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Abstract

The multi–object filtering problem is a generalization of the well–known single–
object filtering problem. In essence, multi–object filtering is concerned with the
joint estimation of the unknown and time–varying number of objects and the
state of each of these objects. The filtering problem becomes particular challeng-
ing when the number of objects cannot be inferred from the collected observa-
tions and when no association between an observation and an object is possible.

A rather new and promising approach to multi–object filtering is based on
the principles of finite set statistics (FISST). FISST is a methodology, originally
proposed by R. Mahler, that allows the formulation of the multi–object filtering
problem in a mathematical rigorous way. One of the main building blocks of this
methodology are random finite sets (RFSs), which are essentially finite set (FS)–
valued random variables (RVs). Hence, a RFS is a RV which is not only random in
the values of each element but also random in the number of elements of the FS.
Under the premise that the observations are generated by detection–type sensors,
many practical and efficient multi–object filters have been proposed. In general,
detection–type sensors are assumed to generate observations that either originate
from a single object or are a false alarms. While this is a reasonable assumption
in many multi–object filtering scenarios, this is not always the case.

Central to this thesis is another type of sensors, the superpositional (SPS)–type
sensors. Those types of sensors are assumed to generate only one single obser-
vation that encapsulates the information about all the objects in the monitored
area. More specifically, a single SPS observation is comprised out of the additive
contribution of all the observations which would be generated by each object in-
dividually. In this thesis multi–object filters for SPS–type sensors are derived in
a formal mathematical manner using the methodology of FISST.

The first key contribution is a formulation of a SPS sensor model that, alongside
errors like sensor noise, accounts for the fact that an object might not be visible
to a sensor due to being outside of the sensor’s restricted field of view (FOV) or
because it is occluded by obstacles. The second key contribution is the derivation
of multi–object Bayes filter for SPS sensors that incorporates the aforementioned
SPS sensor model. The third key contribution is the formulation of a filter vari-
ant that incorporates a multi–object multi–Bernoulli distribution as underlying
multi–object state distribution, thus providing a multi–object multi–Bernoulli
(MeMBer) filter variant for SPS–type sensors. As the stated variant turns out not
to be conjugate, two approximations to the exact solution are given. The fourth
key contribution is the derivation of computationally tractable implementations
of the SPS MeMBer filters.
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Introduction

On October 7, 2009 Rudolf E. Kalman was awarded the 2008 National Medal
of Science from the current US President Barack Obama for his Kalman filter.
Thereby acknowledging that almost 50 years after the first presentation of the
Kalman filter, it is nowadays undebatable one of the most applied and taught
mathematical techniques for removing the noise of time series of data. Most im-
portantly, it allows the estimation of the system state over time from incomplete
and erroneous data.

The data is often coming from sensors that are used to observe the state of
an object. The Kalman filter is then used to estimate the state of the object of
interest and infer the value of an unobserved state of a single object. In general
this process is done in two steps. In the first step the knowledge of the probable
change of the object state over a specific amount of time is used to predict the next
state of the system, thus its called the prediction step. In the second step this
predicted state is corrected using the noisy measurements of the sensors, thus
resulting in a presumably more accurate corrected state, therefore it is called
the correction step. Repeating this process recursively over time then allows the
tracking of the state of an object accurately.

However, the Kalman filter is only applicable when the state prediction and
correction equations are linear and the noise is Gaussian distributed. Therefore,
a more general approach to object state estimation is required.

It is common knowledge that the Bayes filter is a generalized probabilistic ap-
proach to estimate an unknown probability density function (PDF) given noisy
measurements. The Kalman filter can be seen as a realization of the Bayes filter
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1. Introduction to this Thesis

when the unknown PDF and object transition PDF and measurement likelihood
are all linear Gaussian. For the more general cases where all PDFs are arbitrary
and non–linear, different realizations of the Bayes filter are known. Most often
used are Sequential Monte Carlo (SMC) realizations which are also called Particle
filters.

While these tools are well known to engineers for estimating the state of a
single object, another problem arises when there is not only one object state but
multiple object states to estimate. Assuming that the sensor is for example a radar
sensor monitoring the airspace for aircraft, the sensor will provide multiple mea-
surements depending on the number of aircraft in the monitored area. Under
some circumstances, it might be possible that aircraft have some kind of identi-
fication mechanism and that is why a measurement could easily be assigned to
an aircraft/object. That is why, it would be possible to just have multiple Bayes
filters in parallel, one for each object. In practice the problem is often worse as
there is generally no object identification. Consequently, no direct association of
a measurement and an object is possible and so basically every possible associ-
ation has to be tried and evaluated. Getting back to the aircraft example there
are also other effects that have to be accounted for. First of all, the number of air-
craft’s in the monitored area may change over time, which may easily be handled
if this was the sole effect as the number of measurements would reflect the num-
ber of objects. However, this is not true in general. It might happen that some
objects are not detected by the sensor and several measurements might not orig-
inate from an object. That is why, the number of measurements does not always
correspond to the true number of objects.

Multi–object filtering has the aim to solve the aforementioned issues. Hence,
multi–object filters have the task to estimate the state and the number of mul-
tiple objects simultaneously over time. Recalling the aforementioned, it is ac-
knowledgeable that multi–object state estimation is a considerably hard prob-
lem and known to be intractable in general. Various approaches have been ex-
tensively studied, most of them rely on some kind of data association between
one measurement and one object. The most widely applied approaches are the
Global Nearest Neighbour (GNN) (see [Bla86]), Joint Probabilistic Data Associa-
tion (JPDA) (see [BF88]) and Multi Hypothesis Tracking (MHT) (see [Rei79]). Es-
sentially all these filters rely on the same principles and all have in common that
they are basically keeping multiple instances of single–object Bayes filters for all
possible objects. In turn, the multi–object filter is basically build out of multiple
parallel single–object filters. In order to assign a measurement to a certain object
and single–object filter, they predict likely measurements for each single object
and then try to associate each predicted measurement with a true measurement
by trying to minimize a total cost function. Once an optimal match is found the
single–object filters are applied accordingly. However, while the assignment can
be optimal in sense of the cost function, it does not have to be the right choice and
thus may lead to subsequent errors in the state estimation.

A different approach, which was introduced by Mahler, is the construction of a
true multi–object Bayes filter on the basis of finite set statistics (FISST), modeling
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the state of multiple objects as a single finite set (FS) valued state. In contrast
to the previously mentioned multi–object filters, these multi–object or random
finite set (RFS) Bayes filters do not rely on their single–object counter parts and
are not just an assemble of multiple single–object Bayes filters. These filters are
true multi–object Bayes filters. Furthermore, in case of the RFS filters no data
association is necessary and as such these filters do not suffer from making wrong
associations between objects and measurements. More importantly, the RFS filter
theory and FISST provide a mathematical rigorous foundation for multi–object
filtering.

Comparable to the single–object Bayes filter, the multi–object Bayes filter is in
general not computationally tractable in its more general form. However, mul-
tiple tractable realizations have been published in recent years. In this context
mentionable realizations are

• the probability hypothesis density (PHD) filter as described in [Mah03],

• the cardinalized probability hypothesis density (CPHD) filter as described
in [Mah07a],

• the multi–object multi–Bernoulli (MeMBer) filter as described in [Mah07b],

• the cardinality balanced multi–object multi–Bernoulli (CB-MeMBer) filter
as described in [VVC09],

• and the labeled multi–object multi–Bernoulli (L-MeMBer) filter as described
in [VV13].

Recalling the earlier aircraft example, it was assumed that each object will gen-
erate at most one measurement. While at a first glance this may seem obvious,
it is not. In order to comprehend this, it is necessary to take a look where these
measurements originate from. Usually, the measurements are not directly gener-
ated by a sensor, such as a radar, itself. More likely the raw sensor data will be
a single measurement containing multiple peaks. Using some kind of detection
threshold these peaks will then be extracted from the raw measurement, which
in turn results in a set of measurements or detections. In Figure 1.1 the described
measurement generation process is depicted. One may notice that this process
may introduce errors and discards useful information, thus reducing the state
estimation accuracy. Moreover, it can be imagined that under certain circum-
stances the peaks cannot be extracted correctly. Consequently, these filters will
introduce large errors or are not applicable at all.

Thus, a multi–object Bayes filter that uses the raw sensor measurement would
not only lead to better results but also would make it possible to use those sensors
where the measurement separation is not possible in the first place. Considering
these raw measurement signals, there is a certain class of sensors that are ubiq-
uitous, the so called superpositional (SPS)–type sensors. As the name implies
these class of sensors measure signals which govern the SPS–principle, and as
such the raw measurement is comprised out of the additive contribution of all
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Figure 1.1.: Principle of the measurement generation process. Here, 16 measure-
ments are taken at distinct angles in the range of φ = ±π/4. The raw
sensor signal is preprocessed and all peaks over a certain threshold
(dotted line) are collected as the set of measurements. Peaks under
the threshold will not be detected and as such missed.

individual measurements that would be generated by each object individually.
Figure 1.2 illustrates the theoretical generation of such a SPS–type measurement
that is generated by three objects. The upper row depicts the individual signals
generated by each of these objects and the lower row the resulting raw SPS mea-
surement signal. In this case the resulting raw signal is inseparable.

Considering all this, the question arises if it is possible to derive multi–object
Bayes filters that directly operate on the raw SPS measurement. Would they be
computationally tractable? Can appropriate computationally tractable approxi-
mations be derived in a mathematical rigorous way? Will these filters give good
state estimates?

The scope of this thesis is to answer the aforementioned questions. Therefore,
appropriate RFS filters for SPS–type sensors will be derived, approximations pro-
vided and evaluated. It will be shown that it is indeed possible to derive such
filters that are on the one hand computationally tractable and on the other hand
give the desired results.
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Figure 1.2.: Principle of a SPS–type sensor. Here, 16 measurements are taken at
distinct angles in the range of φ = ±π/4. The resulting raw measure-
ment signal is generated by superpositioning the raw signals of three
objects. The upper row depicts the individual signals generated by
each source and the lower row the superpositioned signal. The re-
sulting raw signal is inseparable.
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1.1. Motivation

It has been pointed out previously that SPS–type sensors are an important class
of sensors. However, not much research has been conducted to use the raw mea-
surement of such sensors for multi–object filtering yet. This is likely due to the
fact that it is still considered a hard problem and computationally intractable.
Nevertheless, having a multi–object Bayes–filter that can directly work with such
sensors would be beneficial and would allow the usage of SPS–type sensors for
multi–object state estimation. It may not been noticed at once but SPS–type sen-
sors are ubiquitous and research in this area is important. In the following, sev-
eral examples of SPS–type sensors will be pointed out in order to emphasize the
importance of RFS filters for SPS–type sensors.

1.1.1. Thermopile Arrays

A thermopile is a heat sensing sensor that converts heat into voltage. While
widely used in infrared thermometers to measure body temperature, Kemper
and Hauschildt have repurposed the thermopiles to monitor multiple persons
in home environments using their body temperature solely [KH10]. In essence,
multiple low–resolution thermopile line arrays are placed at the walls in the mon-
itored area, thus creating a planar two–dimensional view of the area.

Provided that the state of an object is described as x = (φ,∆,a)ᵀ where φ is the
angle of arrival to the sensors center, ±∆ is the angular size of the object and a
the constant amplitude1 . Then, the measurement function of a thermopile line
array with m pixels is

η(x) = (η1(x), . . . ,ηm(x))ᵀ

where the measurement function of the j–th pixel is

ηj (x) =

+∆∫
−∆

dj a cos
b(α +φ+θj ) dα

with dj being a pixel specific damping factor, θj is the displacement angle relative
to the angle of arrival φ and b is a calibration constant depending on the specific
sensor.

Assuming that there are n non–overlapping objects having states x1, . . . ,xn in the
sensors field of view (FOV), then the single noisy measurement zj provided by a

1The amplitude a is proportional to the emitted irradiance of the object. Therefore, it becomes

a ∝ κ ∗
(
T 4
obj − T

4
sensor

)
, with κ being the Stefan–Boltzmann constant and Tobj/sensor are the object

and sensor temperatures in Kelvin.
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thermopile pixel subject to some additive noise wj becomes

zj = ηj (x1, . . . ,xn) + wj

=
n∑
i=1

+∆i∫
−∆i

dj a cos
b(α +φi +θj ) dα + wj .

Concluding, under the aforementioned premises2 the thermopile array measure-
ment function is SPS. An example of a raw thermopile array measuring the inci-
dent irradiance of three non–overlapping objects is visualized in Figure 1.3.

2If the objects overlap, then the thermopile model is in fact not a true SPS as the emitted irradiance
is in fact blocked and therefore missed by the sensor.
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Figure 1.3.: Example of a thermopile array of 16 pixels with parameters b ≈ 284
and d = 1, each measuring the incident irradiance of three objects.
The pixel orientations are equally distributed over the range ±π/4.
The topmost figure depicts the polar position (r,φ) of the objects, the
middle figures show the generated measurements that would be gen-
erated by each object individually and the bottommost figure shows
the raw SPS–measurement as seen by the thermopile array. It can be
seen that the influence of the leftmost object is easily separable but
the other two are not.
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1.1.2. Acoustic Amplitude Sensor

Acoustic Amplitude Sensors are used in tracking scenarios where each object
emits an acoustic signal of known amplitude. In [NCM13] Nannuru, Coates, and
Mahler placed multiple sensors in the monitored area to track multiple moving
objects. Given the emitted constant amplitude a, sensor position ps and an object
state x = (po)ᵀ where ps/o are the two–dimensional positions of the sensor/object
in the Cartesian two–dimensional plane, then the measurement function of m
acoustic amplitude sensors becomes

η(x) = (η1(x), . . . ,ηm(x))ᵀ

where the measurement function of a single sensor is

ηj (x) =
a

‖po − psj ‖κ

with κ being a parameter depending on the path loss and ‖·‖ is the Euclidean
norm.

According to [NCM13], the generated measurement zj in the presence of mul-
tiple objects x1, . . . ,xn is

zj = η (x1, . . . ,xn) + w

=
n∑
i=1

ai
‖poi − psj ‖κ

+ wj

where wj is additive noise. An example of several acoustic amplitude sensors
measuring the incident amplitude of three non–overlapping objects is visualized
in Figure 1.3.
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Figure 1.4.: Example of 8 acoustic amplitude sensors measuring the incident am-
plitude of three objects with κ = 1. The sensors are placed equally
distributed between ±2 on the abscissa. The topmost figure shows
the position of the objects in the Cartesian plane (px,py), the mid-
dle figure depicts the resulting measurements for each individual
object and the bottommost figure shows the resulting raw SPS–
measurement. The signal is clearly inseparable.
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1.1.3. Other Sensors

In the previous section two examples for SPS–type sensors were demonstrated.
In general, a lot more SPS–type sensors exists. In [Mah14, Ch. 19] Mahler shows
exemplary that the following applications involve SPS signals under certain as-
sumptions:

1. Surveillance Radar,

2. Positioning using Time Difference of Arrival (TDOA) for sinusoidal signals,

3. Multi–User Detection (MUD) in communication networks

4. and Radio–Frequency tomography.

Moreover, recalling that in physics many forces obey the SPS–principle like for
example magnetic, electric or force fields, it can be imagined that there are many
possibilities for their usage.

1.2. Scope and History

In the previous sections SPS–type sensors have been shown to be ubiquitous. Ac-
knowledging that, it is interesting that most available multi–object state estima-
tion algorithms or tracking filters assume a detection–type measurement model.
As mentioned previously, usually the SPS nature of most sensors is neglected and
some kind of preprocessing is performed to extract detections out of the raw SPS
measurement, thus essentially making the detection–type multi–object filters ap-
plicable. However, this introduces errors and thus may perform poorly. Realizing
this, multi–object filters that operate directly on the raw SPS measurement could
offer a significant improvement over the common, detection–based approaches.
In this thesis various novel multi–object Bayes filters for SPS–type sensors based
on the RFS approach will be derived and studied. Before that, a brief summary
of recent developments in multi–object filtering for detection– and SPS–type sen-
sors is given.

The RFS approach to multi–object Bayes filtering was introduced as a more
understandable, more intuitive and thus more applicable way to multi–source
multi–object information fusion. While most of the basic results originate from
the field of Point Process Theory (PPT), the elegant formulation of FISST has
made many improvements in multi–object filtering and information fusion pos-
sible in the first place. In the following the key inventions will be considered.
Furthermore, for a detailed overview of all advancements in multi–object filter-
ing until 2014 the interested reader is referred to [Mah14].

The first and still most widely known multi–object filter for detection–type
sensors is the PHD filter, first presented 2003 in [Mah03]. While it works well, the
assumptions made for the distribution of the cardinality of the objects, namely
to be Poisson, seemed to be to crude in applications when the object number
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1. Introduction to this Thesis

gets larger. That is why, the CPHD was introduced 2007 in [Mah07a], basically
removing the Poisson restriction and as such having a more stable cardinality
estimate.

The PHD class of filters rely on the fact that all potential objects are inde-
pendent and identically distributed (IID) and as such share the same underlying
distribution, thus making it efficient to compute. Nevertheless, another class of
filters was introduced as alternative in [Mah07b], denoted MeMBer filters. The
MeMBer filters relied on the fact that essentially every object is assigned its own
distribution. The first variant was introduced in 2007. Unfortunately, it turned
out to have a bias in the cardinality estimate, essentially making it perform much
worse than the PHD class of filters. However, in 2009 Vo, Vo, and Cantoni re-
solved this issue with the publications of the CB-MeMBer filter in [VVC09], thus
making it a true alternative to the PHD class of filters. Also, in 2013 a new class of
MeMBer filters relying on the notion of labeled RFSs were introduced in [VV13].
These kind of filters are most commonly referred to as L-MeMBer filters.

For each of the mentioned filters different kinds of implementations have been
proposed. Most acknowledgeable are the SMC filter implementations like the
SMC–PHD [WSG07] in 2007, the SMC–CPHD and the SMC–CB-MeMBer [VVC09]
in 2009. Additionally, also analytic implementations like the Gaussian mixture
(GM)–PHD [VVC07] in 2007, the GM–CPHD [RCV10] in 2010 or the GM–CB-
MeMBer [VVC09] in 2009 have been derived.

In contrast to the SMC implementations which are applicable to any non–linear
multi–object filtering problem, the analytic implementations are often only ap-
plicable in a linear or mildly non–linear applications when approximation sim-
ilar to the Extended Kalman filter (EKF) or Unscented Kalman filter (UKF) are
applied. This is due to the fact that most analytic implementations of Bayes fil-
ters such as the Kalman filter rely on the assumption that all distributions can be
modeled by a single Gaussian or a mixtures of Gaussians (MoGs) and that state
transition and measurement functions are linear.

All of the aforementioned multi–object Bayes filter realization and implemen-
tations have shown to work properly in multi–object tracking scenarios. How-
ever, all of these filters assume a detection–type measurement model. While for
example a SMC–PHD filter was employed to track multiple moving persons in
home environments with thermopile arrays in [KH10], the results are only good
as long the raw SPS measurement is easily separable, and as a result only working
when the angular distance of the persons or objects is large enough.

Realizing that there is a need for RFS filters for SPS–type sensors, Mahler pre-
sented the first CPHD filter realization of such in [Mah09] in 2009. Acknowledg-
ing the potential of such a filter, its first analytic implementation was published
by Hauschildt in 2011 [Hau11]. Also, the proposed filter was subsequently fea-
tured as Hauschildt GM Σ–CPHD by Mahler in [Mah14]. While in general com-
putable, the Hauschildt Σ–CPHD is still very computationally demanding and as
such only applicable when the number of objects in the monitored area is small.
That is why, Mahler and El-Fallah and Nannuru, Coates, and Mahler proposed
a computational more tractable approximation to the original Σ–CPHD and also
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introduced the superpositional multi–object multi–Bernoulli (Σ–MeMBer) filters
in [ME12] and [NCM13] called Thouin–Nannuru–Coates (TNC) Σ–CPHD and –
MeMBer filters respectively. Furthermore, Nannuru and Coates also provided a
Σ–MeMBer filter realization in [NC13].

1.3. Outline

In this thesis an extensive study of RFS based multi–objects Bayes filters for SPS–
type is conducted.

• In Chapter 1, an introduction and brief overview of the history of RFS Bayes
filtering and the problem of SPS–type sensors is presented.

• In Chapter 2, an introduction to FISST and multi–object calculus is given.
Thereby including the most important statistical descriptors used through-
out the thesis.

• In Chapter 3, the most popular RFSs are described, including the Poisson,
independent and identically distributed cluster (IIDC) and multi–Bernoulli
RFSs.

• In Chapter 4, a more general and extended model for SPS–type sensors and
corresponding likelihood is presented. In general, extending the known
SPS measurement model previously used throughout literature by consid-
ering transmission dropouts and the possibility that some objects may not
be visible to or detectable by the sensor.

• In Chapter 5, multi–object Markov transition models are introduced. This
includes the modeling of the object motion, appearance and disappearance

• In Chapter 6, multi–object Bayes filters for detection– and SPS–type sensors
are presented and their relationship to the single–object variant is pointed
out.

• In Chapter 7, MeMBer filter realizations employing the aforementioned SPS
measurement model are presented and derived. This includes the exact
computationally intractable formulation of the Σ–MeMBer filter and vari-
ous efficient approximation making it computationally tractable.

• In Chapter 8, computationally tractable approximations of the previously
presented superpositional (SPS) filters are presented. These approxima-
tions are applied to the Pseudo–likelihoods introduced in Chapter 7.

• In Chapter 9, SMC implementations of the proposed filters are presented.

Finally, the behavior of the proposed filters is then studied in Chapter 10.
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1.4. Key Contributions

The key contributions of this thesis are the development of RFS filters for SPS
sensors.

• The first key contribution is the derivation of a measurement model for
SPS sensors as stated in Section 4.4. In contrast to the conventional model
stated in Proposition 3 , the model proposed in Proposition 4 also accounts
for the fact that detections might been missed due to objects being occluded
or other effects.

• The second key contribution is the deduction of the multi–object Bayes
filter corrector equation for the SPS–type sensors as proposed in Propo-
sition 16 in Section 6.2.2.

• The third key contribution is the formulation of the Σ–MeMBer filter cor-
rector equations as stated in Section 7.2. By substituting the general multi–
object distribution in the multi–object Bayes filter corrector with a multi–
object multi–Bernoulli distribution, a mathematical rigorous formulation
of the corrector equation is derived as stated in Theorems 1 and 2 as well
as two approximations. The first approximation stated in Theorem 1 uses
approximations similar to the ones used by Vo, Vo, and Cantoni in [VVC07]
for the derivation of the CB-MeMBer filter corrector equations. The sec-
ond approximation stated in Theorem 4 uses the first factorial moment to
approximate the exact distribution and derive valid Bernoulli components.

• The fourth key contribution is provided in chapter 8 by deducing computa-
tionally tractable approximations. This includes a Gaussian approximation
as stated in Theorem 5, a Gaussian Mixture approximation as stated in The-
orem 6, and a Poisson Binomial approximation as stated in Theorem 7.
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Introduction

During the remainder of this thesis the concepts of finite set statistics (FISST)
play an important role as they are the foundation of random finite set (RFS)–
based multi–object filtering. Therefore, a certain degree of knowledge of set
probability theory or more specifically FISST is presumed throughout this the-
sis. The principles of FISST will later be employed to derive specialized multi–
object Bayes filters for tracking the state of multiple objects with superpositional
(SPS)–type sensors. The underlying mathematical principles like differentiation
and integration, often denoted as multi–object calculus in multi–object tracking
literature like [Mah07b], are introduced in the following sections.

Note that the following summary of FISST provides only an overview of the
most important concepts required for this thesis. A more in–depth introduc-
tion to FISST and multi–object calculus and its application is given by Mahler in
[Mah04] and [Mah13]. For more details the interested reader should also con-
sider reading [Mah07b].
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2. Multi–Object Calculus and Finite Set Statistics

2.1. Random Finite Sets and its Relationship to

Multi–Object Filtering

From probability theory most people are familiar with the concept of random in-
tegers, random numbers and even random vectors. However, much less common
is the concept of a RFS. Basically, RFSs are random variables whose potential in-
stances or values are finite sets (FSs). Equivalent to conventional statistics, which
provides useful operations on random integers and numbers, FISST provides op-
erations on RFSs. In essence, RFSs describe collections of random length where
each value of an element in the FS is random. Similar to ordinary statistics, where
the randomness of a random variable (RV) is described via a probability distribu-
tion, the randomness of RFSs is described via set–probability distributions. Some
common set–probability distributions will be presented in Chapter 3.

While in conventional single–object filtering random vectors are used to de-
scribe the state of an object, RFSs have shown to be a good choice to model the
state of a time–varying number of objects as present in multi–object filtering. In
this context, the random cardinality of the RFS corresponds to the random num-
ber of objects in the monitored area and the random value of an entry of the RFS
corresponds to the potential state of a specific object.

It is also common in modern multi–object filtering literature like [Mah07b] to
denote the underlying calculus operating on FSs as multi–object calculus and the
statistical descriptors provided by FISST as multi–object statistical descriptors
like for example multi–object probability density function (PDF), multi–object
probability generating functional (PGFL) and so on. Therefore, this terminology
will be used throughout this thesis. In the following, the most relevant statistical
descriptors like multi–object PDFs, PGFLs, expected values (EVs) and probability
hypothesis densities (PHDs) will be presented.

2.2. Probability Densities

Multi–object or set probability densities are probability densities of a RFS. As
such they describe the relative probability of a RFS to take on the value of a
specific FS. In general, multi–object densities are defined as follows. Given a FS
X = {x1, . . . ,xn} of n ≥ 0 elements, then

f (X) =

f (∅) if n = 0
f ({x1, . . . ,xn}) if n ≥ 1

is a valid multi–object density of the RFS X if∫
f (X) δX = 1 and ∀X ∈ P (X) : f (X) ≥ 0
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2.3. Probability Mass Function

where P (X) denotes the power set1 of the state space X including the empty set
∅. Also, it can be noted that

∫
f (X) δX is the set–integral as defined in [Mah07b,

pp. 360] which expands to an infinite sum over all sets {x1 . . .xn} of length n = 0
to n =∞ and as such is defined as∫

f (X) δX ,
∞∑
n=0

1
n!

(
f ({x1, . . . ,xn}) dx1 · · ·dxn

= f (∅) +
∞∑
n=1

1
n!

(
f ({x1, . . . ,xn}) dx1 · · ·dxn

=
∞∑
n=0

∫
|X |=n

f (X) δX. (2.1)

Note, that according to [Mah07b, pp. 360] each integral term (2.1) is defined as(
f ({x1, . . . ,xn}) dx1 · · ·dxn , n!

(
f (x1, . . . ,xn) dx1 · · ·dxn

where

f (x1, . . . ,xn) =

 1
n! f ({x1, . . . ,xn}) if x1, . . . ,xn are distinct
0 else.

Thereby, acknowledging that the probability density f (x1, . . . ,xn) is the same for
each permutation of the variables x1, . . . ,xn. Hence, the probability density can
be defined on the FS {x1, . . . ,xn} when taking account for the 1

n! possible permuta-
tions.

Furthermore, the n–th term in equation (2.1) is∫
|X |=n

f (X) δX ,

f (∅) if n = 0
1
n!

'
f ({x1, . . . ,xn}) dx1 · · ·dxn if n > 0

(2.2)

and describes the probability that the RFS X exactly contains n elements.

2.3. Probability Mass Function

While the PDF describes the relative probability of a certain FS, it is often useful
to describe the probability of the cardinality of FS, the relative probability that the
RFS has n members, alone. The straight forward way to deduce this probability

1The power set is the state space of all subsets. For example if X = {1,2, . . .}, then P (X) =
{∅, {1}, {2}, {1,2}, . . .}.
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2. Multi–Object Calculus and Finite Set Statistics

mass function (PMF) of a RFS is to recover it from the corresponding PDF f (X)
by integrating only over all FSs X with cardinality |X | = n and such resulting in

p(n) =
∫
|X |=n

f (X) δX,

where
∫
|X |=n f (X) δX is defined in (2.2).

2.4. Expected Values

In conventional statistics, the expected value of a continuous RV of a function
g(x) given a distribution with PDF f (x) is defined as

Ef [g(x)] ,
∫
g(x) f (x) dx.

Similarly, the expected value of a discrete RV with PMF p(n) taking the sequence
of values a = a0, a1, . . . is

Ep [a] ,
∞∑
n=0

an p(n).

Naturally, The same concept is transferable to RFSs. Given a multi–object PDF
f (X) for a RFS X, then the expected value E[g(X)] of a set–valued function g(X)
is

Ef [g(X)] =
∫
g(X) f (X) δX.

However, while one can easily define the expected value, it should be noted that
the EV is not defined for every case. Consider for example the simple case where
g(X) , X, then Ef [X] is not defined because the multiplication of a finite–set and
a scalar is undefined. Even if it was, the set–integral

∫
g(X) f (X) δX expands to

an infinite sum, each member providing a FS of different length, whose addition
is also undefined. But note, as it will be shown later that for some specific choices
of g(X), where for example g : P (X)→ X is a reduction2, a solution might exist.

2.5. Probability Generating Functions

Probability generating functions (PGFs) are a useful mathematical tool that ease
the derivation of statistical properties in many cases and therefore will largely be

2A typical reduction example would be g(X) ,
∑
x∈X g(x).
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employed in this thesis. Let p(n) be a PMF of a discrete RV, then its PGF G(y) is
defined as

G(y) , Ep [yn]

=
∞∑
n=0

p(n) yn.

A useful property is that it is possible to derive the PMF directly from the corre-
sponding PGF. So, letG(y) be the PGF of p(n), then the PMF p(n) can be recovered
by taking the n–th derivative with respect to y and evaluating the result at y = 0
such that

p(n) =
1
n!

dnG
dyn

(0).

2.6. Probability Generating Functionals

While PGFs are defined for discrete RVs having discrete PDFs, the principal idea
can be transferred to continuous RVs with continuous PDFs. Given a test function
h(x) within the domain 0 ≤ h(x) ≤ 1, the probability generating function for a
continuous RV x with PDF f (x) is defined as

f [h] ,
∫
h(x) f (x)dx

= Ef [h(x)] .

