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Abstract 

Non-alcoholic fatty liver disease (NAFLD) encompasses a wide range of liver diseases, where 

excessive hepatic lipid accumulation is a common factor. It is highly prevalent worldwide, and 

is associated with an elevated risk of developing more severe liver diseases, as well as 

cardiovascular and renal diseases, such as the formation of kidney stones. The aim of this 

study was to identify and investigate lipid-associated metabolic and functional alterations in 

steatotic livers and hepatocytes. For this purpose, a mouse model of NAFLD, the leptin 

deficient ob/ob mouse, was implemented and its steatotic phenotype investigated. In vitro 

induction of steatosis was established in HepG2 cells and in primary mouse hepatocytes to 

more directly study the consequences of lipid accumulation. Macrovesicular steatosis was 

confirmed in the hepatocytes of ob/ob mice as well as in the in vitro steatosis model, and was 

manifested by the displacement of nuclei towards the periphery and by a perturbed 

autophagy flux, thus recapitulating features of human NAFLD.  

To estimate the impact of hepatic lipid accumulation on global gene expression across species, 

hepatic genome-wide expression data of human NAFLD, of the leptin deficient ob/ob mouse 

model, and of lipid-loaded HepG2 cells were compared. Here, 22 deregulated genes in mouse 

and human NAFLD, as well as in the in vitro model of lipid accumulation were identified. 

Among the 22 genes, the liver specific AGXT gene, encoding the alanine-glyoxylate 

aminotransferase (AGXT), was found to be downregulated. The enzyme AGXT is essential for 

the detoxification of glyoxylate to glycine in order to prevent the formation of oxalate, a factor 

that increases the predisposition to developing kidney stones. For this reason, further steps 

focused on exploring the downregulation of AGXT upon fatty liver as the molecular 

mechanism underlying the increased risk of kidney stones in patients with NAFLD.  

The steatosis-associated repression of AGXT was validated in a small, independent collection 

of primary human hepatocytes, in a Western diet-induced mouse model of NAFLD, and in the 

in vitro steatosis model of primary mouse hepatocytes, as well as in an additional hepatic cell 

line. In the leptin deficient ob/ob mouse model, the repression of Agxt was accompanied by a 

reduced hepatic glycine concentration and by a slightly increased urinary oxalate excretion. 

These observations implied physiological consequences of the decreased expression of Agxt 

due to the reduced glyoxylate detoxification capacity in this mouse model of NAFLD. 

Moreover, cultivated ob/ob hepatocytes produced more oxalate upon treatment with the 
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glyoxylate precursor hydroxyproline compared to the ob/+ hepatocytes, and thus suggested 

an increased susceptibility towards hydroxyproline levels in steatosis. 

The downregulation of AGXT in fatty liver was associated with hypermethylation of its 

promotor in steatotic primary human and murine hepatocytes. This indicated a possible 

methylation-dependent regulation of AGXT expression in vivo. The in vitro model of steatosis 

was not able to recapitulate this feature, suggesting alternative mechanisms of transcriptional 

downregulation of AGXT. 

Altogether, the present study describes the hepatic steatosis-dependent deregulation of the 

glyoxylate detoxification pathway via AGXT repression. It could demonstrate that the lipid-

dependent downregulation of AGXT in hepatocytes can result in increased generation of 

oxalate, and thus susceptibility for renal calcium oxalate deposits. It is the first known report, 

identifying the downregulation of AGXT as a missing molecular link between fatty liver and 

the increased risk of kidney stones in patients with NAFLD. 
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Zusammenfassung 

Die nichtalkoholische Fettlebererkrankung (non-alcoholic fatty liver disease, NAFLD) umfasst 

eine Bandbreite von Lebererkrankungen, die eine exzessive hepatische Lipidakkumulierung 

gemeinsam haben. Weltweit ist die Prävalenz von NAFLD hoch und sie ist nicht nur mit der 

Entstehung ernsterer Lebererkrankungen assoziiert, sondern auch mit kardiovaskulären und 

renalen Erkrankungen, wie Nierensteinen. Das Ziel dieser Studie war es, lipid-assoziierte 

metabolische und funktionelle Veränderungen in steatotischen Lebern und Hepatozyten zu 

identifizieren und zu untersuchen. Zu diesem Zweck wurde das Leptin-defiziente ob/ob-

Mausmodell für NAFLD herangezogen und sein steatotischer Phänotyp wurde analysiert. Des 

Weiteren wurde ein in vitro–Steatosemodell in HepG2-Zellen und primären Maushepatozyten 

etabliert, um die direkten Konsequenzen von Lipidakkumulation zu untersuchen. 

Makrosteatose wurde sowohl in Hepatozyten von ob/ob-Mäusen, also auch in solchen des 

in vitro-Steatosemodells bestätigt und durch die Deplatzierung des Zellkerns in die Peripherie 

sowie den gestörten Autophagiefluss, beides Merkmale der humanen NAFLD, verdeutlicht. 

Um den Einfluss hepatischer Lipidakkumulation auf die globale Genexpression 

speziesübergreifend abzuschätzen, wurden genomweite Expressionsdaten von humaner 

NAFLD, von dem Leptin-defizienten ob/ob-Mausmodell und von steatotischen HepG2-Zellen 

miteinander verglichen. Dabei wurden 22 Gene identifiziert, die sowohl in muriner und 

humaner NAFLD als auch durch Lipidakkumulation im in vitro-Modell dereguliert wurden. 

Unter diesen Genen wurde die Herabregulierung des leberspezifischen AGXT-Gens, das die 

Alanin-Glyxoylat-Aminotransferase (AGXT) codiert, beobachtet. Das Enzym AGXT ist essentiell 

für die Detoxifizierung von Glyoxylat zu Glycin, um die Bildung von Oxalat vorzubeugen. Oxalat 

ist ein Faktor, der die Anfälligkeit für die Entstehung von Nierensteinen erhöht. Aus diesem 

Grund wurde der weitere Fokus dieser Dissertation auf die steatose-bedingte 

Herabregulierung von AGXT, als möglicher Mechanismus für das erhöhte Risiko von 

Nierensteinen in NAFLD-Patienten, gelegt.  

Die steatose-assoziierte Repression von AGXT wurde sowohl in einer kleinen, unabhängigen 

Sammlung primärer humaner Hepatozyten und in einem Western diet-Mausmodell von 

NAFLD, als auch in den in vitro-Steatosemodellen von primären Maushepatozyten und einer 

weiteren Leberzelllinie bestätigt. Die Agxt-Herabregulierung in dem ob/ob-Mausmodell ging 

mit einer reduzierten hepatischen Konzentration von Glycin und einer leichten Erhöhung der 
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täglichen renalen Oxalatausscheidung einher. Diese Beobachtungen deuteten auf 

physiologische Konsequenzen der verminderten Agxt-Expression, durch eine reduzierte 

Glyoxylatdetoxifizierungskapazität, in dem ob/ob-Mausmodell hin. Darüber hinaus 

produzierten kultivierte Hepatozyten der ob/ob-Maus, nach Behandlung mit dem 

Glyoxylatvorläufer Hydroxyprolin, mehr Oxalat als die Kontrollhepatozyten der ob/+-Maus. 

Dies deutete eine erhöhte Empfindlichkeit gegenüber Hydroxyprolin bei Lebersteatose an. 

Die reduzierte Expression von AGXT in der Fettleber ging mit der Hypermethylierung seines 

Promotors in steatotischen primären humanen und murinen Hepatozyten einher. Das wies 

auf eine mögliche methylierungsabhängige Regulation der AGXT-Expression in vivo hin. Das 

in vitro-Steatosemodell war nicht in der Lage dieses Merkmal zu rekapitulieren und deutet 

somit an, dass es alternative Mechanismen für die transkriptionelle Herabregulierung von 

AGXT gibt. 

Zusammengefasst beschreibt die vorliegende Studie die lebersteatose-bedingte Deregu-

lierung der Glyoxylatdetoxifizierung durch AGXT-Repression. Sie konnte zeigen, dass die 

lipidabhängige Herabregulierung von AGXT in Hepatozyten zu einer vermehrten Bildung von 

Oxalat führen kann und dadurch die Suszeptibilität für renale Calciumoxalatablagerungen 

erhöht. Es ist die erste bekannte Untersuchung, die die verminderte Expression von AGXT als 

fehlende molekulare Verbindung zwischen der Fettleber und dem erhöhten Risiko von 

Nierensteinen in Patienten mit NAFLD identifiziert. 
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1. Introduction 

1.1 Epidemiology of non-alcoholic fatty liver disease 

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty liver diseases 

ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis that can ultimately lead 

to hepatocellular carcinoma (Bugianesi et al. 2002; Powell et al. 1990; Schaffner and Thaler 

1986). The main feature of NALFD is the excessive accumulation of fat in the liver, which is 

defined by steatosis in more than 5% of the hepatocytes (European Association for the Study 

of the Liver 2016). In order to diagnose NAFLD, secondary causes of hepatic lipid 

accumulation, such as heavy alcohol consumption, steatogenic medication, virus infection and 

hereditary disorders need to be excluded (Chalasani et al. 2012). The European Association 

for the Study of the Liver (EASL) defined heavy alcohol consumption with respect to NAFLD as 

the daily intake of more than 30 g of pure ethanol for men and 20 g pure ethanol for women 

(Ratziu et al. 2010). Furthermore, the American as well as the European Association for the 

study of the Liver have placed NAFLD into the two distinct categories: non-alcoholic fatty liver 

(NAFL) and non-alcoholic steatohepatitis (NASH). NAFL represents simple hepatic steatosis 

with no signs of inflammation or hepatocellular injury; whereas, NASH covers the spectrum of 

more severe liver diseases, including inflammation with or without fibrosis the in presence of 

hepatic steatosis (Chalasani et al. 2012; European Association for the Study of the Liver 2016). 

Worldwide, NALFD is a major underlying feature of liver diseases and the most common cause 

for elevated liver enzymes (Vernon et al. 2011; Younossi et al. 2016). Importantly, NAFLD, in 

particular NASH, is associated with increased overall mortality compared to the general 

population (Adams et al. 2005; Ong et al. 2008). Furthermore, patients suffering from NASH 

exhibit elevated liver-related mortality (Ekstedt et al. 2006; Matteoni et al. 1999; Stepanova 

et al. 2013). 

1.1.1 Prevalence of NAFLD 

Assessing the prevalence of NAFLD in the general population is difficult, because it is highly 

variable, and depends on the method applied for diagnosis and on the studied population. 

The current gold standard to diagnose NAFLD is a biopsy of the liver; an invasive procedure 

that is not feasible for screening entire populations. Nevertheless, in studies investigating the 

potential of living individuals to donate liver they found a NAFLD prevalence of 10% in Korea 
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and of 20% in the USA when the degree of steatosis was set above 30%, diagnosed by liver 

biopsy (Lee et al. 2007; Marcos et al. 2000). Ultrasound is one of the most widely-used, non-

invasive diagnosis method to diagnose NAFLD, which revealed a prevalence between 17% in 

India and 46% in the USA (Vernon et al. 2011). Younossi and co-workers reported that the 

global NAFLD prevalence is 25% based on imaging techniques to diagnose NAFLD. Although 

NAFLD is quite common, only a small subgroup suffers from NASH. It is estimated that 7-30% 

of all NAFLD patients have NASH, which indicates an overall prevalence between 1.5% and 

6.5% (Younossi et al. 2016). 

Interstingly, ethnicity also has an enormous impact on NAFLD’s frequency. Hispanics are 

reported to have the highest prevalence, followed by white and African Americans (Browning 

et al. 2004). The genetic variation I148M of the PNPLA3 gene, encoding the patatin-like 

phospholipase-3/adiponutrin, is strongly associated with increased hepatic fat content. This 

particular mutation is most common in Hispanics and is a potential explanation for the 

ethnicity differences with regard to NAFLD (Romeo et al. 2008). 

1.1.2 NAFLD is associated with the metabolic syndrome 

NAFLD is more prevalent in patients with existing metabolic disorders compared to those in 

general population (Vernon et al. 2011). Usually, several metabolic disorders occur 

simultaneously and are defined as the metabolic syndrome, which includes abdominal 

obesity, dyslipidemia, raised blood pressure and insulin resistance (Expert Panel on Detection 

Evaluation and Treatment of High Blood Cholesterol 2001). Obese patients undergoing 

bariatric surgery have increased prevalence of NAFLD, ranging from 63% (Boza et al. 2005) up 

to over 90% (Machado et al. 2006; Ong et al. 2005). Furthermore, elevated body mass index 

(BMI) and waist circumference are associated with the presence of NAFLD (Bedogni et al. 

2005).  

Insulin resistance is related to NAFLD (Marchesini et al. 1999) and accumulation of hepatic 

liver fat is closely associated to hepatic, muscle and adipose tissue insulin resistance in obese 

persons (Korenblat et al. 2008). In addition, patients with type II diabetes have a higher 

prevalence of NAFLD, which was associated with obesity, hypertriglyceridemia and high to 

normal alanine aminotransferase levels (Leite et al. 2009).  

In brief, obesity and insulin resistance, as well as type II diabetes are closely related to NAFLD. 

For that reason, NAFLD is sometimes considered as a hepatic manifestation of the metabolic 
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syndrome (Fotbolcu and Zorlu 2016; Marchesini et al. 2001). This assumption is however 

controversially discussed. Smits and colleague performed a confirmatory factor analysis of 

cross-sectional data, derived from the Third National Health and Nutrition Examination 

Survey, NHANES III (National Center for Health Statistic 1994), and found no evidence that 

NAFLD is an independent component of the metabolic syndrome. They consider NAFLD rather 

as a separate condition, which is strongly associated with the metabolic syndrome (Smits et 

al. 2013). 

1.2 Progression of NAFLD 

Simple steatosis and NASH can develop into more severe types of liver diseases. Simple 

steatosis, if it progresses, is reported to progress very slowly (Pais et al. 2011; Teli et al. 1995; 

Wong et al. 2010). For instance, a new study, investigating the progression of/to fibrosis from 

NAFL and NASH, reported that simple steatosis increases the fibrosis stage every 14 years, 

whereas NASH has a progression rate that correspond to one fibrosis stage every seven years 

(Singh et al. 2015). 

Fat accumulation in the liver is a main feature of NAFLD as described in Chapter 1.1. There are 

several mechanisms underlying this lipid accumulation, such as the oversupply of fatty acids 

and their assembly into triglyceride (Postic and Girard 2008). Fatty acids arise from several 

sources, including their release upon the lipolysis of adipose tissue, diet, and hepatic de novo 

synthesis of fatty acids, which are then esterified to glycerol (Donnelly et al. 2005). In addition 

to the increased production of lipids/triglycerides, decreased degradation of fatty acids as well 

as reduced excretion of hepatic very low density lipoprotein (VLDL) containing triglycerides 

can also contribute to the accumulation of lipids (Postic and Girard 2008). 

It is currently controversial whether lipid accumulation, i.e. simple steatosis, always occurs 

before NASH and thus symbolizes the initiation of the development of NASH. Day and 

colleague proposed the so called “two hit” hypothesis in 1998, by suggesting that the 

development of fatty liver is the so-called “first hit”, which increases the susceptibility of the 

liver to “second hits”. These two hits result in hepatocyte injury, and consequently in 

inflammation of the liver (Day and James 1998). Examples of second hits are lipid peroxidation, 

reactive oxygen species, free fatty acids, and the release of Tumour necrosis factor α (TNFα) 

(Day 2002; Day and James 1998). However, this theory fails to explain why simple steatosis, in 

contrast to NASH, rarely progresses to more severe liver disease. Therefore, multiple hit 
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hypotheses have been proposed that try to explain the complexity of NAFLD progression 

(Figure 1.1), accompanied with the suggestion to consider simple fatty liver and NASH as two 

separate diseases (Buzzetti et al. 2016; Tilg and Moschen 2010). 

 

Figure 1.1: Multiple hit hypothesis for the development of NAFLD (modified from Buzzetti et al. 2016). 

 

1.2.1 Hepatic lipid accumulation and insulin resistance  

The accumulation of triglycerides may not always indicate a hepatotoxic event, but can 

represent a hepatoprotective process by which cells deal with excessive free fatty acids 

(Dowman et al. 2010). Mouse models with increased capacity to form triglycerides are more 

protected from systemic inflammation (Koliwad et al. 2010); whereas, mice with impaired 

triglyceride synthesis show more liver damage and inflammation (Yamaguchi et al. 2007). 

As mentioned above, NAFLD and NASH are closely linked to peripheral insulin resistance 

(Sanyal et al. 2001), which is characterized by increased insulin release due to decreased 

insulin sensitivity. Elevated insulin levels influence lipid metabolism, for example, insulin 

stimulates hepatic de novo lipogenesis by the activation/overexpression of the transcription 

factor sterol regulatory element-binding protein-1c (SREBP-1c), which in turn regulates the 

transcription of lipogenic genes (Horton et al. 2002; Shimano et al. 1999). In addition, insulin 

does not suppress lipolysis in adipose tissue as under normal conditions and the efflux of free 

fatty acids to the liver increases (Lewis et al. 2002). Elevated levels of free fatty acids are 
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strongly associated with increased expression of the pro-inflammatory cytokine TNFα, which 

may explain the fatty acid-mediated hepatic lipotoxicity (Feldstein et al. 2004).  

1.2.2 Gut microbiota-dependent release of endotoxins 

The gut microbiota is another widely discussed parameter in NAFLD and its progression 

(Buzzetti et al. 2016). The blood supply of the liver comes mainly from the portal vein (70% - 

75%), and thus represents an important link between the intestine and the liver. Thus, the 

liver is exposed to various intestinal metabolites and nutrients (Abdel-Misih and Bloomston 

2010). The composition of the gut microbiota is strongly dependent on the diet of the host 

(Wu et al. 2011). NASH patients have a higher prevalence of small intestinal bacterial 

overgrowth accompanied by elevated serum values of TNFα (Wigg et al. 2001). Additionally, 

NASH patients seem to have an increased susceptibility for gut leakage (Farhadi et al. 2008). 

Both observations were confirmed in NAFLD patients in a study conducted by Miele and 

colleagues, who explained that the higher permeability may be due to a disruption of 

intercellular tight junctions in the intestine (Miele et al. 2009). Bacterial overgrowth in 

combination with the elevated permeability of the gut may together increase the exposure of 

the liver to gut-derived endotoxins, consisting of lipopolysaccharides (LPS). Recent studies 

support this by showing increased serum levels of endotoxins in terms of NAFLD than in 

controls (Harte et al. 2010; Wong et al. 2015).  

Mouse models of NAFLD, namely mice on high fat diet and genetically obese leptin deficient 

mice exhibit increased plasma levels of endotoxins, which were reduced upon antibiotic 

treatment also accompanied with change of gut microbiota (Cani et al. 2008). LPS are thought 

to play an important role in the progression of NASH, mediated by an increase in the 

expression of Toll like receptor 4 (TLR4) as well as CD14. TRL4 is predominantly expressed in 

cells of the immune system, especially in macrophages and dendritic cells (Medzhitov et al. 

1997), and recognizes LPS most likely after LPS binds to its co-receptor CD14 (da Silva Correia 

et al. 2001). Stimulation of TLR4 activates the production of pro-inflammatory cytokines, such 

as TNFα, Interleukin-1 (alpha and beta) and interleukin-6 (Il-6) (Luster et al. 1994; Medzhitov 

2001). Rivera and colleagues demonstrated that Kupffer cells - liver resident macrophages - 

and TLR4 have an immense impact on NAFLD progression. The authors showed that Kupffer 

cell depletion, as well as the absence of TLR4 attenuate hepatic inflammation and injury in a 

diet-induced model of NASH (Rivera et al. 2007).  
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1.2.3 Pro- and anti-inflammatory signalling in NAFLD 

LPS is not the only TLR4 trigger. Free fatty acids are also able to stimulate TLR4 in adipose 

tissue, which results in increased levels of TNFα and Interleukin 6 (Il-6) (Shi et al. 2006). Both 

hepatic and serum levels of TNFα, as well as the expression of the TNF receptor are elevated 

in patients suffering from NASH with severe fibrosis (Crespo et al. 2001). Moreover, increased 

expression as well as plasma concentrations of Il-6 are found in NASH patients, but not in 

patients with simple steatosis (Wieckowska et al. 2008). These findings suggest an important 

role of pro-inflammatory cytokines in the pathogenesis of NAFLD. 

In addition to pro-inflammatory cytokines, adipose tissue also releases anti-inflammatory 

adipokines, such as adiponectin (Tilg and Moschen 2006). Adiponectin’s main anti-

inflammatory functions include the suppression of the synthesis of TNFα (Yokota et al. 2000) 

and interferon-γ (IFNγ), as well as the induction of the production of anti-inflammatory 

cytokines, such as interleukin-10 (Il-10) in leukocytes (Wolf et al. 2004). Furthermore, 

adiponectin stimulates β-oxidation of fatty acids in rat hepatocytes and the downregulation 

of the above-mentioned transcription factor SREBP-1c, altogether leading to the reduction in 

de novo lipogenesis (Tilg and Moschen 2006). Serum levels of adiponectin are markedly 

decreased in obese patients (Arita et al. 1999). Interestingly, the concentration of adiponectin 

increases upon weight loss, with a concomitant decrease in Il-6 levels, suggesting a cytokine- 

dependent regulation of adiponectin (Bruun et al. 2003). Also, an earlier study reported that 

patients with type II diabetes presented with a marked decrease of adiponectin levels which 

were restored upon weight loss (Hotta et al. 2000). Moreover, the hepatic expression of 

adiponectin and its receptors were found to be reduced in NASH patients but not in patients 

with simple steatosis (Kaser et al. 2005). Another study reported a negative correlation 

between the plasma concentration of adiponectin and the hepatic triglyceride content as well 

as insulin resistance (Bugianesi et al. 2005). However, no correlation was observed with the 

severity of NAFLD, indicating that the severity of NAFLD was not associated with reduced 

levels of adiponectin (Bugianesi et al. 2005). In contrast, Musso and colleagues found a strong 

association between the degree of hypoadiponectinemia and the severity of NASH, suggesting 

lower levels of adiponectin in advanced fibrosis (Musso et al. 2005). In agreement, treatment 

with pioglitazone, a peroxisome proliferator–activated receptor γ (PPARγ) agonist, increased 

the plasma levels of adiponectin in NASH patients and led to a histological improvement of 
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NASH (Belfort et al. 2006). Altogether, these findings indicate that a decreased expression of 

adiponectin is associated with NAFLD and may play a role in the progression of NAFLD. 

1.2.4 Mitochondrial abnormalities and dysfunction  

Prior work has shown that NAFLD patients have increased β-oxidation and hepatic oxidative 

stress, which is only observed in NASH mitochondria with defective structures as well as 

megamitochondria (Caldwell et al. 1999; Sanyal et al. 2001). Moreover, the activity of the 

mitochondrial respiratory chain enzyme complex is decreased in livers of NASH patients 

(Pérez-Carreras et al. 2003). Augmented β-oxidation leads to increased delivery of electrons 

to the mitochondrial respiratory chain, caused by decreased activity of the chain, which 

impairs proper transfer of electrons. This altogether contributes to an increased formation of 

reactive oxygen species (ROS), and in particular the formation of superoxide anion radicals 

(Pessayre and Fromenty 2005; St-Pierre et al. 2002). ROS can directly damage the 

mitochondrial DNA, and disturb the mitochondrial respiratory chain by damaging its 

polypeptides. Furthermore, it increases the degree of lipid peroxidation that contributes to 

the oxygen imbalance and ROS, which in turn stimulates the hepatic production of TNFα that 

can lead to hepatocyte cell death (Pessayre et al. 2001). Accumulation of free cholesterol 

within hepatic mitochondria has been shown to result in the depletion of mitochondrial 

glutathione, and consequently to the increased susceptibility of hepatocytes to TNF signalling 

in steatohepatitis (Mari et al. 2006). Mitochondria dysfunction/abnormality is strongly 

associated with NAFLD, but it is still not clear whether this is a consequence of or a 

contributing factor towards the progression of NAFLD. 

1.2.5 Activation of the unfolded protein response  

The unfolded protein response (UPR) is another mechanism, which has been discussed to play 

a role in the progression of NAFLD (Tilg and Moschen 2010). UPR is triggered by the disruption 

of endoplasmic reticulum (ER) homeostasis, namely ER stress, which results from the 

accumulation of misfolded proteins, elevated secretory protein production, or imbalanced 

redox status (Kaufman 2002). Additionally, ER stress might be responsible for insulin 

resistance/hyperinsulinemia in obesity since its alleviation by drug treatment improved insulin 

sensitivity and glucose homeostasis in obese and diabetic mice (Ozcan et al. 2006). Several 

studies reported an activation of the UPR during NAFLD. For example, Puri and co-workers 

reported in 2008 an increase in phosphorylation of Eif2α in NAFLD patients, which leads to an 
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arrest in the translational protein synthesis, as part of the UPR. However, the authors were 

not able to show the recovering mechanism of UPR in these patients, perhaps due to 

continued ER stress. In addition, NASH was found to be associated with c-Jun N-terminal 

kinase (JNK) activation (Puri et al. 2008a), with comparable results obtained in a mouse study 

from Rinella and colleagues. Here, NASH was induced in diabetic mice by a methionine-

choline-deficient diet and the persistent activation of Eif2α in form of its phosphorylation, 

indicative of UPR, as well as activation of JNK were reported (Rinella et al. 2011).  

1.2.6 Genetic and epigenetic factors  

Genetic predisposition seems to have influence on the severity of NAFLD (Vernon et al. 2011). 

Carriers of the aforementioned polymorphism in the PNPLA3 gene encoding the protein 

variant l148M have a higher risk for developing NAFLD accompanied with necroinflammation 

and fibrosis (Valenti et al. 2010). In agreement, the polymorphism of TM6SF2 is not only 

associated with increased hepatic lipid content (Kozlitina et al. 2014), but also with advanced 

fibrosis/cirrhosis (Liu et al. 2014). 

Epigenetics is a further discussed mechanism involved in the progression of NAFLD (reviewed 

by Lee et al. 2017). There are several ways in which epigenetic alterations may influence the 

liver with regard to lipid accumulation and the pathogenesis of NAFLD. Briefly, epigenetic is a 

phenomenon that has enormous impact on the expression of genes without changing the 

sequence of DNA bases. One of the most studied epigenetic modification is the methylation 

of DNA; these methylations occur at the C5 position of cytosine residues next to guanine, so 

called CpG sites, catalysed by DNA methyltransferases (DNMTs) (Tollefsbol 2011). DNA 

methylation in the regulatory region of a gene is usually accompanied by the downregulation 

or silencing of that gene (Cedar 1988). Murphy and colleagues proposed that a different 

methylation pattern might distinguish mild from advanced NAFLD, where in general less CpG 

sites are methylated in advanced NAFLD compared to mild NAFLD (Murphy et al. 2013). DNA 

methylation is influenced by diet (Tollefsbol 2011). Diets that are deficient in methyl donors 

like folate reduce the DNA methylation in the liver leading to hepatic lipid (da Silva et al. 2014). 

Interestingly, liver biopsy samples from NALFD patients before and after weight loss due to 

bariatric surgery show that NAFLD-related DNA methylation are partially reversible (Ahrens et 

al. 2013). 
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In addition to DNA methylation, histone modifications as well as microRNAs are also proposed 

to be relevant in the pathogenesis of NAFLD (Lee et al. 2017). Histone modifications are 

important for the regulation of chromatin structure and function, which affects DNA related 

processes, e.g. gene transcription (Herceg and Murr 2011). Deviant histone modifications are 

associated and involved in the development of insulin resistance that leads to steatosis (Lee 

et al. 2014; Ling and Groop 2009). An imbalance between histone acetylation and histone 

deacetylation may be an underlying cause for the progression of NAFLD to hepatocellular 

carcinoma (Tian et al. 2013).  

MicroRNAs are short endogenous RNA sequences, which regulate gene expression by 

degradation or repression of targeted mRNAs (Ambros 2004). In NAFLD, aberrant profiles of 

microRNAs are found and specific microRNAs are involved in the progression from steatosis 

to more sever forms of NALFD (Ferreira et al. 2014). 

1.3 Autophagy and NAFLD  

Autophagy is a conserved mechanism by which misfolded proteins as well as damaged 

organelles are degraded, and was recently identified as a regulator of lipid metabolism (Singh 

et al. 2009). Recent studies have also implicated autophagy in NAFLD (Gonzalez-Rodriguez et 

al. 2014; Kwanten et al. 2014). Degradation in autophagy is a dynamic process comprising the 

engulfment of cargo and the formation of double-membraned autophagosomes, and their 

subsequent fusion with the lysosome (Xie and Klionsky 2007). The actual degradation of the 

cargo occurs in a fusion product called the autolysosome. Autophagy is important in the 

maintenance of cellular homeostasis in order to avoid accumulation of damaged organelles, 

long lived proteins, and lipid droplets (Singh et al. 2009; Xie and Klionsky 2007).  

The relationship between autophagy and NAFLD is two-sided. On the one hand, inhibition of 

autophagy causes accumulation of triglycerides and lipid droplets indicating a lipolytic 

function of autophagy; on the other hand, abnormally high levels of intracellular lipids impair 

autophagy-related clearance of lipids (Singh et al. 2009). Potential reasons for the impaired 

clearance include an altered lipid composition of the membrane, which reduces the fusion 

capacity of the autophagosomes with the lysosomes upon long lipid stimulation (Koga et al. 

2010), or inhibited acidification of autophagosomes that prevents degradation (Inami et al. 

2011). 
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Upon lipid stimulation in a rat model, a biphasic behaviour of autophagy was reported by 

Papackova and co-workers in 2012. A short term challenge with increased lipid supply 

stimulated the autophagic flux; whereas, long term treatment with a high fat diet led to a 

blockage of the autophagic flux (Papackova et al. 2012). Moreover, hepatic autophagy was 

impaired in both genetic and diet induced mouse models of NAFLD (Inami et al. 2011; Singh 

et al. 2009; Yang et al. 2010), as well in patients with NAFLD (Gonzalez-Rodriguez et al. 2014). 

In patients, the autophagic flux was shown to be decreased during steatosis (Kashima et al. 

2014); a dysfunction that correlated with hepatic inflammation (Fukuo et al. 2014). 

Interestingly, previous studies have reported a connection between the compromised 

autophagy and elevated levels of ER stress in human and murine NAFLD (Gonzalez-Rodriguez 

et al. 2014; Yang et al. 2010). Autophagy and ER stress are tightly linked because ER stress 

induces autophagy for cell survival (Ogata et al. 2006).  

Hyperinsulinemia has also been reported together with elevated ER stress during suppressed 

autophagy (Liu et al. 2009; Yang et al. 2010). It has been proposed that elevated levels of 

insulin disturb autophagy by supressing important autophagy genes mediated by the 

transcription factor FoxO1, but this is investigated only in vitro so far (Liu et al. 2009). In 

contrast, FOXO1 was described to be upregulated in a small group of NASH patients (Valenti 

et al. 2008). Nevertheless, restoring autophagy during steatosis by overexpressing the 

autophagy related gene Atg7 in a NAFLD mouse model reversed ER stress and decreased 

insulin levels (Yang et al. 2010).  

There is evidence that lipid and hyperinsulinemia dependent impairment of autophagy 

stimulate further lipid accumulation and insulin resistance by decreasing lipolysis and 

increasing ER stress (Figure 1.2, Amir and Czaja 2011), which may lead to apoptosis (Gonzalez-

Rodriguez et al. 2014). 
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Figure 1.2: Reduced macroautophagy – intercellular interplay in NAFLD. In NAFLD, steatosis and 
hyperinsulinemia may reduce autophagy. Lipid accumulation may disturb autophagic flux by preventing the 
fusion of autophagosomes and lysosomes or inhibit autolysosymal degradation by missing acidification. The 
inhibitory effect of hyperinsulinemia on autophagy may be due to reduced FoxO1 expression and activity. The 
reduced autophagy may then contribute to further lipid accumulation by impairing lipolytic breakdown of lipids. 
Additionally, the impaired autophagy may promote insulin resistance upon increased ER stress (modified from 
Amir and Czaja 2011).  

 

1.4 Mouse models to study NAFLD 

As seen above, the pathogenesis of NAFLD, and in particular NASH is complex and not fully 

understood. Therefore, animal models representing histological and pathophysiological 

stages of NAFLD are necessary to elucidate the complexity of NAFLD’s pathogenesis. Since 

human NALFD is strongly associated with obesity, insulin resistance and type II diabetes 

(Chapter 1.1.2), these features need to be mirrored by the animal model. So far, there are 

animal models available, which are able to recapitulate single hallmarks of NAFLD, but 

unfortunately not the complete histopathology and physiological properties of human NALFD 

from steatosis to HCC (Lau et al. 2017). In Table 1.1, a short overview of several mouse models 

of NAFLD, inclusive of their ability to reflect the features of human NAFLD, is given. More 

information on selected mouse models is provided in more detail in sections 1.4.1 to 1.4.3.  
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Table 1.1 Overview of mouse models of NAFLD (based on Anstee and Goldin 2006; Lau et al. 2017; 
Schattenberg and Galle 2010) 

Model Obesity IR Steatosis NASH Fibrosis 

Genetic      

ob/ob    no no 

db/db    no no 

KK-Ay     no no 

Diet induced      

High fat diet     ? 

MCD diet no no    

High fat and  

high cholesterol diet 

 ?    

Combination      

db/db + MCD diet      

ob/ob + LPS     no 

 

In the current work, both genetic and diet induced models were used, and therefore a more 

detailed description is provided for these specific models. 

1.4.1 The leptin deficient ob/ob mouse model 

The ob/ob mouse possesses a spontaneous mutation that leads to obesity, and was first 

described in 1949 (Ingalls et al. 1950). The mutation occurs in the leptin gene (Friedman et al. 

1991; Zhang et al. 1994) and results in obese, hyperphagic, hyperinsulinemic and 

hyperglycaemic mice (Coleman 1978; Mayer et al. 1953). Administration of leptin decreases 

their food intake and reduces body weight and body fat, indicating that leptin regulates 

appetite (Halaas et al. 1995; Pelleymounter et al. 1995). Ob/ob mice develop steatosis, but 

they do not develop NASH under normal conditions. However, LPS treatment of ob/ob mice 

triggers the progression of steatosis to steatohepatitis (Faggioni et al. 1999; Yang et al. 1997). 

Importantly, ob/ob mice are resistant to fibrosis, which characterizes leptin as a potential 

contributor to hepatic fibrogenesis (Leclercq et al. 2002). Thus, the ob/ob mouse model 

reflects the metabolic syndrome and simple steatosis that is observed in humans. Even though 

it cannot be used to study the complete progression from simple steatosis to fibrosis/cirrhosis, 

the ob/ob mouse model is useful when investigating the effect of lipid accumulation on 

hepatocytes functionality as well as the progression from steatosis to steatohepatitis. 
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1.4.2 The leptin resistant db/db mouse model 

In contrast to the ob/ob mouse model, db/db mice produce leptin, but due to a mutation of 

their leptin receptor gene they are resistant to leptin (Chen et al. 1996). This autosomal 

recessive mutation that leads to diabetes, hyperinsulinemia as well as obesity was first 

observed in 1966 (Hummel et al. 1966). Similar to the ob/ob mice, db/db mice develop simple 

steatosis without progression to NASH when fed a standard diet. A methionine-choline 

deficient diet (MCD) induces hepatic inflammation and fibrosis in db/db mice (Sahai et al. 

2004). This genetic mouse model, like the ob/ob mouse model, exhibits features of the human 

metabolic syndrome, and similar to the ob/ob mouse model, is a good tool to study simple 

steatosis. Upon the administration of an appropriate trigger, it is possible to study the 

progression to NASH including fibrosis. 

