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Chapter 1

Introduction

Survival analysis is an important objective in various fields of biomedical research,
particularly in cancer research. Main goals are the prediction of a patient’s risk and the
identification of new prognostic biomarkers to improve patients’ prognosis. In recent
years, molecular data such as microarray gene expression, next-generation sequencing,
copy number variation (CNV) or single-nucleotide polymorphism (SNP) data have
increasingly gained importance in diagnosis and prediction of disease outcome. It is
well-known that genes do not act in isolation but are related to other genes in complex
molecular networks and interact in regulatory or functional pathways. Exploring the
underlying biological mechanisms and detecting relevant genes and pathways are an
important task in biomedical research, as they help to better comprehend the cause of
disease and enable the targeted development of new pharmaceuticals.

The use of high-throughput technologies allows simultaneous measurements of
genome-wide data for patients and results in high-dimensional data, where the number
of genomic predictors greatly exceeds the number of patients (p >> n). In this
situation, the number of genes associated with outcome is typically small. Important
objectives in modeling high-dimensional data are good prediction performance and
finding a subset of predictors that are truly relevant to the outcome. A sparse model
solution may reduce noise in estimation and increase interpretability of the results.
Besides predictive accuracy and sparsity, another criterion for model evaluation in
high-dimensional settings is stability in variable selection. This implies a similar set
of selected covariates across different resampling data sets (or similar patient cohorts)
(Lausser et al., 2013; Bommert, Rahnenfiihrer, and Lang, 2017). Several studies have
shown that published gene lists obtained for the same clinical type of patients differ
greatly and show only small overlap. They are highly unstable and depend strongly on
the subset of patients used for gene selection (Ein-Dor et al., 2005; Michiels, Koscielny,
and Hill, 2005; Ein-Dor, Zuk, and Domany, 2006). This lack of reproducibility raises
doubts about the reliability and robustness of the reported biomarkers. Main sources
of instability in feature selection are the small number of patients used to generate the
gene lists (limited amount of information in the data), correlations between genes, and
genes with weak effects on outcome (Sauerbrei, Boulesteix, and Binder, 2011; He and
Yu, 2010). Variable selection stability will also be considered in the course of this thesis,
however, the main focus is on predictive accuracy.

One problem with high-dimensional data is that standard approaches for parameter
estimation in regression models cannot handle such a large number of predictors. In
survival analysis, the solution maximizing the partial likelihood of the Cox proportional
hazards model (Cox, 1972) is not unique for p >> n. But even in cases where p < n,
conventional regression techniques may result in an overfitted model that performs well
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on fitted data but fails in external validation. Besides poor prediction performance,
results may be hard to interpret if the number of included predictors is large. To tackle
this problem, several adaptions have been proposed during the last years, such as prior
dimension reduction through univariate selection (Bgvelstad et al., 2007; Witten and
Tibshirani, 2010b) or supervised and unsupervised principal components (Bair and
Tibshirani, 2004; Bair et al., 2006; Hastie, Tibshirani, and Friedman, 2009, chapter
3.5.1), traditional variable selection like forward stepwise selection (Bovelstad et al.,
2007; Witten and Tibshirani, 2010b), regularized regression introducing a penalty term
into the (partial) likelihood such as ridge, lasso or the elastic net as combination of
both (Verweij and Van Houwelingen, 1994; Tibshirani, 1997; Zou and Hastie, 2005),
and boosting algorithms (Hothorn and Biithlmann, 2006; Tutz and Binder, 2006).
Univariate feature selection has the disadvantage that prediction performance of the
resulting multivariate model is not necessarily higher than in the univariate models,
particularly when selected predictors are highly correlated with each other. In this case,
the multivariate model does not provide substantial additional information (Witten
and Tibshirani, 2010b). Bgvelstad et al. (2007) compare some of these methods with
regard to their prediction performance and find that the ridge regression (Verweij and
Van Houwelingen, 1994) performs best. However, a drawback of the ridge penalty is
that it does not result in sparse models, because it only shrinks regression coefficients
towards zero. In comparison, the lasso penalty (Tibshirani, 1997) estimates some or
most regression coefficients exactly zero, thus implying automatic variable selection.
Sparse models are also provided by boosting algorithms.

In addition to genomic predictors, established clinical covariates such as age, sex or
tumor stage are often available in practice. In this case, it is of interest to determine
the additional predictive value of genomic predictors over clinical covariates. Due to the
large number of genomic predictors compared to the typically small number of clinical
covariates, the latter might be dominated in a combined model including both types of
predictors. This problem requires the mandatory inclusion of clinical covariates, while
only genomic covariates are subject to variable selection or penalization. Comparative
studies show that combined models including clinical and genomic predictors often
outperform those models based only on one type of predictors with respect to better
predictive abilities (Boulesteix and Sauerbrei, 2011; De Bin, Sauerbrei, and Boulesteix,
2014; Binder and Schumacher, 2008; Bgvelstad, Nygard, and Borgan, 2009).

Many diseases exhibit considerable heterogeneity with regard to biological char-
acteristics and clinical outcomes. A major subject of research has been the study of
cancer genomes and identification of molecular subtypes of cancer based on differences
in genomic measurements. Different subtypes may have different prognoses, responses
to therapy and progression patterns and thus, can be a challenge for cancer diagnosis
and treatment. Clinical oncology has focused on personalized therapies with the aim of
identifying patient subgroups that benefit from specific targeted treatment, and prevent-
ing unnecessary harm to patients, who are unlikely to respond. Therefore, exploring
and understanding molecular mechanisms and tumor heterogeneity provides deeper
biological insight into tumor development and improves targeted therapies (Curtis et al.,
2012; Almendro, Marusyk, and Polyak, 2013; Bedard et al., 2013; Junttila and Sauvage,
2013). Despite distinct differences, different types of cancer have a shared genetic basis
(Hanahan and Weinberg, 2011). Several cross-cancer analyses have been conducted to
detect common pathways, risk loci and genetic variants, such as variants of DNA repair
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genes (Scarbrough et al., 2016; Fehringer et al., 2016; Kar et al., 2016).

Within the scope of this thesis, we expect the underlying data to be heterogeneous
due to known patient subgroups with different prognoses. We assume that some
subgroups are closer related to one another with regard to sharing genomic predictors
with similar effects on survival outcome, while other subgroups may be un- or less
related due to subgroup-specific or even opposite effects (the latter are very rare). In
a combined model that pools patients from all subgroups the results may be biased
and subgroup-specific effects may get lost because the effects are averaged. Standard
subgroup analysis on the other hand, relies only on the patients belonging to the
subgroup of interest and disregards information from the other subgroups. Due to
reduced sample size, this may lead to a loss of power or unstable results with high
variance, especially in small subgroups such as patients with rare diseases. Therefore a
tradeoff between both standard approaches is needed that combines their advantages.
What we are looking for is the prediction of each subgroup and the detection of subgroup
effects, but to allow sharing of information between subgroups, when supported by
data.

In this thesis, two approaches are proposed to address the problem of predicting
survival outcome based on potentially high-dimensional covariates such as gene ex-
pression data in a heterogeneous cohort with prespecified subgroups. Both proposed
methods perform variable selection in the Cox proportional hazards model and provide
a separate model fit for each subgroup. They consider heterogeneity of data and allow
sharing information between subgroups, when appropriate. Besides identifying relevant
predictors, they also help to uncover similarities between subgroups. We consider
multiple cancer studies as subgroups, however, our approaches can be applied to any
other subgroups, for example, defined by clinical covariates.

Our first approach is a frequentist weighted Cox regression model with lasso penalty
to induce variable selection. Individual weights are estimated for each subgroup such
that they represent the probability of belonging to that subgroup. Patients who are
similar to the subgroup of interest receive higher weights in the subgroup-specific model.
Sample size is not reduced as in standard subgroup analysis since all patients are used
for estimation and weights account for the heterogeneity in the data. This approach
not only allows estimation of a separate model for each subgroup, but also provides
information on the similarities between subgroups. The idea for the derivation of these
weights originates from Bickel et al. (2008) who apply the weights in logistic regression
for modeling the success of HIV-drug therapies. Netzer (2013) uses these weights to
predict the survival outcome of subgroups defined by clinical covariates based on CNV
data. We adopt this weighted approach but with improved estimation of the weights,
by comparing different methods and incorporating cross-validation in order to prevent
overfitting. Furthermore, we conduct an extensive simulation study to evaluate the
potential of our method which has not been done before.

Our second approach is a novel hierarchical Bayesian Cox model with Bayesian
variable selection that assumes a graph structure among the predictors within and
between subgroups. This network is used in variable selection and favors the selection
of predictors that are related in the graph. Prior knowledge of the network is not
required. Instead, simultaneous inference of the relevant predictors for each subgroup
and the network among them is performed. This approach provides an insight into
the relationships among predictors within and between subgroups and allows the
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identification of related predictors that jointly impact the response. The novelty of
our model is the combination of existing Bayesian approaches and the extension to
subgroup analysis.

1.1 Structure of this thesis

This thesis begins with an overview of existing approaches for subgroup analysis.
Chapter 2 provides information on the biological background, including a description
of techniques for the measurement and preprocessing of gene expression data as well
as key facts on lung cancer. Furthermore, an application example of real lung cancer
studies is described.

Chapter 3 introduces statistical methods for the analysis of high-dimensional data
with time-to-event endpoint and extensions to subgroup analysis. First, all methods
are explained in the classical, frequentist setting. Central terms and standard methods
for survival analysis are described including the Cox proportional hazards model.
Regularization techniques for dealing with high-dimensional predictors are proposed as
well as two measures of prediction performance for model evaluation. The standard
Cox model is extended to a weighted version in order to take subgroups into account.
An approach to derive individual weights for subgroup analysis is presented along with
classification methods for their estimation. Then, classical frequentist approaches are
followed by an outline of Bayesian approaches for subgroup analysis in high-dimensional
data with survival outcome. This comprises the Bayesian formulation of the Cox
model, Bayesian variable selection and structure learning in graphical models. Existing
approaches in these fields of research are combined and extended to the proposed new
Bayesian subgroup model.

In chapter 4 both, the proposed frequentist and the Bayesian subgroup model, are
applied to simulated and real lung cancer studies and compared with standard subgroup
and global analysis of all patients. The Bayesian model is applied to genomic predictors
only, but can be extended to include mandatory clinical covariates as in the case of the
frequentist model. The latter additionally serves to investigate the question, whether
prediction accuracy can be improved by combining clinical and genomic covariates. A
model including both types of predictors is compared to a model based on only clinical
or only genomic predictors. This thesis concludes with a summary of the main results
and an outlook for further research in chapter 5.

1.2 Overview of subgroup analysis

Subgroup analysis is an important objective in various medical applications. In epi-
demiology, a major concern is the investigation of heterogeneity in the relationship
between exposure and disease subtypes. Assuming that subtypes are known a priori,
Wang et al. (2016) provide an overview of statistical methods for risk assessment of
disease subtype heterogeneity that are appropriate for different study types, such as
cohort, case-control and case-case studies. This comprises hypothesis tests to assess the
association of exposure with a specific subtype or to test if the exposure effects are the
same across subtypes.



1.2. Overview of subgroup analysis )

An important goal in the development of personalized therapies is the identification
and confirmation of subgroups of patients who will benefit from a specific treatment
and have a positive benefit-risk balance. Traditional subgroup analysis in clinical trials
includes statistical tests for interaction to assess differences in treatment effects between
patient subgroups (Pocock et al., 2002; Rothwell, 2005). Ondra et al. (2016) perform a
systematic literature search on novel statistical methods to analyze the heterogeneity
of treatment effects across patient subgroups defined by biomarkers in clinical trials.
This includes confirmatory approaches, where treatment effects are investigated to
demonstrate the treatment’s efficacy in one subgroup (or a small number of predefined
subgroups) and/ or the entire population by controlling the familywise error rate, and
exploratory approaches that may compare multiple subgroups without error rate control
or identify unknown subgroups. Adaptive designs are also thoroughly reported. In
these trials, patients are recruited in several stages and after each stage, an interim
analysis is conducted. The results of an interim analysis allow a continuation of the
trial as initially planned, an earlier stop either for futility or success, or a modification
of the trial’s design to, for example, restrict patient recruitment in subsequent stages to
a predefined subgroup.

Matsui et al. (2017) aim at identifying various association profiles of genes across
treatment subgroups. First, for each gene, a univariate regression model is fitted sepa-
rately for the treatment and control group. The distribution of the effect estimates from
both subgroups is modeled by a two-component hierarchical mixture with Gaussian
distributions at the gene level and a non-parametric prior for mean effect sizes across
genes. The two mixture distributions represent the null genes with no effect in both
subgroups and the non-null genes of interest. Then gene ranking and selection is
performed using an optimal discovery procedure based on the estimated model with
false discovery rate control.

In this thesis, subgroups are considered to be different studies. Thus, meta-analysis
methods appear to be a natural choice to summarize information across studies. Classical
meta-analysis analyzes each study separately and then pools summary statistics of the
individual study results. Summary statistics can be obtained by combining the p-values
from the studies (e.g. Fisher’s and Stouffer’s methods) or by modeling the effect sizes
from the studies (fixed-effect and random-effects model). Traditionally, the fixed-effect
(FE) model has been used when all studies are assumed to have a common effect and
differences between studies are due to sampling variation, while the random-effects
(RE) model has been preferred under the assumption of heterogeneity. However, in
the presence of strong between-study heterogeneity, the RE is less powerful than the
FE approach. The test based on Cochran’s () also has low power in detecting true
heterogeneity among studies when the number of studies is small (Higgins et al., 2003;
loannidis, Patsopoulos, and Evangelou, 2007; Thompson, Attia, and Minelli, 2011).

With advances in high-throughput technologies in recent years, the amount of
genomic data for genome-wide association studies (GWAS) has increased. A review on
meta-analysis methods for GWAS can be found in Evangelou and Ioannidis (2013) and
Thompson, Attia, and Minelli (2011), and with respect to microarray gene expression
data in Tseng, Ghosh, and Feingold (2012). In GWAS associations of genes with diseases
often differ across studies, which might be due to noise or chance (homogeneity) or due
to genuine underlying differences such as genetic diversity (heterogeneity). The latter
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is of great interest because it allows to further explore and understand heterogeneous
associations and possibly identify novel genetic variants for complex diseases (Ioannidis,
Patsopoulos, and Evangelou, 2007; Pei et al., 2016).

Thus, the detection of between-study heterogeneity is an important goal in meta-
analysis and various new approaches have been proposed to deal with this problem. Han
and Eskin (2011) and Neupane et al. (2012) propose new RE methods that assume no
heterogeneity under the null hypothesis and have higher power to detect heterogeneous
associations across studies. Han and Eskin (2012) introduce a RE-type model that
is the adaptively weighted sum of z-scores method. Adapted weights include a new
statistic termed m-value which corresponds to the posterior probability that the effect
exists in each study. In this model a greater weight is assigned to studies predicted to
have an effect and a smaller weight to studies predicted to have no effect. Bayesian
extensions of the FE model with varying levels of heterogeneity are suggested by Wen
and Stephens (2014).

Bohning, Dietz, and Schlattmann (1998) and Raim, Neerchal, and Morel (2014)
consider model-based clustering in meta-analysis by fitting a finite mixture of densities
to the studies to identify unknown clusters of similar studies. To detect outlier studies,
Beath (2014) assumes a mixture of outlier and non-outlier studies with RE models
that differ in their variances. After the identification of outlier studies, the overall
treatment effect is estimated by including all studies but with outliers down-weighted.
A subset-based approach is proposed by Bhattacharjee et al. (2012) that tests all
combinations of studies (subsets) for the presence of true effects in either the same or
opposite directions. A FE-type test statistic is computed for each subset and the best
subset is selected as the one with the maximum test statistic (strongest overall effect).

Classical methods for combining p-values of studies aim at testing the alternative
hypothesis that at least one of the studies has a non-zero effect size against the null that
the effect sizes are zero in all studies. Adaptions to genomic data have been developed
to test for at least a prespecified number of non-zero effects. In this framework, Li
et al. (2014) and Song and Tseng (2014) consider ordered p-value approaches. Song and
Tseng (2014) utilize a single r-th ordered p-value (p-value with rank 7 in ordered list of
p-values) as test statistic for testing the alternative that an effect exists in at least one
given percentage of studies. In contrast, Li et al. (2014) extend the traditional Fisher’s
and Stouffer’s method to a weighted sum of ordered p-values, where the weights are
based on the order of the p-values. They test for non-zero effect sizes in a majority of
studies. P-values closer to the median are weighted highest since they better represent
the majority of studies, while the smallest/largest p-values are down-weighted. Another
adaption of Fisher’s method is the adaptively weighted statistic by Li and Tseng (2011),
where the weights are used to maximize the significance of the summary statistic. A
comparison of this method with the r-th ordered p-value method and with other classical
meta-analysis approaches is performed by Chang et al. (2013).

When data are available at patient-level, meta-analysis might lead to a loss of power
and less accurate results in studies with small sample sizes. Instead of analyzing multiple
studies separately and combining their results as in meta-analysis, integrative analysis
analyzes the raw data from all studies simultaneously. Thus, integrative analysis can be
more informative and outperform meta-analysis (Ma, Huang, and Moran, 2009). Liu
et al. (2014) and Liu, Huang, and Ma (2014) conduct integrative analysis of multiple
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cancer subtypes and multiple heterogeneous cancer studies based on high-dimensional
genomic predictors. In this framework, regression coefficients have two dimensions, the
gene and the study dimension. To accommodate both, composite penalties are used for
estimation and two-level gene selection. For a specific gene, the first level of selection
(outer penalty) is to determine whether it is associated with at least one study. For the
second level of selection different inner penalties are considered under the homogeneity
and heterogeneity model. The homogeneity model assumes the same set of prognostic
covariates in all studies. Thus, within each study, the ridge penalty is appropriate as
inner penalty since it encourages shrinkage but no selection. Under the heterogeneity
model, a covariate can be associated with the response in some studies but not others.
In this case, a lasso type penalty is appropriate as inner penalty to identify which study
a selected gene is associated with.

In contrast to integrative analysis for the aggregation of multiple studies with the
same type of (omics) data, Boulesteix et al. (2017) perform integrative analysis of
multiple omics data types available for the same patient cohort. They use a lasso
penalty with different penalty parameters for the different data types that can be
determined either by cross-validation or prespecified by the user. In simulation studies,
the authors show that their approach (called IPF-LASSO) performs better in terms of
prediction performance and sparsity than the standard and sparse group lasso when
the data types are different with respect to relevant variables. Bergersen, Glad, and
Lyng (2011) integrate external information provided by another genomic data type into
variable selection in the Cox model. They propose a weighted lasso that penalizes each
covariate individually with weights inversely proportional to the external information.
Information is based on the Spearman correlation between genes of both data types or
obtained from the ridge regression coefficients of the Cox model fitted to the other data
type. An additional tuning parameter controlling the relative strength of all weights is
optimized by cross-validation. Stingo et al. (2011) incorporate structural information
on gene pathways as prior into variable selection in a Bayesian framework. The joint
distribution of binary variable selection indicators is modeled by a Markov Random
Field that includes prior information on the relationship between genes in a pathway.
A review of integrative Bayesian analysis of different types of molecular data for the
same set of samples is performed by Ickstadt, Schafer, and Zucknick (2018). They
discuss multiple approaches for integrative analysis with a focus on gene prioritization
(identification of genes that differ between biological or clinical conditions involving
a multiple testing problem), model-based clustering for identification of subgroups,
variable selection in regression modeling, and structure learning for graphical models.

Instead of sharing information between subgroups by integrating external infor-
mation into variable selection, Huang et al. (2011) propose a weighted approach for
combining positive predictive value (PPV) and negative predictive value (NPV) across
populations when the assumption of common classification accuracy is justified. ROC
curve estimation is used to evaluate the ability of a risk prediction marker in discrimi-
nating diseased from non-diseased. The estimates of PPV and NPV are based on a
weighted average of the ROC curves from a target and an auxiliary population.

Weighted regression approaches, that assign different weights to the observations
in the likelihood, have been proposed in order to take into account heterogeneity in a
cohort due to known subgroups. Weyer and Binder (2015) use a weighted and stratified
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Cox regression model based on componentwise boosting for automatic variable selection.
They consider the case of two subgroups (strata) and focus on predicting only one
specific stratum. Observations from this stratum receive a weight of 1 in the stratum-
specific likelihood, while observations from the other stratum are down-weighted with a
fixed weight in the interval (0,1). A stratified likelihood allows estimating a separate
baseline hazard for each stratum, which is advantageous for heterogeneous subgroups.
However, fixed weights are less flexible than the estimated weights used in our proposed
frequentist subgroup model.

In a Bayesian setting, Bogojeska and Lengauer (2012) apply a weighted logistic
regression model to predict the binary treatment response of an HIV combination
therapy. Each drug belonging to the target therapy is considered as a separate subgroup
with a specific weight. Subgroup-specific weights share a common Gaussian prior with
a mean drawn from a Gaussian hyperprior to relate all subgroups and model their
similarity. Weights are estimated from a hierarchical logistic regression model that
models the combined effects of all subgroups based on the training data. The maximum
a posteriori estimates of the model parameters are subsequently used for prediction on
the test data. Simon (2002) proposes a method to estimate subgroup-specific treatment
effects as an average of observed within-subgroup differences and overall differences. He
considers an ordinary Cox model including a binary treatment effect, a binary covariate
or linear combination of binary covariates as subgroup indicators and the corresponding
treatment-by-subgroup interactions. The maximum partial likelihood estimates of
the regression coefficients are assumed to be multivariate normally distributed with
the true regression coefficients as mean vector. A Gaussian prior is assigned to the
unknown regression coefficients so that the resulting posterior distribution is also normal.
Simon shows that the components of the posterior mean are linear combinations of the
estimated treatment effects in different subgroups. Extracting the respective scalars
gives the subgroup-specific weights that can be applied to the partial likelihood for
parameter estimation. However, both approaches are not designed for high-dimensional
data since they do not perform variable selection. In addition, Simon (2002) makes the
rather restrictive assumption that all covariates are binary.

Local regression is another technique that utilizes weighted regression models but
without predefined groups. A separate model is fitted to each observation (query
point) based on its neighboring observations. Local neighborhood is specified by a
kernel function representing the distance from the query point. Kernel functions are
introduced as weights into the likelihood of the local regression model and determine to
which extent the single observations influence the estimation. A special case are the
K-nearest neighbors of each query point that receive equal weight in the local regression.
The parameter defining the width of the neighborhood, such as K, is considered a
tuning parameter. All single local regression models together form the local weighted
regression based on all observations (Hastie, Tibshirani, and Friedman, 2009, chapters
2.8.2 and 6). A drawback of localized regression is, that it does not provide global
regression parameters to describe the relationship between covariates and response,
making interpretation difficult. Furthermore, only a small number of observations is
used for each local fit, which complicates estimation in high-dimensional settings.

To deal with this problem, Tutz and Binder (2005) develop a penalized localized clas-
sification approach with automatic choice of localization, variable selection and penalty
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parameters based on cross-validation. Binder et al. (2012) propose a cluster-localized
logistic regression with weighted componentwise likelihood-based boosting for automatic
variable selection and a special clustering for SNP data. In our weighted regression
approach, the predefined subgroups can be considered as query points, each with a
separate regression model. However, in contrast to localized regression, our weighted
likelihood is based on all observations rather than only on neighboring observations.
Our weights correspond to the relation between covariates and subgroup membership
instead of the distance in covariate space.

We assume that subgroups are known in advance, however, if the data are expected
to have underlying subgroups and subgroup membership is unknown, subgroups can
be identified by cluster analysis or tree-based methods. The goal of cluster analysis is
to group observations into subsets (clusters) such that those within each cluster are
more similar to each other compared to those in different clusters. This requires a
measure of dissimilarity or distance between pairs of observations. Some of the most
popular clustering algorithms work directly on the observed data without relying on a
probability model, such as K-means or hierarchical clustering (Hastie, Tibshirani, and
Friedman, 2009, chapter 14.3).

Clustering of gene expression profiles has been used to identify cancer subtypes
(Golub et al., 1999; Perou et al., 2000). Mauguen et al. (2017) perform a two-stage
approach to define cancer subtypes and identify risk factors with distinctive influence
on these subtypes. In the first step, K-means clustering is used and maximization of a
heterogeneity measure as optimization criterion to identify cancer subtypes with similar
characteristics and mutational profiles. The second step involves correlation of these
subtypes with known risk factors in logistic regression to determine the distinctive risk
factors.

In high-dimensional settings when the number of features is large compared to the
number of observations and when the true underlying clusters are expected to differ
only with respect to some features, sparse clustering might provide more accurate and
interpretable results. In this context, Witten and Tibshirani (2010a) propose a lasso-
type penalty to adaptively select features in K-means and hierarchical clustering. Shen,
Olshen, and Ladanyi (2009) develop a latent variable model for integrative clustering
of multiple genomic data types. To identify tumor subtypes, different molecular data
types measured for the same tumor samples are clustered simultaneously by a K-means
procedure and a lasso-type penalty is used to derive a sparse solution.

A Bayesian model-based clustering approach for integrative clustering of multiple
genomic data sets is introduced by Kirk et al. (2012). Model-based clustering assumes
that the data are an i.i.d sample drawn from a mixture model with K components.
Each component density function describes one cluster. The model is usually fit by
maximum likelihood using the EM algorithm, or by Markov Chain Monte Carlo (MCMC)
methods in Bayesian approaches. Often a mixture of Gaussian densities is used as in
Lee, Chen, and Wu (2016) and Chen and Ye (2015). Their approaches involve two
problems, separating the cohort into homogeneous components by determining the latent
membership of each observation (clustering) and performing variable selection within
each component. An overview of model-based clustering can be found in McLachlan
and Peel (2000) and Fraley and Raftery (2002). Cluster analysis is generally based
on dissimilarities in feature space rather than in the relation to the response as in
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tree-based approaches.

Classification and regression trees (CART) partition the predictor space into regions
by recursive binary splits. At each node different splitting variables and split points
are considered for possible partition, the response is modeled and predicted for each
partition and the split resulting in the best fit is selected (for more details see chapter
3.2.2). For continuous or censored response this is a regression problem; for categorical
response a classification problem. The response within the two resulting partitions
should be preferably homogeneous (pure) and between nodes, the response averages
should differ as much as possible. The terminal nodes of a final tree can be considered
as subgroups (Breiman et al., 1984; Gordon and Olshen, 1985; LeBlanc and Crowley,
1993). Schmoor, Ulm, and Schumacher (1993) propose a two-step procedure including
CART to adjust global comparison of treatment groups for patients’ heterogeneity with
respect to prognosis. First, CART is used to separate patients based on their covariate
values into subgroups with different prognoses. Second, these subgroups are used as
strata for the estimation and testing of the treatment effect.

The patient rule induction method (PRIM) also partitions the predictor space but
not based on binary decision rules. The aim is to find regions in which the response
average is much larger (or smaller) than its average over the entire predictor space
(Hastie, Tibshirani, and Friedman, 2009, chapter 9.3; Friedman and Fisher, 1999).
Instead of modeling and predicting a response as in CART, a test can be employed to
determine if the considered partition results in a significantly higher mean response than
expected under the (permutated) null distribution (Dyson and Sing, 2014). PRIM has
several medical applications, such as investigating genomic variations as predictors of
risk of disease in heterogeneous patient subgroups (Dyson and Sing, 2014). Chen et al.
(2015) use PRIM to search for predictive signatures that identify patient subgroups
(signature-positive groups) with maximally beneficial treatment effect.

Other tree-based methods have been proposed in the context of randomized clinical
trials where the aim is to identify patient subgroups with heterogeneity of treatment
effects. Patients are recursively divided into subgroups by focusing on treatment-by-
covariate interactions. The splitting criterion measures the heterogeneity of treatment
effect between the two resulting partitions. The best split is the one that induces
the largest difference in treatment effect. Subgroups are determined by the terminal
nodes of the final tree. Su et al. (2011) propose such a tree-structured approach,
termed interaction tree, for longitudinal data with continuous response. At each node,
a linear regression model is considered including the following: a binary treatment
indicator, an indicator associated with a specific split of a specific covariate, and their
interaction. The Wald test statistic of the estimated interaction effect is used as splitting
criterion. The best split among all permissible splits of the covariate space is selected
such that the Wald test statistic is maximized. The overall treatment-by-covariate
interaction of the final tree is assessed with a permutation test to confirm the existence
of heterogeneous treatment effects. A similar approach is used in Su et al. (2009),
but instead of the Wald test statistic the t-test statistic of the treatment-by-covariate
interaction effect is used as splitting criterion. Su et al. (2008) and Negassa et al. (2005)
develop interaction tree methods for censored survival data with different versions of
the partial likelihood ratio statistic (PLRS) as splitting criterion. Negassa et al. (2005)
utilize a stratified PLRS with different baseline hazards for the resulting subgroups
to compare the model including the treatment and interaction effect with the model
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containing only the treatment effect under the assumption of homogeneity. Su et al.
(2008) use an unstratified PLRS that compares the model including the treatment and
covariate main effects and their interaction with the model based on the two main
effects only.

In contrast to interaction trees, where the aim is to divide all patients into subgroups
with largest possible difference in treatment effect, the Virtual Twins method (Foster,
Taylor, and Ruberg, 2011) considers the two treatments as reference and alternative
treatment and aims at identifying a subgroup of patients who may have an enhanced
treatment effect. For a binary response, Virtual Twins estimates the probability of
the response under the two treatments for each patient. The difference between the
estimated probabilities represents that patient’s individual, differential treatment effect
and is used as splitting criterion in the tree algorithm. Some of these methods are
compared in Doove et al. (2014).

Alternative approaches for the identification of subgroups with differential treatment
effects aim at finding an optimal individualized treatment rule (ITR) which assigns each
individual to an appropriate treatment based on observed patient characteristics. An
optimal ITR is a map from the predictor space to the treatment space that maximizes the
expected clinical outcome (Zhao et al., 2012; Zhang et al., 2012). Addition of penalties
allows to deal with a large number of covariates (Xu et al., 2015). A comprehensive
review of further statistical methods for subgroup identification in clinical trials is
provided by Lipkovich, Dmitrienko, and D’Agostino (2017).
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Chapter 2

Data and biological background

Cancer develops by transformation of normal cells to malignant, cancerous cells caused
by genetic alterations and structural changes in DNA. These genetic changes may be
inherited or occur spontaneously as a result of repeated exposure to carcinogens (such as
tobacco smoke, or ultraviolet radiation) and defective DNA repair pathways. Cancer is
a major cause of morbidity and mortality worldwide, with about 8 million cancer-related
deaths and an estimated 14 million new cases of cancer diagnosed in 2012. It is a very
complex disease due to the large number and different types of possible mutations, genetic
diversity across world populations, and various environmental influences. Therefore, an
important objective in cancer research is the identification of genetic aberrations and
changes in regulatory pathways related to tumor development and progression. Better
understanding of the underlying molecular mechanisms is improving diagnosis and
more targeted treatment. Over the past two decades, technologies for the measurement
of gene expression have made rapid progress and are widely used, resulting in a vast
amount of genomic data, including publicly available databases, and an increasing
number of cancer genome-wide association studies. Findings have revealed changes in
tumor-related genes and pathways that allow tumor classification, patient stratification
and provide potential therapeutic targets. Despite great advances and rapid growth of
information, the identification of genomic biomarkers for clinical use is still challenging.
Many of the reported biomarkers have failed in subsequent validation studies and only
a few findings have made it to clinical practice (World Health Organization, 2014).

This chapter provides a brief outline of basic epidemiologic and biological information
on lung cancer, followed by an explanation of all data collected for the application
of the proposed statistical models in section 2.2. In particular, the data collection
and curation process is reported, and a descriptive analysis of the applied lung cancer
studies is presented. This is followed by an explanation of the Affymetrix microarray
technology for gene expression measurements, and a certain preprocessing algorithm
for this type of data, in sections 2.3 and 2.4, respectively.

2.1 Lung cancer

Lung cancer is the leading cause of cancer-related death worldwide, making up 20% of
the total cancer mortality in 2012. Lung cancer is the most common cancer in men
and the third most common in women (after breast and colorectal cancer). Despite
recent advances, long-term survival remains poor with a 5-year overall survival rate
of 10-15%. This is mainly due to late detection with the majority of patients being
diagnosed with locally advanced or metastatic disease (World Health Organization,
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2014). Guidelines for treatment decisions and assessing prognosis are still largely based
on tumor staging. The TNM staging system describes the extent or size of the primary
tumor (T), absence or presence of regional lymph node involvement (N), and absence or
presence of distant metastases (M). After determination of the T, N, and M categories,
a stage of 0 (in situ), or I to IV (from early to most advanced disease) is assigned. A
distinction is made between clinical stage (¢cTNM) before surgery, and pathological
staging (pTNM) post-surgical (for more details see PDQ® Adult Treatment Editorial
Board, 2018). For early-stage NSCLC (stages I and II) the standard treatment with
the best chance of cure is still surgical resection. Patients with advanced stage or
inoperable disease are usually treated with chemotherapy, radiotherapy, molecularly
targeted therapy, or recently immunotherapy. However, even when diagnosed in early
stages without detectable nodal or metastatic involvement, relapse rate after surgery is
high and approximately 50% of patients subsequently develop metastases (Anandappa
and Popat, 2016).

The most important risk factor for the development of lung cancer worldwide is
tobacco smoking. Risk increases with both quantity and duration of smoking. Smoking
produces cellular injury in the whole respiratory tract. Many genetic alterations reverse
within months of smoking cessation, but some are irreversible and may explain why
former smokers continue to have an increased risk of lung cancer. Other risk factors
include increasing age and exposure to second-hand smoke, radon, asbestos, outdoor air
pollution (specifically particulate matter), and radiation (World Health Organization,
2014). Historically, small cell lung cancer has been distinguished from non-small cell
lung cancer (NSCLC) by morphology. NSCLC accounts for approximately 85% of
all lung cancers and the most common histological types are adenocarcinoma (ADC),
squamous cell carcinoma (SQC), and large cell carcinoma (LCC). ADC exhibits the
highest prevalence in never-smokers and women, whereas SQC predominates in male
smokers.

In recent years, lung cancer has increasingly been classified according to molecular
differences. Many prognostic gene expression signatures for lung cancer have been
developed aiming at patient stratification into subgroups with distinct clinical outcomes.
However, most of the early studies have been limited by shortcomings including over-
fitting, lack of sufficient validation and lack of proper evidence of medical use beyond
existing treatment decisions (Subramanian and Simon, 2010). Only a few of the reported
prognostic genes for lung cancer have been translated into clinical application. The
identification of mutations in certain histological subtypes has led to the development
of molecular targeted therapy to improve the survival of patient subsets. Genetic
alterations are best established for ADC with well-known driver mutations involving
EGFR, KRAS, HER2 (ERBB2), BRAF, and PIK3CA, as well as ALK and ROS1 fusion,
and MET amplification. Mutations in PIK3CA, FGFR1, DDR2, PTEN, TP53, SOX2,
and CDKN2A have shown to be associated with tumor-genesis in SQC. Therapeutic
agents for some of these mutations, such as DDR2, FGFR1, EGFR, ALK and ROSI,
are available, others are in development (World Health Organization, 2014).

2.2 Data description

A large number of data sets from different cancer types including survival endpoint,
Affymetrix microarray gene expression data, and - to some extent - clinical pathologic
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information were downloaded from the Gene Expression Omnibus (GEO) data repository
(Edgar, Domrachev, and Lash, 2002) and manually curated. Raw expression data (CEL-
files), mainly measured on the Affymetrix HG-U133 Plus 2.0 and HGU-133A array,
were normalized using frozen robust multiarray analysis (fRMA) explained in section
2.4. All cohorts were checked for duplicates by looking at correlations of the expression
values. Duplicates and normal (non-tumorous) samples, as well as samples with missing
survival endpoint, were removed. Overall, this resulted in a collection of ten non-small
cell lung cancer (NSCLC) cohorts (n = 1779), four colon cancer cohorts (n = 893),
eight ovarian cancer cohorts (n = 922), and 16 breast cancer cohorts (n = 2193) with
available survival outcome. Breast cancer cohorts can be divided according to treatment
(with two cohorts consisting of two different treatment subgroups, thus counted twice
below): seven estrogen receptor (ER) positive tamoxifen-treated cohorts (n = 923),
six node-negative untreated cohorts (n = 824), and five cohorts with mixed adjuvant
treatment (n = 446). A summary of these data sets, including information on the data
curation process and clinical pathologic characteristics, can be found in Heimes et al.
(2017) (for node-negative untreated breast cancers), Hellwig et al. (2016) and Marchan
et al. (2017) (for ER-positive tamoxifen-treated breast cancers and all other cancer
types). In addition, 14 neoadjuvant treated breast cancer cohorts (n = 1045) with
available binary endpoint (response to treatment) instead of survival endpoint, were
collected.

In this thesis, only NSCLC cohorts are used as application example in sections
4.1.3 and 4.2.5. Once restricting data to the availability of clinical variables of age
at time of diagnosis, sex, pTNM stage, histology and smoking status, only five out
of ten cohorts remain (GSE4573, GSE29013, GSE31210, GSE37745, GSE50081). For
GSE4573 only preprocessed gene expression data normalized with the MAS5 algorithm
are available that differ from the fRMA-normalized expression data of the other cohorts.
Therefore, GSE4573 is removed from subsequent analysis. Expression data of the
remaining four NSCLC cohorts were measured on the Affymetrix HG-U133 Plus 2.0
array comprising 54 675 probe sets that represent genes (see section 2.3 for more
information). The majority of these 54 675 probe sets represent noise and do not
contain relevant information regarding survival outcome. This makes identification of
the prognostic genes challenging and slows down computation time. Therefore, two
additional preselected gene sets are considered for analysis. One subset is defined by the
1000 probe sets with the highest variability in gene expression values across all cohorts,
referred to as top-1000-variance genes. This selection is based on the assumption that
relevant prognostic genes imply systematic changes in their expression values and thus,
a larger variance in contrast to irrelevant noise genes. Alternatively, a literature-based
selection of prognostic genes from the following two publications is considered. Both
publications use training and validation data independent of the four NSCLC cohorts
used in this thesis.

Kratz et al. (2012) develop and validate a 14-gene expression assay based on
quantitative PCR in patients with non-squamous NSCLC. The assay improves prognostic
accuracy for patients with early-stage non-squamous NSCLC at high risk for mortality
after surgical resection. The assay comprises eleven cancer-related target genes (BAG1,
BRCA1, CDC6, CDK2AP1, ERBB3, FUT3, IL11, LCK, RND3, SH3BGR, WNT3A)
and three reference genes (ESD, TBP, YAP1). Genes were selected from literature
review and previously published microarray and PCR-based studies described in a prior
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study. Many of the cancer-related genes are involved in classical oncogenic pathways
and all of them are intricately related to molecular lung cancer pathways. Tang et al.
(2017) perform a systematic literature review and meta-analysis-based evaluation of
published prognostic signatures for NSCLC. The review includes 42 gene signatures
derived from genome-wide mRNA gene expression microarray studies. Expression levels
of all single genes belonging to the original signature are combined using supervised
principal component analysis based on a training data set. Prediction performance of
each signature is assessed by a meta-analysis of all test data sets. The performance of
the published signatures compared to random signatures is evaluated by a linear mixed-
effect model, and the prognostic power independent of clinical variables is assessed by
multivariate Cox models. A separate analysis of the histological types adenocarcinoma
(ADC) and squamous cell carcinoma (SQC) results in 17 and 8 prognostic signatures
for ADC and SQC, respectively (a total of 20 different signatures as 5 signatures are
prognostic in both ADC and SQC). These signatures significantly outperform random
signatures and remain prognostic after adjusting for clinical risk factors.

In this thesis, the 14 genes from Kratz et al. (2012) and all genes belonging to the
20 prognostic signatures from Tang et al. (2017) are combined to one prognostic gene
list. This list includes only single genes and ignores how the genes were combined
numerically in the original signatures (using statistical models). Gene symbols are
translated into corresponding probe set IDs of the Affymetrix HG-U133 Plus 2.0 array
using the R/Bioconductor annotation package hgul33plus2.db (version 3.2.3). Not
all genes have a match on this array. Thus, a reduced gene list comprising 3429 different
probe sets that are related to 1323 different genes is used for analysis and referred to as
prognostic gene list.

Overall survival and gene expression data of the four NSCLC cohorts (GSE29013,
GSE31210, GSE37745, GSE50081) analyzed in this thesis are illustrated in Figure 2.1
by a Kaplan-Meier plot of the estimated survival functions in each cohort, as well as
by a PCA (Principal Component Analysis) plot based on the expression data of the
selected prognostic genes in all cohorts. The Kaplan-Meier plot shows that patients in
cohort GSE31210 have the best prognosis with a 10-year overall survival probability of
about 75%, while GSE37745 exhibits the worst prognosis with a 10-year overall survival
of 25%. GSE29013 has the shortest maximum follow-up time with about 7 years, and
GSE37745 the longest maximum follow-up time with more than 15 years. A PCA plot
helps to identify patterns in large multivariate data sets. The aim is to reduce the
dimensionality of the data without losing information in the data. The original variables
are transformed into a smaller number of uncorrelated principal components that are
sorted so that they explain a decreasing proportion of the total variance. In other
words, the first principal component explains most of the variance in the data and thus,
contains the largest amount of information, whereas the last principal component is the
least important. The first two principal components in Figure 2.1 explain 26.7% and
15.4% of the total variability in the data (axis labels). Each patient is represented by a
point in the PCA plot and colors refer to the different cohorts. The arrangement of the
data points in the PCA plot indicates that patients within each cohort cluster together,
and cohorts GSE37745 and GSE50081 are almost inseparable. In contrast, GSE31210
and GSE29013 can be well distinguished from all other cohorts in the direction of
both principal components, with GSE29013 being further away from all other cohorts.
However, the proportion of explained variance by the first two principal components is
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only moderate (less than 50% of the total variance). Similar PCA plots are obtained
when using gene expression data of all available probe sets or of the top-1000-variance
probe sets.
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FIGURE 2.1: (A) Kaplan-Meier plot of estimated survival functions for all lung cancer
cohorts. (B) PCA (Principal Component Analysis) plot based on expression data of
prognostic genes in all lung cancer cohorts.

A summary of clinical pathologic variables of all cohorts is presented in Table C.1
(see Appendix). Mean age at diagnosis ranges between 60 and 68 years. The proportion
of male patients in cohort GSE29013 is 69%; in all other cohorts it is approximately
50%. About two thirds of patients have stage I NSCLC, except for GSE29013 where
stage I tumors make up less than half of all tumors. GSE31210 includes only ADC in
contrast to the other cohorts where ADC form the largest histological type, followed
by SQC, and other NSCLC. Apart from GSE31210, the vast majority of patients are
former or current smokers. Censoring rates vary substantially between 26% and 85%
across all cohorts.

