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Abstract

In this paper optimal designs for regression problems with spherical predictors of

arbitrary dimension are considered. Our work is motivated by applications in mate-

rial sciences, where crystallographic textures such as the missorientation distribution

or the grain boundary distribution (depending on a four dimensional spherical pre-

dictor) are represented by series of hyperspherical harmonics, which are estimated

from experimental or simulated data.

For this type of estimation problems we explicitly determine optimal designs with

respect to Kiefers Φp-criteria and a class of orthogonally invariant information cri-

teria recently introduced in the literature. In particular, we show that the uniform

distribution on the m-dimensional sphere is optimal and construct discrete and im-

plementable designs with the same information matrices as the continuous optimal

designs. Finally, we illustrate the advantages of the new designs for series estima-

tion by hyperspherical harmonics, which are symmetric with respect to the first and

second crystallographic point group.

1 Introduction

Regression problems with a predictor of spherical nature arise in various fields such as

geology, crystallography, astronomy (cosmic microwave background radiation data), the

calibration of electromagnetic motion-racking systems or the representation of spherical

viruses [see Chapman et al. (1995), Zheng et al. (1995), Chang et al. (2000), Schaeben and

van den Boogaart (2003), Genovese et al. (2004), Shin et al. (2007) among many others]

and their parametric and nonparametric estimation has found considerable attention in

the literature.
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Several methods for estimating a spherical regression function nonparameterically have

been proposed in the literature. Di Marzio et al. (2009, 2014) investigate kernel type meth-

ods, while spherical splines have been considered by Wahba (1981) and Alfed et al. (1996).

A frequently used technique is that of series estimators based on spherical harmonics [see

Abrial et al. (2008) for example], which - roughly speaking - generalise estimators of a

regression function on the line based on Fourier series to data on the sphere. Alternative

series estimators have been proposed by Narcowich et al. (2006), Baldi et al. (2009) and

Monnier (2011) who suggest to use spherical wavelets (needlets) in situations where better

localisation properties are required. Most authors consider the 2-dimensional sphere S3

in R3 as they are interested in the development of statistical methodology for concrete

applications such as earth and planetary sciences.

On the other hand, regression models with spherical predictors with a dimension larger

than three have also found considerable attention in the literature, mainly in physics,

chemistry and material sciences. Here predictors on the unit sphere

Sm = {x ∈ Rm : ||x||2 = 1},

with m > 3 and series expansions in terms of the so called hyperspherical harmonics

are considered. These functions form an orthonormal system with respect to the uni-

form distribution on the sphere Sm and have been, for example, widely used to solve the

Schroedinger equation by reducing the problem to a system of coupled ordinary differ-

ential equations in a single variable [see for example Avery and Wen (1982) or Krivec

(1998) among many others]. Further applications in this field can be found in Meremi-

anin (2009), who proposed the use of hyperspherical harmonics for the representation of

the wave function of the hydrogen atom in the momentum space. Similarly, Lombardi

et al. (2016) suggested to represent the potential energy surfaces (PES) of atom-molecule

or molecular dimers interactions in terms of a series of four-dimensional hyperspherical

harmonics. Their method consists in fitting a certain number of points of the PES, previ-

ously determined, selected on the basis of geometrical and physical characteristics of the

system. The resulting potential energy function is suitable to serve as a PES for molecular

dynamics simulations. Hosseinbor et al. (2013) applied four-dimensional hyperspherical

harmonics in medical imaging and estimated the coefficients in the corresponding series

expansion via least squares methods to analyse brain subcortical structures. A further

important application of series expansions appears in material sciences, where crystallo-

graphic textures as quaternion distributions are represented by means of series expansions

based on (symmetrized) hyperspherical harmonics [see Bunge (1993), Zheng et al. (1995),

Mason and Schuh (2008) and Mason (2009) among many others].

It is well known that a carefully designed experiment can improve the statistical inference

in regression analysis substantially, and numerous authors have considered the problem
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of constructing optimal designs for various regression models [see, for example, the mono-

graphs of Fedorov (1972), Silvey (1980) and Pukelsheim (2006)]. On the other hand,

despite of its importance, the problem of constructing optimal or efficient designs for

least squares (or alternative) estimation of the coefficients in series expansions based on

hyperspherical harmonics has not found much interest in the statistical literature, in par-

ticular if the dimension m is large. The case m = 2 corresponding to Fourier regression

models has been discussed intensively [see Karlin and Studden (1966), page 347, Lau and

Studden (1985), Kitsos et al. (1988) and Dette and Melas (2003) among many others].

Furthermore, optimal designs for series estimators in terms of spherical harmonics (that

is, for m = 3) have been determined by Dette et al. (2005) and Dette and Wiens (2009),

however, to the best of our knowledge no results are available for hyperspherical harmonics

if the dimension of the predictor is larger than 3.

In the present paper we consider optimal design problems for regression models with a

spherical predictor of dimension m > 3 and explicitly determine optimal designs for series

estimators in hyperspherical harmonic expansions. In Section 2 we introduce some basic

facts about optimal design theory and hyperspherical harmonics, which will be required

for the results presented in this paper. Analytic solutions of the optimal design problem

are given in Section 3.1, where we determine optimal designs with respect to all Kiefer’s

Φp-criteria [see Kiefer (1974)] as well as with respect to a class of optimality criteria re-

cently introduced by Harman (2004). As it turns out the approximate optimal designs

are absolute continuous distributions on the sphere and thus cannot be directly imple-

mented in practice. Therefore, in Section 3.2 we provide discrete designs with the same

information matrices as the continuous optimal designs. To achieve this we construct new

Gaussian quadrature formulas for integration on the sphere, which are of own interest.

In Section 4 we investigate the performance of the optimal designs determined in Section

3.2 when they are used in typical applications in material sciences. Here energy functions

are represented in terms of series of symmetrized hyperspherical harmonics which are ob-

tained as well as defined as linear combinations of the hyperspherical harmonics such that

the symmetry of a crystallographic point group is reflected in the energy function. It is

demonstrated that the derived designs have very good efficiencies (for the first crystallo-

graphic point group the design is in fact D-optimal). Finally, a proof of a technical result

can be found in Appendix A.

The results obtained in this paper provide a first step towards the solution of optimal

design problems for regression models with spherical predictors if the dimension is m > 3

and offer a deeper understanding of the general mathematical structure of hyperspherical

harmonics, which so far were only considered in the cases m = 2 and m = 3.
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2 Optimal designs and hyperspherical harmonics

2.1 Optimal design theory

We consider the linear regression model

E[Y |x] = fT (x)c ; x ∈ X , (2.1)

where fT (x) = (f1(x), . . . , fD(x)) is a vector of linearly independent regression functions,

c ∈ RD is the vector of unknown parameters, x denotes a real-valued covariate which

varies in a compact design space, say X (which will be Sm in later sections), and different

observations are assumed to be independent with the same variance, say σ2 > 0. Following

Kiefer (1974) we define an approximate design as a probability measure ξ on the set X
(more precisely on its Borel field). If the design ξ has finite support with masses wi at the

points xi (i = 1, . . . , k) and n observations can be made by the experimenter, this means

that the quantities win are rounded to integers, say ni, satisfying
∑k

i=1 ni = n, and the

experimenter takes ni observations at each location xi (i = 1, . . . , k). The information

matrix of the least squares estimator is defined by

M(ξ) =

∫
X
f(x)fT (x)dξ(x), (2.2)

[see Pukelsheim (2006)] and measures the quality of the design ξ as the matrix σ2

n
M−1(ξ)

can be considered as an approximation of the covariance matrix σ2(XTX)−1 of the least

squares estimator in the corresponding linear model Y = Xc + ε. Similarly, if the main

interest is the estimation of s linear combinations KTc, where K ∈ RD×s is a given

matrix of rank s ≤ D, the covariance matrix of the least squares estimator for these

linear combinations is given by σ2

n
(KT (XTX)−K), where (XTX)− denotes the general-

ized inverse of the matrix XTX and it is assumed that range(K) ⊂ range(XTX). The

corresponding analogue of its inverse for an approximate design ξ satisfying the range

inclusion range(K) ⊂ range(M(ξ)) is given by (up to the constant σ2

n
)