Note that in order to easily distinguish between functions and functionals, func-
tions will be marked by parentheses (·) and functionals with square brackets [·]
throughout this thesis. The PGFL of a RFS can be defined similarly. Defining the
set power of a function h(x) as

hX
abbr=

∏
x∈X

h(x),

where the product over a set X = {x1, . . . ,xn} is defined as

∏
x∈X

h(x) =

1 if X = ∅
h(x1) · · ·h(xn) else,

then the PGFL for any RFS given its PDF f (X) becomes

G[h] ,
∫
hX f (X) δX.

It should be noted that there is the connection between PGFL and the corre-
sponding PGF of a RFS. Let G(y) be the PGF of a RFS with underlying PMF p(n),
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2. Multi–Object Calculus and Finite Set Statistics

then the PGF of a multi–object likelihood can be recovered through its PGFL by
setting the test function h(x) to a fixed variable h(x) = y

G(y) = G[y]

=
∫
y |X |f (X) δX

=
∑
n≥0

yn
∫
|X |=n

f (X) δX

=
∑
n≥0

p(n) yn.

Similar to the previous example, it is also possible to recover the PDF f (X)
given the corresponding PGFL.

According to the fundamental theorem of multi–object calculus as stated in
[Mah07b, pp. 384] the set–integral and the set–derivative are inverse operations.
Expressed in terms of functionals the theorem also states that the underlying
function f (X) of a functional F[h] can be recovered by applying the functional
derivative δ

δX to the functional F[h], in turn getting a new functional
(
δF
δX

)
[h] and

then setting the test–function h(x) = 0. Altogether, the underlying function f (X)
can be recovered by f (X) = δF

δX [0].
Given functional F[h], then the functional derivative 3 is defined as

δF[h]
δy

, lim
ε→0

F[h+ ε δy]−F[h]

ε
,

and as such is the derivative in direction of the Dirac delta function δy(x). In
turn, the functional derivative with respect to a FS Y is defined as

δF[h]
δY

,

F[h] if X = ∅
δF[h]

δy1···δyn if X = {y1, . . . , yn}.

As a result, given a PGFL G[h] then the true multi–object PDF can be recovered
by

f (X) ,
δG
δX

[0] (2.3)

where G[0] denotes the evaluation of the PGFL G[h] at h(x) = 0.

2.7. Central, Raw and Factorial Moments

Closely related to the expected values are the moments of an ordinary probabil-
ity distribution. In ordinary statistics, one distinguishes between several kinds of

3A summary of the basic rules for functional derivatives can be found in Appendix A.
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moments like the raw, central and factorial moments. Given a discrete probabil-
ity distribution with PMF p(n), then the i–th raw moment is

µi , Ep
[
ni

]
=
∞∑
n=0

ni p(n),

the i–the central moment is

µi , Ep
[
(n−µ1)i

]
=
∞∑
n=0

(n−µ1)i p(n)

and the i–th factorial moments is

µ′i , Ep
[

n!
(n− i)!

]
=
∞∑
n=0

n!
(n− i)!

p(n).

Furthermore, given a continuous probability distribution with PDF f (x), then the
i–th raw moment is

µi , Ef
[
xi

]
=

∫
xi f (x) dx,

the i–the central moment is

µi , Ef
[
(x −µ1)i

]
=

∫ (
x −µi1

)
f (x) dx

and the i–th factorial moments is

µ′i , Ef
[

x!
(x − i)!

]
=

∫
x!

(x − i)!
f (x) dx.

A well known property of the factorial moments is that the i-th factorial mo-
ment µ′i of a discrete probability distribution can be deduced by taking the i–th
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derivative of the corresponding PGFG(y) with respect to y and substituting y = 1.
Therefore, the factorial moments are related to a PGF G(y) via

µ′i =
diG

dyi
(1)

Note that the factorial moments µ′i are related to the central moments µi . There-
fore, there also exists a relationship between the PGF and the central moments.
The relationship of the PGF G(x) to the first two central moments, the mean
N

abbr= µ1 and variance σ2 abbr= µ2 , are

N = µ′1

=
dG
dy

(1)

and

σ2 = µ′2 +µ′1 −µ
′
1

2

=
d2G(y)
dy2 (1) +

dG(y)
dy

(1)−
(
dG(y)
dy

(1)
)2

.

In case of continuous RVs similar relationships exists. Recalling the definition
of the PGFL f [h] =

∫
h(x) f (x) dx from Section 2.6, the concept of a moment

generating function (MGF) follows if the test–function is set to be h(x) , exp(tᵀx)
with t,x ∈ Rn and thus the MGF is defined as

M(t) , f [exp(tᵀx)]

=
∫

exp(tᵀx) f (x) dx.

Considering this, the factorial moments µ′i of a continuous RV can be derived by
take the i–th derivative from the MGF and setting t = 0

µ′i =
diM

dti
(0).

Unfortunately, there is no direct equivalent to raw, central and factorial moments
in FISST. The concept that comes closest to the concept of moments are the mo-
ment densities [Mah07b, p. 576].

2.8. Factorial Moment Densities and Probability

Hypothesis Densities

Note that, as its name implies, the factorial moment densities are not scalar values
but densities and as such state dependent. Let f (X) be a multi–object probability
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density, G[h] be its PGFL and X∪Y be the set–union of the FSs X and Y , then the
i–th factorial moment is

Di(y1, . . . , yi) ,
∫
f ({y1, . . . , yi} ∪X) δX

=
δG

δy1 . . .δyi
[1].

For the special cases of i = 1 and i = 2 the PHD simplifies to

D1(y1) =
∫
f ({y1} ∪X) δX

=
δG
δy1

[1]

and

D2(y1, y2) =
∫
f ({y1, y2} ∪X) δX

=
δ2G

δy1δy2
[1]

Similar to ordinary statistics there are some moments or moment densities that
have special roles. One of these is the PHD, the first order factorial moment
D(y) abbr= D1(y). Frankly speaking, one can think of the PHD as an unscaled PDF.
However, it does not describe the density of probability but the intensity, which
is the relative cardinality. As such it does not integrate to 1 but to the expected
number of elements in the FS. In the context of multi–object filtering this would
correspond to the expected number of objects in the monitored area. Thus, given
the PHD D(y) of an arbitrary multi–object PDF f (X), then the expected number
of objects – the mean cardinality – N can be determined by

N =
∫
D(y) dy.
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Introduction

In Chapter 2 random finite sets (RFSs) were introduced as the building blocks
of multi–object calculus. In the following, some important RFSs and some of
their relevant statistical properties are summarized. This includes the Poisson
RFS (sec. 3.1), the independent and identically distributed cluster (IIDC) RFS
(sec. 3.2), the Bernoulli RFS (sec. 3.3) and the multi–Bernoulli RFS (sec. 3.4). A
proof of the results summarized in this section can be found in [Mah07b, Ch. 11].

3.1. Poisson RFS

A RFS is called Poisson RFS when the cardinality of elements in the set is dis-
tributed according to a Poisson distribution with rate λ (see [DV03]). Also, the
spatial distribution of all elements in the set is assumed to be identically and
statistically independent with probability density function (PDF) s(x). As such,
the statistical properties of a Poisson RFS are fully described by parameter tuple
(λ,s(x)). Considering this, the statistical properties of a Poisson RFS become as
follows. Given the Poisson RFS X = {x1, . . . ,xn} with parameters (λ,s(x)), then the
multi–object PDF f (X) and probability generating functional (PGFL) G[h] are

f (X) , e−λ
n∏
i=1

λ s(xi)

G[h] = eλ (s[h]−1),
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the probability generating function (PGF) G(x), probability mass function (PMF)
p(n), the mean N and variance σ2 of the cardinality are

G(y) = eλ (y−1)

p(n) =
1
n!
λne−λ

N = λ

σ2 = λ

and the factorial moments/probability hypothesis densities (PHDs) Dn(x1, . . . ,xn)
are

D1(x) = λ s(x)

D2(x1,x2) = λ2 s(x1) s(x2)

Dn(x1, . . . ,xn) =
n∏
i=1

λ s(xi).

3.2. Independent and Identically Distributed Cluster

RFS

The IIDC RFS can be regarded as generalization of the Poisson RFS described in
Section 3.1. If the Poisson assumption for the cardinality distribution is dropped
and replaced by an arbitrary discrete cardinality distribution with PMF p(n) the
IIDC RFS is then described by the two parameters (p(n), s(x)) with n, |X |.

Let X = {x1, . . . ,xn} be an IIDC RFS with parameters (p(n), s(x)), then its multi–
object PDF f (X) and PGFL G[h] are

f (X) = |X |! p (|X |)
|X |∏
i=1

s(xi)

G[h] =
∑
n≥0

p(n) s[h]n

= G(s[h]),

the PGF G(y), the mean N and variance σ2 of the cardinality are

G(y) =
∑
n≥0

p(n) yn

N =
∑
n≥0

n p(n)

σ2 =
∑
n≥0

n2 p(n)−N2
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and the n–th factorial moments Dn(x1, . . . ,xn) are

D1(x) =
∑
k≥0

k p(k) s(x)

=
dG
dy

(1) s(x)

D2(x1,x2) =
∑
k≥1

k (k − 1) p(k) s(x1) s(x2)

=
d2G

d2y
(1) s(x1) s(x2)

Dn(x1, . . . ,xn) =
∑
k≥n

k!
(k −n)!

p(k)
n∏
i=1

s(xi)

=
dnG
dny

(1)
n∏
i=1

s(xi).

3.3. Bernoulli RFS

A Bernoulli RFS is described by two parameters (q,s(x)). There is a probability
q that an object either does exist or 1 − q that it does not exist. If an object is
existing then the state is distributed according to the probability density s(x).
Since a Bernoulli RFS is a singleton and as such can only contain at most one
element the finite set X can only have two possible values

X =

∅{x}.
For the Bernoulli RFS the statistical properties are as follows. Given a Bernoulli
RFS X with parameters (q,s(x)), then the corresponding probability density f (X),
PGFL G[h] and factorial moment/PHD D1(x) are

f (X) ,


1− q if X = ∅
q s(x) if X = {x}
0 else

G[h] = 1− q+ q s[h]

G(x) = 1− q+ q x

D1(x) = q s(x).

3.4. Multi–Bernoulli RFS

The Bernoulli RFS itself is not much useful on its own as it may only contain at
most one element. To circumvent this constraint, the multi–Bernoulli RFS X is a
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union of a fixed number ν of independent Bernoulli RFSs Xi

X = X1 ∪ . . .∪Xν ,

which can be described by the set of Bernoulli parameters
{
(qi , si(x))νi=1

}
. As such

it allows the description of up to ν objects by independent Bernoulli RFSs. Let X
be a multi–Bernoulli RFS with parameters

{
(qi , si(x))νi=1

}
and X = {x1, . . . ,xn} with

|X | = n, then according to [Mah07b, pp. 368, 374] its probability density f (X) and
PGFL G[h] are

f (X) ,
ν∏
i=1

(1− qi)
∑

1≤i1,...,in≤ν

n∏
j=1

qij sij (xj )

1− qij

= n!
ν∏
i=1

(1− qi)
∑

1≤i1<...<in≤ν

n∏
j=1

qij sij (xj )

1− qij

G[h] =
ν∏
i=1

(1− qi + qi si[h]) (3.1)

where
∑

1≤i1,...,in≤ν
is the sum taken over all i1, . . . , in such that 1 ≤ i1 , . . . , in ≤ ν

and
∑

1≤i1<...<in≤ν
is the sum taken over all i1, . . . , in such that 1 ≤ i1 < . . . < in ≤ ν.

Further, the PGF G(x), cardinality distribution p(n), the mean N and variance
σ2 of the cardinality are

G(y) =
ν∏
i=1

(1− qi + qi y)

p(n) =
ν∏
i=1

(1− qi)
∑

1≤i1<...<in≤ν

n∏
j=1

qij
1− qij

=
ν∏
i=1

(1− qi) σν,n
(
q1

1− q1
, . . . ,

qν
1− qν

)

N =
ν∑
i=1

qi

σ2 =
ν∑
i=1

(1− qi) qi

where

σν,n(x1, . . . ,xν) =


1 if n = 0∑
1≤i1<...<in≤ν

n∏
j=1
xij if 1 ≤ n ≤ ν

0 if n > ν
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denotes the elementary symmetric function (ESF) of degree n in ν variables (see [Mac70,
pp. 20]), which satisfies the identity

ν∑
n=0

σν,n(x1, . . . ,xn) =
n∏
i=1

(1 + xi).

Finally, the n–th factorial moments Dn(x1, . . . ,xn) are

D1(x) =
ν∑
i=1

qi si(x)

D2(x1,x2) =
∑

1≤i1,i2≤ν
qi1 si1(x1) qi2 si2(x2)

=
ν∑

i1=1

ν∑
i2=1

qi1 si1(x1) qi2 si2(x2)−
ν∑
i=1

q2
i si(x1) si(x2)

Dn(x1, . . . ,xn) =
∑

1≤i1,...,in≤ν

n∏
j=1

qij sij (xj ).
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Introduction

In Chapters 2 and 3 the basic concepts of multi–object calculus and random finite
sets (RFSs) have been introduced. The focus in this chapter is how these methods
can be used to estimate the state of multiple objects under the presence of multi-
ple measurements originating from possibly multiple sensors. In the upcoming
sections the following will be shown:

• How to model the state of multiple objects using finite sets (FSs) (sec. 4.1) .

• How to model a collection of multiple measurements as FS (sec. 4.2).

Then, the detection–type measurement model (sec. 4.3) is introduced and the dif-
ferences to the superpositional (SPS)–type measurement model are pointed out.
At last, a model for SPS–type measurements (sec. 4.4) will be derived, starting
with the simplest model that has been previously proposed in literature by au-
thors like Mahler in [Mah09] or Nannuru, Coates, and Mahler in [NCM13] and
consequently been extended to handle missing detection, missing objects and
false alarms. As a result, this leads to a more general measurement model for
SPS–type sensors which has not been presented in literature before.
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4. Multi–Object State and Measurement Models

4.1. Multi–Object State Space

In single object filtering the objective is to determine the state of a single–object
x. A common approach to model the state of a single object is to describe its
state as a vector x ∈ X where all possible values of x are chosen from an arbitrary
state space X1. Furthermore, in multi object filtering the state of multiple distinct
objects has to be described with each having a unique state xi .

Assuming that the number of objects n would be known in advance, then a
possible choice of modeling the states would be to introduce a meta state vector

ẋ , (xᵀ1 , . . . ,x
ᵀ
n )ᵀ

which is composed out of the individual vector–valued object states xi . Unfortu-
nately, considering that the number of objects may vary over time, this approach
is not applicable. In contrast to this, the approach favored in finite set statistics
(FISST) is to model the state of n individual objects as a single finite set–valued
state

X = {x1, . . . ,xn} ∈ P (X)

where P (X) denotes the state space of all finite subsets of the single–object state
space X as described in Section 2.2. Note that choosing this particular repre-
sentation even X = ∅ is a valid state representing the case where no objects are
present.

4.2. Multi–Object Measurement Spaces

In the previous section the concept of finite set–valued states was introduced to
describe the state of multiple distinct objects. The same concept can be applied
for the description of multiple measurements generated by a single or multiple
sensors.

Considering that a sensor produces multiple measurements zi , those collec-
tions of multiple measurements can conveniently be described by a single finite
set–valued measurement

Z = {z1, . . . , zm} ∈ P (Z)

consisting of m single–object observation zi ∈ Z where P (Z) denotes the state
space of all finite subsets of the single–object measurement space Z.

4.3. Detection–Type Measurement Models

The standard or detection–type measurement model is widely employed to model
measurements collected by detection–type sensors. In literature the following as-
sumptions have been postulated as reasonable for these kind of sensors:

1In real world scenarios, the values of x are often chosen to be from the d dimensional set of real
numbers X = Rd , however this is not mandatory.
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1. A measurement is either generated by a single object or is a false alarm.

2. A single object generates either a single measurement or no measurement
at all.

3. All object are points and as such have no physical extend.

4. Measurements are conditionally independent of the objects state.

5. A single sensor observes the scene with an unknown number of unknown
states.

The first assumption accounts for the fact that a sensor might have collected
some measurements that do not correspond to an actual object and thus must
originate from clutter and as such are regarded as false alarms. Note that ac-
cording to [Mah07b, Sec. 9.3.3.2] the clutter process can be assumed to be ap-
proximately Poisson with average clutter rate λC and single measurement spatial
probability density fC(z).

However, sometimes the clutter process is chosen to be an independent and
identically distributed (IID) cluster process with clutter cardinality distribution
pC(·), thus allowing a more fine grained control over the cardinality of the clut-
ter in the expense of computational complexity. While Vo and Mahler used
a Poisson Process to derive the efficient equations for the multi–object multi–
Bernoulli (MeMBer) in [VVC09] and probability hypothesis density (PHD) filters
in [Mah03], Mahler chose to use the independent and identically distributed clus-
ter (IIDC) process to model clutter for the cardinalized probability hypothesis
density (CPHD) filter in [Mah07a].

The second assumption represents the fact that some objects in the monitored
area might be missed and as such generate no measurement at all. An object
will be detected with probability of detection pD (x) or missed with probability
1− pD (x).

The third assumption is closely related to the second one. If objects would not
be regarded as points as such would have a spatial extend, then there would be a
good chance that each object might generate more than one measurement. Also
one would have to consider that objects may be hidden by another and as such
making the problem of multi–object filtering even more challenging. While this
seems to be a huge constraint, this assumption is reasonable in many cases were
the distance of the object to the sensor is high or the object extend does not play
an important role. In cases were this assumption is not reasonable one has to
consider not the standard but the so called extended target measurement model as
described in [Mah07b, pp. 427].

The fourth assumption states that no measurements can be assigned to an ob-
ject and that is why there is no known association between measurement and an
object. Finally, the last assumption just states that there is only a single sensor in
use which monitors an unknown number of objects.
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4.3.1. Detection–Type Measurements

Assuming that a single measurement z ∈ Z can be related to an object state x ∈ X
via the measurement function η : X → Z, then an object with state x ∈ X will
generate a measurement

z = η (x) .

Considering an error free detection–type sensor that produces no false measure-
ments and missing no detections, then n objects having states X = {x1, . . . ,xn}
would generate a collection of n measurements

Z = {z1, . . . , zn}
= {η(xπ(1)), . . . ,η(xπ(n))}.

Note that unless there is some known association between an object xi and a mea-
surement zj , then it follows in general that any association is possible, such that
the measurement could have been generated by any permutation π : {1, . . . ,n} →
{0,1, . . . ,n} of the states x1, . . . ,xn.

However, in the presence of missed detections, the FS of measurements Zi gen-
erated by an object having state xi would be

Zi =

∅ if the i-th object is not detected
{η(xi)} if the i-th object is detected.

In the detection–type model missed detections represent the possibility that
some objects in the monitored area have not generated a measurement. Possi-
ble causes are that for most detection–type sensor detections are accepted when
they exceed a certain detection–threshold, which is often chosen to be some-
where above the sensor’s noise level. It should be noted that in many cases the
detection–threshold influences both the amount of missed detections and false
alarms/clutter measurements. Evidently, a low detection threshold would result
in a low amount of missed detections but high amount of false alarms and vise
versa. False alarms or measurements would generate a set of mC false measure-
ment

ZC = {zC,1, . . . , zC,mC },

and thus the complete set of measurement collected by a detection–type sensor
regarding missed detections and false alarms becomes

Z = Z1 ∪ . . .∪Zn ∪ ZC .

In reality measurements generated by sensors are imperfect and therefore pro-
vide inexact results. It is common sense that most of the effects cannot be mod-
eled deterministically and therefore are considered random. Considering that a
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single measurement z may be disturbed by random noise modeled by a random
variable w, then the measurement is no longer deterministic but also becomes a
random vector

z = η(x,w).

Assuming that not only the measurement itself are partially random but also
the number of measurements is and the set of false measurements is also uncer-
tain described by a RFS ZC , then the FS of all measurements Z is best described
as a RFS

Z = Z1 ∪ . . .∪Zn ∪ ZC

where

Zi =

∅ if the i-th object is not detected
{η(xi ,w)} if the i-th object is detected.

Similar to the ordinary single–measurement case one is most likely interested
in the likelihood f (Z | X) that a certain measurement FS Z is generated by a FS of
object state X. The most important statistical descriptors for the detection–type
measurement model will be summarized in Section 4.3.2.

4.3.2. Detection–Type Likelihood and PGFL

Considering the aforementioned assumptions one can derive the likelihood of
the standard measurement model with Poisson clutter (sec. 3.1). Here, the main
results considering false measurements and missed detections are summarized
in Proposition 1.

Proposition 1. Let Z = {z1, . . . , zm} be the set ofm collected measurements, f (z | x)
be the single–measurement single–object likelihood and X = {x1, . . . ,xn} be the fi-
nite set of n object states. Be pD (x) an arbitrary probability of detecting a single
object given state x and clutter be Poisson with rate λC and single–measurement
probability density function (PDF) fC (z), then the multi–object likelihood f (Z | X)
is

f (Z | X) = e−λC fC (Z) f (∅ | X)
∑
θ

∏
i:θ(i)>0

pD (xi) f (zθ(i) | xi)
(1− pD (xi)) λCfC(zθ(i))

(4.1)

with

f (∅ | X) ,
∏
xi∈X

(1− pD (xi))

fC(Z) ,
∏
zi∈Z

λCfC(zi).
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The sum is taken over all possible mappings θ where

θ : {1, . . . ,m} → {0,1, . . . ,n} (4.2)

uniquely associates an element of the measurement set Z with an element of the
state set X or no object in the case of a false alarm, marked by the mapping to 0

Proof. A formal proof is given in [Mah07b, Ch. 12.3.6] by constructing the equa-
tions for the standard measurement model. Starting from the lowest complex
variant which does not include any missed detections or clutter, the model is it-
eratively refined until the equations resemble the ones given in Proposition 1.

Having a closer look at the multi–object likelihood in (4.1) reveals that even
under the strong assumptions the complexity is still very high since all possible
associations θ between any collected measurement and any possible state have
to be considered, resulting in exponential complexity with upper bound 2n+m

possible associations2.
Given the likelihood of the standard model as presented in Proposition 1, then

it is also possible to derive its probability generating functional (PGFL).

Proposition 2. Let the likelihood of the detection–type measurement model be as
stated in Proposition 1, then the corresponding PGFL G [g | X] can be factorized
in PGFLs for detection and clutter. Hence, it becomes

G[g | X] = GC[g] GD [g | X] (4.3)

where

GD [g | X] =
∏
x∈X

(1− pD (x) + pD (x)f [g | x])

f [g | x] =
∫
g(z) f (z | x) dz

GC[g] = eλC (fC [g]−1)

fC[g] =
∫
g(z) fC(z) dz

are the PGFLs of the detections GD [g | X], Poisson clutter GC[g] and single–object
likelihoods f [g | X] with corresponding single–object single–measurement PDFs
fC(z) and f (z | x).

Proof. A formal proof of Proposition 2 is performed in [Mah07b, App. G.19] by
deriving the PGFL of (4.1) as proposed in Proposition 1.

2
min(n,m)∑
k=0

(m
k
) (n
k
)
≤

min(n,m)∑
k=0

(m
k
) min(n,m)∑

k=0

(n
k
) ≤ (

m∑
k=0

(m
k
)) (

n∑
k=0

(n
k
))

= 2m+n
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Even more general standard measurement models with any desired state inde-
pendent clutter model can easily be derived by dropping the Poisson false alarm
assumption and replacing the Poisson PGFL GC[g] = eλC (fC [g]−1) in equation (4.3)
with the PGFL of an arbitrary clutter model

GC[g] =
∫
gZ fC(Z) δZ,

where fC(Z) can be any multi–object or set–PDF. Also, in [Mah07b] it is proven
that it is possible to replace the state–independent false alarm model with a state–
dependent by replacing PGFL GC[g] with a state–dependent variant GC[g | X].
In both cases, the corresponding likelihoods can easily be derived following the
principles of FISST as described in Chapter 2.

4.4. Superposition–Type Measurement Models

The SPS measurement model differs from the detection–type model in one small
but important aspect. A SPS–type sensor generates only one measurement for a
collection of objects in its monitored area. That is why, the standard model can
no longer be applied as it breaks one of the major assumptions made in order
to derive the standard model. In the following sections a measurement model
for SPS–type sensors will be derived. In literature like [Mah09] or [NC13] the
proposed SPS measurement model is rather simplistic and does not account for
object visibility, missed detections, false alarms or other possible effects similar
to the detection–type model.

Here a more complete model, which also accounts for missed detections and
clutter, will be developed that underlies the following assumptions:

1. A single sensor observes the scene with an unknown number of n objects
each having a distinct unknown state xi .

2. A single measurement z is a composed out of the sum – the superposition
– of the individual sub–signals zi = η(xi) generated by an objects state xi as
z =

∑n
i=1η(xi).

3. A single object is either visible to or detectable by the sensor and as such
influences the measurement additively or not at all with a probability pV (xi)
of visibility.

4. All object states are stochastically independent of each other.

5. The sensor noise is additive and stochastically independent of the objects’
states.

6. The objects are points and as such have no physical extent.
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Most of the aforementioned assumptions are equal to the ones of the standard
model. However, it is also presumed that the sensor noise is additive and inde-
pendent of the object state while in the standard model the noise can be arbitrary
in theory. Moreover, in the detection–type model objects visibility is handled by
missed detections. However, this is not the case for the SPS–type model. Here,
the objects visibility accounts for the fact that the object is or is not in the field
of view (FOV) of the SPS sensor or hidden for various other reasons. If the object
is not visible to the sensor due to occlusion, then the measurement will not con-
tain any additive contribution that originates from the occluded object. Since the
visibility is only depending on the state of the object, the probability of being vis-
ible can be modelled similar to the probability of detection as a state dependent
probability of visibility pV (x).

4.4.1. Superposition–Type Measurements

In contrast to detection–type sensors, SPS–type sensors will generate a single
measurement z which is dependent on the states X = {x1, . . . ,xn} of all objects in
the monitored area. In turn, the finite set of measurement Z consists only of one
measurement Z = {z}. The multi–object measurement function η : P (X)→ Z with

η(X) ,
n∑
i=1

η (xi) (4.4)

relates the object states X = {x1, . . . ,xn} to the measurement

z =
n∑
i=1

η (xi) .

Noticing that some object states are not visible to the sensor, it might happen that
some objects do not influence the measurement z at all. If zi = η(xi) is a single
measurement that would be generated by a single object state xi , then, if object
invisibility is considered, the measurement function becomes

η̂(xi) =

0 if the i − th object it not visible
η(xi) if the i − th object is visible.

Acknowledging that measurements are imperfect and disturbed by additive
random noise w the single SPS measurement z becomes a random variable (RV)

z =
n∑
i=1

η̂(xi) + w.

4.4.2. Superposition–Type Likelihood and PGFL

In the previous section the fundamental differences between the detection–type
sensors measurement and a SPS–type sensor’s measurement have been stated. In
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the following, the likelihoods and the corresponding PGFLs for different cases
are presented with increasing complexity.

4.4.2.1. No Missed Objects/Detections

Considering the aforementioned assumptions and neglecting the presence of missed
objects, missing detections and other effects, the likelihood for the SPS measure-
ment is presented in the following Proposition 3.

Proposition 3. Let X = {x1, . . . ,xn} be a finite set of object states, z be the SPS mea-
surement and η(X) ,

∑n
i=1η(xi) with η(x) being the single–object measurement

function, the SPS likelihood becomes

f (Z | X) =

f (z | X) if Z = {z}
0 else

(4.5)

with

f (z | X) = fw (z − η (X))

=
(
fw ∗ δη(X)

)
(z)

=
(
fw ∗ δη(x1) ∗ . . . ∗ δη(xn)

)
(z), (4.6)

where fw(z) is the PDF of the additive noise vector w, ∗ is the convolution operator
and δη(x)(z) is the Dirac delta function concentrated at η(x). Additionally, the
PGFL is determined by the ordinary integral

G[g | X] =
∫
gZf (Z | X) δZ

=
∫
g(z) fw (z − η (X)) dz

=
∫
g(z) fw

z −∑
xi∈X

η (xi)

 .
Proof. By definition the object states X = {x1, . . . ,xn} and the noise w are stochasti-
cally independent. It is common knowledge that the PDF of the sum of indepen-
dent random variables is the convolution of the individual PDFs. So, assuming
that fw(z) is the PDF of the random variable w and

fi(z) =
∫
δη(x)(z) fi(x) dx

x is the PDF of the transformation of the RV x from the state to measurement
space, then the PDF f (z | X) of the RV z becomes

f (z | X) = (fw ∗ f1 ∗ . . . ∗ fn) (z), (4.7)
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where δη(x)(z) is the Dirac delta function concentrated at η(x). Considering that
the Dirac delta function is defined as

δx1
(x) ≡ δ(x − x1)

δ(x) =

∞ if x = 0
0 else

and the convolution of two arbitrary functions f1(x) and f2(x) is defined as

(f1 ∗ f2)(x) ,
∫
f1(x − y) f2(y) dy,

then the convolution of two Dirac delta functions results in the identity

(δx1
∗ δx2

)(x) = δx1+x2
(x).

Since each object state xi is deterministic and not random at all, its PDF is

f (xi) , δxi (x). (4.8)

Inserting (4.8) into (4.7) it follows as claimed

f (z | X) = (fw ∗ δη(x1) ∗ . . . ∗ δη(xn))(z)

= (fw ∗ δη(X))(z)

= fw(z − η(X)) (4.9)

where

δη(X)(z) =
(
δη(x1) ∗ . . . ∗ δη(xn)

)
(z)

= δ∑n
i=1 η(xi )(z).

Considering these results, the PGFL can be determined by the set–integral

G[g | X] =
∫
gZf (Z | X) δZ.

By replacing the measurement likelihood by its definition in (4.5), the set–integral
simplifies to an ordinary integral and becomes

G[g | X] =
∫
g(z) f (z | X) dz.

