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Abstract

In this paper we present a new method for determining optimal designs for enzyme

inhibition kinetic models, which are used to model the influence of the concentration of a

substrate and an inhibition on the velocity of a reaction. The approach uses a nonlinear

transformation of the vector of predictors such that the model in the new coordinates is

given by an incomplete response surface model. Although there exist no explicit solutions

of the optimal design problem for incomplete response surface models so far, the corre-

sponding design problem in the new coordinates is substantially more transparent, such

that explicit or numerical solutions can be determined more easily. The designs for the

original problem can finally be found by an inverse transformation of the optimal designs

determined for the response surface model. We illustrate the method determining explicit

solutions for the D-optimal design and for the optimal design problem for estimating the

individual coefficients in a non-competitive enzyme inhibition kinetic model.

Keywords and Phrases: modelling enzyme kinetics reactions, incomplete response surface mod-

els, D-optimal designs, optimal designs for individual coefficients
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1 Introduction

The Michaelis-Menten model

η = η(S) =
V · S
Km + S

(1.1)

was introduced by Michaelis and Menten (1913) and is widely used to represent an enzyme

kinetics reaction, where enzymes bind substrates and turn them into products. Here V and S

denotes the maximum velocity of the reaction and the concentration of the substrate, respec-

tively, while Km is the value of S at which half of the maximum velocity V is reached, i.e., the
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Michaelis-Menten constant. Because of its importance the problem of designing experiments

for statistical analysis based on the Michaelis-Menten model has found considerable interest in

the literature and we refer to Rasch (1990); Song and Wong (1998); López-Fidalgo and Wong

(2002); Dette and Biedermann (2003); Matthews and Allcock (2004) and Dette and Kunert

(2014) among many others, who investigate optimal and efficient designs for the model (1.1)

from different perspectives.

The Michaelis-Menten model is very well justified in the absence of enzyme inhibition which

are molecules that decrease the activity of enzymes. However, many diseases require co-

administration of several drugs and for this reason new drugs are usually also screened for their

inhibitory potential. Adequate modeling has to reflect this fact and therefore the Michaelis-

Menten model has been extended to include the effect of inhibitor concentration, say I. In

these extended models η is a function of the concentration of the substrate S and the inhibition

I, that is η = η(S, I) and one usually distinguishes between competitive and non-competitive

inhibition [see Segel (1993), for example]. There does not exist much literature on optimal

designs for these type of models and we refer to Youdim et al. (2010); Bogacka et al. (2011);

Atkinson and Bogacka (2013) who mainly studied designs optimal with respect to determinant

criteria, i.e., D- or Ds-optimal designs. In most cases the optimal design problem is an ex-

tremely difficult optimisation problem and optimal designs have to be found numerically as the

commonly used models for competitive and non-competitive inhibition are highly nonlinear and

therefore difficult to analyse mathematically. As a consequence not much - except of empirical

findings - is known about the structure of optimal designs.

In this paper we present a new approach to derive optimal designs for regression models for

enzyme kinetics reactions involving inhibition which simplifies the analytical and numerical

construction in this context substantially. The main idea is to use a nonlinear transformation

of the explanatory variables ψ : (S, I) → (x, y) such that the model in the new variables x

and y is a simple (incomplete) multivariate polynomial regression model (also called response

surface model). The design problem can then be analysed in a linear response surface model

and in a second step the optimal designs from this model can be transformed back into the

(S, I) coordinates to obtain optimal designs for enzyme inhibition kinetic models. We illustrate

this approach determining optimal designs for a specific non-competitive enzyme inhibition

kinetic model, but the general idea is also applicable in other enzyme inhibition kinetic models

as well. In particular, we provide a complete proof that a design found in Bogacka et al. (2011)

is in fact D-optimal. Moreover, we derive new optimal designs for estimating the individual

coefficients in this model. This optimisation problem is a substantially harder than the D-

optimal design problem and might be intractable in the classical parametrisation. However,

with the transformation introduced here complete solution of the optimal design problem is

possible.

Optimal designs for multivariate quadratic regression models have been widely studied in the

literature and we refer to the seminal papers of Kono (1962); Farrel et al. (1967) and to Draper

et al. (2000); Draper and Pukelsheim (2003) and Dette and Grigoriev (2014) for some more
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recent work among many others. In these and many other references optimal designs for the

“complete” model are considered, which means the model under consideration includes all

multivariate polynomials up to a given degree. In the simplest case of a cubic polynomial

in two variables, say x and y, this means that the corresponding linear model contains the

functions

1, x, y, xy, x2, y2, xy2, x2y2, x3, y3 . (1.2)

However, the mapping ψ introduced in this paper to transform design problems for enzyme

inhibition kinetic models to designs problems for linear response surface models usually results

in “incomplete” multivariate polynomial regression models,for example a cubic model involving

only the functions

xy, xy2, yx2 . (1.3)

For such models the determination of optimal designs is substantially harder and there does

not exist any solution so far. To our best knowledge - we are only aware of two references,

where product designs for “incomplete” multivariate polynomials are determined [see Dette

and Roeder (1996, 1997)]. Although the determination of optimal designs (not restricted to a

product structure) is extremely hard we are able to find solutions for the case (1.3), which is the

important one for the non-competitive enzyme inhibition kinetic model under consideration.

