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“The organisms that can gain the new features faster are more variable. As a

result, they gain advantages over other creatures. [...] Animals are higher than

plants, because they are able to move consciously, go after food, find and eat useful

things. [...] There are many differences between the animal and plant species, [...]

First of all, the animal kingdom is more complicated. Besides, reason is the most

beneficial feature of animals. Owing to reason, they can learn new things and adopt

new, non-inherent abilities. For example, the trained horse or hunting falcon is

at a higher point of development in the animal world. The first steps of human

perfection begin from here. Such humans [probably anthropoid apes] live in the

Western Sudan and other distant corners of the world. They are close to animals

by their habits, deeds and behavior. [...] The human has features that distinguish

him from other creatures, but he has other features that unite him with the animal

world, vegetable kingdom or even with the inanimate bodies. [...] Before [the

creation of humans], all differences between organisms were of the natural origin.

The next step will be associated with spiritual perfection, will, observation and

knowledge. [...] All these facts prove that the human being is placed on the middle

step of the evolutionary stairway. According to his inherent nature, the human

is related to the lower beings, and only with the help of his will can he reach the

higher development level.“

Nasir Tusi (a Persian Scholar (1201-1274) from the book ”The Nasirean Ethics”

translated from Persian by Wickens (2011, pp.43-48). In one chapter of this book

Tusi developed a basic theory of evolution, foreshadowing the theories of European

scientists like Lamarck (1809) and Darwin (1859) by more than 600 years.)
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Abstract

The dispute on oligopoly theory was commenced by Vega-Redondo (1997), in

which he showed that long run outcome of a symmetric Cournot oligopoly game

equals the competitive Walrasian. In this dissertation, first we extend an evo-

lutionary game theoretic model to an asymmetric oligopolistic model where we

obtain a form of equilibrium so-called Walrasian in Expectation with market price

equal to average marginal costs. Then we analyse firms competition under relative

payoffs maximizing (RPM) behaviour. RPM behaviour is implied by evolutionary

stability. We consider a simple model of symmetric oligopoly where firms select

a two dimensional strategy set of price and a non-price variable known as quality

simultaneously. The role of cross-elasticities of demand will be shown in deter-

mining the evolutionary equilibrium. Finally, a nonparametric revealed preference

approach will present an empirical content of the evolutionary oligopoly model.

Testable restrictions are derived for an evolutionary model of asymmetric oligopoly

in which firms have different cost functions to produce a homogenous good. A case

study on the crude oil market with main producers is presented and we compare

the rejection rates of both Cournot and evolutionary hypotheses.
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Chapter 1

Introduction

Theory of oligopoly with a long history is placed at the heart of industrial orga-

nization. In 1838, Antoine Augustin Cournot published the book, ”Researches on

the Mathematical Principles of the Theory of Wealth”, where he formally provided

a mathematical foundation to explain the source of market power in oligopolistic

markets. After almost half a century, Joseph Louis Franois Bertrand (1883) disap-

proved Cournot’s work in which he discussed that if firms chose prices instead of

quantities, then the competitive outcome with price equal to marginal cost would

arise. Bertrand’s conclusion then was proofed as well by Edgeworth (1889) in the

case of a cost function under the law of diminishing returns. But, which of these

two static oligopoly theories is right? This leads to what it known as Bertrand

paradox in economics, i.e., Nash equilibria in quantity strategy and in price strat-

egy are so different. Indeed, the number of firms in the industry is unrelated to

the study of price competition and Bertrand paradox asserts that even oligopolists

behave like competitive firms.

There are several lines of research in the literature of oligopoly theory that attempt

to resolve the paradox by generalization or relaxing some assumptions of the model.

First of all, by introducing capacity constraint in which firms are not capable

of selling more than they can produce, it was Edgeworth (1889) that proposed

the capacity constraint for remediation of this paradox. In modern literature,

all models of capacity constraints justify noncompetitive prices. (See Levitan

1



Evolutionary Models of Market Structure 2

and Shubik (1972) in the case of symmetric capacities, Kreps and Scheinkman

(1983) in the case asymmetric capacities, and other works as well in this topic for

example Osborne and Pitchik (1986), Davidson and Deneckere (1986)). Whilst

the literature of oligopoly theory shows us how price competition is soften using

capacity constraint models, the second approach to resolve the paradox is using

dynamic competition, i.e., when firms compete repeatedly. Based on the works of

Friedman (1971), due to the occurrence of price war and retaliation between the

players in the game, prices above marginal cost may be sustained in equilibrium.

The idea behind a supergame theory of oligopoly is to characterize an optimal

punishment strategy for obtaining the collusive outcome (See Abreu (1986) and

Tirole (1988)). Obviously the literature of dynamic game is extensive and its

development helped us to understand tacit collusion and coordinated effects in

horizontal mergers. Third, price competition can be softened by relaxing of an

assumption that firms produce a homogenous good. If products are differentiated,

then consumers in Bertrand model may not switch entirely to the product with

lower price. Then, a price above marginal cost can be sustained under product

differentiation.

Even if the analysis extends from a homogeneous product to a differentiated prod-

uct setup, the difference between two equilibria concepts, Bertrand and Cournot,

still remains. The literature of modern industrial organization until the 1990s

cannot reconcile this paradox. Indeed, as Shapiro (1989) stated:

”The various modern theories of oligopoly behavior are essentially a set of different

games that have been analyzed; these games do not represent competing theories,

but rather models relevant in different industries or circumstances. ... It is best

to provide the reader with a word of warning. Unlike perfect competition or pure

monopoly, there is no single ”theory of oligopoly”. ... Indeed, there has long been

doubt the wisdom of seeking a single, universal theory of oligopoly, and I share this

doubt.” (Handbook of industrial organization 1989, Chapter 6 p.332)
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Evolutionary game approach as a solution to Bertrand paradox

An alternative approach of evolutionary game theory, originated by Smith and

Price (1973), provide us an answer for resolution of Bertrand paradox. The con-

cept of evolutionarily stable strategy (ESS) is central in the analysis of evolutionary

game theory. While A Nash strategy in a game is a strategy where it is not ra-

tional for any competitor to deviate from this strategy to other strategies, an ESS

is instead a state of game dynamics where, in a very large (infinite) population of

competitors, a new mutant strategy cannot successfully contest with the popula-

tion to upset the prevailing dynamic. Schaffer (1988) extends ESS definition to

a finite population game and further, in another paper (Schaffer (1989)), shows

that evolutionary stable strategy (ESS) in a context of a symmetric duopoly with

quantitiy-setting firms leads to Walrasian(competitive) equilibrium. This would

raise the question why firms may adopt a competitive strategy attaining a lower

absolute profit in an oligopoly setup (imperfect competition). In fact, a firm di-

minishes its own profit by adopting a competitive strategy in order to reduce the

profit of its rival to an even larger extent. In the words of Schaffer:

”When firms have market power, the possibility of spiteful behavior exists: a firm

may forgo profit-maximization and lower its profits and even its survival chances,

but if the profits of its competitors are lowered still further, the spiteful firm will

be the more likely survivor.” (Schaffer (1989, p.44))

Consider a homogeneous good market composed of n firms.1 Let P (.) be the

market demand function, a decreasing function of x1 + x2 + ...+ xn where each xi

denotes the product quantity of firm i = 1, 2, ..., n sold in the homogenous good

market. Each firm i has the same differentiable and increasing cost function C(.).

Suppose that firms involve in a game to make a choice on their quantities simulta-

neously. Then, we can define a symmetric Cournot-Nash equilibrium (xc, xc, ..., xc)

in this game as follows:

1The analysis here follows Vega-Redondo (1996).



Evolutionary Models of Market Structure 4

P (nxc)xc − C(xc) ≥ P ((n− 1)xc + x)x− C(x) ∀x ≥ 0 (1.1)

Moreover, a symmetric Walrasian (competitive) output (xw, xw, ..., xw) , i.e., each

firm maximizes its profit taken the market-clearing price as given, is written off as

the following condition

P (nxw)xw − C(xw) ≥ P (nxw)x− C(x) ∀x ≥ 0 (1.2)

Consider now an ESS for the game among these n firms. Here we show that a strat-

egy xw is ESS, that is, if no mutant firm which chooses a different output than xw,

can obtain a higher profit than the other n− 1 incumbent firms. Mathematically

speaking, xw is an ESS if the following condition holds:

P ((n− 1)xw + x)xw − C(xw) > P ((n− 1)xw + x)x− C(x) ∀x 6= xw (1.3)

To see whether the condition (1.3) is satisfied, note that since P (.) is a decreasing

function, we must have:

P ((n− 1)xw + x)(xw − x) > P (nxw)(xw − x) (1.4)

Then we subtract the term C(xw) − C(x) from both sides of inequality (1.4) , it

yields

(
P ((n− 1)xw + x)xw − C(xw)

)
−
(
P ((n− 1)xw + x)x− C(x)

)
>

(
P (nxw)xw − C(xw)

)
−
(
P (nxw)x− C(x)

)
Knowing that the right hand side of above inequality is a non-negative number by

(1.2), therefore this leads to the condition (1.3) as is required.
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In fact, the previous argument shows that evolutionary stability in a quantity

competition reproduces the same outcome as in Bertrand competition, that is,

the Walrasian (competitive) outcome with price equals to the marginal cost, for

a static oligopoly producing a homogenous good. Furthermore, Vega-Redondo

(1997), in a dynamic stochastic framework, shows that competitive equilibrium is

a long run (stochastically stable state) outcome of Cournot oligopoly game with

a homogenous good market.

The evolutionary approach, indeed, was pioneered by Alchian (1950) (see also Nel-

son and Winter (1973) and Hirshleifer (1977)) where he suggests a modification

to embed the principles of biological evolution and natural selection into economic

analysis. Alchian argues that agents in economic environment might not be able

to optimize their actions or choices due to the lack of perfect foresight, but rather

they may possibly adopt a posteriori most appropriate actions that realize positive

profit through relative efficiency. Then Schaffer (1989) reinforces Alchian’s argu-

ment through an evolutionary model of economic natural selection which proves

that evolutionary stability is hence based on relative payoffs. In chapter 3, we

further lay emphasis on the relationship between ESS and relative success.

In the next chapter, we extend an evolutionary game theoretic model to an asym-

metric oligopolistic industry composed of two groups of firms. In fact, here we

reexamine the issue of evolutionary stability in asymmetric Cournot oligopoly

with a homogenous product. Tanaka (1999) has shown that a celebrated result by

Vega-Redondo (1997) for symmetric oligopoly, namely that the long-run evolution-

ary outcome of such a market equals the competitive Walrasian outcome (and not

the Cournot-Nash outcome), can be extended to asymmetric oligopoly. We take

issue with this extension and provided an alternative analysis of an asymmetric

oligopoly game, which does not lead to marginal cost pricing and the competitive

outcome in the long-run.2

Then chapter 3 draws our attention to the following important question in this

literature. Do firms under relative payoffs maximizing (RPM) behavior always

2This chapter is taken from Leininger and M.Moghadam (2014), joint work with Wolfgang
Leininger.
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choose a strategy profile that results in tougher competition compared to firms

under absolute payoffs maximizing (APM) behavior? We will address this issue

through a simple model of symmetric oligopoly where firms select a two dimen-

sional strategy set of price and a non-price variable known as quality simultane-

ously. Our results show that equilibrium solutions of RPM and APM are distinct.

We further characterize the comparison between these two equilibrium concepts.

In particular, RPM does not always lead to stricter competition compared to the

Nash equilibrium (APM). In fact, the comparison between two equilibrium con-

cepts is influenced by the parameters of the demand curve and the cost function.

The derived conditions will determine under which circumstances RPM induces

more competition or less competition w.r.t the price or non-price dimension.3

Finally chapter 4 presents a nonparametric approach to investigate an empirical

content of the evolutionary oligopoly model. Using revealed preference approach

introduced by Carvajal, Deb, Fenske, and Quah (2013, Econometrica), we derive

testable conditions for an evolutionary model of asymmetric oligopoly setup where

firms have different cost functions to produce a homogenous good. Therefore,

without making any parametric assumption regarding to the demand curve and

the cost function, this approach characterizes a set of conditions (restrictions) for

an observational dataset to be consistent with the non-competitive evolutionary

equilibrium. An empirical application to crude oil market with main producers is

presented and we compare the rejection rates of both Cournot and evolutionary

hypotheses.4

3This chapter proceeds from M. Moghadam (2015a).
4Chapter 4 is based on M. Moghadam (2015b).



Chapter 2

Evolutionary Model of

Asymmetric Oligopoly

7
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It is a widely known result that in terms of evolutionary stability the long-run out-

come of a Cournot oligopoly market with finite number of firms approaches the

perfectly competitive Walrasian market outcome (Vega-Redondo (1997)). How-

ever, in this chapter we show that an asymmetric structure in the cost functions of

firms may change the long-run outcome. We show that the evolutionarily stable

price in an asymmetric Cournot oligopoly need not equal the marginal cost, it

may rather equal a weighted average of (different) marginal costs. We apply a

symmetrization technique in order to transform the game with asymmetric firms

into a symmetric oligopoly game and then extend Schaffer’s definition (1988) of a

finite population ESS (FPESS) to this setup. Moreover, we show that the FPESS

in this game represents a stochastically stable state of an evolutionary process of

imitation with experimentation.

2.1 Introduction

The establishment of evolutionary game models provides us with a new insight

into the oligopoly theory. In a seminal paper, Vega-Redondo (1997) shows that

Walrasian competitive equilibrium is the only stochastically stable state in a sym-

metric quantity oligopoly game with a homogenous product. Tanaka (1999) also

considers an evolutionary game theoretic model for an asymmetric oligopolistic

industry composed of two groups of firms, in which the output choices of low cost

firms and high cost firms jointly determine market price of a homogeneous good.

His main result shows that the finite population evolutionarily stable strategies

(FPESS) of low cost and high cost firms are equal to the respective competitive

(Walrasian) outputs in the two groups. Moreover, this static outcome is also the

long-run equilibrium of a dynamic evolutionary model based on imitation and

stochastic mutation. Tanaka’s result is read as a generalization of the celebrated

result of Vega-Redondo (1997), namely that FPESS in a symmetric oligopoly of

identical firms selects the Walrasian outcome (and not the Cournot-Nash equilib-

rium), to asymmetric oligopoly.
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The purpose of the present chapter is to reexamine this issue; more precisely, we

will argue that Tanaka applies the finite population evolutionary argument in a

particular parameterized way, which amounts to an evolutionary analysis of the

two groups in separation. Otherwise it would not be possible to apply a symmetric

solution concept like FPESS to the (full) asymmetric model. A standard procedure

of evolutionary game theory (originating with Selten (1980)), when applying ESS

to a multi-population model, is to symmetrize the given asymmetric game and

then apply the evolutionary solution concept to the symmetrized game. We will

show that if one follows this prescription in a simple alternative model, then the

marginal cost pricing result will not be confirmed.

This chapter is organized as follows: in the next section we present our approach

to evolutionary stability in asymmetric finite populations. Section 2.3 contains the

analysis following from our approach. Section 2.4 considers dynamics explicitly

and derives evolutionary equilibrium in the long run. Section 2.5 concludes.

2.2 Evolutionary stability in asymmetric oligopoly

In our model we employ an alternative conceptualization of evolutionarily sta-

ble strategies to asymmetric oligopoly markets. Recall that Tanaka applies the

concept of a finite population evolutionarily stable strategy (FPESS) by Schaffer

(1988) in which agents in economic and social environment adhere to relative pay-

off maximizing rather than absolute payoff maximizing behavior. Tanaka (1999)

does so in the following way: each group of either low cost firms or high cost

firms performs its relative payoff maximization under the assumption that the

other group’s behavior is given. The parametric treatment of the, respectively,

other group’s behavior allows for the symmetric treatment of firms in each single

group; a prerequisite for the use of symmetric solution concept ESS. However, this

parameterization also means that a mutation of firm strategies in the evolution-

ary process cannot occur in both groups simultaneously; in fact, the evolution of

behavior in one group is not influenced by the evolution of behavior in the other
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group as the two evolutionary processes are studied in isolation of each other. And

it is this fact that leads to the conclusion that the equilibrium price resulting from

FPESS of the good must equal the marginal costs of low cost firms as well as high

cost firms; accordingly, high cost firms supply a lower amount of the good than

low cost firms in order to equalize marginal cost.

In contrast, we use Selten’s (1980) approach to construct a symmetric monomor-

phic population game out of an asymmetric multi-population game. Firstly, we

define a set of roles or information situations (high cost or low cost) where a firm

must choose its action at each possible role. In addition, we have a role assignment

map that assigns without replacement each of the N = n1 + n2 firms with prob-

ability of n1/N as a low cost role and with probability n2/N as a high cost role.

Accordingly, firms carry out their actions (local strategies) based on the assigned

role and a behavior strategy for a firm gives a local strategy for each role. Then

Schaffer’s (1988) definition of finite population ESS is applied onto these extended

strategies in the now symmetric game. Note that this also amounts to a kind of

”production uncertainty” as a firm’s cost function might be high or low in any

new play of the game.

Since a mutant strategy now may contain different behavior for both roles our

result will differ from the one derived in Tanaka (1999). The analysis in Tanaka’s

paper does not allow for the possibility of instantaneous strategy mutation for

both types of firms while, with this approach, mutation is allowed to take place

simultaneously for both types.

The analysis of Vega-Redondo (1997) has been broadened on several grounds.

Alós-Ferrer (2004) and Alós-Ferrer and Shi (2012) introduce memory capacity

into the evolutionary dynamic model of imitation with mutation and prove that

once firms remember not only the current actions and payoffs, but also those of

the last periods, the set of stochastic stable states extends between the Walrasian

and the Cournot Nash. The theoretical result by Apesteguia et al. (2010), related

to the present paper, also show that Vega-Redondo’s result does not remain robust

to the smallest asymmetry in fixed costs. They consider an oligopoly set-up with
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a firm having a cost advantage compared to other firms in the market and as a

result, a Walrasian state becomes no longer stochastically stable.