Finally, after applying the result from (4.9) and the definition of η(X) from (4.4),
it follows that

G[g | X] =
∫
g(z) fw(z − η(X)) dz

=
∫
g(z) fw

z −∑
xi∈X

η (xi)

 dz.
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4.4.2.2. Missed Objects/Detections

As described in Section 4.4.1, objects in the monitored area may be missed by the
sensor due to being outside of the sensor’s restricted FOV or because they are oc-
cluded by obstacles. Extending the simplistic model in Section 4.4.2.1 to account
for those effects leads to the extended SPS model described in Proposition 4.

Proposition 4. Let Z = {z} be a SPS measurement, X = {x1, . . . ,xn} be the finite set
of object states, pV (x) be the single–object probability of visibility and fw(z) the
noise PDF, then the likelihood f (Z | X) of a SPS measurement is

f (Z | X) =

f (z | X) if Z = {z}
0 else

f (z | X) =
∑
X′⊆X

(1− pV )X\X
′
pV

X′ fw

z − ∑
x′∈X′

η(x′)


= (1− pV )X

∑
X′⊆X

pV
X′

(1− pV )X′
fw

z − ∑
x′∈X′

η(x′)

 (4.10)

= (fw ∗Ψ1 < ∗ . . . ∗Ψn) (z) (4.11)

where

pV
X abbr=

∏
x∈X

pV (x)

(1− pV )X abbr=
∏
x∈X

(1− pV (x))

is the set–power and

Ψi(z | xi) = (1− pV (xi))δ0(z) + pV (xi)δη(xi )(z) (4.12)

is the likelihood that a single object either generates an additive contribution of
0 with probability 1 − pV (x) or an additive contribution of η(x) with probability
pV (x). Considering the aforementioned likelihood, its corresponding PGFL is

G[g | X] =
∫
g(z) f (z | X) dz

= (1− pV )X
∑
X′⊆X

pV
X′

(1− pV )X′
G[g | X ′]

where G[g | X ′] is the PGFL of the SPS measurement model as stated in Proposi-
tion 3.

Most of the aforementioned equations are straightforward. However, the equiv-
alence of (4.10) and (4.11) will be explicitly provided in the following.
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Proof. First it has to be noted that the sum over all subsets
∑
X′⊆X can be rewritten

to ∑
X′⊆X

f (X ′) =
n∑
k=0

∑
X′⊆X,|X′ |=k

f (X ′)

=
n∑
k=0

∑
1≤i1<...<ik≤n

f ({xi1 , . . . ,xik }).

Considering this and also replacing the set–power with its definition, then
(4.10) becomes

f (z | X) = (1− pV )X
n∑
k=0

∑
1≤i1<...<ik≤n

 k∏
j=1

pV (xij )

1− pV (xij )

 fw
z − k∑

j=1

η(xij )

.
Furthermore, it is known from (4.6) that

fw

z − k∑
i=1

η(xi)

 ≡ (
fw ∗ δη(x1) ∗ . . . ∗ δη(xk )

)
(z)

and such it follows

f (z | X) = (1− pV )X
n∑
k=0

∑
1≤i1<...<ik≤n

 k∏
j=1

pV (xij )

1− pV (xij )

 (
fw ∗ δη(xi1 ) ∗ . . . ∗ δη(xik )

)
(z)

= (1− pV )X
n∑
k=0

∑
1≤i1<...<ik≤n

fw ∗ pV (xi1 )δη(xi1 )

1− pV (xi1 )
∗ . . . ∗

pV (xik )δη(xik )

1− pV (xik )

 (z)

= (1− pV )X
fw ∗ n∑

k=0

∑
1≤i1<...<ik≤n

pV (xi1 )δη(xi1 )

1− pV (xi1 )
∗ . . . ∗

pV (xik )δη(xik )

1− pV (xik )

 (z).

(4.13)

Before continuing, it can be noted that the elementary symmetric function (ESF)
of degree k in n variables or functions (see [Mac70, pp. 20]) is defined as

σn,k (f1(x), . . . , fn(x)) =


1 if k = 0∑
1≤i1<...<ik≤n

k∏
j=1
fij (x) if 1 ≤ k ≤ n

0 if k > n

.

Hence, the ESF is the sum over all k-subsets of the set of the functions {f1, . . . , fn},
which in turn gives us the sum over all combinations of length k. Furthermore,
when summing over all possible 0 ≤ k ≤ n this satisfies the identity

n∏
i=1

(1 + fi(x)) =
n∑
k=0

σn,k (f1(x), . . . , fn(x)) .
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Equivalently, the ESF can be defined for the convolution instead of the product.
Therefore, the convoluted elementary symmetric function (CESF) can be defined
as

σ ∗n,k(f1(x), . . . , fn(x)) ,


δ0(x) if k = 0∑
1≤i1<...<ik≤n

(
fi1 ∗ . . . ∗ fik

)
(x) if 1 ≤ k ≤ n

0 if k > n

, (4.14)

satisfying the identity

((δ0 + f1) ∗ . . . ∗ (δ0 + fn)) (x) =
n∑
k=0

σ ∗n,k(f1(x), . . . , fn(x)) (4.15)

where (δ0 ∗ f ) (x) , f (x). Then, after applying this to (4.13) is follows

f (z | X) = (1− pV )X
fw ∗ n∑

k=0

σ ∗n,k

(
pV (x1)δη(x1)

1− pV (x1)
, . . . ,

pV (xn)δη(xn)

1− pV (xn)

) (z).

Consequently, using the identity from (4.15) this becomes

f (z | X) = (1− pV )X
(
fw ∗

(
δ0 +

pV (x1)δη(x1)

1− pV (x1)

)
∗ . . . ∗

(
δ0 +

pV (xn)δη(xn)

1− pV (xn)

))
(z)

=
(
fw ∗

(
(1− pV (x1))δ0 + pV (x1)δη(x1)

)
∗ . . . ∗

(
(1− pV (xn))δ0 + pV (xn)δη(xn)

))
(z).

Finally, with

Ψi (z | xi) , (1− pV (xi))δ0(z) + pV (xi)δη(xi )(z)

this results in

f (z | X) = (fw ∗Ψ1 ∗ . . . ∗Ψn) (z).

4.4.2.3. False Alarms/Measurements

In the standard model described in Section 4.3 which applies to detection–type
sensors, clutter regards to false measurements generated by errors in the detec-
tion process. Normally those errors are generated by some artifacts in the signal
or some equivalent disturbances. Consequently, a clutter measurement intro-
duces additional clutter or ghost objects and as such, if not handled appropriately,
also introduces a bias in the estimated number of objects. The important fact is
that a clutter model can easily be defined solely on the measurement and is in
turn independent of any object’s state. In the SPS model a clutter model that
solely depends on the measurement can only determine if the measurement of
the sensor can be regarded as valid or not.
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Introduction

In the single–object scenario the transition of an object having state x′ to a new
state x is most often modelled by its physical motion. However, in the multi–
object case not only the motion of the individual objects has to be modelled but
also additional effects like the appearance of new objects in the monitored area or
the disappearance of those. In literature one standard model is widely employed
that obeys the following assumptions:

1. Objects transition independently of each other.

2. Objects may disappear from the monitored area.

3. New objects may enter the monitored area.

The first assumption regards to the fact that each object moves or transitions
independently. It is assumed that there is no interaction between any of these ob-
jects like collisions or group transition and so on. The second assumption states
that objects in the monitored area may disappear which is often referred to as ob-
ject death and survival. Object death may happen due to several reasons such as
for example that objects may leave the monitored area or objects simply vanish.
The third assumption accounts for the possible appearance of new objects in the
scene. Object appearance is often denoted by object birth.
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5.1. Multi–Object State Transition Model

Assuming that there are n′ objects in the scene described by a finite set (FS)–
valued state X ′ = {x′1, . . . ,x

′
n′ } and considering that each object transitions inde-

pendently, then each individual object’s transition can be described by the single–
object transition function τ : X→ X. Then, the new state x′ becomes

xi = τ(x′i).

Consequently, given the FS X ′ , then the FS X after the transition would be

X = {x1, . . . ,xn} .
=

{
τ(x′1), . . . , τ(x′n)

}
.

However, recalling that objects may disappear due to leaving the monitored
area or other reasons, the resulting finite set will be

X = X1 ∪ . . .∪Xn

where each finite set Xi is

Xi =

∅ if the i–th object has disappeared or died
{τ(x′i)} if the i–th object still exists / survives.

Additionally, new objects may enter the scene. Therefore, a variable number of
new states may be generated independently of the object states. Thus, if the FS
of nB new born states is

XB = {xB1
, . . .xBnB

},

then the resulting FS of all states after object transition, disappearance and birth
becomes the union of all those individual states and as such follows to be

X = X1 ∪ . . .∪Xn ∪XB.

Assuming that the transition of an object is not exactly known or cannot be
modeled accurately, then there is some uncertainty in the resulting new object
state xi given the previous state x′i . In ordinary probability theory it is common
to model this uncertain behavior with transition densities f (xi | x′i), the proba-
bility density that the new state xi follows when the previous state is x′i . The
same principal is true for multiple objects. However, the multi–object transition
density defines the probability density that a FS X = {x1, . . . ,xn} originated from
FS X ′ = {x′1, . . . ,x

′
n′ }. Note that the number n of elements in X must not necessar-

ily be equal to the number n′ of elements in X ′ since objects may vanish or be
created/born.
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5.2. Multi–Object State Markov Densities

Recalling the single–object state transition case, the Markov or transition density
fM(x | x′) = fT(x | x′) defines the probability that an object with current state x′

has state x afterwards. In essence, the same is true for the multi–object state case,
the Markov density fM(X | X ′) defines the probability that the multiple objects
having the finite set–valued state X ′ = {x′1, . . . ,x

′
n′ } have the finite set–valued state

X = {x1, . . . ,xn} afterwards.
In literature, a common transition model has been establish which will be re-

ferred to as standard transition model. This standard transition model underlies
the following assumptions:

1. Objects move or transition independently and as such the object transition
can be modeled by the single–object transition probability density function
(PDF) fT(x | x′).

2. An object survives with a single–object probability of survival pS (x′) or dies
with probability 1− pS (x′).

Under the aforementioned assumption the Markov transition density and its
corresponding probability generating functional (PGFL) becomes as proposed in
Proposition 5.

Proposition 5. Let fT(x | x′) be the single–object transition density, pS (x′) be the
probability of survival. Be X = {x1, . . . ,xn} and X ′ = {x′1, . . . ,x

′
n′ } where n ≤ n′ .

Then, the conditional PDF fT(X | X ′) and its PGFL GT [h | X ′] are

fT(X | X ′) = fT (∅ | X ′)
∑
θ

∏
i:θ(i)>0

pS (x′i) fT(xθ(i) | x′i)
1− pS (x′i)

with

fT (∅ | X ′) ,
∏
x′i∈X′

(
1− pS (x′i)

)
and

GT
[
h | X ′

]
=

∏
x′∈X′

(1− pS (x′) + pS (x′) fT
[
h | x′

]
) (5.1)

with

fT[h | x′] ,
∫
h(x) fT(x | x′) dx,

where θ : {1, . . . ,n′} → {1, . . . ,n} is the association map similar to (4.2) associating
the state x′i with the state xθ(i).
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Proof. The proof for single object transition density fT(X | X ′) is provided in
[Mah07b, Ch. 13.2.3] and the corresponding PGFLGT [h | X ′] is provided in [Mah07b,
Ch. 13.2.6].

Furthermore, recalling that the multi–object model also allows the advent or
birth of new objects, the complete multi–object Markov transition model becomes
as follows.

Definition 1. Let fT(X | X ′) be the multi–object PDF as described in Proposi-
tion 5 and fB(X | X ′) be the birth PDF then the conditional PDF fM(X | X ′) and its
corresponding PGFL GM[h | X ′] are

fM(X | X ′) =
∑
W⊆X

GB

δW
[0 | X ′] δGT

δ(X \W )
[0 | X ′]

=
∑
W⊆X

fB(W | X ′) fT(X \W | X ′)

and

GM[h | X ′] = GB[h | X ′] GT[h | X ′]

with

GB[h | X ′] ,
∫
hX fB(X | X ′)δX

being the PGFL of the multi–object birth PDF.

5.3. Multi–Object Birth Models

In case of the birth model, there are basically three models that have been widely
employed. Object birth is in general either considered to be Poisson, indepen-
dent and identically distributed cluster (IIDC) or multi–object multi–Bernoulli
(MeMBer) distributed. In the following, the principal equations of the Markov
PDFs and PGFLs will be summarized. Unless otherwise specified, objects may
be born spontaneously or by spawning from an existent object. Due to the latter,
the birth PDFs are considered to be conditionally dependent on the multi–object
state.

5.3.1. Poisson Birth Model

One of the most widely employed birth models is the Poisson Birth Model. Fol-
lowing the definition of the Poisson random finite set (RFS) in Section 3.1 the
corresponding multi–object Markov model equations become as stated in Propo-
sition 6.
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Proposition 6. Let the birth model be Poisson with average birth rate λB(X ′)
and single–object birth density fB(x | X ′), then the multi–object conditional PDF
fM(X | X ′) and PGFL GM[h | X ′] become

fM(X | X ′) = fB(X | X ′) fT(∅ | X ′)
∑
θ

∏
i:θ(i)>0

pS (x′i) fT(xθ(i) | x′i)(
1− pS (x′i)

)
λB(X ′) fB(xθ(i) | X ′)

and

GM[h | X ′] = GB[h | X ′]
∏
x′∈X′

(1− pS (x′) + pS (x′) fT
[
h | x′

]
)

with

GB[h | X ′] = eλB(X′)(fB[h|X′]−1)

where

fB(X | X ′) = e−λB(X′)
n∏
i=1

λB(X ′) fB(xi | X ′)

fB[h | X ′] ,
∫
h(x) fB(x | X ′) dx.

Proof. The proof follows directly by replacing the birth PDF and PGFL by the
corresponding Poisson process as described in Section 3.1.

5.3.2. Independent and Identically Distributed Cluster Birth

Model

While the Poisson model is the de facto standard model, it has some major draw-
backs. Most noticeable is the fact that not only the expected cardinality of the FS
of new born objects is equal to the average birth rate λB but more importantly,
the variance of the cardinality is also equal to the birth rate λB. That is why, the
uncertainty increases with the amount of possible objects in the monitored area.
A generalization of the Poisson birth model is the IIDC birth model which re-
places the Poisson cardinality distribution with an arbitrary discrete cardinality
distribution pB (n). In turn the Markov density and its PGFL become as stated in
Proposition 7.

Proposition 7. Let the RFS of new born objects be modeled as an IIDC RFS as de-
scribed in Section 3.2 with probability mass function (PMF) pB(n | X ′) and single–
object PDF fB(x | X ′), then the Markov PDF and PGFL become

fM (X | X ′) =
∑
W⊆X

fB (W | X ′) fT (X \W | X ′)
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and

GM[h | X ′] = GB[h | X ′]
∏
x′∈X′

(1− pS (x′) + pS (x′) fT
[
h | x′

]
)

with

GB[h | X ′] =
∑
n≥0

pB (n | X ′) (fB
[
h | X ′

]
)n,

where

fB (X | X ′) = |X |! pB (|X | | X ′)
∏
x∈X

fB(x | X ′)

is the PDF of the birth model/RFS and fT (X | X ′) is the PDF of the transition as
described in Proposition 5.

Proof. The proof follows directly by replacing the birth PDF and PGFL by the
corresponding IIDC process as described in Section 3.2.

5.3.3. Multi–Bernoulli Birth Model

Besides the Poisson and the IIDC model, which is for example employed in the
derivation of the probability hypothesis density (PHD) filter, there are other im-
portant birth models. One of those is the multi–Bernoulli birth model. In the
Bernoulli model each new born object is described by a Bernoulli RFS. Consider-
ing that each new born object’s probability of existence qBi and its corresponding
PDF fBi (X | X ′) depends on the current state of objectsX ′ , then the corresponding
Markov density and PGFL will be as presented in Proposition 8.

Proposition 8. Let the birth model be MeMBer with νB Bernoulli birth compo-
nents {(qBi , fBi)

νB
i=1} then the PGFL becomes

fM (X | X ′) =
∑
W⊆X

fB (W | X ′) fT (X \W | X ′)

GM[h | X ′] = GB[h | X ′]
∏
x′∈X′

(1− pS (x′) + pS (x′)fT
[
h | x′

]
)

with

GB[h | X ′] =
νB∏
i=1

(1− qBi (X
′) + qBi (X

′)fBi [h | X
′]),

where fT(X | X ′) is the PDF of the Markov transition including object survival as
described in Proposition 5 and

fB(X | X ′) =
νB∏
i=1

(1− qB,i(X
′))

∑
1≤i1,...,i|X |≤νB

|X |∏
j=1

qBij
(X ′) fBi (xij | X

′)

1− qBij
(X ′)
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is the PDF of the MeMBer birth RFS and

fB[h | X ′] ,
∫
h(x) fB(x | X ′)dx

is the single–object PGFL of the single–object birth PDF fB(x | X ′).

Proof. The proof follows directly by replacing the birth PDF and PGFL by the
corresponding Multi–Bernoulli process as described in Section 3.1.

57





Part III.

Realizations of RFS Filter

59





6. Multi–Object Bayes Filtering

Contents

6.1. Single–Object Bayes Filters . . . . . . . . . . . . . . . . . . 61
6.1.1. Single–Object Bayes Filter Predictor . . . . . . . . . . 62

6.1.2. Single–Object Bayes Filter Corrector . . . . . . . . . . 62

6.2. Multi–Object Bayes Filters . . . . . . . . . . . . . . . . . . 63
6.2.1. Multi–Object Bayes Filter Predictor . . . . . . . . . . . 63

6.2.2. Multi–Object Bayes Filter Corrector . . . . . . . . . . . 65

Introduction

In Chapter 4 the state space models for a time varying number of multiple ob-
jects have been introduced. Furthermore, likelihood models for detection–type
(sec. 4.3) and superpositional (SPS)–type (sec. 4.4.1) sensor models have been
presented. Then, in Chapter 5 multi–object transition densities with the accord-
ing Markov densities and birth models have been summarized. All the estab-
lished information provide the necessary tools to derive Bayesian filters for esti-
mating the state of multiple objects. But before presenting the principal Bayesian
filter equations for SPS–type sensors, the basic multi–object Bayes filter predictor
and corrector will be recalled.

6.1. Single–Object Bayes Filters

Bayesian filters are a well studied and often employed tool for engineers that
allows the estimation of an unknown probability density function (PDF) recur-
sively over time. The unknown PDF is determined using a time series of measure-
ments provided by a sensor, the probabilistic description of the sensor’s behavior
and a probabilistic model of the state transition over time, denoted as the Markov
transition density.

In general, it is assumed that a sensor has collected a sequence of vector valued
measurements z1:k

abbr= (z1, . . . , zk) up to time k where each is carrying informa-
tion about the vector–valued state of an object x at the same time. Using this
information, the Bayes filter provides a possibility to estimate the object state
x or better the PDF fk|k(x) of the uncertain object state x at time k. In general,
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the Bayes filter operates in two steps, the prediction and the correction step.
Commonly, the prediction step is solely based on the system dynamics described
through the so called Markov transition density fM (x | x′). Thus, the previous
PDF fk−1|k−1(x | z1:k−1) at time k−1 is transitioned to the a priori or predicted PDF
fk|k−1(x | z1:k−1). The correction step uses the current measurement zk and a sensor
model described by its corresponding likelihood fk(zk | x) to update the knowl-
edge about the uncertain object state x by correcting the predicted PDF which
results in the corrected PDF fk|k(x | z1:k). Hence, given an initial PDF f0|0 (x) the
filter propagates the PDF over time

f0|0 (x)→ f1|0 (x)→ f1|1 (x | z1)→
. . .→ fk|k−1 (x | z1:k−1)→ fk|k (x | z1:k)→ . . .

using the Bayes predictor and corrector equations. The principal Bayes filter
equations for vector–valued measurements and states are summarized in the fol-
lowing sections.

6.1.1. Single–Object Bayes Filter Predictor

As mentioned before, the Bayes filter predictor essentially propagates the given
PDF fk−1|k−1 (x | z1:k−1) from time k − 1 to k given an arbitrary Markov transition
density fM (x | z1:k−1) resulting in a predicted PDF fk|k−1 (x | z1:k−1). While in gen-
eral arbitrary, the Markov transition density often describes the underlying sys-
tem dynamics, such as the principal motion of objects. The general Bayes filter
equation is as follows.

Proposition 9. Let z1:k−1
abbr= (z1, . . . , zk−1) be a sequence of vector–valued measure-

ments collected up to time k − 1, fM (x | x′) be the Markov transition density and
fk−1|k−1 (x′ | z1:k−1) be the a posteriori PDF, then the Bayes predictor equation for
iteration k is

fk|k−1 (x | z1:k−1) =
∫
fM (x | x′) fk−1|k−1 (x′ | z1:k−1)dx′ .

Proof. The correctness of the Bayes filter predictor equation can be shown by
induction. The complete derivation can be found in [TBF06, Sec. 2.4.3].

6.1.2. Single–Object Bayes Filter Corrector

If provided with the predicted PDF fk|k−1 (x | z1:k−1), then the Bayes filter corrector
uses the information provided by the current measurement zk at time k to update
the current knowledge about the uncertain state x. Thus given any likelihood
fk(zk | x) describing the correlation between the measurement z and the state x,
the corrected PDF fk|k(x | z1:k) can be inferred.
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Proposition 10. Let zk be the measurement and fk (zk | x) be the measurement
likelihood and fk|k−1 (x | z1:k−1) is the predicted PDF at iteration k , then the Bayes
corrector equation is

fk|k(x | z1:k) =
fk (zk | x) fk|k−1 (x | z1:k−1)∫
fk (zk | x) fk|k−1 (x | z1:k−1) dx

.

Proof. The correctness of the Bayes filter corrector equation can be shown by in-
duction. The complete derivation can be found in [TBF06, Sec. 2.4.3].

6.2. Multi–Object Bayes Filters

An equivalent formulation of the Bayes filter exists for the multi–object scenario.
The multi–object Bayes Filter as presented in [Mah07b, Ch. 14] assumes that a
sensor has collected a sequence of finite set (FS)–valued measurements Z1:k

abbr=
(Z1, . . . ,Zk), where each FS–valued measurement at time k is comprised out of mk
vector–valued measurements Zk = {z(k,1), . . . , z(k,mk )}. It is assumed that each FS–
valued measurement Zk carries information about a FS–valued state X at time k,
which describes the current state of nk vector–valued states Xk = {x(k,1), . . . ,x(k,nk )}.

Similar to the single–object case the multi–object Bayes filter is a two step pro-
cedure. But, instead of predicting and correcting the single–object PDF fk|k (x | z1:k),
it predicts and corrects the multi–object PDF fk|k (X | Z1:k) . Thus, given an ini-
tial multi–object PDF f0|0(X) the multi–object Bayes filter provides a sequence of
multi–object PDFs over time

f0|0 (X)→ f1|0 (X)→ f1|1 (X | Z1)→
. . .→ fk|k−1 (X | Z1:k−1)→ fk|k (X | Z1:k)→ . . .

The principal Bayes filter equations for the prediction and correction are pre-
sented in the following. For an in–depth explanation one is referred to [Mah07b,
Ch. 14].

6.2.1. Multi–Object Bayes Filter Predictor

Given the definition of the set–integral in (2.1), the multi–object Bayes filter pre-
dictor equation looks quite similar to the ordinary single–object Bayes filter equa-
tions. As described in Chapter 5, the multi–object Markov density fk|k−1 (X | X ′)
does not only describe the pure transition of the state but also describes the sur-
vival and birth of objects. Therefore, given any of the proposed Markov models
and densities presented in Section 5.2, the PDF form of multi–object Bayes pre-
dictor equation becomes as stated in the following.

Proposition 11. Let Z1:k−1
abbr= (Z1, . . . ,Zk−1) be a time–sequence of FS–valued mea-

surement up to time k − 1, fM (X | X ′) be a multi–object Markov density as de-

63



6. Multi–Object Bayes Filtering

scribed in Chapter 5 and the a priori PDF fk−1|k−1 (X | Z1:k−1), then the multi–
object Bayes predictor becomes

fk|k−1 (X | Z1:k−1) =
∫
fM (X | X ′) fk−1|k−1 (X ′ | Z1:k−1)δX ′ .

Proof. The multi–object Bayes filter predictor equation is a direct result of the
Bayes’ rule as shown in [Mah07b, Sec. 14.3].

While these equations can be used to derive more specific multi–object Bayes
filters, it is often useful to work with the probability generating functional (PGFL)
form of the Bayes filter equations. When consequently applying the principles of
multi–object calculus presented in Chapter 2, then the PGFL variant for the pre-
dictor becomes as stated in the following.

Proposition 12. Let the multi–object Bayes filter predictor equation be as pro-
posed in Proposition 11, then its corresponding PGFL form is

Gk|k−1[h | Z1:k−1] =
∫
GM

[
h | X ′

]
fk−1|k−1 (X ′ | Z1:k−1)δX ′

where

GM
[
h | X ′

]
=

∫
hX fM (X | X ′)δX

is the PGFL of the multi–object Markov density with respect to X and hX ,∏
x∈X h(x) is the set–power of test–function h(x) where h∅ , 1.

Proof. The result follows directly by transforming the multi–object Bayes filter
predictor from Proposition 11 into its PGFL form. The derivation can be found
in [Mah07b, Sec. 14.8.1].

Starting from the PGFL form of the random finite set (RFS) Bayes filter pre-
dictor, the PGFL form of the RFS Bayes filter for the standard Markov model as
described in Section 5.2 can easily be established.

Remark 1 (Multi–Object Bayes Filter Predictor for the Standard Markov Model).
Considering that the PGFL of the Markov density is as described in Definition 1,
then the RFS Bayes filter predictor equation becomes

Gk|k−1[h | Z1:k−1] =
∫
GB[h | X ′] GT[h | X ′] fk−1|k−1 (X ′ | Z1:k−1) δX ′

with GT[h | X ′] being the PGFL describing the multi–object transition as stated in
(5.1) and GB[h | X ′] being the PGFL of an arbitrary multi–object birth distribu-
tion.
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6.2.2. Multi–Object Bayes Filter Corrector

The multi–object Bayes filter corrector updates the knowledge of an uncertain
FS–valued state X using the information provided by the FS–valued measure-
ment Zk at time k. Thus, employing any multi–object measurement likelihood
fk (Zk | X) as proposed in Chapter 4, the corrected multi–object PDF fk|k (X | Z1:k)
is inferred as described in the following.

Proposition 13. Let fk (Zk | X) be a multi–object likelihood as described in Chap-
ter 4 and Zk be the FS–valued measurement at time k, then the multi–object
equivalent of the Bayes filter corrector becomes

fk|k (X | Z1:k) =
fk (Zk | X) fk|k−1 (X | Z1:k−1)∫
fk (Zk | X) fk|k−1 (X | Z1:k−1) δX

. (6.1)

Proof. The multi–object Bayes filter corrector equation is a direct result of the
Bayes’ rule as shown in [Mah07b, Sec. 14.4].

It should be noted that while the single– and multi–object Bayes filter equa-
tions might look quite similar at a first glance, much of its complexity is hidden
behind the set–integral as described in (2.1).

Even in the corrector case, it is often useful to work with the PGFL form of the
Bayes filter corrector as described subsequently.

Proposition 14. Be the multi–object Bayes filter corrector as stated in Proposi-
tion 13, then the PGFL form of the equations is

Gk|k[h | Z1:k] =
FZk [h]
FZk [1]

(6.2)

with

FZk [h] =
(
δF
δZK

)
[0,h]

=
∫
hX fk (Zk | X) fk|k−1 (X | Z1:k−1) δX

being the functional derivative with respect to the measurement set of

F [g,h] =
∫
hX Gk [g | X] fk|k−1 (X | Z1:k−1) δX

where

Gk [g | X] =
∫
gZ fk (Z | X) δZ

is the PGFL of the multi–object likelihood fk (Zk | X) and gZ ,
∏
z∈Z g(z) with

g∅ , 1.
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Proof. In [Mah07b, App. G. 25] it is proven that the PGFL form of the Bayes filter
corrector is as proposed in (6.2).

Taking a closer look at Proposition 14 reveals that it is not possible to obtain
the corrected PGFL Gk|k[h | Z1:k] from the PGFL of the predicted Gk|k−1 [h | Z1:k−1]
directly but from the PDF fk|k−1 (X | Z1:k−1).

Specialized versions of the multi–object Bayes filter can easily be derived for
the detection– and SPS–type measurement models as described in Chapter 4.

Proposition 15 (Detection–Type Multi–Object Bayes Filter Corrector). Given the
detection–type likelihood f (Z | X) as described in Proposition 1 with Poisson
clutter, then the multi–object Bayes corrector becomes

fk|k (X | Z1:k) =

f (∅ | X)
∑
θ

∏
i:θ(i)>0

pD (xi ) f (zθ(i) |xi )
(1−pD (xi )) λCfC (zθ(i))

fk|k−1 (X | Z1:k−1)∫
f (∅ | X)

∑
θ

∏
i:θ(i)>0

pD (xi ) f (zθ(i) |xi )
(1−pD (xi )) λCfC (zθ(i))

fk|k−1 (X | Z1:k−1) δX

with the PDF that all objects are missed

f (∅ | X) ,
∏
xi∈X

(1− pD (xi)) .

Furthermore, the corresponding PGFL is

Gk|k[h | Z1:k] =
FZk [h]

FZk [1]

where the nominator and denominator are defined as

FZk [h] ,
δF
δZk

[0,h]

and

F[g,h] , eλC (fC [g]−1)
∫ ∏

x∈X
(1− pD (x) + pD (x)f [g | x]) fk|k−1 (X | Z1:k−1) δX.

Also, notice that δF
δZk

[0,h] is the evaluation of the set–derivative δF[gh]
δZk

at g(z) = 0.

Proof. The result follows directly by inserting the definition of the detection–type
measurement likelihood from Proposition 1 into (6.1) or its PGFL from Proposi-
tion 2 into (6.2) respectively.