CK(ξ) = (KTM−(ξ)K)−1 . (2.3)

It follows from Pukelsheim (2006), Section 8.3, that for each design ξ there always exists

a design ξ̄ with at most s(s+ 1)/2 support points such that CK(ξ) = CK(ξ̄). An optimal

design maximises an appropriate functional of the matrixM(ξ) and numerous criteria have

been proposed in the literature to discriminate between competing designs [see Pukelsheim

(2006)]. Throughout this paper we consider Kiefer’s Φp-criteria, which are defined for

−∞ ≤ p < 1 as

Φp(ξ) = (tr
{(
CK(ξ))p

})1/p
= (tr

{(
KTM−(ξ)K)−p

})1/p
. (2.4)
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Following Kiefer (1974), a design ξ∗ is called Φp-optimal for estimating the linear com-

binations KTc if ξ∗ maximises the expression Φp(ξ) among all approximate designs ξ for

which KTc is estimable, that is, range(K) ⊂ range(M(ξ)). This family of optimality

criteria includes the well-known criteria of D-, E- and A-optimality corresponding to the

cases p = 0, p = −∞ and p = −1, respectively.

Moreover, we consider a generalised version of the criterion of E-optimality introduced

by Harman (2004) [see also Filov et al. (2011)]. For the information matrix M(ξ) let

λ(M(ξ)) = (λ1(M(ξ)), . . . , λD(M(ξ)))T be the vector of the eigenvalues of M(ξ) in non-

decreasing order. Then, for s ∈ 1, . . . , D, we define ΦEs(ξ) by the sum of the s-th smallest

eigenvalues of M(ξ), that is,

ΦEs(ξ) =
s∑
i=1

λi(M(ξ)). (2.5)

For a fixed s ∈ {1, . . . , D} we call a design ξ∗ ΦEs-optimal if it maximises the term ΦEs(ξ)

among all approximate designs ξ.

In general, the determination of Φp-optimal designs and of ΦEs-optimal designs in an

explicit form is a very difficult task and the corresponding optimal design problems have

only been solved in rare circumstances [see for example Cheng (1987), Dette and Studden

(1993), Pukelsheim (2006), p.241, and Harman (2004)]. In the following discussion we will

explicitly determine Φp-optimal designs for regression models which arise from a series

expansion of a function on the m-dimensional sphere Sm in terms of hyperspherical har-

monics. It turns out that the Φp-optimal designs are also ΦEs-optimal for an appropriate

choice of s.

We introduce the hyperspherical harmonics next.

2.2 Hyperspherical harmonics

Assume that the design space is given by the m-dimensional sphere Sm = {x ∈ Rm :

||x||2 = 1}. The hyperspherical harmonics are functions of m − 1 dimensionless vari-

ables, namely the hyperangles, which describe the points x = (x1, . . . , xm)T ∈ Sm on the

hypersphere by the equations

x1 = cos θ1, (2.6)

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2 cos θ3,
...

...

xm−1 = sin θ1 . . . sin θm−2 cosφ,

xm = sin θ1 . . . sin θm−2 sinφ,
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where θi ∈ [0, π] for all i = 1, . . . ,m − 2, φ ∈ [−π, π] [see, for example, Andrews et al.

(1991) or Meremianin (2009)]. As noted by Dokmanić and Petrinović (2010), this choice

of coordinates is not unique but rather a matter of convenience since it is a natural

generalisation of the spherical polar coordinates in R3.

In the literature, hyperspherical harmonics are given explicitly in a complex form (see, for

example, Vilenkin (1968) and Avery and Wen (1982)). Following the notation in Avery

and Wen (1982), they are defined as

Ỹλ,µm−3,±µm−2(θm−2, φ) = Ãλ,µm−2

m−2∏
i=1

[
C
µi+

m−i−1

µi−1−µi (cos θi)(sin θi)
µi
]
e±iµm−2φ,

where θm−2 = (θ1, . . . , θm−2), µk = (µ1, . . . , µk) for k = m− 2,m− 3, and

Ãλ,µm−2
=

1√
2π

m−2∏
i=1

[22µi+m−i−3(µi−1 − µi)!(2µi−1 +m− i− 1)Γ2(µi + m−i−1
2

)

π(µi−1 + µi +m− i− 2)!

]1/2

,

is a normalising constant, λ := µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µm−2 ≥ 0 are a set of integers and

the functions

C
µi+

m−i−1
2

µi−1−µi
(
x
)
,

are the Gegenbauer polynomials (of degree µi−1 − µi ∈ N0 with parameter µi + m−i−1
2

),

which are orthogonal with respect to the measure

(1− x2)µi+(m−i−1)/2−1/2I[−1,1](x)dx,

(here IA(x) denotes the indicator function of the set A). The complex hyperspherical func-

tions are orthogonal to their corresponding complex conjugate and form an orthonormal

basis of the space of square integrable functions with respect to the uniform distribution

on the sphere

L2(Sm) = {f : Sm → C |
∫
Sm
|f(x)|2dx <∞}.

In fact the constants Ãλ,µm−2
are chosen based on this property [see, for example, Avery

and Wen (1982) for more details].

However, as mentioned in Mason and Schuh (2008), expansions of real-valued functions

on the sphere are easier to handle in terms of real hyperspherical harmonics which are
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obtained from the complex hyperspherical harmonics via the linear transformations

Yλ,µm−3,µm−2(θm−2, φ) =
(−1)µm−2 [Ỹλ,µm−3,µm−2 + Ỹλ,µm−3,−µm−2 ]√

2

= Aλ,µm−3

m−3∏
i=1

[
C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µi
]

×Bµm−3,µm−2P
µm−2
µm−3

(cos θm−2) cos(µm−2φ),

Yλ,µm−3,−µm−2(θm−2, φ) =
(−i)(−1)µm−2 [Ỹλ,µm−3,µm−2 − Ỹλ,µm−3,−µm−2 ]√

2

= Aλ,µm−3

m−3∏
i=1

[
C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µi
]

×Bµm−3,µm−2P
µm−2
µm−3

(cos θm−2) sin(µm−2φ),

Yλ,µm−3,0(θm−2, φ) = (−1)µm−2Ỹλ,µm−3,0

= Aλ,µm−3

m−3∏
i=1

[
C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µi
]

×
Bµm−3,0√

2
P 0
µm−3

(cos θm−2),

(2.7)

where

Aλ,µm−3
=

m−3∏
i=1

[22µi+m−i−3(µi−1 − µi)!(2µi−1 +m− i− 1)Γ2(µi + m−i−1
2

)

π(µi−1 + µi +m− i− 2)!

]1/2

, (2.8)

Bµm−3,µm−2 =
[2(2µm−3 + 1)(µm−3 − µm−2)!

4π(µm−3 + µm−2)!

]1/2

, (2.9)

and P µm−2
µm−3

(cos θm−2) is the associated Legendre polynomial which can be expressed in

terms of a Gegenbauer polynomial via

(−1)µm−2
(2µm−2)!

2µm−2(µm−2)!
(sin θm−2)µm−2C

µm−2+ 1
2

µm−3−µm−2
(cos θm−2) = P µm−2

µm−3
(cos θm−2).

It is easy to check that in the case of R3, the expressions in (2.7), (2.8) and (2.9) give the

well known spherical harmonics involving only the associated Legendre polynomial [see

Chapter 9 in Andrews et al. (1991) for more details].

The real hyperspherical harmonics defined in (2.7), (2.8) and (2.9) preserve the orthogo-

nality properties of complex hyperspherical harmonics proven in Avery and Wen (1982).

In other words, the real hyperspherical harmonics form an orthonormal basis of the Hilbert

space

L2(Sm, dΩm) =
{
g : Sm → R |

∫
|g(θm−2, φ)|2dΩm <∞

}
,
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that is,∫
Yλ,µm−3,µm−2(θm−2, φ)Yλ′,µm−3

′,µ′m−2
(θm−2, φ) dΩm = δλλ′

m−2∏
i=1

δµiµ′i , (2.10)

where

dΩm = (sin θ1)m−2dθ1(sin θ2)m−3dθ2 . . . (sinθm−2)dθm−2dφ,

is the element of solid angle.