The remaining part of this paper is organised as follows. In Section 2 we introduce the regres-

sion model and some basic optimal design terminology. Section 3 is devoted to the nonlinear

transformation and its basic properties. Additionally we illustrate our approach determing

D-optimal designs. In Section 4 we use the new methodology to explicitly determine optimal

designs for estimating the individual coefficients in a non-competitive enzyme inhibition kinetic

model. Finally, the technical arguments are deferred to an appendix in Section 5.

2 A non-competitive model

Let S and I denote the concentration of the substrate and inhibition, respectively, and let θ =

(V,Km, Kic)
T denote a vector of parameters. The non-competitive regression model considered

in this paper is defined by

η(S, I, θ) =
V · S

(Km + S)(1 + I
Kic

)
, (2.1)

where the explanatory variable (S, I) varies in the design space S = [Smin, Smax] × [Imin, Imax]

defined by the the constants 0 ≤ Smin < Smax, 0 ≤ Imin < Imax. We assume that observations

Yi = η(Si, Ii, θ) + εi , i = 1, . . . , n (2.2)

are available at experimental conditions (S1, I1), . . . , (Sn, In) ∈ S, where ε1, . . . , εn denote in-

dependent normally distributed random variables with mean 0 and variance σ2 > 0. Following

3



Kiefer (1974) we define an approximate design as probability measure, say ξ, with finite sup-

port in S. If the design ξ has masses ωi > 0 at the different points (Si, Ii) (i = 1, . . . , k) and n

observations can be made by the experimenter, the quantities ωin are rounded to integers, say

ni, satisfying
∑k

i=1 ni = n, and the experimenter takes ni observations at each location (Si, Ii)

(i = 1, . . . , k). Now, under regularity assumptions, standard asymptotic theory shows that the

maximum likelihood estimator for the parameter θ is asymptotically unbiased with variance
σ2

n
M−1(ξ, θ), where

M(ξ, θ) =

∫
S

∂η(S, I, θ)

∂θ

(∂η(S, I, θ)

∂θ

)T
dξ(S, I). (2.3)

denotes the information matrix of a design ξ in model (2.1) on the design space S and

∂η(S, I, θ)

∂θ
=

S

(Km + S)

1

(1 + I/Kic)

(
1,− V

Km + S
,
V · I/K2

ic

1 + I/Kic

)T
, (2.4)

is the gradient of the regression function with respect to the parameter θ. An optimal design

maximises an appropriate functional, say Φ, of the matrix M(ξ, θ) in the class of all designs on

the design space S, which is called optimality criterion. Several criteria have been proposed in

the literature to discriminate between competing designs [see for example Pukelsheim (2006)]

and in this paper we are interested in the widely used D-optimality criterion, which determines

the design such that

ΦD{M(ξ, θ)} = det{M(ξ, θ)} (2.5)

is maximal, and in optimal designs for estimating the individual coefficients, which maximise

Φej{M(ξ, θ)} = (ejM
−(ξ, θ)ej)

−1 , j = 1, 2, 3 . (2.6)

Here ej denotes the jth unit vector in R3, M−(ξ, θ) is a generalised inverse of the matrix M(ξ, θ)

and optimisation is only performed over the set of designs, such that the information matrices

satisfy the range inclusion ej ∈ Range(M(ξ, θ)). In this case the right-hand side of (2.6) does

not depend on the specific choice of the generalised inverse [see Pukelsheim (2006)]. A design

maximising (2.5) is called D-optimal design, while a design maximising (2.6) is called ej-optimal

or optimal for estimating the jth coefficient of the vector θ = (θ1, θ2, θ3)T = (V,Km, Kic)
T

(j = 1, 2, 3). For example, the e2-optimal design is the optimal design for estimating the

Michaelis-Menten constant θ2 = Km.

Note that we discuss locally optimal designs, which require a-priori information about the

unknown model parameters as they appear in the model in a nonlinear way [see Chernoff

(1953)]. When preliminary knowledge regarding the unknown parameters of a nonlinear model

is available, the application of locally optimal designs is well justified [see for example Dette

et al. (2008)]. Locally optimal designs are also typically used as benchmarks for commonly

4



used designs and often serve as basis for constructing optimal designs with respect to more

sophisticated optimality criteria, which are robust against a misspecification of the unknown

parameters [see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995), Dette (1997)

among others]

3 A nonlinear transformation and D-optimal designs

3.1 Transformation of the design space

In this section we will provide a transformation which makes the structure of the resulting design

problem more visible. The transformation will be used to solve the D-optimal design problem

for the model (2.1) in Section 3.2 and for the solution of the ej-optimal design problems in

Section 4. Recalling the definition of the regression function in (2.1) we define a transformation

by (
x

y

)
= ψ(S, I) =

(
S

Km+S
1

1+I/Kic

)
. (3.1)

Note that (3.1) defines a one-to-one mapping from the original design space S = [Smin, Smax]×
[Imin, Imax] onto the rectangle

X = [xmin, xmax]× [ymin, ymax], (3.2)

where the boundary points of the two intervals are defined by

xmin =
Smin

Km + Smin

; xmax =
Smax

Km + Smax

; ymin =
1

1 + Imax/Kic

; ymax =
1

1 + Imin/Kic

. (3.3)

Moreover, the inverse transformation is given by(
S

I

)
= ψ−1(x, y) =

(
xKm

1−x
Kic(1−y)

y

)
. (3.4)

A straightforward calculation shows that the gradient in (2.4) can be represented by

∂η(S, I, θ)