Similar results can be established for the SPS–type measurement model.
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Proposition 16 (Superposition–Type Multi–Object Bayes Filter Corrector). Given
the SPS measurement likelihood f (z | X) as described in Proposition 4 then the
multi–object Bayes corrector becomes

fk|k (X | Z1:k) =

(
fw ∗Ψ(∗X)

)
(zk) fk|k−1 (X | Z1:k−1)∫ (

fw ∗Ψ(∗X)
)
(zk) fk|k−1 (X | Z1:k−1) δX

with PGFL

Gk|k[h | Z1:k] =

∫
hX

(
fw ∗Ψ(∗X)

)
(zk) fk|k−1 (X | Z1:k−1) δX∫ (

fw ∗Ψ(∗X)
)
(zk) fk|k−1 (X | Z1:k−1) δX

with the convolution set–power being defined as

Ψ(∗X)(z) =

δ0(z) if X = ∅
(Ψ1 ∗ . . . ∗Ψn) (z) else

where X = {x1, . . . ,xn} and Ψi(z | xi) is defined in (4.12).

Proof. The result follows directly by inserting the definition of the SPS measure-
ment likelihood from (4.11) in (6.1) and (6.2).
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Introduction

In Chapter 6 the principle equations for the multi–object Bayes filter were intro-
duced. In theory, these filters allow estimating the state of multiple objects recur-
sively, in practice a specific probability density function (PDF) function needs to
be chosen to derive a usable and computationally tractable filter.

If taking a look at typical single object Bayesian filter realizations, such a spe-
cific PDF could either be a Gaussian PDF or an arbitrary PDF approximated by
a set of weighted samples, often also called particles. Under the assumption that
the single–object Markov transition function τ(x) and single–object measurement
function η(x) are both linear with Gaussian transition density and Gaussian mea-
surement likelihood, then the resulting filter is the well–known Kalman filter
([TBF06, Ch. 3]). In the latter case, when the PDF is chosen to be approximated
by a finite number of samples/particles, the result would be the Particle filter
([TBF06, Ch. 4]).

In multi–object Bayesian filtering the PDF could in theory be any valid multi–
object PDF. However, in practice the Poisson, the independent and identically
distributed cluster (IIDC) or the multi–Bernoulli PDFs have been shown to lead
to viable multi–object Bayes filter realizations. For example choosing the PDF
to be either Poisson (sec. 3.1) or IIDC (sec. 3.1), then the resulting Bayes filter
allows the derivation of the prominent class of probability hypothesis density
(PHD)[Mah03] and cardinalized probability hypothesis density (CPHD) [Mah07a]
filters, which have been employed successfully in many multi–object filtering sce-
narios. Moreover, choosing the PDF to be multi–Bernoulli as in Section 3.4 leads
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7. Multi–Bernoulli Realizations

to the derivation of the multi–object multi–Bernoulli (MeMBer) and cardinality
balanced multi–object multi–Bernoulli (CB-MeMBer) class of filters.

In general, choosing the PDF in this way provides an efficient way to propagate
the PDF over time, since only the Bernoulli parameters have to be propagated.
That is why, given an initial set of Bernoulli parameters

{(
q0|0i , s0|0i(x)

)}ν0|0

i=1
the

MeMBer Bayes filters provide a sequence of Bernoulli parameters over time.

{(
q0|0i , s0|0i(x)

)}ν0|0

i=1
→

{(
q1|0i , s1|0i(x)

)}ν1|0

i=1
→

{(
q1|1i , s1|1i(x)

)}ν1|1

i=1
→

. . .→
{(
qk|k−1i , sk|k−1i(x)

)}νk|k−1

i=1
→

{(
qk|ki , sk|ki(x)

)}νk|k
i=1
→ . . .

While all of the mentioned classes of multi–object Bayesian filters have been
studied in recent years, they are mostly based on the assumption that the sensors
provide measurements according to the detection–type model as described in
Section 4.3. However, in this chapter the focus is on a multi–Bernoulli Bayes fil-
ter realization for superpositional (SPS)–type sensors as described in Section 4.4.
The CB-MeMBer filter equations for detection–type filters will be recalled in Sec-
tion 7.1. Then, the principal equation for multi–Bernoulli filters will be derived
in Section 7.2.

7.1. MeMBer Filters for Detection–Type Sensors

In recent years, Multi–Bernoulli filters have been shown to be a valid asset when
estimating the state of a time–varying number of objects when the sensors pro-
vide detection–type measurements. The most prominent multi–Bernoulli filter
realization is the CB-MeMBer filter which was proposed by Vo, Vo, and Can-
toni in [VVC09] as an improvement to the previously derived MeMBer filter by
Mahler in [Mah07b]. Since then the CB-MeMBer filter and its derivates have been
applied to various state estimation problems most typically with detection–type
sensors providing some kind of distance and angular measurements towards the
objects as for example explained in [Ris+13], but also in visual tracking scenarios
as described in [HVV11].

Since some of the results from the detection–type CB-MeMBer will aid in the
understanding of the SPS–type MeMBer filter realization and its derivatives, the
main CB-MeMBer equations will be summarized in the upcoming sections.

7.1.1. MeMBer Filter Predictor

In order to derive the CB-MeMBer predictor equations the following assumptions
are made:

1. The initial random finite set (RFS) X0 is a multi–Bernoulli RFS as described
in Section 3.4.
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2. The Markov transition model is the standard model as described in Chap-
ter 5 with single–object probability of survival pS (x) and Markov density
fM (x | x′),

3. New objects are presumed to be generated due to the multi–Bernoulli Birth
model as described in 5.3.3.

Considering the aforementioned assumptions the CB-MeMBer predictor equa-
tions are as follows.

Proposition 17. Given the posterior multi–object distribution at time k − 1 is
multi–Bernoulli with set of ν abbr= νk−1|k−1 parameters{

(qi , si(x))νi=1
}
,

where q abbr= qk−1|k−1 is the probability that an object exists at time k −1 and s(x) abbr=
sk−1|k−1(x) is its corresponding spatial PDF. Furthermore, let{(

qBi , sBi (x)
)νB

i=1

}
be the set of Bernoulli parameters for the new born objects, where the i–th new
object exists with probability qBi and PDF sBi (x).

Also, let {(
qTi , sTi (x)

)ν
i=1

}
be the set of Bernoulli parameters for the transitioned objects, where the i–th
transitioned object exists with probability qTi and PDF sTi (x).

Then, the ν′ = ν + νB parameters
(
q′i , s

′
i(x)

)ν′
i=1

with q′ abbr= qk|k−1, s′(x) abbr= sk|k−1(x)

and ν′ abbr= νk|k−1 become{(
q′i , s

′
i(x)

)ν′
i=1

}
=

{(
qTi , sTi (x)

)ν
i=1

}
∪

{(
qBi , sBi (x)

)νB

i=1

}
after prediction.

Presuming that ps(x) is the single–object probability of survival and fM (x | x′)
is an arbitrary single–object Markov density, then the transitioned parameters(
qTi , sTi (x)

)
are determined by

qTi = qi si[pS ]

and

sTi (x) =
si[pS fM]
si[pS ]

with

si[h] ,
∫
h(x) si(x) dx

being the probability generating functional (PGFL) of the single–object PDF si(x).
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Proof. The results of the proposition are derived directly from the PGFL form of
the multi–object Bayes filter predictor as described in Proposition 12. A detailed
proof is provided by Mahler in [Mah07b, Sec. 17.4.1].

Having a look at Proposition 17 it is noticeable that under the aforementioned
assumption the multi–object Bayes prediction decomposes into multiple parallel
single–object predictions and as such has a linear computational complexityO(ν)
in the number of Bernoulli components.

7.1.2. Cardinality Balanced MeMBer Filter Corrector

In order to derive the CB-MeMBer corrector equations the following is assumed:

1. The predicted PDF is the PDF of a multi–Bernoulli RFS with component
probabilities of existence q′i and component PDF s′i(x).

2. The sensor model is the detection–type model as described in Section 4.3
with single–measurement likelihood f (z | x) and single–object probability
of detection pD (x).

3. False measurements are modeled by Poisson clutter with rate λC and single–
measurement clutter PDF fC(z).

4. No two measurements zi , zj will be close to or originate from the same object
such that the joint likelihood f (zi | x) f (zj | x) ≈ 0.

Considering this, the MeMBer predictor equations become as follows.

Proposition 18. Let
{(
q′i , s

′
i(x)

)ν′
i=1

}
be the predicted Bernoulli components and

Z = {z1, . . . , zm} be the set of m collected measurements at time k where Z abbr= Zk ,
z

abbr= zk and m abbr= mk . Then, the corrected Bernoulli parameters
{
(qi , si(x))νi=1

}
with

q
abbr= qk|k , s(x) abbr= sk|k(x) and ν abbr= νk|k are the union of the missed

{(
qmi , smi (x)

)ν′
i=1

}
and measurement induced set of parameters

{
(qd(zi), sd(x | zi))mi=1

}
being equal to

{
(qi , si(x))νi=1

}
=

{(
qmi , smi (x)

)ν′
i=1

}
∪

{
(qd(zi), sd(x | zi))mi=1

}
.

The individual missed components are determined by

qmi =
1− s′i[pD ]

1− q′i s
′
i[pD ]

q′i

smi (x) =
1− pD (x)
1− s′i[pD ]

s′i(x)
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and with fz(x) abbr= fk (z | x) the measurement induced components are

qd (zi) ≈

ν′∑
j=1

(1−q′j )(
1−q′j s

′
j [pD ]

) q′j sj[pD fzi ](
1−q′j s

′
j [pD ]

)
λCfC(zi) +

ν′∑
j=1

q′j s
′
j[pD fzi ]

1−q′j s
′
j [pD ]

sd (x | zi) ≈

ν′∑
j=1

q′j
1−q′j

fzi (x) s′j (x)

ν′∑
j=1

q′j
1−q′j

s′j
[
fzi

]
where s′[h] ,

∫
h(x) s′(x) dx.

Proof. The original MeMBer filter corrector equations are provided by Mahler in
[Mah07b, Sec. 17.4.2]. Starting with the PGFL form of the multi–object Bayes
filter corrector equation, Mahler applies several approximations to derive valid
Bernoulli parameters. However, it is shown by Vo, Vo, and Cantoni in [VVC09]
that the resulting filter equations lead to a bias in the cardinality estimate. Hence,
some modifications to the original member corrector equation are employed in
[VVC09] to derive the CB-MeMBer filter equations as proposed in Proposition 18.

Note that the complexity of the CB-MeMBer corrector as described in Proposi-
tion 18 is quadratic in the number of Bernoulli components ν′ and measurements
m with O ((m+ 1) ν′) which for a multi–object Bayes filter is rather efficient. It
should be noted that while the MeMBer predictor equations presented in Propo-
sition 17 resemble the full multi–object Bayes filter prediction equations, the cor-
rector equations do not.

In fact, without going into too much detail the CB-MeMBer corrector approx-
imation is based on the following approximation to the PGFL (see [Mah07b,
Sec. 17.4.2])

G[h | Z1:k] =
v′∏
i=1

Gmi [h]
∏
z∈Zk

Gd[h | z]

where Gmi [h] is the PGFL corresponding to the i-th missed detections and Gd[h |
z] is the PGFL corresponding to a single measurement z. Note, that while it can
be shown that the first product is a multi–Bernoulli, the second is not. In order
to be able to write the second term as a product it is assumed that clutter is not
too dense, in the sense that it is unlikely that two measurements will be near the
same track (see [Mah07b, pp. 679]). As a result, according to [VVC07] each factor
in the second product might not even be a PGFL.

Since Gd[h | z] is no Bernoulli, another approximation is introduced in order to
find a Bernoulli approximation to Gd[h | z]. Mahler’s first proposal in [Mah07b,
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Sec. 17.4.2] lead to the well–known MeMBer corrector approximations which
were later shown to lead to a bias in the posterior cardinality. Therefore, Vo,
Vo, and Cantoni proposed the so called CB-MeMBer in [VVC07]. The approxi-
mation is chosen in the way that the Bernoulli approximation has the same PHD
as that of the original PGFL. From that fact, approximate Bernoulli components
are derived. However, while the probability of existence can be derived with-
out further approximation, the posterior PDF is only valid if the probability of
detection is pD ≈ 1. Note, that for smaller pD < 1 the CB-MeMBer corrector is
generally overconfident since the approximate PHD will always be greater then
the true PHD.

7.1.3. Labeled MeMBer Filter Corrector

Another approach to multi–Bernoulli filters is presented in [VV13] denoted as
labeled multi–object multi–Bernoulli (L-MeMBer) filter, which in contrast to the
CB-MeMBer filter does not need the aforementioned approximations. Instead
of relying on multi–Bernoulli RFSs the authors introduced the notion of labeled
multi–Bernoulli RFSs. Without going into too much detail, labeled multi–Bernoulli
RFSs are basically multi–Bernoulli RFSs augmented with track–labels. On this
basis, the authors where able to show that a labeled multi–Bernoulli filter can
be derived which given a labeled multi–Bernoulli prior, its posterior will also
be a labeled multi–Bernoulli after the correction step. Further information on
L-MeMBer filters can be found in [VV13] or [Reu+14].

7.2. MeMBer Filters for Superposition–Type Sensors

After recalling the principal equations for the detection–type MeMBer filter in
Section 7.1, this section will provide the principal equations for SPS–type MeM-
Ber filters. Since the underlying measurement model does not influence the Bayes
prediction (see Proposition 17), the focus will be solely on the Bayes corrector
equations.

In the following sections, the principal corrector equations for the SPS–type
MeMBer filter will be provided (sec. 7.2.1), including two alternative approxima-
tions required to derive useful Bernoulli parameters (sec. 7.2.2 and 7.2.3).

7.2.1. Exact Σ–MeMBer Filter

In Section 6.2.2 the principal predictor and corrector equations for the MeMBer
filter for detection–type sensors were presented. In this section, the MeMBer
filter corrector equations for SPS–type sensors will be provided. In the follow-
ing, these class of filters will be denoted as superpositional multi–object multi–
Bernoulli (Σ–MeMBer) as denoted by Mahler in [Mah14].
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7.2.1.1. Exact Σ–MeMBer Corrector

In the following paragraphs, the principal equations for the multi–Bernoulli for
SPS–type will be provided.

The Σ–MeMBer corrector equations are based on the following assumptions:

1. The sensor model is assumed to be a SPS–type sensor model according to
Proposition 4 with SPS likelihood f (Z | X) with Z = {z} being a single SPS
measurement.

2. The individual signals of distinct objects may be missed or not received by
the sensor with single–object probability of visibility pV (x).

3. The predicted distribution is a multi–Bernoulli distribution as described
in Section 3.4 with probabilities of existence q′i and corresponding single–
object densities s′i(x).

Considering the aforementioned assumption, the full Bayes filter corrector
equations in its PGFL form are as follows.

Theorem 1. Presume that
{(
q′i , s

′
i(x)

)ν′
i=1

}
are the predicted Bernoulli components

at time k where ν′ abbr= ν′k|k−1, q′ abbr= q′k|k−1 and s′(x) abbr= s′k|k−1(x). Let Zk = {zk} be the
finite set (FS) of the singleton SPS–type measurement zk , fw(z) be the PDF of the
measurement noise and pV (x) be the single–object probability of visibility, then
the full Σ–MeMBer corrector PGFL G [h | Z1:k]

abbr= Gk|k [h | Z1:k] is

G [h | Z1:k] =
(fw ∗ ζ1 [h] ∗ . . . ∗ ζν′ [h]) (zk)
(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (zk)

with

ζi [h] (z) ,
(
1− q′i + q′i s

′
i [h (1− pV )]

)
δ0(z) + q′is

′
i

[
h pV δη

]
(z)

and

ζi [1] (z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z)

where δη
abbr= δη(x)(z) is the Dirac delta function, (f1 ∗ f2)(z) is the convolution of

functions f1(z), f2(z) and

s′i [h (1− pV )] =
∫
h(x) (1− pV (x)) s′i(x) dx

s′i
[
h pV δη

]
=

∫
h(x) pV (x) δη(x)(z) s

′
i(x) dx.

Proof. See Section 7.2.1.2.
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While the equation presented in Theorem 1 is the exact PGFL of the Bayes
filter corrector, it should be noted that it is not the PGFL of a multi–Bernoulli
RFS. Consequently, the corrected distribution is not conjugate to the predicted
distribution. In fact, the corresponding PDF of the resulting distribution is as
follows.

Theorem 2. Let the PGFL be as described in Proposition 14, then the correspond-
ing PDF f (X | Z1:k)

abbr= fk|k (X | Z1:k) is

fk|k (X | Z1:k) =

ν′∏
j=1

(1− q′i)
∑

1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk)

(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (zk)

≡

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk)

v′∑
n=0

1
n!

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 [1] ∗ . . . ∗ ξin [1]

)
(zk)

with

ξij (z | xj ) =
q′ij Ψj (z | xj ) s

′
ij

(xj )

1− q′ij

where

Ψj
(
z | xj

)
=

(
1− pV (xj )

)
δ0(z) + pV (xj ) δη(xj )(z)

as defined in (4.12) in Proposition 4 and

ξij [1](z | xj ) =
q′ij s

′
ij

[Ψj ](z)

1− q′ij
.

Proof. See Section 7.2.1.2.

There are some important things to notice. As mentioned before, the result-
ing corrected distribution is not a multi–Bernoulli distribution. Additionally, it
also seems that the resulting multi–object distribution is no longer independently
distributed and as such no longer composed out of a collection of single–object
distributions. Therefore, it is not obvious how to derive approximate multi–
Bernoulli parameters from the given PGFL or PDF. While this seems to be a
dead–end, the results from this section will prove to be a valid starting point
for the derivation of valid approximate multi–Bernoulli filters.

76



7.2. MeMBer Filters for Superposition–Type Sensors

7.2.1.2. Derivation of the exact Σ–MeMBer Corrector

In this section, the results of the previous section will be proven. First, the PGFL
form of the Σ–MeMBer filter corrector as presented in Theorem 1 will be proven
and secondly the PDF form of the same will be shown to be as stated in Theo-
rem 2.

In order to proof Theorems 1 and 2, the following results are used. Let fk (zk | X)
be the SPS–type likelihood as proposed in Proposition 4 and fk|k−1 (X | Z1:k−1) be
the PDF of a multi–Bernoulli RFS as stated in Section 3.4, then Fzk (X) becomes

Fzk (X) = fk (zk | X) fk|k−1 (X | Z1:k−1)

=



ν′∏
i=1

(1− q′i) fw(zk) if |X | = 0

(fw ∗Ψ1 ∗ . . . ∗Ψn) (zk)
ν′∏
i=1

(1− q′i)
∑

1≤i1,...,in≤ν′

n∏
j=1

q′ij
s′ij

(xj )

1−q′ij
if 1 ≤ |X | ≤ ν′

0 if |X | > ν′

where X = {x1, . . . ,xn}. Consequently, it follows

Fzk (X) =
ν′∏
i=1

(1− q′i)
∑

1≤i1,...,in≤ν′
(fw ∗Ψ1 ∗ . . . ∗Ψn) (zk)

n∏
j=1

q′ij s
′
ij

(xj )

1− q′ij

=
ν′∏
i=1

(1− q′i)
∑

1≤i1,...,in≤ν′

fw ∗ q′i1 Ψ1 s
′
i1

(x1)

1− q′i1
∗ . . . ∗

q′in Ψn s
′
in

(xn)

1− q′in

 (zk)

=
ν′∏
i=1

(1− q′i)
∑

1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk) (7.1)

where

ξi
(
z | xj

)
=
q′i Ψj (z | xj ) s

′
i(xj )

1− q′i
.

Proof of Theorem 1. From Proposition 14 it is known that

G[h | Z1:k] =
FZk [h]

FZk [1]
.

where the nominator and denominator are defined as

FZk [h] =
∫
hX fk (Zk | X) fk|k−1 (X | Z1:k−1) δX.

In the SPS–type measurement case the measurement FS is essentially a singleton
with Zk = {zk}, and therefore the nominator Fzk [k] abbr= F{zk }[h] becomes

Fzk [h] =
∫
hX Fzk (X) δX.
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Thus, after expanding the set–integral Fzk [h] becomes

Fzk [h] = Fzk (∅) +
∞∑
n=1

1
n!

∫
x1

. . .

∫
xn

h(x1) · · ·h(xn) Fzk ({x1, . . . ,xn}) dx1 · · ·dxn.

In turn, inserting the results of (7.1) and acknowledging that Fzk (X) = 0 if |X | > ν′
then it follows that

Fzk [h] = Fzk (∅) +
ν′∏
j=1

(1− q′j )
ν′∑
n=1

1
n!

∑
1≤i1,...,in≤ν′(

fw ∗
∫
x1

. . .

∫
xn

(
h(x1) ξi1

)
∗ . . . ∗

(
h(xn) ξin

)
dx1 · · ·dxn

)
(zk)

= Fzk (∅) +
ν′∏
j=1

(1− q′j )
ν′∑
n=1

1
n!

∑
1≤i1,...,in≤ν′fw ∗

∫
x1

h(x1) ξi1 dx1 ∗ . . . ∗
∫
xn

h(xn) ξin dxn

 (zk)

= Fzk (∅) +
ν′∏
j=1

(1− q′j )
ν′∑
n=1

1
n!

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 [h] ∗ . . . ∗ ξin [h]

)
(zk)

with

ξi[h](z) =
∫
h(xj ) ξi

(
z | xj

)
dxj

=
∫
h(xj )

q′i Ψj (z | xj ) s
′
i(xj )

1− q′i
dxj

=
q′i

∫
h(xj ) Ψj (z | xj ) s′i(xj ) dxj

1− q′i

=
q′i s
′
i[h Ψj ](z)

1− q′i
(7.2)

where s′i[h Ψj ] ,
∫
h(xj ) Ψj (z | xj ) s′i(xj ) dxj and from (4.12) it is known that Ψj (z |

xj ) =
(
1− pV (xj )

)
δ0(z)+pV (xj ) δη(xj )(z). Since the convolution is commutative, the

sum ∑
1≤i1,...,in≤ν′

simplifies to
n!

∑
1≤i1<...<in≤ν′
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and therefore Fzk [h] becomes

Fzk [h] = Fzk (∅) +
ν′∏
j=1

(1− q′j )

fw ∗ ν′∑
n=1

∑
1≤i1<...<in≤ν′

ξi1 [h] ∗ . . . ∗ ξin [h]

 (zk) .

Recalling from (4.14) that

σ ∗n,k (f1(z), . . . , fn(z)) =


δ0(z) if k = 0∑
1≤i1<...<ik≤n

(
fi1 ∗ . . . ∗ fik

)
(z) if k > 0

0 if k > n

is the convoluted elementary symmetric function (CESF) which satisfies the iden-
tity

n∑
k=0

σ ∗n,k (f1(z), . . . , fn(z)) =
(
(δ0 + f1) ∗ . . . ∗ (δ0 + fn)

)
(z),

then Fzk [h] simplifies to

Fzk [h] = Fzk (∅) +
ν′∏
j=1

(1− q′j )

fw ∗ ν′∑
n=1

σ ∗ν′ ,n (ξ1[h], . . . ,ξν′ [h])

 (zk)

with

Fzk (∅) =
ν′∏
j=1

(1− q′j ) fw(zk)

≡
ν′∏
j=1

(1− q′j ) (fw ∗ δ0) (zk)

Consequently, this results in

Fzk [h] =
ν′∏
j=1

(1− q′j )

(fw ∗ δ0) (z) + fw ∗
ν′∑
n=1

σ ∗ν′ ,n (ξ1[h], . . . ,ξν′ [h])

 (zk)

=
ν′∏
j=1

(1− q′j )

fw ∗ ν′∑
n=0

σ ∗ν′ ,n (ξ1[h], . . . ,ξν′ [h])

 (zk)

=
ν′∏
j=1

(1− q′j ) (fw ∗ (δ0 + ξ1[h]) ∗ . . . ∗ (δ0 + ξν′ [h])) (zk) .
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Finally, using (7.2) this becomes

Fzk [h] =
ν′∏
j=1

(1− q′j )
(
fw ∗

(
δ0 +

q′1 s
′
1[h Ψ](z)
1− q′1

)
∗ . . . ∗

(
δ0 +

q′ν′ s
′
ν′ [h Ψ](z)

1− q′ν′

))
(zk)

=
(
fw ∗

(
(1− q′1)δ0 + q′1 s

′
1[h Ψ]

)
∗ . . . ∗

((
1− q′ν′

)
δ0 + q′ν′ s

′
ν′ [h Ψ]

))
(zk) .

As a result, the nominator and denominator become

Fzk [h] = (fw ∗ ζ1 [h] ∗ . . . ∗ ζν′ [h]) (zk)

and

Fzk [1] = (fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (zk)

where

ζi[h](z) = (1− q′i)δ0(z) + q′i s
′
i[h Ψ].

Furthermore, recalling (4.12) it follows that

s′i[h Ψ] =
∫
h(x) Ψ (z | x) s′i(x) dx

=
∫
h(x)

(
(1− pV (x))δ0(z) + pV (x)δη(x)(z)

)
s′i(x) dx

=
∫
h(x) (1− pV (x))δ0(z) s′i(x) dx+

∫
h(x) pV (x)δη(x)(z) s

′
i(x) dx

=
∫
h(x) (1− pV (x)) s′i(x) dx δ0(z) +

∫
h(x) pV (x)δη(x)(z) s

′
i(x) dx

= s′i [h (1− pV )] δ0(z) + s′i
[
h pV δη

]
(z),

this can be simplified to

ζi[h](z) = (1− q′i) δ0(z) + q′i
(
s′i [h (1− pV )] δ0(z) + s′i

[
h pV δη

]
(z)

)
=

(
1− q′i + q′i s

′
i [h (1− pV )]

)
δ0(z) + q′i s

′
i

[
h pV δη

]
(z)

which after substituting h(x) = 1 becomes

ζi[1](z) =
(
1− q′i + q′i s

′
i [1− pV ]

)
δ0(z) + q′i s

′
i

[
pV δη

]
(z)

=
(
1− q′i + q′i s

′
i[1]− q′i s

′
i [pV ]

)
δ0(z) + q′i s

′
i

[
pV δη

]
(z).

Realizing that

s′[1] =
∫

1 s′(x) dx =
∫
s′(x) dx = 1
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it reduces to

ζi[1](z) =
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′i s

′
i

[
pV δη

]
(z).

Finally, as claimed the PGFL of the multi–Bernoulli corrector for SPS–type sen-
sors is

Gk|k [h | Z1:k] =
(fw ∗ ζ1 [h] ∗ . . . ∗ ζν′ [h]) (zk)
(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (zk)

which concludes the proof of Theorem 1.

The PDF form of the multi–Bernoulli corrector as stated in Theorem 2 can
easily be derived from its PGFL form.

Proof of Theorem 2. Given the PGFL form of the SPS–type Bayes corrector, the
PDF form becomes

fk|k (X | Z1:k) =
δGk|k
δX

[0 | Z1:k]

=
1

Fzk [1]

δFzk
δX

[0] .

From (2.3) it is know that

δFzk
δX

[0] = Fzk (X)

and as such it follows

fk|k (X | Z1:k) =
Fzk (X)

Fzk [1]
.

From (7.1) Fzk (X) is already known and thus the PDF form of the Bayes corrector
becomes

fk|k (X | Z1:k) =

ν′∏
j=1

(1− q′i)
∑

1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk)

(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (zk)
.

Furthermore, removing all constant terms from the equation it follows that

fk|k (X | Z1:k) ∝
∑

1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk).

Knowing that the PDF must integrate to 1 it follows∫
fk|k (X | Z1:k) δX = 1,
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the PDF can be reformulated to

fk|k (X | Z1:k) =

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk)∫ ∑

1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk) δX

.

Further, from (2.1) it follows that∫ ∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk) δX

=
v′∑
n=0

1
n!

( ∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk) dx1 · · ·dxn

=
v′∑
n=0

1
n!

∑
1≤i1,...,in≤ν′

( (
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk) dx1 · · ·dxn.

Finally, when changing the order of integration and with

ξi[1](z) =
∫
ξi

(
z | xj

)
dxj

=
q′i s
′
i[Ψj ](z)

1− q′i
the denominator simplifies to

v′∑
n=0

1
n!

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 [1] ∗ . . . ∗ ξin [1]

)
(zk)

Hence, the PDF results in

fk|k (X | Z1:k) =

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 ∗ . . . ∗ ξin

)
(zk)

v′∑
n=0

1
n!

∑
1≤i1,...,in≤ν′

(
fw ∗ ξi1 [1] ∗ . . . ∗ ξin [1]

)
(zk)

and thus concludes the proof.

7.2.2. Approximate Σ–MeMBer Filter

It has been shown in Section 7.2.1 that it is possible to derive the exact PGFL– and
PDF–form of the Bayes corrector for SPS–type sensors. Unfortunately, it became
evident that the a posteriori PDF is no longer the PDF of a multi–Bernoulli RFS.
In the following sections the provided equations will be reformulated and the
necessary steps will be taken to derive an approximate multi–Bernoulli PDF for
the case of SPS–type sensors.
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7.2.2.1. Approximate Σ–MeMBer Filter Corrector

In this section, the approximate Bayes filter corrector equation for SPS–type sen-
sor are presented.

