
Self-adaptive Structure
Semi-supervised Methods for

Streamed Emblematic Gestures

Von der Fakultät
Elektrotechnik und Informationstechnik
der Technischen Universität Dortmund

genehmigte

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

eingereicht von

Husam Jumaah Naeemah Al-Behadili

Dortmund, 2017

Tag der mündlichen Prüfung: 25.10.2017
Hauptreferent: Prof. Dr. rer. nat. habil. Christian Wöhler
Korreferent: Prof. Dr.-Ing. Jürgen Götze

Arbeitsgebiet Bildsignalverarbeitung Technische Universität Dortmund

iii

Abstract

Although many researchers try to improve the level of machine intelligence, there is still a
long way to achieve an intelligence similar to what humans have. Scientists and engineers
are continuously trying to increase the level of smartness of the modern technology, i.e.
smartphones and robotics. Humans communicate with each other by using the voice and
gestures. Hence, gestures are essential to transfer the information to the partner. To
reach a higher level of intelligence, the machine should learn from and react to the human
gestures, which means learning from continuously streamed gestures. This task faces
serious challenges since processing streamed data suffers from different problems. Besides
the stream data being unlabelled, the stream is long. Furthermore, “concept-drift” and
“concept evolution” are the main problems of them. The data of the data streams have
several other problems that are worth to be mentioned here, e.g. they are: dynamically
changed, presented only once, arrived at high speed, and non-linearly distributed. In
addition to the general problems of the data streams, gestures have additional problems.
For example, different techniques are required to handle the varieties of gesture types. The
available methods solve some of these problems individually, while we present a technique
to solve these problems altogether.

Unlabelled data may have additional information that describes the labelled data more
precisely. Hence, semi-supervised learning is used to handle the labelled and unlabelled
data. However, the data size increases continuously, which makes training classifiers
so hard. Hence, we integrate the incremental learning technique with semi-supervised
learning, which enables the model to update itself on new data without the need for
the old data. Additionally, we integrate the incremental class learning within the semi-
supervised learning, since there is a high possibility of incoming new concepts in the
streamed gestures. Moreover, the system should be able to distinguish among different
concepts and also should be able to identify random movements. Hence, we integrate the
novelty detection to distinguish between the gestures that belong to the known concepts
and those that belong to unknown concepts. The extreme value theory is used for this
purpose, which overrides the need for additional labelled data to set the novelty threshold
and has several other supportive features. Clustering algorithms are used to distinguish
among different new concepts and also to identify random movements. Furthermore, the
system should be able to update itself on only the trusty assignments, since updating the
classifier on wrongly assigned gesture affects the performance of the system. Hence, we
propose confidence measures for the assigned labels.

We propose six types of semi-supervised algorithms that depend on different techniques
to handle different types of gestures. The proposed classifiers are based on the Parzen
window classifier, support vector machine classifier, neural network (extreme learning
machine), Polynomial classifier, Mahalanobis classifier, and nearest class mean classifier.
All of these classifiers are provided with the mentioned features. Additionally, we sub-
mit a wrapper method that uses one of the proposed classifiers or ensemble of them

iv

to autonomously issue new labels to the new concepts and update the classifiers on the
new incoming information depending on whether they belong to the known classes or new
classes. It can recognise the different novel concepts and also identify random movements.

To evaluate the system, we acquired gesture data with nine different gesture classes.
Each of them represents a different order to the machine e.g. come, go, etc. The data
are collected using the Microsoft Kinect sensor. The acquired data contain 2878 gestures
achieved by ten volunteers. Different sets of features are computed and used in the
evaluation of the system. Additionally, we used real data, synthetic data and public data
as support to the evaluation process.

All the features, incremental learning, incremental class learning, and novelty detection
are evaluated individually. The outputs of the classifiers are compared with the original
classifier or with the benchmark classifiers. The results show high performances of the
proposed algorithms.

v

Acknowledgements

I’m genuinely grateful to my supervisor, Prof. Christian Wöhler for his unlimited support.
Words cannot express my thanks for all valuable suggestions, advice, learning opportu-
nities, and trust that he provided me during this dissertation. His reviews encouraged
me to be more precise in my work, and his critiques guided me to think more prudently
about the proposed approaches.

I’d also like to thank my colleague Dr. Arne Grumpe. His comprehensive interdisci-
plinary knowledge and his dynamic personality caused new impulses to my work. This
dissertation is hard to complete without his tips and suggestions.

I further would like to express my thank to my colleague Daniela Rommel. She did
not hesitate to provide me with any assistance. Similar thanks, for all other colleagues,
who I enjoyed working with them and with their discussions. I’m fortunate to have such
a friendly group who make my life here so excellent. I also would like to thank my friend
Majed Edan, who support me by being my formal representative in my country during
my research.

I also thank the “Establishment of Martyrs” for funding, along with the management
of the Iraqi Ministry of Higher Education.

Finally, I would like to express my thanks and gratitude to my parents and my family,
particularly my wife, for their love, understanding and strong support along the way.
Great thanks for my children Jumana, Mohammed and Wafaa for being patients while
I’m busy and away from them.

vi

vii

List of related Publications

This thesis is based on the following publications of the author. The publications are
listed in descending chronological order.

Peer-reviewed journal articles and book chapters

(Al-Behadili et al., 2016c) Al-Behadili, H., Grumpe, A., and Wöhler, C. Confidence
band and extreme value theory based outlier detection for semi-supervised learning
of incremental polynomial classifier. International Journal of Simulation Systems,
Science & Technology, 17(34), 2016c.

(Al-Behadili et al., 2016b) Al-Behadili, H., Grumpe, A., Migdadi, L., and Wöhler, C.
Incremental parzen window classifier for a multi-class system. International Journal
of Simulation–Systems, Science & Technology, 17(34), 2016b.

(Al-Behadili et al., 2014) Al-Behadili, H., Grumpe, A., and Wöhler, C. Semi-supervised
learning of emblematic gestures. At-Automatisierungstechnik, 62(10):732–739, 2014.

Conference contributions

(Al-Behadili et al., 2016e) Al-Behadili, H., Grumpe, A., and Wöhler, C. Non-linear
distance-based semi-supervised multi-class gesture recognition. In Proceedings of
the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: VISAPP,, pages 280–286, 2016e. ISBN 978-
989-758-175-5. doi: 10.5220/0005674102800286.

(Al-Behadili et al., 2016d) Al-Behadili, H., Grumpe, A., and Wöhler, C. Neural net-
work based novelty detection for incremental semi-supervised learning in multi-
class gesture recognition. In Proceedings of the 11th Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Vol-
ume 3: VISAPP,, pages 287–294, 2016d. ISBN 978-989-758-175-5. doi: 10.5220/
0005674202870294.

(Al-Behadili et al., 2015c) Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C.
Non-linear distance based large scale data classifications. In 2015 IEEE Interna-
tional Conference on Progress in Informatics and Computing (PIC), pages 613–617,
Dec 2015c. doi: 10.1109/PIC.2015.7489921.

(Al-Behadili et al., 2015d) Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C.
Incremental learning and novelty detection of gestures using extreme value theory.
In IEEE International Conference on Computer Graphics, Vision and Information
Security (CGVIS), pages 169–174, Nov 2015d. doi: 10.1109/CGVIS.2015.7449915.

viii

(Al-Behadili et al., 2015a) Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C.
Extreme learning machine based novelty detection for incremental semi-supervised
learning. In Third IEEE International Conference on Image Information Processing
(ICIIP), pages 230–235, Dec 2015a. doi: 10.1109/ICIIP.2015.7414771.

(Al-Behadili et al., 2016a) Al-Behadili, H., Grumpe, A., Migdadi, L., and Wöhler, C.
Semi-supervised learning using incremental support vector machine and extreme
value theory in gesture data. In 18th IEEE International Conference on Computer
Modelling and Simulation (UKSim-AMSS), pages 184–189, 2016a. doi: 10.1109/
UKSim.2016.5.

(Al-Behadili et al., 2015b) Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C.
Incremental class learning and novel class detection of gestures using ensemble. In
Workshop New Challenges in Neural Computation 2015, pages 122–132, 2015b.

(Al-Behadili et al., 2015e) Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C.
Semi-supervised learning using incremental polynomial classifier and extreme value
theory. In 3rd IEEE International Conference on Artificial Intelligence, Modelling
and Simulation (AIMS), pages 332–337, 2015e. doi: 10.1109/AIMS.2015.60.

(Al-Behadili et al., 2015f) Al-Behadili, H., Grumpe, A., and Wöhler, C. Incremental
learning and novelty detection of gestures in a multi-class system. In 3rd IEEE In-
ternational Conference on Artificial Intelligence, Modelling and Simulation (AIMS),
pages 304–309, 2015f. doi: 10.1109/AIMS.2015.55.

Contents

Contents ix

1 Introduction 1
1.1 Thesis Outline . 4
1.2 Contribution . 4

2 Related work:
Gesture Recognition Systems 7
2.1 Gesture Definition and Categories . 8

2.1.1 Gesture definition . 8
2.1.2 Gesture categories . 8

2.2 Sensors . 11
2.2.1 Contact based technology . 11
2.2.2 Vision based technology . 12

2.3 Gesture Segments . 14
2.4 Gesture Spotting . 17
2.5 Hand Tracking and Feature Extraction . 18
2.6 Gesture Recognition Approaches . 19

2.6.1 3D model-based approaches . 21
2.6.2 Appearance based approaches . 21
2.6.3 Machine learning algorithm based approaches 22
2.6.4 Rule-based approaches . 27
2.6.5 Syntactic approaches . 27
2.6.6 Local feature approaches . 28

2.7 On-line Recognition Algorithms . 28
2.8 Gesture Application . 28

2.8.1 Virtual reality . 29

ix

x CONTENTS

2.8.2 Sign Language Recognition . 29
2.8.3 Human Machine/Robot Interaction 29
2.8.4 Medical Systems and Healthcare Technology 30
2.8.5 Presentations/Gesture-to-Speech 32
2.8.6 Video Surveillance . 33

3 Related work:
Semi-Supervised Learning and Data Stream 35
3.1 Machine Learning . 36
3.2 Supervised Learning . 37
3.3 Unsupervised Learning . 37

3.3.1 k-means . 38
3.3.2 Mean-shift . 38

3.4 Semi-Supervised Learning . 40
3.4.1 Self-training methods . 41
3.4.2 Co-training . 41
3.4.3 Probabilistic generative models . 42
3.4.4 Semi-supervised support vector machines 44
3.4.5 Graph-based methods . 44

3.5 Data Streams . 46
3.6 Incremental Learning . 47
3.7 Incremental Class Learning . 49
3.8 Ensemble Learning . 49
3.9 Novelty Detection . 50

3.9.1 Conventional novelty threshold setting 53
3.9.2 Extreme value theory . 53
3.9.3 Extreme value theory in multi-variate and multi-modal novelty de-

tection . 55
3.9.4 Transformation . 55
3.9.5 Parameters Estimation . 58
3.9.6 Confidence bands . 59

4 Datasets and Feature Extraction 61
4.1 Gesture Data Set . 61

4.1.1 Different features for the gesture dataset 66
4.2 Artificial data set . 68
4.3 Iris dataset . 69
4.4 Lunar data set . 70

4.4.1 Near-global mosaic . 70
4.4.2 Region of interest . 71
4.4.3 Spectral parameters . 71

CONTENTS xi

5 Contribution:
Non-parametric Learning Based Semi-supervised Methods 75
5.1 Extreme Value Theory Implementation . 77
5.2 Experimental Set-up . 78
5.3 Semi-Supervised Learning Using Parzen Window Kernel Density Estimators 80

5.3.1 Parzen window kernel density estimators (PKDE) 80
5.3.2 Incremental Parzen window kernel density estimators (IncPKDE) . 81
5.3.3 Experiments . 84

5.4 Semi-Supervised Support Vector Machine 100
5.4.1 Experimental set-up . 103
5.4.2 Results and discussion . 104

6 Contribution:
Semi-supervised Methods Based on Non-linear Classifiers 109
6.1 Semi-Supervised Extreme Learning Machine 109

6.1.1 Incremental learning phase . 111
6.1.2 Novelty detection phase . 112
6.1.3 Believability conditions . 114
6.1.4 Experiments and results . 114

6.2 Auto-encoder Extreme Learning Machine 117
6.2.1 The auto-associative extreme learning machine 117
6.2.2 Novelty detection . 118
6.2.3 Incremental learning of ELM . 119
6.2.4 Results and performance study . 121

6.3 Semi-supervised Polynomial Classifier . 127
6.3.1 Incremental learning phase . 127
6.3.2 Novelty detection phase . 128
6.3.3 Believability Conditions . 129
6.3.4 Experiments and Results . 129

7 Contribution:
Semi-Supervised Methods Based on Metric Learning 135
7.1 Incremental Update of Mahalanobis Distance Parameters 136

7.1.1 Novelty detection using Mahalanobis distance 138
7.1.2 Experiments and results . 138

7.2 Semi-supervised Kernel Nearest Class Mean 142
7.2.1 Non-linear NCM with multiple class centroid (NCMC) 143
7.2.2 Kernel based metrics . 144
7.2.3 Proposed kernel NCM (KNCM) . 145
7.2.4 Discussion of experiments results 146

xii CONTENTS

8 Contribution:
Semi-supervised Learning Based on Self-adaptive Structure 157
8.1 Incremental Class Learning . 158

8.1.1 Extreme learning machine – EVT 160
8.1.2 Extreme learning machine – auto encoder 161
8.1.3 Metric learning – Mahalanobis distance 162
8.1.4 Polynomial classifier . 162
8.1.5 Parzen window kernel density estimators 163
8.1.6 Support vector machine classifier 164

8.2 Self-adaptive Structure Semi-supervised Learning 164
8.3 Mahalanobis Distance and Polynomial Classifiers Ensemble 171

8.3.1 Evaluation of the new class construction 171
8.3.2 Evaluation of the outlier detection 173

9 Summary and conclusion 175

Bibliography 179

List of Figures 211

List of Tables 213

List of Symbols 215

A Reference Methods I

1

Introduction

Sometimes when humans speak about whatever subject, they use some gestures to give
more information about the subject or make it more spectacular. For example, if someone
narrates an adventure of climbing, he may use his hand to mimic the event (McNeill,
2008). Although the gestures are mostly performed by hand, other parts of the body
may be utilised in the gesture’s forming e.g. head, the whole body or even by the face,
such as nodding the head to say yes. The gestures also may be used to give an order
or say something to another human. For example moving the index finger repeatedly
towards the person, who is performing the gesture, while other fingers are clenched fist is
meaning “come here” in Northern Europe Fig. 1.1(a) and extending the thumb upward
gives approval Fig. 1.1(b).

These motions are used to communicate with machines in Human-Machine Interaction
(HMI) and they are called “gesture”. The Human-Machine interface starts moving toward
using gestures and voices as an input to smart devices instead of keyboards, mice, gloves or
other input devices. This is because the interaction through the gesture is exactly like the
conversation with other humans. Additionally, with the new technology of virtual reality
displays, mice and keyboards have been very limited to use as input devices (Pavlovic
et al., 1997). If a high accuracy of gesture recognition is achieved, great applications can
be implemented using gestures. An example, an application that control many monitors
by using gestures, e.g. if you point towards a monitor it will turn on, if you show your palm
toward the another it will stop or may move your hand from right to left to go to the next
page, etc., exactly as in the science fiction films. If the social robotics can understand the
gestures, its reactions will be like humans. Gesture recognition is included in a wide range
of computer games e.g. (Lee et al., 2005; Lee and Hong, 2010). Furthermore, Gestures are
considered an intuitive, fast and safe way in HMI (Wachs et al., 2006; Soutschek et al.,
2008; Yusoff et al., 2013). Hence, an important application for gestures are the medical
devices, for example, during the surgery touching the keyboards, mice or any other non-
medical tools may cause a spread of infection hence the gesture will be the ideal solution

1

2 CHAPTER 1. INTRODUCTION

(a) Come here (b) Approval

Figure 1.1: Some of Well-Known Gestures1.

for this case (Wachs et al., 2006).
Unfortunately, gesture recognition is not as simple as recognising the words written

by the keyboard, since gestures are done freely mid-air. The same type of gesture cannot
be implemented in the same manner by different persons. Additionally, the same individ-
ual might change his/her performing of the same gesture from time to time. Moreover,
the gestures are used to simulate the real communications, this leads to the possibility
of receiving data continuously from the data stream. The significant problems of data
streaming are the “infinite length” , “concept-drift” and “concept-evolution”. They were
addressed by most of the existing online algorithms (Masud et al., 2012). Due to the
infinite length, the size of the data collected from the stream will be increased, and then
both unlimited hardware resources and an indefinitely long time will be required to train
the system with these data. The concept-drift, in contrast, requires the system to be re-
trained with the data continuously to overcome the effects of concept-drift, e.g. changing
statistical properties of the classes or the appearance of novel classes. It will be very com-
plicated to retrain the system continuously if the data originate from streams of infinite
length. The immersion of new classes within time, the vanishing of some of the existing
classes, non-linearly separable classes, and the scarcity of labelled data are additional
serious problems of data streams. Most of the studies of data streams offer a solution
to each problem separately, but they happen together in real-life. Hence, we need to

1The photos are downloaded from https://morguefile.com/

3

resolve all these problems (“infinite length”, “concept-drift”, “novel classes”, “unlabelled
training data”, “unlimited size of training data”, “continuous incoming training data”,
“non-linearly separable classes” and “multi-class system”) in one algorithm.

In principle, the classifier should be trained with all possible gestures performed in
all possible manners to get an acceptable recognition rate. As mentioned the manually
labelled data in the data stream are costly and it is impossible to get labels for all
possible gestures. In contrast, unlabelled data may be streamed continuously. Hence, a
possible solution is to use semi-supervised learning instead of fully supervised learning.
Semi-supervised learning corresponds to first training a classifier on a small number of
manually labelled training samples in a fully supervised manner and updating the training
set using the labels assigned by the classifier itself (Zhu and Goldberg, 2009). Semi-
supervised approaches are also called “self-training” (Rosenberg et al., 2005; Zhu and
Goldberg, 2009). Thus, by using the semi-supervised learning scenario the model should
update itself autonomously to new partner’s gestures instead of enforcing the persons to
limited ways of performing the gesture.

Recently, the most interesting field to companies is to submit smart devices that can
react like humans and may learn independently, i.e. simulate the intelligence of humans.
To achieve these features, the system should react to the actions around it in real-time and
also be able to learn new information and new concepts from the data stream. Therefore,
the system should recognise if the samples belong to the known concepts or not. If a
sample belongs to the known concept, the system should measure if the system believes
its assignment to update its information if this assignment is highly believable. While, if
the sample does not belong to the known concepts, the system should be able to recognise
if it is a random movement or it belongs to a novel concept. Thus, if more than one group
of data belong to novel concepts, the system should be able to recognise the various
concepts and update its structure to these new classes. All of these processes should be
implemented independently by the system without the intervention of the human. We
expect implementing these features increases the smartness of the machine, which may
help to improve the technology that used to implement the virtual reality.

We submit several semi-supervised methods to fit the various types of gesture data.
The system that we proposed has the ability to label the new gesture with three outputs.
The first output is the label of the most probable class. The second output represents
the believability flag, which will be set only if the first output is trusted. This flag is
used in the semi-supervised learning to select only the samples that the system is sure
of their labels (in the standard incremental learning). The last output is the novelty
flag, which is set on only if the sample does not belong to the concept the classifier was
trained on. This flag helps to distinguish between the gesture and random movements
and those gestures belonging to novel/unseen class. The novelty flag is used in the process
of updating the classifier on new classes by the incremental class learning. A sample of
the classifier output is shown in Table 1.1.

4 CHAPTER 1. INTRODUCTION

Table 1.1: A sample of the proposed algorithms’ outputs, where each row represents
different test sample. The first column corresponds to the most similar class label; the
second column is the believability flag which indicates if the label in the first column is
believable, and the last column contains the novelty flag.

Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Label 3 7 9 6 2 4 5 7 4 5 9 1 3

Believability 1 0 0 1 1 1 0 0 1 0 1 1 0

Novelty 0 0 1 0 0 0 1 1 0 0 0 0 1

1.1 Thesis Outline

The reminding parts of the thesis are arranged as follows. Reviews of the related work
for the gesture recognition, and semi-supervised learning are provided in Chapter 2 and
Chapter 3, respectively. The acquired and used datasets are presented in Chapter 4.
Chapter 5 – Chapter 7 present the details of the proposed semi-supervised methods of
non-parametric, non-linear classifiers and Metric Learning Based Semi-supervised, re-
spectively. A novel algorithm for the self-adaptive structure semi-supervised learning is
proposed in Chapter 8. The last chapter concludes the thesis and puts the suggestion of
the future extension.

1.2 Contribution

Due to the varieties of the gesture data, we present several accurate semi-supervised meth-
ods that can update themselves autonomously to the concept-drift. The semi-supervised
methods are incorporated with the ability to indicate the outliers and the novel gestures.
As the data are streamed continuously, an incremental learning is proposed for each algo-
rithm to reduce the time of the retraining in the online system and the ability to update
the class structure of the classifier is also combined. The summary of the contribution of
the thesis include:

• Proposal of a professional gesture data set that can be integrated into robotic sys-
tems or smart devices to control them.

• A simple and effective method is presented to spot the gestures. Where the segmen-
tation of the gesture is the most difficult challenge that faces the gesture recognition
systems. This is done by presuming the pre- and post-stroke. We assume the ges-
ture is occurring between two non-moving hand points. Additionally, the velocity
and the direction of the movement are taken into account.

1.2. CONTRIBUTION 5

• Proposal of efficient and effective features for the gesture recognition. This help to
represent the gesture with compact features, which leads to fast computations. As an
example of these features, we used the PCA to detect the most effective dimensions,
where we encode the movement direction in the new space by one feature called
“direction code”.

• An incremental computational of the covariance is proposed and used in the Ma-
halanobis distance to produce incremental metric learning. Then manipulate the
output of the metric learning to fit the extreme value theory (EVT) for novelty
detection.

• An incremental approximation method for Parzen window is proposed. The output
is adapted to fit the EVT.

• The output of incremental SVM classifier is adapted to fit the EVT.

• A confidence band calculation method is proposed on the output of the extreme
machine learning (ELM) to use it in the novelty detection in combination with the
output of the EVT. The outputs of the ELM are also manipulated to fit the EVT.
Additionally, we proposed a method to update both the confidences band and the
residual of the outputs incrementally.

• Proposal of a method of using the ELM as auto-encoder for novelty detection.

• Computation of a confidence band on the output of the polynomial classifier and
making use of it in the novelty detection in combination with the output of the
EVT. The outputs of the polynomial are also adapted to fit the EVT. Both the
residuals and the confidences band are updated incrementally.

• Proposal of a method to use the kernel trick in metric learning with decreasing the
dimension instead of increasing it.

• Implementation of the incremental learning and incremental class learning for all
proposed classifiers.

• Proposal of a general method to update the structure of the classifier (and also
ensemble classifier) independently based on incremental learning and incremental
class learning method.

• Proposal of a method to increment the number of classes autonomously using the
metric learning and the polynomial classifier.

6 CHAPTER 1. INTRODUCTION

2

Related work:
Gesture Recognition Systems

The main aim of gesture recognition approaches is to implement algorithms that can
recognise particular human gestures and response to these gestures in a way that fit
the system requirements, which is served by the recognition application. Previously, the
analyses of gestures in the computer science were limited. They have been increased with
the growth of the science of equipment and the development of sensors devices. With
the new high power of processing and large capacity of memories, the straightforward
mechanical input devices in the Human-Computer Interaction (HCI) such as keyboards
or mice have become insufficient to interact with these processors. This problem becomes
clearer with new technologies e.g. virtual reality displays or smart home environment
(Pavlovic et al., 1997; Madeo et al., 2016). Additionally, social robots need to recognise
what humans are doing and may able to guess why are they doing it to respond correctly
(Nehaniv, 2005). Although the long-term attempts in HCI to integrate the automatic
speech recognition and their successful implementation (e.g. Rabiner and Juang, 1993),
recently the gesture recognition becomes the most interest field in both academic and
industrial research (Madeo et al., 2013a) and it turned into a relentlessly vital part of our
daily lives. This technique introduces a new model of human-human communication into
HCI, which follows the pose/movement of human’s hand, arm, or any other part of the
human’s body depending on the application. Gestures are a non-vocal method used to
convey information among people (Pavlovic et al., 1997).

There are a variety of gestures types, and different parts of body implement these
gestures; consequently, various gesture recognition techniques are proposed to deal with
these categories. Turk (2014) mentions some ways of interacting, while Tran et al. (2012)
investigated the gestures that executed with different body parts. Interactions with robots
are studied by Salem et al. (2012) and with avatars by Kopp et al. (2003). Baraldi et al.
(2008) explored a method to recognise several gestures at the same time, where these
gestures may be implemented by a different individual on one or more devices (Madeo

7

8
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

et al., 2016). Before going further into the details of the gesture recognition, we will
explain some important terms in details to understand the recognition system efficiently.

2.1 Gesture Definition and Categories

A basic background and definition of the gesture are presented in this section. The
concepts in this section are discussed in the view of Human and Computer Interface
(HCI), psycholinguistic, and Linguistics; simultaneously to comprehensive, the readers
view.

2.1.1 Gesture definition

The gesture is non-vocal information conveyance, commonly used instead of or together
with the verbal communication (Kaâniche, 2009). There is a comprehensive range of
gesture types and it has been studied in different fields including linguistics, psychology,
and HCI. This variety leads to expand the concept of the gesture; consequently, there is
no exact definition of the gesture. In the view of the linguistics, McNeill (1992) defines
the gesture in his book (Hand and Mind: What Gestures Reveal about Though, page 1)
as: “the movements of the hands and arms that we see when people talk”. He also wrote
(page 2) “gestures are an integral part of the language as much as are words, phrases,
and sentences gesture and language are one system”. This concept is settled by Xu et al.
(2009) when they prove that the same neural system processes the symbolic gestures and
the spoken language. Kendon (2004), another pioneer in the linguistic field, defines the
gesture in his book (Gesture: Visible action as utterance) as: “a label for acts that have
the features of manifest deliberate expressiveness”. Thus, not all the gestures are used for
interaction. However, the definition of the gesture in the HCI fields considerably different.
Pavlovic et al. (1997) described the gesture as: “In a computer controlled environment
one wants to use the human hand to perform tasks that mimic both the natural use
of the hand as a manipulator and its use in human-machine communication (control
of computer/machine functions through gestures)”. However, this definition is limited
since the gesture approaches not restricted to the hand gestures e.g. in the smartphones,
looking down while reading a website or document leads to automatic scrolling upwards.
The gesture can be implemented by using particular shape or by using precise movement
as will be shown in Section 2.1.2.

2.1.2 Gesture categories

Similar to the definition of the gesture the categories are highly related to the field of
the study. From the linguistic point of view, Kendon (2004) identify different types of
gestures including:

2.1. GESTURE DEFINITION AND CATEGORIES 9

• Gesticulation: is the most daily used gesture along to humanism’s conversations;

• Speech-linked gestures: replace some words in the conversations i.e. it has own
slot within the sentences;

• Emblems: are familiar conventionalized signs used instead of the vocal interaction
and they are culture-based gestures;

• Pantomime: is a series of gestures as dumb show; and

• Signs: are lexical words in sign language such as American sign language (ASL).

This taxonomy is known as “Kendon continuum” (McNeill, 1992). While Ottenheimer
(2008); Kaâniche (2009) widen the categorization of the gestures into:

1. Emblems: for each gesture there is a direct interpretation of spoken words. It
replaces the verbal communications and culture-related exactly same as the emblems
in (Kendon, 2004).

2. Illustrators: correspond to the Gesticulation in the Kendon’s taxonomy which is
implemented in combination with the speech. A further division for this type into
four sub-categories is proposed by McNeill (1992) includes: (a) “iconic” have the
same scene of the speech; (b) “metaphoric” present an image of an abstract concept;
(c) “deictic” performed by pointing figure toward an object; and (d) “beats” such
as quick flick on the hand.

3. Affect displays: reflect the emotion or the intention of the communicator e.g. the
voice of the communicator may change if he is embarrassed.

4. Regulators: is a type of gesture used to control the interaction e.g. turn-taking in
the conversation.

5. Adaptors: is employed for a personal convenience, which may release the body
tension e.g. fast head shaking. This type of gesture is not used for communication
and might turn into a habit.

On the other side, Pavlovic et al. (1997) present a taxonomy of the gesture based on
(Quek, 1994, 1995) that fits the HCI. First, the movement of the hand may belong to
one of two major classes, gesture or unintentional movements. Secondly, the gesture is
subdivided to manipulative gesture, act on object e.g. object movement, or communicative
gesture, which is the most significant gesture. Thirdly, the communicative gesture further
subdivided into acts, related to the motion itself, and symbols gestures, which have some
linguistic roles. Finally, each of last two groups is divided into two subgroups. The
symbolic gestures are classified as either referential, e.g. move the index finger around a

10
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Table 2.1: The gesture taxonomy concerning the linguistics and HCI, the suggested unified
taxonomy at the last column.

Nehaniv McNeil Ottenheimer Pavlovic Unified

Symbolic
Gestures

Iconic Illustrators Modalizing
Emblems

Modalizing
Methaphoric Emblems Referential Referential

Deixis Deictic
Deictic

Acts
Deictic

Mimetic Mimetic
Side Effect Beats Affect Displays Beats

Manipulative Adaptors Manipulative Manipulative
Interactional Regulators Regulators

Unintentional Unintentional
Movements Movements

mean circle wheel or modelling gestures, which is the most used in HCI. It uses some
particular pose of the hand to represent specific means. The acts gestures are further
divided into mimetic, i.e. imitate action, and deictic i.e. pointing acts.

A new gesture categorization in terms of HCI is proposed by Nehaniv (2005) including:

• Irrelevant’/Manipulative Gestures are spontaneous movements along with the
motion of the human body but not reflect any meaning e.g. playing with a paper
clip,

• Side Effect of Expressive Behaviour are casual movements during the commu-
nication with others e.g. moving hands with emphasis speech,

• Symbolic Gestures are related to emblems gesture and has specifically prescribed
interpretation, like nodding,

• Interaction Gestures used to control and synchronise the interaction with the
partner such as the initialization and the termination of a particular behaviour, and

• Referential/Pointing Gestures are related to the deictic gestures in (McNeill,
1992) and also called Deixis, which used to indicate an object while communicating.

It is clear that there is a considerable overlap among all these gesture taxonomies.
The most common taxonomies are consolidated in Table 2.1 to simplify the disarrayed
classification, and we have proposed a unified taxonomy. The most important types
concerning HCI are written in a Bold font in the unified taxonomy Table 2.1.

Among the variety of gestures types, the symbolic/emblems gesture has been mostly
used in the HCI especially of the gestures that implemented by hands or arms. These
gestures are represented by either single hand or by both hands, and they are performed
either by hand pose “static gesture”, hand movement “dynamic gesture” or by both.
In this work, we track the emblematic dynamic gestures implemented by a single hand
through tracking the hand path for gestures acquired by Microsoft Kinect Sensor.

2.2. SENSORS 11

2.2 Sensors

In order to use the power of the HCI in term of the gesture, the movement and configura-
tion of the hand or any other part in the body that incorporate with the gesture should
be provided to the computers by using some technique. Acquiring the gesture has been
a target of different types of technology. This technology can be divided into two main
types: Contact-based Technology, and Vision-based Technology.

2.2.1 Contact based technology

Contact-based technology may be subdivided into five categories: Mechanical, Inertial,
Haptics, Magnetic and Ultrasonic (Kaâniche, 2009). Earliest devices have been a wear-
able mechanical device like the glove-based devices CyberGloves (Fels et al., 2009) and
DataGloves (Quam, 1990). This type of devices was heavy due to the cables connect-
ing the device to the computer and hence it restricted the naturalness of the interacting
with the machine (Pavlovic et al., 1997). A wireless connection between this device and
the computer is proposed to reduce the weights in CyberGrove II glove-based devices
(Fig. 2.1). These devices are used in gesture recognition e.g. (Kevin et al., 2004). A
full body suit “IGS-Cobra” is proposed by Synertial company to acquire the whole body
gesture (Fig. 2.2).

Inertial devices detect the movements with respect to the ground magnetic fields
change. They are available in two types: accelerometers and gyroscopes. The Wii-mote
sensors, which belong to the accelerometers type, are used in gesture recognition proposed
by Schlömer et al. (2008). Additionally, the most recent smart-watches are equipped with
an inertial measurement unit (IMU); whose main components are accelerometers, gyro-
scopes and magnetometers. These sensors are accurate and position independent. The
output of the IMU is a measure of velocity, acceleration or orientation. These measures

Figure 2.1: CyberGlove sensor (CyberGlove Systems LLC, 2017) as an example of contact
based technology. ©2017 CyberGlove Systems LLC.

12
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Figure 2.2: Synertial IGS-Cobra (Synertial Labs LTD, 2017), the body suit that contains
up to 47 sensors. ©2017 Synertial Labs LTD

can be used directly as features without further processing. Unfortunately, the IMU
cannot capture the pose information (Yin et al., 2014b). The public data ChAirGest
(Ruffieux et al., 2013) uses the IMU in combination with other sensors.

Recently, the Haptics including the multi-touch screen become essential in our daily
life through smartphones, tablets, laptops, etc. Although it becomes sophisticated, it is
still limited to one or more fingers in 2D space. The Magnetic devices estimate the motion
by measuring the variation of the artificial magnetic field. Finally, there are three types
of Ultrasonic sensors: an emitter, discs and multiple sensors. The position is estimated
through the time delay of the sonic propagation.

2.2.2 Vision based technology

Initially, some gesture recognition approaches used markers on gloves (without electronics)
to interpret the gesture using computer vision on the output of an RGB cameras (Mistry
and Maes, 2009; Schröder et al., 2012). Wearing gloves in each gesture acquiring increases
the affectation of the interaction in HCI therefore, Shin et al. (2004) and Fothergill et al.
(2012) used stereo RGB cameras with bare-hands considering the skin colour. The gesture
recognition approaches were augmented to include an IR-sensing (for both far- and near-
IR) to overcome the light condition problems in the RGB cameras (e.g. Starner et al.,
2000; Toriyama et al., 2016). Different types of cameras are used in the context of the
gesture recognition e.g. traditional cameras for a cheap cost, stereo cameras to deduce
3D information (Elmezain et al., 2008), and Pan-Tilt-Zoom (PTZ) cameras to focus on
particular details for more accuracy (Bodor et al., 2004). A depth sensing is added to the
vision-based approaches to acquire a gesture in 3D space e.g Microsoft Kinect Sensor and
Leap Motion Controller. The Microsoft Kinect sensor is used in this work as (Section 4.1),

2.2. SENSORS 13

Figure 2.3: Microsoft’s Kinect Sensor for the Xbox gaming system. The image is down-
loaded from Amos (2017a).

therefore the remind of this section discuss the Microsoft Kinect sensor. Recently, new
research object to use the Radar in gesture acquisition e.g. Soli project, which is adopted
by Google I/O 20151.

The well-known Kinect sensor (Fig. 2.3) is produced by PrimeSence. The first version
of it was announced in 2011 by Microsoft for Xbox video gaming while the newer one
was released in 2014. It contains an RGB camera, a depth sensor (Infrared sensor and
infrared light source), and multi-microphone arrays (Webb and Ashley, 2012). Thus, the
information received from the Kinect sensor is an RGB video stream, a depth data stream,
a stereo sound and a skeleton data stream. The video resolution in the first version was
(640×480 px at 30 Hz) or (1280×960 px at 12 Hz), while the resolution in the new version
is (1920 × 1080 px at 30 Hz). The depth data stream has a resolution of (640 × 480 px).
The sensor range limit is 1.2− 3.5 m (extended range 0.7− 6 m), and the required area is
about 6 m2 (Yin et al., 2014b). Additionally, it streams a full-body skeleton of 20 joints in
the first version or 25 joints (including the thumbs and hands tips) in the newer version as
seen in Fig. 2.4, which is presented by Microsoft. The error in the depth measurements is
increased proportionally with increasing the distance from the Kinect sensor, start with
few millimetres till 4 cm in the distance range of 0.5− 5 m (Khoshelham, 2011; Yin et al.,
2014b).

In contrast to the Kinect sensor, the Leap Motion Controller pay attention to the
accuracy within a limited area, particularly the hand region. It can track all ten fingers
with an accuracy of 10µm (Leap Motion Inc., 2017) through using two IR cameras and
three IR LEDs (Fig. 2.5). It can observe the hand motion up to 1 m distance. It optimised
to track the fingers and hence it may be considered as a challenge if trying to follow the
hand with “fist” pose (Yin et al., 2014b; Wikipedia, 2016).

1https://en.wikipedia.org/wiki/Gesture recognition

14
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Figure 2.4: Skeleton positions of the Microsoft Kinect relative to the human body. The
figure is adapted from Microsoft (2013a).

2.3 Gesture Segments

Speaking differs from the gesticulation by the starting and ending the discourse. There
are periods of silence between the words in the speech; this disappearing of the voice may
give an indication of the starting and the end of the word. In contrast, when a human
wants to start a gesture, for example using hand motion, the hand is available before the
gesture and still available after ends it i.e. the system receives a continuous movement.
Thus, detecting the start and the end of the discourse is more complicated than in speech.

The manual segmentation leads to several problems including high cost, unnatural
interaction with the system, and time-consuming e.g. 10 days were required to segment
one video (Quek et al., 2002). In order to solve this problem, a rest position is proposed

2.3. GESTURE SEGMENTS 15

(a) The Construction of Leap Motion Sensor ©2017
Leap Motion Inc.

(b) Using the Leap Motion Sensor to simulate the Hand ©2017 Leap Motion Inc.

Figure 2.5: Leap Motion Sensor (Leap Motion Inc., 2017)

16
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

(Kendon, 1980; McNeill, 1992). The discourse should start from the rest position and
end with it. Although this assumption simplifies the segmentation process, it limits the
naturalisation of the interaction with the machine. Therefore, some research is applied
to detect the start and the end of the gesture without the need to use the rest position
(Yin et al., 2014b). However, the more difficult challenge in the gesture recognition scope
is the gesture segmentation . Following Madeo et al. (2016); Kita et al. (1997), which
are based on McNeill (1992); Kendon (1980), the discourse of the gesture is divided into
gesture units (G-units). The G-unit represents the movement of the hand or any part of
the body that is doing the gesture, between two consequent rest positions. The G-unit
is decomposing to gesture phases, which are described by Madeo et al. (2016); Kendon
(1980); McNeill (1992) as:

• Preparation: moving the hand from the rest position to the position, where the
gesture’s starting point.

• Pre-stroke: brief pause before starting the gesture to find and configure the hand.

• Stroke (or nucleus as in (Pavlovic et al., 1997)) the meaningful movement that
represents the gesture.

• Post-stroke: short pause after ending the gesture with maintaining the hand con-
figuration and position.

• Retraction: returning the hand to the rest position.

These phases are illustrated in Fig. 2.6. The G-unit, as proposed by Kita et al. (1997)
may have more than one descriptive phrases and some phrases may (or may not) have
preparation or retraction phases. Only the stroke phase is compulsory, and all the other
aspects are optional i.e. it may be included or not. In addition to the dependent hold
(pre-/post- stroke), Kita et al. (1997) mentioned that some independent holds may occur
during the stroke phase (Madeo et al., 2016). These variations besides to the similarity
between some parts of the phases e.g the rest and holding make the segmentation more
complicated. Additionally, the exact instance of the transition from one phase to another
depends on the opinion of the specialist who is segmenting the gesture (Madeo et al.,
2016). These lead to different decisions of experts about the beginning and end of the
stroke as well as the same stroke may be extracted differently by the same specialist if he
segments the gesture more than once. Hence, it has become necessary for the researchers
to propose a solution for these challenges. In this thesis, we proposed an automatic
segmentation, which is explained in details in Section 4.1.

2.4. GESTURE SPOTTING 17

Figure 2.6: Illustration of the gesture phases (Ren, 2017). ©2017 Ada Ren

2.4 Gesture Spotting

Several kinds of literature discussed the gesture spotting e.g. (Alon et al., 2009; Yin
et al., 2014b; Bhuyan et al., 2014; Elmezain, 2010). Since Alon et al. (2009) argued the
spotting in details, several of their discussed items are covered here. As we mentioned
early, the movements of the body’s part (e.g. hands) may contain a meaningful gesture,
unintentional movements or manipulative gesture. Thus, the most challenging assignment
in the gesture recognition approaches is finding the start and the end of the meaningful
gesture from the continuous data stream i.e. temporal segmentation. Additionally, the
location of the gesturing body’s part (e.g. hands) should be determined in all data framing
i.e. spatial segmentation. Extracting only the meaningful gesture from the continuous
stream is called spotting, which requires spatiotemporal segmentation. Some research is
presented to solve gesture spotting, but most of them suppose that the gesturing body’s
part has been precisely localised in each data frame as in (Alon et al., 2005; Lee and
Kim, 1999; Morguet and Lang, 1998; Oka, 1998; Yoon et al., 2001; Zhu et al., 2002).
Unfortunately, this assumption is subject to several problems since in reality, locating
the gesturing body’s part is ambiguous in the existence of clutter, other people, skin-
colour objects, or background motion. According to Alon et al. (2009), gesture spotting,
existing algorithms can generally be categorised into two: direct and indirect approaches.
Algorithms that belong to the direct strategies implement the temporal segmentation
before starting the recognition while other type intertwined the temporal segmentation
with the recognition. If we assume that each gesture recognition algorithm contains two
modules, which are the low-level module, where the spatial segmentation is applied, and
the high-level module, where the final trajectory should be recognised. Thus, the temporal
segmentation is implemented within the low-level module indirect methods and within the
high-level module in the indirect methods. The low- and mid-level motion parameters e.g.
velocity, acceleration, and orientation are used in the direct approaches like (Kang et al.,
2004; Kahol et al., 2004). The foremost constraint of the direct methods is the assumption
that the gesture should arise between two non-gesturing intervals. The boundaries of the
gesture in the indirect approaches are found by matching the input sequence with the

18
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

known gesture classes and select the input interval that gives a good recognition score as
in Alon et al. (2005); Lee and Kim (1999); Oka (1998). Commonly, the indirect methods
of extracting the gesture are based on one of the Dynamic Programming (DP) extensions
such: Hidden Markov Models (HMMs) (Lee and Kim, 1999; Wilson and Bobick, 1999;
Vogler and Metaxas, 1999; Brand et al., 1997; Starner et al., 1998; Stefanov et al., 2005;
Chen et al., 2003), Dynamic Time Warping (DTW) (Darrell et al., 1996; Kruskall and
Liberman, 1983), Continuous Time Programming (CTP) (Oka, 1998), and Conditional
Random Fields (CRF) (Quattoni et al., 2007; Lafferty et al., 2001). Those methods find
the end point of the gesture by comparing the recognition likelihood to a fixed or an
adaptive threshold. Using a fixed threshold is non-practical assumption to deal with the
inconstant data stream’s likelihoods. Hence, several kinds of research are proposed to
estimate an adaptive threshold by using a non-gesture model, for example, Lee and Kim
(1999); Yang et al. (2006) used HMMs model, and Yang et al. (2009a) used CRFs. The
primary constraint of the indirect methods is that first detect the end point of the gesture
then they use the backwards spotting to track the starting point of the gesture. This
process leads to a time delay between the segmentation and the recognition modules.
Additionally, they need more time of processing and more complicated techniques e.g.
an optimisation process. Regularly, the highly accurate spotting often leads to more
complexity, thus less reality.

Some other types of research mixed the direct and indirect methods by candidate more
than one frontier in the low-level module, and the most accurate one is selected in the
high-level module e.g. Alon et al. (2009).

2.5 Hand Tracking and Feature Extraction

The first module in the gesture spotting is the spatial segmentation which is the locating
of the body’s part of the actor in the streamed images. In the case of hand gesture,
this process is called hand tracking, and it is needed particularly in vision-based sensors.
The hand tracking differs from application to another. For example, the hand shape
is important in the applications that are used to recognise static (hand pose) gestures,
therefore, the whole hand is extracted from the rest of the image by using one of some
methods. The well-known method uses the skin colour to segment and tracks the hand
(Yin et al., 2014b; Dadgostar et al., 2005). The applications that employ the dynamic
gesture effort to estimate the trajectory of the hand rather than the shape of the hand
(Cutler and Turk, 1998). These applications may look to the hand as a blob, and they
estimate the 3D axis of the hand’s centre only in each of the successive streamed image.
Consequently, the trajectory of the hand is tracked only. In our work, the 3D axis of the
hand is obtained directly by the Kinect sensor.

In the case of pose gestures, the main two types of features are hand contour and
hand texture features. Frequently, the Fourier transform is used with the contour features

2.6. GESTURE RECOGNITION APPROACHES 19

(Yao, 2014) while the texture features have different representations where the Histogram
of Gradients (HoG) (Dalal and Triggs, 2005) and the Scale Invariant Feature Transform
(SIFT) (Lowe, 2004) are the best-known methods. In contrast to the hand pose recog-
nition approach, the approaches that track the dynamic hand trajectories have a limited
number of features, which can be divided into two types: local and global features (Yao,
2014). Hand orientation, speed, movement direction, acceleration, and location of the
Cartesian and Polar axis, are an example of local features (Yoon et al., 2001; Elmezain
et al., 2009). While the pattern shape features extracted from the complete hand trajec-
tory, represent the global features.

2.6 Gesture Recognition Approaches

As mentioned earlier, there are several types of acquiring the gesture. Consequently, the
gesture recognition algorithms are diverse according to the acquisition methods, the body
part that makes the gesture, and the type of the tracked gesture. We will cover the hand
gesture approaches in this section since the most dominant gestures in the HCI topic are
implemented by hand(s). Additionally, most of contact-based sensor’s outputs are used
directly as features without further processing; hence we will focus on the vision-based
methods. An enormous amount of studies target vision-based methods because they
help to interact naturally with the machines with bare hands or without any additional
wearable device. Furthermore, the dynamic hand gesture is the main goal of our study.
Since static gestures have been covered in a large number of studies, some topics in this
section will deal with it. Previously, the hand gesture algorithms were divided into two
main types: model-based algorithms and appearance-based algorithms(Pavlovic et al.,
1997). Recently, new techniques are proposed to solve the hand gesture problems. Hence,
we follow the categories proposed by Abid (2015) including:

• 3D Model-based Approaches,

• Appearance-based Approaches,

• Machine Learning Algorithm Based Approaches,

• Rule-based Approaches,

• Syntactic Approaches, and

• Local Feature Approaches.

These categories can be summarised in the Fig. 2.7.

20
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

F
ig

u
re

2.
7:

S
ch

em
at

ic
d
ia

gr
am

re
p
re

se
n
t

th
e

w
el

l-
k
n
ow

n
m

et
h
o
d
s

of
th

e
ge

st
u
re

re
co

gn
it

io
n

ap
p
ro

ac
h
es

2.6. GESTURE RECOGNITION APPROACHES 21

2.6.1 3D model-based approaches

The 3D hand/arm models can be further subdivided to volumetric and skeletal models.
Volumetric models have been mainly used in computer animation industry (Thalmann
and Thalmann, 1990) and then used in computer vision applications (e.g. Koch, 1993).
They are used to represent the 3D visual appearance of the human hand/arm. The 3D
hand model’s parameters are estimated by minimising the error between the 2D input im-
ages of the hand with the 2D projection of the proposed 3D model. Complex 3D surfaces
such as NURBS (non-uniform rational B-splines), generalized cylinder, and Super-quadric
(Pavlovic et al., 1997) are mostly used by the volumetric models in computer animation
(Fig. 2.8). NURBS models provide a rich description to the hand, which allowed recog-
nising a wide range of static hand gestures. Although they become realistic, they are
computationally intensive, and they are too complicated to use in the online recognition.
Additionally, they require a large database to train on the entire characteristic shapes for
different views (Abid, 2015). The other types i.e. generalized cylinder and super-quadric,
are used to simplify the body part rendering (e.g. Murugappan et al., 2013). Even though
this simplification, the estimation of the model’s parameters is still very complex and the
dimension of the parameters is very high (Pavlovic et al., 1997). In order to overcome
these problems, the skeletal-based models are used instead of the volumetric models. In
these models, only the joint angles and the segments lengths are used to represent the
hand or the arm. These models are discussed in details in Thompson (1981). In the recent
researches, the skeletal details of the whole body can be directly gotten from the Microsoft
Kinect sensor. In this work, we have used the Kinect sensors to acquire the skeletal of
the human. Unfortunately, the most recent version of the Kinect sensor represents the
hand by only three joints including the centre of the hand, the tip of the index and thumb
fingers. In the proposed work the centre of the hand has been quite sufficient.

2.6.2 Appearance based approaches

This type of approaches derives the parameters directly from the images, without needs
to construct a spatial model to the body. Pre-define templates of the hand or any other
body’s part are used for this purpose. Following Kaâniche (2009) and Pavlovic et al.
(1997), different models belonging to this type of approaches include:

• Colour based models: body markers are used in this model to track the motion
of the body. A multi-scale colour feature together with particle filtering may be
used in this methods in a hierarchal way (e.g. Bretzner et al., 2002).

• Silhouette geometry based models: the silhouette geometric properties, e.g.
perimeter, surface, convexity, rectangularity, bounding box/ellipse, orientation, elon-
gation and centroid are used in this methods (e.g. Birdal and Hassanpour, 2008).

22
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

• Deformable based models: deformable 2D templates are represented by a set
of points located on the outline of the hand, or any body’s part. They are used
to approximate the object outline by considering the points as interpolation nodes
(Pavlovic et al., 1997). These templates consist of two types of parameters, which
are the internal parameters and external deformation. The internal parameters
are represented by the average point sets, which describe the average shape of a
specific group of shapes, and the point variability parameters, which describe the
possible variation within a certain group of shapes. For example, all the open
hand posture belongs to the same group specified by the same shape on average.
Any possible posture of an open hand may slightly vary from the average. The
external deformations describe the overall motion of the template e.g. rotation and
translation. This method is used in a wide range of applications, for example,
(Cipolla and Hollinghurst, 1996; Cootes et al., 1995; Ju et al., 1996; Ramani et al.,
2016).

• Motion based models: 2D image sequences are used as gesture templates. Each
of these image sequences models one type of the used gesture types. The parameters
that used in these methods are the images themselves or features derived from them.
Either the complete hand image sequence (e.g. Darrell et al., 1996) or the fingers
image sequence (e.g. Crowley et al., 1995) can be used as templates depending on
the application. Another type of approaches called motion history images (MHIs)
(Bobick and Davis, 1996), which are 2D images represent the visual image over a
temporal window. The intensity of each pixel in this image is related to the period of
the motion sustained at this pixel (Pavlovic et al., 1997). Some other applications,
which concern about the deictic gesture, used a single fingertip and a reference point
only. These approaches assume the location of the fingertips relative to the palm is
different in most of gestures (e.g. Fukumoto et al., 1994; Vogel and Balakrishnan,
2005).

