For both parameter dependencies first the name of
the parameter is given, then the type, and third that it needs to be evaluated with the
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Figure 8.3: Example for optimized and derived parameters. The number of SMPs, the
core clock, and the DRAM clock are the optimized parameters. All other
parameters can be directly derived from these three parameters.

JAVASCRIPT interpreter. In the last line the evaluation operation is given analogously to
Listing 8.3 as JAVASCRIPT®code.

The first two lines from Listing 8.3 can be evaluated with the JAVASCRIPT®interpreter
by defining them as EVAL_OPERATION. The multiplications can be formulated as a simple
multiply operation with two operands similar to the multiply operation in Listing 8.2.

With @@number_of_sm@@ a reference to another parameter is defined. Such references
are resolved automatically by MOGEA-DSE with the current allele of the referenced
parameters. This enables a very easy and flexible definition of the parameter dependencies.

An example, of how GPU parameters can be derived from each other is shown in
Figure 8.3. Only three parameters need to be coded in genes: the number of SMPs, the
core clock, and the DRAM clock. All other parameters can be derived unambiguously.

Overall, MOGEA-DSE can handle very complex parameter and design spaces. The
use is not limited to the shown dependencies. New values can be derived with the EVAL_-
OPERATION operation from other genes. For example, a lookup table can translate a simple
integer gene to other values or some function can be evaluated on a floating point gene.
For the latter, the input of a function is modeled as gene and the function is modeled
as parameter dependency. The output of the evaluation is then used for the quality
evaluation.

8.2.3 Multi-Objective Optimization with SPEA-2 and NSGA-II

A key feature of the MOGEA-DSE method is that it supports multi-objective optimization.
The multi-objective optimization in MOGEA-DSE can be done with SPEA-2 [ZLT01] or
NSGA-IT [DAP+00; DPA+02]. Both are very well established methods for multi-objective
optimization and part of ECJ [LPB+14]. SPEA-2 and NSGA-II are introduced in the
following.

The overall evaluation cycle is similar to that of SOG-PSE and SOG-DSE, cf. Sec-
tion 7.2.3. It also consists of evaluation, selection, recombination, and mutation. However,
the main fitness evaluation is toward multiple objectives and the selection and recombina-
tion step is replaced with SPEA-2 or NSGA-IL.

SPEA-2 has been developed by Zitzler, Laumanns, and Thiele. It uses a population and
an additional archive. In each generation all non-dominated individuals from the current
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population and the previous archive are stored in the new archive. If the archive exceeds
a given, fixed archive size, some individuals are truncated. If the number of individuals is
less than the archive size, it is filled up with dominated individuals. Individuals for recom-
bination are selected from the archive only with a tournament selection. A new population
is then build after recombination and mutation on the selected individuals. [ZLT01]

The key factor of SPEA-2 is the fine grained fitness assignment strategy. First, a
strength value is calculated for each individual. The strength value is the number of
solutions in archive and population that the individual dominates, cf. Definition 49. Second,
a raw fitness is calculated for each individual. The raw fitness is the sum of the strength
values of all individuals that dominate the individual. In result, if more strong individuals
dominate the current individual a higher raw fitness value is assigned. Thus, lower raw
fitness values are better. Individuals on the Pareto front have a raw fitness value of zero.
Third, in addition to the raw fitness value, a density value is considered. It calculates as
the inverse of the distance to the k-th nearest neighbor in objective space, with k equal to
the square root of the combined archive and population. Thus, if the k-th nearest neighbor
of an individual is far away, the density value is small. Finally, the fitness calculates as
sum of the raw fitness and the density value. As the density value is small, the overall
fitness value is dominated by the raw fitness value and the density is used to discriminate
between individuals with the same raw fitness. [ZLT01]

NSGA-II has been developed by Deb et al. to overcome problems with existing multi-
objective optimization methods. It reduced the computational complexity, uses elitism,
and does not rely on the concept of sharing. The method works as follows. First, a
new children population is built from the parent population with tournament selection,
recombination, and mutation. This children population is then evaluated and combined
with the parent population. Second, NSGA-II uses a fast non-dominated sorting of the
front to determine the fitness. This is done by successively building a set of non-dominated
individuals. Only individuals in this set are compared for dominance, which reduces the
complexity of this approach. If the set has been built, it contains only the non-dominated
Pareto front. Individuals from this front get the rank one. These individuals are then
removed and the sorting is repeated to achieve the individuals with rank two and so forth.
Third, a crowding distance is calculated for every individual. This is done by determining,
for each objective, the size of the largest cuboid enclosing this individual that does not
include any other individual with the same rank. Finally, a partial order is calculated on
all individuals. For individuals with unequal rank, a smaller rank is better. For individuals
with equal rank, a larger crowding distance is better. The first N many individuals from
this set form the next parent population. [DAP-+00]

In summary, SPEA-2 and NSGA-II are both elitist EAs for multi-objective optimization.
SPEA-2 uses ranking combined with density information to select individuals for breeding.
In contrast, NSGA-II uses non-dominated sorting combined with a crowding distance for
the selection of individuals. Both methods prefer individuals near the Pareto front and use
geometric information in objective space, which favors a wider distribution of individuals.
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8.2.4 GPUSimPow Simulator

To demonstrate that the MOGEA-DSE approach is a modular design and not dependent of
the actual GPU simulator, GPUSIMPow [LLA+13] is used as an alternative to GPGPU-
SiM and GPUWATTCH for some evaluations.

GPUSmvMPow is a GPU simulator with an integrated power consumption model
developed by Lucas et al. It uses the GPGPU-SiM [BYF+09] as GPU simulator and
extends it with the GPU power model GPGPU-Pow. Like GPUWATTCH, GPGPU-
Pow is an extension of McPAT [SAS+09] but has been developed independently of
GPUWATTCH.

The input of GPUSIMPoOwW is PTX code of the GPU program and an actual execution
of this GPU program. The output is the estimated chip area, the estimated peak dynamic
power consumption, the total leakage, and also average power consumption and average
execution time for every unique kernel. However, neither the estimated overall power
consumption nor the estimated overall energy consumption is provided.

To simulate the power consumption of the SPs and the memory, McPAT [SAS+09] is
used, which is an analytical model. For the address generation units, special function units,
and other irregular components an empirical model is used. This model has been created
by the authors with a measurement setup. The setup consists of a mainboard with a raiser
card that contains the GPU that should be measured. The power consumption is measured
with probes for voltage and current on the raiser card and on the external power connectors
of the GPU. With additional data acquisition hardware and a measurement software,
energy consumption and average power consumption can be measured for each kernel run.
The measurement setup has also been used to validate GPUSIMPow. [LLA+13]

In GPUSIMPOW the power consumption for switching circuits Peircuit is modeled
as [LLA+13]

Pcircuit =a-C- Vdd : Afclock + Vdd : Ishort—circuit + Vdd ) Ileakagea (81)

with « as the activity factor, CVgqA feock as the dynamic power, Vaqlshort—circuit @S the
short circuit power, and Vyqlieakage @s the static leakage power. The activity factor « is
determined with GPGPU-SiM, which is used by GPUSIMPow. The short circuit power
Ishort-circuit and the dynamic power ljeakage are determined with the GPGPU-Pow power
model, which is the main part of GPUSIMPow.

The average dynamic power consumption ﬁdynamic Ave : N = R* of ny, € N runs of the
same kernel k is calculated in GPUSIMPoOw by

~ 1 I )
denamicAvg(k) = n_k : Zdenamic(kaZ) (8'2)
i=1

with ?dynamic(k, i) as the power consumption of the i-th run of the kernel k. The average
execution time Thye : N - R is calculated by

~ 1 M
Ta«Vg(k) = ZT(ka 7’)7 (83)
Nk =1
with T : Nx N - R* as the execution time of the i-th run of the kernel k. These two

equations are important for the extension of GPUSIMPOW in Section 8.2.5 and for the
calculation of the fitness values in Section 8.2.6.
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8.2.5 Extension of GPUSimPow

To integrate GPUSIMPoOwW into MOGEA-DSE, some modifications have been made to
GPUSImMPow. These modifications affect the output of GPUSIMPOwW. As shown in
the following, the estimated average power consumption output of GPUSIMPOW is not
suitable to optimize the energy or power consumption of programs that call data dependent
kernels several times like VirusDetectionCL does. In VirusDetectionCL several sensor
images are streamed through the pipeline. Therefore, almost all kernels are called more
than once. GPUSIMPOW does not handle these multiple calls appropriately.

The output of GPUSIMPOW is similar to the output of GPGPU-SiM and GPU-
WATTCH in Section 7.5.3 but there are differences. The output of GPUSIMPOW contains
the static power consumption ﬁshatie but not the dynamic power consumption ﬁdynamic. In-
stead of the overall dynamic power consumption, an averaged dynamic power consumption
for every single kernel, averaged over the number of kernel runs, is given. The averaged
power consumption ﬁdynamiCAvg(k) of kernel k over n; runs is calculated according to
Equation (8.2) and the averaged execution time Tayg : N - R* over ny runs is calculated
according to Equation (8.3). Tt should be noted that the intermediate results Paynamic(k; i)
in Equation (8.2) and T'(k,) in Equation (8.3) are not available in the output of GPU-
SiMPow. Only the averaged power consumption and averaged execution time is part of
the output.

With the estimated static power consumption Iﬁstatic and estimated average dynamic
power consumption denamic Avg(k) for every kernel k, the estimated power consumption
?GPUSimpow can be obtained as

K
P/GPUSimPOW = ﬁstatic + K; : Z ng - denamicAvg(k); (84)
k=1"% k=1
with K € N as the number of different kernels.

A major problem with this average power consumption in Equation (8.3) and average
execution time in Equation (8.3) over more than one run is that the overall energy
consumption can usually not be restored correctly from these two values even if the
number of runs n; for every kernel k is known. Hence, the output of GPUSIMPOW can
not be used to calculate the energy consumption if at least one ny is not one, i.e. one of
the kernels is executed more than once.

Especially, it is usually incorrect to calculate the overall energy consumption with the
following equation

K K
EGPUSimPOW = ﬁstatic : Z ng - Tavg(k) + Z ng - ﬁdynamicAvg(k) : Tavg(k); (85)
k=1 k=1
with K € N as the number of different kernels.

In VirusDetectionCL the execution time and energy consumption of most kernels is
only dependent on the size of the images and not on the content, e.g., for the Gaussian
filter. As the image size does not change, it would be appropriate to just calculate the
power consumption based on averaged power consumptions of each kernel run with Equa-
tion (8.4) and Equation (8.5). However, for data dependent kernels like the segmentation
in Section 5.5 or the Random Forest classification in Section 5.6.2, where the energy
consumption and execution time varies considerably, it is inappropriate to use average
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values to calculate the overall energy consumption. In these cases it can lead to wrong
results.

To demonstrate that the information of the overall energy consumption can get lost
with averaging of the power consumption and averaging of the execution times, the
following example should be given. For the kernel k with two kernel runs, the first
run should have a power consumption of 100 W and an execution time of 0.1s and the
second kernel run should have a power consumption of 10 W and an execution time
of 0.9s. According to Equation (8.3) the averaged power consumption of kernel k is
Paye(k) = - (100W +10W) = 55 W. According to Equation (8.3) the averaged execution
time calculates as Tayg(k) = % +(0.1s+0.95) = 0.5s. These two values are available in the
GPUSIMPOwW output. If the number of runs n is known, two attempts can be done to
calculate the actual energy consumption with these values.

First, it can be calculated directly from the two averaged values multiplied with the
known number of runs resulting in (2-55W)-(2-0.5s) =110J.

Second, it can be calculated by calculating the energy consumption of each kernel run
and sum these up. As the power consumption and execution time of each kernel run is
unknown it has to be assumed that each of the two kernel runs took half of the power and
half of the execution time resulting in (55 W -0.5s) + (55 W-0.5s) = 55J.

However, both of these attempts lead to wrong results. The actual energy consumption
of kernel k is (100W-0.1s) + (10W-0.9s) = 19J and neither 110J nor 55J. This actual
energy consumption of 19J can not be calculated from the GPUSIMPOW output which
consists of the averaged power consumption of 55 W and the averaged execution time
of 0.5s even if the number of runs is known. This is because the information of the
power consumption of the single runs and the execution time of the single runs is lost if
the values are averaged. Also, the averaged energy consumption and the overall power
consumption can not be restored from the averaged power values. The actual averaged

energy consumption is % =9.5J and neither % =55J nor % =27.5J.
In fact, the actual overall power consumption is % =19 W, which is much lower than

the averaged power consumption of 55 W calculated in GPUSIMPow.

To sum up, neither the energy consumption nor the power consumption can be
calculated correctly from the GPUSIMPOW output if kernels with varying execution time
or energy consumption are called more than once.

To solve this problem, GPUSIMPOW has been modified in order to receive the correct
values for the power and energy consumption of multiple kernel runs of the same kernels.
All changes have been provided to the authors of GPUSIMPOW and were confirmed as
correct.

The changes consist of the following three equations. First, instead of the averaged
execution time, cf. Equation (8.3), here the overall execution time T of kernel k over ny,
runs is calculated, given as

T(k) = g}f(k,i), (8.6)

with 7: N x N - R* as the execution time of the i-th run of kernel k. Second, the sum
over all K kernel execution times results in the estimated overall execution time T'qpy:

Tapy = 3 T(H). (5.7
k=1
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Third, the dynamic power consumption ﬁdynamic :N - R" for kernel k is calculated as

1
(k

?dynamic(k) = : Z ﬁdynamic(kyi) : T(ka Z)a (88)
i=1

R

with ?dynamic(k:,i) as the dynamic power consumption of the k-th kernel in the i-th
run and T(k,z) as the corresponding execution time. This equation obtains the power
consumption by calculating the energy consumption and then dividing it by the overall
execution time of all runs. The energy consumption is calculated by summing up the
dynamic power consumption of the kernel runs multiplied with their execution time.

As a result, Equation (8.8) calculates the actual power consumption and not an average
power consumption as in GPUSIMPow. In GPUSIMPoOwW the power consumption is
weighted by the number of runs, whereas here it is weighted by the execution time.
Based on this equation also the actual energy consumption can be calculated, simply, by
multiplying it with the overall execution time as shown in the following section.

8.2.6 Calculation of the Fitness Values

For MOGEA-DSE the available fitness values of SOG-DSE are extended to execution
time, number of cycles, power to cycles ratio, cycles to power ratio, energy consumption,
dynamic energy consumption, energy delay product, dynamic energy delay product, power
consumption, and dynamic power consumption as described in the following.

The same approach as in Equation (8.8) is used to achieve the estimated overall
dynamic power consumption as ?dynamic

- 1 K _ -
denamic == : Z denamic(k) : T(k)v (89)
GPU k=1

with K as the number of kernels. Combined with the static power consumption ﬁstatic,
the estimated overall power consumption Pgpy can be obtained. This can be achieved
with Equation (8.4), which is repeated here for reasons of clarity:

ﬁGPU = ﬁstatic + ﬁdynamic' (810)

By multiplying the overall power consumption Papy with the overall execution time, the
estimated energy consumption Egpy can be obtained:

Egpu = Pepy-Tapu. (8.11)
If only the dynamic energy Edynamic is of interest, it can be calculated as
Edynamic = denamic : TGPU~ (812)

With the execution time TGPU in seconds and the known shader clock rate S in Hertz,
the number of cycles can be calculated as

Capu =Tapu-S. (8.13)

With the used cycles Cepu and the power consumption ?GPU, the cycles to power
consumption ratio and the power consumption to cycles ratio fitness values can be
calculated according to Equation (7.10) and Equation (7.11).
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Finally, the energy delay product can be calculated with Equation (7.12) and the
dynamic energy delay product is analogously calculated as

DynamicEnergyDelayProduct = (Edynamic)a (T GPU)B ) (8.14)

with o, 8 € R* as weights.

8.2.7 Summary and Conclusion

In this section the general methods and concepts for MOGEA-DSE have been introduced.
The first important aspect is a parallel and possibly distributed evaluation. This is needed
to achieve a reasonable low evaluation time as the simulation of GPUs is slow and the
search space is usually large.

The second aspect is how the parameter space and design space can be defined properly.
The search space should be kept small. Therefore, a method for handling dependencies
in the parameter and design space have been developed. The overall search space can
be kept smaller by evaluating floating point parameters only with the needed degree of
quality and by deriving parameters from other parameters and genes.

The third aspect is the integration of multi-objective optimization. For many problems
it is crucial to optimize toward more than one objective, e.g., toward a low execution time
and low energy consumption.

The fourth aspect is the integration of GPUSIMPow GPU simulator and power model
as an alternative to the GPGPU-SiM GPU simulator and GPUWATTCH as power model.
To achieve this changes had to be made on the calculation of the output of GPUSIMPow.

Finally, the calculation of fitness values has been extended. This makes the results
from GPUSIMPow available for MOGEA-DSE.

In the next section these general methods and concepts lead to a more concrete use of
MOGEA-DSE and the first experiments and evaluations.

8.3 Multi-Objective Energy-Aware DSE of Simulated GPUs
for Mobile, Desktop, and HPC Systems

In this section MOGEA-DSE is extended toward a multi-objective, energy-aware DSE on
simulated GPUs. The range of the explored systems is from bigger mobile devices like
laptops, to regular desktop systems, up to HPC servers. The main focus in this section is
on making use of the general methods from Section 8.2. Additionally, methods for a faster
evaluation are introduced.

As more and more medical, physical, or industrial applications are using GPUs for
processing, it is necessary to identify fast and/or energy-efficient GPUs for these systems.
Several, possibly conflicting objectives have to be fulfilled and additional constraints have
to be met. If a system for a specific medical, physical, or industrial application should
be equipped with GPUs to increase the processing power of the system and/or to keep
the energy consumption low, it is beneficial to know in advance which GPUs meet the
requirements of the system. With MOGEA-DSE suitable GPU systems can be identified
for given programs. Several programs can be weighted to model more complex work loads.
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The evaluated PAMONO sensor scenarios from Figure 8.1 are SCN1y,5, SCN3Locar,
SCN4croup, and SCNbyesprrar- Only the not hand-held devices from these scenarios are
considered and the communication is also not part of this section.

For VirusDetectionCL a soft real-time constraint has to be fulfilled if it processes
images directly from the camera. Therefore, the execution time is particularly important.
If a certain processing has to be met, the most energy efficient solution might not be
feasible. The execution time can also be taken as a constraint to the optimization process
or as a further objective function, naturally leading to multi-objective optimization. In
the context of the PAMONO sensor all three inspected device sizes are of interest: mobile
devices for a flexible use of the PAMONO sensor in various indoor or outdoor environments,
in hospitals, and at airports, desktop devices for a use in laboratories or hospitals, and
servers for a central processing of tasks.

The following research issues are examined in this section:

e How can MOGEA-DSE be used to identify GPU hardware for HPC servers?

e Which is the most energy-efficient GPU for a mobile device that complies with the
soft real-time limits?

e Can the possibly contrary objectives, fast processing and energy-efficiency, be
achieved at the same time?

o Is it possible to identify best suited GPUs for given programs without buying and
testing them?

e Can upcoming GPUs, that do not yet exist, be explored with a DSE?

Especially the first research issue, identifying GPU hardware for HPC servers, is worth
to be considered, as more and more compute servers and HPC systems will be equipped
with GPUs in the future. Energy awareness is of huge importance for these systems. There
is also a huge potential of research in this field [RSR+08].

This section is based on the author’s publication [LMS+14].

8.3.1 Methods

In the following, methods for a fast, multi-objective, energy-aware exploration of GPU
architectures are introduced. GPU architectures of different sizes are simulated. The main
challenge for the MOGEA-DSE method is to keep evaluation run time low as simulation
of GPUs is time-consuming and the explored design space is usually not small. The task
to keep the evaluation time low is closely related to the task of keeping the design space
small without sacrificing accuracy in the objective function.

The structure of the section is as follows. First, an introduction to the architectural
design of MOGEA-DSE is given that integrates remote evaluation. Then three methods
for a faster evaluation are presented. The first method that simply reduces the input size
will be shown to be not suitable for an accurate evaluation and will lead to the next two
methods.

Architectural Design of MOGEA-DSE for Remote Evaluation

The general architectural design of MOGEA-DSE is extended to run locally or distributed
on a wide variety of homogeneous or heterogeneous compute systems. The main target
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Figure 8.4: Distributed evaluation process. A master PC controls the EA and distributes
evaluation tasks to the cloud nodes. On each node several evaluations can be
calculated in parallel. Each evaluation is done, e.g., with the GPUSIMPow
GPU simulator.

systems for distributed computing are single desktop computers, a heterogeneous network
of desktop computers, compute servers, and heterogeneous compute clouds.

In Figure 8.4 the changes in the architectural design are shown. Same as in SOG-
DSE the evaluation manager is responsible for running the evaluation. However, in the
MOGEA-DSE approach the evaluation manager runs on a master PC and can distribute
the evaluations to the quality evaluations 1 to n, as shown in Figure 8.4. The quality
evaluations can be done on the same local device or on remote devices. Each quality
evaluation runs the given GPGPU program on the current configuration out of the design
space. Every node in the network can evaluate numerous evaluations at the same time
using multiple instances of the GPU simulator or by using actual GPU hardware. The
GPGPU program can be executed on a GPU simulator. Afterward, the quality of the
result is determined and transmitted back by the main evaluation.

As GPU simulators either GPGPU-Pow or GPGPU-SIM in combination with GPU-
WaTTCH are used in MOGEA-DSE. The GPU simulators are only loosely coupled with
the fitness evaluation. Therefore, GPGPU-Pow or GPGPU-SIM can be easily replaced
by other simulators.
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Reduction of the Input Size

A major problem for the simulation of complex GPU programs is the evaluation time.
Especially for a large design space, the evaluation time of a single run is crucial because
hundreds or even thousands of runs have to be performed to achieve good sampling. A
typical solution to keep the evaluation time small would be to reduce the input size of the
simulated GPU program. However, simply reducing the size of the input is not permitted
or has to be done very carefully because the utilization of the GPU SMPs heavily depends
on the input size. A good utilization of the SMPs is a crucial factor of how fast and energy
efficient a GPU program runs. Simulating unrealistic utilization due to too small input
sizes can have unwanted side effects on the evaluation results.

This can be shown with the following example. An image of size 1024 px x 1024 px
should be processed on four GPUs with 12 to 15 SMPs. The pixels should be processable
independently from each other. This is a very simple task and even for this task the input
size is important. For the partitioning of the input image, a local work group size of, e.g.,
16 x 16 can be considered. With this the image is partitioned in 4096 sub-images each of
size 16 x 16. Each sub-image is then processed by on one SMP on the GPU.

The GPU with 15 SMPs needs 273 steps to process 15 sub-images, 4095 of the 4096
sub-images, with full utilization of the multiprocessors and then one last step for the one
remaining sub-image with about 6.7 % utilization as 14 SMPs are idle. As a result, the
overall utilization of the GPU is 99.7 %. This is a very good utilization of the GPU. If now
the input size is simply decreased to speed up the evaluation, e.g., from 1024 px x 1024 px
down to 128 px x 128 px, only 64 sub-images need to be processed. The GPU with 15
SMPs can be fully utilized for 4 steps and in the last step 11 of the 15 SMPs are active.
The overall utilization of the GPU drops from 99.7 % to 85.3 %.

A similar reduction in the utilization can be observed for the other GPUs. For a GPU
with 14 SMPs, the utilization drops from 99.9% to 91.4 %. For a GPU with 13 SMPs,
the utilization drops from 99.7 % to 98.5%. And for a GPU with 12 SMPs the utilization
drops from 99.8 % on the full input to 88.9 % on the reduced input. For the four considered
GPUs, the one with 14 SMPs shows the best utilization on the full input image. However,
on the reduced input the GPU with 13 SMPs shows the best utilization.

Not only the utilization changes but also the execution time. For the full input image,
the four GPUs need 274, 293, 316, and 342 steps, and for the reduced input image the
GPUs need 5, 5, 5, and 6 steps. If all four GPUs operate at the same clock speed and the
memory operations are performed with the same speed, the execution time on the full
input image is shorter for the GPUs with more SMPs but on the reduced input image it is
identical for three of the four GPUs. In consequence, it is possible that, wrongly, a GPU
with, e.g., 13 instead of 14 or 15 SMPs is identified as the best GPU.

In this example, only a very simple task, with no dependencies between the threads,
has been considered. Each thread and each work group can work independently of each
other. Even for this simple task, it is difficult to determine the influence of a changed
input size. To determine for a given application a change of input size that has no effect
on the result, is more difficult or even not possible.

Therefore, a reduction of the input size is not used in MOGEA-DSE. Instead, two
approaches have been developed to circumvent the shown problems. The approaches are
called checkpointing and quick start approach and are presented in the following.
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The Checkpointing Approach

To reduce the evaluation time, the checkpointing approach can be used. This approach
can handle initialization phases or calculations of programs that are time-consuming if
simulated but that should not be measured anyway.

One example is the initialization of VirusDetectionCL. Some arrays and queues has
to be initialized or filled, e.g., the queues for the noise reduction, before the actual virus
detection can run.

A second example is the neural network program NN. If a neural network program
is used, e.g., in an industrial process control, this program is initialized once and then
repeatedly used to classify several requests. Here, also the initialization phase is of no
interest for the overall energy consumption.

Usually, an initialization phase of an algorithm can not be skipped as this would affect
the objectives that should be measured or even keeps the program from running properly.
Especially, data dependencies on not properly initialized buffers can influence the run time
in the remaining parts. In VirusDetectionCL the noise reduction influences how many
viruses are found or missed and this influences the run time of other pipeline elements.

