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Abstract

Linear and nonlinear mixed effects models are applied extensively
in the study of repeated measurements and longitudinal data. In this
thesis, we propose two linear random effects models and a nonlinear
random effects model based on the Paris-Erdogan equation for describ-
ing the crack growth data of Virkler et al. (1979). We describe how
such models can be applied to achieve the future prediction and pre-
diction interval of the time, when the crack attains a specific length.
We propose eleven new methods for prediction interval by extending
the methods of Swamy (1971), Rao (1975), Liski and Nummi (1996),
Pinheiro and Bates (2000) and Stirnemann et al. (2011). We compare
the methods and models by applying them on the crack propagation
and simulated data.



Acknowledgment

First of all, I would like to thank my supervisor Prof. Dr. Christine Miiller
for her continuous supporting of my PhD project, for her patience and im-
mense knowledge and for providing a very friendly working atmosphere in
her research group. Her guidance helped me in my research and writing of
this thesis. I could not have imaged having a better advisor for my PhD
study.

I wish to thank all my colleagues for sharing their large statistical experiences
and being always supportive and friendly, particularly Christoph Kustos, Dr.
Lisa Denecke and Sebastian Szugat.

I also want to thank Professor B. M. Hillberry and Eric J. Tuegel for provid-
ing us the so called Virkler data.

I wish to thankfully acknowledge the financial support of DAAD, particularly
in the award of a scholarship which provided the necessary financial support
of this research.

Finally, I would like to thank my parents, my husband’s parent, my darling
husband, Amin, my lovely son, Amirali, and to my lovely daughter, Zeinab,
for creating a happy life for me, and for their understanding.



Contents

1 Introduction 12
1.1 Random effects models . . . . . . . . .. . ... ... ... .. 14
1.2 Models and methods . . . . . . ... ... ... ... .. 16
1.3 Thesis overview . . . . . . . . . ... e 22

2 Prediction using only observations of the same series 24
2.1 Prediction of the future observation in linear regression models 24

2.1.1 Estimation method of Seber . . . . . . . ... ... .. 24
2.1.2  Prediction method of Seber . . . . . . . ... ... .. 25
2.2 Prediction of the future observation in nonlinear regression
models . . . .. 26
2.2.1 Gauss-Newton estimation method . . . ... ... .. 26
2.2.2 Prediction method of Seber . . . . . . ... ... ... 28

3 Prediction using only observations of the other series 29

3.1 Prediction of the future observation in linear random effects
models . . . .. 29
3.1.1 Estimation method of Swamy in the balanced case. . . 30
3.1.2  Prediction method of Swamy . . . . . .. ... .. ... 32

3.2 Prediction of the future observation in nonlinear random ef-
fectsmodels . . . . . ... 33
3.2.1 Estimation method of Pinheiro and Bates in the un-

balanced case . . . . . . .. .. ... ..., 34
3.2.2 Extension of the prediction method of Pinheiro and
Bates (ePB) . . . .. ... 37

4 Prediction using all observations 39

4.1 Prediction of the future observation in linear random effects
models . . . .. 39

4.1.1 The modified method of Rao in the balanced case (mRao) 39
4.1.2  The modified method of Swamy (mSwamy): The con-
vex combination of Swamy’s prediction approach and
classical approach for linear models . . . . . . . . ... 48
4.1.3 Approach of Liski and Nummi in the unbalanced case . 50



4.2 Prediction of the future observation in nonlinear random ef-
fectsmodels . . . . . ... 56
4.2.1 Combination of methods of Pinheiro/Bates and Liski/Nummi

in the unbalanced case (PBLiski) . . ... .. ... .. 56
4.2.2  Combination of method of Pinheiro/Bates and the mod-

ified method of Swamy in the unbalanced case (PBm-

SWaY) .« . . o v 59
4.2.3 The modified method of Pinheiro and Bates (mPB) . . 61
4.2.4 Prediction approach of Hall and Clutter . . . .. . .. 64
4.2.5 Prediction approach of Stirnemannetal. . . . . . . .. 67
4.2.6 An extension of Walker’s estimation method and a

modified method of Stirnemannetal. . . . . . ... .. 69

Simulation and Application 80

5.1 Simulation Results . . . . . . . . .. ... ... ... ... .. 80
5.1.1 Applied approaches . . . . . . ... ... ... 80
5.1.2 Estimationresults. . . . . . . . . ... ... ... ... 81
5.1.3 Predictionresults . . . . . . ... ... 82

5.2 Application to Virkler’sdata . . . . . ... ... .. ... ... 85
5.2.1 Applied approaches and models . . . . . . .. ... .. 85
5.2.2 Estimation results. . . . . . . . .. ... ... ... .. 88
5.2.3 Predictionresults . . . . . .. ... ... L. 89

Discussion and Conclusion 113

Appendix 118

7.1 Proof of theorems and lemmas . . . . . . . . ... ... .... 118
7.1.1 Proof of Theorem 2.3 . . . . . . . .. ... ... ... 118
7.1.2 Proof of Theorem 2.4 . . . . . . . . .. ... ... ... 119
7.1.3 Proofof Lemma3.1. .. ... ... ... ... ..... 120
7.1.4 Proof of Theorem 3.1 . . . . . . ... ... ... .... 121
7.1.5 Proof of Theorem 3.2 . . . . . ... .. ... ...... 122
7.1.6 Proofof Lemma3.2. . ... ... ............ 124
7.1.7 Proof of Theorem 3.3 . . . . . . . . ... .. ... ... 124
7.1.8 Proofof Lemma43. .. ... ... ... ... ..... 126
7.1.9 Proof of Theorem 4.3 . . . . . . . . . . ... ... ... 128
7.1.10 Proof of Lemma 4.4 . . . . ... ... ... ... .... 130
7.1.11 Proof of Lemma 4.5. . . . . ... ... ... ... ... 131



7.1.12 Proof of Theorem 4.4 . . . . . . . . . . . . ... ... 131

7.1.13 Proof of Theorem 4.6 . . . . . . ... ... ... .... 132
7.2  Computational Methods of Pinheiro and Bates’ estimation
method . . . . ... 132
7.3 The EM algorithm . . . . . ... ... ... ... ... ... 138
7.4 The Newton-Raphson algorithm . . . . .. ... ... ... .. 140
7.5 The calculation of conditional expectations in the Liski and
Nummi’s estimation method . . . . . . . ... ... ... ... 140
7.6 Vec and vech functions and Duplication matrix . . . .. . .. 143
7.7 Block matrix inversion . . . . . .. ... 143
7.8 Monte Carlo Integration . . . . . ... .. ... ... ... .. 143
7.9 Sampling methods . . . . . .. .. ..o 144
7.9.1 Rejection sampling . . . . . .. ... ... L. 144
7.9.2 Gibbssampling . . . . ... ... ... 0oL 145
7.9.3 Importance sampling . . . . . . ... ... ... .... 145
7.9.4 Sampling Importance Resampling (SIR) . . . . .. .. 146
7.10 Tables . . . . . . . . 148
8 Bibliography 154