∂θ
= A(θ)f(x, y),

where the non-singular matrix A(θ) and the vector f are given by

A(θ) =

 1 0 0

− V
Km

V
Km

0
V
Kic

0 − V
Kic

 ,
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f(x, y) = xy(1, x, y)T , (3.5)

respectively. If ξ̃ denotes the design on the design space X induced from the design ξ by the

transformation (3.1), then the information matrix M(ξ, θ) in (2.3) can be written as

M(ξ, θ) = A(θ)M̃(ξ̃)AT (θ), (3.6)

where the matrix M̃(ξ̃) is defined by

M̃(ξ̃) =

∫
X
f(x, y)fT (x, y)dξ̃(x, y). (3.7)

As the transformation (3.1) is one-to-one, any design ξ on the design space S induces a unique

design ξ̃ on X and vice versa. Consequently, it follows from (3.6) that optimal designs max-

imising the functional Φ(M(ξ, θ)) can be obtained by maximising the functional

Φ(AT (θ)M̃(ξ̃)A(θ)).

3.2 D-optimal designs

D-optimal designs for the model (2.1) have been determined by Bogacka et al. (2011). In this

section we explain how these designs can be obtained in a more transparent way from the

regression model (3.5) using the transformation introduced in Section 3.1. We will use the

same method to derive new optimal designs for estimating the individual coefficients in the

subsequent Section 4.

In the case of D-optimality we have

ΦD(M(ξ, θ)) = ΦD(AT (θ)M̃(ξ̃)A(θ)) = (detA(θ))2(det M̃(ξ̃))

where the matrix M̃(ξ̃) is given by (3.7). Consequently, the D-optimal designs can be de-

termined by first maximising the determinant det M̃(ξ̃) in the class of all designs ξ̃ on the

design space X and then applying the inverse transformation (3.4). Our first result provides

the solution of this problem.

Theorem 3.1 The D-optimal design maximising det M̃(ξ̃) in the class of all designs ξ̃ on the

set X defined in (3.2) is given by

ξ̃∗ =

( (
max{xmin,

xmax

2
}, ymax

) (
xmax,max{ymax

2
, ymin}

)
(xmax, ymax)

1
3

1
3

1
3

)
.

We can now use the inverse transformation (3.4) to obtain the D-optimal design on the original

design space.
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Corollary 3.1 The locally D-optimal design for the non-competitive model (2.1) in the class

of all designs ξ on the set S has equal masses at the three points

(
max{Smin,

SmaxKm

Smax + 2Km

}, Imin

)
; (Smax,min{Kic + 2Imin, Imax}) ; (Smax, Imin).

Proof. We use the inverse transformation (3.4) and Theorem 3.1 to obtain the D-optimal

design on the original design space. For this purpose note that the first coordinate in (3.4)

defines an increasing function of x, while the second coordinate is a decreasing function of y.

Observing the relations in (3.3) we obtain that

ψ−1
(

max{xmin,
xmax

2
}, ymax

)
=
(

max{Smin,
SmaxKm

Smax + 2Km

}, Imin

)
.

�

4 Optimal designs for estimating individual coefficients

In this section we use the transformation (3.1) to derive optimal designs for estimating the

individual coefficients V,Km and Kic in the non-competitive regression model (2.1). To our

best knowledge all results presented here are new.

For this purpose consider the vector of parameters θ = (θ1, θ2, θ3)T = (V,Km, Kic)
T and recall

that an optimal design for estimating the coefficient θj maximises the expression (2.6) in the

class of all designs ξ satisfying the range inclusion

ej ∈ Range(M(ξ, θ)). (4.1)

(here ej ∈ R3 denotes the jth unit vector (j = 1, 2, 3)). Now recall the definition of the trans-

formation in (3.6). As the matrix A(θ) is non-singular, it follows that any generalised inverse

G of the matrix M(ξ, θ) induces a generalised inverse of the matrix M̃(ξ̃) by the transforma-

tion G → AT (θ)GA(θ) and vice versa. Similarly, if ξ satisfies (4.1), then ξ̃ satisfies the range

inclusion

cj = B(θ)ej ∈ Range(M̃(ξ̃)), (4.2)

where

B(θ) = (A(θ))−1 =

 1 0 0

1 Km

V
0

1 0 −Kic

V

 . (4.3)
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Consequently, an optimal design ξ∗ maximising the functional (2.6) in the class of all designs ξ

satisfying (4.1) can be determined by maximising the functional

(cTj M̃
−(ξ̃)cj)

−1

in the class of all designs ξ̃ satisfying (4.2) and transforming the design ξ̃ back onto the design

space S using the inverse transformation (3.4).

In the following two sections we derive the optimal designs for estimating the individual coeffi-

cients using this approach. Section 4.1 contains the optimal designs for the Michaelis-Menten

constant Km and the dissociation constant Kic, that is j = 2, 3. It will turn out that these two

cases are almost the same in the transformed model (3.5). Section 4.2 contains the optimal

design for estimating the maximum velocity V (that is j = 3), where the determination of the

optimal designs is much harder.

4.1 Optimal designs for estimating the Michaelis-Menten constant

and the dissociation constant

The optimal design problem for estimating the Michaelis-Menten constant Km in the non-

competitive model (2.1) corresponds to the choice j = 2 in (2.6). By the discussion at the

beginning of this section we have to determine the design maximising the expression

(cT2 M̃
−(ξ̃)c2)−1 =

(
(B(θ)e2)TM̃−(ξ̃)(B(θ)e2)

)−1
=

(
V

Km

)2

(eT2 M̃
−(ξ̃)e2)−1 (4.4)

in the class of all designs satisfying the range inclusion (4.2) for j = 2. If an optimal design

for estimating the parameter Kic is of particular interest, we use the criterion (2.6) with j = 3.