1.4.3 High fat diet induced NAFLD 

High fat diet (HFD) models reflect the human situation of obesity due to increased dietary 

supply of fat and carbohydrates that stimulate hepatic fatty acid uptake or de novo synthesis 

(Anstee and Goldin 2006). The composition of the diets varies, but most of the calories come 

from fat (usually 45 - 75%), which is sufficient to increase obesity, insulin resistance and 

hepatic steatosis (Schattenberg and Galle 2010). In addition, the strain, sex and age of the 

mouse all have an impact on the success of the HFD-induced obesity (Nishikawa et al. 2007; 

West et al. 1992). Male C57Bl6 mice on a HFD show hepatocytes ballooning, decreased 

adiponectin levels and hyperglycaemia after 16 weeks on the diet (Eccleston et al. 2011). Fifty 

weeks on the HFD result in steatohepatitis as well as slight fibrosis and hyperinsulinemia in 

male C57Bl6 mice (Ito et al. 2007). In conclusion, although HFD models require more time to 

obtain the required phenotype, they more accurately represent the human NAFLD.  

1.5 Association between the metabolic syndrome and kidney stones 

NAFLD is strongly associated with obesity (Bedogni et al. 2005), insulin resistance (Marchesini 

et al. 1999) and in general with the metabolic syndrome (Marchesini et al. 2001). Apart from 

liver-related diseases, NAFLD patients have an increased risk for other diseases. For example, 

the prevalence as well as incidence of cardiovascular diseases are higher in patients suffering 

from NAFLD (Targher et al. 2010), and there is a strong association between the severity of 

NAFLD and an increased risk of chronic kidney disease (Musso et al. 2014).  
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Previous studies have suggested that the development of kidney stones is related to both the 

metabolic syndrome and traits of the metabolic syndrome in humans. Obesity, in particular 

visceral obesity, is strongly associated with an elevated risk of kidney stone formation 

(Akarken et al. 2015; Taylor et al. 2005). Moreover, an increased body mass index in the 

presence of hypertension is related to an increased risk of calcium oxalate stones (Polat et al. 

2015). Conversely, Torricelli and colleagues reported a link between dyslipidaemia and a risk 

of kidney stones that is independent of obesity and other components of the metabolic 

syndrome (Torricelli et al. 2014). Interestingly, increasing BMI have a marked impact on the 

urinary composition; in particular, the kidney stone promotors oxalate and uric acid are 

increased (Negri et al. 2008; Shavit et al. 2015; Taylor and Curhan 2006). Both overweight and 

obese men and women are strongly associated with an increased risk of calcium oxalate 

stones, but overweight and obese men are more prone to stone formation than overweight 

women (Siener et al. 2004). Overall, the metabolic syndrome as a whole is accompanied by an 

increased risk of developing kidney stone disease (Jeong et al. 2011; Sakhaee et al. 2012), and 

the more traits of the syndrome that are present, the greater the risk (Kohjimoto et al. 2013; 

West et al. 2008).  

The renal stone composition of patients with metabolic syndrome was found to be mainly 

calcium oxalate; not surprising since most kidney stones usually consist of calcium oxalate 

(Kadlec et al. 2012). Recently, a direct association between NAFLD and urolithiasis was 

reported (Einollahi et al. 2013; Nam et al. 2016). The frequency of kidney stones in NAFLD 

patients was 19% higher than in those patients without NAFLD supporting NALFD as risk factor 

for renal stone formation (Nam et al. 2016). 

One study suggests that the severity of type II diabetes is an important risk factor for the 

development of kidney stones/of kidney stone disease (Weinberg et al. 2014). However, there 

is currently no known molecular link that could be responsible for the increased prevalence of 

kidney stone disease with regard to the metabolic syndrome and NAFLD.  
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1.6 Glyoxylate metabolism in mammals 

Recently, glyoxylate was identified as a plasma marker for type II diabetes, even before a 

diabetes diagnosis (Nikiforova et al. 2014). Glyoxylate is a highly reactive aldehyde of the 

intermediary metabolism that is generated mainly from glycolate, hydroxyproline and glycine 

in humans; oxidation of glyoxylate results in oxalate - a metabolic end product in mammals 

that is excreted via the kidneys (Salido et al. 2012). Endogenous oxalate synthesis mainly 

occurs in the liver (Holmes and Assimos 1998), but also erythrocytes were identified as small 

source of oxalate (Knight et al. 2016). The oxidization of glyoxylate is mainly catalysed by 

lactate dehydrogenase (LDH, Figure 1.3), which is abundant in the cytosol (Salido et al. 2012). 

 

 

Figure 1.3: Simplified illustration of the production and metabolism of glyoxylate in hepatocytes. Figure does 
not cover the entire glyoxylate metabolism. 

To limit oxalate production, the endogenous glyoxylate synthesis proceeds within 

peroxisomes and mitochondria. Within peroxisomes, glyoxylate can be produced from glycine, 

a reaction catalysed by D-amino acid oxidase, or from glycolate via hydroxyacid oxidase 1 

(HAO1) (Salido et al. 2012). However, the peroxisome can also import glyoxylate from the 

cytosol and mitochondria since its membrane is permeable to small mono- and divalent 

anions, such as glycolate and glyoxylate, especially due to the channel-forming protein PXMP2 

(Rokka et al. 2009).  

The peroxisomal detoxification of glyoxylate is catalysed by the alanine-glyoxylate 

aminotransferase (AGXT). This enzyme is abundant in hepatic peroxisomes and tolerates high 

glyoxylate concentrations without reduced or inhibited forward reaction (Cellini et al. 2007). 
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In mitochondria, the precursor of glyoxylate is hydroxyproline, which is metabolized via four 

enzymatic reactions to glyoxylate and pyruvate (Adams and Frank 1980). The endogenous 

source of hydroxyproline arises from collagen turnover, since hydroxyproline is not reused for 

collagen synthesis, but newly produced by the posttranslational modification of proline during 

its biosynthesis (Salido et al. 2012). The daily release of hydroxyproline upon collagen turnover 

is estimated at 240 – 420 mg, and leads to a daily formation of 140 – 240 mg glyoxylate (Knight 

et al. 2006). Dietary collagen represents an exogenous source of hydroxyproline (Phang et al. 

2001). Apart from the peroxisomal AGXT, the cytosolic and mitochondrial glyoxylate 

reductase/hydroxypyruvate reductase (GRHPR) is able to detoxify glyoxylate to glycolate in 

order to limit the oxalate production (Figure 1.3, Salido et al. 2012).The detoxification of 

glyoxylate and the limitation of oxalate formation are important since dysfunction of these 

processes can have severe outcomes such as primary hyperoxalurias as summarized below. 

Primary hyperoxalurias (PH) are rare inborn disorders of glyoxylate metabolism that lead to 

an excessive production of oxalate, which cause recurrent urolithiasis and nephrocalcinosis 

that injure the kidneys and can result in end stage kidney disease (ESKD) (Hoppe et al. 2009). 

The prevalence of PH is estimated to be 1 to 3 persons per million with an incidence rate of 1 

per 100,000 live birth each year in Europe (Cochat et al. 1995; Kopp and Leumann 1995; 

Woerden van et al. 2003). However, the estimated number of cases might be higher due to 

under diagnosis. There are three different types of PH. The most prevalent is PH1, which 

represents around 80% of all primary hyperoxaluria cases; the remaining 20% are diagnosed 

with either primary hyperoxaluria type 2 (PH2) or type 3 (PH3) (Salido et al. 2012). PH1 results 

from the inefficient and/or defective detoxification of glyoxylate by AGXT due to mutations in 

the AGXT gene (see section 1.7). PH2, like PH1, is an autosomal recessive disorder caused by 

mutations in the GRHPR gene, encoding the enzyme GRHPR (Cramer et al. 1999). More than 

50 mutations are known that lead to the loss of protein expression or loss of protein activity 

of GRHPR [1]. A result of the defective or inefficient GRHPR function is the accumulation of 

glyoxylate and hydroxypyruvate in the cytosol, which are converted to oxalate and glyceric 

acid by LDH (Hoppe et al. 2009). The increased oxalate levels cause recurrent nephrolithiasis 

and less frequently nephrocalcinosis. Overall, the outcome of PH2 is not as severe as for PH1 

and the disease rarely progresses to ESKD (Hoppe et al. 2009; Milliner et al. 2001; Salido et al. 

2012). PH3 was more recently identified and develops due to mutations in the HOGA1 gene 

(Belostotsky et al. 2010). HOGA encodes the mitochondrial enzyme 4-hydroxy-2-oxoglutarate 



   Introduction 

17 

aldolase (HOGA1), which catalyses the last step of the hydroxyproline breakdown by cleaving 

4-hydroxy-2-oxoglutarate into glyoxylate and pyruvate (Adams and Frank 1980). To date, 

more than 40 mutations in HOGA1 gene are reported [1]. It was suggested that in the absence 

of functional HOGA1, cytosolic aldolases transform 4-hydroxy-2-oxoglutarate into glyoxylate 

(Monico et al. 2011). Hitherto, there are no reports of ESKD arising from PH3, but there is 

evidence that PH3 becomes more frequent than PH2 (Salido et al. 2012). In addition to PH, 

secondary hyperoxaluria has also been reported, which is not due to genetic disorders. 

Instead, the high oxalate concentration observed in secondary hyperoxaluria can be the result 

of i) increased intake of oxalate rich diet or the abuse of oxalate precursors like vitamin C or 

ethylene glycol, ii) intestinal malabsorption due to chronic diseases, such as chronic 

inflammatory bowel disease or cystic fibrosis, iii) increased gut bacteria production, and iv) 

unknown reasons (Hoppe et al. 2003; Lorenzo et al. 2014). 

1.7 Alanine-glyoxylate aminotransferase 

The alanine-glyoxylate aminotransferase (AGXT; EC 2.6.1.44) catalyses the transamination of 

glyoxylate to glycine using alanine as amino group-donor (see Figure 1.4). During this project, 

a lipid-dependent transcriptional downregulation of AGXT was found, which prompted the 

further investigation of the enzyme.  

 

 

Figure 1.4: Enzymatic reaction catalysed by AGXT. Glyoxylate receives an amino group from alanine and 
pyruvate and glycine are produced. AGXT catalysed reaction is shifted to the products (Cellini et al. 2007). 

There are two isoenzymes known, namely AGXT1 and AGXT2, which were identified in rat liver 

approximately 40 years ago, and are localized in different cellular compartments (Noguchi et 

al. 1978). AGXT2 is found primarily in mitochondria; whereas, the cellular localization of 

AGXT1 is dependent on the species (Takada and Noguchi 1982). Even though AGXT1 and 

AGXT2 share the above-mentioned transamination reaction, AGXT1 is mainly responsible for 

glyoxylate detoxification (Rodionov et al. 2014). The intracellular distribution of AGXT1 is 

evolutionary dependent on the species’ diet and the major site of glyoxylate production 
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(Birdsey et al. 2004). Herbivores’ dietary precursor of glyoxylate is glycolate, which is oxidized 

in the peroxisome to glyoxylate. Therefore, AGXT1 is peroxisomal in herbivores. In contrast, 

the major source of glyoxylate in carnivores is hydroxyproline that is metabolized to glyoxylate 

within the mitochondria. Thus, in carnivores, AGXT1 is localized to the mitochondria. In 

omnivores (e.g. rodents), AGXT1 is located within the peroxisomes as well as in the 

mitochondria. In most humans, AGXT1 is located primarily in the peroxisomes if not 

mistargeted to the mitochondria by mutations (Birdsey et al. 2004; Danpure 1997). Since 

AGXT1 plays the major role in glyoxylate metabolism, it is hereafter referred to as AGXT.  

AGXT is a homodimeric enzyme composed of two units with 392 amino acid residues, and 

each monomer binds its cofactor pyridoxyl-5’-phosphate (PLP) via a Schiff base (Zhang et al. 

2003). In humans, the C-terminal of this protein contains a KKL type 1 peroxisomal targeting 

sequence type 1 (PTS1) that ensures the import of AGXT in peroxisomes via PTS1 receptor 

Pex5p (Motley et al. 1995). AGXT is encoded by the AGXT gene in humans and its coding 

sequence consists of eleven exons spread over 10 kB on chromosome 2q36-37 (Purdue et al. 

1991). Mutations of the gene resulting in a non-functional or mistargeted AGXT lead to the 

disease primary hyperoxaluria type 1 (PH1), first described in 1986 (Danpure and Jennings 

1986). So far, more than 200 mutations of AGXT are known that cause PH1 [1]. 

1.8 Calcium oxalate deposits in kidneys 

Mutations in the AGXT gene as well as traits of the metabolic syndrome increase the risk for 

calcium oxalate kidney stone formation, as described above in sections 1.5 and 1.6. The 

prevalence of kidney stones in the USA is approximately 8.8%, with men more prone to 

developing kidney stones than women (10.6% vs 7.1%), and obese individuals having a higher 

incidence of kidney stones compared to normal weight persons (11.2% vs 6.1%) (Scales et al. 

2012). Compared to 1994, the prevalence of kidney stones increased in both genders (men: 

6.3%, women: 4.1% (Stamatelou et al. 2003). Approximately 80% of the kidney stone consist 

of calcium oxalate and calcium phosphate (Coe et al. 2005).  

There are several mechanisms that potentially play a role in the development of calcium 

kidney stones, but urinary concentrations of calcium and/or oxalate are important factors 

(Evan 2010). The average daily excretion amount of oxalate ranges from 30 to 44 mg/d, with 

men excreting slightly higher amounts; urinary oxalate values equal or above 45 mg/d, 

corresponding to 500 µmol/d, are considered to be hyperoxaluric (Curhan et al. 2001). With 
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respect to body surface area, normal oxalate excretion is below 450 µmol/1.73 m² per day 

and hyperoxaluria is defined when more than 500 µmol/1.73 m² oxalate per day is excreted 

(Salido et al. 2012). The stone formation relies on the supersaturation of salts. This occurs 

when salt concentration of a solution is that high that it changes to the solid phase and 

precipitates. This situation in turn can be due to low urine volume or excessive excretion of 

oxalate, calcium or both ions (Evan 2010). Within the nephron, the functional subunit of the 

kidney, the concentrations of calcium and oxalate varies due to the reabsorption of water. As 

suggested by Robertson, the concentration of calcium and oxalate are highest in the 

descending limb of the loop of Henle within the nephron, and leading to the formation of 

calcium oxalate crystals. In addition, supersaturation of calcium and oxalate can also occur in 

the collection duct of the kidney due to final adjustment of water in the urine (Robertson 

2004). A schema of a nephron is depicted below (Figure 1.5). 

 

 

Altogether, this shows that metabolites excreted by the 

liver, e.g. oxalate, can affect the physiology of other 

organs, e.g. the kidney 

 

 

 

 

 

 

 

Figure 1.5 Schema of a nephron. This scheme depicts a long-looped 
nephron together with the collecting system. 1 = Renal corpuscle 
including Bowman's capsule and the glomerulus; 2 = Proximal 
convoluted tubule; 3 = Proximal straight tubule; 4 = Descending thin 
limb; 5 = Ascending thin limb; 6= Distal straight tubule (thick ascending 
limb); 7 = Macula densa located within the final portion of the thick 
ascending limb; 8 = Distal convoluted tubule; 9* = Connecting tubule of 
the juxtamedullary nephron that forms an arcade; 10 = Cortical 
collecting duct; 11 = Outer medullary collecting duct; 12 = Inner 
medullary collecting duct (Kriz and Bankir 1988). 
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1.9 Aim of the work 

NAFLD is a common liver disorder worldwide that is strongly associated with the metabolic 

syndrome, comprising obesity, insulin resistance, hypertension and dyslipidaemia. The 

pathogenesis of NAFLD is still incompletely understood, and in addition to an elevated risk of 

disease progression, NAFLD has systemic consequences, such as cardiovascular disease and 

chronic kidney disease. Fat accumulation in the liver may compromise hepatic metabolic 

functions, which in turn may not only affect the liver itself but also impact other organs. 

The major aim of the current project was to understand metabolic alterations upon lipid 

accumulation in the liver. For this purpose, the leptin deficient ob/ob mouse model was 

investigated and an in vitro model of steatosis was established to study the direct impact of 

lipid accumulation on the normal function of hepatocytes. Moreover, genome-wide gene 

expression alterations were explored to allow the identification of deregulated genes both in 

mouse and in human NAFLD. Affymetrix gene array analysis was performed from the ob/ob 

mouse and gene expression data from human NAFLD patients were obtained from publically 

available datasets. These datasets were the main components of a pipeline to identify 

steatosis-associated genes across species. Additionally, Affymetrix gene array analysis of the 

in vitro steatosis model was performed and integrated into the aforementioned pipeline. 

Based on this genomic approach, potentially interesting genes among the identified 

deregulated genes were selected for further studies. After validation of the observed gene 

expression alterations in additional and independent models, consequences of gene 

deregulation for liver metabolism were explored. 

Among the selected genes, the alanine-glyoxylate aminotransferase (AGXT) was found to be 

downregulated in mouse and human NAFLD and upon lipid accumulation in vitro. This liver-

specific enzyme plays a crucial role in glyoxylate detoxification, catalysing its conversion to 

glycine and avoiding excessive generation of oxalate. Downregulation of AGXT in the steatotic 

liver has not been described so far and may represent a risk factor for oxalate kidney stone 

formation in NAFLD. Therefore, the second part of this work focused on exploring the 

hypothesis that the downregulation of AGXT upon hepatic lipid accumulation represents the 

molecular link between NAFLD and calcium oxalate deposits in kidneys (Figure 1.6).  
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Figure 1.6: Illustration of working hypothesis. Hepatic steatosis leads to downregulation of AGXT, which in turn 
impairs glyoxylate detoxification and ultimately might result in high urinary oxalate levels, increasing the risk for 
kidney stones. 
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2. Materials and Methods 

2.1 Material 

2.1.1 Technical equipment 

Table 2.1: Equipment 

Equipment Company 

Autosampler MPS-2  Gerstel 

Balance EW, Kern 

Bunsen Burner IBS Fireboy Plus, Integra Biosciences 

Blot imager Vilber Fusion Fx7  Vilber Lourmat 

Casy cell Counter Roche 

Centrifuge with cooling function Biofuge Fresco, Heraeus 

Centrifuge with cooling function 5424R Eppendorf 

Centrifuge MiniSpin plus Eppendorf 

Concentrator Plus Eppendorf 

Confocal microscope (LSM) FV1000 Olympus 

CO2 incubator Binder 

Electrophoresis unit Mini-PROTEAN® BioRad 

Electrophoresis unit SE260  Höfer 

EVOQ™ Elite Triple Quadrupole Bruker 

Fume hood Waldner 

GC column DB-5MS, 25 m x 0.25 mm x 0.25µm Agilent 

GC-MS system GC 6890, MS 5973N Agilent 

LC system 1100er series Agilent 

LC Column: Hi-Plex-H (300 × 6.5 mm, 8 µm) Agilent 

Magnetic stirrer IKAMAG RCT Ikamag 

Microscope BX41 Olympus 

Microscope eclipse TS 100 Nikon 

Microscope Primo Vert Zeiss, Software ZEN from Zeiss 

Microwave oven Bosch 

MiSeq Illumina 

Modular tissue embedding center Thermo Fisher Scientific 

NanoDrop ND-1000 Thermo Fisher Scientific 

NMR-Spektrometer Avance III (600 MHz) Bruker 

pH meter Schott 

Pipets (10 μL, 2 µL, 100 µL, 200 µL, 1 ml, 5 ml) Eppendorf 

Pipet boy Integra 

Plate reader infinite M200 Pro Tecan 

Power pack HC BioRad 

Power pack P25T  Biometra 

Precision balance EW150-3M  Kern 

Precision balance ME235P Sartorius 

qPCR system ABI 7500 Applied Biosystems  
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Rocking Platform VWR 

Shaker KS 260 basic IKA 

Slide drying oven TDO Sahara Medite 

Sliding Microtome HM 450 Microm 

Sonicator sonoplus mini Bandelin 

Spin Tissue Processor STP 120 Thermo Fisher Scientific 

Sterile hood Hereaus 

Thermo cycler Tgradient Biometra 

Thermomixer Eppendorf 

Thermo shaker PHMT Grant-bio Keison 

Thermo shaker peqlab 

Transfer chamber fast blot B44 Biometra 

Transfer chamber Trans-Blot SD BioRad 

Vacuum pump Vacuubrand 

Vortex-Genie2 Bender & Hobein 

Water purification system Maxima Ultrapure Water ELG 

Water bath Labortechnik 

 

2.1.2 Consumables 

Table 2.2: Consumables 

Consumables Company 

Cell scraper (25 mm) Sarstedt 

Cover slips VWR 

Embedding cassettes Carl Roth 

Freezing container (Mr. Frosty) Thermo Fisher Scientific 

GeneChip® Human Genome U133 Plus 2.0 array Affymetrix 

GeneChip® Mouse Genome 430 2.0 Array Affymetrix 

Glass inserts, 200µL VWR 

Glass vials (1.5 ml -4 ml) VWR 

Metabolic cage for single mouse Tecniplast 

MicroAmp® Optical Adhesive Film Thermo Fisher Scientific 

MicroAmp® Optical 96-Well Reaction Plate Thermo Fisher Scientific 

Microscope slide SuperFrost Plus Thermo Fisher Scientific 

Minisart® syringe filters (0.45 µM) Sartorius 

Needle 26G BD bioscience 

NuPAGE®4 – 12% Bis-Tris Thermo Fisher Scientific 

Pestle and Microtube VWR 

Pipets  Eppendorf 

Pipet tips (filtered/not filtered) Sarstedt 

PVDF Membrane Perkin Elmer 

RNase-free Microfuge Tubes 1.5 ml Thermo Fisher Scientific 

Reaction tubes (0.5 - 50 ml) Sarstedt 

Screw cap with septum VWR 
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Serological pipets (5 ml, 10 ml, 25 ml) Sarstedt 

Syringe 1 ml BD bioscience 

Tissue culture flasks (75 cm², 175 cm²) Sarstedt 

Tissue culture plates (6-, 12-, 24, 96-well format) Sarstedt 

96-Well plates black GreinerBio 

96-Well plates transparent Sarstedt 

Whatman-Paper 3mm VWR 

 

2.1.3 Chemicals and dyes 

Table 2.3: Chemicals and dyes 

Chemicals/dyes Company 

Acetic acid Carl Roth 

Ammonium persulfate  Sigma-Aldrich 

Bafilomycin A Sigma-Aldrich 

Bodipy (493/503) Thermo Fisher Scientific 

Bovine serum albumin (BSA) Carl Roth 

Bovine serum albumin (BSA), fatty acid free Sigma-Aldrich 

Bromphenol blue Carl Roth 

Calcium chloride Carl Roth 

Chloroform Carl Roth 

Citric acid monohydrate Carl Roth 

Collagenase from Clostridium hystolyticum Sigma-Aldrich 

p-Coumaric acid Sigma-Aldrich 

Creatinine hydrochlorid Sigma-Aldrich 

4′,6-diamidino-2-phenylindole (DAPI) Thermo Fisher Scientific 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 

Dithiothreitol (DTT) Sigma-Aldrich 

Triethylene glycol diamine tetraacetic acid (EGTA) Carl Roth 

Entellan® Merck 

Eosin Y disodium salt Sigma-Aldrich 

Ethanol, absolute Carl Roth 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth 

Fetal Calf serum (FCS) Sera Plus  Pan-Biotech 

FluorPreserve reagent  Calbiochem 

Glucose Carl Roth 

L-Glutamine Sigma-Aldrich 

Glycerol Carl Roth 

Glycine Carl Roth 

Helium 5.0 Air Products 

HEPES Carl Roth 

Hydrochloric acid 32% Carl Roth 

Hydrogen peroxide 30% Merck 

L-Hydroxyproline ApplChem 
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Luminol Sigma-Aldrich 

Magnesium chloride Carl Roth 

Magnesium sulphate Sigma-Aldrich 

Methanol, HPLC grade Carl Roth 

Methyl-tert-butyl ether (MTBE) Merck 

Nonidet P-40 substitute (NP-40) Roche 

N-tert-Butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA) 

Sigma-Aldrich 

Oil Red O Sigma-Aldrich 

Oleic acid Sigma-Aldrich 

Oxalic acid (1,2-13C2, 99%) Cambridge Isotope Laboratories, Inc. 

Paraffin Histowax Surgipath paraplast Leica 

Paraformaldehyde 4% (PFA) Carl Roth 

Picric acid Sigma-Aldrich 

Potassium chloride Carl Roth 

Potassium dihydrogen phosphate Carl Roth 

2-Propanol Carl Roth 

Rhodamine Phalloidin conjugate Thermo Fisher Scientific 

Rotihistol® Carl Roth 

SDS pellets Carl Roth 

Sodium chloride Carl Roth 

Sodium deoxycholate Carl Roth 

Sodium glycolate  Thermo Fisher Scientific 

Sodium glyoxylate monohydrate Sigma-Aldrich 

Sodium hydrogen phosphate Carl Roth 

Sodium hydroxide pellets Carl Roth 

Tetramethylethylenediamine (TEMED) Carl Roth 

Toluene VWR 

Trioctylphosphine oxide (TOPO) Sigma-Aldrich 

Tris Carl Roth 

Tris-HCl Carl Roth 

TritonX-100 Sigma-Aldrich 

Tween20 Sigma-Aldrich 

Tween80 Sigma-Aldrich 

Vinblastine sulphate Sigma-Aldrich 

Xylol VWR 

 

2.1.4. Commercial buffers and reagents 

Table 2.4: Commercial buffers and reagents 

Buffer/reagent Company 

Acrylamide (30% (v/v))  Carl Roth 

Amino acid solution PAN-Biotech 

Anode-/Cathode-buffer concentrate A & K Carl Roth 
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Diethylpyrocarbonate treated (DEPC) water Thermo Fisher Scientific 

Duotrol® urine liquid level1 & 2 Biomed Labordiagnostik GmbH 

Ketamine 100 mg/ml Ratiopharm 

Mayer’s haemalaun solution Merck 

NuPAGE® MES SDS Running Buffer (20X) Thermo Fisher Scientific 

Phosphatase-Inhibitor-Cocktail II&III Sigma-Aldrich 

Precision Plus Protein Dual Colour standards BioRad 

Protease-Inhibitor-Cocktail  Sigma-Aldrich 

QIAzol Lysis-Reagent  Qiagen 

Rompun 2% Bayer Health Care 

Taqman Universal PCR Master Mix Thermo Fisher Scientific 

 

2.1.5 Prepared buffers and reagents 

Table 2.5: Prepared buffers and reagents for gel electrophoresis and Western blotting 

Buffer Compounds Concentration 

Anode buffer Buffer concentrate A 

Methanol 

in ultrapure water 

10% 

20% 

 

APS solution Ammonium persulfate 

in ultrapure water 

10% (w/v) 

 

Blocking solution BSA 

in TBS-T 

5% (w/v) 

Cathode buffer Buffer concentrate K 

Methanol 

in ultrapure water 

10% 

20% 

 

Chemiluminescent solution Luminol 

p-Coumaric acid 

in 0.1 M Tris  

2.5 mM 

0.2 mM 

Loading buffer (5x) Bromophenol blue 

DTT  

Glycerol 

SDS 

Tris-HCl  

0.05% (w/v) 

0.25 M 

50% (v/v) 

5% (w/v) 

0.225 M 

PBS (10x) KCl 

KH2PO4 

Na2HPO4 

NaCl 

in ultrapure water,  

27 mM 

18 mM 

100 mM 

1.37 M 

RIPA buffer Tris-HCl 

NaCl  

NP-40  

Sodium deoxycholate  

SDS 

50mM (pH 7.5) 

150 mM 

1% 

0.5% 

0.5%  
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Running buffer (10x) Glycine 

SDS 

Tris 

in ultrapure water, pH 8.3 

1.92 M 

1% (w/v) 

0.25 M g 

 

SDS solution SDS 

in ultrapure water 

10% (w/v) 

Separation buffer Tris 

in ultrapure water,  

pH adjusted to 8.8 

3 M 

Stacking buffer Tris 

in ultrapure water,  

pH adjusted to 6.8 

0.47 M 

 

Stripping buffer Glycine 

SDS 

Tween 20 

in ultrapure water,  

pH adjusted to 2.2 

0.2 M 

0.1% (w/v) 

1% (v/v) 

TBS (10x) NaCl  

Tris 

in ultrapure water, pH adjusted to 7.4 

1.5 M 

0.5 M 

TBS-T 10x TBS 

Tween20 

10% (v/v) 

0.1% (v/v) 

 

Table 2.6: Prepared buffers for IHC 

Buffer Compounds Concentration 

Citrate buffer Citrate 1xH2O 

In ultrapure water, pH adjusted to 6 

0.01 M 

Haematoxylin Mayer’s haemalaun  

In ultrapure water 

20% (v/v) 

 

Table 2.7: Prepared buffers for perfusion 

Buffer Compounds Amount 

Collagenase buffer 

 

Amino acid solution 

CaCl2 solution (19 g/l CaCl2* 2 H2O) 

Collagenase Type 1 

Glucose solution (9 g/l) 

Glutamine (7 g/ml) 

HEPES (60 g/l) (pH 8.5) 

KH buffer 

30 ml 

10 ml 

100 mg 

155 ml 

2.5 ml 

25 ml 

25 ml 

EGTA buffer 

 

Amino acid solution 

EGTA solution (47.5 g/l) 

Glucose solution (9 g/l) 

Glutamine (7 g/l) 

60 ml 

1.6 ml 

248 ml 

4 ml 
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HEPES (60 g/l) (pH 8.5) 

KH buffer 

30 ml 

30 ml 

KH buffer 

 

KCl 

KH2PO4 

NaCl 

Filled to 1 l with ultrapure water 

Adjust pH to 7.4 

1.75 g 

1.6 g 

60 g 

 

Suspension buffer 

 

Albumin Fraction V 

Amino acid solution 

CaCl2 solution (19 g/l CaCl2* 2 H2O) 

Glucose solution (9 g/l) 

Glutamine (7 g/ml) 

HEPES (60 g/l) (pH 7.6) 

KH buffer 

MgSO4 solution (24.6 g/l MgSO4  

* 7 H2O) 

400 mg 

30 ml 

1.6ml 

124 ml 

2 ml 

20 ml 

20 ml 

0.8 ml 

 

Table 2.8: Commercial assays and kits 

Kits Company 

BCA Protein assay Thermo Fisher Scientific 

CellTiter-Blue® assay Promega 

DAB Peroxidase substrate kit Vector Laboratories 

High-Capacity cDNA Reverse Transcription Kit Thermo Fisher Scientific 

Triglyceride quantification assay Abcam 

VECTASTAIN Elite ABC Kit (rabbit) Vector Laboratories 

Von Kossa Kit Abcam 

 

2.1.6 Cell lines 

HepG2 cells 

This adherent cell line was derived from liver tissue of a 15–year-old male Caucasian who 

suffered from a well-differentiated hepatocellular carcinoma in 1983. It was purchased from 

ATCC (product: ATCC®HB-8065™). 

Huh7 cells 

The Huh7 cell line was generated from a well differentiated hepatocellular carcinoma of a 57-

year-old Japanese male in 1982 (Nakabayashi et al. 1982). This cell line was a gift from an 

internal collaboration partner.  
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For cell line authentication, a frozen aliquot of each cell line was sent to the Leibniz institute 

DSMZ-German Collection of Microorganisms and Cell Cultures. The identity was confirmed for 

both cell lines. 

2.1.7 Cell culture reagents 

Table 2.9: Medium and additives 

Cells/cell lines Medium Company 

Primary mouse William’s E medium PAN -Biotech 

hepatocytes + Dexamethasone (100 nM) Sigma-Aldrich 

 + Gentamycin (10 μg/ml) PAN-Biotech 

 + Insulin (ITS) 100x (2 ng/ml) Sigma-Aldrich 

 + Penicillin/Streptomycin(100 U/ml) PAN-Biotech 

 + Stable L- Glutamine (2 mM) PAN-Biotech 

 (+ Sera plus 10% for attaching) PAN-Biotech 

HepG2 Dulbecco’s Modified Eagle Medium (DMEM), 

4.5 g/l Glucose 

PAN-Biotech 

 + Sera Plus (10%) PAN-Biotech 

 + Penicillin/Streptomycin (100 U/ml; only for cultivation, 

not during experiments) 

PAN-Biotech 

Huh7 Dulbecco’s Modified Eagle Medium (DMEM), 

4.5 g/l Glucose 

PAN-Biotech 

 + Sera Plus (10%) PAN-Biotech 

  + Penicillin/Streptomycin (100 U/ml; only for cultivation, 

not during experiments) 

PAN-Biotech 

 

Table 2.10: Additional cell culture supplies 

Reagents Company 

Acetic acid glacial Carl Roth 

Casyton Roche 

Collagen rat tail lyophilised  Roche 

DMEM10x, 1 g/l glucose PAN-Biotech 

DMSO Sigma-Aldrich 

Collagen rat tail lyophilised  Roche 

Lipofectamine RNAiMAX Life technologies 

OptiMEM Life technologies 

10xPBS See Table 2.5 

Trypan blue Sigma-Aldrich 

Trypsin 0.05% EDTA Pan-Biotech 
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2.1.8 Laboratory mice 

Table 2.11: Mice 

Mouse Gender Age at arrival  Company 

Lepob/Lepob & Lepob/+  

male 

 

8 weeks 

 

Janvier labs 

 

Leprdb/Leprdb & Leprdb/+, 

C57BL/6N 

 

Table 2.12: Mouse feed 

Reagents Company 

Pellet standard diet R/M-H 10-mm Ssniff 

Powder standard diet R/M-H Ssniff 

Western diet (containing 45% kcal fat, 20% kcal 

fructose and 2% cholesterol) 

Research Diets Inc.,  

Catalogue-number D09100301 

 

2.1.9 Antibodies 

2.1.9.1 Primary antibodies  

Table 2.13: Primary antibodies for Western blotting and immunohistochemistry 

Antibody Host Cat#/Company 

anti Agxt Rabbit HPA035370, Sigma-Aldrich 

anti LC3 Rabbit #2775, Cell signalling 

anti p62 Mouse ab56416, Abcam 

anti glutamine-synthetase Rabbit G2781, Sigma-Aldrich 

anti α-Tubulin  Mouse sc-8035, Santa Cruz 

 

Table 2.14: Primary antibodies for immunofluorescence 

Antibody Host Cat#/Company 

anti DPPIV Goat AF954, R&D systems 

anti α-Tubulin Mouse T9026, Sigma-Aldrich 

 

2.1.9.2 Secondary antibodies  

Table 2.15: Secondary antibodies for Western blotting 

Antibody Host Cat#/Company 

anti mouse HPR linked Horse #7076, Cell Signaling 

anti rabbit HPR linked Goat #7074, Cell Signaling 
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Table 2.16 Secondary antibodies for immunofluorescence 

Antibody Host Cat#/Company 

anti goat Alexa fluor® 647 Donkey #705606147, Jackson Immuno Research 

anti mouse Alexa fluor® 647 Donkey #715606151, Jackson Immuno Research 

 

2.1.10 Taqman gene expression assays 

Table 2.17: Taqman gene expression assays (Thermo Fisher Scientific) 

Target gene Mouse Human 

Agxt Mm00507980_m1 Hs00163584_m1 

Eif2a Mm01289723  

Gapdh 4352932E 4352934E 

Grhpr Mm00519119_m1 Hs00201903_m1 

Hao1 Mm00439249_m1 Hs00213909_m1 

UBC  Hs00824723_m1 

 

2.1.11 Small interfering RNA (siRNA) 

Table 2.18: Small interfering RNA 

Target Assay ID Company 

AGXT s1189 

Thermo Fisher Scientific 
AGXT s223463 

AGXT s223464 

Non sense (control) AM4635 
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2.2 Methods 

2.2.1 Cultivation of cell lines  

HepG2 cells and Huh7 cells were incubated under sterile conditions at 37 °C and 5% CO2. The 

atmosphere was saturated with aqueous vapour. Both cell lines were cultured in Dulbecco’s 

modified eagle media (DMEM) with 4.5 g/l Glucose and 10% sera Plus (full media). Twice to 

three times per week, the cell lines were sub-cultured to guarantee constant growth. 