We now consider the linear regression model (2.1), where the vector of regression functions

is obtained by a truncated expansion of a function g ∈ L2(Sm, dΩm) of order, say, d in

terms of hyperspherical harmonics, that is,

d∑
λ=0

λ∑
µ1=0

. . .

µm−3∑
µm−2=−µm−3

cλ,µm−3,µm−2Yλ,µm−3,µm−2(θm−2, φ).

Consequently, we obtain form (2.1) (using the coordinates θm−2 = (θ1, . . . , θm−2), φ)

E[Y |θm−2, φ] = fTd (θm−2, φ)c, (2.11)

where

fd(θm−2, φ) =
(
Y0,0,...,0(θm−2, φ), Y1,0,...,0(θm−2, φ), Y1,1,0,...,0(θm−2, φ),

. . . , Y1,1,...,1,−1(θm−2, φ), . . . , Yd,d,...,d(θm−2, φ)
)T
,

is the vector of hyperspherical harmonics of order d and the vector of parameters is given

by

c = (c0,0,...,0, c1,0,...,0, c1,1,0,...,0, . . . , c1,1,...,1,−1, . . . , cd,d,...,d)
T .

Note that the dimension of the vectors fd and c is

D :=
d∑

λ=0

λ∑
µ1=0

. . .

µm−4∑
µm−3=0

µm−3∑
µm−2=−µm−3

1 =
d∑

λ=0

(m+ 2λ− 2)(λ+m− 3)!

λ!(m− 2)!
, (2.12)

where the expression for the sums over the µi’s (i = 1, . . . ,m− 2) is obtained from Avery

and Wen (1982).

3 Φp- and ΦEs- optimal designs for hyperspherical har-

monics

3.1 Optimal designs with a Lebesgue density

In this section we determine Φp-optimal designs for estimating the parameters in a series

expansion of a function defined on the unit sphere Sm. The corresponding regression
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model is defined by (2.11) and as mentioned in Section 2.1 a Φp-optimal (approximate)

design maximises the criterion (2.4) in the class of all probability measures ξ on the set

[0, π]m−2 × [−π, π] satisfying the range inclusion range(K) ⊂ range(M(ξ)), where the

information matrix M(ξ) is given by

M(ξ) =

∫ π

−π

∫ π

0

. . .

∫ π

0

fd(θm−2, φ)fTd (θm−2, φ) dξ(θm−2, φ).

We are interested in finding a design that is efficient for the estimation of the Fourier

coefficients corresponding to the s(k) hyperspherical harmonics

Yk,0,...,0, Yk,1,0,...,0, . . . , Yk,...,k,−k, . . . , Yk,...,k,k,

where

s(k) =
(m+ 2k − 2)(k +m− 3)!

k!(m− 2)!
, (3.1)

and k ∈ {0, . . . , d} denotes a given level of resolution. To relate this to the definition

of the Φp-optimality criteria, let q ∈ N0, 0 ≤ k0 < k1 < . . . < kq ≤ d and 0k,l be the

s(k)× s(l) matrix with all entries equal to 0. Define the matrix

KT = (Kj,l)
l=0,...,d
j=0,...,q, (3.2)

where

Kj,l =

{
0kj ,l l 6= kj

Is(kj) l = kj
, (3.3)

Ia denotes the a× a identity and 0a,b is an a× b matrix with all entries equal to 0. Note

that K ∈ RD×s where D =
∑d

λ=0 s(λ) is defined in (2.12), and that KTc ∈ Rs defines a

vector with

s =

q∑
j=0

s(kj) =

q∑
j=0

(m+ 2kj − 2)(kj +m− 3)!

kj!(m− 2)!
, (3.4)

components, that is{
ckj ,µ1,...,µm−2|kj ≥ µ1 ≥ . . . ≥ µm−3;−µm−3 ≤ µm−2 ≤ µm−3; j = 0, . . . , q

}
, (3.5)

(s ≤ D). The following theorem shows that the uniform distribution on the hypersphere

is ΦEs- and Φp-optimal for estimating the parameters KTc (for any −∞ ≤ p < 1) .

Theorem 3.1. Let p ∈ [−∞, 1), 0 ≤ k0 < k1 < . . . < kq ≤ d be given indices and denote

by K ∈ RD×s the matrix defined by (3.2) and (3.3). Consider the design given by the

uniform distribution on the hypersphere, that is,

ξ∗ = ξ∗(dθ1, . . . , dθm−2, dφ) =
dΩm

Ω̃
(3.6)

=
1

Ω̃
(sin θ1)m−2dθ1(sin θ2)m−3dθ2 . . . (sin θm−2)dθm−2dφ,
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where Ω̃ is a normalising constant given by

Ω̃ =

∫ π

−π

∫ π

0

. . .

∫ π

0

(sin θ1)m−2dθ1(sin θ2)m−3dθ2 . . . (sinθm−2)dθm−2dφ =
Nm

(m− 2)!!
,

(3.7)

Nm = 2(m− 2)!!πm/2/Γ(m/2) and the double factorial n!! for n ∈ N is defined by

n!! =


∏n

2
k=1(2k) n is even∏n+1

2
k=1 (2k − 1) n is odd

.

(i) The information matrix of ξ∗ is given by M(ξ∗) = 1
Ω̃
ID, where D is defined in (2.12).

(ii) The design ξ∗ is Φp-optimal for estimating the linear combination KTc in the re-

gression model (2.11).

(iii) Let s =
∑q

i=0 s(ki) be the number of considered hyperspherical harmonics where

s(ki) is defined by (3.1). Then the design ξ∗ defined by (3.6) is also ΦEs-optimal.

Proof. We note that the explicit expression for the normalising constant Ω̃ in (3.7) is

given in equation (30) in Wen and Avery (1985). Let ξ∗ denote the design corresponding

to the density defined by (3.6) and (3.7). Then due to the orthonormality property of the

real hyperspherical harmonics, given in equation (2.10), it follows that

M(ξ∗) =
1

Ω̃
ID, (3.8)

where Ω̃ is defined in equation (3.7). This proves part (i) of the Theorem.

For a proof of (ii) let p > −∞. According to the general equivalence theorem in

Pukelsheim (2006), Section 7.20, the measure ξ∗ is Φp-optimal if and only if the inequality

fTd (θm−2, φ)Ω̃K
(
KT Ω̃K

)−p−1

KT Ω̃fd(θm−2, φ) ≤ tr
{(
KT Ω̃K

)−p}
, (3.9)

holds for all θm−2 ∈ [0, π]m−2 and φ ∈ [−π, π].

From the definition of the matrix K given in equations (3.2) and (3.3) we have that

KTK = Is where s =
∑q

j=0 s(kj) and s(kj) is given in (3.1). Therefore, condition (3.9)

reduces to

s ≥
q∑
j=0

kj∑
µ1=0

. . .

µm−4∑
µm−3=0

µm−3∑
µm−2=−µm−3

Ω̃
(
Ykj ,µm−3,µm−2(θm−2, φ)

)2
. (3.10)
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Now the right-hand side can be simplified observing the sum rule for real hyperspherical

harmonics, that is

λ∑
µ1=0

. . .

µm−3∑
µm−2=−µm−3

(
Yλ,µm−3,µm−2(θm−2, φ)

)2

=
(m+ 2λ− 2)(m− 4)!!(λ+m− 3)!

Nmλ!(m− 3)!
,

(3.11)

where the constant Nm is given by

Nm =
2(m− 2)!!πm/2

Γ
(
m
2

) =

{
(2π)m/2 m is even

2(2π)(m−2)/2 m is odd
, (3.12)

(see Avery and Wen (1982)). Therefore, the right-hand side of (3.10) becomes

q∑
j=0

Nm

(m− 2)!!

