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Abstract

Linear and nonlinear mixed effects models are applied extensively
in the study of repeated measurements and longitudinal data. In this
thesis, we propose two linear random effects models and a nonlinear
random effects model based on the Paris-Erdogan equation for describ-
ing the crack growth data of Virkler et al. (1979). We describe how
such models can be applied to achieve the future prediction and pre-
diction interval of the time, when the crack attains a specific length.
We propose eleven new methods for prediction interval by extending
the methods of Swamy (1971), Rao (1975), Liski and Nummi (1996),
Pinheiro and Bates (2000) and Stirnemann et al. (2011). We compare
the methods and models by applying them on the crack propagation
and simulated data.
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Table 1: List of Symbols

Symbol Description
I Number of series (i = 0, 1, · · · , I).
Ni Number of observations in each

series (j = 1, · · · , Ni).
N0 Number of observations in the

observed part of the new series.
xij The crack length.
xF0 The crack length of the future ob-

servation from the new series.
xxxP0 := (x01, · · · , x0N0)

ᵀ The covariate vector of the ob-
served part of the new series.

xxxij := (1, h1(xij), · · · , hq−1(xij)) A vector of functions of xij
where hs : R→ R;
for s = 1, · · · , q − 1.

xxxF0 := (1, h1(xF0 ), · · · , hq−1(xF0 )) A vector of functions of xF0 .
XXX i := (xxxᵀi1, · · · ,xxx

ᵀ
iNi

)ᵀ The (Ni × q)- covariate matrix of
the ith old series.

XXXP
0 := (xxxᵀ01, · · · ,xxx

ᵀ
0N0

)ᵀ The (N0 × q)-covariate matrix of
the observed part of the new se-
ries.

XXX0 := (XXXP ᵀ

0 ,xxxF
ᵀ

0 )ᵀ The ((N0 + 1)× q)-covariate ma-
trix of the new series.

Yij Time at the crack length xij.
yij The realization of Yij.
Yi := (Yi1, · · · , YiNi)ᵀ The (Ni × 1)−vector of observa-

tions from the ith old series (i =
1, · · · , I).

yi := (yi1, · · · , yiNi)ᵀ The realization of Yi.
Y P

0 := (Y01, · · · , Y0N0)
ᵀ The (N0 × 1)-vector of the ob-

served part of the new series.
yP0 := (y01, · · · , y0N0)

ᵀ The realization of Y P
0 .

Y F
0 The future observation of the new

series.
yF0 The realization of Y F

0 .
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Y0 := (Y P ᵀ

0 , Y F
0 )ᵀ The ((N0 + 1) × 1)-vector of ob-

servations of the new series.

YYY := (Y ᵀ
1 , · · · , Y

ᵀ
I )ᵀ The ((

∑I
i=1 Ni)× 1)-vector of ob-

servations from the old series.
yyy := (yᵀ1 , · · · , y

ᵀ
I )

ᵀ The realization of YYY .

YYY obs := (Y ᵀ
1 , · · · , Y

ᵀ
I , Y

P ᵀ

0 )ᵀ The ((
∑I

i=0 Ni)× 1)-vector of ob-
servations from the old and new
series.

yyyobs := (yᵀ1 , · · · , y
ᵀ
I , y

P ᵀ

0 )ᵀ The realization of YYY obs.
Ei := (Ei1, · · · , EiNi)ᵀ The (Ni×1)-vector of random er-

rors of the ith old series .
ei := (ei1, · · · , eiNi)ᵀ The realization of Ei.
EP

0 := (E01, · · · , E0N0)
ᵀ The (N0×1)-vector of random er-

rors related to the observed part
of the new series.

eP0 := (e01, · · · , e0N0)
ᵀ The realization of EP

0 .
EF

0 Random error related to the un-
observed (future) part of the new
series.

eF0 The realization of EF
0 .

E0 := (EP ᵀ

0 , EF
0 )ᵀ The ((N0 + 1)× 1)-vector of ran-

dom errors of the new series.
e0 := (eP

ᵀ

0 , eF0 )ᵀ The realization of E0.
Ai := (A0i, A1i, · · · , A(q−1)i) Random effect of the ith series,

which is distributed as
Ai

iid∼ Nq(ααα,Σ), i ∈ {0, 1, · · · , I}.
ai := (a0i, a1i, · · · , a(q−1)i) The realization of Ai.
δδδi := (δ1i, · · · , δqi)ᵀ A vector of random variables

which is distributed as δδδi
iid∼

Nq(000,Σ).
q The dimension of random effect.
ααα ∈ Rq The mean vector of random ef-

fects.
Σ ∈ Rq×q The variance covariance matrix of

random effects.
σ2 The variance of random errors.
βββ := (ααα,Σ, σ2) The parameter vector.
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gi : Rq × RNi → RNi The vector of nonlinear functions
of the parameters related to the
ith old series.

g : Rq × R→ R The nonlinear function of the pa-
rameters.

gP0 : Rq × RN0 → RN0 The vector of nonlinear functions
of the parameters related to the
observed part of the new series.

g0 : Rq × RN0+1 → RN0+1 The vector of nonlinear functions
of the parameters related to the
new series.

IIINi The (Ni ×Ni)-identity matrix.
IIIq The (q × q)-identity matrix.
E(X) Expectation of a random variable

(vector) X .
Var(X) Variance of random variable X.
Cov(X) Variance Covariance matrix of

random vector X.
Cov(X, Y ) Covariance of two random vari-

ables (vectors) X and Y.
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1 Introduction

All materials show fatigue process after a certain time when subjected to
cyclic loads. Fatigue leads to weakening of materials, which, if not fixed,
could have catastrophic consequences. For example, the collapse of a bridge
because of lack of tolerance of load or breaking of railway wheels axles because
of tearing which both of them originate from fatigue. Such incidents can be
avoided by promptly taking reinforcement measures on time and about the
production of vehicles by replacing the new spare parts on time. However for
costs reasons, such measures cannot occur too often. Therefore, an accurate
prediction of fatigue time is of great importance.
Fatigue processes which lead to the fraction of materials can be described
by cracks initiation and crack growth models. So studying of crack growth
plays an important role in anticipating life time of products. For this reason,
many experiments have been done on different materials like steel, concrete
and etc. for evaluating their crack initiation, crack growth and crack propa-
gation. A comprehensive study was conducted by Virkler et al. (1979), where
the crack growth was observed in 68 specimens, with 164 measurements in
each specimen. In other words, in the Virkler data set, we have observations
yi1, · · · , yiNi for the ith individual, where yij is the time until the crack length
becomes xij, j = 1, · · · , Ni = 164 for all i = 1, · · · , 68. For modelling the
crack growth in the Virkler data set, simple random models can be derived
from the Paris-Erdogan equation (Sobczyk and Spencer, 1992). One such
model can be achieved by adding to the deterministic solutions of the Paris-
Erdogan equation a random error to obtain a linear or nonlinear regression
model. Another model can be achieved by adding a stochastic error to obtain
a stochastic differential equation, which would be more desirable.
For crack propagation, Herman et al. (2016) propose a general Bayesian ap-
proach for stochastic versions of deterministic growth models. They consider
six growth models in the form of a stochastic differential equation and a non-
linear regression model, however, they show that none of them is superior
to the models based on the Paris-Erdogan equation. Therefore, we consider
the following linear and nonlinear regression models which are based on the
Paris-Erdogan equation:
1. Linear model:

yij = α0 + α1 log(xij) + eij,

12



2. Nonlinear model:
yij = α0 + α1x

α2
ij + eij,

3. Linearized model of the nonlinear model:

yij = α0 + α1xij + α2xij log(xij) + eij,

where eij is an additive error and α0, α1, α2 are the unknown parameters.
As can be seen in Figure 1, in the Virkler data set, not only observations
in each series differ from one another, but the series are also different. To
address these variabilities, Hermann et al. (2016) propose a hierarchical
model using a Bayesian approach.
In this research, a frequentist method is applied such that we apply random
effects models, i.e., the parameters α0, α1, α2 are replaced by the individual
parameters a0i, a1i, a2i which are the realizations of random variables, A0i,
A1i, A2i. In the next section, an introduction to estimation and prediction
procedures in the random effects models is presented.
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Figure 1: Virkler’s data
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1.1 Random effects models

Models with random and fixed effects are called mixed models. Hence we
discuss here also the more general mixed effects models. Linear mixed models
(LMMs) and nonlinear mixed models (NLMMs) have become emerged for an-
alyzing data including repeated measurements. For estimation of parameters
in the NLMMs and LMMs, several methods have been proposed (Davidian
and Giltinan, 2003; Gumedze et al., 2011). In the NLMMs, maximum likeli-
hood estimation of the unknown parameters is a considerable challenge as the
likelihood of observations cannot be represented in a closed form. Therefore,
some various approximations to the log-likelihood have been suggested such
as the LME approximation (Lindstrom and Bates, 1990) and Laplace’s ap-
proximation (Wolfinger, 1993; Vonesh, 1996; Wolfinger and Lin, 1997). Wang
(2007) mentions that these approximations usually work well when the num-
ber of intraindividual measurements is large and the variability of random
effects is small. By considering this weakness of the approximation-based
methods, using more accurate methods such as the EM algorithm have been
emerged. Particularly, the Monte Carlo Expectation Maximization (MCEM)
algorithm (Wei and Tanner, 1990) is used such that the E step is approx-
imated by the simulated samples from the conditional distribution of the
random effects given the observed data. Walker (1996) suggests an MCEM
algorithm for the exact maximum likelihood estimation in nonlinear random
effects models such that the random effects are considered as the missing part
of data. Kuhn and Lavielle (2005) propose a stochastic version of the EM al-
gorithm (SAEM) by use of the stochastic approximations including samples
which are obtained using the Markov chains. Jank (2006) proves that, unlike
the MCEM, the SAEM algorithm is convergent with a fixed and commonly
small simulation size. However, Wang (2007) mentions that in the NLMMs,
the computational costs of independent samplers related to intractability of
the target distribution can be significantly lower than corresponding value in
the Markov chains. And this is despite the fact that the Markov chains can
be applied to a wider variation of distributions than independent samples.
Moreover, assessment of the Monte Carlo error for the MCEM algorithm
based on the independent samples is straightforward whereas, it may be a
complicated task for the MCEM algorithm based on the Markov chains. The
Monte Carlo error should be evaluated after each EM iteration for checking
whether it swamps the true EM step and if it happens the automatically in-
creasing rule of the Monte Carlo sample size proposed by Booth and Hobert
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(1999) is used. These advantages of the independent samplers over Markov
chains motivate us to apply independent samplers in this research. In the
most of research works (Walker, 1996; Kuhn and Lavielle, 2005; Wang, 2007
), the considered missing parts of data in the EM algorithm are random ef-
fects and there are no missing observations or covariates in the data set. Wu
(2004) proposes MCEM algorithms for the exact and approximate likelihood
inferences, in the NLMMs, in the presence of missing covariates in the data
and applies Gibbs sampling, importance sampling and rejection sampling
for simulating required samples. In linear mixed models, Liski and Nummi
(1996) propose an iterative EM algorithm by considering some missing ob-
servations in the data set as the missing part of the data.

In terms of prediction procedures in mixed models, Swamy (1971) proposes
estimation and prediction procedures with prediction interval for the new
observation from the new individual based on the information of the old indi-
viduals in random coefficient regression (RCR) models. Moreover, Liski and
Nummi (1996) suggest a prediction procedure based on the EM algorithm
and a prediction interval for the new observation from a partially observed
individual in linear mixed models. In addition, Mathew et al. (2016) pro-
pose a prediction interval for the future observation by use of the generalized
pivotal quantity (GPQ) percentages for the BLUP of the future observation
in linear mixed effects models with a random effect. They suggest a GPQ
for the BLUP of the future observation and then by generating Monte Carlo
samples, they obtain 1000 GPQ values for the BLUP and finally present a pre-
diction interval for the BLUP by use of the α/2th and (1−α/2)th percentiles
of 1000 GPQ values. Furthermore, in the NLMMs, Hall and Clutter (2004)
propose the linearization-based prediction procedure in the multilevel nonlin-
ear mixed models and suggest an approximate prediction interval for the new
observation from the partially observed individual. Moreover, Stirnemann et
al. (2011) propose a simple prediction procedure given the past measure-
ments of an individual by use of the Markov Chain Monte Carlo (MCMC)
algorithm for simulating needed samples and suggest a prediction interval.
In the next section, the linear and nonlinear random effects models obtaining
from the Paris-Erdogan equation and our new proposed methods applied in
this thesis are presented.
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1.2 Models and methods

We have the special case of the linear and nonlinear random effects models
given as follows:

Linear random effects model for the old individuals:

Yi :=

 Yi1
...

YiNi

 = XXX iAi + Ei =

 xxxi1
...

xxxiNi

Ai +

 Ei1
...

EiNi

 ,

with the realizations

yi :=

 yi1
...

yiNi

 = XXX iai + ei =

 xxxi1
...

xxxiNi

 ai +

 ei1
...

eiNi

 ,

where yi, ei ∈ RNi , XXX i ∈ RNi×q, ai ∈ Rq, xxxij = (1, h1(xij), · · · , hq−1(xij)) (e.g.
h1(xij) = xij, h2(xij) = xij log(xij)) with hs : R → R, s = 1, · · · , q − 1,
i = 1, · · · , I.

Nonlinear random effects model for the old individuals:

Yi :=

 Yi1
...

YiNi

 = gi(Ai,xxxi) + Ei =

 g(Ai, xi1)
...

g(Ai, xiNi)

+

 Ei1
...

EiNi

 ,

with the realizations

yi :=

 yi1
...

yiNi

 = gi(ai,xxxi) + ei =

 g(ai, xi1)
...

g(ai, xiNi)

+

 ei1
...

eiNi

 ,

where yi, ei ∈ RNi , xxxi = (xi1, · · · , xiNi)ᵀ ∈ RNi , ai ∈ Rq, g : Rq × R → R,
gi : Rq × RNi → RNi . The function g is nonlinear in ai (e.g. g(ai, xij) =
a0i + a1ix

a2i
ij ) and i = 1, · · · , I.

Linear and nonlinear random effects models for a new individual:
For the new individual, we supposed that there are the N0 past observations
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and one future observation. Moreover, for the new individual, we have lin-
ear and nonlinear random effects models similar to the models for the old
individuals, but we only need to partition vectors Y0, E0 and g0(A0,xxx0) and
matrix XXX0 into the past and future parts as follows:

Y0 = (Y P ᵀ

0 , Y F
0 )ᵀ, E0 = (EP ᵀ

0 , EF
0 )ᵀ, g0(A0,xxx0) = (gP

ᵀ

0 (A0,xxx
P
0 ), g(A0, x

F
0 ))ᵀ

and XXX0 = (XXXP ᵀ

0 ,xxxF
ᵀ

0 )ᵀ, where EP
0 = (E01, · · · , E0N0)

ᵀ, Y P
0 = (Y01, · · · , Y0N0)

ᵀ

and gP
ᵀ

0 (A0,xxx
P
0 ) = (g(A0, x01), · · · , g(A0, x0N0))

ᵀ and indices P and F rep-
resent the past (observed) and future (unobserved) parts of the new indi-
vidual, respectively. Let the realizations of Y P

0 , E0 and EP
0 be defined as

yP0 = (y01, · · · , y0N0)
ᵀ, e0 = (eP

ᵀ

0 , eF0 )ᵀ and eP0 = (e01, · · · , e0N0)
ᵀ, respec-

tively.
Finally, for both random effects models (i.e., linear and nonlinear models),
we assume that A0, A1, · · · , AI , EP

0 , E
F
0 , E1, · · · , EI are independent with

Ai ∼ Nq(ααα,Σ), Ei ∼ NNi(000, σ
2IIINi) for i = 1, · · · , I and A0 ∼ Nq(ααα,Σ),

E0 ∼ NN0+1(000, σ2IIIN0+1).

Let YYY = (Y ᵀ
1 , · · · , Y

ᵀ
I )ᵀ and YYY obs = (Y ᵀ

1 , Y
ᵀ
I , · · · , Y P ᵀ

0 )ᵀ with the correspond-
ing realizations yyy = (yᵀ1 , · · · , y

ᵀ
I )

ᵀ and yyyobs = (yᵀ1 , y
ᵀ
I , · · · , yP

ᵀ

0 )ᵀ. The aim of
this thesis is to construct a prediction interval for a future observation Y F

0 at
xF0 of a new individual based on YYY or YYY obs, where observations Y01, · · · , Y0N0

at x01, · · · , x0N0 are given and xF0 must be larger than x0N0 .

In this thesis, eleven methods based on the modifications and extensions of
the existing methods are presented and compared. It should be mentioned
that some of these methods can only be used for the balanced data set, in
which Ni = N, XXX i = XXX for i = 1, · · · , I. In the following, we describe them.

1. mSwamy (The modified method of Swamy for linear models
in the balanced case (Swamy, 1971)):
In the Swamy’s prediction, the future observation Y F

0 at xF0 is predicted

as ŷ
F (old)
0 = xxxF0 α̂ααGLS, where xxxF0 = (1, h1(xF0 ), · · · , hq−1(xF0 )) (e.g. h1(xF0 ) =

xF0 , h2(xF0 ) = xF0 log(xF0 )) and α̂ααGLS is the estimate of ααα (i.e., the mean of ran-
dom effects) which is obtained from the Swamy’s estimation method based
on the information of YYY (the old individuals). A modification of the Swamy’s
prediction can be given by a convex combination of the Swamy’s prediction
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approach and the classical approach for linear models as follows:

ŷF0 = (1− w)ŷ
F (old)
0 + wŷ

F (new)
0 ,

where w is chosen such that the variance of prediction error (ŷF0 − yF0 ) is

minimized, and ŷ
F (old)
0 is the Swamy’s prediction, and ŷ

F (new)
0 = xxxF0 â0,OLS

with â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 yP0 , where yP0 is the realization of the ob-
served part of the new individual (Y P

0 ) and XXXP
0 = (xxxᵀ01, · · · ,xxx

ᵀ
0N0

)ᵀ with
xxx0j = (1, h1(x0j), · · · , hq−1(x0j)) (e.g. h1(x01) = x0j, h2(x0j) = x0j log(x0j)).
In Lemma 4.2, we propose the (1 − α)-prediction interval for Y F

0 based on
the modified method of Swamy.

2. eRao (Extension of the method of Rao for linear models in
the balanced case (Rao, 1975)):
In the Rao’s prediction, the prediction of Y F

0 at xF0 is given by

ŷF0 = xxxF0 (Ĉâ0,OLS + (IIIq − Ĉ)α̂ααGLS),

where xxxF0 , â0,OLS, α̂ααGLS were defined as in the modified method of Swamy,

Ĉ := Σ̂(Σ̂ + σ̂2(XXXP ᵀ

0 XXXP
0 )−1)−1, where Σ̂ and σ̂2 are the estimates of Σ and

σ2 and are obtained from the Swamy’s estimation method based on the in-
formation of YYY , and XXXP

0 is the covariate matrix related to the observed part
of the new individual. Rao (1975) presents only the above prediction pro-
cedure and does not calculate prediction interval. We extend this approach
by adding an approximate prediction interval for Y F

0 . In Corollary 4.1, we
present this approximate prediction interval.

3. mRao (The modified method of Rao for linear models in the
balanced case (Rao, 1975)):
In this approach, we consider a modification of the Rao’s prediction such that
YYY obs instead of YYY is used for the estimation of parameters. Then a modified
Rao’s prediction is given by:

ŷF0 = xxxF0 (Ĉâ0,OLS + (IIIq − Ĉ)α̂ααobs)

where Ĉ := Σ̂obs[Σ̂obs+ σ̂2
obs(XXX

P ᵀ

0 XXXP
0 )−1]−1, with α̂ααobs, Σ̂obs and σ̂2

obs which are
obtained based on the information of YYY obs. In Lemma 4.1 and Theorem 4.1,
we calculate the distribution of prediction error and present an approximate
prediction interval for Y F

0 based on the modified method of Rao, respectively.
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4. PBmSwamy (Combination of method of Pinheiro/Bates and
the modified method of Swamy in the unbalanced case (Swamy,
1971; Pinheiro and Bates, 2000)):
In this method, we linearize the nonlinear mixed model with the starting val-
ues, which are obtained from the estimation method of Pinheiro and Bates,
and then use the linearized model to obtain the estimates and prediction
intervals with the modified method of Swamy (see Section 4.2.2).

5. ePB (Extension of the method of Pinheiro and Bates for nonlin-
ear models in the unbalanced case (Pinheiro and Bates, 2000)):
In the Pinheiro and Bates’ method, the prediction of future observation (Y F

0 )
at xF0 is given by ŷF0 = g(α̂αα, xF0 ), where function g is a nonlinear and differ-
entiable function of α̂αα, and α̂αα is the estimate of ααα, which is obtained from
the Pinheiro and Bates’ estimation method based on the information of YYY
(the old individuals). We extend this approach by adding an approximate
prediction interval for Y F

0 in Theorem 3.4.

6. mPB (The modified method of Pinheiro and Bates for non-
linear models in the unbalanced case (Pinheiro and Bates, 2000)):
In this approach, we present a modification of the Pinheiro and Bates’ pre-
diction such that the estimation of parameters are obtained based on the
information of YYY obs (the old and new individuals) instead of YYY . Based on
this approach, we propose an approximate prediction interval for Y F

0 in The-
orem 4.2.

7. PBLiski (Combination of methods of Pinheiro/Bates and
Liski/Nummi in the unbalanced case (Liski and Nummi, 1996; Pin-
heiro and Bates, 2000)):
Liski and Nummi (1996) propose an EM algorithm to calculate the maxi-
mum likelihood estimator for the parameters in a linear mixed model and
derive a prediction interval for Y F

0 . As in the Method 4, we propose to start
with the estimates of Pinheiro and Bates, linearize the nonlinear model with
these estimates and then use the linearized model to obtain the estimates
and prediction intervals with the method of Liski and Nummi (see Section
4.2.1). In Lemma 4.3, the approximate prediction interval in a linear mixed
model proposed by Liski and Nummi (1996) is presented.

19



8. PBSt (Combination of methods of Pinheiro/Bates and Stirne-
mann et al. in the unbalanced case (Stirnemann et al., 2011; Pin-
heiro and Bates, 2000)):

Let β̂ββ be the ML estimation of βββ := (ααα,Σ, σ2) based on the information of
YYY , which is obtained from the estimation method of Pinheiro and Bates. In
the method of Stirnemann et al., the future observation is predicted as:

ŷF0 :=
̂E(Y F
0 |yP0 , β̂ββ) ≈ 1

M

M∑
m=1

g(ã
(m)
0 , xF0 ),

where M is the Monte Carlo sample size, g is a nonlinear and differentiable
function of ã

(m)
0 and ã

(m)
0 for m ∈ {1, · · · ,M} is the random sample which

is obtained using the MCMC algorithm from f(a0|yP0 , β̂ββ), where a0 is the
realization of A0, the random effect related to the new individual (see Lemma
4.5). Stirnemann et al. (2011) propose the (1 − α)-prediction interval for
Y F

0 , which is given by

PI = [qα/2(β̂ββ, yP0 ), q1−α/2(β̂ββ, yP0 )],

where qα/2(β̂ββ, yP0 ) and q1−α/2(β̂ββ, yP0 ) are respectively the (α/2)− and (1 −
α/2)− quantiles of g(ã

(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ). For simulating samples us-

ing the MCMC algorithm from f(a0|yP0 ,βββ), the special R package was used
(see Section 4.2.5.1).

9. StConf (Method of Stirnemann et al. combined with confidence
sets in the unbalanced case (Stirnemann et al., 2011)):
In this approach, we use the same estimation and prediction procedures which
have been used in Method 8 and consider a prediction interval based on
the (1 − α)-confidence ellipsoid of parameters, which results in a (1 − α)2-
prediction interval (Müller et al., 2016), as follows:

∪βββ∈Θ̂(yyy)[qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )] ⊆ [ min
βββ∈Θ̂(yyy)

qα/2(βββ, yP0 ), max
βββ∈Θ̂(yyy)

q1−α/2(βββ, yP0 )],

where qα/2(βββ, yP0 ) and q1−α/2(βββ, yP0 ) are respectively the (α
2
)-and (1 − α

2
)-

quantiles of g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) for each βββ in the confidence ellipsoid

Θ̂(yyy) and ã
(1)
0 , · · · , ã(M)

0 is a random sample from f(a0|yP0 ,βββ) (see Section
4.2.5.2). Similar to Method 8, an MCMC algorithm is used for simulating
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samples from f(A0|yP0 ,βββ). The confidence ellipsoid for βββ is obtained from
the asymptotic normality of the estimates obtaining from the Pinheiro and
Bates’ method (see Section 3.2.1.1).

10. WmSt (Combination of an extended method of Walker and
a modified method of Stirnemann et al. in the unbalanced case
(Walker, 1996; Stirnemann et al., 2011)):
Walker (1996) proposes an MCEM algorithm for estimating the parameters
of a nonlinear random effects model in which ZZZ := (YYY obs,AAA) is the complete
data, where AAA := (A1, · · · , AI , A0), which is a vector of all random effects,
is the missing part and YYY obs is a vector of the observed parts of all individu-
als. We extend the Walker’s MCEM algorithm such that ZZZ := (YYY obs,AAA, Y

F
0 )

is the complete data and AAA and Y F
0 are the missing parts, where Y F

0 is
the unknown observation from the new individual that is partially observed.
For simulating samples, which is needed in the Monte Carlo approximation,
we apply the Walker’s method for the completely observed individuals and
propose to apply the Gibbs sampling along with the Sampling Importance
Resampling (SIR) method for the partially observed individual (Koch, 2007;
Bishop, 2006) (see Algorithm 1). The pseudocode for our proposed MCEM
algorithm is presented in Algorithm 2.
For prediction of the future observation, we suggest a modified method of
Stirnemann et al. in which the ratio of two Monte Carlo approximations, pro-
posed by Walker (1996), is used for calculating the conditional expectations
and predictions. It should be mentioned that, as the simulated samples from
the prediction method of Stirnemann et al. are obtained from an MCMC
algorithm, so they have dependent samples in this case. However in the
modified version of this approach, the samples are independent (see Section
4.2.6.2). A modified prediction of Strinemann et al. is given by:

ŷF0 :=
̂E(Y F
0 |yP0 , β̂ββ) ≈

M∑
m=1

g(ã
(m)
0 , xF0 )

f(yP0 |ã
(m)
0 , β̂ββ)∑M

m=1 f(yP0 |ã
(m)
0 , β̂ββ)

,

where β̂ββ is the ML estimation of βββ := (ααα,Σ, σ2) based on the information of
YYY obs, which is obtained from the extension of Walker’s estimation method,
and (ã

(1)
0 , · · · , ã(M)

0 ) is the random sample from f(a0|β̂ββ) ((A0|β̂ββ) ∼ Nq(α̂αα, Σ̂)).
For prediction interval, we propose to use the following (1 − α)-prediction
interval:

PI = [qα/2(β̂ββ), q1−α/2(β̂ββ)],
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where qα/2(β̂ββ) and q1−α/2(β̂ββ) are respectively the (α/2)− and (1−α/2)− quan-

tiles of g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ), and (ã

(1)
0 , · · · , ã(M)

0 ) is a random sample
from Nq(α̂αα, Σ̂) (see Section 4.2.6.3).

11. mStConf (The modified method of Stirnemann et al. com-
bined with confidence sets (Stirnemann et al., 2011)):
In this method, we use the same estimation and prediction procedures which
have been described in Method 10. But for prediction interval, based on the
results in Müller et al. (2016), we propose the (1 − 2α)-prediction interval
by use of the (1− α)-confidence set of parameters Θ̂(yyyobs), which is given by

∪βββ∈Θ̂(yyyobs)
[qα/2(βββ), q1−α/2(βββ)] ⊆ [ min

βββ∈Θ̂(yyyobs)
qα/2(βββ), max

βββ∈Θ̂(yyyobs)
q1−α/2(βββ)],

where qα/2(βββ) and q1−α/2(βββ) are respectively the (α
2
)-and (1 − α

2
)-quantile

of g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) for each βββ in the confidence ellipsoid Θ̂(yyyobs),

and (ã
(1)
0 , · · · , ã(M)

0 ) is a random sample from f(a0|βββ) ((A0|βββ) ∼ Nq(ααα,ΣΣΣ))

for each (ααα,Σ) in Θ̂(yyyobs). The related confidence ellipsoid is obtained using
Theorem 4.5 which has been proposed by Nie (2007) (see Section 4.2.6.4).

1.3 Thesis overview

This thesis is organized in 8 Chapters. In Chapter 2, the existing estimation
and prediction methods in linear and nonlinear regression models suggested
by Seber (1989) and Bates (1988) are discussed. In this chapter, for the
estimation and prediction, only the information from the new series is used.
Chapter 3 describes the existing estimation and prediction methods for lin-
ear and nonlinear random effects models suggested by Swamy (1971) and
Pinheiro and Bates (2000). In this chapter, estimation of the parameters
and prediction of the random effects and missing observations are obtained
by use of the information of the old series. It also contains our proposed
approximate prediction interval for Y F

0 based on the Pinheiro and Bates’
prediction, which is presented in Theorem 3.4.
Chapter 4 introduces some of the existing prediction methods in linear and
nonlinear random effects models. These methods are due to Rao (1975), Liski
and Nummi (1996), Hall and Clutter (2004) and Stirnemann et al. (2011).
This chapter also contains the modifications and extensions of some of the
existing prediction methods (extension of the method of Rao, the modified
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method of Rao, the modified method of Swamy, combination of method of
Pinheiro/Bates and the modified method of Swamy, combination of methods
of Pinheiro/Bates and Liski/Nummi, extension of the method of Pinheiro and
Bates, the modified method of Pinheiro and Bates, combination of methods
of Pinheiro/Bates and Stirnemann et al., method of Stirnemann et al. com-
bined with confidence sets, combination of an extended method of Walker
and a modified method of Stirnemann et al., and the modified method of
Stirnemann et al. combined with confidence sets). The most important part
of this chapter is Section 4.2. In this chapter, we propose some new lemmas
(Lemma 4.1 and 4.2) and theorems (Theorem 4.1 and 4.2) for calculating
distribution of the prediction error and getting the approximate prediction
interval for Y F

0 .
The difference between Chapters 2, 3 and 4 is due to the information used
in the estimation and prediction procedures. In Chapter 2, the estimation of
unknown parameters and prediction of the future observation are obtained
only based on the information of the new series (partially observed series),
whereas in Chapter 3, in all the estimation and prediction procedures we use
the information of the old series. However in Chapter 4, the information of
the old and new series is used, which is our main aim in this thesis.
Chapter 5 contains numerical results from a simulation study and an appli-
cation to a real data. In Chapter 6, the results are summarized and for the
future work an outlook is also given. Chapters 7 and 8 include Appendix
and a list of references.
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2 Prediction using only observations of the

same series

2.1 Prediction of the future observation in linear re-
gression models

2.1.1 Estimation method of Seber

Consider the following linear regression model for the partially observed in-
dividual (new individual):

Y P
0 = XXXP

0 ααα + EP
0 (2.1)

where ααα ∈ Rq and

Y P
0 =


Y01

.

.

.
Y0N0

 , XXXP
0 =

 xxx01
...

xxx0N0

 , EP
0 =


E01

.

.

.
E0N0

 ,

with xxx0j = (1, h1(x0j), · · · , hq−1(x0j)), j = 1, · · · , N0. Y P
0 is an N0 × 1

vector of the observations, XXXP
0 is an N0 × q covariate matrix, ααα is a q × 1

vector of the regression coefficients, and EP
0 is an N0×1 vector of the random

errors which is distributed as EP
0 ∼ NN0(000, σ

2IIIN0).

Theorem 2.1. Estimation of ααα and σ2 [Seber (1989)]:
Consider the linear model (2.1). The unbiased estimations of ααα and σ2 are
given by

α̂αα = (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 (2.2)

σ̂2 =
(Y P

0 −XXXP
0 α̂αα)ᵀ(Y P

0 −XXXP
0 α̂αα)

N0 − q
. (2.3)

Moreover, it is proved that

α̂αα ∼ Nq(ααα, σ
2(XXXP ᵀ

0 XXXP
0 )−1) (2.4)

By use of the lm function in the stats package in R, these estimates can
be obtained (R Development Core Team, 2016).
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2.1.2 Prediction method of Seber

In regression models, we are interested in predicting the future observation
Y F

0 which is modeled as
Y F

0 = xxxF0 ααα + EF
0 , (2.5)

where xxxF0 = (1, h1(xF0 ) · · · , hq−1(xF0 )) and EF
0 ∼ N(0, σ2) such that EP

0 and
EF

0 are independent. Prediction of the future observation is given by

ŷF0 = xxxF0 α̂̂α̂α,

where α̂̂α̂α = (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 yP0 and yP0 is the realization of Y P
0 .

By use of the predict function in the stats package in R, prediction and
prediction interval for the future observation is obtained.

Theorem 2.2. [Seber (1989)] :
Let U ∼ Nn(µµµ, σ2In) be an n-vector and B be an n × n symmetric matrix.
Then the ratio U ′BU/σ2 will have a χ2

r(λ) distribution with λ = µµµ′Bµµµ/σ2 if
B is idempotent with rank(B)= r.

Theorem 2.3. Prediction interval for Y F
0 [Seber (1989)]

Consider the linear regression model (2.1) for the partially observed individual
and the linear model (2.5) for the future observation from the new individual.
Prediction of the future observation Y F

0 is given by

Ŷ F
0 = xxxF0 α̂̂α̂α,

where α̂̂α̂α = (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 . The prediction error (Ŷ F

0 − Y F
0 ) has normal

distribution as follows:

Ŷ F
0 − Y F

0 ∼ N(0, σ2[1 + xxxF0 (XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 ]), (2.6)

and then the (1− α)-prediction interval for Y F
0 can be given by

PI = (ŷF0 ± tN0−q(α/2)
√
σ̂2[1 + xxxF0 (XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 ]), (2.7)

where ŷF0 is the realization of Ŷ F
0 .

Proof. The proof can be found in the appendix.
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2.2 Prediction of the future observation in nonlinear
regression models

2.2.1 Gauss-Newton estimation method

Consider the following nonlinear regression model for the partially observed
individual as:

Y P
0 = gP0 (ααα,xxxP0 ) + EP

0 , (2.8)

where gP0 (ααα,xxxP0 ) : Rq × RN0 → RN0 is a vector of the nonlinear functions of
ααα, ααα ∈ Rq and

Y P
0 =


Y01

.

.

.
Y0N0

 , gP0 (ααα,xxxP0 ) =

 g(ααα, x01)
...

g(ααα, x0N0)

 , EP
0 =


E01

.

.

.
E0N0

 .

