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Abstract

This thesis presents the first measurement of the b-tagging efficiency εb with the prelT -
method under Run 2 conditions at the ATLAS experiment. The measurement has
been performed for semi-leptonically decaying b-hadrons with a muon in the final
state. This has been achieved by selecting events with a muon associated to a jet
by a cone based matching algorithm. The prelT -variable is sensitive to the mass of
the weakly decaying particle and is therefore sensitive to the jet-flavor. Exploiting
this dependence, the flavor fractions are determined with a log-likelihood template
fit to the prelT -distribution in the tagged and untagged jet samples determined by
the algorithm and operating point under study. The dataset used for this study
corresponds to an integrated luminosity of 11.6 fb−1 of proton-proton-collisions taken
with the ATLAS detector at

√
s = 13 TeV center of mass energy.

In addition, εb has been measured for algorithms on trigger level using the prelT -
method. This has been conducted in a set of proton-proton-collisions recorded at
the ATLAS experiment at

√
s = 8 TeV center of mass energy. Here, a conditional

calibration depending on off-line tagger decisions has been utilized.

Zusammenfassung

In dieser Dissertation wird die erste Messung der b-tagging Effizienz εb mit der prelT -
Methode am ATLAS Experiment unter Run 2 Bedingungen präsentiert. Die Messung
wurde durchgeführt mit semileptonisch zerfallenden b-Hadronen mit einem Myon im
Endzustand. Dies wurde erreicht durch Selektion von Myonen in einem Jet Kegel.
Die prelT -Variable is dabei sensitiv auf die Masse des schwach zerfallenden Teilchens
und damit auf den Flavor des Jets. Dieser Zusammenhang lässt sich mit einem log-
likelihood Fit ausnutzen um die Flavor-Anteile zu bestimmen, in Datensätzen un-
terteilt von dem betrachteten Klassifizierungsalgorithmus und Arbeitspunkt. Dies
wurde durchgeführt auf einem Datensatz, der einer integrierten Luminosität von
11.6 fb−1 an Proton-Proton Kollisionen entspricht, aufgenommen mit dem ATLAS-
Experiment bei einer Schwerpunktsenergie von

√
s = 13 TeV.

Zusätzlich wurde die prelT -Methode benutzt um εb auf Triggerlevel zu bestimmen.
Dies wurde durchgeführt auf einem Datensatz von Proton-Proton Kollisionen, aufgenom-
men mit dem ATLAS-Detektor bei einer Schwerpunktsenergie von

√
s = 8 TeV. Hier

wurde die Messung abhängig von einer off-line Klassifizierung durchgeführt.
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0. Introduction

In jeden Quark begräbt er seine Nase.

Mephistopheles

The Standard Model (SM) of particle physics is the theoretical framework, de-
scribing our world on the smallest scales currently accessible to men. Characterizing
matter and interactions on the most fundamental level, the SM has given us an incred-
ible insight in the functioning of the universe. It has been providing some of the most
precise predictions that have ever been experimentally tested. One of the remarkable
achievements of the SM is the prediction of the Higgs-mechanism to explain the origin
of mass1 and associated with that the existence of the Higgs-boson [1, 2]. The experi-
mental discovery of this particle and thereby the verification of the Higgs-mechanism
is the most outstanding achievement of the LHC experiments so far.
Since the discovery of the Higgs-boson the measurement of its properties is one of

the leading efforts of the ATLAS physics program. The detection was mostly driven by
the decays into γγ and ZZ∗ final states due to their clear signature in the detectors [3,
4]. To fully understand the nature of this new particle the direct coupling to fermions
has to be measured. The decay channel with the highest branching ratio (BR) is the
bb̄ final state [5]. The high hadronic activity in the LHC makes this measurement
extremely challenging for two reasons. First, the production of two b-jets is a very
abundant signature from pure QCD processes. Second, the identification of b-jets
is very challenging, because they have to be discriminated against other jet flavors.
While the first point can be addressed by selecting processes with additional particles
to reduce background, the second point is solved by the utilization of flavor tagging
algorithms.
While the t-quark was already discovered at the Tevatron before the start of the

LHC [6, 7], top-physics is a field of very broad interest. With the increasing center
of mass energy and luminosity, increasingly precise measurements of its properties
become achievable. An overview on t-quark physics and current results can be found

1This refers to the mass of fundamental particles while the mass of hadrons are largely generated
by chiral symmetry breaking.
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0. Introduction

at [8] including multiple measurements performed by ATLAS in different decay chan-
nels. All of these measurements have in common that they exploit the high proba-
bility for the t-quark to decay into a b-quark, even before hadronization. Therefore,
the top-physics program of the ATLAS experiment heavily relies on the capabilities
of flavor-tagging algorithms and how reliably they can distinguish different jet flavors.
Despite the incredible achievements of the SM there are also some challenging issues

like the hierarchy problem, the strong CP problem, the matter-antimatter asymmetry
in the universe or the nature of Dark Matter or Dark Energy. Models with supersym-
metry, vector-like quarks (VLQs) or extra dimensions are extensions to the SM that
try to solve some of the remaining puzzles. There is a variety of Beyond Standard
Model (BSM) theories with a preference of interactions with the third generation of
matter particles for different reasons. As an example models containing VLQs have
been proposed to solve the hierarchy problem while stabilizing the Higgs-mass at
the same time. Dedicated searches mainly address final states with third generation
quarks as discussed in e.g. [9] making flavor tagging capabilities2 again a driving force
of the discovery potential for many BSM models.
As discussed above, there are a lot of physics programs depending on the ability to

identify and classify jets with respect to their origin. This is reflected by the extensive
efforts put into developing and maintaining flavor tagging algorithms. Within AT-
LAS this is done by the flavor tagging group. A variety of flavor tagging algorithms
has been developed by this group and efforts still continue to improve the existing
capabilities. One crucial challenge for the usage of these increasingly complicated
algorithms is to exactly evaluate their performance. While it is possible to assess the
performance using Monte Carlo (MC) simulation it is of high importance to have in
situ measurements. Within ATLAS dedicated measurements are in place to deter-
mine the tagging efficiencies for every algorithm and all flavor hypotheses. Due to the
major importance of flavor tagging for a lot of analyses, the flavor tagging group has
more than one measurement to determine the performance of tagging algorithms. For
the b-tagging efficiency the methods can be separated into t-based and µ-based.

2Here classifying jets in boosted environments becomes additionally challenging while also allowing
for t-tagging due to increasingly collimated decay products.

2



There are two µ-based techniques utilized within ATLAS. From the very beginning
of data taking with the ATLAS-experiment the system8 and prelT -methods have been
utilized and are giving reliable measurements. During Run 1 one outstanding feature
of the prelT -measurement was also the calibration of algorithms implemented within the
Trigger and Data Aquisition (TDAQ) system itself. With increasing production rate
of final states containing t-quarks, there is a growing amount of t-based techniques
available. Due to the importance of flavor tagging for the ATLAS physics program
it is important to have independent approaches that rely on different measurements
and systematics. In Run 2, the prelT -method is the only remaining measurement of the
b-tagging efficiency not relying on the t-reconstruction, due to the discontinuity of the
system8-analysis.
In this thesis, the basics of the prelT -techniques are explained. Measurements have

been performed in Run 1 environments for standard off-line tagging algorithms as
well as on-line tagging algorithms running on trigger level. One leading focus of this
thesis lies on the adaptation of the prelT -analysis to Run 2 conditions and performing
a first measurement with a center of mass energy of

√
s = 13 TeV. The thesis is

structured as follows. In Chapter 1, the theoretical framework of particle physics and
its implications with respect to flavor tagging is discussed. The LHC and ATLAS
machines used to perform the measurements are described in Chapter 2, while the
reconstruction of physics objects is discussed in Chapter 3. One important tool in
particle physics are MC simulations which are described in Chapter 4. Chapter 5 is
providing an overview on the flavor tagging efforts within the ATLAS Collaboration.
This includes different techniques contributing to the measurement of the performance
of flavor-tagging algorithms. The utilized event selection and the prelT -method itself are
discussed in Chapter 6 and 7, respectively. This includes a detailed description of the
generation of templates for different flavor hypotheses as well as the fitting procedure.
The first measurement performed under Run 2 conditions and its results are presented
in Chapter 8. The systematic limitations and their respective treatment in Run 1 and
Run 2 are discussed in Chapter 9. Chapter 10 summarizes the efforts made in Run 1
to calibrate on-line tagging algorithms deployed on trigger level. Finally, the results
are summarized and discussed in Chapter 11.

3



0. Introduction

Remarks

In this thesis the following conventions are used3:

• Natural units are used, meaning measurements are given in units of physical
constants like ~ or c. Formally this means setting ~ = c = 1 leading to e.g.
energy, momentum and mass measurements all having the unit 1 eV.

• The ATLAS coordinate system is used defining a right-handed coordinate system
based in the center of the experiment. The x-axis points to the center of the
LHC ring, the y-axis points upwards perpendicular to the LHC plane and the z-
axis points along the beam axis. Due to the cylindrical shape of the detector it is
practical to introduce a respective coordinate system. In cylindrical coordinates
the φ = θ = 0 axis coincides with the x-axis pointing towards the ring center.
While the angle θ is defined as the angle in the LHC plane, φ represents the
angle in the transversal plane around the beam-axis.

• Physics processes are visualized by Feynman-diagrams. In these diagrams the
x-axis represents the time line while anti-particles are visualized as particles
traveling in the reverse time direction as indicated by the attached arrows.

• The terms Run 1 and Run 2 are used throughout this thesis to describe different
data taking periods. These are separated by a long shutdown and maintenance
period from 2013 until 2014 in which the accelerator as well as the detector went
through major upgrades as discussed later. Run 1 refers to the early LHC data
taking with

√
s = 7− 8 TeV while Run 2 describes the time after the shutdown

with the increased center of mass energy of
√
s = 13 TeV.

• In this analysis particles and anti-particles are treated in the same manner
without any special separation.

3Also note that new chapters are introduced with a quote from Faust by J. W. v. Goethe.
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1. The Standard Model of Particle Physics

Daß ich erkenne, was die Welt
Im Innersten zusammenhält

Faust

The Standard Model (SM) of particle physics is a gauge theory including fun-
damental forces in form of gauge fields generated by symmetry groups. It is also
a quantum f ield theory (QFT) describing particles as excited states of the under-
lying fields. Therefore fundamental matter particles are treated as half-integer-spin
fermion states and their interactions are described by the exchange of integer-spin
gauge bosons. The SM includes the electromagnetic, weak and strong interactions
based on the symmetry groups SU(3)C⊗SU(2)L⊗U(1)Y , as well as all known matter
particles and their respective anti-particles. These particles can be characterized by
their mass and quantum numbers as shown in Figure 1.1. The quarks, shown in yel-
low, as well as the leptons shown in red, are organized in a three-generation structure,
also known as families. The gauge bosons are shown in green while the Higgs-boson
is highlighted blue. A more detailed discussion can be found in many textbooks and
papers like [10].

1.1. Interactions and Gauge Bosons

There are four fundamental forces observed in nature, as listed in Table 1.1. On
typical energy scales for particle physics, gravity is much weaker than the other forces
and is neglected in the Standard Model. It is expected to be mediated by a spin-
2 graviton but neither has it been observed, nor has gravity been quantized in a
consistent QFT approach yet. The electroweak and strong interactions are described
by the SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry groups. The generators of these gauge
groups define the gauge-fields and therefore the properties of the interaction. The
electroweak interaction is spontaneously broken SU(2)L ⊗ U(1)Y → U(1)QED by the
Higgs-mechanism which thereby gives mass to the fundamental particles.

5



1. The Standard Model of Particle Physics

Up
u
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H
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0 0
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abb.
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Tweak T3
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Leptons Gauge Bosons
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Figure 1.1.: Scheme of the different fundamental particles as described in the Standard
Model. The particle name, mass, spin, electrical charge as well as the weak
isospin and its third component are listed [11]. The quarks are shown in
yellow, leptons in red, gauge bosons in green and the Higgs-boson in blue.
The MS-mass scheme is quoted for third generation quarks. Neutrinos as
well as γ and g are massless in the SM. Uncertainties can be found in [11].
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1.1. Interactions and Gauge Bosons

A detailed overview of the SM particles after the symmetry breaking is shown in
Figure 1.1. Interactions are mediated by the spin-1 gauge bosons, shown in green,
which couple to particles carrying the corresponding charges.

Table 1.1.: Overview over the four fundamental forces, the charge they mediate in
between, the range, and their respective gauge bosons. The graviton is
expected to be the field quantum of gravity.

Force Charge Range Gauge Boson
gravity mass / energy ∞ graviton G
electromagnetism electric charge ∞ photon γ
weak interaction weak isospin nucleus W±- and Z0- bosons
strong interaction color charge nucleon gluon g

The electromagnetic interaction is the unification of the electric and magnetic forces
and is described in quantum electrodynamics (QED). Its gauge group U(1)QED is the
remnant of the spontaneous breaking of the electroweak gauge groups. It is mediated
by the photon γ which is a massless spin-1 particle coupling to the electric charge e.
The vanishing photon mass causes the long range of the interaction.
The strong interaction is based on SU(3)C and described by quantum chromody-

namics (QCD). It is mediated between color charged objects by eight massless gluons
g. There are three different color charges red, green and blue and their respective
anti-colors. QCD is a non-abelian theory introducing self-coupling terms for the gauge
fields. This means that gluons themselves are color charged objects, carrying a color
and an anti-color. Due to this self-interaction, the strong interaction gets stronger
for greater distances and weaker for short distances, leading to asymptotically free
particles at high energies. For increasing distances the field strength between color
charged particles rises up to a point where the energy of the field is high enough to
create new color charged particles out of the vacuum. Subsequently generating two
color neutral particles which are each built up from color charged partons. This means
that color charged particles can only be observed in confined, color neutral hadrons.
Among such color neutral hadrons there is still a remaining force based on the strong
interaction, which, for example, is the force binding the nucleons in the nucleus.

7



1. The Standard Model of Particle Physics

The weak interaction is mediated by the massive W±- and Z0-bosons which couple
to the third component of the weak isospin T3. Since the exchange of off-shell particles
is suppressed by the mass term in the propagator, the resulting force is short ranged
and thus it appears much weaker than the other interactions.
Since the W±-bosons carry an electric charge as well as a weak isospin, the weak

Charged Current (CC) is the only interaction able to change the nature of a particle,
by changing electric and weak charges and also causing family transitions. Left-
handed fermions as well as right-handed anti-fermions form weak isospin doublets with
(Tweak, T3) = (1

2
,±1

2
) while the right-handed fermions and left-handed anti-fermions

form weak isospin singlets (0, 0). Due to this structure a combination of parity P and
charge conjugation C has to be used to transform between particles and anti-particles(

νe

e−

)
L

,
(
e−
)
R

CP←→
(
νe

e+

)
R

,
(
e+
)
L
. (1.1)

The weak interaction and the electromagnetism are remnants from the electroweak
symmetry breaking of the electroweak interaction which is described by the weak
isospin and hypercharge gauge groups SU(2)L ⊗ U(1)Y with the respective gauge
bosons W1,2,3 and B. This symmetry breaking results in the observed gauge boson
states γ, Z0 and W±. The electroweak fields combine to the weak CC bosons(

W+

W−

)
=

1√
2

(
1 i

1 −i

)(
W1

W2

)
, (1.2)

as well as to the bosons of the electromagnetic interaction and the weak Neutral
Current (NC) (

γ

Z0

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B
W3

)
, (1.3)

with the Weinberg-angle θW given as

cos θW =
MW

MZ

. (1.4)
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1.2. The Higgs Sector

In general, these interactions are of a vector minus axial-vector (V-A) structure
expressed by the current Jµ which is proportional to

Jµ ∝ ψfGγ
µ(cV − cAγ5)ψi, (1.5)

with the Dirac-matrices γµ and the initial and final fermion states ψ. The coupling
constant G is characteristic for each interaction while the charge parameters cV/A also
depend on the particle charges. An overview of these parameters is given in Table 1.2
with the weak coupling strength g = e/ sin θW.

Table 1.2.: Coupling parameters for the electromagnetic and weak interactions.

Interaction G cV cA

electromagnetism e Q 0
neutral current g/ cos θW T3 −Q sin2 θW T3

charged current g T3 T3

This generates a purely vector-like electromagnetic interaction (cA = 0) that only
couples to the electric charge Q. The weak interaction has an axial-vector contribution
where the CC acts on the weak isospin only, while the NC couples to the electric
charge, too.

1.2. The Higgs Sector

In the Standard Model explicit mass terms for the fundamental particles are forbidden
by the underlying gauge principles. Since massive particles are observed in nature the
Higgs-mechanism is used to generate massive particles by introducing a new weak
isospin doublet φ with a potential V (φ), as shown in Figure 1.2, of the form

V (φ) = µ2φ†φ− λ2

2
(φ†φ)2, (1.6)

with parameters λ2 > 0 and µ2 > 0. This field has a non-vanishing vacuum expec-
tation value v = |µ/λ|. This means that the field does not vanish in the ground
state. In other words, the lowest energy state for the vacuum is a state where a
Higgs-condensate is present.

9



1. The Standard Model of Particle Physics

The non-vanishing vacuum expectation value spontaneously breaks the electroweak
symmetry, introducing mass-terms to the Lagrangian. Since the U(1)QED-symmetry
is preserved it is possible to pick a gauge such that the W±- and Z0-bosons become
massive while the photon stays massless.

φ

V (φ)

Figure 1.2.: Higgs-potential V (φ) drawn for different values of the complex field φ.
The potential has its minimal values for non-vanishing values of φ. It is
symmetric under rotation in the complex plane, but the ground state is
not.

One inference from the Higgs-mechanism is the existence of at least one massive
scalar particle. This was named the Higgs-boson and proving its existence was one
of the major goals of the LHC physics program. On July 4th 2012 the ATLAS and
CMS experiments announced the observation of a Higgs-like particle with about 5σ
significance, each [3, 4]. For the theoretical prediction [1, 2], Peter W. Higgs and
François Englert were awarded with the Nobel price in physics 2013 [12]. Measuring
the properties of this particle is one of the leading efforts of the two LHC experiments
ATLAS and CMS.
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1.3. Quarks

1.3. Quarks

Quarks are spin-1/2-fermions (shown in yellow in Figure 1.1) carrying a red, green
or blue color charge. They also carry an electric charge and a weak isospin. Hence,
they couple to all gauge bosons. The strong interaction causes asymptotically free
quarks to hadronize into color neutral particles like mesons, consisting of a quark and
an anti-quark, or baryons, consisting of three quarks. Therefore, quarks carry the
additive baryon number 1/3. Quarks come in three weak isospin doublets4 known as
generations or families. They are sorted with increasing mass up to the top-quark.
In high energy particle physics, the u, d and s quarks are considered massless and

referred to as light quarks. Hadrons are strongly interacting particles composed of
the valence quarks generating their quantum numbers and a sea of virtual quarks and
gluons which are produced and annihilated in vacuum fluctuations and which generate
most of the hadron mass. The valence quarks, sea quarks and gluons are referred to
as partons.

1.3.1. The CKM-Matrix

The spontaneous breaking of the electroweak symmetry introduces quark mass terms
with non-diagonal mass-matrices. Therefore, the strong eigenstates which also are
eigenstates of mass are a linear combination of weak eigenstates. Hence the strong
quark states ψq are transformed into a superposition of weak eigenstates ψq′ by a
unitary matrix Uq. This is performed independently for up- and down-type quarks
with the respective matrices Uu/d. Transforming initial and final state in the current
Jµ (see Equation (1.5)) results in two possible outcomes depending on the type (up
or down) of the initial and final quark state

U †uUu = U †dUd = 1 or U †uUd = V. (1.7)

While for the NC the transformations in initial and final state cancel each other out,
a non-diagonal contribution remains for the CC, introducing the Cabibbo-Kobayashi-
Maskawa (CKM)-matrix V . Thereby the CC not only converts a quark into its isospin
partner but can also cause a transition between generations. The CKM-matrix is
typically referred to as a single transformation:

4Only the left-handed quarks form doublets which is then generalized as a quark generation.
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d
′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b

 . (1.8)

For example, a t-quark which decays via the weak interaction is a linear combination
of the weak states t’, c’ and u’ and can decay into each of their respective weak isospin
partners. The occurring decay vertex is proportional to the respective CKM matrix
element Vij. Currently, these parameters are measured to the absolute values [11]

|VCKM| =

0.97425± 0.00022 0.2253± 0.0008 (4.13± 0.49) · 10−3

0.225± 0.008 0.986± 0.016 (41.1± 1.3) · 10−3

(8.4± 0.6) · 10−3 (40.0± 2.7) · 10−3 1.021± 0.032

 . (1.9)

Since the off-diagonal elements are much smaller than unity, all transitions between
families are suppressed by the respective matrix element squared |Vij|2. Consequently
a top quark almost exclusively decays into b-quarks. Rendering b-hadrons an impor-
tant signature for all processes involving top quark final states.

1.3.2. Parton Distribution Functions and Hadronization

In hadron collisions at high energies, the partons collide in the hard interaction. The
parton density depends on the momentum transfer and is described by the Parton
Distribution Function (PDF) fi(x,Q). The PDF gives the probability of finding a
certain parton i with a specific fraction x of the total hadron momentum at an energy
scale Q. In Figure 1.3 the HERAPDF1.5 is shown for a typical LargeHadron Collider
(LHC) energy scale of Q = 100 GeV [13].
In the hard scattering process, new particles can be created. In case of strongly

interacting particles, hadrons are formed which can be categorized by the flavor of
their most massive valence quark. Due to the high momentum transfer a cascade of
collimated hadrons are generated, forming particle jets. These jets can also be labeled
by the flavor of the most massive quark in the jet.
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full statistics HERA inclusive CC and NC data are
used for NLO and NNLO QCD fits resulting in
HERAPDF1.5 [9]. The same formalism, model and
paramatrisation assumptions as in the HERAPDF1.0
are used in the HERAPDF1.5(NLO) fit.

The QCD predictions for the structure functions are
obtained by solving the DGLAP evolution equations
at NLO (or NNLO) in the MS scheme with the
renormalisation and factorisation scales chosen to be
Q2. The DGLAP equations yield the PDFs at all
values of Q2 above the input scale Q2

0 at which they
are parametrised as a functions of x. The starting
scale Q2

0 is chosen to be 1.9 GeV2 such that the
starting scale is below the charm mass threshold.
The QCD predictions for the structure functions are
obtained by convolution of the PDFs with the NLO
coefficient functions calculated using the general mass
variable favour number RT scheme [10].
For the parametrisation of PDFs at the input scale
the generic form xf(x) = AxB(1 − x)C(1 + Ex2) is
used. The parametrised PDFs are the gluon distribu-
tion xg, the valence quark distributions xuv, xdv, and
the u-type and d-type anti-quark distributions xŪ ,
xD̄. At the starting scale Q2

0 = 1.9 GeV2 xŪ = xū
and xD̄ = xd̄+xs̄. The central fit parametrisation is:

xg(x) = Agx
Bg (1 − x)Cg ,

xuv(x) = Auv xBuv (1 − x)Cuv (1 + Euv x2),

xdv(x) = AdvxBdv (1 − x)Cdv ,

xŪ(x) = AŪxBŪ (1 − xCŪ ),

xD̄(x) = AD̄xBD̄ (1 − xCD̄).

The normalisation parameters A are constrained by
the quark number sum-rules and momentum sum-
rule, extra constrains for small-x behaviour of d−
and u−type quarks Buv = Bdv , BŪ = BD̄ and
AŪ = AD̄(1 − fs) (fs is the strange quark distribu-
tion) which ensures that xū → xd̄ as x → 0.