Therefore, only sterile material and solutions were used and all working steps were performed 

in a laminar flow cabinet. First, the medium was removed from the tissue flask and the cell 

monolayer was carefully washed with 1xPBS. Next, trypsin-EDTA was added and the flask was 

placed for 5-7 min in the warm incubator to accelerate the detachment of the cells. 

Afterwards, Huh7 cells were resuspended in fresh full medium and plated in a new culture 

flask in a 1/3 to 1/6 dilution. HepG2 cells were resuspended in fresh full media, transferred to 

a 50 ml tube and centrifuged for 5 min at 64xg. The medium supernatant was aspirated and 

the HepG2 cell pellet was carefully but thoroughly resuspended in 1 ml fresh medium to 

separate individual cells. Nine ml full media was added and the cells were re-seeded with a 

1/3 to 1/6 dilution in a new tissue flask. This additional centrifugation was necessary since 

HepG2 cells tend to grow in cell “islands” and it was difficult to obtain a single cell suspension. 

These cells did not form a real monolayer in contrast to Huh7 cells. 

Before cells were seeded for experiments in plates, they were counted either with the Casy 

counter or with the Neubauer counting chamber. For the latter method, trypan blue staining 

was used to determine the viability. 

2.2.1.1 Freezing and thawing of cell lines 

Cell lines can be permanently stored in liquid nitrogen without aging (Lindl and Gstraunthaler 

2008). Therefore, adherent cells were detached as mentioned above. After resuspension in 

fresh full media, the cell suspension was transferred to a tube and centrifuged for 5 min at 

64xg. Next, the medium was removed and the cell pellet was resuspended in an appropriate 

volume of sera plus containing 10% DMSO to avoid ice crystal formation. 1 ml aliquots were 

filled into cryo vials, placed in a freezing container and stored at -80 °C for several days. The 

freezing container was filled with 2-propanol and provided a consistent cooling rate of 
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1 °C/min, which was required for a successful cryo preservation. Afterwards, the pre-frozen 

cells were transferred into the liquid nitrogen tank for long-term storage.  

For thawing, the cryo vial was placed in a water bath of 37 °C to quickly defrost the cell 

suspension. When only a small frozen core was left, the cells were transferred into a 15 ml 

tube containing 8 ml pre-warmed fresh full media. The cryo vial was rinsed with 1 ml full media 

which was then added to the 15 ml tube. The cells were centrifuged for 5 min at 64xg and the 

DMSO containing media was aspirated. The pellet was resuspended in 12 ml full media and 

the cells were seeded in a T75 flask.  

2.2.1.2 Transient inhibition of gene expression via RNA interference 

RNA interference is a cellular mechanism to inhibit the expression of a specific gene via 

degradation of messengerRNA by double-stranded RNA (Fire et al. 1998). In this thesis, small 

interfering double stranded RNA (siRNA) was used to reduce the expression of AGXT in HepG2 

cells. Therefore, three different short oligonucleotide sequences binding specifically to 

different exons of the AGXT gene were used in combination with lipofectamine RNAiMAX. 

Scrambled siRNA, which did not bind specifically was used as a negative control.  

All siRNA experiments were performed in a 6-well plate and the reverse transfection method 

was applied. For the reverse transfection, the complex of lipofectamine RNAiMAX and siRNA 

is firstly allowed to form in a well before cells are added. Therefore, 500 µL OptiMEM were 

pipetted to each well and 10 nmol siRNA was added. After gentle shaking, 5 µL lipofectamine 

RNAiMAX was added and left for 20 to 30 min to form liposomal siRNA complexes. In the 

meantime, cells were trypsinised, centrifuged and counted. Depending on the length of the 

experiment, appropriate cell densities between 1x105 and 2.5x105 were added to each well. 

The transfection medium was replaced by full media after 24 h. The quality of AGXT 

knockdown was checked every time at the RNA or protein level.  

2.2.2 Housing conditions of mice 

Mice were bought at an age of eight weeks from Janvier Labs, and allowed to acclimatise for 

one week. They had access to water and feed ad libitum and were kept under a 12 h light – 

12 h dark cycle. The performed experiments were approved by the animal welfare authority. 

Mice were handled according to the Principles of Laboratory Care and considering the 
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recommendations of the Society of Laboratory Animal Science (Gesellschaft für 

Versuchstierkunde, GV-SOLAS, Germany). 

2.2.3 Isolation and cultivation of primary hepatocytes 

2.2.3.1 Hepatocytes isolation 

2.2.3.1.1 Mouse hepatocytes 

The method for the isolation of primary hepatocytes from a mouse liver was based on a two-

step perfusion (Seglen 1976). With this technique, the whole liver is converted to a suspension 

of viable hepatocytes. The liver perfusion proceeded under physiological conditions of the 

mouse and usually yielded hepatocytes with a viability above 90%. To obtain cells, the mouse 

was narcotised with an intraperitoneal injection of Rompun® (25-40 mg/kg) and ketamine (50-

80 mg/kg). The anaesthesia was controlled by testing the pain sensitivity via the pedal reflex. 

Next, the mouse was fixed in a dorsal position on a grid table and the abdominal cavity was 

opened longitudinally. The vena cava was incised and a blunted needle was inserted, which 

was connected to a flexible tube that passed through a pump and ended in the appropriate 

buffer. First, the liver was perfused with pre-warmed EGTA buffer at a flow rate of 9 ml/min 

for 10 to 15 min to remove the blood and Ca2+ dependent adhesion factors. If the needle was 

placed correctly, the liver would lose its red-brown colour instantly. Next, EGTA buffer was 

exchanged for collagenase buffer (37 °C) to digest the extracellular matrix and to reduce the 

cell-cell contacts. Again, a flow rate of 9 ml/min was applied for 10 to 15 min depending on 

the collagenase activity. This perfusion step was deemed successful and thus stopped when 

the liver became soft and lustrous. The liver was excised carefully and taken out with forceps 

at the thoracal blood vessels. It was placed in a petri dish filled with suspension buffer and 

transferred into a laminar flow cabinet. Under sterile conditions, the liver capsule was opened 

and the liver cells were released into the suspension buffer supported by shaking the capsule 

gently within the buffer. This cell suspension was filtered through a 100 µm cell strainer and 

transferred to a 50 ml tube. Next, the cell suspension was centrifuged for 5 min at 4 °C and at 

50xg to roughly remove non-parenchymal cells (NPC) from hepatocytes. NPC containing 

supernatant was removed and the hepatocyte pellet was resuspended in 10 ml suspension 

buffer by gently inverting the tube several times. The hepatocytes were placed on ice and an 

aliquot was diluted with the suspension buffer before being diluted with trypan blue solution 

(1:2). The stained cell suspension was pipetted into each chamber of the Neubauer counting 
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chamber. The amount of viable and dead blue stained cells were counted and the viability 

calculated. 

2.2.3.1.2 Human hepatocytes 

Primary human hepatocytes were isolated from patients undergoing liver surgery in the 

cooperation clinics: Charité Berlin and the university hospitals in Munich and in Regensburg. 

Hepatocytes of the latter mentioned hospitals were bought from the company Hepacult. 

Before the liver resection was performed, informed consent of each patient was obtained. 

The hepatocytes were isolated with the two-step isolation procedure as described above. 

Isolated hepatocytes were transported as a suspension on ice overnight from the clinics to our 

laboratory. Upon arrival, the hepatocytes were carefully resuspended in William’s E medium 

and the cells were counted with the Neubauer counting chamber using trypan blue to 

determine the viability.  

2.2.3.2 Cultivation of primary mouse hepatocytes 

Primary mouse hepatocytes were cultured under sterile conditions at 37 °C and 5% CO2 within 

aqueous saturated vapour. In this thesis, the primary mouse hepatocytes were cultured in a 

collagen coated well with a thicker layer of collagen on top. 10 mg rat tail collagen was 

dissolved in 40 ml 0.2% acetic acid for the coating or in 9 ml for the thick layer at 4 °C overnight 

to generate a 250 µg/ml and 1.1 mg/ml collagen solution, respectively. Next, the required cell 

culture dish was rinsed with 250 µg/ml collagen solution and left to dry for several hours or 

overnight inside the laminar flow. Before cells were added, the monolayer was washed three 

times with William’s E medium without additives to increase the pH of the collagen layer. After 

that, William’s E medium containing all additives (full media) and 10% sera plus was pipetted 

into the wells and the appropriate number of freshly isolated hepatocytes was added (Table 

2.19). The cells were evenly distributed by gently shaking the plate, which was then placed in 

the incubator for 3 h for attachment. The second collagen layer was prepared on ice by mixing 

1 part of 10x DMEM and 9 parts of 1.1 mg/ml collagen solution for a concentration of 1 mg/ml 

collagen. This mixture was neutralised with 1 M NaOH which was indicated by the colour 

change of the solution from yellow to pink. Afterwards, the attached hepatocytes were 

carefully washed with pre-warmed William’s E medium to remove dead and non-attached 

cells before being covered with the thick collagen layer. The appropriate volume for the 

second layer was added (Table 2.19) and the plate was kept in the incubator to polymerise for 
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45 min. After successful polymerisation, William’s E medium with additives (full media) was 

added. 

Table 2.19: Conditions for primary hepatocytes cultivation 

Plate Cell number 1 mg/ml collagen  William’s E medium &additives 

6-well plate 850000 cells/well 350 µl 2 ml 

12-well plate 400000 cells/well 200 µl 1 ml 

24-well plate 200000 cells/well 100 µl 0.5 ml 

 

2.2.4 Collection of liver tissue and kidneys from mice 

Liver tissue from mice was collected to conduct RNA and protein analysis, as well as 

triglyceride quantification and histological stainings in order to find differences between the 

lipid-loaded liver and the normal liver. Mice were anaesthetised with an intraperitoneal 

injection of Rompun® (25-40 mg/kg) and ketamine (50-80 mg/kg), with the obese mice 

requiring a higher dose than the lean controls. After the mice were fully narcotised (see 

above), they were fixed in a dorsal position on a surgical table and the abdominal cavity was 

opened longitudinally. The liver was excised and weighed before washing in 1xPBS in a petri 

dish. One liver lobe was placed in a tissue cassette in 4% paraformaldehyde (PFA) for staining 

analysis. The remaining liver lobes were dissected in small sections and snap-frozen in liquid 

nitrogen. Those liver pieces were stored at -80 °C until RNA isolation or protein and 

triglyceride extraction were performed. If required, both kidneys were carefully excised after 

liver collection and placed within tissue cassettes in 4% PFA for Pizzolato staining (see 

2.2.18.4). 

2.2.5 24 h urine collection 

To analyse the daily excreted amount of oxalate of mice, 24 h urine collections with metabolic 

cages for a single mouse were conducted on at least two consecutive days. One mouse was 

placed in one metabolic cage and had free access to water and feed powder. The excreted 

urine was collected in a small tube filled with 35 µL 6 M HCl to acidify the urine directly. The 

acidification was necessary to avoid the conversion of ascorbic acid to oxalic acid and to 

prevent bacterial growth. The daily uptake of water and food was recorded and the mice were 

weighed before and after the time in the metabolic cage. Usually, a weight loss of not more 

than 10% was consistently observed. Daily excreted urine was transferred to a tube and 

centrifuged for 10 min at 179xg and room temperature to remove feed powder. The urinary 
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supernatant was aliquoted and stored at -80 °C for further analysis. The daily urine samples 

of each mouse were analysed separately before an average of the excreted compounds in the 

urine per mouse was calculated. 

2.2.6 Gene expression analysis 

2.2.6.1 RNA isolation 

RNA from cells and liver tissue was isolated using QIAzol reagent (QIAgen) for phenol-

chloroform extraction. QIAzol consists of guanidinium thiocyanate and phenol, which lyses 

cell membranes and inhibits RNases (Chomczynski and Sacchi 1987). Snap frozen liver sections 

were homogenised in 1 ml QIAzol by a pestle and sonicated (50% power, 30 s, 5 s pulse, 2 s 

break) while kept on ice. Cells, cultivated in 6 well plate, were placed on ice, the medium 

supernatant was aspirated and the cells were lysed in 1 ml QIAzol. After scraping, the cell 

lysates were transferred to 2 ml-reaction tubes and sonicated on ice as mentioned above. 

Moreover, 1-5 million of freshly isolated mouse or human hepatocytes were resuspended in 

1 ml QIAzol and sonicated in the same way as described before. 

Subsequently, 200 µL chloroform were added to each reaction tube and the samples were 

shaken thoroughly for 20 s. To improve the phase separation, the samples were incubated for 

several minutes at room temperature before centrifuged at 4 °C, 12000xg for 15 min. The 

upper aqueous RNA containing phase was transferred to a reaction tube containing 500 µL 2-

propanol to precipitate the RNA. The samples were incubated at room temperature for 10 min 

followed by a 15 min centrifugation step at 12000xg and 4 °C. The RNA pellet was washed 

twice: first, with 850 µL 100% ethanol and after a 5 min centrifugation at 4 °C and 10000xg 

and second, with 850 µL 75% ethanol. The supernatant was completely removed and the RNA 

pellet was air-dried for several minutes. The RNA was dissolved in 15-100 µL DEPC-treated 

water, depending on the size of the pellet, and its concentration was determined 

photometrically with the Nanodrop2000 (Thermo Fisher Scientific). RNA samples were stored 

at – 80 °C until further analysis. 

2.2.6.2 cDNA synthesis 

RNA was converted to cDNA prior to use in real-time polymerase chain reaction (PCR) for gene 

expression analysis. The high capacity cDNA reverse transcription kit (Applied Biosystems) was 

used to reversely transcribe the RNA into single stranded cDNA. 500 ng – 2 µg RNA were mixed 
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with appropriate volumes of 10x RT-Buffer, 10x random primers, 25x dNTP mix and reverse 

transcriptase. The total volume of this reaction mix was adjusted to 20 µL with DEPC water. 

The chosen conditions of the thermo cycler (Tgradient, Biometra) are listed in Table 2.20. 

Table 2.20: Thermo cycler programme to transcribe RNA into cDNA 

Step Temperature Time 

Incubation 25 °C 10 min 

Reverse transcription 37 °C 120 min 

Inactivation 85 °C 5 min 

 4 °C ∞ 

 

All cDNA samples were diluted with DEPC-water to a final concentration of 10 ng/µL and 

stored at -20 °C. 

2.2.6.3 Quantitative real-time Polymerase Chain Reaction (qPCR) 

Quantitative real-time PCR is a sensitive method to detect and quantify differences in gene 

expression of a target gene. This technique is based on conventional PCR which is 

characterised by the annealing and elongation of a primer bound to a specific target sequence 

of a single stranded DNA until the complementary strand is completed. To quantify the 

produced DNA with real-time PCR, a fluorescent signal is measured continuously whose 

intensity correlates with the amount of amplified PCR product (Higuchi 1993). In this work, 

TaqMan probes were applied that hybridised to the DNA template strand between the 

primers, and carry a fluorescent reporter on the 5’-end and a quencher on the 3’- end. Due to 

this close proximity there is a fluorescence resonance energy transfer (FRET) between the 

quencher and the reporter which suppresses the fluorescent signal. The used DNA polymerase 

has a 5’-3’ exonuclease activity that results in a separation of the TaqMan probes from the 

template strand which are cleaved into single nucleotides (Holland et al. 1991). Hereby, the 

fluorescent reporter and quencher are spatially separated and a fluorescent signal occurs. The 

intensity of the fluorescent signal is proportional to the amplified DNA concentration. The 

fluorescence is illustrated as a function of time and so-called Ct values are set. Ct values 

describe the number of cycles necessary until the fluorescent signal crosses a threshold and 

enters the exponential phase.  

All gene expression measurements were performed with a 7500 Real-Time PCR System 

(Applied Biosystems). 25 ng cDNA was mixed with 2x universal mastermix and 20x specific 
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TaqMan probe. The total volume per reaction was adjusted to 20 µL with DEPC water. All 

samples were measured in technical duplicates and for each probe water instead of cDNA was 

used as a negative control. The standard conditions for the amplification are listed in 

Table 2.21. 

Table 2.21: Parameters for standard amplification 

Step Temperature Time Cycles/Repetitions 

 50 °C 2 min 1 

Activation of DNA polymerase 95 °C 10 min 1 

DNA denaturation 95 °C 15 s 
40 

Annealing and Elongation 60 °C 1 min 

 

The gene expression levels were calculated with the 2-ΔΔCt method (Livak and Schmittgen 

2001). This is a relative quantification method that compares the expression levels of the gene 

of interest (GOI) and of a housekeeping gene (HKG) of the test sample in relation to a control 

situation (= calibrator). So-called housekeeping genes are endogenous control genes whose 

expressions do not alter under stressed or changed conditions. In this work, Gapdh, Eif2a or 

UBC were applied as endogenous controls and their expression levels were used to normalise 

the expression of the gene of interest (ΔCt = CtGOI - CtHKG). This ΔCt first needs to be calculated 

for a test (e.g. steatotic) sample (ΔCt1) and separately for a control (e.g. non-steatotic) sample 

(ΔCt2). Afterwards, the ΔCt values of the test samples and the control samples were compared 

(ΔΔCt = ΔCt1 – ΔCt2) to find differences due to test conditions. In order to see the differences 

between test and control samples easily, the calculation 2- ΔΔCt was applied. The 2- ΔΔCt value of 

control samples were 1; if the 2-ΔΔCt value of the test sample is greater than 1, this is an 

indication of an upregulation of the gene of interest compared to the control sample and vice 

versa for 2- ΔΔCt values below 1. 

2.2.6.4 Affymetrix gene array analysis 

For global gene expression analysis, RNA samples of ob/ob and ob/+ mouse livers as well as of 

HepG2 cells incubated with 0.5 mM OA/BSA for 24 h, 72 h or 5 days and corresponding full 

media controls were analysed by Affymetrix gene array. Therefore, extracted RNA (100 ng/µl) 

were sent to the Gene Expression Affymetrix Facility at the Center for Molecular Medicine in 

Cologne. Briefly, the RNA sample was prepared as follows: RNA was converted to cDNA by 

reverse transcription and subsequently transcribed reversely in vitro to biotinylated cRNA 

using the GeneChip® IVT labeling kit. Afterwards, the biotinylated cRNA was purified and 
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fragmented using Affymetrix’s protocol. Next, cRNA was hybridised to the corresponding array 

chip: GeneChip® Mouse Genome 430 2.0 array for mouse RNA and GeneChip® Human 

Genome U133 Plus 2.0 array for human RNA. After hybridisation, the samples were washed 

and stained with streptavidin-phycoerytherin. With scanning, the fluorescent signal of 

phycoerytherin was measured.  

Biostatistical analysis of the gene array data was performed by our collaborators at the faculty 

of statistics at the Technical University of Dortmund, Germany. Briefly, the gene expression 

array data were normalised using the Robust Multi-array Average algorithm (Irizarry et al. 

2003). The calculation of the differential gene expression was conducted with the statistical 

software R package limma (Smyth et al. 2005); data from non-steatotic ob/+ mouse livers and 

full media treated HepG2 cells, respectively, were used as reference. The p-values were 

adjusted for multiple testing with the method of Benjamini and Hochberg (Benjamini and 

Hochberg 1995). 

2.2.7 Protein analysis 

2.2.7.1 Protein extraction  

Proteins were extracted from liver tissue, as well as from primary hepatocytes and cell lines. 

Tissue and cells were lysed with RIPA lysis buffer containing 1:100 protease inhibitor and 

phosphatase cocktail II and III. Depending on the source material, slightly different procedures 

were applied: 

a) Snap frozen liver tissue: 1 ml RIPA buffer was added to a piece of tissue on ice. This 

was homogenised with a pestle and sonicated. After 20 min incubation on ice, the 

homogenates were centrifuged for 10 min at 4 °C and 13000 rpm. The supernatants 

were collected in new tubes. 

b) Primary cell culture: 6 well plates were placed on ice and medium was aspirated. The 

cells were carefully rinsed with 1xPBS before 0.3 - 0.5 ml RIPA buffer was added to 

each well. Cells were scraped and collected in a 1.5 ml tube. After sonification, lysates 

were incubated for 20 min on ice before they were centrifuged for 10 min at 

13000 rpm and 4°C. The supernatants were transferred to new tubes.  
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c) Cell culture: 6 well plates were placed on ice and medium was aspirated. The cells 

were carefully rinsed with 1xPBS. Depending on the confluency of the monolayer, 75-

200 µL RIPA buffer was added to the cells on ice. After some minutes on ice, the cells 

were scraped and transferred to a 1.5 ml tube followed by the sonification step.  

All protein lysates were stored at -20 °C or -80 °C. 

2.2.7.2 Protein quantification 

The bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific) was used to quantify the 

protein content of the lysates. This assay combines the well-known Biuret reaction, which 

describes the reduction of Cu2+ to Cu+ by peptide bonds under alkaline conditions, and the 

sensitive colorimetric detection of Cu+ with BCA. Two BCA molecules and one Cu+ molecule 

form a purple chelate complex with an absorbance at 562 nm that is proportional to the 

protein concentration (Smith et al. 1985). 

Depending on the expected protein concentration, the protein lysates were diluted with 

1xPBS before measurement. 5 µL of the (diluted) sample were mixed with 195 µL BCA working 

reagent, consisting of 49 parts of solution A and 1 part of solution B in a well of a 96 well plate. 

A standard curve of bovine serum albumin (BSA), ranging from 0 µg/ml to 2000 µg/ml, was 

prepared the same way. Both the samples and each BSA standard were set up in duplicates. 

The plate was incubated for 30 min at 37 °C before the absorbance at 562 nm was measured 

in a plate reader (Infinite M200 Pro, Tecan). Based on the standard curve, the protein 

concentrations of the samples were calculated. 

2.2.7.3 Western blot 

2.2.7.3.1 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-Polyacrylamide gel electrophoresis is a widely-used technique for the analysis of proteins. 

Protein mixtures are separated in a gel in an electric field according to their electrophoretic 

mobility which is dependent on weight and charge. The anionic detergent sodium dodecyl 

sulphate (SDS) linearises proteins and covers their charge negatively (Shapiro et al. 1967). 

Hereby, the electrophoretic mobility is only dependent on the weight, not the charge of the 

proteins since the charge/weight ratio remains constant.  
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Gel preparation 

The gels used for SDS-PAGE were either freshly prepared or bought (Thermo Fisher Scientific). 

Gels were cast using the Mini-PROTEAN Tetra electrophoresis system (BioRad) following the 

manufacturer’s instructions. Two 1.5 mm thick 10% separation gels consisted of 6.4 ml 

ultrapure water, 5.28 ml acrylamide solution (30% v/v), 4 ml separation buffer, 160 µL 10% 

(w/v) SDS solution, 6.4 µL TEMED and 160 µL 10% (w/v) APS solution. These compounds were 

mixed thoroughly and cast between two glass plates within a vertical frame. To avoid 

oxidation and evaporation, each gel was overlaid with 1 ml of 2-propanol. After the gels were 

completely polymerised, the 2-propanol was removed and the stacking gels were cast on top. 

Two stacking gels were prepared using 4.8 ml ultrapure water, 1 ml acrylamide solution (30% 

v/v), 0.8 ml stacking buffer, 65 µL 10% (w/v) SDS solution, 5 µL TEMED and 100 µL 10% (w/v) 

APS solution. Directly after casting the stacking gels, combs were added to form loading wells. 

These gels were stored in a humid bag at 4 °C for a maximum of 1 week. Small-size proteins, 

like LC3, were analysed with gradient polyacrylamide gels (4 – 12% BisTris) from NUPAGE 

(Thermo Fisher Scientific). 

Gel electrophoresis 

Equal amounts of each sample’s protein were mixed with 5 x loading buffer and denaturated 

at 95 °C for 5 min. The loading buffer comprised dithiothreitol (DTT) to reduce disulphide 

bonds of the proteins for a better protein separation during electrophoresis. In the meantime, 

the gels were fit in their chambers and filled with 1 x running buffer. Denaturated protein 

samples and 4 µL of Precision Plus Protein Dual Colour standard (BioRad) were added to the 

wells of the gels. The initially applied current for the electrophoresis was 20 mA/gel and was 

increased up to 40 mA/gel as soon as the samples passed the stacking gel. The electrophoresis 

was stopped right before the samples reached the end of the gel. 

2.2.7.3.2 Transfer 

In the next step, proteins were blotted from the gel to a PVDF membrane to immobilise them 

as well as to make them accessible to antibody detection on the other hand. The transfers 

were performed electrophoretically with the semidry blot system from Biometra or BioRad. 

The transfer chamber consisted of two horizontal plates, which were either the anode (lower 

plate) or the cathode (upper plate). The membrane was activated in methanol and left in 

anode buffer for several minutes to equilibrate. On the anode plate, twelve Whatman papers 
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soaked with anode puffer were placed. The activated membrane was laid onto them and 

covered with the gel. Since bubbles between the membrane and the gel would disturb the 

transfer, those were carefully removed with a roller. Four Whatman papers, which were pre-

equilibrated in cathode buffer, were arranged on top of the gel. The chamber was closed with 

the cathode plate and connected to the power supply. The transfer was usually performed at 

234 mA or 315 mA, depending on the size of the gel (5 mA/cm²), for 40 min. After the transfer, 

the membrane was washed in ultrapure water and incubated for one hour in 5% BSA in TBS-T 

to block unspecific binding between the membrane and the antibody. 

2.2.7.3.3 Antibody incubation and protein detection 

After blocking, the membranes were incubated with specific primary antibodies, appropriately 

diluted in 5% BSA TBS-T over night at 4 °C and constantly shaken. The next day, the 

membranes were washed three times at 10 min with TBS-T before incubated with the 

secondary horseradish peroxidase (HRP) linked antibody for one hour at room temperature. 

The secondary antibodies were diluted appropriately in 5% BSA TBS-T. Information about the 

antibodies and their dilutions are listed in Table 2.22. This incubation was followed by three 

10 min TBS-T washing steps. The protein detection was performed via chemiluminescence, 

where the membranes were incubated with 5 ml chemiluminescent solution and 3 µL 

hydrogen peroxide. The conjugated HRP of the secondary antibody catalysed the oxidation of 

luminol which was accompanied by light emission at 428 nm. The emission of light was 

captured by the Blot-Imager Vilber Fusion Fx7 (Vilber Lourmat), which illustrated a specific 

signal for the protein of interest. After imaging, the membranes were incubated with stripping 

buffer for 30 min to remove the antibodies and, after the above-mentioned blocking step, the 

membranes could be used for further protein analysis. If required, the bands of proteins were 

quantified densitometrically with the software ImageJ. 

Table 2.22: Parameters for antibody incubation (Western blotting) 

Primary antibody Secondary antibody  Dilution Incubation 

anti α-tubulin anti mouse 1:1000/1:5000 in BSA O/N 4 °C/ 1 h RT 

anti β-actin anti mouse 1:5000/1:10000 in BSA 30 min RT/20 min RT 

anti Agxt anti rabbit 1:1000/1:5000 in BSA O/N 4 °C/ 1 h RT 

anti LC3 anti rabbit 1:1000/1:5000 in BSA O/N 4 °C/ 1 h RT 

anti p62 anti rabbit 1:1000/1:5000 in BSA O/N 4 °C/ 1 h RT 
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2.2.8 Preparation of oleic acid – BSA complex solution 

Lipid droplet formation in cell lines and primary mouse hepatocytes was induced by incubation 

with oleic acid (OA) bound to BSA. BSA was used because free fatty acids are usually bound to 

serum albumin when transported within plasma (Gordon and Cherkes 1956). The concept for 

the preparation of the complex was similar to the protocol from Cousin and colleagues (Cousin 

et al. 2001), but modified with regard to the temperature and concentrations. 

First, a 60 mM OA stock solution in 0.01 M NaOH was prepared. Therefore, 0.01 M NaOH was 

heated up to 70°C and an appropriate volume of OA (liquid at room temperature) was added. 

After stirring for 30 min at 70 °C in the dark, this solution was cooled and mixed with usually 

three droplets of 1 M NaOH to dissolve the OA completely. In the meantime, fatty acid free 

BSA was rehydrated in ultrapure water to prepare a 2.5 mM BSA solution. Next, one part of 

the 60 mM OA solution was mixed with four parts of the 2.5 mM BSA stock solution (molecular 

ratio OA to BSA was 6:1) and this OA/BSA-solution was stirred for maximum 1 hour at room 

temperature to form OA/BSA complexes. For a control solution, four parts of the 2.5 mM BSA 

stock solution were diluted with one part of 0.01 M NaOH. After sterile filtration (0.45 µm 

filter), the complex and control solutions were stored at -20°C and used within 3-4 weeks.  

2.2.9 Induction of lipid droplet formation in cell lines and cultivated mouse 

hepatocytes 

Lipid droplets were formed in vitro after cells were incubated with OA/BSA solution. 

Therefore, the cell lines or mouse hepatocytes were cultivated in an appropriate system and 

they were incubated with different concentrations of OA/BSA complexes in media one day 

after seeding. For HepG2 cells, two conditions were tested: OA/BSA was diluted in serum-free 

DMEM or in normal DMEM with 10% sera plus; both conditions led to lipid accumulation, 

indicating that HepG2 cells do not need to be forced to form lipid droplets by serum 

withdrawal. Therefore, normal, sera plus containing cultivation media (Table 2.9) was used to 

dilute OA/BSA. For each experiment, a full media control and a BSA control with matching 

concentration compared to OA/BSA condition was used. The applied OA concentrations 

ranged from 0.167 mM to maximum 4.5 mM to find non-toxic concentrations. The time of 

incubation varied from 24 h up to five days to mimic both an acute and more chronic-like 

situation. Medium was changed every two to three days. 
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2.2.10 Cell viability assay 

To estimate the viability of HepG2 cells after oleic acid treatment, the CellTiter-Blue® viability 

assay (Promega) was applied. This assay uses the blue dye resazurin which will be reduced to 

the highly fluorescent dye resorufin by viable cells. Reduced resorufin production is an 

indicator of non-viable cells. 

HepG2 cells were seeded at an appropriate density into wells of a 96-well microtiter plate with 

black walls and a flat, transparent bottoms. After one day of attachment, HepG2 cells were 

incubated with several OA/BSA and BSA concentrations or full media. For each condition, 8 

wells, meaning 8 technical replicates, were prepared. After 24 h, 72 h and 5 d the medium was 

replaced by 120 µL of a CellTiter-Blue® containing medium, which contained a sixth CellTiter-

Blue®reagent (Promega). After 4 h incubation at 37 °C, the fluorescent signal was measured 

at 579Ex/584Em nm in a plate reader (Infinite M200 Pro, Tecan). 

2.2.11 Extraction and enzymatic quantification of triglycerides (TG) 

The amount of triglycerides in liver tissue and cells was quantified enzymatically with a 

triglyceride quantification kit (Abcam). This assay is based on the cleavage of fatty acids from 

the glycerol backbone by a lipase. Glycerol is oxidised and then reacts with a probe to generate 

a fluorescent signal (535Ex /587Em nm). 

2.2.11.1 Extraction of triglycerides   

Triglycerides (TG) were extracted with 5% aqueous NP-40 solution in combination with a 

heating and cooling procedure. Depending on the source material, slightly different 

approaches were performed:  

a) Snap frozen liver tissue: The tissue was weighed and 5% NP-40 solution was added 

(1 ml for 100 mg tissue). The tissue was homogenised with a pestle first and sonicated 

afterwards to completely release the TG from the tissue.  

b) Primary human hepatocytes: 2.5 – 5 million freshly isolated human hepatocytes were 

centrifuged for 1 min at 4 °C and 400xg, the supernatants were removed and the cells 

were carefully washed in PBS. The centrifugation was repeated and after the 

supernatant was aspirated, the pellet was resuspended in 1 ml 5% NP-40 solution. 
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c) Cell lines: Cell lines were plated in a 6-well dish and incubated with or without OA/BSA 

complex for several days. On the day of harvest, the media was aspirated and the 

monolayer was rinsed with 1xPBS once. The PBS was removed and 100 µL 5% NP-40 

was added per well. The cells were lysed with a scraper and collected in a tube. 

To segregate the plasma membrane and to solubilise the triglycerides, the extracts were 

heated up to 90 °C for 3 min and then allowed to cool down to room temperature. The heating 

step was repeated, followed by a centrifugation for 2 min at top speed to remove any 

insoluble material. The supernatant was collected and an aliquot was diluted appropriately. 

2.2.11.2 Enzymatic quantification of triglycerides  

This assay was performed in a black 96 well plate with a flat, clear bottom to measure a 

fluorescence signal. One to 5 µl of the diluted sample was added to a well and the volume was 

adjusted to 50 µl with assay buffer. Each sample was usually measured in duplicates and a 

background control that was not incubated with lipase was applied. Two µL lipase was added 

to samples but not to the background samples. After 20 min incubation at room temperature, 

50 µL reaction mix (see Table 2.23) was added to each well followed by an incubation of 1 hour 

at room temperature. Afterwards, the fluorescence signals were measured with 535 nm 

excitation and 587 nm emission in the plate reader (Infinite M200 Pro, Tecan). Simultaneously, 

the protein concentrations of the diluted extracts were determined using the BCA assay to 

normalise the relative fluorescence unit (RFU). The data analysis proceeded as follows: First, 

the blanks (buffer with/without lipase) were subtracted from each reading. Then, the samples 

were background-corrected to consider only the glycerol arising from tri-, di- and 

monoglycerides but not the free glycerol. The applied amount of proteins within the extract 

was calculated and the RFU were divided by the corresponding protein amount to normalise 

the signal. 

Table 2.23: TG reaction mix 

Compound  1 sample 

Assay buffer 47.6 µL 

Probe 0.4 µL 

Enzyme mix 2 µL 
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2.2.12 Stimulation of oxalate formation in vivo and in vitro 

To investigate the role of reduced Agxt expression, oxalate precursor compounds were 

applied in vivo as well as in vitro. The amounts of excreted oxalate in urine and cell culture 

supernatant were analysed. 

2.2.12.1 Glyoxylate diet of ob/ob and ob/+ mice 

Ten ob/ob and ten ob/+ mice were both divided into two groups à 5 mice. One group had 

drinking water enriched with 0.5% sodium glyoxylate monohydrate for eight days. The second 

group received plain drinking water. Each mouse had its own cage and free access to water 

and food. The body weight and water intake were measured daily. On day six of the diet, mice 

were transferred to a single mouse metabolic cage (Tecniplast) and 24 h urine was collected 

for two consecutive days. Then, the mice were once more transferred to a normal cage and 

the diet was stopped. After a recovery time of 3 weeks, the urinary oxalate levels normal 

again. The same experimental set up was conducted, this time receiving 0.1% sodium 

glyoxylate monohydrate that was dissolved in tap water. The mice that were previously given 

the glyoxylate enriched drinking water received the glyoxylate diet once more; whereas, the 

mice that were part of the control group in the first round, were selected once more as control 

mice and received untreated drinking water. 

2.2.12.2 Glyoxylate treatment of AGXT knockdown HepG2 cells 

HepG2 cells were transfected with siRNA which targeted AGXT mRNA to knockdown AGXT. 

Non-transfected HepG2 cells and those transfected with scrambled siRNA served as control 

situations: After 6 days of knockdown; HepG2 cells were incubated with 1 ml full media 

containing 0 mM, 0.2 mM or 1 mM glyoxylate for 24 h. Next, the supernatants were collected 

in 2 ml tubes on ice and frozen at -80 °C. The HepG2 cells were rinsed with 1xPBS and their 

proteins were collected as described in section 2.2.7.1c. 