2.6.3 Machine learning algorithm based approaches

Learning the machine means giving it the ability to discriminate among classes that it
had been previously trained on. Commonly, the accuracy of the learning algorithms is
increased with increasing the training data. This section gives a short overview of machine
learning algorithms for gesture recognition. Using the machine learning in the pattern
recognition is described in details in Chapter 3. Some of the massive machine learning
algorithms are used in the gesture recognition field. Among these algorithms, the Hidden
Markov Model (HMM) and also the Conditional Random Fields (CRF), the Artificial
Neural Network (ANN), Dynamic Time Warping (DTW), Support Vector Machine (SVM)
and instant based approaches are dominant in the gesture recognition. A brief description

2.6. GESTURE RECOGNITION APPROACHES 23

(f)

Figure 2.8: Hand models. Different hand models can be used to represent the same hand
posture. (a) 3D Textured volumetric model. (b) 3D wireframe volumetric model. (c) 3D
skeletal model. (d) Binary silhouette. (e) Contour (f) Colour. The sub-figures (a)–(e)
are adopted from Pavlovic et al. (1997) (©1997 IEEE) and the sub-figure (f) is adopted
from Schröder et al. (2012) (©2012 IEEE).

of these approaches is presented in this section in separate paragraphs. Despite the
advantage of the machine learning in the gesture recognition e.g. high accuracy, flexible,
fast, etc., they are suffering from two major problems: feature selection and training
dataset (Elmezain, 2010). Using a large number of features raises the dimensionality,
which may affect the speed of the recognition and in some cases, affects the accuracy. In
contrast, a significant reduction in the number of the features leads to poor recognition
accuracy. Hence, finding only the useful features is crucial. On the other side, training
the algorithm with a sufficient number of the training samples is vital to work properly.
Unfortunately, in this thesis, we work on data streaming, which means scarcity in the
training data with abundant unlabelled data. This is the main problem that we try to
solve in this thesis.

24
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Hidden Markov model

Hidden Markov Model (HMM) is widely used to solve the Spatio-temporal problems
(Elmezain, 2010). Initially, the HMM was used in terms of speech recognition (e.g. Ra-
biner, 1989) then it extended to the gesture recognition (e.g. Starner et al., 1998; Gao
et al., 2004; Elmezain, 2010). It has been used in about 29% of all gesture recognition
studies (Madeo et al., 2013b). The segmentation phase and the recognition phase can be
optimised simultaneously (e.g. Yin et al., 2014b), which is the main feature of the HMM.
Commonly, HMM used to recognize pre-defined gestures (e.g. Chen et al., 2011). An ex-
tension of the HMM has been used to discriminate more gesture classes (e.g. Kettebekov
et al., 2005). Harper and Shriberg (2004) proposed three different models and combined
their outputs in one HMM model in order to achieve a final decision. Wilson and Bobick
(2000) used the HMM to estimate the temporal model structure only, while training the
HMM model is implemented at the beginning of online phase rather than offline phase.
Corradini (2001) used the Neural Networks to compute the transition probabilities for
the HMM in a hybrid model.

Conditional random fields

Conditional Random Fields (CRFs) are a undirected graphical model, which unlike HMMs,
that model the joint probability p(x, y), CRFs model the probability p(x|y) of a label se-
quence Y given the input sequence X (Vail et al., 2007). This gives CRFs the ability to
consolidate complex input features and maintaining the independence assumption. The
linear-chain CRF is well-known in the language processing (e.g. Roark et al., 2004). Since,
the gesture is similar to the language, CRFs presented in term of gesture recognition (e.g.
Yang et al., 2009a; Vail et al., 2007).

The CRFs are augmented by adding hidden states to present the Hidden Conditional
Random Fields (HCRFs). The HCRFs can represent the complex dependencies of the
training data or their implicit structure (Chang et al., 2009b). It is used in the gesture
recognition in several approaches, for example, (Wang et al., 2006; Quattoni et al., 2007).

Artificial neural networks

The Artificial Neural Networks (ANN) simulate the biological neural network in the brain
of humans or animals. Normally, ANNs have been used in the machine learning to estimate
non-linear functions, which may depend on multiple inputs. The nodes in the ANN
are the fundamental units, which may act similar to the neurons in the brain. The
neural networks consist at least of 3 layers; the input layer, where the input should
apply to the ANN; the hidden layer(s), which contain the nodes (neurons); and the
output layer. By increasing the number of hidden layers (as in deep learning) it becomes
able to approximate very complex functions but at the expense of the complex training.
The nodes are fully connected via weighted links. These weights are estimated during

2.6. GESTURE RECOGNITION APPROACHES 25

the training phase. Additionally, each node has an activation function e.g. radial basis,
sigmoid, etc. The activation function’s parameters are also estimated during the training
phase. Mainly, there are two structures of ANN, which are the recurrent neural network
and a multi-layer feed forward neural network. Although the recurrent structure may
model more complex systems than the feed-forward structure, its training is very complex
and it may behave chaotically. An example of using the neural network in the gesture
recognition is the Gesture Driven Interface in Virtual Environments (GIVEN) proposed
by Vaananen and Bohm (1993). They used two models of ANN; the first one is for static
gesture recognition and the second model is for dynamic gesture recognition (Elmezain,
2010). A real-time gesture to speech approach is implemented by Fels (1994) based on a
neural network. Another application of using neural networks in the gesture recognition
is proposed by Kjeldsen and Kender (1995) to control a window-based interface system.
The system is based on two layers; in the first layer, the hand is spotted in real time and
the second layer (or the action layer) uses a grammar to map the detected images by the
first layer with the required action. Regarding stereo cameras, Stiefelhagen et al. (2004)
used two neural networks to process the head’s disparity and intensity in a combined grey
and depth data. The first network is used for the tilt in the head’s orientation and the
second for panning.

Template matching

Before comparing a gesture with the template, it should be normalised. The main tech-
nique of the normalisation is the dynamic programming. The dynamic programming
includes Dynamic Time Warping (DTW), Continuous Dynamic Programming (CDP)
and Dynamic Time Alignment (DTA). DTW algorithm is used for the normalisation in
many applications, particularly the speech recognition (Rabiner and Juang, 1993; Bhuyan
et al., 2008). It can measure the similarity between two sequences even they differ in time,
speed, acceleration and length. We may get an inaccurate result if we used the Euclidean
distance to compute the similarity between two out of scale gestures. Normalising the
gestures in the Spatio-temporal space is very important to get a realistic result when
comparing two gestures because it is very difficult to perform two identical gestures in
length and dimensions even if the person insist. Even if we assume the gestures are iden-
tically performed, the result of comparing them using direct Euclidean distance will be
not accurate if there is a time shift between the two gestures. Initially, the DTW was
used with 1D sequences especially, audio signals but then it was extended to work with
multi-dimensional data (Gillian, 2011). In this work, it is modified to fit 2D data, which
represent the location of the hand in 2D space (cf. Section 4.1.1). The CDP is also used
in several approaches to segment and classify the gestures. It is successfully applied in
different approaches (e.g. Takahashi et al., 1992; Li and Greenspan, 2007; Seki et al.,
1993).

26
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Support vector machine (SVM)

Support Vector Machine (SVM) is a technique that maps two distributions, non-linearly
separated, from the original features space to a high-dimensional space to find the op-
timum hyperplane that separates these two distributions. The optimised hyper-plane is
then used to perform a classification or regression for the new samples (Vapnik, 1998;
Madeo et al., 2013a). Originally, SVM was announced by Vapnik (1963) and then de-
veloped by Boser et al. (1992). It can be simplified by the following example (Madeo
et al., 2013a), suppose N is the number of samples in the training set. The samples are
in the form { #»x i, yi}Ni=1, where the #»x i is the feature vector and the yi ∈ {−1,+1} is the
label of the #»x i. Then the goal of the SVM is finding a hyperplane that separate the
two classes optimally using fsvm(#»x i) = #»wsvm

T #»ϕ(#»x i) + b′. The #»wsvm here represents the
optimal weights, b′ is the optimal bias. The input feature vectors are mapped to the
high-dimensional space using the non-linear mapping #»ϕ . The hyperplane is optimised by
maximising the distance between hyperplane and the nearest data from each class in the
training phase, which leads to computing the optimal weights wi and optimal bias b′.

Initially, the SVM was a binary classifier i.e if the output ŷ > 0 then the sample
belongs to first class else it belongs to the second class. Solving the optimisation of the
hyperplanes for multi-classes together is more complicated in comparison to solving it into
several binary classes. This problem is solved by looking at the multi-classes problem as
several binary problems, Zhang et al. (e.g. 2006). The multi-classes problem decomposed
to either one-vs-all or one-vs-one binary classifiers. In one-vs-all taking each class and
consider all other classes as one class and find an SVM model for this class. This process
is repeated for all classes and the output of each new sample is computed for each model.
Hence, if the number of the classes is Nclass then the number of models in this approaches
will equal to Nclass. While one-vs-one is taken each possible combination of two classes
and compute the hyperplane. This method gives a number of Nclass(Nclass− 1)/2 models.
The final output is obtained by different methods e.g. voting by majority. The SVM
classifier is used in the gesture segmentation and recognition in some approaches (e.g.
Madeo et al., 2016; Ramakrishnan, 2011; Ramakrishnan and Neff, 2013).

In the systems that need to increment the number of classes without train new classi-
fiers from the start as we supposed in this thesis, the one-vs-one configuration needs to add
several new SVM models for each new class. Hence, we adopt the one-vs-all configuration
in Section 5.4.

Instance/Distance based approaches

In this type of approaches, the training data samples are explicitly used to classify the new
samples. Literally, there is no real training process and no any prior pieces of information
otherwise the training data. It assumes that the samples which have the same label should
lie close each other in the Euclidean space (Dasarathy, 1991). The clearest example of

2.6. GESTURE RECOGNITION APPROACHES 27

this approaches the metric learning and particularly, the K-nearest neighbour algorithm
(KNN) (Altman, 1992). The KNN algorithm classifies the new sample by finding the
labels of the k-nearest training samples and make a majority voting. Although these
approaches are simple and have acceptable accuracy in the gesture recognition topic (Ali
and Shah, 2010), they need to store all the old samples, which it is difficult especially
when training data are streamed continuously as in our case.

Other approaches

There are extensive studies in the field of machine learning related to gesture recognition.
We explain the most used in the field of the gesture recognition, but the studies are
not limited to these methods. Spano et al. (2012) used a Petri Nets based meta-model to
implement a compositional model gesture definition. While, Choi et al. (2008) apply the k-
means. Some other techniques used the probabilistic methods (e.g. Eisenstein et al., 2008)
used Bayesian analysis and (Wong and Cipolla, 2006) used Relevance Vector Machine .

2.6.4 Rule-based approaches

Manual rules are encoded in this type of approaches, and the gesture’s label will provide
the output if the input features justify the corresponding rule (Abid, 2015). A set of
rules is proposed by Cutler and Turk (1998) to classify human actions. Su (2000) predicts
the hand’s motion that is related to low-level features. Trajectories of the motions are
analysed and predicted in Hassan et al. (2010) using the rule-based technique. Whereas
Chang et al. (2009a) suggest a method which accepts the variation in the input gesture if
it is performed by different people. They based on fuzzy rules to track and recognise the
posture and action.

2.6.5 Syntactic approaches

Syntactic pattern recognition is also called structural pattern recognition. Sometimes the
simple features are not enough to represent complex structural objects in the recognition
system. Instead, the Syntactic approaches represent them by a set of elementary parts
called Primitives (Abid, 2015). The primitives are a variable-cardinality set of symbolic
and nominal features2. The elementary part should satisfy some rules to be identified
as Primitive (see Sonka et al., 2014). Thus, Syntactic approaches consider the interre-
lationships among the attributes, which leads to the ability to represent more complex
structures than normal pattern recognition. Additionally, a set of grammar should be
identified to construct the different patterns or actions from the described primitives.
This type of pattern recognition is used to recognise the hand gesture or the human
activity (e.g. Hand et al., 1994; Derpanis et al., 2004; Ryoo and Aggarwal, 2006).

2https://en.wikipedia.org/wiki/Syntactic pattern recognition

28
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

2.6.6 Local feature approaches

Local image features have been used to provide a compact representation of the pattern
in image (Laptev, 2005). These features are also called “interest points” (Laptev, 2005),
which are a set of independent local regions within the image. The spatial interest points
are extended to Spatio-temporal features for a compact representation of video or space-
time events (Abid, 2015). The shape and motion characteristics are captured by Local
space-time features and then provide a representation of the events. The events repre-
sentation is independent of their spatial-temporal shifts and scales. Additionally, it is
independent of the background or to the multiple motions in the scene. motion segmen-
tation and tracking are not required to capture these features since they are extracted
directly from the video (Wang et al., 2009). Several approaches used different tools to
implement the local feature on the gesture or action recognition (e.g. Laptev, 2005; Abid,
2015; Sanin et al., 2013).

2.7 On-line Recognition Algorithms

In some applications, the recognition and sometimes the training should be implemented
in real-time e.g. robotics. Since the gestures streamed continuously in the real-time mostly
by humans, the receiver e.g. Robot should reply in the same speed, and any delay may
cause to miss some information, which may incur a high-risk (Feng et al., 2011). For
example, a double tap gesture used in some application to add a musical note, if the
application is not fast enough to acquire both taps then the gesture will be translated
into another meaning. Some other applications need to update/retrain the classifier by
new training samples in real-time. The training or updating the classifier in real-time
is called real-time learning, or online learning. Updating the classifier by using only the
new data and some parameters representing the old data instead of saving all the old
samples is called incremental learning. Song et al. (2012) used the Latent-Dynamic Con-
ditional Random Field (LDCRF) with temporal window to achieve online segmentation
and recognition simultaneously. The hierarchical HMMs are used for online musical ges-
ture recognition in (Gillian, 2011). Yin et al. (2014b) also used HMMs to implement
online recognition for the static and dynamic gesture in a single framework.

2.8 Gesture Application

Gesture recognition has a wide range of applications and it has been employed in several
domains of our life. Some of the recent and important applications, particularly vision-
based gesture, are discussed here.

2.8. GESTURE APPLICATION 29

2.8.1 Virtual reality

Simulated environments are produced by a computer technology to enable the humans
to manipulate objects and interact virtually. The Virtual Reality (VR) uses gestures in
the interactions to obtain more realistic environment. VR is widely used in the Gaming
applications through 3D monitors or head-mounted display (Fig. 2.9).It is also used in
the training systems, for example, the pilot simulation. Berry (1998) used the gesture to
navigate, select, and move the objects in a virtual battlefield environment (Abid, 2015).
Roudavski et al. (2010) used the virtual reality for transport and urban design projects3.

2.8.2 Sign Language Recognition

The sign language recognition aims to interpret the hand and head gesture into text or
speech. Developing this application is very important for deaf people to enable them to
communicate with other people or machines. Both static and dynamic gestures may be
used in the sign language, which is mainly implemented by hand or head. A sentence-
level continuous American Sign Language (ASL) is recognised in real-time based on HMM
system by Starner et al. (1998). The neural network also used in the recognising the
Persian and Japanese languages in (Karami et al., 2011; Murakami and Taguchi, 1991),
respectively.

2.8.3 Human Machine/Robot Interaction

Several applications provide interactions between human and machine without using the
traditional input devices such as mice and keyboards. An example of devices that use
gesture in the interaction with the human is smartphones, tablet, laptop, or any other
touchscreen devices, which may be available at shops or public services. The smart
environments or smart houses are another application of the gesture recognition regarding
the human-machine interaction e.g. control the light intensity or navigate the channels
on the TV by using the gesture.

Many approaches have been implemented to provide communication between the hu-
man and the robots through using hand and arm gestures (Malima et al., 2006; Ghobadi
et al., 2008). The social robots, which socially interact with a human, are currently grow-
ing. This type of robots can provide a kind of care to the children, elderly, or atypical
human (Dautenhahn, 2007). Thus, they are necessary to understand the human ges-
ture and interact according to it. Additionally, they designed to communicate with each
other, communicate with the environment and behave according to traditional social and
cultural norms (Li et al., 2011). These robots have been expected to learn and repro-
duce the human body movements. The movements or gestures that are companying the
speech have been shown they induce the meaning of the social interaction. Consequently,

3https://en.wikipedia.org/wiki/Virtual reality#cite note58

30
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Figure 2.9: Head Mounted Display. The image is downloaded from Amos (2017b).

they have become the main feature in the human-robot interaction design (Fong et al.,
2003; Cabibihan et al., 2012). “Hawk” (Fig. 2.10) is the first commercial generation of
the humanoid robots introduced by Dr Robot Inc.(Abid, 2015). Some other robots can
follow the human instructions or can classify their emotions (Sato et al., 2007). Another
generation of the robots can learn by human demonstration through different types of
machine learning (Yorita and Kubota, 2011). Recently, the robot “Pepper” produced
in Japan by “Aldebaran Robotics” and “SoftBank Mobile” is well-known as the newest
emotional robot (Fig. 2.11). It is designed to be similar to persons with 4 feet tall and
has pretty good ability to recognise the facial expressions such as sadness, hostility, and
also recognise the facial expression within the voice (Pepper, 2017).

In this thesis, Some specific emblematic arm gestures are adopted, which are normally
used as instructions to robots Section 4.1.1.

2.8.4 Medical Systems and Healthcare Technology

The computerised devices have gradually become dominant in the hospitals. Using these
devices in the hospitals has encouraged the use of new methods to interact easily with the
devices and prevent spreading infection caused by the conventional methods like keyboards
and mice. This interaction can be implemented by using the natural interaction with
the computer including the gesture and speech recognition (Wachs et al., 2006). Some
research is proposed in this context Graetzel et al. (e.g. 2004) proposed several methods

2.8. GESTURE APPLICATION 31

Figure 2.10: Hawk, the earliest social robot produced by “Dr. Robot Inc” (©2001-2017
Dr. Robot Inc.).

Figure 2.11: Pepper, the newest emotional robot produced by “Aldebaran Robotics” and
“SoftBank Mobile”. This image is adopted from Tanaka et al. (2015).

32
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

Figure 2.12: Hand gesture interface for medical visualization applications (Gestix). The
image is adopted from Wachs et al. (2008). ©2008 IEEE

to integrate the gesture with the medical devices and the virtual mouse is one of these
methods. While Wachs et al. (2011, 2008) present some methods to navigate and explore
the Magnetic Resonance Imaging (MRI) images via gestures (Fig. 2.12).

Although the medical instruments normally are used by the doctors and nurses, they
help the disabled patients to feedback and user adaptability as a part of their rehabilitation
therapy (Abid, 2015). For example, the wheelchairs in (Kuno et al., 2000) are provided
by gesture command recognition. Chen et al. (2009) present a smart environment based
on gesture and facial expression as a healthcare environment.

2.8.5 Presentations/Gesture-to-Speech

The gesture may be used in the presentation of the weather narration or technical reports
to pinpoint what the presenter is talking about (Ju et al., 1997). The pointing gesture
is mostly used in this type of applications. Additionally, the interpretation would be
very helpful if implemented simultaneously with the presenter speech (Kaâniche, 2009).
Kettebekov et al. (2005) proposed an algorithm to analyse the synchronisation of the

2.8. GESTURE APPLICATION 33

gesture and the speech during the presentation. While Yin et al. (2014b) submitted
HMM models of hand gesture to control and navigate the slides during the presentation.

2.8.6 Video Surveillance

Surveillance cameras and Closed-Circuit Television (CCTV) have been increasingly grown
and used for surveillance the public places since the September 11’th attack (Niu et al.,
2003). The safety and the security are the main targets for the video surveillance
(Kaâniche, 2009). While the number of the videos have been increased, an automatic
method of detecting the abnormal actions e.g. violent and furtive actions are necessary
to achieve. Hiroshi et al. (2006) submitted an approach to observe elevators for any vi-
olent actions e.g. bag-snatching. The video surveillance is used for safety purpose in the
hazard areas in (Chang and Huang, 2004). A large study is proposed by Carnegie Mellon
University on the video surveillance in (Collins et al., 2000).

34
CHAPTER 2. RELATED WORK:

GESTURE RECOGNITION SYSTEMS

3

Related work:
Semi-Supervised Learning and Data Stream

The gestures of the same class cannot be performed in the same manner by different
persons. Also, the same individual may implement the same gesture class in a different
manner if he implements it more than one time. Therefore, in principle, the classifier
should be trained with all possible gestures performed in all possible manners to get an
acceptable recognition rate. Unfortunately, the manually labelled data are costly, and it
is impossible to get labels for all possible gestures. Hence, we cannot train the classifier
in fully-supervised learning. In contrast, the unlabelled data are streamed continuously,
which has made us able to use the semi-supervised learning to solve this problem. That
means the classifier is initially trained on a labelled data set in a supervised manner; then
the training set is updated using the labels assigned by the classifier (Zhu and Goldberg,
2009). However, several problems arose out of using streamed data, e.g. the “infinite
length” and the “concept-drift”. Many online algorithms (Masud et al., 2011) addresses
these issues. Besides, there are some possible problems such non-linearly separable dis-
tributions of the data, the emergence of new classes or outliers, and the computational
complexity.

These problems can be overcome by using incremental learning and an outlier de-
tection. Incremental learning is used to discard all old data and update the classifier
parameters with the new data only. So, the continuous update of the classifier ensures
that it follows the concept drift without needing to use the whole data of the training set.
An outlier detection is adopted to reject all outliers, since the false labels assigned by the
classifier potentially affect the performance of the classifier after the next training cycle.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2015a,b,c,d,e,f,
2016a,b,c,d,e)

35

36
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

3.1 Machine Learning

The term ”Machine Learning” was initially used by Arthur Samuel in 1959. He defined
it as ”the field of study that gives computers the ability to learn without being explicitly
programmed”. Mitchell (1997) broadened the definition of the machine learning to cover
most types of learning algorithms. He stated that:

”a computer program is said to learn from experience E, with respect to some task T,
and some performance measure P, if its performance on T as measured by P improves
with experience E.”

To better understand this definition, we consider an email spam filter example. When
the user marks some of the emails as spam, the email program learns which type of emails
is mostly undesired (corresponds to experience E) and uses this information to improve
the spam filter automatically (corresponds to the task T). The performance measure P is
the accuracy of the filter (Gutierrez, 2015).

The term ”Machine Learning” in the computer science community is highly related
to the term ”Pattern Recognition” in the engineering community. They are two faces
of the same field of studies, which are related to automated data analysis and trying
to classify them into classes (Theodoridis and Koutroumbas, 2009; Bishop et al., 2006;
Barber, 2013). The machine learning has made a revolution in the artificial intelligence
and currently, it is considered the most interesting field in the computer science and the
software engineering. It has been integrated into a wide range of applications including
computer vision, speech recognition, dimensionality reduction, biomedical applications,
smart devices, etc.

Barber (2013) broadly divided machine learning into supervised learning and unsu-
pervised learning. In supervised learning, all the labels of the training data, which form
the set of the data that is used to train the algorithm, and the training data itself are
assumed to be available at the beginning of the learning process. The aim of the super-
vised learning is to get a highly accurate classification. In contrast, the training data are
assumed to be available without labels in the unsupervised learning. The objective of
unsupervised learning is to group or cluster the data due to its similarities. Unsupervised
learning methods are also called clustering algorithms (Theodoridis and Koutroumbas,
2009).

Many traditional machines learning algorithms are trained only on manually assigned
data, where all data should be available at the beginning of the training. However, these
two conditions of such algorithms are hard to fulfil, since most real-life data such as
gesture, are streamed continuously as unlabelled data. The manually labelled data are
costly, time-consuming, and hard to get since they require experienced annotators. Addi-
tionally, streamed data are often affected by drift, outliers, the emergence of new classes
and disappearance of some other classes. Similarly, it is tough to use unsupervised learn-
ing, since the data is streamed continuously and not entirely available at the beginning
of the learning process. A third technique of machine learning called semi-supervised

3.2. SUPERVISED LEARNING 37

learning is located in between the supervised and the unsupervised learning. It uses
labelled and unlabelled data to extract the pattern formula. There is a broad range of
semi-supervised techniques, and some of them can be utilised in the online classification,
which fit the data stream. For a better understanding, the semi-supervised techniques
are presented in more details in 3.4. Additionally, a brief explanations of the supervised
and unsupervised learning are discussed in Section 3.2 and Section 3.3, respectively.

3.2 Supervised Learning

Each pattern should be represented by feature vectors #»x i, for example the hand gesture
may be represented by the hand position, velocity, orientation, etc. In supervised learning,
along with each pattern #»x i, e.g. gesture, there is an output label yi that state its means
or class, e.g. yi ∈ {Come,Bye} if the gesture corresponds to come or bye. The aim of the
supervised learning is to estimate the mapping from #»x i to yi, given a training set D of N
independently identically distributed (i.i.d) examples #»x i with their corresponding labels
D = {(#»x 1, y1), . . . , (

#»xN , yN)} ∈ (X ,Y), where X and Y are the a set of feature vectors
and their label set, correspondingly. Hence, for any new sample #»x ′, the algorithm should
accurately predicts the label y(#»x ′). If the label set of the training data is continuous i.e.
y ∈ R then the learning task is called regression while it is called classification if the label
set belongs to discrete labels. The supervised algorithms belong to two families, which are
either generative or discriminative algorithms. The generative algorithms try to estimate
the predictive density p(y|x) by estimating the class-conditional density p(x|y), which
is related to the joint density p(x, y) from which the pair (#»x i, yi) may be drawn. The
discriminative algorithms try to estimate p(y|x) without caring about how the data have
been generated, e.g. SVM (Chapelle et al., 2006b; Barber, 2013).

3.3 Unsupervised Learning

In supervised learning, we assumed that the training data D were available as a set of
feature vectors X and their labels Y . However, the labels are not always available and
only feature vectors set X is attainable. Hence, the aim of unsupervised learning is to
detect the underlying similarities and group (cluster) similar features vectors together
(Theodoridis and Koutroumbas, 2009). In other words, the objective of unsupervised
learning is to model the distribution of the data p(x) (Chapelle et al., 2006b). Unsu-
pervised learning has been used in several applications in engineering and social science,
including outlier detection, data mining, dimensionality reduction, pattern recognition,
quantile estimation, remote sensing, image segmentation, and image and speech coding.

The task of the unsupervised learning faces many challenges, e.g. the effect of the
noise and data sparseness. Additionally, there is no prior information about the number,

38
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

the size and the shape of the clusters. Thus, many assumptions are used to simplify
the unsupervised learning task. For example, some techniques assume the number of the
clusters to be known, and the task is only to assemble the data into these clusters, e.g.
k-means (MacQueen et al., 1967). Other methods presume the number of the clusters to
be unknown but use a particular window size to estimate the kernel density, where the
window size is significant to the results, i.e. different window size give different clusters, e.g.
mean-shift algorithm (Comaniciu and Meer, 2002; Cheng, 1995; Fukunaga and Hostetler,
1975). Therefore, different algorithms are proposed to solve the various problems. Some of
these techniques are OPTIC, DBSCAN, principal component analysis (PCA), minimum
spanning trees, hierarchical clustering, Gaussian mixture models, self-organizing maps
and hidden Markov models.

In this section, we will discuss some of these techniques since they used in this thesis,
which are the k-means algorithm and the mean-shift algorithm.

3.3.1 k-means

Among unsupervised learning techniques that are based on minimising a formal objective
function, the simplest and the most widely used to solve the clustering problem is k-
means clustering (MacQueen et al., 1967). k-means is a process that objects to partitionN
individual of a d -dimensional population into k sets. It should minimise the mean squared
distances (squared error distortion) between the samples and the centres (centroids) of
their k sets. Initially, k samples are randomly selected as centroids of the required k
clusters, one for each cluster (Larose, 2014). The location of the initial centroids is crucial
for the optimisation process. Thus, choosing different initial locations may give different
clusters. So, the preferred choice is to distribute them as far as possible from each other.
Next, it associates each sample in the dataset to the nearest centroid. Then, the centroids
are updated to the point of the gravity of the estimated sets from the previous step. This
process is iterated till the locations of the centroids are approximately settled. Several
algorithms are proposed to find the minimal local solution, e.g. the generalised Lloyd’s
algorithm (Kanungo et al., 2002). k-means is used in Section 5.3 and Section 7.2.

3.3.2 Mean-shift

Unlike the k-means, where the number of the clusters is required in prior, the mean shift
estimates it automatically. Additionally, the mean shift is unrestricted to the shape of the
clusters. The mean shift algorithm, which is a non-parametric technique, is proposed by
Fukunaga and Hostetler (1975). All the analyses are performed in the feature space. The
idea behind the mean shift clustering algorithm is that the feature space can be considered
as the empirical probability density function (pdf) of the represented parameter. Hence, it
detects the mode of the unknown density (that’s why it is called mode-seeking algorithm)
by locating the local maxima of the pdf, which corresponds to the dense region in feature

3.3. UNSUPERVISED LEARNING 39

space. The cluster that is associated with the determined mode then is described based
on the feature space (Comaniciu and Meer, 2002). The procedure is started by locating a
kernel at each of the given N samples #»x i, i = {1, 2, · · · , N} that are drawn from a density
function f(#»x) in a d -dimensional space Rd . So, the average of the samples within a par-
ticular window size hw is determined by using the kernel density estimate. Consequently,
the centre of each window is shifted to the mean of the samples in that window. This
procedure is iteratively applied until the windows have no more movement. According
to Comaniciu and Meer (2002), the multivariate kernel density estimate determined by
kernel K(#»x) is given by

f(#»x) =
1

Nhw
d

N∑
i=1

K

(
−‖

#»x − #»x i‖2

hw
2

)
, (3.1)

supposed that the profile of the kernel K(#»x) is a normal multivariate profile

k(x) = e−
1
2
x, x ≥ 0. (3.2)

The stationary locations of the density function (modes) can be found by equalising
the gradient of Eq. (3.1) to zero

−2

Nhw
(d+2)

N∑
i=1

(#»x i − #»x)K ′

(
−‖

#»x − #»x i‖2

hw
2

)
= 0 (3.3)

where K ′(#»x) represents the derivative of the kernel K(#»x). The mean shift uses an
iterative method to find the solution of this gradient, which is the local maximum. The
increment is given by

δ #»x =

N∑
i=1

#»x iK
′
(
−‖

#»x− #»x i‖2

hw
2

)
N∑
i=1

K ′
(
−‖

#»x− #»x i‖2

hw
2

) − #»x , (3.4)

where #»x is the current mean. The mean shift vector δ #»x in the iterative computations
is guaranteed to tend towards the direction of increasing density and converge to a local
mode of the distribution (Comaniciu and Meer, 2002). A small perturbation may be
added to the current mean vector to overcome saddle locations (Anand et al., 2014).

Due to the powerful features of the mean shift, it has been used in several applications,
e.g. image smoothing and segmentation (Wang et al., 2004). It was also extended to work
on nonlinear data e.g. kernel-induced feature space (Vedaldi and Soatto, 2008). Several
other fields are mentioned in (Anand et al., 2014). The mean shift clustering algorithm
is used in Section 8.2.

40
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

3.4 Semi-Supervised Learning

Commonly, the labelled data are available in small amount {(#»x 1, y1), . . . , (
#»x l, yl)} ∈

(X ,Y), where l is the number of labelled data in the training set, while the unlabelled
data is available in large amount { #»x l+1, . . . ,

#»x l+u ∈ X}, u is the number of the unlabelled
data in the training set and u > l. For example, the gesture data are easily acquired
from different sources but it is difficult to get labels to all the available gestures since it
assigned by experts. The semi-supervised learning (SSL) uses both type of data, labelled
and unlabelled, to enhance the accuracy of the classifier more than if the labelled data
are used only (Barber, 2013).

In most cases, the researchers look to the semi-supervised learning as a supervised
learning with some additional information about the distribution X . This assumption
is appropriate for the application trying to predict the label of the given #»x as in the
supervised learning. However, it is not suitable if the number and the structure of the
classes have to be concluded. In the latter case, the semi-supervised learning is seen as
unsupervised learning with some constraints (Chapelle et al., 2006b). Due to the use of
two types of data, the labelled and the unlabelled, there are two different settings of the
semi-supervised learning, which are inductive and transductive semi-supervised learning.
The inductive semi-supervised learning tries to infer the mapping fssl : X 7→ Y so that fssl
can predict all future samples #»x , which is similar to the supervised learning. The trans-
ductive semi-supervised learning is trying to estimate the labels of the unlabelled training
set only i.e. trying to estimate the mapping fssl : X l+u 7→ Y l+u (Zhu and Goldberg, 2009).

Although, the unlabelled data do not have information about the mapping fssl : X 7→
Y , the data give better imagination about the marginal distribution p(x). The semi-
supervised learning link this distribution with the conditional distribution p(y|x) by using
some assumptions. Following Subramanya and Talukdar (2014), the assumptions are:

• Smoothness Assumption: The neighbour samples in the high dense regions should
have close output (same class) or the function fssl : X 7→ Y is continuous in regres-
sion problems. The self-training learning uses this assumption.

• Cluster Assumption: The decision boundary between the classes should fall into the
low-dense region. The semi-supervised SVM (S3VM) and some of the graph-based
methods use this assumption.

• Manifold Assumption: The high dimensional data fall into a low dimensional mani-
fold. This hypothesis helps to handle high dimensional data in the machine learning
on a comparatively low dimension. Some implementation of the manifold assump-
tion can be found in the work of Goldberg (2010).

Different assumptions led to different semi-supervised learning methods (Zhu and
Goldberg, 2009); the standard methods are explained in this section.

3.4. SEMI-SUPERVISED LEARNING 41

3.4.1 Self-training methods

The classifiers that based on the self-training methods are updated on their prediction.
The self-learning method is implemented as follow: first training the classifier on the
labelled samples Dl = {(#»x i, yi)}li=1 as supervised learning. Secondly, select a subset of
samples S from the unlabelled data Du = { #»x i}l+ui=l+1, i.e S ⊂ Du, and estimating the
label ŷi for each sample #»x i ∈ S. Thirdly, if S has N ′ samples, then this samples and
its predicted labels {(#»x i, ŷi)}l+N

′

i=l+1 are combined with Dl to retrain the classifier. Finally,
the number of labelled sample l updated to l = l+N ′ and the subset S is excluded from
the unlabelled data Du. However, all the samples in the S are gotten labels, only the
samples of highly confidence label are used to retrain the classifier. The same process is
repeated till the last subset in the unlabelled data. Notably, the number of samples N ′ in
the subset S may vary from iteration to another. Several advantages recognise the self-
training methods. The major feature is the simplicity and it used as a wrapper method.
Wrapper means the selection of the classifier’s type is totally free i.e. it can be varied
from simple like kNN to complex like SVM. Additionally, it doesn’t effect on the inner
structure of the classifier and hence it appropriates for the data stream. This method can
be generative or transductive depending on the used classifier. However, the false labels
assigned by the classifier potentially will affect the performance of the classifier after the
next retraining cycle and hence this method is very sensitive to the outliers (Zhu and
Goldberg, 2009). This method of semi-supervised learning is used in all of the proposed
classifiers in this thesis (Chapter 5, Chapter 6 and Chapter 7).

The early research discussed the self-training is (Yarowsky, 1995). Several other lit-
eratures are proposed for the self-learning includes (Scudder, 1965; Riloff et al., 2003;
Rosenberg et al., 2005). For a further understanding of the self-learning, the analysis is
discussed in (Haffari and Sarkar, 2007; Culp and Michailidis, 2008).

3.4.2 Co-training

According to Blum and Mitchell (1998), the idea of the co-training is to look at the
labelled data from two different views and use a different classifier for each view. Given a
labelled data Dl = { #»x i, yi}li=1 and an unlabelled data Du = { #»x i}l+ui=l+1, two views for each

sample in the labelled data Xl =
[
Xl

(1)Xl
(2)
]

are found. Several methods are available

to implement this process such as: dividing the features of the sample to two groups;
dividing the samples themselves to two groups or by compute some transformations of
some information in the original data. The two views should be conditionally independent
and each view should have enough information to classify the samples. Two classifiers
fssl

(1) and fssl
(2) are trained on Xl

(1) and Xl
(2), respectively. The unlabelled data may also

need to be divided into two views Xu =
[
Xu

(1)Xu
(2)
]

or may the whole unlabelled data

provided to both classifiers depending on the method that be used to implement the two

42
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

views on the labelled data. Then, the two classifiers fssl
(1) and fssl

(2) are applied on the
unlabelled data Xu

(1) and Xu
(2), respectively (if one view is available for in the unlabelled

data then the whole data are applied to both classifiers). Since the goal of the co-training
is to make cross learning between the classifiers, the samples of the most confident labels
for each classifier should be added to the training data of the other classifier. In case
of each view contains some features from the same sample, Let Ỹ1 and Ỹ2 be the most
confident labels with respect to fssl

(1) and fssl
(2), respectively. The corresponding feature

data will be X̃ (1)

(1) and X̃ (1)

(2) from the first view data and X̃ (2)

(1) and X̃ (2)

(2) from the second

view data. Then the data {X̃ (1)

(2), Ỹ2)} and {X̃ (2)

(1), Ỹ1)} should be added to training data

Xl
(1) and Xl

(2) of the classifier fssl
(1) and fssl

(2) respectively. After updating the training
data of each classifier, the classifiers should be retrained. This process can be applied
iteratively to all subsets of the unlabelled data. The subset should be removed from the
unlabelled pool after added it to the training data. Finally, the labels of the test data can
be obtained by voting the two classifiers or by averaging their output (Didaci and Roli,
2006).

The co-training is submitted by Blum and Mitchell (1998) and used in a wide semi-
supervised learning applications e.g. (Zhou et al., 2007; Chawla and Karakoulas, 2005).
More details about the analysis of the co-training can be found in (Balcan et al., 2004).

3.4.3 Probabilistic generative models

The unlabelled data may help to estimate the distribution of all classes together. The idea
of the mixture models is to break down this mixture into individual classes. The labelled
data may tell us the number of the classes, but the parameters of their distribution are not
accurate, e.g. the mean, variance and prior probabilities for Gaussian distributions. Using
the whole data (labelled and unlabelled) helps more accurate estimation of these parame-
ters. Fig. 3.1 explain how the unlabelled data help to estimate more accurate parameters.
In this example, there are two classes of one-dimensional data. The original distribution
is plotted in solid black while the estimated distributions of the two classes are plotted
in dashed blue and dashed red, respectively. The means of all distributions are plotted
by centreline with the corresponding colour. Additionally, the symbol (’o’) represents the
labelled and the symbol (’x’) represents the unlabelled samples. The distribution and the
mean of each class that estimated from the labelled data only (Fig. 3.1(a)) are shifted and
not accurate, while those are estimated by using both of the labelled and the unlabelled
data (Fig. 3.1(b)) are close to original values. The parameters of a proposed model should
be optimised to give a maximum probability for the data generated from this model and
similar to the training data (Goldberg, 2010).

Since the dataset D = {(#»x 1, y1), · · · , (#»x l, yl),
#»x l+1, · · · , #»x l+u} in the semi-supervised

learning consists of the labelled and the unlabelled data, the maximum likelihood esti-

3.4. SEMI-SUPERVISED LEARNING 43

(a) Only Labelled Data (b) Labelled and unlabelled data

Figure 3.1: The accuracy of the estimated parameters is improved when the unlabelled
data are used. The black solid line is the original distribution, while the blue and the red
dashed lines represent the estimated distribution for the two classes, respectively. In (a),
only the labelled data are used to estimate the distribution of the classes, while in (b)
both data are used to obtain more accurate approximation.

mation (MLE) cannot be solved analytically. The log likelihood function in the semi-
supervised learning is described as:

log (D|θprob) = log
(∏

p(#»x i, yi|θprob)li=1

∏
p(#»x i|θprob)l+ui=l+1

)
(3.5)

=
l∑

i=1

log p(yi|θprob)p(#»x i|yi, θprob) +
l+u∑
i=l+1

log p(#»x i|θprob). (3.6)

Where the model parameters are represented by θprob. The first term in Eq. (3.6) is the
standard log likelihood in the supervised learning. The second is an additional term used
in semi-supervised learning to include the unlabelled data in the parameters estimation
(Zhu, 2011). Hence, the MLE needs to fit both data in non-concave problem. Non-concave
problems can be solved by finding a local maximum using algorithms such Expectation-
Maximization (EM) (Dempster et al., 1977) or may solve by direct optimization methods
e.g. (Liu and Nocedal, 1989). The generative model assumes that the data come from a
mixture, where all probabilities e.g. prior and conditional are correct. This is the weakness
of the generative models since it is hard to appraise the correctness of the model due to
the lack of the labelled data (Goldberg, 2010).

Some of the theoretical analysis of mixture model is proposed in (Chapelle et al.,
2006a; Ratsaby and Venkatesh, 1995) whereas, Cozman et al. (2003) show that the unla-
belled data may decrease the model performance if the assumption was wrong. Several

44
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

applications of the mixture model are implemented in (Nigam et al., 2000; Fujino et al.,
2008)

3.4.4 Semi-supervised support vector machines

Initially, Vapnik (1998) proposed the Transductive Support Vector Machine (TSVM) to
use the labelled and unlabelled data by using the transductive setting. Bennett et al.
(1999) developed the learned function of the TSVM to apply it to the unseen test samples.
By this update the method becomes not transductive but inductive, hence it is more
relevant to called as Semi-Supervised Support Vector Machine (S3VM). The S3VM uses
the labelled data to train a normal SVM and uses the unlabelled data by the optimization
process i.e. finding the optimum margin with the existence of the unlabelled data. It uses
the cluster assumption of the semi-supervised learning, which means the data in the
same cluster should have same label (Chapelle et al., 2006c). Olivier Chapelle proposed
numerous implementation of S3VM (e.g. Chapelle et al., 2008, 2006a,c). Due to different
types of the optimization, there are a wide range of implementations of the S3VM e.g
(Yang et al., 2009b; Karlen et al., 2008).

3.4.5 Graph-based methods

The labelled and unlabelled data are used as vertices to construct a graph-based semi-
supervised learning. Commonly, the obtained graph is large if the unlabelled data size
is big. These vertices are connected to each other (or to the k-nearest neighbour) by
weighted edges, which represent the similarity between the pairs of the data points. The
graph-based models adopted the smoothness assumption, which assumes the labels in
the graph is varied smoothly. The labelling process is started by finding labels to the
unlabelled vertex. The unlabelled sample is labelled with the same label of the sample
that is connected to it with heavy edges (Zhu and Goldberg, 2009). Suppose the edge
weight θij connects the sample #»x i and the sample #»x j then it is computed as follows:

θij = exp

(
−‖

#»x i − #»x j‖2

2σgraph2

)
(3.7)

where σgraph is the bandwidth parameters, which control the drop of the weights.
There are several heuristics to specify the weights including:

• Fully connected graph: all vertices are connected to each other.

• kNN graph: each vertex is connected to the kth neighbour vertices.

• b-matching graph: each vertex is connected to b other vertices with symmetric
weights. Sometimes the weights set to one for the b connected vertices and set to
zero for other vertices

3.4. SEMI-SUPERVISED LEARNING 45

Figure 3.2: The graph-based Label interpretation. Where the unlabelled sample #»x 3

should be labelled with the same label of the sample #»x 1 because it is the closer labelled
sample in the graph. Although, the sample #»x 2 is closer than #»x 1 in the Euclidean space, it
is considered further than #»x 1 in the graph. The figure is adapted from Zhu and Goldberg
(2009)

.

• εNN graph: every two samples are considered connected if the Euclidean distance
between them is equal or less than ε. All edges between unconnected samples are set
to zero, while the edges of the connected samples are either set to one or computed
by using Eq. (3.7).

Fig. 3.2 shows an example of how the samples are labelled. If #»x 1,
#»x 2 are two labelled

samples (vertices). Then, the label y3 of an unlabelled sample #»x 3 is estimated from
the neighbours in the graph. The neighbours may in turns labelled by the neighbour’s
neighbours. Using this stepping stones, y3 is assumed to be similar to y1 although it
closer to y2 in Euclidean space.

The graph-based models try to minimise the loss of the labelled data at the same time
they ensure smoothness of the whole data. Choosing different loss functions, regularisa-
tions, and the ways to solve the problem leads to several Graph-based semi-supervised
learning algorithms. These algorithms include: Mincut, randomized Mincut, Boltzmann
machine, graph random walk, Gaussian Random Fields and Harmonic Functions, Mani-
fold regularization, Local and Global Consistency, Graph Kernels, Spectral Graph Trans-
ducer, local averaging, density based regularization, alternating minimization, boosting,
Tree-Based Bayes, and some other methods (Subramanya and Talukdar, 2014; Zhu, 2005).
Some literature discussed the graph construction itself (Hein et al., 2007). The theoreti-
cal analysis is described in (Zhang and Ando, 2006; Johnson and Zhang, 2007) and some
application is proposed in (Goldberg and Zhu, 2006; Niu et al., 2005).

46
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

3.5 Data Streams

A data stream is a sequence of samples that are continuously presented to the system for
an unlimited time. These samples are originated according to a probability distribution,
which may have “concept-drift” i.e. it changes in the course of time. In this scheme,
new concepts may emerge, and known concepts may disappear (Faria et al., 2013). For
example, the gesture recognition system on some devices like medical devices, robotics
and smart devices, may continuously receive several types of gestures from different users
for unlimited time.

The basic problems of data streaming are the “infinite length”, the “concept-drift” and
the “concept evolution”. The first two issues were addressed by most of existing online
algorithms (Masud et al., 2011). While a limited number of algorithms are presented
to solve the third issue alone or in a combination of the other two issues (e.g. Masud
et al., 2012). So, we proposed several algorithms, each of them solves all the problems
altogether. For example, the solution of the concept evolution is discussed in Section 3.7.
Due to the infinite length, the size of the data collected from the stream will increase, and
then both tremendous hardware resources and an indefinite time (infinitely long time)
will be required to train the system with these data. In contrast, the system should
be retrained with the data continuously to overcome the effects of concept-drift, e.g.
statistical properties of the classes or the appearance of novel classes. It will be very
complicated to retrain the system continuously if the data are originated from streams of
infinite length. In addition, the emersion of new classes within time or vanishing some
of the existing classes are significant problems. Thus, contrary to traditional static data,
data streaming is characterised by the following properties (according to Farid et al.,
2013):

• it is dynamic,

• the number of samples is infinite, and their dimension is high,

• the samples are presented only once and are not repeated,

• the data arrive at high speed,

• and the data properties may change over time.

The most recent studies offer solutions to a single problem either by the incremen-
tal learning for “infinite length” or by novelty detection technique for arriving data be-
long to unknown classes or outliers. Additionally, most of the novelty techniques were
implemented as one-class classifiers. But in the reality all problems mostly happen to-
gether hence, we need to resolve all these issues (“infinite length”, “concept-drift”, “novel
classes”, and “multi-class system”) in one algorithm. However, in order to apply it to on-
line classifications, these problems need to be solved while maintaining a sufficient speed of

3.6. INCREMENTAL LEARNING 47

classification. The combined “infinite length” and “concept-drift” problem may be solved
by incremental learning. The incremental learning allows a continuous retraining of the
system without the need for the old data when updating the system. This incremental
learning algorithm, however, should have the ability of novelty detection, and it should
be also able to work in a multi-class system. Although, applying the novelty detection on
the data stream is an essential challenge since concepts in data streaming are hardly ever
constant (Gama, 2010).

3.6 Incremental Learning

An intelligent biological system regularly can learn through their lifetimes and make the
experience over time. So, the incremental learning is a significant facility to build a
brain-like intelligence machine (He, 2011). The definition of the incremental learning is
“Incremental learning is a machine learning paradigm where the learning process takes
place whenever new example(s) emerge and adjusts what has been learned according to
the new example(s).” (Geng and Smith-Miles, 2009).

According to He (2011) there are three aims of the incremental learning algorithms:
applying the previous knowledge to the presently received data to facilitate learning from
these new data, expanding the knowledge over time to maintain a reasonable decision-
making accuracy, and realising global generalisation through the continuous learning to
achieve the goals. The incremental learning is not only needed to emulate the intelligent
biological system, but it is also necessary for several real-world applications including the
stream data. In contrast to the traditional environment where the whole training data are
available for the initial training, the data are streamed continuously in the data stream
environment. Therefore, the machine learning system should be able to update itself
incrementally to reacts with the continuously arrived data, which may have concept-drift.
Additionally, the classifiers should be updated in real-time to be able to follow the data
stream.

Different approaches have been proposed to deal with data streams and incremental
learning. Generally, the techniques may be subdivided into single model classifiers and
ensemble classifiers, i.e. a combination of multiple classifiers. While single model classifiers
are required to update themselves and/or their structure as soon as new data become
available. Ensemble approaches create more than one classifier. Each classifier may be
based on different hypotheses and different subsets to simplify the update. New classifiers
are trained on the new training data and then added to the ensemble. Unfortunately, this
method may be inappropriate for very large amounts data, because such ensembles may
grow an immense number of classifiers.

An incremental SVM classifier was proposed by Diehl and Cauwenberghs (2003). The
parameters are constantly adapted to new data. Chen et al. (2008) used the history of the
data stream to build higher order models for each concept that are constantly changed.

48
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

Ensemble-based classifiers were proposed by Masud et al. (2011) and Ditzler and Polikar
(2013). The former one addresses novelty detection while the later one focusses on the
concept-drift in imbalanced data systems.

In some semi-supervised learning approaches, a manual assignment to some samples
that are used in the next training is possible. This procedure is called “active learning”
(Settles, 2010), which is implemented by Schumacher et al. (2012) for gesture recognition.
These techniques solve just a part of the problems which is using all or some of the
unlabelled data to retrain the classifier, but it still needs all the old data in the retraining
process. Additionally, small amounts of incorrect labels can decrease the accuracy of the
system in the next training, which leads to failure of the system in the end.

Since neural networks may be used to approximate and function, they have been used
for decades in machine learning. Consequently, a variety of incremental neural networks
exist throughout the literature. Polikar et al. (2001) introduced the well-known learn++
algorithm, which is a supervised learning algorithm that uses an ensemble of neural net-
work classifiers to achieve incremental learning even if new classes are introduced. Huang
et al. (2004) and Xun and Chang-shan (2005) presented a simple sequential growing and
pruning algorithm for additive or RBF network (GAP-RBF). It uses the concept of “sig-
nificance” of a neuron and links it to the learning accuracy. Feng et al. (2009) proposed a
method to automatically increment the number of the hidden neurons to minimise the er-
ror. The output weights are updated incrementally while the network grows. Huang et al.
(2006a) proposed an incremental extreme learning machine (IELM) by adding nodes that
are randomly generated to the single-layer feed-forward network (SLFN) and computed
the output weight analytically for the new nodes only. Liang et al. (2006) developed
IELM for batch learning of chunks of data. Huang and Chen (2007) proved that the
convergence rate of IELM might be improved by recalculating the output weights of the
existing nodes using a convex optimisation method when new random nodes are added.
Huang and Chen (2008) proposed a method to add only the nodes that decrease the
residual error the most to make the IELM network compact and reduce the complexity
of the calculations. Lan et al. (2009) adapted the algorithm proposed by Liang et al.
(2006) to be more stable using an ensemble. Yang et al. (2013) proposed a parallel chaos
search based incremental extreme learning machine (PC-ELM). It uses an additional step
to obtain a more compact network architecture. Ye et al. (2013) proposed a time-variant
extreme learning machine network to work with non-stationary environments. Guo et al.
(2014) modified the algorithm presented by Huang et al. (2006b). The new algorithm is
based on an extreme learning machine (ELM), a unified least square support vector ma-
chine (Suykens and Vandewalle, 1999) and a proximal support vector machine (Fung and
Mangasarian, 2005) to provide a method for incremental multi-class regression. Yin et al.
(2014a) presented an online fault diagnosis method based on incremental super vector
data description (ISVDD) and an ELM with incremental output structure (IOELM) to
solve the problem when the class number in fault diagnosis is not constant.