The break-up of the HERA PDFs into different
flavours is illustrated in figure 3. Model uncertainties
(shown as yellow bands in the figure) of the central
fit solution is evaluated by varying the input assump-
tions: Q2

min, fs, mass of heavy quarks mC and mB.
Parametrisation uncertainties (green band) is formed
by an envelope of the maximal deviation from the cen-
tral fit varying parametrisation assumptions in the fit
and therefore has an asymmetric shape. The deter-
mination of parameterisation uncertainties are unique
to HERAPDFs.
An example of the parton distribution functions from
HERAPDF1.5 at NNLO is shown in figure 4. HER-
APDF1.5NLO and NNLO sets are the recommended
HERA PDFs to be used for the predictions of pro-
cesses at LHC.
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Figure 3: The parton distribution functions from
HERAPDF1.0 at Q2 = 10 GeV2. The gluon and sea
distributions are scaled down by a factor of 20. The
experimental, model and parametrisation uncertainties
are shown separately.
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Figure 4: The parton distribution functions from
HERAPDF1.5 NNLO at Q2 = 10000 GeV2, i.e. a region
relevant for the hadron colliders TEVATRON and LHC.
The gluon and sea distributions are scaled down by a
factor 20. The experimental, model and parametrisation
uncertainties are shown separately. For comparison, the
central values of HERAPDF1.0 NNLO are also shown.

2.4. Comparisons to recent LHC and
TEVATRON results

The prediction of the Z boson rapidity distribution,
based on three different PDFs, are compared to the
CDF measurement in figure 5. The predictions of the

15

Figure 1.3.: The parton distribution functions from HERAPDF1.5 is shown at an
momentum transfer of Q = 100 GeV [13]. The contribution of the valence
quarks is shown as xd and xu. The gluon and sea contributions are scaled
down by a factor of 20 and labeled xg and xS respectively.

1.4. Leptons

Spin 1/2-fermions that do not interact strongly are called leptons (shown in red in
Figure 1.1). They come in three families or flavors e, µ and τ . Each family consists of
a left-handed isospin doublet of one electrical charged lepton and the corresponding
neutrino, and a right-handed singlet charged lepton. Neutrinos only interact via
the weak force while charged leptons also interact electromagnetically. Weak flavor
eigenstates are a linear combination of mass eigenstates. This means that for the
time evolution of neutrinos, the flavor states have to be transformed into mass states5.
This results in mass states that are a mixture of flavor eigenstates whose composition

5Alternatively, the time evolution operator, and therefore the Hamilton-operator, can be trans-
formed into flavor space.
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1. The Standard Model of Particle Physics

changes during propagation. This is called neutrino flavor oscillation. It is similar to
the CKM mixing in the quark sector but the mixing matrix, known as the Pontecorvo-
Maki-Nakagawa-Sakata-(PMNS)-matrix, is different. For neutrinos to mix in such
a way it is inevitable that the neutrinos have different masses. As a consequence
at least two neutrinos must have a non-vanishing mass. For their contribution to
neutrino oscillation research and thus for the proof that neutrinos have mass Takaaki
Kajita and Arthur B. McDonald were awarded with the Nobel price of physics in
2015 [14].

1.5. Beauty-Hadrons

For this analysis the b-quark and its hadrons are of particular interest. The b-quark
is referred to as bottom- or beauty-quark6 with the respective quantum number bot-
tomness or beauty B = −1. B is conserved in the electromagnetic and strong in-
teractions. General examples for physics processes with b-hadrons as an important
signatures are the decay of the t-quark, which almost exclusively decays into bW .
For the Higgs-boson the b-quark is the heaviest fermion the Higgs can decay into, as
shown in Figure 1.4. Since the mass of a particle is a measure for its coupling strength
to the Higgs field, the process H → bb̄ has the largest branching ratio (BR) of all
Higgs-decay modes7 [5].

t

b

W

H

b

b

Figure 1.4.: Feynman diagrams for b-quarks produced in decays of t-quarks (left) or
Higgs-bosons (right).

6In the latter case the top-quark is often also referred to as the truth-quark.
7The decay into vector bosons is suppressed by one boson being off-shell in the final state.
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1.5. Beauty-Hadrons

1.5.1. b-Hadron Production at Hadron Colliders

In high energetic proton-proton collisions, the b-quark can be produced by a variety
of physics processes. In the hard scattering process, two partons of the respective
protons collide according to the PDF of the proton. Due to the low probability of
a b-quark existing in the sea, it is most probably produced by gluon fusion or quark
anti-quark annihilation in the hard scattering process as shown in Figure 1.5.

γ/Z

q

q

b

b

g

q

q

b

b

g

g

g

b

b

g

g

b

b

Figure 1.5.: Examples of Feynman-diagrams for b-quark pair-production in parton
parton collisions. Shown are quark anti-quark annihilation on the top
and gluon fusion below. These are just example diagrams on tree-level.

The overall b-hadron production fractions expected at a collider like the LHC have
been measured at Tevatron. In addition Z0-decays are expected to give a good es-
timate to the production fractions expected in high energy proton-proton collisions.
Table 1.3 shows an overview of the b-hadron production fractions as obtained from
Z0-decays compared to inclusive measurements done at Tevatron and the combination
performed by the Heavy Flavor Averaging Group (HFAG) using results from LEP,
Tevatron and LHCb [15].
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Table 1.3.: Fractions of b-hadrons as produced in Z0-decays, inclusive measurements
performed at Tevatron, and compared to the average provided by the
HFAG [15].

Hadron Fraction Z0-decays Tevatron HFAG-combination
B+ fraction 0.410± 0.007 0.350± 0.020 0.406± 0.005

B0 fraction 0.410± 0.007 0.350± 0.020 0.406± 0.005

B0
s fraction 0.100± 0.008 0.100± 0.010 0.105± 0.005

b-baryon fraction 0.080± 0.010 0.199± 0.044 0.083± 0.010

1.5.2. b-Hadron Decay Properties

Due to the b-mass being significantly larger than that of all the lighter quarks, the
decay of b-hadrons can be considered as the decay of the b-quark within the presence
of a spectator quark. The b-quark decays almost exclusively into a c-quark and a
W -boson as shown in Figure 1.6, while the decay into an u-quark is suppressed by
the CKM-matrix. Therefore, the lifetimes of the various b-hadrons are very similar
and all in the order of O(1 ps). For the most prevalent B-mesons, the lifetime is
τ(B0) ≈ (1.520 ± 0.004) ps or τ(B±) ≈ (1.638 ± 0.004) ps [15]. With the relativistic
flight length l being dependent on the particle momentum p one finds

lB(p) = β(p) · γ(p) · c · τB
= p · c · τB

mB

. (1.10)

For a B0 with mB0 = (5279.58 ± 0.17) MeV [11] and a momentum of p = 50 GeV

the expected flight length is

lB0(50 GeV) ∼= 4.3 mm. (1.11)

Therefore, b-hadrons fly a measurable distance before decaying. This leads to distin-
guishable features like a spatially separated decay vertex and high impact parameters.
These signatures can be exploited in multiple flavor-tagging techniques as discussed
in Chapter 5.
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The off-shell W , produced in the b-decay, can itself decay into multiple particles.
In this thesis, decays with a muon in the final state are of particular interest as shown
in Figure 1.6. The BRs for charged and neutral B-mesons into µνµX final states are
(10.99± 0.28) % and (10.33± 0.28) % respectively [11]. This means that roughly one
tenth of b-hadrons decay by producing a muon. Only such events are used for the
prelT -method as described in Chapter 7.

W
b

c

µ

νµ

Figure 1.6.: Semileptonic b-decay with a muon in the final state.
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2. CERN, LHC and
the ATLAS Experiment

Und mit geheimnißvollem Trieb,
Die Kräfte der Natur rings um mich her enthüllen.

Faust

2.1. The Large Hadron Collider at CERN

Founded in 1954 the "Conseil Européen pour la Recherche Nucléaire" CERN was one
of the first international scientific organizations in Europe after World War 2. Nations
who fought against each other only a few years before joined forces in an attempt to
better understand the most fundamental building blocks of our universe. In July 2016
CERN welcomed Romania as its 22nd member state [16, 17]. Over the decades CERN
experiments have unveiled major parts of what we now know as the Standard Model
of particle physics.
The Large Hadron Collider (LHC) took heritage on decades of ground breaking

scientific discoveries and leading edge science done at CERN. It is currently the main
project at CERN and the most powerful particle accelerator ever build by mankind.
Starting from 1989 the Large Electron Positron Collider (LEP) reached center of mass
energies of 209GeV in its eleven years of operation. This was achieved by constructing
a 26.7 km long tunnel passing between 45m and 170m below the surface at the border
of France and Switzerland. This tunnel was then refurbished and reused for the LHC
machine [18].
Starting from a single bottle of hydrogen gas there are several steps in the proton

accelerator chain as shown in Figure 2.1. Protons are extracted from the hydrogen
gas by stripping of the electrons using a charged foil. The linear accelerator LINAC2
then injects the protons at a sub-GeV energy into the Proton Synchrotron Booster
(PSB) which consists of four synchrotron rings accelerating four bunches of protons
to 1.4GeV in parallel. The four bunches are combined to one bunch with higher
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Figure 2.1.: Schematic view of the CERN accelerator complex [19]. The LHC is drawn
in blue with the four major experiments shown as yellow dots. The posi-
tions are not accurate representation.

intensity and fed into the Proton Synchrotron (PS) which then accelerates them to
25GeV before feeding the proton packet in the Super Proton Synchrotron (SPS)
where they are accelerated to 450GeV. The last accelerator stage is the LHC storage
ring itself. Built in the former LEP tunnel the LHC had physical constraints on its
size. The tunnel has a diameter of 3.7m and therefore a twin-bore magnet system
was chosen rather than two separated proton rings. Using the lighter electrons LEP
had more straights and tighter arcs as would be ideal for a proton synchrotron. This
Challenge was met by the usage of super-conducting magnets. This way the LHC
is capable of accelerating protons reaching a beam energy of currently 6.5TeV per
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proton8. These beams are circulated clockwise and counter clockwise in the ring and
brought to collision at the four experiments ATLAS, CMS, ALICE and LHCb. [18]
The beam energies reached by the LHC increased during its operation. Starting

with a center of mass energy
√
s of 7TeV in 2011 the LHC was then operated with

√
s = 8 TeV in 2012 and afterwards upgraded to the current conditions of

√
s =

13 TeV. This is planed to be increased to its design value of
√
s = 14 TeV in the

future.

2.2. The ATLAS Experiment

The ATLAS experiment is a multipurpose particle detector located at one of the in-
teraction points of the LHC proton synchrotron. The name ATLAS originally came
from the acronym A Toroidal LHC ApparatuS. Consisting of different layers of spe-
cially designed detector components as shown in Figure 2.2 it has almost full angular
coverage around the interaction point. The detector can broadly be described as
consisting of four parts measuring specific properties of the collision remnants. The
innermost part or Inner Detector (ID) is focused on high resolution reconstruction
of particle tracks which is important for resolving the interaction vertices. Around
that the electromagnetic calorimeter is measuring electrons and photons while the
hadronic calorimeter is detecting hadronic particles and jets stopping the remaining
particles except for muons. Despite neutrinos which leave the experiment undetected
only muons pass the calorimeters and are then measured in the Muon Spectrometer
(MS), the most outer layer of the detector.

2.2.1. Inner Detector and Insertable B-Layer

In order to reconstruct particle tracks and interaction vertices the Inner Detector is
placed as close to the interaction region as possible. Figure 2.3 shows a cut away
picture of the Inner Detector system of ATLAS. It has a total length of 6.2m and is
2.1m in diameter consisting of multiple subsystems which each have a cylindric barrel
region and two end-cap regions with detectors perpendicular to the beam axis.
The detector part closest to the interaction region is the pixel detector. The pixel

detector as shown in Figure 2.4 consists of three barrel layers of silicon pixel sensors
8It is also capable of accelerating lead ions but in this thesis emphasis is put on proton proton
collisions.
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Figure 2.2.: Cut-away schematic of the ATLAS detector [20]. Pixel detector, semi-
conductor tracker and the transition radiation tracker make up the inner
detector which is surrounded by the solenoid magnet. The LAr elec-
tromagnetic calorimeter, LAr hadronic end-cap and forward calorimeters
and the tile calorimeters enclose the inner detector. The outermost part
is the toroid magnet system and the muon chambers.

on concentric cylinders surrounding the beam line at mean radii of 122.5mm, 88.5mm
and 50.5mm. It also has two times three end-cap disk layers perpendicular to the
beam axis covering scattering angles up to |η| < 2.5. It provides a resolution of about
15µm for the transverse impact parameter and of about 1mm in the longitudinal
z-coordinate vertex reconstruction. This is achieved by 1456 silicon sensor modules
in the barrel and 288 modules in the end-cap discs adding up to a combined active
detector area of 1.73m2 with about 80 million readout channels. [21]

The capabilities of identifying b-flavored jets highly depend on these vertex res-
olutions. The innermost barrel layer has the biggest influence on these resolution
capabilities and is hence called B-Layer.

In the Long Shutdown period 1 (LS1) in the years 2013 and 2014 the IBL was
added as the innermost detector layer as shown in Figure 2.5. This was possible due
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Figure 2.3.: Cut-away schematic of the ATLAS inner detector [20]. The ID consists
- from the inside to the outside - of a pixel detector, a semiconductor
tracker and a transition radiation tracker.

to an extensive maintenance period of the pixel detector and the replacement of the
beam-pipe (29mm < R < 36mm) with a new smaller beryllium beam-pipe (25mm
< R < 29mm). The IBL was then added with an inner radius of 31mm and an outer
radius of 40mm between the innermost layer of the pixel detector and the beam-pipe.
It consists of 14 slightly tilted staves of silicon sensors covering pseudo-rapidities up
to |η| < 3. [22]

Surrounding the pixel detector the silicon semiconductor tracker (SCT) is a micro
strip tracker composed of 4088 modules in 4 cylindrical barrel layers and 18 planar
end-cap discs. This way an almost hermetic angular coverage is achieved granting
at least four space-point measurements up to |η| < 2.5 as shown in Figure 2.4 and
Figure 2.5. The pixel detector and the SCT are both silicon based semiconductor
detectors. Impurities are added to the Silicon to generate p- and n-doped regions in
the material with a depletion zone in between. This generates a diode structure and
applying a reverse bias increases the depletion zone. Electron hole pairs generated
by penetrating particles can then drift to the respective electrodes where they are
measured. [20]
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Figure 2.4.: Schematic view of one ATLAS quarter-section up to the solenoid coil [20].
Below an enlarged view of the pixel detector before addition of the
Insertable B-Layer (IBL) is shown. The y-axis shows the radius in mm
while the x-axis shows the z position in mm. Vertical lines also indicate
multiple |η| regions.

Covering a radial range of 563mm till 1066mm the Transition Radiation Tracker
(TRT) is the outermost part of the ID as shown in Figure 2.4 and Figure 2.5. In the
barrel region it consists of up to 73 layers of straw tubes with a diameter of 4mm
embedded in a radiator of 19µm polypropylene fibers. In the end-cap region there
are 160 straw planes with polypropylene foils covering pseudo-rapidities up to |η| < 2.
The TRT can distinguish electrons from other long lived charged particles by the
transition radiation produced by electrons passing the polypropylene radiators which
is then measured in the gas filled detector tubes by ionization processes. [20]

In order to measure the charge and transverse momentum of the particles when they
pass the different layers of the ID a strong magnetic field is required. Therefore, the ID
is surrounded by a solenoid coil of Nb-Ti-cables in a copper matrix with an inner and

24



2.2. The ATLAS Experiment

Figure 2.5.: Inner detector cross section [23]. Radius parameters are given for IBL,
pixel, SCT and TRT for the barrel region.

outer radius of 1.23m and 1.28m, respectively. It uses an operational current of about
7.7 kA storing an energy of 40MJ to generate a solenoidal magnetic field. This results
in an axial magnetic flux in the ID with a field strength of 2T ensuring an integrated
bending power of 2Tm up to |η| < 1.2. The bending power then gradually degrades
till 0.4Tm at the edge of the IBL at |η| = 3. The slim design corresponding to only
≈ 0.66 radiation lengths ensures a minimal energy loss for all traversing particles. [24,
25]

2.2.2. Electromagnetic and Hadronic Calorimeters

The ATLAS calorimeter system almost hermetically encloses the ID system covering
pseudo-rapidities up to |η| < 4.9 in order to contain and measure the full event i.e.
the energy of all produced particles. A high energetic particle generates a particle
shower in the absorber material which is then detected by the active material. Muons
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generated during collisions at LHC typically are minimal ionizing and therefore are
the only charged particles permeating the calorimeter. Figure 2.6 shows a cut-out
schematic of the calorimeter system.

Figure 2.6.: Overview of the ATLAS calorimeter system [20]. The LAr-calorimeter is
shown in yellow while the tile-calorimeter is shown in blue.

The electromagnetic calorimeter uses lead as "high-Z" absorbers. Stainless steel is
used to separate the lead from the liquid argon (LAr) which is ionized by travers-
ing charged particles. The readout is done by multiple copper layers separated by
insulating foils. These structures are folded in an accordion-like structure as shown
in Figure 2.7. It is separated in a barrel region (|η| < 1.475) and an end-cap region
(1.375 < |η| < 3.2) with a thickness of at least 20 radiation lengths X0 up to almost
40 X0 in the end-caps. [20]
The hadronic calorimeter uses a LAr system in the end-cap (1.5 < |η| < 3.2) and

forward (3.1 < |η| < 4.9) regions as well. The high particle flux and radiative load in
the very forward region is too high for standard tracking systems so only the calorime-
ter is providing a very forward coverage to ensure detection of jets in the vicinity of
the beam-pipe.
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Figure 2.7.: Schematic of the LAr calorimeter structure. The lead absorber, the liquid
argon layer and the copper read-out are folded into an accordion-like
geometry. [26]

The LAr calorimeter is surrounded by tile calorimeter which consists of a barrel
(|η| < 1.0) and an extended barrel (0.8 < |η| < 1.7) region. It consists of a steel
absorber and scintillating tiles which have a granularity of ∆η × ∆φ = 0.1 × 0.1 in
the inner part and 0.2 × 0.1 in the outer part. The scintillators are read out using
photomultiplier tubes. In total the calorimeter extends over 11 interaction lengths λ
for η = 0 and still over 9 interaction lengths up to η = 4.9 ensuring that most of the
energy is measured by one of the components [20].
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2.2.3. Muon Detector System

The muon is the only charged particle that, due to its minimal ionizing properties at
typical LHC energies, passes through the calorimeter systems. The MS as shown in
Figure 2.8 is surrounding the calorimeter as the outermost detector system of ATLAS.
It covers pseudorapidity ranges up to |η| < 2.7 allowing to reconstruct muons down
to ≈ 3 GeV [20].

Figure 2.8.: ATLAS muon system cut-away schematic [20]. The toroid magnet system
is shown in yellow while the muon chambers are in a light blue color.

In order to determine the muon’s charge and measure its momentum up to energies
of ≈ 3 TeV a strong magnetic field is necessary. This is realized by a three piece
toroidal magnet system that is giving ATLAS its name. It contains a barrel part
and two end-caps with eight magnetic coils each. The Nb-Ti-cables conduct up to
20 kA and store an energy of about 1GJ in order to generate a 0.5T magnetic field in
the barrel and about 1T in the end-caps [20].9 The integrated bending power highly
depends on the ηφ−region a particle is passing through. For the most central region

9Cooling down the magnet to its operational state of 4.6K takes five weeks.
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the bending power is 2-4Tm while in the forward region it goes up to a maximum of
9Tm [27].
In the barrel region the MS consists of three concentric layers with radii of about

5m, 7.5m, and 10m. In the end-cap regions the detectors are mounted perpendicular
to the beam axis at ranges to the interaction point ±z of 7.4m, 10.8m, 14m, and
21.5m as can be seen in Figure 2.9. Overall the MS covers an angular region up to
|η| < 2.7 with gabs for the detector support structure and service installations.

Figure 2.9.: Side-view of the ATLAS muon system quarter-section [20]. The radius is
shown on the y-axis while the z-position is shown on the x-axis. MDTs
are shown in green and turquoise while CSCs are yellow. For the trigger
related systems the TGCs are drawn in purple while the RPCs are drawn
without a fill color.

The MS consists of four different detector types which are split in two main cate-
gories.
For precision momentum measurements Monitored Drift Tube Chambers (MDTs)

are used covering the entire pseudorapidity range of the MS. The drift tubes are about
30mm in diameter and filled with an Ar/CO2 gas mixture at 3 bar. In the center is
a small W-Re-wire with a high voltage of about 3 kV applied. Traversing charged
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particles ionize the gas and an increasing avalanche of electrons occurs which is then
collected and read-out at the central wire. Each MDT is three to eight layers thick
providing a single hit resolution of 80µm in the bending plane [28]. During LS1 new
detector components were added to the MS. Additional small-diameter Monitored
Drift Tube Chambers (sMDT) where added in regions like the detector feet where
the previous MDT did not fit. Due to the smaller radius of 15mm they are also able
to work in environments with higher particle rates [29].
Due to intense radiation in the forward region Cathode-Strip Chambers (CSC) are

used covering the innermost layer of the end-cap at 2.0 < |η| < 2.7. These multi-wire
proportional chambers use wires aligned in radial direction while the cathode strips
are oriented orthogonally with respect to the wires. They are capable to deal with a
particle flux of 1000Hz/cm2 which is six times higher than the MDT.
For these detectors to achieve a sagitta measurement of 500µm with a precision of

50µm which is necessary to measure muons up to 1TeV with only 10% uncertainty
the position of the wires has to be known to better than 30µm. This is done not only
by optical alignment but also by track-based data-driven alignment.
The second class of muon detectors are dedicated to triggering and therefore need a

time resolution in the order of a few tens of nanoseconds. This is achieved byResistive
Plate Chambers (RPCs) in the central region of |η| < 1.05. They are placed in front
and behind the MDTs. RPCs are in principle plate capacitors with a 2mm gap, at a
operation voltage of 9.8 kV, filled with a gas mixture which gets ionized by traversing
particles.
Thin Gap Chambers (TGC) are used in the more forward region 1.05 < |η| < 2.4.

These are multi-wire proportional chambers where the wire-to-cathode distance of
1.4mm is smaller than the wire-to-wire distance of 1.8mm. This results in short drift
times and therefore a fast signal readout.

2.2.4. Forward Detectors and Luminosity Measurements

ATLAS has three sub-detectors for forward and luminosity measurements. These are
placed in the most forward regions next to the beam-pipe. The Luminosity mea-
surement using Cerenkov Integrating Detector (LUCID) is the first detector located
at ±17m along the beam-line corresponding to |η| ≈ 5.8. As the name suggests it
is a gas-based cerenkov detector used for online luminosity monitoring by measuring
inelastic proton proton scattering.
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The Zero-Degree Calorimeter (ZDC) is placed ±140m away from the interaction
point covering an pseudorapity region of |η| > 8.3 and is designed to detect forward
neutrons from heavy-ion collisions. It can also be used as a minimum-bias trigger by
triggering on the proton remnants from the hard scattering process. It consists of
tungsten absorbers read out by quartz strips connected to photomultipliers.

The most forward detector is the Absolute Luminosity For ATLAS (ALFA) de-
tector. It determines the luminosity by measuring forward elastic scattering and by
exploiting the optical-theorem10. The detector consists of stacks of scintillating fibers
housed in roman pots which can move the detector as close as 1mm to the beam. [20]

In addition to these forward detectors Beam Conditions Monitor (BCM) detectors
are included in the ID. These BCM systems are designed to protect ATLAS against
dangerously high radiative loads e.g. in case of proton bunches hitting a collimator in
front of the detector. These detectors not only prevent damage to other components
but due to their sensitivity to the particle flux they contribute to the determination
of the luminosity L. Combining results from these detectors with dedicated van der
Meer (vdM) measurements results in an uncertainty δL/L = ±1.8% [30].

2.2.5. The ATLAS Trigger and Data Acquisition System

The high rate of particle interactions and the high number of read-out channels in the
ATLAS detector makes it necessary to reduce the incoming data significantly for the
Data Aquisition (DAQ) to handle it. Therefore, a dedicated trigger system is put in
place considerably reducing the data stream. The combined system is also referred to
as Trigger and Data Aquisition (TDAQ).

The Run 2 TDAQ scheme is shown in Figure 2.10. It is based on a Level-1 (L1)
hardware trigger and a singleHigh LevelTrigger (HLT). The L1 is fed by the calorime-
ter and muon detector (e.g. the RPC and TGC). It is triggering on simple signatures
like high pT objects (e.g. muons). Based on these trigger decision Region of Interest
(RoI) and so-called super-RoI11 are formed. These are then used in the HLT which has
access to the full event information and uses algorithms very close to the offline ver-
sions to calculate a trigger decision. As can be seen from the right part of Figure 2.10

10The optical theorem relates the total cross section to the imaginary part of the scattering amplitude
for a vanishing momentum transfer, i.e. scattering in the forward direction.