2.2.12.3 Oxalate precursor treatment of primary hepatocytes from ob/ob and ob/+ mice 

Primary mouse hepatocytes of ob/ob and ob/+ mice were isolated and cultivated in 6-well 

plates for 24 h as described in Chapter 2.2.3.2. Then, they were incubated with 1 ml William’s 

E medium with additives (full media) and three different oxalate precursors. Those oxalate 

precursors were glyoxylate, glycolate or hydroxyproline and the incubation lasted 48 h. After 



Materials and Methods 

48 

48 h, the supernatants were collected in 2 ml tubes on ice and frozen at -80 °C. The cells were 

rinsed with 1xPBS and their proteins were collected as described in section 2.2.7.1b. 

2.2.13 Quantification of oxalate 

2.2.13.1 Quantification of oxalate by Gas Chromatography Mass Spectrometry (GC-MS) 

The applied method was described for the quantification of diethylene glycol, ethylene glycol, 

oxalic acid and further metabolites by Perala and colleagues (Perala et al. 2014) and conducted 

in cooperation with the Analytical Chemistry Unit at IfADo. Mouse urine samples were diluted 

appropriately in ultrapure water, if necessary, and 40 µl were filled in a 4 ml glass vial. Next, 

40 µl internal standard (13C2 oxalic acid, 100 µg/ml), 1 ml 1 M HCl and 0.5 ml saturated NaCl-

solution were added and mixed thoroughly with the urine. For extraction, 1 ml of 0.5% TOPO 

in MTBE was pipetted to the glass vials and followed by 1 min mixing using the vortex. 

Afterwards, the samples were centrifuged for 10 min at 4500xg and 600 µl of the supernatant 

were transferred to a 1.5 ml glass vial. During the repetition of this extraction process, the 

supernatant was vaporised with nitrogen. After the second centrifugation, 800 µl of the 

supernatant was added to the same vial as before and was vaporised again under nitrogen at 

room temperature. After the supernatant was evaporated completely, 150 µl toluene and 

50 µl MTBSTFA were added to each sample and thoroughly mixed. The derivatisation was 

performed at 60 °C for 1 h in a shaker (4500 rpm). Next, 200 µL sample was transferred to 

inserts and placed in a 1.5 ml glass vial. Each vial was closed with a screw cap with a septum 

and placed into the autosampler of the GC-MS system. The injection port was heated to 275 °C 

and 0.2 µl of each sample was injected splitless. Helium was used as the carrier gas at a 

constant flow mode of 1.8 ml/min. The temperature programme started with 100 °C and 

linearly increased at 10 °C per minute until 280 °C. This temperature was held for 2 min. The 

MS detection was done in the electron impact ionization mode on an Agilent model 5973N 

quadrupole mass spectrometer operated in the single ion modus with these parameters: 

transfer line temperature = 250 °C, MS quadrupole temperature = 150 °C, and MS source 

temperature = 230 °C The following ions were used for the quantification of oxalic acid m/z 

261 and 13C2 oxalic acid m/z 263. Due to a device failure of the GC-MS, the urines of mice on 

the normal or the Western diet were analysed by LC-MS/MS. 
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2.2.13.2 Quantification of oxalate by Liquid Chromatography Tandem Mass Spectrometry 

(LC-MS/MS) 

The sensitivity of the GC-MS method was limited and very small concentrations of oxalate 

were not measurable. For that reason, a cooperation with Prof. Heiko Hayen and Alexander 

Schriewer from the department of Analytical Chemistry, University of Münster, was started 

and a liquid chromatography with tandem mass spectrometry (LC-MS/MS), using a triple 

quadrupole, method was established. This method was used to quantify the secreted levels 

of oxalate in medium supernatant from cultivated cells. For HepG2 cells, the supernatants 

were treated with methanol (1:4) overnight at 4 °C to precipitate the proteins that arose 

mainly from the sera plus in the medium. Those supernatants were centrifuged at 2200xg for 

5 min to remove the proteins. Subsequently, the protein-free supernatants were vaporised at 

45 °C in a vacuum using the Eppendorf Concentrator plus. These dried extracts were stored at 

-80 °C and sent on dry ice to Münster. Supernatants of cultivated mouse hepatocytes did not 

contain sera plus and were directly sent on dry ice to Münster. In Münster, dried extracts were 

dissolved in water and supernatants of cultivated primary mouse hepatocytes as well as urine 

samples were diluted or directly used. 13C2 oxalic acid was added as the internal standard. The 

eluent was a mixture of water and acetonitrile (70:30) with 0.1% Trifluoracetic acid (v/v/v). 

The flow rate was 0.3 ml/min and the injection volume was 20 µl. For ionisation, electrospray 

ionisation in negative mode was used. Oxalic acid was fragmented by a collision gas and its 

product ion was analysed. The concentration of oxalate was calculated with the aid of the 

internal standard. The quantified oxalate concentration was normalised to the protein 

amount of the monolayer. 

2.2.14 Colorimetric quantification of creatinine in urine 

Creatinine is a product of muscle metabolism and excreted by the kidneys (Skorecki et al. 

2016). The excreted creatinine amount is often used as a benchmark for the concentration of 

urine. In this thesis, the urinary creatinine concentration was used to normalise the excreted 

oxalate amount since the daily excreted urine volumes were variable. The creatinine 

quantification is colorimetric and based on the so-called Jaffé reaction (Jaffe 1886). Creatinine 

reacts with picric acid under alkaline conditions and forms an orange complex with a 

maximum of absorbance at 492 nm. 
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Murine urine is diluted 1:20 with ultrapure water in a 1.5 ml tube, mixed and centrifuged at 

6000 rpm for 5 minutes to remove potential fine particles. The supernatants were transferred 

to new tubes. Creatinine standards were prepared in water at a concentration range from 

0 mg/ml to 70 mg/ml. 50 µl of each standard and sample were pipetted to a well of a 

transparent 96 microtiter plate with flat bottom. Furthermore, 50 µl of two differently 

concentrated control urines (1:50 diluted) were used as a quality control. 10 ml of 0.25 M 

NaOH-solution were mixed with 4.365 mM picric acid. 200 µl of this alkaline picric acid 

solution were added to each well and incubated in the dark for 45 min. Thereafter, the 

absorption at 492 nm was measured with a plate reader (Infinite M200 Pro, Tecan). The 

creatinine standard concentrations were plotted against the absorption at 492 nm and the 

creatinine concentrations of the samples were calculated with the help of the linear equation 

of the standard curve.  

2.2.15 HR- MAS 1H-NMR quantification of glycine and glycolate in liver tissue 

The quantification of hepatic glycine and glycolate of ob/+ and ob/ob livers was performed via 

high-resolution (HR) magic angle spinning (MAS) 1H-nuclear magnetic resonance (NMR) 

spectroscopy in cooperation with Mikheil Gogiashvili and Dr. Roland Hergenröder at the 

Leibniz Institute for Analytical Sciences (ISAS), Dortmund. Snap frozen liver tissue was cut to 

fit into 50 µl volume MAS rotor at -10 °C under nitrogen atmosphere. To each sample, sodium 

2,2,3,3-tetradeuterio-3-trimethylsilylpropanoate (TSP-d4, 0.1%) in deuterium oxide was 

added as an internal standard. Afterwards, the tissue was analysed on a NMR-spectrometer 

(Bruker) equipped with a 1H/13C MAS probe head. The measurement frequency was 

600.35 MHz and the spinning frequency was set to 5 kHz. To identify metabolites, the 

Chenomx 7.6 database as well as literature were used. The concentration of the metabolites 

was determined according to the concentration of TPS applying Chenomx 7.6. 

2.2.16 Oil Red O staining 

Lipid droplets can be visualised with the lipophilic dye Oil Red O. This technique was applied 

to observe lipid droplet accumulation upon OA/BSA treatment in cell lines. Oil Red O powder 

was dissolved in 2-propanol to prepare a 0.5% stock solution. Right before usage, the stock 

solution was diluted with water (3:2). After 30 min, this working solution was filtered twice to 

remove precipitates. Medium from cells, which were seeded on round glass slides, was 

removed and the cells were carefully rinsed with 1xPBS. An appropriate volume of Oil Red O 
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working solution was added to the wells and left for 20 min. Then the Oil Red O solution was 

removed and the cells were washed three times with 1xPBS to eliminate excessive Oil Red O 

solution. The stained cells on the round slides were transferred to an object slide and 

immediately analysed with an optical microscope (Olympus BX41). 

2.2.17 Immunofluorescence 

Immunofluorescence is a widely-used technique to visualise specific proteins in tissue or cells 

using fluorophore-labelled antibodies. The antibody for a specific protein can either be 

conjugated with a fluorophore directly (direct immunofluorescence) or a second antibody 

against the protein specific antibody is labelled with a fluorophore (indirect 

immunofluorescence). Indirect immunofluorescence is advantageous because is results in a 

more specific signal with less background, and is more flexible since the secondary antibody 

can be used for different antibodies from the same species. In this thesis, only the indirect 

immunofluorescence was applied. 

Primary mouse hepatocytes were seeded on glass slides (see Chapter 2.2.3.2) and incubated 

with different OA/BSA and BSA concentrations of full media for various time points. Then, the 

media was aspirated and cells were rinsed with 1xPBS. 4% paraformaldehyde was added to 

the wells and cells were fixed for 20 min at 37 °C. After fixation, the cells were washed with 

1xPBS and permeabilised with 0.5% TritonX-100 for 15 min to enable the detection of 

intracellular compartments. The TritonX-100 solution was removed and cells were rinsed 

three times for 5 min with 1xPBS. To avoid unspecific antibody binding, cells were incubated 

with 10% BSA and 0.1% Tween20 in 1xPBS for 2 h at room temperature. The antibodies of 

interest (Table 2.24) were diluted in 3% BSA/0.1% Tween20 in 1xPBS and incubated with the 

cells overnight in a humidity chamber at 4 °C. The day after, the antibody solution was 

removed and the cells were washed three times with 1xPBS. Fluorescence labelled secondary 

antibody was diluted appropriately in 0.3% BSA/0.1% Tween20 in 1xPBS together with 

phalloidin-rhodamine (1:500) to visualise the F-actin and added to the cells for 1 h. After 

washing three times with 1xPBS, the slides were incubated for 45 min with 50 µg/ml Bodipy 

in 1xPBS to stain lipid droplets. Afterwards, the cells were washed 3x5 min with 1xPBS and 

treated with 4’,6-Diamidin-2-phenylindol (DAPI, 1:20 000 in water) for 15 min. Again, the DAPI 

solution was removed, the cells were rinsed three times with 1xPBS and once with ultrapure 

water to eliminate salts. Subsequently, the slides were mounted onto SuperFrost Plus 
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microscopic slides using FluorPreserve™ Reagent (Calbiochem). The slides were dried 

overnight at room temperature and kept at 4°C in the dark until imaging. For imaging, the light 

scattered microscope (FluoView TM FV1000; Olympus) was used. 

Table 2.24: Parameters for antibody incubation (immunofluorescence) 

Primary antibody Secondary antibody  Dilution Incubation 

anti α-tubulin anti mouse 1:1000/1:300  O/N 4 °C/ 2 h RT 

anti DPPIV anti goat 1:300/1:250 O/N 4 °C/ 2 h RT 

 

To visualise only lipid droplets, cell nuclei and F-actin, the above-mentioned protocol was 

applied without the BSA blocking and the antibody incubation steps. 

2.2.18 Histologic staining of paraffin embedded tissue  

2.2.18.1 Fixation and paraffin embedding of tissue 

After collection in cassettes, liver lobes and kidneys were fixed in 4% PFA at 4 °C for two days. 

Next, the cassettes were washed in sterile 1xPBS for additional two days at 4 °C before the 

tissue was embedded in paraffin. The paraffin infiltration was performed with the STP120 

processor (Thermo Fisher Scientific) where the tissue was first dehydrated through an ethanol 

gradient, incubated in xylene and finally infiltrated with paraffin. Detailed procedure 

information is listed in the Table 2.25 below. 

Table 2.25: Programme for paraffin infiltration of tissue  

Step Solution Time [min] 

1 70% Ethanol 30 

2 70% Ethanol 60 

3 90% Ethanol 30 

4 90% Ethanol 30 

5 99% Ethanol 30 

6 99% Ethanol 35 

7 99% Ethanol 60 

8 Xylol 30 

9 Xylol 35 

10 Xylol 60 

11 Paraffin Histowax 80 

12 Paraffin Histowax 105 
 

After this process, the liver lobes and kidneys were embedded in paraffin with the Microm 

HM450 automated embedding device. 
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Sections of paraffin-embedded liver or kidney tissue with a thickness of 4 μm were obtained 

with a feather blade type N35HR in a HM 450 Sliding Microtome (Thermo Fisher Scientific). 

The tissue sections were mounted on glass slides during a 20 min incubation at 60 °C. Before 

usage, the tissue slides were stored at 4 °C. 

2.2.18.2 Haematoxylin and eosin staining  

First, tissue sections were rehydrated as follows: the tissue was deparaffinised in Roti®-Histol 

three times à 10 min before rehydrated through a decreasing ethanol gradient (5 min in 100%, 

95%, 90%, and 70% each) which ends in ultrapure water. After rehydration, the slides were 

immersed in freshly filtered haematoxylin for 5 min. The tissue was blued under running tap 

water for 10 min. Afterwards, the slides were stained with freshly filtered 1% Eosin Y for 3 min. 

Next, the slides were shortly rinsed in ultrapure water and dehydrated through an increasing 

ethanol gradient (70%, 90%, 95%, 2x100%, 5 s each), ending in Roti®-Histol. At the end, the 

tissue was mounted on a glass slide with Entellan®. For imaging, the optical microscope 

(Olympus BX41) was used. 

2.2.18.3 Immunohistochemistry using Avidin-Biotin-Complex (ABC) method  

Specific antigens, mainly proteins, can be visualised directly on tissue using the antibody based 

immunohistochemistry (IHC). This technique was used to identify the central vein via a 

staining of glutamine-synthetase and to analyse the expression as well as the distribution of 

Agxt in liver sections.  

Therefore, the paraffin slides were deparaffinised and rehydrated as mentioned above. After 

the fixation, proteins can be cross-linked to formaldehyde which can result in a weak or 

negative signal. To unmask the proteins, the slides were processed with a combination of 

citrate buffer and heating. The tissue samples were immerged in 10 mM citrate buffer, pH 

adjusted to 6, and heated in a microwave twice for 7 min. After the slides were cooled, they 

were washed in 1xPBS two times for 5 min each. Next, the samples were treated with 3% H2O2 

in 1xPBS to block endogenous peroxidase and to avoid unspecific background signals. Next, 

the tissue samples were rinsed three times for 5 min with 1xPBS and subsequently blocked 

with 3% BSA/3% Tween80 in 1xPBS in a humidified chamber for 60 min at room temperature 

to mask unspecific binding sites. After this blocking, a specific antibody was diluted in 0.3% 

BSA/3% Tween80 in 1xPBS appropriately (see Table 2.26) and the tissue samples were 

incubated over night at 4 °C in a humidified chamber. The next day, the slides were washed 
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three times à 5 min in 1xPBS to completely remove the primary antibody. The secondary 

antibody against rabbit was used from an ABC kit. 15 µl of the secondary antibody were mixed 

together with 30 µl of blocking reagent in 2 ml 1xPBS and added onto the slide for 30 min at 

room temperature. After this incubation, the samples were washed again in 1xPBS (three 

times, 5 min each). The next step comprised the treatment with avidin (reagent A) and 

biotinylated horseradish peroxidase (reagent B), i.e. 40 μl reagent A and 40 μl reagent B were 

mixed with 2 ml 1xPBS and pipetted onto the samples. After 30 min at room temperature, the 

solutions were discarded and the slides were washed three times with 1xPBS for 5 min each. 

Five drops of 3,3'-diaminobenzidine DAB were mixed with two drops H2O2 and two drops of 

buffer solution in 5 ml water; this solution was added onto the slides. After 2 - 10 min, brown 

colour development indicated the protein of interest. Next, the samples were washed for 

5 min under running tap water before they were stained with haematoxylin for 2 min. The 

haematoxylin solution was removed and the slides were washed in running tap water for 

10 min. Afterwards, the samples were dehydrated by an increasing ethanol gradient (70%, 

90%, 95%, 2x100%, 5 s each), followed by Roti®-Histol before mounted with Entellan®. For 

imaging, the optical microscope (Olympus BX41) was used. 

Table 2.26: Dilutions of primary antibodies used for IHC 

Antibody Host Dilution 

anti Agxt Rabbit 1:1000 

anti Glutamine synthetase Rabbit 1:2000 
 

2.2.18.4 Pizzolato staining  

To visualise renal calcium oxalate deposits, the method of Pizzolato was performed (Pizzolato 

1964). After rehydration of the kidney tissue (see 2.2.18.2), the tissue sections were covered 

with a freshly prepared silver nitrate-hydrogen peroxide solution (2.5% silver nitrate, 15% 

hydrogen peroxide). A 60-watt bulb was placed approximately 15 cm from the kidney tissue 

for 30 min. Next, the tissue was stained with nuclear fast red solution for 5 min and 

subsequently rinsed with ultrapure water. Then, the stained tissue sections were dehydrated 

with an increasing ethanol gradient and mounted as described above. Calcium oxalate 

deposits would be stained in black and the remaining tissue would appear in red. For imaging, 

the optical microscope (Olympus BX41) was used .This staining was conducted in cooperation 

and discussed with Prof. Anders from the Medizinische Klinik und Poliklinik IV, Klinikum der 

Universität München. 



   Materials and Methods 

55 

2.2.19 Methylation analysis of Agxt promotor 

The methylation analysis of the Agxt promotor was conducted by Dr. Nina Gasparoni of the 

genetic/epigenetic research group of Prof. Jörn Walter at Saarland University. 

2.2.19.1 Preparation 

Freshly isolated human or mouse hepatocytes were counted and 5 million cells were 

transferred to a 2 ml tube. The samples were centrifuged at 4 °C and 400xg for 1 min. The 

supernatant was removed and the cell pellet was carefully washed with 1xPBS. After a second 

centrifugation step at the above-mentioned conditions, the supernatant was removed 

completely and the cell pellet was snap frozen in liquid nitrogen. The procedure was similarly 

performed for cultivated hepatocytes and cell lines. The medium of the plated cells was 

removed and the cells were washed with 1xPBS. Next, fresh 1xPBS was added and the cells 

were carefully detached using a cell scraper. This cell suspension was transferred into a 2 ml 

tube and centrifuged for 1 min at 400xg and 4 °C. The supernatant was discarded and the cell 

pellet was snap frozen in liquid nitrogen. Sections of liver tissue were snap frozen directly 

during the in vivo collection in liquid nitrogen. The samples were stored at -80 °C before they 

were sent on dry ice for analysis to Saarbrücken. 

2.2.19.2 Amplicon-sequencing of bisulphite-treated DNA 

Briefly, DNA was extracted and treated with bisulphite using the Zymo gold kit. The bisulphite 

treatment converted unmethylated cytosine to uracil, but methylated cytosine remained 

unconverted. In parallel, specific primers for the amplification of the Agxt promotor on 

bisulphite treated DNA were designed. The primers were fusion primers that had a sequence-

specific part and a general Illumina adapter sequence. Next, a traditional PCR amplification of 

the bisulphite-treated DNA with the fusion-primers was performed. The PCR products were 

purified by Ampuro-beads and quantified using a Qubit fluorometer. PCR products of different 

samples went into different pools and a PCR amplification with primers binding to the general 

Illumina adaptors and addition of the rest of Illumina adaptors with indices, was performed. 

Each pool had its own index. After purification and quantification of the pool-PCR-products, 

the sequencing of these was conducted on MiSeq (Illumina, Inc.) using the sequencing by 

synthesis approach. Afterwards, the sequencing reads were extracted and pre-processed. The 

separation of the reads was performed by amplicon sequence and index. The analysis was 

conducted with BiQHT and the self-created scripts of the research group at Saarland 



Materials and Methods 

56 

University. Finally, the amount of cytosines, representing methylated cytosines in the Agxt 

promotor, and thymine, representing unmethylated cytosines in the Agxt promotor, at CpG 

positions were quantified. This quantification indicated the methylation status of the Agxt 

promotor. 

2.2.20 Statistical data analysis 

All experiments were performed with three or more biological replicates if not mentioned 

otherwise. The numeric numbers were represented as mean values with standard deviation. 

To evaluate whether a difference between the control and the steatotic condition was 

significant, the unpaired T-test with Welsh correction was applied for mouse and in vitro 

samples. For human samples, the Mann Whitney test was performed, if not mentioned 

otherwise. P-values below 0.05 were accepted as significant. GraphPad PRISM 6.07 was used 

for these analyses. 
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3. Results  

3.1 Leptin deficient ob/ob mice represent an appropriate rodent model for 

steatosis 

Animal models of NAFLD provide valuable information for elucidating the pathogenesis of the 

disease. There are several rodent models available for NAFLD that can be classified into 

genetic and dietary models, as summarized in Chapter 1.4. The induced NAFLD ranges from 

simple steatosis to severe NASH and fibrosis. The choice of an appropriate animal model to 

work with depends on the aim of the study. In the current work, the leptin deficient ob/ob 

mouse model was chosen because it exhibits a simple steatosis phenotype, which does not 

progress to more severe liver diseases without further intervention. Therefore, it is an 

appropriate model to investigate the impact of lipid accumulation on the liver. 

3.1.1 Ob/ob mice display a phenotype of obesity with hepatic steatosis 

To verify hepatic lipid accumulation in ob/ob mice, in vivo collections of the liver were 

performed, and the body and liver weights of ob/ob and ob/+ mice were measured (n = 8, age: 

10 weeks). Ob/ob mice were nearly twice as heavy as their lean counterparts and their livers 

weighed more than twice that of ob/+ mice as illustrated in Figure 3.1. This resulted in a shifted 

liver to body weight ratio in ob/ob mice, indicative of an enlarged liver in relation to the body 

weight (Figure 3.1 C). The enzymatic quantification of triglycerides extracted from liver tissue 

revealed an approximately 16 fold higher amount of triglycerides in livers of ob/ob mice. The 

accumulation of lipid droplets in ob/ob mice was confirmed by H&E stainings of paraffin 

sections of ob/ob and ob/+ mouse livers, where lipid droplets were represented as white spots 

within the tissue. Figure 3.1 E shows representative pictures of H&E stainings of an ob/+ and 

an ob/ob liver. A closer look at the lipid-loaded hepatocytes in the H&E staining indicated that 

nuclei were pushed towards the periphery of the cell due to the lipid accumulation 

(exemplified by yellow arrows in Figure 3.1 E). The shift of the nuclei could imply a disturbed 

cytoskeleton and altered cell organisation within lipid-loaded hepatocytes. Furthermore, the 

staining of the pericentrally-located glutamine synthetase enzyme revealed a zonation of lipid 

droplets within the pericentral and midzonal fields of the liver lobule. There were very little to 

no lipid droplets visible close to the portal vein in steatotic livers of ob/ob mice. Altogether, 

the expected steatotic phenotype in the leptin deficient ob/ob mouse could be confirmed. 
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Figure 3.1: Steatotic ob/ob mice have an altered liver to body weight ratio and their livers show the shift of 
nuclei towards the periphery as well as lipid accumulation in the pericentral field. A) Body weight of ob/ob and 
ob/+ mice (n = 8); B) Liver weight of ob/ob and ob/+ mice (n = 8); C) Liver to body weight ratio (n = 8); D) 
Enzymatic triglyceride quantification of ob/ob and ob/+ liver extracts (n = 4); E) Representative H&E staining of 
paraffin embedded liver slices; F) Representative glutamine synthetase staining of paraffin embedded liver slices; 
CV: central vein; PV: portal vein. Scale bars represent 100 µm. *** indicates p < 0.001. 
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3.1.2 The autophagic flux in ob/ob mouse livers is compromised 

One cellular process often discussed to play a role in the development of a fatty liver and in 

the progression to more severe liver disease is autophagy. In the context of hepatic steatosis 

this clearance pathway is reported to be impaired by excessive lipid accumulation (Gonzalez-

Rodriguez et al. 2014; Singh et al. 2009). As elucidated in Chapter 1.3, impaired autophagy has 

been linked to ER stress and insulin resistance in steatotic livers. Thus, an important question 

was whether autophagy is compromised in the steatotic liver of ob/ob mice.  

The autophagic flux is a dynamic process that is challenging to monitor. Studying the protein 

levels of autophagy markers - the microtubule-associated protein 1A/1B-light chain 3 (LC3) 

and p62 - is a general approach to obtain an estimation of autophagic activity (Mizushima and 

Yoshimori 2007). LC3 is a soluble protein whose cytosolic form (LC3 I) is conjugated to 

phosphatidylethanolamine to form LC3 II during autophagy; LC3 II is recruited to the 

membrane of the autophagosomes, and hence reflects the number of autophagosomes 

present (Kabeya et al. 2000; Kabeya et al. 2004). After fusion with the lysosome, 

autophagosomal components, including LC3 II, are degraded (Tanida et al. 2008). An increase 

of LC3 II indicates an elevated amount of autophagosomes. This in turn can indicate an 

induced (more generation of autophagosomes) as well as a reduced autophagic flux (less 

degradation of autophagosomes). To distinguish between these two situations, the level of 

the protein p62 is usually investigated. P62 is an adaptor protein for polyubiquitinated protein 

cargo that binds to LC3 via an evolutionary conserved 22-residue motif (Komatsu et al. 2007; 

Pankiv et al. 2007). For this reason, p62 serves as a marker of autophagy. Increased levels of 

p62 indicate the presence of unremoved cargo, and therefore inhibited autophagy (Bjorkoy et 

al. 2005). 

There are two studies reporting a defective hepatic autophagy in ob/ob mice. However, they 

contradict each other with respect to the step within the autophagic flux where the blockage 

occurs. Yang and colleagues described decreased levels of both LC3 I and LC3 II protein 

accompanied by an accumulation of p62 in livers of ob/ob mice indicating impaired 

autophagosomes formation (Yang et al. 2010). In contrast, Inami and co-workers (2011) 

demonstrated an accumulation of p62 and increased levels LC3 II in ob/ob compared to ob/+ 

livers (Inami et al. 2011). These results indicate either an impaired fusion capacity of 

autophagosomes and lysosomes or the loss of degradation capability. To confirm the defective 
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hepatic autophagic flux in ob/ob mice and to elucidate at which point the dynamic process 

was impaired, Western blot analysis of liver lysates of ob/+ and ob/ob mice was performed. 

 

Figure 3.2: Markers of autophagy show heterogeneity within ob/+ and ob/ob mouse liver lysates, but the 
density quantification indicates an impaired autophagic flux. A) Western blot of the protein expression of p62 
and LC3I/II in protein lysates of liver tissue of ob/ob and ob/+ mice (n = 6). β-Actin expression was used as loading 
control; B) Densitometric quantification of the expression of LC3 II and LC3 I illustrated as ratio of the density; C) 
Densitometric quantification of the expression of p62 and β-Actin illustrated as ratio of the density. * indicates 
p < 0.05; *** indicates p < 0.001. 

As illustrated in Figure 3.2, the expression of the autophagic markers p62 and LC3 I/II differed 

between all mice within each genotype. Despite this heterogeneity, quantification of the LC3 I 

and LC3 II levels revealed a significantly elevated level of LC3 II and relative to the level of LC3 I 

in ob/ob mouse livers compared to lean mouse livers. This result was accompanied by a 

slightly, but significantly increased protein level of p62 in ob/ob mice. Altogether, these 

findings imply an inhibited autophagic flux after the formation of autophagosomes in ob/ob 

mouse livers in agreement with those of Inami et al. (2011). Thus, lipid accumulation in the 

steatotic livers of ob/ob mice was high enough to disturb the autophagic capacity of the cells. 
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3.1.3 Affymetrix gene array analysis of steatotic livers from ob/ob mice 

The phenotypical morphological as well as histological alterations in ob/ob mice and their 

livers were very pronounced, as shown in the previous Chapter 3.1.1. However, how they 

impact liver physiology is not well understood. In order to identify gene expression changes 

relevant in steatosis, an Affymetrix gene array analysis of ob/ob and ob/+ mouse livers was 

performed. The analysis of differentially expressed genes could help to identify genes, which 

play a role in steatosis or may be important for the progression of steatosis to a more severe 

liver diseases. Therefore, RNA from both ob/ob and control livers (n = 8) was isolated and 

transcriptomically analysed. 

3.1.3.1 A significant number of genes are differentially expressed in steatotic livers from 

ob/ob mice compared to livers from control ob/+ mice 

To obtain an overview of the similarities and differences in gene expression between livers 

from ob/+ and ob/ob mice, the statistical tool of a principle component analysis (PCA) was 

applied. This procedure helped to visualise the complex data in two dimensions while 

retaining most of the variation (Jolliffe 2002). The PCA blot in Figure 3.3 illustrates the large 

difference between the gene expression of ob/ob mouse livers and ob/+ mouse livers, as well 

as the similarity between the individuals of each genotype. Remarkably, ob/ob mice clustered 

closer than the control ob/+ mice.  

Figure 3.3 Gene array analysis reveals strong alterations of gene expression in steatotic livers of ob/ob mice. 
Gene array analysis of liver tissue from ob/ob and ob/+ mice (n = 8) was performed and illustrated in a principle 
component analysis (PCA).  
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The differential gene expression analysis of ob/ob mouse liver tissue revealed a total of 7399 

genes, which were significantly deregulated in steatotic ob/ob mouse livers compared to livers 

of ob/+ mice (adjusted p-value ≤ 0.05). As shown in Table 3.1, the number of deregulated 

genes was lower when a fold change of at least 1.5-fold compared to ob/+ mice was 

considered. 

Table 3.1: Numbers of significantly deregulated genes in the steatotic livers from ob/ob mice compared to 
control livers (adjusted p-value ≤ 0.05) 

 Number of genes Fold change ≥ 1.5 

Upregulated 3775 887 

Downregulated 3624 455 

 

The top 20 up and downregulated genes in ob/ob mouse livers are listed in Figure 3.4. Among 

the top 20 of upregulated genes are several known to be associated with lipid metabolism. 

 

Figure 3.4: Top 20 deregulated genes in ob/ob mouse livers compared to ob/+ mouse livers, adjusted p-value 
≤ 0.05.  

Cidea and Cidec are known to play a role in the regulation and enlargement of lipid droplets 

in adipocytes (Puri et al. 2007; Puri et al. 2008b). Moreover, Mogat1 codes for a protein that 

catalyses the formation of diacylglycerol from 2-monoacylglycerol (Yen et al. 2002). Apoa4 

forms lipoproteins in conjunction with other apolipoproteins in order to maintain lipid 

homeostasis and is inducible by a lipid rich diet (Williams et al. 1986). Last, Scd2 codes for a 

stearoyl-coenzyme A desaturase that catalyses the desaturation of C16:0 and C18:0 to 
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monounsaturated fatty acids (Miyazaki et al. 2006). In general, these examples indicated an 

overall increase in lipid metabolism in ob/ob mouse livers as expected due to the high 

triglyceride content in the these livers (compare Figure 3.1 D). 

In contrast, the 20 most downregulated genes did not show a single strong biological motif as 

seen for the top 20 upregulated genes. The strongest downregulated gene was Hsd3b5, whose 

gene product, 3 beta-hydroxysteroid dehydrogenase V, converts dihydrotestosterone into an 

inactive androgen, 5 alpha-androstane-3 beta,17 beta-diol (Abbaszade et al. 1995). In 

addition, some genes could be assigned to the same biological pathways, such as bile acid 

transport and bile acid synthesis in the case of Slco1a1 (van de Steeg et al. 2010) and Cyp7b1 

(Schwarz et al. 1997).  

Altogether, the top 20 deregulated genes in ob/ob mice provided evidence of altered lipid 

metabolism. In order to identify additional biological motifs which were affected in the livers 

of leptin deficient mice, a gene ontology (GO) enrichment analysis was performed.  

3.1.3.2 Lipid associated pathways are strongly upregulated in steatotic livers from ob/ob 

mice 

To obtain an overall picture regarding the deregulated genes in ob/ob mouse livers, a GO 

enrichment analysis was performed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID ) v 6.8 (Dennis et al. 2003; Huang et al. 2009; Huang et al. 2007). 

GO enrichment analysis is a bioinformatic tool to explore large gene lists that enables 

functional interpretation of gene lists. To represent gene product properties, gene ontology 

defines three domains, namely biological process (BP), molecular function (MF) and cellular 

component (CC). Each of these domains consists of subcategories that classify the group of 

genes more specifically. With the help of the GO enrichment, overrepresented groups of genes 

as well as biological themes in the ob/ob mouse liver could be identified. The following analysis 

was based on up- and downregulated genes which were at least 1.5-fold deregulated 

compared to the ob/+ mouse liver. The analysis was narrowed down to overrepresented GO 

terms of the domain “biological process”. This domain gives the most information on altered 

processes in steatotic livers from ob/ob mice. In Tables 3.2 and 3.3, the top ten 

overrepresented GO terms of up- and downregulated genes in ob/ob mouse liver are listed. 

With respect to the upregulated genes in ob/ob mice, the GO enrichment analysis clearly 

identified the upregulation of processes involved in lipid metabolism, such as lipid metabolic 
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process (GO:0006629) and fatty acid metabolic process (GO:0006631). This was not surprising 

considering the dramatic accumulation of lipids within the livers of ob/ob mice (Figure 3.1 D), 

as well as the high number of genes under the top 20 upregulated genes that were involved 

in lipid metabolism (Figure 3.4). The enrichment of the GO term oxidation-reduction process 

(GO: 0055114) was observed for up- as well as for downregulated genes in ob/ob mice. This 

provides evidence of potential alterations in redox status in livers of ob/ob mice. 