Y P
0 is an N0× 1 vector of the observations, xxxP0 ∈ RN0 is a regressor variables

vector, ααα is a q× 1 vector of the regression coefficients, and EP
0 is an N0 × 1

vector of the random errors which is distributed as EP
0 ∼ NN0(000, σ

2IIIN0).

The Gauss-Newton method [Bates (1988)]: Gauss proposes using a
linear approximation to the nonlinear function and iteratively improving the
starting value ααα(0) for ααα. At the (k + 1)th iteration, the first order Taylor
expansion of gP0 (ααα,xxxP0 ) about ααα(k) is given by

gP0 (ααα,xxxP0 ) ≈ gP0 (ααα(k),xxxP0 ) + X̃XX
P (k+1)

0 (ααα−ααα(k)), (2.9)

X̃XX
P (k+1)

0 =
∂gP0 (aaa,xxxP0 )

∂aaa
|aaa=ααα(k) ∈ RN0×q.

This is equivalent to approximate the residuals at the (k + 1)th iteration as
follows:

EP
0 = Y P

0 − gP0 (ααα,xxxP0 ) ≈ Y P
0 − [gP0 (ααα(k),xxxP0 ) + X̃XX

P (k+1)

0 (ααα−ααα(k))]

= Z
P (k+1)
0 − X̃XXP (k+1)

0 δδδ, (2.10)

where Z
P (k+1)
0 = Y P

0 −gP0 (ααα(k),xxxP0 ) and δδδ = ααα−ααα(k). In fact, at the (k+1)th
iteration we have approximately a linear regression model as

Z
P (k+1)
0 ≈ X̃XXP (k+1)

0 δδδ + EP
0 .
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Hence, the least square estimate of δδδ at the (k + 1) th iteration is given by

δδδ(k+1) = (X̃XX
P (k+1)ᵀ

0 X̃XX
P (k+1)

0 )−1X̃XX
P (k+1)ᵀ

0 Z
P (k+1)
0 .

Finally, the update estimate of ααα is given by

ααα(k+1) = ααα(k) + δδδ(k+1).

This process is repeated until no useful changes appear in the elements of
the parameter vector.
Consider α̂αα be the estimate from the final iteration of the Gauss-Newton
method. Then the estimate of σ2 is obtained by

σ̂2 =
(Y P

0 − gP0 (α̂αα,xxxP0 ))ᵀ(Y P
0 − gP0 (α̂αα,xxxP0 ))

N0 − q
. (2.11)

These estimates can be obtained from the nls function in the stats package
in R (R Development Core Team, 2016).

Asymptotic normality of α̂αα:
Jennrich (1969) proves that√

N0(α̂αα−ααα)
N0→∞−−−−→ Nq(000, σ

2III−1
ααα ), (2.12)

where

IIIααα :=

∫
ġ(ααα, x)ġ(ααα, x)ᵀ∆(dx),

with ġ(ααα, x) := ∂g(aaa,x)
∂aaa
|aaa=ααα and ∆ is a design measure.

From (2.12), we approximately have√
N0(α̂αα−ααα) ≈ Nq(000, σ

2(
1

N0

X̃XX
P ᵀ

0,αααX̃XX
P

0,ααα)−1)

⇒
√
N0(α̂αα−ααα) ≈ Nq(000, σ

2N0(X̃XX
P ᵀ

0,αααX̃XX
P

0,ααα)−1)

⇒ (α̂αα−ααα) ≈ Nq(000, σ
2(X̃XX

P ᵀ

0,αααX̃XX
P

0,ααα)−1), (2.13)

with X̃XX
P

0,ααα :=
∂gP0 (aaa,xxxP0 )

∂aaa
|aaa=ααα. Since ααα is unknown α̂αα is replaced in X̃P

0,ααα.
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2.2.2 Prediction method of Seber

In regression models, we are interested in predicting the future observation,
Y F

0 , which is modeled as

Y F
0 = g(ααα, xF0 ) + EF

0 , (2.14)

where g(ααα, xF0 ) is a nonlinear function of ααα and EF
0 ∼ N(0, σ2) such that EP

0

and EF
0 are independent. The prediction of the future observation is given

by
Ŷ F

0 = g(α̂αα, xF0 ),

where α̂̂α̂α is obtained from the Gauss-Newton method. This prediction can be
obtained using the predict function in the stats package in R (R Development
Core Team, 2016).

Theorem 2.4. Prediction interval for Y F
0 [Seber (1989)]

Consider the nonlinear regression model (2.8) for the partially observed in-
dividual and the nonlinear model (2.14) for the future observation from the
new individual. Prediction of the future observation, Y F

0 , is given by

Ŷ F
0 = g(α̂αα, xF0 ),

where α̂̂α̂α is obtained from the Gauss-Newton method. The prediction error
(Ŷ F

0 − Y F
0 ) has normal distribution as follows:

Ŷ F
0 − Y F

0 ≈ N(0, σ2[x̃xxF0,ααα(X̃XX
P ᵀ

0,αααX̃XX
P

0,ααα)−1x̃xxF
ᵀ

0,ααα + 1]), (2.15)

where x̃xxF0,ααα =
∂g(aaa,xF0 )

∂aaa
|aaa=ααα and X̃XX

P

0,ααα =
∂gP0 (aaa,xxxP0 )

∂aaa
|aaa=ααα.

Then the (1− α)-prediction interval for Y F
0 is given by

PI = (ŷF0 ± qN(0,1),1−α/2

√
σ̂2[x̃xxF0,α̂αα(X̃XX

P ᵀ

0,α̂ααX̃XX
P

0,α̂αα)−1x̃xxF
ᵀ

0,α̂αα + 1]), (2.16)

where ŷF0 is the realization of Ŷ F
0 .

Proof. The proof can be found in the appendix.
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3 Prediction using only observations of the

other series

3.1 Prediction of the future observation in linear ran-
dom effects models

Assume that the Ni observations of the ith individual are interpreted by the
model

Yi = XXX iAi + Ei, i = 1, · · · , I, (3.1)

where Yi = (Yi1, · · · , YiNi)ᵀ is the observation vector of the ith individual,
XXX i = (xxxᵀi1, · · · ,xxx

ᵀ
iNi

)ᵀ is the Ni × q covariate matrix of the ith individual,
where xxxij := (1, h1(xij), · · · , hq−1(xij)), i ∈ {1, · · · , I}, j ∈ {1, · · · , Ni},
and Ai and Ei are respectively the (q × 1)-vector of coefficients and the
(Ni × 1)-vector of errors. If Ai’s are supposed to be independent and ran-
dom then the model (3.1) is called a random coefficient regression model
(RCR). In the case of balanced data (Ni = N,XXX i = XXX, i = 1, · · · , I), Rao
(1965) and Swamy (1971) present estimation procedures for a RCR model.
Moreover, Carter and Yang (1986) and Johansen (1982) propose estimation
methods for the unbalanced data. In the following, all assumptions of a RCR
model for the balanced longitudinal data are presented.

Assumption 3.1. In the defined RCR model of (3.1) with the balanced
data, the following assumptions hold (Swamy, 1971):
[A1] XXX is a nonstochastic (N × q)-design matrix which includes the inde-
pendent variables. The sample size N is larger than q (N > q). In addition,
XXX is full rank, i.e. rank(XXX) = q.

[A2] Stochastic coefficient vectors Ai, i ∈ {1, · · · , I} are independent and
identically distributed with mean ααα ∈ Rq and covariance matrix Σ ∈ Rq×q.
The stochastic character of the coefficient vectors can also be expressed as
Ai = ααα + δδδi, where δδδi := (δ1i, · · · , δqi)ᵀ is a random vector with mean 000 and
variance covariance Σ. The components of ααα := (α1, · · · , αq)ᵀ and δδδi are
respectively considered as the fixed (nonstochastic) and random effects.

[A3] Stochastic (N × 1)-error vectors Ei, i ∈ {1, · · · , I} are independent
and identically distributed with mean 000 and variance covariance matrix σ2IIIN ,
where σ2 > 0 and IIIN is a (N ×N)-identity matrix.
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[A4] Random vectors of Ai and Ej are stochastically independent for all
i, j ∈ {1, · · · , I}, i.e. A1, · · · , AI , E1, · · · , EI are stochastically independent.

[A5] Both the coefficient and error vectors Ai and Ei, i ∈ {1, · · · , I} are
distributed as multivariate normal. Hence, for all i ∈ {1, · · · , I} we have
Ai ∼ Nq(ααα,Σ) and Ei ∼ NN(000, σ2IIIN).

The assumption of normal distribution [A5] is unnecessary to derive the pa-
rameter estimates, however it is essential to construct a prediction interval.
According to the assumptions [A1]-[A5], the observation vectors Y1, · · · , YI
are independent and identically distributed as follows:

Y1, · · · , YI ∼ NN(XXXααα,XXXΣXXXᵀ + σ2IIIN). (3.2)

3.1.1 Estimation method of Swamy in the balanced case

In a RCR model, q fixed effects from the mean vector ααα, q(q+1)
2

components
from the covariance matrix Σ and the intraindividual variance σ2 are the un-
known parameters to be estimated. In this section, the proposed estimation
method of Swamy (1971) is described.

3.1.1.1 Estimation of fixed effects

For derivation of the best linear unbiased estimator of the parameter vector
ααα, firstly the I regression equations Yi = XXXAi + Ei, i ∈ {1, · · · , I} are
considered. Let Âi,OLS := (XXXᵀXXX)−1XXXᵀYi be the OLS-Estimation of the pa-
rameter vector Ai. Based on the assumptions [A1]-[A5], the distribution of
OLS-Estimations Âi,OLS, i ∈ {1, · · · , I} is given by

Â1,OLS, · · · , ÂI,OLS ∼ Nq(ααα,Σ + σ2(XXXᵀXXX)−1). (3.3)

A simple estimation of ααα is the mean of OLS-Estimations Âi,OLS, i ∈
{1, · · · , I}. In the following theorem, it will be proved that α̂ααGLS, which
is defined as α̂ααGLS := 1

I

∑I
i=1 Âi,OLS is the best linear unbiased estimation

of ααα. For the proof of this theorem, we firstly need to find the inverse of
(XXXΣXXXᵀ + σ2IIIN).
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Lemma 3.1. Inverse of (XXXΣXXXᵀ + σ2IIIN) [Swamy (1971)]
Let σ2 > 0, IIIN be the (N × N)-identity matrix, Σ ∈ Rq×q be a nonsingular
matrix and XXX the (N × q) matrix (N > q) with rank(XXX) = q. Then the
inverse of (XXXΣXXXᵀ + σ2IIIN) is given by

σ−2IIIN − σ−2XXX(XXXᵀXXX)−1XXXᵀ +XXX(XXXᵀXXX)−1(Σ + σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ.
(3.4)

Proof. The proof can be found in the appendix.

Theorem 3.1. Best linear unbiased estimation of fixed effects [Swamy (1971)]
Consider the RCR model Yi = XXXAi + Ei, i ∈ {1, · · · , I} and the assump-
tions [A1]-[A5]. The best linear unbiased estimation of ααα is given by

α̂ααGLS :=
1

I

I∑
i=1

Âi,OLS.

Proof. The proof can be found in the appendix.

From (3.3) and the independency between Â1,OLS, · · · , ÂI,OLS, we con-
clude that

α̂ααGLS ∼ Nq(ααα,
1

I
(Σ + σ2(XXXᵀXXX)−1)). (3.5)

3.1.1.2 Estimation of variance components

Based on the assumptions [A1]-[A5], Swamy (1971) proposes the unbiased
and consistent estimations for the intraindividual variance, σ2, and the co-
variance matrix, Σ.

Theorem 3.2. Estimation of σ2 and Σ [Swamy (1971)]
Consider the RCR model Yi = XXXAi + Ei, i ∈ {1, · · · , I} and the assump-
tions [A1]-[A5]. The unbiased and consistent estimations of σ2 and Σ are
given by

σ̂2 :=
1

I

I∑
i=1

σ̂2
i =

1

I

I∑
i=1

(Yi −XXXÂi,OLS)ᵀ(Yi −XXXÂi,OLS)

N − q
, (3.6)

Σ̂ :=
1

I − 1

I∑
i=1

(Âi,OLS − α̂ααGLS)(Âi,OLS − α̂ααGLS)ᵀ − σ̂2(XXXᵀXXX)−1, (3.7)

where σ̂2
i is the variance estimation of the ith regression model Yi = XXXAi+Ei.

Proof. The proof can be found in the appendix.
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3.1.2 Prediction method of Swamy

In many applications, the prediction of the future observation is interested.
We define Y F

0 = xxxF0 A0 +EF
0 as the unknown observation of a new individual

at xF0 , where xxxF0 = (1, h1(xF0 ), · · · , hq−1(xF0 )) ∈ Rq. The new individual is also
modeled as a RCR model. Hence, it is concluded that A0 ∼ Nq(ααα,Σ), EF

0 ∼
N(0, σ2) and EF

0 , E1, · · · , EI , A0, A1, · · · , AI are stochastically independent.
The best linear unbiased predictor for Y F

0 is given by (Swamy, 1971):

ŷF0 := xxxF0 α̂ααGLS,

where α̂ααGLS := 1
I

∑I
i=1 âi,OLS and âi,OLS is the realization of Âi,OLS. This

predictor is the best linear unbiased predictor for Y F
0 because, α̂ααGLS is the

best linear unbiased estimation of the fixed effects. In the Lemma 3.2 and
Theorem 3.3, the distribution of prediction error (Ŷ F

0 −Y F
0 ) and a prediction

interval for Y F
0 are derived by Swamy (1971).

Lemma 3.2. Distribution of the prediction error [Swamy (1971)]
Consider the RCR model Yi = XXXAi + Ei, i ∈ {1, · · · , I} and the assump-
tions [A1]-[A5]. Let Ŷ F

0 := xxxF0 α̂ααGLS be the prediction for the observation of
the new individual at xF0 , where α̂ααGLS := 1

I

∑I
i=1 Âi,OLS. Then the prediction

error (Ŷ F
0 − Y F

0 ) has normal distribution with the mean 0 and variance

ν :=
1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ + σ2. (3.8)

Proof. The proof can be found in the appendix.

If the variance components Σ and σ2 are known, then

Ŷ F
0 − Y F

0√
ν

∼ N(0, 1).

However, if the variance components are unknown the estimations of Σ and
σ2 are needed to construct an approximate prediction interval.

Theorem 3.3. Approximate prediction interval for Y F
0 [Swamy (1971)]

Consider the RCR model Yi = XXXAi + Ei, i ∈ {1, · · · , I} and the assump-
tions [A1]-[A5]. Let Ŷ F

0 := xxxF0 α̂ααGLS be the prediction for the observation of
the new individual at xF0 , where α̂ααGLS := 1

I

∑I
i=1 Âi,OLS. Then the variance

of prediction error ν can be estimated as

ν̂ :=
1

I
xxxF0 (Σ̂ + σ̂2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ̂(xxxF0 )ᵀ + σ̂2. (3.9)
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By use of ν̂, the standardized prediction error converges to the standard nor-
mal distribution for N, I →∞. Consequently, the (1−α)-prediction interval
for Y F

0 is given by

P̂I(yyy) = [ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂], (3.10)

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1 − α/2)-quantile of

standard normal distribution.

Proof. The proof can be found in the appendix.

3.2 Prediction of the future observation in nonlinear
random effects models

Nonlinear mixed effects (NLME) model includes the nonlinear function of
some or all of the fixed and random effects. Lindstrom and Bates (1990)
propose the NLME model for repeated measures as follows:

Yij = g(Ai, xij) + Eij, i = 1, · · · , I, j = 1, · · · , Ni, (3.11)

where Yij is the jth response on the ith individual (group), g : Rq × R → R
is a nonlinear and differentiable function of the parameter vector Ai, xij
is the independent variable, and Eij is the within group error term which
has normal distribution. The parameter vector Ai can be different from
individual to individual and is modeled as

Ai = ααα + δδδi, δδδi
iid∼ Nq(000,Σ), (3.12)

where ααα is a q-dimensional vector of fixed effects and δδδi is a q-dimensional
random effects vector related to the ith individual which has normal distri-
bution with mean zero and the positive definite variance covariance matrix
Σ. It is also supposed that the within group errors Eij are distributed in-
dependently as N(0, σ2) and independent of the δδδi and that observations
related to the different individuals are independent. For all i ∈ {1, · · · , I},
the nonlinear random effects model is modeled as

Yi = gi(Ai,xxxi) + Ei, gi(Ai,xxxi) : Rq × RNi → RNi (3.13)
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where Ai is a q-dimensional vector of random effects which is independently
distributed as Nq(ααα,Σ) and

Yi =

 Yi1
...

YiNi

 ,xxxi =

 xi1
...

xiNi

 , gi(Ai,xxxi) :=

 g(Ai, xi1)
...

g(Ai, xiNi)

 , Ei =

 Ei1
...

EiNi

 .

In this thesis we consider g(Ai, xij) = A0i + A1ix
A2i
ij , j = 1, · · · , Ni.

3.2.1 Estimation method of Pinheiro and Bates in the unbalanced
case

Various methods have been suggested for the estimation of parameters in the
NLME models. Some of them involve taking a first-order Taylor expansion of
g around the conditional mode of the random effects (Lindstrom and Bates,
1990), or around the expected value of random effects (Sheiner and Beal,
1980; Vonesh and Carter, 1992). In this section, the estimation procedure
proposed by Lindstrom and Bates (1990) for the defined NLME model (3.13)
will be described. In mixed models, because the random effects are not
observed the marginal density of the response YYY is applied for the maximum
likelihood estimation of parameters which is calculated as

f(yyy|βββ) =

∫
f(yyy|δδδ,ααα, σ2)f(δδδ|Σ)dδδδ, (3.14)

where βββ := (ααα, σ2,Σ), δδδ := (δδδᵀ1, · · · , δδδ
ᵀ
I)

ᵀ and yyy is the realization of YYY . For the
NLME model (3.13), Pinheiro and Bates (2000) propose to express the vari-
ance covariance matrix of random effects by the unknown precision factor
∆ ∈ Rq×q, such that Σ−1 = σ−2∆ᵀ∆ and ∆ is represented by an uncon-
strained set of parameters θθθ. For a positive-definite matrix Σ, such a ∆ is
available however it does not need to be unique. By use of the unknown
precision factor ∆(θθθ), the joint distribution of YYY and δδδ can be written as

f(yyy, δδδ|ααα, σ2,∆(θθθ)) = f(yyy|δδδ,ααα, σ2)f(δδδ|∆(θθθ)) =
I∏
i=1

f(yi|δδδi,ααα, σ2)f(δδδi|∆(θθθ))

=
I∏
i=1

1√
(2πσ2)Ni

exp{||yi − gi(δ
δδi +ααα,xxxi)||2

−2σ2
}·

exp{ ||∆(θθθ)δδδi||2
−2σ2 }√

(2π)q · |σ2(∆(θθθ)ᵀ∆(θθθ))−1|
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=
|∆(θθθ)|I√

(2πσ2)(N+Iq)
exp{

∑I
i=1[||yi − gi(δδδi +ααα,xxxi)||2 + ||∆(θθθ)δδδi||2]

−2σ2
},

(3.15)
where N :=

∑I
i=1Ni. The alternating estimation algorithm suggested by

Lindstrom and Bates (1990) has two steps, a penalized nonlinear least squares
(PNLS) step and a linear mixed effects (LME) step.
In the PNLS step, at the (k + 1)th iteration, Lindstrom and Bates (1990)
mention that the maximum likelihood estimations of ααα and δδδi maximize
(3.15) by given θθθ(k) or equivalently minimize the following penalized nonlinear
least squares function

I∑
i=1

[||yi − gi(δδδi +ααα,xxxi)||2 + ||∆(θθθ(k))δδδi||2]. (3.16)

In the LME step, at the (k + 1)th iteration the estimate of ∆(θθθ) and σ2 are
updated based on the first order Taylor expansion of gi(δδδi + ααα,xxxi) around

δ̂δδ
(k+1)

i and α̂αα(k+1), which are obtained from the PNLS step. Let

X̃XX
(k+1)

i :=
∂gi(aaa,xxxi)

∂aaaᵀ
|
aaa=α̂αα(k+1)+δ̂δδi

(k+1) ∈ RNi×q,

Ẑ
(k+1)
i := Yi−gi(δ̂δδ

(k+1)

i +α̂αα(k+1),xxxi)+X̃XX
(k+1)

i (δ̂δδ
(k+1)

i +α̂αα(k+1)) ≈ X̃XX(k+1)

i (δδδi+ααα)+Ei.
(3.17)

The applied approximate log-likelihood function for estimation of ∆(θθθ) and
σ2 at the (k + 1)th iteration is given by

lLME(α̂αα(k+1), σ2,∆(θθθ)|yyy) ≈ −N
2

log(2πσ2)− 1

2

I∑
i=1

{log |V (k+1)
i (θθθ)|

+σ−2[ẑ
(k+1)
i − X̃XX(k+1)

i α̂αα(k+1)]ᵀV
(k+1)−1

i (θθθ)[ẑ
(k+1)
i − X̃XX(k+1)

i α̂αα(k+1)]}, (3.18)

where V (k+1)
i (θθθ) := IIINi+X̃XX

(k+1)
i ∆(θθθ)−1∆(θθθ)−ᵀX̃XX

(k+1)ᵀ

i and ẑ
(k+1)
i is the realization

of Ẑ
(k+1)
i . This log-likelihood is related to the log-likelihood of a linear random

effects model such that ẐZZ
(k+1)

:= (Ẑ
(k+1)ᵀ

1 , · · · , Ẑ(k+1)ᵀ

I )ᵀis the response vector

and X̃XX
(k+1)

:= (X̃XX
(k+1)ᵀ

1 , · · · , X̃XX(k+1)ᵀ

I )ᵀ is the fixed- and random-effects design
matrix.
The algorithm iterates between the PNLS and LME steps till convergence. The
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computational methods of this algorithm have been presented in the appendix. By
use of the nlme function of package nlme of Pinheiro et al. (2016), the estimates
using this procedure can be obtained.
Lindstrom and Bates (1990) only apply the LME step for updating the estimates
of ∆(θθθ) and σ2. Whereas, Wolfinger (1993) iterates LME steps by recalculating
(3.17) and (3.18) at the updated estimates of ααα and δδδi.

3.2.1.1 Inference Results

Under the LME approximation and certain regularity conditions which are gen-
erally satisfied in practice, Pinheiro (1994) proves that the maximum likelihood
estimations in the LME model are consistent and asymptotically normal. There-
fore, α̂αα has approximately normal distribution with mean ααα and the estimated
variance covariance matrix Ĉov(α̂αα) as follows:

E(α̂αα) ≈ ααα, Ĉov(α̂αα) ≈ [

I∑
i=1

X̃XX
ᵀ
i V̂
−1
i X̃XXi]

−1, (3.19)

where
V̂i := X̃XXiΣ(θ̂θθ)X̃XX

ᵀ
i + σ̂2IIINi , Σ(θ̂θθ) = σ̂2(∆ᵀ(θ̂θθ)∆(θ̂θθ))−1

and

X̃XXi :=
∂gi(aaa,xxxi)

∂aaaᵀ
|
aaa=α̂αα+δ̂δδi

.

Moreover, (θ̂θθ, log(σ̂)) has approximately normal distribution as follows:(
θ̂θθ

log σ̂

)
∼ N(

(
θθθ

log σ

)
, I−1(θθθ, σ)), (3.20)

where

I = −
(

∂2lLMEp/∂θθθ∂θθθ
ᵀ ∂2lLMEp/∂ log σ∂θθθᵀ

∂2lLMEp/∂θθθ∂ log σ ∂2lLMEp/∂
2 log σ

)
,

and lLMEp denotes the profiled LME approximation to the log-likelihood on the
fixed effects. Practically, σ2 and θθθ are unknown hence their estimates should be
replaced in (3.20). Since the inference results for NLME models are based on the
LME approximation to the log-likelihood, they are less reliable than asymptotic
inferences for LME models (Pinheiro and Bates, 2000).
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3.2.2 Extension of the prediction method of Pinheiro and Bates
(ePB)

Pinheiro and Bates (2000) propose a simple plug-in predictor by estimating the
expected response when the random effects are equal to their mean value 000. We
define Y F

0 = g(A0, x
F
0 )+EF0 as the unknown observation of a new individual at xF0 .

The new individual is also modeled as a NLME model. Hence, it is concluded that
A0 := ααα + δδδ0 ∼ Nq(ααα,Σ), EF0 ∼ N(0, σ2) and EF0 , E1, · · · , EI , A0, A1, · · · , AI are
stochastically independent. The proposed simple plug-in prediction of Y F

0 when
δδδ0 = 000 is given by

Ŷ F
0 := g(α̂αα, xF0 ), (3.21)

where α̂αα, the maximum likelihood estimation of ααα, is obtained using the proposed
estimation procedure by Pinheiro and Bates (2000) which has been described in
details in the appendix (the predict function of the package nlme of Pinheiro et
al. (2016) gives this point prediction). In the following theorem, by use of the
method for getting prediction interval in nonlinear regression models we suggest
an approximation to get the approximate (1−α)-prediction interval for Y F

0 based
on the Pinheiro and Bates’ prediction.

Theorem 3.4. Approximate prediction interval for Y F
0 based on the Pinheiro and

Bates’ prediction:
Consider the following nonlinear random effects model

Yi = gi(Ai,xxxi) + Ei, i ∈ {1, · · · , I}

where
Ai = ααα+ δδδi δδδi

iid∼ Nq(000,Σ), Ei
iid∼ NNi(000, σ

2IIINi).

Let the new observation of the new individual be modeled as Y F
0 = g(A0, x

F
0 )+EF0 ,

where A0 = ααα + δδδ0, δδδ0 ∼ Nq(000,Σ) and EF0 ∼ N(0, σ2). Assume A0, A1, · · · , AI ,
EF0 , E1, · · · , EI are independent. Let a simple plug-in predictor of Y F

0 at xF0 be
Ŷ F

0 := g(α̂αα, xF0 ). Then the prediction error has approximately normal distribution
with mean 0 and the estimated variance

ν̂ := x̃xxF0,α̂αα[Ĉov(α̂αα) + Σ̂]x̃xxF
ᵀ

0,α̂αα + σ̂2,

where x̃xxF0,α̂αα :=
∂g(aaa,xF0 )
∂aaaᵀ |aaa=α̂αα and Ĉov(α̂αα) ≈ [

∑I
i=1 X̃XX

ᵀ
i V̂
−1
i X̃XXi]

−1 with V̂i := X̃XXiΣ̂X̃XX
ᵀ
i +

σ̂2IIINi, X̃XXi := ∂gi(aaa,xxxi)
∂aaaᵀ |

aaa=α̂αα+δ̂δδi
and Σ̂ = σ̂2(∆ᵀ(θ̂θθ)∆(θ̂θθ))−1 with α̂αα, θ̂θθ and δ̂δδi which

are the estimates of ααα, θθθ and δδδi at the final iteration of the Pinheiro and Bates’
estimation method. Moreover, the approximate (1− α)-prediction interval for Y F

0

from a new individual is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂], (3.22)
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where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution.

Proof. If we consider the first order Taylor expansion of g(A0, x
F
0 ) and g(α̂αα, xF0 )

around ααα, then the prediction error can be simplified as

Y F
0 −Ŷ F

0 = g(A0, x
F
0 )+EF0 −g(α̂αα, xF0 )

≈ g(ααα, xF0 )+x̃xxF0,αααδδδ0−g(ααα, xF0 )−x̃xxF0,ααα(α̂αα−ααα)+EF0

= x̃xxF0,ααα(ααα−α̂αα)+x̃xxF0,αααδδδ0+EF0 ,
(3.23)

where x̃xxF0,ααα :=
∂g(aaa,xF0 )
∂aaaᵀ |aaa=ααα. Since α̂αα is obtained based on the information of

YYY = (Y ᵀ
1 , · · · , Y

ᵀ
I )ᵀ and YYY is independent of EF0 and δδδ0 hence α̂αα, EF0 and δδδ0

are also independent. Now, from (3.19) because Y F
0 − Ŷ F

0 is approximately a lin-
ear combination of the three independent normal variables (α̂αα,δδδ0,EF0 ), therefore
we have

Y F
0 − Ŷ F

0 ∼ N(000, ν), (3.24)

where
ν = x̃xxF0,ααα[Cov(α̂αα) + Σ]x̃xxF

ᵀ

0,ααα + σ2.

By replacing the ML estimates σ̂2, θ̂θθ and α̂αα, from the Pinheiro and Bates’ estima-
tion method, in ν the estimation ν̂ is given by

ν̂ := x̃xxF0,α̂αα[Ĉov(α̂αα) + Σ̂]x̃xxF
ᵀ

0,α̂αα + σ̂2.

Then the approximate (1−α)-prediction interval for Y F
0 from a new individual is

given by
[ŷF0 − q1−α/2

√
ν̂, ŷF0 + q1−α/2

√
ν̂],

where q1−α/2 is the (1− α/2)-quantile of standard normal distribution.

38



4 Prediction using all observations

4.1 Prediction of the future observation in linear ran-
dom effects models

4.1.1 The modified method of Rao in the balanced case (mRao)

Let the defined RCR model (3.1) with the assumptions [A1]-[A5] for the balanced
data. The goal is to predict the future observation from the new individual. Define
Y0 = XXX0A0 + E0 as the observations of a new individual which is partitioned as

Y0 =

(
Y P

0

Y F
0

)
, XXX0 =

(
XXXP

0

xxxF0

)
and E0 =

(
EP0
EF0

)
,

where indices P and F show respectively the observed (Past) and unobserved (Fu-
ture) components of the new individual and XXXP

0 = (xxxᵀ01, · · · ,xxx
ᵀ
0N0

)ᵀ with x0jx0jx0j =

(1, h1(x0j), · · · , hq−1(x0j)) and xxxF0 = (1, h1(xF0 ), · · · , hq−1(xF0 )). The new individ-
ual is also modeled as a RCR model. Hence, it is concluded that A0 := ααα + δδδ0 ∼
Nq(ααα,Σ), E0 ∼ NN0+1(000, σ2IIIN0+1) and EP0 , E

F
0 , E1, · · · , EI , A0, A1, · · · , AI are

stochastically independent.
Rao (1975) proposes the following prediction procedure for Y F

0 ,

Ŷ F
0 = xxxF0 (ĈÂ0,OLS + (IIIq − Ĉ)α̂ααGLS), (4.1)

where Ĉ := Σ̂(Σ̂ + σ̂2(XXXP ᵀ

0 XXXP
0 )−1)−1 and the estimates α̂ααGLS , Σ̂ and σ̂2 are ob-

tained based on the information of YYY := (Y ᵀ
1 , · · · , Y

ᵀ
I )ᵀ by use of the Swamy’s

estimation method and Â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 , which is computed only

based on the information of Y P
0 . Like (3.3), it can be proved that

Â0,OLS ∼ Nq(ααα,Σ + σ2(XXXP ᵀ

0 XXXP
0 )−1). (4.2)

A modification of Rao’s prediction is given by supposing that the estimates of ααα,
Σ and σ2 are obtained based on the information of YYY obs := (Y ᵀ

1 , · · · , Y
ᵀ
I , Y

P ᵀ

0 )ᵀ as
follows:

α̂ααobs =
1

I + 1

I∑
i=0

Âi,OLS , α̂ααobs ∼ Nq(ααα, v),

(4.3)
with

v =
1

(I + 1)2
[(I + 1)Σ + σ2(I(XXXᵀXXX)−1 + (XXXP ᵀ

0 XXXP
0 )−1)],
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and

σ̂2
obs :=

1

I + 1
[
I∑
i=1

σ̂2
i +σ̂

2
0]

=
1

I + 1
[
I∑
i=1

(Yi −XXXÂi,OLS)ᵀ(Yi −XXXÂi,OLS)

N − q

+
(Y P

0 −XXXP
0 Â0,OLS)ᵀ(Y P

0 −XXXP
0 Â0,OLS)

N0 − q
],

Σ̂obs :=
1

I

I∑
i=0

(Âi,OLS − α̂ααobs)(Âi,OLS − α̂ααobs)ᵀ −
σ̂2
obs

I + 1
[I(XXXᵀXXX)−1 + (XXXP ᵀ

0 XXXP
0 )−1],

where Âi,OLS := (XXXᵀXXX)−1XXXᵀYi and Â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 . Based on the

unbiasedness and consistency of σ̂2
i , i = 0, · · · , I, the unbiasedness and consis-

tency of σ̂2
obs is proved. For studying the unbiasedness of Σ̂obs, we apply the used

method in the proof of Theorem 3.2 for the expectation of Σ̂ and we have

E(Σ̂obs) =
1

I
[

I∑
i=1

E(Âi,OLS−α̂ααobs)(Âi,OLS−α̂ααobs)ᵀ+E(Â0,OLS−α̂ααobs)(Â0,OLS−α̂ααobs)ᵀ]

−
E(σ̂2

obs)

I + 1
[I(XXXᵀXXX)−1+(XXXP ᵀ

0 XXXP
0 )−1]

=
1

I
[ICov(Âi,OLS)−ICov(α̂ααobs)+Cov(Â0,OLS)−Cov(α̂ααobs)]

− σ2

I + 1
[I(XXXᵀXXX)−1 + (XXXP ᵀ

0 XXXP
0 )−1]

=
1

I
[I(Σ+σ2(XXXᵀXXX)−1)− 1

I + 1
((I+1)Σ+σ2I(XXXᵀXXX)−1+σ2(XXXP ᵀ

0 XXXP
0 )−1)

+Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1]− σ2

I + 1
[I(XXXᵀXXX)−1+(XXXP ᵀ

0 XXXP
0 )−1]

=
1

I
[IΣ+σ2I(XXXᵀXXX)−1−Σ− σ2

I + 1
I(XXXᵀXXX)−1− σ2

I + 1
(XXXP ᵀ

0 XXXP
0 )−1

+Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1]− σ2

I + 1
I(XXXᵀXXX)−1− σ2

I + 1
(XXXP ᵀ

0 XXXP
0 )−1

= Σ+
σ2

I + 1
I(XXXᵀXXX)−1+

σ2

I + 1
(XXXP ᵀ

0 XXXP
0 )−1− σ2

I + 1
I(XXXᵀXXX)−1− σ2

I + 1
(XXXP ᵀ

0 XXXP
0 )−1
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= Σ.

Hence, Σ̂obs is also an unbiased estimation of Σ. Like the proof of consistency
of Σ̂ in Theorem 3.2, by assuming that B1 := limN→∞(N(XXXᵀXXX)−1) and B2 :=
limN0→∞(N0(XXXP ᵀ

0 XXXP
0 )−1) exist and are positive definite it is readly concluded that

Σ̂obs is a consistent estimation of Σ and similar to (7.9) we have

Σ̂obs
N,N0→∞−−−−−−→ Sobs

I

I→∞−−−→ Σ, (4.4)

where Sobs :=
∑I

i=0(Ai − Ā)(Ai − Ā)ᵀ, where Ā is the mean of Ai’s.
In the following lemma and theorem, we calculate the distribution of prediction
error (Ŷ F

0 −Y F
0 ) and propose an approximate prediction interval for Y F

0 based on
the mentioned prediction procedure.

