
Department of Biochemical and Chemical Engineering
Process Dynamics and Operations Group (DYN)

D
NYDD
NNYY

Process Dynamics
and Operations

Optimizing control of a tubular 
polymerization reactor using Proper 

Orthogonal Decomposition

Mid‐Thesis Debate, 21.07.2014

Lukas Samuel Maxeiner

TU Dortmund University
Department of Biochemical and Chemical Engineering

Process Dynamics and Operations Group
Prof. Dr.-Ing. Sebastian Engell

Master Thesis

An Improved Iterative Real-time Optimization Scheme
for Slow Processes

by

José Luis Cadavid

Supervision:

Senior researcher: M.Sc. Reinaldo Hernández
Examiner: Prof. Dr.-Ing. Sebastian Engell
Co-Examiner: Prof. Dr. David W. Agar

Dortmund, November 16, 2016





DECLARATION

I hereby declare and confirm that the master thesis

An Improved Iterative Real-time Optimization Scheme for Slow
Processes

is entirely the result of my own work except where otherwise indicated.

On the next page of this document, I have acknowledged the supervision,
guidance and help I received from Prof. Dr.-Ing. Sebastian Engell and M.Sc.
Reinaldo Hernández

Dortmund, November 16, 2016

José Luis Cadavid C.





ACKNOWLEDGMENTS

This work was done in the Process Dynamics and Operations Group of the
Department of Biochemical and Chemical Engineering at TU Dortmund. I
would like to thank M.Sc. Reinaldo Hernández for giving me the freedom to
explore the different topics in this thesis, and for always allowing me to make
this work my own, while guiding me and helping me shape it; both this work
and myself have benefited tremendously from his assistance. I would also like
to thank Prof. Dr.-Ing. Sebastian Engell for allowing me to work on this field,
and for his insightful comments. My gratitude also goes to Prof. Dr. David
Agar for agreeing to co-supervise this work.

I would like to thank all of my friends and colleagues here in Dortmund for
making these two years a great experience, and helping me grow as a person
and an engineer; fortunately, there are too many of them as to list everyone
individually.

Last but not least, special thanks go to my parents and brother for supporting
me during my time in Germany, regardless of the distance. This work is
dedicated to you.

Dortmund, November 16, 2016

José Luis Cadavid





ABSTRACT

Iterative Real-Time Optimization (RTO) has gained increasing attention in
the context of model-based optimization of the operating points of chemical
plants in the presence of plant-model mismatch. In all these schemes, it is
necessary to wait for the plant having reached a steady-state to obtain the
required information on plant performance and constraint satisfaction, which
leads to slow convergence in the case of processes with slow dynamics. This
works addresses this issue by considering both parametric, and structural
plant-model mismatch. First, a simple approach to determine the type of
plant-model mismatch with the use of transient data is discussed. An approach
for dealing with parametric mismatch based on a sensitivity analysis of the
nominal dynamic model is presented, and its performance is evaluated with
the case-study of a Continuously Stirred Tank Reactor (CSTR), where fast
convergence to the optimum can be obtained, even with noisy measurements.
For the case of structural mismatch, nonlinear system identification is in-

tegrated with iterative RTO. The identified models are used to predict the
steady-state of the system, thus reducing the total optimization time. The
performance of the strategy is illustrated by simulation studies of a CSTR and
a hydroformylation process. It is shown that a mixed scheme, where both a
linear and nonlinear model are used for steady-state prediction, results in fast
convergence to a neighborhood of the true optimum, even in the presence of
measurement noise. The use of taylored nonlinear models for dynamic sys-
tem identification is shown to be a promising approach for reducing the time
necessary to reach the optimum of a process.
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CHAPTER

ONE

INTRODUCTION

With increasing global competition, companies in the process industry face
the challenge of constantly improving production efficiency, while meeting high
quality standards, and satisfying safety and environmental regulations. Model-
based real-time optimization (RTO) has emerged as an attractive approach to
tackling this issue (Darby et al., 2011). The key idea in RTO schemes is to
make use of a stationary nonlinear, usually first principle based mathematical
model of the plant, and to use the available plant measurements to update
some model parameters, with the goal of operating the process as closely as
possible to its optimum.
Despite the increasing acceptance of RTO by the industry, there are impor-

tant limitations of the approach. One of them is the fact that in the presence
of model inaccuracies, convergence to the true plant optimum is not ensured;
even worse, the optimization might lead to constraint violations. Over the last
decades, research has mainly focused on this issue by developing algorithms
that take into account measurements of the plant to compensate for plant-
model mismatch; thus allowing convergence to the real plant optimum, even
in the presence of structural mismatch of the model (Gao and Engell, 2005).
Nonetheless, one of the main difficulties associated with such schemes is the
experimental determination of plant gradients with noisy measurement data.
Furthermore, the problem of having to wait for steady-state after each new

set-point has been applied to the plant is detrimental to the efficiency of the
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scheme, especially for slow processes. This can result in significant profit
losses from operating the plant at a sub-optimal set-point for an extended
period of time, or can lead to wrong optima if slow disturbances affect the
plant significantly during the timescale of the optimization procedure. For
this reason, the use of measurements collected during transient operation has
been proposed to accelerate the optimization scheme; be it by estimating the
plant gradients, or by predicting the steady-state of the plant (Bamberger and
Isermann, 1978; Zhang and Roberts, 1990; Gao and Engell, 2016).

In the case of parametric plant-model mismatch, different techniques based
on the nominal structure of the model have been proposed to make use of
transient data. For the more general case of structural mismatch, dynamic
model identification has been successfully used, but the structure of the black-
box model employed must be set a priori, and usually corresponds to linear
models or generalized Hammerstein structures that do not necessarily capture
the dynamics of the system properly (Mansour and Ellis, 2003).

The goal of this work is to use transient measurements for static RTO by sys-
tematically making use of available data to determine: the type of plant-model
mismatch at hand, and the appropriate black-box model for use in the context
of dynamic system identification. This work is intended to be used as a general
toolbox, where the application of case-specific strategies is expected to improve
the performance of the RTO system when transient measurements are used.
The rest of this work is structured as follows: the fundamentals of different RTO
schemes, with particular emphasis on Modifier Adaptation With Quadratic
Approximation (MAWQA), are presented in Chapter 2, along with a summary
of different techniques for experimental gradient calculation, and a brief review
of the use of transient data in the context of RTO. A simple approach based
on goodness-of-fit measures to determine the type of plant-model mismatch
at hand is presented and evaluated in Chapter 3. Chapter 4 presents a modi-
fied scheme for handling parametric mismatch, based on an online parameter
estimation method that uses the nominal (mismatched) dynamic model. The
scheme is evaluated through simulation studies of a continuously stirred tank
reactor (CSTR).
Chapter 5 is devoted to dealing with the case where plant-model mismatch

is structural, by using dynamic model identification. A short introduction to



3

nonlinear system identification is first given. The case-study of Chapter 4 is
again evaluated with numerous simulation studies: a nonlinear model struc-
ture is selected to describe its dynamics, and later used for RTO of the system.
A second case-study consisting of a homogeneously catalyzed hydroformyla-
tion process is also evaluated and optimized in this chapter. Finally, some
concluding remarks and possible research directions are outlined in Chapter 6.
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CHAPTER

TWO

THEORETICAL BACKGROUND

This chapter discusses the different theoretical aspects required to formulate
and understand the RTO problem, as well as the use of transient data in this
context. First, the steady-state optimization problem is stated, followed by a
brief overview of the general classes of RTO schemes. Special attention is given
to Modifier-Adaptation (MA) schemes, where some of the general techniques
for experimental gradient determination are discussed, and the use of Quadratic
Approximation (QA) is treated in more depth. The state of the art on the use
of transient measurements for static RTO is then presented.

2.1. Static optimization problem

Optimization for continuous processes operating at steady-state consists in de-
termining the operating conditions that result in optimal process performance,
usually in terms of maximizing profit or minimizing costs, while different con-
straints (e.g. requirements of product quality, safety constraints) are satisfied.
This problem is formulated mathematically as:

min
u

Jp(u, ȳp)

s.t. Gp(u, ȳp) ≤ 0
u ≤ u ≤ u

(2.1)
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where u ∈ Rnu are the inputs to the plant, bounded by (u,u), ȳp ∈ Rny are
the measured (or estimated) plant outputs1, Jp : Rnu × Rny → R is the scalar
objective function, and Gp : Rnu × Rny → Rng is a vector of constraints. The
structure of the objective function and the constraints is always known, since it
is user-defined. However, plant-model mismatch results from the fact that the
true mapping between the inputs and the outputs of the plant is not always
perfectly known, and is approximated with a simplified model:

ȳm = Hm(u,θm) (2.2)

where Hm : Rnu × Rnθ → Rny is the static input-output (I/O) mapping
described by the model, and θm ∈ Rnθ is a vector containing its parameters.
With this, problem 2.1 can be reformulated as:

min
u

Jm(u,Hm(u,θm))

s.t. Gm(u,Hm(u,θm)) ≤ 0
u ≤ u ≤ u

(2.3)

A distinction is made between the objective functions Jm and Jp given by
the model and the plant, respectively, because they can be explicitly dependent
on the mismatched parameters2. Throughout this work, the sub-index m refers
to quantities estimated from a nominal model, while the sub-index p refers
to the true quantities of the plant. Under certain regularity conditions, an
solution to the optimization problem exists (Chachuat et al., 2009). At the
optimal solution of problems 2.1 and 2.3, the first order necessary conditions of
optimality (NCO) - also known as the Karush-Kuhn-Tucker (KKT) conditions
- must hold (Bazaraa et al., 1992):

Gi(u∗,θ) ≤ 0, ν∗
i ≥ 0, i = 1, . . . , ng

∂J(u∗,θ)
∂u

+
ng∑
i=1

ν∗
i

∂Gi(u∗,θ)
∂u

= 0

ν∗
iGi(u∗,θ) = 0, i = 1, . . . , ng

(2.4)

where ν∗ is the vector of KKT multipliers.
1The notation x̄ is used in this work to refer to the steady-state value of x
2The same observations might apply to the constraints
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2.2. Real-time optimization

The goal of RTO systems is to guarantee that the process operates as close
as possible to its optimum, while satisfying different constraints, based on a
timescale hierarchical decomposition of the problem. The position of an RTO
system in the overall control hierarchy is illustrated in Figure 2.1: RTO acts
in an upper control layer, where a model-based optimization routine is run
iteratively in closed loop, and provides set-points to the controllers in the
regulatory control layer; this scheme results in a clear separation between the
tasks of optimization and control (Darby et al., 2011).
In general, the planning and scheduling layer sets goals and constraints in

production in a timescale from days to weeks. This is translated into objectives
for the RTO system, which computes the optimal set-points and operates on a
medium timescale from hours to days. The regulatory control systems provide
set-point tracking and disturbance rejection on a short timescale from seconds
to minutes (Engell, 2007). The regulatory controllers can be any type of system,
from simple linear controllers, to nonlinear model predictive controllers (Darby
et al., 2011).

Planning and Scheduling

Plant

CnC1

RTO

SS optimization Model update

Validation Reconciliation

Figure 2.1.: Hierarchical control structure with real-time optimization (RTO),
C1 · · ·Cn denote local regulatory controllers. Adapted from Engell (2007)

In the case of continuous processes, RTO is formulated as a static optimiza-
tion problem as the one described in Section 2.1. The problem of RTO is akin
to the optimization of rigorous detailed models with surrogate models, where
a direct search, or optimization of the rigorous model - the plant in RTO - is
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too costly; therefore, optimization is performed with simpler models. As such,
convergence to the optimum of the plant is only possible if the reduced model
and the detailed model have matching KKT conditions (Biegler et al., 2014).
Real-time optimization systems have been successfully implemented in dif-

ferent industrial processes; particularly in oil refineries, where the use of this
technology results in a significant increase in profits (Shokri et al., 2009).

2.2.1. Classification of real-time optimization schemes

In broad terms, RTO strategies can be classified depending on how they use
plant measurements to drive the process iteratively to its optimum, while still
guaranteeing feasible operation. Chachuat et al. (2009) proposed the following
categories, which are only briefly described here:

Model-parameter adaptation: This corresponds to the classical two-step
approach, where the parameters of a rigorous steady-state model are updated
once the real measurements are available. This updated model is then re-
optimized, and the procedure is repeated until convergence is achieved. This
method works well in the case of parametric plant-model mismatch, but for
structural mismatch it is not possible to guarantee convergence to the optimum.
Furthermore, deciding which, and how many parameters to update is also
complicated: adapting too few parameters might lead to bad fitting, while
adapting too many parameters requires a higher degree of plant excitation for
proper identification (Chachuat et al., 2009).

Modifier-adaptation: The idea behind MA is to modify problem 2.3 by
adding correction terms to the objective function and the constraints, in the
form of zeroth- and first-order bias modifiers. In this way, the modified (or
adapted) problem can match the KKT conditions of the plant after conver-
gence. This allows convergence to the true optimum, even in the presence of
structural plant-model mismatch. This approach is discussed in further detail
in Section 2.2.2.
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Direct input adaptation: The methods in this class differ from the previ-
ously described ones, in the sense that repeated optimization is transformed
into a feedback control problem. This class of methods is also called im-
plicit real-time optimization; François et al. (2012) present a comparison of
six implicit control schemes related to RTO. Due to plant-model mismatch, a
challenge in this approach is to determine the variables that should be kept
constant in order to achieve optimal operation by manipulating the inputs.
Another challenge in implicit RTO is the determination of the active-set of
constraints, which can change over time. Possible solutions based on barrier
functions have been proposed to tackle this problem (Srinivasan et al., 2008).

Skogestad (2000) proposed the idea of Self-Optimizing Control (SOC), where
the sensitivity of the optimal inputs to parametric uncertainty is used to deter-
mine a set of variables, also called self-optimizing variables, to be controlled.
They correspond to a linear combination of the output variables; the tracking
of which results in almost-optimal performance. This method is based on the
assumption that the plant-model mismatch is parametric, and works only for
a given set of nominal disturbances, i.e. if a disturbance was not considered in
the sensitivity analysis, optimality cannot be ensured.
Another approach, which does not make use of a model, is to keep track

of the NCO of the plant. The two most popular schemes in this class are
Extremum-Seeking Control (ESC) (Krstić and Wang, 2000) and NCO tracking
(François et al., 2005). In the former, the plant is perturbed with a dither signal
(usually a low-frequency sinusoidal input), and the gradients are estimated via
correlation analysis. The latter seeks to track the NCO of the plant based
exclusively on measurements.

2.2.2. Modifier adaptation

The idea of MA can be traced back to the work of Roberts (1979), who pro-
posed the Integrated System Optimization and Parameter Estimation (ISOPE)
scheme. In ISOPE, the objective function given by the model is augmented
with a first-order modifier, equivalent to the difference between the plant and
model gradients. This allows convergence to the true plant optimum, even in
the presence of structural plant-model mismatch; further research on the con-
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vergence properties of ISOPE was done by Brydyś et al. (1987). A drawback
of this scheme, is that the model parameters must still be estimated at each
iteration.
Tatjewski (2002) reformulated ISOPE by showing that the parameter esti-

mation must not be performed at every iteration, and could even be completely
ommited; the name “modified gradient optimizing set-point control” is more
appropriate to describe this scheme. Gao and Engell (2005) extended this
idea to deal with process-dependent constraints, by also applying modifiers on
them. This Iterative Gradient Modification and Optimization (IGMO) scheme
is based on the following iterative problem formulation:

u(k+1) =arg min
u

Jm(u,θm) + ε
(k)
J + λ(k)T

J (u− u(k))

s.t. Gm(u,θm) + ε(k)
G + λ(k)T

G (u− u(k)) ≤ 0
u ≤ u ≤ u

(2.5)

where the zeroth order modifiers ε(k)
J and ε(k)

G correct the bias between the
values of the plant and the model, and the first order modifiers λ(k)T

J and λ(k)T

G

correct the bias between the gradients of the plant and the model. At each new
iteration, the optimal set-points u(k+1) are applied to the plant. When steady-
state is reached, the modifiers are calculated and the procedure is repeated:

ε
(k)
J = Jp(u(k))− Jm(u(k),θm)
ε

(k)
G = Gp(u(k))−Gm(u(k),θm)

λ
(k)T

J = ∂Jp(u(k))
∂u

− ∂Jm(u(k),θm)
∂u

λ
(k)T

J = ∂Gp(u(k))
∂u

− ∂Gm(u(k),θm)
∂u

(2.6)

The whole set of modifiers can be grouped as Λ(k)T =
(
ε

(k)
J , ε

(k)
G ,λ

(k)T

J ,λ
(k)T

G

)
.