 
 

Table 3.2: GO enrichment analysis of upregulated genes in ob/ob mouse livers in the domain “biological 
process”; Benjamini adjustment of p-value 

Term Genes adj p-value 

GO:0006629 

lipid metabolic 

process 

Ppara, Ldlr, Hmgcr, Ehhadh, Sgms1, Slc16a1, Elovl5, Agpat9, Mgll, 

Elovl6, Hadh, Thrsp, Agpat3, Hmgcl, Dhcr24, Lpat1, Sult2a2, Acnat2, 

Decr1, Lpin2, Lpin1, Chpt1, Pnpla3, Pnpla5, Lipo1, Pla2g7, Kdsr, Gpam, 

Slc27a4, Ech1, Cers6, Abhd3, Apoc2, Abhd2, Ptpmt1, Plin5, Ddhd2, 

Fasn, Hsd17b4, Acsl3, Pltp, Gal3st1, Scd1, Eci1, Soat1, Mogat1, Scd2, 

Nceh1, Pla2g15, Cyp46a1, Psap, Acer2, Il1rn, Acaca, Cidea, Fads2, Acly, 

Crat, Cpt1a, Brca1, Mttp, Pcx, Hmgcs2, Lipg, Aacs, Smpd3, Plcxd1, Vldlr 

3.24E-16 

GO:0008152 

metabolic 

process 

Arsg, Hexa, Ehhadh, Hexb, Hlcs, Acss2, Gstm2, Gstn3, Agpat9, Treh, 

Acad9, Agpat3, Idua, Aco2, Lpgat1, Suclg2, Pnpla3, Pnpla5, Umps, 

Aldh1b1, Pklr, Tnfaip3, Gpam, Ugp2, Slc27a4, Coasy, Ech1, Hk2, Acat1, 

Aldh3a2, Dct, L3hypdh, Galk1, Chil3, Fasn, Gys2, Uck1, Acsl3, Bdh1, 

Eci1, Lyz2, Mthfd2l, Lyz1, Nceh1, GUSB, Acaca, Acly, Nadk, Tkt, Uap1l1, 

Dlat, Eci3, Pcx, Hmgcs2, Sulf2, Aldh2, Aacs 

8.46E-10 

GO:0006631 

fatty acid 

metabolic 

process 

Ppara, Ech1, Ehhadh, Snca, Elovl5, Acot11, Per2, Fasn, Mgll, Elovl6, 

Hsd17b4, Hadh, Acsl3, Scd1, Eci1, Pla2g15, Scd2, Acnat2, Acaca, Fads2, 

Decr1, Crat, Lpin2, Brca1, Cpt1a, Cd36, Fabp4, Fabp2, Aacs, Gpam, 

Slc27a4 

1.61E-09 

GO:0006637 

acyl-CoA 

metabolic 

process 

Acot9, Acot8, Ehhadh, Acnat2, Acot11, Acot2, Acot1, Acot6, Gpam, 

Hmgcl, Acot4, Acot3 
1.75E-05 

GO:0007049 

cell cycle 

Dbf4, Aurka, Cdt1, Kif13a, Ccne2, Cdca8, Cgref1, Mis18a, Rala, Ccna2, 

Cdca3, Cdk1, Dab2ip, Rbl1, Nusap1, Cdk6, Mcm2, Mcm3, Ube2c, 

Mcm4, Ect2, Mcm5, Wee1, Mcm6, Ccnd1, Dclre1a, Uhrf1, Mad2l1, 

Zwint, Usp22, Haus8, Gadd45a, Anapc16, Usp2, Nek2, Chek1, Anln, 

Ensa, Ccng1, Spc24, Spc25, Ncapg2, Zwilch, Hells, Txnip, Mki67, Birc5, 

Cdc20, Cdkn3, Smc2, Brca1, Cdkn1a, Ccnb2, Rgs2, Ptp4a1, Cenpw, 

Smpd3 

1.62E-05 

GO:0055114 

oxidation-

reduction 

process 

Htatip2, Vkorc1l1, Hmgcr, Ehhadh, Pgd, Snca, Mthfd1l, Gpx4, Loxl2, 

Hadh, Nqo1, Acad9, Dhcr24, Aifm2, Cbr3, Decr1, Cyp2b10, Dhrs7b, 

Vat1, Dhrs7, Aldh1b1, Rrm2, Hao2, Kdsr, Srxn1, Me1, Hsd17b10, Txn2, 

Cyp2b9, Rsad1, Aldh3a2, Fmo4, Fmo5, Cbr1, Fmo2, Fmo3, Fasn, 

6.36E-05 



   Results 

65 

Hsd17b4, Bdh1, Scd1, Gpd2, Gpd1, Mthfd2l, Scd2, Ptgr2, Cyp46a1, 

Pyroxd2, Maoa, Fads2, Cryz, Cyba, Cyp17Aa1, Cybb, Hsdl2, Aldh2, 

Cyp2c38, Cyp4a14, Cyp2c39, Retsat 

GO:0050873 

brown fat cell 

differentiation 

Pex11a, Scd1, Adrb2, Lamb3, Rgs2, Itga6, Mrap, Pparg, Fabp4, Arl4a 0.00311531 

GO:0007584 

response to 

nutrient 

Txn2, Hmgcr, Tgfbr2, Vcam1, Cybb, Tnfrsf11b, Bche, Pklr, Lipg, Aacs, 

Nqo1, Acsl3, Hmgcl, Slc27a4 
0.00318681 

GO:0006635 

fatty acid beta-

oxidation 

Eci1, Ech1, Ehhadh, Abcd1, Abcd2, Decr1, Hsd17b4, Hadh, Acat1, Eci3, 

Cpt1a 
0.0033165 

GO:0051301 

cell division 

Anapc16, Nek2, Aurka, Anln, Ensa, Ccng1, Spc24, Ccne2, Kif13a, Spc25, 

Cdca8, Ncapg2, Mis18a, Rala, Zwilch, Ccna2, Hells, Cdca3, Cdk1, 

Nusap1, Cdk6, Cdc20, Birc5, Ube2c, Sms2, Ect2, Mcm5, Wee1, Ccnd1, 

Dclre1a, Ccnb2, Mad2l1, Zwint, Cenpw, Haus8 

0.00488294 

 

Among the GO groups of the downregulated genes, circadian rhythm (GO:0007623) was 

enriched. The reduced expression of genes important for circadian rhythm like Clock, indicates 

a disturbed light-dark rhythm in ob/ob mice. Also, response to estradiol (GO:0032355) and 

hormonal stimuli (GO:0032870) were reduced in ob/ob mice.  

 

Table 3.3: GO enrichment analysis of downregulated genes in ob/ob mouse livers in the domain “biological 
process”; Benjamini adjustment of p-value 

Term Genes adj p-value 

GO:0007623 

circadian rhythm 

Egfr, Ddc, Klf9, Igf1, Arntl, F7, Cyp7b1, Npas2, Atf4, 

Ncoa2, Id2, Id3, Cry1, Clock 
9.57E-04 

GO:0032355 

response to estradiol 

Ifi27, Socs2, Dusp1, Foxa1, Prdm2, Ptch1, F7, Cyp1a2, 

Igfbp2, Dnmt3b, Gstp1, Ihh 
0.009972805 

GO:0045944 

positive regulation of 

transcription from RNA 

polymerase II promoter 

Fgfr2, Foxa2, Onecut1, Foxa3, Helz2, Nfix, Sox9, Cited2, 

Fos, Npas2, S1pr1, Hamp, Xbp1, Armcx3, Etv5, Wwox, 

Cyr61, Ihh, Egfr, Bmp4, Fzd8, Klf9, Klf12, Foxa1, Ptbp1, 

Mlxipl, Nr4a1, Igf1, Gper1, Arntl, Fzd5, Cela1, Foxp1, 

Prpf6, Atxn1, Hhex, Inhba, Atf4, Ncoa2, Irf5, Serpinf2, 

Clock 

0.02084427 

GO:0045892 

negative regulation of 

transcription, DNA-

templated 

Sox9, Pdcd4, Cited2, Atp8b1, Meg3, Zfp217, Cry1, 

Kdm5b, Dnmt3b, Bmp4, Ptprk, Mup4, Crebzf, Mup3, 

Mlxipl, Tle1, Arntl, Foxn3, Foxp1, Atxn1, Hhex, Ncoa2, 

Id2, Nab2, Whsc1l1, Ptch1, Id3, Clock 

0.05272735 
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GO:0000122 

negative regulation of 

transcription from RNA 

polymerase II promoter 

Fgfr2, Ppard, Efna1, Nfix, Sox9, Cited2, Hamp, Xbp1, 

Zfp217, Cry1, Dnmt3b, Bmp4, Zfp36, Fzd8, Klf12, Arid5b, 

Foxa1, Mlxipl, Tle1, Hes6, Cela1, Foxp1, Atxn1, Hhex, 

Acvr2b, Ifi27, Dact1, Ncoa2, IdD2, Hopx, Ptch1, Id3 

0.06973641 

GO:0001889 

liver development 

Hhex, Onecut1, Xbp1, Otc, Meg3, Srd5a1, Cad, Asns, Lsr, 

Cited2 
0.063543659 

GO:0010466 

negative regulation of 

peptidase activity 

Reck, Serpina3k, Serpina9, Mug1, Serpina11, Serpine2, 

Serpinf2, Serpina12, Fetub, Itih5, Itih3 
0.056690393 

GO:0055114 

oxidation-reduction process 

Hsd3b2, Cyp2u1, Cyp2d9, Hsd3b3, Hsd17b2, Ethe1, 

Hsd3b5, Prdx4, Ero1lb, Cyp4A12a, Cyp39a1, Ivd, Adh4, 

Hsd17b6, Loxl4, Srd5a1, Kdm5b, Scr9c7, Wwox, Cyp2c70, 

Nox4, Cyp2c37, Cyp2c54, Cyp4f14, Cyp1a2, Cyp7b1, 

Cyp27a1, Aox3, Gulo, Steap2 

0.060928127 

GO:0006357 

regulation of transcription 

from RNA polymerase II 

promoter 

Zfp36, Tshz2, Onecut1, Foxa2, Foxa3, Arid5b, Foxa1, 

Mlxipl, Tle1, Hes6, Sox9, Med12l, Cited2, Fos, Inhba, 

Hhex, Atf4, Irf5, Xbp1, Rhoa, Etv5 

0.070163046 

GO:0032870 

cellular response to 

hormone stimulus 

Fos, Ncoa2, Socs2, Dusp1, Aypr1a, Asns, Igfbp2 0.093673777 

 

All in all, the GO enrichment analysis confirmed the increased lipid metabolism as expected 

for ob/ob mice and gave evidence of a reduced hormonal capacity/responses in ob/ob mouse 

livers. Moreover, decreased gene expression of genes involved in circadian rhythm was an 

interesting finding, and agrees with an earlier report of disturbed circadian rhythm upon 

steatosis (Kohsaka et al. 2007). 
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3.2 Establishment of in vitro steatosis models 

In addition to the leptin deficient ob/ob mouse model as an animal model to study NALFD, an 

in vitro steatosis model was established in the course of this PhD thesis. The establishment of 

this model helps reducing the number of animal experiments and can be easy manipulated 

for functional analyses. There are several possibilities to induce lipid droplet formation 

in vitro, e.g. treatment with fatty acids (Gomez-Lechon et al. 2007; Listenberger et al. 2003) 

or cultivation in methionine-choline deficient (MCD) media (Sahai et al. 2006). The most 

widely used approach is cultivation of cells in fatty acid-enriched medium to provoke the 

formation of lipid droplets (Malhi et al. 2006). The conversion of fatty acids to triglycerides is 

discussed as a protective mechanism to avoid lipotoxic effects of fatty acids, where 

monounsaturated fatty acids are more efficiently converted into triglycerides than saturated 

fatty acids, and are consequently less lipotoxic than saturated fatty acids (Listenberger et al. 

2003; Mei et al. 2011). In both diet and serum, palmitic acid (C16:0) and oleic acid (C18:1) are 

the most abundant fatty acids (Baylin et al. 2002). Moreover, oleic acid is more steatogenic 

than palmitic acid in hepatocytes (Ricchi et al. 2009). For these reasons, oleic acid was used to 

establish in vitro models for steatosis in hepatocellular carcinoma cell lines as well as in 

primary mouse hepatocytes. 

3.2.1 Lipid accumulation in HepG2 cells  

The first step of this approach was to induce lipid droplet formation in HepG2 cells. The human 

hepatocellular carcinoma cell line HepG2 was chosen because HepG2 cells are readily 

available, easy to cultivate, and do not alter their gene expression during cultivation in 

contrast to primary hepatocytes (Godoy et al. 2013). HepG2 cells were incubated with various 

concentrations of oleic acid, complexed to BSA in a molecular ratio of 6:1 (OA/BSA), as well as 

with the corresponding BSA-only concentrations for several days. This was necessary to 

determine, which concentrations and time points of OA/BSA exposure could mimic an in vivo 

situation, leading to lipid droplet accumulation without affecting the viability of HepG2 cells. 

The pictures of an Oil Red O staining in Figure 3.5 illustrate the formation of lipid droplets 

upon OA/BSA treatment. After only 24 h, OA/BSA incubation stimulated the production of 

more and larger lipid droplets in HepG2 cells compared to the control situation without 

OA/BSA, and the accumulation of lipid droplets also increased with the incubation time. 

However, it must be noted that HepG2 cells which were incubated with 4.5 mM OA/BSA 
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seemed to decrease in cell number, especially after 72 h and 5 d of exposure. They also 

appeared stressed. For this reason, the highest OA/BSA concentration was not used in further 

experiments, but instead replaced with an OA/BSA concentration below 0.5 mM, namely 

0.167 mM. 

 

Figure 3.5: OA/BSA incubation induces lipid accumulation in HepG2 cells. Oil Red O staining revealed a time 
and concentration dependent formation of lipid droplets in HepG2 cells upon OA/BSA exposure; representative 
pictures. Scale bars represent 20 µm. 

The Oil Red O staining of lipid-loaded HepG2 cells upon OA/BSA treatment revealed an 

obvious time and concentration-dependent lipid accumulation (see Figure 3.5). To obtain a 

more objective and measurable result, a triglyceride quantification, based on an enzymatic 

assay, was performed. The quantification results are listed in form of a diagram in Figure 3.6. 

As expected, increased OA/BSA concentrations led to increased amounts of cellular 

triglycerides. Interestingly, there was not such a well-defined time-dependent accumulation 

of lipids as seen in the Oil Red O staining. The same OA/BSA concentration either had no effect 

or only slightly elevated the triglyceride levels after prolonged incubation time.  
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Figure 3.6: Triglyceride accumulation in HepG2 cells upon OA/BSA incubation. The triglyceride amount of 
HepG2 after OA/BSA treatment was quantified enzymatically. The relative contents of triglycerides were sorted 
by A) time points and B) OA/BSA concentrations (n = 3).  

 

3.2.1.1 Effect of OA/BSA exposure on the viability of HepG2 cells 

To assess the viability of OA/BSA-incubated HepG2 cells, CellTiter-Blue® assays (Promega) 

were performed. After 24 h and 72 h OA/BSA incubation with various concentrations, the 

viability was not markedly reduced at any of the applied OA/BSA concentration. However, 

after 5 days of incubation, the CellTiter-Blue® assay revealed a clearly reduced viability of 

HepG2 cells incubated with 0.5 mM OA/BSA, and even less viability in cells exposed to 1.5 mM 

OA/BSA. The low viability of HepG2 cells incubated with 1.5 mM OA/BSA for five days was in 

line with their appearance, as illustrated in Figure 3.7 C, where only detached and therefore 

most probably dead cells were obvious. However, the low viability observed in HepG2 cells 

exposed five days to 0.5 mM OA/BSA was not in agreement with their otherwise healthy 

appearance. In this case, the viability of HepG2 cells was confirmed by counting the viable and 

dead cells using the Casy counter. The counting of the cells revealed no loss in viability of 

HepG2 cells after 5 d incubation with 0.5 mM OA/BSA (Figure 3.7 B).  

One explanation for the discrepancy between the results of the CellTiter-Blue® assay and the 

CASY counting could be a disturbed redox status in the lipid-loaded HepG2 cells leading to 

increased oxidative stress as previously reported (Anavi et al. 2015). The CellTiter-Blue® assay 

is based on the reduction of resazurin to resorufin depending on the redox system of the cell 

(O'Brien et al. 2000). Therefore, it is possible that HepG2 cells incubated with 0.5 mM OA/BSA 

for 5 days were still viable but with a reduced redox capacity. 
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Figure 3.7: OA/BSA exposure has impact on the viability of HepG2 cells. A) CellTiter-Blue ® assay of HepG2 after 
OA/BSA incubation indicates reduced viability upon long OA/BSA exposure (n = 3); B) Casy counting results of 
HepG2 cell incubated 5 d with FM, 0.08 mM BSA and 0.5 mM OA/BSA (n = 3); C) Representative pictures of 
HepG2 cells after 5 d stimulation with 0.08 mM BSA or 0.5 mM OA/BSA or 1.5 mM OA/BSA: Scale bars represent 
100 µm. 

 

3.2.1.2 Compromised autophagy in lipid-loaded HepG2 cells 

As demonstrated in the sections above, the induction of lipid accumulation in HepG2 cells due 

to OA/BSA incubation was successful and the optimal, non-toxic OA/BSA concentrations as 

well as length of exposure could be defined: HepG2 cells can be incubated with 1.5 mM 

OA/BSA for a maximum of three days, and with 0.5 mM OA/BSA for a maximum of five days. 

The next experiments were performed to elucidate if the in vitro steatosis model of HepG2 

was able to recapitulate an impaired autophagic flux as a feature of steatosis as observed 

in vivo (Fukuo et al. 2014; Gonzalez-Rodriguez et al. 2014). It is controversially discussed if 

oleic acid incubation induces the autophagic flux in HepG2 cells (Mei et al. 2011) or not (Tan 

et al. 2012). Moreover, Miyagawa and co-workers suggested a blockage of autophagy due to 

impaired autophagosome-lysosomes fusion upon treatment with palmitic acid but not with 

oleic acid (Miyagawa et al. 2016). These studies used shorter exposure duration with oleic acid 

(maximal 24 h). Here, the aim was to investigate, which effect long term (72 h and 5 days) 

incubation with various concentrations of OA/BSA and the resulting lipid accumulation had on 

the autophagic flux in HepG2 cells. 
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As described in Chapter 3.1.2, the autophagy markers LC3 I/LC3 II and p62 were monitored by 

Western blot. After 24 h OA/BSA incubation, a slight accumulation of p62 as well as LC3 II was 

observed in cells incubated with the highest OA/BSA concentration (1.5 mM). The increased 

levels of p62 and LC3 II were more prominent after 72 h of OA/BSA treatment with all 

concentrations compared to the cells that were incubated with the corresponding BSA 

controls, with the highest levels seen after stimulation with 1.5 mM OA/BSA (Figure 3.8, 

yellow arrows). These observations were repeated for the 5 d time point: only with OA/BSA 

incubation there was a co-accumulation of p62 and LC3 II. These results suggest a time and 

concentration-dependent reduction or blockage of autophagy upon OA/BSA exposure via an 

impaired degradation of autophagosomes.  

 

Figure 3.8: Increased levels of autophagy markers in lipid-loaded HepG2 cells indicate a disturbed autophagic 
flux. Representative Western blot of OA/BSA exposed HepG2 cells showing a time and concentration-dependent 
increase of p62 and LC3 II levels. β-Actin was used as loading. 

To confirm these results, a LC3 II-turnover assay was performed according to the guidelines 

for monitoring autophagy (Klionsky et al. 2012). This assay uses inhibitors of autophagy 

turnover and analyses the consequences by monitoring the levels of LC3 II. Briefly, if the 

amount of LC3 II increases upon inhibitor treatment, this strongly indicates that the 

autophagic flux was previously intact and not compromised. In the following experiments, 

vinblastine or bafilomycin A were used as autophagy inhibitors. Vinblastine depolymerizes the 

normal and acetylated microtubule network and therefore inhibits the fusion of 

autophagosomes and lysosomes. Bafilomycin A is a V-ATPase inhibitor that elevates the 

lysosomal pH and inhibits degradation (Klionsky et al. 2012). 

In the present study, HepG2 cells were incubated with three concentrations: 0.167 mM, 

0.5 mM or 1.5 mM OA/BSA or with the corresponding BSA controls for three different time 
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periods: 24 h, 72 h or 5 d. Four hours before each harvest, the cells were pre-treated with 

50 µM vinblastine or 100 nM bafilomycin A.  

After 24 h OA/BSA incubation, the autophagy inhibitors caused an increase in LC3 II in each 

condition, which indicated an active autophagic flux (Figure 3.9 A). However, after 72 h 

incubation with 1.5 mM OA/BSA the inhibitor did not further increase the LC3 II levels 

(compare pink arrows in Figure 3.9 B), suggesting an impaired autophagy. The lower 

concentrations of OA/BSA as well as the full media (FM) and BSA controls showed an intact 

autophagic flux. A similar picture was seen after 5 d of OA/BSA incubation. There was an active 

autophagy in cells exposed to BSA or 0.167 mM OA, as evidenced by an additional increase in 

LC3 II upon inhibitor incubation. However, there was no further increment of LC3 II in HepG2 

cells incubated with 0.5 mM OA/BSA, indicating a compromised/reduced autophagic flux. 

 

Figure 3.9: Confirmation of compromised autophagy in lipid-loaded HepG2 cells by the LC3 turnover assay. 
Representative Western blot of LC3 in the presence and absence of 50 µM vinblastine (vin) or 100 nM 
bafilomycin A (not shown) in control and lipid-loaded HepG2 cells. The time of OA/BSA stimulation varied from 
A) 24 h, B) 72 h to C) 5 days (n = 3). α-Tubulin served as loading control. 
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Altogether, the analysis of LC3 II and p62 levels in lipid-loaded HepG2 cells (Figure 3.8) as well 

as the LC3 II turnover assay (Figure 3.9) revealed a time and concentration-dependent effect 

on autophagy in HepG2 cells upon OA/BSA exposure. Whereas at lower concentrations of 

OA/BSA and/or shorter incubation times the autophagy flux was still active, the higher 

concentrations and/or longer incubation times resulted in a compromised autophagic flux. 

3.2.2 Induction of steatosis in primary mouse hepatocytes  

In addition to HepG2 cells, lipid accumulation was induced in primary mouse hepatocytes, 

cultivated in a collagen coated well and overlaid by a thick collagen layer. The advantage of 

cultivated primary mouse hepatocytes under these conditions is that they more resemble 

freshly isolated hepatocytes than HepG2 cells, even though primary mouse hepatocytes 

undergo massive gene expression changes during cultivation (Godoy et al. 2013). Moreover, 

primary mouse hepatocytes are more easily available than primary human hepatocytes since 

they can be isolated in house. A further advantage of this culture system is that primary cells 

are larger than HepG2 cells, and are still able to form bile canaliculi. Therefore, the impact of 

lipid accumulation on overall morphology and bile canaliculi morphology can be studied in this 

system.  

OA/BSA incubation provoked lipid droplet accumulation in primary mouse hepatocytes as 

seen for HepG2 cells (Figure 3.10). The size of the lipid droplet was especially high in cells 

exposed to 1.5 mM OA/BSA. As illustrated in the left panel (0 mM OA/BSA) in Figure 3.10, the 

bile canaliculi were formed under control situations. In contrast, upon lipid accumulation 

(middle and right panels) the bile canaliculi could not be distinguished. Structural changes 

observed upon lipid excess are described in the next Chapter. 
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Figure 3.10: OA/BSA incubation induces lipid accumulation in primary mouse hepatocytes. Brightfield 
microscopy images show lipid droplets as bright spots in OA/BSA incubated cells (Magnification 200x). 

 

3.2.2.1 Lipid accumulation affects the morphology and the bile canalicular structure of 

primary mouse hepatocytes  

In the livers of steatotic ob/ob mice, a strong accumulation of lipid droplets was associated 

with a displacement of the nucleus towards the periphery of the cell (see Figure 3.1 E). To 

evaluate whether this feature was present in the in vitro steatosis model of primary mouse 

hepatocytes, OA/BSA exposed cells as well as control cells were stained for lipid droplets, the 

nucleus and the cell membranes. The white arrows in Figure 3.11 show some examples of 

shifted nuclei in lipid-loaded hepatocytes, indicating that displacement of nuclei by the 

increased quantity of cytoplasmic lipid droplets, as seen in vivo, is an event that can be 

recapitulated in vitro. 
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Figure 3.11: Intracellular lipid overload results in nuclear displacement. Primary mouse hepatocytes were 
cultivated 24 h before incubated with 0.8 mM OA/0.133 mM BSA or 0.133 mM BSA for 48 h. The nuclei were 
stained with DAPI (illustrated in blue), lipid droplets were visualised by Bodipy (green), and the membranes - 
more precisely F-actin filaments - were visualised with rhodamine-phalloidin (red); representative pictures. Scale 
bars represent 40 µm.  

To explore whether this excessive amount of lipid droplets also influenced the cytoskeleton, 

an immunofluorescence staining of α-tubulin as a marker for microtubular network was 

applied. Figure 3.12 revealed a totally different arrangement of the microtubules in lipid-

loaded primary mouse hepatocytes compared to control cells. Whereas under lean 

circumstances the microtubule fibres were spread throughout the cell, in the lipid-loaded 

situation these fibres were forced to squeeze around/through the lipid droplets and were no 

longer distributed throughout the entire cytoplasm.  

 

Figure 3.12: Tubulin network in steatotic hepatocytes is altered. Primary mouse hepatocytes were cultivated 
for 24 h before incubated with 0.8 mM OA/0.133 mM BSA or 0.133 mM BSA for 48 h. The nuclei were stained 
with DAPI (illustrated in blue), the microtubule network was detected with a tubulin-specific antibody by indirect 
immunofluorescence (red) and the membranes - more precisely F-actin filaments - were visualised with 
rhodamine-phalloidin (green); representative pictures. Scale bars represent 40 µm. 
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This de-arranged tubulin network suggested a modified and restricted cytoskeleton in lipid-

loaded primary mouse hepatocytes. Importantly, alterations of the cytoskeleton may affect 

or restrict microtubule-dependent vesicle trafficking of the cell. 

The membrane staining in Figure 3.12 demonstrated an altered bile canaliculi morphology in 

steatotic primary mouse hepatocytes. 

To visualise the bile canaliculi more clearly, DPPIV, a marker for bile canaliculi, was labelled 

using a specific anti-DPPIV antibody. After 24 h exposure to OA/BSA, the bile canaliculi in lipid-

loaded hepatocytes appeared broader than and not as uniform as those in the control cells 

(Figure 3.13, upper panel). This observation became even more obvious after longer 

cultivation times. At 72 h incubation, the control cells formed long, thin bile canalicular 

structures with even shape. In contrast, the bile canaliculi network of the OA/BSA stimulated 

cells had not that even shape and appeared broader between some cells.  

 

Figure 3.13: Lipid-loaded primary mouse hepatocytes show an altered morphology of bile canaliculi. Primary 
mouse hepatocytes were cultivated for 24 h before incubated with 0.5 mM OA/0.08 mM BSA or 0.08 mM BSA 
for 24 h or for 72 h. The nuclei were stained with DAPI (illustrated in blue), the bile canaliculi were detected with 
a DPPIV-specific antibody by indirect immunofluorescence (red) and lipid droplets were visualised by Bodipy 
(green); representative pictures. Scale bars represent 40 µm. 
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3.2.2.2 Lipid-loaded primary mouse hepatocytes display a reduced autophagy 

In order to investigate whether the autophagy flux was compromised in lipid-loaded primary 

mouse hepatocytes in a similar manner as shown for lipid-loaded HepG2 cells, the LC3 II 

turnover assay was performed as described in Chapter 3.2.1.2. Since the microtubular 

network was completely modified in primary mouse hepatocytes due to intracellular lipid 

accumulation (Figure 3.12), and a disturbed microtubule network is known to impair fusion of 

autophagosomes with lysosomes (Kochl et al. 2006; Webb et al. 2004), this strongly indicated 

an impaired fusion capacity in lipid-loaded primary mouse hepatocytes. Figure 3.14 illustrates 

the protein levels of p62 and LC3 in primary mouse hepatocytes exposed for 72 h (left panel) 

or 5 d (right panel) to two different OA/BSA and BSA concentrations in the presence or 

absence of 100 nM bafilomycin A. 

 

Figure 3.14: OA/BSA incubation compromises the autophagic flux in primary mouse hepatocytes in a time- and 
concentration-dependent manner. Representative Western blot of LC3 and p62 in the presence and absence of 
100 nM bafilomycin A (baf) in control and lipid-loaded primary mouse hepatocytes. The time of OA/BSA 
stimulation varied from 72 h (left panel) to 5 days (right panel). β-Actin was used as a loading control (n = 3). 

After 72 h incubation with 1.5 mM OA/BSA, the level of p62 accumulated compared to the 

corresponding 0.25 mM BSA control, this was accompanied by increased levels of LC3 II 

(yellow arrows). Co-treatment with 100 nM bafilomycin A did not seem to further elevate the 

levels of p62 or LC3 II (pink arrows), suggesting an impaired autophagy process. Under control 

conditions (FM, BSA) and lower fatty acid concentrations (0.5 mM OA/BSA), incubation with 

bafilomycin A resulted in p62 and LC3 II accumulation and revealed a functional autophagic 

flux in those cells. Thus, impaired autophagy flux at 72 h occurred only at high OA/BSA 

concentrations. 

After 5 days, a similar picture was seen in primary mouse hepatocytes exposed to OA/BSA; 

however, the compromised autophagy occurred at lower OA/BSA concentrations (Figure 3.14, 

right panel). Cells incubated for 5 days with 0.5 mM OA/BSA showed elevated levels of p62 as 
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well as LC3 II in contrast to full media or BSA exposed cells (yellow arrows). Moreover, co-

treatment with bafilomycin A did not further increase the levels of p62 and LC3 II, indicating a 

compromised autophagic flux. In contrast, control cells (FM or BSA) showed increased 

expression of p62 and LC3 II upon bafilomycin A co-treatment and suggested an intact 

autophagic flux in these cells. 

All in all, the LC3 II turnover assay gave evidence of a compromised autophagic flux in primary 

mouse hepatocytes exposed to OA/BSA for three and five days depending on the OA/BSA 

concentration. Notable, the concentrations of OA/BSA as well as the duration of incubation 

leading to a disturbed autophagy were the same in primary mouse hepatocytes and HepG2 

cells (see Figure 3.9). 

3.2.3 Affymetrix gene array analysis of the in vitro steatosis model of HepG2 cells 

To characterise genome-wide expression alterations in the in vitro steatosis model, Affymetrix 

gene array analysis was performed. The decision to analyse global gene expression alterations 

in OA/BSA exposed HepG2 cells was based on the fact that they are of human and not murine 

origin since gene array analysis was already performed for the murine steatosis situation in 

the ob/ob mouse model (see Chapter 3.1.3). To understand gene expression changes caused 

by lipid accumulation in a time-dependent manner, a single concentration of OA/BSA was used 

to stimulate the cells for several days. Thus, HepG2 cells were incubated for 24 h, 72 h or 

5 days with 0.5 mM OA complexed to BSA, before RNA was isolated. Of note, these were the 

same time points where the cells were already characterized in terms of lipid accumulation, 

viability, and autophagic capacity. RNA from control cells in full media (FM) was used as the 

reference (calibrator) for each time point. In the following Chapter, the differential gene 

expression analysis of oleic acid treated HepG2 cells compared to the HepG2 cells in FM was 

performed. 

3.2.3.1 The number of deregulated genes increases upon prolonged lipid stimulation 

Two observations could be made from the PCA plot in Figure 3.15: First, there were profound 

gene expression differences between OA/BSA-incubated and control cells. Second, a time 

dependent change of gene expression within both groups was visible. Additionally, after 

5 days of OA/BSA incubation, the variability between the replicates increased.  
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Figure 3.15: Gene array analysis reveals alterations of gene expression in lipid-loaded HepG2 cells. Gene array 
analysis was performed in HepG2 cells, which were incubated with 0.5 mM OA/BSA or full media (FM) for various 
time points. Gene expression differences were illustrated in a principle component analysis.  

In Table 3.4, the numbers of significantly deregulated genes are listed. These increased upon 

prolonged OA/BSA incubation time. The duration of OA/BSA exposure, and consequently the 

amount of lipid accumulation seemed to be a crucial factor in determining gene expression 

alterations.  

Table 3.4: Number of significantly deregulated genes in OA/BSA-exposed HepG2 cells compared to control 
HepG2 cells (n = 2-3; adjusted p-value < 0.05) 

Comparison Upregulated genes Downregulated genes 

24 h 0.5 mM OA vs FM 1859 1089 

72 h 0.5 mM OA vs FM 2624 2509 

5 d 0.5 mM OA vs FM 4336 3522 

 

3.2.3.2 GO enrichment analysis of deregulated genes in lipid-loaded HepG2 cells 

To interpret the set of deregulated genes obtained by the gene array analysis, a GO 

enrichment analysis was performed as described in Chapter 3.1.3.2. This analysis was done 

for each incubation time point of OA/BSA, including all significantly deregulated genes with a 

defined cut off of 1.5-fold change compared to FM. Again, the focus was on the domain 

“biological process”. Detailed Tables of the enriched GO groups of up and downregulated 

genes in lipid-loaded HepG2 cells are listed below (Tables 3.5 – 3.7). Unexpectedly, the 
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upregulated genes did not significantly overrepresent a lipid metabolism associated GO term, 

as seen for the GO enrichment of steatotic livers of ob/ob mice (Chapter 3.1.3.2). Only after 

24 h and 72 h was the set of upregulated genes enriched in the GO terms reverse cholesterol 

transport (GO:0043691) as well as cholesterol homeostasis (GO:0042632), although the over-

representation was not significant. Altogether, there was rarely a group of significantly over 

represented upregulated genes in lipid-loaded HepG2 cells. Interestingly, there were only two 

overrepresented GO terms for the downregulated genes at all time points, namely canonical 

glycolysis (GO:0061621) and cellular response to cadmium ions (GO:0071276). Moreover, 

there was no GO term consistently overrepresented in the set of upregulated genes for all 

time points.  

Table 3.5: GO enrichment analysis of deregulated genes in HepG2 cells after 24 h OA/BSA exposure. Top 10 GO 
terms 

Upregulated genes Downregulated genes 

GO term adj p-value GO term adj p-value 

GO:0043691 

reverse cholesterol transport 

0.17385035 GO:0061621 

canonical glycolysis 

1.02E-05 

GO:0042632 

cholesterol homeostasis 

0.27564986 GO:0051301 

cell division 

0.00127925 

GO:0043547 

positive regulation of GTPase 

activity 

0.32774281 GO:0007067 

mitotic nuclear division 

0.00159505 

GO:0086091 

regulation of heart rate by cardiac 

conduction 

0.38073581 GO:0045926 

negative regulation of growth 

0.00184302 

GO:0030198 

extracellular matrix organization 

0.5813412 GO:0071294 

cellular response to zinc ion 

0.00184302 

GO:0006814 

sodium ion transport 

0.58244121 GO:0007062 

sister chromatid cohesion 

0.06863568 

GO:0051923 

Sulfation 

0.60032032 GO:0007080 

mitotic metaphase plate 

congression 

0.07045449 

GO:0006497 

protein lipidation 

0.60032032 GO:0071276 

cellular response to cadmium ion 

0.13532592 

GO:0045820 

negative regulation of glycolytic 

process 

0.60032032 GO:0043433 

negative regulation of sequence-

specific DNA binding transcription 

factor activity 

0.14331527 

GO:0016311 

dephosphorylation 

0.61210795 GO:0006096 

glycolytic process 

0.20848852 
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Table 3.6: GO enrichment analysis of deregulated genes in HepG2 cells after 72 h OA/BSA exposure. Top 10 GO 
terms 

Upregulated genes Downregulated genes 

GO term adj p-value GO term adj p-value 

GO:0071230 

cellular response to amino acid 

stimulus 

0.62371738 GO:0006953 

acute-phase response 

0.09410289 

GO:0008203 

cholesterol metabolic process 

0.72357658 GO:0071294 

cellular response to zinc ion 

0.10038109 

GO:0043691 

reverse cholesterol transport 

0.73727257 GO:0045926 

negative regulation of growth 

0.10038109 

GO:0050821 

protein stabilization 

0.76651022 GO:0061621 

canonical glycolysis 

0.12228612 

GO:0042632 

cholesterol homeostasis 

0.77032103 GO:0006357 

regulation of transcription from 

RNA polymerase II promoter 

0.2217959 

GO:0034613 

cellular protein localisation 

0.79240717 GO:0007568 

aging 

0.23752302 

GO:0007050 

cell cycle arrest 

0.79583579 GO:0071222 

cellular response to 

lipopolysaccharide 

0.24045939 

GO:1904262 

negative regulation of TORC1 

signaling 

0.83103311 GO:0070201 

regulation of establishment of 

protein localization 

0.24239769 

GO:0000122 

negative regulation of 

transcription from RNA 

polymerase II promoter 

0.84265134 GO:0045944 

positive regulation of 

transcription from RNA 

polymerase II promoter 

0.24902068 

GO:0042981 

regulation of apoptotic process 

0.84554807 GO:0071276 

cellular response to cadmium ion 

0.25510946 
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Table 3.7: GO enrichment analysis of deregulated genes in HepG2 cells after 5 d OA/BSA exposure. Top 10 GO 
terms 

Upregulated genes Downregulated genes 

GO term adj p-value GO term adj p-value 

GO:0006351 

transcription, DNA-templated 

0.00601903 GO:0071456 

cellular response to hypoxia 

0.00133296 

GO:0006355 

regulation of transcription, DNA-

templated 

0.05966979 GO:0061621 

canonical glycolysis 

0.04043354 

GO:0042981 

regulation of apoptotic process 

0.61394741 GO:0007179 

transforming growth factor beta 

receptor signaling pathway 

0.04105637 

GO:0032436 

positive regulation of 

proteasomal ubiquitin-dependent 

protein catabolic process 

0.6253193 GO:0006953 

acute-phase response 

0.04323332 

GO:0061041 

regulation of wound healing 

0.83350723 GO:0006879 

cellular iron ion homeostasis 

0.04689641 

GO:2000134 

negative regulation of G1/S 

transition of mitotic cell cycle 

0.9143135 GO:0001666 

response to hypoxia 

0.05036888 

GO:0043434 

response to peptide hormone 

0.94249894 GO:0030855 

epithelial cell differentiation 

0.07109188 

GO:0006977 

DNA damage response, signal 

transduction by p53 class 

mediator resulting in cell cycle 

arrest 

0.94416011 GO:0071276 

cellular response to cadmium ion 

0.08586923 

GO:0097193 

intrinsic apoptotic signaling 

pathway 

0.94417028 GO:0001657 

ureteric bud development 

0.08690167 

GO:0060348 

bone development 

0.94617806 GO:0045893 

positive regulation of 

transcription, DNA-templated 

0.08944533 

 

As already seen by the increasing numbers of deregulated genes upon prolonged incubation 

with OA/BSA (Table 3.4), the time of the OA/BSA exposure per se or the continuous lipid 

accumulation had profound impact on the gene expression in HepG2 cells. 
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3.3 Published gene expression data sets of human NAFLD  

In addition to the steatosis-related gene expression alterations in ob/ob mice and in the 

in vitro steatosis model of HepG2, two publically available data sets of human NAFLD were 

used to identify steatosis-relevant genes in human NAFLD.  