List of Figures

Figure 1: Virkler’'sdata . . . . . .. .. ... ... ... .. .... 13
Figure 2: Prediction results from the simulation study . . . .. .. 83
Figure 3: Prediction interval results from the simulation study . . 84
Figure 4: Virkler'sdata . . . . . . .. ... .. ... ... ... . 85
Figure 5: Prediction results of the linear models L2 and L3 using

the first 15 observations of the new series . . . . . . . .. 92
Figure 6: Prediction intervals of the linear models L2 and L3 using

the first 15 observations of the new series . . . . . . . .. 93
Figure 7: Prediction results of the nonlinear model using the first

15 observations of the new series . . . . . . . .. ... .. 94
Figure 8: Prediction intervals of the nonlinear model using the first

15 observations of the new series . . . . . .. .. ... .. 95
Figure 9: Prediction results of methods ePB and mPB using the

first 15 observations of the new series . . . . . . .. ... 96
Figure 10:Prediction intervals of methods ePB and mPB using the

first 15 observations of the new series . . . . . . .. ... 97
Figure 11:Prediction results of methods WmSt and PBSt using the

first 15 observations of the new series . . . . . .. . ... 98

Figure 12:Prediction intervals of methods WmSt, PBSt, StConf and
mStConf using the first 15 observations of the new series 99
Figure 13:Overall comparison of prediction results for x >=12 . . . 100
Figure 14:Overall comparison of prediction intervals for z >= 12 . . 101
Figure 15:Prediction results of the linear models L2 and L3 using

the first 131 observations of the new series . . . . . . .. 103
Figure 16:Prediction intervals of the linear models L.2 and L3 using

the first 131 observations of the new series . . . . . . .. 104
Figure 17:Prediction results of the nonlinear model using the first

131 observations of the new series . . . . .. .. ... .. 105
Figure 18:Prediction intervals of the nonlinear model using the first

131 observations of the new series . . . . .. .. ... .. 106
Figure 19:Prediction results of methods ePB and mPB using the

first 131 observations of the new series. . . . . . . . . .. 107
Figure 20:Prediction intervals of methods ePB and mPB using the

first 131 observations of the new series. . . . . . . . . .. 108



Figure 21:Prediction results of methods WmSt and PBSt using the
first 131 observations of the new series. . . . . . . . . .. 109
Figure 22:Prediction intervals of methods WmSt, PBSt, StConf and
mStConf using the first 131 observations of the new series 110
Figure 23:Overall comparison of prediction results for x > 35 . . . . 111
Figure 24:Overall comparison of prediction intervals for z > 35 . . . 112



List of Tables

1

\]

List of Symbols . . . . . . ... ..o
Simulation results up to the first 10 observations from
the new individual with the near future prediction . . .
Simulation results up to the first 10 observations from
the new individual with the far away future prediction .
Mean of predicted values, biases, MSE’s and true values
from the simulation study . . . ... ... .. ... ...
Mean of predicted values, biases, MSE’s and true values

from the simulation study . . . .. ... ... ... ...
Prediction interval results from the simulation study . .
Prediction interval results from the simulation study . .
Parameter estimates of the Virkler data set . . . . . . ..

List of Algorithms

=W N =

. 148

. 149

150

151

. 152
. 152

Pseudocode for the Gibbs sampler along with the SIR algorithm 74

Pseudocode for our proposed MCEM algorithm . . . . . . ..
Rejection sampling algorithm . . . . . ... .. ... .. ...
SIR algorithm . . . . . . . . ... ...

75
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Number of observations in each
series (j = 1,---, V;).

Number of observations in the
observed part of the new series.
The crack length.

The crack length of the future ob-
servation from the new series.
The covariate vector of the ob-
served part of the new series.

A vector of functions of z;;
where h, : R — R;
fors=1,---,q— 1.

A vector of functions of zf.

The (N; X q)- covariate matrix of
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The realization of Yj;.

The (N; x 1)—vector of observa-
tions from the ith old series (i =
1, I).

The realization of Y;.

The (No x 1)-vector of the ob-
served part of the new series.
The realization of Yy’ .

The future observation of the new
series.

The realization of Y.



Yy = (Y, Y )T The ((No + 1) x 1)-vector of ob-
servations of the new series.

Y =],---,Y/) The (321, N;) x 1)-vector of ob-
servations from the old series.

y:=(yl, - ,y)T The realization of Y.

Yops = (Y, YT YT The (32, N;) x 1)-vector of ob-
servations from the old and new
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El == (Ep, -, Eon,)T The (Np x 1)-vector of random er-

rors related to the observed part
of the new series.

el == (eor, + ,eon,)T The realization of EY.

E} Random error related to the un-
observed (future) part of the new
series.

el The realization of EL.

Eo:= (Ef", E5)T The ((Ng + 1) x 1)-vector of ran-

dom errors of the new series.

eo = (e}, el)T The realization of Ej.

Ay = (Aoiy Aviy -+, Ag=1)i) Random effect of the ith series,
whicclh is distributed as
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N,(0,%).

q The dimension of random effect.

a € R? The mean vector of random ef-
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Y € R4 The variance covariance matrix of
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2
o
B :=(a,X,0?) The parameter vector.
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The (¢ x g)-identity matrix.
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1 Introduction

All materials show fatigue process after a certain time when subjected to
cyclic loads. Fatigue leads to weakening of materials, which, if not fixed,
could have catastrophic consequences. For example, the collapse of a bridge
because of lack of tolerance of load or breaking of railway wheels axles because
of tearing which both of them originate from fatigue. Such incidents can be
avoided by promptly taking reinforcement measures on time and about the
production of vehicles by replacing the new spare parts on time. However for
costs reasons, such measures cannot occur too often. Therefore, an accurate
prediction of fatigue time is of great importance.

Fatigue processes which lead to the fraction of materials can be described
by cracks initiation and crack growth models. So studying of crack growth
plays an important role in anticipating life time of products. For this reason,
many experiments have been done on different materials like steel, concrete
and etc. for evaluating their crack initiation, crack growth and crack propa-
gation. A comprehensive study was conducted by Virkler et al. (1979), where
the crack growth was observed in 68 specimens, with 164 measurements in
each specimen. In other words, in the Virkler data set, we have observations
Yi1, - -+, Yin, for the ith individual, where y;; is the time until the crack length
becomes z;;, j=1,---,N; =164 for all i = 1,--- ,68. For modelling the
crack growth in the Virkler data set, simple random models can be derived
from the Paris-Erdogan equation (Sobczyk and Spencer, 1992). One such
model can be achieved by adding to the deterministic solutions of the Paris-
Erdogan equation a random error to obtain a linear or nonlinear regression
model. Another model can be achieved by adding a stochastic error to obtain
a stochastic differential equation, which would be more desirable.

For crack propagation, Herman et al. (2016) propose a general Bayesian ap-
proach for stochastic versions of deterministic growth models. They consider
six growth models in the form of a stochastic differential equation and a non-
linear regression model, however, they show that none of them is superior
to the models based on the Paris-Erdogan equation. Therefore, we consider
the following linear and nonlinear regression models which are based on the
Paris-Erdogan equation:

1. Linear model:

Vi = oo + aq log(z;) + ey,

12



2. Nonlinear model:
— Qaz
Yij = Qg + Oéll'ij + €ij,

3. Linearized model of the nonlinear model:
yij = Oy + ozla:ij + Oégl’ij 10g($U> + eij,

where e;; is an additive error and oy, a1, ap are the unknown parameters.
As can be seen in Figure 1, in the Virkler data set, not only observations
in each series differ from one another, but the series are also different. To
address these variabilities, Hermann et al. (2016) propose a hierarchical
model using a Bayesian approach.