The zeroth order modifier in the adapted objective function is often dropped,
since it does not affect the position of the optimum. If the scheme converges,
it will do so to a KKT point of the plant; the model should be adequate in
order to ensure convergence (Forbes et al., 1994). The calculated modifiers are
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often not applied directly, but are filtered to reduce the influence of noise and
avoid over-correction (Marchetti et al., 2009):

Λ(k+1) = (I−K)Λ(k) + KΛ(k+1)∗ (2.7)

where K is a gain matrix, usually selected as a block-diagonal matrix to
decouple the different modifiers, and Λ(k+1)∗ refers to the unfiltered modifier set
calculated from eqs. 2.6. Another alternative is to filter the newly calculated
set-point u(k+1)∗ in order to avoid large movements:

u(k+1) = (I−K)u(k) + Ku(k+1)∗ (2.8)

where again K is a gain matrix, usually diagonal, u(k+1) is the set-point
applied to the plant, and u(k+1)∗ is the optimal set-point calculated from
problem 2.5. Recent work has explored how the MA scheme can be formulated
in a globally-convergent trust-region framework for the unconstrained case. In
such a formulation, the necessity of filtering is eliminated because the search
space is limited to an adaptive region where the adapted model can make
accurate predictions (Biegler et al., 2014; Bunin, 2014).

2.3. Estimation of the plant gradients

A crucial part of the MA schemes is the estimation of the experimental plant
and constraints gradients; this section briefly discusses the most common
methods used for this task. The techniques based on static measurements are
introduced first, followed by an overview of the techniques that use transient
information. For a more comprehensive description of these methods, and a
comparison between them, refer to (Mansour and Ellis, 2003; François et al.,
2012).

2.3.1. Gradients from steady-state information

The most common ways for calculating plant gradients require steady-state to
be reached. These schemes can also be used to calculate the gradients of the
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constraints, but for simplicity sake all of the equations refer to the objective
function Jp.

Gradients from finite differences: The simplest way of approximating the
experimental gradients of the plant is via finite differences, e.g. with forward
differences:

∂Jp
∂ui
≈ Jp(u + ∆hi)− Jp(u)

∆hi
(2.9)

where ∆hi is a perturbation applied to the i-th input. The use of finite
differences is straightforward, but it requires nu (2nu if central differences are
used) disturbances at each set-point to estimate all the components of the
gradient. This feature makes finite differences prohibitive for slow plants, or
plants with many manipulated inputs. The selection of the perturbation size
∆hi is critical, since a too large step makes the approximation worse due to
truncation error, but a too small step results in wrong estimations when the
measurements are noisy.

Gradients from past set-points: This approach is also based on finite
differences, but it uses the information collected from past set-points instead of
disturbing the plant at each new set-point, which can reduce the total number
of plant movements. The idea is to use the gradient of the hyperplane that
contains the information of the most recent nu evaluated set-points:

∂Jp
∂u

∣∣∣∣∣
u(k)
≈
(
S(k)

)−1
·


J (k)
p − J (k−1)

p
...

J (k)
p − J (k−nu)

p

 =
(
S(k)

)−1
·∆J(k)

p

S(k) =
[
u(k) − u(k−1), · · · ,u(k) − u(k−nu)

]T
,

(2.10)

However, a problem arises if the matrix S(k) becomes ill-conditioned. To
overcome this problem, Brydyś and Tatjewski (1994) proposed to use this
technique in a dual-control fashion, where the new set-point generated after
optimization has to satisfy a constraint on the condition number of the S(k+1)
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matrix. By limiting the set-point change with this constraint, the approach
tackles the conflict between quickly advancing to the optimum, and calculating
accurate gradients.
Gao and Engell (2005) also used eq. 2.10 to estimate the plant gradients,

but instead of placing the condition number as a constraint in the optimization
problem, they used the reciprocal condition number of S(k) to decide whether
an additional set-point was needed to keep the matrix well conditioned. In
this way, additional perturbations are only applied when strictly necessary. In
order to guarantee accurate gradients, Marchetti et al. (2010) introduced an
upper bound on the error of the gradient due to truncation and noise, and
used it to restrict the next optimization move by forcing this upper bound to
be below a specified threshold.

Broyden update: Another way of using past data is the so-called Broyden
method. This is based on the following formula (Broyden, 1965):

∂Jp
∂u

∣∣∣∣∣
u(k+1)

= ∂Jp
∂u

∣∣∣∣∣
u(k)

+

(
∆J (k)

p − ∂J
∂u

∣∣∣
u(k)

∆u(k)
)

(∆u(k))T

(∆u(k))T∆u(k) + ε

∆J (k)
p = J (k+1)

p − J (k)
p

∆u(k) = u(k+1) − u(k),

(2.11)

where the small number ε is used to avoid division by zero. This formula
becomes ill-conditioned when the set-point changes are small (i.e. ∆u → 0).
Furthermore, the gradient estimate needs to be properly initialized (Mansour
and Ellis, 2003).

2.3.2. Modifier adaptation with quadratic
approximation

Gao et al. (2016) recently proposed a robust RTO algorithm based on MA
and inspired by Derivative-Free Optimization (DFO) methods. This concept,
named “Modifier Adaptation with Quadratic Approximation” (MAWQA), is
based on constructing quadratic approximations (QA) of the objective function
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and constraints by selecting a suitable set of past set-points. The QA for the
cost function is defined by:

Jφ(u,θφ) =
nu∑
i=1

i∑
j=1

ai,juiuj +
nu∑
i=1

biui + c (2.12)

with the parameter set θφ = {a1,1, · · · , anu,nu , b1, · · · , bnu , c} obtained by
solving the least squares (LS) problem

min
θφ

nr∑
i=1

(
Jp
(
u(ri)

)
− Jφ

(
u(ri),θφ

))2
(2.13)

where u(ri) is part of the regression set U (k) composed of past set-points. In
order to guarantee well-poisedness of the regression problem, the regression set
is determined with a screening algorithm. The new set-point obtained from the
iteration on problem 2.5 is additionally restricted by an elliptical trust region
defined by the covariance of the regression set. The scheme also includes a
switching mechanism that verifies the quality of the approximation done by
both the adapted problem 2.5, and the QA, and selects the best model for
optimization on each iteration. The steps involved in the algorithm are directly
presented from the original paper (Gao et al., 2016):

1. Choose an initial set-point u(0) and probe the plant at u(0) and u(0) +
hei, where h is a suitable step size and ei ∈ Rnu(i = 1, · · · , nu) are
mutually orthogonal unit vectors. Calculate the gradients at u(0) with
finite differences, and run the IGMO algorithm of Gao and Engell (2005)
until (nu+1)(nu+2)/2 set-points have been generated. Run the screening
algorithm to acquire the regression set U (k). Initialize ρ(k)

m = 0 and
ρ

(k)
φ = 0.

2. Calculate the quadratic functions J (k)
φ and G(k)

φ by solving problem 2.13.
Define the search space B(k) from the regression set U (k) as:

B(k) : (u− u(k))TM−1(u− u(k)) ≤ γ2 (2.14)

where M = cov
(
U (k)

)
is the covariance matrix of the regression set, and

γ is a scaling parameter related to the size of the hyper-ellipsoid defined
by B(k).



2.3. Estimation of the plant gradients 15

3. Extract the gradients from the quadratic functions. Determine a new
candidate set-point û(k) as follows:

(a) If ρ(k)
m ≤ ρ

(k)
φ = 0, run the adapted model-based optimization in

problem 2.5 with the additional constraint u ∈ B(k).
(b) Else perform an optimization based on the quadratic approximation:

min
u

J
(k)
φ (u)

s.t. G(k)
φ (u) ≤ 0

u ∈ B(k)

u ≤ u ≤ u

(2.15)

4. If ‖û(k) − u(k)‖ < ∆u, where ∆u is the parameter used by the screening
algorithm to define the regression set, and there exists at least one point
u(j) ∈ U (k) such that ‖û(k)−u(j)‖ > 2∆u, set û(k) = (û(k) +u(j))/2. This
step improves the QA, since the new point û(k) will replace the more
distant point u(j) in the following regression set.

5. Evaluate the process at û(k) to acquire Jp(û(k)) and Gp(û(k)). Define the
next iterate by

(a) Successful iteration. If Jp(û(k)) < Jp(u(k)), define u(k+1) = û(k)

and run the screening algorithm to define the regression set U (k+1).
Calculate the quality indices as:

ρ(k)
m = max


∣∣∣∣∣∣1− J

(k)
ad − J

(k−1)
ad

J
(k)
p − J (k−1)

p

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1− G

(k)
ad,1 −G

(k−1)
ad,1

G
(k)
p,1 −G

(k−1)
p,1

∣∣∣∣∣∣ , · · · ,∣∣∣∣∣∣1− G
(k)
ad,ng
−G(k−1)

ad,ng

G
(k)
p,ng −G(k−1)

p,ng

∣∣∣∣∣∣


(2.16)

ρ
(k)
φ = max


∣∣∣∣∣∣1− J

(k)
φ − J

(k−1)
φ

J
(k)
p − J (k−1)

p

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1− G

(k)
φ,1 −G

(k−1)
φ,1

G
(k)
p,1 −G

(k−1)
p,1

∣∣∣∣∣∣ , · · · ,∣∣∣∣∣∣1− G
(k)
φ,ng
−G(k−1)

φ,ng

G
(k)
p,ng −G(k−1)

p,ng

∣∣∣∣∣∣


(2.17)
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where Jad and Gad refer to the adapted objective function and
constraints, as shown in problem 2.5. Increase k by one and go to
Step 2.

(b) Unsuccessful iteration. If Jp(û(k)) ≥ Jp(u(k)), run the screening
algorithm to update the regression set for u(k) with the new probe
û(k) in the collected data. Due to the screening algorithm, û(k) will
be included in the regression set to improve the QA around u(k).
Go to Step 2.

2.3.3. Gradients from transient information

Regardless of the method used for estimating the plant gradients, the major
bottleneck in static RTO is waiting for steady-state before collecting the re-
quired measurements; especially in slow processes. If measurements obtained
during transient operation are available, they can be used to accelerate the op-
timization scheme by reducing the required waiting time. Another less evident
advantage of using dynamic information, is that the violation of constraints can
be monitored, and corrective actions can be taken in real time. This section
summarizes the main contributions in the field of using transient data in RTO;
special attention is given to the use of dynamic model identification, and the
use of Neighboring-Extremals (NE).

Dynamic model identification: The idea of using model identification for
static optimization goes back to the work of Bamberger and Isermann (1978).
They proposed using the transient information of the process to estimate the
steady-state gradients, by using an adaptive Hammerstein model to describe
the dynamic behavior of the system; resulting in a significant reduction in the
required time to achieve optimality. Zhang and Roberts (1990) extended this
idea by using linear dynamic models, and placing the scheme inside the ISOPE
framework, but did not consider process dependent constraints. Figure 2.2
illustrates how model identification is integrated in RTO.
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Model-based optimization

Dynamic identification

y(k)=F[y(k-1),...,u(k-1),...]

Dynamic process

y(k)

y,dy/du

Calculation of modifiers

εJ,εG,λJ,λG

u(k+1)

Figure 2.2.: Integration of system identification with RTO. Adapted from Zhang
and Roberts (1990)

Consider, for simplicity, the use of a linear I/O dynamic model to illustrate
this idea:

y(k) = A(q−1)y(k) + q−dB(q−1)u(k) + D (2.18)

where A(q−1) and B(q−1) are matrix polynomials in the backward-shift
operator q−1, d is the minimum delay (in sampling periods) between the inputs
u(k) and the outputs y(k)3 at sample point k, and D is a vector of constant
terms. This model is suitable for describing the dynamics of different well-
behaved processes when linearization is valid, i.e. close to steady-state. If the
system is stable, its final value can be calculated by setting q = 1; from the
estimated steady-state, the gradients can be directly obtained:

ȳ = [I−A(1)]−1 [B(1)us + D]
∂ȳ
∂u

= [I−A(1)]−1 B(1)
(2.19)

The idea can be extended to use nonlinear models such as a generalized
Hammerstein model, which includes nonlinear terms in the inputs. A drawback
of this method is that the dynamic order of the models has to be pre-specified,
and some experimentation might be required for the proper selection of the

3The notation y(k) and yk are both used in this work to denote data sampled at point k.



18 Chapter 2. Theoretical Background

dynamic structure of the model. Furthermore, test signals such as a Pseudo-
Random Binary Sequence (PRBS) must usually be superimposed on the inputs
so that enough excitation is present for parameter estimation (persistency of
excitation); especially for nonlinear processes (Nelles, 2001). This continuous
perturbation of the plant, although useful in simulation studies, is undesirable
in practice; especially when the plant is operating close to its optimum.

Lin et al. (1989) used stochastic-systems theory to avoid applying additional
perturbations to the plant, by realizing that disturbances on the process affect
the inputs to the system via feedback control, which can provide enough
excitation for model identification. However, the assumption that there is a
feedback loop between the measured outputs and the inputs is not always valid.
Instead of estimating the gradients from transient data, Gao and Engell

(2016) proposed using a linear Autoregressive with Exogenous Inputs (ARX)
model to predict the steady-state values of the system, and using these predic-
tions in MAWQA. The main advantage of this approach, is that test signals
do not have to be superimposed on the inputs, therefore avoiding dynamic
plant disturbances. The idea is based on the fact that for predicting the
steady-state, the parameters in B and D in eq. 2.19 must not be determined
individually. This means that during a step-response corresponding to a set-
point change, where the inputs stay constant, one could lump part of eq. 2.18
as D′ = q−dB(q−1)u(k)+D. This newly defined vector can be identified online
after each set-point change to take into account the implicit dependency on
the inputs u(k). The plant gradients would then be determined by the QA. A
drawback of this approach is that the dynamics of the plant must be approxi-
mately linear for the identified model to be valid, which can sometimes require
waiting for the plant to be close to the steady-state.

