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Abstract
Where an optimal solution does not contain sufficient information about a given problem
instance, enumerating good solutions is a common coping strategy. In combinatorial
optimization, k-best enumeration, or ranking, has been studied and applied extensively.
The k shortest simple path problem in directed, weighted graphs (kSSP), introduced
in 1963 by Clarke, Krikorian and Rausen, is particularly well known. Efficient existing
algorithms are based on Yen’s algorithm for this problem; they all feature a worst-case
running time of O(kn(m+n logn)) on a graph with n vertices and m edges. Vassilevska
Williams and Williams show that a polynomially faster kSSP algorithm would also result
in an algorithm for the all-pairs shortest path problem with running time O(n3−ε), which
seems unlikely at the moment.

We present a kSSP algorithm that is not based on Yen’s algorithm, matching the
state-of-the-art running time of O(kn(m + n logn)). In particular, we do not solve a
single instance of the replacement path problem, a basic building block of Yen’s algo-
rithm. Instead, we make use of ideas used in Eppstein’s algorithm for a similar problem
where paths are allowed to be non-simple. Using our algorithm, one may find Θ(m)
simple paths with a single shortest path tree computation and additional O(m + n)
time per path in well-behaved cases. We also propose practical improvements for our
algorithm, comprising dynamic edge pruning, lazy shortest path tree computations, and
fast path simplicity checks. In a detailed computational study, we demonstrate that
well-behaved cases are quite common in random graphs, grids and road networks. We
showcase usefulness of the dynamic edge pruning approach on those three graph classes
and on network topology graphs. Despite 40 years of heavy research on Yen-based kSSP
algorithms, including involved algorithm engineering, our algorithm proves to be faster
than existing algorithms by at least an order of magnitude.

However, there is not much room for improvement for the general worst case. We
demonstrate that kSSP can be solved considerably faster if the input graph is restricted
to have bounded treewidth. Specifically, we propose an algorithm template for enu-
merating the k best solutions in a bounded treewidth graph for any problem that can
be expressed in counting monadic second-order logic. Our template is a generalization
of Courcelle’s theorem, mainly utilizing dynamic programming and a persistent heap
data structure. It enumerates any constant amount of solutions in time O(n). For gen-
eral k, it requires O(logn) extra time per solution, resulting in a total running time of
O(n + k logn). Finding the initial solution is parallelizable, so the linear term can be
dropped and we obtain a running time of O(k logn) in the PRAM model. The class of
problems expressible in counting monadic second order logic contains kSSP, matching
problems, or the spanning tree problem, but also a number of NP-hard problems like
the traveling salesman problem, where we achieve a doubly-exponential speedup.
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Zusammenfassung
Bei der klassischen kombinatorischen Optimierung begnügt man sich damit, lediglich
eine optimale Lösung zu berechnen. Manchmal werden jedoch Anforderungen an eine
Lösung gestellt, die nur schwer formalisierbar sind und deshalb in der Modellierung
des Optimierungsproblems nicht berücksichtigt werden. Das Aufzählen der k besten
Lösungen, auch Ranking genannt, kann dann eine sinnvolle Strategie sein. Zu den kom-
binatorischen Problemen, deren Ranking-Variante zahlreiche Algorithmiker beschäftigt,
zählt das Aufzählen der k kürzesten einfachen Wege in einem gewichteten, gerichteten
Graphen (kSSP), vorgestellt 1963 von Clarke, Krikorian und Rausen. Der Algorithmus
von Yen, der das Problem auf einem Graphen mit n Knoten und m Kanten in Zeit
O(kn(m + n logn)) löst, dient dabei als Vorlage für alle Algorithmen von praktischer
Relevanz. Vassilevska Williams und Williams haben dabei gezeigt, dass polynomielle
Laufzeitverbesserungen nur möglich sind, wenn auch das Bestimmen aller paarweisen
Distanzen in einem gewichteten, gerichteten Graphen in Zeit O(n3−ε) möglich ist.

Wir präsentieren einen Algorithmus für das kSSP, der nicht auf dem Algorithmus
von Yen basiert, dessen asymptotische Laufzeit von O(kn(m+n logn)) jedoch einstellt.
Insbesondere löst dieser Algorithmus im Allgemeinen keine Instanz der günstigsten Er-
satzpfade, einem Grundbaustein des Algorithmus von Yen. Stattdessen verwenden wir
Ideen, die auch im Algorithmus von Eppstein genutzt wurden. Der Algorithmus von
Eppstein löst ein mit dem kSSP verwandtes Problem, bei dem die ausgegebenen Pfade
Kreise enthalten dürfen. Unter günstigen Voraussetzungen entdeckt unser Algorithmus
bereits durch eine Berechnung eines Kürzeste-Wege-Baums Θ(m) verschiedene einfa-
che Pfade. Sie auf Einfachheit zu überprüfen und auszugeben bedarf einer Laufzeit von
O(m+n) pro Pfad. Wir beschreiben außerdem praktische Verbesserungen, die die Men-
ge der zu betrachteten Kanten sukzessive verkleinert, die benötigten Kürzeste-Wege-
Bäume lazy berechnet sowie die Überprüfung von Pfaden auf Einfachheit beschleunigt.
In einem ausführlichen experimentellen Vergleich zeigen wir, dass unser Ansatz den
Yen-basierten in der Praxis überlegen ist: Die günstigen Voraussetzungen treffen wir da-
bei in Zufalls- und Gittergraphen sowie in großen Straßennetzgraphen an. Trotz großer
Algorithm-Engineering-Bemühungen zur Verbesserung von Yens Algorithmus erreicht
unser Algorithmus auf diesen Graphklassen sowie auf Graphen, die Netzwerktopologien
modellieren, eine Beschleunigung von mindestens einer Größenordnung.

Wegen der Erkenntnisse von Vassilevska Williams und Williams sind momentan keine
großen Verbesserungen der theoretischen Worst-Case-Laufzeit bei kSSP-Algorithmen im
allgemeinen Fall zu erwarten. Wir betrachten daher den Spezialfall der baumweitebe-
schränkten Graphen. Wir präsentieren einen Meta-Algorithmus, der für eine große Klasse
an Graphproblemen zu einem Ranking-Algorithmus für baumweitebeschränkte Graphen
adaptiert werden kann. Die Problemklasse umfasst genau die Graphprobleme, die in
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der monadischen Prädikatenlogik zweiter Stufe mit Modulo-Prädikat formuliert werden
können. Es handelt sich um eine Verallgemeinerung von Courcelles Theorem; Schlüssel-
techniken sind dynamische Programmierung sowie eine persistente Datenstruktur. Für
das Aufzählen einer festen Anzahl an Lösungen wird Zeit O(n) benötigt. Ist die Anzahl
k an Lösungen Teil der Eingabe, benötigt der Algorithmus O(logn) Zeit zusätzlich pro
Lösung, also insgesamt O(n+ k logn). Die Berechnung der ursprünglichen Lösung kann
dabei parallelisiert werden. Dadurch entfällt im PRAM-Modell der lineare Term und
wir erhalten eine Laufzeit von O(k logn). Probleme, die in monadischer Prädikatenlogik
zweiter Stufe ausgedrückt werden können, umfassen das kSSP, Matching-Probleme oder
das Spannbaumproblem, aber auch das Problem des Handlungsreisenden, für das eine
doppelt exponentielle Laufzeitverbesserung im Vergleich zu bestehenden Ansätzen auf
allgemeinen Graphen erzielt wird.
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1. Introduction

In combinatorial optimization, we are usually interested in one optimal solution. Readers
of common literature on the subject [31, 80, 84] might be tempted to believe that a
solution to a combinatorial optimization problem is either optimal or completely useless.
If there is no unique optimal solution, we sometimes make an effort to enumerate all
solutions with optimal value. The usefulness of suboptimal solutions, however, is often
disregarded although it has been demonstrated repeatedly.

In combinatorial k-best enumeration, sometimes called ranking, we compute k solu-
tions such that no other solution is cheaper than the most expensive one we found. The
problem of finding k shortest simple (or loopless) paths between two given vertices in
a weighted, directed graph has received most attention. It was introduced by Clarke,
Krikorian and Rausen [30] in 1963. In 1971, Yen [105] proposed an algorithm with
O(kn(m + n logn)) running time, which was refined numerous times. The most recent
refinement, the node classification algorithm from Feng [46], is the most efficient kSSP
algorithm to date.

A problem as important as kSSP deserves to be approached by more than one way,
though. Although the most recent Yen-based algorithm is only three years old, improve-
ments seem to stagnate. A completely new approach could pave the way for a whole
new array of practical improvements. We want to pursue new ways to improve upon
Yen’s approach, both theoretically and in practice.

Consider the street map in Figure 1.1. Assume we want to travel from Speyer to
Dortmund by car during rush hour. Driving on a German autobahn is quite strenuous,
so we want to get over it and prefer fast routes naturally. The fastest route is via
Darmstadt, Montabaur and Olpe, which requires 221 minutes. This does not include
breaks; mind your attention span when driving a car this long!

However, we might be constrained in one way or another. If we entertain a passion
for cathedrals, we might approve an extra 14 minutes to be able to have a break in
Cologne. After all, we just came from Speyer, whose cathedral is the largest remain-
ing Romanesque church. If we drive an electrical vehicle with a battered battery that
cannot drive for more than 130 minutes straight without recharge, we would opt for St.
Elizabeth’s Church, Marburg, which was a model for the Cologne Cathedral.

There may be countless other constraints. A bound on the probability of getting stuck
in a traffic jam would have us avoid both Cologne and Frankfurt (on the Darmstadt–
Marburg edge). To participate in a guided tour in St. Elizabeth’s Church, we might
want to arrive there between 16:30 and 17:00. If our car is a rental car, we have to pay
per kilometer (plus a fixed rate). This could induce a bound on the travel distance if we
are on a tight budget.
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1. Introduction

Speyer

Darmstadt

Montabaur

Cologne

Olpe

Marburg

Dortmund

95
58

115

57
128

60

73

74 53

140

37

Figure 1.1.: Detailed map of the most important cities in Germany, objectively. Edge
labels are travel times in minutes during evening rush hours. Thick edges
lie on the unique fastest route from Speyer to Dortmund.

Some of these constraints can easily be incorporated into the process of finding the
optimal route, but some are not. For example, by introducing a budget on the travel dis-
tance, we end up with the Constrained Shortest Path problem, an NP-hard optimization
problem. We can also think of constraints that depend on data that is not yet available,
like traffic jam information, roads closed off for maintenance, or the availability of tickets
for the guided tour in St. Elizabeth’s. The everyday cathedral seeker in an electrical
vehicle often faces several constraints at a time. And finally, we cannot teach our nav-
igation system about every possible constraint, and even if we could, communicating
them all would probably be cumbersome.

Fortunately, there is an easy way out. Instead of incorporating all our constraints
during route optimization, the navigation device computes several good routes with
respect to our primary objective, getting from Speyer to Dortmund wasting as little
time as possible. Instead of picking one, it would then also present several of those
routes to us. It is relatively easy to assess the number of cathedrals, construction sites
and recharging units, traveled distance, traffic jam probabilities for a fixed route. We
are able to fill in missing data based on experience: Frankfurt area is not jammed when
we leave Speyer, but it will definitely be around 16:00. We could decide to enjoy the
view from autobahn A5 north of Frankfurt spontaneously, too. Picking a route ourselves
also makes us feel less heteronomous and boosts our confidence!

We face the k shortest path problem in a directed, weighted graph (kSP), for a natural
number k. Eppstein’s algorithm [40] solves this problem on a graph with n vertices and
m edges in time O(m + n logn + k). Computing the shortest path already requires

4



time O(m + n logn) using Dijkstra’s algorithm, so computing many good paths only
introduces constant overhead per path. If we want the paths to be output in order of
increasing length, we need an additional O(k log k) time. Modeling our routing problem
as kSP may introduce loops, though. Although Figure 1.1 depicts an acyclic graph,
we can easily imagine it to contain autobahn junctions. In Germany, these junctions
contain loops. Using two of them makes you go in your original direction and usually
requires less than a minute. The second shortest path would therefore visit Darmstadt,
Montabaur and Olpe, too, as well as two junction loops in addition, but we certainly do
not gain anything from this detour.

Instead, we are only interested in loopless, simple paths. Although computing the k
shortest simple paths requires O(kn(m+n logn)) time, and therefore O(n(m+n logn))
time per path, it may be worth the extra effort if we know in advance that we are only
interested in simple ones. If we allow cycles of zero length, the number of non-simple
paths can be unbounded. We are then unable to find even small numbers of simple paths
with Eppstein’s algorithm.

We motivated kSSP directly, but it is also highly relevant as a subproblem of other
important problems. It can be used during gap closing for the constrained shortest path
problem. It has been applied successfully in bioinformatics [3, 69, 88, 99], especially in
biological sequence alignment [17, 20, 83, 97, 98]; to natural language processing [11,
18, 22, 23, 27, 28, 29, 47, 62, 71, 72, 95, 100]; to list decoding [57], minimum quartet
inconsistency [56], parsing [63] and vehicle and transportation routing [58, 66, 81, 104];
and many others. See Eppstein’s recent comprehensive survey on k-best enumeration [41,
42, 43] for more applications.

The best algorithm for kSSP is still Yen’s algorithm [105], proposed in 1971. None
of the numerous enhancements [24, 46, 60, 78, 79, 101] for Yen’s algorithm were able
to lower its running time of O(kn(m + n logn)). Actually, Vassilevska Williams and
Williams suggest [103] that polynomial improvements might not be possible. If the
second shortest simple path can be found in time O(n3−ε), we can also solve the all-
pairs shortest path problem in time O(n3−ε′), for positive real ε, ε′.

Since we cannot improve upon the status quo in the general case, it is reasonable
to consider restrictions on the input. A particularly common restriction regards the
treewidth of the input graph. Problems that are easier on trees than they are on gen-
eral graphs are often also easier on graphs with an arbitrary but fixed bound on the
treewidth. Specialized algorithms for bounded treewidth graphs are often based on dy-
namic programming and leverage the tree decomposition. For example, algorithms with
polynomial running time on bounded treewidth graphs have been proposed for inde-
pendent sets [70], dominating sets [2, 93], q-Coloring [49], and odd cycle traversal [48],
the Steiner tree problem [26] and its two-stage stochastic version [74]. Courcelle’s theo-
rem [33] states that any graph language that coincides with the set of models for a nullary
graph predicate in a variant of monadic second-order logic can be decided in linear time
O(n). An optimization version of Courcelle’s theorem was proposed by Courcelle and
Mosbah [35] and by Arnborg, Lagergren and Seese [5]. However, bounded treewidth
graphs have not been considered in the context of k-best enumeration, yet.
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1. Introduction

This thesis is intended to close some of the abovementioned gaps. On the practical
side, we propose a new algorithm for kSSP that is not based on Yen’s algorithm. Its
running time matches that of Yen’s algorithm. We feel that opportunities for practical
improvements of their approach are exhausted. Using a completely new approach often
enables new possibilities for improvements.

Our algorithm is based on the concept of sidetracks, introduced by Eppstein for their
kSP algorithm. During initialization, a shortest path tree to the target vertex is com-
puted. A sidetrack is an edge that does not occur on this shortest path tree. Any
path from the source to the target vertex can now be described as the sequence of its
sidetracks. Eppstein’s algorithm discovers new paths by progressively enhancing an ini-
tially empty sidetrack sequence in several ways. Our account includes first practical
improvements and a comprehensive computational study where we demonstrate that
our approach is highly competitive.

On the theoretical side, we bridge the gap between bounded-treewidth algorithms
and k-best enumeration. We propose an enumeration algorithm with a running time of
O(n + k logn), i.e., with logarithmic extra time per requested solution. The dynamic
programming approach utilizes a special form of tree decompositions called shallow tree
decompositions, and persistent arborescences. The algorithm can be used for any prob-
lem in counting monadic second-order logic, and thus to kSSP, too. We demonstrate in
which ways our approach can be parallelized, depending on whether a tree decomposition
is given.

