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Abstract

In this thesis a method for deriving e�ective models for one-dimensional spin systems is
introduced. It is based on matrix product state (MPS) and exploits translation invariance
to e�ciently work in the thermodynamic limit. It is tested on two analytically solvable
models: The ferromagnetic spin-½ Heisenberg chain in an external �eld, and the transverse
magnetic �eld Ising model (TFIM). The previously developed ansatz for one-particle states
is extended to the description of two-particle states. The challenges of this extension and
di�erent choices for a basis of the two-particle space are discussed. Results for the two-
particle spectral weight in the TFIM and for quasi-particle scattering in both models are
provided.
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Chapter 1

Introduction

What we know is a drop, what we don't know is an ocean.

Isaac Newton

1.1 Motivation

For many decades, the �eld of quantum magnetism has been an extremely active �eld of
research. Quantum magnets show a vast variety of interesting phenomena. For instance
a widely discussed hypothesis is that the Cooper pairing of electrons responsible for high-
temperature superconductivity observed in the so-called cuprates and other quasi-two-
dimensional materials is mediated by magnetic excitations [1, 2].
But also beyond the �eld of high temperature superconductivity quantum magnetism has
gained visibility. The 2016 Nobel prize in physics went to Haldane, Kosterlitz and Thouless
�for theoretical discoveries of topological phase transitions and topological phases of matter�
[3]. Kosterlitz and Thouless showed theoretically that the unbinding of vortex-antivortex
pairs in a two-dimensional magnet leads to a previously unknown type of transition between
phases that are not distinguished by their symmetry breaking [4, 5]. Since vortices and
antivortices are topological defects in the magentic order, this new type of phase transition
is now known as topological phase transition. Later, concepts of topology helped to explain
the robustness of the quantization in the conductance of the integer quantum Hall e�ect
[6] in 1982. One year later, Haldane included topological e�ects into the treatment of
anti-ferromagnetic Heisenberg spin chains, which led him to the formulation of the famous
�Haldane conjecture�. It predicts that half-integer spin chains are gapless, while chains of
integer spins show a �nite excitation gap [7, 8]. This Haldane gap could later be observed
in experiments with ultracold atomic gases [9].
Moreover, the idea of quantum computing has sparked much interest since Feynman in-
troduced it in the 1980s [10]. Unlike in a classical computer, the units of information
or quantum-bits (qubits), can not only take the values 0 and 1 but also any quantum
mechanical superposition of the these two states. This allows the quantum computer to
tackle certain problems much more e�ciently than a classical computer, most notably the
simulation of other quantum systems. Although to the present day no viable realization
of a scalable quantum computer exists, many theoretical models use an e�ective (or even
physical) spin-1

2 degree of freedom for the qubits [11]. Therefore this, too, is a possible
�eld of application of quantum magnets or at least of the theoretical framework used to
describe them.
All this interest shows that there is ample need to learn as much as possible about the
dynamics of quantum magnets. In this thesis, a method is presented that can help on the
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way towards this goal by providing an approach to derive an e�ective low-energy model
for quantum magnets.

1.2 E�ective models in second quantization

Many quantum magnets display some sort of order in the ground state. Excitations above
the ground state are then disturbances of this magnetic order. In most cases several spins
are involved in such an excitation, wherefore they are often termed collective excitations.
Spin waves are a simple example of such excitations. As the name suggests, these are
wave-like modulations of the magnetic order. Sound waves, wave like modulations of the
lattice structure, are quantized into phonons. Analogously spin waves are quantized into
so-called magnons. Another easy-to-imagine excitation is a �ipped spin in an otherwise
ferromagnetically (or antiferromagnetically) ordered system. Domain walls are a third
common type of excitations in low-dimensional quantum magnets with degenerate ground
states. They separate regions of di�erent ground states from one another. In one dimen-
sion, the size of these regions does not change the energy cost of a domain wall. There are
many other and exotic types of magnetic excitations, but this thesis focuses on spin-�ips
and domain walls.

All these excitations have in common, that they are emergent phenomena, i.e., the only
exist on the background of a many body system. But, in many aspects they behave
like elementary particles. Therefore, another common term to describe them is quasi-
qarticle (QP). Often, understanding how a single one of these collective excitations behaves
and how a few of them interact with each other goes a long way in understanding the physics
in the system at low excitation density.
As quanta of the excitation �eld, they can be described using standard second quantization
techniques. A generic low-energy model in second quantization is given by the Hamiltonian
[97]

He� = E0 +
∑
q

ωqa
†
qqq +

1√
L

∑
q1,q2,q3

(
Dq1,q2
q3 a†q1a

†
q2aq3 + h.c.

)
+

1

L

∑
q1,q2,q3,q4

V q1,q2
q3,q4 a

†
q1a
†
q2aq3aq4 + · · · . (1.1)

The symbols in Eq. (1.1) are de�ned as follows: The constant E0 is the ground state
energy. It is an extensive quantity in the thermodynamic limit and one therefore com-
monly looks at the ground state energy per lattices site ε0 instead. The prefactor ωq of the
bilinear term is the single particle dispersion relation. The operators a†q and aq create and
annihilate a (quasi-) particle, respectively. The matrix elements Dq1,q2

q3 and their Hermitian
conjugates describe the amplitudes for the decay of one QP into two and the fusion of two
QPs into one, respectively. Such processes can occur, if the quasi-particles have a �nite
life time. They can be identi�ed by the single-particle dispersion entering the two-particle
continuum [47] at a critical momentum, beyond which the quasi-particles cease to exist
as stable excitations. In a particle number conserving picture, these decay processes and
the associated matrix elements Dq1,q2

q3 do not appear. If they do, conservation of total
momentum requires q3 = q1 + q2. The V

q1,q2
q3,q4 are the scattering matrix elements of two-QP

states. They are of great interest, because they are the stepstone towards any kind of
interacting theory which can, for instance, describe the formation of bound states. This
thesis is mainly concerned with constructing the 2QP states from which these scattering
elements can be determined. Lastly, the dots represent interaction terms involving higher
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numbers of QPs. These are beyond the scope of the current work.

This type of second quantized model does not only give an intuitive understanding of how
the quasi-particles behave and how they interact. On the level outlined above, it also al-
lows to obtain further one- and two-particle properties. This includes dynamic properties
such as the spectral function [12, 13]. Although being a zero temperature result, it can also
serve as the starting point for calculations at �nite temperature, for instance by means of
diagrammatic perturbation theory [14, 15] or approximate Bethe ansatz techniques [13].

1.3 The approach

In the case of quantum magnetism, the natural language to write down a Hamiltonian is the
spin-language. In terms of these elementary magnets, it is easy to formulate interactions,
like nearest or next-nearest neighbor spin-spin coupling with di�erent coupling constants
etc. While this description is easy to de�ne, it does not say anything about what the
collective magnetic excitations or even the ground state will look like or how the excitations
behave. An e�ective second quantization model, as described in section 1.2, o�ers a much
more accessible way to understand the properties of interacting magnetic systems.
This thesis presents a way to derive an e�ective second quantization model from a spin
Hamiltonian. It is based on the framework of matrix product states (MPSs), more pre-
cisely the in�nite system variant thereof.

The concept of MPS was introduced in various ways and contexts, for instance by Baxter
in Ref. [16] to tackle spin dimerization in a plane. However, it is most successfully applied
to one-dimensional systems. This is best understood in context of the close relation to the
well-known density matrix renormalization group (DMRG). S.R. White introduced the
DMRG method in 1992 [17] as an improvement to K. Wilson's numerical renormalization
group (NRG) method [18] for quantum lattice models.
In renormalization group methods, the lattice system is built by adding successively more
lattice sites. When the computing capacity for exact description is reached after adding
a new site, a part of the Hilbert space is discarded. In contrast to NRG, the criterion
for keeping states in the reduced basis are the eigenvalues of a density matrix (hence the
name). The key idea of DMRG is that the states with the largest eigenvalues of the density
matrix are most important and should therefore be kept, regardless of their energy, which
is the criterion in NRG. This approach proved to be highly successful for a vast variety of
problems.
Östlund and Rommer showed that MPS naturally appear when the in�nite system DMRG
algorithm converges [19, 20]. Since then, a considerable amount of research has been per-
formed in the �eld. In the context of quantum spin chains, MPS received much attention
through the work of Fannes et al. [21, 22]. U. Schollwöck's excellent review [23] shows how
the DMRG can be formulated very elegantly in the language of MPS. This close connec-
tion to the DMRG is the reason for the success of the MPS formalism. In the original
formulation of Ref. [17] the DMRG was a method to compute equilibrium properties of
one-dimensional systems at zero temperature. The method presented in this thesis works
in the same setting. As a variational method, the DMRG and thus the MPS formalism has
the advantage of being largely unbiased. Therefore, it can be applied to a broad variety of
problems where other, more specialized methods may not.

Inspired by the great success of DMRG, many extensions to the original formulation have
been developed. There is time-dependent DMRG (tDMRG) [24, 25], momentum space
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DMRG [26, 27] and DMRG for �nite temperature [28]. All these extensions can also be
formulated for MPS. Using the Liouville operator instead of the Hamiltonian, frequency
resolved results at �nite temperatures can be obtained [29]. There was limited success
extending the original DMRG to higher dimensions, due to the intrinsic way it works.
Only ribbons of �nite (and rather small) width or cylinders of limited circumference can
be handled [30]. Here, the concept of tensor network states (TNS) with tensors of higher
dimension represent a promising development. The natural extension of MPS to two di-
mensions are projected entangled pair states (PEPS) [31, 32], which can also be adapted
to treat in�nite systems (iPEPS) [33]. There are ongoing e�orts to extend the framework
and improve the description of long-range entangled states such as critical systems and
quantum spin liquids [34, 35, 36, 37]. So far, TNS calculations in two dimensions are still
limited mainly to ground state properties due to the necessary larger tensor dimension
which makes the calculations numerically costly.

As mentioned above, another way to obtain �nite temperature results is by means of ef-
fective models and diagrammatic perturbation theory, for example. A powerful method to
derive e�ective models is that of continuous unitary transformations (CUTs), also known
as the �ow equation method [38, 39]. CUTs have been applied successfully to a wide variety
of problems and there are di�erent variants [40, 41, 42]. The Dyson-Maleev representation
[43, 44], which maps spins to bosons, can be very useful but results in a non-Hermitian
Hamiltonian. For this case, the CUT can be generalized to a continuous similarity trans-
formation (CST) that can yield very accurate results [45, 46].
While applicable to many problems, �ow equation methods tend to run into numerical
problems, if level crossings occur during the �ow [47]. Another problem that can occur,
especially for perturbative CUTs is that the ground state of the unperturbed Hamiltonian
has to be adiabatically connected to the ground state of the full Hamiltonian. If this is
not the case, the transformation may not converge or produce unpredictable or unphysical
results. Here, MPS as a variational method can potentially be more successful.

1.4 Structure of the thesis

The remainder of the thesis is structured as follows: Chapter 2 introduces the models on
which the method is tested. Some analytical results are derived, more involved results are
brie�y presented. In chapter 3 the framework of MPS is introduced. It is intended as an
overview for novices in the �eld and will brie�y cover the concepts needed to implement
the presented method. Chapters 4 and 5 show how a ground state approximation can be
found and how the one-QP dispersion and the creation operator of the e�ective model
are constructed. Chapter 6 contains the main results of the thesis, the two-QP interaction
algorithms and results. In chapter 7 the results are summarized and an outlook on possible
future research is given.

Appendices A and B contain some more detailed calculations which would interrupt the
main text too much, but can be helpful in understanding how the method is implemented.
Their sections are referenced in the main text where appropriate. Appendix C contains
a summary of the tensor network calculation results. These are essential in e�ciently
implementing the method.



Chapter 2

The models

Truth ... is much too complicated to

allow anything but approximations.

John von Neumann

This section o�ers a detailed description of the models which the presented method is tested
on. Along with some analytical calculations, the reference results are given to which the
numerical results are compared later on. For convenience, in all calculations the convention

~ = 1 (2.1)

is used. All models are investigated on one-dimensional chains with equidistant lattice
spacing. Therefore, all lattices constants a are set to unity. Consequently, the unit of
crystal momentum is π.

2.1 Ferromagnetic Heisenberg chain

Consider as a simple test case the ferromagnetic spin-1
2 Heisenberg chain (FMHC) in an

external �eld given by the Hamiltonian

H =
∑
j

−J ~Sj ~Sj+1 + ΓSzj , J, Γ > 0 . (2.2)

The Heisenberg interaction
∑

j −J ~Sj ~Sj+1 aligns all spins parallel and is SU(2) symmetric.
The external �eld

∑
j ΓS

z
j does not compete with the Heisenberg interaction. It just breaks

the SU(2) symmetry and favors the spins to point downwards, so the ground state is simply
the fully polarized state with all spins pointing down.

| ↓↓ · · · ↓↓ 〉 = | ↓ 〉 | ↓ 〉 · · · | ↓ 〉 | ↓ 〉. (2.3)

Note that this polarized state is a product state. Excitations on top of this ground state
are completely localized spin-�ips. Rewriting the Hamiltonian in terms of the spin ladder
operators

S± = Sx ± iSy ⇔ Sx =
1

2

(
S+ + S−

)
, Sy =

1

2i

(
S+ − S−

)
(2.4a)

Sz = S+S− − 1

2
(2.4b)
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yields

H =
∑
j

−J
2

(
S+
j S
−
j+1 + S+

j+1S
−
j

)
︸ ︷︷ ︸

Hkin

−(J + Γ )S+
j S
−
j︸ ︷︷ ︸

H�eld

−JS+
j S
−
j S

+
j+1S

−
j+1︸ ︷︷ ︸

Hint

−
(
J

4
+
Γ

2

)
︸ ︷︷ ︸

E0

.

(2.5)
The formulation in Eq. (2.5) shows clearly that the state Eq. (2.3) is an eigenstate of H
on top of which the spin raising operator S+

j creates a local excitation and the lowering

operator S−j annihilates one. The kinetic term Hkin can be diagonalized by the Fourier
transformation

S+
q :=

1√
L

∑
j

S+
j e

+iqj S−q :=
1√
L

∑
j

S−j e
−iqj (2.6a)

S+
j =

1√
L

∑
q

S+
q e
−iqj S−j =

1√
L

∑
j

S−q e
+iqj , (2.6b)

where L denotes the number of lattice sites. By inserting Eq. (2.6b) into the kinetic term
Hkin and the �eld term H�eld from Eq. (2.5), these transform as

Hkin =
∑
j

−J
2

1

L

∑
q

e−iqjS+
q

∑
q′

e+iq′(j+1)S−q′ +
∑
q′

e−iq
′(j+1)S+

q′

∑
q

e+iqjS−q

 (2.7a)

=
∑
j

−J
2

1

L

∑
q,q′

S+
q S
−
q′e

i(q−q′)j
(
e+iq′ + e−iq

′
)

(2.7b)

=
∑
q

−J cos(q)S+
q S
−
q (2.7c)

and

H�eld =
∑
j

−(J + Γ )
1

L

∑
q,q′

ei(q−q
′)S+

q′S
−
q (2.8a)

=
∑
q

−(J + Γ )S+
q S
−
q , (2.8b)

where the Kronecker identity Eq. (A.1.1) was used. The �eld term can be absorbed into
the now diagonal kinetic part and renormalizes the dispersion relation. It is convenient to
symmetrize the interaction term and also take into account interaction with the neighboring
site to the left, because then the prefactor is real.

Hint =
∑
j

−J
2

(
S+
j S

+
j+1S

−
j S
−
j+1 + S+

j S
+
j−1S

−
j S
−
j−1

)
(2.9a)

=
∑
j

− J

2L2

∑
q1,q2,q3,q4

S+
q1S

+
q2S
−
q3S
−
q4

×
(
e−iq1j−iq2(j+1)+iq3j+iq4(j+1) + e−iq1j−iq2(j−1)+iq3j+iq4(j−1)

)
(2.9b)

= − J

2L

∑
q1,q2,q3,q4

1

L

∑
j

S+
q1S

+
q2S
−
q3S
−
q4

× e−i(q1+q2−q3−q4)j
(
e−i(q2−q4) + e+i(q2−q4)

)
(2.9c)

= − J

2L

∑
q1,q2,q3

S+
q1S

+
q2S
−
q3S
−
q1+q2−q3

(
e−i(q2−q1−q2+q3) + e+i(q2−q1−q2+q3)

)
(2.9d)

=
∑

q1,q2,q3

−J
L

cos(q1 − q3)S+
q1S

+
q2S
−
q3S
−
q1+q2−q3 . (2.9e)
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The summation over q4 disappears, since the conservation of total momentum implied in
Eq. (2.9c) requires

q1 + q2 = q3 + q4 = Q . (2.10)

The spin ladder operators on di�erent sites commute, which is a bosonic property. However,
since a spin can be �ipped only once, there can only be one excitation on each lattice site,
which is fermionic behavior. A second �ip takes the system back to the ground state. In
other words, the excitations are so-called hard-core bosons, following the algebra

[S+
i ,S

+
j ] = [S−i ,S

−
j ] = 0 ∀ i, j; [S−i ,S

+
j ] = 0, j 6= i; {S−i ,S

+
i } = 1 (2.11)

which implies
S+
i S

+
i = S−i S

−
i = 0 . (2.12)

The commutation and anti-commutation relations can be expressed by a single commutator

[S−i ,S
+
j ] = δi,j(1− 2S+

j S
−
j ) (2.13)

which translates to momentum space as

[S−q ,S
+
q′ ] = δq,q′ −

2

L

∑
j

ei(q
′−q)jS+

j S
−
j . (2.14)

Identifying the spin raising and lowering operators as hard-core bosonic creation and an-
nihilation operators

a†q := S+
q , aq := S−q , (2.15)

the Hamiltonian can directly be interpreted as a second quantization e�ective model of
hard-core bosonic quasi-particles

H = E0 +
∑
q

ωq a
†
qaq +

1

L

∑
q1,q2,q3

Vq1q2q3 a
†
q1a
†
q2aq3aq1+q2−q3 (2.16a)

with E0 = −L
(
J

4
+
Γ

2

)
(2.16b)

ωq = Γ + J(1− cos(q)) (2.16c)

Vq1q2q3 = −J cos(q1 − q3) . (2.16d)

Introducing a next nearest neighbor interaction term

HNNN =
∑
j

−J2
~Sj ~Sj+2 (2.17)

adds another Fourier component to the dispersion relation and the interaction, which then
become

ωq = Γ + J(1− cos(q)) + J2(1− cos(2q)) (2.18)

and
Vq1q2q3 = −J cos(q1 − q3)− J2 cos (2(q1 − q3)) , (2.19)

respectively. The ground state energy is also shifted to

E0 = −L
(
J

4
+
J2

4
+
Γ

2

)
. (2.20)

The calculations are completely analogous to those for the nearest neighbor interaction.
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2.1.1 Bound state

The model also shows a bound state of two quasi-qarticles (QPs). Its formation can be
understood very easily on a cartoon level. In a 2QP state where the two particles are far
apart

|i,j〉 := | ↓ · · · ↓↑i↓ · · · ↓↑j↓ · · · ↓〉 , (2.21)

there is a total of four unsatis�ed ferromagnetic bonds. However, if the excitations are
next to each other

|i,i+ 1〉 = | ↓ · · · ↓↑i↑i+1↓ · · · ↓〉 , (2.22)

there are only two broken bonds. This leads to an attraction of the quasi-particles and the
formation of a bound state.
For J2 = 0, i.e., without next-nearest neighbor interaction, the energy of the bound state
EB is given by [48, 49]

EB = 2Γ +
1

2
(1− cosQ) , (2.23)

where Q = q1 + q2 denotes total momentum. With J2 > 0, the energy of this bound
state is hard to obtained analytically, but straight forward to compute numerically by
diagonalizing the Hamiltonian in the 2QP subspace, where it takes the matrix form

〈Q,q′|(H − E0) |Q,q〉

= ωqδq′q −
2

L

(
ωQ+q

2
+ ωQ−q

2
+ ωQ+q′

2

+ ωQ−q′
2

− 2t0

)
−2J

L

[
cos

(
q′ − q

2

)
+ cos

(
q′ + q

2

)]
− 2J2

L

[
cos(q′ − q) + cos(q′ + q)

]
. (2.24)

In Eq. (2.24) q = q1 − q2 is the relative momentum of the two particles, and t0 the one-
particle on-site energy. The condition q ≥ 0 makes the basis unique. See App. A.2 for
details.

2.2 The transverse �eld Ising model

The method will also be tested on the transverse �eld Ising model (TFIM). It was used,
for example, by P. G. De Gennes to describe tunneling in ferroelectric crystals [50] and has
since been studied extensively, see for instance Refs. [51, 52]. It shows many interesting
phenomena including a quantum phase transition, ground state degeneracy, and therefore,
domain wall excitations.
In this thesis, the one-dimensional ferromagnetic case is considered, in which the model is
described by the Hamiltonian

H = Γ
∑
j

S z
j − J

∑
j

S x
j S

x
j+1, Γ, J > 0 (2.25)

where S z and S x are the common spin-1
2 operators. It describes a chain of spin-1

2 degrees
of freedom that interact only in x-direction. Such spins are often referred to as Ising spins,
hence the name Ising model. Adding an external �eld perpendicular to the interaction (here
the z-axis is chosen) adds quantum �uctuations, since the �eld term does not commute
with the Ising interaction.
The dimensionless parameter

λ :=
J

2Γ
, λ ∈ [0,∞) (2.26)
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controls the behavior of the system. In terms of this parameter, the Hamiltonian can be
written as

H

Γ
=
∑
j

S z
j − 2λ

∑
j

S x
j S

x
j+1 . (2.27)

In this notation, all energies are measured in units of Γ , which for convenience is set to 1.

In the strong-�eld limit λ = 0, the ground state is fully polarized along the z-axis. The
elementary excitations are spin-�ips, and one can think of them as quasi-particles. These
excitations are immobile, since there is no interaction between neighboring spins.
For 0 < λ < 1, the external �eld still dominates. This phase is called the strong-�eld
phase or disordered phase, since the external �eld suppresses long-range order along the
Ising coupling direction. If a small amount of Ising coupling is added, the spin-�ips become
mobile and also �dressed�. This means that a �ipped spin on one site acquires a polarization
cloud of a certain spatial extension which is considered part of the quasi-particle. As for
the ferromagnetic Heisenberg chain (FMHC), these QPs are hard-core bosons.
At λ = 1, the external �eld is as strong as the Ising coupling, giving rise to a quantum
critical point (QCP). The excitation gap closes at momentum q = 0, meaning arbitrarily
many spin-�ips can be created at zero energy cost.
For λ > 1, the Ising coupling dominates, and the spins align along the x-direction. The
Hamiltonian Eq. (2.25) shows a Z2 symmetry for S x → −S x, giving rise to a two-fold
ground state degeneracy. The spins can point either in positive or in negative x-direction
and both con�gurations have the same energy. Spontaneous symmetry breaking occurs,
but since Z2 is a discrete symmetry, no Goldstone modes appear. This phase is referred
to as the ordered phase or Ising phase, since it is dominated by the Ising interaction,
and long-range order forms along the direction of this interaction. Since a spin pointing
in x-direction in presence of a �eld along the quantization axis, i.e., the z axis, can be
interpreted as �uctuating between the up and down states, the phase transition can also
be viewed as a condensation of the spin-�ip excitations. In this regime, the elementary
excitations are domain walls between regions of the two ground state realizations. In the
Ising limit λ → ∞ (i.e. Γ → 0) they are again exact. Away from the limit, the domain
walls, too, acquire a dressing, i.e. get �smeared out� over a certain spatial region.

Figure 2.1: Illustration of the ground states and quasi-particles in the TFIM. Left
side: disordered phase; ground state and spin-�ip excitation in the weak cou-
pling limit λ = 0 (top) and away from the limit (bottom). Right side: ordered
phase; ground state and domain wall excitation in the strong coupling limit
Γ = 0 (top) and away from the limit (bottom).

Figure 2.1 illustrates these quasi-particles. In the left panel, ground state and the spin-�ip
excitations of the disordered phase are sketched, and in the right panel the ground states
and domain walls of the ordered phase.
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2.2.1 Exact solution

This section provides a short review of the analytic solution and states the closed expres-
sions for ground state energy and the dispersion relation.
In Ref. [53] Pfeuty showed, that the model can be solved analytically by a sequence of
Jordan-Wigner, Fourier and Bogolyubov transformations [54].

As a �rst step, the Hamiltonian Eq. (2.27) is rewritten in spin ladder operators Eq. (2.4)

H =
∑
j

S+
j S
−
j −

1

2
− λ

2

∑
j

(
S+
j + S−j

)(
S+
j+1 + S−j+1

)
(2.28a)

=
∑
j

S+
j S
−
j −

1

2
− λ

2

∑
j

S+
j S
−
j+1 + S+

j+1S
−
j + S+

j S
+
j+1 + S−j S

−
j+1 (2.28b)

which illustrates the e�ective model interpretation when viewing the ladder operators S+

(S−) to create (annihilate) a quasi-particle. Again, these operators follow the hard-core
algebra Eq. (2.11).
The Jordan-Wigner transformation

cj = exp

iπ∑
i<j

S+
i S
−
i

S−j c†j = S+
j exp

−iπ∑
i<j

S+
i S
−
i

 (2.29a)

S−j = exp

−iπ∑
i<j

c†ici

 cj S+
j = c†j exp

iπ∑
i<j

c†ici

 (2.29b)

can be used to map the hardcore bosons to spinless fermions. The cj then satisfy the
canonical anticommutation relations [55]

{c†i , cj} = δij , {c†i , c
†
j} = {ci, cj} = 0 . (2.30)

Note that these fermionic operators cj are highly non-local objects in terms of real space
lattice sites. In the exponential, the number of spin-�ips to the left of cj is counted, giving
it a positive sign if that number is even and a negative sign if it is odd.
Consider a chain of L sites. For open boundary conditions (OBC), the second sum in the
Hamiltonian runs from j = 1 to j = L−1, whereas for periodic boundary conditions (PBC)
it runs to j = L with L + 1 = 1. However, in the limit L → ∞, the error in letting both
sums run to L, and neglecting the coupling between the �rst and last site is small. Thus,
in the thermodynamic limit (TDL), the Hamiltonian reads

H =
L

2
−

L∑
j

c†jcj −
λ

2

L∑
j

(
c†jcj+1 + c†j+1cj + c†jc

†
j+1 − cjcj+1

)
. (2.31)

The bilinear terms containing one creation and one annihilation operator can be diagonal-
ized by Fourier transformation. The so called Bogolyubov terms that create and annihilate
two particles couple momenta +q and −q. They can be diagonalized by a Bogolyubov
transformation [56]

ηq := uqcq + vqc
†
q (2.32a)

η†q := u∗qc
†
q + v∗qcq (2.32b)

where cq is the Fourier transform of cj and uq and vq are complex numbers. This yields
the Hamiltonian in diagonal form

H = E0 +
∑
q

ωqη
†
qηq (2.33)
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with the one-particle energy dispersion and the ground state energy per lattice site in the
TDL, cf. Ref. [53]:

ωq = Γ
√

1 + λ2 − 2λ cos q (2.34a)

ε0 =
E0

L
= − 1

2L

∑
q

ωq = − 1

2π

∫ π

0
ωq dq (2.34b)

The ground state energy is an elliptic integral and it has a non-analyticity at λ = 1. It is
easy to see that the excitation energy gap ∆ follows as

∆ = min
q
ωq = Γ |1− λ| (2.35)

and vanishes at the quantum critical point λ = 1.

The excitations created by η†q are linear combinations of Jordan-Wigner fermions and
therefore highly non-local in terms of the original spin-�ip excitations.

2.2.2 Solution by CUT

In Ref. [57] Fauseweh applied the method of CUTs to the TFIM to derive an e�ective model.
He showed that the Hamiltonian can be written in terms of so-called string operators Tn,j
as

HCUT =
∑
j

t0T0,j +

∞∑
n=1

(−1)n−1tn(Tn,j + h.c.) (2.36)

with the string operators

T0,j := 2a†jaj − 1 (2.37a)

Tn,j := a†jT0,j+1 · · ·T0,j+n−1aj+n (2.37b)

and the Fourier coe�cients tn of the one-particle dispersion Eq. (2.34a)

tn =
1

2π

∫ π

−π
eiqn ωq dq =

Γ

2π

∫ π

−π
eiqn

√
1 + λ2 − 2λ cos q dq . (2.38)

Unlike Pfeuty's exact quasi-particles, the quasi-particles created (annihilated) by a† (a)
have a localized character by construction1. However, from Eq. (2.29) it is apparent that
in the operator product c†ici the phase tails cancel out. Therefore, the quasi-particles from
Ref. [57] have the same energy dispersion ωq, but the e�ective Hamiltonian is not bilinear.
In contrast to Eq. (2.33) it contains interaction terms that conserve the particle number,
but involve any number of particles.
From Eq. (2.36) one can see that the multi-particle interaction matrix elements are entirely
determined by the one-particle dispersion through the hopping elements tn.
The aim of this thesis is to derive the two-particle interaction part of the Hamiltonian.
Equation (2.36) also shows that for the TFIM, any 2QP interaction term with a non-zero
amplitude is necessarily of the form

hjn,k ∝ a†j(−1j+1) · · · (−1j+k−1)(a†j+kaj+k)(−1j+k+1) · · · (−1j+n−1)aj+n (2.39a)

= (−1)n−2a†ja
†
j+kaj+kaj+n, with n ≥ 2, 1 ≤ k < n . (2.39b)

1If Ref. [57] the operators are called σ± and σz = 2σ+σ− − 1. In the beginning, these are identical
to the Pauli matrices, i.e. σi = 2Si. However, during the �ow of the CUT they become increasingly
non-local and are then termed �e�ective observables�. It is important to note, though, that they retain a
�nite spatial extension, in contrast to the Jordan-Wigner fermions.
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Combining the powers of −1 from Eqs. (2.36) and (2.39) yields a prefactor of

V j
n,k = −2tn (2.40)

so that the complete irreducible 2QP-part of the Hamiltonian is given by

H2P = −2
∑
j

∞∑
n≥2

n−1∑
k=1

tn (a†ja
†
j+kaj+kaj+n + h.c.) . (2.41)

To compare to MPS results, the interaction matrix in the basis |Q,q1〉 of total momentum
Q and �rst particle momentum q1 is used

〈Q,q′1|H2P |Q,q1〉 = − 4

L

∑
d′,d>0

td′+d
[
cos(q′1d

′ + q1d) + cos(q′2d
′ + q2d)

+ cos(q′1d
′ + q2d) + cos(q′2d

′ + q1d)
]

(2.42)

where conservation of total momentum implies q′1 + q′2 = q1 + q2 = Q. See App. A.3 for
details.

2.2.3 Ground state magnetization

The ground state magnetization Mx along the direction of the Ising coupling is the order
parameter in the Ising phase. In the strong-�eld phase, it is always zero. It was found in
Ref. [53] to be

|Mx| := 〈GS|Sx |GS〉 =

{
0, for λ < 1

1
2

(
1− 1

λ2

) 1
8 , for λ ≥ 1

. (2.43)

Due to the spontaneously broken Z2 symmetry, the magnetization can be either positive
or negative, and its sign can be used to distinguish the degenerate ground states.
At λ = 1, the function has a kink, where the ground state energy is non-analytic. The
phase transition is of the continuous type, and the critical exponent for Mx is given by

β =
1

8
⇒ |Mx| ∝ (λ− λc)

1
8 (2.44)

close to the QCP λc = 1 in the ordered phase [58].

The magnetization in z-direction was also derived in Ref. [53] and is given by another
integral expression2

Mz = − 1

2π

∫ π

0

1 + λ cos(q)

ωq
dq . (2.45)

Limit value analysis shows the value at λ = 1 to be Mz = − 1
π . In Fig. 2.2 both Mx and

Mz are plotted.

2In Ref. [53], Mz has the opposite sign because the Hamiltonian is de�ned with −Γ .
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Figure 2.2: Exact ground state magnetizations Mx and Mz of the TFIM

2.2.4 Correlation function

An important quantity when dealing with magnetic phenomena is the spin-spin correlation
function in the ground state

Gαβj := 〈Sα0 S
β
j 〉 = 〈GS|Sα0 S

β
j |GS〉 (2.46)

where α,β ∈ {x,y,z,+ ,−} and |GS〉 denotes the ground state. For translation invariant,
one-dimensional systems with local interactions and an excitation gap, this ground state
correlation function Eq. (2.46) is known to show exponential behavior [59]

Gj ∝ exp

(
−|rj |

ξ

)
(2.47)

where ξ is the correlation length. For the 1D TFIM it can be calculated analytically [60]
to be

ξ =
1

| lnλ|
. (2.48)

An often used approximation for the correlation length in lattice models is ξ ≈ v
∆ , where

v is obtained by �tting ωq ≈
√

∆2 + (2v sin
( q

2

)
)2 to the minimum and maximum of the

dispersion. It is found to be in very good agreement with Eq. (2.48) for λ & 0.2.

The correlation function is also important, as it relates theory to experiment via the dy-
namic structure factor (DSF) [61]. The DSF is de�ned as

Sαβ(ω,Q) =
1

2πL

∑
i,j

∫ ∞
−∞

dt ei[ωt+Q(ri−rj)]
〈
Sαj (t)Sβi (0)

〉
(2.49)

and describes the measured intensity in neutron scattering experiments. It represents
the Fourier transform in space and time of the spin-spin correlation function, of which
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Eq. (2.46) is the special case for equal time and zero temperature, where the angular
brackets denote the ground state expectation value.
Integrating Eq. (2.49) over frequency yields the static structure factor (SSF)

Sαβ(Q) =
1

L

∑
i,j

eiQ(ri−rj)〈Sαj S
β
i 〉 , (2.50)

which is the Fourier transform of Eq. (2.46). If the subspaces with di�erent numbers
of particles are well separated, the n-particle spectral weight SαβnP(Q) can be de�ned by
projecting the SSF onto the n-particles subspace

SαβnP(Q) = 〈GS|Sα−QP
Q
nPS

β
Q |GS〉 . (2.51)

Here SαQ is the Fourier transform of the spin operator Sαj and PQnP is the projector on the
n-particle subspace with total momentum Q. For the one-particle subspace, the projector
is simply

PQ1P = |Q〉〈Q| , (2.52)

i.e., the projector on the one-particle state with momentum Q. For the two-particle sub-
space, the projector is given by

PQ2P =
∑

Λ

|Q,Λ〉〈Q,Λ| (2.53)

where Λ is a quantum number that enumerates the two-particle states with total momen-
tum Q, e.g. relative momentum.
These n-paticle spectral weights indicate how much of the integrated intensity Sαβ(Q) at
total momentum Q falls into the n-particle sector.
Analytic formulae for the one-particle spectral weights of the TFIM in the disordered phase
are given by Hamer et al. in Ref. [52], where they were conjectured from high order series
expansions. Their Fourier transforms were derived exactly earlier by Vaidya and Tracy in
Ref. [51]. The expression for the spectral weight in the xx-channel reads

Sxx1P(Q) =
(1− λ2)

1
4

4ω(Q,λ)
, λ < 1 . (2.54)

Reference [51] also states that there is no spectral weight in this channel for λ > 1.
In the formulation of the TFIM in Jordan-Wigner fermions, the structure factor in the
zz-channel can be calculated analytically [62], too. From that it can be shown that all the
spectral weight in the zz-channel is contained in the 0QP and 2QP subspaces. Therefore,
the 2QP spectral weight can be written down exactly as the complete spectral function
minus the projection onto the 0QP sector (i.e. the ground state)

S xx
2P (Q) = 〈GS|S z

−QS
z
Q |GS〉 − 〈GS|S z

−Q |GS〉〈GS|S z
Q |GS〉 (2.55a)

=
1

L

∑
j,k

eiQ(j−k)
(
〈GS|S z

j S
z
k |GS〉 − 〈GS|S z

j |GS〉〈GS|S z
k |GS〉

)
(2.55b)

=
1

L

∑
j,k

eiQ(j−k)
(
〈GS|S z

j−kS
z
0 |GS〉 − 〈GS|S z

0 |GS〉2
)

(2.55c)

=
∑
j

eiQj
(
〈GS|S z

j S
z
0 |GS〉 −M2

z

)
(2.55d)

where Mz is the ground state magnetization de�ned in Eq. (2.45).



Chapter 3

The framework:

Matrix product states

Hilbert space is big. You just won't believe how vastly,

hugely, mind-bogglingly big it is.

Ashley Milsted et al. after Douglas Adams

This chapter provides an introduction to the method of matrix product states (MPSs).
Section 3.2 considers typical applications of the method and shows why it is such a pow-
erful tool. It also examines limitations, where and why it may fail to produce reliable
results, and conclude that MPSs are indeed a good choice for the purposes of this the-
sis. Sections 3.3 through 3.5 introduce the basic concepts of MPSs and matrix product
operators (MPOs). These sections are based on the excellent review articles by U. Scholl-
wöck [23] and R. Orús [63]. Readers familiar with the concepts of �nite system MPS can
skip these sections. In section 3.6 it is shown how the idea of transfer matrices can be
adopted to work very e�ciently in the thermodynamic limit with MPS. This variant is
known as in�nite system matrix product state (iMPS). The contents of this chapter are
also partly contained in my master's thesis [64] and a condensed version of them was pub-
lished in Ref. [65].

Remark on the notation: throughout this and all subsequent chapters, the following no-
tation convention will be used. Vectors are typeset using the vector arrow symbol ~v and
mostly lowercase Latin letters. Matrices are typeset using plain uppercase Latin letters
M . Tensors of higher rank are denoted using uppercase Latin letters in a sans serif font
A. Note that �xing one index of a rank-3 tensor A, or two indices of a rank-4 tensor W,
yields a rank-2 tensor, which is a matrix and is thus denoted as As and W s′s, respectively.

3.1 The tools

This section contains a number of theorems and de�nitions which will be referenced fre-
quently throughout this and the following chapters. It also introduces the tensor net-
work (TN) notation, which provides a graphical and intuitive representation of mathemat-
ical expressions, somewhat similar to Feynman diagrams.

The key to understanding MPS is the singular value decomposition (SVD) of a matrix.
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Theorem 3.1 (Singular value decomposition) For every m×n complex matrix Ψ
there is a decomposition

Ψ = USV † , (3.1)

such that U is a m×k column-orthogonal matrix, V is a n×k column-orthogonal matrix
and S is a k × k real diagonal matrix with si := Sii ≥ 0, where k := min(m,n). The
diagonal elements of S are called the singular values of Ψ . If they are ordered si ≥ sj
for i > j, S is uniquely determined by Ψ .

Note that U †U = 1 and V †V = 1. Either U or V is a square matrix and therefore unitary.
If Ψ is square, then both U and V are unitary and U †U = UU † = V †V = V V † = 1.

The Schmidt decomposition is a restatement of the SVD commonly found in quantum
mechanics in connection with entanglement.

Theorem 3.2 (Schmidt decomposition) Let H1 and H2 be two Hilbert spaces of
dimensions m and n, respectively (assume m ≥ n). Then for every element ~w of the
tensor product space H1 ⊗H2 there is a representation

~w =
n∑
i=1

si~ui ⊗ ~vi (3.2)

such that the si are real and non-negative and as a set uniquely determined by ~w. The
sets {~ui} and {~vi} are orthonormal bases of H1 and H2. The numbers si are called
Schmidt coe�cients of ~w.

The existence of this representation of elements in the tensor product space immediately
follows from the existence of the SVD with si = Sii and {~ui} and {~vi} the columns of the
matrices U and V respectively. Without loss of generality, it is assumed that si ≥ sj if
j > i, i.e. the Schmidt coe�cients are sorted in descending order. An important quantity
in this context is the Schmidt rank.

De�nition 3.1 (Schmidt rank) The Schmidt rank of a Schmidt decomposition is de-
�ned as the number of non-zero Schmidt coe�cients, and the upper bound is the dimen-
sion of the smaller of the Hilbert spaces H1 and H2

K := max
si>0

i, K ≤ min(dim(H1),dim(H2)) . (3.3)

Especially in the treatment of MPS for in�nite systems, it is often helpful to switch between
matrix and vector representations of the same object. For this, the vectorization operator
is used.

De�nition 3.2 (Vectorization of a matrix) The vectorization of a m×n matrix A
is the mn-dimensional column vector obtained by stacking all columns of the matrix on
top of each other, starting from the left

vec(A) = ~A :=

~a1

...
~an

 (3.4)

where ~ai are the m-dimensional columns of A. The vector vec(A) can also be interpreted
as a n × 1 block matrix of m × 1 blocks. A useful indexing scheme in this context is a
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double index (α,α′) where α designates the block (i.e. column of A) and α′ the element
within the block

vec(A)(α,α′) = Aα′α = ATαα′ . (3.5)

By this de�nition, an element of the Hermitian conjugate vector is given by

vec(A)†(α,α′) = A∗α′α . (3.6)

The second notation in Eq. (3.4) with the vector arrow symbol is used when it is clear from
context that the object is the vectorization of a matrix. From the vector vec(A) alone, the
dimensions of the matrix A cannot generally be determined. But if vec(·) is de�ned as a
linear map

vec : Cm×n → Cmn, A 7→ vec(A) (3.7)

from a matrix space of �xed dimension m× n, it is a bijection and the inverse is given by

vec−1 : Cmn → Cm×n, vec(A) 7→ A . (3.8)

Using the vectorization, a linear map on a matrix space B : Cm×n → Cm×n can itself be
represented as a n×n block matrix of m×m blocks. An indexing scheme compatible with
Eq. (3.5) is given by B(α,α′)(β,β′)

(B vec(A))(α,α′) =

n∑
β=1

m∑
β′=1

B(α,α′)(β,β′)vec(A)(β,β′) (3.9a)

=

 n∑
β=1

Bαβ~aβ


α′

(3.9b)

with B =

B11 · · · B1n

...
. . .

...
Bn1 · · · Bnn

 and vec(A) =

~a1

...
~an

 (3.9c)

where Bαβ ∈ Cm×m and ~aβ ∈ Cm . (3.9d)

For two m× n matrices A and B the following relation holds

vec(A)†vec(B) =
n∑

α=1

m∑
α′=1

vec(A)†(α,α′)vec(B)(α,α′) (3.10a)

=
∑
α,α′

A∗α′αBα′α (3.10b)

=
∑
α,α′

A†αα′Bα′α (3.10c)

=
∑
α

(A†B)αα (3.10d)

= Tr(A†B) . (3.10e)

This series of equalities de�nes a scalar product for m×n matrices, since vec(·) is bijective.
This scalar product is equivalent to the standard inner product of Cnm and induces the
Frobenius norm of matrices.

The tensor network (TN) notation is another important tool in handling MPS. It provides
a graphical, intuitive representation of mathematical expressions such as the expansion
coe�cients in Eq. (3.17) below. In TN notation, each index of a tensor is represented as
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a line or �leg� coming out of an icon representing the object. Therefore, a scalar has zero
legs, a vector has one, a matrix has two etc. A line connecting two tensors denotes the
contraction of (i.e. summation over) one index. Table 3.1 shows some examples of tensor
network notation.

Table 3.1: Examples of tensor network notation

vi :
Vector (1 leg)

Uij , Sjk :
Matrix (2 legs)

(US)ik =
∑

j UijSjk :
Matrix (2 legs)

Tr(US) =
∑

i(US)ii :

Scalar (0 legs)

3.2 Why matrix product states?

As mentioned above, the DMRG introduced by S.R. White in Ref. [17] is the reference
method for one-dimensional lattice systems today. Östlund and Rommer showed [19, 20]
that in the thermodynamic limit a formulation in the MPS language naturally presents
itself. Therefore, we expect very accurate results for one-dimensional systems from MPS
calculations. An excellent overview of the formulation of the DMRG, not only for in�nite
systems, in MPS is given by Schollwöck in Ref. [23].
The reason behind the success of DMRG and subsequently MPS are the so called area
laws of entanglement (entropy) [66, 67, 68, 69, 70]. Consider a system that can be divided
into two subsystems A and B as seen in Fig. 3.1, where A ∪ B is in the thermodynamic
limit (TDL).

Figure 3.1: Bipartition A|B of a 2D system.

In the one-dimensional case this means that a chain or ribbon is cut at one point or a
ring is cut at two points. Let HA and HB be the Hilbert spaces of subsystems A and B,
respectively.
By virtue of the Schmidt decomposition Eq. (3.2), a state of the entire system can be
written as

|ψ〉 =

K∑
i

si |ai〉 ⊗ |bi〉 (3.11)

where { |ai〉} and { |bi〉} are orthonormal bases of HA and HB, one of which is incomplete
if the dimensions di�er, and K is the Schmidt rank of the bipartition A|B. Note that
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normalization of the state |ψ〉 implies

1 = 〈ψ|ψ〉 =
∑
i,i′

si′si〈bi′ | ⊗ 〈ai′ | |ai〉 ⊗ |bi〉 (3.12a)

=
∑
i,i′

si′si〈bi′ |bi〉〈ai′ |ai〉 (3.12b)

=
∑
i

s2
i . (3.12c)

The main idea behind DMRG and MPS is to perform a Schmidt decomposition on every
bond of a one-dimensional system and to store the Schimdt coe�cients and the Schmidt
bases for each decomposition. When the limits of computational resources are reached,
the Schmidt vectors corresponding to the smallest coe�cients si are dropped, which leads
to truncation errors. Due to the exponential growth of the Hilbert space, truncation be-
comes necessary already at relatively small system sizes. However, in typical applications
the truncation errors are very small, so that systems of several thousands of sites can be
treated. Note that these truncations do not reduce the dimension of the physical Hilbert
space. An approximate MPS is still a linear combination of all basis states [23]. However,
due to the limited number of states in the Schmidt basis, interdependencies of the coe�-
cients for each basis state are generated, which puts restrictions on the forms of the linear
combinations that can be expressed.

The quantity
SvN := −

∑
i≤K

s2
i ln s2

i (3.13)

is the so called von Neumann or entanglement entropy [71] of the bipartition A|B. In a
sense it is a measure of �how quantum� a state is. For a pure (classical) product state, the
Schmidt rank of any bipartition is K = 1 leading to a von Neumann entropy of

SvN = −1 ln 1 = 0 . (3.14)

Such a state can be described exactly by a MPS, since every Schmidt basis contains only
one element. The other extreme is the maximally entangled state, also known as T = ∞
state. Here, the Schmidt rank is always maximal and all Schmidt coe�cients are equal

si =
1√
K
∀ i with K = dim(H) . (3.15)

The entanglement entropy is

SvN = −
∑
i≤K

1

K
ln

1

K
= lnK ∝ L . (3.16)

This means that even in 1D the maximum entropy still diverges linearly with system size
L, i.e., proportional to the volume. Therefore, such a state cannot be described well as
MPS, since all Schmidt vectors are equally important. Any truncation is equally bad and
will result in relatively large errors.

However, the area laws for entanglement entropy [66, 67, 68, 69, 70] state that for the low-
energy states of gapped, short ranged Hamiltonians in the TDL, SvN does not grow as the
volume of A, but only as the area of the boundary. Especially in one dimension, this implies
that the entanglement is bounded by a constant. In two dimensions, it is proportional to
the boundary ∂A, i.e. the linear extension L of A as seen in Eq. (3.16). Consequently, the
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spectrum of the Schmidt decomposition cannot have the form of Eq. (3.15). Rather, the si
must converge to zero su�ciently fast to yield a constant sum, although the Hilbert space
dimension diverges. However, this behavior is a highly exceptional property of the low-
energy states. The region of Hilbert space with states that obey an area law is exponentially
small [63]. A generic quantum state does therefore indeed exhibit entanglement entropy
proportional to the volume of A, as seen for instance in Eq. (3.16).
Analyses on a variety of models show [72, 73, 74, 75] that for the low energy states of
gapped 1D systems, the Schmidt coe�cients si generically decay roughly as si ∝ e−c ln2 i.
Therefore, truncation errors are small in these cases. This is why the DMRG and sub-
sequently the MPS formalism is so successful in describing the low energy physics of 1D
systems. In a 2D system of width W , however, c ∝ 1

W , i.e., the decay becomes slower
with growing width, and therefore DMRG becomes ine�cient for truly two-dimensional
systems. Stripes of �nite width or cylinders of �nite circumference can be treated rather
successfully though [30, 76]. Truly two-dimensional systems require an extension of the
ansatz, like, for instance, the PEPS [31, 32] and iPEPS [33] methods. Even time evolution
can be implemented rather e�ciently [24, 25]. It can be shown [77] that the part of the
Hilbert space which can be reached under the time evolution generated by a local Hamil-
tonian is exponentially small. Therefore, a state that starts in the region of the Hilbert
space with exponentially decaying si is highly unlikely to leave this region in polynomial
time. Often, long time behavior can be accessed analytically, and one is then interested in
numerically simulating short time behavior, for which polynomial time scales are su�cient.
Because DMRG can be formulated in the MPS language, MPSs share the strengths and
weaknesses of DMRG. Since this thesis is concerned with the low-energy physics of spin-
chain models, i.e., 1D systems, MPSs indeed provide an excellent framework.
The DMRG was originally developed to overcome the problems that arise when applying
Wilson's numerical renormalization group method [18] to quantum lattice systems [78].
While the derivation is straight forward in this context, it somewhat obscures a very
important fact that is much easier to see in the reformulation through MPS: that it is a
variational ansatz over the class of states that can be described with a �xed maximum
Schmidt rank Kmax on each bond. The variational parameters are essentially the Schmidt
vectors. The quality of the result depends on how close or far the target state is from
this class of states. As stated above, product states can be described very well, whereas
maximally entangled states can lead to dramatic errors if dim(H)� Kmax.
This is the reason why MPS �favor product states�. If, for instance, the ground state is
twofold degenerate, the variational algorithm converges to one realization instead of a su-
perposition of both, because the Schmidt coe�cients of each single state decay faster than
those of a superposition.

Note that in DMRG literature the maximal Schmidt rank Kmax is called m, and is identi-
�ed with the number of eigenvectors of the density matrix ρ that is kept in the description.
In newer MPS literature, it is called the �bond dimension� and denoted as D or χ. In this
thesis, the symbol D will be used following the notation of Ref. [23].

As a variational method, the MPS framework has two inherent strengths. First, in a
ground state search, it is guaranteed to yield an upper bound for the ground state energy
(up to machine precision) by virtue of Ritz' variation principle. Secondly, it is largely
unbiased; this means no knowledge of the system required. Although exploiting known
quantum symmetries in the code can lead to substantial speedups, doing so is not a neces-
sity. This avoids biasing the result by starting from possibly incorrect assumptions on the
physical behavior of the system, or getting stuck in a certain symmetry sector by choosing
disadvantageous initial conditions.
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3.3 De�nition of MPS

The concept of MPS presents a formulation of quantum mechanics in the Schrödinger
picture that proves to be particularly well suited for variational approaches. A MPS for a
quantum system with L degrees of freedom is de�ned as

|ψ〉 =
∑

s1,s2,...,sL

Tr(As1As2 . . . AsL) |s1,s2, . . . ,sL〉 (3.17)

where Asi are matrices, si enumerates the i-th quantum number and |s1,s2, . . . ,sL〉 is an
orthonormal basis (ONB) of the Hilbert space. This means the state |ψ〉 is expanded in
some ONB and the expansion coe�cients are given by the trace of products of matrices.
The next sections explain why this is a useful de�nition.

3.4 Construction of canonical MPS

Consider an arbitrary pure state |ψ〉 of a quantum system with L quantum numbers

|ψ〉 =
∑

s1,...,sL

cs1,...,sL |s1, . . . ,sL〉 (3.18)

which is assumed to be normalized. The si can be any quantum numbers characterizing
a state of the system. Because this thesis deals with one-dimensional spin models on
spatially �xed lattices, from here on the si will mostly be the z-component of spin i. In
a multi-site unit cell, for instance in a dimer or ladder model, si labels the states of each
unit cell. Therefore, only the case where all si take d possible values is considered. Here d
is the dimension of the local Hilbert space of a single spin or a unit cell, respectively. For
the sake of simplicity, the unit cells will just be called sites or lattice sites. Keep in mind
though that a site can be a site of a super-lattice.
The states |s1, . . . ,sL〉 denote an ONB of the Hilbert space. For the lattice systems under
consideration, the most intuitive choice is the tensor product of the bases of the local
Hilbert spaces

|s1, . . . ,sL〉 = |si〉 ⊗ |s2〉 ⊗ · · · ⊗ |sL〉 . (3.19)

Such an ONB always exists, and the actual form of the { |si〉} enters the calculation only
through the choice of the matrix representation of operators in the local Hilbert space of
one unit cell. For instance, by representing the spin-1

2 operators in Eq. (2.25) with the
usual Pauli matrices, the eigenbasis of the Sz operator is chosen as local basis.

Thus, for a chain of length L, there are dL coe�cients cs1,...,sL in Eq. (3.18). As these
coe�cients are (possibly time-dependent) C-numbers, they can be understood as the com-
ponents of a dL-dimensional vector or, equivalently, as the elements of a d× dL−1 matrix
Ψ

cs1,...,sL = Ψ(s1),(s2,...,sL) . (3.20)

Now the SVD is applied to this Ψ , yielding

cs1,...,sL = Ψ
[1]
(s1),(s2,...,sL) =

(
U [1]S[1]V [1]†

)
(s1),(s2,...,sL)

(3.21a)

=

K1∑
α1=1

U [1]
s1,α1

S[1]
α1,α1

V
[1]†
α1,(s2,...,sL) , (3.21b)

where K1 ≤ d is the Schmidt rank of the decomposition across the bond 1 − 2. In the
following calculations, it will be assumed that the Schmidt ranks Ki take the maximum
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value, which is the lesser of the dimensions of Ψ [i]. Then theorem 3.1 states that U [1] and
S[1] are of dimension d× d and V [1]† is of dimension d× dL−1.
The matrix U [1] has d rows addressed by the index s1, each row corresponding to a physical
state of lattice site 1. The index s1 is therefore called the physical index. Hence, one can
also interpret U [1] as a set of d matrices of dimension 1× d

U [1] =


U

[1]
1,1 . . . U

[1]
1,d

...
...

U
[1]
d,1 . . . U

[1]
d,d

 →


(
U

[1]
1,1, . . . ,U

[1]
1,d

)
...(

U
[1]
d,1, . . . ,U

[1]
d,d

)
 =:


As1=1

...
As1=d

 . (3.22)

Next, a new matrix Ψ [2] is de�ned by reshaping the product S[1]V [1]† into a d2 × dL−2

matrix
Ψ

[2]
(s2,α1),(s3,...,sL)

:= (S[1]V [1]†)α1,(s2,...,sL) . (3.23)

Applying the SVD again yields

Ψ
[2]
(s2,α1),(s3,...,sL) = (U [2]S[2]V [2]†)(s2,α1),(s3,...,sL) (3.24a)

=

d2∑
α2=1

U
[2]
(s1,α1),α2

S[2]
α2,α2

V
[2]†
α2,(s3,...,sL) . (3.24b)

Again, the matrix U [2] has a block structure

U [2] =



U
[2]
(1,1),1 · · · U

[2]
(1,1),d2

...
...

U
[2]
(1,d),1 · · · U

[2]
(1,2),d2

U
[2]
(2,1),1 · · · U

[2]
(2,1),d2

...
...

U
[2]
(d,d),1 · · · U

[2]
(d,d),d2)


→


(
U

[2]
(1,α1),1, . . . ,U

[2]
(1,α1),d

)
...(

U
[2]
(d,α1),1, . . . ,U

[2]
(d,α1),d

)
 =:


As2=1

...
As2=d



(3.25)

where the blocks are now indexed by s2 and each block is of dimension d× d2 with indices
α1 and α2. This can also be interpreted as a rank-3 tensor A[2] with elements

As2α1,α2
:= U(s2,α1),α2

. (3.26)

In TN notation, this is represented by an object with three legs

Asiαi−1,αi = , Asi ∗αi−1,αi = (3.27)

where the �physical� index, i.e. the one enumerating the local quantum states, is taken
to be the vertical leg. For the complex conjugate of the tensor, the physical index leg is
drawn upside down. The reason for this will become clear later. Although a three-leg
object strictly speaking denotes a rank-3 tensor, from here on it will often be identi�ed
with a matrix As1 that depends on the site i and its physical state si.

The procedure of taking the product S[i−1]V [i−1]†, which is of dimension dm × dL−(i−1),
reshaping it to a matrix Ψ [i] of dimension dm+1 × dL−i, and applying the SVD can be
repeated until i = L is reached. In each step, a matrix U [i] of dimension dm+1 × dk is
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obtained, which can be reinterpreted as a rank-3 tensor A[i] of dimension d× dm × dk. A
short calculation reveals that for L even

m =

{
i− 1, if i ≤ L

2 + 1

L− (i− 1), if i > L
2 + 1

and k =

{
i, if i ≤ L

2

L− i, if i > L
2

(3.28)

and for L odd

m =

{
i− 1, if i ≤

⌈
L
2

⌉
L− (i− 1), if i >

⌊
L
2

⌋ and k =

{
i, if i ≤

⌈
L
2

⌉
L− i, if i >

⌊
L
2

⌋ (3.29)

where d e and b c denote rounding to the nearest higher and lower integer, respectively.
Fixing the physical index si of this tensor reduces it to a dm × dk matrix Asi . For these
matrices, the above dimension analysis yields the maximum dimensions

(1× d)(d× d2) · · · (dL/2−1 × dL/2)(dL/2 × dL/2−1) · · · (d2 × d)(d× 1) (3.30)

for even L and

(1× d)(d× d2) · · · (dL/2−1 × dL/2)(dL/2 × dL/2)(dL/2 × dL/2−1)(d2 × d)(d× 1) (3.31)

for odd L. From the SVD there are leftover matrices S[L] and V [L]†, both of dimension
1×1. Since V [L]† must be unitary, it must have absolute value 1. The non-negative number
S[L] is the norm of the state |ψ〉. If it is not 1, it can be reabsorbed into AsL along with
V [L]†.
Thus, one can now identify

cs1,...,sL = As1As2 · · ·AsL . (3.32)

This means that for each coe�cient cs1,...,sL , the physical indices on all the A[i] tensors are
�xed, leaving a product of L matrices. This already looks very much like the coe�cients
in Eq. (3.17), except for the trace. Note that in the construction described above, the
matrix indices α1 on As1 and αL+1 on AsL are �dummy� indices. They can only take the
value 1, i.e., As1 is a row vector and AsL is a column vector. Therefore, the matrix product
in Eq. (3.32) is a scalar, and the trace operation could be added without changing anything.