Consequently, we have to maximise

(cT3 M̃
−(ξ̃)c3)−1 =

(
(B(θ)e3)TM̃−(ξ̃)B(θ)e3

)−1
=

(
V

Kic

)2

(eT3 M̃
−(ξ̃)e3)−1 (4.5)

in the class of all designs satisfying the range inclusion (4.2) for j = 3.

Theorem 4.1 (1) The optimal design maximising (4.4) is of the form

ξ̃ =

(
(xmax, ymax) (x, ymax)

x
1+x

1
1+x

)
(4.6)

where x = max
{
xmin, (

√
2− 1)xmax

}
.
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(2) The optimal design maximising (4.5) is of the form

ξ̃ =

(
(xmax, ymax) (xmax, y)

y
1+y

1
1+y

)
(4.7)

where y = max
{
ymin, (

√
2− 1)ymax

}
.

Corollary 4.1

(1) The optimal design for estimating the Michaelis-Menten constant in model (2.1) is given

by

ξ =

( (
Smax, Imin

) (
S, Imin

)
1− ω ω

)
. (4.8)

where

S = max
{
Smin ,

KmSmax(
√

2− 1)

Km + (2−
√

2)Smax

}
(4.9)

ω =
(

1 + max
{ Smin

Km + Smin

,
(
√

2− 1)Smax

Km + Smax

})−1

. (4.10)

(2) The optimal design for estimating the parameter Kic in model (2.1) is given by

ξ =

(
(Smax, Imin) (Smax, I)

1− ω ω

)
(4.11)

where

I = min
{
Imax, Imin(

√
2 + 1) +Kic

√
2
}

ω =
(

1 +Kic max
{ 1

Kic + Imax

,
(
√

2− 1)

Kic + Imin

})−1

.

Proof. We need to transform the design given by (4.6) and (4.7) to the actual design space S.

For the design (4.6) we note that (3.1) and (3.3) yield

x = max
{ Smin

Smin +Km

, (
√

2− 1)
Smax

Smax +Km

}
,

which gives for 1
1+x

the weight in (4.10). Due to the fact that the first component of the inverse

ψ−1 defined in (3.4) is increasing with respect to x we obtain

(ψ−1(x, ymax))1 = S,
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where S is defined in (4.9). Similar calculations for the other support point result in the design

ξ in (4.8), which completes the proof of the first part of Corollary 4.1. The second part follows

by similar arguments and the details are omitted for the sake of brevity. �

4.2 Optimal designs for estimating the maximal velocity

If the maximal velocity V is the parameter of main interest, one can use the optimality criterion

(2.6) with j = 1 to find the optimal design for a most precise estimation of V . Observing (4.3)

we obtain from (4.2) that c1 = (1, 1, 1)T and the optimal design for estimating the maximum

velocity can be found by maximising the criterion

(cT1 M̃
−(ξ̃)c1)−1 (4.12)

in the class of all designs such that the range inclusion (4.2) holds for j = 1. The solution of

this problem is substantially harder and is based on the solution of an auxiliary optimal design

problem for the weighted polynomial regression model

E[Y |x] = xg(x, q)(θ1 + θ2x) , (4.13)

where q ∈ [0, 1] is a fixed but arbitrary constant,

g(x, q) = qx+ 1− q (4.14)

and the design space is given by [xmin, xmax]. Note that xmax < 1, which follows from the

definition (3.3), and without loss of generality we assume xmin > 0 (see Section 5.3 for further

explanations). As the function g(x, q) is positive on the interval [xmin, xmax] it is easy to show

that the set {xg(x, q), x2g(x, q)} is a Chebychev system on the interval [xmin, xmax] [see Karlin

and Studden (1966) for a definition of Chebyshev systems]. It then follows that there exists a

unique function (depending on the value of q) of the form

Ψ(x, q) = xg(x, q)(ψ1 + ψ2x) (4.15)

(with constants ψ1, ψ2 ∈ R) such that

1. |Ψ(x, q)| ≤ 1 for all x ∈ [xmin, xmax] .

2. Ψ(xmax, q) = 1 and there exists exactly one additional point x̄(q) ∈ [xmin, xmax] such that

Ψ(x̄(q), q) = −1.

This function Ψ is called equi-oscillating polynomial in the literature and the points xmax and

x̄(q) are called extremal points of Ψ. Some equi-oscillating polynomials with their corresponding

extremal points for different values of q are depicted in Figure 1. We obsere that xmax is always
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Figure 1: The equi-oscillating polynomials Ψ(x, q) for q = 0 (solid line), q = 0.5 (dashed line)
and q = 1 (dotted line) where the design space is given by [0.1, 0.9].

an extremal point and that the other extremal point increases with the vale of q. We are now

in a position to describe the design maximising (4.12) explicitly.