3.7. INCREMENTAL CLASS LEARNING 49

3.7 Incremental Class Learning

Recently, several techniques for machine learning related to incremental learning have
been presented (e.g. Guo et al., 2014; Ye et al., 2013). Most of the proposed incremental
algorithms for multi-class classification can be updated only for the new data that belong
to fixed classes, which the classifier has been trained initially. The learning process is
not limited to get more information about the objects that already known. However, the
unique property of learning is updating the old information with new concepts. Hence,
adding new classes or concepts to the trained classifiers is essential in the learning process.
Regrettably, if new classes are available, the traditional classifiers should be retrained with
the entire data i.e. the initial data and the new data of the new classes. This technique is
time-consuming, and it is not appropriate for streamed gesture or online recognition. In
data stream, the number of classes may be changed, as mentioned in Section 3.6, and the
old data are tough to store. Hence, in addition to updating the classifier incrementally to
new samples that belong to the known classes, the classifier should be able to learn new
concepts without a need for the old data.

Zhao et al. (2014) and Mańdziuk and Shastri (2002) proposed an incremental class
learning using neural network. Zhang et al. (2006) used the SVM to present incremental
class learning algorithm. Faria et al. (2013) used an ensemble classifier to implement the
incremental class learning.

3.8 Ensemble Learning

Commonly, humans collect several opinions and then they weight these opinions to obtain
a final decision. A similar technique is adopted in the machine learning compensating the
classification results. It is implemented by combining multiple diverse classifiers to obtain
a classifier that outperforms every one of basic classifiers (Rokach, 2010). The outputs
of the classifiers may be weighted or voted by majority to get the final output. This
methodology is called “ensemble methods” in the literature. Regularly, the combined
classifiers belonging to the same basic model with some minor variations. However, models
belong to a different family are also used in the ensemble method (e.g. Masud et al. (2011)).
Initially, the ensemble method was established when Tukey (1977) used an ensemble of
two regression models to fit the data and the residuals separately. Afterwards, Dasarathy
and Sheela (1979) used two classifiers to partition off the input space. During the Nineties,
several algorithms have been developed to achieve the ensemble method (e.g. Martyna
et al. (1992) and Berg and Neuhaus (1992)). Simultaneously, Schapire (1990) suggested
the fundamentals of the well-known ensemble algorithm “AdaBoost” (Freund et al., 1996).
It used weak classifiers, i.e. their performance was a bit better than arbitrary classification,
to construct a strong ensemble classifier. The ensemble methods are also employed in
the unsupervised learning (e.g. Valpola and Karhunen, 2002). The impact of successful

50
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

improvement of the ensemble classification performance, they are applied in a wide range
of fields. Some of these fields are: image retrieval (e.g. Lin et al., 2006), bio-informatics
(e.g. Tan et al., 2003), finance (e.g. Leigh et al., 2002), medicine (e.g. Mangiameli et al.,
2004), geography (e.g. Bruzzone et al., 2004), manufacturing (e.g. Maimon and Rokach,
2004) and chem-informatics (e.g. Merkwirth et al., 2004). According to Rokach (2010)
there are different algorithms of ensemble methods including:

• the wisdom of crowds,

• the Bagging algorithm,

• the Boosting algorithm,

• the AdaBoost algorithm.

Each algorithm has different features and is used in various applications. In this
thesis, the first type “wisdom of crowds”, which is also called “voting by majority” in
other literature, particularly, in Chapter 8.

3.9 Novelty Detection

“Novelty detection” is a technique that is used to indicate the samples which do not
belong to the concept learned by the machine learning system. In the literature, nov-
elty detection is also known as “anomaly detection”, “one-class classification” or “outlier
detection” (Pimentel et al., 2014). Novelty detection is mainly applied by training a one-
class classifier which assigns the labels new data normal if the sample is recognized and
abnormal if it is not recognized. We call the normal data “known”, i.e. it is generated
from the same distribution of the known data, and the abnormal data “unknown”,i.e. it
is generated from a distribution that differs from the distribution of the known data, to
reflect that the mineralogy of the abnormal spectral data is unknown. Any distribution
can be modelled if a sufficient amount of data is available. This is often the case for
training data, i.e. the data which are used to adapt the classifier. In contrast, different
types of abnormality have a small number of, at least at the time of training, and maybe
solely contained within the test data, i.e. that data that the classifier is applied to. Hence,
it is commonly possible to construct a model of the known data while it is not possible to
estimate a model of the unknown data. Although the novelty detection is formally a one-
class problem, the known concept may be composed of different classes of normal data,
and different types of abnormality belong to the unknown concepts (Faria et al., 2013),
e.g. new types of minerals, camera calibration, noisy data. The unknown samples in the
data stream may belong to new classes that the classifier did not learn, an outlier, or a
noisy sample of known data. Hence, the classifier should indicate this sample to exclude it
from the data that are used for updating the classifier in the incremental semi-supervised

3.9. NOVELTY DETECTION 51

learning. The fails of indicating these samples lead to training the classifier with wrongly-
classified samples thus the classifier may fail to detect further outliers. Consequently, the
classifier will accept more outliers in the continuous updating, which leads to breaking
down the system. The incoming known data may be added to update the model by the
incremental learning as described in Chapter 5, Chapter 6, and Chapter 7. In the case
of collecting enough amount of unknown data that originated from the same concept, a
new class may be added to the model by using the incremental class learning described
in Chapter 8.

The novelty detection approaches should detect most of the unknown samples while
maintaining the false alarm rate low as possible i.e. minimising the rate of the known
samples that incorrectly indicated as novel samples. Hence, the main metrics that are
used to evaluate the novelty detection technique attributes are the true positive rate and
the false alarm rate. The true positive rate is the number of novel samples that are
correctly indicated divided by the total number of novel samples. The false alarm rate
is the number of the normal samples that are indicated as novel samples divided by the
total number of normal samples. In the case of a one-class system, receiver operating
characteristic (ROC) curves are used to compromise the true positive rate and the false
alarm rate. These curves are difficult to use in multi-class system, hence we used Mnew

and Fnew (explained in more details in Section 5.2) to represent the above two metrics.
Due to the importance of the novelty detection in a wide range of applications, there

were different approaches proposed to solve the problem. Pimentel et al. (2014) cate-
gorised the novelty detection approaches into five main techniques:

• distance-based techniques,

• reconstruction-based techniques,

• information-theoretic techniques,

• probabilistic techniques and

• domain-based techniques.

Clifton et al. (2006); GarćıA-RodŕıGuez et al. (2012); He et al. (2006) are examples of
distance-based approaches, reconstruction-based approaches, and information-theoretic
approaches, respectively. There are two main techniques for the probabilistic approaches:
parametric and non-parametric. The parametric techniques assume a specific distribution
of samples and measure some parameters of that distribution based on the initial training
data set. A sample is considered as belonging to a novel class or being an “outlier” if
it does not match well with this trained distribution. Different techniques are used in
these approaches such as: mixture models approach (e.g. Tseng et al., 2006; Zorriassatine
et al., 2005), extreme value theory (e.g. Clifton et al., 2008, 2009; Clifton, 2009; Hugueny

52
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

et al., 2009; Worden et al., 2002) and state space model (e.g. Gwadera et al., 2005; Lee
and Roberts, 2008; Ntalampiras et al., 2011). The non-parametric techniques use the old
data themselves, e.g. kernel density estimates, to predict the distribution. Hence, they
are not restricted to a specific distribution that is represented by some parameters. There
are two main techniques for the non-parametric approach: kernel density estimator (e.g.
Bishop, 1994; Yeung and Chow, 2002; Tarassenko et al., 1995) and negative selection (e.g.
Dasgupta and Majumdar, 2002). A common kernel density estimator is the Parzen win-
dow kernel density estimator (PKDE), which was originally introduced by Parzen (1962).
The problem of most non-parametric techniques is that all of the old data are required to
model the distribution. Hence, they are difficult to use with data streaming, i.e. a con-
tinuously increasing dataset. We update the PKDE to fit the incremental requirements
(cf. Section 5.3). In this thesis, most of the proposed methods outputs are compared
with the support vector data description (SVDD) which is a well-known approach pro-
posed by (Tax and Duin, 2004). SVDD is a novelty detection algorithm belong to the
domain-based category, and it can learn incrementally (cf. Section A.1). Further details
on novelty detection are given by Pimentel et al. (2014).

Neural networks have been applied in a wide range of applications, and they are
considered to be the earliest algorithms that were used for novelty detection. Due to the
variety of artificial neural networks, there is a broad range of approaches used for novelty
detection. We category them depending on the neural network types.

Vasconcelos et al. (1995) used Multilayer Perceptron Neural Networks (MLP) for nov-
elty detection. They considered the sample under test as novel if the output of the winner
unit didn’t exceed the second winner unit by a pre-defined threshold. Cordella et al.
(1995) used the same approach. They, however, added a second threshold for the winner
output unit. If the winner output unit did not exceed the threshold, it was considered
novel. Singh and Markou (2004) added random patterns during the training to simulate
samples of outliers.

Li et al. (2002) used Radial Basis Function Networks (RBF) neurons as a hidden
layer in an MLP. Each output neuron corresponds to one known class. They pre-defined
a threshold for each output neuron, respectively, to indicate normality. Oliveira et al.
(2003) and Neto et al. (2004) used a dynamic decay adjustment (DDA) approach to
perform novelty detection over short length time series.

Auto-associative neural networks (AANN) (also called auto-associator), i.e. neural
networks that try to reconstruct the input at the output neurons, contain three hidden
layers. The middle-hidden layer, which is called “bottleneck”, has a number of hidden
neurons that is less than the number of input neurons. They try to reconstruct the applied
input at the output. Hence, it is sometimes used for dimensionality reduction. They were
widely used for the novelty detection (Surace et al., 1997; Ko and Jacyna, 2000; Sohn et al.,
2001; Manevitz and Yousef, 2000). They also have been proposed for novelty detection
by Hawkins et al. (2002) and Williams et al. (2002). Since novelties are supposed to differ
from the learned concept, the novelty detection is based on the reconstruction error of the

3.9. NOVELTY DETECTION 53

network. Similar techniques have been applied to novelty detection by Thompson et al.
(2002) and Diaz and Hollmén (2002). Tax (2001) used the AANN (cf. Section A.2) as
a one-class classifier within the data description, outlier and novelty detection toolbox
(ddtools) (cf. (Tax, 2015)). This implementation is used as a reference to compare the
proposed algorithm of the semi-supervised neural network (cf. Section 6.1).

Self-Organising Maps (SOM) are unsupervised, i.e. clustering, neural networks pro-
posed by Kohonen (1988). A threshold is used to determine whether a sample belongs
to the cluster or not. It has been successfully applied to novelty detection (Harris, 1993;
Ypma et al., 1997; Emamian et al., 2000; Labib and Vemuri, 2002; Theofilou et al., 2003).

Many other neural networks are used for novelty detection, for example, Liao et al.
(2007) used adaptive resonance theory for the novelty detection. More details on novelty
detection and neural networks are given by Markou and Singh (2003) and Haggett (2008).

In most of the novelty detection approaches novelty scores NSc(
#»x) are computed for

the test sample #»x . The sample #»x is classified as novel if NSc(
#»x) > Nth, where Nth is

the novelty threshold. The novelty threshold in most of traditional methods is estimated
using a validation data, which are labelled data differ from the training data.

3.9.1 Conventional novelty threshold setting

The conventional novelty detection approaches mostly require one threshold or a set of
class-wise thresholds computed by additional manually labelled data called validation
data. However, the availability of a sufficient amount of labelled data is not assumed
in semi-supervised learning. A cross-validation is thus frequently applied to derive the
thresholds. The cross-validation process is just an approximation to the threshold (Es-
bensen and Geladi, 2010), and it is time-consuming. Additionally, we need to keep all the
training data because the thresholds are highly related to the information gained from the
training data. Consequently, it does not work in the case of streamed data. Furthermore,
the conventional approaches implicitly assume that the data and the novel class are uni-
formly distributed (Lee and Roberts, 2008) and thus they are not applicable to complex
data distributions and thus it cannot be applied to non-linear distributions, which is the
case of gesture data. In any case, the threshold distance or the threshold probability is
first computed by validation data or cross-validation. The inspected sample is considered
as novel in the distance-based techniques if the distance between this sample and the
centres of the existing classes exceeds each distance threshold, respectively. Similarly, it
is considered as novel in the probabilistic techniques if the highest probability is less than
the threshold probability.

3.9.2 Extreme value theory

In contrast to conventional threshold setting, the extreme value theory (EVT) as described
by Roberts (1999) and Clifton et al. (2008) avoids most of the stated inconveniences. It

54
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

is a statistical theory used to model the distribution of extreme values, i.e. maxima or
minima in the one-dimensional case, in the tails of the distributions. Following Roberts
(1999), let there be a set of N i.i.d. random samples X = {x1, x2..., xN} each of them is
d -dimensional (d = 1 in the classical EVT, hence all variable will be in scalar form) and
distributed as given by the probability density function f 1(x) (in general form fd(x)).
Furthermore, let the extreme value of X be xmax. A cumulative distribution function is
defined for the xmax to be H+(xmax ≤ x), where H+ is the extreme value distribution
(EVD); it models the location of the maxima (’+’ sign refers to maxima distribution) of
X .

According to the Fisher and Tippett (1928) theorem, there are three types of EVT
distributions. These distributions are the Gumbel distribution, the Weibull distribution
and the Frechet distribution (Clifton et al., 2011), which are computed as:

Gumbel, H+
1(ye) = exp (− exp (−ye)) (3.8)

Fréchet, H+
2(ye) =

{
0 if ≤ 0
exp (−ye−αevt) if > 0

(3.9)

Weibul, H+
3(ye) =

{
exp (− (−ye)αevt) if ≤ 0
1 if > 0

(3.10)

where αevt ∈ R+ and ye is the reduced variate, which is for the input x

ye =
x− µevt

σevt
(3.11)

is defined by the location parameter

µevt = (2 ln(N))0.5 − (ln(ln(N)) + 4π)

2(2 ln(N))0.5
(3.12)

and the scale parameter

σevt = (2 ln(N))0.5. (3.13)

Both parameters depend only on N , i.e. the number of samples drawn from the under-
lying distribution f 1 (Embrechts et al., 2013). This helps to minimise or absorb the effect
of the number of the training data on the final results and thus the threshold unchanged
with increasing the training data in incremental training.

Here, the Gumbel distribution is supposed to follow the one-dimensional one-sided
normal distribution with zero mean and unit variance, i.e. X ∼ |N (0, 1)|. The cumulative
distribution function (cdf) of Gumbel distribution for a one-dimensional variable x

Pevt(x|X) = exp

[
− exp

(
−x− µevt

σevt

)]
, (3.14)

3.9. NOVELTY DETECTION 55

A predefined threshold Pth placed at the extreme value of the known classes and novelty
may be detected by exceeding Pevt this threshold. As is seen from the equations above,
the threshold in EVT has a direct statistical interpretation and does not depend on the
distribution of the classes whereas the conventional thresholds depend on the distribution
of the classes.

3.9.3 Extreme value theory in multi-variate and multi-modal
novelty detection

Unfortunately, the EVT works for a uni-modal, a uni-variant data only. In contrast,
gesture data are multi-variate, multi-modal data. Some literature (e.g. Resnick (2013))
proposed a solution for the multi-variate data by using component-wise extreme, i.e. find
extreme in each dimension separately. This method is not appropriate for novelty detec-
tion, where the extreme should be with respect to a multivariate model (Clifton et al.,
2011). Roberts (1999) and Roberts (2000) used a mixture of Gaussian distribution to rep-
resent the normality model of the EVT for the multi-variate data. By using this method,
they reduce the multi-variate problem to uni-variate. Clifton et al. (2011) showed that
the variation of the extreme value distribution along a radius r of a single Gaussian dis-
tribution follows a univariate Gumbel distribution. However, they proved that using the
classical uni-variate equations (Eq. (3.12) and Eq. (3.13)) to estimate the EVT parame-
ters (µevt and σevt, respectively) will be not accurate for this method. Fig. 3.3 shows the
error in the µevt and σevt between the optimum values using the MLE and the estimated
values using the classical relations for d = 2 and N = 100.

However, for multi-modal distribution, the extreme values are no longer sufficient
for both uni- and multivariate data (Clifton et al., 2011). Especially, when there is
overlap between the components of the distribution or when they have different variance.
For example, the sample x = 10 in Fig. 3.4 should be treated as extreme in terms of
probability density f 1(x) as same as x = 1 and x = 28. This fact made Clifton et al.
(2011) redefine the aim of the EVT as determining the “extremely unlikely” events rather
than the extremely large or small magnitude as in classical EVT.

3.9.4 Transformation

To find the optimal solution to the multi-variate, multi-modal problems, the extreme
value distribution (EVD) should be deeply understood. Clifton et al. (2011) show that
the EVD f e

d for a distribution fd follows the probability contours of fd distribution.
This fact leads them to consider the EVD as a transformation of equiprobable contours
on fd . Additionally, they show that the equiprobable contours of the EVD f e

d occur at
equiprobable contours of fd . Thus, they consider the EVD to be a weighting function of

56
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

Figure 3.3: The error of using Eq. (3.12) and Eq. (3.13) in estimates of Gumbel parameters
µevt, σevt for 2-dimensional data EVT. The MLE parameters located at µevt = 3.04,
σevt = 0.32, while the classical EVT estimates located at µevt = 2.37, σevt = 0.33, which
is clearly far from the desired MLE values. The figure is adapted from Clifton (2009)

Figure 3.4: The classical definition of the extreme value is inappropriate for the multi-
modal distributions. This figure shows a bimodal distribution f1, where the region falls
between the two modes should be considered in addition to the minimum and maximum
values on the x-axis. The figure is adopted from Clifton (2009)

3.9. NOVELTY DETECTION 57

the contours of fd ,

f e
d(#»x) = g[fd(#»x)] (3.15)

where g is a weighting function that defines the EVD regarding fd . Thus, if the
form of g is found then the f e

d can be accurately determined for complex, multi-modal,
multivariate distributions. Clifton et al. (2011) suggest a transform of the extreme #»x ,

Ψ[fd(#»x)] =

{
(−2 ln(fd(#»x))− d ln(2π))0.5 if fd(#»x) < (2π)−d/2

0 if fd(#»x) ≥ (2π)−d/2
(3.16)

This transformation represents the Mahalanobis radius of the standard unimodal
Gaussian distribution between #»x and the mean of the distribution #»µ . The Ψ-transform
thus maps the probability density values fd(#»x) back into a Mahalanobis distance space.
This allows for the estimation of a Gumbel distribution. This procedure is valid for multi-
modal distributions because fd(#»x) for extrema are distributed similarly for mixtures of
negative exponentials of varying number of kernels, priors, and covariances (Clifton et al.,
2011; Clifton, 2009). Therefore, multivariate, multi-modal EVD problems are success-
fully solved by evaluating all samples #»x in the original data space D = Rd concerning
f e

d(Ψ[fd(#»x)]). This transform reduces the EVD analysis in multivariate data space to a
simpler, but equivalent, problem in univariate probability space.

The novelty threshold at some contour fd(#»x) = k, which results from the EVD of the
Ψ-transform is set based on the probability that generating N samples from fd exceeds
the threshold is given by 1 − F e

d(k) = 1 − 0.99 = 0.01. It thus has a valid probabilistic
interpretation.

In general, the Ψ-transform is a numerical method. It requires sampling of ex-
trema from fd then applying the MLE Gumbel distribution on the output of the Ψ-
transformation. Clifton et al. (2011), however, suggest closed-form solutions (or approx-
imations) for multivariate, unimodal distributions fd called multivariate EVT (mEVT).
They used the normal Gaussian distribution form as the probability density function:

fd(#»x) =
1

Cd

exp

(
−M(#»x)2

2

)
(3.17)

where the dimensionality is d ∈ N , M(#»x) = ((#»x − #»µ)TΣ−1(#»x − #»µ))1/2 is the Maha-
lanobis distance, and Cd = (2π)d/2|Σ |1/2 is the normalisation coefficient. #»µ and Σ are the
centre and the covariance matrix, respectively. The probability space that is associated
with the data space D = Rd is P = fd(D) =]0, 1

Cd
]. They proved that sampling in the

probability space is equivalent to sampling in the data space. Thus, the time-consuming
operation of sampling the extrema in the multivariate data space is solved by sampling
in the uni-variate probability space.

If X is a random variable distributed according to F e
d , the form of the distribution

function (df) Gd according to which fd(X) is distributed on P , should be determined.

58
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

In other words, the probability distribution over probability density values should be
computed. The details of the derivation and determining Gd can be found in (Clifton
et al., 2011).

3.9.5 Parameters Estimation

Clifton et al. (2011) proved that Gd is in the maximum domain of attraction of the
minimal Weibull distribution (H−3) for all values of d . Therefore, the minimal Weibull
parameters are adopted to estimate the EVT parameters:

σevt = 0, αevt = 1, (3.18)

µevt = G←d

(
1

d

)
. (3.19)

Eq. (3.19) computes the scale parameter µevt analytically with accurate approximation
as compared to the values that obtained by using the MLE. Theoretically, the shape
parameter αevt should tend to 1 when the limit d → inf. However, it seems to be
decreased as the dimensionality of the data space increases, and it overestimated even for
large values of d . Depending on the properties of the class equivalence of H−3 , the formula
below is used to compensate the value of the αevt (Clifton et al., 2011):

αevt = µevt
gd(µevt)

Gd(µevt)
(3.20)

where gd(µevt) is the derivative of Gd(µevt). Finally, the EVD of Gd is:

Ge
d(ye) = 1− exp(−(ye/µevt)

αevt), ye = fd(#»x) (3.21)

Ge
d(ye) gives the probability of drawing an extremum of lower probability, hence the

probability of drawing an extremum of higher probability is 1−GGe
d(ye) and the extremum

is abnormal with probability 1−Ge
d(ye). Hence the novelty score given as:

F e
d(ye) = 1−Ge

d(ye) = exp(−(ye/µevt)
αevt). (3.22)

and in case of Eq. (3.17), the novelty score will be

F e
d(#»x) = exp

[
−
(

1

Cdµevt

exp(−M(#»x)2

2
)

)αevt
]
. (3.23)

Since our methods are based on the minimisation of the squared residuals, the resid-
uals follow a normal distribution. Dividing the residuals by the root-mean-squared error
yields a normal distribution with zero mean and unit variance. Therefore, the normalised
residuals are interpreted as the Mahalanobis distance and thus are a replacement of the
Ψ-transform and we directly use them to estimate the EVD Eq. (3.17).

3.9. NOVELTY DETECTION 59

3.9.6 Confidence bands

Models which are adapted to noisy measurements differ for each acquired set of data.
The confidence bands are a measure or the probability that encloses all models derived
from limited or noisy data (Kardaun, 2005). In other words, they are the set of intervals
at which the true model is possible to lie with a probability of 1 − αconf . The αconf

is, commonly, set to 0.05. Thus, the probability of enclosing the actual model by the
confidence bands is 95%. They are estimated for linear equations as a measure of how
well the predicted function fits the distribution (e.g. Kendall et al. (2007)). The output
of the polynomial classifier (cf. Section 6.3) and the extreme learning machine classifier
(cf. Section 6.1) are a weighted linear combination of some variables (the polynomial
basis features or the hidden layer activations, respectively), where the weights represent
the parameters of a linear model (Huang et al., 2006b). Hence, the confidence bands are
computed for these proposed classifiers and used in the novelty detection. The confidence
bands are used in the polynomial classifier to detect the outliers by Sakic (2012). Based on
the general derivation of the confidence bands of a linear multivariate regression function
given by Kardaun (2005), the confidence band ηconf(

#»
t) of the classifier output

#»
t for a

test sample #»x can be estimated according to

ηconf(
#»
t) = tv,αconf

√
#»
t
T

(XTX)−1
#»
t
√

ΣN
i r

2
i /v, (3.24)

The X represents the whole vectors used in the linear computation of the training.
Where ri is the difference between the estimated and the target values i.e. the residual of
sample i, v = N −Np is the number of degrees of freedom, with Np as the number of free
parameters of the model, tv,αconf

is the critical value of the t-distribution which depends
on v and the probability threshold αconf . The number of free parameters Np is equal
to the polynomial variables or the hidden neurons number, respectively. The standard
value 0.05 of αconf is used in all implementation. The full mathematical expressions are
provided by Kardaun (2005).

60
CHAPTER 3. RELATED WORK:

SEMI-SUPERVISED LEARNING AND DATA STREAM

4

Datasets and Feature Extraction

We have acquired a dataset which comprises 3D trajectories performed with a single
hand that is used to evaluate the proposed algorithms. In addition to the captured
gesture dataset, several datasets are used to evaluate the proposed methods. Since, the
proposed algorithms achieve several tasks e.g. incremental learning, novelty detection and
classify the non-linearly separable data, the proposed gesture dataset may not enough
to evaluate all of these features. Some other datasets are used to evaluates the methods
regarding specific features e.g. Iris dataset is used to evaluate the accuracy of the proposed
algorithms within non-linearly distributed data. Additionally, different features set is
computed to represent the same gesture data, which may give different characteristics to
the same data.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2014, 2015b,
2016b)

4.1 Gesture Data Set

A well-known database of gestures acquired with the Kinect sensor is described in Fothergill
et al. (2012). These gestures, however, are mainly performed simultaneously with both
hands. The database by Richarz and Fink (2011) comprises emblematic gestures per-
formed with a single hand and the forearm. The 3D trajectories of these gestures, how-
ever, were computed from stereo images of two asynchronous cameras. In order to develop
a classification system that copes with 3D trajectories but avoids the additional complex-
ity of two asynchronous cameras or two-arm gestures, we have acquired a dataset which
comprises 3D trajectories performed with a single hand1. The dataset was previously pub-
lished in German language (Al-Behadili et al., 2014). The Microsoft Kinect sensor is used
to acquire the gestures. The publicly available Kinect for Windows Software Development
Kit (SDK) version 1.7 (Microsoft, 2013b) is used to control the Kinect sensor.

1The complete data set is available at http://www.bv.e-technik.tu-dortmund.de

61

62 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

Figure 4.1: Screenshot of the gesture acquisition program.

Figure 4.2: Flowchart of the gesture recording algorithm using the spotting algorithm
(Yoon et al., 2001; Hoste et al., 2013). The symbols are described in Table 4.1. At the
start, no hand is visible and the algorithm thus starts in the state “No Hand”.

4.1. GESTURE DATA SET 63

Table 4.1: Explanation of the symbols used in Fig. 4.2

Symbol Explanation Action

NH No hand is visible The algorithm lost the hand, aborts and
moves back to the initial state “No Hand”

H A hand has been detected Move to the state “hand” and wait till the
hand does not move.

DM The detected hand does
not move

It is used for the spotting in the start and
the end of the gesture. If the current state
is “Hand”, the algorithm goes to the state
“Ready” if the hand does not move for a
specified period. Otherwise, the algorithm is
still waiting. If the current state is “Record”,
the recording stops if the hand does not move
for a specified period, i.e. the algorithm ac-
tivates the state “Save” otherwise the algo-
rithm is still recording.

DM-TH The threshold duration of
the spotting

If a gesture has been recorded, i.e. the cur-
rent state is “Save”, the algorithm termi-
nates by moving back to the initial state “No
Hand” and thus prepares for the next ges-
ture. If the hand has been localised for a
new gesture, the algorithm moves to the state
“Ready” and will record a new gesture start-
ing from the next movement of the hand.

MH The detected hand is mov-
ing

If a gesture is being recorded, i.e. the current
state is one of the states “Ready”, “Record”
or “Save”, the algorithm records the move-
ment. Otherwise, it waits for the hand to
stand still before recording a new gesture.

The SDK configures the system so that all the outputs, the RGB colour image, the
depth image and the 3D coordinates of the skeletal joints of the person standing in front
of the sensor, are synchronised as described in Han et al. (2013) and Microsoft (2013b).
For completeness, this section describes the data acquisition and the extraction of features
from the 3D hand trajectories. A screen-shot of the gesture acquiring program is shown
in Fig. 4.1

Data acquisition The gesture dataset consists of 3D hand trajectories that were per-
formed by ten persons and recorded using the Kinect sensor. Each person performed ten

64 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

gestures of each class with the left hand and another ten gestures with the right hand,
respectively. Each gesture from these ten gestures has one pre-stroke and one post-stroke,
respectively; but it has three strokes without rest position in between these three con-
sequent strokes. The gesture recording is started by standstill the hand for a while and
standstill the hand again to end the recording. Thus, the hand should not be stopped
during the gesture or between the three consequent strokes, unless the person wants to
end the gesture. The flowchart Fig. 4.2 explains this process and Table 4.1 summarises
the symbols of the flowchart. The hand standstill is used to segment the gestures using
the spotting idea (Yoon et al., 2001; Hoste et al., 2013). This algorithm removes random
movements occurring before and after the actual gesture. Our system starts acquiring
the gesture after the hand of the user appears in front of the Kinect sensor and has been
idle for several seconds. The acquisition is terminated with the beginning of a second idle
state of a certain duration.

The nine classes (i.e. different movement patterns) were adopted from Richarz and
Fink (2011) and Schumacher et al. (2012). They are comprised of the emblematic gestures
“circle”, “point”, “stop”, “come here”, “go away”, “up”, “down”, “wave”, and “wave
vertically”. These gestures appear natural to humans and may be used to command
(mobile) robots or other intelligent systems that require user interaction. Thus, the
total number of the gestures is 10 persons ×10 repetitions ×2 hands ×9 classes = 1800
gestures; and 1800 ×3 Strokes = 5400 strokes. Some of these gestures are destroyed due
to the limited area where the gestures are recorded, hence they manually removed. The
remaining gesture data set contains 1662 gesture (1662×3 strokes). These data are used to
evaluate the algorithm explained in (cf. Section 8.3). To simulate the online streaming,
we wrote a code to spot only one stroke. This code depends on the direction of the
movement, velocity and acceleration, shape of the trajectory, angles and orientation. The
last data set is spotted by using this code. The obtained dataset contains 2878 gestures
in total that are subdivided into nine classes. The distribution of remaining gestures is
shown in Table 4.2.

Features used for classification Each gesture is represented by the sampled 3D tra-
jectory of the moving wrist, from which eight features are derived for each sample. At
first, the 3D coordinate of each sampled wrist position is recalculated with respect the
point between shoulders, i.e. the 3D coordinate of the point between the shoulders is
subtracted from each wrist coordinate, to eliminate the effect of the difference in person’s
heights and their location when they did the gestures.

Since each class of gestures is typically performed at a different position in space
relative to the body of the person, the first three features are the average 3D wrist
positions of the whole gesture. A further spatial normalisation is obtained by subtraction
of the mean value from all trajectory points and dividing the result by the maximum
distance, i.e. the Euclidean norm between the mean and these points. The second set of

4.1. GESTURE DATA SET 65

P
er

so
n

u
p

d
ow

n
co

m
e

g
o

st
o
p

p
o
in

t
ci

rc
le

w
av

e
w

av
e

T
o
ta

l
h

er
e

aw
ay

n
o
rm

a
l

ve
rt

ic
a
l

/
p

er
so

n
R

L
R

L
R

L
R

L
R

L
R

L
R

L
R

L
R

L
P

-
1

30
30

36
36

23
3
7

3
6

3
8

2
2

1
8

2
3

2
2

1
0

1
0

1
1

1
1

1
2

1
2

4
1
7

P
-

2
30

30
30

30
0

0
3
0

3
0

1
0

9
2
9

2
8

1
0

1
0

1
0

1
0

1
4

1
1

3
2
1

P
-

3
33

30
27

30
0

0
2
9

3
3

9
8

2
8

3
0

1
0

1
1

1
0

1
0

1
0

1
0

3
1
8

P
-

4
33

36
33

33
0

0
2
6

2
2

1
1

1
1

2
0

2
2

8
1
1

1
1

1
0

1
1

1
1

3
0
9

P
-

5
28

26
23

26
23

1
2

2
0

1
2

1
0

1
0

2
4

2
9

1
0

1
0

1
0

1
0

1
0

1
0

3
0
3

P
-

6
27

23
21

22
25

3
0

0
0

1
0

7
2
6

2
7

9
1
0

9
1
0

1
0

1
0

2
7
6

P
-

7
29

29
33

30
10

0
2
1

1
1

9
1
0

1
0

1
4

1
0

1
0

1
0

1
0

1
0

1
0

2
6
6

P
-

8
24

22
20

20
13

1
8

0
0

9
3

1
1

9
1
0

1
0

1
0

9
1
0

1
1

2
0
9

P
-

9
6

1
7

2
0

0
1
8

2
0

1
0

1
0

2
6

2
7

1
0

1
2

1
0

1
0

1
0

1
0

1
8
9

P
-

10
29

0
22

20
6

0
3

4
1
0

1
0

1
6

1
5

1
7

9
0

0
0

0
1
6
1

U
n

ko
w

n
0

0
0

0
0

0
0

0
1
1

9
2
8

3
3

2
3

1
2

1
1

0
0

1
0
9

T
ot

al
/h

an
d

26
9

22
7

25
2

24
9

10
0

9
7

1
8
3

1
7
0

1
2
1

1
0
5

2
4
1

2
5
6

1
0
6

1
0
6

1
0
3

1
0
1

9
7

9
5

T
ot

al
49

6
50

1
19

7
3
5
3

2
2
6

4
9
7

2
1
2

2
0
4

1
9
2

2
8
7
8

T
ab

le
4.

2:
G

es
tu

re
D

at
as

et
:

A
m

ou
n
t

of
re

co
rd

ed
ge

st
u
re

s
p

er
p

er
so

n
.

L
:

le
ft

-h
an

d
ed

ex
ec

u
ti

on
.

R
:

ri
gh

t-
h
an

d
ed

ex
ec

u
ti

on
.

66 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

three features are the extensions of the gesture in x, y and z directions, i.e. the difference
between the maximum and the minimum value. The seventh feature which is calculated
from the direction of movement:

1. The principal components of the 3D trajectory are computed and analysed. Let λ1
and λ2 be the largest and the second largest eigenvalues of the covariance matrix of
the 3D coordinates, respectively. If λ2 > 0.6λ1 the gesture is considered a two axes
gesture. Otherwise, the gesture is considered a one axis gesture. In the former case,
we keep the first two principal components, and in the latter case, we keep only the
first principal component of the remaining analysis.

2. The 3D coordinates are projected onto the selected principal components, and the sign
of each projected coordinate is computed.

3. Based on the amount of positive and negative values, we assign the following value to
each principal component, respectively. We assign a value of 1 and two if more than
80% of the coordinates are positive or negative, respectively. Otherwise, the gesture
has no predominant direction and is assigned a value of 3. Furthermore, a value of 0
is assigned to principal components that were not selected in the first step.

4. The three direction values are then interpreted as a base four digit and the correspond-
ing decimal representation is computed to combine all directions in one value.

Finally, the last feature represents the total length of the normalised gesture. This
feature set has been chosen after many experiments with other, more extensive feature sets
including position, speed, direction, orientation, curvature, chain code, etc. (e.g. Bhuyan
et al., 2008; Yoon et al., 2001). The compact representation of only eight features results
in a low computational complexity of the algorithm and thus helps in the context of online
learning.

4.1.1 Different features for the gesture dataset

Another set of features is computed to represent the data of 1662 gestures. This set of
features is used in the evaluation experiments of Section 8.3. The first six features are
computed exactly like the explained features in Section 4.1. The Dynamic Time Warping
(DTW) algorithm (Müller, 2007, chap.4) is applied to each gesture to normalise it in the
time domain. The DTW approach aims for warping a temporal sequence of data points
such that it optimally corresponds to a reference sequence. The cost value corresponding
to such a transformation can be viewed as a distance and depends on the sequence of the
mutual assignments between the points of the sequences (“warping path”). It is minimised
by dynamic programming (see Müller (2007, chap.4) for more details). Accordingly, the
seventh feature is the minimum DTW distance between a gesture and the templates and
the eighth feature is the label of the most similar template.

4.1. GESTURE DATA SET 67

Dynamic time warping

The dynamic time warping algorithm is used in many applications especially in speech
recognition (Rabiner and Juang, 1993; Bhuyan et al., 2008). It has the ability to measure
the similarity between two sequences even they differ in time, speed, acceleration and
length. It is clear that each person can’t make an identical gesture in spatial-temporal
domain even if he was insisted. Hence, the gestures for the same type that made by the
same person never be identical rather than the gestures made by different persons. Even
if we assume the gestures are identical, and we compute the similarity between them, we
will get an inaccurate result if there is a time shift between the two gestures. Initially,
the Dynamic time warping used in the speech recognition; hence, it was a one dimension
algorithm. Thereafter, some researcher developed it for other applications to work with
multi-dimensional data e.g. Gillian (2011). We implement the DTW to fit our data after
projecting it on a 2D plane; i.e a two-dimensional series.

According to Müller (2007, chap.4), the DTW distance between two sequences #»x =
x1, x2, . . . , xN

T and #»x ′ = x′1, x
′
2, . . . , x

′
N ′
T is computed by finding the optimum warping

path #»w = #»w1,
#»w2, . . . ,

#»wz
T so that:

max(N,N ′) ≤ z < (N +N ′) (4.1)

where the kth value of #»w is given by:

#»wk = (i, j)k where i ∈ {1, 2, · · · , N} and j ∈ {1, 2, · · · , N ′} (4.2)

The warping path should satisfy the following constraints:

• The warping path starts at w1 = (1, 1) and end at wz = (N,N ′).

• Monotonicity, which means the warping path should not move backwards.

• Continuity that’s mean if wk = (i, j) then w(k+1) must be either (i, j), (i+1, j), (i, j+
1) or (i+ 1, j + 1).

Only the warping path that gives a minimum total warping cost cW is selected among
other paths, which may be satisfied the warping path conditions also. The minimum total
warping cost cW is given by:

cW (#»x , #»x ′) = min
1

k

k∑
l=1

dEucl(xil, x
′
jl) (4.3)

dEucl(xil, x
′
jl) is equal to the Euclidian distance (other types of distances cab used)

between the xil and x′jl features, given by wl. In order to compute this path, the dynamic
programming is used to create an N ×N ′ cost matrix CW that contains the accumulated

68 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

minimum warping cost up to the position of that cell. The element of cost matrix is hence
given by:

CW(i, j) = dEucl(i, j) + min{CW(i− 1, j),CW(i, j − 1),CW(i− 1, j − 1)} (4.4)

The CW(i, j) represent the distance between the ith feature in the vector #»x and the
jth feature in the vector #»x ′, plus the minimum value in the previous three neighbour cells.
The minimum distance is then obtained by finding the optimum path by starting from
the end point CW(N,N ′) back to the first point CW(1, 1) going through the minimum
value among the left, below and diagonally adjacent cells with respect to the current cell
as illustrated in Fig. 4.3. Finding the optimum path is based on using the optimisation
methods of dynamic programming (Müller, 2007). The early discussion of the optimisation
method of dynamic programming can be found in (Bellman and Kalaba, 1959). The DTW
is used to normalize the gesture data in the experiments Section 8.3 and it explained in
Section 4.1.1. The final distance (DTW distance) between the two vectors is the sum of
the cell’s values of the cost matrix CW that be selected in the optimal path.

4.2 Artificial data set

To evaluate the methods on large datasets, we randomly draw samples from a multivariate
normal distribution using the methods of the PRToolbox (Tax, 2015). The resulting
dataset is comprised of a total of 9000 6-dimensional samples from three classes. The three
centroids are positioned at [1,−1,−2,−1,−1, 2]T , [0, 0, 0, 0, 0, 0]T and [2, 1,−1,−2, 1, 1]T ,
respectively. The covariance matrices of the three classes are diagonal matrices. The main
diagonal of each covariance matrix, respectively, is initialized to 1

2.5
times the minimum

absolute difference between the corresponding class centroid and the other centroids. The
absolute difference is computed for each coordinate, respectively, and increased until the
random sampling produces an overlap of the three classes. The overlap is measured by the
Mahalanobis distance. At each centroid, respectively, a hypersphere is constructed using
a radius of the maximum Mahalanobis distance of the class members, respectively. The
covariance matrices are then modified until the hypersphere of each class, respectively,
contains as many samples from other classes as class members. All covariance matrices
are divided by a factor of 1.1 if the overlap was too large, i.e. more samples of other classes
than class members reside within the maximum Mahalanobis distance of the class. If the
overlap was too small, in contrast, a factor of 1.1 is multiplied to all covariance matrices
to increase the spread of the samples.

4.3. IRIS DATASET 69

Figure 4.3: Finding the optimal warping path of DTW that gives the minimum distance
between two series

4.3 Iris dataset

The Iris dataset introduced in (Fisher and Tippett, 1928)2 consists of three classes. One
class of the dataset is not linearly separable from the other classes. Consequently, it is used
to estimate the ability of some proposed algorithms to separate non-linear distributions.
The rather small Iris dataset is comprised of 150 samples in total, i.e. 50 samples of each
class. Due to the number of samples limitation in the dataset, it is difficult to show the
difference in the runtime for the incremental experiment. Therefore, the evaluation is
restricted to separating the classes.

2The data can be downloaded from https://archive.ics.uci.edu/ml/datasets/Iris/

70 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

4.4 Lunar data set

The Jet Propulsion Laboratory designed the instrument of the Moon Mineralogy Mapper
(M3) accurately to provide geologic context. The solar radiation reflected from the lunar
surface is measured and diagnosed by M3 to find mineral absorption bands. For most
of the M3 data set, the spatial resolution corresponds to 140 m per pixel in 85 spectral
channels (Pieters et al., 2011).

Section 4.4.1 and Section 4.4.2 describe the datasets used for the training and the
evaluation of the automatic segmentation algorithm, respectively. In order to reduce the
dimensionality of the spectral data, we infer the spectral parameters, which are defined
in Section 4.4.3, from the hyperspectral dataset.

4.4.1 Near-global mosaic

In order to derive the most common lunar spectra, we use a low-resolution near-global
mosaic. The near-global mosaic is created by downscaling the M3 data and the GLD100
(Scholten et al., 2012) to a resolution of 20 pixels per degree longitude and latitude,
respectively corresponding to about 1.5 km per pixel, which is the smallest size of surface
details that are fully covered by the GLD100 (Scholten et al., 2012). The digital elevation
model (DEM) is required to compensate the influence of the local topography and thus
the best possible resolution without topographic artefacts is the scale of the smallest
fully visible surface details. We then applied the method of Grumpe et al. (2015) to
normalize the M3 data to standard geometry, i.e. an incidence and a phase angle of 30 ◦,
respectively, and an emission angle of 0 ◦ (Pieters, 1999), using the Hapke model (Hapke,
2002, 1984). Based on the M3 reflectance data and the GLD100 topographic model, the
single-scattering albedo is inferred. Using the standard illumination conditions and the
inferred single-scattering albedo, the resulting normalized reflectance is computed. The
resulting near-global reflectance mosaic is shown in Fig. 4.4.

Based on the normalized reflectance, we constructed maps of the spectral parameters
(see Section 4.4.3) and used a polynomial regression, which is similar to the regression
models of Wöhler et al. (2011) and Shkuratov et al. (2005) applied to Clementine data,
to map the downscaled version of the spectral parameter maps, i.e. 60 km per pixel, to
the Lunar Prospector Gamma-Ray Spectrometer elemental abundance data (Lawrence
et al., 1998). Using the estimated polynomials, we construct full resolution near-global
elemental abundance maps.

To reduce the noise and limit our analysis to the most common lunar reflectance
spectra, we downscale all maps to a resolution of two pixels per degree. The resulting
elemental abundance maps are then clustered using the algorithm of Grumpe and Wöhler
(2014b), i.e. a self-organizing map (Kohonen, 2001) is used to cluster the pixels according
to their mineral abundance values and the number of clusters is iteratively increased or
decreased based on the correlation of their median reflectance spectra. Fig. 4.5 shows the

4.4. LUNAR DATA SET 71

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

Longitude [◦]

−60

−45

−30

−15

0

15

30

45

60

L
a
ti
tu
d
e
[◦
]

0

0.02

0.04

0.06

0.08

0.1

Figure 4.4: The near-global normalized reflectance mosaic derived from the M3 channel
centred at 1579 nm, constructed using the framework of (Wöhler et al., 2014).

distribution of the resulting ten clusters. These data are used to train both, the ELM
predicting the cluster label and the AE-ELM (cf. Section 6.2), which detects novelties.

4.4.2 Region of interest

To evaluate the proposed algorithm, we applied it to the western Moscoviense basin
(24 ◦ N–30 ◦ N, 143 ◦ E–145 ◦ E), which was also studied by Pieters et al. (2011). We
select the M3 images M3G20081229T101650 and M3G20090125T172601 covering almost
the whole region. The M3 data are mapped to a cylindrical grid where the horizontal
axis corresponds to the selenographic longitude, and the vertical axis corresponds to the
selenographic latitude. The spatial resolution of the grid is set to 300 pixels per degree,
which corresponds to about 100 m per pixel. Since the GLD100 does not cover all small-
scale surface details at this level, we apply the method by Grumpe and Wöhler (2014a) to
refine the GLD100 using the M3 channel centred at 1579 nm. This channel was selected
because the target wavelength is weakly affected by the spectral absorption bands and still
is sufficiently low and thus not subject to thermal emission. We then estimate the thermal
emission component and normalize the M3 data to standard geometry using the method
of Grumpe et al. (2015) and infer the spectral parameters introduced in Section 4.4.3.

4.4.3 Spectral parameters

At first, the normalised reflectance spectra are smoothed along the wavelength axis ap-
plying the smoothing spline. This smoothing method simultaneously minimizes the mean
squared of both the second derivative and the deviation from the reflectance (Marsland,

72 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

−180 −150 −120 −90 −60 −30 0 30 60 90 120 150 180

Longitude [◦]

−60

−45

−30

−15

0

15

30

45

60

L
a
ti
tu
d
e
[◦
]

1

2

3

4

5

6

7

8

9

10

Figure 4.5: The spatial distribution of the determined clusters. Due to the properties
of the self-organizing map, neighbouring clusters have similar spectra. Consequently, the
lower cluster labels correspond to mare basalt while the higher cluster labels correspond
to highland. The cluster labels in between occur at the boundary between mare and
highland regions and represent a mixture of both. Black denotes missing data. Image
from Grumpe and Wöhler (2014b).

2009). Following Akima (1970), the resulting smoothed spectrum is interpolated to inte-
ger wavelength values in nm. The continuum-removed spectrum (Fu et al., 2007) is then
obtained as the ratio of the interpolated spectrum over the convex hull of the smoothed
spectrum.

Lunar reflectance spectra are typically characterized by two absorption bands centred
near 1000 nm and 2000 nm, termed “band I” and “band II”, respectively (Burns et al.,
1972; Adams, 1975). Consequently, Wöhler et al. (2014) deduced several spectral pa-
rameters from the continuum-removed spectrum, which are shown in Fig. 4.6(b). These
parameters are the wavelength of the bandcenter wavelength (LMIN1), the relative band
depth (BD1) and the full width at half maximum (FWHM1) of band I. The slope of the
convex hull is used to infer the slopes of the continuum (CSL1) Fig. 4.6(a). Additionally,
bandcenter wavelength (LMIN2), the band depth (BD2), the full width at half maximum
(FWHM2), and the continuum slope (CSL2) of absorption band II are used as spectral
parameters. The logarithmic band depth ratio (LBD) is an important spectral parameter
in the context of lunar impact melt (Wöhler et al., 2014):

LBD = log10

BD1

BD2
. (4.5)

Additionally, we compute the integrated band depths (IBD1 and IBD2) of band I and
band II, respectively.

4.4. LUNAR DATA SET 73

500 1000 1500 2000 2500 3000
0.06

0.08

0.1

0.12

0.14

0.16

wavelength [nm]

R

CSL2

CSL1

(a)

(a)

500 1000 1500 2000 2500 3000

0.8

0.85

0.9

0.95

1

wavelength [nm]

c
o

n
ti

n
u

u
m

re
m

o
v
e
d

 r
e
fl

e
c
ta

n
c
e

absorption band I absorption band II

FWHM1

BD2

LMIN1

BD1

(b)

(b)

Figure 4.6: (a) A typical lunar reflectance spectrum and its convex hull (dotted curve).
(b) The continuum-removed spectrum with inferred spectral parameters. Image from
Wöhler et al. (2014).

74 CHAPTER 4. DATASETS AND FEATURE EXTRACTION

5

Contribution:
Non-parametric Learning Based

Semi-supervised Methods

Many machine learning algorithms are trained only using data with manually assigned
labels, where all data should be available at the beginning of the training. It’s hard
to fulfil these two conditions of such traditional algorithms since most real-life data are
streamed continuously as unlabelled data. Additionally, streamed data are often affected
by drift, outliers, an emergence of new classes, and disappearance of others (see Sec-
tion 3.6). An example of the concept drift, a recognition system in HCI is, commonly,
trained on gestures, which are performed by a limited number of persons. Although
the system is trained on all possible classes of the gestures, it often faces difficulties in
the recognition of gestures which are performed by unknown “new” interaction partners.
Since the commonly used training methods pre-suppose a manually labelled training data
set, usually the interaction system cannot be adapted autonomously to new interaction
partners during its operation. In many cases, this means the person is enforced to learn
how the gestures must be performed such that they are recognised by the system.

Hence, semi-supervised learning can offer a solution for the scarcity of labelled data,
concept-drift or the data stream problems altogether. One of the methods used in semi-
supervised learning is that the classifier is trained using a small number of manually
labelled training samples and updating the classifier on new samples with the classifier
assignment. The semi-supervised learning approach also known as “self-training” (Rosen-
berg et al., 2005). This method is adopted here for all proposed classifiers since it exactly
fits the situation of streaming data. In order to achieve a satisfactory classification with
semi-supervised learning, the other challenges should also be resolved, since training the
classifier with wrongly labelled samples will decrease its accuracy. To avoid this problem,
we used a novelty and outlier detection to exclude the samples that are dissimilar to the
known classes. We call these samples “unknown” samples, which may belong to a novel
concept or be an outlier. Furthermore, using all data for retraining the classifier is time-

75

76
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

consuming and needs considerable hardware resources. Hence, we used the incremental
learning to update the classifier using only the new data.