2.3 Affymetrix gene expression microarrays

The genetic information of most organisms is encoded in deoxyribonucleic acid (DNA)
consisting of a long sequence of nucleotides. Each nucleotide comprises a phosphate,
a sugar (deoxyribose) and one of four different bases: adenine, cytosine, guanine and
thymine. DNA is made of two complementary strands of nucleotides that are connected
via hydrogen bonds between pairs of bases and form a double helix. The complementary
bases cytosine and guanine bind together, as do adenine and thymine. DNA consists of
sequences that code for proteins (referred to as genes), as well as non-coding sequences.
Ribonucleid acid (RNA) differs from DNA in its sugar molecule (ribose), the base
thymine is replaced by uracil, and RNA is single-stranded rather than double-stranded.
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There are non-coding types of RNA and messenger RNA (mRNA) that code for proteins.
Gene expression describes the transfer of genetic information from DNA for protein
synthesis. This process takes place in two stages: the transcription of DNA into
complementary mRNA, and the translation of mRNA into proteins (Gohlmann and
Talloen, 2009, chapter 1). An illustration of this process is provided in Figure 2.2.
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FIGURE 2.2: Transcription of DNA to mRNA, and translation of mRNA into proteins
(chains of amino acids) (Melzer et al., 2013).

The development of microarray technology for gene expression measurement began
in the late 1980s. Rapid progress in the 1990s allowed the simultaneous measurement
of expression levels of many thousands of genes in a biological sample. The technology
became increasingly popular and widely used in many fields of biomedical research
(Bumgarner, 2013). This thesis focuses on the Affymetrix GeneChip® system based on
high-density oligonucleotide arrays produced by Affymetrix. Affymetrix gene expression
microarrays are composed of oligonucleotides (sequences of 25 nucleotides), referred
to as probes, that are artificially synthesized onto the array surface. Each probe is
present in millions of copies, all located at the same position on the array called probe
cell. There are two types of probes: perfect match (PM) and mismatch (MM) probes.
The PM probe is exactly complementary to the sequence of interest and measures
the expression of the target gene transcript. The MM probe differs from the PM
probe only by a substituted middle base, with the intention of quantifying non-specific
hybridization and background signal detected by the corresponding PM probe. A PM
and its corresponding MM probe constitute a probe pair and are adjacent on the array.
Groups typically comprising 11 PM probes are referred to as probe sets and represent
genes. Each array contains tens of thousands of probe sets (Bolstad, 2004; Gohlmann
and Talloen, 2009, chapter 2). Affymetrix HG-U133 Plus 2.0 gene expression array data
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are used in this thesis. This array comprises all probe sets from the previous generation
HG-U133A and HG-U133B arrays, and nearly 10 000 additional probe sets, making up
54 675 probe sets in total. It allows to measure transcription over the entire human
genome in a single hybridization (Affymetrix, 2003b).

The measurement of gene expression begins with the isolation and preparation of
target mRNA from a biological sample. Target mRNA is reversed transcribed into
complementary double-stranded DNA (¢cDNA) which, in turn, is used to produce cRNA.
Next, cRNA is amplified to have sufficient material for the array, biotin-labeled, and
fragmented. The labeled cRNA fragments bind to complementary probes on the array.
After hybridization, unbound fragments are washed out and the array is stained with
fluorescence dye that binds to the biotin label on the cRNA. The amount of fluorescence
is measured by a laser scanner and the pixels of the resulting image give the probe
intensities for each probe cell (Bolstad, 2004; Affymetrix, 2003a). To define a measure
of gene expression that represents the amount of hybridized RNA, the probe intensities
matching a probe set have to be combined in an appropriate way, which is explained in
the following section.

2.4 Preprocessing of gene expression data

Preprocessing is important to transfer information of probe intensities into gene expres-
sion values. The most popular and widely used preprocessing algorithm for Affymetrix
gene expression microarrays is robust multiarray analysis (RMA) proposed by Irizarry
et al. (2003). It performs three steps: background correction, normalization, and
summarization of log-transformed PM values. Background correction is carried out for
each array individually, with the intention of removing background signals caused for
example by non-specific binding, incomplete washing or optical noise. Simple approaches
are based on subtracting the MM probes from the PM probes. However, the use of
MM probes has some drawback: MM probes may also detect target signals and can
have higher signal intensities than PM probes. Apart from that, Irizarry et al. (2003)
show that the resulting measures of gene expression fail to adjust for the probe effect
(within-array variability between probes within a probe set). Instead, they propose
an alternative measure that only makes use of the PM probes and ignores the MM
probes. For background correction they assume that PM intensities can be modeled as
a mixture of a normally distributed background signal and an exponentially distributed
signal. The background corrected PM value corresponds to the conditional expectation
of the signal given the PM value. A detailed explanation of the procedure can be found
in Bolstad (2004).

The second step of the RMA algorithm is normalization that is required to remove
variation between arrays in order to make them comparable. Sources of variation can be
sample preparation and array processing such as labeling, hybridization, and scanning.
Quantile normalization has demonstrated the best performance in a comparison of
normalization methods for high-density oligonucleotide arrays (Bolstad et al., 2003),
and therefore is used in the RMA algorithm. Quantile normalization forces the probe
intensity distribution to be the same for all arrays by normalizing the probe intensities
to a common set of quantiles. This requires computation of an average distribution as
reference distribution (see Bolstad et al., 2003 for details).
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The third step of the RMA procedure is the summarization of probe intensities in
each probe set to one gene expression value per probe set. Irizarry et al. (2003) propose
a parametric linear model that accounts for probe effects

Y;jn = ezn + ¢jn + €ijn, (21)

where Y;;,, is the background-adjusted, normalized and log,-transformed PM intensity
of probe j € {1, ..., J,,} in probe set n € {1,..., N} on array i € {1, ..., I}, 0;, represents
the log, scale expression level of probe set n on array i, ¢;, represents the probe effect
for the j-th probe of probe set n, and ¢, is the independent identically distributed
measurement error with mean 0. For identifiability, the sum of probe effects within
a probe set is constrained to zero. Median polish is used to robustly estimate the
parameters. Of interest is the estimate of 6 that gives the gene expression measure for
the corresponding probe set and is referred to as robust multi-array average (RMA)
(Irizarry et al., 2003).

The last two steps require the simultaneous analysis of multiple arrays. This has
the disadvantage that data sets preprocessed separately are not comparable and batch
effects (e.g. differences due to gene expression measurements at different time periods or
in different laboratories) are not accounted for. Therefore, McCall, Bolstad, and Irizarry
(2010) propose an adaption of the RMA algorithm, termed frozen RMA (fRMA), that
allows the separate analysis of microarrays and later combination of data for analysis.
In contrast to RMA, fRMA uses not only the information in the present data but also
information from large publicly available microarray databases. The latter serves as
training data to generate a reference distribution for quantile normalization and to
precompute parameter estimates for the summarization step. The model in equation
(2.1) is extended by adding the index k for batch effects and a random effect term ~;p,,
for the variability in probe effects across batches

Yijkn = Oin + Ojn + Vjkn + €ijkn-

The variances of the random effect v (between-batch variance) and the measurement
error € (within-batch variance) are probe specific and estimated from the fixed reference
data along with ¢. For summarization, first the global batch effect estimate is subtracted
from each intensity. Then the log gene expression is estimated by a weighted average of
the probes in each probe set, with weights being defined by an M-estimation method and
divided by the sum of the two precomputed variance estimators (McCall, Bolstad, and
Irizarry, 2010). The fRMA algorithm is implemented in the R/Bioconductor package
fRMA and used for the preprocessing of gene expression data in this work.
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Chapter 3

Statistical methods

This chapter provides an overview of statistical methods for the analysis of high-
dimensional data with time-to-event endpoint and extensions to subgroup analysis.
This includes the Cox proportional hazards model, the most popular regression model
in survival analysis, regularization and variable selection techniques for dealing with a
large number of covariates, as well as extensions of standard models to take subgroups
into account. These methods are first described in the classical, frequentist setting along
with a general introduction to survival analysis in section 3.1, and in section 3.3 adapted
for the Bayesian context. The Bayesian model mainly differs from the frequentist
model in an adapted version of the Cox partial likelihood with prior distributions for
the parameters, and in that it relies on a variable selection prior instead of adding a
penalty term to the likelihood as in classical regularization. Parameter estimation in the
Bayesian model is performed by Markov Chain Monte Carlo sampling rather than by
classical techniques such as maximum likelihood. Furthermore, both approaches differ
in how they address the problem of considering heterogeneity in data due to known
subgroups and borrowing information across subgroups. The frequentist model is based
on a weighted version of the likelihood with individual weights estimated from the data.
Derivation of weights follows a Bayesian idea but frequentist classification is used for
their estimation as described in section 3.2. In contrast, the Bayesian model uses a
graphical model in the variable selection prior to link all subgroups.

3.1 Survival Analysis

The aim of survival analysis is to model and predict the time until a specified event. In
the applied field of medicine and biology this event may be the death of a patient, the
remission or recurrence of a disease. A typical starting point for the time measurement
is the date of diagnosis or primary treatment. A common feature of time-to-event data is
the presence of censoring, where the exact length of time is unknown. Instead, it is only
known that the event of interest occurred before the start of the study (left censoring)
or has not occurred until a given time point (right censoring). The combination of both
is called interval censoring. This thesis exclusively deals with right censoring, the most
common type in clinical practice. Examples of this censoring type are a patient leaving
the study before its end or being still alive at the end of the study.

This chapter begins with an introduction to central terms and basic functions in
survival analysis. In section 3.1.2 the Cox proportional hazards model is explained that
serves to predict a patient’s survival function from a set of clinical and/or genomic
covariates. This is followed by a weighted version of the likelihood to take subgroups
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into account. In high-dimensional settings, where the number of covariates is typically
much larger than the number of observations, conventional techniques for parameter
estimation do not work and adaptions are required such as regularization methods. In
section 3.1.3 two measures of prediction performance for model evaluation are described.

3.1.1 Basic quantities

Let T be the time until a specified event, in the following termed survival or failure
time, and let C' be the censoring time. T and C' are non-negative random variables
and assumed to be stochastically independent. A further assumption is that the
distribution of C' provides no information about the distribution of 7', referred to as
non-informative censoring. Let T = min(7’, C') denote the observed time until an event
or censoring and let 6 = 1(7T" < (') be a binary indicator that indicates whether a
patient experienced an event (6 = 1) or censoring (d = 0). Assume the data consist
of n independent patients and for each patient, the tuple (Z,,,4,,) and the vector of
covariates &, = (Tm1, ..., Tmp) € RP are observed, m = 1,...,n. The covariates may
consist of clinical variables such as age, sex, tumor grade or tumor size and a potentially
large set of genomic variables.

3.1.1.1 Survival function

The distribution of the survival time 7' is characterized by two main functions, the
survival function and the hazard rate. The survival function is the probability of an
individual surviving beyond a time point ¢ and defined as

S(t)=P(T>t)=1—F(t), tel0,00)

with F'(¢) the distribution function of 7". S(t) is continuous from the right and strictly
decreasing with limits S(0) = 1 and tlgcr}o S(t) = 0 (Klein and Moeschberger, 2003,
chapter 2.2).

The standard non-parametric estimator of the survival function is the Kaplan-Meier
estimator (Kaplan and Meier, 1958). Let t(1y < t(2) < ... < t(p) be the ordered observed
failure times and d;, the number of events at time ¢,. The risk set Ry = {k : & > t(y)}
denotes the indices of patients who are at risk at time ¢;) (who have not experienced an
event yet immediately prior to t(,). 74 = |R,| is the corresponding number of patients
who are at risk. The Kaplan-Meier estimator is defined as

~ 1, ift < t(l)
S) = 1— %) ift>
i (1= 72) it 2 t0).

It is derived from the product of estimates of the conditional probabilities that a
patient survives the next time point given that he has not had an event before. The
Kaplan-Meier estimator is a step function with jumps at the observed failure times. If
at least one patient is censored at the largest observation time t,,,, then S (tmaz) > 0.
For ¢ beyond the largest observation time S(t) is not well defined. The variance of the
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Kaplan-Meier estimator can be estimated by Greenwood’s formula

An approximate pointwise (1 — «) - 100% confidence interval for the survival function
at time ¢ is defined by

. — A 1/2

S(t) £ ugoayz - [Var(S)] ",
where w(1_q/9) is the (1 —a/2) percentile of the standard normal distribution (Klein and
Moeschberger, 2003, chapters 4.2 and 4.3). In this thesis, the R package survival

(version 2.41-3) is used to estimate the survival function and to plot Kaplan-Meier
curves.

3.1.1.2 Hazard rate

The hazard rate or function h(t) is the risk of a patient to experience the event at time
t given that the event has not occurred before

Pt<T <t+AtT >1t)

At—0 At . h(t) >0Vt e|0,00).

If T is continuous, the following relationship between hazard rate and survival function

holds true . .
) AR &S d

SO s - swm - a0

The cumulative hazard rate for continuous survival times is defined as

h(t) =

o ot f) ot F) ot S ()
H(t) _/0 h(u)du—/o Syt = ) S = ) Yy = s

and thus, )
S(t) = exp(—H(t)) = exp (— /O h(u)du)

(Klein and Moeschberger, 2003, chapter 2.3). An estimator of the cumulative hazard
rate is the Nelson-Aalen estimator proposed by Nelson (1972) and Aalen (1978)

H(t)= Y hitg) = Y. %,

,
{OM tgyst "9

Due to the relationship between cumulative hazard rate and survival function, an
alternative estimator of the survival function is given by S(t) = exp(—H (t)) (Klein and
Moeschberger, 2003, chapter 4.2).

3.1.2 Cox proportional hazards model

The Cox proportional hazards model developed by Cox (1972) is the most popular
regression model used in survival analysis. It models the hazard rate h(t|x,,) of an
individual at time ¢ and consists of two terms, the non-parametric baseline hazard rate
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ho(t) and a parametric form of the covariate effect
P
h(t|z,,) = ho(t) - exp(B'x,,) = ho(t) - exp (Z @xmi) : (3.1)
i=1

B = (br,..., 5p)" is the unknown parameter vector that represents the strength of
influence of the covariates on the hazard rate and x,, € R? is the observed vector of
covariates.

The Cox model assumes proportional hazard rates, meaning that the ratio of hazard
rates for two patients with covariate vectors x,, and «x,, is constant over time

h(t|) -
h(t|33m’) = €Xp (Zz:l Bz(mmz - xm’z)) :

This is equivalent to the assumption of time-independent covariates. Residual plots can
be used to check if this assumption is valid (Klein and Moeschberger, 2003, chapters
8.1 and 11).

3.1.2.1 Likelihood

The regression coefficients 3; are traditionally estimated via maximum likelihood based
on the partial likelihood. Let 1) < f) < ... < t(p) be the ordered observed event
times, x(,) the observed vector of covariates for a patlent with event time £, and
Ry = {k : &), > t(y} the set of patients who are at risk at time ¢,. The partial
likelihood is derived from the product of the conditional probabilities that a patient
with covariates x(;) experiences an event at time ¢, given one of the patients in R,
has an event at this time

o it

lz () ﬁ xXp(S1 fitig)
g=1 Zk’ERg ( |in ZkzeRg exp(Xi_1 Bitni)

L(8) = (3.2)

The partial log-likelihood is defined as

g=1i=1 g=1 kERy

1(8) = n(L(B) = 3" B — 3o {z exp (z ﬁx)] |

The problem of maximizing /() can be solved numerically using a Newton-Raphson
technique (Cox, 1972; Klein and Moeschberger, 2003, chapter 8.3).

In the presence of ties (more events occur at the same observed event time), a
modification of the partial likelihood is necessary. Two very popular methods for
handling tied events are the ones suggested by Efron (1977) and Breslow (1974). Let
dy be the number of events at time ¢, and D, the set of patients with an event at this
time. The partial likelihood according to Breslow is defined as

D exp (ZkeDg ﬂ/wk>
=11 , dg *
g=1 [Zkeng exp(B wk)}
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When the number of ties is large, the partial likelihood proposed by Efron is more
precise

D exp (ZkeD ,Bliﬂk)
L (IB) = / : / ’
#® =1 Cher, exp(B'ey) — 71 Yiep, exp(Bay)]

When no ties are present between the event times, then L(B) = Lg(8) = Lg(B).

After the estimation of the regression coefficients based on the partial likelihood, the
baseline hazard rate ho(t) is estimated from the complete censored-data likelihood. For
each patient, the triple (f,,, 0., ;) is observed, m = 1,...,n. The likelihood function
for right-censored data is defined as

n

L(B.ho(E) = T fTmlwn)™ S(Tnlan)' = = T hlfmlam)™ exp (= H(En|zm))
m=1 m=1
=TT ho(fn)’ exp(B'a,)" exp (— Ho(tnm) exp(B'Tm)) ,
m=1
where Hy(t) = Dt <t ho(tg)) is the discrete cumulative baseline hazard rate and

ho(t) = (ho(th), ..., ho(t,)) with ho(t) = 0Vt ¢ {tq), ..., t D) }-

For fixed B the likelihood can be maximized as a function of ho(t) only, yielding an
estimator of the baseline hazard rate. Inserting the partial maximum likelihood (ML)
estimator B into the likelihood results in

o

Liho(®) = [ 1 holte) exp(Bz) exp< z Hy(E) exp ﬂwm>)
g=1
D n ,
= tho(tm))exp(ﬁ (9)) exp<— Zl > holtg) exp(B wm)>
g= = t< )<tm

D
hg(t(g))exp(ﬁ x () exp( >N holty) exp( azk)>

g=1keR,

:WI 1o

kER,

i
I

B
ho(t(g) )exp(ﬁ x(g) exp< ho(t(g)) exp( B/ ))

I
Mo

holt ) exp(B'() exp ( ~holt) S exp(Ba)

ho(t(g)) exp ( — holtg) > eXp(B/wk))

kER,

Q
Il
—

R
Mo

i
I

Differentiating the likelihood with respect to ho((g)) and setting the derivative equal to
zero, results in the ML estimator for the baseline hazard rate at time %,

N 1
hO(t(ﬂ)) = ~7
EkeRg exp(B )

(Klein and Moeschberger, 2003, chapters 3.5 and 8.3) .
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Consequently, Breslow’s estimator of the cumulative baseline hazard rate Hy(t) is

defined as
Ho(t) = > ( dy ) .

Al
t(g)<t ZkERg exp(ﬁ wk)

Following from the relationship between cumulative hazard rate and survival function
in subsection 3.1.1.2, Breslow’s estimator provides an estimator of the baseline survival
function of a patient with covariate vector @,, = 0,:  So(t) = exp(—Ho(t)). For a
patient with covariate vector x,, an estimate of the individual survival function is given

by

(Klein and Moeschberger, 2003, chapter 8.8).

3.1.2.2 Weighted partial likelihood

In the case of an unweighted partial likelihood, all patients contribute to the same
extent to the estimation of the regression coefficients. This might not be desirable
when the cohort is heterogeneous due to known subgroups that are associated with
different prognosis. In this context it is reasonable to fit a separate Cox model for each
subgroup. This can be done by using only the data from the subgroup of interest or
by including information from the other subgroups. For the latter, individual weights
wy, € 10,1], m = 1,...,n are introduced to the partial likelihood in order to vary the
level of contribution of each patient. The weighted partial log-likelihood is given by

D D
1(B) =Y wyB'xy — > wyln [ > wyexp (ﬁ’a:k)]
g=1 g=1

kER,

(Weyer and Binder, 2015). An approach for estimating individual weights from the
data is proposed in section 3.2. Alternatively, fixed weights can be used as suggested
in Weyer and Binder (2015). The idea is to focus on a specific subgroup of patients
and assign each of these patients a weight of 1. All other patients are down-weighted
and receive a fixed weight w € (0,1). Let s, € {1,...,S} be the observed subgroup
indicator for patient m and s the subgroup of interest. The fixed weights are defined as

1, ifs,=s
Wy, =
w, else.

w = 1 results in the unweighted standard partial log-likelihood based on all patients
(combined analysis), whereas w = 0 corresponds to a subgroup analysis with a standard
partial log-likelihood based only on the patients in the subgroup of interest.
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3.1.2.3 Regularization methods

In high-dimensional settings when the number of covariates p exceeds the number of
observations n, the problem of maximizing the partial log-likelihood cannot be solved
uniquely. A way to deal with the p >> n situation is to introduce a penalty term
into the partial log-likelihood I(8), referred to as regularization. This approach is
also reasonable in p < n settings since it considers collinearity among the predictors
and helps to prevent overfitting. The adapted maximization problem of the partial
log-likelihood is given by

B = argmax {1(8) ~ e (allBIE + (1~ a)181.)

= argmax {l(ﬂ) —Ap- i (aﬁf +(1— a)|ﬁz|)} :

B i=1

a € [0, 1] specifies the type of penalization. o = 1 corresponds to the ridge regression
(Hoerl and Kennard, 1970; Verweij and Van Houwelingen, 1994), while o = 0 results in
the lasso regression (Tibshirani, 1996; Tibshirani, 1997). For a € (0, 1) the elastic net
introduced by Zou and Hastie (2005) constitutes a compromise between both penalties.
An advantage of the lasso regression is that it provides an automatic variable selection
procedure by estimating many regression coefficients equal to zero. Ridge regression,
on the other hand, does not give a sparse solution. It shrinks all regression coefficients
towards zero, so that their estimates are close to but unequal to zero. However, ridge
regression better handles correlated predictors by shrinking their coefficients towards
each other and giving them equal weight. Lasso regression typically selects one of the
correlated variables while ignoring the others (Simon et al., 2011). In comparative
studies, ridge regression tends to yield better prediction performance than the lasso
(Bgvelstad et al., 2007; Kammers et al., 2011). More theory and many extensions for
the lasso can be found in Bithlmann and Geer (2011).

The complexity parameter Ap > 0 controls the absolute size and thus the amount
of penalization of the regression coefficients. The higher A\p the stronger the level
of shrinkage and the higher the number of estimated coefficients equal to zero in
the case of lasso regression. Ap is typically optimized via cross-validation. In this
thesis, the regression coefficients are estimated via cyclical coordinate descent from a
regularized partial log-likelihood. The corresponding algorithm is implemented in the R
package glmnet (version 2.0-13) and described in the Appendix, section A.1. Figure
3.1 visualizes the estimation of regression coefficients in a Cox regression model with
lasso and ridge penalty utilizing glmnet.

In recent years, boosting algorithms have been developed as alternative to regula-
rization for dealing with high-dimensional data and providing sparse models. Boosting
was originally designed for classification problems and later extended to regression. The
general idea is to combine many weak learners to receive one strong, competitive learner.
An overview of boosting techniques is given in Hastie, Tibshirani, and Friedman (2009,
chapter 10). For survival analysis, two boosting types are established: gradient and
likelihood-based boosting. The former is based on gradient descent by minimizing a
specific loss function (Hothorn and Btihlmann, 2006; Bithlmann and Hothorn, 2007;
Hothorn et al., 2006). The latter maximizes a penalized form of the partial log-likelihood
(Tutz and Binder, 2006; Binder and Schumacher, 2008).
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Lasso regression
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FIGURE 3.1: Illustration of the lasso (upper row) and ridge (bottom row) regression as
implemented in the R package glmnet. A penalized Cox model is fitted to 194 lung
cancer patients with overall survival endpoint and 13 genomic predictors. The
optimal Ap is chosen by 10-fold cross-validation and gives the minimum mean
cross-validated error.

3.1.3 Model evaluation

In order to assess the prediction performance of a fitted model, it is important to
validate it on independent test data. If the same (training) data are used for learning
and evaluating a model, the estimated prediction error will generally be too optimistic
and underestimate the true prediction error. This means that the model performs well
on the training data but worse on independent test data. The more complex a model
becomes, the more training data are used for learning, which makes the model more
specific to the training data but less generalizable. This is called overfitting (Hastie,
Tibshirani, and Friedman, 2009, chapter 7.2).

When no independent test data are available for validation, resampling can be
applied. Resampling is the random (repeated) partitioning of the entire available data
into training and test sets. The model is fitted on the training set and predictions
are made on the test set. Two common resampling techniques that are used in this
thesis are the K-fold cross-validation and subsampling. In K-fold cross-validation the
data are randomly split into K disjoint subsets of approximately the same size. K — 1
parts serve as training set and the remaining k-th part as test set. This is repeated
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for £k = 1,..., K and the K estimated prediction errors are combined to one mean
prediction error. Typical choices of K are K = 5,10 or K = n termed leave-one-out
cross-validation (Hastie, Tibshirani, and Friedman, 2009, chapter 7.10). Subsampling
differs from bootstrap only in that training sets are drawn from the data without
replacement. The data are randomly split into a training set Z, C {1,...,n} and a test
set {1,...,n}\Z. This is repeated K times. In this thesis K = 100 and 0.632 is the
proportion of the training set which is proposed by Efron and Tibshirani (1997) as an
improved bootstrap estimate of the prediction error. An overview of further resampling
approaches can be found in Molinaro, Simon, and Pfeiffer (2005).

In sections 3.1.3.1 and 3.1.3.2 two different measures of prediction performance for
time-to-event data are presented. They are particularly important for the comparison of
two or more survival models with regard to their predictive accuracy. Another important
criterion for model evaluation besides prediction performance is the stability of variable
selection. A desirable property is that the set of selected covariates remains stable
across different resampling data sets. Different measures of feature selection stability are
proposed by He and Yu (2010), Lausser et al. (2013), Bommert, Rahnenfiihrer, and Lang
(2017), and with regard to stability of ranked gene lists by Boulesteix and Slawski (2009).
In this thesis, the proportion of inclusion of each predictor in different resampling data
sets (resampling inclusion frequencies) is used to judge variable selection stability and
the importance of a variable (Meinshausen and Bithlmann, 2010; Sauerbrei, Boulesteix,
and Binder, 2011; Weyer and Binder, 2015).

3.1.3.1 Brier score

The Brier score is originally developed by Brier (1950) for judging the inaccuracy of
probabilistic weather forecasts and is adapted for time-to-event data by Graf et al.
(1999) and Gerds and Schumacher (2006). The expected Brier score can be interpreted
as a mean square error of prediction. It measures the inaccuracy by comparing the
estimated survival probability S (t|@.,) of a patient m, m = 1, .., n, with the true survival
status Y, (¢) based on a loss function

BS(t,8) = E [Yau(t) = $(t|1X 0 = @.0)] -

For the estimation of the expected Brier score the true survival status is replaced by
the observed status 1(t,, > t)

BS() = = 3 () - (1w > 1) — S(tln))’

m=1
and the squared residuals are weighted using inverse probability of censoring weights

. At < 8)00 . Ll > 1)
tnll) = =i T e

to adjust for the bias caused by the presence of censoring in the data. C (t) is the
Kaplan-Meier estimator of the censoring times (Schumacher, Binder, and Gerds, 2007;
Binder, Porzelius, and Schumacher, 2011).
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Important benchmark values for the Brier score are %, i and the Brier score of
the Kaplan-Meier estimator of a null model without any covariates. The first value
corresponds to estimating S(¢) by drawing random numbers from [0, 1], since the
expected value of a quadratic random variable with uniform distribution on [0, 1] is
equal to % The second benchmark value comes from predicting 50% risk for everyone
(8(t) = 5 Vt) (Mogensen, Ishwaran, and Gerds, 2012).

The Brier score can be used to compare the predictive performance of competing
survival models over time. This can be done by plotting prediction error curves. One
model is better than another when its prediction error curve lies below the other.
However, sometimes this is difficult to assess, especially when curves are crossing.
Prediction error curves can be summarized with the integrated Brier score as a measure

of inaccuracy over a time interval rather than at single time points (Graf et al., 1999)

t*
IBS(t*) = tl / BS(t)dt, t* > 0.
0

3.1.3.2 C-index

The C- (concordance) index is a measure of predictive discrimination and defined as
the proportion of all usable pairs of patients with concordant predicted and observed
survival times. Let ?,,, t,,+ be the observed survival times of patients m and m*, and
r(2m), 7(x,) the corresponding risk functions. r(x,,) is estimated by the risk score

Z r(2p+). The

B/mm. A pair (m,m*) is considered concordant if #,, ; te > 17(T) =

C-index is defined as

= ¥ % (1) < @)+ @) = @)

nc {m: 6m:1} {m*: fm* >E7n} 2

where n, is the number of comparable pairs (m,m*) that standardizes CI to [0,1]. A
patient pair is considered unusable, if both patients die at the same time, or both
patients are censored, or if one is censored before the other one dies. In the latter case,
it is unknown whether the censored patient will outlive the one who died. CI &~ 1 stands
for a very good prediction and values around 0.5 suggest a random prediction (Harrell,
Lee, and Mark, 1996; Heagerty and Zheng, 2005; Uno et al., 2011).
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3.2 Estimation of subgroup weights

A simple approach for the definition of subgroup weights is introduced in 3.1.2.2. It
assigns the observations belonging to the subgroup of interest a maximum weight of
one in the subgroup-specific likelihood, while down-weighting all other observations
with a constant positive weight smaller than one. A much more flexible approach
with individual weights for each patient is presented in this section. The aim is to
appropriately weight all observations in each subgroup model rather than using only
the data from the subgroup of interest. The weights match the distribution of the entire
data to the distribution in each subgroup, such that a patient who is likely to belong to
the subgroup of interest receives a higher weight in the subgroup-specific model. The
idea goes back to Bickel et al. (2008) who apply this approach to logistic regression
for modeling the success of HIV-drug therapies. In the following, the derivation of the
weights is explained.

For each patient the vector of covariates x,,, the response y,, and the subgroup
membership s, € {1,...,.S} are observed. In the case of time-to-event data, the response
corresponds to the tuple (%,,0,,), where #,, is the observed time until an event or
censoring and d,, is the event indicator. Assume the entire training data from all
subgroups are summarized in & and y. Let {(y, fs(x)) be an arbitrary loss function
and fs(x) the predicted response based on the observed covariates in subgroup s. fs(x)
should correctly predict the true response and thus minimize the expected loss with
respect to the unknown joint distribution p(y, x|s) for each subgroup s

Epy.als) [L(y, fo(x))].

The following equation shows that the expected loss for each subgroup equals the
expected weighted loss with respect to the joint distribution of the pooled data from all

subgroups p(y, x)
Eptyato [0y fo(@))] = [ ply, @ls)(y, f.(2))dyda

N /mp(% x)l(y, fs(x))dydx
= By [ws(y, @) ((y, f(2))]

The subgroup-specific weights for each observation are defined as w,(y, ) = %.

They match the joint distribution p(y, x) of all subgroups to the target distribution
p(y, x|s) of subgroup s. Estimation of ws(y,x) becomes difficult when @ is high-
dimensional. However, with Bayes’ rule the potentially high-dimensional density ratio
can be reformulated in terms of a conditional distribution with a single variable

_ ply,xls)  ply,z)p(sly, )  p(sly, ) .
e =" 02 T s - a0 PO

p(s) can be estimated by the relative frequency of subgroup s and p(s|y,x) can be
considered as a multi-class classification problem (Bickel et al., 2008). The next two
subsections introduce two multi-class classification approaches, multinomial logistic
regression and random forests, that will be used for the estimation of p(s|y, x).
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Bickel et al. (2008) and Netzer (2013) estimate these weights based on the entire
training data, which leads to overfitting (as shown in section 4.1.2). To solve this
problem, cross-validation is applied to the training data to obtain predictions for
p(sly, ). In the following, the subgroup membership is considered as response and the
observed data (y,,, /) for patient m are summarized in a new g-dimensional covariate

vector 2, = (Ym, )

3.2.1 Multinomial logistic regression

Assume the training data are an i.i.d. sample consisting of tuples (s1, z1),..., (Sn, 2Zn),
where s, € {1, ..., S} is a categorical response and z,, € R? a vector of covariates. The
aim of multi-class classification is to find a classification rule based on the training data,
that assigns a new observation based on its covariate values to one of the S classes (here
subgroups). Multinomial logistic regression models the posterior probability of each
class, which is the conditional probability of belonging to class s given the observed
covariates z: P(S = s|z). The probabilities of the S classes are modeled via linear
functions in z, they have to lie in [0, 1] and sum up to one. The following model
equations satisfy these constraints and are termed log-odds or logit transformations

P(S = s|z)

log <P(‘S:5'|z)) :ﬁgs—f—zﬂs, S:]_,...,S—l,

where 3, is a g-dimensional vector of unknown regression coefficients. The choice of the
reference class in the denominator (here S) is arbitrary and leaves the estimates of [y
and B, unaffected. The model can be expressed in an alternative form by transforming
the log-odds

_ expl(fos + 2B,
1+ 35" exp(Bor + 2/'B,)

1
P(§=S5lz) = = S22t exp(Bor + 2'8,)

(Hastie, Tibshirani, and Friedman, 2009, chapter 4.4). A symmetric version of the
model as in Zhu and Hastie (2004) is used for parameter estimation

P(S = s|z) ey S — 1

exp(fos + 2'B,)
Zf:l eXp(BOr + Z/ﬁr) ’

This parametrization requires constraints, otherwise the model equations are not
uniquely identifiable. However, regularization automatically eliminates redundancy in
the parametrization and forces 5, B, = (0, ...,0)’ (Friedman, Hastie, and Tibshirani,
2010; Hastie, Tibshirani, and Friedman, 2009, chapter 18.3.2). In this thesis the entire
parameter set 8 = (Bo1, B, ..., Bos, Bs)’ € RV is estimated via cyclical coordinate
descent from a penalized log-likelihood. The corresponding algorithm is implemented
in the R package glmnet (version 2.0-13) and described in the Appendix, section A.2.

P(S =s|z) = s=1,..,85.
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3.2.2 Classification trees and random forests

In the following, the concept of trees is explained for classification problems, but with
some adaptions it can be applied to regression problems with continuous or censored
response. Suppose for each patient a categorical response s,, € {1,...,5} and a ¢-
dimensional covariate vector z,, are observed, m = 1,...,n. Trees are obtained by
recursive binary splitting of the covariate space. At each node the aim is to find the best
splitting variable and the best split point. Best means in this case that the partition
results in two preferably homogeneous (pure) subsets of observations. For classification
problems a standard measure of node impurity is the Gini index

S S
ZﬁSﬂ _ﬁS) =1- Zﬁ§>
s=1 s=1

where py is the relative frequency of class s. Starting with all observations and considering
a splitting variable ¢ and split point ¢, the resulting two subsets of observations are
Z1(i,¢) = {m|zm; < ¢} and Z5(i,¢) = {m|zm; > c}. Then the best pair (i, c) is sought
that minimizes the Gini index

S 2 S 2
. B 2 ez (i) I(s; = s) B D1z (i) L(s; = s)
e [1 S (2=smar ) s (P=ma ) |

2,C s=1 s=1

After determination of the best split, the data are partitioned into two subsets and

the splitting process is repeated on each of the two resulting nodes. This procedure,

termed tree growing, continues until some stopping rule. A node that is not further

partitioned is called terminal node or leaf. All observations contained in such a node

are assigned to the majority class s* = argmax {p,} in this node. A new observation
S

that is predicted by the tree receives the class label of a certain terminal node when it
satisfies the conditions at each split leading to this terminal node. Figure 3.2 provides
an example of a classification tree. Typical stopping rules are the minimum number of
observations in a node (node size) or the tree size (complexity). A large tree explains
a lot of the structure in the data, but due to its complexity, it is very likely to be
overfitted. In order to prevent overfitting, trees can be pruned. Therefore, leaves are
iteratively removed if they do not significantly improve the prediction in cross-validation
(Hastie, Tibshirani, and Friedman, 2009, chapter 9.2; Breiman et al., 1984). A review
of the development and some of the major algorithms for classification and regression
trees is provided by Loh (2014).

A problem with trees is their high variance. Small changes in the data may lead
to a different series of splits. Random forests are a very popular approach that is less
susceptible to overfitting, reduces the variance and thus increases stability. Random
forest is an ensemble of trees. The prediction of a new observation is based on the
majority vote from the predictions of the trees in the ensemble. This means that the
class label predicted by the majority of trees is chosen. The idea is to use many weak
learners to build a strong predictor that is more robust with respect to noise. The
individual trees are constructed based on bootstrap samples (sampling with replacement)
and for the split selection at each node of a tree a random subset of ¢* < ¢ covariates is
chosen. Consequently, the dependence among the individual trees is weakened and they
become more diverse. The trees are grown large and not pruned afterward to allow
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single trees to specialize (Hastie, Tibshirani, and Friedman, 2009, chapter 15; Breiman,
2001).

In this thesis, the R packages ranger (version 0.8.0) is used for random forests with
the following default settings. Predictions are class probabilities for each observation.
The estimated probabilities returned by each tree are averaged for the random forest
probability estimate. The number of randomly chosen splitting variables in each node
is ¢* = {\/éJ, the minimum node size for the stopping rule is one and the number of

individual trees in the ensemble of a random forest is 500 (Wright and Ziegler, 2017).
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FIGURE 3.2: Example of a classification tree to predict the subgroups (lung cancer
cohorts) based on clinical covariates.

3.2.3 Evaluation of classifier performance

In simulation studies in section 4.1.2 a distinction between two groups is of interest. For
this reason, the following performance measures are introduced for the case of a binary
classification problem with a binary response S. Fawcett (2006) provides an overview
of receiver operating characteristics (ROC) analysis for the assessment of classification
performance and extensions for more than two classes.

Let #4(2m) = P(S = s|z,) be the predicted probability of belonging to class
s € {0,1} for a patient with covariate vector z,,. The predicted response for patient

m is given by §,, = argmax{@4(z,,)}. The overall accuracy compares the predicted
s€{0,1}
response §,, with the true response s,, for each patient and is computed as the proportion

of correctly classified patients

1 n
ACC = — Z 1(sm = 8m)-
o=
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A benchmark value is the naive Bayes classifier that assigns all observations to the most
frequent class. A disadvantage of the accuracy is that it does not distinguish between
classes. Differences in the predictive performance with regard to single classes cannot
be assessed.

Sensitivity and specificity allow a direct comparison of the predictions for each class.
They compare the predicted probability rather than the predicted response with the
true response. Therefore, the predicted probability has to be transformed into a binary
decision rule based on a fixed threshold ¢

1, if m(zm) >c
Sm =
0, else,

where s = 1 is regarded as positive class (class of interest) and s = 0 is considered the
negative or reference class.

The conditional probability of assigning a patient to class 1 given that he belongs
to this class is denoted as sensitivity SE and can be estimated by the proportion of
positive patients that are correctly identified as such (true positive rate)

- - B A_Z:anlﬂ_(,/s\m:l/\sm:l)
SE=P(S=1S=1), SE= met L(si = 1)

The conditional probability of assigning a patient to class 0 given that he belongs to this
class is denoted as specificity SP and can be estimated by the proportion of negative
patients that are correctly classified as such (true negative rate)

SP:P(S:OLS’:())’ Sp — S 118, =0 A s, =0)
Z@:lﬂ(smzo)

Sensitivity and specificity depend on the choice of the threshold c¢. A ROC curve directly
compares both measures across different thresholds. It provides a graphical overview
of the diagnostic ability of a classifier and visualizes its discriminatory power with
regard to each class. It is a more informative measure than overall accuracy or error
rate and particularly useful in the presence of skewed class distributions or unequal
misclassification costs. The ROC curve is created by plotting the true positive rate
(SE) against the false positive rate (1-SP) at various thresholds. The diagonal line
represents random guessing of the two classes. A good classification means both high
sensitivity and high specificity, leading to a ROC curve well above the diagonal. The
information of a ROC curve can be summarized in a single scalar value, the area under
the ROC curve (AUC). The AUC is independent of the threshold and is suitable for
the comparison of two or more classifiers. AUC = 1 stands for a very good diagnostic
ability and values around 0.5 suggest a random prediction (Fawcett, 2006).

3.2.4 Imbalanced classification

In recent years, the problem of learning from imbalanced data has arisen as a new
statistical challenge. He and Garcia (2009) provide a comprehensive review of the
development of research on this topic, including the description of the problem, state-
of-the-art solutions and evaluation metrics for their assessment. The problem generally
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refers to data sets where the class distribution is heavily skewed and one class out-
represents the other(s). Learning algorithms often expect balanced class distributions
and when confronted with imbalanced data, they may result in unfavorable, imbalanced
accuracies across classes. The minority class tends to have much lower accuracy than
the majority class. When sample size across classes is large and the minority class is
not rare in its own but rather relative to the majority class, accuracy is generally not
much affected by this so-called relative imbalance. However, in cases where the minority
class is rare with a limited number of observations, learning becomes challenging. Rules
over the sample space formed by the learning algorithms may be too specific and not
generalizable, leading to overfitting. Besides new algorithms, the problem requires more
informative evaluation measures than overall accuracy or error rate. He and Garcia
(2009) suggest assessment metrics such as ROC curves. In the following, two solutions
for imbalanced learning, random oversampling and synthetic minority oversampling
technique, are described. Both are sampling methods that modify an imbalanced data
set so that it becomes balanced with possibly improved classification performance.
They were developed for binary classification problems and are adapted to multiple
classes in the scope of this thesis. In the case of more than two classes, the largest class
corresponds to the majority class and all other classes are treated as minority classes,
such that the algorithms below are applied to each of the minority classes in order to
balance all sample sizes.

Randomly sampling a set of observations with replacement from the minority class
and adding them to the data set is called random oversampling. It increases the sample
size in the minority class to balance the class distribution. In random undersampling, a
set of observations from the majority class is randomly selected and removed from the
data set to reduce sample size in the majority class. Both methods are very simple but
have their shortcomings. Undersampling leads to a loss of information with respect to
the majority class, while oversampling adds replicated data that may result in overfitting
(He and Garcia, 2009).

Synthetic minority oversampling technique (SMOTE) creates artificial observations
based on the feature space in the minority class. Let Z,,;, be the index set of observations
belonging to the minority class and z,, the ¢-dimensional feature vector of observation
m, m = 1,...,n. For each observation m € Z,,;, define the K-nearest neighbors as the
K observations in Z,,;, with the smallest distance in the g-dimensional feature space.
One of the K-nearest neighbors m’ is randomly chosen and a new synthetic observation
Znew 18 created by interpolation

Znew = Zm T (zm/ - zm) . C7

where ¢ is randomly drawn from a uniform distribution in the interval [0,1] and
m,m' € L,;n. Thus, the new observation is a point along the line segment joining z,,
and z,,. For categorical variables the factor level of the new artificial observation is
sampled from the given levels of the two input observations m and m’. A drawback of
SMOTE is that for each original minority observation the same number of synthetic
observations is generated (not flexible) and the minority feature space is generalized
without regard to the majority class. This may lead to class mixture or overlapping
between classes (Chawla et al., 2011; He and Garcia, 2009).

In this thesis, the R package m1r (version 2.12) is used to apply random oversampling
and SMOTE within cross-validation. When the feature space consists of continuous
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covariates only, the Euclidean distance is used for K-nearest neighbor determination.
K is chosen to be 5. However, in the case of both continuous and categorical covariates,
Gower’s dissimilarity coefficient (Gower, 1971) is applied to calculate the distance
between observation m and m/

Pi i

d(m, m/) _ z:lpCmm%’dmm’ c [0’ 1]
1=1 Smm/

When variable 7 is missing in either or both observations m and m/, then ¢’ , = 0. In

all other cases (', = 1. d',, ., is the distance between z,,; and z,,;. For categorical

variables, d’ = 0 if z,,; = z,; and d’, = 1 otherwise. For numeric variables d’,, , is

the absolute difference of both values divided by the total range of variable .
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3.3 Bayesian subgroup analysis for high-dimensional
survival data

In this chapter, a hierarchical Bayesian model is proposed that addresses the problem
of identifying (genomic) predictors that are both relevant to the response (time-to-event
endpoint) and related to each other in a conditional dependence network. The network
not only links predictors within subgroups but also across different subgroups and is
assumed to be unknown. The proposed model incorporates both, selection of important
predictors and estimation of a graphical model describing their interdependence. Incor-
porating network information into the model building process can potentially increase
power to detect joint effects on the survival outcome and uncover relationships among
the predictors.