Neighboring extremals: Other approaches for the use of transient infor-
mation are inspired by gradient control schemes, and include the techniques
classified as direct input adaptation in Section 2.2.1. François et al. (2012)
present these schemes in more detail, and compare them in the framework of
RTO.
François and Bonvin (2014) used the gradients estimated from NE in the

framework of MA, and showed that a remarkable improvement in convergence
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time could be achieved, even reaching the optimum in one settling time of
the analyzed plant. The idea behind NE is that under the assumption of
parametric uncertainty, the deviations between the gradients of the model and
the plant can be attributed to differences in the parameters of the model, which
must be compensated by changing the plant inputs. Originally, NE proposes
to perform a variational analysis around the nominal operating point given
by solving the original unconstrained optimization problem with the nominal
parameter values θm, in which case ∂J(u∗

m,θm)/∂u = 0 (Gros et al., 2009).
Given a static I/O mapping of the process ȳ = H(u,θ), the variation of

the steady-state outputs with respect to the nominal operating point can be
expressed as:

∆ȳ = ∂H
∂u

∆u + ∂H
∂θ

∆θ (2.20)

with ∆ȳ = ȳp−ȳ∗
m, ∆u = u−u∗

m and ∆θ = θp−θm, where ȳ∗
m = H(u∗

m,θp).
If the number of measurements is at least equal to the number of uncertain
parameters (ny ≤ nθ), eq. 2.20 forms a system of (over)determined linear
equations that can be solved for the parametric uncertainty ∆θ as:

∆θ =
(
∂H
∂θ

)+ (
∆ȳ− ∂H

∂u
∆u

)
(2.21)

where ()+ denotes the Moore-Penrose pseudo-inverse of (), which solves the
equation in the LS sense. The gradient of the plant can be similarly obtained
as:

∂Jp(u,θ)
∂u

= ∂2Jp
∂u2 ∆u + ∂2Jp

∂u∂θ
∆θ (2.22)

which, by substituting the parametric uncertainty ∆θ obtained from eq. 2.21,
gives an estimate of the steady-state gradient based on plant measurements.
In the constrained case, the gradient of the objective function at the optimum
is not necessarily equal to zero, and therefore eq. 2.22 becomes:

∂Jp(u,θ)
∂u

= ∂Jp(u∗
m,θm)
∂u

+ ∂2Jp
∂u2 ∆u + ∂2Jp

∂u∂θ
∆θ (2.23)
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Equation 2.23 can also be used to estimate the gradients of the constraints
by replacing Jp with Gp.
In order to use the NE approach during transient operation, François and

Bonvin (2014) proposed substituting the static differences in eq. 2.20 with
transient differences ∆y(t) = yp(t) − ȳ∗

m and ∆u(t) = u(t) − u∗
m. Note

that when steady-state is reached, this approach reduces to the static NE
formulation. A strong disadvantage of the NE approach in general, is that its
accuracy is limited by the linearization of the mapping function ȳ = H(u,θ).
This can be improved by re-linearizing ȳ around u(k), which implies updating
the matrices in equations 2.21 and 2.22 (François and Bonvin, 2014)
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CHAPTER

THREE

DETERMINING THE TYPE OF PLANT-MODEL
MISMATCH

As discussed in Chapter 2, the strategies for using transient information in the
context of RTO can also be classified depending on the type of plant-model
mismatch assumed (i.e. structural or parametric). This chapter presents
a simple approach to discard parametric mismatch: first, the concept of P-
invalidity and its relation with the χ2 distribution is introduced; this is used
to analyze whether the plant-model mismatch can be considered parametric,
depending on a simple goodness-of-fit test. The concept is illustrated with the
case-study of a CSTR.

3.1. Rejecting parametric mismatch

Parametric plant-model mismatch results from using a model that has a correct
mathematical structure, but contains the wrong value in one, or more param-
eters. Correcting such a model involves parameter estimation, and requires
knowing the identity of the mismatched parameters. Determining whether a
proposed dynamic model is structurally correct in the presence of measure-
ment noise is of high use, since simple techniques based on the assumption of
parametric uncertainty exist to exploit transient information in the context of
RTO.
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The general framework for parameter estimation is the maximum likelihood
formulation, which can be written as follows if the measurement errors are
assumed to be independent from each other:

max
θ̂,ê,ŷ

n∏
i=1

p(êi)

s.t. êi = yi − ŷi
ŷi = f(θ̂)

(3.1)

where θ̂ are the parameters to be estimated, ê is the error vector between the
measured data y and the predicted data ŷ from the model f(θ̂), and p is the
probability density function (PDF) of the error, which is assumed to be known.
Problem 3.1 is usually transformed by instead minimizing the logarithm of the
likelihood, which in the case of Gaussian noise leads to the widely known LS
problem.
Testing whether a dynamic model is structurally correct can be rephrased

as testing how well a best-fit version of that model can represent real data:
a poor fit means that the mathematical formulation of the model is, even in
the case of optimal parameters, unable to properly represent the underlying
phenomena that generate the measured data. Unless the real model is known,
or the whole input space is explored to compare the model and the data, it is
not possible to say with absolute certainty that a proposed dynamic model is
structurally correct. However, it is possible to work from the other end and
reject the assumption of parametric mismatch with a certain probability. This
is a hypothesis test, where the null hypothesis is that the model is structurally
correct, and the alternate hypothesis is that it is not.
Bunin et al. (2013) proposed the concept of P-invalidity in the context of

determining the validity of a proposed regularizing structure for the estimation
of bounds on experimental gradients. The idea behind P-invalidity testing, is
that if the resulting residuals after a best-fit procedure of data to a specified
model are very unlikely, then it is probable that the model is not structurally
correct. Quantifying whether a model structure is P-invalid can be done by
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defining a likelihood value Lp that serves as a lower bound, with probability
P , on the likelihood of the estimated errors:

prob
(

n∏
i=1

p(êi) ≥ Lp

)
= P (3.2)

A model is said to be P-invalid if there is no solution for problem 3.1 that
results in a likelihood higher than Lp. Of course, if the maximum likelihood
estimate θ̂ is P-invalid, every other solution will also be invalid. Bunin et al.
(2013) proposed using Monte Carlo sampling to estimate Lp, since calculating
it analytically implies integrating the likelihood function, which is not possible
in the general case. For the particular case of Gaussian error with variance
deviation σ2

n, however, one can reformulate the P-invalidity criterion using the
fact that maximizing the likelihood function corresponds to minimizing the
sum of squared-errors:

prob
(

n∑
i=1

ê2
i ≤ Ep

)
= P (3.3)

where the relation between Lp and Ep is not trivial, but is unnecessary, since
this is now a different criterion for P-invalidity. In simple terms, this equation
means that if the sum of the squared residuals after finding the best fit is very
large, then it is unlikely that the model is structurally correct.
The advantage of this formulation, is that the sum of squared errors of

a Gaussian distribution follows a Chi-squared (χ2) distribution. The null
hypothesis that the model is structurally correct is rejected if T > χ2

1−α,k, with
the test statistic T = ∑n

i=1 ê
2
i /σ

2
n, and the critical value χ2

1−α,k calculated from
the χ2 distribution with significance α, and k = n − nθ degrees of freedom.
The degrees of freedom are reduced to take into account the fitting of nθ
parameters; in the case of dynamic system identification, an additional degree
of freedom should be subtracted for every initial condition that is taken as
fixed. A possible shortcoming of this approach, is that the variance of the noise
σ2
n must be known, which is not always the case. Figure 3.1 illustrates this

procedure; although not shown, a data collection step is of course necessary.
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Estimate parameters by
min Σ(Yi-Yi)

2

s.t. Yi=f(θ)

Get T statistic as
T=Σei

2/σn
2 T>χ

2
1-α,k?

Reject parametric
mismatch with
confidence α

Y

Cannot reject
parametric mismatch

N

Figure 3.1.: Statistical test for rejecting the hypothesis of parametric mismatch

3.2. Case study 1

This section presents one of the two case-studies used in this work. The
model describing the system is first presented, and then used to illustrate the
usefulness of the statistical test introduced in Section 3.1.

3.2.1. Reactor model

The case-study is based on an isothermal CSTR, where the reactions A+B k1−→ C
and 2B k2−→ D occur; with C being the desired product (see Figure 3.2). The
manipulated variables are the feed rates of A and B (uA and uB respectively).
The model consists of mass and energy balances (François and Bonvin, 2014):

uA,cA,in

uB,cB,in

cA,cB,cC,cD

A+B C
2B D

Figure 3.2.: Diagram of the CSTR for case-study 1
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ċA(t) = −k1cA(t)cB(t) + uA(t)
V

cA,in −
(
uA(t) + uB(t)

V

)
cA(t)

ċB(t) = −k1cA(t)cB(t)− 2k2c
2
B(t) + uB(t)

V
cB,in −

(
uA(t) + uB(t)

V

)
cB(t)

ċC(t) = k1cA(t)cB(t)−
(
uA(t) + uB(t)

V

)
cC(t)

ċD(t) = k2c
2
B(t)−

(
uA(t) + uB(t)

V

)
cD(t)

Q(t) = V k1cA(t)cB(t)(−∆Hr,1) + V k2c
2
B(t)(−∆Hr,2)

(3.4)
where ci denotes the concentration of species i, V is the constant reactor

volume, Q is the generated heat, ∆Hr,1 and ∆Hr,2 are the reaction enthalpies
of the two reactions, cA,in and cB,in are the inlet concentrations, and k1 and
k2 are the rate constants of the reactions. The only available measurements
are the concentrations at the output of the reactor, which are assumed to be
obtained with a sampling time ts = 1 min. Table 3.1 shows the numerical
values of these parameters as used in the nominal model.

Table 3.1.: Nominal model parameters for the CSTR case-study

k1 0.75 L/(mol min)
k2 1.5 L/(mol min)
cA,in 2 mol/L
cB,in 1.5 mol/L
V 500 L
(−∆Hr,1) 3.5 kcal/mol
(−∆Hr,2) 1.5 kcal/mol

3.2.2. Evaluation of plant-model mismatch

The χ2 test discussed in Section 3.1 was used to check whether the plant-model
mismatch in the case-study is parametric or structural. The data used for
parameter estimation was the one corresponding to the start-up of the reactor:
the initial concentrations cA, cB, cC , and cD are assumed to be zero, and
the flow rates are set to their nominal optimal value (c.f. Table 4.2). The
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parameters to be estimated correspond to the two reaction constants and the
inlet concentration cA,in. The data was corrupted with zero-mean Gaussian
noise with three different standard deviations; all of the four measurements
were corrupted with the same level of noise. The test was repeated one hundred
times, each experiment with a different noise realization, in order to verify the
number of times that the test rejected parametric mismatch.

Table 3.2.: Determination of P-Invalidity for the CSTR case-study

σn 1·10−3 5·10−3 1·10−2

ninvalid 4 3 7

Table 3.2 summarizes the results of this study, where it is shown that the
number of false-negatives per noise level, i.e. the number of times that the
test discarded parametric mismatch, is consistent with the significance level
used (α = 0.05). Although not shown here, the test was also repeated without
indicating the whole set of mismatched parameters; in this case, the test always
rejected parametric mismatch. This is one of the main difficulties when dealing
with the assumption of parametric mismatch: if the model is indeed structurally
correct, failure to identify the set of mismatched parameters will result in a
deficient model fit, which can be interpreted as a possible structural mismatch.
Although the test presented in this section can be useful for determining
structural mismatch, Type I and Type II errors cannot be avoided, and its
results should be interpreted with caution.
In Chapter 4, parametric plant-model mismatch will be addressed in the

context of RTO, where a simple, yet efficient, approach for fast parameter
estimation based on linearization will be presented. Chapter 5 deals with the
more general (and common) case of structural mismatch, where the use of
black-box dynamic models in RTO is discussed.
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CHAPTER

FOUR

AN IMPROVED RTO SCHEME FOR SLOW
PROCESSES WITH PARAMETRIC MODEL

UNCERTAINTIES

If parametric mismatch cannot be rejected, several RTO techniques inspired
in implicit control can be used. As mentioned in Chapter 2, a recently pro-
posed approach is the extension of the NE scheme to use transient information
(François and Bonvin, 2014). However, the use of transient measurements in
this context implies that the estimated parametric mismatch ∆θ depends on
the trajectory of the outputs yp(t). Therefore, different initial conditions will
lead to different gradient estimates, i.e. the plant must approach steady-state
so that the estimated gradients are close to their static counterparts. The
original NE scheme does not make full use of the dynamic information present,
since it only uses the available dynamic model in its static form.

This chapter builds on the work of François and Bonvin (2014) on NE update,
by applying linearization to the dynamic process model, instead of the static
one. First, the method of parameter estimation based on the linearized dynamic
model (LDM) is discussed and evaluated with a toy example. This technique
is integrated with MA, and is applied to the optimization of a CSTR.
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4.1. Parameter estimation from linearized
dynamic model

For the derivation of this scheme, the dynamic behavior of the plant is assumed
to be described by the following state-space representation:

ẋp(t) = fp(xp(t),up(t),θp)
yp(t) = C(xp(t))

(4.1)

where xp(t) is a vector of time-varying plant states, up(t) is a vector of
plant inputs, θp is a vector of the true plant parameters, fp is the dynamic
mapping of the plant, C is a known measurement function, and yp(t) is a vector
of measured plant outputs. The nominal (mismatched) model is assumed to
be represented in the same way, with the subindex m instead of p. If full-
state measurement is assumed, then yp(t) = xp(t). For brevity, the temporal
dependency of the different quantities in equation 4.1 will not be explicitly
written.

If plant-model mismatch is parametric, the mathematical form of the func-
tions fp and fm is the same, and their predictions differ only due to a differ-
ence in the parameters θp and θm; which means that fp = f(y,u,θp) and
fm = f(y,u,θm). If the dynamic mapping is assumed to be differentiable with
respect to y, θ, and u, the degree to which the dynamic responses predicted
by the model differ from the ones observed in the plant can be quantified with
a sensitivity analysis:

f(yp,θp) = f(ym,θm) + ∂f
∂θ

∆θ + ∂f
∂y

∆y (4.2)

where ∆θ = θp − θm and ∆y = yp − ym. The dependency on the inputs
u is dropped, since the linearization is done assuming the same inputs for the
plant and for the model, i.e. up = um = u.
In order to isolate the effect of the parametric mismatch on the predicted

dynamic response of the model, one can force ym to be equal to yp at every
sampling point. This idea is illustrated in Figure 4.1, where ẏp = f(yp,u,θp)
is the true dynamic response of the plant, and corresponds to the slope of the
red lines, whereas the dynamic response ẏm predicted by the model f(yp,u,θm)
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based on the nominal parameters and the true plant outputs yp corresponds
to the slope of the blue lines.
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Figure 4.1.: Temporal derivatives predicted by the model (blue) and observed in
the plant (red). The black icons represent the sampled data from the plant

With this in mind, the difference between these two slopes is exclusively
due to parametric mismatch. Assuming that the number of measurements is
larger or equal to the number of uncertain parameters (nθ ≤ ny), eq. 4.2 can
be reorganized to obtain an estimate of the parametric mismatch ∆θ as:

∆θ =
(
∂f
∂θ

)+ [
ẏp − ẏm

]
(4.3)

In general, the estimated parametric mismatch will change at each sampling
point due to the accuracy of linearization; the exception being the case where
f is linear with respect to the mismatched parameters, where eq. 4.3 is exact.
Therefore, it is more appropriate to write eq. 4.3 for every sampling point k as:

∆θk =

 ∂f
∂θ

∣∣∣∣∣∣
yp,k,u,θm


+ [

ẏp,k − ẏm,k
]

(4.4)

Equation 4.4 makes full use of the transient data of the process. However,
this improvement comes with a higher computational load, since the sensitivity
∂f/∂θ must be calculated at each sampling point. This scheme can even work
if the plant settles to steady-state (i.e. ẏp = 0), because as long as there is
a parametric mismatch, the model will not have the same steady-state as the
plant.
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The main difficulty in this approach is to estimate the temporal derivative of
the plant ẏp = f(yp,θp), especially when there is measurement noise. In this
work, a Savitzky-Golay (SG) filter of order 3 and window size of 5 points was
used to estimate these temporal derivatives (Savitzky and Golay, 1964). This
type of filter is widely used for smoothing data and estimating its derivatives.
An SG filter works by fitting a polynomial of degree l to m data points; from
the fitted polynomial, the derivatives can be easily extracted. A smoothed
version of the data is also obtained:

yk ≈
1
35 (−3yk−2 + 12yk−1 + 17yk + 12yk+1 − 3yk+2)

ẏk ≈
1

12ts
(yk−2 − 8yk−1 + 8yk+1 − yk+2)

(4.5)

Using a larger window size results in more smoothing. However, if the
window is too large, the bias error will increase, since the chosen polynomial
might only approximate the data locally. Since the filter uses points k + 1 and
k + 2 for the estimation of the derivatives at point k, the estimation is always
delayed by two sampling times. If the mismatched parameters are assumed to
not change significantly during each transient period, the results of eq. 4.4 can
also be filtered to improve the accuracy of estimation:

∆θ̂k = (k − 1)∆θ̂k−1 + ∆θk
k

(4.6)

with ∆θ̂1 = ∆θ1, where ∆θ̂k is the filtered running estimate of the para-
metric mismatch at sampling point k, and ∆θk is the parametric mismatch at
sampling point k from eq. 4.4. The filter can be reset after each new set-point
is applied, in order to take into account the possible effect of different operating
conditions on the parameters, and to avoid using old information if slow drifts
are expected (e.g. catalyst deactivation, heat exchanger fouling).