Lemma 4.1. Distribution of the prediction error based on the modified Rao’s
prediction:
Consider the RCR model Yi = XXXAi + Ei, i ∈ {1, · · · , I}, and the assumptions
[A1]-[A5]. Let the observations of the new individual be modeled as the RCR model
Y0 = XXX0A0 + E0 with the following decompositions

Y0 =

(
Y P

0

Y F
0

)
, XXX0 =

(
XXXP

0

xxxF0

)
and E0 =

(
EP0
EF0

)
,

where indices P and F show respectively the observed (Past) and unobserved (Fu-
ture) components of the new individual and XXXP

0 = (xxxᵀ01, · · · ,xxx
ᵀ
0N0

)ᵀ with x0jx0jx0j =

(1, h1(x0j), · · · , hq−1(x0j)) and xxxF0 = (1, h1(xF0 ), · · · , hq−1(xF0 )). Hence, A0 ∼
Nq(ααα,Σ), E0 ∼ NN0+1(000, σ2IIIN0+1). Moreover, suppose A0, A1, · · · , AI , EP0 , EF0 , E1,
· · · , EI are independent. If the variance components are known then the prediction
for the new observation Y F

0 = xxxF0 A0 + EF0 at xF0 is given by

Ŷ F
0 := xxxF0 (CÂ0,OLS + (IIIq − C)α̂ααobs),

where

C := Σ[Σ + σ2(XXXP ᵀ

0 XXXP
0 )−1)]−1, α̂ααobs =

1

I + 1

I∑
i=0

Âi,OLS

and Âi,OLS := (XXXᵀXXX)−1XXXᵀYi, i ∈ {1, · · · , I} and Â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 .

The prediction error has normal distribution with mean 0 and variance

ν := xxxF0 [C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+v−Cv−vCᵀ+CvCᵀ

+
1

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)− 2

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ
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+
1

I + 1
(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ](xxxF0 )ᵀ+xxxF0 Σ(xxxF0 )ᵀ+σ2−2xxxF0 [C+

(IIIq − C)

I + 1
]Σ(xxxF0 )ᵀ,

where v has been defined in (4.3).

Proof. Because Â0,OLS and α̂ααobs are respectively linear in Y P
0 and YYY obs, therefore

Ŷ F
0 is also linear in YYY obs and has normal distribution. Consequently, the prediction

error has also normal distribution. For the mean of prediction error we have

E(Ŷ F
0 −Y F

0 ) = E(Ŷ F
0 )−E(Y F

0 ) = xxxF0 [CE(Â0,OLS)+(IIIq−C)E(α̂ααobs)]−xxxF0 ααα

= 0. (from (4.2) and (4.3))

For calculating the variance of prediction error, at first the variance of Ŷ F
0 and the

covariance of Ŷ F
0 and Y F

0 are calculated as follows:

Var(Ŷ F
0 ) = xxxF0 [CCov(Â0,OLS)Cᵀ+(IIIq−C)Cov(α̂ααobs)(IIIq−C)ᵀ

+CCov(Â0,OLS , α̂ααobs)(IIIq−C)ᵀ+(IIIq−C)Cov(α̂ααobs, Â0,OLS)Cᵀ](xxxF0 )ᵀ

= xxxF0 [CCov(Â0,OLS)Cᵀ+Cov(α̂ααobs)−CCov(α̂ααobs)−Cov(α̂ααobs)C
ᵀ+CCov(α̂ααobs)C

ᵀ

+CCov(Â0,OLS , α̂ααobs)−CCov(Â0,OLS , α̂ααobs)C
ᵀ+Cov(α̂ααobs, Â0,OLS)Cᵀ

−CCov(α̂ααobs, Â0,OLS)Cᵀ](xxxF0 )ᵀ.

Since Â0,OLS , Â1,OLS · · · , ÂI,OLS are linear functions of Y P
0 , Y1, · · · , YI and Y P

0 , Y1,

· · · , YI are independent, hence Â0,OLS , Â1,OLS , · · · , ÂI,OLS are also independent.

Now by use of this independency, Cov(Â0,OLS , α̂ααobs) is given by

Cov(Â0,OLS , α̂ααobs) = Cov(Â0,OLS ,
1

I + 1

I∑
i=0

Âi,OLS) =
1

I + 1
Cov(Â0,OLS , Â0,OLS)

=
1

I + 1
Cov(Â0,OLS) =

1

I + 1
(Σ + σ2(XXXP ᵀ

0 XXXP
0 )−1). (4.5)

Therefore, by use of (4.3) and (4.5) we have

Var(Ŷ F
0 ) = xxxF0 [CCov(Â0,OLS)Cᵀ+v−Cv−vCᵀ+CvCᵀ+

1

I + 1
CCov(Â0,OLS)

− 1

I + 1
CCov(Â0,OLS)Cᵀ+

1

I + 1
Cov(Â0,OLS)Cᵀ− 1

I + 1
CCov(Â0,OLS)Cᵀ](xxxF0 )ᵀ

= xxxF0 [C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+v−Cv−vCᵀ+CvCᵀ+

1

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)
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− 2

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+

1

I + 1
(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ](xxxF0 )ᵀ

The Cov(Ŷ F
0 , Y

F
0 ) is calculated as

Cov(Ŷ F
0 , Y

F
0 ) = Cov(xxxF0 [CÂ0,OLS+(IIIq−C)α̂ααobs],xxx

F
0 A0+EF0 )

= Cov[xxxF0 (CÂ0,OLS + (IIIq − C)α̂ααobs),xxx
F
0 A0]

+Cov[xxxF0 (CÂ0,OLS + (IIIq − C)α̂ααobs), E
F
0 ]

= xxxF0 [CCov(Â0,OLS , A0) + (IIIq − C)Cov(α̂ααobs, A0)](xxxF0 )ᵀ

+xxxF0 [CCov(Â0,OLS , E
F
0 ) + (IIIq − C)Cov(α̂ααobs, E

F
0 )],

by replacing Â0,OLS = (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 and based on the independency be-

tween α̂ααobs and EF0 and between Â0,OLS and EF0 we have

Cov(Ŷ F
0 , Y

F
0 ) = xxxF0 [CCov(Â0,OLS , A0)+(IIIq−C)Cov(α̂ααobs, A0)](xxxF0 )ᵀ

= xxxF0 [CCov(Â0,OLS , A0)+
(IIIq − C)

I + 1
Cov(Â0,OLS , A0)](xxxF0 )ᵀ

= xxxF0 [C+
(IIIq − C)

I + 1
]Cov(Â0,OLS , A0)(xxxF0 )ᵀ

= xxxF0 [C+
(IIIq − C)

I + 1
](XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Cov(Y P
0 , A0)(xxxF0 )ᵀ

= xxxF0 [C+
(IIIq − C)

I + 1
](XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Cov(XXXP
0 A0+EP0 , A0)(xxxF0 )ᵀ

= xxxF0 [C+
(IIIq − C)

I + 1
](XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 XXXP
0 Σ(xxxF0 )ᵀ

= xxxF0 [C+
(IIIq − C)

I + 1
]Σ(xxxF0 )ᵀ.

(4.6)
Finally, the variance of prediction error can be given by

Var(Ŷ F
0 −Y F

0 ) = Var(Ŷ F
0 )+Var(Y F

0 )−2Cov(Ŷ F
0 , Y

F
0 )

= xxxF0 [C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+v−Cv−vCᵀ+CvCᵀ

+
1

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)− 2

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ

+
1

I + 1
(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ](xxxF0 )ᵀ+xxxF0 Σ(xxxF0 )ᵀ+σ2−2xxxF0 [C+

(IIIq − C)

I + 1
]Σ(xxxF0 )ᵀ
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=: ν.

Consequently,
Ŷ F

0 − Y F
0 ∼ N(0, ν). (4.7)

If variance components are unknown the estimations of Σ and σ2 are needed
to construct an approximate prediction interval. In the following theorem, an
approximate prediction interval for Y F

0 is obtained when Σ̂obs and σ̂2
obs are replaced

in (4.7).

Theorem 4.1. Approximate prediction interval for Y F
0 based on the modified

Rao’s prediction:
Consider the defined RCR model with all assumptions for random effects and errors
in Lemma 4.1 for all individuals including the new one. Let Ŷ F

0 := xxxF0 (ĈÂ0,OLS +

(IIIq − Ĉ)α̂ααobs), where Â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 , be the prediction for the new

observation at xF0 . Then the variance of prediction error ν can be estimated as

ν̂ := xxxF0 [Ĉ(Σ̂obs+σ̂
2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ+v̂−Ĉv̂−v̂Ĉᵀ+Ĉv̂Ĉᵀ

+
1

I + 1
Ĉ(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)− 2

I + 1
Ĉ(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ

+
1

I + 1
(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ](xxxF0 )ᵀ+xxxF0 Σ̂obs(xxx

F
0 )ᵀ+σ̂2

obs

−2xxxF0 [Ĉ+
(IIIq − Ĉ)

I + 1
]Σ̂obs(xxx

F
0 )ᵀ,

where
Ĉ := Σ̂obs[Σ̂obs + σ̂2

obs(XXX
P ᵀ

0 XXXP
0 )−1]−1,

v̂ =
1

(I + 1)2
[(I + 1)Σ̂obs + σ̂2

obs(I(XXXᵀXXX)−1 + (XXXP ᵀ

0 XXXP
0 )−1)],

and Σ̂obs , σ̂2
obs and α̂ααobs have been defined in (4.3).

By use of ν̂, the standardized prediction error converges to the standard normal
distribution for N,N0 →∞. Consequently, the (1− α)-prediction interval for Y F

0

is given by
P̂I(yyyobs) = [ŷF0 − q1−α/2

√
ν̂, ŷF0 + q1−α/2

√
ν̂],

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution.
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Proof. Assume B1 := limN→∞(N(XXXᵀXXX)−1) and B2 := limN0→∞(N0(XXXP ᵀ

0 XXXP
0 )−1)

exist and are positive definite. Hence, for large enough N0 we approximately have

Σ̂obs + σ̂2
obs(XXX

P ᵀ

0 XXXP
0 )−1 ≈ Σ̂obs

(4.8)
and

Σ + σ2(XXXP ᵀ

0 XXXP
0 )−1 ≈ Σ. (4.9)

Consequently,

Ĉ ≈ Σ̂obsΣ̂
−1
obs = IIIq, and C ≈ ΣΣ−1 = IIIq.

(4.10)
Now based on (4.8), (4.10) and the consistency of σ̂2

obs and Σ̂obs, the asymptotic
properties of ν̂ can be studied. If N,N0 →∞ then

plimN,N0→∞(v̂) = plimN,N0→∞{
1

(I + 1)2
[(I+1)Σ̂obs+σ̂

2
obs{I(XXXᵀXXX)−1+(XXXP ᵀ

0 XXXP
0 )−1}]}

=
1

(I + 1)2
[(I+1)plimN,N0→∞(Σ̂obs)+plimN,N0→∞(σ̂2

obs){IlimN→∞(XXXᵀXXX)−1

+limN0→∞(XXXP ᵀ

0 XXXP
0 )−1}],

= (
1

I + 1
)
Sobs
I
, (from (4.4))

hence from (4.8) and (4.10),

ν̂∗ := plimN,N0→∞(ν̂)

= plimN,N0→∞{xxx
F
0 [Ĉ(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ+v̂−Ĉv̂−v̂Ĉᵀ+Ĉv̂Ĉᵀ

+
1

I + 1
Ĉ(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)− 2

I + 1
Ĉ(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ

+
1

I + 1
(Σ̂obs+σ̂

2
obs(XXX

P ᵀ

0 XXXP
0 )−1)Ĉᵀ](xxxF0 )ᵀ+xxxF0 Σ̂obs(xxx

F
0 )ᵀ+σ̂2

obs

−2xxxF0 [Ĉ+
(IIIq − Ĉ)

I + 1
]Σ̂obs(xxx

F
0 )ᵀ}

= xxxF0 [
Sobs
I

+(
1

I + 1
)
Sobs
I
−(

1

I + 1
)
Sobs
I
−(

1

I + 1
)
Sobs
I

+(
1

I + 1
)
Sobs
I

+(
1

I + 1
)
Sobs
I

−(
2

I + 1
)
Sobs
I

+(
1

I + 1
)
Sobs
I

](xxxF0 )ᵀ+xxxF0 [
Sobs
I

](xxxF0 )ᵀ+σ2−2xxxF0
Sobs
I

(xxxF0 )ᵀ
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= σ2.

Consequently, ν̂ is a consistent estimation for σ2 but inconsistent for ν. For getting
the asymptotic distribution of Ŷ F

0 − Y F
0 , study of the asymptotic properties of ν

is required. By use of (4.9) we have

limN,N0→∞(v) = limN,N0→∞(
1

(I + 1)2
[(I+1)Σ+σ2{I(XXXᵀXXX)−1+(XXXP ᵀ

0 XXXP
0 )−1}])

=
1

(I + 1)2
[(I+1)Σ+σ2{IlimN→∞(XXXᵀXXX)−1)+limN0→∞(XXXP ᵀ

0 XXXP
0 )−1}]

= (
1

I + 1
)Σ,

therefore from (4.9) and (4.10),

ν∗ := limN,N0→∞(ν) = limN,N0→∞[xxxF0 [C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+v−Cv

−vCᵀ+CvCᵀ+
1

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)− 2

I + 1
C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ

+
1

I + 1
(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ](xxxF0 )ᵀ+xxxF0 Σ(xxxF0 )ᵀ+σ2

−2xxxF0 [C+
(IIIq − C)

I + 1
]Σ(xxxF0 )ᵀ]

= xxxF0 [Σ+(
1

I + 1
)Σ−(

1

I + 1
)Σ−(

1

I + 1
)Σ+(

1

I + 1
)Σ+

1

I + 1
Σ− 2

I + 1
Σ

+
1

I + 1
Σ](xxxF0 )ᵀ+xxxF0 Σ(xxxF0 )ᵀ+σ2−2xxxF0 Σ(xxxF0 )ᵀ

= σ2.

Finally by applying the Slutzky theorem, the asymptotic distribution of prediction
error is given by

Ŷ F
0 − Y F

0√
ν̂

D−−−−−−→
N,N0→∞

Z√
Var(Z)

∼ N(0, 1),

where Z ∼ N(0, σ2). In conclusion, the approximate (1−α)-prediction interval for
Y F

0 from a partially observed individual is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂]. (4.11)
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4.1.1.1 Extension of the method of Rao (eRao)

In this approach, we predict the future observation Y F
0 using the prediction proce-

dure of Rao (see equation 4.1), in which the parameters are estimated based on the
information of YYY . We extend this prediction procedure by adding an approximate
prediction interval for Y F

0 in Corollary 4.1.

Corollary 4.1. The prediction interval for Y F
0 based on the Rao’s prediction pro-

cedure can be obtained as a special case of the modified Rao’s prediction interval
and is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂],

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution and

ν̂ := xxxF0 [Ĉ(Σ̂+σ̂2(XXXP ᵀ

0 XXXP
0 )−1)Ĉᵀ+v̂−Ĉv̂−v̂Ĉᵀ+Ĉv̂Ĉᵀ](xxxF0 )ᵀ+xxxF0 Σ̂(xxxF0 )ᵀ+σ̂2

−2xxxF0 ĈΣ̂(xxxF0 )ᵀ,

where

Ĉ := Σ̂[Σ̂ + σ̂2(XXXP ᵀ

0 XXXP
0 )−1]−1, v̂ =

1

I
(Σ̂ + σ̂2(XXXᵀXXX)−1),

and Σ̂ and σ̂2 have been defined respectively in (3.7) and (3.6).

Proof. Consider v := Cov(α̂ααGLS) = 1
I (Σ + σ2(XXXᵀXXX)−1), where α̂ααGLS has been

defined in Theorem 3.1 and C = Σ[Σ + σ2(XXXP ᵀ

0 XXXP
0 )−1]−1. Because of the inde-

pendency between Â0,OLS and α̂ααGLS , the expression of Var(Ŷ F
0 ) in the proof of

Lemma 4.1 reduces to the following expression:

Var(Ŷ F
0 ) = xxxF0 [CCov(Â0,OLS)Cᵀ+(IIIq−C)Cov(α̂ααGLS)(IIIq−C)ᵀ](xxxF0 )ᵀ

= xxxF0 [CCov(Â0,OLS)Cᵀ+Cov(α̂ααGLS)−CCov(α̂ααGLS)

−Cov(α̂ααGLS)Cᵀ+CCov(α̂ααGLS)Cᵀ](xxxF0 )ᵀ

= xxxF0 [C(Σ+σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ+v−Cv−vCᵀ+CvCᵀ](xxxF0 )ᵀ.

Now by use of the independencies between α̂ααGLS and A0, between α̂ααGLS and EF0
and between Â0,OLS and EF0 , the expression of Cov(Ŷ F

0 , Y
F

0 ) in the proof of Lemma
4.1 reduces to the following expression:

Cov(Ŷ F
0 , Y

F
0 ) = Cov(xxxF0 [CÂ0,OLS+(IIIq−C)α̂ααGLS ],xxxF0 A0+EF0 )

= Cov[xxxF0 (CÂ0,OLS+(IIIq−C)α̂ααGLS),xxxF0 A0]
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+Cov[xxxF0 (CÂ0,OLS+(IIIq−C)α̂ααGLS), EF0 ]

= xxxF0 [CCov(Â0,OLS , A0)+(IIIq−C)Cov(α̂ααGLS , A0)](xxxF0 )ᵀ

+xxxF0 [CCov(Â0,OLS , E
F
0 )+(IIIq−C)Cov(α̂ααGLS , E

F
0 )]

= xxxF0 CCov(Â0,OLS , A0)(xxxF0 )ᵀ

= xxxF0 CΣ(xxxF0 )ᵀ.

Finally, the variance of prediction error is given by

Var(Ŷ F
0 −Y F

0 ) := ν = xxxF0 [C(Σ +σ2(XXXP ᵀ

0 XXXP
0 )−1)Cᵀ + v−Cv− vCᵀ +CvCᵀ](xxxF0 )ᵀ

+xxxF0 Σ(xxxF0 )ᵀ+σ2−2xxxF0 CΣ(xxxF0 )ᵀ.

The estimate of ν (ν̂) can be obtained by replacing the estimates of Σ and σ2.
Now by considering this special case in Theorem 4.1, the approximate prediction
interval for Y F

0 is given by:

P̂I(yyyobs) = [ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂].

4.1.2 The modified method of Swamy (mSwamy): The convex
combination of Swamy’s prediction approach and classical
approach for linear models

Let the defined RCR model (3.1) with the assumptions [A1]-[A5] for the balanced
data. Consider α̂ααGLS , Σ̂ and σ̂2 be obtained based on the information of YYY :=
(Y1, · · · , YI) such that α̂ααGLS = 1

I

∑I
i=1 Âi,OLS , where Âi,OLS := (XXXᵀXXX)−1XXXᵀYi,

and Σ̂ and σ̂2 are obtained from (3.6) and (3.7). From the Swamy’s prediction,
the predictor of the future observation at xxxF0 is given by

Ŷ
F (old)

0 = xxxF0 α̂ααGLS .

Based on Lemma 3.2, the prediction error (Ŷ
F (old)

0 − Y F
0 ) has normal distribution

with mean 0 and variance ν

ν :=
1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ + σ2.

If the future observation at xF0 is predicted only based on the information of Y P
0 ,

then the predictor is given by

Ŷ
F (new)

0 = xxxF0 Â0,OLS ,
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where Â0,OLS := (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 Y P
0 .

Our proposed combined predictor based on the information of YYY obs is given by

Ŷ F
0 = (1− w)Ŷ

F (old)
0 + wŶ

F (new)
0 ,

where w = k
k+h , with k := 1

Ixxx
F
0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ, and

h := σ2xxxF0 (XXXP ᵀ

0 XXXP
0 )−1(xxxF0 )ᵀ, which minimizes the variance of prediction error.

Lemma 4.2. Prediction interval for Y F
0 based on the modified method of Swamy:

Consider the RCR model (3.1) and the assumptions [A1]-[A5] for the balanced
data. Let the observations of the new individual be modeled as in Lemma 4.1. The
prediction error (Ŷ F

0 − Y F
0 ) has normal distribution with mean 0 and variance v

as follows:
v := (1− w)2k + w2h+ σ2,

where

k :=
1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ,

h := σ2xxxF0 (XXXP ᵀ

0 XXXP
0 )−1(xxxF0 )ᵀ, w =

k

k + h
.

Then the (1− α)-prediction interval is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂], (4.12)

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution and ν̂ is obtained by replacing the estimates Σ̂ and σ̂2 from
(3.6) and (3.7) in w, k and h.

Proof. Because

E(Ŷ
F (new)

0 ) = E(Ŷ
F (old)

0 ) = xxxF0 ααα,

therefore, E(Ŷ F
0 − Y F

0 ) = 0. The term wŶ
F (new)

0 − Y F
0 can be simplified as

wŶ
F (new)

0 −Y F
0 = wxxxF0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 (XXXP
0 A0+EP0 )−xxxF0 A0−EF0

= wxxxF0 A0+wxxxF0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 EP0 −xxxF0 A0−EF0
= (w−1)xxxF0 A0+wxxxF0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 EP0 −EF0 .

Hence, by use of the independency between A0, EP0 and EF0 the variance of

wŶ
F (new)

0 − Y F
0 is given by

Var(wŶ
F (new)

0 − Y F
0 ) = (1− w)2xxxF0 Σ(xxxF0 )ᵀ + w2σ2xxxF0 (XXXP ᵀ

0 XXXP
0 )−1(xxxF0 )ᵀ + σ2.
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By the fact that

Var((1− w)Ŷ
F (old)

0 ) = (1− w)2 · 1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ,

and based on the independency between Ŷ
F (old)

0 and wŶ
F (new)

0 − Y F
0 we have

Var((1− w)Ŷ
F (old)

0 + wŶ
F (new)

0 − Y F
0 ) = (1− w)2k + w2h+ σ2

=: v.

By replacing the estimates Σ̂ and σ̂2 from (3.6) and (3.7) in w, k and h, the
(1− α)-prediction interval for Y F

0 is obtained as follows:

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂].

4.1.3 Approach of Liski and Nummi in the unbalanced case

Liski and Nummi (1996) suggest a general estimation procedure using the EM
algorithm by considering some unobserved response values as missing part of the
data set. In the following, we present their suggested EM algorithm.

4.1.3.1 Estimation method of Liski and Nummi (1996)

Consider the following RCR model

Yi = XXXiAi + Ei, i ∈ {1, · · · , I} (4.13)

where Yi := (Yi1, · · · , YiNi)ᵀ is the observation vector of the ith individual and
XXXi = (xxxᵀi1, · · · ,xxx

ᵀ
iNi

)ᵀ is the Ni × q covariate matrix of the ith individual with

xxxij = (1, h1(xij), · · · , hq−1(xij)). Suppose Ai
iid∼ Nq(ααα,Σ) and Ei

iid∼ NNi(000, σ2IIINi).
Consider the presented RCR model for observations of a new individual with
the proposed partitions in Lemma 4.1. Suppose that A0 ∼ Nq(ααα,Σ), E0 ∼
NN0+1(000, σ2IIIN0+1) and EP0 , E

F
0 , E1, · · · , EI , A0, A1, · · · , AI are independent.

The E step:
Let YYY obs = (Y ᵀ

1 , · · · , Y
ᵀ
I , Y

P ᵀ

0 )ᵀ and ZZZ = (YYY obs, Y
F

0 ) represent respectively the ob-
served and complete data such that Y F

0 represents the missing data and also yyyobs
and zzz be the realizations of YYY obs and ZZZ. For simplifying calculations, apply the
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positive definite matrix D ∈ Rq×q such that Σ = σ2D and θθθ := (θ1, · · · , θs) such
that D = D(θθθ). Now for i = 1, · · · , I, we have E(Yi) = XXXiααα and

Cov(Yi) = XXXiΣXXX
ᵀ
i + σ2IIINi = XXXi(σ

2D(θθθ))XXXᵀ
i + σ2IIINi

= σ2[XXXiD(θθθ)XXXᵀ
i + IIINi ] =: σ2Hi(θθθ).

And for the new individual we have similarly E(Y0) = XXX0ααα and

Cov(Y0) = σ2[XXX0D(θθθ)XXXᵀ
0 + IIIN0+1] =: σ2H0(θθθ).

By considering βββ := (ααα,θθθ, σ2), we define Q(βββ,βββ(k)) as follows:

Q(βββ,βββ(k)) = E(log f(ZZZ|βββ)|yyyobs,βββ(k)) =

∫
(log f(zzz|βββ))f(yF0 |yP0 ,βββ(k))dyF0 ,

where

log f(zzz|βββ) = −1

2
[(N+N0+1) log(2πσ2)+

I∑
i=0

log |Hi(θθθ)|

+

∑I
i=0(yi −XXXiααα)ᵀH−1

i (θθθ)(yi −XXXiααα)

σ2
],

with N :=
∑I

i=1Ni, and y0 = (yP
ᵀ

0 , yF0 )ᵀ and

Hi(θθθ) := XXXiD(θθθ)XXXᵀ
i+IIINi , i ∈ {1, · · · , I}, H0(θθθ) :=

(
HP

0 (θθθ) HFP ᵀ

0 (θθθ)
HFP

0 (θθθ) HF
0 (θθθ)

)
,

where yi, y
P
0 and yF0 are respectively the realizations of Yi, Y

P
0 and Y F

0 and

HP
0 (θθθ) := XXXP

0 D(θθθ)XXXP ᵀ

0 +IIIN0 , HF
0 (θθθ) := xxxF0 D(θθθ)xxxF

ᵀ

0 +1,

and

HFP
0 (θθθ) := xxxF0 D(θθθ)XXXP ᵀ

0 .

The M step:

Let β̂ββ be the unique solution at the (k + 1)th iteration for the following equa-
tion:

∂

∂βββ
Q(βββ,βββ(k))|

βββ=β̂ββ
= 0.
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By allowing differentiation under the integral sign (Jamshidian and Jennrich, 1993)
we have

E{ ∂
∂βββ

log f(ZZZ|βββ)|yyyobs,βββ(k)}|
βββ=β̂ββ

= 0. (4.14)

Then

∂

∂ααα
log f(zzz|βββ) =

1

σ2
[
I∑
i=0

yᵀiH
−1
i (θθθ)XXXi−αααᵀXXXᵀ

iH
−1
i (θθθ)XXXi],

moreover,

∂

∂σ2
log f(zzz|βββ) = −N +N0 + 1

2σ2
+

∑I
i=0(yi −XXXiααα)ᵀH−1

i (θθθ)(yi −XXXiααα)

2σ4

and for w = 1, · · · , s

∂

∂θw
log f(zzz|βββ) = −1

2

I∑
i=0

tr(H−1
i (θθθ)

∂Hi(θθθ)

∂θw
)

+
1

2σ2

I∑
i=0

(yi −XXXiααα)ᵀH−1
i (θθθ)

∂Hi(θθθ)

∂θw
H−1
i (θθθ)(yi −XXXiααα).

According to the above expressions, the unique solution of (4.14) at the (k + 1)th
iteration is given by

α̂αα(k+1) = (
I∑
i=0

XXXᵀ
iH
−1
i (θθθ(k))XXXi)

−1[
I∑
i=1

(XXXᵀ
iH
−1
i (θθθ(k))yi)

+XXXᵀ
0H
−1
0 (θθθ(k))E{

(
Y P

0

Y F
0

)
|yP0 ,βββ(k)}], (4.15)

σ̂2(k+1) =
1

N +N0 + 1
[

I∑
i=1

(yi−XXXiααα
(k))ᵀH−1

i (θθθ(k))(yi−XXXiααα
(k)),

+E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)}], (4.16)

and

1

σ2(k)
[

I∑
i=1

(yi−XXXiααα
(k))ᵀH−1

i (θθθ(k))
∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))(yi−XXXiααα

(k))
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+E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

∂H0(θθθ)

∂θw
H−1

0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)}]

=

I∑
i=0

tr(H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
).

(4.17)
The calculation of conditional expectations has been presented in the appendix.

Estimation of Standard errors [Demidenko (2004)]
Demidenko (2004) presents some formulas for the asymptotic covariance matrix of
maximum likelihood estimates in linear mixed effects models. If α̂αα, Σ̂ and σ̂2 are
the ML estimates at convergence then the asymptotic covariance matrix of α̂αα is
approximately given by

Cov(α̂αα) = [
I∑
i=1

XXXᵀ
i V
−1
i (θ̂θθ)XXXi +XXXᵀ

0V0(θ̂θθ)XXX0]−1, (4.18)

where

Vi(θ̂θθ) := XXXiΣ̂XXX
ᵀ
i + σ̂2IIINi , V0(θ̂θθ) :=

(
V P

0 (θ̂θθ) V FP ᵀ

0 (θ̂θθ)

V FP
0 (θ̂θθ) V F

0 (θ̂θθ)

)
,

with
V P

0 (θ̂θθ) := XXXP
0 Σ̂XXXP ᵀ

0 + σ̂2IIIN0 , V FP
0 (θ̂θθ) := xxxF0 Σ̂XXXP ᵀ

0 ,

V F
0 (θ̂θθ) := xxxF0 Σ̂xxxF

ᵀ

0 + σ̂2.

Consider the scaled covariance matrix of random effects as Σ = σ2D. By use of D,
Demidenko (2004) simplifies the log likelihood function in linear mixed effects mod-
els and presents the information matrix for the variance components. Consider θθθ :=
(σ2, vechᵀ(D))ᵀ and θ̂θθ := (σ̂2, vechᵀ(D̂))ᵀ, where vech(D) := (D11, D21, · · · , Dq1,
D22, · · · , Dqq)

ᵀ , then the asymptotic variance covariance matrix of the ML esti-

mate θ̂θθ is given by

Cov(θ̂θθ) = 2

(
(
∑I

i=1Ni + (N0 + 1))σ−4 σ−2vecᵀ(
∑I

i=0Ri)D
+ᵀ

σ−2D+vec(
∑I

i=0Ri) D+(
∑I

i=0Ri ⊗Ri)D+ᵀ

)−1

, (4.19)

withRi := XXXᵀ
i (IIINi+XXXiDXXX

ᵀ
i )
−1XXXi for i = 1, · · · , I, R0 := XXXᵀ

0(IIIN0+1+XXX0DXXX
ᵀ
0)−1XXX0

and D+ = (Dᵀ
qDq)

−1Dᵀ
q , where Dq is the q2 × q(q + 1)/2 duplication matrix (see

Appendix). By applying matrix block inverse (see Appendix), we have

Var(σ̂2) =
2σ4∑I

i=1Ni + (N0 + 1)− w
, (4.20)
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and

Covh(D̂) := Cov(vech(D̂))

= 2[D+(

I∑
i=0

Ri⊗Ri−
1∑I

i=1Ni + (N0 + 1)
vec(

I∑
i=0

Ri)vecᵀ(

I∑
i=0

Ri))D
+ᵀ

]−1, (4.21)

with

w := vecᵀ(
I∑
i=0

Ri)D
+ᵀ

[D+(
I∑
i=0

Ri ⊗Ri)D+ᵀ
]−1D+vec(

I∑
i=0

Ri).

The variance covariance matrices can be estimated by replacing the maximum
likelihood estimates α̂αα, D̂ and σ̂2 in (4.19)-(4.21). Since θθθ := (σ2, vech(D)) and θ̂θθ :=
(σ̂2, vech(D̂)), hence we can define K(θθθ) := σ2vech(D) and K(θ̂θθ) := σ̂2vech(D̂).
Let vech(D) be an m× 1 vector. Now by knowing that vech(Σ̂) = σ̂2vech(D̂), and
based on the delta method we have

Covh(Σ̂) := Cov(vech(Σ̂)) = Cov(σ̂2vech(D̂)) = Cov(K(θ̂θθ))

≈ (
∂K(θθθ)

∂θθθ
)Cov(θ̂θθ)(

∂K(θθθ)

∂θθθ
)ᵀ = (

∂K(θθθ)

∂σ2
,
∂K(θθθ)

∂vech(D)
)Cov(θ̂θθ)

(
(∂K(θθθ)
∂σ2 )ᵀ

( ∂K(θθθ)

∂vech(D)
)ᵀ

)

= (vech(D), σ2IIIm)

(
Var(σ̂2) Cov(σ̂2, vech(D̂))

Covᵀ(σ̂2, vech(D̂)) Cov(vech(D̂))

)(
vechᵀ(D)
σ2IIIm

)
= [vech(D)Var(σ̂2)+σ2Covᵀ(σ̂2, vech(D̂))]vechᵀ(D)

+σ2[vech(D)Cov(σ̂2, vech(D̂))+σ2Cov(vech(D̂))]

= Var(σ̂2)vech(D)vechᵀ(D)+σ4Covh(D̂)

+σ2[vech(D)Cov(σ̂2, vech(D̂))+Covᵀ(σ̂2, vech(D̂))vechᵀ(D)], (4.22)

where Cov(σ̂2, vech(D̂)) is the (2,1)th block of the matrix (4.19) (Demidenko,
2004).

4.1.3.2 Prediction Interval

Consider the RCR model (4.13) and the presented RCR model for the observations
of a new individual with the proposed decompositions in Lemma 4.1. Suppose
that the missing observation from the partially observed individual Y F

0 is modeled
as Y F

0 = xxxF0 A0 + EF0 and satisfies in the RCR model assumptions. Let θθθ :=
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(σ2, vechᵀ(D))ᵀ and θ̂θθ := (σ̂2, vechᵀ(D̂))ᵀ, such that Σ = σ2D and Σ̂ = σ̂2D̂. Liski
and Nummi (1996) propose ŷF0 as the prediction of Y F

0 which is given by

ŷF0 = xxxF0 α̂αα+ V FP
0 (θ̂θθ)V P−1

0 (θ̂θθ)(yP0 −XXXP
0 α̂αα), (4.23)

with
V FP

0 (θ̂θθ) := xxxF0 Σ̂XXXP ᵀ

0 , V P
0 (θ̂θθ) := XXXP

0 Σ̂XXXP ᵀ

0 + σ̂2IIIN0 ,

where α̂αα and θ̂θθ are the obtained ML estimates from EM algorithm. In the following
lemma, the prediction interval proposed by Liski and Nummi (1996) is presented
and a proof for that is proposed.