This chapter begins with an introduction to Bayesian inference, followed by a
description of the Bayesian Cox model, Bayesian variable selection and Bayesian
inference in graphical models. These methods provide the basis for the proposed
Bayesian subgroup model that is explained in detail in section 3.3.5.

3.3.1 Introduction to Bayesian Inference

Let @ = (04, ...,0y)" be the random vector of unknown and unobservable parameters of
interest. The aim of Bayesian inference is to make probability statements about the
parameter 6 conditional on the observed data © = (D4, ..., D,,), referred to as posterior
distribution p(@|®). ® will be further specified in the following chapters since it varies
depending on the model. In this thesis the general assumption of exchangeability
of ©4,...,9,, is made. This means that the joint distribution p(®q,...,9,) remains
unchanged by permutations of the indices. The central quantity in Bayesian inference
is the posterior distribution p(8|®) that is obtained by Bayes’ rule

S0y POD) _ p(Op(18)
p(D) p(D)

p(0,D) = p(0)p(D|0) is the joint distribution of 8 and ©, p(8) is the prior distribution

of the parameter, p(®|0) the likelihood and p(®) = [p(0)p(D|0)dO the marginal

likelihood. Since p(®) does not depend on 6 and can be considered constant with

respect to @ for fixed observations, it can be omitted in Bayes’ rule and yields the

unnormalized posterior distribution

p(6]D) o p(8)p(D6).

The posterior distribution comprises the updated information about @ and depends
on the observed data and prior knowledge about 8 (Gelman, 2004, chapters 1.2 and
1.3). The weight that is given to the prior determines its relative influence. An
informative prior has a relatively large influence on the posterior. When no prior
knowledge about the parameter exists, a noninformative prior, such as a flat prior (e.g.
uniform distribution) or Jeffreys’ prior can be used. A more detailed discussion on
noninformative priors is given in Gelman (2004, chapter 2.9), Congdon (2006, chapter
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1.2), Bernardo and Smith (1994, chapter 5.6.2) and in Kass and Wasserman (1996)
based on Jeffreys’ rule.

Reasons for the choice of a prior can also be computational convenience and inter-
pretability, both advantages shared by conjugate prior distributions. Conjugacy implies
that the posterior distribution has the same parametric form as the prior distribution
(Gelman, 2004, chapter 2.4). In practice, particularly in hierarchical models, it is not al-
ways possible to derive a conjugate model with a closed-form solution of the posterior. A
hierarchical model assumes a joint probability model for the parameters 6,,, u =1, ..., U,
that reflects the dependency among them. Further parameters ¢ (hyperparameters)
are assigned to the parameters. They can be estimated from historical data but this
approach is not fully Bayesian since point estimates are used rather than a probability
model with a joint posterior distribution. An advantage of hierarchical models is that
they have enough parameters to fit complex data well without leading to overfitting.

If no information is available to distinguish any of the 6,’s from each other and no
ordering or grouping is reasonable, the parameters are assumed to be exchangeable.
The parameters 6, ..., 0y are exchangeable if their joint distribution is invariant to
permutations of the indices. This assumption allows the determination of a joint
probability model for all parameters. In general, the exchangeable parameters 6 are
modeled as independently and identically distributed given some unknown parameter ¢

U
p(6) = [ p(Olo)(@)a = [ T] p(b.l@)p(¢)ds.
u=1
Bayesian inference in a hierarchical model yields the following joint posterior distribution

p(0,9|D) x p(8,9)p(D|0, ) = p(0, $)p(D10),

where p(0, @) = p(¢)p(0]|¢) is the joint prior distribution. The last part of the equation
holds because p(D]0, ¢) depends just on 8 and © is only indirectly influenced by ¢
through 6 (Gelman, 2004, chapters 5.1 and 5.2).

3.3.1.1 Markov Chain Monte Carlo

In Bayesian statistics, Markov Chain Monte Carlo (MCMC) is a general computing
approach to simulate an unknown target posterior distribution p(@|®) when a direct
draw out of it is not possible or computationally inefficient. The samples of 8 are drawn
iteratively from an approximate distribution that is improved in each simulation step
to finally converge to the target distribution. In each step, the sampled distribution
depends only on the draws from the previous step. Hence, the method fulfills the
property of a Markov chain: a sequence of random variables 8%, 8@ ... for which for
any t the distribution of o given all previous @’s depends only on the most recent
value 8¢~1: p(@W19¢1 . W) = p(0?]0"V). The idea is to start at some point 8©)
and after having run long enough, the Markov chain converges to a unique stationary
distribution, the posterior distribution p(8|®). In the following, two of the most widely
used MCMC methods, the Gibbs sampler and the Metropolis-Hastings algorithm, are
described (Gelman, 2004, chapter 11.2).
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The Gibbs sampler

The Gibbs sampler is the simplest MCMC algorithm and useful for multidimensional
problems where direct sampling from the full conditional posterior distribution is
possible (e.g. conjugate distributions). In each iteration step t, the algorithm cycles
through the U components of the parameter vector @ and updates each component
with a new sample conditional on the data ® and current value of all other components
0(_2:1), where 9(_2:1) = (9?), ...,9521,95:11), ...,08_1))’ contains all components of @ at
their latest values except for the u-th.

Step 0. Choose a starting point 8 = (%0)7 s HI(JO))’ and set t =1

Step 1. For u = 1,...,U update the parameter components 6{) ~ p(@uw(,t;l), D)
Step 2. Set t =t + 1 and go to Step 1

(Gelman, 2004, chapter 11.3; Chen, Shao, and Ibrahim, 2000, chapter 2.1).

The Metropolis-Hastings algorithm

The Gibbs sampler requires construction and direct sampling from the full conditional
posterior distribution. However, the full conditional does not always reduce analytically
to a well-known distribution. In this case, another MCMC technique, the Metropolis-
Hastings algorithm, can be used. The algorithm works as follows:

Step 0. Choose a starting value 8°) and set ¢ = 1

Step 1. Sample a proposal 8PP from a proposal distribution q(O(pmp)|0(t_1))

p(g(pmp) |@)/q(9(mop) |9(t—1))
(6@ 1[D)/q(67D]Fror))

Step 2. Calculate the ratio of ratios r =

Step 3. Accept the proposal 87" with probability min{r, 1}, which is equivalent to
o — ourrer) if min{r, 1} > u, with u ~ U|0, 1]
01V else

Step 4. Set t =t + 1 and go to Step 1.

The Metropolis-Hastings algorithm is a generalization of the Metropolis algorithm in the

sense, that the proposal distribution does not have to be symmetric (¢(6,|60,) = q(0,|6,),
(prop)
algorithm is replaced by the above ratio of ratios (Gelman, 2004, chapters 11.4 and
11.5; Gilks, Best, and Tan, 1995).
The proposal distribution can be approximated by a normal distribution with poste-
rior mode. The posterior mode can be determined using Newton’s method based on a

quadratic Taylor series approximation of the log posterior distribution {(0) = In p(8]D).

Let [(0471) = 82(;(:__11))) denote the gradient and /(8" = m)‘?f_l(gif;)_)l), the Hessian.

The posterior mode at iteration step ¢ is 9" — g1 _ 1(@U=)=1j(e"= D). 8" corres-

ponds to the mean and —I(0“~V)~ to the covariance matrix of the normal approxima-
tion (Gelman, 2004, chapters 12.1 and 12.2).

V0q4,0,). To correct for the asymmetry in ¢, the density ratio in the Metropolis
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3.3.1.2 Assessing convergence

Inference is based on the assumption that for large enough ¢ the distribution of the
sampled values 8" is close to the target distribution p(8|®). To minimize the influence
of the starting distribution, early iterations are discarded (often the first half of a
Markov chain), which is called burn-in (Gelman, 2004, chapter 11.6). Simple graphical
tools, such as trace plots, running mean plots and plots of the autocorrelation function,
can be used to assess whether a Markov chain has reached approximate convergence.
In a trace plot the simulated values of a parameter are plotted against the iterations.
When there is no strong pattern or trend in the plot after the burn-in period, this
indicates convergence. Running mean plots plot the running mean for each parameter
in a chain, which is the mean of all sampled values up to a given iteration, at different
iterations. In the case of convergence, the running mean should stabilize at the posterior
mean. The autocorrelation function describes the autocorrelation of a Markov chain
with itself at different lags. High values indicate slow convergence, requiring a large
number of iterations to be able to traverse the entire sample space.

Instead of running one long Markov chain, multiple independent Markov chains with
overdispersed (relative to the posterior distribution) starting points can be simulated
to monitor convergence. Gelman and Rubin (1992) propose a diagnostic that compares
the variation between (B/n.) and within (W) the chains. Let m. be the number of
sequences or Markov chains, each of length n. (after discarding the burn-in iterations)
and 6% a scalar estimate of § in chain c at iteration ¢. The variances between and
within chains are defined as

B 1 Je —
— = 0. —0. 2
Ne Me— 1 ;( )
1 Me Ne
W = (egt) — 0. )2’
Mme(ne — 1) ;;

where 6,. is the mean of sequence ¢ and .. the sample mean of all m, - n. simulated
values. The latter is an estimate of the target mean. The target variance o2 can be
estimated by a weighted average of B and W
Ne — 1 1
6% = W+ —B

Ne Ne

and is unbiased under stationarity. If the chains have not converged, W will underesti-
mate o2 since the individual chains have not had time to range over the entire target
distribution, while 62 will overestimate o2 for overdispersed starting values. A pooled
posterior estimate of the variance is given by V =62+ % It is compared with the

within-chain variance W in the potential scale reduction factor R= \/% . R estimates
the factor by which the scale of the current distribution for # might be reduced if
simulations were continued for t — oo. Thus, if Ris large, then further simulations
may improve inference about the target distribution. When R is close to one, all chains
have converged. To account for sampling variability in the variance estimates, Brooks
and Gelman (1998) suggest to add a correction factor based on estimated degrees of

df+3
df+1

freedom R, = % This corrected version of the potential scale reduction factor,
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as well as the other above described methods for the assessment of convergence are
implemented in the R package coda (version 0.19-1).

3.3.2 The Bayesian Cox proportional hazards model

Assume the data consist of n independent patients and for each patient the survival
or censoring time t,,, the right censoring indicator d,, and a p-dimensional covariate
vector T, = (Tym1, ..., Tmyp)' are observed, m =1,...,n. Let & € R™*? denote the matrix
of covariates. The Cox proportional hazards model and the partial likelihood are
introduced in 3.1.2 (equations (3.1) and (3.2)). Under the Cox model the joint survival
probability of n patients given « is

P(T > |z, B, Hy) = exp ( — i exp(ﬂ’zcm)Ho(fm))
m=1

with 8 = (54, ..., 3,)" the vector of regression parameters and Hy(t) the cumulative
baseline hazard function. One of the most popular choices for Hy(t) is a gamma process
prior

HO ~ QP(aOH*, CL()),

where H*(t) is an increasing function with H*(0) = 0. H* can be considered as an
initial guess of Hy. ag > 0 describes the weight or “confidence” that is put in H*(t) (Lee,
Chakraborty, and Sun, 2011). Lee, Chakraborty, and Sun (2011) propose a Weibull
distribution H*(t) = nt" with fixed hyperparameters 7 and k. Estimates of 77 and x can
be obtained from the data by fitting a parametric Weibull model without covariates
to the survival data (Zucknick, Saadati, and Benner, 2015). Lee, Chakraborty, and
Sun (2011) and Zucknick, Saadati, and Benner (2015) choose ag = 2. A sensitivity
analysis for ag € {0.5,1,2,4,8} performed by Zucknick, Saadati, and Benner (2015)
reveals that the posterior estimates of the baseline hazard are influenced by the choice
of ag. However, the posterior distribution of 8 and consequently the linear predictors
B'x,, used for prediction remain nearly unchanged.

In practice the presence of ties is very common, leading to the grouped data
likelihood described in Ibrahim, Chen, and Sinha (2005, chapter 3.2.2). Therefore, a
finite partition of the time axis is constructed with 0 = ¢y < ¢; < ... < ¢y and ¢; > t,, for
all m = 1, ...,n. The observed time ,, of patient m falls in one of the .J disjoint intervals
I, = (cy-1,¢4),9 =1,..., J. Assume the observed data ® = {(x,R,,D,) : g=1,....J}
are grouped within /,, where R, and D, are the risk and failure sets corresponding
to interval g. Let hy = Hy(cy) — Ho(cg—1) be the increment in the cumulative baseline
hazard in interval /,, g =1, ..., J. From the gamma process prior of H follows that the
hg’s have independent gamma distributions

hy ~ G(apy — aog-1,a0), Wwith agy,=aoH"(c,).
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The conditional probability that the observed time of patient m falls in interval I, is
given by

P(Ty, € Ij|h) = exp (= exp(B'@y) Holcg1)) — exp ( — exp(B'@m) Holcy))

= exp ( — exp(B'zm) ng hj) : [1 —exp (—hy exp(ﬂ’wm»}

with b = (hq, ..., hy)". The resulting grouped data likelihood is defined as

L(D|B.h) o ﬁ[ p(—h 3 ep(Ba) I [“exp(—hge@(ﬂ’wl))]]

k€Ry—Dy 1D,

(Ibrahim, Chen, and Sinha, 2005, chapter 3.2.2).

3.3.3 Bayesian variable selection

High-dimensional settings require priors that result in sparse models. One option is the
use of shrinkage priors such as the Bayesian lasso as analog to the frequentist penalized
likelihood approach. The Bayesian lasso prior was first applied to the Bayesian Cox
model by Lee, Chakraborty, and Sun (2011). An extension of their approach is proposed
by Zucknick, Saadati, and Benner (2015) to allow the mandatory inclusion of clinical
covariates and to perform variable selection only for genomic predictors. The frequentist
lasso penalty described in 3.1.2.3 is proportional to the (minus) log-density of inde-
pendent Laplace priors for the regression parameters: p(8|Ap) = [I5_; AZP exp(—Ap|Gi]).
An alternative conditional version of the Laplace prior that ensures unimodal posterior
distributions is suggested by Park and Casella (2008)

u Ap|Bil
2 \p) — .

More details on the full hierarchical model and prior distributions for ag and Ap can be
found in Lee, Chakraborty, and Sun (2011) and Zucknick, Saadati, and Benner (2015).
Different Bayesian variable selection techniques for the Cox model are compared by
Held, Gravestock, and Sabanés Bové (2016). Alternative prior distributions for variable
selection use latent indicator variables such as the stochastic search variable selection
procedure explained in the following.

Stochastic search variable selection

The problem of variable selection is to find the best subset of predictors from a set
of p potential candidate predictors. Considering all possible subsets would result in a
comparison of 2P possible submodels (using AIC or BIC for example). This requires a
major computational challenge, especially when p is large. The stochastic search variable
selection (SSVS) procedure by George and McCulloch (1993) avoids the problem of
calculating the posterior probabilities of all 2P subsets. Latent variables are introduced
to identify promising subsets of covariates as those with higher posterior probability in
the Gibbs sampler. For the estimation of the regression coefficients a mixture of two
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normal distributions with different variances is assumed
Bilvi ~ (1 =) - N(0,73) + 7 - N(0,¢272), i=1,...p.

This prior allows the 3;’s to shrink towards zero. Due to the shape of the two-component
mixture distribution, it is called spike-and-slab prior, as illustrated in Figure 3.3. An
overview of spike-and-slab priors in linear regression is provided by Ishwaran and Rao
(2005). The latent variable ; indicates the inclusion (y; = 1) or exclusion (y; = 0) of
the i-th variable. It specifies the variance of the normal distribution. 7; (> 0) is set
small so that f; is likely to be close to zero if v; = 0. ¢; (> 1) is chosen sufficiently
large to inflate the coefficients of selected variables and to make their posterior mean
values likely to be non-zero. In general, the variances of the regression coefficients are
assumed to be constant: 7, =7 and ¢; =cforalli=1,...,p.

--- N(0,7°)
— N(0, %1%

F1Gure 3.3: Visualization of the spike-and-slab prior for 3. The dashed line represents
the spike and the solid line the slab, for T > 0, ¢ > 1.

The standard prior for 4 = (71, ...,7,)’ consists of a product of independent Bernoulli
distributions

piy) = I (1=m)'

with prior inclusion probability @ = P(v; = 1). Typically, these prior inclusion
probabilities are chosen to be the same for all variables and often with 7 set to a fixed
value. A common choice is 7 = 0.5 corresponding to the uniform prior p(v) = 0.5?
and to an expected model size of p/2 (George and McCulloch, 1993; Chen and Ye,
2015). Alternatively, 7 can be defined depending on the a priori expected model size
p* with 7 = p*/p (Treppmann, Ickstadt, and Zucknick, 2017). Eicher, Papageorgiou,
and Raftery (2011) compare these two fixed priors for 7 in combination with different
g-priors on the regression coefficients and conclude that the uniform prior has the best
predictive performance based on simulation studies. Ley and Steel (2009) compare
both priors with random model priors drawn from a Beta distribution with fixed
hyperparameters a, = 1 and b, = (p — p*)/p*. The choice a, = b, = 1 corresponds to
the standard uniform distribution. The Beta distribution is the conjugate prior for the
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parameter of the binomial distribution (Bernardo and Smith, 1994, chapter 3.2.2) and
thus, a natural choice. Ley and Steel (2009) recommend a random 7 when no strong
prior information on model size is available, since it is more robust to the choice of
p*. Yang et al. (2016) also assign a hierarchical Beta prior to the variable inclusion
probability m with fixed hyperparameters a, and b, selected by cross-validation. When
a Beta prior is used for m, the hyperparameters a, and b, of the Beta distribution are
usually chosen to be constant rather than random.

However, in some situations one further hierarchical level may be desirable to allow
more flexible modeling of complex data and dependencies. One important objective in
this thesis is borrowing information across different subgroups of patients. This could
be achieved by a hierarchical regression model with multilevel priors (e.g. multiple
Beta hyperprior distributions for the prior variable inclusion probabilities) to represent
heterogeneity among, or hierarchy of, the subgroups. Such a model may accommodate
differences between single subgroups or groups of similar subgroups, while assuming that
the underlying data are derived from a common distribution. In our situation, there is no
prior information on the subgroups and similarities between them. Furthermore, we are
interested in learning relations between genomic covariates. Therefore, a graphical model
is more appropriate and illustrative to describe conditional dependencies among the
covariates. Incorporating network structure in the variable selection prior encourages the
inclusion of related variables in the graph. In the following, this approach is explained
in more detail.

3.3.4 Bayesian structure learning in graphical models

A statistical model that is associated with a graph summarizing the dependence
structure in the data is called a graphical model. The nodes of a graph represent the
random variables of interest and the edges of a graph describe conditional dependencies
among the variables. Structure learning implies the estimation of a graph. Recent
applications are mainly driven by biological problems that involve the reconstruction
of gene regulatory networks and the identification of pathways of functionally related
genes from their expression levels. A graph is called undirected, when its edges are
unordered pairs of nodes instead of ordered pairs with edges pointing from one node
to the other (directed graph). When data are continuous and the underlying variables
are assumed to be multivariate normal, a common choice are Gaussian models (Drton
and Maathuis, 2017). In this thesis, only undirected Gaussian graphical models are
considered and thus introduced in the following.

3.3.4.1 Inference in Gaussian graphical models

Assume the vector of random variables X,, = (X1, ..., X;np)" for observation m,
m = 1, ...,n follows a multivariate normal distribution with mean vector 0 and covariance
matrix 3. The inverse of the covariance matrix is referred to as precision matrix
Q = (wij)ij=1..p = X' £ is assumed to be symmetric and positive definite. Let
X € R™P be the data matrix consisting of n independent observations and S = %X 'X
the sample covariance matrix.

In graphical models, a graph G is used to represent conditional dependence relation-
ships among random variables X. Let G = (V, E) be an undirected graph or Markov
random field (MRF), where V' = {1, ..., p} is a set of nodes (e.g. genes) and £ C V x V
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is a set of edges (e.g. relations between genes) with edge (i,j) € E < (j,i) € E. G
can be indexed by a set of p(p — 1)/2 binary variables G = (g;;)i<; € {0, 1}?*? with
gi; = 1 or 0 when edge (7, j) belongs to £ or not. The symmetric matrix G is termed
adjacency matrix representation of the graph. The graph structure implies constraints
on the precision matrix Q such that ¢;; =0 < (i,j) ¢ E < w;; = 0, meaning that
variables i and j are conditionally independent given all remaining variables (Drton
and Maathuis, 2017; Wang, 2015).

The log-likelihood in a Gaussian graphical model (up to a constant) is given by
1(2) = § (In |2 — tr(S€2)), with € being positive definite. In the frequentist model
is usually estimated by maximizing the log-likelihood. However, in high-dimensional
settings when p > n or when a sparse estimation is desired (zeros in 2 meaning that
a pair of variables is conditionally independent), the maximum likelihood approach
does not work. One popular solution is the graphical lasso that optimizes the joint
Gaussian log-likelihood with lasso penalty: m&n{— In [Qf +tr(S2) + A3, ; |wij|} (Drton
and Maathuis, 2017). An extensive review of frequentist methods for structure learning
in graphical models is provided by Drton and Maathuis (2017).

Bayesian approaches to Gaussian graphical models most commonly use the G-
Wishart distribution as a conjugate prior for the precision matrix. Entries corresponding
to missing edges in the underlying graph are constrained to be zero. The G-Wishart
prior on the precision matrix is defined as

—2 1
Q@) =C(h,D,G) Q7 exp{—5 (DD} Liaercs).

where C'(b, D, G) = [+ Q"= exp{—3tr(DQ)}dQ is the normalizing constant, b > 0
the shape (or degrees-of-freedom) and D (positive definite) the inverse scale (or location)
parameter. M™ is the cone of p X p symmetric positive definite matrices with entries
w;j = 0 whenever (i, ) ¢ E (Roverato, 2002; Atay-Kayis and Massam, 2005). Common
choices for the hyperparameters are b = 3, D = I, (Jones et al., 2005; Dobra, Lenkoski,
and Rodriguez, 2011; Wang, 2015). The edge inclusion indicators ¢;; can be modeled
through independent Bernoulli priors

p(@) =] (=1 = m)=),

i<j

with inclusion probability = (Wang, 2015; Dobra, Lenkoski, and Rodriguez, 2011).
Wang (2015) suggests the fixed hyperparameter m = 2%. Inference in high-dimensional
graphical models is computationally challenging due to the approximation of the
normalizing constant of the G-Wishart (Atay-Kayis and Massam, 2005; Wang, 2015).

Thus, Wang (2012) develops a Bayesian version of the graphical lasso as alternative
to the G-Wishart distribution. Laplace priors are assigned to the off-diagonal elements

of the precision matrix and exponential priors to the diagonal

p(N) =C] B eXP{—/\|Wz‘j|}1 ﬁ [)\ eXP{—;\wz‘z‘}] Lioem+y -

i<j =1 12

The normalizing constant C' = [qc e+ [ic; {% exp{—>\|wij|}} b {% exp{—%wii}} dQ
does not depend on A when A > 0 is fixed and the same for all w;;. In this case, the
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posterior mode of € coincides with the graphical lasso estimate. Wang (2012) introduces
an effective block Gibbs sampler for updating €2 one column at a time and avoiding the
approximation of the normalizing constant. However, GG is not used in the formulation
and its posterior distribution is not considered. Another drawback of the Bayesian
graphical lasso is, that its continuous prior shrinks but does not set the off-diagonal
elements of the precision matrix to exact zeros, which is desired for a sparse estimation.
This requires discrete and continuous mixture prior distributions such as the popular
G-Wishart prior (Banerjee and Ghosal, 2015; Wang, 2012).

Inspired by the computational efficiency of continuous shrinkage priors for regression
analysis (in particular the two component normal mixture for variable selection proposed
by George and McCulloch, 1993), Wang (2015) introduces a new approach for structure
learning with improved scalability. It is based on continuous spike-and-slab priors on
the elements of the precision matrix and latent indicators for the graph structure. It
induces sparsity and it is efficient due to a block Gibbs sampler and no approximation
of the normalizing constant. The hierarchical model is defined as

A
p(Q|G,0) = C(G, v, v1, \) " [N (w50, 1/3”_) HEXp(Wii|§)]l{QeM+}

1<j

p(G10) = C(0)7'C(G,vo, v, ) [T (x99 (1 = m)'~94),
i<j
where 6 = {1y, vy, A\, w} is the set of all parameters with v > 0 small, 4 > 0 large, A > 0
and m € (0,1). A small value for 14 (g;; = 0) means that w;; is small enough to bet set to
zero. A large value for vy (g;; = 1) allows w;; to be substantially different from zero. The
binary latent variables G = (g;;)i<; € {0, 1}?®~1/2 serve as edge inclusion indicators.

Wang (2015) proposes the following fixed hyperparameters m = 1%, vy > 0.01, 1y <10
and A = 1.

3.3.4.2 Variable selection for graph-structured covariates

When the covariate space is highly structured it may be desirable to incorporate this
structural information into the model building process. Several authors have considered
this problem in the context of Bayesian variable selection with genomic applications
(Li and Zhang, 2010; Stingo and Vannucci, 2011; Stingo et al., 2011; Peterson, Stingo,
and Vannucci, 2016). They adopt a Bayesian spike-and-slab approach as in George
and McCulloch (1993) for the selection of important covariates. A Markov random
field (MRF) prior is used for the latent variables to incorporate information on the
relationships among the covariates as described by an undirected graph. An MRF is
an undirected graphical model in which the distribution of a set of random variables
follows Markov properties and two unconnected covariates are considered conditionally
independent given all others. This prior assumes that neighboring covariates in the
network are more likely to have a common effect and encourages their joint inclusion.
The MRF prior on the latent variable inclusion indicators «y is defined as

exp(a’y +~'B)

! '
B
E’Ye{o,l}p eXp(a/;y + ’y/B’y) 0.8 eXp(a % + ~ 7)’

p(’)"a’ B) =
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where a = al, and B = (b;j),x, is a symmetric matrix with b;; = 0 for all (¢,j) ¢ E.
When there is no prior information on the strength of connection between each pair of
covariates, the elements b;; are usually set to some constant b for the connected nodes
and to 0 for the non-connected ones. The parameter a controls the sparsity of the
model, while b regulates the smoothness of the distribution of v over the graph. Higher
values of b encourage the selection of variables with neighbors already selected into the
model. This idea becomes more evident by looking at the conditional probability

exp (%(a + 0354 ’yj))
1 4+ exp (a +0> 4 yj) '

P(%!%‘,j;ﬁi) =

If a variable does not have any neighbor, its prior distribution reduces to an independent
Bernoulli with parameter m = lj?)’éa()a).

In high-dimensional settings, increasing values of b may lead to a phase transition
in which the number of selected variables (model size) rises drastically. i and Zhang
(2010) provide some guidance for choosing the hyperparameters a and b to avoid a phase
transition. They apply the MRF prior to variable selection in linear regression and
notice that its addition implies a relatively small increase in computational cost. Stingo
and Vannucci (2011) use the MRF prior for discriminant analysis and compare it to
independent Bernoulli priors for the individual predictors. They show that employing

the MRF prior leads to more accurate selection.

3.3.4.3 Graphical models for heterogeneous data

When data are heterogeneous and can be divided into subpopulations with different
dependence structures, it is of interest to learn the structure of graphical models
for subpopulations. Estimating one joint graphical model would hide the underlying
heterogeneity, while estimating separate models for each subpopulation would neglect
common structure. To share common structure in a frequentist setting, Guo et al.
(2011) sum up the log-likelihoods of all subpopulations s including a lasso penalty
on the elements of the precision matrices w;;;. The latter are reparameterized such
that ws;; = 6;j7s,;, where 6;; is a common factor for the presence of edge (7,7) in
all subpopulations and 7, ;; reflects the differences between subgroups. The lasso
penalty is split according to these two factors. Sparsity in 6;; results in edges being
simultaneously absent from all graphs and further sparsity within each graph is induced
by 7s.;. However, the optimization problem is not convex, which makes computation
slow and might result in convergence to the wrong local maximum. To overcome
this drawback, Danaher, Wang, and Witten (2014) propose another extension of the
frequentist graphical lasso for the joint estimation of multiple graphical models. They
consider a penalty function of the form P(2) = A\ 3, Xz, |ws | + A P(), where P
allows similarity across the precision matrices of all subpopulations. The group lasso
penalty P () =iz /2 wfyij encourages edges being simultaneously absent from all

graphs, while the fused lasso penalty P(Q) = 3, > [wWrij — wsij| yields pairwise
similar edge patterns in different subpopulations. Gao et al. (2016) apply the fused
graphical lasso by Danaher, Wang, and Witten (2014) to the framework of a multivariate
Gaussian mixture model with unknown subpopulation membership. Saegusa and Shojaie
(2016) propose a weighted Laplacian shrinkage penalty that allows some subpopulations
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to be more similar to each other than others: 15(9) = iz \/Zm Wy (Wrij — Ws,ij)2-
The weight w,.; represents the degree of similarity between subpopulations r and s, with
w,s = 0 if r and s are not connected.

Bayesian approaches for inferring multiple graphical models have also been developed
in the last few years. Yajima et al. (2012) consider the case of two known subpopulations,
treating one as the baseline and the other as the differential group. They jointly estimate
a Gaussian directed acyclic graph in both subgroups as well as the strength of association.
The strength of association between two variables in the differential group is expressed as
the sum of the corresponding strength in the baseline group and a differential parameter.
Mitra, Miiller, and Ji (2016) also focus on the case of two subgroups, where one group
serves as reference and the other as differential group. They consider Markov random
field models (undirected graphs) and assign a uniform prior to the reference graph G
and a mixture prior to the differential graph G5 with g2, = ¢1.4;(1 — Sij) +(1— gljij)gij.
(i-j = |92, — 91,ij| is defined as latent indicator of a difference between the two graphs
at edge (i,7). It has independent Bernoulli priors with inclusion probability 7 that
represents the global similarity between the two networks. Peterson, Stingo, and
Vannucci (2015) propose joint inference of multiple undirected networks under the
assumption that some networks may be unrelated while others may have a similar, shared
graph structure. The idea is to infer a separate graphical model for each subgroup but
to allow for sharing information between sample groups if supported by the data. They
choose a (G-Wishart distribution as prior on the precision matrix and a Markov Random
Field (MRF) prior on the graph structure p(g;;|vi;, ®) o exp (Vij].fggij + g;jG)gij),
where g;; = (91,45, -, gsij)" are the edge inclusion indicators for edge (i,j) in all S
graphs, v;; includes prior knowledge on specific relations and affects sparsity of the
graphs, and © = (0,5),<5 is a (S x S) symmetric matrix representing the pairwise
relatedness of graphs for each group. The MRF prior encourages the selection of the same
edge in related graphs. A spike-and-slab prior is placed on the parameters for the network
similarity p(6,s|9rs) = (1 — ) - 90 + Frs - G(0,s]cx, B) with independent Bernoulli priors
on the latent indicators 4, and fixed hyperparameters a, § and 7 = P(7,s = 1).

3.3.5 The proposed Bayesian subgroup model

The methods described in the previous sections of chapter 3.3 form the basis of the
proposed Bayesian model introduced below. The Bayesian Cox model is combined
with the stochastic search variable selection approach that uses a spike-and-slab prior
for the regression coefficients with latent indicators to represent variable inclusion.
This is appropriate for situations with many covariates of which only a small number
is truly associated with survival outcome and a sparse model solution is desirable.
When covariates are functionally related to one another within a network, it may be
of interest to learn the dependencies among them. The proposed model assumes that
network information is not known a priori and allows inference of the network among
the covariates. It is suitable for data consisting of multiple known subgroups that
share some predictors with a similar effect on the response, while other predictors
may have different effects across subgroups. A joint graph is proposed with possible
edges between all pairs of covariates within each subgroup and edges between the same
covariates in different subgroups. This graph structure allows sharing information
between subgroups when supported by data. For each subgroup, a sparse graph
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describing the conditional dependencies among the covariates is inferred and network
similarities between subgroups are learned. To accomplish this, an MRF prior is used for
the variable selection indicators that encourages the inclusion of predictors linked to one
another within a network. The aim is to both identify the relevant predictors for each
subgroup while allowing to share information between subgroups, when appropriate,
and to learn a sparse network among them.

The proposed model relies on an undirected Gaussian graphical model that assumes
multivariate normal data. Therefore, the covariates should be at least approximately
normal. This assumption is common and appropriate for many types of biological data
like gene expression data. The proposed model is applied to genomic covariates only,
but can be extended to allow the mandatory inclusion of established prognostic clinical
covariates.

3.3.5.1 Likelihood

Let X € R™*P be the gene expression (covariate) matrix for subgroup s, s = 1,...,.5,
consisting of ng independent and identically distributed observations. For observation
m in subgroup s the vector of random variables X, = (X1, ..., Xsmp)' is assumed
to follow a multivariate normal distribution with mean vector 0 and unknown precision
matrix Q, = 3!, m = 1,...,n,. The sample sizes n, are allowed to differ, but the same
p genes (covariates) are assumed to be measured across all subgroups.

Both the response Yy = (Ys1,..., Ysn,) with Y, = (Ts,m,5s,m) as well as the
predictors X g are considered to be random variables. Thus, the likelihood for subgroup
s is the joint distribution p(Y s, X5) = p(Y 5| Xs) - p(Xs). The conditional distribution
p(Y | X s) corresponds to the grouped data likelihood in the Bayesian Cox proportional
hazards model (section 3.3.2) for subgroup s

L(®3|IBS7 hs)

x ljl exp < — hsyg Z exp(ﬁ;msﬁ)) H [1 — exp ( — hsyg exp(ﬂ;ws,l))]] ,

k€Rs,g—Ds,g 1€Ds g4

where ©; = {(xs, Rs4,Dsy) : g = 1,...,Js} are the observed data in subgroup s,
with R, the risk and D, the failure sets corresponding to interval I, = (¢54-1, Cs g,
g=1,...,J,. The increment in the cumulative baseline hazard for subgroup s in interval
I, is termed hg, = Ho(csy) — Ho(csg-1). B, is the p-dimensional vector of regression
coefficients for subgroup s (Lee, Chakraborty, and Sun, 2011).

The marginal distribution of X is multivariate normal

pXJ00) o T I exp (= 5 XL, 0.X0)

m=1

= |QS

ns/2 oxp ( - ; nz X’S’mQSXs,m),
m=1

=tr(Ss0s)
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with S, = X’ X,. The joint likelihood across all subgroups is the product of the

subgroup likelihoods
S

1 L(®.I8.. hs) - p(X|2).

s=1

3.3.5.2 Prior specifications
Prior on the parameters h; and 3, of the Cox model

The prior for the increment in the cumulative baseline hazard in subgroup s follows
independent gamma distributions

hs.g ~ Glao(H(¢s) = H'(Cs9-1)), a0),

with a Weibull distribution H*(c, ) = nsc5s,, g = 1,..., J5, s = 1,..., S (Lee, Chakraborty,
and Sun, 2011). More details are provided in section 3.3.2. The hyperparameters ay,
ns and kg are chosen to be fixed and in accordance with Lee, Chakraborty, and Sun
(2011) and Zucknick, Saadati, and Benner (2015). The certainty ag about the initial
guess H* of Hy is set to agp = 2. The hyperparameters 7, and k are estimated from the
(training) data by fitting a parametric Weibull model without covariates to the survival
data of subgroup s.

In order to perform variable selection, the SSVS approach of George and McCulloch
(1993) introduced in section 3.3.3 is used. The prior of the regression coefficients f;; in
subgroup s conditional on the latent variable v, ; is defined as a mixture of two normal
distributions with small (72) and large (c*7?) variance

/Bs,ih/s,i ~ (]— - ’YS,Z') : N(077—2) + lys,i : N(07 027—2) ) 1= 1a c P

The latent indicator variable v, , indicates the inclusion (y,; = 1) or exclusion (v,,; = 0)
of variable ¢ in the model for subgroup s. Equal variances are assumed for all regression
coefficients. The hyperparameters are fixed and set to 7 = 0.0375 and ¢ = 20 following
Treppmann, Ickstadt, and Zucknick (2017). This choice corresponds to a standard
deviation of ¢-7 = 0.75 and a 95% probability interval of [—1.47, 1.47] for p(Ss.i|vs: = 1).

Prior on ~ linking variable and graph selection

The standard prior for the variable selection indicators 7, ; is an independent Bernoulli as
utilized by Treppmann, Ickstadt, and Zucknick (2017). Here, instead of an independent
prior a Markov random field (MRF') prior is chosen as introduced in section 3.3.4.2 and
proposed for variable selection by, among others, Peterson, Stingo, and Vannucci (2016).
The aim is to link the selection of variables to the presence of edges relating them in
an undirected graph. This is achieved by an MRF prior that incorporates the network
structure among the covariates and encourages the inclusion of connected variables in
the network. The MRF prior for v given G is defined as

exp(al,gy + by'GY)
2ovef0,1)p5 eXp(alfps’Y +0v'G)

p(v|G) = o exp(alygy + 0v'GY),
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where ¥ = (Y11 -, Vips s V8,15 -5 Vsp) 15 & pS-dimensional vector of variable inclusion
indicators, G is a symmetric (pS x pS) adjacency matrix representation of the graph,
and a, b are scalar hyperparameters. The hyperparameter a influences the overall
variable inclusion probability and controls the sparsity of the model, with smaller
values resulting in sparser models. Without loss of generality, a < 0 is assumed. The
hyperparameter b > 0 determines the prior belief on the strength of relatedness between
pairs of neighboring variables in the graph and controls the probability of their joint
inclusion. Higher values of b encourage the selection of variables with neighbors already
selected into the model. This supports the assumption that neighboring covariates in
the network are more likely to have a common effect. A sensitivity analysis for the
choice of a and b is provided in section 4.2.2.

The elements g, ,; in the adjacency matrix of the graph G represent the presence
(grsij = 1) or absence (g,s:; = 0) of an edge between nodes (genes) ¢ and j in subgroups
r and s. They can be viewed as latent binary indicator variables for edge inclusion.
The adjacency matrix in the present model is defined as

Gy G ... Gig
|Gz G ... G
Gis Gys ... Gss

where Gg5 = (gss,ij)i<; i the matrix of latent edge inclusion indicators within subgroup s
and G,s = (grs.i)r<s 1S the matrix of latent edge inclusion indicators between subgroups
rand s, r,s=1,....5, r<s,1,7=1,....p, i < j, with

0 Jss, 12 - -+ Gss 1(p—1) Jss,1p
Jss,12 0 B Jss,2p
Gss == I I el s Grs = diag(grs,lla ceey grs,pp>‘
gss,l(p—l) . 0 Gss,(p—1)p
Gss,1p Jss2p - -- gss,(p—l)p 0

Thus, within each subgroup s a standard undirected graph with possible edges between
all pairs of genes is assumed, whereas between different subgroups only relations between
the same gene in different subgroups are allowed (different genes in different subgroups
are assumed to be non-connected). To visualize this idea, Figure 3.4 shows an example
network consisting of two subgroups, each with five predictors.

Graph selection prior on 2 and G

The present model does not assume that network information is available a priori
and allows inference of the unknown network structure among predictors by using a
Gaussian graphical model. Wang (2015) proposes a Bayesian approach for structure
learning with improved scalability to larger dimensional problems. It provides a sparse
and interpretable representation of the conditional dependencies found in the data. This
approach is introduced in section 3.3.4.1 and used in the present model for inferring the
precision matrix and network within subgroups. It is based on continuous spike-and-slab
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priors on the elements of the precision matrix and latent binary indicators for edge
inclusion to identify the graph structure.

FIGURE 3.4: Illustration of the proposed graph for S = 2 subgroups, each with p =25
genomic predictors (nodes). Possible edges between two nodes are marked by dashed

lines.

The precision matrix of subgroup s corresponding to graph Gy, is given by

Ws 11 Ws, 12 cee Ws,1(p—1) Ws,1p
Ws, 12 Ws 22 cee Ws,2(p—1) Ws,2p
QS — . . . .
Ws1(p—1) Ws2(p—1) -+ Ws,(p—1)(p—1) Ws,(p—1)p
Ws,1p Ws,2p s Ws(p-1)p Ws,pp

The prior on €2, consists of an exponential prior on the diagonal entries and a

mixture of two normal distributions with small (12) and large (v?) variance on the

off-diagonal entries

A
p(Qs|GssaV07V17 OCHN w82j|07 Gss.ij HEXp(ws,ii|§)]l{QseM+}

1<j
X HeXp{—* sz] }HGXP{ ws n}]l{ﬂ eMt}
z<] gss ij

with fixed hyperparameters vy > 0 small, v; > 0 large and A > 0. ljq e+ restricts
the prior to the space of symmetric-positive definite matrices. The edge inclusion
indicators gss;; indicate the presence (gss:; = 1) or absence (gss; = 0) of edge (7,7) in
subgroup s. For selected edges, a large variance v allows larger values for w; ;;, while
for non-selected edges, a small variance 1 ensures that ws; is likely to be close to zero.

The binary edge inclusion indicators within subgroup s (gss,j) as well as between
subgroups 7 and s (g,s,;) are assumed independent Bernoulli a priori

p(Glm) < [T]1] |:7Tgss,ij(1 — ) gew} 111 {ng” _ )1—gmm}7

s i<j r<s i

with fixed prior probability of edge inclusion = € (0, 1).
Choices for the hyperparameters vy, 11, A and 7 are provided by Wang (2015). He
suggests m = 2/(p—1) and A = 1 and reports that the results are relatively insensitive to
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the choice of X\. He finds that values vy > 0.01 and v, < 10 result in good convergence.
In section 4.2.2 a sensitivity analysis for the choice of vy and vy is provided.

3.3.5.3 Posterior inference

The joint posterior distribution for the set of all parameters 0 = {h, 8,~v, G, 2} is
proportional to the product of the joint likelihood and the prior distributions of the
parameters in all subgroups

(. 8.7.G. 012, X) o [ [L(D.18.. ) - p(X.162)

S
s s
L [p216.)5(6)-p316) - TTp(Bush) - T plhol )]
s=1 g:l

Markov Chain Monte Carlo (MCMC) simulations are required to obtain a posterior
sample of the parameters. The different parameters are updated iteratively according
to their conditional posterior distributions using a Gibbs sampler. A brief outline of

the MCMC sampling scheme is given in the following. More details are provided in the
Appendix, section A.3.

1. For subgroup s = 1, ...,.S update €, with the block Gibbs sampler proposed by
Wang (2015).

2. Update all elements in G iteratively with Gibbs sampler from the conditional
distributions p(grs,ii = 1|G—Ts,ii7 ~) and p(gss,ij = 1|G—ss,ij7 ws,z‘j,’Y)a where G, ;;
(G_ss,;) denotes all elements in G except for g,sii (gss.ij)-

3. Update all elements in ~ iteratively with Gibbs sampler from the conditional
distributions p(vs; = 1|v_g;, G, Bs), where v_; denotes all elements in v except
for ~,.;.

4. Update f,; from the conditional distribution p(Bs:|B, i, Vs, hs, Ds), s = 1,...,5,
t=1,...,p, using a random walk Metropolis-Hastings algorithm with adaptive
jumping rule as proposed by Lee, Chakraborty, and Sun (2011). B —; includes
all elements in B, except for [, ;.