The active learning solves a part of the data stream problems which is using all or
some of the unlabelled data to retrain the classifier, but it still needs all the old data in
the retraining process besides human interventions, Schumacher et al. (e.g. 2012). Con-
sequently, the system is desired to be automatically updated on-line, i.e. the classifier is
updated incrementally, without storing the old data, on the newly assigned data during
its operation without human intervention. By adding the ability to distinguish real ges-
tures from random movements, it is possible to update the classifier to new persons or
new gestures fully autonomously. Furthermore, the usage of labels that are assigned by
the classifier without human intervention requires that these labels are believable, i.e. the
outputs of the classifier should have additional measures for the confidence.

Due to the extreme varieties of the gesture types as they were seen in Chapter 2, the
gesture datasets are expected to vary from simple, which may be possible to be classified by
using simple classifier e.g. Euclidean distance, to very complex and non-linearly separable
data. Consequently, a single classifier type may not fit all the variations of the different
gesture types. Thus, we extend the capabilities of various models of classifiers to cover
most of the possible characteristics of the gesture data. These extensions include several
features such: increment learning, increment class learning, novelty detection, multi-class,
unbalanced data and some of the proposed classifiers fit non-linearly separable data.

The extended classifiers that have been adopted to work on the semi-supervised learn-
ing of the gesture are based on different classification techniques, which are the Parzen
window, the support vector machine (SVM), the extreme learning machine (ELM), the
polynomial classifier and several types of metric learning. The ability of the incremental
learning, i.e. update the classifiers to the new samples without needs to store the old data,
is added to all of these classifiers in combination with the ability to detect the samples
that belong to “unknown” concept. The characteristics of the classifiers regarding these
features are discussed in three chapters depending on the technique that the classifier is
based. The Parzen window classifier and the SVM are non-parametric classifiers, which
are addressed in this chapter. The ELM and the polynomial classifier use non-linear trans-
formation to map the data to another space. Both of them are discussed in Chapter 6.
Finally, the methods that are based on metric learning are discussed in Chapter 7.

Additionally, we enable the classifiers to add new classes to their knowledge incremen-
tally without the need of retraining the classifiers from scratch. This feature is called as
“incremental class learning”, which is critical in case of streaming data since the incoming
data may be originated from new concepts. Studying the characteristics of this feature
is covered in the Chapter 8. Moreover, an ensemble classifier is built from the proposed
classifiers to compensate the classifiers’ features and to automate the artificial learning
revolution. The proposed ensemble classifiers are discussed in details in the same chapter
(Chapter 8).

Since the novelty detection is implemented in most of the proposed classifiers by using

5.1. EXTREME VALUE THEORY IMPLEMENTATION 77

the Extreme Value Theory (EVT) with some modifications, we will discuss it in a separate
section, and the modification will be covered inside the section of the specified method.
Additionally, the chapters (Chapter 5 – Chapter 7) will study the classifiers regarding
incremental learning and novelty detection by using the same template of experiments
but with different settings. Hence, the experiments template will be covered in a separate
section in this chapter.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2015f,
2016a,b)

5.1 Extreme Value Theory Implementation

The aim of using the Extreme Value Theory (EVT) is to implement the novelty detection
by the incremental classifiers to use the streamed data in the semi-supervised scenario.
The conventional methods use an additional data to set the novelty threshold. The classi-
fiers are supposed to learn using the streamed data where a scarce of the labelled data and
a concept-drift are available. However, using additional labelled data to set the threshold
of the novelty decreases the usefulness of the proposed algorithms. Contrary, the extreme
value theory (EVT) enables us simply to establish an accurate novelty threshold for the
streamed data (Section 3.9.2). Changing of the classes distribution and the concept drift
do not affect setting the novelty threshold of the EVT since it is updated automatically
with the classifier updating. Furthermore, the additional labelled data that are used
for validating the novelty threshold is not required and the threshold is unaffected by
changing the number of classes. These features have made us include the EVT within
the proposed classifiers. Unfortunately, the classical EVT (cf. Section 3.9.2) works only
within univariate, unimodal data. Normally, the gesture data are multivariate and in
most cases multi-modal. To solve this problem, we adopt the method of using the EVT
with multivariate, multi-modal data proposed by Clifton et al. (2011). Instead of using
the data themselves in the EVT, they map the data to a uni-variant, unimodal data by
using a transformation function. They proposed a Gaussian function (Eq. (3.17)) to map
the data and they apply its outputs to the general equation (Eq. (3.21)). Using the same
manner, we used the output of the classification function of the proposed algorithms as a
transform function, and we applied the outputs to the general equation (Eq. (3.21)). If we
assume Ψ is the residual of the proposed classifiers outputs after subtracting the target
values and dividing by the class-wise root-mean-squared error, then the

#»

P evt is computed
as

#»

P evt(x) = exp (− (Ψ(x)/µevt)
αevt) , (5.1)

where the µevt and αevt are the scale and shape parameters, respectively. They are
computed by using the Eq. (3.19) and Eq. (3.20). Here, the exponent αevt is applied
element-wise to Ψ(x).

78
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

The EVT output for the unknown sample is 1, and it is decreased proportionally with
the departure toward the centre of the distribution where it equals zero. In most cases,
EVT scores are computed in a class-wise manner i.e. the

#»

P evt is a vector containing one
score corresponding to each of the known classes; where the lowest score corresponds to
the highly probable class. Thus, a test sample is labelled with the class that corresponds
to the lowest score. Then, this score (Pevt) is compared to the novelty threshold Pth.
The Pth represents the contour surrounding a specific fraction of the normal data equals
to Pth × 100% e.g. if we set Pth = 0.95, then we select the contour that contains 95%
of the training data for that distribution. If the selected component from

#»

P evt is larger
than the Pth, then the novelty flag is set. Additionally, the believability flag is set if and
only if the sample is not indicated as novel and another condition (may be more than one
condition depending on the classifier type) is fulfilled.

5.2 Experimental Set-up

We have used more than one data set to evaluate the proposed classifiers. These datasets
may differ in the characteristic of the data, the number of classes and samples, and the
field of the data. The variety of the data is chosen to evaluate the proposed classifiers for
different possible characteristics, which may be faced by using the data stream. Here, we
will explain the general pattern of the experiment, and we will discuss the details through
the classifiers sections. Commonly, the proposed classifier is evaluated in comparison with
the original or similar classifier. In most experiments, the SVDD (cf. Section A.1) is used
since it indicates novel samples and learns incrementally.

The total data samples of a particular dataset are randomly divided into three (in some
cases four) disjoint data sets: the initial training set, the learning set, the independent test
set, and in some cases validation set. For example, the gesture data set in the evaluation
experiment of the polynomial classifier is divided into fractions of 25%, 50%, and 25%,
respectively. Each class is split into the given fractions separately to ensure that all sets
include all classes with distinct fractions. Since the classes in the original gesture database
are unbalanced, i.e. they have different numbers of samples, each produced set will be
unbalanced. Excluding the samples of one class from the initial training set simulates
the novel class or outliers. Additionally, to emulate the data streaming, the learning data
set is subdivided into “buckets”, each of which consists of a fixed number of samples e.g.
100 samples in case of the gesture data set and five samples in the case of the Iris data
set. Moreover, outliers (random movements) are added to the learning and testing sets
in some experiments.

Each classifier is trained using the initial training set and adapted using the buckets of
the learning set, respectively. They are evaluated by computing the accuracy and other
measures based on the test set. The buckets of the learning set are sequentially presented
to the classifiers to update them incrementally after removing the samples, which have

5.2. EXPERIMENTAL SET-UP 79

a low reliability. Since the classifiers have different outputs, they will generate different
training sets. This process is continued until the last bucket in the learning set is classified.
Two flags control the semi-supervised learning process. The believability flag to indicates
trusty labels and the novelty flag to indicates unknown samples. Only trusty labels are
used in the next training. The novelty flag is set if the condition(s) of the novelty indicate
the sample as a novel, whereas the believability flag is set if it is not indicated as novel
and it fulfils the believability condition.

As mentioned above, the training data sets of the classifiers may develop differently,
i.e. they may have different sizes and may contain different samples or labels. This
behaviour is because each classifier may indicate different samples as unknown and may
assign different labels to the same sample. This diversity will lead to a different handling
of the data and will have an effect on the processing time. In some experiment, both
classifiers are trained with the correct labels during all iterations. This is to enforce them
using the same samples in each updating to compare the processing time only rather
than the accuracy. Because of the data are randomly divided, the whole experiment was
repeated 100 times for each class, i.e. each class was considered a novel class in 100 runs,
respectively. Notably, identical data sets were ensured for the compared classifiers during
the total of (Nclass × 100) runs, where Nclass is the number of the classes. Since the data
are multi-class, we cannot use the commonly applied sensitivity and specificity measures
to evaluate the ability to detect novelties. Instead, we adopt the novelty detection metrics
proposed by Masud et al. (2011) for this purpose. These metrics areMnew, Fnew, and Etotal,
which represent the fraction of missed novel samples, the fraction of samples belonging to
known classes indicated as a novel class by the classifier, and the total misclassification
rate, respectively. These metrics are computed according to

Mnew = Fn/Nnovel · 100 (5.2)

Fnew = Fp/(Ntotal −Nnovel) · 100 (5.3)

Etotal = (Fp + Fn + Fe)/Ntotal · 100 (5.4)

The value of Fn is the number of the unknown samples that the classifier misses,
which corresponds to the false negatives for one-class classifiers. Nnovel represents the
total number of the outliers within the total set of Ntotal presented samples. Fp is the
number of existing class samples which are wrongly indicated as unknown by the classifier.
It corresponds to the number of false positives for one-class classifiers. Fe is the number of
samples belonging to a known class and assigned to an incorrectly known class. From (5.4)
we notice that Etotal is not necessary equal to the sum of Mnew and Fnew (Masud et al.,
2011). Furthermore, we compare the total processing time to show that the proposed
approach is suitable for on-line classifications.

Notably, in all experiments, the median, the 25% and the 75% quantile over the 100
runs is computed. In all figures, a solid line draws the median while the 25% and the 75%

80
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

quantile are drawn in dashed lines. In most of the time figures, both quantiles are not
recognised Since the time is approximately similar in all the 100 runs.

5.3 Semi-Supervised Learning Using Parzen

Window Kernel Density Estimators

This approach targets all problems of data streaming using a simple model that is insen-
sitive to the size of the training dataset. The proposed approach differs from Jain and
Nikovski (2008) by eliminating the time-consuming part of the algorithm that tries to
find the least significant samples in the old training data set every time the classifier is
updated. The proposed algorithm replaces the kernels located at the position of all train-
ing data with a specified number of centroids. These centroids are efficiently updated to
handle the concept-drift and novelty detection while the constant number of centroids is
maintained, and thus the problem of growing datasets does not occur.

The presented approach differs from the existing methods by several features. First, it
can update itself incrementally, i.e. it needs fewer hardware resources and less time. Hence,
it will work with data streaming and still efficiently with novelty detection. Secondly, it
is a multi-class classifier, which can label many classes as well as the ability to indicate
the outliers or novel classes. Finally, it responds to the concept-drift and it is robust to
the incorrectly labelled samples since the effect of each sample is divided by the number
of the samples which are members of the same cluster. The latter is important in semi-
supervised learning where the correctness of a label is not guaranteed.

5.3.1 Parzen window kernel density estimators (PKDE)

The estimation of the probability density function for a specific distribution is crucial
for most of the classification approaches. The kernel density estimator (KDE) (Lee and
Roberts, 2008) is a non-parametric method. It is used to deduce the probability density
function by locating kernels (mostly Gaussian) all over the data. Probably the most
familiar method of such estimators is the Parzen window kernel density estimator (Parzen,
1962; Jain and Nikovski, 2008; Tarassenko et al., 1995; Bishop et al., 1995) in which the
density function at any point in the data set is simply the linear combination of the
neighbour kernels.

Here we follow the description of Clifton (2009). If we have Nc samples in the training
data set that belong to the class c drawn independently from a class-conditional proba-
bility, p(#»x |c) which needs to be estimated, then amounts to

p(#»x |c) =
1

Nc

Nc∑
i=1

1(
2πhw

2
) d

2

e
−‖

#»x− #»x i‖2
2hw

2 , (5.5)

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 81

where hw is Parzen window size and #»x i is feature vector of the i-th training sample.
The normalisation constant includes the width of the Parzen window and the dimension
d of the feature vector. We use the PKDE implementation of Clifton (2007) who used
PKDE as a one-class classifier. The width of the Parzen window is set as the average of
the mean Euclidean distance over k neighbours of each sample in the training data. The
value of k is a fraction of the total number of the training samples Nc, e.g. k = Nc/10.

According to the Bayesian data analysis, the posterior p(c| #»x), i.e. the probability of
a sample belonging to class c if the feature vector #»x is observed, amounts to

p(c| #»x) =
p(#»x |c)p(c)∑

i

p(#»x |ci)p(ci)
(5.6)

where p(#»x |c) is the class conditional-probability, which is also termed likelihood, and
p(c) is the prior, i.e. the probability that class c appears. A multi-class classifier detects the
class with the maximum posterior (Tax and Duin, 1999). If the maximum posterior falls
below a threshold, then the sample may be rejected or considered as a novelty (Chow,
1970). If the classes are equally distributed over all samples, i.e. the probability p(c)
is constant and equal for all classes c, the problem reduces to the computation of the
maximum likelihood. PKDE is a prevalent method of non-parametric density estimation.
The data size, however, grows with time in an online system, and since PDKE needs all
old data in its calculations, it is not suitable for data streaming.

5.3.2 Incremental Parzen window kernel density estimators
(IncPKDE)

As mentioned above, the critical point of PKDE is the growing dataset that needs to
be maintained for the evaluation of new samples. Hence, we present a new technique to
overcome this problem and to get an incremental Parzen window kernel density estimator
(IncPKDE). Following Tax and Duin (1999), we update the PKDE of Clifton (2007) to
work with multi-class systems by considering the sample that belongs to the class with the
maximum likelihood assuming a constant prior probability of all classes. If the likelihood
of all classes falls below a class-specific threshold, then it is considered as a novel sample.

Instead of accumulating all data of the stream in the estimator, we pre-cluster the
initial training data to Ncent centroids for each class (Jeon and Landgrebe, 1994), where
Ncent is chosen by the user, and update the centroids whenever new data arrive. Conse-
quently, the data of the classifier are Ncent × Nclass centroids at maximum with Nclass as
the number of classes.

In this work, Ncent = 20 was selected. The clustering of the initial data set to Ncent

clusters is achieved by applying the k-means algorithm (see Section 3.3.1) for each class,
respectively. If the amount of data belonging to a class is less than Ncent samples, then
we keep all the data of that class and place Parzen windows of width hw at each sample.

82
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

Additionally, we save the number of samples that are replaced by each centroid, respec-
tively. The width hw is calculated here by averaging the distance of the k = 3 nearest
neighbours from each centroid in the new training set.

First of all, when a new unlabelled sample is available, the system tries to get a label
for it and then updates the training set with this new data. To assign the label to the
new sample, we compute the likelihood concerning each class. The EVT scores

#»

P evt

are computed for each class and compare it to the threshold Pth. The sample will be
considered to belong to the class if its likelihood is inferior to the threshold. If the sample
may belong to multiple classes, then we choose the class that has the maximum likelihood.
In contrast, if it does not belong to any class then it will be considered as novel.

After the unlabelled sample has been successfully assigned to class during the first
algorithm phase, the (initial) centroids of the corresponding classes are updated, respec-
tively. Depending on the number of centroids in the (initial) training set N and the
number of newly added samples N ′ one of the following techniques is applied:

N +N ′ ≤ Ncent: Since the joint set of the centroids and the new sam-
ples still does not contain Ncent centroids; each new
sample will become a centroid.

N < Ncent ∧N +N ′ > Ncent: The N is less than Ncent but the number of cen-
troids would exceed Ncent if all samples N +N ′ be-
came centroids. Therefore, we apply the k-means
algorithm to the joint set of the centroids and the
new samples to reduce the number of centroids to
Ncent. Notably, each centroid was formed using a
single sample if N < Ncent and thus the clustering
algorithm is applied to the full dataset.

N > Ncent: This will be the standard case if the training dataset
contains more than Ncent samples. In general, sam-
ples have been discarded and replaced by their cen-
troid if the algorithm reaches this point. A re-
clustering using k-means is thus neither feasible nor
correct since the position of the centroid carries no
information on the number of samples that were
used to compute the position. Consequently, we
update the centroids in a manner similar to the al-
gorithm proposed by MacQueen et al. (1967), i.e.
we update the centroid that is closed to the new
sample. The following procedure maintains a high
speed while it updates the position of the centroids
and thus responds to the concept-drift.

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 83

To update the centroids, we first assign the new samples to the closest centroid. Let
Ncentj and N ′centj be a number of samples replaced by centroid j before the update and the
amount of newly assigned samples, respectively. The new position of the centroid #»µ cent

will be the point of gravity of all samples replaced by the centroid j. The new position
thus updated

#»µ cent ← (Ncentj · #»µ cent +

N ′centj∑
i=1

#»x i)/(Ncentj +N ′centj) (5.7)

where #»x i is the feature vector of the i-th new sample. To keep this update procedure
consistent with the growing dataset, we adjust the number of samples replaced by the
centroid

Ncentj ← Ncentj +N ′centj . (5.8)

Using this technique, the size of the training data will never exceed Ncent centroids
in each class, which results in a constant query time of the classifier and enables online
classifications. Besides, the consecutive updates of the centroids respond to the concept-
drift, the class-wise novelty calculations may give more accurate results. Finally, the
centroids, which are determined by more than one sample, reduces the influence of a
falsely assigned sample and the IncPKDE is thus is suitable for semi-supervised learning.

Novelty detection using EVT

By using the incremental version of the PKDE with additional labelled data to set the
novelty threshold, we lost the advantage that we gained by incremental learning. Hence,
we use the EVT for detecting the novelty. The output of the IncPKDE (Eq. (5.6)) is
applied to the general equation (Eq. (5.1)) to compute the EVT scores. The target value
here is a vector of length equal to the number of training classes. It contains a value equal
to one in place corresponds to the class that has the highest probability of the Parzen
outputs and zeros elsewhere. Initially, EVT scores are computed for each class i.e. the
#»

P evt is a vector containing one score corresponding to each of the known classes. A test
sample is labelled with the class that corresponds to the lowest score (Pevt). Then, this
score Pevt is applied to the novelty detection threshold Pth. Here Pth is set to 0.95, which
represents the contour that contains 95% of the training data of the class distribution. If
it (Pevt) is larger than the Pth then novelty flag is set. The believability flag is set if and
only if the sample is not indicated as novel and the difference between the smallest and
second smallest scores in the vector

#»

P evt is larger than a specific value. This value is set
between zero and one and can be estimated using the known classes.

84
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

5.3.3 Experiments

Three different experiments are implemented to measure the performance of the IncPKDE.
The IncPKDE’s results are compared with the original PKDE and the SVDD classifiers.
We used the SVDD from data description toolbox presented by Tax and Duin (1999) (cf.
Section A.1) as both a multi-class novelty detection and an online classifier. Whereas,
the PKDE is used from the Novelty Detection Toolbox1 implemented by Clifton (2007).

The experiments are applied to two different datasets. Comparing the runtime and
the accuracy of large data at the same time may yield misleading results. Due to the
novelty detection accuracy, the different classifiers may detect novel classes at different
points in time or not at all. Additionally, the semi-supervised learning scenario that is
inherent to the novelty detection may result in different training sets for each classifier.
The classification problem solved by each classifier may thus change after each bucket
of samples from the data stream has been analysed. The corresponding changes in the
classifier architecture have a severe influence on the runtime. Consequently, it is not
feasible to analyse the runtime and the novelty detection accuracy of different classifiers
in one complete experiment. Therefore, they are analysed in two distinct experiments.
The former targets the runtime of the classifier while the latter targets the capabilities
of novelty detection. Both experiments are applied to both data sets. The difference
in the runtime of the classifiers should be clear in the experiments that use the large
artificial data set (cf. Section 4.2). While the essential classification accuracy evaluation
of different classifiers is based on the gesture data set (Section 4.1). We conduct both
of experiments for training set sizes of 5% and 20% of the total data, respectively. In
these experiments, additional labelled data (Validation data) are used to set a class-wise
novelty threshold for the original PKDE.

Additionally, a third experiment is implemented to show the advantage of using the
EVT in the novelty detection over the conventional methods. In this experiment, two
versions of the proposed algorithm are compared, one uses the conventional novelty de-
tection, and the other uses the EVT for the novelty detection. Only the gesture data set
is discussed in this experiment in order to shorten the discussion of the evaluation. The
training set size in this experiment is set to 10%.

The total dataset is randomly divided into four disjoint data sets: a training set, a
learning set, a test set and a validation set except for the experiments that target the
runtime. In which the validation set is not required since the novelty detection is not
applied. All classifiers are adapted to the training set, and the accuracy is evaluated
based on the test set. The learning set emulates the data stream and is presented to the
classifier in buckets, i.e. subsequent chunks of data. The test set is comprised of 20% of
the total data in all cases. The validation set is also comprised of 20% of the total data in
the experiments that need validation process, and the learning set contains the remaining
samples. Table 5.1 summarises the different scenarios.

1The NDtoolbox is available on: http://www.robots.ox.ac.uk/d̃avidc/publications NDtool.php

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 85

Classifier
Initial

Gesture Dataset Gaussian Dataset
Training Set

PKDE
5% Time

Novelty
Detection

Time
Novelty
Detection

SVDD
IncPKDE

PKDE
20% Time

Novelty
Detection

Time
Novelty
Detection

SVDD
IncPKDE

IncPKDE-Conv
10% EVT Benefits –

IncPKDE-EVT

Table 5.1: Details of Experiments Set Up.

Hence, we will have nine experiments, four of them to compare the time-consuming
in each dataset and each initial training set. The other four experiments are to evaluate
the ability of the novelty detection, and classification accuracy. The last experiment is to
evaluate the benefits of using EVT for the novelty detection. As mentioned in Section 5.2,
we repeat each experiment 100 times for different random permutations of the samples
while enforcing identical random permutations for the three classifiers, respectively, during
each of the 100 runs.

Comparing the runtime

These experiments examine the time required by the algorithm for updating the classifier
and classifying all data. Commonly, all classifiers are trained on the initial training set.
Afterwards, the classifiers are evaluated on the test set and the current bucket of the
learning set. The accuracy of the predictions is tracked and the bucket is added to the
training set.

Since this experiment is performed to examine the time, we need to avoid the diver-
gence of the classifier training sets when using the deduced labels. Hence, we enforce all
algorithms to increment themselves with the correct labels for the samples in the buckets
of the learning, i.e. we present the learning set to the classifiers and manually correct false
classifications by enforcing correct labels. The training set of all classifiers will thus be
identical at all instants of the algorithm.

Based on the initial classifiers and the modified training set, we update all classifiers
and repeat the evaluation with the next bucket of samples. Since the PKDE algorithm is
not incremental, we retrain the algorithm on the modified training set while we use the
incremental capabilities of IncPKDE and SVDD to update the classifiers. In addition to
the accuracy, we track the time required for the update. The procedure is repeated until
all buckets have been presented to the classifiers.

86
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(a) Time consumed by the classifiers (gesture dataset, 5% training data).

(b) Time consumed by the classifiers (gesture dataset, 20% training data).

(c) Time consumed by the classifiers (artificial dataset, 5% training data).

Figure 5.1: The runtime of the classifiers in each of the four-runtime experiment defined
in Section 5.3.3. (a)–(b) Time consumed by the classifiers on the gesture dataset using 5%
and 20% of the total data for the initial training, respectively. (c)–(d) Time consumed by
the classifiers on the artificial dataset using 5% and 20% of the total data for the initial
training, respectively.

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 87

(d) Time consumed by the classifiers (artificial dataset, 20% training data).

Figure 5.1: (Continued)

The gesture (9 classes, 2878 samples) and the artificial (3 classes, 9000 samples) data
sets are divided into three sets. The training set contains all classes and the division is
performed class-wise, i.e. the training set contains 5% or 20% of the samples of all classes,
respectively. The test set is comprised of 20% of the total data in all cases, and the
learning set is comprised of the remaining samples. The learning set is split into buckets
of 100 samples.

The results of the runtime experiments are summarized in Fig. 5.1–Fig. 5.3 and Ta-
ble 5.2. Fig. 5.1 shows that, initially, the difference of the processing time between the
original PKDE and IncPKDE is small and increases as the size of the training set in-
creases. This result is expected because IncPKDE updates itself retaining a constant
amount of Parzen windows while the original PKDE depends on all data. Let Nb and N
be the number of samples in the bucket of the semi-supervised learning and the total num-
ber of samples in the dataset, respectively. The ratio of the times consumed by IncPKDE
to original PKDE at the final step is then approximately equal to Nb/N . The SVDD

Inc-Gaus-0.2 Inc-Gaus-0.05 Inc-Gtr-0.2 Inc-Gtr-0.05

Classifiers Error Time Error Time Error Time Error Time
IncPKDE 2.39 0.10 2.33 0.08 0.02 0.19 0.02 0.19
KDPE 2.35 5.44 2.25 5.46 0.01 0.76 0.01 0.76
SVDD 2.61 11.71 2.60 11.77 0.35 11.43 0.57 11.44

Table 5.2: Summary of the results after the last update, i.e. all learning data are added to
the training set. The error rate thus equals the error rate obtained by a fully supervised
learning and may be interpreted as the reference value for all iterations shown in Fig. 5.1,
Fig. 5.2 and Fig. 5.3.

88
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(a) Error rate of PKDE and IncPKDE (5% training of gesture data).

(b) Error rate of PKDE and IncPKDE (20% training of gesture data).

(c) Error rate of SVDD and IncPKDE (5% training of gesture data).

Figure 5.2: Error rates of the reference methods PKDE and SVDD in comparison to
IncPKDE on the gesture dataset in the runtime experiment defined in Section 5.3.3. The
solid line represents the median over one hundred runs while the dashed lines represent the
25% and the 75% quantile, respectively. (a)–(b) Error rates of the PKDE in comparison
to IncPKDE using 5% and 20% of the total data for the initial training, respectively.
(c)–(d) Error rates of the SVDD in comparison to IncPKDE using 5% and 20% of the
total data for the initial training, respectively.

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 89

(d) Error rate of SVDD and IncPKDE (20% training of gesture data).

Figure 5.2: (Continued)

is an incremental classifier. However, it still consumes much more time than IncPKDE
and original PKDE. This behaviour might be due to the non-linear optimisation problem
that is solved during each update. Since the total number of the gesture samples in the
dataset is small, the difference in time among the classifiers is small but still significant
as shown in Fig. 5.1(a) and Fig. 5.1(b). The behaviour, however, is clearer in the case of
a large artificial dataset (see Fig. 5.1(d)).

The error rates of IncPKDE and original PKDE, respectively, are very close to each
other as shown in Fig. 5.2(a)–Fig. 5.2(b) and Fig. 5.3(a)–Fig. 5.3(b). The proposed

(a) Error rate of PKDE and IncPKDE (5% training of artificial data).

Figure 5.3: Error rates of the reference methods PKDE and SVDD in comparison to
IncPKDE on the artificial dataset in the runtime experiment defined in Section 5.3.3. (a)–
(b) Error rates of the PKDE in comparison to IncPKDE using 5% and 20% of the total
data for the initial training, respectively. (c)–(d) Error rates of the SVDD in comparison
to IncPKDE using 5% and 20% of the total data for the initial training, respectively.

90
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(b) Error rate of PKDE and IncPKDE (20% training of artificial data).

(c) Error rate of SVDD and IncPKDE (5% training of artificial data).

(d) Error rate of SVDD and IncPKDE (20% training of artificial data).

Figure 5.3: (Continued)

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 91

IncPKDE thus successfully reduces the update time of the classifier while maintaining
a similar accuracy. Both the original PKDE and IncPKDE perform much better than
SVDD (Fig. 5.2 and Fig. 5.3).

Evaluate the novelty detection

To evaluate the ability of detecting the unknown samples, we define a different set of
experiments. In contrast to the runtime experiments, we apply a fully semi-supervised
learning approach.

The original PKDE algorithm requires additional data to determine the thresholds of
the novelty detection. Therefore, we introduce a fourth dataset: the validation set. The
novelty detection of the IncPKDE in this experiment is based on the conventional method
i.e. uses the validation set. Unknown samples are introduced by excluding one class
from the initial training set and the validation set, respectively. All datasets are divided
randomly, and the learning data are presented to the classifiers in buckets following the
same strategy as in the previous experiment. The labels of the added data, however, are
the outputs of the classifier.

In addition to the class label, the classifiers may set the believability flag or the novelty
flag. The novelty flag may set if the classifier supposes that the sample belongs to novel
class or outlier. In contrast, the believability flag is set if the classifier trusts the assigned
label. New samples are added to the training set if and only if their believability flag
is confirmed. The PKDE classifier set this flag if the posterior of the class exceeds the
corresponding threshold by a factor of two. While the IncPKDE is set the flag if Pevt is
less than Pth and the difference between the smallest and next smallest outputs of the
EVT scores is larger than a specified threshold. This threshold is estimated using the
known classes. In the case of gesture data, it mostly equals to 0.05. Since the SVDD is
a distance based classifier, a sample is added to the SVDD training set if the classifier
output below half of the threshold value. A sample is flagged as novel if no class passes
the threshold check. It is thus possible that the training sets of the different classifiers
may diverge and contain different samples and possibly false labels.

The whole procedure is repeated for 100 random subdivisions of the data per class,
i.e. each class is omitted from the training set once. Again, we ensure the same random
subdivision for all classifiers during one run.

The novelty detection experiments, again, are performed for two initial training set
sizes, which are 5% and 20% of the total number of samples in the dataset. The fractions
of the test set and the validation set are both 20%. The learning set is comprised of the
remaining samples. The division is executed class-wise. One class, however, is omitted
from the training set and the validation set, respectively.

Notably, the figures show only the results of the experiments those use 5% of gesture
dataset and 20% of artificial dataset due to the large number of figures. Fig. 5.4 shows
the values Tupdate of the three algorithms for the novelty detection experiment. In general,

92
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(a) Time consumed by the classifiers (gesture dataset, 5% training data).

(b) Time consumed by the classifiers (artificial dataset, 20% training data).

Figure 5.4: The time consumed by the classifiers (Tupdate) in the novelty detection experi-
ment defined in Section 5.3.3, where the initial training is: (a) 5% of the gesture dataset.
(b) 20% of the artificial dataset.

the results are similar to the runtime based experiment. The training set and thus the
estimated update time, however, is now influenced by the novel classes. Consequently,
the training set may differ for each classifier after another bucket has been presented and
a direct comparison of the graphs is not reasonable. The results, however, show a general
trend of IncPKDE resulting in lower update times than PKDE and SVDD, respectively,
as shown in Fig. 5.4(a) and Fig. 5.4(b).

The Fnew performance metric is shown in Fig. 5.5. In case of the artificial dataset,
the IncPKDE performs similar to the original PKDE (see Fig. 5.5(a)) but worse than
the SVDD (see Fig. 5.5(b)). In general, the ratio of Mnew to Fnew may be controlled by
adjusting the threshold. However, if Fnew is decreased the Mnew might be increased due to
the nature of the performance metrics. Here, we use the original threshold computation
of Tax and Duin (1999) for the SVDD. In case of the gesture dataset, the IncPKDE

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 93

(a) PKDE and IncPKDE (artificial dataset, 20% training data).

(b) SVDD and IncPKDE (artificial dataset, 20% training data).

(c) PKDE and IncPKDE (gesture dataset, 5% training data).

Figure 5.5: The Fnew error by each classifier. (a)–(b) All classifiers were initially trained
on 20% of the artificial dataset. (c)–(d) All classifiers were initially trained on 5% of the
gesture dataset.

94
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(d) SVDD and IncPKDE (gesture dataset, 5% training data).

Figure 5.5: (Continued)

outperforms the reference methods (Fig. 5.5(c) and Fig. 5.5(d)).
We note that the slope of the IncPKDE’s errors is almost always negative and if it

was positive it decreased with time more than original PKDE. This performance is due to
the reduction of the effect of the outliers or falsely classified samples used to update the
classifiers in the semi-supervised learning in each subsequent process by the factor 1/Nc,
where Nc is the number of samples in a particular class.

Fig. 5.6 shows the evolution of the Mnew performance metric during the learning phase
of the algorithm. In almost all cases, the IncPKDE shows lower median and quantile
values of missed novel samples than PKDE and SVDD. The performance of the SVDD

(a) PKDE and IncPKDE (artificial dataset, 20% training data).

Figure 5.6: Novel class samples Mnew missed by each algorithm. (a)–(b) All classifiers
were initially trained on 20% of the artificial dataset. (c)–(d) All classifiers were initially
trained on 5% of the gesture dataset.

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 95

(b) SVDD and IncPKDE (artificial dataset, 20% training data).

(c) PKDE and IncPKDE (gesture dataset, 5% training data).

(d) SVDD and IncPKDE (gesture dataset, 5% training data).

Figure 5.6: (Continued)

96
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

(a) Total error rate of PKDE and IncPKDE (gesture dataset, 5% training data).

(b) Total error rate of PKDE and IncPKDE (artificial dataset, 20% training data).

(c) Total error rate of SVDD and IncPKDE (gesture dataset, 5% training data).

Figure 5.7: Total error rates Etotal in the novelty detection experiments defined in Sec-
tion 5.3.3. (a)–(b) Etotal of the PKDE in comparison to IncPKDE on the gesture dataset
using 5% and artificial dataset using 20% of the total data for the initial training, respec-
tively. (c)–(d) Etotal of the SVDD in comparison to IncPKDE on the gesture dataset using
5% and artificial dataset using 20% of the total data for the initial training, respectively.

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 97

(d) Total error rate of SVDD and IncPKDE (artificial dataset, 20% training data).

Figure 5.7: (Continued)

is exceptionally poor in the case of a small initial training fraction of the gesture dataset
(see Fig. 5.6(d)).

Fig. 5.7 shows the total error Etotal of the classifiers for the novelty detection ex-
periment. Due to the divergence in the training data at the subsequent updating, the
accuracy of the classifiers is expected to diverge also. However, the values of the total

Data Base Error IncPKDE PKDE SVDD
Mnew [%] 8.00 7.91 27.90

Inc-Gaus-0.2 Fnew [%] 5.74 5.77 0.92
Etotal [%] 7.25 7.23 11.10
Tupdate [s] 0.06 3.16 7.93
Mnew [%] 8.34 8.10 16.80

Inc-Gaus-0.05 Fnew [%] 5.95 5.92 3.35
Etotal [%] 7.51 7.41 9.06
Tupdate [s] 0.06 3.04 8.15
Mnew [%] 1.78 2.36 45.15

Inc-Gtr-0.2 Fnew [%] 0.60 0.56 1.61
Etotal [%] 0.68 0.69 7.10
Tupdate [s] 0.16 0.67 10.16
Mnew [%] 5.87 8.51 60.92

Inc-Gtr-0.05 Fnew [%] 0.75 1.67 2.78
Etotal [%] 1.24 2.56 17.63
Tupdate [s] 0.17 0.65 10.16

Table 5.3: Summary of the novelty detection performance metrics after the last update.

98
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

error of the IncPKDE classifier are similar to the error of the PKDE classifier or even
better (Fig. 5.7(a) and Fig. 5.7(b)). Furthermore, the Etotal metric of the IncPKDE is
better than the SVDD classifiers in all cases as shown in Fig. 5.7(c) and Fig. 5.7(d).

Table 5.3 summarizes the results of the error metrics after the last update, i.e. all data
have been presented to the classifier.

Comparing the conventional novelty detection and EVT

This experiment is to show the advantages of using the EVT for the novelty detection
over the conventional methods. Two IncPKDE classifiers are trained on the same initial
training set. In this experiment, the initial training set size is set to 10% of the total data
and they are randomly selected. The first classifier uses the EVT technique to detect the
novel samples while the second classifier uses additional 20% from the total labelled data
to set the novelty threshold by using the conventional method.

The test set and the learning set sizes are 20% and 50% of the total data, respectively.
As explained in Section 5.2, the novel class is emulated by excluding one class from the
training and validation sets, and the learning set is submitted to the classifiers as buckets
each contains 100 samples to simulate the data streams. Each classifier updates itself to
the data which it trusts. In this experiment, the EVT threshold Pth is set to 0.95, while
the other classifier uses the validation data set to compute the threshold for each classifier
updating. The assignment of a sample is considered trusty in the EVT classifier if the

(a) Tupdate

Figure 5.8: IncPKDEevt indicate the classifier that uses the EVT for the novelty detection
and IncPKDE represent the classifier that uses the validation data in conventional method
of novelty detection. Both classifiers were initially trained on 10% of the gesture dataset.
(a) Time consumed by IncPKDEevt and IncPKDE classifiers (Tupdate). (b) Samples falsely
identified as novel by each classifier (Fnew). (c) Novel class samples missed by each
classifier (Mnew). (d) Total Error rate of IncPKDEevt and IncPKDE classifiers (Etotal).

5.3. SEMI-SUPERVISED LEARNING USING PARZEN WINDOW KERNEL
DENSITY ESTIMATORS 99

(b) Fnew

(c) Mnew

(d) Etotal

Figure 5.8: (Continued)

100
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

sample is not indicated as novel and the difference between the smallest novelty score and
the second smallest is more than 0.05.

The processing time of the classifier that uses the EVT for the novelty detection is less
than half of the processing time of the compared classifier as shown in Fig. 5.8(a). The
number of the samples Fnew of the classifier uses the EVT is less than the corresponding
values of the classifier that uses the conventional novelty detection (Fig. 5.8(b)). This
mean using the EVT enables the classifiers to detect the samples, which belong to known
classes accurately. Thus, there are less false alarms. Although the median of Mnew in both
classifiers are zero, the 75% quantile of the EVT classifier is less than the conventional
classifier (Fig. 5.8(c)). Fig. 5.8(d) shows the total error is reduced by using the EVT.
Thus, in addition to overcoming the needs of validation data, the performance of the
classifier is improved in several aspects including less processing time, less false alarm,
better novelty detection and hence better accuracy.

5.4 Semi-Supervised Support Vector Machine

After the introduction of the support vector machine (SVM), the first implementation of
an incremental SVM algorithm was achieved by Syed et al. (1999). Remaining difficulties
of the incremental SVM were resolved by Cauwenberghs and Poggio (2000). The latter
method was extended by some researchers, e.g. Tax and Laskov (2003), but no successful
practical application of any of these methods has been reported (Laskov et al., 2006).
In the work of Laskov et al. (2006) the difficulties and the problems faced during the
implementation of the incremental SVM were analysed in detail, and an efficient method
of incremental SVM by addressing the bottlenecks of the SVM problem is proposed.
It offers the possibility to add and remove single samples or a batch of samples in the
incremental phase.

As the SVM classifier known to be accurate for both linearly and non-linearly separable
data, we extend it here to work within a semi-supervised scenario. We present an SVM
classifier that has efficient ability to detect outliers in a multi-class system using the
extreme value theory.

The proposed method is based on the incremental SVM presented by Laskov et al.
(2006), who proposed and implemented an efficient incremental SVM algorithm by com-
bining a new storage technique with an intelligent organisation of the minor iteration com-
putations. They minimised the selection operation by using column-wise and row-wise
matrix storage together. Additionally, they used gaxpy-type matrix-vector multiplication
for further minimization. They improve the computational efficiency of the SVM by a
factor of 5–20. The SVM is used in a one-vs-one or one-vs-all manner, which means to
determine a classifier between each class pair or between one class against all other classes,
respectively. Since the training data is stream continuously, the emergence of new classes

5.4. SEMI-SUPERVISED SUPPORT VECTOR MACHINE 101

is expected and using one-vs-all is required to simplify the extension of the classifier to
new classes.

Unfortunately, the SVM output is not calibrated to represent a probability value (Platt
et al., 1999), hence it is difficult to use it for novelty detection or obtain accurate results
in a multi-class system. Several works attempt to fit the SVM output to a posterior
probability, e.g. (Vapnik, 1998; Wahba et al., 1999; Hastie et al., 1998). Here we adopt
the method of Platt et al. (1999), who estimate the posterior probability p(y|fsvm) based
on a parametric model, where y denotes the class and fsvm the binary SVM classifier
output. Empirically, they show that the class-conditional densities are far away from
Gaussian and have a discontinuity at the positive and negative margins fsvm = +1,−1,
respectively. Additionally, they propose a sigmoid approach according to

p(y = 1|fsvm) ≈ 1

1 + exp(Afsvm +B)
(5.9)

with A and B as the sigmoid parameters that need to be optimised. Platt et al. (1999)
use additional labelled data or the training data themselves to estimate the parameters
A and B using maximum likelihood. With (fsvmi, ti) as the training data, where fsvmi
is the SVM output and ti the target probability of the ith training sample, the target
probability computed by using the target class yi as

ti =

{
N++1
N++2

, if fsvmi ≥ 0
1

N−+2
, if fsvmi < 0

(5.10)

with N+ and N− as the number of samples of the two classes, respectively. For
simplicity, let we denote p(y = 1|fsvm) for the sample i by pi, then the cross-entropy error
function of this model is

−Σiti log(pi) + (1− ti) log(1− pi), (5.11)

and

pi =
1

1 + exp(A · fsvmi +B)
. (5.12)

Unfortunately, the optimisation used by Platt et al. (1999) needs all the data at the
beginning of the estimation such that no incremental update is possible. Instead, we
propose an incremental method of estimating the parameters by using stochastic gradient
descent. Hence, the parameters are updated as

A = A− γ · ∂fsvm
∂A

, and B = B − γ · ∂fsvm
∂B

, (5.13)

where γ is the learning step (here: γ = 0.01). Now the estimation process of the
parameters A and B is incremental. In order to make the output of the proposed SVM fit

102
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

the Gumbel distribution EVT, the input distribution to the EVT should be a one-sided
normal distribution |N (0, 1)| with the most believable sample lying close to the mean
(zero), becoming less believable by travelling far from the mean. By subtracting one from
the reciprocal of the probability, we obtain a similar distribution, which is equivalent
to exp(A · fsvm + B). To estimate the distribution of this function, we calculated the
histogram of (1/p − 1) of a randomly selected learning set and found a shape similar to
a one-sided normal distribution (Fig. 5.9).

These values can be easily applied to the EVT to calculate the novelty of the samples.
The parameters (Eq. (3.20) and Eq. (3.19)) of any of the EVT distributions depend only
on the number of samples N drawn from the distribution (Clifton et al., 2008). This helps
to decrease the influence of the amount of training data on the results of the EVT to obtain
a constant threshold even for a changing number of samples. The distribution of the EVT
outputs is shown in Fig. 5.10, showing that a threshold Pth can be set between the normal
samples (near zero) and the abnormal samples (near one). Additionally, as apparent from
(Eq. (3.14)), Pth does not depend on the distribution of the classes, which is in contrast to
the conventional threshold methods, and it has a direct statistical interpretation (Roberts,
1999).

The proposed algorithm has three outputs for each test sample. These outputs are
the most likely class label, the believability flag and the novelty flag. The believability
flag is set to 1 if the label in the first output is highly believable. Contrary, the novelty
flag is set to 1 if the sample is strongly believed to be novel. The second output is used in
semi-supervised learning to select only the believable samples for updating the classifier.
Here the second output is set to 1 if the sample is not detected as novel and its output

Figure 5.9: The distribution of [1
p
− 1] for 40% of the data.

5.4. SEMI-SUPERVISED SUPPORT VECTOR MACHINE 103

Figure 5.10: The distribution of the EVT’s output of the 40% of the data.

probability is more than 0.5.

5.4.1 Experimental set-up

In this section, the proposed algorithm is evaluated on its performance. A comparison is
performed with those of the SVDD (cf. Section A.1) and the original incremental SVM on
the same data. The implementation of the incremental SVM according to Laskov et al.
(2006) is also available online2. Since all of the algorithms are supposed to work as a
semi-supervised classifier, the database is divided into three sets: a training set, learning
set, and testing set. In the first experiment, the results of the proposed algorithm and
those of the SVDD algorithm are compared. In this experiment, the data sets are divided
class-wise into the fractions 40%, 40% and 20% for the training, learning and test set,
respectively. In the second experiment, the results of the proposed algorithm and those
of the original SVM are compared, showing the advantage of the incremental updating
of the probability’s parameters over the original one. In this experiment, the data sets
are divided class-wise into the fractions 50%, 25% and 25% for the training, learning
and test set, respectively. The learning set is used to simulate the streaming data by
dividing it into buckets of 100 or 50 samples each in the first and second experiment,
respectively. Initially, the training data contain 40%/50% from each class, then the novel
class is simulated by excluding one class from the training set at a time. The classifier

2The incremental SVM implementation of Laskov et al. (2006) is available at
http://www-ti.informatik.uni-tuebingen.de/%7espueler/mcpIncSVM/

104
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

performance is determined based on the test set. The novelty threshold Pth of the EVT
in the proposed algorithm set to 0.5. Thus, the sample will consider as novel if the
corresponding EVT output is equal or greater than 0.5. In contrast, the believability flag
will set if the sample is not detected as novel and its output probability is more than 0.5.

Since the SVDD described by Tax and Duin (2004) is a one-class classifier constructing
a hypersphere enclosing the data, it considers some data which are far from the centre as
outliers, and by selecting the ratio of the outliers within this class in the training phase,
the SVDD code sets the threshold of the novelty. The default value of the outlier ratio
to the total data of each class is 5%. We used the default value since it gives the best
performance. The “multic” function in the PRToolBox (cf. Section A.1) selects the class
of the maximum output and identifies the sample as an outlier if all classifiers indicate it
as an outlier.

5.4.2 Results and discussion

The computation time of the proposed classifier is shorter than that of the SVDD, as
shown in Fig. 5.11(a). The computation time required for updating itself with one bucket
is just some milliseconds on a standard PC, which matches the incremental learning
requirement. We used just the available data to estimate the probability distribution
parameters in the original SVM because we suppose that not all old data can be stored,
and the processing time is very close to that of the proposed algorithm (Fig. 5.12(a)). A

(a) Tupdate

Figure 5.11: The performance metric of the proposed incremental SVM (IncSVM) and the
SVDD classifiers. Both classifiers are initially trained on 40% of the gesture dataset, the
learning set and the testing set sizes are 40% and 20%, respectively. (a) The computation
time required for each bucket (Tupdate), i.e. classification and retraining. (b) Samples
falsely identified as novel by each classifier (Fnew). (c) The rate of missed novelties (Mnew).
(d) The total error rate (Etotal).

5.4. SEMI-SUPERVISED SUPPORT VECTOR MACHINE 105

(b) Fnew

(c) Mnew

(d) Etotal

Figure 5.11: (Continued)

106
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

sample indicated as an outlier by the classifier will be excluded from the next training
phase. Hence, the value of Fnew has no direct influence on the classifier performance
except that the number of additional training sets will be smaller with increasing Fnew.
However, the value of it in the case of the proposed algorithm is constant and near zero
but in the case of the original SVM and the SVDD classifier it increases with successive
iterations, as depicted in Fig. 5.12(b) and Fig. 5.11(b), respectively.

The ability of the classifiers to indicate the outliers, which have a negative effect on
the accuracy of semi-supervised learning, is summarised in Fig. 5.11(c) and Fig. 5.12(c).
From these figures, it becomes apparent that all outliers are indicated by the proposed
algorithm in all experiments. In contrast, the 75% quantile error rate of the original SVM
is about 2%.

The total error rate Etotal (Fig. 5.12(d) and Fig. 5.11(d)) is essential for the evaluation
of semi-supervised learning. Initially, it is also close to zero for the proposed algorithm
then decreases with increasing the amount of the training data. This means that the new
unlabelled data add new information to the classifier. In contrast, its value is larger and
increases with increasing amount of training data in the case of other classifiers.

(a) Tupdate

Figure 5.12: The performance metric of the proposed incremental SVM (IncSVM) and
the original SVM (OrgSVM) classifiers. Both classifiers are initially trained on 50% of the
gesture dataset. (a) The required update time for each bucket (Tupdate), i.e. classification
and retraining. (b) Samples falsely identified as novel by each classifier (Fnew). (c) The
rate of missed novelties (Mnew). (d) The total error rate (Etotal).

5.4. SEMI-SUPERVISED SUPPORT VECTOR MACHINE 107

(b) Fnew

(c) Mnew

(d) Etotal

Figure 5.12: (Continued)

108
CHAPTER 5. CONTRIBUTION:

NON-PARAMETRIC LEARNING BASED SEMI-SUPERVISED METHODS

6

Contribution:
Semi-supervised Methods Based on Non-linear

Classifiers

This chapter describes the Extreme Learning Machine (ELM) and the polynomial clas-
sifier. Both of them use a non-linear transformation to map the data from the feature
space to space where the data might be separated linearly. All calculations in the new
space are computed linearly. These classifiers have many common features, but they use
a different transformation. The extreme learning machine connects the inputs to hidden
neurons (mapping the input features to the hidden layer space) through arbitrary weights
while the hidden neurons are connected to the outputs through optimised weights. The
polynomial classifier maps the input features using the polynomial series, and the pa-
rameters of the series should be optimised. These non-linear transformations make these
classifiers appropriate for non-linearly separable data. They can simulate any classifica-
tion function, particularly when the degree of the polynomial or the number of hidden
layers is increased in the polynomial and ELM classifiers, respectively.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2015a,e,
2016c,d)

6.1 Semi-Supervised Extreme Learning Machine

Extreme learning machine (ELM) is a type of single layer feed-forward network (SLFN),
where the input is randomly mapped to the hidden neurons and the output is com-
puted analytically (Huang et al., 2006b). The ELM tends to achieve good generalisation
performance at exceedingly fast learning speed in comparison with conventional neural
networks. Originally, it has been an SLFN but some extensions of the ELM use two or
more layers (Cambria et al., 2013). According to Huang et al. (2006b), for an SLFN with

109

110
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

n hidden neurons the output is given by

felm(#»x j) =
n∑
i=1

βEiGh(#»a i, bi,
#»x j)

#»x j ∈ Rd , #»a i ∈ Rd , bi ∈ R (6.1)

with βEi is the ELM output weight, #»a i and bi are the learning parameters, Gh(#»a i, bi,
#»x j)

is the output of the i-th hidden neuron, and #»x j is the feature vector associated with train-
ing sample j. It is

Gh(#»a i, bi,
#»x j) = g(#»a i · #»x j + bi), (6.2)

with #»a i and bi as the ith neuron’s input weight vector and bias. For hidden neurons
with radial basis function (RBF) characteristic it is,

Gh(#»a i, bi,
#»x j) = g(bi ‖ #»x j − #»a i‖) bi ∈ R+ (6.3)

with #»a i and bi as the centre and width of RBF neuron i. R+ refers to all positive real
numbers (Huang et al., 2006b).