Theorem 3. Let
{(
q′i , s

′
i(x)

)}ν′
i=1

be the predicted Bernoulli parameters, z be the
single SPS–type measurement, fw(z) be the likelihood that the measurement is
generated by noise and pV (x) the probability that an object is detected/visible.
Then, the corrected distribution is approximately multi–Bernoulli with parame-
ters

{(qi , si(x))}νi=1 =
{(
qmi , smi (x)

)}ν′
i=1
∪

{(
qdi (z), sdi (x | z)

)}ν′
i=1

where q abbr= qk|k , s(x) abbr= sk|k(x) are the ν abbr= νk|k corrected components comprised

out of the union of the components induced by missed objects
{(
qmi , smi (x)

)}ν′
i=1

determined by

qmi =
1− s′i [pV ]

1− q′i s
′
i [pV ]

q′i

and

smi (x) =
(1− pV (x))
1− s′i [pV ]

s′i(x),

and the Bernoulli parameters
{(
qdi (z), sdi (x | z)

)}ν′
i=1

of the detected objects are

qdi (z) =
(1− q′i)(

1− q′i s
′
i [pV ]

) q′i s
′
i

[
pV ϕ

,i
η

]
(z)(

1− q′i s
′
i [pV ]

)
ϕ,i(z) + q′i s

′
i

[
pV ϕ

,i
η

]
(z)

≡

(1′−qi )
(1−q′i s

′
i [pV ])

q′i s
′
i

[
pV ϕ

,i
η

]
(z)

(1−q′i s
′
i [pV ])

ϕ,i(z) +
q′i s
′
i[pV ϕ,iη ](z)

1−q′i s
′
i [pV ]

and

sdi (x | z) =
pV (x) ϕ,i(z − η(x)) s′i(x)

s′i
[
pV ϕ

,i
η

]
with s′i[h] ,

∫
h(x) s′i(x) dx and ϕ,iη (z | x) , ϕ,i(z−η(x)). The Pseudo–likelihood is

ϕ,i(z) , (fw ∗ ζ1[1] ∗ . . . ∗ ζi−1[1] ∗ ζi+1[1] ∗ . . . ∗ ζν′ [1]) (z)

with

ζi[1](z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z).
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Proof. See Section 7.2.2.2.

While the approximate SPS–type MeMBer corrector equations presented in
Theorem 3 look rather efficient at first glance, the computationally demanding
part is the determination of the Pseudo–likelihood ϕ,i(z − η(x)) since it involves
multiple convolutions of ζi(z). In fact the Pseudo–likelihood ϕ,j is a mixture of
2ν
′−1 components and has to be generated ν′ times. While these equations can be

used they are still too computationally demanding when the number of Bernoulli
components and such the number of possible objects gets larger. After provid-
ing an alternative MeMBer corrector for SPS sensors in Section 7.2.3, several op-
tions to reduce the computational demand in determining the Pseudo–likelihood
ϕ,i(z − η(x)) will be presented in Chapter 8.

7.2.2.2. Derivation of the Approximate Σ–MeMBer Filter Corrector

In this section, the principal equations for the approximate MeMBer corrector
equations as presented in Theorem 3 are proven. In order to proof the results
stated in Theorem 3, the PGFL variant of the SPS–type MeMBer filter corrector
as stated in Theorem 1 is factorized first. Recall the PGFL variant of the SPS–type
MeMBer filter corrector as stated in Theorem 1

G [h | Z1:k] =
(fw ∗ ζ1 [h] ∗ . . . ∗ ζν′ [h]) (z)
(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (z)

with

ζi [h] (z) ,
(
1− q′i + q′i s

′
i [h (1− pV )]

)
δ0(z) + q′is

′
i

[
h pV δη

]
(z)

and

ζi [1] (z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z) .

Let ζi [h] (z) be factorized as

ζi [h] (z) = ζmi [h] ζdi [h](z)

and

ζi [1] (z) = ζmi [1] ζdi [1](z)

where the terms

ζmi [h] =
(
1− q′i + q′i s

′
i [h (1− pV )]

)
and

ζmi [1] =
(
1− q′i s

′
i [pV ]

)
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correspond to the i–th missed objects. Furthermore, it follows that

ζdi [h](z) =
ζi[h](z)
ζmi [h]

=

(
1− q′i + q′i s

′
i [h (1− pV )]

)
δ0(z) + q′is

′
i

[
h pV δη

]
(z)

1− q′i + q′i s
′
i [h (1− pV )]

=

δ0(z) +
q′is
′
i

[
h pV δη

]
(z)

1− q′i + q′i s
′
i [h (1− pV )]


and

ζdi [1](z) =
ζi[1](z)
ζmi [1]

=

(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z)

1− q′i s
′
i [pV ]

=

δ0(z) +
q′is
′
i

[
pV δη

]
(z)

1− q′i s
′
i [pV ]


correspond to the i–th detected object. Since the missed object part ζmi [h] is no
function of z it can be moved out of the convolution and the corrector becomes

G [h | Z1:k] =

∏ν′
i=1 ζmi [h]

(
fw ∗ ζd1

[h] ∗ . . . ∗ ζdν′ [h]
)
(z)∏ν′

i=1 ζmi [1]
(
fw ∗ ζd1

[1] ∗ . . . ∗ ζdν′ [1]
)
(z)
.

Consequently, when defining

Gm [h | Z1:k] =
ν′∏
i=1

1− q′i + q′i s
′
i [h (1− pV )]

1− q′i s
′
i [pV ]

(7.3)

to be the PGFL of the new components induced by missed objects and

Gd [h | Z1:k] =

(
fw ∗ ζd1

[h] ∗ . . . ∗ ζdν′ [h]
)
(z)(

fw ∗ ζd1
[1] ∗ . . . ∗ ζdν′ [1]

)
(z)

(7.4)

to be the PGFL of the detected or visible objects, it follows that the PGFL can be
factorized as

G [h | Z1:k] = Gm [h | Z1:k] Gd [h | Z1:k] .

Note that if it can be shown that Gm [h | Z1:k] and Gd [h | Z1:k] are both PGFLs of
multi–Bernoulli RFSs, then G [h | Z1:k] is consequently also a PGFL of a multi–
Bernoulli RFS.
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Proof of Theorem 3. In the following it will be proven that G[h | Z1:k] is the PGFL
of a multi–Bernoulli RFS. In order to prove this, it will be shown that (7.3) and
(7.4) are both valid PGFLs of multi–Bernoulli RFS. It will be made use of the fact
that the product of the PGFLs of two Bernoulli RFSs is in fact a PGFL of a multi–
Bernoulli RFS. Furthermore, the product of the PGFLs of two multi–Bernoulli
RFSs is also a multi–Bernoulli RFS (see. (3.1)). Recalling (7.3) and defining

Gmi [h | Z1:k] =
1− q′i + q′i s

′
i [h (1− pV )]

1− q′i s
′
i [pV ]

results in

Gm [h | Z1:k] =
ν′∏
i=1

Gmi [h | Z1:k] .

Thus, in order to proof that Gm [h | Z1:k] is a valid PGFL of a multi–Bernoulli
RFS, it only needs to be shown that Gmi [h | Z1:k] is a valid PGFL of a Bernoulli
RFS. Similar to [Mah07b, Sec. 17.4.2.3], it follows that

Gmi [h | Z1:k] =
1− q′i + q′i s

′
i [h (1− pV )]

1− q′i s
′
i [pV ]

=
1− q′i

1− q′i s
′
i [pV ]

+
q′i s
′
i [h (1− pV )]

1− q′i s
′
i [pV ]

.

In turn, when extending the term with
s′i [(1−pV )]
s′i [(1−pV )] , this becomes

Gmi [h | Z1:k] =
1− q′i

1− q′i s
′
i [pV ]

+
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

s′i [h (1− pV )]
s′i [(1− pV )]

.

Then, adding ±q′i s
′
i [pV ] results in

Gmi [h | Z1:k] =
1− q′i − q

′
i s
′
i [pV ] + q′i s

′
i [pV ]

1− q′i s
′
i [pV ]

+
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

s′i [h (1− pV )]
s′i [(1− pV )]

=
1− q′i s

′
i [pV ]

1− q′i s
′
i [pV ]

−
q′i − q

′
i s
′
i [pV ]

1− q′i s
′
i [pV ]

+
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

s′i [h (1− pV )]
s′i [(1− pV )]

= 1−
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

+
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

s′i [h (1− pV )]
s′i [(1− pV )]

.

Finally, this leads to the typical PGFL form of a Bernoulli RFS when defining

Gmi [h | Z1:k] = 1− qmi + qmi smi [h]

with

qmi ,
q′i s
′
i [(1− pV )]

1− q′i s
′
i [pV ]

=
q′i − q

′
i s
′
i [pV ]

1− q′i s
′
i [pV ]
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and

smi (x) =
(1− pV ) s′i(x)
s′i [(1− pV )]

,

where s′i[h] =
∫
h(x) s′i(x) dx. Since Gmi [h | Z1:k] is the PGFL of a Bernoulli RFS it

naturally follows that Gm [h | Z1:k] is the PGFL of a multi–Bernoulli distribution
as described in Section 3.4.

Additionally, it needs to be proven that Gd[h | Z1:k] is the PGFL of a multi–
Bernoulli RFS. While it is not possible to show that Gd[h | Z1:k] is the PGFL of a
multi–Bernoulli RFS, it is indeed possible to derive an approximation G̃d[h | Z1:k]
that is the PGFL of a multi–Bernoulli RFS. Here, the approximation G̃d[h | Z1:k]
is derived such that the PHD of the new distribution and the original are equal.
Hence, the resulting approximation is accurate up to the first factorial moment.
In order to achieve this, the corresponding PHD Dd(x | Z1:k) of Gd[h | Z1:k] will be
determined, which in turn will make it possible to derive approximate Bernoulli
parameters for the detected objects. By definition the PHD follows to be

Dd(x | Z1:k) =
δGd
δx

[1 | Z1:k] .

Consequently, when

Kd ,
(
fw ∗ ζd1

[1] ∗ . . . ∗ ζdν′ [1]
)
(z)

=
(
ϕ,dj ∗ ζdj [1]

)
(z) (7.5)

and due to the product rule of functional derivatives (app. A) this becomes

Dd(x | Z1:k) = Kd
−1

ν′∑
j=1

(
fw ∗ ζd1

[1] ∗ . . . ∗
δζdj
δx

[1] ∗ . . . ∗ ζdν′ [1]
)

(z) .

Further, let

ϕ,dj (z) ,
(
fw ∗ ζd1

[1] ∗ . . . ∗ ζdj−1
[1] ∗ ζdj+1

[1] ∗ . . . ∗ ζdν′ [1]
)
(z)

=

fw ∗ ζ1[1]
ζm1

[1]
∗ . . . ∗

ζj−1[1]

ζmj−1
[1]
∗
ζj+1[1]

ζmj+1
[1]
∗ . . . ∗ ζν

′ [1]
ζmν′ [1]

 (z)

=
ζmj [1]

ν′∏
i=1
ζmi [1]

(
fw ∗ ζ1[1] ∗ . . . ∗ ζj−1[1] ∗ ζj+1[1] ∗ . . . ∗ ζν′ [1]

)
(z)

to be the convolution of all ζdi [1](z) but not the j–th element and recalling that

ϕ,j (z) =
(
fw ∗ ζ1[1] ∗ . . . ∗ ζj−1[1] ∗ ζj+1[1] ∗ . . . ∗ ζν′ [1]

)
(z)
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is the convolution of all ζi[1](z) with i ∈ {1, . . . ,ν′} \ {j}, then it follows that

ϕ,dj (z) =
ζmj [1]

ν′∏
i=1
ζmi [1]

ϕ,j (z). (7.6)

Consequently, it follows that

Dd(x | Z1:k) =
ν′∑
j=1

Kd
−1

(
ϕ,dj ∗

δζdj
δx

[1]
)

(z)

=
ν′∑
j=1

Ddj (x | Z1:k) (7.7)

where

Ddj (x | Z1:k) = Kd
−1

(
ϕ,dj ∗

δζdj
δx

[1]
)

(z) . (7.8)

After applying the product rule for functional derivatives, the functional deriva-
tive of ζdj [h] follows to be

δζdj [h](z)

δx
=
δ
(
ζj [h](z)/ζmj [h]

)
δx

= ζmj [h]−2

δζj [h](z)

δx
ζmj [h]− ζj [h](z)

δζmj [h]

δx

 (7.9)

where the functional derivatives of ζj [h](z) and ζmj [h] are

δζj [h](z)

δx
=
δ
((

1− q′j + q′j s
′
j [h (1− pV )]

)
δ0(z)

)
δx

+
δ
(
q′j s
′
j

[
h pV δη

]
(z)

)
δx

=

q′j δ
(
s′j [h (1− pV )]

)
δx

δ0(z) + q′j
δ
(
s′j

[
h pV δη

]
(z)

)
δx

= q′j (1− pV (x)) s′j (x) δ0(z) + q′j pV (x) δη(x)(z) s
′
j (x)

and

δζmj [h]

δx
=
δ
(
1− q′j + q′j s

′
j [h (1− pV )]

)
δx

= q′j
δ
(
s′j [h (1− pV )]

)
δx

= q′j (1− pV (x)) s′j (x).
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Finally, after reinserting these into (7.9) the result is

δζdj [h]

δx
=

(
1− q′j + q′j s

′
j [h (1− pV )]

)−2(
q′j pV (x) δη(x)(z) s

′
j (x)

(
1− q′j + q′j s

′
j [h (1− pV )]

)
− q′j s

′
j

[
h pV δη

]
(z) q′j (1− pV (x)) s′j (x)

)
,

which when setting h = 1 simplifies to

δζdj
δx

[1] =
(
1− q′j s

′
j [pV ]

)−2(
q′j pV (x)δη(x)(z) s

′
j (x)

(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV δη

]
(z) q′j (1− pV (x)) s′j (x)

)
. (7.10)

Consequently, after inserting (7.10) into (7.8) the PHD Ddj (x | Z1:k) of the PGFL
Gd[h | Z1:k] becomes

Ddj (x | Z1:k) = Kd
−1

(
ϕ,dj ∗

(
1− q′j s

′
j [pV ]

)−2

(
q′j pV (x) δη(x)(z) s

′
j (x)

(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV δη

]
(z) q′j (1− pV (x)) s′j (x)

)
.

Note that ϕ,dj (z) and δη(x)(z) are the only terms that are dependent on the mea-

surement z and s′j
[
pV δη

]
(z) =

∫
pV (x) δη(z) s′j (x)dx. Hence, with

ϕ,dj (z) ∗ s′j
[
pV δη

]
(z) = ϕ,dj (z) ∗

∫
pV (x) δη(x)(z) s

′
j (x) dx

=
∫
ϕ,dj (τ)

(∫
pV (x) δη(x)(z − τ) s′j (x) dx

)
dτ

=
∫
pV (x)

(∫
ϕ,dj (τ) δη(x)(z − τ)dτ

)
s′j (x) dx

=
∫
pV (x)

(
ϕ,dj (z) ∗ δη(z)

)
s′j (x) dx

= s′j
[
pV (ϕ,dj ∗ δη)

]
(z) ,
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this becomes

Ddj (x | Z1:k) = Kd
−1

(
1− q′j s

′
j [pV ]

)−2(
q′j pV (x) (ϕ,dj ∗ δη)(z) s′j (x)

(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV (ϕ,dj ∗ δη)

]
(z) q′j (1− pV (x)) s′j (x)

)

Finally, with ϕ
,dj
η (z | x) , (ϕ,dj ∗ δη)(z) = ϕ,dj (z − η(x)) this results in

Ddj (x | Z1:k) = Kd
−1

(
1− q′j s

′
j [pV ]

)−2(
q′j pV (x) ϕ

,dj
η (z | x) s′j (x)

(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV ϕ

,dj
η

]
(z) q′j (1− pV (x)) s′j (x)

)
. (7.11)

After deriving the PHD, this information can be used to determine a first order
approximation of the Bernoulli parameters. Recalling the general structure of
the PHD of a multi–Bernoulli RFS with ν′ components being

D(x) =
ν′∑
j=1

qj sj (x)

and comparing it to the previous result, then it follows

Dd(x) =
ν′∑
j=1

Ddj (x | Z1:k)

=
ν′∑
j=1

qdj sdj (x).

Comparing the general structure of the PHD of a multi–Bernoulli RFS to (7.7) and
noticing that both are the sum over the individual v‘ Bernoulli components, it is
chosen to approximate the Bernoulli parameters individually. Thus, it follows

Ddj (x | Z1:k) ≈ qdj (z) sdj (x | z).

Since, sdj (x | z) is a PDF it is known that
∫
sdj (x | z) dx = 1. Thus, it is possible to

derive an approximation for the probability of existence by integrating over the
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PHD, such that ∫
Ddj (x | Z1:k) dx ≈

∫
qdj (z) sdj (x | z) dx

= qdj (z)
∫
sdj (x | z) dx

= qdj (z).

Furthermore, the PDF can also be derived from the PHD by

sdj (x | z) ≈ q
−1
dj
Ddj (x | Z1:k).

Subsequently, the approximate update equation for the probability of existence
are proven. Based on the previous insights the approximate probability of exis-
tence qdj (z) is

qdj (z) ≈
∫
Ddj (x | Z1:k) dx

= Kd
−1

(
1− q′j s

′
j [pV ]

)−2(
q′j s
′
j

[
pV ϕ

,dj
η

]
(z)

(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV (ϕ

,dj
η )

]
(z) q′j s

′
j [1− pV ]

)

= Kd
−1
q′j s
′
j

[
pV ϕ

,dj
η

]
(z)(

1− q′j s
′
j [pV ]

)2

(
1−���

��q′j s
′
j [pV ]− q′j +���

��q′j s
′
j [pV ]

)

= Kd
−1
q′j

(
1− q′j

)
s′j

[
pV ϕ

,dj
η

]
(z)(

1− q′j s
′
j [pV ]

)2 . (7.12)

When Kd is replaced by its definition from (7.5), then qdj becomes

qdj (z) ≈

q′j (1−q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)(

1−q′j s
′
j [pV ]

)2(
ϕ,dj ∗ ζdj [1]

)
(z)

=

q′j (1−q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)(

1−q′j s
′
j [pV ]

)2(
ϕ,dj ∗

(
δ0 +

q′j s
′
j[pV δη]

1−q′j s
′
j [pV ]

))
(z)
.

Since the convolution is distributive the denominator can be simplified. That is
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why, it follows that

qdj (z) =

q′j (1−q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)(

1−q′j s
′
j [pV ]

)2

(
1−q′j s

′
j [pV ]

)
ϕ
,dj (z)+q′j s

′
j

[
pV ϕ

,dj
η

]
(z)

1−q′j s
′
j [pV ]

=
(1− q′j )(

1− q′j s
′
j [pV ]

) q′j s
′
j

[
pV ϕ

,dj
η

]
(z)(

1− q′j s
′
j [pV ]

)
ϕ,dj (z) + q′js

′
j

[
pV ϕ

,dj
η

]
(z)
.

Further, from (7.6) it is known that

ϕ,dj (z) =
ζmj [1]

ν′∏
i=1
ζmi [1]

ϕ,j (z)

and as such the single–component probability of existence qdj becomes as pro-
posed

qdj (z) =
(1− q′j )(

1− q′j s
′
j [pV ]

) q′j s
′
j

[
pV ϕ

,j
η

]
(
1− q′j s

′
j [pV ]

)
ϕ,j (z) + q′js

′
j

[
pV ϕ

,j
η

] .
Conforming to the same principle the approximate PDF can be proven to be as

follows. The approximate PDF sj (x | z) becomes

sdj (x | z) =
Ddj (x | Z1:k)

qdj (z)
.

Hence, after inserting (7.11) this leads to

sdj (x | z) =
K−1
D

qdj (z)

(
1− q′j s

′
j [pV ]

)−2

(
q′j ϕ

,dj (z − η(x)) pV (x) s′j (x)
(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV ϕ

,dj
η

]
(z) q′j s

′
j (x) (1− pV (x))

)
.

Further, realizing from (7.12) that

K−1
d

qdj (z)
=

(
1− q′j s

′
j [pV ]

)2

q′j (1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)
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leads to

sdj (x | z) ≈
��

���
��(

1− q′j s
′
j [pV ]

)2

q′j (1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)
���

���
��(

1− q′j s
′
j [pV ]

)−2

(
q′j ϕ

,dj (z − η(x)) pV (x)s′j (x)
(
1− q′j s

′
j [pV ]

)
− q′j s

′
j

[
pV ϕ

,dj
η

]
(z) q′j (1− pV (x)) s′j (x)

)
=

(1− q′j s[pV ]) q′j pV (x) ϕ,dj (z − η(x)) s′j (x)

q′j (1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)

−
q′j (1− pV (x)) s′j (x)

1− q′j

=


(1− q′j s[pV ]) pV (x) ϕ,dj (z − η(x))

(1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)

−
q′j (1− pV (x))

1− q′j

 s′j (x)

= Ldj (z − η(x)) s′j (x)

where the Pseudo–likelihood Ldj (z − η(x)) is defined as

Ldj (z − η(x)) ,
(1− q′j s[pV ]) pV (x) ϕ,dj (z − η(x))

(1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)

−
q′j (1− pV (x))

1− q′j
.

Nevertheless, the likelihood might become negative for pV (x) < 1 since the term

−
q′j (1−pV (x))

1−q′j
is always negative because q′j > 0 and pV (x) ≥ 0 ∀x ∈ X and therefore

the update would result in an invalid PDF sdj (x).
Note that while the previous result is correct in terms of the math, the resulting

Pseudo–likelihood is only a valid likelihood if pV (x) = 1. Setting pV (x) = 1 results
in

Ldj (z − η(x))
pV (x)=1

=
(1− q′j s[1]) 1 ϕ,dj (z − η(x))

(1− q′j ) s
′
j

[
1 ϕ
,dj
η

]
(z)

−
q′j (1− 1)

1− q′j

=�
��
�(1− q′j ) ϕ

,dj (z − η(x))

�
��
�(1− q′j ) s
′
j

[
ϕ
,dj
η

]
(z)
−
�
�
�
��q′j (1− 1)

1− q′j

=
ϕ,dj (z − η(x))

s′j

[
ϕ
,dj
η

]
(z)

.
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In order to derive a valid PDF sdj (x) it is chosen to drop the term
q′j (1−pV (x))

1−q′j
.

Thus, the Pseudo–likelihood becomes

Ldj (z − η(x)) ≤
(1− q′j s[pV ]) pV (x) ϕ,dj (z − η(x))

(1− q′j ) s
′
j

[
pV ϕ

,dj
η

]
(z)

, L̃dj (z − η(x)) ,

which is an upper bound for all possible x ∈ X . It follows that the integral∫
L̃dj (z − η(x))s′j (x) dx ≥ 1

and as such renormalization is necessary. It follows that after renormalization
the approximate PDF becomes

sdj (x | z) ≈
L̃dj (z − η(x)) s′j (x)∫
L̃dj (z − η(x)) s′j (x) dx

=
pV (x) ϕ,dj (z − η(x)) s′j (x)∫
pV (x) ϕ,dj (z − η(x)) s′j (x) dx

.

Realizing from (7.6) that ϕ,dj (z) =
ζmj [1]

ν′∏
i=1
ζmi [1]

ϕ,j (z), then it follows as claimed

sdj (x | z) ≈
pV (x) ϕ,j (z − η(x)) s′j (x)∫
pV (x) ϕ,j (z − η(x)) s′j (x) dx

,

which finally concludes the proof.

7.2.3. Intensity Σ–MeMBer Filter

Besides generating a valid approximation to the exact SPS–type MeMBer correc-
tor by factorizing out the missed detections and then finding an approximation
of the detected Bernoulli components with the help of its PHD as described in
Section 7.2.2, it is also possible to infer approximate Bernoulli parameters di-
rectly from the exact PGFL provided in Theorem 1. While this approximation is
more crude than the other one, it is not obvious whether it will perform better or
worse.

7.2.3.1. Intensity Σ–MeMBer Corrector

In this section, the principal equations of the intensity SPS–type MeMBer filter
corrector are provided.
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Theorem 4. Given the set
{(
q′i , s

′
i(x)

)ν′
i=1

}
of predicted multi–Bernoulli compo-

nents, q′i and s′i(x) being the single–object probability of existence and probability
density. Then, given the SPS measurement z, noise likelihood fw(z) and probabil-
ity of visibility pV (x) the corrected set of Bernoulli components are{

(qi(z), si(x | z))ν
′

i=1

}
determined by

qi(z) =

(
q′i − q

′
i s
′
i [pV ]

)
ϕ,i(z) + q′i s

′
i

[
pV ϕ

,i
η

]
(z)(

1− q′i s
′
i [pV ]

)
ϕ,i(z) + q′is

′
i

[
pV ϕ

,i
η

]
(z)

si (x | z) =
(1− pV (x)) s′i(x) ϕ,i(z) + pV (x) ϕ,i(z − η(x)) s′i(x)(

1− s′i [pV ]
)
ϕ,i(z) + s′i

[
pV (x) ϕ,iη

]
(z)

with ϕ,iη (z | x) , ϕ,i(z − η(x)) and s′i[h] =
∫
h(x) s′i(x) dx. Here,

ϕ,i(z) , (fw ∗ ζ1[1] ∗ . . . ∗ ζ,i[1] ∗ . . . ∗ ζν′ [1]) (z)

with

ζi[1](z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z)

is the same Pseudo–likelihood as stated in Theorem 3 and therefore the same
problems arise in computing it.

In contrast to the Approximate Σ–MeMBer filter, there is no distinction be-
tween missed and detected components. Thus, the number of components does
not change and consequently is static.

7.2.3.2. Derivation of the Intensity Σ–MeMBer Corrector

In this section, the results presented in Theorem 4 are proven. Therefore, first the
PHD of the SPS–type MeMBer corrector is determined. Based on those results,
approximate parameters for the resulting Bernoulli components will be derived.

Proof of Theorem 4. Recall the PGFL variant G [h | Z1:k] of the Σ–MeMBer filter
corrector as stated in Theorem 1

G [h | Z1:k] =
(fw ∗ ζ1 [h] ∗ . . . ∗ ζν′ [h]) (z)
(fw ∗ ζ1 [1] ∗ . . . ∗ ζν′ [1]) (z)

with

ζi [h] (z) ,
(
1− q′i + q′i s

′
i [h (1− pV )]

)
δ0(z) + q′is

′
i

[
h pV δη

]
(z)
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and

ζi [1] (z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z) .

Applying the methodologies of finite set statistics (FISST), the corresponding
PHD becomes

D(x | Z1:k) =
δG
δx

[1 | Z1:k]

= K−1
ν′∑
j=1

(
fw ∗ ζ1[1] ∗ . . . ∗

δζj
δx

[1] ∗ . . . ∗ ζν′ [1]
)

(z)

=
ν′∑
j=1

K−1
(
ϕ,j ∗

δζj
δx

[1]
)

(z)

=
ν′∑
j=1

Dj (x | Z1:k),

where

Dj (x | Z1:k) = K−1
(
ϕ,j ∗

δζj
δx

[1]
)

(z)

with

K , (fw ∗ ζ1[1] ∗ . . . ∗ ζν′ [1]) (z)

=
(
ϕ,j ∗ ζj [1]

)
(z)

being the Bayes normalization constant and

ϕ,j (z) ,
(
fw ∗ ζ1[1] ∗ . . . ∗ ζj−1[1] ∗ ζj+1[1] ∗ . . . ∗ ζν′ [1]

)
(z)

being the convolution of all ζi[1](z) but not the j–th. After inserting the func-
tional derivative back into Dj (x | Z1:k) it follows that

Dj (x | Z1:k) =

(
ϕ,j ∗

(
q′j (1− pV (x)) s′j (x) δ0 + q′j pV (x) δη(x) s

′
j (x)

))
(z)(

ϕ,j ∗
((

1− q′j s
′
j [pV ]

)
δ0 + q′js

′
j

[
pV δη

]))
(z)

=
q′j (1− pV (x)) s′j (x) ϕ,j (z) + q′j pV (x) ϕ,j (z − η(x)) s′j (x)(

1− q′j s
′
j [pV ]

)
ϕ,j (z) + q′js

′
j

[
pV ϕ

,j
η

]
(z)

where ϕ,jη (z | x) , ϕ,j (z − η(x)).
Given the single–component PHD Dj (x | Z1:k), then the approximate Bernoulli

parameters qj and sj (x) can easily be derived. From sections 3.3 and sections 3.4
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7.2. MeMBer Filters for Superposition–Type Sensors

it is known that the PHD of a single Bernoulli component isDj (x) = qj sj (x). Thus,
it is possible to derive approximate Bernoulli parameters from the PHD and as
such it follows that

qj (z) ≈
∫
Dj (x | Z1:k) dx

and

sj (x | z) ≈
Dj (x | Z1:k)∫
Dj (x | Z1:k) dx

=
Dj (x | Z1:k)

qj (z)
.

Based on these insights it is now possible to derive the intensity approximation
of the Bernoulli parameters. The expected number of objects, which is in this case
the probability of existence qj , can be deduced by integrating over the PHD and
as such becomes

qj (z) =
∫
Dj (x | Z1:k) dx

=

(
q′j − q

′
j s
′
j [pV ]

)
ϕ,j (z) + q′j s

′
j

[
pV ϕ

,j
η

]
(z)(

1− q′j s
′
j [pV ]

)
ϕ,j (z) + q′js

′
j

[
pV ϕ

,j
η

]
(z)

.

Similarly to the proof of the probability of existence in the previous paragraph,
the intensity approximation of the components PDFs follows directly from the
resulting PHD.

The PDF is approximately

sj (x) ≈ q−1
j (z)Dj (x | Z1:k)

=

q′j (1−pV (x)) s′j (x) ϕ,j (z)+q′j pV (x) ϕ,j (z−η(x)) s′j (x)

(((
((((

(((
((((

1−q′j s
′
j [pV ]

)
ϕ,j (z)+q′j s

′
j

[
pV ϕ

,j
η

]
(z)(

q′j −q
′
j s
′
j [pV ]

)
ϕ,j (z)+q′j s

′
j

[
pV ϕ

,j
η

]
(z)

(((
((((

(((
((((

1−q′j s
′
j [pV ]

)
ϕ,j (z)+q′j s

′
j

[
pV ϕ

,j
η

]
(z)

=
q′j (1− pV (x)) s′j (x) ϕ,j (z) + q′j pV (x) ϕ,j (z − η(x)) s′j (x)(

q′j − q
′
j s
′
j [pV ]

)
ϕ,j (z) + q′j s

′
j

[
pV (x) ϕ,jη

]
(z)

=
(1− pV (x)) s′j (x) ϕ,j (z) + pV (x) ϕ,j (z − η(x)) s′j (x)

s′j [1− pV ] ϕ,j (z) + s′j

[
pV (x) ϕ,jη

]
(z)

=
Lj (z − η(x)) s′j (x)∫
Lj (z − η(x)) s′j (x) dx
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7. Multi–Bernoulli Realizations

with

Lj (z − η(x)) , (1− pV (x)) ϕ,j (z) + pV (x) ϕ,j (z − η(x)).