The checkpointing approach is used to reduce the evaluation time without influencing
the program logic or the calculated results. It works as follows. In a preparation step all
memory buffers at a pre-defined state are stored on the hard drive to create a checkpoint.
This step can be done in one single GPU run, either on actual hardware or simulated
hardware. During the simulation this pre-calculated memory state is restored. Afterward,
the remaining data can be processed.

To use the checkpointing approach with VirusDetectionCL, two additional functions
are used to store and restore all needed GPU memory buffers in VirusDetectionCL. To
store the device memories, a host memory buffer of sufficient size is allocated. For every
device memory buffer, the OpenCL function c1EnqueueReadBuffer is used to download
the buffer from device to the host memory. The host buffer is then stored in a binary
file. Additional information about name of the buffer, buffer type, buffer dimensions, bit
depth, number of bits per pixel, current frame number, byte endianness, and information
about the data set are stored in a sidecar file. To load a checkpoint the information in
the sidecar file is used to find out the types and sizes of the OpenCL device buffers. The
stored binary files are loaded into host memory for each buffer. The OpenCL function
clCreateBuffer is used to create the device memory of the correct type and size. By
providing a pointer of the host memory to the OpenCL function, the host memory is used
to initialize the device buffer. Additional error checks are done to make sure that the
restored checkpoint matches the data set and the frame number.

As a result, the initialization phase of VirusDetectionCL, which usually needs to
process dozens of frames, can be skipped and replaced by loading a few stored buffers with
the checkpointing method.

Additionally, for streaming applications like VirusDetectionCL that consist of an initial-
ization phase and then thousands of images are processed the same way, the checkpointing
approach can be used to safely reduce the number of processed images. If the characteristic
of the data stays the same after the initialization phase, only a reduced amount of data
has to be processed to extrapolate the execution time and energy consumption to process
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the whole data. For VirusDetectionCL, e.g., only a few hundred frames of a data set of
4000 frames need to be processed to receive accurate results.

One limitation of this method is that the restoring introduces overhead that has to be
considered in the measurement. The restoring has to be excluded from the measurements
or the measurements of the restoring have to be subtracted from the overall measurements
afterward.

To sum up, the checkpointing approach can be used to reduce the evaluation time for
many types of programs. This method is especially useful if data dependencies exist that
require perfectly initialized buffers. For the VirusDetectionCL use case, e.g., the first 100
images do not have to be processed. Instead, the initialized queues and buffers can be
loaded.

The Quick Start Approach

To even further reduce the evaluation time, the checkpointing approach is extended to the
so called quick start approach. This approach can initialize memory buffers very fast by
using approximation and making use of the queue structure of some buffers.

The fastest possible initialization of memory buffers is to not initialize them at all. If
it is known that some parts of the GPU program do not depend on the actual data in the
buffers, these buffers can simply be kept uninitialized. Then they just contain random
values. For example, the execution time of a filter kernel applied to an image usually does
not depend on the actual content of the image. If this is the case, the calculation can
be done on random values in the memory without effecting the execution time or energy
consumption. The evaluation time for the checkpointing step or a full initialization can be
saved.

However, the execution time of, e.g., a sorting algorithm usually strongly depends on
the content that should be sorted. Also, it is necessary to ensure that no later pipeline
element depends on the data in the buffer that should be kept uninitialized. Therefore,
most applications do not allow a random initialization of the buffers.

These considerations lead to the quick start approach. With the quick start approach,
a fast initialization is possible even in the presence of data dependencies. The quick start
approach has been tailored for the VirusDetectionCL program but can also be used for
other programs.

The approach works as follows. For VirusDetectionCL buffers can not be kept unini-
tialized as the segmentation and classification would not work on random data. For the
PAMONO sensor images, it can be assumed that they are constant if no viruses appear
and if the sensor noise is ignored. This is done by replicating the first image and use this
image for the initialization of the queues of the noise reduction queues. By using the first
noise reduced image for the initialization of the signal model queues, all pipeline stages
can be initialized with only a single image. The replication of the image is done within the
OpenCL kernels and not for the pipeline input. As a result, for every OpenCL kernel in the
pipeline only a single kernel call is needed. With the quick start approach, the necessary
initialization can be reduced, e.g., from processing 100 frames down to processing only
one frame. With larger queue sizes the savings is even higher. Because this method can
produce some boundary artifacts, e.g., by darker areas in the first image, the results from
detection and classification are calculated but ignored for a few frames.
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A major drawback of the quick start method is that it requires modifications in the
OpenCL kernels, which is not always possible. Also, some kind of queue-based data
structure is needed to benefit from the quick start method.

8.3.2 Experiments

The method has been evaluated with a wide variety of industrial, biological, and physical
applications for different scenarios. Three experiments are conducted for desktop, mobile,
and HPC target architectures and named accordingly: EXP6pgskror, EXP7Mopmwe, and
EXP8Hpc.

The evaluated programs are shown in Table 8.1. VirusDetectionCL is evaluated on
all target architectures. As data set for VirusDetectionCL DS7poiy200nu-1 1S used, cf.
Section 2.2. In addition, programs of the following three benchmark suites are evaluated
to show that the MOGEA-DSE method generalizes. The programs make use of both
OpenCL and CUDA as programming languages and cover a wide variety of industrial,
physical or biological applications like AES encryption, denoising of radar data, solving
systems of linear equations, simulation of temperature distributions on processors or ray
tracing simulations.

The programs are matched to the three scenarios as close as possible. For the desktop
scenario in EXP6pgskrop, programs from the NVIDIA®CUDA SDK benchmark [NVI15a]
are used. For the mobile scenario in EXP7y\iopr, some lightweight benchmark programs
from GPGPU-SimM [BYF+09] are used. And for the HPC scenario in EXP8ypc, the
programs from the demanding RODINIA benchmark [CBM+-09] are used.

For VirusDetectionCL the following scenarios from Figure 8.1 are covered. The
laboratory scenario SCN1p,,5, the desktop and laptop devices from scenario SCN3rocar,
the laptop and server devices of the cloud computing scenario SCN4¢youp, and the laptop,
desktop and server devices of the hospital or airport scenario SCNSgogprrar-

The experiment EXP6ppskrop covers a desktop scenario where different desktop GPUs
are used as target architecture. For VirusDetectionCL this covers SCN1p,p, SCN3i1ocar,
and SCNbByospiran. LThe experiment EXP7yopis covers a mobile scenario where different
laptop GPUs are the target architecture. This covers SCON1y,5, SCN3LocaL, SCN4cLoup
and SCNbgosprrar,- The experiment EXP8ypc covers a high performance scenario where dif-
ferent HPC GPUs are the target architecture. This covers SCN4cpoup, and SCNSHosprrar-

Table 8.2 shows the three sets of evaluated GPU architectures for the three ex-
periments. For EXP6pgpskrop four FERMI  architectures, for EXP7yopne three mobile
FERMI "architectures, and for EXP8ypc four devised high performance architectures. The
high performance architectures were announced by NVIDIA®but they did not exist while
conducting the experiments and no specifications were available. The idea of selecting
these as target architectures is that it can be beneficial to know in advance which GPU is
best suited for the demands. For example if an HPC server system should be equipped
with GPUs in the future, a preliminary DSE can be performed to find out if it is beneficial
to delay a purchase until the identified best suited GPU is available or to produce early cost
estimates of the target system. Also, bottlenecks in the software design can be identified
and remedied early.

The three sets of architectures from Table 8.2 are explained the following. For
EXP6pgskrop the FERMI "architectures GF-108, GF-106, GF-104, and GF-100 are evaluated.
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Table 8.1: Evaluated programs for the multi-objective optimization from benchmark
suits CUDA-SDK, GPGPU-S1iM, and RODINIA. Adapted from [LMS+14].

Suite Program Language Description

none VirusDetectionCL OpenCL  Real-time computer vision applica-
tion on biological sensor data, see
Chapter 5

CUDA-SDK BLACKSCHOLES OpenCL  Price prediction of European options

CUDA-SDK  HISTOGRAM OpenCL  Histogram calculation

CUDA-SDK  QUASIRANDOMGEN OpenCL  Random number generator

CUDA-SDK  REDUCTION OpenCL A parallel sum reduction on large
arrays

CUDA-SDK MATRIXMUL OpenCL  Parallel matrix multiplication

CUDA-SDK  MERSENNETWISTER OpenCL  Random number generator

CUDA-SDK  VECTORADD OpenCL  Parallel vector addition

GPGPU-Sim  AES CUDA AES encryption algorithm

GPGPU-Sim  BFS CUDA A breadth first search algorithm for
graph traversal

GPGPU-Sim CP CUDA Calculation of the Coulomb potential
physics simulation

GPGPU-Sim  LPS CUDA Laplace discretization on a 3D struc-
tured grid

GPGPU-SiMm NN CUDA A Neural Network on GPU

GPGPU-SIM NQU CUDA N-Queens Solver

GPGPU-Sim  RAY CUDA Raytracing simulation for rendering
of light effects

GPGPU-SiMm  STO CUDA MD5 hash calculation

RobiNniA BACKPROP OpenCL  Back propagation algorithm in neu-
ral networks

Ropinia HOTSPOT OpenCL A temperature physics simulation for
processors

RoDINIA GAUSSIAN OpenCL  Gaussian elimination for solving sys-
tems of linear equations

Robinia NN OpenCL  Nearest neighbor location calcula-
tion on hurricane data

RobiniA NW OpenCL A nonlinear global optimization on

DNA sequences with the Needleman-
Wunsch algorithm
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Table 8.2: Evaluated GPU architectures for the experiments EXP6pgskror; EXP7MopiLE,
and ExpP8ypc. For each architecture the number of SMPs, number of SPs,
core clock rate, DRAM type, and DRAM clock rate are listed. Columns
for number of TMUs, ROPs, and shader clock rate are shown in Table A.2.
Adapted from [LMS+14].

GPU architecture SMPs SPs Core clock DRAM DRAM clock
o FErRMI GF-108 1-2 48,96 700-810 MHz GDDR-3 400-450 MHz
EO FErMI GF-106 3-4 144,192 590-790 MHz GDDR-5 450-1000 MHz
é_% FErMI GF-104 6-7 288,336 650-675 MHz GDDR-5 850-950 MHz
FErMI GF-100 11-15  352-480 610-780 MHz GDDR-5 800-1000 MHz
<  FeErRMI GF-108M  1-2 48,96 600-740 MHz GDDR-3 800-900 MHz
S  FERMI GF-116M  3-4 144,192 590-775 MHz GDDR-5 900-1250 MHz
= FErMI GF-114M  7-8 336,384 575-620 MHz GDDR-5 1500 MHz
PascarL GP-107!  4-5 1024,1280 1200 MHz GDDR-5 1250-1450 MHz
8 PascarL GP-104!  6-8 2304-3072 820-1040 MHz GDDR-6 1500-1750 MHz
T PascaL GP-110al 12-15 4608-5760 860-880 MHz  GDDR-6 1500-1750 MHz

Pascar GP-110b! 14-15  5376-5760 840-890 MHz ~ GDDR-6 1500-1750 MHz

! Devised architectures that did not exist while conducting the experiments.

The use case for these architectures are typical desktop applications for example the
VirusDetectionCL program in a stationary laboratory or hospital setup as shown in
Figure 8.1.

For EXP7ope the mobile FERMI " architectures GF-108M, GF-116M, and GF-114M
are evaluated. The use case for these architectures is an independent, mobile, battery
driven processing. Several runs of the same program are performed on a mobile device.
ILe., the evaluation of several PAMONO samples with VirusDetectionCL on a laptop as
shown in Figure 8.1.

For ExP8ypc the high performance the devised PASCAL™architectures GP-107, GP-104,
GP-110a, and GP-110b are evaluated. As already mentioned, the actual PASCAL"archi-
tectures did not exist during the performance of the experiments. A typical scenario for
these architectures is the server side of the cloud computing, hospital, or airport scenario
in Figure 8.1. Several devices are connected to the server and a few fixed applications are
executed on the server multiple times. The PASCAL"architecture shows what a new high
performance architecture might look like in the near future. All specifications are derived,
no specifications were available from NVIDIA®during performance of the experiments. It
is assumed that the number of available SPs, ROPs and TMUs will double, compared to
today’s KEPLER"architectures GK-107, GK-104, and GK-110. Also, it is assumed that
the current GDDR-5 RAM will be replaced by a GDDR-6 RAM with doubled memory
bandwidth. However, the modeling of the new architecture has been kept simple as only
a few changes have been made compared to the FERMI "architecture. For example, the
PAscAL™architecture may be equipped with HBM2 DRAM, which is 3D stacked memory,
and a unified virtual memory link. This has only been modeled with a doubled memory
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bandwidth, which is not very accurate. Therefore, the experiments with these derived
architectures should only be seen as a proof of concept. If more reliable results are needed,
more effort has to be spend in the modeling of new architectures.

As explained in Section 8.2.2; not all GPU parameters listed in Table 8.2 need to
be coded in genes in order to optimize these. Instead, most of them can be modeled as
dependencies. This has the two advantages that the design space is kept small and no
invalid configurations are generated.

For example, for the FERMI "architectures GF-108, GF-106, and GF-104 architectures
only three parameters need to be coded in genes: the number of SMPs; the core clock,
and the DRAM clock. All other parameters can be derived unambiguously.

The evaluation has been performed on a compute sever with four AMD OPTERON"" 6272
CPUs and 256 GB RAM. Each of the OPTERON "CPUs has 16 cores, resulting in 64 cores
in total. Because the GPUs are simulated, the compute server does not need to have
GPU hardware installed. As operating system LINUX®UBUNTU "12.10 for servers is used,
which is executed in a KVM virtual machine. SPEA-2 [ZLT01] for the multi-objective
evaluation is configured with a vector mutation pipeline with mutation probability 0.01
and a tournament selection of size two.

8.3.3 Results

In this section results for MOGEA-DSE are presented for a multi-objective energy-aware
hardware DSE. The results are divided into three parts: First, results for the experiments
EXP6prskror, EXPTMope, and EXP8ypc. Second, results for the checkpointing approach.
Third results for the quick start approach.

Results for the Conducted Experiments

The evaluation of MOGEA-DSE has been done for a variety of GPU architectures and a
variety of GPGPU programs from different benchmark suites with focus on the evaluation
of the VirusDetectionCL use case. Besides VirusDetectionCL 20 other programs have
been evaluated for the FERMI, mobile FERMI ', and PASCAL"target architectures. The
evaluation time for a single GPU program depended on the complexity of the program
and varied from 20 minutes to five days. The average evaluation time over all programs
was 19.8 hours.

The following results are structured according to the three experiments EXP6pgskrop,
ExXP7yvopns, and ExpP8pypc. As VirusDetectionCL is the main use case, the results
for VirusDetectionCL are particularly highlighted and presented separately of the three
experiments.

To provide an overview, in Figure 8.5 Pareto fronts for the energy-aware, multi-
objective evaluation of different programs and for different target architectures are shown
for the three experiments. The evaluation for VirusDetectionCL is shown in more detail
in Figure 8.5a. Figure 8.5b, Figure 8.5¢, and Figure 8.5d shows the evaluations for
EXP6pgrskror, EXP7Mope, and EXP8ypc. Figure 8.6 shows the core clock rate and the
number of SMPs of the identified GPU configurations in an overview for all experiments
and then structured by the experiments. Finally, Table 8.3 shows the identified GPU
architectures, number of SPs, and core clock rate for the Pareto fronts of every program.
The different architectures and specific GPU configurations for these architectures are
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given as comma separated entries. An extended version of this table with columns for
SMPs and DRAM can be found in Table A.3.

The Pareto fronts for the VirusDetectionCL use case are shown in Figure 8.5a and the
corresponding configurations are shown in Figure 8.6a and Table 8.3. VirusDetectionCL
has been evaluated with a reduced pipeline configuration against all architectures, indicated
by (1) to (3) in the figure and table, and also in the most complex pipeline configuration
against the high performance architecture, indicated by (4).

In Figure 8.5a four Pareto fronts for VirusDetectionCL with objectives execution time
per frame and overall energy consumption are given. The GF-1xx FERMI architecture,
indicated by (1), is the best choice with respect to energy consumption. As expected, the
GP-1xx high performance architecture, indicated by (3), is the best choice with respect to
the execution time. A somehow surprising result is that the mobile FERMI "architecture,
indicated by (2), is dominated in both objectives by the FERMI architecture. In the
most complex pipeline configuration and the GP-1xx high performance architecture,
indicated by (4), the lowest overall energy consumption is 41 J with an execution time
of 4.4 ms per frame. The fastest execution time was achieved with 1.6 ms per frame with
an overall energy consumption of 170 J. Overall, the GF-100 FERMI "architecture could
be identified as a good compromise between energy consumption and execution time. In
detail, the GEFORCE"GTX 465, 470 and 480 were identified as actual GPUs of the GF-100
FERMI "architecture, with the GTX 465 as the most energy efficient GPU. Only if the
fastest run time is needed a high performance architecture has to be chosen.

For the experiment EXP6ppsirop, S€ven programs are evaluated on the four FERMI "ar-
chitectures GF-108, GF-106, GF-104, and GF-100. The Pareto fronts and the dominated
points are shown in Figure 8.5b. Because the execution time and energy consumption
are in a wide range, the Pareto fronts in the figure are only visible for some programs.
Therefore, the Pareto fronts are also shown in Table 8.3. The corresponding configurations
are visualized in Figure 8.6b. The execution time of the evaluated programs is in a range
of 0.015ms to 77.82 ms and the energy consumption is in a range of 0.0018 J to 9.33 J.

For all seven programs the GF-100 dominates the architectures GF-108, GF-106, and
GF-104. The actual configuration of GF-100 varied from eleven to fifteen SMPs, with a
core clock rate from 630 MHz to 780 MHz.

A few trade offs could be identified. For the random number generator MERSEN-
NETWISTER, the energy consumption can be reduced by 7% with only a slight increase in
execution time of 0.2 % by selecting the according point on the front. For the parallel sum
reduction on large arrays REDUCTION, three points are on the Pareto front. The most
energy efficient solution uses 12 % less energy while spending 7 % more in execution time
than the fastest solution. Generally, the differences are small as the GF-100 is the only
architecture on the front and only the actual configurations of this target architecture
differ.

For the experiment EXP7\iopms, €ight programs were evaluated for the mobile FERMI " ar-
chitectures GF-108M, GF-116M, and GF-114M. The Pareto fronts are shown in Figure 8.5¢
and the configurations are shown in Figure 8.6¢ and Table 8.3. The execution time of the
evaluated programs is in a range of 0.006 ms to 8.84 ms and the energy consumption is in
a range of 0.00014J to 0.67J.

Overall, a wide variety of architectures has been identified with one to eight SMPs.
The core clock rate is in a range from 615 MHz to 770 MHz. In contrast to the experiment
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Figure 8.5: Energy-aware multi-objective evaluation for different programs, cf. Table 8.1,
and for different GPUs, cf. Table 8.2. For every program a Pareto front of
non-dominated points is shown. Dominated points are plotted smaller and
without color. Adapted from [LMS+14].
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See also Table 8.3. Adapted from [LMS+14].

with the FERMI "architectures, where the GF-100 is the only architecture on the front,
here every architecture is at least on one of the fronts.

For the neural network program NN, the fastest solution saves 37 % execution time with
an increase in energy consumption of 8 %. For the ray tracing program RAY, the fastest
solution also saves 37 % execution time while at the same time the energy consumption is
increased by 7% if the GF-114M architecture is used instead of the GF-116M. For the CP
program, that calculates Coulomb potentials similar values could be found. A saving of
37 % execution time could be traded against an increase of 6 % in energy consumption. For
the Laplace discretization of grids program LPS, a saving of 30 % execution time results
in an increase of 2% in energy consumption if GF-114M architecture is used instead of
the GF-116M.
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Table 8.3: The best GPU configurations for every program. Columns for number of
SMPs and DRAM are shown in Table A.3. Extended version of [LMS+14].

Program GPU architectures SPs Core clock in MHz
VirusDetectionCL (1) GF-110 352,448,480 780,780,780
VirusDetectionCL (2) GF-114M 192,336 760,590
VirusDetectionCL (3) GP-107104110b!  1280,2304,4608,5760 1020,1040,870,890
VirusDetectionCL (4) GP-107104110b!  1024,3072,4992,5376  1020,870,870,890
BLACKSCHOLES GF-100 352 630
HISTOGRAM GF-100 416,448,480 780,780,780
QUASIRANDOMGEN GF-100 416 780
REDUCTION GF-100 352,448,480 780,780,770
MATRIXMUL GF-100 480 780
MERSENNETWISTER GF-100 352,416 780,780
VECTORADD GF-100 352 780
AES GF-116M,114M 192,336,384 770,615,615
BFS GF-108M 48 740
CP GF-116M,114M 192,336,384 770,615,615
LPS GF-116M,114M 192,384 770,615
NN GF-116M,114M 192,384 770,615
NQU GF-108M,116M 48,96,192 740,740,740
RAY GF-116M,114M 192,336,384 760,615,615
STO GF-116M 192 770

GP-107" 1024,1280 1020,1020
BACKPROP

GP-104! 2688,3072 1040,1040
GAUSSIAN GP-107" 1280 1020
HOTSPOT GP-1071104! 1024,2304,3072 1020,1030,1020
NN GP-1071041110b"  1024,2304,5376 1020,1040,890
w GP-107" 1024,1280 1020,1020

GP-1041110b! 3072,5760 1020,890

! Devised architectures that did not exist during performance of the experiments.

Finally, for the experiment EXP8ypc, five programs were evaluated on the high
performance PASCAL™architectures GP-107, GP-104, GP-110a, and GP-110b. It should
be emphasized that the results for these evaluations have to be interpreted very carefully.
As explained in Section 8.3.2, the architectures are derived from the FERMI  architectures
with marginal knowledge of the actual target architectures. As a result, the absolute values
are not supposed to be accurate and the evaluation of these architectures is provided as a
proof of concept. Also, the kernel execution times are too short to give reliable results for
the absolute energy consumption. However, the relative proportions and the identified
target architectures still yield valuable insights.
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The Pareto fronts are shown in Figure 8.5d and the configurations are shown in
Figure 8.6d and Table 8.3. The execution time of the evaluated programs is in a range of
0.003 ms to 9.38 ms and the energy consumption is in a range of 0.0349 J to 466.9 J.

In contrast to the FERMI "architecture, here again the Pareto front contains a wide
variety of architectures. The number of SMPs is in a range from four to fifteen. The core
clock rate is 1020 MHz to 1040 MHz for most of the programs with an outlier for NW with
890 MHz. For all programs the GP-107 architecture was part of the Pareto fronts and
for some programs additionally GP-104 and for the NwW program also GP-110b. Overall,
the programs Nw and VirusDetectionCL are the only ones with the high performance
GP-110 as target architecture. Several interesting trade offs could be identified. For the
BACKPROP tool for neural networks, three points are on the front. For the most energy
efficient solution, an increase in execution time by 42 % saves 74 % energy.

For the Needleman-Wunsch optimization of DNA sequences with the NW tool, the
points on the front are far apart, the fastest solution with GP-110b as target architecture
takes 4.06 ms and consumes 466.9J and the most energy efficient solution with GP-107
as target architecture takes 9.38 ms and consumes 87.43J. As a result, an increase in
execution time by 131 % saves 81 % energy. For NN the nearest neighbor location on
hurricane data, the fastest solution with GP-110b as target architecture takes 0.006 ms and
consumes 0.64 J and the most energy efficient solution with GP-107 as target architecture
takes 0.01 ms and consumes 0.09J. The absolute savings of a single run are negligible but
if the application should be executed several million times on an HPC server, a speedup
of 1.67 or 86 % saved energy does make a difference.

Results for the Checkpointing and Quick Start Approach

Three different OpenCL kernels (GAUSS FILTER, PRE-PROCESSING, and SLIDING MEDIAN
from the VirusDetectionCL program have been inspected. The checkpointing approach has
been evaluated by predicting the energy consumption for 50 frames based on the processing
of 1, 5, 10, and 20 frames. For GAUSS FILTER the simulated energy consumption is 14.26 J
and the prediction is 14.26 J with 0.0006 % relative error. For PRE-PROCESSING 0.159J
have been simulated and 0.162J are predicted with a relative error of 1.37%. Finally,
SLIDING MEDIAN took 3.188J in the simulation while 3.187 J are predicted. As a result
the relative error is 0.047 %. The evaluation time could be reduced from 31 h down to 6 h.

The quick start approach has been evaluated by predicting the energy consumption of
processing 80 frames based on the processing of 1, 5, 10, 20, and 40. For the first kernel,
(G AUSS FILTER, the actual simulated energy consumption is 14.28 J for 80 frames. The
average predicted energy consumption is 14.26 J with a relative error of 0.019 %. Even
if only one instead of 80 frames is processed, the relative error is merely 0.02%. For
the second kernel, PRE-PROCESSING, the simulated energy consumption is 0.159J and
the average predicted energy consumption is 0.157 a relative error of 1.37%. If only
one frame is processed, the relative error is 3.6 %. Errors can be reduced further by
processing more frames. The third kernel, the SLIDING MEDIAN calculation, has heavy data
dependencies and is therefore not well suited for the quick start approach. The simulated
energy consumption is 2.37J and the predicted energy 0.88J. This results in a relative
error of 62.8 %.
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8.3.4 Discussion

With the conducted experiments all research issues raised in this section could be answered.
It has been shown how MOGEA-DSE can be used to identify GPU hardware for desktop,
mobile, and HPC systems for various programs.