1.1. Overview and Relevant Publications

This thesis is composed of one preliminary part and two main parts. Part I starts with
a rather informal introduction into the topic of k-best enumeration for graph problems
in Chapter 1 above. We motivate k-best enumeration and show how it can be useful,
but also point out its limits. For what is important to both main parts of the thesis,
Chapter 2 contains common definitions and notation, and Chapter 3 contains basic
concepts and data structures.

Part II is all about the problem of finding k shortest simple paths in a directed,
weighted graph between two given vertices (kSSP). We give part-specific definitions and
a short review of existing literature and repeat what is known about the problem’s com-
plexity in Chapter 4. We review relevant existing approaches for kSSP in Chapter 5
and observe that they are all based on Yen’s algorithm from 1971. Here, we will also
state some important ideas of Eppstein’s algorithm for the problem of finding the k
shortest (possibly non-simple) paths in a directed, weighted graph between two given
vertices (kSP). In Chapter 6, we propose a new kSSP algorithm based on Eppstein’s
kSP algorithm. Like existing algorithms, our new algorithm depends on the Dijkstra
algorithm that finds shortest paths in a directed graph. However, in contrast to existing
algorithms, it is designed to reduce the number of Dijkstra runs instead of the running
time per Dijkstra run in practice. We state the basic approach in Section 6.1, and bring
its running time on par with state-of-the-art kSSP algorithms in Section 6.2. Further,
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practical improvements for the new algorithm are presented in Chapter 7. Our base
algorithm necessarily encounters non-simple paths. Our first practical improvement in
Section 7.1 lets us identify those non-simple paths more efficiently. The second improve-
ment in Section 7.2 aims to speed up the Dijkstra algorithm by applying reduction tests
dynamically, drastically decreasing the size of the graph in the process. We conclude this
first main part with a computational study in Chapter 8. We compare our algorithm
with the two most efficient existing ones on road graphs, Erdős-Rényi random graphs,
and grid graphs as well as synthetic network topology graphs, thereby demonstrating
that our algorithm is highly relevant in practice. A paper on our sidetrack-based kSSP
algorithm has been published [73] in the proceedings of the 27th International Sym-
posium on Algorithms and Computation (ISAAC 2016). The implementation used in
the experiments in this paper is called SN in this thesis. The edge pruning technique
in Section 7.2 that discriminates the latest implementation SB from SN has not been
published.

In Part III, we propose a framework for graph problems that can be formulated in a
certain logic, the counting monadic second order logic with incidence relation (CMS2).
The framework is derived from Courcelle’s famous theorem on such problems. Required
part-specific notation and definitions, as well as a review of relevant existing research on
the topic are introduced in Section 9.1. Since the subject is already heavy on definitions,
we first show how to solve a restricted set of problems, specifically those problems in
CMS2 on undirected graphs that only contain a single solution set in Chapter 10. To
extend the basic framework to directed hypergraphs and problems with multiple solu-
tion sets in Chapter 11, we define hypergraph algebras, which then let us generalize
the optimization algorithm on hypergraph algebra parse trees by Courcelle and Mos-
bah [35] to the k-best enumeration setting. A paper on this framework authored by
Eppstein and Kurz was accepted for publication in the proceedings of the 12th Interna-
tional Symposium on Parameterized and Exact Computation (IPEC 2017); a preprint
is available [44].

We finish the thesis in Part IV with conclusions in Chapter 12 and a list of open
problems in Chapter 13.
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2. Definitions and Notation

This chapter will establish notation for concepts that are used in both main parts. More
specific concepts are introduced in their corresponding part.

2.1. General Definitions
For two sets M,N , the disjoint union of M and N is only defined if M and N are
disjoint, i.e., M ∩N = ∅, and is denoted by M ⊔N . We denote by N the set of positive
integers, and by N0 = N⊔{0} the set of non-negative integers. For i ∈ N, [i] is the set
{1, . . . , i}. The set of real numbers is R, and for x ∈ R, R≥x is the set of real numbers
greater than or equal to x. The set {false, true} of Boolean values is denoted by B.

Let M be a set. We denote the cardinality of M by |M |, and the power set of M
by 2M . A permutation on M is a bijection f : M → M . A function f : [k] → M for
some k ∈ N0 is a sequence of length k or k-tuple over M , usually denoted by (a1, . . . , ak)
where f(i) = ai for i ∈ [k]. Similarly, a function f : N → M is an infinite sequence. A
sequence usually refers to a finite sequence in this thesis. For a sequence S of length n
and i ∈ [n], we refer to the i-th element of S by Si. Similarly, the i-th element of an
infinite sequence, i ∈ N, is denoted by Si. For i ∈ N0, the set M i contains all sequences
over M of length i, and M∗ :=

⋃∞
i=0M

i.
A multiset (M,f) consists of a nonempty set M and a function f : M → N0. For

a ∈ M , f(a) is the multiplicity of a. The cardinality of a multiset is the sum of all its
multiplicities, |(M,f)| =

∑
a∈M f(a).

Let f : M → N be a function, and M ′ ⊆ M . If N = R, f(M ′) denotes the sum of
values under f of all elements of M ′, f(M ′) :=

∑
a∈M ′ f(a). This notation is primarily

used to apply weight functions to solutions, both introduced later. For N ̸= R, f(M ′)
denotes the image of M ′ under f , {f(a) | a ∈ M ′}.

Let k ∈ N and f : Nk → N. We define the Landau symbols as follows (with each
n,n0 ∈ Nk):

Ω(f(n)) = {g : Nk → N | ∃ n0, c > 0 ∀ n ≥ n0 : 0 ≤ cg(n) ≤ f(n)},
ω(f(n)) = {g : Nk → N | ∀ c > 0 ∃ n0 ∀ n ≥ n0 : 0 ≤ cg(n) ≤ f(n)},
O(f(n)) = {g : Nk → N | ∃ n0, C > 0 ∀ n ≥ n0 : 0 ≤ f(n) ≤ Cg(n)},
o(f(n)) = {g : Nk → N | ∀C > 0 ∃ n0 ∀ n ≥ n0 : 0 ≤ f(n) ≤ Cg(n)}, and

Θ(f(n)) = {g : Nk → N | ∃ n0, c, C > 0 ∀ n ≥ n0 : 0 ≤ cg(n) ≤ f(n) ≤ Cg(n)}.

Let (M,≤) be a partially ordered set. An element a ∈ M is a maximal (minimal)
element of M if there is no a′ ∈ M with a ≤ a′ (a′ ≤ a). If a ≤ a′ (a′ ≤ a) for
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2. Definitions and Notation

every a′ ∈ M , a is a maximum (minimum) element of M . If M is linearly ordered,
then for N ⊆ M∗, we denote by lex minN (lex maxN) the lexicographically minimum
(maximum) element of N .

2.1.1. Computation models
We use parallel random-access machines (PRAM ) as described by Akl [1] (mostly called
Single Instruction stream Multiple Data stream (SIMD) computers with Shared Memory
(SM) by the author) to analyze algorithms. We also follow Cormen et al. [31] in some
of the following terminology.

A PRAM has a sequence of processors P1, . . . , PN ; the number N of processors may
depend on the input size. Each processor has its own local memory. Additionally, shared
memory is common to all processors, and therefore a means to communicate to each
other. Some coordination unit aware of the algorithm orchestrates the execution: In
every step, it reads one instruction of the algorithm, and pushes this instruction to all
processors. It may choose to perform this instruction only on a subset of processors, but
it may not tell different processors to perform different instructions in the same step.
The instruction is then performed by the processors concurrently.

Both local and shared memory are organized as an infinite sequence of cells. Each cell
can store a word of c logn bits, where c ∈ R only depends on the algorithm, and n is
the number of bits used to represent the input. The input is initially stored in n cells in
shared memory.

We further specify how processors are allowed to access the same cell in shared memory
simultaneously. Both read (R) and write (W) access may be exclusive (E) or concurrent
(C), resulting in the four combinations EREW, CREW, ERCW and CRCW. For exam-
ple, the CREW model grants exclusive write access to a memory cell to one processor
at any time, but all processors may read any part of the memory concurrently at any
time. If multiple processors try to write to the same cell at the same time, we assume
that only the store operation of the processor with the lowest index succeeds.

A PRAM with only one processor is also called a random-access machine (RAM ). It
is not necessary to specify access control for shared memory for RAMs, and we may as
well assume that only global memory is used. Algorithms for RAMs are sequential; if
the number of processors is a superconstant function of the input size, it is parallel.

Atomic instructions are arithmetic operations (add, subtract, multiply, divide, remain-
der, floor, ceiling, exponentiate with base 2), memory instructions for local or shared
memory (load, store, copy), or control flow instructions. Complex instructions are com-
posed from atomic and complex instructions. When analyzing the time complexity of
an algorithm on a PRAM, an atomic instruction accounts for one step. The time re-
quired to perform a complex instruction is the sum of step counts for its subinstructions.
The running time required to perform an algorithm is the sum of times required for all
instructions read by the coordination unit before termination.

For results on space complexity, we use space-restricted Turing machines [102]. These
have an input tape that can only be read, and an output tape that can only be written
to. We require that an algorithm’s result is equal to the content of the output tape when
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the algorithm terminates. Space requirements are measured on an additional memory
tape with read and write access. We limit this memory tape on one side, index the cell
farthest to that side with 1, and require that the head of the Turing machine starts at
index 1 on this tape. The space requirement then corresponds to the highest index on
the memory tape that was read from or written to.

2.1.2. Graphs

The following notion of directed graphs is based on the definitions of Diestel [36], and
generalized to obtain hypergraphs.

A hypergraph G consists of a finite set V of vertices, a finite set E of hyperedges, and
a function vert : E → (V ∗). A feature of a hypergraph is either a vertex or a hyperedge.
Although directed hypergraphs are triples (V,E, vert), we will almost universally declare
them as pairs (V,E) after this subsection, since vert is only a technical detail. In con-
texts where the distinction between a hyperedge e and its corresponding vertex sequence
vert(e) = (v1, . . . , vr) is not important, we identify e with vert(e). A hypergraph implic-
itly defines functions head : E ↦→ V and tail : E ↦→ V with tail(e) = v1 and head(e) = vr

for vert(e) = (v1, . . . , vr). A loop is a hyperedge e with tail(e) = head(e). Hyperedges
e, e′ ∈ E, e ̸= e′, are parallel if vert(e) = vert(e′). G is loopless if no hyperedge is a loop,
and simple if no two edges are parallel, i.e., vert is injective.

Let A be an alphabet, ≤ a linear order over A and τ : A → N0 a mapping that
maps every letter in A to an order. For r ∈ N0, a labeled r-interface hypergraph
(V,E, vert, lab, src) is a hypergraph together with an edge labeling function lab : E → A
where for every hyperedge e ∈ E, the length of its vertex sequence vert(e) is equal to
the order τ(lab(e)) of its label, and a sequence src : [r] → V of r designated vertices.
Hypergraphs can be considered special cases of labeled r-interface hypergraphs with
r = 0, A = [max{|vert(e)| | e ∈ E}], and lab(e) = |vert(e)|. The order of an r-interface
hypergraph is r.

A directed graph G is a hypergraph where the sequence vert(e) has length 2 for every
e ∈ E. For a vertex v ∈ V , δ+(v) = ({v} × V ) ∩ E is the set of outgoing edges of
v and δ−(v) = (V × {v}) ∩ E is the set of incoming edges of v. The outdegree d+(v)
of v is the number of outgoing edges

⏐⏐δ+(v)
⏐⏐, and its indegree d−(v) is the number of

incoming edges, |δ−(v)|. A vertex u is a predecessor of v if there is an edge e ∈ E with
vert(e) = (u, v), and a successor if there is an edge e ∈ E with vert(e) = (v, u).

An undirected graph G is a pair (V,E), where V is a finite set of vertices, and E is
a finite set of (undirected) edges, which are two-element subsets of V . A feature of an
undirected graph is either a vertex or an undirected edge. Because of the set semantics
used here, an undirected edge cannot occur twice in E, and it cannot be a (one-element)
loop {v, v}. Hence, we consider undirected graphs to be simple and loopless by definition.
Vertices u, v ∈ V are neighbors if there is an edge {u, v} ∈ E; we denote by δ(v) the set
of neighbors of v. The number of neighbors |δ(v)| of v is its degree.

Let G = (V,E) be an undirected graph and v ∈ V be a vertex. A vertex v is an
endpoint of an edge e if v ∈ e. An edge {u, v} ∈ E is incident to v. A vertex u ∈ V ,
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u ̸= v, is adjacent to v if there is an edge that is incident to both u and v, i.e., {u, v} ∈ E.
Two edges are adjacent to each other if there is a vertex they are both incident to.

Let G be a class of graphs such that the number of vertices is unbounded. If there is
c ∈ R such that for every (V,E) ∈ G we have |E| ≤ c|V |, G is a class or family of sparse
graphs. If there is c ∈ R such that |E| ≥ c|V |2 for each (V,E) ∈ G instead, G is a class
or family of dense graphs.

A hypergraph G = (V,E, vert) is a supergraph of a hypergraph G′ = (V ′, E′, vert′)
(and G′ is a subgraph of G) if V ′ ⊆ V , E′ ⊆ E, and vert(e) = vert′(e) for each e ∈ E′.
Let W ⊆ V be a node subset. The edge subset of E induced by W is the set {e ∈ E |
∀i ∈ [|vert(e)|] : vert(e)i ∈ W}. The hypergraph G[W ] = (W,E[W ], vert

⏐⏐
E[W ]) is called

the induced subgraph of G w.r.t. W . Removing a vertex subset V ′ ⊆ V from G results
in the subgraph G− V ′ := G[V \ V ′]. Removing an edge subset E′ ⊆ E from G results
in the subgraph G− E′ := (V,E \ E′, vert

⏐⏐
E\E′). We conveniently write G− v (instead

of G − {v}) or G − e (instead of G − {e}) if only a single vertex v or a single vertex
e is removed. Supergraphs and (induced) subgraphs are defined for undirected graphs
accordingly.

An edge (vertex) weight function is a mapping c : E → M (c : V → M) from the
edge set (node set) of a directed hypergraph (undirected graph) to some ordered set M .
The terms cost function and weight function are used interchangeably. Uniform weight
functions map every element of the domain to 1.

Edge weighted hypergraphs G = (V,E, vert) are also the sole reason for us to define
E as separate objects that are mapped to vertex sequences. Alternatively, we could
have defined the edge set E of hypergraphs as multisets (V ∗, g). Formally, this would
eliminate distinct incarnations of the same edge. There might be an edge (u, v) with
g((u, v)) > 1, but we would not be able to have two such edge with different edge
weights. Therefore, edges are objects on their own, so we can have c(e1) ̸= c(e2) even
for vert(e1) = vert(e2).

2.1.3. Paths, Cycles and components

Let s, t ∈ V be vertices of a directed graph G = (V,E, vert). For s ̸= t, a sequence
p = (e1, . . . , en) of edges with vert(ei) = (ui, vi), u1 = s, vn = t and vi = ui+1 for
i ∈ [n − 1] is an s-t walk in G. For every i ∈ [n], the sequence (e1, . . . , ei) is a prefix
of p and (ei, . . . , en) is a suffix of p. It is an s-t path if no edge occurs twice, i.e.,
ei = ej ⇒ i = j. Note that two distinct edges ei, ej may occur on a path even if they
connect the same two vertices, i.e., vert(ei) = vert(ej). The set of all s-t paths in G is
Ps,t = Ps,t(G). The term s ⇝ t for s, t ∈ V states that an s-t path exists in G. For
s = t, such a sequence is called a cycle instead. The directed graph G is acyclic if there
is no cycle in G.