Note that Lj (z − η(x)) is a valid likelihood and as such this concludes the proof.
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Pseudo–Likelihoods
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In Section 7.2, the principal equations for the superpositional multi–object
multi–Bernoulli (Σ–MeMBer) filters have been presented. However, due to the
computational complexity which originates from the convolutions necessary to
compute the Pseudo–likelihood ϕ,i(z), those equations are still computationally
intractable.

In this chapter, three computationally tractable approximations for the Σ–
MeMBer filter equations are provided. In order to derive these approximations,
it is made use of the fact that the main computational complexity originates from
the determination of the Pseudo–likelihood ϕ,i(z) as seen in Theorems 3 and 4.

8.1. Exact Pseudo–Likelihood

Recalling from Theorems 3 and 4, that the Pseudo–likelihood is

ϕ,i(z) , (fw ∗ ζ1[1] ∗ . . . ∗ ζi−1[1] ∗ ζi+1[1] ∗ . . . ∗ ζν′ [1]) (z)

with

ζi[1](z) ,
(
1− q′i s

′
i [pV ]

)
δ0(z) + q′is

′
i

[
pV δη

]
(z),

then it can be noted that its complexity is hidden behind the convolution. Fur-
thermore, by noticing that the Pseudo–likelihood is basically the convolution of
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8. Multi–Bernoulli Pseudo–Likelihoods

all ζi[1](z) but not the j–th element, where each ζi[1](z) depends solely on the
i–th Bernoulli component

(
q′i , s

′
i(x)

)
, it is possible to define the Pseudo–likelihood

on a modified set of Bernoulli parameters{
(qi , si(x))νi=1

}
=

{(
q′i , s

′
i(x)

)ν′
i=1

}
\
{(
q′j , s

′
j (x)

)}
.

Then, the problem of finding an appropriate approximation for ϕ,j (z) can be
simplified to finding an appropriate approximation for

ϕ(z) = (fw ∗ ζ1[1] ∗ . . . ∗ ζν[1]) (z) (8.1)

with

ζi[1](z) , (1− qi si [pV ])δ0(z) + qi si
[
pV δη

]
(z)

and

v = v′ − 1

where ϕ(z) is the Pseudo–likelihood considering the components
{
(qi , si(x))νi=1

}
.

Furthermore, the Pseudo–likelihood can be reformulated to

ζi[1](z) = (1− qi si [pV ])δ0(z) + qi si
[
pV δη

]
(z)

= (1− qi si [pV ])δ0(z) + qi

∫
pV (x) δη(x)(z) si(x) dx

= (1− qi si [pV ])δ0(z) + qi si [pV ]
∫
pV (x) δη(x)(z) si(x)

si [pV ]
dx.

Which, when substituting

q̂i = qi si [pV ] (8.2)

and

ŝi(x) =
pV (x) si(x)
si [pV ]

(8.3)

finally simplifies to

ζi[1](z) = (1− q̂i)δ0(z) + q̂i

∫
δη(x)(z) ŝi(x) dx

= (1− q̂i)δ0(z) + q̂i ŝi
[
δη

]
(z).

Having a closer look at those equations, then it is recognizable that

ŝi
[
δη

]
(z) =

∫
δη(x)(z) ŝi(x) dx
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8.2. Quasi–Gaussian Pseudo–Likelihood

is the transformation of the random variable x with probability density func-
tion (PDF) ŝi(x) from the single–object state space X to the single–measurement
space Z. Consequently, it is evident that

ζi[1](z) = (1− q̂i)δ0(z) + q̂i ŝi
[
δη

]
(z) (8.4)

is essentially the PDF of a distribution in measurement space. More specifically,
it is a mixture of a Dirac delta density δ0(z) concentrated at z = 0 and the density
ŝi
[
δη

]
(z) with mixture weights 1− q̂i and q̂i .

8.2. Quasi–Gaussian Pseudo–Likelihood

Since all ζi[1](z) are valid PDFs the objective is to find a replacement PDF that
resembles ζi[1](z) as closely as possible but leads to a more computationally effi-
cient Pseudo–likelihood. It is a common approach to approximate a distribution
by matching the moments of ζi[1](z) as close as possible. Here, a Gaussian ap-
proximation is presented. Thus, ζi[1](z) is chosen to be approximated by its first
and second central moments.

8.2.1. Main Results of the QG Pseudo–Likelihood

In the following the main results will be provided. It can be shown that the mean
and the variance of ζi[1](z) are as follows.

Proposition 19. Given the transformed PDF ζi[1](z) with Bernoulli parameters
(qi , si(x)), the measurement function η(x) and probability of visibility pV (x), then
its mean mζi and variance Pζi are

mζi = qi si[η pV ]

and

Pζi = qi si[ηη
ᵀ pV ]−mζim

ᵀ
ζi

with

si[h] ,
∫
h si(x) dx.

Proof. See Section 8.2.2.

Given the results from Proposition 19, it is possible to approximate ζi(z) as a
Normal distributionNmζi ,Pζi (z).

Definition 2. Letmζi and Pζi be the mean and variance of the distribution ζi[1](z),
then the Gaussian approximation becomes

ζi[1](z) ≈Nmζi ,Pζi (z)
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8. Multi–Bernoulli Pseudo–Likelihoods

where

Nm,P (z) , (2 π)−
k
2 |P |−

1
2 e−

1
2 (z−m)ᵀ P −1 (z−m)

denotes the PDF of a multivariate normal or Gaussian distribution with location
parameter m and scale parameter P with |P | abbr= detP being the matrix determi-
nant and P −1 being the inverse of matrix P .

Definition 3. Given Definition 2, then the Gaussian approximation of the Pseudo–
likelihood, further denoted the Quasi–Gaussian Pseudo–likelihood, becomes

ϕ(z) ≈
(
fw ∗Nmζ1 ,Pζ1

∗ . . . ∗Nmζν̂ ,Pζν̂
)
(z),

which can be greatly simplified since the convolution of two Normal PDFs is
again a Normal PDF with(

Nm1,P1
∗Nm2,P2

)
(z) =Nm1+m2,P1+P2

(z) (8.5)

and therefore the Quasi–Gaussian Pseudo–likelihood simplifies as stated in The-
orem 5.

Theorem 5. Given the Gaussian approximation of ζi[1](z) from Definition 2 which
is specified by its meansmζj and covariances Pζj as determined by Proposition 19
and Definition 3, then the Quasi–Gaussian Pseudo–likelihood becomes

ϕ(z) =
(
fw ∗Nmζ ,Pζ

)
(z)

with

mζ ,
ν∑
j=1

mζj

and

Pζ ,
ν∑
j=1

Pζj .

Proof. The proof follows directly from Proposition 19 and Definitions 2 and 3.

Remark 2. Considering that the noise PDF is Gaussian distributed with fw(z) =
N (z;mw, Pw), then Quasi–Gaussian Pseudo–likelihood becomes

ϕ(z) =Nmζ+mw ,Pζ+Pw (z) .

Summing it up, Theorem 5 provides a Gaussian approximation to the full
Pseudo–likelihood with much lower computational complexity. However, the ap-
proximation is rather crude and much information is lost. The question remains,
if there is a trade–off between the full Pseudo–likelihood and the Quasi–Gaussian
Pseudo–likelihood.
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8.2. Quasi–Gaussian Pseudo–Likelihood

8.2.2. Derivation of the QG Pseudo–Likelihood

In this section, the results from Section 8.2 are proven. Therefore, the first two
central moments of the PDF ζi[1](z) are derived.

Proof of Proposition 19. Given the PDF ζi[1](z), then the first moment, the mean,
becomes

mζi , Eζi [z]

=
∫
z ζi[1](z) dz

=
∫
z
(
(1− q̂i)δ0(z) + q̂i ŝi

[
δη

]
(z)

)
dz

=
∫
z (1− q̂i)δ0(z) dz︸                   ︷︷                   ︸

=0

+
∫
z q̂i ŝi

[
δη

]
(z) dz

=
∫
z q̂i ŝi

[
δη

]
(z) dz.

Further, since ŝi[δη](z) =
∫
δη(x)(z) ŝi(x) dx this becomes

mζi = q̂i

∫
z

∫
δη(x)(z) ŝi(x) dx dz.

Changing the order of integration finally results in

mζi = q̂i

∫ ∫
z δη(x)(z) dz ŝi(x) dx

= q̂i

∫
η(x) ŝi(x) dx.

Replacing q̂i and ŝi(x) by its definitions from (8.2) and (8.3) gives the proposed
result

mζi = qi���si[pV ]
∫
η(x)

pV (x) si(x)
���si[pV ]

dx

= qi

∫
η(x) pV (x) si(x) dx

= qi si [η pV ] .

Similarly, the second central moment, the variance, becomes

Pζi = Eζi [zzᵀ]−Eζi [z]Eζi [z]ᵀ

=Mζi −mζim
ᵀ
ζi
.
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Here, Mζi is the second raw moment defined as

Mζi = Eζi [zzᵀ]

= qi

∫
zzᵀ ζi[1](z) dz

=
∫
zzᵀ

(
(1− q̂i)δ0(z) + q̂i ŝi

[
δη

]
(z)

)
dz

=
∫
zzᵀ (1− q̂i)δ0(z) dz︸                      ︷︷                      ︸

=0

+
∫
zzᵀ q̂i ŝi

[
δη

]
(z) dz

=
∫
zzᵀ q̂i ŝi

[
δη

]
(z) dz.

After expanding ŝi
[
δη

]
(z) =

∫
δη(x)(z) ŝi(x) dx, it follows that

Mζi = q̂i

∫
zzᵀ

∫
δη(x)(z) ŝi(x) dx dz

= q̂i

∫
zzᵀ δη(x)(z) dz

∫
ŝi(x) dx

= q̂i

∫
η(x)η(x)ᵀ ŝi(x) dx.

Replacing q̂i and ŝi(x) by its definitions from (8.2) and (8.3) yields

Mζi = qi

∫
η(x)η(x)ᵀ pV (x) si(x) dx

= qi si [ηη
ᵀ pV ] dx.

As proposed, the variance finally becomes

Pζi =Mζi −mζim
ᵀ
ζi

= qi si [ηη
ᵀpV ]− q2

i si [ηpV ]si [ηpV ]ᵀ.

8.3. Quasi–Gaussian Mixture Pseudo–Likelihood

In Section 8.2 a computationally tractable alternative to the full superpositional
(SPS)–type multi–object multi–Bernoulli (MeMBer) filter has been proposed. While
the applied approximation allows an efficient computation, the approximation is
rather crude and much information is lost.
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8.3.1. Main Results of the QGM Pseudo–Likelihood

In Chapter 8 it was pointed out that the Pseudo–likelihood ϕ(z) is comprised out
of the convolution of individual distributions with PDFs ζi[1](z) = (1− q̂i)δ0(z) +
q̂i ŝi

[
δη

]
(z) (see (8.4)). It was chosen to approximate ζi[1](z) ≈ Nm,P (z) which

consequently lead to the Quasi–Gaussian approximation stated in Theorem 5.
Here, another idea is pursued. Considering, that the Pseudo–likelihood

ϕ(z) = (fw ∗ ζ1[1] ∗ . . . ∗ ζν[1]) (z)

with

ζi[1](z) = (1− q̂i)δ0(z) + q̂i ŝi
[
δη

]
(z)

= (1− q̂i)

δ0(z) +
q̂i ŝi

[
δη

]
(z)

(1− q̂i)


can be rewritten to

ϕ(z) =
ν∏
i=1

(1− q̂i) fw(z) ∗

δ0 +
q̂1 ŝ1

[
δη

]
(1− q̂1)

 ∗ · · · ∗
δ0 +

q̂ν ŝν
[
δη

]
(1− q̂ν)

 (z)

Then, after applying the identity of the convoluted elementary symmetric func-
tion (CESF) from (4.15) this expands to the following combinatorial sum

ϕ(z) =
ν∏
i=1

(1− q̂i)

fw ∗ ν∑
n=0

∑
1≤i1<...<in≤ν

q̂i1 ŝi1
[
δη

]
1− q̂i1

∗ . . . ∗
q̂in ŝin

[
δη

]
1− q̂in

 (z). (8.6)

Hence, a Gaussian mixture (GM) approximation as stated in Theorem 6 can eas-
ily be established when assuming that the PDF is approximately Gaussian with
ŝi
[
δη

]
(z) ≈Nmŝi ,Pŝi (z). The parameters of the Normal distribution are then deter-

mined as described subsequently.

Proposition 20. Given the measurement function z = η(x), probability of visi-
bility pV (x) and Bernoulli parameters (qi , si(x)), then the mean and variance of
ŝi
[
δη

]
(z) become

mŝi =
si [ηpV ]
si [pV ]

and

Pŝi =
si [ηηᵀpV ]
si [pV ]

−mŝim
ᵀ
ŝi

where si[h] ,
∫
h(x) si(x) dx.
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8. Multi–Bernoulli Pseudo–Likelihoods

Proof. See Section 8.3.2.

Replacing ŝi
[
δη

]
(z) by its Gaussian approximation in (8.6) leads to the follow-

ing approximation to the exact Pseudo–likelihood which is a direct result of the
Gaussian convolution identity from (8.5).

Theorem 6. Let the PDF ŝi
[
δη

]
(z) be approximately Gaussian Nmŝi ,Pŝi (z) with

mean mŝi and covariance Pŝi , then the Pseudo–likelihood becomes

ϕ(z) ≈
ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n

(
fw ∗Nmŝi1:n

,Pŝi1:n

)
(z)

where

wŝi1:n
=

ν∏
i=1

(1− qi si [pV ])

 n∏
j=1

qij sij [pV ]

1− qij sij [pV ]


mŝi1:n

=
n∑
j=1

mŝij

Pŝi1:n
=

n∑
j=1

Pŝij
.

Proof. See Section 8.3.2.

Under the premise that the noise PDF fw(z) is also a Gaussian, then the approx-
imate Pseudo–likelihood is a mixture of Gaussians (MoG) due to the convolution
identity of Gaussians as described in (8.5).

Remark 3. Considering that the noise PDF is Gaussian distributed fw(z) =Nmw ,Pw (z),
then the approximate Pseudo–likelihood is a GM with PDF

ϕ(z) ≈
ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n
Nmŝi1:n

+mw ,Pŝi1:n
+Pw (z)

with

ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n
= 1.

Having a closer look at Theorem 6 reveals that still all 2ν combinations have
to be generated. However, the convolution is replaced by simply summing the
means and variances. Therefore, if si(x) is a complex PDF, such as a mixture of
Dirac delta densities as employed in Sequential Monte Carlo (SMC) methods or
Particle filters (PFs), then it will reduce the computational demand.
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8.3.2. Derivation of the QGM Pseudo–Likelihood

Since Theorem 6 is a direct result of Proposition 20, it will be proven next that
the mean and variance as presented in the proposition are as stated.

Proof of the Proposition 20. By definition the mean mŝi of ŝi
[
δη

]
(z) is

mŝi = Eŝi [z]

=
∫
z ŝi

[
δη

]
(z)dz.

Thus, with ŝi
[
δη

]
(z) =

∫
δη(x)(z) ŝi(x) dx it becomes

mŝi =
∫
z

∫
δη(x)(z) ŝi(x) dx dz

=
∫ ∫

z δη(x)(z) dz ŝi(x) dx

=
∫
η(x) ŝi(x) dx.

After substituting ŝi(x) = pV (x) si (x)
si [pV ] (see. (8.3)) and si[h] ,

∫
h(x) si(x) dx the mean

becomes as claimed

mŝi =

∫
η(x) pV (x) si(x) dx

si[pV ]

=
si[η pV ]
si[pV ]

.

Similarly, the second raw moment of ŝi
[
δη

]
(z) is

Mŝi = Eŝi [zz
ᵀ]

=
∫ ∫

zzᵀ ŝi
[
δη

]
(z) dz

=
∫ ∫

zzᵀ δη(x)(z) dz ŝi(x) dx

=
∫
η(x)η(x)ᵀ ŝi(x) dx.

Thus, after substituting q̂i and ŝi(x) by its definitions from (8.2) and (8.3), the
variance becomes as claimed

Pŝi =Mŝi −mŝim
ᵀ
ŝi

=

∫
η(x)η(x)ᵀ pV (x) si(x) dx

si[pV ]
−mŝim

ᵀ
ŝi

=
si[ηηᵀ pV ]
si[pV ]

−
si[η pV ]si[η pV ]ᵀ

si[pV ]2
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After establishing the mean and the variance, it is now possible to proof Theo-
rem 6.

Proof of Theorem 6. Under the assumption that all ŝi
[
δη

]
(z) are approximately

Gaussian with PDFs ŝi(z) ≈ Nmŝi ,Pŝi (z) where the corresponding means and vari-
ances are as described in Proposition 20, then the Pseudo–likelihood becomes

ϕ(z) =
ν∏
i=1

(1− q̂i)

fw ∗ ν∑
n=0

∑
1≤i1<...<in≤ν

q̂i1 ŝi1
[
δη

]
1− q̂i1

∗ . . . ∗
q̂in ŝin

[
δη

]
1− q̂in

 (z)

=

fw ∗ ν∑
n=0

∑
1≤i1<...<in≤ν

wi1:n

(
ŝi1

[
δη

]
∗ . . . ∗ ŝin

[
δη

]) (z)

≈

fw ∗ ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n

(
Nmŝi1 ,Pŝi1

∗ . . . ∗Nmŝin ,Pŝin

) (z)

with

wŝi1:n
,

ν∏
i=1

(1− q̂i)
n∏
j=1

q̂ij
1− q̂ij

.

After applying the Gaussian convolution identity(
Nm1,P1

∗Nm2,P2

)
(z) =Nm1+m2,P1+P2

(z),

it follows as claimed that

ϕ(z) =
ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n

(
fw ∗ Nmŝi1:n

,Pŝi1:n

)
(z)

with

mŝi1:n
,

n∑
j=1

mŝij

and

Pŝi1:n
,

n∑
j=1

Pŝij
.

This concludes the proof.
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8.4. Quasi–Poisson Binomial Pseudo–Likelihood

With the Quasi–Gaussian and the Gaussian Mixture Pseudo–likelihood presented
in sections 8.2 and 8.3 two possible approximations to the full Pseudo–likelihood
have been introduced. However, what is missing seems to be an intermediate step
between those.

8.4.1. Main Results of the QPB Pseudo–Likelihood

Before presenting the main results, first consider the following reformulation of
the Pseudo–likelihood.

Proposition 21. Given the Pseudo–likelihood ϕ(z) as defined in (8.1), then an-
other way of writing it is

ϕ(z) = (fw ∗ ζ1:ν) (z)

with

ζ1:ν(z) =
ν∑
n=0

p̂(n) ζn,1:ν(z)

where

ζn,1:ν(z) ,
1
p̂(n)

∫
δη(X)(z) δn(|X |) f̂ (X)δX

and

f̂ (X) =
ν∏
i=1

(1− q̂i)
∑

1≤i1,...,in≤ν

n∏
j=1

q̂ij ŝij (xj )

1− q̂ij

p̂(n) =
ν∏
i=1

(1− q̂i)
∑

1≤i1<...<in≤ν

n∏
j=1

q̂ij
1− q̂ij

is the PDF with corresponding probability mass function (PMF) for a multi–
Bernoulli distribution with parameters

{
(q̂i , ŝi)

ν
i=1

}
. Also, remember that ŝi(x) =

pV (x) si (x)
si [pV ] and q̂i = qi si[pV ] with si[pV ] =

∫
pV (x) si(x) dx.

Proof. See Section 8.4.2.

Considering this, it should be possible to replace the multi–Bernoulli PDF with
another multi–object PDF that allows a more efficient computation by finding an
appropriate approximation of ζn,1:ν(z). As before, it is chosen to approximate
ζn,1:ν(z) with a GaussianNmζn ,Pζn (z).
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Theorem 7. Let fw(z) be the PDF of the additive noise and ϕ(z) be formulated
as described in Proposition 21, then the Poisson–Binomial approximation of the
Pseudo–likelihood becomes

ϕ(z) ≈
ν∑
n=0

p(n)
(
fw ∗Nmζn,1:ν ,Pζn,1:ν

)
(z)

with

mζn,1:ν
=

n
ν∑
j=1
p,j (n− 1) qj sj [η pV ]

ν∑
j=1
p,j (n− 1) qj sj [pV ]

Pζn,1:ν
=

n
ν∑
j=1
p,j (n− 1) qj sj [ηηᵀ pV ]

ν∑
j=1
p,j (n− 1) qj sj [pV ]

+

n (n− 1)
ν∑

j1=1

ν∑
j2=1
j2,j1

p,j1,j2(n− 2) qj1 qj2 sj1 [η pV ] sj2 [η pV ]ᵀ

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(n− 2) qj1 qj2 sj1 [pV ] sj2 [pV ]

−mζn,1:ν
mᵀ
ζn,1:ν

where p,j (n) and p,j1,j2(n) are the PMF of a Poisson Binomial distribution

p(n) =
ν∏
i=1

(1− qi si[pV ])
∑

1≤i1<...<in≤ν

n∏
j=1

qij si[pV ]

1− qij si[pV ]

which is the cardinality distribution of the multi–Bernoulli distribution as de-
scribed in Section 3.4 with parameters B , {q1, . . . , qν} but not the j–th or j1–th
and j2–th Bernoulli component. Consequently, if p(n) abbr= p(n;B), then it follows
that p,j (n) abbr= p(n;B \ {qj }) and p,j1,j2(n) abbr= p(n;B \ {qj1 ,qj2 }).

Proof. See Section 8.4.2.

Having a closer look at Theorem 7 reveals that the mean is basically the weighted
sum of the expected mean of the individual component means scaled by proba-
bility p,j (n−1). The probability p,j (n) represents the probability that there are n
other objects present other then the j–th object. Unfortunately, the computation
of p,j (n) is still computationally demanding as it is the PMF of a Poisson Bino-
mial distribution with probabilities q̂i = qi si[pV ] as described in [Wan93]. This
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publication also provides some useful identities and approximations to compute
such PMFs recursively, which are also stated in Section 8.4.2. Also, recently Hong
has shown in [Hon13] how to compute the PMF p(n) of a Poisson Binomial distri-
bution efficiently using the Discrete Fourier Transform (DFT) [Hon13, Alg. A].

Remark 4. Note that when the noise is Normal distributed with PDF fw(z) =
Nmw ,Pw (z) where mw and Pw are the mean and covariance of the Normal distribu-
tion, then the result from Theorem 7 simplifies to

ϕ(z) ≈
ν∑
n=0

p(n)Nmζn,1:ν+mw ,Pζn,1:ν+Pw (z)

Proof. The result follows directly from the Gaussian convolution identity as stated
in (8.5).

8.4.2. Derivation of the QPB Pseudo–Likelihood

In this section, the results from the previous Section 8.4.1 are derived. At first,
it is necessary to establish some identities for the multi–Bernoulli PDF and its
underlying cardinality distribution. Using these identities, the principal equa-
tions for calculating the mean and the variance for the Quasi–Poisson Binomial
approximation of the Pseudo–likelihood are derived.

First recall that the multi–Bernoulli cardinality distribution of Section 3.4 is

p(n) =
ν∏
i=1

(1− qi)
∑

1≤i1<...<in≤ν

n∏
j=1

qij
1− qij

=
ν∏
i=1

(1− qi) σν,n
(
q1

1− q1
, . . . ,

qν
1− qν

)

and as such it is essentially the PMF p(n) abbr= p(n;B) of a Poisson Binomial distri-
bution with set of parameters B , {q1, . . . , qν}. Therefore, regarding to [Wan93,
Lemma 1] it satisfies the following identity.

Proposition 22 (Poisson–Binomial Recursion). Let 1 ≤ k ≤ n ≤ ν, then the PMF of
a multi–Bernoulli random finite set (RFS) with ν Bernoulli components satisfies
the recursion

p (n) =
(n− k)!
n!

ν∑
i1=1

qi1


ν∑

i2=1
i2,i1

qi2 . . .


ν∑

ik=1
ik,i1,...,ik−1

qik p
,i1:k (n− k)


 (8.7)

and p,i1:k (n) abbr= p
(
n;B \

{
qi1 , . . . , qik

})
being the PMF of a Poisson Binomial distri-

bution with parameters B \
{
qi1 , . . . , qik

}
.
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Proof. See [Wan93, Lemma 1].

Remark 5 (Poisson–Binomial Recursion for k = 1 and k = 2). Let k = 1 and k = 2,
then (8.7) can be simplified to

p (n) =
1
n

ν∑
j=1

qj p
,j (n− 1)

and

p (n) =
1

n (n− 1)

ν∑
j1=1

qj1


ν∑

j2=1
j2,j1

qj2 p
,j1,j2 (k − 2)

 .

While this is a common result in ordinary probability theory, as far as known
to the author, there is no such result for the multi–object multi–Bernoulli PDFs
in finite set statistics (FISST) or in Point Process Theory (PPT). However, it is
possible to establish such.

Proposition 23 (Multi–Object Multi–Bernoulli Recursion). Let f (X) abbr= f (X;MB)
be the PDF of a multi–Bernoulli RFS with set of parametersMB ,

{
(qi , si(x))νi=1

}
and finite set X = {x1, . . . ,xn}, then the PDF satisfies

f (X) =
ν∑

i1=1

qi1 si1(x1)
ν∑

i2=1
i2,i1

qi2 si2(x2)

. . .
ν∑

ik=1
ik,i1,...,ik−1

qik sik (xk) f
,i1:k (X \ {x1, . . . ,xk})

=
∑

1≤i1,...,ik≤ν

k∏
j=1

qij sij (xj ) f
,i1:k (X \ {x1, . . . ,xk})

where f ,i1:k (X) is the PDF of a multi–Bernoulli RFS with set ofMB\
{(
qij , sij (x)

)k
j=1

}
.

Proof. Considering αi(x) , qi si (x)
1−qi , 0 ≤ k ≤ n ≤ ν and X={x1, . . . ,xn} , then it follows
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that

f (X) =
ν∏
i=1

(1− qi)
∑

1≤i1,...,in≤ν

n∏
j=1

αij (xj )

=
ν∏
i=1

(1− qi)
ν∑

i1=1

αi1(x1)
ν∑

i2=1
i2,i1

αi2(x2)

· · ·
ν∑

ik=1
ik,i1,...,ik

αik (xk)
∑

1≤ik+1,...,in≤ν
il,im
l=1,...,k

m=k+1,...,n

n∏
j=k+1

αij (xj ).

In turn, replacing α1(x), . . . ,αν(x) by its definition leads to

f (X) =
ν∑

i1=1

qi1 si1(x1)
ν∑

i2=1
i2,i1

qi2 si2(x2)

· · ·
ν∑

ik=1
ik,i1,...,ik−1

qik sik (xk)

ν∏
i=1

(1− qi)

k∏
i=1

(1− qik )

∑
1≤ik+1,...,in≤ν

il,im
l=1,...,k

m=k+1,...,n

n∏
j=k+1

qij sij (xj )

1− qij

︸                                             ︷︷                                             ︸
A

.

Finally, realizing that termA is in fact a multi–Bernoulli PDF f ,i1:k (X) abbr= f (X;MB\{(
qij , sij (x)

)k
j=1

}
) with parametersMB\

{(
qij , sij (x)

)k
j=1

}
, then the equation simpli-

fies to

f (X) =
ν∑

i1=1

qi1 si1(x1)
ν∑

i2=1
i2,i1

qi2 si2(x2)

· · ·
ν∑

ik=1
ik,i1,...,ik−1

qik sik (xk) f
,i1:k (X \ {x1, . . . ,xk})

=
∑

1≤i1,...,ik≤ν

k∏
j=1

qij sij (xj ) f
,i1:k (X \ {x1, . . . ,xk}) . (8.8)
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Remark 6 (Multi–Object Multi–Bernoulli Recursion for k = 1 and k = 2). Let k = 1
and k = 2 then (8.8) reduces to

f (X) =
ν∑
j=1

qj sj (x) f ,j (X \ {x})

and

f (X) =
ν∑

j1=1

ν∑
j2=1
j1,j2

qj1 sj1(x1) qj2 sj2(x2) f ,j1,j2 (X \ {x1,x2})

where x,x1,x2 ∈ X.

Based on the aforementioned propositions and remarks it is now possible to
proof Proposition 21.

Proof of Proposition 21. First recall (8.1)

ϕ(z) = (fw ∗ ζ1:ν) (z)

with

ζ1:ν(z) , (ζ1[1] ∗ . . . ∗ ζν[1]) (z)

=
ν∏
i=1

(1− q̂i)
ν∑
n=0

∑
1≤i1<...<in≤ν

 q̂i1 ŝi1
[
δη

]
1− q̂i1

∗ . . . ∗
q̂in ŝin

[
δη

]
1− q̂in

 (z).

Since ζi(z) is the PDF of a random variable (RV) in the measurement space,
the convolution of multiple ζ1:ν(z) = (ζ1[1] ∗ . . . ∗ ζν[1]) (z) is also a valid PDF in
measurement space. In essence, ζ1:n(z) is the relative probability of the sum of
independent RVs z1:ν =

∑ν
i=1 zi where each zi ∼ πζi . Here, πζi is the distribution

having PDF ζi(z).
The question arises if there is a reasonable approximation to the PDF ζ1:ν(z)

that allows a finer control over the information loss. Reformulating the PDF
reveals that

ζ1:ν(z) =
ν∑
n=0

ν∏
i=1

(1− q̂i)
∑

1≤i1<...<in≤ν

 q̂i1 ŝi1
[
δη

]
1− q̂i1

∗ . . . ∗
q̂in ŝin

[
δη

]
1− q̂in

 (z).

Further, expanding ŝi
[
δη

]
(z) =

∫
δη(x) ŝi(x) dx shows that

ζ1:ν(z) =
ν∑
n=0

1
n!