Lemma 4.3. Prediction interval for Y F
0 based on the Liski and Nummi’s predic-

tion [Liski and Nummi (1996)]:
Consider the RCR model (4.13) and the presented RCR model for the observations
of a new individual with the proposed decompositions in Lemma 4.1. Assume that
the missing observation from the partially observed individual is modeled as Y F

0 =
xxxF0 A0 + EF0 and satisfies in the RCR model assumptions. If the variance compo-
nents vector θθθ := (σ2, vechᵀ(D))ᵀ is known (where vech(D) := (D11, D21, · · · , Dq1,
D22, · · · , Dqq)

ᵀ), then the prediction of Y F
0 is given by

Ỹ F
0 = xxxF0 α̃αα+ V FP

0 V P−1

0 (Y P
0 −XXXP

0 α̃αα), (4.24)

with

α̃αα = [
I∑
i=1

XXXᵀ
i V
−1
i XXXi +XXXP ᵀ

0 V P−1

0 XXXP
0 ]−1(

I∑
i=1

XXXᵀ
i V
−1
i Yi +XXXP ᵀ

0 V P−1

0 Y P
0 ),

α̃αα ∼ Nq(ααα, [
I∑
i=1

XXXᵀ
i V
−1
i XXXi +XXXP

0 V
P−1

0 XXXP
0 ]−1), (4.25)

where
Vi := Cov(Yi) = XXXiΣXXX

ᵀ
i + σ2IIINi , i ∈ {1, · · · , I}

V P
0 := Cov(Y P

0 ) = XXXP
0 ΣXXXP ᵀ

0 + σ2IIIN0 .

The (1− α)-prediction interval for Y F
0 is given by

PI(yyyobs) = [ỹF0 − q1−α/2
√

Ω0, ỹ
F
0 + q1−α/2

√
Ω0],

where ỹF0 is the realization of Ỹ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution,

Ω0 := Var(Ỹ F
0 − Y F

0 ) = ΩF
0 +M0[Cov(α̃αα)]Mᵀ

0 ,
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ΩF
0 = Var(Y F

0 )− Cov(Y F
0 , Y

P
0 )[Cov(Y P

0 )]−1Cov(Y P
0 , Y

F
0 )

= V F
0 − V FP

0 (V P
0 )−1V FP ᵀ

0 ,

and
M0 = xxxF0 − Cov(Y F

0 , Y
P

0 )[Cov(Y P
0 )]−1XXXP

0 = xxxF0 − V FP
0 V P−1

0 XXXP
0 ,

with

V F
0 := Var(Y F

0 ) = xxxF0 ΣxxxF
ᵀ

0 + σ2, V FP
0 := Cov(Y F

0 , Y
P

0 ) = xxxF0 ΣXXXP ᵀ

0 .

Proof. The proof can be found in the appendix.

Practically, the variance components vector θθθ is unknown hence the ML esti-
mate of θθθ is needed. By substituting the obtained ML estimate θ̂θθ := (σ̂2, vechᵀ(D̂))
from the Liski and Nummi’s EM algorithm, the variance of prediction error is es-
timated.

4.2 Prediction of the future observation in nonlinear
random effects models

4.2.1 Combination of methods of Pinheiro/Bates and Liski/Nummi
in the unbalanced case (PBLiski)

Consider the following nonlinear random effects model

Yi = gi(Ai,xxxi) + Ei, i ∈ {1, · · · , I} (4.26)

with

gi(Ai,xxxi) : Rq × RNi → RNi , gi(Ai,xxxi) =

 g(Ai, xi1)
...

g(Ai, xiNi)


and

Ai = ααα+ δδδi, δδδi
iid∼ Nq(000,Σ),

where Yi is the Ni-dimensional response vector for the ith individual, Ai is the
q-dimentional vector of random effects which is identically and independently dis-
tributed as Nq(ααα,Σ), xxxi is the random effects covariate vector and Ei is the Ni-
dimensional vector of errors which is identically and independently distributed as
NNi(000, σ2IIINi), where IIINi is the Ni-dimensional identity matrix. The observations
from the new individual is modeled as a nonlinear random effects model

Y0 = g0(A0,xxx0) + E0, (4.27)
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with

Y0 =

(
Y P

0

Y F
0

)
, xxx0 =

(
xxxP0
xF0

)
E0 =

(
EP0
EF0

)
, g0(A0,xxx0) : Rq × RN0+1 → RN0+1,

g0(A0,xxx0) =

(
gP0 (A0,xxx

P
0 )

g(A0, x
F
0 )

)
, gP0 (A0,xxx

P
0 ) =

 g(A0, x01)
...

g(A0, x0N0)


and

A0 = ααα+ δδδ0, δδδ0 ∼ Nq(000,Σ), E0 ∼ NN0+1(000, σ2IIIN0+1)

where indices P and F show respectively the observed (Past) and unobserved
(Future) components of the new individual and IIIN0+1 is the (N0 + 1)-dimensional
identity matrix. It is also supposed that A0, A1, · · · , AI , EP0 , EF0 , E1, · · · , EI are
independent. The unknown observation of the new individual at xF0 is modeled as

Y F
0 = g(A0, x

F
0 ) + EF0 , (4.28)

where A0 ∼ N(ααα,Σ) and EF0 ∼ N(0, σ2).

We extend the Liski and Nummi’s estimation and prediction procedures for linear
random effects modesl to nonlinear ones by linearization of the nonlinear function
around the starting values of Ai and then apply the obtained pseudo data in the
related estimation and prediction procedures. Take the first-order Taylor expan-
sion of gi(Ai,xxxi), i ∈ {1, · · · , I} and g0(A0,xxx0) around the starting values ãi and
ã0 (which are obtained from the Pinheiro and Bates’ estimation procedure) as

Yi ≈ gi(ãi,xxxi) + X̃XXi(Ai − ãi) + Ei, i ∈ {1, · · · , I}

and
Y0 ≈ g0(ã0,xxx0) + X̃XX0(A0 − ã0) + E0,

where

X̃XXi :=
∂gi(ai,xxxi)

∂ai
|ai=ãi ,∈ RNi×q, X̃XX0 :=

∂g0(a0,xxx0)

∂a0
|a0=ã0 ∈ R(N0+1)×q.

Define the pseudo data as

Zi := Yi − gi(ãi,xxxi) + X̃XXiãi ≈ X̃XXiAi + Ei, i ∈ {1, · · · , I} (4.29)

and
Z0 := Y0 − g0(ã0,xxx0) + X̃XX0ã0 ≈ X̃XX0A0 + E0, (4.30)
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where

Z0 =

(
ZP0
ZF0

)
, X̃XX0 =

(
X̃XX
P
0

x̃xxF0

)
, g0(ã0,xxx0) =

(
gP0 (ã0,xxx

P
0 )

g(ã0, x
F
0 )

)
, E0 =

(
EP0
EF0

)
,

and

X̃XX
P
0 :=

∂gP0 (a0,xxx
P
0 )

∂a0
|a0=ã0 , x̃xxF0 :=

∂g(a0, x
F
0 )

∂a0
|a0=ã0 .

Based on the constructed linear random effects models (4.29) and (4.30), the esti-
mation and prediction methods of Liski and Nummi (1996) can be applied for the
observed pseudo data ZZZobs := (Zᵀ

1 , · · · , Z
ᵀ
I , Z

P ᵀ

0 )ᵀ. If the variance components are
known, then the prediction of ZF0 is given by

Z̃F0 := x̃xxF0 α̃αα+ V FP
0 (V P

0 )−1(ZP0 − X̃XX
P
0 α̃αα), (4.31)

where
V FP

0 := Cov(ZF0 , Z
P
0 ) = x̃xxF0 Σ(X̃XX

P
0 )ᵀ,

and

α̃αα := [
I∑
i=1

X̃XX
ᵀ
i V
−1
i X̃XXi + X̃XX

P ᵀ

0 V P−1

0 X̃XX
P
0 ]−1(

I∑
i=1

X̃XX
ᵀ
i V
−1
i Zi + X̃XX

P ᵀ

0 V P−1

0 ZP0 ),

with
Vi := Cov(Zi) = X̃XXiΣX̃XX

ᵀ
i + σ2IIINi , i ∈ {1, · · · , I}

and
V P

0 := Cov(ZP0 ) = X̃XX
P
0 ΣX̃XX

P ᵀ

0 + σ2IIIN0 .

By use of the relationship between the pseudo data and real data (4.30) we have

Ỹ F
0 = Z̃F0 + g(ã0, x

F
0 )− x̃xxF0 ã0, (4.32)

Y F
0 = ZF0 + g(ã0, x

F
0 )− x̃xxF0 ã0. (4.33)

According to (4.32) and (4.33), it is readily concluded that

Z̃F0 − ZF0 = Ỹ F
0 − Y F

0 . (4.34)

By use of (4.34) and Lemma 4.3, the variance of prediction error Ỹ F
0 −Y F

0 is given
by

Var[Ỹ F
0 − Y F

0 ] = Var[Z̃F0 − ZF0 ] = ΩF
0 +M0[Cov(α̃αα)]Mᵀ

0 =: Ω0,

where

ΩF
0 = V F

0 − V FP
0 (V P

0 )−1(V FP
0 )ᵀ, M0 = x̃xxF0 − V FP

0 (V P
0 )−1X̃XX

P
0 ,
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with

V F
0 := Var(ZF0 ) = x̃xxF0 Σx̃xxF

ᵀ

0 + σ2, V P
0 := Cov(ZP0 ) = X̃XX

P
0 ΣX̃XX

P ᵀ

0 + σ2IIIN0 ,

V FP
0 := Cov(ZF0 , Z

P
0 ) = x̃xxF0 ΣX̃XX

P ᵀ

0 , Cov(α̃αα) = [
I∑
i=1

X̃ᵀ
i V
−1
i X̃i+X̃

P ᵀ

0 V P−1

0 X̃P
0 ]−1.

In final, the 100(1− α)% prediction interval for Y F
0 is given by:

ỹF0 ± q1−α/2
√

Ω0,

where ỹF0 is the realization of Ỹ F
0 . If the variance components are unknown, then

the achieved ML estimation θ̂θθ := (σ̂2, vechᵀ(Σ̂))ᵀ, which is obtained from the Liski
and Nummi’s estimation by use of the pseudo data, is replaced in the prediction
error variance expression. If α̂αα is the obtained ML estimate from the Liski and
Nummi’s estimation by use of the pseudo data, then the prediction of unknown
observation from the partially observed individual is given by

ŷF0 = ẑF0 + g(ã0, x
F
0 )− x̃xxF0 ã0,

where
ẑF0 := x̃xxF0 α̂αα+ V FP

0 (θ̂θθ)V P−1

0 (θ̂θθ)(zP0 − X̃XX
P
0 α̂αα),

with
V FP

0 (θ̂θθ) := x̃xxF0 Σ̂X̃XX
P ᵀ

0 , V P
0 (θ̂θθ) := X̃XX

P
0 Σ̂X̃XX

P ᵀ

0 + σ̂2IIIN0 ,

and zP0 is the realization of ZP0 .

4.2.2 Combination of method of Pinheiro/Bates and the modified
method of Swamy in the unbalanced case (PBmSwamy)

In this method, we extend the modified method of Swamy’s prediction for linear
models to nonlinear ones, by use of the same linearization procedure which has
been proposed in the last section such that the starting values ãi for i = 1, · · · , I
and ã0 are obtained from the Pinheiro and Bates’ estimation procedure. By use
of the relationship between the pseudo data and real data (4.30) we have

Ŷ F
0 = ẐF0 + g(ã0, x

F
0 )− x̃xxF0 ã0, (4.35)

Y F
0 = ZF0 + g(ã0, x

F
0 )− x̃xxF0 ã0. (4.36)

According to (4.35) and (4.36), it is readily concluded that

ẐF0 − ZF0 = Ŷ F
0 − Y F

0 . (4.37)
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In the modified method of Swamy’s prediction for linear random effects models
(4.29) and (4.30) in the unbalnced case, we predict ZF0 as follows:

ẐF0 = (1− w)Ẑ
F (old)
0 + wẐ

F (new)
0 ,

where

Ẑ
F (old)
0 = x̃xxF0 α̂αα, α̂αα =

1

I

I∑
i=1

Âi,OLS =
1

I

I∑
i=1

(X̃XX
ᵀ
i X̃XXi)

−1X̃XX
ᵀ
iZi,

and
Ẑ
F (new)
0 = x̃xxF0 Â0,OLS = x̃xxF0 (X̃XX

P ᵀ

0 X̃XX
P
0 )−1X̃XX

P ᵀ

0 ZP0

with

X̃XXi :=
∂gi(ai,xxxi)

∂ai
|ai=ãi , X̃XX

P
0 :=

∂gP0 (a0,xxx
P
0 )

∂a0
|a0=ã0 ,

x̃xxF0 =
∂g(a0, x

F
0 )

∂a0
|a0=ã0 ∈ Rq, w =

k

k + h
,

k :=
1

I
x̃xxF0 (Σ +

σ2

I

I∑
i=1

(X̃XX
ᵀ
i X̃XXi)

−1)x̃xxF
ᵀ

0 + x̃xxF0 Σx̃xxF
ᵀ

0 , h := σ2x̃xxF0 (X̃XX
P ᵀ

0 X̃XX
P
0 )−1x̃xxF

ᵀ

0 .

In Lemma 4.2, the distribution of prediction error for linear models in the balanced
case is presented. This lemma can be easily extended to the unbalanced case
such that the prediction error has normal distribution with mean 0 and variance
ν := (1− w)2k + w2h+ σ2. Because, σ2 and Σ are unknown we need to estimate
them as follows:

σ̂2 =

∑I
i=1(Zi − X̃XXiÂi,OLS)ᵀ(Zi − X̃XXiÂi,OLS)∑I

i=1(Ni − q)
,

Σ̂ =
1

I − 1

I∑
i=1

(Âi,OLS − α̂αα)(Âi,OLS − α̂αα)ᵀ − σ̂2

I

I∑
i=1

(X̃XX
ᵀ
i X̃XXi)

−1,

with Âi,OLS = (X̃XX
ᵀ
i X̃XXi)

−1X̃XX
ᵀ
iZi (Carter and Yang, 1986).

Hence, from (4.37) and Lemma 4.2 we have Ŷ F
0 −Y F

0 ∼ N(0, ν). ν can be estimated
by ν̂ as follows:

ν̂ = (1− ŵ)2k̂ + ŵ2ĥ+ σ̂2,

where ŵ = k̂
k̂+ĥ

and

k̂ =
1

I
x̃xxF0 (Σ̂ +

σ̂2

I

I∑
i=1

(X̃XX
ᵀ
i X̃XXi)

−1)x̃xxF
ᵀ

0 + x̃xxF0 Σ̂x̃xxF
ᵀ

0 ,
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ĥ = σ̂2x̃xxF0 (X̃XX
P ᵀ

0 X̃XX
P
0 )−1x̃xxF

ᵀ

0 .

In final, the 100(1− α)% prediction interval for Y F
0 is given by:

ŷF0 ± q1−α/2
√
ν̂,

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution.

4.2.3 The modified method of Pinheiro and Bates (mPB)

Consider the defined nonlinear random effects model (4.26) for the completely
observed individuals and the nonlinear random effects model (4.27) for the partially
observed individual (new individual) with the proposed decomposition. Let the
unknown observation from the new individual is modeled as (4.28). Estimation
of the expected response, when the random effect (δδδ0) is equal to its mean value
000, is a simple plug-in predictor for Y F

0 (Pinheiro and Bates, 2000). The proposed
simple plug-in prediction of Y F

0 when δδδ0 = 000 is given by

Ŷ F
0 := g(α̂αα, xF0 ), (4.38)

where α̂αα is the maximum likelihood estimation of ααα based on the information of
YYY obs := (Y ᵀ

1 , · · · , Y
ᵀ
I , Y

P ᵀ

0 )ᵀ. Prediction (4.38) is a modified version of Pinheiro
and Bates’ prediction procedure because for the estimation of ααα the information
of the new individual is also considered, whereas in the original one only the infor-
mation of the old individuals is considered. The ML estimates of ααα, Σ and σ2 are
obtained from the estimation procedure proposed by Pinheiro and Bates (2000)
on the basis of the information of YYY obs (see section 3.2.1 for more details).
In the following theorem, we propose an approximation method for finding distri-
bution of the prediction error for the modified Pinheiro and Bates’ prediction and
finally an approximate prediction interval.

Theorem 4.2. Approximate prediction interval for Y F
0 based on the modified Pin-

heiro and Bates’ prediction:
Consider the nonlinear random effects model (4.26) and the defined nonlinear ran-
dom effects model for the new individual (4.27). If we consider the simple plug-in
predictor of Y F

0 as Ŷ F
0 := g(α̂αα, xF0 ) then the prediction error (Y F

0 − Ŷ F
0 ) has ap-

proximate normal distribution with the mean 0 and estimated variance

ν̂ := x̃xxF0,α̂αα[
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1[x̃xxF

ᵀ

0,α̂αα − 2X̃XX
P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂x̃xxF

ᵀ

0,α̂αα]
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+x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα + σ̂2,

where

X̃XXi :=
∂gi(aaa,xxxi)

∂aaaᵀ
|
aaa=α̂αα+δ̂δδi

, X̃XX
P
0 :=

∂gP0 (aaa,xxxP0 )

∂aaaᵀ
|
aaa=α̂αα+δ̂δδ0

,

x̃xxF0,α̂αα :=
∂g(aaa, xF0 )

∂aaaᵀ
|aaa=α̂αα,

with

V̂i := X̃XXiΣ̂X̃XX
ᵀ
i+σ̂

2IIINi , V̂0
P

:= X̃XX
P
0 Σ̂X̃XX

P ᵀ

0 +σ̂2IIIN0 ,

and α̂αα, δ̂δδi, Σ̂ = σ̂2(∆ᵀ(θ̂θθ)∆(θ̂̂θ̂θ))−1 and σ̂2 are the obtained estimated values from the
Pinheiro and Bates’ estimation method based on the information of YYY obs. More-
over, the (1−α)-prediction interval for Y F

0 from a partially observed individual is
given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂], (4.39)

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution.

Proof. If we consider the first order Taylor expansion of g(A0, x
F
0 ) and g(α̂αα, xF0 )

around ααα, then the prediction error can be approximated as

Y F
0 −Ŷ F

0 = g(A0, x
F
0 )+EF0 −g(α̂αα, xF0 )

≈ g(ααα, xF0 )+x̃xxF0,αααδδδ0−g(ααα, xF0 )−x̃xxF0,ααα(α̂αα−ααα)+EF0

= x̃xxF0,ααα(ααα−α̂αα)+x̃xxF0,αααδδδ0+EF0 ,
(4.40)

where x̃xxF0,ααα =
∂g(aaa,xF0 )
∂aaaᵀ |aaa=ααα. Pinheiro and Bates (2000) prove that α̂αα has approx-

imately normal distribution with mean ααα and the following estimated variance
covariance matrix:

E(α̂αα) ≈ ααα, Ĉov(α̂αα) ≈ [
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1. (4.41)

From (4.41), because α̂αα has normal distribution hence Y F
0 − Ŷ F

0 , which is approxi-
mately a linear combination of the three normal variables (α̂αα,δδδ0, E

F
0 ), has normal

distribution. From (4.41), we have E(α̂αα) ≈ ααα, then the expectation of prediction
error is given by

E(Y F
0 − Ŷ F

0 ) ≈ E(x̃xxF0,ααα(ααα− α̂αα) + x̃xxF0,αααδδδ0 + EF0 )
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= x̃xxF0,ααα(ααα− E(α̂αα)) + x̃xxF0,αααE(δδδ0) + E(EF0 )

≈ x̃xxF0,ααα(ααα−ααα) + x̃xxF0,ααα.000 + 0

= 0.

By use of the independency between δδδ0 and EF0 and between EF0 and α̂αα, the
estimated variance of prediction error is given by

V̂ar(Y F
0 −Ŷ F

0 ) ≈ V̂ar(−x̃xxF0,αααα̂αα+x̃xxF0,αααδδδ0+EF0 )

= V̂ar(x̃xxF0,αααα̂αα) + V̂ar(x̃xxF0,αααδδδ0 + EF0 )− 2Ĉov(x̃xxF0,αααα̂αα, x̃xx
F
0,αααδδδ0 + EF0 )

= x̃xxF0,α̂ααĈov(α̂αα)x̃xxF
ᵀ

0,α̂αα + V̂ar(EF0 ) + x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα

+2x̃xxF0,α̂ααĈov(δδδ0, E
F
0 )− 2[x̃xxF0,α̂ααĈov(α̂αα,δδδ0)x̃xxF

ᵀ

0,α̂αα + x̃xxF0,α̂ααĈov(α̂αα,EF0 )]

= x̃xxF0,α̂ααĈov(α̂αα)x̃xxF
ᵀ

0,α̂αα + σ̂2 + x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα − 2x̃xxF0,α̂ααĈov(α̂αα,δδδ0)x̃xxF
ᵀ

0,α̂αα. (4.42)

As it was discussed in Section 3.2.1, the maximum likelihood estimation of ααα by
use of the information of YYY obs is given by

α̂αα = [
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1(

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
Zi + X̃XX

P ᵀ

0 V̂0
P−1

ZP0 )

with
Zi := Yi − gi(âi,xxxi) + X̃XXiâi ≈ X̃XXiAi + Ei,

ZP0 := Y P
0 − gP0 (â0,xxx

P
0 ) + X̃XX

P
0 â0 ≈ X̃XX

P
0 A0 + EP0 ,

where âi = α̂αα+ δ̂δδi is the estimated value of Ai for i = 0, 1, · · · , I.
Therefore by using the independency between EP0 , δδδ0 and EF0 , we have

x̃xxF0,α̂ααĈov(α̂αα,δδδ0)x̃xxF
ᵀ

0,α̂αα = x̃xxF0,α̂αα[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(ZP0 , δδδ0)x̃xxF
ᵀ

0,α̂αα

= x̃xxF0,α̂αα[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(X̃XX
P
0 A0+EP0 , δδδ0)x̃xxF

ᵀ

0,α̂αα

= x̃xxF0,α̂αα[
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂x̃xxF

ᵀ

0,α̂αα, .

From (4.41) and (4.42), the estimated variance of prediction error is given by

V̂ar(Y F
0 −Ŷ F

0 ) ≈ x̃xxF0,α̂ααĈov(α̂αα)x̃xxF
ᵀ

0,α̂αα+x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα+σ̂2
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−2x̃xxF0,α̂αα[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂x̃xxF

ᵀ

0,α̂αα

≈ x̃xxF0,α̂αα[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1x̃xxF

ᵀ

0,α̂αα + x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα + σ̂2

−2x̃xxF0,α̂αα[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂x̃xxF

ᵀ

0,α̂αα

= x̃xxF0,α̂αα[
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1[x̃xxF

ᵀ

0,α̂αα−2X̃XX
P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂x̃xxF

ᵀ

0,α̂αα]

+x̃xxF0,α̂ααΣ̂x̃xxF
ᵀ

0,α̂αα + σ̂2

=: ν̂

In conclusion,
Y F

0 − Ŷ F
0 ∼ N(0, ν̂),

and then the (1−α)-prediction interval for Y F
0 from a partially observed individual

is given by
[ŷF0 − q1−α/2

√
ν̂, ŷF0 + q1−α/2

√
ν̂],

4.2.4 Prediction approach of Hall and Clutter

Consider the nonlinear random effects models (4.26) and (4.27). Let βββ := (ααα,Σ, σ2)
and the ML estimate β̂ββ := (α̂αα, Σ̂, σ̂2) be obtained based on the information of YYY obs

from the Pinheiro and Bates’ estimation method. Hall and Clutter (2004) propose
a predictor based on the linear approximation of the nonlinear model. In the
following, Hall and Clutter’s prediction procedure is presented.
By taking the first order Taylor expansion of g0(A0,xxx0) around the estimated value
â0 = α̂αα+ δ̂δδ0, we have

Y0 ≈ g0(â0,xxx0) + X̃XX0(A0 − â0) + E0, (4.43)

where

X̃XX0 :=
∂g0(a0,xxx0)

∂a0
|a0=â0 ∈ R(N0+1)×q.

Define the pseudo data as

Z0 := Y0 − g0(â0, x0) + X̃XX0â0 ≈ X̃XX0A0 + E0, (4.44)
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where A0 can be represented as A0 = ααα+ δδδ0 and

Z0 =

(
ZP0
ZF0

)
, X̃XX0 =

(
X̃XX
P
0

x̃xxF0

)
, g0(â0,xxx0) =

(
gP0 (â0,xxx

P
0 )

g(â0, x
F
0 )

)
, E0 =

(
EP0
EF0

)
.

Based on the linear random effects model (4.44), the emperical BLUP of ZF0 based
on ZP0 is given by

ẐF0 = E(ZF0 |ZP0 , β̂ββ) = x̃xxF0 α̂αα+ V̂0
FP
V̂0

P−1

(ZP0 − X̃XX
P
0 α̂αα), (4.45)

where

V̂0
FP

:= Ĉov(ZF0 , Z
P
0 ) = x̃xxF0 Σ̂X̃XX

P ᵀ

0 , V̂0
P

:= Ĉov(ZP0 ) = X̃XX
P
0 Σ̂X̃XX

P ᵀ

0 + σ̂2IIIN0 ,

α̂αα = [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1(

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
Zi + X̃XX

P ᵀ

0 V̂0
P−1

ZP0 ), (4.46)

with
Zi := Yi − gi(âi,xxxi) + X̃XXiâi ≈ X̃XXiAi + Ei, (4.47)

ZP0 := Y P
0 − gP0 (â0,xxx

P
0 ) + X̃XX

P
0 â0 ≈ X̃XX

P
0 A0 + EP0 ,

X̃XXi :=
∂gi(ai,xxxi)

∂ai
|ai=âi , X̃XX

P
0 :=

∂gP0 (a0,xxx
P
0 )

∂a0
|a0=â0 , x̃xxF0 :=

∂g(a0, x
F
0 )

∂a0
|a0=â0 ,

V̂i = Ĉov(Zi) = X̃XXiΣ̂X̃XX
ᵀ
i + σ̂2IIINi ,

and âi, i ∈ {0, 1, · · · , I} is the estimated value of Ai from the Pinheiro and Bates’
estimation method.
From (4.44) and (4.45) we have

Ŷ F
0 − g(â0, x

F
0 ) + x̃xxF0 â0 = x̃xxF0 α̂αα+ V̂0

FP
V̂0

P−1

(ZP0 − X̃XX
P
0 α̂αα)

⇐⇒ Ŷ F
0 = g(â0, x

F
0 )− x̃xxF0 â0 + x̃xxF0 α̂αα+ V̂0

FP
V̂0

P−1

(ZP0 − X̃XX
P
0 α̂αα).

By use of â0 = α̂αα+ δ̂δδ0, it is concluded that

Ŷ F
0 = g(â0, x

F
0 )− x̃xxF0 δ̂δδ0 + V̂0

FP
V̂0

P−1

(ZP0 − X̃XX
P
0 α̂αα). (4.48)

From (4.43) we have

Y F
0 ≈ g(â0, x

F
0 ) + x̃xxF0 (A0 − â0) + EF0 . (4.49)
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Finally based on (4.48), (4.49) and (4.44) we have

Y F
0 −Ŷ F

0 ≈ g(â0, x
F
0 )+x̃xxF0 (A0−â0)+EF0 −g(â0, x

F
0 )+x̃xxF0 δ̂δδ0−V̂0

FP
V̂0

P−1

(ZP0 −X̃XX
P
0 α̂αα)

≈ x̃xxF0 (A0−â0)+EF0 +x̃xxF0 δ̂δδ0−V̂0
FP
V̂0

P−1

(X̃XX
P
0 (ααα+δδδ0)+EP0 −X̃XX

P
0 α̂αα)

= x̃xxF0 (ααα−α̂αα)+x̃xxF0 δδδ0+EF0 −V̂0
FP
V̂0

P−1

(X̃XX
P
0 (ααα−α̂αα)+X̃XX

P
0 δδδ0+EP0 )

= (−V̂0
FP
V̂0

P−1

, 1)[

(
X̃XX
P
0

x̃xxF0

)
(ααα−α̂αα)+

(
X̃XX
P
0

x̃xxF0

)
δδδ0+

(
EP0
EF0

)
]

= (−V̂0
FP
V̂0

P−1

, 1)[X̃XX0(ααα−α̂αα)+X̃XX0δδδ0+E0].
(4.50)

Theorem 4.3. Approximate prediction interval for Y F
0 based on the Hall and

Clutter’s prediction [Hall and Clutter (2004)]:
Consider the nonlinear random effects models (4.26) and (4.27). Let βββ := (ααα,Σ, σ2)
and the ML estimate β̂ββ := (α̂αα, Σ̂, σ̂2) be obtained based on the information of YYY obs

from the Pinheiro and Bates’ estimation method. The prediction error (Y F
0 − Ŷ F

0 )
has approximately normal distribution with the mean 0 and estimated variance ν̂,

ν̂ := (−V̂0
FP
V̂0

P−1

, 1)Ĉov[X̃XX0(ααα− α̂αα) + X̃XX0δδδ0 + E0]

(
(−V̂0

FP
V̂0

P−1

)ᵀ

1

)
,

where α̂αα is given by (4.46) and

Ĉov[X̃XX0(ααα−α̂αα)+X̃XX0δδδ0+E0] ≈ X̃XX0Ĉov(α̂αα)X̃XX
ᵀ
0+X̃XX0Σ̂X̃XX

ᵀ
0+σ̂2IIIN0+1

−X̃XX0[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1[X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂X̃XX

ᵀ
0+X̃XX

P ᵀ

0 V̂0
P−1

×(σ̂2IIIN0 ,000N0×1)]−[X̃XX0Σ̂X̃XX
P ᵀ

0 V̂0
P−1

X̃XX
P
0 +(σ̂2IIIN0 ,000N0×1)ᵀV̂0

P−1

X̃XX
P
0 ]

×[
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

ᵀ
0,

with

V̂0
FP

:= Ĉov(ZF0 , Z
P
0 ) = x̃xxF0 Σ̂X̃XX

P ᵀ

0 , V̂0
P

:= Ĉov(ZP0 ) = X̃XX
P
0 Σ̂X̃XX

P ᵀ

0 + σ̂2IIIN0 ,

X̃XX0 :=
∂g0(a0,xxx0)

∂a0
|a0=â0 , X̃XX

P
0 :=

∂gP0 (a0,xxx
P
0 )

∂a0
|a0=â0 , x̃xxF0 :=

∂g(a0, x
F
0 )

∂a0
|a0=â0 ,
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Ĉov(α̂αα) ≈ [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi + X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1,

where

V̂i = X̃XXiΣ̂X̃XX
ᵀ
i + σ̂2IIINi , X̃XXi :=

∂gi(ai,xxxi)

∂ai
|ai=âi .

and âi’s are the estimated values of Ai’s. Moreover, the (1−α)-prediction interval
for Y F

0 from a partially observed individual is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂], (4.51)

where ŷF0 is the realization of Ŷ F
0 and q1−α/2 is the (1−α/2)-quantile of standard

normal distribution.

Proof. The proof can be found in the appendix.

4.2.5 Prediction approach of Stirnemann et al.

Consider β̂ββ := (α̂αα, σ̂2, Σ̂) be the estimation of βββ := (ααα, σ2,Σ) which can be ob-
tained based on the information of YYY := (Y ᵀ

1 , · · · , Y
ᵀ
I )ᵀ using one of the proposed

estimation procedures for nonlinear random effects model (Pinheiro and Bates,
2000; Walker, 1996; Wang, 2007). Stirnemann et al. (2011) propose estima-
tions of E(A0|yP0 , β̂ββ) and E(Y F

0 |yP0 , β̂ββ) by using the Markov Chain Monte Carlo
(MCMC) algorithm in 2-level nonlinear mixed effects models. They generate the
random samples from f(a0|yP0 , β̂ββ), where yP0 is the realization of Y P

0 , by use of
the p-dimensional Metropolis-Hasting algorithm. In the following, we describe the
prediction approach of Stirnemann et al. Consider the nonlinear random effects
model (4.26) and (4.27) and the nonlinear random effects model for the unknown
observation, Y F

0 , (4.28).

Lemma 4.4. [Stirnemann et al. (2011)]:
Let β̂ββ be the maximum likelihood estimation of βββ. For the future observation Y F

0

at xF0 , the predictive distribution is given by

f(yF0 |yP0 , β̂ββ) =

∫
f(yF0 |a0, β̂ββ)f(a0|yP0 , β̂ββ)da0.

Proof. The proof can be found in the appendix.

Lemma 4.5. [Stirnemann et al. (2011)]:

Let β̂ββ be the maximum likelihood estimation of βββ and (ã
(1)
0 , · · · , ã(M)

0 ) be an M-

sample from f(a0|yP0 , β̂ββ) using the Markov Chain Monte Carlo (MCMC) algorithm,
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then the Monte Carlo estimations of E(Y F
0 |yP0 , β̂ββ) and E(A0|yP0 , β̂ββ) are respectively

given by

ŷF0 :=
̂E(Y F
0 |yP0 , β̂ββ) ≈ 1

M

M∑
m=1

g(ã
(m)
0 , xF0 ), (4.52)

â0 :=
̂E(A0|yP0 , β̂ββ) ≈ 1

M

M∑
m=1

ã
(m)
0 . (4.53)

Proof. The proof can be found in the appendix.

Stirnemann et al. (2011) prove that E(Y F
0 |yP0 , β̂ββ) and E(A0|yP0 , β̂ββ) are conver-

gent to the conditional expectation of g(A0, x
F
0 ) and A0 given an infinite amount

of observations of the new series, respectively. And then based on the simulation
results, they show that these conditional expectations and the related true un-
known values yF0 and a0 are the same, respectively. Hence, it can be concluded
that these estimates are unbiased and when more observations of the new series
is used, this prediction procedure provide better predictions. Stirnemann et al.
(2011) mention that this prediction procedure does not consider uncertainty of the
estimated parameter vector β̂ββ. For taking account this uncertainty, they propose
to consider the parameter vector βββ as random with expectation β̂ββ and variance
covariance matrix equal to the variance of β̂ββ and then apply a Bayesian approach.

4.2.5.1 Combination of methods of Pinheiro/Bates and Stirne-
mann et al. (PBSt)

In this approach, we estimate the parameter vector βββ using the Pinheiro and
Bates’ estimation method by use of the information of the old series (YYY ). And
then by use of the prediction method of Stirnemann et al., we predict the missing
observation (Y F

0 ). For prediction interval, we use the proposed prediction interval
by Stirnemann et al., which is given by

PI = [qα/2(β̂ββ, yP0 ), q1−α/2(β̂ββ, yP0 )], (4.54)

where qα/2(β̂ββ, yP0 ) and q1−α/2(β̂ββ, yP0 ) are respectively the (α/2)− and (1 − α/2)-

quantiles of g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) and (ã

(1)
0 , · · · , ã(M)

0 ) is an M-sample from

f(a0|yP0 , β̂ββ) using the Markov Chain Monte Carlo (MCMC) algorithm. For sim-
ulating samples using the MCMC algorithm, the Metro Hastings function in
the MHadaptive package of Chivers (2012) is used. In this package, a simple
Metropolis-Hastings algorithm has been provided with a multivariate normal dis-
tribution as a proposal distribution in which the variance-covariance structure is
updated at each iteration (Spiegelhalter et al., 2002). For using theMetro Hastings
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function, we only needed to define a function which returns log[f(yP0 |a0, β̂ββ)f(a0|β̂ββ)]
and a vector of starting values for a0 which is obtained from the estimation method
of Pinheiro and Bates using the information of YYY obs.