The number of edges in a path or cycle is denoted by |p|. The number of occurrences
of a vertex v on cycle p is the number |{i | ui = v}| of edges on p whose tails are v. If
p is a path, we add one to this number if t = v. If the number of occurrences is at least
one, v occurs on p. The subgraph of G induced by the set of vertices that do not occur
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on p is G− p. A path or cycle is simple if every vertex occurs at most once. The set of
all simple s-t paths in G is Ps

s,t = Ps
s,t(G).

The length c(p) of a path p = (e1, . . . , er) in a graph G = (V,E) w.r.t. an edge
weight function c : E → R is c({e1, . . . , er}). In the absence of an edge weight function,
we consider r to be the path’s length. An s-t path with minimum length for vertices
s, t ∈ V is a shortest s-t path. The distance dc(s, t) between s and t w.r.t. c is the length
of a shortest s-t path w.r.t. c, or ∞ if no such path exists. The distance of two vertices
of a graph with maximum distance is the graph’s diameter. In contexts where s, t or
c are evident, we will regularly omit their corresponding appositions (e.g., shortest path
instead of shortest s-t path w.r.t. c).

Paths and cycles are defined for undirected graphs accordingly. An undirected cycle p
is trivial if |p| = 2. An undirected graph G is acyclic if every simple cycle in G is trivial.
Acyclic undirected graphs are also called forests.

An undirected graph G = (V,E) is connected if u ⇝ v for every u, v ∈ V . Maximal
connected induced subgraphs of G are connected components of G. If u ⇝ w in G for
u, v, w ∈ V , but u ̸⇝ w in G− v, v separates u from w. If v separates any two vertices
of G, i.e., removing v increases the number of connected components, then v is a split
vertex of G. A connected forest is an undirected tree. A subgraph of G that is also a
tree is also called a subtree of G.

Vertices in a tree are also called nodes. A leaf is a node with degree 1. A rooted tree
is a tree with designated root node, which is usually not considered a leaf. In a rooted
tree where u separates v and r, u is an ancestor of v and v is a descendant of u. If
additionally {u, v} ∈ E, u is the parent of v and v is a child of u. A subtree rooted at u,
T (u), is the subgraph of a rooted tree that is induced by u and all its descendants.

A directed graph G = (V,E) is strongly connected if u ⇝ v for every u, v ∈ V . A
strongly connected component is a maximal strongly connected induced subgraph of G.
Both connected components for undirected graphs and strongly connected components
for directed graphs can be computed in time O(|V | + |E|), both algorithms being based
on depth-first search [31].

Directed trees come in two flavors, both of which are directed acyclic graphs and have
a designated root node r. In an arborescence or out-tree, there is exactly one r-v path
in the graph for every v ∈ V . In contrast, in an in-tree, there is exactly one v-r path in
the graph for every v ∈ V .

The depth of an out- or undirected tree T rooted in node r is the maximum distance
from r to any node in T w.r.t. uniform edge weights. For in-trees, it is the maximum
distance from any node in T to r w.r.t. uniform edge weights. The depth of an undirected
tree without a root is the same as the depth of the same tree rooted in a node that
minimizes depth (and therefore approximately half the tree’s uniform diameter).

A subgraph G′ = (V ′, E′) of a graph G = (V,E) is said to span V ′. A subtree is a
subgraph that is also a tree. It spans G if V = V ′. A subtree that spans G is a spanning
tree of G. Let r ∈ V . A shortest path tree (SP tree) from r in G w.r.t. an edge weight
function c is a subtree of G in which distances from r to any vertex match distances in
G. An SP tree to r in G w.r.t. c is a subtree in which distances from any vertex to r
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match those in G. Note that the vertex sets of G and a shortest path tree of G differ if
there is no path from some vertex to r (or from r to some vertex).

Let G = (V,E) be an undirected graph. A tree decomposition of G is a pair (T, b),
where T = (U,F ) is an undirected tree and b : U → (2V \ {∅}) maps every node of T to
a vertex subset of G – called bag – such that

• b covers V , i.e.,
⋃
b(U) = V ,

• every edge e ∈ E is subset of at least one bag, i.e., ∀ e ∈ E : ∃u ∈ U : e ⊆ b(u),
and

• the subgraph of T induced by the set of bags that contain any vertex v ∈ V is con-
nected, i.e., ∀ul, uc, ur ∈ U, v ∈ V : (v ∈ b(ul)∧v ∈ b(ur)∧uc separates ul and ur) ⇒
v ∈ uc.

The width of a tree decomposition (T = (U,F ), b) is one less than the size of its largest
bag, max{|b(u)| | u ∈ U} − 1. The treewidth tw(G) of an undirected graph G is the
minimum width a tree decomposition of G can have. For any fixed w, it is possible
to recognize graphs with treewidth at most w, and to compute a tree decomposition of
minimum width, in linear time [12].

In a rooted tree decomposition (T, b) of G, we assume T to be rooted. A node u of a
rooted tree decomposition represents the subgraph of G that is induced by the union of
the bags of all descendants of u and the bag of u itself. Thus, the root of T represents
G and a leaf u of T represents G[b(u)].

Bodlaender [14] showed that for every fixed w ∈ N there is some c = c(w) ∈ R such
that every undirected graph G = (V,E) with treewidth at most w has a rooted tree
decomposition (T = (U,F ), b) such that:

• |U | ≤ c|V |,

• the depth of T is at most c log(|V |),

• every node of T has at most two child nodes, and

• the width of (T, b) is at most 3w − 2.

Tree decompositions with these properties are shallow. For graphs with bounded treewidth,
it can be computed in linear time on a RAM, or in logarithmic time with O(|V |3tw(G)+4)
many processors on a CRCW PRAM [15].
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2.2. Combinatorial Optimization
Let k ∈ N. A combinatorial optimization problem according to Nemhauser and Wolsey [84]
is the evaluation of the term

max{c(S) | S ∈ S},

where c : [k] → R is a cost function, and S ⊆ 2[k] is a set of feasible solution over
[k]. Combinatorial optimization problems of this kind are also called combinatorial
maximization problems in this thesis. In contrast, a combinatorial minimization problem
is the evaluation of the term

min{c(S) | S ∈ S}

with c and S as above. A subset S of [k] is a solution, and infeasible if S /∈ S. A
combinatorial problem is infeasible if S = ∅, feasible if S ̸= ∅, and uniquely solvable if
|S| = 1.

The value of a solution S is its cost c(S). A solution S is optimal for a maximization
(minimization) problem if c(S′) ≤ c(S) (c(S′) ≥ c(S)) for every S′ ∈ S. The value of an
optimal solution is the optimal value. Note that there may be several optima, which all
share the unique optimal value.

The corresponding search problem asks for a feasible solution S ∈ S that assumes the
maximum value under c, i.e.,

arg max{c(S) | S ∈ S}.

Combinatorial optimization problems on graphs with n vertices and m edges can be
modeled with a bijective function into [k]. For problems asking for an edge subset,
we might have g : E → [m]; using g : V → [n], we can model problems that ask for
vertex subsets. To ease notation, we will abstract away from g, and therefore assume
that solutions are vertex or edge subsets. In the same manner, we model problems on
multiple sets. For example, instead of defining a mapping from E × [3] to [3m] for a
problem that asks for three edge subsets, we assume that S consists of triples of edge
subsets. Algorithms solve families of combinatorial optimization problems with common
compact input format, e.g., an encoding format of a graph. We can transform the
input to [k], c and S explicitly, but this is usually neither required nor desired due to a
potentially exponential blowup.

For a language L′, subsets of the Cartesian product L′×N are parameterized languages.
A parameterized language L is fixed-parameter tractable if there is an algorithm that,
for every input (I, k), computes (I, k) ∈ L in time f(k) · p(|I|), where f is an arbitrary
function, p is a polynomial function and |I| is the length of I. FPT is the class of
fixed-parameter tractable parameterized languages.
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In this chapter, we introduce some basic concepts. Mostly, they do not contain new
definitions or notation, but are still relevant for both main parts.

3.1. Data Structures

We give an overview of the data structures that play an important part in this thesis.

3.1.1. Graph Representations

Graphs as defined in Section 2.1.2 are merely a mathematical concept and have to be
encoded in order to be useful for algorithms. Formally, the choice of encoding of the
input (and the output, too) is part of a definition of a problem, and can have an impact
on the running time of various graph operations, or even the existence of some graph
operations. In this section, we will discuss the most common ones.

LetG = (V,E) be a simple directed graph on the linearly ordered sets V = {v1, . . . , vn}
and E = {e1, . . . , em}. The adjacency matrix of G is a square matrix M ∈ Bn×n with
Mij = true ⇔ (vi, vj) ∈ E. While checking for the existence of an edge between two
given vertices can be done in constant time, this representation has some downsides.
First, the size of adjacency matrices only depends on the number of nodes, leading to a
quadratic blowup in size for sparse graphs. Most of the time, we give running times in
terms of n and m. For example, we would give the running time of a breadth-first search
as O(m + n). However, n2 grows faster than n + m for sparse graphs, so the running
time of O(n+m) would actually be sublinear in the length of the encoding length of an
adjacency matrix. Another downside is the lack of efficiency for graph operations that
are far more common in graph algorithms than the check (vi, vj) ∈ E. In particular, we
cannot enumerate δ+(v) for some vertex v in time

⏐⏐δ+(v)
⏐⏐.

An adjacency list of a vertex v is a linked list of all outgoing edges of v. The adjacency-
list representation of G consists of an n-length array A and an adjacency list of each
vertex. The i-th entry of A is the adjacency list of vi. This representation mitigates
the disadvantages of adjacency matrices mentioned above. We cannot check (vi, vj) ∈ E
in constant time any more, but this operation is rarely needed anyway, and it won’t be
used by any algorithm discussed in this thesis.

Another advantage of adjacency lists are their mutability. We can easily insert new
edges in constant time. Deleting an existing edge (vi, vj) can also be done in constant
time if we already have the required references to modify the adjacency list of vi accord-
ingly, and takes time O(d+(v)) if we do not have these references.
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If this mutability is not required, we can use a more compact variant of adjacency
lists. First, a function g : V → M for an arbitrary set M can be represented by an n-
length array such that the i-th entry contains g(vi). A function on E can be represented
accordingly. We now require that E is sorted by the edges’ tail vertex in ascending order.
A simple forward star representation of G is the representation of the head function on
E, and a first-edge function f : V → E with f(v) = arg minei{ei | tail(ei) = v}. Simple
forward stars have all the benefits of adjacency-list representations for static graphs
without the overhead introduced by O(m+ n) many pointers.

We can efficiently enumerate the outgoing edges of a given vertex and their corre-
sponding heads with a forward star. However, finding incoming edges of a vertex v is
not supported directly. We have to enumerate the whole edge set and check for each
edge e if v is the head of e. Alternatively, we can use a simple forward star of the graph
obtained from G by swapping head and tail of each edge. This representation is the
simple reverse star of G.

The algorithms discussed in this thesis require efficient access to both the incoming and
outgoing edges of vertices. Consider a directed graph G = (V,E) with V = {v1, . . . , v4}
and E = {e1 = (v1, v4), e2 = (v2, v3)}. Since edges are sorted by their tails, e1 precedes
e2 in the forward star of G, but e2 precedes e1 in the reverse star of G. Now consider
an edge function f : E → M for an arbitrary M . As noted before, we store f as an |E|-
element array where the i-th entry is f(ei). Therefore, we cannot use edge functions on
E directly with edge indices obtained while operating on the reverse star. This problem
is circumvented by an additional edge function trace : [|E|] → [|E|] such that the i-th
edge in the reverse star is the same as the trace(i)-th edge in the forward star. The
value of f at the i-th edge e′

i in reverse star representation is then f(trace(i)). The
combination of a simple forward star, a simple reverse star and the trace function is
simply called forward star in this thesis.

3.1.2. Priority Queues
We use priority queues in several places in this thesis. Formally, a priority queue with
underlying set A is a set S ⊆ A where each item is associated with a key from a linearly
ordered set of keys. We are able to push a new item a to a priority queue, resulting in
S′ = S ∪ {a}. Let a ∈ S be an item with minimum associated key. Priority queues allow
to look up a, which does not modify S, and to extract a from S, resulting in S′ = S \{a}.

Some priority queues additionally offer a way to decrease the key of an item that is
already managed, resulting in a different smaller key being associated with that item.
The only algorithm in this thesis, however, that depends on the decrease-key operation
is the Dijkstra algorithm for computing shortest paths in a directed, weighted graph, so
we do not use this operation directly.

There exist several implementations of priority queues, and most of them are based
on heaps. Heaps, too, manage sets of items and induce a parent-child relationship upon
S. They satisfy the min-heap property, i.e., the key of a parent is less than or equal to
the key of a child. The operations supported by heaps roughly parallel those of priority
queues.

18



3.1. Data Structures

In this thesis, we make use of k-ary heaps, Fibonacci heaps, pairing heaps and interval
heaps. The internals of these heaps are beyond our scope. We refer the reader to
Cormen et al. [31] for details on k-ary and Fibonacci heaps, to Fredman [51], Iacono [64]
and Pettie [87] for pairing heaps and to Sahni [94] for interval heaps. We settle for
highlighting the differences between the four heaps.

Fibonacci heaps display the best worst-case running times, with (amortized) constant
time for all operations except for minimum-extraction, which requires amortized time
O(logn) for heaps with n items. The decrease-key operation is asymptotically slower for
pairing heaps (amortized time O(logn)), and just as efficient as Fibonacci heaps for all
other operations. Every operation on k-ary heaps requires time O(logn) except for the
constant-time lookup of the minimum-key item. Interval heaps generalize binary heaps
(k-ary heaps with k = 2) and therefore inherit their running time behavior.

The k-ary, Fibonacci, and pairing heaps were implemented and compared experimen-
tally in a recent study by Larkin, Sen and Tarjan [75]. Although Fibonacci heaps are
superior to the other two in theory, they performed worst in practice. They are primar-
ily used to give lower upper bounds; e.g., Dijkstra’s algorithm requires O(m + n logn)
running time with Fibonacci heaps, but O(m logn) time with any of the other three
heaps. Pairing and k-ary heaps performed best when used in the Dijkstra algorithm.
In tentative experiments, we found that the pairing heap of the Open Graph Drawing
Framework [25] is more efficient than the binary heap implementation provided by the
GNU C++ standard library at version 4.9.3.

Finally, interval heaps support an operation that the others do not support. In ad-
dition to querying and extracting the item with minimum key, we can also query and
extract the item with maximum key. If we know that we only extract the minimum-key
item at most M times, or that we are only interested in items whose key is below some
dynamically updated upper bound (which is both the case in Part II), we can utilize the
extract-max to restrict the heap to a reasonable size. Running times are symmetric for
the minimum and maximum key item, so querying and extracting both can be done in
time O(logn).

3.1.3. Persistent Arborescences
Modifying operations of a data structure are usually not reversible. After inserting a
new element into a list, tree, or hash map, we forget about its former state and cannot
tell which of the elements was inserted last, so we cannot restore a former state. If we
keep track of the modifications performed on a data structure, we are usually not able
to act on old states as efficiently as on the current state: we first have to restore the old
state, which is often inefficient. This is true for both modifying and reading operations.
Data structures with this destructive nature are ephemeral.

In some situations, however, we need some means to access older states of a data
structure efficiently. This is where persistent data structures come into play. We distin-
guish update operations that modify the data structure from querying operations that
only extract information from the data structure without modifying it. All or some
update operations cause the creation of a new version of the data structure which we
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(b) Ephemeral change
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(c) Persistent change

Figure 3.1.: Changing the value stored in one node in an arborescence both in an
ephemeral way where the old state is lost, and in a persistent way. Nodes
in their original state are thick.

can then operate upon. Every operation of a persistent data structure gets an additional
parameter that references the target version. Updating one version does not affect other
existing versions in any way. It is therefore possible to derive several new versions from
an existing one by using different update operations on the same version. Old versions
can be queried, too, without other versions interfering.