One dataset on hepatic gene expression that was employed, was the study conducted by 

Moylan and colleagues, published in 2014. In this study, two groups of patients were defined: 

one group with patients at low risk for liver-related morbidity and mortality (“mild NAFLD”); 

the other group containing patients who were at high risk for the mentioned complications 

(“severe NAFLD”) (Moylan et al. 2014). The classification of patients was based on the fibrosis 

stage of the liver. Patients with a fibrosis stage of 0 - 1 were in the group “mild NAFLD” (n = 40) 

and those with a fibrosis stage of 3 - 4 were grouped as “severe NAFLD” (n = 32). The aim of 

the study was to find gene expression alterations which could be used as biomarker for 

progression or as possible treatment targets. This data set is found under GSE49541 in the 

Gene Expression Omnibus (GEO) repository. 

The second human data set on hepatic gene expression alterations aimed to describe global 

gene expression changes with regard to the progression of human NAFLD (Lake et al. 2011). 

From this study, we used the published microarray dataset called E-MEXP-3291 

(http://www.webcitation.org/5zyojNu7T), and compared the hepatic gene expression of 

patients diagnosed as healthy (n =19) with patients suffering from NASH with or without 

steatosis (n = 16). 
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3.4 Approach for selecting steatosis-relevant genes 

The gene expression alterations upon steatosis of the ob/ob mouse model, of lipid-loaded 

HepG2 cells as well as of the above mentioned publically available human data sets of NAFLD 

were compared to identify commonly deregulated genes in steatosis and NAFLD. For that 

reason, a pipeline was designed aimed at identifying steatosis-relevant genes across species 

and models.  

Genes were considered to be relevant and of potential interest when they were found to be 

deregulated in both the ob/ob mouse model and in the publically available data sets of human 

NAFLD, as opposed to genes which were only altered in the fatty liver in one of both species. 

This approach ensured the identification of genes that were possibly relevant in human 

NAFLD, and offered the possibility of being studied in an animal model. In a next step, the 

overlapping genes were compared to deregulated genes in the in vitro HepG2 steatosis model. 

Thus, this would potentially allow the identification of genes altered in human and mouse 

NAFLD that could be studied in an in vitro system. This step has the risk of losing interesting 

in vivo relevant genes but on the other hand it offers the advantage of understanding the 

mechanism of deregulation by fatty acids/lipid accumulation in vitro.  

3.4.1 Commonly differentially expressed genes in ob/ob mice and human NAFLD 

In the first step of the pipeline, significantly (adjusted p-value < 0.05) deregulated genes from 

the two human data sets were compared to significantly (adjusted p-value < 0.05) deregulated 

genes in ob/ob mouse livers. They were then differentiated between the upregulated genes 

and the downregulated genes. In Figure 3.16, the overlaps between the three datasets are 

illustrated. For the three datasets, there are 102 commonly upregulated genes and 17 

commonly downregulated genes. For further analysis, only those genes which were 

deregulated in all three data sets were considered. 
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Figure 3.16: Overlap of deregulated genes in the ob/ob mouse model and in two human NAFLD data sets. 
A) Venn diagram of upregulated genes in ob/ob mice and in the human data sets GSE49541 and E-MEXP-3291; 
B) Venn diagram of significantly downregulated genes in ob/ob mice and in the human data sets GSE49541 and 
E-MEXP-3291. 

 

3.4.2 Overlap of deregulated genes in ob/ob mouse model, human NAFLD and 

OA/BSA incubated HepG2 cells 

The second step of the pipeline involved the comparison of the newly identified deregulated 

genes in ob/ob mice and human datasets with significantly (adjusted p-value < 0.05) 

deregulated genes in the in vitro steatosis model of HepG2 cells. This overlap should 

encompass genes that are altered in human and mouse NAFLD caused by exposure to fatty 

acids in vitro. Using this approach, the number of genes considerably decreased.  

As demonstrated in Figure 3.17, 18 genes were upregulated in the in vitro steatosis model of 

HepG2 as well as in the ob/ob mouse models and human data sets of NAFLD. Moreover, there 

were only four commonly downregulated genes. Lists of these deregulated genes are depicted 

in Tables 3.8 and 3.9. 
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Figure 3.17: Overlap of deregulated genes of the HepG2 in vitro steatosis model and the extracted deregulated 
genes of the ob/ob mouse model and human datasets of NAFLD. A) Upregulated and B) downregulated genes 
of HepG2 cells incubated with 0.5 mM OA for 72 h or 5 d were compared to up- or downregulated genes in ob/ob 
livers and human NAFLD datasets. 

 

Table 3.8: Commonly upregulated genes in ob/ob mouse livers, in human NAFLD and in OA/BSA exposed 
HepG2 cells (72 h and 5 d time points) 

Gene Encoding 

DNAJB4 DnaJ homolog subfamily B member4 

HSPA2 Heat shock related 70 kDa protein 2 

SULF2 Extracellular sulfatase 

NPNT Nephronectin 

THBS1 Thrombospondin 

TIMP3 Metalloproteinase inhibitor 3 

FAM102B Protein FAM102B 

ROBO1 Roundabout homolog 

S100A10 Protein S100-A10 

GLIPR1 Glioma pathogenesis-related protein 1 

SPARC Secreted protein acidic and cysteine rich 

BIRC3 Baculoviral IAP repeat-containing protein 3 

TCF4 Transcription factor 4 

SPP1 Osteopontin 

TPM1 Tropomyosin alpha-1 chain 

FBN1 Fibrillin-1 

TAGLN Transgelin 

MARCKS Myristoylated alanine-rich C-kinase substrate 
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Table 3.9: Commonly downregulated genes in ob/ob mouse livers, in human NAFLD and in OA/BSA exposed 
HepG2 cells (72 h and 5 d time points) 

Gene Encoding  

RXRA Retinoic acid receptor RXR-alpha 

AGXT Alanine-glyoxylate aminotransferase 

DNAJC12 DnaJ homolog subfamily C member 12 

SLC13A5 Solute carrier family 13 member 5 

 

3.4.3 Identification of AGXT as a steatosis-relevant gene 

For all the deregulated genes mentioned above, a literature search was performed, and one 

gene was selected by the pipeline- AGXT, which encodes the alanine-glyoxylate 

aminotransferase. AGXT was of special interest because: i) it has never been described in the 

context of steatosis, and ii) its loss of function mutations are responsible for an impaired 

glyoxylate detoxification that results in increased production and excretion of oxalate. 

Elevated urinary oxalate concentration can result in the formation of insoluble calcium oxalate 

depositions in the kidney that injure the renal system. The resulting disease is an autosomal 

recessive disorder called primary hyperoxaluria type 1 (PH1; Online Mendelian Inheritance in 

Man 259900). 

Interestingly, there is evidence linking the risk of kidney stones and the metabolic syndrome 

as well as elevated oxalate excretion in terms of obesity. In Table 3.10, a selection of 

publications that describe an association of urolithiasis with features of the metabolic 

syndrome is shown. However, the molecular mechanism which could explain the incidence of 

kidney stone disease in patients suffering from the metabolic syndrome, in particular NAFLD, 

was not elucidated. However, if AGXT is reduced to the extent that glyoxylate detoxification 

is compromised, the downregulation of AGXT in the fatty liver could provide an explanation.  
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Table 3.10: Selection of publications regarding a link between the metabolic syndrome and the risk of kidney 
stones 

Reference Result/Conclusion 

Akarken et al. 2015 Hypertension, hyperlipidemia and metabolic factors increase the 

risk of urolithiasis. 

Einollahi et al. 2013 The prevalence of renal stone disease is higher in NAFLD than in 

healthy individuals. 

Jeong et al. 2011 The metabolic syndrome is associated with an increased risk of 

kidney stone formation. 

Kohjimoto et al. 2013 The severity of urolithiasis is associated with clustering of metabolic 

syndrome features. 

Negri et al. 2008 Overweight and obesity increase the urinary excretion of the stone 

promotors oxalate and uric acid. 

Polat et al. 2015 Patients with increased BMI and hypertension are at higher risk of 

calcium oxalate stone development. 

Sakhaee et al. 2012 The more features of the metabolic syndrome the higher is the risk 

of forming calcium oxalate stone in patients without kidney stone 

history. 

Semins et al. 2010 An obese BMI is associated with an increased risk of kidney stone 

disease. 

Taylor et al. 2005 Obesity and weight gain increase the risk of kidney stone formation. 

Taylor and Curhan 2006 Greater BMI is associated with elevated excretion of the stone 

promotors oxalate and uric acid. 

 

In conclusion, applying the pipeline allowed the identification of AGXT as an interesting gene 

that is deregulated in mouse and human steatosis, and by fat accumulation in vitro that may 

contribute to kidney stone disease. Thus, the subsequent work in this thesis focused on the 

importance of AGXT in fatty liver - kidney interactions. 
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3.5 Validation of Agxt expression in steatosis models 

The aim of the following experiments was to validate the downregulation of Agxt - observed 

in the genome-wide datasets - in liver samples of the ob/ob mouse model, in the in vitro 

steatosis systems of primary mouse hepatocytes and human hepatocellular carcinoma cell 

lines and in primary human hepatocytes. Confirmation of the downregulation of Agxt would 

justify the need for further experiments to investigate the consequences of the 

downregulation of Agxt. 

3.5.1 Repressed Agxt expression in steatotic ob/ob mouse liver tissue 

To confirm the downregulation of Agxt in steatosis as identified in the above delineated 

genome-wide studies, quantitative real-time PCR was performed using a specific Agxt Taqman 

assay. The quantitative real-time PCR revealed a 1.86 ± 0.34 fold downregulation of Agxt at the 

RNA level in livers of ob/ob mice (Figure 3.18 A) and thus, confirmed the gene array results 

used for the pipeline (showing a fold change of - 1.91). Furthermore, protein analysis using 

both the Western blot technique and immunohistochemistry showed reduced expression of 

the protein Agxt. In addition, for the first time a pericentral zonation of Agxt in mouse liver 

was discovered (Figure 3.18). 

 

Figure 3.18: Livers of ob/ob mice display a reduced expression of Agxt. A) The RNA level of Agxt of ob/ob mouse 
livers was analysed by quantitative real-time PCR relative to ob/+ mouse livers. Eif2a was used as the endogenous 
control (n = 5); B) The protein expression and zonation of Agxt were assessed by immunohistochemistry in 
paraffin embedded liver slides. The scale bars represent 200 µm, CV: central vein, PV: portal vein; C) Western 
blot and D) its densitometric quantification of Agxt expression in liver lysates of ob/+ and ob/ob mice (n = 6). β-
Actin was used as a loading control. * indicates p < 0.05; ** indicates p < 0.01. 
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3.5.2 Reduced Agxt expression in in vitro models of steatosis 

After having demonstrated the downregulation of Agxt in ob/ob mouse livers, the next step 

was the validation of Agxt expression in in vitro steatosis models of primary mouse 

hepatocytes and an additional liver cancer cell line. These results would provide evidence of a 

direct association between lipid accumulation in hepatocytes and the downregulation of Agxt. 

The Affymetrix gene array of lipid-loaded HepG2 cells and corresponding control cells revealed 

a significant repression of AGXT, starting after 72 h of oleic acid exposure that remained until 

5 days of treatment. 

First, the expression of Agxt was investigated in the in vitro steatosis system of primary mouse 

hepatocytes. Figure 3.19 shows the analysis of Agxt expression at the RNA level (A) and protein 

level (B). After 72 h incubation with OA/BSA, the expression of Agxt was reduced upon both 

applied concentrations of OA/BSA compared to BSA controls. 5 d stimulation with OA/BSA 

caused strong variations in the RNA levels of Agxt between the biological replicates, and the 

difference between BSA and OA/BSA incubation was no longer obvious. One potential 

explanation could be a cultivation sensitivity of Agxt after plating the primary mouse 

hepatocytes. 

Protein levels of Agxt were not reduced after 72 h but after 5 d incubation with 1.5 mM 

OA/BSA. This result indicated a relative long cellular half-time of the Agxt protein, which 

appears stable for several days despite a reduction of its transcript.  

 

Figure 3.19: Downregulation of Agxt in primary mouse hepatocytes upon OA/BSA incubation. A) RNA level of 
Agxt of OA/BSA exposed primary mouse hepatocytes was analysed by quantitative real-time PCR relative to the 
BSA controls and time points; Gapdh was used as the endogenous control (n = 4); B) Representative Western 
blot of Agxt expression of FM and BSA or OA/BSA treated primary mouse hepatocytes. β-Actin was used as a 
loading control (n = 3). 
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All in all, the in vitro steatosis model of primary mouse hepatocytes indicated a lipid-

dependent downregulation of Agxt. To confirm this observation, OA/BSA-induced lipid 

accumulation was applied in the additional human hepatocellular carcinoma cell line Huh7. In 

these cells, we could also demonstrate lipid droplet accumulation upon OA/BSA exposure, 

using the Oil Red O staining (Figure 3.20). In the subsequent experiments, AGXT expression in 

lean and lipid-loaded Huh7 cells was analysed at the RNA as well as at the protein level. 

 

 

Figure 3.20: Induced lipid accumulation in Huh7 cells upon OA/BSA incubation. Oil Red O staining visualised 
lipid droplets after 72 h and 5 d incubation with 0.5 mM or 1.5 mM OA/BSA. Scale bars represent 50 µm. 

 

As demonstrated in Figure 3.21, there was a reduction of the AGXT expression at the RNA level 

after 72 h incubation with 0.5 mM or 1.5 mM OA/BSA. In contrast, there was no decrease in 

AGXT protein expression after 72 h incubation with OA/BSA. Instead, the protein level of AGXT 

was clearly reduced after 5 d exposure to 1.5 mM OA/BSA. 
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Figure 3.21: Downregulation of AGXT in Huh7 cells upon OA/BSA incubation. A) RNA level of AGXT of OA/BSA 
incubated Huh7 cells was analysed by quantitative real-time PCR relative to the BSA control (0.25 mM) and time 
point, UBC was used as the endogenous control (n = 4); B) Representative Western blot of AGXT expression of 
FM and BSA (0.25 mM) or OA/BSA exposed Huh7 cells (n = 3). α-Tubulin was used as a loading control. 

These experiments in primary mouse hepatocytes as well as in human Huh7 cells confirmed a 

time-dependent downregulation of Agxt expression upon OA/BSA stimulation. The protein 

level Agxt did not decrease concurrently with the RNA levels but exhibited a delay. In addition, 

only the highest concentration of OA/BSA was able to decrease Agxt at the protein level. 

Altogether, these experiments demonstrated successful a time- and concentration-

dependent downregulation of Agxt upon OA/BSA incubation in both murine and human 

in vitro steatosis systems, suggesting a similar mechanism of downregulation. 
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3.6 Inverse correlation between the lipid content and AGXT expression in 

primary human hepatocytes 

The experiments so far showed a strong association between lipid accumulation in 

hepatocytes and the downregulation of Agxt. This result was true for liver tissue from ob/ob 

mice and for the in vitro steatosis model with primary mouse hepatocytes as well as with Huh7 

cells. To validate the downregulation of AGXT in human steatosis, primary human hepatocytes 

were used. Freshly isolated primary human hepatocytes from thirteen male donors were 

obtained from clinics or purchased from Hepacult. RNA was isolated for gene expression 

studies and cellular triglycerides were extracted and analysed for the determination of 

steatosis.  

As illustrated in Figure 3.22, the RNA level of AGXT was reduced in several individuals. 

Moreover, there were pronounced differences regarding the cellular triglyceride content 

among the donors. 

 

 

Figure 3.22: RNA expression of AGXT as well as the content of triglycerides are highly variable among the 
human hepatocytes donors. A) AGXT RNA expression in human male hepatocytes was quantified by real-time 
PCR relative to Hm09. GAPDH was used as the endogenous control; B) Enzymatic quantification of triglycerides 
in primary human hepatocytes (Hm: short for human male hepatocytes; number: individual donor). 

The comparison of the AGXT expression in relation to the triglyceride amount for each 

individual showed an inverse correlation between the lipid content and the downregulation 

of AGXT, meaning less AGXT expression in hepatocyte samples containing higher triglycerides. 

This negative linear dependence was significant according to Spearman correlation (Figure 

3.23 A). For the subsequent analysis, the available samples of primary human hepatocytes 

were separated into two groups according to their levels of triglycerides. All samples which 

had RFU values below 4000 were defined as the control, non steatotic, and those with RFU 
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values higher than 4000 were declared as steatotic. Using this approach, a significant 

downregulation of AGXT in steatotic primary human hepatocytes was discovered as illustrated 

in Figure 3.23 B. 

 

Figure 3.23: AGXT is downregulated in steatotic primary human hepatocytes. A) The negative Spearman 
correlation coefficient (r = -0.6429) indicated a negative linear dependence of the AGXT expression and the 
amount of triglycerides of male primary human hepatocytes that was significant (p = 0.0208); B) Steatotic human 
hepatocytes, defined by a TG content with RFU values higher than 4000, displayed a significant downregulation 
of AGXT RNA relative to non-steatotic hepatocytes (control n = 4, steatotic n = 9); GAPDH was used as the 
endogenous control. ** indicates p < 0.01. 

 

This result supported and confirmed the hypothesis of a connection between the AGXT RNA 

expression and the content of lipids within hepatocytes. Moreover, this experiment prove that 

the previously observed downregulation of Agxt in livers of ob/ob mice and in the in vitro 

steatosis systems also occurred in the human situation. 
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3.7 Deregulation of glyoxylate-associated genes in steatosis 

As illustrated in Figure 3.24, AGXT is one of several enzymes involved in the glyoxylate 

pathway. To obtain an overall picture of the glyoxylate metabolism in steatotic liver, the RNA 

expression of some enzymes contributing to the glyoxylate metabolism was investigated in 

the ob/ob mouse model, in steatotic and non-steatotic primary human hepatocytes and in the 

in vitro steatosis model. 

 
 
Figure 3.24: Simplified schematic illustration of glyoxylate metabolism and glyoxylate precursors in human 
hepatocytes. Figure does not cover the entire glyoxylate metabolism. 

 

3.7.1 Hao1 is downregulated in the steatotic livers from ob/ob mice 

According to the Affymetrix gene array analysis (Chapter 3.1.3), the RNA expression level of 

Hao1 but not Grhpr was significantly decreased in ob/ob mouse liver (fold change: -1.42). 

Downregulation of Hao1 was confirmed by real-time PCR showing approximately a 1.5-fold 

(1.50 ± 0.4) decreased level of Hao1 mRNA in livers of ob/ob mice relative to ob/+ mice, as 

illustrated in Figure 3.25. Its product, the peroxisomal enzyme hydroxyacid oxidase 1, 

preferably oxidises glycolate to glyoxylate. Its reduced RNA expression suggested a decreased 

oxidation capacity of ob/ob mice to form glyoxylate from glycolate.  

Grhpr encodes the enzyme glyoxylate reductase/hydroxypyruvate reductase and mutations in 

the GRHPR gene are responsible for elevated oxalate excretion and formation of kidney stones 

in humans suffering from primary hyperoxaluria type 2 (Cramer et al. 1999). Detoxification of 



Results 

96 

glyoxylate by this enzyme did not appear to be compromised in the steatotic liver of ob/ob 

mice, as suggested by a lack of alteration of its RNA level (Figure 3.25). 

 

Figure 3.25: Hao1 is downregulated in ob/ob mouse livers. Quantitative real-time PCR confirmed the unaltered 
expression of Grhpr RNA and the downregulation of Hao1 RNA in ob/ob mouse livers relative to the expression 
in ob/+ livers (n = 5). Eifa2 was used as the endogenous control. * indicates p < 0.05. 

In contrast, two genes whose protein products are key enzymes involved in generating 

glyoxylate in the mitochondria via hydroxyproline breakdown, namely Prodh2 and Hoga1, 

were not downregulated in ob/ob mice, according to Affymetrix gene array. Prodh2 encodes 

the enzyme proline dehydrogenase 2 which catalyses the first step in the catabolism of 

hydroxyproline (Adams and Frank 1980; Summitt et al. 2015). In the catabolic pathway of 

hydroxyproline, two further enzymatic reactions take place before the enzyme 4-hydroxy-2-

oxoglutarate aldolase (Hoga1) cleaves 4-hydroxy-2-oxoglutarate to pyruvate and glyoxylate 

(Adams and Frank 1980). Hoga1 is encoded by the gene Hoga1 and mutations of this gene are 

responsible for primary hyperoxaluria type 3 (Belostotsky et al. 2010; Riedel et al. 2011).  

Overall, these results indicate a selective alteration of the peroxisomal glyoxylate metabolism 

in steatotic livers of ob/ob mice. On the one hand, the downregulation of Agxt, whose 

mutations are responsible for primary hyperoxaluria type 1, indicate an increased risk for 

urolithiasis in ob/ob mice. On the other hand, we also observed a downregulation of Hao1, 

which is involved in peroxisomal generation of glyoxylate from glycolate. Thus, the 

consequences of these changes for the overall glyoxylate metabolism remain unclear. 
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3.7.2 Expressions of GRHPR and HAO1 are reduced in steatotic primary human 

hepatocytes  

As shown in Figure 3.23, AGXT expression in primary human hepatocytes correlated inversely 

with the intracellular amount of triglycerides, and the classification of human hepatocytes into 

non-steatotic and steatotic confirmed its downregulation in steatosis. In the published human 

datasets of NAFLD, the expression of GRHPR, HAO1, HOGA1 and PRODH2 are either slightly 

but significantly reduced (Moylan et al. 2014) or not altered (Lake et al. 2011). For this reason, 

they were not discovered by the pipeline (Chapter 3.4). To analyse the expression of GRHPR 

and HAO1 in our collection of primary human hepatocytes, the hepatocytes were once more 

classified as control (non-steatotic) and steatotic according to their TG content as described 

in Chapter 3.6. 

Quantitative real-time PCR analysis revealed a significant reduction in the GRHPR expression 

in steatotic primary human hepatocytes. In contrast, the RNA expression of HAO1 showed a 

non-significant trend of HAO1 downregulation in steatotic primary human hepatocytes (Figure 

3.26).  

 

Figure 3.26: RNA expressions of GRHPR and HAO1 are reduced in steatotic primary human hepatocytes. 
Quantitative real-time PCR revealed a decrease in expression of GRHPR and HAO1 (not significant) in steatotic 
compared to non-steatotic human hepatocytes. GAPDH was used as the endogenous control (control: n = 4, 
steatotic: n = 9). * indicates p < 0.05, ns: not significant. 
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3.7.3 In vitro model of steatosis reveals a tendency of reduced RNA expression of 

Grhpr and Hao1 

In addition to primary human hepatocytes, the in vitro steatosis model of primary mouse 

hepatocytes was analysed for it expression of Grhpr and Hao1. As illustrated in Figure 3.27, 

72 h incubation with OA/BSA clearly reduced the RNA expression of Grhpr and Hao1. 

However, this effect was not clear after 5 d of OA/BSA stimulation. The reason could not be 

elucidated but one possibility may be a cultivation dependent effect. Nevertheless, induced 

lipid accumulation was able to alter – at least transiently - the expression of Grhpr and Hao1 

in primary mouse hepatocytes. 

 

Figure 3.27: In vitro steatosis model shows reduced levels of Grhpr and Hao1 RNA. OA/ BSA exposed primary 
mouse hepatocytes had decreased levels of Grhpr and Hao1 compared to BSA treated cells at 72 h time point. 
After 5 days of OA/BSA incubation, the expression levels of Grhpr and Hao1 were not as clear reduced as seen 
after 72 h incubation; Gadph was used as the endogenous control (n = 4). 
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3.8 Consequences of reduced Agxt expression in ob/ob mice  

The downregulation of Agxt in the liver upon steatosis was confirmed in the leptin deficient 

ob/ob mouse model, in the fatty acid-induced steatosis in vitro and in primary human 

hepatocytes. The next step was to investigate the consequences of this downregulation for 

glyoxylate metabolism and hepatic oxalate generation in ob/ob mice. Figure 3.28 illustrates 

the different approaches and samples used for this purpose: i) glyoxylate-related metabolites 

in liver tissue were quantified by HR-MAS 1H-NMR; ii) oxalate levels in the urine were 

quantified by GC-MS; and iii) the presence of calcium oxalate crystals in kidney tissue was 

investigated by Pizzolato staining. 

As depicted in Figure 3.24, Agxt detoxifies glyoxylate to glycine. Therefore, even though, 

glycine is involved in and generated via various metabolic pathways, a decreased 

concentration of glycine within the liver of ob/ob mice could be expected and may indicate a 

disrupted glyoxylate detoxification. In addition, reduced Agxt activity upon decreased Agxt 

expression might lead to less effective glyoxylate removal, and consequently augmented 

oxidation to oxalate, which might be elevated in the urine of ob/ob mice. Finally, since 

increased urinary oxalate concentrations increase the risk of renal calcium oxalate 

depositions, the formation of kidney stones as a result of decreased Agxt expression in ob/ob 

mice was also analysed.  

 

Figure 3.28 Illustration of the different approaches to analyse possible consequences of reduced Agxt 
expression in the ob/ob mouse model. 
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3.8.1 Steatotic ob/ob mouse livers have decreased concentrations of glycine and 

glycolate  

For the metabolic profiling of steatotic ob/ob and ob/+ mouse livers (n = 8), the high resolution 

magic angle 1H-NMR (HR-MAS 1H-NMR) technique was applied. This method allowed the 

identification of significant quantitative differences of several metabolites between ob/+ and 

ob/ob mouse livers. Glycine and glycolate, but unfortunately not oxalate and glyoxylate, were 

among the glyoxylate-related metabolites that could be detected by this method. The results 

showed significantly lower concentrations of glycine as well as glycolate in steatotic livers of 

ob/ob mice compared to lean livers of ob/+ mice (Figure 3.29). These data, generated with 

collaboration partners at ISAS Dortmund, were recently published (Gogiashvili et al. 2016). 

The reduced concentration of glycine in steatotic mice may be a consequence of the steatosis-

dependent repression of Agxt as described above. The lower glycolate concentration in livers 

from ob/ob mice may be a result of the decreased activity of Grhpr in ob/ob mice, although 

its expression level was not altered. These changes in metabolite levels may reflect 

physiological consequences of the altered glyoxylate metabolism in ob/ob mice.  

 

Figure 3.29: Ob/ob mice have reduced hepatic concentrations of glycine and glycolate. HR-MAS 1HNMR results 
of glycine (A) and glycolate (B) concentrations in ob/ob and ob/+ mouse livers (n = 8). 
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3.8.2 Ob/ob mice excrete more urinary oxalate than ob/+ mice 

The following experiments were designed to determine whether there was an increase in 

oxalate excretion of ob/ob mice. This was analysed in two situations: 1) under a normal diet 

and 2) under a diet that included an oxalate precursor. The goals of these two approaches 

were to determine whether oxalate levels are increased per se and/or if administration of an 

oxalate precursor exacerbated the amount of excreted oxalate, ultimately leading to the 

formation of kidney stones in ob/ob mice compared to ob/+ mice. 

In the literature, there are several challenges described that are shown to increase the 

formation of oxalate or induce the deposition of calcium oxalate stones under certain 

conditions in mice, e.g. administration of ethylene glycol (Salido et al. 2006), hydroxyproline 

(Knight et al. 2012), or glyoxylate (Khan and Glenton 2010) in water or in food. These oxalate 

precursors must be first metabolised in the body to glyoxylate; subsequently, the latter is 

either detoxified, or if generated in excess, converted to oxalate. Ethylene glycol is 

metabolised via an alcohol dehydrogenase to glycolaldehyde and then further oxidized to 

glycolate by an aldehyde dehydrogenase (Brent 2001). Glycolate is oxidized by Hao1 to 

glyoxylate. Since ob/ob mouse livers expressed less Hao1 than ob/+ mouse livers, it was 

assumed that ob/ob mice could not oxidise glycolate as efficiently as the ob/+ mice. 

Hydroxyproline is metabolised via several enzymatic steps as described in Chapter 3.7.1 and 

Figure 3.24. Enzymes involved in this pathway were not reduced in steatotic livers of ob/ob 

mice compared to livers of ob/+ mice, suggesting a normal hydroxyproline breakdown in 

ob/ob mice. 

A recent study reported that ob/ob but not ob/+ mice develop kidney calcium oxalate stones 

upon daily intraabdominal injection of 50 mg/kg glyoxylate for six days (Fujii et al. 2013). This 

finding was a strong indication that ob/ob mice may have lost the capacity to detoxify an 

excess of glyoxylate. Thus, glyoxylate itself was selected in the first experiment to stimulate 

the oxalate production in ob/+ and ob/ob mice.  

3.8.2.1 Challenge with 0.5% glyoxylate in drinking water increases urinary oxalate 

excretion of ob/+ and ob/ob mice 

At the age of nine to thirteen weeks ten ob/+ mice and ten ob/ob mice were divided in two 

groups. The first group of ob/+ mice (n = 5) received drinking water that contained 0.5% 

sodium glyoxylate monohydrate for eight days. The second group of ob/+ mice (n = 5) received 
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normal drinking water. The same conditions and animal numbers were used for ob/ob mice. 

Body weight and water consumption was carefully monitored during the experiment.  

As Figure 3.30 illustrates neither the body weight nor the water consumption were affected 

by the glyoxylate challenge in ob/+ and ob/ob mice. One mouse belonging to the control group 

of ob/ob mice drank more than 30 ml water per day and was excluded from the study. 

Interestingly, ob/ob mice ingested significantly less glyoxylate than the lean mice, as observed 

after adjustment to body weight. 

 

Figure 3.30: Ob/ob mice ingest less glyoxylate per body weight than ob/+ mice on 0.5% glyoxylate diet. A) Time 
line of diet; B) Average body weight; C) Daily intake of water and D) Ingestion of glyoxylate during 8 days of 0.5% 
glyoxylate challenge of ob/+ and ob/ob mice; (n = 4-5). * indicates p > 0.05. 

On day six of the glyoxylate diet, mice were transferred to a single mouse-metabolic cage and 

24 h urine was collected on two consecutive days. The volume of daily excreted urine differed 

between the genotypes but did not differ between the glyoxylate diet and the corresponding 

control group, indicating that the glyoxylate challenge had no impact on the urine filtration 

and excretion (Figure 3.31 A). The higher urine volume in the ob/ob mouse groups was 

reflected by the decreased creatinine concentration in urine. Again, the glyoxylate 

supplementation did not impact the urinary creatinine concentration of each genotype. 

Quantification of oxalate by gas chromatographic analysis revealed several important aspects: 

1) the urinary oxalate concentration did not differ significantly between the ob/+ and ob/ob 

mice in the control situation. When the daily urinary excretion of oxalate was considered, this 

was significantly higher in the control ob/ob mice (300 ± 26 µg oxalate/mg creatinine) 

compared to control ob/+ mice (202 ± 54 µg oxalate/mg creatinine), as demonstrated by the 

increased oxalate/creatinine ratio in Figure 3.31 D. 2) Upon 0.5% glyoxylate challenge, the 
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urinary concentration of oxalate increased in both genotypes, but was higher in ob/+ mice 

(482 ± 73 vs 291 ± 61 µg/ml). 3) On 0.5% glyoxylate diet, the ob/ob mice excreted significantly 

more oxalate than ob/+ mice on diet (1634 ± 283 vs 1162 ± 177 µg oxalate/mg creatinine). 

Several important conclusions can be drawn from this first experiment. First, ob/ob control 

mice excrete more oxalate on a daily basis than ob/+ mice. Second, eight days of 0.5% 

glyoxylate diet increased the urinary oxalate excretion in both the ob/ob and in ob/+ mice, but 

ob/ob mice excreted more oxalate than ob/+ mice. The impact of the downregulation of Agxt 

is seen in the increased daily excretion of oxalate in urine of ob/ob mice. 

 

Figure 3.31: 0.5% glyoxylate in drinking water results in an increased excretion of oxalate of ob/+ and ob/ob 
mice. A) Daily excreted urine volume of ob/+ and ob/ob mice with or without 0.5% glyoxylate challenge; B) 
Urinary creatinine concentration of ob/+ and ob/ob mice with or without 0.5% glyoxylate challenge; C) Urinary 
oxalate concentration of ob/+ and ob/ob mice with or without 0.5% glyoxylate challenge (quantification by GC-
MS); D) Daily urinary oxalate excretion normalised to creatinine level of ob/+ and ob/ob mice with or without 
0.5% glyoxylate challenge; (n = 4-5). ns: not significant * indicates p < 0.05; ** indicates p < 0.01; *** indicates p 
< 0.001. 

The fact that 0.5% glyoxylate challenge elevated the excreted oxalate amounts in both ob/+ 

and ob/ob mice indicated that the concentration of the glyoxylate diet might be too high to 

be detoxified under normal Agxt expression in ob/+ mice. In a next step, a concentration of 

glyoxylate that should be well tolerated by ob/+ mice was tested. For that reason, a challenge 

with decreased glyoxylate concentration was applied with the same mouse groups mentioned 

above after the urinary oxalate concentrations returned to normal (data not shown). 
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3.8.2.2 Challenge of ob/+ mice with 0.1% glyoxylate increases the oxalate excretion to a 

level excreted by the ob/ob mice without diet 

After three weeks of recovery, the glyoxylate diet was repeated with tap water containing 

0.1% sodium glyoxylate monohydrate. The corresponding control groups drank tap water 

without any additives. The experimental set up was the same as drafted in Figure 3.30 A. The 

body weights were measured routinely and the daily consumption of water of each mouse 

was recorded. There were no differences between the glyoxylate and their control groups 

regarding their body weight and daily drinking volume as illustrated in Figure 3.32. But the 

daily ingestion of glyoxylate relative to their body weight was clearly reduced in ob/ob mice. 

 

Figure 3.32: Ob/ob mice ingest less glyoxylate per body weight than ob/+ mice on 0.1% glyoxylate diet. A) 
Average body weight; B) Daily intake of water and C) Ingestion of glyoxylate during 8 days of 0.1% glyoxylate 
challenge of ob/+ and ob/ob mice; (n = 4-5). ** indicates p < 0.01. 