11Building super-RoI means merging multiple overlapping RoI to just one, in order to significantly
reduce computing efforts.
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the TDAQ system reduces the event rate from initial 40MHz to about 1 kHz. This
corresponds to a reduction of almost five orders of magnitude, from about 100TB/s
to 2.4GB/s [31, 32] .
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Figure 2.10.: ATLAS TDAQ system in Run 2 [33]. The Level 1 trigger is shown
in the top left edge processing information from calorimeter and muon
detectors. The HLT is then using additional information for the final
trigger decision. On the right a scale compares the reduction in trigger
rate and data bandwidth for Run 1 and Run 2 TDAQ.

In Run 1 the ATLAS trigger was based on a three stage system. The L1 trigger
was still the first instance but the HLT was separated into two steps. First based on
the L1 trigger decisions there was a Level-2 (L2) trigger running on RoI only. The
super-RoI concept wasn’t introduced before Run 2. It further reduced the amount of
data that needs to be read out. The Event Filter (EF) then uses the full detector
information to further reduce the amount of data rate. In Run 1 the TDAQ was
limited to 1GB/s [34].
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The total TDAQ bandwidth has to be allocated to multiple trigger streams, i.e.
different trigger signatures. While rare processes are limited to their abundance in
the collisions, prevalent processes with common signatures are occurring more fre-
quently than can be recorded. Triggers searching for such signatures are pre-scaled
and therefore set to limited bandwidth. A pre-scale of 100 means that only every
hundredth event passing the trigger will be recorded by the DAQ system. In this
analysis muon-in-jet triggers are used as described in Section 6.1.
In addition to simple signature triggers there have been multiple implementations

of flavor tagging algorithms in Run 1 and Run 2. Those are discussed in more detail
in Section 5.2.
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3. Definition and Reconstruction of
Physics Objects in ATLAS

Wie schwer sind nicht die Mittel zu erwerben,
Durch die man zu den Quellen steigt!

Wagner

In proton-proton collisions the physics processes are described by the Standard
Model (SM) as discussed in Chapter 1. The particles produced in such interactions
are then measured in the ATLAS detector as described in Chapter 2. The detector
measures hits and energy depositions which are reconstructed as tracks and identified
as particles. This task is done by multiple dedicated algorithms, that might slightly
differ for online and offline objects, i.e. objects reconstructed during and after data-
taking respectively. In this chapter the emphasize lies on offline reconstruction as
used by the prelT -analysis.
For the purpose of flavor tagging, i.e. determining the flavor of a jet, an optimal

track and vertex resolution is crucial. In addition, the muon is of particular interest for
this thesis. Furthermore, there are physics objects like electrons, photons or missing
ET (MET) which will not be discussed here. MET is the vectorial sum of all physics
objects leaving only the unbalanced transversal component.

3.1. Tracking

The main tracking algorithm used within ATLAS is the New Tracking (NEWT)
algorithm which is rather a toolbox of algorithms and methodologies [35]. NEWT
can run in an inside-out as well as an outside-in sequence with multiple algorithms
and configurations.
A short overview on inside-out track algorithm is given in the following. First,

the expected interaction region is retrieved from a conditions data-base. Then space
points are calculated by a simple local-to-global transformation getting the global
detector positions from the local Inner Detector (ID) hits. These space points are
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used for seeding the search for track candidates starting from pixel only and, in a
second step, also from the semiconductor tracker (SCT). Additional constraints on
the vertex z-position are also included. Then multiple Kalman-filter techniques can
be used to filter hits that belong to tracks [36]. Therefore, the contribution of each
hit to the fits χ2 is evaluated. In order to assess the goodness of a fitted track and
resolve ambiguities, a likelihood is computed which also takes topological signatures
into consideration. For example, a missing hit in the innermost pixel layer results in
a strong penalty in the likelihood value. Tracks found this way are extended into the
Transition Radiation Tracker (TRT) by fitting an extension onto the existing track.
Finally a list of particle-track candidates is retrieved [35, 37].

3.2. Vertex Finding

For vertex fitting, different procedures were used in Run 1 and Run 2. In Run 1
the following iterative vertex reconstruction algorithm was used [38]. First step is
to find tracks that can be associated to a vertex. For this vertex finding minimal
requirements have to be fulfilled by the tracks:

• Transverse track momentum pT > 150 MeV,

• Transverse track impact parameter |d0| < 4 mm,

• Uncertainty of the transverse track impact parameter σ(d0) < 5 mm,

• Uncertainty of the longitudinal track impact parameter σ(z0) < 10 mm,

• Number of SCT hits NSCT
Hits ≥ 4,

• Number of hits in SCT and pixel NPixel+SCT
Hits ≥ 6.

For the remaining track candidates, z distributions are searched for maxima, i.e.
points where multiple tracks cross each other, which is used as a vertex seed. After that
the vertex is fitted using the same adaptive vertex fitting algorithm as described in [39].
A χ2-criterion is used to associate tracks recursively to calculate the vertex position
and error matrix for multiple vertices. Figure 3.1 shows the spatial distribution of
reconstructed primary vertices. It can be seen that the spread of the interaction region
in z-direction is much wider than in the xy-plane.
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Figure 3.1.: Reconstructed primary vertex position in 2011 data with
√
s = 7 TeV [40].

Here a 400MeV track cut is used. These plots are updates to [38].

For Run 2 additional algorithms were developed making use of image reconstruc-
tion techniques. Therefore, the reconstructed tracks form a three dimensional source
density in the interaction region. After transformation into Fourier-space using a
three dimensional discrete Fourier transformation, image filtering algorithms can be
used to reduce blurring and artifacts. After back transformation the source density
is explored for maxima. Around these maxima, vertices are clustered with the vertex
position being the center of gravity of the resulting cluster [41, 42].

During the operation of the Large Hadron Collider (LHC) the run conditions
change, which includes the center of mass energy and also to the instantaneous lu-
minosity. The instantaneous luminosity can be increased by raising the amount of
protons in each bunch. This increases also the amount of additional zero-bias interac-
tions also denoted as pile-up. The mean number of interactions per bunch crossing µ
is a measure for pile-up since not more than one hard scattering process is expected
per bunch crossing. The primary vertex (PV) is defined as the vertex with the highest
p2
T-sum of associated tracks. For b-tagging purposes, the reconstruction of secondary

vertices is of particular interest. The secondary vertex reconstruction algorithm used
for b-tagging is discussed in Chapter 5.1.
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3.3. Jets

Starting from calorimeter cells effective noise functions are used to remove electronic
and pile-up noise. The electronic signal of the cleaned cells is calibrated at the electro-
magnetic (EM) scale to compute the cell energy Ecell [43]. This scale reproduces the
energy response generated by photons or electrons appropriately but does not account
for additional hadronic losses. A three-dimensional topological clustering algorithm
follows patterns in the cell signal significance

ζcell =
Ecell

σnoisecell
, (3.1)

with the average cell noise σnoisecell , to combine cells in a sequence of seed and collect
steps [44–46]. The resulting topological cluster, or topo cluster, is assumed to be a
massless pseudo-particle with the energy Etc being a weighted sum of the cell energies.
Combining also the cell directions, the four momentum vector Ptc of the cluster can
be found as

Ptc = Etc ·


1

sin θtc cosφtc

sin θtc sinφtc

cos θtc

 . (3.2)

Exploiting differences in shape variables, the resulting clusters can be character-
ized as being electromagnetic, meaning that it most likely originates from γ or e,
or hadronic. An additional calibration step can be performed using local hadronic
cell weighting (LCW). These locally calibrated (LC) clusters are corrected for sig-
nal losses due to inactive material or due to noise suppression during the clustering
procedure. Hadronic jets are also corrected for the non-compensating calorimeter
response, which means that hadronic showers are measured with lower energy when
compared to electromagnetic showers. [47]. After this step the sum of cluster energies
is expected to represent the energy deposition of the particle shower.
A variety of algorithms exists for jet clustering that can be used for calorimeter

cells or tracks. In this thesis the "algorithm of choice" is the infrared and collinear
safe anti-kt algorithm [48]. Based on topological clusters, jets are build with a radius
parameter of R = 0.4 in the ηφ-plane. The algorithm uses the distance measure dij
between two entities i and j defined as

dij = min(p−2
Ti , p

−2
Tj )

∆R2
ij

R2
, (3.3)
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with the distance in the rapidity-azimuthal-plane ∆R2
ij = (yi − yj)2 + (φi − φj)2 and

pTi, yi and φi being the respective transverse momentum, rapidity12 and azimuth of
entity i. The algorithm combines clusters j to the proto-jet i until dij > p2

Ti.
This procedure is done using EM or LC clusters as well as clusters based on trigger

level properties. The prelT -calibration was performed for all of those possibilities.

3.3.1. Pile-up Mitigation

Pile-up is dominated by soft QCD events. These cause additional activity in the
calorimeter system which can be reconstructed as low energy jets not emerging from
the primary vertex. Pile-up mitigation techniques utilized in this analysis are dis-
cussed in [49, 50]. During Run 1 the Jet Vertex Fraction (JVF) was introduced.
It is defined as the sum of the transverse momenta of all tracks of the jet that are
coming from the primary vertex divided by the sum of transverse momenta of all
tracks of the jet. A cut is then applied for all jets with |η| < 2.4 and pT < 50 GeV.
For Run 2 in addition to JVF13 the RpT variable is used, which relates the sum of the
track momenta from the primary vertex to the full jet pT, which has been determined
from calorimeter clusters. The Jet Vertex Tagger (JVT) utilizes a two dimensional
likelihood of those variables to discriminate pile-up jets in a slightly bigger kinematic
region |η| < 2.4 and pT < 60 GeV [49, 50].

3.4. Muons

Muon candidates penetrate the full detector and are therefore measured in the ID and
Muon Spectrometer (MS) independently. The ID provides a precise measurement of
the muon track close to the interaction point, which is crucial to associate the muon
to a vertex. The measurement in the MS provides an additional precise measurement
of the track momentum with a large integrated bending power. Energy losses in
the calorimeter system can be used as additional information to the global muon
reconstruction. Several types of muons are defined depending on the information
used for the reconstruction [51, 52]:

12The anti-kt algorithm is used on topo clusters which are assumed to be massless pseudo-particles
and hence the rapidity and pseudorapidity are identical.

13In Run 2 an additional correction is applied to the JVF accounting for the pile-up-dependence of
the variable.
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• Muons that are reconstructed using the MS only are called stand-alone (SA)
muons. The muon track is then extrapolated back to the interaction region and
a vertex is reconstructed from the stand-alone track [53].

• Candidates with tracks reconstructed in the ID are referred to as segment-
tagged (ST) muons. The fitted track has to be associated to at least one local
track segment in the Monitored Drift Tube Chamber (MDT) or Cathode-Strip
Chambers (CSC). This increases the overall acceptance by adding muons that
do not have enough hits in the MS.

• In order to reconstruct muons outside the acceptance of the MS, calorimeter in-
formation can be used. Therefore, a ID track is extrapolated into the calorimeter
system and associated to an energy deposit compatible with the expectation for
a minimal ionizing particle.

• The commonly used type of muons is the combined (CB) muon. Therefore, a
track has to be successfully fitted in the ID and MS independently. The two
tracks are then combined either using a statistical combination based on the
corresponding covariance matrices or by a global re-fit using hit information
from both detector systems.

The CB muons have the highest purity and are therefore used for the prelT -method.
The reconstruction efficiency can be measured using Z and J/Ψ decays in a tag-and-
probe approach. The overall muon reconstruction efficiency is close to 99%, but
degrades in the soft pT < 5 GeV region [28].
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Welch Schauspiel! aber ach! ein Schauspiel nur!
Wo faß’ ich dich, unendliche Natur?

Faust

In particle physics statistical methods are generally used. Due to the high complex-
ity of its experiments, it is very complicated to evaluate a probability density function
for the full phase-space. Thereby, huge efforts are made to generate those probability
densities with Monte Carlo (MC) methods. The full problem of simulating statistical
distributions for all available variables is solved by an event based simulation where
the different steps factorize very well. This means that the full simulation can be
done in multiple independent steps. First, the hard scatter process is modeled in dif-
ferent orders of perturbative quantum f ield theory (QFT). Second, the hadronization
is added with dedicated shower generators and finally, a detector simulation is done,
modeling all the interactions with the detector material. On top of the hard scatter
process, the underlying event, i.e. the interaction between the proton remnants as
well as additional pile-up interactions, are simulated.

4.1. Pythia di-jet MC

This thesis deals with quantum chromodynamics (QCD) dominated phase-space and,
therefore uses di-jet MC samples. These are simulated using the Pythia 8 pack-
age [54], which is capable of generating the hard scattering interaction, including also
initial- and final-state interactions, and also the hadronization process using string
fragmentation. The simulation therefore depends on a variety of free parameters.
Before the actual simulation, the Parton Distribution Function (PDF) used with

Pythia has to be specified. This defines the high dimensional probability density for
the initial state which has to be adjusted to particle physics measurements. From this
initial state the hard scatter process is calculated using sets of parameters motivated
by particle physics measurements.
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These so called tunes define parameters like the strength of the strong interaction
αs(Q) at the different interaction scales Q like the hard scatter process and Initial
State Radiation (ISR) and f inal state radiation (FSR). After the hadronization the
resulting hadrons are interfaced into the EvtGen package [55]. With the special em-
phasis on b-physics in this thesis, it is important to have an accurate description of
flavor physics in the simulation. The EvtGen package includes full B-decay tables with
the latest and most precise measurements as well as semileptonic form-factor mod-
els. After refining hadron properties the particle flight through the ATLAS detector
is simulated using the Geant4 package with a full implementation of the detector
geometry and magnetic field maps [56]. In this step, the detector response to the
traversing particle is generated. These MC events are reconstructed in the same way
as the collision data described in Chapter 3.

In Run 1 the CT10 PDF is used [57]. This is then used in the AU2CT10 Pythia

tune [58] and interfaced wit the EvtGen package to improve the modeling of b-hadron
decays. For Geant4 simulation and reconstruction the ATLAS-GEO-20-00-01 geom-
etry version is used.

In Run 2 PDFs are used, that are next-to-next-to-leading-order in QCD and tuned
to LHC measurements defining the NNPDF23 [59]. From this the NNPDF23LO set
with leading-order QED corrections is constructed [60]. It is then combined with
the ATLAS 2014 tune to the overall A14NNPDF23LO configuration [61] in which
Pythia generates the events. Again the EvtGen simulation package is used. For
the detector simulation Geant4 is used with the updated ATLAS-R2-2015-03-01-00
geometry which includes upgrades like the Insertable B-Layer (IBL).

The cross-section of multi-jet events induced by the strong interaction as studied
in this thesis falls very steeply with the jet momentum. In order to simulate events
over a large range of jet momenta generating a rather flat statistical precision over
the whole spectrum, special techniques are used. First, the overall pjetT spectrum is
divided into slices which are then generated separately14. These samples are called
JX samples where X denotes the number of the slice increasing with pjetT . Second,
within each slice the leading pjetT -spectrum is generated rather flat when compared
to the physical spectrum. This is done to generate a similar statistical precision
over the full momentum range. The individual events have to be weighted with an
event weight computed by the generator to produce a physical distribution. These

14For the determination of slice boundaries, anti-kt 6 jets, built on truth level information are used.
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techniques were applied for Run 1 and Run 2 and are internally documented in [62]
and [63], respectively. For Run 2 improved slice boundaries were used, which can be
seen in Table 4.1 and Table 4.2, showing an overview on the samples used in Run 1
and Run 2.

Table 4.1.: JX sample definition as used in Run 1 [62].

Name dataset ID pjet, truthT [GeV] Cross-section σ [nb] N events

J0 129270 0 - 20 7.285 · 107 2M
J1 129271 20 - 60 7.285 · 107 1M
J2 129272 60 - 200 2.636 · 104 3M
J3 129273 200 - 500 5.442 · 102 2M

Table 4.2.: JX sample definition as used in Run 2 [63].

Name dataset ID pjet, truthT [GeV] Cross-section σ [nb] N events

J0 361020 0 - 20 7.842 · 107 2M
J1 361021 20 - 60 7.842 · 107 2M
J2 361022 60 - 160 2.433 · 106 2M
J3 361023 160 - 400 2.645 · 104 2M

4.2. Muon Filtered Samples

In addition to the jet slicing a second filtering option is used. Since the prelT -method
relies on muon kinematics, it is mandatory to have at least one muon in each event.
Generating minimum bias samples based on strong interaction processes not neces-
sarily generate muons. In order to increase this fraction, a truth level filter, rejecting
events without a muon, is used. An overview on the used muon-filtered samples is
shown in Table 4.3.
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Table 4.3.: JX muon filtered sample definition as used in Run 1.

Name Datset ID pjet, truthT [GeV] Cross-section σ [nb] N events

J0 129280 0 - 20 7.285 · 107 4M
J1 129281 20 - 60 4.144 · 106 8M
J2 129282 60 - 200 5.015 · 103 10M
J3 129283 200 - 500 5.442 · 102 4M

In Run 2 this simple filtering technique is only applied in the soft QCD region where
the energy scale of the scattering process is close to additional radiative corrections.
Therefore, the J1 sample is split into two samples J1A and J1B. For J0 and J1A the
same filtering techniques as in Run 1 is used. Starting with J1B, internal features
of Pythia are used to generate a biased sample enriched with muon final states. A
special treatment has to be applied to these samples, since they are generated from a
biased phase-space. They cannot be normalized to the number of generated events,
but rather have to be normalized to the sum of the respective event weights computed
by Pythia. The muon-filtered samples used in Run 2 are listed in Table 4.4.

Table 4.4.: JX muon filtered sample definitions as used in Run 2.

Name Datset ID pjet, truthT [GeV] Cross-section σ [nb] N events

J0 427000 0 - 20 7.842 · 107 2M
J1A 427030 20 - 40 7.842 · 107 1M
J1B 427031 40 - 60 3.153 · 107 1M
J2 427032 60 - 160 2.433 · 106 2M
J3 427033 160 - 400 2.645 · 104 2M

An example for the sliced jet spectrum is shown in Figure 4.1. When scaled cor-
rectly the jet slices sum up to the steeply dropping distribution observed in a QCD
dominated event selection. Basic cuts are applied to reduce pile-up dependence, which
would otherwise increase the slope in the low pT region.
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Figure 4.1.: Leading jet pT-distribution for the muon-filtered Pythia samples listed
in Table 4.4. Cuts on jet and muon multiplicity are applied, as well as
pile-up rejecting cuts on the JVT. The datasets are scaled to an integrated
luminosity of 1 nb−1.

4.3. Flavor Matching on Truth Level

MC simulations have the advantage of information being available on particle truth
level. This includes the flavor of a particle. Therefore, the flavor of a particle and
the flavor of a jet can be determined using a standard cone based algorithm, that
successively tries to find heavy particles inside the jet cone. First, a b-quark is searched
for in a distance ∆R =

√
∆η2 + ∆φ2 < 0.3. If it is successful, the jet is labeled as

b-jet. If not, the same procedure is done for c- and τ -hypotheses. If all heavy flavor
candidates are rejected, the jet is labeled as a light-jet.
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Ja was man so erkennen heißt!
Wer darf das Kind beym rechten Namen nennen?

Faust

Tagging algorithms in general are techniques classifying between multiple decisions
by exploiting distinguishable properties in the input variables. Flavor tagging is an
application where algorithms are used to determine the most probable flavor of a jet,
based on reconstructed jet properties. It is very important for the ATLAS physics
program, since many analyses rely on tagging algorithms to very efficiently identify
objects while rejecting underground processes, as much as possible. In this thesis
the emphasis lies on the tagging of b-jets. A detailed overview of the ATLAS flavor
tagging efforts is given in [64].

In principal, the performance of tagging algorithms can be assessed by the signal
efficiency and the background rejection. For b-tagging a crucial measure to evaluate
the performance of an algorithm is the tagging efficiency

εb =
N tagged
b

N total
b

, (5.1)

with the number of jets tagged by the algorithm N tagged
b divided by the total number

of b-jets N total
b . In general, tagging algorithms have a continuous output where cuts

can be applied. Each of these cuts corresponds to a b-tagging efficiency and a specific
cut is defined as an operating point (OP). Each OP also corresponds to a specific
c-tagging efficiency εc and light-rejection rate R` = ε−1

` . These are equally important
figures, specifying the algorithms ability to reject other jet flavors. In general, the
signal and background efficiencies are highly correlated so a trade-off between a high
signal efficiency and a high background rejection has to be made when defining OPs
for a tagging algorithm. The efficiency (and rejection rates) used for the definition of
an OP is evaluated on a specific tt̄-simulation to ensure comparability.
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5.1. b-Tagging Algorithms

As discussed in Chapter 1 one common property of b-hadrons is their life time in the
order of 1-2 ps. Therefore, the particles travel several millimeters in the laboratory
frame before decaying, leading to distinguishable decay signatures. These signatures
are exploited by dedicated algorithms, most of which are also summarized in [64].

5.1.1. Impact Parameter Based Algorithms

Tracks of the b-hadron’s decay products are displaced compared to the primary vertex
(PV) as shown in Figure 5.1. The tracks can be extrapolated backwards and the
impact parameter (IP) can be determined as the point of closest approach with re-
spect to the PV. In ATLAS two projections of the IP are used due to the different
resolution in the transversal plane compared to the longitudinal direction. The z0 is
the projection longitudinal to the beam axis and the d0 is defined in the transversal
plane. The IP is signed to further increase its discrimination power. The sign is
defined as positive if the track crosses the jet axis in front of the PV, and negative
if the track intersects the jet axis behind the PV. For light jets this is a symmetrical
distribution due to resolution effects while heavy flavor hadrons generate a higher,
positive value of the signed impact parameter significance.

IP

Primary Vertex

Secondary Vertex

Figure 5.1.: Displaced decay of a b-hadron at a secondary vertex inside a jet. Tracks
from the decay products are shown in green. Extending the track beyond
the secondary vertex, the IP is the distance at the closest approach to the
PV shown in red.

The JetProb algorithm uses the track impact parameter significance Sd0 = d0/σd0 ,
with the uncertainty σd0 of the reconstructed d0, and compares it to a pre-defined
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resolution function R(Sd0) [65]. This results in a probability P trk
i of the track to

originate from the PV. The probability for all tracks is then combined in one tagging
discriminant for the jet Pjet. This algorithm has only been used for early data before
2011 and also for online b-tagging during Run 1.
The IPxD algorithm-family uses pre-determined log-likelihood ratios to compute

the tagging discriminant. The IP1D uses the longitudinal impact parameter signif-
icance, while the IP2D tagger utilizes the transverse impact parameter significance.
Both are combined in the IP3D that uses a two-dimensional likelihood distribu-
tion based on both the longitudinal and transversal impact parameter significances.
Therefore, the correlation between both variables is taken into account by the two
dimensional probability density functions. This way a weight gets assigned to each
track based on the (Sd0 , Sz0)-values of the track. The jet discriminant wIP3D is defined
as the sum over all the track weights.

5.1.2. Secondary Vertex Based Algorithms

Since the b-hadron travels multiple millimeters before decaying the different decay
products can be traced back to a displaced secondary vertex (SV). The properties of
this vertex can then be used to discriminate jet flavors. A dedicated vertex finding
algorithm is used to cluster tracks with a high IP significance Sd3D = d3D/σd3D that
can be associated to a jet. Pairs of these track candidates are fitted to a SV using a χ2-
criterion. Vertex candidates compatible with material interactions, converted photons
or long-lived particles like Ks or Λ are rejected using geometrical information and
invariant mass distributions. Finally all tracks from the remaining vertex candidates
are used to refit a single inclusive SV.