In this research, a frequentist method is applied such that we apply random
effects models, i.e., the parameters «ag, oy, oy are replaced by the individual
parameters ag;, ai;, as; which are the realizations of random variables, Ag;,
Ay;, As;. In the next section, an introduction to estimation and prediction
procedures in the random effects models is presented.

Time
20 30 40
| |

10

10 20 30 40 50
Crack length=x

Figure 1: Virkler’s data
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1.1 Random effects models

Models with random and fixed effects are called mixed models. Hence we
discuss here also the more general mixed effects models. Linear mixed models
(LMMSs) and nonlinear mixed models (NLMMSs) have become emerged for an-
alyzing data including repeated measurements. For estimation of parameters
in the NLMMs and LMMs, several methods have been proposed (Davidian
and Giltinan, 2003; Gumedze et al., 2011). In the NLMMs, maximum likeli-
hood estimation of the unknown parameters is a considerable challenge as the
likelihood of observations cannot be represented in a closed form. Therefore,
some various approximations to the log-likelihood have been suggested such
as the LME approximation (Lindstrom and Bates, 1990) and Laplace’s ap-
proximation (Wolfinger, 1993; Vonesh, 1996; Wolfinger and Lin, 1997). Wang
(2007) mentions that these approximations usually work well when the num-
ber of intraindividual measurements is large and the variability of random
effects is small. By considering this weakness of the approximation-based
methods, using more accurate methods such as the EM algorithm have been
emerged. Particularly, the Monte Carlo Expectation Maximization (MCEM)
algorithm (Wei and Tanner, 1990) is used such that the E step is approx-
imated by the simulated samples from the conditional distribution of the
random effects given the observed data. Walker (1996) suggests an MCEM
algorithm for the exact maximum likelihood estimation in nonlinear random
effects models such that the random effects are considered as the missing part
of data. Kuhn and Lavielle (2005) propose a stochastic version of the EM al-
gorithm (SAEM) by use of the stochastic approximations including samples
which are obtained using the Markov chains. Jank (2006) proves that, unlike
the MCEM, the SAEM algorithm is convergent with a fixed and commonly
small simulation size. However, Wang (2007) mentions that in the NLMMs,
the computational costs of independent samplers related to intractability of
the target distribution can be significantly lower than corresponding value in
the Markov chains. And this is despite the fact that the Markov chains can
be applied to a wider variation of distributions than independent samples.
Moreover, assessment of the Monte Carlo error for the MCEM algorithm
based on the independent samples is straightforward whereas, it may be a
complicated task for the MCEM algorithm based on the Markov chains. The
Monte Carlo error should be evaluated after each EM iteration for checking
whether it swamps the true EM step and if it happens the automatically in-
creasing rule of the Monte Carlo sample size proposed by Booth and Hobert

14



(1999) is used. These advantages of the independent samplers over Markov
chains motivate us to apply independent samplers in this research. In the
most of research works (Walker, 1996; Kuhn and Lavielle, 2005; Wang, 2007
), the considered missing parts of data in the EM algorithm are random ef-
fects and there are no missing observations or covariates in the data set. Wu
(2004) proposes MCEM algorithms for the exact and approximate likelihood
inferences, in the NLMMs, in the presence of missing covariates in the data
and applies Gibbs sampling, importance sampling and rejection sampling
for simulating required samples. In linear mixed models, Liski and Nummi
(1996) propose an iterative EM algorithm by considering some missing ob-
servations in the data set as the missing part of the data.

In terms of prediction procedures in mixed models, Swamy (1971) proposes
estimation and prediction procedures with prediction interval for the new
observation from the new individual based on the information of the old indi-
viduals in random coefficient regression (RCR) models. Moreover, Liski and
Nummi (1996) suggest a prediction procedure based on the EM algorithm
and a prediction interval for the new observation from a partially observed
individual in linear mixed models. In addition, Mathew et al. (2016) pro-
pose a prediction interval for the future observation by use of the generalized
pivotal quantity (GPQ) percentages for the BLUP of the future observation
in linear mixed effects models with a random effect. They suggest a GPQ
for the BLUP of the future observation and then by generating Monte Carlo
samples, they obtain 1000 GPQ values for the BLUP and finally present a pre-
diction interval for the BLUP by use of the o/2th and (1 —«a/2)th percentiles
of 1000 GPQ values. Furthermore, in the NLMMSs, Hall and Clutter (2004)
propose the linearization-based prediction procedure in the multilevel nonlin-
ear mixed models and suggest an approximate prediction interval for the new
observation from the partially observed individual. Moreover, Stirnemann et
al. (2011) propose a simple prediction procedure given the past measure-
ments of an individual by use of the Markov Chain Monte Carlo (MCMC)
algorithm for simulating needed samples and suggest a prediction interval.
In the next section, the linear and nonlinear random effects models obtaining
from the Paris-Erdogan equation and our new proposed methods applied in
this thesis are presented.
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1.2 Models and methods

We have the special case of the linear and nonlinear random effects models
given as follows:

Linear random effects model for the old individuals:

Y T Ei
Y, = : =XA+LE = : A + : )
Y;:Ni TN, E;n.

with the realizations

Yi1 T €1
Yi = : =Xa; +¢; = : a; + : )
yiNl' xiNi eiNi
where y;, ¢; € RV, X; € RN a; € RY, zy5 = (1, ha (), -+, hg1(25)) (e.g.

hl(fﬂij) = flﬁij,hQ(.CIfij) = mij log(xm)) Wlth hs . R — ]R, S = 1, ,q — 1,
i=1,---,1.

Nonlinear random effects model for the old individuals:

Yil 9(Ai, 1) Ex
Y, = : = gi(Ai, ;) + E; = : + : )
Y%Ni g (Az', sz) EiNi

with the realizations

Yi1 g(ai, Ti1) €i1
Yi = : = gi(a;, T;) +¢; = : 1 s
Yin, g9(as, vin,) €iN;
where y;,e; € RN x; = (21, ,2n,)T € RN q; e RY, g : RT xR — R,

gi : R x RNt — RYi. The function g is nonlinear in a; (e.g. g(a;, i) =
agi + ayrg;’) and i =1,--- I

Linear and nonlinear random effects models for a new individual:
For the new individual, we supposed that there are the N, past observations

16



and one future observation. Moreover, for the new individual, we have lin-
ear and nonlinear random effects models similar to the models for the old
individuals, but we only need to partition vectors Yy, Ey and go( Ao, Zo) and
matrix X into the past and future parts as follows:

Yo = (YE)PT7YE)F)T> Ey = (Eémv E{)T7 90<A07m0) - <95T(A07x5>7g(A07I5))T

and XO = (Xéjr,mgT)T, where E(I)D = (E()l, ce ,EONO)T, pr = (Ybl, s 7YE)N0)T
and g2 (Ao, z8) = (9(Ao, z01), -+, (Ao, Ton,))T and indices P and F rep-
resent the past (observed) and future (unobserved) parts of the new indi-
vidual, respectively. Let the realizations of Y, Ey and Ef be defined as

Yo = (Wor,  »%omy)T, €0 = (e ,eq)T and ef = (eor, -, eony)T, respec-
tively.