We consider ephemeral and persistent variants of a binary arborescence. Let W be
the set of nodes that are affected by a change. A new version is created by cloning the
nodes in W as well as their ancestors. Pointers among the clones are added accordingly.
Additionally, the clones get pointers to those child nodes of the corresponding original
node that have not been affected. The change can now be performed solely on the clones.
Note that no pointer of the original arborescence is altered in the process.

One such data structure by Driscoll et al. [38] used in several places in this thesis is the
persistent arborescence. The persistent arborescence is a pointer-based representation
of an arborescence. Every node has a separate pointer to each of its child nodes, but
no pointer to its parent. The roots of the arborescences serve as references to versions.
When we use data structures derived from persistent arborescences, we describe updates
and queries for the ephemeral variant using only the root of the arborescence. Query
operations can then be applied to versions without modification. We give a generic way
to make ephemeral changes persistent.

An example use of the persistent arborescence can be seen in Figure 3.1. Figure 3.1a
shows the original version of the arborescence. Assume that each node stores some
natural key as denoted by the number inside the node. We want to change the leftmost
node to store 7 instead of 10. The ephemeral version of the data structure destroys the
old state, as seen in Figure 3.1b, making it impossible to reestablish the original state.
In contrast, creating clones of the affected node and its ancestors does not influence the
original data structure at all. The new, thin root node is a reference to the new version,
while the black root node remains a reference to the old one.

Persistent arborescences are not restricted to updates that change the value associated
to nodes. Node insertion and removal can be made persistent as well. Examples for this
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(b) Persistent insertion of v5
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(c) Persistent removal of v4

Figure 3.2.: Persistently inserting a node into a heap or removing a node from a heap
without destroying the old state. Nodes in their original state are thick.

can be seen in Figure 3.2.
Persistent data structures are used during the initialization phase of Eppstein’s k short-

est path algorithm [40] and in our k-best algorithm for problems in counting monadic
second-order logic on graphs with bounded treewidth in Part III. In the first case, we
always have |W | = 1, while in the latter case, all nodes in W form a path from the
root to a leaf node. In both cases, the affected nodes, i.e., the nodes in W and their
ancestors, form a path. The technique to make the arborescence persistent is therefore
called path-copying persistence. Using path-copying persistence, the time to create a
new version of the arborescence is only linear in the depth of the deepest affected node,
instead of being linear in the number of nodes in the arborescence.

3.2. k-Best Optimization
In k-best optimization, we are interested in a sequence of solution values. Consider
a combinatorial optimization problem defined by its feasible solutions S and a cost
function c. We obtain its canonical k-best optimization problem by augmenting it by
k ∈ N. Instead of merely finding the optimal value among S, we now want to find a
sequence of k values of pairwise distinct solutions (S1, . . . , Sk) of length k. We require
that c(Si) ≥ c(Si+1) for i ∈ [k−1], and that c(Sk) ≥ c(S′) for every S′ ∈ S \{S1, . . . , Sk}.
It is equivalent to the evaluation of the term

mink S = lex min{(c(S1), . . . , c(Sk)) | Si ∈ S pairwise distinct}.

The corresponding search problem asks for a tuple (S1, . . . , Sk) of pairwise distinct solu-
tions with mink S = (c(S1), . . . , c(Sk)). We assume throughout this thesis that k ≤ |S|.
Otherwise we would have to replace k in the definitions above with k′ = min{k, |S|}.

We can think of k either as fixed as part of a problem description, or as part of the
problem instance. We describe the latter as general k as opposed to fixed or constant k.
Note that there cannot be a polynomial time algorithm for the canonical k-best version
of any combinatorial optimization problem for general k if k grows polynomially in its
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own encoding length in the input. This is the case for unary encodings of k. However,
we would naturally expect binary encoding, in which case k grows exponentially in its
encoding length. Since we have to output k solutions of at least one bit, we require Ω(k)
output time, which is exponential in the input length. The problem is not mitigated by
considering k′ instead because |S| can grow exponentially in the input length, too.

We will drop the requirement of the k solutions being output in increasing order of
their cost in some contexts. This can be useful, e.g., if all solutions are presented to
a user equally at the same time, as would be the case in our motivational example in
Chapter 1.

3.2.1. Solution Space Partition

Efficient algorithms for finding optimal solutions for graph problems are usually problem
specific. In contrast, approaches for generalizations to find the k best solutions are
quite universal. Let S ⊆ 2M be the set of feasible solutions for some combinatorial
optimization problem with universal set M . We denote by S(I,O) := {S ∈ S | I ⊆
S, S∩O = ∅} the set of feasible solutions S ∈ S that include all elements of set I ⊆ M and
do not include any element of set O ⊆ M . The optimization problem that corresponds to
S(I,O) is a subproblem of the original problem. The k best solutions in S can be found
by iteratively refining a partition of S, and computing best or second-best solutions for
the individual cells. We maintain a partition (S1, . . . ,Sr) of S, initially with r = 1 and
S1 = S = S(∅, ∅). In each iteration, one of the cells of the partition is selected and
refined.

Murty [82] and Lawler [76] proposed a framework that requires an algorithm for finding
optimal solutions for subproblems. Let S = I ⊔{a1, . . . , an} be optimal in S(I,O), and
M \ (S ⊔O) = {b1, . . . , bm}. Then S(I,O) \ {S} can be further partitioned into these
sets

S(I ⊔{a1, . . . , ai−1}, O⊔{ai}) for i ∈ [n], (3.1a)
S(S ⊔{bi}, O⊔{b1, . . . , bi−1}) for i ∈ [m]. (3.1b)

Each of these sets is a solution set of a subproblem.
The Murty/Lawler framework maintains a partition of S, initially (S), and for each

cell an optimal solution for the corresponding subproblem. Those cells whose optimal
solution has not been determined to be one of the k best solutions yet are stored in a
candidate priority queue. The priority of a cell is the value of its optimal solution. In each
iteration, the next cell is extracted from the priority queue. Its optimal solution is added
to the output set of solutions. The cell is then further partitioned as described above,
and the algorithm for finding optimal solutions for the corresponding subproblems is
used to find optimal solutions for the subcells. Finally, the cell is replaced by its subcells
in the partition, and the subcells are added to the priority queue. After k iterations, or
if the priority queue runs empty, the algorithm stops.

This approach generates at most |M | subproblems in each iteration, and computes
optimal solutions for them. For problems where one feasible solution cannot be a subset
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S({e1}, {e2, e3})

c({e1, e4}) = 20

S({e1, e3, e4}, {e2})

29

S({e1}, {e2})

c({e1, e3}) = 14

S(∅, {e1})

24

S({e1, e2, e3}, ∅)

33

S({e1, e2, e4}, {e3})

c({e1, e2, e4}) = 24

S
c({e1, e2}) = 9

Figure 3.3.: Murty/Lawler heap of subproblems. Rounded rectangles represent subprob-
lems, with the set of feasible solutions in the upper part and the value of
an optimal solution in the lower part. Green subproblems contain one of
the k = 4 best solutions. The tree is a heap w.r.t. the value of the optimal
solution. The root problem is a combinatorial toy optimization problem
over M = {e1, . . . , e4} with feasible solutions {S ⊆ M | ({e2, e3} ⊆ S ∨ e4 /∈
S) ∧ S ̸= {e2, e4}} and c(e1) = 5, c(e2) = 4, c(e3) = 9, c(e4) = 15.

of another, like the k shortest simple path problem, the solution sets in (3.1b) are always
empty and can therefore be omitted. The number of subproblems to be solved in an
iteration is then equal to the size of the solution selected in that iteration. This algorithm
was proposed independently for the k shortest simple path problem by Yen [105].

An example heap of subproblems for the Murty/Lawler approach can be seen in Fig-
ure 3.3. Subproblems whose optimal solutions are among the k = 4 best solutions are
highlighted in green.

A framework that relies on an algorithm for finding the two best solutions of a sub-
problem was proposed by Gabow [54] for the k best spanning tree problem, and then
generalized for combinatorial optimization problems by Hamacher and Queyranne [59].
We keep the partition of S as well as the priority queue with subproblems from the last
approach. In contrast, however, we use the value of the second-best solution instead of
the optimal one as the priority. Let S(I,O) be a subproblem extracted from that priority
queue, and let S1, S2 be the optimal and second-best solution in S(I,O), respectively.
Further, let x ∈ S1 ⊕S2 be a pivot element in the symmetric difference of S1 and S2. We
can now replace S(I,O) with one subproblem S(I ⊔{x}, O) where all feasible solutions
contain the pivot, and one subproblem S(I,O⊔{x}) where each feasible solution does
not contain the pivot. We compute the two best solutions for both these subproblems,
and push them to the priority queue of candidates unless they are uniquely solvable.

Initially, the partition of S is again (S), and we compute the two best solutions for
S. The output set is initialized with the optimal solution we just found; the candidate

23



3. Basic Concepts

S
9, 14

S({e2}, ∅)
9, 24

S(∅, {e2})
14, 20

S(∅, {e2, e3})
20, ∞

S({e3}, {e2})
14, 24

Figure 3.4.: Hamacher/Queyranne heap of subproblems. Rounded rectangles represent
subproblems, with the set of feasible solutions in the upper part and the
value of an optimal solution and a second-best solution in the lower part.
Green subproblems contain one of the k = 4 best solutions. The lower white
subproblem is uniquely solvable, so the value of the second-best solution is
assumed to be ∞. The tree is a heap w.r.t. the value of the optimal solution
and w.r.t. the value of the second-best solution. The root problem is a
combinatorial toy optimization problem over M = {e1, . . . , e4} with feasible
solutions {S ∈ 2M −{e2, e4} | {e2, e3} ⊆ S∨e4 /∈ S} and c(e1) = 5, c(e2) = 4,
c(e3) = 9, c(e4) = 15.

priority queue is initialized with the original problem. We then extract and process k−1
subproblems from the candidate priority queue as described above. For each extracted
subproblem, we add the second-best solution to the output set. If no candidates are left,
the algorithm terminates prematurely.

In this second approach, we generate two subproblems in each of the k− 1 iterations,
resulting in 2k−1 executions of the two-best algorithm for subproblems. The number of
subproblems is therefore much smaller than in the first approach. We need to be able to
compute the second-best solution in addition to the optimal one. However, this is not a
stronger requirement, since we can simply use the first framework to compute the second-
best solution, relying solely on an algorithm that solves subproblems to optimality.
However, finding the second-best solution might be slower than finding the optimal one.
An example for this is the k shortest simple path problem, as described in Section 4.2.

The Hamacher/Queyranne heap for the problem from Figure 3.3 can be seen in Fig-
ure 3.4. Both figures contain exactly those subproblems that need to be solved in order to
be sure that the four best solutions have been found. We have to solve seven subproblems
using the Murty/Lawler approach, and five subproblems using the Hamacher/Queyranne
approach. Keep in mind, though, that solving a subproblem to optimality as in the
Murty/Lawler approach might be easier than finding the two best solution values as
required by the Hamacher/Queyranne approach.

Finally, we consider the tree of subproblems induced by the two above approaches.
The root of the tree is the original problem whose solution set is S. The children of each
node are the subproblems generated by the frameworks. Leaves of the tree are uniquely
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solvable subproblems. The tree induced by the first approach is a |M |-ary min-heap of
subproblems w.r.t. the optimal solution value of a subproblem. In the second approach,
the tree is a binary min-heap of subproblems w.r.t. the value of the second-best solution.

Above, the selection of the k best solutions from these heaps is described in terms of
a priority queue, but this is only one best-first search. In addition to generating and
solving the subproblems, we require time O(k log k) just to maintain the priority queue.

Frederickson [50] proposed an optimal best-first search algorithm for heaps. It finds the
k smallest values in an d-ary min-heap in time O(kd). This results in time O(|M | · k)
and O(k) time for the first and second approach, respectively, giving the binary-tree
approach another advantage. We refer to Frederickson’s best-first search on heaps as
Frederickson’s heap selection algorithm.

In contrast to the priority-queue based best-first search, Frederickson’s heap selection
algorithm cannot guarantee any order on the output values. Best-first search on binary
heaps in time O(k) would result in a linear time comparison based sorting algorithm,
but sorting of n elements based only on comparisons is in Ω(n logn).

For a more detailed overview of k-best enumeration on some graph problems, as well
as frameworks that are not based on solution-space partitioning, see the recent survey
from Eppstein [41, 42, 43].
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4. Introduction

This chapter contains definitions that are required for our sidetrack-based k shortest
simple path algorithm and a review of existing literature on the subject.

4.1. Definitions

Let G = (V,E) be a directed graph with source vertex s ∈ V , target vertex t ∈ V ,
and edge cost function c : E → R≥0. The s-t shortest path problem (also single pair
shortest path problem or SPSP) is a combinatorial minimization problem. The set of
feasible solutions is the set Ps

s,t of all simple s-t paths. By definition of a combinatorial
minimization problem, we want to compute the length of a shortest s-t path in G. For
the rest of this part, we assume G, V , E, c, s, and t to be fixed, and use the abbreviated
form P = Ps

s,t. We denote the number of vertices |V | by n and the number of edges |E|
by m.

One might choose to define SPSP via the set of all s-t walks instead. The s-t walk
with minimal length is always a simple path. Note, however, that we do not necessarily
obtain a combinatorial problem this way. It is possible for a finite graph to have an
infinite number of walks. An example for this can be seen in Figure 4.1: The shortest
path via v1 can be extended by an arbitrary number of v1-v2-v3 cycles. In contrast,
the edges of a simple path are always a subset of E, which can easily be modeled in
combinatorial problems.

The difference between the two notions is even more important when we transition to
k-best enumeration. Since there is an infinite number of s-t walks in the example graph
in Figure 4.1, k-best enumeration would yield k distinct paths for any k. On the other
hand, P only contains the paths ((s, v1), (v1, t)) and ((s, t)).

We apply the definition of k-best optimization from Section 3.2 to SPSP to obtain the
k shortest simple path problem (kSSP). If we relax kSSP and look for walks instead of
simple paths, we obtain the k shortest path problem (kSP). In the latter problem, the
second walk can already contain a cycle, which can again be seen in Figure 4.1.

Let T = (U,F ) be a shortest path tree to t in G. A sidetrack w.r.t. T is an edge e that
is not in T , i.e., e ∈ (E \ F ). A sidetrack sequence w.r.t. T is a sequence of sidetracks
(e1, . . . , er) such that for any i ∈ [r − 1], the tail of ei+1 is reachable from the head of
ei in T . Every sidetrack sequence represents an s-t walk in G. For r = 0, it represents
the unique s-t path in T . Otherwise, it represents the walk that starts with the path
from s to the tail of e1, followed by e1. From the head of ei−1, it proceeds along T until
it reaches the tail of ei, followed by ei. From the tail of er, it proceeds along T until it
reaches t. A walk represented by a sidetrack sequence might not be a shortest s-t path,
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v1

v2

s

v3

t
3002

Figure 4.1.: Example input for the s-t shortest path problem. Every unlabeled edge has
cost 1. There are two simple s-t paths of lengths 2 and 3002. Further, there
is an infinite number of s-t walks, a thousand of which are shorter than the
second-shortest simple path.

and its length is never shorter than that of a shortest s-t path.
The sidetrack cost of a sidetrack e = (v, w) is the difference between the length of

a shortest v-t path on the one side, and the length of the shortest v-t walk that starts
with e on the other side. The former is the distance dc(v, t) from v to t in T . The latter
is the cost c(e) of e, plus the distance dc(w, t) from w to t in T . The length of a walk
represented by the sidetrack sequence (e1, . . . , er) is obtained from the length of the walk
represented by the sidetrack sequence (e1, . . . , er−1) by adding the sidetrack cost of er.
By induction, it is the distance dc(s, t) from s to t plus the sum of all sidetrack costs in
the sequence.