L3D

Primary Vertex

Secondary Vertex

Figure 5.2.: The decay length L3D of a b-hadron is defined as the three-dimensional
distance of the fitted secondary vertex, shown in green, to the primary
vertex shown in red.
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The distance of the SV to the PV is defined as L3D and corresponds to the flight
length of a decaying particle as shown in Figure 5.2. The signed flight length sig-
nificance L3D/σL3D

is used as the discriminant for the SV0 tagging algorithm [66].
While the mistag rate is typically smaller for SV based algorithms its performance is
limited by the vertex finding efficiency of about 70% [67].
Additional properties of the SV can be exploited to gain additional discrimination

power. The SV1 algorithm uses a likelihood ratio approach based on the following
four variables:

• the invariant vertex mass, computed under the assumption that all associated
tracks are pions by adding their four-momenta and calculating the resulting
invariant mass,

• the sum of energies of all tracks, associated to the SV, divided by the energy-sum
of all tracks in the jet,

• the number of two-track vertex candidates,

• the difference of the jet-direction to the direction of the line connecting the PV
with the SV in the ηφ-plane.

SV1 uses the first two variables in a two-dimensional log-likelihood ratio while the
latter two variables are used in independent likelihood definitions.
So far only a SV is considered, where the b-quark undergoes a weak decay most

probably into a c-quark as discussed in Section 1.5.2. However, the c-hadron then de-
cays into a light-flavored-hadron, generating an additional decay vertex. Intermediate
excited states that undergo strong or electromagnetic transitions are not expected to
generate additional vertices due to their short lifetimes. The SV finding algorithm tries
to match all displaced tracks to a single inclusive vertex, which does not completely
match this b-hadron decay topology. Therefore, the JetFitter algorithm utilizes a
Kalman-filter [36] to reconstruct a weak b-to-c-to-light-decay chain in a jet [43, 68].
As a result a b-flight axis is iteratively computed and the vertex candidates repre-
senting the decay chain are reconstructed as shown in Figure 5.3. This ensures that
single tracks can suffice to reconstruct an additional decay step, by fitting a vertex
where the track passes the b-flight axis. The algorithm generates six flavor-sensitive
variables:

• the number of vertices with at least two tracks,
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• the total number of tracks matched to the respective vertex,

• the amount of single track vertices on the b-hadron flight axis,

• the b-decay vertex mass, including all tracks from the complete decay chain,

• the sum of track energies associated to the decay chain divided by the sum over
all track energies in the jet,

• the weighted sum of the flight length significances.

Primary Vertex

b-Decay Vertex

c-Decay Vertex

b-Flight Axis

Figure 5.3.: The JetFitter algorithm reconstructs the b-to-c-to-light decay chain by
iteratively fitting the b-flight axis, shown in red, and the vertex candidates,
shown in green.

Those variables are then combined with the jet pT and η in a neural network
(NN). To prevent the network from learning the pT and η dependences of the first
six variables a two-dimensional re-weighting is applied during the training of the
network. The NN has three output nodes for the different flavor hypotheses Pb,c,`.
OPs are defined based on the JetFitter discriminant wJF = ln(Pb/P`).

5.1.3. Muon-based Algorithm

As discussed in Section 1.5.2, the b-hadron decays with a muon in the final state
in about 10% of the cases. The kinematic properties of these muons are exploited
by the soft muon tagger (SMT). When also considering cascade decays where the
final state muon is coming from a c-decay the tagging efficiency is limited to about
20% [67]. This is a strong limitation on the overall efficiency. As a result, it is not
commonly used in physics analyses. Due to its focus on muon properties it is also
highly correlated to the prelT -variable itself which therefore cannot reliably be used for
calibration. The SMT is only discussed here for completeness.
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For the SMT, only combined muons are used that have been measured in the Inner
Detector (ID) and the Muon Spectrometer (MS) as described in Section 3.4. The
muon has to be loosely associated to the PV to reduce the contribution from pile-up.
Furthermore, cuts are applied to reduce the contribution of decay-in-flight muons com-
ing from light flavored decays. The classification discriminant is the matching quality
for the ID to MS track divided by the number of degrees of freedom χ2

match/NDoF as
shown in Figure 5.4. This distribution is broader for light-jets compared to heavy-
flavor muons.
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Figure 5.4.: Soft muon tagger matching-χ2 distribution [64]. The b-, c- and light
contributions are shown in green, blue and red, respectively.

5.1.4. Combined Algorithms

The IP-based and SV-based algorithms have different caveats and advantages. While
the SV-based algorithms have a lower mistag rate, the IP-based algorithms are not
limited by the vertex finding efficiency. Combining both classes of algorithms gener-
ates a versatile and more robust type of algorithms with an enhanced classification
power.
The IP3D+SV1 algorithm exploits the fact, that the IP3D and SV1 algorithms

both rely on the same log-likelihood ratio technique. The respective output values
are summed up to the combined discriminant wIP3D+SV1 = wIP3D + wSV1 [69].
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Another approach for the combination of those classes of algorithms is adding the
IP3D discriminant as an input to the JetFitter neural network [69]. The resulting
network undergoes two different trainings and two different discriminants are defined,
based on the three output nodes of the network. The JetFitterCombNN uses the
same definition as before with wJFCNN = ln(Pb/P`) while the JetFitterCombNNc
is constructed to strongly reduce c-jets at the expense of a degraded light rejection.
The discriminant is defined as wJFCNNc = ln(Pb/Pc).

The algorithm most commonly utilized in Run 1 and also in the start of Run 2 is
the MV1 classifier [64]. It is a NN, based on the perceptron implementation from
the Toolkit for Multivariate Analysis (TMVA) [70], to combine the SV1, IP3D and
JetFitterCombNN discriminants. An additional input variable is used, categorizing
each jet in a two-dimensional grid in (pT, η). The network training relies on back-
propagation and is performed on tt̄ and high-pT dijet events from Monte Carlo (MC)
simulation. Therefore, the MC samples are re-weighted, as was done for the JetFit-
ter algorithm, to avoid any bias from the pT and η distributions. This procedure
ensures that the network can learn the input variables independent of the jet’s kine-
matic region while still maintaining the (pT, η)-information for classification. This
network has a single output node providing a variable wMV1 with a high discrimina-
tion power, as shown in Figure 5.5a. This algorithm is again retrained after replacing
the JetFitterCombNN with the JetFitterCombNNc as an input variable to construct
an algorithm with enhanced c-jet rejection. This is referred to as theMV1c algorithm
which is commonly used in analyses that have to reduce c-jets as a major background
contribution.

For Run 2, the new MV2 algorithm-family was developed. The MV2 classifier is a
boosted decision tree (BDT), implemented in the TMVA framework [70], combining
the inputs of previously used algorithms IP2D, IP3D, SV1 and JetFitter rather than
combining the outputs as has been done for MV1. Including the jet pT and η, MV2
uses a total of 24 input variables15. Also the signal jets are re-weighted to match
the background distribution instead of flattening the (pT, η)-spectrum as has been
done before. Three different taggers are defined. Therefore, three different trainings
are done with different flavor-fractions, which also change from 2015 to 2016 data
taking. Therefore, the background sample is defined as a set of light jets with a
specific c-contribution, as listed in Table 5.1.

15Since the MV2 tagger is under current development the input variables might change.
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(a) Comparison of the normalized MV1 discriminant
for different jet flavor.
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Figure 5.5.: The discrimination power of a tagging algorithm can be seen in the dif-
ference of its output distribution for different jet flavor as shown for MV1
in (a). A comparison to the performance of other algorithms is shown in
(b) [64].

Table 5.1.: MV2c definitions for BDT-trainings with different c-fractions.

c-fraction MV2c00 MV2c10 MV2c20
2015 training 0% 10% 20%
2016 training 0% 7% 15%

The MV2c20 tagger was found to have the best trade-off between light- and c-
rejection and is commonly used for Run 2 analyses. It is described including its 2015
and 2016 performance in [71] and [72], respectively.
In general, tagging algorithms are compared using receiver operating characteristic

(ROC) curves. Therefore, the background rejection, which is usually the light-jet
rejection, is plotted against the b-tagging efficiency for varied discriminant thresholds.
Each possible cut value in the discriminant corresponds to values (εb, R`) for the
respective classifier.
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A set of ROC curves is shown in Figure 5.5b, comparing the performance of multiple
tagging algorithms, discussed before. The MV1 classifier clearly shows a higher light
rejection rate than the other algorithms for every b-tagging efficiency value16.

5.2. b-Tagging Triggers

Typically, the tagging algorithms discussed before are defined based on offline ob-
jects. This has the advantage that algorithms and OPs can be optimized extensively.
However, this only changes the number of selected b-jets while the total amount of
measured b-jets is already determined during data taking. Therefore, the Trigger and
Data Aquisition (TDAQ) system has to be optimized to select as many physically
relevant events as achievable while simultaneously rejecting as many minimum bias
events as possible.

The b-trigger selection is based on online objects starting from Level-1 (L1) calorime-
ter jets [73]. Two different trigger modes have been utilized using either the Region
of Interest (RoI) defined by the L1 decision, or a full scan (FS) of the complete
detector for events triggered by the L1-trigger. The first version is faster than the
rather costly FS method. However, both methods have been used during data taking.
For the respective b-jet candidates the Level-2 (L2) and Event Filter (EF) objects
are computed and analyzed with online versions of the tagging algorithms discussed
before.

During 2011 data taking, the b-trigger selection was based on the JetProb algo-
rithm as shown in Figure 5.6. Three OPs were defined with loose, medium and tight
efficiencies corresponding to roughly 70%, 55% and 40% selection efficiency, respec-
tively [64]. It can clearly be seen that the performance of the algorithm strongly
increases with each trigger level, up to the offline reconstruction step. In 2012 data
taking the SV1+IP3D algorithm was used for trigger selection with a loose and a
medium OP. In 2016 the MV2c algorithm is deployed for trigger selection.

16For efficiencies very close to one the JetFitterCombNN tagger has a higher rejection. However,
these high efficiencies are not used, due to their limited background rejection capabilities.
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Figure 5.6.: ROC curves for the JetProb algorithm calculated on different trigger
steps. The selected events are based on the medium, i.e. 55% efficiency,
working point of the High Level Trigger (HLT) [64].

5.3. Flavor Tagging Performance

The previously discussed flavor tagging algorithms are typically characterized on MC
samples. Therefore, the different flavor selection efficiencies and their pT, η and pile-
up dependencies are evaluated in MC. For sophisticated algorithms using multivariate
analysis techniques it is crucial that all input variables and their correlations are de-
scribed by simulation in high precision since it is a priori unknown which variables or
correlations the algorithm is using for discrimination. Therefore, the modeling of ob-
servables is extensively studied in [67]. Despite detailed MC studies, the performance
is also measured using data-driven methods. The resulting differences in the tagging
efficiency εf for flavor f are computed in form of data to MC scale factors (SFs)

κf = κdata/simεf
=
εdataf

εsimf
. (5.2)

56



5.3. Flavor Tagging Performance

In general, more than one technique is used to evaluate each of the tagging efficien-
cies as summarized in [64]. This is done for redundancy and the ability to cross-check
various methods and to ultimately combine different measurements.

5.3.1. b-Tagging Efficiency

Apart from the prelT -method, multiple other techniques have been used to measure the
b-tagging efficiency in ATLAS. Those can be separated into two groups: the tt̄-based
methods and the µ-based methods. In Run 1, the prelT -calibration was accompanied by
the sytem8-method as a second µ-based technique. In Run 2, the system8-calibration
is no longer carried out, leaving the prelT -method as the only µ-based technique used
in ATLAS.
The system8-method17 also relies on the prelT -variable as defined in Chapter 7 [75,

76]. Therefore, the event selection is similar to the one described in Chapter 6,
requiring non-isolated soft muons, geometrically matched to a jet under study. It
uses the following three independent and uncorrelated variables to select a set of eight
independent samples as shown in Figure 5.7:

• A soft muon criterion (denoted MT), implemented by a cut on the prelT -variable.

• A SV criterion, obtained by a cut on the signed decay length significance SL3D
.

This criterion is applied to a second jet in the event. In the following, n denotes
the number of events without applying the cut and p denotes the number of
events passing the cut.

• The b-tagging criterion under study (denoted LT), i.e. a combination of a tag-
ging algorithm and the respective OP.

17The system8 method was previously known as SystemD method while used by the D0-
collaboration [74].
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Figure 1: Venn diagram showing the relations between different event categories in System8.

3 Samples and Selection

The data used for the studies presented in this note were collected with the suite of ATLAS triggers
that were designed for the purpose of b-tagging efficiency studies (a detailed description of the ATLAS
trigger system can be found in Ref. [6]) and which require a muon associated with a jet:

• At the first trigger level (L1), a muon candidate is required, reconstructed using coincidences
between the muon system’s fast trigger detectors. In addition, jets are reconstructed using the
coarse calorimeter information available at this stage, and at least one such jet is required to satisfy
pT > X GeV (with X = 5, 10, 15, 30, 55 for the different triggers used).

• At the second trigger level (L2), the muon momentum is measured using the more accurate infor-
mation from the precision muon detectors and a requirement pT > 4 GeV is imposed. In addition,
the muon is required to be matched with the L1 jet within a cone of radius ∆R ≡

√
(∆η)2 + (∆φ)2 <

0.4.

In addition, events are required to satisfy the following criteria:

• There should be no problems with the quality of the data from the tracking system, calorimeters,
and the muon system.

• The event should contain at least one reconstructed primary vertex with at least 10 associated
tracks.

• It should contain at least one jet reconstructed using the anti-kt algorithm [10] (with distance pa-
rameter R = 0.4) starting from energy clusters in the calorimeters. The jet energy scale used
employs the ATLAS standard calorimeter-based calibration [11], corrected for the presence of the
muon and applying an average correction for the momentum of the neutrino produced in semilep-
tonic decays. Jets should satisfy |η| < 2.5 and pT > 20 GeV, and have at least one associated track.
Jets not satisfying standard ATLAS standard quality criteria [12] are discarded.

• The jet should be associated (within a cone of radius ∆R < 0.4) with a muon reconstructed using
both Inner Detector (ID) and muon system information and satisfying pT > 4 GeV and |η| < 2.5.

4

Figure 5.7.: Venn diagram of system 8 selection categories [75]. The MT and LT
criteria are denoted as "mu tag" and "lt tag", respectively.

A set of eight equations can be derived:

n = nb + nc`

p = pb + pc`

nLT = εLTb nb + εLTc` nc`

pLT = α6ε
LT
b pb + α4ε

LT
c` pc`

nMT = εMT
b nb + εMT

c` nc`

pMT = α5ε
MT
b pb + α3ε

MT
c` pc`

nLT,MT = α1ε
LT
b εMT

b nb + α2ε
LT
c` ε

MT
c` nc`

pLT,MT = α7α6α5ε
LT
b εMT

b pb + α8α4α3ε
LT
c` ε

MT
c` pc`

The eight correction factors αi account for correlations between the different cri-
teria. The correlations are evaluated on MC and the equations can then be solved
numerically. Therefore, a χ2-criterion is minimized and εLTb is extracted as described
in [75, 76].

Due to the high production cross section under Large Hadron Collider (LHC) con-
ditions and the high integrated luminosity taken by ATLAS, t-quark pair production
can be utilized to measure b-tagging efficiencies. Exploiting the fact that t-quarks
mostly decay into b-quarks, different techniques were developed, also documented
in [77, 78].
The tag counting method assumes that every t-quark decays into a b-quark,

hence each tt̄-event has two b-jets. The expected signal yields for two tagged jets and
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one tagged jet in Ntt̄ are ε2
b ·Ntt̄ and 2 · εb(1− εb) ·Ntt̄, respectively. Multiple effects

influence these relations. Acceptance corrections degrade the efficiency of tagging jets
while additional g → bb̄ radiation and light and c mistagging generates additional b-
jets. This is accounted for by fitting the expected flavor multiplicities Fijk for events
with i b-jets, j c-jets and k light jets. The expectation for Fijk is evaluated using MC
events.
The kinematic selection method relies on the accurate modeling of the flavor

composition in MC. The fraction of tagged jets is given by

ftag = εbfb + εcfc + ε`f` + εfakeffake, (5.3)

with the flavor fractions f and the respective tagging efficiencies ε. The additional
fake contribution accounts for jets with non-prompt, fake leptons which is used for the
selection of leptonically decaying t-quarks, being estimated in a data-driven approach.
Relation (5.3) can be solved for the efficiency

εb =
1

fb
(ftag − εcfc − ε`f` − εfakeffake). (5.4)

This efficiency is then measured in bins of pT and η using flavor fractions from
simulation as well as efficiencies, which are in addition corrected using data to MC
scale factors.
The kinematic fit method exploits the kinematic decay properties and fits the

reconstructed objects to the decay topology using t- and W -masses as additional
constraints. As a result, b-jet candidates are obtained by kinematic properties only,
without the usage of dedicated tagging algorithms. The tt̄ semileptonic decay chan-
nel is used for this method. After fitting the most probable object permutation, the
b-tagging efficiency is measured using the b-jet candidate on the leptonic side of the
event. This method has a combinatorial background in addition to backgrounds from
other physics processes. Therefore, the hadronical side of the decay is separated into a
signal enriched sample and a background enriched sample using multiple combinations
of b-tagging criteria and b-tagging vetoes. A side-band in the matching χ2 distribu-
tion is used to normalize the background expectations which can then be subtracted
from the signal distribution. After background subtraction the tagging efficiency is
calculated by integrating the signal yields in the tagging discriminant distribution
T (w)

εb(wcut) =

∞∫
wcut

T (w) dw. (5.5)
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The combinatorial likelihood method reaches the highest precision of the dis-
cussed efficiency calibrations. The event selection is based on the tt̄ dileptonic decay
channel. The calibration is carried out in ee, µµ and eµ final states. Furthermore,
the effect of additional radiation is taken into account by performing the measure-
ment independently in topologies with two and three jets. This technique relies on
per-event likelihood functions that have to be defined separately for the different jet
multiplicities due to different amount of possible permutations. The two jet likelihood
is defined as

L(pT,1, pT,2, w1, w2) =
1

2

∑
(j,k)

[fbbPbb(pT,i, pT,k)Pb(wi|pT,i)Pb(wk|pT,k)

+ fbjPbj(pT,i, pT,k)Pb(wi|pT,i)Pj(wk|pT,k)
+ fjjPjj(pT,i, pT,k)Pj(wi|pT,i)Pj(wk|pT,k)] (5.6)

with the following ingredients:

• The sum is executed over the permutations (1,2) and (2,1). In the three jet
case, additional permutations have to be taken into account.

• The jet flavor fractions f for the possibilities b-jet or non-b-jet. The non-b-jet is
simply denoted as jet j.

• The probability density functions Pf for the b-tagging discriminant for a jet of
flavor f in dependence of the jet transverse momentum.

• The two-dimensional probability density functions Pf1f2 , depending on the two
jet flavors and their respective pT values.

The probability density functions used for this approach are extracted from MC dis-
tributions. Only the measured probability density function for the b-jet discriminant
is estimated in data and the tagging efficiency can be computed by the integral

εb =

∞∫
wcut

Pb(w, pT) dw. (5.7)
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5.3.2. c-Tagging Efficiency

The c-jet tagging efficiency εc is measured by two different methods. The first method
uses a selection enriched with final states where a c-quark is produced in association
with an on-shellW -boson [79]. The dominant production channels are gs→ W−c and
gs̄ → W+c̄. The c-hadron is required to decay with a muon in the final state, which
can be matched with a geometric cone algorithm to the produced c-jet. The W± is
required to decay leptonically with exactly one isolated electron to avoid ambiguities
with the muon in the event. Additional missing ET (MET) is required to account
for the neutrinos. While the muon has an electrical charge with the same sign as the
produced c-quark, the electron has the opposite electrical charge. As a result, the
muon and electron in the final state are of opposite sign (OS) with respect to their
electrical charge. In contrast, the background is distributed symmetrically between
OS and same sign (SS) final states. This asymmetry in the event yields of the signal
process can be exploited to remove the background yield Nbkg

OS = Nbkg
SS = N total

SS . As a
result the signal yield can be found as

NWc
OS = N total

OS −N total
SS . (5.8)

This way the amount of c-jets in a selected sample can be evaluated. This technique
is used to compute the c-yield before and after a tagging algorithm is applied to
calculate the efficiency

εc =
N tag
Wc

N total
Wc

. (5.9)

A second method to determine the c-tagging efficiency is to measure the D∗+-yield
before and after tagging [80, 81]. Therefore, the D∗+ → D0(→ K−π+)π+ process is
selected by fitting the measured tracks to the expected decay chain. For the resulting
candidates the invariant mass difference m(Kππ) − m(Kπ) is used to evaluate the
background by fitting it in a side-band, 3σ away from the invariant mass signal peak,
as seen in Figure 5.8a. For the background-subtraction a distribution of events from
the side-band region is normalized to the fitted background fraction in the signal
region and is then subtracted from the data distribution in the D0 pseudo-proper
time

t(D0) = sign
(
~Lxy(D

0) · ~pT(D0)
)
·mD0

Lxy(D
0)

pT(D0)
, (5.10)
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Figure 5.8.: For the D∗+ analysis the background is subtracted using a fit in the
missing mass difference (left) while the flavor fractions are fitted in the
pseudo proper time (right) [64].

with the meson mass mD0 and Lxy being the distance between the D0 decay vertex
and the PV in the transverse plane. Since the pseudo-proper time loosely corresponds
to the decay time in the particle rest frame, exponential functions convoluted with
dedicated resolution functions can be utilized to fit the different flavor fractions, as
shown in Figure 5.8b. As a result, the efficiency to tagD∗+-mesons εD∗+ is determined.
Since those mesons can also be produced in b-hadron decays, the c-tagging efficiency
can be found using

εD∗+ = fbεb + (1− fb)εc, (5.11)

with the fitted b-fraction fb while εb is evaluated on simulation. This equation is
then solved for εc.

5.3.3. Mistag Rate

The mistag rate describes the number of light jets that are falsely tagged as a b-jet.
This is equal to the light-tagging efficiency ε`, which is calibrated using the neg-
ative tag method [81, 82]. This technique exploits the fact that the IP and SV
reconstruction for light jets is limited by resolution effects. Therefore, the signed
impact parameter significance Sd3D = d3D/σd3D and signed decay length significance
SL3D

= L3D/σL3D
are randomly distributed within the resolution range around zero.
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Figure 5.9.: The JetFitterCombNN discriminant on the right changes due to the neg-
ative tag weighting in the input variables [64].

In contrast, b- and c-contributions are shifted to higher values due to the decay prop-
erties of heavy flavor hadrons, as shown in Figure 5.9a. For the negative tag method
the signed impact and decay length significances are redefined to Sd3D = −Sd3D and
SL3D

= −SL3D
, inverting their sign. This slightly affects the random, resolution lim-

ited distribution for light jets but has a bigger impact on the heavy flavor distributions,
as seen in Figure 5.9b. As a result, the impact on the probability of falsely tagging light
jets is very small, while the probability of tagging heavy flavor jets is vastly decreased.
The mistag rate can be approximated by the tagging efficiency under these negative
tag conditions ε` ∼= εneg` . To increase the precision of this measurement two additional
correction factors are applied, which have to be estimated in simulation. The factor
khf corrects for heavy flavor contributions in the negative tagged distribution and kll
accounts for long-lived light particles like K0

s .
An alternative approach uses the discriminating power of the SV0 mass to esti-

mate flavor fractions [82]. The light and heavy flavor distributions are different and
templates are generated from simulation. A template fit to the data distributions
before and after tagging provides an effective measure of the light tagging efficiency
ε` = N tag

` /N total
` .
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6. Event and Object Selection

Ein guter Mensch, in seinem dunkeln Drange,
Ist sich des rechten Weges wohl bewußt.

Der Herr

During data taking multiple kinds of events are recorded, covering a variety of
physics processes and phase-space regions. For this thesis, a set of events containing
b-hadrons produced in QCD-dominated phase-space is selected. Since the prelT -method
relies on a muon in the final state, it is a necessity to have a muon in the jet under
study. Since the b-hadron decay is independent from its production, this only in-
troduces a minor kinematic bias as discussed in Chapter 9. Events are selected from
recorded ATLAS data using a good runs list (GRL) which rejects events taken during
non-physics operation or unscheduled downtime of detector components.