Finally, for both random effects models (i.e., linear and nonlinear models),
we assume that Ag, Ay,---, A, BV EY By, -+, E; are independent with

A; ~ Ny(a,X), E; ~ Np,(0,0%Iy,) for i = 1,---, 1 and Ay ~ N,(a, %),
Ey ~ Nyy11(0,0°I vy 11).

Let Y = (Y ,--- ) Y)T and Y s = (Y, Y], -+, Y{")T with the correspond-
ing realizations y = (y],--- ,9])7 and Yops = (Y], 7, -,y )T. The aim of
this thesis is to construct a prediction interval for a future observation Y{" at
x}” of a new individual based on Y or Y 4, where observations Yy, -+, Yo,
at Top, - -+, Ton, are given and z{” must be larger than gy, .

In this thesis, eleven methods based on the modifications and extensions of
the existing methods are presented and compared. It should be mentioned
that some of these methods can only be used for the balanced data set, in
which N; =N, X; =X fori=1,---,I. In the following, we describe them.

1. mSwamy (The modified method of Swamy for linear models
in the balanced case (Swamy, 1971)):

In the Swamy’s prediction, the future observation Y{ at zf is predicted
as o " = gFaqLs, where zF = (1, hy(zE), -+  hy_1(zE)) (c.g. hy(zf) =
ol ho(al) = 2l log(x})) and agrs is the estimate of @ (i.e., the mean of ran-
dom effects) which is obtained from the Swamy’s estimation method based
on the information of Y (the old individuals). A modification of the Swamy’s

prediction can be given by a convex combination of the Swamy’s prediction
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approach and the classical approach for linear models as follows:

~ ~F(old ~F(new
go = (1 —w)iy " +wip ",

where w is chosen such that the variance of prediction error (gf — y&') is
minimized, and g¢ *? is the Swamy’s prediction, and g¢ ") = zFaoors
with doors == (XTXE) Xyl where yf is the realization of the ob-
served part of the new individual (Y{7) and X{§ = (z;,--- ,2y,)T with
xoj = (1, ha(woj), -+ hg-1(205)) (e-8. ha(wo1) = woj, ha(wo;) = wo;log(wo;))-
In Lemma 4.2, we propose the (1 — a)-prediction interval for Yy based on
the modified method of Swamy.

2. eRao (Extension of the method of Rao for linear models in
the balanced case (Rao, 1975)):
In the Rao’s prediction, the prediction of Y at z[ is given by

g5 =z{ (Cagors + (I, — Cacrs),

where x(}; , Go.0Ls, @grs were defined as in the modified method of Swamy,
C = B(E+ 6XXE"XEP)"1)"!, where 3 and 62 are the estimates of ¥ and
0% and are obtained from the Swamy’s estimation method based on the in-
formation of Y, and X is the covariate matrix related to the observed part
of the new individual. Rao (1975) presents only the above prediction pro-
cedure and does not calculate prediction interval. We extend this approach
by adding an approximate prediction interval for Y. In Corollary 4.1, we
present this approximate prediction interval.

3. mRao (The modified method of Rao for linear models in the
balanced case (Rao, 1975)):

In this approach, we consider a modification of the Rao’s prediction such that
Y s instead of Y is used for the estimation of parameters. Then a modified
Rao’s prediction is given by:

g§ = mOF(CAYLO,OLS + (Iq - CAt)&obs)

where C' := Yops[Sops + 02, (XETXE) 11, with drops, Sops and 2, which are
obtained based on the information of Y . In Lemma 4.1 and Theorem 4.1,
we calculate the distribution of prediction error and present an approximate
prediction interval for Y/ based on the modified method of Rao, respectively.
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4. PBmSwamy (Combination of method of Pinheiro/Bates and
the modified method of Swamy in the unbalanced case (Swamy,
1971; Pinheiro and Bates, 2000)):

In this method, we linearize the nonlinear mixed model with the starting val-
ues, which are obtained from the estimation method of Pinheiro and Bates,
and then use the linearized model to obtain the estimates and prediction
intervals with the modified method of Swamy (see Section 4.2.2).

5. ePB (Extension of the method of Pinheiro and Bates for nonlin-
ear models in the unbalanced case (Pinheiro and Bates, 2000)):

In the Pinheiro and Bates’ method, the prediction of future observation (V")
at z{ is given by g{" = g(&, z{’), where function g is a nonlinear and differ-
entiable function of @&, and & is the estimate of a, which is obtained from
the Pinheiro and Bates’ estimation method based on the information of Y
(the old individuals). We extend this approach by adding an approximate
prediction interval for Yy in Theorem 3.4.

6. mPB (The modified method of Pinheiro and Bates for non-
linear models in the unbalanced case (Pinheiro and Bates, 2000)):
In this approach, we present a modification of the Pinheiro and Bates’ pre-
diction such that the estimation of parameters are obtained based on the
information of Y 5 (the old and new individuals) instead of Y. Based on
this approach, we propose an approximate prediction interval for Y in The-
orem 4.2.

7. PBLiski (Combination of methods of Pinheiro/Bates and
Liski/Nummi in the unbalanced case (Liski and Nummi, 1996; Pin-
heiro and Bates, 2000)):

Liski and Nummi (1996) propose an EM algorithm to calculate the maxi-
mum likelihood estimator for the parameters in a linear mixed model and
derive a prediction interval for Y{". As in the Method 4, we propose to start
with the estimates of Pinheiro and Bates, linearize the nonlinear model with
these estimates and then use the linearized model to obtain the estimates
and prediction intervals with the method of Liski and Nummi (see Section
4.2.1). In Lemma 4.3, the approximate prediction interval in a linear mixed
model proposed by Liski and Nummi (1996) is presented.
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8. PBSt (Combination of methods of Pinheiro/Bates and Stirne-
mann et al. in the unbalanced case (Stirnemann et al., 2011; Pin-
heiro and Bates, 2000)):

Let B be the ML estimation of B := (a, %, 0?) based on the information of
Y, which is obtained from the estimation method of Pinheiro and Bates. In
the method of Stirnemann et al., the future observation is predicted as:

—

M

A p 1 ~(m

B =B . B) = 57 D 9@ x),
m=1

where M is the Monte Carlo sample size, g is a nonlinear and differentiable
function of @™ and a\™ for m € {1,---, M} is the random sample which
is obtained using the MCMC algorithm from f(a0|yé3,,3), where ag is the
realization of Ay, the random effect related to the new individual (see Lemma
4.5). Stirnemann et al. (2011) propose the (1 — «)-prediction interval for
Y, which is given by

Pl = [QQ/Q(B7y(I)D>’ql—a/?(ﬁay(];)]?

where qa/g(ﬁ,yé;) and ql,a/g(ﬁ,y(lf) are respectively the (a/2)— and (1 —
a/2)— quantiles of g(al”, ), - g(@™, ). For simulating samples us-
ing the MCMC algorithm from f(ag|yl, B), the special R package was used

(see Section 4.2.5.1).