The sidetrack set DT (v) of a node v ∈ V is the set of all sidetracks w.r.t. T with tails
on the unique v-t path in T . When sidetracks are organized in heaps, we always use
sidetrack costs for comparison.

Every algorithm for kSSP or kSP described in this thesis starts with the computation
of a shortest path tree T1 to t. The unique s-t path in T1 is p1. The algorithms
maintain a set of candidate s-t paths, initialized with {p1}. Candidates have not yet
been determined to be part of the output. However, there is always a candidate that is
eligible to be selected as the next-best path. When a candidate path p is selected for
output, we derive a number of paths from p. The parent path of each derived path is p.
The parent path of p1 is undefined. The algorithms terminate when k candidates have
been selected, or if no candidate paths are left.

Let p = (e1, . . . , ek) be the parent path of a candidate p′ = (e′
1, . . . , e

′
l), and i∗ =

max{i | ej = e′
j for 1 ≤ j < i} be the smallest index where p and p′ differ. Then

i∗ is the deviation index, the tail of e′
i∗ is the deviation vertex dev(p′), and ei∗ is the

deviation edge of p′. Removing the deviation edge from p′ splits p′ into its prefix path
pref(p′) = (e′

1, . . . , e
′
i∗−1) starting in s, and its suffix path suff(p′) = (e′

i∗+1, . . . , e
′
l) ending

in t. An example for these definitions is shown in Figure 4.2. We define the suffix path
of p0 to be p0 itself. Deviation index, vertex, and edge of p0, however, are neither defined
nor required.

30



4.2. Complexity and Related Work

s v1 v2

v3

v6 t

v4 v5

Deviation vertex: v2

Deviation edge: e′
3

Deviation index: 3

e1

e′
1

e2

e′
2

e3

e′
3

e4

e′
4

e′
5

e5

e′
6

Figure 4.2.: Deviation index, vertex, and edge of path p′ = (e′
1, . . . , e

′
r′) derived from

path p = (e1, . . . , er).

Two other combinatorial minimization problems relevant for the next sections are the
unrestricted replacement path problem and the restricted replacement path problem. A
unrestricted replacement path for ei w.r.t. a path p = (e1, . . . , er), i ∈ [r], is a shortest s-t
path in G−ei. A restricted replacement path for ei w.r.t. p is a shortest s-t path in G−ei

that starts with (e1, . . . , ei−1). Both replacement path problems receive a shortest s-t
path p = (e1, . . . , er) in G as input and ask for one respective (unrestricted or restricted)
replacement path for each ei on p.

Each restricted replacement path can, e.g., be found by searching a shortest path from
the tail of ei to t in G−e1 −· · ·−ei, and appending the result to the prefix (e1, . . . , ei−1).
This problem is equivalent to searching for a shortest path in P({e1, . . . , ei−1}, {ei}) for
each i ∈ [r], using the subproblem notation from Section 3.2. Equivalently, the unre-
stricted replacement path problem is equivalent to finding a shortest path in P(∅, {ei})
for i ∈ [r].

4.2. Complexity and Related Work
The k shortest simple path problem was introduced in 1963 by Clarke, Krikorian and
Rausen [30]. The algorithm by Yen [105], which is based on the restricted replacement
path problem, used to have the best asymptotic worst-case running time of O(kn(m +
n logn)) for a long time. A number of other algorithms was derived from Yen’s algorithm,
all of which share the same worst-case running time. They differ from their original in
different practical improvements for the replacement path problem.

Pascoal [85] noticed that the replacement path that deviates from p at node v might be
one that uses an edge (v, w) to an unused successor w of v and then follows the path from
w to t in T1. Therefore, they test whether the shortest such path is simple, and fall back
to a full shortest path computation if it is not. Although they do not describe in detail
how this check is done, it can be done in time O(m+n) per replacement path instance by
partitioning the nodes into blocks, which was first described by Hershberger, Maxel and
Suri [60]. Experiments by Pascoal, and by Hershberger, Maxel and Suri suggest that the
Yen approach benefits heavily from laziness. Feng [46] uses the shortest path tree T1 to
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partition V into red, yellow and green vertices. When looking for a restricted replacement
path for ei, the tails of the edges e1, . . . , ei are red. A vertex v is yellow if the v-t path
in T1 contains at least one red vertex. Every other vertex is green. Instead of looking
for a path from each possible deviation vertex to t, they can basically restrict Dijkstra
runs to yellow vertices. They demonstrated that yellow vertices often make up a small
portion of the graph in practice. Feng does not provide upper bounds on the number of
yellow vertices, resulting again in a worst-case running time of O(n(m+n logn)) for each
restricted replacement path instance. Martins, Pascoal and Santos [79] and Martins and
Pascoal [78] give other Yen-based accounts on kSSP. Other approaches are proposed by
Pollack [89], and by Katoh and Sugimoto [101].

Gotthilf and Lewenstein [55] improved upon Yen’s upper bound. They observed that
kSSP can be solved by solving O(k) all pairs shortest path (APSP) instances. Using the
APSP algorithm by Pettie [86], they obtain a new upper bound of O(kn(m+n log logn)).
To the best of our knowledge, this algorithm has not been implemented. Experiments
with implementations of Yen-based algorithms suggest that the distances for most pairs
of vertices are never required. Pettie’s APSP algorithm is not lazy, either, so it remains
questionable if the improved theoretical upper bound has any relevance for practical
applications.

Another approach by Carlyle and Wood [21] enumerates near-shortest simple paths.
For ε ∈ R≥0, they enumerate all simple s-t paths with a length of at most (1 + ε)dc(s, t).
Using binary search, this algorithm can also be used to solve kSSP in time O(kn(m +
n logn)(logn+ logC)), where C is the cost of the most expensive edge. A generalization
of kSSP on directed graphs involving an additional capacity edge cost function can be
solved in time O(knm(n+ log k)) using an algorithm by Chen [24].

Vassilevska Williams and Williams [103] introduce the concept of subcubic equivalence.
An algorithm has truly subcubic running time if its running time is in O(n3−ε) for some
ε > 0. Two problems are subcubic equivalent if either both problems have algorithms
with truly subcubic running time, or neither has such an algorithm. They prove subcubic
equivalence for a number of problems including APSP and determining the length of a
second-shortest path in a directed graph. The latter problem is obviously also subcubic
equivalent to kSSP with k = 2. No algorithm with truly subcubic running time for
the heavily studied APSP is known, nor is any concept that might make finding the
(k + 1)-th shortest simple path in a directed graph any easier than finding the k-th
one. Therefore, we do not expect algorithms for kSSP on general directed graphs with
running time O(kn3−ε) any time soon.

The k shortest simple path problem has also been studied on undirected graphs.
Katoh, Ibaraki and Mine [67] propose an algorithm that solves kSSP on undirected
graphs in time O(k(m + n logn)). Considering the subcubic reduction to APSP on
directed graphs, the undirected kSSP seems to be computationally easier. There are
other accounts on kSSP on undirected graphs by Katoh, Ibaraki and Mine [68], Ishii [65]
and Christofides, Hadjiconstantinou and Mingozzi [58].

A recent survey of k-best enumeration and applications, including an account on path
problems, is due to Eppstein [43].
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4.2. Complexity and Related Work

The fact that the upper time bound for exact kSSP algorithms has not been improved
for a long time inspired research on inexact approaches. This line of research so far
spans three publications that all use the notion of a detour of a path, which is the
subpath of a replacement path that diverts from a reference path. It was started by
Roditty and Zwick [92] who proposed a Monte Carlo O(m

√
n logn) algorithm for the

replacement path problem on directed graphs with small integer weights. They also
proposed a framework that solves kSSP by O(k) computations of second shortest sim-
ple paths in appropriate subgraphs, which in turn is solved by their replacement path
algorithms. Roditty [91] enhanced this framework to allow for approximate kSSP al-
gorithms when an approximation algorithm for the second shortest path subproblem is
used. They also provided a 3

2 -approximation algorithm, leading to a 3
2 -approximation

algorithm for kSSP with running time in O(k
√
n(m + n logn)). An α-approximation

algorithm for kSSP guarantees that the i-th output path is at most α times as long
as an actual i-th shortest path. The algorithm for approximate second shortest simple
paths distinguishes between two classes of detours, namely short and long ones. This
approach was extended by Bernstein [9] from two to O(logn) classes of detours, which
are handled in increasing order. This way, they were able to obtain an algorithm that
gives (1 + ε)-approximations in O(ε−1 log2 n log(nC/c)(m + n logn)) time, where c, C
are the minimum and maximum edge cost, respectively, giving the first (approxima-
tion) algorithm that breaks the O(m

√
n) barrier. See Frieder and Roditty [53] for an

experimental study of Bernstein’s algorithm.
The best known algorithm for the k shortest path problem runs in time O(m+n logn+

k log k) and is due to Eppstein [40]. In the initialization phase, the algorithm uses T1
to build a data structure that contains information about all s-t paths and how they
interrelate with each other, in time O(m + n). The running time for initialization can
be reduced from O(m+ n logn) to O(m+ n) if T1 can be computed in time O(m+ n)
(or is given). In the enumeration phase, a path graph is constructed. The path graph is
a quaternary min-heap where every path starting in the root correlates to an s-t path
in the original graph. We require O(k log k) time for the enumeration phase if we want
the output paths to be sorted by length in increasing order. If the order is irrelevant,
Frederickson’s heap selection algorithm [50] can be used to enumerate the paths after
the initialization phase in time O(k).
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5. Approaches

Existing algorithm for path enumeration in directed, weighted graphs can basically
be partitioned into detour-based algorithms, algorithms based on (restricted or unre-
stricted) replacement paths, and Eppstein’s algorithm. The first approach is exclusively
used for approximate shortest simple path enumeration and therefore out of the scope
of this thesis. We take a closer look at the other two approaches.

The other two approaches have the set of candidate paths in common. The candidate
set is commonly described in terms of a priority queue with efficient access to the element
with minimum priority. Every candidate path is pushed to a candidate priority queue.
The priority of a path is its length. When the i-th candidate path pi is extracted from
the queue, we derive a set C(pi) of child paths from it and push each of them to the
queue. The operations on the priority queue itself introduce a running time overhead of
O(kD log kD) if a maximum of D paths is derived from each extracted path.

Priority queues are only the most accessible way to describe the best-first search on
the candidate set, though. Instead, we can define a heap of paths as follows. Every set
of child paths C(p) of any path p in the heap is itself arranged as a binary min-heap.
The parent of the root of this binary heap is p itself. The root of the heap is the shortest
path p1. This way, every path p′ ∈ C(p) has at most two child heaps inside C(p), and
the root of the binary heap for C(p′). The resulting tree of paths is ternary. Also note
that p has to satisfy fewer restrictions than paths derived from p, and can therefore
never be longer than any path in C(p). Hence, the tree of paths is also a min-heap. The
set C(p) can be arranged in a min-heap in time O(|C(p)|); this cannot exceed the time
to assemble C(p), so the heapification does not introduce an overhead. Frederickson’s
heap selection algorithm to find the k smallest value on a min-heap of bounded degree
only introduces an overhead of O(k) time.

5.1. Yen-based Algorithms

Algorithms based on replacement paths are exactly those derived from Yen’s algorithm.
It is the Murty/Lawler framework as described in Section 3.2 adapted to kSSP. Let p1 =
(e1, . . . , er) be the first path we want to derive replacement paths from. This corresponds
to the optimal solution S = {e1, . . . , er} of the combinatorial problem. Let E \ S =
{e′

1, . . . , e
′
m}. The Murty/Lawler framework suggests to partition the solution space

P(∅, ∅) into sets P(I ⊔{e1, . . . , ei−1}, {ei}) for i ∈ [r], and P(S ⊔{e′
i}, {e′

1, . . . , e
′
i−1}) for

i ∈ [m]. The former sets are exactly the restricted replacement paths: start with a
prefix (e1, . . . , ei), but then avoid ei+1. The latter sets consist of solutions that contain
a simple s-t path and an additional edge. This contradicts the definition of a simple s-t
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path, so the latter sets are all empty. It is therefore sufficient to consider the r restricted
replacement path problems.

Now let pi = (e1, . . . , er), i > 1, be the i-th candidate path extracted from the candi-
date set. Assume that pi was found to be the shortest path for some subproblem P(I,O)
where I forms a path that starts in s. Further, assume that the tail of any edge in O is
either s or the head of some edge in I. The set I then forms a prefix of pi, and can be
written as I = {e1, . . . , ej} for some j ∈ [r]. Let E\(S ⊔O) = {e′

1, . . . , e
′
m}. According to

the Murty/Lawler framework, we have to derive subproblems P({e1, . . . , el}, O⊔{el+1})
for l ∈ {j, . . . , r}, and subproblems P({e1, . . . , er, e

′
l}, O⊔{e′

1, . . . , e
′
l−1}) for l ∈ [m]. The

latter subproblems are again infeasible. In the former, we add a new edge el+1 to O,
whose tail is the head of el. The edges in I also form a path that starts in s again.
By induction, our assumptions on the subproblems we encounter always hold. Finally,
the feasible subproblems we derive from P(I,O) can all be solved with a single run of a
restricted replacement path algorithm on the graph G−O.

Yen-based algorithms come down this:

1. Compute an SP tree T1 to t

2. Push the s-t path in T1 to Q

3. For i = 1, . . . , k: extract pi from Q and push C(pi) to Q

In the enumeration phase, we have to solve k restricted replacement path problems to
find the sets C(pi); the computation of child paths of the k-th path extracted from Q
can be skipped.

The most trivial approach to solve replacement path problems is already among the
fastest known approaches in theory. Let p = (e1, . . . , er) be a shortest s-t path, and let
ei = (ui, vi). For each edge ei on p, compute the shortest ui-t path p′ in G−u1−· · ·−ui−1.
The concatenation of (e1, . . . , ei−1) and p′ is a replacement path for ei. Each shortest
path computation requires time O(m + n logn) using Dijkstra’s algorithm. Path p is
simple and can thus comprise at most n − 1 edges. Thus, the restricted replacement
path problem can be solved in time O(n(m + n logn)). The resulting kSSP algorithm
was proposed by Yen [105].

Now assume that p is the unique s-t path in an SP tree T directed towards t, and let
e = (ui, v) be a sidetrack of p. We obtain an s-t walk by following T from s until we
reach the head ui of e, then e itself, and then T again to reach t from v. This is exactly
the walk represented by the sidetrack sequence (e). This walk is a simple path iff the
unique v-t path in T does not contain ui. Note that it is not even a path if the v-t path
in T contains ui−1, because it uses the edge ei−1 twice. Examples for all three cases can
be seen in Figure 5.1. The same observations can be made for sidetracks of other s-t
paths.

Let e = (uj , v) be a sidetrack that represents a simple path. If every other sidetrack
has greater sidetrack costs than e, then the path represented by ej is a restricted replace-
ment path for ej . Pascoal [85] was the first to observe this, and use it algorithmically.
For every vertex uj on a path pi we want to compute replacement paths for, we identify
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(a) The sidetrack represents
a simple path.
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(b) The sidetrack represents
a non-simple path.
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(c) The sidetrack represents
a walk.

Figure 5.1.: Example graphs with their respective SP tree. SP tree edges are solid;
sidetracks are dashed. In Figure 5.1a, the walk represented by sidetrack
sequence (v, w) visits the vertices s, v, w, u, t in this order, and is therefore
a simple path. In Figure 5.1b, the walk visits s, v, w, v, u, t. It does not use
any edge twice, so it is a path. The vertex v occurs twice, so it is not simple.
In Figure 5.1c, the walk visits s, v, u, w, v, u, t. The edge (v, u) occurs twice,
so it is not even a path.

sidetrack ej with minimum sidetrack costs. If ej represents a simple path, we output
it as the restricted replacement path for (uj , vj). Otherwise, we use the Dijkstra algo-
rithm to compute a restricted replacement path, just as in the original Yen algorithm.
Experiments by Pascoal suggest practical improvements over Yen.