The ELM is an SLFN network, and the equations above apply to it. Following Huang
et al. (2006b), suppose we have N arbitrary distinct samples (#»x j ∈ Rd ,

#»
t j ∈ RNclass)

consisting of a feature vector #»x j and a target vector
#»
t j containing one value for each of

the Nclass classes, respectively. Notably, it is
#»
t j = +1 for the output neuron belonging to

the class of the sample and
#»
t j = −1 for the other output neurons, respectively. An error-

free approximation of the N samples by this n neurons ELM then implies the existence
of a set of parameters βEi,

#»a i and bi fulfilling

felm(#»x j) =
#»
t j, j = 1 · · ·N, (6.4)

which can be written as a matrix

HE · βE = TE (6.5)

HE =

G(#»a 1, b1,
#»x 1) · · · G(#»a n, bn,

#»x 1)
...

. . .
...

G(#»a 1, b1,
#»xN) · · · G(#»a n, bn,

#»xN)


N×n

, (6.6)

βE =

βE
T
1

...
βE

T
n


n×Nclass

and TE =


#»
t
T

1
...

#»
t
T

N


N×Nclass

(6.7)

where βEi denotes the vector containing the ith neuron’s output weight for all classes
and the matrix HE denotes the hidden layer output. According to Huang et al. (2006b),
the procedure of training the ELM is as follows:

6.1. SEMI-SUPERVISED EXTREME LEARNING MACHINE 111

• The first step is to assign the input parameters (i.e. #»a i, and bi, i = 1, . . . , n)
randomly.

• Analytical computation of the matrix HE is performed according to (Eq. (6.7)).

• The output weights are then estimated using (Eq. (6.5)).

As shown by Huang et al. (2006b), the problem here is to minimize the error in
(Eq. (6.5)), i.e. ‖HE · βE − TE‖. Since (Eq. (6.5)) is a linear system in the output weights,
the output weights are estimated by Huang et al. (2006b) using the pseudo-inverse of the
output matrix of the hidden layer according to HE

† = (HE
THE)−1HE

T (Rao and Mitra,
1971):

β̂E = HE
† · TE (6.8)

As suggested by Huang et al. (2006b), the singular value decomposition (SVD) (Rao
and Mitra, 1971) is used to compute the pseudo-inverse HE

†. The labels of the new
samples can then be obtained by using the estimates β̂E and HE

† in (Eq. (6.7)).
Here, we propose a method to update the ELM incrementally and to apply the novelty

detection using the EVT and the confidence band to the output of the ELM to reject the
unknown samples (i.e. outliers or samples belong to novel concepts). The proposed Semi-
Supervised Extreme Learning Machine (SSELM) consists of two phases.

6.1.1 Incremental learning phase

The incremental updating rule is derived based on the pseudo-inverse method introduced
by Lan et al. (2009) according to

ME = HE
THE and PE = HE

TTE. (6.9)

Hence, βE = ME
−1PE. (6.10)

The dimension of ME is n × n and the dimension of the PE is n × Nclass, where n
corresponds to the number of hidden neurons and Nclass to the number of classes.

Suppose that we have N (0) labelled samples for initial training. We then compute
ME(0) = HE

T
(0)HE(0) and PE(0) = HE

T
(0)TE(0) according to (Eq. (6.9)). Hence, βE(0) =

ME
−1
(0)PE(0).

112
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

Incremental learning is achieved by adding chunks of samples to the training set. If
the number of samples #»x ′ in the chunk k + 1 is N ′ then the hidden layer output matrix
H ′E corresponding to the new chunk of data is

H ′E =

 Gh(#»a 1, b1,
#»x ′1) · · · Gh(#»a n, bn,

#»x ′1)
...

. . .
...

Gh(#»a 1, b1,
#»x ′N ′) · · · Gh(#»a n, bn,

#»x ′N ′)


N ′×n

(6.11)

From (Eq. (6.9)) and (Eq. (6.11)) it follows that M ′
E = H ′E

TH ′E and P ′E = H ′E
TT ′E

corresponding to the new chunk data. Then

ME(k+1) = ME(k) +M ′
E and PE(k+1) = PE(k) + P ′E (6.12)

Finally, using (Eq. (6.10)) the updated output is βE(k+1) = ME
−1
(k+1)PE(k+1).

6.1.2 Novelty detection phase

Novelty detection using EVT

According to Huang et al. (2006b), the output of the ELM is around +1 for the class
that the sample belongs to and around −1 for the other classes. This assignment follows
immediately from the target values used for the training of the ELM. If the output of the
winner class is exactly +1, then this result is similar to the training data and thus highly
believable. The confidence of the result decreases with an increasing distance of the winner
output class from the ideal value of +1. Furthermore, the linear least squares optimisation
applied in the training yields mean-free normally distributed residuals. Consequently, the
absolute difference between the ELM output and the ideal value, i.e. a vector that contains
+1 at the position of the winning neuron and −1 at all other positions, will originate from
a mean free one-sided normal distribution. Additionally, we divide the absolute difference
by the standard deviation of the residuals, i.e. the square root of squared residuals mean,
to arrive at a N (0, 1) distribution.

Recalling (Eq. (6.5)) and substituting (Eq. (6.8)), we arrive at the prediction T̂E of
the training set

T̂E = HE(HE
THE)−1HE

TTE. (6.13)

Notably, each column of T̂E contains the predicted values for one class. Let
#»

t̂ c and
#»
t c

be the vector containing the predicted values and the target values of class c, respectively.
The sum of the squared residuals is then given by

6.1. SEMI-SUPERVISED EXTREME LEARNING MACHINE 113

rc =
[#»

t̂ c −
#»
t c

]T [#»

t̂ c −
#»
t c

]
(6.14)

=
#»
t
T

cHE(HE
THE)−1HE

T #»
t c +

#»
t
T

c

#»
t c. (6.15)

Notably, HE
THE = ME and HE

T #»
t c is the cth column of PE. Consequently, the first

summand on the right side of (Eq. (6.15)) may be incremented using (Eq. (6.12)). The

term
#»
t
T

c

#»
t c is the sum of the squared target values. Consequently, it may be incremented

by adding the squared target values of additional samples. Dividing rc by the number
of samples and taking the square root results in the standard deviation of the residuals.
Notably, this approach yields a class-wise standard deviation which represents the different
models formed by the output layer of the ELM.

After division by the class-wise standard deviation, the absolute difference of the ELM
output and the ideal value originates from a one-sided normal distribution and is thus
modelled by the Gumbel distribution of the extreme value theory (Clifton et al., 2008).
Accordingly, the highly believable samples have Pev = 0 and the ideal novel sample yields
Pev = 1. Thus we set Pth = 0.9 and flag a sample to be novel if at least two output
neurons detect a novelty.

Novelty detection using confidence bands

Equation (Eq. (6.5)) is a system of linear equations for the output weights, i.e. the output
of the ELM is a weighted linear combination of the hidden layer activations, where the
weights represent the parameters of a linear model (Huang et al., 2006b). The confidence
band intervals of the output decision may thus be estimated. They can be computed by
applying the output of the classifier to Eq. (3.24). Notably, the residual ri is the difference

between the estimated output
#»

t̂ (#»x i) and the target output
#»
t (#»x i). Here, the number of

free parameters Np corresponds to the number of neurons. Since HE
THE = ME and the

residuals ri =
#»

t̂ (#»x i)−
#»
t (#»x i) appear in the squared sum, (Eq. (6.12)) and (Eq. (6.15)) are

applied to update the confidence bands incrementally. The standard value of αconf = 0.05
(Kardaun, 2005) is used.

The sample #»x is considered novel if the inequality

#»

t̂ 1(
#»x)−

#»

t̂ 2(
#»x) < z · (ηconf1(#»x) + ηconf2(

#»x)) (6.16)

is fulfilled, where
#»

t̂ 1(
#»x) and

#»

t̂ 2(
#»x) correspond to the first and second largest decision

values in the output of the ELM classifier for the sample #»x and ηconf1(
#»x) and ηconf2(

#»x) are

the confidence band widths of the
#»

t̂ 1(
#»x) and

#»

t̂ 2(
#»x), respectively (condition (Eq. (6.16))

is proposed by Sakic (2012) in the context of semi-supervised learning). z is a constant
(here z set to 75).

114
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

Finally, the sample #»x has been considered novel if both conditions Eq. (6.16) and at
least two output neurons are greater than Pth, which correspond to the confidence band
and EVT, respectively, indicate it as a novel.

6.1.3 Believability conditions

To ensure only trusted labels in the new training set, we apply additional conditions. If
at least one output neuron detects a novelty, we do not consider the label trustworthy
and do not add it to the training set. Furthermore, since the winner class output value,
in the ideal case, should be +1 and all other neurons output −1, the difference between
the winning neuron and the second largest output value is supposed to be 2. We have
noticed that the ELM outputs two positive values in the case of unseen classes, resulting
in a difference less than 1. Therefore, the newly labelled samples should fulfil another
condition to be accepted in the next training phase: The difference between the first and
second largest output values should exceed a specific threshold. Here, we set the threshold
to 1.

6.1.4 Experiments and results

The normal ELM neural network has been proven to be a fast neural network (Huang
et al., 2006b). Moreover, the incremental ELM is faster than normal ELM. Hence, the
main comparison will focus on the accuracy rather than the time of processing. To show
the additional features of the proposed algorithm we compare its results with the auto-
encoder neural network (cf. Section A.2). The AANN from the dd-tools toolbox (Tax,
2015) are used. Similar to our algorithm, this auto-encoder algorithm can detect outliers.
Hence, we used it in the semi-supervised process to compare the two algorithms.

Only the Gesture data are used to evaluate the classifiers. The Gesture data are
randomly divided into three disjoint data sets with fractions 40%, 40%, and 20% for the
training, the learning and the test set, respectively. As mentioned in Section 5.2, the
training set contains all nine classes, and each class is divided separately, i.e. the training
set contains 40% of the samples of all classes. The novel class is then introduced by
excluding one class from the initial training set. The learning set is split into buckets of
100 samples.

Both classifiers are trained on the initial training set. Then the accuracy and other
measures are evaluated based on the test set and all step of the experiment Section 5.2
are implemented. Since the auto-encoder algorithm is not incremental, the algorithm is
retrained using the whole modified training set while we use the proposed incremental
update rule for the ELM. New samples are considered novel if the novelty flag set, i.e.
the EVT output exceeds the threshold of 0.9 and Eq. (6.16) is fulfilled. The believability
flag controls the selection of the samples that are included in the training set. This flag is

6.1. SEMI-SUPERVISED EXTREME LEARNING MACHINE 115

set if the EVT does not indicate it novel and Eq. (6.16) is not fulfilled, and the difference
between the winner class and the second class exceeds 1.

The auto-encoder labels the new sample with the winner class label or as an “outlier”.
Originally, the auto-encoder is a one-class classifier. However, using the function “multic”
in the toolbox by Tax (2015) allows for the classification of multiple classes. Training
one classifier for each class and applying all of these classifiers to the “multic” function,
achieves a multi-class auto-encoder. Each classifier outputs a real number between 0 and
1 similar to a probability. If this number is less than a predefined threshold, which was
set by selecting the ratio of the outliers in the training set to be 5%, it indicates the
new sample as an “outlier”. Otherwise, the new sample is labelled as “target”. The
“multic” function labels the new sample as “outlier” if it does not match any class, i.e.
if it is indicated as “outlier” by all classifiers, and it labels the new sample with the
most probable class, i.e. the maximum output class, if more than one class is labelled as
“target”1.

The runtime of the classifier matches the expectations (Fig. 6.1(a)). Since the proposed
algorithm is incremental, it requires less time to adapt. In any case, the processing time
of the incremental ELM is of the order of some milliseconds which helps to apply it to
online data streams.

Fig. 6.1(c) shows that the values Mnew of both algorithms are zero, i.e. no outlier or
novelty has been missed. This is important since the outliers are supposed to be near the
boundary of the sample distributions of all classes and thus accepting them significantly
affects the performance of the classifiers in next iterations. Fig. 6.1(b) shows the values
Fnew, which is initially below 2 % for the proposed algorithm whereas it starts at more
than 8 % for the AANN. The rate of false detections by the incremental ELM decreases
with an increasing amount of training data reaching a final level of less than 1 %. In the
case of the AANN, Fnew is almost constant. Although this means that a small fraction of
about (1–2) % of the samples belonging to known classes are supposed to be outliers and,
consequently, they are rejected, this is not critical. In fact, this removes the (1–2) % most
extreme samples from the semi-supervised training set and thus prevents possibly false
labels or sloppily performed gestures from entering the training set. This leads to a slow
gradual adaptation of the learned sample distributions leading to a final stabilised value
reflected by Etotal (Fig. 6.1(d)). This behaviour is favourable in slow concept-drifting data
streams where the sample distributions change slowly over time. The auto-encoder, in
contrast, rejects more samples, which leads to a very slow adaptation. The effect of this
novelty detection is directly apparent in the total error Etotal of both classifiers. Initially,
the error of the proposed approach is less than 2 % and decreases to less than 1 %. On
the other side, the total error of the auto-encoder is initially about 8 % and increases with
an increasing Fnew.

1The results of the individual 100 runs are available at http://www.bv.e-technik.tu-dortmund.de

116
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

(a) Tupdate: Gesture data

(b) Fnew: Gesture data

(c) Mnew: Gesture data

Figure 6.1: Accuracy metrics the incremental ELM and the AANN classifiers: (a) The
update time required for each bucket Tupdate, i.e. classification and retraining. (b)The rate
of falsely detected novelties Fnew. (c) The rate of missed novelties Mnew. (d) The total
error rate Etotal

6.2. AUTO-ENCODER EXTREME LEARNING MACHINE 117

(d) Etotal: Gesture data

Figure 6.1: (Continued)

6.2 Auto-encoder Extreme Learning Machine

Another implementation of the ELM is proposed here. The system uses two different ELM
classifiers (Huang et al., 2006b). The first model is trained by using the training data
with their target labels. This model is used to assign the test samples. It is, however, not
able to detect the uncommon data without additional heuristics or methods. To detect
uncommon data, we apply a novelty detection based on an extreme learning machine
trained as an auto-encoder (AE-ELM), i.e. the second ELM is not a classifier but a
regression-based ELM that tries to reproduce its input. Based on the training data, we
estimate the distribution of the residuals and test new data based on the hypothesis that it
belongs to a different distribution. The AE-ELM and the corresponding novelty detection
method are described Section 6.2.1 and 6.2.2, respectively.

Since the training and testing streamed data may be observed in different environments
and thus the noise levels and the residual artefacts of the features may be different for
each observation. Consequently, both classifiers are required to adapt themselves to the
new distribution. This is achieved in a fully autonomous manner using the incremental
learning techniques.

6.2.1 The auto-associative extreme learning machine

Auto-associative neural networks (AANN) (Cambria et al., 2013) are neural networks that
are trained to reproduce the training data, i.e. the inputs and the targets are identical.
In general, they minimize the sum of squared norms∑

i

‖HE(#»x i) · βAE − #»x i‖2 , (6.17)

118
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

where #»x i is the vector containing the ith sample’s input features, HE(#»x i) is the
matrix containing the activation of the networks output layer, and βAE is the vector
containing the output weights of the neural network. Consequently, they learn the data
representation (Hertz et al., 1991; Baldi and Hornik, 1989), i.e. the input pattern is
reconstructed at the AANN’s output layer with minimum error. Here, we use the ELM,
which is detailed in 6.1 because it is easily adapted to new data (Al-Behadili et al., 2015a).
One hidden layer with n hidden units is used in the architecture of this auto-encoder. The
sigmoid activation function is used for the hidden neurons. Since the parameters of the
hidden neurons are fixed for the ELM, only the output weights are adapted and Eq. (6.17)
may be solved using linear least-squares techniques.

Using the auto-encoder ELM, we avoid the problems of the conventional AANN, which
also optimize the hidden neurons and thus require additional parameters of the non-linear
optimization procedure, e.g. a learning rate, and stopping criteria, from an expert user.
Commonly, the number of the neurons in the hidden layer of AANN is less than the
number of neurons in the input layer. Hence, we tried a different number of neurons
and we found that with an increasing number of neurons the amount of detected novel
samples are increasing as well. Due to the model’s increasing degree of freedom, it is able
to reconstruct even noisy samples. This leads to a high number of noisy samples being
detected as a novelty. The best numbers of the AE-ELM’s hidden neurons (based on
(8–10)-dimensional input data) that reduce the noise are in the range of 3–14.

6.2.2 Novelty detection

Since linear least-squares estimators are bias-free, the average overall residuals of the
AANN is zero. Furthermore, the residuals follow a univariate normal distribution and
the variance is the sum of squared residuals, i.e. the residual error. Unfortunately, the
residuals of the AANN do not distinguish between different samples, i.e. each feature of
one sample is one residual, respectively. We thus assume, that the residual vectors #»r i are
drawn from a multivariate normal distribution, i.e.

#»r i = HE(#»x i) · βAE − #»x i ∼ N (#»µ res,Σres) . (6.18)

where #»µ res and Σres are the mean vector and the covariance matrix of the multivariate
normal distribution N , respectively. The novel sample is supposed to reconstructed with
larger residuals than the usual samples, i.e. the Mahalanobis distance is greatly increased.
The Mahalanobis distance dMahal of an d -dimensional multivariate normal distribution
follows the chi-squared distribution χ2

d (Gatignon, 2010), where d is the number of features
per one sample. An ideal threshold would thus be given by the critical value of the chi-
squared distribution given a target percentage. However, we do not know the true values of
#»µ res and Σres. Consequently, we estimate them from the N training samples. To reflect

6.2. AUTO-ENCODER EXTREME LEARNING MACHINE 119

this uncertainty, χ2
d is replaced by Hotelling’s T-squared distribution Td ,N (Gatignon,

2010). The threshold Nth is then computed using

Nth = θdrift · T−1d ,N(θprob) (6.19)

where T−1d ,N(θprob)
is the critical value of Hotelling’s T-squared distribution with respect

to the probability θprob. Furthermore, we introduce the factor θdrift to cover the concept’s
movement in the feature space. Although the same effect could be achieved by increasing
θprob, we prefer the two parameters representation to preserve the statistical meaning of
θprob and handle the concept drift using θdrift. For numerical reasons, we do not directly
compute Hotelling’s T-squared distribution but rather compute the F-distribution, which
is commonly tabulated in numerical programming languages, and use the relation

N − d

(N − 1) d
Td ,N = Fd ,N−d (6.20)

Formally, the same effect could be modelled using the extreme value theory (cf.
Section 6.1). Clifton et al. (2011) showed that the extreme valued probability follows
equiprobable contours of the generating distribution, which correspond to equidistant
contours of the Mahalanobis distance. Consequently, it is possible to derive an extreme
value probability, i.e. a probability that the considered sample is an extreme value of the
generating distribution, that correspond to our novelty detection threshold. However, we
increased the threshold by a small factor θdrift to follow the concept drift and thus loses
its statistical meaning of a probability, therefore we prefer the distance based threshold
representation.

6.2.3 Incremental learning of ELM

Since the classifier has two models of the ELM, they are updated separately. The normal
ELM is updated as same as the updating of the normal ELM that is explained in Sec-
tion 6.1.1. The second model is similar to the first model except the PE in Eq. (6.9) is
changed to

PAE = HE
TX. (6.21)

thus,

βAE = ME
−1PAE. (6.22)

The dimension of the matrix PAE is n×d . Since the dimension of these matrices only
depends on the number hidden neurons n and the number of known classes d , they are
independent on the number of samples used to train the classifier. Incrementing these
classifiers does not require all trained samples and thus does not require a huge amount of

120
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

computer memory if the number of samples, which may be up to several millions in some
cases, increases. The incremental updating of these parameters is similar to the normal
ELM also (cf. Section 6.1.1).

Suppose that we have N (0) labelled samples for initial training. Then the initial
mean vector #»µ res(0) and the initial covariance matrix Σres(0) of the residuals are estimated
according to

#»µ res(0) =
1

N (0)

N(0)∑
i=1

#»r i,(0), and (6.23)

Σres #»r ,(0) =
1

N (0) − 1

N(0)∑
i=1

(
#»r i,(0) − #»µ res(0)

) (
#»r i,(0) − #»µ res(0)

)T
, (6.24)

where #»r i,(0) is the auto-encoder’s residual of the ith sample in the initial training set.
Incremental learning is then achieved by adding chunks of samples to the training set. If
the number of samples #»x ′ in the chunk k + 1 is N ′ then the parameters of the normal
distribution, which models the residuals are adapted according to

N (k+1) = N (k) +N ′, (6.25)

#»µ res(k+1) =
N (k)

N (k) +N ′
#»µ res(k) +

N ′

N (k) +N ′
#»µ res

′, and (6.26)

Σres(k+1) =
1

N (k) +N ′ − 1

[(
N (k) − 1

)
Σres(k) + (N ′ − 1) Σres

′

+
N (k)N

′

N ′(k) +N ′
(

#»µ res(k) − #»µ res
′) (#»µ res(k) − #»µ res

′)T] , (6.27)

where #»µ res
′ and Σres

′ are the mean vector and the covariance matrix estimates based
on the new chunk of data. The Eq. (6.27) will be discussed in more details in Section 7.1.

To avoid falsely labelled samples in the new chunk of data, the new data must match
two requirements. First, the samples need to pass the novelty detection check. Second,
the sample must be classified with good confidence. The first condition is checked for
the Mahalanobis based distance threshold of the ELM auto-encoder (see Section 6.2.2).
The second condition requires the ELM classifier to assign a believability label to the new
sample. We consider a label trustworthy if the outputs of the winning class and the second
largest output increase a threshold of Nthb. All samples that pass the two requirements
are selected and both classifiers, i.e. the ELM auto-encoder and the ELM classifier are
updated.

6.2. AUTO-ENCODER EXTREME LEARNING MACHINE 121

6.2.4 Results and performance study

This method is evaluated by using two databases. The gesture database is used to evaluate
the incremental performance and the novelty detection accuracy for gesture data. The
accuracy of detecting a small number of novel samples within a large number of data is
evaluated by using the Lunar database (cf. Section 4.4).

Auto-encoder ELM evaluation in gesture database

The AE-ELM (ElmA) is compared with other two versions of the previously explained
ELM. The first version of the ELM (ElmE) uses the EVT only for the novelty detection,
and the other version (ElmC) uses the EVT and the confidence band method for the nov-
elty detection. Since all the classifiers can learn incrementally, the data set is divided into
training, learning and testing sets only with a fraction of 10%, 60% and 30%, respectively.
The rest of this experiment is same as the normal procedure.

Since all classifiers in the experiment are incrementally learned, the running time of
all classifiers is negligible and mostly constant. The AE-ELM is faster than the classifier
that computes both the confidence bands and the EVT, but it is slower than the classifier
that uses only the EVT (Fig. 6.2(a)). This processing time is expected since the AE-
ELM approximately uses two ELM. Although, the median of missed novel samples of the
AE-ELM classifier is zero in Fig. 6.2(c), the 75% quantile shows that the missed novel
samples increase slightly with the continuous updating. In the same figure, the median
of Mnew of the ELM with the EVT and confidence band novelty detection is zero, while
the 75% quantile is also increased with the continuous updating but it still less than the
75% quantile of the AE-ELM. This means the number of outliers that are accepted in
the successive training, in the AE-ELM is larger than the other classifiers. Making the
condition of the believability more difficult to compensate this increase in the 75% quantile
leads to rejecting more normal samples, which affect the total accuracy. Fig. 6.2(b) shows
the Fnew of the three classifiers. The accuracy of indicating the samples that belong to
known classes of the AE-ELM is in between the accuracy of the other classifiers. Thus
the total error Etotal (Fig. 6.2(d)) of the AE-ELM is also in the middle of the total error of
other two classifiers. The best classifier is the ELM that uses both techniques of novelty
detection, EVT and confidence band; while the worst is the ELM that uses only the EVT.

ELM and AE-ELM evaluation in lunar database

We apply the proposed framework to the western Moscoviense basin, which is described
in Section 4.4.2. The output is compared to the result of Pieters et al. (2011). Since the
output of the ELM depends on the randomly placed hidden neurons, we train 100 pairs
of ELM and AE-ELM. While the ELM assigns a class label to each pixel, the AE-ELM
provides a novelty flag. We assume that a pixel is truly a novelty, i.e. an uncommon lunar
spectrum, if at least 99 %, i.e. 99 AE-ELMs, independently set the novelty flag. Similarly,

122
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

(a) Tupdate: Gesture data

(b) Fnew: Gesture data

(c) Mnew: Gesture data

Figure 6.2: Accuracy metrics of the ElmA, the ElmE and the ElmC classifiers: (a) The
time required for each bucket Tupdate, i.e. classification and retraining. (b) The rate of
falsely detected novelties Fnew. (c) The rate of missed novelties Mnew. (d) The total error
rate Etotal.

6.2. AUTO-ENCODER EXTREME LEARNING MACHINE 123

(d) Etotal: Gesture data

Figure 6.2: (Continued)

we assign a class label based on a majority vote, i.e. we selected the most frequent label.
Fig. 6.3 shows the influence of the the novelty detection parameter θdrift. If the threshold
is too small, the classifiers are sensitive to noise and detect too many uncommon spectra.
In contrast, the classifiers select no novelties if the threshold is set too high. Consequently,
the number of novelties may be gradually reduced by increasing θdrift. We set θdrift = 3
for the further analysis.

The semi-supervised learning process is illustrated in Fig. 6.4. After each semi-
supervised increment, the class labels and the novelty flags were computed. While the
initial class labels appear rather noisy, the class labels become more homogeneous even af-
ter each increment and yield a homogeneous separation of the mare and highland regions.
The detected novelties, however, increase with each increment. This results behaviour in-
dicates that, although some classifiers initially miss the novelties, they adapt to the data
and thus are able to detect novelties which they initially did not detect. These newly
detected novelties are mainly concentrated in the mare region.

The detected novelties processed by an automatic clustering algorithm. The unsu-
pervised mean-shift algorithm (Comaniciu and Meer, 2002) is applied to the detected
novelties. Additionally, the clusters that have similar continuum removed spectrum (CR-
spectra) are combined. This approach yields the results shown in Fig. 6.5(a). Notably,
the order of the clusters obtained by the algorithm is not fixed and the colours have been
selected to match the result of (Pieters et al., 2011), which is shown in Fig. 6.5(b). In
addition to the uncommon spectra by Pieters et al. (2011) (Clusters B–D), the algorithm
selects several locations on the floor of the basin (Cluster D). The CR-spectra of clusters
A–D indicates olivine content, orthopyroxenes, spinel and pure olivine, respectively. The
clusters E–I appear to be calibration artefacts that are still different from the training
data, i.e. extremely high spectral reflectance and continuum slopes and/or missing or dis-
torted absorption features. Furthermore, the number of spectra within the clusters A–I is

124
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

(a) θdrift = 1. (b) θdrift = 2. (c) θdrift = 3. (d) θdrift = 5.

Figure 6.3: Influence of the novelty detection parameter θdrift. (a)–(d) Detected uncom-
mon spectra for various values of θdrift. A low value of θdrift detects too many novelties,
while a high value of θdrift makes the auto-encoder insensitive to uncommon spectra.

238, 234, 216, 180, 85, 63, 23, 13, and 1, respectively. It may thus be possible to remove
rare calibration artefacts by removing small clusters.

6.2. AUTO-ENCODER EXTREME LEARNING MACHINE 125

(a) Initial labels. (b) Final labels. (c) Initial novelties (d) Final novelties

Figure 6.4: Influence of the semi-supervised learning. (a) The initial cluster labels mainly
separate the region into highland and mare areas. There are, however, a few intermediate
class labels in the southern half of the image. (d) The semi-supervised learning reduces
the amount of detected intermediate classes and yields a more homogeneous highland and
mare separation. The remaining stripe like class labels are artefacts of the remapping and
data calibration process. (c) The initially detected novelties are mainly concentrated at
bright crater rims. (d) The final novelties resulting from the semi-supervised learning
increase mainly in the mare region and the orthopyroxene rich regions. The novelty maps
have been dilated for readability, i.e. each novel pixel is indicated by highlighting a fifteen
by fifteen pixels neighbourhood centred at the novel pixel. Refer to Fig. 6.3 for the original
scale.

126
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

A
B

C

D

E

E

F

G

H

H

H

I

(a) Groups of uncommon spectra. (b) Uncommon spectra
mapped by Pieters et al.
(2011).

Figure 6.5: The results of the automatic clustering algorithm. (a) The clusters of uncom-
mon spectra that were determined by the automatic clustering algorithm. The novelty
map has been dilated for readability, i.e. each novel pixel is indicated by highlighting a
fifteen by fifteen pixels neighbourhood centred at the novel pixel. The detected regions
detect the spinel, orthopyroxene and olivine bearing regions that were mapped by Pieters
et al. (2011). (b) The original figure of Pieters et al. (2011). Red corresponds to orthopy-
roxene, green corresponds to olivine and magenta corresponds to spinel. Reproduced with
kind permission of John Wiley & Sons, Inc. ©2011 American Geophysical Union

6.3. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER 127

6.3 Semi-supervised Polynomial Classifier

The polynomial classifier (PC) is one of the most known types of interpolation functions
(Theodoridis and Koutroumbas, 2009). According to Schürmann (1996), the matrix form
of the discriminant function of the polynomial classifier is

HP · βP = TP (6.28)

where βP and TP are the model parameters matrix and the target output of the
classifier, respectively. HP is the vector of polynomial basis features which is computed
from the input feature vectors #»x and depends on the polynomial degree np (see Schürmann
(1996) for details). One possibility to obtain the solution is to minimise the residual norm
of (Eq. (6.28)), i.e. ‖HP · βP − TP‖. Since (Eq. (6.28)) is a linear system of equations
for the output weights (similar to the equation of the extreme learning machine Huang
et al. (2006b)), an estimation of the model parameters is possible using the pseudo inverse
of the polynomial basis matrix according to HP

† = (HP
THP)−1HP

T (Rao and Mitra,
1971):

β̂P = HP
† · TP (6.29)

The pseudo-inverse HP
† can be computed using the singular value decomposition

(SVD) (Rao and Mitra, 1971). The calculated values of β̂P and HP
† are used in (6.28)

to estimate the labels of the new samples.
The proposed algorithm is implemented to utilise two activities, which are incremental

learning and novelty detection. Additionally, the novelty detection is achieved by using
the EVT and the confidence band interval techniques.

6.3.1 Incremental learning phase

The incremental training of the polynomial classifier as described in Schürmann (1996)
(which is similar to the analytical form of updating the extreme learning machine devel-
oped in Lan et al. (2009)) is adopted here, where

MP = HP
THP and PP = HP

TTP. (6.30)

and hence βP = MP
−1PP. (6.31)

The dimension of matrix MP is L×L and the dimension of the PP is L×Nclass, where
L denotes the number of variables in the polynomial basis vector and Nclass the number
of classes. Assume that N (0) is the number of labelled samples for initial training. Then
MP(0) = HP

T
(0)HP(0) and PP(0) = HP

T
(0)TP(0) are computed according to (Eq. (6.30)). It

is thus βP(0) = MP
−1
(0)PP(0). The polynomial classifier can be incremented using either

128
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

sample by sample or chunk by chunk. If the chunk k + 1 has N ′ samples #»x ′ then the
polynomial basis matrixH ′P corresponding to this chunk of data is computed (Schürmann,
1996). Using the computed H ′P in (Eq. (6.30)) yields M ′

P = H ′P
TH ′P and P ′P = H ′P

TT ′P
for the new data, leading to

MP(k+1) = MP(k) +M ′
P and PP(k+1) = PP(k) + P ′P, (6.32)

and following (Eq. (6.31)) the incremented model becomes βP(k+1) = MP
−1
(k+1)PP(k+1)

(Schürmann, 1996).

6.3.2 Novelty detection phase

Novelty detection using EVT

In the training phase, the labels of the samples are supposed to be perfectly known, i.e.
the probability that a sample belongs to another class than the labelled one is zero and
the probability of belonging to the correct class is one. The probabilities of all classes are
collected in the label vector. Hence, the ideal output vector of the polynomial classifier
should follow the same values, i.e. all values are close to zero except the place of the class
that the sample may belong to, which is around one. The trustiness of the classifier output
decreases with an increasing deviation of the output values from the desired target output
vector. Additionally, the absolute difference between the polynomial classifier output and
the desired output is generated from a one-sided normal distribution with a mean of
zero since the least squared estimate is bias-free. Moreover, we divide these values by
the standard deviations of the residuals in the training phase, which corresponds to the
square root of the mean squared residual. This leads to a one-sided normal distribution
N (0, 1) of zero mean and a variance of 1.

The predicted labels of the training data set T̂P can be estimated by using (Eq. (6.28))
and substituting (Eq. (6.29))

T̂P = HP(HP
THP)−1HP

TTP. (6.33)

The predicted value for each class is given by a column of T̂P, i.e. the number of

columns in T̂P corresponds to the number of classes. If
#»

t̂ c denotes the vector of the
predicted values and

#»
t c the vector of the target values of class c, then the sum of the

squared residuals is given by

r =
[#»

t̂ P c −
#»
t P c

]T [#»

t̂ P c −
#»
t P c

]
(6.34)

=
#»
t P

T

cHP(HP
THP)−1HP

T #»
t P c +

#»
t P

T

c

#»
t P c. (6.35)

6.3. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER 129

Noticeably, HP
THP = MP, and HP

T #»
t P c is the cth column of PP. Therefore, the

first summand on the right side of (Eq. (6.35)) can be incremented using (Eq. (6.32)).

Consequently, the term
#»
t P

T

c

#»
t P c is the sum of the squared target values, and it can

be incremented simply by adding the squared target values of the new samples. The
standard deviation of these residual is the square root of r after dividing it by the number
of samples. The result will be a class-wise standard deviation of the different models that
is produced by the polynomial classifier.

As mentioned above, the absolute difference of the polynomial classifier output in the
test phase and the target (“ideal”) values originate from a zero mean one-sided normal
distribution and will be of unit variance if it is divided by the class-wise standard deviation.
Thus, it will fit the Gumbel distribution of the EVT (Clifton et al., 2008). Consequently,
the highly believable samples should have Pev = 0 and the ideal novel sample should get
Pev = 1. A threshold of Pth = 0.9 is defined, and the sample is indicated as novel if at
least one class detects a novelty.

Novelty Detection Using Confidence Band

Since the polynomial classifier output is a linear combination of the polynomial basis
features, the confidence band intervals of the polynomial classifier output decision can be
estimated. The confidence band intervals of the output decision can thus be estimated
similar to the estimation in the ELM classifier. All the equations and the derivative is
the same (as in cf. Section 6.1.2) except the value z is set to 180. Notably, the number
of free parameters Np corresponds to the number of polynomial bases features L.

Finally, the sample #»x is considered as a novel only if both conditions, i.e. the EVT
and confidence band, indicate it as a novel.

6.3.3 Believability Conditions

Additional conditions should be fulfilled to use the sample in the next training set. The
label is considered untrustworthy if any class detects the novelty. Moreover, the ideal
difference between the largest and the second largest output is one. Hence, a second
threshold is set to this difference, and the believability flag is set if this difference is
greater than 0.5. All untrustworthy samples are excluded from the next training set.

6.3.4 Experiments and Results

Since the SVDD algorithm (cf. Section A.1) is well-known within novelty detection and
incremental learning, it is used here for comparison with the results of the proposed
polynomial algorithm. We used the incremental version of the SVDD. Both classifiers have
the ability to detect outliers and are updated incrementally. Hence, we used them in the
semi-supervised process to compare their results. The experiment set-up in (Section 5.2)

130
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

(a) Tupdate: Gesture data

(b) Tupdate: Iris data

(c) Fnew: Gesture data

Figure 6.6: Accuracy metrics of the classifiers: (a)–(b) Time consumed by each classifier
for the gesture and the Iris data set, respectively. (e)–(f) The rate of missed novelties
Mnew for the gesture and the Iris data set, respectively. (c)–(d) The rate of false detections
Fnew for the gesture and the Iris data set, respectively. (g)–(h) The total error Etotal for
the gesture and the Iris data set, respectively.

6.3. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER 131

(d) Fnew: Iris data

(e) Mnew: Gesture data

(f) Mnew: Iris data

Figure 6.6: (Continued)

132
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

(g) Etotal: Gesture data

(h) Etotal: Iris data

Figure 6.6: (Continued)

is used to evaluate the proposed algorithm for two data sets; Gesture and Iris datasets.
The gesture data set is divided into fractions of 25%, 50%, and 25% as an initial training
set, learning set and test set, respectively. Whereas, the Iris data set (150 samples) is
divided into fractions of 40%, 30%, and 30%, respectively. To emulate the data streaming,
the learning data set is subdivided into “buckets”, each of which consists of 100 samples in
case of the gesture data set and 5 samples in the case of the Iris data set. The novelty flag
is set if both conditions of novelty, i.e. the EVT output and the confidence band condition,
indicate a sample as novel, whereas the believability flag is set if it is not indicated as
novel by any of the novelty conditions and the difference between the winner class and
the second class exceeds 0.5.

A very important factor is the incremental updating, which it is evaluated by com-
puting the processing time (total time required for training and testing) of each classifier.
The runtime of the proposed polynomial classifier is computed using the explained exper-
iments and compared with the runtime of the SVDD classifier. The difference between

6.3. SEMI-SUPERVISED POLYNOMIAL CLASSIFIER 133

the processing times is quite clearly apparent from Fig. 6.6(a) and Fig. 6.6(b) (the dashed
lines denote the 25% and 75% quantiles in all figures). It requires just some milliseconds
to update itself for one bucket, and thus it is suitable for incremental learning. To im-
plement the autonomous updating successfully, the classifier should be able to indicate
the samples which are dissimilar to the concept learned by the classification system. The
missed indication of these samples is summarised by the value Mnew, which means that
it should be as small as possible to reject all outliers from the training set. It is exactly
equal to zero for the proposed algorithm which means that all outliers in both datasets are
detected. Although the median of Mnew of the SVDD classifier is zero, the 75% quantile
exceeds 30% of the total number of outliers in the case of the gesture data as shown in
the Fig. 6.6(e) and it corresponds to 20% with a 75% quantile of more than 40% for the
Iris data (Fig. 6.6(f)).

In contrast, rejecting a large number of samples leads to a small amount of new data,
which means that not much new information will be added to the classifiers. The error
of rejecting samples belonging to the known concept is evaluated by computing Fnew. It
affects only the size of selected data for the next training period, i.e. it is not critical if
some samples belonging to known classes are rejected. This behaviour may occur because
such samples lie on the border of the class. Fig. 6.6(c) and Fig. 6.6(d) show the value of
Fnew of the proposed algorithm, which starts higher than that of the SVDD but decreases
with successive updating and becomes lower than that of the SVDD. This means that
additional information is added to the classifier by the semi-supervised learning. The other
important measure in semi-supervised learning, the total error rate Etotal, which contains
the above two types of error in addition to the error of misclassifying a sample of a known
class as belonging to the wrong known class. It should decrease with increasing amount
of training data, which is shown in Fig. 6.6(g) and Fig. 6.6(h) for the proposed algorithm.
This means that the classifier extracts new information from the new unlabelled data.
In contrast, the total error rate of the SVDD classifier slightly increases with increasing
amount of data, which may be due to the continued acceptance of some outliers.

134
CHAPTER 6. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON NON-LINEAR CLASSIFIERS

7

Contribution:
Semi-Supervised Methods Based on Metric

Learning

Metric learning, sometimes called similarity learning, predicts the class of different ob-
jects depending on a measured distance between the object and another object, e.g. the
Euclidean distance or the Mahalanobis distance. Similar objects are assumed to be closer
to each other, and thus the same class label may be assigned to close-by objects. Com-
monly, a class is represented by its centroid, i.e. the expected or average instance. In
this context, adaptive distance metrics are e.g. discussed by Schneider et al. (2009). It is
straightforward to add new classes to the trained model by adding the centroids of the
new classes to the set of class centroids. These classifiers are termed “nearest class mean”
classifiers (NCM) (e.g. Kuncheva and Bezdek, 1998; Webb, 2003; Zhou et al., 2008) and
mostly use the Mahalanobis distance to measure the distance between the instance to
the mean of the classes. These classifiers, however, need all the training data to retrain
the classifier. Additionally, they need additional labelled data for threshold setting. The
k-nearest neighbour classifier k-NN (e.g. Altman, 1992; Deng et al., 2009; Weston et al.,
2011) is a non-parametric classifier, has good performance in non-linear distributions but
the nearest neighbour search is computationally expensive for high-dimensional and/or
large databases.

To overcome the computational expense of high-dimensional data, possibly linear sub-
space projections have been proposed. The well-known Fisher linear discriminant analysis
(FDA) (e.g. Fisher, 1936; Rao, 1948; Webb, 2003; Baudat and Anouar, 2000; Mika et al.,
1999) determines a projection matrix that maximises the ratio of the between-class scat-
ter and the within-class scatter. The FDA, however, reduces to a principal component
analysis on the class means if the covariance of each class is the identity matrix (Mensink
et al., 2013).

Mensink et al. (2013) propose an alternative subspace projection by sharing one low-
rank Mahalanobis distance across all classes. Their nearest class mean of multi-class

135

136
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

logistic discrimination (NCMML) reduces the dimensionality of the data using a linear
subspace projection and gives the ability to adapt to new classes. Unfortunately, its per-
formance in the non-linear distributions of data is lack and also its accuracy proportionally
decreases as the dimensionality of the data reduces. A comparison between NCMML and
FDA is presented by Mensink et al. (2013).

In this chapter, we have used the class-specific Mahalanobis distance to compute the
distance between a test sample or unlabelled sample and each class, similar to the NCM
framework. In contrast to the NCM, the required parameters to compute the distance
are updated incrementally. Additionally, the EVT is used instead of conventional novelty
detection.

The NCMML classifier proposed by Mensink et al. (2013) uses a linear subspace
projection. Most gesture datasets, however, are highly non-linear. To extend the NCMML
towards non-linear datasets, we apply the kernel trick to improve the performance of the
NCMML in such environments and make it less sensitive to the dimensionality of the
data. The kernel function is applied after the linear subspace projection to avoid an
increased runtime. The proposed algorithm shows an increased accuracy in both linear
and non-linear system as well as a reduced time of processing in most cases.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2015b,c,d,
2016e)

7.1 Incremental Update of Mahalanobis Distance

Parameters

The Mahalanobis distance may be interpreted as the Euclidean distance in a space with
translated, scaled and/or rotated coordinate axes (Marsland, 2009). Consequently, all
equidistant points reside on a hyper-ellipsoid. The Mahalanobis distance to one class
is defined by the centre of the hyper-ellipsoid, i.e. the mean instance of a class, and a
rotation and scaling, i.e. the covariance matrix of a class. The Mahalanobis distance is
defined by its centre, i.e. the d -dimensional class mean #»µ , and a set of scaled and rotated
coordinate axes, i.e. d × d dimensional covariance matrix Σ . To discard the training
data and thus reduce the memory requirements, we apply an incremental update of the
parameters that does not require the previous training data. Let #»µ , Σ , #»µ ′, Σ ′, and

#»

µ̂ ,
Σ̂ be the mean vector and the covariance matrices estimated from the initial data, the
added data and the combined data, respectively. The previous set of parameters, i.e. #»µ ,
Σ , was estimated from N samples and N ′ denotes the number of samples that is added
to the training dataset resulting in a dataset size of Ntotal = N +N ′. The updated mean
vector is then given by

7.1. INCREMENTAL UPDATE OF MAHALANOBIS DISTANCE PARAMETERS137

#»

µ̂ =
1

Ntotal

Ntotal∑
i=1

#»x i =
1

Ntotal

[
N∑
i=1

#»x i +

Ntotal∑
i=N+1

#»x i

]

=
1

Ntotal

(N · #»µ +N ′ · #»µ ′) (7.1)

as shown by Schürmann (1996), where #»x i denotes the ith sample vector in the ordered
combined dataset, i.e. the last N ′ samples are the added samples. For the covariance
matrix, one obtains

Σ̂ =
1

Ntotal

[
N∑
i=1

(#»x i −
#»

µ̂)(#»x i −
#»

µ̂)T

+

Ntotal∑
i=N+1

(#»x i −
#»

µ̂)(#»x i −
#»

µ̂)T

]
. (7.2)

Some simplifications yield

Σ̂ =
N

Ntotal

Σ +
N ′

Ntotal

Σ ′ +
NN ′

Ntotal
2 (#»µ − #»µ ′)(#»µ − #»µ ′)T . (7.3)

When one single sample is added at a time, Eq. (7.3) further reduces to

Σ̂ =
N

N + 1
Σ +

N

(N + 1)2
(#»x − #»µ)(#»x − #»µ)T . (7.4)

In case of using the factor 1/(N − 1), which it is used in this thesis, instead of 1/N
to compute the covariance, Eq. (7.3) is changed to

Σ̂ =
N − 1

Ntotal − 1
Σ +

N ′ − 1

Ntotal − 1
Σ ′ +

NN ′

(Ntotal − 1)(Ntotal)
(#»µ − #»µ ′)(#»µ − #»µ ′)T . (7.5)

Based on Eq. (7.1) and Eq. (7.4), the mean vector and covariance matrix are updated
each time a new sample is added to the training data. The scheme of Eq. (7.2)–Eq. (7.4)
is related to but different from Schürmann (1996), where a direct iterative estimation of
the inverse covariance matrix is performed. The mean vector, the covariance matrix and
the number of samples used for the estimation are stored, and the old training data may
be discarded.

138
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

7.1.1 Novelty detection using Mahalanobis distance

Commonly, metric learning is used for conventional novelty detection (e.g. Pedregosa
et al., 2011). Most of the existing methods rely on the validation set to set a threshold, i.e.
a bounding hyper-ellipsoid specified by a maximum Mahalanobis distance, for each class,
respectively. Instances outside this Mahalanobis radius are supposed to be outliers for this
class while instances inside this radius may belong to that specific class. In a multi-class
system, the instance will be assigned to the class with the smallest Mahalanobis distance
and novelty is detected if the instance resides outside the bounding hyper-ellipsoid of all
classes.

Here, we present an incremental classifier that uses the extreme value theory and the
Mahalanobis distance (IncEVT). It can either assign a new instance to one of the existing
classes or indicate it as an unknown. The results show that it works efficiently even in non-
linear multi-class systems. The presented work differs from existing approaches as follows.
First, it is a single model classifier that is incremented by simply updating the mean and
the covariance of the seen classes without requiring complex computations or operations
or the full dataset. Consequently, extra hardware resources or time of processing is not
required. Secondly, there is one constant threshold for the whole system due to the
EVT. Thus, the validation dataset is not required contrary to the conventional methods.
Finally, it is possible to work efficiently in the non-linear multi-class systems without the
application of kernels. Additionally, dividing the non-linearly separable classes to several
sub-classes may further improve the accuracy of the classification.

The sample is assumed to be novel if all the outputs of the EVT are greater than
the threshold (Pth = 0.995). The believability flag is set if the output of the EVT that
correspond to the estimated label is equal or less than the confidence threshold (0.5).

7.1.2 Experiments and results

The accuracy of the algorithm is evaluated based on three datasets; Gesture dataset
(Section 4.1), Artificial dataset (Section 4.2) and Iris dataset (Section 4.3). The well-
known but rather a small Iris dataset is used to evaluate the accuracy in the non-linear
Euclidean space, a gesture dataset is used to evaluate the ability to detect novel classes
in a possible application scenario, and a large normally distributed artificial dataset will
demonstrate the runtime of the algorithm.

The proposed algorithm has the ability of detecting the novelties in linear and non-
linear multi-class problems without the application of kernel functions. Moreover, it is an
incremental algorithm, i.e. it updates itself within a small amount of time. To show these
properties, we conduct three experiments using the mentioned datasets.

In each experiment, we compare the result of the IncEVT with the result of a classifier
that uses threshold based novelty detection (normal Mahalanobis distance based classi-
fier). In the case of the IncEVT, only three sets of data are required: an initial training

7.1. INCREMENTAL UPDATE OF MAHALANOBIS DISTANCE PARAMETERS139

Figure 7.1: A comparison between the classifiers regarding the runtime using artificial
data. The 50% quantile over the 100 runs is used to draw the approximated runtime.

set, a learning set and a test set. In the case of the threshold-based classifier, however,
one additional set for the threshold validation is required. Hence, we divide the original
data to initial training, learning, test, and validation sets, and we use just the first three
for IncEVT. The learning set is partitioned into equally sized buckets, and one bucket
per iteration is classified before the classifiers are updated with these new data.

The runtime and the accuracy are evaluated in different experiments. As previously
explained each experiment is repeated 100 times with different random permutations of the
dataset to compute the expectation of the result since it depends on the random partition
of the data. Both classifiers use the same random permutation for each experiment during
these 100 experiments.

Comparing runtime experiment

The runtime of the classifiers is evaluated based on the artificial dataset. Here, we assume
that no novelties or unknown classes appear. The test set comprises 10% of the data.
The remaining data is partitioned into a training set (10%) and learning set (80%). The
learning set is divided into buckets using a bucket size of 100 samples. One iteration
consists of training and a classification phase. The total time Tupdate consumed by one
iteration is recorded for each classifier, respectively.

Fig. 7.1 shows the time Tupdate consumed by the classifiers for one bucket of the artificial
dataset, i.e. adapting to the previous bucket and classifying the new bucket. Initially, the
consumed time is nearly identical, while the difference increases with each new bucket.
Notably, IncEVT consumes an almost constant amount of time while the computational
burden of the non-incremental Mahalanobis distance classifier is strongly increased with
the increasing the amount of data in the training set.

140
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

Novelty detection evaluation

These experiments address the accuracy and the ability to detect novelties. The exper-
iments are conducted using the gesture dataset and the Iris dataset, respectively. The
datasets are partitioned into a training set, a learning set, a testing set and a validation
set. For the gesture dataset, the fractions are 30%, 30%, 20%, 20%, respectively and for
the Iris dataset the fractions are 50%, 25%, 10%, 15%, respectively. Again, the learning
set is divided into buckets of size 100 or 10 samples for the gesture dataset and the Iris
dataset, respectively. The validation set is used only by the threshold-based classifier to
determine the threshold and is ignored by the IncEVT. The novelty threshold of IncEVT
set to 0.995 and the believability threshold set to 0.5.

After being adapted to the initial training set, the classifiers assign labels to the
samples in the first bucket of the learning set. Notably, the algorithms may either assign
the sample to an existing class or detect a novelty. The trusty assigned labels are added to
the training set of the classifier, and the classifiers are then retrained/incremented. This
procedure is repeated for each bucket, respectively. In this experiment, each classifier
may be updated with a different number of samples depending on the classifier output.

The total error Etotal for the gesture and the Iris datasets are shown in Fig. 7.2(a) and
Fig. 7.2(b), respectively. The threshold-based classifier indicates a value of 33% for the Iris
dataset. This is due to the misclassification of all data in the linearly non-separable class,
which might be related to the problem of estimating the correct threshold. In contrast,
the total error of IncEVT is only 6.8%. Fnew is shown in Fig. 7.2(c) and Fig. 7.2(d) for

(a) Etotal: Gesture data

Figure 7.2: Accuracy metrics of the classifiers: (a)–(b) The total error Etotal for the
gesture and the Iris dataset, respectively. The dashed lines correspond to the 25% and
75% quantiles and represent the spread over 100 repetitions. (c)–Fig. 7.2(d) The rate if
false detections Fnew for the gesture and the Iris dataset, respectively. (e)–(f) The rate of
missed novelties Mnew for the gesture and the Iris dataset, respectively.