6.1. Trigger Selection

For the event selection muon-in-jet triggers are used18. These triggers are seeded by a
low threshold Level-1 (L1) muon trigger. Due to the high hadronic activity in proton-
proton collisions, multiple jet candidates are usually measured in each event. Those
are picked up and a cone based matching to the muon is carried out. An additional
cut on the z0 impact parameter (IP) is applied to reduce random combinatorial back-
ground from pile-up events. This occurs when a jet from a pile-up vertex flies into
the same ηφ-direction as the muon from the primary vertex (PV).
These triggers are referred to as HLT_mux_jy_dr05_dz02 where x stands for the

muon momentum threshold and y for the jet momentum threshold. There are multiple
instances of these triggers with different thresholds x and y and hence different pre-
scale factors. The "dr05" means that a matching in the ηφ-plane with a cone radius of
0.5 is required, i.e. the jet and the muon are flying in the same direction. In addition,
a cut on the z-position has been applied with a 2mm threshold to ensure both are
18As discussed in Section 2.2.5 the trigger set-up changes in time. However, the basic principal and

usage of the muon-in-jet triggers for this analysis remain the same.
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originating from the same vertex. Since only the pT-thresholds change in between the
triggers they are in short referred to as mux jy. The leading jet spectrum for multiple
muon-in-jet High Level Triggers (HLTs) is shown in Figure 6.1. It can be observed
that the triggers have broad turn-on regions where the trigger becomes increasingly
efficient. The trigger turn-on is broadened in leading jet-pT since the trigger selects
events based on matched objects while there might be jets in the event with higher
momentum.
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Figure 6.1.: Leading jet spectrum for data taken in early 2016 with
√
s = 13 TeV.

Events taken by different muon-in-jet triggers are shown in different col-
ors. The trigger yield is given by the area under the respective curve.

Due to the pre-scale factors the yield of recorded events is only a fraction of the
observed events in a given time period. Since the prelT -method relies on ratios of event
yields those pre-scales cancel out and are not corrected for. Therefore, the integrated
luminosities quoted in the following discussions correspond to the integrated luminos-
ity of the utilized dataset as recorded by ATLAS, rather than the integrated luminosity
of the shown physics processes. For the event selections one specific trigger is used
in each jet pT region. It is chosen by maximizing the yield while ensuring that the
trigger is fully efficient.
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6.2. Jet Selection

6.2. Jet Selection

For the prelT -measurement anti-kt jets are used with a cone radius of 0.4, as described
in Chapter 3.3. For this thesis, only topological clusters based on calorimeter cells are
used. In Run 1 the emphasis was on locally calibrated (LC) jets while in Run 2 jets
calibrated at the electromagnetic (EM) scale was utilized more broadly. In addition,
trigger level jets have been used for prelT -measurements.
Jets are always required to have at least pjetT > 20 GeV and |ηjet| < 2.5. In order to

suppress pile-up events the Jet Vertex Fraction (JVF) and Jet Vertex Tagger (JVT)
criterion has been applied in Run 1 and Run 2, respectively.

6.3. Muon Selection and Identification

Muons are the key items for the prelT -method. In contrast to prompt muon production
in hard scattering processes, generating a hard and isolated muon, here muons from b-
hadron decays inside a jet are selected. The high amount of hadronic activity hampers
the identification of the muon of interest. Due to their high abundance in jets and their
high branching ratio (BR) into muon final states the charged π± and K± can produce
muons inside a jet. Considering their huge life times the decay mostly happens after
the first layers of the Inner Detector (ID). Therefore, combined (CB) muons are
selected, ensuring that the muon track can already be resolved in the ID, rejecting
muons from long-lived light hadrons, as described in Chapter 3.4.
Another criterion to suppress background from pion and kaon decays is the muon

identification. Typically a track is reconstructed for a charged light flavor meson
traversing the ID. This meson decays during its flight through the detector and a
track from the emerging muon is measured in the Muon Spectrometer (MS). In cases
where these two track segments match each other, the following criteria are used to
reject this decay-in-flight events:

• The q/p-significance is defined as difference in the charge over momentum ra-
tio as measured by the different detector parts |(q/p)ID − (q/p)MS|, divided by
quadratic sum of their uncertainties.

• The ρ′, defined as the momentum difference divided by the momentum of the
CB track (pIDT − pMS

T )/pCBT .
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6. Event and Object Selection

• The normalized χ2 as calculated in the combined fit.

• Additional requirements to the number of hits in the layers of the ID.

These criteria are used to define the inclusive identification selections loose, medium
and tight as described in [51, 52]. For the prelT -analysis the tight criterion is chosen,
with a muon selection efficiency of about 90%, to reduce the amount of decay-in-flight
events as much as possible. In addition, a dynamical muon pT-cut is applied. For low
pT jets the muon threshold has to be low as well. Therefore, a cut at pT(µ) > 5 GeV

(> 4 GeV in Run 1 ) is used. For an increasing jet momentum the muon threshold
is increased in two steps as listed in Table 6.1. The pseudorapidity is also limited to
|η(µ)| < 2.5. The muon is then geometrically matched to a jet using a cone based
algorithm. In addition, cuts on the differences of the IPs are defined |∆d0| < 2 mm

and |∆(z0 sin(θ))| < 2 mm. These cuts are very loose to reduce pile-up while not
biasing the flavor tagging algorithms.

Table 6.1.: Cut values for pT(µ) depending on the jet momentum bins used in Run 1
and Run 2.

Jet pT in Run 1 Jet pT in Run 2 Muon pT cut value
20 - 60GeV 20 - 40GeV 4/5GeV
60 - 90GeV 40 - 90GeV 6GeV
90 - 200GeV 90 - 200GeV 8GeV

6.4. Backtag Criterion

An additional selection criterion is applied to increase the b-fraction in the dataset.
In a "standard" analysis this would be done by selecting b-tagged jets. This direct
approach could introduce a bias to the efficiency measurement and is not suited for the
prelT -method. The b-quark is dominantly produced in pairs via the strong interaction, as
discussed in Chapter 1.5.1. Hence, an event containing a b-quark most likely contains
a second b-quark. This is exploited in a tag-and-probe approach. To avoid confusion
with the b-tagging criterion under study the tag jet is denoted as a backtag (BT)
jet. The BT jet is determined as a jet passing a high efficiency b-tagging algorithm
IP3D+SV1, as described in Section 5.1.
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6.4. Backtag Criterion

In case of multiple jets passing the tagger, jets without a matched muon are pre-
ferred. If there are still multiple candidates remaining, the BT jet is chosen randomly.
Since the BT criterion is highly correlated to the tested algorithm, the BT jet is not
used for the measurement. The probe jets are the remaining jets with a matched
muon passing all the previous cuts. These muon and jet combinations are referred
to as prelT -candidates. Figure 6.2 shows the b-fraction of jets from the muon-filtered
Monte Carlo (MC) in blue. Adding the BT criterion with a loose, medium or tight
cut on the IP3D+SV1 discriminant increases the fraction of b-jets, as shown in green,
red and black, respectively.
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Figure 6.2.: Fraction of b-jets determined for different BT cut values. Based on the
muon-filtered MC a loose, medium or tight cut on the IP3D+SV1 dis-
criminant is used to increase the b-fraction.

The BT is also exploited for a data-driven generation of the light template, as
described in Chapter 7.1.2. Therefore, the selection criterion is inverted and only
events not having a BT jet are probed, minimizing the amount of heavy flavor jets in
the sample while generating a dataset disjoint to the signal region.
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6.5. Semileptonic Correction

Due to the semileptonic decay of the b-hadron its four-momentum can not completely
be measured. The muon is measured and reconstructed separately to the hadronic
activity of the jet and the neutrino is not measured at all. However, the available
information from the different detector components can be combined to improve the
calibration measurement. This is exploited for two different aspects of the analysis,
the calculation of the prelT -variable and the definition as the pjetT as a proxy for the
b-hadron momentum.
As discussed before, the prelT -candidate contains a muon within the jet cone. There-

fore, the muon also passes the calorimeter in the region where the jet energy is mea-
sured. Since the muon is minimal ionizing it deposits a small amount of energy in the
calorimeter. However, for an accurate measurement of the prelT this has to be taken
into account. This is achieved by subtracting the energy loss expected for a minimal
ionizing particle (MIP) depending on the amount of material in the respective flight
direction [83]. The momentum of the muon itself as measured by the MS is then
added to the corrected jet four-momentum. These corrections are carried out to get
a better estimate for the b-hadron direction, necessary for an exact calculation of prelT .
In Run 1, the jet+muon four momentum is also scaled by an all-particle response

function to account for the missing neutrino. This function is evaluated on simulation
as the ratio of the pjet+muon

T divided by the combined momentum of all truth particles
including the neutrino. Therefore, this correction only scales the momentum and has
no effect on the calculation of prelT itself. Instead, it was only used to scale the pjetT

to get a better estimate for the b-hadron momentum. These response functions have
to be computed in dedicated studies which have not been fully adapted to Run 2
conditions at this point19. Therefore, it was decided to keep the uncorrected pjetT as
measured by the calorimeter as the proxy for the b-hadron momentum for the current
stage of the analysis in Run 2.

19Early efforts for the semileptonic correction of b-jets are ongoing and internally documented in [84].
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Wie alles sich zum Ganzen webt,
Eins in dem andern wirkt und lebt!
Wie Himmelskräfte auf und nieder steigen
Und sich die goldnen Eimer reichen!

Faust

The prelT -variable is defined for muons that are associated to a jet by geometrically
matching in the ηφ-plane, using a cone algorithm. For a muon inside a jet, the prelT -
variable is computed as the muon momentum component transversal to the combined
muon plus jet momentum as shown in red in Figure 7.1.

jet+muon axis

prelT

Primary Vertex

Figure 7.1.: The prelT -variable is defined as the projection of the muon momentum
transversal to the combined jet+muon axis shown in black. This relies
on the momentum measurement and no spacial information on the decay
vertex is needed. The muon track is shown in green while the transversal
component is highlighted red.

From the three momentum components ~p = (px, py, pz) of the four-vectors of the cor-
rected jet vector ~pj (including the semileptonic correction as discussed in Section 6.5)
and the muon vector ~pµ the transversal projection can be found as

prelT =

√
~p 2
µ −

(
~pj · ~pµ
|~pj|

)2

. (7.1)
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This variable depends on the production mechanism of the respective muon. Direct
muon production has a smaller cross section compared to multi-jet production. In
addition, the event selection rejects combinatorial background where a random jet
direction coincides with a prompt muon. Therefore, prelT -candidates are dominantly
produced in decays of hadrons inside the jet. The prelT -value after the decay is cor-
related to the mass of the decaying hadron. Hence, the prelT -distribution for muons
coming from b-hadron decays is harder than for muons from light or c-flavored jets.
This difference is then exploited in a binned log-likelihood template fit. The tem-
plates for the different flavor hypotheses are created using simulation and data-driven
techniques discussed below. The fit is sensitive to the flavor fractions in a sample
of prelT -candidates. By measuring the b-fraction before and after applying a b-tagging
criterion, the tagging efficiency εb can be derived. Jets passing the combination of
tagging algorithm and operating point (OP) under study are denoted as "tagged"
while jets not matching the criterion are denoted "untagged".
In Run 2, the most commonly utilized tagging discriminant is the MV2 algorithm.

Which is mostly used with the training with roughly one fifth charm background as
discussed in Section 5.1. The output of the boosted decision tree (BDT) is used as
the discriminant for the different flavor hypotheses as shown in Figure 7.2a. While it
is clear that there is a correlation to the prelT -variable since both are sensitive to the
jet-flavor, it is necessary that the correlation is small. In Figure 7.2b, the correlation
for jets passing the prelT -selection is shown to be about 26%. It has been validated in
simulations that there is a negligible correlation for the independent flavor hypotheses
but the overall correlation is purely generated by the different jet flavors populating
different regions in the prelT -MV2-plane as would be expected for two flavor-sensitive
variables.
The prelT -method has been used by the CDF and D0 experiments and has been proven

as a reliable measurement of the b-tagging efficiency (see e.g. [85]). Therefore, it has
been recommended for usage at the Large Hadron Collider (LHC) [86]. Calibration
measurements have been conducted using ATLAS data by scientists at the University
of Dortmund in Run 1 conditions. These are documented to varying extent in [87–89].
Measurements using ATLAS data are also discussed in [64, 76].
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(a) Output of the MV2c20 algorithm.
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Figure 7.2.: The output of the MV2c20 algorithm for b-, c-, and light-jets shown in
yellow, blue, and red, respectively (left). The distribution is scaled to
arbitrary units. On the right, the correlation between MV2c20 and the
prelT -variable is shown. Data is recorded with the mu4 j15 trigger using
prelT event selection without applying a backtag (BT).

7.1. Template Generation

Templates are probability density functions of the prelT -variable for the different flavor-
hypotheses. The light- and c-templates are very similar in their shape and therefore,
the prelT -method is not sensitive to their relative flavor-fractions. For this reason, the
fit is performed using b- and non-b-templates which have to be derived in multiple
steps. All templates are generated in a range of the transverse jet momentum of the
respective candidate jet. This way, the measurement can be conducted in various
pjetT -regions.

7.1.1. Heavy Flavor Templates

The templates for the b- and c-flavor distributions are generated using simulations.
Here, the di-jet Monte Carlo (MC) with the muon filter applied on generator level,
as introduced in Section 4.2, is used. The generator filter increases the amount of
prelT -candidates which allows extracting the shape of the two templates with higher
statistical precision. The jet flavor is determined by cone based truth-matching as
discussed in Section 4.3.
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7.1.2. Data-Driven Light-Template

The template for the light-flavor hypothesis is extracted in a data-driven approach. To
achieve this, a phase-space region disjoint to the signal region is defined by inverting
the BT criterion discussed in Section 6.4. Selecting prelT -candidates in this region
generates a template dominated with light-flavor jets with only a small heavy-flavor
contribution. The expected contamination of b-jets in the light template is evaluated
in simulations. For that, the same phase-space region is selected in the unfiltered
di-jet MC as is used to extract the light template from data. Figure 7.3 shows the
expected contamination of b-jets in the light template as a function of pjetT . As can be
seen, the b-contamination in the light-template is expected to be in the order of few
percent (as shown by the red dots) and the choice of the BT cut value is found to be
negligible. There is also no strong dependence on the jet momentum as can be seen
by the linear extrapolation (shown in green with a 1σ error band). The fit indicates
a b-fraction of about 4-6% which is compatible with the results found in Run 1 at a
lower center of mass energy [64, 76]. The light-template is corrected for these heavy
flavor contaminations by subtracting the b- and c-templates in the respective amounts
before doing the fit.

7.1.3. Light-to-Charm Ratio and the Non-b-Template

Since the shapes of the light- and c-template are very similar, the fit is not sensitive
to the relative fractions. That is why the ratio of light- to c-jets has to be determined
separately. The light-template is generated in a data-driven approach leading to the
fact that the relative normalization in the signal region is not known. The c-template
is extracted from simulation with a muon filter applied on generator level, which
introduces a bias to the relative flavor abundances. Hence, the unfiltered di-jet MC
samples introduced in Section 4.1 are used to compute the light-to-charm ratio, also
denoted `c-ratio for short. With the pT-dependent `c-ratio extracted from the signal
region in simulation, the light- and c-templates are combined with the respective flavor
fractions generating a combined non-b-template.
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Figure 7.3.: Contamination of b-jets expected in the light-template shown in red. The
b-fraction is determined based on unfiltered di-jet MC by inverting the
BT cut criterion. No strong dependence on the jet momentum is found
by a linear fit (green line) and the b-contamination is compatible with
4-6% as indicated by the linear fit function and the 1σ error band shown
in green.

7.2. Likelihood Definition and Fit

All proton-proton-collisions are statistically independent which results in the amount
of observed events following a Poisson distribution. Therefore, the probability of
observing k events for a given expectation value λ is given as

P (k, λ) =
λk

k!
exp(−λ). (7.2)

While in the measurement only the observed number of events is known, a likelihood
L for the expectation value given k is found to be

L(λ|k) =
λk

k!
exp(−λ). (7.3)

The logarithm is a continuously differentiable real function with strictly increasing
behavior. Hence, maximizing the log-likelihood gives the same result as maximizing
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the likelihood itself. However, while the likelihood of multiple outcomes is multiplica-
tive, the log-likelihood is summed for multiple independent observations. Using the
logarithm to the base e, one can find

logL(λ|k) = − log k! + k log λ− λ, (7.4)

which is maximized by the expectation value being the observed value as can be found
by the derivative

∂L(λ|k)

∂λ
=

k

λ
− 1. (7.5)

For the template fit, the templates are normalized to the prelT -distribution measured
in data. The expectation value in the ith prelT -bin λi(fb) is defined as the sum of the
b- and non-b-templates with a varied fraction fb. The first term in Equation (7.4) is
a constant value which can be dropped giving the log-likelihood

logLi(λi(fb)|Ndata
i ) = Ndata

i log λi(fb)− λi(fb), (7.6)

with λi(fb) = fb ·N b
i + (1− fb) ·Nnon-b

i . (7.7)

The log-likelihood is summed over all prelT -bins using one value of fb. Ni denotes
the number of events in the ith prelT -bin for the data or the respective template. The
resulting likelihood L(fb) is then maximized to extract the most probable value of the
b-fraction fb.

7.3. Template Fit

The resulting templates differ in shape for the different flavor-hypotheses as shown in
Figure 7.4. As can be seen, the light- and c-template (shown in red and blue, respec-
tively) are similar to each other and are therefore combined using a predetermined
`c-ratio. In contrast, the b-template (yellow) differs in shape, which generates the
discrimination power of the method.
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Figure 7.4.: Comparison of prelT -templates for the different flavor hypotheses. The
templates for light- and c-jets are shown in red and blue, respectively.
They clearly differ from the b-template shown in yellow.

There are possible pjetT -dependences for the template shapes, the flavor fractions as
well as the tagging efficiencies, themselves. That is why the measurement is done
in regions of pjetT . Figure 7.5a shows the pjetT -dependence of the b-template. The
η-dependence of the scale factors (SFs) has been found to be negligible in Run 1
measurements which also has been confirmed for Run 2 (see Appendix A.1). Also,
due to the low correlation of prelT with the tagging algorithms discussed before, there
is no dependence of the template shape on the applied tagger and OP as shown in
Figure 7.5b. Hence, the templates can be generated before applying any tagging
decision to maximize the statistical precision and can then be applied to the tagged
data distributions.

Figure 7.6 visualizes how the prelT -method works. The four plots show the different
inputs to the SF determination. The black dots represent the prelT -distribution mea-
sured in data. On the left, only jets tagged by the algorithm and OP are shown, while
on the right, only untagged jets are used. All plots also show the stacked templates
for b, c, and light in yellow, blue, and red, respectively. The top plots combine the
templates using the flavor fractions determined on the unfiltered MC which is used
to calculate the simulation efficiency. Below, the same templates are used, combined
with the b-fraction obtained by the likelihood fit.
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(b) Shape dependence on tagging decision.

Figure 7.5.: Templates for b-jets in different pjetT -regions shown in different shades of
gray (left) show a clear momentum dependence. The b-templates show
no dependence on the tagging decision (right).

As expected, the flavor fractions differ by some amount. The goodness of fit can
be assessed using a χ2-criterion. While it is possible that the χ2/ndf is better for the
MC prediction, because the fit is optimizing the discussed likelihood function and not
the χ2, the agreement needs to be better after the fit in most of the cases. This is
true for the discussed results and is shown exemplary for one OP in Appendix A.2.
It is noticeable that the log-likelihood fit can converge to an all b-jet composition as

shown in Figure 7.6c. This can be caused by the minimization algorithm hitting the
parameter boundaries or simply by the data being described best by a pure b-template
result. Both cases can occur in datasets with a very high b-purity (& 99%). While
it is not expected to have no light- or c-jets in the set of candidates the template
fit is not sensitive to a low amount of jets. The resulting impact on the measured b-
tagging efficiency is small and covered by the template statistics uncertainty discussed
in Chapter 9.
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7.3. Template Fit
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Figure 7.6.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The distributions on top use the flavor-fractions as predicted by
the unfiltered MC while the plots below show the results of the fit.
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8. Scale Factor Determination

Nicht darf ich dir zu gleichen mich vermessen.

Faust

Performing the log-likelihood fit to the prelT -distribution for the sets of tagged and
untagged prelT -candidates results in the respective flavor-fractions fb as described in
Chapter 7. These are then used to calculate the b-tagging efficiency and derive scale
factors (SFs) in the following way.

8.1. Efficiencies and Scale Factors

As discussed in Chapter 5, the b-tagging efficiency εb is defined as the fraction of
tagged b-jets divided by the total number of b-jets (see equation (5.1)). Using the
flavor-fraction fb in the tagged and untagged set, the efficiency can be found as

εdatab =
f taggedb ·N tagged

data

f taggedb ·N tagged
data + funtaggedb ·Nuntagged

data

, (8.1)

with the total number of jets observed in the tagged and untagged data distributions
Ndata. Here, the statistical correlation in the nominator and denominator becomes
obvious. Using the truth-flavor in Monte Carlo (MC) makes it possible to also calcu-
late the efficiency in simulation εsimb for the respective phase-space region. Comparing
the efficiencies from simulation and measurement, SFs κdata/sim are defined as

κ
data/sim
b = εdatab /εsimb . (8.2)

The SFs are then used to correct the b-tagging efficiency when using the algorithm
in an analysis. An example of the measurement of the b-tagging efficiency and the
resulting SFs are shown in Figure 8.1.
Figure 8.1a displays the measured efficiency in dependence of pjetT as black dots.

While the statistical uncertainty is very small and barely visible in those figures, the
systematic uncertainty is clearly visible in the green uncertainty bands. An overview
of the different sources of uncertainty is given in Chapter 9. The measured efficiency
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Figure 8.1.: Showing the measured efficiency (left) in the black dots with systematic
uncertainties in green bands while the simulation efficiency is shown in
gray. The calculated SFs (right) are shown as black dots with statistical
and systematic errors in green. The studied algorithm is the MV2c20
with a nominal efficiency of 70% depicted by the dashed line.

is then compared to the MC prediction shown in the gray circles with the respective
statistical uncertainty as obtained from the simulation.

For both data and simulation, a clear difference to the nominal efficiency value
shown as a dotted line is visible. This is due to the fact that the nominal efficiency
is determined on a specific tt̄-simulation as a benchmark. Therefore, similar but not
identical efficiencies are expected. Also a dependence on the pjetT is visible, showing
that low energy b-jets are harder to identify due to their kinematic properties. This
can be understood by a boosted b-hadron traveling a larger distance in the detector
before decaying, resulting in higher impact parameters (IPs) and clearly separable
secondary vertices (SVs) making them easier to identify. It is also clear that the
efficiencies obtained by the measurement and the MC prediction do not agree perfectly
which leads to the resulting SFs.

The SFs shown in Figure 8.1b are an example of the results obtained for one tagging
algorithm and operating point (OP). Here, the results are again shown as black dots.
The green uncertainty bands include the systematic uncertainty as well as the MC and
data statistical uncertainties. While being close to unity, a pjetT dependent deviation
can be observed. This is caused by a pjetT dependent difference in the modeling of
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8.2. Systematic Uncertainties

flavor dependent kinematic variables in the simulation. The rise in the low pjetT region
was additionally checked against a kinematic bias. In the 20 GeV < pjetT < 30 GeV

and 30 GeV < pjetT < 40 GeV regions the trigger with the lowest threshold available
(i.e. pjetT > 15 GeV and pµT > 4 GeV) is chosen which might not be fully efficient in
those kinematic regions. Therefore, multiple approaches have been used to assess a
possible bias but no systematic effect was observed leading to the conclusion that the
observed behavior is inherent to the tagging algorithm on the respective simulation
and kinematic phase space and not a trigger induced effect20.

8.2. Systematic Uncertainties

The systematic limitations of the prelT -measurement are discussed in detail in Chap-
ter 9. Table 8.1 shows the full list of evaluated uncertainties for the result of the
presented measurement for the εnomb = 70% OP of the MV2c20 algorithm. The un-
certainties are given in the respective bins of pjetT . In general the uncertainties are
evaluated by applying systematic variations to the templates, performing the tem-
plate fit and comparing the results obtained by the variation to the nominal result or
between an "up" and a "down" variation. Here, the impact and possible mitigation
of the dominating sources of uncertainty are discussed.
For high jet momentum bins the uncertainty of the light-to-charm ratio is the

dominating systematic uncertainty. Especially in the highest pjetT -bin, the templates
for all flavors become increasingly alike. Therefore, the discrimination power of the
prelT -method decreases and a variation of flavor fractions can have an increasing effect.
This has also been observed in Run 1 calibrations as discussed in [64] and [76] where
the `c-ratio is the dominating uncertainty in the highest momentum region. This
uncertainty represents the inherent limitation of the method itself and can not easily
be reduced.