No non-trivial upper bound is known for the number of Dijkstra runs required by this
approach. The trivial bound is the number of edges on a simple s-t path, so the worst-case
running time for this restricted replacement path algorithm is still O(n(m + n logn)),
assuming that we can check in O(m + n logn) whether ej represents a simple path.
Pascoal’s report does not include a detailed description on how this check is done. We
can trace the walks represented by each sidetrack, keeping track of the visited vertices
and stopping if a vertex occurs twice. However, a path can have O(m) many sidetracks,
so this approach results in a running time of O(mn). Hershberger and Suri [61] filled
in this gap. They proposed to partition V into blocks. Vertex v is in block i if the v-t
path in T contains ui, but not ui−1. A sidetrack (ui, v) represents a simple path iff the
block of v is greater than i. The partition can be deduced from the discovered (dv) and
finished (fv) numbers after a reverse depth-first search on T starting in t. The block of
v is greater than i iff dui < dv and fv < fui . The overhead to avoid Dijkstra runs is
reduced to O(n) time for the depth-first search, and O(m) total time to compare the d
and f numbers for each sidetrack. The authors’ claim for improvement was again backed
by a series of experiments.
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· · ·

Figure 5.2.: Directed graph with SP tree to t (solid) and its other edges (dashed). We
assume unit edge cost. Every sidetrack sequence represents a walk that
starts in s and finally reaches t via the edge (s, t).

Feng [46] proposed a vertex-classification based algorithm to speed up replacement
path computations in practice. Replacement paths are computed for edges ei in increas-
ing order of i, starting with e1. To compute the replacement path for ei = (ui, vi), we
partition the vertex set into three sets. Vertices that were used to reach ui from s are
red. Vertices that are not red, but whose shortest path to t contains at least one red
vertex, are yellow. All other vertices are green. For every yellow vertex with at least
one green successor vertex w, we add a temporary edge (w, t) whose cost is the distance
from w to t. We can now run Dijkstra’s algorithm on the subgraph of G induced by
the yellow edges and t, with ui as the single source. The Dijkstra algorithm can stop as
soon as t is extracted from the priority queue.

While yellow vertices can make up a large part of the graph, the early stopping rule
can prune yet again large portions of this subgraph. When iterating from ei to ei+1, the
vertex partition has to be updated. An update procedure also proposed by Feng requires
a total time of O(m+n) summed up over all ei. Computational studies by Feng suggest
that Dijkstra runs are confined to small subgraphs, as their algorithm is yet much faster
than other Yen-based algorithms.

Consider sidetrack (ui, v) such that v is a green node. Since we added an edge (ui, t)
for this case, the Dijkstra run described above would discover a ui-t path immediately.
This path might even be a replacement path for ei, so we might be inclined to believe
that the Feng algorithms detects those easy cases automatically that make the Pascoal
approach fast. Since Feng’s Dijkstra runs also consider smaller portions of the graph
compared to Pascoal’s, and their bookkeeping (maintaining the vertex partition) is not
slower than that of Hershberger, Maxel and Suri (a depth-first search to identify blocks),
this would explain shorter running times directly. However, we have no way of knowing
that the ui-t path is a shortest one as long as there are yellow vertices that are closer to
ui than t.
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The practical improvements proposed so far rely on an optimistic assumption. The
Hershberger-Maxel-Suri as well as the Feng algorithm both work in linear time per
replacement path problem as long as they are not hit by a cheap cycle. The presence
of cycles, however, can negatively affect their performances. The graph in Figure 5.2
demonstrates that the optimistic assumption can be violated every time, even in the case
of a sparse graph. In the example, s occurs twice on every walk represented by a non-
empty sidetrack sequence that does not contain a sidetrack directly to t. Therefore, Yen-
based algorithms perform at least one proper shortest path computation per replacement
path problem.

5.2. Eppstein’s kSP Algorithm

Consider a relaxed version of the restricted replacement path problem where replacement
paths are not required to be simple. To solve the relaxed version, we first compute a
shortest path tree T to t. A replacement path of an edge ei = (ui, vi) of a given path p
starts with the prefix of p up to, but not including, ei. The next edge is a sidetrack e of
p with tail ui with lowest cost. From the head of e, it proceeds along T until it reaches
t.

This observation is one of the key ideas of Eppstein’s algorithm for the k shortest path
problem. The shortest path p1 is again selected as the one s-t path in T1, the initial
shortest path tree to t. The second shortest path p2 is the shortest replacement path
for some vertex on p1 w.r.t. the relaxed version above. This can be expressed again in
terms of candidate paths. Whenever the next shortest path p is selected from the set of
candidate paths, for each relevant sidetrack e of p, we extend p by e and push the result
to the set of candidate paths.

We have to make sure, though, that we do not push the same path to the candidate
path set twice. Let i be the deviation index of p2 w.r.t. p1, and j ∈ [i− 1]. The common
prefix path of p1 and p2 contains the edge ej = (uj , vj), and the s-uj subpath is the same
in both cases, too. Therefore, extending both paths by a sidetrack with tail uj would
result in the same candidate path. This problem also arises with paths that are derived
from derived paths. On the other hand, extensions by sidetracks that emanate from the
suffix path of a discovered path that proceeds along edges of T are guaranteed to be
novel. Hence, when looking for new candidate paths, we only consider these sidetracks.

The paths obtained like this are exactly those represented by valid sidetrack sequences
w.r.t. T . In fact, Eppstein used sequences of sidetracks in their description of the al-
gorithm. Instead of the set of candidate paths, we may choose to maintain a set of
sidetrack sequences representing those paths. The set would be initialized with the
empty sequence. When a sequence of length ℓ is extracted from the set, sequences of
length ℓ+ 1 are pushed to it.

Consider a newly discovered candidate path p represented by a sidetrack sequence
(e1, . . . , er) with ei = (ui, vi). Observe that the vr-t suffix path of p only depends on vr.
The prefix path of p that led to ur does not affect the suffix in any way. This property
enables us to preprocess the input graph after computing its shortest path tree T1 as
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follows. For every vertex v ∈ V , D(v) is the set of sidetracks emanating from the unique
v-t path in T1. We organize each D(v) in a binary min-heap w.r.t. sidetrack costs. Since
|D(v)| < m for each v ∈ V , all heaps can trivially be constructed in time O(mn). Using
persistent heaps and the fact that D(w) ⊆ D(v) if w is on the unique v-t path in T1,
Eppstein showed that all heaps can actually be constructed in O(m+ n) total time.

With the sidetrack heaps in place, there is no need to push the extension for all
sidetracks that emanate from the path represented by (e1, . . . , er). Instead, we only push
(e1, . . . , er, e), where e is the root of D(vr) at first, along with a reference to its position
in D(vr). However, this means that (e1, . . . , er) itself was pushed because er ∈ D(vr−1),
but for some other sidetracks e′ ∈ D(vr−1), (e1, . . . , er, e

′) was not pushed. Therefore,
we also have to push the child sidetracks of er in D(vr−1) to the candidate set. The heap
property still guarantees that the candidate set always contains a representative of the
next shortest path.

Instead of pushing new candidates to a candidate set, we may construct a path heap,
where a candidate is a child of the path it was discovered from. This path heap contains
subheaps of several (binary) sidetrack heaps, as well as at most one cross heap pointer
per path that points to the root of other sidetrack subheaps. The path heap is therefore
ternary and its root is the shortest s-t path. We can apply Frederickson’s heap selection
algorithm to the path heap, which extracts the k shortest paths in O(k) time. Addi-
tionally, we need an initialization phase where T1 and the sidetrack heaps are computed
in time O(m+n logn). Thus, the k shortest paths in a weighted, directed graph can be
computed in time O(m+ n logn+ k).
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In this section, we describe a new approach to solve the k shortest simple path problem
in weighted, directed graphs. Section 6.1 gives a simplified version of the algorithm.
It already contains the most important ideas of our algorithm, but its running time is
subpar to existing, Yen-based algorithms. This worst-case running time gap is closed in
Section 6.2.

6.1. Basic Algorithm

We generalize Eppstein’s representation [40] for paths. Eppstein represents paths as
sequences of sidetracks, all w.r.t. the same SP tree. In our representation, every sidetrack
in a sidetrack sequence may be associated with a different SP tree. A rich sidetrack
sequence consists of a sidetrack sequence (e1, . . . , er) and a mapping T that maps each
sidetrack ei in the sequence to a shortest path tree to t in an induced subgraph of G. The
distance from a node v to t in a SP tree T (e) associated with a sidetrack e is denoted
by de(v). The path represented by a rich sidetrack sequence (e1, . . . , er) can then be
reconstructed as follows. Starting in s, we follow the initial SP tree T1 until we reach
the tail of e1. After reaching the tail of ei, we traverse ei and follow T (ei) until we reach
the tail of ei+1, or, in case i = r, until we reach t. Note that Eppstein’s representation
is the special case where T (e) = T1 for each e in a sidetrack sequence. Also note that
both Eppstein’s sidetrack sequences and our generalized ones may represent non-simple
paths.

We do not consider sidetracks of a fixed SP tree any more, so we extend the sidetrack
set notation D(v). The set DT (v) for an SP tree T to t in an induced subgraph of G[V ′]
with v ∈ V ′ contains every sidetrack w.r.t. T whose tail is reachable from v in T , i.e.,
whose tail is on the unique v-t path in T .

We refer to the priority queue that represents the candidate set as Q. After the
computation of the initial shortest path tree T1 to t in G, the algorithm proceeds as
follows. We push the unique s-t path in T1, represented by an empty rich sidetrack
sequence, to the candidate set. We now process candidates in Q in order of increasing
length until k simple paths have been found. A candidate in our algorithm is a rich
sidetrack sequence that does not necessarily represent a simple path, so we might have
to process more than k candidates.

Let ((e1, . . . , er), T ) be a rich sidetrack sequence extracted from the candidate set, and
p the path that is represented by this sequence. Although the first path that is pushed
to the candidate set is always simple, we will eventually generate non-simple candidates,
too. Therefore, we first have to determine whether p is simple in a pivot step. This check

41



6. Algorithm Statement

s t

v1

v2

v3

v4

a
b

c

d

(a) Example graph

( )

(a)

(a, b)

(a, b, c) (a, b, d)

(a, c)

(c)

(c′)

(b) Sidetrack sequences

Figure 6.1.: Example for the basic algorithm. In Figure 6.1a, solid edges belong to T1.
In Figure 6.1b, every sidetrack except for c′ is associated with T0. T (c′) is
the SP tree T1 of the subgraph induced by v2, v4 and t, so it only consists of
the edges b and d. An arrow from sequence p to sequence p′ indicates that
p represents the parent path of p′.

can be done by simply walking p and marking every visited node.
We first describe how to handle the case of p being simple. We start by outputting

p. Let u be the head of er, and Tr = T (er). For every sidetrack e = (v, w) ∈ DTr (u),
we discover a new path p′ represented by the sequence (e1, . . . , er, e). We push p′ to
the candidate set, represented by the rich sidetrack sequence ((e1, . . . , er, e), T ′) with
T ′(ei) = T (ei) for i ∈ [r] and T (e) = Tr. By choosing T (e) = Tr, we simply reuse the SP
tree that is also associated with the last sidetrack in the sequence representing p. We
refer to this extension of a rich sidetrack sequence by one sidetrack e that reuses the last
SP tree as a trivial extension by e. Note that the deviation vertex of p′ is v. The length
of p′ can easily be computed as c(p) − de(v) + c(e) + de(w), adding the sidetrack cost
of e to the length of p. We ignore e if de(w) is undefined, i.e., if Tr does not contain a
w-t path. Apart from these dead ends, we add one path, the trivial extension, for each
sidetrack in DTr (u) to Q. We also ignore all sidetracks emanating from t.

Example 1. Consider the example in Figure 6.1. The rich sidetrack sequence ((a), T )
with T (a) = T1 represents a simple path p that visits the vertices s, v2, v1, v3, t in this
order. The suffix of this path is its v2-t subpath, and the sidetracks b, c have tails on
this suffix. Therefore, when (a) is extracted from Q, p is output and the rich sidetrack
sequences ((a, b), T ′) and ((a, c), T ′′) with T (a) = T ′(a) = T ′(b) = T ′′(a) = T ′′(c) = T1
are pushed to Q.

Now assume we extracted a non-simple path p represented by the rich sidetrack se-
quence (e1, . . . , er). We try to extend the concatenation of the prefix path pref(p) of p
and er to a simple s-t path. Let er = (v, w). A valid extension is a v-t path that avoids
all vertices of pref(p). We are only interested in shortest extensions. Therefore, we com-
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pute a new SP tree Tnew with distances d : V → R≥0, but in G− pref(p) instead of G to
make sure that vertices of the prefix path of p are not used again. If w /∈ Tnew, pref(p)
cannot be extended to a simple s-t path, and we discard p. Otherwise, we push a new
rich sidetrack sequence ((e1, . . . , er), T ′) to the candidate set. We choose T ′(ei) = T (ei)
for i ∈ [r − 1] and T (er) = Tnew. The length of the path represented by this sequence is
c(pref(p)) + c(er) + der (w).

Lemma 6.1. Let S = ((e1, . . . , er−1), T ) with er−1 = (v, w) be a rich sidetrack sequence
that represents a simple s-t path in G, and let er ∈ DT (er−1)(v) such that the trivial
extension of S by er is not simple. The rich sidetrack sequence S′ resulting from the
above repair step of S′ results in a simple path.

Proof. Let p be the path represented by the trivial extension of S by er, and p′ the path
represented by S′. By definition, the prefix paths of p and p′ coincide. The path p′ is
obtained by concatenating the simple prefix path of p, the edge er, and the w-t path in
Tnew that, by construction, avoids all nodes of pref(p). The suffix itself is simple because
it is a shortest path in a subgraph of G. Both prefix and suffix of p′ are simple and their
vertex sets are disjoint by construction, so p′ itself is simple.

Example 2. Consider the example in Figure 6.1 again. The rich sidetrack sequence
((a, c), T ) with T (a) = T (c) = T1 represents a non-simple path p that visits the vertices
s, v2, v1, v3, v2, v1, v3, t in this order. The deviation vertex of p is v3, its deviation
edge is c, and its prefix path is (a, (v2, v1), (v1, v3)). We compute a new SP tree Tnew in
G − pref(p), which only consists of the edge d. Therefore, Tnew does not contain a v2-t
path, and p is discarded.

In contrast, consider the rich sidetrack sequence ((c), T ) with T (c) = T1. It represents
almost the same path as the sequence above, but it skips the first visit of v2. Again, v3 is
the deviation vertex and c the deviation edge. The prefix path comprises the vertices s, v1
and v3. After removing them temporarily, a new SP tree Tnew is computed, consisting
only of the edges b and d. The sequence ((c), T ′) with T ′(c) = Tnew is pushed to Q.
This new sequence represents the simple path ((s, v1), (v1, v3), c, b, d), where c is the last
sidetrack in the extracted sequence, and (b, d) is the unique v2-t path in Tnew.

Finally, when ((c), T ′) is extracted, the represented (simple) path is output. The
sidetracks emanating from its prefix are (v2, v1) and (v4, v3). Since v1, v3 /∈ Tnew, these
sidetracks cannot be extended to simple paths, so no new path is pushed to Q.

Lemma 6.2. The above algorithm computes the k shortest simple s-t paths of a weighted,
directed graph G = (V,E).