Theorem 4.2

a) If xmax ≤ ymax, the optimal design maximising (4.12) is of the form

ξ̃(q∗) =

( (
x̄, g(x̄, q∗)

) (
xmax, ymax

)
ω(q∗) 1− ω(q∗)

)
(4.16)

where

ω(q) =
xmaxg(xmax, q)(1− xmax)

xmaxg(xmax, q)(1− xmax) + x̄(q)g(x̄(q), q)(1− x̄(q))
(4.17)

and

q∗ =
1− ymax

1− xmax

. (4.18)

(b) If xmax ≥ ymax, the optimal design maximising (4.12) can be obtained from part (a) by

interchanging the roles of x and y.

In Figure 2 we display the support point x̄(q) and the corresponding weight ω(q) of the c-

optimal design in (4.16) in dependence of the value q for xmax = 0.9 < ymax. We observe that

the support point and corresponding weight are increasing with the value of q.

Using similar arguments as given in Section 3 the optimal design for estimating the maximum

velocity can be obtained by the inverse transformation (3.4) from the design in Theorem 4.2.
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Figure 2: The support point x̄(q) (left panel) and the corresponding weight ω(q) (right panel)
of the c-optimal design given by (4.16) in dependence of the value q for xmax = 0.9 < ymax.

The explicit formulas in the general case are omitted for the sake of brevity and we restrict

ourselves to the case Imin = 0, which is most important from a practical point of view.

Corollary 4.2 If Imin = 0 the optimal design for estimating the maximum velocity in the

non-competitive regression model (2.1) is given by

ξ∗ =

(
(S̄, Imin) (Smax, Imin)

ω 1− ω

)
,

where

S = max
{
Smin ,

KmSmax(
√

2− 1)

Km + (2−
√

2)Smax

}
ω =

Smax(Km + S)2

Smax(Km + S)2 + S(Km + Smax)2
.

Proof. If Imin = 0 it follows from (3.1) that ymax = 1, which gives q = 0 and for the function g

in (4.14) g(x, 0) ≡ 1. The equi-oscillating polynomial corresponding to the Chebyshev system

{x, x2} on the interval [xmin, xmax] is given by

Ψ(x, 0) =

{
−
(
x
x̄

)2
+ 2x

x̄
if xmin ≤ xmax(

√
2− 1)

(xmin+xmax)
xminxmax(xmax−xmin)

x2 − (x2min+x2max)

xminxmax(xmax−xmin)
x if xmin > xmax(

√
2− 1)

where x̄ = x̄(0) = xmax(
√

2 − 1). Here the equi-oscillating polynomial in the case xmin ≤
xmax(

√
2−1) is determined in the proof of Theorem 4.2 (see Section 5.3) and the remaining case
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follows by similar arguments. Consequently, Theorem 4.2 shows that the the design maximising

(4.5) is given by

ξ̃ =

((
max(xmin, x̄), ymax

)
(xmax, ymax)

xmax(1−xmax)
xmax(1−xmax)+x̄(1−x̄)

x̄(1−x̄)
xmax(1−xmax)+x̄(1−x̄)

)
, (4.19)

and the assertion now follows by the inverse transformation (3.4). �
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5 Appendix: Proofs

5.1 Proof of Theorem 3.1

A further transformation shows that

f(x, y) = xy(1, x, y)T = Cf
( x

xmax

,
y

ymax

)
,
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where the matrix C is given by the diagonal 3 × 3 matrix C = xmaxymax · diag(1, xmax, ymax).

Consequently, we may assume without loss of generality

0 ≤ xmin < xmax = 1; 0 < ymin < ymax = 1.

For the sake of brevity we now restrict the discussion to the case that 0 ≤ xmin, ymin <
1
2
, the

other cases can be treated similarly. In this case the resulting design

ξ̃∗ =

(
(1

2
, 1) (1, 1

2
) (1, 1)

1
3

1
3

1
3
,

)
(4.20)

and, by the equivalence theorem for D-optimality this design is D-optimal if and only if the

inequality

κ(x, y) = x2y2
(
1, x, y

)
M̃−1(ξ̃∗)

(
1, x, y

)T − 3

= 3x2y2(20x2 − 44x+ 8xy + 20y2 − 44y + 41)− 3 ≤ 0 (4.21)

holds for all (x, y) ∈ X = [xmin, 1] × [ymin, 1]. Note that the function κ is symmetric in x and

y. We now calculate the points of κ in X where the maxima are attained and show that the

inequality (4.21) holds for these points.

The stationary points of κ in (xmin, 1)× (ymin, 1) are given by

(x1, y1) = ( 1
172

(55−
√

73), 1
172

(55−
√

73)), (x2, y2) = ( 1
172

(55 +
√

73), 1
172

(55 +
√

73)).

Considering the Hessian matrix for these points it follows that (x1, y1) is a saddle point of κ

whereas (x2, y2) is a minimum. Consequently, the maxima of the function κ are attained at the

boundary of X .

Because of the symmetry of κ it is sufficient to calculate the maxima of the functions

κ1(x) = κ(x, ymin) = 60y2
min x

4 + (24y3
min − 132y2

min) x3 (4.22)

+ (60y4
min − 132y3

min + 123y2
min) x2 − 3.

κ2(x) = κ(x, 1) = 60x4 − 36x3 + 17x2 − 3 (4.23)

for x ∈ [xmin, 1]. We start with the maximisation of κ1(x). For 0 < ymin ≤ 1
2

the only local

extremum of κ1 is a minimum attained in x∗ = 0 with value κ1(0) = −3. Consequently, κ1 is

increasing for x > 0 and its maximum on [xmin, 1] is attained in x∗ = 1.