The MPS constructed in this way is called left-normalized, since by construction on every
lattice site i (except possibly the last), the matrices Asi ful�ll the relation∑

si

Asi †Asi = U [i]†U [i] = 1 ∀ i (< L) , (3.33)

i.e., the sum over Asi multiplied with its Hermitian conjugate from the left yields the
identity, hence left-normalized. However, this is not always true for multiplication of Asi

with Asi † from the right ∑
si

AsiAsi † = U [i]U [i]† 6= 1 , (3.34)

because for i > L
2 the matrix U [i] is no longer square and therefore not unitary. The

matrices AsL must account for the norm of the state, and therefore ful�ll Eq. (3.33) only
if |ψ〉 is normalized.
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To see that Eq. (3.33) implies normalization, consider the norm

〈ψ|ψ〉 =
∑

s1′ ,...,sL′

∑
s1,...,sL

c∗s1′ ,...,sL′ cs1,...,sL〈s1′ , . . . ,sL′ |s1, . . . ,sL〉 (3.35a)

=
∑

s1,...,sL

c∗s1,...,sLcs1,...,sL (3.35b)

=
∑

s1,...,sL

(AsL† · · ·As1†)(As1 · · ·AsL) (3.35c)

=
∑
sL

AsL† · · ·

(∑
s1

As1†As1

)
︸ ︷︷ ︸

=1

· · ·AsL = 1 (3.35d)

which relies on the fact that for scalars, complex conjugation equals Hermitian conjuga-
tion, and (AB)† = B†A†. An MPS where all Asi are left normalized is referred to as
left-canonical.

While the SVD construction starting from the left is an obvious choice, it is not the only
possibility. A SVD construction starting from the right side is just as valid. Here the
matrices U [i] and V [i]† interchange their roles, and the matrix Ψ [i] is formed by reshaping
the product U [i]S[i] accordingly. This results in di�erent tensors Ã[i] of the same dimensions
as A[i] which still describe the expansion coe�cients as

cs1,...,sL = Ãs1 · · · ÃsL−1ÃsL . (3.36)

By construction, these Ãsi are then right-normalized∑
si

ÃsiÃsi † = V [i]†V [i] = 1 ∀ i (> 1) (3.37)

i.e. the sum over the matrices Asi multiplied from the right by their Hermitian conjugates
yields the identity. Reversing the order of c∗ and c, the argument in Eqs. (3.35) also holds
true for this type of matrix assuming a normalized state. A MPS where all Asi are right
normalized is called right canonical accordingly.

Mixed-canonical states, where the SVD construction is carried out from both ends, are a
less obvious but sometimes useful choice. In this case, there is again a �left over� matrix of
singular values S[j] at the point where the left and right canonical parts meet. Then, the
norm is given by

〈ψ|ψ〉 = Tr(〈ψ|ψ〉) (3.38a)

= Tr

[ ∑
s1,...,sL

(ÃsL† · · · Ãsj+1†S[j]†Asj−1† · · ·As1†)(As1 · · ·Asj−1S[j]Ãsj+1 · · · ÃsL)

]
(3.38b)

= Tr

[ ∑
s1,...,sL

S[j]†
(
Asj−1† · · ·As1†As1 · · ·Asj−1

)
S[j]

(
Ãsj+1 · · · ÃsLÃsL† · · · Ãsj+1†

)]
(3.38c)

= Tr
[
S[j]†1S[j]1

]
(3.38d)

= Tr((S[j])2) (3.38e)
!

= 1 . (3.38f)
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This relates back to the Schmidt decomposition and the requirement of Eq. (3.12).

A fourth way to represent a MPS will be referred to as composite canonical representa-
tion. In the construction of left and right canonical MPS by SVD, the matrix of Schmidt
coe�cients S[i] is multiplied into either V [i]† or U [i] in each step, and then the product
is reshaped for the next step. However, one can just keep the matrices S[i] as separate
entities which can be associated with the bonds. The remaining rank-3 tensors Γ[i] are
then said to �live� on the sites only. In TN notation, a composite canonical MPS has the
following form:

|ψ〉 =

Γ s1 S[1] Γ s2 S[2] · · · · · · S[L−1] Γ sL

. (3.39)

This representation is especially useful in the context of in�nite systems and will be dis-
cussed in more detail in Sec. 3.6.4.

All these di�erent MPS representations derived from the same coe�cient vector show that
a MPS is not uniquely determined by the coe�cients cs1,...,sL . Generally, there are many
gauge degrees of freedom in the MPS representation. On every bond, an invertible matrix
X [i] can be introduced such that

cs1,...,sL = As1As2 · · ·AsL (3.40a)

= As1X [1](X [1])−1As2X [2](X [2])−1 · · ·X [L−1](X [L−1])−1AsL (3.40b)

= Ās1Ās2 · · · ĀsL , (3.40c)

where the transformed matrices Āsi are given by Āsi := (X [i−1])−1AsiX [i], and the missing
matrices at the the end are de�ned as X [−1] = X [L] = 1.

In TN notation, Eq. (3.32) is represented by

cs1,...,sL

∣∣∣
OBC

=

As1 As2 · · · AsL

(3.41)

The beauty of the TN notation is that if one draws what periodic boundary conditions
mean, namely a connection between the �rst and the last lattice site

cs1,...,sL

∣∣∣
PBC

=

As1 As2 · · · AsL

(3.42a)

= Tr(As1As2 · · ·AsL) , (3.42b)

it immediately translates into the correct mathematical description. The example in ta-
ble 3.1 shows that connecting the two legs of a matrix corresponds to taking the trace.
This means that Eq. (3.17) holds for both OBC and PBC.
Note that the coe�cient vector cs1,...,sL can describe a state with either OBC or PBC,
therefore Eq. (3.32) technically holds for both cases, too. However, the distinct forms of
the matrices at the boundaries of the MPS description are inconvenient for PBCs.
For a periodic system, the lattice sites are all equivalent. This means that in this case a
description where all matrices Asi are of the same dimension is much more practical. An
exact construction from a given coe�cient vector cs1,...,sL is not as straight forward in this
case.
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However, the SVD construction from a coe�cient vector only serves to show that the MPS
representation is indeed a valid formulation of quantum states. It does not represent, how
computations in the MPS framework are done because generally the cs1,...,sL are either
unknown or cannot be represented on a classical computer, or both.

So far, only exact transformations were performed, so there is no gain compared to ex-
act diagonalization. The true power of the method lies in the possibility to restrict the
bond dimension, i.e. the matrix size, to a manageable number D � dL/2. Especially
for PBC, it is clear that this systematically a�ects all lattice sites in the same way. In
the case of OBC, at least all sites in the bulk, i.e., with matrix dimension larger than
D, are a�ected in the same way. This systematic truncation allows DMRG and MPS cal-
culations on systems with several thousand sites in spite of their humongous Hilbert spaces.

3.5 Matrix product operators

Having de�ned MPSs as a way to handle quantum mechanical wavefunctions which is suited
well for variational algorithms, a matching de�nition for operators is needed to carry out
computations. This matching de�nition is that of matrix product operators (MPOs). In
general, the framework of MPOs for �nite systems is very powerful, but also rather in-
volved. For a more detailed introduction to the topic, the reader is referred to Ref. [23].

However, since the method described in this thesis aims at the thermodynamic limit, only
one class of operators needs to be discussed. This is the class of local operators which act
on a �nite and small number of sites n

Ô = Vi,...,i+nÔiÔi+1 · · · Ôi+n, with n ∈ O(D) , (3.43)

where each factor Ôi in the product acts on a single site, and Vi,...,i+n ∈ C can be a coupling
constant.
The Hamiltonians in Chapter 2 consist of this type of operator and also the observables of
interest are of this form.

In a discrete and �nite Hilbert space, a wavefunction can be described by the expansion
coe�cients with respect to a certain ONB cs1,...,sL . Similarly, an operator is described by
its matrix elements with respect to this ONB. Generically, a MPO can be expressed as a

product of rank-4 tensors W
s′i,si
αi−1αi

Ô =
∑

s′1,...,s
′
L

∑
s1,...,sL

W s′1,s1W s′2,s2 · · ·W s′L,sL |s′1, . . . s′L〉〈s1, . . . ,sL| , (3.44)

i.e., for �xed sets of physical indices {s′i} and {si}, the operator is represented as a product
of L matrices W s′i,si which are non-trivial to obtain.

However, for an operator that acts on a single site j, all tensors W[i] are identity tensors
except for the one at site j. On this site j, the matrices W s′j ,sj are of dimension 1× 1 and
are simply the matrix elements Os′j ,sj of the operator with respect to the local basis { |sj〉}
of site j.
Computing the matrix element of such a one-site MPO with respect to two MPSs |ψ〉 and
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|ψ̃〉 corresponds to evaluating the following TN

〈ψ̃|Ôj |ψ〉 = Ôjsj

s′j
. (3.45)

In the discussion of TNs such as the one in Eq. (3.45), it is often useful to put the result
under a trace operation. This does not change the result, because it is a scalar

Trz = z ∀ z ∈ C , (3.46)

but allows the use of the cyclic property of the trace to rearrange the involved matrix
products. It also allows the use of the following identity for the traces of two matrices A
and B

TrA · TrB = Tr(A⊗B) = Tr(B ⊗A) (3.47)

where ⊗ denotes the Kronecker product, i.e., the tensor product for matrices.

Using Eqs. (3.46) and (3.47), Eq. (3.45) translates to

〈ψ̃|Ôi |ψ〉 = Tr

(∑
s1

Ãs1∗ ⊗As1
)
· · ·

∑
si,s′i

Os′i,siÃ
s′i∗ ⊗Asi

 · · ·(∑
sL

ÃsL∗ ⊗AsL
) .

(3.48)
This also shows that the proper product to use when contracting physical indices is the
Kronecker product ⊗. It is easy to see that for the matrix element of an operator which
consists of a product of local operators, for instance

Ôi = Ŝxi Ŝ
x
i+1 (3.49)

this scheme straight forwardly extends to

〈ψ̃|Ô |ψ〉 = Ŝxi Ŝxi+1 (3.50a)

= Tr

(∑
s1

Ãs1∗ ⊗As1
)
· · ·

∑
si,s′i

Sxs′i,si
Ãs
′
i∗ ⊗Asi


×

 ∑
si+1,s′i+1

Sxsi+1′ ,si+1
Ãs
′
i+1∗ ⊗Asi+1

 · · ·(∑
sL

ÃsL∗ ⊗AsL
) .

(3.50b)

This �trick� of using the trace operation to write a matrix element or overlap as a matrix
product of Kronecker products is especially useful in the thermodynamic limit, as will be
shown in the next section.

Note that the �hat symbol� is used to distinguish operators Ô from matrices for conceptual
reasons. On �nite, discrete Hilbert spaces, operators always have a matrix representation,
so that the term operator is mostly interchangeable with operator matrix. The elements
of an operator matrix are denoted using the same letter which is used for the operator
without the hat symbol.
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3.6 The thermodynamic limit: iMPS

So far, MPSs for �nite systems have been discussed, since they arise intuitively from
the introduction of the concept by SVD of the coe�cient vector cs1,...,sL . This section
describes how the idea can be extended to the thermodynamic limit and which restrictions
this extension imposes on the kind of systems that can be treated.

3.6.1 Limitations of iMPS

Starting from the MPS formulation for PBC with matrices of the same dimension for every
site, the extension to the thermodynamic limit is quite straight forward. One can simply
view the MPS as consisting of an in�nite number of A-tensors, one for each lattice site.
Obviously, in general an in�nite number of tensors cannot be treated numerically. But by
sacri�cing some of the universality of the MPS ansatz, the thermodynamic limit can be
treated very e�ciently.
Speci�cally, the �rst restriction which must be made is that to short ranged Hamiltonians.
This means any Hamiltonian, that couples lattice sites only over �nite distances1. This is
in contrast to �nite systems, where long-range interactions such as the Coulomb interaction
can also be treated [79]. While this is a substantial limitation in theory, most real many
body systems exhibit short-ranged interactions due to shielding e�ects. The class of local
Hamiltonians therefore holds a host of models that are both close to experiment and show
all kinds of interesting physical properties.
Secondly, the approach is limited to translation invariant systems. This restriction is not
very severe, since usually, when taking the thermodynamic limit, one is interested in the
bulk properties of periodic structures. It also does not mean that only one-site periodicity
can be treated. Any �nite size unit cell is possible in principle, as long as it is repeated
periodically. The physical dimension d of the tensor A describing each unit cell then grows
as the size of the unit cell increases.
The �nal restriction and the key to the treatment of the thermodynamic limit is the
assumption that the ground state does not spontaneously break translation symmetry, i.e.,
all unit cells can be described by the same A-tensor. This type of MPS is referred to as
uniform matrix product state (uMPS). In many cases this is true. However, this implies
that the boundary conditions are irrelevant. This condition is ful�lled if the ground state
shows �nite or exponentially decaying correlations. Then, there are only a few sites that
are in�uenced by boundary e�ects and the bulk properties are independent of them.
As a counter example, one think of a spin chain that shows Peierls type behavior, i.e.,
spontaneous dimerization. The dimers can form on the odd bonds or on the even bonds,
making the sites distinguishable between even and odd. The ground state which the system
actually chooses may very well depend on the boundary conditions. In the bulk, a lattice
translation by one site (which is half a dimer) transforms one ground state into the other.
Therefore, a uMPS still captures the bulk properties of either ground state realization.
However, it does not generally account for the twofold degeneracy. But this degeneracy is
of great physical importance, as it means the lowest excitations are domain walls between
sections of the two di�erent ground states, and they cannot be created by a local opera-
tion. That being said, some types of ground state degeneracy can still be handled with
iMPS. An explicit ansatz for domain wall excitations can be made if the ground state is
known to be degenerate, and di�erent realizations can be distinguished by an observable,
for instance the magnetization in the ordered phase of the TFIM. See App. A.5 for details.

1In practice, this also includes exponentially decaying interactions, as the coupling strength then quickly
approaches machine precision as function of site distance.
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3.6.2 De�nitions: uMPS and iMPS

If the conditions outlined in 3.6.1 are met, a new ansatz for the uniform matrix product
state (uMPS) can be made

|ψ〉 =
∑

s1,...,sL

Tr (QAs1 · · ·AsL) |s1, . . . ,sL〉 . (3.51)

This ansatz still contains in�nitely many A tensors of equal size. The handling of the
boundary conditions is moved to the boundary operator Q, and the trace is required to
make the coe�cients scalar. For PBC, the boundary operator is just the D ×D identity
matrix, as can readily be seen from Eq. (3.42). In the case of OBC, the actual form of
Q is less clear. For the moment, assume that it contains information on all lattice sites
which are in�uenced by boundary e�ects. Since these sites di�er from the bulk in their
properties, they cannot be adequately described by the uMPS tensor. As discussed above
there are, however, only a �nite number of these sites, and it will be shown that the speci�c
form of Q does not matter in the TDL.

The key to handling uMPS is the idea of transfer matrices, which is famous at least since
L. Onsager's solution of the 2D Ising model [80]. To see how transfer matrices arise in the
context of uMPS, consider the norm of the state in Eq. (3.51)

〈ψ|ψ〉 =
∑

s1,...,sL, s
′
1,...,s

′
L

Tr
(
Q∗As

′
1∗ · · ·As′L∗

)
Tr (QAs1 · · ·AsL) 〈s′1, . . . ,s′L|s1, . . . ,sL〉︸ ︷︷ ︸

δs′1s1
··· δs′

L
sL

(3.52a)

= Tr

[
(Q∗ ⊗Q)

(∑
s

As1∗ ⊗As1
)
· · ·

(∑
s

AsL∗ ⊗AsL
)]

. (3.52b)

Since the A tensors are the same on all lattice sites, this can be written concisely as

〈ψ|ψ〉 = Tr(Q̃TL) (3.53)

where Q̃ := Q∗ ⊗Q and the object T , which is a matrix of dimension D2 ×D2, is de�ned
by

T :=
∑
s

As∗ ⊗As = . (3.54)

It is called the transfer matrix or transfer operator. The name derives from the notion
that an application of T which corresponds to one �rung� in a TN as shown in Eq. (3.45)
transfers the properties of the TN �ladder� by one lattice site to the left or to the right.

To further analyze the expression in Eq. (3.53), T is decomposed into the spectral repre-
sentation

T =
∑
i

Λi ~vi~u
†
i (3.55)

where Λi are the eigenvalues and ~ui and ~vi the corresponding left and right eigenvectors
of T ful�lling the following equations

~u†iT = Λi~u
†
i and T~vi = Λi~vi . (3.56)

Generally, T is not Hermitian and thus ~ui 6= ~vi. The left and right eigenvectors are still
pairwise orthogonal though, and are assumed to be normalized, i.e.,

~u†i~vj = ~v†j~ui = δij . (3.57)
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The matrix T not being Hermitian also means that the eigenvalues are not necessarily real.
For the complete spectral representation to exist, T must be diagonalizable, which is not
guaranteed. However, this is not necessary. If T is not diagonalizable, a generalized spectral
representation can be constructed using generalized eigenvectors, and the arguments below
still hold. The only assumption that must be made is that the largest modulus eigenvalue
(EV) Λ0 of T is real, positive and unique, i.e.,

Λ0 ∈ R+, |Λi| < Λ0 ∀ i 6= 0 . (3.58)

The dyadic products ~vi~u
†
i =: Pi are projectors onto the eigenspace of T corresponding to

eigenvalue Λi. As such, they have the projector properties P 2
i = Pi and PiPj = 0 for j 6= i.

From these follows that
TL =

∑
i

ΛLi Pi =
∑
i

ΛLi ~vi~u
†
i . (3.59)

Therefore, for the norm in Eq. (3.53) to be well-de�ned in the thermodynamic limit L→
∞, two conditions must be met. The �rst is stated in (3.58). In this case, Λ0 can be
renormalized to 1 by setting

As → As√
Λ0

⇒ T → T

Λ0
(3.60)

so that
lim
L→∞

ΛL0 = 1 (3.61)

which is the only �nite and well-de�ned value for this limit. This condition is ful�lled by
all models considered in this thesis, and it is therefore assumed to hold. However, there is
no rigorous mathematical statement that ensures that this is always possible. For a more
detailed discussion, see Appendix A.4.1.

Assuming (3.58) and subsequently Eq. (3.61), the limit of Eq. (3.59) is

lim
L→∞

TL = ~v0~u
†
0 (3.62)

since all other eigenvalues Λi>0 are of modulus smaller than unity and thus

lim
L→∞

(
Λi
Λ0

)L
= lim

L→∞
ΛLi = 0 ∀ i > 0 . (3.63)

Then the norm takes the form

〈ψ|ψ〉 = Tr(Q̃~v0~u
†
0) = ~u †0 Q̃~v0 (3.64)

which leads to the second condition, namely that the product ν := ~u†0Q̃~v0 must be �nite
and positive. This allows the rescaling

Q→ Q√
ν

⇒ Q̃→ Q̃

ν
(3.65)

which normalizes |ψ〉. For PBC, Q̃ = 1 so this is trivially true, and the state |ψ〉 is also
normalized given Λ0 = 1. For general boundary conditions, some more work is required.

The Kronecker product As∗ ⊗As has the block matrix structure of Eq. (3.9), with D ×D
blocks of size D ×D, where each block Tαβ is given by

∑
sA

s∗
αβA

s. Since the eigenvectors
~u0 and ~v0 are of dimension D2, they can be interpreted as vectorizations of D×D matrices
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u and v. Using the double index scheme of Eq. (3.9), an element of the matrix-vector
product T~v is given by

(T~v)(α,α′) =
∑
β,β′

T(α,α′)(β,β′)~v(β,β′) (3.66a)

=
∑
s

∑
β,β′

As∗αβAα′β′vβ′β (3.66b)

=
∑
s

∑
β,β′

Aα′β′vβ′βA
s†
βα (3.66c)

=
∑
s

(AsvAs†)α′α . (3.66d)

This allows to de�ne T as a superoperator acting on matrices with

T [v] :=
∑
s

AsvAs† . (3.67)

The application of T as a superoperator to a D×D matrix v will be denoted with square
brackets.
Especially in numerical application, using the matrix form of ~v0 and ~u0 is advantageous,
since the matrix-vector product T~v0 takes O(D4) operations, whereas the application
scheme in Eq. (3.67) takes O(2dD3) operations. This is a clear speedup, if 2d < D.
Since the local Hilbert space dimension d is usually much smaller than the bond dimen-
sion, this is mostly the case. At very low bond dimensions computations are very fast, so
that a possible small loss in performance is negligible.
Using Eq. (3.67) and the de�nition of the matrix scalar product Eq. (3.10), the application
of the Hermitian adjoined superoperator T † can easily be de�ned

(u,T [v])
!

= (T †[u],v) (3.68a)

Tr

(
u†

(∑
s

AsvAs†

))
=

∑
s

Tr
(
u†AsvAs†

)
(3.68b)

=
∑
s

Tr
(
As†u†Asv

)
(3.68c)

= Tr

(∑
s

As†uAs

)†
v

 (3.68d)

⇒ T †[u] =
∑
s

As†uAs . (3.68e)

Interpreted as D×D matrices, the eigenvectors v0 and u0 are Hermitian and can be chosen
such that they are positive de�nite, see App. A.4.2 for a proof. This choice is assumed
from here on and, together with the normalization constraint (u0,v0) = 1, uniquely de�nes
the eigenmatrices.
In the remainder the index 0 is dropped, and the matrices are labeled u and v for conve-
nience, and are referred to as boundary matrices, as they describe the boundaries of the
iMPS tensor networks. See App. A.4.3 for a discussion of TN boundaries in the TDL. They
are not to be confused with the boundary operator Q, which describes the boundaries (or
lack thereof) of the physical system.
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Let {vα} and {uβ} be the sets of EVs of v and u, respectively, and {~α} and {~β} the sets
of the corresponding eigenvectors. Since u and v are positive de�nite, the 2-form

(A,B)vu := Tr

(∑
s

u†BsvAs†

)
= ~u†

(∑
s

As∗ ⊗Bs

)
~v (3.69)

then de�nes a scalar product for two tensors A and B. Sesqui-linearity, i.e. linearity in the
second and anti-linearity in the �rst argument, is immediately apparent from the linearity
of the trace and the matrix product. Positive semi-de�niteness follows from

(A,A)vu = Tr

(∑
s

u†AsvAs†

)
(3.70a)

= Tr

∑
s

∑
α,β

uβ~β~β
†Asvα~α~α

†As†

 (3.70b)

= Tr

∑
s

∑
α,β

uβvα~β
†As~α~α†As†~β

 (3.70c)

=
∑
s

∑
αβ

vαuβ|~β†As~α|2 (3.70d)

≥ 0 (3.70e)

with equality if and only if A is the null-tensor.
The norm as given in Eq. (3.64) is a special case of the scalar product with A = B = Q,
where the boundary operator Q can be seen as a rank-3 tensor with a physical �dummy�
index, i.e. the sum over s only contains one term. Therefore, the renormalization Eq. (3.65)
is always possible. Moreover, the actual form of Q and therefore the boundary conditions
it describes do not matter. This can be understood from a physical point of view, since it is
expected that the bulk of an in�nite system is not in�uenced by boundary e�ects. Again,
there are systems for which this is not true. Because the ansatz inherently renormalizes
any boundary e�ects, such systems cannot be adequately described by this type of uMPS.
See App. A.5 for more details.

The sub-leading term in the spectral decomposition Eq. (3.55) is also of great importance,
as it determines the rate at which TL converges to ~v0~u

†
0. For the sake of simplicity, Λ1 will

be assumed to be unique; however, this is not a requirement and the following arguments
can be made just as well if there are multiple EVs of second-largest absolute value. The
prefactor in TL of the projector onto the eigenspace of Λ1 is given by(

Λ1

Λ0

)L
= ΛL1 ∝ |Λ1|L . (3.71)

Consider for instance a correlation function

G(`) := 〈ψ|Sx` Sx0 |ψ〉 (3.72a)

= ~u†

(∑
ss′

Sxss′A
s′∗ ⊗As

)
T `−1

(∑
ss′

Sxss′A
s′∗ ⊗As

)
~v (3.72b)

=: ~u†SxT `−1Sx~v . (3.72c)

In the TDL, this expression decomposes into the product of two scalars

G∞ := G(`→∞) = ~u†Sx~v · ~u†Sx~v = M2
x (3.73)
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namely the magnetization squared. For �nite `, the di�erence G(`)−G∞ is dominated by

G(`)−G∞ ≈ Λ`1 ~u
†
0S

x~v1 ~u
†
1S

x~v0 ∝ |Λ1|` . (3.74)

This shows that in the framework of iMPS, any correlation is always expanded in a series of
exponentials, the leading term of which is given by |Λ1|`. Therefore, a state with diverging
or even algebraic correlations can never be described exactly by a uMPS, which ties into the
requirement that the state must not be explicitly dependent on the boundary conditions.
By Eq. (3.74) the second largest EV Λ1 de�nes a correlation length [63]

ξT := − 1

ln |Λ1|
Λ0

, (3.75)

which de�nes the correlations that are described by the transfer operator T . Obviously, if
ξT is smaller than the physical correlation length ξ of, for instance, the ground state, then
the state cannot be exactly represented by an uMPS of the given bond dimension.

The states de�ned in Eq. (3.51) form the set of uniform iMPS (uMPS). In many cases,
they can be used to describe a ground state of a translation invariant system in the TDL.
Therefore, they form a subset of the iMPS class that holds all MPSs of given bond dimen-
sion for in�nite systems.
However, the goal is to derive an e�ective model of excitations that have particle-like prop-
erties, including a certain degree of localization. Such an excited state can clearly not
be a uMPS. The simplest generalization from uMPS to less restricted iMPS is replacing
the uniform tensor A by some other tensor B on a single site. This type of iMPS de-
scribes localized elementary excitations and is discussed in more detail in Sec. 5.1.1. Some
mathematical background is given in App. A.4.4.
In the following, the circle shape of Eq. (3.27) will be used to denote the uMPS ground
state tensor A, and a triangular shape

= B, = B∗ (3.76)

will be used to represent those other tensors inserted on single sites.

3.6.3 Operators in the thermodynamic limit

While the concept of uMPS is very e�cient in the sense that an in�nite system is described
by a single tensor, this e�ciency comes at a price. Most notably, there is no representation
of �the state� in memory. This means an expression like

|φ〉 = Ô |ψ〉 (3.77)

cannot be computed except in some very special cases. This also makes it very challenging,
in most cases even impossible, to de�ne powers of operators unless they act on a single site.

However, in practice, most quantities of interest are overlaps and especially matrix elements
of local operators that act on a �nite number of sites, or sums thereof. Both can be
computed in the iMPS framework. The corresponding TNs take the following form (cf.
Sec. 3.6.4 and App. A.4.3)

〈ψ′|Ô |ψ〉 = , (3.78)
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with

= u†, = v, = T, (3.79)

and the triangular shape represents some tensor B other than A. The symbol denotes
that an arbitrary number of transfer operators T are left out. Since u and v are eigenma-
trices of T to the eigenvalue Λ0 = 1, it is easy to see that any number of T -�rungs� on both
ends of the ladder do not change anything, and the TN collapses to

〈ψ′|Ô |ψ〉 = . (3.80)

The rightmost rung in the TN above is an object very similar to T , but with the bra-side
tensor being B instead of A. The right end of the TN is therefore given by

=

(∑
s

Bs∗ ⊗As
)
~v . (3.81)

Equation (3.50) then shows that rungs containing local operators naturally lead to

=

∑
s,s′

Os′sA
s′∗ ⊗Bs

~v and (3.82a)

=

∑
s,s′

O†s′s(A
s′∗)† ⊗Bs†

 ~u

† . (3.82b)

The calculation in (3.66) readily extends to rungs with operators, and the application of
the Hermitian adjoined operator can be de�ned analogous to Eq. (3.68).
This yields the following schemes for the application of local operators to D×D boundary
matrices, which generalize Eqs. (3.67) and (3.68)

Ô(A;B)[v] :=
∑
s,s′

Os′sB
svAs

′† (3.83a)

Ô† (A;B)[u] :=
∑
s,s′

O†s′sA
s′†uBs . (3.83b)

Therefore, in the superoperator picture, Eq. (3.81) can also be written as∑
s

AsvBs† =
∑
s′,s

δs′sA
svBs′† = 1(B;A)[v] . (3.84)

Consequentially, the transfer operator T can also be interpreted as an identity operator on
the given site.
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3.6.4 Canonical gauge of uMPS

The result of the ground state search algorithms described in section 4.1 is a uniform iMPS
(uMPS). By construction it does not have a canonical form. Note that in the context of
uMPS, the term canonical is used synonymously with the term normalized as de�ned in
section 3.4, since there is only one tensor. This means a left-canonical uMPS ful�lls the
condition ∑

s

As†` A
s
` = 1 , (3.85)

while for a right-canonical uMPS the equation∑
s

AsrA
s†
r = 1 (3.86)

holds.

Having a uMPS in a canonical form has certain advantages. In the left canonical form, the
boundary matrix u is the D ×D identity, while v is a real diagonal matrix with positive
elements and unit trace. It is also identical to the density matrix ρ appearing in DMRG
calculations. In the right-canonical form, the forms of u and v are reversed. Throughout
this thesis the left canonical form will be used.
In order to bring the uMPS matrices As into canonical form an algorithm presented in
Ref. [81] is used. Recall the composite canonical representation of a MPS introduced in
section 3.4

cσ1,σ2,...,σN = Tr
(
λ[1] Γ[1] λ[2] λ[L]

. . .

Γ[L] λ[L+1]

)
, (3.87)

where the Γ[i] are rank-3 tensors that live on the lattice sites and the λ[i] are the Schmidt
coe�cients on the bonds. Note that either λ[1] or λ[L+1] is just the identity in some gauge of
Γ, as can be seen by assuming periodic boundary conditions, where there must be exactly
one bond matrix on the bond L + 1 ↔ 1. It is introduced only to emphasize that the
situation is indeed symmetric and the choices of left or right canonical representation are
equivalent. The left and right canonical forms are obtained as follows

As` = λΓ s (3.88)

Asr = Γ sλ . (3.89)

From this representation, two transfer matrices can be de�ned, which occur when tensor
networks involving such a state are contracted

Tr :=

Γ

Γ∗

λ

λ∗

=
∑
s

As∗r ⊗Asr (3.90a)

T` :=

λ

λ∗

Γ

Γ∗

=
∑
s

As∗` ⊗As` . (3.90b)
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If {Γ,λ} is a canonical iMPS representation, the identity is a left or right eigenvector of T`
and Tr, respectively

Tr1 = Λ1 (3.91a)

1†T` = Λ1† (3.91b)

where 1 is to be understood as the vectorization of the D × D identity matrix and nor-
malization implies the corresponding eigenvalue Λ must be 1.

To get a canonical composite representation from a given uMPS As, one must �rst de-
compose it into some {Γ̃,λ̃} by SVD and then bring this newly found representation into
canonical form. To carry out the SVD, all As are put into a single dD ×D matrix A (cf.
matrix U in Sec. 3.4). Then

A =

A
1

...
Ad

 = Uλ̃V † =

U
1

...
Ud

 λ̃V † , (3.92)

where U is a dD×D column-orthogonal matrix, λ̃ is the D×D diagonal matrix of singular
values, and V † is a D ×D unitary matrix. The site tensor Γ̃ is obtained by setting

Γ̃ s := V †U s (3.93)

since

Tr(As · · ·As) = Tr(U sλ̃V † · · ·U sλ̃V †) = Tr(λ̃V †U s · · · λ̃V †U s) (3.94a)

= Tr(λ̃Γ̃ s · · · λ̃Γ̃ s) = Tr(Γ̃ sλ̃ · · · Γ̃ sλ̃) . (3.94b)

Now Γ̃ needs to be transformed such that the identity is an eigenvector of Tr and T`,
respectively. To this end, the left eigenvector ~̃u` of T̃` and the right eigenvector ~̃vr of T̃r
corresponding to the largest magnitude eigenvalue Λ are computed. Reinterpreted asD×D
matrices, ~̃u` and ~̃vr are then decomposed into their respective eigenbasis and eigenvalues

ṽr = M
√
Dr

√
DrM

† = XX† (3.95a)

ũ` = W
√
D`

√
D`W

† = Y †Y , (3.95b)

where the matrices of eigenvectors M and W are unitary, since u` and vr are hermitian
and positive de�nite. The matrices X and Y de�ned in Eq. (3.95) are therefore invertible.
Now, an identity matrix can be inserted on the bonds between each λ̃ and Γ̃ s yielding

λ̃ X X−1
Γ̃ s Y −1 Y λ̃ X

. (3.96)

With another SVD of the matrix product

Y λ̃X = UλV † (3.97)

where both U and V are square and therefore unitary the composite canonical represen-
tation is �nally obtained as

{Γ,λ}, with Γ s = V †X−1Γ̃sY −1U . (3.98)

The left and right canonical As follow according to Eq. (3.88).
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The fact that this representation is indeed canonical is not quite obvious. However, it can
be veri�ed by reversing all the transformations applied to achieve it. Here, it will only be
shown that As` = λΓ s is left-canonical, as this gauge is used throughout the thesis. First,
Eq. (3.97) implies that

λ = U †Y λ̃XV . (3.99)

Also, in the matrix interpretation of ũ`, being a left eigenvector of T̃` means

T †` [ũ`] =
∑
s

As†` ũ`A
s
` =

∑
s

Γ̃ s†λ̃†ũ`λ̃Γ̃
s = Λũ` . (3.100)

The condition for a left-canonical iMPS is (cf Eq. (3.85))

1
!

=
∑
s

As†` A
s
` (3.101a)

=
∑
s

(λV †X−1Γ̃ sY −1U)†λV †X−1Γ̃ sY −1U (3.101b)

=
∑
s

U †Y −1†Γ̃ s†X−1†V (V X†λ̃†Y †U)(U †Y λ̃XV )V †X−1Γ̃ sY −1U (3.101c)

= U †Y −1†

(∑
s

Γ̃ s†λ̃†ũ`λ̃Γ̃
s

)
︸ ︷︷ ︸

Λũ`=Y †Y

Y †U (3.101d)

= U †(Y †)−1Y †Y Y −1U (3.101e)

= 1 (3.101f)

is thus ful�lled, since U is unitary, (Y −1)† = (Y †)−1, and Γ̃ s can be scaled such that Λ = 1,
which is assumed to be the case. This also proves that the identity is a left eigenvector of
T` to the eigenvalue 1

1 =
∑
s

As†` A
s
` =

∑
s

As†` 1A
s
` = T †` [1] (3.102)

which is true for any left-canonical uMPS. That Asr is right-canonical can be shown anal-
ogously.

3.7 Chapter summary

In this chapter, the framework of matrix product state (MPS) was introduced. Its origins
in the DMRG were discussed, and why subsequently MPS are a very powerful method for
1D systems.
The extension from �nite systems to the thermodynamic limit was discussed in some detail,
because it is the foundation of the presented method. The special class of uniform matrix
product state (uMPS) was introduced, which is well-suited to describe the ground states
of translation invariant systems, if translation symmetry is not broken spontaneously. It
was shown how transfer matrices arise from the use of uMPS and how they allow for very
e�cient treatment of the thermodynamic limit. Some of the mathematical details were left
out and the inclined reader is referred to the respective appendices.

In the next chapter, an iterative algorithm to �nd an approximative ground state uMPS
is presented, and some results for ground state properties of the TFIM and FMHC are
provided.





Chapter 4

Ground state properties

Give me a place to stand, and I shall move the world.

Archimedes

4.1 Ground state search

Finding the best possible ground state approximation is a crucial step in the process of
deriving the e�ective model. If an exact iMPS representation of the ground state exists
at �nite bond dimension D (as it is the case e.g. for the AKLT model, [82, 21, 23]), it is
obviously also an exact eigenstate of the Hamiltonian. In iMPS language this means that
the boundary matrices u and v are eigenmatrices of the Hamiltonian MPO. However, if
the ground state is known only approximately, this is not the case. Therefore, an erroneous
matrix element of the Hamiltonian appears, that couples the ground state to excited states

η := 〈j|H |GS〉 6= 0 . (4.1)

This error fundamentally limits the accuracy that can be reached in any subsequent steps.
This kind of error is the smaller, the closer the approximation A is to the true ground state.

4.1.1 Iterative search algorithm

This section describes the algorithm used to obtain the results presented in this thesis.
It has been featured in my Master's thesis [64] and in Ref. [65]. It is reiterated here for
completeness and because it constitutes the basis of the description of excited states in
chapter 5.

As mentioned above, a conditio sine qua non for the presented method is translation
invariance. In a translation invariant system, the global Hamiltonian H is a sum of sub-
Hamiltonians hi

H =
∑
i

hi (4.2)

where the summands hi describe the physics of site i and its coupling to the rest of the
lattice. The hi are identical but for the site index i1. The second prerequisite is that hi
couples only a �nite number of sites n. Therefore, hi will be referred to as local Hamilto-
nian from here on.

1A �site� can also be a unit cell consisting of multiple physical lattice sites, e.g. in a ladder system.
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Under the assumption that the ground state is a uMPS, �nding it is a variational problem
in the elements of A. Starting from the Rayleigh-Ritz equation

E0 ≤
〈ψ(A)|H |ψ(A)〉
〈ψ(A)|ψ(A)〉

(4.3)

the objective is to �nd a uMPS tensor A that minimizes the energy, or rather the energy
per lattice site ε, as much as possible. As described in Sec. 3.6, computing the energy
expectation value 〈ψ(A)|H |ψ(A)〉 and the norm 〈ψ(A)|ψ(A)〉 in Eq. (4.3) requires the (at
least partial) diagonalization of the transfer operator T . The energy ε is thus a highly
non-linear function of the elements in A.
As such, any generic multidimensional minimization scheme can be used to minimize it.
Examples are simulated annealing [83] or the conjugate direction method. More speci�c
methods to obtain a uMPS ground state approximation include imaginary time evolution
(iTEBD) [84], other algorithms based on the time-dependent variational principle [85], or
the recently proposed VUMPS algorithm [86].

In the following, an iterative algorithm developed in [64] is presented, which is inspired by
DMRG and already makes use of many of the techniques used in describing excitations.
The basic idea is to keep the uMPS tensor A everywhere, but at one lattice site that is
labeled site 0. On this site, the elements of the local tensor B are varied to reduce the
energy. The newly found B is then adopted as new guess for A until convergence is reached,
i.e.,

|E(B)− E(A)| < θ (4.4)

holds for a tolerance parameter θ. The optimal value for θ would be machine precision,
but for higher bond dimensions and close to criticality this needs to be relaxed in order
to achieve convergence in reasonable time. Typical values for D > 10 are 10−8 to 10−6, in
units of the system's energy scale.
Since the ground state energy is extensive, it diverges in the TDL. Equation (4.3) is
therefore reformulated as function of A and B as

0 ≤ 〈ψ(A,B)|(H − E0(A)) |ψ(A,B)〉
〈ψ(A,B)|ψ(A,B)〉

=
∑
i

〈ψ(A,B)|(hi − ε0(A)) |ψ(A,B)〉
〈ψ(A,B)|ψ(A,B)〉

, (4.5)

where in each iteration ε0(A) is the current estimate for the ground state energy per lattice
site. The tensor B, which is varied to lower the energy is placed at site 0. There are three
types of matrix elements that occur in Eq. (4.5), depending on where hi acts relatively to
the B tensors. The respective TNs are of the forms

〈hi<−n〉(A,B) = hi (4.6a)

〈hi=−n,...,0〉(A,B) = hi (4.6b)

〈hi>0〉(A,B) = hi , (4.6c)

where again the symbol denotes that a number of transfer operator rungs is left out.
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The TN for the norm is simply the TN representation of the scalar product Eq. (3.69)

〈ψ(A,B)|ψ(A,B)〉 = . (4.7)

Each of the TNs in Eq. (4.6) can be written as a 2-form in B

〈ψ(A,B)|hi − ε0(A) |ψ(A,B)〉 = vec(B)†M [i]vec(B) , (4.8)

and the same holds for the normalization constraint Eq. (4.7)

〈ψ(A,B)|ψ(A,B)〉 = vec(B)†Nvec(B) =
∑
s

Tr(u†BsvBs†) . (4.9)

The vectorization of a rank-3 iMPS tensor is de�ned by stacking the vectorizations of the
matrices Bs for each local physical state on top of each other, i.e.,

~B = vec(B) :=

vec(B1)
...

vec(Bd)

 =


~B1

...
~Bd

 . (4.10)

This adds another block level to the indexing scheme in Eq. (3.5), and can be expressed
by a triple index

(~B)(s,α,α′) = Bs
α′α . (4.11)

To understand the structure of the matricesM [i] and N from Eqs. (4.8) and (4.9), we start
with the expression for the normalization constraint∑

s

Tr(u†BsvBs†) =
∑
s

∑
α,β,µ,ν

u†αβB
s
βµvµνB

s†
να (4.12a)

=
∑
s,s′

δs′s
∑

α,β,µ,ν

Bs′∗
αν u

†
αβv

T
νµB

s
βµ (4.12b)

=
∑
s,s′

∑
α,β,µ,ν

~B†(s′,ν,α)δs′sv
T
νµu
†
αβ
~B(s,µ,β) (4.12c)

=
∑
s,s′

∑
α,β,µ,ν

~B†(s′,ν,α)N(s′,ν,α),(s,µ,β)
~B(s,µ,β) (4.12d)

= ~B†N~B . (4.12e)

Comparison to Eq. (3.9) reveals that the matrix N is given by the Kronecker product

N = 1d ⊗ vT ⊗ u† , (4.13)

where vT is the transpose of v. The d× d identity was introduced in (4.12b) to obtain the
structure of a vector-matrix-vector product in a d ·D2 dimensional vector space.
By inspecting the TNs, one can easily see that the matrices M [i] in Eqs. (4.6a) and (4.6c)
are of the same structure as N . The only di�erence lies in the boundary matrices used to
build them. For i < −n, the left boundary matrix is of a di�erent form

uie� := (T †)|i−n|[h
† (A;A)
i [u]] . (4.14)

Accordingly, for i > 0 the right boundary matrix has the form

vie� := T i−1[h
(A;A)
i [v]] . (4.15)
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Theoretically, the index i runs from −∞ to∞. However, as shown in Sec. 3.6.2, the matrix
ve� converges to ε0 · v as |Λ1|i−1, since for large i

T i−1Hi~v ≈ (~v~u† + Λi−1
1 ~v1~u

†
1)Hi~v (4.16a)

= ~v(~u†Hi~v) + Λi−1
1 ~v1(~u†1Hi~v) (4.16b)

= ε0~v +O(Λi−1
1 ) , (4.16c)

where Hi is a D2 ×D2 operator matrix de�ned analogous to Sx in Eq. (3.72). Note that
ε0 is just the expectation value of hi in the current ground state estimate A, given by

ε0 = 〈ψ(A)|hi |ψ(A)〉 = ~u†Hi~v =
(
u, h

(A;A)
i [v]

)
, (4.17)

where (·, ·) denotes the matrix scalar product de�ned in Eq. (3.10).
The same also holds true for the right boundary matrix ue�. Therefore, in numerics, the
sum over all lattice sites i can be cut once |Λ1|i is su�ciently small. This corresponds to
the distance between hi and B being so large that they do not �see� each other within the
limits of the intrinsic correlation length ξT of the uMPS A. In order for the sum to have
a �nite value, or in the numerical case, to be independent from the cuto�, each matrix
element has to be corrected by

ε0〈ψ(A,B)|ψ(A,B)〉 = ε0~B
†N~B (4.18)

as stated in Eq. (4.5). This can be achieved by setting

uie� → uie� − ε0u or vie� → vie� − ε0v , (4.19)

respectively, since the Kronecker product is linear in both arguments.
This leaves to show how to compute the matrix M [i] for the case in Eq. (4.6b), i.e., where
one of the operators in hi acts on site 0, where A is exchanged for B. Assume the rather
general case where hi is a product of n = 3 local operators

hi = ÔiÔi+1Ôi+2 (4.20)

and acts on site i = −1, which is exactly the case shown in the TN in Eq. (4.6b). Then,
it is clear that there are now two e�ective boundary matrices

ue� = Ô
† (A;A)
i [u]− ε0u, ve� = Ô

(A;A)
i+2 [v] . (4.21)

The ground state energy correction can be subtracted from either boundary matrix. A
calculation analogous to Eq. (4.12) shows that

〈ψ(A,B)|hi − ε0(A) |ψ(A,B)〉

= Tr

u†e�
∑
s,s′

(Oi+1)s′sB
sve�B

s′†

 (4.22a)

=
∑
s,s′

∑
α,β,µ,ν

(Oi+1)s′s(u
†
e�)αβB

s
βµ(ve�)µνB

s′†
να (4.22b)

=
∑
s,s′

∑
α,β,µ,ν

(Bs′∗)αν(Oi+1)s′s
∑
s,s′

∑
α,β,µ,ν

Bs
βµ (4.22c)

=
∑
s,s′

∑
α,β,µ,ν

~B†(s′,ν,α)

(Oi+1)s′s
∑
s,s′

∑
α,β,µ,ν

 ~B(s,µ,β) (4.22d)

= ~B†M [−1]~B (4.22e)
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from which follows that
M [−1] = Oi+1 ⊗ vTe� ⊗ u

†
e� . (4.23)

This means, the matrix is built just as any otherM [i], but the d×d identity in the Kronecker
product is replaced by the matrix representation of the local operator Ôi+1 which acts on
site 0 where the tensor B sits.
In this way Eq. (4.5) can be expressed by

0 ≤
∑
i

~B†M [i]~B

~B†N~B
. (4.24)

De�ning M =
∑

iM
[i] and introducing the Lagrange parameter ε, this is a minimization

problem with constraint
f(~B) = ~B†M~B− ε~B†N~B . (4.25)

Taking the derivative of f(~B) with respect to ~B† and requiring it to be zero yields a
generalized eigenvalue problem (EVP)

M(H,A)~B = εN(A)~B . (4.26)

The iterative ground state search algorithm can now be formulated as summarized in table
4.1.
A �xed point in the iteration does not necessarily mean a global minimum in energy. It
is also possible that the algorithm only �nds a local minimum, or, since B0 = A can only
be achieved within some tolerance, gets stuck on a very slow descent towards the global
minimum. However, in practice the results are mostly very convincing.

Table 4.1: Ground state search algorithm

1 Make an initial guess for A
2 Construct the matrices M and N
3 Solve the generalized EVP Eq. (4.26)
4 If B0 = A within tolerance, stop
5 Otherwise, take the eigenvector ~B0 with lowest EV ε

as new A and go to step 2

4.1.2 Notes on implementation

In order for a generalized EVP such as the one in Eq. (4.26) to be solvable, the matrix N
must be Hermitian and positive de�nite. From the de�nition in Eq. (4.13) it is obvious that
this condition is ful�lled, since u and v are Hermitian and positive de�nite. A generalized
EVP can be solved by mapping it to a standard EVP. This is achieved by diagonalizing
the matrix N �rst

M~v = εN~v (4.27a)

⇔ M~v = εP †
√
DN

√
DNP~v︸ ︷︷ ︸
=:~v′

(4.27b)

⇔
√
DN

−1
PMP †

√
DN

−1︸ ︷︷ ︸
=:M ′

~v ′ = ε~v ′ (4.27c)

⇔ M ′~v ′ = ε~v ′ (4.27d)

⇒ ~v = P †
√
DN

−1
~v ′ (4.27e)
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where DN is the diagonal matrix of EVs of N and the unitary matrix P holds the eigen-
vectors.
As can be seen from the de�nition in Eq. (4.13), the matrix N is already diagonal in the
left-canonical gauge of A and consists of d ·D copies of the boundary matrix v. Each EV
is thus d · D-fold degenerate. As described in the previous chapter, in the left-canonical
gauge, v holds the squared singular values of A. Therefore, if the ground state is well
described by a uMPS, the EVs of N can become very small. This leads to large errors in
the computation of M ′, where M is multiplied by the inverse of

√
DN . To work around

this, the columns of P corresponding to such very small EVs are considered to span the
null-space (kernel) of N , which is then omitted from the transformation, which corresponds
to projecting M onto the non-zero eigenspace of N . Note that actually bringing A into
canonical form in each iteration is numerically more costly than diagonalizing N , and is
therefore not done in practice.

While the above procedure is easy to implement using standard LAPACK [87] routines,
it is still not the most numerically stable as the results in the following sections show.
Since only the lowest EV of the problem is relevant for the ground state search, a Krylov
subspace method like the Lanczos algorithm could also be used and may prove numerically
more stable.

Finally, to ensure that the energy decreases in each iteration, a linear minimization of the
function

ε0(ϕ) := ε0(cos(ϕ)A + sin(ϕ)B0) (4.28)

with respect to ϕ is performed.

If no better alternative is available, the initial guess for A is �lled with random numbers.
Signi�cantly faster convergence can often be achieved if the converged result for a slightly
di�erent set of system parameters is used as initial input. Close to criticality this approach
is less reliable, as the system properties may change rapidly over a comparably small
parameter interval. The converged result for close-by parameters can still be used as input,
but often does not prove to be better than a random guess. Also, close to a phase transition,
it may be necessary to relax the tolerances a bit to reach convergence in reasonable time.
Unfortunately, although the idea seems obvious, using the converged result for a smaller
bond dimensionD does not help. This is because of the truncation of very small eigenvalues
of the norm matrix N in Eq. (4.26). To make use of the result with, for instance, bond
dimension D − 1, the ground state tensor AD−1 needs to be padded with zeros. That
just increases the dimension of the null-space of N , which is projected out before M ′ is
diagonalized. Therefore, the convergence is indeed faster, but the accuracy of the result
does not improve, since the algorithm stays in the subspace of bond dimension D − 1.
Initializing the increased AD tensor with random numbers large enough not to fall into the
nullspace of N leads to a loss of the information in AD−1 within a few iterations and thus
defeats the purpose of the whole undertaking.
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4.2 Transfer operator

The �rst quantity of interest which can be obtained from the ground state uMPS tensor is
the correlation length ξT , determined by the second largest EV of T . For a pure product
state with bond dimension D = 1 it is by de�nition zero, wherefore this section only shows
results for the TFIM. Figure 4.1 compares ξT as de�ned in Eq. (3.75) to the analytical
expression for the physical correlation length Eq. (2.48) for various bond dimensions D.

10
-1

10
0

10
1

10
2

10
3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

co
rr

el
at

io
n

 l
en

g
th

  
[a

]

λ

|lnλ|
-1

ξT, D = 30

ξT, D = 20

ξT, D = 10

ξT, D = 5

ξT, D = 3

Ising
regime

strong field regime

Figure 4.1: Correlation length ξT of the TFIM uMPS results for di�erent bond di-
mensions D compared to the exact solution from Eq. (2.48).

It is apparent that the correlation length grows for increasing Ising interaction as expected.
Therefore, for λ → 1, increasingly large bond dimensions are required, or equivalently, a
�xed bond dimension leads to increasing deviation from the exact result. However, for
larger bond dimensions and small λ, the iMPS results are partially larger than the exact
value, and the curves show erratic oscillations. Close to criticality, the curves are much
smoother. This surprising �nding can easily be understood by considering the weak cou-
pling regime J → 0. When there is no Ising interaction at all, the ground state is simply
a product state where all spins point along the external �eld. This state can be exactly
described by a uMPS of bond dimension D = 1. Increasing the bond dimension beyond
D = 3 leads to numerical instability of the ground state search EVP Eq. (4.26) and sub-
sequently to larger errors. Since the ground state develops adiabatically for increasing
Ising coupling, small values of λ require only small bond dimensions. If D is much larger
than is required to describe the system to machine precision, this results in numerical noise.

Figure 4.2 shows the diagonal elements of the right boundary matrix v at λ = 0.1 for various
bond dimensions. As mentioned in Chap. 3, in the left-canonical gauge of a uMPS this
matrix is diagonal and holds the squares of the Schmidt coe�cients for a decomposition on
any bond. For D = 3, the smallest element is of the order 10−10, which can be considered
numerically stable. Also, this bond dimension is su�cient to describe the system very
accurately, which is con�rmed by the result for the ground state energy, cf. Fig. 4.5 below.
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Figure 4.2: Diagonal elements of the right boundary matrix v for the TFIM uMPS
at λ = 0.1 for di�erent bond dimensions D. The thin horizontal line marks
machine precision for 64-bit double computations.

The smallest value v55 = s2
5 for D = 5 is already of the order of the machine precision. For

D = 10, vii �rst shows the same decrease as for D = 3 and D = 5, then an area of reduced
decay. In the last elements there is a sudden drop far below machine precision, which is
rather surprising. Lastly, for D = 20, the decrease of vii becomes rather �at for i > 4. For
D = 30, no convergence could be reached within reasonable tolerance at this parameter
value.
The problem with entries in v close to or below machine precision is, that their signi�cand
(mantissa) can change arbitrarily due to rounding errors and thus has essentially no mean-
ing. However, to obtain the canonical form of a uMPS, the square root of v is computed
and inverted. In this process, the ill de�ned near-zero values can have a large impact on
the result.
This is seen in Fig. 4.1. All results for ξT computed with bond dimension D > 3 are larger
than the exact physical value. This corroborates the connection between very small ele-
ments in v and subsequently small EVs of the norm matrix N in Eq. (4.26), and unphysical
results.

Note that in Fig. 4.1 the exact solution is plotted for qualitative comparison, and the peaks
show up independently of it, as opposed to, for instance, the corresponding peaks in the
deviation of the ground state energy in Fig. 4.5. Therefore, the onset of numerical insta-
bility and subsequently parameter regions where a certain bond dimension is unsuitable
can be determined without an exact solution available.
Interestingly, for small bond dimensions the peak in the curves which indicates the critical
point is located at a parameter value λ < 1. This means that the phase transition is
not detected at the exact critical parameter value. However, with increasing D, the peak
position moves towards λ = 1.
In the Ising regime the deviation from the exact solution is much larger. The reason for this
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is probably as follows. The correlation length ξT plotted in Fig. 4.1 is determined from the
second largest EV Λ1 of the transfer operator T of a single ground state using Eq. (3.75).
However, the true correlation length is related to the elementary excitations by ξ ≈ v

∆ with
the energy gap ∆ and the QP velocity v. In the ordered phase, the elementary excitations
are domain walls, i.e., they involve two ground states. Therefore, these correlations cannot
be expected to be described properly by the transfer operator of a single ground state.

To analyze the dependence of the implicit correlation length ξT on the bond dimension,
Fig. 4.3 depicts ξT as function of 1

D for several values of λ. The lines are least squares �ts
to the data points. Table 4.2 shows the extrapolated results for ξ obtained from the �ts.
In the disordered phase, the extrapolation to D → ∞ allows a quite precise prediction of
the results to the exact value. For all tested values of λ, the exact results are contained
within the error brackets of the extrapolation, which are of the order of 1%. In spite of
this good agreement, the distribution of the data points does not allow us to conclusively
establish a linear relation ξT ∝ 1

D . In the Ising phase at λ = 1.2, the error bracket of the
�t is still rather small at 2.1%. However, the extrapolated value di�ers greatly from the
exact one, which is in agreement with the general behavior observed for λ > 1.
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Table 4.2: Extrapolated results for TFIM correlation length

λ ξex ξT,D→∞

0.5 1.44 1.46± 0.02 (1.04%)
0.8 4.48 4.46± 0.04 (0.85%)
0.9 9.49 9.45± 0.08 (0.89%)
1.2 5.48 2.48± 0.05 (2.09%)

4.3 Ground state energy

For both the FMHC and the TFIM, exact solutions for the ground state energy are avail-
able. The deviation

∆ε0 := |ε0,ex − ε0,uMPS| (4.29)

is a good indicator for the quality of the uMPS result.

4.3.1 Results for the FMHC

Since the ground state of the model is a product state, it can be described exactly by
a uMPS of bond dimension D = 1. Figure 4.4 shows the ground state energy and the
deviation ∆ε0 as function of Γ for several values of the next-nearest neighbor coupling J2.
As the plot shows it is captured to machine precision by the algorithm. Increasing the
bond dimension beyond the requirements can have adverse e�ects, since the norm matrix
N in Eq. (4.26) becomes singular as discussed in Sec. 4.1.2.
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4.3.2 Results for the TFIM

For the TFIM, too, the ground state energy can be obtained to very high precision. Fig-
ure 4.5 shows the energy and the deviation of the iMPS result from the exact solution
Eq. (2.34b) as function of λ for various bond dimensions D.
It is apparent that the algorithm works just as well in the Ising phase with degenerate
ground state as it does in the strong �eld phase. The same unstable behavior for small
λ and large bond dimensions can be observed as in the correlation length ξT , however
somewhat less pronounced. The deviation curves also show a maximum which is again
located at some λ . 1 for small D, consistent with the results in Fig. 4.1.
The error dimensions are fairly consistent with DMRG results for �nite chains of length
L = 300 [88].

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

|∆
ε

0
|  

[Γ
]

λ

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

ε
0
  

[Γ
]

D = 3
D = 5

D = 10
D = 20
D = 30

Ising
regime

strong field regime

Figure 4.5: Ground state energy of the TFIM as function of λ for various bond
dimension D. The upper part shows the energy itself, and the lower part the
deviation of the iMPS result from the exact solution on a logarithmic scale.

4.4 Von Neumann entropy

Another quantity of interest which can be obtained from the ground state uMPS is the
von Neumann or entanglement entropy SvN, as de�ned in Eq. (3.13). As a measure of
quantum entanglement across each bond, it is by de�nition zero for product states i.e.
D = 1. Therefore, this section only contains results for the TFIM.
For a left-canonical uMPS as de�ned in Sec. 3.6.4, the left boundary matrix u is the D×D
identity. As discussed in App. A.4.2, the right boundary matrix v is the reduced density
matrix of either side of the bipartition of the chain across any bond in the ground state
[23]. Therefore, for a uMPS, the von Neumann entropy is simply given by

SvN = −
D∑
i=1

vii ln vii . (4.30)
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Figure 4.6 shows SvN for several bond dimensions D. The entanglement entropy is known
to diverge logarithmically at λ = 1 [89]. This can again not be captured at �nite bond
dimension, but there is a clear and very sharp peak in each of the curves, located close to
the value of λ, where the deviation of the uMPS result from the exact ground state energy
in Fig. 4.5 has its maximum. However, in contrast to the latter, the von Neumann entropy
can be computed without the exact solution, which normally is not available. Analyzing
the entropy can therefore also help to �nd quantum phase transitions in models for which
no exact solution exists.
The inset in Fig. 4.6 shows the deviation of the peak position in SvN from the exact value
λ = 1 as function of the inverse bond dimension 1

D on a logarithmic scale. There are only
few data points, but the scaling seems neither linear, nor a power law nor exponential.
However, a clear tendency towards the exact value is visible.

4.5 TFIM ground state magnetization

The ground state magnetization Mx in x-direction is the order parameter in the Ising
phase. It decreases as λ approaches the critical point and vanishes in the strong �eld
regime, where there is only magnetization in z-direction. Figure 4.7 shows the absolute
value of the magnetization as function of the parameter λ. The left inset shows a mag-
ni�cation of the area around the critical point. As the plot shows the non-analytic onset
of Mx at λ = 1 is not captured entirely by the MPS results. Instead, a smooth but rapid
increase is observed. Again, for smaller bond dimensions it occurs at λ . 1.
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The right inset shows the signed value of Mx for D = 5 and λ > 1. The occurrence of
di�erent signs is a clear indication of the ground state degeneracy. It also shows that as
mentioned in Sec. 3.2, the algorithm converges to either one of the ground state realizations,
not to a superposition which could be identi�ed by a magnetization value somewhere
between the positive and negative envelopes.
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ious bond dimensions D. The exact curve is taken from Eq. (2.43). The left
inset is a magni�cation of the parameter region around the QCP. The right
inset shows the signed values of Mx at D = 5 as found by the ground state
search algorithm.