4.2.5.2 Method of Stirnemann et al. combined with confidence
sets (StConf)

In this approach, we use the same estimation and prediction procedures which have
been used in Section 4.2.5.1. For prediction interval, we consider the prediction
interval based on the confidence ellipsoid for βββ. In the following theorem, using
the results in Müller et al. (2016) we propose the (1− α)2-prediction interval for
Y F

0 based on the (1− α)-confidence set for βββ.

Theorem 4.4. If Θ̂α(yyy) is the (1 − α)-confidence set for βββ then the (1 − α)2-
prediction interval for Y F

0 is given by:

P(yyyobs) = ∪βββ∈Θ̂α(yyy)[qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )]. (4.55)

Proof. The proof can be found in the appendix.

Let Θ̂(yyy) be the (1−α)-confidence ellipsoid for βββ, then based on Theorem 4.4,
the (1− α)2-prediction interval for Y F

0 is given by

∪βββ∈Θ̂α(yyy)[qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )] ⊆ [ min
βββ∈Θ̂(yyy)

qα/2(βββ, yP0 ), max
βββ∈Θ̂(yyy)

q1−α/2(βββ, yP0 )],

where qα/2(βββ, yP0 ) and q1−α/2(βββ, yP0 ) are respectively the (α2 )-and (1− α
2 )-quantiles

of g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) for each βββ in the confidence ellipsoid Θ̂(yyy) and

(ã
(1)
0 , · · · , ã(M)

0 ) is a random sample from f(a0|yP0 ,βββ) (which is obtained from an
MCMC algorithm) for each βββ in Θ̂(yyy).

The confidence ellipsoid for βββ using the Pinheiro and Bates’ method can be ob-
tained by use of the intervals function in the nlme package of Pinheiro et al.
(2016). This confidence ellipsoid is obtained from the asymptotic normality of
estimates (see Section 3.2.1.1).

4.2.6 An extension of Walker’s estimation method and a modified
method of Stirnemann et al.

4.2.6.1 Extending the Walker’s estimation method

Consider the nonlinear random effects model (4.26) for the completely observed in-
dividuals and (4.27) for the partially observed individual. The two-stage nonlinear
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random effects model is given by

(Yi|Ai = ai) ∼ NNi(gi(ai,xxxi), σ
2IIINi), i = 1, · · · , I,

(Y0|A0 = a0) ∼ NN0+1(g0(a0,xxx0), σ2IIIN0+1),

with
A0, · · · , AI

iid∼ Nq(ααα,Σ).

Walker (1996) proposes an MCEM algorithm for the estimation of unknown pa-
rameters in nonlinear random effects models in which only the random effects (Ai,
i ∈ {0, 1, · · · , I}) are considered as the missing data and all individuals have to
be completely observed, i.e. there was no missing observation in the individu-
als. Here we extend the Walker’s method by considering the random effects (Ai,
i ∈ {0, 1, · · · , I}) and a missing observation in the new individual (Y F

0 ) as the
missing data in our proposed MCEM algorithm.

MCEM algorithm
LetAAA = (A0, · · · , AI), YYY obs = (Y ᵀ

1 , · · · , Y
ᵀ
I , Y

P
0 )ᵀ andZZZ = (YYY obs, Y

F
0 ,AAA) represents

the complete data such that AAA and Y F
0 represent the missing data and also aaa,yyyobs

and zzz be the realizations of AAA,YYY obs and ZZZ, respectively. Consider βββ := (ααα,Σ, σ2)
the parameters vector which should be estimated using the maximum likelihood
method. If β̂ββ is the maximum likelihood estimation of βββ then

L(β̂ββ|yyyobs) ≥ L(βββ|yyyobs), for all βββ ∈ Ω,

where yyyobs is the realization of YYY obs and Ω is the parameter space.

The E step
At the (k+1)th iteration, define Q(βββ,βββ(k)) as follows:

Q(βββ,βββ(k)) = E(log f(ZZZ|βββ)|yyyobs,βββ(k)) =

∫∫
(log f(zzz|βββ))f(yF0 , aaa|yyyobs,βββ(k))dyF0 daaa,

where

log f(zzz|βββ) = K−N
2

log(σ2)− 1

2σ2

I∑
i=1

(yi−gi(ai,xxxi))ᵀ(yi−gi(ai,xxxi))

−1

2

I∑
i=1

(ai−ααα)ᵀΣ−1(ai−ααα)−I
2

log |Σ|

(4.56)
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−1

2
(a0−ααα)ᵀΣ−1(a0−ααα)− 1

2
log |Σ|−N0 + 1

2
log(σ2)

− 1

2σ2

(
yP0 − gP0 (a0,xxx

P
0 )

yF0 − g(a0, x
F
0 )

)ᵀ(
yP0 − gP0 (a0,xxx

P
0 )

yF0 − g(a0, x
F
0 )

)
,

(4.57)

for N :=
∑I

i=1Ni and K := −(N+N0+1+(I+1)q
2 ) log(2π).

In the Walker’s estimation method only the term (4.56) appears. Here we have
additionally the term (4.57).

The M step
Let β̂ββ be the unique solution at the (k + 1)th iteration for the following equation:

∂

∂βββ
Q(βββ,βββ(k))|

βββ=β̂ββ
= 0. (4.58)

By allowing differentiation under the integral sign (Jamshidian and Jennrich, 1993)
we have

E{ ∂
∂βββ

log f(ZZZ|βββ)|yyyobs,βββ(k)}|
βββ=β̂ββ

= 0. (4.59)

Then

∂

∂ααα
log f(zzz|βββ) = Σ−1

I∑
i=0

(ai −ααα)

and so

E{ ∂
∂ααα

log f(ZZZ|βββ)|yyyobs,βββ(k)} = (Σ(k))−1
I∑
i=0

{E(Ai|yi,obs,βββ(k))−ααα},

where yi,obs = yi, i ∈ {1, · · · , I} and y0,obs = yP0 are the realizations of Yi, i ∈
{1, · · · , I} and Y P

0 , respectively.
Moreover,

∂

∂Σ
log f(zzz|βββ) =

1

2
Σ−1{

I∑
i=0

[(ai −ααα)(ai −ααα)ᵀ − Σ]}Σ−1,

and

∂

∂σ2
log f(zzz|βββ) = −N +N0 + 1

2σ2
+

1

2σ4
[
I∑
i=1

(yi − gi(ai,xxxi))ᵀ(yi − gi(ai,xxxi))

+

(
yP0 − gP0 (a0,xxx

P
0 )

yF0 − g(a0, x
F
0 )

)ᵀ(
yP0 − gP0 (a0,xxx

P
0 )

yF0 − g(a0, x
F
0 )

)
].
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According to the above expressions, the unique solution of (4.59) at the (k + 1)th
iteration is given by

α̂αα(k+1) =
1

I + 1

I∑
i=0

E(Ai|yi,obs,βββ(k))

=:
1

I + 1

I∑
i=0

āi

(4.60)

Σ̂(k+1) =
1

I + 1

I∑
i=0

E[(Ai−α̂αα(k+1))(Ai−α̂αα(k+1))ᵀ|yi,obs,βββ(k)]

=
1

I + 1

I∑
i=0

[E(AiA
ᵀ
i |yi,obs,βββ

(k))]−α̂αα(k+1)α̂ααᵀ(k+1),

(4.61)
and

σ̂2(k+1) =
1

N +N0 + 1
{

I∑
i=1

E[(Yi−gi(Ai,xxxi))ᵀ(Yi−gi(Ai,xxxi))

+

(
Y P

0 − gP0 (A0,xxx
P
0 )

Y F
0 − g(A0, x

F
0 )

)ᵀ(
Y P

0 − gP0 (A0,xxx
P
0 )

Y F
0 − g(A0, x

F
0 )

)
|yyyobs,βββ(k)]}

=
1

N +N0 + 1
{

I∑
i=1

[(yi−E(gi(Ai,xxxi)|yi,obs,βββ(k)))ᵀ(yi−E(gi(Ai,xxxi)|yi,obs,βββ(k)))

+tr(Cov(gi(Ai,xxxi)|yi,obs,βββ(k)))]

+

(
yP0 − E(gP0 (A0,xxx

P
0 )|yP0 ,βββ(k))

E(Y F
0 − g(A0, x

F
0 )|yP0 ,βββ(k))

)ᵀ(
yP0 − E(gP0 (A0,xxx

P
0 )|yP0 ,βββ(k))

E(Y F
0 − g(A0, x

F
0 )|yP0 ,βββ(k))

)
+tr[Cov{

(
Y P

0 − gP0 (A0,xxx
P
0 )

Y F
0 − g(A0, x

F
0 )

)
|yP0 ,βββ(k)}]}.

(4.62)
The MC step
For the estimation of parameters, the calculation of expectations and covariances
in (4.60)-(4.62) with respect to f(yF0 , aaa|yyyobs,βββ(k)) is done by the Monte Carlo
approximation. Consider Ki := K(Ai) an integrable function of Ai (i = 1, · · · , I),
then based on the independency between Yi and Y F

0 and also between Y F
0 and Ai,

it is induced that

E(Ki|yi,obs,βββ(k)) =

∫∫
kif(yF0 , ai|yi,obs,βββ(k))daidy

F
0
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=

∫∫
kif(ai|yi,βββ(k))f(yF0 |yi,βββ(k))daidy

F
0

=

∫
[

∫
kif(ai|yi,βββ(k))dai]f(yF0 |βββ(k))dyF0

=

∫
kif(ai|yi,βββ(k))dai,

where ki := K(ai) and

f(ai|yi,βββ(k)) =
f(yi|ai,βββ(k))f(ai|βββ(k))∫
f(yi|ai,βββ(k))f(ai|βββ(k))dai

,

therefore,

E(Ki|yi,obs,βββ(k)) =

∫
kif(yi|ai,βββ(k))f(ai|βββ(k))dai∫
f(yi|ai,βββ(k))f(ai|βββ(k))dai

.

Walker (1996) proposes the ratio of Monte Carlo approximations using sampling
from f(ai|βββ(k)) as the estimation of E(Ki|yi,obs,βββ(k)) which is given by

̂E(Ki|yi,obs,βββ(k)) ≈
∑M

m=1K(ã
(m)
i )f(yi|ã(m)

i ,βββ(k))∑M
m=1 f(yi|ã(m)

i ,βββ(k))
, i = 1, · · · , I,

where ã
(1)
i , · · · , ã(M)

i is a random sample from f(ai|βββ(k)) and K(ã
(m)
i ) can be ã

(m)
i ,

ã
(m)
i ã

(m)T
i , gi(ã

(m)
i ,xxxi) and gi(ã

(m)
i ,xxxi)gi(ã

(m)
i ,xxxi)

ᵀ.

For the partially observed individual with one missing observation, we need to
generate the random sample from f(yF0 , a0|yP0 ,βββ(k)). We propose to apply the
Gibbs sampler by use of the following full conditional distributions:

f(yF0 |a0, y
P
0 ,βββ

(k)) =
f(yP0 , y

F
0 , a0|βββ(k))

f(yP0 , a0|βββ(k))

=
f(yP0 , y

F
0 |a0,βββ

(k))f(a0|βββ(k))

f(yP0 |a0,βββ(k))f(a0|βββ(k))
=
f(yP0 |a0,βββ

(k))f(yF0 |a0,βββ
(k))

f(yP0 |a0,βββ(k))

= f(yF0 |a0,βββ
(k)),

(4.63)
and

f(a0|yF0 , yP0 ,βββ(k)) =
f(yP0 , y

F
0 , a0|βββ(k))

f(yP0 , y
F
0 |βββ(k))

∝ f(yP0 , y
F
0 , a0|βββ(k)) = f(a0|βββ(k))f(y0|a0,βββ

(k)). (4.64)
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By the fact that (Y F
0 |a0,βββ

(k)) ∼ N(g(a0, x
F
0 ), σ2(k)) and based on (4.63), the ran-

dom sample can be generated directly from (Y F
0 |a0,βββ

(k)). However, for generating
a random sample from (A0|yF0 , yP0 ,βββ(k)), we propose to apply the Sampling Im-
portance Resampling (SIR) method (Bishop, 2006; Koch, 2007). The considered
instrumental density for simulating from (4.64) is f(a0|βββ(k)), hence the importance
weights are computed as

wl :=
f(a

(l)
0 |βββ(k))f(y0|a(l)

0 ,βββ(k))

f(a
(l)
0 |βββ(k))

= f(y0|a(l)
0 ,βββ(k)), l = 1, · · · , L,

where a
(l)
0 is a random sample from f(a0|βββ(k)) and L should be large enough (see

Appendix).

Our proposed Gibbs sampling algorithm along with SIR at the (k+1)th iteration
of the EM algorithm is given by

Algorithm 1 Pseudocode for the Gibbs sampler along with the SIR algo-
rithm
1: Draw the initial random sample ã

(0)
0 from Nq(ααα(k),Σ(k)).

2: for m=1 do M
3: Simulate ỹ

F (m)
0 from N(g(ã

(m−1)
0 , xF0 ), σ2(k)).

4: Start of SIR algorithm:

5: Simulate the L samples a
(1)
0 , · · · , a(L)

0 from Nq(ααα(k),Σ(k)).

6: Calculate the importance weights wl := f(

(
yP0

ỹ
F (m)
0

)
|a(l)0 ,βββ(k)), l ∈ {1, · · · , L}.

7: Calculate the probabilities pl := wl∑L
l=1

wl
, l ∈ {1, · · · , L}.

8: Obtain ã
(m)
0 by taking one sample from a

(1)
0 , · · · , a(L)

0 with the probabilities p1, · · · , pL.
9: End SIR.
10: end for.

If we consider (ỹ
F (1)
0 , ã

(1)
0 ), · · · , (ỹF (M)

0 , ã
(M)
0 ) a random sample from

f(yF0 , a0|yP0 ,βββ(k)) then the expectation estimation of K(A0, Y
F

0 ), which is an inte-
grable function of A0 and Y F

0 , is given by

̂E(K(A0, Y F
0 )|yP0 ,βββ(k)) ≈ 1

M

M∑
m=1

K(ã
(m)
0 , ỹ

F (m)
0 ),

where K(ã
(m)
0 , ỹ

F (m)
0 ) can be gP0 (ã

(m)
0 ,xxxP0 ), (ỹ

F (m)
0 )2, ỹ

F (m)
0 g(ã

(m)
0 , xF0 ). Now the

estimation procedure can be started by replacing the estimates of expectations
and covariances in (4.60)-(4.62).
Booth and Hobert (1999) propose a termination rule of the MCEM algorithm.
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Their suggestion says: when the Monte Carlo EM is implemented it is essential to
select the Monte Carlo sample size M at each iteration such that the large Monte
Carlo error, which is innate in this method, does not swamp the EM. At the
(k+1)th iteration, the EM is said to be swamped by the Monte Carlo error related
to βββ(k+1) when the previous value, βββ(k), lies in an approximate 100(1− α)% (e.g.,
α = 0.25) confidence region for βββ(k+1), and in this case M should be increased,
e.g., M →M + [M/s], where s ∈ {3, 4, 5} (Booth and Hobert, 1999).
In summary, our MCEM algorithm can be presented as follows:

Algorithm 2 Pseudocode for our proposed MCEM algorithm
1: Initialize M , βββ.

2: Generate ã
(1)
i , · · · , ã(M)

i , i = 1, · · · , I from Nq(ααα(k),Σ(k)).

3: Generate (ã
(1)
0 , ỹ

F (1)
0 ), · · · , (ã(M)

0 , ỹ
F (M)
0 ) via algorithm 1.

4: EM step: calculate βββ(k+1) by replacing the associated conditional expectations with their related MC
approximations in (4.60)-(4.62).

5: Evaluate the MC error: at the (k+1)th EM iteration, obtain the confidence region of βββ(k+1). If βββ(k)

lies in this region, then M →M + [M/s], where s ∈ {3, 4, 5}.
6: Iterate between 2-5 until convergence.

Wu (2010) mentions that for the Monte Carlo EM algorithm there is no guar-
antee that likelihood increases at each EM iteration by reason of the Monte Carlo
errors in the E step. But, under the regularity conditions the convergency of
the MCEM algorithm to a maximum has been proved. Because of the possible
reduction of likelihood at each EM iteration, we propose a stopping rule which
guarantees the non-decrease of likelihood at each EM iteration. Our suggested
stopping rule is: if at the (k+1)th iteration the likelihood value related to βββ(k+1)

is smaller than the likelihood value related to βββ(k), we use the former parameter,
i.e., βββ(k) as an update parameter value at the (k+1)th iteration, else βββ(k+1) is con-
sidered as the update parameter value. We stop the algorithm when reductions
happen 200 times for the same parameter.

4.2.6.2 A modified method of Stirnemann et al.

Stirnemann et al. (2011) use the MCMC algorithm to simulate (ã
(1)
0 , · · · , ã(M)

0 )

from f(a0|yP0 , β̂ββ), where β̂ββ is the ML estimate of βββ. In this approach, we propose

to simulate (ã
(1)
0 , · · · , ã(M)

0 ) from f(a0|β̂ββ) ((A0|β̂ββ) ∼ Nq(α̂αα, Σ̂)) and to estimate the
conditional expectations using the ratio of two Monte Carlo approximations, which
has been proposed by Walker (1996). From proof of Lemma 4.5 we have

E(Y F
0 |yP0 , β̂ββ) =

∫
g(a0, x

F
0 )f(a0|yP0 , β̂ββ)da0 =

∫
g(a0, x

F
0 )f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0∫

f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0

,
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hence

ŷF0 :=
̂E(Y F
0 |yP0 , β̂ββ) ≈

M∑
m=1

g(ã
(m)
0 , xF0 )

f(yP0 |ã
(m)
0 , β̂ββ)∑M

m=1 f(yP0 |ã
(m)
0 , β̂ββ)

, (4.65)

and

E(A0|yP0 , β̂ββ) =

∫
a0f(a0|yP0 , β̂ββ)da0

=

∫
a0f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0∫
f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0

,

therefore,

â0 :=
̂E(A0|yP0 , β̂ββ) ≈

M∑
m=1

ã
(m)
0

f(yP0 |ã
(m)
0 , β̂ββ)∑M

m=1 f(yP0 |ã
(m)
0 , β̂ββ)

, (4.66)

where (ã
(1)
0 , · · · , ã(M)

0 ) is a random sample from f(a0|β̂ββ) which is obtained from
the mvrnorm function in the MASS package of Venables and Ripley (2002).
Consequently, the estimation of prediction variances can be calculated as follows:

V̂ar(Y F
0 |yP0 , β̂ββ) =

̂E((Y F
0 )2|yP0 , β̂ββ)− ̂

E(Y F
0 |yP0 , β̂ββ)

2

≈ σ̂2+
M∑
m=1

g2(ã
(m)
0 , xF0 )

f(yP0 |ã
(m)
0 , β̂ββ)∑M

m=1 f(yP0 |ã
(m)
0 , β̂ββ)

−(ŷF0 )2.

(4.67)

Ĉov(A0|yP0 , β̂ββ) =
̂E(A0A

ᵀ
0|yP0 , β̂ββ)− ̂E(A0|yP0 , β̂ββ)

̂E(A0|yP0 , β̂ββ)
ᵀ

≈
M∑
m=1

ã
(m)
0 ã

(m)ᵀ
0

f(yP0 |ã
(m)
0 , β̂ββ)∑M

m=1 f(yP0 |ã
(m)
0 , β̂ββ)

−â0â
ᵀ
0,

(4.68)

Estimation of log-likelihood
The estimation of log-likelihood using the Monte Carlo approximation is given by

l(β̂ββ) ≈
I∑
i=1

log{ 1

M

M∑
m=1

f(yi|ã(m)
i , β̂ββ)}+ log{ 1

M

M∑
m=1

f(ŷ0|ã(m)
0 , β̂ββ)},

where ã
(1)
i , · · · , ã(M)

i is a random sample from f(ai|β̂ββ) ((Ai|β̂ββ) ∼ Nq(α̂αα, Σ̂)), and
ŷ0 = (yP

ᵀ

0 , ŷF0 )ᵀ.
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4.2.6.3 Combination of an extended estimation method of Walker
and a modified method of Stirnemann et al. (WmSt)

In this approach, we estimate the parameter vector βββ using the extension of
Walker’s estimation method by use of the information of the old and new series
and then predict the missing observation from the partially observed series using
the modified method of Stirnemann et al.. For prediction interval, we consider the
following prediction interval

PI = [qα/2(β̂ββ), q1−α/2(β̂ββ)], (4.69)

where qα/2(β̂ββ) and q1−α/2(β̂ββ) are respectively the (α2 )-and (1 − α
2 )-quantiles of

g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) such that ã

(1)
0 , · · · , ã(M)

0 is a random sample from

Nq(α̂αα, Σ̂ΣΣ).

4.2.6.4 The modified method of Stirnemann et al. combined with
confidence sets (mStConf)

In this approach, we use the same estimation and prediction procedures which
have been described in Section 4.2.6.3. For prediction interval, we consider the
prediction interval based on the confidence sets of parameters. In the following
theorem, Nie (2007) presents the confidence sets for the unknown parameters in
nonlinear mixed effects models.

Theorem 4.5. [Nie (2007)]:
Let θθθ := (θ1, · · · , θw) be a vector of unknown structural parameters such that Σ =
Σ(θθθ) and Nt :=

∑I
i=0Ni be the total sample size and θθθᵀ∗ := (θθθᵀ,αααᵀ). Consider β̂ββ be

the ML estimate of βββ.Under the conditions 1, 3 and 4 and conditions in Lemma 1
or 2 in Nie (2007), when Ni, I →∞ it is proved that√

Nt(σ̂
2 − σ2) ∼ N(0, i−1

∗ ),

√
I + 1(θ̂θθ∗ − θθθ∗) ∼ N(000,Ψ−1),

where

i∗ := limNt→∞
1

Nt

I∑
i=0

E(−
∂2 log f(Yi,obs,βββ)

∂(σ2)2
)

≈ limNt→∞
1

Nt

I∑
i=0

EYi,obs(X̃
2
iσ2(βββ,δδδi)(IIIq+Z̃i(βββ,δδδi)ΣZ̃

ᵀ
i (βββ,δδδi))

−1),
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and

Ψ := E[−∂
2 log f(Ai, θθθ∗)

∂θθθ∗∂θθθ
ᵀ
∗

],

such that f(Ai, θθθ∗) is the density function of random effects, and if we define

Ai = δδδi +ααα, δδδi
iid∼ Nq(000,Σ) then we have

limNi→∞
1

Ni
EYi,obs|δδδi(−

∂2 log f(Yi,obs|δδδi,βββ)

(∂σ2)2
) ≈ 1

Ni
X̃2
iσ2(βββ,δδδi),

and

EYi,obs|δδδi(−
∂2 log f(Yi,obs|δδδi,βββ)

∂δδδi∂δδδ
ᵀ
i

) = Z̃ᵀ
i (βββ,δδδi)Z̃i(βββ,δδδi),

Yi,obs = Yi for the completely observed individuals and Y0,obs = Y P
0 for the partially

observed individuals.

In the following theorem, using the results in Müller et al. (2016) we propose
the (1− 2α)-prediction interval based on the (1− α)-confidence set.

Theorem 4.6. Let Θ be the parameter space and Θ̂(yyyobs) be the (1−α)-confidence
set, then P(yyyobs) given by

P(yyyobs) = ∪βββ∈Θ̂(yyyobs)
[F−1
βββ (α/2), F−1

βββ (1− α/2)]

is the (1− 2α)-prediction interval for Y F
0 .

Proof. The proof can be found in the appendix.

Now, consider Θ̂(yyyobs) be the (1 − α)-confidence ellipsoid for βββ. Then the
(1− 2α)-prediction interval based on the (1− α) confidence set is given by

∪βββ∈Θ̂(yyyobs)
[qα/2(βββ), q1−α/2(βββ)] ⊆ [ min

βββ∈Θ̂(yyyobs)
qα/2(βββ), max

βββ∈Θ̂(yyyobs)
q1−α/2(βββ)],

where qα/2(βββ) and q1−α/2(βββ) are respectively the (α2 )-and (1 − α
2 )-quantiles of

g(ã
(1)
0 , xF0 ), · · · , g(ã

(M)
0 , xF0 ) for each βββ in the confidence ellipsoid Θ̂(yyyobs) and

ã
(1)
0 , · · · , ã(M)

0 is a random sample from Nq(ααα,ΣΣΣ) for each (ααα,Σ) in Θ̂(yyyobs).

It should be mentioned that we use different levels of the prediction intervals
based on confidence sets in Sections 4.2.5.2 and 4.2.6.4, based on the fact that Y F

0

and YYY are independent while Y F
0 and YYY obs are dependent.
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Confidence sets of parameters:
For this prediction interval based on the confidence sets, we only need to calculate
the confidence intervals for the components of Σ and ααα. From Theorem 4.5, we
have asymptotically

(θ̂θθ∗ − θθθ∗) ∼ Nm(000, [(I + 1)Ψ]−1),

where m = q + q(q+1)
2 , q is the dimension of Ai. Let hᵀj be a (m × 1) vector with

a one in the jth position and zeros in all other positions. Then we have

hj(θ̂θθ∗ − θθθ∗) ∼ N(0,
1

I + 1
hjΨ

−1hᵀj ),

or equivalently

(θ̂θθ∗j − θθθ∗j) ∼ N(0,
1

I + 1
Ψ.jj),

where Ψ. = Ψ−1. Now we can calculate the confidence interval for each components
of θθθ∗. For getting the (1−α)-confidence region, based on the Bonferroni correction
we have to calculate the (1− α

m)-confidence intervals for each m components of θθθ∗
.
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5 Simulation and Application

5.1 Simulation Results

In this section, a simulation study is applied to compare the obtained MLEs,
predictions and prediction intervals from some of the estimation and prediction
methods that were discussed previously. We simulated 500 times a data set with
60 individuals, each with 100 observations. These data sets are obtained from the
following nonlinear random effects model. For j = 1, · · · , 100 and i = 1, · · · , 60,
take

Eij
iid∼ N(0, σ2), Ai

iid∼ N3(ααα,Σ),

where ααα =

 36
−190
−0.7

, Σ =

19 48 0.3
48 846 2.5
0.3 2.5 0.01

 and σ2 = 0.04 are the estimated

parameters from Virkler’s data (using all 68 series) if the Pinheiro and Bates’
estimation method is used. Then the simulated observed data is given by:

Yij = A1i +A2ix
A3i
j + Eij ,

where xj is the crack length in the Virkler data set.

5.1.1 Applied approaches

In our simulation study, we apply some of the proposed estimation and prediction
methods for nonlinear random effects models in Chapters 3 and 4. In the following,
a list of the used methods is presented:
WmSt: Combination of an extended estimation method of Walker and a modi-
fied method of Stirnemann et al. with the used M = 5000 and L = 100 (Section
4.2.6.3).
mStConf : The modified method of Stirnemann et al. combined with confidence
sets with the used M = 5000 and L = 100 (Section 4.2.6.4).
PBSt: Combination of methods of Pinheiro/Bates and Stirnemann et al. with
the used M = 5000 (Section 4.2.5.1).
StConf : Method of Stirnemann et al. combined with confidence sets with the
used M = 5000 (Section 4.2.5.2).
mPB: The modified method of Pinheiro and Bates (Section 4.2.3).
ePB: Extension of the method of Pinheiro and Bates (Section 3.2.2).
PBLiski: Combination of methods of Pinheiro/Bates and Liski/Nummi (Section
4.2.1).
PBmSwamy: Combination of method of Pinheiro/Bates and the modified method
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of Swamy (Section 4.2.2).
Hall: Method of Hall and Clutter (Section 4.2.4).
LR (Simple linear regression in the balanced case): If the explanatory variables
xij do not depend on i and xF0 = x0NF then a simple linear regression of YiNF on
YiN0 can be used by assuming YiNF = θ0 + θ1YiN0 + Zi for i = 1, · · · , I where, θ0,
θ1 ∈ R and Zi’s are errors. The linear regression estimates θ̂0 and θ̂1 provide the
prediction ŷF0 = ŷ0NF = θ̂0 + θ̂1y0N0 and the prediction interval is given by the
classical method for the linear regression (see Section 2.1.2).

For the new individual, we apply the first 10 observations (N0 = 10, x0N0 = 10.8)
of the 60th individual (as the new individual) as Y P

0 , and predict the missing
observations at xF0 = 11 (as the near future) and xF0 = 28.8 (as the far away
future).

5.1.2 Estimation results

In the above mentioned approaches, indeed we use five different estimation meth-
ods because the used estimation procedures in methods WmSt and mStConf and
in methods StConf, PBSt, ePB and also in methods Hall and mPB are the same.
Hence, only the estimation results of methods WmSt, ePB, mPB, PBLiski and
PBmSwamy are represented. For the MCEM algorithm of the method WmSt, the
Monte Carlo sample size M was considered 5000, and remained constant through-
out the iterations. This estimation procedure converges in approximately 400
iterations after 34 hours on average whereas, the estimation procedure of method
PBLiski converges in 10 iterations after 20 minutes. The results, including param-
eter estimates with their biases and MSEs, are represented in Tables 2 and 3 in
the appendix. In addition, the impact of the near or far away missing observations
on the estimation procedures is studied. The obtained mean squared error (MSE)
for the parameter βl, l ∈ {1, · · · , 10} in Tables 2 and 3 is given by:

MSEβl =
1

500

500∑
k=1

(βl − β̂
(k)
l )2,

where βl is the true parameter value, and β̂
(k)
l is the estimation of βl at the kth

simulation. The MSE is a useful criterion for assessing the merit of estimates when
the variance is not suitable (because of the bias in the estimates). From Tables 2
and 3, severe bias and large MSE is clear in the estimation of Σ11, Σ22 and Σ12,
in the methods WmSt, ePB, mPB and PBmSwamy whereas, the method PBLiski
generally provides estimations close to the true values with the lowest biases and
MSEs for all of the variance covariance components. However, in the estimation of
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fixed effects, the methods WmSt, ePB and mPB perform better than the others.
In terms of the estimation of error variance (σ2), all methods relatively provide
the same results. Among the five different estimation methods, only in methods
WmSt and PBLiski, the predicted future observation is used in the estimation
procedure, therefore we can study the effect of near or far away future prediction on
these estimates. Based on the results in Tables 2 and 3, the estimation procedure
based on the near future prediction generally provides better estimations with the
lower biases and MSEs, in comparison with the procedure based on the far away
future prediction. Generally, method mPB presents slightly better estimations
than method ePB.

5.1.3 Prediction results

In the mentioned approaches in Section 5.1.1, indeed we use the eight different
prediction methods because the used prediction procedures in methods WmSt and
mStConf and also in StConf and PBSt are the same. Hence, only the prediction
results of methods WmSt, PBSt, ePB, mPB, PBLiski, PBmSwamy, Hall and LR
are represented. In Figure 2 (Tables 4 and 5 in the appendix), prediction results
related to the eight methods have been displayed. The obtained mean squared
error (MSE) for the prediction values is given by:

MSEp =
1

500

500∑
k=1

(Y
F (k)

0 − Ŷ F (k)
0 )2,

where Y
F (k)

0 is the real value of Y F
0 at the kth simulation, and Ŷ

F (k)
0 is the predic-

tion of Y F
0 at the kth simulation. From Figure 2, it is clear that the lowest MSE

values are related to methods WmSt, PBSt, PBLiski, Hall and LR. Moreover,
based on Figure 2 methods ePB and mPB provide predictions with the highest
MSE values. It should be noted that the bias and MSE values for the far away
future predictions are bigger than those of the near future predictions. It means
that the prediction methods perform well for the near future predictions. Method
PBmSwamy, for the nearby predictions, performs well however, for the far away
future predictions, presents poor results.
Figure 3 (Tables 6 and 7 in the appendix) represents the prediction interval re-
sults from the simulation study. In this figure, for assessing performance of the
prediction interval, we calculate the interval score of Gneiting and Raftery (2007),
which is a combination of the length and the coverage rate of a prediction interval
and is given by:

Sint
α (l, u, x) = (u− l) +

2

α
(l − x)111{x<l} +

2

α
(x− u)111{x>u},
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where l and u are respectively the lower and upper limits of (1 − α) × 100% pre-
diction interval and 111{x<l} is the indicator function. From Figure 3, the shortest
prediction intervals are obtained from methods PBSt, StConf, LR, PBLiski and
Hall. Method mStConf gives the largest prediction intervals with the highest cov-
erage rate and interval score among the others. In terms of the length and interval
score of prediction intervals, methods PBLiski, Hall, LR and StConf provide better
prediction intervals than the others. For the nearby future, method PBmSwamy
provides better prediction intervals than for the far away one. Generally, methods
ePB and mPB provide relatively the large prediction intervals with the high cover-
age rate and interval score. Moreover, for the far away future, method WmSt gives
better prediction intervals than method PBSt and for the nearby future, method
PBSt works better. Method StConf provides the shorter prediction intervals with
the lower interval score than method mStConf.

WmSt PBSt ePB mPB PBLiski PBmSwamy Hall LR

Bias

0
.0

0
.3

WmSt PBSt ePB mPB PBLiski PBmSwamy Hall LR

MSE

0
4

8

Near future Far away future

Figure 2: Prediction results from the simulation study at xF0 = 11 (as the near
future) and at xF0 = 28.8 (as the far away future)
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Figure 3: Prediction interval results from the simulation study at xF0 = 11 (as
the near future) and at xF0 = 28.8 (as the far away future)
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5.2 Application to Virkler’s data

The crack growth data presented by Virkler et al. (1979) contains 68 series, where
the time was measured when a crack in the steel specimen reached a given length
value. The length and time are the explanatory and the dependent variables,
respectively. The measurements are at 164 length values, which are the same
for all series. The aim is to predict the time, when the crack attains a specific
length. For the prediction of future observations, we randomly chose 34 series as
the training data set and applied the estimation procedures on them. Then, we
predicted some future observations from the other series and supposed that the
N0 observations of them were available. Figure 4 depicts the whole Virkler data
set, the red line shows the missing observations which should be predicted.
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0

2
0

3
0

4
0

Crack length=x

T
im

e

Figure 4: Virkler’s data

5.2.1 Applied approaches and models

Two approaches are applied for the Virkler data set: Approach 1) all available
observations from the old and new series are applied in the prediction procedures,
Approach 2) only the observations from the old series are used in the prediction
procedures.
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5.2.1.1 Models from the Paris-Erdogan equation

Let l and t be respectively the crack length and the time when the crack attains
a specific length. Then, the Paris-Erdogan law for the crack length l at the time t
is given by

dl

dt
= θ1l

θ2 , (5.1)

Lemma 5.1. Depending on θ2, equation (5.1) has the following solutions:

(i) θ2 = 1⇒ l = l(t) = β0exp(β1t)
with β0 > 0 and β1 = θ1.
(ii) θ2 < 1⇒ l = l(t) = β1(t− β0)β2

with β0 < t, β1 = (θ1(1− θ2))
1

1−θ2 and β2 = 1
1−θ2 > 0.