7.1. INCREMENTAL UPDATE OF MAHALANOBIS DISTANCE PARAMETERS141

(b) Etotal: Iris data

(c) Fnew: Gesture data

(d) Fnew: Iris data

Figure 7.2: (Continued)

142
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

(e) Mnew: Gesture data

(f) Mnew: Iris data

Figure 7.2: (Continued)

the gesture and the Iris dataset, respectively. These figures show that the IncEVT yields
a smaller number of false positives if the number of training samples is sufficient. This
may be due to the Gumbel distribution being inadequate for small training sets (Clifton
et al., 2011). Fig. 7.2(e) and Fig. 7.2(f) show Mnew for the gesture and the Iris dataset,
respectively. For the Iris data, the IncEVT detects all novelties, and the threshold-based
classifier misses all novelties. Again, this behaviour may be related to the data based
threshold estimation.

7.2 Semi-supervised Kernel Nearest Class Mean

The performance of the classifier in semi-supervised learning scenarios is very sensitive to
the classifier accuracy in the previous classification process. Hence, we need to build a
classifier that is robust against outliers, has high accuracy, and is quickly retrained in near
constant time. The NCMML classifier proposed by Mensink et al. (2013) uses a linear

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 143

subspace projection approximating the covariance matrix to reduce the computational
complexity of modern high-dimensional classification problems. Most gesture datasets,
however, are not linearly separable. Mensink et al. (2013) divided the non-linearly sepa-
rable classes to several sub-classes by applying a clustering algorithm such as K-means.
This method is called nearest class mean with multiple class centroid (NCMC). They
proved that the classification results are improved by using the NCMC. Unfortunately,
the results of applying the NCMC to gesture database need further improvements. Hence,
We extend the NCMC towards non-linearly inseparable datasets by applying the kernel
trick to improve the performance of the NCMC in such environments and make it less
sensitive to the dimensionality of the data. To avoid an increased runtime, the kernel
function is applied after the linear subspace projection. The proposed algorithm shows
an increased accuracy in both linear and non-linear system as well as a reduced time of
processing in most cases. This method is quite helpful for large dataset classification but
unfortunately; it is not incremental due to the non-linear optimisation of computing the
projection matrix.

7.2.1 Non-linear NCM with multiple class centroid (NCMC)

The nearest class mean classifier implemented by Mensink et al. (2013) looks for the
closest centroid #»µ c of class c to assign the corresponding class label to the instance with
feature vector #»x of dimensionality d . If we have a new sample #»x ′, the distance between
this sample and the centroid #»µ c of class c is dEucl(

#»x ′, #»µ c). This new sample is labelled by
ĉ, corresponding to the class with the minimum distance among the distances from Nclass

classes to this sample:

ĉ = argmin
c∈{1,...,Nclass}

dEucl(
#»x ′, #»µ c). (7.6)

The centroid of class c is the mean of the Nc instances #»x i of class c:

#»µ c =
1

Nc

Nc∑
i=1

#»x i. (7.7)

The squared Mahalanobis distance specified by the covariance matrix Σ , i.e.

dMahal(
#»x , #»µ c) = (#»x − #»µ c)

TΣ−1(#»x − #»µ c), (7.8)

was applied by Mensink et al. (2013). Furthermore, it is assumed by Mensink et al.
(2013) that Σ = W TW , since Σ is a positive semi-definite matrix. The matrix W ∈
Rd ′×d is a low-rank metric and d ′ ≤ d is the effective dimension of the subspace projection.
Consequently,

144
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

dW(#»x , #»µ c) = (#»x − #»µ c)
TW TW (#»x − #»µ c)

= ‖W #»x −W #»µ c‖
2
2 . (7.9)

The posterior of the class c given an instance #»x is defined by Mensink et al. (2013) as

p(c| #»x) =
exp

(
−1

2
dW(#»x , #»µ c)

)
Nc∑̃
c=1

exp
(
−1

2
dW(#»x , #»µ c̃)

) (7.10)

assuming uniformly distributed classes and a normally distributed likelihood, i.e.
p(#»x |c) = N (#»µ c,W

TW). The covariance W TW is shared across all classes. The log-
posterior of the correct prediction is maximized using a stochastic gradient descent to
obtain the optimal projection matrix W (Mensink et al., 2013).

For non-linear spaces, Mensink et al. (2013) replace the single centroid of each class by
multiple prototypes, which are obtained using the k-means algorithm. The query samples
are then assigned to the class of the nearest centroid. Assuming an Ncent mixture of
normal distributions centred at the centroids #»µ cj , j ∈ {1, . . . , Ncent} for each class c, the
posterior probability of class c is defined by Mensink et al. (2013) as

p(c| #»x) =
Ncent∑
j=1

p(#»µ cj |
#»x), with (7.11)

p(#»µ cj |
#»x) =

exp
(
−1

2
dW(#»x , #»µ cj)

)
Nclass∑
c=1

Ncent∑̃
j=1

exp
(
−1

2
dW(#»x , #»µ cj̃)

) . (7.12)

7.2.2 Kernel based metrics

Kernels are proposed to solve non-linear separation problems in different types of machine
learning algorithms. As described in detail by Theodoridis and Koutroumbas (2009), the
transformation #»ϕ : Rd×Rd −→ Rd ′ is a generally non-linear transformation of the feature
space Rd to a space Rd ′ of increased dimension d ′. Due to the transformation #»ϕ , a linear
separation, i.e. a separating hyperplane, in Rd ′ becomes a non-linear separating function
when projected back onto the original feature space. Consequently, the classes may be-
come linearly separable after the transformation into the space of increased dimension.
An example is shown in Fig. 7.3.

Commonly, it is sufficient to compute inner products in the higher dimensional space,
e.g. computing the Euclidean distance of samples from the separating hyperplane. The so-
called “kernel trick” utilises this fact. As shown by Theodoridis and Koutroumbas (2009),

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 145

Figure 7.3: Kernel trick. By transforming the original space (left) into a space of in-
creased dimension (right) the two classes “circle” and “square” become linearly separable.
Adapted from Elmezain et al. (2009)

.

if the mapping of the vectors #»x i and #»x j satisfies Mercer’s theorem it is not required to
evaluate or know the mapping #»ϕ , and the inner product may be replaced by the kernel
function

K(#»x i,
#»x j) = 〈 #»ϕ(#»x i),

#»ϕ(#»x j)〉d ′ = #»ϕ(#»x i)
T #»ϕ(#»x j). (7.13)

Consequently, it is possible to evaluate the inner product in the high dimensional space
by applying a possibly non-linear kernel function K(#»x i,

#»x j) to the representations #»x i and
#»x j in the original space. Examples of common kernel functions are polynomial kernels or
Gaussian kernels (Theodoridis and Koutroumbas, 2009). In this work, the kernel function
is a radial basis function (RBF) of Gaussian shape given by

KRBF(#»x i,
#»x j) = exp

(
−
‖ #»x i − #»x j‖22

2σrbf2

)
, (7.14)

where σrbf denotes the predefined width of the kernel function. The Gaussian RBF
kernel is shift-invariant. Consequently, the similarity metric learned using RBF kernels
will be coordinate-independent (Kung, 2014).

7.2.3 Proposed kernel NCM (KNCM)

Recalling the distance proposed by Mensink et al. (2013) dW(#»x , #»µ c) = ‖W #»x −W #»µ c‖
2
2

and setting
#»
x̃ = W #»x and

#»
µ̃ c = W #»µ c, the distance becomes

146
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

dW(#»x , #»µ c) =
∥∥∥ #»
x̃ − #»

µ̃ c

∥∥∥2
2

=
#»
x̃
T #»
x̃ − #»

x̃
T #»
µ̃ c

− #»
µ̃
T

c

#»
x̃ +

#»
µ̃
T

c

#»
µ̃ c. (7.15)

Applying the transformation to a higher-dimensional space to
#»
x̃ and

#»
µ̃ c, respectively,

yields the kernel based distance

dKernel(
#»
x̃ ,

#»
µ̃ c) = K(

#»
x̃ ,

#»
x̃)−K(

#»
x̃ ,

#»
µ̃ c)

−K(
#»
µ̃ c,

#»
x̃) +K(

#»
µ̃ c,

#»
µ̃ c), (7.16)

which, in the case of a Gaussian RBF, is given by

drbf(
#»x , #»µ c) = 2− 2 exp

(
−‖W

#»x −W #»µ c‖
2

2σrbf2

)
. (7.17)

Adopting the approach of Mensink et al. (2013) we obtain the posterior probability

p(c| #»x) =
exp

(
−1

2
drbf(

#»x , #»µ c)
)

Nc∑̃
c=1

exp
(
−1

2
drbf(

#»x , #»µ c̃)
) (7.18)

and compute the matrix W by maximizing the log-posterior of the correct prediction
using gradient ascent. Further discussion was submitted by the master thesis of Migdadi
(2015), who was supervised by the author of this thesis. Fig. 7.4, shows the flowchart of
the proposed method.

7.2.4 Discussion of experiments results

The proposed algorithm has the ability to solve linearly inseparable multi-class problems
within a short time of processing. The evaluation process is implemented in two types of
experiments; training the compared classifiers in a fully supervised and a semi-supervised
manner. Both Gesture dataset and Iris dataset are used in the experiment of the fully
supervised learning and only the Gesture data used in the semi-supervised learning. In
each experiment, the resulting accuracy and runtime of the KNCM are compared to the
original NCMC code1 by Mensink et al. (2013).

1The code of the NCMC is available at https://staff.fnwi.uva.nl/t.e.j.mensink/code.php

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 147

Figure 7.4: The flowchart of the proposed Kernel Nearest Class Mean algorithm

.

Fully supervised learning experiments

The fully supervised experiment focuses on the evaluation of the relation between the
accuracy and the training data size. Different fractions of 10%, 20%, 30%, 40%, 50%,
and 60% of the total size of the dataset are used for training, respectively. The test
data size is set to 40% of the total size in all cases. The partition into training and test
datasets follow a random permutation. Since the number of Iris data is low, the number
of centroids per class in the NCMC method is set to 1. Each experiment is repeated 100
times with different random permutations to derive an expectation of the accuracy that is
independent of the partition. Both classifiers use the same random permutation for each
experiment during these 100 experiments.

The results in terms of classification accuracy and runtime is shown in Table 7.1 and
Table 7.2, respectively. In most cases, the accuracy of the proposed KNCM exceeds the
accuracy of the NCMC algorithm by more than five standard deviations. Furthermore,
the accuracy of the KNCM shows only a weak dependence on the dimensionality of the
feature vector. Consequently, the computational expense of the introduced kernel function

148
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

Table 7.1: The average accuracy of KNCM and NCMC for the different data sizes and
dimensionality d ′ of W , respectively. The deviations are the standard deviation over all
100 runs.

Dataset d ′ Classifier
Training Data Size

10% 20% 30% 40% 50% 60%

Gest.
dataset

2
KNCM

0.98 0.98 0.98 0.99 0.98 0.96
±0.01 ±0.08 ±0.05 ±0.01 ±0.07 ±0.12

NCMC
0.63 0.63 0.63 0.63 0.63 0.63
±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

4
KNCM

0.99 0.99 0.99 0.99 0.99 0.99
±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

NCMC
0.86 0.86 0.86 0.86 0.86 0.86
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

8
KNCM

0.99 0.99 0.99 0.99 0.99 0.99
±0.01 ±0.01 ±0.00 ±0.01 ±0.00 ±0.00

NCMC
0.90 0.90 0.90 0.91 0.91 0.91
±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

Iris
dataset

2
KNCM

0.89 0.93 0.93 0.92 0.95 0.94
±0.10 ±0.10 ±0.11 ±0.14 ±0.10 ±0.11

NCMC
0.61 0.63 0.63 0.63 0.63 0.64
±0.08 ±0.05 ±0.06 ±0.05 ±0.05 ±0.05

4
KNCM

0.91 0.95 0.96 0.96 0.97 0.97
±0.07 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03

NCMC
0.88 0.90 0.89 0.89 0.89 0.89
±0.04 ±0.03 ±0.04 ±0.03 ±0.03 ±0.03

is covered by the lower dimensionality of the subspace projection. The lower subspace
dimension, in addition, requires fewer parameters of the matrix W to be estimated. Both
algorithms show no significant influenced by the amount of training data. The time
consumed by the training of the NCMC is approximately constant for all values of d ′

and training datasets, respectively. This is related to the stochastic gradient descent
algorithm applied by Mensink et al. (2013): A constant number of samples is drawn
with replacement from the training dataset. The gradient descent is then executed for
1000 iterations. Consequently, the number of function evaluations in the optimisation
procedure is almost constant. The gradient descent approach, in contrast, terminates if
the relative increase in the target function is less than 10−6 and uses all training data.
Consequently, the training time of the KNCM increases with the amount of training
data. Unfortunately, this does not allow for a direct comparison without modifications
of the code by Mensink et al. (2013) and is thus subject to further analysis. The time of
the recall phase, however, is comparable to both methods and shows that the expected
runtime of the KNCM is similar to the runtime of the NCM. Thus, the KNCM is supposed
to perform as well in online or large-scale scenarios as the NCM.

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 149

Table 7.2: The average runtime of KNCM and NCMC for the different data sizes and
dimensionality d ′ of W , respectively. The deviations are the standard deviation over all
100 runs. The test or recall phase is not included in the runtime measurements and thus
given in the last column.

Dataset d ′ Classifier
Training Phase/Data Size Testing

10% 20% 30% 40% 50% 60% Phase

Gest.
dataset

2
KNCM

0.20 0.28 0.37 0.36 0.44 0.40 4.92× 10−4

±0.14 ±0.24 ±0.32 ±0.30 ±0.40 ±0.34 ±0.31× 10−4

NCMC
0.83 0.82 0.82 0.82 0.81 0.82 4.44× 10−4

±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.14× 10−4

4
KNCM

0.21 0.31 0.42 0.43 0.53 0.66 5.68× 10−4

±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.52× 10−4

NCMC
0.86 0.86 0.86 0.85 0.85 0.86 5.56× 10−4

±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.31× 10−4

8
KNCM

0.30 0.44 0.65 0.67 0.85 1.02 7.29× 10−4

±0.07 ±0.12 ±0.13 ±0.17 ±0.18 ±0.18 ±0.83× 10−4

NCMC
0.91 0.91 0.91 0.92 0.91 0.92 6.48× 10−4

±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.25× 10−4

Iris
dataset

2
KNCM

0.01 0.03 0.03 0.04 0.05 0.07 1.10× 10−4

±0.01 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.11× 10−4

NCMC
0.55 0.55 0.55 0.55 0.55 0.55 1.12× 10−4

±0.00 ±0.00 ±0.01 ±0.01 ±0.01 ±0.00 ±0.10× 10−4

4
KNCM

0.02 0.05 0.07 0.09 0.11 0.13 1.20× 10−4

±0.02 ±0.05 ±0.06 ±0.07 ±0.06 ±0.06 ±0.08× 10−4

NCMC
0.63 0.62 0.62 0.62 0.62 0.62 1.19× 10−4

±0.01 ±0.00 ±0.01 ±0.00 ±0.01 ±0.00 ±0.10× 10−4

Semi-supervised learning experiments

Since falsely assigned labels have a strong effect on the performance of a semi-supervised
learning algorithm, we introduce a confidence threshold and reject possible outliers, i.e.
samples exceeding a distance threshold. The labels of samples that do not exceed the
threshold are added to the training dataset of the classifier. The threshold is based on
an independent validation dataset. Consequently, the full dataset in the semi-supervised
learning experiment is subdivided into four parts: a labelled initial training set, a labelled
validation set, an unlabelled learning set and a labelled test set.

At the beginning of the experiment, the classifiers are adapted to the initial training
set, and the confidence threshold is computed based on the validation set. The learning
set is further subdivided into so-called “buckets” that represent a stream of data. The
buckets are presented to the classifiers one by one. The classifiers then assign labels to
the samples contained in the bucket, respectively, and add the samples that do not exceed
the training threshold with the assigned labels to the training data. Then the classifiers
are adapted to the extended training set, and a new confidence threshold is computed.

This process is repeated until the last bucket has been presented to the classifiers.

150
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

(a)

(b)

(c)

Figure 7.5: Median prediction accuracy of the classifiers for an initial training set com-
prising 1% of the total data. KNCMS and NCMCS denote the supervised version of the
KNCM and NCMC, respectively. The dashed lines correspond to the 25% and 75% quan-
tiles and represent the spread over 100 repetitions. These sub-figures show the accuracy
of the classifiers at (a) d ′ = 2. (b) d ′ = 4. (c) d ′ = 6. (d) d ′ = 8.

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 151

(d)

Figure 7.5: (Continued)

(a)

(b)

Figure 7.6: Median prediction accuracy of the classifiers for 5% of the total data used as
initial training set. KNCMS and NCMCS denote the supervised version of the KNCM
and NCMC, respectively. (a) d ′ = 2. (b) d ′ = 4. (c) d ′ = 6. (d) d ′ = 8.

152
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

(c)

(d)

Figure 7.6: (Continued)

After each training process of the classifiers, we evaluate the accuracy of the classifiers
based on the test set. In addition to the accuracy, we track the computation time required
by both training and prediction processes, and the training set size. Additionally, we train
the second version of each classifier with the correct labels to evaluate the performance
of a fully supervised learning scenario in each step.

The semi-supervised learning experiment is repeated for three different sizes of the
initial training set only: 1%, 5% and 10% of the total dataset. In all these experiments,
the test and the validation set comprise 20% and 15% of the total dataset, respectively.
The remainder is the unlabelled learning set, which is subdivided into buckets of 100
samples each. The sets are formed using a class-wise random partition. Since each of the
nine gestures in the dataset is represented by a different number of samples, the number
of samples in the initial training set may be as low as two samples in the case of class
nine and an initial training set comprising 1% of the total data.

Each experiment is repeated for four different dimensions of the subspace d ′ = {2, 4, 6, 8},

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 153

(a)

(b)

(c)

Figure 7.7: Median prediction accuracy of the classifiers for 10% of the total data used
as initial training set. KNCMS and NCMCS denote the supervised version of the KNCM
and NCMC, respectively. (a) The accuracy of the classifiers at d ′ = 2. (b) The accuracy
of the classifiers at d ′ = 4. (c) The accuracy of the classifiers at d ′ = 6. (d) The accuracy
of the classifiers at d ′ = 8.

154
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

(d)

Figure 7.7: (Continued)

respectively, resulting in twelve different experiments. The experiments are repeated 100
times with a different random permutation. Both classifiers use the same random permu-
tation for each experiment during these 100 repetitions.

The NCMC requires the specification of the number of centroids per class Ncent. There
is, however, a function within the utilised code package published by Mensink et al. (2013)
that computes the optimal number of centroids per class. We apply this code to specify
the best Ncent for each projection matrix dimension. The resulting values were Ncent = 2
for the four dimensions of the subspace, respectively. In case of Ncent > Nc, i.e. the number
of class c samples in the initial training is smaller than the number of centroids, we start
by setting Ncent = Nc and then gradually increase Ncent until it equals the optimal value.

Fig. 7.5–Fig. 7.7 show the prediction accuracy of KNCM and NCMC. Notably, the first
bucket corresponds to the initial training set. The remaining results thus may be directly
compared to the result obtained by using the initial training set. For large training sets
(see Fig. 7.7), the accuracy of the KNCM equals the accuracy of the supervised version.
The high initial accuracy is kept throughout the learning process. If the size of the training
set is reduced (see Fig. 7.5–Fig. 7.6) the accuracy of the semi-supervised KNCM does not
reach the optimal value of the fully supervised KNCM. It, however, increases strongly over
the first few buckets and approaches the fully supervised KNCM. The difference between
the semi-supervised KNCM and the fully supervised KNCM increases with decreasing
dimensions of the projection subspace. However, the effect of the subspace dimension on
the KNCM accuracy is rather subtle and thus it is possible to use subspace projections
of very low dimension.

The accuracy of the NCMC, in contrast, shows a larger difference to its fully supervised
counterpart if the number of presented buckets increases. While the fully supervised
NCMC shows an increased accuracy in the course of the learning experiment, the accuracy
of the semi-supervised NCMC seems constant in the best case and exhibits a strong

7.2. SEMI-SUPERVISED KERNEL NEAREST CLASS MEAN 155

(a)

(b)

(c)

Figure 7.8: Time consumed by the classifiers. (a) Initial training set: 1% of total data.
(b) Initial training set: 5% of total data. (c) Initial training set: 10% of total data. (d)
Runtime (KNCMT and NCMCT) and samples in the training set (KNCMN and NCMCN)
for the KNCM and the NCMC, respectively. The initial training set size is 1% of the
total data, and the dimensionality is d ′ = 2.

156
CHAPTER 7. CONTRIBUTION:

SEMI-SUPERVISED METHODS BASED ON METRIC LEARNING

(d)

Figure 7.8: (Continued)

decrease in some experiments. Both the semi-supervised NCMC and the fully supervised
NCMC do not reach the accuracy of the KNCM in all experiments. The decreasing
accuracy of the NCMC suggests that the NCMC adds false labels to the training set.
This may be due to the low initial prediction accuracy. The effect is less noticeable if the
size of the training set increases. Furthermore, this effect seems to be strong for both the
full dimension of the data set and a very small subspace dimension. The former may be
related to the estimation of many parameters while the latter may be due to in insufficient
subspace dimension that does not allow for a separation of the classes.

In addition to the gain in prediction accuracy, the runtime of the KNCM is consider-
ably lower than the runtime of the NCMC, as shown in Fig. 7.8. The decreasing accuracy
of the NCMC suggests that the NCMC method results in the addition of the false labels
to the training set, possibly leading to a larger total number of samples. However, the
opposite is true. Fig. 7.8(d) shows the median runtime and the median of the training
set size for an initial training set comprising 1% of the total data and a dimensionality
of d ′ = 2. This exemplary semi-supervised learning progress is similar to the other ex-
periments. Fig. 7.8(d) clearly shows that the runtime is independent of the training set
size.

8

Contribution:
Semi-supervised Learning Based on

Self-adaptive Structure

In the previous chapters, we have discussed the incremental learning (INC). If the classifier
is trained on some classes, then it can be updated for new data that belong to the known
classes without a need of the old training data. The question here is what will happen if
we get some samples belonging to new concepts or classes. This may occur in the data
stream with a high probability. The known concept in the data stream may consist of
more than one class, and different concepts may be detected in the course of time. Hence,
classifying a new sample as known or unknown is not enough since both of them are
composed of several classes. Thus, the model structure cannot be static, but it should be
dynamically updated to represent new concepts.

The incremental learning is crucial to update the classifier knowledge, particularly
in the smart environments such as the robotics, which experience a need to be updated
continuously according to the environment of the robot. Commonly, smart devices or
robotics use the gesture applications. Let us ask ourselves, is the incremental learning
enough to build an intelligent environment? To answer this question let us discuss this
example: if children hear a new word or see a new activity, they ask their parents about
the meaning (the label) of that action. The worthy note here is that the children had
already recognised and learnt the word or the activity before they asked their parents
about its meaning. This learning type is the great secret of the human intelligence of
learning from the environment around. Therefore, we think the machine will be more
intelligent if we could implement the similar technique in the smart devices.

In this chapter, we extend the incremental learning of the proposed classifiers to be
able to learn new concepts without a need for the old data of the known classes. The
proposed classifiers assume an arbitrary label for the new concept; retaining its right to
ask about the meaning of the new data. Commonly, the incremental class learning is
implemented in supervised learning. However, we propose a method to autonomously

157

158
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

add the emergent classes. The traditional method converts the data (gestures) to feature
vectors and the meaning of those activities (gestures) to labels (mostly integer numbers),
then the feature vectors and their labels are provided to train the classifier. The proposed
method is trained on the known feature vectors and their labels as the traditional methods
and suggests new labels for the new concepts. Then, the classifier retrains itself on the
new feature vectors and their proposed label. A meaning for the new labels still needs to
be provided later at least once, exactly similar to children when asking about the meaning.
This process is summarised in Fig. 8.1.

Additionally, the proposed method is able to discriminate among the samples that
belong to the same or different concepts. Thus, the various novelties, i.e. samples that
belong to different concepts, are added as separated classes. The outliers are not consid-
ered as a novelty, i.e. random movements or noise samples are discarded since the novelty
of the concept is composed of a group of samples more than a specific number (in our
experiment it is equal to 15 samples), which are cohesive and representative. Combin-
ing the incremental class learning with the ability to discriminate the novelties makes
the system be learned completely autonomous. Hence, we called this learning system as
“self-adaptive structure semi-supervised learning (S4L)”.

8.1 Incremental Class Learning

The incremental class learning (ICL) is a competitive innovation in the machine learning,
in particular for the complex and the open-ended problems (Mańdziuk and Shastri, 2002).
In addition to being essential in the application related to the data stream, it provides a
practical solution for scalable learning systems, where the complex learning problem can
be decomposed into learning sub-problems incrementally, one at a time. For example,
the model is trained for a limited number of categories and then incremented for new
categories subsequently. Thus, the ICL configures a learning method that supports the
sharing of previously learned knowledge structures (Mańdziuk and Shastri, 2002). Here,
the proposed classifiers are extended to be able to adapt their classes structure. Since the
proposed classifiers are different in the structure, the extension to new classes and the
evaluation of each classifier is discussed individually.

The gesture data are used to evaluate the incremental class learning. The same eval-
uation process is applied to all classifiers. Hence, the experiment is explained once as
follows: The complete data are divided into two sets, training set and testing set. The
training set is subdivided into two sets where the first set contains the data that belong
to only three classes, and the other set includes the rest of the classes. These three classes
are selected randomly from the nine classes of the gesture data. The classifier is trained
on the selected three classes and evaluated on the test set. Afterwards, the second set
(the rest of 6 classes) is grouped according to their classes. The data of one class are
used to update the classifier knowledge on this new class and evaluate the classifier on

8.1. INCREMENTAL CLASS LEARNING 159

Figure 8.1: The proposed classification process. The training gesture data are interpreted
as feature vectors and integer values (labels), which represents the gesture types of these
vectors, then they are provided to train the classifier. Only the feature vector of the new
(testing) gesture is provided to the classifier to estimate its label that corresponds to the
most similar gesture type. Traditional classifiers are restricted to the training types. The
standard semi-supervised learning aims to add these new samples and their estimated
labels to the training data. Notably, the intersection between the dashed red and black
circles on the training data side represents the aim of the semi-supervised learning. The
proposed method provides additional facilities (highlighted with blue) to the standard
semi-supervised techniques, which suggests new label(s) for the new concept(s) and then
asks about the meaning if the definition is required. Additionally, it can detect more than
one new concept, and it also can identify the random movements, e.g. “bye” and “hello”
gestures, and the random movements, respectively. Finally, the initial training dataset is
extended to the new data and labels (dashed red line). The new samples from the test
data are used to update the classifier knowledge, where the classifier updated on (come,
go) samples using the standard incremental learning (INC) and on the (bye, hello) using
the incremental class learning (ICL).

160
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

the test set. The same procedure is repeated till the last class in the second set is pro-
vided. The classifier updates its knowledge on the new classes incrementally. In parallel,
we used a second version of the same classifier, but it is trained in a classical way, i.e.
each time is trained with initial training data in addition to the data of the added class.
This experiment is repeated for 100 times since it depends on random a permutation. In
each iteration, different random three classes are used for the initial training. The same
metrics that were used to evaluate the proposed algorithms (Mnew, Fnew, Etotal, Tupdate)
are used here. However, instead of using the values itself we used the difference between
the metrics of the classifiers, which are the incremental classifier and the classifier that
used all data to train itself. The difference between the metrics of the classifiers is used
since the evaluation of the proposed methods is already studied in the last chapters. Ad-
ditionally, we focus here on maintaining the same accuracy of the classic classifier with
the ability to learn new concepts incrementally.

In all result tables, the first column is the difference between the two classifiers’ metrics
when trained on the initial training data. The other classes are added subsequently, and
the difference between the classifiers’ metrics are computed in the other columns. For
each metric, the quantile of 25%, the median and the quantile of 75% of the 100 runs are
computed. The minus sign in the tables means that the (error) metrics of the incremental
class classifier is less than the metrics of the standard classifier.

8.1.1 Extreme learning machine – EVT

The output of the ELM is computed by Eq. (6.5), where βE is the main parameter in the
equation. The parameter PE in the Eq. (6.10) is the only parameter that is related to the
labels of the training data (TE) as in Eq. (6.9). Hence, βE can be updated to new classes
by updating the parameter PE. The rows of TE are vectors of length equal to a number of
the classes, and each vector contains 1 in the place of the class where the sample belong
and −1 elsewhere. That means it is simply updated to the new class by adding a new
column with value −1. But we cannot store the matrix TE, since it is enlarged with each
updating. Instead, we already store the matrix PE, hence we need to update the matrix
PE.

PE(i, j) = Σi,jHE(j, i) · TE(i, j) (8.1)

Since all values of the new column in the TE is equal to −1, the equation will be
reduced to the negative sum of the columns of HE resulting the values in the new column
of the PE is the sum of the corresponding neurons output of all samples i.e. a vector
of length equal to the number of neurons. Therefore, to add one class to the learned
classifier, we just need to add a new column to the PE with values equal to the sum of
the neurons’ output of the old samples, which it has a length equal to the number of rows
in PE. To add more than one class we need to add columns equal to the number of new

8.1. INCREMENTAL CLASS LEARNING 161

classes. Table 8.1 summarises the results of the experiments that explained in Section 8.1.
For each metrics, we calculate the quantile of 25%, the median and the quantile of 75%.
The first column represents the result of the test set when the classifiers are trained only
for 3 classes. In the next columns, we added one class in each iteration and evaluate the
classifiers on test data. Hence in the last column, all classes were added. As expected,
the runtime of the proposed method (for 25%, 50% and 75% quantile) is less than the
standard version of the classifier as shown in Table 8.1, where the object of the method is
to reduce the runtime. The difference of the Fnew between the proposed method and the
standard method is exactly zero, which means it does not effected by reducing the time
of the processing. Most values of the Mnew are negative which means the error in the
suggested method is less than the standard classifier. The positive values of the median
are less than 0.5%. Similarly, the values of Etotal are mostly negative and the positive
values of the median, if exist, are less than 0.2%. Hence, the proposed method reduces
the processing time of adding new class while maintaining the or improving the accuracy,
although we expect the slight differences in the accuracy is due to the fact that the ELM
randomly generates hidden neurons weights.

8.1.2 Extreme learning machine – auto encoder

Essentially, the classifier of the auto-encoder ELM has two different ELM classifiers. The
first classifier is to estimate the labels only, which it uses the data and their labels in
training, and the second classifier does not use the labels since it is implemented as auto-
encoder to guess the novelty.

The first classifier is extended to be incremental class exactly as in Section 8.1.1 by
adding new columns equal to the new classes number and consist values equal to the
sum of the columns of HE. The second classifier used the data itself as a target hence

Table 8.1: The difference between the metrics of the incremental class ELM-EVT classifier
and the classical ELM-EVT classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (msec)
quantile 25% 0.00 −3.22 −4.12 −4.56 −5.58 −5.81 −7.15
median 0.00 −2.42 −2.37 −3.05 −4.04 −4.57 −5.56
quantile 75% 0.00 −0.80 −1.39 −1.83 −2.86 −3.19 −4.17

Etotal [%]
quantile 25% 0.00 −0.69 −1.89 −1.89 −3.10 −2.84 0.00
median 0.00 0.17 −0.09 −0.26 0.17 −0.09 0.00
quantile 75% 0.00 1.12 1.20 3.10 1.72 1.81 0.00

Mnew [%]
quantile 25% 0.00 −1.21 −3.48 −6.05 −10.74 −16.50 –
median 0.00 0.25 −0.14 −0.69 0.50 −1.00 –
quantile 75% 0.00 1.69 2.41 7.50 6.70 13.50 –

Fnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

162
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

the dimension of the parameters will not be changed if the number of classes is changed
since it is not related to the labels of the data. However, the average of the data is used
in the normalisation process hence it is updated using the Eq. (7.1). The evaluation
results of the experiments that explained in Section 8.1 shows that the incremental class
classifier accuracy is almost same the classical classifier. The negative values in the results
Table 8.2 means the error of the ICL classifier is less than the other classifier. However,
these negative values are just less than 1%, and we expect that difference because the
ELM is randomly generating hidden neurons weights.

Table 8.2: The difference between the metrics of the incremental class ELM-AE classifier
and the classical ELM-AE classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (msec)
quantile 25% 0.00 −3.76 −4.14 −5.03 −5.45 −6.24 −7.31
median 0.00 −2.38 −2.96 −3.80 −4.50 −5.46 −6.20
quantile 75% 0.00 −1.30 −2.17 −3.01 −3.35 −4.26 −4.99

Etotal [%]
quantile 25% 0.00 −0.52 −0.69 −1.55 −1.72 −0.26 0.00
median 0.00 0.00 0.17 −0.17 0.17 0.34 0.34
quantile 75% 0.00 0.26 0.69 0.52 0.52 0.60 0.69

Mnew [%]
quantile 25% 0.00 −1.03 −1.83 −4.15 −6.72 −1.00 –
median 0.00 0.00 0.00 −1.25 −0.81 0.00 –
quantile 75% 0.00 0.00 0.37 0.44 0.00 1.00 –

Fnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.17
median 0.00 0.40 0.65 0.54 0.47 0.39 0.34
quantile 75% 0.00 0.94 1.14 0.99 0.79 0.62 0.69

8.1.3 Metric learning – Mahalanobis distance

Since the Mahalanobis distance classifier parameters are only the mean and the covariance
matrix, it can be extended to new classes by computing the mean and the covariance
matrix of the new classes. The experiments that explained in Section 8.1 shows that the
incremental class classifier performs exactly same accuracy of the classical classifier while
it reduces the time of the processing more than 26 msec at using the whole data (see
Table 8.3).

8.1.4 Polynomial classifier

Similar to the ELM classifier, the parameter matrix is βP = MP
−1 ·PP and PP = HP

T ·TP.
Hence

PP(i, j) = Σi,jHP(j, i) · TP(i, j) (8.2)

Unlike the ELM, the target matrix TP consist 1 in the place of the corresponding class
and 0 elsewhere. Hence, when new classes need to be added, only zeros columns should

8.1. INCREMENTAL CLASS LEARNING 163

Table 8.3: The difference between the metrics of the incremental class Mahalanobis dis-
tance classifier and the classical Mahalanobis distance classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (msec)
quantile 25% 0.00 −10.24 −13.74 −18.55 −21.99 −26.27 −28.45
median 0.00 −9.60 −12.90 −16.40 −19.53 −22.72 −26.07
quantile 75% 0.00 −8.83 −12.28 −15.47 −18.51 −21.73 −24.67

Etotal [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 –
median 0.00 0.00 0.00 0.00 0.00 0.00 –
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 –

Fnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

be added to the PP. The results of the evaluations show the accuracy is approximately
equal to the classic classifier, while there is a difference in the time of processing where
the ICL classifier is faster than the classic classifier of about 5 msec (see Table 8.4).

Table 8.4: The difference between the metrics of the incremental class polynomial classifier
and the classical polynomial classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (msec)
quantile 25% 0.00 −2.78 −3.54 −3.79 −4.50 −4.90 −5.70
median 0.00 −2.15 −2.88 −3.06 −3.86 −4.35 −5.09
quantile 75% 0.00 −1.61 −2.32 −2.38 −3.36 −3.67 −4.44

Etotal [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 –
median 0.00 0.00 0.00 0.00 0.00 0.00 –
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 –

Fnew [%]
quantile 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8.1.5 Parzen window kernel density estimators

The main parameters in the Parzen classifier are the centroids, the number of samples per
each centroid and the width of the Parzen window. It is simply extended to new classes
by adding new centroids of the new classes and how many samples each contains. The
Parzen width is then updated using the normal method that explained in Section 5.3.2.
The evaluation experiments show that there is no loss in the accuracy of the incremental

164
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

Table 8.5: The difference between the metrics of the incremental class Parzen classifier
and the classical (incremental) Parzen classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (msec)
quantile 25% 0.00 −41.65 −53.64 −60.75 −69.85 −85.41 −96.46
median 0.00 −33.85 −45.18 −51.93 −62.91 −78.07 −87.18
quantile 75% 0.00 −27.31 −39.24 −46.38 −56.66 −69.68 −78.71

Etotal [%]
quantile 25% 0.00 −0.69 −0.52 −0.86 −0.34 −0.69 −0.34
median 0.00 −0.17 0.00 −0.17 −0.09 0.00 0.00
quantile 75% 0.00 0.17 0.34 0.34 0.52 0.26 0.34

Mnew [%]
quantile 25% 0.00 −0.44 −0.51 −0.68 0.00 0.00 –
median 0.00 0.00 0.00 0.00 0.00 0.00 –
quantile 75% 0.00 0.27 0.32 0.41 0.50 0.00 –

Fnew [%]
quantile 25% 0.00 −0.89 −0.62 −0.57 −0.45 −0.62 −0.34
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
quantile 75% 0.00 0.42 0.43 0.59 0.26 0.21 0.34

class Parzen classifier while gain a large difference in the processing time more than 87
msec as shown in Table 8.5.

8.1.6 Support vector machine classifier

We used the one–vs–all technique to implement the multi-class SVM classifier; hence it
is able to extend to any number of classes without complex computations. For each new
class, all the available data of the old classes are considered as abnormal, and the new
data of the new class consider as normal. This technique simplifies the extension to new
classes. However, the incremental SVM classifier store only supports vectors plus some
critical data and discard unimportant data according to the old classes. For the new
classes might be some of the dropped data become necessary for the new discriminator.
Hence, we expect some instability of the accuracy of the SVM classifier. Though, the
results of the evaluation experiments show that it is very close to the classical SVM with
a large difference in the time of processing, which is more than 51 seconds (see Table 8.6).

8.2 Self-adaptive Structure Semi-supervised

Learning

Although ICL is essential in the machine learning to handle the problems of data streams,
it is still limited if it is trained on the new classes in supervised learning. This is because
we will face the same issue of the data stream that we need experts to label all data,
while we want to automate the labelling process. Thus, the intelligence of the system
will be decreased to be as same as that of traditional classifiers unless an intervention
of a human enforces it to add a new class in the supervised scenario. Additionally, in

8.2. SELF-ADAPTIVE STRUCTURE SEMI-SUPERVISED LEARNING 165

Table 8.6: The difference of the metrics of the incremental class SVM classifier and the
classical SVM classifier.

Metric C1− C3 C4 C5 C6 C7 C8 C9

Tupdate (sec)
quantile 25% 0.00 −2.46 −5.33 −11.82 −24.06 −43.28 −80.98
median 0.00 −1.77 −4.10 −8.49 −15.89 −28.77 −51.72
quantile 75% 0.00 −1.29 −2.94 −6.32 −11.94 −20.45 −38.18

Etotal [%]
quantile 25% 0.00 0.43 0.00 0.00 0.00 −0.17 −0.17
median 0.00 1.20 0.34 0.17 0.00 0.00 −0.17
quantile 75% 0.00 3.18 1.03 0.69 0.17 0.00 0.00

Mnew [%]
quantile 25% 0.00 0.72 0.00 0.00 0.00 0.00 –
median 0.00 2.14 0.70 0.47 0.00 0.00 –
quantile 75% 0.00 5.71 2.05 1.99 0.71 0.00 –

Fnew [%]
quantile 25% 0.00 0.00 0.00 0.00 −0.22 −0.21 −0.17
median 0.00 0.00 0.00 0.00 0.00 0.00 −0.17
quantile 75% 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the case of the data stream, it will be tough to assign the samples that belong to novel
concepts. Furthermore, it is not appropriate for online classification. For example, the
new user who is unknown to the traditional gesture system will have to adapt his/her
way to perform the gestures such that it corresponds to the “knowledge” of the system.
Even if the system is ICL, it is hard to the user to label all his samples to add new classes
to the system. As an alternative to such a closed-world gesture recognition system, we
intend to build a classification system which adapts itself to new concepts without the
need for intervention of a human operator. Thus, each user can train the system with a
set of own favoured gestures, and new gesture classes may be added autonomously over
time. Hence, when the system perceives new gestures under specific conditions, it will
construct a new class and add it to the training data. While otherwise, if the gesture
category has already been seen in the training phase, the new sample will be added to
the particular class in the training data according to the self-learning paradigm (Zhu and
Goldberg, 2009). Various approaches have been developed to increment their database by
new samples or new classes without the need for processing again the previously acquired
training data, but they still need to be trained on labelled data (e.g. Zhang et al., 2006;
Ditzler and Polikar, 2013).

Here, we propose a novel classification system which can integrate new samples, or
new classes into its class structure autonomously and thus updates the classifier archi-
tecture without human intervention. If a new sample belongs to existing classes, it will
be automatically included in the training set. Otherwise, new labels will be issued to
different novelties, and new classes will be added individually to the existing classes in
the training set. The proposed system can distinguish between novelties belonging to
different concepts. Samples belonging to random motion patterns rather than meaningful
gestures are rejected as they do not repeatedly occur in a similar manner (see Fig. 8.1).

The learning process is divided into offline and online phases (see Fig. 8.2). Only the

166
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

initial training, which uses manually labelled data of the existing classes, is implemented
in the offline phase. The classifier used here can be a single classifier or can be an ensem-
ble classifier. The ensemble classifier can be composed by combining any of our proposed
classifiers. In the online phase, new samples are received from the data stream, and they
are classified as one of the existing classes or as an unknown. The samples that are classi-
fied as belonging to one of the existing classes, i.e. their believability flag is already set, are
added to the training data by the standard incremental learning. The unknown samples
are temporarily stored until their number becomes more than a pre-defined threshold. Af-
terwards, the unknown samples are clustered using mean-shift method (cf.Section 3.3.2).
The initial window σmsh, which is used in the mean-shift method, is estimated from the
known classes. The distances between each sample and the first nearest neighbour that lie
within the same class are calculated; then the initial window size σmsh is the 75% quantile
of these distances. The selected cluster should be bigger than 10 samples to continue; else
it will be discarded. If the more massive cluster was greater than 10 samples, then the
distances between the distribution of the selected samples and the distribution of each
class are computed using Bhattacharyya distance (Bhattachayya, 1943), which measures
the similarity between two distributions. Given two normal distributions pi = N (#»µ i,Σ i),
the Bhattacharyya distance is computed as follow:

dbh(p1, p2) =
1

8
(#»µ 1 − #»µ 2)

TΣ−1(#»µ 1 − #»µ 2) +
1

2
ln

(
det(Σ)√

det(Σ 1) det(Σ 2)

)
, (8.3)

where Σ =
Σ 1 + Σ 2

2
.

det(X) is the determinant of the matrix X. If the smallest of these distances is less
than the shortest distance of the distances among the known classes each other; then
these samples are considered as an extension to the nearest class, and the classifier is
updated by standard incremental learning (INC). Otherwise, a new label is issued for
them, and they are used to update the classifier by our incremental class learning (ICL)
method. A new clustering process is implemented on the rest of the unknown samples
after updating the classifier, and the same process is implemented until the largest cluster
contains less than 10 samples. Since we expect that the remaining unknown samples are
more scattered, we enlarge the window of the mean-shift by a factor of 1.5. The learning
process is illustrated in the Fig. 8.2.

Each of the previously proposed classifiers is used to build the system individually.
Additionally, an ensemble of all the classifiers altogether is built. Majority voting is used
to combine the different outputs of the classifiers in the ensemble. The same evaluation
experiment is applied to all these systems. The gesture data is divided into the training
set, learning set and a test set with fractions of 25%, 50% and 25% of the total data,

8.2. SELF-ADAPTIVE STRUCTURE SEMI-SUPERVISED LEARNING 167

Figure 8.2: Overview of the proposed S4L algorithm. The initial training is implemented
in the offline phase and all other processes are implemented in online phase. After clus-
tering the data, only the largest cluster is selected, and it should contain 10 samples or
more to continue, otherwise, it will be discarded.

168
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

respectively. Six classes are selected arbitrarily to be in the initial training, while the
data of the remaining three classes are discarded from the training data. Additionally,
random movements or outliers are added to the learning and tests set by using the function
“gendatout” from the toolbox (ddtool) (Tax, 2015). The mean number of samples per
discarded class is computed, i.e. the sum of all discarded samples divided by three (number
of dropped classes). The noise added to the learning and testing sets are 20% and 10%
of the computed mean number, respectively. Thus, the training set contains 25% of the
samples of six classes only, respectively, while the learning and test sets include 50% and
25% of the samples of all classes, respectively, plus random movements samples sized
as 20% and 10% of the average number of the discarded sample per class, respectively.
Initially, the classifier is trained on the training set in the offline phase. The learning set
is used as streamed data in the online phase. The samples that are classified as known
samples and their believability flags are already triggered and are used to update the
classifier in standard incremental learning while all the samples that are indicated as
unknown are collected and submitted to the mean-shift algorithm. The largest cluster
is selected and verified if it is an extension of any of the known classes by using the
Bhattacharyya distance. A new label is issued for the cluster that does not belong to any
of the known classes. This cluster is considered as a new class and used to update the
classifier using the incremental class learning method. The process is continued until the
largest cluster contains only 10 or fewer samples. Finally, the model is evaluated on the
test set. The experiment is repeated 100 times with different random permutations and
different random initial training classes to derive an expectation of the accuracy that is
independent of the partition and the initial classes. For precise inspection, the confusion
matrix is used to show the results. Additionally, the accuracy (Acc) and the reliability
(Rel) are computed. Since the classes are unbalanced, we could not use a ratio in the
confusion matrix, hence we used the real number of samples and sum them over the 100
runs. The columns of the confusion table represent the classifier outputs while the rows
represent the sample in the testing set. The first six columns/rows represent the known
classes, the next three columns/rows represent the novel classes, and the 10’th column/row
represents the outliers. Additionally, the last column represents the class-wise accuracy
of the classifier, and the last row represents the class-wise reliability.

The evaluations of the proposed classifier are shown in Tables 8.7 – 8.12. Additionally,
the evaluation of the ensemble consisting of all of the proposed classifiers is shown in
Table 8.13.

8.2. SELF-ADAPTIVE STRUCTURE SEMI-SUPERVISED LEARNING 169

Table 8.7: Confusion matrix of the incremental class ELM–EVT classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11797 0 0 0 0 0 0 0 0 106 99.11
C2 0 8293 0 0 0 0 0 0 0 59 99.29
C3 0 0 6921 0 0 0 1 0 0 145 97.93
C4 0 0 0 8851 0 0 0 0 0 133 98.52
C5 0 0 0 0 6715 0 0 0 0 74 98.91
C6 0 0 0 0 0 4849 0 0 0 69 98.60
C7 0 0 0 0 0 0 10908 0 0 47 99.57
C8 0 0 0 0 0 0 0 7312 0 102 98.62
C9 0 0 1 0 0 0 4 0 5173 240 95.48
Out 4 3 0 0 3 1 1 0 0 731 98.38
Rel 99.97 99.96 99.99 100.00 99.96 99.98 99.95 100.00 100.00 42.85 –

Table 8.8: Confusion matrix of the incremental class ELM–AE classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11991 0 1 1 0 0 8 0 0 129 98.85
C2 0 8518 0 0 0 0 3 0 0 88 98.94
C3 0 0 7293 0 0 0 1 0 0 81 98.89
C4 0 0 2 8380 0 0 5 0 0 180 97.82
C5 0 0 0 0 6471 0 1 0 0 257 96.17
C6 0 0 0 0 0 4753 0 0 0 306 93.95
C7 0 0 0 0 0 0 10821 1 0 79 99.27
C8 3 0 2 1 0 2 3 6795 0 256 96.22
C9 6 0 6 4 0 0 161 3 4922 266 91.69
Out 0 0 0 0 2 0 0 0 0 726 99.73
Rel 99.92 100.00 99.85 99.93 99.97 99.96 98.35 99.94 100.00 30.66 –

Table 8.9: Confusion matrix of the incremental class Mahalanobis distance classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11618 0 0 0 0 0 0 0 0 64 99.45
C2 0 8762 0 0 0 0 0 0 0 24 99.73
C3 0 0 7000 0 0 0 0 0 0 26 99.63
C4 0 0 0 7954 0 0 0 0 0 17 99.79
C5 0 0 0 0 6412 0 0 0 0 14 99.78
C6 0 0 0 0 0 4973 0 0 0 9 99.82
C7 0 0 0 0 0 0 11278 0 0 47 99.58
C8 0 0 0 0 0 0 0 7843 0 84 98.94
C9 0 0 0 0 0 0 113 0 5408 154 95.30
Out 0 0 0 0 0 0 0 0 0 783 100.00
Rel 100.00 100.00 100.00 100.00 100.00 100.00 99.01 100.00 100.00 64.08 –

170
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

Table 8.10: Confusion matrix of the incremental class Polynomial classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11168 0 0 0 0 0 0 0 0 469 95.97
C2 0 8613 0 0 0 0 0 0 0 336 96.25
C3 0 0 7192 0 0 0 0 0 0 208 97.19
C4 0 0 0 7529 0 0 0 0 0 279 96.43
C5 0 0 0 0 6022 0 0 0 0 484 92.56
C6 0 0 0 0 0 4533 0 0 0 610 88.14
C7 0 0 0 0 0 0 10884 0 0 101 99.08
C8 0 0 0 0 0 0 0 7541 0 209 97.30
C9 0 0 0 0 0 0 98 0 5124 400 91.14
Out 0 0 0 0 1 0 0 0 0 759 99.87
Rel 100.00 100.00 100.00 100.00 99.98 100.00 99.11 100.00 100.00 19.69 –

Table 8.11: Confusion matrix of the incremental class Parzen classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11658 0 2 15 1 0 9 8 0 133 98.58
C2 0 9229 0 2 0 0 0 1 0 82 99.09
C3 2 0 7317 0 1 0 0 1 0 79 98.88
C4 2 0 3 8002 0 0 1 0 0 112 98.55
C5 2 0 0 1 6298 0 0 0 0 131 97.92
C6 0 1 0 0 0 4706 0 2 1 191 96.02
C7 0 0 0 4 2 0 10192 7 0 258 97.41
C8 0 3 0 1 5 0 0 7441 0 508 93.50
C9 0 1 91 177 101 0 261 55 3981 719 73.91
Out 1 1 0 0 0 2 1 0 0 737 99.33
Rel 99.94 99.94 98.70 97.56 98.28 99.96 97.40 99.02 99.97 24.98 –

Table 8.12: Confusion matrix of the incremental class SVM classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11830 0 0 0 0 0 1 0 0 36 99.69
C2 0 8277 0 0 0 0 2 2 0 120 98.52
C3 0 0 7429 0 0 0 27 6 1 145 97.65
C4 0 0 0 8149 0 0 10 0 0 140 98.19
C5 0 0 0 0 6223 0 0 0 0 223 96.54
C6 0 0 0 0 0 4795 3 1 0 335 93.40
C7 0 0 0 0 0 0 11206 0 0 57 99.49
C8 0 0 0 0 0 0 2 7337 0 135 98.17
C9 0 0 0 0 0 0 89 49 4923 247 92.75
Out 1 0 0 0 0 0 4 0 0 746 99.33
Rel 99.99 100.00 100.00 100.00 100.00 100.00 98.78 99.22 99.98 34.16 –

8.3. MAHALANOBIS DISTANCE AND POLYNOMIAL CLASSIFIERS ENSEMBLE171

Table 8.13: Confusion matrix of the incremental class ensemble classifier.