5. The conditional distribution p(hs 4|hs, g, B, ¥s Ds) for the update of hy, can be
well approximated by the gamma distribution

hs,g|hs,—97 1857 757 @
G (anH eng) — B (0o 1)) oo + 3 exp(Blns))

kERs,g—Ds,g

where d, , are the number of events in interval g for subgroup s and h, _, denotes
the vector hg without the g-th element, g =1, ..., Js, s = 1, ..., S (Ibrahim, Chen,
and Sinha, 2005, chapter 3.2.2).

Starting with an arbitrary set of initial values for the parameters, the MCMC
algorithm runs with a reasonably large number of iterations to obtain a representative
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sample from the posterior distribution. After removing the burn-in samples, the
remaining samples are used for computing the posterior estimates. There are different
opinions on using a single long-run Markov chain or multiple short-run chains with
overdispersed starting values. A single long chain may be closer to the target distribution
at the end of the run and provide more accurate inference compared to several shorter
chains. Particularly in situations that require longer burn-in periods, multiple shorter
chains suffer from a large number of discarded burn-in samples and may be a waste of
resources (Geyer, 1992; Chen, Shao, and Ibrahim, 2000). Gelman and Rubin (1992)
propose the use of multiple short chains because they may have better exploratory
power. A single chain may not explore the entire parameter space when it gets caught
at an attractive mode and remains in its neighborhood. In this thesis, both types of
MCMC approaches are used to assess convergence and mixture of the chains. In a
preliminary analysis in section 4.2.3 several independent MCMC chains are run with
different starting values. This serves as additional information to confirm convergence
and to ensure that the chains are not too short. In all subsequent analyses, a single
MCMC chain is used and the initial values are chosen as follows:

G = 0p5xps

0 =T, and QY = (T fors=1,..,5
~0 =(0,...,0) for s =1,..., S

B~ U[-0.02,0.02) for i =1,...p, s =1,..., S

S,i

hg?g) ~ g(l, ].) for s = 17 ,,,,S’ g = 1, - Js-
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Chapter 4

Results

This thesis is motivated by the assumption that the present data are heterogeneous
due to known patient subgroups whose covariates differ in their relation to survival
outcome. Some subgroups may be closer related to one another while others are
not. Thus, sharing information between subgroups in order to increase sample size is
reasonable when supported by data. Main objectives of this thesis are the prediction of a
patient’s survival function based on potentially high-dimensional covariates such as gene
expression data, and simultaneously, the inclusion of variable selection and consideration
of heterogeneity in modeling. The aim is to provide a separate prediction model for
each subgroup that allows the identification of common as well as subgroup-specific
effects and has improved prediction accuracy over standard approaches. To accomplish
this, a classical frequentist and a Bayesian Cox regression model are proposed and
compared to a standard subgroup model and to a standard combined model. The
former is based only on patients of the subgroup of interest, while the latter incorporates
patients from all subgroups and thus, benefits from the increased sample size. However,
pooling data without taking into account heterogeneity may result in biased estimates,
and subgroup-specific effects may remain undetected. All models are applied to both
simulated and real data with different lung cancer studies as subgroups, including
survival endpoint and clinical as well as gene expression data as covariates. Information
on these lung cancer studies is provided in section 2.2.

The statistical software R is used for all computations (version 3.4.1 for sections
4.1.2 and 4.1.2.2, and version 3.4.3 for all remaining analyses), and the R package
batchtools (version 0.9.6 for sections 4.1.2 and 4.1.2.2, and version 0.9.8 for all
remaining analyses) for parallelization.

Section 4.1 presents the results of the frequentist models. In subsection 4.1.2 the
proposed model is evaluated through simulations and compared to standard Cox models
and a weighted Cox model with fixed weights. In subsection 4.1.2.1 different types
of Cox models with lasso penalty are compared to componentwise likelihood-based
boosting for Cox models with regard to prediction performance based on simulated
data. The case of unbalanced subgroup sizes is considered in one simulation study in
subsection 4.1.2.2, including the comparison of oversampling techniques in classification
to potentially improve performance of weights estimation in the proposed weighted
Cox model. Finally, the frequentist Cox models are applied to real lung cancer studies
(subsection 4.1.3). Results of the Bayesian approaches are reported in section 4.2,
beginning with two preliminary analyses based on simulated data for the choice of
hyperparameters and assessment of convergence of the proposed model. This is followed
by an evaluation of the Bayesian Cox models in simulation studies (subsection 4.2.4)
and in application to real lung cancer studies (subsection 4.2.5).
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4.1 Frequentist subgroup model

The proposed frequentist subgroup model uses patients from all subgroups for training
but assigns them individual weights in the likelihood based on their subgroup affiliation.
Weights for a specific subgroup s are defined as %, with z being the observed set of
covariates, survival time and status (event indicator). p(s) is estimated by the relative
frequency of subgroup s and p(s|z) by classification, such that a patient who is likely
to belong to the subgroup of interest receives a higher weight in the subgroup-specific
likelihood. More details are provided in section 3.2. Different classification methods that
are appropriate for multi-class problems and high-dimensional covariates are compared
with respect to their predictive quality. In this context, sparsity and interpretability
of the classification model are unimportant. The focus is on prediction performance
only, and the ability to discriminate between differing subgroups. In the following
simulation studies similarities between subgroups are known and performance of weights
estimation is assessed by the accuracy (ACC) and the area under the ROC curve (AUC).
Multinomial logistic regression with lasso and ridge penalty, and random forest are
considered as classification methods. To potentially improve prediction performance,
two further parameters for weights estimation are compared. First, the inclusion of
pairwise interactions between each (genomic) covariate and the survival time, which
corresponds to the assumption that covariates of different subgroups may be related
to different prognosis. Second, replacing the survival time with the Nelson—Aalen
estimator of the cumulative hazard rate (HR), which has been recommended by White
and Royston (2009) to improve multiple imputation of missing data. In summary, the
following three parameters resulting in 12 different combinations for the estimation of
subgroup weights are studied:

e Method: multinomial logistic regression with lasso (lasso) or ridge (ridge) penalty,
or random forest (7f)

e Interactions: including (intera.) or excluding (no intera.) interactions between
covariates and survival time

e Cumulative HR: replacing the survival time with the cumulative HR (cumHR) or
not (no cumHR).

The proposed weighted approach is compared to the standard combined and subgroup
model, as well as a weighted Cox regression model with different fixed weights as
proposed by Weyer and Binder (2015). Observations belonging to a certain subgroup
are assigned a weight of 1 in the subgroup-specific likelihood, while all other observations
are down-weighted with a constant weight w € (0, 1). Since sparsity and interpretability
of the resulting Cox models are important besides good prediction performance, all Cox
models use a lasso penalty for variable selection. To sum up, the following types of Cox
regression models are compared:

e Weighted model with estimated weights (different parameters for weights estima-
tion)

e Weighted model with fixed weights w = 0.1,0.2,...,0.9

e Standard subgroup model (sub), using only patients of a specific subgroup
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e Standard combined model (all), using patients of all subgroups. The subgroup
indicator is included as additional covariate.

Figure 4.1 provides a schematic representation of the analysis pipeline. First, the
whole data are randomly split into a training (with proportion 0.632) and a test data
set. Subsampling is done stratified by subgroup and event indicator, to take different
subgroup sizes and censoring proportions into account. This procedure is repeated 100
times. Numeric covariates, in particular gene expression variables, are standardized
before model fitting and evaluation to have zero mean and unit variance. Parameters
of the training data set (mean and standard deviation of each variable) are used to
scale the training and test data set. For the standard subgroup model each subgroup is
standardized separately, whereas for the weighted model and combined model training
data of all subgroups are pooled. Individual subgroup weights are estimated from the
training data with 10-fold cross-validation (CV). Next, the combined and weighted
Cox models are fitted based on the training data of all subgroups, while the standard
subgroup model is based on the training data of the respective subgroup only. Finally,
the prediction performance of the estimated Cox models with respect to a certain
subgroup is evaluated using only the test data of this particular subgroup. The R
package mlr (version 2.11 for section 4.1.2; and version 2.12 for all remaining analyses)
is used as a framework for weights estimation, Cox model fitting and evaluation by
C-index.

Complete data
(all subgroups) 1. Subsampling
stratified by subgroup and

- - - event indicator;

repeat 100
[ Training set ] <—1—> [ Test set ] P X
2a. 2b. 2a. Weights estimation
multinomial logistic regression
with lasso/ ridge or random
forest, using 10-fold CV
[ Subgroup weights ] 2b. Fixed weights
w=0.1,0.2, ..., 0.9
3. 3.1 3.
MV Y
3. Cox regression model
Subgroup Weighted Combined with lasso penalty
model model model
Y d 4. 4. Prediction performance
d C-index, Brier Score
[ Model evaluation ]

FIGURE 4.1: Analysis pipeline for the frequentist setting.
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4.1.1 Simulation setup

In the following simulation studies, four subgroups (1A, 1B, 2A, 2B) are considered
that belong to two differently distributed groups: group 1 including subgroups 1A
and 1B, and group 2 including subgroups 2A and 2B. Within each group, the same
parameters are chosen for data simulation. In the following, the index ¢* = 1,2 denotes
the group. Survival data are simulated from a Weibull distribution according to Bender,
Augustin, and Blettner (2005), with scale 1+ and shape kg« parameters estimated from
two independent lung cancer data sets (GSE37745 and GSE50081). Therefore, survival
probabilities at 3 and 5 years are computed using the Kaplan-Meier estimator for both
lung cohorts separately. The corresponding probabilities are 57% and 75% for 3-years
survival, and 42% and 62% for 5-years survival, respectively. Individual event times for
group ¢g* are simulated as

Tg* ~/

(_ log(U)

Ng+ €xp(@y-

1/ kg
.U ~Ulp, 1],
ﬁg*)) [ ]

with true effects 8. € R, g* = 1,2. Noninformative censoring times C,« are randomly
drawn from a Weibull distribution with the same parameters as for the event times,
resulting in approximately 50% censoring rates in both groups. The individual observed
event indicators and times until an event or censoring are defined as 6, = 1(T,« < Cy-)
and T,» = min(T,., C,.).

The following simulation studies only consider covariates that represent characteris-
tics of gene expression data, particularly the relatively small sample size with respect
to the number of variables. Gene expression data x, € R"*? are simulated from a
multivariate normal distribution with mean vector p . and covariance matrix 3. The
same p genes are assumed to be measured in all subgroups with an equal number of
observations n. In section 4.1.2.2 the case of differing sample sizes across subgroups is
studied. In all simulated scenarios the first 12 genes are assumed to be prognostic in
at least one of the two groups and subsequently termed prognostic genes. Their true
effects on the survival outcome are

Gene
1 2 3 4 5 6 7 8 9 10 11 12
6,11 1 0 0 -05 05 075 025 -1 -1 -0.75 -0.25
B,/0 0 1 1 05 -05 025 075 -1 -1 -0.75 -0.25

including subgroup-specific effects (genes 1 to 4), opposite effects (genes 5 and 6), effects
in the same direction but of different size (genes 7 and 8), and joint effects of varying
sizes (genes 9 to 12). These effects are chosen with alternate signs so that they sum up
to zero, resulting in reasonable simulated survival times. In settings where p > 12, all
remaining genes are assumed to be noise and unrelated to survival outcome in both
groups (f13 = ... = B, = 0). The amount of added noise is varied to test the ability of
the proposed model to identify important covariates in the presence of noise. Elements
of the mean vector p . are defined by a linear function with parameter € € [0, 1] that
reflects the degree of similarity between the two groups. u = 4 + 4 - € is assigned to
genes with a strong effect on the response (|| = 1), u =4 + 2 - € corresponds to genes
with a moderate effect (|3 = 0.5,0.75), and p = 4 to genes with a weak or no effect
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(|8 = 0,0.25). This choice relies on the assumption that prognostic genes have a higher
expression level than noise genes. The magnitude of p is chosen in accordance with real
Microarray gene expression data, where gene expression values typically range from 4
to 12 after transformation to log, scale.

For one specific simulation setting survival and gene expression data of all subgroups
are illustrated in Figure 4.2 by means of a Kaplan-Meier plot of estimated survival
functions, and PCA (Principal Component Analysis) plots based on gene expression
data with € = 0 or € = 1 and survival times. When ¢ = 0, gene expression data of all
subgroups are simulated from the same distribution and groups 1 and 2 differ only in
their simulated survival times. When ¢ = 1, both groups also differ in gene expression.
Specifically, different mean values are used to simulate expression data of prognostic
genes. The PCA plots indicate that all subgroups are inseparable in the directions
of the first two principal components (PCs) when € = 0, in contrast to e = 1, where
subgroups 1A and 1B cluster together, as do subgroups 2A and 2B. According to the
second PC, all subgroups cannot be distinguished from each other. But in the direction
of the first PC, group 1 and 2 are clearly distinguishable. This effect becomes more
evident when the sample size is large compared to the number of genes. However, the
proportion of explained variance in both PCA plots is very small.

A)0.15- B
(A) ( )0_10_ L.
0.10-
9 < 0.05;
Q 0.054 ’r:
= = 0.00
S 0.00- S oo
L -0.05{ a
_0.101 -0.10- -
-0.1 0.0 0.1 -0.04 0.00 0.04
PC1 (1.78%) PC1 (4.62%)
(C)
1.001
>
= Subgrou
5 0.75 group
o 1A
o
S 0.50 = 1B
g 2A
2 0.251 ; —
(/3) m 2B
0.00-

0 10 20 30 40
Survival time
FIGURE 4.2: Descriptive analysis of simulated subgroup data. PCA plot based on
uncorrelated gene expression data and survival times with n = 200, p = 100, and

(A) e =0, (B) e =1. (C) Kaplan-Meier plot of estimated survival functions for all
subgroups.
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All subgroups share the same covariance matrix 3 € RP*P. Five different types of
covariance matrices are considered in the following. Assuming that all genes within
each subgroup are independently N (0, 1) distributed, corresponds to X = I, (termed
uncorrelated). Alternatively, a blockwise autoregressive correlation structure is generated
(termed block), where each of the 12 prognostic genes is assigned to a block of size
q= {%J of non-prognostic genes. If p > 12¢+ 12, the remaining non-prognostic genes
are uncorrelated. Prognostic genes are uncorrelated with each other and have correlation
0.5%, i = 1, ..., ¢ with their respective non-prognostic genes. Within each block of non-
prognostic genes, genes i and j are pairwise correlated with 0.5/, i, j =1,...,q. For
the purpose of illustration, assume there are p = 12 genes whereof the first 3 genes are
prognostic and the last 9 genes are non-prognostic (¢ = % = 3). Then the correlation
structure would be as follows

1 0 0 ;05 052 05%, 0 0 0, 0 0 0
1 0 !0 0 0 05 05 05°' 0 0 0
0 0 1 10 0 01 0 0 0 105 05% 0.5°
05 0 0,1 05 05,0 0 0,0 0 0
0.52 0 0 '05 1 05! 0 0 0 ' 0 0 0
0.5 0 0 1052 05 1 10 0 0 1 0 0 0
0005 0,0 0 0105 05,0 0 o0
0 052 0 ! 0 0 0!05 1 05! 0 0 0
(008 000 0 005 05 1.0 0 0
0 0 05, 0 0 0 0 0 0 1 05 052
0 0 052 0 0 0,0 0 0 105 1 05
0o 0 050 0 O0!'0 0 0 105 05 1

Further, two adaptions of this block correlation structure are used, by removing the
correlations between each prognostic gene and its corresponding non-prognostic genes
(blockdiag), and by setting all pairwise correlations smaller than 0.1 to 0.1 (min01). In
addition to the four artificial correlation structures, the shrinkage correlation estimator
by Schéfer and Strimmer (2005) is applied (termed shrinkage). The empirical correlation
matrix obtained from the combined gene expression data of two lung cancer cohorts
(GSE37745 and GSE50081) and 1000 randomly selected genes is shrunken towards the
identity matrix. The shrinkage correlation estimate is defined once (see Figure B.1 in
the Appendix) and when p = 100, only the first 100 row and column entries are used.

4.1.2 Simulation studies

This section reports the results of two simulation studies that examine the effect of
varying number of genomic covariates p and sample sizes n, as well as different covariance
structures X and degrees of similarity ¢ between the two distinct groups. The focus
is on high-dimensional settings where sample size is small compared to the number
of variables, a typical characteristic of gene expression data. Table 4.1 presents the
parameter combinations of the first simulation study. For p = 12 only uncorrelated
covariates are considered (X = I,4,). This results in 66 parameter combinations for
data simulation.

Netzer (2013) estimates the probability p(s|z) in the numerator of the weights
from the complete training data, which leads to overfitting. This effect is particularly
pronounced when using random forest, as illustrated in Figure B.2 in the Appendix.
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For multinomial logistic regression with lasso or ridge penalty, the overfitting effect is
much weaker but becomes more evident for larger differences between subgroups (e = 1).
As a solution to this problem, 10-fold cross-validation is applied to the training data
to obtain predictions for p(s|z). Figure 4.3 displays boxplots of the estimated weights
across all training sets for two selected simulation scenarios with e = 0 and € = 1. The
x-axis represents the true subgroup membership of each observation, and each of the
four plots shows the estimated weights in each of the four subgroup models (predicted
probabilities of belonging to a certain subgroup divided by the subgroup proportion).
Results of all methods (random forest, lasso, ridge) and parameters (with/without
interactions/cumulative HR) for weights estimation do not differ much. The largest
difference is due to e. When € = 0, multi-class classification fails to distinguish the two
groups. All observations are assigned a weight of around one in all subgroup models.
When € = 1, however, classification succeeds in providing an almost perfect separation
between both groups (Figure 4.3).

Parameter | Values (per subgroup)

n 50, 200, 1000

P 12, 100, 1000

> uncorrelated, block, blockdiag, min01, shrinkage
€ 0,1

TABLE 4.1: Parameter values in the first simulation study.

The area under the ROC curve (AUC) and the accuracy (ACC) are used to assess
the performance of weights estimation in all simulation settings. A distinction is made
between groups 1 and 2 only (not between subgroups A and B). Both performance
measures are computed based on cross-validated training data and test data. Results
of both measures based on training and test data are very similar. Hence, only AUC
results from cross-validated training data are shown. Mean AUC values are depicted
in Figure 4.4 for e = 0, and in Figure B.3 in the Appendix for ¢ = 1. When € = 0 the
AUC mostly lies between 0.5 and 0.6, indicating that prediction performance is not
much better than random and that discriminatory power with regard to both groups is
low. The performance is better in low-dimensional settings (p = 12) and for increasing
sample size in high-dimensional settings (p = 100,1000). Random forest including
interactions and cumulative HR is the best method in terms of the highest AUC values.
In contrast, lasso and ridge exhibit better performance without cumulative HR. For
€ = 1 the mean AUC is one, with the exception of ridge for p = 1000 and n = 50. This
suggests an (almost) perfect discrimination between the two groups, independent of the
parameter settings and methods.

To further examine the effect of the parameter settings on classification performance,
a regression tree is computed with AUC as response and all parameters for data
simulation and weights estimation as covariates (see Figure 4.5). The most important
splitting variable leading to the largest difference in AUC is e. The performance of
ridge is slightly worse than lasso and random forest. When € = 0 and n < 1000, random
forest outperforms both multinomial logistic regression approaches. Larger sample size
n and smaller number of covariates p also result in better prediction performance. The
same regression tree is obtained for AUC based on all test sets, and for ACC.
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FIGURE 4.3: Weights estimated with random forest without interactions and cumulative
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For each parameter combination for data simulation, the top five combinations of
methods and parameter settings for weights estimation in terms of highest mean AUC
(averaged over all cross-validated training sets) are summarized in Table C.2 in the
Appendix. When € = 0, random forest with interactions and cumulative HR provides
almost always the best prediction performance. When € = 1, all combinations perform
equally well with a mean AUC of one.

0.767
n=79.2e+3

epsilon=0
0.54 0.994
n=39.6e+3 n=39.6e+3

n = 50,200 method = ridge
0.519 0.581 0.983 1
n=26.4e+3 n=13.2e+3 n=13.2e+3 An=26.4e+3
method = lasso,ridge method = ridge n =50
0.503 0.55 0.541 0.602 0.952 0.999
n=17.6e+3) (n=8800 n=4400 n=8800 n=4400 n=8800
p =100,1000 p =100,1000 p =1000 p =1000

0.54 0.643 0.531 0.642 0.573 0.625 0.896 0.999
n=8000 n=800 n=4000 n=400 n=4000 n=4800 n=2000 n=2400

corr type = shrinkage

0.793 0.921
n=400 n=1600

FIGURE 4.5: Regression tree with AUC based on cross-validated training data as response
and all parameters for data simulation and weights estimation as covariates. Each
box shows mean AUC and sample size in the corresponding node.

Next, results of all Cox models are regarded and weighted Cox models, including
fixed or estimated weights (with different methods for weights estimation), are compared
to the standard combined and subgroup model. To begin with, Cox model fits are
evaluated by looking at the estimated regression coefficients and the corresponding mean
inclusion frequencies for variable selection stability. Scatterplots of mean estimated
regression coefficients of the first 12 prognostic genes (mean across all training sets
and subgroups A, B) for p = 100 uncorrelated covariates, n = 50,200 and € = 0, 1 are
displayed in Figure 4.6. Similar results are obtained for other correlation structures.
When € = 0, the combined and weighted model with estimated weights provide very
similar results. They identify common effects better than the subgroup model when
the sample size is small (n = 50) and p = 12,100. When n = 50 and p = 1000, all
models fail to correctly estimate the coefficients of the prognostic genes and estimate all
effects close to zero. For n > 200 the subgroup model detects common effects at least
as well as the other two model approaches and outperforms the latter in identifying
subgroup-specific effects. The combined and estimated weights approach tend to average
effects across all subgroups, which becomes apparent with regard to subgroup-specific
effects. When € = 1, the weighted model with estimated weights improves in detecting
subgroup-specific effects and, in this regard, moves further away from the combined
model. It performs similarly well as the subgroup model when the sample size is large
(n > 200), and outperforms the latter when the sample size is small compared to the
number of covariates (n = 50, p > 12, or n = 200, p = 1000). The best parameter
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setting for weights estimation is random forest including interactions and cumulative HR,
followed by the lasso. Using fixed weights in the Cox model results in subgroup-specific
effects that mostly lie between the subgroup and combined model (depending on the
weight size).

Corresponding mean inclusion frequencies (MIFs) of the prognostic genes are shown
in Figure B.4 in the Appendix. The MIF of a certain covariate is defined as the
proportion of subsampling data sets in which that covariate is included in the model
(Bj # 0). MIFs agree with the results of estimated regression coefficients. For joint
effects, MIFs of the combined and weighted model with estimated weights are higher
than MIFs of the subgroup model when the sample size is small (n = 50). For increasing
sample size the MIFs of all models increase too. When e = 0, the MIFs of the estimated
weights approach are similar to the combined model. For subgroup-specific effects and
small sample size, they are higher than the MIFs of the subgroup model. However, this
also means that subgroup-specific effects that are present in only one group and null in
the other group are more often erroneously selected in the models of the latter group by
the combined and weighted approach. In contrast, when € = 1, MIFs of the estimated
weights approach are closer to the subgroup model regarding subgroup-specific effects
and closer to the combined model with respect to common effects.

The Manhattan and Euclidean distance between the estimated and true regression
coefficients are computed to summarize information on the fitted Cox models across all
covariates. Similar results are obtained for both distance measures. Thus, only results
of the Manhattan distance are shown. Table C.3 in the Appendix outlines the top five
methods with the best Cox model fit in terms of smallest mean Manhattan distance
(averaged over all training sets and subgroups) for each parameter combination for
data simulation. In all situations where p > 12 the distance is computed twice, either
based on the first 12 prognostic genes or based on all p genes. When € = 0, p < 100,
n > 200, or p = n = 1000, then standard subgroup analysis performs best, followed by
fixed weights of increasing size. When sample size is small relative to the number of
covariates (p < 100, n = 50, or p = 1000, n < 1000), mainly fixed weights of different
size are among the top five methods. For e = 1, n = 50, p < 100 mostly estimated
weights perform best, followed by fixed weights w > 0.5. When p = 1000, fixed weights
w > 0.5, as well as the combined model, are most frequently among the best methods,
followed by estimated weights with random forest and ridge. For increasing sample size
the standard subgroup model and estimated weights approach outperform the combined
model and fixed weights. The standard subgroup model provides the best model fit for
e =1, n=1000, p < 100.
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Finally, the prediction performance of all Cox models is assessed in terms of C-index
and integrated Brier score (IBS). For all parameter settings and model types, the mean
C-index (averaged across all test sets and subgroups) is displayed in Figure 4.7. The
corresponding plot for the mean IBS is depicted in Figure B.5 in the Appendix. High
values of the C-index (close to one) indicate a good predictive discrimination, in contrast
to the IBS, where small values (close to zero) speak for a high predictive accuracy.
Benchmark values for the Brier score are %, i, and the Brier score of the Kaplan-Meier
estimator of a null model without covariates. For the C-index a benchmark value is
0.5 corresponding to random prediction. Figure 4.7 and Figure B.5 (in the Appendix)
show that for € = 0 the combined model and estimated weights approaches have the
same prediction performance, that is better compared to the standard subgroup model
when sample size is small (C-index: n = 50, p > 12; IBS: n = 50, p < 1000, or
n < 1000, p = 1000). However, when the sample size increases (n > 50, p < 1000, or
n = p = 1000), the standard subgroup model outperforms the other methods. When
e =1 and p < n, the combined model performs worse than the weighted model with
estimated weights. In all other situations, both approaches perform similarly well. The
estimated weights approach performs better than the standard subgroup model when
n = 50 and otherwise provides comparable predictive ability.
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FIGURE 4.7: Mean C-index for the Cox model, averaged across all test sets and subgroups.
Comparison of different model types (color), parameter settings for weights
estimation (line type), and varying parameters for data simulation (p, n, ) with
(A) e=0, (B) e=1.
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FIGURE 4.7: Mean C-index for the Cox model, averaged across all test sets and subgroups.
Comparison of different model types (color), parameter settings for weights
estimation (line type), and varying parameters for data simulation (p, n, ¥) with
(A) e=0, (B) e=1 (cont.).

The most important parameter settings and model types that exhibit the largest
differences in prediction performance are summarized in a regression tree with C-index
and IBS, respectively as response (Figures B.6 and B.7 in the Appendix). Apart from
subgroup membership, all parameters for data simulation, weights estimation and Cox
model types are included as covariates. The most important splitting variable is the
sample size (n ; 50), followed by the number of covariates (p ; 1000). The larger n and
smaller p, the better the predictive ability. When n = 50 and p = 1000, the subgroup
model and small fixed weights (C-index: w < 0.3, IBS: w < 0.2) perform worst. The
effect of different correlation structures among covariates is ambiguous. The largest
C-index is obtained for n = 1000, ¢ = 1 and the subgroup or weighted Cox model with
estimated or fixed weights w < 0.4. The IBS is smallest for n > 50.

For each parameter combination for data simulation, the top five methods with
respect to prediction performance in terms of highest mean C-index or smallest mean
IBS (averaged over all test sets and subgroups) are summarized in Tables C.4 and C.5
in the Appendix. When € = 0, n > 200, p < 1000, or n = p = 1000 the performance
of the standard subgroup model is almost always best and followed by fixed weights
of increasing size. For n = 200 and p = 1000, or n = 50 and p = 12 fixed weights
mainly with w < 0.6 have the best predictive ability. For n = 50 and p > 12 fixed
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weights with a trend towards larger values and estimated weights perform better than
standard approaches. When ¢ = 1 and n > 200 the standard subgroup model still
outperforms the other models in most cases but is closely followed by the estimated
weights approach. For n = 50 all weighted Cox models provide the best predictions,
however, when p = 1000 the combined model and larger fixed weights (w > 0.5) improve
over the other approaches. Comparing the prediction performance of different methods
for weights estimation, lasso and random forest tend to be better than ridge.

Finally, all Cox models are compared regarding their computation time and memory.
Figure B.8 in the Appendix shows that computation time and memory increase slightly
for larger n when the number of covariates is small to moderate (p = 12,100). However,
in high-dimensional settings (p = 1000) both numbers rise exponentially for increasing n.
Estimated weights approach with lasso takes the most time, followed by ridge, random
forest, and fixed weights. Standard, unweighted approaches require the least time and
memory, with only small differences between the subgroup and combined model. The
largest amount of memory is consumed by ridge, followed by lasso, random forest, and
all remaining models.

In summary, estimation of subgroup weights with regard to discrimination between
differing groups works well for larger differences between the two groups (e = 1). When
all subgroups are very similar (e = 0), classification methods fail to distinguish the two
groups and all observations are similarly weighted with a weight around one, which
corresponds to the standard combined model. Random forest including interactions
and cumulative HR performs better than multinomial logistic regression, with a ten-
dency of lasso towards improved results. Results of different Cox models in terms of
estimated regression coefficients, variable selection stability and prediction performance
indicate that for ¢ = 0 the combined and weighted model with estimated weights
perform very similar and have larger power to detect common effects than the standard
subgroup model when the sample size is small (n = 50). However, they tend to average
subgroup-specific effects across subgroups which results in biased estimates. When
sample size is large (n > 200) the standard subgroup model outperforms the other
approaches regarding predictive ability and identification of important covariates. For
€ = 1 the weighted model with estimated weights improves in correctly estimating
subgroup-specific effects. In situations where sample size is small (n = 50) or smaller
than the number of covariates (n < p), the weighted and combined model provide better
prediction performance than the standard subgroup model. For n > 200 the proposed
approach with estimated weights as well as the standard subgroup model perform best.

Results of the first simulation study have revealed that sample size n and degree
of dissimilarity between groups € have the strongest impact on the performance of the
weights estimation and Cox models. Thus, a second simulation study is performed to
investigate the effect of both parameters more closely by choosing a larger number of
different parameter values. Different correlation structures have shown some variation,
however, no clear conclusions can be drawn. Therefore, only block correlation (for
p > 12) and uncorrelated covariates are subsequently considered. Due to computation
time, only p < 1000 is further examined. All parameter combinations in the second
simulation study (in total 252) are summarized in Table 4.2.
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Parameter | Values (per subgroup)

n 20, 30, ..., 100, 200, 500, 1000
D 12, 100

by uncorrelated, block

¢ 0,0.1, ... 05 1

TABLE 4.2: Parameter values in the second simulation study.

First, the performance of weights estimation is assessed in terms of AUC from cross-
validated training data. As before, results of AUC and ACC based on cross-validated
training data and test data are very similar. Mean AUC values (averaged over all
cross-validated training sets) for different parameter settings are depicted in Figure B.9
in the Appendix. For € = 0 the highest AUC is obtained with random forest including
interactions and cumulative hazard rate. In contrast to random forest, ridge and lasso
perform best without cumulative HR. The same applies to ¢ = 0.1 and n < 100. For
increasing sample size n, the performance of ridge and lasso becomes better compared
to random forest, with a trend towards slightly improved results for ridge over lasso.
Including interactions is no longer improving classification performance. For larger
values of € performance tends to be better without interactions and without cumulative
HR, however, these parameters result in only minor differences. In low-dimensional
settings (p = 12), ridge exhibits the highest AUC, followed by lasso. When p = 100
and n < 50 random forest performs almost always best. For n > 50 lasso performs
best and for large sample size (¢ = 0.2 and n = 500, or € = 0.3,0.4 and n = 200, or
e = 0.5 and n = 100) ridge is equally good as lasso. For ¢ = 0.5 the AUC is close to
one except for p = 100 and n < 50, and for e = 1 the AUC is approximately one in
almost all cases. A regression tree with AUC as response and all parameters for data
simulation and weights estimation as predictors shows that ¢ > 0.3 leads to an almost
perfect discrimination between both groups (AUC>0.9). ¢ =0, or ¢ = 0.1 and n < 50
display the worst performance (AUC<0.6) (Figure 4.8).

0.838
n=302e+3

epsilon =0,0.1

0.578 0.942
n=86.4e+3 n=216e+3

epsilon =0 epsilon = 0.2
0.524 0.632 0.81 0.975
n=43.2e+3 n=43.2e+3 n=43.2e+3 n=173e+3

n <55 n<45 epsilon =0.3
0.549 0.673 0.699 0.847 0.931 0.99
n=14.4e+3 n=28.8e+3 n=10.8e+3 n=32.4e+3 n=43.2e+3 n=130e+3

FIGURE 4.8: Regression tree with AUC based on cross-validated training data as response
and all parameters for data simulation and weights estimation as covariates. Each
box shows mean AUC and sample size in the corresponding node.
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Next, results of all Cox models are evaluated with respect to estimated regression
coefficients. Scatterplots of mean values (averaged across all training sets) indicate
that the quality of the model fit strongly depends on the parameters €, n and p. The
standard combined model and the estimated weights approach identify common effects
equally well with larger power compared to the standard subgroup model in all scenarios
with p = 100 and n < 100. Results for fixed weights lie between the standard subgroup
and combined model. The subgroup model tends to estimate subgroup-specific effects
better than the estimated weights approach, especially for increasing sample size, and
for n > 200 the subgroup model always outperforms the other model approaches. For
increasing values of € and n the model with estimated weights detects subgroup-specific
effects increasingly better than the combined model, and similarly well or even better
than the standard subgroup model when € > 0.3, p = 100, n < 60. These findings agree
with the corresponding mean inclusion frequencies (MIFs), that increase with growing
sample size. The standard combined model and the estimated weights approach mainly
have larger MIFs than the standard subgroup model. This has a positive impact on the
detection of common effects, but subgroup-specific effects that are present in only one
group may be biased towards and overestimated in the other group. For increasing e,
the MIFs of the model with estimated weights move closer to the MIFs of the subgroup
model. This effect is stronger for lasso compared to ridge and random forest.

Prediction performance of the Cox models is assessed by C-index and integrated
Brier score (IBS). Mean values of the C-index (averaged over all test sets and subgroups)
for all model types and parameter settings are displayed in Figure 4.9 for ¢ = 0.2 and in
Figure B.10 in the Appendix for all remaining values of ¢. For ¢ = 0 the combined and
weighted model with estimated weights exhibit the same performance. For increasing
€ and n the weighted approach performs better than the combined model. Lasso and
ridge improve compared to random forest for larger n. The standard subgroup model
has worse predictive ability than the combined and weighted model when p = 100 and
n < 100. For n > 100 the subgroup model performs similarly well or better (¢ < 0.2)
than the model with estimated weights. The prediction performance of fixed weights
lies between the standard combined and subgroup model. Similar results are obtained
for the mean IBS (Figure B.11 in the Appendix).

These findings are confirmed when looking at the top five methods with the highest
prediction performance in terms of mean C-index and mean IBS for each simulated
data setting. For n > 200 the standard subgroup model performs best, followed by
fixed small weights w = 0.1,0.2 (e < 0.2) or lasso weights (¢ > 0.2). When n is small,
estimated or fixed weights perform best, with fixed weights more frequently for € < 0.2
and estimated weights for larger e. Random forest and ridge tend to perform better
than lasso for small sample sizes, and lasso vice versa for larger n (results not shown).

Regression trees with C-index and IBS as response, and all model types and
parameter settings as covariates are shown in Figures B.13 and B.12 in the Appendix.
As mentioned before, the most important splitting variable is sample size (n ; 50). The
best prediction quality is achieved for n > 100 under the subgroup or weighted model
with estimated or fixed weights w < 0.4. For 50 < n < 100 performance is better for
small p. The standard subgroup model performs worst for p = 100 and n = 30, 40, 50.
In most cases, the predictive ability of uncorrelated covariates is worse than for the
block correlation structure, which is also supported by a scatterplot of the mean C-index
(Figure B.14 in the Appendix).
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e=0.2.

In conclusion, estimation of subgroup weights improves with increasing differences
between groups (¢ > 0) and increasing sample size. Random forest performs better
than multinomial logistic regression for small € or low sample sizes (p = 100 and
n < 50). The larger n the better the discriminative ability of lasso and ridge. The
inclusion of interactions and cumulative HR in the classification model only improves
predictive quality of random forest for € < 0.1. Lasso and ridge tend to perform better
without cumulative HR. The prediction performance is high for ¢ > 0.3 and almost
perfect discrimination between both groups is reached for ¢ > 0.5. Main results of
the Cox models can be summarized as follows. When sample size is low compared to
the number of covariates (n < 100 and p = 100), the standard combined model and
the weighted model with estimated weights identify common effects better than the
standard subgroup model and have a higher predictive ability. However, for increasing
sample size subgroup-specific effects are more precisely estimated by the standard
subgroup model and for n > 200 this approach exhibits the best performance. When
differences between subgroups become larger, the proposed approach with estimated
weights improves over the combined model in identifying subgroup-specific effects and
prediction performance. It performs similarly well as the standard subgroup model
when € > 0.2 and even better for small sample sizes. Results of the weighted Cox model



76 Chapter 4. Results

with fixed weights lie between the standard subgroup and combined model. Fixed
weights tend to perform better than estimated weights when € < 0.2. With regard to
correlations between covariates, there is a trend towards improved results under the
block correlation structure compared to uncorrelated covariates.

4.1.2.1 Results with CoxBoost

Results of the first simulation study in the previous section, obtained by Cox regres-
sion models with lasso penalty, are now compared to componentwise likelihood-based
boosting for Cox models implemented in the R package CoxBoost (version 1.4). This
approach also performs variable selection by using a penalized partial log-likelihood.
The algorithm starts with all parameter estimates (regression coefficients) set to zero.
In each boosting step, univariate candidate models are considered for each covariate
and the best candidate variable is determined that improves the fit most with regard
to the penalized score statistic. Only this variable is updated in the corresponding
boosting step by adding the current parameter estimate to the estimate from the
previous boosting step. Parameter estimates of all other covariates remain unchanged.

There are two tuning parameters: the number of boosting steps corresponding to the
number of updates for the estimated regression coefficients, and the penalty parameter
in the partial log-likelihood controlling the size of the updates. The former is optimized
by 10-fold cross-validation. In accordance with Weyer and Binder (2015) and Matsui,
Buyse, and Simon (2015), the penalty parameter is set to Y., 6,,(1/v — 1) which results
in updates approximately the size of v times the maximum partial likelihood estimates.
0., is the binary event indicator for observation m. The parameter v is selected in
increments of 0.01 from 0.1 up to 0.01, such that the optimal number of boosting steps
determined by cross-validation is larger than 50 as suggested in Tutz and Binder (2006)
and Binder et al. (2009). The range of values v is chosen according to Matsui, Buyse,
and Simon (2015) with lower limit v = 0.1 being the default value in the corresponding
R package.

The componentwise likelihood-based boosting algorithm (CoxBoost) is applied to
the same training and test data, and uses the same estimated weights as before in the
Cox lasso model. Thus, differences in the results are only due to different Cox model
algorithms and not due to variation in the underlying data. For reasons of computing
time, only simulation settings with p < 1000 covariates are considered for subsequent
comparisons. Results of both Cox algorithms are averaged over all subgroups and
subsampling data sets. They are compared with respect to prediction accuracy (mean
C-index and mean IBS), as well as the mean distance between true and estimated
regression coefficients. Prediction performance results are displayed in Figure 4.10.
They show that Cox lasso outperforms CoxBoost when including weights (particularly
estimated weights) in settings with e = 1. This refers to situations where both groups
are better distinguishable and the proposed Cox model with estimated weights improves
over the other approaches. In all other cases, both algorithms have similar performance.
These findings are confirmed when looking at Manhattan distances of the estimated
regression coefficients in Figure B.15 (in the Appendix). Here it becomes more clear
that differences between both methods also depend on the dimension of data, with large
sample size compared to the number of covariates leading to larger differences. Results
based on the Euclidean distance are similar.
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FIGURE 4.10: Mean C-index (top row) and mean IBS (bottom row) (averaged over all

4.1.2.2 Unbalanced subgroup sizes

subgroups and test sets) for CoxBoost vs. Cox model with lasso penalty.

Hitherto, the same sample size has been assumed for all subgroups. However, this is
rarely the case in practice. In this section, the effect of unbalanced subgroup sizes on
prediction performance of weights estimation and Cox models is investigated. Therefore,
subgroup 1A is simulated with n") = 50 observations and the remaining three subgroups
are generated with increased sample size of n(? = 100 and n® = 200, respectively.
The degree of similarity between group 1 and 2 is varied by choosing ¢ = 0,0.2. In all
settings, the number of covariates is p = 100 with underlying block correlation structure.
Two oversampling methods (random oversampling and synthetic minority oversampling
technique,
estimation of subgroup weights, and results are compared to classification without
oversampling. Oversampling increases sample size of the minority class 1A so that it is

balanced with respect to the other subgroups.

Predicted probabilities of subgroup membership depend on sample sizes as shown in
Figure B.16 (in the Appendix). As expected, predicted probabilities for subgroup 1A are
always smaller compared to the other subgroups. However, this effect is compensated
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for when predicted probabilities are divided by the relative frequencies of each subgroup
to obtain the estimated weights (Figure B.17 in the Appendix). Similar results are
obtained for n® = 100, 200, and oversampling techniques seem to have no effect on
classification performance (see Figure 4.11, and Figure B.18 in the Appendix). Figure
4.11 shows that when € = 0, random forest including interactions and cumulative HR
has the best predictive quality in weights estimation, while lasso (without interactions
and cumulative HR) has competitive (n(®) = 200) or better performance (n®) = 100)
than random forest when ¢ = 0.2. As before, results of ACC and AUC based on
cross-validated training and test data are very similar.

(A) (B)
0.9 09 4iil 1
Model type
@ lasso
0.8 | ridge 0.8 -
@ random forest
o %77 . : o %71
=] i 2
< Parameters for weights <
064 i, estimation 0.6 4
O no intera. & no cumHR
O no intera. & cumHR
@ intera. & no cumHR
0.5 M intera. & cumHR 0.5
04 it T e R S R 0.4
no oversampling  oversampling smote no oversampling  oversampling smote

FIGURE 4.11: Boxplots of AUC values based on cross-validated training data for
n(® =100, and (A) e =0, (B) e =0.2.

Prediction performance of the Cox models is assessed in terms of C-index (see
Figure 4.12) and integrated Brier score (IBS) (see Figure B.19 in the Appendix). Both
performance measures indicate that prediction accuracy of the standard subgroup model
for prediction of subgroup 1A is much worse compared to the other Cox models that
benefit from increased sample size. With regard to prediction of the remaining three
subgroups, the combined and proposed weighted Cox model exhibit similar performance
when € = 0 and outperform the standard subgroup model when n® = 100. When
e = 0.2, the proposed weighted model tends to have the highest predictive quality,
followed by small fixed weights. These findings agree with previous simulation studies.

In summary, unbalanced subgroup sizes affect prediction performance of the standard
subgroup Cox model, with worse predictive accuracy regarding the minority subgroup.
The standard combined and weighted Cox models are hardly influenced by unequal
sample sizes. Differences in estimated weights due to sample size cannot be established,
and oversampling techniques show no effect in the present simulation study.
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FIGURE 4.12: Boxplots of C-index based on all test sets for the prediction of each
subgroup, with n® = 100 and weights estimation without oversampling.
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4.1.3 Application to lung cancer studies

In this section, the proposed weighted Cox model is applied to four lung cancer studies
(see chapter 2.2) that are considered as subgroups. According to the preceding simulation
studies, different parameters for weights estimation are investigated and Cox model
results are compared to the standard subgroup and combined model, as well as to
a weighted model with fixed weights. All Cox models are assessed with regard to
prediction performance and variable selection. Another objective is the examination of
the additional predictive value of genomic predictors over the following five established
clinical predictors: age, sex, pTNM stage, histology, and smoking status. Therefore, all
models are fitted comprising only genomic covariates, a combination of genomic and
clinical covariates, and only clinical covariates. Three different pre-specified sets of genes
are considered for analysis: all available genes (p = 54675), top-1000-variance genes
(p = 1000), and a literature-based selection of prognostic genes (p = 3429) (see chapter
2.2). Genomic covariates are penalized and subject to variable selection, whereas clinical
information is included as mandatory covariates when combined with gene expression
variables.