2.3 The model

Consider a game between N firms, which are divided into two groups, low cost

firms and high cost firms. All firms produce a homogeneous good. The number of

firms in the low cost group is n1, and the number of firms in the high cost group

is n2 with n1 + n2 = N . Low cost firm i produces output level xi and high cost

firm i produces output level yi.

The cost functions for the low cost firms and for the high cost firms are respectively

given by:

Cl(xi) = c(xi) and Ch(yi) = γc(yi) where γ > 1.

c(.) represents an increasing, twice differentiable and convex function, i.e., with

increasing marginal cost c′(.). Let P (.) be a differentiable and decreasing inverse

demand function of the homogeneous product, whose argument is the total output

in the market denoted by X + Y where X = x1 + x2 + ...+ xn1 is the total output

of low cost firms and Y = y1 + y2 + ...+ yn2 is total output of high cost firms.

Consequently, payoff functions for low cost firms and high cost firms are as follows,

πli(xi, X−i + Y ) = P (xi, X−i + Y )xi − c(xi), i = 1, 2, , n1

πhi (yi, X + Y−i) = P (yi, X + Y−i)yi − γc(yi), i = 1, 2, , n2

Where X−i =
∑n1

j=1,j 6=i xj and Y−i =
∑n2

j=1,j 6=i yj.

Defining a concept of evolutionary stability requires a symmetric setup with iden-

tical players, but our game setup is asymmetric. We construct a symmetric

monomorphic population game out of an asymmetric polymorphic-population
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game. To do this, first we need to define a set of roles or information situa-

tions. A firm may find itself in a number of roles (high cost or low cost) where it

must choose its action at each possible role. In addition, we have a role assign-

ment map that assigns without replacement each of the N = n1 + n2 firms with

probability of n1/N as a low cost role and with probability n2/N as a high cost

role. Firms then carry out their actions (local strategies) based on the assigned

role. In fact, a firm contemplates behavior before it knows its assigned role. An

action (local strategy) of firm i ∈ {1, .., N} assigned at role high cost or low cost

is to select a pure strategy of xi or yi and hence a behavior strategy for a firm i is

a 2-tuple (xi, yi) giving a local strategy for each role. From this ex-ante point of

view the game played in role-contingent strategies is symmetric (see Selten, 1980,

pp. 97-8).

Definition 2.1. Let (xi, yi) and [x,y]−i = [(x1, y1), ..., (xi−1, yi−1), (xi+1, yi+1), ..., (xN , yN)]

be a behavior strategy for a firm i and behavior strategies of other firms respec-

tively. Then local payoffs of firm i in roles low cost and high cost are defined as

πli(xi, [x,y]−i) and πhi (yi, [x,y]−i).

Correspondigly the total (expected) payoff function of firm i in the symmetrized

monomorphic population game is

Πi((xi, yi), [x,y]−i) =
n1

N
πli(xi, [x,y]−i) +

n2

N
πhi (yi, [x,y]−i) (2.1)

Consider now a finite population evolutionarily stable strategy (FPESS) of the

game among these N firms. A strategy is evolutionary stable, if no mutant firm

which chooses a different strategy than (x∗, y∗), say, can realize higher expected

profits than the firms which employ the incumbent strategy (x∗, y∗). In other

words, no mutant strategy (x, y) can invade a population of (x∗, y∗) strategists

successfully.

Formally Schaffer‘s definition (1988) then reads
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Definition 2.2. A strategy profile (x∗, y∗) in the symmetrized oligopoly game is

a FPESS if

Πi((x
∗, y∗), (xm, ym), [x∗,y∗]−i−j) > Πj((x

m, ym), [x∗,y∗]−j) (2.2)

∀(xm, ym) 6= (x∗, y∗), and all i 6= j where (xi, yi) = (x∗, y∗) and (xj, yj) = (xm, ym).

In a similar setup, Tanaka (1999) also considers an evolutionary game theoretic

model for an asymmetric oligopoly. Tanaka applies the finite population evolution-

ary argument in a particular parameterized way, which amounts to an evolutionary

analysis of the two groups in separation. Effectively, this approach postulates two

separate independent mutation processes in the two groups. And this accounts

for the marginal cost pricing result. The novelty of our definition, compared to

Tanaka (1999), is that it allows the mutation to occur simultaneously for both

types of firms. Hence evolution of behavior for one type depends on the evolution

of behavior for the other type and vice versa and as we will show later this leads

to a Walrasian result in expectation.

Particularly, Tanaka defines FPESS for low cost firms and high cost firms respec-

tively, as follows:

x∗ and y∗ are a FPESS if the following two conditions (2.3)and (2.4) hold

πli(x
∗, xm, X∗−i−j + Y ) > πlj(x

m, X∗−j + Y ) (2.3)

∀xm 6= x∗ and all i 6= j where xj = xm and xi = x∗. This requirement means that

no mutant strategy of a low cost firm can yield higher profits than x∗ given the

total output of the high cost firms Y . Moreover,

πhi (y∗, ym, X + Y ∗−i−j) > πhj (ym, X + Y ∗−j) (2.4)

∀ym 6= y∗ and all i 6= j where yj = ym and yi = y∗. This requirement means

that no mutant strategy for a high cost firm can yield higher profits than y∗ given

the total output of the low cost firms X. Hence Tanaka’s model set-up is not
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really playing the field among N firms; it is rather playing the field among the

low cost firms exclusively and the high cost firms exclusively and then coupling

both results in a consistent way. His main result shows that the finite population

evolutionarily stable strategies (FPESS) of low cost and high cost firms are equal

to the respective competitive (Walrasian) outputs in the two groups.

Definition 2.3. A Walrasian outcome for N firms is given by a quantity profile

(xw, yw) and a market price Pw that satisfy the set of following conditions:

Pw = c′(xwi ) = c′(xw) ∀i = 1, , n1 (2.5)

Pw = γc′(ywi ) = γc′(yw) ∀i = 1, , n2 (2.6)

Proposition 2.4. In the symmetrized game of the asymmetric oligopoly market

with two groups of low cost firms and high cost firms, any FPESS output of an

individual firm does not conform to Walrasian behavior; neither for the low cost

firm nor the high cost firm. But the equilibrium price equals a weighted average of

marginal costs, where the weights are given by the population shares of high and

low cost firms. Thus a Walrasian market outcome in expectation is obtained for

the homogeneous good price and the total market output. Low cost firms supply a

higher amount of output than high cost firms.

Proof. In line with Schaffer (1989), we can find a FPESS as the solution of follow-

ing optimization problem1

(x∗, y∗) = arg max
xm,ym

ϕ = Πj((x
m, ym), [x∗,y∗]−j)− Πi((x

∗, y∗), (xm, ym), [x∗,y∗]−i−j)

(2.7)

1Note that Tanaka (1999) derives FPESS as the solutions of the following two problems
independently,

x∗ = arg max
xm

ϕl = πl
j(x

m, X∗
−j + Y )− πl

i(x
∗, xm, X∗

−i−j + Y )

y∗ = arg max
ym

ϕh = πh
j (ym, X + Y ∗

−j)− πh
i (y∗, ym, X + Y ∗

−i−j)

Values of x∗(Y ) and y∗(X) are obtained given the total output of high cost firms and total
output of low cost firms respectively. Hence a low cost firm only evaluates own payoff relative
to the payoffs of other low cost firms; and a high cost firm only evaluates own payoff relative to
payoffs of other high cost firms. And this lead to the marginal cost pricing result.
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Hence we write down a mutant total payoff and an incumbent total payoff as

follows:

Πj((x
m, ym), [x∗,y∗]−j) =

n1

N
πlj(x

m, [x∗,y∗]−j) +
n2

N
πhj (ym, [x∗,y∗]−j) (2.8)

Πi((x
∗, y∗), (xm, ym), [x∗,y∗]−i−j) = (2.9)

n1

N

(
n1−1
N−1

πli(x
∗, xm, [x∗,y∗]−i−j)+

n2

N−1
πli(x

∗, ym, [x∗,y∗]−i−j)) +n2

N

(
n1

N−1
πhi (y∗, xm, [x∗,y∗]−i−j)+

n2−1
N−1

πhi (y∗, ym, [x∗,y∗]−i−j))

The first term of Πj(.) indicates the potential role of the mutant as a member

of low cost group, and the second term refers to its potential role as a member

of high cost group. Accordingly, for incumbents Πi(.) the calculation is slightly

more complicated and consists of four terms in order to account for the mutant’s

role. Consequently the FPESS can be established as the solution of following

optimization problem

(x∗, y∗) = arg maxxm,ym ϕ

where ϕ = n1

N
(P (xm, [x∗,y∗]−j)x

m − c(xm)) + n2

N
(P (ym, [x∗,y∗]−j)y

m − γc(ym)) −

(n1

N
n1−1
N−1

)(P (x∗, xm, [x∗,y∗]−i−j)x
∗−c(x∗))−(n1

N
n2

N−1
)(P (x∗, ym, [x∗,y∗]−i−j)x

∗−c(x∗))−

(n2

N
n1

N−1
)(P (y∗, xm, [x∗,y∗]−i−j)y

∗ − γc(y∗)) − (n2

N
n2−1
N−1

)(P (y∗, ym, [x∗,y∗]−i−j)y
∗ −

γc(y∗))

First order conditions with respect to xm, ym respectively are as follows:

xm :
n1

N
(P (.) + P ′(.)xm − c′(xm))− (

n1

N

n1 − 1

N − 1
)P ′(.)x∗ − (

n2

N

n1

N − 1
)P ′(.)y∗ = 0

ym :
n2

N
(P (.) +P ′(.)ym− γc′(ym))− (

n2

N

n2 − 1

N − 1
)P ′(.)y∗− (

n2

N

n1

N − 1
)P ′(.)x∗ = 0

P ′(.) is the derivative of inverse demand function. Imposing symmetric condition(xm =

x∗, ym = y∗) and rearranging we obtain

P (X∗ + Y ∗) + (
n2

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = c′(x∗) (2.10)
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P (X∗ + Y ∗)− (
n1

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = γc′(y∗) (2.11)

From equations (2.10) and (2.11), it is obvious that the individual firm behavior

does not conform to Walrasian equilibrium with price equal to marginal cost.

After multiplying both sides of equation (2.10) by n1/N and equation (2.11) by

n2/N and then summing up both equations, the following expression for price is

obtained

P (X∗ + Y ∗) =
n1

N
c′(x∗) +

n2

N
γc′(y∗) (2.12)

Further, subtracting (2.11) from (2.10) yields

c′(x∗)− γc′(y∗) =
N

N − 1
(x∗ − y∗)P ′(X∗ + Y ∗)

From this it is easily seen that x∗ > y∗ must hold: assume the opposite; i.e.

that x∗ ≤ y∗. Then the right-hand side of the above expression is non-negative as

P ′(.) < 0. But c(.) is convex and c′(.) hence increasing, which yields a contradiction

to γ > 1. So FPESS output of a low cost firm is larger than that of a high cost

firm.

Equation (2.12) means that the price of the good in evolutionary equilibrium is

equal to a convex combination of the marginal costs of low cost firms and high

cost firms. The weights of marginal cost in this combination are identical with the

population share of each group of firms. Here we call the FPESS price P ∗ as Wal-

rasian price in Expectation. In fact, in an asymmetric oligopoly of homogeneous

product, the market outcome converges to the competitive equilibrium. However,

as we show in the following proposition (2.5), the output of high cost firms in-

creases, while the output of low cost firms decreases and our Walrasian price in

expectation moves firms’ outputs in evolutionarily stable equilibrium closer to each

other compared to the Walrasian equilibrium.
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Proposition 2.5. The following relationship between FPESS behavior (x∗, y∗) and

Walrasian behavior (xw, yw) of individual firms holds:

yw < y∗ < x∗ < xw

Proof. This relationship is equivalent with the following relationship yw < y∗ and

x∗ < xw (since we already know that y∗ < x∗). A proof by contradiction is

employed. Lets assume that these inequalities do not hold. So we must have one

the following cases.

1. yw = y∗ and x∗ = xw

2. yw = y∗ and x∗ > xw

3. yw = y∗ and x∗ < xw

4. yw > y∗ and x∗ = xw

5. yw > y∗ and x∗ > xw

6. yw > y∗ and x∗ < xw

7. yw < y∗ and x∗ = xw

8. yw < y∗ and x∗ > xw

First of all, we derive a useful condition for x∗ and y∗ in our solution of (2.10) and

(2.11), which we employ in this proof. We have

P (X∗ + Y ∗) + (
n2

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = c′(x∗)

P (X∗ + Y ∗)− (
n1

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = γc′(y∗)

Then, knowing that ni

N−1
(x∗ − y∗) > 0, equations (2.10) and (2.11) imply that

P (X∗ + Y ∗) > c′(x∗), P (X∗ + Y ∗) < γc′(y∗)
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By substituting equation (2.12)

n1

N
c′(x∗) +

n2

N
γc′(y∗) > c′(x∗),

n1

N
c′(x∗) +

n2

N
γc′(y∗) < γc′(y∗)

And this implies that the values for x∗ and y∗ in our solution of (2.10) and (2.11)

satisfies
c′(x∗)

c′(y∗)
< γ (2.13)

If case 1) were to apply, then we must have γc′(y∗) = γc′(yw) and c′(x∗) = c′(xw).

Since P (Xw + Y w) = c′(xw) = γc′(yw), this is obviously a contradiction to (2.13).

If case 2) were to apply, we obtain by convexity of the cost function γc′(y∗) =

γc′(yw) and c′(x∗) > c′(xw). Since we have P (Xw + Y w) = c′(xw) = γc′(yw),

therefore γc′(y∗) = γc′(yw) and c′(x∗) > c′(xw) yield the following inequality

γc′(y∗) < c′(x∗) which contradicts (2.13).

If case 3) were to apply, then we must have P (X∗+Y ∗) > P (Xw +Y w) since P (.)

is decreasing. Then again, we have from equilibrium conditions P (Xw + Y w) =

γc′(yw) and P (X∗ + Y ∗) < γc′(y∗). Therefore, γc′(y∗) = γc′(yw) (as y∗ = yw)

leads to P (X∗ + Y ∗) < P (Xw + Y w) and this is a contradiction.

If case 4) were to apply, with the same reasoning like the case 2), as we have

P (Xw + Y w) = c′(xw) = γc′(yw), therefore γc′(yw) > γc′(y∗) and c′(x∗) = c′(xw)

yield the following inequality γc′(y∗) < c′(x∗) which contradicts (2.13).

If case 5) were to apply, with the same reasoning like the case 2), we obtain by

convexity of the cost function c′(x∗) > c′(xw) and γc′(y∗) < γc′(yw). Moreover,

by P (Xw + Y w) = c′(xw) = γc′(yw), these two inequalities yield the following

inequality γc′(y∗) < c′(x∗) which contradicts (2.13).

If case 6) were to apply, then we must have P (X∗ + Y ∗) > P (Xw + Y w) as P (.)

is decreasing. Furthermore, we have from equilibrium conditions P (Xw + Y w) =

γc′(yw) and P (X∗ + Y ∗) < γc′(y∗). Therefore, as c′(.) is increasing, γc′(y∗) <

γc′(yw) leads to P (X∗ + Y ∗) < P (Xw + Y w) and this is a contradiction.
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If case 7) were to apply, then we must have P (X∗ + Y ∗) < P (Xw + Y w) as P (.)

is decreasing. Furthermore, we have from equilibrium conditions P (Xw + Y w) =

c′(xw) and P (X∗ + Y ∗) > c′(x∗). Therefore, c′(x∗) = c′(xw) (as x∗ = xw) leads to

P (X∗ + Y ∗) > P (Xw + Y w) and this is a contradiction.

If case 8) were to apply, we obtain γc′(y∗) > γc′(yw), c′(x∗) > c′(xw), and P (X∗+

Y ∗) < P (Xw + Y w). But knowing that P (Xw + Y w) = c′(xw) and P (X∗ + Y ∗) >

c′(x∗) the first implication cannot hold.

Note that, one type of firm, namely the high cost firm sells at a price below its

marginal cost. It is important to note that all firms - low cost firms and high cost

firms- must make non-negative profit in FPESS equilibrium; otherwise high cost

and low cost firms could not coexist in equilibrium. This requirement can indeed

be met, if the cost function c(.) is sufficiently convex. To see this in more detail,

observe that the profit function of a high cost firm in FPESS equilibrium can be

written as

πhi = P (X∗ + Y ∗)y∗ − γc(y∗) = (
n1

N
c′(x∗) +

n2

N
γc′(y∗))y∗ − γc(y∗)

Let the cost function be of the following convex form:

c(q) = qρ (2.14)

Proposition 2.6. Assume that (2.14) holds. Then ρ ≥ γ implies both types of

firms make positive profits in a FPESS equilibrium.

Proof. By assuming (2.14), we obtain profit function of high cost firm as follow:

πhi =
(n1

N
ρ(x∗)ρ−1 +

n2

N
γρ(y∗)ρ−1

)
y∗ − γ(y∗)ρ

We can decompose the term γ(y∗)ρ as follows:

πhi =
(n1

N
ρ(x∗)ρ−1 +

n2

N
γρ(y∗)ρ−1

)
y∗ −

(n1

N
γ(y∗)ρ−1 +

n2

N
γ(y∗)ρ−1

)
y∗ > 0
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Since we have x∗ > y∗, the condition ρ ≥ γ > 1 implies that πhi > 0.

Hence in evolutionary equilibrium, the high cost firm has to produce more than

competitive level with the aim of surviving in the market and low cost firm benefit

from a market power owing to its cost efficiency. We illustrate this in the following

numerical example.