9. StConf (Method of Stirnemann et al. combined with confidence
sets in the unbalanced case (Stirnemann et al., 2011)):

In this approach, we use the same estimation and prediction procedures which
have been used in Method 8 and consider a prediction interval based on
the (1 — a)-confidence ellipsoid of parameters, which results in a (1 — «)?-
prediction interval (Miiller et al., 2016), as follows:

Ugea a 7P77a ,Pijna >P7maX —« 7P7
peow 4o/2(B:40): t1-/2(B. )] € Lm0 do/2(B.15), max d1-a/2(B, 45

where ga/2(8,48) and qi_a/2(B,yd) are respectively the (§)-and (1 — $)-

quantiles of g(d((]l), z), g(déM), z{’) for each B in the confidence ellipsoid
O(y) and dél), . ,déM) is a random sample from f(aglyd,B) (see Section

4.2.5.2). Similar to Method 8, an MCMC algorithm is used for simulating
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samples from f(Ag|yl,B8). The confidence ellipsoid for B is obtained from
the asymptotic normality of the estimates obtaining from the Pinheiro and
Bates’ method (see Section 3.2.1.1).

10. WmSt (Combination of an extended method of Walker and
a modified method of Stirnemann et al. in the unbalanced case
(Walker, 1996; Stirnemann et al., 2011)):

Walker (1996) proposes an MCEM algorithm for estimating the parameters
of a nonlinear random effects model in which Z := (Y ., A) is the complete
data, where A := (A, -+, As, Ap), which is a vector of all random effects,
is the missing part and Y ., is a vector of the observed parts of all individu-
als. We extend the Walker’'s MCEM algorithm such that Z := (Y s, 4, Y)
is the complete data and A and Yy are the missing parts, where Y is
the unknown observation from the new individual that is partially observed.
For simulating samples, which is needed in the Monte Carlo approximation,
we apply the Walker’s method for the completely observed individuals and
propose to apply the Gibbs sampling along with the Sampling Importance
Resampling (SIR) method for the partially observed individual (Koch, 2007;
Bishop, 2006) (see Algorithm 1). The pseudocode for our proposed MCEM
algorithm is presented in Algorithm 2.

For prediction of the future observation, we suggest a modified method of
Stirnemann et al. in which the ratio of two Monte Carlo approximations, pro-
posed by Walker (1996), is used for calculating the conditional expectations
and predictions. It should be mentioned that, as the simulated samples from
the prediction method of Stirnemann et al. are obtained from an MCMC
algorithm, so they have dependent samples in this case. However in the
modified version of this approach, the samples are independent (see Section
4.2.6.2). A modified prediction of Strinemann et al. is given by:

A

R i lag” ﬁ%,
Y o Zg Zmzlf(?/o g™, B)

where ,B is the ML estimation of 8 := (a, 3, 0?) based on the information of
Y .15, which is obtained from the extension of Walker’s estimation method,
and (dél), e ,ZLBM)) is the random sample from f(ao|B) ((4o|B) ~ Ny(a, %)).
For prediction interval, we propose to use the following (1 — «)-prediction
interval:

PI = [qaj2(B), q1-a/2(B)],
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where g, /2 (B) and ql,a/g(ﬁ) are respectively the («/2)— and (1—«/2)— quan-
tiles of g(dg{),xg), cog(@™ 2, and @Y, -+, a™) is a random sample

from N, (&, ) (see Section 4.2.6.3).

11. mStConf (The modified method of Stirnemann et al. com-
bined with confidence sets (Stirnemann et al., 2011)):

In this method, we use the same estimation and prediction procedures which
have been described in Method 10. But for prediction interval, based on the
results in Miiller et al. (2016), we propose the (1 — 2a)-prediction interval
by use of the (1 — a)-confidence set of parameters @(yobs), which is given by

Ugece Qo ﬁaqfa ﬂ - min o 137 max (gi—q ﬂ 5
8o, da/2(B): qi—a/2(B)] [ﬁeé(yobs) s2( )ﬁe@(yobs) 1-a/2(B)]

where qq/2(8) and qi_q/2(B) are respectively the (§)-and (1 — 5)-quantile
of g(&él), zk), - ,g(&éM), x}’) for each B in the confidence ellipsoid (:)(yobs),
and (Ei(()l), e ,EL[()M)) is a random sample from f(ap|B) ((Ao|B) ~ Ny(a, X))
for each (o, %) in ©(yoys). The related confidence ellipsoid is obtained using
Theorem 4.5 which has been proposed by Nie (2007) (see Section 4.2.6.4).

1.3 Thesis overview

This thesis is organized in 8 Chapters. In Chapter 2, the existing estimation
and prediction methods in linear and nonlinear regression models suggested
by Seber (1989) and Bates (1988) are discussed. In this chapter, for the
estimation and prediction, only the information from the new series is used.
Chapter 3 describes the existing estimation and prediction methods for lin-
ear and nonlinear random effects models suggested by Swamy (1971) and
Pinheiro and Bates (2000). In this chapter, estimation of the parameters
and prediction of the random effects and missing observations are obtained
by use of the information of the old series. It also contains our proposed
approximate prediction interval for Y based on the Pinheiro and Bates’
prediction, which is presented in Theorem 3.4.

Chapter 4 introduces some of the existing prediction methods in linear and
nonlinear random effects models. These methods are due to Rao (1975), Liski
and Nummi (1996), Hall and Clutter (2004) and Stirnemann et al. (2011).
This chapter also contains the modifications and extensions of some of the
existing prediction methods (extension of the method of Rao, the modified
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method of Rao, the modified method of Swamy, combination of method of
Pinheiro/Bates and the modified method of Swamy, combination of methods
of Pinheiro/Bates and Liski/Nummi, extension of the method of Pinheiro and
Bates, the modified method of Pinheiro and Bates, combination of methods
of Pinheiro/Bates and Stirnemann et al., method of Stirnemann et al. com-
bined with confidence sets, combination of an extended method of Walker
and a modified method of Stirnemann et al., and the modified method of
Stirnemann et al. combined with confidence sets). The most important part
of this chapter is Section 4.2. In this chapter, we propose some new lemmas
(Lemma 4.1 and 4.2) and theorems (Theorem 4.1 and 4.2) for calculating
distribution of the prediction error and getting the approximate prediction
interval for Yy .

The difference between Chapters 2, 3 and 4 is due to the information used
in the estimation and prediction procedures. In Chapter 2, the estimation of
unknown parameters and prediction of the future observation are obtained
only based on the information of the new series (partially observed series),
whereas in Chapter 3, in all the estimation and prediction procedures we use
the information of the old series. However in Chapter 4, the information of
the old and new series is used, which is our main aim in this thesis.
Chapter 5 contains numerical results from a simulation study and an appli-
cation to a real data. In Chapter 6, the results are summarized and for the
future work an outlook is also given. Chapters 7 and 8 include Appendix
and a list of references.
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2 Prediction using only observations of the
same series

2.1 Prediction of the future observation in linear re-
gression models

2.1.1 Estimation method of Seber

Consider the following linear regression model for the partially observed in-
dividual (new individual):

YY = XFla+ EY (2.1)
where a € R? and
Yo Eo
Zo1
}/E)P - ) Xéj = 9 Eéj = 9
ToN,
Yon, Eon,

with Zo; = (1,h1($0j),"‘ ,hq—l(ij))a 7 =1,--- Ny. }/OP is an Ny x 1
vector of the observations, X} is an Ny x ¢ covariate matrix, a is a ¢ x 1
vector of the regression coefficients, and El” is an Ny x 1 vector of the random
errors which is distributed as EF ~ Ny, (0,01 y,).