4.1.1. Toy example

Consider the following toy example used to compare the proposed parameter
estimation approach, with the parameters estimated from NE. This example is
a simplified version of the case-study presented in Chapter 2, and consists of a
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CSTR where one reaction takes place, namely the decomposition of substance
A. The reactor operates isothermally with a constant volume, and can be
modeled by the following ODE:

ċA(t) = −kc2
A(t) + uA(t)

V
(cA,in − cA(t)) (4.7)

where cA is the concentration of species A in the reactor, k is the reaction
constant, uA is the feed rate of component A, V=500 L is the volume of
the reactor, and cA,in=2.5 mol/L. The reaction constant k is the mismatched
parameter, with a nominal value knom = 0.05 L/(mol·min), and a true value
ktrue = 0.1 L/(mol· min).
In order to verify how well the NE approach estimates the mismatched

parameter k, different step-response tests were done starting from the steady-
state corresponding to a nominal input u∗

A = 1 L/min. The input was varied
in increments of 0.1 from 1.1 to 3 L/min. Three different approaches were
used to estimate the mismatched parameter: NE with linearization around the
nominal point, NE with linearization around the operating point, and LDM
around the trajectory of the real data (eq. 4.4).
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Figure 4.2.: Estimated reaction constant for the toy example with the linearized
dynamic model (black), NE (blue), and NE with updated matrices (red). The arrow
indicates the order of the curves according to the step-size ∆u
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Figure 4.2 illustrates the results of the test, where it is evident that the
estimated parameters based on NE follow the dynamics of the plant. The
estimates based on NE with linearization around the current operating point
(updated matrices) are closer to the true value ktrue, than the estimates based
on NE linearized around the nominal point. This is expected, since updating
the model matrices reduces the error of linearizing in the u direction. However,
the estimates based on LDM vary little with the size of the step change, and
converge to a value very close to the true one. Even though the ODE is linear
on the mismatched parameter, exact estimation is not achieved because the
exact temporal derivatives are not known, but approximated with the SG filter.
In order to verify how these three approaches perform with noisy measure-

ments, a step-response from the steady-state of the nominal operating condition,
up to u = 3 L/min was performed 20 times for two different noise variances σ2

n.
Figure 4.3 illustrates the results of this test.
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Figure 4.3.: Estimated reaction constant with noisy measurements for the toy
example with the linearized dynamic model (black), NE (blue), and NE with updated
matrices (red).

As expected, LDM is more sensitive to measurement noise than the ap-
proaches based on NE, since it requires numerical differentiation of the data.
However, even with a high level of measurement error the estimate from LDM
converges to a neighborhood of the true parameter, showing how the simple
filter of eq 4.6 is effective enough to compensate for noise propagation.
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4.2. RTO with parameters from LDM

From the assumption of parametric uncertainty, it is clear that the main advan-
tage of the NE scheme is that the parameters of the plant are easily estimated
via linearization. However, using linearization for the calculation of the plant
gradients is not necessarily advantageous, since the same assumption also means
that Hp(u,θp) ≈ Hm(u,θm + ∆θ) and therefore ∂Jp(u,θp)

∂u ≈ ∂Jm(u,θm+∆θ)
∂u ; the

same logic applies to the constraints and their gradients. Figure 4.4 illustrates
an RTO scheme based on parameter estimation with LDM.

Model-based
optimization

ykDynamic
process

Get modifiers from model
with θp=Δθk+θm

εJ,εG,λJ,λG

u*
SG
filter

yk

Get sensitivities
and estimate Δθk

|Δθk-Δθk-1|< ε
or t>tRTO?

N

Y

Figure 4.4.: RTO scheme with parameters from the linearized dynamic model

This corresponds to a temporal decomposition between parameter estimation
(in the dotted box), and optimization. The RTO algorithm with parameters
from LDM can be summarized in the following steps:

1. Collect the plant measurements yp,k at sampling point k, and filter them
with the SG filter to get an estimate of the true temporal derivative of
the plant ẏp,k.

2. With the filtered yp,k, obtain the temporal derivative predicted by the
nominal model ẏm,k = f(yp,k,u,θm).

3. Get the sensitivity matrix ∂f/∂θ evaluated at yp,k, u, and θm. Estimate
the parametric mismatch ∆θk with eq. 4.4.

4. Filter ∆θk with eq. 4.6. If the re-optimization criteria are not met, go to
Step 1 to collect another measurement; else, continue.

5. Get the modifiers by calculating the gradients as ∂Jp(u,θp)
∂u = ∂Jm(u,θm+∆θ)∗

∂u ,
where ∆θ∗ is the obtained parametric mismatch from the inner estimation
loop.
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6. Run the adapted optimization problem of IGMO with the calculated
modifiers. Apply the calculated new set-point to the plant, and go to
Step 1.

There are two criteria for re-optimization, namely parameter convergence
(a tolerance of 0.1% was used in this work) and a maximum optimization
interval tRTO. The choice of tRTO is critical under noisy conditions, since it
determines the amount of filtering the estimated parameters go through before
re-optimization, as will be shown in the following section.

4.3. Case study 1

In this section, the proposed RTO scheme is evaluated with the optimization
of the CSTR presented in Chapter 3. The optimization problem is initially
stated, and followed by simulation studies.

4.3.1. Optimization problem

The optimization problem aims at maximizing the performance of the reactor
at steady-state, while satisfying process dependent constraints:

max
uA,uB

J := c2
C(uA + uB)2

uAcA,in
− w(u2

A + u2
B)

s.t. G1 := Q

Qmax
− 1 ≤ 0

G2 := D

Dmax
− 1 ≤ 0

0 ≤ uA ≤ umax

0 ≤ uB ≤ umax

(4.8)

where G1 constrains the amount of heat generated, while G2 imposes a limit
on the amount of the by-product D, where D = cD/(cA + cB + cC + cD) is
the molar fraction of this component in the product stream; the inputs are
also bounded. The objective function is based on the yield of product C with
respect to reactant A; w is a parameter that penalizes the control action. The
parameters for the optimization problem are given in Table 4.1
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Table 4.1.: Parameters of the optimization problem for the CSTR case-study

w 0.004 mol min/L2

Qmax 110 kcal
Dmax 0.1 -
umax 50 L/min

To comply with the general formulation of the static optimization problem,
the maximization in problem 4.8 is transformed to min− J . Plant-model mis-
match is introduced by using different parameters in the “true” plant, namely:
cA,in = 2.5 mol/L, k1 = 1.4 L/(mol·min), and k2 = 0.4 L/(mol·min) (see Ta-
ble 3.1 for the nominal parameters). Note that the mismatched parameters
are also part of the objective function and the first constraint. This means
that parameter estimation is required, since the nominal objective function
and constraints are also mismatched and not directly measured.
The solutions to the optimization problem for the model and the plant are

summarized in Table 4.2. Note that the set of active constraints is different
in both cases, with G2 being active in the nominal (model) solution, and G1

being active in the true solution. As in Chapter 3, the sampling time for the
measurements was taken as ts = 1 min.

Table 4.2.: Solutions to the model and plant optimization problems for the CSTR
case-study

model optimal solution plant optimal solution

u∗
A,m 14.52 L/min u∗

A,p 17.2 L/min
u∗
B,m 14.9 L/min u∗

B,p 30.3 L/min
J(u∗) 4.51 mol/min J(u∗) 15.42 mol/min
G1(u∗) -0.48 - G1(u∗) 0 -
G2(u∗) 0 - G2(u∗) -0.19 -

4.3.2. Simulations with no measurement noise

Instead of filtering the calculated modifiers as in (Marchetti et al., 2009), the
new set-point u(k+1)∗ given by the optimizer was filtered before applying it to
the plant, such that u(k+1) = (I−K)u(k) + Ku(k+1)∗ ; the damping factor was
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chosen as K = 0.5I. The estimated mismatch was reset at each new set-point.
However, another possibility is to verify how the estimated parameters change
when the set-point changes: if they do not vary significantly, then it might be
faster to optimize the nominal model with the updated parameters, instead of
iteratively using MA.
Figures 4.5a and 4.5b show the results for the optimization of the CSTR

problem with LDM, with a maximum optimization period tRTO = 5 min and
noise-free measurements. The left figure displays the set-points applied to
the plant, where the dotted lines represent the true optimal values, and the
right figure displays the transient objective function, with the dotted line
representing the true optimal cost function of the plant. The inputs are within
±10% of their optimal values in 30 minutes, and converge to the optimum in
around 60 minutes; roughly the setting time of the plant.

Optimization was also performed for the case in which the plant parameter
cA,in = 2 mol/L, to verify the effect of varying the degree of plant-model
mismatch. Figures 4.5c and 4.5d show the results for this case, where it can
be seen that convergence to the true optimum of the plant is also achieved in
a period of under 60 minutes.

4.3.3. Simulations with measurement noise

The effect of measurement noise on the optimization procedure was evaluated by
using the combinations of three levels of measurement noise σn, and three levels
of maximum re-optimization intervals tRTO. For each combination, one hundred
optimization runs were simulated, each with a maximum of 50 iterations. The
results of this study are shown in Table 4.3, and are summarized in terms of:
the average Profit Loss (PL) incurred throughout the optimization run, the
average time t̄1%,first required for the plant to first reach an objective function
within ±1% of the true optimum, the average time t̄1%,last required for the plant
to stay within of ±1% of the true optimum, the number of runs nfirst where
t1%,first > 1.5t̄1%,first, and the number of runs nlast where t1%,last > 1.5t̄1%,last.
The quantities are expressed as their mean value ± standard deviation.
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Figure 4.5.: RTO of the CSTR case-study using linearized dynamic model. Figures
(a) and (c) represent the flow rates, while figures (b) and (d) represent the objective
function

The profit loss was calculated as the sum of the difference between the
optimal cost function J∗

p and the static objective function at set-point u(t), for
the whole optimization run:

PL =
∫ tsim

0

[
J∗
p − Jp (u(t))

]
dt (4.9)

From the results, it is evident that there is a trade-off between the speed at
which the plant reaches the neighborhood of the optimum, and its robustness
to noise: with a short optimization interval of 5 minutes, the plant enters the
±1% region around the optimum in an average time close to, or less than,
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Table 4.3.: Optimization of the CSTR case-study with the LDM approach

tRTO σn PL t̄1%,first t̄1%,last nfirst nlast
(min) (mol/L) (mol) (min) (min)

5
1·10−3 68.8 ±23.9 30.3 ± 2.7 36.5 ± 34.3 0 4
5·10−3 163.0 ± 94.8 43.1 ± 18.4 319.1 ± 57.6 12 0
1·10−2 604.7 ± 810.5 79.2 ± 68.7 355.9 ± 52.7 15 0

10
1·10−3 123.9 ± 59.2 55.9 ± 0.3 76.1 ± 77.9 0 7
5·10−3 125.2 ± 42.4 56.4 ± 6.6 95.2 ± 96.9 0 15
1·10−2 172.3 ± 89.8 63.8 ± 15.3 418.0 ± 160.2 6 16

20
1·10−3 228.3 ± 91.4 105.1 ± 2.1 141.7 ± 149.0 0 6
5·10−3 218.9 ± 41.5 105.4 ± 3.6 115.2 ± 81.9 0 2
1·10−2 227.5 ± 34.8 104.3 ± 11.4 132.0 ± 113.7 0 7

the setting time of the plant. However, the scheme is strongly affected by
an increase in the noise level, as shown by the high standard deviations in
convergence time. Note the extremely high standard deviation of the profit
loss when the noise level is high; after inspection, it was observed that for
some noise realizations the profit loss of the scheme was above 5000 mol. For
this particular case-study, the best results are obtained with a tRTO of 10 min,
which results in a robust performance in terms of the profit loss.

When using an optimization interval of 10 minutes, the scheme becomes
more robust to noise, and reaches the optimal objective function in a time close
to the setting time of the plant; even out-performing the cases with tRTO = 5
min. Using a larger optimization interval allows the estimated mismatch to
be filtered more, which naturally makes the estimation more robust to noise.
The same conclusion can be drawn for the case where the optimization interval
is set to 20 minutes, where the plant enters the neighborhood of its optimal
objective function at an almost-constant time of around 105 minutes.
However, the scheme can take a longer time to ensure that the objective

function actually stays in the neighborhood of the optimum, as shown by the
values of t̄1%,last. The cause for this, is that after initial convergence to the
optimum the set-point changes are small, and the dynamics of the plant become
obscured by the measurement noise. This leads to wrong parameter estimates
if not enough filtering is applied (see the results when using an tRTO = of 5 min).
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Using a larger optimization interval can help with this problem. However, if
the interval becomes too large, the dynamics of the plant can also fade during
the interval, as shown by the results when using a tRTO of 20 minutes with a
low level of noise. This will also result in a poor estimation of the parameters.
The results in the last two columns of Table 4.3 explain the high standard

deviations obtained: for some noise realizations, the optimizer made drastic
moves after initial convergence due to poor parameter estimation, which leads
to a longer convergence time, and higher PL. The scheme then converges again,
since this large set-point change results in evident dynamics, from which good
parameter estimates are obtained. A possibility to improve the robustness and
performance of the algorithm, could be to use transient measurements with
the LDM in the first optimization iterations to advance quickly towards the
optimum, and then switching to a static MA approach. Rodríguez-Blanco et al.
(2016) recently proposed such a mixed approach, and showed that it allows for
quick convergence, even with structural plant-model mismatch, since transient
information is only used to advance towards the optimum, but then a static
MA scheme is used to finally drive the plant to optimality.

Although not considered in this work, online parameter estimation can also
be performed with a state-estimator, such as an Extended Kalman Filter.
However, the advantage of using LDM for parameter estimation is that it
does not require additional tuning, as is the case for other state-estimators.
Further research is required to compare both approaches, especially under light
structural plant-model mismatch, and for the case when the ODE system is not
linear in the mismatched parameters, where the use of linearization in LDM
might lead to wrong estimates.

4.4. Additional remarks on the method for
parameter estimation

The method of parameter estimation based on LDM can be viewed as the first
iteration of a Gauss-Newton algorithm, where the initial value corresponds to
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the nominal model parameters θm. Equation 4.3 is then part of the solution
to the following LS problem:

min
θ

(ẏp − ẏm)T(ẏp − ẏm)

s.t. ẏm = f(yp,up,θ)
(4.10)

The Gauss-Newton method solves this problem iteratively as (Nelles, 2001):

θ(k+1) = θ(k) +
(
JT

f Jf
)−1

JT
f

(
ẏp − f(yp,up,θ(k))

)
(4.11)

where the Jacobian Jf = ∂f/∂θ is evaluated at the current iterate, and
θ(0) = θm. If there are more measurements than uncertain parameters (nθ ≤
ny), the term

(
JT

f Jf
)−1

JT
f = (Jf )+, which leads to eq. 4.3.