Example 2.1. Let the number of firms in the low cost group and high cost group,

respectively, be given by an integer n ∈ [1, 10] and m ∈ [1, 10]. We use a linear

demand function of the form P = 1 − (
∑n

i=1 xi +
∑m

i=1 yi) = 1 − (X + Y ). We

specify the cost function to c(q) = q2,i.e. ρ = 2. Consequently, Cl(xi) = c(xi) = x2
i

and Ch(yi) = 2y2
i with γ = 2. Then equilibrium outputs are obtained as follows:

FPESS equilibrium:

X∗ =
n(5m+ 5n− 4)

−8 + 10m+ 3m2 + 6n+ 8mn+ 5n2
, Y ∗ =

m(3m+ 3n− 2)

−8 + 10m+ 3m2 + 6n+ 8mn+ 5n2

P ∗ =
12m+ 10n− 8

−8 + 10m+ 3m2 + 6n+ 8mn+ 5n2

Walrasian equilibrium:

Xw =
2n

4 +m+ 2n
, Y w =

m

4 +m+ 2n
, and Pw =

4

4 +m+ 2n

We can plot the above functions with n as the single variable for fixed values of m.

For example, the following Figures 2.1 and 2.2 illustrate the result with m = 5.

As we observe while the individual firms evolutionary stable outcomes are not the

same with Walrasian outcomes, Walrasian price in expectation and total market

output nevertheless converge to competitive equilibrium.

Our main result states that evolutionary forces in an oligopoly market with two

types of firms determine the price in FPESS as equal to average marginal cost.

It is not difficult to show that this Walrasian in expectation result generalizes to

oligopolistic competition between K groups of firms with different cost functions.
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Let’ say that we have N firms that differ w.r.t. cost functions c1, ..., cK and the

number of firms in each group k ∈ {1, ..., K} is nk with
∑K

k=1 nk = N .

Proposition 2.7. In the symmetrized game of the asymmetric oligopoly market

with K groups of firms that differ w.r.t. cost functions c1, ..., cK, the FPESS outputs

do not correspond to the Walrasian outputs in each group of firms. However, the

equilibrium price equals a weighted average of marginal costs.

P (
K∑
k=1

X∗k) + P ′(
K∑
k=1

X∗k)
( N

N − 1
(x∗k − x∗)

)
= c′k(x

∗
k) ∀k = 1, ..., K

P (
K∑
k=1

X∗k) =
K∑
k=1

nk
N
c′k(x

∗
k)

Proof. In this setup, the behavior strategy of firm i denoted by a vector (xi1, ..., xiK)

gives a local strategy for each role k ∈ {1, ..., K} . The set of roles is identical

with the set of cost functions {c1, ..., cK}. Let’s define the local payoff functions

for firm i in role k as a function of its local strategy xik and behavior strategies of

other firms [x]−i

πki (xik, [x]−i) = P (xik, [x]−i)xik − ck(xik) (2.15)

where

[x]−i =



x11 x12 . . . x1K

...
...

. . .
...

xi−1,1 xi−1,2 . . . xi−1,K

xi+1,1 xi+1,2 . . . xi+1,K

...
...

. . .
...

xN1 xN2 . . . xNK


Therefore the total payoff of each firm in our symmetrized version of game is like

Πi((xi1, ..., xiK), [x]−i) =
K∑
k=1

nk
N
πki (xik, [x]−i) ∀i = 1, .., N
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Correspondingly the total payoffs for a mutant firm j and an incumbent firm i are

as follows

Πj((x
m
j1, ..., x

m
jK), [x∗]−j) =

K∑
k=1

nk
N

(
P (xmjk, [x

∗]−j)x
m
jk − ck(xmjk)

)

Πi((x
∗
i1, ..., x

∗
iK), (xmj1, ..., x

m
jK), [x∗]−i−j) =

K∑
k=1

nk
N

(
nk − 1

N − 1

(
P (x∗ik, x

m
jk, [x

∗]−i−j)x
∗
ik−ck(x∗ik)

)
+

K∑
l 6=k

nl
N − 1

(
P (x∗il, x

m
jk, [x

∗]−i−j)x
∗
il−cl(x∗il)

))

Then similar to optimization problem in (2.7), we drive the first order conditions

with respect to xmjk

nk
N

(
P (.) + P ′(.)xmk − c′k(xmk )

)
− nk
N

nk − 1

N − 1
P ′(.)x∗k −

nk
N

K∑
l 6=k

nl
N − 1

P ′(.)x∗l = 0

After imposing symmetry xmk = x∗k we obtain:

P (
K∑
k=1

X∗k) + P ′(
K∑
k=1

X∗k)
(N − nk
N − 1

x∗k −
K∑
l 6=k

nl
N − 1

x∗l

)
= c′k(x

∗
k)

Denote x∗ =
∑K

k=1
nk

N
x∗k, the above equation can also be written as follow:

P (
K∑
k=1

X∗k) + P ′(
K∑
k=1

X∗k)
( N

N − 1
(x∗k − x∗)

)
= c′k(x

∗
k) (2.16)

By multiplying both sides of equations (2.16) in nk

N
and summing over all equations,

we get the weighted average of marginal costs pricing result.

P (
K∑
k=1

X∗k) =
K∑
k=1

nk
N
c′k(x

∗
k) (2.17)
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2.4 Stochastically stable state and long-run equi-

librium

A stochastically stable state can be viewed as a refinement of the solution concept

FPESS. One of the limitations of the latter as a static notion of equilibrium is that

it need not capture the notion of long-run stability for an evolutionary process, if

evolution is also exposed to stochastic influences. An FPESS is also stochastically

stable if under vanishing stochastic influence the probability that the population is

following it does not go to zero. We now show this property for the FPESS in our

model with respect to an evolutionary process, which has been studied extensively

in the literature.

We follow Vega-Redondo (1997) and other contributions to evolutionary oligopoly

theory (e.g. Schenk-Hoppé (2000), Tanaka (2000), and Alos-Ferrer and Ania

(2005)) who analyze a certain type of imitation dynamics between firms subject

to a stochastic influence, called experimentation.

Consider that each firm i ∈ {1, ..., N}must choose a pair of outputs (xi, yi) wherein

both elements belong to a finite grid Γ = {0, δ, 2δ, ..., νδ} with grid step δ > 0 and

ν ∈ N. It also requires that any FPESS outputs x∗ and y∗ belong to this grid.

The state space is then equal to Γ2N and we denote it by Ω. The total number of

states is equal to (ν+1)2 (including the state (x = 0, y = 0)). In the model, the N

firms play a monomorphic oligopoly game in every period t. At each t, the state of

the system is characterized by the vector ω(t) =
((
x1(t), y1(t)

)
, ...,

(
xN(t), yN(t)

))
and associated with each vector ω(t) , there is a vector of total payoff for all N

players in the game, i.e., Π(t) = (Π1(t), ...,ΠN(t)). Critical assumption here is

that in the beginning of each period all firms are aware of the behavior strategies

of other firms in the previous period so they are able to compute total payoffs. We

follow a similar imitation rule as Vega-Redondo (1997) in which in period t each

firm has a chance with independent and common probability 0 < p < 1 to revise

its behavior strategy to the another behavior strategy that attained the highest
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total profit among the strategies chosen by other firms in period t− 1. Formally,

each firm behavior strategy is chosen from the following set B(t− 1):

(xi(t), yi(t)) ∈ B(t− 1) = {(x, y) ∈ Γ2 : ∃j ∈ {1, .., N}such that (2.18)

(x, y) = (xi(t− 1), yi(t− 1)) & ∀k 6= j ∈ {1, .., N}, Πj(t− 1) > Πk(t− 1)}

In fact, in each time t of the process, each firm observes the behavior strategies of

the other firms and the total profits associated with the behavior strategies of all

firms in the market. Then it adopts(imitates) the behavior strategy that generated

the highest total profit in the previous period. If all firms had chosen the same

strategy in the previous period, no adjustments would occur. Yet, there is also

the stochastic influence of ”experimentation”: each firm will change its strategy to

an arbitrary other one with positive probability ε. In a suitably defined dynamic

model usually with finitely many states such a process always converges to

a stationary distribution of strategies. One is then interested in the strategies

that form the support of the limit of these stationary distributions if the noisy

experimentation probability ε approaches zero; i.e. those states are then stable

against experimentation.

Note that we can use a result by Kandori et al. (1993) and Kandori and Rob (1995),

which affirms that only monomorphic states in which all firms choose the same

behavior strategy (x, y), i.e., symmetric strategy vectors ω(x,y) = ((x, y), ..., (x, y)),

can occur in the limit set. Further we call the sate ω(x∗,y∗) the FPESS state.

Proposition 2.8. In the symmetrized game of the asymmetric oligopoly, the

FPESS state ω(x∗,y∗) is a stochastically stable state w.r.t. imitation dynamics with

experimentation.

Proof. To show that stochastic stability argument goes through in our model, we

use a similar proof like in the theorem of Vega-Redondo (1997). As a matter of

fact he showed that Walrasian state is a stochastically stable state in symmetric

oligopoly for the reason that it satisfies two conditions, namely best reachability
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condition (BRC) (corresponding to Vega-Redondo (Lemma 1, 1997)) and worst

leaving condition (WLC) (corresponding to Vega-Redondo (Lemma 2, 1997)).

BRC means that the number of experiments, i.e. stochastic shocks, needed for the

process to reach a monomorphic state from other monomorphic states must be

the minimal feasible one. Those states intuitively have the best chances to occur

again and again as they are reached most easily. WLC means that the number of

experiments needed for the process to leave them is higher than in other states.

Those states, which are most easily reached and most difficultly left, are most

frequently observed, which is the meaning of stochastic stability.

In fact, WLC requires that a strategy adopted by all firms, cannot be invaded

by any single invader different from it, which is equivalent with the definition of

FPESS (see Definition 2). Hence, if one can show that a FPESS state satisfies

BRC then this FPESS state must be stochastically stable.

Obviously, the minimal number of experiments is one. However, this may not

be the minimal feasible one for reachability of a certain state given the process.

To check, one can operationalize the one-experiment requirement in the following

way: suppose there is a strategy, which can invade successfully any monomorphi-

cally adopted; i.e. symmetric other strategy vector (recall, that there are only

symmetric states in the limit). Then one experiment of one firm with this strat-

egy would suffice to move the process to this invading strategy and the minimality

requirement of best reachability would be met.2

2 Such a strategy is called in the literature a Globally Surviving Strategy GSS (see Tanaka
(2000)).Its relation to the notion of FPESS is the following: While a FPESS, if adopted by all
firms, cannot be invaded by any single invader different from it, a GSS is defined as a most
effective (single) invader: it can successfully invade any symmetrically adopted other strategy.
This, in turn, is equivalent to the requirement that a GSS, if adopted by all firms, cannot be
invaded by (N − 1) invaders with any commonly adopted other strategy. Hence, while a FPESS
is stable against any single invader strategy, a GSS is stable against any (N−1) identical invader
strategies that occur simultaneously. (One can refer to this property as (N−1)-stability whereas
FPESS demands 1-stability.) Consequently, if a GSS exists it is the only candidate for FPESS,
because any other strategy, if adopted by all firms, could be invaded by it as a single invader.
Hence any state different from a GSS can be left with a single experiment of a single firm, which
experiments with the GSS strategy. If, in contrast, the GSS itself is also an FPESS, then FPESS
state is the only state that cannot be left through any single experiment. Consequently, the
WLC requirement is fulfilled as well.(Leininger (2006) examines global stability of an FPESS,
which is an even stronger property as it demands m-stability for any m with 1 ≤ m ≤ n− 1, not
just m = 1 and m = n− 1 as is required here).
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In other words, BRC for state ω(x∗,y∗) holds; if the strategy (x∗, y∗) can invade any

symmetric ω(x,y) = ((x, y), ..., (x, y)) state; i.e. if the following condition holds

Πj

(
(x∗, y∗),

N−1

(x, y), ..., (x, y)
)
−Πi

(
(x∗, y∗),

N−1

(x, y), ..., (x, y)
)
> 0 ∀i 6= j and ∀(x, y) 6= (x∗, y∗)

(2.19)

Where Πj

(
(x∗, y∗), (x, y), ..., (x, y)

)
denotes the total profit of a single mutant firm

j if it expermints a (x∗, y∗) while the state of system is ω(x,y).

Πj

(
(x∗, y∗), (x, y), ..., (x, y)

)
=

n1

N

(
P (x∗+ (n1− 1)x+n2y)x∗− c(x∗)

)
+
n2

N

(
P (n1x+ y∗+ (n2− 1)y)y∗− γc(y∗)

)
And total profits of the other firms i 6= j are

Πi

(
(x∗, y∗), (x, y), ..., (x, y)

)
=

n1

N

(n1 − 1

N − 1

(
P (x∗+(n1−1)x+n2y)x−c(x)

)
+

n2

N − 1

(
P (n1x+y∗+(n2−1)y)y−c(x)

))

+
n2

N

( n1

N − 1

(
P (x∗+(n1−1)x+n2y)y−γc(y)

)
+
n2 − 1

N − 1

(
P (n1x+y∗+(n2−1)y)y−γc(y)

))
Let define

ψ = Πi

(
(x∗, y∗), (x, y), ..., (x, y)

)
− Πj

(
(x∗, y∗), (x, y), ..., (x, y)

)

A necessary and sufficient condition for (x∗, y∗) to be a most effective (single)

invader is that it is a solution of the following problem

(x∗, y∗) = arg max
x,y

ψ

Differentiating ψ with respect to x and y , we obtain the following first order

conditions

n1

N

(
n1 − 1

N − 1

(
(n1 − 1)xP ′(.) + P (.)− c′(x)

)
+

n2

N − 1

(
n1xP

′(.) + P (.)− c′(x)
))

+
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n2

N

( n1

N − 1

(
(n1−1)yP ′(.)

)
+
n2 − 1

N − 1

(
n1yP

′(.)
))
−n1

N

(
(n1−1)x∗P ′(.)

)
−n2

N

(
n1y

∗P ′(.)
)

= 0

n2

N

( n1

N − 1

(
n2yP

′(.) +P (.)− γc′(y)
)

+
n2 − 1

N − 1

(
(n2− 1)yP ′(.) +P (.)− γc′(y)

))
+

n1

N

(
n1 − 1

N − 1

(
n2xP

′(.)
)

+
n2

N − 1

(
(n2−1)xP ′(.)

))
−n1

N

(
n2x

∗P ′(.)
)
−n2

N

(
(n2−1)y∗P ′(.)

)
= 0

Symmetry imposes x = x∗ and y = y∗ which simplifies both above FOCs to

P (X∗ + Y ∗) + (
n2

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = c′(x∗) (2.20)

P (X∗ + Y ∗)− (
n1

N − 1
(x∗ − y∗))P ′(X∗ + Y ∗) = γc′(y∗) (2.21)

These are the same conditions as equation (2.10) and (2.11) in the previous section,

which characterize the FPESS output. It means that the maximization problem

of ϕ has the same solution as the maximization problem of ψ. Hence if an FPESS

exists it must also be (N − 1)-stable and we have shown that both conditions of

BRC and WLC are satisfied for state ω(x∗,y∗) and the proof is complete.

2.5 Concluding remarks

In this chapter, we reexamined the issue of evolutionary stability in asymmetric

Cournot oligopoly with a homogenous product. Tanaka (1999) has shown that a

celebrated result by Vega-Redondo (1997) for symmetric oligopoly, namely that the

long-run evolutionary outcome of such a market equals the competitive Walrasian

outcome (and not the Cournot-Nash outcome), can be extended to asymmetric

oligopoly. We took issue with this extension and provided an alternative analysis

of an asymmetric oligopoly game, which shows that the individual firm outputs

do not conform to Walrasian outputs, however the market total output and the

price converge to Walrasian equilibrium in expectation.
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We symmetrized the asymmetric evolutionary game in a particular way and then

applied Schaffer (1988) definition of FPESS as a solution concept to the sym-

metrized game. As a first result, marginal cost pricing becomes incompatible with

FPESS, both for the low cost firms as well as the high cost firms. Instead, a

form of weighted average cost pricing results in equilibrium, where the weights are

given by population shares of the high and low cost firms. We interpret this as

Walrasian in expectation for market outcomes. One reason for a non-Walrasian

individual firm outputs in our model is that we allow for simultaneous mutations

in the behavior of a low cost and a high cost firm, while the analysis in Tanaka

(1999) does not. Tanaka’s evolutionary analysis treats the total number of firms

effectively as two separate populations, each composed of identical firms, which

do not interact with each other evolutionarily. This comes close to performing

Vega-Redondo‘s symmetric analysis ”doubly” and makes survival of both types of

firms less surprising.

In contrast, in our model different firms do interact evolutionarily with each other

and –perhaps surprisingly– both types of firms can survive in the long run despite

their persistent differences in production cost. This, however, is not compatible

anymore with marginal cost pricing.



Chapter 3

Price and Non-Price Competition

in Evolutionary Oligopoly

30
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Do firms under relative payoffs maximizing (RPM) behavior always choose a strat-

egy profile that results in tougher competition compared to firms under absolute

payoffs maximizing (APM) behavior? In this chapter, we will address this issue

through a simple model of symmetric oligopoly where firms select a two dimen-

sional strategy set of price and a non-price variable known as quality simulta-

neously. In conclusion, our results show that equilibrium solutions of RPM and

APM are distinct. We further characterize the comparison between these two

equilibrium concepts. In fact, this comparison is influenced by the parameters of

the demand curve and the cost function. The conditions, derived in this chap-

ter, determine under which circumstances RPM induces more competition or less

competition w.r.t the price or non-price dimension.

3.1 Introduction

It is a well-known result by Schaffer (1988) and Schaffer (1989) that the concept

of finite population evolutionary stable strategy (FPESS) can be characterized

by relative payoff maximization and this solution concept is different from Nash

equilibrium or absolute payoff maximization. As Schaffer explained agents in

economic and social environment survive in the evolutionary process, if they can

perform better than their opponents and so players adhere to relative payoffs

maximizing (RPM) rather than absolute payoffs maximizing (APM) behavior.

The behavior implied by RPM or spiteful behavior(Hamilton (1970)) leads to

more competition between firms in a cournot oligopoly game and as Vega-Redondo

(1997) revealed Walrasian equilibrium turns out to be unique stochastically stable

state in the symmetric Cournot oligopoly.