The most important advantage of simulation of GPU architectures could be shown:
GPUs that need to evaluated do not need to be bought and tested and do not even need to
exist. Suitable GPUs can be identified early in the design phase of a system. Additionally,
possible bottlenecks in the software can be identified, e.g., if a system should be equipped
with the next generation of upcoming GPUs.

One important feature of MOGEA-DSE is that the explored design space can be kept
small. This could be achieved by making use of parameter dependencies, which led to a
reduced evaluation time without losing accuracy in the objective functions.

In the following a detailed discussion for the conducted experiments, the devised
architectures, and for the checkpointing and quick start approach is given.

Discussion of the Conducted Experiments

The multi-objective evaluation has shown interesting results. For most evaluated programs
not one but up to four GPU architectures could be identified to be on the Pareto front for
the two objectives energy consumption and execution time.

Some architectures tend to be more efficient for the objectives energy consump-
tion and execution time than others. These architectures include the GF-100 for the
FERMI "architectures, the GF-116M and the GF-114M for the mobile FERMI "architectures,
and the GP-107, GP-104, and the GP-110 for the PASCALarchitectures.

A very surprising result is that the GF-100 dominated all other FERMI " architectures.
For the mobile FERMI "architecture, the GF-116M or GF-114M is best for most of the
programs. And for the PASCAL™architecture, the GP-107 was always one solution in the
Pareto fronts.

Another interesting result is that the high performance GP-110 architecture with up
to 5760 SPs has been only for NN, NW and VirusDetectionCL on the Pareto front. This
indicates clearly that all other programs, evaluated for the PASCAL™architecture, can not
utilize the increased number of cores of the GP-110 architecture. As the GP-107 and
GP-104 architecture can be operated at a higher clock speed, it is not beneficial to use the
GP-110 architecture with more cores running at lower speed for programs that can not
utilize the additional cores. Here, less cores running at a higher clock rate outperform
the more powerful architecture. For the energy consumption it is also not beneficial to
integrate more cores if they are not utilized.

Discussion on the Devised Architectures

During the performance of the experiment EXP8ypc, the inspected PASCAL™ architectures
did not exist. They had been announced by NVIDIA®but no specifications was available.
Meanwhile, NVIDIA®released eight GPUs based on the PAscAL" architecture [NVI16a]
namely the GTX 1050, the GTX 1050 Ti, the GTX 1060, the GTX 1070, the GTX 1080,
a new version of the Titan X, and the TESLA®P-100. This opens up the opportunity, to
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compare the devised architectures in Table 8.2 with the actual GPUs as provided in the
following.

The GTX 1050 Ti is based on the GP-107 architecture. It is equipped with 6 SMPs,
768 SPs, and GDDR-5 memory [NVI16a]. It runs with a core clock rate of 1392 MHz. The
GTX 1050 is also based on the GP-107 architecture but uses only 5 SMPs and is clocked
slightly faster with 1455 MHz. The devised GP-107 architecture in Table 8.2 has been
assumed to be more powerful than the actual architecture. The main difference is that
for the devised architecture each SMP has been assumed to have 256 SPs, whereas the
actual architecture uses 128 SPs per SMP. The DRAM type has been predicted correctly,
and the core clock speed is slightly higher on the actual GPUs. Thus, the GP-107 would
match more closely to a GP-108 architecture in the table, which had not been considered.

The GTX 1060 is based on the GP-106 architecture. It is equipped with 10 SMPs,
1280 SPs, and GDDR-5 memory [NVI16a]. It runs with a core clock rate of 1506 MHz
and a DRAM clock of 2000 MHz. The derived GP-107 architecture in Table 8.2 matches
more closely to the actual GP-106 architecture than to the actual GP-107. Overall, the
actual architectures cover a wider range than the derived architectures. Therefore, the
GP-106 architecture has been compared to the derived GP-107 in the following. Both
the number of SPs and the DRAM type have been predicted correctly. For the devised
architecture only 5 SMPs, each with 256 SPs, have been assumed, whereas the actual
architecture uses 10 SMPs, each with 128 SPs. The overall number of SPs is the same. As
the local memory and the warp scheduler can be kept smaller it is probably cheaper to
build more less powerful SMPs than fewer more powerful. For the clock rate the GTX
1060 runs at 1506 MHz whereas for the derived architecture 1200 MHz has been assumed
as the maximum core clock. Similarly, the DRAM clock rate has been assumed too low
with 1450 MHz as maximum.

The GTX 1070 is based on the GP-104 architecture. It is equipped with 15 SMPs,
1920 SPs, and GDDR-5 memory [NVI16a]. It runs with a core clock rate of 1506 MHz
and a DRAM clock of 2000 MHz. The GTX 1080, also based on the GP-104 architecture,
is equipped with 20 SMPs, 2560 SPs, and GDDR-5X memory. It runs with a core clock
rate of 1607 MHz and a DRAM clock of 2500 MHz. The derived GP-104 architecture uses
6 to 8 SMPs with 2304 to 3072 SPs. The SPs match for the GTX 1080. The GTX 1070 is
in between the derived GP-107 and GP-104 architecture. This holds also for the DRAM
type as the GTX 1070 uses GDDR-5 memory as the derived GP-107 architecture whereas
the GTX 1080 uses faster GDDR-~5X memory. The clock rates were underestimated for
both GPUs and for core clock and DRAM clock.

The Titan X is based on the GP-102 architecture. It is equipped with 28 SMPs, 3584
SPs, and GDDR-5X memory [NVI16a]. It runs with a core clock rate of 1417 MHz and
a DRAM clock of 2500 MHz. The actual GP-102 architecture is in between the derived
GP-104 architecture and the derived GP-110a architecture.

Finally, the TESLA®P-100 [NVI16b] is based on the GP-100 architecture. It is equipped
with 56 SMPs, 3584 SPs, with a core clock rate of 1126 MHz, and HBM2 DRAM high
bandwidth memory. This GPU is specifically designed for HPC. Therefore, the TESLA®P-
100 has additionally 1792 SPs for double precision floating point arithmetic. For this GPU
architecture, which is named GP-110a and GP-110b in the table, 4608 to 5760 SPs were
assumed, which is higher than for the actual GPU. But as the TESLA®P-100 only uses
56 SMPs of the 60 possible SMPs and also has additionally double processing SPs the
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maximum overall number of SPs of the GP-100 architecture is with 5760 equal to the
assumed maximum. Similar to the other architectures fewer SMPs were assumed each
with more SPs. The core clock rate of 1126 MHz was assumed as 840 MHz to 890 MHz.
Overall, the TESLA®P-100 is the only out of the five GPUs with the stacked 3D memory,
named HBM2, which has been assumed for the GP-104, GP-102, and GP-110 architecture.

To conclude the discussion of the actual architectures in comparison with the devised
architectures, the devised architectures have been fairly accurate to the actual architectures.
Most insights that were gained, e.g., that not all programs can utilize the high number of
SPs, still hold for the actual GPUs. If however insights were gained that are dependent of
the number of actual SMPs, for example work group sizes, this would have to be evaluated
again if more information about the desired GPU architecture is available.

Discussion of the Checkpointing and Quick Start Approach

If the checkpointing or quick start approach is useful to reduce the evaluation time depends
on whether the OpenCL programs has data dependencies or not. For programs without
data dependencies, the quick start approach is well suited to reduce the evaluation time.
For example, the energy consumption was predicted accurately for GAUSS FILTER and
PRE-PROCESSING with good error rates of 0.019 % and 1.37 %.

For programs with data dependencies, the quick start approach is usually unsuitable.
For these programs the checkpointing approach is well suited. For example, the SLIDING
MEDIAN calculation exhibits heavy data dependencies. As a consequence, realistic input
data is needed. Therefore, an initialization with random data as in the quick start approach
is not sufficient. This is reflected particularly in the error rate of 62%. For this type
of programs, the checkpointing approach is perfectly suited. The computation can be
done on initialized buffers, which are loaded from the hard disk, without the initialization
overhead. As a result, the relative error dropped from 62 % to 0.047 %. The evaluation
time was reduced by the checkpointing approach from one day and seven hours down to
six hours and with a very low error.

8.3.5 Summary and Conclusion

In this section important methods for MOGEA-DSE have been developed. The contribu-
tions are the integration of remote evaluation, the checkpointing approach, and the quick
start approach. All three contributions address the problem that simulation of GPUs
is time-consuming and how a PSE and DSE method can be accelerated without losing
accuracy in the result.

It could be shown that MOGEA-DSE can be used to explore several programs, several
GPU architectures, and for target systems of different size. Particularly, MOGEA-DSE
has been used for the exploration of 21 programs and 11 GPU architectures with mobile,
desktop, and HPC systems as target systems. Additionally, with the GPU simulator,
GPUs that do not yet exist could be evaluated. This is useful to identify suitable hardware
without the need to buy several GPUs for testing, which is both time-consuming and
expensive. Also, bottlenecks can be identified early making an optimization of software
toward upcoming GPUs possible.

Regarding the checkpointing and quick start method, it has been shown that a reduction
of the input result can lead to wrong results and should be done very carefully. With
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the checkpointing method buffers can be initialized faster without affecting the results
by loading a checkpoint with pre-initialized buffers. With the quick start method, which
is not suitable for all programs, an even faster initialization can be achieved by using
approximation and making use of available pipeline structure. The approximation in quick
start has only small effects on the result.

8.4 Multi-Objective, Offloading-Capable Hybrid PSE and
DSE of Simulated GPUs for Mobile Devices

One use case of the PAMONO sensor is a rapid measurement of spreading of diseases. In
case of a break out of a new disease, a fast, mobile virus detection can be crucial to detect
the origin of the outbreak and to prevent further spreading. PAMONO devices can be
used as an early warning system for epidemics. A CPS with a mobile PAMONO sensor,
the real-time capable VirusDetectionCL method, and a mobile processing hardware like a
laptop would be very well suited for such a task.

If several PAMONO devices cooperate they can share information like spreading of
viruses in the current area or virus load of tested patients, which helps to guide further
actions. The PAMONO device would then act as a DISTRIBUTED CYBER-PHYSICAL
SYsTEM (DCPS). However, new challenges arise for DCPS. Each PAMONO device should
be able to provide a high throughput of samples, to process individual samples quickly, to
provide a long battery life, and be able to share information.

To share information a mobile data connection with a high data throughput is needed.
Here, the LoNG TERM EvOLUTION (LTE) network is used. LTE is a telecommunication
standard for fast, wireless data transfer with mobile phones. A mobile data connection
with high data throughput also enables the possibility to offload work to a server instead
of processing the work on the mobile device itself. This can be especially useful to save
energy on the mobile device.

The following research issues are examined:

e How can offloading capability be integrated into MOGEA-DSE?

o Are the two offloading strategies of full ofloading or no offloading the only useful
strategies?

o What is the effect of partial offloading with different offloading strategies?

e How do GPU architecture and offloading strategy influence each other?

The structure of this section is as follows. First, the CONTEXT-AWARE POWER
CONSUMPTION MODEL (CoPoMo) [DIC+13] simulator is introduced in Section 8.4.1,
which can simulate communication costs, energy consumption, and transfer time of an
LTE connection. Second, the MOGEA-DSE approach is extended to simulate effects of
offloading computations to a server or other devices in the area in Section 8.4.2. Afterward,
an experiment with offloading is conducted in Section 8.4.3. Then, results and discussion
of this experiment is provided in Section 8.4.4 and Section 8.4.5. Finally, summary and
conclusion are provided in Section 8.4.6.

This section is based on the author’s publication [LKD+14].
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8.4.1 CoPoMo LTE Simulator

To offload work from mobile PAMONO devices to a server, the LTE network is very well
suited. It is available in many regions and is able to transfer sufficient amount of data in
a reasonable time.

To integrate offloading via the LTE network into MOGEA-DSE, the CoPoMo sim-
ulator [DIC+13; LKD+14] from Dusza et al. is used. CoPoMo is a stochastic power
consumption model for LTE devices. It is used to simulate an LTE modem. The LTE
modem is used to transfer data from the mobile device to a server and the other way
round.

The actual use cases of CoPoMo are to simulate the transfer of either PAMONO sensor
images, pre-processed PAMONO sensor images, per-pixel classification, or unclassified
polygons to a server and calculate transfer time and energy consumption. For each of
these use cases, the amount of data that needs to be transferred varies. The server is used
to calculate the polygon classification and transfers back the result. With CoPoMo the
transfer time and energy consumption can be calculated for a given amount of data.

However, the transfer time and energy consumption is not only influenced by the
amount of data but also influenced by the environment. For example, the available transfer
time and energy consumption can be particularly influenced by: distance of the device
to the next base station, number of devices using the base station, and occlusion of
the base station by buildings or other objects. As the PAMONO sensor can be used in
various scenarios, the influence of the environment should be considered. In CoPoMo
several system parameters and information about the environment and context can be
included into the calculation. In the most advanced setup, a three-dimensional map of
the environment and positions of the device during the measurement can be used. In the
following the CoPoMo power model is described.

An approximation Pyg of the actual power consumption can be calculated with the
equation [DIC+13]

?LTE=ZZ%‘(§75)'E(§)7 (8.15)

with P; as the estimated power consumption. The term P; is calculated with two curve
pieces of linear functions with the up-link transmission power. The slopes, offsets, and
transitions of the two linear functions are derived empirically. Lastly, the term p; is given
as a state probability of a Markovian model M. [DIC+13]

The Markovian model M consists of four states, which model the power states of the
LTE device: idle, low, high, and maz. The transition probabilities from a lower power
state to a higher power state in the Markovian model depend on application arrival rate
and channel conditions. On the other hand, the transition probabilities from a higher
power state to a lower power state depend on the file transfer duration, which depends on
file size and available throughput. [DIC+13]

The throughput is determined by measurements of different channel conditions with
a radio channel emulator and by determining a target SNR with help of ray-tracing
simulations on different scenarios, e.g., urban, suburban, and rural. Three-dimensional
maps of different areas, with base station locations and user trajectories are used for this
simulation. [DIC+13]
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Figure 8.7: Schematic of the architectural design of the offloading capable extension of
MOGEA-DSE.

The CoPoMo simulator has been verified with an independent system simulation.
Different traffics and different cell environments were evaluated. The CoPoMo results and
the system simulation results match very well. [DIC+13]

8.4.2 Methods

To explore offloading via the LTE network with MOGEA-DSE, the CoPoMo LTE simulator
is integrated and results from CoPoMo are combined with the results from MOGEA-DSE
as explained in the following. VirusDetectionCL is extended to support offloading as
well. This includes different offloading points that are integrated in VirusDetectionCL.
Depending on the chosen offloading point, different amount of data is processed locally or
transferred to the server.

Architectural Design of MOGEA-DSE for Offloading Capable PSE and DSE

Figure 8.7 shows the offloading capable extension of MOGEA-DSE. The main difference is
the CoPoMo LTE simulator that is used within the remote fitness evaluation. As input
for this simulator the default LTE configuration and the current cell environment have to
be provided. Both are stored in a database.

MOGEA-DSE automatically distributes CoPoMo to the nodes for the fitness evaluation
in beforehand. This includes also the model of the cell environment. During the evaluation
the current LTE parameters are provided to the fitness evaluations. Within the main
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evaluation the results from the LTE simulator are combined with other results as explained
in the following.

Combination of the Models

To seamlessly integrate the results from CoPoMo in to MOGEA-DSE, the calculations
of energy consumption and execution time in the fitness evaluation need to be extended.
Further, the battery lifetime of the mobile device is added as a new fitness value.

The overall estimated power consumption is simply calculated by adding the power
consumption Pprg, cf Equation (8.15), of the LTE device:

ﬁZPGPU+?CPU+ﬁLTE~ (816)

To calculate the overall estimated energy consumption F, the power consumption of
the GPU (Pgpu), the CPU (Pcpy) and the LTE device (Prrg) are multiplied with the
associated run time or transfer time in seconds and summed up as [LKD+14]

E = Pgpy-Tapu + Pcpu - Tepu + Prre - Tire, (8.17)

with T g as the transfer time determined with the CoPoMo model.

The power and energy consumption of the server are excluded from these calculations,
as only the power and energy consumption of the mobile device is of interest.

Along with the energy consumption, the overall execution time is of particular interest.
The approximation of the overall execution time 7T is calculated as [LKD+14]

T = TGPU + TCPU + TLTE + TServer - TParallela (818)

where Topyu, Tepy and Tirg is the execution time of the GPU and the CPU and the
transfer time of the LTE device. The term Tparallel is the time that can be saved by
parallel calculation on GPU and CPU and by transferring data in parallel. In contrast
to Equation (8.17), the execution time of the calculation on the server Tgerver is included
because the objective is the execution time until the final result is calculated. The server
time is determined by measurements of actual runs of the different pipeline configurations.
The time to record the images, about two minutes, is not included because no energy and
execution time can be saved on this task.

Finally, the estimated battery lifetime EBatt is of interest. It can be calculated with

the equation [LKD+14]
C'Batt

Lpatt = = (8.19)

= = )
Pgpu + Pcpu + Purg
with Cpatt as the battery capacity.

Offloading Capable Extension of VirusDetectionCL

To enable offloading in VirusDetectionCL, the processing pipeline is extended to a client
and server application. This works as follows. The pipeline is bisected at a certain point
in the pipeline. The client processes all data up to this point, transfers the needed buffers
to the server, and the server processes the rest of the pipeline. Client and server can
use the same VirusDetectionCL software but set up only the needed pipeline elements.
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Table 8.4: Offloading strategies.

Offloading point Description

OFFOyong No offloading, the images are processed locally on the mobile device.
OFF1lcoms Offloading after the polygons are calculated. Only the final poly-
gons have to be transferred, once the data set is processed.
OFF2yncoms Offloading of the uncombined polygons for every frame.
OFF3canp Offloading after the pixel candidates are calculated. For every
frame a compressed bit-mask of the pixel candidates is transferred.
OFF4yoise Offloading after the constant background and the noise in the
images is removed.
OFF5gianaL Offloading after the constant background in the images is removed.
The transferred images contain less redundant information.
OFFO6pyyL Full offloading of the unmodified sensor images, without use of the
local GPU.

Buffers are transferred by using the GSTREAMER [GSt16] streaming library with USER
DataGrRAM ProTOCOL (UDP) and REAL-TIME TRANSPORT PrOTOCOL (RTP). If full
offloading should be used, the pipeline is bisected after the images are received from the
camera or loaded from the hard drive. All processing is then done on the server. This
is especially useful for small ESs that can not process the images locally in a reasonable
time.

For the use with CoPoMo, the offloading does not actually have to be performed as
the offloading is only simulated. To enable this the VirusDetectionCL pipeline has been
modified to calculate only the needed parts of the pipeline for a given offloading strategy.
The pipeline is simply exited after the needed calculations for the current frame are done,
drops the results, and processes the next frame. Seven different offloading strategies are
considered. For each strategy the pipeline ends at a different point.

Table 8.4 shows and explains the conducted offloading strategies OFFOyong t0 OFFGpyyr..
With OFFOyone no offloading is done and all the calculation is performed on the local
GPU. With OFF6py,;, a full offloading is performed. The sensor images are transferred to
the server without any processing on the local GPU. Between these two extreme points,
five points in the pipeline were identified where preliminary results are available that can
be offloaded.

First, with OFF1l¢omp only the final polygons are transferred. This is done only once
after the whole data set has been locally processed. It should be noted that if per-pixel
features are needed for the classification, also the features needed to be transferred. Second,
instead of transferring the final polygons, the preliminary polygons can be transferred for
every frame with OFF2yycoms. Third, the pixel segmentation can be transferred as a bit
mask with OFF3canp. Also, no per-pixel features are taken into account here. Fourth, the
virus signal that has been processed with the noise reduction can be transferred as image
with OFF4yoge. Fifth, the virus signal that still contains the noise can be transferred with
OFFSgienar.-
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Table 8.5: Transferred data for different offloading strategies.

Offloading strategy Data size Data type

OFFOyxong 0B -

OFF1lcoun 26.3kB Compressed polygons
OFF2yncoms 199.3kB  Compressed polygons
OFF3canp 25.4kB Compressed bit masks
OFF4yoiss 1.4MB Compressed images
OFFSgienaL 1.4MB Compressed images
OFFOGpyyL 1.6 MB Compressed images

As the offloading is only simulated, the amount of data that has to be considered
in the CoPoMo model needs to be determined. This is measured in an offline step.
Depending on the current offloading strategy, the correct amount of data is provided to the
CoPoMo model. In MOGEA-DSE this dependency is modeled as a dependent parameter
as explained in Section 8.2.2.

Table 8.5 lists the amount of transferred data for different offloading strategies.
Transferred polygons and bit masks are compressed with the common lossless Lem-
pel-Ziv—Markov chain algorithm. Images are compressed using the lossless portable
network graphics algorithm [Bou97]. The time to process the remaining data on a server
is also measured in beforehand in an offline step.

8.4.3 Experiments

To answer the research issues, experiment EXP9orrroanive 1S conducted. For this experiment
an important use case for VirusDetectionCL is inspected: a mobile virus detection setup
with the PAMONO sensor and a laptop. Different mobile GPUs and the possibility for
offloading at different points in the VirusDetectionCL pipeline are explored. Execution
time and energy consumption are the objectives for this experiment.

Four different mobile NVIDIA®GEFORCE"GPUs are evaluated, as listed in Table 8.6:
the GF-520M, GF-540M, GF-560M, and GF-580M. The most powerful GF-580M GPU,
has eight SMPs, GDDR-5 DRAM, and runs at the slowest core clock of 620 MHz. This is
used as a baseline. The least powerful GPU, the GF-520M, however has only one SMP
and uses only GDDR-3 DRAM but it runs at the highest core clock of 740 MHz. The
GF-540M and the GF-560M are in between with two and four SMPs.

For VirusDetectionCL the data set DS7pory200nu-1 1S used, as explained in Section 2.2.
The data set contains 160 images of size 1024 px x 128 px. The VirusDetectionCL parame-
ters for the evaluation have been previously optimized to detect all particles without any
false positives.

The CoPoMo parameters for the evaluation are listed in Table 8.7. As mentioned
before, the amount of offloaded data varies depending on the offloading point.

For this experiment a single bandwidth and a fixed environment are considered. It
is possible to vary these values and perform additional experiments with MOGEA-DSE
so that offloading strategies for different bandwidths and different environments can be
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Table 8.6: Overview of the evaluated mobile GPUs. Extended version from [LKD+-14].

GPU SMPs SPs Core clock DRAM DRAM clock TMUs ROPs
GF-520M 1 48 740 MHz GDDR-3 800 MHz 8 4
GF-540M 2 96 672MHz GDDR-3 900 MHz 16 8
GF-560M 4 192 760 MHz GDDR-5 1250 MHz 32 16
GF-580M 8 384 620 MHz GDDR-5 1500 MHz 64 32

determined. A mobile device can then dynamically select a suitable offloading strategy
based on current conditions.

For the calculation of the estimated energy consumption, cf. Section 8.4.2, the energy
consumption of the CPU for the mobile devices is neglected as energy consumption of the
CPU does not vary much between the different use cases and also no proper CPU energy
model was available for the used CPU. Because almost every calculation is done either on
the GPU or on the server, the CPU has only to decode the images and has to process
OpenCL host code. However, in other scenarios, like energy efficient computation on ESs,
the energy consumption of the CPU is not negligible. This is considered in Section 8.5
where ESs are inspected and the energy consumption of the CPU is included.

The evaluation has been performed on a compute sever with four AMD OPTERON"" 6272
CPUs and 256 GB RAM. To measure the execution time of the different pipeline configu-
rations, an INTEL®Q9550 CPU with 8 GB RAM and a GTX 480 GPU was used.

8.4.4 Results

In experiment EXP9orrLoaping, different mobile GPU architectures and different offloading
points in the VirusDetectionCL pipeline have been inspected. Seven different offloading
strategies and four different GPU architectures have been evaluated. The offloading
strategies are described in Table 8.4 and the GPU architectures in Table 8.6.

The results for EXP90ppLoaping are shown in Figure 8.8. This figure shows four Pareto
fronts as described in the following. The values for this figure are listed in Table 8.8 in
detail.

For Figure 8.8 the numbers next to the points correspond to the numbers of the
offloading points OFFOyong t0 OFF6yy. However, only four of the seven offloading point
from Table 8.5 are part of the four Pareto fronts. For example, it is not beneficial to
offload the calculated polygons for classification as the classification can be easily done on
the mobile device and the overhead does not pay off.

The four individual Pareto fronts for each of the GPUs are shown with differently
shaped point symbols. The upper left solution with full offloading uses only 3.51J but
takes 27.82s to complete. The other extreme is the solution without offloading and a
local calculation on the GEFORCE"GF-560M. This solution only takes 0.51s to complete,
which is a speedup of 54.5 but with 35.72J it uses ten time as much energy.

Beside these two extreme solutions, offloading only parts of the calculation gives
interesting results. In other offloading approaches [LWX01; XLL0O7; KL10; TC13] the
offloading decision is only binary, either everything is offloaded or nothing. Here however,
multiple offloading points were inspected and it could be shown that it can be beneficial
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Table 8.7: CoPoMo parameters used for the evaluation.

CoPoMo parameter Value
alphal.ow 0.0048
alphaHigh 0.068
betalLow 1.6
betaHigh 0.79
gamma 12
consMaxPower 2.35
powldle 0.04
snrTarget 13
transmissionPowerFor AWE 40
channel AWGN
frameLength 10
activeTTTFrame 2
mode nrt
protocol UDP
constNbPRB 1
rtTargetDatarate 500000
arrivalRate 0.01
serviceRate 0.0083
nBPrbNRT 25
maxPowerDatarateDegradationFactor 0.5
maxRTSNRDegradation 5

to offload only parts of the calculation. Of particular interest is the case, where a slight
increase in execution time from 0.51s to 0.87s by using the offloading point OFF3¢anp
and the GF-560M instead of the GF-580M reduces the energy consumption by 77 %. If
the GF-580M is kept with the same offloading point OFF3¢,xp, an increase in execution
time from 0.56s to 0.85s reduces the energy consumption by 64 % for the GF-580M.