First, results of weights estimation are reported, including three different classi-
fication methods (logistic regression with lasso or ridge penalty and random forest)
with/without interactions between genes and survival time, with/without cumulative
HR instead of survival time, and with/without oversampling to balance sample sizes.
Interactions are only considered for the top-1000-variance and prognostic genes due
to the already large number of covariates accompanied by high computation time.
Oversampling is applied to all subgroups apart from the largest subgroup (GSE31210)
to make all sample sizes equal.

Figure 4.13 shows boxplots of the estimated weights for all subgroups, based on
either genomic or clinical covariates only. When genomic covariates are used for weights
estimation, patients belonging to the subgroup of interest receive a relatively large
weight in the respective subgroup-specific model, while the contribution of all other
subgroups is close to zero. Interestingly, by far the smallest subgroup GSE29013
has the highest weight in the corresponding model (on average 11 whereas medium
weights of the other subgroups are 3 or 4). When clinical covariates are used for
weights estimation, subgroups become more similar and seem to benefit from each other,
particularly GSE29013, GSE37745, and GSE50081. There are no apparent differences
between the various parameters used for weights estimation (classification methods,
oversampling, interactions, cumulative HR). Results based on only genomic or the
combination of genomic and clinical covariates are also very similar, regardless of the
gene filter. Distinct differences in estimated weights exist exclusively between usage of
clinical covariates only and inclusion of genomic covariates.
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These findings are mostly confirmed by measures of prediction performance in the
corresponding Cox models. Boxplots of C-index and integrated Brier score (IBS) for the
comparison of different parameters for weights estimation are displayed in Figures B.20
and B.21 (in the Appendix). Mean performance values of both measures are summarized
in scatterplots in Figure 4.14. In the first scatterplot, colors correspond to different
covariate sets and plot symbols to the three classification methods. In the second plot,
colors and symbols refer to different parameter settings. These results indicate no
remarkable differences between oversampling techniques and inclusion of interactions or
cumulative HR. However, IBS and C-index lead to slightly different conclusions with
respect to the additional predictive value of genomic covariates. Looking at C-index,
clinical covariates perform similarly well compared to the combination of clinical and
genomic covariates, and better than genomic predictors only, except for GSE29013. In
contrast, IBS suggests slightly improved prediction under genomic features compared
to their combination with clinical covariates, apart from GSE31210. Ridge regression
along with top-1000-variance genes shows improved predictive ability over the other
two classification methods, whereas random forest tends to be the best method in the
presence of all genes and prognostic genes.

Next, different Cox model approaches are compared with regard to their predictive
quality. For the proposed weighted approach only results without interactions, cumula-
tive HR and oversampling are considered, since these parameters have demonstrated no
distinct differences. Mean C-index and mean IBS are summarized in a scatterplot in
Figure 4.15, where colors correspond to Cox model types and plot symbols to covariate
sets. The distribution of both performance measures across all test sets is displayed in
boxplots in Figures B.22 and B.23 (in the Appendix), choosing the top-1000-variance
genes as representative gene filter. Results involving genomic covariates show the
highest predictive accuracy for the combined model and fixed weights of increasing size,
while the estimated weights approach and standard subgroup model perform similarly
bad. Random forest tends to be the best classification method in combination with
prognostic and all genes, whereas ridge tends to outperform the other classification
methods along with top-1000-variance genes. When only clinical covariates are included,
the subgroup model performs almost always worst and all other models have similar pre-
diction performance. In most situations, predictions of subgroups are not much better
compared to random or Kaplan-Meier estimators of models without any covariates.

To assess the additional predictive value of genomic covariates over established
prognostic clinical covariates, the mean prediction performance of all models including
only clinical covariates is compared to models including the combination of clinical and
genomic covariates. Mean C-index suggests that adding genomic covariates increases
prediction accuracy of both standard models and the weighted model with fixed weights,
whereas the proposed model does not seem to benefit from it. Looking at IBS leads
to the conclusion that predictions for subgroup GSE37745 under the weighted model
with fixed weights are improved by the inclusion of genes. But for all other subgroups
prediction performance is worse when genomic covariates are added. Thus, the additional
predictive value of genomic covariates remains unclear and depends on the performance
measure. In standard models and models with fixed weights, genes may contribute to
an improvement of prediction performance (Figure B.24 in the Appendix).
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Finally, variable selection results of all Cox models are compared with regard to mean
inclusion frequencies (MIFs) and estimated regression coefficients. MIFs of mandatory
clinical covariates are approximately one, in contrast to the much smaller MIFs of
genomic covariates that are zero for the majority of genes. The percentage of genes
with MIF larger than 0.1 in any Cox model ranges from 0.1% to 0.4% for all genes, from
1.6% to 4.6% for prognostic genes, and from 6.1% to 13.6% for top-1000-variance genes
(Figure B.25 in the Appendix). Analyses are based on probe set level of gene expression
data, but for the illustration of variable selection results, probe set IDs are translated
into gene symbols using the R/Bioconductor annotation package hgul33plus2.db
(version 3.2.3). In case of missing gene symbols, original probe set IDs are retained
such as 215780 s at in Figure 4.16. Corresponding gene annotation is retrieved from
the Ensembl website (Zerbino et al., 2018) in order to obtain gene-specific information
on encoded proteins, related pathways, Gene Ontology (GO) annotations, associated
diseases, and related articles in PubMed. This information is retrieved from the NCBI
Gene (Brown et al., 2015) and GeneCards (GeneCards®: The Human Gene Database)
databases.

Figure 4.16 shows, separately for each subgroup, MIFs and mean estimated regression
coefficients of genes with MIF larger than 0.4 in any model type including top-1000-
variance genes and mandatory clinical covariates. Fight genes are in the overlap of
all subgroups illustrated by the Venn diagram, among them an immune-related gene
(DEFBL1) and genes (CDKN3, 215780 s at/SET) that were reported to be associated
with worse prognosis in different types of cancer such as NSCLC. These genes are most
frequently selected by the combined (DEFB1) and weighted Cox model with large
fixed weights (DEFB1, CDKN3, 215780_s_at/SET) and have positive effect estimates
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in all subgroups. Seven of these eight jointly selected genes are also in the overlap
of all subgroups based on the top-1000-variance genes only (disregarding any clinical
covariates) (see Figure B.30 in the Appendix). Subgroup-specific genes with high
MIFs in the standard subgroup model are, for example, cancer-related genes SPRR3 in
GSE31210 and CLPTMI1L in GSE50081. Publications suggest an association of SPRR3
with worse prognosis, while study results for CLPTMI1L are inconsistent, reporting
associations with a decreased risk of lung cancer and with lung cancer susceptibility.
Contrary associations with survival may depend on genotype. The present results
indicate that SPRR3 is negatively and CLPTMIL is positively correlated with longer
overall survival. Other subgroup-specific, cancer-related genes with more stable selection
in weighted Cox models compared to standard models include SLC7A11 and CST1 in
subgroup GSE37745, WDR66 in GSE50081, as well as ADH1C and CHGB in GSE31210.

Variable selection results of all remaining covariate sets are displayed analogously
in Figures B.26 to B.31 in the Appendix. Selected genes for all covariate sets are
summarized in Tables C.6 to C.11 in the Appendix. Interestingly, almost all selected
genes are either in the overlap of all subgroups or specific for only one subgroup, as shown
in the Venn diagrams. There are hardly any genes selected by two or three subgroups,
which may be due to the fact that these lung cancer studies are heterogeneous. The
top-1000-variance genes not adjusted for clinical covariates have 14 genes in the overlap
of all subgroups, whereof seven genes are also in the overlap of the combination of
top-1000-variance genes and clinical covariates. The majority of the other seven genes
(BCHE, GLS, KLF6, PLOD2) are associated with different cancers and function as
a tumor suppressor (KLF6) or as support of tumor cell growth and metastasis (GLS,
PLOD2). They are most frequently selected by the combined and weighted model
with large fixed weights, however, corresponding estimated regression coefficients are
relatively small suggesting weak effects on survival outcome compared to the other
genes included in the multivariate models. Subgroup-specific genes with strong effects
on overall survival and high MIFs in the proposed weighted model involve the following
cancer-related genes: ADH1C and BMP5 in GSE31210, as well as AREG and COL4A3
in GSE29013. Interestingly, BMP5 was reported to be more strongly expressed in lung
adenocarcinoma, constituting the entire population in GSE31210, compared to lung
squamous cell carcinoma (Figure B.30 in the Appendix).

Cox models including all genes identify fewer genes compared to the other two gene
filters which is likely caused by the large amount of noise genes. There are two cancer-
related genes most frequently selected across all subgroups by the combined and weighted
model with large fixed weights: ERN1 and MAGEH1. The latter was reported to act as
a tumor suppressor by inhibiting cell proliferation, implying correlation with improved
prognosis which agrees with present findings. MIFs and estimated regression coefficients
of the subgroup and proposed model are mainly close to zero, except for PTGER3 that
has high MIFs in GSE31210 for the proposed model with estimated weights. PTGER3
induces tumor progression in different cancer types including adenocarcinoma of the
lung. This may explain the specific association with GSE31210 being the only subgroup
comprising exclusively adenocarcinoma (Figure B.27 in the Appendix).

There is one gene (SPP1) that is in the overlap of all subgroups and all six covariate
sets including gene expression data. SPP1 - also known as Osteopontin (OPN) -
is involved in inflammatory response, osteoblast differentiation for bone formation
and attachment of osteoclasts to the mineralized bone matrix for bone resorption.
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It is associated with several malignant diseases and reported to promote tumor cell
proliferation and worse prognosis in NSCLC. This relationship with survival is consistent
with the present results of all model types, subgroups and covariate sets. SPP1 has
highest MIFs in the combined and weighted Cox model with large fixed weights and
smallest MIFs in the subgroup model.

Cox models including only clinical covariates that are not subject to penalization
indicate a higher mortality risk of males compared to females and of current/former
smokers compared to never-smokers. Advanced tumor stage (stage II-1V) is also related
to worse prognosis, as well as increasing age. Adenocarcinoma (ADC) is associated
with slightly better survival outcome compared to other NSCLC (Figure B.31 in the
Appendix). These findings seem plausible.

In summary, application to lung cancer studies shows no distinct differences be-
tween various parameters of weights estimation (interactions, cumulative HR) and
oversampling seems to have no effect on prediction in classification. Estimated weights
from classification models including genomic covariates suggest that subgroups are very
different from each other and resemble the standard subgroup model, where only the
subgroup of interest is assigned a high weight and all other subgroups have weights
close to zero. In contrast, estimated weights from classification models based on clinical
covariates only suggest that all subgroups are more or less similar.

Prediction performance of Cox models indicate that logistic regression with ridge
penalty and top-1000-variance genes outperforms the other two classification methods,
while random forest tends to perform best in combination with all genes and prognostic
genes. Cox models comprising genomic covariates show the highest predictive accuracy
for the combined and weighted model with fixed weights of increasing size, while the
estimated weights approach and standard subgroup model perform similarly bad. The
inclusion of clinical covariates only shows a similar performance of the combined and all
weighted models being superior to the subgroup model. Overall prediction performance
is mostly moderate and not much better than random or reference models without any
covariates.

The additional predictive value of genomic covariates over clinical covariates is
unclear and may only exist in standard models and models with fixed weights. The
latter exhibit in most cases the highest variable selection stability, followed by the
combined model. Genes identified most frequently by these models are often present in
all subgroups and some of them were reported to be associated with prognosis in various
cancers. Few cancer-related genes with subgroup-specific effects are detected exclusively
by the subgroup model and more stable by the proposed model with estimated weights.
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frequencies, (B) mean estimated regression coefficients, and (C) Venn diagram of

frequency (MIF) larger than 0.4 in any model type are selected. (A) Mean inclusion
selected genes in all subgroups.

FI1GURE 4.16: Results of variable selection for Cox models including top-1000-variance
genes and clinical covariates. For each subgroup genes with a mean inclusion
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4.2 Bayesian subgroup model

The proposed Bayesian Cox model is an extension of the model by Treppmann, Ickstadt,
and Zucknick (2017) in the sense, that it uses a graphical model for the variable
selection prior rather than an independent Bernoulli prior. An unknown graph structure
linking genomic covariates within and across multiple subgroups is assumed and inferred
simultaneously with the important variables in the Cox model. This encourages the
selection of covariates that are both relevant to the survival outcome and related to
each other in the graph. The subgraph G, within subgroup s is associated with the
corresponding precision matrix €2, representing conditional dependencies among the
covariates. The subgraph G, linking subgroups r and s helps to identify genes that
are prognostic in both subgroups.

The proposed model is compared to a standard subgroup model and to a combined
model. The combined model pools data from all subgroups and treats them as one
homogeneous cohort, whereas the subgroup model only uses information in the subgroup
of interest and ignores the other subgroups. Both standard approaches follow the
Bayesian Cox model proposed by Treppmann, Ickstadt, and Zucknick (2017) with
stochastic search variable selection and independent Bernoulli priors for the variable
inclusion indicators 7. The hyperparameter of the Bernoulli distribution is chosen as
m = p*/p, where p* = 2 is the a priori expected model size, resulting in an uninformative
selection prior (for more details see chapter 3.3.3).

First, two preliminary analyses are conducted based on simulated data for the choice
of hyperparameters and assessment of convergence of the proposed model. Section 4.2.2
reports a sensitivity analysis of variable selection for the choice of hyperparameters a, b
and vy, v1. In section 4.2.3 four independent MCMC chains with different initial values
of the parameters are run to assess convergence and mixing properties of the Markov
chains. Afterward the proposed model is validated through simulations and applied to
four lung cancer studies.

Genomic covariates are standardized before model fitting and evaluation to have
zero mean and unit variance. Parameters of the training data set (mean and standard
deviation of each variable) are used to scale the training and test data set. For the
standard subgroup model and the proposed model each subgroup is standardized
separately, whereas for the combined model training data of all subgroups are pooled.

Results of the Cox models are reported in terms of marginal posterior means and
standard deviations of the estimated regression coefficients, as well as posterior selection
probabilities. After removal of the burn-in samples, the remaining MCMC samples
serve as draws from the posterior distribution to calculate the empirical estimates.
The strategy for variable selection follows Treppmann, Ickstadt, and Zucknick (2017).
First, the mean model size m* is computed as the average number of included variables
across all MCMC iterations after the burn-in. Then the m* variables with the highest
inclusion frequency (posterior selection probability) are considered as the most important
variables and selected in the final model. Variable selection accuracy is assessed with
regard to the number of correctly identified prognostic variables (true positives), the
number of correctly rejected non-prognostic variables (true negatives), the number
of incorrectly selected non-prognostic variables (false positives), and the number of
incorrectly rejected prognostic variables (false negatives). Prediction performance of the
Cox models is evaluated by prediction error curves, integrated Brier score and C-index.
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4.2.1 Simulation setup

For the preliminary analyses and simulation study in the following three sections, a
training and a test data set consisting of n observations and p genomic covariates,
respectively, are simulated from the same distribution for each subgroup as described in
the following. Training data are used for parameter estimation, and model performance
is evaluated based on independent test data. Two subgroups are considered that differ
only in the relation between genomic covariates and survival time (8,, s = 1,2), and in
the parameters for the simulation of survival times. Gene expression data are generated
from the same multivariate normal distribution with mean vector 0 and covariance
matrix 3. The corresponding precision matrix is defined as
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0.5 1 05 025 0 0 0
0.25 0.5 1 05 025 0 0
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OO OO

O OO OO

H O OO OOoOOoOoOoOOo
SO O OO OO O oo

0 0 02 05 1 05 025 0
B 0 0 0 02 05 1 05 025 0
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o 0 0 0 0 0 0 0 0
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with partial correlations only between the first nine prognostic genes, the remaining
non-prognostic noise genes are assumed to be uncorrelated. Survival times are simulated
from a Weibull distribution with scale ny and shape k4 parameters, estimated from
two independent lung cancer cohorts (GSE37745 and GSE50081). Event times T are
simulated according to section 4.1.1. Noninformative censoring times C are randomly
drawn from a Weibull distribution with different parameters as for the event times.
The parameters are calculated from the Kaplan-Meier estimators of the censoring times
in both lung cancer cohorts. The censoring rates at 5 years are 98% and 72%, and
81% and 19% at 7 years, respectively. The individual observed event indicators and
times until an event or censoring are defined as 0, = 1(7s < C5) and Ty = min(7Ty, Cs),
s = 1,2. This results in approximately 40% and 60% censoring rates in both subgroups.
True effects of the genomic covariates on survival outcome are chosen as

Gene
1 2 3 4 5 6 7 8 9 10 D
6,1 1 10 0 0 -1 -1 -1 O ... 0
8,0 0 0 1 11 -1 -1 -1 0 ... 0

The first six genes are subgroup-specific, while genes 7, 8 and 9 have the same
effect on the response in both subgroups. All remaining genes have no effect in both
subgroups. The focus is on situations where most of the variables are noisy ones, to
test the ability of the proposed model to identify important covariates in the presence
of a varying amount of noise.

In preliminary analyses in sections 4.2.2 and 4.2.3 the same training and test data
sets are used comprising n = 100 observations and p = 100 genes. In subsequent
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simulation studies, data are simulated for varying n and p. Each MCMC chain is run
for 20 000 iterations, where the first 10 000 are discarded as burn-in.

4.2.2 Sensitivity analysis

In the following, a sensitivity analysis of the proposed model to the choice of fixed
hyperparameters a, b and 1y, vy is conducted to examine their effect on the number of
selected variables (model size). Therefore, inference under varying parameter settings
is performed using a simulated data set as described in section 4.2.1. First, different
values of a and b are considered, while fixing 1y = 0.1 and 1, = 10 in accordance with
Peterson, Stingo, and Vannucci (2016), and Wang (2015). Inference for all combinations
of the following parameter settings is performed: a € {—4,—-3.5,—3,—2.5, -2} and
b€ {0.25,0.5,0.75, 1}. Results of the number of selected variables are shown in Figure
4.17 and Table C.12 (Appendix). Among the best combinations with the smallest
average number of incorrectly selected variables (FP4+FN) (see Table C.12 in the
Appendix), the parameter setting a = —4 and b = 1 provides the best convergence and
will be used henceforth. The hyperparameters a and b specify the prior probability
of variable inclusion in the MRF prior of 7. Thus, it is not surprising that increasing
values of a or b result in larger models. These findings agree with Li and Zhang (2010)
and Peterson, Stingo, and Vannucci (2016).
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FIGURE 4.17: Sensitivity analysis showing the effect of varying hyperparameters a and b
on the average number of selected variables. The horizontal dashed gray line
represents the true model size.
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Next, the choice of vy and 14 is considered which determine the prior variances
of the off-diagonal elements in Q. All combinations of values h € {10,50,100} and
v € {0.01,0.02,0.05,0.1} are studied, with vy = h - v, similarly as in Wang (2015).
Results are shown in Figure 4.18 and Table C.13 (Appendix), analogously to the
sensitivity analysis of @ and b. Among the two best combinations with the smallest
average number of incorrectly selected variables (FP4+FN) (see Table C.13 in the
Appendix), the parameter setting vy = 0.1 and h = 50 provides the best convergence
and will be used henceforth. Compared to the choice of a and b, it seems that the
results are less sensitive to the choice of vy and v; = h - ;.
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FIGURE 4.18: Sensitivity analysis showing the effect of varying hyperparameters vy and
v1 = h - vy on the number of selected variables. The horizontal dashed gray line
represents the true model size.

4.2.3 Multiple Markov chains to assess convergence

To assess convergence and mixing properties of the Markov chains, four independent
MCMC chains with different initial configurations are run using the same simulated
data as in section 4.2.2. Starting values are chosen to be overdispersed with regard
to the posterior distribution. Specifically, one chain is started from an empty model
(all variable and edge inclusion indicators set to zero), one is started from a full model
(all variable and edge inclusion indicators set to one), and two chains are started with
50% or 20% of the variables and edges selected at random in each subgroup. The same
initial values are used for all subgroups. Starting values of the regression coefficients
are chosen depending on the corresponding variable inclusion indicators. When the
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latter is zero, 3 is drawn from a uniform distribution in the interval [—0.02,0.02],
and otherwise from a uniform distribution in the interval [—2,2]. MCMC convergence
and mixing are assessed graphically with trace plots, and plots of the autocorrelation
function and the corrected version of the potential scale reduction factor (PSRF) by
Gelman and Rubin (1992) of the individual regression coefficients (for more details see
section 3.3.1.2). Plots of the first nine prognostic variables are shown, as well as the
tenth variable as representative of the remaining noise variables, which provide very
similar results.

Trace plots of the model size (Figure B.32 in the Appendix) and estimated regression
coefficients (Figure B.33 in the Appendix) indicate that convergence takes place rapidly
within a few iterations. The output from all Markov chains exhibit fast up-and-down
variation without long-term trends or distinct patterns, and trace plots of different
chains do not look much different from each other. In Figure B.34 (in the Appendix)
the autocorrelation function is plotted separately for each variable in each chain.
Autocorrelation values decrease rapidly and become very small in most cases, suggesting
good convergence. PSRF is a diagnostic that compares the variation between and
within chains and is applied to each variable separately. Figure B.35 (in the Appendix)
illustrates how this shrink factor evolves when the number of iterations increases. After
10 000 iterations, point estimates of the PSRF and their upper confidence limits are
always smaller than 1.05, indicating that all chains were run for a satisfactory number
of iterations and have converged to a common target distribution. The Metropolis-
Hastings acceptance rates for the update of  are between 0.48 and 0.52 for all chains.
Furthermore, agreement of the results between the four chains is assessed in terms of
pairwise correlations between the marginal posterior probabilities of variable and edge
selection. Overall, the results confirm that 20 000 iterations in total with a burn-in
period of 10 000 iterations seem to be sufficient to reach (approximate) convergence.

4.2.4 Simulation results

This section reports the results of two simulation studies to compare the prediction
performance of the proposed model, referred to as CoxBVSSL (for Cox model with
Bayesian Variable Selection and Structure Learning, as an extension of the model
by Treppmann, Ickstadt, and Zucknick (2017)), with the standard subgroup model
and the combined model. Varying number of genomic covariates and sample sizes are
examined, with a focus on small sample sizes relative to the number of variables which
is characteristic for gene expression data. For Bayesian inference, typically one training
data set is used for parameter estimation and an independent test data set for model
evaluation. However, results of the present models have shown some variation due
to the data draw. Therefore, simulation of training and test data in the following is
repeated ten times for each simulation scenario.

In the first simulation study two low-dimensional settings are considered with p = 20
genes and n = 50,100 observations in each subgroup, as well as high-dimensional
settings with p = 100 and sample sizes n = 25,50, 75,100, 150. Trace plots, running
mean plots and prediction error curves are shown for the first training and test data
set in an exemplary way. Results based on the remaining nine training and test data
sets vary more or less. Mean posterior probabilities of variable and edge inclusion, and
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posterior estimates of regression coefficients are averaged across all ten training data
sets.

Convergence of each chain is assessed by looking at autocorrelations, trace plots
and running mean plots of regression coefficients. In most cases, autocorrelation
values decrease rapidly and become very small. Only when n < 100 there are single
training data sets where autocorrelations of prognostic genes decrease slowly and remain
relatively large in both the subgroup and CoxBVSSL model. Trace plots and running
mean plots of the regression coefficients are depicted in Figures B.36 and B.37 (in
the Appendix). In the low-dimensional setting for n = 50 MCMC convergence of the
CoxBVSSL model is worse than for the standard subgroup model and estimates are
less stable. For n = 100 both models perform well and running means stabilize already
after a few iterations at the posterior means. The combined model only correctly
estimates the joint effects of genes 7, 8 and 9, and with a slightly worse performance,
the subgroup-specific effects of subgroup 2 (genes 4, 5 and 6). In high-dimensional
settings with p = 100 and n = 25, all models fail to identify prognostic genes and mixing
performances are bad. As expected, for increasing n model performance improves. The
CoxBVSSL model tends to have higher power in estimating the prognostic effects than
the subgroup model when n < 100. For n = 150 both models perform similarly well.
The combined model only identifies the common effects.

These findings are in accordance with mean posterior probabilities of variable inclu-
sion, and posterior estimates (mean and standard deviation) of regression coefficients.
The CoxBVSSL model has larger power to detect true effects than the subgroup model
when p = 100 and 50 < n < 100. In these situations, mean posterior selection proba-
bilities of prognostic genes are higher and regression coefficients are estimated more
accurately in the CoxBVSSL model compared to the standard subgroup model. The
combined model correctly identifies joint effects of genes 7, 8, and 9, but fails to detect
subgroup-specific effects (Table 4.3; Figures B.38 and B.39, and Table C.14 in the
Appendix). Findings support the assumption that incorporating network information
into variable selection may increase power to detect associations with survival outcome.

Results are further confirmed when looking at the models’ prediction performance.
Prediction error curves in Figure B.41 (in the Appendix) suggest that the subgroup
model and the CoxBVSSL model mainly have better prediction performance than the
reference models (Kaplan-Meier estimates) and the combined model, with CoxBVSSL
tending to outperform the subgroup model. Mean C-index and mean integrated Brier
score values indicate that CoxBVSSL outperforms the subgroup model when p = 100
and 50 < n < 100. When sample size is large (p = 20 and n = 100, or p = 100 and
n = 150) the CoxBVSSL and standard subgroup model perform similarly well. When
p = 100 and n = 25 all models perform badly and not much better than random
or empty models without covariates. The CoxBVSSL model performs slightly worse
than the other two approaches when p = 20 and n = 50 (Table 4.4; Table C.15 in
the Appendix). Trace plots of the log-likelihood are displayed in Figure B.40 (in the
Appendix).
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n p  Model X1 X2 X3 X4 X5 X6 X7 X8 X9
50 20 CoxBVSSL | 0.206 0.216 0.298 0.088 0.012 0.093 0.315 0.118 0.211
50 20 Subgroup 0.383 0.446 0.551 0.163 0.045 0.087 0.659 0.361 0.488
50 20 Combined 0.137 0.055 0.064 0.073 0.139 0.213 0.962 0.832 0.867
100 20 CoxBVSSL | 0.999 1.000 1.000 0.150 0.062 0.121 1.000 1.000 1.000
100 20 Subgroup 1.000 1.000 1.000 0.058 0.039 0.029 1.000 0.988 0.991
100 20 Combined 0.492 0.414 0.435 0.376 0.365 0.463 1.000 1.000 1.000
25 100 CoxBVSSL | 0.031 0.020 0.040 0.075 0.123 0.021 0.038 0.017 0.018
25 100 Subgroup 0.045 0.029 0.041 0.080 0.094 0.021 0.065 0.021 0.024
25 100 Combined 0.011 0.009 0.036 0.011 0.073 0.102 0.095 0.066 0.034
50 100 CoxBVSSL | 0.076 0.111 0.230 0.074 0.012 0.045 0.441 0.342 0.252
50 100 Subgroup 0.070 0.096 0.206 0.118 0.009 0.034 0.322 0.252 0.201
50 100 Combined 0.028 0.023 0.007 0.050 0.058 0.142 0.822 0.705 0.603
75 100 CoxBVSSL | 0.782 0.768 0.843 0.027 0.011 0.025 0.950 0.896 0.883
75 100 Subgroup 0.550 0.562 0.723 0.010 0.009 0.015 0.624 0.448 0.445
75 100 Combined 0.156 0.053 0.077 0.014 0.113 0.143 0.901 0.825 0.800
100 100 CoxBVSSL | 0.997 1.000 0.998 0.061 0.019 0.040 0.982 0.965 0.965
100 100 Subgroup 0.825 0.833 0.975 0.007 0.009 0.009 0.967 0.859 0.868
100 100 Combined | 0.068 0.034 0.013 0.007 0.012 0.083 0.997 0.982 0.985
150 100 CoxBVSSL | 1.000 1.000 1.000 0.078 0.023 0.064 1.000 1.000 1.000
150 100 Subgroup 1.000 1.000 1.000 0.006 0.005 0.006 1.000 1.000 1.000
150 100 Combined 0.276 0.184 0.190 0.104 0.023 0.044 1.000 1.000 1.000
n p  Model X1 X2 X3 X4 X5 X6 X7 X8 X9
50 20 CoxBVSSL | 0.016 0.013 0.041 0.096 0.132 0.281 0.331 0.157 0.128
50 20 Subgroup 0.064 0.073 0.084 0.362 0.332 0.430 0.559 0.440 0.444
50 20 Combined 0.137 0.055 0.064 0.073 0.139 0.213 0.962 0.832 0.867
100 20 CoxBVSSL | 0.029 0.056 0.120 0.998 0.998 1.000 0.988 0.976 0.975
100 20 Subgroup 0.0563 0.029 0.032 0.983 0976 0.977 0.921 0917 0.977
100 20 Combined 0.492 0.414 0.435 0.376 0.365 0.463 1.000 1.000 1.000
25 100 CoxBVSSL | 0.014 0.012 0.017 0.011 0.024 0.081 0.068 0.120 0.020
25 100 Subgroup 0.016 0.014 0.020 0.010 0.016 0.095 0.066 0.097 0.020
25 100 Combined 0.011 0.009 0.036 0.011 0.073 0.102 0.095 0.066 0.034
50 100 CoxBVSSL | 0.015 0.010 0.017 0.086 0.145 0.324 0.300 0.142 0.111
50 100 Subgroup 0.016 0.012 0.018 0.053 0.100 0.251 0.327 0.066 0.067
50 100 Combined 0.028 0.023 0.007 0.050 0.058 0.142 0.822 0.705 0.603
75 100 CoxBVSSL | 0.008 0.012 0.141 0.636 0.642 0.650 0.651 0.468 0.470
75 100 Subgroup 0.007 0.006 0.104 0.510 0.551 0.639 0.515 0.355 0.376
75 100 Combined 0.156 0.053 0.077 0.014 0.113 0.143 0.901 0.825 0.800
100 100 CoxBVSSL | 0.013 0.012 0.073 0.931 0.926 0.940 0.994 0.905 0.892
100 100 Subgroup 0.010 0.008 0.022 0.839 0.765 0.803 0.740 0.394 0.378
100 100 Combined | 0.068 0.034 0.013 0.007 0.012 0.083 0.997 0.982 0.985
150 100 CoxBVSSL | 0.006 0.023 0.058 1.000 1.000 1.000 1.000 1.000 1.000
150 100 Subgroup 0.005 0.006 0.007 1.000 1.000 0.997 1.000 1.000 0.995
150 100 Combined 0.276 0.184 0.190 0.104 0.023 0.044 1.000 1.000 1.000

TABLE 4.3: Mean posterior inclusion frequencies (averaged over all training sets) of the

prognostic variables for subgroup 1 (top) and subgroup 2 (bottom). Variables
included on average are highlighted in red.
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Estimation of subgraphs G, and corresponding precision matrices €2, in subgroups
s = 1,2 works relatively well and improves for increased sample size (Figures B.43
and B.42 in the Appendix). Mean posterior probabilities of edge inclusion in subgraph
G, are relatively small in all simulation settings (< 0.45). They become larger for
increasing n. For edges relating genes 7, 8, and 9 with joint effects in both subgroups
probabilities are considerably higher than for all remaining edges, except for n = 25
and p = 100 (Figure B.44 in the Appendix).

n p s | Combined Subgroup CoxBVSSL
50 20 11]0.74(0.04) 0.76 (0.07) 0.72 (0.06)
50 20 2] 0.79 (0.04) 0.77 (0.05) 0.74 (0.05)

100 20 1 |0.74 (0.05) 0.84 (0.03) 0.84 (0.02)
100 20 2| 0.76 (0.06) 0.84 (0.04) 0.84 (0.04)
25 100 1 0.60 (0.10) 0.56 (0.07) 0.54 (0.05)
25 100 2| 0.57 (0.10) 0.59 (0.11) 0.56 (0.13)
50 100 1] 0.67 (0.05) 0.65 (0.06) 0.66 (0.09)
50 100 2| 0.75(0.09) 0.67 (0.11) 0.68 (0.11)
75 100 1] 0.70 (0.04) 0.75(0.06) 0.81 (0.07)
75 100 2| 0.76 (0.04) 0.77 (0.05) 0.78 (0.05)
100 100 1 |0.74 (0.04) 0.82 (0.02) 0.83 (0.02)
100 100 2 | 0.76 (0.04) 0.80 (0.07) 0.84 (0.04)
150 100 1 |0.74 (0.04) 0.84 (0.02) 0.84 (0.02)
150 100 2| 0.76 (0.03) 0.86 (0.02) 0.86 (0.02)

TABLE 4.4: Mean (standard deviation) of the C-index (computed over all test sets) for the
prediction of subgroup s =1, 2.

In a second simulation study, the influence of finer increments of true effects on
survival outcome is investigated. True effects of genomic covariates in both subgroups
are chosen as follows:

Gene
1 2 3 4 5 6 7 8 9 10 11 12 13 D
;1 1 0 0 -05 05 07 025 -1 -1 -0.75 -025 0 .0
B,/0 0 1 1 05 -05 025 07 -1 -1 -0.75 -025 O ... O

including subgroup-specific effects (genes 1 to 4), opposite effects (genes 5 and 6), effects
in the same direction but of different size (genes 7 and 8), and common effects of varying
sizes (genes 9 to 12). The first 12 genes are referred to as prognostic genes since they are
associated with outcome in at least one subgroup. All remaining genes are considered
to be noise. Gene expression and survival data are simulated analogously to the first
simulation study as described in section 4.2.1. The only difference is that the precision
matrix €2 consists of an AR(2) correlation structure between the first 12 instead of the
first 9 genes; all other genes are uncorrelated. High-dimensional settings with p = 100
and n = 50, 75, 100, 200 are studied, as well as two low-dimensional settings with p = 20
and n = 50, 100. Since computation time of the CoxBVSSL model increases drastically
with the number of covariates, only up to p = 100 covariates are considered. As before,
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ten independent training and test data sets are generated from the same distribution
for each subgroup.

Convergence is assessed in terms of autocorrelation plots, trace plots and running
mean plots of the regression coefficients, here only the latter two are shown represen-
tatively for the first training data set. Results of posterior means and measures of
prediction performance are averaged across all data sets. Findings mainly agree with
those of the first simulation study. Convergence of all three models is poor when n = 50
and improves with increasing sample size. Estimates of regression coefficients in the
CoxBVSSL model tend to stabilize faster compared to the standard subgroup model
(Figures B.45 and B.46 in the Appendix).

Results of variable selection (see Tables C.16, C.17 and C.20 in the Appendix) and
posterior estimates of regression coefficients (Tables C.18 and C.19 in the Appendix)
indicate that the combined model tends to have larger power to identify joint effects
when the sample size is small but fails to detect subgroup-specific effects. In all settings,
except for n = 50, the CoxBVSSL model has higher posterior probabilities of variable
inclusion compared to the standard subgroup model. This applies to both prognostic
and non-prognostic genes (genes 3 and 4 in subgroup 1, genes 1 and 2 in subgroup 2).
It leads to a more stable selection of prognostic genes, larger power for identification
and more accurate estimation of true effects, in particular weak effects. However, a
potential downside may be a tendency of CoxBVSSL towards more false positives. In the
present simulation study, CoxBVSSL selects only one false positive in subgroup 1 when
n = 200. With regard to the posterior means of the estimated regression coefficients,
the subgroup model underestimates the majority of effects, whereas CoxBVSSL leads
to more precise estimates when n < 200. For n = 200 both models show a tendency
towards overestimation of true effects, which is more pronounced in CoxBVSSL.

Prediction performance in terms of mean C-index and IBS is summarized in Table
4.5 and Table C.21 in the Appendix. All three models perform better than chance and
reference models without covariates (Kaplan-Meier estimators). The combined model
is competitive when n = 50 but inferior to the standard subgroup and CoxBVSSL
model in all other situations. The subgroup and CoxBVSSL model perform similarly in
low-dimensional settings and in high-dimensional settings for n = 50, 200. However, in
all other situations CoxBVSSL has the best predictive ability.

Results of the inferred network among covariates are very similar to those in the
first simulation study, and therefore only shown for selected simulation settings. Mean
posterior probabilities of edge inclusion in subgraphs G, and posterior means of
elements in the corresponding precision matrices €2, for subgroups s = 1,2 indicate
that estimation of the underlying dependence structure between genes within each
subgroup improves with increasing sample size and works well for n > 100. Posterior
probabilities of edge inclusion become larger, leading to a more stable identification
of true edges between the prognostic genes (see Figure 4.19). Posterior probabilities
of edge inclusion in subgraph G1s, relating the same genes across both subgroups, are
smaller than in subgraphs Gg,. However, as sample size grows it becomes increasingly
apparent that edges between genes 5, 6, 9, 10, and 11 are most frequently selected,
followed by genes 7 and 8. Thus, edge selection in G5 indicates common prognostic
genes in both subgroups (not necessarily with effects in the same direction) and depends
on the effect size, with larger effects leading to more stable edge selection (Figure 4.20).
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n p s | Combined Subgroup CoxBVSSL
50 20 110.66 (0.07) 0.70 (0.07) 0.67 (0.07)
50 20 2] 0.73 (0.08) 0.78 (0.05) 0.75 (0.07)

100 20 1|0.71(0.03) 0.83 (0.03) 0.84 (0.03)
100 20 2 |0.78 (0.04) 0.87 (0.03) 0.88 (0.03)
50 100 1] 0.66 (0.07) 0.64 (0.09) 0.63 (0.08)
50 100 2] 0.69 (0.11) 0.71 (0.10) 0.73 (0.09)
75 100 1] 0.67 (0.04) 0.75(0.06) 0.77 (0.04)
75 100 2] 0.76 (0.05) 0.78 (0.06) 0.79 (0.06)
100 100 1 |0.71 (0.06) 0.79 (0.04) 0.82 (0.03)
100 100 2| 0.74 (0.03) 0.81 (0.05) 0.84 (0.04)
200 100 1] 0.72(0.03) 0.84 (0.02) 0.84 (0.02)
200 100 2| 0.77 (0.03) 0.88 (0.02) 0.88 (0.02)

TABLE 4.5: Mean (standard deviation) of the C-index (computed over all test sets) for the
prediction of subgroup s = 1, 2.

In summary, MCMC mixing and convergence of all models is poor when n < 50,
but improves rapidly with increasing sample size. The combined model only identifies
joint effects but fails to detect subgroup-specific effects, and thus is inferior to the
other models. When n > p the subgroup and CoxBVSSL model perform similarly well
with regard to selection and prediction accuracy, except for p = 20, n = 50 where
the subgroup model performs better. However, when n < p the CoxBVSSL model
has superior predictive ability and larger power to identify relevant genes compared
to standard approaches. This suggests that incorporating network information into
variable selection can improve detection of true effects. Accuracy of graph structure
learning for the proposed model improves for increasing sample size and is quite high
for n > 100.
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4.2.5 Application to lung cancer studies

For the application example the standard combined, subgroup and CoxBVSSL model
are applied to four lung cancer studies. Only genomic covariates are included using two
different gene filters: 30 Kratz genes and top-100-variance genes. The former comprise
30 probe sets belonging to 13 prognostic genes from Kratz et al. (2012) with matches
on the Affymetrix HG-U133 Plus 2.0 array. The top-100-variance genes are defined by
the 100 probe sets with the highest variability in gene expression values across all four
studies. The complete data are randomly divided into a training and a test data set,
drawing 63.2% observations without replacement and stratified according to study and
censoring indicator for training and using all remaining observations as test data for
validation. This procedure is repeated ten times similarly as before in simulations.

Convergence is assessed in terms of trace plots, running mean plots and autocorrela-
tion plots of regression coefficients. Results of the subgroup and CoxBVSSL model are
relatively similar and mostly the same variables are selected regardless of the gene filter.
In most situations, autocorrelation values decrease rapidly and suggest good convergence.
However, for some selected genes in the corresponding subgroups autocorrelations, trace
plots and running means indicate slow convergence. Trace plots and running mean
plots of the 30 prognostic Kratz genes are shown representatively for the first training
data set in Figures B.47 and B.48 in the Appendix. Cox models are first compared with
regard to posterior variable selection probabilities and posterior estimates of regression
coefficients, and afterward in terms of prediction performance. Results are averaged
across all training sets unless stated otherwise.

Similar variable selection results are obtained for the CoxBVSSL and subgroup model.
From the 30 prognostic Kratz genes, the following genes are included in both models:
BRCAT1 in subgroups GSE37745 and GSE50081, and two different probe sets of CDC6,
one each in GSE29013 and GSE31210, respectively. These two genes are also selected
by the combined model of all subgroups. The subgroup model additionally identifies
gene ERBB3 in GSE29013 and gene IL11 in GSE31210, whereas the CoxBVSSL model
selects one further probe set of BRCA1 in GSE37745. Estimated regression coefficients
of all selected genes are positive, except for IL11 and one probe set of BRCA1 (see
Figures 4.21 and 4.22; Figure B.49 in the Appendix).



101

(A) CoxBVSSL model

4.2. Bayesian subgroup model

GSE31210

GSE29013

o o o o
L /Sy L /Sy L /Sy LSy
o/ o/ -/ ® 7
o o oF oo o - o o - o
o Q% o %% o - %% L Q%
NS NS MRS Ny ce
L] — QV\ o Q? L] — Q? L Qv
9 R R Sel
Loy Loy ° [ 9% SNy
&Q@% &\v&@ &\v&@ &\v&@
<Y, o[ G0 P&, o[ O
oY - oY - oY - oWy
PO ® L8y = LSS o IO
o 70, [=] N2 N o 70, [=] o740,
S 8 i < ey 8 N
. - \Q\s% [Te] < L \Q\.\¢ ) . |- \Q\.\¢ 7] < L \Q%&\
o\\v\Q L o\NV\O L Q\NV\O L ° \NV\O
Sy @ L @ Gy @ o
o ° {8/ © SN S A Q44
of NoV\ ol NOV\ o - NOV\ o | Now\
- =8 - =59 - =59 - =&
. \&mwﬁ\q oF ww@,\@ oF wwm\,\@ . ‘%\WW@J@
o - = . .
<« \WQ&\ ol \.WO% < - \.WO% .- NWO¢
° \,OO%OQ ° \%O%O@ ° \%O%O@ ° \,OO%QQ
o ol o [ ° |-
g9 - g9 - g9 - 9979
L) L] L] L]
IR LS9, L <9 L &%
LRy Lok 9 . [k T[Sk
‘g ‘g 2 ‘g ‘g
T T T T T T W\«\QO T T T T T T W\vQO la) T T T T T T W\vQO T T T T T T W\,\QO
o ©o © % N O o ® © < N O o ® © ¥ N O o ©® © <% N O
-~ © o o o o - O o o o o m. - O o o o o -~ o o o o o
Aungeqoud uonosjes Jo1e)soq Aupgeqoud uonosjes Jole)sod w Aupgeqoud uonoses Jole)sod Auigeqoad uonosjes Joue)sod
—
o0
L N o * LNt
s T
o ol . |- ol
L9 e n R oe
A L8, —~ S5, TE%8,
o NQE,,V ol NQE,,V m . - NQE,,V ol QE,,V
o e o et - o e o -
* ey . ey < %y o[y
o %&Q&% o @&\v&@ .- m,&\v&@ o m‘&\v&@
s s - o - [kl R
oY - oY - oY - oWy
L& < VLSS e o L83 s L&
ol &\N% ~ ol &\Va\ o o - &\VQ ~ o A\N%
ey B N 2 A R
.l \Q\s% [} < L \Q\.\¢ N . I \Q\.\¢ ™ < L \Q%&\
o\\v\Q L n\NV\O L ° \NV\O L Q\NV\O
i L 2 Ry 8 P
L4y R SE A4
o NoV\ of NOV\ ol NOV\ o | Now\
- =8 - =59 - =89 - =&
LL327%% R * FigF  Faede
Q\NV\OV < \NTOV o \NTOV . \NVOV
® o - L] — L
< RE - [ & > R s ey
L o L] — o
9979 g9 g/ - 9979
L] L] L] L]
L S99 L 9% L 9% L S99,
oo B MOV‘W% n L MUV\W/W oo L MUV\W/W co B MO?W/W
Qv\W Qv\W Qv\W O\VW
T T T T T T \_\QO T T T T T T \vQO T T T T T T \vQO T T T T T T \_\QO
o © © % N O o ® © < N o o ® © < N o o ©® © <% N O
-~ © o o o o - O o o o o - O o o o o -~ ©o o o o o
Aungeqoud uonoses 101e)sog Aupgeqoud uonosjes Jole)sod Aupgeqoud uonosjes Jole)sod Auigeqoad uonosjes Joue)sod

all training data sets) for (A) the CoxBVSSL model, and (B) the subgroup model.