Proof. The algorithm uses the same idea of shortest deviations as existing kSSP al-
gorithms or Eppstein’s kSP algorithm. Every non-simple path is repaired immedi-
ately upon extraction from the candidate set, which follows from inductively applying
Lemma 6.1. We have to show that a non-simple path p is processed before its simple
enhancement p′, resulting from the suffix repair step in the non-simple case, is actually
needed. The set of vertices that are forbidden when the SP tree for p is computed is
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a proper subset of the vertex set that the SP tree for p′ may not use. The suffix of p
is therefore not longer than that of p′, and p is extracted from the candidate set (and
subsequently, p′ is pushed) before we need to extract p′.

This basic form of our algorithm requires too many computations of SP trees:

Lemma 6.3. The running time of the above algorithm is O(km(m+ n logn)).

Proof. While processing a non-simple path, at most one new path is pushed to the
candidate set, which is always simple according to Lemma 6.1. Thus, the parent of a
non-simple path is always simple. We have to process at most k simple paths, each
of which requires O(n) time for traversal, and O(m) time to process its sidetracks.
Every simple path may have O(m) sidetracks. In the worst case, all of them represent
non-simple paths, yielding O(km) SP tree computations with a total running time of
O(km(m+ n logn)). The running time for the non-simple cases clearly dominates.

For every subset of E, there is at most one permutation of this subset that represents
a simple s-t path. The maximum number of paths enumerated by the algorithm is
therefore k′ := min{k, 2m}. We can limit the size of Q efficiently to k′ using a double-
ended priority queue [94]. We push O(k′m) paths to Q and extract O(k′m) paths from
it; both operations require O(log k′) time on interval heaps. The total time spent on
processing Q is O(k′m log k′) ⊂ O(km2).

The pivot step requires O(n) time for each of the O(k′m) extracted paths.

Finally, we turn our attention to the space requirements of the above algorithm.

Lemma 6.4. The basic sidetrack-based kSSP algorithm requires O(kmn) space.

Proof. We need O(n) space for each SP tree that we compute. Since SP trees are never
discarded and we compute one for each non-simple extracted path, the total space for
all SP trees is O(kmn). For each extracted simple path p, we push a path to Q for each
edge that has its tail on p. These new paths are represented by an edge and a pointer
to some SP tree, and therefore require constant space. We extract up to k simple paths
with O(m) sidetracks each, and therefore require O(km) space for Q itself.

Finally, note that the above algorithm does not solve a single replacement path prob-
lem. On the one hand, the suffix of the extracted candidate path p might contain a
vertex v such that the trivial extension of p by (v, w) for each sidetrack v represents
a non-simple path, whereas replacement paths have to be simple. On the other hand,
there might be a vertex v such that for multiple sidetracks (v, w), the trivial extension
of p by (v, w) represents a simple path. At least one of them (the one with minimum
sidetrack cost) could be used as a replacement path. However, we make no attempt to
determine which of the sidetracks emanating from v make up the replacement path. If
there are both simple and non-simple extensions of p, we do not even know whether a
replacement path is among the simple ones. It might be necessary to repair one of the
non-simple extensions to obtain a replacement path instead.
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6.2. Improved Algorithm

We show how the number of SP tree computations can be reduced from O(km) to O(kn)
in the worst case. Further, the space requirements are reduced by a factor of n.

So far, we were only able to bound the number of SP tree computations by O(m) for
each extracted simple path. This stems from the fact that there can be O(m) sidetracks
with tails on such a path, each of them requiring a subsequent SP tree computation in the
worst case. Consider two sidetrack sequences (e1, . . . , er, f1 = (u, v)), (e1, . . . , er, f2 =
(u,w)) that were added when a path p represented by (e1, . . . , er) was processed. Let
p1, p2 be the paths represented by these sequences, respectively. Assume that both
sequences represent non-simple paths, and therefore both require a new SP tree. We
assume w.l.o.g. that p1 is extracted from Q before p2. When p1 is extracted from Q,
we realize that it contains a cycle. We then have to compute an SP tree Tnew for the
graph G − pref(p1). We push (e1, . . . , er, f1) back to Q, with a slightly adapted SP
tree mapping. Accordingly, when p2 is extracted, we would compute an SP tree to t
in G− pref(p2). By definition, we have pref(p1) = pref(p2), and the induced subgraphs
we compute SP trees for are the same in both cases. We can therefore skip the SP tree
computation when processing p2, and simply reuse Tnew.

We modify the basic algorithm as follows. Let S = ((e1, . . . , er), T ) be a rich sidetrack
sequence that represents a non-simple path p, and let er = (v, w). When S is extracted
from the candidate set and we realize that p is not simple, we first check if an SP tree for
v has already been computed. If one has been computed, we simply reuse it. Otherwise,
we compute Tnew, store it along with v in T (er) for future reference, and use Tnew. In
the situation above, we would have to compute Tnew when processing p1, and simply
resort to Tnew again when processing p2.

Example 3. Consider the example kSSP input in Figure 6.2. For an SP tree T to t in
a subgraph of the input graph G, we denote by T ′ the SP tree mapping that maps any
sidetrack of a rich sidetrack sequence to T . The candidate set is initialized with the empty
rich sidetrack sequence, which represents the path ((s, t)). When it is extracted, we find
that the represented path is simple, so we push a trivial extension for each sidetrack a, b,
and c. Assume that ((a), T ′

1) is extracted from Q first. We realize that the represented
path (a, (v1, s), (s, t)) is not simple. We remove the prefix path of that path from G
temporarily to obtain G − s, depicted in Figure 6.2b, and obtain the SP tree T2. The
sequence ((a), T ′

2) is pushed to Q and represents the simple path (a, (v1, v2), (v2, t)). We
also associate T2 with s for reference.

When ((b), T ′
1) is extracted later on, we find that it is not simple, either, and that

an SP tree for s has already been computed. We push ((b), T ′
2) to Q directly, which

represents the simple path (b, (v3, t)).
Eventually, ((c), T ′

1) is extracted from Q. Again, we realize that it represents a non-
simple path and that we can reuse T2. There is no v4-t path in T2, so we discard the
sequence.

We obtain the following result.
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Figure 6.2.: Example input for kSSP and an induced subgraph as the sidetrack-based
algorithm would encounter it. SP tree edges are solid, sidetracks are dashed.
All sequences ((e), T ′

1), e ∈ {a, b, c}, represent non-simple path and therefore
trigger the repair step. In all cases, a new SP tree in the depicted induced
subgraph is required, but the latter two computations can be skipped.

Lemma 6.5. Excluding the time spent on Q, the algorithm proposed in Section 6.1 in
conjunction with SP tree reuse requires O(kn(m + n logn)) time to process non-simple
paths.

Proof. There are still O(km) many sequences in Q that represent non-simple paths,
but only O(kn) of them trigger an SP tree computation. Let p be a non-simple path
extracted from Q. The initial pivot step still requires time O(n). We store in Q along
with each path a pointer to its parent path, as well as a pointer to the SP tree for G−p′

for every prefix path p′. We can then check if an SP tree for some prefix path has already
been computed, and access it if it has been computed, both in constant time.

The total running time of O(km2) spent on Q is no longer dominated by SP tree
computations. Instead of using a priority queue for the candidate paths, we organize all
computed paths in a min-heap in the following way. The shortest path is the root of the
min-heap. Whenever a path p′ is computed while a path p is processed, we insert p′ into
the min-heap as a child of p. Figure 6.1b shows an example of such a min-heap. We use
Frederickson’s heap selection algorithm [50] to extract the km smallest elements from
this heap. The heap described above has maximum degree m, again yielding a running
time of O(km2). Recall that C(p) is the set of paths found during the processing of p.
Instead of inserting every p′ ∈ C(p) as a heap child of p, we heapify C(p) to obtain the
heap Hp, using the lengths of the paths for keys again. The root of Hp is then inserted
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into the global min-heap as a child of p. Note that the parent path of every path in Hp

is not its heap parent in Hp, but still p itself. Every simple path p in the min-heap now
has at most two heap successors with the same parent path as p, and at most one heap
successor whose parent is p itself. Every non-simple path has at most one simple path as
its heap predecessor. The maximum degree of the global min-heap is therefore bounded
by three and Frederickson’s heap selection can be applied in time O(km).

Corollary 6.6. Let G = (V,E) be a directed graph, s, t ∈ V two vertices of G, c : E →
R≥0 an edge weight function, and k ∈ N. The algorithm proposed in Section 6.1 in
conjunction with SP tree reuse and Frederickson’s heap selection algorithm computes the
k shortest simple s-t paths in G in time O(kn(m+ n logn)).

The first improvement above reduces the space required by the basic algorithm from
O(kmn) to O(kn2). We are not able to reduce the number of SP tree computations
to o(kn). The lower bound for kSSP by Vassilevska Williams and Williams [103] even
suggests that the number of SP tree computations cannot be further reduced in our
approach. However, it is not necessary to permanently store all these SP trees at the
same time. Only up to k of them can contain a simple path that eventually gets extracted
from Q. We propose to store the computed SP trees in a max priority queue S. The
priority of an SP tree T in S is max{c(p′) + c(e) + dT (w) | e = (v, e) ∈ E}, where
p′ = (e1, . . . , er, f) is the path T was computed for, and f = (u, v) for some u ∈ V .
Whenever S contains more than k SP trees, at least one of them will not contribute
to the k shortest simple paths. By definition of the priority of an SP tree in S, this
is always the SP tree with the highest priority. It can be extracted from S in O(log k)
time and therefore does not have an impact on the worst-case running time. The space
that was used to store the extracted tree can later be used to store new SP trees. The
number of SP trees stored at any point in time never exceeds k + 1, requiring O(kn)
space. The min heap of candidate paths requires O(m) entries per simple paths, and
therefore O(km) total space.

Corollary 6.7. The sidetrack-based algorithm with SP tree reuse, Frederickson’s heap
selection algorithm and a priority queue for SP trees solves kSSP in time O(kn(m +
n logn)) and space O(km).
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In this section, we propose more improvements for the sidetrack-based kSSP algorithm
described in Chapter 6. In contrast to the improvements in Section 6.2, the modifications
suggested here do not affect the worst-case time or space requirements. Instead, they
aim to improve the algorithm’s practical performance.

7.1. Faster Reachability Checks
Our first practical improvement lets us to speed up the repeated checks for path simplic-
ity by a factor of n. The overall running time is not altered because the running time
for the slower simplicity checks is dominated by the SP tree computations.

Let p = (e1, . . . , er) be a simple path extracted from Q in the sidetrack-based algo-
rithm, and let ei = (vi−1, vi) with s = v0 and t = vr. When p is processed, we push
the set C(p) of paths to Q, with |C(p)| ∈ O(m). The basic algorithm tests for each
p′ ∈ C(p) if p′ is simple in time O(n), leading to a total time of O(kmn) for these tests.
Let T be the SP tree associated with the last sidetrack of p. By removing from T all
edges of suff(p), T is decomposed into a set of trees Ti such that Ti is rooted in the i-th
vertex of suff(p). The block i is the vertex set of Ti.

Lemma 7.1. A trivial extension of the sidetrack sequence representing p by a sidetrack
e = (v, w), with v, w being in blocks i, j, respectively, is simple iff i < j.

Proof. Observe that v = vi, and that the last vertex in block k on the unique u-t path
in T (e) for a vertex u in block k is vk If i ≥ j, we follow p until we reach vi, traverse e
and follow T to reach vi again: The w-t path in T (e) exits block j via vj , and the vj-t
path in T (e) is a suffix path of p and contains vi. Otherwise, the first vertex on p we hit
after deviating from p via e is vj . Since i < j, the vj-t subpath of p does not contain vi,
so p′ is simple.

Vertices can be partitioned into blocks in time O(n) by computing DFS numbers for
T . We can then collect all sidetracks deviating from p and check for each of them if
their heads belong to a smaller block than their tails in O(m) total time. We store this
information along with the corresponding sidetrack sequences in Q. The pivot step is
replaced by a constant time lookup. All tests for simplicity then require time O(k(m+n))
instead of O(kmn).

Example 4. Consider the example graph in Figure 7.1. We partition the vertex set
into four blocks. Vertices s, v1 form block 1; v2, v4 make up block 2; v3, v5 are block
3; and t constitutes the singleton block 4. Inter-block sidetracks like a always represent
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Figure 7.1.: Example block partition of the vertex set. Solid edges denote edges of the
SP tree T1. The thick s-t path is (the suffix path of) the shortest s-t path.
When its edges are removed, the SP tree is partitioned into four green blocks.

non-simple paths. Sidetrack c leads from block 2 to block 3, so it represents a simple
path. Sidetrack d is the other way around, leading to a smaller block, so it represents a
non-simple path.

Now consider the sidetrack sequence ((a), T ) with T (a) = T1. Its prefix path is the s-t
path denoted in thick again, so we obtain the same block partition. Its suffix path emits
the sidetrack b. Since it leads from block 1 to block 3, the sequence ((a, b), T ′) with
T (a) = T (b) = T1 is simple. Note that extracting ((a), T ) from Q would have triggered
an SP computation, so the sidetrack-based algorithm would never consider the sequence
((a, b), T ′).

7.2. Online Edge Pruning

The following modification helps us narrow down Dijkstra runs to a smaller portion of
the input graph. This is most beneficial for instances that are problematic anyway since
they require many SP tree computations.

The number k of paths to enumerate is known to the algorithm. This allows for
some pruning as soon as k candidates have been found that actually represent simple
paths. We propose to maintain two separate candidate sets, one for simple paths and
one for non-simple paths. Recall that using the improvement in Section 7.1, candidate
simplicity is checked before a path is pushed to the candidate set, so it is straightforward
to push simple and non-simple candidates to different sets. When the sidetrack-based
kSSP algorithm needs to draw the next candidate, it uses the cheapest candidate in
either set, whichever is cheaper. If the cheapest simple candidate is just as cheap as the
cheapest non-simple one, we use the simple one. This pivoting approach can save some
SP tree computations, since the k-th shortest path might already be among the cheapest
ones in the set of simple candidates.

For the set of simple candidates, we use a double-headed priority queue as described by
Sahni [94]. This enables us to efficiently both access and remove not only the candidate
with minimum priority, but also the one with maximum priority, without increasing the
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asymptotic running time. Let κ : N → N be a function such that κ(i) simple candidates
have been extracted before the i-th candidate is extracted. Further, let σ : N → N be a
function such that there are σ(i) many candidates in the set of simple candidates before
the i-th candidate is extracted. Initially, we have κ(i) = 0 and σ(i) = 1. The sum
κ(i) + σ(i) is the number of candidates that have been in the set of candidates so far
when the i-th candidate is extracted. Thus, as soon as we have κ(i)+σ(i) ≥ k, the most
expensive simple candidate is an upper bound on the length of the k-th shortest path.

In contrast, we can lower bound the length of s-t paths that use an edge e = (v, w).
During initialization, we compute the SP tree T1 to t with distances dt : V → R≥0
anyway. As soon as an upper bound is found, we compute an additional SP tree T
from s with distances ds : V → R≥0. Any path that contains edge e has at least length
d(e) := ds(v) + dt(w). We propose to sort E in decreasing order of d once. Whenever
the upper bound for the length of the k-th shortest path is updated, we remove the most
expensive edges w.r.t. d from G until the most expensive remaining one is at most as
expensive as the new upper bound.

Using a double-headed priority queue for simple candidates also enables us to limit
the size ℓ(i) of the simple candidate set to k−κ(i) before the i-th candidate is extracted.
Whenever the size of the set exceeds ℓ(i), we extract the most expensive simple candidate
and discard it. With this candidate pruning, it seems natural to use a double-headed
priority for non-simple candidates, too. Although we cannot limit the size of the set of
non-simple candidates effectively (e.g., to k − κ(i) − ℓ(i)), we can pop and discard the
most expensive non-simple candidates until the most expensive one is cheaper than the
current upper bound on the cost of the k-th shortest path.
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To demonstrate the effectiveness of our algorithm, we conducted a series of experiments.
We give an overview of the implementations in Section 8.1. In Section 8.2, we summarize
the results of our computational study. The graph classes we use match those considered
in Feng’s experiments [46] and are described along with the results. They include road
graphs that are especially relevant in practice.