In general, one can thus run the ground state search algorithm several times and check
the value of an observable that distinguishes between degenerate ground states to obtain
uMPS approximations for each of them. However, for the TFIM in the Ising phase, there
is an analytical transformation that transforms one ground state into the other. It is in
fact one of the rare cases, where an operator can be applied to a uMPS. This makes it
possible to obtain the other ground state easily from the one that was found by the ground
state search algorithm, see App. A.5 for details.

As stated in Chap. 2, the critical exponent for the longitudinal magnetization is given by
β = 1

8 , i.e., Mx shows power law behavior

Mx ∝ (λ− λc)β = (λ− λc)
1
8 (4.31)

close to the phase transition at λc = 1.

Figure 4.8 shows the magnetization in a double logarithmic plot as function of λ − λc,
where in this scaling λ = 1 corresponds to 0 on the x-axis. The plot focuses on parameters
close to the critical point, therefore data is only plotted up to λ = 1.2. One can clearly
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see a linear regime in all data sets that extends to increasingly small parameter values for
growing bond dimension.
By �tting linear functions of the type

ln(Mx,D) = βD(λ− 1) + C (4.32)

to the linear portion of each data set, the critical exponent βD for each bond dimension
can be estimated.
The estimates obtained for βD are shown in the inset of Fig. 4.8, including the least squares
�t error. As the plot shows, for the available data the error brackets are extremely small
(less than 1%). By another linear �t to βD as function of inverse bond dimension, the
critical exponent can be extrapolated for D →∞. The extrapolated value of β is

β∞ = 0.1226± 0.0005 , (4.33)

again with an extremely small error bracket due to the small number of bond dimensions
available. Notably, the error bracket does not include the exact value. The relative error
is

∆βrel =
β − β∞

β
≈ 0.019 = 1.9% , (4.34)

which is still quite small, given the number of data points.
Even better agreement with the exact value could be achieved by increasing the resolution
in λ and D.
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4.6 Chapter summary

In this chapter an iterative algorithm to �nd a ground state uMPS was presented, followed
by results for some ground state properties for both the FMHC and the TFIM.
The FMHC was found to be described to machine precision by a ground state uMPS of
bond dimension d = 1, i.e., a product state.
For the TFIM, the correlation length ξT de�ned by the second largest EV Λ1 of the transfer
operator T was examined as a �rst result and compared to the exact solution. It was found
that in the disordered phase close to the QCP an increase in bond dimension leads to a
systematic improvement of the results. For small parameters and larger bond dimensions,
results exceeding the physical correlation length, as well as wild oscillations as function of
the parameter were found. This could be traced back to the Schmidt coe�cients of the
ground state uMPS becoming very small in these cases. As a consequence, the norm matrix
in the ground state search EVP becomes singular, which leads to numerical instability. The
algorithm to bring the uMPS into canonical form becomes unstable as well. The maximum
in the correlation length which indicates a phase transition was found to occur at parameter
values λ . 1 slightly smaller than the exact value for low bond dimensions.
For the ground state energy ε0 the same behavior could be observed in the deviation from
the exact result.
The von Neumann entropy SvN is easily obtained from the canonical form of the uMPS.
It showed very pronounced peaks, the positions of which were also found to approach the
exact value for the critical parameter with increasing bond dimension.
Finally, the longitudinal ground state magnetization Mx was examined, and an attempt
was made to extrapolate its critical exponent β. Although the relative error in β was
found to be as small as 2%, the exact value is not included in the error brackets of the
extrapolation. However, it is expected that the result improves if more values of the bond
dimension D are included.

In the next chapter, it is shown, how excited states are described in the framework of
iMPS. Results for the one-particle dispersion for the FMHC and the TFIM are provided.
Further, it is shown how the creation operator of the quasi-particles is represented in the
iMPS formalism, and it is tested by computing the spectral weight in the xx-channel for
the TFIM.





Chapter 5

One-particle properties

A journey of a thousand miles begins with a single step.

Lao Tse

This chapter shows how the dispersion relation and other, low-lying EVs of the Hamiltonian
are obtained along with a representation of the creation operator, which is the key to the
derivation of an e�ective model. Results for dispersion relation and bound states are given.
Properties of the creation operator are discussed and it is validated by computing some
one-particle spectral weights.
Most of the contents of this chapter can also be found in Refs. [65, 90]. However, the
concepts presented here are essential, because they constitute the foundation of the more
complex two-particle calculations in chapter 6.

5.1 One-QP excited states and dispersion

The next step towards the e�ective model in Eq. (1.1) is to construct 1QP excited states
and to obtain their dispersion relation ωq. There are many ways to do this for a one-
dimensional model. Most of the methods mentioned in Sec. 1.3 can achieve the dispersion
for speci�c cases. For the presented method this step is di�erent insofar as it does not
only yield the dispersion relation, but the entire 1QP part of the Hamiltonian, i.e. in-
cluding the creation operator. Also, one is not limited to just the dispersion of one type
of quasi-qarticles (QPs). The algorithm also yields higher lying eigenvalues (EVs) of the
Hamiltonian. For instance, on a dimerized spin-½ chain, excitations are so-called triplons,
spin-1 triplet excitations formed from two spin-½ [91]. These excitations can be mobile
and hop from one dimer to another. Without an external �eld, they are degenerate in the
magnetic quantum number. This can be seen in the spectrum produced by the algorithm
by the occurrence of threefold degenerate lowest eigenvalue. Also, bound states, e.g., the
ones of the FMHC from Sec. 2.1, can be detected as energy levels appearing between the
one-particle dispersion and the lower boundary of the 2QP continuum.

As mentioned above, the ground state energy E0 is an extensive quantity and therefore
divergent in the TDL. For this reason, the ground state energy per lattice site ε0 was
de�ned. In contrast, energies of a �nite number of excitations are always �nite, even in
the TDL, since they are de�ned relative to the ground state energy. To calculate them,
the reduced Hamiltonian is de�ned as

H̃ =
∑
i

h̃i := H − E0 =
∑
i

(hi − ε0) . (5.1)
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5.1.1 Describing excited states

To understand how excited states are described in the iMPS formalism, we turn to the
ground state search EVP Eq. (4.26). At the point of convergence, the eigenvector ~B0 cor-
responding to the lowest EV is the ground state tensor A that was put in. The eigenvectors
~Bα>0 corresponding to higher EVs describe excited states. Let therefore

|Bα,j〉 :=
∑

s1,...,sL

Tr(As1 · · ·Asj−1B
sj
α Ã

sj+1 · · · ÃsL) |s1, . . . ,sL〉 (5.2)

be an iMPS that is taken to have ground state tensors A (and Ã) everywhere except at site
j, where one of the eigentensors Bα of Eq. (4.26) is inserted instead. For a unique ground
state, Ã = A, i.e., the ground states are the same on both sides of the excitation. In the
case of a degenerate ground state, the excitations have domain wall character, i.e., there
is one ground state to the left, and another ground state to the right of it. In this case,
Ã 6= A, refer to App. A.5 for details on how to deal with domain wall excitations.
Following Ref. [92], the set of uMPS can be seen as a manifold. The states in Eq. (5.2)
then span the tangent space of this manifold.

5.1.2 Canonical gauge for excitation tensors

The matrices M and N in Eq. (4.26) are of dimension d · D2 × d · D2. Therefore, there
are d ·D2 − 1 eigenstates Bα with α > 0 if the ground state is unique. If it is not, another
EVP needs to be solved, where there is one ground state to the left of B and another to
the right. This EVP has d ·D2 eigenstates that are di�erent from A. However, although
states constructed from these Bα according to Eq. (5.2) are orthogonal on the same site
by construction, they do not form a good basis since

〈Bα,j|Bβ,j〉 = δαβ (5.3a)

〈Bα,j|Bβ,j′〉 6= 0 for j′ 6= j . (5.3b)

The reason is that this basis is overcomplete as will be shown in the next section.

5.1.2.1 Nullspace of the excitation parametrization

Like the ground state tensor A, any tensor B describing a local excitation has d · D2

parameters. However, not all of them are independent as was shown in Ref. [90]. Let
Bs = XAs − e−iqÃsX with some matrix X ∈ CD×D. Due to translational invariance and
the gauge freedom Eq. (3.40), the resulting momentum superposition yields

|B,q〉 :=
1√
L

∑
j

e−iqj |B,j〉 (5.4a)

=
1√
L

∑
j

e−iqj
∑

s1,...,sL

Tr
(
· · ·Asj−1(XAsj − e−iqAsjX)Ãsj+1 · · ·

)
|s1, . . . ,sL〉

(5.4b)

=
1√
L

∑
j

e−iqj

[ ∑
s1,...,sL

Tr
(
· · ·Asj−1XÃsj Ãsj+1 · · ·

)
|s1, . . . ,sL〉

−
∑

s1,...,sL

e−iq Tr
(
· · ·Asj−1AsjXÃsj+1

)
|s1, . . . ,sL〉

]
(5.4c)
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=
1√
L

∑
j

e−iqj |XÃj〉 −
1√
L

∑
j

e−iq(j+1) |XÃj+1〉 (5.4d)

=
1√
L

∑
j

e−iqj |XÃj〉 −
1√
L

∑
j

e−iqj |XÃj〉 (5.4e)

= 0 (5.4f)

where from line (5.4d) to line (5.4e) the index of the second sum was shifted from j → j−1,
which is always allowed in the TDL. Since the matrix X has D2 elements, for any q 6= 0 a
B tensor has a D2 dimensional null-space and therefore only (d− 1) ·D2 free parameters.
The same holds true for q = 0 and Ã 6= A. For q = 0 and Ã = A, the choices of X = 1 and
X = 0 both result in Bs = 0. Therefore, the number of linearly independent null-vectors
is reduced by one, thus giving (d − 1)D2 + 1 free parameters. However, in practice it is
better to sacri�ce the additional degree of freedom for the bene�t of having the same B
tensors for all q.
The next section shows an algorithm to �nd a representation of B as (d− 1)D×D matrix
which also has the property

〈Bα,j|Bβ,j′〉 = δjj′δαβ . (5.5)

5.1.2.2 De�nition of the reduced excitation parametrization

In Ref. [92] J. Haegeman et al. also showed a parametrization scheme for the excitation
tensors Bα, that takes the reduced number of parameters into account. First we state that
A has column-rank D when seen as a d·D×D matrix, and therefore a (d−1)D-dimensional
null-space in Cd·D. De�ne the matrix

LA :=
[
A1†√u · · · Ad†

√
u
]

=
[
A1† · · · Ad†

]
(5.6)

where the second equality holds if A describes a left-canonical uMPS since then
√
u =

u = 1. The null space of this matrix can be found by means of the Gram-Schmidt
orthonormalization algorithm. To this end, �rst the rows of LA are orthogonalized. Then,
new vectors that are orthogonal to them are generated successively by applying the Gram-
Schmidt method to the Cartesian basis vectors of the remaining subspace of Cd·D. In the
end, these vectors form an orthonormal basis of the null-space of LA and therefore of A.
The resulting matrix VL, which contains the null-space basis vectors as columns, is of
dimension dD × (d− 1)D and ful�lls the equation

LAVL = 0D×D(d−1) (5.7a)

⇔
(
A1†√u · · · Ad†

√
u
)
·

V
1
L
...
V d
L

 = 0D×D(d−1) (5.7b)

⇔
∑
s

(As †
√
u)V s

L = 0D×D(d−1) (5.7c)

where the second and third lines are just a reformulation in terms of block matrices. Each
block V s

L de�ned above is of dimension D × (d − 1)D. These matrices V s
L also ful�ll the

identity ∑
s

V s
LV

s†
L = VLV

†
L = 1D (5.8)

by virtue of their construction from orthonormal basis vectors. De�ne

Bs :=
√
u
−1
V s
LX
√
v
−1

(5.9)
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where X is some matrix of dimension (d− 1)D ×D. It follows that

1† (B;A)[u] =
∑
s

As†uBs (5.10a)

=
∑
s

As† u
√
u
−1︸ ︷︷ ︸√
u

V s
LX
√
v
−1

(5.10b)

=

(∑
s

(As†
√
u)V s

L

)
X
√
v
−1

(5.10c)

= 0D×D (5.10d)

= 1† (A;B)[u] (5.10e)

regardless of X. Therefore, this formulation reduces the parameter space for an excitation
tensor B from dD2 to the above mentioned true number of relevant parameters, (d−1)D2.
At the same time, this gauge ensures orthogonality of the states |Bα,j〉 for di�erent j.
Note, however, that since v 6= 1 this only holds if u is the left boundary matrix. This leads
to an asymmetric behavior of matrix elements

〈Bα,j|Ôk |Bβ,j′〉

{
= 0, if k > min(i,j)

6= 0, if k ≤ min(i,j)
(5.11)

for j′ 6= j.

5.1.2.3 Finding the reduced parametrization

In order to �nd the reduced parametrization Xα, the generalized EVP Eq. (4.26) has to
be reformulated in terms of their vectorizations ~Xα

M ~X = εN ~X . (5.12)

It is instructive to start by inspecting the normalization matrix N , by examining its ele-
ments with respect to the ~Xα

〈Bα,j|Bβ,j〉 = ~X†αN
~Xβ = (u,1(Bα,Bβ)[v]) (5.13a)

= Tr

[
u†
∑
s

Bs
βvB

s†
α

]
(5.13b)

=
∑
s

Tr
[
u†(
√
u
−1
V s
LXβ

√
v
−1

)v(
√
u
−1
V s
LXα

√
v
−1

)†
]

(5.13c)

=
∑
s

Tr
[√

u
−1
u
√
u
−1︸ ︷︷ ︸

1

V s
LXβ

√
v
−1
v
√
v
−1︸ ︷︷ ︸

1

X†αV
s†
L

]
(5.13d)

= Tr

[∑
s

V s†
L V s

L︸ ︷︷ ︸
1

X†αXβ

]
(5.13e)

= Tr(X†αXβ) (5.13f)

⇒ N = 1(d−1)D2 (5.13g)

where the cyclic property of the trace operation was used. This means the choice of
parametrizing Bα also reduces the generalized EVP to a standard EVP without the need
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to diagonalize the matrixN . It remains to be shown how the matrixM is to be constructed.
In close analogy to the case described in section 4.1, it is given by a sum

M =
∑
i

M [i] (5.14)

where M [i] is determined by

〈Bα,0|hi |Bβ,0〉
!

= ~X†αM
[i] ~Xβ . (5.15)

Generally, this results in a calculation similar to Eq. (5.13), however, with the e�ective
boundary matrices ue� and ve� from Sec. 4.1.1 with

√
u
−1
ue�
√
u
−1

=: ũe� 6= 1 and (5.16a)
√
v
−1
ve�
√
v
−1

=: ṽe� 6= 1 . (5.16b)

The matrix element with respect to the ~Xα is thus

〈Bα,0|hi |Bβ,0〉 = (ue�,O
(Bα;Bβ)
0 [ve�]) (5.17a)

= Tr

u†e�∑
s,s′

Os′sB
s
βve�B

s′†
α

 (5.17b)

= Tr

(
√
u
−1
u†e�
√
u
−1

)
∑
s,s′

Os′sV
s
LXβ(

√
v
−1
v†e�
√
v
−1

)X†αV
s′†
L

 (5.17c)

= Tr

ũ†e�∑
s,s′

Os′sV
s
LXβ ṽe�X

†
αV

s′†
L

 (5.17d)

=
∑
a

∑
b,c,d,e,f

∑
s,s′

Os′s(ũ
†
e�)ab(V

s
L)bc(Xβ)cd(ṽe�)de(X

†
α)ef (V s′†

L )fa (5.17e)

=
∑
c,d,e,f

(X†α)ef

∑
s,s′

Os′s
∑
a,b

(V s′†
L )fa(ũ

†
e�)ab(V

s
L)bc

 (ṽe�)de(Xβ)cd (5.17f)

=
∑
c,d,e,f

(X†α)ef︸ ︷︷ ︸
=(X∗α)fe

[∑
s,s′

Os′sV
s′†
L ũe�V

s
L︸ ︷︷ ︸

=:O†
e�,i

]
fc

(ṽe�)de(Xβ)cd (5.17g)

= ~X†α(ṽTe� ⊗O
†
e�,i)

~Xβ . (5.17h)

Here it was assumed that hi is a product of local operators that acts on site 0 as well as
on at least sites −1 and 1. If Oi does not act on site 0, the operator matrix elements in
Eq. (5.17) are simply given by Os′s = δs′s. Also, one of the e�ective boundary matrices
in Eq. (5.16) is then the identity. This scheme for computing M [i] still holds though. The
matrix Oe�,i has to be computed anew for each operator position i.

5.1.3 Momentum space variation

The procedure outlined above yields a (d− 1)D2-dimensional standard EVP, from which
the full excitation tensors Bα are obtained according to Eq. (5.9). Note that the number of
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B tensors is (d− 1)D2 for both a unique and for a degenerate ground state in the reduced
parametrization.
In general, the state |Bα,j〉 is not a true one-particle eigenstate of the Hamiltonian. This
is so for two reasons: First, because excitations are normally not strictly local, and second,
because a single B tensor is not enough to describe an excitation completely. A better
description can be achieved by using a linear combination of all Bs. For translational
invariant systems in the TDL this is best done in momentum space. Working in momen-
tum space also provides an easy workaround for the gauge induced asymmetry of matrix
elements mentioned in Eq. (5.11).
The basis states in momentum space are the Fourier transform of Eq. (5.2)

|Bα,q〉 :=
1√
L

∑
j

e−iqj |Bα,j〉 (5.18)

as already introduced in Eq. (5.4). These states are known as Wannier states and are
orthogonal with respect to momentum

〈Bα,q|Bβ,q′〉 ∝ δq,q′ , (5.19)

see App. A.6 for details. Orthogonality with respect to the index α is ensured by construc-
tion, cf. Eq. (5.13). Therefore, the norm matrix for each q in momentum space is simply
the identity

N q
αβ := 〈Bα,q|Bβ,q〉 (5.20a)

=
1

L

∑
j′,j

eiq(j
′−j)〈Bα,j′|Bβ,j〉 (5.20b)

=
1

L

∑
j′,j

eiq(j
′−j)δj′,jδα,β (5.20c)

= δα,β . (5.20d)

Now, the dispersion relation is determined by variation of the coe�cients vqα of the linear
combination of the states |Bα,q〉. This leads to another EVP

Hq~v q = ωqN
q~v q = ωq~v

q (5.21)

where the elements of the Hamiltonian matrix Hq are given by

Hq
αβ = 〈Bα,q|H̃ |Bβ,q〉 . (5.22)

Due to the orthogonality with respect to momentum, this EVP can be solved for each
desired point in momentum space independently. The lowest EV ωq of Eq. (5.21) is the
best variational estimate for the dispersion relation.

The matrix elements Hq
αβ are computed as follows

Hq
αβ = 〈Bα,q|H̃ |Bβ,q〉 (5.23a)

=
1

L

∑
j′,j

eiq(j
′−j)〈Bα,j′|H̃ |Bβ,j〉 (5.23b)

=
1

L

∑
j′,j

∑
i

eiq(j
′−j)〈Bα,j′ − j|H̃ |Bβ,0〉 (5.23c)

=
∑
j

eiqj〈Bα,j|H̃ |Bβ,0〉 (5.23d)

=:
∑
j

eiqjHj
αβ . (5.23e)
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The index shift j′ → j′ − j in step (5.23b) to (5.23c) is allowed, since the matrix element
does not depend on the absolute positions due to translation invariance (TI), but only on
the relative distances. In the last step, the index was renamed again j′ − j → j, which
is possible in the TDL since all sums run from −∞ to ∞. Then, the expression does
no longer depend on j′ at all, and the summation can be carried out, canceling out the
normalization factor 1

L .

The matrix element Hj
αβ in Eq. (5.23e) is a matrix element of the full Hamiltonian, i.e.,

it contains the theoretically in�nite sum over all lattice sites i. Note that generically the
relation

〈ψ|Ô |φ〉 = 〈φ|Ô† |ψ〉∗ (5.24)

holds. Since the Hamiltonian is Hermitian, from Eq. (5.24) and TI follows that only matrix
elements with j ≥ 0 need to be computed because

H−jαβ = 〈Bα,− j|H̃ |Bβ,0〉 (5.25a)

= 〈Bβ,0|H̃ |Bα,− j〉∗ (5.25b)

= 〈Bβ,+ j|H̃ |Bα,0〉∗ (5.25c)

= (H+j
βα)∗ . (5.25d)

For j ≥ 0 the matrix element Hj
αβ can then be computed as

Hj
αβ =

∑
i

〈Bα,j|h̃i |Bβ,0〉 (5.26a)

=
∑
i

〈Bα,j − i|h̃0 |Bβ,− i〉 . (5.26b)

Due to TI, matrix elements do not depend on absolute positions, but only on relative
distances between the operator and the B tensors. Therefore, as done in Eq. (5.26), all
positions are shifted such that the �rst operator in a product of local operators acts on
site i = 0. This is adopted as a convention throughout the remainder of this thesis.

The computation of matrix elements is generically linear; therefore, the matrix element for
an operator that consists of a sum results in a sum of matrix elements, for instance

〈Bα,j − i|h̃0 |Bβ,− i〉 = 〈Bα,j − i|(S z
0 − 2λS x

0 S
x
1 − 1ε0) |Bβ,− i〉 (5.27a)

= 〈Bα,j − i|S z
0 |Bβ,− i〉 − 2λ〈Bα,j − i|S x

0 S
x
1 |Bβ,− i〉

−ε0〈Bα,j − i|1 |Bβ,− i〉 , (5.27b)

each of which is represented by its own TN. The next section shows how these matrix
elements are computed in practice.

5.2 Tensor network calculations

As stated in Chap. 3, the tensor network (TN) notation is a very powerful tool in MPS
calculations in general, and for iMPS in particular. This section shows, how the intuitively
drawn network diagrams translate into mathematical expressions.
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5.2.1 TN topology

The matrix elements in Eq. (5.27) can all be drawn as tensor networks. For instance, for
i = −3 and j = 2, the matrix element of the Ising interaction becomes

〈Bα,2 + 3|S x
0 S

x
1 |Bβ,3〉 = Sx0 Sx1

Bβ,3

Bα,2 + 3

(5.28)

where the ground state tensors A are drawn as circles as always, and the B tensors are
represented by triangles for easy distinction.
In the previous chapter, the symbol was used as a placeholder for an arbitrary number
of transfer operators T , and to denote that a given TN is to be considered as an example.

To make this even simpler, the concept of TN topology is now de�ned. Two TNs are
considered topologically equivalent if they can be transformed into each other by adding or
removing transfer operators only. For example, the following TN is topologically equivalent
to the one in Eq. (5.28)

Sx0 Sx1

Bβ,2

Bα,5

, (5.29)

because it can be transformed into it by adding one transfer operator between Sx1 and Bβ ,
and removing one between Bβ and Bα. In contrast, the following TN not not topologically
equivalent to Eq. (5.28)

Sx0

Bα,1

Sx1

Bβ,4

, (5.30)

because a), the relative positions of Bβ and Bα are changed, and b), Bα is on the same site
as an operator, which is not the case in Eq. (5.28).
From here on, every TN is considered as a representative for all TNs that are topologically
equivalent to it, unless explicitly stated otherwise.
Also, the notation

︸ ︷︷ ︸
δi

:= T δi (5.31)

is used to denote a block of transfer operators of variable width δi, including zero. Herefore,
T 0 is de�ned as not applying any transfer operators, i.e.

T 0[ve�] := ve� ∀ ve� . (5.32)

As will be shown in Sec. 5.2.3, all topologically equivalent TNs with the same operator
(including no operator at all) and the same B tensors are evaluated in the same way.
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5.2.2 TN factorization

A second important concept is that of TN factorization. As discussed in Sec. 3.6, for the
transfer operator T , the following relation holds

lim
j→∞

T j = Λj0~v~u
† . (5.33)

In numerical calculations, for practical purposes the limit is reached for j = ΞT with∣∣∣∣Λ1

Λ0

∣∣∣∣ΞT < θ (5.34)

where θ is either machine precision or some larger tolerance value that one is willing to
accept. With Λ0 = 1, this translates to TN notation as

︸ ︷︷ ︸
δi

δi>ΞT≈ × . (5.35)

Therefore, if it contains a su�ciently large power of T , a TN factorizes into a product of
smaller networks. For instance

Sx0 Sx1

︸ ︷︷ ︸
δ0

Bβ

Bα

δ0>ΞT≈ Sx0 Sx1 ×

Bβ

Bα

. (5.36)

This helps to quickly assess what a given TN converges to. For instance, for δ0 > ΞT
the above TN converges to zero, since the right factor is zero in canonical gauge due to
Eq. (5.10).

Note that a factorization can also be made for a TN that does not include a power TΞT of
the transfer operator. The value of such a factorization is generally not equal to value of
the original TN. However, this is still an important tool in determining the 1QP content
of 2QP TNs, as will be discussed in Chap. 6.

5.2.3 Matrix element TN evaluation

As seen already in the construction of the EVPs in the ground state search and in the
search for excitations, all TNs are ultimately evaluated as a scalar product of two D ×D
matrices ue� and ve�, using the matrix scalar product de�ned in Eq. (3.10). The matrix ue�
represents the left half-in�nite part of the system, and ve� represents the right half-in�nite
part, respectively.
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Using the convention, that the operator always acts on site 0, and with j ≥ 0, there
are three di�erent cases of TNs which occur in the computation of Hj

αβ in Eq. (5.23e),
depending on the summation index i

Hj
αβ =

∑
i

〈Bα,j − i|h̃0 |Bβ,− i〉 (5.37a)

=
∑
i≤−n
〈Bα,j − i|h̃0 |Bβ,− i〉+

j∑
i=−n+1

〈Bα,j − i|h̃0 |Bβ,− i〉

+
∑
i>j

〈Bα,j − i|h̃0 |Bβ,− i〉 . (5.37b)

Here n is the number of lattice sites the operator acts on. For the local Hamiltonian h̃, in
case of the TFIM n = 2, and for the FMHC with next-nearest neighbor interaction, n = 3.

Case i): i ≤ −n

Due to the index shift by −i in Eq. (5.26), this means that the operator acts to the left of
both B tensors. This results in two topologically distinct classes of TNs

h̃0

−i

j − i

and h̃0

−i

−i

, (5.38)

for j > 0 and j = 0, respectively. In this case, an e�ective right boundary matrix vjαβ can
be de�ned

vjαβ :=

{
1(Bα;Bβ)[v], if j = 0

1(A;Bβ)[T j−1[1(Bα;A)[v]]], if j > 0
. (5.39)

Note the di�erent handling for the topologically distinct cases j = 0 and j > 0. Then,
each contribution to the sum is given by

〈Bα,j − i|h̃0 |Bβ,− i〉 =
(

(T †)|i|−n[h̃
† (A;A)
i [u]], vjαβ

)
. (5.40)

In case of the TFIM, every TN with an operator h̃0 actually stands for three TNs, as seen
in Eq. (5.27). However, due to the sesquilinearity of the scalar product, the expression

h̃
† (A;A)
0 [u] can be de�ned as

h̃
† (A;A)
0 [u] := 1

† (A;A)
1 [Sz

† (A;A)
0 [u]]− 2λSx

† (A;A)
1 [Sx

† (A;A)
0 [u]]− ε01† (A;A)

1 [Sx
† (A;A)
0 [u]]

(5.41a)

=
∑
s′1,s1

1
†
s′1s1

As
′
1 †

∑
s′0,s0

Sz †
s′0s0

As
′
0 †uAs0

As1

−2λ
∑
s′1,s1

Sx †
s′1s1

As
′
1 †

∑
s′0,s0

Sx †
s′0s0

As
′
0 †uAs0

As1

−ε0
∑
s′1,s1

1
†
s′1s1

As
′
1 †

∑
s′0,s0

1
†
s′0s0

As
′
0 †uAs0

As1 , (5.41b)

which allows to treat all three TNs at the same time as one.
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Note the order in which the operators are applied to the boundary matrix u. First the
operator on site 0 is applied, then the operator on site 1, just as depicted in the TN. Also
note that for correct alignment the �eld term Sz0 needs to be padded with an identity
operator on the right side, so that this summand in h̃0 acts on n = 2 sites, too. For the
ground state energy correction term −ε010 this is not strictly necessary, but also does not
change the result. Therefore, for consistent handling it is easiest to pad all terms with
identities from the right so that they act on n sites.

Using the sesquilinearity of the scalar product again, the sum over i in Eq. (5.40) can
also be carried out on the level of left boundary matrices. Therefore, the contribution for
i < −n can be expressed as

Hj
αβ

∣∣∣
i<−n

=
∑
i<−n

(
(T †)|i−n|[h̃

† (A;A)
i [u]], vjαβ

)
(5.42a)

=

( ∞∑
i=0

(T †)i[h̃† (A;A)[u]], vjαβ

)
(5.42b)

=:
(
uh̃, v

j
αβ

)
. (5.42c)

The matrix

uh̃ :=
∞∑
i=0

(T †)i[h̃† (A;A)[u]] (5.43)

can be computed very e�ciently by noting that each summand is obtained by just applying
the Hermitian conjugate T † of the transfer operator once to the previous one. See Sec. 5.7
for a more detailed analysis of the numerical e�ort.
In Eq. (5.42) the sum theoretically still runs to in�nity. However, for |i|−n > ΞT , the TN
factorizes as seen in Eq. (5.36)

〈Bα,j − i|h̃0 |Bβ,− i〉
|i|−n>ΞT≈ 〈GS|h̃0 |GS〉 × 〈Bα,j − i|1 |Bβ,− i〉 . (5.44)

The �rst factor is always zero since that is the ground state expectation value of h̃0 = h0 − ε0.
Thus, in numerics the sum only needs to be computed for i ≤ ΞT . Due to the orthogonality
of the Bα tensors to the ground state, the second factor is also zero if j 6= 0.

There is one important thing to keep in mind about TNs for excited states. Although
there is a strong appearance of locality in the iMPS formulation, since every tensor A or
B is associated with one local site, and operators can also be attributed to a local site.
However, this can be misleading. For non-trivial bond dimensions, i.e., D > 1, a TN such
as

〈Bα,`|O0 |Bβ,`〉 = (5.45)

evaluates to

〈Bα,`|O0 |Bβ,`〉 = × (5.46)

only for |`| > ΞT . For smaller distances, due to the entanglement encoded in the site
tensors, the tensor B �sees� the operator, even if it acts on a site at a distance of up to ΞT .
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Case ii): i > j

The second type of TN from Eq. (5.26) is the case i > j, i.e. the operator acts to the right
of all B tensors. This case can be handled very similarly to the �rst one. Again, there are
two topologically distinct TN classes depending on j

−i

j − i

h̃0 and

−i

−i

h̃0 . (5.47)

Here, an e�ective left boundary matrix ujαβ can be de�ned

ujαβ :=

{
1† (Bα;Bβ)[u], if j = 0

0, if j > 0 ,
(5.48)

where again the topologically di�erent cases j = 0 and j > 0 need to be handled di�erently.
The vanishing of this matrix for j 6= 0 follows from the left-canonical gauge of Bβ . Taking
this into account, the contribution from this type of TN is given by

〈Bα,j − i|h̃0 |Bβ,− i〉 =
(
ujαβ, T

i−1[h̃(A;A)[v]]
)
. (5.49)

The expression h̃(A;A)
0 [v] is de�ned analogously to Eq. (5.41), with the di�erence that the

operator at site 1 is applied to v �rst, and then the operator at site 0. Again, this is exactly
as depicted in the TN.
As in the previous case, the sum can be carried out on the level of boundary matrices, in
this case the right one, v. The summed contribution reads

Hj
αβ

∣∣∣
i>j

=
∑
i>j

(
ujαβ, T

i−1[h̃(A;A)[v]]
)

(5.50a)

=

(
ujαβ,

∞∑
i=0

T i[h̃(A;A)[v]]

)
(5.50b)

=:
(
ujαβ, vh̃

)
(5.50c)

with a summed right boundary matrix de�ned analogously to uh̃ as

vh̃ :=

∞∑
i=0

T i[h̃(A;A)[v]] =

ΞT∑
i=0

T i[h̃(A;A)[v]] +O(|Λ1|ΞT ) , (5.51)

which can be computed in the same e�cient manner. Again, the TN factorizes for i > ΞT ,
and the second factor 〈GS|h̃0 |GS〉 is always zero, so that the sum can be cut at i = ΞT .

Case iii): −n < i ≤ j

The intermediate case with −n < i ≤ j is the most di�cult one. One simpli�cation is that
the sum actually only runs to i = 0. In left-canonical gauge, all TNs with i > 0 are zero
except for those with j = 0, which are already covered in case ii) above. Unfortunately,
this is the only simpli�cation that can be made.
Like in the other two cases, there are two topologically distinct TN types, depending on j

Bβ,− i

h̃0

Bα,j − i

and

Bβ,− i

Bα,j − i

h̃0 , (5.52)
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where the second type can only occur if j < n.
The �rst TN type, where the operator acts on only one site with a B tensor, evaluates to

Bβ,− i

Ô0 Ô1

Bα,j − i

=
(
Ô
† (A;Bβ)
−i [u], T j−2[1(Bα;A)[v]]

)
. (5.53)

For an n-site operator Ô = Ô0Ô1 · · · Ôn−1, the expression Ô
† (A;Bβ)
−i [u] is de�ned as

Ô
† (A;Bβ)
−i [u] :=



Ô
† (A;A)
n−1 [· · · Ô† (A;A)

1 [Ô
† (A;Bβ)
0 [u]]], if − i = 0

Ô
† (A;A)
n−1 [· · · Ô† (A;Bβ)

1 [Ô
† (A;A)
0 [u]]], if − i = 1

...

Ô
† (A;Bβ)
n−1 [· · · Ô† (A;A)

1 [Ô
† (A;A)
0 [u]]], if − i = n− 1

. (5.54)

The second TN type, where the operator acts on two sites with a B tensor, evaluates to

Bβ,− i

Bα,j − i

Ô =
(
Ô
† (Bα;Bβ)
j−i;−i [u], v

)
. (5.55)

The expression Ô
† (Bα;Bβ)
j−i;−i [u] is de�ned analogously to Eq. (5.54) as

Ô
† (Bα;Bβ)
j−i;−i [u] := Ô

† (Bα;A)
n−1 [· · · Ô† (A;A)

1 [Ô
† (A;Bβ)
0 [u]]], if − i = 0 and j − i = n− 1 (5.56)

and so forth. Both Eq. (5.54) and Eq. (5.56) imply that there is a ground state tensor A
on any site which does not explicitly have a B tensor assigned to it.

This type of expression must be evaluated for each summand in a multi-term operator like
h̃ individually, and the results are summed up.

5.2.4 Complexity analysis

The computational cost of evaluating a TN scales linearly with its width, i.e., the number
of non-trivial rungs. Non-trivial in this context means that the rung is not a transfer
operator, or it is a transfer operator which is not directly adjacent to a pure left or right
boundary matrix u or v. For instance, the width of the TNs in Eq. (5.47) is 4, and the
width of the TN in Eq. (5.55) is 2.

The cost of applying a transfer operator T or an identity 1(B;A) to a boundary matrix is
in O(dD3), which can be seen from Eq. (3.67). The cost of applying a non-trivial operator
to a boundary matrix scales as O(d2D3), as seen in Eq. (3.83).
In Hj

αβ , the average TN width is ΞT
2 . Therefore, the overall computation cost scales as

τc = O
(
ΞTD

3(ΞTd+ d2)
)
. (5.57)
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5.3 Momentum discretization

In the TDL, the momentum q is actually a continuous variable. However, in order to carry
out numerical computations, such as solving the EVP for the dispersion, momentum must
be discretized. This means the Brillouin zone is sampled with a �nite number Lq ∈ N of
momentum values. Due to the properties of the discrete Fourier transformation, this means
that the model is evaluated on a �nite system of length Lq. Using the standard de�nition
of the discrete Fourier transformation used throughout this thesis, this implies periodic
boundary conditions. In principle, the iMPS framework allows to choose Lq arbitrarily. In
practice, some important considerations need to be made.

First, real space quantities which are derived from momentum space results will also be
Lq-periodic. For instance, the hopping element

tj :=
1

Lq

∑
q

e+iqjωq (5.58)

cannot be determined for |j| > Lq
2 , since this is the periodicity of the �nite lattice implied

by the choice of Lq. Therefore, if some real space quantity is to be computed as Fourier
transform of a momentum space result, and a certain spatial extent is needed, this deter-
mines the minimum value for Lq that can be used.

Second, there is a di�erence between Lq being even or odd. In this thesis, it is chosen odd.
The reason for this is the choice of the 2QP basis, refer to App. A.7 for details.
With an odd number of sampling points or, equivalently, momentum intervals

∆q :=
2π

Lq
, (5.59)

one can either sample q = 0 or q = π exactly, but not both. Since for both the TFIM
and the FMHC the gap is located at q = 0, the sampling points are chosen such that
they include q = 0, and neither of the boundaries q = ±π. In this choice, q = ±π cannot
be sampled exactly, but approximated to arbitrary precision by increasing Lq, thereby
decreasing ∆q. Thus, all momentum points are contained in the open interval

q ∈ (−π,π) (5.60)

and the momentum points accessible by the discrete sampling are given by

q = nq∆q with nq ∈
{
−
⌊
Lq
2

⌋
, . . . ,

⌊
Lq
2

⌋}
. (5.61)

The momentum q is therefore referred to as being odd or even depending on the integer
nq being odd or even.
If critical behavior is expected at q = ±π, the interval can simply be shifted by π, yielding
samples for instance from the open interval (0,2π), where q = π is one of the sampling
points.
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5.4 Dispersion results

In this section, some results for the dispersion relations of the FMHC and the TFIM are
given.

5.4.1 Results for the FMHC

As mentioned above, the ground state of the model is a product state and can therefore
be described exactly by a MPS with D = 1. For this bond dimension, there is only one
excitation tensor B in the reduced parametrization, since (d − 1)D2 = 1. This tensor is
of dimension d × D × D = 2 × 1 × 1. Since the momentum space EVP Eq. (5.21) is of
dimension 1× 1, there are no higher energy EVs to capture the bound state. This can be
remedied by increasing the bond dimension beyond D = 1, which is more than is needed
for the ground state, but has the capacity to produce EVs at higher energies.

In general, these higher EVs lie somewhere in a multiparticle continuum. The lower and
upper boundaries of the 2QP continuum are given by

Ω`
Q = min

q
(ωq + ωQ−q) (5.62a)

Ωh
Q = max

q
(ωq + ωQ−q) , (5.62b)

respectively.
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Figure 5.1: Energy spectrum of the FMHC for the parameters Γ = 2 and J2 = 0,
computed with bond dimension D = 3. The �gure shows both the exact solu-
tion and the iMPS results. The one-particle dispersion ωq is reproduced per-
fectly. The bound state result from the iMPS computation protrudes slightly
into the two-particle continuum, and the other EVs lie inside it.
The inset shows the base 10 logarithm of the deviation of the iMPS dispersion
from the exact solution.
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Figure 5.1 shows the energy spectrum of the FMHC for the parameters Γ = 2 and J2 = 0,
i.e., without next-nearest neighbor interaction, computed with D = 3.
The dispersion is clearly reproduced perfectly, as can be seen in the inset, which shows
the deviation of the iMPS result from the exact solution. This deviation is by roughly 8
orders of magnitude larger than the deviations in the ground state energy shown in Fig. 4.4.
However, 10−8 is still very small, especially given the excess bond dimension. The accurate
result for the dispersion allows us to establish the boundaries of the 2QP continuum with
very high precision as well, using (5.62). Therefore, they are not shown in Fig. 5.1. Of the
overall nine EVs from the iMPS result, seven lie inside the 2QP continuum, as expected.
Five of them were omitted in order not to clutter the plot too much.
The remaining EV is the second lowest, and it lies below the boundary of the 2QP contin-
uum, at least at the edges of the Brillouin zone. This is a clear indication of a bound state.
The agreement with the exact bound state energy from Eq. (2.23) is quite remarkable,
since the bound state is not really a one-particle state. Around the center of the Brillouin
zone the iMPS results protrudes slightly into the 2QP continuum. For a true 2QP result
this would mean that the bound state becomes unstable in this region and only exists as
a resonance.
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Figure 5.2: Energy spectrum of the FMHC for the parameters Γ = 1.0 and J2 = 0.5,
computed with bond dimension D = 3. The �gure shows both the exact solu-
tion and the iMPS results. The one-particle dispersion ωq is reproduced per-
fectly. The bound state result from the iMPS computation protrudes slightly
into the two-particle continuum, and the other EVs lie inside of it.

Figure 5.2 shows the same data as Fig. 5.1, but for a di�erent set of parameters, Γ = 1
and J2 = 0.5, i.e., with next-nearest neighbor interaction. Due to this interaction, the
spectrum displays more features. However, the basic observations remain unchanged. Only
the bound state enters the continuum at the edges of the Brillouin zone, too. It is still
clearly identi�able a such, though. The exact result was obtained by diagonalizing the
2QP Hamiltonian in Eq. (2.24).
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Again, �ve of the nine EVs are omitted from the plot. The two that are chosen show
one important fact: in variational algorithms, energies are usually ordered simply by their
value. If a level crossing occurs as function of momentum, individual EVs may exhibit
kinks. This can also a�ect the lowest EV, if there are multiple, non-degenerate �avors of
elementary excitations. In this case, human revision of the dispersion results is required.

For bond dimension D = 3, the Schmidt coe�cients si>1 of A are of the order of machine
precision. Therefore, the fact that any accurate results can be obtained is rather surpris-
ing. For D > 3, no sensible excitation energies can be obtained. This is due to the excess
number of parameters in the ground state tensor A, which makes the EVP Eq. (5.12) nu-
merically unstable and is expected.

5.4.2 Results for the TFIM

As described in Sec. 2.2, the elementary excitations of the TFIM are dressed spin-�ips in
the disordered phase and dressed domain walls in the ordered phase. The spin �ips are
clearly non-degenerate. The domain walls come in two types, ←→ and →←. However,
these are equivalent. Also, the ansatz in Eq. (5.2) only allows one type to occur in the
computation. Therefore, the only EV of interest of Eq. (5.21) is the lowest one, which
yields the one-particle dispersion ωq.
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Figure 5.3: Dispersion relation of the TFIM for λ = 0.8.

Figures 5.3 through 5.5 show the dispersion relation for various values of λ and several bond
dimensions. It is apparent from Fig. 5.3 and Fig. 5.4 that the algorithm works equally well
in the ordered and in the disordered phase. Away from criticality, the dispersion can be
obtained to extremely high precision with very moderate e�ort1. Note that the deviation

∆ωq := |ωq,iMPS − ωq,ex| (5.63)

1Using parallelization, computing the dispersion from a known ground state A at bond dimension
D = 10 takes less than two minutes on a quad-core workstation computer.
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Figure 5.4: Dispersion relation of the TFIM for λ = 1.2.
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Figure 5.5: Dispersion relation of the TFIM at the QCP, i.e. for λ = 1.0.

is shown on a logarithmic scale. The �dips� in the curves are caused by the deviation
changing the sign. For the ground state energy ε0, this cannot happen due to the variational
principle. However, the dispersion is the di�erence of the energy of the excited state and
the ground state energy. Therefore, if E0 is known only approximately, ωq can no longer
be guaranteed to be an upper bound for the true excitation energy.
The plots also show, that there is a minimum in the deviation as function of bond di-
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mension. Using bond dimensions D = 20 and D = 30 does not improve the accuracy of
the result for these parameter values. On the contrary, the adverse e�ects of too many
variational parameters are visible in the one-particle computations, too.

In Fig. 5.5 the dispersion at the critical point is plotted. One can clearly see that the
deviations are several orders of magnitude larger than for λ = 0.8 and λ = 1.2. This is
no surprise, since the correlation length diverges, which cannot be captured with �nite
D. Also, the relative improvement for increasing bond dimension is considerably smaller,
which originates from the same fact.
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Figure 5.6 shows the gap ∆ as function of λ, with the inset being a magni�cation of the
vicinity of the critical point. As expected, the gap can be obtained very accurately away
from criticality, with some numerical noise for small λ. The closing of the gap at the QCP
is again notoriously hard to capture at �nite bond dimension.
The data for D = 3 shows an interesting behavior. Two curves are plotted for this bond
dimension. The �rst (green) curve was obtained using a single ground state for λ < 1, and
the domain wall ansatz for excitations for λ > 1. As already observed for the ground state
energy (cf. Fig. 4.5), the critical point appears to be at a value λ < 1. Beyond this point,
the gap increases again linearly. At λ = 1, there is a sudden jump in when the excitation
ansatz changes. Interestingly, the results are surprisingly accurate compared to those with
higher bond dimensions.
The second curve, labeled �D = 3, 1 GS� was obtained by using the spin-�ip ansatz for
excitations also in the Ising phase. This leads to a further increase of the slope of the gap
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to roughly 2. This is easy to understand, since the correct excitations are domain walls
in the Ising regime. Assuming a unique ground state and therefore changing only a single
tensor B and keeping the same A everywhere else means that B must describe two domain
walls. Thus, the minimum energy is twice that of the exact excitation.

5.5 The e�ective model

5.5.1 De�nition of the creation operator a†

Consider the eigenvector ~v q of the momentum space EVP Eq. (5.21). It describes how
the states |Bα,q〉 are superposed to describe a state that satis�es the eigenvalue equation

H̃ |q〉 = ωq |q〉 (5.64)

where the momentum eigenstate |q〉 is given by

|q〉 := a†q |GS〉 =
∑
α

vqα |Bα,q〉 , (5.65)

with the components vqα of the eigenvector ~v q. Therefore, ~v q represents a de�nition for the
creation operator a†. Since this is a single particle state, no statements on the algebraic
properties of aq can be made at this point.
The representation Eq. (5.65) can be transformed into real space by Fourier transformation

|j〉 := a†j |GS〉 =
∑
α,`

vα,` |Bα,j + `〉 (5.66a)

with vα,` :=
∑
q

eiq`vqα . (5.66b)

Since the states |Bα,j〉 form a vector space, the sum over α can be carried out on the level
of the B tensors, yielding a distinct new tensor for each distance ` from the site j, where
the particle is created

C` :=
∑
α

vα,`Bα . (5.67)

This makes it possible to de�ne the real space representation of the creation operator a†

as the set
a†j 7→ {C`, ` = −ΞT , . . . ,ΞT } (5.68)

where ΞT is the maximum distance from the site j where the particle is created, which is
de�ned by the correlation length of the transfer operator T , cf. Eq. (5.34)∣∣∣∣Λ1

Λ0

∣∣∣∣ΞT < θ . (5.69)

In principle, the tolerance value θ should be same one which was used to determine the
convergence of the ground state search for consistency, cf. Eq. (4.4). In practice, a larger
value is often su�cient, as will be discussed in Sec. 5.5.3.
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5.5.2 Analysis of the quasi-particle representation

A completely local excitation such as the spin-�ips found in the FMHC can be described
by a single tensor B1. The components of the eigenvector ~v q of the EVP Eq. (5.21) are
then given by

vqα = δα,1 ∀ q , (5.70)

and the Fourier transform
vα,` = δα,1δ`,0 (5.71)

re�ects the local character of the excitation. Excitations which are not completely local,
such as the dressed spin-�ips found in the TFIM, generally require more than one B tensor.
Also, the components of ~v q are not simply �at as function of q, so that Eq. (5.71) no longer
holds.
As seen in Eq. (5.67), the tensor C` is a linear combination of all Bα tensors, weighted
with the Fourier coe�cients vα,` of ~v

q
α . It describes the polarization cloud of an excitation

` sites away from where it is created. The norm of the vector ~v`

V` := ‖~v`‖ (5.72)

can therefore be interpreted as a measure of the non-locality of the quasi-particle.
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Figure 5.7: Norm V` of the real space representation of the creation operator ~v`
for the parameter value λ = 0.9 and various bond dimensions D. The red
(solid) curve is the function exp(−`/ξex) with exact correlation length ξex from
Eq. (2.48). The thin lines are functions of the type GD(`) ∝ exp(−`/ξT,D),
where ξT,D is the correlation length as determined by the transfer operator T
for the given bond dimension D. The inset shows V` for both positive and
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In Fig. 5.7 Vj is plotted for λ = 0.9 and various bond dimensions D. The red (solid) line
is the function G`,ex = exp(−`/ξex) with the exact correlation length ξex from Eq. (2.48).
The thin lines are functions G`,D ∝ exp(−`/ξT,D), where ξT,D is the correlation length
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determined by the transfer operator T for the given bond dimension D as de�ned in
Eq. (3.75). The proportionality factors are chosen such that G`,D matches the long range
behavior of V` for the respective bond dimension.
Figure 5.7 reveals several noteworthy things. Since by the de�nition of ξT Eq. (3.75)

exp

(
− `

ξT

)
= |Λ1|` with |Λ1| < 1 , (5.73)

the QP representation shows a long range behavior of V` ∝ |Λ1|`, which is exactly what
is expected. Therefore, unsurprisingly, the slope of G`,D approaches that of G`,ex, as ξT,D
converges to the exact value ξex for increasing D. One can also see, that exp(−`/ξex) serves
as an upper bound for any V` by several orders of magnitude.
Lastly, the inset shows V` for both positive and negative `. The graph is not completely
symmetric, which is a result of the asymmetric gauge of the uMPS. However, it shows the
same decrease proportional to |Λ1|` on both sides.

Figure 5.7 shows that even though Vj decreases exponentially, for it to reach machine
precision, a distance of several hundred sites from the center of the quasi-particle may
be required. Therefore, when computing quantities in real space using the representation
Eq. (5.67), ΞT may be too large to obtain results in reasonable time. Even a cuto� based
on the error estimate η may still be too large. Therefore, a cuto� parameter Θ is introduced
which is an upper bound for the spatial extension of the particle which is tracked, and which
has to be chosen according to available computational resources. The error introduced by
this cuto� is of the order

ηΘ = O(|Λ1|Θ) . (5.74)

5.5.3 Error estimation

As stated in Sec. 4.1, the uMPS found by the ground state search is generally not an exact
eigenstate of the Hamiltonian. The usual estimate for the error is the standard deviation
σH of the Hamiltonian

σH =
√
〈H2〉 − 〈H〉2 , (5.75)

which is zero for eigenstates. However, in the framework of iMPS, this is very challenging to
compute. Consider a Hamiltonian such as the one in Eq. (2.25). Squaring it, as required to
compute the standard deviation from Eq. (5.75), produces products of local Hamiltonians
hi · hj for all possible values of i and j including very large ones. This makes the quantity
hard to compute in the iMPS framework compared to MPS for �nite systems, where the
MPO formalism allows one to calculate an exact MPO expression for H2 which can be
evaluated directly [23].
Therefore, the error matrix element η from Eq. (4.1) is used as an error estimate, since it
is by far easier accessible.

Figure 5.8 shows η as function of λ for various bond dimensions. One can see that it �uc-
tuates rather consistently around 1 · 10−8 for bond dimensions up to D = 10. For D = 20,
it is about one order of magnitude larger, which is a result of the higher tolerance value θ
required in order for the ground state search algorithm to converge. The jump at the phase
transition is due to the ground state degeneracy, which makes matrix elements coupling
the ground state to the 1QP sector ill-de�ned. In the Ising phase, the matrix element η
contains the overlap of the two ground states which is a problem in the uMPS formalism.
Refer to App. A.4.4 for details.
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bond dimensions D.

To analyze the e�ect of truncating the creation operator representation Eq.(5.67), Fig. 5.9
shows the deviation of the gap ∆ from the exact result as function of the cuto� length Θ
at λ = 0.5. Since the minimum of the dispersion is at q = 0 for the TFIM, its energy value
is simply given by

∆ =
∞∑

j=−∞
tj (5.76a)

≈
Θ∑

j=−Θ
〈j|H̃ |0〉 (5.76b)

=

Θ∑
j=−Θ

2Θ∑
i=−2Θ

Θ∑
`′,`=−Θ

〈C`′ ,j + `′|h̃i |C`,`〉 (5.76c)

where the range for i was chosen such, that there is at least a distance of Θ between the
operator and the nearest particle location at the boundaries.
Two types of errors can be discussed examining Fig. 5.9. The �rst is due to the cuto� Θ,
but it reaches a minimum quickly. After that, the error increases again, which is due to the
deviation changing the sign, and then converges to a constant value. The curves for each
bond dimension end at the cuto� determined by ΞT . The vertical lines in corresponding
line style (and color) show the cuto� determined by η as

|Λ1|Θ < η . (5.77)

As the plot shows, the error does not change signi�cantly beyond these cuto�s any more. It
can be expected, that other properties derived from the quasi-particle description Eq. (5.68)
show a similar error scaling. This supports the choice of η to de�ne the cuto� for perfor-
mance reasons.
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dimension D. The vertical lines in corresponding line style (and color) show
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5.5.4 Notes on implementation

The EVP Eq. (5.21) not only can, but also has to be, solved for each momentum q in-
dependently. Since normalized eigenvectors are unique only up to multiplication by a
phase factor, the components of ~v q are not necessarily smooth functions of q. Figure 5.10
shows some exemplary results. Fourier transforming a function like this requires consider-
ably more coe�cients than its smooth counterpart. Therefore, smoothing out the vector
components is an integral part of e�cient computation, if transformation to real space is
intended.

The arbitrary phase between eigenvectors is a common problem one faces when diagonal-
izing a Hamiltonian for di�erent momenta independently. In some cases, there are clearly
just sign �ips from one q-value to the next. Generally, a phase of the order of O(∆q) can
occur from one momentum point to the next. Therefore, not only sign �ips are possible,
but also more general phase relations.
In fact, even after repairing phase jumps such as the ones seen in Fig. 5.10, a phase of ±π
can occur between the boundaries of the Brillouin zone. This is known as Zak's phase [93]
and is an indication of a topologically non-trivial band. However, in cases of the FMHC
and the TFIM no such topological phases are observed, as expected.

Generically, there is one dominant component in ~v q which means that one tensor Bα carries
most of the information of the elementary excitation. In the Fourier transform Eq. (5.66b)
this component produces most of the weight. For an adequate description of a quasi-local
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excitation, this weight should be at position ` = 0. However, due to the ambiguity of ~v q

as an eigenvector of Hq,
~v q ′ := ~v qe−iq` (5.78)

is an eigenvector, too, and moreover also a smooth function of q if ~v q is one. But the
largest weight in the Fourier transform is shifted to position `. This example shows, that
the phase relation between ~v q and ~vq+∆q is largely arbitrary but may have great impact on
the Fourier transform v`. Note that in a strict mathematical sense, any �gauge� of ~v q and
also its Fourier transform holds the same information. However, as with any gauge, there
are some gauges that are more convenient for practical application. In the case of ~v q, the
most useful gauge is that where the component with largest absolute value is chosen real
and positive

~v q ′ :=
~v q|vqαb |
vqαb

with vqαb = max
|vqα|

vqα . (5.79)

This ensures that the largest weight in ~v` is at position ` = 0 which matches the physi-
cal intuition. We also �nd, that this gauge produces the fastest decay of V` as function of `.

As with the ground state properties, numerical problems are observed if the number of
variational parameters is a lot larger than is required to describe the physics in the system.
In a re�ection symmetric system such as the TFIM, the Hamiltonian is expected to be
symmetric about q = 0, i.e., that

Hq = H−q (5.80)

holds. Then, after applying the gauge Eq. (5.79), the same must be true for the eigenvector
~v q. However, for smaller λ and higher bond dimension deviations from this symmetry
occur.
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Figure 5.11 shows the sum of the absolute values of the components of ~v q

Vq :=
∑
α

|vqα| . (5.81)

This quantity is sensitive to any asymmetries in ~v q, if they are randomly distributed and
do not cancel each other out. It therefore allows us to quickly assess the symmetry or lack
thereof of ~v q. Plotted alongside Vq is the smallest diagonal element of Hq, to represent the
behavior of the matrix as function of momentum. Also included is the trace of Hq, since
it is invariant under the diagonalization.
For bond dimensions D = 3 and D = 5, the diagonal element is symmetric in q, and so are
the other matrix elements that are not shown. Consequently, the phase-gauged ~v q shows
the same symmetry. But for D = 10, Hq

11 shows an unphysical asymmetry, and so do other
matrix elements. This asymmetry is visibly re�ected in the resulting eigenvector ~v q.
The violation of Eq. (5.80) can be traced back to the real space hopping elements Hj

αβ

from Eq. (5.23e). In a re�ection symmetric system, hopping in both directions should have
the same amplitude, i.e.,

Hj
αβ = H−jαβ . (5.82)

This is found to hold true for D = 3 and D = 5, but not for D = 10. The reason behind
this is numerical instability in the computation of the excitation tensors Bα. This happens
when the singular values in v are too small. Indeed, di�erent program runs for the same
parameters yield di�erent results for B, as shown in Fig. 6.5 in Chap. 6. This is a strong
indication of random rounding errors impacting the computation.
Therefore, a more stable algorithm to compute the B is required in the future.

Interestingly, the trace of Hq is symmetric for all bond dimensions. This explains why the
asymmetry is not observed in the dispersion.
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5.6 One-particle spectral weight

To verify the QP representation Eq. (5.68), the one-particle spectral weight in the xx-
channel

S xx
1P (Q) := 〈GS|S x

−q |q〉〈q|S x
q |GS〉 (5.83a)

= 〈GS|S x
−qa
†
q |GS〉〈GS|aq S x

q |GS〉 (5.83b)

=: |χxq |2 (5.83c)

is computed. The matrix elements are given by

χxq := 〈GS|aq S x
q |GS〉 (5.84a)

=
1

L

∑
j,m

eiq(j−m)〈GS|aj S
x
m |GS〉 (5.84b)

=
∑
j

eiqj〈GS|aj S
x
0 |GS〉 (5.84c)

=
∑
j,`

eiqj〈C`,j + `|S x
0 |GS〉 . (5.84d)

5.6.1 Results for TFIM

Figures 5.12 and 5.13 show the spectral weight in the xx-channel for di�erent values of λ
and several bond dimensions each.
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Figure 5.12: Spectral weight S xx for the TFIM at λ = 0.5.

From Fig. 5.12 it is apparent that away from criticality, the spectral weight can be obtained
to very high precision, even at low bond dimension. Again, as for the dispersion, the devia-
tion from the analytical result is plotted on a logarithmic scale. Here, too, the appearance
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of dips shows that both positive and negative deviations occur. Directly at the critical
point, the spectral weight diverges for q → 0, because the gap closes (cf. Eq. (2.54)).
Therefore, Fig. 5.13 shows the spectral weight for λ = 0.99, i.e., very close to, but not
directly at the critical point. Clearly, the large peak at q = 0 is not captured perfectly at
low bond dimensions. But for D = 30, the deviation is only around 1%.

Interestingly, the asymmetry in ~v q observed in Sec. 5.5.4 does not seem to have adverse
e�ects on the results for one-particle properties.

5.7 E�cient computation

While it is instructive to examine the real space representation of the quasi-particle Eq. (5.68),
and the spectral weights can indeed be computed from real space matrix elements, it is far
more e�cient to work in momentum space. This section is intended to show why.