(m+ 2kj − 2)(m− 4)!!(kj +m− 3)!

Nmkj!(m− 3)!
=

q∑
j=0

(m+ 2kj − 2)(kj +m− 3)!

kj!(m− 2)!
= s,

where the last equality follows from the definition of s in (3.4). Consequently, the right-

hand side and left-hand side of (3.10) coincide, which proves that the design ξ∗ corre-

sponding to the density defined by (3.6) and (3.7) is Φp-optimal for any p ∈ (−∞, 1) and

any matrix K of the form (3.2) and (3.3). The remaining case p = −∞ follows from

Lemma 8.15 in Pukelsheim (2006), which completes the proof of part (ii).

For a proof of part (iii) let diag(γ1, . . . , γD) denote a diagonal matrix with entries γ1, . . . , γD
and let

∂ΦEs(ξ
∗) =

{
diag(γ1, . . . , γD) ∈ RD×D

∣∣∣ γ1, . . . , γD ∈ [0, 1],
D∑
k=1

γk = s
}
, (3.13)

denote the subgradient of ΦEs . Then it follows from Theorem 4 of Harman (2004), that

the design ξ∗ is ΦEs-optimal if and only if there exists a matrix Γ ∈ ∂ΦEs(ξ
∗) such that

the inequality

fTd (θm−2, φ)Γfd(θm−2, φ) ≤
s∑

k=1

λk(M(ξ∗)), (3.14)

holds for all θm−2 ∈ [0, π]m−2 and φ ∈ [−π, π].

We now set Γ = KKT where K is defined by the equations (3.2) and (3.3). Therefore Γ

is a diagonal matrix with entries 0 or 1, and

tr(Γ) = tr(KKT ) = tr(KTK) = tr(Is) = s,

that is, the matrix Γ is contained in the subgradient ∂ΦEs(ξ
∗). Using this matrix in (3.14)

the left-hand side of the inequality reduces to

fTd (θm−2, φ)Γfd(θm−2, φ) =

q∑
j=0

kj∑
µ1=0

. . .

µm−4∑
µm−3=0

µm−3∑
µm−2=−µm−3

(
Ykj ,µm−3,µm−2(θm−2, φ)

)2
,
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and part (i) yields for the right hand side of the inequality

s∑
k=1

λk(M(ξ∗)) = s
Ω̃
,

where Ω̃ is defined by (3.7). Consequently, the inequality (3.14) is equivalent to (3.10),

which has been proved in the proof of part (ii). This completes the proof of Theorem

3.1.

3.2 Discrete Φp- and ΦEs
- optimal designs

While the result of the previous section provides a very elegant solution to the Φp-optimal

design problem from a mathematical point of view, the derived designs ξ∗ cannot be

directly implemented as the optimal probability measure is absolute continuous. In

practice, if n ∈ N observations are available to estimate the parameters in the lin-

ear regression model (2.11), one has to specify a number, say k, of different points

(θ1m−2, φ
1), . . . , (θkm−2, φ

k) ∈ [0, π]m−2 × [−π, π] defining by (2.6) the locations on the

sphere where observations should be taken, and relative frequencies nj/n defining the

proportion of observations taken at each point (
∑k

j=1 nj = n). The maximisation of the

function (2.4) in the class of all measures of this type yields a non-linear and non-convex

discrete optimisation problem, which is usually intractable.

Therefore, for the construction of optimal or (at least) efficient designs we proceed as

follows. Due to Caratheodory’s theorem [see, for example, Silvey (1980)] there always

exists a probability measure ξ on the set [0, π]m−2 × [−π, π] with at most D(D + 1)/2

support points such that the information matrices of ξ and ξ∗ coincide, that is,

M(ξ) = M(ξ∗) =
1

Ω̃
ID. (3.15)

We now identify such a design ξ assigning at the points {(θjm−2, φ
j)}kj=1 the weights

{ωj}kj=1 = {(ωj1, ω
j
2, . . . , ω

j
m−2, ω

j
φ)}kj=1 such that the identity (3.15) is satisfied, where

we simultaneously try to keep the number k of support points “small”. The numbers

nj specifying the numbers of repetitions at the different experimental conditions in the

concrete experiment are finally obtained by rounding the numbers nωj to integers [see,

for example, Pukelsheim and Rieder (1992)]. We begin with an auxiliary result about

Gauss quadrature which is of independent interest and is proven in the appendix.

Lemma 3.1. Let a be a positive and integrable weight function on the interval [−1, 1]

with ã =
∫ 1

−1
a(x) dx, and let −1 ≤ x1 < x2 < . . . < xr ≤ 1 denote r ∈ N points with

corresponding positive weights ω1, . . . , ωr (
∑r

j=1 ωj = 1). Then the points xi and weights

12



ωi generate a quadrature formula of degree z ≥ r, that is∫ 1

−1

a(x)x` dx = ã

r∑
j=1

ωjx
`
j, ` = 0, . . . , z, (3.16)

if and only if the following two conditions are satisfied:

(A) The polynomial Vr(x) =
∏r

j=1(x− xj) is orthogonal with respect to the weight func-

tion a(x) to all polynomials of degree z − r, that is,∫ 1

−1

Vr(x)a(x)x` dx = 0, ` = 0, . . . , z − r. (3.17)

(B) The weights ωj are given by

ωj =
1

ã

∫ 1

−1

a(x)`j(x) dx j = 1, . . . , r, (3.18)

where `j(x) =
∏r

k=1,k 6=j
x−xk
xk−xj

denotes the jth Lagrange interpolation polynomial with

nodes x1, . . . , xr.

In the following, we use Lemma 3.1 for z = 2d and the weight function

a(x) = (1− x2)(m−i−2)/2.

Note that the Gegenbauer polynomials C
(m−i−1)/2
r (x) are orthogonal with respect to the

weight function a(x) = (1−x2)(m−i−2)/2 on the interval [−1, 1] [see Andrews et al. (1991),

p. 302]. Hence the r roots of C
(m−i−1)/2
r (x) have multiplicity 1, are real and located in

the interval (−1, 1). As condition (3.17) is satisfied for a(x) = (1 − x2)(m−i−2)/2, they

define together with the corresponding (positive) weights in (3.18) a Gaussian quadrature

formula. Therefore, it follows that for any r ∈ {d + 1, . . . , 2d} there exists at least one

quadrature formula {xji , ω
j
i }rj=1 for every i = 1, . . . ,m − 2, such that (3.16) holds with

a(x) = (1 − x2)(m−i−2)/2. We consider quadrature formulas of this type and define the

designs

ζi =

(
θi1 . . . θir
ωi1 . . . ωir

)
, (3.19)

on [0, π], where

θij = arccosxij i = 1, . . . ,m− 2; j = 1, . . . , r. (3.20)

Similarly we define for any t ∈ N and any β ∈ (− t+1
t
π,−π] a design ν = ν(β, t) on the

interval [−π, π] by

ν = ν(β, t) =

(
φ1 . . . φt

1
t

. . . 1
t

)
, (3.21)

13



where the points φj are given by

φj = β +
2πj

t
, j = 1, . . . , t. (3.22)

The following theorem shows that designs of the form

ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν, (3.23)

are Φp- as well as ΦEs-optimal designs.

Theorem 3.2. Let p ∈ [−∞, 1), 0 ≤ k0 < k1 < . . . < kq ≤ d and K be a matrix

defined by (3.2) and (3.3). For any t ≥ 2d + 1 and any r ∈ {d + 1, . . . , 2d}, the design

ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν defined in (3.23) is Φp-optimal for estimating the coefficients KTc.

Moreover, if s =
∑q

i=0 s(kj) is the number of considered hyperspherical harmonics defined

in (3.4), then for any t ≥ 2d+1 and any r ∈ {d+1, . . . , 2d}, the design ζ1⊗ . . .⊗ζm−2⊗ν
defined in (3.23) is ΦEs-optimal.