Theorem 2.1. Estimation of a and o* [Seber (1989)]:
Consider the linear model (2.1). The unbiased estimations of & and o* are
given by

& = (Xo"Xo) XYy (2.2)
No—¢q

Moreover, it is proved that
&~ Ny(a,0*(X"X5)™) (2.4)

By use of the Im function in the stats package in R, these estimates can
be obtained (R Development Core Team, 2016).
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2.1.2 Prediction method of Seber

In regression models, we are interested in predicting the future observation
Y{" which is modeled as

Yy =zpa+ By, (2:5)
where " = (1, hy(2) -+, hy—1(2f)) and EY ~ N(0,0?) such that F}" and
E{}" are independent. Prediction of the future observation is given by

where & = (X" XEP) 1 Xyl and yf is the realization of Y.
By use of the predict function in the stats package in R, prediction and
prediction interval for the future observation is obtained.

Theorem 2.2. [Seber (1989)] :

Let U ~ N, (u,0%I,) be an n-vector and B be an n x n symmetric matriz.
Then the ratio U'BU/c? will have a x*(\) distribution with \ = p'Bu/o? if
B is idempotent with rank(B)=r.

Theorem 2.3. Prediction interval for Y [Seber (1989)]

Consider the linear regression model (2.1) for the partially observed individual
and the linear model (2.5) for the future observation from the new individual.
Prediction of the future observation Y{" is given by

Y =zla,

where & = (X" XY AXEY.P. The prediction error (Y — YF) has normal
distribution as follows:

Yy =¥ ~ N0, 0?[1 + 25 (X7 XE) g ), (2.6)

and then the (1 — «)-prediction interval for Y{" can be given by

PT = (95 :I:tNO_q(a/Q)\/c}Z[l + 2l (XX 12lT), (2.7)

where §f is the realization of Y{ .

Proof. The proof can be found in the appendix. n
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2.2 Prediction of the future observation in nonlinear
regression models

2.2.1 Gauss-Newton estimation method

Consider the following nonlinear regression model for the partially observed
individual as:

Yy =gy (enzg) + By (2:8)
where gf’(a,zl’) : R? x RM — RM is a vector of the nonlinear functions of
a, a € R? and

Yo By
. 9(a, zo1)
YE)P = : ) géj(o*'?m(l)a) = ) Eéj =
: g9(a, Ton,) .
YE)N() EON()
Y is an Ny x 1 vector of the observations, " € R is a regressor variables
vector, a is a g x 1 vector of the regression coefficients, and £} is an Ny x 1
vector of the random errors which is distributed as Ef ~ Ny, (0,021 ;).

The Gauss-Newton method [Bates (1988)]: Gauss proposes using a
linear approximation to the nonlinear function and iteratively improving the
starting value a® for a. At the (k 4 1)th iteration, the first order Taylor
expansion of g’ (a, z%) about a'® is given by

~ P(k+1)

g0 (. zf) = g5 (@, 2l) + X (@ —aM), (2.9)
- pPk+1)  Ogl(a,zl
Xo( +1) _ 90 5%7 0)|a:a<k) e RNOXQ.

This is equivalent to approximate the residuals at the (k + 1)th iteration as
follows:

~ P(k+1)

B =Yy — g5 (e,zg) = YY" — [g5 (@, 27) + X (@ —a')]

~ P(k
= zPo) _ x (2.10)
where ZZ ¥ = P — gP(a®) zF) and § = a—a®. In fact, at the (k+1)th
iteration we have approximately a linear regression model as

k+1

ZP0 & x4 P
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Hence, the least square estimate of § at the (k+ 1) th iteration is given by

Finally, the update estimate of a is given by

kD) — B | §lk+1)

This process is repeated until no useful changes appear in the elements of
the parameter vector.
Consider a be the estimate from the final iteration of the Gauss-Newton
method. Then the estimate of o2 is obtained by

o (Y7 —g0(@,30)T(YS — g5 (@, 27))

52 = . 2.11
No 4 (2.11)

These estimates can be obtained from the nls function in the stats package
in R (R Development Core Team, 2016).

Asymptotic normality of a:
Jennrich (1969) proves that

VNo(@ — ) 2% N (0,011, (2.12)
where
I = / il 2o, )T A(dx),
with ¢(a, x) == W\a:a and A is a design measure.

From (2.12), we approximately have

R 1 opropP _
\Y No(a - a) ~ Nq(0702(FOX0,aX0,a) 1)

N o PT &P |
= VNo(a — a) = Ny(0,0°No(X (o X0a)")
= (6 —a) = Ny 0,0%(X g Xoo) ), (2.13)
with X ga = Mh:a‘ Since a is unknown & is replaced in X(f o

a
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2.2.2 Prediction method of Seber

In regression models, we are interested in predicting the future observation,
Y{", which is modeled as

Y = glavad) + B (2.14)

where g(a, z{’) is a nonlinear function of & and E}" ~ N(0, ¢?) such that E}’
and B} are independent. The prediction of the future observation is given
by

f/F =g (dv l‘g )7

where & is obtained from the Gauss-Newton method. This prediction can be

obtained using the predict function in the stats package in R (R Development
Core Team, 2016).

Theorem 2.4. Prediction interval for Yy [Seber (1989)]

Consider the nonlinear regression model (2.8) for the partially observed in-
dividual and the nonlinear model (2.14) for the future observation from the
new individual. Prediction of the future observation, Yy , is given by

~

Yy = g(a, zf),

where & is obtained from the Gauss-Newton method. The prediction error
(Y& = Y{) has normal distribution as follows:

~ ~ o PT ~ P 4.
YE)F - YF ~ (Oa UQ[w(I)ia(XO,aXO,a) 1xOF,|¢Tx + 1])7 (215)
~ T P
where Z( = 69(;; 0)|, o and X = Wh:a.

Then the (1 — «)-prediction interval for Yy is given by

N AT o PT o P ~FT
PI = (J5 % ano,1),1-a/2 \/0'2 [20.4(X 06X 0a) 04 + 1), (2.16)
where §F is the realization of Y{.

Proof. The proof can be found in the appendix. n
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3 Prediction using only observations of the
other series

3.1 Prediction of the future observation in linear ran-
dom effects models

Assume that the N; observations of the ith individual are interpreted by the
model

where Y; = (Yj1,---,Yin,)T is the observation vector of the ith individual,
X; = (x,, - 2]y )7 is the N; x ¢ covariate matrix of the ith individual,

where z;; == (1, hy(xij), -+, hg—1(xi5)), 1€ {1,---, I}, je{l,---,N;},
and A; and E; are respectively the (¢ x 1)-vector of coefficients and the
(N; x 1)-vector of errors. If A;’s are supposed to be independent and ran-
dom then the model (3.1) is called a random coefficient regression model
(RCR). In the case of balanced data (N; = N,X; =X, i=1,---,I), Rao
(1965) and Swamy (1971) present estimation procedures for a RCR model.
Moreover, Carter and Yang (1986) and Johansen (1982) propose estimation
methods for the unbalanced data. In the following, all assumptions of a RCR
model for the balanced longitudinal data are presented.