In the TDL, the real space matrix element in Eq. (5.84) converges to zero as function of
the distance j from the operator position, which is assumed to be site 0. This convergence
occurs on a length scale of ΞT , as explained in Sec. 5.2.3. Therefore, to obtain χq requires
computing 2ΞT real space matrix elements 〈j|S x

0 |GS〉, each of which consists of 2ΞT
contributions of the form 〈C`,j + `|S x

0 |GS〉.
This amounts to evaluating 4ΞT

2 TNs of the form

〈C`,j + `|S x
0 |GS〉 = S x

0

j + `

C`

. (5.85)
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Since the tensors C` are distinct for each distance ` from the particle center j, none of these
TNs appears more than once. This makes it extremely di�cult to reuse partial results in
the process.

However, the following observation from Ref. [92] permits it to compute momentum space
matrix elements much more e�ciently

|q〉 =
1√
L

∑
j,`

e−iqj |C`,j + `〉 (5.86a)

=
1√
L

∑
j,`

e−iq(j−`) |C`,j〉 (5.86b)

=
1√
L

∑
j

e−iqj
∑
`

e+iq` |C`,j〉 (5.86c)

=:
1√
L

∑
j

e−iqj |Cq,j〉 (5.86d)

where Cq is de�ned as

Cq :=
∑
`

e+iq`C` . (5.87)

The index shift j → j − ` from line (5.86a) to line (5.86b) is possible, since in principle all
sums run from −∞ to ∞. Restricting them to ±ΞT in numerics just means leaving out
small numbers below machine precision. Note that the tensor Cq de�ned in Eq. (5.87) is
not the Fourier transform of C`, but has the opposite sign in the phase factor.
The series of equalities in (5.86) shows that under the Fourier transform the QP repre-
sentation Eq. (5.68) can be reduced to a single tensor Cq which represents a particle with
momentum q at site j. Performing the summation on the level of C tensors is much faster
than evaluating and summing TNs of type Eq. (5.85). The tensor Cq can be computed
directly from ~vq

Cq =
∑
`

e+iq`C` =
∑
`

e+iq`
∑
α

vα,`Bα (5.88a)

=
∑
α

(∑
`

e+iq`vα,`

)
Bα (5.88b)

=
∑
α

v−qα Bα (5.88c)

and is therefore independent of any cuto� made in ~v`. We highlight that v−q occurs in
Eq. (5.88c) because of the opposite sign of the phase compared to the normal Fourier
transformation mentioned above.
Using the momentum space representation Eq. (5.87), χq is computed as

χq =
1

L

∑
j,m

eiq(j−m)〈GS|aj S
x
m |GS〉 (5.89a)

=
1

L

∑
j,m

eiq(j−m)〈Cq,j|S x
m |GS〉 (5.89b)

=
∑
j

eiqj〈Cq,j|S x
0 |GS〉 . (5.89c)

This requires only O(ΞT ) TN evaluations in contrast to the real space computation in
Eq. (5.84d), which needs O(ΞT

2) TN evaluations.
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The second bene�t of using Cq is that this tensor is the same for all sites j. This makes it
possible to reuse already computed parts of the TN. In summing over all required positions
j, the following topologically distinct TNs occur:

S x
0

j

Cq

for j < 0 (5.90a)

S x
0

j

Cq

for j = 0 (5.90b)

S x
0

j

Cq

for j > 0 . (5.90c)

They are generally evaluated as

χq =
∑
j<0

e+iqj
(

(T †)|j|−1[1† (Cq ;A)[u]], S x(A;A)[v]
)

+
(
u, S x(Cq ;A)[v]

)
+
∑
j>0

e+iqj
(
S x† (A;A)[u], T j−1[1(Cq ;A)[v]]

)
. (5.91)

Note, however, that Cq is a linear combination of Bα tensors. Therefore, all TNs for j < 0
evaluate to zero in left-canonical gauge, since they contain the expression 1† (C;A)[u] = 0D×D
as seen in Eq. (5.10). Consider therefore, as an example, the case j > 0. For each distance
j, the contribution of the TN to the matrix element χq is

S x
0

j

Cq

= e+iqj
(
S x† (A;A)[u], T j−1[1(Cq ;A)[v]]

)
(5.92a)

= eiqj
(
S x† (A;A)[u], T [vqj−1]

)
(5.92b)

with vqj−1 := T j−2[1(Cq ;A)[v]] . (5.92c)

Reusing the left boundary matrix vqj−1 from the last step j− 1 is possible, since the tensor
Cq is the same for all j, in contrast to C`, which is distinct.

The width of the TNs in Eq. (5.85) is on average of the order ΞT . Therefore, the computa-
tional cost for obtaining χq from real space matrix elements scales as O(ΞT

3). In contrast,
the computation in momentum space scales only as O(ΞT

2) assuming a momentum dis-
cretization Lq ∝ ΞT .

Of course, this speed up comes at a price. Once the real space matrix elements 〈j|S x |GS〉
are computed, χq can be obtained for arbitrary q by Fourier transformation, which is very
fast, without the need to recompute any matrix elements. In contrast, Eq. (5.89) must be
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evaluated for each desired q value. Changing the resolution in momentum space requires
either to discard the known results, or to exactly double the number of momentum sam-
ples by computing matrix elements in the middle between each pair of existing q-points.
However, in practice there is hardly ever the need to compute results for arbitrary q, if a
reasonably high resolution in momentum space is chosen from the start.

5.8 Chapter summary

In this chapter, the description of excited states in the framework of iMPS was introduced.
It was shown that the tensors Bα used to describe excitations have a reduced number
of independent variational parameters, although they are of the same dimension as the
ground state uMPS tensor A. Following this observation, an algorithm was presented
that restricts the search for excitation tensors to the relevant subspace. This canonical
representation of B tensors also proves convenient because it makes the iMPS orthogonal
with respect to the location of the B tensor. However, matrix elements show an asymmetry
in their computation, depending on the operator position. Therefore, the momentum
superposition of the excited states in real space was introduced. Using these Wannier
states, the Hamiltonian matrix in momentum space was constructed and diagonalized to
�nd the linear combination of excited states with lowest energy.
This lowest eigenvalue of Hq was seen to be a very accurate approximation to the one-
particle dispersion. For the TFIM, the dispersion could be obtained equally well in the
disordered phase and the ordered phase.
Next, the Fourier transform for the eigenvector ~v q corresponding to the dispersion eigen-
value was examined. The Fourier coe�cients are a representation of the polarization cloud
which the quasi-particles acquire away from the strong coupling and strong �eld limits.
The coe�cients were shown to decrease as |Λ1|` with distance ` from the site where the
particle is created, in full accordance with the expectations.
Further, some numerical details on the computation of ~v q were given, and it was observed
that the components show an unphysical asymmetry for smaller λ and higher bond dimen-
sion.

To test the one-particle representation, the spectral weight in the xx-channel was com-
puted. Su�ciently far away from criticality, it was found to be very accurate. Close to the
phase transition, the agreement was not perfect, but for larger bond dimensions still quite
good.
The asymmetry in ~v q was found not to have negative e�ects on the quality of these results.

In the next chapter, the ansatz is extended to two-particle states and the challenges of
this extension are discussed. Results are provided for the two-particle spectral weight and
the quasi-particle decay amplitude of the TFIM, as well as for the two-particle interaction
matrix for both models.





Chapter 6

Two-particle properties

Everything must be made as simple as possible.

But not simpler.

Albert Einstein

In this chapter, algorithms to obtain two-particle (2QP) properties are presented, along
with a number of results. This represents the main part of the original research of this
thesis. Note that some two-particle results were also found by Verstraete et al. [94, 13, 95]
using a di�erent ansatz for 2QP states.

First, the de�nition of and various bases for 2QP states are discussed in Sec. 6.1. In
Sec. 6.2, some results on the metric tensor of the TFIM are presented and discussed. Then,
in Sec. 6.3, the two-particle spectral weight in the zz-channel is computed for the TFIM,
for which an analytical result is available to compare the numerical results to. In Sec. 6.4,
the concepts used in e�cient 2QP computations are introduced. Section 6.5 presents and
discusses results on the quasi-particle decay amplitude. Finally, Sec. 6.6 holds the main
results, namely those on the 2QP interaction matrix.

6.1 De�nition of two-particle states

Now that it is known how a state can be constructed that holds one QP, it seems natural
to construct two-particle states by applying the creation operator found in Sec. 5.5 twice.

6.1.1 Real space basis

This leads to the following de�nition of a two-particle state in real space

|j,k〉 :=
∑
`,m

|C`,j + `; Cm,k +m〉, (6.1)

where |C`,j+`; Cm,k+m〉 is a state analogous to Eq. (5.2) which has ground state tensors
everywhere except at sites j + ` and k +m, where A is replaced by C` and Cm as de�ned
in Eq. (5.67), respectively,

|C`,j + `; Cm,k +m〉
:=

∑
s1,...,sL

Tr(As1 · · ·Asj+`−1C
sj+`
` Asj+`+1 · · ·Ask+m−1C

sk+m
m Ask+m+1 · · ·AsL)

× |s1, . . . ,sL〉 . (6.2)
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Note that for small particle distances the case j+ ` = k+m can occur, i.e., both C tensors
fall onto the same lattice site. These contributions are set to zero, which will be motivated
below.

Often, the relative distance d := k − j of the two particles is more useful and the state is
written as

|j,j + d〉 = |j,k〉 . (6.3)

On the level of iMPS as de�ned in Eq. (6.2), there is no concept of particle exchange.
Interchanging the particle positions j and k produces the same state, i.e.

|j,k〉 = |k,j〉 . (6.4)

In this respect, the quasi particles are therefore bosonic. As mentioned in Chap. 2, the
excitations in spin systems are hard-core bosons. How and to what extent this can be
described in the iMPS framework will be discussed later.

Unfortunately, the naïve de�nition in Eq. (6.1) does not generally yield an orthonormal
basis (ONB). Instead, the following behavior is observed

〈j,j + d|j,j + d〉

{
= 1, if d > 2ΞT

6= 1, otherwise
(6.5a)

〈j′,j′+ d′|j,j + d〉

{
= 0, if d > 2ΞT ∧ d′ > 2ΞT or |j − j′| > 4ΞT

6= 0, otherwise
, (6.5b)

where ΞT is the cuto� de�ned by the second largest EV of the transfer operator, cf.
Eq. (5.34). In summary, the states are orthonormal if the particles are so far apart that
none of the involved representations overlap. If there is an overlap, deviations from or-
thonormality can occur. The deviations are larger for bigger overlaps.
This behavior can easily be understood by the following argument: For a particle distance
larger than 2ΞT , the C-tensors cannot �see� each other within the iMPS class of that bond
dimension. Therefore, such a state then describes a non-interacting system, which is cap-
tured already by the one-particle dynamics. Hence, the interesting part of the Hilbert
space is also the di�cult part which requires additional work.

As mentioned above, for d < 2ΞT , the case j + ` = j + d + m can occur, i.e., the two C
tensors would have to be on the same lattice site. In this case, it is not really clear how
to proceed. Since in spin systems the elementary excitations are generically of hard-core
bosonic type, all contributions of this type are set to zero. Although it may seem arbitrary
in real space, it can be shown that under Fourier transformation omitting states with two
C on the same site can be interpreted as a form of hard-core constraint (cf. Sec. 6.4).

Figure 6.1 shows the squared norm and some overlaps of the states de�ned in Eq. (6.3),
computed for bond dimension D = 5 at λ = 0.6. As can be seen, the state with particle
distance d′ = 0 does not have zero norm, even by numerical standards. This means the
QP representation does not exactly reproduce the expected hard-core property, even if the
contributions with both C tensors on the same site are dropped. However, the norm of
the d′ = 0 state is considerably smaller than that of the d′ = 1 state, and the d′ = 3 state
already has a norm of around 0.8. Since the particles still overlap considerably for small
distances, this is by no means trivial, but rather a sign that the iMPS description, although
not perfect, is quite close to hard-core bosons. The plot also shows that 2ΞT is really an
upper limit for the 2QP basis to become orthonormal. In practice, 1ΞT is usually enough
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Figure 6.1: Exemplary overlaps of the 2QP real space states |j,j+d〉, also including
overlaps with the 1QP sector |j〉. Computed for the TFIM at λ = 0.6 with
bond dimension D = 5. The numerical tolerance value is 10−14, for which
ΞT = 57 as de�ned in Eq. (5.34). The thin horizontal line represents machine
precision for 64-bit double computations.

to reach the tolerance value θ and even machine precision.

Unfortunately, for d < ΞT the so de�ned 2QP states are also not always orthogonal to the
1QP sector. At least they are orthogonal to the ground state. The reason for this is that
Eq. (5.10) is linear, and therefore holds for any linear combination of B tensors, including
C`

1(a·Bα;A)[u] = a · 1(Bα;A)[u] = 0 ∀ Bα ⇒ 1(C`;A)[u] = 0 = 1(A;C`) . (6.6)

Note that as done in Eq. (6.5b), throughout this chapter primed letters like j′, d′, `′ etc.
are always used to refer to the bra-state, whereas plain letters j, d, ` etc. refer to the
ket-state.
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6.1.2 Momentum space basis

To overcome the orthogonality problem, one can once more pass to momentum space by
taking the Fourier transform in both real space coordinates

|q1,q2〉 :=
1

L

∑
j,k

e−iq1je−iq2k |j,k〉 (6.7a)

=
1

L

∑
j,d

e−iq1je−iq2(j+d) |j,j + d〉 (6.7b)

=
1

L

∑
j,d

e−i(q1+q2)je−iq2d |j,j + d〉 (6.7c)

where q1 is the momentum of the particle at site j and q2 that of the particle at site
k = j + d. Unfortunately, the so de�ned states are not orthogonal with respect to q1 and
q2 either.
However, the argument for one-particle Wannier states (cf. App. A.6) also applies in this
case with respect to total momentum

Q := q1 + q2 . (6.8)

The canonical choice of a second momentum coordinate is the relative momentum

q := q2 − q1 . (6.9)

Then, the individual particle momenta can be written as

q1 =
Q− q

2
and q2 =

Q+ q

2
. (6.10)

Inserting these de�nitions into Eq. (6.7c), the two-particle state in momentum space reads

|Q,q〉 :=
1

L

∑
j,d

e−iQje−i
Q+q

2
d |j,j + d〉 (6.11a)

=
1

L

∑
j,d

e−iQje−iQ
d
2 e−iq

d
2 |j,j + d〉 . (6.11b)

This shows that there are multiple equivalent de�nitions for a momentum space basis, just
like there are for a real space basis as seen in Eq. (6.3). In order to make use of the relation
〈Q′,q′|Q,q〉 ∝ δQ′,Q, total momentum Q has to be chosen as the primary quantum number.
The choice of relative momentum q as second quantum number is viable, if it is actually
a continuous variable. However, when momentum is discretized as described in Sec. 5.3,
relative momentum becomes an inconvenient choice, because it is the di�erence of the two
individual particle momenta. This is so for two reasons: First, q can take values in the
interval (−2π,2π), half of which lies outside the �rst Brillouin zone, requiring di�erent
handling of Q and q. Second, if Q = q1 + q2 is even, then q = q1 − q2 must be even, too,
and the same holds for odd Q. This requires di�erent handling of odd and even Q-sectors.
Therefore, the basis in Eq. (6.11) will not be used. Instead, one of the individual particle
momenta, q1, is chosen as the second quantum number. The values are then contiguous
and can be taken to sample the �rst Brillouin zone only. This resulting basis is de�ned as

|Q,q1〉 :=
1

L

∑
j,d

e−iQje−iQde+iq1d |j,j + d〉 (6.12)
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which can easily be related to the basis of individual particle momenta |q1,q2〉 by Eq. (6.7).
Note that conservation of total momentumQ is always considered implied. In this notation,
the momentum of the second particle q2 is therefore always �xed by Q and q1 as

q2 = Q− q1 , (6.13)

and is often used as a shorthand for this expression.

6.1.3 Hybrid basis

So far, two-particle bases in both real and momentum space have been de�ned, neither of
which proves to be a proper ONB. Moreover, neither basis provides a distinguished state
from which to start an orthogonalization.
Therefore, a hybrid basis of total momentum Q and relative particle distance d is chosen.
It is de�ned as

|Q,d〉 =
1√
L
e−iQ

d
2

∑
j

e−iQj |j,j + d〉 , (6.14)

i.e., it is formally obtained by dropping the Fourier transformation in the relative distance
from Eq. (6.11).
Though this basis may seem uncommon, it combines the favorable properties of the real
and momentum space bases. First, states with di�erent total momentum Q are guaranteed
to be orthogonal, and therefore each sector can be treated independently. Second, it is also
clear that the 2QP states are orthogonal for relative distances d > 2ΞT as well, and thus
form an ONB in that part of Fock space. Therefore, the state |Q,d = 2ΞT 〉 does provide a
well-de�ned starting point for the Gram-Schmidt orthonormalization scheme. States with
smaller d can then successively be orthogonalized. Since the Gram-Schmidt algorithm does
not change the �rst vector, it is important to start from a well-de�ned 2QP state.
Once more, one faces the problem that a representation of the actual states does not exist
in computer memory, and only overlaps and matrix elements are accessible. Appendix A.8
shows how to apply the Gram-Schmidt algorithm using the metric tensor consisting of the
overlaps of a skew basis and operator matrices computed in that skew basis.

In the hybrid basis, each Q-sector holds 1 +
Lq−1

2 unique states, determined by the relative

distance d = 0, . . . ,
Lq−1

2 . Since the excitations in spin systems are hard-core bosons, the
state with d = 0, i.e., both particles on the same site, has norm 0 in the limit that the
iMPS representation is exact. Due to the real space periodicity implied by momentum
discretization, the states are Lq-periodic in d and thus only the states with d ≤ Lq−1

2
are unique. It is also clear that for bosons the states with +d and −d are the same, see
App. A.7.

Although the hybrid basis de�ned above is bene�cial in terms of orthogonality and a neces-
sary �detour� for using the Gram-Schmidt algorithm, quantities are not directly accessible
in this basis. Overlaps and matrix elements have to be computed either in the real space
basis |j,j + d〉 or in the momentum space basis |Q,q1〉 and then Frourier transformed into
the hybrid basis for orthogonalization. The orthogonalized results can then be transformed
again, either into real space or momentum space as needed. See App. A.9 for a summary
of 2QP basis transformations.

To distinguish it from the original, skew iMPS basis Eq. (6.14), the orthogonalized hybrid
basis is denoted as |Q̃,d〉 with a tilde.
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6.1.4 Metric tensor

If the two-particle real space states de�ned in Eq. (6.3) did form a proper ONB, the metric
tensor would simply be given by

〈j′,j′ + d′|j,j + d〉 = δj′,jδd′,d + δj′+d′,jδj′,j+d − 2δj′,jδd′,dδd,0 (6.15)

where the last term re�ects the hard-core constraint. This would straight forwardly trans-
form into momentum space as

〈Q,q′1|Q,q1〉 = δq′1,q1 + δq′1,q2 −
2

L
, (6.16)

as shown in App. A.10. In fact, for pure product states at D = 1 this is true. However, as
seen in Fig. 6.1, for non-trivial bond dimension the 2QP states do not form an ONB. For
increasing bond dimension D, the overlaps of states with small particle distance get larger,
since the site tensors are able to �see� more and more neighboring sites. Therefore, the
metric tensor of this skew basis, or more precisely, its deviation ∆N from an orthonormal
basis needs to be computed. Transformed into the hybrid basis, this metric tensor is needed
to obtain operator matrices in an orthogonal basis.
As in the case of the matrix element in Sec. 5.7, computations can be done much more
e�ciently in momentum space. However, they are more involved and can therefore be
found in App. B.2.
They result in the following metric tensor in the skew momentum space basis |Q,q1〉

NQ
q′1,q1

=
1

Lq
∆NQ

q′1,q1
+ δq′1,q1 + δq′1,q2 (6.17)

consisting of a diagonal bosonic part δq′1,q1 + δq′1,q2 and the deviation ∆NQ
q′1,q1

. The hard-

core property is included in ∆NQ
q′1,q1

to the extent to which it is captured by the iMPS

description. In order to obtain operator matrices in a diagonal basis, Eq. (6.17) has to be
transformed into the hybrid basis.

6.1.4.1 Metric tensor representation in the hybrid basis

The ground state uMPS is normalized and orthogonal to all excited states by construction.
One-particle excited states are also normalized and orthogonal to each other; they can,
however, have overlaps with two-particle states. After e�ciently computing the overlaps
in momentum space, they are transformed into the hybrid basis using the transformations
in App. A.9. In each Q-sector, the metric tensor is then representable by a matrix

NQ =



〈GS|GS〉 0 · · · · · · 0
0 〈Q|Q〉 〈Q|Q,d〉 · · · 〈Q|Q,d〉
... 〈Q,d′|Q〉
...

... 〈Q,d′|Q,d〉
0 〈Q,d′|Q〉

 . (6.18)

The Gram-Schmidt algorithm as described in App. A.8 is applied starting with the ground
state, which is not changed, then to the 1QP state, which is not changed either, and then
successively to the 2QP states. For consistency, this process begins with the 2QP state,
which has its norm in the upper left corner of the sub-matrix NQ

d′,d. Since states with
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su�ciently large particle distance are assumed correct, NQ
d′,d should therefore be ordered

beginning with the maximum distance dmax =
Lq−1

2 . Then, the matrix NQ takes the form

NQ =



1 0 0 · · · 0

0 1 (NQ
dmax

)∗ · · · (NQ
0 )∗

0 NQ
dmax

NQ
dmax,dmax

· · · NQ
dmax,0

...
...

...
. . .

...

0 NQ
0 NQ

0,dmax
· · · NQ

0,0

 . (6.19)

6.1.4.2 Note on the hard-core property

The state with d = 0 is included for two reasons. First, its squared norm NQ
0,0 is an

indicator of how close the iMPS description is to hard-core bosons.
If the metric tensor is ordered as in Eq. (6.19), |Q,d = 0〉 is the last state, to which
the Gram-Schmidt algorithm is applied. Therefore, it does not in�uence any of the other
states. If the element NQ

0,0 is found to be smaller than a threshold value, the state can
simply be excluded from orthonormalization.

Second, if there are signi�cant deviations from hard-core bosons, the state may actually
carry physically relevant information.
By de�nition (cf. Eq. (A.8.1)), the Gram-Schmidt algorithm normalizes all orthogonalized
states to unity. This includes the state with particle distance d = 0, if no special treatment
for it is implemented explicitly.
If NQ

0,0 is very small in the skew basis, the normalization can result in spurious and very
large matrix elements of the d = 0 state in the orthogonalized basis. Since they do not
in�uence the computation of any other matrix elements, they can still be discarded before
the operator matrix is transformed back to momentum space or real space. Although this
is physically motivated, it is still somewhat arbitrary.

At this point it is not entirely clear, if the iMPS ansatz allows for a proper description
of hard-core bosons. Even if the diagonal element NQ

0,0 is signi�cant, the metric tensor

generically has an EV that is much smaller. Also, the overlap 〈Q̃,d = 0|Q,d = 0〉 between
the d = 0 state in the skew basis and in the orthogonalized basis is much smaller than
NQ

0,0 in these cases. This suggests, that a hard-core bosonic quasi-particle picture should in
principle be possible with iMPS. However, the results for the two-particle spectral weight
in Sec. 6.3 below indicate, that the matrix elements of the d = 0 in the skew basis carry
signi�cant physical information.

Three alternatives to the generic Gram-Schmidt orthogonalization come to mind. All of
them include a certain bias, since they assume that the quasi-particles are hard-core bosons
and that the basis contains one state that should have norm zero.
First, the state with particle distance d = 0 can generally be excluded from the computa-
tions, regardless of its norm. As shown in Fig. 6.4 below, this can lead to signi�cantly less
accurate results.
Second, the information held by the state with d = 0 in the skew basis could be extracted
during the computation of the operator matrix in the orthogonalized basis. If the state
with d = 0 has a signi�cant norm, it also shows signi�cant overlaps with the 2QP states
with small particle distance d > 0. By projecting the matrix elements of the d = 0 state
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onto the orthogonalized 2QP states with d > 0, the unphysical state can be eliminated
and problems due to division by a very small norm can be avoided.
Third, one could diagonalize the metric tensor and discard the eigenspace corresponding
to the smallest eigenvalue, which is usually closer to zero than the diagonal element NQ

0,0.
Since the spectrum of NQ is invariant under the Fourier transformation, this could be
done directly in the momentum space basis without the �detour� through the hybrid ba-
sis. However, since the eigenvectors are linear combinations of the original states |Q,d〉
or |Q,q1〉, the interpretation as 2QP states with de�nite momentum q1 or de�nite particle
distance d is lost.

As seen in Fig. 6.2 below, for bond dimension D = 2, the diagonal element NQ
0,0 is so

small that the state can be excluded without introducing signi�cant additional errors. For
bond dimension D ≥ 3, other errors are by far predominant. Therefore, a comparison is
only done between including and excluding the state with d = 0 from the Gram-Schmidt
algorithm.

6.2 Results for the metric tensor of the TFIM

As a �rst result, the metric tensor NQ
d′,d of the TFIM in the non-orthogonal hybrid basis is

analyzed. This is done at the parameter value λ = 0.5, which is in the disordered phase,
halfway between the trivial strong �eld limit at λ = 0 and the critical point at λ = 1. The
focus is set on low bond dimensions D = 2 and D = 3, because these two data sets already
show curiously diverse behavior.
Three quantities are examined in this context. The �rst is the deviation of the diagonal
part of the metric tensor from exact hard-core bosons

∆hcb := 1−

∥∥∥diag(NQ
d′,d)

∥∥∥
‖Nhcb‖

(6.20)

where diag(NQ
d′,d′) denotes the main diagonal of the matrix NQ

d′,d′ , and Nhcb the metric
tensor of exact hard-core bosons in the Fock space of the same dimension, i.e.,

Nhcb := 1
dim(NQ

d′,d)−1
⊕ 01×1 . (6.21)

The second quantity is the o�-diagonality ODN of the metric tensor matrix, which is
de�ned as

ODN :=

∥∥∥NQ
d′,d − diag(NQ

d′,d)
∥∥∥

‖Nhcb‖
. (6.22)

Both these quantities are de�ned relative to the norm of the exact hard-core bosonic metric
tensor Nhcb in order to make them independent of the dimension of NQ

d′,d. By de�nition,

∆hcb and ODN both vanish in the limit that NQ
d′,d describes exact hard-core bosons. The

diagonal elements of NQ
d′,d, which for an exact iMPS representation should be

NQ
d,d =

{
0, for d = 0

1, for d > 0
, (6.23)

are the third quantity of interest.
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Figure 6.2: Characteristics of the metric tensor in the non-orthogonal hybrid basis
{ |Q,d〉} for the TFIM at λ = 0.5, for bond dimensions D = 2 as function
of total momentum Q. The quantity ∆hcb is the deviation of the main di-
agonal from exact hard-core bosons as de�ned in Eq. (6.20). ODN is the
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Figures 6.2 and 6.3 show ∆hcb, ODN and some diagonal elements NQ
d,d for the TFIM at

λ = 0.5. Strikingly, the results for D = 2 show very little deviation from exact hard-
core bosons. Both the deviation quantities and the diagonal element NQ

0,0 are very small,

whereas NQ
1,1 is very close to 1. In the Gram-Schmidt algorithm, all orthogonalized vec-

tors are normalized to 1. This includes the d = 0 state if it is not excluded explicitly.
Therefore, if NQ

0,0 is very small, this will result in spurious and potentially large operator

matrix element ÔQ0,0 after orthonormalization. Because of that, the results for D = 2 are
not subjected to the orthogonalization process.

For bond dimension D = 3, the situation is quite di�erent. The deviation ∆hcb is of the
order of 10−2 (i.e. 1%), and the o�-diagonality of the order 10−1. The diagonal element
NQ

1,1 is also of the order 10−1, and the following NQ
2,2 almost reaches unity. The most

critical element NQ
0,0 shows some modulation as function of total momentum and is on av-

erage of the order 10−3. At �rst glance, this is neither cause for concern about numerical
instability, nor would it appear to be negligible. Therefore, although this is still rather
close to exact hard-core bosons, one would expect quantitative improvements of operator
matrices from applying the orthogonalization scheme.

6.3 Two-particle spectral weight in the TFIM

For the TFIM on a one-dimensional chain, it is known from analytic results [62] that in the
strong �eld phase all spectral weight of the zz-channel lies in the 0QP and 2QP sectors.
Therefore, the two-particle spectral weight is a good point to continue investigating the
properties of our two-particle states.

The two-particle spectral weight is the projection of the spin-spin correlation function onto
the 2QP subspace, i.e.

Sαβ2p (Q) = 〈GS|Sα−Q P
Q
2p S

β
Q |GS〉 (6.24a)

with PQ2p =
∑
q∈BZ

|Q,q〉〈Q,q| =
dmax∑
d=0

|Q̃,d〉〈Q̃,d| (6.24b)

=
∑
d

〈GS|Sα †Q |Q̃,d〉〈Q̃,d|S
β
Q |GS〉 (6.24c)

=:
∑
d

Ωα
d (Q) Ωβ

d (Q)∗ (6.24d)

α=β
=

∑
d

|Ωα
d (Q)|2 (6.24e)

where, however, |Q̃,d〉 must be an orthonormal basis of the 2QP subspace. Applying the
Gram-Schmidt algorithm, with α = z, the matrix element in the orthogonalized hybrid
basis is given by (cf. Eq. (A.8.14))

Ωz
d(Q) := 〈GS|Sz †Q |Q̃,d〉 (6.25a)

=
1√
Vdd

[
〈GS|Sz †Q |Q,d〉 −

∑
`>d

V`d
V``
〈GS|Sz †Q |Q̃,`〉

]
(6.25b)

with Vij := 〈Q̃,i|Q,j〉 (cf. Eq. (A.8.4)). Note that this formulation assumes that the Gram-

Schmidt algorithm is started at the maximal dmax =
Lq−1

2 and is then applied to states
with successively smaller d.
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This means that the only matrix elements required to compute the spectral weight are
those between the ground state and the 2QP sector

〈GS|Sz †Q |Q,d〉 = 〈Q,d|S z
Q |GS〉∗ . (6.26)

But to obtain the auxiliary matrix V , which is also needed, the entire metric tensor

NQ
d′d := 〈Q,d′|Q,d〉 (6.27a)

NQ
d′ := 〈Q,d′|Q〉 (6.27b)

of the skew basis including the spurious overlaps of the 1QP and 2QP sectors must be
known.
To compute the matrix element Eq. (6.26), it must be expressed either in the real space
basis or in the momentum space basis

〈Q,d′|S z
Q |GS〉 =

1

L
e+iQ d′

2

∑
j′,`

e+iQj′e−iQ`〈j′,j′ + d′|S z
` |GS〉 (6.28a)

=
1

L
e+iQ d′

2

∑
j′,`

eiQ(j′−`)〈j′ − `,j′ − `+ d′|S z
0 |GS〉 (6.28b)

= eiQ
d′
2

∑
j′

eiQj
′〈j′,j′ + d′|S z

0 |GS〉 (6.28c)

=
1√
L
e+iQ d′

2

∑
q′1

e+iq1d′〈Q,q′1|S z
Q |GS〉 (6.28d)

= e+iQ d′
2

∑
q′1

〈Q,q′1|S z
`=0 |GS〉 (6.28e)

where the last equality holds true due to TI.

6.3.1 Reference result from uMPS

The 2QP spectral weight in the zz-channel for the TFIM in the strong �eld phase is given
by Eq. (2.55). The ground state correlation function can be computed from the uMPS
representation

S zz(Q) = 〈GS|Sz−QSzQ |GS〉 (6.29a)

=
∑
j

eiQj〈GS|SzjSz0 |GS〉 (6.29b)

=:
∑
j

eiQjS zz
j (6.29c)

with

S zz
j =


(
Sz† (A;A)[u], T |j|−1[Sz(A;A)[v]]

)
, if j 6= 0(

u, (Sz)2(A;A)
[v]
)

= 1
4

(
u,1(A;A)[v]

)
= 1

4 , if j = 0

. (6.30)

Note, that S zz
j converges to

〈GS|Szj |GS〉〈GS|Sz0 |GS〉 = 〈GS|Sz0 |GS〉2 = M2
z (6.31)

for |j| > ΞT . It is therefore numerically favorable, to compute the deviation of the cor-
relation function from the ground state magnetization directly and then take the Fourier
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transform to avoid loss of signi�cance. The reference result for the two-particle spectral
weight is given by

S zz
ref (Q) =

∑
j

eiQj(S zz
j −M2

z ) (6.32)

where the uMPS result for the ground state magnetization is used for consistency.

6.3.2 Results

Despite the e�cient momentum space algorithms outlined in the next section, 2QP calcu-
lations are generically more challenging and CPU intensive than those for 1QP. Therefore,
results are only shown for bond dimensions up to D = 10. Since the method is in a proof-
of-concept stage, this is su�cient to assess its advantages and disadvantages.
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Figure 6.4: Two-particle spectral weight S zz
2P for the TFIM at λ = 0.5 for various

bond dimensions. In the upper panel, the spectral weight itself is plotted. The
data sets labeled �d 6= 0� were computed omitting the state with particle dis-
tance d = 0 from the orthonormalization. The lower panel shows the deviation
of the uMPS reference from the analytical data (solid line), and the deviations
of the 2QP iMPS results from the uMPS reference (dashed/dotted lines). The
uMPS reference curve was computed using Eq. (6.32) with bond dimension
D = 10. The analytic reference curve was obtained by numerically evaluating
Eq. (7.4.44) of Ref. [57] and integrating over frequency.

Figure 6.4 shows the two-particle spectral weight in the zz-channel at λ = 0.5 for various
bond dimensions D, in comparison with both the analytical result and the uMPS reference
result from Eq. (6.32). In the upper panel, the spectral weight itself is plotted. The lower
panel shows the deviation of the uMPS reference from the analytical data (solid line), and
the deviations of the 2QP iMPS results from the uMPS reference (dashed/dotted lines).
The analytical reference curve was obtained by integrating data [96] from numerically



6.3 Two-particle spectral weight in the TFIM 99

evaluating Eq. (7.4.44) of Ref. [57] over frequency ω. It is apparent that the two reference
results are in very good agreement. The jagged form of the deviation is a result of the
�nite resolution in frequency at which comparison data was computed. Due to this good
agreement, the uMPS ground state result is trusted and used as a reference, to which the
2QP calculations are compared, since it can easily be computed.
First and foremost, the plot shows that our approach is capable of producing reasonable
results and therefore the intended proof of concept can be considered successful. The results
for both D = 2 and D = 3 show very good agreement with the reference, quantitatively
comparable even to the 1QP result in Fig. 5.12. Note that for D = 2 there is no need for
orthogonalization, as explained in the previous section.
For bond dimension D ≥ 3, the data is subjected to the Gram-Schmidt orthogonalization
scheme as described in App. A.8.
For bond dimensions D = 3 and D = 5, Fig. 6.4 shows the results both for including and
omitting the state with d = 0 from the process. Although one could argue that any matrix
elements of this state contradict a hard-core bosonic quasi-particle picture, the plot clearly
shows that including this state leads to a better agreement with the analytic solution. It is
apparent that for D = 5, the information carried by the d = 0 state is indeed substantial
and should not be omitted, although the corresponding diagonal element of the metric
tensor NQ

0,0 is of the same order of magnitude as it is for D = 3.
This raises again the question of how to consistently handle the hard-core property. On
the one hand, on the basis of the spectrum of the metric tensor one can clearly argue
for a hard-core bosonic quasi-particle picture. On the other hand, these results for the
spectral weight clearly indicate that the matrix elements of the state with d = 0 are indeed
important.
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Figure 6.5: Two-particle spectral weight S zz
2P for the TFIM at λ = 0.5 over the whole

Brillouin zone. Several data sets from di�erent program runs for the same
bond dimension D = 10. In the upper panel, the spectral weight result is
plotted. The lower panel shows the dominant component of the corresponding
momentum eingenstate ~v q. For comparison the data with D = 3 from Fig. 6.4
is also included.
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Figure 6.6: Two-particle spectral weight S zz
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bond dimensions. In the upper panel, the spectral weight itself is plotted.
The lower panel shows the deviations of the 2QP iMPS result from the uMPS
reference. The uMPS reference curve was computed using Eq. (6.32) with
bond dimension D = 10.

Also, the curve for D = 5 computed including the d = 0 state shows a larger deviation than
those for smaller D. Thus, compared to the ground state and 1QP results, the increase in
accuracy for increasing D is less systematic.

The result for D = 10 deviates from the reference to an extent which, unfortunately, must
be considered unacceptable. The reason for this deviation reveals itself in Fig. 6.5, where
the result for D = 10 is plotted over the whole Brillouin zone. There it is apparent that
the curve does not show the expected even symmetry about Q = 0. Since this is clearly
unphysical, the reason must be in the numerics. This becomes even clearer seeing that
Fig. 6.5 contains the results from multiple di�erent program runs, all with bond dimension
D = 10. The data for D = 3 from Fig. 6.4 is also included for comparison. The curves
should lie on top of each other within numerical tolerance, but clearly they do not. The
lower panel shows the dominant component of the eigenstate ~v q for each data set.
While the dominant component of the D = 3 data set holds almost all the weight and
shows the correct symmetry, neither is the case for the D = 10 data sets. Moreover, al-
ready the dominant ~v q components of the three D = 10 data sets di�er signi�cantly from
each other, although they should describe the same system. Note that these di�erent forms
of ~v q are not just phases. The phase gauge introduced in Eq. (5.79) �xes the phase such
that the dominant component is real and positive. The di�erent forms and magnitudes
of this component mean that the description of the elementary excitation is distributed
di�erently over di�erent Bα tensors in each data set. Consequently, these tensors must
vary signi�cantly in the di�erent data sets, even though they are solutions of the same
EVP up to a norm conserving gauge transformation of the ground state tensor A. The
reason is most likely again numerical instability in the computation of the Bα due to very
small elements in the boundary matrix v. Considering that a contribution with q′1 = −q′2
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should have two identical Cq tensors, it is not surprising that an asymmetric ~v q spoils the
results.

Figure 6.6 shows the S zz
2P for λ = 0.9 and various bond dimensions. Again, the results for

D = 2 and D = 3 show qualitatively good agreement, although the peak height around
Q = 0 deviates to some extent. Since λ = 0.9 is already relatively close to criticality,
this is expected for low bond dimensions. At D = 5, the peak height is already captured
more accurately, but there is considerable deviation around 0.2π. Still, this supports the
expectation that the results should improve for increasing D. Unfortunately, at D = 10
the e�ects of the asymmetric ~v q become visible and spoil the result around the gap mode
Q = 0. Note that the e�ect is far less pronounced than it is at λ = 0.5. This supports
the hypothesis that the asymmetry in ~v q is indeed a result of excess parameters in the
excitation parametrization Xα. Therefore, �nding a more numerically stable algorithm to
compute Xα should be a central step in future research.

6.4 E�cient computation of two-particle quantities

Equations. (5.67) and (5.77) show that in real space, each particle is described by a set of
2Θ + 1 tensors C`. Therefore, for instance a two-particle overlap in real space

〈j′,j′ + d′|j,d〉 =
∑
`′,m′

∑
`,m

〈C`′ ,j′ + `′; Cm′ ,j
′ + d′ +m′|C`,j + `; Cm,j + d+m〉 (6.33)

needs (2Θ + 1)4 TN evaluations. The same holds for 2QP matrix elements. This puts a
severe limitation on real space computations. See Sec. 6.4.2 below for more details.

Once more, the key to an e�cient computation is the switch to momentum space, and the
observation that the �Fourier transform trick� from Eq. (5.86) also works for two-particle
states

|Q,q1〉 =
1

L

∞∑
j=−∞

∞∑
d=−∞,d 6=0

∑
`,m

e−iQj−iQd+iq1d |C`,j + `; Cm,j + d+m〉 (6.34a)

j→j−`
=

1

L

∑
j,d

∑
`,m

e−iQ(j−`)−iQd+iq1d |C`,j; Cm,j − `+ d+m〉 (6.34b)

d→d+`−m
=

1

L

∑
j,d

∑
`,m

e−iQ(j−`)−iQ(d+`−m)+iq1(d+`−m) |C`,j; Cm,j + d〉 (6.34c)

=
1

L

∑
j,d

e−iQj−iQd+iq1d
∑
`,m

e+i(Q−q1)m+iq1` |C`,j; Cm,j + d〉 (6.34d)

=
1

L

∑
j,d

e−iQj−iQd+iq1d |Cq1 ,j; Cq2 ,j + d〉 , (6.34e)

with C` in real space as de�ned in Eq. (5.67) and Cqi in momentum space as de�ned in
Eq. (5.87). As in the one-particle case, the sums over ` and m can be carried out on the
C-tensor level now under two Fourier transformations. The result is a single tensor which
can be interpreted as representing a particle with momentum qi on a given site.
Note that it is essential that both Fourier transformations are carried out for this to work.
It is therefore impossible to work e�ciently in the hybrid basis directly. However, a Fourier
transformation is also required from the real space basis to the hybrid basis, so this does
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not mean a loss of performance.

In this formulation, the only instance of two C tensors falling onto the same site is the
case d = 0. As in the real space description, this contribution is omitted, which now has a
strong resemblance with a hard-core constraint. However, this is not equivalent to omitting
the entire contribution of real space states with d = 0. It still only means omitting all
contributions with two C-tensors on the same site, which can be seen by reversing the index
shift in Eq. (6.34c)

d = 0
d→d−`+m⇔ d+m = ` . (6.35)

For D = 1, both are actually the same, since the particle representation consists of a single
d×1×1 tensor C0. But in general, as evident from the norm of the 2QP real space state in
Fig. 6.1, there are two important di�erences. First, the same-site contributions hold most,
but not all of the weight for d = 0, and second, they also have a signi�cant share in states
with small d.

6.4.1 2QP-ground state matrix element

Using the momentum space description of the 2QP state in Eq. (6.34), the matrix element
from Eq. (6.28) can now be computed as

〈Q,q′1|O0 |GS〉 =
1

L

∑
j′,d′

e+iQ(j′+d′)−iq′1d′〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|O0 |GS〉 (6.36)

where q′2 = Q − q′1 and a general operator Ô which acts on site 0 is considered. An
implementation of the real space matrix element is straight forward, but leaves all the
hard work to the CPU; the momentum space computation is a lot more challenging to
implement. Due to the left-canonical gauge, any contribution with min(j′,j′ + d′) < 0
vanishes, because it contains the expression from Eq. (5.10). This leaves three topologically
distinct classes of TNs which have to be evaluated. These will be discussed in some detail
below, to illustrate the general procedure of momentum space computations.
In all following calculations, n is the number of sites which the operator Ô acts on. For
the spectral weight with Ô = S z, n = 1. The TNs are drawn for n = 2 for illustration,
but the procedure works for any �nite n.

Case i): The operator acts to the left of both C-tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|O0 |GS〉 = Ô0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

Cqα′

︸ ︷︷ ︸
δ1

Cqᾱ′

(6.37)

where

α′ :=

{
1, if d′ > 0

2, if d′ < 0
and ᾱ′ :=

{
2, if α′= 1

1, if α′= 2
. (6.38)

The distances between the operator and the �rst C-tensor, δ0, and between the two C-
tensors, δ1, must be summed from 0 to at least ΞT each to ensure convergence. The
contributions converge to zero, since for large δ0 and/or δ1, the TN factorizes and contains
at least one overlap of an excited state with the ground state, which is zero by construction.
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In terms of the distances δi ≥ 0, the particle positions read

j′ = n+ δ0, d′ = (δ1 + 1), if α′= 1 (d′ > 0) (6.39a)

j′ = n+ δ0 + 1 + δ1, d′ = −(δ1 + 1), if α′= 2 (d′ < 0) . (6.39b)

Inserting this into the phase factor from Eq. (6.36) yields

Φα′ := e+iQ(j′+d′)−iq′1d′ =

{
e+iQ(n+δ0+δ1+1)−iq′1(δ1+1), if α′= 1

e+iQ(n+δ0+1+δ1−δ1−1)+iq′1(δ1+1), if α′= 2
(6.40a)

=

{
eiQ(n+δ0)+iq′2(δ1+1)

eiQ(n+δ0)+iq′1(δ1+1)
(6.40b)

= eiQ(n+δ0)+iqᾱ′(δ1+1) . (6.40c)

Rather than summing over positive and negative d′, it is easier to think of summing over
the possible con�gurations of Cq1 and Cq2 , which are enumerated by α′. Then, the complete
contribution from case i) is given by

〈Q,q′1|O0 |GS〉
∣∣∣
i)

=
∑
α′=1,2

ΞT∑
δ0,δ1=1

eiQ(n+δ0)+iqᾱ′(δ1+1)

×
(

(T †)δ0 [O† (A;A)[u]],1(Cqα′;A)[T δ1 [1(Cqᾱ′;A)[v]]]
)

(6.41a)

=
∑
α′

(∑
δ0

e−iQ(n+δ0)(T †)δ0 [O† (A;A)[u]] ,

1
(Cqα′;A)

[∑
δ1

e+iqᾱ′(δ1+1)T δ1 [1(Cqᾱ′;A)[v]]
])

(6.41b)

due to the sesqui-linearity of the scalar product. Note that when pulled into the �rst
argument, the phase factor needs to be complex conjugated. This allows the de�nition of
two summed boundary matrices

vᾱ
′

:=

ΞT∑
δ1=1

T δ1 [1(Cqᾱ′;A)[v]]e+iqᾱ′(δ1+1) (6.42)

uQ
Ô

:=

ΞT∑
δ0=1

(T †)δ0 [O† (A;A)[u]]e−iQ(n+δ0) (6.43)

in terms of which the contribution is given by just two scalar products

〈Q,q′1|O0 |GS〉
∣∣∣
i)

=
∑
α′=1,2

(
uQ
Ô
,1(Cqα′;A)[vᾱ

′
]
)
. (6.44)

As in the case of the one-particle spectral weight in Sec. (5.7), the summed boundary
matrices can be computed by successively applying the transfer operator.

Case ii): The operator acts on the site of one C-tensor

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|O0 |GS〉 = Ô0

Cqα′

`′︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ1

Cqᾱ′

(6.45)
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In this case, there is one absolute particle position, `′, and one relative distance, δ1, that
need to be summed over. In terms of these, the particle positions read

j′ = `′, d′ = δ1 + n− `′, if α′= 1 (6.46a)

j′ = n+ δ1 d′ = −(δ1 + n− `′), if α′= 2 . (6.46b)

Inserting this into the phase factor again gives

Φα′ := e+iQ(j′+d′)−iq′1d′ =

{
e+iQ(`′+δ1+n−`′)−iq′1(δ1+n−`′), if α′= 1

e+iQ(n+δ1−(δ1+n−`′))+iq′1(δ1+n−`′), if α′= 2
(6.47a)

=

{
eiq
′
1`
′+iq′2(n−1)+iq′2(δ1+1)

eiq
′
2`
′+iq′1(n−1)+iq′1(δ1+1)

(6.47b)

= eiqα′`
′+iqᾱ′(n−1)+iqᾱ′(δ1+1) . (6.47c)

From this, the case ii) contribution follows as

〈Q,q1|O0 |GS〉
∣∣∣
ii)

=
∑
α′=1,2

n−1∑
`′=0

ΞT∑
δ1=0

eiqα′`
′+iqᾱ′(n−1)+iqᾱ′(δ1+1)

(
u,O

(Cqα′;A)

`′ [T δ1 [1(Cqᾱ′;A)[v]]]

)
(6.48a)

=
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′
e+iqᾱ′(n−1)

u,O(Cqα′;A)

`′

[ ΞT∑
δ1=0

T δ1 [1(Cqᾱ′;A)[v]]e+iqᾱ′(δ1+1)
]
(6.48b)

=
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′
e+iqᾱ′(n−1)

(
u,O

(Cqα′;A)

`′ [vᾱ
′
]

)
(6.48c)

where the summed right boundary matrix vᾱ
′
de�ned in Eq. (6.42) was used.

Case iii): The operator acts on the sites of both C-tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|O0 |GS〉 =

Cqα′

`′

Ô0

Cqᾱ′

m′

(6.49)

This case is conceptually the easiest. It consists of a �nite number of n2− n contributions
since `′ = m′ is excluded. Each contribution is unique and has to be computed in the same
way, in which real space matrix elements of this type are computed (cf. Sec. 5.2.3). The
particle positions are straight forwardly given by

j′ = `′, d′ = m′ − `′, if α′= 1 (6.50a)

j′ = m′ d′ = −(m′ − `′), if α′= 2 , (6.50b)

resulting in a phase factor of

Φα′ := e+iQ(j′+d′)−iq′1d′ = e+iqα′`
′+iqᾱ′m

′
. (6.51)

The contribution to the matrix element from case iii) is thus

〈Q,q1|O0 |GS〉
∣∣∣
iii)

=
∑
α′=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

e+iqα′`
′+iqᾱ′m

′
(
u,O

(Cqα′;Cqᾱ′;A)

`′,m′ [v]

)
, (6.52)
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where the expression

O
(Cqα′;Cqᾱ′;A)

`′,m′ [v] := O
(A;A)
0 [· · · [O

(Cqα′;A)

`′ [· · · [O
(Cqᾱ′;A)

m′ [· · · [O(A;A)
n [v]]]]]]] (6.53)

is de�ned as the application of the operator Ô to the right boundary matrix v as seen in
the TN in Eq. (6.49). For n = 2, there is actually only one such contribution

O
(Cqα′;Cqᾱ′;A)

0,1 [v] = O
(Cqα′;A)

0 [O
(Cqᾱ′;A)

1 [v]] (6.54)

and for n = 1, case iii) does not contribute at all.

Summary

Summing up the contributions from cases i) to iii), the complete matrix element is given
by

〈Q,q1|O0 |GS〉 =
∑
α′=1,2

(
uQ
Ô
,1(Cqα′;A)[vᾱ

′
]
)

(6.55a)

+
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′
e+iqᾱ′(n−1)

(
u,O

(Cqα′;A)

`′ [vᾱ
′
]

)
(6.55b)

+
∑
α′=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

e+iqα′`
′+iqᾱ′m

′
(
u,O

(Cqα′;Cqᾱ′;A)

`′,m′ [v]

)
. (6.55c)

6.4.2 Complexity analysis

As mentioned at the beginning of this section, O(Θ4) TN evaluations are required to com-
pute a single real space 2QP overlap. The computation time for each TN scales linearly
with its width, which on average is also of the order Θ. Therefore, the complexity of
each overlap scales as O(Θ5) with the particle representation cuto� Θ. In order to take
the transform to the hybrid basis and exploit the orthogonality with respect to total mo-
mentum, an additional sum over j′ − j ∈ {−Θ, . . . ,Θ} is required. Further, to span the
non-trivial part of the two-particle space, overlaps for distances d and d′ up to at least Θ
each have to be computed, raising the overall complexity of the metric tensor to O(Θ8).

Each step in the evaluation of a TN is the application of an operator, either the transfer
operator T or a non-trivial operator, to a boundary matrix ue� or ve� that currently repre-
sents the left or right part of the TN, respectively. Each operator application requires 2d2

products of D×D matrices, i.e. O(dD3) complex multiplications (cf. Eq.(3.83)), where d
is the dimension of the local unit cell Hilbert space.

For consistent results, Θ should be chosen equal to ΞT . But even if η is chosen to de�ne the
cuto� as in Eq. (5.77), Θ could easily be of the order 102 for a moderate bond dimension
of D = 10. In case of the TFIM with local Hilbert space dimension d = 2, this results in
a total of

2 · 103 · (102)8 = 2 · 1019 (6.56)

operations to compute the metric tensor. Optimistically assuming 3 · 109 multiplications
per second, one arrives at a staggering

2

3
1010 s ≈ 7.7 · 104 d ≈ 211 a (6.57)
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of computation time on a single CPU. Of course, the computation can easily be parallelized,
but still the Θ which can be treated in reasonable time, and therefore the accessible e�ec-
tive correlation lengths, are dramatically limited.

By contrast, as seen in the previous section and App. B, the complexity of computing any
2QP overlap or matrix element in momentum space scales only linearly with Θ ! This
has two reasons. First, four sums can be carried on the level of C tensors, namely the
transformations from C` to Cqα . As shown in Eq. (5.88), this can be done directly from
~v q. The complexity is therefore in O(dD4) independently of any cuto� Θ, and, moreover,
Cqα still describes a system in the TDL up to the choice of Lq. Also, the Cqα tensors
need to be computed only once for each overlap or matrix element. The second reason,
as mentioned in Sec. 5.7, is that the Cqα tensors are the same for all sites, unlike their
real space counterparts C`. This allows the use of summed boundary matrices such as vᾱ

′

and uQ
Ô
. The computation of each of them scales as O(Θ1), as seen in Eqs. (6.42) and

(6.43), respectively. But their scalar product corresponds to evaluating Θ2 TNs as seen
in Eq. (6.41). This enormous reduction makes it possible to sum any distances up to ΞT
instead of settling for a potentially far too small cuto� Θ.

To properly describe a system with an e�ective correlation length ΞT , momentum resolu-
tion must be at least Lq = 2ΞT , as discussed above. This leads to a total of

O(dD3 · γΞT ·ΞT 3) (6.58)

complex multiplications to compute the metric tensor or an operator tensor in momentum
space. Here γ is the number of sums over ΞT in boundary matrices such as uQ

Ô
and vᾱ

′
,

which is needed to compute each overlap or matrix element, respectively. For the 2QP
overlap, γ = 3 for uα

′
α , v

ᾱ′ and vᾱ (cf. Sec. B.2.1). Assuming ΞT = 2 · 102 and, again, bond
dimension D = 10 and 3 · 109 multiplications per second, this results in a computation
time of

2 · 103 · 3 · (2 · 2 · 102)4

3GHz
≈ 1.5 · 1014

3GHz
(6.59a)

≈ 5 · 104 s (6.59b)

≈ 14 h . (6.59c)

Clearly, this is much more feasible, and since each Q sector can be handled independently,
parallelization is very easy, even with distributed memory machines (MPI).

For matrix elements, γ is much larger, and there is some additional overhead. Still, these
are constant factors and high resolution data can be produced in a matter of days.

6.5 Quasi-particle decay amplitude

The matrix elements Dq1,q2
q3 and their complex conjugates from Eq. (1.1), which couple

the 2QP sector to the 1QP sector, describe quasi-particle decay and fusion. The models
from Chap. 2 are particle number conserving. Therefore, these elements must vanish in
the orthogonalized basis, which is another opportunity to test the method.

Assuming total momentum conservation, the Dq1,q2
q3 are given in the basis { |Q,q′1〉} by

Dq1,q2
q3 = DQ

q′1
= 〈Q,q′1|D

Q
q′1
a†
q′1
a†
Q−q′1

aQ |Q〉 =
√
L〈Q,q′1|H |Q〉 . (6.60)
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Figure 6.7: Quasi-particle decay amplitude DQ
q′1

for various parameters λ, total mo-
menta Q and low bond dimensions D = 2 and D = 3. The upper panel shows
the matrix elements in the skew 2QP basis. For each set of D, λ and Q, the
real part of the factorization NQ

q′1
ωQ is plotted as thin solid lines in the same

color. The curves for Q = −π
2 , D = 3 and λ = 0.5 are scaled down by a factor

of 1
10 to �t the plot range. In the lower panel, the absolute value of the decay

amplitude after the application of the orthogonalization algorithm is plotted
on a logarithmic scale.

Making use of translation invariance, these matrix elements can be computed as

DQ
q′1

:=
1

L

∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj
〈
j′,j′ + d′

∣∣∣∣∑
i

h̃i

∣∣∣∣j〉 (6.61a)

=
∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj〈j′,j′ + d′|h̃0 |j〉 (6.61b)

=
∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉 , (6.61c)

where in iMPS calculations the reduced Hamiltonian H̃ has to be used.

To apply the orthogonalization as described in App. A.8, the Hamiltonian (or any general
operator for that matter) has to be transformed into the hybrid basis and then brought into
the same structure as the metric tensor in Eq. (6.19). As stated before, the Gram-Schmidt
algorithm does not change the �rst vector ~w1 of the original basis. It also does not change
subsequent vectors ~wi if they are already orthogonal to the previously orthogonalized ones.
With the structure de�ned in Eq. (6.19), ~w1 = |GS〉 and ~w2 = |Q〉 holds. Both states are
normalized and by construction orthogonal. Therefore, neither of them is changed, nor is
the operator in the subspace they span. The expression for the 2QP-1QP matrix element



108 Two-particle properties

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

-1 -0.75 -0.5 -0.25  0  0.25  0.5  0.75  1

|D
Q

q
1
’,

 c
o

rr
ec

te
d

|

q1’ [π]

-5⋅10
-4

-4⋅10
-4

-3⋅10
-4

-2⋅10
-4

-1⋅10
-4

0⋅10
0

1⋅10
-4

2⋅10
-4

3⋅10
-4

4⋅10
-4

R
e(

D
Q

q
1
’)

N
Q

q1’ωQ

 
 
 

× 50

-5⋅10
-4

-4⋅10
-4

-3⋅10
-4

-2⋅10
-4

-1⋅10
-4

0⋅10
0

1⋅10
-4

2⋅10
-4

3⋅10
-4

4⋅10
-4

R
e(

D
Q

q
1
’)

Q = π, D = 5, λ = 0.9
Q = 0, D = 5, λ = 0.5

Q = 0, D = 10, λ = 0.5

× 50

Figure 6.8: Quasi-particle decay amplitude DQ
q′1

for various parameters λ, total mo-
menta Q and medium bond dimensions D = 5 and D = 10. The upper panel
shows the matrix elements in the skew 2QP basis. For each set of D, λ and
Q, the real part of the factorization NQ

q′1
ωQ is plotted as thin solid lines in the

same color. In the lower panel, the absolute value of the decay amplitude after
the application of the orthogonalization algorithm is plotted on a logarithmic
scale.

derived from Eq. (A.8.12) therefore reads

〈Q̃,d′|H̃ |Q〉∥∥∥ |Q̃,d′〉∥∥∥ =
1√

〈Q,d′|Q̃,d′〉

[
〈Q,d′|H̃ |Q〉 − 〈Q,d

′|Q〉
〈Q|Q〉

〈Q|H̃ |Q〉

−
∑

`′=dmax,`′>d′

〈Q,`′|Q〉
〈Q,`′|Q̃,`′〉

〈Q|H̃ |Q̃,`′〉︸ ︷︷ ︸
=0

]
(6.62a)

⇔ 〈Q̃,d′|H̃ |Q〉 = 〈Q,d′|H̃ |Q〉 − 〈Q,d′|Q〉〈Q|H̃ |Q〉 . (6.62b)

Thus, if the spurious decay elements are to be eliminated by the Gram-Schmidt algorithm,
they necessarily have to be of the form

〈Q,d′|H̃ |Q〉 !
= 〈Q,d′|Q〉〈Q|H̃ |Q〉 . (6.63)

Equation (6.62a) shows that if this is not the case for one d′, the error propagates into
subsequent matrix elements, because the underbraced term does not vanish. This condition
already applies to the skew momentum basis as

〈Q,q′1|H̃ |Q〉
!