Far ahead, the works by Tanaka (1999), Apesteguia et al. (2010) and Leininger and

M.Moghadam (2014) investigate the equivalence of evolutionary equilibrium and

Walrasian competitive equilibrium in an asymmetric Cournot oligopoly. While

Tanaka (1999) shows that an asymmetric cost structure does not change the long-

run outcome of Walrasian equilibrium in a homogenous oligopoly competition,
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Apesteguia et al. (2010) prove that Walrasian result of Vega-Redondo is sensitive

to a cost asymmetry. They consider a setup where one firm has a small (fixed) cost

advantage in comparison with other firms in the market. As a result of this cost‘s

asymmetry, other quantities apart from Walrasian quantity will be chosen in long

run outcomes of the game. In Tanaka’s evolutionary analysis, indeed firms are only

allowed to imitate each other from the same cost group. But as we have seen in

previous chapter, using an alternative analysis of the asymmetric oligopoly game,

a form of weighted average cost pricing so-called Walrasian in expectation rises

in equilibrium where individual firm quantities do not correspond to Walrasian

quantities.

In this chapter, we consider a symmetric oligopoly game where each firm has a

two dimensional strategy set of price and non-price. Using a non-price strategy

by firms in oligopoly competition is common since firms can be exceedingly com-

petitive in price strategy. Therefore firms may also decide to compete in another

dimension of non-price strategy to soften price competition. Hereafter we refer to

this non-price strategy as quality. Moreover firm’s cost function structure, con-

sidered in this model, follows from the literature in industrial organization. We

assume that quality improvement requires fixed costs, while variable costs do not

alter with quality1, let’s say a situation that firms invest in research and develop-

ment activities to improve quality. (See e.g. Shaked and Sutton (1987), Banker

et al. (1998) , Berry and Waldfogel (2010) , and Brécard (2010)). In the present

chapter, we contribute to the literature of evolutionary game approach to oligopoly

theory by showing the role of cross-elasticities of demand in determining the evo-

lutionary equilibrium. Particularly, our analysis verifies that the market power is

determined in Nash equilibrium by own elasticities of demand. Alternatively, in

FPESS equilibrium, the market power is determined by not only the own elas-

ticities of demand but also the cross-elasticities of demand. As a result, in the

case of complement goods, firms under evolutionary equilibrium have more mar-

ket power and behave less competitively. On the contrary, in the case of substitute

goods, firms under evolutionary equilibrium have less market power and behave

1We obtain a similar result for a model of variable cost of quality improvement (See the
working paper version M. Moghadam (2015a).
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more competitively. The same interpretation applies for the quality improvement

intensity, i.e., the ratio of quality cost over revenue. Nash equilibrium analysis

demonstrates that if demand is somewhat more sensitive to changes in own qual-

ity compared to changes in own price, then quality improvement spending (or

R&D expenditure) is a large percentage of revenue. Whereas in evolutionary equi-

librium firm’s quality improvement intensity is determined by both own elasticities

of demand and cross elasticities of demand.

Related papers to this issue are Tanaka (2000), Hehenkamp and Wambach (2010),

and Khan and Peeters (2015). Tanaka (2000) studies evolutionary game theoret-

ical models for price-setting and for quantity-setting differentiated oligopoly with

a linear demand function. Hehenkamp and Wambach (2010) investigate an evo-

lutionary model of horizontal product differentiation in duopoly setup and show

that minimum differentiation along all product characteristics, i.e., reposition to

the center of product space, establishes the unique evolutionary equilibrium. Khan

and Peeters (2015) show that Nash equilibrium outcomes, in a Salop circle model

with firms choosing simultaneously price and quantity, coincide with outcomes in

the stochastically stable state. The reason to obtain this result is allowing for a

capacity constraint in their model that justify the NE (price above marginal cost)

as the long run outcome of the evolutionary game.

The plan of this chapter is as follows: in the next section we explain the model and

its assumptions. Section 3.3 analyzes the existence of FPESS and Nash equilibria

and their distinctions in the model of quality improvement with fixed cost and

further examines the link between these equilibrium concepts. Then section 3.5

concludes.
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3.2 The model

In this section, we describe our oligopoly setup and further define two different

types of equilibrium concepts, that is to say, standard Nash equilibrium and evo-

lutionary equilibrium.

3.2.1 Nash equilibrium

We assume an industry of i = 1, ..., n firms, each offering quantity amount xi of

a product that may vary in its quality qi and its price pi. It is also assumed that

non-price variable or quality is a measurable attribute with values in the interval

[0,∞). The quality level has a lower bound that is known as zero quality or

minimum technologically feasible quality level.

Following Dixit (1979), demand functions for goods can be written as follow

xi = Di(p,q), i = 1, ..., n (3.1)

where p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn).

An increase in any pj and qj raises or lowers each xi dependent on whether product

pair (i, j) are complements or substitutes. Moreover we assume that the demand

function Di for each firm i is affected more by changes in its own price and quality

than those of its competitors (see Tirole (1988)).

Assumption 3.1. Di(p, q) are continuous, twice differentiable and concave func-

tions, and satisfy the following relations:

∂Di

∂pi
< 0, and |∂Di

∂pi
| > |∂Dj

∂pi
| ∀i = 1, ..., n, j 6= i.

∂Di

∂qi
> 0, and ∂Di

∂qi
> |∂Dj

∂qi
| ∀i = 1, ..., n, j 6= i.


∂Dj

∂pi
< 0,

∂Dj

∂qi
> 0 if (i, j)are complements goods

∂Dj

∂pi
> 0,

∂Dj

∂qi
< 0 if (i, j)are substitutes goods
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Concerning the cost function, on the one hand in the economic literature, Shaked

and Sutton (1987) highlight that quality improvement requires increase in fixed

costs or variable costs. More recently, also Berry and Waldfogel (2010) study

product quality and market size. They consider two different types of industries

including industries producing quality mostly with variable costs (like restaurant

industry) and industries that produce quality mostly with fixed costs (like daily

newspapers). Further, Brécard (2010) investigates also the effects of the intro-

duction of a unit production cost in vertical model with fixed cost of quality

improvement. On the other hand, in management literature, for instance Banker

et al. (1998) assume that total cost function of firm i is affected by quality choice

in both fixed cost and variable cost. Further they assert that it is a frequent

phenomenon that variable production costs decline when quality is improved; e.g.,

when a higher quality (higher precision) product produced by robot have less needs

of direct labor hours. In general, here we assume that the quality level selected by

firm influences its cost through only fixed cost f(.).2

Therefore, firm i faces a cost function Ci(xi, qi) = fi(qi) + ci(xi). f(.) and c(.)

are increasing and convex functions with respect to each of their arguments and

all fixed costs that are not related to the quality, without loss of generality, are

normalized to zero.

The firm i’s profit function is then defined by

πi(p,q) = piDi(p,q)− Ci(Di(p,q), qi) i = 1, 2, ..., n (3.2)

The strategic variables are price and quality. Since the interaction between price

and quality strategies of the firms only occur through the common demand func-

tion, price vector p = (p1, p2, ..., pn) and quality vector q = (q1, q2, ..., qn) can be

written from the point of view of firm i, respectively as (pi,p−i) and (qi,q−i)

2The analysis here leads to the same results when the cost of quality improvement requires
only an increase in variable cost (see the discussion paper version M. Moghadam (2015a).
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Let the number of firms n be fixed. Consider a simultaneous move game where each

firm chooses a pair of quality and price (pi, qi). We assume that all firms produce

a strictly positive quantity in equilibrium. So we have the following definition of

standard Nash equilibrium.

Definition 3.2. A Nash equilibrium in an oligopoly competition is given by a

price vector pN and quality vector qN such that each firm maximizes its profit;

i.e.

(pNi , q
N
i ) = arg max

pi,qi

πi(pi, qi,p
N
−i,q

N
−i) ∀i = 1, ..., n (3.3)

3.2.2 Evolutionary stability

In symmetric infinite population games, it is widely verified that the concept of

evolutionary stable strategy is a refinement of Nash equilibrium. However, in

finite population framework, the behavior implied by evolutionary stability may

have distinctive features from Nash strategic behavior. The reason for this is as

follows: when one player mutates from ante-adopted strategy to a new strategy in

a population with small number of players, both incumbent and mutant players

do not encounter a same population profile. In fact, mutant player confronts with

a homogenous profile of n − 1 incumbent players and incumbent players face a

profile of one single mutant and n− 2 other incumbent players.

Recall that firm’s strategy choices are two dimensional including price and quality

levels. Then consider a state of the system where all firms’ strategy sets are the

same and suppose that one firm experiments with a new different strategy. We

say that a state is evolutionary stable, if no mutant firm which chooses a different

strategy can realize higher profits than the firms which employ the incumbent

strategy. In other words, no mutant strategy can invade a population of incumbent

strategists successfully.

Formally, consider a state where all firms choose the same strategies (p∗, q∗). This

state (p∗, q∗) is a finite population evolutionarily stable strategy (FPESS) when

one mutant firm (an experimenter) chooses a different strategy (pm, qm) 6= (p∗, q∗)
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its profit must be smaller than the profits of incumbent firms (the rest of firms).

Formally speaking, we have the following definition by assuming firm i as mutant

firm:

Definition 3.3. (p∗, q∗) is FPESS if πi(p,q) < πj(p,q)∀j 6= i and all (pm, qm) 6=

(p∗, q∗), i = 1, ..., n. Where p = [p∗, ..., p∗, pi = pm, p∗, ..., p∗] and q = [q∗, ..., q∗, qi =

qm, q∗, ..., q∗].3

3.2.3 Evolutionary stable strategies and relative payoffs

Classically, firms are assumed to be entities aiming at maximizing their payoffs.

However except this standard behavior of absolute payoff maximizing, firms may

engage in a competitive behavior of relative payoff maximizing. A firm may pursue

a different behavior being ahead of its opponents making higher payoff than the

others. According to Schaffer (1989), in a so-called playing the field game, we can

also find a FPESS through solving a relative payoff function of firm i.

Definition 3.4. In a symmetric oligopoly, FPESS is obtained as the solution of

following relative payoff optimization problem

(p∗, q∗) = arg max
pm,qm

ϕi = πi(p,q)− πj(p,q) (3.4)

Interpretation of this definition is as follows: the equilibrium condition of finite

population evolutionary stable strategy in definition 3.3 is equivalent to saying

when (pm, qm) = (p∗, q∗), then πi(p,q) − πj(p,q) as a function of (pm, qm) ap-

proaches its maximum value of zero. In fact, FPESS concept can be characterized

by relative payoff maximization and this solution concept is different from Nash

equilibrium or absolute payoff maximization. However, note that also this means

a FPESS is a Nash equilibrium for relative payoffs maximizing (RPM) firms.

3Clearly this definition includes any one-dimensional deviation (like (pm, q∗) and (p∗, qm)) by
mutant.
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3.3 Analysis

In addition to the strategic variable price p, firms often bring into play non-price

strategic variables with the intention of softening the market competition. Firms

may decide on for instance, how much to spend on quality improvement of their

product or how much to invest on R&D to enhance new features to the basic

product. Particularly, we will focus on the quality decision of the firm. In this

section we are interested in analyzing the outcomes of Nash equilibrium and evo-

lutionary equilibrium of this game and then we provide a comparison between the

two equilibrium concepts and discuss the results.

Proposition 3.5. Consider a symmetric oligopoly game where each firm has a

two dimensional strategy set of price and quality. If the following two conditions
∂Di
∂qi
∂Di
∂pi

6=
∂Dj
∂qi
∂Dj
∂pi

and −2∂Di

∂pi

∂2fi
∂q2i

> (∂Di

∂qi
)2 hold, then FPESS equilibrium and symmetric

Nash equilibrium both exist and are different.

Proof. To prove so, we begin with analyzing through the lens of classical approach,

i.e., maximization of absolute payoffs.

Using Definition 3.2 and profit function of firm i as specified in the previous section,

that is

πi(p,q) = piDi(p,q)− fi(qi)− ci(Di(p,q)) i = 1, 2, ..., n

We derive the first order conditions for the Nash equilibrium with respect to pi

and qi as follows:
∂πi
∂pi

= Di +
∂Di

∂pi
pi −

∂ci
∂Di

∂Di

∂pi
= 0 (3.5)

∂πi
∂qi

=
∂Di

∂qi
pi −

∂fi
∂qi
− ∂ci
∂Di

∂Di

∂qi
= 0 (3.6)

Equation (3.5) is the familiar equality between marginal revenue and marginal

cost. Besides equation (3.6) states that the marginal revenue related with one unit

increase in quality level is equal to the marginal cost of producing this quality.
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We get the following equality by combining both equations (3.5) and (3.6)

−
∂Di

∂qi
∂Di

∂pi

=
∂fi
∂qi

/Di (3.7)

Furthermore, for FPESS, by substitution of profit function in the optimization

problem of definition 3.4, we obtain

ϕi = Di(p,q)pi − ci(Di(p,q))− fi(qi)−Dj(p,q)pj + cj(Dj(p,q)) + fj(qj)

Given that pi = pm and qi = qm, and ∀j 6= ipj = p∗ and qj = q∗.

Then the first order conditions for maximization of ϕ with respect to pi and qi are

as follows:

∂ϕi
∂pi

= Di +
∂Di

∂pi
pi −

∂ci
∂Di

∂Di

∂pi
− ∂Dj

∂pi
pj +

∂cj
∂Dj

∂Dj

∂pi
= 0

∂ϕi
∂qi

=
∂Di

∂qi
pi −

∂fi
∂qi
− ∂ci
∂Di

∂Di

∂qi
− ∂Dj

∂qi
pj +

∂cj
∂Dj

∂Dj

∂qi
= 0

In symmetric situations, by imposing pi = pj, qi = qj and ∂ci
∂Di

=
∂cj
∂Dj

, FOC’s can

be rewritten as

Di + (pi −
∂ci
∂Di

)(
∂Di

∂pi
− ∂Dj

∂pi
) = 0 (3.8)

(pi −
∂ci
∂Di

)(
∂Di

∂qi
− ∂Dj

∂qi
) =

∂fi
∂qi

(3.9)

Then combining these two equations we obtain the following equality for FPESS

−
∂Di

∂qi
− ∂Dj

∂qi

∂Di

∂pi
− ∂Dj

∂pi

=
∂fi
∂qi

/Di (3.10)

By comparing with the solution from Nash equilibrium, i.e., equation (3.7), on

condition that
∂Di
∂qi
∂Di
∂pi

6=
∂Dj
∂qi
∂Dj
∂pi

, the solutions for Nash and FPESS equilibrium will be

different.
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Afterward, to ensure the existence of a unique equilibrium as well, it is required

to check that second order conditions have negative definite Hessian matrix. So

first we look at the solvability condition for the Nash equilibrium. Particularly,

consider the following Hessian matrix

Hi =

 2∂Di

∂pi
+ ∂2Di

∂p2i
(pi − ∂ci

∂Di
)− ∂2ci

∂D2
i
(∂Di

∂pi
)2 ∂Di

∂qi
+ ∂2Di

∂pi∂qi
(pi − ∂ci

∂Di
)− ∂2ci

∂D2
i
(∂Di

∂pi

∂Di

∂qi
)

∂Di

∂qi
+ ∂2Di

∂pi∂qi
(pi − ∂ci

∂Di
)− ∂2ci

∂D2
i
(∂Di

∂pi

∂Di

∂qi
) −∂2fi

∂q2i
+ ∂2Di

∂q2i
(pi − ∂ci

∂Di
)− ∂2ci

∂D2
i
(∂Di

∂qi
)2


It can be rewritten as follow

Hi =

2∂Di

∂pi

∂Di

∂qi

∂Di

∂qi
−∂2fi

∂q2i

+ (pi −
∂ci
∂Di

)

 ∂2Di

∂p2i

∂2Di

∂pi∂qi

∂2Di

∂pi∂qi

∂2Di

∂q2i

− ∂2ci
∂D2

i

 (∂Di

∂pi
)2 ∂Di

∂pi

∂Di

∂qi

∂Di

∂pi

∂Di

∂qi
(∂Di

∂qi
)2


Since Di(.) is concave and (pi − ∂ci

∂Di
) > 0 then it is required only that the first

matrix be negative definite. That means we obtain the following condition

− 2
∂Di

∂pi

∂2fi
∂q2

i

> (
∂Di

∂qi
)2 (3.11)

The above condition guarantee that |Hi| < 0 and solvability condition is satisfied.

Furthermore, to ensure the existence of a unique evolutionary equilibrium as well,

it is required to check that second order conditions have negative definite Hessian

matrix.

Hi =

a11 a12

a21 a22


Where

a11 = 2
∂Di

∂pi
+
∂2Di

∂p2
i

(pi −
∂ci
∂Di

)− ∂2Dj

∂p2
i

(pj −
∂cj
∂Dj

)− ∂2ci
∂D2

i

(
∂Di

∂pi
)2 +

∂2cj
∂D2

j

(
∂Dj

∂pi
)2

a12 = a21 =
∂Di

∂qi
+
∂2Di

∂pi∂qi
(pi−

∂ci
∂Di

)− ∂2Dj

∂pi∂qi
(pj−

∂cj
∂Dj

)− ∂
2ci

∂D2
i

(
∂Di

∂pi

∂Di

∂qi
)+
∂2cj
∂D2

j

(
∂Dj

∂pi

∂Dj

∂qi
)

a22 = −∂
2fi
∂q2

i

+
∂2Di

∂q2
i

(pi −
∂ci
∂Di

)− ∂2Dj

∂q2
i

(pj −
∂cj
∂Dj

)− ∂2ci
∂D2

i

(
∂Di

∂qi
)2 +

∂2cj
∂D2

j

(
∂Dj

∂qi
)2
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This matrix is the summation of following matrixes

Hi =

2∂Di

∂pi

∂Di

∂qi

∂Di

∂qi
−∂2fi

∂q2i

+(pi−
∂ci
∂Di

)

 ∂2Di

∂p2i

∂2Di

∂pi∂qi

∂2Di

∂pi∂qi

∂2Di

∂q2i

− (pj−
∂cj
∂Dj

)

 ∂2Dj

∂p2i

∂2Dj

∂pi∂qi

∂2Dj

∂pi∂qi

∂2Dj

∂q2i



− ∂
2ci

∂D2
i

 (∂Di

∂pi
)2 ∂Di

∂pi

∂Di

∂qi

∂Di

∂pi

∂Di

∂qi
(∂Di

∂qi
)2

+
∂2cj
∂D2

j

 (
∂Dj

∂pi
)2 ∂Dj

∂pi

∂Dj

∂qi

∂Dj

∂pi

∂Dj

∂qi
(
∂Dj

∂qi
)2


Since demand system by assumption 3.1 is concave, it is sufficient that the first

matrix be negative definite and we have also ∂Di

∂pi
< 0. Therefore solvability condi-

tion for FPESS is identical to condition (3.11) derived in Nash equilibrium, that

is −2∂Di

∂pi

∂2fi
∂q2i

> (∂Di

∂qi
)2.