The stationary points of the function κ2 in (4.23) are given by x = 0, x = 1
2
, x = 17

20
. Since κ2 is

a polynomial of degree 4 with positive leading coefficient the locally minima of κ2 are attained

at x = 0 and x = 17
20

. Consequently, the maxima of κ2 on [xmin, 1] are attained in x∗ = 1
2

and
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x∗ = 1. Using the symmetry the maxima of the function κ given in (4.21) on X are given by

(x∗1, y
∗
1) = (1, ymin), (x∗2, y

∗
2) = (1

2
, 1), (x∗3, y

∗
3) = (1, 1

2
), (x∗4, y

∗
4) = (1, 1).

Obviously, κ(x∗2, y
∗
2) = κ(x∗3, y

∗
3) = κ(x∗4, y

∗
4) = 0 and additionally κ(x∗1, y

∗
1) ≤ 0 for ymin ≤ 1

2
,

since the function

h(ymin) = κ1(1) = 60y4
min − 108y3

min + 51y2
min − 3

is increasing on [0, 1
2
] with h(1

2
) = 0. Consequently, the inequality (4.21) holds for all (x, y) ∈ X

and the design given by (4.20) is D-optimal. �

5.2 Proof of Theorem 4.1

(1) We have to solve the e2-optimal design problem in a linear regression model with a vector

of regression functions given by (3.5). For its solution we use Elfving’s theorem [see Elfving

(1952)], which states that a design ξ̃ with masses p1, . . . , pk at the points (x1, y1), . . . , (xk, yk) is

e2-optimal if and only if there exists a constant γ > 0 and constants ε1, . . . , εk ∈ {−1, 1}, such

that the vector γe2 has the representation

γe2 =
k∑
j=1

εjpjf(xj, yj), (4.24)

and is a boundary point of the Elving set

R = conv
({
εf(x, y) | (x, y) ∈ X ; ε ∈ {−1, 1}

})
(4.25)

(here conv(A) denotes the convex hull of a set A ⊂ R3). We now consider the design ξ̃ given

by (4.6). A similar reasoning as in Section 3.2 shows that in the case of j = 2 we may assume

without loss of generality that xmax = ymax = 1. Then it is easy to see that the design ξ̃ defined

in (4.6) satisfies (4.24) with k = 2, ε1 = −ε2 = 1, (x1, y1) = (1, 1), (x2, y2) = (x, 1) and

p1 =
x

1 + x
; p2 =

1

1 + x
; γ =

x(1− x)

1 + x
.

Therefore, it remains to prove that the corresponding vector γe2 = (0, γ, 0)T is a boundary

point of the Elfving set R defined in (4.25). For this purpose we consider the vector

n = (n1, n2, n3)T =
(

1− 1 + x

x(1− x)
,

1 + x

x(1− x)
, 0
)T
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and show that this vector defines a supporting hyperplane to the set R at γe2 = (0, γ, 0)T , i.e.,

(γe2)Tn = 1, (4.26)

zTn ≤ 1 for all z ∈ R. (4.27)

Condition (4.26) is obviously satisfied. In order to prove (4.27) we establish the sufficient

condition |fT (x, y)n| ≤ 1 for all (x, y) ∈ X , which can be rewritten as

−x(1− x) ≤ xy
(
− (x2 + 1) + (1 + x)x

)
≤ x(1− x). (4.28)

We now distinguish the cases

(i) 1 ≥ x ≥ 1+x2

1+x

(ii) 1+x2

1+x
> x > xmin.

(i) Here the first inequality in (4.28) is obviously satisfied and the second (upper) inequality

holds if it can be established for y = 1, that is

x2(1 + x)− x(x2 + 1)− x(1− x) ≤ 0.

This inequality holds for all x ∈ [ (−1+x)x
1+x

, 1] which proves (4.28) in the case (i).

(ii) Here the second inequality in (4.28) is obviously satisfied and the first (lower) inequality

holds if it can be established for y = 1, that is

h(x) = x2(1 + x)− x(x2 + 1) + x(1− x) ≥ 0.

The minimum of this function is attained at the point x∗ = 1+x2

2(1+x)
. For x̄ =

√
2 − 1

the corresponding minimum value is given by h(x∗) = 0 following that h(x) ≥ 0. For

x̄ = xmin >
√

2− 1 the point x∗ is not contained in the interval [xmin, 1]. For x > x∗ the

function h is increasing with h(xmin) = 0 such that (4.28) also holds in this case.

Consequently, by Elfving’s theorem the design (4.6) is e2-optimal in the linear regression model

defined by the vector (3.5).

(2) In order to prove that the design given by (4.7) is e3-optimal in the regression model defined

by (3.5), we define the permutation matrix

P =

1 0 0

0 0 1

0 1 0

 .
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and the information matrix

M̃P (ξ̃) = PM̃(ξ̃)P =

∫
X
xy(1, y, x)Txy(1, y, x)dξ̃(x, y) =

∫
X
f(y, x)fT (y, x)dξ̃(x, y).

Note that the permutation matrix P causes the exchange of the second and third component

of the vector (3.5). Moreover, by using Lemma 9.2.4 of Harville (1997) we get

cT3 M̃
−(ξ̃)c3 =

(
Kic

V

)2
eT3 M̃

−(ξ̃)e3 =
(
Kic

V

)2
eT2 P

TM̃−(ξ̃)Pe2 =
(
Kic

V

)2
eT2 M̃

−
P (ξ̃)e2.