= 〈Q,q′1|Q〉〈Q|H̃ |Q〉 = NQ
q′1
ωQ . (6.64)

The matrix elements DQ
q′1

do not have to be real, since the trilinear terms are not self-
adjoined on their own.
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In Fig. 6.7 the matrix element DQ
q′1

is plotted for various parameters λ, total momenta Q
and low bond dimensions D = 2 and D = 3. Since they are indeed complex, only the real
parts are shown, but the imaginary parts behave very similarly. For each set of λ, D and
Q, the real part of the factorization NQ

q′1
ωQ is also plotted as thin solid lines in the same

colors.
For three of the four plotted parameters sets, the orthogonalization algorithm does not
improve the deviation visible in the upper panel. However, this is expected, since the
deviation is already within acceptable error margins to begin with. In the upper panel,
the curves for Q = −π

2 , D = 3 and λ = 0.5 are scaled down by a factor of 1
10 to �t the

plot range. The matrix element in the orthogonalized basis for that set of parameters is
not scaled, which shows that it is improved by an order of magnitude.

Figure 6.8 shows the real part of DQ
q′1

for various parameters λ and total momenta Q, this
time for medium bond dimensions D = 5 and D = 10. Note that in the upper panel the
curve for D = 10 is scaled up by a factor of 50 for better visibility in the plot interval. All
of these curves show rich features on a relatively large scale. Again, for each set of λ, D and
Q, the factorization is plotted in thin solid lines of the same color. It is apparent that for
these curves Eq. (6.64) is ful�lled to quite high precision, which leads to a reduction of the
spurious decay amplitudes by at least one order of magnitude during the orthogonalization.
It is emphasized that expression Eq. (6.61) is completely general and also holds true, if is
quasi-particle decay is possible. Therefore, this is by no means a trivial result, but should
rather be considered as an indication that the method does indeed what it is supposed to do.

Like the other 2QP quantities, the decay amplitude can be computed much more e�ciently
in momentum space than in real space. The detailed calculation can be found in App. B.

6.6 Scattering matrix

The interaction matrix elements V q1,q2
q2,q4 from Eq. (1.1) describe the amplitudes for one 2QP

state being transformed into another under the action of the Hamiltonian. For the models
considered in this thesis, this process happens under the constraints of conservation of
energy and total momentum Q, and can therefore only change the relative momentum q.
The interaction V q1,q2

q2,q4 can therefore be interpreted as a potential term which facilitates
scattering from an initial state |ψ i〉 to a �nal state 〈ψ f|. The matrix

Sf,i = 〈ψf|V |ψi〉 (6.65a)

:= V q1,q2
q2,q4 = V Q

q′1,q1
(6.65b)

= 〈Q,q′1|V
Q
q′1,q1

q†
q′1
a†
Q−q′1

aq1aQ−q1 |Q,q1〉 (6.65c)

is therefore also called scattering matrix or S-matrix [94].

Non-vanishing o�-diagonal elements in S mean that the 2QP Fock basis is not an eigenbasis
of the Hamiltonian, which is generically expected when constructing an e�ective Hamilto-
nian of an interacting system.
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6.6.1 Matrix element computation

The 2QP interaction amplitude is de�ned as the irreducible matrix element of the Hamil-
tonian in the two-particle subspace [97], i.e., in real space as

V j′,d′

j,d := 〈j′,j′ + d′|H |j,j + d〉 − 〈j′,j′ + d′|H1P |j,j + d〉 − 〈j′,j′ + d′|E0 |j,j + d〉 . (6.66)

The real space matrix elements on a discrete lattice are also inherently discrete quantities
which are somewhat inconvenient for comparing the numerical results to the exact solution.
Therefore, a momentum space representation

1

L
V Q
q′1,q1

:= 〈Q,q′1|H̃ |Q,q1〉 − 〈Q,q′1|H1P |Q,q1〉 − CQη q′1,q1 (6.67)

is chosen. It provides continuous results within the boundaries of momentum discretization,
and is much better suited to compare the results of the e�cient computation algorithms
to analytics. The full matrix element in momentum space is given by

〈Q,q′1|H̃ |Q,q1〉

=
1

L2

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

〈
j′,j′ + d′

∣∣∣∣∑
i

h̃i

∣∣∣∣j,j + d

〉
(6.68a)

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d〈j′,j′ + d′|h̃0 |j,j + d〉 . (6.68b)

Like the metric tensor and the decay amplitude, this matrix element can be computed
much more e�ciently in momentum space as

〈Q,q′1|H̃ |Q,q1〉

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉 . (6.69)

Note that in the iMPS computations the assumption must be made that the 2QP states
do not contain signi�cant admixtures of states with higher particle numbers.
The one-particle contribution consists of two parts

〈Q,q′1|H1P |Q,q1〉 = (δq′1,q1 + δq′1,q2)(ωq′1 + ωq′2)− 2

L

(
ωq1 + ωq2 + ωq′1 + ωq′2 − 2t0

)
. (6.70)

The �rst is the diagonal bosonic part, which is just the sum of the one-particle energies.
In spin systems, the hard-core property of the excitations also requires the correction to
the diagonal part derived in App. A.10.2.
In the framework of iMPS, the ground state tensor A is usually not an exact eigenstate
of H, which leads to the error matrix element η de�ned in Eq. (4.1). This is what the
additional correction term Cη in Eq. (6.67) compensates for.

The 1QP part in Eq. (6.70) appears in the same way, as the diagonal part of the 2QP
metric tensor in Sec. B.2.1. This means it also requires either an a priori �xed summation
range of Lq2 , or the thermodynamic limit to be well de�ned.
As with the metric tensor, a description in the TDL is chosen, up to the momentum dis-
cretization Lq. The 1QP part is therefore handled in the same way as the diagonal part of
the metric tensor. Each TN in Eq. (6.69) contributes to the 1QP part, if it possesses one
or more factorizations into a 1QP overlap and a 1QP matrix element. These factorizations
are subtracted during computation. Note that the hard-core correction part in Eq. (6.70)
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arises from excluding all contributions with d′ = 0 and/or d = 0. Since this type of TN is
not computed in the �rst place, no special treatment of the hard-core constraint is needed.
The subtracted 1QP corrections already describe the hard-core property to the extent pos-
sible in the current iMPS representation.

The e�cient momentum space computation algorithms for 2QP matrix elements constitute
the central result of this thesis. However, their derivation is a fairly involved and lengthy
calculation and a rather dry read. The inclined reader is referred to App. B, which contains
all the details.

6.6.2 Results for the FMHC

Since the model can be described exactly by iMPS at bond dimension D = 1, there is
only one C tensor which is its own discrete Fourier transform, and describes the quasi-
particles completely. Therefore, the 2QP states are already orthonormal in both real and
momentum space. By excluding all contributions with two C tensors on the same site, the
hard-core property is implemented exactly, and no further orthogonalization is required.
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Figure 6.9: Element of the S-matrix for the FMHC at Γ = 2.0 and J2 = 0.5, for
various values of momenta Q and q1, compared to the exact solution from
Eq. (2.19). Note that with odd Lq, neither π nor π

2 fall directly on the dis-
cretization grid. The corresponding curves are therefore taken from the nearest
momentum sampling point.

Figure 6.9 shows the S-matrix element of the FMHC at Γ = 2 and J2 = 0.5, as function
of �nal momentum q′1 for various values of Q and q1, compared to the exact solution from
Eq. (2.19). Note that for odd Lq, neither π nor π

2 fall directly on the discretization grid.
The corresponding curves are therefore taken from the nearest momentum sampling point.
No deviation is plotted for these results, because the ground state energy in Sec. 4.3.1
shows, that the description with bond dimension D = 1 is accurate to machine precision.
This is also true for the 1QP dispersion and the 2QP interaction.
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6.6.3 Results for the TFIM

Next, the results for the much more demanding TFIM are presented.
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Figure 6.10: Elements of the S-matrix of the TFIM for total momentum Q = 0
at λ = 0.5 computed with bond dimension D = 2, as function of initial
momentum q1 and the �nal momentum q′1. The coloring in the q′1-q1-plane
shows the absolute deviation from the exact result Eq. (2.42) as a heat map.

Figure 6.10 shows the entire S-matrix for total momentum Q = 0 at λ = 0.5 computed
with bond dimension D = 2 as a surface plot. On the x-axis is the �rst particle momen-
tum q′1 of the scattered state, and on the y-axis the �rst particle momentum q1 of the
initial state. The coloring of the q′1-q1-plane indicates the absolute deviation of the iMPS
result from the exact solution Eq. (2.42). This deviation shows a maximum around the
gap mode at q = 0, but it stays under 1%. Clearly, the agreement with the exact solution
is not as good as it is for the 1QP properties. However, given the small bond dimension,
it is still remarkable. As for the two-particle spectral weight, the D = 2 data is already
so close to exact hard-core bosons that no improvement can be reached by applying the
orthonormalization scheme.

Figures 6.11 and 6.12 show the S-matrix element for several values of total momentum
Q and initial state momentum q1, also at λ = 0.5. The lower panels show the absolute
deviations on a logarithmic scale, which makes it easier to assess them quantitatively.

Figures 6.13 and 6.14 show the same curves as Figs. 6.11 and 6.12, but for the parameter
value λ = 0.9. As expected, there are now more pronounced deviations, yet, considering
that D = 2 is the lowest bond dimension which can produce any interaction in the TFIM,
the agreement is still remarkably good.
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Figure 6.11: Elements of the S-matrix of the TFIM at λ = 0.5, for total momentum
Q = 0 and various initial state momenta q1, computed with bond dimension
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2 are sampled exactly, and
the corresponding curves are taken from the nearest available sampling point.
The lower panel shows the absolute deviation from the exact result Eq. (2.42)
on a logarithmic scale.
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Figure 6.12: Same as Fig. 6.11 but for di�erent Q and q1.
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Figure 6.13: Elements of the S-matrix of the TFIM at λ = 0.9, for total momentum
Q = 0 and various initial state momenta q1, computed with bond dimension
D = 2. With odd Lq, neither q = π nor q = π

2 are sampled exactly, and
the corresponding curves are taken from the nearest available sampling point.
The lower panel shows the absolute deviation from the exact result Eq. (2.42)
on a logarithmic scale.
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Figure 6.14: Same as Fig. 6.13 but for di�erent Q and q1.
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Figure 6.15: Element of the S-matrix of the TFIM at λ = 0.5, for total momentum
Q = 0 and initial state momenta q1 = 0, computed with bond dimension
D = 3 and Lq = 121. In the upper panel, the exact solution from Eq. (2.42)
is compared to the iMPS results in the skew basis, in the orthogonalized basis
including and excluding the state with d = 0. The iMPS results in the upper
panel are scaled to �t the plot range of the exact solution. The lower panel
shows the absolute deviation on a logarithmic scale.

In Fig. 6.15 the matrix element at λ = 0.5 for total momentum Q = 0 and initial state mo-
mentum q1 = 0, computed with D = 3, is compared to the exact solution from Eq. (2.42).
The iMPS results in the upper panels are scaled to �t the plot range of the exact solution.
The lower panel shows the absolute deviation on a logarithmic scale.
Three curves from the iMPS results are plotted. The �rst is the raw result in the skew
basis. One can see that it is literally orders of magnitude worse than the D = 2 result, and
it does not qualitatively agree with the exact solution, but rather seems inverted about
the x-axis.
The second curve is the result of the orthogonalization including the state with particle
distance d = 0. It is yet another two orders of magnitude further away from the exact
solution than the result in original skew basis. The reasons for this are the very large matrix
elements of the d = 0 state, caused by its normalization to unity in the Gram-Schmidt
algorithm.
The third iMPS curve shows the result of the orthogonalization excluding the state with
d = 0. This avoids the very large spurious matrix elements. The qualitative form still
matches that of the result in the skew basis. However, the deviation is even increased by
roughly a factor of four.
Unfortunately, even more advanced orthogonalization schemes, such as the ones proposed
in Sec. 6.1.4.2, cannot be expected to correct the qualitative disagreement, since at λ = 0.5
a large portion of the 2QP subspace is already orthogonal.
Seeing that the results for the ground state, the 1QP properties, and even the 2QP spectral
weight for this bond dimension at λ = 0.5 are consistently of very high quality, this behavior
is really quite puzzling.
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For other parameter values, the behavior stays qualitatively the same. The data in the
skew basis shows a blatant disagreement with the exact solution which is not corrected
by orthonormalization in any way. Higher bond dimensions unfortunately show the same
problems as D = 3.

6.7 Chapter summary

In this chapter, the ansatz from the previous chapter was extended to describe states
with two quasi-particles by applying the creation operator twice. It was found that in real
space the resulting basis is orthonormal for su�ciently large particle distances d. For small
particle distances, overlaps between the 2QP states and even with the 1QP sector were
found for bond dimensions D > 1.
Examination of a momentum space basis showed that 2QP states are orthogonal with
respect to total momentum Q, which allows us to treat each total momentum sector inde-
pendently. However, the states are not orthogonal with respect to the second momentum
quantum number.
Therefore, a hybrid basis of total momentum and particle distance was de�ned. Since these
states are orthogonal for su�ciently large d, this basis provides a well motivated starting
state for the Gram-Schmidt orthonormalization scheme.

Further, it was shown how the metric tensor in the skew basis is represented, which is re-
quired to obtain operator matrices in a Gram-Schmidt orthogonalized basis. It was pointed
out why the application of the generic Gram-Schmidt algorithm can potentially produce
unstable results and some alternatives were described.

The analysis of the metric tensor for the TFIM in the skew hybrid basis showed that for
bond dimension D = 2, the iMPS representation is very close to exact hard-core bosons.
Therefore, no additional orthogonalization is required. For bond dimension D = 3, con-
siderable deviations from hard-core bosons were found.

As a �rst result of physical interest, the two-particle spectral weight for the TFIM in the
zz-channel was computed. For low bond dimensions (D ≤ 5), the results are in very good
agreement with the analytic solution. For bond dimension D = 10, considerable devia-
tions were found, which could be traced back to an asymmetry in the eigenstate ~v q. It
was observed, that including the state with particle distance d = 0 into the Gram-Schmidt
orthogonalization improved the result over omitting the state.

The Hamiltonian of the TFIM is particle number conserving; therefore, no matrix elements
of the Hamiltonian should occur in the orthogonalized basis, which couple the 1QP sector
and the 2QP sector. This was found to be case. For these matrix elements, the orthogo-
nalization scheme works as intended. Quasi-particle decay amplitudes found in the skew
basis are reduced by several orders of magnitude.

Finally, the 2QP interaction matrix was examined. For the FMHC, results were found to
be in perfect agreement with the analytic solution, because the model can be described
exactly by product states with bond dimension D = 1.
For the TFIM, results were mixed. The results for bond dimension D = 2 are encouraging
and clearly show the potential of the presented method. However, some more research will
be required to understand why the smallest possible increase of the bond dimension by
only 1 results in the radical change for the worse that we observed.



Chapter 7

Conclusion and outlook

To explain all nature is too di�cult a task

for any one man or even for any one age.

Isaac Newton

7.1 Summary of the method

In this thesis, a variational method to derive e�ective Hamiltonians in second quantization
for one-dimensional spin systems was presented. The method is based on the framework
of in�nite system matrix product states (iMPSs) and works by iteratively constructing an
approximate Fock space basis.
First, it was shown that the MPS language is well suited to describe the bulk properties
of translation invariant lattice systems with uniform ground state. By using the transfer
matrix, these systems can be handled very e�ciently in the thermodynamic limit if the
boundary conditions do not in�uence the bulk behavior. In this case, the ground state can
be represented by a uniform MPS (uMPS), i.e., with the same matrices for every site, that
re�ects the underlying physics.
A DMRG inspired algorithm was presented to �nd a uMPS approximation of the ground
state, by repeatedly varying the matrices on a single lattice site to reduce the ground
state energy. After each step, the newly found matrices are used as new guess for the
ground state in the next iteration. As function of the elements of the MPS matrices on
a single site, the energy expectation value can be written as a bilinear form. Minimizing
this form naturally leads to a generalized eigenvalue problem (EVP). When convergence
is reached, the eigenvector to the lowest eigenvalue is used as approximation of the ground
state uMPS. This provides the 0 quasi-particle (QP) sector of the e�ective model.

The eigenvectors belonging to higher eigenvalues of this EVP describe excitations. The
MPSs that have the uniform ground state tensor on all lattice sites but one form a vector
space which can be interpreted as the tangent space to the manifold of uMPS at the given
ground state. They still describe an in�nite system, but are no longer uniform and are
therefore called in�nite system matrix product states (iMPS) for distinction.
Although it is possible to use the eigenvectors of the converged ground state search EVP
directly, it was shown that this description introduces spurious variational parameters.
This leads to an overcomplete and therefore not orthogonal basis. A better description is
given by the canonical gauge of excitation tensors which is found by restricting the search
to the nullspace of the ground state tensor. This basis is then orthogonal with respect to
the lattice site where the excitation tensor resides, and therefore greatly simpli�es many
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calculations. It also makes numerical computations more e�cient.

It is found that in most cases one excitation tensor is not enough to describe the ele-
mentary excitation. Also, the excitations are generally not completely local. Therefore,
the momentum superpositions of the real space iMPS, i.e., Wannier states are used. The
linear combination of Wannier states with minimal energy above the ground state is deter-
mined in a second variational calculation. Minimization again leads to an EVP, the lowest
eigenvalue of which is the variational approximation of the one-particle dispersion. The
corresponding eigenvector describes an eigenstate of the e�ective Hamiltonian with one
elementary excitation. This provides the basis of the 1QP space and a MPS description
of the quasi-particle creation operator. The basis constructed in this way is normalized
and orthogonal with respect to momentum. It can also be Fourier transformed into real
space, where it is still normalized and orthogonal with respect to the lattice site at which
the excitation is created. From this basis, further one-particle properties such as spectral
weights can be determined.
It was shown that computing results in the one-particle basis is more e�cient in momen-
tum space than in real space for two reasons. The �rst reason is that the momentum space
representation of the creation operator is more compact and allows computation of sums
on the level of site tensors rather than on the level of whole matrix elements. The second
reason is that partial results can easily be reused, so that redundant computations can
largely be avoided. This reduces for the spectral weight from O(ΞT

3) to O(ΞT
2). The

dispersion relation together with the 1QP basis constitute the 1QP sector of the e�ective
model.

Seeing that a one-particle state can be described by a linear combination of iMPS with one
excitation tensor each, it seems plausible to construct two-particle states by applying the
creation operator twice. This results in a linear combination of iMPS with two excitation
tensors each. For small particle distances, these excitation tensors can fall onto the same
lattice site. Since the QPs in spin systems are hard-core bosons, these contributions are
set to zero.
Unfortunately, the so constructed 2QP states are orthonormal only for bond dimension
D = 1, where they describe product states. For higher bond dimensions, states where the
two quasi-particles are close together are neither orthogonal nor normalized. Only for large
distances, the states are orthonormal, because the quasi-particles behave like free particles.
This is as expected for models with a �nite interaction range. The non-orthogonality or
skewness is found both in real space and in momentum space. It was shown, that for
2QP computations the bene�ts of working in momentum space are even much larger than
for 1QP computations. Here, the computational cost reduces from O(ΞT

8) to O(ΞT
4).

In fact, in many cases momentum space computation makes the di�erence between being
able to obtain results on practical time scales or not.
The 2QP states must still be orthogonal with respect to total momentum, wherefore each
total momentum sector can be handled independently. To overcome the problem of the
remaining non-orthogonality in the second momentum, a hybrid basis of total momentum
and relative particle distance is de�ned. It allows the application of the Gram-Schmidt
orthogonalization scheme to obtain results in an orthonormal basis. This �detour� is neces-
sary, because states with large particle distances are known to be orthogonal and therefore
provide a good starting vector for the orthogonalization.
The metric tensor and operator matrices are computed in the original, non-orthogonal
basis �rst. As a second step, they are then transformed into the hybrid basis, which is
still not orthogonal with respect to the particle distance at �rst. After application of the
orthogonalization scheme, the metric tensor is just the identity and the operator matrices
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can be transformed back into real space or momentum space.
This way, results can be obtained for two-particle properties such as spectral weights,
quasi-particle decay amplitude and the interaction matrix.

7.2 Summary of results

The success of the method was gauged by computing results for two di�erent models. First,
as a simple test case, the ferromagnetic, isotropic spin-1

2 Heisenberg chain in a transverse
magnetic �eld (FMHC), both with and without ferromagnetic next-nearest neighbor inter-
action. The second model is the Ising model in a transverse magnetic �eld (TFIM), also
on a one-dimensional chain.

7.2.1 Ground state results

The polarized ground state of the FMHC is a product state, and is therefore found to
be described exactly by a uMPS of bond dimension D = 1. Consequently, the ground
state energy of this model was obtained to machine precision for all parameters, and the
correlation length and entanglement entropy are always zero.

By contrast, the TFIM does not have an exact uMPS ground state representation at �nite
bond dimension, except for the limits of vanishing magnetic �eld (λ = ∞) and vanishing
Ising interaction (λ = 0). Close to the quantum critical point at λ = 1, the ground
state energy per lattice site, the correlation length and the ground state magnetization
in direction of the Ising coupling all show increasingly good agreement with the exact
solution for increasing bond dimension. This is in accordance with the expectations, since
the correlation length grows larger as λ approaches 1. This takes increasingly lager bond
dimensions to encode the increasing entanglement. At the critical point, the correlation
length diverges, which cannot be captured by any �nite bond dimension. The maxima
in the quantities or their deviations from the analytic solution, which indicate the phase
transition, are consistently found at parameter values λ . 1 for low bond dimensions. For
increasing D, the peaks all move towards the exact location of the critical point at λ = 1.
Results were presented for bond dimensions from D = 3 up to D = 30, which are very
accurate over the whole parameter range. Notably for larger bond dimensions and smaller
λ, the results show wild oscillations and are considerably less accurate than those for
small D. The reason for this is the excess number of variational parameters at high bond
dimension which leads to numerical instabilities. Analyzing the right boundary matrix v,
which in left-canonical gauge holds the squared Schmidt coe�cients of a bipartition of the
the chain, reveals that these become smaller than machine precision for high D and small
λ. This corresponds to using a (numerically) overcomplete Schmidt basis and explains the
decreased accuracy of the results.
The scaling of the e�ective correlation length ξT , de�ned by the transfer operator's second
largest eigenvalue, with the inverse bond dimension was also examined. In the disordered
phase linear least squares �ts extrapolate quite precisely to the analytical values. However,
the distribution of the data points does not allow us to conclusively deduct a linear relation
ΞT (D) ∝ 1

D . In the Ising phase, the extrapolated value is approximately o� by a factor
of 2. The reason for this is presumably that the transfer operator of a single ground state
does not properly capture the correlations of domain walls.
The entanglement entropy shows a very pronounced peak in the vicinity of the critical
point. The position of this peak appears to converge to the exact value for increasing bond
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dimension.
Finally, the order parameter, i.e., the magnetization in direction of the Ising coupling
was examined. As with the other results, increasing agreement with the exact solution is
observed around the phase transition with increasing bond dimension. An attempt was
made to extrapolate the critical exponent β of the order parameter. The exact value is not
contained in the error bracket of the value extrapolated from the available data. However,
the agreement is still very good, with a relative error of only 2%.

7.2.2 One-particle results

For the FMHC, the one-particle dispersion can be obtained to machine precision at bond
dimension D = 1 like the ground state energy. A very interesting result is the appearance
of the two-particle bound state in the spectrum of the 1QP computation, if the bond di-
mension is increased beyond D = 1. Considering that it is not a 1QP state, its energy
is captured with remarkable accuracy, at least in parts of the Brillouin zone, where it is
well separated from the 2QP continuum. This is easy to understand, since the increased
parameter space allows the variational algorithm to capture also localized multi-particle
states.

The dispersion of the TFIM is also obtained to high precision, in both the disordered and
the ordered phase. This shows that with the propers ansatz, domain walls can be described
just as well as spin-�ips. Away from criticality, a minimum in the deviation as function
of bond dimension is observed. Beyond that, the error increases again, signaling that the
numerical instability caused by very small Schmidt coe�cients in v outweighs the gains
from an increased number of variational parameters. At the critical point, the accuracy of
the results increases more consistently with increased bond dimension. However, the very
high precision of the D = 3 result over most of the Brillouin zone, except in the immediate
vicinity of the gap, remains unexplained at this point.
The excitation gap, too, is found to be in very good agreement with the exact solution. The
deviation shows behavior similar to that of the ground state energy, with wild oscillations
for larger bond dimensions and small parameters λ.

Fourier transforming the eigenvector ~v q belonging to the dispersion yields a real space
representation ~v` of the quasi-particle. It can be interpreted as the dressing cloud of the
elementary excitation, i.e., the degree of polarization at a distance ` from the central site
of the particle. This dressing cloud is found to decay exponentially. The decay is governed
by the e�ective correlation length ξT as expected.

To test the 1QP description, the one-particle spectral weight in the xx-channel is computed
as well. At medium parameters, results are very accurate. As in the case of the dispersion,
a minimum in the error as function of D is observed. Close to criticality, a high peak forms
around q = 0 due to the gap being very small. This peak is consistently better captured
by increasing bond dimensions.

Analysis of the e�ective Hamiltonian matrix in momentum space and its eigenvector ~v q

reveals that the problem of excess parameters also carries over into the description of the
quasi-particles. In a re�ection symmetric system, even symmetry around the gap mode
at q = 0 is expected. At low bond dimensions or close to criticality this is found to be
true. However, for high bond dimension and small parameters, an asymmetry in both the
Hamiltonian and ~v q is observed. The reason behind is probably a numerical instability
in the computation of the excitation tensors due to very small Schmidt coe�cients in v.
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In the computation of the one-particle spectral weight, the asymmetry in ~v q appears to
compensate for this fact.

7.2.3 Two-particle results

Since the FMHC is described exactly at D = 1, the two-particle basis is exact, too, in
this case. Therefore, the 2QP interaction matrix could be computed to machine precision,
without the need for orthogonalizing the basis. This would also allow for the computation
of the exact energy of the 2QP bound state by diagonalizing the Hamiltonian in the 2QP
subspace.

For the TFIM, the metric tensor was analyzed �rst. At bond dimension D = 2, it showed
very little deviation from exact hard-core bosons, eliminating the need for further orthog-
onalization. At bond dimensionD = 3, the deviations were found to be considerably larger.

Next, the two-particle spectral weight in the zz-channel was computed. At λ = 0.5, the
results for low bond dimensions were found to be very accurate. The results for D = 3
and D = 5 show that including the state with particle distance d = 0 which should
not contribute in a proper hard-core bosonic description, nonetheless improves the result
visibly. This rises the question, if and how hard-core bosonic excitations can be described
consistently. As of yet, this question cannot be answered conclusively. Unfortunately,
the result with bond dimension D = 10 shows a very large deviation from the analytic
result, which can be traced back to the problem of asymmetry in the eigenvector ~v q. This
becomes even clearer seeing that ~v q results from di�erent program runs look qualitatively
completely di�erent.
At the parameter value λ = 0.9, results are more consistent. They improve for increasing
bond dimension until at D = 10, again, the problem of the asymmetric ~v q manifests itself.

Further, the quasi-particle decay amplitude was investigated. For a particle number con-
serving model such as the TFIM, it must vanish, at least in the orthogonalized basis. This
is found to be the case within acceptable error margins. Surprisingly, the erroneous am-
plitude that results from the skewness of the initial 2QP basis, is reduced by four orders
of magnitude for D = 10 at λ = 0.5. Despite the fact that the result for the two-particle
spectral weight from this data set was so far o� the exact solution.

The results on the scattering matrix for the TFIM are rather inconclusive. At bond
dimension D = 2 and parameter λ = 0.5, agreement is remarkably good, and the results
do not even require orthogonalization. At the same parameter value, the results for bond
dimension D = 3 show very large deviations and do not even qualitatively match the form
of the exact result. Seeing that all other results at this bond dimension and parameter
were very accurate, this is quite surprising.
Closer to the critical point, at λ = 0.9, the picture stays qualitatively the same. The
deviations for D = 2 are visibly larger, but that is expected for low bond dimension.
In summary, while the results for bond dimension D = 2 are very encouraging, the radical
turn for the worse at D = 3 clearly calls for further research.
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7.3 Outlook

As discussed in the last section, many interesting, convincing and encouraging results were
obtained. Unfortunately, we encountered a number of problems on the way that are as of
yet unsolved and require more research.

The DMRG like ground state search algorithm presented in Chap. 4, shows two problems:
First, the generalized EVP becomes unstable if the bond dimension is much larger than
is required to describe the system. This is due to very small Schmidt coe�cients and
subsequently small eigenvalues of the norm matrix. Here, an algorithm could be used that
adaptively reduces the bond dimension, when Schmidt coe�cients below a certain thresh-
old are detected. The second problem is that for large bond dimensions, close to a �xed
point, convergence can become very slow. Comparison to alternatives such as imaginary
time evolution [84], or the recently proposed VUMPS algorithm [86] may help to identify
better options.

As shown in Chap. 5, the canonical gauge form for excitation tensors has many attractive
features. The resulting states are orthonormal in momentum space and the orthogonal-
ity in real space greatly reduces the computational e�ort, especially in 2QP calculations.
However, their computation involves inverting the right boundary matrix v, which makes
it sensitive to errors introduced by very small Schmidt coe�cients. This manifests in the
problem of the Hamiltonian not having the proper symmetry in momentum space, which
carries over to its eigenvector belonging to the dispersion. Subsequently, 2QP results may
prove unreliable. Using a Lanczos type algorithm that does not require an inversion of v,
but rather uses it to de�ne a scalar product, could help to improve stability.

Another challenge, which did not present itself as such in the context of this thesis, is the
distinction between single-particle and multi-particle states. In the case of the FMHC it
is clear that there is only one type of elementary excitation. Therefore, the two-particle
bound state can be clearly identi�ed a such. However, in more complicated models di�er-
ent types of elementary excitations can occur. If their energy is non-degenerate, it may
no longer be clear which eigenvalues of the momentum space EVP describe single-particle
states, and which describe multi-particle bound states.

For very low bond dimension D = 2, the hybrid 2QPs basis is found to describe hard-core
bosons almost perfectly. In this case, no orthogonalization is required. For bond dimen-
sion D = 3, the hard-core property is found to be no longer described very accurately
by only omitting contributions where the two excitation tensors fall onto the same site.
The example of the two-particle spectral weight shows that in this case including the state
with particle distance d = 0 is indeed necessary. The inconclusive results for the scattering
matrix do not allow for a de�nitive statement if this is generally true at this point. As
an alternative to the Gram-Schmidt algorithm, the metric tensor could be diagonalized,
and the eigenspace to the lowest eigenvalue discarded. The spectrum of the metric tensor
is invariant under the Fourier transformation, since it is unitary. Therefore, the diagonal-
ization could be done directly in momentum space basis, without the detour through the
hybrid basis.

The very accurate 2QP results which could be obtained nonetheless clearly show the po-
tential of the method. However, the puzzling disagreement of the interaction matrix for
bond dimension D = 3 also shows that there are still some unresolved problems. As shown
in App. B, the momentum space algorithms for e�cient computation of 2QP quantities
are fairly involved. Errors in the calculations and the implementation cannot be excluded
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completely at this point.
Once the problems have been resolved, the two particle approach can be extended to work
with degenerate ground states. Then, the interaction of domain walls can be studied as well.

Alternatively, real space computation could also be improved. The enormously long com-
putation times estimated in Sec. 6.4.2 are largely based on the naïve approach to compute
overlaps and matrix elements one at a time. This results in a vast amount of redundant
computations. If one could compute all overlaps and matrix elements simultaneously,
summed boundary matrices could be reused similarly to the momentum space computa-
tion. However, such an algorithm would be even more involved than the momentum space
calculations in App. B.

The example of the bound state in the FMHC shows that two QPs can behave very similar
to a single particle when they are close to each other in real space. In Ref. [98] the one-
particle approach from Ref. [90] was extended to 2QP states with an ansatz that takes this
into account explicitly, and which in the notation of this thesis is given by

|q1,q2〉 :=
∞∑

j=−∞
eiQj |Fq1,q2 ,j〉+

∞∑
j

eiQj
∞∑
d=1

∑
α,β

cα,βq1,q2(d) |Bα,j; Bβ,j + d〉 , (7.1a)

where Q = q1 + q2 is total momentum. The �rst term is a one-particle-like state that
describes the two particles when they are close together. The second term describes the
particles when they are further apart, including the free particle limit. In Eq. (7.1) the
|Fq1,q2 ,j〉 are states as in the one-particle ansatz Eq. (5.2), and the |Bα,j; Bβ,j+d〉 are states
as de�ned in Eq. (6.2). However, in contrast to the ansatz in Chap. 6, the |Bα,j; Bβ,j+d〉
use the bare Bα, which are the one-particle excitation tensors from Chap. 5, and new
variational parameters cα,βq1,q2(d) are introduced instead of the already known vqα. The
tensor Fq1,q2 is left with its entire (d− 1)D2 parameters for variation.
Variation with respect to the parameters {Fq1,q2 ,c

α,β
q1,q2(d)} leads to another generalized

EVP, which is half-in�nite in d. However, the authors �nd the coe�cients cα,βq1,q2(d) to
show the asymptotic behavior

cα,βq1,q2(d)
d→∞→ vq1α v

q2
β e

iq2d − e−iφvq2α v
q1
β e

iq1d (7.2)

where φ is the scattering phase. In numerical practice, this behavior is reached for d ≈
ΞT , which is the length scale on which the particles become non-interacting. This is in
accordance with our �ndings in Chap. 6.
This ansatz, although more sophisticated, produces reliable results for higher bond di-
mensions. It is therefore a viable alternative should the problems with our ansatz prove
unsolvable.





Appendix A

Supplementary material

Never memorize something that you can look up.

Albert Einstein

A.1 The Kronecker identity

One relation that frequently requires special attention when dealing with iMPS in momen-
tum space is

1

L

L∑
j=1

ei(q−q
′)j = δq,q′ (A.1.1)

which is well known from solid state physics textbooks and will be referred to as Kronecker
identity. If follows straight forwardly from

1

L

L∑
j=1

exp

(
i
2π

L
(n−m)`

)
= δmn (A.1.2)

by identifying q = n ·∆q and q′ = m ·∆q with ∆q = 2π
L which is the momentum resolution

on a �nite lattice.

Two important remarks are in order regarding Eq. (A.1.1). First, in the thermodynamic
limit, the Kronecker-δ in Eq. (A.1.2) becomes a Dirac δ-distribution. However, in numerics
one usually discretizes the Brillouin zone, allowing only a �nite number of momenta in
which case one is back at Eq. (A.1.1).
Second, on a �nite lattice with discrete momenta Eq. (A.1.1) holds true, also in numerics.
But only, if the summation is done over exactly L sites. This is because for q 6= q′ the
exponentials in Eq. (A.1.1) are the Lth order roots of unity, which sum up to zero.

In the algorithms described in this thesis, cases occur where quantities are summed over
as many lattice sites as it takes for them to converge to a limit value. In these cases, Eq.
(A.1.1) is not really applicable, because this number of sites may not be the same as the
number of discrete momenta chosen for the computation.
Instead, everything that is known to contribute to a Kronecker identity is subtracted in
the computation and a contribution of δq,q′ is added in the end. See the calculation on the
2QP overlap in Sec. B.2.1 for an example.
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A.2 Hamiltonian of the FMHC in the 2QP sector

To obtain the energy of the bound state, the Hamiltonian is diagonalized in the two-
particle subspace. Excitation energies are measured relative to the ground state, therefore
the ground state energy is subtracted in this calculation. The matrix element with respect
to the bosonic 2QP basis |q1,q2〉 is given by

〈q′1,q′2|(H − E0) |q1,q2〉 = 〈q′1,q′2|H1P |q1,q2〉+ 〈q′1,q′2|Hint |q1,q2〉 (A.2.1)

with

H1P =
∑
k

ωka
†
kak and Hint =

1

L

∑
k1,k2,k3

Vk1k2k3a
†
k1
a†k2

ak3
ak1+k2−k3

. (A.2.2)

The contribution of the one-particle part H1P is

〈q′1,q′2|H1P |q1,q2〉 = 〈q′1,q′2|
∑
k

ωka
†
kak |q1,q2〉 (A.2.3a)

= ωq′1δq′1,q1 + ωq′1δq′1,q2 + ωq′2δq′2,q1 + ωq′2δq′2,q2 (A.2.3b)

= ωq′1(δq′1,q1 + δq′1,q2) + ωq′2(δq′2,q1 + δq′2,q2) (A.2.3c)

= (ωq′1 + ωq′2)(δq′1,q1 + δq′1,q2) (A.2.3d)

where in the last step total momentum conservation

q′1 + q′2 = q1 + q2 = Q (A.2.4)

was used to identify

δq′2,q1 = δq1+q2−q′1,q1 = δq′1,q2 and δq′2,q2 = δq′1,q1 . (A.2.5)

Lastly, to account for the hard-core property of the excitations, the correction derived in
App. A.10.2 needs to be subtracted, so that the complete contribution from the one-particle
part H1P reads

〈q′1,q′2|H1P |q1,q2〉 = (ωq′1 +ωq′2)(δq′1,q1 +δq′1,q2)− 2

L

(
ωq1 + ωq2 + ωq′1 + ωq′2 − 2t0

)
. (A.2.6)

The contribution from the interaction part follows as

〈q′1,q′2|Hint |q1,q2〉

= 〈q′1,q′2|

 1

L

∑
k1,k2,k3

Vk1k2k3a
†
k1
a†k2

ak3
ak1+k2−k3

 |q1,q2〉 (A.2.7a)

=
1

L

∑
k1,k2,k3

Vk1k2k3(δq′1,k1
δq′2,k2 + δq′1,k2

δq′2,k1
)

×(δq1,k3δq2,k1+k2−k3 + δq2,k3δq1,k1+k2−k3) (A.2.7b)

=
1

L

(
Vq′1q′2q1 + Vq′1q′2q2 + Vq′2q′1q2 + Vq′2q′1q1

)
(A.2.7c)

where in the last line total momentum conservation is implied. Inserting the expression
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for the scattering amplitude Eq. (2.19) into Eq. (A.2.7) yields

〈q′1,q′2|Hint |q1,q2〉

= − 1

L

{
J
[
cos(q′1 − q1) + cos(q′1 − q2) + cos(q′2 − q2) + cos(q′2 − q1)

]
(A.2.8a)

+J2

[
cos
(
2(q′1 − q1)

)
+ cos

(
2(q′1 − q2)

)
+ cos

(
2(q′2 − q2)

)
+ cos

(
2(q′2 − q1)

)]}
(A.2.4)

= − 2

L

{
J
[
cos(q′1 − q1) + cos(q′1 − q2)

]
+ J2

[
cos
(
2(q′1 − q1)

)
+ cos

(
2(q′1 − q2)

)]}
(A.2.8b)

The energy of the bound state is only a function of total momentum Q, not of q1 and
q2 individually. Since states with di�erent total momentum are always orthogonal, the
Hamiltonian matrix can be computed and diagonalized in each Q sector independently.
In order to avoid the problem of an overcomplete basis, relative momentum q is chosen
as second quantum number with the restriction q ≥ 0. Total and relative momentum are
herefore de�ned as

Q := q1 + q2 q := q1 − q2 (A.2.9a)

⇔ q1 =
Q+ q

2
q2 =

Q− q
2

. (A.2.9b)

Using this to express all momenta using Q, q′ and q yields the matrix element in the form
of Eq. (2.24).

A.3 2QP interaction matrix of the TFIM

To compare the iMPS results for the 2QP interaction to the analytic solution from CUT
[57], the interaction matrix element of the Hamiltonian H2P is calculated in the |Q,q1〉
basis.
As shown in Sec. 2.2, the formulation of the Hamiltonian in string operators allows us to
directly determine the 2QP interaction term as

H2P = −2
∑
j

∞∑
n≥2

n−1∑
m=1

tn (a†ja
†
j+maj+maj+n + h.c.) . (A.3.1)

Note that the summation ranges of n and m in Eq. (A.3.1) exclude the creation and
annihilation of two quasi-particles on the same site. Therefore, no special treatment of the
hard-core constraint is required.
In order to derive the expression Eq. (2.42), the real space matrix element of H2P is
calculated �rst

〈j′,j′ + d′|H2P |j,j + d〉

= −2
∑
`

∞∑
n=2

n−1∑
m=1

tn〈j′,j′ + d′|(a†`a
†
mama`+n + a†`+na

†
mama`) |j,j + d〉 (A.3.2a)

= −2
∑
`

∞∑
n=2

n−1∑
m=1

tn

[(
δj′,`δj′+d′,m + δj′,mδj′+d′,`

)
(δj,`+nδj+d,m + δj,mδj+d,`+n)

+
(
δj′,`+nδj′+d′,m + δj′,mδj′+d′,`+n

)
(δj,`δj+d,m + δj,mδj+d,`)

]
. (A.3.2b)
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The expression Eq. (A.3.2) can now be inserted into the momentum space matrix element

〈Q,q′1|H2P |Q,q1〉
= L〈Q,q′1|h0|2P |Q,q1〉 (A.3.3a)

=
1

L2

∑
j′,j

∑
d′,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d〈j′,j′ + d′|H2P |j,j + d〉 (A.3.3b)

=
1

L

∑
j′,j

∑
d′,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d〈j′,j′ + d′|H2P|`=0 |j,j + d〉 (A.3.3c)

=
1

L

∑
j′,j

∑
d′,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

[
−2

∞∑
n=2

n−1∑
m=1

tn

×
(
δj′,0δj′+d′,mδj,nδj+d,m + δj′,0δj′+d′,mδj,mδj+d,n

+δj′,mδj′+d′,0δj,nδj+d,m + δj′,mδj′+d′,0δj,mδj+d,n

+δj′,nδj′+d′,mδj,0δj+d,m + δj′,nδj′+d′,mδj,mδj+d,0

+δj′,mδj′+d′,nδj,0δj+d,m + δj′,mδj′+d′,nδj,mδj+d,0

)]
(A.3.3d)

where TI has been used to set ` = 0 everywhere and to gain a factor of L which cancels out
one power of L−1 in the normalization. Carrying out the sums over j′, j, d′ and d yields

〈Q,q′1|H2P |Q,q1〉

= − 2

L

∞∑
n=2

n−1∑
m=1

tn

[(
e+iQm−iq′1m−iQm+iq1(m−n) + e+iQm−iq′1m−iQn+iq1(n−m)

+e−iq
′
1(−m)−iQm+iq1(m−n) + e−iq

′
1(−m)−iQn+iq1(n−m)

+e+iQm−iq′1(m−n)−iQm+iq1m + e+iQm−iq′1(m−n)+iq1(−m)

+e+iQn−iq′1(n−m)−iQm+iq1m + e+iQn−iq′1(n−m)+iq1(−m)

)]
. (A.3.4)

For each summand, the values of m run from 1 to n− 1. Therefore, under the sum m can
be exchanged with n − m, which then takes the same values n − 1 to 1 only in reverse
order. With this, the exponentials can be written as cosine functions

〈Q,q′1|H2P |Q,q1〉

= − 4

L

∞∑
n=2

n−1∑
m=1

tn

[
cos
(
q′2(n−m) + q1m

)
+ cos

(
q′1(n−m) + q2m

)
+ cos

(
q′1(n−m) + q1m

)
+ cos

(
q′2(n−m) + q2m

)]
. (A.3.5)

Lastly, in the TDL the following index mapping can be made

{n,m} → {d′,d} with n = d′ + d, m = d, d′,d > 0 . (A.3.6)

Inserting this into Eq. (A.3.5) �nally yields the matrix element as given in Eq. (2.41).
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A.4 Properties of transfer operator T

This section provides a more detailed discussion of the properties of the spectrum of the
transfer matrix T and the eigenmatrices associated with the largest modulus EV Λ0. These
are the arguments used to motivate the iMPS formalism as implemented for the purposes
of this thesis. For a more in-depth analysis see for instance Refs. [21, 22].

A.4.1 Largest eigenvalue

We de�ne TS by
T =

∑
s

T s :=
∑
s

As∗ ⊗As , (A.4.1)

with As ∈ CD×D. Some statements can be made about the spectrum of each summand
T s. For the EVs cij of a Kronecker product of two matrices A and B with EVs ai and bj ,
respectively, the relation

cij = aibj (A.4.2)

holds, i.e., the EVs of the Kronecker product are the products of the EVs of the individual
matrices A and B. For T s, B = A∗ holds, and the EVs of A∗ are the complex conjugates
of the EVs of A.

Therefore, T s has at least D real and positive eigenvalues that are the squared absolute
values of the EVs of As. Moreover, if the largest modulus EV is unique, it is the square
of the absolute value of the largest magnitude EV of As and therefore real and positive. If
the largest magnitude EV of As is n-fold degenerate, then T s has n2 EVs with the same
modulus. At least one of them is real and positive. All complex EVs come in conjugate
pairs, as can be seen from Eq. (A.4.2). Note that if the largest magnitude EV of As is
zero, then all EVs are zero and As is nilpotent and therefore describes the null-vector in
the uMPS class of D ×D matrices, since An = 0 with n ≤ D � L.

Unfortunately, there are only few rigorous statements that can be made about the spec-
trum of the sum of matrices. In practice, we �nd, that this structure of the spectrum of
T s carries over to the spectrum of the sum T =

∑
s T

s. However, there is no proof that
this must be so.

Therefore, at this point the statement

Λ0 ∈ R+, Λi 6= Λ0 ∀ i 6= 0 (A.4.3)

must be taken as an axiom or, alternatively, as a necessary condition for the ansatz to work.

If Λ0 is truly degenerate, i.e.,
Λi = Λ0, i = 1, . . . ,n , (A.4.4)

in the thermodynamic limit the norm takes the form

〈ψ|ψ〉 = Tr

(
Q̃

(
ΛL0

n∑
i=0

~vi~u
†
i

))
= ΛL0

∑
i

~u†i Q̃~vi . (A.4.5)

This can in theory still be normalizeable through Q, if ~u†i Q̃~vi ∈ R for all i and the sum is
positive. However, since ~u†i Q̃~vi = ~u†jQ̃~uj cannot be assumed for i 6= j, this would require
extended bookkeeping on the normalization for all norms and matrix elements.
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If Λ0 is degenerate in the absolute value, i.e.,

|Λi| = Λ0, i = 1, . . . ,n , (A.4.6)

one faces another problem the thermodynamic limit. This is because the limit

lim
L→∞

(
Λj
Λ0

)L
= lim

L→∞
(eiθj )L (A.4.7)

does not take a de�ned value for θj 6= 0. For a more detailed discussion see Ref. [99].

In general, a degenerate largest magnitude EV is a strong indicator that some of the
premises of the iMPS formalism are violated. For instance, in 1D the ground state of the
Majumdar-Ghosh Hamiltonian [100, 101, 102]

H = J
∑
j

~Sj ~Sj+1 +
J

2

∑
j

~Sj ~Sj+2 (A.4.8)

is two-fold degenerate, as it consists of singlets forming either on the odd or on the even
bonds. Therefore, the system will favor one or the other ground state, depending on the
boundary conditions. There is, however, a uMPS representation that accounts for both
realizations simultaneously, using matrices of dimension 3× 3

A↑ :=

0 1√
2

0

0 0 0
1 0 0

 , A↓ :=

0 0 − 1√
2

1 0 0
0 0 0

 . (A.4.9)

The resulting transfer matrix T

T =



0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 − 1√
2

0 0

0 0 0 1√
2

0 0 0 0 0

0 0 − 1√
2

0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1√

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0


(A.4.10)

has modulus degenerate EVs {Λ0 = +1,Λ1 = −1}. As a result, this ground state uMPS
cannot reliably be determined by the algorithms described in this thesis.

A.4.2 Properties of eigenmatrices

If we assume (A.4.3), we can prove that the corresponding left and right eigenmatrices u
and v must be Hermitian and can be chosen positive semi-de�nite as shown next.

First note that the relation

(T [v])† =

(∑
s

AsvAs†

)†
(A.4.11a)

=
∑
s

Asv†As† (A.4.11b)

= T [v†] (A.4.11c)
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holds. It follows that if v is an eigenmatrix of T to EV Λ, then v† is an eigenmatrix to EV
Λ∗

T [v] = Λv (A.4.12a)

⇒ (T [v])† = Λ∗v† = T [v†] (A.4.12b)

⇒ v† = v if Λ ∈ R and unique . (A.4.12c)

The same argument holds for the left eigenmatrix u.

A matrix v is called positive (negative) de�nite, if the form f(~w) = ~w†v ~w is greater (less)
than zero for all possible arguments ~w 6= ~0. If f(~w) = 0 can occur, the matrix is called
positive or negative semi de�nite, respectively. For Hermitian matrices, this is equivalent
to all EVs being greater (less) than or equal to zero.
To prove that u and v can be chosen positive semi-de�nite, we note that T is an endomor-
phism of the positive or negative (semi) de�nite matrices. Let vα be the EVs of v and ~α
the corresponding eigenvectors. Then

~w†T [v]~w = ~w†

(∑
s

As

(∑
α

vα~α~α
†

)
As†

)
~w (A.4.13a)

=
∑
s

∑
α

vα|~w†As~α|2 (A.4.13b){
≥ 0 ∀ ~w if vα ≥ 0 ∀ α
≤ 0 ∀ ~w if vα ≤ 0 ∀ α

. (A.4.13c)

Next, let v be a positive semi-de�nite eigenmatrix of T to EV Λ. Then, on the one hand
it follows from Eq. (A.4.13) that Λ must be positive

~w†v ~w ≥ 0 (A.4.14a)

⇒ ~w†T [v]~w ≥ 0 (A.4.14b)

⇒ Λ~w†v ~w ≥ 0 (A.4.14c)

⇒ Λ ≥ 0 . (A.4.14d)

On the other hand, a unique EV determines its corresponding eigenmatrix up to multi-
plication by a scalar. We have shown in Eq. (A.4.12) that eigenmatrices corresponding to
unique, real EVs must be Hermitian. If we assume v to be normalized, then it is uniquely
determined by Λ up to multiplication by −1. Therefore, the eigenmatrices corresponding
to unique, positive EVs of T must be either positive or negative semi-de�nite, and can
thus be chosen to be positive semi-de�nite.
Lastly, it remains to be shown that v ≥ 0 implies u ≥ 0. Since they are left and right
eigenvectors to the same EV, their scalar product is one. Let uβ be the EVs and {~β} the
eigenvectors of u. Then

(u,v) = Tr(u†v) = Tr(uv) (A.4.15a)

= Tr

∑
β

uβ~β~β
†v

 (A.4.15b)

=
∑
β

uβ ~β
†v~β︸ ︷︷ ︸
≥0

(A.4.15c)

= 1 (A.4.15d)

⇒ uβ ≥ 0 . (A.4.15e)
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If, in addition to (A.4.3)
|Λi| < 1 ∀ i > 0 (A.4.16)

is assumed, the thermodynamic limit is always well de�ned and the boundary matrices can
be linked to the singular values of the uMPS. This allows us to conclude, that v and u are
positive de�nite, i.e. cannot have zero EVs.

Let {Γ̃s,λ̃} be the composite form of a uMPS as de�ned in Sec. 3.6.4. Then, as shown in
Sec. A.4.3, the norm TN takes one of the following forms

u†

λ1

λ∗1

Γs1

Γs1∗

λ2

λ∗2

Γs2

Γs2∗

λL

λ∗L

ΓsL

ΓsL∗

v

= u†

Γs1

Γs1∗

λ2

λ∗2

Γs2

Γs2∗

λL

λ∗L

ΓsL

ΓsL∗

λL+1

λL+1∗

v ,(A.4.17)

where u and v are the left and right eigenmatrices of

T̃L =
∑
s

(λΓs∗)⊗ (λΓs) and T̃R =
∑
s

(Γs∗λ)⊗ (Γsλ) , (A.4.18)

respectively. The symbol denotes that an arbitrary number of rungs is left out. The
matrix λ is the diagonal D×D matrix of Schmidt coe�cients of the Schmidt decomposition
of the uMPS across any bond. As singular values the elements λi of λ are real and non-
negative. Additionally, we can assume them to be Strictly positive λi > 0 ∀ i. Because if
A had n singular values equal to zero, then the state could be represented by matrices of
dimension (D − n)× (D − n), which then would have again only positive singular values.
In the norm in Eq. (A.4.17) one of the matrix products

λ∗u†λ or λvλ∗ (A.4.19)

occurs. Since the rank of the product of matrices cannot exceed the minimum rank of the
factors, u and v must have full rank. Otherwise, there would be one Schmidt decomposi-
tion with an e�ective Schmidt rank K < D, which would again mean that every Schmidt
decomposition had rank K < D.

Therefore, the boundary matrices u and v are Hermitian, have full rank and can be chosen
positive de�nite. This proves, that the scalar product Eq. (3.69) is well de�ned, given the
conditions (A.4.3) and (A.4.16) are met. It also means, that u and v are invertible, which
is a requirement for computing the canonical form of a uMPS.
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A.4.3 TN boundaries in the thermodynamic limit

This section describes the special form of TNs that occur for overlaps and matrix elements
in the thermodynamic limit. As can be seen from Eq. (3.42), the TN for a norm of a state
with PBC is

〈ψ|ψ〉 =
∑

s1,...,sL

c∗s1,...,sLcs1,...,sL (A.4.20a)

=
∑

s1,...,sL

Tr(AsL† · · ·As1†)Tr(As1 · · ·AsL) (A.4.20b)

=

As1

As1∗

AsL

AsL∗

(A.4.20c)

i.e. it represents a sum of products of traces. In contrast, the TN

u†

As1

As1∗

AsL

AsL∗

v =
∑

s1,...,sL

Tr(u†AsL† · · ·As1†vAs1 · · ·AsL)

(A.4.21)
represents a sum of traces of matrix products. In general, these are not the same

Tr(A)Tr(B) 6= Tr(AB) . (A.4.22)

However, in the thermodynamic limit and only in the thermodynamic limit, given {Asi}
represent a properly normalized state, both expressions take the same value, namely 1,
and can thus be identi�ed

〈ψ|ψ〉 =
∑

s1,...,sL

Tr(As1∗ · · ·AsL∗)Tr(As1 · · ·AsL) (A.4.23a)

= Tr(TL) (A.4.23b)

= Tr(ΛL0~v0~u
†
0) (A.4.23c)

= ΛL0 Tr(~u†0~v0) (A.4.23d)

= ΛL0 ~u
†
0~v0 (A.4.23e)

= 1 . (A.4.23f)

The critical step is (A.4.23c), where the TDL is used to reduce TL to a dyadic product
using the spectral representation

lim
L→∞

TL = lim
L→∞

D2−1∑
i=0

ΛLi ~vi~u
†
i = ΛL0~v0~u

†
0 (A.4.24)

since |Λi| < 1 for i > 0 and therefore limL→∞ ΛLi>0 = 0. This makes the argument of the
trace operation already a scalar, and for scalars the product of traces is indeed equal to
the trace of the product, since the trace operation is trivial.
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Since u and v are eigenvectors of T to EV Λ0 = 1, the following relations hold

v = T [v] = v = v (A.4.25a)

u† = T †[u†] = u† = u† (A.4.25b)

and it is easy to see that the entire TN in Eq. (A.4.21) therefore collapses to

u† v = Tr(u†v) . (A.4.26)

This means, in general the TN in Eq. (A.4.20) corresponds to the matrix interpretation
Eq. (3.54) of T , while the TN in Eq. (A.4.21) corresponds to the superoperator interpre-
tation Eq. (3.67). Since the latter is numerically advantageous, it is chosen for this thesis,
along with the TN type in Eq. (A.4.21).
As shown in Sec. 3.6.4, for a left-canonical uMPS, the left boundary matrix is the D ×D
identity matrix u = 1. This translates in TN notation to

Tr(u†v) = Tr(1v) = Tr(v) = v ⇒ = 1 . (A.4.27)

Since the left-canonical gauge is the used, the TNs appearing for iMPSs are generically of
the form

〈ψ′|Ô |ψ〉 = . (A.4.28)

In the arguments leading up to the TN form in Eq. (A.4.28), the boundary operator Q

was not discussed. The reason is that in the limit L→∞ Eq. (A.4.24) also holds for T
L
2 .

Therefore, in the TDL any relevant matrix element or overlap takes the following form

lim
L→∞

Tr(Q̃TLOTL) = lim
L→∞

Tr(T
L
2 Q̃TLOT

L
2 ) (A.4.29a)

= Tr(~v0 ~u
†
0 Q̃~v0︸ ︷︷ ︸

=1

~u†0O~v0~u
†
0) (A.4.29b)

= ~u†0~v0︸︷︷︸
=1

~u†0O~v0 (A.4.29c)

= ~u†0O~v0 (A.4.29d)

where O is a D2 × D2 matrix or a rank-4 tensor that holds all information on the �nite
number of lattice sites that are di�erent from the ground state. The �rst equality is due
to the cyclic property of the trace, the second due to Eq. (A.4.24) and the rest follows
from normalization. Therefore, if the uMPS described by A is normalizable, the boundary
operator is irrelevant and can be omitted from the notation entirely.
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A.4.4 uMPS and iMPS

Although uniform matrix product states (uMPSs) and in�nite system matrix product
states (iMPSs) both describe in�nite systems in the context of this thesis, there are di�er-
ences. This is why two di�erent acronyms are used.

The class of uMPS discussed in Sec. 3.6.2, that is assumed to describe the ground state,
does not form a vector space, but rather a manifold [92]. This means if two states |ψ〉 and
|φ〉 can be described as uMPSs, this is not necessarily true for their sum. Especially if

A 7→ |ψ〉, Ã 7→ |φ〉, C 7→ |χ〉 = |ψ〉+ |φ〉 ; C = A + Ã . (A.4.30)

Although manifolds are locally isomorphic to vector spaces, not knowing the isomorphism
(and its inverse) makes it very hard to de�ne a scalar product for uMPSs.

Looking at the analysis of the uMPS norm in Sec. 3.6.2, one could think of de�ning a
transfer operator

T̄ :=
∑
s

Ãs∗ ⊗As (A.4.31)

in terms of which the overlap then reads

〈φ|ψ〉 = lim
L→∞

Tr(T̄L) . (A.4.32)

Assuming both |ψ〉 and |φ〉 are normalized, generically the largest magnitude EV of T̄ is
smaller than 1, and therefore, the overlap vanishes in the TDL. This means, that with
respect to this scalar product, all uMPSs are orthogonal. Alternatively, one could de�ne
the largest magnitude EV of T̄ as the value of the scalar product. However, this is not a
good de�nition, either. For instance, the two degenerate ground states in the ordered phase
of the TFIM are orthogonal. Yet, the largest magnitude EV of T̄ formed from two uMPSs
describing both ground states is non-zero. Arguably, the uMPSs do not describe the true
ground states, and therefore orthogonality can only be expected in the limit D → ∞. In
this case Λ̄0 should at least decrease for increasing bond dimension and extrapolate to a
value near zero. However, at least in the case of the TFIM, this is not what we observe.
This problem makes working with degenerate ground states in the TDL challenging.