Note that, as we explained in section 3.2.3, the solutions for Nash and FPESS

equilibrium can be considered as Nash equilibria of two different games. If we look

at equations 3.5 and 3.6 and compare them with equations 3.8 and 3.9, then we

immediately see that the role of the demand functionDi in 3.5 and 3.6 (the absolute

Nash problem) is now taken by relative demand Di−Dj in 3.8 and 3.9 (a relative

Nash problem). The two FOC have identical structure because both are FOCs of

Nash problems; the first one (with Di) stemming from absolute maximizers, the

second (with Di −Dj) stemming from relative maximizers. Since the concept of

evolutionary stability is based on relative performance, the comparison between

Nash equilibrium and FPESS crucially depends on the nature of goods; whether

they are substitutes or complements. Hence we extend our analysis to investigate

this issue.



Evolutionary Models of Market Structure 42

To begin with, rephrasing both FOCs of equations (3.5) and (3.6) for the Nash

equilibrium, we obtain

pi − ∂ci
∂Di

pi
= − Di

pi
∂Di

∂pi

=
1

εDi,pi

(3.12)

pi − ∂ci
∂Di

pi
=

∂fi
∂qi

pi
∂Di

∂qi

=
Di

qi
∂Di

∂qi

∂fi
∂qi
qi

fi

fi
piDi

=
εfi,qi
εDi,qi

fi
piDi

(3.13)

Where εDi,pi = −∂Di

∂pi

pi
Di

and εDi,qi = ∂Di

∂qi

qi
Di

are the own price elasticity of demand

and the own quality elasticity of demand respectively. And εfi,qi = ∂fi
∂qi

qi
fi

denotes

elasticity of fixed cost with respect to the quality.

Moreover, first order conditions of FPESS equilibrium i.e. equations (3.8) and

(3.9), after some algebraic manipulation, can be rephrased as

pi − ∂ci
∂Di

pi
=

1

(−∂Di

∂pi

pi
Di

+
∂Dj

∂pi

pi
Dj

Dj

Di
)

=
1

(εDi,pi −
Dj

Di
εDj ,pi)

(3.14)

pi − ∂ci
∂Di

pi
=

1

(∂Di

∂qi

qi
Di
− ∂Dj

∂qi

qi
Dj

Dj

Di
)

∂fi
∂qi
qi

fi

fi
piDi

=
εfi,qi

(εDi,qi −
Dj

Di
εDj ,qi)

fi
piDi

(3.15)

Where εDj ,pi = −∂Dj

∂pi

pi
Dj

and εDj ,qi =
∂Dj

∂qi

qi
Dj

are the cross price elasticity of demand

and the cross quality elasticity of demand respectively.

Market power can be measured as the ability to raise the prices higher than the

perfectly competitive level. As we know the market power can be assessed by

the Lerner index, i.e., L =
pi−

∂ci
∂Di

pi
. Therefore, our analysis demonstrate that the

market power is determined in Nash equilibrium by own elasticities of demand

whereas, in FPESS equilibrium, the market power is determined by not only the

own elasticities of demand but also the cross-elasticities of demand.
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On the one hand, consider the case of complement goods, i.e., (
∂Dj

∂pi
< 0 or εDj ,pi =

−∂Dj

∂pi

pi
Dj

< 0) and (
∂Dj

∂qi
> 0 or εDj ,qi =

∂Dj

∂qi

qi
Dj

> 0). In this case, Lerner index

exceeds the inverse of the own demand elasticities. So firms under RPM choose

a strategy set that leads them to having more market power and behave less

competitively compared to the Nash equilibrium.

On the other hand, consider the case of substitute goods, i.e., (
∂Dj

∂pi
> 0 or εDj ,pi =

−∂Dj

∂pi

pi
Dj

> 0) and (
∂Dj

∂qi
< 0 or εDj ,qi =

∂Dj

∂qi

qi
Dj

< 0). In this case, Lerner index

falls below of the inverse of the own demand elasticities. Thus, compared to

Nash equilibrium, firms under RPM gain less market power and behave more

competitively.

Moreover, combining two equations (3.12) and (3.13) for Nash equilibrium, we get

the following interesting equality

fi
piDi

=
εDi,qi

εDi,pi

1

εfi,qi
(3.16)

The ratio of quality cost fi over revenue Ri = piDi is termed as quality im-

provement intensity that determines how much firm is willing to invest on quality

improvement plans. In Nash equilibrium, equality (3.16) states that quality im-

provement intensity is equal to the ratio of the quality elasticity of demand over

the price elasticity of demand multiplied by the inverse of quality elasticity of

fixed cost. Our theoretical model suggests that if we want to measure the quality

improvement intensity, it will require estimating the demand and cost functions.

Therefore, if demand is somewhat more sensitive to changes in quality compared

to changes in price, then quality improvement spending (or R&D expenditure)

is a large percentage of revenue. Furthermore, quality improvement intensity is

affected by the inverse of quality elasticity of fixed cost.

However, merging two equations (3.14) and (3.15) in the case of evolutionary

equilibrium, we obtain a different equality for quality improvement intensity, that

is
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fi
piDi

=
(εDi,qi −

Dj

Di
εDj ,qi)

(εDi,pi −
Dj

Di
εDj ,pi)

1

εfi,qi
(3.17)

This is summarized in the following proposition

Proposition 3.6. In Nash equilibrium, firm’s quality improvement intensity is

determined by own elasticities of demand using the equality (3.16), i.e., fi
piDi

=
εDi,qi

εDi,pi

1
εfi,qi

, whereas in evolutionary equilibrium firm’s quality improvement in-

tensity is determined by both own elasticities of demand and cross elasticities of

demand using the equality (3.17), i.e., fi
piDi

=
(εDi,qi

−
Dj
Di
εDj,qi

)

(εDi,pi
−

Dj
Di
εDj,pi

)

1
εfi,qi

.

In order to understand better, how these two equilibrium concepts are different, we

need to make two assumptions about the structure of demand and cost functions.

Firstly, we assume that fixed cost fi(qi) = (f + ψq2
i ) is increasing and convex in

quality level qi since improving product’s quality level require an initial investment

by firms. Without loss of generality, we normalize f to zero. So with a standard

linear variable cost, the cost function for firm i is assumed like the following form

Ci(xi, qi) = ψq2
i + νxi (3.18)

Second, let’s assume also demand function has a linear form as follows:

xi = a− pi + qi + β
n∑

j=1,j 6=i

pj − γ
n∑

j=1,j 6=i

qj (3.19)

Where |β| < 1, |γ| < 1 and β, γ 6= 0.

The restrictions on β and γ are implied by assumption 3.1 in which we assume

that the demand function for firm i is affected more by changes in its own price

and quality than those of its competitors. Furthermore, we assume a typical

assumption a > ν to ensure that quality level is non-negative in equilibrium.

In the following propositions, we characterize the comparison between two equi-

librium concepts.
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Proposition 3.7. Suppose that cost function and linear demand function are like

equations (3.18) and (3.19). Supposing besides that the following 3 assumptions

A1, A2, and A3 hold

A1: a ≥ (1− (n− 1)β)ν

A2: (4ψ − 1) + (n− 1)(γ − 2ψβ) > 0

A3: ( 4ψ
1+γ
− 1 + γ) + (n− 2)(γ − 2ψβ

1+γ
) > 0

then FPESS equilibrium leads to higher quality compared to the Nash equilibrium

quality i.e.

q∗ > qN if and only if γ > γ̄ = β
2+β−nβ

Proof. See appendix A.

Proposition 3.8. Suppose that cost function and linear demand function are like

equations (3.18) and (3.19). Supposing besides that the following 3 assumptions

A1, A2, and A3 hold

A1: a ≥ (1− (n− 1)β)ν

A2: (4ψ − 1) + (n− 1)(γ − 2ψβ) > 0

A3: ( 4ψ
1+γ
− 1 + γ) + (n− 2)(γ − 2ψβ

1+γ
) > 0

then FPESS equilibrium leads to lower price compared to the Nash equilibrium i.e.

p∗ < pN if and only if β > β̄ = (1+γ−nγ)γ
2ψ

Proof. See appendix A.

Assumptions A1, A2, and A3 will guarantee that we have positive quality in

equilibrium. The interpretation of Propositions 3.7 and 3.8 is as follows: RPM

firm engages in more price (quality) competition if the price (quality) effect of

other competitors on the demand of good i, i.e., β(γ) is greater than the threshold

β̄(γ̄). The conditions, derived in these two propositions, determine under which

circumstances FPESS equilibrium induce more competition or less competition

w.r.t the price or non-price dimension. Note that thresholds β̄(γ̄) are decreasing

function of n (∂β̄
∂n

= − γ2

2ψ
< 0 and ∂γ̄

∂n
= − β2

(2+β−nβ)2
< 0). This means that the
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higher number of firm in market the lower are these thresholds. Therefore, in case

of β and γ > 0, the conditions on β and γ will disappear for n big enough and

FPESS equilibrium for all ranges of β and γ leads to more competition in both

dimensions of price and quality compared to Nash equilibrium.

Therefore, the comparison between two equilibrium concepts is influenced by the

parameters of demand curve and cost function. To see in more detail dissimilarities

concerning both strategic behavior and evolutionary behavior, we further study

the following numerical example. This numerical example helps us to recognize

better how variations in β, γ and market size n can influence the comparison

between FPESS and Nash equilibrium. Note that if the price effect of good j on

the demand of good i (β) or the quality effect of good j on the demand of good

i (γ) are both positive, the goods of the firms are substitutes and if β and γ are

negative, each two goods are complements.

Example 3.1. This numerical example is performed with fixed scenario ψ = 1/2

but varying β, γ and n. Feasible ranges in case of substitute goods are 0.01 < β <

1, 0.01 < γ < 1 and in case of complements goods are −1 < β < −0.01,−1 <

γ < −0.01 and 1 < n < 20. We plot the regions that satisfy the conditions of

propositions 3.7 and 3.8 simultaneously in order to see what sort of parameters

comply with the following circumstances:

a) p∗ > pN and q∗ > qN

b) p∗ < pN and q∗ < qN

c) p∗ > pN and q∗ < qN

d) p∗ < pN and q∗ > qN

3D plots in the figures 3.1 and 3.2 illustrate all above circumstances (a - d) for

substitute goods and complements goods respectively. We obtain the following

results.

Result 3.9. If goods of firms are substitutes, FPESS equilibrium cannot lead to

less price competition and less quality competition compared to Nash equilibrium.
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(a) p∗ > pN and q∗ > qN
(b) p∗ < pN and q∗ < qN

(c) p∗ > pN and q∗ < qN
(d) p∗ < pN and q∗ > qN

Figure 3.1: In Case of Substitute Goods

(a) p∗ > pN and q∗ > qN
(b) p∗ < pN and q∗ < qN

(c) p∗ > pN and q∗ < qN (d) p∗ < pN and q∗ > qN

Figure 3.2: In Case of Complement Goods



Evolutionary Models of Market Structure 48

Result 3.10. If goods of firms are complements, FPESS equilibrium cannot lead

to more price competition and more quality competition compared to Nash equilib-

rium.

Results 3.9 and 3.10 are demonstrated by figures 3.1-(C) and 3.2-(D) respectively.

Since FPESS is a Nash equilibrium for relative payoff maximizing (RPM) firms,

therefore one interpretation of these results is that, if goods are substitutes, less

price competition (higher price) and less quality competition (lower quality) are

not feasible for a firm under RPM behavior. However if goods are complements,

more price competition and more quality competition are not feasible for a firm

under RPM behavior.

Note that, in our model with the existence of non-price strategy, when goods are

substitutes (β, γ > 0) a RPM firm may choose less price competition i.e. p∗ > pN

(see Figure 3.1-(A); in fact it uses a non-price strategy to soften price competition).

And when goods are complements (β, γ < 0), a RPM firm may possibly decide on

more price competition i.e. p∗ < pN (see Figure 3.2-(B)).

Our evolutionary analysis can be directly applied to a different setup like an

oligopoly-technology model of price competition with technology choice rather

than quality choice, (e.g. see Vives (2008) and Acemoglu and Jensen (2013)). In

this type of games, firms decide about technology choice besides setting output or

price. In fact, firm i incurs a similar cost of Ci(xi, ai) = fi(ai)+ci(ai, xi) by choos-

ing technology ai together with the quantity xi but the demand is not affected by

the technology choice ai.

Notice that here it is not required to study the dynamic concept of evolutionary

stability. Alos-Ferrer and Ania (2005), based on a result of Ellison (2000), show

that in a symmetric N-player game with finite strategy set, a strictly globally stable

ESS is the unique stochastic stable state of the imitation dynamics with experi-

mentation. Further, Leininger (2006) shows that any ESS of a quasi-submodular

generalized aggregative game is strictly globally stable. Since the oligopoly game

under analysis is an aggregative game and by assuming that our payoff function
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satisfies quasi-submodularity property then a static solution of FPESS would be

sufficient in this context.

3.4 Conclusion

In the present chapter, we have applied a concept of finite population evolution-

arily stable strategy (FPESS) by Schaffer (1989), in which agents in economic

and social environment adhere to relative payoff maximizing rather than absolute

payoff maximizing behavior, in an oligopoly framework. A simple model of firm

competition with simultaneous price and quality choices has been analyzed with

the aim of comparing FPESS and Nash equilibria in oligopoly market. In general,

the notion of FPESS and Nash equilibrium are not identical. Ania (2008) and

Hehenkamp et al. (2010) study this relationship in different classes of games and

particularly in the framework of Bertrand oligopoly with homogenous product.

The ratio of quality cost over revenue, so called as quality improvement intensity,

determines how much firm is willing to invest on quality improvement plans. Our

Nash equilibrium analysis shows that quality improvement intensity is affected by

the ratio of the own quality elasticity of demand over the own price elasticity of

demand. However, evolutionary equilibrium analysis is evidence for using both

own elasticities of demand and cross elasticities of demand in order to determine

firm’s quality improvement intensity. Moreover, a similar result has been obtained

for market power (measured here by Lerner index) in which Nash analysis proves

that the market power is only determined by own price elasticity of demand.

While, instead in evolutionary equilibrium, the market power is determined by

not only the own price elasticity of demand but also the cross price elasticity of

demand. Thus, in the case of complement goods, the firms market power is higher

under evolutionary equilibrium. Quite the reverse, in the case of substitute goods,

firms under evolutionary equilibrium have less market power and behave more

competitively compared to the Nash equilibrium.
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Based on the results of chapter 2, this chapter presents a Walrasian equilibrium

in expectation for an evolutionary model in the asymmetric oligopoly setup where

firms have different cost functions to produce a homogenous good. Then, using re-

vealed preference approach introduced by Carvajal, Deb, Fenske, and Quah (2013,

Econometrica 2013), I derive the testable conditions of the evolutionary oligopoly

model. Therefore, without making any parametric assumption regarding to the

demand curve and the cost function, this approach characterizes a set of conditions

(restrictions) on observational dataset to be consistent with the non-competitive

evolutionary equilibrium. An empirical application to crude oil market with main

producers is presented and I compare the rejection rates of both Cournot and

evolutionary hypotheses.

4.1 Introduction

Revealed preference analysis is a practical and widely used instrument to test

empirically the consistency of a theoretical model of consumer behavior with an

observational dataset. This method has also been applied to analyze the firm

behavior. For example, Afriat (1972), Hanoch and Rothschild (1972) and Varian

(1984) characterize a data consistency test for production analysis of profit maxi-

mization and cost minimization models. Most recently Carvajal et al. (2013, 2014)

and Cherchye et al. (2013) derive testable conditions in the Cournot oligopoly

model of firm competition. Both papers by Carvajal et al. (2013, 2014) apply a

revealed preference approach in a single-product and multi-product oligopoly while

Cherchye et al. (2013) proposes a differential approach where the equilibrium price

and quantities are functions of exogenous demand and supply shifters.

On the other hand, evolutionary oligopoly theory arises from the seminal papers

of Schaffer (1988, 1989). Mainly these two papers, in contrast to Friedman’s

1953 conjecture, argue that firm survival condition does not follow absolute payoff

maximizing (APM) behavior rather it tracks a relative payoff maximizing (RPM)
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behavior. In particular, Schaffer (1989) verifies that firm survival is better demon-

strated through an evolutionary model with relative payoff maximization rather

than absolute payoff maximization. The appropriate evolutionary setup for firm

competition is playing the field where all finitely many players in oligopoly game

compete with each other instantaneously. So the behavior implied by RPM or

spiteful behavior (Hamilton (1970)) leads to more competition between firms in

a quantity oligopoly game. Furthermore, Vega-Redondo (1997) shows that the

Walrasian equilibrium turns out to be the unique stochastically stable state in the

symmetric Cournot oligopoly. However, in the present paper we show that evolu-

tionary stability leads to a non-Walrasian outcome in an asymmetric oligopoly.

The standard evolutionary game theory applies for identical players (with respect

to their cost type) in a symmetric setup. Here, first we construct an evolutionary

model in the asymmetric oligopoly where firms have different cost functions. An

equilibrium concept of finite population evolutionary stable strategy (FPESS), de-

fined by Schaffer (1988), is applied. Defining a concept of evolutionary stability

requires a symmetric setup with identical players. So we apply a symmetrization

technique in order to transform the game with asymmetric firms into a symmetric

oligopoly game and then extend Schaffer’s definition of a FPESS to this setup. As

a result, we identify a non-Walrasian solution concept for evolutionary stability in

the asymmetric oligopoly.