20The studies discussed here lead to the addition of a full trigger simulation in the early steps of the
simulation planned to be produced for analysis efforts in 2017. This will allow for an even more
in depth analysis not possible on reconstruction level information.
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8. Scale Factor Determination

In the low pjetT -region, the presented SF results are limited by the available simu-
lation statistics. Based on that, it becomes clear that an increase in the size of the
available simulation sample and improvement in the quality of the modeling is an
important factor in order to improve the precision of the Run 2 calibration with the
prelT -method.
Another contributing uncertainty is the extrapolation to inclusive b-jets. This un-

certainty accounts for a possible difference in the b-tagging efficiency of jets containing
a muon compared to the inclusive b-jets (discussed in Section 9.3). The efficiency cal-
culated for jets with an associated muon was not found to differ significantly compared
to the efficiency determined on the inclusive set of jets [77]. The efficiencies where
determined with a precision of 4%, generating this uncertainty. With a higher amount
of data and simulation available in Run 2, this uncertainty can be determined with
higher precision and therefore reduce the systematic uncertainty which is currently
expected to be overestimating the effect.
Based on the presented results, it is expected that the prelT -measurement can in-

crease in precision for most of the kinematic range within the continuing Run 2 data
acquisition with the ATLAS detector and will continue to deliver reliable calibration
measurements. The full list of uncertainty tables for all calibrated algorithms and
OPs can be found in appendix A.4.
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8.2. Systematic Uncertainties

Table 8.1.: Systematic uncertainties for a set of prelT -candidates passing the MV2c20
tagging algorithm at εnomb = 70% b-tagging efficiency.

MV2c20 at εnom
b = 70% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.3 0.6 0.7 0.5 2.0 2.0 6.5 7.0 0.3
B Fragmentation Fractions 0.1 -0.2 -0.4 -0.3 -0.1 -0.2 -0.2 0.2 <0.1
B Fragmentation Function 0.2 0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.4 <0.1
B JES Response <0.1 <0.1 0.1 0.3 0.1 -0.1 0.1 <0.1 <0.1
B-Decay p* Spectrum -1.9 -1.5 -1.7 -1.9 -1.3 -0.6 -0.1 -0.2 <0.1
BDecayFractions <0.1 <0.1 0.2 0.6 0.6 0.6 0.5 0.4 <0.1
Effective NP 1 0.7 0.5 1.0 0.7 -0.4 -0.4 0.6 -0.2 0.1
Effective NP 2 -0.1 <0.1 <0.1 <0.1 <0.1 -0.1 0.7 -0.8 <0.1
Effective NP 3 <0.1 <0.1 -0.1 <0.1 0.2 0.2 -0.4 <0.1 <0.1
Effective NP 4 <0.1 <0.1 0.1 <0.1 -0.1 0.2 0.1 0.3 <0.1
Effective NP 5 -0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 -0.1 0.1 <0.1 0.2 <0.1
Eta Intercalibration Modeling 0.1 0.2 0.5 0.3 -0.4 -0.7 0.6 -0.6 <0.1
Eta Intercalibration Total Stat 0.1 <0.1 0.3 0.1 -0.2 -0.1 <0.1 0.1 <0.1
Fake Muons -0.1 0.2 <0.1 0.5 -0.4 1.9 0.2 -0.5 -0.2
Flavor Composition 0.7 0.4 0.8 0.6 -1.3 -1.1 0.7 -0.7 0.1
Flavor Response -0.2 -0.1 -0.4 -0.1 0.6 0.4 -0.1 -0.3 <0.1
Gluon Splitting B <0.1 <0.1 0.2 0.7 1.2 0.9 1.0 1.4 0.2
Gluon Splitting C <0.1 0.1 0.1 0.3 0.9 0.7 1.7 1.7 0.1
JER Single NP 0.1 0.6 0.1 1.2 0.5 -0.6 -2.7 2.2 -0.1
JVT Efficiency <0.1 -0.1 -0.6 -0.8 -0.5 0.3 -0.8 -1.0 -0.1
LC-Ratio -0.7 -2.5 0.9 0.9 -3.1 <0.1 -6.3 -12.6 -15.3
Light template contamination -0.6 -0.7 -0.6 -0.5 -0.7 -0.5 -0.9 -1.0 -1.6
Muon ID <0.1 <0.1 <0.1 -0.1 0.1 0.1 -0.3 -0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 -0.1 <0.1
Muon Scale <0.1 -0.1 <0.1 <0.1 -0.1 -0.1 -0.5 -0.1 <0.1
Pileup Offset Mu <0.1 0.1 0.4 0.3 -0.2 -0.1 0.1 0.1 <0.1
Pileup Offset NPV 0.1 0.2 -0.1 0.3 -0.2 -0.1 0.1 0.1 <0.1
Pileup Pt Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 <0.1 <0.1
Pileup Rho Topology 0.2 0.1 0.5 0.2 -0.4 0.1 -0.1 0.7 0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics -0.1 1.6 0.1 -1.9 -0.8 -2.4 2.5 2.8 -3.6
Simulation Statistics 14.8 14.2 11.3 8.1 8.6 7.6 6.2 5.0 4.7

Data Statistics 0.6 0.5 0.7 0.8 0.8 1.6 1.1 1.7 0.5
Total Systematics 15.6 15.2 12.3 9.7 10.6 9.6 12.6 16.4 17.0
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9. Systematic Uncertainties

Es irrt der Mensch so lang er strebt.

Der Herr

In order to estimate the precision of the prelT -measurement the systematic limitations
have to be evaluated. Therefore, multiple sources of systematic uncertainties are taken
into account. For technical reasons the list of systematics and their calculation varies
between Run 1 and Run 2. In Run 2 efforts have been made to further unify the
treatment of common systematics between different analyses within ATLAS which
leads to different treatment in some of the cases. When no special discrimination
between run periods for the respective methods is mentioned the procedure has stayed
the same.

If not otherwise mentioned, the systematics is applied before producing the tem-
plates including the respective variation. The template fits are then done in the same
manner as discussed in Chapter 7 and each systematic is evaluated independently as
a difference of the altered fit result with respect to the nominal measurement. There
are two kinds of variations. A single variation is taken as the difference to the nominal
value

∆εb = εvarb − εnomb . (9.1)

And a double sided variation is evaluated by doing an up- and downwards variation
and using half the difference as a systematic uncertainty:

∆εb
2

=
1

2
(εupb − εdownb ). (9.2)

The uncertainties are then propagated to the scale factors (SFs) and added in
quadrature, assuming there are no correlations in between the systematics. One might
expect some systematics to be correlated but using this strategy gives a conservative
estimate not depending on the knowledge or modeling of correlations.
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9. Systematic Uncertainties

9.1. Modeling and Resolution Uncertainties

Fake Muons in b-Jets

The prelT -measurement relies strongly on the quality of the muon candidate. Fake
muons from a variety of sources can have a negative impact on the separation power
of the method. Therefore, the selection of combined (CB) muons passing the tight
muon quality criterion is used to reduce the amount of fake muons as much as possible,
as discussed in Section 6.3. Remaining fake muons still may have an impact on the
measurement. Two main sources are considered here. Firstly, other particles can be
misidentified as muons. Secondly, muons from decay-in-flight of long lived particles,
that decay after the Inner Detector (ID) can be misidentified as CB muons. In the
b- and c-templates the amount of fake muons is under-estimated due to the muon-
filter applied during the generator step. To account for this bias in the simulation,
the fraction of fake muons in the templates has been increased by a factor of two to
estimate the impact on the efficiency measurement.

Light Template Contamination

The light template is generated in a data-driven approach as described in Section 7.1.2.
This allows for b-jets to pass the selection criteria and contaminate the template. The
fraction of b-jets in the light-jet enriched sample is estimated on simulation to be in
the order of few percent. This contamination is varied to account for the limited
knowledge of this fraction in the data distribution. The effect on the measurement is
calculated by directly altering the flavor fractions used in Equation (8.1).

Light-to-Charm Ratio

As discussed in Section 7.1 the ratio used to combine the light- and c-templates is
set to a fixed value extracted from the unfiltered Monte Carlo (MC). Since those
templates are rather similar in shape this improves the convergence behavior for the
minimization process. A caveat of this procedure is that the `c-ratio depends on the
modeling in the simulation. To account for possible mis-modeling effects the light-
flavor contribution is varied by a factor of 2 up and down, a new non-b-template is
generated and the prelT -fit is repeated for both variations. The variations in the SFs
are taken as the systematic uncertainties.
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Jet Energy Scale and Resolution

The reconstruction of jets, as discussed in Section 3.3 is highly non-trivial and multi-
ple steps of reconstruction and calibration have to be performed. Complex non-linear
dependencies and correlations make it complicated to disentangle the different sources
and magnitudes of uncertainties. In Run 1 fewer variations are done to cover the com-
bined impact of multiple effects. For Run 2 in situ measurements with high amounts
of nuisance parameters (NPs) are put in place. The most important variations are
identified and a set of reduced NPs is applied to the analysis.
In Run 1 the jet energy resolution (JER) systematic covers the limited resolution of

the jet energy reconstruction. The jet energy in simulation is smeared with a Gaussian
function with the width set to the resolution of the jet energy, which is measured in
dedicated studies as explained in [90]. The altered jets are then used to determine
the efficiency and the difference to the nominal result is taken as the uncertainty.
Similarly the jet energy scale (JES) is evaluated by scaling the jet pT within ±1σ of
the measured uncertainty. The Run 1 procedure to determine the JES uncertainty is
explained in [91].
For Run 2 the jet related systematics are evaluated in the form of multiple NPs

as discussed above. A breakdown of the different components is given in [92]. The
recommendations used for the prelT -measurement in Run 2 are briefly summarized as
follows:

• JER single NP: The quadratic sum of ten uncorrelated NPs to cover uncertain-
ties on the JER.

• BJES response: Variation of the response function Rb = 〈Ereco/Etruth〉 for b-jets.
With Ereco being the reconstructed jet energy and Etruth being the energy on
MC level.

• Effective NPs: A total of 64 NPs are evaluated in an in situ measurement to
cover multiple sources of uncertainties. These parameters are reduced to five
main contributions and one additional estimator for residual effects.

• Eta Inter-calibration: During the η-inter-calibration jets with a high pseudo-
rapidity are calibrated using central jets as a reference. The systematic and
statistical limitations of this method are propagated to the analysis to estimate
corresponding uncertainties.
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9. Systematic Uncertainties

• Flavor Response and Composition: The properties of a jet depend on the con-
tributions of quarks and gluons during the hadronization. These properties can
have an impact on the calorimeter response. The "Flavor Response" uncertainty
covers differences of the response function for gluon and quark induced jets. The
"Flavor Composition" uncertainty accounts for the impact of the modeling of
gluon to quark ratios in the hadronization process.

Muon pT Spectrum

The measurement of the muon momentum is also prone to uncertainties. In Run 1
the muon pT spectrum is reweighted to match the distribution observed in data. This
reweighted distribution is used for the nominal measurement while the difference to
the unchanged distribution is taken as a systematic.
In Run 2 a dedicated study is performed to treat the muon related uncertainties in

a common approach within different analyses. Therefore, multiple systematic effects
have been studied, of which only the following have an impact to the prelT -calibration21.
Systematic variations are evaluated by smearing the respective observable with a
Gaussian function with the width set to the respective resolution:

• The muon scale systematic accounts for the resolution of the muon momentum
by altering the pµT within ±1σ of its uncertainty.

• For the muon ID uncertainty the muon track as reconstructed by the ID is
smeared by ±1σ of the precision achieved by its measurement.

• The same ±1σ variation is applied to the Muon Spectrometer (MS) track re-
sulting in the muon MS systematic.

Semileptonic correction

As a part of the jet energy response measurement for heavy flavor jets, the semileptonic
correction as discussed in Section 6.5 accounts for the energy fraction emitted in form
of the muon and neutrino. While the impact of the uncertainty in the difference of the
jet direction to the b-hadron is already covered by the respective direction modeling
uncertainty the impact of the jet momentum scaling has to be evaluated separately.

21Other systematics only affect e.g. isolated or high pT muons and are therefore negligible for this
measurement.
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In Run 1 a dedicated all particle response function is utilized to scale the pjetT . This
is then varied within the predetermined uncertainties [91].

Modeling of b- and c-Production

The strong interaction preserves the flavor quantum numbers. Therefore, gluons pro-
duce pairs of b- or c-quarks. Depending on the kinematic properties of the initial
gluon these quark pairs can form independent hadrons while still flying into the same
direction and hence being clustered into a single jet. For two hadrons of the same
flavor the tagging probability is not expected to be the same as for a jet with only one
heavy flavor hadron. Particularly, a jet with two b-hadrons has a higher probability
of being tagged as a single hadron jet. Therefore, the overall tagging rate depends on
the fraction of jets with two heavy flavor hadrons insight. The fraction of jets with
multiple heavy flavor hadrons coming from gluon splitting might differ between data
and simulation. To evaluate the impact of this effect the amount of these jets in the
simulation is varied by a factor of 0 or 2 as a down- or upwards variation, respectively.
Figure 9.1 shows the difference of the varied b-template compared to the nominal in
black and red. For higher pjetT -regions the amount of gluon splitting is expected to
increase due to the additional Lorentz-boost which can also be observed by comparing
figures 9.1a and 9.1b.

b-Decay

The prelT -method is sensitive to the decay chain of heavy-flavor particles. This is due to
the multiple decay steps in which muons can be produced, meaning a muon in the final
state not necessarily originates from the b-decay but can also originate from decays
of intermediate particles in decay cascades. The ratio of direct decays to cascade
decays is modeled in the MC simulation to agree with current measurements. This
fraction is varied within the uncertainties of the respective measurements to evaluate
a systematic uncertainty.

For the variation the following values have been used22: The branching ratio (BR)
for direct decays is measured to BR(b → lX) = (10.69 ± 0.22)% and for cascade
decays to BR(b→ c→ lX) = (9.62± 0.53)% [64, 93].

22Current results do not differ significantly with respect to the values used in Run 1 [11].
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Figure 9.1.: Differences between nominal and systematic b-templates for two bins of
pjetT . The statistical uncertainty on the nominal template is depicted by
the shaded band while the gluon splitting and b-decay uncertainties are
shown in color coded lines. It can be observed that the systematic vari-
ations change the template shape which can have different dependences
on the pjetT .

Therefore, the ratio is found to be

BR(b→ lX)

BR(b→ c→ lX)
= 1.11± 0.07. (9.3)

To evaluate the impact of the uncertainty on the template shape, jets are weighted
based on the origin of the associated muon as can be seen in Figure 9.1. For this
systematic no strong pjetT -dependence is observed, due to the fact that the BRs are
independent from the jet momentum.
In addition to the variation of the ratio of direct to cascade decays, the muon mo-

mentum in the b-hadron rest-frame p∗ is varied. Therefore, a pre-determined weighting
function is applied to muons from direct b-decays. To evaluate the agreement with
current measurements events are generated using Pythia and EvtGen (w/o detector
simulation) and the resulting p∗ distribution is found to agree with the measurement
performed by the DELPHI-collaboration [94] within uncertainties as shown in Fig-
ure 9.2a. An independent measurement performed by the BaBar-collaboration [95]
is then used to calculate weights utilized to estimate the systematic uncertainty23.
23The measurements include or exclusively use electrons. Due to their low mass the p∗-distribution
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9.1. Modeling and Resolution Uncertainties

b-Quark Fragmentation

In addition to the b-decay systematics, accounting for uncertainties in the branching
fractions and the muon momentum p∗, the fragmentation systematics are related to
the production of the b-hadron itself. First, the b-fragmentation function Xb describes
the amount of energy from the initial b-quark that is transferred to the hadron. This
function is altered so that the average energy fraction passed to the b-hadron is varied
by 5% as an up-down-systematic.

Second, the production fractions of b-hadrons are varied as shown in Figure 9.2b.
For Run 1 production fractions are used as measured at Large Electron Positron
Collider (LEP) [93]. The results agree at a 2σ level with measurements performed at
Tevatron [97]. Therefore, the hadron spectrum is reweighted to match the results from
the Tevatron measurement. The difference to the nominal measurement is taken as a
systematic uncertainty. In Run 2 the nominal value is replaced by the combination
done by the Heavy Flavor Averaging Group (HFAG) as discussed in Section 1.5.1
(see Table 1.3) [15] while the uncertainty is still computed using the results obtained
by Tevatron [97].

Jet Vertex Fraction

As discussed in Section 3.3 the Jet Vertex Fraction (JVF) and Jet Vertex Tagger
(JVT) are used to reduce pile-up dependencies in Run 1 and Run 2, respectively.
Since both techniques rely on information based on jets, tracks and vertices they
might induce a bias on the favor-tagging efficiency. To evaluate the impact on the
prelT -measurement a systematic uncertainty is computed. In Run 1 this uncertainty is
determined by dropping the JVF requirement entirely from the analysis and redoing
the calibration. The difference is then taken as an estimate for the uncertainty. In
Run 2 in situ measurements have been performed to study the quality of the JVT
modeling [92]. While the respective effects have been found to be negligible the choice
of the JVT-threshold might still affect the measurement. This has been estimated by
switching from the default to a "loose" and "tight" cut value of the JVT-output.
These are then propagated to the prelT -calibration as an up- and downwards variation.

for electron and muon agree for the available region as can also be seen in [96]
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Figure 9.2.: Comparison of the lepton p∗-spectrum for semileptonic B-decays (top).
Measurements by DELPHI (red) [94] and BaBar (green) [95] are com-
pared to simulation (blue). Difference in b-fragmentation fractions com-
pared to the combination done by the HFAG [15] (bottom). The MC
fractions are evaluated on the unfiltered jet slices separately as indicated
by the run numbers in the legend. The difference to the Tevatron mea-
surement [97] used for systematics is shown in red.
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9.1. Modeling and Resolution Uncertainties

Pile-up

During generation of simulated samples additional interactions are simulated and su-
perimposed to each event to account for pile-up in the data. The average number
of interactions per bunch-crossing 〈µ〉 is set to the expected pile-up profile for the
respective data-taking period. Furthermore, the simulation of additional interactions
is updated on a regular basis to adapt to the changing pile-up profile under different
data-taking conditions. In addition a reweighting of the MC events to the measured
〈µ〉 profile is carried out. In Run 1 the reweighting factors were varied and the dif-
ference to the nominal fit was used to estimate a corresponding uncertainty.

For Run 2 this systematic is split into four independent up-down-variations. This is
done because of the switch from 50 ns to 25 ns bunch spacing which increases the out-
of-time pile-up while the increase to 13TeV center-of-mass energy also increases the
pT dependence of the pile-up corrections. The following variations are considered [92]:

• Offset µ: Accounting for the dependence on the average interactions per bunch-
crossing. Additional interactions and the resulting radiation hamper the recon-
struction of the process of interest.

• Offset NPV: In contrast to the number of interactions the number of primary
vertices (PVs) requires good quality tracks to reconstruct the vertex. Therefore,
the dependence for additional, well reconstructed vertices is different than for
the pure number of interactions.

• pT Term: The pile-up correction is highly pT dependent because of the steep fall
in the cross section for higher momentum transfers in the additional minimum
bias events.

• ρ Topology: The jet momentum density ρ is defined as the median of the mo-
mentum times jet area for all jets in the event. The jet area is determined by
ghost-associating pseudo-particles with infinitesimal momentum to the jet. This
part describes the dependence on the overall jet activity in the event.

Modeling of the b-Hadron Direction

The muon prelT depends on the relative direction between the hadron and the muon
produced during the decay. For the calibration measurement jets are used instead
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9. Systematic Uncertainties

of the hadrons four momentum. Since the jet direction typically does not coincide
exactly with the direction of the b-hadron a difference in the modeling on MC-level
may have a non-negligible effect on the resulting templates. This effect is limited
by the jet direction resolution and is studied comparing calorimeter jets to jets
formed from particle tracks. The variation is found to be ∆η(calo, track) = 0.008

and ∆φ(calo, track) = 0.004 [64]. While being a small variation with respect to the
jet direction it corresponds to a variation of O(10%) on the relative hadron direction
within the jet. This has been validated by a two-dimensional Gaussian fit to the
difference in the b-hadron to jet direction as shown in Figure 9.3. Each jet momen-
tum vector is varied in η and φ with a Gaussian smearing within these estimates.
The prelT -value is then calculated using the altered jet direction and new templates are
generated.
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Figure 9.3.: Difference in the b-hadron direction compared to the jet direction in η

and φ. The b-hadron direction is obtained from simulation "truth" infor-
mation.
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9.2. Simulation Statistics

Simulation Tagging Efficiency

The tagging efficiency in simulation εsim, as used in Equation (8.2), has a statistical
uncertainty. This is calculated from the statistical uncertainties of the number of
tagged and untagged b-jets in the simulated samples and propagated according to the
definition in Equation (5.1), taking into account the correlation of the events in the
nominator and denominator.

Template Statistics

The template fit relies on the prediction of the number of expected events in each
prelT -bin for the respective flavor-hypothesis. This is limited by the MC statistics or
the number of events available for the light-template. To estimate the impact of
the limited statistics on the template shape the template shape is varied in ten thou-
sand pseudo-experiments. Therefore, templates are generated by generating Gaussian
pseudo-data with the expectation value of the bin value. The Gaussian width is set
to the statistical error of the respective bin. The template fit is done for all pseudo-
templates and the mean value and the standard deviation are calculated for all results.
The systematic uncertainty is taken as the standard deviation or the difference of the
mean value to the nominal measurement, in cases where the measurement is not within
1σ.

9.3. Extrapolation Uncertainty

Scale Factor for inclusive b-Jets

As discussed in Section 1.5.2 only a tenth of b-hadrons decay into final states con-
taining a muon. Therefore, despite the fact that the soft muon tagger as discussed
in Section 5.1 is not used for high-level tagging algorithms, there might be a differ-
ence in the tagging efficiency for jets with or without a muon. Additionally, for the
calculation of SFs the resulting efficiency is compared to the MC expectation and
therefore phase-space related dependencies are expected to cancel out. This is limited
by the modeling of the phase-space and the respective tagging efficiencies. In order to
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9. Systematic Uncertainties

estimate this effect a dedicated measurement has been performed, determining data-
to-simulation SFs in a sample of tt̄-events [77]. This measurement has been performed
for jets with and without a muon in the jet under study and has been repeated for
multiple tagging algorithms and operating points (OPs). The measurements in the
two regions agree within the achieved 4% uncertainties. Since no significant devia-
tion was observed a conservative approach was chosen and the 4% uncertainty were
assigned for the extrapolation from the prelT -phase-space to the inclusive b-jets region.

9.4. Dependence on Run Conditions

During time some experimental conditions may change. There is a huge variety of
factors that can vary during time. Besides unintended variations like unscheduled
downtime of detector components or unexpected software behavior which occurs for
some time period there are also intentional differences between run periods mostly
due to modifications in the beam setup e.g. to increase the instantaneous luminosity.
In order to adapt to the rising collision rates the trigger setup then also adapts during
time. Furthermore, software running on some of the detector components get updated
repeatedly to improve the system performance. These are just some examples of
parameters that change during time. To investigate the impact of these variations the
dataset under study has been split in disjoint data taking periods and the calibration
has been performed for all of them individually.
Figure 9.4a shows the results of the efficiency measurement for different data taking

periods. In order to evaluate the agreement within all periods a χ2-test is performed.
Since all data periods are statistically independent the χ2 between two periods is
calculated for all possible combinations. This is repeated in all jet momentum intervals
which are also statistically independent. The log10(χ2(εdatab )) for each jet-pT bin and
every permutation of data periods is then compared to a χ2-distribution with one
degree of freedom as shown in Figure 9.4b.
This procedure has been repeated for all tagger and OP combinations separately

since they are not statistically independent. It has been found that systematic vari-
ations between OPs is bigger than the deviation from the expected χ2-distribution.
Therefore, the results are in agreement with statistical variations between the data
taking periods and no dependence on run conditions is observed.
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Figure 9.4.: Comparison of efficiency measurements for different run periods at the
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10. Run 1 Trigger Calibration

Ich stand am Thor, ihr solltet Schlüssel seyn;
Zwar euer Bart ist kraus, doch hebt ihr nicht die
Riegel.