This suggests that an improvement on the method presented in Section 4.1
can be done, based on the assumption that the parameters of the plant only
change slowly in time. Instead of performing the iterative Gauss-Newton
algorithm on the data ẏp,k obtained at sampling point k, the iterations can
be performed online as new data arrives, resulting in a dynamic difference
equation:

θk+1 = θk +
(
JT

f ,kJf ,k
)−1

JT
f ,k [ẏp,k − f(yp,k,up,k,θk)] (4.12)

If accurate values of ẏp,k and yp,k are available, eq. 4.13 can converge to the
parameters of the plant, even if the function f is not linear in the mismatched
parameters. The scheme can also be used for parameter tracking if slow
drifts occur. Equation 4.13 can be regularized with an adaptive parameter α,
resulting in an online Levenberg-Marquardt method:

θk+1 = θk +
[
JT

f ,kJf ,k + αdiag
(
JT

f ,kJf ,k
)]−1

JT
f ,k (ẏp,k − f(yp,k,up,k,θk))

(4.13)
Future research will focus on evaluating this extended scheme for parameter

estimation, especially when there is measurement noise. An option for making
the algorithm more robust to noise, is to use the measurements of more than
one sampling point at a time, which is done by stacking several ẏp,k and Jf ,k.
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FIVE

DYNAMIC MODEL IDENTIFICATION FOR RTO

If a test, such as the one presented in Chapter 3, determines that the dynamic
model at hand is structurally mismatched, or if such a model is not available,
e.g. in early development stages of a process, a black-box dynamic model can
be used for optimization. This chapter presents how such a model can be
chosen, and integrated with MAWQA. The procedure is illustrated with two
case-studies, namely the CSTR presented in Chapter 3, and the optimization
of a homogeneously catalyzed hydroformylation process.

5.1. Nonlinear system identification

System identification consists in selecting an appropriate model structure to
describe the dynamics of a process, and estimating the parameters of that
selected model to best fit the observed data (Ljung, 1999). In this field, the
identification of black-box discrete-time models has been the subject of exten-
sive research; therefore, this type of model will be used in this work. This
section presents some of the fundamentals of the system identification problem:
a general representation of nonlinear discrete-time models is first introduced,
followed by the description of the more specific polynomial models. Some
fundamentals of parameter estimation are then presented. Lastly, the problem
of model structure selection is discussed. For a more comprehensive treatment
on the subject, refer to (Ljung, 1999; Nelles, 2001).
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5.1.1. The NARMAX model

The Nonlinear Autoregressive Moving Average with Exogenous Inputs (NAR-
MAX) representation (Leontaritis and Billings, 1985a,b) has become popular
for describing the I/O behavior of an arbitrary process. The current output
is obtained via a nonlinear functional expansion of lagged input, output, and
noise terms:

y(k) = F [y(k − 1), . . . , y(k − ny), u(k − d), . . . , u(k − d− nu),
e(k − 1), . . . , e(k − ne)] + e(k)

(5.1)

where y represents the output of the system, u is the exogenous input, e
is a noise element, d is the minimum delay (dead time) of the inputs to the
outputs, and ny, nu and ne are the maximum lags of the outputs, inputs, and
noise, respectively. This class of model encompasses particular structures such
as: polynomial expansions, rational functions, and neural networks. The linear
Autoregressive Moving Average with Exogenous Inputs (ARMAX) model is a
specific case of this general formulation.
Polynomial expansions in particular have been widely used due to their

global approximation capability, and have the advantage of being linearly
parametrized (Chen and Billings, 1989). This makes parameter estimation
straightforward because methods from the Ordinary Least Squares (OLS) fam-
ily can be used directly. A polynomial single-input single-output (SISO) NAR-
MAX model of order l has the form:

y(k) =θ0 +
n∑

i1=1
θi1xi1(k) +

n∑
i1=1

n∑
i2=i1

θi1i2xi1(k)xi2(k) + · · ·

+
n∑

i1=1
· · ·

n∑
il=il−1

θi1i2···ilxi1(k)xi2(k) · · ·xil(k) + e(k)
(5.2)

with x(k) = {y(k−1), . . . , y(k−ny), u(k−1), . . . , u(k−nu), e(k−1), . . . , e(k−
ne)}. The different products of the elements in x(k) result in noncommutative
monomials of order up to l. A particular case of the full expression is when
lagged noise terms are not used in the model, which results in the polyno-
mial Nonlinear Autoregressive with Exogenous Inputs (NARX) model. The
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polynomial NARMAX model can be separated into three parts: the process
model, where no noise terms are included, a pure noise model that consists of
a pure noise expansion, and a mixed noise-inputs-outputs expansion (Piroddi
and Spinelli, 2003).
Building on the idea of Gao et al. (2016), system identification is used in

this work to predict the steady-state of the process. This is calculated by
solving eq. 5.2 when setting y(k) = y(k − 1) = ... = y(k − ny) and u(k) =
u(k − 1) = ... = u(k − ny) as long as the identified model is stable1; this can
be viewed as a long-term simulation of the model until the outputs no longer
change significantly. For this purpose, only the process model of the NARMAX
model is necessary, since no noise or measurements are used for this calculation.
Indeed, the purpose of using a noise model is to obtain consistent parameter
estimates by taking additional information from the error terms into account
(Billings, 2013).

Given that the noise model can easily have more parameters than the process
model, NARX structures are usually assumed. However, the noise assumption
of the NARX model, namely disturbances affecting the process, is seldom
satisfied in practice (Nelles, 2001). A more realistic assumption is the one of
the (nonlinear) Output Error model (NOE), where the noise is assumed to
affect the measurements, and not the process:

y(k) = F [y(k − 1), . . . , y(k − ny), u(k − d), . . . , u(k − d− nu)]
ŷ(k) = y(k) + e(k)

(5.3)

where ŷ(k) denotes the measured output that is corrupted by noise. In this
work, the nonlinear models considered are polynomial NOE models. Since only
the prediction of the steady-state is of interest, the process inputs u are not
explicitly included, but are implicitly represented in the parameters θ of the
model.
Extending the NARMAX formulation to multiple-input multiple-output

(MIMO) systems is typically done by describing each output with a func-

1A “steady-state” can also be calculated if the system is unstable, but it does not have
physical meaning
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tion such as the one in eq. 5.1, which results in a system of (possibly coupled)
multiple-input single-output (MISO) models. A way of decoupling the different
models is to use higher dynamic orders in each output (Nelles, 2001); however,
this is not a good option if the different outputs significantly affect each other,
e.g. in a chemical reaction. Figure 5.1 depicts the two representations of MIMO
systems.

model 1
F1(y1,u1,...,unu)

y1

u1

unu

...

model ny
Fny(yny,u1,...,unu)

yny

u1

unu

...

...
(a) Decoupled

model 1
F1(y1,...,yny,u1,...,unu)

y1

u1

unu

...

yny

...

y2

yny
...

model ny
Fny(y1,...,yny,u1,...,unu)

u1

unu

...

y1

yny-1

...

(b) Coupled

Figure 5.1.: Representation of MIMO models with MISO models. Adapted from
Nelles (2001)

5.1.2. Model structure selection

One of the main drawbacks of using polynomial expansions to represent dy-
namic systems, is that they suffer heavily from the so called “curse of dimen-
sionality”, which means that the number of terms in eq. 5.2 grows quickly as
the dynamic orders and polynomial degree increase. Certainly, determining all
of the parameters of a full polynomial expansion will result in an ill-conditioned
problem that requires a large amount of data due to the many degrees of free-
dom of the model. A large number of model parameters will reduce the bias of
the prediction, but will increase its variance error (overfitting), which results
in models that are highly sensitive to noise. It is intuitive to think that not
all of the candidate regressors are important, or necessary, to obtain a good
representation of the dynamics of the plant.
Model structure selection techniques aim at finding a parsimonious repre-

sentation of the dynamics of a process, by selecting a subset of the full set
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of candidate regressors. In its essence, the idea of the problem is to find the
optimum model complexity in terms of the bias/variance trade-off. Methods
for model structure selection can be loosely classified as explicit or implicit
methods (Nelles, 2001), some of which are briefly discussed in what follows.

Explicit structure optimization: A direct alternative for structure selec-
tion would be to evaluate all of the possible models formed from the full
regressor set. However, this is only feasible for small problems: for a polyno-
mial NARX model of degree l, and a total number of model inputs n = ny +nu,
the number of candidate regressors is nφ = (n+ l)!/(n!l!). Clearly, this alterna-
tive would yield the best model, but it is computationally prohibitive for most
practical applications.

One of the most popular alternatives to tackle the structure selection problem,
is the Forward Regression Orthogonal Estimator (FROE) (Korenberg et al.,
1988). This method is an incremental model building procedure, where at each
iteration a new candidate regressor is added to the model, depending on an
importance index related to the improvement obtained in terms of prediction
(or explained data variance) when adding a new term. This scheme is very
efficient for linearly parametrized models and also exploits orthogonal least
squares to make the estimation of different parameters independent. However,
since terms are added sequentially, the method is said to follow a “greedy”
scheme, which can result in sub-optimal models being selected.
Piroddi and Spinelli (2003) argue that using the Error Reduction Ratio

(ERR) of Korenberg et al. (1988) can result in the identification of wrong
models, since this index does not capture the long term predictions of the model.
This is motivated by the fact that some models might yield very good one-step
ahead predictions, but perform very poorly, or even be unstable, when used
for long-term predictions (simulation). Consequently, they proposed using an
index based on the mean squared simulation error called the Simulation Error
Reduction Ratio (SRR). They also proposed extending the FROE algorithm
to include a pruning procedure: at each iteration, the regressors present in the
model are examined in order to remove the least significant one; thus taking
the possible synergy between regressors into account.
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One of the drawbacks of this last approach, is that it still used OLS for
parameter estimation due to the computational cost of using a simulation-based
parameter estimation procedure. Farina and Piroddi (2012) proposed using a
full simulation-based model selection algorithm by exploiting a faster parameter
estimation method based on multi-step prediction (Farina and Piroddi, 2010):
instead of directly minimizing an LS type function, the parameters are identified
by sequentially optimizing a 1, 2, ..., k-step ahead prediction error.

More recently, Falsone et al. (2015) proposed a Randomized Model Structure
Selection (RaMSS) algorithm, which selects a model structure by assigning
a Regressor Inclusion Probability (RIP) to each candidate regressor. In each
iteration, a large number of models are generated by randomly drawing re-
gressors from the candidate set, depending on their RIP. These models are
identified via OLS, and a t-test is performed on the obtained parameters to
eliminate the ones that are not significantly different from zero. The reduced
(non-redundant) models are identified again and evaluated in terms of the mean
squared simulation error. The RIP of every regressor is updated depending on
how, on average, the performance of the model is affected when the regressor
is included. They show that the algorithm, although more computationally
intensive than the FROE, can retrieve correct structures in the case of polyno-
mial NARX models. This approach is similar to genetic algorithms, and can
thus overcome the problem of local minima.
Another approach based on statistical tests of the estimated parameters, is

the Bootstrapping (BS) procedure proposed by Kukreja et al. (1999). This
procedure follows a backward selection scheme, which starts from a full model
and iteratively removes non-significant regressors by estimating their confidence
intervals with BS. This scheme is further discussed in Section 5.2.1.
So far, only model structure selection methods for SISO systems have been

discussed. For the case of MIMO systems, the FROE algorithm was extended
in (Billings et al., 1989). The problem of structure selection for MIMO systems
is more complicated, because if there is significant coupling between MISO
models, the number of possible regressors increases rapidly with the number of
outputs. The nature of the problem also becomes more complex, since not only
is the order in which terms are added or removed to each model important,
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but the sequence in which each MISO model is altered can have a significant
effect on the final model.

Implicit structure optimization Unlike explicit structure optimization,
implicit methods do not directly add or remove regressors from the model,
but they act on the bias/variance trade-off by penalizing model complexity.
Two of such methods are briefly described here. The first method is the L2

regularization, also known as ridge regression, where the objective LS function
is penalized with the squared norm of the parameters:

min
θ

N∑
i=1

(ŷi − yi)2 + α
nθ∑
i=1

θ2
i (5.4)

The parameter α controls the degree of regularization. By using this type of
penalty, parameters whose value does not significantly improve the fit of the
model are decreased more severely towards zero. The solution for a regularized
one-step ahead prediction problem is2:

θ̂ =
(
ΦTΦ + αI

)−1
ΦT · Ŷ (5.5)

Setting α = 0 results in the OLS, and when α→∞, all of the parameters are
set to zero. By increasing the bias of the estimation (parameters closer to zero),
the variance is reduced. This approach is simple, but might not be desirable,
since it still requires estimation of the full, possibly overparametrized model.
However, using a small value of α might be helpful, even when an appropriate
model structure is selected, since is improves the condition number of ΦTΦ.
This is especially useful when there is insufficient excitation in the system, e.g.
close to steady state.

Another technique is based on the L1 norm, and is called the Least Absolute
Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). The LASSO
objective function takes the form

min
θ

N∑
i=1

(ŷi − yi)2 + α
nθ∑
i=1
|θi| (5.6)

2See Section 5.1.3 for notation
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By using the sum of absolute values as a penalty, some of the parameters
can actually be set to zero, so the LASSO can also be used for subset selection.
However, due to the presence of the absolute value function, the objective
function is no longer differentiable, and its solution is more computationally
demanding than for ridge regression. Pillonetto et al. (2014) further reviews the
use of regularization (Kernel) methods for system identification, with special
emphasis on linear systems.

5.1.3. Parameter estimation

Parameter estimation consists in finding the values of the parameters in the
selected model, such that it best represents the observed data; this is also
known as training. A common framework for parameter estimation is the
LS approach, which is derived from maximum likelihood estimation when the
disturbances in the measurements are assumed to be Gaussian. This can be
written as:

min
θ

N∑
i=1

(ŷi − yi)2

s.t. ŷ = F (θ)
(5.7)

where y is the calculated output from the selected model structure F , and ŷi
is the measured value of the output. The model structure can be a function of
y or other exogenous variables as well, as is the case in recursive I/O models;
but for simplicity, it is denoted as only a function of the model parameters θ.

Ordinary least squares: As seen in the previous section, selecting F as a
polynomial expansion results in a model where the one-step ahead prediction
is linear in the parameters. This can be expressed as:

ŷ(k) = ϕ(k) · θ + e(k) (5.8)

where ϕ(k) is a row vector containing the different monomials (or regressors)
that are used to predict output y(k), e.g. y(k− 1), y(k− 1)u(k− 1), y(k− 2)2.
The output is a linear combination of the different regressors, weighted with
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the parameters in the vector θ. If N observations of the output are available,
one can stack multiple predictions as described in eq. 5.8 as:

Ŷ = Φ · θ + ξ (5.9)

where Y = [ŷ(1), ŷ(2), · · · , ŷ(N)]T, Φ =
[
ϕ(1)T,ϕ(2)T, · · · ,ϕ(N)T

]T
, and

ξ = [e(1), e(2), · · · , e(N)]T. In this case, the LS criterion in eq. 5.7 can be
written as:

min
θ

(
Ŷ −Φ · θ

)T
·
(
Ŷ −Φ · θ

)
(5.10)

If the regressors in eq. 5.8 do not include any lagged disturbance terms, i.e.
a NARX model, eq. 5.10 has an analytic solution:

θ̂ =
(
ΦTΦ

)−1
ΦT · Ŷ (5.11)

where θ̂ is a point estimate of the true parameters. For this solution, it is
required that the number of observations be larger or equal to the number
of determined parameters (N ≥ nθ), and also that the matrix ΦTΦ be not
singular, which is achieved if the system is sufficiently excited (Ljung, 1999).