(iii) θ2 > 1⇒ l = l(t) = β1(β0 − t)−β2

with β0 > t, β1 = (θ1(θ2 − 1))
− 1
θ2−1 and β2 = 1

θ2−1 > 0.

Since in Virkler’s data, length l is independent variable and time t is dependent
variable hence we need to calculate the inverse t(l) of the functions l(t) of Lemma
5.1.

Lemma 5.2. The inverse functions t(l) of the functions l(t) of Lemma 5.1 are
given by:

(i) θ2 = 1⇒ t = t(l) = α0 + α1 log(l).
with α0 = − 1

β1
log(β0), α1 = 1

β1
.

(ii) θ2 < 1⇒ t = t(l) = α0 + α1l
α2 .

with α0 = β0 < t, α1 = ( 1
β1

)
1
β2 > 0, α2 = 1

β2
> 0.

(iii) θ2 > 1⇒ t = t(l) = α0 + α1l
α2 .

with α0 = β0 > t, α1 = −( 1
β1

)
− 1
β2 < 0, α2 = − 1

β2
< 0.

All obtained models from Lemma 5.1 and Lemma 5.2 are linear and nonlinear
in the unknown parameters. Because crack growth is not deterministic, we can
obtain a simple stochastic version of these functions by adding a random error.
This can create the following models:
1. Linear model: Yij = α0 + α1 log(xij) + Eij ,
2. Nonlinear model: Yij = α0 + α1x

α2
ij + Eij ,

3. Linearized model of the nonlinear model: Yij = α0 +α1xij+α2xij log(xij)+Eij ,
where Yij is the time variable and xij ’s are the given length values and Eij is the
random error.
As it was mentioned in Chapter 1, we apply random effects models, i.e. the pa-
rameters α0, α1, α2 are replaced by the individual parameters a0i, a1i, a2i which
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are the realizations of random variables, A0i, A1i, A2i. In the following, the three
obtained models from the Paris-Erdogan equation , which are used in the two
mentioned approaches, are presented:

111,222. The linear random effects models, which are modeled as:

Yij = xxxᵀjAi + Eij , i = 1, · · · , 34, j = 1, · · · , 164,

the new individual is modeled as:

Y P
0j = xxxᵀjA0 + E0j , j = 1, · · ·N0,

where xxxj := (1, log(xj))
ᵀ for the linear model L2 (linear model with two parame-

ters), and xxxj := (1, xj , xj log(xj))
ᵀ for the linearized model L3 (linear model with

three parameters), and for i = 1, · · · , 34 and j = 1, · · · , 164 we have Eij ∼ N(0, σ2),
Ai ∼ N2(ααα,Σ) for the linear model L2 and Ai ∼ N3(ααα,Σ) for the linear model L3.
For i = 0 and j = 1, · · · , N0, we have E0j ∼ N(0, σ2), A0 ∼ N2(ααα,Σ) for the linear
model L2 and A0 ∼ N3(ααα,Σ) for the linear model L3.
It is also supposed that A0, A1, · · · , A34, E

P
0 , E1, · · · , E34 are independent, where

Ei := (Ei1, · · · , Ei164)ᵀ and EP0 := (E01, · · · , E0N0)ᵀ.

3. The nonlinear random effects model, which is modeled as

Yij = g(Ai, xj) + Eij , i = 1, · · · , 34, j = 1, · · · , 164,

the new individual is modeled as:

Y P
0j = g(A0, xj) + E0j , j = 1, · · · , N0,

where for i = 1, · · · , 34 and j = 1, · · · , 164 we have:

g(Ai, xj) := A1i +A2ix
A3i
j , Eij ∼ N(0, σ2),

Ai := (A1i, A2i, A3i)
ᵀ ∼ N3(ααα,Σ),

and for i = 0 and j = 1, · · · , N0 we have:

g(A0, xj) := A10 +A20x
A30
j , E0j ∼ N(0, σ2),

A0 := (A10, A20, A30)ᵀ ∼ N3(ααα,Σ).

It is also supposed that A0, A1, · · · , A34, E
P
0 , E1, · · · , E34 are independent, where

Ei := (Ei1, · · · , Ei164)ᵀ and EP0 := (E01, · · · , E0N0)ᵀ.

87



In the following, all discussed prediction methods and models are listed:

Approach 1 (Using all observations from the old and new series):
WmSt: Combination of an extended estimation method of Walker and a modi-
fied method of Stirnemann et al. with the used M = 5000 and L = 100 (Section
4.2.6.3).
mStConf : The modified method of Stirnemann et al. combined with confidence
sets with the used M = 5000 and L = 100 (Section 4.2.6.4).
PBSt: Combination of methods of Pinheiro/Bates and Stirnemann et al. with
the used M = 5000 (Section 4.2.5.1).
StConf : Method of Stirnemann et al. combined with confidence sets with the
used M = 5000 (Section 4.2.5.2).
mPB: The modified method of Pinheiro and Bates (Section 4.2.3).
PBLiski: Combination of methods of Pinheiro/Bates and Liski/Nummi (Section
4.2.1).
PBmSwamy: Combination of method of Pinheiro/Bates and the modified method
of Swamy (Section 4.2.2).
Hall: Method of Hall and Clutter (Section 4.2.4).
mRao.L2, mRao.L3: The modified method of Rao for the linear models L2 and
L3 (Section 4.1.1).
eRao.L2, eRao.L3: Extension of the method of Rao for the linear models L2
and L3 (Section 4.1.1.1).
LR: Simple linear regression in the balanced case (Section 5.1.1).

Approach 2 (Using only observations from the old series):
ePB: Extension of the method of Pinheiro and Bates (Section 3.2.2).
Swamy.L2, Swamy.L3: Method of Swamy for the linear models L2 and L3 (Sec-
tion 3.1.2).

5.2.2 Estimation results

For the estimation of parameters in the Virkler data set, we chose randomly 34
series as the training data set and obtained the estimations and corresponding
standard errors based on the information of these 34 series and the beginning of
a new one, which is one of the other 34 series. Required starting values for the
estimation procedures are obtained based on the information of the training data
set and the new series. Because based on the simulation results, the estimation
results related to the near future prediction in methods WmSt and PBLiski are
slightly better than the results related to the far away future prediction hence,
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in Table 8 we only represented the estimation results related to the near future
prediction using the first 131 observations of the new series. The estimations and
their related standard errors, in Table 8, are obtained as follows:

β̂l =
1

34

34∑
k=1

β̂
(k)
l , σ̂β̂l =

1

34

34∑
k=1

σ̂
β̂
(k)
l

where β̂
(k)
l and σ̂

β̂
(k)
l

are the obtained estimation and its standard error of param-

eter βl, l ∈ {1, · · · , 10} based on the 34 series in the training data set and the
beginning of the kth new series. The extension of Walker’s estimation method,
which is used in methods WmSt and mStConf, converged on average in 300 itera-
tions after 48 hours. The value of M was considered 5000, and remained constant
throughout the iterations. The estimation procedure in method PBLiski converged
on average in 5 iterations after about 10 minutes. It can be seen that all four meth-
ods result in the close parameter estimates except for the estimates of Σ11, Σ12

and Σ22. Based on the simulation results, method PBLiski provides the near-
est estimates of variance covariance components to the actual ones, and methods
WmSt and mPB present better estimates of the fixed effects. With respect to
Table 8, it is clear that differences between the related estimated parameter values
(especially for Σ11, Σ12 and Σ22) to the four methods in the Virkler data set are
smaller than those of the simulation study. In other words, methods WmSt, mPB
and PBmSwamy perform as well as method PBLiski when the number of given
observations within each individual increases (In the Virkler data set, the number
of intraindividual is 164 whereas in the simulation study was 100).

5.2.3 Prediction results

For the prediction of future observations in the Virkler data set, 34 series were
randomly chosen as the training data set. The prediction is performed by using
the other 34 series. We studied the performance of the prediction methods with
two sizes of observations from the new series. We initially considered using 15
observations, i.e., up to the crack length of 11.8, and then used 131 observations,
i.e., up to the crack length of 35. For the linear regression method, we first con-
sidered x0N0 = 11.8 and xF0 = (12, 17, 24, 29, 33, 36, 40.2, 43, 45, 49.8), and finally
x0N0 = 35 and xF0 = (35.2, 36, 37, 38.2, 39, 40.2, 41, 43, 45, 49.8). In methods PBSt,
StConf, WmSt and mStConf, the Monte Carlo sample size for prediction of the
future observation was 5000. Moreover, we considered 35 and 50 points inside
the confidence sets of parameters for calculating the prediction intervals in meth-
ods StConf and mStConf, respectively. In the following, the obtained results are
presented.
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5.2.3.1 Prediction results for x >= 12:

Prediction results related to the linear models:
Based on Figure 5, method LR provides predictions with the lowest MSE values.
Method eRao.L3 presents better predictions with the lower bias and MSE values
than method eRao.L2. Methods mRao.L2 and mRao.L3 provides the worst pre-
diction results, especially for the far away future predictions. Generally, Swamy’s
prediction method perform better than methods eRao and mRao.
From Figure 6, the shortest prediction interval with the high coveragte rate and
the lowest interval score is given by method LR. The Swamy’s prediction gives
relatively large prediction intervals with the highest coverage rate and low interval
score. For the near future, method mRao.L2 presents better prediction intevals
than method eRao.L2 and for the far away future, method eRao.L2 works better.
Generally, methods eRao.L3 and mRao.L3 give better results than eRao.L2 and
mRao.L2 and the modified method of Rao results in the larger prediction intervals
than the method of eRao.

Prediction results related to the nonlinear model:
In the mentioned approaches in Section 5.2.1, indeed we use the eleven differ-
ent prediction methods because the used prediction procedures in methods WmSt
and mStConf and also in StConf and PBSt are the same. Hence, for the non-
linear model only the prediction results of methods WmSt, PBSt, ePB, mPB,
PBLiski, PBmSwamy, Hall and LR are represented. Based on Figure 7, method
PBmSwamy gives predictions with the high bias and MSE values among the othe
other methods. Method LR provides predictions with the lowest MSEs but with
the high bias values. Methods PBLiski and Hall give the similar prediction results
with relatively the low MSE and bias values.
From Figure 9, method mPB gives predictions with the lower biases and MSEs
especially, for the far away future predictions in comparison to method ePB. Based
on Figure 11, for the nearby future, the prediction approach of Stirnemann et al.
provides better predictions with the lower biases and MSEs in comparison to its
modification method and for the far away future, the modified method of Stirne-
mann et al. works better.
From Figure 8, the shortest prediction intervals with the low coverage rate and
high interval score are obtained from methods Hall and PBLiski. Methods mSt-
Conf and StConf give the large prediction intervals with the highest coverage rate
and the lowest interval score. Method WmSt provides the larger prediction inter-
vals with the higher coverage rate and the lower interval score than method PBSt.
Method LR gives the short prediction intervals with the high coveragre rate and
the low interval score. Large prediction intervals with high coverage rate and low
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interval score are obtained from methods PBmSwamy, ePB and mPB.
Based on Figure 10, method mPB presents prediction intervals with the smaller
interval score than method ePB. With respect to Figure 12, the best prediction
intervals with the lowest interval score and the highest coverate rate are given by
methods mStConf and StConf. Moreover, method WmSt provides better predic-
tion intervals than method PBSt.

An overall comparison:
For an overall comparison of methods for linear and nonlinear models, we chose
methods which provide the higher coverage rate or the lower interval score than the
other methods. Hence from Figure 6, we considered methods Swamy.L2, Swamy.L3
and eRao.L3 and from Figure 8, methods mStConf, StConf, LR, mPB, WmSt and
PBmSwamy were selected. Based on Figure 13, methods LR and mPB give predic-
tions with the lowest MSEs. From Figure 14, in terms of coverage rate and interval
score of the prediction intervals, methods mStConf, StConf and mPB present the
best prediction intervals.
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Figure 5: Prediction results of the linear models L2 and L3 using the first 15
observations of the new series
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Figure 6: Prediction intervals of the linear models L2 and L3 using the first 15
observations of the new series
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Figure 7: Prediction results of the nonlinear model using the first 15 observations
of the new series
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Figure 8: Prediction intervals of the nonlinear model using the first 15 observa-
tions of the new series
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Figure 9: Prediction results of methods ePB and mPB using the first 15 obser-
vations of the new series
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Figure 10: Prediction intervals of methods ePB and mPB using the first 15
observations of the new series
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Figure 11: Prediction results of methods WmSt and PBSt using the first 15
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Figure 12: Prediction intervals of methods WmSt, PBSt, StConf and mStConf
using the first 15 observations of the new series
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Figure 14: Overall comparison of prediction intervals for x >= 12
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5.2.3.2 Prediction results for x > 35:

Prediction results related to the linear models:
From Figure 15, method LR gives the best predictions with the smallest bias and
MSE values. Methods eRao.L3, mRao.L3, Swamy.L2 and Swamy.L3 provide pre-
dictions with the low bias and MSE values. Methods eRao.L2 and mRao.L2 give
the worst predictions with the highest bias and MSE values especially, for the far
away future predictions.
Based on Figure 16, the shortest prediction intervals with the high coverage rate
and the smallest interval score is given by method LR. Methods Swamy.L2 and
Swamy.L3 give the largest prediction intervals with the highest coverage rate and
small interval score. Methods eRao.L3 and mRao.L3 give the shorter prediction
intervals with the higher coverage rate and the lower interval score than methods
eRao.L2 and mRao.L2.

Prediction results related to the nonlinear model:
In the mentioned approaches in Section 5.2.1, indeed we use the eleven differ-
ent prediction methods because the used prediction procedures in methods WmSt
and mStConf and also in StConf and PBSt are the same. Hence, for the nonlinear
model only the prediction results of methods WmSt, PBSt, ePB, mPB, PBLiski,
PBmSwamy, Hall and LR are represented. From Figure 17, the best predictions
with the smallest bias and MSE values are given by method LR. Methods PBSt,
PBLiski, PBmSwamy and Hall provide predictions with the low bias and MSE
values. Methods ePB and mPB provide the worst predictions with the highest
bias and MSE values. Method WmSt gives predictions with the high bias and
MSE values especially for the far away future predictions.
From Figure 19, method mPB provides better predictions with the lower bias and
MSE values than method ePB. In addition, based on Figure 21, method PBSt pro-
vides better predictions with the lower bias and MSE values than method WmSt.
From Figure 18, the shortest prediction intervals with the high coverage rate and
the smallest interval score are given by method LR. The largest prediction intervlas
with the highest coverage rate and the high interval score is obtained from method
mStConf. Methods PBSt, PBLiski, PBmSwamy, LR and Hall give the shortest
prediction intervals. Method StConf provides the short prediction intervals with
the highest coverage rate and the low interval score. The linearization-based meth-
ods (i.e., PBLiski, PBmSwamy and Hall) provide the shortest prediction intervals
with the relatively high coverage rate and small interval score. Methods mStConf,
WmSt, ePB and mPB give the largest prediction intervals with the highest cover-
age rate and the highest interval score.
From Figure 20, method mPB gives better prediction intervals with the higher
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coverage rate and the lower interval score than method ePB. From Figure 22,
methods mStConf and WmSt give the largest prediction intervals with the high
coverage rate and the highest interval score. Method StConf provides the best
prediction intervals with the highest coverage rate and the lowest interval score.

An overall comparison:
For an overall comparison of methods for linear and nonlinear models, we chose
methods which provide the higher coverage rate or the lower interval score than
the other methods. Hence from Figure 16 we considered methods Swamy.L2 and
Swamy.L3 and from Figure 18, methods mStConf, StConf, WmSt, LR, mPB,
PBLiski, PBmSwamy and Hall were selected. Based on Figures 23, the best pre-
dictions with the smallest MSEs are given by methods LR, Hall, PBSt, PBLiski
and PBmSwamy. From Figure 24, the best prediction intervals with the lowest
interval score are given by methods LR, StConf, Hall, PBLiski and PBmSwamy.
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Figure 15: Prediction results of the linear models L2 and L3 using the first 131
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Figure 17: Prediction results of the nonlinear model using the first 131 observa-
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Figure 18: Prediction intervals of the nonlinear model using the first 131 obser-
vations of the new series
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Figure 19: Prediction results of methods ePB and mPB using the first 131
observations of the new series
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Figure 20: Prediction intervals of methods ePB and mPB using the first 131
observations of the new series
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Figure 21: Prediction results of methods WmSt and PBSt using the first 131
observations of the new series
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Figure 22: Prediction intervals of methods WmSt, PBSt, StConf and mStConf
using the first 131 observations of the new series

110



35 40 45 50

0
.0

1
.0

2
.0

3
.0

Crack length=x

|B
ia

s|

Prediction for x>35

35 40 45 50

0
1

2
3

4
5

Crack length=x

M
S

E

PBSt (=StConf)

LR

mPB

PBLiski

PBmSwamy

Hall

Swamy.L2

Swamy.L3

WmSt (=mStConf)

Figure 23: Overall comparison of prediction results for x > 35
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6 Discussion and Conclusion

We proposed an exact method based on the MCEM algorithm and, an approxi-
mate method for estimating parameters in nonlinear random effects model. Based
on the simulation results, among the discussed methods, method PBLiski gives
closer estimations to the true ones for the variance covariance components of ran-
dom effects. In terms of the fixed effects, the extension of Walker’s estimation and
Pinheiro and Bates’ algorithm provide better estimations among the others (see
Tables 2 and 3).
According to the obtained parameter estimations for the Virkler’s data (see Ta-
ble 8), it can be seen that the differences between the obtained estimates from
the different methods are smaller than the ones in the simulation study. This
implies that by increasing the number of observations within each individual, the
proposed exact and approximate methods provide relatively the same estimation
results. Moreover, from the simulation results, estimation procedures based on the
near future prediction perform slightly better than the far away future prediction.
In terms of computation time, it is clear that the approximate methods are usu-
ally faster than the exact method (the extension of Walker’s estimation method).
However, the computation time of our MCEM algorithm is readily outweighed
by 3 advantages: (1) exact maximum likelihood estimations are achieved; (2) the
estimates can be applied to assess the certainty of approximate maximum likeli-
hood estimations; (3) one can determine that under what conditions and for which
models the obtained estimates from the approximate methods are reliable.
According to the obtained prediction results from the simulation, methods WmSt,
PBSt, PBLiski, Hall and LR give the better predictions among the others. More-
over, from the simulation results related to prediction interval, the best prediction
intervals are obtained from methods PBLiski, Hall, LR and StConf. Generally,
methods ePB and mPB provide relatively large prediction intervals with the high
coverage rate and interval score. Moreover, method StConf works better than
mStConf. In addition, for the far away future, method WmSt gives better predic-
tion intervals than method PBSt and for the nearby future, method PBSt works
better.
For the Virkler data, among the prediction methods for the linear models, Swamy’s
method generally presents better predictions and prediction intervals (the lower
bias and MSE values for predictions and the smaller interval score for prediction
intervals) than methods eRao and mRao. Bondeson (1990) states that the optimal
weighted predictor is always better than simple predictors (e.g. Swamy’s predic-
tor) and proves that Rao’s prediction is an optimal weighted predictor when Σ
and σ2 are known and mentions that it is impossible to prove the optimality of
Rao’s prediction when these parameters are replaced by their estimates, however,
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it can be gussed that the predictor based on the estimations of parameter is also
an optimal one. In such a case, Rao (1975) states that the prediction error will
be larger than when parameters are known and will depend on how close the es-
timations to their true values. In our case, the extended and modified versions of
Rao’s prediction provided poor results. Using more accurate estimation methods
can improve the results. When few observations from the new series are available,
the estimate of parameters in method mRao is slightly different from the same
one in method eRao such that it results in various prediction results. However,
when more observations from the new series are available, it can be easily proved
that the estimates of parameters in method mRao are approximately the same
with the estimates from method eRao. And hence, there is no considerable dif-
ference between the results of methods eRao and mRao. It should be noted that
the information from the new series is applied in the both methods, eRao and
mRao, (see formulas of the prediction and prediction interval for both methods in
Section 4.1.1) and the difference is only in the calculation of parameter estimates
such that in the Rao’s prediction only the information from the old series is used
for the estimation of parameters whereas in the modified Rao’s prediction, the
information from the old and new series is used in the estimation of parameters.
This difference can creat the different results.
In terms of prediction procedures for the nonlinear model, we obtained the follow-
ing results. Generally, the prediction approach of Stirnemann et al. ( which is used
in methods PBSt and StConf) gives better predictions (the lower bias and MSE
values) than the modified one (which is used in methods WmSt and mStConf).
Stirnemann et al. (2011) prove that E(Y F

0 |yP0 ) is convergent to the conditional
expectation of g(A0, x

F
0 ) given an infinite amount of observations of the new se-

ries. And then based on the simulation results, they show that this conditional
expectation and the true unknown yF0 are the same. Hence, when the number of
available data in the new series increases, the estimation of E(Y F

0 |yP0 ) is a bet-
ter predictor of the true unknown yF0 . In methods PBSt (or StConf) and WmSt
(or mStConf), we estimate E(Y F

0 |yP0 ) using the Monte Carlo approximation via
MCMC algorithm and the ratio of two Monte Carlo approximations, respectively.
And based on the obtained results, it seems that the Monte Carlo approximation
via MCMC algorithm works better than the ratio of two Monte Carlo approxima-
tions in estimating E(Y F

0 |yP0 ). About the prediction intervals, generally methods
WmSt and mStConf give the larger prediction intervals than methods PBSt and
StConf. The reason is that, in methods WmSt and mStConf we simulate the ran-
dom effect from its multidimensional normal distribution without any restriction.
However, in methods PBSt and StConf we simulate the random effect from the
conditional distribution of random effect given the past measurements from the
new series. Restricting the random effect by the past measurements from the new
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series can cause that the range of random sample changes to be not as large as the
random sample from the nonconditional distribution of random effect. Therefore,
in methods WmSt and mStConf the values of quantiles can be very large or very
small and it can create large prediction intervals. Among the prediction intervals
based on the confidence sets of parameters, generally method StConf works better
than method mStConf. And between prediction intervals based on the parameter
estimate, generally method WmSt performs better than method PBSt.
Moreover, the modified Pinheiro and Bates’ prediction (mPB) provides better pre-
dictions and prediction intervals (the lower bias and MSE values for predictions
and the smaller interval score for prediction intervals) than extension of the method
of Pinheiro and Bates (ePB), especially when the number of available observations
from the new series increases. This is because in the modified version, the es-
timates of parameters are obtained by using more information (the information
from the old and new series) than the extended one. In the extended version of
Pinheiro and Bates’ prediction, only the information from the old series is used
for the estimation of parameters and in fact the information from the new series
is never used.
Among the linearization-based methods ( i.e., PBLiski, PBmSwamy and Hall), the
predictor in method PBLiski, which is an EM-predictor, provides better predic-
tions. Because, based on the simulation, Liski and Nummi (1996) prove that their
EM-predictor improves predictions in comparison to the non-iterative predictors.
When few observations from the new seires is available, method PBLiski presents
better prediction intervals (the smaller interval score) than method Hall, especially
for the far away future. It should be mentioned that these methods give relatively
similar prediction intervals and the main difference is in how the parameters are
estimated. Such that in method PBLiski an EM algorithm is used, and in method
Hall, an iterative estimation procedure of Pinheiro and Bates is applied. Moreover,
based on the obtained estimation results from the simulation, this EM algorithm
gives the closer estimates to the true values than the other methods, especially
for the estimation of variance components. Therefore, it is expected that method
PBLiski performs better than method Hall.
When few observations from the new seires are available, method PBmSwamy
gives the worst predictions (with the highest bias and MSE values) but provides
the largest prediction intervals with the highest coveragte rates, and the small-
est interval score among the other linearization-based methods. The reason for

such a poor prediction result is that, Ẑ
F (new)
0 in the prediction formula of method

PBmSwamy cannot predict well the future observations, due to the little available

information from the new series. Consequently, Ŷ
F (new)

0 and finally Ŷ F
0 cannot

result in good predictions (see Section 4.2.2).
When more observations from the new seires are available, all the three linearization-
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based methods provide relatively the same results in prediction and also in predic-
tion intervals. The reason is that, as it was mentioned in Section 5.2.2, when more
observations from the new series are used, the estimation procedures in methods
mPB (which is used in method Hall), PBLiski and PBmSwamy provide very close
estimations. As such, the similar predictions can be obtained. As it was mentioned,
methods PBLiski and Hall give the relatively similar prediction intervals and the
main difference is in how parameters are estimated. Now since using more obser-
vations from the new series, relatively the same estimation results are obtained,
both methods provide the same results. In terms of method PBmSwamy, it should

be mentioned when more observations from the new series are used Ẑ
F (new)
0 can

predict well the future observations (due to the more available information from

the new series) and therefore Ŷ
F (new)

0 and finally Ŷ F
0 can result in good predic-

tions and now based on obtained relatively the same estimation results from these
three mentioned methods, it is expected that this method provides predictions and
prediction interval results as well as methods PBLiski and Hall. Since all of these
three methods are based on the linearization using the Taylor expansion, and this
expansion works better for the near future than for the far away future, the results
for the near future predictions are better than for the far away future predictions.
Finally for method LR, we concluded that this method provides the more flat
curves and the best results among the other methods for the larger length values.
For the smaller length values, this method does not work as well as for the larger
length values. Since observations at the smaller length values contain less infor-
mation of the old series than observations at the larger length values. Note that
this method has the disadvantage that it can used only for the balanced data sets.
It should be mentioned the presented models for fitting to Virkler’s data are not
the best because of the additive error term which can result in large prediction
intervals even for the near future predictions.

In this research as in many other research works, the distribution of random ef-
fects and errors is considered to be normal. As it was mentioned by Meza et al.
(2012), these assumptions can make inferences sensetive to the existence of out-
liers. Therefore, the use of heavy-tailed multivariate distributions like Student-t,
the contaminated normal and slash can result in robust inferences. Several authors
consider heavy-tailed distributions for random effects and errors for accomodating
outliers (Welch and Richardson, 1997; Pinheiro et al., 2001; Yeap and Davidian,
2001; Lin and Lee, 2006; Staudenmayer et al., 2009). Thus, a generalization of this
research would be to study prediction procedures for linear and nonlinear mixed
models using heavy-tailed distributions and to present robust prediction intervals.
This generalization can be an extension of Lin and Lee (2006) and Staudenmayer
et al. (2009) estimation methods in linear mixed models and also an extension of
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Yeap and Davidian (2001) and Meza et al. (2012) estimation methods in nonlin-
ear mixed models. Another generalization of this research can be the extension of
Mathew’s method (Mathew et al., 2016) for calculating the prediction interval in
a linear mixed model with one random effect to a linear mixed model with more
than one random effects, and also to a nonlinear mixed model.
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7 Appendix

7.1 Proof of theorems and lemmas

7.1.1 Proof of Theorem 2.3

Proof. The prediction error can be calculated as follows:

Ŷ F
0 − Y F

0 = xxxF0 α̂̂α̂α− (xxxF0 ααα+ EF0 ) = xxxF0 (α̂̂α̂α−ααα)− EF0 .

From (2.4) and the independency between α̂αα and EF0 (because α̂αα is a linear function
of Y P

0 and Y P
0 and EF0 are independent) we have

E(Ŷ F
0 − Y F

0 ) = xxxF0 E(α̂̂α̂α−ααα)− E(EF0 ) = 0,

Var(Ŷ F
0 − Y F

0 ) = xxxF0 Cov(α̂̂α̂α)xxxF
ᵀ

0 + σ2

= xxxF0 σ
2(XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 + σ2 = σ2[1 + xxxF0 (XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 ].

Moreover, since from (2.4) α̂̂α̂α has normal distribution and also EF0 has also normal
distribution then Ŷ F

0 −Y F
0 , which is a linear function of α̂̂α̂α and EF0 , has also normal

distribution.
For getting the prediction interval for Y F

0 , firstly we need to calculate the distri-
bution of (Y P

0 −XXXP
0 α̂αα)ᵀ(Y P

0 −XXXP
0 α̂αα). We define P = XXXP

0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 which
is idempotent and symmetric and also we have PXXXP

0 = XXXP
0 . Then we have

Y P
0 −XXXP

0 α̂̂α̂α = XXXP
0 ααα+EP0 −XXXP

0 α̂̂α̂α = −XXXP
0 (α̂̂α̂α−ααα)+EP0

= −XXXP
0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 EP0 +EP0 = (IIIN0−XXXP
0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 )EP0

=: AEP0 .
(7.1)

From (7.1) and idempotent property of A, the residual sum of squares can be
written as

(Y P
0 −XXXP

0 α̂αα)ᵀ(Y P
0 −XXXP

0 α̂αα) = (AEP0 )ᵀ(AEP0 ) = EP
ᵀ

0 AEP0 = EP
ᵀ

0 (IIIN0 − P )EP0

= Y P ᵀ

0 (IIIN0 − P )Y P
0 − Y P ᵀ

0 XXXP
0 ααα+ Y P ᵀ

0 PXXXP
0 ααα−αααᵀXXXP ᵀ

0 Y P
0

+αααᵀXXXP ᵀ

0 PY P
0 +αααᵀXXXP ᵀ

0 XXXP
0 ααα−αααᵀXXXP ᵀ

0 PXXXP
0 ααα.

Since PXXXP
0 = XXXP

0 , hence we have

(Y P
0 −XXXP

0 α̂αα)ᵀ(Y P
0 −XXXP

0 α̂αα) = Y P ᵀ

0 (IIIN0 − P )Y P
0 = Y P ᵀ

0 AY P
0 .

118



Because A is idempotent and symmetric, then based on Theorem 2.2 we have

(Y P
0 −XXXP

0 α̂αα)ᵀ(Y P
0 −XXXP

0 α̂αα) ∼ σ2χ2
r,λ. (7.2)

r and λ can be calculated as

r = rank(A) = tr(A) = N0 − q, (7.3)

and

σ2λ = αααᵀXXXP ᵀ

0 AXXXP
0 ααα = αααᵀXXXP ᵀ

0 [XXXP
0 ααα−XXXP

0 (XXXP ᵀ

0 XXXP
0 )−1XXXP ᵀ

0 XXXP
0 ααα] = 0

⇒ λ = 0. (7.4)

Finally, from (7.2), (7.3) and (7.4) it is concluded that

(Y P
0 −XXXP

0 α̂αα)ᵀ(Y P
0 −XXXP

0 α̂αα) ∼ σ2χ2
N0−q. (7.5)

By use of (2.6) and (7.5) we can construct a t-statistic as follows:

Ŷ F0 −Y F0√
σ2[1+xxxF0 (XXXPᵀ

0 XXXP
0 )−1xxxF

ᵀ
0 ]√

(Y P0 −XXXP
0 α̂αα)ᵀ(Y P0 −XXXP

0 α̂αα)

σ2(N0−q)

=

Ŷ F0 −Y F0√
σ2[1+xxxF0 (XXXPᵀ

0 XXXP
0 )−1xxxF

ᵀ
0 ]√

σ̂2

σ2

=
Ŷ F

0 − Y F
0√

σ̂2[1 + xxxF0 (XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 ]
∼ tN0−q.

Now, the (1− α)-prediction interval for Y F
0 can be obtained by

PI = (ŷF0 ± tN0−q(α/2)
√
σ̂2[1 + xxxF0 (XXXP ᵀ

0 XXXP
0 )−1xxxF

ᵀ

0 ]).

7.1.2 Proof of Theorem 2.4

Proof. By use of the first order Taylor expansion of g(α̂αα, xF0 ) around ααα, the pre-
diction error (Ŷ F

0 − Y F
0 ) can approximately given by

Ŷ F
0 − Y F

0 = g(α̂αα, xF0 )− [g(ααα, xF0 ) +EF0 ] ≈ g(ααα, xF0 ) + x̃xxF0,ααα(α̂αα−ααα)− g(ααα, xF0 )−EF0

= x̃xxF0,ααα(α̂αα−ααα)− EF0 .
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Because α̂αα is obtained based on Y P
0 and Y P

0 and EF0 are independent therefore, α̂αα
and EF0 are also independent. Then from (2.13) we approximately have

E(Ŷ F
0 − Y F

0 ) ≈ 0,

and
Var(Ŷ F

0 − Y F
0 ) ≈ σ2x̃xxF0,ααα(X̃XX

P ᵀ

0,αααX̃XX
P
0,ααα)−1x̃xxF

ᵀ

0,ααα + σ2

= σ2[x̃xxF0,ααα(X̃XX
P ᵀ

0,αααX̃XX
P
0,ααα)−1x̃xxF

ᵀ

0,ααα + 1].

Finally, it is concluded that

Ŷ F
0 − Y F

0 ≈ N(0, σ2[x̃xxF0,ααα(X̃XX
P ᵀ

0,αααX̃XX
P
0,ααα)−1x̃xxF

ᵀ

0,ααα + 1]).

By replacing α̂αα and σ̂2 in (2.15), the (1−α)-prediction interval for Y F
0 is given by

PI = (ŷF0 ± qN(0,1),1−α/2

√
σ̂2[x̃xxF0,α̂αα(X̃XX

P ᵀ

0,α̂ααX̃XX
P
0,α̂αα)−1x̃xxF

ᵀ

0,α̂αα + 1]).