Proof. The assertion can be established by showing the identity

M(ζ1 ⊗ . . .⊗ ζm−2 ⊗ ν) =
1

Ω̃
ID, (3.24)

where the dimension D is defined in (2.12). Let

ψ(φ) = (ψ−d(φ), ψ−d+1(φ), . . . , ψd(φ))T

= (
√

2 sin(dφ), . . . ,
√

2 sin(φ), 1,
√

2 cos(φ), . . . ,
√

2 cos(dφ))T .

Then the real hyperspherical harmonics defined in (2.7), (2.8) and (2.9) can be rewritten

as

Yλ,µm−3,µm−2(θm−2, φ) =
m−3∏
i=1

γ̃µi−1,µi

m−3∏
i=1

[
C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µi
]

×γµm−3,µm−2P
|µm−2|
µm−3

(cos θm−2)ψµm−2(φ),

where the constants γ̃µi−1,µi and γµm−3,µm−2 are defined by

γ̃µi−1,µi =
[22µi+m−i−3(µi−1 − µi)!(2µi−1 +m− i− 1)Γ2(µi + m−i−1

2
)

π(µi−1 + µi +m− i− 2)!

]1/2

,

and

γµm−3,µm−2 =
[(2µm−3 + 1)(µm−3 − |µm−2|)!

4π(µm−3 + |µm−2|)!

]1/2

.
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Therefore, the identity (3.24) is equivalent to the system of equations∫
Yλ,µm−3,µm−2(θm−2, φ)Yλ′,µm−3

′,µ′m−2
(θm−2, φ) d(ζ1 ⊗ . . .⊗ ζm−2)(θm−2) dν(φ)

=
m−3∏
i=1

γ̃µi−1,µi

m−3∏
i=1

γ̃µ′i−1,µ
′
i
γµm−3,µm−2γµ′m−3,µ

′
m−2

×
∫ π

−π

∫ π

0

. . .

∫ π

0

m−3∏
i=1

[
C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µi
]
P |µm−2|
µm−3

(cos θm−2)ψµm−2(φ)

m−3∏
i=1

[
C
µ′i+

m−i−1
2

µ′i−1−µ′i
(cos θi)(sin θi)

µ′i

]
P
|µ′m−2|
µ′m−3

(cos θm−2)ψµ′m−2
(φ) dζ1(θ1) . . . dζm−2(θm−2) dν(φ)

=
1

Ω̃
δλλ′δµ1µ′1 . . . δµm−2µ′m−2

,

where

λ, λ′ = 0, . . . , d; µ1 = 0, . . . , λ; . . . ; µm−3 = 0, . . . , µm−4; µm−2 = −µm−3, . . . , µm−3;

µ′1 = 0, . . . , λ′ ; . . . ; µ′m−3 = 0, . . . , µ′m−4; µ′m−2 = −µ′m−3, . . . , µ
′
m−3.

Note that

Ω̃ = 2π
m−2∏
i=1

∫ π

0

(sin θi)
m−i−1 dθi = 2π

m−2∏
i=1

∫ 1

−1

(1− x2)
m−i−2

2 dx,

and that a(x) = (1 − x2)
m−i−2

2 is the weight function defining each of the quadrature

formulas for i = 1, . . . ,m− 2.

Consequently, by Fubini’s theorem the system above is satisfied if the following equations

hold ∫ π

−π
ψµm−2(φ)ψµ′m−2

(φ) dν(φ) = δµm−2µ′m−2
, (3.25)

(µm−2, µ
′
m−2 = −d, . . . , d)

γµm−3,µm−2γµ′m−3,µ
′
m−2

∫ π

0

P |µm−2|
µm−3

(cos θm−2)P
|µ′m−2|
µ′m−3

(cos θm−2) dζm−2(θm−2)

=
1

2π
∫ 1

−1
1 dx

δµm−3µ′m−3
δµm−2µ′m−2

, (3.26)

(µm−3, µ
′
m−3 = 0, . . . , d;µm−2 = 0, . . . , µm−3;µ′m−2 = 0, . . . , µ′m−3) and for each i =

1, . . . ,m− 3

γ̃µi−1,µi γ̃µ′i−1,µ
′
i

∫ π

0

C
µi+

m−i−1
2

µi−1−µi (cos θi)(sin θi)
µiC

µ′i+
m−i−1

2

µ′i−1−µ′i
(cos θi)(sin θi)

µ′i dζi(θi)

=
1∫ 1

−1
(1− x2)

m−i−2
2 dx

δµi−1µ′i−1
δµiµ′i , (3.27)
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(µi−1, µ
′
i−1 = 0, . . . , d;µi = 0, . . . , µi−1;µ′i = 0, . . . , µ′i−1).

It is well known [see Pukelsheim (2006)] that equation (3.25) is satisfied for measures of

the form (3.21). Hence in what follows we can restrict ourselves to the case µm−2 = µ′m−2.

Now the integrand in equation (3.26) is a polynomial of degree µm−3 + µ′m−3 ≤ 2d.

Furthermore, since ζm−2 corresponds to a quadrature formula for a(x) = 1 that integrates

polynomials of degree 2d exactly, we have from Lemma 3.1 for z = 2d and a(x) = 1 that∫ π

0

P |µm−2|
µm−3

(cos θm−2)P
|µ′m−2|
µ′m−3

(cos θm−2) dζm−2(θm−2)

=
r∑
j=1

ωjm−2P
|µm−2|
µm−3

(xjm−2)P
|µm−2|
µ′m−3

(xjm−2) =
1

2

∫ 1

−1

P |µm−2|
µm−3

(x)P
|µm−2|
µ′m−3

(x) dx.

From Andrews et al. (1991) p.457 we have that∫ 1

−1

[
P |µm−2|
µm−3

(x)
]2
dx =

2(µm−3 + |µm−2|)!
(2µm−3 + 1)(µm−3 − |µm−2|)!

=
2

4πγµm−3,µm−2γµm−3,µm−2

.

Therefore,∫ π

0

P |µm−2|
µm−3

(cos θm−2)P
|µ′m−2|
µ′m−3

(cos θm−2) dζm−2(θm−2) =
1

4π

δµm−3µ′m−3

γµm−3,µm−2γµ′m−3,µm−2

,

since associated Legendre polynomials are orthogonal on [−1, 1]. This implies equation

(3.26) and in what follows we can restrict ourselves to the case µm−3 = µ′m−3.

For establishing the system of equations (3.27), we begin with establishing the equation

for i = m− 3, that is,

γ̃µm−4,µm−3 γ̃µ′m−4,µm−3

∫ π

0

C
µm−3+1
µm−4−µm−3

(cos θm−3)(sin θm−3)µm−3C
µm−3+1
µ′m−4−µm−3

(cos θm−3)

(sin θm−3)µm−3 dζm−3(θm−3) =
1∫ 1

−1
(1− x2)

1
2 dx

δµm−4µ′m−4
. (3.28)

The integrand is a polynomial of degree 2µm−3 + µm−4 − µm−3 + µ′m−4 − µm−3 = µm−4 +

µ′m−4 ≤ 2d. Also since ζm−3 corresponds to a quadrature formula for a(x) =
√

1− x2 that

integrates polynomials of degree 2d exactly, it follows from Lemma 3.1 for z = 2d and
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a(x) =
√

1− x2 that∫ π

0

(sin θm−3)2µm−3C
µm−3+1
µm−4−µm−3

(cos θm−3)C
µm−3+1
µ′m−4−µm−3

(cos θm−3) dζm−3(θm−3)

=
r∑
j=1

ωjm−3(1− (xjm−3)2)µm−3C
µm−3+1
µm−4−µm−3

(xjm−3)C
µm−3+1
µ′m−4−µm−3

(xjm−3)

=
1∫ 1

−1

√
1− x2 dx

∫ 1

−1

√
1− x2(1− x2)µm−3C

µm−3+1
µm−4−µm−3

(x)C
µm−3+1
µ′m−4−µm−3

(x) dx

=
1

π/2

∫ 1

−1

(1− x2)µm−3+ 1
2C

µm−3+1
µm−4−µm−3

(x)C
µm−3+1
µ′m−4−µm−3

(x) dx.