In contrast, the iMPSs formed by replacing a �nite number n of consecutive tensors in a
uMPS do form a vector space. It is of dimension (dD2)n and can be interpreted as the
tangent space to the manifold of uMPS at the given point. Therefore, provided they are
based on the same uMPS, i.e., are elements of the same tangent space, the sum of two
iMPSs is again a iMPS. Also, the scalar product of two iMPSs is well-de�ned.
Since this type of iMPS is used describe excited states, their overlaps and matrix elements
are well-de�ned, too.

A.5 Ground state degeneracy

As mentioned in Sec. 3.6.1, ground state degeneracy can be handled to some extent in the
framework of iMPS. This section describes the algorithmic changes necessary to work with
a model that has a degenerate ground state. Some caveats and limitations are discussed.
Also, some considerations explicitly for the TFIM are made.
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A.5.1 Working with degenerate ground states

For instance, the TFIM Hamiltonian Eq. (2.25) has a Z2 symmetry for Sx → −Sx which is
spontaneously broken in the Ising phase λ > 1. This symmetry breaking is re�ected in the
ground state uMPS as found by the algorithm in Sec. 4.1, since the result describes either
one or the other ground state realization, not a superposition of both. This is due to the
manifold structure of the set of uMPS, meaning that a superposition of the two ground
states is not contained in that manifold, although it has the same energy per lattice site.
In the case of the TFIM, as discussed in Sec. 4.5, the order parameter Mx can be used
to determine which ground state the algorithm converged to. This can be generalized to
other models, if ground state degeneracy is expected. Usually, there is an order parameter
by which the di�erent possible realizations can be told apart. Therefore, the algorithm can
be run multiple times with di�erent random initial guesses to �nd the di�erent uMPSs of
the ground states.

A.5.2 Transformation for ground state uMPS in the TFIM

For the TFIM running the ground state search multiple times is not required. Although the
transverse �eld introduces quantum �uctuations, the ground state of the Ising phase can
still be understood as all spins aligning in either positive or negative x-direction. There
is a simple transformation that converts one into the other, namely −σz which can be
interpreted as a spin-�ip operator in the σx eigenbasis.
By expressing the Hamiltonian in spin-1

2operators,

Sα =
1

2
σα with α ∈ {x,y,z} (A.5.1)

with the Pauli matrices σα

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (A.5.2)

the eigenbasis of σz was chosen as basis for the local Hilbert space of each spin. The
eigenstates of σz are

| ↑ 〉 =

(
1
0

)
, σz | ↑ 〉 = +1 | ↑ 〉 and | ↓ 〉 =

(
0
1

)
, σz | ↓ 〉 = −1 | ↓ 〉 (A.5.3)

and those of σx are

|ψx,+〉 =
1√
2

( | ↓ 〉+ | ↑ 〉) =
1√
2

(
1
1

)
, σx |ψx,+〉 = +1 |ψx,+〉 and (A.5.4a)

|ψx,−〉 =
1√
2

( | ↓ 〉 − | ↑ 〉) =
1√
2

(
−1
1

)
, σx |ψx,−〉 = −1 |ψx,−〉 . (A.5.4b)

It is thus easy to see that a multiplication by −σz turns |ψx,+〉 into |ψx,−〉 and vice versa

−σz |ψx,+〉 =

(
−1 0
0 1

)
1√
2

(
1
1

)
=

1√
2

(
−1
1

)
= |ψx,−〉 (A.5.5a)

−σz |ψx,−〉 =

(
−1 0
0 1

)
1√
2

(
−1
1

)
=

1√
2

(
1
1

)
= |ψx,+〉 . (A.5.5b)

Therefore,

|GS+〉 =

 ∞⊗
j=−∞

−σzj

 |GS−〉 (A.5.6)
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where |GS+〉 is the ground state with spin orientation in positive x-direction, and |GS−〉
the one with magnetization in negative x-direction. In contrast to the local operators dealt
with so far, this is actually a global operation that acts on all the spins in the same way.
It is one of the rare cases where an MPO can be applied to a uMPS ∞⊗

j=−∞
−σzj

 |GS−〉 = Tr

∑
s′1

(−σz)s1s′1A
s′1

 · · ·
∑

s′L

(−σz)sLs′LA
s′L

 |{si}〉 .
(A.5.7)

Applying this operator to the ground state uMPS yields

∑
s′

(e−iπS
y
)s,s′A

s′ =

{
−A1, if s = 1

A2, if s = 2
, (A.5.8)

i.e, ultimately only a relative sign between the two As matrices

|GS−〉 : {A1,A2} → |GS+〉 : {−A1,A2} . (A.5.9)

Note that this operation transforms both ground states into each other.

A.5.3 Dispersion for degenerate ground states

If a one-dimensional system has a degenerate ground state, this is of fundamental impor-
tance, because it greatly changes the type of the elementary excitations. With a degenerate
ground state, very often the least amount of energy that can be put into the system is no
longer a local perturbation such as a spin �ip or a triplet excitation, but a domain wall
between sections with di�erent ground states. Therefore, a single excitation cannot be
created by a local operation, but rather involves an in�nite number of lattices sites being
changed from one ground state to another.
In this case, assuming the same ground state on both ends of the system then implies that
elementary excitations can only be created in pairs. This is easy to see for the example
of the TFIM in the Ising phase, where �ipping a single spin means creating two domain
walls, which in the limit Γ = 0 can move apart at no additional energy cost, cf. Fig. 2.1.

This type of domain wall excitation can indeed be described within the iMPS framework
using the ansatz in Eq. (5.2)

|Bα,j〉 :=
∑

s1,...,sL

Tr(As1 · · ·Asj−1B
sj
α Ã

sj+1 · · · ÃsL) |s1, . . . ,sL〉 (A.5.10)

where A describes one ground state and Ã the other. Finding the Bα tensors with degener-
ate ground state works the same way as described for a unique ground state in Sec. 5.1.2.3.
The only di�erence is that when computing the matrix M , the left eigenmatrix u of T
and the right eigenmatrix ṽ of T̃ are used, where T̃ is constructed from Ã according to
Eq. (3.54).
The same is true for the matrix elements

〈Bα,j′|h̃0 |Bβ,j〉 =

Bα

Bβ

(A.5.11)
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where the open circles denote the Ã tensor, the open diamond shape denotes ṽ, and the
solid circles denote A. For the example TN, j′ < 0 and j > 0 was assumed. Intermediate
transfer operators on the sites j′ < k < 0 and n < k < j are replaced by

T = 1(A;A) = → T̄ = 1(Ã;A) = or T̄ = 1(A;Ã) = .

(A.5.12)
Since the application of the transfer operator is implemented as an identity operation
anyway, this requires only minor adjustments for 1QP computations.
Note that the orthogonality of the states in Eq. (5.2) with respect to α and j is in no way
in�uenced by the ground state being degenerate.

The above sketched ansatz captures the dispersion relation of domain wall excitations
perfectly, as evidenced by the results for the TFIM in the Ising regime in Sec. 5.4.2.
However, it requires that the presence of ground state degeneracy is known, and that
uMPS descriptions for the di�erent ground states on both sides of the domain wall are
available. As mentioned above, if a system with ground state degeneracy is treated as
having a unique ground state, the resulting Bα tensors describe two elementary excitations
close together. This results in an overestimation of the energy gap by a factor of two,
which can be seen in Fig. 5.6.
As a side note, applying the transformation Eq. (A.5.9) to a ground state uMPS of the
TFIM in the strong �eld phase and treating the system as having a degenerate ground
state, does not change the results for the dispersion or the creation operator. This can
easily be understood, since the spins are polarized in z direction and the �ip in x direction
does not change the nature of the ground state.

In summary, the iMPS formalism is capable of producing very accurate results for domain
wall type excitations. However, it is not capable of determining the nature of the excitations
automatically. For a degenerate ground state, the domain wall character of the excitations
has to be explicitly incorporated into the ansatz for excited states.

A.6 Orthogonality of Wannier states

The following text book argument proves the orthogonality of the one-particle momentum
states. Note that an in�nite system with OBC or translational invariance for PBC are
necessary prerequisites, but are assumed throughout this thesis anyway. Let Ta be the
translation operator, that shifts the whole lattice by one lattice constant a, i.e. by one
site. It is generated by the momentum operator q̂

Ta = eiq̂a ⇒ T †a = e−iq̂
†a = e−iq̂a = T−a . (A.6.1)

Let now |j〉 be a one-particle real space state with the particle located at site j. And let

|q〉 :=
∑
j

e−iqj |j〉 (A.6.2)
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be the equal weight momentum superposition of all states |j〉. It is easily seen, that |q〉 is
an eigenstate of the translation

Ta |q〉 = Ta
∑
j

e−iqj |j〉 =
∑
j

e−iqjTa |j〉 (A.6.3a)

=
∑
j

e−iqj |j + 1〉 =
∑
j

e−iq(j−1) |j〉 (A.6.3b)

= eiq
∑
j

e−iqj |j〉 (A.6.3c)

= eiq |q〉 (A.6.3d)

where the index shift j → j − 1 is possible due to TI and the in�nite system size. On
the bra state 〈q| the operator Ta acts in the same way, but yields the complex conjugate
eigenvalue

Ta〈q| = e−iq〈q| (A.6.4a)

⇒ T †a 〈q| = T−a〈q| = eiq〈q| . (A.6.4b)

Now consider the matrix element

〈q′|Ta |q〉 =
(
〈q′|T †a

)
|q〉 = 〈q′|

(
Ta |q〉

)
(A.6.5a)

= 〈q′|eiq′ |q〉 = 〈q′|eiq |q〉 (A.6.5b)

⇒ eiq
′〈q′|q〉 = eiq〈q′|q〉 (A.6.5c)

⇒ q = q′ or 〈q′|q〉 = 0 (A.6.5d)

given q is a good quantum number which is ensured under the aforementioned assumptions.

A.7 Occupation-number and Hilbert space dimensions

In numerical computations, momentum in the Brillouin zone needs to be discretized into Lq
sampling points, even if the system is considered to be in the TDL. However, this e�ectively
means working on a �nite system with L = Lq lattice sites in real space, that has periodic
boundary conditions due to the properties of the discrete Fourier transformation.
Choosing Lq odd is much more convenient than having Lq even, although this may seem
counter-intuitive. This is so because with odd Lq each sector with total momentum Q con-
tains the same well-de�ned number of states, and therefore all Q sectors can be handled
in the same way.

Consider a bosonic system with a �nite number L of lattice sites and PBC. Let |j,`〉
be an orthonormal basis of the two-particle Fock space F2 represented in real space. For
distinguishable particles, the dimension of F2 is L2 since for each particle there are L
lattice sites to put it on. The states with doubly occupied sites

|j,j〉 = a†ja
†
j |0〉 , (A.7.1)

where |0〉 is the vacuum state, are uniquely determined. However, for bosons every other
state in occupation number space can be created in two ways

|j,`〉 = a†ja
†
` |0〉 = a†`a

†
j |0〉 = |`,j〉 . (A.7.2)
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Thus the actual Hilbert space dimension is only

dim(H2) = L+
L2 − L

2
= L+

L(L− 1)

2
. (A.7.3)

Note that due to Eq. (A.7.2) for bosons the dimension of F2 is also given by Eq. (A.7.3),
and the distinction between Fock space and Hilbert space is arti�cial. But allowing both
|j,`〉 and |`,j〉 is much more convenient for Fourier transformation.
The overlap is given by

〈j′,`′|j,`〉 = δj′jδ`′` + δj′`δ`′j . (A.7.4)

When expressing the two-particle Fock basis in real space, one can also choose the basis of
one absolute and one relative coordinate

|j,j + d〉 = |j,`〉 (A.7.5)

with d := ` − j where for now d ≥ 0 is assumed. One can now split the Fock space into
sectors F j2 labeled by the �rst particle position j. Each sector holds one unique state |j,j〉
and L − 1 states, that can be created in two di�erent ways and therefore also appear in
another sector since

F j2 3 |j,j + d〉 = |j + d,j〉 ∈ F j+d2 . (A.7.6)

Therefore, if each state is attributed with one half to each sector, there are

dim(Hj2) = 1 +
(L− 1)

2
(A.7.7)

unique states in each sector. However, this is only an average number.

The important fact to note about this is that if L is even, this number is not an integer.
It is therefore impossible to assign the same well-de�ned number of unique states to each
j-sector, which is inconvenient for systematic handling of subspaces. For odd L, this prob-
lem does not occur.

As will be shown next, this problem carries over to momentum space and to the hybrid
basis. Let |q1,q2〉 be a state with two particles of individual momenta q1 and q2

|q1,q2〉 :=
1

L

∑
j,`

e−iq1j−iq2` |j,`〉 . (A.7.8)

Total momentum Q and relative momentum q of the two particles are de�ned as in
Eq. (A.2.9) and the center-of-mass coordinate rCM and relative coordinate d as

rCM :=
j + `

2
and d :=

`− j
2

, (A.7.9)

respectively. With this, the state |q1,q2〉 can also be written as Fourier transform of the
center-of-mass and relative coordinates associated with total and relative momentum

|q1,q2〉 =
1

L

∑
j,`

e−iq1j−iq2` |j,`〉 (A.7.10a)

=
1

L

∑
j,`

e−i
Q−q

2
j−iQ+q

2
` |j,`〉 (A.7.10b)

=
1

L

∑
j,`

e−i(
Q
2
j+Q

2
`)−i( q2 `−

q
2
j) |j,`〉 (A.7.10c)
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=
1

L

∑
j,`

e−iQ
j+`

2
−iq `−j

2 |j,`〉 (A.7.10d)

=
1

L

∑
j,d

e−iQrCM−iq
d
2 |j,j + d〉 (A.7.10e)

=
1

L

∑
j,d

e−iQ
2j+d

2
−iq d

2 |j,j + d〉 (A.7.10f)

=
1

L

∑
j,d

e−iQj−iQ
d
2
−iq d

2 |j,j + d〉 . (A.7.10g)

Now, the hybrid basis de�ned in Eq. (6.14) is simply obtained by dropping the Fourier
transformation in d.
Using TI and the real space overlap in Eq. (A.7.4), the overlap of two hybrid states is given
by

〈Q,d′|Q,d〉 = e−iQ
d−d′

2

∑
j′

e+iQj′〈j′,j′ + d′|0,d〉 (A.7.11a)

= e−iQ
d−d′

2

∑
j′

e+iQj′(δj′,0δd′,d + δj′,dδd′,−d) (A.7.11b)

= e−iQ
d−d′

2

(
e+iQ0δd′,d + e+iQdδd′,−d

)
(A.7.11c)

= e−iQ
d−d′

2 δd′,d + e+iQ d+d′
2 δd′,−d . (A.7.11d)

Equation (A.7.11d) shows that the states with +d and −d are the same, since they have
an overlap of 1. Two states require special attention. Using this overlap de�nition, the
d = 0 state has norm

√
2 because for d′ = d = 0 both Kronecker deltas contribute. This is

usually �xed by normalizing the bosonic creation operator a†

|ni + 1〉 =
a†i√
ni + 1

|ni〉 (A.7.12)

where ni is the number of particles already present on site i. For hard-core bosons this is
not required since (a†i )

2 = 0. See Sec. A.10 on how the hard-core constraint is handled for
the purposes of this thesis.

The second state with special properties is the one with d = L
2 which can only occur for

even L. Then, with PBC, d = L
2 ⇔ d = −L

2 . This means that as for d = 0 both Kronecker
deltas are 1. However, the phases are non-trivial. Note that the discretized momentum
can be written as

Q = nQ∆Q = nQ
2π

L
, nQ ∈ {0, . . . ,L− 1} (A.7.13)

where the set of nQ was chosen for convenience. The norm of the state |Q,L2 〉 is〈
Q,
L

2

∣∣∣∣ Q,L2
〉

= e−iQ
1
2(L2−

L
2 ) + e+iQ 1

2(L2 +L
2 ) (A.7.14a)

= 1 + eiQ
L
2 (A.7.14b)

= 1 + einQ
2π
L
L
2 (A.7.14c)

= 1 + einQπ (A.7.14d)

=

{
2, if nQ even

0, if nQ odd
. (A.7.14e)
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Therefore, there are L
2 states in even nQ sectors and L

2 − 1 states in odd nQ sectors. This
is consistent with the average half-integer number of unique states in each j sector found
in Eq. (A.7.7). With L

2 odd and L
2 even values for nQ, the overall number of unique states

is still
L

2

(
1 +

L

2

)
︸ ︷︷ ︸

nQ even

+
L

2

(
1 +

L

2
− 1

)
︸ ︷︷ ︸

nQ odd

= L+
L(L− 1)

2
. (A.7.15)

However, the alternating number of unique states makes an even Lq an inconvenient choice,
since it requires di�erent handling for even and odd Q sectors. This is the reason, why for
this thesis Lq is always chosen odd. This choice also avoids the problem, that the d = L

2

state has norm
√

2 where it exists, which would require additional normalization.

Obviously, there are L = Lq possible values for the total momentum in the �rst Brillouin
zone. In each Q sector, there is one unique state with d = 0. Since the states for +d and
−d are equivalent as expected for bosons, there are then L−1

2 more unique states in each
Q sector for odd Lq. This amounts once more to

L

(
1 +

L− 1

2

)
= L+

L(L− 1)

2
(A.7.16)

unique states total, in accordance with Eq. (A.7.3).

A.8 Gram-Schmidt orthonormalization without vectors

The Gram-Schmidt orthogonalization algorithm is a well known tool to orthogonalize a
skew set of vectors. Given a set {wi} of skew vectors, an orthogonal set {vi} can be
constructed from it iteratively by the following scheme

|v1〉 = |w1〉 (A.8.1a)

|vn〉 = |wn〉 −
n−1∑
j=1

〈vj |wn〉
〈vj |vj〉

|vj〉 . (A.8.1b)

This means, each next orthogonal vector |vn〉 is constructed by taking the vector |wn〉 and
subtracting contributions that are parallel to the orthogonal set {vj<n}. Each orthogonal
vector can be normalized easily in the end.

The 2QP states de�ned in Sec. 6.1 are orthonormal for large particle distances. As seen
in Eq. (A.8.1a), the �rst vector in the Gram-Schmidt sequence is not changed. Therefore,
the natural idea is to start with an orthonormal 2QP state for su�ciently large d and
build an orthonormal basis of the 2QP sector by successively adding states with smaller d.
Operators can then be evaluated in this new orthonormal 2QP basis.

However, unfortunately there is no vector space representation of the 2QP states in mem-
ory, and therefore the algorithm as it is stated in Eq. (A.8.1) cannot be used directly.
Overlaps and matrix elements in the skew basis can be computed though. Therefore, a
version of the algorithm that works with the metric tensor G̃

G̃ij := 〈wi|wj〉 (A.8.2)

and the operator matrix Õ
Õij := 〈wi|O |wj〉 (A.8.3)
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in the skew basis must be formulated.

In order to keep the following calculations a bit tidier, an auxiliary matrix V is de�ned

Vij :=


〈vi|vi〉, if i = j

〈vi|wj〉, if i < j

0, otherwise

(A.8.4)

i.e., the diagonal elements are the squared norms of the orthogonalized basis. The elements
for i < j (upper triangular part) are the expansion coe�cients of the old basis {wi} in the
new {vi}. It will become evident below that the lower triangular part (i > j) must be zero.
In terms of the elements of V , Eq. (A.8.1b) reads

|vn〉 = |wn〉 −
∑
j<n

Vjn
Vjj
|vj〉 . (A.8.5)

To �nd the required algorithm, the normalization of the orthogonalized basis of Eq. (A.8.1)
is examined �rst

〈vn|vn〉 =

〈
wn −

∑
j<n

V ∗jn
Vjj

vj

∣∣∣∣wn −∑
j′<n

Vj′n
Vj′j′

vj′

〉
(A.8.6a)

= 〈wn|wn〉 −
〈
wn

∣∣∣∣∑
j′<n

Vj′n
Vj′j′

vj′

〉
−
〈∑
j<n

V ∗jn
Vjj

vj

∣∣∣∣wn〉+

〈∑
j<n

V ∗jn
Vjj

vj

∣∣∣∣∑
j′<n

Vj′n
Vj′j′

vj′

〉
(A.8.6b)

= 〈wn|wn〉 −
∑
j′<n

Vj′n
Vj′j′
〈wn|vj′〉 −

∑
j<n

V ∗jn
Vjj
〈vj |wn〉+

∑
j<n

∑
j′<n

V ∗jn
Vjj

Vj′n
Vj′j′
〈vj |vj′〉

(A.8.6c)

= G̃nn −
∑
j′<n

Vj′nV
∗
j′n

Vj′j′
−
∑
j<n

V ∗jnVjn

Vjj
+
∑
j<n

V ∗jnVjn

V 2
jj

Vjj

+
∑
j<n

∑
j′<n,j′ 6=j

V ∗jn
Vjj

Vj′n
Vj′j′

〈vj |vj′〉︸ ︷︷ ︸
=0

(A.8.6d)

= G̃nn −
∑
j<n

|Vjn|2

Vjj
(A.8.6e)

where in line (A.8.6d) the terms of the double sum with j′ = j were separated from those
with j′ 6= j. Now one can see that separating the i = j case in Eq. (A.8.4) is somewhat
arti�cial, since actually

〈vj |wj〉 =

〈
wj −

∑
k<j

V ∗kj
Vkk

vk

∣∣∣∣wj〉 (A.8.7a)

= 〈wj |wj〉 −
∑
k<j

V ∗kj
Vkk
〈vk|wj〉 (A.8.7b)

= G̃jj −
∑
k<j

|Vkj |2

Vkk
(A.8.7c)

= 〈vj |vj〉 . (A.8.7d)
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From this and Eq. (A.8.5) follows that the vector |wn〉 from the skew basis can be expressed
as an expansion in the new basis { |vi〉} as

|wn〉 = |vn〉+
∑
j<n

Vjn
Vjj
|vj〉 =

∑
j≤n

Vjn
Vjj
|vj〉 (A.8.8a)

=
∑
j

Vjn
Vjj
|vj〉 . (A.8.8b)

The last equality holds since by construction the subsets { |w1〉, . . . , |wn〉} and { |v1〉, . . . , |vn〉}
span the same vector space. From this follows that all expansion coe�cients Vij with i > j
must be zero (cf Eq. (A.8.4)).

It thus remains to be shown what the coe�cients Vij for i < j look like. Since Eq. (A.8.1)
is an iterative scheme, only a recursive de�nition can be given

Vij = 〈vi|wj〉 = 〈wi|wj〉 −
∑
k<i

V ∗ki
Vkk
〈vk|wj〉 (A.8.9a)

= 〈wi|wj〉 −
∑
k<i

V ∗kiVkj
Vkk

(A.8.9b)

with 〈v1|w1〉 = 〈v1|v1〉 = 〈w1|w1〉 . (A.8.9c)

This means that V can be computed iteratively column-wise, from left to right and from
the top down to the diagonal element.

Then, the matrix elements of the operator in the orthonormal basis are given by

〈vi|Ô |vj〉
‖ |vi〉‖ ‖ |vj〉‖

=
1√
ViiVjj

〈
wi −

∑
k<i

V ∗ki
Vkk

vk

∣∣∣∣Ô∣∣∣∣wj −∑
k′<j

Vk′j
Vk′k′

vk′

〉
(A.8.10a)

=
1√
ViiVjj

[
Õij −

∑
k<i

V ∗ki
Vkk
〈vk|Ô |wj〉 −

∑
k′<j

Vk′j
Vk′k′

〈wi|Ô |vk′〉

+
∑
k<i

∑
k′<j

V ∗kiVk′j
VkkVk′k′

〈vk|Ô |vk′〉
]
. (A.8.10b)

With a second auxiliary matrix W de�ned as

Wij = 〈wi|Ô |vj〉 (A.8.11)

and Oij = 〈vi|O |vj〉 being the elements of the operator in the orthogonalized basis this
becomes

Oij
‖ |vi〉‖ ‖ |vj〉‖

=
1√
ViiVjj

[
Õij −

∑
k<i

V ∗ki
Vkk

W ∗jk −
∑
k′<j

Vk′j
Vk′k′

Wik′ +
∑
k<i

∑
k′<j

V ∗kiVk′j
VkkVk′k′

Okk′

]
.

(A.8.12)

The elements Wij are given by

Wij =

〈
wi

∣∣∣∣Ô∣∣∣∣wj −∑
k<j

Vkj
Vkk

vj

〉
(A.8.13a)

= 〈wi|Ô |wj〉 −
∑
k<j

Vkj
Vkk
〈wi|Ô |vk〉 (A.8.13b)

= Õij −
∑
k<j

Vkj
Vkk

Wik , (A.8.13c)



A.9 2QP basis transformations 145

i.e., they can be computed row-wise, recursively. For i = 1 the computation simpli�es
considerably, yielding

O1j

‖ |v1〉‖ ‖ |vj〉‖
=

1√
V11Vjj

Õ1j −
∑
k<j

Vkj
Vkk

O1k

 . (A.8.14)

As stated in the beginning of this section, in iMPS computations no direct vector space
representation of the states is available, that would allow the application of the orthogo-
nalization scheme as de�ned in Eq. (A.8.1). But, by �rst computing the auxiliary matrices
V and W , the Gram-Schmidt orthogonalization can be applied using only overlaps and
matrix elements computed in the skew basis. These can be computed in the iMPS formal-
ism.

A.9 2QP basis transformations

This section provides a reference summary of the di�erent bases used to describe 2QP
states, as well as the transformations for overlaps and matrix elements between them.
Note that in all Fourier transformations L is the number of lattice sites. Since all numerical
momentum space computations require a discretization of momentum, a �nite system with
PBC is implied for which

L = Lq (A.9.1)

holds, where Lq is the number of momentum intervals in the �rst Brillouin zone (cf.
Sec. 5.3).

The real space basis is obtained by �applying the creation operator twice�. It can be
expressed using two independent coordinates j and k

|j,k〉 := a†ja
†
k |GS〉 (A.9.2)

or equivalently with one absolute coordinate j and the particle distance d = k − j

|j,j + d〉 := a†ja
†
j+d |GS〉 . (A.9.3)

Taking the Fourier transform in both coordinates yields the momentum space basis of
individual particle momenta

|q1,q2〉 :=
1

L

∑
j,k

e−iq1je−iq2k |j,k〉 (A.9.4a)

=
1

L

∑
j,d

e−iq1je−iq2(j+d) |j,j + d〉 (A.9.4b)

=
1

L

∑
j,d

e−i(q1+q2)je−iq2d |j,j + d〉 . (A.9.4c)

The last equality naturally leads to the de�nition of total momentum

Q = q1 + q2 (A.9.5)
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and the basis of total momentum and one particle momentum

|Q,q1〉 :=
1

L

∑
j,d

e−iQje−i(Q−q1)d |j,j + d〉 (A.9.6a)

=
1

L

∑
j,d

e−iQje−iQde+iq1d |j,j + d〉 . (A.9.6b)

Introducing also relative momentum

q = q2 − q1 (A.9.7)

and inserting the resulting expression for q2

q2 =
Q+ q

2
. (A.9.8)

into Eq. (A.9.4c) yields the basis of total and relative momentum

|Q,q〉 :=
1

L

∑
j,d

e−iQje−i
Q+q

2
d |j,j + d〉 (A.9.9a)

=
1

L

∑
j,d

e−iQje−iQ
d
2 e−iq

d
2 |j,j + d〉 . (A.9.9b)

Note, that relative momentum q is associated with d
2 rather than d. Finally, dropping the

Fourier transformation in relative distance d de�nes the hybrid basis

|Q,d〉 :=
1√
L
e−iQ

d
2

∑
j

e−iQj |j,j + d〉 . (A.9.10)

The inverse transformations from momentum space and the hybrid basis to real space read

|j,j + d〉 =
1

L

∑
Q,q1

e+iQ(j+d)e−iq1d |Q,q1〉 (A.9.11a)

=
1√
L

∑
Q

e+iQ d
2 e+iQj |Q,d〉 . (A.9.11b)

Inserting Eq. (A.9.11a) into Eq. (A.9.10) yields the transformation from momentum space
to the hybrid basis

|Q,d〉 =
1

L
√
L
e−iQ

d
2

∑
j

e−iQj

∑
Q′,q1

e+iQ′(j+d)e−iq1d |Q′,q1〉

 (A.9.12a)

=
1√
L
e−iQ

d
2

∑
Q′,q1

 1

L

∑
j

ei(Q
′−Q)j


︸ ︷︷ ︸

=δQ,Q′

ei(Q
′−q1)d |Q′,q1〉 (A.9.12b)

=
1√
L
e+iQ d

2

∑
q1

e−iq1d |Q,q1〉 , (A.9.12c)

which is easily inverted to

|Q,q1〉 =
1√
L

∑
d

e−iQ
d
2 e+iq1d |Q,d〉 . (A.9.13)
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For the purposes of this thesis, the metric tensor N and operator tensors O are computed
either in the real space basis

N j′,d′

j,d := 〈j′,j′ + d′|0,d〉 (A.9.14a)

Oj
′,d′

j,d := 〈j′,j′ + d′|O0 |j,j + d〉 , (A.9.14b)

or in the (Q,q1)-basis

NQ
q′1,q1

:= 〈Q,q′1|Q,q1〉 (A.9.15a)

OQ
q′1,q1

:= 〈Q,q′1|O0 |Q,q1〉 . (A.9.15b)

A note on the number of indices is in order at this point. Due to TI, the real space overlap
actually only depends on three relative distances, not four coordinates, which allows to �x
one of the absolute indices j′ or j. In Eq. (A.9.14a) j was �xed to 0. In contrast, the
real space matrix element potentially depends on the relative distances of all four particles
from the operator position. Now consider the transformation of a matrix element from real
space to the (Q,q1) basis

OQ
q′1,q1

=
1

L2

∑
j′,d′

∑
j,d

e+iQj′+iQd′−iq′1d′e−iQj−iQd+iq1d〈j′,j′ + d′|O0 |j,j + d〉 (A.9.16a)

=
1

L2

∑
j′,d′

∑
j,d

eiQ(j′−j+d′−d)e−iq
′
1d
′+iq1dOj

′,d′

j,d . (A.9.16b)

Apparently, one index was �lost� in the transformation. Actually, it went into the assump-
tion, that the operator is total momentum conserving, and therefore Q must be the same in
both states. This is, what allows to use the orthogonality argument to treat each Q-sector
independently, and it is the reason why total momentum is chosen as the primary quantum
number. This means, that the matrix element Eq. (A.9.14b) can in fact not really depend
on all the distances independently for momentum conserving operators O. However, the
relation is not apparent from the de�nition. And especially in the case of a non-orthogonal
basis, the transformation Eq. (A.9.16) is not generally invertible.
But, this is not a requirement for the matrix elements of the Hamiltonians under consid-
eration here. Since they are translation invariant themselves, their matrix elements only
depend on three distances, like the overlap

Hj′,d′

j,d = 〈j′,j′ + d′|H̃ |j,j + d〉 = 〈j′,j′ + d′|H̃ |0,d〉 = Hj′

d′,d . (A.9.17)

In order to apply the Gram-Schmidt algorithm in a well de�ned manner, these results need
to be transformed into the hybrid basis using

NQ
d′,d =

1

L
eiQ

d−d′
2

∑
q′1,q1

eiq
′
1d
′
e−iq1dNQ

q′1,q1
(A.9.18a)

OQd′,d =
1

L
eiQ

d−d′
2

∑
q′1,q1

eiq
′
1d
′
e−iq1dOQ

q′1,q1
(A.9.18b)
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and

NQ
d′,d =

1

L
eiQ

d−d′
2

∑
j′,j

eiQ(j′−j)〈j′,j′ + d′|j,j + d〉 (A.9.19a)

= eiQ
d−d′

2

∑
j′

eiQj
′〈j′,j′ + d′|0,d〉 (A.9.19b)

= eiQ
d−d′

2

∑
j′

eiQj
′
N j′

d′,d (A.9.19c)

OQd′,d =
1

L
eiQ

d−d′
2

∑
j′,j

eiQ(j′−j)Oj
′,d′

j,d , (A.9.19d)

respectively, where in Eq. (A.9.19) again TI was used to �x j = 0.
Following the application of the Gram-Schmidt orthonormalization, the operator tensor
can be transformed back to real or momentum space as needed by

OQ
q′1,q1

=
1

L

∑
d′,d

eiQ
d′−d

2 e−iq
′
1d
′
e+iq1dOQd′,d (A.9.20)

and

Oj
′

d′,d =
1

L

∑
Q

eiQ
d′−d

2 eiQj
′
OQd′,d (A.9.21)

Matrix elements coupling the 2QP subspace to the 1QP subspace, and also the spurious
overlaps between these subspaces

Oj
′,d′

j := 〈j′,j′ + d′|O0 |j〉 (A.9.22a)

N j′,d′ := 〈j′,j′ + d′|0〉 (A.9.22b)

OQ
q′1

:= 〈Q,q′1|O0 |Q〉 (A.9.22c)

NQ
q1

:= 〈Q,q′1|Q〉 (A.9.22d)

need to be transformed in the same way. With the one-particle momentum eigenstate

|Q〉 :=
1√
L

∑
j

e−iQj |j〉 (A.9.23)

the transformations from momentum space to the hybrid basis and vice versa are

NQ
d′ =

1√
L

∑
q′1

e−iQ
d′
2 eiq

′
1d
′
NQ
q′1

(A.9.24a)

OQd′ =
1√
L

∑
q′1

e−iQ
d′
2 eiq

′
1d
′
OQ
q′1

(A.9.24b)

OQ
q′1

=
1√
L

∑
d′

e+iQ d′
2 e−iq

′
1d
′
OQd′ , (A.9.24c)
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and from real space to the hybrid basis and back

NQ
d′ =

1

L
e+iQ d′

2

∑
j′,j

e+iQ(j′−j)〈j′,j′ + d′|j〉 (A.9.25a)

= e+iQ d′
2

∑
j′

e+iQj′N j′,d′ (A.9.25b)

OQd′ =
1

L
e+iQ d′

2

∑
j′,j

e+iQ(j′−j)Oj
′,d′

j (A.9.25c)

Oj
′,d′ =

1√
L

∑
Q

e−iQ
d′
2 e−iQj

′
OQd′ . (A.9.25d)

Note that there is no need to transform the metric tensor back from the orthogonalized
hybrid basis, since in this basis it is simply the identity.

A.10 Hard-core bosons in momentum space

In real space, the hard-core constraint

(a†i )
2 |0〉 = 0 (A.10.1)

is completely local and easy to interpret. However, in momentum space it is not as trans-
parent.

A.10.1 Hard-core bosonic metric tensor in momentum space

A momentum space representation of the hard-core constraint can be found by noting
the following. Instead of directly applying the constraint Eq. (A.10.1), one can carry out
calculations with ordinary, unnormalized bosons, and subtract all contributions from states
with doubly occupied sites �by hand�. For instance, the overlap of two 2QP states with
hard-core bosons is then given by

〈j′,`′|j,`〉 = δj′,jδ`′,` + δj′,`δ`′,j − 2δj′,jδj′,`′δj,` (A.10.2)

or in the formulation with particle distance d as

〈j′,j′ + d′|j,j + d〉 = δj′,jδd′,d + δj′,j+dδd′,−d − 2δj′,jδd,0δd′,0 . (A.10.3)

Now, one can again take the Fourier transform in both coordinates yielding

〈q′1,q′2|q1,q2〉 =
1

L2

∑
j′,`′

∑
j,`

e+iq′1j
′+iq′2`

′
e−iq1j−iq2`

(
δj′,jδ`′,` + δj′,`δ`′,j − 2δj′,jδj′,`′δj,`

)
(A.10.4a)

=
1

L2

∑
j,`

[
e+iq′1j+iq

′
2`e−iq1j−iq2` + e+iq′1`+iq

′
2je−iq1j−iq2`

−2eiq
′
1j+iq

′
2je−iq1j−iq2`δj,`

]
(A.10.4b)

=
1

L2

∑
j,`

[
ei(q

′
1−q1)jei(q

′
2−q2)` + ei(q

′
1−q2)jei(q

′
2−q1)`

]
− 2

L2

∑
j

ei(q
′
1+q′2−q1−q2)j (A.10.4c)

= δq′1,q1δq′2,q2 + δq′1,q2δq′2,q1 −
2

L
δq′1+q′2,q1+q2 . (A.10.4d)
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In each of the contributions the Kronecker deltas ensure the conservation of total momen-
tum, i.e.,

q′1 + q′2 = q1 + q2 = Q . (A.10.5)

If this condition is considered to be implied in all overlaps, Eq. (A.10.4) can be simpli�ed
to

〈q′1,q′2|q1,q2〉 = δq′1,q1 + δq′1,q2 −
2

L
. (A.10.6)

One can now identify the correction term − 2
L as the momentum space formulation of the

hard-core constraint.
The basis |q1,q2〉 can be made unique by the condition q2 ≥ q1. The metric tensor of
this basis including the hard-core constraint has one eigenvalue (EV) equal to zero, which
accounts for the reduced dimensionality of the Hilbert space of hard-core bosons. But, the
state corresponding to this zero EV does not have a simple or intuitive form.

A.10.2 Hard-core corrections for bilinear Hamiltonians

In order to determine the 2QP interaction matrix elements from evaluating the Hamiltonian
in the 2QP subspace, the contribution from the 1QP part of the Hamiltonian must be
subtracted (cf. Eq. (6.66)). See also Ref. [97] for a detailed discussion. While in the
1QP subspace the particles behave like normal bosons, in the 2QP subspace the hard-core
constraint becomes important. Again, calculations can be carried out with normal bosons,
if all the contributions from states with double occupancies are subtracted.
In this section, these hard-core corrections for a generic bilinear Hamiltonian are derived,
because in any particle-number conserving model this is what the 1QP part of the e�ective
Hamiltonian is. Let the one-particle Hamiltonian be

H1P =
∑
i

∑
δ

1

2

(
tδa
†
iai+δ + t∗δa

†
i+δai

)
(A.10.7)

where a† (a ) creates (annihilates) an e�ective particle and tδ is the hopping amplitude for
distance δ, i.e. t0 is the local on-site energy, t±1 is the nearest neighbor hopping element
etc. The hopping amplitudes are the Fourier transform of the dispersion and vice versa

tδ =
1

L

∑
q

e+iqδωq (A.10.8a)

ωq =
∑
δ

e−iqδtδ = t0 + 2
∑
δ>0

<(tδ) cos(qδ) + =(tδ) sin(qδ) . (A.10.8b)

In equilibrium, the relation
t−δ = t∗δ (A.10.9)

must hold, since otherwise the system would favor hopping in one direction. Re�ection
symmetry even yields t−δ = tδ, which simpli�es Eq. (A.10.8b).

To determine the momentum space hard-core correction, all matrix elements from states
with double occupancies in real space must be found �rst. In a translation invariant system,
the sum over all lattice sites (index i in Eq. (A.10.7)) only yields a factor of L, therefore
it su�ces to do the calculations for i = 0.
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In an orthonormal 2QP basis |j,j + d〉 the �rst term yields

〈j′,j′ + d′|
∑
δ

1

2
tδa
†
0aδ |j,j + d〉

=
∑
δ

1

2
tδ
[
(〈j′ + d′|δ0,j′ + 〈j′|δ0,j′+d′)(δδ,j |j + d〉+ δδ,j+d |j〉)

]
(A.10.10a)

=
∑
δ

1

2
tδ
[
δ0,j′δδ,jδj′+d′,j+d + δ0,j′δδ,j+dδj′+d′,j

+δ0,j′+d′δδ,jδj′,j+d + δ0,j′+d′δδ,j+dδj′,j
]
. (A.10.10b)

Evaluating the second term analogously yields the full matrix element as

〈j′,j′ + d′|H1P |j,j + d〉
∣∣
i=0

=
1

2

∑
δ

[
tδ
(
δ0,j′(δδ,jδj′+d′,j+d + δδ,j+dδj′+d′,j)

+ δ0,j′+d′(δδ,jδj′,j+d + δδ,j+dδj′,j)
)

+t∗δ
(
δj′,δ(δj,0δj′+d′,j+d + δj+d,0δj′+d′,j)

+ δj′+d′,δ(δj,0δj′,j+d + δj+d,0δj′,j)
) ]

. (A.10.11)

The matrix elements relevant for the hard-core correction are those with d = 0 or d′ = 0.
For d′ = 0 the expression in Eq. (A.10.11) becomes

〈j′,j′ + d′|H1P |j,j + d〉
∣∣
i=0,d′=0

=
1

2

∑
δ

[
tδ 2δ0,j′(δj,δδj′,j+d + δj+d,δδj′,j)

+t∗δ 2δj′,d(δ0,jδj′,j+d + δ0,j+dδj′,j)
]
(A.10.12)

and for d = 0

〈j′,j′ + d′|H1P |j,j + d〉
∣∣
i=0,d=0

=
1

2

∑
δ

[
tδ 2δj,δ(δ0,j′δj′+d′,j + δ0,j′+d′δj′,j)

+t∗δ 2δ0,j(δj′,δδj′+d′,j + δj′+d′,δδj′,j)
]
.

(A.10.13)

However, summing both contributions overcounts the matrix elements with d′ = d = 0,
since they appear in both cases. Therefore, they must be calculated and subtracted once

−〈j′,j′ + d′|H1P |j,j + d〉
∣∣
i=0,d′=d=0

= −1

2

∑
δ

[
tδ
(
δ0,j′(δj,δδj′,j + δj,δδj′,j) + δj,δ(δ0,j′δj′,j + δ0,j′δj′,j)

)
+t∗δ

(
δj′,δ(δ0,j′δj′,j + δ0,jδj′,j) + δ0,j(δj′,δδj′,j + δj′,δδj′,j)

)]
(A.10.14a)

= −1

2

∑
δ

[
(tδ + t∗δ)4δ0,j′δj,δδj′,j

]
(A.10.14b)

= −4t0δ0,j′δj,δδj′,j (A.10.14c)

where the last equality holds since the on-site energy t0 must be real. Taking the Fourier
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transform of Eqs. (A.10.12), (A.10.13) and (A.10.14) yields

〈q′1,q′2|H1P |q1,q2〉
∣∣
d′=0,d=0

=
1

L

∑
j′,j

∑
d′,d

{∑
δ

e+iq′1j
′+iq′2(j′+d′)e−iq1j−iq2(j+d)

×
[
tδ
(
δ0,j′δd′,0(δj,δδd,−δ + δ0,jδd,δ) + δj,δδd,0(δ0,j′δd′,δ + δj′,δδd′,−δ)

)
+t∗δ

(
δj′,δδd′,0(δ0,jδd,δ + δj,δδd,−δ) + δ0,jδd,0(δj′,δδd′,−δ + δ0,j′δd′,δ)

)]
−4t0 δ0,j′δ0,jδd′,0δd,0

}
(A.10.15a)

=
1

L

{∑
δ

[
tδ

(
e−iq1δ + e−iq2δ + e+iq′2δ−i(q1+q2)δ + e+iq′1δ−i(q1+q2)δ

)
+t∗δ

(
e+i(q′1+q′2)δ−iq2δ + e+i(q′1+q′2)δ−iq1δ + e+iq′1δ + e+iq′2δ

)]
− 4t0

}
(A.10.15b)

(A.10.9)
=

2

L

{∑
δ

tδ

(
e−iq1δ + e−iq2δ + e−iq

′
2δ + e−iq

′
1δ
)
− 2t0

}
(A.10.15c)

=
2

L

(
ωq1 + ωq2 + ωq′1 + ωq′2 − 2t0

)
. (A.10.15d)

In the step from (A.10.15b) to (A.10.15c) conservation of total momentum, i.e., relations
of the type

q1 + q2 − q′2 = Q− q′2 = q′1 (A.10.16)

were used in addition to Eq. (A.10.9) to bring all exponentials to the form e−iqδ, so that
the expressions can be identi�ed as dispersion relations by means of Eq. (A.10.8b).



Appendix B

E�cient computation of 2QP

quantities

Die Mühsal ist eine Erhaltungsgröÿe.

traditional, cited after Joachim Stolze

This appendix shows in detail how to compute the 2QP metric tensor and the matrix
elements of the reduced Hamiltonian H̃ e�ciently in momentum space. Although this is
the main result of this thesis, it is a lengthy calculation and a rather dry read, wherefore
it is not contained in the main text.
The basic techniques are the same described in Chap. 6 to compute the 2QP-ground state
matrix element. The reader is therefore encouraged to read sections 5.2 and 6.4 �rst,
to familiarize with the concepts and notations. Sections B.2.1 and B.2.2 show in some
detail how to compute the metric tensor. The matrix element is much more involved than
the overlap, due to the additional relative distance, and because the operator thwarts the
bene�ts of the left-canonical gauge when it acts to the left of all involved particles.
Section B.4 of this appendix also shows how to compute the 2QP-1QP matrix element.
Albeit this matrix element vanishes for the particle-number conserving Hamiltonians under
investigation, con�rming this is a good way to assess how well the method is working.
Note that although the Hamiltonian is considered here explicitly, this scheme can of course
be applied to any operator that has a matrix element of the same form.

B.1 General approach

In order to e�ciently compute matrix elements in momentum space, one �rst needs to
identify all types of topologically distinct TNs that can occur. Because there can be quite
many of them, similar TN types are grouped together in so-called cases. For the 2QP
matrix element, these cases are de�ned in Sec. B.3.3, and for the 2QP-1QP matrix element
in Sec. B.4.2.

Each topologically distinct TN type from every case then needs to be analyzed, using the
techniques from Sec. 6.4.1.
As always, primed letters j′, d′, qα′ etc. refer to the bra-state, i.e., the upper �rail� of the
TN ladder. Plain letters like j, d, qᾱ etc. refer to the ket-state, i.e., the lower rail.

In the Fourier transformations the relative particle distances d′ and d are summed over
both positive and negative values. This results in the same TN appearing four times, with
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di�erent con�gurations of the four Cq tensors. For instance

Cq′1 ,j
′

Cq1 ,j

h̃0

Cq2 ,j + d

Cq′2j
′ + d′

,

Cq′2 ,j
′ + d′

Cq1 ,j

h̃0

Cq2 ,j + d

Cq′1 ,j
′

, (B.1.1a)

Cq′1 ,j
′

Cq2j + d

h̃0

Cq1 ,j

Cq′2 ,j
′ + d′

,

Cq′2 ,j
′ + d′

Cq2 ,j + d

h̃0

Cq1 ,j

Cq′1 ,j
′

. (B.1.1b)

All four TNs can be addressed by the sum

∑
α′=1,2

∑
α=1,2

Cqα′

Cqα

h̃0

Cqᾱ

Cqᾱ′

(B.1.2)

where

ᾱ :=

{
2, if α = 1

1, if α = 2
and ᾱ′ :=

{
2, if α′= 1

1, if α′= 2
. (B.1.3)

This allows the distances δi (see for instance TNs in Sec. B.3.3) between the operator and
any particles or between any two particles to be de�ned strictly non-negative. They can
therefore be described by powers of the transfer operator

T = 1(A;A) (B.1.4)

where T 0 is de�ned as not applying T at all, i.e.

T 0[m] := m (B.1.5)

for any D ×D matrix m.

For the 2QP overlap and the 2QP matrix element, the algorithm to determine the contri-
bution of most TN types is therefore as follows.

1. Determine the particle positions j′, j′+d′, j and j+d as functions of the non-negative
distances δi for the momentum con�guration α′= α = 1.

2. Insert the particle positions into the phase factor from the Fourier transformation,
to express it in terms of the δi.

In order to write the contributions as sums over α′ and α as in (B.1.2), the phase factor
Φα′αmust be known as function of α′ and α. In Sec. B.2.1, it is calculated explicitly for
all four momentum con�gurations for one type of TN. Equation (B.2.9) shows that
the form of the phase factor is the same for all momentum con�gurations. Therefore,
the general form Φα′α can be determined from the con�guration α′ = α = 1, simply
by replacing q′1 with qα′, q′2 with qᾱ′ etc. in Φ11.

3. Write the TN evaluation as a scalar product of an e�ective u, that describes the left
part, and an e�ective v, that describes the right part.
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4. Pull the summations over distances δi into the scalar product, so as to minimize the
number of operator applications needed to compute the TN value.

5. Identify parts of the TN that were already calculated before.

Many e�ective u and v matrices appear in several di�erent TN types. They can then
be computed once and used whenever needed, which greatly increases the overall
e�ciency of the computation.

The TN types that require a slightly di�erent approach are those, where there are one or
more C tensors on sites that the operator acts on. Note that the operator (in a product
of local operators the �rst one) always acts on site i = 0, and, as always, n is the number
of sites the operator acts on. For C tensors on these sites, absolute site indices `(′) and
m(′) are used, that each can take values from 0 to n− 1. They have to be included when
determining the correct phase factor.

For the 2QP-1QP overlap and the 2QP-1QP matrix element, the procedure is in principle
exactly the same. The only di�erences are that there are only three particle positions j′,
j′+ d′ and j instead of four, and only two momentum con�gurations enumerated by α′ for
each TN.

B.2 Metric tensor

The metric tensor in the skew momentum space basis consists of the 2QP overlaps 〈Q,q′1|Q,q1〉
and the spurious overlaps with the 1QP sector 〈Q,q′1|Q〉. For proper orthonormalization
of operator matrices, the ground state must be included as well, but this is trivial since it
is orthogonal to both 1QP and 2QP states in left-canonical gauge.

B.2.1 2QP overlap

The overlap of two two-particle states is given by

〈Q,q′1|Q,q1〉 =
1

L2

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d〈j′,j′ + d′|j,j + d〉 (B.2.1a)

=
1

L2

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉 (B.2.1b)

=
1

L

∑
j′,d′

∑
d

e+iQ(j′+d′)−iq′1d′e−iQd+iq1d〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,0; Cq2 ,d〉 .
(B.2.1c)

For this overlap, the use of left-canonical gauge implies that the left C tensors must be on
the same site

min(j′,j′ + d′) = min(j,j + d) , (B.2.2)

otherwise there is no contribution due to Eq. (5.10). This leaves three topologically distinct
types of TNs, distinguished by the sign of

δ := max(j′,j′ + d′)−max(j,j + d) . (B.2.3)
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Case i): δ > 0

This case has the following characteristic TN

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉 =

Cqα

Cqα′

︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ>0

,

(B.2.4)
which would not contribute in an orthogonal basis. For large δ1 and/or δ2, the value of
this TN converges to zero, since it then factorizes in one of the following ways

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉
δ1>ΞT→ 〈Cqα′,0|Cqα,0〉 〈Cqᾱ′,δ2 + 1|Cqα′,0〉︸ ︷︷ ︸

=0

(B.2.5a)

δ2>ΞT→ 〈Cqα′,j
′ |Cqα,j; Cqᾱ,j + d〉 〈Cqᾱ′,0|GS〉︸ ︷︷ ︸

=0

(B.2.5b)

δ1,δ2>ΞT→ 〈Cqα′,0|Cqα,0〉 〈GS |Cqᾱ,0〉︸ ︷︷ ︸
=0

〈Cqᾱ′,0|GS〉︸ ︷︷ ︸
=0

. (B.2.5c)

Since now both states are two-particle states, in contrast to Sec. 6.4.1, there are four Cq
tensors with in general di�erent momenta involved. Again the distances δ1 and δ2 are
de�ned to be non-negative. With α and ᾱ de�ned analogously to α′ and ᾱ′ (cf. Eq. (6.38))
as

α :=

{
1, if d > 0

2, if d < 0
and ᾱ :=

{
2, if α = 1

1, if α = 2
, (B.2.6)

there are 2 · 2 = 4 possible momentum con�gurations

α′= 1, α = 1, d′ > 0, d > 0 (B.2.7a)

α′= 1, α = 2, d′ > 0, d < 0 (B.2.7b)

α′= 2, α = 1, d′ < 0, d > 0 (B.2.7c)

α′= 2, α = 2, d′ < 0, d < 0 (B.2.7d)

to sum over. Similar to the matrix element in Sec. 6.4.1, to carry out the summations over
δ1 and δ2, the particle positions must be expressed in terms of these distances, and the
result inserted into the phase factor from Eq. (B.2.1). Using translation invariance, the
position of Cqα can be �xed to 0. The positions follow as

j′ =

{
0, if α′= 1

δ1 + 1 + δ2 + 1, if α′= 2
, d′ =

{
δ1 + 1 + δ2 + 1, if α′= 1

−(δ1 + 1 + δ2 + 1), if α′= 2
(B.2.8a)

j =

{
0, if α = 1

δ1 + 1, if α = 2
, d =

{
δ1 + 1, if α = 1

−(δ1 + 1), if α = 2
, (B.2.8b)
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and the resulting phase factors are

Φ11 = e+iQ(0+δ1+1+δ2+1)−iq′1(δ1+1+δ2+1)e−iQ(0+δ1+1)+iq1(δ1+1)

= e+iQ(δ1+1)−iQ(δ1+1)+i(Q−q′1)(δ2+1)−iq′1(δ1+1)+iq1(δ1+1)

= e+i(q1−q′1)(δ1+1)+iq′2(δ2+1) (B.2.9a)

Φ12 = e+iQ(0+δ1+1+δ2+1)−iq′1(δ1+1+δ2+1)e−iQ0−iq1(δ1+1)

= e+i(q2−q′1)(δ1+1)+iq′2(δ2+1) (B.2.9b)

Φ21 = e+iQ0+iq′1(δ1+1+δ2+1)e−iQ(0+δ1+1)+iq1(δ1+1)

= e+i(q1−q′2)(δ1+1)+iq′1(δ2+1) (B.2.9c)

Φ22 = e+iQ0+iq′1(δ1+1+δ2+1)e−iQ0−iq1(δ1+1)

= e−iQ(δ1+1)+iQ(δ1+1)+iq′1(δ1+1)−iq1(δ1+1)+iq′1(δ2+1)

= e+i(q2−q′2)(δ1+1)+iq′1(δ2+1) (B.2.9d)

⇒ Φα′α = ei(qα−qα′)(δ1+1)+iqᾱ′(δ2+1) . (B.2.9e)

With this, the contribution from the case δ > 0 can now be denoted as

∆NQ
q′1,q1

∣∣∣
i)

=
∑

α′,α=1,2

ΞT∑
δ1,δ2=0

ei(qα−qα′)(δ1+1)+iqᾱ′(δ2+1)

×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]],1(A;Cqᾱ)[T δ2 [1(Cqᾱ′;A)[v]]]
)
(B.2.10a)

=
∑

α′,α=1,2

 ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;Cqα)[u]]e−i(qα−qα′)(δ1+1) ,

1
(A;Cqᾱ)

[ ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[v]]e+iqᾱ′(δ2+1)
] (B.2.10b)

=
∑

α′,α=1,2

(
uα
′
α ,1

(A;Cqᾱ)[vᾱ
′
]
)

(B.2.10c)

with vᾱ
′
as de�ned in Eq. (6.42), and

uα
′
α :=

ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;Cqα)[u]]e−i(qα−qα′)(δ1+1) . (B.2.11)

Again, the phase factor ei(qα−qα′)(δ1+1) is complex conjugated when pulled into the �rst
argument of the scalar product.

Case ii): δ < 0

The TN class for this case has the form

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉 =

Cqα

Cqα′

︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

Cqᾱ︸ ︷︷ ︸
δ<0

(B.2.12)
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which, like the one from case i), only contributes in a skew basis and converges to zero for
large δi. From the TN it is immediately clear, that for this case the positions (j′,d′) and
(j,d) in Eq. (B.2.8) are simply interchanged. The phase factors are calculated analogously
to Eq. (B.2.9) and result in

Φα′α = e+i(qα−qα′)(δ1+1)−iqᾱ(δ2+1) . (B.2.13)

The complete contribution from case ii) is thus

∆NQ
q′1,q1

∣∣∣
ii)

=
∑

α′,α=1,2

ΞT∑
δ1,δ2=0

e+i(qα−qα′)(δ1+1)−iqᾱ(δ2+1)

×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]],1(Cqᾱ′;A)[T δ2 [1(A;Cqᾱ)[v]]]
)
(B.2.14a)

=
∑

α′,α=1,2

uα′α ,1(Cqᾱ′;A)
[ ΞT∑
δ2=0

T δ2 [1(A;Cqᾱ)[v]]e−iqᾱ(δ2+1)
] (B.2.14b)

=
∑

α′,α=1,2

(
uα
′
α ,1

(Cqᾱ′;A)[vᾱ]
)

(B.2.14c)

where the summed left boundary matrix vᾱ is de�ned by

vᾱ :=

ΞT∑
δ2=0

T δ2 [1(A;Cqᾱ)[v]]e−iqᾱ(δ2+1) . (B.2.15)

Case iii): δ = 0

The TN for this case takes the simple and symmetric form

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉 =

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ′

Cqᾱ

, (B.2.16)

and this is the only kind that contributes in an orthogonal basis.
Note that in both of the above cases the phase containing δ2 relates to the rightmost C
tensor. From the TNs it is clear that in the (excluded) limit δ2 = −1 both cases transition
into case iii). Therefore, the phase factor follows from that of either case by inserting
δ2 = −1 as

Φα′α = e+i(qα−qα′)(δ1+1) . (B.2.17)

However, despite the simple form, this case requires special attention. In contrast to the
other two cases, the value of the TN does not converge to zero for large δ1. It rather
factorizes into two 1QP overlaps like this

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq1 ,j; Cq2 ,j + d〉 δ1>ΞT→ 〈Cqα′,0|Cqα,0〉〈Cqᾱ′,0|Cqᾱ,0〉 . (B.2.18)

For convenience, a shorthand for the one-particle overlap is de�ned as

fα′α := 〈Cqα′,0|Cqα,0〉 =
(
u,1(Cqα′;Cqα)[v]

)
. (B.2.19)
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It shows the following behavior

fα′α =

{
1, if qα′ = qα

z ∈ C, with |z| < 1, if qα′ 6= qα
. (B.2.20)

In the thermodynamic limit, the expression

lim
L→∞

1

L

L
2∑

d=−L
2

ei(qα−qα′)dfα′α = lim
L→∞

1

L

L∑
d=0

(fα′αe
i(qα−qα′))d (B.2.21a)

=


lim
L→∞

1

L

L∑
d=0

1 = 1, if qα = qα′

lim
L→∞

1

L

1

1− fα′α ei(qα−qα′)
= 0, if qα 6= qα′

(B.2.21b)

= δqα′,qα (B.2.21c)

represents a Kronecker delta. However, for �nite L, it is zero for qα′ 6= qα only, if L = Lq
(cf App. A.1). In numerical practice, this is hard to ascertain, as δ1 is summed up to
ΞT , which may not be equal to Lq

2 . The solution to this problem is, to subtract the limit
value Eq. (B.2.18) from each TN. With this, also the contributions from the diagonal TNs
converge to zero for large δ1.

In summary, since the 2QP states are orthogonal for large particle distance, the metric
tensor does contain a diagonal, bosonic part

NQ
bos q′1,q1

= δq′1,q1 + δq′1,q2 (B.2.22)

in the thermodynamic limit. By subtracting everything that is known to contribute to this
part during the computation, the result is only the deviation from ∆N from orthogonal
bosons. However, in the computation one diagonal TN is left out, namely that with
d′ = d = 0. But in order for the limit in Eq. (B.2.21) to hold, the subtracted part needs
to include the d = 0 contribution, which is given by the sum of all factorizations of the
theoretical 4C TN with d′ = d = 0, i.e.