7.1.3 Proof of Lemma 3.1

Proof. Multiply (3.4) by (XXXΣXXXᵀ + σ2IIIN ), then we have

(XXXΣXXXᵀ+σ2IIIN )[σ−2IIIN−σ−2XXX(XXXᵀXXX)−1XXXᵀ+XXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1

×(XXXᵀXXX)−1XXXᵀ]

= σ−2XXXΣXXXᵀ−σ−2XXXΣXXXᵀXXX(XXXᵀXXX)−1XXXᵀ +XXXΣXXXᵀXXX(XXXᵀXXX)−1(Σ +σ2(XXXᵀXXX)−1)−1

×(XXXᵀXXX)−1XXXᵀ+IIIN−XXX(XXXᵀXXX)−1XXXᵀ+σ2XXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

= σ−2XXXΣXXXᵀ − σ−2XXXΣXXXᵀ +XXXΣ(Σ + σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

+IIIN−XXX(XXXᵀXXX)−1XXXᵀ+σ2XXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

= IIIN−XXX(XXXᵀXXX)−1XXXᵀ+(XXXΣ+σ2XXX(XXXᵀXXX)−1)(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

= IIIN−XXX(XXXᵀXXX)−1XXXᵀ+XXX(Σ+σ2(XXXᵀXXX)−1)(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

= IIIN −XXX(XXXᵀXXX)−1XXXᵀ +XXX(XXXᵀXXX)−1XXXᵀ

= IIIN .
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7.1.4 Proof of Theorem 3.1

Proof. Let YYY := (Y ᵀ
1 , · · · , Y

ᵀ
I )ᵀ and X := (XXXᵀ, · · · ,XXXᵀ)ᵀ be respectively the (NI×

1) vector of observations and the (NI × q) matrix of design matrices from the
all individuals. Moreover, consider D(XXX) = IIII ⊗XXX the (NI × Iq) matrix, δδδ :=
(δδδᵀ1, · · · , δδδ

ᵀ
I) the (Iq×1) vector of random effects andEEE := (Eᵀ

1 , · · · , E
ᵀ
I )ᵀ the (NI×

1) vector of errors. With these notations, the RCR model for the all individuals
is given by

Y1
...
YI

 =

XXX...
XXX


α1

...
αq

+


XXX 000 · · · 000
000 XXX · · · 000
...

...
. . .

...
000 000 · · · XXX


δδδ1

...
δδδI

+

E1
...
EI


⇔ YYY = Xααα+D(XXX)δδδ +EEE. (7.6)

From [A4], it is concluded that δδδ and EEE are independent. In addition, from [A2],
[A3] and [A5] we have δδδ ∼ NIq(000, IIII ⊗ Σ) and EEE ∼ NNI(000, σ2IIINI). If we define
uuu := D(XXX)δδδ +EEE then

uuu ∼ NNI(000, V ),

V := Cov(D(XXX)δδδ +EEE) = D(XXX)Cov(δδδ)D(XXX)ᵀ + Cov(EEE)

= (IIII ⊗XXX)(IIII ⊗ Σ)(IIII ⊗XXX)ᵀ + σ2IIINI

= IIII ⊗ (XXXΣXXXᵀ + σ2IIIN ).

By use of uuu, we can rewrite the RCR model (7.6) as a generalized linear model

YYY = Xααα+ uuu.

In generalized linear models, α̂ααGLS = (XᵀV −1X)−1XᵀV −1YYY is the best linear un-
biased estimation of ααα. Kadiyala and Oberhelman (1982) prove that α̂ααGLS =
1
I

∑I
i=1 Âi,OLS . By use of Lemma 3.1 we have

α̂ααGLS = (XᵀV −1X)−1XᵀV −1YYY

=
( I∑
i=1

XXXᵀ(XXXΣXXXᵀ+σ2IIIN )−1XXX
)−1

I∑
i=1

XXXᵀ(XXXΣXXXᵀ+σ2IIIN )−1Yi

=
(
IXXXᵀ(XXXΣXXXᵀ+σ2IIIN )−1XXX

)−1
XXXᵀ(XXXΣXXXᵀ+σ2IIIN )−1

I∑
i=1

Yi

=
1

I
[XXXᵀ(σ−2IIIN−σ−2XXX(XXXᵀXXX)−1XXXᵀ+XXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1
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×(XXXᵀXXX)−1XXXᵀ)XXX]−1XXXᵀ(σ−2IIIN−σ−2XXX(XXXᵀXXX)−1XXXᵀ

+XXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ) I∑
i=1

Yi

=
1

I
[σ−2XXXᵀXXX − σ−2XXXᵀXXX(XXXᵀXXX)−1XXXᵀXXX +XXXᵀXXX(XXXᵀXXX)−1(Σ + σ2(XXXᵀXXX)−1)−1

×(XXXᵀXXX)−1XXXᵀXXX]−1
(
σ−2XXXᵀ−σ−2XXXᵀXXX(XXXᵀXXX)−1XXXᵀ

+XXXᵀXXX(XXXᵀXXX)−1(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ
) I∑
i=1

Yi

=
1

I
[(Σ+σ2(XXXᵀXXX)−1)−1]−1(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

I∑
i=1

Yi

=
1

I
(Σ+σ2(XXXᵀXXX)−1)(Σ+σ2(XXXᵀXXX)−1)−1(XXXᵀXXX)−1XXXᵀ

I∑
i=1

Yi

=
1

I

I∑
i=1

(XXXᵀXXX)−1XXXᵀYi

=
1

I

I∑
i=1

Âi,OLS.

(7.7)

7.1.5 Proof of Theorem 3.2

Proof. From the classic linear regression model theory, σ̂2
i for i ∈ {1, · · · , I} is

the unbiased and consistent estimation of σ2. Hence σ̂2 is also an unbiased and
consistent estimation of σ2, since

E(σ̂2) = E(
1

I

I∑
i=1

σ̂2
i ) =

1

I

I∑
i=1

E(σ̂2
i ) = σ2,

and

plimN→∞(σ̂2) =
1

I

I∑
i=1

plimN→∞(σ̂2
i ) = σ2.
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The expectation of Σ̂ is given by

E
( 1

I − 1

I∑
i=1

(Âi,OLS−α̂ααGLS)(Âi,OLS−α̂ααGLS)ᵀ−σ̂2(XXXᵀXXX)−1
)

=
1

I − 1

I∑
i=1

E
(
(Âi,OLS−ααα+ααα−α̂ααGLS)(Âi,OLS−ααα+ααα−α̂ααGLS)ᵀ

)
−E(σ̂2(XXXᵀXXX)−1)

=
1

I − 1

I∑
i=1

E
(
(Âi,OLS−ααα)(Âi,OLS−ααα)ᵀ+(Âi,OLS−ααα)(ααα−α̂ααGLS)ᵀ

+(ααα−α̂ααGLS)(Âi,OLS−ααα)ᵀ+(ααα−α̂ααGLS)(ααα−α̂ααGLS)ᵀ
)
−E(σ̂2(XXXᵀXXX)−1)

=
1

I − 1
[IE((Âi,OLS−ααα)(Âi,OLS−ααα)ᵀ)−IE((α̂ααGLS−ααα)(α̂ααGLS−ααα)ᵀ)

−IE((α̂ααGLS −ααα)(α̂ααGLS −ααα)ᵀ) + IE((α̂ααGLS −ααα)(α̂ααGLS −ααα)ᵀ)]− E(σ̂2(XXXᵀXXX)−1)

=
1

I − 1
[ICov(Âi,OLS)−ICov(α̂ααGLS)]−σ2(XXXᵀXXX)−1

=
1

I − 1
[I(Σ+σ2(XXXᵀXXX)−1)−I 1

I
(Σ+σ2(XXXᵀXXX)−1)]−σ2(XXXᵀXXX)−1

= Σ+σ2(XXXᵀXXX)−1−σ2(XXXᵀXXX)−1 = Σ.

Therefore, Σ̂ is an unbiased estimation of Σ. For studying the consistency of Σ̂,
we suppose that B := limN→∞(N(XXXᵀXXX)−1) exists and is positive definite hence
we have

plimN→∞(σ̂2(XXXᵀXXX)−1) = plimN→∞(σ̂2)limN→∞(
1

N
)limN→∞(N(XXXᵀXXX)−1)

= σ2·0·B = 0.
(7.8)

Swamy (1971) proves that the matrix Ŝ :=
∑I

i=1(Âi,OLS− α̂GLS)(Âi,OLS− α̂GLS)ᵀ

for N → ∞ converges in probability to the matrix S :=
∑I

i=1(Ai − Ā)(Ai − Ā)ᵀ,
where Ā is the mean of Ai’s. Now by use of this convergency we have

plimN→∞Σ̂ = plimN→∞(
Ŝ

I − 1
−σ̂2(XXXᵀXXX)−1)

= plimN→∞(
Ŝ

I − 1
)−plimN→∞(σ̂2(XXXᵀXXX)−1)
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=
S

I − 1
,

because the empirical covariance matrix is always a consistent estimation of co-
variance matrix, hence if I →∞ then

plimI→∞
S

I − 1
= Σ,

and finally,

Σ̂
N→∞−−−−→ S

I − 1

I→∞−−−→ Σ. (7.9)

7.1.6 Proof of Lemma 3.2

Proof. Because Ŷ F
0 and Y F

0 have normal distribution, therefore (Ŷ F
0 − Y F

0 ) has
also normal distribution. For the mean and variance of prediction error we have

E(Ŷ F
0 − Y F

0 ) = E(Ŷ F
0 )− E(Y F

0 ) = E(xxxF0 α̂ααGLS)− E(xxxF0 A0 + EF0 )

= xxxF0 ααα− xxxF0 ααα = 0. (from (3.5) and [A2],[A3])

Var(Ŷ F
0 − Y F

0 ) = Var(Ŷ F
0 ) + Var(Y F

0 ) (since Y F
0 independent of YYY )

= Var(xxxF0 α̂ααGLS)+Var(xxxF0 A0+EF0 )

= xxxF0 Cov(α̂ααGLS)(xxxF0 )ᵀ+xxxF0 Cov(A0)(xxxF0 )ᵀ+Var(EF0 ) (from [A4])

=
1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ + σ2. (from (3.5) and [A2], [A3])

7.1.7 Proof of Theorem 3.3

Proof. Since Σ̂ and σ̂2 are unbiased, therefore ν̂ is also an unbiased estimation
of ν. Now, the asymptotic properties of ν̂ should be studied. Assume B :=
limN→∞(N(XXXᵀXXX)−1) exists and is positive definite, then if N, I →∞, we have

ν̂∗ := plimN→∞(ν̂) = plimN→∞(
1

I
xxxF0 (Σ̂ + σ̂2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ̂(xxxF0 )ᵀ + σ̂2)

=
1

I
xxxF0 plimN→∞(Σ̂)(xxxF0 )ᵀ+

1

I
xxxF0 plimN→∞(σ̂2(XXXᵀXXX)−1)(xxxF0 )ᵀ

+xxxF0 plimN→∞(Σ̂)(xxxF0 )ᵀ + plimN→∞(σ̂2)
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=
1

I
xxxF0 (

1

I − 1
S)(xxxF0 )ᵀ+xxxF0 (

1

I − 1
S)(xxxF0 )ᵀ+σ2(from (7.9) and the consistency of σ̂2)

=
I + 1

I
xxxF0 (

1

I − 1
S)(xxxF0 )ᵀ+σ2

plimI→∞(ν̂∗) = plimI→∞(
I + 1

I
xxxF0 (

1

I − 1
S)(xxxF0 )ᵀ+σ2)

= limI→∞(
I + 1

I
)xxxF0 plimI→∞(

1

I − 1
S)(xxxF0 )ᵀ + σ2

= xxxF0 Σ(xxxF0 )ᵀ + σ2 (from (7.9)).

Consequently, ν̂ is a consistent estimation for xxxF0 Σ(xxxF0 )ᵀ + σ2 but inconsistent for
ν. For getting the asymptotic distribution of Ŷ F

0 − Y F
0 , study of the asymptotic

properties of ν is required. If N, I →∞ then we have

ν∗ := limN→∞ν = limN→∞(
1

I
xxxF0 (Σ + σ2(XXXᵀXXX)−1)(xxxF0 )ᵀ + xxxF0 Σ(xxxF0 )ᵀ + σ2)

=
I + 1

I
xxxF0 Σ(xxxF0 )ᵀ+(

σ2

I
)xxxF0 limN→∞(

1

N
)limN→∞(N(XXXᵀXXX)−1)(xxxF0 )ᵀ+σ2

=
I + 1

I
xxxF0 Σ(xxxF0 )ᵀ+(

σ2

I
)xxxF0 (0·B)(xxxF0 )ᵀ+σ2

=
I + 1

I
xxxF0 Σ(xxxF0 )ᵀ+σ2

limI→∞ν
∗ = limI→∞(

I + 1

I
)xxxF0 Σ(xxxF0 )ᵀ+σ2

= xxxF0 Σ(xxxF0 )ᵀ + σ2.

Finally by applying the Slutzky theorem, the asymptotic distribution of prediction
error is given by

Ŷ F
0 − Y F

0√
ν̂

D−−−−−→
N,I→∞

Z√
Var(Z)

∼ N(0, 1),

where Z ∼ N(0,xxxF0 Σ(xxxF0 )ᵀ+σ2). In conclusion, the approximate (1−α)-prediction
interval for Y F

0 from a new individual is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂].
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7.1.8 Proof of Lemma 4.3

Proof. For getting the prediction interval, we need to obtain the distribution of
prediction error. The prediction error is given by

Ỹ F
0 − Y F

0 = xxxF0 α̃αα+ V FP
0 V P−1

0 (Y P
0 −XXXP

0 α̃αα)− xxxF0 A0 + EF0 .

Since the prediction error is a linear combination of the three normal variables
(α̃αα, A0 and EF0 ), hence it has also normal distribution. For the expectation of
prediction error from (4.25) and the assumptions for random errors and random
effects we have

E(Ỹ F
0 −Y F

0 ) = E(xxxF0 α̃αα+V FP
0 V P−1

0 (Y P
0 −XXXP

0 α̃αα)−xxxF0 A0+EF0 )

= xxxF0 E(α̃αα)+V FP
0 V P−1

0 (E(Y P
0 )−XXXP

0 E(α̃αα))−xxxF0 E(A0)+E(EF0 )

= xxxF0 ααα+V FP
0 V P−1

0 (XXXP
0 ααα−XXXP

0 ααα)−xxxF0 ααα+0

= 0.

By use of (4.24), the prediction error can be simplified as

Ỹ F
0 −Y F

0 = V FP
0 (V P

0 )−1(Y P
0 −XXXP

0 α̃αα)−(Y F
0 −xxxF0 α̃αα)

= V FP
0 (V P

0 )−1(Y P
0 −XXXP

0 α̃αα+XXXP
0 ααα−XXXP

0 ααα)−(Y F
0 −xxxF0 α̃αα+xxxF0 ααα−xxxF0 ααα)

= V FP
0 (V P

0 )−1[(Y P
0 −XXXP

0 ααα)+(XXXP
0 ααα−XXXP

0 α̃αα)]−[(Y F
0 −xxxF0 ααα)+(xxxF0 ααα−xxxF0 α̃αα)].

Define matrices A,A1, A2 and B,B1, B2 as

A := A1 +A2

where

A1 := V FP
0 (V P

0 )−1[Y P
0 −XXXP

0 ααα], A2 := V FP
0 (V P

0 )−1[XXXP
0 ααα−XXXP

0 α̃αα],

and
B := B1 +B2

where
B1 := Y F

0 − xxxF0 ααα, B2 := xxxF0 ααα− xxxF0 α̃αα.

Now we have

Var[Ỹ F
0 −Y F

0 ] = Var[A−B] = Var(A)+Var(B)−Cov(A,B)−Cov(B,A).
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Also

Var(A) = Var(A1)+Var(A2)+Cov(A1, A2)+(Cov(A1, A2))ᵀ.

Since (by use of the independency between Y P
0 and Yi, i = 1, · · · , I),

Cov(Y P
0 , α̃αα) = Cov(Y P

0 , (XXX
ᵀ
PV
−1
P XXXP )−1XXXP ᵀ

0 V P−1

0 Y P
0 )

= V P
0 [V P

0 ]−1XXXP
0 (XXXᵀ

PV
−1
P XXXP )−1 = XXXP

0 (XXXᵀ
PV
−1
P XXXP )−1,

where XXXP := (XXXᵀ
1, · · · ,XXX

ᵀ
I ,XXX

P ᵀ

0 )ᵀ, VP := Var(YYY obs) = IIII+1⊗ (XXXP
i ΣXXXP ᵀ

i + σ2IIINi)
with YYY obs := (Y ᵀ

1 , · · · , Y
ᵀ
I , Y

P ᵀ

0 )ᵀ and XXXP
i := XXXi, i ∈ {1, · · · , I}, hence we have

Var(A) = V FP
0 (V P

0 )−1V P
0 (V P

0 )−1(V FP
0 )ᵀ

+V FP
0 (V P

0 )−1XXXP
0 Cov(α̃αα)(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ

−V FP
0 (V P

0 )−1Cov(Y P
0 , α̃αα)(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ

−(V FP
0 (V P

0 )−1Cov(Y P
0 , α̃αα)(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ)ᵀ

= V FP
0 (V P

0 )−1(V FP
0 )ᵀ+V FP

0 (V P
0 )−1XXXP

0 Cov(α̃αα)(XXXP
0 )ᵀ(V P

0 )−1(V FP
0 )ᵀ

−V FP
0 (V P

0 )−1XXXP
0 (XXXᵀ

PV
−1
P XXXP )−1(XXXP

0 )ᵀ[V P
0 ]−1[V FP

0 ]ᵀ

−V FP
0 (V P

0 )−1XXXP
0 (XXXᵀ

PV
−1
P XXXP )−1(XXXP

0 )ᵀ(V P
0 )−1[V FP

0 ]ᵀ.
(7.10)

Moreover,

Var(B) = Var(B1)+Var(B2)+Cov(B1, B2)+Cov(B2, B1)

= Var(B1) + Var(B2) + Cov(B1, B2) + (Cov(B1, B2))ᵀ.

Because Cov(Y F
0 , α̃αα) = V FP

0 [V P
0 ]−1XXXP

0 [XXXᵀ
P (VP )−1XXXP ]−1, thus we have

Var(B) = V F
0 +xxxF0 Cov(α̃αα)(xxxF0 )ᵀ−V FP

0 [V P
0 ]−1XXXP

0 [XXXᵀ
PV
−1
P XXXP ]−1[xxxF0 ]ᵀ

−xxxF0 [XXXᵀ
PV
−1
P XXXP ]−1[XXXP

0 ]ᵀ(V P
0 )−1[V FP

0 ]ᵀ, (7.11)

In addition

−Cov(A,B) = −Cov(A1+A2, B1+B2)

= −[Cov(A1, B1)+Cov(A1, B2)+Cov(A2, B1)+Cov(A2, B2)]

= −Cov(V FP
0 (V P

0 )−1Y P
0 , Y

F
0 )+Cov(V FP

0 (V P
0 )−1Y P

0 ,xxx
F
0 α̃αα)

+Cov(V FP
0 (V P

0 )−1XXXP
0 α̃αα, Y

F
0 )−Cov(V FP

0 (V P
0 )−1XXXP

0 α̃αα,xxx
F
0 α̃αα)
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= −V FP
0 (V P

0 )−1(V FP
0 )ᵀ+V FP

0 (V P
0 )−1XXXP

0 [XXXᵀ
PV
−1
P XXXP ]−1(xxxF0 )ᵀ

+V FP
0 (V P

0 )−1XXXP
0 [XXXᵀ

PV
−1
P XXXP ]−1(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ

−V FP
0 (V P

0 )−1XXXP
0 Cov(α̃αα)(xxxF0 )ᵀ.

(7.12)
By the fact (Cov(A,B))ᵀ = Cov(B,A), we have

−Cov(B,A) = −V FP
0 (V P

0 )−1(V FP
0 )ᵀ+xxxF0 [XXXᵀ

PV
−1
P XXXP ]−1(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ

+V FP
0 [V P

0 ]−1XXXP
0 [XXXᵀ

PV
−1
P XXXP ]−1(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ

−xxxF0 Cov(α̃αα)(XXXP
0 )ᵀ(V P

0 )−1(V FP
0 )ᵀ. (7.13)

Finally by replacing (7.10)-(7.13) in the variance of prediction error and removing
the same terms with different signs, it is concluded that

Var[Ỹ F
0 −Y F

0 ] = V FP
0 (V P

0 )−1XXXP
0 Cov(α̃αα)(XXXP

0 )ᵀ(V P
0 )−1(V FP

0 )ᵀ+V F
0 +xxxF0 Cov(α̃αα)(xxxF0 )ᵀ

−V FP
0 (V P

0 )−1(V FP
0 )ᵀ − V FP

0 (V P
0 )−1XXXP

0 Cov(α̃αα)(xxxF0 )ᵀ

−xxxF0 Cov(α̃αα)(XXXP
0 )ᵀ(V P

0 )−1(V FP
0 )ᵀ.

The obtained result can also be written as follows:

Var[Ỹ F
0 − Y F

0 ] = ΩF
0 +M0[Cov(α̃αα)]Mᵀ

0 =: Ω0,

where

ΩF
0 = V F

0 −V FP
0 (V P

0 )−1(V FP
0 )ᵀ, M0 = xxxF0 −V FP

0 (V P
0 )−1XXXP

0 .

Hence, the (1− α)-prediction interval for Y F
0 can be given by

ỹF0 ± q1−α/2
√

Ω0.

7.1.9 Proof of Theorem 4.3

Proof. Based on (4.50), because α̂αα, δδδ0 and E0 :=

(
EP0
EF0

)
are distributed as normal,

hence Y F
0 − Ŷ F

0 is also approximately distributed as normal. From (4.46) and
(4.50), the mean of prediction error is easily calculated as

E(Y F
0 − Ŷ F

0 ) ≈ (−V̂0
FP
V̂0

P−1

, 1)[X̃XX0E(ααα− α̂αα) + X̃XX0E(δδδ0) + E(E0)] ≈ 0.
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The estimated variance of prediction error is given by

V̂ar(Y F
0 − Ŷ F

0 ) ≈ (−V̂0
FP
V̂0

P−1

, 1)Ĉov[X̃XX0(ααα−α̂αα)+X̃XX0δδδ0 +E0]

(
(−V̂0

FP
V̂0

P−1

)ᵀ

1

)

=: ν̂. (7.14)

From the independency between δδδ0 and E0, the Ĉov[X̃XX0(ααα − α̂αα) + X̃XX0δδδ0 + E0] is
given by

Ĉov[X̃XX0(ααα− α̂αα) + X̃XX0δδδ0 +E0] = X̃XX0Ĉov(α̂αα)X̃XX
ᵀ
0 + X̃XX0Σ̂X̃XX

ᵀ
0 + σ̂2IIIN0+1

−X̃XX0Ĉov(α̂αα,δδδ0)X̃XX
ᵀ
0 − X̃XX0Ĉov(α̂αα,E0)− X̃XX0Ĉov(δδδ0, α̂αα)X̃XX

ᵀ
0 − Ĉov(E0, α̂αα)X̃XX

ᵀ
0. (7.15)

From (4.46), (4.44) and the independency between Zi and δδδ0 and E0 we can
calculate the following covariances as:

Ĉov(α̂αα,δδδ0) = [
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(ZP0 , δδδ0)

≈ [
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(X̃XX
P
0 (ααα+δδδ0)+EP0 , δδδ0)

= [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂.

(7.16)

Ĉov(α̂αα,E0) = [
I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(ZP0 ,

(
EP0
EF0

)
)

≈ [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(X̃XX
P
0 (ααα+δδδ0)+EP0 ,

(
EP0
EF0

)
)

= [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

Ĉov(EP0 ,

(
EP0
EF0

)
)

= [

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

P ᵀ

0 V̂0
P−1

(σ̂2IIIN0 ,000N0×1).

(7.17)
By replacing (7.16) and (7.17) in (7.15) we have

Ĉov[X̃XX0(ααα−α̂αα)+X̃XX0δδδ0+E0] ≈ X̃XX0Ĉov(α̂αα)X̃XX
ᵀ
0+X̃XX0Σ̂X̃XX

ᵀ
0+σ̂2IIIN0+1
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−X̃XX0[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1[X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 Σ̂X̃XX

ᵀ
0+X̃XX

P ᵀ

0 V̂0
P−1

×(σ̂2IIIN0 ,000N0×1)]−[X̃XX0Σ̂X̃XX
P ᵀ

0 V̂0
P−1

X̃XX
P
0 +(σ̂2IIIN0 ,000N0×1)ᵀV̂0

P−1

X̃XX
P
0 ]

×[

I∑
i=1

X̃XX
ᵀ
i V̂i
−1
X̃XXi+X̃XX

P ᵀ

0 V̂0
P−1

X̃XX
P
0 ]−1X̃XX

ᵀ
0.

Now, the estimated variance of prediction error in (7.14) can be calculated. The
(1− α)-prediction interval for Y F

0 is given by

[ŷF0 − q1−α/2
√
ν̂, ŷF0 + q1−α/2

√
ν̂].

7.1.10 Proof of Lemma 4.4

Proof.∫
f(yF0 |a0, β̂ββ)f(a0|yP0 , β̂ββ)da0 =

∫
f(yF0 , a0|β̂ββ)

f(a0|β̂ββ)

f(yP0 , a0|β̂ββ)

f(yP0 |β̂ββ)
da0

=
1

f(yP0 |β̂ββ)

∫
f(yF0 |a0, β̂ββ)f(a0|β̂ββ)

f(a0|β̂ββ)
f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0

=
1

f(yP0 |β̂ββ)

∫
f(yF0 |a0, β̂ββ)f(yP0 |a0, β̂ββ)f(a0|β̂ββ)da0

=
1

f(yP0 |β̂ββ)

∫
f(yP0 , y

F
0 |a0, β̂ββ)f(a0|β̂ββ)da0

=
1

f(yP0 |β̂ββ)

∫
f(yP0 , y

F
0 , a0|β̂ββ)

f(a0|β̂ββ)
f(a0|β̂ββ)da0

=

∫
f(yP0 , y

F
0 , a0|β̂ββ)

f(yP0 |β̂ββ)
da0

=

∫
f(yF0 , a0|yP0 , β̂ββ)da0

= f(yF0 |yP0 , β̂ββ).
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7.1.11 Proof of Lemma 4.5

Proof. By use of Lemma 4.4, we have

E(Y F
0 |yP0 , β̂ββ) =

∫
yF0 f(yF0 |yP0 , β̂ββ)dyF0 =

∫
yF0

∫
f(yF0 |a0, β̂ββ)f(a0|yP0 , β̂ββ)da0dy

F
0

=

∫ ∫
yF0 f(yF0 |a0, β̂ββ)dyF0 f(a0|yP0 , β̂ββ)da0.

The last expression can be simplified because
∫
yF0 f(yF0 |a0, β̂ββ)dyF0 = E(Y F

0 |a0, β̂ββ) =
g(a0, x

F
0 ). Therefore,

E(Y F
0 |yP0 , β̂ββ) =

∫
g(a0, x

F
0 )f(a0|yP0 , β̂ββ)da0.

Stirnemann et al. (2011) propose using the MCMC algorithm for simulating an

M-sample (ã
(1)
0 , · · · , ã(M)

0 ) from f(a0|yP0 , β̂ββ), by use of this random sample, the

estimation of E(Y F
0 |yP0 , β̂ββ) is given by

ŷF0 :=
̂E(Y F
0 |yP0 , β̂ββ) ≈ 1

M

M∑
m=1

g(ã
(m)
0 , xF0 ).

The conditional expectation of E(A0|yP0 , β̂ββ) is given by

E(A0|yP0 , β̂ββ) =

∫
a0f(a0|yP0 , β̂ββ)da0.

Therefore, the Monte Carlo estimation of E(A0|yP0 , β̂ββ) is given by

â0 :=
̂E(A0|yP0 , β̂ββ) ≈ 1

M

M∑
m=1

ã
(m)
0

where (ã
(1)
0 , · · · , ã(M)

0 ) is a random sample from f(a0|yP0 , β̂ββ) using the MCMC
algorithm.

7.1.12 Proof of Theorem 4.4

Proof.

Pβββ(Y F
0 ∈ P(yyyobs)) = Pβββ(Y F

0 ∈ ∪βββ∈Θ̂α(yyy)[qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )])

≥ Pβββ(Y F
0 ∈ [qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )]∧ βββ ∈ Θ̂α(yyy)) ,
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now from the independency between Y F
0 and YYY and also between Y P

0 and YYY we
have

Pβββ(Y F
0 ∈ P(yyyobs)) ≥ Pβββ(Y F

0 ∈ [qα/2(βββ, yP0 ), q1−α/2(βββ, yP0 )])Pβββ(βββ ∈ Θ̂α(yyy))

≥ (1−α)(1−α) = (1−α)2 from the definition of (1− α)-confidence set

(Müller et al., 2016).

7.1.13 Proof of Theorem 4.6

Proof. At first, it should be noted that for any βββ∗ ∈ Θ we have

Pβββ∗(Y F
0 ∈ [F−1

βββ∗
(α/2), F−1

βββ∗
(1− α/2)]) = Fβββ∗(F−1

βββ∗
(1− α/2))− Fβββ∗(F−1

βββ∗
(α/2))

= 1− α/2− α/2 = 1− α.

Then for any βββ∗ ∈ Θ we obtain

Pβββ∗(Y F
0 /∈ P(yyyobs)) = Pβββ∗(Y F

0 /∈ ∪βββ∈Θ̂(yyyobs)
[F−1
βββ (α/2), F−1

βββ (1− α/2)])

= Pβββ∗(Y F
0 /∈ ∪βββ∈Θ̂(yyyobs)

[F−1
βββ (α/2), F−1

βββ (1− α/2)],βββ∗ ∈ Θ̂(yyyobs))

+Pβββ∗(Y F
0 /∈ ∪βββ∈Θ̂(yyyobs)

[F−1
βββ (α/2), F−1

βββ (1− α/2)],βββ∗ /∈ Θ̂(yyyobs))

≤ Pβββ∗(Y F
0 /∈ [F−1

βββ∗
(α/2), F−1

βββ∗
(1− α/2)]) + Pβββ∗(βββ∗ /∈ Θ̂(yyyobs)) ≤ 2α

(Müller et al., 2016).

7.2 Computational Methods of Pinheiro and Bates’ es-
timation method

The proposed alternating algorithm of Lindstrom and Bates (1990) involves the
LME step and PNLS step. In the LME step, the optimization of a linear mixed
effects log-likelihood is needed. Two optimization procedures can be applied, the
EM algorithm and the Newton-Raphson algorithm.

Estimation of ααα and δδδi:
At the PNLS step of the Lindstrom and Bates’s alternating algorithm, the opti-
mization of the penalized sum of squares (3.16) with respect to ααα and δδδi is required.
Pinheiro and Bates (2000) define the augmented response and the model function
vectors at the (k + 1)th iteration as follows:

Ỹi :=

(
Yi
000

)
, g̃i(δδδi,ααα,xxxi) :=

(
gi(δδδi +ααα,xxxi)

∆(θθθ(k))δδδi

)
.
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Then the penalized sum of squares (3.16) at the (k + 1)th iteration can be repre-
sented as

I∑
i=1

||Ỹi − g̃i(δδδi,ααα,xxxi)||2. (7.18)

Based on (7.18), conditional on ∆(θθθ(k)), we can study the estimation of ααα and δδδi as
a standard nonlinear least squares problem. For standard nonlinear least squares
problems, the Gaussian-Newton method is commonly applied. In this method, at
the (k+ 1)th iteration g̃i(δδδi,ααα,xxxi) is substituted by a first order Taylor expansion

around the current estimates δδδ
(k)
i and ααα(k) as

g̃i(δδδi,ααα,xxxi) ≈ g̃i(δδδ(k)
i ,ααα(k),xxxi) +

ˆ̂
WWW

(k+1)
i (δδδi − δδδ(k)

i ) +
ˆ̂
XXX

(k+1)
i (ααα−ααα(k)),

where

ˆ̂
XXX

(k+1)
i :=

∂g̃i(δδδi,ααα,xxxi)

∂αααααααααᵀ |
ααα=ααα(k),δδδi=δδδ

(k)
i

=

(
˜̃
XXX

(k+1)
i

000

)
,

ˆ̂
WWW

(k+1)
i :=

∂g̃i(δδδi,ααα,xxxi)

∂δδδᵀi
|
ααα=ααα(k),δδδi=δδδ

(k)
i

=

(
˜̃
XXX

(k+1)
i

∆(θθθ(k))

)
,

with
˜̃
XXX

(k+1)
i = ∂gi(aaa,xxxi)

∂aaaᵀ |
aaa=ααα(k)+δδδ

(k)
i

∈ RNi×q. At each Gauss-Newton iteration, the

following least squares problem should be solved with respect to δδδi and ααα:

I∑
i=1

||[Ỹi − g̃i(δδδ(k)
i ,ααα(k),xxxi)]−

ˆ̂
WWW

(k+1)
i (δδδi − δδδ(k)

i )− ˆ̂
XXX

(k+1)
i (ααα−ααα(k))||2

=

I∑
i=1

||
(
Yi
000

)
−

(
gi(δδδ

(k)
i +ααα(k),xxxi)

∆(θθθ(k))δδδ
(k)
i

)
−

(
˜̃
XXX

(k+1)
i

∆(θθθ(k))

)
(δδδi−δδδ(k)

i )

−

(
˜̃
XXX

(k+1)
i

000

)
(ααα−ααα(k))||2

=

I∑
i=1

||

(
Yi − gi(δδδ(k)

i +ααα(k),xxxi)− ˜̃
XXX

(k+1)
i (δδδi − δδδ(k)

i )− ˜̃
XXX

(k+1)
i (ααα−ααα(k))

000−∆(θθθ(k))δδδ
(k)
i −∆(θθθ(k))(δδδi − δδδ(k)

i )− 000

)
||2

=
I∑
i=1

||

(
Yi − gi(δδδ(k)

i +ααα(k),xxxi) +
˜̃
XXX

(k+1)
i (δδδ

(k)
i +ααα(k))− ˜̃

XXX
(k+1)
i (ααα+ δδδi)

−∆(θθθ(k))δδδi

)
||2

=
I∑
i=1

||

(
Z

(k+1)
i − ˜̃

XXX
(k+1)
i (ααα+ δδδi)

−∆(θθθ(k))δδδi

)
||2
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=

I∑
i=1

||

(
Z

(k+1)
i

000

)
−

(
˜̃
XXX

(k+1)
i

∆(θθθ(k))

)
δδδi−

(
˜̃
XXX

(k+1)
i

000

)
ααα||2

I∑
i=1

|| ˜̃Z(k+1)
i − ˆ̂

WWW
(k+1)
i δδδi −

ˆ̂
XXX

(k+1)
i ααα||2, where ˜̃Z

(k+1)
i :=

(
Z

(k+1)
i

000

)
, (7.19)

with

Z
(k+1)
i := Yi − gi(δδδ(k)

i +ααα(k),xxxi) +
˜̃
XXX

(k+1)
i (δδδ

(k)
i +ααα(k)) ≈ ˜̃

XXX
(k+1)
i (δδδi +ααα) + Ei.