On day six of the diet, the mice were transferred to a single mouse metabolic cage and 24 h 

urine was collected on two consecutive days. 

The daily excreted urine volumes (Figure 3.33 A) were comparable to those during the 0.5% 

glyoxylate diet. Again, ob/ob mice excreted more urine than ob/+ mice. In addition, the 

creatinine concentrations in urine of ob/ob mice were significantly reduced. The urinary 

concentrations of oxalate were increased upon 0.1% glyoxylate challenge in both genotypes. 

However, the daily excreted amount of oxalate, indicated by the ratio of oxalate to creatinine, 

was significantly higher in ob/ob mice, both in the 0.1% glyoxylate group (477 ± 25 µg 

oxalate/mg creatinine) and in the untreated group (310 ± 22 µg oxalate/mg creatinine), 

compared to ob/+ mice (356 ± 51 µg oxalate/mg creatinine and 202 ± 48 µg oxalate/mg 

creatinine, respectively). Remarkably, the oxalate/creatinine ratio in the urine of the ob/ob 

mice without glyoxylate challenge did not significantly differ compared to the glyoxylate-

treated group of the ob/+ genotype (Figure 3.33 D).  
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Figure 3.33: 0.1% glyoxylate in drinking water results in an increased excretion of oxalate of ob/+ and ob/ob 
mice. A) Daily excreted urine volume of ob/+ and ob/ob mice with or without 0.1% glyoxylate challenge; B) 
Urinary creatinine concentration of ob/+ and ob/ob mice with or without 0.1% glyoxylate challenge; C) Urinary 
oxalate concentration of ob/+ and ob/ob mice with or without 0.1% glyoxylate challenge (quantification by GC-
MS); D) Daily urinary oxalate excretion normalised to creatinine level of ob/+ and ob/ob mice with or without 
0.1% glyoxylate challenge; (n = 4-5). * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001; ns: not 
significant. 

 

3.8.2.3 Glyoxylate-enriched drinking water does not induce formation of kidney stones in 

ob/+ and in ob/ob mice 

As described above, ob/ob mice were slightly hyperoxaluric compared to ob/+ mice under 

normal condition, as indicated by an elevated daily oxalate excretion level. Glyoxylate-

enriched drinking water increased the amount of excreted oxalate per day in both genotypes. 

To investigate whether the augmented daily production and renal excretion of oxalate results 

in calcium oxalate depositions, paraffin embedded kidney sections were stained for calcium 

oxalate stones according to the protocol of Pizzolato (Pizzolato 1964). In this staining, calcium 

oxalate stones appear as black/brownish deposits. As illustrated in Figure 3.34, a 0.1% 

glyoxylate-enriched diet did neither induce calcium oxalate deposits in kidneys of ob/ob mice 

nor of ob/+ mice. This showed that the increased level of urinary oxalate observed was not 

severe enough to result in calcium oxalate stone formation. 
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Figure 3.34: Glyoxylate enriched diet for 8 days does not induce calcium oxalate stones in kidneys of ob/+ and 
ob/ob mice. Pizzolato staining of right and left kidneys were performed and neither kidney showed any indication 
of calcium oxalate deposits. Shown are representative pictures of the right kidneys; data for left kidney are not 
shown. The positive control was a courtesy of Prof. Hans-Joachim Anders from the Medizinische Klinik und 
Poliklinik IV, Klinikum der Universität München. Scale bars represent 200 µm. 

 

3.9 Glyoxylate metabolism and urinary oxalate excretion in additional mouse 

models of NAFLD 

The leptin deficient ob/ob mouse model of NAFLD showed a convincing downregulation of 

Agxt and suggested a steatosis-dependent deficient detoxification of glyoxylate. Moreover, 

the slight increase in urinary oxalate excretion of ob/ob mice may be the consequence of the 

reduced expression of Agxt. To exclude that these alterations occurred due to the specific 

deficiency of the mouse model itself (leptin deficiency), two additional mouse models of 

NAFLD were investigated with regard to their glyoxylate metabolism. 

3.9.1 Glyoxylate metabolism in db/db mice 

In addition to the leptin deficient ob/ob mouse model, the leptin receptor-deficient db/db 

mouse model was explored. The main difference between these two genetic mouse models 

for NAFLD is that ob/ob mice are not able to produce leptin due to a mutation in the leptin 

gene; whereas, db/db mice have a mutation in the leptin receptor gene. As a consequence, 

db/db mice produce leptin but cannot respond to it due to the defective receptor (Trak-

Smayra et al. 2011). Therefore, the aim of this study was to investigate whether the findings 

in the ob/ob mice also apply to the db/db mice and to identify similarities and differences 

between the two models regarding the urinary oxalate excretion and expression of Agxt and 

the other glyoxylate metabolism-associated genes. First, db/db and db/+ mice (n = 5) were 

placed in single mouse metabolic cages and 24 h urines were collected in order to quantify 

the oxalate concentrations. Afterwards, four mice of each genotype were sacrificed and their 
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liver tissues were examined. Additionally, hepatocytes isolated from livers of db/db and db/+ 

mice (n = 2) were isolated and analysed.  

3.9.1.1 Db/db mice do not excrete more oxalate than db/+ mice 

Oxalate and creatinine levels were quantified in the collected 24 h urines of each mouse. As 

illustrated in Figure 3.35 A, oxalate levels decreased in the urine of db/db mice. Furthermore, 

the creatinine concentrations were also significantly lower in the urine of db/db mice, 

reflecting the large urine volumes, and thus decreased metabolite concentrations in the urine 

of db/db mice. After adjustment of the urinary oxalate concentration to the creatinine 

concentration, there was no significant difference in the daily oxalate excretion between 

db/db mice and db/+ mice (Figure 3.35 D). In conclusion, db/db mice were not hyperoxaluric, 

in contrast to ob/ob mice.  

 

Figure 3.35: Db/db mice do not excrete more oxalate than db/+ mice. A) Daily excreted urine volume of db/+ 
and db/db mice (n = 5); B) Urinary creatinine concentration of db/+ and db/db mice (n = 5); C) Urinary oxalate 
concentration of db/+ and db/db mice (n = 5; quantification by GC-MS); D) Daily urinary oxalate excretion 
normalised to creatinine level of db/+ and db/db mice (n = 5). ns: not significant; * indicates p < 0.05; *** 
indicates p < 0.001. 
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3.9.1.2 Db/db mice have the same liver to body ratio as db/+ mice and hepatic lipid 

accumulation in the pericentral field 

During the liver tissue collection, the body weight and the liver weight of each mouse was 

measured. Db/db mice had increased body and liver weights compared to the db/+ mice as 

exemplified in Figure 3.36. In contrast to ob/ob mice, see Figure 3.1 C, the liver to body weight 

ratio was not altered in db/db mice. Enzymatic triglyceride quantification revealed an 

approximately 3.5-fold higher concentration of triglycerides in db/db livers compared to db/+ 

livers. In contrast, the ob/ob mice had a 16-fold increased content of triglycerides compared 

to control mice (see Figure 3.1 D). H&E staining of paraffin sections of the liver was performed. 

A pericentral to midzonal accumulation of lipid droplets was observed in the livers of db/db 

mice; whereas no lipid droplets were observed in the periportal region. Furthermore, a large 

number of lipid-loaded hepatocytes displayed nuclei that were shifted towards the periphery 

of the cells (exemplified by yellow arrows in Figure 3.36 E). Altogether, these findings indicate 

that the steatotic phenotype in db/db mice is qualitatively similar but less severe than in ob/ob 

mice.  
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Figure 3.36: Steatotic db/db mice have the same liver to body weight ratio and show hepatic lipid accumulation 
in the pericentral field. A) Body weight of db/db and db/+ mice (n = 4); B) Liver weight of db/db and db/+ mice 
(n = 4); C) Liver to body weight ratio (n = 4); D) Enzymatic triglyceride quantification of db/db and db/+ mouse 
livers extracts; E) Representative H&E staining of paraffin embedded liver sections of db/+ and db/db mice. Scale 
bars represent 100 µm. CV: central vein, PV: portal vein. ns: not significant; ** indicates p < 0.01; *** indicates 
p < 0.001. 

 

3.9.1.3 Db/db mice show no Agxt reduction  

Since db/db mice did not secrete more oxalate than the db/+ mice, Agxt levels were compared 

in the both genotypes in the next step. RNA was isolated from liver tissue as well as from 

hepatocytes and quantitative real-time PCR was performed. Interestingly, Agxt RNA 

expression was not reduced in liver tissue of db/db compared to db/+ mice (Figure 3.37 A). 
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The unaltered expression of Agxt in db/db hepatocytes was confirmed using isolated 

hepatocytes. 

Moreover, protein expression of Agxt was analysed by Western blot using protein lysates from 

liver tissue of db/+ and db/db mice. There was no decrease in the protein level of Agxt in db/db 

mice compared to their lean counterparts (Figure 3.37 C,D) explaining why db/db mice did not 

have elevated oxalate excretion compared to db/+ mice. 

 

Figure 3.37: Livers from db/db mice have no repression of Agxt. The RNA level of Agxt in db/db mice A) in livers 
(n = 4) and B) in hepatocytes (n = 2) were analysed by quantitative real-time PCR relative to db/+ mice. Eif2a was 
used as the endogenous control; C) Western blot and D) its densitometric quantification of Agxt expression in 
liver extracts of db/+ and db/db mice (n = 4). β-Actin was used as a loading control. 

 

3.9.1.4 Glyoxylate associated genes in db/db mice liver tissue 

As described in the previous Chapter, the expression of Agxt was not reduced in db/db mice. 

The next step was to study whether the glyoxylate metabolism-associated genes Grhpr and 

Hao1 were affected in this mouse model of NAFLD. Quantitative real-time PCR demonstrated 

that Grhpr was approximately 1.6 fold upregulated in liver tissue of db/db mice relative to 

db/+ liver tissue. The expression of Hao1 was not altered in db/db mouse livers (Figure 3.38), 

suggesting that the glyoxylate metabolism in db/db mice was not similarly affected as seen for 

the ob/ob mouse model. 
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Figure 3.38: Grhpr expression is slightly increased in db/db mouse livers. Quantitative real-time PCR revealed a 
slight upregulation of Grhpr, Hao1 was not altered in db/db mouse livers relative to the expression in db/+ mouse 
livers (n = 4). Eif2a was used as the endogenous control. ns: not significant; * indicates p < 0.05. 

 

3.9.2 Glyoxylate metabolism in mice on the Western diet  

In addition to the genetic mouse models mentioned above, liver tissues were collected and 

analysed from mice, which were fed with a Western diet, a type of high fat diet, for several 

weeks. After 6, 12, 18, 24, and 30 weeks on the Western diet, five mice per group were 

sacrificed and liver tissues were collected. On the 29th week of diet, four mice per group were 

placed in a single mouse metabolic cage to collect 24 h urines and to analyse the urinary 

oxalate concentrations in these mice. This diet study was conducted by Dr. Ahmed Ghallab 

who kindly allowed us to collect urine as well as liver tissue for RNA analysis, and liver sections 

for histopathological characterisation. 

3.9.2.1 Western diet induces hepatic lipid accumulation and displacement of nuclei 

As illustrated in Figure 3.39 A, mice on the Western diet exhibited a time dependent increase 

in body and liver weight. The liver to body weight ratio was elevated after eighteen weeks on 

the Western diet compared to those mice on the normal diet. In addition, H&E staining of 

paraffin embedded liver slides showed an accumulation of intracellular lipid droplets in 

hepatocytes of the pericentral and middle zone. Moreover, several hepatocytes had nuclei 

that were shifted towards the periphery of hepatocytes (exemplified by yellow arrows in 

Figure 3.39 B). 
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Figure 3.39: Western diet induces a time-dependent increase in body and liver weight as well as hepatic lipid 
accumulation. A) Body and liver weights of mice on the normal or the Western diet (n = 5); B) H&E stainings of 
paraffin embedded liver sections of mice on the normal or the Western diet for several weeks. The yellow arrows 
indicate examples of hepatocytes with a shifted nucleus. Scale bars represent 50 µm. ND: normal diet; WD 
Western diet; CV: central vein, PV: portal vein. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001. 

 

3.9.2.2 Western diet causes a repression of Agxt 

After liver tissue was collected at the assigned time points, RNA was isolated and transcribed 

into cDNA. Afterwards, quantitative real-time analysis was performed to investigate the 

expression of Agxt and further genes associated with the glyoxylate metabolism. Moreover, 

IHC of paraffin embedded liver sections was performed to investigate the expression and 

distribution of Agxt in the liver tissue of mice which were on the normal or the Western diet 

for 24 weeks and 30 weeks. 

The RNA level of Agxt was significantly reduced in livers of mice on the sixth week (fold change: 

-1.97 ± 0.34) of the Western diet, and stayed reduced until the end of the diet (fold change: -

2.97 ± 0.96; Figure 3.40 A). The staining of Agxt indicated reduced protein expression in livers 

of mice after 30 weeks on the Western diet (Figure 3.40 B).  
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Figure 3.40: Western diet reduces the expression of Agxt. A) Quantitative real-time PCR revealed a down-
regulation of Agxt in livers of mice after 6, 18 and 30 weeks on the Western diet relative to mice on the normal 
diet. Gapdh was used as the endogenous control (n = 5); B) Representative IHC indicated a reduction of Agxt 
protein level after 24 weeks (data not shown) and 30 weeks on the Western diet. Scale bars represent 200 µm. 
* indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001. 

The expression of further glyoxylate metabolism-associated genes was not altered as strongly 

or as early on the diet as seen for Agxt. Grhpr and Hao1 RNA expressions were not significantly 

reduced with the Western diet; however, there was a trend towards lower expression of Hao1 

in liver of mice that were on the Western diet for 30 weeks (Figure 3.41).  

All in all, Agxt was similarly downregulated in the liver of mice on the Western diet model as 

well as the ob/ob mouse model. In addition, Hao1 RNA expression was slightly but significantly 

downregulated in ob/ob mouse livers; whereas, only a trend towards decreased expression 

was observed in the livers of mice after 30 weeks on the Western diet. 
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Figure 3.41: Mice on the Western diet tend to have a reduced Hao1 expression after 30 weeks of diet. 
Quantitative real-time PCR showed no significant deregulation of Grhpr or Hao1 at the RNA level in livers of mice 
on the Western diet relative to those of mice on the normal diet at each time point. The expression of Hao1 
showed a reduced trend at the RNA level after 30 weeks on the Western diet (p < 0.077). Gapdh was used as the 
endogenous control (n = 5). 

 

3.9.2.3 Mice on the Western diet are not hyperoxaluric  

After 29 weeks on the Western diet, four mice as well as four control mice were placed in a 

single mouse metabolic cage and 24 h urine was collected on two consecutive days. As 

illustrated in Figure 3.42, mice on the Western diet excreted less urine, which was 

accompanied by increased creatinine and oxalate concentrations. After normalization of the 

urinary oxalate concentration to the creatinine concentration, daily oxalate excretion was 

quite similar between the control group and the Western diet group. One explanation may be 

the unchanged expression of Grhpr, which might compensate for the lack in glyoxylate 

detoxification due to decreased Agxt expression. 



   Results 

115 

 

Figure 3.42: Mice on the Western diet are not hyperoxaluric. A) Daily excreted urine volume; B) Urinary 
creatinine concentration; C) Urinary oxalate concentration of mice on the normal or the Western diet (29 weeks 
on diet; n = 4; quantification by LC-MS/MS); D) Daily urinary oxalate excretion normalised to creatinine excretion 
(n = 4). ND: normal diet; WD: Western diet; ns: not significant; * indicates p < 0.05; ** indicates p < 0.01. 

 

3.10 Oxalate production in vitro 

In the Chapters above, the association between lipid accumulation and the downregulation of 

AGXT was thoroughly demonstrated. So far, only the ob/ob mouse model showed a reduced 

Agxt expression accompanied by a slightly increased excretion of oxalate. The purpose of the 

next experiments was to study the consequence of Agxt repression in vitro. In the in vitro 

steatosis models, the protein expression of Agxt did not immediately decrease in response to 

lipid accumulation, but remained stable for three to five days, before the decrease was 

observed (Figures 3.19 and 3.21). Therefore, an AGXT knockdown model was established 

initially in HepG2 cells and subsequent, cultivated hepatocytes isolated from the ob/+ and 

ob/ob mice were investigated with regard to their oxalate excretion. 

 



Results 

116 

3.10.1 AGXT knockdown in HepG2 cells does not elevate oxalate excretion 

HepG2 cells are known to express AGXT and have been suggested to represent an appropriate 

model to study glyoxylate metabolism with regard to primary hyperoxaluria type 1 (Wanders 

et al. 1991). For that reason, an AGXT knockdown was established in HepG2 cells. After a long 

optimisation period where several transfection reagents and siRNA oligos against AGXT mRNA 

were used, AGXT was successfully knocked down at the RNA level after 72 h transfection using 

three siRNA oligos. The expression of AGXT was reduced more than 80% with oligos B and E 

and more than 70% with oligo D (Figure 3.43). 

 

Figure 3.43: Reduced AGXT RNA expression in HepG2 cells after AGXT knockdown. After 72 h of transfection 
using lipofectamine RNAiMAX transfection reagent with 10 nM oligo B (s223464), 10 nM oligo D (s223463) and 
10 nM oligo E (s1189; representative pictures in A, scale bars represent 100 µm), a reduced expression of AGXT 
relative to HepG2 cells incubated with 10 nM scrambled siRNA (negative control) was achieved (B). UBC was used 
as the endogenous control (n = 2). 

To more thoroughly investigate the expression of AGXT at the protein level, several time 

points were investigated after transfection. Western blot analysis (Figure 3.44) revealed that 

the decrease of AGXT protein levels was already evident 48 h after transfection, and became 

stronger at later time points. On the fifth day after transfection, there appeared to be no AGXT 

protein left in the cells. This experiment indicated that the transient AGXT knockdown 

efficiently depleted AGXT protein levels for several days and could be applied to investigate 

the consequences of a loss of AGXT. Importantly, by measuring both RNA and protein, the 

results showed that a dramatic decrease in AGXT RNA expression did not result in an 

immediate loss of protein expression as it was seen in the in vitro-steatosis system (e.g. Figure 

3.21). 
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Figure 3.44: Time dependent downregulation of AGXT at the protein level. Representative Western blot of 
AGXT expression measured in protein lysates of transient transfected HepG2 cells. β-Actin was used as a loading 
control. FM: full media; TR: transfection reagent; Neg (negative control): scrambled siRNA, B: oligo s223464; C: 
oligo s223463, D: oligo s1189; concentration: each 10 nM. 

To investigate whether the transient knockdown of AGXT had any physiological consequences, 

HepG2 cells with and without AGXT knockdown were challenged with glyoxylate. The ability 

of HepG2 cells to form oxalate upon glyoxylate treatment and to excrete it into the 

supernatant has been previously reported (Baker et al. 2004). Thus, here it was investigated 

whether, i) HepG2 cells with AGXT knockdown produce more oxalate than control HepG2 

cells; ii) the knockdown of AGXT increased the susceptibility upon challenge with glyoxylate, 

resulting in even higher oxalate excretion. 

For this purpose, HepG2 cells were transfected with AGXT siRNA for six days, followed by 

incubation with two different glyoxylate concentrations for 24 h. The supernatants as well as 

the cells were collected, and the efficiency of the AGXT knockdown was verified via Western 

blot analysis (data not shown). 

The diagram in Figure 3.45 illustrates the oxalate concentrations of the HepG2 supernatants, 

quantified by LC-MS/MS and normalised to the protein amount in the cell monolayer. 

Unexpectedly, the results showed no significant increase in excreted oxalate in the siRNA 

transfected HepG2 cells without or with 0.2 mM glyoxylate challenge (white and shaded bars). 

In addition, only 1 mM glyoxylate was able to stimulate the oxalate formation in HepG2 cells. 

Upon challenge with 1 mM glyoxylate both siRNA transfected and non-transfected cells 

produced and excreted similar amounts of oxalate.  
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Figure 3.45: HepG2 cells with AGXT knockdown do not secrete more oxalate than control cells. A) Experimental 
set up: after 6 days of transfection and AGXT knockdown, HepG2 cells were treated with 0.2 mM or 1 mM 
glyoxylate for 24 h. The supernatants as well as the proteins of the cell monolayer were collected. B) 
Chromatographic quantification of the oxalate concentration in supernatants (LC MS/MS) normalised to the 
protein concentration of the monolayer (n = 3). FM: full media; Neg: scrambled siRNA, B: oligo s223464; C: oligo 
s223463, D: oligo s1189. 

One possible explanation for this unexpected result is that HepG2 cells may not import 

exogenously added glyoxylate into the peroxisomes, resulting in immediate and direct 

oxidation to oxalate by the cytosolic lactate dehydrogenase.  

To ensure peroxisomal generation of glyoxylate, HepG2 cells must be incubated with glycolate 

which is oxidized to glyoxylate by HAO1 within the peroxisomes. However, HepG2 cells are 

known to have a markedly decreased activity of HAO1, and it has been suggested that these 

cells have a peroxisomal-independent pathway to form oxalate from glycolate (Baker et al. 

2004). Quantitative real-time PCR analysis revealed a very low gene expression of HAO1 in 

HepG2 cells, as demonstrated in Ct-values above 33. This gave evidence that the peroxisomal 

glyoxylate generation from glycolate in HepG2 was negligible. Thus, neither glyoxylate nor 

glycolate seem to be adequate challenges for studying the consequence of Agxt knockdown 

in HepG2 cells in vitro. 

In conclusion, it was not possible to show the consequences of reduced AGXT expression in 

terms of oxalate production in HepG2 cells. The HepG2 cell line may not be the adequate 

model to study AGXT consequences due to the reduced expression of HAO1. The cell line Huh7 

also revealed low RNA expression of HAO1 and therefore was also not an appropriate system. 
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3.10.2 Oxalate excretion of cultivated ob/+ and ob/ob mouse hepatocytes 

3.10.2.1 Agxt expression is cultivation sensitive in ob/+ and ob/ob hepatocytes 

Before oxalate precursor studies were performed with hepatocytes from ob/+ and ob/ob 

mice, the stability of Agxt expression in cultivated hepatocytes was analysed, since it is known 

that not only hepatocytes isolation changes gene expression within 24 h (Zellmer et al. 2010) 

but also the cultivation has an enormous impact on gene expression (Godoy et al. 2013). The 

RNA expression of Agxt was clearly reduced after 24 h cultivation with a collagen overlay 

compared to freshly isolated hepatocytes, independently of the genotype (Figure 3.46 A). The 

comparison of the cultivation effect in ob/ob hepatocytes to that in ob/+ hepatocytes still 

revealed a decreased Agxt expression in ob/ob hepatocytes as demonstrated at the RNA 

(Figure 3.46 B) as well as at the protein level (Figure 3.46 C). After 7 days of cultivation, the 

expression of Agxt was reduced to very low levels regardless of the genotype; thus, there was 

hardly any difference between its expression in ob/+ and ob/ob hepatocytes.  

After 72 h of cultivation, Agxt protein was still expressed in both genotypes. At 5 d of 

cultivation, there was hardly any protein left in ob/ob mice. This observation was an important 

fact to consider during in vitro experiments of primary hepatocytes of ob/+ and ob/ob mice, 

because it revealed that studies are only possible for a time period of 72h. 

 

Figure 3.46: Agxt expression is cultivation-sensitive in hepatocytes from ob/+ and ob/ob mice. The Agxt RNA 
expression was analysed by quantitative real-time PCR and calculated A) for ob/+ and ob/ob hepatocytes relative 
to their corresponding freshly isolated hepatocytes (n =2) or B) for ob/ob hepatocytes relative to ob/+ 
hepatocytes at each time point of cultivation (n =2); Gapdh was used as the endogenous control; C) 
Representative Western blot of Agxt expression of freshly isolated and cultivated hepatocytes from ob/+ and 
ob/ob mice. β-Actin was used as a loading control (n = 2). 
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3.10.2.2 Ob/ob hepatocytes are more susceptible towards hydroxyproline than ob/+ 

hepatocytes 

The purpose of the following experiment was to investigate how the gene expression changes 

observed in ob/ob mouse livers, as described in Chapter 3.7.1, influence their capacity to 

metabolise glyoxylate precursors and to detoxify glyoxylate. With this goal, cultivated primary 

hepatocytes from ob/+ and ob/ob mice were exposed to glyoxylate precursors and oxalate 

excretion into the medium was quantified by LC-MS/MS. Glyoxylate was selected as a positive 

control for oxalate production in general. Glycolate was used to explore the consequence of 

Hao1 downregulation (observed in ob/ob mouse livers) as a compensatory mechanism to Agxt 

downregulation in ob/ob mouse hepatocytes. Accordingly, oxalate production in hepatocytes 

of ob/ob mice was expected to be lower since RNA levels of Hao1 were decreased, and thus 

less oxidation of glycolate to glyoxylate should occur. Finally, hydroxyproline was employed 

for two reasons. First, hydroxyproline is not only found in the human diet but is also 

endogenously released by collagen turnover and thus reflects the in vivo situation. Second, 

the RNA level of the two key enzymes Prodh2 and Hoga1 involved in the catabolic breakdown 

of hydroxyproline was not altered in ob/ob mouse liver according to the Affymetrix gene array 

analysis. Therefore, hydroxyproline incubation could be an adequate challenge for enhancing 

glyoxylate production and studying the consequences of Agxt downregulation (and thus 

possible compromised glyoxylate detoxification) in ob/ob hepatocytes. 

For the experimental design the cultivation sensitivity of Agxt, as addressed in the previous 

section was considered. Therefore, the maximal time of exposure to challenge was set to 48 h 

after 24 h in culture (Figure 3.47 A). 
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Figure 3.47: The type of oxalate precursor has a strong impact on the oxalate production of ob/+ and ob/ob 
hepatocytes. A) Experimental set up for this experiment: hepatocytes of ob/+ and ob/ob mice were isolated and 
cultivated for 24 h before stimulated for 48 h using several oxalate producers. The supernatants and proteins 
were collected; B) Chromatographic quantification of the oxalate concentrations in supernatants (LC-MS/MS) 
normalised to the protein concentration of the monolayer. * indicates p < 0.05. 

Cultivated ob/ob mouse hepatocytes excreted less oxalate than cultivated ob/+ hepatocytes 

in the absence of any oxalate precursor. Depending on the applied challenge, the amount of 

excreted oxalate was similar or different between cultivated ob/ob and ob/+ hepatocytes. As 

expected, glyoxylate incubation increased the oxalate formation in both cultivated ob/+ and 

ob/ob hepatocytes without any difference between these two hepatocyte populations. 

Moreover, glyoxylate was the most potent stimulator of oxalate production. Most likely, the 

applied glyoxylate is immediately converted to oxalate by the cytosolic lactate dehydrogenase 

and this step is not influenced by decreased Agxt levels. 

The glycolate exposure led to a higher oxalate production in ob/+ than in ob/ob hepatocytes 

even though the differences were not strong. This was attributed to the reduced expression 

of Hao1 in ob/ob hepatocytes. Thus, ob/ob hepatocytes generated less glyoxylate from 

glycolate, which consequently resulted in decreased production of oxalate despite decreased 

Agxt expression.  
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Remarkably, hydroxyproline challenge led to the opposite result. This oxalate precursor 

stimulated the formation of oxalate in a concentration-dependent manner, especially in 

hepatocytes from ob/ob mice. There was a clear tendency of more excreted oxalate by ob/ob 

hepatocytes than by ob/+ hepatocytes that was significant at the highest hydroxyproline 

concentration. Because the expression of enzymes involved in the catabolism of 

hydroxyproline to glyoxylate were not altered, the elevated excretion of oxalate by steatotic 

hepatocytes upon hydroxyproline incubation can be attributed to their reduced detoxification 

capacity due to Agxt downregulation.  

These experiments were a pivotal contribution towards understanding the interplay between 

the glyoxylate-associated enzymes and the different oxalate precursors in steatotic 

hepatocytes and identified the hydroxyproline catabolism as the critical pathway leading to 

enhanced oxalate generation in steatosis. 

  



   Results 

123 

3.11 Reduced AGXT expression in steatosis is associated with 

hypermethylation of the AGXT promotor in vivo 

Altogether, the results obtained from ob/ob mice, steatotic primary human hepatocytes and 

the in vitro steatosis models clearly showed a steatosis-dependent downregulation of AGXT. 

However, the mechanism behind this downregulation was unknown. DNA methylation is one 

mechanism that cells use to modulate gene expression. Thus, it was explored whether 

downregulation of AGXT in steatosis was associated with AGXT promoter methylation. 

During this PhD project, the IfADo groups Systems Toxicology and Cellular Toxicology 

participated in the German Epigenetic Programme (DEEP) with the aim to identify epigenetic 

alterations in NAFLD. For this purpose, samples from ob/ob mice (liver tissue and hepatocytes) 

as well as primary human hepatocytes were prepared and delivered to partners within the 

consortium for epigenetic analysis. Within the consortium, RNA sequencing was performed, 

which confirmed the significant downregulation of Agxt and Hao1 in livers and hepatocytes 

from ob/ob mice compared to ob/+ mice. One of the applied methods to map genome-wide 

DNA methylation was reduced representation bisulphite sequencing (RRBS). Application of 

this method in hepatocytes from ob/+ and ob/ob mice resulted in the identification of a 

hypermethylated DNA region in the putative promoter of the Agxt gene in ob/ob hepatocytes. 

Methylation within a promoter is usually associated with the repression of gene expression. 

Thus, this finding suggested that the hypermethylation of the Agxt promoter is a possible 

cause for its downregulation. In order to confirm the observed hypermethylation, amplicon 

sequencing using specific primers for the promotor of Agxt was performed.  

3.11.1 Agxt promotor of ob/ob mouse hepatocytes is hypermethylated  

The steatotic ob/ob mice have reduced Agxt expression in their livers as well as in their 

hepatocytes. Amplicon sequencing revealed a comparable methylation state of the Agxt 

promotor in liver tissue from ob/ob mice and ob/+ mice (Figure 3.48). In contrast, the mean 

methylation of the Agxt promotor in ob/ob hepatocytes was significantly higher than in ob/+ 

hepatocytes. Overall, the degree of methylation in liver tissue was higher in both the steatotic 

and the control livers compared to the isolated hepatocytes. Surprisingly, the analysis of liver 

tissue was not able to discriminate the methylation differences observed in the hepatocytes. 

This showed the importance of the methylation analysis at the cell level without the tissue 

matrix. 
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As seen in the IHC staining of Agxt in ob/+ and ob/ob mouse liver (Figure 3.18 B), only a 

subpopulation of hepatocytes in zone 3, surrounding the central vein, expressed Agxt. This 

may explain the striking pattern observed in the patternmaps of methylation status, which 

shows only a small percentage of hepatocytes with methylated CpG sites in the Agxt 

promoter. How the methylation status of the Agxt promoter correlates with its 

spatiotemporal expression is at this time point not well understood. However, the present 

findings do support an increase in the number of steatotic hepatocytes showing 

hypermethylation of the Agxt promotor, which accompanies the transcriptional repression 

observed in steatotic ob/ob hepatocytes.  

 

Figure 3.48: Agxt promotor is hypermethylated in steatotic hepatocytes of ob/ob mice. A) Representative 
patternmaps of methylated CpG sites (red) in the promotor region of murine Agxt in liver tissue from ob/+ and 
ob/ob mice and the mean methylation values (n = 5); B) Representative patternmap of methylated CpG sites 
(red) in the promotor region of murine Agxt in hepatocytes from ob/+ and ob/ob mice and the mean methylation 
values (n = 6); *** indicating p < 0.001. 
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3.11.2 Db/db mice do not show a hypermethylation in the Agxt promotor 

As illustrated in Figure 3.37, db/db mouse livers and hepatocytes did not show a repression of 

Agxt. The amplicon sequencing of the Agxt promotor in the liver tissue from these mice 

showed a similar degree of methylation as seen for the liver tissue from ob/+ and ob/ob mice 

and no differences between both genotypes. The hepatocytes of steatotic db/db mice 

revealed a small tendency towards more methylation of Agxt compared to db/+ hepatocytes, 

but this was not significant (Figure 3.49). This observation strengthens the suggestion that the 

hypermethylation of the Agxt promotor might be responsible for its downregulation seen in 

the ob/ob mice; whereas, the missing hypermethylation in the db/db mouse model may 

explain why Agxt was not repressed in that mouse model. 

 

 

Figure 3.49: Agxt promotor is not hypermethylated in steatotic hepatocytes of db/db mice. A) Representative 
patternmaps of methylated CpG sites (red) in the promotor region of the murine Agxt in liver tissue from db/+ 
and db/db mice and the mean methylation values (n = 4); B) Representative patternmaps of methylated CpG 
sites (red) in the promotor region of the murine Agxt in hepatocytes from db/+ and db/db mice and the mean 
methylation values; p = 0.3759 (n = 2). 
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3.11.3 AGXT promotor is hypermethylated in steatotic primary human hepatocytes 

As described in Chapter 3.6, there was a significant negative correlation between the lipid 

content of primary human hepatocytes and their AGXT RNA expression level. In the next step, 

a selection of those hepatocytes were sent for methylation analysis by amplicon sequencing. 

Again, the primary hepatocytes were separated into the control, non-steatotic, group and the 

steatotic group according to their amount of triglycerides as defined in Chapter 3.6. 

Figure 3.50 illustrates a significant increase of the mean methylation in the AGXT promotor of 

the steatotic group compared to the control group, indicating a steatosis-dependent increase 

in human hepatocytes showing methylation in the promotor region of the human AGXT gene, 

as observed in mouse hepatocytes. 

 

 

Figure 3.50: AGXT promotor is hypermethylated in steatotic primary human hepatocytes. Representative 
patternmaps of methylated CpG sites (red) in the promotor region of the human AGXT gene and the mean 
methylation values (control: n = 3, steatotic: n = 6). *indicating p < 0.05. 

However, there was no significant correlation between the AGXT RNA expression and the 

promotor methylation of AGXT (Figure 3.51). This result weakened a link between the 

downregulation of AGXT and the hypermethylation of its promotor in human steatotic 

hepatocytes. Hence, hypermethylation of the AGXT promotor in primary human hepatocytes 

might not be the only cause for the downregulation of AGXT in each of the investigated 

samples. Different individual mechanisms may explain the downregulation of AGXT in human 

steatotic hepatocytes, with AGXT promotor hypermethylation being one potential 

explanation. Additionally, it was possible that a higher number of samples is required to 

achieve statistical significance. 

 



   Results 

127 

 

Figure 3.51: RNA expression of AGXT in male primary human hepatocytes does not correlate with the degree 
of methylation in the AGXT promotor (n = 9). The Spearman coefficient was r = -0.2500 and the p-value was 
p = 0.5206. 

 

3.11.4 Downregulation of AGXT in in vitro steatosis model is not associated with 

hypermethylation of the AGXT promotor 

Upon prolonged OA/BSA stimulation, the expression of Agxt was reduced in primary mouse 

hepatocytes as well as in human hepatocellular cell lines (Figures 3.19 and 3.21). Next, 

samples were analysed for methylation in the promotor of AGXT, using Amplicon sequencing, 

to investigate whether lipid-accumulation in hepatocellular carcinoma cell lines and primary 

mouse hepatocytes effected the methylation status of the AGXT promotor. Cancer cell lines 

and primary mouse hepatocytes were cultured for 5 d with 0.5 mM OA/BSA or the 

corresponding controls. These particular concentration and incubation time point were 

chosen since the downregulation of AGXT at the RNA level lasted for at least two days. 