∆NQ
hcb q′1,q1

:= f11f22 + f12f21 . (B.2.23)

In general, this contribution is a function of the momenta Q, q′1 and q1, as apparent from
the de�nition of fα′α in Eq. (B.2.19). In the limit, that in the iMPS representation the
elementary excitation is described fully by a single tensor B0, for instance for product
states at D = 1,

Cq = C`=0 = B0 ∀ q (B.2.24)

follows. In this case, fα′α = 1 ∀ qα′, qα, and Eq. (B.2.23) therefore exactly implements the
hard-core constraint, hence the denotation as ∆Nhcb.
For D > 1, it can be interpreted as desribing the hard-core constraint to the extend implied
by omitting contribtions with two tensors on the same site.
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The corrected contribution from the case iii) TNs is thus

∆NQ
q′1,q1

∣∣∣
iii)

=
∑

α′,α=1,2

ΞT∑
δ1=0

e+i(qα−qα′)(δ1+1)

×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]],1(Cqᾱ′;Cqᾱ)[v]
)

(B.2.25a)

−
∑

α′,α=1,2

ΞT∑
δ1=0

e+i(qα−qα′)(δ1+1)fα′αfᾱ′ᾱ− (f11f22 + f12f21) (B.2.25b)

=
∑

α′,α=1,2

(
uα
′
α ,1

(Cqᾱ′;Cqᾱ)[v]
)

(B.2.25c)

−
∑

α′,α=1,2

 ΞT∑
δ1=0

e−i(qα−qα′)(δ1+1)(T †)δ1 [1† (Cqα′;Cqα)[u]], v

 fᾱ′ᾱ (B.2.25d)

−(f11f22 + f12f21) (B.2.25e)

=
∑

α′,α=1,2

(
uα
′
α ,1

(Cqᾱ′;Cqᾱ)[v]− vfᾱ′ᾱ
)
− (f11f22 + f12f21) (B.2.25f)

where the properties of the scalar product and the fact, that v is an eigenmatrix of T , i.e.

fα′α =
(
u,1(Cqα′;Cqα)[v]

)
(B.2.26a)

=
(
1
† (Cqα′;Cqα)[u], v

)
(B.2.26b)

=
(
1
† (Cqα′;Cqα)[u], T δ1 [v]

)
(B.2.26c)

=
(

(T †)δ1 [1† (Cqα′;Cqα)[u]], v
)
∀ δ1 ≥ 0 (B.2.26d)

were used to pull most of the corrections into the scalar product, instead of computing the
sum of scalars in Eq. (B.2.25b) explicitly.

Summary

At this point, the summed contributions from all three cases are the same, up to the
e�ective v matrix that represents the right half of the TN. Therefore, the complete overlap
can be written down very compactly as

∆NQ
q′1,q1

=
∑

α′,α=1,2

(
uα
′
α ,1

(Cqᾱ′;Cqᾱ)[v] + 1
(Cqᾱ′;A)[vᾱ] + 1

(A;Cqᾱ)[vᾱ
′
]− vfᾱ′ᾱ

)
−(f11f22 + f12f21) . (B.2.27)

With this, the metric tensor in the 2QP subspace is given by

NQ
q′1,q1

=
1

Lq
∆NQ

q′1,q1
+ δq′1,q1 + δq′1,q2 (B.2.28)

where the hard-core property is now included in ∆NQ
q′1,q1

to the extent that it is captured by

the iMPS description. One could also think of dropping the correction in Eq. (B.2.23) from
the computation of ∆N , and instead use the exact hard-core bosonic expression Eq. (6.16)
rather than Eq. (B.2.22) as analytic part of the metric tensor. However, this can lead to
an imaginary and therefore unphysical norm of the state |Q,d = 0〉 when transformed into
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the hybrid basis. Therefore, implementing ∆NQ
hcb q′1,q1

from Eq. (B.2.23) presents itself as
the better choice. It is also less biased, since it does not impose additional assumptions
on the statistical properties of the quasi-particles. Furthermore, it is also compatible with
any approach to handling TNs with d′ = d = 0 other than leaving them out.

Note that by choosing ΞT as summation cuto� in the computation, ∆N still describes a
system in the thermodynamic limit. The transition to a �nite, periodic system happens
only through the choice of the number Lq of momentum sampling points. Therefore, 1

Lq
is

indeed the correct normalization.

B.2.2 2QP-1QP overlap

As stated above, in an ONB there is no overlap between the one- and two-particle sub-
spaces. However, Fig. 6.1 shows that in the iMPS description overlaps exist for small
particle distances. Therefore, the one-particle state must be included in the orthogonal-
ization process, to ensure that the corrected two-particle basis is orthogonal to it, too. In
momentum space, the overlap is given by

NQ
q′1

:= 〈Q,q′1|Q〉 (B.2.29a)

=
1
√
L

3

∑
j′,d′

∑
j

e+iQ(j′+d′)−iq′1d′−iQj〈j′,j′ + d′|j〉 (B.2.29b)

=
1
√
L

3

∑
j′,d′

∑
j

e+iQ(j′−j)+iQd′−iq′1d′〈j′ − j,j′ − j + d′|0〉 (B.2.29c)

=
1√
L

∑
j′,d′

e+iQ(j′+d′)−iq′1d′〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|CQ,0〉 . (B.2.29d)

Again, due to left-canonical gauge, min(j′,j′ + d′) = 0 must hold. The TNs are therefore
all of the form

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|CQ,0〉 =

CQ

Cqα′

︸ ︷︷ ︸
δ1

Cqᾱ′

. (B.2.30)

Following the methods used to calculate the two-particle overlap, it is straigh forward to
show, that the overlap is given by

NQ
q′1

=
1√
Lq

∑
α′=1,2

(
1
† (Cqα′;CQ)[u], vᾱ

′
)
, (B.2.31)

with vᾱ
′
as de�ned in Eq. (6.42).

B.3 2QP matrix element

As already stated in Sec. 6.6.1, the term �2QP matrix element� refers to the operator
matrix element in the 2QP subspace, corrected by any contributions from the 0QP and
1QP parts of the operator. Speci�cally for the Hamiltonian this means

V Q
q′1,q1

:= 〈Q,q′1|H |Q,q1〉 − 〈Q,q′1|H1P |Q,q1〉 − 〈Q,q′1|E0 |Q,q1〉 − CQη q′1,q1 . (B.3.1)
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The 0QP part, i.e., the ground state energy, is taken care of by using the reduced Hamil-
tonian H̃.

The matrix element 〈Q,q′1|H̃ |Q,q1〉 then still contains contributions from the 1QP part
and is therefore referred to as the raw or reducible 2QP matrix element. Using the repre-
sentation Eq. (6.34), it is given by

〈Q,q′1|H̃ |Q,q1〉

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d〈j′,j′ + d′|h̃0 |j,j + d〉 (B.3.2a)

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉 . (B.3.2b)

As explained in Chap. 6, in the computation of this matrix element any contributions with
d′ = 0 or d = 0 are excluded. Each sub-matrix element 〈Cq′1 ,j

′; Cq′2 ,j
′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

is therefore represented by a TN with four C tensors on distinct sites, which is thus called
the 4C contribution.

To obtain the irreducible interaction matrix element V Q
q′1,q1

, the raw matrix element needs

to be corrected by the 1QP contribution 〈Q,q′1|H1P |Q,q1〉, and the correction term CQ
η q′1,q1

,

that compensates for the fact, that in iMPS computations A is not usually an exact eigen-
state of H. Both of these corrections are described in detail in the following two sections.

B.3.1 1QP contributions

The contribution of the 1QP part of H to the 2QP matrix element is given by summing
up all possibilities to factorize the 2QP matrix element into a 1QP matrix element and a
1QP overlap

〈Q,q′1|H1P |Q,q1〉

=
1

L2

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×〈j′,j′ + d′|
∑
i

h̃i

∣∣∣
1P
|j,j + d〉 (B.3.3a)

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×〈j′,j′ + d′| h̃i
∣∣∣
1P
|j,j + d〉 (B.3.3b)

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
〈j′|j〉〈j′ + d′|h̃0 |j + d〉+ 〈j′ + d′|j + d〉〈j′|h̃0 |j〉

+〈j′|j + d〉〈j′ + d′|h̃0 |j〉+ 〈j′ + d′|j〉〈j′|h̃0 |j + d〉
)

(B.3.3c)

where in the last form the restriction to one particle can be dropped, since by de�nition
only the 1QP part of the operator contributes to the matrix elements.

For regular bosons, assuming a bilinear one-particle Hamiltonian

H1P :=
∑
i

∑
δ

tδ a
†
iai+δ (B.3.4)
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with real hopping amplitudes tδ, it can straight forwardly be calculated as

〈Q,q′1|H1P |Q,q1〉

=
1

L

∑
j′,d′

∑
j,d

∑
δ

tδe
+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d(
〈j′|j〉〈j′ + d′|a†0aδ |j + d〉+ 〈j′ + d′|j + d〉〈j′|a†0aδ |j〉

+〈j′|j + d〉〈j′ + d′|a†0aδ |j〉+ 〈j′ + d′|j〉〈j′|a†0aδ |j + d〉
)

(B.3.5a)

=
1

L

∑
j′,d′

∑
j,d

∑
δ

tδe
+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
δj′,jδj′+d′,0δj+d,δ + δj′+d′,j+dδj′,0δj,δ

+δj′,j+dδj′+d′,0δj,δ + δj′+d′,jδj′,0δj+d,δ

)
(B.3.5b)

=
1

L

∑
δ

tδ

{∑
j

e+iQ0−iq′1(−j)e−iQδ+iq1(δ−j) +
∑
d

e+iQ(δ+d)−iq′1(δ+d)e−iQ(δ+d)+iq1d

+
∑
j′

e+iQ0−iq′1(−j′)e−iQj
′+iq1(j′−δ) +

∑
d′

e+iQd′−iq′1d′e−iQδ+iq1(δ−d′)

}
(B.3.5c)

=
∑
δ

tδ

{(
1

L

∑
j

ei(q
′
1−q1)j

)
e−iq2δ +

(
1

L

∑
d

ei(q
′
2−q2)d

)
e−iq

′
1δ

+

(
1

L

∑
j′

ei(q
′
1−q2)j′

)
e−iq1δ +

(
1

L

∑
d′

ei(q
′
2−q1)d′

)
e−iq2δ

}
(B.3.5d)

=
∑
δ

tδ

{
δq′1,q1e

−iq2δ + δq′2,q2e
−iq′1δ + δq′1,q2e

−iq1δ + δq′2,q1e
−iq2δ

}
(B.3.5e)

=
∑
δ

tδ

(
δq′1,q1(e−iq2 + e−iq1) + δq′1,q2(e−iq1 + e−iq2)

)
(B.3.5f)

= (δq′1,q1 + δq′1,q2)(ωq1 + ωq2) . (B.3.5g)

Since the one-particle Hamiltonian derived in Chap. 5 is of the form Eq. (B.3.4), this
analytical result can be used to determine the full 1QP contribution if needed.
Note that the result in Eq. (B.3.5) requires to drop the restriction d′,d 6= 0. If this hard-
core constraint is kept, the result is Eq. (B.3.5g) minus the hard-core correction derived in
App. A.10.2, i.e.,

〈Q,q′1|H1P |Q,q1〉 = (δq′1,q1 + δq′1,q2)(ωq1 +ωq2)− 2

L

(
ωq1 + ωq2 + ωq′1 + ωq′2 − 2t0

)
. (B.3.6)

In terms of Cqα tensors Eq. (B.3.3) becomes

〈Q,q′1|
∑
i

h̃i

∣∣∣
1P
|Q,q1〉

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
〈Cq′1 ,j

′|Cq1 ,j〉〈Cq′2 ,j
′ + d′|h̃0 |Cq2 ,j + d〉

+〈Cq′2 ,j
′ + d′|Cq2 ,j + d〉〈Cq′1 ,j

′|h̃0 |Cq1 ,j〉

+〈Cq′1 ,j
′|Cq2 ,j + d〉〈Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j〉

+〈Cq′2 ,j
′ + d′|Cq1 ,j〉〈Cq′1 ,j

′|h̃0 |Cq2 ,j + d〉
)
. (B.3.7a)
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In left-canonical gauge this simpli�es to

〈Q,q′1|
∑
i

h̃i

∣∣∣
1P
|Q,q1〉

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
f1,1δj′,j〈Cq′2 ,j

′ + d′|h̃0 |Cq2 ,j + d〉

+f2,2δj′+d′,j+d〈Cq′1 ,j
′|h̃0 |Cq1 ,j〉

+f1,2δj′,j+d〈Cq′2 ,j
′ + d′|h̃0 |Cq1 ,j〉

+f2,1δj′+d′,j〈Cq′1 ,j
′|h̃0 |Cq2 ,j + d〉

)
. (B.3.8a)

with fα′α as de�ned in Eq. (B.2.19).

Note, however, that as in the case of the diagonal part of the metric tensor in Sec. B.2.1,
the analytical result in Eq. (B.3.6) relies on the Kronecker identity to produce the δqα′,qα
expressions. Therefore, again, the factorized value from Eq. (B.3.8) has to be subtracted
directly from any 4C TN that contributes to the diagonal part. Since all 4C TNs where
two C tensors fall onto the same site are omitted, there are also no contributions to the
1QP part with d′ or d = 0 that need to be subtracted.

Due to the orthogonality of the 1QP basis, which is re�ected in the Kronecker deltas
in Eq. (B.3.8), as a general rule a TN contributes to the 1QP part if the following two
conditions are ful�lled.

1. It contains at least one �rung� with C tensors on both ends, and

2. the remaining part with the C rung replaced by the transfer operator T is non zero
in left-canonical gauge.

For instance, the TN

Cqα′

Cqα

h̃0

Cqᾱ′

Cqᾱ

(B.3.9)

contains a rung with C tensors on both ends and factorizes into a 1QP overlap and a 1QP
matrix element like this

Cqα′

Cqα

× h̃0

Cqᾱ′

Cqᾱ

. (B.3.10)

It contributes to the 1QP part, since the TN remaining after factoring out the C rung can
have non-zero values in left-canonical gauge. In contrast, the TN

Cqα′

Cqα

Cqᾱ′

h̃0

Cqᾱ

(B.3.11)
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does not contribute, since in its factorization

Cqα′

Cqα

×

Cqᾱ′

h̃0

Cqᾱ

(B.3.12)

the remaining part is always zero in left-canonical gauge.

Although Eqs. (B.3.3) and (B.3.8) are straight forward about them, a note is in order on
contributions that ful�ll two of the δ-conditions in Eq. (B.3.8). These contributions make
up the local on-site energy t0 in Eq. (B.3.5), and the corresponding TNs are of the form

. (B.3.13)

This allows for two non-vanishing factorizations

×

= × (B.3.14)

and

×

= × .(B.3.15)

While in a completely local basis clearly only the �rst one would contribute, in the iMPS
description both must be taken into account, since the operator can �see� the C tensors over
a range of ΞT sites away. This argument even holds, if the operator does not act directly
act on any sites with a C tensor.

B.3.2 Ground state-1QP matrix element corrections

As mentioned in Chap. 4, generally the ground state uMPS A is only an approximation, and
therefore not an exact eigenstate of the Hamiltonian. As a result, the Hamiltonian couples
the approximate ground state to excited states, starting with the one-particle sector as

η := 〈j|H̃ |GS〉 = 〈GS|aj H̃ |GS〉 6= 0 . (B.3.16)
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Of course, this property carries over to momentum space under the Fourier transformation

ηq := 〈q|H̃ |GS〉 6= 0 . (B.3.17)

And it also poses a problem for the computation of 2QP matrix elements, due to the
non-orthogonality of the basis. Consider for instance the matrix element

H0,d′

0,d = 〈0,d′|H̃ |0,d〉 . (B.3.18)

For small d and large d′ it factorizes into a 2QP-1QP overlap and a 1QP-GS matrix element

H0,d′

0,d

d′>2ΞT→ 〈0|0,d〉︸ ︷︷ ︸
6=0

〈d′|H̃ |GS〉︸ ︷︷ ︸
η

. (B.3.19)

These contributions should vanish, but do not. And since in the Fourier transformation
many of them are summed up, this can lead to signi�cant errors.
In the e�cient momentum space algorithms of Sec. 6.4, all relative distances are summed
up to ΞT , because beyond that, C tensors and operators cannot �see� each other. Therefore,
any TN is then equivalent to its factorization. However, this computation scheme relies
on the assumption, that one of the factors is zero to machine precision. In the case of the
diagonal overlap TN Eq. (B.2.16), this was achieved by subtracting the factorized limit
value for δ1 ≥ ΞT from each contribution.
Now consider the following TN, that contributes to the 2QP matrix element

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

=

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

h̃0

︸ ︷︷ ︸
δ3

Cqᾱ′

. (B.3.20)

Assuming left-canonical gauge, the value converges to zero for both large δ1 and large δ3,
independently of the other distances. But, if both δ1 and δ3 are small, for large δ2 the TN
factorizes like this

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

→

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ

× h̃0

︸ ︷︷ ︸
δ3

Cqᾱ′

(B.3.21)

where, however, neither factor is zero. Therefore, the total error from this type of TN is
roughly

ηTN ≈ 〈Cqα′,j
′ |Cqα,j; Cqᾱ,j + d〉〈Cqᾱ′,j

′ + d′|h̃0 |GS〉ΞT , (B.3.22)

where the factor ΞT results from the sum over δ2. The problem is not only the absolute
error, but also the fact, that it does not converge as function of ΞT .
To prevent this type of error from spoiling the matrix element result, the 4C contribution
must be corrected by this factorization as well. Not all 4C TNs have a non-vanishing fac-
torization of this type in left-canonical gauge.
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In a strict analysis, Cη takes a form analogous to the 1QP part. This means, it is given by
the sum over all possibilities to factorize the 2QP matrix element into a 2QP-1QP overlap
and a 1QP-ground state matrix element

CQ
η q′1,q1

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
〈j′,j′ + d′|j〉〈GS|h̃0 |j + d〉+ 〈j′,j′ + d′|j + d〉〈GS|h̃0 |j〉

+〈j′|j,j + d〉〈j′ + d′|h̃0 |GS〉+ 〈j′ + d′|j,j + d〉〈j′|h̃0 |GS〉
)

(B.3.23a)

=
1

L

∑
j′,d′

∑
j,d

e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d

×
(
〈Cq′1 ,j

′; Cq′2 ,j
′ + d′|Cq1,j〉〈GS|h̃0 |Cq2 ,j + d〉

+〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|Cq2,j+d〉〈GS|h̃0 |Cq1 ,j〉

+〈Cq′1,j′ |Cq1 ,j; Cq2 ,j + d〉〈Cq′2 ,j
′ + d′|h̃0 |GS〉

+〈Cq′2,j′+d′ |Cq1 ,j; Cq2 ,j + d〉〈Cq′1 ,j
′|h̃0 |GS〉

)
. (B.3.23b)

In this formulation, many TN types actually contain contributions to Cη, even if they
converge as function of all δi or if the non-convergence is remedied by the 1QP corrections.
However, these contributions do not grow with ΞT . For a fully consistent computation
they would need to be included. However, the expected change in the results is of the
order of η, i.e., very small, so that they are considered negligible for now.

B.3.3 Di�erent TN types

Depending on the location of the operator in relation to the C tensors representing the
particles, �ve basic types of TNs can be distinguished. Most of these TN types can then
further be split into sub-types, depending on, e.g., how many C tensors the operator acts
on, and the positions of the C tensors relative to each other. First, the main types are
introduced, showing exemplary TNs for each case.

i) The operator acts right of all C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

=

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ3

h̃0 (B.3.24)

ii) The operator acts in between the C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

=

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

︸ ︷︷ ︸
δ2

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

(B.3.25)
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iii) Transitions between the cases i) and ii)

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

=

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

(B.3.26)

iv) The operator acts left of all C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

= h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ3

Cqᾱ
(B.3.27)

v) Transitions between case iv) and the other cases

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |Cq1 ,j; Cq2 ,j + d〉

= h̃0

Cqα

Cqα′

︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

Cqᾱ

(B.3.28)

Beginning with Sec. B.3.4, each case is examined in detail and its contribution to the
irreducible 2QP matrix element is calculated. Section B.1 describes the general approach
to evaluating each case.
A summary of all the contributions can be found in App. C.

B.3.4 Case i)

B.3.4.1 4C TN contributions

Looking at the example TN for this case

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ>0

︸ ︷︷ ︸
δ3

h̃0

︸ ︷︷ ︸
n

suggests that the calculation should be very similar to that of the 2QP overlap in Sec. B.2.1.
In fact, a short calculation shows, that the result is exactly the same up to switching out
the bare right boundary matrix v with a summed e�ective boundary matrix

v → vh̃ :=

ΞT∑
δ3=0

T δ3 [h̃(A;A)[v]] . (B.3.29)
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To see this, consider the case α′ = α = 1. For the TN shown above, the particle positions
are de�ned analogous to Eq. (B.2.8)

j′ = −(δ1 + 1 + δ2 + 1 + δ3 + 1), d′ = δ1 + 1 + δ2 + 1 (B.3.30)

j = −(δ1 + 1 + δ2 + 1 + δ3 + 1) = j′, d = δ1 + 1 (B.3.31)

which, inserted into the phase factor, yield

Φ11 = e+iQ(−δ3−1)−iq′1(δ1+1+δ2+1)e−iQ(−δ2−1−δ3−1)+iq1(δ1+1) (B.3.32a)

= e−iq
′
1(δ1+1+δ2+1)+iQ(δ2+1)+iq1(δ1+1) (B.3.32b)

= e−iq
′
1(δ1+1)+iq′2(δ2+1)+iq1(δ1+1) (B.3.32c)

= ei(q1−q
′
1)(δ1+1)+iq′2(δ2+1) , (B.3.32d)

i.e., exactly the same as the phase factor Φ11 from the overlap computation (cf. Eq. (B.2.9)).
Therefore, the contribution from this case is clearly given by the result in Eq. (B.2.10), with
the substitution v → vh̃ from Eq. (B.3.29) above. The other momentum con�gurations
can be calculated analogously and yield corresponding results.
The cases δ < 0 and δ = 0 follow exactly as shown in the overlap calculation, too. The
combined 4C contribution from case i) is thus

HQ
4C q′1,q1

∣∣∣
i)

=
∑

α′,α=1,2

(
uα
′
α , v

ᾱ′

h̃ ᾱ

)
(B.3.33)

where

vᾱ
′

h̃ ᾱ
:= 1

(Cqᾱ′;Cqᾱ)[vh̃] + 1
(Cqᾱ′;A)[vh̃ ᾱ] + 1

(A;Cqᾱ)[vᾱ
′

h̃
] (B.3.34a)

with vᾱ
′

h̃
:=

ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[vh̃]]e+iqᾱ′(δ2+1) (B.3.34b)

and vh̃ ᾱ :=

ΞT∑
δ2=0

T δ2 [1(A;Cqᾱ)[vh̃]]e−iqᾱ(δ2+1) . (B.3.34c)

B.3.4.2 1QP corrections

Although in case i) the operator does not directly act on any sites where a C tensor is
located, it can still �see� them several sites away. Therefore, this case does nonetheless
contribute to the one-particle content of the matrix element, which must be subtracted.
In left-canonical gauge, the only non-vanishing factorizations are those with δ = 0, where
both the types from Eqs. (B.3.14) and (B.3.15) occur.
From the �rst TN factorization in Eq. (B.3.14) one can see, that the contributions follow
from the 4C TN results by replacing

1
† (Cqα′;Cqα)[u] → u f∗α′α . (B.3.35)

For the second, shown in (B.3.15), the correction follows from the 4C calculation by re-
placing

1
(Cqᾱ′;Cqᾱ) → T · fᾱ′ᾱ . (B.3.36)

Since the phase factors are the same for the 4C TN and the 1QP factorizations, the con-
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tribution from case i) amounts to

HQ
1P q′1,q1

∣∣∣
i)

:=
∑

α′,α=1,2

 ΞT∑
δ1=0

u f∗α′αe
−i(qα−qα′)(δ1+1), vᾱ

′

h̃ ᾱ


+

∑
α′,α=1,2

(
uα
′
α , T [vh̃]

)
fᾱ′ᾱ (B.3.37a)

:=
∑

α′,α=1,2

(
u f∗α′αϕ

∗
α′α, v

ᾱ′

h̃ ᾱ

)
+

∑
α′,α=1,2

(
uα
′
α , T [vh̃]

)
fᾱ′ᾱ , (B.3.37b)

where ϕα′α is de�ned as

ϕα′α :=

ΞT∑
δ1=0

e+i(qα−qα′)(δ1+1) . (B.3.38)

B.3.4.3 Ground state-1QP matrix element corrections

Case i) does not require contributions to the Cη correction term, if left-canonical gauge is
used. Any TN factorization that includes the operator and a single C tensor vanishes. For
example, the δ > 0 TN factorizes like this for large δ2

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ3

h̃0

→

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ

×

Cqᾱ′

︸ ︷︷ ︸
δ3

h̃0 . (B.3.39)

Although the left factor can be �nite for small δ1, the right factor is always zero in left-
canonical gauge. Therefore, this type of TN is convergent for all δi, and does not contribute
to the error matrix elements η. The same is true for the TN in the δ < 0 case. The δ = 0
TN does not contribute by de�nition. It does not converge as function of δ2, but this is
already taken care of by subtracting the 1QP corrections.

B.3.4.4 Summary

Taking together all the results from this section, the �nal, 1QP corrected contribution of
case i) to the 2QP matrix elements reads

V Q
q′1,q1

∣∣∣
i)

=
∑

α′,α=1,2

(
uα
′
α , v

ᾱ′

h̃ ᾱ

)
−

∑
α′,α=1,2

(
u f∗α′αϕ

∗
α′α, v

ᾱ′

h̃ ᾱ

)
−

∑
α′,α=1,2

(
uα
′
α , T [vh̃]

)
fᾱ′ᾱ (B.3.40a)

=
∑

α′,α=1,2

(
uα
′
α,1Pc, v

ᾱ′

h̃ ᾱ

)
−
(
uα
′
α , T [vh̃]

)
fᾱ′ᾱ (B.3.40b)

with the 1QP corrected summed left boundary matrix

uα
′
α,1Pc := uα

′
α − u · f∗α′αϕ∗α′α . (B.3.41)
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B.3.5 Case ii)

This case consists of three subcases, depending on the operator position.

B.3.5.1 Subcase iia)

The �rst one, with two C tensors left, and the other two right of the operator has TNs of
the following type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ2

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

︸ ︷︷ ︸
δ>0

(B.3.42)

which, depending on δ, can actually be seen as three subcases. However, the example of
the δ > 0 case will show, that all three can be handled in a way very similar to case i)
above.
With α = α′= 1, the particle positions for the TN (B.3.42) are given by

j′ = −(δ1 + 1), d′ = δ1 + n+ δ2 + 1 + δ3 + 1 (B.3.43)

j = −(δ1 + 1) = j′, d = δ1 + n+ δ2 + 1 . (B.3.44)

Inserting this into the phase factor from Eq. (B.3.2) yields

Φ11 = e+iQ(n+δ2+δ3+1)−iq′1(δ1+n+δ2+1+δ3+1)e−iQ(n+δ2)+iq1(δ1+n+δ2+1) (B.3.45a)

= e+iQ(δ3+1)−iq′1(δ1+n+δ2+1+δ3+1)e+iq1(δ1+n+δ2+1) (B.3.45b)

= e+iq′2(δ3+1)−iq′1(δ1+n+δ2+1)e+iq1(δ1+n+δ2+1) (B.3.45c)

= e+i(q1−q′1)(δ1+1)+i(q1−q′1)n+i(q1−q′1)δ2+iq′2(δ3+1) (B.3.45d)

= e+i(q1−q′1)(δ1+1)+i(q1−q′1)(n−1)+i(q1−q′1)(δ2+1)+iq′2(δ3+1) (B.3.45e)

The phase factors for the other momentum con�gurations follow analogously, wherefore

Φα′α = e+i(qα−qα′)(δ1+1)+i(qα−qα′)(n−1)+i(qα−qα′)(δ2+1)+iqᾱ′(δ3+1) . (B.3.46)

Again, for the δ < 0 case, the positions (j′,d′) and (j,d) from Eq. (B.3.43) are simply
interchanged. The general phase factor follows analogously as

Φα′α = e+i(qα−qα′)(δ1+1)+i(qα−qα′)(n−1)+i(qα−qα′)(δ2+1)−iqᾱ(δ3+1) . (B.3.47)

The δ = 0 case is again the so far excluded limit δ3 = −1 of either of the other two cases.
From this, the 4C contribution can be determined as follows

HQ
4C q′1,q1

∣∣∣
iia)

=
∑

α′,α=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

ΞT∑
δ3=0

e+i(qα−qα′)(δ1+1)+i(qα−qα′)(n−1)+i(qα−qα′)(δ2+1)e+iqᾱ′(δ3+1)

×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]], h̃(A;A)[T δ2 [1(A;Cqᾱ)[T δ3 [1(Cqᾱ′;A)[v]]]]]
)

+
∑

α′,α=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

ΞT∑
δ3=0

e+i(qα−qα′)(δ1+1)+i(qα−qα′)(n−1)+i(qα−qα′)(δ2+1)e−iqᾱ(δ3+1)
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×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]], h̃(A;A)[T δ2 [1(Cqᾱ′;A)[T δ3 [1(A;Cqᾱ)[v]]]]]
)

+
∑

α′,α=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

e+i(qα−qα′)(δ1+1)+i(qα−qα′)(n−1)+i(qα−qα′)(δ2+1)

×
(

(T †)δ1 [1† (Cqα′;Cqα)[u]], h̃(A;A)[T δ2 [1(Cqᾱ′;Cqᾱ)[v]]]
)

(B.3.48a)

=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)

×

{(
ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;Cqα)[u]]e−i(qα−qα′)(δ1+1),

h̃(A;A)
[ ΞT∑
δ2=0

T δ2
[
1

(A;Cqᾱ)
[ ΞT∑
δ3=0

T δ3 [1(Cqᾱ′;A)[v]]e+iqᾱ′(δ3+1)
]]
e+i(qα−qα′)(δ2+1)

])

+

(
ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;Cqα)[u]]e−i(qα−qα′)(δ1+1),

h̃(A;A)
[ ΞT∑
δ2=0

T δ2
[
1

(A;Cqᾱ)
[ ΞT∑
δ3=0

T δ3 [1(A;Cqᾱ)[v]]e−iqᾱ(δ3+1)
]]
e+i(qα−qα′)(δ2+1)

])

+

(
ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;Cqα)[u]]e−i(qα−qα′)(δ1+1),

h̃(A;A)
[ ΞT∑
δ2=0

T δ2
[
1

(A;Cqᾱ)
[
1

(Cqᾱ′;Cqᾱ)[v]]
]]
e+i(qα−qα′)(δ2+1)

])}
(B.3.48b)

=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)

{uα′α , h̃(A;A)
[ ΞT∑
δ2=0

T δ2 [1(A;Cqᾱ)[vᾱ
′
]]e+i(qα−qα′)(δ2+1)

]
+

uα′α , h̃(A;A)
[ ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[vᾱ]]e+i(qα−qα′)(δ2+1)
]

+

uα′α , h̃(A;A)
[ ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;Cqᾱ)[v]]e+i(qα−qα′)(δ2+1)
]}
(B.3.48c)

=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)
(
uα
′
α , h̃

(A;A)[vᾱ
′

ᾱ ]
)

(B.3.48d)

with vᾱ
′

ᾱ de�ned as

vᾱ
′

ᾱ =

ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[vᾱ] + 1
(A;Cqᾱ)[vᾱ

′
] + 1

(Cqᾱ′;Cqᾱ)[v]]e+i(qα−qα′)(δ2+1) . (B.3.49)

In Eq. (B.3.48), three previously de�ned summed boundary matrices are used to express
the TN evaluations: uα

′
α , v

ᾱ′ and vᾱ.
The unsurprising yet important to note fact about this is, that parts of a TN that look the
same also evaluate to the same expressions, including even the phase factors. For instance,
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the left end of a TN in left-canonical gauge

Cqα′

Cqα ︸ ︷︷ ︸
δ1

always produces the summed boundary matrix uα
′
α , and the right TN boundaries of the

type

︸ ︷︷ ︸
δ3

Cqᾱ′

and

︸ ︷︷ ︸
δ3

Cqᾱ

yield the summed boundary matrices vᾱ
′
and vᾱ respectively.

The TN (B.3.42) also contributes to the 1QP corrections. Again, there are two types of
non-vanishing factorizations. First, the one analogous to Eq. (B.3.14). This type can be
handled in the same way as in case i) by the substitution uα

′
α → u · fα′α. The second type

results from the factorization Eq. (B.3.15), which only appears in the δ = 0 TNs. As in
case i), it can be computed by the substitution 1(Cqᾱ′;Cqα′) → T · fᾱ′ᾱ, thus yielding a total
1QP correction of

HQ
1P q′1,q1

∣∣∣
iia)

:=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)
(
u · f∗α′αϕ∗α′α, h̃(A;A)[vᾱ

′
ᾱ ]
)

+
∑

α′,α=1,2

e+i(qα−qα′)(n−1)
(
uα
′
α , h̃

(A;A)[T [v]] · fᾱ′ᾱϕα′α
)
. (B.3.50a)

When taking into account the one-particle corrections, this type of TN converges to zero
as function of all δi independently, and therefore the contributions to Cη are neglected.

B.3.5.2 Subcase iib)

This case is de�ned by the following TN type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ3

Cqᾱ′

. (B.3.51)

The particle positions and phase factor for α′= α = 1 are given by

j′ = −(δ1 + 1 + δ2 + 1), d′ = δ1 + 1 + δ2 + n+ δ3 + 1 (B.3.52)

j = −(δ1 + 1 + δ2 + 1) = j′, d = δ1 + 1 , (B.3.53)
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and

Φ11 = e+iQ(n+δ3)−iq′1(δ1+1+δ2+n+δ3+1)e−iQ(−δ2−1)+iq1(δ1+1) (B.3.54a)

= e+i(q1−q′1)(δ1+1)+iq′2(n+δ2)+iq′2(δ3+1) (B.3.54b)

= e+i(q1−q′1)(δ1+1)+iq′2(δ2+1)+iq′2(n−1)+iq′2(δ3+1) , (B.3.54c)

from which the general phase factor can be read o� to be

Φα′α = ei(qα−qα′)(δ1+1)+iqᾱ′(δ2+1)+iqᾱ′(n−1)+iqᾱ′(δ3+1) . (B.3.55)

The 4C contribution follows as

HQ
4C q′1,q1

∣∣∣
iib)

=
∑

α′,α=1,2

ΞT∑
δ2=0

e+iqᾱ′(n−1)
(

(T †)δ21† (A;Cqᾱ)[uα
′
α ]e−iqᾱ′(δ2+1), h̃(A;A)[vᾱ

′
]
)

=:
∑

α′,α=1,2

e+iqᾱ′(n−1)
(
uα
′
αᾱ, h̃

(A;A)[vᾱ
′
]
)
, (B.3.56a)

with uα
′
αᾱ de�ned as

uα
′
αᾱ :=

ΞT∑
δ2=0

(T †)δ21† (A;Cqᾱ)[uα
′
α ]e−iqᾱ′(δ2+1) . (B.3.57)

In left-canonical gauge, there are no non-vanishing factorizations of the TN (B.3.51).
Therefore, there are no 1QP corrections for this case.
However, there are contributions to the Cη correction, since this case is exactly the example
from Sec. B.3.4.3. The relevant TN factorization is therfore the one in Eq. (B.3.21). Its
value must be subtracted once for each possible δ2, weighted with the corresponding phase
factor. The correction is thus

CQ
η q′1,q1

∣∣∣
iib)

:=
∑

α′,α=1,2

ΞT∑
δ2=0

e+iqᾱ′(n−1)+iqᾱ′(δ2+1)
(
uα
′
α ,1

(A;Cqᾱ)[v]
)
·
(
u, h̃(A;A)[vᾱ

′
]
)

(B.3.58a)

=
∑

α′,α=1,2

e+iqᾱ′(n−1)
(
uα
′
α ,1

(A;Cqᾱ)[v]
)
·
(
u, h̃(A;A)[vᾱ

′
]
)
ϕᾱ′ (B.3.58b)

where ϕᾱ′ is de�ned as

ϕᾱ′ :=

ΞT∑
δ2=0

e+iqᾱ′(δ2+1) . (B.3.59)

B.3.5.3 Subcase iic)

The TN type for this case is

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

h̃0

︸ ︷︷ ︸
δ3

Cqᾱ

(B.3.60)
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which is symmetrical to subcase iib). The 4C contributions are then given by

HQ
4C q′1,q1

∣∣∣
iic)

:=
∑

α′,α=1,2

e−iqᾱ(n−1)
(
uα
′ᾱ′
α , h̃(A;A)[vᾱ]

)
(B.3.61)

and the contribution to the Cη correction by

CQ
η q′1,q1

∣∣∣
iic)

:=
∑

α′,α=1,2

e−iqᾱ(n−1)
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)
·
(
u, h̃(A;A)[vᾱ]

)
ϕ∗ᾱ . (B.3.62)

The boundary matrix uα
′ᾱ′
α is de�ned analogously to uα

′
αᾱ as

uα
′ᾱ′
α :=

ΞT∑
δ2=0

(T †)δ21(Cqα′;A)[uα
′
α ] e+iqᾱ(δ2+1) . (B.3.63)

B.3.5.4 Summary

The combined contribution to the irreducible 2QP matrix element from case ii) is thus

V Q
q′1,q1

∣∣∣
ii)

=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)

{(
uα
′
α,1Pc, h̃

(A;A)[vᾱ
′

ᾱ ]
)
−
(
uα
′
α , h̃

(A;A)[v] fᾱ′ᾱϕα′α

)}
(B.3.64a)

+
∑

α′,α=1,2

e+iqᾱ′(n−1)

{(
uα
′
αᾱ, h̃

(A;A)[vᾱ
′
]
)

−
(
uα
′
α ,1

(A;Cqᾱ)[v]
)
·
(
u, h̃(A;A)[vᾱ

′
]
)
ϕᾱ′

}
(B.3.64b)

+
∑

α′,α=1,2

e−iqᾱ(n−1)

{(
uα
′ᾱ′
α , h̃(A;A)[vᾱ]

)
−
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)
·
(
u, h̃(A;A)[vᾱ]

)
ϕ∗ᾱ

}
. (B.3.64c)

B.3.6 Case iii)

This case describes the transitions between cases i) and ii) and consists itself of �ve sub-
cases, each with a distinct TN form.

B.3.6.1 Subcase iiia)

This is the case of the operator acting only on the right, ket-side particle Cqᾱ, and the right
bra-side particle is located to the right of the operator. The corresponding TN is

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

Cqᾱ,` ︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.3.65)

The absolute position of the Cqᾱ is de�ned as `. For α′= α = 1, the particle positions are

j′ = −(δ1 + 1), d′ = δ1 + n+ δ2 + 1 (B.3.66)

j = −(δ1 + 1) = j′, d = δ1 + 1 + ` . (B.3.67)
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which yield a phase factor of

Φ11 = e+iQ(−δ1−1+δ1+n+δ2+1)−iq′1(δ1+n+δ2+1)

× e−iQ(−δ1−1+δ1+1+`)+iq1(δ1+1+`) (B.3.68a)

= e−iq
′
1(δ1+1)−iq′1(n−1)+iq′2(δ2+1)e+iq1(δ1+1)−iq2` (B.3.68b)

= e+i(q1−q′1)(δ1+1)+iq′2(n−1)−iq2`+iq′2(δ2+1) (B.3.68c)

⇒ Φα′α = e+i(qα−qα′)(δ1+1)+iqᾱ′(n−1)−iqᾱ`+iqᾱ′(δ2+1) . (B.3.68d)

Now the 4C contribution can be calculated as

HQ
4C q′1,q1

∣∣∣
iiia)

:=
∑

α′,α=1,2

n−1∑
`=0

e+iqᾱ′(n−1)−iqᾱ`
(
uα
′
α , h̃

(A;Cqᾱ)

` [vᾱ
′
]

)
. (B.3.69)

This case does require 1QP corrections, namely from the factorization of the type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

→

Cqα′

Cqα

× h̃0

Cqᾱ ︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.3.70)

These can easily be accounted for by using the left boundary matrix uα
′
α,1Pc de�ned in

Eq. (B.3.41). The TN value is then convergent, and the contributions to Cη are neglected.

B.3.6.2 Subcase iiib)

This case is de�ned by the TN type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

Cqᾱ′,`′

︸ ︷︷ ︸
δ2

Cqᾱ

(B.3.71)

which is symmetrical to subcase iiia) and therefore produces contributions symmetrical to
Eq. (B.3.69)

HQ
4C q′1,q1

∣∣∣
iiib)

:=
∑

α′,α=1,2

n−1∑
`′=0

e−iqᾱ(n−1)+iqᾱ′`
′
(
uα
′
α , h̃

(Cqᾱ′;A)

`′ [vᾱ]

)
. (B.3.72)

The 1QP corrections follow the same scheme as in the subcase iiia), and are therefore
covered by using uα

′
α,1Pc.
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B.3.6.3 Subcase iiic)

This subcase is similar to iiia), but with max(j′,j′ + d′) < 0, i.e., the TN type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

h̃0

Cqᾱ,`

. (B.3.73)

For α′= α = 1, the particle positions are

j′ = −(δ1 + 1 + δ2 + 1), d′ = δ1 + 1 (B.3.74)

j = −(δ1 + 1 + δ2 + 1) = j′, d = δ1 + 1 + δ2 + 1 + ` , (B.3.75)

which result in the phase factor

Φ11 = e+iQ(−δ2−1)−iq′1(δ1+1)e−iQ(`)+iq1(δ1+1+δ2+1+`) (B.3.76a)

= e−iq
′
1(δ1+1)e−iq2(δ2+1)+iq1(δ1+1)−iq2` (B.3.76b)

= e+i(q1−q′1)(δ1+1)−iq2(δ2+1)−iq2` (B.3.76c)

⇒ Φα′α = e+i(qα−qα′)(δ1+1)−iqᾱ(δ2+1)−iqᾱ` . (B.3.76d)

Using the already de�ned left boundary matrix uα
′ᾱ′
α , the 4C contribution can be written

as

HQ
4C q′1,q1

∣∣∣
iiic)

:=
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′ᾱ′
α , h̃

(A;Cqᾱ)

` [v]

)
. (B.3.77)

In left-canonical gauge, there are no non-vanishing factorizations of TN (B.3.73) that would
contribute to the 1QP part. But, contribtutions to the Cη correction are needed, since the
TN value does not converge to zero for large δ2, if δ1 is small. The corrections follow the
scheme of case iic) and are thus given by

CQ
η q′1,q1

∣∣∣
iiic)

:=
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)(

u, h̃
(A;Cqᾱ)

` [v]

)
ϕ∗ᾱ . (B.3.78)

B.3.6.4 Subcase iiid)

This subcase is again the counterpart of subcase iiic) with the operator acting on a bra-side
C tensor. Its TNs have the form

Cqα′

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

h̃0

Cqᾱ′,`
′

. (B.3.79)

With the absolute position of the tensor Cqᾱ′ de�ned as `′, the positions are again simply
given by interchanging (j′,d′) and (j,d) from case iiic). This results in the following 4C
contribution

HQ
4C q′1,q1

∣∣∣
iiid)

:=
∑

α′,α=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
uα
′
αᾱ, h̃

(Cqᾱ′;A)

`′ [v]

)
(B.3.80)

and the Cη correction

CQ
η q′1,q1

∣∣∣
iiid)

:=
∑

α′,α=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
uα
′
α ,1

(A;Cqᾱ)[v]
)(

u, h̃
(Cqᾱ′;A)

`′ [v]

)
ϕᾱ′ . (B.3.81)
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B.3.6.5 Subcase iiie)

The �nal subcase is that of the operator acting on both the right C tensors, i.e., TNs of
the type

Cqα′

Cqα ︸ ︷︷ ︸
δ1

h̃0

Cqᾱ′,`
′

Cqᾱ,`

. (B.3.82)

Looking at the resulting phase factors from the last two subcases, the 4C contribution can
directly be read o� as

HQ
4C q′1,q1

∣∣∣
iiie)

:=
∑

α′,α=1,2

n−1∑
`′,`=0

e+iqᾱ′`
′−iqᾱ`

(
uα
′
α , h̃

(Cqᾱ′;Cᾱ)

`′;` [v]

)
. (B.3.83)

This subcase also contributes to the 1QP part. The factorization of type Eq. (B.3.14) are,
as in the other cases, taken care of by using uα

′
α,1Pc. The factorization of type Eq. (B.3.15)

is non-zero only, if `′= `. The resulting correction is then

HQ
1P q′1,q1

∣∣∣
iiie)

:=
∑

α′,α=1,2

n−1∑
`′=0

e+i(qᾱ′−qᾱ)`′
(
uα
′
α , h̃

(A;A)[v]
)
fᾱ′ᾱ . (B.3.84)

With these 1QP corrections the TN values are convergent, wherefore contributions to Cη
are neglected.

B.3.6.6 Summary

With all the subcases analyzed individually, the complete, corrected contribution of case
iii) to the irreducible 2QP matrix element is given by

V Q
q′1,q1

∣∣∣
iii)

:=
∑

α′,α=1,2

n−1∑
`=0

e+iqᾱ′(n−1)−iqᾱ`
(
uα
′
α,1Pc, h̃

(A;Cqᾱ)

` [vᾱ
′
]

)
(B.3.85a)

+
∑

α′,α=1,2

n−1∑
`′=0

e−iqᾱ(n−1)+iqᾱ′`
′
(
uα
′
α,1Pc, h̃

(Cqᾱ′;A)

`′ [vᾱ]

)
(B.3.85b)

+
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′ᾱ′
α , h̃

(A;Cqᾱ)

` [v]

)

−
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)(

u, h̃
(A;Cqᾱ)

` [v]

)
ϕ∗ᾱ (B.3.85c)

+
∑

α′,α=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
uα
′
αᾱ, h̃

(Cqᾱ′;A)

`′ [v]

)

−
∑

α′,α=1,2

n−1∑
`=0

e+iqᾱ′`
′
(
uα
′
α ,1

(A;Cqᾱ)[v]
)(

u, h̃
(Cqᾱ′;A)

`′ [v]

)
ϕᾱ′ (B.3.85d)
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+
∑

α′,α=1,2

n−1∑
`′,`=0

e+iqᾱ′`
′−iqᾱ`

(
uα
′
α,1Pc, h̃

(Cqᾱ′;Cᾱ)

`′;` [v]

)

−
∑

α′,α=1,2

n−1∑
`′=0

e+i(qᾱ′−qᾱ)`′
(
uα
′
α , h̃

(A;A)[v]
)
fᾱ′ᾱ . (B.3.85e)

B.3.7 Case iv)

This case is quite di�cult to deal with, since the operator acting to the left of all the
C tensors thwarts the bene�ts of the left-canonical gauge as Eq. (5.10) is not applicable.
Due to this lack of gauge induced simpli�cations, this case consists of a total of 13 subcases.
They can be divided into three categories, distinguished by how two particles can be
grouped together. Because the TNs resemble a ladder, these categories are called �rung
grouping�, �rail grouping� and �transition cases�.
The TNs of the rung grouping category look like the example TN in Eq. (B.3.27) and allow
the group each pair of two C tensors in a rung type structure

h̃0


Cqα

Cqα′

︸ ︷︷ ︸
δ2


Cqᾱ′

Cqᾱ

 . (B.3.86)

Accordingly, the rail grouping category holds TNs where each pair can be grouped on one
rail like this

h̃0


Cqα′ Cqᾱ′

︸ ︷︷ ︸
δ2


Cqα Cqᾱ

 . (B.3.87)

And lastly the transition cases, that allow neither the �rst nor the second grouping, have
TNs of the type

h̃0

Cqα′ Cqᾱ′

Cqα Cqᾱ

. (B.3.88)

B.3.7.1 Left TN boundary matrix

Before all the di�erent subcases are analyzed, a closer look at the left boundary of the TNs
is in order. For case iv), independently of the actual particle positions, the left boundary
of the TN always has the form

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

. (B.3.89)
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Note that the operator width n and the distance δ0 between the operator and the �rst
C tensor only enter into the reference particle positions j′ and j, not into the particle
distances d′ and d. Let

j′ = n+ δ0 + x′ and j = n+ δ0 + x , (B.3.90)

which is always possible regardless of the signs of d′ and d. The pase factor from Eq. (B.3.2)
can then be written as

Φ = e+iQ(j′+d′)−iq′1d′e−iQ(j+d)+iq1d (B.3.91a)

= e+iQj′+i(Q−q′1)d′−iQj−i(Q−q1)d (B.3.91b)

= e+iQ(n+δ0+x′)+iq′2d
′−iQ(n+δ0+x)−iq2d (B.3.91c)

= e+iQx′+iq′2d
′−iQx−iq2d . (B.3.91d)

This means, the phases related to n and δ0 always cancel out. Therefore, n and δ0 do not
need to be taken into account explicitly when determining the particle positions.
This also allows to de�ne a summed left boundary matrix

uh̃ :=

ΞT∑
δ0=0

(T †)δ0 [h̃† (A;A)[u]] (B.3.92)

that is the same for all groupings and subcases.

B.3.7.2 Subcase iva): Rung grouping category

This category is by far the largest. Each block in square brackets in (B.3.86) has three
topologically distinct states︸ ︷︷ ︸

δ>0


,

︸ ︷︷ ︸
δ<0


and

︸ ︷︷ ︸
δ=0

 (B.3.93)

depending on whether the bra-side C tensor is located left, right or on the same site as the
ket-side C tensor. This results in a total of nine subcases in this category.
However, recall that parts of TNs that look the same, also evaluate to the same expressions.
Therefore, the right block in (B.3.86), including both the boundary matrix v and the block
marked δ2, is described in all its three states by the summed boundary matrix vᾱ

′
ᾱ de�ned

in Eq. (B.3.49). This will be demonstrated on the example TN

h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ3

Cqᾱ

. (B.3.94)

Noting that n and δ0 can be neglected, the relevant particle positions for α′ = α = 1 are
given by

j′ = δ1 + 1, d′ = δ2 + 1 (B.3.95)

j = 0, d = δ1 + 1 + δ2 + 1 + δ3 + 1 . (B.3.96)
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They yield the phase factor

Φ11 = e+iQ(δ1+1+δ2+1)−iq′1(δ2+1)

×e−iQ(δ1+1+δ2+1+δ3+1)+iq1(δ1+1+δ2+1+δ3+1) (B.3.97a)

= e+iq1(δ1+1)+i(q′2−q2)(δ2+1)−iq2(δ3+1) (B.3.97b)

= e+iq1(δ1+1)+i(q1−q′1)(δ2+1)−iq2(δ3+1) (B.3.97c)

⇒ Φα′α = e+iqα(δ1+1)+i(qα−qα′)(δ2+1)−iqᾱ(δ3+1) . (B.3.97d)

As always, the phase factor can be split into separate factors related to each individual
distance δi.
The summed 4C contribution from this TN is thus

HQ
4C q′1,q1

∣∣∣
iva1)

:=
∑

α′,α=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

ΞT∑
δ3=0

e+iqα(δ1+1)+i(qα−qα′)(δ2+1)−iqᾱ(δ3+1)

×
(

(T †)δ1 [1† (A;Cqα)[uh̃]],1(Cqα′;A)[T δ2 [1(Cqᾱ′;A)[T δ3 [1(A;Cᾱ)[v]]]]]
)

(B.3.98a)

=
∑

α′,α=1,2

(
ΞT∑
δ1=0

(T †)δ1 [1† (A;Cqα)[uh̃]]e−iqα(δ1+1) ,

1
(Cqα′;A)

[ ΞT∑
δ2=0

T δ2
[
1

(Cqᾱ′;A)
[ ΞT∑
δ3=0

T δ3 [1(A;Cᾱ)[v]]e−iqᾱ(δ3+1)
]]
e+i(qα−qα′)(δ2+1)

])
(B.3.98b)

=:
∑

α′,α=1,2

uh̃ α,1(Cqα′;A)
[ ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[vᾱ]]e+i(qα−qα′)(δ2+1)
] (B.3.98c)

where uh̃ α is de�ned as

uh̃ α :=

ΞT∑
δ1=0

(T †)δ1 [1† (A;Cqα)[uh̃]]e−iqα(δ1+1) . (B.3.99)

Note that the rightmost part of the TN can directly be identi�ed as vᾱ; and the expression

ΞT∑
δ2=0

T δ2 [1(Cqᾱ′;A)[vᾱ]]e+i(qα−qα′)(δ2+1) (B.3.100)

is the contribution of the δ < 0 case to vα
′

ᾱ as de�ned in Eq. (B.3.49). It is left to the inclined
reader as an exercise, to convince themselves that the results for the other con�gurations
of the right rung block are consistent with the use of vᾱ

′
ᾱ .

The example TN in (B.3.94) shows the δ > 0 case of the left particle group (cf. (B.3.93)).
As seen in Eqs. (B.3.98) and (B.3.99), the left particle in the group and the distance δ1

can be absorbed into a new summed boundary matrix uh̃ α. The δ < 0 case of the left rung
group results in another summed boundary matrix

uα
′

h̃
:=

ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;A)[uh̃]]e+iqα′(δ1+1) , (B.3.101)

and in the case δ = 0 there is no summation over δ1, which yields the left boundary matrix

1
† (Cqα′;Cqα)[uh̃] . (B.3.102)
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Taking all three cases together, allows us to de�ne the left side analog of vᾱ
′

h̃ ᾱ
from

Eq. (B.3.34), namely

uα
′

h̃ α
:= 1

† (Cqα′;Cqα)[uh̃] + 1
† (Cqα′;A)[uh̃ α] + 1

† (A;Cqα)[uα
′

h̃
] . (B.3.103)

Now, the entire 4C contribution from the rung grouping category can be written very
compactly as

HQ
4C q′1,q1

∣∣∣
iva)

:=
∑

α′,α=1,2

(
uα
′

h̃ α
, vᾱ

′
ᾱ

)
. (B.3.104)

This subcase also contributes to the 1QP part of the matrix element, namely for either of
the rung groups having δ = 0. The contributions to the 1QP part where the right rung
is factored out is easily obtained from the 4C result by replacing vᾱ

′
ᾱ with v · fᾱ′ᾱϕα′α (cf.

Eq. (B.3.120) below). The contribution where the left rung is factored out is also simply
retrieved from the 4C result by substituting the rung group with T · fα′α . The complete
1QP correction is then given by

HQ
1P q′1,q1

∣∣∣
iva)

:=
∑

α′,α=1,2

(
uα
′

h̃ α
, v · fᾱ′ᾱϕα′α

)
+
(
uh̃, T [vᾱ

′
ᾱ ]
)
fα′α (B.3.105)

Including these 1QP corrections, all TN types from this subcase are convergent, thus the
contributions to Cη are neglected.

B.3.7.3 Subcase ivb): Rail grouping

This category contains only two types of TNs. The one shown as an example in (B.3.87),
and its horizontally mirrored counterpart. Only the latter is discussed in some detail, since
it is then immediately clear, how to derive the contribution from the TN (B.3.87). The
mirrored TN is thus

h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

Cqᾱ ︸ ︷︷ ︸
δ2

Cqα′

︸ ︷︷ ︸
δ3

Cqᾱ′

, (B.3.106)

from which the relevant particle positions for α′= α = 1 follow as

j′ = δ1 + 1 + δ2 + 1, d′ = δ3 + 1 (B.3.107)

j = 0, d = δ1 + 1 . (B.3.108)

The resulting phase phase factor is

Φ11 = e+iQ(δ1+1+δ2+1+δ3+1)−iq′1(δ3+1)e−iQ(δ1+1)+iq1(δ1+1) (B.3.109a)

= e+iq1(δ1+1)+iQ(δ2+1)+iq′2(δ3+1) (B.3.109b)

⇒ Φα′α = e+iqα(δ1+1)+iQ(δ2+1)+iqᾱ′(δ3+1) . (B.3.109c)
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The 4C contribution is then

HQ
4C q′1,q1

∣∣∣
ivb),(B.3.106)

:=
∑

α′,α=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

ΞT∑
δ3=0

e+iqα(δ1+1)+iQ(δ2+1)+iqᾱ′(δ3+1)

×
(
1
† (A;Cqᾱ)[(T †)δ1 [1† (A;Cqα)[uh̃]]], T δ2 [1(Cqα′;A)[T δ3 [1(Cqᾱ′;A)[v]]]]

)
(B.3.110a)

=
∑

α′,α=1,2

(
1
† (A;Cqᾱ)

[ ΞT∑
δ1=0

(T †)δ1 [1† (A;Cqα)[uh̃]]e−iqα(δ1+1)
]
,

ΞT∑
δ2=0

T δ2
[
1

(Cqα′;A)
[ ΞT∑
δ3=0

[1(Cqᾱ′;A)[v]]e+iqᾱ′(δ3+1)
]]
e+iQ(δ2+1)

)
(B.3.110b)

=
∑

α′,α=1,2

(
1
† (A;Cqᾱ)[uh̃ α], vα

′ᾱ′
)

(B.3.110c)

with vα
′ᾱ′ de�ned as

vα
′ᾱ′ :=

ΞT∑
δ2=0

T δ2 [1(Cqα′;A)[vᾱ
′
]]e+iQ(δ2+1) . (B.3.111)

The contribution from the TN (B.3.87) follows analogously as

HQ
4C q′1,q1

∣∣∣
ivb),(B.3.87)

:=
∑

α′,α=1,2

(
1
† (Cqᾱ′;A)[uα

′

h̃
], vαᾱ

)
(B.3.112)

with

vαᾱ :=

ΞT∑
δ2=0

T δ2 [1(A;Cα)[vᾱ]]e−iQ(δ2+1) . (B.3.113)

The TNs for this subcase do not have any non-vanishing factorizations, and therefore
contribute neither to the 1QP part nor to the Cη correction.

B.3.7.4 Subcase ivc): Transitions between iva) and ivb)

This subcase, too, holds two types of TNs. The one shown in (B.3.88), which can be seen
as the δ2 = −1 limit case of the rail grouped TN (B.3.87). And the counterpart with the
positions of the ungrouped particles interchanged

h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

Cqα′

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

, (B.3.114)

which in turn can be interpreted as the δ2 = −1 limit case of (B.3.106). The interpretation
as δ2 = −1 limits allows us to read o� the 4C contributions immediately as

HQ
4C q′1,q1

∣∣∣
ivc)

= HQ
4C q′1,q1

∣∣∣
ivc),(B.3.88)

+ HQ
4C q′1,q1

∣∣∣
ivc),(B.3.114)

:=
∑

α′,α=1,2

(
uα
′

h̃
,1(Cqᾱ′;Cqα)[vᾱ]

)
+

∑
α′,α=1,2

(
uh̃ α,1

(Cqα′;Cqᾱ)[vᾱ
′
]
)
. (B.3.115)
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This subcase also contributes to the 1QP part of the matrix element with TN factorizations
of the type

h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

Cqα′

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

(B.3.116)

→ h̃0

︸ ︷︷ ︸
δ0

Cqα ︸ ︷︷ ︸
δ1

︸ ︷︷ ︸
δ3

Cqᾱ′

×

Cqα′

Cqᾱ

.