C1 C2 C3 C4 C5 C6 C7 C8 C9 Out Acc
C1 11657 0 0 0 0 0 0 0 0 30 99.74
C2 0 8240 0 0 0 0 0 0 0 22 99.73
C3 0 0 7294 0 0 0 0 0 0 19 99.74
C4 0 0 1 9128 0 0 1 0 0 36 99.59
C5 0 0 0 0 6341 0 0 0 0 53 99.17
C6 0 0 0 0 0 5064 0 0 0 81 98.43
C7 0 0 0 0 0 0 11233 0 0 66 99.42
C8 0 0 0 0 2 0 2 7162 0 152 97.87
C9 0 0 0 0 0 0 68 49 4813 286 92.27
Out 0 0 0 0 0 0 1 0 0 744 99.87
Rel 100.00 100.00 99.99 100.00 99.97 100.00 99.36 99.32 100.00 49.97 –

8.3 Mahalanobis Distance and Polynomial

Classifiers Ensemble

Another example of the ensemble is implemented here by using just two classifiers, which
are the Mahalanobis distance classifier and the polynomial classifier. Since it is difficult
to find a benchmark classifier that has the capability of incremental learning, novelty
detection, and construction of new classes, we performed two separate experimental eval-
uations. In the first evaluation, the ability of our proposed algorithm of constructing a
new class is compared with a fully supervised classifier. The second experiment evaluates
the ability of the classifier to detect all outliers and compares it with the SVDD classifier.
In all of these experiments, the second set of the gesture data, which are non-linearly
separable and their classes are strongly overlapping. Section 4.1.1 is used to evaluate the
classifier.

8.3.1 Evaluation of the new class construction

In this experiment, an evaluation of the performance of the developed algorithm is per-
formed regarding two scenarios. The first scenario corresponds to the fully supervised
approach, which serves as a reference, and in the second scenario, we used our developed
algorithm. The available data were divided into three sets: the initial training set, the
learning data set for which class labels are generated by our algorithm, and the test set.
Each set comprises one-third of the overall data set.

The training scheme is repeated in 9 sets of 100 runs each, where for the kth set all
samples of class c are excluded from the initial training set of our algorithm while the
dataset is kept complete for the supervised approach. The excluded class is considered
the novel class. In each run, the data are divided into initial, learning and test data sets
in a different random manner. Initially, both classifiers are trained as fully supervised

172
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

Table 8.14: Results of the proposed semi-supervised learning algorithm in comparison
to the results of the fully supervised approach making use of all available manually set
labels. The average values were computed over 100 training runs each; the error intervals
correspond to plus/minus one standard deviation. Where the pu represents the purity of
the newly constructed class and the size ratio represents the ratio of the newly constructed
class size to the corresponding original class size.

Excluded pu [%] size ratio
class semi-sup. supervised semi-supervised supervised

class 1 97.6 ± 2.2 100.0 ± 0.0 99.7 ± 0.7 99.9 ± 0.3
class 2 89.0 ± 8.4 87.3 ± 3.7 49.9 ± 14.5 96.3 ± 1.4
class 3 93.1 ± 3.9 97.6 ± 2.1 93.1 ± 1.8 93.5 ± 2.3
class 4 95.4 ± 3.6 94.1 ± 2.0 70.2 ± 6.1 94.2 ± 4.1
class 5 99.9 ± 0.3 99.6 ± 0.5 96.0 ± 2.2 99.2 ± 0.6
class 6 68.6 ± 11.1 92.3 ± 3.6 21.0 ± 6.4 97.1 ± 1.5
class 7 98.4 ± 2.4 100.0 ± 0.0 99.3 ± 1.5 100.0 ± 0.0
class 8 99.1 ± 1.6 100 ± 0.0 99.9 ± 0.5 100.0 ± 0.2
class 9 92.4 ± 3.1 95.4 ± 1.7 85.3 ± 4.9 85.0 ± 4.4

Table 8.15: The overall recognition rate of the proposed semi-supervised learning algo-
rithm compared to the recognition rate of fully supervised learning. The average values
were computed over all 900 training runs; the error intervals correspond to plus/minus
one standard deviation.

Overall recognition Overall recognition Novel class recognition Novel class recognition
(semi-supervised) (supervised) (semi-supervised) (semi-supervised)

94.5%± 3.0 96.1%± 0.7 79.4%± 26.69 96.1%± 5.11

with their own initial training set. Labels are then generated for the learning (unlabelled)
data set, and the corresponding samples are included in the training set together with the
labels estimated by the classifier. The fully supervised classifier is trained on all classes.
Hence, it can classify all samples in the learning set. In contrast, there are some samples
in the learning set belonging to the unseen (excluded) class of our algorithm. However,
it will classify them as “unknown”, and it will construct a new class containing some of
these unknown samples which fulfil the conditions of the new class, and it rejects the
other novel gestures by assigning them as random movements (outliers).

Let Nc be the total number of samples in the learning set belonging to the excluded
class c and let the newly constructed class be ĉ. Additionally, let Nĉ

total and Nĉ
true be

the total number of samples in the newly constructed class ĉ and the samples that belong
to both classes c and ĉ, respectively. The “purity” (pu) of the newly constructed class is
measured at the first stage of the algorithm, pu = Nĉ

true/Nĉ
total and the size ratio of the

newly constructed class to the total size of class c (Nĉ
total/Nc) are shown in Table 8.14.

In the case of the fully supervised classifier, the purity parameter of class c is the ratio
between the correct classifier assignments to that class and its total number of samples.

8.3. MAHALANOBIS DISTANCE AND POLYNOMIAL CLASSIFIERS ENSEMBLE173

The size ratio of class c is computed by dividing the number of samples assigned to that
class by Nc.

The obtained purity values are reasonably high (between 89% and 99.9%) for all novel
classes except class 6. That class is also characterised by a low size ratio of only 21%,
while for all other classes except class 2 the size ratio exceeds 70% and even reaches
values larger than 99% for classes 1, 7 and 8. The purity values obtained by supervised
learning, which is trained using samples of the novel class and is thus able to recognise the
novel class, correspond to within a few percent to those obtained by the proposed semi-
supervised method except for class 6. Regarding the size ratio, the comparison between
the semi-supervised and the fully supervised learning results is quite encouraging since the
recognition rate of supervised learning significantly exceeds that of the semi-supervised
approach only for the apparently “difficult” classes 2, 4 and 6.

For the same 900 training runs of our algorithm, Table 8.15 shows the recognition rate
achieved by our semi-supervised algorithm in comparison to the recognition rate of the
same classifier trained in a fully supervised manner based on the same training and test
data, where the average difference is only about 2.5% in favour of the fully supervised
scenario. A larger difference of about 15% is observed for the recognition rate of the novel
class.

This result is not unexpected since if a high purity of the novel class is desired using
the employed Mahalanobis distance criterion, a considerable fraction of the possible novel
samples may be rejected as random movements (outliers). If it is desired to include more
gestures into the new class, it is necessary to increase the corresponding threshold, which
in turn will lead to a decreased purity. All in all, it depends on the application scenario if
a large number of assigned novel samples or a high purity of the newly constructed class
is desired.

8.3.2 Evaluation of the outlier detection

The dataset has been divided in the same manner of the first experiment. In addition,
a small number of outliers has been added to the test data. The outlier samples don’t
belong to any of gesture classes and it has been created using the function “gendatout”
from the toolbox (ddtools) (Tax, 2015). The proposed classifier and the SVDD classifier
are trained on the training data, and then they classify the test data. The proposed
classifier assigns the test sample to one of three cases, which are: labelling it with the
label of one of the known classes, indicate it as an outlier, or indicate it as belonging
to a new class. The SVDD classifier assigns it either as one of the known classes or as
an outlier. Hence, the result is computed as the accuracy regarding the known classes
and the accuracy of detecting unknown classes and outliers. These two measures are
computed for both classifiers.

Another two measures are computed for the proposed classifier only, which are the
accuracy of the newly constructed class and the accuracy of the rejected samples. The

174
CHAPTER 8. CONTRIBUTION:

SEMI-SUPERVISED LEARNING BASED ON SELF-ADAPTIVE STRUCTURE

Table 8.16: Accuracies of the proposed semi-supervised learning algorithm in comparison
to the accuracies of the SVDD classifier. The average of the accuracy values was computed
over 100 training runs each; the error intervals correspond to plus/minus one standard
deviation.

Known Classes Total Unknown Newly Con- Outliers
Excluded Samples Created Class

class semi-sup. SVDD semi-sup. SVDD semi-sup. semi-sup.
Class 1 93.1 ± 1.1 36.8 ± 19.9 99.6 ± 0.6 72.6 ± 41.0 100.0 ± 0.0 95.0 ± 7.1
Class 2 94.1 ± 1.1 36.7 ± 20.8 54.6 ± 11.6 55.6 ± 33.6 50.5 ± 12.7 96.4 ± 5.3
Class 3 93.8 ± 0.9 34.7 ± 23.2 97.8 ± 1.2 61.1 ± 43.1 96.1 ± 1.6 97.1 ± 5.2
Class 4 93.7 ± 1.0 41.4 ± 19.4 77.6 ± 4.5 35.5 ± 18.2 76.1 ± 4.9 92.7 ± 8.6
Class 5 93.0 ± 1.0 47.0 ± 2.3 95.8 ± 2.3 59.8 ± 6.6 95.7 ± 2.4 97.4 ± 4.6
Class 6 94.0 ± 1.0 41.6 ± 17.5 27.7 ± 5.6 48.1 ± 23.0 21.2 ± 6.1 96.0 ± 6.3
Class 7 92.7 ± 1.2 35.3 ± 18.6 99.2 ± 1.1 63.1 ± 34.8 99.5 ± 1.1 95.9 ± 6.2
Class 8 92.8 ± 1.1 34.3 ± 19.3 99.7 ± 0.5 73.4 ± 43.8 100.0 ± 0.0 96.6 ± 6.3
Class 9 93.1 ± 1.0 37.6 ± 21.9 92.2 ± 3.2 64.0 ± 39.6 92.0 ± 3.4 91.9 ± 8.1

outliers which are added to the test data using the function “gendatout” are considered as
a reference to the outliers (rejected samples) of the proposed algorithm in computing the
outlier detection accuracy. Consequently, the test samples which belong to the excluded
class in the training data are considered as references to the newly constructed class.

The experiment was run 900 times. The summary of the results is shown in Table 8.16.
The advantage of the proposed algorithm over the SVDD algorithm is clearly apparent
from this table. Again, both algorithms have difficulties in detecting the outliers of
classes 2 and 6 as they strongly overlap with the other classes.

9

Summary and conclusion

The machine should be able to react to the human gestures to achieve natural interaction
between the human and the machine in most of HCI applications. Human gestures are
culture-based, and in principle, there is an unlimited number of possible gestures, which
makes supervised learning problematic. Instead, the machine should be able to learn and
respond to the gestures that are continuously streamed. To learn from the data stream,
various problems may arise, e.g. infinite length, concept-drift and concept evolution. Semi-
supervised learning provides a solution using the unlabelled data, but we still need to
solve the other problems. Incremental learning is significant to develop the machine
intelligence and bring it close to real interaction. It is important from two points of view.
First, it should be able to acquire an experience from the environments incrementally
and continuously. Second, it should be able to respond to new gestures over time. Two
different types of the incremental learning are available, which are: the classifier updates
its information of the already trained on classes (standard incremental learning), while
the second type is to update its class structure by adding new classes (incremental class
learning). The classifier should be able to distinguish if the sample belongs to the known
classes or not. Additionally, to add the new samples autonomously in the standard
incremental learning, the classifier should recognise if the assignment of this sample is
trustworthy or not. Furthermore, it should discriminate between random movements and
the meaningful movements. Moreover, it must be able to discriminate among the samples
that belong to different novel classes.

Due to the varieties of the gesture types, we proposed in this work several methods to
fit as many as possible types of gestures. The proposed methods are based on different
techniques: the incremental Parzen window and the incremental support vector machine
are non-parametric methods, the incremental neural network (extreme learning machine)
and the incremental polynomial classifiers are non-linear classifiers, and the incremental
Mahalanobis distance classifier and the kernel distance are metric learning algorithms.
The novelty detection of all of these classifiers is implemented by using extreme value

175

176 CHAPTER 9. SUMMARY AND CONCLUSION

theory (EVT). The EVT is more accurate than the conventional methods, and it does not
need additional labelled data or a time-consuming cross-validation to estimate the novelty
threshold. Additionally, the threshold in EVT has a direct statistical interpretation and
does not depend on the distribution of the classes whereas the conventional thresholds
depend on the distribution of the classes. Another type of novelty detection, which does
not require additional labelled data, is used for some classifiers in combination with the
EVT. Both types of incremental learning are incorporated with the proposed classifiers.
We proposed a paradigm to provide a self-adaptive structure semi-supervised learning,
which is used as a wrapper for any of the proposed classifiers or even an ensemble of them.
In addition to the standard incremental learning and the incremental class learning, it
integrates the unsupervised learning (mean-shift clustering algorithm) to discriminate the
different novel classes.

The standard incremental learning and the novelty detection performance of each
classifier are evaluated by training the classifier initially on a training set which has 8
classes only and applying it to the test set, which has 9 classes. The data stream is
emulated by providing the learning set data in buckets, where the learning set also has 9
classes. The experiment was repeated 9 times by considering a different class as a novel in
each run. Since the data partitioning depends on a random permutation, each individual
configuration was run 100 times. Thus, the total number of runs to evaluate one classifier
is 900 times. The classifier outputs are compared with the outputs of the same classifier
type from the state-of-art classifiers. The results show that the proposed classifiers have
superior properties.

The incremental class learning was evaluated by using two versions of the same clas-
sifier; one of them was trained using the supervised method while the other one was
updated by using the incremental class learning. The difference between the outputs of
the two classifiers is as follows. The results show that the ICL needs less time for the
processing while it maintains similar outputs.

The classifier of self-adaptive structure semi-supervised learning is trained on only 6
classes, while the learning and testing sets contain 9 classes plus some random movements;
we added them as outliers. The system succeeds to predict all the missing classes and
updates itself on them while rejecting all the outliers. The confusion matrix is computed
for each classifier and also for the ensemble that consists of all the classifiers is evaluated.
The average prediction accuracy is more than 99 %, and the reliability (the purity of the
predicted classes) is also more than 99 %. Additionally, another experiment is imple-
mented by using an ensemble of the polynomial classifier and the Mahalanobis classifier
on strongly overlapping data. The outputs of the ensemble classifier are compared with
a second version of the classifier that is trained in a supervised way. The results show
that the accuracy of the proposed methods is on average just 2.5 % less than that of the
fully supervised learning, although it shows a high variability depending on which class
is discarded.

177

Future works The system is designed to work with one-handed gestures, and we expect
that it could be adapted to two-handed gestures. Recently, community recognition has
become a hot research topic; the proposed classifiers may be possible to be updated to
work on community recognition. Other types of sensors can be used such as inertial
measurement unit or may include current smartwatches. Although we used different
kinds of data to evaluate the system, it may be helpful to evaluate it on further types
of data. Furthermore, we expect that adding new types of classifiers, such as Hidden
Markov Models, will allow for more specific selection of appropriate classifiers, given the
regarded type of data.

Humans use voice and gestures in their communications. Although the system is
designed to work on gestures only, it might become more robust and similar to human
interaction if voice recognition or voice source recognition is integrated into it.

This thesis aims to improve the intelligence of machines and develop proper method-
ologies and efficient systems to produce an artificial intelligence closer to what humans
have. The proposed methods are a step forward towards this aim and may build a foun-
dation for future improvements.

178 CHAPTER 9. SUMMARY AND CONCLUSION

Bibliography

Abid, M. R. Visual Recognition of a Dynamic Arm Gesture Language for Human-Robot
and Inter-Robot Communication. PhD thesis, University of Ottawa, 2015.

Adams, J. B. Interpretation of visible and near-infrared diffuse reflectance spectra of
pyroxenes and other rock-forming minerals. In Karr, C., editor, Infrared and Raman
Spectroscopy of Lunar and Terrestrial Minerals, chapter 4, pages 91–116. Academic
Press, New York, San Francisco, London, 1975.

Akima, H. A new method of interpolation and smooth curve fitting based on local pro-
cedures. Journal of the Association for Computing Machinery, 17(4):589–602, 1970.

Al-Behadili, H., Grumpe, A., and Wöhler, C. Semi-supervised learning of emblematic
gestures. At-Automatisierungstechnik, 62(10):732–739, 2014.

Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C. Extreme learning machine based
novelty detection for incremental semi-supervised learning. In Third IEEE International
Conference on Image Information Processing (ICIIP), pages 230–235, Dec 2015a. doi:
10.1109/ICIIP.2015.7414771.

Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C. Incremental class learning and
novel class detection of gestures using ensemble. In Workshop New Challenges in Neural
Computation 2015, pages 122–132, 2015b.

Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C. Non-linear distance based large
scale data classifications. In 2015 IEEE International Conference on Progress in In-
formatics and Computing (PIC), pages 613–617, Dec 2015c. doi: 10.1109/PIC.2015.
7489921.

Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C. Incremental learning and novelty
detection of gestures using extreme value theory. In IEEE International Conference on

179

180 BIBLIOGRAPHY

Computer Graphics, Vision and Information Security (CGVIS), pages 169–174, Nov
2015d. doi: 10.1109/CGVIS.2015.7449915.

Al-Behadili, H., Grumpe, A., Dopp, C., and Wöhler, C. Semi-supervised learning using
incremental polynomial classifier and extreme value theory. In 3rd IEEE International
Conference on Artificial Intelligence, Modelling and Simulation (AIMS), pages 332–337,
2015e. doi: 10.1109/AIMS.2015.60.

Al-Behadili, H., Grumpe, A., and Wöhler, C. Incremental learning and novelty detection
of gestures in a multi-class system. In 3rd IEEE International Conference on Artificial
Intelligence, Modelling and Simulation (AIMS), pages 304–309, 2015f. doi: 10.1109/
AIMS.2015.55.

Al-Behadili, H., Grumpe, A., Migdadi, L., and Wöhler, C. Semi-supervised learning
using incremental support vector machine and extreme value theory in gesture data. In
18th IEEE International Conference on Computer Modelling and Simulation (UKSim-
AMSS), pages 184–189, 2016a. doi: 10.1109/UKSim.2016.5.

Al-Behadili, H., Grumpe, A., Migdadi, L., and Wöhler, C. Incremental parzen window
classifier for a multi-class system. International Journal of Simulation–Systems, Science
& Technology, 17(34), 2016b.

Al-Behadili, H., Grumpe, A., and Wöhler, C. Confidence band and extreme value theory
based outlier detection for semi-supervised learning of incremental polynomial classifier.
International Journal of Simulation Systems, Science & Technology, 17(34), 2016c.

Al-Behadili, H., Grumpe, A., and Wöhler, C. Neural network based novelty detection for
incremental semi-supervised learning in multi-class gesture recognition. In Proceedings
of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 3: VISAPP,, pages 287–294, 2016d. ISBN 978-989-
758-175-5. doi: 10.5220/0005674202870294.

Al-Behadili, H., Grumpe, A., and Wöhler, C. Non-linear distance-based semi-supervised
multi-class gesture recognition. In Proceedings of the 11th Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications - Vol-
ume 3: VISAPP,, pages 280–286, 2016e. ISBN 978-989-758-175-5. doi: 10.5220/
0005674102800286.

Ali, S. and Shah, M. Human action recognition in videos using kinematic features and
multiple instance learning. IEEE transactions on pattern analysis and machine intelli-
gence, 32(2):288–303, 2010.

Alon, J., Athitsos, V., and Sclaroff, S. Accurate and efficient gesture spotting via pruning
and subgesture reasoning. In International Workshop on Human-Computer Interaction,
pages 189–198. Springer, 2005.

BIBLIOGRAPHY 181

Alon, J., Athitsos, V., Yuan, Q., and Sclaroff, S. A unified framework for gesture recogni-
tion and spatiotemporal gesture segmentation. IEEE transactions on pattern analysis
and machine intelligence, 31(9):1685–1699, 2009.

Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, 46(3):175–185, 1992.

Amos, E. Wikimedia commons, Microsoft Kinect, 2017a. URL https://upload.

wikimedia.org/wikipedia/commons/6/67/Xbox-360-Kinect-Standalone.png. Ac-
cessed: 2017-01-11.

Amos, E. Wikimedia commons, Head Mounted Display, 2017b. URL https://commons.

wikimedia.org/wiki/File%3AVictorMaxx-StuntMaster.jpg. Accessed: 2017-01-11.

Anand, S., Mittal, S., Tuzel, O., and Meer, P. Semi-supervised kernel mean shift clus-
tering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6):1201–
1215, 2014.

Balcan, M.-F., Blum, A., and Yang, K. Co-training and expansion: Towards bridging
theory and practice. In Advances in neural information processing systems, pages 89–96,
2004.

Baldi, P. and Hornik, K. Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58, 1989.

Baraldi, S., Del Bimbo, A., and Landucci, L. Natural interaction on tabletops. Multimedia
Tools and Applications, 38(3):385–405, 2008.

Barber, D. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2013.

Baudat, G. and Anouar, F. Generalized discriminant analysis using a kernel approach.
Neural computation, 12(10):2385–2404, 2000.

Bellman, R. and Kalaba, R. On adaptive control processes. IRE Transactions on Auto-
matic Control, 4(2):1–9, 1959.

Bennett, K., Demiriz, A., et al. Semi-supervised support vector machines. Advances in
Neural Information processing systems, pages 368–374, 1999.

Berg, B. A. and Neuhaus, T. Multicanonical ensemble: A new approach to simulate
first-order phase transitions. Physical Review Letters, 68(1):9, 1992.

Berry, G. A. Small-wall: A Multimodal Human Computer Intelligent Interaction Test Bed
with Applications. University of Illinois at Urbana-Champaign, 1998.

https://upload.wikimedia.org/wikipedia/commons/6/67/Xbox-360-Kinect-Standalone.png
https://upload.wikimedia.org/wikipedia/commons/6/67/Xbox-360-Kinect-Standalone.png
https://commons.wikimedia.org/wiki/File%3AVictorMaxx-StuntMaster.jpg
https://commons.wikimedia.org/wiki/File%3AVictorMaxx-StuntMaster.jpg

182 BIBLIOGRAPHY

Bhattachayya, A. On a measure of divergence between two statistical population defined
by their population distributions. Bulletin Calcutta Mathematical Society, 35:99–109,
1943.

Bhuyan, M., Bora, P., and Ghosh, D. Trajectory guided recognition of hand gestures
having only global motions. International Journal of Computer Science, Fall, 2008.

Bhuyan, M., Kumar, D. A., MacDorman, K. F., and Iwahori, Y. A novel set of features
for continuous hand gesture recognition. Journal on Multimodal User Interfaces, 8(4):
333–343, 2014.

Birdal, A. and Hassanpour, R. Region based hand gesture recognition. In 16th Interna-
tional conference in central Europe on computer graphics, visualization and computer
vision, pages 1–7. Václav Skala-UNION Agency, 2008.

Bishop, C. M. Novelty detection and neural network validation. In IEE Proceedings:
Vision, Image and Signal Processing, volume 141, pages 217–222. IET, 1994.

Bishop, C. M. et al. Neural networks for pattern recognition. Clarendon press Oxford,
1995.

Bishop, C. M. et al. Pattern recognition and machine learning, volume 4. springer New
York, 2006.

Blum, A. and Mitchell, T. Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory, pages
92–100. ACM, 1998.

Bobick, A. and Davis, J. Real-time recognition of activity using temporal tem-
plates. In Proceedings 3rd IEEE Workshop on Applications of Computer Vision, 1996.
WACV’96., pages 39–42. IEEE, 1996.

Bodor, R., Morlok, R., and Papanikolopoulos, N. Dual-camera system for multi-level
activity recognition. In IROS, pages 643–648. Citeseer, 2004.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992.

Brand, M., Oliver, N., and Pentland, A. Coupled hidden markov models for complex
action recognition. In IEEE computer society conference on computer vision and pattern
recognition, 1997., pages 994–999. IEEE, 1997.

BIBLIOGRAPHY 183

Bretzner, L., Laptev, I., and Lindeberg, T. Hand gesture recognition using multi-scale
colour features, hierarchical models and particle filtering. In Fifth IEEE International
Conference on Automatic Face and Gesture Recognition, 2002., pages 423–428. IEEE,
2002.

Bruzzone, L., Cossu, R., and Vernazza, G. Detection of land-cover transitions by com-
bining multidate classifiers. Pattern Recognition Letters, 25(13):1491–1500, 2004.

Burns, R. G., Abu-Eid, R. M., and Huggins, F. E. Crystal field spectra of lunar pyroxenes.
In Lunar and Planetary Science Conference Proceedings, volume 3, pages 533–543, 1972.

Cabibihan, J.-J., So, W.-C., and Pramanik, S. Human-recognizable robotic gestures.
IEEE Transactions on Autonomous Mental Development, 4(4):305–314, 2012.

Cambria, E., Huang, G.-B., Kasun, L. L. C., Zhou, H., Vong, C. M., Lin, J., Yin, J., Cai,
Z., Liu, Q., Li, K., et al. Extreme learning machines [trends & controversies]. IEEE
Intelligent Systems, 28(6):30–59, 2013.

Cauwenberghs, G. and Poggio, T. Incremental and Decremental Support Vector Machine
Learning. In Proceedings of the 13th International Conference on Neural Information
Processing Systems, NIPS’00, pages 388–394, Cambridge, MA, USA, 2000. MIT Press.

Chang, C.-K. and Huang, J. Video surveillance for hazardous conditions using sensor
networks. In IEEE International Conference on Networking, Sensing and Control,
2004., volume 2, pages 1008–1013. IEEE, 2004.

Chang, J.-Y., Shyu, J.-J., and Cho, C.-W. Fuzzy rule inference based human activity
recognition. In 2009 IEEE Control Applications,(CCA) & Intelligent Control,(ISIC),
pages 211–215. IEEE, 2009a.

Chang, K.-Y., Liu, T.-L., and Lai, S.-H. Learning partially-observed hidden conditional
random fields for facial expression recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009. CVPR 2009., pages 533–540. IEEE, 2009b.

Chapelle, O., Chi, M., and Zien, A. A continuation method for semi-supervised svms. In
Proceedings of the 23rd international conference on Machine learning, pages 185–192.
ACM, 2006a.

Chapelle, O., Schölkopf, B., Zien, A., et al. Semi-supervised learning. MIT press Cam-
bridge, 2006b.

Chapelle, O., Sindhwani, V., and Keerthi, S. S. Branch and bound for semi-supervised
support vector machines. In Advances in neural information processing systems, pages
217–224, 2006c.

184 BIBLIOGRAPHY

Chapelle, O., Sindhwani, V., and Keerthi, S. S. Optimization techniques for semi-
supervised support vector machines. The Journal of Machine Learning Research, 9:
203–233, 2008.

Chawla, N. V. and Karakoulas, G. Learning from labeled and unlabeled data: An empir-
ical study across techniques and domains. J. Artif. Int. Res., 23:331–366, 2005.

Chen, F.-S., Fu, C.-M., and Huang, C.-L. Hand gesture recognition using a real-time
tracking method and hidden markov models. Image and vision computing, 21(8):745–
758, 2003.

Chen, Q., Cordea, M. D., Petriu, E. M., Varkonyi-Koczy, A. R., and Whalen, T. E.
Human computer interaction for smart environment applications using hand gestures
and facial expressions. International Journal of Advanced Media and Communication,
3(1-2):95–109, 2009.

Chen, S. and He, H. Towards incremental learning of nonstationary imbalanced data
stream: a multiple selectively recursive approach. Evolving Systems, 2(1):35–50, 2011.

Chen, S., Wang, H., Zhou, S., and Yu, P. S. Stop chasing trends: Discovering high order
models in evolving data. In Proc. ICDE, pages 923–932. IEEE, 2008.

Chen, Y., Liu, M., Liu, J., Shen, Z., and Pan, W. Slideshow: Gesture-aware ppt presen-
tation. In 2011 IEEE International Conference on Multimedia and Expo, pages 1–4.
IEEE, 2011.

Cheng, Y. Mean shift, mode seeking, and clustering. IEEE transactions on pattern
analysis and machine intelligence, 17(8):790–799, 1995.

Choi, C., Ahn, J.-H., and Byun, H. Visual recognition of aircraft marshalling signals using
gesture phase analysis. In Intelligent Vehicles Symposium, 2008 IEEE, pages 853–858.
IEEE, 2008.

Chow, C. K. On optimum recognition and error and reject tradeoff. IEEE Transactions
on Information Theory (IT), 16:41–46, 1970.

Cipolla, R. and Hollinghurst, N. J. Human-robot interface by pointing with uncalibrated
stereo vision. Image and Vision Computing, 14(3):171–178, 1996.

Clifton, D. A. Novelty detection with extreme value theory in jet engine vibration data.
PhD thesis, University of Oxford, 2009.

Clifton, D. A., Bannister, P. R., and Tarassenko, L. Learning shape for jet engine novelty
detection. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 3973 LNCS:828–835, 2006.

BIBLIOGRAPHY 185

Clifton, D. A., Clifton, L. A., Bannister, P. R., and Tarassenko, L. Automated novelty
detection in industrial systems. In Advances of Computational Intelligence in Industrial
Systems, pages 269–296. Springer, 2008.

Clifton, D. A., Hugueny, S., and Tarassenko, L. A comparison of approaches to multivari-
ate extreme value theory for novelty detection. In 15th Workshop on Statistical Signal
Processing, 2009 IEEE/SP. SSP’09., pages 13–16, 2009.

Clifton, D. A., Hugueny, S., and Tarassenko, L. Novelty detection with multivariate
extreme value statistics. Journal of signal processing systems, 65(3):371–389, 2011.

Clifton, L. A. Multi-Channel Novelty Detection and Classifier Combination. PhD thesis,
University of Manchester, Manchester, 2007.

Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver,
D., Enomoto, N., Hasegawa, O., Burt, P., et al. A system for video surveillance and
monitoring. Technical report, Technical Report CMU-RI-TR-00-12, Robotics Institute,
Carnegie Mellon University, 2000.

Comaniciu, D. and Meer, P. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. Active shape models-their
training and application. Computer vision and image understanding, 61(1):38–59, 1995.

Cordella, L. P., Stefano, C. D., Tortorella, F., and Vento, M. A method for improv-
ing classification reliability of multilayer perceptrons. IEEE Transactions on Neural
Networks, 6(5):1140–1147, 1995.

Corradini, A. Real-time gesture recognition by means of hybrid recognizers. In Interna-
tional Gesture Workshop, pages 34–47. Springer, 2001.

Cozman, F. G., Cohen, I., Cirelo, M. C., et al. Semi-supervised learning of mixture
models. In ICML, pages 99–106, 2003.

Crowley, J., Berard, F., Coutaz, J., et al. Finger tracking as an input device for augmented
reality. In International Workshop on Gesture and Face Recognition, pages 195–200,
1995.

Culp, M. and Michailidis, G. An iterative algorithm for extending learners to a semi-
supervised setting. Journal of Computational and Graphical Statistics, 17(3):545–571,
2008.

Cutler, R. and Turk, M. View-based interpretation of real-time optical flow for gesture
recognition. In Third IEEE International Conference on Automatic Face and Gesture
Recognition, 1998, pages 416–421, 1998.

186 BIBLIOGRAPHY

CyberGlove Systems LLC. CyberGlove II, 2017. URL https://static1.squarespace.

com/static/559c381ee4b0ff7423b6b6a4/55fa5c5de4b01cd1ed50f232/

55fa5cb0e4b07da7e5fef7cb/1442471090106/01.png?format=1500w. Accessed:
2017-01-11.

Dadgostar, F., Sarrafzadeh, A., and Gholamhosseini, H. A component-based architecture
for vision-based gesture recognition. In Image and Vision Computing New Zealand
Conference, University of Otago, Dunedin, pages 28–29, 2005.

Dalal, N. and Triggs, B. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE, 2005.

Darrell, T. J., Essa, I. A., and Pentland, A. P. Task-specific gesture analysis in real-
time using interpolated views. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(12):1236–1242, 1996.

Dasarathy, B. V. and Sheela, B. V. A composite classifier system design: concepts and
methodology. Proceedings of the IEEE, 67(5):708–713, 1979.

Dasarathy, B. Nearest neighbor (NN) norms: nn pattern classification techniques.
IEEE Computer Society Press tutorial. IEEE Computer Society Press, 1991. ISBN
9780818659300.

Dasgupta, D. and Majumdar, N. S. Anomaly detection in multidimensional data using
negative selection algorithm. In Proceedings of the World on Congress on Computational
Intelligence, volume 2, pages 1039–1044. IEEE, 2002.

Dautenhahn, K. Socially intelligent robots: dimensions of human–robot interaction.
Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480):679–
704, 2007.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (method-
ological), pages 1–38, 1977.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255. IEEE, 2009.

Derpanis, K. G., Wildes, R. P., and Tsotsos, J. K. Hand gesture recognition within
a linguistics-based framework. In European Conference on Computer Vision, pages
282–296. Springer, 2004.

https://static1.squarespace.com/static/559c381ee4b0ff7423b6b6a4/55fa5c5de4b01cd1ed50f232/55fa5cb0e4b07da7e5fef7cb/1442471090106/01.png?format=1500w
https://static1.squarespace.com/static/559c381ee4b0ff7423b6b6a4/55fa5c5de4b01cd1ed50f232/55fa5cb0e4b07da7e5fef7cb/1442471090106/01.png?format=1500w
https://static1.squarespace.com/static/559c381ee4b0ff7423b6b6a4/55fa5c5de4b01cd1ed50f232/55fa5cb0e4b07da7e5fef7cb/1442471090106/01.png?format=1500w

BIBLIOGRAPHY 187

Diaz, I. and Hollmén, J. Residual generation and visualization for understanding novel
process conditions. In International Joint Conference on Neural Networks, 2002.
IJCNN’02., volume 3, pages 2070–2075. IEEE, 2002.

Didaci, L. and Roli, F. Using Co-training and Self-training in Semi-supervised Multiple
Classifier Systems, pages 522–530. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Diehl, C. P. and Cauwenberghs, G. Svm incremental learning, adaptation and opti-
mization. In Proceedings of the International Joint Conference on Neural Networks,
volume 4, pages 2685–2690. IEEE, 2003.

Ditzler, G. and Polikar, R. Incremental learning of concept drift from streaming imbal-
anced data. IEEE Transactions on Knowledge and Data Engineering, 25(10):2283–2301,
2013.

Eisenstein, J., Barzilay, R., and Davis, R. Discourse topic and gestural form. In Associ-
ation for the Advancement of Artificial Intelligence (AAAI), pages 836–841, 2008.

Elmezain, M., Al-Hamadi, A., Appenrodt, J., and Michaelis, B. A hidden markov model-
based continuous gesture recognition system for hand motion trajectory. In 19th In-
ternational Conference on Pattern Recognition, 2008. ICPR 2008., pages 1–4. IEEE,
2008.

Elmezain, M., Al-Hamadi, A., Rashid, O., and Michaelis, B. Posture and Gesture Recog-
nition for Human-Computer Interaction. In Advanced Technologies, pages 415–440.
InTech, 2009.

Elmezain, M. O. S. M. Hand gesture spotting and recognition using HMMs and CRFs in
color image sequences. PhD thesis, PhD thesis, Computer Science Dept. Magdeburg
Univ, 2010.

Emamian, V., Kaveh, M., and Tewfik, A. H. Robust clustering of acoustic emission signals
using the kohonen network. In Proc. ICASSP’00, volume 6, pages 3891–3894. IEEE,
2000.

Embrechts, P., Klüppelberg, C., and Mikosch, T. Modelling extremal events: for insurance
and finance, volume 33. Springer Science & Business Media, 2013.

Esbensen, K. H. and Geladi, P. Principles of Proper Validation: use and abuse of re-
sampling for validation. Journal of Chemometrics, 24:168–187, 2010.

Faria, E. R., Gama, J., and Carvalho, A. Novelty detection algorithm for data streams
multi-class problems. In Proceedings of the 28th annual ACM symposium on applied
computing, pages 795–800. ACM, 2013.

188 BIBLIOGRAPHY

Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., and
Dahal, K. An adaptive ensemble classifier for mining concept drifting data streams.
Expert Systems with Applications, 40(15):5895–5906, 2013.

Fels, S. S. Glove-talkii: Mapping hand gestures to speech using neural networks an ap-
proach to building adaptive interfaces. PhD thesis, Citeseer, 1994.

Fels, S. S., Pritchard, B., and Lenters, A. Fortouch: A wearable digital ventriloquized
actor. In NIME, pages 274–275, 2009.

Feng, G., Huang, G.-B., Lin, Q., and Gay, R. Error minimized extreme learning machine
with growth of hidden nodes and incremental learning. IEEE Transactions on Neural
Networks, 20(8):1352–1357, 2009.

Feng, Y., Liu, Z., and Li, B. Gestureflow: streaming gestures to an audience. In 2011
Proceedings IEEE INFOCOM, pages 748–756. IEEE, 2011.

Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936.

Fisher, R. A. and Tippett, L. H. C. Limiting forms of the frequency distribution of the
largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 24, pages 180–190. Cambridge Univ Press, 1928.

Fong, T., Nourbakhsh, I., and Dautenhahn, K. A survey of socially interactive robots.
Robotics and autonomous systems, 42(3):143–166, 2003.

Fothergill, S., Mentis, H., Kohli, P., and Nowozin, S. Instructing people for training
gestural interactive systems. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1737–1746. ACM, 2012.

Freund, Y., Schapire, R. E., et al. Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning (ICML
1996), volume 96, pages 148–156, 1996.

Fu, Z., Robles-Kelly, A., Caelli, T., and Tan, R. T. On automatic absorption detection
for imaging spectroscopy: A comparative study. IEEE Transactions on Geoscience and
Remote Sensing, 45(11):3827–3844, 2007.

Fujino, A., Ueda, N., and Saito, K. Semisupervised learning for a hybrid genera-
tive/discriminative classifier based on the maximum entropy principle. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 30(3):424–437, 2008.

Fukumoto, M., Suenaga, Y., and Mase, K. “finger-pointer”: Pointing interface by image
processing. Computers & graphics, 18(5):633–642, 1994.

BIBLIOGRAPHY 189

Fukunaga, K. and Hostetler, L. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Transactions on information theory, 21(1):
32–40, 1975.

Fung, G. M. and Mangasarian, O. L. Multicategory Proximal Support Vector Machine
Classifiers. Machine Learning, 59(1):77–97, 2005.

Gama, J. Knowledge discovery from data streams. CRC Press, 2010.

Gao, W., Fang, G., Zhao, D., and Chen, Y. Transition movement models for large vocab-
ulary continuous sign language recognition. In Sixth IEEE International Conference
on Automatic Face and Gesture Recognition, 2004. Proceedings., pages 553–558. IEEE,
2004.

GarćıA-RodŕıGuez, J., Angelopoulou, A., Garćıa-Chamizo, J. M., Psarrou, A., Escolano,
S. O., and GiméNez, V. M. Autonomous growing neural gas for applications with time
constraint: optimal parameter estimation. Neural Networks, 32:196–208, 2012.

Gatignon, H. Statistical Analysis of Management Data. Springer-Verlag, New York, 2010.

Geng, X. and Smith-Miles, K. Incremental Learning, pages 731–735. Springer US, 2009.

Ghobadi, S. E., Loepprich, O. E., Ahmadov, F., Bernshausen, J., Hartmann, K., and
Loffeld, O. Real time hand based robot control using multimodal images. IAENG
International Journal of Computer Science, 35(4):500–505, 2008.

Gillian, N. E. Gesture Recognition for Musician Computer Interaction. PhD thesis,
Queen’s University Belfast, 2011.

Goldberg, A. B. and Zhu, X. Seeing stars when there aren’t many stars: graph-based semi-
supervised learning for sentiment categorization. In Proceedings of the First Workshop
on Graph Based Methods for Natural Language Processing, pages 45–52. Association
for Computational Linguistics, 2006.

Goldberg, A. B. New directions in semi-supervised learning. PhD thesis, University of
Wisconsin–Madison, 2010.

Graetzel, C., Fong, T., Grange, S., and Baur, C. A non-contact mouse for surgeon-
computer interaction. Technology and Health Care, 12(3):245–257, 2004.

Grumpe, A. and Wöhler, C. Recovery of elevation from estimated gradient fields con-
strained by digital elevation maps of lower lateral resolution. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 94:37–54, 2014a. doi: 10.1016/j.isprsjprs.2014.04.
011.

190 BIBLIOGRAPHY

Grumpe, A. and Wöhler, C. Automatic segmentation of petrographic geologic units based
on elemental abundance maps. In Proc. European Lunar Symposium, pages 100–101,
London, UK, 2014b.

Grumpe, A., Zirin, V., and Wöhler, C. A normalisation framework for (hyper-)spectral
imagery. Planetary and Speca Science, 111:1–33, 2015. doi: 10.1016/j.pss.2014.10.013.

Guo, L., Hao, J.-h., and Liu, M. An incremental extreme learning machine for online
sequential learning problems. Neurocomputing, 128:50–58, 2014.

Gutierrez, D. D. Machine Learning and Data Science: An Introduction to Statistical
Learning Methods with R. Technics Publications, 2015.

Gwadera, R., Atallah, M. J., and Szpankowski, W. Markov models for identification of
significant episodes. In Proceedings of the 2005 SIAM International Conference on Data
Mining, pages 404–414, 2005.

Haffari, G. R. and Sarkar, A. Analysis of semi-supervised learning with the yarowsky
algorithm. In Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, pages 159–166. AUAI Press, 2007.

Haggett, S. J. Towards a multipurpose neural network approach to novelty detection. PhD
thesis, University of Kent, United Kingdom, 2008.

Han, J., Shao, L., Xu, D., and Shotton, J. Enhanced computer vision with microsoft
kinect sensor: A review. IEEE transactions on cybernetics., 43:1318–1334, 2013.

Hand, C., Sexton, I., and Mullan, M. A linguistic approach to the recognition of hand
gestures. In Designing Future Interaction Conference, 1994.

Hapke, B. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness.
Icarus, 59(1):41–59, 1984.

Hapke, B. Bidirectional reflectance spectroscopy: 5. The Coherent Backscatter Opposition
Effect and Anisotropic Scattering. Icarus, 157(2):523–534, 2002.

Harper, M. P. and Shriberg, E. Multimodal model integration for sentence unit detection.
In Proceedings of the 6th international conference on Multimodal interfaces., pages 121–
128. ACM, 2004.

Harris, T. Neural network in machine health monitoring. Professional Engineering, 1993.

Hassan, S. M., Al-Sadek, A. F., and Hemayed, E. E. Rule-based approach for enhancing
the motion trajectories in human activity recognition. In 10th International Conference
on Intelligent Systems Design and Applications., pages 829–834. IEEE, 2010.

BIBLIOGRAPHY 191

Hastie, T., Tibshirani, R., et al. Classification by pairwise coupling. The annals of
statistics, 26(2):451–471, 1998.

Hawkins, S., He, H., Williams, G., and Baxter, R. Ohtlier Detection Using Replicator Neu-
ral Networks. In Data Warehousing and Knowledge Discovery: 4th International Con-
ference, DaWaK 2002 Aix-en-Provence, France, Septemer 4–6, pages 170–180. Springer
Berlin Heidelberg, 2002.

He, H. Self-adaptive systems for machine intelligence. John Wiley & Sons, 2011.

He, Z., Deng, S., Xu, X., and Huang, J. Z. A fast greedy algorithm for outlier mining.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 567–576.
Springer, 2006.

Hein, M., Audibert, J.-Y., and Von Luxburg, U. Graph laplacians and their convergence
on random neighborhood graphs. J. Mach. Learn. Res., 2007.

Hertz, J., Krogh, A., and Palmer, R. G. Introduction to the theory of neural computation,
volume 1. Basic Books, 1991.

Hiroshi, K., Makito, S., Kazuhiko, S., Ken-ichi, T., and Kazuo, K. Pattern recognition
for video surveillance and physical security. Technical report, Technical Report 375,
The Institute of Electronics, Information and Communication Engineers., 2006.

Hoste, L., De Rooms, B., and Signer, B. Declarative gesture spotting using inferred and
refined control points. In International Conference on Pattern Recognition Applications
and Methods (ICPRAM), pages 144–150, 2013.

Hua, X. and Ding, S. Incremental learning algorithm for support vector data description.
Journal of Software, 6(7):1166–1173, 2011.

Huang, G.-B. and Chen, L. Convex incremental extreme learning machine. Neurocom-
puting, 70(16):3056–3062, 2007.

Huang, G.-B. and Chen, L. Enhanced random search based incremental extreme learning
machine. Neurocomputing, 71(16):3460–3468, 2008.

Huang, G.-B., Saratchandran, P., and Sundararajan, N. An efficient sequential learning
algorithm for growing and pruning rbf (gap-rbf) networks. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, 34(6):2284–2292, 2004.

Huang, G.-B., Chen, L., and Siew, C.-K. Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions on
Neural Networks, 17(4):879–892, 2006a.

192 BIBLIOGRAPHY

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. Extreme learning machine: theory and appli-
cations. Neurocomputing, 70(1):489–501, 2006b.

Hugueny, S., Clifton, D. A., and Tarassenko, L. Novelty detection with multivariate
extreme value theory, part ii: An analytical approach to unimodal estimation. In Proc.
MLSP, pages 1–6. IEEE, 2009.

Jain, A. and Nikovski, D. Incremental exemplar learning schemes for classification on
embedded devices. Machine Learning, 72(3):189–203, 2008.

Japkowicz, N., Myers, C., Gluck, M., et al. A novelty detection approach to classification.
In Proc. IJCAI, pages 518–523, 1995.

Jeon, B. and Landgrebe, D. A. Fast parzen density estimation using clustering-based
branch and bound. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(9):950–954, 1994.

Johnson, R. and Zhang, T. On the effectiveness of laplacian normalization for graph
semi-supervised learning. Journal of Machine Learning Research, 8(4), 2007.

Ju, S. X., Black, M. J., and Yacoob, Y. Cardboard people: A parameterized model of
articulated image motion. In Proceedings of the Second International Conference on
Automatic Face and Gesture Recognition, 1996., pages 38–44. IEEE, 1996.

Ju, S. X., Black, M. J., Minneman, S., and Kimber, D. Analysis of gesture and action in
technical talks for video indexing. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1997., pages 595–601. IEEE, 1997.

Kaâniche, M. B. Human gesture recognition. PhD thesis, Citeseer, 2009.

Kahol, K., Tripathi, P., and Panchanathan, S. Automated gesture segmentation from
dance sequences. In Sixth IEEE International Conference on Automatic Face and Ges-
ture Recognition, 2004., pages 883–888. IEEE, 2004.

Kang, H., Lee, C. W., and Jung, K. Recognition-based gesture spotting in video games.
Pattern Recognition Letters, 25(15):1701–1714, 2004.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu,
A. Y. An efficient k-means clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

Karami, A., Zanj, B., and Sarkaleh, A. K. Persian sign language (psl) recognition using
wavelet transform and neural networks. Expert Systems with Applications, 38(3):2661–
2667, 2011.

BIBLIOGRAPHY 193

Kardaun, O. J. Classical methods of statistics: with applications in fusion-oriented plasma
physics, volume 1. Springer Science & Business Media, 2005.

Karlen, M., Weston, J., Erkan, A., and Collobert, R. Large scale manifold transduction.
In Proceedings of the 25th international conference on Machine learning, pages 448–455.
ACM, 2008.

Kendall, W. S., Marin, J.-M., and Robert, C. P. Confidence bands for brownian motion
and applications to monte carlo simulation. Statistics and Computing, 17(1):1–10, 2007.

Kendon, A. Gesticulation and speech: Two aspects of the process of utterance. The
relationship of verbal and nonverbal communication, 25(1980):207–227, 1980.

Kendon, A. Gesture: Visible Action as Utterance. Cambridge University Press, 2004.

Kettebekov, S., Yeasin, M., and Sharma, R. Prosody based audiovisual coanalysis for
coverbal gesture recognition. IEEE transactions on multimedia, 7(2):234–242, 2005.

Kevin, N. Y. Y., Ranganath, S., and Ghosh, D. Trajectory modeling in gesture recogni-
tion using cybergloves® and magnetic trackers. In TENCON 2004, IEEE Region 10
Conference, pages 571–574. IEEE, 2004.

Khoshelham, K. Accuracy analysis of kinect depth data. In ISPRS workshop laser scan-
ning, volume 38, page W12, 2011.

Kita, S., Van Gijn, I., and Van der Hulst, H. Movement phases in signs and co-speech
gestures, and their transcription by human coders. In International Gesture Workshop,
pages 23–35. Springer, 1997.

Kjeldsen, R. and Kender, J. Visual hand gesture recognition for window system control.
In International Workshop on Automatic Face and Gesture Recognition, pages 184–188,
1995.

Ko, H. and Jacyna, G. M. Dynamical behavior of autoassociative memory performing
novelty filtering for signal enhancement. IEEE Transactions on Neural Networks, 11
(5):1152–1161, 2000.

Koch, R. Dynamic 3-d scene analysis through synthesis feedback control. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(6):556–568, 1993.

Kohonen, T. Self-organisation and associative memory. Springer-Verlag, 1988.

Kohonen, T. Self-organizing maps. Springer, 2001.

194 BIBLIOGRAPHY

Kopp, S., Sowa, T., and Wachsmuth, I. Imitation games with an artificial agent: From
mimicking to understanding shape-related iconic gestures. In Gesture-based communi-
cation in human-computer interaction, pages 436–447. Springer, 2003.

Kruskall, J. and Liberman, M. The symmetric time warping algorithm: From continuous
to discrete. time warps, string edits and macromolecules, 1983.

Kuncheva, L. I. and Bezdek, J. C. Nearest prototype classification: clustering, genetic
algorithms, or random search? IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 28(1):160–164, 1998.

Kung, S. Y. Kernel Methods and Machine Learning. Cambridge University Press, 2014.

Kuno, Y., Murashina, T., Shimada, N., and Shirai, Y. Intelligent wheelchair remotely
controlled by interactive gestures. In 15th International Conference on Pattern Recog-
nition, 2000., volume 4, pages 672–675. IEEE, 2000.

Labib, K. and Vemuri, R. Nsom: A real-time network-based intrusion detection system
using self-organizing maps. Networks and Security, pages 1–6, 2002.

Lafferty, J., McCallum, A., and Pereira, F. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the eighteenth
international conference on machine learning, ICML, volume 1, pages 282–289, 2001.