FIGURE 4.21: Mean posterior inclusion probabilities of the 30 Kratz genes (average across
Selected variables are highlighted as red triangles.
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Posterior probabilities of edge inclusion in subgraphs G, and posterior means of
elements in the corresponding precision matrices €24 for all subgroups s are displayed
in Figure 4.23. They indicate a similar conditional dependence structure among the 30
Kratz genes in subgroups GSE31210, GSE37745 and GSE50081. High edge inclusion
probabilities accompanied by relatively large negative mean values of the precision
matrix are present between two different probe sets belonging to the same gene, such as
variable IDs 5 and 6 (representing gene CDC6), IDs 8 and 9 (gene LCK), IDs 25 and 26
(gene YAP1), IDs 3 and 27 (gene ERBB3), as well as IDs 2 and 14 (gene BAG1). Since
the precision matrix € = (w;;) is the inverse of the covariance matrix ¥ = (o), its

entries w;; are negatively proportional to the partial correlations p;; = — :f”w —. Under
11 Wjj

the assumption of Gaussianity, the partial correlation p;; is zero if and only if variables
i and j are conditionally independent given all remaining variables. A large absolute
partial correlation value close to one indicates a strong positive or negative association
between the two variables, with the effect of all remaining variables removed. Thus,
negative values of the precision matrix correspond to positive partial correlations, which
is exactly what we would expect for different probe sets belonging to the same gene.
Posterior probabilities of edge inclusion in subgraphs G, linking subgroups r and s
are much smaller compared to subgraphs G, (< 0.1). Genes that are jointly selected in
two different subgroups have the largest edge inclusion probabilities in the corresponding
subgraph. This refers to gene CDC6 in subgroups GSE29013 and GSE31210, as well as
gene BRCAL1 in subgroups GSE37745 and GSE50081 (see Figure 4.24).
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(A) Posterior mean of elements in precision matrix €2
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FIGURE 4.23: Mean posterior estimates of precision matrix §2; and subgraph G for all

subgroups s and the 30 Kratz genes (average across all training data sets). Edges in
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p = 30. The prior of the diagonal entries of the precision matrix is exponential with

parameter %, and the prior of the off-diagonal entries is a mixture of two normal

distributions with zero mean and variance v = 0.1% for non-selected edges and
variance v} = 52 for selected edges.
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Posterior probabilities of variable inclusion and posterior estimates of regression
coefficients of the top-100-variance genes are shown in Figures B.50, B.51 and B.52 in
the Appendix. For each subgroup, the genes selected on average in any of the three
models are presented in Figure 4.25 and Table C.22 (Appendix). In the following,
gene-specific information on encoded proteins, related pathways, associated diseases and
related articles in PubMed is retrieved from the NCBI Gene (Brown et al., 2015) and
GeneCards (GeneCards®: The Human Gene Database) databases. The subgroup and
CoxBVSSL model including the top-100-variance genes provide different sets of selected
genes for each subgroup, without any overlapping genes between subgroups. Both
models identify two immunoglobulins related to immune response (IGHM and IGKC)
that have been shown to be involved in the recognition and elimination of precancerous
and cancerous lesions and are associated with better prognosis. Furthermore, two
cancer-related genes (MMP12 and SCGB3A2) are detected by the subgroup and
CoxBVSSL model. MMP12 is involved in the degradation of extracellular matrix in
normal as well as in disease processes such as metastasis. Mutations are related to lung
function and chronic obstructive pulmonary disease. SCGB3A2 encodes a secreted lung
surfactant protein and is highly expressed in lung and trachea. Diseases associated
with SCGB3A2 include Asthma and lung cancer. Additional cancer-related genes are
identified by either the subgroup model only (215125 s at/UGT1A and NTS) or by
the CoxBVSSL model (XIST and SCGB3A1). NTS is distributed in central nervous
and digestive systems and has been reported to promote tumor metastasis. SCGB3A1
is highly expressed in lung and encodes a cytokine-like protein that regulates cell
proliferation and inhibits cell growth. XIST is a long non-coding RNA associated with
tumorigenesis of different cancers. The subgroup and CoxBVSSL model provide very
similar posterior estimates of regression coefficients and variable inclusion indicators
for all selected genes, with the exception of XIST. Probe sets of the XIST gene have
mean posterior inclusion probabilities around 0.4 in CoxBVSSL and 0 in the subgroup
model. However, corresponding posterior mean values of regression coefficients are
close to 0 in both models and variances are large in CoxBVSSL. The combined model
only identifies the immune-related gene IGKC and the ribosomal protein encoding
gene 200869 _at/RPLI18A that is involved in viral replication and associated with viral
diseases such as Hepatitis C but not with cancer.
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The inferred networks and conditional dependencies among the top-100-variance
genes within each subgroup are displayed in Figure B.53 in the Appendix. Interde-
pendence structures look quite similar, in particular for GSE31210, GSE37745 and
GSE50081. Therefore, all pairs of genes with absolute posterior mean values in the
precision matrix larger than 10 in all three subgroups are extracted (posterior means
of elements in precision matrix averaged across all training data sets). The majo-
rity are pairs of two different probe sets belonging to the same gene (XIST, SFTPC,
TOX3, SFTPB, CLCA2, ADH1B, KRT6A and MAGEAG), with negative precision
matrix entries corresponding to positive partial correlations. This is not surprising
since probe sets of the same gene can be expected to be highly correlated. Apart from
that, two pairs of genes are identified encoding for related proteins associated with
immune response. HLA-DQA1 and HLA-DQB1 encode for membrane proteins and are
related to the G-protein signaling N-RAS regulation pathway and Cytokine Signaling in
Immune system pathway. 215176 x at/IGKV1-39 and 217378 x at/IGKV10R2-108
are immunoglobulins and paralogs that participate in the antigen recognition. Different
pairs of genes are obtained when choosing all edges in G, with posterior inclusion
probabilities (averaged across all training data sets) larger than 0.5 in all three sub-
groups. Among these pairs of genes are two different probe sets of the XIST gene, one
pair of immunoglobulins both related to immune response (211644 x_ at/IGKV3-20
and IGHM), and three pairs of unrelated genes (AKR1B10 and 215125 s at/UGT1A,
SFTA2 and FOLR1, AKR1B10 and GPX2). The protein encoded by FOLRI is a mem-
ber of the folate receptor family and involved in folic acid binding and transmembrane
transport. It is required for normal cell proliferation. SFTA2 encodes a surfactant
associated protein predominantly expressed in lung. No information on related pathways
and interacting proteins are available. Proteins encoded by AKR1B10 and GPX2 are
not related in the same network but both involved in the “SuperPathway” Metabolism.
Three of the above-mentioned genes (XIST, GPX2, IGHM) are also selected in the Cox
models.

Results of the inferred graphs G, ,<s between different subgroups r and s are shown
in Figure B.54 in the Appendix. Posterior inclusion probabilities (PPIs) are very small
and, as expected from simulations, smaller than in the low-dimensional setting with
30 Kratz genes. Among the ten genes with highest PPIs in each subgroup are some
genes selected in the Cox models (XIST, MMP12, SCGB3A1, IGHM) and most of the
above described genes linked in networks within subgroups (XIST, TOX3, HLA-DQAL,
HLA-DQBI1, SFTPB, 215125_s_at/UGT1A, ADHI1B, 217378 _x_at/IGKV10R2-108,
215176_x_ at/IGKV1-39, SFTPC, AKR1B10, MAGEA6, IGHM, CLCA2). However,
there are no striking genes as it is the case for the 30 Kratz genes (Figure 4.24 in the
Appendix), which may be due to the fact that Cox models of all subgroups have no
overlapping jointly selected genes.

Prediction performance is assessed in terms of mean C-index and mean integrated
Brier score (IBS) averaged across all test data sets (Table 4.6 and Table C.23 in the
Appendix), as well as by prediction error curves exemplary for the first test data set
(Figure B.55 in the Appendix). Prediction accuracy of all three models is very similar
regardless of the gene filter. All models perform not much better than random prediction
(C-index=0.5) and not better than reference models without covariates (Kaplan-Meier
estimators).
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Gene filter s Combined  Subgroup CoxBVSSL
30 Kratz ~ GSE29013 | 0.64 (0.09) 0.67 (0.12) 0.68 (0.09)
30 Kratz ~ GSE31210 | 0.64 (0.06) 0.65 (0.05) 0.65 (0.04)
30 Kratz ~ GSE37745 | 0.55 (0.05) 0.51 (0.05) 0.52 (0.05)
30 Kratz ~ GSE50081 | 0.57 (0.05) 0.54 (0.03) 0.55 (0.03)
Top-100-v. GSE29013 | 0.63 (0.09) 0.50 (0.09) 0.50 (0.08)
(0.08) (0.06) (0.07)

(0.04) (0.03) (0.03)

) (0.05) (0.05)

Top-100-v.  GSE31210 | 0.60 (0.08) 0.67 (0.06) 0.65 (0.07
Top-100-v. GSE37745 | 0.54 (0.04) 0.51 (0.03) 0.51 (0.03
Top-100-v. GSE50081 | 0.53 (0.05) 0.55 (0.05) 0.55 (0.05

TABLE 4.6: Mean (standard deviation) of C-index (computed over all test sets) for the
prediction of subgroup s.
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Chapter 5

Summary and Discussion

This thesis focuses on three major objectives: the prediction of a patient’s survival
function, selection of important covariates, and consideration of heterogeneity in data
due to known subgroups of patients. Specifically, we aim at providing a separate
prediction model for each subgroup that allows the identification of common as well as
subgroup-specific effects and has improved prediction accuracy over standard approaches.
The latter refer to standard subgroup analysis, including only patients of the subgroup
of interest, and standard combined analysis that pools patients of all subgroups. Small
sample size is a problem of standard subgroup analysis potentially leading to unstable
results and reduced power to detect prognostic effects, while standard combined analysis
may suffer from biased results and averaging of subgroup-specific effects. Therefore,
we seek an alternative approach that allows sharing information between subgroups
to increase power when this is supported by data, meaning that subgroups are similar
in their relationship between covariates and survival outcome. To accomplish this, a
novel classical frequentist and a novel Bayesian Cox proportional hazards model are
proposed.

The frequentist model uses a lasso penalty for variable selection and a weighted
version of the Cox partial likelihood that includes patients of all subgroups but assigns
them individual weights based on their subgroup affiliation. Weights for a specific
subgroup are estimated from the training data by classification and cross-validation such
that they represent the probability of belonging to that subgroup given the observed
covariates and survival outcome. These predicted conditional probabilities are divided
by the a priori probability of the respective subgroup to obtain the subgroup-specific
weights for each patient. Patients who fit well into the subgroup of interest receive
higher weights in the subgroup-specific model.

The proposed Bayesian Cox model uses a stochastic search variable selection prior
with latent indicators of variable inclusion. We assume a sparse graphical model that
links covariates within subgroups and the same covariates across different subgroups.
This graph structure is not known a priori and inferred simultaneously with the
important variables of each subgroup. It favors the selection of related covariates in the
graph and represents conditional dependencies among covariates within subgroups and
joint prognostic covariates shared by different subgroups. Thus, the proposed model
allows identification of predictors that are both relevant to survival outcome and linked
to each other in a conditional dependence network. Both approaches are evaluated
through simulations and applied to four lung cancer studies. Main findings, discussion of
limitations and outlook for further analyses are summarized in the following, beginning
with the frequentist approach.
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In simulation studies in the frequentist setting, we considered a varying number of
genomic covariates and sample size with a focus on high-dimensional settings where
sample size is small compared to the number of variables, a typical characteristic of
gene expression data. Subgroups differed in their simulated survival times, in particular
different true effects, and partly in their covariate values. Genomic covariates were
simulated considering various correlation structures and increasing differences between
mean values of prognostic genes in distinct subgroups. The latter served to control the
degree of similarity between subgroups. We found that sample size and dissimilarity
between subgroups had the strongest impact on the proposed weighted model, with
larger values greatly improving the performance of weights estimation and Cox model
fitting. In contrast, there were no recognizable differences for varying correlation
structures.

We considered three different classification methods (multinomial logistic regression
with lasso or ridge penalty and random forest) for weights estimation in combination
with inclusion or exclusion of interactions between genomic covariates and survival
time, as well as replacement of the survival time by the Nelson—Aalen estimator of
the cumulative hazard rate (HR) in the set of covariates. The latter was proposed
by White and Royston (2009) in the context of multiple imputation. We compared
these parameters for weights estimation with regard to prediction performance and
found that inclusion of interactions and cumulative HR in the classification model
only improved prediction accuracy of random forest when all subgroups were similar.
In all other situations predictive quality of these parameters hardly differed with a
tendency towards better results for multinomial logistic regression without cumulative
HR. Random forest outperformed multinomial logistic regression when all subgroups
were similar or when sample size was low.

In a small simulation study, we considered the case of unbalanced subgroup sizes
with one small subgroup and three equally large subgroups. We compared standard
classification without sampling techniques with two oversampling techniques (random
oversampling and synthetic minority oversampling technique). Oversampling increases
sample size of the small subgroup so that it is balanced with respect to the other
subgroups. As expected, the predicted probabilities estimated by classification were
always smaller for the minority subgroup compared to the other subgroups. However,
this effect was compensated for when predicted probabilities were divided by the relative
frequencies of each subgroup to obtain the estimated weights. Thus, estimated weights
did not differ due to unbalanced sample size and oversampling techniques had no effect
on classification performance in the present simulations.

The proposed weighted Cox model was compared to a standard combined and
subgroup Cox model, as well as a weighted Cox model with different fixed weights
as proposed by Weyer and Binder (2015). Observations belonging to a certain sub-
group were assigned a weight of 1 in the subgroup-specific likelihood, while all other
observations were down-weighted with a constant weight w € {0.1,0.2,...,0.9}. When
subgroups were hardly distinguishable from each other with respect to their covariate val-
ues and differed mainly in their relationship between prognostic covariates and survival
outcome, classification methods failed to discriminate between distinct subgroups and
all observations were assigned a weight around one similarly to the standard combined
model. In these situations, results of the combined model and the proposed weighted
model were similar. Both models had better prediction performance and larger power
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to detect joint effects than the standard subgroup model when sample size was small
(n < p). However, they tended to average subgroup-specific effects resulting in biased
estimates. For increasing sample size, the standard subgroup model outperformed the
other models regarding prediction and selection accuracy, in particular in terms of
correct estimation of subgroup-specific effects. When differences between subgroups
became larger, classification succeeded in discriminating between different subgroups
and the proposed weighted model improved over the combined model in identifying
subgroup-specific effects and in prediction accuracy. It was competitive with the sub-
group model and even better for small sample sizes. In the case of unbalanced subgroup
sizes, the prediction performance of the subgroup model was much worse regarding the
small subgroup, whereas results of the standard combined model and weighted model
remained almost unchanged. Results of the weighted Cox model with fixed weights lay
between the standard subgroup model and the combined model depending on the weight
size. Fixed weights tended to perform better than estimated weights when subgroups
were similar and classification performance was bad.

In one simulation study, we compared the different types of Cox models with lasso
penalty to componentwise likelihood-based boosting for Cox models. The latter is
implemented in the R package CoxBoost and was used by Weyer and Binder (2015) in
weighted Cox regression with fixed weights. Our findings suggested that both algorithms
had similar prediction performance, except for situations with large differences between
subgroups. Here the Cox model with lasso penalty outperformed the boosting algorithm
when including weights (particularly estimated weights).

In the application example, we considered multiple lung cancer studies as subgroups
comprising overall survival outcome, and gene expression data and clinical information
(age, sex, pTNM stage, histology, and smoking status) as covariates. One further
objective was to examine the additional predictive value of genomic covariates over
established clinical covariates. To accomplish this, all frequentist Cox models were fitted
including only genomic covariates, a combination of genomic and clinical covariates,
and only clinical covariates. Three different gene filters were used: all available genes,
top-1000-variance genes, and a literature-based selection of prognostic genes.

Different classification methods, parameters for weights estimation (interactions,
cumulative HR) and oversampling techniques provided very similar prediction perfor-
mance and no clear distinctions could be determined. Estimated weights based on
genomic covariates suggested large differences between all subgroups. Observations
belonging to the subgroup of interest received a high weight in the subgroup-specific
model, while observations of all remaining subgroups obtained weights close to zero
and hardly contributed to the subgroup-specific prediction model. Subgroups appeared
to be more similar when weights were estimated based on clinical covariates only.

Prediction performance of all Cox models was mainly moderate and not much better
than random prediction or reference models without any covariates. The combined
model and the weighted model with fixed weights of increasing size showed the highest
predictive accuracy when genomic covariates were included. The proposed weighted
model and the subgroup model performed similarly bad. When only clinical covariates
were used all weighted models and the combined model had similar performance and were
better than the subgroup model. Fixed weights had in most cases the highest variable
selection stability, followed by the combined model. These models mainly identified
genes with joint effects in all subgroups whereof some are known to be associated with
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prognosis in various cancers. However, corresponding estimated regression coefficients
were often relatively small suggesting weak effects on survival outcome. Few candidate
genes with reported cancer relation and relatively strong subgroup-specific effects were
selected most frequently by either the subgroup model or the proposed weighted model.
The additional predictive value of genomic covariates over clinical covariates remains
unclear.

Weyer and Binder (2015) propose a weighted and stratified Cox regression model
with separate baseline hazard rates in different subgroups (strata) to account for
heterogeneity in data. Stratification supports the assumption that hazard rates of
distinct subgroups may not be proportional to one another which contradicts the main
assumption of the Cox proportional hazards model. In our proposed frequentist model
the extent to which each observation contributes to parameter estimation and variable
selection in the subgroup-specific model is controlled by individual subgroup-specific
weights. However, the same baseline hazard rate across all subgroups is assumed. Our
weighted version of the Cox partial likelihood could be extended to allow for varying
baseline hazard rates in different subgroups.

The approach by Weyer and Binder (2015) gives observations in the subgroup of
interest a weight of 1, while all other observations are assigned a constant weight in (0, 1).
Alternatively to our proposed approach with estimated individual weights, weights
can be considered as a tuning parameter and optimized by model-based optimization
(MBO) to improve prediction performance. This approach is more flexible than the
one by Weyer and Binder (2015) since it allows different fixed weights for different
subgroups in each subgroup model. MBO helps to identify the best combination of fixed
weights with regard to prediction accuracy. Richter, Madjar, and Rahnenfiihrer (2018)
introduce MBO of subgroup weights in the Cox model and evaluate this approach on
various lung cancer studies.

In the Bayesian setting, we also examined a varying number of genomic covariates,
sample size and true effects on survival outcome through simulation studies, with a
focus on small sample sizes. The proposed model with Markov random field prior for
the variable selection indicators was compared to a standard subgroup and a combined
Bayesian Cox model with Bernoulli prior for the variable selection indicators following
Treppmann, Ickstadt, and Zucknick (2017). Through simulations, we have demonstrated
that our approach can achieve improved variable selection and prediction accuracy over
competing standard approaches. The combined model was inferior to the other models
in that it could only identify joint effects and failed to detect subgroup-specific effects.
The subgroup model and the proposed model performed similarly well when sample size
was large. However, when sample size was small compared to the number of covariates
(n < p), the proposed model outperformed standard Bayesian variable selection in terms
of both selection and prediction accuracy. This suggests that incorporating network
information into variable selection can increase power to identify true associations
between covariates and survival outcome. Inference of the graph showed relatively
high accuracy for learning the conditional dependence structure among genes within
subgroups and for detecting joint effects across different subgroups.

Bayesian approaches were further validated in application to lung cancer studies
including only genomic covariates with two different gene filters: 30 prognostic genes
from literature, and top-100-variance genes. The standard subgroup model and the
proposed model performed very similar in terms of variable selection and prediction
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accuracy. Prediction performance of all models was relatively bad as for the frequentist
models.

The main reason for the overall moderate prediction accuracy in the application
example may be that the present lung cancer studies are heterogeneous. On the one
hand, they comprise different histological subtypes that are known to be associated
with a different prognosis. One could think of using only patients belonging to the same
histological subtype such as adenocarcinoma. On the other hand, tissue processing
and RNA extraction for generating gene expression data as well as patient inclusion
criteria vary between studies. In GSE29013 genome-wide expression profiling was
based on formalin-fixed paraffin-embedded (FFPE) tissues rather than fresh frozen
tissues like in GSE37745 and GSE50081, which might influence expression levels.
GSE31210 and GSES50081 include only patients with stage I and II, and GSE31210
is additionally restricted to lung adenocarcinomas. Further confounding variables in
gene expression data can be variation in array data generation and reporting between
different laboratories. Recommendations for experimental design and data generation
of Microarray experiments are discussed in The Tumor Analysis Best Practices Working
Group (2004). The proposed models should be validated on further cancer studies,
using for example data of our collection of breast cancer, ovarian cancer or colon cancer
studies.

Both proposed models have demonstrated in simulations that they can achieve
improved prediction and variable selection accuracy over standard subgroup models
when the sample size is low. However, one drawback of the frequentist weighted model is
that it may average subgroup-specific effects resulting in biased estimates, in particular
when discrimination between differing subgroups is challenging. Advantages of the
frequentist Cox model, implemented in the R package glmnet, over the Bayesian
model are the much shorter computation time and that it is well suited to include
all kinds of covariates (categorical or continuous) and tens of thousands of covariates
which is characteristic of genomic data. Furthermore, it can accommodate not only
time-to-event endpoints but also continuous, binary and multinomial outcomes and
thus, is very flexible with respect to covariates and response.

The code for the MCMC samplers of the Bayesian Cox models was implemented
entirely in R, in contrast to the R packages used for the frequentist models, and can
be optimized for computational speed. Due to relatively slow computation, only up to
100 preselected covariates have been considered so far in the proposed Bayesian model.
The analysis of many thousands of genes is not yet feasible, but could be enabled
by a computationally more efficient implementation. The current implementation of
the Bayesian models allows exclusively for survival outcome and would need some
adaptions to accommodate other outcomes. Our proposed Bayesian model relies on a
Gaussian graphical model that assumes multivariate normal covariates being suitable
for our application to gene expression data. However, for other types of covariates, this
assumption can be violated. In further simulations, it might be interesting to examine
how much deviation from Gaussianity is acceptable, for example by drawing covariates
from a multivariate t-distribution.

Advantages of Bayesian approaches in general are the modeling of uncertainty,
the possibility to incorporate prior information, for example derived from literature,
historical data or additionally available data sources, and the more flexible modeling of
complex data and dependencies such as heterogeneous subgroups. One specific advantage
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of the proposed Bayesian Cox model is that it allows accounting for uncertainty
over both variable and graph selection. Prior knowledge of the network among the
covariates is not required. Instead, inference of a sparse graph is performed that reveals
relationships among the covariates. This allows the identification of relevant genes and
pathways, which in turn may lead to better understanding of molecular mechanisms
and tumorigenesis, and may improve targeted therapies. In situations where pathway
information is available and the network structure is known, it may be desirable to
incorporate this structural information in the Markov random field prior for variable
selection via a fixed graph.

In the frequentist implementation, there is the possibility to include mandatory
clinical covariates in an unpenalized manner. This is not yet implemented in the present
Bayesian models where a variable selection prior is imposed on all covariates simulta-
neously. Bayesian Cox models can be extended to have separate prior distributions
for mandatory clinical covariates and penalized genomic covariates. For mandatory
covariates, a weakly informative normal prior can be used as in Zucknick, Saadati, and
Benner (2015), whereas for penalized covariates a spike-and-slab prior as in this thesis
can be applied or a shrinkage Laplace prior (corresponding to the frequentist lasso
penalty).
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Algorithms

A.1 Regularization path for the Cox model via cycli-
cal coordinate descent

The regression coefficients in the Cox model are estimated via cyclical coordinate
descent from a regularized partial log-likelihood. The algorithm proposed by Simon
et al. (2011) is implemented in the R package glmnet (version 2.0-13) and described
in the following.

The scaled partial log-likelihood with elastic net penalty is given by

A

B = axgma {21(8) = Ar - Pu(8) | Po(8) = (alBll + 51— )IBI). o € 0.1

This maximization problem is similar to the standard Newton-Raphson algorithm but
instead of solving a general least squares problem, a penalized reweighted least squares
problem is solved here.

Let & € R™? be the design matrix and 8 the p—dimensional Vector of regression
coefficients. Let [(8) = %g) denote the gradient and [(8) = aﬂaﬁ, the Hessian of the
partial log-likelihood with respect to 3. In the case of tied events Breslow’s modification
of the partial likelihood (section 3.1.2.1) is used. A two term Taylor series expansion of
the partial log-likelihood centered at 3 is given by

1) ~ 1(B) + (8~ BYi(B) + 5(8 ~ BYI(A)(8 - B)
= 1(B) + (wB — wBYi(@h) + (8 — wB)i(wh)(B — wB)
~ 5 (C(@h) — 28) i@h) (c(h) ~ w8) + C(wB.B). (A1)

where ((z8) = B — [(xB)~ 1l(asﬁ) and C(xB, B) is independent of 8. To speed up
computation, the full matrix l(wﬂ) is replaced by a diagonal matrix with the diagonal
entries of [(z3). Equation (A.1) simplifies to

En_:lm (@B) (Gn(xB) — me) +C(zB, B), (A.2)

where I, () is the m-th diagonal element of [(x3).
The algorithm works as follows:
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1. Initialize B
2. Calculate [(zf) and ((z)

3. Solve the penalized weighted least squares problem

B = argmin {711 anl lm(mB) (Cm(mB) — ﬁ/wm)2 + )\pPa(B)} (A.3)

B
via cyclical coordinate descent. In each coordinate descent step the objective
function in (A.3) is partially minimized with respect to §; by computing the
corresponding derivative and solving it for 3;. All other coefficients f3; j; are

considered to be fixed. This minimization problem is repeated for each element
in B until convergence minimizes the objective in (A.3).

4. Set 3=
5. Repeat steps 2 to 4 until B converges.

The optimal A\p > 0 is defined by K-fold cross-validation, with K = 10 as default.
Solutions are computed over a grid of n) different values for Ap (default is n, = 100),
beginning with Ap.x (to set 8 = 0) and becoming increasingly smaller until A, (near
the unregularized solution, with A\, = €Anax and € = 0.0001 for n > p and € = 0.01 for
n < p). The cross-validation method proposed by Houwelingen et al. (2006) is applied.
All observations are divided into K subsets of approximately the same size. K — 1
subsets are used to build the model and validation is performed on the k-th subset. For
a given \p and subset k the estimator of the goodness of fit is defined as

CVi(Ap) = UB_x(Ap)) = Li(B_p(Ap)),

where [_;, is the partial log—likelihood without subset k and B_,(Ap) is the optimal 8

from maximizing [_, 4+ Ap||B]1. CVi(Ap) indicates how much the likelihood is improved
by adding the k-th subset. The optimal Ap is received by maximizing S p_, CVk()\ P)
subject to Ap.

A.2 Regularization path for the multinomial logis-
tic regression via cyclical coordinate descent

For each patient m a categorical response s, € {1, ..., S} and a ¢g-dimensional vector of
covariates z,, are observed, m = 1,...,n. Let m4(2z,,) = P(S = s|z,,) be the probability
to be modeled by the multinomial logistic regression and @ = (8o, B, ---, Bos, Bs) € R
the vector of unknown parameters to be estimated. The log-likelihood is given by

M=

1(0) = > In(m,,,(2m))

3
5

I
M=

s
> (s = 5)(Bos + 21,8 1H<ZeXpﬁoS+Z ﬂ))]

s=1

3
I
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The unknown parameters 8 are estimated from the penalized log-likelihood by solving
the following maximization problem

S
6,, = argmax {11(0) —Ap> Pa(ﬂs)} ,
0 n s=1

where P,(B,) corresponds to the elatic net penalty in section A.1. 6 is estimated
similarly to section A.l via cyclical coordinate descent. Here, a partial quadratic
approximation to the log-likelihood is formed, allowing only (Gys, B,) to vary for a single
class at a time

le(ﬁOs; - 21 Z Cms BOS - z;mBs)Q + C(é) )

with working response (s = Bos + 2/ 5 4 Szw:n;(sl) :S((zm and weights

Wins = Ts(2m)(1 — Ts(2)). Ts(2pm) is evaluated at the current parameter estimates and
C(0) is constant. The algorithm works as follows: for each value of Ap an outer loop is
created that cycles over the classes s and computes o, about the current parameter
estimates 0. In the inner loop coordinate descent is applied to solve the penalized

weighted least squares problem

min { lQS<508,,BS)+)\PPa(:65)}7

(ﬁ()a eRq+l

which results in an update of the parameter estimates 6 and lgs.- This procedure
is repeated until convergence (Friedman, Hastie, and Tibshirani, 2010). Ap > 0 is
optimized by cross-validation, as described in section A.1.

A.3 Detailed MCMC algorithm for the Bayesian
subgroup model

In the following, steps 1 to 4 of the MCMC sampling scheme in section 3.3.5.3 are
explained in more detail.

Step 1: Update of €2

The block Gibbs sampler proposed by Wang (2015) is used to update €2 for subgroups
s =1,...,S. The conditional distribution of €2, is

P(Q] G, Xo) o p(X[€2) - (Q |Gss)

ns/2 exp{— ftr (S:€2s) Hexp{—f S”} Hexp{ wsn}.

’L<] gss 17

o €2
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Consider the following partitions

Ws, 11 Ws,12 cee ws,l(pfl) I Ws,1p
|
~ G Ws,12 Ws,22 s ws,Z(pfl) | Ws2p
[ Qw2 ) ) ) . ) | )
Q= (1152 = : : . : L
Wig , W22 |
Ws1(p=1) _Ws2(p=1) - Ws(p—1)(p=1) | Ws,(p—1)p _
Ws,1p Ws,2p s Ws,(p-1)p | Wspp

and analogously
Si1 .3 Vi o

SS:X;XSZ *:/1*1*::,1*2’ 5 VS:(V.gssi'): ,:/1,1,: Plg, ,

812 . 522 4 '012 ‘

where V¢ is a (p X p) symmetric matrix with zeros on the diagonal. For the block
update of €2, focus on the last column (and row) of Qg: (W2, W9) With

Wiz = (Ws,1p, Ws,2ps -, Ws,(p—1)p) » W22 = Wspp- Lhe conditional distribution of the last
column of €2, is

~ ~ ~ ~ ~ ~—1_ ns/2
p<w12>w22|X57 G, Qll) OC(W22 - wazﬂn w12)
1

- exp { — 5 [(:)/udiag(f)ﬁl)(:)lg + 2§/12(:)12 + (522 + )\)(:122] } .

Consider the following transformations

~ ~ ~/ ~—1 _
U= wis, V= Wy — w12911 wWig .

Then the conditional distribution is

~ 5. A
p(uvlestssaﬂll) OCUnS/Q exp{ - o U}

2

(*1)
L (diag(®0) + (5 + M) 2%
© exXp —§u<1ag(’012)—|—(322+ ) 11)“"‘ SpU
=Cc!
(x2)

(+1) o G(v]% + 1, =252),

(*2) X /\/’(u\ - C:§12, C)

Permuting any column in €2, to be updated to the last one leads to a block Gibbs
sampler for the update of €2,.

Step 2: Update of G

Update all elements in G iteratively with Gibbs sampler from their conditional
distributions. All elements g,5;; are assumed independent Bernoulli a priori with
p(grs,z'j =1)=mand p(grs,z'j =0)=1—-m.

Update g, (edges between the same gene in different subgroups), r,s =1, ..., 5,
r<s,1=1,...,p from the conditional distribution

p(grs,ii) : p(’Y‘Gfrs,ii; grs,ii)
Egrs,iiE{O,l} p<g7“57ii) : p(’Ylers,ih grs,ii)

p(grs,ii|G—rs,iia 7) -

Y
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where G_, ;; denotes all elements in G except for g, ;. Accept g,s;; = 1 with probability

w
rs,ii — 1 G—Tsii7 - 70’
p(Grs, |G —rsiisY) —
where
wa =T eXp<a1;SPY + bPYIGV) g'rs,iizl

wy = (1 =) - exp(al,gy + bv'G7)

9rs,ii =0 -

1, ifu< %y~ U[0,1]

Wq+Wp

This means, update g, as follows: g =
0, else.

Update gss4; (edges between different genes in the same subgroup) , s=1,...,5,
1,7 =1,...,p, i < j from the conditional distribution

p(gss,ij) : p(ws,ija ’Y|G—ss,z‘j, gss,ij)
> gesisef0,13 P(Gssis) - P(Ws ijs YIG —ss.ij» Gss.i)
X p(gss,ij) : p(ws,ij ’gss,ij) : p(V‘G—ss,ija gss,ij) )

p(gss,ij ’Gfss,ijy ws,iju 7) =

where G_;;; denotes all elements in G except for g_g;;. Accept gss,; = 1 with
probability
w
P(Gssij = 1G —ssijs Ws i, Y) = m;

where

07 V12) : eXp(a1;S7 + b’Y/GPY) gss,ijzl
wy = (1 =) - N(ws,5510, 15) - exp(alygy + by'Gy)

We =7 - N(ws i

gss,ijZO'

Step 3: Update of v

Update v54, s =1,...,.5, ¢ =1, ..., p, with Gibbs sampler from the conditional distribu-
tion
P(Vssis 53,1"7—5,1‘7 G)
EVS,ie{o,l} P(’Ys,i, Bs.i "st,ia G)
- POVsilV—s0 G) - P(BsilVsis V—s4> G)
B Zws,ie{o,l} p(%,ihfs,ia G) ‘p(ﬂs,ihs,zw’)’fs,m G)
o p(’Ys,i;’Y_s,z”G) “P(BsilVs,i)
B Z%,ie{o,l} p(%,z‘a’)’—s,i|G) “P(Bs,ilVs,i) 7

’st,iv G7 ﬂs,i) =

P(Vssi

where «v_ ; denotes all elements in v except for v, ;. Accept v,; = 1 with probability

Wq

si:]- — ’7G) si) — .
P(Vsi = Uv_s5s G, Bs) P

where
Wy = eXp(a’lj/oS’Y + b7/G7> ¥s,i=1 'N(ﬁs,im? 027—2)

Wy = exp(alg,s’y + 67,G7)|%,i:0 ' N(ﬁs,i|07 7_2)'
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Step 4: Update of 3

A random walk Metropolis-Hastings algorithm with adaptive jumping rule as proposed
by Lee, Chakraborty, and Sun (2011) is used to update s, fors = 1,..., S andi =1, ..., p.
The full conditional posterior distribution of f;; is

p(ﬁsﬂll@s,—iv Vs h87 QS)
X L<:Ds|/857 hs) ’ p(ﬂs|7s)

Js
o H exp ( — hs,g Z exp(ﬁ’sms’k)> H [1 — €Xp ( - hs,g exp(ﬂ;a:s,l))}]
g=1 k€ERs,g—Ds,g 1€Ds g

|
exp (= 30.7318.),

where B, _; denotes the vector B, without the i-th element and Y5, = diag(o3, ,...,03, )
with ggs,i = (1 = 7s4) - T2 + s - AT
In MCMC iteration t update s, as follows:

(1) Sample a proposal (3 #Prop) from a proposal distribution
70! (t—1 70, t—1
(B8 1887) = NP o)

(ii) Calculate the ratio of ratios

s)/q(8 pmp)lﬁ )
)/a(Bes 185

( (p"“OP |ﬁs —i 7 gt 1)7hgt_1)7©
Tsi =
( t 1)|/Bs —i Y )7hgt_1)7©

(iii) Accept the proposal ﬁéﬁmp) if min{r,;, 1} > u with u ~ U0, 1].

The mean and variance of the proposal distribution can be approximated based on the
first and second derivative of the log conditional posterior distribution with respect to

ﬁ(tfl).
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FIGURE B.1: Shrinkage estimates of the empirical correlation matrix from 1000 randomly
selected genes. (A) shrinkage correlation matrix, (B) histogram of the distribution of
shrinkage correlation values.
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FicURE B.2: Weights estimated with random forest without interactions and cumulative
HR, for simulated data with n = 200, p = 100, block correlation and ¢ = Q.

Estimation is based on training data without cross-validation which leads to
overfitting.
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FIGURE B.3: Mean AUC for weights estimation based on cross-validated training sets.
Comparison of different parameters (line type) and methods (color) for weights
estimation, and varying parameters for data simulation (p, n, 3) with ¢ = 1.
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FIGURE B.4: Mean inclusion frequencies of the Cox model for different model types (colors) and parameter settings for weights estimation (point

1 (cont.).

symbols). Results are based on simulated data with p = 100 uncorrelated predictors, n = 50,200, and (A) e =0, (B) €
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FIGURE B.5: Mean integrated Brier score (IBS) for the Cox model, averaged across all test
sets and subgroups. Comparison of different model types (color), parameter settings
for weights estimation (line type), and varying parameters for data simulation (p, n,
3.). Gray lines indicate the Kaplan-Meier estimator (KM) for a reference model
without covariates based on subgroup (sub) or combined (all) training data.
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FIGURE B.6: Regression tree for C-index based on all test sets including all model types
and parameter settings for data simulation and weights estimation as predictors.
Each box shows mean C-index and sample size in the corresponding node.
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FIGURE B.9: Mean AUC for weights estimation based on cross-validated training sets. Comparison of different parameters (line type) and
methods (color) for weights estimation, and varying parameters for data simulation (p, n, 3). The first three columns show all parameter
combinations for the three classification methods, and the fourth column for each method the best combination (mean across different n and
). (A)e=0,(B)e=0.1, (C)e=0.2, (D) e=0.3, (E) e=04, (F) e=0.5, (G) e =1 (cont.).
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FIGURE B.9: Mean AUC for weights estimation based on cross-validated training sets. Comparison of different parameters (line type) and
methods (color) for weights estimation, and varying parameters for data simulation (p, n, 3). The first three columns show all parameter
combinations for the three classification methods, and the fourth column for each method the best combination (mean across different n and
). (A)e=0,(B)e=0.1, (C)e=0.2, (D) e=0.3, (E) e=04, (F) e=0.5, (G) e =1 (cont.).
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FIGURE B.10: Mean C-index for the Cox model, averaged across all test sets and
subgroups. Comparison of different model types (color), parameter settings for
weights estimation (line type), and varying parameters for data simulation (p, n, ).
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FIGURE B.10: Mean C-index for the Cox model, averaged across all test sets and

subgroups. Comparison of different model types (color), parameter settings for
weights estimation (line type), and varying parameters for data simulation (p, n, ).
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FIGURE B.10: Mean C-index for the Cox model, averaged across all test sets and
subgroups. Comparison of different model types (color), parameter settings for
weights estimation (line type), and varying parameters for data simulation (p, n, ).
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FIGURE B.11: Mean integrated Brier score (IBS) for the Cox model, averaged across all
test sets and subgroups. Comparison of different model types (color), parameter

settings for weights estimation (line type), and varying parameters for data
simulation (p, n, ¥). Gray lines indicate the Kaplan-Meier estimator (KM) for a

reference model without covariates based on subgroup (sub) or combined (all)
training data. (A) e =0, (B) e=0.1, (C) e=0.2, (D) e =0.3, (E) e =04,

(F)e=0.5, (G) e=1.
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FIGURE B.11: Mean integrated Brier score (IBS) for the Cox model, averaged across all
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simulation (p, n, ¥). Gray lines indicate the Kaplan-Meier estimator (KM) for a
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FIGURE B.11: Mean integrated Brier score (IBS) for the Cox model, averaged across all
test sets and subgroups. Comparison of different model types (color), parameter

settings for weights estimation (line type), and varying parameters for data
simulation (p, n, ). Gray lines indicate the Kaplan-Meier estimator (KM) for a

reference model without covariates based on subgroup (sub) or combined (all)
training data. (A) e =0, (B) e=0.1, (C) e=0.2, (D) e =0.3, (E) e =04,
(F)e=0.5, (G) e=1 (cont.).
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FIGURE B.12: Regression tree for integrated Brier score (IBS) including all model types
and parameter settings for data simulation and weights estimation as predictors.
Each box shows mean IBS and sample size in the corresponding node.
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settings for data simulation and weights estimation as predictors. FEach box shows
mean C-index and sample size in the corresponding node.
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FIGURE B.20: Boxplots of C-index based on all test sets for the prediction of each
subgroup under varying parameters for weights estimation.
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FiGure B.23: Boxplots of IBS for different Cox models and covariate sets. Kaplan-Meier
estimator (KM) for a reference model without covariates based on subgroup (KM
sub) or combined (KM all) test data.
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FIGURE B.24: Comparison of clinical covariates and combination of clinical and genomic
covariates with respect to mean prediction performance (averaged across all test sets).
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F1GURE B.26: Results of variable selection for Cox models including all genes and
mandatory clinical covariates. For each subgroup genes with a mean inclusion
frequency (MIF) larger than 0.4 in any model type are selected. (A) Mean inclusion
frequencies, (B) mean estimated regression coefficients, and (C) Venn diagram of
selected genes in all subgroups.
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F1GURE B.27: Results of variable selection for Cox models including all genes as covariates.