However, if the regressors in eq. 5.8 include lagged disturbance terms, i.e. a
NARMAX model, the analytical solution in eq. 5.11 no longer applies directly
because the disturbance terms are not known a priori. A solution for this is the
Extended Least Squares (ELS). At each iteration of the ELS, eq. 5.11 is used
to find the parameters of the model, which are then used to estimate the noise,
or residuals, as ξ = Ŷ −Φθ̂. The matrix Φ is updated, and the procedure is
repeated until the parameters converge.

Method of instrumental variables: A desirable property of any estimator
is unbiasedness, which is expressed as E(θ̂) = θtrue, where E() denotes mathe-
matical expectation. This means that the estimate θ̂ should not systematically
deviate from its true value. In the case of an NOE model as the one in eq. 5.3,
using eq. 5.11 to estimate its parameters results in biased and non-consistent



50 Chapter 5. Dynamic model identification for RTO

parameters3, even if the model is linearly parametrized, e.g. a polynomial NOE
model. This is due to the fact that the entries in matrix Φ are correlated with
noise.

Estimate parameters
θ=(ΦTΦ)-1ΦTY

Form regressors
Φ(Y)

Y Simulate system
Ys=F(θ)

Form IV
Z=Φ(Ys)

Estimate parameters
θ=(ZTΦ)-1ZTY

Figure 5.2.: Parameter estimation with the instrumental variables method

One possible solution for this issue is the method of instrumental variables
(IV). The idea is to replace the matrix Φ in some places of eq. 5.11 with a
matrix of variables (the instrumental variables) Z that are uncorrelated with
the noise (Ljung, 1999):

θ̂ =
(
ZTΦ

)−1
ZT · Ŷ (5.12)

One way of calculating such variables is by bootstrapping, where on a first
iteration eq. 5.11 is used to obtain a first estimate of the parameters. From
this estimation, the model is simulated to obtain a better approximation of the
noise-free outputs Ys. Then, the instrumental variable matrix Z is calculated
the same way that Φ is, except that Ŷ is replaced by Ys. The procedure
can be repeated until convergence is achieved (see Figure 5.2). Even though
the IV method is consistent, its performance in small data samples might be
sub-optimal.

Nonlinear least squares: The other possibility is to solve the LS prob-
lem 5.7 not in terms of one-step ahead prediction, but based on the simulation
error with a Nonlinear Least Squares (NLS) algorithm such as the Levenberg-
Marquardt method. Given that parameter estimation is done with a simulation-
based error, i.e. by recursively calculating the simulated data, the problem is
always nonlinear in the parameters, regardless of whether the one-step ahead
prediction is linearly parametrized. At each iteration, the model parameters

3Non-consistency means that the bias in the estimated parameters does not tend to zero,
even if the number of observations N →∞
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are used to simulate a dynamic trajectory without the use of the measured data.
The difference between these results and the measured outputs is minimized in
the LS sense. The use of simulation error instead of prediction error is the nat-
ural framework for OE models, since their optimal one-step ahead prediction is
a simulator, independent of the data (Nelles, 2001). Although good parameter
estimates can be obtained via NLS, the computational cost of the method and
the risk of convergence to local minima are its main drawbacks.
The methods discussed in this section can also be used for estimating the

parameters of a MIMO system: when using OLS, the models are decoupled,
since only measured information is used. In the case of simulation error min-
imization, however, the coupled MIMO system must be simulated together.
Due to the higher number of parameters, and the possible interaction between
the different MISO systems, the estimation is more computationally intensive.

5.2. Case study 1

This section considers the optimization of the CSTR case-study introduced in
Chapter 3, for which the optimization problem was stated in Chapter 4. Recall
that the plant-model mismatch introduced in this case-study is parametric,
and that the mismatched parameters appear on the constraints and objective
function of the problem. This means that an RTO scheme based on parameter
estimation would be required to drive the plant to its optimum. For the sake of
illustrating the use of dynamic model identification with this case-study, these
mismatched parameters will only be considered to affect the dynamics of the
plant, i.e. the objective function and constraints are calculated with the true
parameters.

5.2.1. Dynamic model selection

The data used for model selection was assumed to correspond to the start-
up of the reactor, with cA(0) = cB(0) = cC(0) = cD(0) = 0, and the input
flows set to their nominal optimal value. The measurements were corrupted
with zero-mean Gaussian noise with σn = 10−3 in order to estimate parameter
significance. For this particular step-response, the plant takes around 140
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minutes to reach steady-state. Model selection was done with the data from
the first 50 sampling points, where most of the dynamics are evident.
The model selection algorithm used is based on BS, and is summarized in

the following steps. The IV method was used for parameter estimation:

1. Compute an estimate of the unknown parameter vector θ with the current
model, and estimate the residuals ξ.

2. Generate N bootstrap data sets YBS and compute the BS parameter
replications θBS (see Figure 5.3).

3. Rank the N estimates of each parameter in ascending order to form
percentile intervals.

4. Estimate the upper and lower bounds of each parameter’s confidence
interval for a significance level α (θi,α and θi,α, respectively).

5. List the parameters i for which zero lies in their confidence interval, in
ascending order of the amplitude of the interval defined by θi,α − θi,α.
Set iθ = 1.

6. Propose the regressor corresponding to parameter iθ for elimination: fit
the reduced model and evaluate its mean simulation error.

7. If the simulation error increases significantly, keep the regressor and
increase iθ by one, and go to Step 6. Else, eliminate the regressor and go
to Step 1 until convergence.

Estimate
θ

Σ

Compute predicted output
Ys=F(θ)

Estimate residuals
ε=Y-Ys

Sample with replacement

BS estimate of residuals
εBS

BS estimate of output
YBS=Ys+ εBS

Estimate
θBS

N Times

Figure 5.3.: Procedure for forming bootstrap data. Adapted from Kukreja et al.
(1999)
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The original BS algorithm by Kukreja et al. (1999) was used for model selec-
tion of a SISO NARMAX system, and instead of eliminating one regressor per
iteration, they proposed eliminating all of the regressors whose confidence inter-
vals include zero. In the proposed approach, only one parameter is eliminated
at a time, depending on how large their confidence interval is: parameters with
a very large confidence interval are not necessarily non-significant, but their
large variance can be due to ill-conditioning of the initially large model.
Initially, a full quadratic model of 15 terms per model was proposed. The

causal structure of the nominal ODE model was used to reduce the potential
regressor set by taking into account that, e.g. cC does no physically affect
cA; this corresponds to using physical insight of the process. The reduced
quadratic model fitted the data well, and was therefore used as an initial
model for the BS procedure. The causality of the ODE model was also used
to perform regressor selection sequentially: initially, the models for cA and cB
were determined together. The model for cD was then obtained along with
the converged models. Finally, the model for cC was evaluated, and the final
MIMO system was obtained.

Table 5.1 indicates which regressors are present in the linear model (♦), the
nonlinear model selected with BS (◦), and a nonlinear model corresponding
to an explicit Euler discretization of the ODE system (�). This last model
was only used as a reference, since the ODE system describing the CSTR is
polynomial. The selected nonlinear model almost exactly matches the one
generated by Euler discretization of (3.4), except for the term cB(k − 1)2

in the model for cB. This is due to the fact that the reaction constant k2 is
significantly less than the constant k1 and, since cA and cB are highly correlated,
the term cB(k − 1)2 is not distinguished from the term cA(k − 1)cB(k − 1) at
the significance level and noise amplitude chosen.

5.2.2. Evaluation of the selected nonlinear model

The prediction of the steady-state in RTO operates in an independent layer,
regardless of the optimization scheme used. This is because the optimizer has to
wait for the steady-state measurements in order to calculate the new set-points
in the iterative process, which means that it remains inactive during transient
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Table 5.1.: Input-output models for the description of the CSTR case-study

Regressor cA(k) cB(k) cC(k) cD(k)

1 ◦,♦,� ◦,♦,� ♦ ♦
cA(k − 1) ◦,♦,� ♦ ♦
cB(k − 1) ♦ ◦,♦,� ♦ ♦
cC(k − 1) ◦,♦,�
cD(k − 1) ◦,♦,�

cA(k − 1)cB(k − 1) ◦,� ◦,� ◦,�
cB(k − 1)2 � ◦,�

operation. Therefore, the difference between RTO schemes is essentially the
trajectory they generate to reach the optimum.
In order to evaluate the quality of the selected nonlinear model, a random

sequence of 200 set-point changes was generated from the bivariate normal
distribution centered at uc = 0.5(u∗

m + u∗
p) with covariance matrix Σ where

diag(Σ) = 0.25‖u∗
m − u∗

p‖2; starting from the nominal optimum. Once a
suitable steady-state prediction was obtained, the next set-point change was
applied, resulting in a sort of “race” between the two competing models (linear
and nonlinear). For this study, the measurements were noise-free; therefore,
parameter estimation was performed with OLS in a moving-window scheme,
as shown in Figure 5.4 and described in what follows:
The procedure is based on the displacement and growth of a data window

of minimum size L0. There are two main loops: one in which the window
grows into the past to improve the regression, and another one where the
window shrinks to L0 and is displaced to the more-recent points to “forget”
older information. In order to guarantee that the steady-state predicted is
physically consistent, Gao and Engell (2016) proposed using a mass-balance
criterion taken from the reaction network in the nominal ODE model:

∣∣∣∣∣(c̄A + c̄B + 2c̄C + 2c̄D)(uA + uB)
(cA,inuA + cB,inuB) − 1

∣∣∣∣∣ ≤ 0.002 (5.13)

The predicted steady-state should also not change more than a tolerance
(0.1%) between iterations.

Table 5.2 displays the average stopping time t̄stop of the windowing algorithm
at each point, and the average error of the predicted steady-state objective
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Figure 5.4.: Flowchart for the moving window algorithm for parameter estimation

Table 5.2.: Performance of the dynamic models for the CSTR case-study

L0 t̄stop (min) ĒJ (%)

Linear model
6 24.4±8.5 0.3±0.2
10 25.2±8.1 0.3±0.2
20 30.5±6.6 0.2±0.2

Nonlinear model
6 21.5±7.9 0.5±0.8
10 23.3±7.2 0.5±0.6
20 29.4±5.3 0.4±0.5

function ĒJ ; with standard deviations. Both models predict the steady-state
with an accuracy of around 1%. Although the nonlinear model seems to perform
faster than the linear one for the different window sizes used, the difference
is not large; and due to the large standard deviations, it is not possible to
say that the nonlinear model will, in general, perform better than the linear
model. Clearly, the nonlinear model will perform better in set-point changes
that result in a nonlinear trajectory of the outputs. However, even for highly
nonlinear systems, such a trajectory might only result from a large set-point
change, which might not happen frequently. As in most optimization schemes,
there is a trade-off between convergence speed and robustness of the algorithm,
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the latter being favored if the algorithm is applied online to a real plant, which
is why large set-point changes are usually avoided.

5.2.3. Simulations with no measurement noise

For the optimization, the flow rates uA and uB are normalized in the range 0-50
(L/min). The starting set-point was taken as the nominal optimum u∗

m, and
MAWQA was initialized with a perturbation of size ∆h = 0.1. The parameters
∆u = 0.1 and γ = 3 were chosen as in (Gao and Engell, 2016). Two cases
were analyzed: optimization with the predictions from the nonlinear model,
and optimization with the predictions from the linear model.
Figure 5.5 illustrates the real cost function corresponding to the different

set-points applied during optimization with the nonlinear and linear model,
respectively. The optimum is reached in both cases, with the nonlinear model
resulting in a slightly faster convergence (352 min vs. 385 min for the linear
model). Both models perform significantly better than when no transient
measurements are used, which requires 13 iterations (about 780 minutes) for
convergence. In both cases, the RTO iterations approach the optimum quickly
but then the MAWQA algorithm introduces additional moves in order to
improve the estimation of the gradients.

Time (min)
0 50 100 150 200 250 300 350 400 450 500

C
o
s
t 
fu

n
c
ti
o
n
 (

m
o
l/
m

in
)

6

7

8

9

10

11

12

13

14

15

16

Mixed approach

Linear model

Nonlinear model

J
p

*

Figure 5.5.: Objective function values for the set-points applied with the nonlinear
model (blue), the linear model (red), and a mixed approach (green) for case-study 1
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The convergence using the nonlinear model is clearly faster during the first
six iterations than with the linear model. In these iterations, finite differences
are used to estimate the plant gradients; after the 6th iteration, the QA is
employed. After six iterations, the trajectories of both models start deviating
from each other, as shown in Figure 5.6. The reason for this is that the steady-
states predicted by both dynamic models, while always within 1% of the true
value, still are inaccurate. This difference affects the QA, especially in the first
iterations where it is used, since there are not enough data points to make the
approximation robust to these errors, resulting in biased gradient estimates.
This is similar to overfitting a model with noisy measurements.

Therefore, a combination of the two approaches was tested (also shown in
Figure 5.5). The idea was to identify simultaneously both models (linear and
nonlinear) online and use the predicted steady-state of the model that first
satisfied the convergence criteria. In this case, convergence is achieved after
only 225 min. During the first RTO iterations (when the changes in the inputs
are larger) the nonlinear model is used; then when the system approaches its
optimum, the algorithm switches to the linear model.
There is a trade-off between getting a precise estimate of the steady-state,

and the speed at which it is obtained: during the first iterations it makes
sense to get quick, albeit inaccurate, predictions to start moving towards the
optimum. However, when the set-point changes are small, which happens
close to convergence, it might be more beneficial to wait for more accurate
estimates. This is especially true when there is measurement noise, since
performing parameter estimation under insufficient excitation can yield highly
biased predictions that drive the plant away from the optimum.

5.2.4. Simulations with measurement noise

In order to evaluate the impact of measurement noise, fifty optimization runs
were simulated for two minimum regression window sizes L0, and a noise
level σn = 0.001, which roughly corresponds to 5% of the weakest signal, i.e.
cD(t). Parameter estimation was performed with the windowing algorithm of
Figure 5.4 and the method of IV to reduce the bias in the estimated parameters.
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Figure 5.6.: Optimization trajectory of the nonlinear model (blue) and the linear
model (red) for case-study 1. The yellow triangle represents the optimum of the
plant.

The simulations were also performed for the case where no dynamic informa-
tion is used, by assuming an average setting time of 60 minutes, and corrupting
the steady-state data with the same noise level. In a real plant where mea-
surement error is present, one would use a steady-state detection algorithm to
determine when the plant settles to steady-state (Kelly and Hedengren, 2013);
however, this approach was not pursued in this work.

Table 5.3.: Optimization of the CSTR case-study with measurement noise

L0 Profit loss t̄1%,last nnlin
(mol) (min) (%)

20 2376.7±614.5 1084.2±364.1 18.6±3.4
30 2311.8±404.5 1101.1±334.8 22.1±3.4

Static 2106.1 ± 777.1 1996.8±777.1

The results of this study are shown on Table 5.3, where the percentage
of occasions nnlin where the nonlinear model was used for prediction is also
included. While the average profit loss is similar in the three scenarios, its
standard deviations decreases with an increasing regression window size. This
is due to the fact that using larger regression windows leads to better noise
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filtering, which improves the robustness of the scheme to noise. Note that the
nonlinear model is used in around 20% of the iterations during optimization,
which indicates that using such an additional model can improve the time
performance of the overall algorithm.