A further decrease in energy consumption rises the execution time to larger values. For
example, a decrease in energy consumption by another 38 % for the GF-560M, increases
the execution time not only from 0.51s to 0.87s but from 0.87s to 24.59s. This solution
is not very useful, as with a further moderate increase in execution time from 24.59s to
27.82s by choosing the solution with full ofloading, it is possible to save even more energy.
With full offloading the energy consumption drops from 9.47J to a very good value of only
3.51 J. This saves 95 % of the energy consumption compared to the GF-580M without any
offloading.

The overall Pareto front over all different GPUs is shown as a dashed line in Figure 8.8
and with bold font in Table 8.8. The overall Pareto front consists of the following solution:
no offloading with an NVIDIA®GEFORCE " GF-560M, offloading of the pixel candidates
with a GF-560M and a GF-580M, offloading of the images after background and noise are
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Figure 8.8: Pareto fronts for four GPUs. The overall Pareto front is shown as dashed
line. The numbers next to the points correspond to the offloading strategies
in Table 8.4. Zero corresponds to no offloading, three to offloading of the
pixel candidates, four to offloading of the noise reduced images, and six to
full offloading. See Table 8.6 for details. Adapted from [LKD-14].

removed, and finally a full offloading solution where the local GPU is not used and the
unmodified images are offloaded to the server.

As already mentioned, the offloading point with offloaded polygons does not show up
on any of the Pareto fronts. This solution is dominated by the points without offloading.
Additionally, the points for no offloading are dominated on the local Pareto front for
GF-520M and GF-540M.

8.4.5 Discussion

Some insights could be gained from the conducted experiment. A surprising result is
that the most powerful GPU, the GF-580M, only provides one point to the overall Pareto
front. This indicates that the program can not fully utilize the 384 cores of this GPU. The
GF-560M with fewer cores but increased clock speed outperforms the GF-580M in all but
this one point. An explanation to this is the relatively small image size of 1024 px x 128 px
for the used data set. With larger images the GF-580M is considered to outperform the
GF-560M. However, for images with 1024 px x 128 px, the GF-560M is the better choice.
This result clearly shows why a DSE is important. Simply choosing the most powerful
GPU can waste energy and in this case even is slightly slower than using the GF-560M
with fewer cores but increased clock speed.

Another surprising result is that the most power efficient GPUs in the example, GF-
520M and GF-540M, are not on the Pareto front at all. Although the faster GPUs use
more power, the result is calculated faster and thus they need less energy.

By inspecting the local Pareto fronts of the single architectures, another interesting
observation could be made. Only for two GPUs, the GF-560M and the GF-580M, the
solution without offloading is part of the local Pareto front. For the GF-520M and the GF-
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Table 8.8: Energy consumption and execution time for different offloading points and
different GPUs. The transfer time and the time for processing the data on
the server is included in the execution time. Savings in energy consumption
are in relation to the use of the GF-580M without offloading. Points of the
overall Pareto front are highlighted in bold font. Adapted from [LKD+14].

Offloading point GPU Energy consumption Savings Execution time
OFFOyong GF-560M 35.72J 45 % 0.51s
GF-580M 65.18 J 0% 0.56s
OFFSCAND GF-520M 58.0J 11 % 2.828
GF-540M 35.54J 45 % 1.49s
GF-560M 15.22J % 0.87s
GF-580M 23.217J 64 % 0.85s
OFF4gienaL GF-520M 34.76J 47 % 25.67s
GF-540M 21.89J 66 % 24.94s
GF-560M 9.47J 85 % 24.59 s
GF-580M 15.66 J 76 % 24.60s
OFF6pyr None 3.51J 95 % 27.82s

540M, the offloading of the pixel candidates dominates the solutions with local processing.
For these two GPUs it is always beneficial to offload some amount of work.

8.4.6 Summary and Conclusion

In this section MOGEA-DSE has been extended to consider full or partial offloading
of tasks from mobile devices to a server via the LTE wireless network. The CoPoMo
model has been integrated into MOGEA-DSE and VirusDetectionCL has been extended
to support offloading.

To answer the research issues, an experiment with seven different offloading points in
the VirusDetectionCL pipeline and four different GPUs has been performed. It could be
shown that the use of offloading can save up to 95 % of energy compared to simply using
the fastest GPU without any offloading. A full offloading saves the most amount of energy
but at the same time has the longest execution time. Using only local processing is the
fastest solution but uses the most amount of energy.

Of particular interest are the solutions with partial offloading. By selecting the right
offloading point and a suited GPU for this offloading point, the energy consumption can
be reduced by 77 % and at the same time the execution time is still very low. This also
shows that considering more offloading options than full ofloading and local processing
can be very beneficial. If a full offloading takes too long, a partial offloading can still save
large amounts of energy without taking much longer than local processing.

Additionally, an influence of the chosen offloading point to the GPU architectures
and the other way around could be shown. If the offloading point is given, different sets
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of GPUs are on the Pareto front. For example, only for one particular offloading point
the most powerful GPU is on the Pareto front. If the architecture is given, also not all
offloading points are on the Pareto front. For example, for the two slowest GPUs it is not
beneficial to process the task locally.

As future work, the offloading can be extended to also use other devices in the local
area or devices in other areas to process data. If one device has low battery power,
insufficient computing capacity or the server is currently unavailable, the work can be
offloaded to another mobile device, which has more battery power and sufficient computing
capacities. Needed execution time and energy consumption of the other mobile device
can be considered to make an offloading decision. Additionally, different data rates and
location scenarios for the LTE communication can be evaluated. With this, offloading
strategies can be explored for various external conditions. On the device the offloading
strategy can then be adapted dynamically.

8.5 Multi-Objective Hybrid Hardware/Software PSE and
DSE of an Embedded System

In this section a multi-objective, energy-aware, hybrid hardware/software PSE and DSE of
an ES is presented as last and most complex PSE and DSE within this work. The benefits
and difficulties of a hybrid PSE and DSE are especially in focus. The objectives energy
consumption, execution time, and QoR are explored on an ES by incorporating actual
hardware measurements. In addition, the use of approximate computing is explored as a
method to save even more energy or to speed up the execution by trading QoR against
improvements in one or both of the other objectives.

If a program should be deployed on an ES, determining a good software and hardware
parametrization is usually difficult, especially if the objectives are conflicting and additional
constraints have to be fulfilled. To achieve this, MOGEA-DSE is extended in several
aspects compared to the aforementioned versions in the previous sections:

o ES target hardware is integrated in the hybrid PSE and DSE.

o A global hardware/software codesign is conducted.

e Actual hardware is measured instead of simulated.

e The energy consumption of CPU, GPU, and RAM is considered.

e The hardware parameters of CPU and GPU are part of the optimization.

e The measurement software is synchronized with the software that should be measured
to enable precise measurements.

e Approximate computing is integrated in the PSE and DSE.

Particularly, the presented extensions of MOGEA-DSE are targeted toward the overall
goal that should be achieved with this thesis: to identify GPU hardware for all PAMONO
scenarios from HPC systems, desktop systems, mobile systems, down to small, hand-held
ESs, to enable a rapid, reliable detection and counting of viruses in PAMONO sensor data.

Therefore, all not yet inspected parts of the scenarios in Figure 8.1 are in focus. In
particular, the use of hand-held devices in the scenarios SCN2granp-arone; SCN3Locar,
SCN4cLoup, and SCNHogpirar- Additionally, it should be shown that MOGEA-DSE is
not only suited to be used with a GPU simulator but also with measurements of actual
hardware.
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Figure 8.9: The Odroid platform and the PAMONO sensor. Example of how the size of
the mobile processing device in the front compares to that of the PAMONO
sensor on the left. The shown PAMONO sensor is a prototype, which will
be further miniaturized in the future.

The following research issues are examined:

e How can actual energy measurements be integrated in MOGEA-DSE?

e How can MPSoC ES hardware be explored?

e Can the demanding soft real-time limits of VirusDetectionCL be met on a small
hand-held device?

o What are the effects of a hardware/software codesign compared to considering only
optimization of the hardware or software?

e How can approximate computing be used to save energy or execution time on ESs?

e Is a model-based prediction of the objectives useful?

The structure of this section is as follows. First, the Odroid platform is introduced
in Section 8.5. Then, the methods for measuring the Odroid system is provided in
Section 8.5.1. In Section 8.5.2 three experiments with the Odroid system as target
architecture are designed and in Section 8.5.3 the measurement setup for these experiments
is given. Results for these experiments are provided in Section 8.5.4 and discussed in
Section 8.5.5. Finally, the section closes with summary and conclusion in Section 8.5.6.

This section is based on the author’s cooperative publication [NLE+15]. The first two
authors contributed equally for this publication.

Odroid Platform

As target platform the HARDKERNEL®Odroid-XU3 Revision 0.2 [Harl5] was chosen, as
depicted in Figure 8.10a. The Odroid-XU3 is an MPSoC single board computer with a
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(a) The Odroid-XU3 platform. The Odroid board (b) Schematic illustration of the Odroid-
uses an Exynos 5422 chip and is equipped with XUs3 platform, with the Cortex-A7 and
an eMMC module. The size of the board is Cortex-A15 CPUs, a Mali GPU, and
94mm x 70 mm x 18 mm. low power RAM. The INA231 can be

used for energy measurements.

Figure 8.10: The Odroid-XU3 MPSoC platform and a schematic illustration of it.

heterogeneous ARM®big. LITTLE architecture and a Mali GPU to enable HETEROGENEOUS
Murti-PrOCESSING (HMP).

The Odroid ES is perfectly suited for a mobile PAMONO sensor. A combination of a
mobile PAMONO sensor, the VirusDetectionCL software, and the Odroid results in a CPS
that can be used mobile indoors and outdoors. The Odroid offers a very small size, low
power consumption and enough processing power to process PAMONO images as fast as
they arrive from the camera. The size of the board is 94 mm x 70 mm x 18 mm. A power
consumption of less than 7W has been measured for the processing of PAMONO images
with VirusDetectionCL.

Odroid uses the SAMSUNG®Exynos 5422 chip [Sam15], as shown in the schematic in
Figure 8.10b. The Exynos is an octa core chip, with four ARM®Cortex-A15 and four
ARM®Cortex-A7 CPU cores. The Cortex-A15 cores can be clocked up to 2 GHz and the
Cortex-A7 at up to 1.4 GHz. The Exynos also consists of a Mali-T628 GPU, a low power
RAM, and four INA231 [Tex13] current and voltage sensors.

The Mali GPU is clocked at 600 MHz and supports OpenCL 1.1 full profile. Due to
support of the full profile, the unmodified OpenCL kernel from the desktop and laptop
systems can be used on the ES. As memory a 2 GB low power DDR-3 RAM clocked at
933 MHz is used, which has a memory bandwidth of 14.9 GBs™!. The INA231 sensors are
described in Section 8.5.1.

8.5.1 Methods

In this section the extensions of MOGEA-DSE and VirusDetectionCL toward actual energy
measurements of ES are described.

The structure is as follows. First, the architectural design of MOGEA-DSE is shown.
Second, the actual energy measurements on the Odroid are described. Third, dynamic
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Figure 8.11: Schematic of the architectural design of MOGEA-DSE for measurement of
actual MPSoC ES hardware.

frequency scaling is introduced. Fourth, the concept of approximate computing is presented.
Finally, an early capitulation method is described, which can speed up the evaluation.

Architectural Design of MOGEA-DSE for Measuring the Embedded System

A schematic of how the measurement of actual ES hardware is included in the architectural
design of MOGEA-DSE is shown in Figure 8.11. The remote fitness evaluation is directly
performed on the evaluated hardware. For the measurements of actual MPSoC ES
hardware, the ENERGYMETER is used, which is explained in Section 8.5.1. A GPU
compiler is used to generate the compiled code from the provided OpenCL code. The
program that should be evaluated is then run on the GPU hardware. Afterward, a quality
measurement is performed.

MOGEA-DSE can perform measurements on multiple ESs in parallel. As parallel
measurement on the same device can result in unreliable measurements for some objectives,
the measurements are performed one after the other on each device and in parallel on
several devices to speed up the evaluation. The main evaluation is running on another
system and distributes the needed parameters, OpenCL code, programs, files, and the
ENERGYMETER to the connected ESs. This ensures that the same data and code base is
used on all the target platforms. It also prepares the ESs for the measurement.

The evaluation works as follows. New software and hardware parameter files are
generated within the GA and are automatically distributed to the target platforms. The
fitness evaluation is performed on the target device. This includes a run of the program
that should be evaluated and measurements of energy consumption and execution time.
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These measurements can be repeated several times to increase the accuracy of the result.
The detection quality is calculated after the measurements. This has to be done only once
as it does not change if a measurement is simply repeated. All fitness results are gathered
and transferred back to the main evaluation. Then, a new evaluation is scheduled on the
target device. If a generation is finished, the new generation is created on the master PC,
a checkpoint and all partial results are stored and the evaluation for the next generation
is executed.

Odroid Energy Measurements

To measure the energy consumption of the Odroids, the ENERGYMETER software has been
developed cooperatively [NLE+15] by Neugebauer and the author and has been made
publicly available [NL15]. It includes an interface to the INA231 measurement hardware
of the Odroid and provides an accurate timing mechanism to measure only desired parts
of software as described in the following.

The INA231 current-shunt and power monitor [Tex13] from TEXAS INSTRUMENTS"is
used to measure the power consumption of the Cortex-A15 or Cortex-A7, the Mali-T628,
and the low power DDR-3 RAM. There are four INA231 built into the Odroid-XU3, as
shown in Figure 8.10b.

The INA231 stores the values of shunt voltage, bus voltage, current, and power in data
output registers from which the values are read into the ENERGYMETER measurement
software. Measurements of the INA231 sensors are read periodically by accessing the
provided INA231 registers and storing the power values for CPUs, GPU, and RAM in
a list. If the measurement is finished, the average power consumptions are calculated.
As the execution time is known, the energy consumptions in Joule are calculated by
multiplying the average power consumptions in Watt with the execution time in seconds.
The overall energy consumption is then simply calculated as sum of the energy consumption
values. [Tex13]

The ENERGYMETER is designed to be controlled by signals. It can be started, paused,
and stopped by signals and sends a signal if it is ready for measurements. The signals for
communication in both directions are sent and received with named pipes under LINUX®.
The VirusDetectionCL software is extended to communicate with the ENERGYMETER. It
waits for a ready signal from the ENERGYMETER and sends signals if the measurement
should be started or stopped. With these extensions the measurement of the energy
consumption of the desired parts of VirusDetectionCL can be controlled from within
VirusDetectionCL itself. If other software should be measured with the ENERGYMETER, it
is also possible to trigger the measurement without a modification of the software that
should be measured.

A measurement of VirusDetectionCL works as follows. First, any not finished instances
of VirusDetectionCL and the ENERGYMETER are stopped. The fan of the Odroid is set to
full speed to keep the temperature of CPU and GPU low during the measurement. This is
especially important, as Backes, Rico, and Franke determined that the chip temperature
is a limiting factor for some applications as the chip frequency needed to be scaled down
if the chip exceeds 85 °C [BRF15]. Not needed services on the Odroid are stopped and the
default governors are loaded. The pipes are flushed to remove any not consumed signals
from previous, incomplete measurements.
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Then, VirusDetectionCL and the ENERGYMETER are started in signal mode. The
processes are synchronized with the ready signal. VirusDetectionCL and the ENER-
GYMETER both take some time to initialize. After VirusDetectionCL is ready it waits
for the ready signal from the ENERGYMETER, and after the ENERGYMETER is ready it
enqueues the ready signal into the pipe. The ready signal is kept in the pipe until it is
consumed by VirusDetectionCL. This is important if the ENERCYMETER is ready before
VirusDetectionCL is ready.

VirusDetectionCL then continues to run and the ENERGYMETER waits for the start
signal to start the measurement. If in VirusDetectionCL a code part is reached that
should be measured, VirusDetectionCL sends the start signal, which is received by the
ENERGYMETER. The ENERGYMETER then keeps track of the energy consumption. If the
code part that should be measured finishes, VirusDetectionCL sends the pause signal,
which pauses the energy measurement.

Finally, if the last code part finishes, VirusDetectionCL sends the stop signal. The
ENERGYMETER then outputs the results of the measurements and is finished. Afterward,
the generated output can be processed by MOGEA-DSE.

The initialization phase of VirusDetectionCL pipeline is excluded from the measure-
ments on purpose. The initialization only needs to be done once and then several samples
can be analyzed without starting the software again. Excluding the initialization phase has
the advantage that fewer frames need to be processed to receive an accurate measurement.
The energy consumption for processing all frames of a data set can easily be approximated
from the processing of a few hundred frames. For example, it can be enough to process
200 frames instead of all 2000 frames of a data set and then simply multiply the energy
consumption with ten. In MOGEA-DSE multiplicative factors can be specified for each
objective. However, if the initialization of the pipeline is not excluded, always a full data
set needs to be processed to receive an accurate result for the main processing. The ratio
between images needed for the initialization and images processed fully need to be kept
the same.

Dynamic Frequency Scaling

DVFS, DyNaMIC FREQUENCY SCALING (DFS), and DYNAMIC VOLTAGE SCALING (DVS)
are key methods to save energy on CPUs. The LINUX®OS kernel offers with the tool
CPUFREQ an interface for a DFS of the ARM®big. LITTLE CPU. In the following paragraphs
an overview of the strategies is given, based on [Kro07; Brol5; NLE+15].

For DFS through the LINUX®OS kernel, two main policies are possible: the CPU can
be set to a fixed frequency or the frequency can be adapted dynamically depending on the
current requirements. For each of the two policies, different strategies can be used. These
strategies can be set with so called governors. The available governors are:

e ONDEMAND

e PERFORMANCE
e POWERSAVE

e USERSPACE

e INTERACTIVE
e CONSERVATIVE
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The PERFORMANCE, POWERSAVE, and USERSPACE governors are simple and are using
static strategies. All three governors simply set the frequency to a fixed value within
given limits: the PERFORMANCE governor sets the frequency to the highest frequency, the
POWERSAVE sets the frequency to the lowest frequency, and USERSPACE governor sets the
frequency to a user defined frequency. [Kro07; Brol5]

The ONDEMAND, INTERACTIVE, and CONSERVATIVE governors are using dynamic
strategies. All three governors are changing the frequency depending on the current work
load on the CPU. The ONDEMAND governor increases the frequency if the average work
load on the CPU exceeds a given threshold and decreases the frequency if the average work
load drops. The ONDEMAND governor can react quickly to changes in the work load. As a
result, the performance of the system is not much affected. A fast switching of frequencies
is not possible on all CPUs so the latency to switch from one frequency to another can be
high. The behavior of the ONDEMAND governor can be adjusted by the user. The sampling
rate, at which the current CPU usage is checked by the kernel, can be changed. Also,
the up threshold, down-sampling factors, and the power save bias can be changed. The
INTERACTIVE governor changes the frequencies more aggressively toward the maximum
frequency and therefore it reacts faster to an increasing demand of computing power. The
CONSERVATIVE governor changes the frequencies more gracefully than the ONDEMAND
governor and therefore it is more suitable in a battery driven environment. With the
default settings the frequency increases in 5 % chunks of the maximum frequency. This can
be changed with the frequency step parameter. The CONSERVATIVE governor also has a
threshold for decreasing the frequency and down-sampling factors as parameters. [Kro07;
Brol5]

Approximate Computing

For software that produces a result of a certain quality, it is often possible to trade QoR
against some other objective. With approximate computing [Mit16] calculations and
results are allowed to be less accurate. Less accurate results might be calculated faster,
with less energy, or both.

For VirusDetectionCL the detection quality, cf. Section 4.3, can be traded against
energy consumption and execution time by choosing the parameters accordingly. The
following parameters and options directly or indirectly influence the QoR:

e noise reduction parameters

o feature parameters

o segmentation parameters

e classification parameters

e used algorithms for the pipeline stages
e queue sizes for noise reduction

e queue sizes for features

In addition to these already available options to influence the QoR, VirusDetectionCL has
been extended for approximate computing in the following parts:

e input perforation by dropping frames in the stream
e not fully processing every frame in the pipeline
e processing only a part of each frame
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e reducing the number of possible polygon points
« not evaluating all trees in the Random Forest classification
o using fast relaxed math in OpenCL

However, to determine which parameters generate the desired QoR and at the same time
save the most amount of execution time or energy is not an easy task. With MOGEA-DSE;,
approximate computing can be integrated in the optimization process. The desired QoR can
then be selected from the Pareto front of the MOGEA-DSE output. Available performance
measures in MOGEA-DSE include accuracy (Definition 34), precision (Definition 35),
recall (Definition 36), Fy score (Definition 37), positive agreement (Definition 38), and
Matthews correlation coefficient (Definition 39).

Early Capitulation Method

To keep the overall evaluation time of MOGEA-DSE low, individuals which are time-
consuming to evaluate should be handled properly. Some of these individuals are time-
consuming to evaluate because their parameters are not very well suited. For example,
if for VirusDetectionCL detection thresholds are chosen too low this can produce a lot
of false positive detections, which then slows down all the following steps. This causes a
long evaluation time but is not useful for finding a good solution. Because of the high
dependencies between different parameters in the pipeline, individuals with a low quality
can be generated quite often in the optimization process especially at the beginning
with random values for the initialization. If these individuals are detected early, a lot of
evaluation time can be saved.

With the early capitulation method these individuals do not have to be evaluated fully
and can be marked as invalid and excluded from the breeding step. The early capitulation
method works as follows. For actual measurements each individual is measured, e.g.,
three times in order to obtain an accurate execution time and energy consumption. If the
first run of the individual produces bad results for the objectives it is considered as not
useful. Depending on how the values for the objectives perform, the individual is handled
differently. For individuals for which all objectives are far away from the considered
optimum, the remaining runs are skipped. For individuals for which energy or execution
time are good, the detection quality is further inspected. If the detection quality is very
low, also the remaining runs are skipped. A very low detection quality is useless in practice
regardless of the achieved energy consumption or execution time. All other individuals are
evaluated fully.

Additionally, with the early capitulation method in the first run, additional checks
can be done to detect a bad detection quality even earlier. As soon as the number of
detections exceeds, e.g., four times the number of viruses in the sample, the experiment
can be canceled. These solutions would not be able to obtain a good F; score above. This
solution can be used for simulation-based approaches or for approaches on actual GPUs
but without measurements. Additional overhead is introduced for these checks. As the
actual detection quality, execution time, and energy consumption is not obtained if the
run is canceled, these individuals are marked as invalid and are not considered in the
breeding.

For measurement-based evaluation additional checks of the found viruses require access
to the GPU memory and therefore influence the measurement. This must be avoided.
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This problem can be solved with early capitulation method by performing a preliminary
quality measure instead of performing additional checks. In a first run, e.g., only a quarter
of the images can be processed. If the quality measure is obtained on the reduced input,
low quality values can be quickly recognized. If the quality measures exceed certain values
or the execution time or energy consumption are reasonable, the actual measurements are
performed afterward. A certain quality can be guaranteed to be missed if a measurement is
dismissed and the thresholds are chosen carefully. However, this introduces some additional
overhead, which has to be considered if the early capitulation method is used this way.

8.5.2 Experiments

Three experiments, named EXP10yy, EXP1llgy, and EXP124ygsw, are conducted to
evaluate hardware/software codesign for a hand-held CPS. This CPS consists of a mobile
PAMONO sensor, the VirusDetectionCL software, and the Odroid-XU3 ES.

In experiment EXP104y, MOGEA-DSE automatically optimizes only the hardware
related parameters of the system, in EXP11gy it optimizes only the software parameters,
and in EXP12ywgsw it optimizes both software and hardware parameters. The three
objectives for the multi-objective optimization are energy consumption, execution time,
and F; score detection quality. The experiments are introduced in more detail in the
following.

As data sets for VirusDetectionCL, training and testing data from DS511Apr13-1 iS
used, as explained in Section 2.2. The data sets contain particles from real sensor signal.
The particles have been synthetically injected into empty PAMONO sensor images. Both
data sets have been generated with the SynOpSis approach [SLW+14] as described in
Section 4.5 and made publicly available [SZS+14d] under the Open Database License. The
training data is used for the optimization with MOGEA-DSE and the previously unseen
testing data is used only for validation after the optimization is completed. The F; score
is calculated by matching the found polygons with the labeled data.

The considered data sets are typical for the PAMONO sensor. Both, training and
testing data, consist of 1000 images with 100 viruses and are 706 px x 167 px in size. The
number of viruses correspond to a sample with a low virus concentration and the image
size is typical for the newest sensor setup. All measurements are done for the processing
of 900 images of this data set, as 100 of the 1000 images are used for the initialization
phase, which is excluded from the measurements.

For ExP10yw and EXP124wesw, hardware related parameters are optimized. The first
hardware related parameter is the used governor for the Cortex-A15 CPU of the Odroid:
PERFORMANCE, POWERSAVE, USERSPACE, INTERACTIVE, ONDEMAND, and CONSERVATIVE
as explained in Section 8.5.1. The governor on the Odroids is changed with the ENER-
GYMETER software. The governor is only changed for the Cortex-A15 CPU cores because
the Cortex-A7 cores are used to run the ENERGYMETER and are therefore excluded from
the measurements.