From this factorization it is evident, that the contributions to the 1QP part are once more
given by simply replacing 1(Cqα′;Cqᾱ) with T · fα′ᾱ in the 4C result

HQ
1P q′1,q1

∣∣∣
ivc)

:=
∑

α′,α=1,2

{(
uα
′

h̃
, T [vᾱ]

)
fᾱ′α +

(
uh̃ α, T [vᾱ

′
]
)
fα′ᾱ

}
. (B.3.117)

Lastly, the TNs of this case also allow for decompositions of the type

h̃0

︸ ︷︷ ︸
δ0

Cqα

×

Cqα′

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

(B.3.118)

which stay �nite for large δ1 if both δ0 and δ3 are small, and therefore require contributions
to the Cη correction. The contributions are given by the TN product times the summed
phases for δ1 as de�ned in Eq. (B.3.59), i.e.,

CQ
η q′1,q1

∣∣∣
ivc)

:=
∑

α′,α=1,2

(
uh̃,1

(Cqα′;A)[v]
)
·
(
u,1(Cqᾱ′;Cqα)[vᾱ]

)
ϕ∗α′

+
∑

α′,α=1,2

(
uh̃,1

(A;Cqα)[v]
)
·
(
u,1(Cqα′;Cᾱ)[vᾱ

′
]
)
ϕα . (B.3.119)

B.3.7.5 Summary

De�ning a 1QP corrected right boundary matrix vᾱ
′

ᾱ,1Pc analogous to u
α′
α,1Pc as

vᾱ
′

ᾱ,1Pc := vᾱ
′

ᾱ − v · fᾱ′ᾱφα′α , (B.3.120)
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the complete contribution to the irreducible 2QP matrix element from case iv) is

V Q
q′1,q1

∣∣∣
iv)

:=
∑

α′,α=1,2

{(
uα
′

h̃ α
, vᾱ

′
ᾱ,1Pc

)
−
(
uh̃, T [vᾱ

′
ᾱ ]
)
fα′α

}
(B.3.121a)

+
∑

α′,α=1,2

{(
1
† (A;Cqᾱ)[uh̃ α], vα

′ᾱ′
)

+
(
1
† (Cqᾱ′;A)[uα

′

h̃
], vαᾱ

)}
(B.3.121b)

+
∑

α′,α=1,2

{(
uα
′

h̃
,1(Cqᾱ′;Cqα)[vᾱ]

)
−
(
uα
′

h̃
, T [vᾱ]

)
fᾱ′α

}
+

∑
α′,α=1,2

{(
uh̃ α,1

(Cqα′;Cqᾱ)[vᾱ
′
]
)
−
(
uh̃ α, T [vᾱ

′
]
)
fα′ᾱ

}
−

∑
α′,α=1,2

(
uh̃,1

(Cqα′;A)[v]
)
·
(
u,1(Cqᾱ′;Cqα)[vᾱ]

)
ϕ∗α′

−
∑

α′,α=1,2

(
uh̃,1

(A;Cqα)[v]
)
·
(
u,1(Cqα′;Cᾱ)[vᾱ

′
]
)
ϕα . (B.3.121c)

B.3.8 Case v)

This case covers the transitions from case iv) to the other three cases. Depending on how
many and which C tensors the operator acts on, this case falls into six subcases and is
quite involved, too.

B.3.8.1 Subcase va)

The �rst subcase considered is that of the operator acting on all four C tensors. The
corresponding TNs are of the form

h̃0

Cqα,`

Cqα′,`
′

Cqᾱ,m

Cqᾱ′,m
′

. (B.3.122)

In this case, the concept of a reference site j and relative particle distance d is of no
particular help. Instead, the restrictions ` < m and `′< m′ are made. The phase factor is
then straight forward to determine as

Φα′α = e+iqα′`
′+iqᾱ′m

′−iqα`−iqᾱm (B.3.123)

and the 4C contribution follows as

HQ
4C q′1,q1

∣∣∣
va)

:=
∑

α′,α=1,2

n−2∑
`′=0

n−2∑
`=0

n−1∑
m′=`′+1

n−1∑
m=`+1

e+iqα′`
′+iqᾱ′m

′−iqα`−iqᾱm

×
(
u, h̃

(Cqα′,Cqᾱ′;Cqα,Cqᾱ)

`′,m′;`,m [v]

)
. (B.3.124)

This subcase also contributes to the 1QP part, namely if any one, or two compatible, of
the following conditions are met

`′= `, m′ = m, `′= m, ` = m′ , (B.3.125)
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in other words, whenever there is at least one �rung� in the TN ladder, that has C tensors
on both ends. Due to the lack of gauge induced simpli�cations, TNs of the type (B.3.122)
allow a lot of di�erent factorizations, for instance

→ × (B.3.126a)

→ × (B.3.126b)

which all occurred before, but never all in the same subcase. This makes the 1QP contribu-
tions of this subcase the most complex ones of all. Here it is helpful, to abandon the rule,
that the C tensors with barred momenta Cqᾱ′ and Cqᾱ are always right of the non-barred
ones. Instead, the momenta qα′ and qα are �xed to the C rung that is factored out, and
which is given the site index j. The remaining particles are designated by absolute site
indices `′ and ` which are summed over values both larger and smaller than j, and `′ 6= j
and ` 6= j is implied. The phase factor can then be determined as

Φα′α = e+iqα′j+iqᾱ′`
′
e−iqαj−iqᾱ` (B.3.127a)

= e+i(qα′−qα)j+iqᾱ′`
′−iqᾱ` (B.3.127b)

= e+i(Q−ᾱ′−Q+ᾱ)j+iqᾱ′`
′−iqᾱ` (B.3.127c)

= e+iqᾱ(j−`)−iqᾱ′(j−`′) . (B.3.127d)

Note that in this description each set {j,`′,`} forms a unique TN, and therefore the sums
over α′ and α are still required to count all necessary contributions.
The contributions the 1QP pare are then

HQ
1P q′1,q1

∣∣∣
va)

:=
∑

α′,α=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

n−1∑
`=0,`6=j

e+iqᾱ(j−`)−iqᾱ′(j−`′)

×
(
u, h̃

(Cqᾱ′;Cqᾱ)

`′;` [v]

)
fα′α . (B.3.128)

Although non-vanishing factorizations of some TNs of this type into a 2QP-1QP over-
lap and a 1QP-ground state matrix element are possible, these contributions to the Cη
correction are neglected, since their number is very small compared to the other cases.

B.3.8.2 Subcase vb)

The second subcase is that of the operator acting on two C tensors, described by TNs of
the type

h̃0

Cqα,`

Cqα′,`
′

︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

Cqᾱ

. (B.3.129)

Again, the positions of the C tensors that the operator acts on are labeled `′ and `, and
the right part of the TN, including the δ1 block, is actually described by the compound
boundary matrix vᾱ

′
ᾱ . The particle positions for α

′= α = 1 are

j′ = `′, d′ = n− 1− `′+ δ1 + 1 (B.3.130a)

j = `, d = n− 1− `+ δ1 + 1 + δ2 + 1 . (B.3.130b)
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The resulting phase factor is

Φ11 = e+iQ(`′+n−1−`′+δ1+1)−iq′1(n−1−`′+δ1+1)

×e−iQ(`+n−1−`+δ1+1+δ2+1)+iq1(n−1−`+δ1+1+δ2+1) (B.3.131a)

= e+iq′1`
′+iq′2(n−1)+iq′2(δ1+1)e−iq1`−iq2(n−1)−iq2(δ1+1+δ2+1) (B.3.131b)

= e+iq′1`
′−iq1`+i(q′2−q2)(n−1)e+i(q′2−q2)(δ1+1)−iq2(δ2+1) (B.3.131c)

= e+iq′1`
′−iq1`+i(q1−q′1)(n−1)e+i(q1−q′1)(δ1+1)−iq2(δ2+1) (B.3.131d)

⇒ Φα′α = e+iqα′`
′−iqα`+i(qα−qα′)(n−1)e+i(qα−qα′)(δ1+1)−iqᾱ(δ2+1) (B.3.131e)

and can be split into a �rst factor that relates only to the operator part of the TN, and
a second factor that relates only to the right part. The second factor is indeed again
consistent with vᾱ

′
ᾱ . Now the 4C contribution can be determined easily as

HQ
4C q′1,q1

∣∣∣
vb)

:=
∑

α′,α=1,2

n−1∑
`′=0

n−1∑
`=0

e+iqα′`
′−iqα`+i(qα−qα′)(n−1)

(
u, h̃

(Cqα′;Cqα)

`′;` [vᾱ
′

ᾱ ]

)
. (B.3.132)

The TN of this case, (B.3.129), is the mirror complement of case iiie), and therefore also
contributes to the 1QP part with both the factorization types from Eqs. (B.3.14) and
(B.3.14). The contribution where the right C rung is factored out is taken care of by using
vᾱ
′

ᾱ,1Pc. The contribution where left pair of C tensors is factored out is non-vanishing if
`′= ` and reads

HQ
1P q′1,q1

∣∣∣
vb),(B.3.15)

:=
∑

α′,α=1,2

n−1∑
`′=0

ei(qα−qα′)(n−1−`′)
(
u, h̃(A;A)[vᾱ

′
ᾱ ]
)
fα′α . (B.3.133)

Taking into account the 1QP corrections, the TN values of this subcase all converge to
zero, and the contributions to Cη are neglected.

B.3.8.3 Subcase vc)

This is the �rst of two subcases where the operator acts on three C tensors, described by
TNs of the type

h̃0

Cqα,`

Cqα′,`
′Cqᾱ′,m

′

︸ ︷︷ ︸
δ1

Cqᾱ

. (B.3.134)

Obviously, this is just a mixture of the previous two subcases, where the right part of the
TN is now described by vᾱ. This allows us to write down the 4C contributions immediately
by using the corresponding phase factors from subcases va) and vb)

HQ
4C q′1,q1

∣∣∣
vc)

:=
∑

α′,α=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

n−1∑
`=0

e+iqα′`
′+iqᾱ′m

′−iqα`−iqᾱ(n−1)

(
u, h̃

(Cqα′,Cqᾱ′;Cqα)

`′,m′;` [vᾱ]

)
.

(B.3.135)
Like in the previous subcases, there are also contributions to the 1QP part. Non-vanishing
factorizations exist for `′= ` or m′ = `.
The proper technique is therefore the same as for subcase va), where the momenta qα′ and
qα are �xed to the position of the factored out C rung, which is named j. The postion `′
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of the remaining particle that the operator acts on is then summed over values both larger
and smaller than j. This results in a 1QP contribution of

HQ
1P q′1,q1

∣∣∣
vc)

:=
∑

α′,α=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

e+i(qα′−qα)j−iqᾱ(n−1)+iqᾱ′`
′
(
u, h̃

(Cqᾱ′;A)

`′ [vᾱ]

)
fα′α .

(B.3.136)
As with subcase va), factorizations into 2QP-1QP overlaps and 1QP-ground state matrix
elements are possible, but are neglected, since none of them are �nite for large δ1.

B.3.8.4 Subcase vd)

This is the second subcase where the operator acts on three C tensors and is the vertically
�ipped counterpart of subcase vc)

h̃0

Cqα,` Cqᾱ,m

Cqα′,`
′

︸ ︷︷ ︸
δ1

Cqᾱ′

. (B.3.137)

Both the 4C and the 1QP contribution therefore follow analogously as

HQ
4C q′1,q1

∣∣∣
vd)

:=
∑

α′,α=1,2

n−1∑
`′=0

n−2∑
`=0

n−1∑
m=`+1

e+iqα′`
′+iqᾱ′(n−1)−iqα`−iqᾱm

(
u, h̃

(Cqα′;Cqα,Cqᾱ)

`′;`,m [vᾱ
′
]

)
(B.3.138)

and

HQ
1P q′1,q1

∣∣∣
vd)

:=
∑

α′,α=1,2

n−1∑
j=0

n−1∑
`=0,` 6=j

e+i(qα′−iqα)j−iqᾱ`+iqᾱ′(n−1)

(
u, h̃

(A;Cqᾱ)

` [vᾱ
′
]

)
fα′α .

(B.3.139)
In this case, too, the contributions to Cη are neglected.

B.3.8.5 Subcase ve)

This is the �rst of two subcases where the operator acts on a single C tensor and the other
three are located to the right of the operator

h̃0

Cqα′,`
′

︸ ︷︷ ︸
δ1

Cqα ︸ ︷︷ ︸
δ2

Cqᾱ′

︸ ︷︷ ︸
δ3

Cqᾱ

. (B.3.140)

Actually, this subcase further splits into three sub-subcases, depending on the relative
positions of the three C tensors that the operator does not act on. The �rst is shown in
(B.3.140). Once more, the left end of the TN will prove to be describable by vᾱ

′
ᾱ . The

particle positions for α′= α = 1 are

j′ = `′, d′ = n− 1− `′+ δ1 + 1 + δ2 + 1 (B.3.141a)

j = n− 1 + δ1 + 1, d = δ2 + 1 + δ3 + 1 . (B.3.141b)
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Inserting them into the phase factor yields

Φ11 = e+iQ(`′+n−1−`′+δ1+1+δ2+1)−iq′1(n−1−`′+δ1+1+δ2+1)

×e−iQ(n−1+δ1+1+δ2+1+δ3+1)+iq1(δ2+1+δ3+1) (B.3.142a)

= e−iq
′
1(n−1−`′+δ1+1)+iq′2(δ2+1)−iq2(δ2+1+δ3+1) (B.3.142b)

= e−iq
′
1(n−1−`′+δ1+1)+i(q1−q′1)(δ2+1)−iq2(δ3+1) (B.3.142c)

⇒ Φα′α = e−iqα′(n−1−`′)−iqα′(δ1+1)e+i(qα−qα′)(δ2+1)−iqᾱ(δ3+1) , (B.3.142d)

where the second factor is consistent with the δ < 0 part of vᾱ
′

ᾱ , as expected. The 4C
contribution from this TN type then follows as

HQ
4C q′1,q1

∣∣∣
ve),(B.3.140)

:=
∑

α′,α=1,2

n−1∑
`′=0

ΞT∑
δ1=0

e−iqα′(n−1−`′)−iqα′(δ1+1)

(
(T †)δ1 [h̃

† (Cqα′;A)

`′ [u]],1(A;Cqα)[vᾱ
′

ᾱ ]

)
(B.3.143a)

=
∑

α′,α=1,2

(
uα
′

h̃`′
,1(A;Cqα)[vᾱ

′
ᾱ ]
)
, (B.3.143b)

where uα
′

h̃`′
is de�ned as

uα
′

h̃`′
:=

ΞT∑
δ1=0

(T †)δ1
[n−1∑
`′=0

h̃
† (Cqα′;A)

`′ [u]e+iqα′(n−1−`′)
]
e+iqα′(δ1+1) . (B.3.144)

This type of TN requires 1QP corrections, which arise from the δ3 = −1 boundary case
contained in vᾱ

′
ᾱ . They can therefore be taken care of by using vᾱ

′
ᾱ,1Pc. There are no non-

vanishing Cη type factorizations, hence no corrections are needed.

The second type of TN in this subcase is the δ2 = −1 limit case of (B.3.140), where Cqᾱ′
and Cqα form a C rung. The correct phase factor is obtained by inserting δ2 = −1 into
Eq. (B.3.142), and the rightmost part of the TN is still described by vᾱ. This results in a
4C contribution of

HQ
4C q′1,q1

∣∣∣
ve),δ2=−1

:=
∑

α′,α=1,2

(
uα
′

h̃`′
,1(Cqᾱ′;Cqα)[vᾱ]

)
.

This TN type requires both 1QP corrections and contributions to Cη. The 1QP corrections

are obtained by replacing 1(Cᾱ′;Cqα) with T · fᾱ′α in the 4C result.
The contribution to Cη arises from the TN value not converging to zero for large δ1 if δ3

is small. The corrections are therefore given by replacing the δ1 block with ϕ∗α′ as

CQ
η q′1,q1

∣∣∣
ve),δ2=−1

:=
∑

α′,α=1,2

n−1∑
`′=0

e−iqα′(n−1−`′)
(
h̃
† (Cqα′;A)

`′ [u], v

)
·
(
u,1(Cqᾱ′;Cqα)[vᾱ]

)
ϕ∗α′ . (B.3.145)

Complex conjugation is required due to the de�nition of ϕα′ with positive sign.
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The last type of TN in this subcase results from (B.3.140) by swapping the positions of
Cqα and Cqᾱ′

h̃0

Cqα′,`
′

︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

Cqα ︸ ︷︷ ︸
δ3

Cqᾱ

, (B.3.146)

i.e. there is now �rail grouping� of the particles on the ket-side. For α′= α = 1, the particle
positions are

j′ = `′, d′ = n− 1− `′+ δ1 + 1 (B.3.147a)

j = n− 1 + δ1 + 1 + δ2 + 1, d = δ3 + 1 , (B.3.147b)

from which the phase factor follows as

Φ11 = e+iQ(`′+n−1−`′+δ1+1)−iq′1(n−1−`′+δ1+1)

×e−iQ(n−1+δ1+1+δ2+1+δ3+1)+iq1(δ3+1) (B.3.148a)

= e−iq
′
1(n−1−`′+δ1+1)−iQ(δ2+1)−iq2(δ3+1) (B.3.148b)

⇒ Φα′α = e−iqα′(n−1−`′)−iqα′(δ1+1)e−iQ(δ2+1)−iqᾱ(δ3+1) . (B.3.148c)

As expected, the second factor is consistent with the summed boundary matrix vαᾱ de�ned
in Eq. (B.3.113), which describes the right part of the TN. The 4C contribution follows as

HQ
4C q′1,q1

∣∣∣
ve),(B.3.146)

:=
∑

α′,α=1,2

(
uα
′

h̃`′
,1(Cqᾱ′;A)[vαᾱ]

)
. (B.3.149)

Thankfully, this TN type does neither contribute to the 1QP part nor require Cη correc-
tions.

B.3.8.6 Subcase vf)

This is the vertically �ipped counterpart to subcase ve), i.e. the operator acts on one
ket-side C tensor

h̃0

Cqα,` ︸ ︷︷ ︸
δ1

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ ︸ ︷︷ ︸
δ3

Cqᾱ′

. (B.3.150)

The calculations are completely analogous to case ve) and yield three 4C contributions, two
1QP corrections and one contribution to Cη. With uh̃` α de�ned analogous to Eq. (B.3.144)
as

uh̃` α
:=

ΞT∑
δ1=0

(T †)δ1
[n−1∑
`=0

h̃
† (A;Cqα)

` [u]e−iqα(n−1−`)
]
e−iqα(δ1+1) , (B.3.151)

the complete contribution of this subcase can be written down very compactly as

V Q
q′1,q1

∣∣∣
vf)

:=
∑

α′,α=1,2

(
uh̃` α,1

(Cqα′;A)[vᾱ
′

ᾱ,1Pc] + 1
(Cqα′;Cᾱ)[vᾱ

′
]− T [vᾱ

′
]fα′ᾱ + 1

(A;Cqᾱ)[vᾱ
′ᾱ]
)

−
∑

α′,α=1,2

n−1∑
`=0

e+iqα(n−1−`)
(
h̃
† (A;Cqα)

` [u], v

)
·
(
u,1(Cqα′;Cᾱ)[vᾱ

′
]
)
ϕα . (B.3.152a)
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B.3.8.7 Subcase vg)

The last type of subcase can be seen as a transition from subcase vc) to ve) and from vd)
to vf) respectively. It is described by TNs with the operator acting on two C tensors of
the same state, i.e.,

h̃0

Cqα′,`
′ Cqᾱ′,m

′

︸ ︷︷ ︸
δ2

Cqα ︸ ︷︷ ︸
δ3

Cqᾱ

. (B.3.153)

The particle positions for α′= α = 1 are

j′ = `′, d′ = m′ − `′ (B.3.154a)

j = n− 1 + δ2 + 1 d = δ3 + 1 , (B.3.154b)

which yield the following phase factor

Φ11 = e+iQ(`′+m′−`′)−iq′1(m′−`′)e−iQ(n−1+δ2+1+δ3+1)+iq1(δ3+1) (B.3.155a)

= e+iq′1`
′+iq′2m

′
e−iQ(n−1+δ2+1)−iq2(δ3+1) (B.3.155b)

⇒ Φα′α = e+iqα′`
′+iqᾱ′m

′−iQ(n−1)e−iQ(δ2+1)−qᾱ(δ3+1) . (B.3.155c)

The second factor is clearly consistent with the use of the summed boundary matrix vαᾱ
for the right part of the TN. The 4C contribution thus follows as

HQ
4C q′1,q1

∣∣∣
vg)

:=
∑

α′,α=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

e+iqα′`
′+iqᾱ′m

′−iQ(n−1)

(
h̃
† (Cqα′,Cqᾱ′;A)

`′,m′ [u], vαᾱ

)
.

(B.3.156)
Like the related TN (B.3.146), this case does require neither 1QP corrections nor a contri-
bution to Cη.

B.3.8.8 Subcase vh)

The last subcase is again the vertically �ipped counterpart of the previous one. Its TN is

h̃0

Cqα,` Cqᾱ,m︸ ︷︷ ︸
δ2

Cqα′

︸ ︷︷ ︸
δ3

Cqᾱ′

, (B.3.157)

and the 4C contribution is given analogously to subcase vg) as

HQ
4C q′1,q1

∣∣∣
vh)

:=
∑

α′,α=1,2

n−2∑
`=0

n−1∑
m=`+1

e−iqα`−iqᾱm+iQ(n−1)

(
h̃
† (A;Cqα,Cqᾱ)

`,m [u], vα
′ᾱ′
)
. (B.3.158)

B.3.8.9 Summary

Due to the vast amount of subcases and contributions, no intermediate case summary is
given at this point, but the reader is referred directly to the summary in appendix C.
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B.4 2QP-1QP matrix element

As matrix element of the Hamiltonian, the quantity

DQ
q′1

:= 〈Q,q′1|H |Q〉 = 〈q′1,q′2|H |Q〉 (B.4.1)

and its complex conjugate describe the amplitudes for quasi-particle decay and fusion
processes, that can occur if particle number is not a conserved quantity.
For particle number conserving models, such as those described in Chap. 2, these matrix
elements should vanish in the orthonormalized basis.
With the momentum space description Eq. (6.34) for the 2QP state, and the 1QP state

|Q〉 :=
1√
L

∑
j

e−iQj |CQ,j〉 (B.4.2)

the matrix element is given by

DQ
q′1

=
1√
L

∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉 − CQη q′1 . (B.4.3)

In contrast to the 2QP matrix element, the 1QP part of the Hamiltonian does not con-
tribute anything here. Therefore, no 1QP corrections are required. However, a correction
CQ
η q′1

for A not being an eigenstate of H is needed.

B.4.1 1QP-ground state matrix element correction

In analogy to Eq. (B.3.23), the correction term CQ
η q′1

is given by factorizing DQ
q′1
into a 1QP

overlap and a 1QP-ground state matrix element

CQ
η q′1

:=
1√
L

∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj

×
(
〈Cq′1 ,j

′|CQ,j〉〈Cq′2 ,j
′ + d′|h̃0 |GS〉+ 〈Cq′2 ,j

′ + d′|CQ,j〉〈Cq′1 ,j
′|h̃0 |GS〉

)
(B.4.4a)

1√
L

∑
j′,d′

∑
j

eiQ(j′+d′)−iq′1d′−iQj

×
(
f1Qδj′,j〈Cq′2 ,j

′ + d′|h̃0 |GS〉+ f2Qδj′+d′,j〈Cq′1 ,j
′|h̃0 |GS〉

)
(B.4.4b)

with fα′Q de�ned as the overlap

fα′Q := 〈Cqα′,0|CQ,0〉 =
(
u,1(Cqα′;CQ)[v]

)
. (B.4.5)

Again, this includes TN types that do either converge as function of ΞT , or add only a
�xed number of contributions.
In case of this matrix element it was found, that including all of these contributions to
CQ
η q′1

considerably reduces the magnitude of the residual decay amplitudes after orthonor-
malization.
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B.4.2 Di�erent TN types

Like for the 2QP matrix element, �rst the di�erent types of TNs that occur in the calcu-
lations are introduced. In the following sections, the cases are then analyzed in detail one
by one.

i) The operator acts to the right of all C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉

=

Cqα′

CQ ︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

h̃0 (B.4.6)

ii) The operator acts in between the C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉

=

Cqα′

CQ ︸ ︷︷ ︸
δ1

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ2

Cqᾱ′

(B.4.7)

iii) Transition between cases i) and ii)

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉

=

Cqα′

CQ ︸ ︷︷ ︸
δ1

Cqᾱ′

h̃0 (B.4.8)

iv) The operator acts to the left of all C tensors

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉

= h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

Cqα′

︸ ︷︷ ︸
δ1

CQ ︸ ︷︷ ︸
δ2

Cqᾱ′

(B.4.9)

v) Transitions between case iv) and the other cases

〈Cq′1 ,j
′; Cq′2 ,j

′ + d′|h̃0 |CQ,j〉 =

Cqα′

CQ

h̃0

︸ ︷︷ ︸
δ1

Cqᾱ′

(B.4.10)

Although there are �ve di�erent types of TNs for this case, too, compared to the 2QP
matrix element, calculating the 2QP-1QP matrix element is a cake-walk.
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B.4.3 Case i)

As can be seen from the TN

Cqα′

CQ ︸ ︷︷ ︸
δ1

Cqᾱ′

︸ ︷︷ ︸
δ2

h̃0 , (B.4.11)

this case is simply the overlap calculation with vh̃ from Eq. (B.3.29) as right boundary
matrix instead of v, just as for the 2QP matrix element. However, it is bene�cial, to chose
a di�erent way of computing it. The particle positions for α′= 1 are given by

j′ = −(δ1 + 1 + δ2 + 1), d′ = δ1 + 1 (B.4.12a)

j = −(δ1 + 1 + δ2 + 1) = j′ (B.4.12b)

from which the phase factors follows as

Φ1 = e+iQ(−δ1−1−δ2−1+δ1+1)−iq′1(δ1+1)e−iQ(−δ1−1−δ2−1) (B.4.13a)

= e+iq′2(δ1+1) (B.4.13b)

⇒ Φα′ = e+iqᾱ′(δ1+1) (B.4.13c)

= e+iqᾱ′|d′| . (B.4.13d)

The last form of the phase factor Φα′ is actually universal for any 3C TN with the left
boundary seen in (B.4.11), and is therefore also valid for cases ii) and iii).
The 3C contribution is then given by

HQ
3C q′1

∣∣∣
i)

:=
∑
α′=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

e+iqᾱ′(δ1+1)
(

(T †)δ1 [1† (Cqα′;CQ)[u]],1(Cqᾱ′;A)[T δ2 [h̃(A;A)[v]]]
)

(B.4.14a)

=
∑
α′=1,2

(
ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;CQ)[u]]e−iqᾱ′(δ1+1) ,1(Cqᾱ′;A)
[ ΞT∑
δ2=0

T δ2 [h̃(A;A)[v]]
])

(B.4.14b)

=
∑
α′=1,2

(
uα
′
Q,1

(Cqᾱ′;A)[vh̃]
)

(B.4.14c)

with vh̃ as de�ned in Eq. (B.3.29), and uα
′
Q de�ned analogously to uα

′
α as

uα
′
Q :=

ΞT∑
δ1=0

(T †)δ1 [1† (Cqα′;CQ)[u]] e−iqᾱ′(δ1+1) . (B.4.15)

The advantage of using this newly de�ned summed boundary matrix instead of vα
′

Õ
from

Eq. (B.3.34b) is that uα
′
Q also appears in the following cases ii) and iii).

No non-vanishing factorizations of the TN (B.4.11) exist, hence there are no contributions
to Cη.
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B.4.4 Case ii)

For the 2QP-1QP matrix element, case ii) consists of a single TN type

Cqα′

CQ ︸ ︷︷ ︸
δ1

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.16)

Inserting
|d′| = δ1 + 1 + n− 1 + δ2 + 1 (B.4.17)

into the phase factor Eq. (B.4.13d), allows to write down the 3C contribution directly as

HQ
3C q′1

∣∣∣
ii)

:=
∑
α′=1,2

ΞT∑
δ1=0

ΞT∑
δ2=0

e+iqᾱ′(δ1+1+n−1+δ2+1)

×
(

(T †)δ1 [1† (Cqα′;CQ)[u]], h̃(A;A)[T δ2 [1(Cqᾱ′;A)[v]]]
)

(B.4.18a)

=
∑
α′=1,2

e+iqᾱ′(n−1)
(
uα
′
Q, h̃

(A;A)[vᾱ
′
]
)

(B.4.18b)

with vᾱ
′
as de�ned in Eq. (6.42). This type of TN does require contributions to Cη, since

it may stay �nite for large δ1, if δ2 is small. The contributions are readily derived from the
3C result by replacing the TN with the factorization

Cqα′

CQ

× h̃0

︸ ︷︷ ︸
δ2

Cqᾱ′

(B.4.19)

and the δ1 block with ϕᾱ′ as de�ned in Eq. (B.3.59). It then reads

CQ
η q′1

∣∣∣
ii)

:=
∑
α′=1,2

e+iqᾱ′(n−1)
(
u, h̃(A;A)[vᾱ

′
]
)
fα′Q ϕᾱ′ . (B.4.20)

B.4.5 Case iii)

This case, too, consists of only one TN type, namely

Cqα′

CQ ︸ ︷︷ ︸
δ1

Cqᾱ′,`
′

h̃0 . (B.4.21)

With
|d′| = δ1 + 1 + `′ (B.4.22)
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inserted into Eq. (B.4.13d), the 3C contribution follows as

HQ
3C q′1

∣∣∣
iii)

:=
∑
α′=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
uα
′
Q, h̃

(Cqᾱ′;A)

`′ [v]

)
. (B.4.23)

Like the previous case, it requires contributions to Cη, which follow in the same way and
are therefore given by

CQ
η q′1

∣∣∣
iii)

:=
∑
α′=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
u, h̃

(Cqᾱ′;A)

`′ [v]

)
fα′Q ϕα′ . (B.4.24)

B.4.6 Case iv)

This is again the case, where the operator acts to left of all the C tensors, and therefore
no simpli�cations arise from left-canonical gauge. There are three subcases, that can be
identi�ed by the positions of the C tensors relative to each other as �rung grouping�, �rail
grouping� and �transition case� (cf. Sec. B.3.7).

B.4.6.1 Subcase iva): Rung grouping

The rung grouping case is the one shown in the example TN for case iv)

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

Cqα′

︸ ︷︷ ︸
δ1

CQ ︸ ︷︷ ︸
δ2

Cqᾱ′


, (B.4.25)

where the two rightmost C tensors can be grouped in a rung type structure. The particle
positions for α′= 1 are

j′ = n+ δ0, d′ = δ1 + 1 + δ2 + 1 (B.4.26a)

j = n+ δ0 + δ1 + 1 (B.4.26b)

which result in a phase factor of

Φ1 = e+iQ(n+δ0+δ1+1+δ2+1)−iq′1(δ1+1+δ2+1)e−iQ(n+δ0+δ1+1) (B.4.27a)

= e−iq
′
1(δ1+1)+iq′2(δ2+1) (B.4.27b)

= e+i(q′2−Q)(δ1+1)+iq′2(δ2+1) (B.4.27c)

⇒ Φα′ = e+i(qᾱ′−Q)(δ1+1)+iqᾱ′(δ2+1) . (B.4.27d)

Unsurprisingly, the phases related to n an δ0 cancel out completely, which allows the use
of uh̃ as de�ned in Eq. (B.3.92) to describe the left part of the TN up to Cqα′. The 3C
contribution is then

HQ
3C q′1

∣∣∣
iva)

:=
∑
α′=1,2

(
uh̃,1

(Cqα′;A)[vᾱ
′

Q ]
)

(B.4.28)

where vᾱ
′

Q is de�ned as

vᾱ
′

Q :=

ΞT∑
δ1=0

T δ1 [1(Cqᾱ′;CQ)[v] + 1
(Cqᾱ′;A)[vQ] + 1(A;CQ)[vᾱ

′
]]e+i(qᾱ′−Q)(δ1+1)

(B.4.29a)

with vQ :=

ΞT∑
δ2=0

T δ2 [1(A;CQ)[v]]e−iQ(δ2+1) (B.4.29b)
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which is nothing but vᾱ
′

ᾱ with qᾱ = Q. As apparent from the de�nition in Eq. (B.4.29), vᾱ
′

Q

contains the δ2 = −1 limit case of the TN (B.4.25). That type of TN can have a �nite value
for large δ1, if δ0 is small, wherefore it requires contributions to Cη. Inserting δ2 = −1 into
the phase factor yields them as

CQ
η q′1

∣∣∣
iva)

:=
∑
α′=1,2

ΞT∑
δ1=0

e+i(qᾱ′−Q)(δ1+1)
(
uh̃,1

(Cqα′;A)[v]
)
fᾱ′Q (B.4.30a)

=
∑
α′=1,2

ΞT∑
δ1=0

e−iqα′(δ1+1)
(
uh̃,1

(Cqα′;A)[v]
)
fᾱ′Q (B.4.30b)

=
∑
α′=1,2

(
uh̃,1

(Cqα′;A)[v]
)
fᾱ′Q ϕ

∗
α′ . (B.4.30c)

with ϕα′ as de�ned in Eq. (B.3.59).

B.4.6.2 Subcase ivb): Rail grouping

This subcase is de�ned by the TN type

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

CQ ︸ ︷︷ ︸
δ1

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.31)

For α′= 1 the particle positions are

j′ = n+ δ0 + δ1 + 1, d′ = δ2 + 1 (B.4.32a)

j = n+ δ0 . (B.4.32b)

They result in the phase factor

Φ1 = e+iQ(n+δ0+δ1+1)−iq′1(δ2+1)e−iQ(n+δ0) (B.4.33a)

= e+iQ(δ1+1)+iq′2(δ2+1) (B.4.33b)

⇒ Φα′ = e−iQ(δ1+1)+iqᾱ′(δ2+1) (B.4.33c)

and subsequently, using vα
′ᾱ′ from Eq. (B.3.111), in a 3C contribution of

HQ
3C q′1

∣∣∣
ivb)

:=
∑
α′=1,2

(
uh̃,1

(A;CQ)[vα
′ᾱ′]
)
. (B.4.34)

As in the 2QP matrix element calculations, this type of TN does not have non-vanishing
factorizations. Therefore, no contributions to Cη are needed.

B.4.6.3 Subcase ivc): Transition case

The transition between the previous two subcases is where Cqα′ and CQ from a rung, i.e.,
the TN type

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

CQ

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.35)
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The 3C contribution can immediately be read o� the TN to be

HQ
3C q′1

∣∣∣
ivc)

:=
∑
α′=1,2

(
uh̃,1

(Cqα′;CQ)[vᾱ
′
]
)
. (B.4.36)

This TN type allows the following non-vanishing factorization

h̃0

︸ ︷︷ ︸
n

︸ ︷︷ ︸
δ0

︸ ︷︷ ︸
δ2

Cqᾱ′

×

Cqα′

CQ

(B.4.37)

that requires contributions to Cη. As apparent from the factorization, they are given by

replacing 1(Cqα′;CQ) with T · fα′Q in the 3C result

CQ
η q′1

∣∣∣
ivc)

:=
∑
α′=1,2

(
uh̃, T [vᾱ

′
]
)
fα′Q . (B.4.38)

B.4.7 Case v)

This case consists of �ve subcases, depending on how many and which C tensors the
operator acts on.

B.4.7.1 Subcase va)

This is the case of the operator acting on all three C tensors, described by TNs of the type

Cqα′,`
′

CQ,`

Cqᾱ′,m
′

h̃0 . (B.4.39)

With the restriction m′ > `′, phase factor and 3C contribution can be read o� straight
forwardly as

HQ
3C q′1

∣∣∣
va)

:=
∑
α′=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

n−1∑
`=0

e+iqα′`
′+iqᾱ′m

′−iQ`
(
u, h̃

(Cqα′,Cqᾱ′;CQ)

`′,m′;` [v]

)
. (B.4.40)

If either ` = `′ or ` = m′ holds, this TN has a factorization that contributes to Cη. Like for
the 1QP corrections for case va) of the 2QP matrix element, to describe the corrections,
momentum qα′ is �xed to the position of the factored out C rung, which is given the site
index j. The position `′ of the remaining bra-side particle is then summed over values both
larger and smaller than j, to account for all possible TN forms. The corresponding phase
factor for this summation scheme is

Φα′ = e+iqα′j+iqᾱ′`
′−iQj = e+iqᾱ′(`

′−j) , (B.4.41)

which results in the correction

CQ
η q′1

∣∣∣
va)

:=
∑
α′=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

e+iqᾱ′(`
′−j)

(
u, h̃

(Cᾱ′;A)
`′ [v]

)
fα′Q . (B.4.42)
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B.4.7.2 Subcase vb)

This case deals with the operator acting on one bra-side C and one ket-side C, i.e., TNs of
the type

CQ,`

Cqα′,`
′

h̃0

︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.43)

The particle positions for α′= 1 are

j′ = `′, d′ = n− 1− `′+ δ2 + 1 (B.4.44a)

j = `, (B.4.44b)

resulting in a phase factor of

Φ1 = e+iQ(`′+n−1−`′+δ2+1)−iq′1(n−1−`′+δ2+1)e−iQ` (B.4.45a)

= e+iq′1`
′+iq′2(n−1+δ2+1)−iQ` (B.4.45b)

⇒ Φα′ = e+iqα′`
′+iqᾱ′(n−1)+iqᾱ′(δ2+1)−iQ` . (B.4.45c)

As expected, the right part of the TN is described by vᾱ
′
, which leads to a 3C contribution

of

HQ
3C q′1

∣∣∣
vb)

:=
∑
α′=1,2

n−1∑
`′=0

n−1∑
`=0

e+iqα′`
′+iqᾱ′(n−1)−iQ`

(
u, h̃

(Cqα′;CQ)

`′;` [vᾱ
′
]

)
. (B.4.46)

This TN type, too, allows a non-vanishing factorization for `′= `, and therefore contributes
to Cη. The corrections are readily derived from Eq. (B.4.46), by setting ` = `′ = j and
factoring out the resulting C rung as fα′Q

CQ
η q′1

∣∣∣
vb)

:=
∑
α′=1,2

n−1∑
j=0

e+iqᾱ′(n−1−j)
(
u, h̃(A;A)[vᾱ

′
]
)
fα′Q . (B.4.47)

B.4.7.3 Subcase vc)

This case is the 3C analog of subcase vg) of the 2QP matrix element, i.e.

Cqα′,`
′Cqᾱ′,m

′

h̃0

︸ ︷︷ ︸
δ2

CQ

. (B.4.48)

Therefore, the phase factor for the operator part of the TN has the same form as Eq. (B.3.155),
and the 3C contribution is

HQ
3C q′1

∣∣∣
vc)

:=
∑
α′=1,2

n−1∑
`′=0

n−1∑
m′=`′+1

e+iqα′`
′+iqᾱ′m

′−iQ(n−1)

(
u, h̃

(Cqα′,Cqᾱ′;A)

`′,m′ [vQ]

)
(B.4.49)

where vQ is de�ned analogous to vᾱ as

vQ :=

ΞT∑
δ2=0

T δ2 [1(A;CQ)[v]]e−iQ(δ2+1) . (B.4.50)

No contributions to Cη are needed for this case, since the TN does not have any non-
vanishing factorizations.
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B.4.7.4 Subcase vd)

This subcase covers TNs where the operator acts one C tensor on the bra-side

Cqα′,`
′

h̃0

︸ ︷︷ ︸
δ1

CQ ︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.51)

For α′= 1 the particle positions are

j′ = `′, d′ = n− 1− `′+ δ1 + 1 + δ2 + 1 (B.4.52a)

j = n− 1 + δ1 + 1 , (B.4.52b)

yielding a phase factor of

Φ1 = e+iQ(`′+n−1−`′+δ1+1+δ2+1)−iq′1(n−1−`′+δ1+1+δ2+1)

×e−iQ(n−1+δ1+1) (B.4.53a)

= e+iq′1`
′+i(q′2−Q)(n−1)e+i(q′2−Q)(δ1+1)+iq′2(δ2+1) (B.4.53b)

⇒ Φα′ = e+iqα′`
′+i(qᾱ′−Q)(n−1)e+i(qᾱ′−Q)(δ1+1)+iqᾱ′(δ2+1) . (B.4.53c)

The second factor is consistent with the use of vᾱ
′

Q as de�ned in Eq. (B.4.29). The 3C
contribution is therefore given by

HQ
3C q′1

∣∣∣
vd)

:=
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′+i(qᾱ′−Q)(n−1)

(
u, h̃

(Cqα′;A)

`′ [vᾱ
′

Q ]

)
. (B.4.54)

Due to the δ2 = −1 limit case included in vᾱ
′

Q , this subcase does require contributions to
Cη, since the TN can then retain a �nite value for arbitrarily large δ1. Similarly to the
correction for the related TN in case iva), the contribution to Cη is given by

CQ
η q′1

∣∣∣
vd)

:=
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′+i(qᾱ′−Q)(n−1)

(
u, h̃

(Cqα′;A)

`′ [v]

)
fᾱ′Q ϕ

∗
α′ . (B.4.55)

B.4.7.5 Subcase ve)

The last subcase is the 3C analog of subcase vh) of the 2QP matrix element

CQ,`

h̃0

︸ ︷︷ ︸
δ1

Cqα′

︸ ︷︷ ︸
δ2

Cqᾱ′

. (B.4.56)

The right part of the TN is therefore described by vα
′ᾱ′, and the phase factor for the

operator part can easily be derived from Eq. (B.3.156), by dropping the second particle at
site m and setting qα = Q. The 3C contribution therefore reads

HQ
3C q′1

∣∣∣
ve)

:=
∑
α′=1,2

n−1∑
`=0

e−iQ`+iQ(n−1)
(
u, h̃

(A;CQ)
` [vα

′ᾱ′]
)
. (B.4.57)

Like the analog case vh) of the 2QP matrix element, this TN type does not require contri-
butions to Cη.



Appendix C

Summary of TN calculation results

This appendix contains all the results of the TN calculations of appendix B. It is what
needs to be implemented to run actual 2QP computations.
In appendix B, the matrix elements of the Hamiltonian were considered explicitly. However,
the results hold for any operator that has a 2QP matrix element of the form Eq. (6.68) or
a 2QP-1QP matrix element of the form Eq. (6.61), respectively. Therefore, the results are
denoted here with a general operator Ô.

C.1 Shorthand de�nitions

In order to write down the contributions to the two-particle matrix element more com-
pactly, a number of shorthands is de�ned. Unless otherwise stated, all sums in these
de�nitions run from 0 to ΞT .
Note that they do not only help to write down the results, but many of these quantities
occur several times. Therefore, it is also numerically more e�cient to compute them once
in the beginning of the matrix element computation and use them whenever needed.

C.1.1 Scalars

fα′α :=
(
u,1(Cqα′;Cqα)[v]

)
(C.1.1a)

fα′Q :=
(
u,1(Cqα′;CQ)[v]

)
(C.1.1b)

ϕα :=
∑
δ

e+iqα(δ+1) (C.1.1c)

ϕα′α :=
∑
δ

e+i(qα−qα′)(δ+1) (C.1.1d)

C.1.2 Summed left boundary matrices

uα
′
α :=

∑
δ1

(T †)δ1 [1† (Cqα′,Cqα)[u]]e−i(qα−qα′)(δ1+1) (C.1.2a)

uα
′ᾱ′
α :=

∑
δ2

(T †)δ2 [1† (Cqᾱ′,A)[uα
′
α ]]e+iqᾱ(δ2+1) (C.1.2b)

uα
′
αᾱ :=

∑
δ2

(T †)δ2 [1† (A,Cqᾱ)[uα
′
α ]]e−iqᾱ′(δ2+1) (C.1.2c)

uα
′
α,1Pc := uα

′
α − u · f∗α′αϕ∗α′α (C.1.2d)
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uÔ :=
∑
δ0

(T †)δ0 [O† (A,A)[u]] (C.1.2e)

uα
′

Ô
:=

∑
δ1

(T †)δ1 [1† (Cqα′,A)[uÔ]]e+iqα′(δ1+1) (C.1.2f)

uÔ α :=
∑
δ1

(T †)δ1 [1† (A,Cqα)[uÔ]]e−iqα(δ1+1) (C.1.2g)

uα
′

Ô α
:= 1

(Cqα′;Cqα)[uÔ] + 1
(Cqα′;A)[uÔ α] + 1(A;Cα)[uα

′

Ô
] (C.1.2h)

uα
′

Ô`′
:=

∑
δ1

(T †)δ1
[n−1∑
`′=0

Ô
† (Cqα′;A)

`′ [u]e+iqα′(n−1−`′)
]
e+iqα′(δ1+1) (C.1.2i)

uÔ` α
:=

∑
δ1

(T †)δ1
[n−1∑
`=0

Ô
† (A;Cqα)

` [u]e−iqα(n−1−`)
]
e−iqα(δ1+1) (C.1.2j)

uα
′
Q :=

∑
δ

(T †)δ[1(Cqα′,CQ)[u]]e−iqᾱ′(δ+1) (C.1.2k)

C.1.3 Summed right boundary matrices

vᾱ
′

:=
∑
δ3

T δ3 [1(Cqᾱ′,A)[v]]e+iqᾱ′(δ3+1) (C.1.3a)

vᾱ :=
∑
δ3

T δ3 [1(A,Cqᾱ)[v]]e−iqᾱ(δ3+1) (C.1.3b)

vᾱ
′

ᾱ :=
∑
δ2

T δ2 [1(Cqᾱ′,Cqᾱ)[v] + 1
(Cqᾱ′,A)[vᾱ] + 1

(A,Cqᾱ)[vᾱ
′
]]e+i(qα−qα′)(δ2+1) (C.1.3c)

vᾱ
′

ᾱ,1Pc := vᾱ
′

ᾱ − v · fᾱ′ᾱϕα′α (C.1.3d)

vÔ :=
∑
δ3

T δ3 [Ô(A,A)[v]] (C.1.3e)

vᾱ
′

Ô
:=

∑
δ2

T δ2 [1(Cqᾱ′,A)[vÔ]]e+iqᾱ′(δ2+1) (C.1.3f)

vÔ ᾱ :=
∑
δ

T δ[1(A,Cqᾱ)[vÔ]]e−iqᾱ(δ+1) (C.1.3g)

vᾱ
′

Ô ᾱ
:= 1

(Cqᾱ′,Cqᾱ)[vÔ] + 1
(Cqᾱ′,A)[vÔ ᾱ] + 1

(A,Cqᾱ)[vᾱ
′

Ô
] (C.1.3h)

vα
′ᾱ′ :=

∑
δ

T δ[1(Cqα′,A)[vᾱ
′
]]e+iQ(δ+1) (C.1.3i)

vαᾱ :=
∑
δ

T δ[1(A,Cqα)[vᾱ]]e−iQ(δ+1) (C.1.3j)

vQ :=
∑
δ

T δ[1(A,CQ)[v]]e−iQ(δ+1) (C.1.3k)

vᾱ
′

Q :=
∑
δ

T δ[1(Cqᾱ′,CQ)[v] + 1
(Cqᾱ′,A)[vQ] + 1(A,CQ)[vᾱ

′
]]e−iqα′(δ+1) (C.1.3l)
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C.2 Summary of 2QP matrix element contributions

Case i)

V Q
q′1,q1

∣∣∣
i)

:=
∑

α′,α=1,2

(
uα
′
α,1Pc, v

ᾱ′

Ô ᾱ

)
−
(
uα
′
α , T [vÔ]

)
fᾱ′ᾱ (C.2.1)

Case ii)

V Q
q′1,q1

∣∣∣
ii)

=
∑

α′,α=1,2

e+i(qα−qα′)(n−1)

{(
uα
′
α,1Pc, Ô

(A;A)[vᾱ
′

ᾱ ]
)
−
(
uα
′
α , Ô

(A;A)[v] fᾱ′ᾱϕα′α

)}
(C.2.2a)

+
∑

α′,α=1,2

e+iqᾱ′(n−1)

{(
uα
′
αᾱ, Ô

(A;A)[vᾱ
′
]
)

−
(
uα
′
α ,1

(A;Cqᾱ)[v]
)
·
(
u, Ô(A;A)[vᾱ

′
]
)
ϕᾱ′

}
(C.2.2b)

+
∑

α′,α=1,2

e−iqᾱ(n−1)

{(
uα
′ᾱ′
α , Ô(A;A)[vᾱ]

)
−
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)
·
(
u, Ô(A;A)[vᾱ]

)
ϕ∗ᾱ

}
(C.2.2c)

Case iii)

V Q
q′1,q1

∣∣∣
iii)

:=
∑

α′,α=1,2

n−1∑
`=0

e+iqᾱ′(n−1)−iqᾱ`
(
uα
′
α,1Pc, Ô

(A;Cqᾱ)

` [vᾱ
′
]

)
(C.2.3a)

+
∑

α′,α=1,2

n−1∑
`′=0

e−iqᾱ(n−1)+iqᾱ′`
′
(
uα
′
α,1Pc, Ô

(Cqᾱ′;A)

`′ [vᾱ]

)
(C.2.3b)

+
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′ᾱ′
α , Ô

(A;Cqᾱ)

` [v]

)

−
∑

α′,α=1,2

n−1∑
`=0

e−iqᾱ`
(
uα
′
α ,1

(Cqᾱ′;A)[v]
)(

u, Ô
(A;Cqᾱ)

` [v]

)
ϕ∗ᾱ (C.2.3c)

+
∑

α′,α=1,2

n−1∑
`′=0

e+iqᾱ′`
′
(
uα
′
αᾱ, Ô

(Cqᾱ′;A)

`′ [v]

)

−
∑

α′,α=1,2

n−1∑
`=0

e+iqᾱ′`
′
(
uα
′
α ,1

(A;Cqᾱ)[v]
)(

u, Ô
(Cqᾱ′;A)

`′ [v]

)
ϕᾱ′ (C.2.3d)

+
∑

α′,α=1,2

n−1∑
`′,`=0

e+iqᾱ′`
′−iqᾱ`

(
uα
′
α,1Pc, Ô

(Cqᾱ′;Cᾱ)

`′;` [v]

)

−
∑

α′,α=1,2

n−1∑
`′=0

e+i(qᾱ′−qᾱ)`′
(
uα
′
α , Ô

(A;A)[v]
)
fᾱ′ᾱ (C.2.3e)
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Case iv)

V Q
q′1,q1

∣∣∣
iv)

:=
∑

α′,α=1,2

{(
uα
′

Ô α
, vᾱ

′
ᾱ,1Pc

)
−
(
uÔ, T [vᾱ

′
ᾱ ]
)
fα′α

}
(C.2.4a)

+
∑

α′,α=1,2

{(
1
† (A;Cqᾱ)[uÔ α], vα

′ᾱ′
)

+
(
1
† (Cqᾱ′;A)[uα

′

Ô
], vαᾱ

)}
(C.2.4b)

+
∑

α′,α=1,2

{(
uα
′

Ô
,1(Cqᾱ′;Cqα)[vᾱ]

)
−
(
uα
′

Ô
, T [vᾱ]

)
fᾱ′α

}
+

∑
α′,α=1,2

{(
uÔ α,1

(Cqα′;Cqᾱ)[vᾱ
′
]
)
−
(
uÔ α, T [vᾱ

′
]
)
fα′ᾱ

}
−

∑
α′,α=1,2

(
uÔ,1

(Cqα′;A)[v]
)
·
(
u,1(Cqᾱ′;Cqα)[vᾱ]

)
ϕ∗α′

−
∑

α′,α=1,2

(
uÔ,1

(A;Cqα)[v]
)
·
(
u,1(Cqα′;Cᾱ)[vᾱ

′
]
)
ϕα (C.2.4c)

Case v)

V Q
q′1,q1

∣∣∣
v)

:=
∑

α′,α=1,2

n−2∑
`′=0

n−2∑
`=0

n−1∑
m′=`′+1

n−1∑
m=`+1

e+iqα′`
′+iqᾱ′m

′−iqα`−iqᾱm

×
(
u, Ô

(Cqα′,Cqᾱ′;Cqα,Cqᾱ)

`′,m′;`,m [v]

)
−

∑
α′,α=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

n−1∑
`=0,`6=j

e+iqᾱ(j−`)−iqᾱ′(j−`′)

×
(
u, Ô

(Cqᾱ′;Cqᾱ)

`′;` [v]

)
fα′α (C.2.5a)

+
∑

α′,α=1,2

n−1∑
`′=0

n−1∑
`=0

e+iqα′`
′−iqα`+i(qα−qα′)(n−1)

(
u, Ô

(Cqα′;Cqα)

`′;` [vᾱ
′

ᾱ,1Pc]

)

−
∑

α′,α=1,2

n−1∑
`′=0

ei(qα−qα′)(n−1−`′)
(
u, Ô(A;A)[vᾱ

′
ᾱ ]
)
fα′α (C.2.5b)

+
∑

α′,α=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

n−1∑
`=0

e+iqα′`
′+iqᾱ′m

′−iqα`−iqᾱ(n−1)

(
u, Ô

(Cqα′,Cqᾱ′;Cqα)

`′,m′;` [vᾱ]

)

−
∑

α′,α=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

e+i(qα′−qα)j−iqᾱ(n−1)+iqᾱ′`
′
(
u, Ô

(Cqᾱ′;A)

`′ [vᾱ]

)
fα′α (C.2.5c)

+
∑

α′,α=1,2

n−1∑
`′=0

n−2∑
`=0

n−1∑
m=`+1

e+iqα′`
′+iqᾱ′(n−1)−iqα`−iqᾱm

(
u, Ô

(Cqα′;Cqα,Cqᾱ)

`′;`,m [vᾱ
′
]

)

−
∑

α′,α=1,2

n−1∑
j=0

n−1∑
`=0,` 6=j

e+i(qα′−iqα)j−iqᾱ`+iqᾱ′(n−1)

(
u, Ô

(A;Cqᾱ)

` [vᾱ
′
]

)
fα′α (C.2.5d)

+
∑

α′,α=1,2

(
uα
′

Ô`′
, vᾱ

′
ᾱ,1Pc + 1

(Cqᾱ′;Cα)[vᾱ]− T [vᾱ]fᾱ′α + 1
(Cqᾱ′;A)[vαᾱ]

)

−
∑

α′,α=1,2

n−1∑
`′=0

e−iqα′(n−1−`′)
(
Ô
† (Cqα′;A)

`′ [u], v

)
·
(
u,1(Cqᾱ′;Cα)[vᾱ]

)
ϕ∗α′ (C.2.5e)
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+
∑

α′,α=1,2

(
uÔ` α,1

(Cqα′;A)[vᾱ
′

ᾱ,1Pc] + 1
(Cqα′;Cᾱ)[vᾱ

′
]− T [vᾱ

′
]fα′ᾱ + 1

(A;Cqᾱ)[vᾱ
′ᾱ]
)

−
∑

α′,α=1,2

n−1∑
`=0

e+iqα(n−1−`)
(
Ô
† (A;Cqα)

` [u], v

)
·
(
u,1(Cqα′;Cᾱ)[vᾱ

′
]
)
ϕα (C.2.5f)

+
∑

α′,α=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

e+iqα′`
′+iqᾱ′m

′−iQ(n−1)

(
Ô
† (Cqα′,Cqᾱ′;A)

`′,m′ [u], vαᾱ

)
(C.2.5g)

+
∑

α′,α=1,2

n−2∑
`=0

n−1∑
m=`+1

e−iqα`−iqᾱm+iQ(n−1)

(
Ô
† (A;Cqα,Cqᾱ)

`,m [u], vα
′ᾱ′
)

(C.2.5h)

C.3 Summary of 2QP-1QP matrix element contributions

Case i)

DQ
q′1

∣∣∣
i)

:=
∑
α′=1,2

(
uα
′
Q,1

(Cqᾱ′;A)[vÔ]
)

(C.3.1)

Case ii)

DQ
q′1

∣∣∣
ii)

:=
∑
α′=1,2

e+iqᾱ′(n−1)
{(
uα
′
Q, Ô

(A;A)[vᾱ
′
]
)
−
(
u, Ô(A;A)[vᾱ

′
]
)
fα′Q ϕᾱ′

}
(C.3.2)

Case iii)

DQ
q′1

∣∣∣
iii)

:=
∑
α′=1,2

n−1∑
`′=0

e+iqᾱ′`
′
{(

uα
′
Q, Ô

(Cqᾱ′;A)

`′ [v]

)
−
(
u, Ô

(Cqᾱ′;A)

`′ [v]

)
fα′Q ϕα′

}
(C.3.3)

Case iv)

DQ
q′1

∣∣∣
iv)

:=
∑
α′=1,2

{(
uÔ,1

(Cqα′;A)[vᾱ
′

Q ]
)
−
(
uÔ,1

(Cqα′;A)[v]
)
fᾱ′Q ϕ

∗
α′

}
(C.3.4a)

+
∑
α′=1,2

(
uÔ,1

(A;CQ)[vα
′ᾱ′]
)

(C.3.4b)

+
∑
α′=1,2

{(
uÔ,1

(Cqα′;CQ)[vᾱ
′
]
)
−
(
uÔ, T [vᾱ

′
]
)
fα′Q

}
(C.3.4c)
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Case v)

DQ
q′1

∣∣∣
v)

:=
∑
α′=1,2

n−2∑
`′=0

n−1∑
m′=`′+1

n−1∑
`=0

e+iqα′`
′+iqᾱ′m

′−iQ`
(
u, Ô

(Cqα′,Cqᾱ′;CQ)

`′,m′;` [v]

)

−
∑
α′=1,2

n−1∑
j=0

n−1∑
`′=0,`′6=j

e+iqᾱ′(`
′−j)

(
u, Ô

(Cᾱ′;A)
`′ [v]

)
fα′Q (C.3.5a)

+
∑
α′=1,2

n−1∑
`′=0

n−1∑
`=0

e+iqα′`
′+iqᾱ′(n−1)−iQ`

(
u, Ô

(Cqα′;CQ)

`′;` [vᾱ
′
]

)

−
∑
α′=1,2

n−1∑
j=0

e+iqᾱ′(n−1−j)
(
u, Ô(A;A)[vᾱ

′
]
)
fα′Q (C.3.5b)

+
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′+i(qᾱ′−Q)(n−1)

(
u, Ô

(Cqα′;A)

`′ [vᾱ
′

Q ]

)
(C.3.5c)

+
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′+i(qᾱ′−Q)(n−1)

(
u, Ô

(Cqα′;A)

`′ [vᾱ
′

Q ]

)

−
∑
α′=1,2

n−1∑
`′=0

e+iqα′`
′+i(qᾱ′−Q)(n−1)

(
u, Ô

(Cqα′;A)

`′ [v]

)
fᾱ′Q ϕ

∗
α′ (C.3.5d)

+
∑
α′=1,2

n−1∑
`=0

e−iQ`+iQ(n−1)
(
u, Ô

(A;CQ)
` [vα

′ᾱ′]
)

(C.3.5e)
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