The time required for convergence is also lower for the cases in which transient
data is used, which shows that the approach can be promising, even in the
presence of measurement noise. However, convergence takes significantly longer
in this case, than when no measurement noise is present. This happens because
the windowing algorithm takes longer to find a steady-state prediction that
satisfies the mass balance criterion; sometimes even reaching steady-state with
no suitable prediction. Future research will need to focus on how to improve
the windowing algorithm to avoid the double-loop structure, and only increase
or shrink the size of the window when favorable: a larger window can even-out
the effect of noise, but if the window is too large, the dynamic model might not
approximate the data well enough and give biased predictions. A statistical
test as the one presented in Chapter 3 could be used to determine how well
the model fits the data in the window, and decide whether the window should
be shrunk, expanded, or displaced.

Although the method of IV is useful to get good parameter estimates when
there is measurement noise, the best parameter estimates for a NOE model
would still be obtained by using an NLS algorithm based on simulation er-
ror. The development of a fast parameter estimation algorithm, especially
for coupled MIMO systems, would be of great benefit. A possible research
direction is to adapt the parameter estimation procedure for differential equa-
tions developed by Ramsay et al. (2007) to NOE models. In this method,
parameters are not directly estimated by minimizing the simulation error, but
are obtained by relaxing the constraints represented by the model, which im-
proves the convergence of the estimation in terms of computational time and
conditioning.
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5.3. Case study 2

The second case-study in this thesis is the homogeneously catalyzed hydro-
formylation of 1-dodecene with a Thermomorphic Multicomponent System
(TMS) (Brunsch and Behr, 2013). This is a good example of a process where
the presence of a recycle stream increases the time constant of the system,
resulting in very slow dynamics (Lakshminarayanan and Takada, 2001).

5.3.1. Process description

In this process, the substrate 1-dodecene is fed to the reactor, along with
the polar solvent dimethylformamide (DMF), the apolar solvent n-decane,
the catalyst system [Rh(acac)(CO)2]/Biphephos, and synthesis gas (CO/H2).
During reaction, the system is homogeneous and no mass transport limitation
between liquid phases occurs. The temperature is then reduced in the decanter,
which results in two liquid phases: an apolar phase with the desired products,
and a polar phase that contains the catalyst, and is recycled to the reactor.
This concept was proven in a continuously-operated miniplant at TU Dortmund
(Zagajewski et al., 2014). Figure 5.7 shows a scheme of the process, as well as
the different reactions that take place in the system, with tridecanal being the
product of interest.
Syn. gas

1-dodecene/decane

DMF/catalyst

Catalyst recycle

Offgas

Product

(a) Process schematic

1-dodecene

iso-dodecene dodecanetridecanal

branched
aldehydes
C12H25CHO

CO+H2

C12H26

H2

H2CO+H2

C12H25CHO

C12H24

C12H24

(b) Reaction network

Figure 5.7.: Thermomorphic Multicomponent Solvent (TMS) system. Adapted
from Hernández and Engell (2016)

Hernández and Engell (2016) proposed and validated a model for the TMS
based on material balances, and empirical correlations for the separation in
the decanter. A description of the model is presented in Appendix A.
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The measurements correspond to the input flow Fe of 1-dodecene/DMF, the
input flow Fm of the DMF/catalyst makeup, and the mass percentages of the
seven species present in the liquid product stream: DMF (1), n-decane (2),
1-dodecene (3), iso-dodecene (4), dodecane (5), tridecanal (6), and iso-aldehyde
(7). The data is assumed to be collected with a sampling time ts = 20 min.

5.3.2. Optimization problem

The optimization problem for this system consists on the minimization of the
cost per unit tridecanal produced. In this work, only the costs associated with
the raw materials are considered; a more complete version of the problem would
include the cost of cooling and heating in the system, as well as the cost of
compression for the gas. The objective function is:

min
u

Pr1-dodeceneF1-dodecene + PrRhFRh

Ftridecanal
(5.14)

where Pr1-dodecene and PrRh are the prices of 1-dodecene and the Rhodium
catalyst precursor, respectively; F1-dodecene, and FRh are flow rates of 1-dodecene
and Rhodium catalyst precursor in the inlets, respectively; and Ftridecanal is the
flow of the produced tridecanal. The inputs u comprise the reactor temperature,
the catalyst dosage, the gas pressure, and the CO molar fraction in the gas.
The inputs are additionally constrained to guarantee feasible operation.

For this problem, plant-model mismatch is introduced by decreasing the
Henry coefficients Hj,0 by 50% and setting the parameter Kcat,2 = 0 (See
Appendix A). Table 5.4 summarizes the optimal operating conditions based on
the nominal model, and the actual optimal operating conditions of the plant.
The initial point refers to the operating conditions evaluated by Zagajewski
et al. (2014), with maximum catalyst dosage.
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Table 5.4.: Operating conditions of the TMS system

Operating Initial Model Plant
interval point optimum optimum

Reactor temperature (◦C) 85-105 90 85.1 88.69
Catalyst dosage (ppm) 0.25-2 2 0.301 0.51
Gas pressure (bar) 1-3 2 3 3
CO fraction 0.01-0.99 0.5 0.66 0.55

Cost (Euro/kmol) 937.84 818.88 761.34

5.3.3. Data reconciliation

Steady-state data reconciliation was used to estimate the unmeasured flow of
product Fp. The data reconciliation problem was formulated as:

min
F̂p,ŵp

(ŵp −wp)TΣ−1(ŵp −wp)

s.t. Fmwm,DMF + Fewf,DMF − F̂pŵp,DMF = 0
Fmwm,decane + Fewf,decane − F̂pŵp,decane = 0
Fmwm,dodecene
Mdodecene

+ Fewf,dodecene
Mdodecene

− F̂p
7∑
i=3

ŵp,i
Mi

= 0

1−
7∑
i=1

ŵp,i = 0

(5.15)

where wi,j represents the measured (or known) mass fraction of component j
in stream i, and the (̂) denotes a reconciled quantity. The covariance matrix Σ
is used to reflect the confidence on the measurements, and to normalize them
if different physical quantities are reconciled. The reconciled quantities must
satisfy the mass balance of DMF (1), decane (2), C-12 chains (3), and a closure
condition for the reconciled mass fractions (4).

5.3.4. Dynamic model selection

Model structure selection was done with what was assumed to be a step
response of two hundred points from the initial operating point, to the nominal
model-based optimum. The first one hundred data points were used for model
training. In contrast to the first case-study, no information on causality from
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the ODE model was used to reduce the subset of possible regressors, due to the
complexity of the reaction network and the separation in the decanter. For this
case-study, the measurements were assumed to be noise-free, since the effect
of measurement noise was already discussed in the previous case-study.
The selection procedure was split into two parts after noticing that the

mass fractions of DMF and n-decane do not vary significantly during the step
response; these two substances do not react, and have constant flow rates, so
any dynamics observed result from changes in the decanter and the recycle
stream. Therefore, it was assumed that they do not have a significant effect
on the dynamics of the other species. A coupled system of five MISO systems
(1-dodecene, iso-dodecene, dodecane, tridecanal, and iso-aldehyde) was initially
selected. After this, the models for DMF and decane were included and selected.
The BS structure selection algorithm of Section 5.2.1 cannot be used in

this case, since it is based on directly estimating parameter variance based on
BS replicates of noise. Furthermore, given the size of the full MIMO system
(seven MISO submodels) and the number of potential regressors, even for low
polynomial degrees, the BS computations would be computationally demanding.
For this reason, the following variation of the forward selection algorithm with
pruning of Piroddi and Spinelli (2003) was used for structure selection (see
Figure 5.8).

1. Define the setsMout
j of candidate regressors for each submodel j.

2. Initialize each MISO submodel i with its corresponding autoregressive
term and the exogenous term, i.e. ϕ(k) = [yi(k− 1), 1]. Set the iteration
counter k = 1.

3. For every submodel j propose the inclusion of each candidate regressor i
in the candidate subsetMout

j . Obtain the model parameters with OLS
and calculate the mean simulation error of the whole coupled system.

4. Include the regressor φj,i that results in the lowest simulation error in
the iteration, and remove it from its corresponding candidate subset:
Mout

j ←Mout
j \ φj,i,Min

j ←Min
j ∪ φj,i.

5. For every submodel j propose removing each candidate regressor i in the
model subsetMin

j . Obtain the model parameters with OLS and calculate
the mean simulation error of the whole coupled system.



64 Chapter 5. Dynamic model identification for RTO

input/output data,
candidate sets

Initialize models

Select the best regressor
from the candidate set with
simulation error Ebest

stop?

Final model

Selection of the regressor
for pruning with simulation

error Ebest

Ebest<Ebest?
Prune regressor,
Ebest Ebest

Y

Y

N

N

Figure 5.8.: Forward selection with pruning algorithm for model structure selection.
Adapted from Piroddi and Spinelli (2003)

6. If the best model obtained after pruning regressor φj,i has a lower or equal
simulation error than the model without pruning, remove the regressor
from the model and go to Step 5: Min

j ←Min
j \φj,i,Mout

j ←Mout
j ∪φj,i.

7. If all candidate regressor subsets are empty, or the improvement in simu-
lation error is below a tolerance, end. Else, increase the iteration counter
by one, and go to Step 3.

Two additional restrictions were imposed during the pruning procedure:

• The autoregressive term yj(k − 1) cannot be eliminated from the model
for yj(k). If the underlying system that generates the measured data is
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continuous, the exact value of the sampled data can be obtained from
the unknown true continuous mapping ẏ = f(y,u,θ)4 as:

y(k + 1) = y(k) +
∫ (k+1)ts

kts
f(y,u,θ)dt (5.16)

From which it is evident that the autoregressive term should be present
in the model.

• A submodel can only be reduced if it has more than two regressors.
Because one term in each submodel corresponds to its autoregressive
term, there should be at least another regressor in the model: a purely
autonomous system is either unstable, or has a steady-state equal to zero.

The results of the model selection procedure for the TMS process from a
full quadratic model with maximum dynamic order ny = 1 are represented in
Figure 5.9. The blue lines represent the MIMO subsystem composed of the first
five species (1-dodecene, iso-dodecene, dodecane, tridecanal, and iso-aldehyde),
while the red lines represent the full MIMO model, where only the subsystem
composed of DMF and n-decane was modified. The mean squared simulation
error was calculated with all of the 200 measured points. Since the model was
only trained with the initial 100 points, this validation was done in order to
guarantee that the selected model does not predict highly deviated trajectories,
even when it is not trained with the full data set.
Figure 5.9b shows that after reaching a MIMO system with 19 parameters,

the size of the model does not increase. However, the simulation error does
decrease, which indicates that the selection algorithm starts adding terms and
pruning less significant regressors. Note that at iteration 10 the size of the
model is reduced, and then increased again. Due to the pruning procedure,
the algorithm can take into account the synergy between regressors, which
can in fact reduce the size of the model if a better combination of regressors
is found (Piroddi and Spinelli, 2003). The mean squared simulation error is
monotonically decreasing, but it stops changing significantly after the third
iteration (See Figure 5.9a). For this reason, the model obtained at the third
iteration was selected for the MIMO subsystem of five species.

4See Chapter 4 for notation
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Figure 5.9.: Results of the dynamic model selection for case-study 2. MIMO
subsystem 1 (blue) and MIMO subsystem 2 (red)

For the selection of the models for DMF and n-decane, the model obtained at
the third iteration was selected (notice the slope change at this iteration). Even
though the simulation error decreases significantly until the sixth iteration,
the improvement in the predicted steady-state is less than 0.1%, and does
not justify the increase in the number of parameters. Note that for the two
analyzed subsystems the error does not go to zero, which means that the
selected quadratic model cannot perfectly predict the steady-state of the system
with the given data.

Model selection was also performed without the pruning algorithm. It was
observed that after some point, the simulation error became worse, only to
become better after more regressors were added. These overparametrized
models, although displaying an excellent fit, were usually unstable when fitted
to different data, and were therefore not chosen. The final dynamic model
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consists of seven MISO submodels (one for each mass fraction wi) with a total
of 20 regressors:

w1(k) =
[
w1(k − 1) w3(k − 1)w7(k − 1) 1

]
θ1

w2(k) =
[
w2(k − 1) w3(k − 1) w4(k − 1)w6(k − 1) 1

]
θ2

w3(k) =
[
w3(k − 1) w3(k − 1)2 1

]
θ3

w4(k) =
[
w4(k − 1) 1

]
θ4

w5(k) =
[
w5(k − 1) 1

]
θ5

w6(k) =
[
w6(k − 1) w3(k − 1)w5(k − 1) 1

]
θ6

w7(k) =
[
w7(k − 1) w5(k − 1)w7(k − 1) 1

]
θ7

(5.17)

5.3.5. Simulations with no measurement noise

The optimization of the TMS process was done with MAWQA using the pre-
dicted steady-states from the identified models, and with ∆u = 0.05, ∆h = 0.05
and γ = 2. A maximum of 100 optimization iterations was allowed. The inputs
were normalized in their respective operating ranges. Parameter estimation was
done with the same moving window concept of Figure 5.4. For this case-study,
the predicted mass fractions had to fulfill the following closure condition:

∣∣∣∣∣
7∑
i=1

wi − 1
∣∣∣∣∣ ≤ ε (5.18)

The tolerance ε is a tuning parameter that balances the accuracy of the
predicted steady-state, with the time required for the prediction to be obtained.
This tolerance was chosen as ε = 0.002, as in the first case-study. The predicted
steady-state was then used with the data-reconciliation algorithm to estimate
the flow of product Fp and the objective function. Although not pursued in
this work, the data reconciliation step could be performed with a weighting
matrix Σ (possibly a covariance matrix) that reflects the confidence in the
predicted steady-state value of each output.
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Initially, a full linear model with a minimum window size L0 = 10 was used
to evaluate the potential improvement in optimization time when transient
data is used:



w1(k)
w2(k)
w3(k)
w4(k)
w5(k)
w6(k)
w7(k)


=



θT
1

θT
2

θT
3

θT
4

θT
5

θT
6

θT
7





w1(k − 1)
w2(k − 1)
w3(k − 1)
w4(k − 1)
w5(k − 1)
w6(k − 1)
w7(k − 1)

1



(5.19)

where each θi is a column vector containing eight parameters. It was ob-
served that estimating the parameters directly with OLS as in eq. 5.11 resulted
in bad steady-state predictions due to ill-conditioning of the regression matri-
ces, especially when the process approached steady-state. This problem was
addressed by regularizing the regression matrices with a small L2 penalty (See
eq. 5.5). Figure 5.10 shows the result of the optimization procedure for three
different values of the penalty α, and two different minimum window sizes L0;
while Figures 5.11 and 5.12 show the accuracy of the predicted steady-state,
and the time required before a prediction is made, respectively. The figures
on the left correspond to L0 = 10, while the ones on the right correspond
to L0 = 20. The penalty α was set to 10−10 (red), 10−8 (blue), and 10−6

(green); these values were chosen small to avoid introducing a large bias in the
parameters.