(
δ

z −∑
x∈X

η(x)


ν∏
i=1

(1− q̂i)
∑

1≤i1,...,in≤ν

n∏
j=1

q̂ij ŝij (xj )

1− q̂ij
dx1 · · ·dxn
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which, by the definition of the set–integral, follows to be

ζ1:ν(z) =
∫
δ(z −

∑
x∈X

η(x)) f̂ (X) δX

where

f̂ (X) =
ν∏
i=1

(1− q̂i)
∑

1≤i1,...,in≤ν

n∏
j=1

q̂ij ŝij (xj )

1− q̂ij

is the PDF of a multi–object multi–Bernoulli distribution as defined in Section 3.4.

Consider the multi–Bernoulli PDF f̂ (X) and δη(X)(z)
abbr= δ (z −

∑
x∈X η(X)), the

PDF can be reformulated as

ζ1:ν(z) =
∫
δη(X)(z) f̂ (X) δX

=
∑
n≥0

∫
|X |=n

δη(X)(z) f̂ (X) δX

=
ν∑
n=0

∫
δη(X)(z) δn(|X |) f̂ (X) δX. (8.9)

In order to simplify (8.9), let

f̂n(X) ,
δn(|X |) f̂ (X)∫
δn(|X |) f̂ (X) δX

be the PDF that exactly n objects are present. Additionally, realizing that the
cardinality distribution p̂(n) of the multi–object distribution f̂ (X) is

p̂(n) =
∫
|X |=n

f̂ (X) δX

=
∫
δn(|X |) f̂ (X) δX,

then it follows that

f̂n(X) =
1
p̂(n)

δn(|X |) f̂ (X)

or equivalently

p̂(n) f̂n(X) = δn(|X |) f̂ (X).
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Hence, (8.9) reduces to

ζ1:ν(z) =
ν∑
n=0

∫
δη(X)(z) p̂(n) f̂n(X)δX

=
ν∑
n=0

p̂(n)
∫
δη(X)(z) f̂n(X)δX.

Finally, this results in

ζ1:ν(z) =
ν∑
n=0

p̂(n) ζn,1:ν(z)

with

ζn,1:ν(z) ,
∫
δη(X)(z) f̂n(X)δX

=
∫
δη(X)(z)

1
p̂(n)

δn(|X |) f̂ (X)δX

=
1
p̂(n)

∫
δη(X)(z) δn(|X |) f̂ (X)δX.

Given the alternative formulation of the Pseudo–likelihood, it is now possible
to prove Theorem 7.

Proof of Theorem 7. After determining the PDF ζk,1:ν(z), it is possible to derive its
mean

mζk,1:ν
= Eζk,1:ν

[z]

=
∫
z ζk,1:ν(z) dz

=
1
p̂(k)

∫
z

∫
δη(X)(z) δk(|X |) f̂ (X) δX dz

=
1
p̂(k)

∫ (∫
z δη(X)(z) dz

)
δk(|X |) f̂ (X) δX

=
1
p̂(k)

∫ ∑
x∈X

η(x)

 δk(|X |) f̂ (X) δX

=
1
p̂(k)

1
k!

(  k∑
i=1

η(xi)

 f̂ ({x1, . . . ,xk}) dx1 · · ·dxk

=
1
p̂(k)

1
k!

( k∑
i=1

(
η(xi) f̂ ({x1, . . . ,xk})

)
dx1 · · ·dxk . (8.10)
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Furthermore, it is known from Proposition 23 that the multi–Bernoulli PDF f̂ (X)
can be expressed recursively. More specifically, Remark 6 provides the recursion
formula for some special cases like k = 1. Therefore, f̂ (X) can be expressed as

f̂ (X) =
ν∑
j=1

q̂j ŝj (x) f̂ ,j (X \ {x}) .

In turn, applying those results to (8.10) leads to

mζk,1:ν
=

1
p̂(k)

1
k!

( k∑
i=1

η(xi)
ν∑
j=1

q̂j ŝj (xi) f̂
,j ({x1, . . . ,xk} \ {xi}) dx1 · · ·dxk

=
1
p̂(k)

1
k!

k∑
i=1

ν∑
j=1

(
η(xi) q̂j ŝj (xi) f̂

,j ({x1, . . . ,xk} \ {xi}) dx1 · · ·dxk .(8.11)

Furthermore, with the definition of the set–integral from (2.2) the multivariate
integral can be simplified to(

f̂ ,j ({x1, . . . ,xk} \ {xi}) dx1 · · ·dxk =
∫

(k − 1)!
∫

|W,i |=k−1

f̂ ,j (W,i) δW,i dxi

where W,i = X \ {xi}. Hence, (8.11) becomes

mζk,1:ν
=

1
p̂(k)

1
k!

k∑
i=1

ν∑
j=1

∫
η(xi) q̂j ŝj (xi) (k − 1)!

∫
|W,i |=k−1

f̂ ,j (W,i) δW,i dxi

=
1
p̂(k)

(k − 1)!
k!

k∑
i=1

ν∑
j=1

∫
η(xi) q̂j ŝj (xi)

∫
|W,i |=k−1

f̂ ,j (W,i) δW,i dxi .

Realizing that

p̂,j (k − 1) =
∫

|W,i |=k−1

f̂ ,j (W,i) δW,i

is the PMF of the multi–object PDF f̂ ,j (W,i), the expression simplifies to

mζk,1:ν
=

1
p̂(k)

(k − 1)!
k!

k∑
i=1

ν∑
j=1

∫
η(xi) q̂j ŝj (xi) p̂

,j (k − 1) dxi .

Noticing that the result of the inner sum does not depend on a specific xi and
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reordering the terms simplifies to

mζk,1:ν
=

1
p̂(k)

(k − 1)!
k!

k∑
i=1

ν∑
j=1

∫
η(x) q̂j ŝj (x) p̂,j (k − 1) dx

=
1
p̂(k)

(k − 1)!
k!

k
ν∑
j=1

p,j (k − 1) q̂j

∫
η(x) ŝj (x) dx

=
1
p̂(k)��

��
�(k − 1)!

k!
k

ν∑
j=1

p,j (k − 1) q̂j ŝj [η]

=
1
p̂(k)

ν∑
j=1

p̂,j (k − 1) q̂j ŝj [η].

Finally applying Remark 5 results in

mζk,1:ν
=

k
ν∑
j=1
p̂,j (k − 1) q̂j ŝj [η]

ν∑
j=1
p̂,j (k − 1) q̂j

and replacing q̂j = qj sj [pV ] and ŝj (x) =
pV (x) sj (x)
sj [pV ] gives the proposed result

mζk,1:ν
=

k
ν∑
j=1
p,j (k − 1) qj sj [η pV ]

ν∑
j=1
p,j (k − 1) qj sj [pV ]

.
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Similarly to the previous proof the second raw moment of ζk,1:ν(z) becomes

Eζk,1:ν
[zzᵀ] =

∫
zzᵀ ζk,1:ν(z) dz

=
1
p̂(k)

∫ ∑
x∈X

η(x)


∑
x∈X

η(x)

ᵀ δk(|X |) f̂ (X) δX

=
1
p̂(k)

1
k!

(  k∑
i=1

η(xi)


 k∑
i=j

η(xj )


ᵀ

f̂ ({x1, . . . ,xk}) dx1 · · ·dxk

=
1
p̂(k)

1
k!

(  k∑
i=1

η(xi)η(xi)
ᵀ

 f̂ ({x1, . . . ,xk}) dx1 · · ·dxk︸                                                           ︷︷                                                           ︸
A

+
1
p̂(k)

1
k!

( 
k∑

i1=1

k∑
i2=1
i1,i2

η(xi1 )η(xi2 )ᵀ

 f̂ ({x1, . . . ,xk}) dx1 · · ·dxk

︸                                                                    ︷︷                                                                    ︸
B

.

Similar to determining the mean, term A becomes

A ≡
ν∑
k=1

p̂,j q̂j ŝk[ηη
ᵀ].

Equivalently, applying Remark 6 with k = 2 and W,i1,i2 = X \ {xi1 ,xi2 }, term B
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follows to be

B ≡ 1
k!

" k∑
i1=1

k∑
i2=1
i1,i2

η(xi1 )η(xi2 )ᵀ

ν∑
j1=1

ν∑
j2=1
j2,j1

q̂j1 ŝj1(xi1 ) q̂j2 ŝj2(xi2 )
(
|W |=k−2

f̂ ,j1,j2
(
W,i1,i2

)
δW,i1,i2 dxi1dxi2

=
1
k!

k∑
i1=1

k∑
i2=1
i1,i2

ν∑
j1=1

ν∑
j2=1
j2,j1"

η(xi1 )η(xi2 )ᵀ q̂j1 q̂j2 ŝj1(xi1 ) ŝj2(xi2 ) (k − 2)! p̂,i1,i2(k − 2) dxi1dxi2

=
(k − 2)!
k!

ν∑
j1=1

ν∑
j2=1
j2,j1

p̂,j1,j2(k − 2)

k∑
i1=1

k∑
i2=1
i1,i2

q̂j1 q̂j2

∫
η(xi1 )ŝj1(xi1 ) dxi1

∫
η(xi2 )ᵀŝj2(xi2 ) dxi2

=
(k − 2)!
k!

ν∑
j1=1

ν∑
j2=1
j2,j1

p̂,j1,j2(k − 2)
k∑

i1=1

k∑
i2=1
i1,i2

q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]

=
���

���
��k (k − 1) (k − 2)!

k!

ν∑
j1=1

ν∑
j2=1
j2,j1

p̂,j1,j2(k − 2) q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]ᵀ

=
ν∑

j1=1

ν∑
j2=1
j2,j1

p̂,j1,j2(k − 2) q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]ᵀ.

Consequently, the second raw moment becomes

Eζk,1:ν
[zzᵀ] =

1
p̂(k)

ν∑
k=1

p̂,j (k − 1) q̂j ŝj [ηη
ᵀ]

+
1
p̂(k)

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]ᵀ
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and thus the covariance Pζk,1:ν
becomes

Pζk,1:ν
= E

[
(z −mζk,1:ν

)(z −mζk,1:ν
)ᵀ

]
= E[zzᵀ]−mζk,1:ν

mᵀ
ζk,1:ν

=
1
p̂(k)

ν∑
k=1

p̂,j (k − 1) q̂j ŝj [ηη
ᵀ]

+
1
p̂(k)

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]ᵀ −mζk,1:ν
mᵀ
ζk,1:ν

.

Finally, applying Remark 5 with k = 1 and k = 2, it follows as proposed

Pζk,1:ν
=
k

ν∑
k=1

p̂,j (k − 1) q̂j ŝj [ηηᵀ]

ν∑
k=1

p̂,j (k − 1) q̂j

+

k (k − 1)
ν∑

j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) q̂j1 q̂j2 ŝj1 [η] ŝj2 [η]ᵀ

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) q̂j1 q̂j2

−mζk,1:ν
mᵀ
ζk,1:ν

.

Replacing q̂j = qj sj [pV ] and ŝj (x) =
pV sj (x)
sj [pV

gives the proposed result

Pζn,1:ν
=

k
ν∑
j=1
p,j (k − 1) qj sj [ηηᵀ pV ]

ν∑
j=1
p,j (k − 1) qj sj [pV ]

+

k (k − 1)
ν∑

j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) qj1 qj2 sj1 [η pV ] sj2 [η pV ]ᵀ

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) qj1 qj2 sj1 [pV ] sj2 [pV ]

−mζk,1:ν
mᵀ
ζk,1:ν

.
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8. Multi–Bernoulli Pseudo–Likelihoods

8.5. Exemplary comparison of the

Pseudo–likelihoods

In the previous sections different approaches to approximate the Pseudo–likelihood
ϕ(z) were proposed. In the following, the different approaches are summarized
and compared exemplarily to each other, in turn trying to emphasize the dif-
ference between them. In this example, a particular set of Bernoulli components{
(qi , si(x))4

i=1

}
where the single–object distributions si(x) are one–dimensional Gaus-

sians withNmi ,Pi (x) are chosen. The component parameters are
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Figure 8.1.: PDFs of the multi–object multi–Bernoulli distribution used for the
study. The 4 single–object PDF are plotted separately. The PDFs cor-
respond to the i–th Bernoulli component where the left–most corre-
sponds to first component and the right–most to the last component.
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Figure 8.2.: PMF of the multi–object multi–Bernoulli distribution used for the
study.

q1:4 = (0.50,0.45,0.70,0.15) ,

m1:4 = (−2.3,0.20,0.60,1.70)

and

P1:4 = (0.50,0.10,0.20,0.05) .
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Figure 8.3.: Probability hypothesis density (PHD) of the multi–object multi–
Bernoulli distribution used for the study. The single–Bernoulli PHDs
(dotted) and the resulting multi–Bernoulli PHD (solid) are shown.

The measurement function in use is linear with η(x) = x. Using these parameters
the PDFs, PMF and PHD are depicted in Figures 8.1, 8.2 and 8.3. Furthermore,
given the aforementioned multi–Bernoulli parameters, the resulting approximate
Pseudo–likelihoods for the Quasi–Gaussian–Mixture, Quasi–Poisson–Binomial
and Quasi–Gaussian as presented in Figure 8.4. It can be recognized that the

−6 −4 −2 0 2 4 6

x

0.0
0.1
0.2
0.3
0.4
0.5

ϕ
(x
)

Figure 8.4.: Comparison of the Quasi–Gaussian–Mixture (solid), Quasi–Poisson–
Binomial (dashed) and Quasi–Gaussian (dotted) approximations of
the Pseudo–likelihood for the multi–Bernoulli distribution used in
this study.

different approximations yield different results. Note that the Gaussian–Mixture
approximation is equal to the true Pseudo–likelihood in case of this linear Gaus-
sian example. It can be seen that the Gaussian–Mixture approximation has two
modes at x ≈ −2.0 and x ≈ 0.1, whereas the Poisson–Binomial and the Gaussian
approximation have only one mode at x ≈ 0.2 and x ≈ 0 respectively. However,
there is also a difference between the Poisson–Binomial and the Gaussian recog-
nizable.
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Introduction

In the previous chapters, several variants of superpositional multi–object multi–
Bernoulli (Σ–MeMBer) filters together with computationally tractable approxi-
mations were introduced. While those approximations reduce the computational
complexity in general, it is still not possible to implement those filters. This is
due to the fact that the single–object spatial probability density functions (PDFs)
si(x) are still arbitrary. In order to make those filters implementable further as-
sumptions and approximations are necessary.

In this section, Sequential Monte Carlo (SMC) implementations of the previ-
ously proposed Σ–MeMBer filter variants are presented. In general, the SMC im-
plementations of the multi–object multi–Bernoulli (MeMBer) filters are a straight-
forward extension of the well studied Particle filter (PF) used in the single–object
Bayes filter case. Thus, given the MeMBer parameter set

{
(qi , si(x))νi=1

}
, then

the single–object PDFs si(x) will be approximated by a set of weighted samples.
Therefore, let each single–object PDF si(x) be approximated by Ji samples at the
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9. Sequential Monte Carlo Implementations

supports x(i,j) having weights w(i,j), then it follows that

si(x) ≈
Ji∑
j=1

w(i,j) δx(i,j)
(x).

At first, the SMC implementation of the cardinality balanced multi–object multi–
Bernoulli (CB-MeMBer) filter predictor and corrector according to [VVC09] are
presented as reference. Then, the SMC implementations of the approximate and
intensity corrector variant of the Σ–MeMBer filter are introduced.

9.1. SMC CB–MeMBer Filter

In this section, the predictor and corrector of the SMC CB-MeMBer filter are
presented.

9.1.1. MeMBer Predictor SMC Implementation

Recalling the predictor equations of the MeMBer filter from Proposition 17, then
according to [Vo08, Sec. 6.4] the SMC predictor equations are as follows.

Given the single–object Markov transition density fT (x | x′) Markov transition,
its proposal distribution with PDF fp (x | x′), the single–object birth PDF sBi (x)
and its proposal distribution having PDF fBi (x), then the transitioned Bernoulli
components become

qTi = qi

Ji∑
j=1

pS (x(i,j)) w(i,j)

and

sTi (x) =
Ji∑
j=1

wT(i,j)
δxT(i,j)

(x)

with elements

xT(i,j)
∼ fp

(
· | x(i,j)

)
,

wT(i,j)
=
w(i,j) pS

(
x(i,j)

)
fT

(
xT(i,j)

| x(i,j)

)
fp

(
xT(i,j)

| x(i,j)

)
and

wT(i,j)
=

wT(i,j)

Ji∑
j=1
wT(i,j)

.

128



9.1. SMC CB–MeMBer Filter

Additionally, the new born Bernoulli components are

qBi ∈ [0..1]

and

sBi (x) =
Ji∑
j=1

wB(i,j) δxBi (i,j)
(x)

with elements

xB(i,j)
∼ fBi (·) ,

wB(i,j)
=
sBi

(
xB(i,j)

)
fBi

(
xB(i,j)

)
and

wB(i,j)
=

wB(i,j)

Ji∑
j=1
wB(i,j)

.

9.1.2. CB–MeMBer Corrector SMC Implementation

Similar results can easily be established for the CB-MeMBer corrector equations.
Recalling the corrector equations of the CB-MeMBer filter from Proposition 18,
then according to [Vo08, Sec. 6.4] the SMC predictor equations are as follows.

Assuming that
{(
q′i , s

′
i(x)

)ν′
i=1

}
is the set of predicted Bernoulli parameters with

s′i(x) =
∑Ji
j=1w

′
(i,j) δx′(i,j)(x), pD (x) the probability of detection and fz(x) abbr= f (z | x) is

the single–object single–measurement likelihood, then the SMC approximation
of the missed Bernoulli components are

qmi =
1− %mi

1− q′i %mi
q′i

and

smi (x) =
Ji∑
j=1

wm(i,j)
δx′(i,j)(x)

with

%mi =
Ji∑
j=1

w′(i,j) pD (x′(i,j)),

wm(i,j)
=

(
1− pD (x′(i,j))

)
w′(i,j)
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and

wm(i,j)
=

wm(i,j)

Ji∑
j=1
wm(i,j)

.

Furthermore, the detected Bernoulli components are

qd(z) ≈

ν′∑
j=1

(1′−qj )(
1−q′j%mj

) q′j%dj (z)(
1−q′j%mj

)
λCfC(z) +

ν′∑
j=1

q′j%dj (z)

1−q′j%mj

and

sd(x | z) =
ν′∑
i=1

Ji∑
j=1

wd(i,j)
(z) δx′(i,j)(x)

with

%di (z) =
Ji∑
j=1

pD
(
x′(i,j)

)
w′(i,j) fz

(
x′(i,j)

)
,

wd(i,j)
(z) =

ν′∑
j=1

q′j
1− q′j

w′(i,j) fz
(
x′(i,j)

)
and

wd(i,j)
(z) =

wd(i,j)
(z)

ν′∑
i=1

Ji∑
j=1
wd(i,j)

(z)

.

9.2. SMC Σ–MeMBer Filters

In this section, the SMC implementation of the Σ–MeMBer filter variants from
Section 7.2 are presented. The approximation principle is the same as used for
the SMC MeMBer filter and as such its derivation is straightforward. Therefore,
only the main results are presented. As before, the focus is on the corrector
equations only. Since all variants share the same Pseudo–likelihood, the SMC
implementations of the Pseudo–likelihoods variants as stated in Chapter 8 are
presented in its own paragraph.
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9.2. SMC Σ–MeMBer Filters

9.2.1. Approximate Σ–MeMBer Corrector SMC Implementation

Considering the Approximate Σ–MeMBer corrector equations as presented in
Theorem 3, then its SMC implementations becomes as stated next.

Given a set of predicted Bernoulli components
(
{
(
q′i , s

′
i(x)

)
}
)
, the Pseudo–likelihood

ϕ,i(z) as stated in Section 9.3, then the missed Bernoulli components are

qmi =
1− %mi

1− q′i %mi
q′i

and

smi (x) =
Ji∑
j=1

wm(i,j)
δx′(i,j)(x)

with

%mi =
Ji∑
j=1

w′(i,j) pV (x′(i,j)),

wm(i,j)
=

(
1− pV (x′(i,j))

)
w′(i,j)

and

wm(i,j)
=

wm(i,j)

Ji∑
j=1
wm(i,j)

Moreover, the detected Bernoulli components are

qd(z) =

(1′−qi )
(1−q′i%mi )

q′i%i (zk )

(1−q′i%mi )

ϕ,i(zk) +
q′i%i (zk )
1−q′i%mi

and

sdi (x | z) =
Ji∑
j=1

wd(i,j)
(z) δx′(i,j)(x)

where

%di (z) =
Ji∑
j=1

pV
(
x′(i,j)

)
w′(i,j) ϕ

,i
(
z − η(x′(i,j))

)
,

wd(i,j)
(z) = pV

(
x′(i,j)

)
w′(i,j) ϕ

,i
(
z − η(x′(i,j))

)
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and

wd(i,j)
(z) =

wd(i,j)
(z)

Ji∑
j=1
wd(i,j)

(z)

.

9.2.2. Intensity Σ–MeMBer Corrector SMC Implementation

Recalling the Intensity Σ–MeMBer corrector equations as presented in Theo-
rem 4, then the SMC implementation of the Intensity Σ–MeMBer corrector equa-
tions can be established as stated subsequently.

Note that in contrast to the approximate Σ–MeMBer corrector, the intensity
variant does not make a distinction between missed and detected objects.

Given a set of predicted Bernoulli components
(
{
(
q′i , s

′
i(x)

)
}
)
, the Pseudo–likelihood

ϕ,i(z) as stated in Section 9.3, then the corrected Bernoulli components are

qi(zk) =

(
q′i − q

′
i %mi

)
ϕ,j (zk) + q′i %di (zk)(

1− q′i %mi
)
ϕ,j (zk) + q′i %di (zk)

and

sdi (x | zk) =
Ji∑
j=1

wd(i,j)
(z) δx′(i,j)(x)

where

%mi =
Ji∑
j=1

w′(i,j) pV (x′(i,j)),

%di (z) =
Ji∑
j=1

pV
(
x′(i,j)

)
w′(i,j) ϕ

,i
(
z − η(x′(i,j))

)
,

wd(i,j)
(z) =

(
1− pV

(
x′(i,j)

))
w′(i,j) ϕ

,i (z) + pV
(
x′(i,j)

)
w′(i,j) ϕ

,i
(
z − η(x′(i,j))

)
and

wd(i,j)
(z) =

wd(i,j)
(z)

Ji∑
j=1
wd(i,j)

(z)

.

9.3. Pseudo–likelihoods SMC Implementations

As mentioned previously, the approximate and intensity variants of theΣ–MeMBer
filter share the same Pseudo–likelihood. As described in Chapter 8, there exists
different choices for approximating the pseudo–likelihood:
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1. A Quasi–Gaussian variant as described in Section .8.2.

2. A Quasi–Gaussian Mixture variant as described in Section 8.3.

3. A Quasi–Poisson–Binomial variant as described in Section 8.4.

In the following a SMC approximation for each of those will be presented. De-
riving SMC implementations of the Pseudo–likelihood variants turns out to be
simple. In general, the computation of the means and variances of the Gaus-
sians changes by strictly replacing each single–object PDF s′i(x) with its particle

approximation si(x) =
∑Ji
j=1w(i,j) δx(i,j)

(x).

9.3.1. Quasi–Gaussian SMC Implementation

Given the Pseudo–likelihood approximation as presented in Theorem 5, then its
SMC implementation becomes as follows.

Let fw(z) be the PDF of the additive noise, η(x) be the single–object measure-
ment function and

{
(qi , si(x))νi=1

}
be the set of Bernoulli parameters, then the SMC

implementation of the Quasi–Gaussian Pseudo–likelihood becomes

ϕ(z) =
(
fw ∗Nmζ ,Pζ

)
(z)

with

mζ ,
ν∑
j=1

mζj ,

Pζ ,
ν∑
j=1

Pζj ,

mζi = qi

Ji∑
j=1

pV
(
x(i,j)

)
w(i,j) η

(
x(i,j)

)
and

Pζi = qi

Ji∑
j=1

pV
(
x(i,j)

)
w(i,j) η

(
x(i,j)

)
ηᵀ

(
x(i,j)

)
−mζim

ᵀ
ζi
.

9.3.2. Quasi–Gaussian Mixture SMC Implementation

Given the Pseudo–likelihood approximation as presented in Theorem 6, then the
SMC implementation of the Quasi–Gaussian Mixture Σ–MeMBer corrector equa-
tions can easily be established.
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Let fw(z) be the PDF of the additive noise, η(x) be the single–object measure-
ment function and

{
(qi , si(x))νi=1

}
be the set of Bernoulli parameters, then the SMC

implementation of the Quasi–Gaussian–Mixture Pseudo–likelihood becomes

ϕ(z) =
ν∑
n=0

∑
1≤i1<...<in≤ν

wŝi1:n

(
fw ∗Nmŝi1:n

, Pŝi1:n

)
(z)

with

wŝi1:n
=

ν∏
i=1

(1− qi %i)

 n∏
j=1

qij %i

1− qij %i

 ,
mŝi1:n

=
n∑
j=1

mŝij

and

Pŝi1:n
=

n∑
j=1

Pŝij

where

%i =
Ji∑
j=1

pV (x(i,j)) w(i,j),

mŝi =

Ji∑
j=1
pV (x(i,j)) w(i,j) η(x(i,j))

%i

and

Pŝi =

Ji∑
j=1
pV (x(i,j)) w(i,j) η(x(i,j))ηᵀ(x(i,j))

%i
−mŝim

ᵀ
ŝi
.

9.3.3. Quasi–Poisson Binomial SMC Implementation

Given the Pseudo–likelihood approximation as presented in Theorem 7, then the
SMC implementation of the Quasi–Poisson Binomial Σ–MeMBer corrector equa-
tions can easily be established.

Let fw(z) be the PDF of the additive noise, η(x) be the single–object measure-
ment function and

{
(qi , si(x))νi=1

}
be the set of Bernoulli parameters, then the SMC

implementation of the Quasi–Poisson Pseudo–likelihood becomes

134



9.4. Resampling

ϕ(z) =
ν∑
k=0

p(k)
(
fw ∗Nmζk ,Pζk

)
(z)

with

p(k) =
ν∏
i=1

(1− qi %i)
∑

1≤i1<...<ik≤ν

n∏
j=1

qij %i

1− qij %i
,

mζk,1:ν
= k

ν∑
j=1
p,j (k − 1) qj mj

ν∑
j=1
p,j (k − 1) qj %j

and

Pζk,1:ν
=

k
ν∑
j=1
p,j (k − 1) qj Mj

ν∑
j=1
p,j (k − 1) qj %j

+

k (k − 1)
ν∑

j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) qj1 qj2 mj1 m
ᵀ
j2

ν∑
j1=1

ν∑
j2=1
j2,j1

p,j1,j2(k − 2) qj1 qj2 %j1 %j2

−mζk,1:ν
mᵀ
ζk,1:ν

where

%i =
Ji∑
j=1

pV (x(i,j)) w(i,j),

mi =
Ji∑
j=1

pV (x(i,j)) w(i,j) η(x(i,j))

and

Mi =
Ji∑
j=1

pV (x(i,j)) w(i,j) η(x(i,j))η
ᵀ(x(i,j)).

9.4. Resampling

Similar to the single–object particle filter the degeneration of the samples is in-
evitable. In order to to circumvent this particular problem, it is necessary to per-
form resampling. Resampling basically means that a new set of equally weighted
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particles is generated from the current set of not equally weighted particles. In
general each sample is duplicated several times proportional to its initial weight.
Thus basically removing particles with low weight and and multiplying samples
with high weight.

In general, different approaches to resampling have been proposed in litera-
ture. The most prominent ones are

• multinomial resampling,

• residual resampling,

• stratified resampling

• and systematic resampling.

While the basic idea is always similar, all have their advantages and disadvan-
tages ([DC05]). In the multi–object case, resampling is applied to each Bernoulli
component individually. In general, the number of samples per component could
be different and depending on different parameters like the probability of exis-
tence qi or any other parameter. However, since resampling is not the topic of
this study, the number of drawn samples is chosen to be a fixed number Ji for
each Bernoulli component. Also, if not stated differently, systematic resampling
will be used throughout the numerical studies.

9.5. State Estimation and Extraction

The proposed CB-MeMBer and Σ–MeMBer filters provide us with a certain set of
multi–Bernoulli parameters

{
(qi , si(x))νi=1

}
after each timestep. Most of the time,

the number of components ν will not reflect the number of objects N in the mon-
itored area. However, in order to estimate the expected number of objects N ,
several ideas are possible.

1. The number of objects can be determined by choosing all Bernoulli compo-
nents over a certain threshold t, such that

N = |{qi : qi > t}| .

2. Also, the number of objects can be determined directly from the mean car-
dinality of a multi–Bernoulli

N =
ν∑
i=1

qi

as described in Section 3.4.
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3. However, it is also possible to determine the Maximum A Posteriori (MAP)
estimate from the probability mass function (PMF)

N = argmax
n

p(n),

whereas the PMF p(n) can be directly determined from the probabilities of
existence as described in Section 3.4.

In general, all three choices are possible. Nevertheless, in the remainder of
the thesis the number of objects is determined by the third variant as the MAP
estimate is in most cases the preferable one.

After determining the number of objects it is still necessary to extract the esti-
mated state from the individual components. In the MeMBer case this turns out
to be rather easy, as simply the mean or the mode of the N components with the
largest weights can be used. Consequently no clustering or any other computa-
tionally demanding calculation is required. Comparing this for example to an
independent and identically distributed cluster (IIDC) realization as used in the
cardinalized probability hypothesis density (CPHD), this is a huge advantage.
As in the IIDC realization, by definition all objects share one distribution and
as such the individual states have to be extracted by clustering or other similar
methods, which is on the one hand not only computational expensive but also
has the potential to introduce errors.