From Andrews et al. (1991), Corollary 6.8.4, we have that∫ 1

−1

(1− x2)µm−3+ 1
2

[
C
µm−3+1
µm−4−µm−3

(x)
]2

dx

=
π

2

(µm−4 + µm−3 + 1)!

22µm−3(µm−3!)2(µm−4 + 1)(µm−4 − µm−3)!
=

1

γ̃µm−4,µm−3 γ̃µm−4,µm−3

.

Therefore,∫ π

0

(sin θm−3)2µm−3C
µm−3+1
µm−4−µm−3

(cos θm−3)C
µm−3+1
µ′m−4−µm−3

(cos θm−3) dζm−3(θm−3)

=
2

π

δµm−4µ′m−4

γ̃µm−4,µm−3 γ̃µ′m−4,µm−3

since Gegenbauer polynomials C
µm−3+1
µm−4−µm−3

(x) are orthogonal with respect to (1−x2)µm−3+1/2

on the interval [−1, 1]. This implies (3.28) and in what follows we can restrict ourselves

to the case µm−4 = µ′m−4.

It remains to show that if (3.27) holds for i = k + 1, that is, if

γ̃µk,µk+1
γ̃µ′k,µ′k+1

∫ π

0

C
µk+1+m−k−2

2
µk−µk+1

(cos θk+1)(sin θk+1)µk+1C
µ′k+1+m−k−2

2

µ′k−µ
′
k+1

(cos θk+1)

(sin θk+1)µ
′
k+1 dζk+1(θk+1) =

1∫ 1

−1
(1− x2)

m−k−3
2 dx

δµkµ′kδµk+1µ
′
k+1
, (3.29)

then (3.27) holds for i = k, that is,

γ̃µk−1,µk γ̃µ′k−1,µ
′
k

∫ π

0

C
µk+m−k−1

2
µk−1−µk (cos θk)(sin θk)

µkC
µ′k+m−k−1

2

µ′k−1−µ
′
k

(cos θk)

(sin θk)
µ′k dζk(θk) =

1∫ 1

−1
(1− x2)

m−k−2
2 dx

δµk−1µ
′
k−1
δµkµ′k . (3.30)
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Note that we use somewhat a “backward induction step” since µk ≥ µk+1.

Now since (3.29) holds, for proving (3.30) we can restrict ourselves to the case µk = µ′k.

The integrand in (3.30) is a polynomial of degree 2µk+µk−1−µk+µ′k−1−µk = µk−1+µ′k−1 ≤
2d. Furthermore, since ζk corresponds to a quadrature formula for a(x) = (1− x2)

m−k−2
2

that integrates polynomials of degree 2d exactly, we have from Lemma 3.1 for z = 2d and

a(x) = (1− x2)
m−k−2

2 that∫ π

0

(sin θk)
2µkC

µk+m−k−1
2

µk−1−µk (cos θk)C
µk+m−k−1

2

µ′k−1−µk
(cos θk) dζk(θk)

=
r∑
j=1

ωkj (1− (xkk)
2)µkC

µk+m−k−1
2

µk−1−µk (xkj )C
µk+m−k−1

2

µ′k−1−µk
(xkj )

=
1∫ 1

−1
(1− x2)

m−k−2
2 dx

∫ 1

−1

(1− x2)µk+m−k−2
2 C

µk+m−k−1
2

µk−1−µk (x)C
µk+m−k−1

2

µ′k−1−µk
(x) dx

=
1∫ 1

−1
(1− x2)

m−k−2
2 dx

δµk−1µ
′
k−1

γ̃µk−1,µk γ̃µ′k−1,µk

,

since Gegenbauer polynomials C
µk+m−k−1

2
µk−1−µk (x) are orthogonal with respect to (1−x2)µk+m−k−2

2

on interval [−1, 1] and∫ 1

−1

(1− x2)µk+m−k−2
2

[
C
µk+m−k−1

2
µk−1−µk (x)

]2

dx

=
π(µk−1 + µk +m− k − 2)!

22µk+m−k−3(µk−1 − µk)!(2µk−1 +m− k − 1)Γ2
(
µk + m−k−1

2

) =
1

γ̃µk−1,µk γ̃µk−1,µk

.

[see again Andrews et al. (1991) Corollary 6.8.4]. This implies (3.30) and by induction the

system of equations (3.27) is established which completes the proof of the theorem.

Example 3.1. To illustrate our approach we consider the dimension m = 4 and a series

expansion of order d = 4. By Theorem 3.2 with r = d + 1 = 5 we have to consider the

weight functions

a1(x) = (1− x2)1/2 , a2(x) = 1.

The corresponding Gegenbauer polynomials are given by

C1
5(x) = 32x5 − 32x3 + 6x , C

1/2
5 (x) =

1

8
(63x5 − 70x3 + 15x) ,
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and we obtain the following discrete optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗ given by

ζ∗1 =

(
π
6

π
3

π
2

2π
3

5π
6

1
12

1
4

1
3

1
4

1
12

)
,

ζ∗2 =

(
arccos(x2) arccos(x1) π

2
arccos(−x1) arccos(−x2)

322−13
√

70
1800

322+13
√

70
1800

64
225

322+13
√

70
1800

322−13
√

70
1800

)
,

ν∗ =

(
−7

9
π −5

9
π −3

9
π −1

9
π 1

9
π 3

9
π 5

9
π 7

9
π π

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

)
,

(3.31)

where x1 = 1
3

√
1
7
(35− 2

√
70) and x2 = 1

3

√
1
7
(35 + 2

√
70). By Theorem 3.2 this design is

Φp- and ΦEs-optimal.

We now compare the optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗ with two uniform designs ζ̂1 ⊗ ζ̂2 ⊗ ν̂
and ζ̃1 ⊗ ζ̃2 ⊗ ν̃, where the marginal distributions of these designs are given by

ζ̂1 =

(
0 π

4
π
2

3π
4

π
1
5

1
5

1
5

1
5

1
5

)
, ζ̂2 =

(
0 π

4
π
2

3π
4

π
1
5

1
5

1
5

1
5

1
5

)
, ν̂ = ν∗, (3.32)

and

ζ̃1 =

(
π
6

π
3

π
2

2π
3

5π
6

1
5

1
5

1
5

1
5

1
5

)
,

ζ̃2 =

(
arccos(x2) arccos(x1) π

2
arccos(−x1) arccos(−x2)

1
5

1
5

1
5

1
5

1
5

)
, ν̃ = ν∗,

(3.33)

respectively. Note that the design ζ̂1 ⊗ ζ̂2 ⊗ ν̂ defined by (3.32) corresponds to a uniform

distribution on a grid in [0, π] × [0, π] × [−π, π], while the design ζ̃1 ⊗ ζ̃2 ⊗ ν̃ in (3.33) is

an equidistant version of the optimal design ζ∗1 ⊗ ζ∗2 ⊗ ν∗. In particular, it uses the same

support points as the optimal design.

To compare the uniform designs with the optimal design ζ∗1⊗ζ∗2⊗ν∗ obtained by Theorem

3.2 we consider the efficiency

eff(ζ1 ⊗ ζ2 ⊗ ν) =
Φ(ζ1 ⊗ ζ2 ⊗ ν)

Φ(ζ∗1 ⊗ ζ∗2 ⊗ ν∗)
,

where Φ is either the D-, E- or ΦEs-optimality criterion.

We focus on the estimation of KTc where we fix q = 1, k0 = 0 and k1 = 4 and K is a

block matrix of the form (3.2) with appropriate blocks given by (3.3). For the case of

ΦEs-optimality we set s = s(k0) + s(k1) = 26. The D-, E- and ΦEs-efficiencies of the

designs ζ̂1 ⊗ ζ̂2 ⊗ ν̂ and ζ̃1 ⊗ ζ̃2 ⊗ ν̃ are presented in Table 1.