In Figure 3.52, representative patternmaps are illustrated and show that OA/BSA treatment 

did not alter the level of methylation of the AGXT promotor in any of the used cell systems.  
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Figure 3.52: Accumulation of lipids upon OA/BSA incubation does not lead to hypermethylation of the AGXT 
promotor. HepG2 cells/ Huh7 cells and primary mouse hepatocytes were incubated with FM or 0.08 mM BSA or 
0.5 mM OA/0.08 mM BSA for 5 d. Afterwards, the cells were harvested and their DNA was analysed for 
methylation in the human/murine promotor region of AGXT. Representative patternmaps of methylated CpG 
sites (red) in the human/murine promotor region of the AGXT gene in lipid loaded and control cells. 

This result could lead to several conclusions. First, the mechanism underlying the 

downregulation of AGXT expression by oleic acid in the in vitro steatosis model was different 

from the in vivo situation. Secondly, the mechanism behind the downregulation of AGXT in 

steatosis was not promotor methylation, rather promotor methylation was a consequence of 

the repression of AGXT. Third, the methylation of the AGXT promotor might not be seen in 

the in vitro model due to insufficient OA/BSA stimulation time. 
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4. Discussion 

Non-alcoholic fatty liver disease (NAFLD) is tightly associated with the metabolic syndrome 

(Marchesini et al. 2001). It is also of high clinical relevance because it may progress to severe 

liver diseases and increase the risk of cardiovascular (Targher et al. 2010) and renal diseases, 

such as chronic kidney disease (Musso et al. 2014) and urolithiasis (Nam et al. 2016). Thus, 

understanding the factors that contribute to disease progression and to systemic 

complications is of great importance. Hepatic fat accumulation has been shown to 

compromise hepatocellular processes, as seen in the impaired autophagy in human (Gonzalez-

Rodriguez et al. 2014) and in murine NAFLD (Inami et al. 2011). Moreover, gene expression 

profiles of human NAFLD revealed alterations in lipid metabolism, insulin signalling and 

inflammation, all of which are significantly associated with the hepatic lipid content (Greco et 

al. 2008). Furthermore, patients with NAFLD have altered drug metabolism (reviewed by 

Merrell and Cherrington 2011) and an increased risk of drug induced liver injury (Tarantino et 

al. 2007). These alterations may act as “second hits” promoting adverse outcome. 

In the course of this PhD thesis, the impact of lipids on the metabolic function of hepatocytes 

was investigated. For this purpose, the leptin deficient ob/ob mouse model of NAFLD was 

examined, and an in vitro steatosis model was established. After studying and evaluating these 

models, a genomic approach was applied to explore gene expression differences upon 

steatosis. This approach let to the finding of a lipid-dependent downregulation of the 

glyoxylate detoxifying enzyme alanine-glyoxylate aminotransferase (AGXT). 

Mutations in the AGXT gene are responsible for the initiation and progression of primary 

hyperoxaluria type 1. Patients have elevated levels of oxalate in their urine that forms renal 

oxalate deposits and ultimately kidney damage (Danpure and Jennings 1986). So far, no 

molecular link has been identified that explains the association of NAFLD or the metabolic 

syndrome with urolithiasis. In this study, it was hypothesised that the downregulation of AGXT 

upon hepatic lipid accumulation may represent the molecular basis for the association 

between NAFLD and the occurrence of oxalate kidney stones. Thus, one major goal of the 

work was to investigate the consequences of reduced expression of AGXT on oxalate excretion 

in vivo as well as in vitro. In addition to the expression of AGXT, further glyoxylate metabolism-

associated genes were analysed at the RNA level to estimate the impact of lipid accumulation 

on the overall glyoxylate metabolism. Finally, a steatosis-associated hypermethylation of the 
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AGXT promoter was identified in both mouse and human hepatocytes, supporting an 

epigenetic induced downregulation of AGXT in steatotic livers due to hypermethylation of its 

promotor.  

The most important results are discussed in detail in the following sub-chapters. 

4.1 Leptin deficient mouse model and in vitro steatosis models recapitulate 

several features of human NAFLD 

The leptin deficient ob/ob mouse model of NAFLD is widely-used to study NAFLD (Anstee and 

Goldin 2006). Ob/ob mice are obese and hyperphagic; they have a fatty liver and display 

features of the metabolic syndrome (Schattenberg and Galle 2010). This model was applied in 

the current study to investigate the influence of lipid accumulation on hepatic function and 

hepatic gene expression. An initial step in the current project was therefore to verify the 

steatotic phenotype. The livers of ob/ob mice showed a marked pericentral (and midzonal) 

accumulation of lipids (Figure 3.1 E/F), which is also the predominant zonation of human 

steatosis (Chalasani et al. 2008). Autophagy was also compromised in the steatotic livers, 

confirming the findings of previous studies (Inami et al. 2011; Yang et al. 2010). To analyse 

genome-wide gene expression changes in steatotic livers, an Affymetrix gene array analysis of 

liver tissue of ob/ob mice and ob/+ mice was performed. The subsequent GO enrichment 

analysis revealed an overrepresentation of GO terms associated with lipid metabolism among 

the upregulated genes, which was expected due to the high triglyceride content of the livers 

(Figure 3.1 D). Therefore, overall, the demonstrated gene expression changes matched this 

metabolic abnormality. 

In addition to this mouse model, in vitro steatosis models were established in HepG2 cells as 

well as in primary mouse hepatocytes. The major aim of this approach was to induce lipid 

accumulation in order to identify genes that respond to such lipid excess, and to investigate 

the consequences of this accumulation on hepatocyte functionality and morphology.  

The impact of lipid accumulation on cellular morphology was dramatic. Lipid-loaded primary 

mouse hepatocytes showed a clear displacement of nuclei towards the periphery of the cell, 

which was also seen in the steatotic livers of mice (Figure 3.11), and is a histological feature 

of macrovesicular steatosis (Takahashi and Fukusato 2014). Additionally, the bile canaliculi 

network was morphologically altered in lipid-loaded primary mouse hepatocytes (Figure 3.13), 
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suggesting compromised hepatocyte polarity. Furthermore, there was an impairment of the 

autophagic flux in both in vitro steatosis models as observed in human NAFLD (Fukuo et al. 

2014; Gonzalez-Rodriguez et al. 2014; Kashima et al. 2014). One potential reason for the 

perturbation is the impaired fusion of the autophagosomes with the lysosomes due to a 

disturbed microtubule-dependent vesicular trafficking. An intact microtubule network is 

required for the fusion of autophagosomes and lysosomes (Kochl et al. 2006; Webb et al. 

2004). This network appeared disturbed by lipid droplet accumulation as shown by tubulin 

staining of lipid-loaded primary mouse hepatocytes (Figure 3.12). Whether the autophagic flux 

in human NAFLD is similarly inhibited remains to be elucidated. Altogether, the alterations 

triggered in hepatocytes by lipid exposure in vitro resembled those in steatotic liver tissue. 

To assess the lipid induced genome wide expression changes in the in vitro steatosis model, a 

time-resolved Affymetrix gene array analysis was performed using HepG2 cells, which were 

cultivated in presence of oleic acid. As seen in the progressively increasing number of 

deregulated genes and in the categories of overrepresented GO groups upon prolonged 

stimulation, the time and amount of lipid accumulation had a strong impact on the gene 

expression changes. This offered the opportunity to study lipid-induced deregulations in a 

time-dependent manner. 

4.2 Applied approach for selecting steatosis relevant genes is a useful tool to 

identify genes across species 

A pipeline (Chapter 3.4) was generated with the aim to explore global gene expression 

changes caused by NAFLD across species. This interspecies approach was selected in order to 

exclude mouse specific gene alterations, which would be irrelevant for human NAFLD.  

At the time point of the present PhD project, two human datasets were available investigating 

genome wide gene expression changes in NAFLD (Lake et al. 2011; Moylan et al. 2014). These 

were both used to compare deregulated genes in human NAFLD with those found deregulated 

in steatotic livers of ob/ob mice that were identified in the Affymetrix gene array analysis as 

described above. This comparison revealed 119 significantly deregulated genes that were 

common to both species with NAFLD. To our knowledge, there is only one publication 

addressing the topic of global gene alterations in NAFLD in human and in mouse (Teufel et al. 

2016). Teufel and colleagues compared gene expression alterations between nine mouse 

models of NAFLD and human NAFLD samples, identifying only 1-18 genes, which were 
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significantly deregulated in both species (Teufel et al. 2016). In contrast to our interspecies 

NALFD analysis, Teufel and co-workers defined a threshold of significant fold change of gene 

expression, and considered only diet-induced murine models of NAFLD. Additionally, although 

they analysed both genders, most were predominantly female mice; whereas, our mouse 

model comprised only males. Thus, gender disparity, as well as heterogeneity among the 

investigated mouse models could explain the lack of a common mouse-human gene 

expression signature in steatosis in the study of Teufel et al. (2016). 

In addition to the commonly deregulated genes of mouse and human NAFLD, the gene 

expression analysis of the in vitro model of steatosis in HepG2 cells was applied as a third 

parameter to search for genes that are directly affected by lipid accumulation. Here, the 

in vitro steatosis model was evaluated to determine the extent to which it was able to 

reproduce in vivo relevant differential gene expression upon NAFLD. Altogether, 22 genes 

were found that were commonly and robustly deregulated in the in vitro model, in the ob/ob 

mouse model and in both human NAFLD datasets. To our knowledge, this was the first 

genomic approach combining two species and an in vitro model of steatosis to explore 

steatosis-dependent gene expression alterations, and represented a reliable selection of 

genes for further analysis. Among the deregulated genes, the downregulation of AGXT prove 

to be a very interesting finding. AGXT encodes the hepatic enzyme, alanine-glyoxylate 

aminotransferase that detoxifies glyoxylate, thus preventing its accumulation and subsequent 

conversion to oxalate. Mutations in AGXT, an underlying cause of primary hyperoxaluria type 

1, cause high urinary oxalate levels and kidney stones due to defective detoxification capacity 

(Danpure and Jennings 1986; Hoppe et al. 2009). An association between NAFLD (Einollahi et 

al. 2013; Nam et al. 2016), the metabolic syndrome (Jeong et al. 2011; Sakhaee et al. 2012) 

and obesity (Taylor et al. 2005) with an increased risk of urolithiasis has been reported, but no 

explanation for the underlying mechanism has been proposed to date. Therefore in the 

current work, it was hypothesised that the steatosis-dependent downregulation of AGXT and 

the possible reduced detoxification capacity of glyoxylate could represent the missing link 

between NAFLD and urolithiasis.  
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4.3 Reduced expression of Agxt in mouse models of NAFLD is not necessarily 

accompanied by increased oxalate excretion  

Three different mouse models of NAFLD were investigated with respect to their Agxt 

expression and their daily urinary oxalate excretion. The Table below summarizes some 

important results and differences among those models.  

Table 4.1: Summarized information of three different mouse models of NAFLD compared to corresponding 
control mice. Numbers indicate the fold change compared to control mice. Data are shown in the appropriate 
figures. 

Fold change  ob/ob db/db Western diet 

Body weight  1.9 1.7 1.3 

Liver to body ratio  1.7 ns 1.4 

Agxt expression - 2.4 ns - 3.0 

Hao1 expression - 1.6 ns ns 

Urine volume  4.4 4.4 - 2.5 

Hyperoxaluric  Yes No No 

ns: not significant 

The comparison of these mouse models of NAFLD revealed important differences. Of the three 

models, the leptin deficient ob/ob mice (age: 15 – 18 weeks) was the only one showing a 

reduction in hepatic Agxt expression (fold change -2.4 ± 0.7, data not shown) accompanied by 

an increased daily excretion of urinary oxalate. Of note, the oxalate concentration in the ob/ob 

mouse urine was lower than that of ob/+ mice, but when the urinary volume, estimated by 

the creatinine level, was considered, oxalate excretion per day was significantly higher 

(Figures 3.31 D and 3.33 D). Surprisingly, Agxt expression was not downregulated in the liver 

of the db/db mice (age: 10 weeks). In contrast, mice fed a Western-type diet for 30 weeks 

(age: ca 40 weeks) showed a strong and significant downregulation of Agxt, but no increased 

daily excretion of oxalate.  

The reason for the lack of downregulation of Agxt in the liver of db/db mice at the examined 

age of 10 weeks can only be speculated: The liver tissue of db/db mice showed only 3.5 fold 

more hepatic triglycerides than the corresponding controls; whereas, the ob/ob mice had 16 

fold more triglycerides than their corresponding controls at the age of 10 weeks (Figure 3.1). 

This could indicate that Agxt downregulation is only triggered after a certain amount of lipid 

storage is reached. Likewise, db/db mice displayed no increased liver to body weight ratio, and 

thus no liver hypertrophy, in contrast to ob/ob mice, suggesting that the db/db mice exhibit a 
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milder phenotype than the ob/ob mice. It cannot be excluded that as they age, db/db mice 

display reduced Agxt expression. For example, in a proteomics study, 48 weeks old db/db mice 

were reported to have less hepatic mitochondrial Agxt compared to control mice (Nesteruk et 

al. 2014).  

The mice on the Western diet already had reduced liver Agxt levels after 6 weeks on the diet, 

and this level stayed reduced until week 30 on the diet (Figure 3.40). Analysis of publically 

available data (GSE38141) from an earlier study also showed the downregulation of Agxt 

mRNA in mice after 20 weeks on the Western diet (Kobori et al. 2011).  

Interestingly, despite a strong downregulation of Agxt in the liver after 30 weeks on the 

Western diet, these mice did not excrete higher levels of oxalate compared to their controls. 

Even though they had higher urinary oxalate concentrations – most likely due to lower urine 

volume - the daily excretion of oxalate was similar to mice on the control diet (Figure 3.42 D). 

Thus, in contrast to the ob/ob mouse model, downregulation of Agxt upon Western diet does 

not correlate with increased oxalate excretion. The reason for this discrepancy is not 

understood. Here, both RNA and protein levels of Agxt were measured, but not the 

(remaining) enzymatic activity. Despite the reduced Agxt expression, residual Agxt activity 

working together with the glyoxylate-detoxifier enzyme Grhpr may be enough to remove 

endogenous glyoxylate and, as a result mice on the Western diet with reduced Agxt expression 

do not excrete more oxalate. To investigate this further, urinary glycolate should be measured, 

which might be elevated in urine of mice on the Western diet due to increased glyoxylate 

detoxification by Grhpr. 

In addition to Agxt, the expression of the glycolate oxidising enzyme Hao1 was only reduced 

at the RNA level (fold change -1.6 ± 0.2, data not shown) in ob/ob mouse livers, which is 

indicative of reduced endogenous peroxisomal glyoxylate production from glycolate in ob/ob 

mice. Hao1 plays an important role in endogenous glyoxylate production in mice, as shown in 

several publications (Dutta et al. 2016; Li et al. 2016; Martin-Higueras et al. 2016). Agxt 

knockout mice with impaired transcription of Hao1 excrete less oxalate than Agxt knockout 

mice with normal transcription of Hao1 (Dutta et al. 2016; Li et al. 2016). This observation 

supported an earlier report where ob/ob mice excreted less oxalate upon ethylene glycol 

challenge than ob/+ mice (Taguchi et al. 2015). The fact that inactivation of Hao1 rescues the 
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phenotype of the Agxt knockout mice highlights the importance of hepatic peroxisomal 

production of glyoxylate from glycolate in the pathogenesis of kidney stones.  

In addition to oxalate excretion, the hepatic glycine content of ob/ob and ob/+ mouse livers 

was also analysed. As glyoxylate is transaminated by Agxt to glycine, the hepatic glycine 

concentration can partly indicate the functionality of Agxt. As shown by HR MAS 1HNMR, livers 

of ob/ob mice had less glycine than those of the lean control mice (Figure 3.29). These findings 

support those of a previous study where a metabolite profiling of plasma from 20 weeks old 

ob/ob and db/db mice indicating reduced concentration of glycine compared to corresponding 

control mice (Giesbertz et al. 2015). Glycine is involved in multiple processes, such as collagen 

formation, the generation of purines, and glutathione production (Wang et al. 2013). The 

synthesis of glycine from glyoxylate is, at least in humans, a minor but relevant pathway, 

contributing to the endogenous production of glycine (Melendez-Hevia et al. 2009). The 

reduced hepatic glycine concentration in the livers of ob/ob mice, accompanied by the slightly 

increased oxalate excretion strengthens the assumption that the reduced expression of Agxt 

has physiological consequences in the ob/ob mouse model. 

4.4 HepG2 cells are not a suitable tool to investigate the peroxisomal 

glyoxylate metabolism 

Knockdown of AGXT followed by quantification of oxalate excretion into the medium was 

performed as a “proof of concept” experiment. This was to confirm increased oxalate levels as 

an immediate consequence of decreased AGXT expression in hepatocytes. Moreover, it would 

elucidate the degree to which AGXT has to be decreased until a raise of oxalate in the 

supernatant occurs. Here, HepG2 cells, transfected with siRNA against AGXT, showed a robust 

and convincing knockdown of AGXT at the RNA as well as at the protein level (Figure 3.43 and 

3.44). However, in contrast to what was expected, there was no elevated formation and 

excretion of oxalate into the cell supernatant. An explanation for this unexpected result could 

be found in two studies reporting the presence of very low activity of HAO1 in HepG2 cells and 

proposing a peroxisomal independent metabolism of oxalate from glycolate by lactate 

dehydrogenase. (Baker et al. 2004; Holmes et al. 1999). The low activity of HAO1 may be due 

to the very low expression of HAO1 at RNA level observed in HepG2 cells. This supported the 

hypothesis that the endogenously-produced oxalate in HepG2 cells was not generated from 

peroxisomal precursors. Moreover, the glyoxylate challenge applied to HepG2 cells was not 
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able to selectively induce oxalate formation in the AGXT knockdown-HepG2 cells, even though 

several glyoxylate concentration were used. One possible explanation may be a missing 

uptake of glyoxylate into the HepG2 peroxisome, which was reported for glycolate (Baker et 

al. 2004). This is however controversial, since treating HepG2 cells with C13-labeled 

hydroxyproline resulted in C13-labeled glycine indicating that mitochondrial-produced 

glyoxylate can enter peroxisomes for the AGXT-dependent conversion to glycine (Jiang et al. 

2012). Thus, it is still not fully known why exogenous glyoxylate treatment did not selectively 

increase oxalate production in HepG2 cells after AGXT knockdown. Most probably, glyoxylate 

was directly oxidised to oxalate in the cytosol by LDH before it could enter the peroxisomes. 

Therefore, to optimise HepG2 cells for the analysis of reduced AGXT expression, it would be 

necessary to simultaneously overexpress HAO1 and knockdown AGXT in these cells. 

4.5 Hepatocytes from ob/ob mice are more susceptible to the formation of 

oxalate upon hydroxyproline incubation 

To investigate the consequences of reduced Agxt expression in primary hepatocytes from 

ob/ob mice, oxalate excretion into the supernatants was measured in presence or absence of 

glyoxylate and its known precursors, glycolate and hydroxyproline (Figure 3.47). Glycolate-

exposed ob/ob hepatocytes excreted less oxalate into the supernatant than ob/+ hepatocytes, 

indicating reduced glyoxylate generation from glycolate upon decreased Hao1 expression. 

This may counteract the diminished glyoxylate detoxification capacity of the steatotic 

hepatocytes. This assumption was supported by the following studies: It was reported that 

glycolate is only toxic to those cells which express Hao1 but not Agxt and Grhpr (Behnam et 

al. 2006). Moreover, if cultivated primary hepatocytes of Agxt knockout mice were incubated 

with glycolate the oxalate formation was stimulated but abrogated upon co-treatment with 

the Hao1 inhibitor 4-carboxy-5-[(4-chlorophenyl) sulfanyl]-1,2,3-thiadiazole (CCPST) (Martin-

Higueras et al. 2016).  

In contrast to glycolate, high concentrations of hydroxyproline increased the oxalate 

formation, particularly in ob/ob hepatocytes. This stimulation with hydroxyproline 

represented an increased susceptibility of ob/ob hepatocytes towards oxalate production, 

most probably due to decreased expression of Agxt and thus decreased glyoxylate 

detoxification capability. This result was of particular importance because it identified 

hydroxyproline catabolism as a critical pathway leading to enhanced oxalate generation in 
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steatosis. On the basis of this result, an in vivo experiment was planned to supply mice with a 

hydroxyproline-rich diet. 

4.6 Downregulation of AGXT is associated with promotor methylation in vivo 

The steatosis-dependent repression of AGXT was consistent at the RNA level. A possible 

mechanism responsible for the downregulation of AGXT could be the significant increase in 

methylation of the AGXT promotor in hepatocytes of ob/ob mice as well as in primary human 

hepatocytes, which were defined as steatotic based on their lipid content. Hypermethylation 

of the promotor of a gene is usually associated with repression of gene expression (Cedar 

1988). This could indicate that hypermethylation of the AGXT promotor is the mechanism 

behind its downregulation in lipid-loaded hepatocytes. 

In whole liver tissue of ob/ob mice, the aforementioned steatosis-dependent 

hypermethylation of the Agxt promotor was not obvious, thus indicating the importance of 

isolating different cell types of the liver for epigenetic analysis. Minor, yet significant 

alterations in the methylation status of genes may not be detected in whole liver tissue, 

especially when these alterations occur only in one cell type, or even in a subpopulation of a 

single cell type as it is the case for Agxt. As seen in the IHC staining of Agxt in liver tissue of 

mice (e.g. Figure 3.18 B), a positive signal was only obtained in the hepatocytes in the 

pericentral field of the liver. This suggests that only a subpopulation of murine hepatocytes 

transcribe Agxt, which supports the observation that only a percentage of hepatocytes 

showed hypermethylation of its promotor (Figure 3.48 B).  

The overall most important finding was that primary human hepatocytes exhibited a 

significant negative correlation between their triglyceride content and their RNA expression 

level of AGXT, meaning the higher the lipid content of the cell the less the expression of AGXT 

(Figure 3.23). This provided further convincing evidence of a steatosis-dependent 

downregulation of AGXT at the RNA level. Secondly, the degree of methylation of the AGXT 

promotor was higher in the steatotic human hepatocytes, suggesting that the steatosis-

dependent hypermethylation of the AGXT promotor is true across species. Despite the 

significant associations between lipid content and AGXT expression as well as between lipid 

content and AGXT methylation, there was no significant correlation between the methylation 

status and the extent of the reduction of AGXT expression in primary human hepatocytes. 

Additional samples may be required to achieve statistical significance. 
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In the in vitro models of steatosis, there was no lipid-dependent hypermethylation of the 

AGXT promotor in any of the applied cell models. Several explanations are possible: it is 

conceivable that the mechanism behind the downregulation of AGXT by lipid accumulation 

in vitro is different from that in vivo. Perhaps, the in vitro steatosis model was incapable of 

recapitulating the in vivo mechanisms leading to the downregulation of AGXT. On the other 

hand, the failure of the in vitro model to show an association between the repression of AGXT 

and its increased promotor methylation could indicate that hypermethylation of the AGXT 

promoter is the consequence rather than the cause for the downregulation of AGXT. That 

means that methylation may occur after the gene silencing, a mechanism that has been 

observed and reported in cancer cells (Clark and Melki 2002; Stirzaker et al. 2004). In this 

context, it is possible that the duration of lipid exposure and the downregulation of AGXT was 

too short to result in hypermethylation of the AGXT promotor. 

In conclusion, steatosis-dependent methylation of both mouse and human AGXT promoter 

was found to be associated with the reduction of AGXT expression. This provided evidence of 

an epigenetic contribution to the alteration of the AGXT expression upon steatosis. A 

subsequent experiment will be to perform a transfection assay to study the effect of 

methylated AGXT promotor on the transcription of AGXT using a CpG-free luciferase reporter 

vector as described by Klug and Rehli (Klug and Rehli 2006). This assay should unequivocally 

elucidate whether the hypermethylation of the AGXT promotor results in the silencing or 

repression of the AGXT gene. Nevertheless, it remains to be determined how lipid 

accumulation or it consequences trigger the methylation of the AGXT promotor and the 

downregulation of AGXT. 

4.7 Steatosis-dependent repression of AGXT increases the susceptibility for 

kidney stones 

Patients suffering from PHI do not always have a complete loss of AGXT functionality and 

activity. There is an enormous heterogeneity between the severity and outcome of this 

disease for patients, which is largely dependent on the residual activity of peroxisomal AGXT, 

among other factors (Danpure et al. 1994; Danpure et al. 1987). In the current study, a 

steatosis-induced downregulation of AGXT in mouse as well as in human samples was clear. 

However, the main question was whether this downregulation was strong enough to cause 

insufficient detoxification of glyoxylate. All in all, we concluded that the impact of the 
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repression of AGXT on the urinary oxalate excretion depended on several factors, among 

which two are crucial: 1) the residual activity of AGXT, and 2) the endogenous glyoxylate 

production. The reduced expression of AGXT does not necessarily lead to increased urinary 

oxalate excretion and urolithiasis if the endogenous production of glyoxylate is dampened. As 

three studies from 2016 showed, the peroxisomal production of glyoxylate from glycolate via 

Hao1 enormously influences the urinary oxalate excretion in Agxt knockout mice, and 

inhibition of Hao1 might be a therapeutic approach for PH1 (Dutta et al. 2016; Li et al. 2016; 

Martin-Higueras et al. 2016). Additionally, pharmaceutical inhibition of Prodh2 expression 

successfully reduced oxalate excretion in Agxt knockout mice and is also discussed as a 

potential therapeutic approach to reduce endogenous oxalate production from 

hydroxyproline in primary hyperoxaluria (Li et al. 2016). For this reason, it was essential to 

study AGXT as well as the expression of genes involved in glyoxylate metabolism. Accordingly, 

the collection of human hepatocytes not only revealed a lipid-dependent downregulation of 

AGXT, but also showed a trend towards a downregulation of HAO1 and GRHPR. That was in 

line with the published data (GSE49541), which also showed a downregulation of HAO1 and 

GRHPR in severe NAFLD (Moylan et al. 2014), suggesting not only a reduced capacity for the 

removal of glyoxylate but also decreased endogenous production of glyoxylate from glycolate. 

This could actually lead to a situation in which the fatty liver is more protected towards 

glycolate-toxicity. However, stimulation of glyoxylate production by other glyoxylate-

precursors present in the diet could overwhelm the capacity of the remaining AGXT and 

GRHPR, which would cause increased oxidation of glyoxylate to oxalate, as seen for the 

hydroxyproline stimulation of ob/ob hepatocytes. Thus, identifying additional sources and 

routes of glyoxylate generation are of crucial importance. 

In conclusion, the steatosis-dependent downregulation of AGXT in humans might increase the 

susceptibility for elevated urinary oxalate excretion, which would be dependent on various 

parameters, e.g. the residual activity of AGXT, the endogenous production of glyoxylate, the 

expression as well as the activity of GRHPR, and most importantly the consumed diet. The 

endogenous oxalate production may be lower in some individuals due to reduced expression 

of HAO1. Depending on the amount of the glyoxylate precursors - glycolate and 

hydroxyproline - in the consumed diet, the diet and nutrients may be the cause for an 

extraordinary high concentration of glyoxylate that may not be efficiently detoxified in the 
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case of steatosis-triggered AGXT downregulation. Consequently, increased formation of 

oxalate may result, which could increase the risk of renal calcium oxalate deposits (Figure 4.1).  

 

Figure 4.1: Steatosis-induced repression of AGXT increases the susceptibility for high urinary oxalate 
concentrations and thus elevates the risk for renal calcium oxalate stones. Diet induced stimulation of 
glyoxylate production could overwhelm the remaining detoxification activity of AGXT (as well as GRHPR) that 
consequently increased the pool of glyoxylate, which would be oxidised to oxalate. 

 

4.8 Future perspectives 

During this thesis, a strategy was developed to identify deregulated genes upon hepatic lipid 

accumulation. With this approach, the steatosis-dependent downregulation of AGXT, 

encoding a glyoxylate detoxifying enzyme, was recognized across species in both human 

steatotic hepatocytes and mouse models of NAFLD. 

In agreement with its downregulation, leptin deficient ob/ob mice were found to be slightly 

hyperoxaluric. Since the hepatocytes of ob/ob mice showed an increase in the formation of 

oxalate compared to ob/+ hepatocytes upon hydroxyproline incubation, a subsequent 

experiment would be to determine whether a hydroxyproline enriched diet induces the 

endogenous production of glyoxylate particularly in ob/ob mice. Similar experiments will be 

performed in mice fed the Western diet, which will show whether mice with steatotic livers 

are particularly susceptible or more prone to hyperoxaluria after consumption of the 

glyoxylate precursor, hydroxyproline. 
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In this study, the consequences of AGXT downregulation in steatotic human hepatocytes could 

not be investigated due to lack of urine samples from surgery patients. However, in obese 

children, an increased urinary oxalate excretion was reported to be positively associated with 

body fatness (Shi et al. 2010). To investigate whether obese children who excrete higher levels 

of urinary oxalate show a steatosis-dependent repression of AGXT, a new cooperation with 

the Charité Berlin has been established, which will provide liver biopsies and 24 h urine 

samples from obese children suffering from NAFLD. RNA will be isolated from the liver biopsies 

to measure the expression levels of AGXT, which will then be correlated to the oxalate levels 

of the corresponding urine samples. 

All in all, these experiments will strengthen the link between the steatosis-dependent 

downregulation of AGXT and the development of hyperoxaluria. However, whether 

insufficient AGXT levels alone are responsible for an elevated oxalate excretion in steatosis 

can only be proven in an animal model via recovery of Agxt expression. Thus, a future 

experiment should be done to investigate whether overexpression of Agxt in the steatotic liver 

of ob/ob mice, e.g. via virus mediated gene transfer, can rescue the hyperoxaluric phenotype. 

There is little information available on the regulatory machinery of AGXT. Cloning experiments 

revealed that human AGXT gene has transcription factor binding sites for NF-κB, NF-Y and 

others, as well as five IFNγ response elements (Sato et al. 2002). Moreover, cAMP responsive 

elements as well as other transcription factors and binding sites seem to be involved in the 

regulation of Agxt in mice (Li et al. 1999) and in rats (Oda et al. 1993). Furthermore, it is 

reported that glutamine (Ferrara et al. 2008) as well as glucagon (Li et al. 1999) increase the 

expression of Agxt in mice. Moreover, multiple polymorphisms and mutations within the 

human AGXT gene are known that result in mistargeted or/and non-functional AGXT protein 

(Williams et al. 2009). Conversely, several gene alterations are closely associated with the 

nativity of the individual (Santana et al. 2003). In the present study, AGXT expression upon 

steatosis across species was proposed to be epigenetically regulated since hypermethylation 

of the AGXT promotor was found in steatotic ob/ob mouse hepatocytes (Figures 3.48) as well 

as in steatotic human hepatocytes (Figures 3.50). The mechanism behind the 

hypermethylation has not yet been elucidated. Kim and colleagues reported an obesity-

induced expression and activity of DNA methyltransferase 1 (DNMT1) (Kim et al. 2015). 

Therefore, characterizing DNMT1 and further DNMTs could be a first step to clarify the 



Discussion 

142 

mechanisms of Agxt promoter hypermethylation. In addition, the aforementioned luciferase 

assay will clarify the promotor methylation dependent repression of AGXT. 

Finally, only male mice and male donors of hepatocytes - the gender with the higher 

prevalence for kidney stones (Scales et al. 2012), have been investigated so far. Thus, it is 

reasonable to investigate glyoxylate metabolism in females in order to elucidate whether 

there are gender specific differences with regard to glyoxylate producing and glyoxylate 

detoxifying enzymes, which might explain the increased prevalence of kidney stones in men. 
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6. Appendix 

6.1 Abbreviations 

% Percent 

Adj Adjusted 

AGXT Alanine-glyoxylate aminotransferase 

APS Ammonium persulphate 

Baf A/vin Bafilomycin A/Vinblastine sulphate 

BCA Bicinchoninic acid 

BisTris Bis-(2-hydroxy-ethyl)-amino-tris(hydroxymethyl)-methane 

BMI Body mass index 

BSA Bovine serum albumin 

° C Degree Celsius 

CaCl2 Calcium chloride 

cAMP Cyclic adenosine monophosphate 

cDNA Complementary DNA 

CpG 5'—cytosine—phosphate—guanine—3' 

d Days 

DAPI 4',6-diamidino-2-phenylindole 

DEPC Diethyl pyrocarbonate 

DMEM Dulbecco’s modified Eagle's medium 

DMSO Dimethyl sulfoxide 

DNA/RNA Deoxyribonucleic acid/Ribonucleic acid 

DNMT DNA methyltransferase 

DPPIV Dipeptidyl peptidase-4 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid 

Eif2a Eukaryotic translation initiation factor 2A 

e.g. For example 

et al. And others 

ESKD End stage kidney disease 

FM Full media 

FOXO1 Forkhead box protein O1 

g/mg/µg gram/milligram/microgram 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
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GC-MS Gas chromatography–mass spectrometry 

GO Gene ontology 

GRHPR Glyoxylate reductase/hydroxypyruvate reductase 

h hours 

HAO1 Hydroxyacid oxidase1 

Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

Hm Male human primary hepatocytes 

Hoga1 4-hydroxy-2-oxoglutarate aldolase 1 

HRP Horseradish peroxidase 

HR MAS 1HNMR High resolution magic angle spinning 1H nuclear magnetic 
resonance spectroscopy 

H&E Haematoxylin and Eosin Y 

i.e. that is 

IfADo Leibniz-Institut für Arbeitsforschung an der TU Dortmund 

IFNγ Interferon gamma 

IHC Immunohistochemistry 

Il-6/Il-10 Interleukin-6/-10 

IR Insulin resistance 

JNK c-Jun N-terminal kinase 

KH2PO4 Potassium dihydrogenphosphate 

l/ml/μl litre/millilitre/microlitre 

LC-MS/MS Liquid chromatography-mass spectrometry/ mass spectrometry 

LC3 Microtubule-associated protein 1A/1B-light chain 3 

LDH Lactate dehydrogenase 

LPS Lipopolysaccharide 

M/mM/μM/nM Molar/millimolar/micromolar/nanomolar 

MgSO4 Magnesium sulphate 

Mm Male murine primary hepatocytes 

MTBE Methyl tert-butyl ether 

MTBSTFA N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide 

n Number of biological replicates 

Na2HPO4 Sodium hydrogen phosphate 

NaCl Sodium chloride 

NAFL Non-alcoholic fatty liver  

NAFLD Non-alcoholic fatty liver disease 

NASH Non-alcoholic steatohepatitis 

ND/WD/HFD Normal diet/Western diet/High fat diet 
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NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells 

NF-Y Nuclear transcription factor Y 

nm Nanometre 

NP-40 Nonidet P-40 substitute 

OA; OA/BSA Oleic acid; Oleic acid complexed to BSA (6:1) 

O/N Over night 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate-buffered saline 

PFA Paraformaldehyde 

PH (1, 2, 3) Primary hyperoxaluria (type 1, 2 or 3) 

Prodh2 Proline dehydrogenase 2 

PTS1 Peroxisomal targeting sequence type 1 

PVDF Polyvinylidene fluoride 

qPCR Quantitative real-time polymerase chain reaction 

RFU Relative fluorescence units 

Rpm Rounds per minute 

ROS Reactive oxygen species 

RRBS Reduced representation bisulphite sequencing 

RT Room temperature 

SDS Sodium dodecyl sulphate 

siRNA Small interfering RNA 

SREBP-1c sterol regulatory element-binding protein-1c  

TBS-T Tris-buffered saline 

TEMED Tetramethylethylenediamine 

TG Triglycerides 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TOPO Trioctylphosphine oxide 

Tris Tris(hydroxymethyl)aminomethane 

UBC Ubiquitin C 

UPR Unfolded protein response 

vs Versus 

v/v, w/v Volume per volume, weight per volume 

xg Standard gravity  
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