Faust

During data taking different trigger settings are used. This includes b-tagging trig-
gers as described in Section 5.2. The prelT -method has been used to also calibrate those
triggers in Run 1. On trigger level different jet collections are available. Jets recon-
structed based on Level-1 (L1) full scan (FS) or Region of Interest (RoI) information
can be utilized. Calibration measurements performed for the on-line SV1+IP3D al-
gorithm in 2012 show no significant difference between those two options. Exemplary,
the results for the FS version with the medium24 operating point (OP) are presented
in the following sections. The jets reconstructed on trigger-level are not identical to
the off-line reconstruction, which is usually used for the measurement. A cone based
matching in the ηφ-plane is used to associate the jets of different reconstruction levels
with each other before doing the measurement. Variables shown here are based on
the objects reconstructed on the off-line level as described in Chapter 3.

10.1. Conditional Selection

The tagging algorithms deployed on the different levels of reconstruction are highly
correlated. To take this correlation into account, the efficiency of the b-tagging trigger
is measured depending on the off-line tagging decision. Therefore, two independent
efficiency measurements are conducted for every OP. This ensures that the b-tagging
trigger and an additional b-tagging algorithm can be utilized in parallel in a single
analysis.

24The medium OP corresponds to a specific cut in the distribution of the tagging discriminant.
This corresponds to a nominal b-tagging efficiency of 55%. Since the observed efficiency strongly
depends on the conditional selection the OP is rather referred to as medium.
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Figure 10.1.: Venn-like diagram showing all prelT -candidates with a truth b-jet-match.
The set is divided by applying an off-line b-tagging criterion (i.e. MV1)
shown as the green line. Based on that an on-line tagging criterion,
which is shown as the red line, is studied and the efficiency is measured
on the left and right side independently. Due to high correlations the
four generated sub-sets are very different in statistics.

This is achieved by first limiting the set of all prelT -candidates to only the number
of off-line jets that have a match to an on-line jet. Second, the remaining set of
jets is divided by the off-line tagging algorithm MV1 as depicted as a green line in
Figure 10.1. This results in an off-line tagged and an off-line untagged sub-set, shown
left and right, respectively. In each of these sub-sets the b-tagging efficiency and the
respective scale factors (SFs) are measured independently. Measuring this efficiency
is done by dividing each sub-set again by applying the b-tagging criterion defined by
the trigger algorithm which is depicted as the red line. Equation (8.1) can be altered
with the following conditional notation:

• tag / tag: passing / not passing the off-line tagging requirement,

• trig / trig: passing / not passing the on-line trigger criterion,

• cond ∈ {tag, tag}: the two possible off-line conditions,
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to the following expression for the b-tagging efficiency:

ε
data|cond
b =

f
trig|cond
b ·N trig|cond

data

f
trig|cond
b ·N trig|cond

data + f
trig|cond
b ·N trig|cond

data

. (10.1)

This corresponds to two independent efficiency measurements εdata|tagb (left from the
green line in Figure 10.1) and ε

data|tag
b (right of the green line in Figure 10.1). Due

to the high correlation of the two tagging criteria under study the different sub-sets
are not of equal size. This results in very different statistical precision for the two
sub-sets. This is partly accounted for by using a different binning in pjetT .

10.2. Template Fit

Due to the conditional approach described above, the amount of prelT -fits doubles while
the fit procedure remains the same as discussed in Chapter 7. As an example for the
different combinations, a fit for each condition (trig|tag, trig|tag, trig|tag, trig|tag) is
shown in Figure 10.2. Here, the on-line medium OP based on the decision of off-line
MV1 with 70% nominal b-tagging efficiency is depicted. All distributions show the
highest momentum bins which extend down to different regions (75GeV or 110GeV)
based on the off-line tagger decision. It is clear that the usage of the off-line tagging
algorithm leads to very different flavor compositions in the different sub-sets of jets the
fit is performed on. The prelT -measurement gives a reliable result for all the different
regions, since it is not correlated with the tagging algorithms under study.
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10. Run 1 Trigger Calibration

(a) Fit to the trig|tag-distribution. (b) Fit to the trig|tag-distribution.

(c) Fit to the trig|tag-distribution. (d) Fit to the trig|tag-distribution.

Figure 10.2.: Fits to the prelT -distribution for the sub-set of jets rejected by the off-line
tagger on top, and for the sub-set passing the off-line tagger criterion
below. The fit to the sub-set tagged by the trigger-algorithm under
study is depicted on the left and the rejected sub-set is shown on the
right.
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10.3. Efficiency and Scale Factors

The calibration measurement for the on-line algorithms and OPs is performed on a
set of prelT -candidates passing the off-line tagging criterion (left from the green line in
Figure 10.1) or rejected by the off-line tagger (right of the green line in Figure 10.1).
In Figure 10.3 exemplary results are presented for the on-line medium OP tagged by
the off-line MV1 algorithm with 70% nominal b-tagging efficiency. Figure 10.3a shows
the b-tagging efficiency for data and simulation in black and gray, respectively. It
is noticeable that the simulation does reproduce the pjetT -dependence very well while
overestimating the tagging efficiency in the full momentum range. This leads to
the resulting SFs for the on-line medium OP in the off-line tagged case shown in
Figure 10.3b. The observed SFs deviate from unity due to the overestimated efficiency
in the simulation. The SFs slightly rise with increasing pjetT , which can be caused
by the modeling of either the on-line or off-line kinematics. Therefore, the correct
combination of on-line and off-line SFs has to be applied when utilizing both tagging
algorithms in analyses.

(a) Efficiency. (b) Scale factors.

Figure 10.3.: Results for the on-line medium tagger based on a set of prelT -candidates
tagged by the off-line MV1 algorithm at an efficiency of 70%. Showing
the measured efficiency (left) in black dots with systematic uncertain-
ties in green bands. The simulation efficiency is shown in gray boxes.
The calculated SFs (right) are shown as black dots with statistical and
systematic errors in green.
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10. Run 1 Trigger Calibration

10.4. Systematic Uncertainties

The systematic uncertainties presented in the following section correspond to the set
of uncertainties used in the Run 1 analysis25. These are discussed in Chapter 9 and are
also the uncertainties used for the measurements presented in [64] and [76]. Table 10.1
lists the systematic and statistic uncertainties for the calibration measurement of the
on-line trigger algorithm for the medium OP on the set of prelT -candidates passing the
off-line tagger MV1 with a nominal efficiency of 70%. Table 10.2 shows the same table
of systematic and statistical uncertainties for the same on-line tagger and OP, but for
the set of prelT -candidates rejected by the off-line tagger.
The resulting uncertainties for the on-line calibration can differ rather strongly from

the off-line systematics. This is due to the change in the flavor composition caused
by the off-line tagger decision. For example is the light- and c-fraction in the set of
prelT -candidates tagged by the off-line algorithm significantly reduced, making it less
prone to variations of the `c-ratio. In addition, a large set of Monte Carlo (MC)
simulation was available at the end of Run 1 reducing the respective uncertainty.
This leads to the extrapolation to the inclusive b-jets (as explained in Section 9.3)
being the limiting uncertainty for the calibration in the off-line tagged condition.
Due to the reduced amount of b-jets in the off-line untagged set and the high

correlation between the tagging algorithms the measurement in this case is strongly
limited by simulation statistics. This may also affect the estimation of some of the
other uncertainties which could be prone to statistical fluctuations. This is mitigated
by merging some of the high pjetT -bins. It was decided that no further optimization
with respect to the uncertainties was necessary, since only a very small fraction of jets
is scaled with the resulting SFs26.

25The Run 1 procedure does not preserve the sign of the uncertainty but only quotes the absolute
value.

26The MV1 algorithm at an efficiency of 70% rejects ∼ 30% of b-jets. The on-line tagger at the
medium OP only identifies less than 10% of those remaining b-jets due to the high correlation of
the respective algorithms.
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Table 10.1.: Systematic uncertainties for the FS trigger algorithm for the medium OP
on a set of prelT -candidates passing the MV1 tagging algorithm at 70%
off-line b-tagging efficiency.

Trigger Medium | MV1 at 70% pT in GeV
Systematics [%] 30-50 50-75 75-90 90-110 110-200

MC statistics 1.2 0.9 0.7 0.5 0.6
b-decay branching fractions 0.1 <0.1 <0.1 0.1 0.4
b-decay p* spectrum <0.1 <0.1 0.2 0.2 1.8
b-fragmentation fraction 0.2 <0.1 0.2 0.4 0.1
b-fragmentation function 0.2 <0.1 0.2 0.2 0.7
charm-light ratio 0.2 0.1 <0.1 0.1 0.1
fake muons in b-jets <0.1 <0.1 <0.1 <0.1 0.9
jet energy resolution 1.0 0.1 <0.1 0.2 0.2
jet energy scale 0.1 0.1 0.1 0.1 0.1
jet vertex fraction 0.3 <0.1 <0.1 <0.1 <0.1
modelling of b-production <0.1 <0.1 <0.1 0.1 1.2
modelling of c-production 0.1 <0.1 0.2 0.5 0.7
modelling of the b-hadron direction 0.1 0.2 0.3 0.4 0.1
muon pT spectrum <0.1 <0.1 0.1 0.1 3.0
pileup mu reweighting <0.1 0.1 0.1 0.2 0.3
scale factor for inclusive b-jets 4.0 4.0 4.0 4.0 4.0
semileptonic correction 0.1 <0.1 <0.1 0.2 <0.1
simulation tagging efficiency 2.2 0.8 0.9 0.8 0.5

data statistics 1.1 0.6 0.9 1.1 0.7
total systematics 4.8 4.2 4.2 4.2 5.7

107



10. Run 1 Trigger Calibration

Table 10.2.: Systematic uncertainties for the FS trigger algorithm for the medium OP
on a set of prelT -candidates rejected by the MV1 tagging algorithm at 70%
off-line b-tagging efficiency.

Trigger Medium | not MV1 at 70% pT in GeV
Systematics [%] 30-50 50-75 75-200

MC statistics 13.7 9.5 7.1
b-decay branching fractions 0.5 0.2 0.3
b-decay p* spectrum 0.2 1.2 7.8
b-fragmentation fraction 1.0 1.3 2.1
b-fragmentation function 1.3 2.4 1.6
charm-light ratio 0.9 2.0 7.5
fake muons in b-jets <0.1 0.3 0.2
jet energy resolution 14.7 6.3 6.4
jet energy scale 0.5 2.1 2.6
jet vertex fraction 0.9 <0.1 <0.1
modelling of b-production 0.6 2.2 2.8
modelling of c-production 2.1 1.2 9.1
modelling of the b-hadron direction 7.7 5.2 3.4
muon pT spectrum 1.1 0.7 7.4
pileup mu reweighting 2.7 2.3 0.9
scale factor for inclusive b-jets 4.0 4.0 4.0
semileptonic correction 0.4 1.7 1.0
simulation tagging efficiency 82.1 28.6 17.3

data statistics 9.2 5.3 6.7
total systematics 85.1 32.0 26.3
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11. Summary and Conclusion

Da steh’ ich nun, ich armer Thor!
Und bin so klug als wie zuvor;

Faust

11.1. Summary

In this thesis, the first measurement of the b-tagging efficiency under Run 2 conditions
at a center of mass energy of

√
s = 13 TeV with the prelT -method has been presented

(as exemplary shown in Figure 11.1). For the new set of tagging algorithms, a reliable
measurement has been achieved. The full list of systematic uncertainties used in Run 1
has been adapted and extended to Run 2 recommendations and has been evaluated
for the presented measurement. It has been pointed out that an improvement of the
precision of the measurement can be achieved. To attain such a progress, advances
in the simulation with regard to trigger modeling as well as simulation statistics have
to be made. This measurement currently represents the only b-tagging efficiency
calibration not based on the tt̄ final state within ATLAS. This provides a unique tool
for analyses done in the same topology and phase-space as the tt̄-based calibrations
to assess the impact of b-tagging on their systematic uncertainty.
At this moment, an open comparison with other Run 2 calibrations is not possible

since other measurements are still in preparation for publication. The most commonly
used calibration is the combinatorial likelihood approach (described in Section 5.3.1)
due to the small uncertainties achieved by the high amount of tt̄-pairs produced at
the LHC in Run 2. Currently ongoing efforts concerning this method are internally
documented in [98]. Comparing Figure 11.1 to results presented in that document
show that the two measurements agree within their uncertainties except for the lowest
pjetT -bin where the tt̄-calibration gives a scale factor (SF) that is close to unity. In
general, the combinatorial likelihood approach shows a slightly falling trend with pjetT ,
which is not observed by the prelT -calibration.
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11. Summary and Conclusion

A comparison between the prelT -measurement for Run 1 and Run 2 shows that the
SF for the MV2 algorithm has an upwards trend in the low pjetT region in contrast to
the SF measured for the MV1 algorithm in Run 1. However, there is no reason for
the two algorithms to show the same pjetT -dependence. For the dominant systematic
uncertainties, there are similarities to previous measurements. The limitation of the
method in the high momentum region by the `c-ratio uncertainty is inherent to the
method and not the algorithm under study. This behavior can be observed in the
current results as discussed in Section 8.2 as well as in previous measurements [64,
76].
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Figure 11.1.: Resulting SFs for the MV2c10 algorithm obtained by the prelT -
measurement at the nominal efficiency of 70%.

In addition to the first Run 2 calibration, a measurement of the b-tagging efficiency
of on-line tagging algorithms, implemented on trigger level, have been presented. Up
to this point, the prelT -method is the only available measurement of this kind within
the ATLAS experiment. The conditional calibration discussed in Chapter 10 creates
additional challenges especially for the available simulation statistics which limits
the precision of the conducted measurement. Despite these challenging conditions a
reliable measurement with the prelT -method was achieved.
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11.2. Outlook and Future Prospects

One inherent feature of performance measurements like the calibration of tagging effi-
ciencies is that the finalization of one measurement is always the starting point of the
next. In the context of the ongoing Run 2 endeavors, this means that the prelT calibra-
tion method will be extended to the full data set recorded in 2016 with the ATLAS
detector and that efforts to decrease systematic uncertainties will continue. As soon
as data taking starts in 2017, efforts take place to provide an early calibration with
the prelT -method. For the upcoming data, the tagging algorithms discussed here also
undergo further optimization and therefore have to be calibrated again. In addition,
new tagging algorithms based on recurrent neural networks are under development
(preparations for publication are internally documented in [99]).
The calibration using the prelT -method can also be extended to include jets with dif-

ferent radius parameters, track-jets (clustered on particle tracks instead of calorimeter
clusters), or particle flow jets (based on combining tracking and calorimeter informa-
tion from all detector components) which are of particular interest for many future
analyses.
Due to the low correlation between muon- and tt̄-based calibration methods and

the orthogonal phase-space, the different measurements of the b-tagging efficiency
can be combined in a maximum likelihood approach. This has been done for Run 1
calibrations as shown in Figure 11.2 [64].
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Figure 11.2.: Example for the combination of SFs as conducted in Run 1 for the MV1
algorithm at a nominal efficiency of 70% [64].
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11. Summary and Conclusion

Using b-tagging discriminants as an input for multivariate analysis techniques in-
troduces a need for continuous calibration of the probability density function of the
tagging algorithm. This can be achieved by a pseudo-continuous approach where the
set of jets is divided in bins of the tagging discriminant. In each bin, the fit to the
prelT -variable can be performed, giving the fraction of b-jets which can be compared
to Monte Carlo (MC) prediction. While this approach needs a higher amount of
simulation statistics it is in principle achievable for upcoming Run 2 measurements.
Another prospect currently under investigation is the possibility to use the prelT -

method for on-line monitoring of the Trigger and Data Aquisition (TDAQ) system.
This means measuring the tagging efficiency on the recorded data directly before the
full reconstruction chain. The most time consuming part of the measurement is the
generation of the MC-templates, which can be done in advance. The required amount
of data is much lower for the prelT -method than for tt̄-based methods, meaning the
measurement can quickly and repeatedly be performed on incoming data. This would
be a innovative way of monitoring the quality of flavor-tagging sensitive steps in the
data taking and reconstruction chain and perform a direct measurement of on-line
tagging algorithms.
The identification of b-jets is an important instrument in the search for Beyond

Standard Model (BSM) physics, as mentioned before. However, with the increased
center of mass energy and additional searches for boosted objects from high mass
resonances, t-tagging becomes an increasingly important part of the flavor identifi-
cation efforts in ATLAS as well. Current tagging techniques identify highly boosted
t-quarks that decay hadronically into three jets that merge to one large-R jet that
cannot properly be resolved. These large-R jets are probed for possible substructure
giving hints to their origin. Since the branching fraction is largest for hadronically
decaying t-quarks, currently all efforts are focused on that particular decay channel.
However, in semileptonic t-quark decays, a similar problem can occur. While in the
resolved regime, a lepton, a b-jet, and missing ET (MET) can be selected, the lepton
and jet become non-isolated in the boosted case. Here, the sensitivity of the prelT -
variable to the mass of the weakly decaying particle can be exploited. The decay
kinematics of the t→ Wb→ µνµb is different to muons from other decays (i.e. b-, c-,
or light-jets) due to the high W -mass. Therefore, the prelT of the muon in the b-jet or
similar variables could be used to tag boosted semileptonic t-decays in the future.
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A. Appendix

A.1. Check for η-Dependence

During Run 1 calibration efforts, scale factors (SFs) have been calculated within bins
of the pseudorapidity ηjet. No significant change in the measured SFs with respect
to ηjet was observed. This is checked in Run 2 as well, by dividing the data in
each pjetT -bin into four ηjet bins with boundaries [−2.5,−1.2, 0.0, 1.2, 2.5]. The prelT -
distributions are then compared to each other in Figure A.1. No significant difference
in the shapes is observed. An example for the modeling of the ηjet is also shown
in Figure A.2 as well as the ηjet-dependence of the b-tagging efficiency in simulation.
Despite the ηjet-distribution being dominated by structures generated by detector and
reconstruction effects, the tagging efficiency has no systematic ηjet-dependence. While
some deviations from an all flat efficiency can occur, as seen for the highest pjetT -bin
in blue, no systematic dependence is visible.
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A.2. The prelT -Distributions

A.2. The prelT -Distributions

For the calibration measurement a high amount of prelT -distributions is analyzed as
discussed in Chapter 7. In Run 2 a total of 4 operating points (OPs) have been
calibrated for 2 tagging algorithms in 9 bins of pjetT , each. Every SF determined this
way relies on 2 fit results compared to 2 Monte Carlo (MC) flavor-fractions resulting
in 4 histograms. This results in a total of 288 histograms for the nominal values.
With about 30 uncertainties (including up and down variations) this procedure relies
on O(104) histograms which is neither practical nor particular useful to be printed
here. In the following (Figures A.3 - A.5) the MV2c20 algorithm with the εnom.

b = 77%

is used to exemplary show the tagged and untagged fit in all pjetT -bins. For comparison
the MC prediction for the same distribution is shown as well (Figures A.6 - A.8).

A.2.1. Fractions from Fit

The following histograms show the prelT -distribution for the MV2c20 algorithm with
the nominal efficiency εnom.

b = 77% with the b-fraction obtained by the log-likelihood
fit.
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Figure A.3.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been determined by the log-likelihood
fit.
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Figure A.4.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been determined by the log-likelihood
fit.
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Figure A.5.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been determined by the log-likelihood
fit.
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A.2.2. Fractions from Simulation

The following histograms show the prelT -distribution for the MV2c20 algorithm with
the nominal efficiency εnom.

b = 77% with the b-fraction extracted from simulation.
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Figure A.6.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been extracted from simulation.
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A.2. The prelT -Distributions
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Figure A.7.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been extracted from simulation.
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Figure A.8.: Distributions of prelT using b-tagged jets (left) and untagged jets (right).
The black dots show the data while the templates are shown as a colored
stack. The flavor fractions have been extracted from simulation.
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A.3. Results of the Run 2 Calibration

A.3. Results of the Run 2 Calibration

As discussed in Chapter 8 the prelT -fit has been used to measure the pjetT -dependent b-
tagging efficiency. This has been done for the MV2c10 and MV2c20 tagging algorithms
for four OPs as shown in Figure A.9. The results are shown in black dots with green
uncertainty bands. The efficiency extracted from simulation is shown in gray. The
nominal efficiency is indicated by a horizontal dashed line.
Comparing the efficiency to the expected values in simulation gives the SF κdata/simb .

Results obtained within this thesis are shown in Figure A.10 as black dots with green
uncertainty bands. The OPs are shown with increasing εnomb from top to bottom and
the algorithms MV2c20 on the left and MV2c10 on the right.
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Figure A.9.: Results for εb measured by the prelT -techniques (black) including uncer-
tainties (green) compared to predictions from simulation (gray). Results
are shown for different OPs (from top to bottom 60%, 70%, 77%, 85%)
and taggers MV2c20 (left) and MV2c10 (right).XII
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Figure A.10.: Scale factors as computed from the efficiency measurement are shown
as black dots with green bands for systematic uncertainties. Results are
shown for different OPs (from top to bottom 60%, 70%, 77%, 85%) for
the MV2c20 tagger (left) and the MV2c10 tagger (right). XIII



A. Appendix

A.4. Run 2 Systematics Tables

For Run 2 four OPs for two different trainings of the MV2 algorithm have been cali-
brated. Each of those corresponds to a separate measurement with the results shown
in A.3. The uncertainty bands are computed by summing the respective uncertainties
as discussed in Chapter 9 in quadrature. In the following the contributions are listed
in tables to quantify the contribution of each systematic to each of the measurements.
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A.4. Run 2 Systematics Tables

Table A.1.: Systematic uncertainties for the MV2c10 tagging algorithm at 60% nom-
inal b-tagging efficiency.

MV2c10 at εnom
b = 60% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.4 0.7 0.8 0.7 2.4 2.3 7.3 8.0 12.5
B Fragmentation Fractions -0.3 -0.5 -0.7 -0.4 -0.3 -0.3 -0.5 -0.3 -0.2
B Fragmentation Function 0.4 -0.1 -0.4 -0.2 -0.3 -0.5 -0.7 -1.2 -1.8
B JES Response <0.1 0.2 0.4 0.5 0.3 <0.1 0.2 -0.1 0.4
B-Decay p* Spectrum -3.5 -3.1 -2.8 -3.0 -2.5 -1.4 -0.8 -0.8 -1.1
BDecayFractions 0.5 0.6 0.7 0.9 1.2 1.1 1.2 1.2 1.3
Effective NP 1 0.7 1.2 1.5 1.0 -0.2 -0.3 0.8 -0.3 1.5
Effective NP 2 -0.1 <0.1 <0.1 0.1 0.1 <0.1 0.7 -1.0 -0.3
Effective NP 3 <0.1 <0.1 -0.2 <0.1 0.1 0.1 -0.4 0.1 -0.4
Effective NP 4 <0.1 <0.1 0.1 <0.1 -0.1 0.3 <0.1 0.3 -0.1
Effective NP 5 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1 0.3
Effective NP Rest Term <0.1 <0.1 0.2 0.1 -0.1 0.2 -0.1 0.2 0.3
Eta Intercalibration Modeling 0.3 0.5 0.7 0.4 -0.3 -0.7 0.7 -0.7 -0.1
Eta Intercalibration Total Stat <0.1 0.2 0.3 0.2 -0.1 <0.1 <0.1 0.1 0.9
Fake Muons -0.5 -0.2 -0.1 0.6 -0.4 2.2 0.7 -0.7 -1.9
Flavor Composition 0.8 0.6 0.9 0.6 -1.4 -1.0 0.8 -0.7 1.7
Flavor Response -0.2 -0.1 -0.4 -0.1 0.6 0.4 -0.1 -0.3 -0.4
Gluon Splitting B <0.1 0.1 0.5 1.1 2.3 2.0 3.3 4.8 5.9
Gluon Splitting C <0.1 0.1 0.1 0.3 1.0 0.8 1.8 1.7 2.4
JER Single NP -0.2 0.5 0.7 1.4 0.5 -0.6 -2.0 1.9 -2.6
JVT Efficiency 0.4 0.1 -0.8 -0.8 -0.7 <0.1 -1.0 -1.2 -1.1
LC-Ratio 1.1 -1.4 1.5 0.9 -3.1 <0.1 -6.0 -12.0 -27.5
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 <0.1 -0.1 0.2 0.1 -0.4 -0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.3 -0.1 0.2
Muon Scale -0.1 -0.1 <0.1 <0.1 -0.1 -0.1 -0.5 <0.1 -0.4
Pileup Offset Mu <0.1 0.3 0.4 0.4 -0.1 -0.1 0.1 <0.1 1.1
Pileup Offset NPV <0.1 0.3 <0.1 0.3 -0.2 -0.1 0.1 0.1 0.9
Pileup Pt Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 -0.1 -0.8
Pileup Rho Topology 0.2 0.3 0.7 0.3 -0.3 0.1 -0.1 0.7 1.6
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics 1.2 0.8 -1.3 -1.6 -0.2 0.1 -2.0 1.3 -3.5
Simulation Statistics 14.4 14.7 11.4 8.1 8.7 7.6 6.1 5.0 4.7

Data Statistics 0.7 0.6 0.2 0.9 0.8 1.7 1.1 1.8 2.3
Total Systematics 15.6 15.7 12.9 10.1 11.2 9.7 13.1 17.0 32.1
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Table A.2.: Systematic uncertainties for the MV2c10 tagging algorithm at 70% nom-
inal b-tagging efficiency.