For each subgroup genes with a mean inclusion frequency (MIF) larger than 0.4 in

any model type are selected. (A) Mean inclusion frequencies, (B) mean estimated
regression coefficients, and (C) Venn diagram of selected genes in all subgroups.
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frequencies, (B) mean estimated regression coefficients, and (C) Venn diagram of
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covariates. For each subgroup genes with a mean inclusion frequency (MIF) larger
than 0.4 in any model type are selected. (A) Mean inclusion frequencies, (B) mean

estimated regression coefficients, and (C) Venn diagram of selected genes in all

F1cURE B.29: Results of variable selection for Cox models including prognostic genes as
subgroups.
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F1cURE B.30: Results of variable selection for Cox models including top-1000-variance

genes as covariates. For each subgroup genes with a mean inclusion frequency (MIF)
larger than 0.4 in any model type are selected. (A) Mean inclusion frequencies, (B)
mean estimated regression coefficients, and (C) Venn diagram of selected genes in all

subgroups.
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FIGURE B.31: Results of Cox models including only clinical covariates. (A) Mean

inclusion frequencies, and (B) mean estimated regression coefficients of clinical

covariates in all subgroups.
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FIGURE B.32: Trace plots of the model size (number of selected variables), comparing four
independent Markov chains. Chain 1: full model; Chain 2: empty model; Chain 3:
50% of variables and edges selected; Chain 4: 20% of variables and edges selected.
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F1GURE B.33: Trace plots of the estimated regression coefficients of the first ten variables
(first nine prognostic variables and tenth variable as representative non-prognostic
variable), comparing four independent Markov chains. Chain 1: full model; Chain 2:
empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of

variables and edges selected.
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F1GURE B.33: Trace plots of the estimated regression coefficients of the first ten variables
(first nine prognostic variables and tenth variable as representative non-prognostic
variable), comparing four independent Markov chains. Chain 1: full model; Chain 2:
empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
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2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
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FicURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
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non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
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FiGURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FicURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
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non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
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FiGURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten

variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FicURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FiGURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten

variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FicURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FiGURE B.34: Autocorrelation plots of the estimated regression coefficients of the first ten
variables (first nine prognostic variables and tenth variable as representative
non-prognostic variable) in each of the four Markov chains. Chain 1: full model; Chain
2: empty model; Chain 3: 50% of variables and edges selected; Chain 4: 20% of
variables and edges selected (cont.)
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FIGURE B.35: Plots of the corrected potential scale reduction factor by Brooks and
Gelman (1998) of the estimated regression coefficients of the first ten variables.
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F1GurE B.35: Plots of the corrected potential scale reduction factor by Brooks and
Gelman (1998) of the estimated regression coefficients of the first ten variables (cont.)
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FIGURE B.36: Trace plots of the estimated regression coeflicients from the first simulation
for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups

s =1,2 and for varying n and p. (A) n =50, p = 20; (B) n = 100, p = 20;

(C) n =25, p=100; (D) n =50, p=100; (E) n =75, p=100; (F) n = 100, p = 100;

(G) n = 150, p = 100.
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FIGURE B.36: Trace plots of the estimated regression coeflicients from the first simulation
for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups
s =1,2 and for varying n and p. (A) n =50, p=20; (B) n = 100, p = 20;
(C) n =25, p=100; (D) n =50, p=100; (E) n =75, p=100; (F) n = 100, p = 100;
(G) n =150, p =100 (cont.).
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FIGURE B.37: Running mean plots of the estimated regression coefficients from the first

simulation for three different Cox models (subgroup, combined, and CoxBVSSL),
subgroups s = 1,2 and for varying n and p (cont.).
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FiGURE B.37: Running mean plots of the estimated regression coefficients from the first
simulation for three different Cox models (subgroup, combined, and CoxBVSSL),
subgroups s = 1,2 and for varying n and p (cont.).
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Posterior selection probability Posterior selection probability

Posterior selection probability

FIGURE B.38: Mean posterior inclusion probabilities (average across all simulations) of all p variables (left) and close-up of prognostic variables
(right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying n and p. Selected variables are
highlighted as red triangles (cont.).
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CoxBVSSL s=1

FIGURE B.38: Mean posterior inclusion probabilities (average across all simulations) of all p variables (left) and close-up of prognostic variables
(right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying n and p. Selected variables are
highlighted as red triangles (cont.).
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Posterior selection probability Posterior selection probability

Posterior selection probability

FIGURE B.38: Mean posterior inclusion probabilities (average across all simulations) of all p variables (left) and close-up of prognostic variables
(right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying n and p. Selected variables are
highlighted as red triangles (cont.).
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FIGURE B.39: Posterior mean and standard deviation (sd) of regression coefficients (average across all simulations) of all p variables (left) and

close-up of prognostic variables (right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying
n and p. Selected variables are highlighted as red triangles.
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FIGURE B.39: Posterior mean and standard deviation (sd) of regression coefficients (average across all simulations) of all p variables (left) and
close-up of prognostic variables (right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying
n and p. Selected variables are highlighted as red triangles (cont.).
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FIGURE B.39: Posterior mean and standard deviation (sd) of regression coefficients (average across all simulations) of all p variables (left) and

close-up of prognostic variables (right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying
n and p. Selected variables are highlighted as red triangles (cont.).
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FIGURE B.39: Posterior mean and standard deviation (sd) of regression coefficients (average across all simulations) of all p variables (left) and
close-up of prognostic variables (right) for three different Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying
n and p. Selected variables are highlighted as red triangles (cont.).
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F1GURE B.40: Trace plots of the log-likelihood from the first simulation for three different

Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying n
and p (cont.).
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F1GURE B.40: Trace plots of the log-likelihood from the first simulation for three different

Cox models (subgroup, combined, and CoxBVSSL), subgroups s = 1,2 and varying n
and p (cont.).
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(A) n=>50 and p =20
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FIGURE B.42: Posterior mean (average across all simulations) of elements in precision matrix for subgroup 1 (left) and 2 (right). The prior of the
diagonal entries of the precision matrix is exponential with parameter w“ and the prior of the off-diagonal entries is a mixture of two normal
distributions with zero mean and variance v = 0.12 for non-selected edges and variance v = 5% for selected edges.
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(E) n =175 and p = 100
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FIGURE B.42: Posterior mean (average across all simulations) of elements in precision matrix for subgroup 1 (left) and 2 (right). The prior of the
diagonal entries of the precision matrix is exponential with parameter W“ and the prior of the off-diagonal entries is a mixture of two normal
distributions with zero mean and variance 13 = 0.1 for non-selected edges and variance v} = 5% for selected edges. (cont.).



227

Appendix B. Figures

(1 —d) /g = v 1ogowrered yjm riorid e [noulsg juspusdepul pewunsse a1e yders o) ur seSpy “(9ysL)
¢ = s pue (yof) T = s dnoisqns 10j 55 ydelsqns ul (SUOHRNUWIS [[e SSOI0R 9FvIoAR) UOISN[OUI 95pa Jo sen[Iqeqold IoLejsod uwespy :¢f g AUNDI]

al eiqelen al eiqelen al eiqeen al eiqeen
6 8 L 9 S 14 € 4 13 61 VA 13 el 23 6 L S € 3 6 8 L 9 S 14 € 4 3 6l L Si el L 6 L S € 3
L L L L L L L Il Il L L L L L L L L L L L L L L L L L L Il Il L L L L L L L L Il L L L L L L L L L L L L L L L L L L L Il
00 1 | N - 00 1 | =
Fo L
F w F w
N [N N =
20+ o z0 F oo
Low o Fow r o
-~ -~
L b o L o b o
0 o M L o M 0 M L o m
Fo B .2 Fo 8 .2
) Q= o ) Fr= o
90 4 o © ALY [ ° e
Fo Fo
P~ Fa P~ Fa
80 - 80 |
b o 3 b o F
o | o Fe o | o F3
Sa|qeLIeA @ ISil} Jo dn-8so|) S9|qBLIEA ||V Sa|qelIeA @ ISilf Jo dn-8so|) S9|qELIEA ||y
2 ydesbgns ul uoisnjoul ab6pa Jo saijigeqold Joud}sod W 5 ydesbgns ur uoisnjoul abpa Jo sanljigeqoud Joud)sod

0z =dpue ¢ =u (V)

“(*pu0d) "S95po Poa3v[es 10f G = i odurLIEA pUR SOSPO POJI9[Is-uOU I0f ,1°() = m: OOURLIBA PUR UROW OI0Z [[JIM SUOIINQLI}SID
[EULIOU OM] JO 9INJXIUI B ST SOLIJUO [RUOSRIP-JO o3 jo IoLid o) puer “m JTojowrered 3Im reryuouodxo SI XLIJRUI UOISIDOIA 1) JO SOLIUO [RUOTRID
oy jo aoud oy ], *(ySL1) g pue (3yo1) [ dnoidqns 10j XLIpRUI UOISIOId UT SJUSWIO[O JO (SUOIRMUIIS [[R SSOIOR 9FRIoAR) UROW IOLIDISOJ g g HUNDI]

ai sigeuen Qi sigeuep Al siqeuep Al siqeuep

w =) w =
ER . ER
-~ Ed Ea
En En
z- ........... E® z- E?®
g Ew Ew
E < E®
.......... E3 Es
g - E. & g E. &
z - EN © 5 EN ©
04 =3 - E, & ©°f =3 E_¢©
5] ER @ ® EEQ @
5 \ Ep O S E, O
£ 3 \\ t3
1 -..-.-.. Ex 7 E~
-~ EC - EC
.‘..\\..... w 8 \\\ w 8
E o E
E© Eo
y .&n w 9 . E w g
so|qeleA 6 3sdly Jo dn-asoj) So|qeleA ||V s9|qeleA 6 3sily Jo dn-asoj) So|qelEA ||V
Z dnouBgns Jo g5 Xijew uolsioald Ul Sjuswald JOo Ueaw J0lS}SOd | dnoBgns Jo }g5 Xijew uoisioald Ul SjUsWa|d JO Ueal JO1S}SOd

00T = d pue 0GT = u (D)



Appendix B. Figures

228

(B) n =100 and p = 20
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FIGURE B.43: Mean posterior probabilities of edge inclusion (average across all simulations) in subgraph Gss for subgroup s = 1 (left) and s = 2

(right). Edges in the graph are assumed independent Bernoulli a priori with parameter m = 2/(p — 1) (cont.).
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Posterior probabilities of edge inclusion in subgraph G ¢4
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FIGURE B.43: Mean posterior probabilities of edge inclusion (average across all simulations) in subgraph Gss for subgroup s = 1 (left) and s = 2
(right). Edges in the graph are assumed independent Bernoulli a priori with parameter m = 2/(p — 1) (cont.).
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G2 (average across all simulations). Edges in the graph are assumed independent
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FIGURE B.45: Trace plots of the estimated regression coefficients from the first simulation
for three different Cox models (subgroup, combined, CoxBVSSL), subgroups s = 1,2
and varying n and p. (A) n =50, p = 20; (B) n =100, p = 20; (C) n = 50, p = 100;
(D) n =75, p=100; (E) n =100, p = 100; (F) n = 200, p = 100.
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FIGURE B.45: Trace plots of the estimated regression coefficients from the first simulation
for three different Cox models (subgroup, combined, CoxBVSSL), subgroups s = 1,2
and varying n and p. (A) n =50, p = 20; (B) n =100, p = 20; (C) n = 50, p = 100;
(D) n =175, p=100; (E) n =100, p = 100; (F) n =200, p = 100 (cont.).
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FIGURE B.45: Trace plots of the estimated regression coefficients from the first simulation
for three different Cox models (subgroup, combined, CoxBVSSL), subgroups s = 1,2
and varying n and p. (A) n =50, p = 20; (B) n =100, p = 20; (C) n = 50, p = 100;
(D) n =175, p=100; (E) n =100, p = 100; (F) n = 200, p = 100 (cont.).
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FIGURE B.46: Running mean plots of the estimated regression coefficients from the first
simulation for three different Cox models (subgroup, combined, CoxBVSSL),
subgroups s = 1,2 and varying n and p.
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FIGURE B.46: Running mean plots of the estimated regression coefficients from the first
simulation for three different Cox models (subgroup, combined, CoxBVSSL),
subgroups s = 1,2 and varying n and p (cont.).
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FIGURE B.46: Running mean plots of the estimated regression coefficients from the first
simulation for three different Cox models (subgroup, combined, CoxBVSSL),
subgroups s = 1,2 and varying n and p (cont.).
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FIGURE B.47: Trace plots of the estimated regression coefficients of the 30 Kratz genes for
(A) the CoxBVSSL model, and (B) the subgroup model, in the first training data set.



240 Appendix B. Figures

(A) CoxBVSSL model

GSE29013 GSE31210 Gene

CDK2AP1
BAG1
ERBB3
TBP
CDC6
CDC6
BRCA1
LCK
LCK
SH3BGR
IL11
IL11
ESD
BAG1
BRCA1
GSE37745 GSE50081 —— RND3
YAP1
FUT3
ESD
ESD
ERBB3
FUT3
ERBB3
ERBB3
YAP1
YAP1
ERBB3
T T T T T T T T T T ESD
0 5000 10000 15000 20000 0 5000 10000 15000 20000 BAGH

MCMC iteration MCMC iteration ESD

]

0 5000 10000 15000 20000 0 5000 10000 15000 20000
MCMC iteration MCMC iteration

NRRERN

(B) Subgroup model

GSE29013 GSE31210 Gene

CDK2AP1
BAG1
ERBB3
TBP
CDC6
CDC6
BRCA1
LCK
LCK
SH3BGR
IL11
IL11
ESD
BAG1
BRCA1
GSE37745 GSE50081 —— RND3
YAP1
FUT3
ESD
ESD
ERBB3
FUT3
ERBB3
ERBB3
YAP1
YAP1
ERBB3
T T T T T T T T T T ESD
0 5000 10000 15000 20000 0 5000 10000 15000 20000 BAGH

MCMC iteration MCMC iteration ESD

N

0 5000 10000 15000 20000 0 5000 10000 15000 20000
MCMC iteration MCMC iteration

NRRRRR

<ca 0.51 < 0.51

© 0.4 © 0.4
0.3 1 0.3 1
g 0.2 g 024
© 0.1 2 0.14 ||

0.0 4 pmme—————

—-0.1 1

eans
eans

Runnin
Runnin

-0.11

/
[N

FIGURE B.48: Running mean plots of the estimated regression coefficients of the 30 Kratz
genes for (A) the CoxBVSSL model, and (B) the subgroup model, in the first
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FIGURE B.50: Mean posterior inclusion probabilities of the top-100-variance genes
(average across all training data sets) for (A) the CoxBVSSL model, and (B) the
subgroup model. Selected variables are highlighted as red triangles.
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the top-100-variance genes (average across all training data sets) for (A) the
CoxBVSSL model, and (B) the subgroup model. Selected variables are highlighted as
red triangles.
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FIGURE B.52: Mean posterior inclusion probabilities (top) and posterior mean/standard
deviation (bottom) of the regression coefficients of the top-100-variance genes
(average across all training data sets) for the combined model. Selected variables are

highlighted as red triangles.
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(A) Posterior mean of elements in precision matrix €
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(B) Mean posterior probabilities of edge inclusion in subgraph G
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FIGURE B.53: Mean posterior estimates of precision matrix €25 and subgraph G for all
subgroups s and the top-100-variance genes (average across all training data sets).
Edges in the graph are assumed independent Bernoulli a priori with parameter
m=2/(p—1), p=100. The prior of the diagonal entries of the precision matrix is
exponential with parameter %, and the prior of the off-diagonal entries is a mixture
of two normal distributions with zero mean and variance v§ = 0.1 for non-selected
edges and variance v? = 52 for selected edges.
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FIGURE B.54: Posterior probabilities of edge inclusion (PPI) for diagonal elements in
subgraphs G, ,<s between subgroups r and s for the top-100-variance genes
(average across all training data sets). Edges in the graph are assumed independent
Bernoulli a priori with parameter m = 2/(p — 1), p = 100. The ten genes with highest
PPI are highlighted in red.
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(A) 30 Kratz genes
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FIGURE B.55: Prediction error curves and integrated Brier scores (IBS) based on the first
test data set. Kaplan-Meier estimator (KM) for a reference model without covariates
based on subgroup (SUB-KM) or combined (ALL-KM) training data.

ALL: combined model; SUB: subgroup model.
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Tables

N S ) ~N

@ S & N N
~ Joe) (@) N 4N S
S & & o5 o5 '3
S =~ g & & &

Y Y < < < <

Sample size 55 226 194 160

min 32 30 39 40

Age (years) mean 64 60 64 68

max. 76 76 84 87

Sex male 38 105 105 88

female 17 121 89 72

I 24 168 128 112

PTNM stage 11 1/ 31 58 66 48

SQC 25 0 64 35

Histology ADC 30 226 106 115

other NSCLC 0 0 24 10

Smoki tatus never-smoker 2 115 15 24

HHOKIIE 5t current/ former smoker 53 111 179 136

. censoring 37 191 o1 95

Survival status event 18 a5 143 65

TABLE C.1: Summary of clinical pathologic variables of all NSCLC cohorts. Absolute

frequencies of variable values.
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Top five methods

€ P n X 1 2 3 4 D
rf-4 rf-1 rf-3 rf-2 05-3
0.674 0.661 0.659 0.657 0.592
rf-4 rf-1 rf-3 rf-2 05-3
0.637 0.619 0.617 0.616 0.584
(-4 -4 rf-1 rf-2 rf-4
0.698 0.698 0.695 0.695 0.694
62—3 £1—3 rf-4 rf-3 €1—4
0.524 0.510 0.500 0.499 0.497
rf-3 rf-4 (-3 £1-3 rf-2
0.560 0.537 0.534 0.516 0.496
rf-3 £1—2 61—4 61—1 gl—g
0.519 0.488 0.488 0.482 0.481
rf-4 rf-1 rf-2 rf-3 l1-4
0.567 0.518 0.516 0.482 0477
rf-4 rf-3 rf-1 l1-1 rf-2
0.566 0.532 0.506 0.503 0.498
rf-4 rf-3 rf-2 rf-1 05-3
0.617 0.599 0.574 0.573 0.555
rf-3 €1—3 rf-4 62—3 gl—l
0.628 0.621 0.619 0.592 0.572
rf-4 rf-3 01-3 rf-2 rf-1
0.567 0.538 0.515 0.512 0.510
rf-4 rf-3 rf-2 rf-1 05-3
0.626 0.611 0.584 0.584 0.573
rf-4 rf-3 rf-1 rf-2 05-3
0.612 0.594 0.569 0.569 0.549
01-3 rf-4 rf-3 rf-2 l1-4
0.620 0.620 0.620 0.596 0.595
(-4 04-3 rf-3 rf-4 rf-2
0.658 0.657 0.651 0.644 0.624
01-3 rf-4 rf-3 l1-4 rf-2
0.634 0.631 0.629 0.617 0.612
rf-4 rt-3 /-3 ri-1 rf-2
0.645 0.632 0.630 0.622 0.622
ri-4 rt-3 /-3 rf-2 ri-1
0.637 0.629 0.625 0.616 0.615
ri-4 rf-2 ri-1 ri-3 fr-1
0.633 0.569 0.556 0.556 0.546
ri-d (-4 (5-3 rf-2 ri-1
0.594 0.505 0.502 0.500 0.500
ri-4 rf-2 ri-1 (-3 l1-4
0.594 0.513 0.509 0.499 0.495
ri-4 rf-3 05-3 rf-2 01-3
0.618 0.573 0.560 0.520 0.516

0 12 50 uncorrelated

0 12 200 uncorrelated

0 12 1000 uncorrelated

0 100 50 block

0 100 50 blockdiag

0 100 50 min01

0 100 50 shrinkage

0 100 50 uncorrelated

0 100 200 block

0 100 200 blockdiag

0 100 200 minO1

0 100 200 shrinkage

0 100 200 uncorrelated

0 100 1000 block

0 100 1000 blockdiag

0 100 1000 minO1

0 100 1000 shrinkage

0 100 1000 uncorrelated

0 1000 50 block

0 1000 50 blockdiag

0 1000 50 min01

0 1000 50 shrinkage
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rf-4 fl—?) I'f—3 £1-2 frl

01000 50 uncorrelated | o0 (c07 (0503 0502 0.501
rf-4 rf-3 rf-1 l1-1 01-2

01000 200 block 0.568 0.515 0.497 0.494 0.493
. rf-4 rf-3 El—g 61—1 62—3

0 1000 200 blockdiag 0584 0538 0.512 0.510 0.509
. rf-4 rf-3 -3 rf-1 rf-2

0 1000200 minO1 0.600 0.547 0512 0.508 0.506
. rf-4 rf-3 05-3 rf-2 rf-1

0 1000 200 shrinkage 0.602 0578 0.549 0.528 0.526
rf-4 rf-3 rf-1 rf-2 01-3

01000 200 uncorrelated | ) o\ o () car (0505 0525 0.503
rf-4 (-3 44-1 rf-3 rf-1

01000 1000 block 0.627 0.622 0.612 0.601 0.575
) (-3 rf-4 rf-3  44-1 ri-1

0 1000 1000 blockdiag 0.644 0.628 0.621 0.603 0.577
. rf-4 01-3 /-1 rf-3 rf-2

0~ 1000 1000 minO1 0.616 0.615 0.604 0.595 0.561
. rf-4 €1—3 rf-3 61—1 52—3

0 1000 1000 shrinkage 0.638 0.628 0.620 0.609 0.577
rf-4 (-3 44-1 rf-3 rf-1

01000 1000 uncorrelated | ) oo (1500 0574 0573 0.549

TABLE C.2: Top five combinations of methods and parameters for weights estimation in
terms of highest mean AUC (mean across all training sets). Results for e =1 are not
shown since all top five methods perform equally well with AUC=1 and therefore, are
not distinguishable. rf = random forest, {1 = lasso, {s = ridge; and

= no intera. & no cumHR, 2 = no intera. & cumHR, 3 = intera. & no cumHR,
4 = intera. & cumHR.

n

b))

p

1

Top five methods
2 3 4 5

20

uncorrelated

12
12

w=0.1
4.519

w=0.2 w=0.3 w=04 w=0.5
4708  4.809 4.922 4.985

200

uncorrelated

12
12

sub
1.685

w=0.1 w=0.2 w=0.3 w=04
2.847 3.394 3.736  3.982

1000

uncorrelated

12
12

sub
0.677

w=0.1 w=0.2 /(-4 w=0.3
3.012 3.613 3.907 3.956

0 100

20

block

12
12
100
100

w=0.4
5.876

w=0.3
6.645

w=0.3 w=0.5 w=0.2 w=0.6
5.883 5902 5926 5.933
w=0.4 w=0.5b w=0.6 w=0.7
6.649 6.652 6.675  6.697

0 100

20

blockdiag

12
12
100
100

w=0.2
5.587

w=0.8
6.322

w=0.3 w=0.1 w=04 w=0.5
5.636  5.663 5.673 5.730
w=0.6 w=0.7 w=0.9 w=0.5
6.324 6.325 6.335 6.336
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12 | w=04 w=0.0 w=0.6 w=0.7
. 12 | 5.055 5073 5.114  5.141
0 10050 min01 100 | w=0.5 w=0.6 w=0.7 w=0.3
100 | 6.090 6.100 6.108  6.158
12 | w=0.3 w=04 w=0.2 w=0.6
. 12 | 5576 5585 5591  5.608
0 100 50 shrinkage 100 | w=0.6 w=0.8 w=0.5 w=0.4
100 | 6.478 6.496  6.496  6.500
12 | w=0.2 w=0.4 w=0.5 w=0.6
12 | 5.482 5503 5537  5.548
0 100 50 wuncorrelated 001 w=05 w=06 w=0.7
100 | 6.453 6.473  6.487  6.513
12 sub w=0.2 w=0.3 w=0.4
12 | 2.980 1.032  4.240 4.382
0 100 200 block 100 | sub w=0.2 w=0.3 w=0.4
100 | 4.068 4755 4876 4.966
12| sub Ww=02 w=0.3 w=04
. 12 | 3.036 4374 4590 4.731
0 100 200 blockdiag 100 | sub w=02 w=0.3 w=04
100 | 4.231 5424 5574  5.671
12 sub w=0.2 w=0.3 w=0.4
. 12 | 3.786 4575 A7T2 4.890
0 100 200 minO1 100 | sub w=0.2 w=03 w=0.4
100 | 4.925 5471 5544 5.609
12 sub w=0.2 w=0.3 w=0.4
. 12 | 3.637 4388 4530 4.636
0 100 200 shrinkage 100 | sub w=0.2 w=0.3 w=0.4
100 | 4.905 5471 5553 5.614
12| sub w=02 w=0.3 w=04
12 | 3.526 4337 4514  4.639
0 100 200 uncorrelated 100 sub Wwe02 Ww=03 w=04
100 | 4.456 5317 5439  5.520
12 sub w=0.2 w=0.3 w=04
12 | 1.188 3.671 3.974 4175
0 100 1000 block 100 | sub w=02 w=0.3 w=04
100 | 1.861 4.031 4.300 4.491
12 sub w=0.2 w=0.3 w=0.4
. 12| 1.075 3.855 4.139 4.335
0 100 1000 blockdiag 100 | sub w=0.2 w=0.3 w=0.4
100 | 1.803 4992 4565 4.735
12 sub w=0.2 w=0.3 w=04
. 12 | 1.230 3.683 3.979  4.182
0~ 100 1000 min01 100 | sub w=02 w=0.3 w=04
100 | 1.918 4.080 4.342 4510
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12 sub w=0.1 w=0.2 w=0.3 w=0.4
. 12| 1.427 3305 3.826 4.118 4.301
0 100 1000 shrinkage 100 | sub  w=0.1 w=0.2 w=0.3 w=04
100 | 2217  3.994 4415 4.624  4.762
12 sub w=0.1 w=0.2 w=0.3 w=04
121 1523 3378 3.859 4.128 4.305
0 100 1000 wuncorrelated 001 " W7 000 w02 w=0.3 w=04
100 | 2370 4.065 4469 4.694  4.842
12 | w=0.8 /,-3 w=07 13  0(p1
12| 6527 6528 6.528  6.535  6.538
0 1000 50 block 1000 | w=0.9 4 tE2  lpd  all
1000 | 7.323  7.339 7.343  7.352  7.356
12 | w=0.0 w=0.6 w=04 w=0.3 w=0.7
. 12| 6547 6555 6.558 6.561  6.561
01000 50 blockdiag 1000 | w=0.4 w=0.6 w=05 w=07 w=0.8
1000 | 7.016  7.020 7.023 7.029 7.033
12 | w=06 w=07 0,2 w=05  all
. 121 6339 6347 6.349  6.350 6.351
0100050 min01 1000 | w=0.9 w=0.7 w=0.8 /fy-4d  1f2
1000 | 7.086 7.088 7.092 7.092  7.098
12 | w=0.3 w=04 w=0.2 w=0.5 w=0.6
. 12| 6618 6.624 6.632 6.647 6.659
0 1000 50 shrinkage 1000 | sub  w=05 w=0.6 w=04 w=0.7
1000 | 7.738 7.861 7.866 7.873  7.885
12 | w=0.8 all w=0.6 /-3 w=0.7
12| 6.758 6.760 6.765 6.766  6.766
0 1000 50 uncorrelated 1000 L£3 L£0 052 all 053
1000 | 7.049  7.051 7.059 7.059 7.061
12 | w=0.1 w=0.2 w=0.3 w=04 w=0.5
12| 4835 4.946 5027 5090 5.142
0 1000 200 block 1000 | w=0.5 w=04 w=0.6 w=0.7 w=0.3
1000 | 6.126  6.141  6.149 6.149  6.159
12 | w=0.1 w=0.2 sub w=0.3 w=0.4
. 12| 4685 4.822 4851 4.936 5.028
0 1000 200 blockdiag 1000 | sub  w=0.3 w=0.2 w=04 w=0.1
1000 | 5.931 6.022 6.023 6.049  6.056
12 | w=0.1 w=0.2 w=0.3 w=04 sub
. 12| 4.854 4984 5113 5213 5.262
01000 200 min01 1000 | w=0.3 w=0.2 w=04 w=05 w=0.6
1000 | 6.175 6.189  6.205 6.222  6.252
12 | w=0.2 w=0.1 w=0.3 w=04 w=0.5
. 121 5022 5026 5077 5140 5.195
0 1000 200 shrinkage 1000 | w=04 w=0.3 w=0.5 w=06 w=0.2
1000 | 6.272 6276 6.307 6.316 6.328
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12 sub w=0.1 w=0.2 w=0.3 w=0.4
12| 4742 4807 4934 5037 5.119
01000 200 wuncorrelated 00| 0 w05 w=0.3 w=0.6 w=0.7
1000 | 5.920 5925 5935 5946  5.969
12 sub w=0.1 w=0.2 w=0.3 w=04
12| 2.061 3450 3.910 4.172 4.347
0 1000 1000 block 1000 | sub  w=01 w=02 w=03 w=04
1000 | 3.267 4.365 4.696 4.882  4.984
12 sub w=0.1 w=0.2 w=0.3 w=04
. 12| 2013 3728 4186 4.435  4.600
0 1000 1000 blockdiag 1000 | sub  w=01 w=02 w=03 w=04
1000 | 3.354 4.615 4.896 5046 5.137
12 sub w=0.1 w=0.2 w=0.3 w=0.4
. 12| 2315 3.737 4162 4.423  4.590
0 1000 1000 minO1 1000 | sub  w=0.1 w=02 w=03 w=04
1000 | 3.518 4589 4913 5072 5.182
12 sub w=0.1 w=0.2 w=0.3 w=04
. 12| 2414 3767 4194 4.438  4.592
01000 1000 shrinkage 0001 Oh w201 w=02 w=0.3 w=04
1000 | 3.928 4.888 5185 5327  5.408
12 sub w=0.1 w=0.2 w=0.3 w=04
12| 2267  3.656 4.009 4.349  4.522
01000 1000 uncorrelated o0 | "W " 000 w02 w=0.3 w—=04
1000 | 3411 4579 4914 5106 5.212
12 rf-4 rf-2 rf-1 rf-3 05-2
L1250 uncorrelated o | 3313 3915 3360 3384 3.521
12 sub 62—3 EQ—]_ 62—2 £2—4
112200 uncorrelated o 1 'gn 9300 9419 2420 2495
12 sub 62—3 EQ—]_ 62—2 £2—4
112 1000 uncorrelated o 1 ('sas 9630 9638 2.640  2.646
12 rf-3 61—3 51—2 61—1 f1—4
12| 6149 6153 6.164 6.169 6.171
1 100 50  block 100 rf-3 sub rf-2 rf-4 rf-1
100 | 7.031 7.045 7.053 7.066 7.075
12 61-3 €1-4 gl—l 61—2 rf-4
. 121 5278 5284 528 5291  5.338
1100 50 blockdiag 00| 6,3 6,2 61 all  rf3
100 | 6.296 6.298 6.310 6.324 6.325
12 all 82-3 62—1 w=0.9 82—2
. 12 6074 6.083 6.095 6.096 6.105
L 100050 min0l 100 | 6-3  w=0.8 (-2  rf3  w=0.6
100 | 7.192  7.196 7.201 7.208 7.212
12 rf-3 01-3 rf-2 01-2 rf-1
. 12| 5863 5895 5899 5899 5.901
1100 50 shrinkage 100 | le1 -2 w=0.7 w=0.8 w=0.9
100 | 6.947 6.969 6.970 6976 6.978
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12 61-2 I“f—?) 52—3 €1—3 fl—l
121 6.294 6.295 6.302 6.310 6.311
L1000 50 uncorrelated 00 | 09 Al w=06 62 w=08
100 | 6.900 6.904 6.906 6.906 6.907
12 | rf-4 sub /-1 -2 {1-4
12 | 3.247 3.396 3422 3.432 3.433
I 100200 block 100 | sub  1f4 02 41 44
100 | 4.380 4.490 4.668 4.673  4.685
12 ri-4 61-2 61—4 61—1 ri-1
. 12 | 2475 2706 2715 2.715  2.909
1 100 200 blockdiag 100 A 01 02 0,4 <ub
100 | 3.642 3915 3.923 3.927 3.971
12 rf-4 61—2 51-1 61—4 sub
. 12 | 3.049 3.262 3.268 3.279  3.327
b 100200 min01 00| sub  rbd 6ol 62 64
100 | 4.626  4.737 4980 4.990 5.020
12 rf-4 gl—l 61—4 61-2 61-3
. 12 | 3.040 3.179 3.190 3.197  3.299
1 100 200 shrinkage 100 'y sub 014 0,2 01
100 | 4.815  4.907 4970 4.988  5.000
12 ri-4 61-1 £1-2 61—4 61—3
12 | 3.006 3.281 3.313 3.313 3.396
1 100 200 wuncorrelated 100 A sub 01 0,2 0,4
100 | 4.117  4.356  4.392  4.393  4.403
12 sub 62—1 €2—2 61—3 €2—4
12| 1.267 2.227 2.231 2245 2.249
L 1001000 bloclk 100 | sub 63 L4 6l 02
100 | 1.951 3.265 3.276 3.281 3.283
12 sub €2—4 62—1 62—2 rf-1
. 12 | 1.314 2.061 2.065 2.069 2.069
L 1001000 blockdiag o0 | o hga el i3 6yl
100 | 2.109 2.877 2.880 2.893 2.921
12 sub 62-1 61-3 62-2 61—1
. 12| 1.294 2470 2471 2471 2474
L 1001000 minOl 100 | sub 61 62 64 63
100 | 1.980 3.270 3.275 3.279  3.304
12 sub 62—2 EQ—]_ 62—4 £1—3
. 12| 1.423 2.335 2338 2340 2.350
1 100 1000 shrinkage 100 | sub 0,2 003 001 004
100 | 2.234 3.406 3.407 3.407  3.408
12 sub €2-4 62—1 €2—2 rf-2
12| 1.615 2.113 2.116 2.118 2.135
1 100 1000 wuncorrelated 100 | sub Lf0 cf1 0,0 L£3
100 | 2.398  3.052  3.057 3.065 3.072
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12 all w=0.8 w=0.9 w=0.7 w=0.6
12| 6.186 6.206 6.207 6214 6.236
1100050 block 1000 | w=09 w=0.8 all w=0.7 w=0.6
1000 | 6.814 6.825 6.839 6.844 6.880
12 all w=0.8 rf-3 w=0.9 w=0.7
. 12| 6473 6482 6484 6.490  6.490
1100050  blockdiag 1000 | w=0.9 w=0.8 all w=07 w=0.6
1000 | 7.129 7.150 7.160 7.160 7.161
12 [ w=08 w=0.7 all w=06 (,2
. 12 | 6.630 6.641 6.643 6.643 6.644
1100050 min01 1000 | w=0.9 flyd el all  w=08
1000 | 7.377 7432  7.440 7.446  7.448
12 rf-3 w=0.9 w=0.8 w=0.7 all
. 12| 6.665 6.672 6.678 6.678  6.680
I 1000 50 shrinkage 1000 | rf-2 -3 w=0.5 1f3 all
1000 | 7.575  7.597  7.598  7.599  7.600
12 | w=0.9 w=0.8 all w=0.7 w=0.6
12| 6.432 6438 6.439 6.446  6.455
L1000 50 umcorrelated 00 | 1208 w=07 w=0.9  £,-2
1000 | 6.827 6.860 6.861 6.862 6.875
12 sub I'f—3 61—1 52-3 61—4
12 | 4874 5.048 5058 5059  5.067
1 1000 200 block 1000 | sub -2 0-4 03 04-1
1000 | 6.097 6.772 6.791 6.797  6.805
12 61—1 61—2 €1—4 61—3 sub
. 12| 5297 5301 5304 5311 5321
1 1000 200 blockdiag 1000 sub 004 02 01 0,3
1000 | 6.281 6.757 6.767 6.779  6.782
12 sub €1—2 €1—4 61—1 61—3
. 12 | 4.643 4890 4.890 4.893  4.896
1 1000 200 min0l 1000 | sub 4 62 01 63
1000 | 5.879  6.566 6.568 6.577  6.583
12 rf-3 rf-4 sub rf-1 rf-2
. 12| 5228 52690 5275 5284 5.286
11000 200 shrinkage 1000 | sub  w=0.9 w=0.8 w=0.7 w=0.6
1000 | 6.769 7.177 7.190 7.195  7.206
12 sub 61—2 €1—4 61—1 fl—g
12| 4910 5101 5.103 5104 5.122
1 1000 200 wuncorrelated 1000 sub 004 02 003 01
1000 | 6.019 6.325 6.334  6.337  6.339
12 61—4 €1-2 61-1 sub 61-3
12 ] 2203 2206 2206 2243 2244
1 1000 1000 block 1000 | sub -1 62 0-4 03
1000 | 3.413 3.916 3.924 3.938 3.989
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12 61-1 £1-2 51—4 €1—3 sub
) 12| 1.866 1.868 1.868 1.873  2.059
1 1000 1000 blockdiag 1000 sub 0,9 01 0,4 003
1000 | 3.223 3.317 3.320 3.323  3.327
12 sub gl—l £1-2 61—4 61-3
. 12| 1.954 2116 2.116 2.117 2.130
110001000 min01 1000 | sub £l 4 62 643
1000 | 3.252  3.689 3.704 3.723 3.754
12 61—2 61-1 61—4 61-3 sub
. 121 1.970 1974 1976 2.075 2.458
1 1000 1000 shrinkage 1000 sub 0,29 01 0,4 0,3
1000 | 3.768 4.342 4.351 4.371 4.616
12 61—4 61—2 51-1 61—3 sub
12| 1.749 1.751 1.751 1.770 2.093
1 1000 1000 wuncorrelated 1000 | £,4 01 02 003 sub
1000 | 3.137 3.143 3.161 3.185  3.239

TABLE C.3: Top five combinations of Cox models and parameters for weights estimation
in terms of smallest mean Manhattan distance between estimated and true f3;,
j=1,...,p (mean across all training sets and all subgroups). rf = random forest,
{1 = lasso, {5 = ridge; and 1 = no intera. & no cumHR, 2 = no intera. & cumHR,
3 = intera. & no cumHR, 4 = intera. & cumHR.

Top five methods
€ P n X 1 9 3 4
0 12 50 uncorrelated \827(7]81 V8:7272 “(;:7283 ‘827254 V(‘;Z7285
0 12 200 wuncorrelated OS;;)O V(‘;:8221 ngg(;; \828243 V(‘;:8224
0 12 1000 uncorrelated 08'217)1 v8:8211 VE]):8282 0%‘41:12 05‘28—;10
v 20 block 0?27_55 V(§:'7259 %?258 01Tf7_;ll5 0%17_415
0 100 50 blockdiag ‘g?gf Véi(éf %?255 vg?g-; \g?g.;
0 100 50 min01 ‘gj?’g’ %?2'58 “(;(;57 %?256 0?;3
0 100 50 shrinkage "8?(7"95 V(V;gg ng(;gl %?2%6 v(v;(;?
0 100 50 uncorrelated \827244 ‘827215 ‘827(;03 ‘327206 V(\;:7257
0 100 200 block ‘gzg-j 05"224 ngg;f vgzgf "Szgf
0 100 200 blockdiag 0?3{‘?5 VSZ?;; ngi-g? V(V)zgf v(v)zg.;l
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w=0.1 w=0.2 sub  w=0.3 w=04
0.821 0.817 0.814 0.812 0.808
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.842 0.841 0.835 0.829 0.825
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.831 0.827 0.822 0.815 0.809
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.877 0.869 0.858 0.847 0.839
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.878 0.866 0.852 0.840 0.830
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.872 0.864 0.853 0.843 0.835
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.871 0.861 0.851 0.842 0.834
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.860 0.851 0.840 0.830 0.822
62—3 61—3 62—1 61—2 ri-1
0.649 0.647 0.647 0.646 0.646
w=0.7 w=0.5 w=0.6 w=0.9 w=0.8
0.636 0.632 0.632 0.630 0.629
w=0.9 {5-1 -3 rf-1 rf-2
0.706  0.706  0.705 0.704 0.704
w=0.4 w=0.b w=0.3 w=0.6 w=0.7
0.696 0.694 0.692 0.691 0.689
all w=0.8 w=0.6 w=0.9 rf4
0.566 0.566 0.563 0.563  0.562
w=0.2 w=0.3 w=04 w=0.1 w=0.5
0.823 0.822 0.821 0.821 0.819
w=0.1 w=0.2 w=0.3 w=04 w=0.5
0.838 0.837 0.832 0.825 0.818
w=0.2 w=0.1 w=0.3 w=04 w=0.5
0.810 0.809 0.807 0.802 0.798
w=0.2 w=0.1 w=0.3 w=04 w=0.5
0.817 0.815 0.815 0.811 0.807
w=0.1 w=0.2 w=0.3 w=04 sub
0.827 0.823 0.818 0.813 0.811
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.875 0.869 0.858 0.849 0.842
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.875 0.865 0.852 0.839  0.829
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.860 0.853 0.842 0.831 0.823
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.871 0.863 0.853 0.844 0.836
sub  w=0.1 w=0.2 w=0.3 w=0.4
0.867 0.859 0.848 0.837  0.828

0 100 200 minO1

0 100 200 shrinkage

0 100 200 wuncorrelated

0 100 1000 block

0 100 1000 blockdiag

0 100 1000 minO1

0 100 1000 shrinkage

0 100 1000 wuncorrelated

0 1000 50 block

0 1000 50 blockdiag

0 1000 50 min01

0 1000 50 shrinkage

0 1000 50 uncorrelated

0 1000 200 block

0 1000 200 blockdiag

0 1000 200 minO1

0 1000 200 shrinkage

0 1000 200 wuncorrelated

0 1000 1000 block

0 1000 1000 blockdiag

0 1000 1000 min0O1

0 1000 1000 shrinkage

0 1000 1000 wuncorrelated
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b 12 50 uncorrelated 0%2223 oljgglo or.];zlo oljgff; 04‘18-142
b 12 200 uncorrelated 0%_710 og_gg 0%_6?8 Oljf8_628 012_58
b 12 1000 uncorrelated 0%3_711 0%_721 0%{;721 0%2711 off;l
O R R P
b 100 50 blockdiag 0?27_640 0%(320 0?27_519 0%17_538 06.17_548
110 s w0t VES RS Tan o o0
b 100 50 shrinkage VEZ; VEZQS V(V;(A);ﬁg) 0%27_55 0#7_25
b 100 50 uncorrelated 0?27_(?8 oljf7_§8 0?27_024 0?27_(;14 06.17_(?4
b 1007 200 block os.gzs oljf8_§8 0%;7 0%_??7 0%_326
L 100 200 blockdiag 08.;1]52 Oljf8_§6 0%511 0%_520 og.gglo
b0 =00 mindt 08.;1}3)8 0#8_;7 0%;3 0%?33 0%?3
I 100 200 shrinkage 08.23155 0#8_;15 0%242 0%_221 015.%_211
b 100200 uncorrelated 08.21301 0#8_;13 0%116 0%_125 0%145
b 1007 1000 block 0%_726 0%716 0%?5 os.g% 0%’?5
1 1001000 blockdiag 0%_723 0%’?3 0%713 os.;% 0%’?2
1100 1000 w0l | 8 080 oS o080 069
1 1001000 shrinkage 08.5707 og727 0%717 0%3_?7 0%?6
b 1001000 uncorrelated 0%3_622 0%3_612 os.)g]gz 0%3?2 ofggz
b 1000050 block 0?7116 V(Z??J Vgi(if nggf 0#7_?3
L1000 50 blockdies | Tt T Vo 0% hoes
oo w0 w0l | TS Wols bets o
L1000 50 shrinkage 0%58 0#6_817 Oljf6_826 or.g;le‘ 02’161;4
L1000 50 wncomelated | (o0 ool Wosr Gt oot
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sub l5-3 ly-1 lo-2 rf-3

1 1000 200 block 0.811 0.789 0.787 0.787  0.787
. sub -4 01-2 61-1 -3

b 1000 200 blockdiag 1 7o o767 0767 0767 0.766
. sub 61—2 61—1 61-3 El'4

11000 200 min01 0.822  0.786 0.786  0.786  0.786
) sub rf-3 £5-3 rf-1 rf-2

L1000 200 shrinkage |00y o784 0783 0782 0.782
sub l1-4 01-2 (-1 -3

L 10000200 wncorrelated | qog 779 0779 0779 0.778
sub (-1 (1-2 (-4 (-3

11000 1000 block 0.869 0.865 0.865 0.865 0.864
. sub 02 (-4 -1 -3

L1000 1000 blockdiag 1 g 073 571 0871 0871 0.871
) sub l-1 (1-2 (-4 (-3

11000 1000 min01 0.872 0.866 0.866 0.866 0.865
] sub l1-2 (-1 (-4 (-3

L1000 1000 shrinkage | 067 861 0861 0.861  0.860
sub (-1 (-4 (1-2 -3

L1000 1000 uncorrelated | g ors o870 0870  0.870  0.870

TABLE C.4: Top five combinations of Cox models and parameters for weights estimation

in terms of highest mean C-index (mean across all test sets and subgroups).
rf = random forest, {1 = lasso, {s = ridge; and 1 = no intera. & no cumHR,
= no intera. & cumHR, 3 = intera. & no cumHR, 4 = intera. & cumHR.