The design space of the ENERGYMETER parameters consists of five different governors
and 19 discrete values of frequencies for the Cortex-A15 core from 200 MHz to 2 GHz in
100 MHz steps.

The next optimized hardware related parameters are the work group sizes of all pipeline
elements in the VirusDetectionCL software. These parameters influence how the work is
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partitioned and physically distributed on the SMPs of the Mali GPU. In total, 24 work
group parameters are optimized.

The work group sizes have a major impact on how fast work can be processed on the
GPU and how much energy the GPU consumes. Usually, work group sizes are optimized
manually by the application designer with performance as the only objective. As usually
different target platforms have to be matched, the optimization is done conservatively
to avoid over fitting to one target. Here however, the MOGEA-DSE approach enables
an automatic optimization and different target platforms can be addressed in advance or
directly on the target platform in an automatic calibration step.

Finally, the last optimized hardware related parameter is the amount of memory,
allocated on the GPU for storing of detected polygons. The polygon sizes are optimized
for sizes of 8, 16, and 32 points. Overall, the explored parameter space for the hardware
parameters exceeds the size of 3 x 10°.

For Exprllgy and EXP124wesw, software parameters are optimized. The software
parameters include the strength of the noise reduction, various detection parameters and
the overall configuration of the detection pipeline. The configuration of the pipeline covers
different algorithms, e.g., for the noise reduction and the pixel-based features. For each
exchanged algorithm a different parameter set has been optimized. In total, 21 software
parameters are optimized:

o temporalNoiseReductionOption € {0,1}

o currentImageRefs € {1,...,40}

o backgroundImageRefs € {1,...,40}

o gaussImage € {0,1}

o gaussImageSigma € [1.5,3.5]

o brightnessCorrection € {0,1}

o closeDetections € {0,1}

o closeDetectionsClircleRadius € [1.0,5.0]

o openDetections € {0,1}

o openDetectionsCircleRadius € [1.0,5.0]

o detectOverexposedSpots € {0,1}

o timeSeriesOption € {14,...,17}

o segmentationThreshold € [0.05,1.0]

o timeSeriesDistancePatternSize € {8,...,32}

o timeSeriesDistancePatternSlopeRelazxation € {0,...,8}
o timeSeriesDistanceMinStep € [0.0005,0.1]

o timeSeriesDistanceMazStep € [0.01,0.2]

o timeSeriesDistanceMinNegativeStep € [-0.1,-0.01]
o timeSeriesDistanceMaxNegativeStep € [-0.1,-0.01]
o mergingMazDistance € [2.0,12.0]

o mergingMaxFrameDistanceForPolygon € {5,...,100}

This selection of parameters is based on a previous optimization so that the number
of optimized parameters could be kept low. All floating point parameters, e.g., the
segmentation thresholds, are converted to fixed point numbers and coded as integer genes.
For each floating point parameter, the accuracy of the fixed point number is chosen to
meet but not exceed the accuracy requirements. This saves some amount of evaluation
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Table 8.9: INA231 configuration. Adapted from [NLE+15].

Parameter Value
Number Of Averages 16

Bus Voltage Conversion Time 4.156 ms
Shunt Voltage Conversion Time 4.156 ms
Operation Mode continuous
Update Period 132.992 ms

time. Even with this reduced number of parameters and discretized floating point values,
the parameter space easily exceeds the size of 6 x 102!,

The mutation rate for the NSGA-II algorithm in MOGEA-DSE is set to 0.1 with a
likelihood of 1.0. The crossover is set to a tournament selection with a likelihood of 0.9.

Finally, in addition to the three experiments, a baseline measurement is performed
where parameters have been optimized previously on a desktop system regarding F; score
detection quality but have not been optimized for the Odroid hardware. This baseline
measurement shows the use case, where a regular desktop application is ported to an
embedded system without to make use of a hardware/software codesign regarding energy
consumption and execution time.

8.5.3 Measurement Setup

An INTEL°NUC D54250WYKH is used as master PC to run the main part of the MOGEA-
DSE and to distribute work to nodes in the network.

All energy consumption and execution time measurements are performed on two
identically configured Odroid-XU3. As the measurement is not limited to two Odroids,
it can easily be accelerated by adding more Odroids. Even remotely available Odroids
can be added to the measurement, as the Odroids can be set up automatically across the
network connection and the connection is encrypted with Secure Shell.

The OS for the Odroids is a modified UBUNTU"14.04 LONG TIME SupPORT (LTS)
with kernel version 3.10.63. All GUI elements of the OS are disabled. For the experiments
where the governor is not optimized automatically, the governor is set to the default
governor ONDEMAND.

An air-conditioned server room is used to keep the influence of the room temperature
as low as possible and the fan of the Odroid is set to full speed. The room temperature
has been logged during the measurements and was in a range of 22°C £ 1°C.

The used settings for the INA231 sensors [Tex13] are listed in Table 8.9. All four
INA231 sensors are operated in continuous mode, which averages the power values internally.
Here, 16 values are averaged for both shunt and bus with a conversion times of 4.156 ms.
Accumulation registers are used to sum up the intermediate measurements. As soon as the
result is stored in the output register, the values are averaged. With a conversion time of
4.156 ms and 32 averaged values, the update period is 132.992 ms resulting in a frequency
of 7.5 Hz. More samples per second are not possible due to limitations of the I?C interface.
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Figure 8.12: Pareto front and dominated points for ExXP104y. Only hardware parameters
were optimized for this experiment. The detection quality, F score, is fixed
at 1.0 for every point because parameters that can influence it were not
modified.

8.5.4 Results

In this section the results for the three experiments EXP10q4w, EXP11lgy, and EXP124wgsw
are presented.

The results are structured as follows. In Figure 8.12, Figure 8.13, and Figure 8.14 the
Pareto fronts and the dominated points are plotted for the objectives energy consumption,
execution time, and F score detection quality. In Table 8.10 excerpts of the Pareto front
are shown in detail. The points on the front are inspected with a linear regression model.
Finally, in Figure 8.15 convergence plots for the three objectives are shown.

Table 8.10 shows the results from the evaluation. The first line contains the baseline
measurement followed by an excerpt of ten points from the Pareto fronts of the three
experiments EXP10yw, EXP1lgy, and EXP125wesw. The values are discussed in the
following.

Baseline Measurement

For the baseline measurement the VirusDetectionCL software has been measured on the
Odroid systems with an unmodified parameter set. The parameter set has been previously
optimized on a desktop system toward the detection quality as only objective. It has not
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Table 8.10: Results of the three experiments EXP10gyw, EXP1llgy, and EXP124wesw-
The table shows an excerpt of ten points from the Pareto fronts for each
experiment. The objectives are F; score on a training data set, energy
consumption, and execution time. In addition, the F score for an unseen
testing data set is shown. As baseline measurement a not optimized run is
given in the first row, which was measured with an unmodified system and
program. Extended version of [NLE+15].
Experiment  Fj train. F; test. Energy Savings FExec. Speedup Frame rate
Baseline 1.000 0.995 370.0J 0% 119.8s 1 7.5fps
ExP10uw 1.000 0.995 233.5J 37% 118.9s 1 7.6 fps
1.000 0.995 235.9J 36% 117.7s 1 7.6 fps
1.000 0.995 238.0J 36% 117.3s 1 7.7 1ps
1.000 0.995 239.8J 35% 117.1s 1 7.7 ps
1.000 0.995 241.1J 35% 116.8s 1 7.7 1ps
1.000 0.995 253.6J 31% 116.6s 1 7.7 fps
1.000 0.995 258.5J 30% 116.5s 1 7.7 1ps
1.000 0.995 271.41J 27% 116.4s 1 7.7 1ps
1.000 0.995 344.6J 7% 116.2s 1 7.7 fps
ExpPllgy 1.000 0.995 87.2J 6%  29.7s 4.0 30.3 fps
0.985 0.931 64.6J 83%  22.7s 5.3 39.7 fps
0.953 0.883  59.7J 84%  20.6s 5.8 43.7 fps
0.870 0.844  50.5J 8% 17.4s 6.9 51.7 fps
0.830 0.734  48.6J 87%  15.8s 7.6 57.0 fps
0.753 0.723  43.9J 8% 17.4s 6.9 51.7 fps
0.750 0.693  46.3J 87%  14.7s 8.1 61.3 fps
0.684 0.612  39.2J 89%  13.8s 8.7 65.1 fps
0.519 0.413 36.4J 90% 12.0s 10.0 75.2 fps
0.413 0.400 34.4J 91% 10.4s 11.5 86.8 fps
EXP12hwesw 1.000 0.995 57.5J 84%  29.3s 4.1 30.8 fps
1.000 0.995 84.5J TT%  28.9s 4.1 31.2fps
0.985 0974  47.9J 87%  25.5s 4.7 35.2 fps
0.974 0.995 69.3J 81%  23.9s 5.0 37.6 fps
0.969 0.878  27.7J 93%  14.8s 8.1 61.0 fps
0.879 0.766  22.3J 94%  10.8s 11.1 83.5fps
0.842 0.605  20.7J 94% 11.4s 10.5 78.7 fps
0.742 0.639  23.5J 94%  10.7s 11.2 83.9 fps
0.742 0.647  33.6J 91% 10.4s 11.5 86.4 fps

0.519 0.558  33.0J 91%  10.0s 12.0 90.2 fps
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been further optimized for the execution time or energy consumption of the Odroid. For
the detection quality an F; score of 1.0 could be obtained for the training data set and
0.995 on the testing data set.

For this baseline measurement the results are shown in Table 8.10. The measured
energy consumption was 370 J and the execution time 119.8s. Regarding the frame rate,
only 7.5 fps could be attained, which is too slow to meet the frame rate of the camera of
25 fps to 30 fps.

Optimizing Hardware Parameters

Figure 8.12 shows results from the experiment EXP10yy where only hardware related
parameters were optimized. The shown Pareto front consists of 13 points with varying
energy consumption and execution time. As the detection parameters were not modified
in this experiment, the detection quality is fixed to a value of 1.0.

For the points on the front, less energy consumption results in higher execution time and
vice versa. This has to be true as otherwise the points would not be on the front. However,
for the dominated points such a relation is not always given: Figure 8.12 shows points with
low energy consumption and high execution time, points with high energy consumption
and low execution time, points with low energy consumption and low execution time, and
points with high energy consumption and high execution time.

An excerpt of ten points of the Pareto front for EXP10yyw is shown in Table 8.10 in
more detail: The energy consumption varies from 233.5J to 344.6 J. The execution time
116.2s to 118.9s, which corresponds to a frame rate of 7.6 fps to 7.7 fps. Compared to the
baseline measurement, up to 3% of execution time could be saved in the best case. The
achieved savings for the energy consumption are in a range of 7% to 37 %.

For the individual with the lowest energy consumption of 233.5J and the longest
execution time of 118.9s, the governor POWERSAVE was used. The work group sizes varied
from 8 to 64, which is relatively small, as sizes up to 256 were possible. For the maximal
possible polygon sizes, also a small value of 16 points was chosen.

For the execution time no considerable speedup could be gained: the frame rate
could only be increased from 7.5fps to 7.7fps. As expected, the individual with the
fastest execution time of 116.2s and the highest energy consumption of 344.6 J uses the
PERFORMANCE governor. The work group sizes varied from 4 to 256, which comprises the
full range of possible values.

To conclude, for all solutions on the front more or less energy could be saved, the
execution time is at least slightly lower than in the baseline experiment, and the detection
quality is the same as no software parameters were varied. Therefore, every solution from
experiment EXP10yy dominates the solution from the baseline experiment.

Optimizing Software Parameters

For the second experiment EXP11gy, only software parameters were optimized. Figure 8.13
shows results for this experiment. As the software parameters can influence all three
objectives, the Pareto front is more pronounced compared to the results for EXP10yy. The
dominated points are also shown in the figure in order to visualize how dense the objective
space was sampled. However, dominated points with very large values in execution time
or energy consumption are cropped out for a clearer visualization. The missing points for
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Figure 8.13: Pareto front of non-dominated points and most of the dominated points for
ExpP1lgy. Only software parameters were optimized for this experiment.
For reasons of clarity, the Pareto front is plotted in front of the dominated
points. [NLE+15]

F1 scores below 0.113 are because of the early capitulation method, cf. Section 8.5.1, for
individuals with useless F; scores.

The Pareto front consists of 32 points. The F; score on the training data set is in a
range of 0.113 to 1.0, the energy consumption is in a range of 34.0J to 90.3 J, and the
execution time is in a range of 10.1s to 29.7s. For all individuals on the front, the soft
real-time constraint is met. The frame rates range from 30.3 fps for the best detection
quality to 88.7 fps for the lowest detection quality.

The front shows smooth transitions for all objectives. For the individuals on the front,
the detection quality drops evenly as energy consumption and execution time are decreased.
However, trading one objective against another while keeping the third objective fixed
is only possible in a very limited range. In most of the cases, an improvement in one
objective has to be traded against a deterioration of the two other objectives.

An excerpt of ten points of the front is shown in more detail in Table 8.10. The first
point with an F; score of 1.0, an energy consumption of 87.2J, and an execution time of
29.7 s dominates all points from EXP10yy: the energy consumption could be reduced to
37.3% of the best energy consumption for EXP10yy, and at the same time the execution
time could be decreased to 25.6 % of the best execution time. As expected, the F; scores
on the testing data set, cf. Table 8.10, are slightly lower than on the training data set.
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Overall, the F scores on the testing data set show good results. This indicates that there
is little overfitting to the training data set.

As an example, the solution with an Fy score of 1.0 has been compared to the solution
with an F; score of 0.953. This can be of interest if a camera with 40 fps should be used
instead of a camera with 30 fps, as the solution with an F; score of 1.0 achieved a frame
rate of 30.3fps and the other one 43.7fps. Both solutions differ in 15 parameters. The
faster solution uses 40 frames for the temporal noise reduction and also a spatial noise
reduction with the Gauss filter. Artifacts caused by too bright spots are detected and
handled and a very low segmentation threshold has been chosen. The temporal feature
extraction uses 31 frames and double detections are merged within a 17 frames window.
The slower solution also uses 40 frames for the temporal noise reduction but no spatial
noise reduction and no handling of artifacts caused by too bright spots. Instead, a larger
segmentation threshold is chosen and only 26 frames are used for the temporal feature
extraction. The window size for temporal merging of double detections was increased to
40 frames. The slower solution spends less effort on the noise reduction and compensates
this by an adapted segmentation and feature extraction.

To sum up, the optimization of the software parameters in EXpP11gy outperforms the
optimization of the hardware parameters in EXP10y,y. Not only a better solution for
energy consumption or execution time is found but also all individuals from EXP10yy are
dominated. With a reduced QoR both the execution time and energy consumption can be
reduced.

Optimizing Hardware and Software Parameters

For the experiment EXP124wesw, hardware and software parameters were optimized. As
this is the most elaborated and most important experiment in this work, it is examined in
more detail than the other experiments. Overall, the detection quality on the training and
testing data set is similar to EXP11gy but this experiment shows further improvements
for the energy consumption and execution time.

Figure 8.14 shows results from the experiment EXP12,ygsw. The Pareto front of
non-dominated points for the objectives execution time, energy consumption, and F; score
detection quality is shown. In addition, the dominated points are plotted. For reasons of
clarity, some dominated points far away from the front are cropped out.

The Pareto front consists of 89 points with the F; score on the training data set in
a range of 0.165 to 1.0, the energy consumption in a range of 16.5J to 84.5J, and the
execution time in the range of 9.7s to 40.6s. Same as in EXP11gy, for all individuals on
the front, the soft real-time constraint is met and the early capitulation method causes
the missing points for F; scores below 0.16.

An excerpt of ten points of the Pareto front is also shown in Table 8.10 in more detail.
Points with an F; score below 0.5 are not shown in the table as these are only useful for
a few detection tasks. The energy consumption for the best detection quality could be
reduced to 57.5J, which saves 84 % energy compared to the baseline experiment. With
a reduced but reasonable detection quality of 0.969, the energy consumption could be
reduced by 93 % compared to the baseline and by more than 50 % compared to the solution
from EXP1lgy with 0.953 detection quality.
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Figure 8.14: Pareto front of non-dominated points and most of the dominated points
for EXP124wgsw- Both, hardware and software parameters were optimized
for this experiment. For reasons of clarity, the Pareto front is plotted in
front of the dominated points. [NLE+15]

Compared to EXP1lgy, for all similar detection qualities a solution with a better
energy consumption could be found. Also, for several points of the front of EXP11gy,
dominating solutions have been found in EXP124wesw. With the additional optimization
of the hardware parameters, several solutions could be found for the same detection
qualities. While in ExpP11g4y only up to two solutions for the same detection quality could
be identified, EXP124w&sw shows up to seven solutions. For example, the solutions for the
best detection quality vary in the range of 54.3J to 84.5J and 28.9s to 29.7s, which is
quite a lot for the energy consumption.

The execution time objective shows a strong fall-off for individuals on the front with
an energy consumption of less than 43 J. The execution time drops from 23.8s to 14.8s.
This effect can not be explained by a single parameter. Instead, it is a combination of
several changes of different pipeline elements: the length of the inspected time series is
reduced, the temporal noise reduction uses fewer frames, and the spatial noise reduction is
also less accurate. Because of the synergistic effects downward the pipeline, usually several
parameters change if individuals on the front are traversed.

Some points on the front look like outliers. Some points with a detection quality
between 0.2 and 0.75 show an energy consumption of about 30J instead of 20J. For
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example, one solution in Table 8.10, with an F; score of 0.742, uses 23.5J and another
solution with the same F; score uses 33.6 J. Although the second point has a 43 % higher
energy consumption than the first one, they are both valid solutions on the Pareto front:
the execution time for the solutions with 33.6J is 10.4s and therefore slightly lower than
the solutions with 23.5J and 10.7s.

Further investigations show that solutions with a higher energy consumption and
slightly faster execution time use the PERFORMANCE governors, which sets the clock
frequency to the highest value. However, as the VirusDetectionCL program primarily
runs on the GPU, a higher CPU frequency only has a minor influence on the execution
time but a high influence on the energy consumption. As a result, the PERFORMANCE
governor improves the execution time of the example solution by three percent but at the
same time increases the energy consumption by 43 %. The solutions with lower energy
consumption use the USERSPACE governor with a fixed frequency of 1113 MHz in average
and a standard deviation of 381 This low frequency setting is enough for a fast decoding of
the images and other parts of the program that run on the CPU but results in less energy
consumption. Overall, the governor USERSPACE was chosen 69 times, PERFORMANCE 17
times, and all other governors combined four times. The INTERACTIVE governor was never
chosen.

An overall trend can be seen in EXP11gy and EXP124wgsw for the correlation between
energy consumption and execution time. If the execution time is longer, more energy is
consumed. However, the oversimplified statement that low execution times result in low
energy consumptions is not always true. Several results can be found where the opposite is
true. For example, a slightly faster solution with 86.5 fps and 33.6 J consumes 42 % more
energy than the slightly slower one with 84.1 fps and 23.5 J.

Comparison with Measurements of the Odroid-XU4

Based on the results from this chapter, Popovic performed additional measurements for the
baseline measurement and EXP12,ygsw in her bachelor thesis [Popl6]. An Odroid-XU4,
the successor of the Odroid-XU3, was chosen as the target platform. The configuration
of the Odroid was slightly different from that of the Odroid-XU3, a SD card was used
instead of an eMMC and UBUNTU '14.04 was used as OS.

The VirusDetectionCL software was run and measured on the Odroid-XU4 with
optimized and unoptimized parameters. For the unoptimized run the parameters from the
baseline measurement in Table 8.10 have been used and for the optimized run parameters
from the first individual of EXP124wgsw in Table 8.10. As the Odroid-XU4 does not include
INA231 sensors to measure the power or energy consumption of CPU GPU and RAM,
the whole system was measured instead using a Smart Power device from HARDKERNEL®.

For the unoptimized setup with the baseline configuration, an energy consumption of
786.6 J has been measured for the whole system as an average over 20 runs. The execution
time was 117.0s. For the optimized setup an energy consumption of 226.8J has been
measured also averaged over 20 runs. The execution time was 32.5s. [Popl6]

The saved energy, compared to the baseline measurement, was with 70 % similar to the
saving measured for the Odroid-XU3. For the execution time also a similar speedup of 3.6
could be achieved. The measurements by Popovic and those in this work show consistent
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results and the optimized parameters for the Odroid-XU3 show a good performance on
the Odroid-XU4 with regard to execution time and energy consumption.

Linear Regression-Based Modeling of the Objectives

In order to obtain further insight into the results, three linear regression models [RPC84]
have been constructed for EXP12,ygsw to predict the execution time, energy consump-
tion, and detection quality of the individuals on the Pareto front. The WEKA frame-
work [HFH+09] has been used to build and measure the quality of the models.

The linear regression models provide a mapping from the parameter space to the
objective space. The response variable of each model is explained by one or more predictor
variables. For each predictor variable a regression coefficient is given that can either be
positive or negative, which indicates a positive or negative correlation of this variable to
the response variable. Only the few individuals of the Pareto front are inspected as here
new findings about the Pareto front are of interest. A linear model is chosen as the model
is relatively easy to interpret. Non linear models are inspected in the following subsection.

First, a linear regression has been constructed for the execution time as response
variable. The execution time ¢ can be predicted with the following model:

t = 0.0307 - backgroundRefs (8.20)
+19.7875 - gaussImage
+2.2796 - brightnessCorrection
+0.4526 - detectOverexposedSpots
+ 6.8718 - simpleThreshold Based Counting
+0.6359 - timeSeriesDistancePatternSize
+ 0.8188 - timeSeriesDistancePatternSlopeRelaxation
—19.1131 - timeSeriesDistanceMinStep
- 9.8909 - timeSeriesDistanceMaxStep
—2.1125 - timeSeriesDistanceMinDownStep
+1.4994 - timeSeriesDistanceMaxDownStep
+12.3599 - powersaveGovernor
+ 2.0148 - userspaceGovernor
—1.1843 - albfrequinGHz
-0.0638 - MARCHING_SQUARES_WORK_GROUP_HEIGHT
—-6.7275.

The model has been validated with a stratified 10-fold cross-validation [RPC84]. The
Pearson’s product-moment correlation coefficient [RN88], MEAN ABSOLUTE ERROR
(MAE), and RELATIVE ABSOLUTE ERROR (RAE) were calculated to measure the quality
of the model. MAE and RAE are defined as follows:
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Definition 52 (MAE). The MAE over n € N true values z1,...,z, € R and n estimated
values Z1,...,%, € R, as defined in WEKA [HFH+-09], is given as
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Definition 53 (RAE). The RAE, as defined in WEKA [HFH+09], is given as
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with u as the average over all x; according to Definition 19.

As a result, the Pearson’s correlation coefficient for this model is 0.96, MAE is 1.04, and
RAE 20.86 %. The correlation coefficient 0.96 indicates a high correlation. However, the
regression model has to be interpreted carefully: Predictor variables with a large absolute
regression coefficient may not have large influence on the response variable, because the
predictor variables are of different ranges. Also, correlation does not imply a causation.

With the interpretation of the model, several insights can be gained. The predictor
variable gaussImage has the largest absolute regression coefficient. With the gaussIimage
parameter the Gauss filter for spatial noise reduction is enabled, as explained in Sec-
tion 5.3.3. Here, gaussImage has in fact the largest influence on the response variable
execution time. In a fitted simple linear regression model, this single predictor variable
shows a correlation coefficient of 40.3 %. Therefore, this parameter has a high influence on
the response variable. Also, the causation of gaussImage influencing the execution time
is given: the Gauss filter uses a large convolution kernel and the discretized Gaussian is
calculated for every work item. Both has a strong influence on the execution time.

By inspecting the points on the front, it could be found that the gausslmage filter is
chosen only for points with a detection quality of more than 0.985. Every point with a
detection quality of 1.0 uses the gaussimage filter. This shows clearly that the gaussImage
filter is beneficial for a high detection quality. However, these points are the only ones
with an execution time above 26 s and also show a higher energy consumption.

The parameters brightnessCorrection and detectOvererposedSpots are of minor impor-
tance. Only one point on the front makes use of the brightness correction, as described in
Section 5.2.2. Although the parameter detectOvererposedSpots is used by about half of
the points on the front, it is a Boolean type parameter with zero or one as value, it has a
low regression coefficient and therefore it is of less influence.

Two more important predictor variables are simple ThresholdBasedCounting and time-
SeriesPatternSize. With the simple ThresholdBasedCounting parameter, the threshold-
based counting algorithm, as explained in Section 5.4.2, is used for temporal feature
extraction. With the timeSeriesPatternSize parameter, the number of previous frames
that are inspected is influenced. In all cases where simple ThresholdBasedCounting is not
selected temporalTemplateMatching is used, as explained in Section 5.4.2. Because only
two different algorithms of the four possible temporal feature extraction algorithms are
selected for the individuals on the front, temporalTemplateMatching does not show up in
the model.
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The parameters timeSeriesDistanceMinStep and timeSeriesDistanceMazStep, in a range
of 0.013 to 0.192, show a negative correlation. Lower values produce longer execution
times. This can be explained as lower values are needed for the larger scores, and to
achieve a better F; score, usually more time needs to be spend on the processing.

The governor related parameters show a positive influence of the parameters pow-
ersaveGovernor and userspaceGovernor on the execution time. As already shown, the
POWERSAVE governor causes an increase of execution time. With USERSPACE the increase
is also positive but is dependent on the frequency, which is given in a15frequinGHz. As
expected, the frequency shows a negative correlation coefficient. With higher frequencies
the execution time is reduced.