Assumption 3.1. In the defined RCR model of (3.1) with the balanced
data, the following assumptions hold (Swamy, 1971):
[A1] X is a nonstochastic (N x ¢)-design matrix which includes the inde-

pendent variables. The sample size N is larger than ¢ (N > ¢). In addition,
X is full rank, i.e. rank(X) = q.

[A2] Stochastic coefficient vectors A;, i € {1,---,I} are independent and
identically distributed with mean a € R? and covariance matrix ¥ € R9*9,
The stochastic character of the coefficient vectors can also be expressed as
A, = a+96;, where §; := (01;, -+ ,04)7 is a random vector with mean 0 and
variance covariance ¥. The components of a := (ay,---,a,)7 and §; are
respectively considered as the fixed (nonstochastic) and random effects.

[A3] Stochastic (N x 1)-error vectors E;, i € {1,---,1} are independent
and identically distributed with mean 0 and variance covariance matrix o1 v,
where 02 > 0 and Iy is a (N x N)-identity matrix.
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[A4] Random vectors of A; and E; are stochastically independent for all
i,je{l,--- I}, ie. Ay,---, A, By, -+, Er are stochastically independent.

[A5] Both the coefficient and error vectors A; and E;, i € {1,---,[} are
distributed as multivariate normal. Hence, for all ¢ € {1,--- I} we have

A; ~ Ny(a, %) and E; ~ Ny(0, 021 y).

The assumption of normal distribution [A5] is unnecessary to derive the pa-
rameter estimates, however it is essential to construct a prediction interval.
According to the assumptions [A1]-[A5], the observation vectors Yi,--- Y]
are independent and identically distributed as follows:

Vi, ’Y[NNN(XQ,XZXT—I—UzIN). (3.2)

3.1.1 Estimation method of Swamy in the balanced case

In a RCR model, q fixed effects from the mean vector a, @ components
from the covariance matrix ¥ and the intraindividual variance o2 are the un-
known parameters to be estimated. In this section, the proposed estimation

method of Swamy (1971) is described.

3.1.1.1 Estimation of fixed effects

For derivation of the best linear unbiased estimator of the parameter vector
o, firstly the I regression equations Y; = XA, + E;, i € {1,---,I} are
considered. Let /L-OLS ;= (X7X)71XTY; be the OLS-Estimation of the pa-
rameter vector A;. Based on the assumptions [A1]-[A5], the distribution of
OLS-Estimations A;org, i€ {1,---,1} is given by

Aiors,  ,Arors ~ Ny(e, X+ o*(XTX)™H). (3.3)

A simple estimation of a is the mean of OLS-Estimations ALOLS, 1 €
{1,---,I}. In the following theorem, it will be proved that agrs, which
is defined as aqrg := %Zi[:l Ai,OLS is the best linear unbiased estimation
of a. For the proof of this theorem, we firstly need to find the inverse of
(XTXT + oI y).
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Lemma 3.1. Inverse of (XXXT + 0% y) [Swamy (1971)]
Let 0* > 0, Iy be the (N x N)-identity matriz, 3 € R7? be a nonsingular
matriz and X the (N X q) matrizx (N > q) with rank(X) = q. Then the
inverse of (XX XT + o2l y) is given by
o Iy — o 2 X(X'X) T XT+ X(XTX) ' (X + A XTX)H) T HXTX) X,
(3.4)

Proof. The proof can be found in the appendix. O

Theorem 3.1. Best linear unbiased estimation of fized effects [Swamy (1971)]
Consider the RCR model Y; = XA; + E;, i€ {l,---,I} and the assump-
tions [A1]-[A5]. The best linear unbiased estimation of a is given by

1 I
agrs ‘= f E Ai,OLS‘
i=1

Proof. The proof can be found in the appendix. O
From (3.3) and the independency between AI,OLS7 e ,ALOLS, we con-

clude that )
agLs NNq(a77<E+O—2(XTX)_1))' (3.5)

3.1.1.2 Estimation of variance components

Based on the assumptions [A1]-[A5], Swamy (1971) proposes the unbiased
and consistent estimations for the intraindividual variance, o2, and the co-
variance matrix, X..

Theorem 3.2. Estimation of o* and X [Swamy (1971)]

Consider the RCR model Y; = XA; + E;, i€ {l,---,I} and the assump-
tions [A1]-[A5]. The unbiased and consistent estimations of o and ¥ are
given by

I I - .
. 1 . 1 (Vi —XAions)"(Yi— XA, 015)
2. _1NT42 o ’ ’ 3.6
. 1 .
Y= T (Aiors — @ars)(Aiors — aars)T —6*(X7X)™,  (3.7)

where 62 is the variance estimation of the ith regression model Y; = X A;+ E;.

Proof. The proof can be found in the appendix. ]
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3.1.2 Prediction method of Swamy

In many applications, the prediction of the future observation is interested.
We define Yy =z Ay + E{" as the unknown observation of a new individual
at ol where ' = (1, hy(2f), -+, hy—1(2f)) € R The new individual is also
modeled as a RCR model. Hence, it is concluded that Ay ~ N,(a, ), El" ~
N(0,0%) and EY, Ey, -+, E;, Ag, Ay, - -+, A; are stochastically independent.
The best linear unbiased predictor for Y is given by (Swamy, 1971):

@5 = xgchs,
where dGLS = %Zfil di,OLS and CALZ',OLS is the realization of Ai,OLS‘ This
predictor is the best linear unbiased predictor for Yy because, agrs is the
best linear unbiased estimation of the fixed effects. In the Lemma 3.2 and

Theorem 3.3, the distribution of prediction error (YOF —Y{) and a prediction
interval for Y are derived by Swamy (1971).

Lemma 3.2. Distribution of the prediction error [Swamy (1971)]

Consider the RCR model Y; = XA; + E;, i€ {1,---,1} and the assump-
tions [A1]-[A5]. Let YI := xFacpg be the prediction for the observation of
the new individual at xf, where agrs == %Zle Ai,OLS- Then the prediction
error (Y§ — Y;F) has normal distribution with the mean 0 and variance

1
V= fxg(2+02(XTX)*l)(x5)T+x52(:1:0F)T+02. (3.8)
Proof. The proof can be found in the appendix. m

If the variance components ¥ and o2 are known, then
}A/E)F _ YOF
N4

However, if the variance components are unknown the estimations of ¥ and
o? are needed to construct an approximate prediction interval.

~ N(0, 1).

Theorem 3.3. Approxvimate prediction interval for Y¢ [Swamy (1971)]
Consider the RCR model Y; = X A; + E;, i € {1,---,I} and the assump-
tions [A1]-[A5]. Let Y| = x§acrs be the prediction for the observation of
the new individual at zf, where &grs = %Zfil A;ors. Then the variance
of prediction error v can be estimated as

1 A A
pi= o) S+ (XTX) (@) e Siag) ot (39)
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By use of U, the standardized prediction error converges to the standard nor-
mal distribution for N, I — oo. Consequently, the (1 — «)-prediction interval
for Y is given by

A~

PI(y) = [Qém - Q1—a/2\/5; 3)5 + Q1_a/2\/5], (3.10)

where §f is the realization of Y/OF and q1—q/2 is the (1 — a/2)-quantile of
standard normal distribution.