For the modified optimal design ζ̃1 ⊗ ζ̃2 ⊗ ν̃ (with the same support points as the opti-

mal design) we observe a good D-efficiency, however the ΦEs- and the E-efficiencies are

substantially smaller (54.58% and 49.56%, repectively). The uniform design ζ̂1 ⊗ ζ̂2 ⊗ ν̂
performs worse with respect to the all considered criteria which shows that this uniform

design is inefficient in applications.
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D-efficiency E-efficiency ΦEs-efficiency

ζ̂1 ⊗ ζ̂2 ⊗ ν̂ 40.64 3.18 11.27

ζ̃1 ⊗ ζ̃2 ⊗ ν̃ 91.05 49.56 54.58

Table 1: Efficiencies (in %) for the the uniform designs ζ̂1⊗ ζ̂2⊗ ν̂ and ζ̃1⊗ ζ̃2⊗ ν̃ defined

in (3.32) and (3.33).

4 Symmetrized hyperspherical harmonics

In the previous example we have already shown that the use of the optimal designs yields

a substantially more accurate statistical inference in series estimation with hyperspheri-

cal harmonics. In this section we consider a typical application of these functions (more

precisely of linear combinations of hyperspherical harmonics) in material sciences and

demonstrate some advantages of the new designs in this context. Due to space limi-

tations we are not able to provide the complete background on the representations of

crystallographic texture however, we explain the main ideas and refer to Bunge (1993),

Mason and Schuh (2008) and Patala et al. (2012) for further explanation. Some help-

ful background with more details can also be found in the monograph of Marinucci and

Peccati (2011).

Example 4.1. We begin with a brief discussion of the case m = 2 which - although not

relevant for applications in material sciences - is very helpful for understanding the main

idea behind the construction of symmetrized hyperspherical harmonics. In this case the

Fourier basis { 1√
2
, cos(x), sin(x), cos(2x), sin(2x), . . .

}
,

is a complete orthonormal system in the Hilbert space L2([0, 2π)) with the common inner

product 〈f, g〉 =
1

π

∫ 2π

0
f(x)g(x)dx . The aim is now to construct an orthonormal basis for

the subspace of functions in L2([0, 2π)), which are invariant with respect to the rotation

group {R0, Rπ/2, Rπ, R3π/2} defined by

Ra :

{
[0, 2π)→ [0, 2π)

x 7→ x+ a mod (2π)
(a ∈ {0, π/2, π, 3/2π}), (4.1)

that is f(·) = f(R−1
a (·)) (or equivalently f(·) = f(Ra(·))) for all a ∈ {0, π/2, π, 3/2π}.

For this purpose consider the trigonometric polynomial

f(x) =
a0√

2
+
∞∑
k=1

ak cos(kx) + bk sin(kx) =
∞∑
k=0

cTk · Yk(x) , (4.2)
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where the vectors ck and Yk(x) are defined by

ck = (ak, bk)
T and Yk(x) =

{
(1/
√

2, 0)T k = 0,

(cos(kx), sin(kx))T otherwise
,

respectively, and assume that the function f is invariant with respect to the rotation

group {R0, Rπ/2, Rπ, R3π/2}, that is,

∞∑
k=0

cTk · Yk(x) = f(x) = f(Ra(x)) =
∞∑
k=0

cTk · Yk(Ra(x)) =
∞∑
k=0

cTk ·Dk(a) · Yk(x),

where the matrices Dk are defined by

Dk(a) =

(
cos(ka) − sin(ka)

sin(ka) cos(ka)

)
,

where we have used the addition formulas for the trigonometric functions. This means

that f is invariant under Ra if and only if ck is an eigenvector for the eigenvalue 1 of

Dk(a)T . Because {R0, Rπ/2, Rπ, R3π/2} is generated by Rπ/2, it suffices to consider the

case a = π/2. It is now easy to see that only the matrices D4`(π/2)T = I2 have the

eigenvalue 1, which is of multiplicity 2 with corresponding eigenvectors c4` = (β, 0)T ,

c̃4` = (0, γ)T (β, γ ∈ R \ {0}). Consequently, a complete orthonormal basis of the sub-

set of all functions in L2([0, 2π)), which are invariant with respect to the rotation group

{R0, Rπ/2, Rπ, R3π/2}, is obtained by choosing β = γ = 1, which yields the linear combi-

nations {cT4`Y4`(x), c̃T4`Y4`(x)}`=0,1,... given by{ 1√
2
, cos(4x), sin(4x), cos(8x), sin(8x), . . .

}
.

In applications in material sciences the dimension is m = 4 and the groups under consid-

eration are much more complicated and induce crystal symmetries. For example, Mason

and Schuh (2008) define representations of crystallographic textures as quaternion dis-

tributions (this corresponds to the case m = 4 in our notation) by series expansions in

terms of hyperspherical harmonics to reflect sample and crystal symmetries such that the

resulting expansions are more efficient. For this purpose they define the symmetrized

hyperspherical harmonics as specific linear combinations of real hyperspherical harmonics

which remain invariant under rotations corresponding to the simultaneous application of

a crystal symmetry and sample symmetry operation. The exact definition of the sym-

metrized hyperspherical harmonics is complicated and requires sophisticated arguments

from representation theory [see Sections 2 - 4 in Mason and Schuh (2008)], but - in prin-

ciple - it follows essentially the same arguments as described in Example 4.1.
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More precisely, the groups induced by the crystal symmetry, sample symmetry operation

and the level of resolution λ, define N(λ) symmetrized hyperspherical harmonics of the

form
∴

Zη
λ(θ1, θ2, φ) =

λ∑
µ1=0

µ1∑
µ2=−µ1

αηλ,µ1,µ2Yλ,µ1,µ2(θ1, θ2, φ), η = 1, . . . , N(λ) , (4.3)

where the coefficients αηλ,µ1,µ2 are well defined and can be determined form the symmetry

properties. A list of the first at least 30 symmetrized hyperspherical harmonics polyno-

mials for the different 11 point groups can be found in the online supplement of Mason

and Schuh (2008). If the coefficients are standardized appropriately, the symmetrized

hyperspherical harmonics also form a complete orthonormal system, that is,∫ π

−π

∫ π

0

∫ π

0

∴

Zη
λ(θ1, θ2, φ)

∴

Zη′

λ′ (θ1, θ2, φ) sin2 θ1 sin θ1dθ1dθ2dφ = δλλ′δηη′ .

Moreover, any square integrable function g that satisfies the same requirement of crys-

tal and sample symmetry can be uniquely represented as a linear combination of these

symmetrized hyperspherical harmonics in the form

g(θ1, θ2, φ) =
∑

λ=0,2,...,∞

N(λ)∑
η=1

cλ,η
∴

Zη
λ(θ1, θ2, φ). (4.4)

Patala et al. (2012) obtained estimates of the missorientation distribution function by fit-

ting experimentally measured missorientation data to a linear combination of symmetrized

hyperspherical harmonics, while Patala and Schuh (2013) used truncated series to obtain

estimates of the grain boundary distribution from simulated data As these experiments

are very expensive and the simulations are very time consuming it is of particular im-

portance to obtain good designs for the estimation by series of hypershperical harmonics.

Therefore, we now consider the linear regression model (2.1) where the vector of regression

functions is obtained by the truncated expansion of the function g of order d, that is,

∑
λ=0,2,...,d

N(λ)∑
η=1

cλ,η
∴

Zη
λ(θ1, θ2, φ), (4.5)

and investigate the performance of the designs determined in Section 3 in models of

the form (4.5). Due to space restrictions we concentrate on the case d = 4 and on

the symmetrized hyperspherical harmonics for samples with orthorhombic symmetry and

crystal symmetry corresponding to the crystallographic point groups 1 and 2. Similar

results for expansions of higher order and different crystallographic point groups can be

obtained following along the same lines.