Lan, Y., Soh, Y. C., and Huang, G.-B. Ensemble of online sequential extreme learning
machine. Neurocomputing, 72(13):3391–3395, 2009.

Laptev, I. On space-time interest points. International Journal of Computer Vision, 64
(2-3):107–123, 2005.

Larose, D. T. Discovering knowledge in data: an introduction to data mining. John Wiley
& Sons, 2014.

Laskov, P., Gehl, C., Krüger, S., and Müller, K.-R. Incremental support vector learning:
Analysis, implementation and applications. The Journal of Machine Learning Research,
7:1909–1936, 2006.

Lawrence, D. J., Feldman, W. C., Barraclough, B. L., Binder, A. B., Elphic, R. C.,
Maurice, S., and Thomsen, D. R. Global Elemental Maps of the Moon: The Lunar
Prospector Gamma-Ray Spectrometer. Science, 281(5382):1484–1489, 1998.

Leap Motion Inc. Designing Leap Motion Controller, 2017. URL https://www.

leapmotion.com/product. Accessed: 2017-01-11.

Lee, D.-H. and Hong, K.-S. Game interface using hand gesture recognition. In Proc.
ICCIT, pages 1092–1097. IEEE, 2010.

https://www.leapmotion.com/product
https://www.leapmotion.com/product

BIBLIOGRAPHY 195

Lee, H.-K. and Kim, J.-H. An hmm-based threshold model approach for gesture recogni-
tion. IEEE Transactions on pattern analysis and machine intelligence, 21(10):961–973,
1999.

Lee, H.-j. and Roberts, S. J. On-line novelty detection using the kalman filter and extreme
value theory. In 19th International Conference on Pattern Recognition, 2008. ICPR
2008., pages 1–4. IEEE, 2008.

Lee, S., Henderson, V., Hamilton, H., Starner, T., Brashear, H., and Hamilton, S. A
gesture-based american sign language game for deaf children. In Extended Abstracts on
Human Factors in Computing Systems (CHI’05), pages 1589–1592, 2005.

Leigh, W., Purvis, R., and Ragusa, J. M. Forecasting the nyse composite index with
technical analysis, pattern recognizer, neural network, and genetic algorithm: a case
study in romantic decision support. Decision support systems, 32(4):361–377, 2002.

Li, H., Cabibihan, J.-J., and Tan, Y. K. Towards an effective design of social robots.
International Journal of Social Robotics, 3(4):333–335, 2011.

Li, H. and Greenspan, M. Segmentation and recognition of continuous gestures. In 2007
IEEE International Conference on Image Processing, volume 1, pages I–365. IEEE,
2007.

Li, Y., Pont, M. J., and Jones, N. B. Improving the performance of radial basis function
classifiers in condition monitoring and fault diagnosis applications whereunknown’faults
may occur. Pattern Recognition Letters, 23(5):569–577, 2002.

Liang, N.-Y., Huang, G.-B., Saratchandran, P., and Sundararajan, N. A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Transactions on
Neural Networks, 17(6):1411–1423, 2006.

Liao, Y., Vemuri, V. R., and Pasos, A. Adaptive anomaly detection with evolving con-
nectionist systems. Journal of Network and Computer Applications, 30(1):60–80, 2007.

Lin, H.-J., Kao, Y.-T., Yang, F.-W., and Wang, P. S. Content-based image retrieval
trained by adaboost for mobile application. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 20(04):525–541, 2006.

Liu, D. C. and Nocedal, J. On the limited memory BFGS method for large scale opti-
mization. Mathematical programming, 45(1-3):503–528, 1989.

Lowe, D. G. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

196 BIBLIOGRAPHY

Lütz, A., Rodner, E., and Denzler, J. I want to know more-efficient multi-class incremental
learning using gaussian processes. Pattern recognition and image analysis, 23(3):402–
407, 2013.

MacQueen, J. et al. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

Madeo, R. C. B., Lima, C. a. M., and Peres, S. M. Gesture unit segmentation using sup-
port vector machines. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC ’13, pages 46–52, 2013a.

Madeo, R. C. B., Wagner, P. K., and Peres, S. M. A review of temporal aspects of hand
gesture analysis applied to discourse analysis and natural conversation. International
Journal of Computer Science & Information Technology, 2013b.

Madeo, R. C. B., Peres, S. M., and de Moraes Lima, C. A. Gesture phase segmentation
using support vector machines. Expert Systems with Applications, 56:100–115, 2016.

Maimon, O. and Rokach, L. Ensemble of decision trees for mining manufacturing data
sets. Machine Engineering, 4(1-2):32–57, 2004.

Malima, A., Ozgur, E., and Çetin, M. A fast algorithm for vision-based hand gesture
recognition for robot control. In 14th Signal Processing and Communications Applica-
tions, pages 1–4. IEEE, 2006.

Mańdziuk, J. and Shastri, L. Incremental class learning approach and its application to
handwritten digit recognition. Information Sciences, 141(3):193–217, 2002.

Manevitz, L. and Yousef, M. Learning from positive data for document classification
using neural networks, 2000.

Mangiameli, P., West, D., and Rampal, R. Model selection for medical diagnosis decision
support systems. Decision Support Systems, 36(3):247–259, 2004.

Markou, M. and Singh, S. Novelty detection: a reviewpart 2:: neural network based
approaches. Signal processing, 83(12):2499–2521, 2003.

Marsland, S. Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC,
2009. ISBN 1420067184.

Martyna, G. J., Klein, M. L., and Tuckerman, M. Nosé–hoover chains: the canonical
ensemble via continuous dynamics. The Journal of chemical physics, 97(4):2635–2643,
1992.

BIBLIOGRAPHY 197

Masud, M. M., Gao, J., Khan, L., Han, J., and Thuraisingham, B. Classification and
novel class detection in concept-drifting data streams under time constraints. IEEE
Transactions on Knowledge and Data Engineering, 23(6):859–874, 2011.

Masud, M. M., Woolam, C., Gao, J., Khan, L., Han, J., Hamlen, K. W., and Oza, N. C.
Facing the reality of data stream classification: coping with scarcity of labeled data.
Knowledge and information systems, 33(1):213–244, 2012.

McNeill, D. Hand and mind: What gestures reveal about thought. University of Chicago
press, 1992.

McNeill, D. Gesture and thought. University of Chicago Press, 2008.

Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G. Distance-based image classifi-
cation: Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(11):2624–2637, 2013.

Merkwirth, C., Mauser, H., Schulz-Gasch, T., Roche, O., Stahl, M., and Lengauer, T. En-
semble methods for classification in cheminformatics. Journal of chemical information
and computer sciences, 44(6):1971–1978, 2004.

Microsoft. Skeleton positions relative to the human body, 2013a. URL https:

//msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx. Ac-
cessed: 2017-01-11.

Microsoft. Kinect for windows sdk. Microsoft Developer, 2013b. URL http://www.

microsoft.com/en-us/kinectforwindows/develop/overview.aspx.

Migdadi, L. Novelty detection in gesture recognition systems. Master’s thesis, University
of Dortmund, 2015.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K.-R. Fisher discriminant
analysis with kernels. In Proceedings of the 1999 IEEE Signal Processing Society Work-
shop Neural Networks for Signal Processing IX, Madison, WI, USA, pages 23–25, 1999.

Mistry, P. and Maes, P. Sixthsense: a wearable gestural interface. In ACM SIGGRAPH
ASIA 2009 Sketches, page 11. ACM, 2009.

Mitchell, T. M. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997. ISBN 0070428077, 9780070428072.

Morguet, P. and Lang, M. Spotting dynamic hand gestures in video image sequences
using hidden markov models. In International Conference on Image Processing, 1998.
ICIP 98., pages 193–197. IEEE, 1998.

https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx

198 BIBLIOGRAPHY

Müller, M. Information retrieval for music and motion, volume 2. Springer, 2007.

Murakami, K. and Taguchi, H. Gesture recognition using recurrent neural networks. In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
237–242. ACM, 1991.

Murugappan, S., Liu, H., Ramani, K., et al. Shape-it-up: Hand gesture based creative
expression of 3d shapes using intelligent generalized cylinders. Computer-Aided Design,
45(2):277–287, 2013.

Nehaniv, C. L. Classifying types of gesture and inferring intent. In Procs of the AISB 05
Symposium on Robot Companions. AISB, 2005.

Neto, F., Meira, S., et al. Improving novelty detection in short time series through
RBF-DDA parameter adjustment. In IEEE International Joint Conference on Neural
Networks, pages 2123–2128. IEEE, 2004.

Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. Text classification from labeled
and unlabeled documents using EM. Machine learning, 39(2-3):103–134, 2000.

Niu, W., Jiao, L., Han, D., and Wang, Y.-F. Real-time multiperson tracking in video
surveillance. In Proceedings of the 2003 Joint Conference of the Fourth International
Conference on Information, Communications and Signal Processing, and Fourth Pacific
Rim Conference on Multimedia, volume 2, pages 1144–1148. IEEE, 2003.

Niu, Z.-Y., Ji, D., Tan, C.-L., and Yang, L. Word sense disambiguation by semi-supervised
learning. In Computational Linguistics and Intelligent Text Processing, pages 238–241.
Springer, 2005.

Ntalampiras, S., Potamitis, I., and Fakotakis, N. Probabilistic novelty detection for
acoustic surveillance under real-world conditions. IEEE Transactions on Multimedia,
13(4):713–719, 2011.

Oka, R. Spotting method for classification of real world data. The Computer Journal, 41
(8):559–565, 1998.

Oliveira, A. L., Neto, F. B., and Meira, S. R. Novelty detection for short time series with
neural networks. In Design and application of hybrid intelligent systems, pages 66–75.
IOS Press, 2003.

Ottenheimer, H. J. The anthropology of language: an introduction to linguistic anthropol-
ogy. Cengage Learning, 2008.

Parzen, E. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

BIBLIOGRAPHY 199

Pavlovic, V. I., Sharma, R., and Huang, T. S. Visual interpretation of hand gestures for
human-computer interaction: A review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):677–695, 1997.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Pepper. Softbank Robotics, 2017. URL https://www.ald.softbankrobotics.com/en/

cool\discretionary{-}{}{}robots/pepper. Accessed: 2017-01-04.

Pieters, C. M. The moon as a spectral calibration standard enabled by lunar samples: The
clementine example. In New Views of the Moon 2: Understanding the Moon Through
the Integration of Diverse Datasets, volume 1, page 47, 1999.

Pieters, C., Besse, S., Boardman, J., Buratti, B., Cheek, L., Clark, R., Combe, J., Dhin-
gra, D., Goswami, J., Green, R., et al. Mg-spinel lithology: A new rock type on the
lunar farside. Journal of Geophysical Research: Planets, 116(E6), 2011.

Pimentel, M., Clifton, D., Clifton, L., and Tarassenko, L. A review of novelty detection.
Signal Processing, 99:215–249, 2014.

Platt, J. et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Polikar, R., Upda, L., Upda, S. S., and Honavar, V. Learn++: An incremental learning
algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 31(4):497–508, 2001.

Quam, D. L. Gesture recognition with a dataglove. In Proceedings of the IEEE National
Aerospace and Electronics Conference, (NAECON 1990)., pages 755–760. IEEE, 1990.

Quattoni, A., Wang, S., Morency, L.-P., Collins, M., and Darrell, T. Hidden conditional
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(10):1848–1852, 2007.

Quek, F., McNeill, D., Bryll, R., Duncan, S., Ma, X.-F., Kirbas, C., McCullough, K. E.,
and Ansari, R. Multimodal human discourse: Gesture and speech. ACM Trans.
Comput.-Hum. Interact., 9:171–193, 2002.

Quek, F. K. Toward a vision-based hand gesture interface. In Virtual Reality Software
and Technology Conference, volume 94, pages 17–29, 1994.

Quek, F. K. Eyes in the interface. Image and vision computing, 13(6):511–525, 1995.

https://www.ald.softbankrobotics.com/en/cool\discretionary {-}{}{}robots/pepper
https://www.ald.softbankrobotics.com/en/cool\discretionary {-}{}{}robots/pepper

200 BIBLIOGRAPHY

Rabiner, L. and Juang, B.-H. Fundamentals of Speech Recognition. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1993. ISBN 0-13-015157-2.

Rabiner, L. R. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Ramakrishnan, A. S. Segmentation of hand gestures using motion capture data. University
of California, Davis, 2011.

Ramakrishnan, A. S. and Neff, M. Segmentation of hand gestures using motion capture
data. In Proceedings of the 2013 international conference on Autonomous agents and
multi-agent systems, pages 1249–1250, 2013.

Ramani, K. et al. Extracting hand grasp and motion for intent expression in mid-air
shape deformation: A concrete and iterative exploration through a virtual pottery
application. Computers & Graphics, 55:143–156, 2016.

Rao, C. R. The Utilization of Multiple Measurements in Problems of Biological Classifi-
cation. Journal of the Royal Statisticl Society, X(2):159–203, 1948.

Rao, C. R. and Mitra, S. K. Generalized inverse of matrices and its applications, volume 7.
Wiley New York, 1971.

Ratsaby, J. and Venkatesh, S. S. Learning from a mixture of labeled and unlabeled exam-
ples with parametric side information. In Proceedings of the eighth annual conference
on Computational learning theory, pages 412–417. ACM, 1995.

Ren, A. Gesture research, 2017. URL http://adainspired.mit.edu/

gesture-research/. Accessed: 2017-01-12.

Resnick, S. I. Extreme values, regular variation and point processes. Springer, 2013.

Richarz, J. and Fink, G. A. Visual recognition of 3d emblematic gestures in an hmm
framework. Journal of Ambient Intelligence and Smart Envirements 3, pages 193–211,
2011.

Riloff, E., Wiebe, J., and Wilson, T. Learning subjective nouns using extraction pattern
bootstrapping. In Proceedings of the seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4, pages 25–32, 2003.

Roark, B., Saraclar, M., Collins, M., and Johnson, M. Discriminative language modeling
with conditional random fields and the perceptron algorithm. In Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics, page 47, 2004.

Roberts, S. J. Novelty detection using extreme value statistics. IEE Proceedings-Vision,
Image and Signal Processing, 146(3):124–129, 1999.

http://adainspired.mit.edu/gesture-research/
http://adainspired.mit.edu/gesture-research/

BIBLIOGRAPHY 201

Roberts, S. J. Extreme value statistics for novelty detection in biomedical data processing.
IEE Proceedings-Science, Measurement and Technology, 147(6):363–367, 2000.

Rokach, L. Pattern Classification Using Ensemble Methods. World Scientific Publishing
Co., Inc., 2010. ISBN 9789814271066, 9814271063.

Rosenberg, C., Hebert, M., and Schneiderman, H. Semi-supervised self-training of object
detection models. In Seventh IEEE Workshops on Application of Computer Vision
(WACV/MOTIONS)., volume 1, pages 29–36. IEEE Press, 2005.

Roudavski, S., Dave, B., Li, A., Gu, N., and Park, H. Virtual environments as techno-
social performances: virtual west cambridge case-study. In CAADRIA2010: New Fron-
tiers, the 15th International Conference on Computer Aided Architectural Design Re-
search in Asia, pages 477–486, 2010.

Ruffieux, S., Lalanne, D., and Mugellini, E. Chairgest: a challenge for multimodal mid-
air gesture recognition for close hci. In Proceedings of the 15th ACM International
conference on multimodal interaction, pages 483–488. ACM, 2013.

Ryoo, M. S. and Aggarwal, J. K. Recognition of composite human activities through
context-free grammar based representation. In 2006 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
1709–1718. IEEE, 2006.

Sakic, D. Semi-supervised learning using ensemble methods gestures recognition. Master’s
thesis, University of Dortmund, 2012.

Salem, M., Kopp, S., Wachsmuth, I., Rohlfing, K., and Joublin, F. Generation and
evaluation of communicative robot gesture. International Journal of Social Robotics, 4
(2):201–217, 2012.

Sanin, A., Sanderson, C., Harandi, M. T., and Lovell, B. C. Spatio-temporal covariance
descriptors for action and gesture recognition. In 2013 IEEE Workshop on applications
of Computer Vision (WACV), pages 103–110. IEEE, 2013.

Sato, E., Yamaguchi, T., and Harashima, F. Natural interface using pointing behavior
for human–robot gestural interaction. IEEE transactions on Industrial Electronics, 54
(2):1105–1112, 2007.

Schapire, R. E. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

Schlömer, T., Poppinga, B., Henze, N., and Boll, S. Gesture recognition with a wii
controller. In Proceedings of the 2nd international conference on Tangible and embedded
interaction, pages 11–14. ACM, 2008.

202 BIBLIOGRAPHY

Schneider, P., Biehl, M., and Hammer, B. Adaptive relevance matrices in learning vector
quantization. Neural Computation, 21(12):3532–3561, 2009.

Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E. J., and
Robinson, M. S. GLD100: The near-global lunar 100 m raster DTM from LROC WAC
stereo image data. Journal of Geophysical Research, 117, 2012.

Schröder, M., Elbrechter, C., Maycock, J., Haschke, R., Botsch, M., and Ritter, H. Real-
time hand tracking with a color glove for the actuation of anthropomorphic robot hands.
In 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012),
pages 262–269. IEEE, 2012.

Schumacher, J., Sakič, D., Grumpe, A., Fink, G. A., and Wöhler, C. Active learning of
ensemble classifiers for gesture recognition. In Joint DAGM (German Association for
Pattern Recognition) and OAGM Symposium, pages 498–507. Springer, 2012.

Schürmann, J. Pattern classification: a unified view of statistical and neural approaches.
Wiley Online Library, 1996.

Scudder, H. J. Probability of error of some adaptive pattern-recognition machines. IEEE
Transactions on Information Theory, 11(3):363–371, 1965.

Seki, S., Takahashi, K., and Oka, R. Gesture recognition from motion images by spotting
algorithm. In Proc. ACCV, volume 2, pages 759–762, 1993.

Settles, B. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):
11, 2010.

Shin, M. C., Tsap, L. V., and Goldgof, D. B. Gesture recognition using bezier curves
for visualization navigation from registered 3-d data. Pattern Recognition, 37(5):1011–
1024, 2004.

Shkuratov, Y. G., Kaydash, V. G., Stankevich, D. G., Starukhina, L. V., Pinet, P. C.,
Chevrel, S. D., and Daydou, Y. H. Derivation of elemental abundance maps at interme-
diate resolution from optical interpolation of lunar prospector gamma-ray spectrometer
data. Planetary and Space Science, 53(12):1287–1301, 2005.

Singh, S. and Markou, M. An approach to novelty detection applied to the classification of
image regions. IEEE Transactions on Knowledge and Data Engineering, 16(4):396–407,
2004.

Sohn, H., Worden, K., and Farrar, C. R. Novelty detection under changing environmental
conditions. In Proc. SPIE, volume 4330, pages 108–118, 2001.

BIBLIOGRAPHY 203

Song, Y., Demirdjian, D., and Davis, R. Continuous body and hand gesture recognition
for natural human-computer interaction. ACM Transactions on Interactive Intelligent
Systems (TiiS), 2(1):5, 2012.

Sonka, M., Hlavac, V., and Boyle, R. Image processing, analysis, and machine vision.
Cengage Learning, 2014.

Soutschek, S., Penne, J., Hornegger, J., and Kornhuber, J. 3-d gesture-based scene
navigation in medical imaging applications using time-of-flight cameras. In CVPRW
Workshops, pages 1–6. IEEE, 2008.

Spano, L. D., Cisternino, A., and Paternò, F. A compositional model for gesture definition.
In International Conference on Human-Centred Software Engineering, pages 34–52.
Springer, 2012.

Starner, T., Weaver, J., and Pentland, A. Real-time american sign language recognition
using desk and wearable computer based video. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(12):1371–1375, 1998.

Starner, T., Auxier, J., Ashbrook, D., and Gandy, M. The gesture pendant: A self-
illuminating, wearable, infrared computer vision system for home automation control
and medical monitoring. In the fourth international symposium on Wearable computers.,
pages 87–94. IEEE, 2000.

Stefanov, N., Galata, A., and Hubbold, R. Real-time hand tracking with variable-length
markov models of behaviour. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05)-Workshops, pages 73–73. IEEE, 2005.

Stiefelhagen, R., Fugen, C., Gieselmann, R., Holzapfel, H., Nickel, K., and Waibel, A. Nat-
ural human-robot interaction using speech, head pose and gestures. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 3, pages
2422–2427, 2004.

Su, M.-C. A fuzzy rule-based approach to spatio-temporal hand gesture recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
30(2):276–281, 2000.

Subramanya, A. and Talukdar, P. P. Graph-based semi-supervised learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 8(4):1–125, 2014.

Surace, C., Worden, K., and Tomlinson, G. A novelty detection approach to diagnose
damage in a cracked beam. In Proceedings-SPIE The International Society For Optical
Engineering, pages 947–953, 1997.

204 BIBLIOGRAPHY

Suykens, J. A. K. and Vandewalle, J. Least Squares Support Vector Machine Classifiers.
Neural Processing Letters, 9(3):293–300, 1999.

Syed, N. A., Huan, S., Kah, L., and Sung, K. Incremental learning with support vector
machines. In of the Workshop on Support Vector Machines at the International Joint
Conference on Articial Intelligence (IJCAI-99), Stockholm, Sweden, 1999.

Synertial Labs LTD. IGS-Cobra, 2017. URL https://synertial.com/products/

suits/. Accessed: 2017-01-11.

Takahashi, K., Seki, S., and Oka, R. Spotting recognition of human gestures from motion
images. Time Varying and moving objects recognition, 3:10–11, 1992.

Tan, A. C., Gilbert, D., and Deville, Y. Multi-class protein fold classification using a new
ensemble machine learning approach. Genome Informatics, 14:206–217, 2003.

Tanaka, F., Isshiki, K., Takahashi, F., Uekusa, M., Sei, R., and Hayashi, K. Pepper
learns together with children: Development of an educational application. In 15th
International Conference on Humanoid Robots (Humanoids), 2015 IEEE-RAS, pages
270–275. IEEE, 2015.

Tarassenko, L., Hayton, P., Cerneaz, N., and Brady, M. Novelty detection for the identi-
fication of masses in mammograms. In 4th IEEE International Conference on Artificial
Neural Networks, volume 4, pages 442–447. IET, 1995.

Tavakkoli, A., Nicolescu, M., Nicolescu, M., and Bebis, G. Incremental svdd training:
Improving efficiency of background modeling in videos. In Proceedings of the 10th
IASTED International Conference, volume 623, page 092, 2008.

Tax, D. M. J. and Duin, R. P. W. Support vector data description. Machine learning, 54
(1):45–66, 2004.

Tax, D. M. Ddtools, the data description toolbox for matlab, June 2015. URL http:

//prlab.tudelft.nl/david-tax/dd_tools.html. version 2.1.2.

Tax, D. M. and Duin, R. P. Support vector domain description. Pattern Recognition
Letters, 20(11):1191–1199, 1999.

Tax, D. M. and Laskov, P. Online svm learning: from classification to data description
and back. In 13th IEEE Workshop on Neural Networks for Signal Processing, NNSP’03,
pages 499–508. IEEE, 2003.

Tax, D. One-class classification: concept-learning in the absence of counter-examples.
PhD thesis, TU Delft, Delft University of Technology, 2001.

https://synertial.com/products/suits/
https://synertial.com/products/suits/
http://prlab.tudelft.nl/david-tax/dd_tools.html
http://prlab.tudelft.nl/david-tax/dd_tools.html

BIBLIOGRAPHY 205

Thalmann, N. M. and Thalmann, D. Computer Animation: Theory and Practice.
Springer, 1990.

Theodoridis, S. and Koutroumbas, K. Pattern Recognition, Fourth Edition. Academic
Press, 2009.

Theofilou, D., Steuber, V., and De Schutter, E. Novelty detection in a kohonen-like
network with a long-term depression learning rule. Neurocomputing, 52:411–417, 2003.

Thompson, B. B., Marks, R. J., Choi, J. J., El-Sharkawi, M. A., Huang, M.-Y., and
Bunje, C. Implicit learning in autoencoder novelty assessment. In International Joint
Conference on Neural Networks, 2002. IJCNN’02., volume 3, pages 2878–2883. IEEE,
2002.

Thompson, D. Biomechanics of the hand. Perspectives in computing, 1(3):12–19, 1981.

Toriyama, C., Kawanishi, Y., Takahashi, T., Deguchi, D., Ide, I., Murase, H., Aizawa, T.,
and Kawade, M. Hand waving gesture detection using a far-infrared sensor array with
thermo-spatial region of interest. In Proceedings of the 11th Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications (VISAPP),
volume 4, pages 545–551, 2016.

Tran, C., Doshi, A., and Trivedi, M. M. Modeling and prediction of driver behavior
by foot gesture analysis. Computer Vision and Image Understanding, 116(3):435–445,
2012.

Tseng, F. et al. Real time novelty detection modeling for machine health prognostics.
In Annual Meeting of the North American Fuzzy Information Processing Society -
NAFIPS-2006 Meeting, pages 529–534, 2006.

Tukey, J. Exploratory Data Analysis. Addison-Wesley series in behavioral science.
Addison-Wesley Publishing Company, 1977.

Turk, M. Gesture recognition. Computer Vision: A Reference Guide, pages 346–349,
2014.

Vaananen, K. and Bohm, K. Gesture driven interaction as a human factor in virtual
environments-an approach with neural networks. Virtual reality systems, pages 93–106,
1993.

Vail, D. L., Veloso, M. M., and Lafferty, J. D. Conditional random fields for activity
recognition. In Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems, page 235. ACM, 2007.

206 BIBLIOGRAPHY

Valpola, H. and Karhunen, J. An unsupervised ensemble learning method for nonlinear
dynamic state-space models. Neural computation, 14(11):2647–2692, 2002.

Vapnik, V. Pattern recognition using generalized portrait method. Automation and
remote control, 24:774–780, 1963.

Vapnik, V. N. Statistical learning theory, volume 1. Wiley New York, 1998.

Vasconcelos, G. C., Fairhurst, M. C., and Bisset, D. L. A bootstrap-like rejection mech-
anism for multilayer perceptron networks. In II Simposio Brasileiro de Redes Neurais,
São Carlos-SP, Brazil, pages 167–172. Citeseer, 1995.

Vedaldi, A. and Soatto, S. Quick shift and kernel methods for mode seeking. In European
Conference on Computer Vision, pages 705–718. Springer, 2008.

Vogel, D. and Balakrishnan, R. Distant freehand pointing and clicking on very large,
high resolution displays. In Proceedings of the 18th annual ACM symposium on User
interface software and technology, pages 33–42. ACM, 2005.

Vogler, C. and Metaxas, D. Parallel hidden markov models for american sign language
recognition. In The Proceedings of the Seventh IEEE International Conference on Com-
puter Vision, volume 1, pages 116–122. IEEE, 1999.

Wachs, J., Stern, H., Edan, Y., Gillam, M., Feied, C., Smith, M., and Handler, J. A
real-time hand gesture interface for medical visualization applications. In Applications
of Soft Computing, pages 153–162. Springer, 2006.

Wachs, J. P., Stern, H. I., Edan, Y., Gillam, M., Handler, J., Feied, C., and Smith, M.
A gesture-based tool for sterile browsing of radiology images. Journal of the American
Medical Informatics Association, 15(3):321–323, 2008.

Wachs, J. P., Kölsch, M., Stern, H., and Edan, Y. Vision-based hand-gesture applications.
Communications of the ACM, 54(2):60–71, 2011.

Wahba, G. et al. Support vector machines, reproducing kernel hilbert spaces and the
randomized gacv. Advances in Kernel Methods-Support Vector Learning, 6:69–87, 1999.

Wang, H., Ullah, M. M., Klaser, A., Laptev, I., and Schmid, C. Evaluation of local
spatio-temporal features for action recognition. In BMVC 2009-British Machine Vision
Conference, pages 124–1. BMVA Press, 2009.

Wang, J., Thiesson, B., Xu, Y., and Cohen, M. Image and video segmentation by
anisotropic kernel mean shift. In European conference on computer vision, pages 238–
249. Springer, 2004.

BIBLIOGRAPHY 207

Wang, S. B., Quattoni, A., Morency, L.-P., Demirdjian, D., and Darrell, T. Hidden
conditional random fields for gesture recognition. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1521–1527.
IEEE, 2006.

Webb, A. R. Statistical pattern recognition. John Wiley & Sons, New York, USA, 2003.

Webb, J. and Ashley, J. Beginning Kinect Programming with the Microsoft Kinect SDK.
Apress, 2012.

Weston, J., Bengio, S., and Usunier, N. Wsabie: Scaling up to large vocabulary image
annotation. In IJCAI, volume 11, pages 2764–2770, 2011.

Wikipedia. Leap Motion, 2016. URL http://en.wikipedia.org/wiki/Leap_Motion.
Accessed: 2016-07-25.

Williams, G., Baxter, R., He, H., Hawkins, S., and Gu, K. A comparative study of RNN
for outlier detection in data mining. In IEEE International Conference on Data Mining,
ICDM ’02, pages 709–712, 2002.

Wilson, A. D. and Bobick, A. F. Parametric hidden markov models for gesture recognition.
IEEE transactions on pattern analysis and machine intelligence, 21(9):884–900, 1999.

Wilson, A. D. and Bobick, A. F. Realtime online adaptive gesture recognition. In 15th
International Conference on Pattern Recognition., volume 1, pages 270–275. IEEE,
2000.

Wöhler, C., Berezhnoy, A., and Evans, R. Estimation of elemental abundances of the
lunar regolith using clementine UVVIS+NIR data. Planetary and Space Science, 59:
92–110, 2011.

Wöhler, C., Grumpe, A., Berezhnoy, A., Bhatt, M. U., and Mall, U. Integrated topo-
graphic and spectral analysis of the lunar surface: Application to impact melt flows
and ponds. Icarus, 235:86–122, 2014. doi: 10.1016/j.icarus.2014.03.010.

Wong, S.-F. and Cipolla, R. Continuous gesture recognition using a sparse bayesian
classifier. In 18th IEEE International Conference on Pattern Recognition (ICPR’06),
volume 1, pages 1084–1087. IEEE, 2006.

Worden, K., Allen, D. W., Sohn, H., and Farrar, C. R. Damage detection in mechanical
structures using extreme value statistics. In SPIE’s 9th Annual International Sym-
posium on Smart Structures and Materials, pages 289–299. International Society for
Optics and Photonics, 2002.

http://en.wikipedia.org/wiki/Leap_Motion

208 BIBLIOGRAPHY

Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F., and Braun, A. R. Symbolic gestures
and spoken language are processed by a common neural system. Proceedings of the
National Academy of Sciences, 106(49):20664–20669, 2009.

Xun, D. and Chang-shan, W. An efficient sequential learning algorithm for growing and
pruning direct-link rbf (drbf) networks. In IEEE International Conference on Neural
Networks and Brain, volume 1, pages 494–498. IEEE, 2005.

Yang, H.-D., Park, A.-Y., and Lee, S.-W. Robust spotting of key gestures from whole
body motion sequence. In 7th IEEE International Conference on Automatic Face and
Gesture Recognition (FGR06), pages 231–236. IEEE, 2006.

Yang, H.-D., Sclaroff, S., and Lee, S.-W. Sign language spotting with a threshold model
based on conditional random fields. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 31(7):1264–1277, 2009a.

Yang, L., Jin, R., and Sukthankar, R. Semi-supervised learning with weakly-related
unlabeled data: Towards better text categorization. In Advances in Neural Information
Processing Systems, pages 1857–1864, 2009b.

Yang, Y., Wang, Y., and Yuan, X. Parallel chaos search based incremental extreme
learning machine. Neural processing letters, 37(3):277–301, 2013.

Yao, Y. Hand gesture recognition in uncontrolled environments. PhD thesis, University
of Warwick, 2014.

Yarowsky, D. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd annual meeting on Association for Computational Linguistics,
pages 189–196. Association for Computational Linguistics, 1995.

Ye, Y., Squartini, S., and Piazza, F. Online sequential extreme learning machine in
nonstationary environments. Neurocomputing, 116:94–101, 2013.

Yeung, D.-Y. and Chow, C. Parzen-window network intrusion detectors. In Proceedings
of the 16th IEEE International Conference on Pattern Recognition, volume 4, pages
385–388. IEEE, 2002.

Yin, G., Zhang, Y.-T., Li, Z.-N., Ren, G.-Q., and Fan, H.-B. Online fault diagnosis
method based on incremental support vector data description and extreme learning
machine with incremental output structure. Neurocomputing, 128:224–231, 2014a.

Yin, Y. et al. Real-time continuous gesture recognition for natural multimodal interaction.
PhD thesis, Massachusetts Institute of Technology, 2014b.

BIBLIOGRAPHY 209

Yoon, H.-S., Soh, J., Bae, Y. J., and Yang, H. S. Hand gesture recognition using combined
features of location, angle and velocity. Pattern recognition, 34(7):1491–1501, 2001.

Yorita, A. and Kubota, N. Cognitive development in partner robots for information
support to elderly people. IEEE Transactions on Autonomous Mental Development, 3
(1):64–73, 2011.

Ypma, A., Ypma, E., and Duin, R. P. Novelty detection using self-organizing maps. In
In Proc. of ICONIP’97, pages 1322–1325. Springer, 1997.

Yusoff, Y. A., Basori, A. H., and Mohamed, F. Interactive hand and arm gesture control
for 2d medical image and 3d volumetric medical visualization. Procedia-Social and
Behavioral Sciences, 97:723–729, 2013.

Zhang, B.-f., Su, J.-s., and Xu, X. A class-incremental learning method for multi-class
support vector machines in text classification. In IEEE International Conference on
Machine Learning and Cybernetics, pages 2581–2585. IEEE, 2006.

Zhang, T. and Ando, R. Analysis of spectral kernel design based semi-supervised learning.
Advances in neural information processing systems, 18:1601, 2006.

Zhao, Z., Chen, Z., Chen, Y., Wang, S., and Wang, H. A class incremental extreme
learning machine for activity recognition. Cognitive Computation, 6(3):423–431, 2014.

Zhou, X., Zhuang, X., Yan, S., Chang, S.-F., Hasegawa-Johnson, M., and Huang, T. S.
Sift-bag kernel for video event analysis. In Proceedings of the 16th ACM international
conference on Multimedia, pages 229–238. ACM, 2008.

Zhou, Z.-H., Zhan, D.-C., and Yang, Q. Semi-supervised learning with very few labeled
training examples. In Proceedings of the national conference on artificial intelligence,
volume 22, page 675. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2007.

Zhu, X. Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison, 2005.

Zhu, X. Semi-supervised learning. In Encyclopedia of machine learning, pages 892–897.
Springer, 2011.

Zhu, X. and Goldberg, A. B. Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning, 3(1):1–130, 2009.

Zhu, Y., Xu, G., and Kriegman, D. J. A real-time approach to the spotting, representation,
and recognition of hand gestures for human–computer interaction. Computer Vision
and Image Understanding, 85(3):189–208, 2002.

210 BIBLIOGRAPHY

Zorriassatine, F., Al-Habaibeh, A., Parkin, R., Jackson, M., and Coy, J. Novelty detection
for practical pattern recognition in condition monitoring of multivariate processes: a
case study. The International Journal of Advanced Manufacturing Technology, 25(9-10):
954–963, 2005.

List of Figures

1.1 Some of Well-Known Gestures . 2

2.1 CyberGlove sensor . 11
2.2 Animazoo IGS-Cobra body suit . 12
2.3 Microsoft’s Kinect Sensor . 13
2.4 Skeleton positions of the MS Kinect . 14
2.5 Leap Motion Sensor . 15
2.6 Illustration of the gesture phases . 17
2.7 Schematic diagram of gesture recognition approaches 20
2.8 Hand models . 23
2.9 Head Mounted Display . 30
2.10 Hawk robot . 31
2.11 Pepper robot . 31
2.12 Gestix system . 32

3.1 Unlabelled data improve the accuracy . 43
3.2 The graph-based Label interpretation . 45
3.3 The error of using classical EVT parameter in multivariate data 56
3.4 Classical EVT in multimodal distributions . 56

4.1 The gesture acquisition program . 62
4.2 Flowchart of the gesture recording algorithm 62
4.3 Finding the optimal warping path . 69
4.4 Near-global normalized reflectance mosaic . 71
4.5 Spatial distribution of the clusters . 72
4.6 Lunar spectrum . 73

5.1 The runtime experiments of the IncPKDE classifier 86

211

212 List of Figures

5.2 Error rates of the IncPKDE classifer . 88
5.3 Error rates of the IncPKDE classifier on artificial data 89
5.4 The time consumed by the IncPKDE classifier 92
5.5 Fnew Error of the IncPKDE in the novelty experiment 93
5.6 Mnew Error of the IncPKDE in the novelty experiment 94
5.7 Etotal Error of the IncPKDE in the novelty experiment 96
5.8 comparsion the novelty detection performance of the IncPKDE and IncPKDEevt 98
5.9 The distribution of sigmoid function on the IncSVM output 102
5.10 The distribution of the EVT’s output of IncSVM 103
5.11 The performance metric of the IncSVM . 104
5.12 Comparsion between OrgSVM and IncSVM 106

6.1 Accuracy metrics the incremental ELM . 116
6.2 Accuracy metrics of the the AE-ELM . 122
6.3 Influence of the novelty detection parameter θdrift. 124
6.4 Influence of the semi-supervised learning. 125
6.5 The results of the automatic clustering algorithm. 126
6.6 Accuracy metrics of the Polynomial classifier 130

7.1 runtime evaluation of Mahalanobis classifier using artificial data 139
7.2 Accuracy metrics of the Mahalanobis classifier 140
7.3 Kernel trick . 145
7.4 The flowchart of the Kernel Nearest Class Mean 147
7.5 Accuracy of KNCMS and NCMCS using 1% of the gesture data 150
7.6 Accuracy of KNCMS and NCMCS using 5% of the gesture data 151
7.7 Accuracy of KNCMS and NCMCS using 10% of the gesture data 153
7.8 Time consumed by the KNCM and NCMC classifier 155

8.1 The classification process . 159
8.2 Overview of the proposed S4L algorithm . 167

List of Tables

1.1 A sample of the proposed algorithms’ outputs. 4

2.1 General Gesture Taxonomy . 10

4.1 Symbols explanation . 63
4.2 Gesture Dataset . 65

5.1 Details of Experiments Set Up . 85
5.2 Summary of the results after the last update of the IncPKDE 87
5.3 Summary of the novelty detection performance of the IncPKDE classifier . . . 97

7.1 Accuracy of KNCM and NCMC . 148
7.2 Runtime of KNCM and NCMC . 149

8.1 Metrics of Elm in incremental class experiments 161
8.2 Metrics of Elm-AE in incremental class experiments 162
8.3 Metrics of Mahal in incremental class experiments 163
8.4 Metics of Polynomial classifier in incremental class experiments 163
8.5 Metrics of Parzen window classifier in incremental class experiments 164
8.6 Metrics of SVM in incremental class experiments 165
8.7 Confusion matrix of ELM . 169
8.8 Confusion matrix of ELM-AE . 169
8.9 Confusion matrix of Mahal . 169
8.10 Confusion matrix of Polynomial classifier . 170
8.11 Confusion matrix of Parzen window classifier 170
8.12 Confusion matrix of SVM . 170
8.13 Confusion matrix of the ensemble of all classifiers 171
8.14 Accuracy of the ensemble of the polynomial and the Mahalanobis ensemble . . 172

213

214 List of Tables

8.15 The overall recognition rate of the polynomial and Mahalanobis ensemble . . . 172
8.16 Comparsion between the (polynomial and Mahalanobis) ensemble and the SVDD174

List of Symbols

Symbol Unit1 Description
Σ – Covariance matrix of data
Σ ′ – Covariance matrix of new data

Σ̂ – Total covariance matrix of the old and the
new data

σevt – Scale parameter in the EVT
Σres – Variance of the residuals
σrbf – Predefined width of the RBF kernel function
σgraph – Bandwidth parameters in the graphical semi-

supervised learning
σmsh – Window size of the mean shift clustering al-

gorithm
αevt – Shape parameter in the EVT
αconf – Probability threshold of the confidence band
µevt – Location parameter in the EVT

#»µ cent – Centroid position
#»µ res – Mean of the residual

#»µ – Mean of data
#»µ ′ – Mean of new data
#»

µ̂ – Mean of the total data i.e. the old and the
new data

#»
µ̃ – Projection of mean vector #»µ on a new space
Ψ – Transform maps the distribution of f to a

space that fit the Gumbel distribution

1Some quantities, e.g. error functions or polynomial coefficients, have physical units. For simplicity,
these units are ignored.

215

216 LIST OF SYMBOLS

Symbol Unit Description
γ – Learning steps
βE – Extreme learning machine parameters

β̂E – Approximate ELM parameter
βAE – Extreme learning machine parameters when

using it as an auto-encoder
βP – Parameter matrix of the polynomial classifier

β̂P – Approximate polynomial parameter
ηconf – Wide of the confidence band
θprob – Probabilistic model parameters
θ – Edge weight in the graphical semi-supervised

learning
θdrift – Factor to cover the concept’s movement in

the feature space
#»ϕ – Non-linear mapping to the high-dimensional

hyper-space
A – First parameter of the sigmoid function
#»a – ELM’s hidden layer function learning param-

eter
B – Second parameter of the sigmoid function
b – ELM’s hidden layer function learning second

parameter
b′ – Optimal bias of the SVM
Cd – Normalisation coefficient of the mahalanobis

function of the EVT
CW – Accumulated minimum warping cost matrix

in the DTW
c – c’th class
ĉ – Estimated class label
D – Training dataset
Dl – Labelled training dataset
Du – Unlabelled training dataset
d – Dimension of the data
d ′ – New dimension of the data
dEucl – Euclidean distance
dMahal – Mahalanobis distance
dKernel – Kernel distance
drbf – RBF kernel distance between two vectors
dbh – Bhattacharyya distance between two distri-

butions

LIST OF SYMBOLS 217

Symbol Unit Description
dW – Distance between two vectors projected on

the W sub-space
Etotal – Total misclassification rate
Fe – Percentage of samples belonging to a known

class and assigned to an incorrectly known
class

Fn – Percentage of the outliers that the classifier
misses

Fp – Percentage of existing class samples which are
wrongly indicated as outliers by the classifier

Fnew – Percentage of samples belonging to known
classes indicated as an unknown

F e – Accumulative extreme value distribution for
the distribution f

f – Probability density function
f e – Extreme value distribution for the distribu-

tion f
fsvm – SVM classifier function
felm – ELM classifier function
fssl – Mapping function of the semi-supervised

learning
Gd – Form of the distribution function (df) accord-

ing to which f is distributed on probability
distribution set

Ge
d – Extreme value distribution of Gd

G←d – Quantile of the function Gd

Gh – Hidden neuron output
g – Weighting function that defines the EVD in

terms of f
H – Set of the data after they are transformed to

hyper-space
H+ – Extreme value distribution (EVD) of the

maxima
HE – Output of the hidden layer
H ′E – Output of the hidden layer that corresponds

to new data
HP – Matrix of polynomial basis features
H ′P – Matrix of polynomial basis features that cor-

responds to new data
hw – Parzen window size

218 LIST OF SYMBOLS

Symbol Unit Description
K – Kernel function

KRBF – RBF kernel function
L – Number of variables in the polynomial basis

vector
l – Number of labelled data
M – Mahalanobis distance function
ME – Squared hidden layer output of the extreme

learning machine
M ′

E – Squared hidden layer output corresponding
to new data

MP – Squared of polynomial basis features
M ′

P – Squared of the new polynomial basis features
Mnew – Fraction of missed novel samples
N – Normal distribution set
N – Number of the samples in the dataset
N ′ – Number of the new samples

Ncentj – Number of samples in the centroid j
N ′centj – Number of new samples that should add to

the centroid j
Ntotal – Number of the total samples in the data set

(particularly in test set)
Nnovel – Number of novel samples in the data set (par-

ticularly in test set)
Nclass – Number of classes
Nc – Number of sample in the class c
Nĉ – Number of sample in the newly constructed

class ĉ
Ncent – Number of the centroids of the data
Nb – Number of sample in a bucket
Np – Number of free parameters of the model
N+ – Number of samples belong to the first class

in the binary SVM classifier
N− – Number of samples belong to the second class

in the binary SVM classifier
Nth – Novelty threshold of normal methods
NSc – Novelty score of normal methods
n – Number of neurons in the hidden layer of the

neural network
np – Polynomial degree
P – Probability distribution set

LIST OF SYMBOLS 219

Symbol Unit Description
PE – Multiplication of the hidden layer output and

the target matrix
P ′E – Multiplication of the hidden layer output and

the target matrix for the new data
PAE – Multiplication of the output of the hidden

layer in the auto-encoder ELM by the input
matrix

PP – Equals to HP × TP

P ′P – Equals to H ′P × T ′P
#»

P evt – Scores of the extreme value theory
Pevt – Minimum score of the extreme value theory
Pth – Novelty threshold on the EVT outputs
pi – Symbole of p(y = 1|fsvm) for the sample i
pu – Purity of the newly constructed class
p(x) – Probability distribution of x
p(x, y) – Joint probability of x and y distributions
p(x|y) – Class conditional probability of distribution

x given y distribution
p(y|x) – Predictive probability or posterior
R – Continuous set
r – Residual value between the estimated value

and the target value
S – Subset from the available dataset
TE – Target matrix of the ELM for the input sam-

ples
T ′E – Target matrix of the ELM for the new input

samples

T̂E – Estimated target matrix of the ELM for the
input samples

TP – Target matrix of the polynomial classifier for
the input samples

T ′P – Target matrix of the polynomial classifier for
the new input samples

T̂P – Estimated target matrix of the polynomial
classifier for the input samples

Tupdate sec Processing time of the classifier update
#»
t – Target vector
#»

t̂ – Estimated target of the input sample

220 LIST OF SYMBOLS

Symbol Unit Description
#»
t P – Target vector of the input sample to the poly-

nomial classifier
#»

t̂ P – Polynomial classifier estimated target vector
of the input sample

ti – Target output of the classifier for the input
#»x i

tv,αconf
– Critical value of the t-distribution

u – Number of unlabelled data
v – Number of degrees of freedom
W – Low-rank projection matrix
#»w – Warping path in the DTW

#»wsvm – Optimal weights of SVM
X – Input sequence or input feature vectors

dataset
Xl – Only the labelled subset of the input feature

vectors dataset
Xu – Unlabelled subset of the input feature vectors

dataset
X – Set of input feature vectors
#»x – Sample from the data set
#»x i – Input vector of the i’th sample in X
#»
x̃ – Projection of input vector #»x on new space
#»x ′ – New sample from the data set
Y – Label set of the input dataset X
y – Label of a sample #»x
yi – Label of the i’th input vector xi
ŷ – Estimated label of an input samples #»x
ye – Reduced variate of #»x that used in the EVT
z – Constant that is used in the confidence bands

A

Reference Methods

Details about the classifiers that are used as references to evaluate the proposed classi-
fiers outputs, e.g. SVDD and AANN are out of the scope of this thesis. They can be
found in the Tax and Duin (1999), Tax (2001) and Tax and Duin (2004). The necessary
implementation details of the SVDD and the AANN algorithms, however, are given in
Section A.1 and Section A.2, respectively.

This chapter has been adapted and/or adopted from: (Al-Behadili et al., 2015a,b,e,f,
2016a,c,b,d)

A.1 Support vector data description

Support vector data description (SVDD) is a potent kernel-based algorithm developed
by Tax and Duin (2004). It is a one-class classifier that computes a minimum volume
hypersphere that encloses almost, or all, if applicable, of a specific class data as a novelty
boundary to that class. Tax and Laskov (2003) proposed an incremental approach of
SVDD that uses a part of the training data by adding a new sample and deleting the
sample that had no real effect on the performance of the classifier. Although it has
a good performance and it was used in several applications, such as novelty detection
Clifton (2007), it has many limitations in high-dimensionality, and in the large number of
samples used for training due to the optimization (Tavakkoli et al., 2008). Many extension
of SVDD are proposed in different applications (e.g. Tavakkoli et al., 2008; Hua and Ding,
2011; Lütz et al., 2013; Chen and He, 2011).

In this thesis, we used SVDD in combination with the function “multic” from the
data description toolbox (ddtools) presented by Tax (2015) as both a multi-class novelty
detection and an online classifier in order to compare its performance to those of the
proposed classifiers. In this toolbox, the sample is considered as novel when it does not
fit into any class due to a specific threshold, which is determined by the SVDD. If the
posterior exceeds the threshold, the sample will be assigned to the corresponding class. If

I

II APPENDIX A. REFERENCE METHODS

there are many classes that have a posterior exceeding their thresholds, the sample will
be assigned to the class for which the highest posterior probability has been determined.

Since the SVDD is a one-class classifier constructing a hypersphere enclosing the data,
it considers some data which are far from the centre as outliers, and by selecting the ratio
of the outliers within this class in the training phase, the SVDD code sets the threshold of
the novelty. The default value of the outlier ratio to the total data of each class is 5%. We
used the default value since it gives the best performance. The “multic” function selects
the class of the maximum output and identifies the sample as an outlier if all classifiers
indicate it as an outlier.

A.2 Auto-associative neural networks

Auto-associative neural networks (AANN) (Japkowicz et al., 1995) or auto-encoder net-
works (AutoENC) as they are called by Tax (2001) are neural networks that learn a data
representation (Hertz et al., 1991), i.e. an AANN reconstructs the input pattern at their
output layer. In this work, we apply the auto-encoder from the toolbox (ddtools) pre-
sented by Tax (2015). In this toolbox, the auto-encoder (the function in the toolbox is
called autoenc dd) architecture has only one hidden layer with hauto hidden units. Sigmoid
transfer functions are used for the hidden neurons. The auto-encoder network is trained
by minimizing the mean squared deviation of the input from the output. The error is
used as a measure for the novelty detection. It is supposed that the target patterns will
be reconstructed with smaller errors than outliers. The error EAANN of an input #»x is

EAANN = ‖fAANN(#»x , #»w)− #»x‖2 (A.1)

where fANN is transfer function of the AANN and #»w is a vector containing its param-
eters.

The problems of the AANN to novelty detection are the same problems arising from
the conventional application of neural networks to classification problems. It requires a
pre-defined number of neurons, a learning rate, and stopping criteria from an expert user.
We tried a different number of neurons, and we found that the best number is 5which is
the default number in the function of the toolbox by Tax and Duin (1999). We also used
the default outlier percentage 0.05 that is used to compute the threshold of the novelty
as it used in the SVDD classifier, which is in the same toolbox. Again, since the AANN
classifier is originally one class classifier in this toolbox, we used the function “multic” to
obtain a multi-class classifier.

	Contents
	Introduction
	Related work: Gesture Recognition Systems
	Related work: Semi-Supervised Learning and Data Stream
	Datasets and Feature Extraction
	Contribution: Non-parametric Learning Based Semi-supervised Methods
	Contribution: Semi-supervised Methods Based on Non-linear Classifiers
	Contribution: Semi-Supervised Methods Based on Metric Learning
	Contribution: Semi-supervised Learning Based on Self-adaptive Structure
	Summary and conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Symbols
	Reference Methods