Finally, for the OpenCL work group sizes the parameter MARCHING _SQUARES -
WORK_GROUP_HFEIGHT is the only parameter that shows up in the model. If the
work group height is increased, the execution time drops. For the other work group sizes,
two different influences on the execution time can be observed: for some OpenCL kernels
it is beneficial to increase the work groups and for others it is beneficial to decrease the
work group sizes.

However, the work group sizes have only a minor impact on the execution time because
all individuals on the front use work group sizes in a reasonable range. For example, to
sort out double detections of the same virus, polygons at nearly the same location and at
nearly the same point in time are combined. This OpenCL kernel is difficult to parallelize.
Therefore, small work group sizes are beneficial and all individuals on the front use small
work group sizes. This would be different if also dominated individuals were used to build
the model. Too small or too large work group sizes or a wrong shape can heavily influence
the execution time as already observed in other experiments.

The next linear regression model has been set up to predict the energy consumption
with the individuals of the Pareto front. The energy consumption e can be predicted as

e =0.0723 - totalRefs (8.23)
+33.615 - gaussImage
+ 8.282 - simpleThresholdBasedCounting
+ 1.4776 - timeSeriesDistancePatternSize
+10.9179 - performanceGovernor
—9.237 - userspaceGovernor
+ 8.1482 - conservativeGovernor
- 6.5783 - powersaveGovernor
+ 8.3393 - albfrequinGHz
+0.1206 - REMOVE_BG_WORK__GROUP_HEIGHT
-0.0899 - TIME_SERIES . WORK_GROUP_WIDTH
—0.2801 - MARCHING_SQUARES__WORK_GROUP_HEIGHT
—-0.2699 - VIRUS_LIST COMBINE_WORK_GROUP_WIDTH
-0.3099 - VIRUS_ LIST COMBINE WORK_ GROUP_HEIGHT
-0.1474- FOREGROUND_BACKGROUND_WORK_GROUP_HEIGHT
+1.5091.



8.5. Multi-Objective Hybrid PSE and DSE of an Embedded System 219

The stratified 10-fold cross-validation for this model shows a correlation coefficient of 0.96,
an MAE of 2.79, and an RAE of 24.76 %.

By inspecting these parameters in detail, it could be found that a wide variety of values
was used throughout the front. The correlation of which parameter influenced the energy
consumption was not obvious by only inspecting the individuals and their parameters.
With help of the linear regression model, further insights could be found.

A hypothesis was that the energy consumption is strongly influenced by the amount of
data processed in every frame. The amount of processed data in every frame is influenced
by the parameters totalRefs, timeSeriesDistancePatternSize, and POLYGON_ _MAX -
SIZE. As can be seen in the model, three of these parameters play also an important role
to predict the energy consumption. totalRefs is equal to the sum of currentImageRefs and
backgroundRefs. It influences how many frames are used to reduce the temporal noise.
With timeSeriesDistancePatternSize the number of frames for the time series-based feature
calculation is influenced and POLYGON_MAX_SIZFE influences how much memory is
reserved for the polygons.

An interesting observation can be made for the parameter totalRefs: the correlation of
totalRefs is much less than for timeSeriesDistancePatternSize although both parameters
influence the number of processed frames. This can be explained as for all individuals
the average calculation over time has been chosen over the median calculation. As shown
in Section 5.3.2, the median calculation needs to access all images, whereas the average
calculation accesses only the newest and the oldest image to update a sum and calculate
a new average. As a result, the implementation with the average is much more energy
efficient, which explains the low regression coefficients for totalRefs.

For the parameter gausslmage, the increased execution time combined with the
increased number of memory accesses causes the higher energy consumption. This can
also be observed in the data as nine out of twelve individuals with an energy consumption
of more than 50J make use of the Gauss filter and none of the individuals with lesser
energy consumption.

With the parameter simpleThresholdBasedCounting, the simple temporal feature
extraction as explained in Section 5.4.2 is selected. This also influences the segmentation.
For the individuals on the front, only the simple threshold-based counting and a highly
optimized version of the temporal template matching, cf. Section 5.4.2, is selected. With
the latter selected for the high detection qualities. Dynamic time warping was not used
for the individuals on the front. The positive correlation coefficient of the parameter
simple ThresholdBasedCounting has to be interpreted carefully, as the highest energy
consumption is achieved if the parameter is set to zero and the lowest for the parameter
set to one. Hence, this parameter cannot be considered in isolation.

For the best detection qualities, the parameter timeSeriesDistancePatternSize was
chosen as 12 or 24, which is in the middle of the possible range of 8 to 32. For all 69
individuals with an energy consumption below 13 J, the minimum amount of frames has
been chosen. However, this amount is enough to reach detection qualities up to 0.891,
which is somehow surprising.

The last linear regression model has been set up to predict the detection quality Fy
score:

F; =0.0115 - backgroundRefs (8.24)
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—0.0086 - totalRefs

+0.3248 - gaussImage

+ 0.289 - brightnessCorrection

+ 0.184 - simpleThresholdBased Counting

—0.7934 - segmentationThreshold

+ 0.0348 - timeSeriesDistancePatternSize

+ 0.0955 - timeSeriesDistancePatternSlopeRelaxation
— 3.4357 - timeSeriesDistanceMinStep

+0.1379 - timeSeriesDistanceMaxDownStep

-0.179.

As expected, this model has the lowest correlation coefficient and highest error values.
The stratified 10-fold cross-validation shows a correlation coefficient of 0.36, an MAE of
0.17, and an RAE of 76.14 %. This is because of the highly non-linear dependencies of the
parameters. Because of heavy dependencies to previous pipeline stages, the prediction of
the detection quality is a difficult task.

Despite the low correlation coefficient and high error values, a few insights can be
gained from this model, too. For totalRefs a slightly negative correlation is given. By
inspecting the individuals in detail, this can be explained. While for the low detection
qualities high values from 29 to 73 are used, all individuals with a detection quality of
1.0 use 38 frames to calculate the approximated virus signal as explained in Section 5.3.2.
As previously stated, the Gauss filter is useful for the very high detection values and the
sigma shows only slightly variations. Although, brightnessCorrection shows a positive
correlation, only one individual uses the brightness correction. For all other individuals
this value is zero and therefore this regression coefficient has low explanatory power.

Similar as for the energy consumption model, the simpleThresholdBasedCounting
cannot be considered in isolation. Although the correlation coefficient is positive, all except
two of the largest F; scores are achieved with the highly optimized version of the temporal
template matching, cf. Section 5.4.2, and not with the simple threshold-based method as
explained in Section 5.4.2.

A surprising and unexpected result is that the segmentation threshold shows a negative
correlation in the model. During manually performed parameter optimization, the threshold
was usually chosen higher to sort out unwanted signals and increase the detection quality.
In contrast, with MOGEA-DSE low threshold values have shown to be better for a high
detection quality. However, the low detection values can only result in good detection
quality if the noise reduction in the earlier pipeline stages removes as many unwanted
signals as possible. With MOGEA-DSE combinations of noise reduction parameters and
low segmentation thresholds have been identified that produce very good results. In
manual optimization these combinations have not been considered before. That this
insight could be obtained, is truly a highlight of MOGEA-DSE.

For the parameter timeSeriesDistancePatternSize, only a low positive correlation
coefficient has been identified. All individuals with an F; score below 0.9 use only 8 frames
to calculate the temporal features, whereas the other individuals use 12 to 30 frames.
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Table 8.11: Model-based prediction of the objectives execution time, energy consumption,
and F score on 2688 individuals. The correlation coefficient (Corr. coeff.)
indicates the quality of the model, higher values are better. For MAE, RAE,
and execution time, lower values are better. Best values are highlighted with

bold font.
Method Objective Corr. coeff. MAE RAE  Exec.
Linear Regression Execution time 84.6 % 9.8  39.4% 0.2s
Energy consumption 89.9% 19.0 476% 0.42s
F, score 53.4% 0.2 802% 0.44s
Multilayer Perceptron Execution time 84.8% 84 34.0% 42.2s
Energy consumption 95.8% 11.1 22.0% 58.0s
F score 44.8% 0.3 1002%  65.0s
SVM (SMOreg) Execution time 83.6 % 7.8 31.6% 346.1s
Energy consumption 89.0 % 15.2  30.0% 562.5s
Fy score 51.2% 222 759% 37.3s
Random Forest Execution time 89.4 % 86 34.8% 2.1s
Energy consumption 94.3% 170  33.7% 2.1s
F, score 77.8% 0.2 58.6% 2.6s
M5P Execution time 88.2% 7.6 30.5% 1.5s
Energy consumption 955% 13.1  26.0% 1.5s
F score 75.9% 0.1 47.8% 2.4s

Finally, the parameter timeSeriesDistance MinStep is of interest. For this a negative
correlation is given, which is also reasonable. With lower step sizes smaller increases
in intensity can be detected. With this, more of the area of individual virus signals is
detected. Similar to the segmentation threshold, a good noise reduction is needed in order
to make smaller timeSeriesDistanceMinStep values usable.

To sum up, the combined optimization of hardware and software parameters shows the
best results of all three experiments. Including the hardware parameters could especially
improve the energy consumption. The execution time could only be improved in a limited
range, as the ONDEMAND governor, which can adapt the CPU frequency to different
loads, was used in the baseline measurement and the GPU parameters have only a minor
influence.

Model-Based Prediction of the Objectives

As shown, a linear regression model is suitable to explain the objectives execution time and
energy consumption of the individuals on the Pareto front. However, a linear regression
model is not suited to explain the objective F; score. Therefore, in addition to the
regression models, also other models are inspected in the following. The aim is to find out
if a model-based prediction of the objectives is possible. This could also lead to a model-



222 Chapter 8. Hybrid PSE and DSE with MOGEA-DSE

based optimization. For this reason, all individuals are considered, including the dominated
ones. The methods linear regression, multilayer perceptron, SVM for regression [SKB+-00],
Random Forest [Bre01], and M5P [Qui92; WW97] from WEKA [HFH+09] are used.

For every method and each of the three objectives, one model is set up and trained.
Again a 10-fold cross-validation is used for validation of the models.

Table 8.11 shows the results that could be achieved. For each model and each objective
that should be predicted, the correlation coefficient, MAE, and RAE of the 10-fold cross-
validation, and the time to set up and train the model are given. The best values are
highlighted in bold font.

Regarding the correlation coefficient, the multilayer perceptron and the Random
Forest methods achieve the best results. For the objective execution time, the correlation
coefficient is 89.4 % with the Random Forest, for the objective energy consumption it is
95.8 % with the multilayer perceptron, and for the objective Fy score it is 77.8 % with
the Random Forest. Although the multilayer perceptron achieved the best correlation
coefficient for the objective energy consumption, it achieved the worst correlation coefficient
for the Fy score. The SVM for regression achieved the worst correlation coefficient for the
objectives execution time and energy consumption.

Regarding the MAE and the RAE, the multilayer perceptron and the M5P methods
achieved the best result. The multilayer perceptron achieved an MAE of 11.1 and an RAE
of 22.0% for predicting the energy consumption. M5P achieved the best values for the
objectives execution time and F; score.

Regarding the time to set up and train the model, the linear regression was the fastest
method for all three objectives with less than half a second. The Random Forest and M5P
methods perform very well. The multilayer perceptron and the SVM for regression are
the two slowest methods in this experiment.

Overall, the tree-based models Random Forest and M5P achieved good results on all
three objectives. They also provide a much faster execution time than the multilayer
perceptron and the SVM for regression, which can be important if these are used withing
a model-based optimization.

Convergence of the Objectives

The convergence plots in Figure 8.15 show the objectives energy consumption (a), execution
time (b), and F; score detection quality (c) over all individuals. The plot for each objective
shows the objective values, plotted as a function over time, the sorted objective values,
and the best objective values over time.

The plotted values of the objectives over time show how the variation of the objectives
looks like. And the sorted values of each objective show if all important values have been
reached. Furthermore, the convergence plots shows how fast MOGEA-DSE has found
good solutions by plotting the best values for energy consumption, execution time and
detection quality over time.

As a result, it can be seen that in less than 100 evaluations very good solutions could

be identified, that throughout the evaluation a wide span of solutions have been found,
and that the target space has been sampled very well and to a sufficient level.
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Figure 8.15: Convergence line plots for the objectives energy consumption (a), execution
time (b), and the F; score detection quality (c) over all individuals.

8.5.5 Discussion

Several interesting insights and unexpected results could be gained during the evaluation
of the MOGEA-DSE approach on actual ES hardware. By integrating the ENERGYMETER
and allowing a reduced QoR, a wide variety of different Pareto-optimal solutions has been
found. With the identified solutions, hardware and software parameters can be switched
to adapt the CPS to the current demands depending on the field of application.

As has been shown, an optimization of the hardware parameters in experiment EXP10w
provides good results on the energy savings. But an optimization of only the software
parameters in experiment EXp11gy outperforms the optimization of only the hardware
parameters. While for experiment ExXP10yy the best energy saving in Table 8.10 is only
37 % and the best frame rate only 7.7 fps, the worst energy saving of EXP11gy is 76 % and
the worst frame rate is 30.3 fps. The results from ExpP10yy are dominated by the results
from EXP11gy. This shows clearly that the optimization of the software parameters of
VirusDetectionCL has a huge impact on the objectives and should not be neglected. Only
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optimizing the hardware parameters to save energy or gain a speedup can waste a lot of
potential.

As expected, simultaneously optimizing software and hardware parameters in a hard-
ware/software codesign manner as in experiment EXP12yygsw achieves the best results.
Energy savings of 77 % to 94 % and frame rates of 30.8 fps to 90.2 fps could be achieved with
MOGEA-DSE for Fy scores of 0.5 to 1.0. With these results a mobile use of the PAMONO
sensor with live processing of the data is possible without any problems. Achieving this
good results was entirely unexpected. It has been expected that the optimization of the
hardware and software parameters lead to a solution with good detection quality and a
frame rate of perhaps 10fps to 15fps and that for further speedup the QoR has to be
drastically reduced.

A very surprising result and a highlight for the MOGEA-DSE method is that two
solutions with an F; score of 1.0 on the training data, 0.995 on the testing data, and
a frame rate of 30.8 fps and 31.2 fps could be found. This results in a speedup 4.1 and
enables an almost perfect detection quality while meeting the soft real-time constraint
of an on the fly virus detection. Although the energy consumption is 2.8 and 4.1 times
as high as that from the most energy efficient solution, still 84 % an 77 % energy is saved
compared to the baseline experiment. This result alone exceeded the expectations of what
is possible with VirusDetectionCL on an ES and with MOGEA-DSE.

To compare this result with others, Backes, Rico, and Franke [BRF15] also inspected
the performance of computer vision applications on ESs. They used the Odroid-XU3 and
an Exynos 5250 ARNDALE®board as target platform. For their KinectFusion computer
vision application running on a Mali GPU, they achieved, by several optimizations, a
speedup of up to four while, at the same time, the energy consumption could be reduced.
The speedup and energy savings are calculated with regard to their CPU implementation.
Despite the speedup they only achieved a frame rate of 2.2 fps to 3.1 fps, which is still far
from their target frame rate of 30 fps. They conclude, that the used MPSoCs are not useful
to run demanding computer vision tasks like KinectFusion with a sufficient frame rate. In
contrast to their results, here the speedup and savings in energy consumption could be
achieved compared to an existing GPU program as baseline and not simply by porting a
CPU program to the GPU and using the CPU program as baseline. By inspecting their
results in more detail, it can be seen that almost all speedup in [BRF15] has only been
achieved due to the porting to the GPU and not by their other optimizations.

For experiments ExpP11gy and EXP12,yesw, also the use of approximate computing
has been explored. This led to a surprising result. With a decline in QoR of 3.1 % in the
Fy score, a further reduction of 52 % in energy consumption could be achieved compared
to the most energy efficient solution with 1.0 detection quality. An F; score of 0.969 on
the training data set and 0.878 on the testing data set is still a very reasonable quality for
many use cases of the PAMONO sensor. Missing a few single viruses is usually acceptable.

To save more energy the decrease in QoR has to be quite high. If such solutions are
still useful, highly depends on the task. For example, an F; score of 0.5 can still be feasible
for virus test that only detects if a sample is positive or negative. For this test the actual
virus load in the sample is of no interest, this can be examined later in an additional
test. Of importance is only if the sample contains viruses or not. For this, the number of
detected individual viruses can be relatively low but the number of FP detections should
be zero in the best case. If several hundred viruses attach to the PAMONO sensor it does
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not matter if 50 % are missed, the test result would still be positive. However, for such a
test the objective F1 score can be changed to a more appropriate fitness value taking the
specific demands into account. By optimizing toward other objectives, MOGEA-DSE can
identify solutions for several scenarios.

By further inspecting interesting solutions on the front, it has been found that the
governors CONSERVATIVE and PERFORMANCE show the best execution times. The PERFOR-
MANCE governor lets the Cortex-A15 run at the highest clock rate and the CONSERVATIVE
governor smoothly increases or decreases the frequency depending on the current load on
the CPU. As the pre-processing has been excluded from the measurement, the CONSERVA-
TIVE governor is able to adapt to the load of the pre-processing before the measurement
starts. With the governor USERSPACE a fixed frequency can be chosen. It could be
shown that higher frequencies result in better execution times but the frequency is not as
important as expected. Also, higher frequencies cause a higher energy consumption. It
could be shown that a frequency of 1.1 GHz is a good compromise between performance
and energy consumption.

A surprising result is that the simple threshold-based counting temporal feature
extraction performs well enough for F; scores up to 1.0. Only for a slightly faster
processing combined with an F; scores greater than 0.99 the more sophisticated temporal
template matching is needed. This is counter intuitive as the simple method by itself runs
faster. But the simple method is more demanding to the noise reduction. Consequently,
using the faster simple method is slower in total.

By inspecting the models of the linear regression, several insights could be gained. For
example, the Gauss filter, cf. Section 5.3.3, has been identified to have a crucial impact on
the very high detection quality values and also on the energy consumption and execution
time. Here, a potential for further optimization is given. It has been shown that for this
data set, the Gauss filter sigma should be set to 1.6 to enable detection qualities above
0.985. If such knowledge is available the Gaussian can be pre-calculated for typical sigmas,
which can be used to speed up the calculation and save energy.

The most surprising and unexpected result for the detection quality is that with more
effort on the early pipeline stages the segmentation threshold for the time series features
can be chosen very low. MOGEA-DSE was able to find solutions with high quality that,
even with expert knowledge, were previously not considered as beneficial. Manually with
expert knowledge generated solutions spend medium effort on the noise reduction and
more effort in an accurate segmentation or a more accurate classification of false positives.
The solutions automatically generated with MOGEA-DSE were able to achieve a very
good detection quality by combining a very good noise reduction with a more inaccurate
pattern detection. These solutions incorporate a completely different use of the existing
virus detection methods. That these extremely useful solutions could be found shows
clearly the advantage of MOGEA-DSE.

With linear regression, three models could be learned to predict the energy consumption,
execution time, and F; score of the Pareto front. Some additional insights could be gained
from these models. They facilitate the interpretation of the individuals on the Pareto
front and show which parameters might have an important influence on the objectives.

To examine if a model-based optimization could be feasible as an extension of MOGEA-
DSE, additional machine learning approaches have been inspected on all data and not only
on the front. The methods linear regression, multilayer perceptron, SVM for regression,
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Random Forest, and M5P have been evaluated for a prediction of the three objectives.
Somewhat surprising is the bad performance of the SVM for regression, which is, in these
experiments, worse than that for linear regression on almost all quality measures and is
also the slowest method. Especially the tree-based methods show good performance on
the prediction of execution time and energy consumption. A model-based optimization
could be feasible and could lead to a faster evaluation with MOGEA-DSE. Individuals
that show a good performance, based on the prediction with the models, can be preferred.
Overall, this is a promising approach for future work.

To sum up, MOGEA-DSE has been able to decrease the execution time and energy
consumption of VirusDetectionCL drastically. By keeping the detection quality of 1.0, a
speedup of 4.1 with energy savings of 77 % to 84 % could be achieved. This exceeded all
expectations. With a slightly reduced QoR of 0.969, a speedup of 8.1 with energy savings
of 93% could be achieved. By allowing a larger drop in QoR, e.g., to an Fy score down to
0.5, which is still feasible for some use cases, speedups up to 12 and energy savings of up
to 94 % are possible.

MOGEA-DSE is also able to achieve a large diversity of solutions in the parameter and
design space. Both, the Pareto front and the overall search space are densely sampled. The
resulting Pareto fronts for EXP11lgy and EXP12,wesw are composed of several solutions
with very different performance characteristics. As a consequence, MOGEA-DSE is able
to explore the parameter and design space very well.

For the model-based prediction of the three objectives with five machine learning
approaches, it should be emphasized that the prediction of the F; score only achieved a
correlation coefficient of 77.8 % in the best case. This indicates that the overall optimization
task is not easy. For a mere model-based optimization, it could be very difficult to optimize
the detection quality. Execution time and energy consumption could be predicted quite
well. For these objectives a model-based optimization is feasible.

Based on the optimized hardware and software configurations, the use of the Odroid-
XU3 can be recommended without restrictions. This enables the construction of a fast,
energy efficient, hand-held CPS for the detection of viruses. The system can be adapted
to different scenarios by using a suitable solution from the found Pareto front. With
approximated computing larger energy savings are possible, which can be useful if the
system is running low on battery.

8.5.6 Summary and Conclusion

In this section the MOGEA-DSE method has been extended to a multi-objective energy-
aware hybrid PSE and DSE on ESs. Hardware and software configuration have been jointly
considered for the Odroid ES and actual measurements have been performed. Additionally,
approximated computing and the use of model-based prediction has been explored.

With the ENERGYMETER, measurements of the Odroid system and dynamic frequency
scaling for the ARM®big. LITTLE CPUs has been made possible. The ENERGYMETER
could be synced with VirusDetectionCL to only measure the main processing pipeline and
not the pre-processing by using signals.

This resulted in a highlight for the MOGEA-DSE method. A small hand-held device
for the processing of PAMONO sensor data could be automatically explored in a hard-
ware/software codesign manner. The virus detection software and the Odroid ES could be
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optimized to make a fast, mobile, and energy efficient use of a PAMONO CPS possible.
Without the use of approximate computing the soft real-time limit of 30 fps to meet the
speed of the camera could be achieved. A speedup of 4.1 and an energy saving of 84 %
could be achieved compared to the baseline measurement. These results alone exceeded all
expectations and are clearly a highlight. A time-consuming manual tuning of the hardware
and software parameters was not needed.

The use of approximate computing in MOGEA-DSE for the evaluated programs has
shown to be very beneficial. By additionally making use of approximate computing, higher
frame rates and larger energy savings were possible. With only a slight reduction in QoR,
the speedup could be nearly doubled and 93 % energy could be saved. By allowing a
further reduction in QoR, speedups up to 12 were possible. These results are both very
useful in practice. A slight reduction in detection quality can be approved to increase
the number of samples that can be analyzed if the device is running on battery. The
large reduction in QoR is useful if the actual number of viruses is of no importance and
only a virus test for positive or negative detection result is needed. However, it has to
be carefully verified if precision and recall, cf. Definition 35 and Definition 36, are both
reasonable for such a test.

For the research issue if model-based prediction of the objectives can be used to speed
up the evaluation, it could be shown that not all objectives can be predicted accurately. A
prediction of execution time and energy consumption is feasible for the inspected use case.
For these objectives a model-based prediction, for example with a Random Forest, might
be an opportunity to speed up the optimization by skipping individuals with low predicted
values or even guide the optimization by creating promising individuals. However, for the
detection quality only a relatively low correlation could be achieved.

8.6 Summary and Conclusion of the MOGEA-DSE Method

In this chapter the MOGEA-DSE method has been presented as the most advanced PSE
and DSE method in this thesis. MOGEA-DSE is the further development of SOG-PSE
and SOG-DSE from Chapter 7. It is a hybrid PSE and DSE method that can be used for a
multi-objective exploration of hardware and software, e.g., for CPSs in different PAMONO
scenarios. An exploration of the target hardware can either be performed simulation-based
or measurement-based.

Figure 8.16 shows the complete MOGEA-DSE approach with all parts of MOGEA-
DSE from this chapter in one schematic. Ten inputs are possible: the parameter and
design space, the objectives, one or more fitness evaluators, program dependencies, file
dependencies, program parameters, an EA configuration, a GPU configuration, setup
information for the remote evaluation, and an LTE configuration.

These inputs are managed in six databases: for parameter space and design space
definition, dependencies, parameters, GPU configurations, remote access data, and the
LTE parameters with the LTE environment. One additional database is used to manage
the evaluated results. Within the main evaluation the evaluation manager drives the
evaluation and runs the EA cycle, the client manager connects the available clients, and
the GPU code compiler can be used to set up the PTX code for the simulated GPUs if a
compiler is not available on the remote evaluation device. The remote evaluation consists
of the fitness evaluation, a GPU simulator, actual GPU hardware, the ENERGYMETER



228 Chapter 8. Hybrid PSE and DSE with MOGEA-DSE

MOGEA-DSE
Parameterspace | | || Main evaluation Remote Fitness Evaluation 1
and design space B
" . Quality
Fitness evaluation N ———
Objectives — > Evaluation manager e
LTE simulator EnergyMeter
Fitness evaluator —»
Client manager
Program Y GPU simulator GPU hardware
dependencies
GPU code compiler
File dependencies —

Program
parameters g

Remote Fitness Evaluation n

. . Quality
Fitness evaluation TCERYRETE

LTE simulator EnergyMeter

Evolutionary

‘ algorithm

EA configuration +—3»|

GPU configurations —3»|

Remote setup  —P>|

GPU simulator GPU hardware

LTE configuration —

Figure 8.16: The complete MOGEA-DSE approach for a hybrid PSE and DSE of
software and actual GPU architectures, simulation of GPU architectures,
and the exploration of offloading capabilities. Additionally, approximated
computing can be integrated by using several quality measurements.

for the measurement of actual GPUs, a quality measurement for the QoR output, and an
LTE simulator to simulate offloading.