For the crystallographic point group 1 there are 11 symmetrized hyperspherical harmonics
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up to order d = 4 which can be obtained from the online supplement of Mason and Schuh

(2008) and are given by

∴

Z1
0 = Y0,0,0

∴

Z1
4 =

√
2
5

Y4,0,0 +
√

7
20

Y4,4,0 +
√

1
4

Y4,4,4

∴

Z2
4 =

√
2
5

Y4,1,0 −
√

1
10

Y4,3,0 −
√

1
2

Y4,4,−4

∴

Z3
4 =

√
2
5

Y4,1,1 +
√

3
80

Y4,3,1 −
√

1
16

Y4,3,3 +
√

7
16

Y4,4,−1 +
√

1
16

Y4,4,−3

∴

Z4
4 =

√
2
5

Y4,1,−1 +
√

3
80

Y4,3,−1 +
√

1
16

Y4,3,−3 −
√

7
16

Y4,4,1 +
√

1
16

Y4,4,3

∴

Z5
4 =

√
4
7

Y4,2,0 +
√

5
28

Y4,4,0 −
√

1
4

Y4,4,4

∴

Z6
4 =

√
2
7

Y4,2,1 −
√

5
16

Y4,3,−1 +
√

3
16

Y4,3,−3 +
√

3
112

Y4,4,1 +
√

3
16
Y4,4,3

∴

Z7
4 =

√
2
7

Y4,2,−1 +
√

5
16

Y4,3,1 +
√

3
16

Y4,3,3 +
√

3
112

Y4,4,−1 −
√

3
16
Y4,4,−3

∴

Z8
4 =

√
4
7

Y4,2,2 −
√

3
7

Y4,4,2

∴

Z9
4 =

√
2
7

Y4,2,−2 −
√

1
2

Y4,3,2 −
√

3
14

Y4,4,−2

∴

Z10
4 = Y4,3,−2.

(4.6)

Note that the 26 functions (Y0,0,0, Y4,0,0, . . . , Y4,3,3, Y4,4,−4, . . . , Y4,4,4)T define 11 symmetrized

hyperspherical harmonics. Consequently, considering the symmetries of the crystallo-

graphic group 1 the vector of regression functions in model (2.1) is of the form

fT1 = (
∴

Z1
0 ,

∴

Z1
4 , . . . ,

∴

Z10
4 )T . (4.7)

To illustrate the symmetries induced by the crystallographic group in the symmetrized

hyperspherical harmonics we use a visualization described by Mason and Schuh (2008).

For a fixed hyperangle (θ1, θ2, φ), the functional value of
∴

Zj
4(θ1, θ2, φ) is presented by using

a projection of the hyperangle to an appropriate two-dimensional disk. More precisely,

we project the hyperangle (θ1, θ2, φ) onto a two-dimensional disk by

P (θ1, θ2, φ) =

(
x1(θ1, θ2, φ)

x2(θ1, θ2, φ)

)
=

(
R(θ1, θ2) cos(φ)

R(θ1, θ2) sin(φ)

)
, (4.8)

where the function R(θ1, θ2) is given by

R(θ1, θ2) = (3/2)1/3(θ1 − sin(θ1) cos(θ1))1/3
√

2(1− | cos(θ2)|).

For instance the angle (θ1, θ2, φ) = (11
48
π, π

4
, π) is projected onto the point (x1, x2) =

(−0.5323, 0). In Figure 4 we display the value (represented by an appropriate color)
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Figure 1: Visualization of the symmetrized hyperspherical harmonic
∴

Z2
4 of the crystallo-

grahic point group 1 using the projection of the hyperangles onto the two-dimensional disk

given by (4.8). For each panel, θ1 is fixed to a value in { 1
48
π, 3

48
π, . . . , 11

48
π}, while (θ2, φ)

vary in [0, π
2
]× [−π, π].
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of the symmetrized harmonic
∴

Z2
4 of the crystallographic group 1 as a function of the

coordinates (x1(θ1, θ2, φ), x2(θ1, θ2, φ)). In each of the twelve panels of Figure 4, θ1 is

fixed to one of the values 1
48
π, 3

48
π, . . . , 11

48
π, while the angles θ2 and φ vary between

[0, π/2] and [−π, π], respectively. For instance, the value of
∴

Zj
4(θ1, θ2, φ) at the hyperangle

(θ1, θ2, φ) = (11
48
π, π

4
, π) is presented in the bottom right panel in a light green color (see

the black circle in the bottom right panel of Figure 4).

We now investigate the efficiency of the optimal design for the estimation of the coefficients

in the regression model (2.1) with the hyperspherical harmonics up to order d = 4, that

is, the vector of regression functions is given by

fT = (Y0,0,0, Y1,0,0, . . . , Y1,1,1, . . . , Y4,4,−4, . . . , Y4,4,4)T .

The optimal design for this model has been determined in Example 3.1 and a tedious

calculation shows that the design ζ∗1 ⊗ ζ∗2 ⊗ ν∗ defined in (3.31) satisfies the general

equivalence theorem in Section 7.20 of Pukelsheim (2006). Consequently, this design is

also Φp-optimal in the regression model (2.1), where the vector of regression functions is

given by the symmetrized hyperspherical harmonics defined in (4.7), which correspond to

the crystallographic point group 1.

For the crystallographic point group 2 there are 7 symmetrized hyperspherical harmonics

up to order d = 4 consisting of a subset of the functions given in (4.6). These symmetrized

hyperspherical harmonics define a linear regression model of the form (2.1), where the

vector of regression functions f2 is given by

fT2 = (
∴

Z1
0 ,

∴

Z1
4 ,

∴

Z2
4 ,

∴

Z5
4 ,

∴

Z8
4 ,

∴

Z9
4 ,

∴

Z10
4 )T . (4.9)

In the case of the crystallographic point group 2 the design ζ∗1⊗ζ∗2⊗ν∗ defined by (3.31) is

not Φp-optimal. However, using particle swarm optimization [see Clerc (2006) for details]

we determined the D-efficiency of the design ζ∗1 ⊗ ζ∗2 ⊗ ν∗ numerically which is given by

81%. We also investigate the performance of the designs ζ̂1 ⊗ ζ̂2 ⊗ ν̂ and ζ̃1 ⊗ ζ̃2 ⊗ ν̃

defined in equation (3.32) and (3.33) of Example 3.1. The D-efficiencies of these two

designs are given by 59.38% and 74.59%, respectively. Recall that the latter design uses

the same support points as the optimal design. Our calculations show that the design

ζ∗1 ⊗ ζ∗2 ⊗ ν∗ in (3.31) provides reasonable efficiencies for estimating the coefficients in the

regression model (2.1) with symmetrized hyperspherical harmonics with respect to the

crystallographic point group 2, whereas the uniform design ζ̂1⊗ ζ̂2⊗ ν̂ should not be used

in this case.
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A A Technical Result

A.1 Proof of Lemma 3.1

Assume that conditions (A) and (B) are satisfied and let Q(x) be an arbitrary polynomial

of degree z. The polynomial Q can be represented in the form

Q(x) = P (x)Vr(x) +R(x),

where Vr(x) =
∏r

j=1(x−xj) is of degree r, the polynomial P (x) is of degree z− r and the

polynomial R(x) is of degree less than r. Since x1, . . . , xr are the zeros of Vr(x) we have

that Q(xj) = R(xj) for all j = 1, . . . , r and furthermore, because the degree of R(x) is at

most r − 1, it can be represented as

R(x) =
r∑
j=1

`j(x)R(xj).

Then from conditions (A) and (B) we obtain that∫ 1

−1

a(x)Q(x) dx =

∫ 1

−1

a(x)R(x) dx =
r∑
j=1

R(xj)

∫ 1

−1

a(x)`j(x) dx

=
r∑
j=1

R(xj)ãωj = ã
r∑
j=1

ωjQ(xj).

Using Q(x) = x`, ` = 0, . . . , z yields the identities in (3.16) and for ` = 0 we obtain the

expression ã =
∫ 1

−1
a(x) dx.

Now assume that (3.16) is valid. For ` = 0, . . . , z − r we have that∫ 1

−1

Vr(x)a(x)x` dx = ã
r∑
j=1

ωjVr(xj)x
`
j = 0,

which gives condition (A). By noting that `j(xk) = δjk we get that

1

ã

∫ 1

−1

a(x)`j(x) dx =
r∑

k=1

ωk`j(xk) =
r∑

k=1

ωkδjk = ωj,

which gives condition (B).
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