Thereafter we study the consistency of evolutionary oligopoly model with an ob-

servational dataset. In particular, we attempt to answer the following questions.

Whether a given set of observations is consistent with the evolutionary oligopoly

model or not? Without making any parametric assumption on demand function,

how can we recuperate the marginal costs from an observed behavior? In prin-

cipal, inverse demand function and cost functions are not observable however we

are able to observe equilibrium price and equilibrium quantities of all firms in the

market. Suppose that we are given with an observed dataset on the behavior of an

industry consisting of K firms producing a homogenous good. Consider a set of

observations {p∗t , (q∗k,t)k∈K}t∈T where p∗t is an observed price of homogenous market

good for each t ∈ T = {1, ..., T} and q∗k,t is observed output quantity of each firm
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k ∈ K = {1, ..., K}. For each time t, total output of industry Q∗t =
∑K

k=1 q
∗
k,t is

observed. Following Carvajal et al. (2013), we will derive conditions on this set

of observations to be consistent with the evolutionary oligopoly model. In general

these testable conditions take the form of a linear programing (LP) problem.

Motivating Example. Consider a homogenous good market with two firms 1

and 2. Assume that we observe the produced quantities of each firm and the

market price of good in the two sequential periods as follows:

At observation t, p∗t = 100, q∗1,t = 6, and q∗2,t = 30.

At observation t′, p∗t′ = 50, q∗1,t′ = 9, and q∗2,t′ = 30.

This example mimics the recent falling trend of crude oil price in which OPEC

(here firm 2) as the main producer in the oil market did not alter its production

level in response to US oil production increase (here firm 1). Annual average of US

crude oil production due to the new extraction techniques of Shale oil raised from

5,65 million barrels per day in 2011 to 8,68 million barrels per day in 2014 despite

the fact that annual average of OPEC oil production was round 32 million barrels

per day without an intense variation during this period. In this example, firm 1

competes spitefully to increase its production levels and this leads to an abrupt fall

of the market good price at time t′. With an easy calculation, we observe that there

is a 25% decrease in US oil revenue (p∗t q
∗
k,t) (from 600 to 450) while at the same time

OPEC oil revenue was decreased by 50% (from 3000 to 1500). Why did OPEC not

reduce its output in response to the introduction of the US Shale oil technology?

As Schaffer (1989) explains if firms have market power, profit maximizers are not

necessarily the best survivors because of the possibility of spiteful behavior. This

spiteful behavior, where one player harms itself in order to harm another more,

cannot be explained by Cournot competition. Is the evolutionary behavior the

answer? And how we can test for this behavior?
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This chapter is organized as follows. The next section presents the evolutionary

oligopoly model. Then, section 4.3 discusses the data consistency test of evolu-

tionary oligopoly model. Section 4.4 examines a case study in the crude oil market

and concluding remarks are offered in section 4.5.

4.2 The evolutionary oligopoly model

Consider K firms where all firms engage simultaneously to play an oligopoly stage

game in each period t. Number of firms is constant for all t. The strategies for

firms are their output quantities. Here we consider a static setup in which a player

has the same strategy for all periods t. In evolutionary game theory, we assume

that all players inherited their strategies and they cannot change their strategies.

Though, analogous to biology, there is a chance for mutation or experimenting of

a new strategy. As Schaffer (1989) explained the mutation can be perceived as the

following situation in which the owner of one of the K firms hires a new manager

and then this new manager may with some positive probability choose a different

strategy for its firm.

We define the payoff function of each firm k, that produces qk given that all other

firms in the market produce Q−k =
∑K

l 6=k ql , as following:

πk(qk, Q−k) = P (qk, Q−k)qk − ck(qk), ∀k ∈ K (4.1)

P (.) is an inverse demand function and decreasing in its arguments and ck(.)

represents an increasing, twice differentiable and convex cost function.

In such a game, where players have different cost functions, defining a concept

of evolutionary stability requires a symmetric setup with identical players. In

chapter 2, we have identified a solution concept of Walrasian in expectation for

evolutionary stability in an asymmetric oligopoly game where players are not iden-

tical with respect to their cost functions. In the model, Selten’s approach is
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applied to construct a symmetric monomorphic population game out of an asym-

metric polymorphic-population game. Proposition 2.7 generalizes the asymmetric

oligopoly setup from two groups of high cost and low cost firms to K groups of

firms that differ w.r.t. cost functions. In the present chapter, we adopt an anal-

ogous asymmetric setup, nevertheless with only one firm in each group, i.e., K

firms with K different cost functions.

In order to construct a symmetric monomorphic population game out of an asym-

metric game with non-identical players, we define a set of roles or information

situations as follows

Definition 4.1. A firm may find itself in a number of roles or information situa-

tions i ∈ {1, ..., K} where it must choose its action at each possible role (informa-

tion situation).1

The set of roles here is identical with the set of cost functions {c1, ..., ck, ..., cK}.

Further we need a role assignment like so

Definition 4.2. A role assignment is a map that assigns without replacement

each of roles i ∈ {1, ..., K} to one of the K firms.

Firm k ∈ {1, ..., K} is chosen by our role assignment with probability of 1/K as a

firm with cost ck. In this set-up, a firm contemplates behavior before it knows its

assigned role ck ∈ {c1, ..., cK}, an action (local strategy) of firm k assigned at role

i is to select a pure strategy of qki and hence

Definition 4.3. A behavior strategy for a firm k is a vector qk = [qk1, ..., qki, ..., qkK ]

giving a local strategy qki for each role i ∈ {1, ..., K}.

From this ex-ante point of view the game played in role-contingent strategies is

symmetric (see Selten (1980, pp. 97-8.)). Let πki(qki, [q]−k) be a local payoff of

firm k in role i when the other firms play their behavior strategies of [q]−k =

[q1, ...,qk−1,qk+1, ...,qK]. Therefore one can define the total (expected) payoff

function of each firm as follows
1We use a dissimilar notation i for a role to be not confused with player’s notation k.
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Definition 4.4. Let qk and [q]−k be a behavior strategy for a firm k and behavior

strategies of other firms respectively. The total (expected) payoff function for each

firm k in the monomorphic population game is

Eπk([qk1, ..., qki, ..., qkK ], [q]−k) =
K∑
i=1

1

K
πki(qki, [q]−k) ∀k = 1, ..., K (4.2)

Consider now a finite population evolutionarily stable strategy of the game among

these K firms. A strategy is evolutionary stable, if no mutant firm l 6= k which

chooses a different behavior strategy than q∗k = [q∗k1, ..., q
∗
ki, ..., q

∗
kK ], say, can realize

higher total profits than the firms which employ the incumbent behavior strategy

q∗. In other words, no mutant behavior strategy qm can invade a population of

q∗ strategists successfully. Formally Schaffer’s (1988) definition then reads

Definition 4.5. A behavior strategy profile q∗ is a FPESS if

Eπk(q
∗
k,q

m
l , [q

∗]−k−l) > Eπl(q
m
l , [q

∗]−l) ∀qm
l 6= q∗k, and ∀l 6= k. (4.3)

Therefore we write mutant’s total payoff and incumbent’s total payoff respectively

as follows:

Eπl([q
m
l1 , ..., q

m
lK ], [q∗]−l) =

K∑
i=1

1

K
P (qmli , [q

∗]−l)q
m
li − ci(qmli ) (4.4)

Eπk([q
∗
k1, ..., q

∗
kK ], [qml1 , ..., q

m
lK ], [q]−k−l) =

K∑
i=1

1

K
(
K∑
j 6=i

1

K − 1
(P (q∗kj, q

m
li , [q

∗]−k−l)q
∗
kj−cj(q∗kj))

(4.5)

Eπl(.), the mutant’s expected payoff consists of K local payoffs where the mutant

assigned to the role i with the uniform probability function of 1/K . Accordingly,

the calculation of incumbent’s expected payoff Eπk(.) is slightly more complicated

and consists of other terms in order to account for the mutant‘s role. For ex-

ample, when a mutant is assigned to the role i with the probability of 1/K then

the incumbent’s role j 6= i can be assigned from the K − 1 possibility with the

probability of 1/(K − 1).
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Theorem 4.6. In the symmetrized game of the asymmetric oligopoly market with

K firms that differ w.r.t. cost functions, there exists an evolutionary equilibrium

where the FPESS quantities satisfy the following equations

P (
K∑
k=1

q∗k) + P ′(
K∑
k=1

q∗k)(q
∗
k −

K∑
l 6=k

1

K − 1
q∗l ) = c′k(q

∗
k) ∀k ∈ {1, ..., K}. (4.6)

Proof. According to Schaffer (1989), in a playing the field game, we can find a

FPESS as the solution of following optimization problem

(q∗l1, ..., q
∗
lK) = arg max

qml1 ,...,q
m
lK

ϕ = Eπl([q
m
l1 , ..., q

m
lK ], [q∗]−l)−Eπk([q∗k1, ..., q

∗
kK ], [qml1 , ..., q

m
lK ], [q]−k−l)

(4.7)

First order conditions with respect to qmli respectively are as follows:

1

K
(P (.) + P ′(.)qmli − c′i(qmli ))− 1

K

K∑
j 6=i

1

K − 1
P ′(.)q∗kj = 0 ∀i ∈ {1, ..., K}

P ′(.) is the derivative of inverse demand function. For the reason that the solution

must be symmetric in players and satisfies definition (4.5), we impose qmli = q∗ki =

q∗i . Then after rearranging, the following set of equations are obtained

P (
K∑
i=1

q∗i ) + P ′(
K∑
i=1

q∗i )(q
∗
i −

K∑
j 6=i

1

K − 1
q∗j ) = c′i(q

∗
i ) ∀i ∈ {1, ..., K}

The set of roles can be identified with the set of players in our asymmetric setup

and the proof is complete.

In fact the strategy that survives in economic natural selection under playing the

field conditions is the relative, not absolute, payoff maximizing strategy. A firm

needs to beat the average of expected payoffs over all firms rather than to maximize

its absolute expected payoff to be evolutionarily successful.

This theorem represents that, in a homogenous good market with asymmetric cost

modeling, the equilibrium price is determined such that a low cost firm obtains a

positive markup over its marginal cost while a high cost firms sells in a price lower
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than its marginal cost. Note that, as it has shown in Proposition 2.5, all types of

firms can coexists and make a positive profit if the cost functions are sufficiently

convex.

It is important to note that the evolutionary equilibrium in the asymmetric setup

is different from both Walraisan equilibrium and Cournot equilibrium. The FPESS

quantities do not correspond to the Walrasian quantities for each individual firm.

However, the evolutionary equilibrium price so-called as Walrasian price in expec-

tation equals an average of marginal costs.

4.3 Testing data consistency of evolutionary oligopoly

model (characterization)

Deriving testable implications from an evolutionary model of oligopoly is impor-

tant because it better explains conditions for firm survival in the market. Par-

ticularly, we are able to test empirically whether the model described in the pre-

vious section effectively holds or not and it also permits us to compare whether

it is distinguishable from the competitive Walrasian behavior and the best reply

Cournot Nash model of firm behavior. In principal, the inverse demand function

and cost functions are not observable however we are able to observe the equilib-

rium quantities of all firms and the market equilibrium price. Suppose that we

are given with the observed dataset on the behavior of an industry or a market

with K firms producing a homogenous single good. Consider a set of observations

{p∗t , (q∗k,t)k∈K}t∈T where p∗t > 0 is an observed price of homogenous market good

at time t ∈ T = {1, ..., T} and q∗k,t > 0 is observed output quantity of each firm

k ∈ K = {1, ..., K} in every period of t. Total output of industry Q∗t =
∑K

k=1 q
∗
k,t

is also observed for each time t. Market demand of this single good is determined

by a continuous and differentiable inverse demand function Pt at each time t and

we assume that it is decreasing in its argument. In addition, each firm k has also

a continuous and increasing function of ck.
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Before addressing the data consistency test for the evolutionary oligopoly model,

we first give the definitions for the rationalization of an observational dataset

for the Cournot Nash model and perfect competition (Walrasian) model of firm

behavior. Carvajal et al. (2013) formally define and characterize the consistency

of a dataset with the Cournot model under convex cost functions2 as follows:

Definition 4.7 (Cournot rationalizability with convex cost functions). Consider a

set of observations {p∗t , (q∗k,t)k∈K}t∈T. This dataset is Cournot rationalizable if there

exist convex cost functions ck(.)∀k ∈ K and decreasing inverse demand functions

Pt(.) for each t ∈ T that satisfy the following two conditions

1. Pt(Q
∗
t ) = p∗t

2. Pt(Q
∗
t ) + P ′t(Q

∗
t )q
∗
k,t = c′k(q

∗
k,t)

The first condition connects unobserved inverse demand function evaluated at total

output of industry Q∗t to observed prices in each time t and the second condition

states that q∗k,t, given the output of other firms (best responses of other firms

q∗l,t, l 6= k ), must solve the first order condition of firm k’s profit maximization

problem at each time t.

Note that the approach explained here, without making any parametric assump-

tion about demand curve and cost functions, checks the consistency of Cournot

model with a set of observations. Similarly we can define the rationalization of

our evolutionary oligopoly model with an observational dataset as follows:

Definition 4.8 (Evolutionary rationalizability). Consider a set of observations

{p∗t , (q∗k,t)k∈K}t∈T. This dataset is evolutionary rationalizable if there exist convex

cost functions ck(.)∀k ∈ K and decreasing inverse demand functions Pt(.) for each

t ∈ T that satisfy the following two conditions

1. Pt(Q
∗
t ) = p∗t

2As it has been argued in the paper Cournot rationalizability on its own does not impose
operational constraints on the observation set across time and it requires further assumptions
e.g. assuming a convexity property for cost functions.



Evolutionary Models of Market Structure 60

2. Pt(Q
∗
t ) + P ′t(Q

∗
t )q̂
∗
k,t = c′k(q

∗
k,t) where q̂∗k,t = (q∗k,t −

∑K
l 6=k

1
K−1

q∗l,t)

The difference between Definition 4.7 and Definition 4.8 comes from the second

condition which it is inferred directly from equation 4.6. Here the relative quan-

tity terms of q̂∗k,t are substituted in the markup term as opposed to the absolute

quantity terms of q∗k,t. In a relative contest implied by evolutionary successfulness,

the relative position of firm k at time t in the market, i.e. q̂∗k,t, is determined

by its observed quantity q∗k,t subtracted from the average quantity of the rest of

firms in the market
∑K

l 6=k
1

K−1
q∗l,t. That is why, in an evolutionary oligopolistic

competition, a low cost firm chooses larger quantity benefiting a higher markup

over its marginal cost and it pushes a high cost firm to produce a smaller quantity

at a price level even lower than its marginal cost.

To compare with Cournot model and evolutionary model, we further consider the

perfect competition model and provide also a definition of Walrasian rational-

izability. Price taking behavior Walrasian (Perfect competition) model sets the

marginal cost of each firm k at time t equal to market price at time t.

Definition 4.9 (Walrasian rationalizability). Consider a set of observations {p∗t , (q∗k,t)k∈K}t∈T.

This dataset is Walrasian rationalizable if there exist convex cost functions ck(.)∀k ∈

K and decreasing inverse demand functions Pt(.) for each t ∈ T that satisfy the

following condition Pt(Q
∗
t ) = p∗t = c′k(q

∗
k,t).

Analogous to Carvajal et al. (2013), we define c′k(q
∗
k,t) as a set of subgradients of

ck(.) at q∗k,t and P ′t(Q
∗
t ) as a set of gradients of inverse demand function Pt(.) at

Q∗t and assume that the set of observations {p∗t , (q∗k,t)k∈K}t∈T is consistent with

evolutionary oligopoly model. Suppose there exists a set of numbers xk,t ≥ 0

and yt ≤ 0 that belong to the subsequent sets of c′k(q
∗
k,t) and P ′t(Q

∗
t ) that satisfy

the first order condition 2) in definition 4.8 of firm k at each time t. Then after

substituting condition 1) into the condition 2), we obtain the following property

yt =
x1,t − p∗t
q̂∗1,t

=
x2,t − p∗t
q̂∗2,t

= ... =
xK,t − p∗t
q̂∗K,t

≤ 0 (4.8)
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We denote equation 4.8 as the joint demand slope property3 if it is satisfied for

each t ∈ T. Moreover we have another type of restrictions imposed by convexity

of cost functions, that is,

if q∗k,t′ < q∗k,t then xk,t′ ≤ xk,t ∀k ∈ K

This set of restrictions, the so-called co-monotone property, imposes across time

for each firm k and it can also be expressed as

(q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 (4.9)

This says that the set of {xk,t}(∀t∈T&∀k∈K) obeys increasing marginal costs. So we

say that a non-increasing (decreasing) inverse demand function Pt(.) and convex

cost functions ck(.) evolutionarily rationalize the dataset if the set of {xk,t}(∀t∈T&∀k∈K)

satisfies the above two properties. Hence the following theorem summarizes the

above discussion.

Theorem 4.10. The set of observations {p∗t , (q∗k,t)k∈K}t∈T is consistent with our

evolutionary model under convex cost functions if and only if there exist two num-

ber sets of {yt ≤ 0}(∀t∈T) and {xk,t ≥ 0}(∀t∈T&∀k∈K) that satisfy the following prop-

erties.

1. yt =
xk,t−p∗t
q̂∗k,t

≤ 0 where q̂∗k,t = (q∗k,t−
∑K

l 6=k
1

K−1
q∗l,t) ∀t ∈ T and ∀k ∈

K

2. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀t, t′ ∈ Tand ∀k ∈ K

Proof. Assume that the set of observations is consistent with cost functions {ck}∀k∈K
and demand functions {Pt}∀t∈T then we have already proved that there exist

xk,t ∈ c′k(q∗k,t)&yt ∈ P ′t(Q∗t ) that satisfy the properties of 1 and 2.