MV2c10 at εnom
b = 70% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.3 0.5 0.8 0.5 2.0 2.0 6.4 6.9 0.3
B Fragmentation Fractions 0.1 -0.2 0.1 -0.3 -0.1 -0.2 -0.2 0.2 <0.1
B Fragmentation Function 0.2 0.1 <0.1 -0.1 -0.2 -0.3 -0.2 -0.4 -0.1
B JES Response <0.1 <0.1 <0.1 0.3 0.1 <0.1 0.1 <0.1 <0.1
B-Decay p* Spectrum -1.4 -1.1 -1.2 -1.9 -1.3 -0.7 -0.1 -0.1 <0.1
BDecayFractions <0.1 <0.1 <0.1 0.6 0.6 0.6 0.5 0.4 <0.1
Effective NP 1 0.7 0.5 0.7 0.7 -0.4 -0.4 0.6 -0.2 0.1
Effective NP 2 -0.1 <0.1 <0.1 0.1 <0.1 -0.1 0.7 -0.8 <0.1
Effective NP 3 <0.1 <0.1 -0.1 <0.1 0.2 0.1 -0.4 <0.1 <0.1
Effective NP 4 <0.1 <0.1 <0.1 <0.1 -0.1 0.2 0.1 0.2 <0.1
Effective NP 5 -0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 -0.1 0.1 <0.1 0.2 <0.1
Eta Intercalibration Modeling 0.1 0.2 0.4 0.3 -0.4 -0.7 0.6 -0.6 <0.1
Eta Intercalibration Total Stat 0.1 <0.1 0.2 0.1 -0.2 -0.1 <0.1 0.1 <0.1
Fake Muons -0.1 0.2 0.2 0.5 -0.4 1.8 0.2 -0.5 -0.2
Flavor Composition 0.7 0.4 0.8 0.5 -1.2 -1.0 0.7 -0.7 0.1
Flavor Response -0.2 -0.1 -0.4 -0.1 0.6 0.4 -0.1 -0.3 <0.1
Gluon Splitting B <0.1 <0.1 <0.1 0.7 1.3 1.0 1.1 1.5 0.2
Gluon Splitting C <0.1 0.1 0.1 0.3 0.9 0.7 1.7 1.6 0.1
JER Single NP 0.2 0.5 0.1 1.2 0.5 -0.6 -2.5 2.2 -0.1
JVT Efficiency <0.1 -0.1 -0.6 -0.7 -0.5 0.2 -0.8 -1.0 -0.1
LC-Ratio -0.2 -2.0 1.4 0.9 -3.0 <0.1 -6.1 -12.5 -15.3
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 -0.1 -0.1 0.1 0.1 -0.3 -0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 -0.1 <0.1
Muon Scale <0.1 -0.1 <0.1 <0.1 -0.1 -0.1 -0.5 <0.1 <0.1
Pileup Offset Mu <0.1 0.1 0.3 0.3 -0.2 -0.1 0.1 <0.1 <0.1
Pileup Offset NPV 0.1 0.2 -0.1 0.3 -0.2 -0.1 0.1 0.1 <0.1
Pileup Pt Term <0.1 <0.1 -0.1 <0.1 <0.1 <0.1 0.3 <0.1 <0.1
Pileup Rho Topology 0.2 0.1 0.4 0.2 -0.4 0.1 -0.1 0.7 0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics 1.0 -0.2 1.4 -0.8 -0.6 -0.7 <0.1 4.3 -0.3
Simulation Statistics 13.8 14.2 11.3 8.1 8.6 7.6 6.1 5.0 4.7

Data Statistics 0.6 0.5 0.7 0.8 0.8 1.5 1.1 1.7 0.5
Total Systematics 14.5 15.0 12.3 9.5 10.6 9.3 12.1 16.6 16.5
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Table A.3.: Systematic uncertainties for the MV2c10 tagging algorithm at 77% nom-
inal b-tagging efficiency.

MV2c10 at εnom
b = 77% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.2 0.5 0.6 0.3 1.6 1.6 0.4 0.3 0.3
B Fragmentation Fractions 0.1 -0.1 0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
B Fragmentation Function 0.1 <0.1 <0.1 <0.1 -0.1 -0.1 <0.1 <0.1 -0.1
B JES Response <0.1 <0.1 <0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
B-Decay p* Spectrum -0.1 -0.2 <0.1 -0.4 -0.4 <0.1 <0.1 <0.1 -0.1
BDecayFractions <0.1 -0.1 <0.1 -0.1 0.3 0.2 <0.1 <0.1 0.1
Effective NP 1 0.5 0.3 0.6 0.3 -0.4 -0.4 <0.1 <0.1 0.1
Effective NP 2 -0.1 <0.1 <0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
Effective NP 3 <0.1 <0.1 <0.1 <0.1 0.2 0.1 <0.1 <0.1 <0.1
Effective NP 4 <0.1 <0.1 <0.1 -0.1 -0.1 0.1 <0.1 <0.1 <0.1
Effective NP 5 <0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 -0.1 0.1 <0.1 <0.1 <0.1
Eta Intercalibration Modeling 0.1 0.1 0.3 0.2 -0.4 -0.6 <0.1 <0.1 <0.1
Eta Intercalibration Total Stat 0.1 <0.1 0.2 <0.1 -0.2 -0.2 <0.1 <0.1 <0.1
Fake Muons <0.1 0.2 0.2 0.4 -0.3 1.5 <0.1 <0.1 -0.1
Flavor Composition 0.5 0.3 0.7 0.5 -1.0 -0.9 <0.1 <0.1 0.1
Flavor Response -0.2 <0.1 -0.3 -0.1 0.4 0.4 <0.1 <0.1 <0.1
Gluon Splitting B <0.1 <0.1 <0.1 <0.1 0.5 0.2 <0.1 0.1 0.3
Gluon Splitting C <0.1 0.1 0.1 0.3 0.8 0.6 0.1 0.1 <0.1
JER Single NP 0.2 0.4 0.1 0.9 0.4 -0.4 -0.2 <0.1 -0.1
JVT Efficiency -0.1 -0.1 -0.5 -0.6 -0.3 0.4 <0.1 -0.1 <0.1
LC-Ratio -1.6 -3.4 -0.7 -0.4 -5.5 -2.2 -9.0 -10.9 -12.1
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 <0.1 -0.1 0.1 0.1 <0.1 <0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon Scale <0.1 <0.1 <0.1 <0.1 -0.1 -0.1 <0.1 <0.1 <0.1
Pileup Offset Mu <0.1 0.1 0.3 0.1 -0.2 -0.1 <0.1 <0.1 <0.1
Pileup Offset NPV <0.1 0.2 -0.1 0.1 -0.2 -0.1 <0.1 <0.1 <0.1
Pileup Pt Term <0.1 <0.1 -0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Pileup Rho Topology 0.1 0.1 0.3 0.1 -0.3 <0.1 <0.1 <0.1 <0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics 0.6 0.4 0.1 0.3 3.1 1.5 -0.3 0.8 -0.3
Simulation Statistics 14.4 14.1 11.4 8.1 8.6 7.6 6.2 5.0 4.7

Data Statistics 0.5 0.5 0.6 0.8 0.7 1.4 0.3 0.4 0.4
Total Systematics 15.0 15.1 12.2 9.2 11.7 9.4 11.6 12.7 13.6
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Table A.4.: Systematic uncertainties for the MV2c10 tagging algorithm at 85% nom-
inal b-tagging efficiency.

MV2c10 at εnom
b = 85% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing <0.1 0.1 0.3 0.2 0.1 0.1 0.2 0.2 0.2
B Fragmentation Fractions 0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1
B Fragmentation Function <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 -0.1 -0.1
B JES Response <0.1 <0.1 -0.1 <0.1 -0.1 <0.1 <0.1 <0.1 <0.1
B-Decay p* Spectrum 0.3 0.5 0.4 0.3 0.4 0.1 -0.1 -0.1 -0.1
BDecayFractions -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 0.1 0.1 0.1
Effective NP 1 0.1 <0.1 0.3 0.1 -0.1 -0.1 <0.1 <0.1 <0.1
Effective NP 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 3 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 5 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Eta Intercalibration Modeling <0.1 <0.1 0.2 0.1 -0.1 -0.1 <0.1 <0.1 <0.1
Eta Intercalibration Total Stat <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Fake Muons 0.1 0.1 0.2 0.3 <0.1 0.1 <0.1 <0.1 <0.1
Flavor Composition <0.1 <0.1 0.4 0.2 -0.1 -0.1 <0.1 <0.1 <0.1
Flavor Response <0.1 <0.1 -0.2 -0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Gluon Splitting B <0.1 <0.1 <0.1 -0.1 -0.4 -0.2 <0.1 <0.1 -0.1
Gluon Splitting C <0.1 <0.1 0.1 0.2 0.1 <0.1 <0.1 <0.1 <0.1
JER Single NP 0.2 0.1 0.1 0.4 <0.1 <0.1 <0.1 <0.1 <0.1
JVT Efficiency -0.1 <0.1 -0.3 -0.4 <0.1 0.1 <0.1 <0.1 <0.1
LC-Ratio -2.3 -3.9 -2.4 -3.0 -8.2 -6.0 -7.2 -8.1 -9.1
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon Scale <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Pileup Offset Mu <0.1 <0.1 0.2 0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Pileup Offset NPV <0.1 <0.1 -0.1 0.1 -0.1 <0.1 <0.1 <0.1 <0.1
Pileup Pt Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Pileup Rho Topology <0.1 <0.1 0.2 <0.1 -0.1 <0.1 <0.1 <0.1 <0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics <0.1 -0.2 -0.7 -0.9 -0.3 -0.3 <0.1 0.4 -0.3
Simulation Statistics 14.2 14.0 11.5 8.2 8.7 7.8 6.3 5.0 4.8

Data Statistics 0.3 0.3 0.6 0.7 0.2 0.4 0.2 0.3 0.3
Total Systematics 14.9 15.1 12.5 9.7 12.6 10.6 10.3 10.4 11.0
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Table A.5.: Systematic uncertainties for the MV2c20 tagging algorithm at 60% nom-
inal b-tagging efficiency.

MV2c20 at εnom
b = 60% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.4 0.7 0.8 0.7 2.5 2.2 7.4 8.0 12.6
B Fragmentation Fractions -0.3 -0.5 -0.6 -0.4 -0.3 -0.3 -0.4 -0.3 -0.1
B Fragmentation Function 0.4 -0.1 -0.4 -0.2 -0.3 -0.5 -0.8 -1.2 -1.9
B JES Response <0.1 0.2 0.3 0.5 0.3 <0.1 0.2 -0.1 0.4
B-Decay p* Spectrum -3.4 -3.0 -2.8 -3.0 -2.5 -1.4 -0.8 -0.8 -1.2
BDecayFractions 0.4 0.6 0.7 0.9 1.1 1.1 1.2 1.2 1.4
Effective NP 1 0.7 1.1 1.5 1.0 -0.3 -0.3 0.9 -0.3 1.5
Effective NP 2 -0.1 <0.1 <0.1 0.1 0.1 <0.1 0.8 -1.0 -0.3
Effective NP 3 <0.1 <0.1 -0.2 <0.1 0.1 0.1 -0.5 0.1 -0.5
Effective NP 4 <0.1 <0.1 0.1 <0.1 -0.1 0.3 <0.1 0.3 <0.1
Effective NP 5 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1 0.3
Effective NP Rest Term <0.1 <0.1 0.2 0.1 -0.1 0.2 -0.1 0.2 0.3
Eta Intercalibration Modeling 0.3 0.5 0.7 0.4 -0.3 -0.7 0.7 -0.7 -0.1
Eta Intercalibration Total Stat <0.1 0.2 0.3 0.2 -0.2 <0.1 <0.1 0.1 0.9
Fake Muons -0.5 -0.2 -0.1 0.6 -0.4 2.2 0.7 -0.8 -1.8
Flavor Composition 0.8 0.6 0.9 0.6 -1.4 -1.1 0.8 -0.7 1.6
Flavor Response -0.2 -0.1 -0.4 -0.1 0.6 0.4 -0.1 -0.3 -0.4
Gluon Splitting B <0.1 0.1 0.5 1.1 2.3 2.1 3.4 4.9 6.3
Gluon Splitting C <0.1 0.1 0.1 0.3 1.0 0.8 1.8 1.8 2.4
JER Single NP -0.2 0.5 0.7 1.4 0.6 -0.6 -2.0 1.9 -2.5
JVT Efficiency 0.3 0.1 -0.8 -0.9 -0.7 0.1 -1.0 -1.2 -1.1
LC-Ratio 1.2 -1.4 1.5 0.9 -3.2 <0.1 -6.1 -12.1 -27.2
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 -0.1 -0.1 0.2 0.1 -0.4 -0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 0.1 0.3 -0.1 0.2
Muon Scale <0.1 -0.1 <0.1 <0.1 -0.1 -0.2 -0.5 <0.1 -0.4
Pileup Offset Mu <0.1 0.3 0.4 0.4 -0.2 -0.1 0.1 <0.1 1.1
Pileup Offset NPV <0.1 0.3 <0.1 0.3 -0.2 -0.1 0.1 0.1 0.9
Pileup Pt Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 -0.1 -0.8
Pileup Rho Topology 0.2 0.3 0.7 0.3 -0.4 0.1 -0.1 0.7 1.6
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics -2.2 -0.3 -1.4 -2.0 -0.3 -1.7 <0.1 -2.6 5.3
Simulation Statistics 14.3 14.6 11.5 7.8 8.7 7.6 6.1 5.0 4.7

Data Statistics 0.7 0.6 0.2 1.0 0.8 1.7 1.1 1.8 2.3
Total Systematics 15.5 15.7 12.9 10.0 11.2 9.8 13.1 17.3 32.2
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Table A.6.: Systematic uncertainties for the MV2c20 tagging algorithm at 70% nom-
inal b-tagging efficiency.

MV2c20 at εnom
b = 70% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.3 0.6 0.7 0.5 2.0 2.0 6.5 7.0 0.3
B Fragmentation Fractions 0.1 -0.2 -0.4 -0.3 -0.1 -0.2 -0.2 0.2 <0.1
B Fragmentation Function 0.2 0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.4 <0.1
B JES Response <0.1 <0.1 0.1 0.3 0.1 -0.1 0.1 <0.1 <0.1
B-Decay p* Spectrum -1.9 -1.5 -1.7 -1.9 -1.3 -0.6 -0.1 -0.2 <0.1
BDecayFractions <0.1 <0.1 0.2 0.6 0.6 0.6 0.5 0.4 <0.1
Effective NP 1 0.7 0.5 1.0 0.7 -0.4 -0.4 0.6 -0.2 0.1
Effective NP 2 -0.1 <0.1 <0.1 <0.1 <0.1 -0.1 0.7 -0.8 <0.1
Effective NP 3 <0.1 <0.1 -0.1 <0.1 0.2 0.2 -0.4 <0.1 <0.1
Effective NP 4 <0.1 <0.1 0.1 <0.1 -0.1 0.2 0.1 0.3 <0.1
Effective NP 5 -0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 -0.1 0.1 <0.1 0.2 <0.1
Eta Intercalibration Modeling 0.1 0.2 0.5 0.3 -0.4 -0.7 0.6 -0.6 <0.1
Eta Intercalibration Total Stat 0.1 <0.1 0.3 0.1 -0.2 -0.1 <0.1 0.1 <0.1
Fake Muons -0.1 0.2 <0.1 0.5 -0.4 1.9 0.2 -0.5 -0.2
Flavor Composition 0.7 0.4 0.8 0.6 -1.3 -1.1 0.7 -0.7 0.1
Flavor Response -0.2 -0.1 -0.4 -0.1 0.6 0.4 -0.1 -0.3 <0.1
Gluon Splitting B <0.1 <0.1 0.2 0.7 1.2 0.9 1.0 1.4 0.2
Gluon Splitting C <0.1 0.1 0.1 0.3 0.9 0.7 1.7 1.7 0.1
JER Single NP 0.1 0.6 0.1 1.2 0.5 -0.6 -2.7 2.2 -0.1
JVT Efficiency <0.1 -0.1 -0.6 -0.8 -0.5 0.3 -0.8 -1.0 -0.1
LC-Ratio -0.7 -2.5 0.9 0.9 -3.1 <0.1 -6.3 -12.6 -15.3
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 <0.1 -0.1 0.1 0.1 -0.3 -0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 -0.1 <0.1
Muon Scale <0.1 -0.1 <0.1 <0.1 -0.1 -0.1 -0.5 -0.1 <0.1
Pileup Offset Mu <0.1 0.1 0.4 0.3 -0.2 -0.1 0.1 0.1 <0.1
Pileup Offset NPV 0.1 0.2 -0.1 0.3 -0.2 -0.1 0.1 0.1 <0.1
Pileup Pt Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 <0.1 <0.1
Pileup Rho Topology 0.2 0.1 0.5 0.2 -0.4 0.1 -0.1 0.7 0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics -0.1 1.6 0.1 -1.9 -0.8 -2.4 2.5 2.8 -3.6
Simulation Statistics 14.8 14.2 11.3 8.1 8.6 7.6 6.2 5.0 4.7

Data Statistics 0.6 0.5 0.7 0.8 0.8 1.6 1.1 1.7 0.5
Total Systematics 15.6 15.2 12.3 9.7 10.6 9.6 12.5 16.4 16.9
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Table A.7.: Systematic uncertainties for the MV2c20 tagging algorithm at 77% nom-
inal b-tagging efficiency.

MV2c20 at εnom
b = 77% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing 0.2 0.5 0.6 0.3 1.7 1.7 0.4 0.3 0.3
B Fragmentation Fractions 0.1 -0.1 0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
B Fragmentation Function 0.1 <0.1 <0.1 <0.1 -0.1 -0.1 <0.1 <0.1 -0.1
B JES Response <0.1 <0.1 <0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
B-Decay p* Spectrum -0.1 -0.1 <0.1 -0.8 -0.3 <0.1 <0.1 <0.1 -0.1
BDecayFractions <0.1 -0.1 <0.1 <0.1 0.2 0.2 <0.1 <0.1 0.1
Effective NP 1 0.5 0.4 0.6 0.3 -0.4 -0.5 <0.1 <0.1 0.1
Effective NP 2 -0.1 <0.1 <0.1 <0.1 <0.1 -0.2 <0.1 <0.1 <0.1
Effective NP 3 <0.1 <0.1 <0.1 <0.1 0.2 0.2 <0.1 <0.1 <0.1
Effective NP 4 <0.1 <0.1 <0.1 -0.1 -0.1 0.1 <0.1 <0.1 <0.1
Effective NP 5 <0.1 <0.1 <0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1
Effective NP Rest Term <0.1 <0.1 0.1 0.1 -0.1 0.1 <0.1 <0.1 <0.1
Eta Intercalibration Modeling 0.1 0.1 0.3 0.2 -0.4 -0.7 <0.1 <0.1 <0.1
Eta Intercalibration Total Stat 0.1 <0.1 0.2 <0.1 -0.2 -0.2 <0.1 <0.1 <0.1
Fake Muons <0.1 0.2 0.2 0.4 -0.3 1.5 <0.1 <0.1 -0.1
Flavor Composition 0.5 0.3 0.7 0.5 -1.0 -1.0 <0.1 <0.1 0.1
Flavor Response -0.2 <0.1 -0.3 -0.1 0.5 0.4 <0.1 <0.1 <0.1
Gluon Splitting B <0.1 <0.1 <0.1 0.1 0.3 0.1 <0.1 0.1 0.3
Gluon Splitting C <0.1 0.1 0.1 0.3 0.8 0.7 0.1 0.1 <0.1
JER Single NP 0.2 0.4 0.1 0.9 0.4 -0.6 -0.2 <0.1 -0.1
JVT Efficiency -0.1 -0.1 -0.5 -0.7 -0.3 0.4 <0.1 -0.1 <0.1
LC-Ratio -2.3 -3.6 -1.1 -0.9 -6.4 -3.1 -8.7 -10.8 -12.0
Light Template Contamination <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon ID <0.1 <0.1 <0.1 -0.1 0.1 0.1 <0.1 <0.1 <0.1
Muon MS <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Muon Scale <0.1 -0.1 <0.1 <0.1 -0.1 -0.1 <0.1 <0.1 <0.1
Pileup Offset Mu <0.1 0.1 0.3 0.1 -0.2 -0.1 <0.1 <0.1 <0.1
Pileup Offset NPV <0.1 0.2 -0.1 0.1 -0.3 -0.2 <0.1 <0.1 <0.1
Pileup Pt Term <0.1 <0.1 -0.1 <0.1 <0.1 -0.1 <0.1 <0.1 <0.1
Pileup Rho Topology 0.1 0.1 0.4 0.1 -0.4 <0.1 <0.1 <0.1 <0.1
SF to Inclusive 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Template Statistics -0.9 -1.0 -1.2 -0.8 -1.9 -2.5 -0.7 -0.2 0.4
Simulation Statistics 14.4 14.1 11.4 8.1 8.6 7.6 6.2 5.0 4.7

Data Statistics 0.5 0.5 0.6 0.7 0.7 1.4 0.3 0.4 0.4
Total Systematics 15.2 15.1 12.3 9.2 11.9 9.9 11.5 12.6 13.5
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Table A.8.: Systematic uncertainties for the MV2c20 tagging algorithm at 85% nom-
inal b-tagging efficiency.

MV2c20 at εnom
b = 85% pT in GeV

Systematics [%] 20-30 30-40 40-50 50-70 70-90 90-110 110-140 140-170 170-200

Axis Smearing <0.1 0.1 0.2 <0.1 0.1 0.1 0.2 0.2 0.2
B Fragmentation Fractions 0.1 <0.1 0.1 0.1 0.1 <0.1 <0.1 <0.1 <0.1
B Fragmentation Function <0.1 <0.1 0.1 <0.1 <0.1 <0.1 -0.1 -0.1 -0.1
B JES Response <0.1 <0.1 -0.1 -0.1 -0.1 <0.1 <0.1 <0.1 <0.1
B-Decay p* Spectrum 0.7 0.4 0.5 0.4 0.3 <0.1 -0.1 -0.1 -0.1
BDecayFractions -0.1 -0.1 -0.1 -0.1 -0.2 <0.1 0.1 0.1 0.1
Effective NP 1 0.1 <0.1 0.2 <0.1 -0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 3 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP 5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Effective NP Rest Term <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Eta Intercalibration Modeling <0.1 <0.1 <0.1 <0.1 -0.1 -0.1 <0.1 <0.1 <0.1
Eta Intercalibration Total Stat <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Fake Muons 0.1 0.1 0.1 0.1 <0.1 0.1 <0.1 <0.1 <0.1
Flavor Composition 0.1 0.1 0.3 0.1 -0.1 -0.1 <0.1 <0.1 <0.1
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