By combining PSE and DSE in MOGEA-DSE, a simultaneous exploration of hardware
and software has been made possible. The conducted experiments in a hardware/software
codesign manner showed that such a hybrid PSE and DSE is very useful for the explored
CPS. Considering hardware and software jointly this led to better results for energy
consumption and execution time.

Two multi-objective EAs, SPEA-2 and NSGA-II, have been integrated to enable multi-
objective optimization. This is especially important for the hybrid PSE and DSE as for
the software other objectives can be optimized as for the hardware. By integrating two
power-aware GPU simulators into MOGEA-DSE, GPGPU-S1M in conjunction GPU-
WATTCH and the GPUSIMPOW simulator it could be shown that MOGEA-DSE is not
limited to a specific simulator.

A proper handling of the parameter and design space has been introduced with
MOGEA-DSE. This includes that the search space can be kept as small as possibly
by take advantage of dependencies. These dependencies could be handled by deriving
the dependent software and hardware parameters from other parameters and genes. To
handle also very difficult dependencies, JAVASCRIPT®could be used and references to other
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parameters and genes could be automatically resolved. This has shown to be very useful
for modeling the design space of simulated GPUs.

The checkpointing and quick start methods can be used to speed up the evaluation
without losing accuracy in the result. With the checkpointing method buffers can be
initialized faster by using pre-calculated results. And with the quick start method queues
can be initialized faster. Both can shorten the initialization phase of GPGPU programs.

Additionally, an exploration of different offloading strategies has been introduced
for MOGEA-DSE. VirusDetectionCL has been extended to process the sensor data up
to a certain extent. The remaining work can be offloaded to other devices in a local
network or to the cloud where it is proceed by a compute server. To simulate the data
transfer, the CoPoMo LTE model has been integrated in MOGEA-DSE. This enabled
a VirusDetectionCL has also been extended to enable an actually offloading the work
instead of using the simulator.

The ENERGYMETER has been developed for the Odroid. The ENERGYMETER enables
the measurement of the CPUs, the GPU, and the RAM of the Odroid. With a tight
coupling with VirusDetectionCL, the initialization phase of VirusDetectionCL could be
excluded from the measurements. As a result, less frames need to be processed to achieve
reliable results. An exploration of dynamic frequency scaling has also been enabled by the
ENERGYMETER. The Odroid CPUs could be run with different governors or at a fixed
frequency.

This enabled a combined optimization of a hand-held device and the parametrization
of VirusDetectionCL. For VirusDetectionCL also several hardware related parameters and
the pipeline configuration with algorithmic alternatives have been optimized. As a result,
a fast, mobile, energy efficient use of a hand-held device has been made possible for the
PAMONO use case.

The model-based prediction of the objectives with different models showed promising
results. The prediction of energy consumption and execution time is feasible and can be
useful to either identify individuals that do not have to be evaluated or to even guide the
optimization process. However, for the detection quality only a relatively low correlation
could be achieved. This strongly indicates the difficulty of such a PSE and DSE and it
motivates why the optimization with EAs is useful in MOGEA-DSE.

The goal for the MOGEA-DSE method could be achieved: to explore CPSs with
HPC, desktop, laptop, and hand-held devices as target architectures and to achieve a
rapid and reliable detection and counting of viruses in PAMONO sensor data on the
target architectures. Very well suited software and hardware configurations for CPSs of
all considered PAMONO scenarios could be found. As MOGEA-DSE is the last method
in this thesis, this leads to the overall conclusion and future work in the next chapter.
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In this chapter the global conclusions and future work of this thesis is given. The
conclusion in Section 9.1 includes the contributions and conclusions for the methods from
this work, a broader context of what can be done with these methods, some limitations,
and further use of the methods by other researchers. Because more detailed conclusions
have been provided throughout this thesis, the conclusion focuses on the most important
contributions. Finally, the future work in Section 9.2 includes preliminary work regard-
ing the modeling of larger sensor networks and regarding the integration of offloading
capabilities into several types of GPGPU programs.

9.1 Conclusion

The following five methods have been presented in this thesis:

o VirusDetectionCL, a computer vision-based method for detecting and counting
viruses in PAMONO sensor data,

e« RFC-Gen, a method for automatic code generation for the application of Random
Forest models making them executable on GPUs,

e SOG-PSE, a method for a single-objective exploration of parameters toward one
objective,

¢ SOG-DSE, a method for a single-objective, simulation-based DSE of GPU architec-
tures, and

e MOGEA-DSE, a hybrid PSE and DSE method for a multi-objective, simulation-based
or measurement-based exploration of CPSs of all kind of sizes.

231



232 Chapter 9. Conclusion and Future Work

All these methods have been motivated by practical problems of the PAMONO sensor
use case. The common thread running through this thesis and linking all methods are
different scenarios of how the PAMONO sensor can be used. Using the PAMONO sensor
in laboratories, hospitals, airports, and in mobile scenarios has been considered. For these
scenarios a wide range of target architectures has been explored. Each target architecture
had to fulfill different requirements.

With MOGEA-DSE, VirusDetectionCL, and RFC-Gen the overall goal could be
achieved: to develop methods that explore and configure CPSs for a rapid, reliable
detection and counting of viruses in PAMONO sensor data with HPC, desktop, laptop,
and hand-held devices as target architectures for all considered PAMONO scenarios. This
includes various methods for a computer vision-based virus detection and methods for
the exploration of CPSs regarding suitable target hardware with suitable software and
hardware configurations.

9.1.1 Conclusion for VirusDetectionCL

For detecting viruses in PAMONO sensor images with the VirusDetectionCL method,
three major contributions could be achieved.

The first and most important contribution of VirusDetectionCL is a fast and accurate
detection and counting of individual viruses with hand-held devices. This contribution
opens up completely new possibilities for a mobile virus detection indoors and outdoors.
As Mairhofer, Roppert, and Ertl stated, there is a huge demand for fast, portable, accurate
diagnostic methods [MREQ9]. This has been made possible for biological virus detection
with VirusDetectionCL and the PAMONO sensor.

The second contribution is that with VirusDetectionCL, sensor data with low SNR
can be handled. In processing methods for similar data, in the context of particle tracking
in fluorescence microscopy data, an SNR of two to four [CWGO01; SLN+09] is difficult to
handle. For VirusDetectionCL sensor signals with a median SNR slightly below two can
be handled with the noise reduction, feature extraction, and classification methods. As
a result, the detection of individual viruses down to 100 nm with a reasonable detection
quality is possible.

The third contribution is that the diagnostic gap could be further reduced with
VirusDetectionCL by evaluating the data set of a sample in less than three minutes. An
expert needs a few hours or even days for a manual evaluation of the data set of one
experiment.

9.1.2 Conclusion for RFC-Gen

The RFC-Gen methods enables an automatic generation of optimized code for the appli-
cation of Random Forest models that can be run on the GPU. This method was used
for VirusDetectionCL. With a given output of VirusDetectionCL, consisting of features
and detected virus candidates, a Random Forest model can be trained and translated
into GPGPU code if a correct classification is known. This Random Forest model can be
looped back into VirusDetectionCL.

RFC-Gen generates GPGPU code for the application of the model, host code to call
this model application from within VirusDetectionCL, and an automatic configuration for
VirusDetectionCL to activate only the calculation of the actually required features. As a
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result, the Random Forest model can be used to classify virus candidates. And because of
the automatic code optimization, the application of the model is fast.

9.1.3 Conclusion for SOG-PSE and SOG-DSE

The SOG-PSE and SOG-DSE methods and the experiments conducted with these are the
basis for the MOGEA-DSE method. Several insights could be obtained.

The most important contribution from SOG-PSE is that it can provide, on a regular
basis, feedback of the QoR that is achievable with VirusDetectionCL and the current
PAMONO sensor setup. This strongly influenced and guided the direction of research
and developments both for VirusDetectionCL and the PAMONO sensor. Bottlenecks and
hidden potential could be uncovered and insights could be gained early and frequently
throughout the whole process. With every major change, e.g., in the PAMONO sensor,
the quality or characteristic of the sensor data, size of the viruses, or in VirusDetectionCL,
SOG-PSE can tune the parameters and reevaluate the QoR. No manual tuning is necessary
to adapt the parameters to the changed conditions.

Another major contribution is that better detection results could be achieved than
with manual tuning of the parameters with expert knowledge. For example, for three
experiments the detection quality could be improved from 45 %, 20 %, and 74 % accuracy
for the manually tuned parameters to 88 %, 80 %, and 86 % accuracy for the automatically
tuned parameters. For all experiments where the detection quality was optimized, the
automatic exploration of parameters with SOG-PSE reached or exceeded the quality of
manually tuned parameters.

With SOG-DSE suitable GPU hardware can be explored. The most important con-
tribution from SOG-DSE is that an automatic, simulation-based exploration of GPU
architectures has been made possible. To achieve this, a GPU simulator and a GPU power
model have been integrated into SOG-DSE. A design space of GPU architectures is defined
by the user and SOG-DSE can automatically explore it.

As a result, GPUs for desktop and HPC systems could be explored for 14 benchmark
programs. Energy and power consumption have been used as objectives. With the
experiments it could be shown that the fastest GPU was not always the most energy
efficient and that the slowest GPU was not always the most power efficient.

However, SOG-PSE and SOG-DSE showed some limitations, e.g., that parameters and
hardware can only be explored in succession, that the simulation of GPU architectures
is very time-consuming, and no actual measurements of hardware are supported. These
limitations led to the MOGEA-DSE approach.

9.1.4 Conclusion for MOGEA-DSE

With MOGEA-DSE various CPSs for the PAMONO sensor use case could be explored
and several contributions could be achieved. This includes, but is not limited to, the
exploration of CPSs for the PAMONO sensor use case. All parts of the system profited
from the exploration. For VirusDetectionCL a high detection quality could be achieved,
well suited processing hardware could be found, and feedback could be provided for further
improvements of the PAMONO sensor.

MOGEA-DSE can explore GPU architectures for HPC servers, desktop systems, mobile
systems, down to ESs. The most important contribution of MOGEA-DSE is that the soft
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real-time processing of VirusDetectionCL on ESs has been made possible. This enables
a fast, mobile virus detection with small, hand-held devices. On the Odroid system a
speedup of 4.1 and an energy saving of 84 % could be achieved without reducing the
detection quality.

Other important contributions are that the MOGEA-DSE supports a hardware/soft-
ware codesign development process, a multiple-objective exploration, integrates two GPU
simulators for the simulation of GPUs, can simulate offloading via the LTE network,
integrates approximate computing, and can perform measurements of actual ES hardware.

MOGEA-DSE is well suited to guide and accelerate the development of CPSs toward
different target architectures and to adapt them to changed conditions. This has been
shown for the PAMONO use case. With regular improvements of the PAMONO sensor,
the VirusDetectionCL method and changed target architectures, the system has to adapted
quite often. The target architectures were extended from desktop, to mobile, to hand-held
devices, and to HPC systems with offloading from mobile devices. MOGEA-DSE enabled
to automatically explore suitable hardware and to adapt the whole system to the changed
conditions.

Overall, MOGEA-DSE has shown to be very useful for the exploration of CPSs for all
considered PAMONO scenarios. Along with the exploration of 20 benchmark programs
and several GPU architectures from high performance down to an ES GPU it could be
shown that MOGEA-DSE is useful for a wide range of scenarios.

9.1.5 Broader Context

Several new possibilities for a virus detection with the PAMONO sensor opened up with
the research on the VirusDetectionCL, SOG-PSE, SOG-DSE, and MOGEA-DSE methods.

For an early version of VirusDetectionCL and without the PSE and DSE methods, only a
laboratory use on desktop hardware was feasible [SWL+11]. Then, with further advances in
VirusDetectionCL, SOG-PSE, SOG-DSE, and MOGEA-DSE, a mobile use in laboratories,
hospitals, and airports on laptop hardware became feasible [LST+13a], followed by a mobile
use with offloading capabilities [LKD+-14] in laboratories, hospitals, airports, and outdoors
on laptop hardware and additional processing on HPC hardware [LSW14; LMS+14].
Finally, a mobile, stand-alone use on small ES hardware has been made possible [NLE+15].
This enables a use of the PAMONO sensor virtually everywhere as no data connection is
needed. With further miniaturization of the PAMONO sensor a small, hand-held detector
is possible.

It is very difficult to foresee every last implication of these developments. With a
rapid detection and hand-held outdoor use, it is possible to identify the source of a virus
outbreak. With several PAMONO devices hundreds of samples can be evaluated in minutes
and a virus detection at places with a high passenger volume such as airports is possible.
An automatic evaluation of many samples is also useful in pharmaceutical research for
developing new antiviral drugs. Of additional interest might be, that the binding process of
individual viruses is visible even during the processing. Because of the very fast evaluation
of samples, prophylactic or acute virus tests in hospitals or doctor’s offices are possible.

Additionally, the fast processing methods from VirusDetectionCL might also be useful
in the context of cell tracking and fluorescence microscopy. The involved processing tasks
and the sensor images share several characteristics.
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The methods SOG-PSE, SOG-DSE, and MOGEA-DSE are also useful in a much broader
context. Exploration of hardware architectures and software parameters is important
for many other use cases. Hardware architectures from HPC systems, desktop, laptop,
down to ESs have been explored for a wide range of biological, physical, and industrial
applications. This opens up a wide range of application fields for the methods.

In addition, MOGEA-DSE is able to generate more useful information that has not
been fully utilized. For example, with the calculation of the utilization of the GPU in the
GPU simulator or a detailed per kernel statistic, application designers can easily identify
and remedy bottlenecks on a system level. MOGEA-DSE can also be used for the design
and development of new GPU architectures. With the exploration of devised GPUs, this
large potential for improvements has only been slightly indicated.

9.1.6 Limitations

During the research on the methods in this thesis, some limitations and boundaries have
been revealed. For the automatic virus detection with the PAMONO sensor combined
with the VirusDetectionCL method, the SNR of the sensor images seems to be the most
limiting factor. Currently, a median SNR of two and slightly below can be handled. As a
result, viruses down to 100 nm can be detected with a reasonable detection quality. For
data sets with a good quality with low noise and few artifacts, a detection of viruses down
to 50 nm is feasible. To make this detection applicable in practice, the physical PAMONO
sensor setup and VirusDetectionCL need to be improved.

A major limitation for the simulation-based approaches in SOG-DSE and MOGEA-
DSE is the accuracy of the used simulators. Simulators might contain modeling errors
and might be overfitted to certain architectures [NMH+14]. This can be particularly
adverse if devised architectures are simulated. But also for existing architectures, some
assumptions have to be made in the simulator because the architecture design is often not
publicly available. Important details might be kept secret by the manufacturer. The used
simulators get around this limitation by calibrating the simulation with measurements on
existing hardware, which on the other hand might overfit the simulator to the evaluated
architectures. For devised architectures this kind of calibration is not possible.

Another limitation is the still time-consuming simulation of GPUs. A model-based
prediction of objectives has been inspected. This possibly enhance the speed of the DSE.
It could be shown that for the objectives execution time and energy consumption, a
model-based prediction is feasible. However, the detection quality could not be predicted
very well because of the highly non-linear influences in the parameter space. Very different
configurations can lead to the same detection quality and parameters of early pipeline
stages can affect later pipeline stages. This clearly motivates the use of EAs.

9.1.7 Further Use

The methods from this work have also found use in other works and have opened up new
directions in research for other researchers.

The VirusDetectionCL method was used by Timm as a use case in his Ph.D. the-
sis [Tim12], by Shpacovitch et al. to perform a specificity measurement of the PAMONO
sensor [STM+15], and by Popovic for research on offloading in her bachelor thesis [Pop16].
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For the latter, optimized hardware and software parameters, that have been generated
with MOGEA-DSE, were used.

The VirusDetectionCL software is also used for further research by Lenssen [Lenl7].
He integrated CONVOLUTIONAL NEURAL NETWORKs (CNNs) into the VirusDetectionCL
approach. MOGEA-DSE can be useful to bring his CNNs to the Odroid ES as they
currently only meet the soft real-time constraint on a fast desktop GPU when using
appropriate image sizes and network parameters.

The ENERGYMETER developed and used for MOGEA-DSE and the VirusDetectionCL
method will be further used by Neugebauer [Neul7] for his research. Approximate
computing for parallelization strategies on resource constricted ESs will be considered.
VirusDetectionCL will serve as an important use case and the ENERGYMETER will be used
for further measurements.

9.2 Future Work

The research for this thesis opened up some new questions, challenges, and opportunities
for future work. These are listed according to the structure of this thesis. The future work
also includes to proposals of two approaches that fit in the context of this work.

As future work for the virus detection, it is planned that the PAMONO sensor is
extended to detect more than one virus stem at a time. For this approach the PAMONO
sensor will be equipped with a larger sensor surface that is divided into different areas,
each covered with different antibodies to detect one type of virus or one type of virus
stem. The new challenge with this approach is that the image sizes must be adapted to
the larger sensor area, which is more demanding for the target platform and that different
parameters must be explored for the areas. One opportunity for the detection software and
a PSE and DSE method like MOGEA-DSE is an automatic adaptation of the detection
quality, energy consumption and execution time, independently to each single area of the
sensor. If viruses appear only in one part of the sensor images, this area can be inspected
with an increased detection quality. While in the other areas a low quality of service might
be enough, to not miss the moment where particles start to appear and the detection
quality needs to be adapted.

While collecting and perusing the related work of the PAMONO sensor, a promising
opportunity for further improvements of the sensor could be found. As Naimushin et al.
have indicated [NSB+03], there might be a temperature range for antibody and antigen
binding within a SPR sensor for which a higher binding rate can be obtained. In their
study they could double the binding rate. Even if the inspected particles differ, the optimal
detection temperature for the PAMONO sensor should be further investigated. For the
PAMONO sensor and the VirusDetectionCL application, there might be a temperature
range at which the sensor and the detection software produce better results in less amount
of time. There might also exist a trade-off between binding rate and detection quality such
that a faster binding rate results in faster detection results with less energy consumption
but also less accuracy and vice versa. Therefore, the sensor temperature should be included
in the optimization and should be chosen automatically by the software or manually by
the user depending on the desired objective.

For an accurate detection of viruses of 50 nm and below, further research is needed
on VirusDetectionCL method and the physical PAMONO sensor setup. The SNR seems
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to be the most limiting factor to make smaller sizes detectable with sufficient detection
quality. For the PAMONO sensor setup the camera and lenses offer most opportunities
for increasing the SNR. For the camera a CCD chip with larger pixel capacities can be
used. Because the light source in the sensor setup can be further increased, which results
in larger signal, only the pixel full well capacity seems to limit a better SNR. For the lens
setup the region of perfectly in focus viruses should be increased. Only these viruses offer
the largest SNR. The more out of focus the particles are the lesser the SNR is because
the signal is distributed to a larger area. Smaller apertures or a different orientation of
lens, gold layer, and camera might improve the overall sharpness. For VirusDetectionCL
it is supposed that several methods need to be improved to detect smaller viruses. This
includes the methods for noise reduction, signal restoration, and feature extraction. As
preliminary examined by Lenssen [Lenl17], the use of CNNs might be beneficial.

For the methods SOG-PSE, SOG-DSE, and MOGEA-DSE, the optimization with EAs
can be replaced or extended with other optimization methods. As the experiments in
Section 8.5.4 have shown, a model-based optimization may be suitable to replace or extend
the EAs. For the objectives energy consumption and execution time, this is possible now.
But for the objective detection quality further research has to be done as a prediction of
this objective is difficult.

For SOG-DSE and MOGEA-DSE it might be useful to also simulate the CPU and not
only the GPU of a system. For the measurement-based experiments in this work, the CPU
has been part of the optimization but not for the simulation-based. To achieve this, for
example, the GEM5 simulator [BBB+11] can be integrated into SOG-DSE and MOGEA-
DSE. With this simulator, ARM®and 286 CPUs can be simulated. If this simulator
is combined with a power model, e.g., from McPAT [SAS+09], also energy and power
consumption can be integrated. This is especially useful for mobile systems but can also
be useful for HPC systems.

An exciting development for HPC systems is that recently small MPSoCs are used
for processing in these large systems. Rajovic et al. have shown how several hundred
SAMSUNG®Exynos MPSoCs with an integrated Mali GPU can be used to build an energy
efficient HPC cluster [RCG+13]. MOGEA-DSE can be used to explore and optimize these
systems and even further reduce the energy consumption. However, new challenges have
to be handled by MOGEA-DSE: For an HPC cluster, a large amount of sub-systems and
the communication between these has to be considered.

To explore cooperative homogeneous and heterogeneous networks of PAMONO devices,
is also part of future research. This includes the modeling of larger sensor networks and
offloading to other ESs or other mobile devices in the area via a BLUETOOTH®or W-LAN
connection. These connection channels have not been evaluated in this work. Some
research in this direction has already been done in [Popl6].

Some preliminary work has already been done toward modeling of larger sensor networks
and toward offloading, which may open up new opportunities for further research. In the
following the MASSIVE PARALLEL MSP430 SIMULATOR (MP-MSP430-Sim) approach and
the GPGPU OPENCL OFFLOADING MIDDLEWARE (GOOM) approach are presented. The
MP-MSP430-Sim approach has been developed for modeling of larger sensor networks, and
the GOOM approach is proposed for an easy integration of powerful offloading techniques
to all kind of existing GPGPU programs without the need to change them.
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Figure 9.1: The XMOS®XK-XMP-64 platform with an array of 4 x 4 XS1-G4 quad core
CPUs. The size of the housing is 192 mm x 132 mm x 46 mm.

9.2.1 Proposal of the MP-MSP430-Sim Approach

In this section a proposal of an approach for the parallel simulation of sensor nodes is drafted.
A parallel simulation of sensor nodes is useful to simulate large sensor networks. The
approach is called MASSIVE PARALLEL MSP430 SIMULATOR (MP-MSP430-Sim). It can
be used to simulate several hundred MSP430 sensor nodes in parallel on XMOS®hardware.
The MSP430 is a low power ES by TEXAS INSTRUMENTS®. This micro-controller is a
popular device for various sensor applications.

The main idea of the MP-MSP430-Sim approach is to simulate a whole network of
sensors on hardware that enables a fast communication between the simulated sensor
nodes. In the future, this approach can be extended to simulate a network of PAMONO
sensors that distribute work to each other and share resources as depicted in Figure 1.1.

To simulate an MSP430 sensor node, MP-MSP430-Sim uses NAKEN430ASM [Koh11]
a MSP430 assembler, disassembler, and simulator. For each sensor node a source code
is loaded, which is first assembled, then loaded onto a core on the hardware, and finally
executed with the simulator.

To run the simulations MP-MSP430-Sim can use the XMOS®devices as processing
hardware. Both, the XMOS®XK-XMP-64 and the XMOS®XC-1 hardware can be used.
These devices use REDUCED INSTRUCTION SET COMPUTING (RISC) microprocessors and
can run several simulations in parallel and enable a fast communication.
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To simulate MSP430 applications, the XMOS*XK-XMP-64 boards [Hanl1] can be
used. It is shown in Figure 9.1 and has a housing of 192mm x 132 mm x 46 mm. The
XK-XMP-64 has a 16 quad core XS1-G4 CPU with 64 cores in total. The cores are
arranged in a 4 x 4 array and are connected in a 4-dimensional hypercube topology with a
round trip time of 200 ns to 1 ps [XMO15]. This enables fast communication between the
cores.

To fully utilize the 64 cores, at least 256 threads are needed because the pipeline stages
decode, read, execute, and write need four active threads to be utilized. Therefore, the
XK-XMP-64 can simulate up to 256 MSP430 applications at full speed.

To simulate more than 256 MSP430 applications, several XMOS®XK-XMP-64 boards
can be combined. The XK-XMP-64 board offers connectors to simply plug boards together
in a two-dimensional array.

To simulate up to 16 MSP430 applications at full speed, the XMOS®XC-1 board can
be used. The XC-1 has a quad core XS1-G4 CPU [May09]. The board is 85 mm x 54 mm
in size, about the size of a credit card.

To conclude, MP-MSP430-Sim is an approach for simulating several hundred sensor
nodes. As proof of concept, it has been implemented to simulate MSP430 sensor nodes on
XMOS®hardware. Theoretical, the communication between the sensor nodes can be easily
integrated due to the hardware properties of the XMOS®hardware, which offers a fast
communication between the cores, but there are still several challenges to be solved to make
this possible. To be useful for the PAMONO sensor use case, GPGPU hardware would
need to be simulated. However, this would need much simulation time and might even not
be possible on the XMOS®hardware as the MSP430 simulation is already challenging.

9.2.2 Proposal of the GOOM Approach

For future research on offloading of OpenCL programs, the proposal of the GPGPU
OPENCL OFFLOADING MIDDLEWARE (GOOM) approach is drafted. This approach
includes an offloading interface to offioad GPGPU tasks to other devices. Existing
GPGPU programs can extended to make use of offloading simply by linking an OpenCL
interface of the presented approach. As the OpenCL C'/C++ API [Khrllb] offers a tight
interface, it is well suited to integrate offloading approaches.