By the first part of Theorem 4.1 it follows that (eT2 M̃
−
P (ξ̃)e2)−1 is maximised by the design ξ̃

given by (4.7). �

5.3 Proof of Theorem 4.2

Recall the definition of the weighted polynomial regression model (4.13) and note that in this

model the vector of regression functions is given by

f(x, q) = xg(x, q)

(
1

x

)
, (5.1)

where the function g is defined in (4.14). The information matrix of a design ξ̂ in this model is

given by

M̂(ξ̂) =

∫ xmax

xmin

f(x, q)fT (x, q)dξ̂(x) =

∫ xmax

xmin

x2g2(x, q)(1, x)(1, x)Tdξ̂(x). (5.2)

If the lower bound of the design space is given by xmin = 0, an optimal design does not contain

0 as support point. In order to prove this fact we consider the design

ξ̂ =

(
0 x2 . . . xk
ω1 ω2 . . . ωk

)
,

with mass ω1 > 0 at the point 0. Now consider the design

µ̂ =

(
x2 . . . xk
ω2

1−ω1
. . . ωk

1−ω1

)
, (5.3)

i.e., we remove the support point 0 and rescale the weights for the remaining support points

appropriately. Then we obtain the following inequality with respect to the Loewner ordering

M̂(ξ̂) = ω1M̂(δ0) + (1− ω1)M̂(µ̂) = (1− ω1)M̂(µ̂) ≤M(µ̂),
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where δt is the Dirac measure in t. The last inequality is strict, whenever M(µ̂) is non-singular.

Consequently, every design ξ̂ which contains 0 as support point can be improved by another

design µ̂ of the form (5.3). Since all optimality criteria Φ considered in this paper (in particular

the c-optimality criterion) are monotonically increasing with respect to the Loewner ordering it

follows that Φ(M̂(ξ̂)) ≤ Φ(M̂(µ̂)) and we always find an optimal design which does not contain

the point 0 in its support. Therefore we can restrict ourselves to the consideration of xmin > 0

throughout this section.

The following auxiliary result gives a solution of the c-optimal design problem for the vector

c = (1, 1)T ∈ R2.

Lemma 5.1 The c-optimal design for the vector c = (1, 1) ∈ R2 maximising(
(1, 1)M̂−(ξ̂)(1, 1)T

)−1

in the class if all designs on the interval [xmin, xmax] ⊂ (0, 1) satisfying (1, 1)T ∈ Range(M̂(ξ̂))

is given by

ξ̂∗(q) =

(
x̄(q) xmax

ω(q) 1− ω(q)

)
(5.4)

where ω(q) is defined by (4.17) and x̄(q) and xmax are the extremal points of the equi-oscillating

polynomial Ψ(x, q) introduced at the beginning of Section 4.2.

Proof. Recall that {xg(x, q), x2g(x, q)} is a Chebychev system and note that the definition of

the vector f(x, q) in (5.1) yields f(1, q) = c = (1, 1)T . As x0 = 1 /∈ [xmin, xmax] the c-optimal

design problem for the vector c = (1, 1)T is in fact an optimal extrapolation design problem for

the point x0 = 1. Therefore it follows from Theorem X.7.7 in Karlin and Studden (1966) that

the support points of ξ̂∗(q) are given by the extremal points of the equi-oscillating polynomial

Ψ(x, q) and the corresponding weights ω1(q), ω2(q) are given by

ω1(q) = 1− ω2(q) =
|L1(1, q)|

|L1(1, q)|+ |L2(1, q)|
,

were Li(x, q) = xg(x, q)(`i1 + `i2x) is the ith Lagrange interpolation polynomial with knots

x1 = x̄(q) and x2 = xmax defined by the property Li(xj) = δij, i = 1, 2, j = 1, 2 (here δij
ist the Kronecker symbol). A straightforward calculation now shows ω(q) is given by (4.17),

completing the proof of Lemma 5.1. �

It is also well known that the equi-oscillating polynomial Ψ(x, q) can be expressed in terms of

the optimal design ξ̂∗(q), that is

Ψ(x, q) =
(1, 1)M̂−1(ξ̂∗(q))(1, x)Txg(x, q)

((1, 1)M̂−1(ξ̂∗(q))(1, 1)T )1/2
(5.5)
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and the condition |Ψ(x, q)| ≤ 1 for all x ∈ [xmin, xmax] is just an equivalent formulation of the

equivalence theorem for c = (1, 1)T -optimality in the regression model (4.13) [see Karlin and

Studden (1966)].

We are now able to prove Theorem 4.2 using the equivalence theorem for c-optimality [see

Pukelsheim (2006)], which states that the design ξ̃(q∗) (here q∗ is defined by (4.18)) is c1-

optimal in the linear regression model defined by the vector (3.5) if and only if there exists a

generalised inverse G of the matrix M̃(ξ̃(q∗)) such that the inequality(
cT1Gf(x, y)