To show the reverse, first of all, it is required to show that if we have positive

scalars {xk,t}(∀t∈T) that are increasing with q∗k,t for some firm k; then there exist

3This property is known by Carvajal et al. (2013) as common ratio property.
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a convex cost function ck with xk,t ∈ c′k(q∗k,t). The proof of this statement follows

exactly from Carvajal et al. (2013). (See Carvajal et al.(2013, Lemma 2)).

Secondly, suppose that there are {xk,t}(∀t∈T&∀k∈K) such that the joint demand

slope property and co-monotone property hold and moreover there are convex

cost functions ck with xk,t ∈ c′k(q∗k,t). Then, we show that {(q∗k,t)k∈K}t∈T form an

evolutionary equilibrium if there exist a non-increasing demand function Pt(.) such

that Pt(Q
∗
t ) = p∗t and with firms having cost functions ck.

Following Carvajal et al.(2013, Lemma 1), define Pt by Pt(Q) = αt + βtQ, where

βt =
xk,t−p∗t
q̂∗k,t

and we can choose αt such that Pt(Q
∗
t ) = p∗t . A mutant firm l in

our symmetrized version of evolutionary game selects a different behavior strategy

qm
l,t = [qml1,t, ..., q

m
lK,t] from other incumbent firms [q∗]−l,t = [q∗1,t, ...,q

∗
l−1,t,q

∗
l+1,t, ...,q

∗
K,t]

at time t. Here a mutant firm l chooses a local strategy qmli,t ≥ 0 to maximize the

following relative total payoff (equation 4.7) at each role i and time t

ϕl,t =
K∑
i=1

1

K
Pt(q

m
li,t, [q

∗]−l,t)q
m
li,t−ci(qmli,t)−

K∑
i=1

1

K
(
K∑
j 6=i

1

K − 1
(Pt(q

∗
kj,t, q

m
li,t, [q

∗]−k−l,t)q
∗
kj,t−cj(q∗kj,t))

Since ϕl,t is concave, qmli,t is optimal if and only if it satisfies the following FOC

evaluated at qmli,t = q∗ki,t = q∗i,t

P (Q∗t ) + q∗i,tP
′(Q∗t )−

K∑
j 6=i

1

K − 1
q∗j,tP

′(Q∗t )− c′i(q∗i ) = 0 ∀i ∈ {1, ..., K}

As the set of roles is equivalent with the set of players and we also have q∗k,t −∑K
j 6=i

1
K−1

q∗l,t = q̂∗k,t, xk,t ∈ c′k(q∗k,t) and P ′(Q∗t ) = βt =
xk,t−p∗t
q̂∗k,t

p∗t + q̂∗k,t(
xk,t − p∗t
q̂∗k,t

)− xk,t = 0

Therefore we have proven that q∗k,t constitute an evolutionary equilibrium for firm

k at observation t and this also completes the proof that the set of observations

{p∗t , (q∗k,t)k∈K}t∈T for all t constitutes the evolutionary equilibrium.
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Note that the relative quantity terms of q̂∗k,t may be negative or positive and

knowing that the slope of demand curve is negative at each time t, we must have

xk,t < p∗t if q̂∗k,t > 0 and xk,t > p∗t if q̂∗k,t < 0. So this condition can be

summarized in the following form (xk,t − p∗t )q̂∗k,t < 0.

In general, these properties impose linear restrictions with unknowns xk,t that can

be checked by linear programming (LP) or quadratic programming (QP) methods.

Therefore the test takes the form of mathematical optimization problem in which

the consistency of a dataset with the evolutionary model would be verified if the

linear constraints could produce a convex feasible region of possible values for

those unknowns. This feasible region is a convex polytope that formed as the

intersection of finitely many half spaces defined by the following sets of linear

restrictions of i-iii

i.
−xk,t
q̂∗k,t

+
xl,t

q̂∗l,t
=
−p∗t
q̂∗k,t

+
p∗t
q̂∗k,t

∀k, l ∈ K, k 6= l and ∀t ∈ T

ii. q̂∗k,txk,t < p∗t q̂
∗
k,t ∀k ∈ K and ∀t ∈ T

iii. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀k ∈ K,∀t, t′ ∈ T and t 6= t′

where q̂∗k,t = K
K−1

q∗k,t −
∑K

i=1 q
∗
k,t

K−1
Note that Cournot rationalizability imposes a

different set of restrictions of iv-v on the dataset nevertheless the co-monotone

condition iii is the same.

iv.
−xk,t
q∗k,t

+
xl,t
q∗l,t

=
−p∗t
q∗k,t

+
p∗t
q∗k,t

∀k, l ∈ K, k 6= l and ∀t ∈ T

v. q∗k,txk,t < p∗t q
∗
k,t ∀k ∈ K and ∀t ∈ T

iii. (q∗k,t′ − q∗k,t)(xk,t′ − xk,t) ≥ 0 ∀k ∈ K,∀t, t′ ∈ T and t 6= t′

Example 4.1 illustrates a dataset that is not consistent with the Cournot model

but can be rationalized by the evolutionary model. In this example, firm 1 com-

petes spitefully to increase its production levels and this leads to an abrupt fall of

the market good price at time 2. This spiteful behavior, where one player harms

itself in order to harm another more, cannot be explained by Cournot competition.
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Furthermore this example explains the recent dropping trend of crude oil price in

which OPEC as the main oil markets producer did not alter its production level

in response to growing of USA production caused by new extraction techniques

of shale oil. This observed behavior cannot be rationalized by the Cournot com-

petition model but rather by the relative payoff maximizers of the evolutionary

model.

Example 4.1. Consider a homogenous good market with two firms 1 and 2 and

assume that we observe the produced quantities of each firm and the market price

of good in the two sequential periods as follows:

At observation t, p∗t = 100, q∗1,t = 6, and q∗2,t = 30.

At observation t′, p∗t′ = 50, q∗1,t′ = 9, and q∗2,t′ = 30.

To see whether this dataset is Cournot rationalizable with convex cost function, it

is required to find a set of numbers assigned to marginal costs i.e. x1,t, x1,t′ , x2,t, x2,t′ ≥

0 that satisfy the restrictions (iii-iv). So we have

5x1,t − x2,t = 400, 10x1,t′ − 3x2,t′ = 350

x1,t, x2,t ≤ 100, x1,t′ , x2,t′ ≤ 50

x1,t ≤ x1,t′

Note that co-monotone property does not impose a restriction on firm 2. So it

is straightforward to check that the solution space defined by these restrictions

does not have a feasible region. (Since 5x1,t − x2,t = 400 does not intersect with

the region 0 ≤ x1,t ≤ 50, 0 ≤ x2,t ≤ 100.) As a result, this dataset cannot be

rationalized by Cournot model.

However the evolutionary rationalizability (linear restrictions of i-iii) leads to

x1,t + x2,t = 200, x1,t′ + x2,t′ = 100

x1,t ≥ 100, x2,t ≤ 100, x1,t′ ≥ 50, x2,t′ ≤ 50

x1,t ≤ x1,t′
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Solving for a feasible region, the set of candidate solutions narrows down as follows

x1,t = 100, x2,t = 100, yt = 0

x1,t′ = 100, x2,t′ = 0, yt′ = −50/21

Along to the identification of marginal costs, the slopes of demand curve in each

time i.e. yt, yt′ ≤ 0 have been identified by formula yt =
xk,t−p∗t
q̂∗k,t

.

4.4 A case study in the oil market

In this section we apply the consistency test explained in the section 4.3 to a

dataset of the crude oil market. We want to test both Cournot and evolutionary

hypothesis among three major players in the oil market that is, OPEC total pro-

duction as a single unit, Russia and USA. As a matter of fact, OPEC countries

produce approximately at least 40 percent of the world’s oil since its formation in

1960 and this share is even more for the internationally traded oil. OPEC as a

major player in oil market together with the two next largest producers, USA and

Russia,4 are accounted for over than 85% of the world’s oil production in 1973 and

over than 66% in 2014. We use a dataset which contains annual series of crude

oil production in thousands of barrels per day by these three players in the mar-

ket. The data sources include oil production series from Monthly Energy Review

(MER) U.S. Energy Information Administration and also price series of annual

averages of selected OPEC crude oils (OPEC basket) published by association of

German petroleum industry (MWV) from 1973 until 2015.

We split up the whole dataset into several subsets such that each subset is made

of W sequential years as time windows (W = 2, 3, ..., 6) and I numbers of countries

(I = 2, 3). The rejection rates are calculated in the vein of Carvajal et al. (2013)

where first we test whether each subset is consistent with the Cournot model or

4Russia (formerly Soviet Union) is a major oil producer and regarded as a one unit during
time period of the study, since most of oil production in Soviet Union (around more than 95
percent) was produced in the present-day territory of Russia.
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evolutionary model, i.e., whether a mathematical optimization program consisted

of linear restriction of i-iii or iii-v has a feasible region. So the test is repeated

on all subsets of the dataset and then, we report rejection rate as a proportion of

subsets that fail the test and cannot be rationalized by each model (See Appendix

B for for the data and Appendix C for the Matlab code). Table 1 illustrates the

rejection rates for the subsets of this data (with the number of countries I = 2, 3

and windows W from 2 years up to 6 years). Comparing the evolutionary model to

the Cournot model, we see that the rejection rates jump down for the evolutionary

model. For example, in case of I=2 countries and T=2 years window, the drop

in rejection rates is more than 50 percent (from 0.398 to 0.187). Put side by side

both Cournot and evolutionary models, we conclude that evolutionary oligopoly

model explains better the dataset of main producers (OPEC, Russia and USA) in

the oil market.

Table 4.1: Rejection rates of Cournot and evolutionary models with main oil
producers

OPEC, Russia and USA, Annual datasets
W Cournot model Evolutionary model

I=2 I=3 I=2 I=3
2 years 0.398 0.683 0.183 0.439
3 years 0.608 0.850 0.333 0.750
4 years 0.744 0.923 0.487 0.872
5 years 0.833 0.974 0.596 0.921
6 years 0.919 1.000 0.694 0.946
OPEC basket price series are applied.

4.5 Conclusion

The contributions of present study are twofold. Firstly we show that a static

evolutionary model offers a different solution than a competitive Walrasian equi-

librium. In fact, here we take issue with the result by Vega-Redondo (1997) that

the imitation of successful strategies leads to the competitive equilibrium outcome

in the symmetric quantity game of a homogenous good market. Apesteguia et al.

(2010) also show that Vega-Redondo’s result is not robust to the slightest asym-

metry in fixed costs. Then secondly we design for practical purposes a revealed
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preference test to check the consistency of developed model with a generic set

of observations based on the work of Carvajal et al. (2013). Therefore, contrary

to the typical empirical literature in industrial organization without making any

parametric assumption regarding to the demand curve and the cost function, this

approach characterizes a set of conditions (restrictions) on observational dataset

to be consistent with evolutionary oligopoly model. Finally, this nonparametric

revealed preference test has been applied to a dataset for oil market and we con-

clude that the behavior of top oil producers in the market is more consistent with

an evolutionary game than a Cournot game.



Chapter 5

Discussion and future researches

This study investigates competition using evolutionary game models when the

number of players in the market are finite and they have market power. Here we

deliberate why it makes sense to use an evolutionary game theory approach in

order to analyse an oligopolistic market. In fact, as we know a rational individual

selection leads to Cournot equilibrium in the quantity-setting oligopoly game (as

opposed to a rational group selection that results in the collusive outcome). How-

ever, a bounded rational Darwinian selection through a mechanism of imitation

and mutation turns out to be the competitive Walrasian outcome. The evolu-

tionary oligopoly literature was initiated by Alchian (1950), who were the first to

argue bounded rationality in economic behavior. In Alchian’s own words:

”Profit maximization is meaningless as a guide to specifiable action. ... Observable

patterns of behavior and organization are predictable in terms of their relative

probabilities of success or viability if they are tried.” (Alchian (1950, pp. 211-

220))

Then Schaffer (1989) is the pioneer to develop an evolutionary model of economic

natural selection in the oligopolistic market. Schaffer shows that a firm choosing

an evolutionary stable quantity strategy survives longer than a firm that selects a

different strategy (like a Nash strategy) in the market. In a seminal paper, Vega-

Redondo (1997) proves that imitation of the most profitable firm in a dynamic
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setup leads to the Walrasian competitive equilibrium as the long run outcome of

oligopoly game.

Our contributions to this literature are as follows:

First of all, in chapter 2, we have shown that Darwinian selection, specifically

evolutionary stability, in an asymmetric setup with finite number of firm having

different cost structure, give rise to a form of equilibrium so-called Walrasian

in expectation. Characteristic of this equilibrium is such that it includes a semi

competitive market outcome with price equal to average marginal costs while

individual firms outcomes do not correspond with their counterpart competitive

outcomes.

Second, in the chapter 3, we have focused on explaining the behaviour of RPM

firms and comparing with rational APM firms in a symmetric oligopoly setup, nev-

ertheless extending their strategic choice in an additional dimension i.e. price and

non-price variable. While APM captures the behaviour of self-interested rational

players, RPM perceive the spiteful behaviour of players that involve in a relative

game. As a result, the market power measured by Lerner index is influenced in

evolutionary equilibrium by not only the own elasticities of demand but also the

cross-elasticities of demand.

Finally, testable conditions for the evolutionary oligopoly model have been de-

rived in chapter 4. A revealed preference approach has been applied. This non-

parametric methodology (as it does not impose a functional form on market de-

mand and firms cost structure) allow us to test the consistency of the evolutionary

model with a generic observational dataset of a homogenous good oligopolistic

market. This test takes the form of a linear programing composed of observable

restrictions and the consistency of a dataset with the evolutionary model would

be verified if the linear programming could be solved for a feasible region. To

end, we undertook a case study including a dataset on crude oil market for three

major oil producers, i.e., OPEC, Russia and USA. Comparing the rejection rates

between evolutionary model and Cournot model, we conclude that the behaviour
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of major oil producers is better explained by evolutionary equilibrium rather than

a Cournot Nash equilibrium.

A strand of experimental literature (see e.g. Huck et al. (1999) and Offerman

et al. (2002)) examine an evolutionary model hypothesis in a quantity setting

oligopoly and they find a robust evidence for supporting the competitive Walrasian

equilibrium. The treatment variable in these studies is the level of information

availability regarding to other players quantity choices and profits. When subjects

are provided with information about other competitors profits then the rest point

converge to the competitive outcome. Abbink and Brandts (2008) also find a

similar result in the context of Bertrand price competition where prices converge

to the Walrasian outcome in the long run. Furthermore, in a Salop circle model

of price competition, Selten and Apesteguia (2005)) have also approved that the

subjects behaviour can be explained by the imitation equilibrium.

For future researches, first we suggest to study further the oligopoly theory using

learning models and adopting different assumptions regarding to players informa-

tion on profits and strategies of other players. Additionally, a thought-provoking

line for forthcoming researches might be to derive the testable restrictions for the

other different evolutionary oligopoly models using revealed preference approach.

The literature in the evolutionary game theory of oligopoly is narrow. Specially it

requires to investigate more on the empirical testing of firm behaviour in the mar-

ket. Exploring more case studies on observational datasets across industries may

help us to understand the complex behaviour of firms in the market competition.



Appendix A

The proof of propositions 3.7 and

3.8

Proof. Assuming the cost function (3.18) and the linear demand function (3.19),

equations (3.5) and (3.6) can be rewritten like the following

a− (1− (n− 1)β)pN + (1− (n− 1)γ)qN = pN − ν

pN = ν + 2ψqN

Rearranging above equations,they yield qN and pN as follow:

qN =
a− (1− (n− 1)β)ν

2ψ(2− (n− 1)β)− (1− (n− 1)γ)

pN = ν +
a− (1− (n− 1)β)ν

(2− (n− 1)β)− ((1−(n−1)γ)
2ψ

Likewise, equations (3.8)and (3.9) can be also inscribed along these lines:
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(−1− β)(p∗ − ν) + a− (1− (n− 1)β)p∗ + (1− (n− 1)γ)q∗ = 0

p∗ = ν +
2ψ

(1 + γ)
q∗

After solving for q∗ and p∗ , we obtain

q∗ =
a− (1− (n− 1)β)ν

2ψ
1+γ

(2− (n− 2)β)− (1− (n− 1)γ)

p∗ = ν +
a− (1− (n− 1)β)ν

(2− (n− 2)β)− ((1−(n−1)γ)(1+γ)
2ψ

First of all, to ensure a positive quality in equilibrium, it is sufficient that we

assume the following 3 assumptions

A1: a ≥ (1− (n− 1)β)ν

A2: 2ψ(2− (n− 1)β)− (1− (n− 1)γ) = (4ψ − 1) + (n− 1)(γ − 2ψβ) > 0 and

A3: 2ψ
1+γ

(2− (n− 2)β)− (1− (n− 1)γ) = ( 4ψ
1+γ
− 1 + γ) + (n− 2)(γ − 2ψβ

1+γ
) > 0.

Next, we verify that these assumptions A1, A2, and A3 are not mutually exclusive.

To do this, first we check for A2 and A3.

On the one hand, by solvability condition in proposition 3.5 i.e. −2∂Di

∂pi

∂2fi
∂q2i

>

(∂Di

∂qi
)2, we have 4ψ − 1 > 0. Moreover, we know that n is greater equal than 2 in

oligopoly game (n ≥ 2), therefore a sufficient but not necessary condition for A2

to be hold is that γ − 2ψβ > 0 or 2ψβ < γ.

On the other hand, the first term of A3, i.e., ( 4ψ
1+γ
− 1 + γ) is also positive, since

ψ > 1−γ2
4

always holds (knowing that ψ > 1/4 and 0 < γ2 < 1). Therefore a

sufficient but not necessary condition for A3 to be hold is that γ − 2ψβ
1+γ

> 0 or

2ψβ < γ(1 + γ).
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So, if 2ψβ < γ satisfies, it will imply that 2ψβ < γ(1 + γ) must be satisfied

(knowing that γ < γ + γ2).