Pinheiro and Bates (2000) propose use of the Ortohogonal triangular decomposi-
tions, which are called the QR decompositions, of rectangular matrices for solving
least squares problems (Thisted, 1988). If H is an n× p matrix (n ≥ p) of rank p,
then the QR decomposition of H is

H = Q

(
R
000

)
,

where Q is an n × n- and orthogonal-matrix (i.e. QᵀQ = QQᵀ = III) and R is an
p× p- and upper triangular-matrix. The orthogonal matrix Q maintains norms of
vectors under multiplication by Q or by Qᵀ. Consider the QR decomposition of
ˆ̂
WWW

(k+1)
i as

ˆ̂
WWW

(k+1)
i = Q(i)

(
R11(i)

000

)
, (7.20)

where Q(i) is an (Ni + q)× (Ni + q) orthogonal matrix and R11(i) is an q× q upper
triangular matrix. Then because Q(i) is an orthogonal matrix we have

I∑
i=1

|| ˜̃Z(k+1)
i − ˆ̂

WWW
(k+1)
i δδδi −

ˆ̂
XXX

(k+1)
i ααα||2 =

I∑
i=1

||Qᵀ
(i)(

˜̃Z
(k+1)
i − ˆ̂

WWW
(k+1)
i δδδi −

ˆ̂
XXX

(k+1)
i ααα)||2

=
I∑
i=1

||c1(i) −R10(i)ααα−R11(i)δδδi||2 + ||c0(i) −R00(i)ααα||2, (7.21)

where the q × q matrix R10(i), the Ni × q matrix R00(i), the q-vector c1(i) and the
Ni-vector c0(i) are determined by(

R10(i)

R00(i)

)
= Qᵀ

(i)
ˆ̂
XXX

(k+1)
i and

(
c1(i)

c0(i)

)
= Qᵀ

(i)
˜̃Z

(k+1)
i . (7.22)

According to (7.20) and (7.22) at the (k + 1)th iteration, the QR decomposition
of an augmented matrix is given by(

˜̃
XXX

(k+1)
i

˜̃
XXX

(k+1)
i Z

(k+1)
i

∆(θθθ(k)) 000 000

)
= Q(i)

(
R11(i) R10(i) c1(i)

000 R00(i) c0(i)

)
. (7.23)
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Pinheiro and Bates (2000) consider another the QR decompositionR00(1) c0(1)
...

...
R00(I) c0(I)

 = Q0

(
R00 c0

000 c−1

)
. (7.24)

By the fact that Q0 is an orthogonal matrix, if the second term of (7.21) is multi-
plied by Qᵀ

0, the equation (7.21) can be rewritten as

(

I∑
i=1

||c1(i) −R10(i)ααα−R11(i)δδδi||2) + ||c0 −R00ααα||2 + ||c−1||2. (7.25)

By supposing that the R00 is full rank, the unique least squares estimates of ααα and
δδδi are given at the (k + 1)th iteration by

α̂αα(k+1) := R−1
00 c0, (7.26)

δ̂δδ
(k+1)

i := R−1
11(i)(c1(i) −R10(i)α̂αα

(k+1)), i = 1, , I. (7.27)

Pinheiro and Bates (2000) suggest to apply the step-halving to guarantee that
the new estimates causes a decrease of the objective function (7.18). At the (k +
1)th Gauss-Newton iteration for estimation of ααα as an example, consider d(k+1) =
α̂αα(k+1) −ααα(k) as parameter increment. If the value of objective function related to
ααα(k+1) is less than the value at ααα(k), then the value is preserved and the algorithm
continues to the next step. Otherwise, the updated estimate at the (k + 1)th
iteration is set to ααα(k) + d(k+1)/2 and the algorithm continues till a reduction in
the objective function observed. Because, in addition to ααα, δδδi is also estimated in
the PNLS step via the Gauss-Newton algorithm therefore, the same step-halving
procedure is also considered for that.

Estimation of θθθ and σ2:
In the LME step, the profiled log likelihood is needed. If θθθ is an unconstrained set

of parameters such that ∆ = ∆(θθθ) then based on (3.17) and given α̂αα(k+1) and δ̂δδ
(k+1)

i

from the PNLS step, the likelihood of pseudo data ẐZZ
(k+1)

:= (Ẑ
(k+1)
1 , · · · , Ẑ(k+1)

I )
at the (k + 1)th iteration is given by

L(ααα,θθθ, σ2|ẑzz(k+1))

≈
I∏
i=1

∫
exp[−(||ẑ(k+1)

i − X̃XX(k+1)
i (ααα+ δδδi)||2 + ||∆(θθθ)δδδi||2)/2σ2]

(2πσ2)Ni/2(2π)q/2
√
|σ2(∆(θθθ)ᵀ∆(θθθ))−1|

dδi
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=

I∏
i=1

abs|∆(θθθ)|
(2πσ2)Ni/2

∫
exp[−(||ẑ(k+1)

i − X̃XX(k+1)
i (ααα+ δδδi)||2 + ||∆(θθθ)δδδi||2)/2σ2]

(2πσ2)q/2
dδi

=

I∏
i=1

abs|∆(θθθ)|
(2πσ2)Ni/2

∫
exp[−(||ˆ̂z(k+1)

i − X̂XX
(k+1)

i ααα− ŴWW
(k+1)

i δδδi||2)/2σ2]

(2πσ2)q/2
dδi, (7.28)

where ẑzz(k+1) := (ẑ
(k+1)
1 , · · · , ẑ(k+1)

I ) is the realization of ẐZZ
(k+1)

and ˆ̂z
(k+1)
i is the

realization of
ˆ̂
Z

(k+1)
i which is defined as

ˆ̂
Z

(k+1)
i =

(
Ẑ

(k+1)
i

000

)
and

X̂XX
(k+1)

i =

(
X̃XX

(k+1)
i

000

)
, ŴWW

(k+1)

i =

(
X̃XX

(k+1)
i

∆(θθθ)

)
.

Let the QR decomposition of ŴWW
(k+1)

i as

ŴWW
(k+1)

i = Q̃i

(
R̃11(i)

000

)
.

Now we apply the same technique in the PNLS step, from (7.20)-(7.25) and replace
˜̃Z

(k+1)
i ,

ˆ̂
WWW

(k+1)
i ,

ˆ̂
XXX

(k+1)
i , c1(i), R10(i), R11(i), c0(i) and R00(i) by the corresponding

values
ˆ̂
Z

(k+1)
i , ŴWW

(k+1)

i , X̂XX
(k+1)

i , c̃1(i), R̃10(i), R̃11(i), c̃0(i) and R̃00(i), where(
R̃10(i)

R̃00(i)

)
= Q̃ᵀ

i X̂XX
(k+1)

i ,

(
c̃1(i)

c̃0(i)

)
= Q̃ᵀ

i
ˆ̂
Z

(k+1)
i .

The integral term in (7.28) by use of (7.21) (by replacing the mentioned values)
can be rewritten as∫

exp[−(||ˆ̂z(k+1)
i − X̂XX

(k+1)

i ααα− ŴWW
(k+1)

i δδδi||2)/2σ2]

(2πσ2)q/2
dδi

= exp[
||c̃0(i) − R̃00(i)ααα||2

−2σ2
]

∫
exp[

||c̃1(i)−R̃10(i)ααα−R̃11(i)δδδi||2
−2σ2 ]

(2πσ2)q/2
dδi. (7.29)

Since R̃11(i) is nonsingular, it is possible to apply a change of variable to φi =

(c̃1(i) − R̃10(i)ααα − R̃11(i)δδδi)/σ with derivative dφi = σ−qabs|R̃11(i)|dδδδi. Then the
integral term in (7.29) can be written as∫

exp[
||c̃1(i)−R̃10(i)ααα−R̃11(i)δδδi||2

−2σ2 ]

(2πσ2)q/2
dδi =

1

abs|R̃11(i)|

∫
exp(−||φi||2/2)

(2π)q/2
dφi
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=
1

abs|R̃11(i)|
.

(7.30)
Since R̃11(i) is a triangular matrix, its determinant is readily obtained by product
of its diagonal elements. Replacing (7.30) to (7.29) to (7.28) simplify the likelihood
expression as

L(ααα,θθθ, σ2|ẑzz(k+1)) ≈
I∏
i=1

exp[−||c̃0(i) − R̃00(i)ααα||2/2σ2]

(2πσ2)Ni/2
abs(

|∆(θθθ)|
|R̃11(i)|

)

=
exp[−

∑I
i=1 ||c̃0(i) − R̃00(i)ααα||2/2σ2]

(2πσ2)N/2

I∏
i=1

abs(
|∆(θθθ)|
|R̃11(i)|

).

Consider the following QR decompositionR̃00(1) c̃0(1)
...

...

R̃00(I) c̃0(I)

 = Q̃0

(
R̃00 c̃0

000 c̃−1

)
.

Now by applying the same technique in (7.25) (by replacing the mentioned values)
and use of the last two terms of it, we have

L(ααα,θθθ, σ2|ẑzz(k+1))

≈ (2πσ2)−N/2exp(
||c̃−1||2 + ||c̃0 − R̃00ααα||2

−2σ2
)
I∏
i=1

abs(
|∆(θθθ)|
|R̃11(i)|

).

(7.31)
Now the estimates of ααα and σ2 at the (k+1)th iteration which maximize the above
expression are given by

ˆ̂ααα(k+1) = R̃−1
00 c̃0, σ̂2(k+1) =

||c̃−1||2

N
. (7.32)

The simplified profile likelihood by given σ̂2(k+1) and ˆ̂ααα(k+1) is obtained as follows:

L(θθθ|ẑzz(k+1)) = L(ˆ̂ααα(k+1), θθθ, σ̂2(k+1)|ẑzz(k+1))

≈ (
N

2π||c̃−1||2
)N/2exp(−N

2
)

I∏
i=1

abs(
|∆(θθθ)|
|R̃11(i)|

),

or the profiled log likelihood as

l(θθθ|ẑzz(k+1)) = logL(θθθ|ẑzz(k+1))
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≈ N

2
[log(N)− log(2π)− 1]−N log ||c̃−1||+

I∑
i=1

log abs(
|∆(θθθ)|
|R̃11(i)|

). (7.33)

For getting the maximum likelihood estimate θ̂θθ
(k+1)

, the profiled log likelihood
(7.33) is maximized with respect to θθθ. The algorithm iterates between the PNLS
and LME steps till convergence. In this algorithm, we have two estimates for ααα at
each iteration in the PNLS step and LME step (see equations (7.26) and (7.32)).
Demidenko (2004) proves that, at convergence, the both procedures i.e., PNLS
and LME provide the same estimate of ααα.

7.3 The EM algorithm

The expectation and maximization (EM) algorithm is a widely applicable algo-
rithm in the incomplete data problems which presents an iterative procedure to
compute the ML estimations in situations where, algorithms like the Newton-
Raphson method may yield to be more difficult. Let YYY := (Y ᵀ

1 , · · · , Y
ᵀ
I )ᵀ and

XXX := (Xᵀ
1 , · · · , X

ᵀ
I )ᵀ be respectively the observed and missing data matrices and

yyy and xxx be the realizations of YYY and XXX. Consider βββ the unknown parameters
vector with the parameter space Ω and ZZZ := (YYY ᵀ,XXXᵀ)ᵀ, with the realization zzz, the
complete data matrix. The EM algorithm has two steps, the expectation step and
the maximization step. At the E step, the conditional expectation of the complete
data log likelihood function log f(zzz|βββ) given the observed data and the current
estimate of βββ is calculated. And then at the M step, the maximization of the
obtained conditional expectation with respect to βββ over the parameter space Ω is
required. At the (k + 1)th iteration, the EM algorithm is defined as follows:

E-Step. Calculate Q(βββ,βββ(k)), where

Q(βββ,βββ(k)) = E(log f(ZZZ|βββ)|yyy,βββ(k)).

M-Step. Maximization of Q(βββ,βββ(k)) with respect to βββ ∈ Ω; that is, choose of
βββ(k+1) such that

∀βββ ∈ Ω, Q(βββ(k+1),βββ(k)) ≥ Q(βββ,βββ(k)).

The E and M step are repeated till |L(βββ(k+1)) − L(βββ(k))| < ε, where ε is a pre-
determined small value and L(βββ(k)) := f(yyy|βββ(k)) is the incomplete-data likelihood
function.

Lemma 7.1. Monotonicity of the EM algorithm [Dempster et al., 1977]:
After an EM iteration, the incomplete-data likelihood function L(βββ) is not de-
creased; that is

L(βββ(k+1)) ≥ L(βββ(k)). (7.34)
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Proof. : Let f(zzz|βββ) and f(yyy|βββ) be the probability density functions of ZZZ and YYY .
The conditional density of ZZZ given YYY = yyy is given by

f(zzz|yyy,βββ) = f(zzz|βββ)/f(yyy|βββ), (7.35)

Then the log likelihood is calculated as follows

logL(βββ) = log f(yyy|βββ) = log f(zzz|βββ)− log f(zzz|yyy,βββ). (7.36)

By taking the expectation of both sides of (7.36) with respect to the conditional
distribution of ZZZ given YYY = yyy, we have

logL(βββ) = E(log f(ZZZ|βββ)|yyy,βββ(k))− E(log f(ZZZ|yyy,βββ)|yyy,βββ(k))

= Q(βββ,βββ(k))−H(βββ,βββ(k)), (7.37)

where

H(βββ,βββ(k)) := E(log f(ZZZ|yyy,βββ)|yyy,βββ(k)). (7.38)

From (7.37), we have

logL(βββ(k+1))−logL(βββ(k))

= [Q(βββ(k+1),βββ(k))−Q(βββ(k),βββ(k))]− [H(βββ(k+1),βββ(k))−H(βββ(k),βββ(k))]. (7.39)

Since βββ(k+1) is selected such that

∀βββ ∈ Ω, Q(βββ(k+1),βββ(k)) ≥ Q(βββ,βββ(k)), (7.40)

hence the first difference on the right hand of (7.39) is nonnegative. If the second
difference term in (7.39) is nonpositive; that is

H(βββ,βββ(k))−H(βββ(k),βββ(k)) ≤ 0,

then (7.34) holds. For any βββ,

H(βββ,βββ(k))−H(βββ(k),βββ(k)) = E[log{f(ZZZ|yyy,βββ)/f(ZZZ|yyy,βββ(k))}|yyy,βββ(k)]

≤ log[E{f(ZZZ|yyy,βββ)/f(ZZZ|yyy,βββ(k))}|yyy,βββ(k)] (7.41)

= log

∫
f(zzz|yyy,βββ)dzzz

= 0, (7.42)

where the inequality in (7.41) holds by use of the Jensen’s inequality and the
concavity property of the logarithmic function. Finally, based on (7.40) and (7.42)
the inequality (7.34), which shows that the incomplete-data likelihood function is
not decreased after an EM iteration, holds (McLachlan and Krishnan, 2008).
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7.4 The Newton-Raphson algorithm

Let βββ be the parameters vector in a linear mixed effects model. The Newton-
Raphson algorithm uses a first order expansion of the gradiant of the log-likelihood
function (score function) around the current estimate βββ(k) to obtain the next es-
timate βββ(k+1). In each Newton-Raphson iteration, the computation of the score
function and its derivative are required. Under general conditions, which usu-
ally hold in practice, the Newton-Raphson algorithm is quadratically convergent
(Thisted, 1988).

7.5 The calculation of conditional expectations in the
Liski and Nummi’s estimation method

For the estimation of parameters, the calculation of expectations in (4.15)-(4.17)
with respect to f(yF0 |yP0 ,βββ(k)) is needed. For this, we have

E{
(
Y P

0

Y F
0

)
|yP0 ,βββ(k)} =

(
yP0

ŷF
(k+1)

0

)
,

where

ŷF
(k+1)

0 := E(Y F
0 |Y P

0 = yP0 ,βββ
(k))

= E(Y F
0 |βββ(k)) + Cov(Y F

0 , Y
P

0 |βββ(k))Cov(Y P
0 |βββ(k))−1(yP0 − E(Y P

0 |βββ(k)))

= xxxF0 ααα
(k) +HFP

0 (θθθ(k))HP−1

0 (θθθ(k))(yP0 −XP
0 ααα

(k)),

with

HP
0 (θθθ(k)) := XXXP

0 D(θθθ(k))XXXP ᵀ

0 +IIIN0 , HFP
0 (θθθ(k)) := xxxF0 D(θθθ(k))XXXP ᵀ

0 .

The conditional expectation E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)} is

calculated as

E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)}

= E{tr[
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
]|yP0 ,βββ(k)}

= E{tr[
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)]|yP0 ,βββ(k)}
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= tr[E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

|yP0 ,βββ(k)}H−1
0 (θθθ(k))]

= tr{[

(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)ᵀ

+

(
000N0×N0 000N0×1

0001×N0 VFP (θθθ(k))

)
]H−1

0 (θθθ(k))},

where yP0 is the realization of Y P
0 and

VFP (θθθ(k)) := Var(Y F
0 |yP0 ,βββ(k))

= Var(Y F
0 |βββ(k))−Cov(Y F

0 , Y
P

0 |βββ(k))Cov(Y P
0 |βββ(k))−1Cov(Y F

0 , Y
P

0 |βββ(k))ᵀ

= σ2(k)[HF
0 (θθθ(k))−HFP

0 (θθθ(k))HP−1

0 (θθθ(k))HFP ᵀ

0 (θθθ(k))],

with

HF
0 (θθθ(k)) := xxxF0 D(θθθ(k))xxxF

ᵀ

0 +1.

The conditional expectation in (4.17) can also be calculated by the same way as
follows:

E[

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

∂H0(θθθ)

∂θw
H−1

0

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)]

= E{tr[
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

∂H0(θθθ)

∂θw
H−1

0 (θθθ)

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
]|yP0 ,βββ(k)}

= tr[E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

H−1
0 (θθθ)

∂H0(θθθ)

∂θw
H−1

0 (θθθ)|yP0 ,βββ(k)}]

= tr{[

(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)ᵀ

+

(
000N0×N0 000N0×1

0001×N0 VFP (θθθ(k))

)
]H−1

0 (θθθ(k))
∂H0(θθθ)

∂θw
H−1

0 (θθθ(k))}.

It should be noted that for the estimation of ααα and σ2 we have the closed form
expressions. But for the estimation of θθθ, there is no closed form expression. Hence,
for getting the update estimation of θθθ at each EM iteration we apply the following
Newton-Raphson method (Gumedze and Dunne, 2011):

θ̂θθ
(k+1)

= θθθ(k) − [E(
∂2 log(f(ZZZ|βββ))

∂θθθ∂θθθᵀ
|yyyobs,βββ(k))]−1E(

∂ log(f(ZZZ|βββ))

∂θθθ
|yyyobs,βββ(k)),
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where

E{ ∂

∂θw
log f(ZZZ|βββ)|yyyobs,βββ(k)} = −1

2

I∑
i=0

tr(H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
)

+
1

2σ2(k)

I∑
i=1

(yi−XXXiααα
(k))ᵀH−1

i (θθθ(k))
∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))(yi−XXXiααα

(k))

+
1

2σ2(k)
tr{[

(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)ᵀ

+

(
000N0×N0 000N0×1

0001×N0 VFP (θθθ(k))

)
]H−1

0 (θθθ(k))
∂H0(θθθ)

∂θw
H−1

0 (θθθ(k))},

and for t, w ∈ {1, · · · , s} we have

E(
∂2 log(f(ZZZ|βββ))

∂θt∂θw
|yobs,βββ(k)) =

1

2

I∑
i=0

tr(H−1
i (θθθ(k))

∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
)

− 1

2σ2(k)

I∑
i=1

(yi−XXXiααα
(k))ᵀ[H−1

i (θθθ(k))
∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))

+H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))](yi−XXXiααα

(k))

− 1

2σ2(k)
E{
(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)ᵀ

[H−1
0 (θθθ)

∂H0(θθθ)

∂θt
H−1

0 (θθθ)
∂H0(θθθ)

∂θw
H−1

0 (θθθ)

+H−1
0 (θθθ)

∂H0(θθθ)

∂θw
H−1

0 (θθθ)
∂H0(θθθ)

∂θt
H−1

0 (θθθ)]

(
Y P

0 −XXXP
0 ααα

Y F
0 − xxxF0 ααα

)
|yP0 ,βββ(k)}

=
1

2

I∑
i=0

tr(H−1
i (θθθ(k))

∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
)

− 1

2σ2(k)

I∑
i=1

(yi−XXXiααα
(k))ᵀ[H−1

i (θθθ(k))
∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))

+H−1
i (θθθ(k))

∂Hi(θθθ)

∂θw
H−1
i (θθθ(k))

∂Hi(θθθ)

∂θt
H−1
i (θθθ(k))](yi−XXXiααα

(k))

− 1

2σ2(k)
tr{[

(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)(
yP0 −XXXP

0 ααα
(k)

ŷ
F (k+1)
0 − xxxF0 ααα(k)

)ᵀ
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+

(
000N0×N0 000N0×1

0001×N0 VFP (θθθ(k))

)
][H−1

0 (θθθ(k))
∂H0(θθθ)

∂θt
H−1

0 (θθθ(k))
∂H0(θθθ)

∂θw
H−1

0 (θθθ(k))

+H−1
0 (θθθ(k))

∂H0(θθθ)

∂θw
H−1

0 (θθθ(k))
∂H0(θθθ)

∂θt
H−1

0 (θθθ(k))]}.

At the final iteration, Σ̂ is given by Σ̂ = σ̂2D̂, where D̂ = D(θ̂θθ).

7.6 Vec and vech functions and Duplication matrix

The vec function is applied for representation of a matrix M as a vector by
stacking its vector columns. Consider M be a k × m matrix, then vec(M) =
(M11,M21, · · · ,Mk1, M12, · · · ,Mkm)ᵀ is a km × 1 vector. The vech function is
used for a k×k symmetric matrix M by stacking elements of the matrix beginning
from the main diagonal, hence the k(k + 1)/2× 1 vector vech(M) involves unique
elements of matrix M as vech(M) = (M11,M21, · · · ,Mk1,M22, · · · ,Mkk)

ᵀ. These
two functions are relevant via the k2 × k(k + 1)/2 duplication matrix Dk. For
each k× k symmetric matrix M, we have vec(M) = Dkvech(M) and consequently
vech(M) = D+

k vec(M), where D+
k = (Dᵀ

kDk)
−1Dᵀ

k.

7.7 Block matrix inversion

Assume square matrix M(n+m)×(n+m) is partitioned as follows:(
An×n Bn×m
Cm×n Dm×m

)
.

Matrices A and D must be square so that they can be inverted. Moreover, D −
CA−1B must be nonsingular. The inverse of M is given by

M−1 =

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
,

or equivalently,

M−1 =

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

7.8 Monte Carlo Integration

Suppose that we are interested to compute a complex integral∫
h(x)f(x)dx = E(h(X)),
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where f(x) is the probability density function of X defined on R and h(x) is
an integrable function of x (the realization of X). If we draw a random sample
x1, · · · , xM from f(x) then the Monte Carlo estimation of E(h(X)) is given by

̂E(h(X)) ≈ 1

M

M∑
m=1

h(xm),

where M is called the Monte Carlo sample size. This estimate of the integral is a
random variable with variance

Var( ̂E(h(X))) =
1

M

∫
(h(x)− ̂E(h(X)))2dx =

σ2
h(x)

M
,

where σ2
h(x) can be estimated as

σ̂2
h(x) =

1

M − 1

M∑
m=1

(h(xm)− ̂E(h(X)))2.

Hence, the standard error of the Monte Carlo estimation is given by

√
V̂ar( ̂E(h(X))) =

√
σ̂2
h(x)

M
=

√√√√ 1

M(M − 1)

M∑
m=1

(h(xm)− ̂E(h(X)))2.

7.9 Sampling methods

Sometimes we deal with distributions that directly simulating from them is difficult
or even impossible. In addition, in some cases, representation of the distribution in
an applicable form is not possible. Therefore, we require to apply some sampling
methods in which only knowing the functional form of the density f up to a
constant is needed. In these methods, an easy to sample density g is proposed
which is called the instrumental density. And the density f is called the target
density.

7.9.1 Rejection sampling

Let f be the target density, for the rejection sampling method we need to determine
the instrumental density g and a constant K such that

f(x) ≤ Kg(x)

on the support of f .
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Algorithm 3 Rejection sampling algorithm

1: Generate x from g and u from U[0, 1].
2: Accept y = x if u ≤ f(x)/Kg(x).
3: Return to 1. otherwise.

7.9.2 Gibbs sampling

Assume that for p > 1, the random variable X can be represented as X =
(X1, · · · , Xp). In addition, assume that simulation from the univariate conditional
densities f1, · · · , fp is possible, where

fi := f(xi|x1, · · · , xi−1, xi+1, · · · , xp), i ∈ {1, · · · , p}.

The Gibbs sampling algorithm is started with the initial value x(0) = (x
(0)
1 ,

· · · , x(0)
p ) and then at the (k+1)th iteration the following algorithm is applied.

The Gibbs sampling algorithm:

1. Draw x
(k+1)
1 from f(x1|x(k)

2 , · · · , x(k)
p ).

2. Draw x
(k+1)
2 from f(x2|x(k+1)

1 , x
(k)
3 , · · · , x(k)

p ).
...
p. Draw x

(k+1)
p from f(xp|x(k+1)

1 , · · · , x(k+1)
p−1 ).

The densities f1, · · · , fp are called full conditionals. The advantage of Gibbs
sampler is that even in high dimensional problems, all of full conditionals are
univariate.

7.9.3 Importance sampling

Geweke (1989) proposes Importance sampling method in which the expectation of
the function E(h(X)) is estimated by drawing an independent sample x1, · · · , xM
from an importance density g(x) with g(x) > 0 and h(x)f(x) 6= 0 (whenever
f(x) > 0). E(h(X)) can be rewritten as

E(h(X)) := Ef(x)(h(X)) =

∫
h(x)(

f(x)

g(x)
)g(x)dx = Eg(x)[h(X)(

f(X)

g(X)
)]

Then the importance sampling estimation of E(h(X)) is given by

̂E(h(X)) =
̂

Eg(x)[h(X)(
f(X)

g(X)
)]
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≈ 1

M

M∑
m=1

h(xm)(
f(xm)

g(xm)
)

=
1

M

M∑
m=1

h(xm)wm,

where xm, m = 1, · · · ,M is the random sample from g(x) and wm := f(xm)
g(xm) is

the importance weight. The estimated variance of ̂E(h(X)) is given by

V̂ar( ̂E(h(X))) =
1

M(M − 1)

M∑
m=1

[h(xm)wm − ̂E(h(X))]2.

Another formulation of importance sampling is

̂̂E(h(X)) =

∑M
m=1 h(xm)wm∑M

m=1wm
,

and the associated variance estimation is

V̂ar(
̂̂E(h(X))) =

∑M
m=1[h(xm)− ̂̂E(h(X))]2w2

m

[
∑M

m=1wm]2
.

In use of
̂̂E(h(X)) we need that the weight function is known up to a constant

whereas in use of ̂E(h(X)) the exact form of the weight function is required. If the
support of g(x) involves the support of f(x), then it is proved that the importance
sampling estimator converges almost surely to E(h(X)) (Geweke, 1989).

7.9.4 Sampling Importance Resampling (SIR)

The Sampling Importance Resampling is a modified form of importance sampling
which is related to the rejection sampling technique. In rejection sampling, spec-
ification of a suitable value for the constant K for many pairs distributions f(x)
and g(x) is impossible. In such cases, the SIR approach is applied. SIR approach
has two steps. In the first step, we draw L samples x1, · · · , xL from g(x). Then

in the second step, we compute weights w1, · · · , wL as wl := f(xl)
g(xl)

, l = 1, · · · , L.

Finally, we draw t (t < L) samples from the discrete distribution x1, · · · , xL with
probabilites p1, · · · , pL, where pl := wl∑L

l=1 wl
l ∈ {1, · · · , L}. The SIR algorithm

is given by
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Algorithm 4 SIR algorithm

1: Simulate L samples from the instrumental density g(x).

2: Calculate importance weights: wl := f(xl)
g(xl)

for l = 1, · · · , L.
3: Compute probabilities: pl := wl∑L

l=1 wl
for l ∈ {1, · · · , L}.

4: Take t samples from x1, · · · , xL with probabilities p1, · · · , pL,.

The obtained t samples are approximately distributed as f(x), however when
L→∞ the probability distribution of t samples tends to the correct distribution
(Bishop, 2006).
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7.10 Tables

Table 2: Simulation results up to the first 10 observations from the new
individual with the near future prediction

Parameters α1 α2 α3 Σ11 Σ22 Σ33 Σ12 Σ13 Σ23 σ2

EstimateEstimateEstimate
WmSt 36.1 -189 -0.7 16 600 5e-3 18 0.2 2 0.04
mPB 36.2 -189 -0.7 17 702 7e-3 34 0.2 2 0.04
ePB 36.4 -186.5 -0.7 15 700 7e-3 30 0.2 2 0.04
PBLiski 35 -181 -0.7 20 820 0.01 41 0.3 2.5 0.04
PBmSwamy 35 -186 -0.7 17 750.2 8e-3 38 0.2 2 0.04

True ValueTrue ValueTrue Value 36 -190 -0.7 19 846 0.01 48 0.3 2.5 0.04

BiasBiasBias
WmSt 0.1 1 0 -3 -246 -4e-3 -30 -0.1 -0.5 0
mPB 0.2 1 0 -2 -144 -3e-3 -14 -0.1 -0.5 0
ePB 0.4 3.5 0 -4 -146 -3e-3 -18 -0.1 -0.5 0
PBLiski -1 9 0 1 -26 0 -7 0 0 0
PBmSwamy -1 4 0 -2 -95.8 -2e-3 -10 -0.1 -0.5 0

MSEMSEMSE
WmSt 0.35 19 2e-4 43 109660 2e-5 1640 3e-2 1.2 4e-5
mPB 0.35 16.2 1e-4 44.2 73052 1e-5 1490 2e-2 1.03 1e-5
ePB 0.6 17 2e-4 46 76012 1e-5 1590 2e-2 1.08 1e-5
PBLiski 2 96 5e-4 13 1450 6e-6 50 8e-4 0.01 5e-7
PBmSwamy 3.2 48.2 7e-4 38 63130 1e-5 1415 2e-2 0.9 5e-7
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Table 3: Simulation results up to the first 10 observations from the new
individual with the far away future prediction

Parameters α1 α2 α3 Σ11 Σ22 Σ33 Σ12 Σ13 Σ23 σ2

EstimateEstimateEstimate
WmSt 35.5 -188.5 -0.7 12 530 6e-3 10 0.1 2 0.04
PBLiski 34.4 -182.03 -0.7 18 810 0.01 39 0.3 2.5 0.04

True ValueTrue ValueTrue Value 36 -190 -0.7 19 846 0.01 48 0.3 2.5 0.04

BiasBiasBias
WmSt -0.5 1.5 0 -7 -316 -4e-3 -38 -0.2 -0.5 0
PBLiski -1.4 7.9 0 2 -36 0 -9 0 0 0

MSEMSEMSE
WmSt 0.4 18.2 1e-4 58.2 125131 2e-5 2305 6e-2 2 5e-5
PBLiski 2.5 74 2e-4 20 1610 6e-6 84 5e-4 0.01 5e-7
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Table 4: Mean of predicted values, biases, MSE’s and true values from the
simulation study

Method WmStWmStWmSt PBStPBStPBSt ePBePBePB mPBmPBmPB

Near future predicted values
Mean of predictions

0.82 0.67 0.57 0.55
Mean of biases

0.01 0 0.02 0.1
Mean of MSE’s

0.06 0.1 8.7 7.6
Mean of true values

0.83 0.67 0.6 0.7
Far away future prediction
Mean of predicted values

17.5 17.8 17.8 17.8
Mean of biases

0.06 -0.07 -0.4 -0.13
Mean of MSE’s

1.4 2.5 8.8 9.5
Mean of true values

17.6 17.7 17.4 17.7

150



Table 5: Mean of predicted values, biases, MSE’s and true values from the
simulation study

Method PBLiskiPBLiskiPBLiski PBmSwamyPBmSwamyPBmSwamy HallHallHall LRLRLR

Near future predicted values
Mean of predictions

0.5 0.71 1.027 0.85
Mean of biases

0.002 -0.01 0.002 0.008
Mean of MSE’s

0.04 0.07 0.05 0.08
Mean of true values

0.5 0.7 1.029 0.86
Far away future prediction
Mean of predicted values

17.63 17.85 17.85 17.76
Mean of biases

0.2 -0.17 -0.17 0.04
Mean of MSE’s

0.85 8.4 0.9 2.1
Mean of true values

17.44 17.68 17.68 17.72

151



Table 6: Prediction interval results from the simulation study

Method WmStWmStWmSt mStConfmStConfmStConf PBStPBStPBSt StConfStConfStConf LRLRLR

Near future results
Average width

10.3 19.2 0.4 0.7 1.1
Mean of emperical coverage rates

90% 93% 40% 73% 94%
Average interval score

15.3 22.9 4.9 2.4 1.45
Far away future results
Average width

10.13 16.9 2.3 6.1 5.6
Mean of emperical coverage rates

93% 96% 46% 87% 94%
Average interval score

13.18 18.21 20.9 9.4 6.7

Table 7: Prediction interval results from the simulation study

Method PBLiskiPBLiskiPBLiski PBmSwamyPBmSwamyPBmSwamy HallHallHall ePBePBePB mPBmPBmPB

Near future results
Average width

0.92 1.1 0.9 11.3 11.1
Mean of emperical coverage rates

96% 96% 95% 94% 93%
Average interval score

0.99 1.3 1.05 14.3 14.3
Far away future results
Average width

3.4 10.6 3.4 10.6 10.4
Mean of emperical coverage rates

93% 92 % 93% 91% 95%
Average interval score

4.36 13.5 4.4 15.04 12.7
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Table 8: Parameter estimates with their standard errors in parentheses using
the first 131 observations of the new series

Parameters WmStWmStWmSt1 mPBmPBmPB2 PBLiskiPBLiskiPBLiski1 PBmSwamyPBmSwamyPBmSwamy

α1 35.02 35.13 35.08 35.06
(0.43) (0.48) (0.1) (0.48)

α2 -188.58 -189.02 -189.18 -189.33
(2.3) (5.22) (1.04) (5.5)

α3 -0.76 -0.76 -0.76 -0.76
(0.08) (0.015) (0.003) (0.016)

Σ11 7.07 8.4 7.7 8.02
(1.8) (2.6) (0.14) (1.9)

Σ22 745.2 944.2 936.4 1047.5
(123.5) (419.2) (17.5) (257.8)

Σ33 0.007 0.008 0.008 0.009
(3e-3) (3e-3) (1e-4) (2e-3)

Σ12 25.7 33.3 32.6 34.7
(34.01) (23.1) (0.6) (17.07)

Σ13 0.2 0.2 0.2 0.2
(0.07) (0.07) (0.003) (0.06)

Σ23 2.1 2.6 2.6 2.9
(1.6) (1.2) (0.05) (0.7)

σ2 0.04 0.04 0.04 0.04
(6e-4) (1e-3) (6e-4) (6e-4)

logl 1091.7 1184.5 1134.7 1162.8

1Estimations based on the near future prediction at xF0 = 35.2
2Estimation method of Pinheiro and Bates using all observations
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