Figures 5.10a and 5.10b show the true objective function during optimization
for the two window lengths considered. It can be seen that applying more
regularization (higher α) results in faster convergence and less drastic moves
(note that in the cases when α = 10−10, the algorithm does not converge to
the optimum). This behavior is in part due to the accuracy with which the
steady-state is predicted during transient operation: a highly biased prediction
can be seen as a measurement with a high noise level, which will affect the
accuracy of the gradients, and mislead the optimization trajectory.
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Figure 5.10.: Effect of the regularization penalty α and the minimum window
length L0 on the optimization trajectory for the TMS process

Figures 5.11a and 5.11b indicate that when using regularization, the error in
the predicted objective function is indeed reduced, meaning that the optimizer
receives more reliable information. This is due to the fact that it takes longer
to obtain a satisfactory steady-state prediction, as shown in Figures 5.12a
and 5.12b. However, it is still not clear why regularization leads to slower, and
more accurate, predictions; this issue is a matter of future research.
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Figure 5.11.: Effect of the regularization penalty α and the minimum window
length L0 on the error on the predicted steady-state for the TMS process
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Figure 5.12.: Effect of the regularization penalty α and the minimum window
length L0 on the time required before a steady-state prediction is obtained

Since these experiments were performed without measurement noise, the
error in the predicted steady-state is largely due to the fact that the used
dynamic model is not able to properly describe the dynamics of the data in the
regression window. Using a larger regression window usually results in better
predictions due to noise filtering. However, if the dynamic model at hand is
not able to describe the data, the bias error increases as the regression window
grows, which also results in wrong predictions. Note how worse steady-state
predictions are obtained when using a larger minimum window size.
The results of these experiments are summarized in Table 5.5, where the

number of sample points k̄prediction required for a satisfactory steady-state pre-
diction, as well as the error Ēj in the predicted steady-state, are expressed as
a mean quantity with standard deviation. The results for the case where no
regularization is used (α = 0) are also shown. For the case of L0 = 20 and
α = 0 one of the predicted values was extremely high (J > 1010), and was
not included in the calculation of the mean error. However, this high error
resulted in convergence to an objective function J∗ = 772.9 (Euro/kmol) that
is significantly far away from the true optimum.

The error in the predicted steady-state can be also attributed to the conver-
gence criteria used in the windowing algorithm: even though the convergence
tolerances were set relatively tight (0.1% for the mass balance criterion and
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Table 5.5.: Effect of the regularization parameter α on the prediction of the steady-
state for the TMS process

L0 α Ēj (%) k̄prediction

10

0 0.36±0.52 57.6±16.8
10−10 0.23±0.4 41.1±15.3
10−8 0.17±0.43 43.1±17.5
10−6 0.08±0.14 62.2±22.1

20

0 0.35±0.66 56.8±18.1
10−10 0.53±1.1 38.1±15.2
10−8 0.18±0.45 45.4±14.1
10−6 0.24±0.55 61.9±21.4

0.2% for the convergence condition), satisfaction of the mass balance criterion
is not a sufficient condition to guarantee that the predicted steady-state is cor-
rect. For this case-study, the mass balance criterion corresponds to a closure
condition that depends on the sum of seven quantities; it is clear that many
combinations of incorrect predictions can appear to satisfy the criterion. If the
flow of the product stream Fp were known, the constraints in the reconcilia-
tion problem 5.15 could be used as more strict mass balance criteria that the
predicted steady-state outputs must fulfill.

In order to asses the advantage of using transient data for the TMS process,
three simulation cases were evaluated:

• Using the full linear model for steady-state prediction, with a regulariza-
tion penalty α = 10−6, and a minimum window size L0 = 10.

• Using a mixed approach, where both the linear and nonlinear model
are used simultaneously, with a regularization penalty α = 10−6, and a
minimum window size L0 = 10. The predictions of the model that first
(in terms of sampling times) returns a satisfactory steady-state are used.

• Not using a dynamic model, but defining steady-state at the point where
the absolute change in all the outputs is less than ε = 0.001%. The
measurements at that point were used to obtain the flow of product Fp
by solving the data reconciliation problem.

Table 5.6 summarizes the performance of MAWQA for the TMS process when
the three different described approaches are used. The absolute prediction error
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|EJ | corresponds to the difference between the true objective function, and
its predicted or estimated value. This value was calculated for the iterations
before convergence, and is presented as a mean value± standard deviation. The
three approaches have similar prediction errors, given their standard deviations;
however, the comparison is not completely fair, since all three approaches result
in different optimization trajectories. Note that even in the case where “static”
measurements are used, the predicted steady-state is not perfect, which shows
how sensitive the objective function is to small errors in the steady-state values.
This is partially due to error propagation, since the objective function has a
target concentration in the denominator. The calculated flow of product is also
affected by the predicted steady-state, as previously discussed, which makes
the objective function less robust to errors.

The table also reports the time t5%,first required for the objective function to
be in a range of J∗

p±0.05(J∗
m−J∗

p ) around the optimal cost, and the time t5%,last

required for the plant to stay completely within this range. The amplitude of
the range was not defined in terms of the absolute value of the cost function,
but in terms of the improvement achievable by transitioning from the nominal
optimum into the true optimum. The reason for this, is that the absolute value
of the objective function is irrelevant for the optimization algorithm: one can
always add a constant term to the objective function without affecting the
optimization procedure. This observation also applies for defining the relative
measurement noise level: the changes in the objective function, and not its
absolute value as such, should be appreciable regardless of the noise level.
The results indicate that using system identification results in an improve-

ment in terms of optimization time with respect to the case where no dynamic
model is used. Although the difference is only significant in the t5%,first, this
is still an advantage of using the dynamic model, since the plant starts oper-
ating sooner with a better performance. The results for the mixed approach
are noteworthy, since it significantly reduces the time required to stay in a
neighborhood of the optimum; doing it in almost half of what it takes when
no system identification is used. In this mixed approach, the nonlinear model
was used in 12 out of the 22 RTO iterations required for convergence. Note
that this particular system is extremely slow, and in reality slow disturbances
can alter the behavior of the plant before the optimum is reached.
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Table 5.6.: Optimization of the TMS process with dynamic system identification

Model Linear Mixed Static

Optimal cost (Euro/kmol) 761.84 762.33 761.67
Optimal temperature (◦C) 86.71 85.90 90.04
Optimal catalyst dosage (ppm) 0.58 0.6 0.49
Optimal pressure (bar) 3 3 3
Optimal CO fraction () 0.55 0.55 0.55
|EJ | (Euro/kmol) 0.26 ± 0.79 0.49 ± 1.16 0.56 ± 0.35
t5%,first (day) 5.6 5,1 7.6
t5%,last (day) 22 12.7 22.6

The three approaches converge to a value within 0.5% of the true optimum
J∗
p = 761.34 (Euro/kmol), but do not exactly reach it due to the errors in the

predicted steady-state. Note that all of the three approaches converge to the
optimal value of the pressure and the CO fraction, but converge to a subobtimal
temperature and catalyst dosage. However, this is not of importance since the
objective function achieved is close to the optimal one, i.e. the objective
function appears to be somewhat insensitive with respect to these inputs. The
temporal evolution of the set-points and the objective function for the three
approaches is illustrated in Figure 5.13.
The figures on the right indicate that even though the optimization with

“static” measurements reaches a neighborhood of the optimum in a time similar
to that of the linear model, it keeps changing and does not definitely settle.
When using a linear model, the plant settles to a fixed point after 27 days, while
for the mixed approach, the plant settles in around 14 days. Surprisingly, the
faster convergence for the cases where system identification is used also seems
to be enhanced by the error in the predicted steady-state objective function
(blue dots). There is a close relation between the objective values used in
MAWQA, and the trajectory it generates, as discussed in Section 5.2.3. This
interplay can be either counter-productive, or beneficial. An option to reduce
the impact of wrong predictions on the optimization algorithm is to introduce
a restriction on the allowed “age” of the points that are used for regression, as
proposed in (Wenzel et al., 2015).
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(e) Mixed approach
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Figure 5.13.: Optimization of the TMS process with static data, predictions from a
linear model, and predictions from a mixed approach. Figures on the left correspond
to the temporal evolution of the set-points (normalized), while figures on the right
correspond to the temporal evolution of the objective function of the plant
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In general, the truly optimal trajectory is not known, which leads to the
following important conclusion: even if using a dynamic model for steady-
state prediction can reduce the time spent at each set-point, the error in the
predicted values can lead to a trajectory that is, in the long run, slower than
simply waiting for steady-state at each set-point. Conversely, it might also be
possible that the wrong predictions lead to a faster trajectory. This uncertainty
can only be addressed by using the right convergence criteria for the predicted
steady-state.
The figures on the left illustrate what was mentioned on the discussion of

Table 5.6, which is that in all of the three cases, the pressure and the CO
fraction converge to a close neighborhood of their optimal values, while the
catalyst dosage and the temperature do not. Because there is no explicit
penalty for pressure, such as the cost of compression, in the objective function,
the optimizer sets it as high as possible: a higher pressure results in higher
concentrations of dissolved gas, and in higher tridecanal yields. The effect
of the CO fraction on the objective function can also be explained, since too
much CO will reduce the concentration of active catalyst, while too less CO
will reduce the reaction rates.

5.4. Additional remarks on the total
optimization time

A way of possibly reducing the optimization time further, would be to first
optimize the system for certain privileged inputs, as proposed in (Costello et al.,
2016). Since this reduced problem is a particular case of the full optimization
problem, its optimal solution Jsub has to fulfill J∗

m ≥ J∗
sub ≥ J∗

p , indicating that
a partial (and possibly faster) improvement can be achieved. The privileged
inputs can be chosen based on a sensitivity analysis of the system: for the TMS
case, the nominal optimum includes pressure at its upper bound, which means
that one can assume that reducing the pressure will increase the cost function.
Initially, one would solve an RTO problem where the pressure is kept at its
nominal value; from this point, the full optimization problem can be continued.
In general, reducing the number of inputs to optimize will reduce the number of
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perturbations needed for gradient estimation. This is particularly advantageous
in the context or MAWQA, where the number of parameters for the QA scales
quadratically with the number of inputs.

Reducing the input space can be considered a passive strategy for accelerating
the optimization procedure, since it only operates on the RTO layer, but does
not deal with the slow dynamics of the plant. An active strategy for accelerating
convergence, is to design input profiles that minimize the time required for the
the plant to settle to steady-state, which can be done via Model Predictive
Control (MPC). This approach would have the following advantages:

• Constraint violation can be monitored and handled during the transient
phase.

• The input profile can be designed by explicitly taking into account eco-
nomic considerations during the transient phase.

• The non-constant inputs during an RTO iteration can provide enough
excitation to identify a complete NARX (or NARMAX) model, from
which the steady-state gradients can be directly extracted.

However, such a scheme can be complicated to implement, since the MPC
would use a model that is inherently mismatched. A possible solution would
be to use the same black-box model that is used for steady-state prediction.
Since the model is adapted online, the controller can make use full use of the
measured data, even with structural mismatch of the nominal model.

These two approaches represent interesting research possibilities. Note that
the active approach with MPC can also be more realistic, in the sense that the
dynamics of the controllers are considered.
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CHAPTER

SIX

CONCLUSIONS

In this work, two different approaches for using transient measurements in the
context of RTO were presented, discussed, and evaluated. The first method
is suitable for processes with parametric uncertainty, while the second one
is suitable for processes with structural plant-model mismatch. Therefore, a
simple method to evaluate the type of plant-model mismatch based on transient
data was discussed. This technique is based on analyzing the resulting residuals
after a parameter estimation procedure with a χ2 test. It was shown that the
test can be easily applied, and its potential drawbacks were also discussed.
However, determining the type of mismatch of a model is still an open issue
that requires further research; especially when limited data for model validation
is available.
For the case of parametric plant-model mismatch, an RTO scheme that

integrates online parameter estimation based on the sensitivities of the nominal
dynamic model was introduced. The simulation studies performed on the case-
study of a CSTR demonstrated the usefulness and efficiency of this approach,
even in the presence of measurement noise. However, it was also shown that the
scheme can lead to wrong parameter estimates when the process approaches
steady-state. To solve this issue, a mixed approach where the optimizer switches
to static optimization depending on the excitation of the system was proposed
as a possible research topic. The online parameter estimation scheme was also
shown to be a particular case of a Gauss-Newton algorithm for NLS problems,
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and was reformulated as a dynamic difference equation; this extension can
allow for accurate parameter estimation, even if the dynamic model is not
linear in the mismatched parameters. The evaluation of this approach, and
theoretical proofs of convergence and consistency for the obtained parameters
are a topic of future research.

For the case of structural plant-model mismatch, the work of Gao and Engell
(2016) was extended by incorporating model selection techniques from the
field of nonlinear system identification. The proposed approach was evaluated
with the case-study of a CSTR, where it was shown that using a taylored
nonlinear model that better represents the dynamics of the system can result
in faster predictions of the steady-state, than when only a linear model is
used. Given that the nonlinear model is selected with little data, there is
no guarantee that it will always outperform the linear model in terms of
prediction time. For this reason, a mixed approach where both models are
used simultaneously was proposed; in this way, the predictions from the first
model to return a satisfactory steady-state are used, which can significantly
reduce the optimization time. Extensive simulations were also carried out with
added measurement noise, which demonstrated the robustness of the method.

The mixed identification approach was further tested on the homogeneously
catalyzed hydroformylation of 1-dodecene, which displays a long settling time
due to the presence of a recycle stream. It was shown that a considerable
reduction in optimization time could be achieved by exploiting transient data
with system identification. Although exact convergence to the optimum was
not achieved, the scheme was able to drive the plant to a close neighborhood
of the optimum in a relatively short period of time. The simulation results also
suggested that there is a complex interplay between the steady-state prediction
method, and the optimization algorithm (MAWQA in this work): there is an
intrinsic trade-off between obtaining faster predictions, and obtaining accurate
predictions. Possible solutions for this problem were proposed and discussed.
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APPENDIX

ONE

MODEL OF THE TMS PROCESS

The model of the reactor in the TMS process consists of material balances for
the different species in the liquid phase (both liquid, and dissolved gases), by
taking into account gas solubility and reaction rates. All of the symbols used
in the model are summarized and explained in Table A.1.

VR
dCi
dt = V̇inCi,in − V̇outCi,out + VRCcatMcat

nreact∑
l=1

νi,lrl (A.1)

VR
dCj
dt = −keff(Cl − Ceq

j ) + V̇inCj,in − V̇outCj,out + VRCcatMcat

nreact∑
l=1

νj,lrl

(A.2)

The interested reader is referred to (Hentschel et al., 2015) for a comprehen-
sive description of the reaction kinetics. The equilibrium concentration of the
gases in the gas-liquid interface was calculated with a temperature-dependent
Henry law:

Ceq
j = Pj

Hj,0 exp (−Ej/RT ) (A.3)

The concentration of the active catalyst depends on the concentration of
catalyst precursor and dissolved gases via:

Ccat = CRh,precursor
1 +Kcat,1CCO +Kcat,2CCO/CH2

(A.4)

In the decanter, the different species distribute in the two liquid phases
according to:
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Table A.1.: Symbols and parameters of the TMS model

Symbol Description

Ci Concentration of DMF (1), n-decane (2), 1-dodecene (3),
iso-dodecene (4), dodecane (5), tridecanal (6), and iso-aldehyde
(7)

Cj Concentration of CO (1) and H2 (2)
Ceqj Equilibrium concentration of CO and H2 at the gas-liquid in-

terface
VR Reactor volume
V̇in Volumetric inflow rate
V̇out Volumetric outflow rate
Ccat Concentration of active catalyst
Mcat Molar mass of the catalyst
νi,l Stoichiometric coefficient of species i in reaction l
rl Rate of reaction of reaction l
keff Overall gas-liquid mass transfer coefficient
Pj Partial pressure of species j
T Temperature in the reactor
Ej Activation energy of species j
R Ideal gas constant
Hj,0 Henry coefficients
CRh,precursor Concentration of the catalyst precursor
Kcat,1−2 Equilibrium constants for the catalyst
Tdecanter Temperature in the decanter
Ai,0−2 Coefficients for liquid-liquid equilibrium in the decanter
ni,product Molar flow of component i in the product stream
ni,recycle Molar flow of component i in the recycle stream
ni,decanter Molar flow of component i in the decanter inlet stream

ni,product = Ki

1 +Ki

ni,decanter (A.5)

ni,recycle = 1
1 +Ki

ni,decanter (A.6)

Where the partition coefficients are calculated from the following thermody-
namic correlation (Schäfer et al., 2012):

Ki = exp
(
Ai,0 + Ai,1

Tdecanter
+ Ai,2Tdecanter

)
(A.7)
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