Furthermore, for assumption A1 to hold we must have β ≥ (1 − a/ν)/(n − 1),

where the RHS is negative (as a > ν). Hence we have the following inequalities

2ψ(1 − a/ν)/(n − 1) ≤ 2ψβ < γ. And since we can always find a range for each

parameter such that 2ψ(1−a/ν)/(n− 1) ≤ 2ψβ < γ fulfils, then it is verified that

A1, A2, and A3 are not mutually exclusive.

Then, we have q∗ > qN if and only if 2ψ(2− (n− 1)β) > 2ψ
1+γ

(2− (n− 2)β).

Simplifying this inequality, we get the condition of proposition 3.7

γ > γ̄ =
β

2 + β − nβ

To see that 2ψ(1 − a/ν)/(n − 1) ≤ 2ψβ < γ do not exclude the condition γ >

β
2+β−nβ , this condition can be rewritten as β < 2γ + γβ(1 − n). Moreover, the

inequality 2ψβ < γ can be rephrased like β < γ/2ψ. Since we have also ψ > 1/4,

that means that we must have β < 2γ. Therefore, it does not exclude our condition

β < 2γ+
+

γβ
−

(1− n), since the term γβ(1−n) is negative (Note that β and γ have

the same sign. They are both positive in the case of substitute goods and both

negative in the case of complement goods).

And we have p∗ < pN if and only if (2 − (n − 2)β) − ((1−(n−1)γ)(1+γ)
2ψ

> (2 − (n −

1)β)− ((1−(n−1)γ)
2ψ

and this inequality leads to the following condition

β > β̄ =
(1 + γ − nγ)γ

2ψ

Note that in this case this inequality can be also rephrased as 2ψβ > γ− (n−1)γ2

and it is obivious that γ > γ − (n − 1)γ2. Therefore, our assumptions do not

exclude this condition. But clearly under our assumptions the region of relevant

parameters becomes very small for γ.



Appendix B

Data
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Table B.1: Average prices for OPEC crude oil in U.S. dollars per barrel

Annual Average

1973 2,7
1974 11
1975 10,43
1976 11,6
1977 12,5
1978 12,79
1979 29,19
1980 35,52
1981 34
1982 32,38
1983 29,04
1984 28,2
1985 27,01
1986 13,53
1987 17,73
1988 14,24
1989 17,31
1990 22,26
1991 18,62
1992 18,44
1993 16,33
1994 15,53
1995 16,86
1996 20,29
1997 18,86
1998 12,28
1999 17,44
2000 27,6
2001 23,12
2002 24,36
2003 28,1
2004 36,05
2005 50,59
2006 61
2007 69,04
2008 94,1
2009 60,86
2010 77,38
2011 107,46
2012 109,45
2013 105,87
2014 96,29
2015 49,49
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Table B.2: Crude Oil Production: OPEC, Russia and USA (Thousand Barrels
per Day)

Annual Average Total OPEC Former U.S.S.R Russia United States

1973 29660,781 8324 Not Available 9207,953
1974 29322,1 8912 Not Available 8774,205
1975 25789,858 9523 Not Available 8374,737
1976 29118,427 10060 Not Available 8131,639
1977 29584,4 10603 Not Available 8244,562
1978 28161,789 11105 Not Available 8707,441
1979 29351 11384 Not Available 8551,534
1980 25383 11706 Not Available 8596,626
1981 21217 11850 Not Available 8571,573
1982 17772 11912 Not Available 8648,534
1983 16561,26 11972 Not Available 8687,668
1984 16496 11861 Not Available 8878,951
1985 15367,071 11585 Not Available 8971,378
1986 17587 11895 Not Available 8680,142
1987 17731,321 12050 Not Available 8348,978
1988 19741 12053 Not Available 8139,689
1989 21406,586 11715 Not Available 7613,077
1990 22498,068 10975 Not Available 7355,307
1991 22421,951 9992 Not Available 7416,545
1992 23729,03 Not Available 7631,937 7171,125
1993 24464,858 Not Available 6730,009 6846,665
1994 24876,024 Not Available 6135 6661,579
1995 25499,576 Not Available 5995 6559,639
1996 26003,462 Not Available 5850 6464,527
1997 27274,086 Not Available 5920 6451,592
1998 28346,405 Not Available 5854 6251,833
1999 27199,487 Not Available 6078,948 5881,458
2000 28944,094 Not Available 6479,202 5821,604
2001 28129,158 Not Available 6917 5801,401
2002 26465,189 Not Available 7408,173 5744,078
2003 27977,097 Not Available 8132,199 5649,3
2004 30431,939 Not Available 8804,708 5440,995
2005 31897,157 Not Available 9043,082 5181,369
2006 31606,639 Not Available 9247,205 5087,767
2007 31354,082 Not Available 9437,063 5077,047
2008 32722,919 Not Available 9356,784 4999,719
2009 31044,989 Not Available 9495,365 5349,78
2010 32003,437 Not Available 9694,114 5481,81
2011 32229,324 Not Available 9773,518 5644,927
2012 33402,149 Not Available 9921,609 6496,738
2013 32460,082 Not Available 10053,844 7463,517
2014 32446,109 Not Available 10107,088 8680,09
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Matlab Code

1 %%%%The following codes are modified version from Carvajal , Deb , Fenske , and Quah

(Econometrica 2013)

2 %%%% Quadratic Programming for Homogeneous Product Evolutionary Oligopoly

3

4 function results = testconvex(p,q)

5

6

7 %p is a tx1 vector of prices

8 %q is a txk vector of quantities for the N countries

9

10 p=p’; % Transposed Price and Quantities

11 q=q’;

12 [N, T]=size(q); %Number of countries , number of periods

13 ceq =0; %number of equality constraints (Joint Demand Slope Property)

14 c=0; %number of inequality constraints (Co-monotone Property)

15

16 b=zeros (1,1); %Make the vectors of RHS constants empty to begin with

17 beq=zeros (1,1);

18

19 %Calculating the Relative Quantities

20

21 rq=zeros(N,T);

22 su=zeros(N);

23 su=sum(q);

24 for t=1: T

25 for i=1 : N

26 rq(i,t)=(N/(N-1))*q(i,t)-su(t)/(N-1);

27 end

28 end

29

30 %The vector of unknowns
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31 %[x_11 ,...,x_N1 ,...,x1T...,xNT ,e11 ,...,e_N1 ,...,e1T...,eNT]

32

33 %First set of constraints i.e. Joint Demand Slope Property

34

35 %Constraints:-x(i,t)/rq(i,t)+x(j,t)/rq(j,t)=-p(t)/rq(i,t)+p(t)/rq(j,t)

36

37 for t=1 : T

38 for i=1:1

39 for j=i+1:N

40 ceq=ceq+1;

41 Aeq(ceq ,N*(t-1)+i)=-1/rq(i,t); %Coefficient on x^it

42 Aeq(ceq ,N*(t-1)+j)=1/rq(j,t); %Coefficient on x^jt

43 beq(ceq)=-p(t)/rq(i,t)+p(t)/rq(j,t); %RHS constant

44 end

45 end

46 end

47

48 %Second set of constraints , i.e. rq(i,t)x(i,t)< rq(i,t)p(t)

49

50 for t=1 : T

51 for i=1:N

52 c=c+1;

53 A(c,N*(t-1)+i)=rq(i,t); %Coefficient on x^it

54 b(c)=p(t)*rq(i,t);

55 end

56 end

57

58 %Third set of constraints are inequalities:

59 %i.e. Co-monotone Property.

60 %with x minus epsilon

61 %Also , the signs are reversed because quadprog accepts only "less than"

62 %constraints: -(q(i,t)-q(i,tt))(x(i,t)-x(i,tt))<0

63 for i=1:N

64 for t=1 : T

65 for tt=t+1:T

66 c=c+1;

67 A(c,N*(t-1)+i)=-(q(i,t)-q(i,tt)); %Coefficient on x^it

68 A(c,N*(tt -1)+i)=q(i,t)-q(i,tt); %Coefficient on x^itt

69 b(c)=0;

70 end

71 end

72 end

73

74 %The objective function

75 H=[zeros(N*T)]; %x’*H*x should be 0: No errors

in this test

76 f=zeros(N*T,1) ; %f’*x should be 0



Evolutionary Models of Market Structure 79

77 UB=Inf*ones(N*T,1) ; %No upper bound on the

parameters

78 LB=zeros(N*T,1) ; %Lower bounds are set to be zero

79

80 [x,L,exitflag] = quadprog(H,f,A,b,Aeq ,beq ,LB,UB) ;

81 results.exit=exitflag ;

82 results.reject =( exitflag ~=1) ;

83

84 %x is the vector of unknowns

85 %L is the test statistic

86 %exitflag tells me if it worked

87 %The program accepts Ax<b constraints , but our constraints are

88 %Ax >b, so enter it as -Ax<-b

89 %Equality constraints are fine as is

90

91 end

92

93

94

95 clc;

96 clear;

97 close all

98 tic;

99

100 cd(’C:\Users\Win7ADM\Desktop\Evolutionary -totalopec -russia -us’)

101 load(’dataset.mat’)

102

103 %%%Table I:Rejection Rates of Evolutionary Hypothesis

104 windows =[2;3;4;5;6];

105

106 %%%Table I: Convex Costs: Rejection Rates for Major Oil Producers

107 %First Column: Combinations of OPEC -USA ,USA -Russia , OPEC -Russia

108 column =1;

109 table =1;

110 pricevector=oilpricenominalWTI;

111 quantmatrix=datasetoru;

112 ncountries =2;

113

114 Ncountries=size(quantmatrix ,2);

115 rejectionrate =0;

116 output =[0 ,0 ,0];

117 for w=1: length(windows);

118 window=windows(w);

119 ntests = (43+1- window)*nchoosek(Ncountries ,ncountries);

120 rejections = [];

121 if rejectionrate >=0.99

122 rejectionrate =1;

123 end
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124 if rejectionrate <0.99

125 for i1=1 : Ncountries -1

126 for i2=i1+1: Ncountries

127 qinterest =[ quantmatrix (:,i1),quantmatrix (:,i2)];

128 nyears=size(qinterest ,1);

129 nperiods=nyears -window;

130 for y=1 : nperiods

131 m0=y;

132 mEnd=m0+window -1;

133 testconvex(pricevector(m0:mEnd ,:),qinterest(m0:mEnd ,:));

134 rejections =[ rejections;ans.reject ];

135 progress =[table ,column ,window ,100* length(rejections)/ntests]

136 end

137 end

138 end

139 rejectionrate=mean(rejections);

140 end

141 output =[ output;ncountries ,window ,rejectionrate ];

142 end

143 save rejection_evolutionary_2countries output

144

145

146 %Second Column: Combination of all Countries i.e. total opec , USA and Russia

147 column =2;

148 pricevector=oilpricenominalWTI;

149 quantmatrix=datasetoru;

150 ncountries =3;

151

152 Ncountries=size(quantmatrix ,2);

153 rejectionrate =0;

154 output =[0 ,0 ,0];

155 for w=1: length(windows);

156 window=windows(w);

157 ntests = (43+1- window)*nchoosek(Ncountries ,ncountries);

158 rejections = [];

159 if rejectionrate >=0.99

160 rejectionrate =1;

161 end

162 if rejectionrate <0.99

163 qinterest=quantmatrix;

164 nyears=size(qinterest ,1);

165 nperiods=nyears -window;

166 for y=1 : nperiods

167 m0=y;

168 mEnd=m0+window -1;

169 testconvex(pricevector(m0:mEnd ,:),qinterest(m0:mEnd ,:));

170 rejections =[ rejections;ans.reject ];

171 progress =[table ,column ,window ,100* length(rejections)/ntests]
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172 end

173 rejectionrate=mean(rejections);

174 end

175 output =[ output;ncountries ,window ,rejectionrate ];

176 end

177 save rejection_evolutionary_allcountries output

178

179

180 %%%% Quadratic Programming for Homogeneous Product Cournot Oligopoly

181

182 function results = testconvex(p,q)

183

184 %p is a tx1 vector of prices

185 %qin is a txk vector of quantities for the k firms

186

187 p=p’; %Program only works when these are transposed

188 q=q’;

189 [N T]=size(q); %Number of firms , number of periods

190 ceq =0; %number of equality constraints (common ratio property)

191 c=0; %number of inequality constraints (

192

193 b=zeros (1,1); %Make the vectors of RHS constants empty to begin with

194 beq=zeros (1,1);

195

196 %The vector of unknowns

197 %[x_11 ,...,x_N1 ,...,x1T...,xNT ,e11 ,...,e_N1 ,...,e1T...,eNT]

198

199 %First set of constraints: equalities of the (P-x)/Q terms

200 %i.e. common ratio property

201 %Constraints are:-x(i,t)/q(i,t)+x(j,t)/q(j,t)=-p(t)/q(i,t)+p(t)/q(j,t)

202 for t=1 : T

203 for i=1:1

204 for j=i+1:N

205 ceq=ceq+1;

206 Aeq(ceq ,N*(t-1)+i)=-1/q(i,t); %Coefficient on x^it

207 Aeq(ceq ,N*(t-1)+j)=1/q(j,t); %Coefficient on x^jt

208 beq(ceq)=-p(t)/q(i,t)+p(t)/q(j,t); %RHS constant

209 end

210 end

211 end

212

213 %Second set of constraints are the (P-x)/Q>0 inequalities

214 %But quadprog only accepts "less than" constraints

215 %so this becomes x(i,t)<p(t)

216 for t=1 : T

217 for i=1:N

218 c=c+1;

219 A(c,N*(t-1)+i)=1; %Coefficient on x^it
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220 b(c)=p(t); %The equality constraint within a single year

221 end

222 end

223

224 %Third set of constraints are inequalities:

225 %i.e. x is increasing in q.

226 %with x minus epsilon

227 %Also , the signs are reversed because quadprog accepts only "less than"

228 %constraints: -(q(i,t)-q(i,tt))(x(i,t)-x(i,tt)) <0

229 for i=1:N

230 for t=1 : T

231 for tt=t+1:T

232 c=c+1;

233 A(c,N*(t-1)+i)=-(q(i,t)-q(i,tt)); %Coefficient on x^it

234 A(c,N*(tt -1)+i)=q(i,t)-q(i,tt); %Coefficient on x^itt

235 b(c)=0; %The sum must be negative

236 end

237 end

238 end

239

240 %Define the objective function

241 H=[zeros(N*T)]; %x’*H*x should be 0: No errors

in this test

242 f=zeros(N*T,1) ; %f’*x should be 0

243 UB=Inf*ones(N*T,1) ; %No upper bound on the

parameters

244 LB=zeros(N*T,1) ; %x must be positive

245

246 [x,L,exitflag] = quadprog(H,f,A,b,Aeq ,beq ,LB,UB) ;

247 results.exit=exitflag ;

248 results.reject =( exitflag ~=1) ;

249

250 %x is the vector of unknowns

251 %L is the test statistic

252 %exitflag tells me if it worked

253 %The program accepts Ax <b constraints , but our constraints are

254 %Ax >b, so enter it as -Ax <-b

255 %Equality constraints are fine as is

256

257 end

258

259 clc;

260 clear;

261 close all

262 tic;

263

264 cd(’C:\Users\Win7ADM\Desktop\data and programs -totalopec -russia -us’)

265 load(’dataset.mat’)
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266

267 %%%Table I: Rejection Rates of Cournot hypothesis

268 windows =[2;3;4;5;6];

269

270 %%%Table I: Convex Costs: Rejection Rates for Major Oil Producers

271 %First Column: Combinations of OPEC -USA ,USA -Russia , OPEC -Russia

272 column =1;

273 table =1;

274 pricevector=oilpricenominalWTI;

275 quantmatrix=datasetoru;

276 ncountries =2;

277

278 Ncountries=size(quantmatrix ,2);

279 rejectionrate =0;

280 output =[0 ,0 ,0];

281 for w=1: length(windows);

282 window=windows(w);

283 ntests = (43+1- window)*nchoosek(Ncountries ,ncountries);

284 rejections = [];

285 if rejectionrate >=0.99

286 rejectionrate =1;

287 end

288 if rejectionrate <0.99

289 for i1=1 : Ncountries -1

290 for i2=i1+1: Ncountries

291 qinterest =[ quantmatrix (:,i1),quantmatrix (:,i2)];

292 nyears=size(qinterest ,1);

293 nperiods=nyears -window;

294 for y=1 : nperiods

295 m0=y;

296 mEnd=m0+window -1;

297 testconvex(pricevector(m0:mEnd ,:),qinterest(m0:mEnd ,:));

298 rejections =[ rejections;ans.reject ];

299 progress =[table ,column ,window ,100* length(rejections)/ntests]

300 end

301 end

302 end

303 rejectionrate=mean(rejections);

304 end

305 output =[ output;ncountries ,window ,rejectionrate ];

306 end

307 save rejection_cournot_2countries output

308

309

310 %Second Column: Combination of all Countries i.e. total opec , USA and Russia

311 column =2;

312 pricevector=oilpricenominalWTI;

313 quantmatrix=datasetoru;
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314 ncountries =3;

315

316 Ncountries=size(quantmatrix ,2);

317 rejectionrate =0;

318 output =[0 ,0 ,0];

319 for w=1: length(windows);

320 window=windows(w);

321 ntests = (43+1- window)*nchoosek(Ncountries ,ncountries);

322 rejections = [];

323 if rejectionrate >=0.99

324 rejectionrate =1;

325 end

326 if rejectionrate <0.99

327 qinterest=quantmatrix;

328 nyears=size(qinterest ,1);

329 nperiods=nyears -window;

330 for y=1 : nperiods

331 m0=y;

332 mEnd=m0+window -1;

333 testconvex(pricevector(m0:mEnd ,:),qinterest(m0:mEnd ,:));

334 rejections =[ rejections;ans.reject ];

335 progress =[table ,column ,window ,100* length(rejections)/ntests]

336 end

337 rejectionrate=mean(rejections);

338 end

339 output =[ output;ncountries ,window ,rejectionrate ];

340 end

341 save rejection_cournot_allcountries output
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