Top five methods

€ p n X 1 92 3 4 5
0 12 50 uncorrelated ‘820313 V(;:Oglz v820824 ‘320845 V(;:()g56
0 12 200 uncorrelated 08.317)9 V(;:()g; ‘820293 “0’:0801 V(‘;:Ogl‘l
0 12 1000 uncorrelated 08.350 V(;:()g; ‘820832 0%‘;5 0%-515
0 a0 50 bk | oo Goor oomo oo 0100
0 100 50 blockdiag ‘ng ‘gjgf V(V)jg'; 0{11-226 vgjggl
0 w0 50 w0t Y s Gs oats ons
0 100 50 shrinkage VST)(;; VST)(;; %20856 VS:Og;) V(\;T)Sgl
010 90 mnconelated 042.11_015 nggég 0?21_015 0%21_(;15 vgj(())g
0 100 200 block 0?3‘51 "5}8& V(V)T)(g)f vgzgg VST)S?
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0100 200 blockding | U oy Ooss 0000 0008
0 10 00 w0t T T oo 000
0 100 200 shrinkage 08.356 V(;:Og; VS:()ggl ngogg?’ V8:1804
0 100 200 uncorrelated 0%325 VST)(;?Z %20383 V(‘;:O(;SI VST)(;()ZL
0 10 w00 blok | R T T Tos boss
0 100 1000 blockdiag | o0 WUL W02 w08 Wb
0 10 w00 minot | T T Tos o
0 100 1000 shrinkage | So0 WUL W02 wOS WD
0 100 1000 wuncorrelated 0%3]737 VSZ()221 ‘820242 V(ZZOEOW?’ VST)804
0 1000 50 block 0?21_59 0%21_?}9 0?11_329 0%21_??9 offl_jo
0 100050 blockdias | 00 U T Uas oast
o 100 50 mnot | N T TG b i
o e e
0 1000 50 uncorrelated Offl_jQ Oilélﬁ 0?21_52 “6:1229 06‘21‘413
R A
01000 200 blockdiag | >t WHE WS W WA
Do el
0 1000 200 shrinkase |t U Vs Gom oom
0 1000 200 wncomelated | Too Too Toos oo 0101
0 100 1000 block | o Tl Tl Tas boss
0 1000 1000 blockdiag | U0 NNl W02 w08 Wb
0 100 1000 minot | U T T T o
0 1000 1000 shrinkage | e 0o Goss oss 0089
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sub w=0.1 w=0.2 w=0.3 w=04

0 1000 1000 uncorrelated | ooy 0ge 0000 0.094 0.097
02 (-4 0-1 03 0,2

L1250 umcorrelated | g3 0094 0094 0,095  0.095
61-1 61—2 61—4 rf-2 ri-1

I 12200 uncorrelated | 0o 0 07s 0075 0075 0.075
sub 61—2 61—1 61-4 61-3

I 121000 uncorrelated | jos ner 0087 0.088  0.088
EQ—?) 62—1 62—2 w=0.9 w=0.8

1 100 50 block 0.136  0.136 0.136 0.137 0.137
. lo-1 093 4 (52 (-4

1 100 50 blockdiag 0.119 0.119 0.119 0.119 0.119
. w=0.9 62—1 62—2 all w=0.8

I 100050 min0I 0.149 0.150 0.150 0.150 0.151
) w=0.b w=04 w=0.6 w=0.7 /5-3

1 100 50 shrinkage 0.112 0.112 0.112 0.113 0.113
rf-3 62—4 62—1 62—3 62—2

L 100 50 uncorrelated | 50 595 0913 0113 0.113
sub 62—2 62—4 62—1 w=0.5

1100 200 block 0.081 0.083 0.084 0.084 0.084
. sub rf-4 /-1 01-4 rf-2

1100 200 blockdiag 0.075 0.088 0.090 0.090 0.090
. w=0.5 w=04 w=0.6 sub w=0.7

L1000 200 min0I 0.090 0.090 0.090 0.090 0.090
. rf-4 rf-2 rf-1 l1-4 rf-3

1100 200 shrinkage | \oc 0077 0077 0077 0.077
sub rf-4 rf-3 04-3 05-3

I 1000 200 uncorrelated | o0 0916 0116 0116 0.117
sub w=0.1 w=0.2 w=0.3 w=04

1100 1000 block 0.069 0.079 0.080 0.081 0.082
. sub 61—2 61—1 61—4 61—3

1 100 1000 blockdiag 0.068 0.079 0.079 0.079 0.080
. sub 61—2 61—1 61—4 rf-4

I 1001000 min0I 0.060 0.072 0.072 0.072 0.073
. sub 61—2 61—1 61—4 61—3

1 100 1000 shrinkage 0.074  0.091 0.091 0.091 0.092
sub 61—2 61—1 £1—4 rf-4

I 100 1000 uncorrelated | joe 063 0083 0.083  0.083
all w=0.9 w=0.8 w=0.7 /5-3

1 1000 50 block 0.130 0.131 0.131 0.132 0.132
. all l-3 w=0.9 rf-3 w=0.8

1 1000 50 blockdiag 0.109 0.109 0.109 0.109  0.109
. w=0.7 all Eg—l £2—2 w=0.8

L1000 50 min0I 0.175 0.176 0.176 0.176  0.176
. rf-3 w=0.9 €2—1 all £2—2

1 1000 50 shrinkage 0.108 0.108 0.109 0.109 0.109
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all  w=0.9 w=0.8 w=0.7 /(y-3

L1000 50 uncorrelated | 155 0169 0163 0163 0.164
sub £2—3 all w=0.9 w=0.8

1 1000 200 block 0.000 0092 0092 0092 0.092
) sub (-1 lo-2 rf-3 £r-4

L1000 200 blockdiag | (509 (793 0123 0123 0.123
1 1000 200 min0l 0.007 0.104 0104 0.104 0.104
] all  w=0.9 w=0.8 w=0.7 /y-1

b 1000 200 shrinkage | 094 0094 0005 0095 0.095
sub (-4 0-3 0y-1 1-2

L1000 200 ncorrelated | ng5 o114 0115 0115 0.115
sub rf-4 rf-2 rf-1 lo-2

1 1000 1000 block 0.070  0.086 0.087 0.087 0.087
. sub l-1 (1-2 (-4 -3

L1000 1000 blockdiag 1 o559 075 0075 0075 0.076
. sub rf-1 rf-2 rf-3 lo-4

L1000 1000 min01 0.065 0084 0084 0.084 0.084
. sub rf-1 rf-2 (-4 rf-3

L1000 1000 shrinkage | o o7g 0087 0087 0.087  0.088
sub rf-1 rf-2 rf-3 (-4

L1000 1000 uncorrelated | oo 0101 0101 0101 0.101

TABLE C.5: Top five combinations of Cox models and parameters for weights estimation
in terms of smallest mean integrated Brier score (IBS) (mean across all test sets and
subgroups). rf = random forest, {1 = lasso, {5 = ridge; and

1 = no intera. & no cumHR, 2 = no intera. & cumHR, 3 = intera. & no cumHR,

4 = intera. & cumHR.
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a b Subgroup | TP FP TN FN Model size
-4.00 0.25 1 6 0 94 0 6
-4.00 0.25 2 3 0 94 3 3
-3.50 0.25 1 6 0 94 0 6
-3.50 0.25 2 4 0 94 2 4
-3.00 0.25 1 6 193 0 7
-3.00 0.25 2 6 2 92 0 8
-2.50 0.25 1 6 3 91 0 9
-2.50 0.25 2 6 4 90 0 10
-2.00 0.25 1 6 4 90 0 10
-2.00 0.25 2 6 6 8 0 12
-4.00 0.50 1 6 0 94 0 6
-4.00 0.50 2 3 0 94 3 3
-3.50 0.50 1 6 193 0 7
-3.50  0.50 2 6 2 92 0 8
-3.00 0.50 1 6 2 92 0 8
-3.00 0.50 2 6 3 91 0 9
-2.50 0.50 1 6 3 91 0 9
-2.50 0.50 2 6 4 90 0 10
-2.00 0.50 1 6 5 8 0 11
-2.00 0.50 2 6 6 8 0 12
-4.00 0.75 1 6 0 94 0 6
-4.00 0.75 2 6 1 93 0 7
-3.50 0.75 1 6 193 0 7
-3.50 0.75 2 6 193 0 7
-3.00 0.75 1 6 2 92 0 8
-3.00 0.75 2 6 3 91 0 9
-2.50 0.75 1 6 3 91 0 9
-2.50 0.75 2 6 4 90 0 10
-2.00 0.75 1 6 5 8 0 11
-2.00 0.75 2 6 7 87 0 13
-4.00 1.00 1 6 193 0 7
-4.00 1.00 2 6 193 0 7
-3.50 1.00 1 6 193 0 7
-3.50 1.00 2 6 2 92 0 8
-3.00 1.00 1 6 2 92 0 8
-3.00 1.00 2 6 3 91 0 9
-2.50 1.00 1 6 4 90 0 10
-2.50 1.00 2 6 4 90 0 10
-2.00 1.00 1 6 6 8 0 12
-2.00 1.00 2 6 7 87 0 13

TABLE C.12: Number of selected variables for varying hyperparameters a and b. Number
of true positives (TP), false positives (FP), true negatives (TN) and false negatives

(FN). The best combinations with the smallest number of incorrectly selected
variables (FP+FN) averaged over both subgroups are highlighted in gray.
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v h Subgroup | TP FP TN FN Model size
0.01 10 1 6 2 92 0 8
0.01 10 2 6 4 90 O 10
0.02 10 1 6 2 92 0 8
0.02 10 2 6 4 90 O 10
0.05 10 1 6 193 0 7
0.05 10 2 6 3 91 0 9
0.10 10 1 6 193 0 7
0.10 10 2 6 2 92 0 8
0.01 50 1 6 2 92 0 8
0.01 50 2 6 3 91 0 9
0.02 50 1 6 193 0 7
0.02 50 2 6 2 92 0 8
0.05 50 1 6 193 0 7
0.05 50 2 6 2 92 0 8
0.10 50 1 6 193 0 7
0.10 50 2 6 193 0 7
0.01 100 1 6 193 0 7
0.01 100 2 6 2 92 0 8
0.02 100 1 6 193 0 7
0.02 100 2 6 2 92 0 8
0.05 100 1 6 193 0 7
0.05 100 2 6 2 92 0 8
0.10 100 1 6 193 0 7
0.10 100 2 6 193 0 7

TABLE C.13: Number of selected variables for varying hyperparameters vy and vy = h - vg.
Number of true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN). The best combinations with the smallest number of incorrectly
selected variables (FP+FN) averaged over both subgroups are highlighted in gray.
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n p  Model TP FP TN FN Model size
50 20 Subgroup s=1 3.4 (1.26) 0.4 (0.52) 13.6 (0.52) 2.6 (1.26) 3.8 (1.23)
50 20 Subgroup s=2 3.3 (1.06) 0.2 (0.42) 13.8 (0.42) 2.7 (1.06) 3.5 (1.08)
50 20 Combined 3.6 (0.84) 0.2 (0.42) 10.8 (0.42) 5.4 (0.84) 3.8 (0.79)
50 20 CoxBVSSLs=1 | 1.7 (1.25) 0.3 (0.48) 13.7 (0.48) 4.3 (1.25) 1.8 (1.48)
50 20 CoxBVSSL s=2 | 1.4 (0.52) 0.1 (0.32) 13.9 (0.32) 4.6 (0.52) 1.2 (0.92)

100 20 Subgroup s=1 6.0 (0.00) 0.5 (0.71) 13.5 (0.71) 0.0 (0.00) 6.5 (0.71)
100 20 Subgroup s=2 5.9(0.32) 0.2 (0.42) 13.8 (0.42) 0.1(0.32) 6.1 (0.57)
100 20 Combined 5.7 (2.45) 0.1 (0.32) 10.9 (0.32) 3.3 (2.45) 5.8 (2.35)
100 20 CoxBVSSL s=1 | 6.0 (0.00) 0.3 (0.48) 13.7 (0.48) 0.0 (0.00) 6.3 (0.48)
100 20 CoxBVSSL s=2 | 6.0 (0.00) 0.1 (0.32) 13.9 (0.32) 0.0 (0.00) 6.1 (0.32)
25 100 Subgroup s=1 0.2 (0.42) 2.0 (0.47) 92.0 (0.47) 5.8 (0.42) 2.2 (0.42)
25 100 Subgroup s=2 0.6 (0.52) 1.4 (0.52) 92.6 (0.52) 5.4 (0.52) 2.0 (0.00)
25 100 Combined 0.9 (0.57) 1.0 (0.67) 90.0 (0.67) 8.1 (0.57) 1.9 (0.74)
25 100 CoxBVSSL s=1 | 0.0 (0.00) 2.2 (0.42) 91.8 (0.42) 6.0 (0.00) 2.2 (0.42)
25 100 CoxBVSSL s=2 | 0.5 (0.53) 1.6 (0.52) 92.4 (0.52) 5.5(0.53) 2.1 (0.32)
50 100 Subgroup s=1 1.6 (1.17) 0.8 (0.63) 93.2 (0.63) 4.4 (1.17) 2.4 (1.07)
50 100 Subgroup s=2 1.5 (1.27) 0.8 (0.79) 93.2 (0.79) 4.5 (1.27) 2.3 (0.67)
50 100 Combined 2.9 (0.99) 0.5 (0.53) 90.5 (0.53) 6.1(0.99) 3.4 (0.70)
50 100 CoxBVSSL s=1 | 2.0 (1.25) 0.6 (0.52) 93.4 (0.52) 4.0 (1.25) 2.6 (1.17)
50 100 CoxBVSSL s=2 | 1.8 (1.40) 0.6 (0.70) 93.4 (0.70) 4.2 (1.40) 2.4 (1.07)
75 100 Subgroup s=1 4.0 (1.49) 0.2 (0.42) 93.8 (0.42) 2.0 (1.49) 4.2 (1.48)
75 100 Subgroup s=2 | 3.3 (1.42) 0.6 (0.52) 93.4 (0.52) 2.7 (1.42) 3.9 (1.10)
75 100 Combined 3.3 (1.42) 0.4 (0.52) 90.6 (0.52) 5.7 (1.42) 3.7 (1.25)
75 100 CoxBVSSL s=1 | 5.4 (1.58) 0.7 (0.48) 93.3 (0.48) 0.6 (1.58) 6.1 (1.60)
75 100 CoxBVSSL s=2 | 3.9 (1.20) 0.8 (0.79) 93.2 (0.79) 2.1 (1.20) 4.7 (1.16)
100 100 Subgroup s=1 5.7 (0.67) 0.6 (0.52) 934 (0.52) 0.3 (0.67) 6.3 (0.82)
100 100 Subgroup s=2 4.6 (1.17) 0.5 (0.53) 93.5 (0.53) 1.4 (1.17) 5.1 (0.99)
100 100 Combined 3.7 (0.48) 0.3 (0.48) 90.7 (0.48) 5.3 (0.48) 4.0 (0.00)
100 100 CoxBVSSL s=1 | 6.0 (0.00) 0.9 (0.32) 93.1 (0.32) 0.0 (0.00) 6.9 (0.32)
100 100 CoxBVSSL s=2 | 5.8 (0.63) 0.9 (0.32) 93.1 (0.32) 0.2 (0.63) 6.7 (0.67)
150 100 Subgroup s=1 6.0 (0.00) 0.8 (0.42) 93.2 (0.42) 0.0 (0.00) 6.8 (0.42)
150 100 Subgroup s=2 6.0 (0.00) 0.9 (0.32) 93.1 (0.32) 0.0 (0.00) 6.9 (0.32)
150 100 Combined 4.3 (1.16) 0.1 (0.32) 90.9 (0.32) 4.7 (1.16) 4.4 (1.07)
150 100 CoxBVSSL s=1 | 6.0 (0.00) 1.0 (0.00) 93.0 (0.00) 0.0 (0.00) 7.0 (0.00)
150 100 CoxBVSSL s=2 | 6.0 (0.00) 1.0 (0.00) 93.0 (0.00) 0.0 (0.00) 7.0 (0.00)

TABLE C.14: Results of variable selection. Mean number (standard deviation) of true
positives (TP), false positives (FP), true negatives (TN), false negatives (FN), and
total number of selected variables (model size), computed over all ten training sets.
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n p s | Combined KM-Combined Subgroup KM-Subgroup CoxBVSSL
50 20 1| 0.18 (0.03) 0.24 (0.01) 0.17 (0.03) 0.24 (0.01) 0.19 (0.04)
50 20 2| 0.14 (0.02) 0.20 (0.01) 0.15 (0.02) 0.20 (0.01) 0.17 (0.02)

100 20 1]0.17(0.02) 024 (0.01) 0.12(0.02) 0.24 (0.01) 0.1 (0.02)
100 20 2| 0.15(0.04) 0.21 (0.01) 0.12 (0.03) 0.22 (0.01) 0.12 (0.03)
25 100 1 |0.23 (0.03) 0.24 (0.02) 0.25 (0.04) 0.23 (0.01) 0.27 (0.04)
25 100 2| 0.24 (0.07) 0.21 (0.02) 0.21 (0.03) 0.22 (0.03) 0.22 (0.03)
50 100 1 | 0.20 (0.03) 0.23 (0.01) 0.20 (0.02) 0.23 (0.01) 0.19 (0.03)
50 100 2 | 0.15 (0.03) 0.21 (0.02) 0.19 (0.05) 0.22 (0.03) 0.19 (0.04)
75 100 1| 0.19 (0.02) 0.23 (0.01) 0.17 (0.03) 0.23 (0.01) 0.14 (0.03)
75 100 2| 0.15 (0.02) 0.20 (0.01) 0.15 (0.03) 0.21 (0.01) 0.14 (0.03)
100 100 1]0.17 (0.02) 0.4 (0.01)  0.13 (0.01)  0.23 (0.01)  0.12 (0.01)
100 100 2|0.15(0.02)  0.21 (0.01)  0.13(0.03)  0.21 (0.01) 0.1 (0.02)
150 100 1| 0.17 (0.03) 0.23 (0.01) 0.12 (0.01) 0.23 (0.01) 0.12 (0.01)
150 100 2|0.15(0.01)  0.22 (0.01)  0.10 (0.01)  0.22 (0.01)  0.10 (0.01)

TABLE C.15: Mean (standard deviation) of the integrated Brier score (computed over all

test sets) for the prediction of subgroup s = 1,2. Kaplan-Meier estimator (KM) for a
reference model without covariates based on subgroup (KM-Subgroup) or combined
(KM-Combined) training data.
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n p Model X1 X2 X3 X4 X5 X6 X7 X8 X9 X100 X11 X12
50 20 CoxBVSSL | 0.032 0.023 0.204 0.184 0.047 0.613 0.100 0.480 0.306 0.220 0.013 0.008
50 20 Subgroup 0.102 0.070 0.373 0.346 0.114 0.752 0.085 0.530 0.395 0.343 0.056 0.040
50 20 Combined | 0.128 0.047 0.062 0.199 0.160 0.131 0.454 0.325 0.761 0.549 0.106 0.041

100 20 CoxBVSSL | 0.071 0.150 0.906 0.881 0.637 0.852 0.579 0.905 0.998 0.945 0.822 0.117
100 20 Subgroup 0.056 0.059 0.849 0.848 0.413 0.692 0.180 0.761 0.901 0.787 0.603 0.059
100 20 Combined | 0.295 0.259 0.210 0.655 0.035 0.040 0.552 0.314 0.972 0.960 0.840 0.126
50 100 CoxBVSSL | 0.011 0.020 0.044 0.074 0.025 0.164 0.033 0.479 0.397 0.150 0.021 0.011
50 100 Subgroup 0.011 0.018 0.049 0.080 0.016 0.181 0.020 0.473 0.352 0.133 0.010 0.008
50 100 Combined | 0.094 0.009 0.014 0.163 0.022 0.015 0.223 0.303 0.549 0.308 0.191 0.005
75 100 CoxBVSSL | 0.007 0.020 0.316 0.349 0.016 0.461 0.039 0.610 0.594 0.223 0.071 0.010
75 100 Subgroup 0.006 0.014 0.232 0.287 0.014 0.480 0.019 0.642 0.483 0.203 0.058 0.014
75 100 Combined | 0.050 0.009 0.007 0.273 0.181 0.092 0.090 0.180 0.851 0.599 0.399 0.029
100 100 CoxBVSSL | 0.009 0.037 0.851 0.909 0.586 0.868 0.382 0.900 0.669 0.557 0.362 0.021
100 100 Subgroup | 0.007 0.015 0.682 0.779 0.075 0.827 0.085 0.845 0.499 0.377 0.189 0.010
100 100 Combined | 0.177 0.111 0.010 0.161 0.005 0.009 0.340 0.144 0.959 0.869 0.515 0.011
200 100 CoxBVSSL | 0.010 0.045 1.000 1.000 0.997 0.998 0.885 1.000 1.000 1.000 1.000 0.427
200 100 Subgroup | 0.007 0.006 1.000 1.000 0.698 0.884 0.238 1.000 0.943 0.939 0.910 0.197
200 100 Combined | 0.258 0.079 0.071 0.243 0.016 0.005 0.695 0.620 1.000 1.000 0.997 0.115

TABLE C.17: Mean posterior inclusion frequencies (averaged over all training sets) of the prognostic variables for subgroup 2. Variables included

on average are highlighted in red.
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n p  Model X1 X2 X3 X4 X5 X6
50 20 Cox. | 0.28 (0.18) 0.24 (0.17) -0.03 (0.09) 0.06 (0.11) -0.13 (0.17) _ 0.01 (0.08)
50 20 Sub. | 048 (0.25) 0.46 (0.26) -0.04 (0.12) 0.07 (0.13) -0.26 (0.21)  0.03 (0.12)
50 20 Comb. | 0.05 (0.11) 0.01 (0.07) 0.02 (0.07) 0.13 (0.11) -0.08 (0.09) -0.06 (0.10)
100 20 Cox. | 0.98 (0.18) 1.08 (0.19) -0.00 (0.12) 0.05 (0.12) -0.62 (0.10)  0.58 (0.20)
100 20 Sub. | 0.96 (0.18) 1.05 (0.18)  0.00 (0.06)  0.05 (0.08) -0.59 (0.22)  0.45 (0.24)
100 20 Comb. | 0.14 (0.13) 0.14 (0.13)  0.11 (0.10)  0.32 (0.12) -0.01 (0.05)  0.01 (0.05)
50 100 Cox. | 0.08 (0.12) 0.06 (0.13) -0.02 (0.09) 0.05 (0.12) -0.18 (0.20) _0.01 (0.08)
50 100 Sub. | 0.09 (0.16) 0.09 (0.18) -0.01 (0.07) 0.05 (0.11) -0.22 (0.22)  0.02 (0.09)
50 100 Comb. | 0.05 (0.11) 0.01 (0.05) 0.00 (0.05) 0.11 (0.10) -0.02 (0.06) -0.01 (0.05)
75 100 Cox. | 0.74 (0.23) 0.79 (0.25) -0.00 (0.05) -0.00 (0.06) -0.61 (0.25) 0.09 (0.12)
75 100 Sub. | 0.59 (0.27) 0.63 (0.29) -0.00 (0.04) 0.00 (0.05) -0.57 (0.26) 0.05 (0.11)
75 100 Comb. | 0.04 (0.07) 0.01 (0.04) 0.00 (0.04) 0.15 (0.11) -0.10 (0.10) -0.05 (0.07)
100 100 Cox. | 0.09 (0.19) 1.11 (0.20) 0.00 (0.06) -0.01 (0.07) -0.46 (0.22) 0.46 (0.24)
100 100 Sub. | 0.80 (0.24) 0.89 (0.26) -0.00 (0.05) -0.00 (0.06) -0.44 (0.23) 0.16 (0.21)
100 100 Comb. | 0.10 (0.10) 0.07 (0.08) 0.01 (0.04)  0.08 (0.08) -0.01 (0.04) -0.01 (0.04)
200 100 Cox. | 1.05 (0.13) 1.25 (0.15) -0.01 (0.09) 0.02 (0.10) -0.70 (0.14) 0.66 (0.14)
200 100 Sub. | 1.00 (0.13) 1.19 (0.14)  0.00 (0.04)  0.00 (0.04) -0.70 (0.14)  0.49 (0.18)
200 100 Comb. | 0.11 (0.09) 0.05 (0.07) 0.05 (0.06)  0.11 (0.10) -0.03 (0.04) 0.00 (0.04)
n p  Model X7 X8 X9 X10 X11 X12
50 20 Cox. | 0.25(0.22) 0.12 (0.17) -0.17 (0.23) -0.04 (0.12) -0.01 (0.06) -0.00 (0.05)
50 20 Sub. | 0.31(0.26) 0.13(0.23) -0.34 (0.34) -0.11 (0.20) -0.05 (0.12) -0.00 (0.07)
50 20 Comb. | 0.26 (0.22) 0.20 (0.21) -0.59 (0.26) -0.35 (0.23) -0.05 (0.11)  0.00 (0.06)
100 20 Cox. | 0.79 (0.20) 0.17 (0.18) -1.10 (0.20) -1.10 (0.20) -0.67 (0.20) -0.11 (0.14)
100 20 Sub. 0.65 (0.22) 0.04 (0.09) -1.08 (0.21) -1.03 (0.22) -0.56 (0.23) -0.05 (0.10)
100 20 Comb. | 0.27 (0.12) 0.17 (0.11) -0.79 (0.15) -0.71 (0.16) -0.45 (0.16) -0.05 (0.08)
50 100 Cox. | 0.17 (0.17) 0.05 (0.13) -0.14 (0.16) -0.01 (0.06) -0.01 (0.05) 0.00 (0.04)
50 100 Sub. | 0.16 (0.17) 0.04 (0.10) -0.14 (0.16) -0.01 (0.06) -0.01 (0.05) 0.00 (0.05)
50 100 Comb. | 0.17 (0.14) 0.21 (0.16) -0.49 (0.22) -0.26 (0.20) -0.14 (0.13)  0.00 (0.04)
75 100 Cox. | 0.25 (0.18) 0.05 (0.11) -0.75 (0.24) -0.34 (0.21) -0.15 (0.18) -0.00 (0.06)
75 100 Sub. | 0.13(0.18) 0.02 (0.08) -0.63 (0.27) -0.20 (0.18) -0.06 (0.14) -0.00 (0.05)
75 100 Comb. | 0.06 (0.08) 0.12 (0.11) -0.77 (0.20) -0.46 (0.19) -0.23 (0.19) -0.01 (0.06)
100 100 Cox. | 0.66 (0.25) 0.12(0.15) -1.07 (0.24) -0.90 (0.27) -0.49 (0.25) -0.06 (0.09)
100 100 Sub. | 0.36 (0.24) 0.01 (0.05) -0.74 (0.31) -0.50 (0.30) -0.17 (0.21) -0.00 (0.04)
100 100 Comb. | 0.18 (0.13) 0.09 (0.10) -0.77 (0.19) -0.54 (0.20) -0.26 (0.19) -0.01 (0.04)
200 100 Cox. | 0.92 (0.15) 0.32 (0.14) -1.30 (0.15) -1.22 (0.15) -0.85 (0.15) -0.13 (0.11)
200 100 Sub. | 0.74 (0.17) 0.13 (0.13) -1.32 (0.16) -1.19 (0.16) -0.76 (0.15) -0.06 (0.08)
200 100 Comb. | 0.33 (0.12) 0.27 (0.15) -0.88 (0.12) -0.80 (0.11) -0.54 (0.10) -0.06 (0.05)

TABLE C.18: Posterior mean (standard deviation) of regression coefficients (averaged over

all training sets) for the prognostic variables in subgroup 1. Variables included on
CoxBVSSL; Sub.: Subgroup; Comb.: Combined.

average are highlighted in red. Cox.:
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n p  Model X1 X2 X3 X4 X5 X6
50 20 Cox. | 0.0 (0.07) -0.01 (0.06) 0.22 (0.19) 0.16 (0.17) 0.0 (0.09) -0.55 (0.30)
50 20 Sub. | 0.02(0.11) -0.02 (0.09) 0.33 (0.28) 0.27 (0.27) 0.04 (0.16) -0 65 (0.30)
50 20 Comb. | 0.05(0.11) 0.01 (0.07) 0.02 (0.07) 0.13 (0.11) -0.08 (0.09) -0.06 (0.10)
100 20 Cox. | -0.00 (0.07) -0.01 (0. 10) 0.84 (0.27) 0.88 (0.27) _0.37 (0. 23) 054 (0.24)
100 20 Sub. | -0.01 (0.07) -0.01 (0.08) 0.75 (0.27) 0.79 (0.27) 0.28 (0.22) -0.53 (0.26)
100 20 Comb. | 0.14 (0.13)  0.14 (0.13)  0.11 (0.10) 0.32 (0.12) -0.01 (0.05)  0.01 (0.05)
50 100 Cox. | -0.00 (0.05) -0.01 (0. 07) 0.04 (0.10) 0.06 (0.15) 0.01 (0.09) -0.12 (0.22)
50 100 Sub. | -0.00 (0.05) -0.01 (0.07) 0.04 (0.11) 0.06 (0.16) 0.01 (0.06) -0.14 (0.22)
50 100 Comb. | 0.05 (0.11) 0.01 (0.05) 0.00 (0.05) 0.11 (0.10) -0.02 (0.06) -0.01 (0.05)
75 100 Cox. | -0.00 (0.04) -0.01 (0.06) 0.28 (0.21) 0.32 (0.22) 0.01 (0.06) -0.43 (0.25)
75 100 Sub. | -0.00 (0.04) -0.01 (0.05) 0.21 (0.17) 0.25 (0.19) 0.00 (0.06) -0.45 (0.21)
75 100 Comb. | 0.04 (0.07) 0.01 (0.04) 0.00 (0.04) 0.15 (0.11) -0.10 (0.10) -0.05 (0.07)
100 100 Cox. | 0.00 (0.04) 0.00 (0.06) 0.85 (0.24) 0.97 (0.26) 0.35 (0.25) -0.72 (0.23)
100 100 Sub. | 0.00 (0.04) -0.01 (0.05) 0.64 (0.28) 0.73 (0.30) 0.05 (0.12) -0.80 (0.24)
100 100 Comb. | 0.10 (0.10)  0.07 (0.08) 0.01 (0.04) 0.08 (0.08) -0.01 (0.04) -0.01 (0.04)
200 100 Cox. | 0.01 (0.04) -0.00 (0.05) 1.23 (0.15) 1.20 (0.17) 0.63 (0.16) -0.61 (0.15)
200 100 Sub. | 0.01(0.04) -0.00 (0.04) 1.15(0.16) 1.18 (0.19) 0.46 (0.21) -0.68 (0.18)
200 100 Comb. | 0.11 (0.09)  0.05 (0.07) 0.05 (0.06) 0.11 (0.10) -0.03 (0.04) 0.0 (0.04)
n p  Model X7 X8 X9 X10 X11 X12
50 20 Cox. | 0.03(0.12) 0.45 (0.24) -0.29 (0.27) -0.18 (0.21) -0.01 (0.06) 0.00 (0.04)
50 20 Sub. 0.03 (0.12) 0.50 (0.27) -0.35 (0.31) -0.26 (0.28) -0.01 (0.09) 0.01 (0.06)
50 20 Comb. | 0.26 (0.22) 0.20 (0.21) -0.59 (0.26) -0.35 (0.23) -0.05 (0.11)  0.00 (0.06)
100 20 Cox. | 0.10 (0.18) 0.75 (0.23) -1.07 (0.25) -0.90 (0.24) -0.55 (0.23) -0.03 (0.10)
100 20 Sub. | 0.10 (0.15) 0.66 (0.27) -0.98 (0.30) -0.77 (0.28) -0.41 (0.23) -0.02 (0.08)
100 20 Comb. | 0.27 (0.12) 0.17 (0.11) -0.79 (0.15) -0.71 (0.16) -0.45 (0.16) -0.05 (0.08)
50 100 Cox. | 0.0L (0.09) 0.42 (0.34) -0.40 (0.34) -0.13 (0.24) -0.01 (0.07) -0.00 (0.05)
50 100 Sub. | 0.00 (0.07) 0.43 (0.34) -0.37 (0.29) -0.12 (0.20) -0.00 (0.05) -0.00 (0.05)
50 100 Comb. | 0.17 (0.14) 0.21 (0.16) -0.49 (0.22) -0.26 (0.20) -0.14 (0.13)  0.00 (0.04)
75 100 Cox. | 0.02 (0.08) 0.61 (0.26) -0.60 (0.29) -0.22 (0.20) -0.05 (0.12) 0.00 (0.05)
75 100 Sub. | 0.01 (0.06) 0.65 (0.27) -0.50 (0.25) -0.20 (0.15) -0.04 (0.10)  0.00 (0.05)
75 100 Comb. | 0.06 (0.08) 0.12 (0.11) -0.77 (0.20) -0.46 (0.19) -0.23 (0.19) -0.01 (0.06)
100 100 Cox. | 0.20 (0.19) 0.79 (0.28) -0.68 (0.31) -0.51 (0.28) -0.26 (0.23) -0.00 (0.05)
100 100 Sub. | 0.06 (0.09) 0.74 (0.25) -0.51 (0.29) -0.33 (0.24) -0.14 (0.19)  0.00 (0.05)
100 100 Comb. | 0.18 (0.13) 0.09 (0.10) -0.77 (0.19) -0.54 (0.20) -0.26 (0.19) -0.01 (0.04)
200 100 Cox. | 0.33 (0.16) 1.04 (0.17) -1.19 (0.17) -1.11 (0.17) -0.85 (0.16) -0.19 (0.13)
200 100 Sub. | 0.15(0.13) 0.96 (0.17) -1.14 (0.19) -1.00 (0.19) -0.74 (0.18) -0.11 (0.09)
200 100 Comb. | 0.33 (0.12) 0.27 (0.15) -0.88 (0.12) -0.80 (0.11) -0.54 (0.10) -0.06 (0.05)

TABLE C.19: Posterior mean (standard deviation) of regression coefficients (averaged over
all training sets) for the prognostic variables in subgroup 2. Variables included on

average are highlighted in red. Cox.:

CoxBVSSL; Sub.: Subgroup; Comb.: Combined.
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n p  Model TP FP TN FN Model size
50 20 Subgroup s=1 |3.2(1.32) 0.5(0.53) 9.5(0.53) 6.8 (1.32) 3.7(1.16)
50 20 Subgroup s=2 | 3.4 (0.97) 0.2 (042) 9.8 (0.42) 6.6 (0.97) 3.6 (0.70)
50 20 Combined 3.5 (0.71) 0.0 (0.00) 8.0 (0.00) 8.5 (0.71) 3.5(0.71)
50 20 CoxBVSSL s=1 | 1.9 (1.20) 0.1 (0.32) 9.9(0.32) 8.1 (1.20) 1.8 (1.48)
50 20 CoxBVSSL s=2 | 2.2 (0.92) 0.0 (0.00) 10.0 (0.00) 7.8 (0.92) 2.2(0.92)
100 20 Subgroup s=1 7.7(0.48) 0.1(0.32) 9.9(0.32) 2.3(0.48) 7.8 (0.42)
100 20 Subgroup s=2 | 6.3 (1.25) 0.2 (0.42) 9.8 (0.42) 3.7 (1.25) 6.5 (1.08)
100 20 Combined 5.4 (1.35) 0.0 (0.00) 8.0 (0.00) 6.6 (1.35) 5.4 (1.35)
100 20 CoxBVSSL s=1|9.1 (0.57) 0.4 (0.70) 9.6 (0.70) 0.9 (0.57) 9.5 (0.85)
100 20 CoxBVSSL s=2 | 8.0 (1.15) 0.0 (0.00) 10.0 (0.00) 2.0 (1.15) 8.0 (1.15)
50 100 Subgroup s=1 1.6 (1.17) 0.8 (0.79) 89.2 (0.79) 8.4 (1.17) 2.4 (0.52)
50 100 Subgroup s=2 | 1.9 (0.74) 0.8 (0.63) 89.2 (0.63) 8.1 (0.74) 2.7 (0.67)
50 100 Combined 2.5 (0.85) 0.2 (0.42) 87.8 (0.42) 9.5(0.85) 2.7 (0.82)
50 100 CoxBVSSL s=1 | 1.5 (0.85) 0.9 (0.74) 89.1 (0.74) 8.5 (0.85) 2.4 (0.52)
50 100 CoxBVSSL s=2 | 2.0 (0.94) 0.8 (0.63) 89.2 (0.63) 8.0 (0.94) 2.8 (0.63)
75 100 Subgroup s=1 | 3.8 (1.14) 0.5 (0.71) 89.5 (0.71) 6.2 (1.14) 4.3 (1.42)
75 100 Subgroup s=2 | 3.1 (0.99) 0.3 (0.67) 89.7 (0.67) 6.9 (0.99) 3.4 (1.07)
75 100 Combined 3.3 (1.25) 0.2 (0.42) 87.8 (0.42) 8.7 (1.25) 3.5(0.97)
75 100 CoxBVSSL s=1 | 4.8 (1.93) 0.4 (0.70) 89.6 (0.70) 5.2 (1.93) 5.2 (1.87)
75 100 CoxBVSSL s=2 | 3.3 (1.16) 0.3 (0.48) 89.7 (0.48) 6.7 (1.16) 3.6 (1.17)
100 100 Subgroup s=1 | 5.5 (1.43) 0.1 (0.32) 89.9 (0.32) 4.5 (1.43) 5.6 (1.51)
100 100 Subgroup s=2 | 4.9 (1.45) 0.5 (0.53) 89.5(0.53) 5.1 (1.45) 5.4 (1.26)
100 100 Combined 3.8 (0.63) 0.2 (0.42) 87.8 (0.42) 8.2 (0.63) 4.0 (0.67)
100 100 CoxBVSSL s=1| 7.8 (1.03) 0.1 (0.32) 89.9 (0.32) 2.2 (1.03) 7.9 (0.99)
100 100 CoxBVSSL s=2 6.9 (1.60) 0.1 (0.32) 89.9 (0.32) 3.1 (1.60) 7.0 (1.41)
200 100 Subgroup s=1 | 8.5 (0.85) 0.0 (0.00) 90.0 (0.00) 1.5 (0.85) 8.5 (0.85)
200 100 Subgroup s=2 | 8.2 (0.63) 0.0 (0.00) 90.0 (0.00) 1.8 (0.63) 8.2 (0.63)
200 100 Combined 5.3 (0.67) 0.1 (0.32) 87.9 (0.32) 6.7 (0.67) 5.4 (0.70)
200 100 CoxBVSSL s=1 | 9.3 (0.48) 0.9 (0.74) 89.1 (0.74) 0.7 (0.48) 10.2 (0.63)
200 100 CoxBVSSL s=2{9.9 (0.32) 0.1(0.32) 89.9 (0.32) 0.1 (0.32) 10.0 (0.47)

TABLE C.20: Results of variable selection. Mean number (standard deviation) of true
positives (TP), false positives (FP), true negatives (TN), false negatives (FN), and
total number of selected variables (model size), computed over all ten training sets.
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n p s | Combined KM-Combined Subgroup KM-Subgroup CoxBVSSL
50 20 1]0.22(0.03) 0.25(0.01) 021 (0.04) 025(0.01) 0.22 (0.03)
50 20 2| 0.16 (0.05) 0.21 (0.01) 0.15 (0.03) 0.22 (0.02) 0.16 (0.04)

100 20 1]0.18(0.01) 024 (0.01) 0.12(0.02) 024 (0.01) 0.12 (0.02)
100 20 2 0.15(0.02) 0.21 (0.01) 0.11 (0.02) 0.22 (0.01) 0.10 (0.02)
50 100 1 ]0.21 (0.02) 0.23(0.01) 022 (0.02) 0.3 (0.01) 0.23 (0.02)
50 100 2 | 0.17 (0.02) 0.21 (0.01) 0.18 (0.05) 0.22 (0.01) 0.17 (0.03)
75 100 1| 0.21 (0.03) 0.24 (0.01) 0.18 (0.03) 0.24 (0.02) 0.17 (0.03)
75 100 2|0.16 (0.02)  0.21 (0.01)  0.16 (0.04)  0.22 (0.01)  0.15 (0.04)
100 100 1| 0.18 (0.02) 0.23 (0.01) 0.15 (0.02) 0.23 (0.00) 0.12 (0.02)
100 100 2 |0.17 (0.03) 022 (0.01)  0.13(0.03)  0.22 (0.01)  0.12 (0.02)
200 100 1| 0.18 (0.01) 0.23 (0.00) 0.11 (0.01) 0.23 (0.00) 0.11 (0.01)
200 100 2| 0.16 (0.02)  0.22 (0.01)  0.10 (0.02)  0.22 (0.01)  0.10 (0.02)

TABLE C.21: Mean (standard deviation) of the integrated Brier score (computed over all

test sets) for the prediction of subgroup s = 1,2. Kaplan-Meier estimator (KM) for a
reference model without covariates based on subgroup (KM-Subgroup) or combined
(KM-Combined) training data.
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282 Appendix C. Tables
Gene filter S Combined KM-Comb. Subgroup  KM-Sub. CoxBVSSL
30 Kratz GSE29013 | 0.10 (0.02) 0.12 (0.01) 0.13 (0.03) 0.16 (0.02) 0.14 (0.03)
30 Kratz GSE31210 | 0.11 (0.02) 0.11 (0.01) 0.14 (0.05) 0.13 (0.03) 0.13 (0.04)
30 Kratz ~ GSE37745 | 0.21 (0.02) 0.22 (0.01) 0.20 (0.01) 0.19 (0.01) 0.21 (0.02)
30 Kratz GSE50081 | 0.16 (0.02) 0.15 (0.01) 0.16 (0.02) 0.17 (0.02) 0.16 (0.02)
Top-100-v. GSE29013 | 0.15 (0.03) 0.12 (0.01) 0.17 (0.04) 0.16 (0.02) 0.17 (0.05)
Top-100-v. GSE31210 | 0.11 (0.02) 0.11 (0.01) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)
Top-100-v. GSE37745 | 0.20 (0.01) 0.22 (0.01) 0.20 (0.01) 0.19 (0.01) 0.20 (0.01)
Top-100-v. GSE50081 | 0.15 (0.02) 0.15 (0.01) 0.16 (0.02) 0.17 (0.02) 0.16 (0.02)

TABLE C.23: Mean (standard deviation) of the integrated Brier score (computed over all
test sets) for the prediction of subgroup s. Kaplan-Meier estimator (KM) for a
reference model without covariates based on subgroup (KM-Sub.) or combined
(KM-Comb.) training data.
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