)2 ≤ κ := cT1 M̃
−(ξ̃(q∗))c1 (5.6)

holds for all (x, y) ∈ X . For a proof of this statement we use the notation

ξ̃ = ξ̃(q∗), ξ̂∗ = ξ̂∗(q∗), g(x) = g(x, q∗), x̄ = x̄(q∗),

and first construct an appropriate generalised inverse G of the matrix M̃(ξ̃) which can be used

in (5.6). For this purpose define

G = P−THP−1 , (5.7)

where the (3× 3)-matrices P and H are given by

P =

 1 0 0

0 1 0

1− q∗ q∗ 1

 , H =

(
M̂−1(ξ̂∗) (

√
κ

x̄g2(x̄)
, 0)T

0T2 0

)
, (5.8)

and M̂(ξ̂) and κ are defined in (5.2) and (5.6), respectively. Note that M̃(ξ̃) can be rewritten

in terms of P and M̂(ξ̂), that is

M̃(ξ̃) =

∫
X
f̃(x, y)f̃T (x, y)dξ̃(x, y) =

∫
X
xy(1, x, y)xy(1, x, y)Tdξ̃(x, y)

=

∫
X̂
xg(x)(1, x, g(x))xg(x)(1, x, g(x))Tdξ̂∗(x)

= P

∫
X̂
xg(x)(1, x, 0)xg(x)(1, x, 0)Tdξ̂∗(x)P T = P

(
M̂(ξ̂∗) 0

0T2 0

)
P T .
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By a straightforward calculation we have

M̃(ξ̃)GM̃(ξ̃) = P

(
M̂(ξ̂∗) 0

0T2 0

)
P TP−THP−1P

(
M̂(ξ̂∗) 0

0T2 0

)
P T

= P

(
M̂(ξ̂∗) 0

0T2 0

)(
M̂−1(ξ̂) (

√
κ

x̄g2(x̄)
, 0)T

0 0

)(
M̂(ξ̂∗) 0

0T2 0

)
P T

= P

(
M̂(ξ̂∗) 0

0T2 0

)
P T = M̃(ξ̃),

and it follows that G defined in (5.7) is a generalised inverse of the matrix M̃(ξ̃).

A simple calculation now shows κ = cT1 M̃
−(ξ̃)c1 = (1, 1)M̂−1(ξ̂∗)(1, 1)T and using (5.5) we

obtain for the left-hand side of (5.6)

(
cT1Gf(x, y)

)2
=

(
(1, 1)M̂−1(ξ̂∗)(1, x)Txy +

√
κ

x̄g2(x̄)
(y − g(x))xy

)2

=

(√
κ√
κ

(1, 1)M̂−1(ξ̂∗)(1, x)Txg(x)
y

g(x)
+
√
κ
g2(x)

g2(x̄)

(
y

g(x)
− 1

)
x

x̄

y

g(x)

)2

= κ

(
Ψ(x, q∗)

y

g(x)
+
g2(x)

g2(x̄)

(
y

g(x)
− 1

)
x

x̄

y

g(x)

)2

:= κτ 2(x, y) ,

where the last inequality defines the function τ in an obvious manner. Consequently, proving

that (5.6) is satisfied for all (x, y) ∈ X is equivalent to proving that |τ(x, y)| ≤ 1 for all

(x, y) ∈ X .

For the sake of transparency we therefore restrict ourselves to the case ymax = 1 and xmin ≤
xmax(

√
2 − 1). The other cases can be proved in a similar way but with substantially more

involved calculations. In this case it follows that q∗ = 0 and the function g reduces to g(x, 0) ≡ 1.

Then the design ξ̂∗ is given by

ξ̂∗ = ξ̂∗(0) =

(
x̄ xmax

xmax(1−xmax)
xmax(1−xmax)+x̄(1−x̄)

x̄(1−x̄)
xmax(1−xmax)+x̄(1−x̄)

)
, x̄ = xmax(

√
2− 1) (5.9)

with the corresponding oscillating polynomial Ψ(x, 0) = −
(
x
x̄

)2
+ 2x

x̄
. Consequently,

τ(x, y) = y
x

x̄

(
y +

x

x̄
− 3
)
. (5.10)

The non-zero stationary point of τ is given by (x∗, y∗) = (x̄, 1) which is a minimum of τ with

τ(x∗, y∗) = −1.
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Now we consider τ on the boundary of X = [xmin, xmax]× [ymin, 1]. First, we set y = ymax = 1

so that τ(x, y) reduces to

τ1(x) = τ(x, ymax) =
x

x̄

(x
x̄
− 2
)
,

which is a parabola with minimum in x∗ = x̄ and |τ1(x∗)| = 1 ≤ 1. Moreover, τ1(xmax) =

(
√

2 − 1)(
√

2 + 1) = 1 and for τ1(xmin) ∈ (τ1(x̄), τ1(0)) = (−1, 0), which yields |τ1(x)| ≤ 1 for

all x ∈ [xmin, xmax]. Next, we set y = ymin so that τ(x, y) reduces to

τ2(x) = τ(x, ymin) = ymin
x

x̄

(
ymin +

x

x̄
− 3
)

which is again a parabola with minimum in x∗ = 3−ymin

2
x̄ and |τx(x∗)| = |

(
3−ymin

2

)2
ymin|.

Maximising the later term with respect to ymin ∈ (0, ymax) it follows that |τ2(x∗)| ≤ 49
54
≤ 1.

By a similar argument it also follows that |τ2(xmax)| ≤ 1 and |τ2(xmin)| ≤ 1. Setting x = xmin

and x = xmax and using similar arguments we get |τ(xmin, y)| ≤ 1 and |τ(xmax, y)| ≤ 1 for all

y ∈ [ymin, 1], respectively.

Consequently, the inequality |τ(x, y)| ≤ 1 holds for all (x, y) ∈ X and therefore the inequality

(5.6) is satisfied (x, y) ∈ X , which proves the c1-optimality of ξ̃ = ξ̃(0). �
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