For the GOOM approach the main idea of the architectural design is that all OpenCL
commands that are usually directed to the GPU driver on the local device are received
by the GOOM approach. The GOOM approach redirects the commands and needed
memory buffers to one or more remote devices. The OpenCL program is executed on the
remote device and afterward results are transferred back to the local device. All memory
allocations on the GPU are made on the remote devices. Only the OpenCL memory
pointers need to be available on the local device and can be used there without knowing
that the memory resides on the GPU of the remote device. Only if the memory is accessed
by the CPU on the local device, the memory needs to be transferred. Because every CPU
access to the GPU memory requires that the memory is transferred from the GPU with
an OpenCL command, this can be detected and handled appropriately with GOOM.

Figure 9.2 shows a schematic of the GOOM approach. In the first layer a GPGPU
program simply links to the OpenCL interface. Any GPGPU program can use this interface
as if a local OpenCL device is used. The remaining layers are hidden. The GOOM layer
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Figure 9.2: The GOOM offloading approach for offloading GPGPU tasks to several
devices, e.g., from an embedded system to a server or other embedded
systems available in the area. An unmodified OpenCL GPGPU program
can simply be linked to GOOM to incorporate offloading.

consists of an offloading decision-maker, a database manager, a control flow and data flow
manager, and a device manager. The offloading decision-maker uses a trained decision
model. With this model, a decision can be made whether and what parts of the task should
be offloaded. The decision can be based on sensor information, environment information,
and additional user input. The database manager keeps track of all allocated memory
pointers, the available OpenCL kernels including their source code, control flow graphs,
and data flow graphs. The control flow and data flow manager guides the direction of
control and data throughout the modules in GOOM. It also builds and adapts the control
flow and data flow graphs in the database manager. The device manager organizes the
available devices. This includes local GPU devices that are available through a local GPU
interface and the remote devices that are available through a network connection, e.g.,
LocAL AREA NETWORK (LAN), wireless LAN, or an LTE connection. The connection
health might also be observed by the device manager. It also provides the interface to the
device layer to all local and remote GPUs.
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With the GOOM approach virtually any existing GPU program that interfaces with
OpenCL can be offloaded without the need to modify the program. If no remote devices
are available or if the result is needed fast, OpenCL commands are forwarded to a local
OpenCL driver and the work is processed on the local GPU or CPU. If, on the other hand,
the work should be offloaded, OpenCL commands and needed local memory buffers are
transferred to the remote device. The remote device processes the OpenCL commands on
available OpenCL devices. Allocated GPU buffers can reside on the remote device and
can be reused. If results are needed on the local device the buffers are downloaded from
the remote GPU to the remote device and transferred back to the local device.

This approach opens up several possibilities for dynamic offloading. Dynamically
changing the offloading conditions is possible because at all times during processing, the
location of any buffer on the GPU is known and full control over the control flow and
data flow is given. For example, if the battery on a mobile device runs low, the OpenCL
pipeline can be stalled and all data and OpenCL kernels can be offloaded to a server.
Then, an OpenCL pipeline is set up and partially calculated results are loaded to the
GPU. Subsequently, all calculations can be offloaded from the mobile device to the server.

A dynamic change from offloading of work to local processing is also possible. If a
calculation is offloaded to a server and should be continued locally, all buffers can be
downloaded from the GPU of the server, transferred to the local device and used there
on the local GPU. This can be useful if a device without sufficient wireless connection to
the server should be disconnected from the wired connection or if a wireless connection
is expected to be reduced in quality, e.g., by leaving a certain area. After all data is
transferred back to the local device, it can be disconnected from the network and the
calculation can be continued locally without losing any results. The same is useful if a
power supply becomes available and the local processing is faster.

Additionally, this approach opens up opportunities for partial offloading. With the
control flow graph and the data flow graph, an offloading point can be determined
automatically. For example, it can be determined that after some pre-processing the least
amount of data needs to be transferred and that all subsequent calculations can be done
on the server. The dynamic and partial offloading can be combined. Dynamic changes in
the control flow or data flow graph can change the partial ofoading.

To sum up, the GOOM approach provides ofloading capabilities for GPGPU tasks with
a narrow interface. Complexity can be hidden from the user and appropriate offloading
decisions can be made on a wide information basis. Dynamic offloading decisions can be
combined with full or partial offloading.
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136, 141, 142, 144-146, 149, 150, 152, 163, 165,
166, 179-181, 185, 187, 188, 195, 274, 275

DSE DESIGN SPACE EXPLORATION 2-11, 13, 23,
28, 30-35, 53, 67, 106, 116, 117, 122, 129, 133—
135, 138, 145-148, 150153, 156158, 160-162,
172, 173, 180, 181, 189, 199, 200, 228-231, 233,
238
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DSP
DTW
DVEFS
DVS

EA

EACOF

EC
ECJ

ELISA

EMOA

ES

FADSE
FALIS
FFT
FN

FP

FPGA

GA

GDDR

GOOM

GPGPU

DIGITAL SIGNAL PROCESSOR 39

DyNnAMIC TIME WARPING 91, 92

DYNAMIC VOLTAGE AND FREQUENCY SCAL-
ING 33, 205

DYNAMIC VOLTAGE SCALING 205

EVOLUTIONARY ALGORITHM 9, 28-31, 34, 37,
59-61, 121, 123, 138, 161, 162, 167, 174, 230,
231, 237, 238

ENERGY AWARE COMPUTING FRAMEWORK
31

EvoLuTiIONARY COMPUTATION 59

A JAVA-BASED EVOLUTIONARY COMPUTA-
TION RESEARCH SYSTEM 160, 162, 166
ENZYME-LINKED IMMUNO-SORBENT ASSAY
24

EVOLUTIONARY MULTI-OBJECTIVE QOPTI-
MIZATION ALGORITHM 29, 249

EMBEDDED SYSTEM 5, 9, 25, 26, 31, 33-35, 39,
69, 91, 107, 151, 156-159, 193, 196, 200-203,
208, 225, 226, 228, 235-237, 239

FRAMEWORK FOR AUTOMATIC DESIGN
SPACE EXPLORATION 31

FEEDBACK-BASED AND MEMORY-AWARE
GLOBAL INSTRUCTION SCHEDULING 8, 33
FAST FOURIER TRANSFORM 77

FALSE NEGATIVES 57-59, 124, 125

FALSE PoOSITIVES 57-59, 66, 124, 125, 128,
226

FIELD PROGRAMMABLE GATE ARRAY 31, 33,
34, 39

GENETIC ALGORITHM 28-30, 33, 34, 59, 60,
63, 121, 160, 203

GRAPHICS DOUBLE DATA RATE 136, 141-143,
150, 179, 180, 187, 188, 195

GPGPU OpPENCL OFFLOADING MIDDLE-
WARE 239, 241-243

GENERAL-PURPOSE COMPUTING ON GRAPH-
1cs PROCESSING UNITS 1, 5, 8, 9, 25, 26, 28,
32, 33, 37-39, 41, 45, 56, 60, 67, 77, 116, 117,
120, 121, 134, 135, 139, 140, 145, 146, 151, 152,
156, 157, 162, 174, 181, 234, 239-243, 246, 249
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GPU

GUI

HIL
HIV

HMP
HPC

IPP
ISAS

JGAP

KVM

LAN

LoG

LTE

LTS

MAE
McPAT

MOBLIS

MOCHC

MOEA

GRAPHICS PROCESSING UNIT 1, 4-11, 25-27,
30-35, 37-39, 41, 42, 44-46, 49, 50, 52, 53, 56,
60, 67-69, 72, 75-77, 79, 81, 82, 91, 98, 100,
102, 106, 110, 112-114, 116-120, 122, 128, 129,
131-152, 156-160, 162, 163, 165-168, 172-183,
185-190, 193-202, 204, 207-209, 217, 222, 226,
229, 230, 233, 235-239, 241, 242, 274, 275

GRAPHICAL USER INTERFACE 103, 104, 210

HARDWARE-IN-THE-LOOP 3, 63, 122
HuMAN IMMUNODEFICIENCY VIRUS 19-21,
24, 125

HETEROGENEOUS MULTI-PROCESSING 201
HiGH-PERFORMANCE COMPUTING 4, 8, 9, 25,
69, 146-148, 150-152, 156158, 160, 172, 173,
177, 179, 180, 186, 188, 189, 200, 231, 234-236,
239, 274

INTEGRATED POWER AND PERFORMANCE 32
INSTITUTE FOR ANALYTICAL SCIENCE 13

JAVA GENETIC ALGORITHMS PACKAGE 121
KERNEL-BASED VIRTUAL MACHINE 144, 181

LocAL AREA NETWORK 242

LAPLACIAN OF (GAUSSIAN 84

LoNnc TERM EvoLuTION 3, 190-193, 199, 200,
230, 235, 242

LoNnGg TIME SUPPORT 210

MEAN ABSOLUTE ERROR 218-221, 223, 224
MULTICORE POWER, AREA, AND TIMING
137, 138, 147, 168, 238

MuLTI-OBJECTIVE LOCAL INSTRUCTION
SCHEDULING 33

MuULTI-OBJECTIVE CROSS GENERATIONAL
ELITIST SELECTION, HETEROGENEOUS RE-
COMBINATION AND CATACLYSMIC MUTATION
31

MULTI-OBJECTIVE EVOLUTIONARY ALGO-
RITHMS 28, 29
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MOGEA-DSE

MP-MSP430-Sim

MPSoC

NOP
NSGA-II

NSGA-III

OCL

OpenCL

OpenCV
OpenGL
OpenMP
(0N

PAMONO

PCR

PSE

PTX

QoR

MuLTl-OBJECTIVE GPGPU  ENERGY-
AWARE DESIGN SPACE EXPLORATION 7—11,
112, 116, 129, 156-158, 160-168, 171-175, 179,
181, 186, 189-192, 194, 195, 199, 200, 202,
203, 205210, 222, 225-231, 233-239
MASSIVE PARALLEL MSP430 SIMULATOR
239, 240

MULTIPROCESSOR SYSTEM-ON-CHIP 5, 31,
34, 156, 200-203, 226, 239

NO OPERATION 100

NON-DOMINATED SORTING GENETIC
ALGorIiTHM-II 28, 29, 31, 33, 34, 166, 167,
209, 230

NON-DOMINATED SORTING
ALGORITHM-III 28

GENETIC

OBJECT CONSTRAINT LANGUAGE 34

OPEN COMPUTING LANGUAGE 26, 28, 3943,
45, 49-53, 67, 69, 72, 76, 79, 88, 96, 99, 102,
111-113, 135, 138-140, 142-144, 148, 150, 176—
179, 186, 188, 196, 202, 203, 206, 219, 220,
239, 241, 242, 246

OPEN SOURCE COMPUTER VISION 88

OPEN GRAPHICS LIBRARY 103

OPEN MULTI-PROCESSING 144

OPERATING SYSTEM 148, 205, 210, 217

PLASMON ASSISTED MICROSCOPY OF NANO-
sizep OBJECTS 1-3, 7-11, 13-27, 37, 53-55,
57, 58, 61-63, 6670, 72-74, 77-82, 84, 86, 87,
91-96, 98, 103, 104, 106, 109, 110, 117, 118,
122, 124, 125, 128-134, 146, 147, 153, 156-160,
172, 173, 177, 180, 189-191, 195, 200, 201, 208,
225, 226, 228, 229, 231, 233-240
POLYMERASE CHAIN REACTION 24, 25
PARAMETER SPACE EXPLORATION 2-10, 13,
23, 28-30, 53, 67, 106, 116, 117, 122, 128,
129, 146, 151-153, 156-158, 160, 161, 189, 200,
228-231, 233, 238

PARALLEL THREAD EXECUTION 135, 136, 139,
140, 148, 168, 230

QuaLiTy OF REsuLT 28, 29, 60, 116, 122,
123, 158, 200, 206, 215, 225-228, 230, 234



Acronyms

247

RAE

REVAC

RFC-Gen

RISC

RNA
ROC

ROP

RTP

SASS
SDK

SIL
SIMD

SLD

SMP

SMS-EMOA

SNR

SoC

SOG-DSE

SOG-PSE

SP

RELATIVE ABSOLUTE ERROR 218-221, 223,
224

RELEVANCE ESTIMATION AND VALUE CALI-
BRATION ON PARAMETERS 29

RaNDOM FOREST CODE GENERATION 7, 8,
10, 27, 102, 107, 111-114, 233, 234
REDUCED INSTRUCTION SET COMPUTING
239

RiBONUCLEIC AcCID 24, 25

RECEIVER OPERATING CHARACTERISTIC 106,
107

RASTER OPERATION PROCESSOR 163, 165,
179, 180, 195, 274, 275

REAL-TIME TRANSPORT PROTOCOL 193

SOURCE AND ASSEMBLY 135, 136
SOFTWARE DEVELOPMENT KIT 143, 144, 178,
179

SOFTWARE-IN-THE-LOOP 3

SINGLE INSTRUCTION MULTIPLE DATA 35,
38, 39, 41, 69, 135, 136
SUPER-LUMINESCENT DIODE 14-17, 70, 72—
74

STREAMING MULTIPROCESSOR 27, 32, 38, 40,
45, 46, 49, 50, 56, 113, 135-137, 141-145, 152,
163, 165, 166, 174, 175, 179-181, 184, 185, 187,
188, 195, 208, 274, 275
S-METRIC-SELECTION EMOA 29
SIGNAL-TO-NOISE RATIO 7, 18, 27, 57, 66, 68,
73, 74, 82, 88-90, 103, 109, 110, 127, 128, 191,
234, 236, 238

SYSTEM-ON-A-CHIP 33, 34
SINGLE-OBJECTIVE GPGPU DESIGN SPACE
ExprorAaTION 7-10, 116, 117, 119-122, 129,
134, 135, 138-140, 143, 145-148, 150-153, 157,
158, 160-163, 166, 171, 173, 229, 233-238
SINGLE-OBJECTIVE GPGPU PARAMETER
SPACE EXPLORATION 7, 8, 10, 116, 117, 119—
125, 127-129, 134, 138, 146, 151-153, 157, 158,
160-162, 166, 229, 233238

STREAMING PROCESSOR 37, 38, 42, 50, 131,
132, 134-137, 141-143, 146, 149-151, 163, 165,
168, 179-181, 185, 187, 188, 195, 274, 275
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SPEA-2
SPMD
SPO

SPR
SPRi
SURF
SVM
SynOpSis
TDP

TMU

TN
TP

UDP

VirusDetectionCL

VLP
VRM

W-LAN
WEKA

XML

STRENGTH PARETO EVOLUTIONARY ALGO-
RITHM 2 28, 29, 31, 33, 166, 167, 181, 230
SINGLE PROGRAM MULTIPLE DATA 39
SEQUENTIAL PARAMETER OPTIMIZATION 29
SURFACE PLASMON RESONANCE 7, 13, 15, 18,
24, 238

SURFACE PLASMON RESONANCE IMAGING 24
SPEEDED UP ROBUST FEATURES 83
SUPPORT VECTOR MACHINE 29, 30, 223, 224,
227

SYNTHESIS/OPTIMIZATION /ANALYSIS 10,
20, 30, 37, 61-63, 107-109, 125, 208

THERMAL DESIGN POWER 9, 146-148
TEXTURE MAPPING UNIT 163, 165, 179, 180,
195, 274, 275

TRUE NEGATIVES 57-59, 124

TRUE POSITIVES 57-59, 124

USErR DATAGRAM PROTOCOL 193

VIRUS DETECTION wiTH oPENCL 7-11,
30, 60-62, 66—69, 72, 78, 82, 98, 101-111, 113,
117, 119, 122-124, 127-132, 134, 138, 142, 152,
156-158, 168, 169, 172, 175-182, 185-187, 189,
191, 193, 195, 196, 199-202, 204208, 212, 216,
217, 225, 227, 228, 230, 231, 233-238, 271, 275
VIRUS LIKE PARTICLE 19-21, 107, 125
VOLTAGE REGULATOR MODULE 137

WIRELESS LOCAL ACCESS NETWORK 35, 239
WAIKATO ENVIRONMENT FOR KNOWLEDGE

ANALYsIS 102, 107, 111, 217, 218, 223

EXTENSIBLE MARKUP LANGUAGE 161



List of Mathematical Symbols

A Artifacts within the sensor images, cf. Defini-
tion 15.
B A background signal within the sensor images,

cf. Definition 16, which consists of a constant
background signal combined with some artifact
signal.

Beonstant The constant part of the signal within the
sensor images.

B An approximation of the background signal,
cf. Equation (5.6).

* The convolution operation.

c An approximation of the current signal, cf.
Equation (5.7).

c The estimated number of cycles.

E The (actual) energy consumption.

FE An approximation of the energy consumption.

e Euler’s number.

Fq The F1 score is used to quantify the detection
quality, cf. Definition 37.

G A representation of the global GPU memory,
cf. Definition 4.

h The height of the input images, cf. Notation 1.

he The padded height of the input images, cf.
Definition 2.

h The height of the work group, cf. Notation 2.

hp1 The padded height of a local memory, cf. No-
tation 4.

Wiile The height of an image tile or local memory,
cf. Definition 27.

1 A gray-scale image or a queue of gray-scale
images.

i A representation of a GPU work-item, cf. Def-
inition 3.

K The degradation kernel used to model the dis-
tortion of the particles, depending of the spot
on the sensor where they appear.

S Set of all work items within a two dimensional
global index space, cf. Definition 2.

L A representation of the local GPU memory,

cf. Definition 6.
median  The median of a set, cf. Definition 26.
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250 List of Mathematical Symbols

The average of a distribution, cf. Definition 19.

= =

An approximation of the average of a distri-
bution, cf. Definition 19.
The natural numbers without zero.

> Z

A multiset of neighborhood coordinates, cf.
Definition 18.

Ny The natural numbers included zero.

An additive noise term, cf. Definition 17.
Big O of the Bachmann-Landau notation.
The positive agreement, cf. Definition 38.
The (actual) Power consumption.

An approximation of the power consumption.
The real numbers.

Q
%wmgsz

The standard deviation of a distribution, cf.
Definition 20.
An approximation of the standard deviation

S

of a distribution.

o The variance of a distribution (the squared

standard deviation).

An approximation of the variance of a distribu-

tion (the squared standard deviation approxi-

mation).

T A tile of an image. Is also used for the template
image.

T Time in the meaning of run time, execution
time or communication time.

T An approximation of the (execution) time.

t The frame number (time), with ¢ = 0 referenc-
ing the first image in the image sequence.

% The virus signal, caused by attaching viruses,
cf. Definition 14. Also, used synonymously
for signal of artificial particles and virus like
particles.

V An approximation of the virus signal, cf. Equa-
tion (5.8).

\% The actual virus signal from the sensor, cf.
Equation (5.5).

w The width of the input images, cf. Notation 1.

We The padded width of the input images, cf.
Definition 2.

wy The width of the work group, cf. Notation 2.

Wpl The padded width of a local memory, cf. No-
tation 4.
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Wtile

The width of an image tile or local memory,
cf. Definition 27.

A representation of a GPU work group, cf.
Definition 3.

The integer numbers.
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Table A.1: The parameters of VirusDetectionCL.

Name Range Description

sensorModelOption N Option to select a multiplicative
or additive sensor model.

currentImage {0,1}  Flag to calculate the current im-
age for the sensor model.

currentImageRefs N Number of images to use for the
signal approximation.

currentImage GroupNFrames N To subsequently lower the frame

backgroundImage
backgroundGap
backgroundImageRefs
brightnessCorrection

brightnessCorrectionReference
detectOutshinedSpots

{0,1}

{0,1}

rate of the camera, sensor images
can be grouped.

Flag to calculate the background
image for the sensor model.
Number of images between current
image and background image.
Number of images to use for the
background approximation.

Flag to enable the brightness cor-
rection.

Manually set reference brightness.
Flag to enable the detection of out-
shined spots.

temporalNoise ReductionOption
averagelmage

averageImageKernel Width
averagelmageKernelHeight

medianImage
medianImageKernel Width

medianImageKernelHeight
gaussImage

273

Option to select the temporal
noise reduction method.

Flag to use an average filter for
noise reduction.

Kernel width for the average filter.
Kernel height for the average fil-
ter.

Flag to use a median filter for
noise reduction.

Kernel width for the median filter.
Kernel height for the median filter.
Flag to use the Gauss filter for
noise reduction.
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gaussImageSigma R* The o for the Gauss filter.

fuzzyNoiseRemoval {0,1} Flag to use the fuzzy filter for
noise reduction.

fuzzyNoiseRemovalX1 R* First value to define the fuzzy set
for noise.

fuzzyNoiseRemoval X2 R* Second value to define the fuzzy
set for noise.

open/closeDetections {0,1}  Flag to use the opening/closing of

open/closeDetectionsCircle Radius
combineDetections
timeSeriesOption
timeSeriesDistancePatterns
timeSeriesDistancePatternSize
timeSeriesDistancePatternCount
timeSeriesDistancePatternA

timeSeriesDistancePatternB

timeSeriesDistancePatternSlopeRelaxation

timeSeriesAuto UpdateVariablePatterns

timeSeriesDistance Min/MazStep

timeSeriesDistanceMin/MaxNegativeStep

fuzzyDetectionEnhancementX1
templateMatchingFeature
gaussHesseFeature

gaussHesseFeatureSigma

gaussHesseFeature NumScales

R+

{0,1}

{0,1}

No
No

{0,1}

No

the detections.

Radius of the circle used for open-
ing/closing

Flag to combine detections over
time.

Option to select the method for
the time series features.

Flag to use pattern matching over
time.

The size of the temporal pattern.
The number of temporal patterns
if more than one pattern should
be matched.

Parameter for a manual slope re-
laxation.

Parameter for a manual slope re-
laxation.

Flag to automatically choose time-
SeriesDistancePatternA and time-
SeriesDistancePatternB.
Automatic slope relaxation to
adapt ideal patterns with the sig-
nal model.

Range for the step sizes to detect
different virus sizes.

Range for the negative step sizes.
Parameter for the fuzzy detection
enhancement.

Flag to calculate the template
matching features.

Flag to calculate Gauss-Hesse fea-
tures.

The o for the Gauss-Hesse feature.
Number of scales for the Gauss-
Hesse feature.
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gaussHesseFeatureDetection Threshold
gaussHesseBlobFeatureDetection Threshold

hesseFeature
template MatchingFeature

templateMatchingFeatureNormalize

fuzzyDetectionEnhancement

fuzzyDetectionEnhancementX 1

R+
R+

{0,1}
{0,1}

{0,1}

{0,1}

R+

Threshold to use the Gauss-Hesse
feature for segmentation.
Threshold to use the Gauss-Hesse
blob feature for segmentation.
Flag to calculate Hesse features.
Flag to calculate template match-
ing features.

Flag to normalize the correlation
value for the template matching
feature.

Flag to use the fuzzy detection
enhancement method.

Value from which on the fuzzy set
large positive starts being above
Zero.

segmentation Threshold

segmentation ThresholdDown

mergingMaxDistance

mergingMazxFrameDistanceForPolygon

Influences which pixels are used
for segmentation.

Same as segmentationThreshold
but includes negative detection
values.

The maximum distance to com-
bine two virus detections to one
virus.

The maximum number of frames
between two detections to com-
bine them to one.

classify With Thresholds
gaussHesseFeaturePolygon Threshold

gaussHesseBlobFeaturePolygonThreshold

template MatchingFeature Threshold

classify WithRandomForest

{0,1}
R+

R+

R+

{0, 1}

Flag to use threshold-based classi-
fication.

Threshold to use the Gauss Hesse
feature for polygon classification.
Threshold to use the Gauss Hesse
blob feature for polygon classifica-
tion.

Threshold to use the template
matching feature for segmenta-
tion.

Flag to use Random Forest classi-
fication.

visualizationOption

Option to select the desired visu-
alization.
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Table A.2: Extended version of Table 8.2 for the evaluated GPU architectures. For each architecture the number of SMPs, number of
SPs, core clock rate, DRAM type, DRAM clock rate, number of TMUs, ROPs, and shader clock rate are listed. Adapted
from [LMS+14].

GPU architecture SMPs SPs Core clock DRAM DRAM clock TMUs ROPs Shader clock

o, FerMI'GF-108 1-2 48,96 700-810 MHz GDDR-3 400-450 MHz 4-8 3-6 1400-1620 MHz

MO FerMI™"GF-106 3-4 144,192 590-790 MHz GDDR-5 450-1000 MHz 12-16 9-12 1180-1580 MHz

M FERMIGF-104 6-7 288,336 650-675 MHz GDDR-5 850-950 MHz 24-28 18-21 1300-1350 MHz
FeErMI'GF-100 11-15  352,384,416,448,480 610-780 MHz  GDDR-5 800-1000 MHz  44-60 33-45 1220-1560 MHz

2 FERMI'GF-108M 1-2 48,96 600-740 MHz GDDR-3 800-900 MHz 8-16 4-8 1200-1480 MHz

S  FERMI"GF-116M  3-4 144,192 590-775 MHz  GDDR-5 900-1250 MHz  24-32 12-16 1180-1550 MHz

= FerMI'GF-114M 7-8 336,384 575-620 MHz GDDR-5 1500 MHz 56-64 21-32 1150-1240 MHz
PascaL™GP-107'  4-5 1024,1280 1200 MHz GDDR-5 1250-1450 MHz 64-80 16-20 2400 MHz

m PascaL”GP-104!  6-8 2304,2668,3072 820-1040 MHz GDDR-6 1500-1750 MHz 192-256 48-64 1640-2080 MHz

T PascaL”GP-110a' 12-15  4608,4992,5376,5760 860-880 MHz  GDDR-6 1500-1750 MHz 384-480 96-120  1720-1760 MHz
PascaL™GP-110b' 14-15  5376,5760 840-890 MHz GDDR-6 1500-1750 MHz 448-480 112-120 1680-1780 MHz

! Devised architectures that did not exist during performance of the experiments.
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