Summing it up, the state extraction process for the MeMBer filter variants is
computational efficient and the estimated states of the objects X̂ are determined
by

X̂ = {m1, . . . ,mN }

where

mi =
J∑
j=1

w(i,j) x(i,j)

and

N = argmax
n

p(n).
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Introduction

In this chapter, the performances of the previously proposed Sequential Monte
Carlo (SMC) implementations of the superpositional multi–object multi–Bernoulli
(Σ–MeMBer) filters are demonstrated and verified. More specifically, the follow-
ing filters are compared to each other:

• The cardinality balanced multi–object multi–Bernoulli (CB-MeMBer) filter,

• the Thouin–Nannuru–Coates (TNC) multi–object multi–Bernoulli (MeM-
Ber) filter,

• the Intensity Quasi Gaussian (IQG) Σ–MeMBer filter,

• the Approximate Quasi Gaussian (AQG) Σ–MeMBer filter,

• the Intensity Quasi Poisson Binomial (IQPB) Σ–MeMBer filter,

• the Approximate Quasi Poisson Binomial (AQPB) Σ–MeMBer filter,

• the Intensity Quasi Gaussian Mixture (IQGM) Σ–MeMBer filter and

• the Approximate Quasi Gaussian Mixture (AQGM) Σ–MeMBer filter.

The general goal is to show that the Σ–MeMBer filters are applicable and pro-
vide the promised advantages when tracking multiple objects with superposi-
tional (SPS) sensors. As an example, multiple thermopile arrays are used to
track multiple objects in a monitored area using the raw sensor measurements
provided by the thermopiles. In the upcoming sections, the setup of the envi-
ronment, the used motion model, and the thermopile measurement model are
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described. Subsequently, the performance of the proposed filters is studied un-
der various circumstances. The evaluations described in the following sections
are statistical evaluations. For examples of real tracking results one is referred to
B.

10.1. State and Motion Model

In order to study the performance of the various proposed Σ–MeMBer filters
the following setup is used. The monitored area is a square two dimensional
area of 4m2. Different amounts of objects are present in the monitored area at
the same time and objects are created at the boundaries of the region but object
death can appear at any time and any location. The different tracks traveled
by the objects are depicted in Figure 10.1. Each object’s state is described by
x = (px,py ,vx,vy , r,a)ᵀ, where px,py is the object position in the two dimensional
Cartesian plane, vx,vy are the respective velocities, r is the object radius and a is
the signal strength/amplitude emitted by the object. Note that the formulation of
the state includes a radius which defines the physical extend of an object which
in turn violates one of the major assumptions made during the derivation of the
MeMBer filters. Consequently, the MeMBer filters are not build to handle things
like shadowing explicitly. However, it will be shown that these effects can be
handled by the fact that objects may be not visible or detectable for a certain
amount of time.

The transition of each object is linear but subject to random perturbations.
Here, the object state after transition x′ = (p′x,p

′
y ,v
′
x,v
′
y , r
′ , a′)ᵀ is

p′x = px + T vx + T 2/2 ux
p′y = py + T vy + T 2/2 uy

v′x = vx + T ux
v′y = vy + T uy
r ′ = r +ur
a′ = a+ua,

where the input vector u = (ux,uy ,ur ,ua)ᵀ is sampled from a Gaussian random
vector with zero mean and covariance P = diag(σ2

x ,σ
2
y ,σ

2
r ,σ

2
y ). Furthermore, the

probability of survival ps is assumed to be constant.
The object birth is modeled by a single Bernoulli component with probability

of existence qB = 0.03, and all objects are assumed to be born at the perimeter of
the monitored area. Note that the upcoming parameters are chosen to resemble
the motion of human like objects in the monitored area. Therefore, the initial
velocities vx and vy are sampled from a uniform distribution U (0,0.5), thus re-
sembling slow human walking speed. Additionally, the amplitude a is sampled
from a uniform distribution U (0.5,0.6), which roughly corresponds to ±10% of
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Figure 10.1.: The setup used in the studies. The monitored area is 4 m2 and all
objects are born on the perimeter. The squares denote the positions
of the object birth and the triangles mark the location of the object
death.

141



10. Numerical Studies

Table 10.1.: Parameters used for the transition model.

T σx σy σr σa ps qb

0.04 0.8 0.8 0.001 0.002 0.99 0.03

Table 10.2.: Lifetime of the individual objects.

Object 1 2 3 4 5 6 7 8 9

Tbirth 0 13 39 52 65 143 156 169 247
Tdeath 130 163 249 145 249 249 240 249 249

the irradiance emitted by an object with temperature Tobj = 32◦C, a sensor tem-
perature of TSensor = 23◦C and object emissivity factor 0.98. Here, the sensor tem-
perature is equal to the average room temperature and the emissivity as well as
the object temperature is equal to the average emissivity and temperature. Also,
the object radius r is sampled from U (0.1,0.25) and as such corresponds to the
torso size of a human. An overview of the used parameters is shown in table 10.1.
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Figure 10.2.: The evolution of the state parameters px and py . Altogether there
are 9 different objects entering the monitored area, whereby 6 of
them are alive at the same time at most.

The lifetime of the individual objects, including their timestep of birth and
death are stated in table 10.2. Furthermore, the resulting tracks and the evolution
of the state parameters are shown in Figures 10.2, 10.3 and 10.4.
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Figure 10.3.: The evolution of the state parameters vx and vy . Altogether there
are 9 different objects entering the monitored area, whereby 6 of
them are alive at the same time at most.
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Figure 10.4.: The evolution of the state parameters r and a. Altogether there are
9 different objects entering the monitored area, whereby 6 of them
are alive at the same time at most.
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10.2. Measurement Model

In this study, thermopile arrays as described in Section 1.1.1 are used as an ex-
ample for a SPS–type sensor. For this study, eight thermopile arrays with each
eight pixels are placed in pairs in the corners of the monitored area. Each pair
of sensors forms a virtual sensor with a nominal field of view (FOV) of approxi-
mately ±45◦ and thus covers the whole monitored area. The measurements of all
sensors are collected and treated as single SPS–type measurement with 64 pixels
in total.

The non–linear single–pixel measurement function for n objects having state
X = {x1, . . . ,xn} can be described as

ηj (X) =
n∑
i=1

+∆i∫
−∆i

dj ai cos
b(α +φi +θj ) dα + wj

where w is the additive noise, which is distributed according to a Gaussian dis-
tribution with zero mean and variance σ2

w. Note that the measurement function
uses polar coordinates instead of Cartesian coordinates as employed in the state
model. However, the parameters φi and ∆i can be deduced from the object Carte-
sian position px,py and radius ri by using simple geometric calculation. For eval-
uation purposes each single–object probability density function (PDF) is approx-
imated by Ji = 1000 particles. Furthermore, the number of kept Bernoulli compo-
nents is chosen to be twice as much as the maximum number of objects Nmax = 6.
Thus, the maximum number of Bernoulli components is ν = 2 Nmax = 12. The
values of all the parameters are listed in table 10.3.

Table 10.3.: Parameters used for the measurement model.

b dj σw pd/v Ji Nmax ν

280 0.006 0.10 0.95 1000 6 12
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10.3. Performance Metric and Miss Distance

In single–object filtering scenarios, the concept of a miss–distance is taken for
granted. However, in multi–object filtering there was for a long time no conven-
tion which metric to use. However, in 2010 the Optimal Subpattern Assignment
(OSPA) metric was introduced by Ristic, Vo, and Clark. Without going into much
detail, the formal definition of the OSPA is as follows. Given two finite sets (FSs)
X = {x1, . . . ,xn} and Y = {y1, . . . , yn}, cutoff parameters c > 0 and order p > 1, then
the OSPA metric is defined as

d(X,Y ) ,


0 if n =m = 0
d(Y ,X) if m > n(

1
n

(
min
π∈Πn

m∑
i=1
dc(xi , yπ(i))p + cp (n−m)

)) 1
p

else

and

dc(x,y) , min(c,d(x,y))

where d(x,y) is an arbitrary vector–valued metric and Πn are all possible Permu-
tations of the natural numbers {1, . . . ,n}. In this study the vector norm d(x,y) =
‖x − y‖ is used and the parameters are chosen to be c = 16 and p = 1.

10.4. Monte Carlo Verification

The performance of the Σ–MeMBer filters is evaluated using 100 Monte Carlo
(MC) trials. The tracks are always the same but in each trial the measurements
are generated randomly. Meaning that the number of generated measurements
depends on the probability of detection and the measurements are subject to the
random additive noise.

The results for the cardinality estimates are depicted in Figures 10.5, 10.6 and
10.7. Here, the number of objects is estimated using the Maximum A Posteriori
(MAP) estimate as described Section 9.5.

For comparison reasons, the results for the SMC CB-MeMBer filter and the
TNC–MeMBer filter are also shown. The TNC–MeMBer filter as proposed by
Nannuru and Coates in [NC13] can be regarded as specialization of theΣ–MeMBer
filter when the Pseudo–likelihood is chosen to be Quasi–Gaussian and the proba-
bility of visibility pv(x) = 1, such that it basically does not account for any missed
detections. The CB-MeMBer filter is known to be based on the detection–type
model and thus cannot operate on the raw SPS measurement directly. There-
fore, separated detection–type measurements with no false measurements are
provided to the filter.

Taking a closer look at figure 10.5, it is recognizable that the cardinality esti-
mates of the TNC–MeMBer filter almost always have a large negative bias, which
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Figure 10.5.: Cardinality estimates over all MC trials of the CB-MeMBer and
TNC–MeMBer filters. The graphs show the true cardinality (dot-
ted), the mean cardinality (solid) and standard deviation over all
trials (grey area).
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Figure 10.6.: Cardinality estimates over all MC trials of the Approximate Σ–
MeMBer filters. The graphs show the true cardinality (dotted), the
mean cardinality (solid) and standard deviation over all trials (grey
area).
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Figure 10.7.: Cardinality estimates over all MC trials of the Intensity Σ–MeMBer
filters. The graphs show the true cardinality (dotted), the mean car-
dinality (solid) and standard deviation over all trials (grey area).
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is more or less what was expected as the TNC filter does not account for missed
objects/detections.

In contrast, the results for the Σ–MeMBer filters can be divided into two camps
depending on the type of realization of the filter. One the one side, there are the
Approximate Σ–MeMBer filter variants (see fig. 10.6). While they provide a
slightly better cardinality estimate than the TNC–MeMBer filters, they still suf-
fer from huge variants in the cardinality estimates over the various runs. Also,
the number of objects is underestimated when the number of objects in the mon-
itored area increases. On the other side, there are the Intensity Σ–MeMBer filter
variants (see fig. 10.7). All three variants provide an accurate and almost similar
cardinality estimate and exhibit only major variations over the various MC trials.
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Figure 10.8.: Box–Whisker plot over the cardinality estimates error over all MC
trials.

In order to get a better insight about the difference between those filters, con-
sult the Box–Whisker plot of the cardinality error as depicted in Figure 10.8.

The results support the aforementioned insights. It can be seen that the TNC–
MeMBer filter provides the worst cardinality estimates followed by the Approx-
imate Σ–MeMBer filter variants. Clearly, the Intensity Σ–MeMBer filter provide
superior results.

Though, the result for the CB-MeMBer filter seems to be a bit surprising as the
CB-MeMBer should outperform the Σ–MeMBer filters. However, while it does
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outperform the Approximate Σ–MeMBer filters, it does not outperform then In-
tensity Σ–MeMBer filters. The reason is that all measurements are subject to
the same additive measurement noise. However, in case of the CB-MeMBer fil-
ter, the noise is applied to each individual measurement and as such the overall
measurement noise in the CB-MeMBer case is higher and consequently filtering
becomes harder. Also, the CB-MeMBer filter is known to be overconfident due to
the approximations made during the derivation as described in Section 7.1.2.

10.5. Miss–Distance Performance

After taking a look at the performance of the filters in terms of estimating the
correct number of objects, the focus will now be on the overall miss-distance or
OSPA performance. In contrast to the pure cardinality error, it will reflect the
overall performance in terms of state and cardinality estimation. The parameters
chosen for this study are p = 1 and c = 16. Therefore, the maximum error penalty
c is chosen to be the largest possible distance in the monitored area of 4 m2.
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Figure 10.9.: Temporal progress of the OSPA distance with parameters p = 1 and
c = 16 for the CB-MeMBer and TNC–MeMBer filters. The solid line
is the average OSPA and the grey area visualizes the minimum and
maximum errors over all MC trials.

Having a closer look at the temporal progress of the OSPA distance as depicted
in Figures 10.9,

10.10 and 10.11, then the impression of the previous section is confirmed. The
Intensity variants of the Σ–MeMBer filters outperform their Approximate coun-
terparts. Also, the main difference between the different Pseudo–likelihood ap-
proximations seems to manifest in the stability of the estimates. The higher the
complexity, the more stable the estimates and as such less variations in the OSPA.

For further analyses a Box–Whisker plot of the OSPA distances is shown in
Figure 10.12. It can be seen that the median OSPA follows the same pattern as
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Figure 10.10.: Temporal progress of the OSPA distance with parameters p = 1
and c = 16 for the Approximate Σ–MeMBer filters. The solid line
is the average OSPA and the grey area visualizes the minimum and
maximum errors over all MC trials.
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Figure 10.11.: Temporal progress of the OSPA distance with parameters p = 1
and c = 16 for the Intensity Σ–MeMBer filters. The solid line is
the average OSPA and the grey area visualizes the minimum and
maximum errors over all MC trials.
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the OSPA of cardinality estimates. The Intensity Σ–MeMBer filters outperform
their counterparts and the OSPA decreases in terms of its median and variations
with increasing filter complexity. Still all Σ–MeMBer filter variants outperform
the TNC–MeMBer filter.

10.6. Testing of Limitations

After studying the general performance of the proposed Σ–MeMBer filters, the
limitations of the filters are analyzed. In general, there are several parameters
that influence the tracking performance of the filters. However, most important
seems to be the influence of the amount of missed detections on the tracking
performance since their is always the risk that the Σ–MeMBer filters may loose
track of the number of objects and their states completely. In this study, the
probability of detection/visibility is varied in the range pD/V ∈ [0.5,1.0] with 100
MC runs for each probability of detection. Everything else stays as described in
the previous sections.

The results are shown in Figures 10.13 to 10.15. Figure 10.13 shows the OSPA
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Figure 10.13.: Average OSPA distances for varying probability of visibility. The
proposed Σ–MeMBer filters outperform the TNC–MeMBer filters.
However, the Intensity Σ–MeMBer filters are superior to the Ap-
proximate Σ–MeMBer filters.

with parameters p = 1 and c = 16. It can be seen that the OSPA decreases for
all filters with increases probability of detection/visibility. Again, the Intensity
Σ–MeMBer filters perform best. Since the OSPA does not give a hint if the errors
are due to the cardinality or the estimates states, a closer look will be taken on
the cardinality and state errors separately. Having a closer look at Figure 10.14
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Figure 10.14.: Average cardinality error for varying probability of visibility. Un-
surprisingly, the CB-MeMBer filter has the lowest average car-
dinality error. The Σ–MeMBer filters perform outstanding even
when the probability of detection is very low.

reveals that for example the CB-MeMBer filter has the lowest cardinality error.
In turn, meaning that most errors are in the states itself. Furthermore, it can be
seen that the Intensity Σ–MeMBer filters are providing really good cardinality
estimates even up to pD/V = 0.5 which basically says that in average 50% of the
object signals are not seen by the sensor. Finally, Figure 10.15 depicts the OSPA
with parameters p = 1 and c = 0, as such only regarding the errors in the state
and not the cardinality.
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Figure 10.15.: Average OSPA distances for varying probability of visibility with
p = 1 and c = 0. Therefore, only the error in the state estimates is
regarded and not the errors in cardinality.
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Introduction

In this chapter the results presented in this thesis are summarized. Hence, the
key contributions of this thesis are summarized and conclusions from the results
are presented.

11.1. Summary

In the beginning of the thesis, several questions arose concerning random finite
set (RFS) filters for raw superpositional (SPS) measurements. The first question
was, whether it is possible to derive mathematical rigorous multi–object Bayes
filters that directly operate on the raw SPS measurement or not.

After an introduction to the thesis in Chapter 1 and to the basics rules of multi–
object calculus and finite set statistics (FISST) in Chapter 2, an overview over the
most important RFSs was given in Chapter 3.

Hereafter, a measurement model for SPS–type sensors was proposed in Chap-
ter 4, that accounts for the fact that an object might not be visible to a sensor
due to being outside of the sensor’s restricted field of view (FOV) or because it
is occluded by obstacles. Starting from the standard SPS measurement model in
Proposition 3, the novel SPS measurement model accounting for missed detec-
tions was proposed in Proposition 4.

Then, after explaining multi–object Markov models in Chapter 5, the princi-
pal multi–object Bayes filters equations for detection–type and SPS–type sensors
were provided in Chapter 6. Hereby, the multi–object Bayes filter corrector equa-
tion based on the SPS measurement model was proposed in Proposition 16.

However, the filter equations turned out to be only of theoretical nature and
a specific realization for the underlying multi–object distribution had to be cho-
sen. In this theses, the multi–object multi–Bernoulli distribution was chosen and
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hence a multi–object multi–Bernoulli (MeMBer) filter for SPS–type sensors was
derived in Chapter 7. Nevertheless, while being mathematical rigorous, these fil-
ter equations as stated in Theorems 1 and 2 turned out not to be conjugate prior
and are as such not recursively applicable over time. That is the reason why, the
Approximate superpositional multi–object multi–Bernoulli (Σ–MeMBer) and the
Intensity Σ–MeMBer filter, were proposed. For the derivation of the Approxi-
mate Σ–MeMBer filter stated in Theorem 1 approximations similar to the ones
used by Vo, Vo, and Cantoni in [VVC07] for the derivation of the cardinality bal-
anced multi–object multi–Bernoulli (CB-MeMBer) filter corrector equations were
used. For the derivation of the Intensity Σ–MeMBer filter stated in Theorem 4 the
resulting distribution was approximated by the first factorial moment in order to
derive valid Bernoulli components.

Starting from these results, computationally tractable variants of the proposed
filters were derived in Chapter 8. This included a Gaussian approximation as
stated in Theorem 5, a Gaussian Mixture approximation as stated in Theorem 6,
and a Poisson Binomial approximation as stated in Theorem 7.

While the proposed filters were in general computationally tractable, more was
needed to implement them. Therefore, efficient Sequential Monte Carlo (SMC)
implementations for the filters were provided in Chapter 9.

Furthermore, in order to analyze the performance of the filters, numerical ex-
periments were conducted. In these experiments the performances of the pro-
posed filters were measured and compared against the performance of the CB-
MeMBer and Thouin–Nannuru–Coates (TNC) filter.

It has been shown that the Σ–MeMBer filters outperform the TNC filter when
the probability that an object is detected by the SPS–type sensor decreases. Fur-
thermore, it was recognizable that the Intensity Σ–MeMBer filter variants are
giving superior results in comparison to the Approximate Σ–MeMBer filter vari-
ants. While the general state estimation seems to be quite similar, the cardinality
estimation of the Intensity Σ–MeMBer filter variants was more accurate and sta-
ble. Additionally, it was noticeable that the Intensity Σ–MeMBer filter variants
did not differ much in performance.

11.2. Conclusions

Given the results from Chapter 10, some conclusions about the proposed RFS
Bayes filters can be drawn. For starters, the Σ–MeMBer filters provide a promis-
ing approach to the problem of multi–object filtering for SPS–type sensors.

Furthermore, the Σ–MeMBer filter variants offer an improvement over the
TNC MeMBer filter variant largely due to the fact that it addresses the issues
of missing detection due to occlusions or other effects. Additionally, the Inten-
sity Σ–MeMBer filter seem to be favorable in comparison to the Approximate
Σ–MeMBer filter variants due to the fact that the cardinality of the latter are far
more unstable.
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It is also worth mentioning that the filter performance does not differ signif-
icantly between the different Pseudo–likelihood approximations. Based on the
conducted experiments in this thesis, it seems that the additional computational
demand introduced by the Poisson–Binomial and Gaussian Mixture approxima-
tions does not improve the filtering results. Therefore, the Gaussian approxima-
tion seems to be the mose favorable Σ–MeMBer filter variant.

11.3. Future Research

Future research should analyze how the proposed filters perform in other filter-
ing scenarios. This includes conducting more numerical studies with different
motion and measurement models, as well as conducting experiments including
data from real sensors. Also, research should be directed at the problem of multi–
sensor multi–object filtering, as this is still a partially unsolved problem.
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A. Key Formulas of Multi–Object

Calculus

In this chapter, some key formulas of multi–object calculus are summarized.
More information on this topic can be found in [Mah07b, Ch. 11.6].

Basic rules for Functional Derivatives

Constant Rule

If the functional f [h] is a constant function f [h] = K , then

δK
δX

= 0.

Linear Rule

If f [h] =
∫
h(x) f (x) dx, then

δf [h]
δX

=


f [h] if X = ∅
f (x) if X = {x}
0 else.

Sum Rule

δ

δX

n∑
i=1

Fi[h] =
n∑
i=1

δFi[h]
δX

Product Rule

Given the product of multiple functionals Fi[h], then its derivative with respect
to X is

δ

δX

n∏
i=1

Fi[h] =
∑

n⊎
i=1
Wi=X

n∏
i=1

δFi[h]
δWi
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where the sum is taken over all mutual disjoint subsets W1, . . . ,Wn of X including

the empty set ∅ such that the union of all subsets equals
n⊎
i=1
Wi = X. For the

special case of X = {x} it becomes

δ

δx

n∏
i=1

Fi[h] =
n∑
i=1

δFi[h]
δx

∏n
j=1Fj [h]

Fi[h]

Power Rule

The power rule is a specialized variant of the product rule where all functionals
are equivalent. Then, it follows

δ

δx
F[h]n = n Fi[h]n−1 δF[h]

δx
.

Convolution Rule

The convolution rule follows directly from the product rule. Given the convolu-
tion of multiple functionals Fi[h](z), then its derivative with respect to X is

δ

δX

(
n∗
i=1
Fi[h]

)
(z) =

∑
n⊎
i=1
Wi=X

(
n∗
i=1

δFi[h]
δWi

)
(z).

with (
n∗
i=1
Fi[h]

)
(z) , (F1[h] ∗ . . . ∗Fn[h]) (z).

For the special case of X = {x} it becomes

δ

δx

(
n∗
i=1
Fi[h]

)
(z) =

n∑
i=1

δFi[h]
δx

∗
n∗
j=1
j,i

Fj [h]

 (z)

where the convolution is done for all Fj [h] but not the j–th.
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B. Examples of estimated Tracks

Contents

B.1. Examples Track with Probability of Detection pd = 1.0 . . . . 167
B.2. Examples Track with Probability of Detection pd = 0.95 . . . 171
B.3. Examples Track with Probability of Detection pd = 0.9 . . . . 175
B.4. Examples Track with Probability of Detection pd = 0.8 . . . . 179
B.5. Examples Track with Probability of Detection pd = 0.7 . . . . 183
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B.7. Examples Track with Probability of Detection pd = 0.5 . . . . 191

This chapter provides some examples of estimated tracks that have been gen-
erated using the exact same parameters as used in Chapter 10.

B.1. Examples Track with Probability of Detection

pd = 1.0
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Figure B.1.: Exemplary tracking result for the cardinality balanced multi–object
multi–Bernoulli (CB-MeMBer) filter with pd = 1.0. The dotted line is
the ground truth and the solid line is the estimated track.
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0
1
2
3
4

p
x

TNC-MeMBer

0
1
2
3
4

p
y

0 25 50 75 100 125 150 175 200 225 250

Timestep

0

4

8

|X
|

Figure B.2.: Exemplary tracking result for the Thouin–Nannuru–Coates (TNC)
multi–object multi–Bernoulli (MeMBer) filter with pd = 1.0. The dot-
ted line is the ground truth and the solid line is the estimated track.
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Figure B.3.: Exemplary tracking result for the Intensity Quasi Gaussian (IQG) su-
perpositional multi–object multi–Bernoulli (Σ–MeMBer) filter with
pd = 1.0. The dotted line is the ground truth and the solid line is the
estimated track.
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B.1. Examples Track with Probability of Detection pd = 1.0
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Figure B.4.: Exemplary tracking result for the Intensity Quasi Poisson Binomial
(IQPB) CB-MeMBer filter with pd = 1.0. The dotted line is the ground
truth and the solid line is the estimated track.
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Figure B.5.: Exemplary tracking result for the Intensity Quasi Gaussian Mixture
(IQGM) CB-MeMBer filter with pd = 1.0. The dotted line is the
ground truth and the solid line is the estimated track.
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Figure B.6.: Exemplary tracking result for the Approximate Quasi Gaussian
(AQG) Σ–MeMBer filter with pd = 1.0. The dotted line is the ground
truth and the solid line is the estimated track.

0
1
2
3
4

p
x

AQPB Σ-MeMBer

0
1
2
3
4

p
y

0 25 50 75 100 125 150 175 200 225 250

Timestep

0

4

8

|X
|

Figure B.7.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
1.0. The dotted line is the ground truth and the solid line is the esti-
mated track.
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B.2. Examples Track with Probability of Detection pd = 0.95
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Figure B.8.: Exemplary tracking result for the Approximate Quasi Gaussian Mix-
ture (AQGM) CB-MeMBer filter with pd = 1.0. The dotted line is the
ground truth and the solid line is the estimated track.
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B. Examples of estimated Tracks

Figure B.9.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.95.
The dotted line is the ground truth and the solid line is the estimated
track.
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Figure B.10.: Exemplary tracking result for the TNC MeMBer filter with pd =
0.95. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.11.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.95. The dotted line is the ground truth and the solid line is the
estimated track.
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B.2. Examples Track with Probability of Detection pd = 0.95
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Figure B.12.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.95. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.13.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.95. The dotted line is the ground truth and the solid line
is the estimated track.
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Figure B.14.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.95. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.15.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.95. The dotted line is the ground truth and the solid line is the
estimated track.
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B.3. Examples Track with Probability of Detection pd = 0.9
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Figure B.16.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.95. The dotted line is the ground truth and the solid line is
the estimated track.
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B. Examples of estimated Tracks

Figure B.17.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.9.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.18.: Exemplary tracking result for the TNC MeMBer filter with pd = 0.9.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.19.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.9. The dotted line is the ground truth and the solid line is the
estimated track.
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B.3. Examples Track with Probability of Detection pd = 0.9
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Figure B.20.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.9. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.21.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.9. The dotted line is the ground truth and the solid line is
the estimated track.
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B. Examples of estimated Tracks
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Figure B.22.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.9. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.23.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.9. The dotted line is the ground truth and the solid line is the
estimated track.
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B.4. Examples Track with Probability of Detection pd = 0.8
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Figure B.24.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.9. The dotted line is the ground truth and the solid line is the
estimated track.
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B. Examples of estimated Tracks

Figure B.25.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.8.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.26.: Exemplary tracking result for the TNC MeMBer filter with pd = 0.8.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.27.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.8. The dotted line is the ground truth and the solid line is the
estimated track.
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B.4. Examples Track with Probability of Detection pd = 0.8
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Figure B.28.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.8. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.29.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.8. The dotted line is the ground truth and the solid line is
the estimated track.

181



B. Examples of estimated Tracks
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Figure B.30.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.8. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.31.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.8. The dotted line is the ground truth and the solid line is the
estimated track.
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B.5. Examples Track with Probability of Detection pd = 0.7
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Figure B.32.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.8. The dotted line is the ground truth and the solid line is the
estimated track.
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B. Examples of estimated Tracks

Figure B.33.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.7.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.34.: Exemplary tracking result for the TNC MeMBer filter with pd = 0.7.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.35.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.7. The dotted line is the ground truth and the solid line is the
estimated track.
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B.5. Examples Track with Probability of Detection pd = 0.7
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Figure B.36.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.7. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.37.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.7. The dotted line is the ground truth and the solid line is
the estimated track.
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B. Examples of estimated Tracks
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Figure B.38.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.7. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.39.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.7. The dotted line is the ground truth and the solid line is the
estimated track.
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B.6. Examples Track with Probability of Detection pd = 0.6
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Figure B.40.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.7. The dotted line is the ground truth and the solid line is the
estimated track.
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B. Examples of estimated Tracks

Figure B.41.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.6.
The dotted line is the ground truth and the solid line is the esti-
mated track.

0
1
2
3
4

p
x

TNC-MeMBer

0
1
2
3
4

p
y

0 25 50 75 100 125 150 175 200 225 250

Timestep

0

4

8

|X
|

Figure B.42.: Exemplary tracking result for the TNC MeMBer filter with pd = 0.6.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.43.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.6. The dotted line is the ground truth and the solid line is the
estimated track.
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B.6. Examples Track with Probability of Detection pd = 0.6
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Figure B.44.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.6. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.45.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.6. The dotted line is the ground truth and the solid line is
the estimated track.
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B. Examples of estimated Tracks
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Figure B.46.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.6. The dotted line is the ground truth and the solid line is the
estimated track.

0
1
2
3
4

p
x

AQPB Σ-MeMBer

0
1
2
3
4

p
y

0 25 50 75 100 125 150 175 200 225 250

Timestep

0

4

8

|X
|

Figure B.47.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.6. The dotted line is the ground truth and the solid line is the
estimated track.
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B.7. Examples Track with Probability of Detection pd = 0.5
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Figure B.48.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.6. The dotted line is the ground truth and the solid line is the
estimated track.
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B. Examples of estimated Tracks

Figure B.49.: Exemplary tracking result for the CB-MeMBer filter with pd = 0.5.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.50.: Exemplary tracking result for the TNC MeMBer filter with pd = 0.5.
The dotted line is the ground truth and the solid line is the esti-
mated track.
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Figure B.51.: Exemplary tracking result for the IQG Σ–MeMBer filter with pd =
0.5. The dotted line is the ground truth and the solid line is the
estimated track.
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B.7. Examples Track with Probability of Detection pd = 0.5
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Figure B.52.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.5. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.53.: Exemplary tracking result for the IQGM CB-MeMBer filter with
pd = 0.5. The dotted line is the ground truth and the solid line is
the estimated track.
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B. Examples of estimated Tracks
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Figure B.54.: Exemplary tracking result for the AQG Σ–MeMBer filter with pd =
0.5. The dotted line is the ground truth and the solid line is the
estimated track.
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Figure B.55.: Exemplary tracking result for the IQPB CB-MeMBer filter with pd =
0.5. The dotted line is the ground truth and the solid line is the
estimated track.
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B.7. Examples Track with Probability of Detection pd = 0.5
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Figure B.56.: Exemplary tracking result for the AQGM CB-MeMBer filter with
pd = 0.5. The dotted line is the ground truth and the solid line is the
estimated track.
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