Proof. The proof can be found in the appendix. O

3.2 Prediction of the future observation in nonlinear
random effects models

Nonlinear mixed effects (NLME) model includes the nonlinear function of
some or all of the fixed and random effects. Lindstrom and Bates (1990)
propose the NLME model for repeated measures as follows:

where Y;; is the jth response on the ith individual (group), ¢ : R x R = R
is a nonlinear and differentiable function of the parameter vector A;, wz;;
is the independent variable, and Ej; is the within group error term which
has normal distribution. The parameter vector A; can be different from
individual to individual and is modeled as

Ai=a+68, 6&%<N,0,%), (3.12)
where a is a g-dimensional vector of fixed effects and §; is a g-dimensional
random effects vector related to the ith individual which has normal distri-
bution with mean zero and the positive definite variance covariance matrix
¥. It is also supposed that the within group errors Ej; are distributed in-
dependently as N(0,0?) and independent of the §; and that observations
related to the different individuals are independent. For all i € {1,--- I},
the nonlinear random effects model is modeled as

Vi = gi(Ai,xi) + Ei, gi(Ai,z) i RTx RY — R (3.13)
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where A; is a g-dimensional vector of random effects which is independently
distributed as N, (a, ) and

Y Ti1 g(Az'7 Iﬂ) Ein
Yi=| : |.xzi=| : |,0(Ax) = : By = :

Yin, TiN, g(A;, zin,) Ein,

In this thesis we consider g(A;, x;;) = Ao + Ayt i =1, N

3.2.1 Estimation method of Pinheiro and Bates in the unbalanced
case

Various methods have been suggested for the estimation of parameters in the
NLME models. Some of them involve taking a first-order Taylor expansion of
g around the conditional mode of the random effects (Lindstrom and Bates,
1990), or around the expected value of random effects (Sheiner and Beal,
1980; Vonesh and Carter, 1992). In this section, the estimation procedure
proposed by Lindstrom and Bates (1990) for the defined NLME model (3.13)
will be described. In mixed models, because the random effects are not
observed the marginal density of the response Y is applied for the maximum
likelihood estimation of parameters which is calculated as

fwlB) = / f(Wl6,a,0) £ (6]5)d5, (3.14)

where 8 := (a,02,%), 6 := (81,--- ,8])T and y is the realization of Y. For the
NLME model (3.13), Pinheiro and Bates (2000) propose to express the vari-
ance covariance matrix of random effects by the unknown precision factor
A € R?4, such that ¥7! = ¢72ATA and A is represented by an uncon-
strained set of parameters #. For a positive-definite matrix X, such a A is
available however it does not need to be unique. By use of the unknown
precision factor A(@), the joint distribution of Y and é can be written as

f(y.8la, 0%, A(6)) = f(yld, ") f(8]A(6)) = Hf(yil&,a, a®) f(8,]A(9))

112
yi— g +am)l?,  e{SGH)

e
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A0 {Zle[\lyz- —gi(0i t o) [|* + HA(9)51'||2}}
(27r0‘2)(N+I<1) p —202 '

(3.15)

where N := Zle N;. The alternating estimation algorithm suggested by
Lindstrom and Bates (1990) has two steps, a penalized nonlinear least squares
(PNLS) step and a linear mixed effects (LME) step.
In the PNLS step, at the (k + 1)th iteration, Lindstrom and Bates (1990)
mention that the maximum likelihood estimations of @ and §; maximize
(3.15) by given ) or equivalently minimize the following penalized nonlinear
least squares function

1

S My — 968 + a2 + (1A 0P)8,]). (3.16)

i=1
In the LME step, at the (k + 1)th iteration the estimate of A(f) and o2 are
updated based on the first order Taylor expansion of ¢;(8; + a,x;) around

A(k+1
6( ) and d(kﬂ), which are obtained from the PNLS step. Let

7

o (k+1)  Ogi(a,x;)

Xz' . T|azd(’“+1)+§i(k+1) € RNixq’
N ~(k+1 . o e A »
ZD Yi—gz-(éf» + )—|—O!(k+1),$i)+Xz(, +1)(6£ + )+a(k+1)) - XE +1)(6i—f—a)+Ei‘
(3.17)

The applied approximate log-likelihood function for estimation of A(f) and
o? at the (k + 1)th iteration is given by

1
N 1
Lare(@), 0%, AB)ly) ~ — log(2m0®) — 5 {log [V, ()]
i=1

o 258 - X[TVat oy g sk — x Mgy

(3.18)

where Vi(k—H) 0) =1y, +)~(§k+1)A(0)_1A(0)_TX and 22-(k+1) is the realization
of ZA,L»(kH). This log-likelihood is related to the log-likelihood of a linear random

- (k . . .
effects model such that Z( +) = (kaH)T, . ,Z}HI)T)TlS the response vector

and X(Hl)

matrix.
The algorithm iterates between the PNLS and LME steps till convergence. The

(k+1)T

i

= (ngH)T, e ,ngH)T)T is the fixed- and random-effects design
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computational methods of this algorithm have been presented in the appendix. By
use of the nlme function of package nlme of Pinheiro et al. (2016), the estimates
using this procedure can be obtained.

Lindstrom and Bates (1990) only apply the LME step for updating the estimates
of A(f) and o?. Whereas, Wolfinger (1993) iterates LME steps by recalculating
(3.17) and (3.18) at the updated estimates of a and 4.

3.2.1.1 Inference Results

Under the LME approximation and certain regularity conditions which are gen-
erally satisfied in practice, Pinheiro (1994) proves that the maximum likelihood
estimations in the LME model are consistent and asymptotically normal. There-
fore, & has approximately normal distribution with mean a and the estimated
variance covariance matrix (Ea/(ol) as follows:

I
E(a)~a, Cov(a)~[> X[V X", (3.19)
i=1
where ) B R R R
Vi i=X;X(0)X] +6°Iy,, X(0)=5*(AT(O)A0))
and

> 8gz(a,xz)‘ X
T 8a‘|' a:d—i-&i'

Moreover, (é, log(6)) has approximately normal distribution as follows:

<loz Er> ~ N <1OZ a> A78,0)), (3.20)

I=— 82lLMEp/8069T 82ZLMEP/810g080T
821LMEP/80810gU 82[LMEZ,/62IOgU !

where

and [ g, denotes the profiled LME approximation to the log-likelihood on the
fixed effects. Practically, 0 and @ are unknown hence their estimates should be
replaced in (3.20). Since the inference results for NLME models are based on the
LME approximation to the log-likelihood, they are less reliable than asymptotic
inferences for LME models (Pinheiro and Bates, 2000).
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3.2.2 Extension of the prediction method of Pinheiro and Bates
(ePB)

Pinheiro and Bates (2000) propose a simple plug-in predictor by estimating the
expected response when the random effects are equal to their mean value 0. We
define Yy’ = g(Ao,z{)+EL as the unknown observation of a new individual at z{.
The new individual is also modeled as a NLME model. Hence, it is concluded that
Ag :=a+ g ~ Nq(a, Y), Eé: ~ N(O,O’2) and E{,