8.1. Implementations

Feng [46] showed recently that their algorithm is the most efficient one in practice. We
therefore compare our sidetrack-based algorithm to Feng’s node classification algorithm.
For reference, we also include results for the most promising third contender, an algo-
rithm proposed by Sedeño-Noda [96].

Sedeño-Noda kindly provided us with the implementation KC (short for the Por-
tuguese term for k shortest path, K caminho menor) of their algorithm. Our implemen-
tation NC of Feng’s node-classification algorithm and our implementations SB of the
sidetrack-based algorithm are both written in C++11. Graphs are given in both forward
and reverse star representation, allowing efficient computations of SP trees from s and
to t. Express edges as proposed by Feng for their algorithm are not used in NC. We
also implemented Feng’s algorithm with express edges. This implementation, however,
was always slower than NC, so we dropped it. Note that Feng does not specify whether
express edges were used in their experiments. Neither do they provide evidence that
express edges have any advantage to the vanilla version of their algorithm, so the name
might be misleading.

Shortest paths (for NC) and SP trees (for SB) are computed using a common im-
plementation of Dijkstra’s algorithm. Larkin, Sen and Tarjan demonstrated [75] that
pairing heaps perform well when used in the Dijkstra algorithm. Therefore, we use a
pairing heap to maintain tentative labels. Our implementation of Dijkstra’s algorithm
stops as soon as the label of the target node is made permanent if only a single pair
shortest path is needed, which is essential for NC. SP trees are computed lazily as fol-
lows. A tree is initialized without any edges, and the source node is pushed to a priority
queue that is permanently associated to the tree. Whenever a part of the tree (i.e. the
distance or predecessor of some node) is queried that has not yet been computed, we
simulate the Dijkstra algorithm using the associated priority queue until the queried
part is settled.

The queue of candidate paths Q is implemented as an interval heap, a form of double-
headed priority queues, which allows us to limit its size efficiently to the number of simple
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paths that have yet to be output. For SB, we use separate priority queues Qs and Qn

for simple and non-simple paths, respectively. Whenever a path has to be extracted, SB
extracts from Qn iff the shortest path in Qn is cheaper than the shortest path in Qs.
For NC, every candidate is a simple path. Hence, splitting Q in two is not necessary for
NC, but we still limit its size as described for Qs in Section 7.2.

We reason that our implementation of Feng’s algorithm is at least as efficient as the
one used in Feng’s experiments. Feng reports that they used a desktop computer with a
3.4GHz Intel Core i7 processor. At the time of their paper submission, there were only
four processors matching that description, with the processor we use for our experiments
being one of them. Instead of Feng’s 12 GB RAM, our machine had 16 GB RAM, but
none of the algorithms used close to either of those bounds. In both setups, some Linux
distribution was used (Ubuntu GNU/Linux for Feng, Gentoo GNU/Linux for us), so e.g.
the schedulers used are comparable, too. Thus, we assume that running times are quite
comparable between the two setups. On our machine, KC was consistently slower than
what is reported [46] for KC on Feng’s computer. For example, we required 10.4 seconds
on NY and 15.94 seconds on BAY (described in Section 8.2.1) on average using KC.
Feng reported 8.81 and 11.23 seconds for the same instances, respectively. In contrast,
our implementation NC of Feng’s algorithm consistently gives lower running times than
those reported by Feng.

All improvements proposed in Section 6.2 were used in the implementation SB of
our sidetrack-based algorithm with a single exception: Frederickson’s heap selection
algorithm was used neither for NC nor for SB. This results in an additional running time
of O(km log k) for SB, and O(kn log k) for NC. Further, the practical improvements from
Chapter 7 were implemented. The overhead introduced by the faster simplicity checks
is negligible, so we always include it. The impact of the overhead introduced for the
edge and candidate pruning is less clear. It includes splitting one pairing heap into two
interval heaps, bearing the risk of breaking cache lines since we operate on one half of an
interval heap most of the time. It also requires one computation of an SP tree from s, as
well as sorting the edge set once. We found that SB profits from the pruning overall, but
we also state running time statistics for a variant SN of SB where pruning is omitted.
SN is the implementation we used [73] in experiments before.

It is possible to transfer the edge pruning approach to Feng’s algorithm. We did not
do so for two reasons. First, the whole point of the node-classification effort of Feng’s
algorithm is to contain Dijkstra runs to small portions of the graph already. Second, the
number of simple paths derived from a simple candidate extracted from Q tends to be
much slower for Yen-based algorithms. For a path with ℓ edges, we derive at most ℓ new
simple paths. Each of them requires a separate Dijkstra run. In contrast, the sidetrack-
based approach can yield one simple path for every sidetrack on that path. Every vertex
on the path for which a replacement path can be found in Yen-based algorithms, there
is at least one sidetrack, particularly the one used by the replacement path. Further,
the set of simple candidates is determined in O(m + n) total time in SB, instead of
O(m+ n logn) per candidate.

The experiments ran on an Intel Core i7-3770 @ 3.40GHz with 16GB of RAM on a
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Label Area Vertices Edges
DC Washington, D.C. 9559 29 818
DE Detroit 49 109 121 024
VT Vermont 97 975 215 116
NY New York 264 346 733 846
BAY San Francisco Bay Area 321 270 800 172
COL Colorado 435 666 1 057 066
FLA Florida 1 070 376 2 712 798

Table 8.1.: Number of vertices and edges of the TIGER graphs used in kSSP experiments.
We refer to DC, DE and VT as the small road graphs and to NY, BAY, COL
and FLA as the large road graphs.

GNU/Gentoo Linux with kernel version 4.12.12 and Turbo Boost turned off. Source
code was compiled using the GNU C++ compiler g++-5.2.0 and -O3 optimization.

8.2. Experiments
We give statistics of wall clock running times of KC, NC, SN and SB on the set of
graph classes that are also used in experiments by Feng [46]. These classes provide an
excellent range of properties we would like to control in a meaningful computational
study. Routing is a classic motivation for many shortest path problems, so using real-
world TIGER road graphs in Section 8.2.1 is most obvious. On the down side, we
are unable to modify parameters of real-world graphs. Erdős-Rényi random graphs in
Section 8.2.2 and synthetic grid graphs in Section 8.2.3 fill this gap. The former let us
control the sizes and densities of the generated graphs. The latter has fixed density, but
we can choose the shape of the graph. Synthetic network graphs in Section 8.2.4 try
to mimic real-world data, but we may generate a larger number of graphs, each with a
chosen size.

Axes are scaled linearly unless noted otherwise. We choose y-axis limits in boxplot
figures such that all boxes of at least two algorithms are in full view. Boxplots show the
25%-quantile Q.25 as the upper boundary of the box, the 50%-quantile Q.5 (median) as
a vertical line inside the box, the 75% quantile Q.75 as the lower boundary of the box, as
well as the range of points in the 1.5 interquartile range as whiskers and their outliers.
If one algorithm is clearly not competitive on a graph class, we only include its boxes in
one boxplot for this graph class to improve readability of the remaining figures.

8.2.1. Results on Road Graphs

A classic application for shortest path problems are navigation systems that route users
in a vehicle through a network of streets. A good resource of real-world street graphs
are available as the so-called TIGER graphs, modeling street networks in various areas
in the USA. These road graphs were also used in the Ninth DIMACS implementation
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Figure 8.1.: Boxplots of running times in seconds of NC and SB on DC and NY, and
of all four kSSP implementations on FLA, depending on the number k of
enumerated paths.56
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k = 100 k = 200 k = 300
Area Med. Q.9 Mean Med. Q.9 Mean Med. Q.9 Mean

NY

KC 9.72 11.57 10.40 19.54 23.48 21.04 29.76 35.55 32.07
NC 2.09 12.38 4.27 3.80 24.30 8.06 5.43 36.18 11.77
SN 0.18 1.57 0.60 0.26 3.92 1.30 0.43 5.99 1.82
SB 0.15 0.18 0.15 0.18 0.22 0.18 0.21 0.26 0.22

BAY

KC 12.72 25.90 15.94 25.16 53.00 32.46 38.17 83.36 49.78
NC 5.32 17.88 8.18 9.49 34.57 15.90 14.14 51.11 23.28
SN 0.30 4.28 2.51 0.55 9.67 5.88 0.71 14.17 9.19
SB 0.19 0.27 0.22 0.23 0.67 0.38 0.27 1.12 0.59

COL

KC 17.13 32.99 23.30 34.56 71.66 51.12 56.77 117.12 81.11
NC 6.83 27.71 11.56 12.04 49.23 21.51 16.73 65.92 30.83
SN 0.17 11.80 2.82 0.22 17.43 5.86 0.29 26.64 9.13
SB 0.23 0.46 0.47 0.29 0.57 0.72 0.34 0.94 1.15

FLA

KC 48.51 99.06 57.90 95.69 215.48 120.67 - - -
NC 29.86 70.10 37.21 58.07 132.73 69.96 85.70 193.30 103.03
SN 0.47 4.31 2.52 0.58 20.84 8.12 0.71 26.99 12.91
SB 0.67 0.85 0.85 0.79 1.03 1.63 0.91 1.21 1.90

Table 8.2.: Running times for large TIGER road graphs. For each input class, we report
median, 90% quantile Q.9 and mean running time in seconds.

challenge, which was dedicated to shortest path problems. The graphs are still available
today on the DIMACS website [37].

Table 8.1 summarizes the sizes of the road graphs we used in our experiments. For each
pair, we enumerated k ∈ {250, 500, 750, 1000} simple paths on the small road graphs,
and k ∈ {100, 200, 300} simple paths on the large areas. An input class is defined by an
area and a number k, resulting in 12 input classes for small and large areas each. For
each area, we drew 20 s-t pairs at random, uniformly and independently. For a quick
overview of our results on road graphs, see Figure 8.1. This figure also demonstrates that
practical running times actually scale linearly with the number of enumerated paths, as
the theoretical analysis suggests.

Running times for the large areas are summarized in Table 8.2, along with the median
number of polls during runs of the Dijkstra algorithm. With respect to the median
running times, KC is clearly dominated by NC on any input class, which in turn is
dominated by SN. The relation between the sidetrack-based implementations SN and
SB is less clear when comparing the median times, since pruning seems to slightly hurt
the performance on larger the instances COL and FLA. However, when taking the 90%
quantile into account, the running times of SN show a stronger dispersion than those of
SB. The ratio Q.9

Q.5
(Q.5 being the median running time) is below 2 for most input classes

with SB (with a peak of 4.15 for k = 300 on BAY), but mostly above 10 with SN. SB
also clearly dominates SN when it comes to mean running times.

We compare median running times of NC and SN. SN achieves a minimum speedup of
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m = 2n m = 4n m = 10n m = 30n m = 50n
n Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9 Med. Q.9

2000

KC 0.67 0.69 0.85 0.88 1.29 1.32 3.58 4.04 9.77 14.11
NC 0.99 2.51 0.48 1.25 0.39 1.25 0.47 1.50 2.15 3.84
SN 0.09 0.13 0.08 0.10 0.10 0.15 0.17 0.20 0.23 0.31
SB 0.07 0.14 0.06 0.08 0.08 0.10 0.11 0.13 0.15 0.18

4000

KC 1.39 1.46 1.79 1.87 2.96 3.06 15.64 16.03 32.88 33.17
NC 1.01 2.88 0.84 2.71 0.82 1.97 1.33 5.06 2.07 5.49
SN 0.11 0.12 0.09 0.13 0.12 0.19 0.19 0.22 0.26 0.36
SB 0.09 0.12 0.07 0.10 0.08 0.12 0.13 0.14 0.17 0.21

6000

KC 2.19 2.25 2.86 2.90 5.50 5.78 30.13 30.61 53.33 54.51
NC 3.28 6.44 0.53 1.67 0.71 3.36 2.05 7.92 2.22 9.07
SN 0.13 0.20 0.11 0.13 0.13 0.21 0.22 0.32 0.30 0.45
SB 0.10 0.14 0.09 0.10 0.10 0.12 0.15 0.19 0.20 0.24

8000

KC 3.04 3.06 4.08 4.14 12.37 12.60 43.36 45.31 73.11 75.00
NC 1.79 7.84 0.68 2.66 1.92 4.60 3.49 9.67 2.55 9.66
SN 0.12 0.28 0.10 0.14 0.16 0.21 0.24 0.34 0.32 0.38
SB 0.09 0.14 0.09 0.10 0.11 0.13 0.16 0.19 0.22 0.24

10 000

KC 3.96 3.98 5.48 5.53 15.71 15.84 55.95 57.76 92.81 94.79
NC 1.86 11.91 1.17 5.44 2.61 9.02 6.31 13.56 9.68 26.23
SN 0.13 0.18 0.14 0.24 0.17 0.21 0.25 0.30 0.36 0.48
SB 0.11 0.13 0.10 0.14 0.12 0.13 0.18 0.20 0.26 0.28

Table 8.3.: Medians and 90% quantiles of running times in seconds of all four kSSP
implementations for k = 2000 simple paths on random graphs with varying
vertex count and linear density.

around 11 on the smallest of the large graphs, NY, for k = 100. This speedup consistently
gets bigger as we increase the graph size. It also seems to get bigger as we enumerate
more paths, with two minor exceptions: It drops from almost 15 for 200 paths on NY
to below 13 for 300 on NY; and there is a minor decrease when enumerating 200 instead
of 100 paths on BAY. The latter tendency is more obvious when enabling edge pruning.
The more paths we enumerate, the bigger is the speedup of SB in contrast to NC. This
comes to little surprise, because the overhead of computing the single SP tree from the
source node and sorting the edges once becomes less important. After all, there number
of Dijkstra runs that can benefit from the reduction in graph size increases along with k.
Although SB is faster than SN most of the time, the maximum speedup of 120 against
NC is achieved by SN for 300 paths on FLA.

8.2.2. Results on Random Graphs

We consider random graphs generated by the sprand generator provided on the web-
site of the Ninth DIMACS Implementation Challenge [37]. The generator draws at
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Figure 8.2.: Boxplots for running times in seconds for k = 2000 simple paths on random
graphs with n = 10 000 vertices, depending on the linear densities m
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Figure 8.3.: Boxplots for running times in seconds of NC, SN and SB on random graphs
with n = 10 000 vertices and linear densities m

n = 50, depending on the
number k of enumerated paths.
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m = 4n m = 10n m = 30n m = 50n
n Runs Polls Runs Polls Runs Polls Runs Polls

2000
NC 16 272 1.08 14 533 0.60 13 939 0.43 14 510 2.09
SN 46 0.09 65 0.13 38 0.08 44 0.09
SB 47 0.06 66 0.07 39 0.04 45 0.05

4000
NC 17 292 1.93 14 581 1.45 15 805 1.20 15 605 1.39
SN 25 0.10 20 0.08 21 0.08 29 0.11
SB 26 0.05 21 0.04 22 0.04 30 0.05

6000
NC 17 499 0.86 16 652 0.70 16 544 1.52 16 444 1.13
SN 23 0.14 19 0.11 24 0.14 21 0.13
SB 24 0.06 20 0.05 25 0.06 22 0.06

8000
NC 18 300 1.01 17 316 2.40 17 127 2.72 17 034 1.09
SN 16 0.12 17 0.13 17 0.14 17 0.14
SB 17 0.06 18 0.06 18 0.06 18 0.06

10 000
NC 19 074 1.94 17 824 3.53 18 125 5.07 18 187 6.11
SN 16 0.15 15 0.15 10 0.10 14 0.13
SB 17 0.06 16 0.06 11 0.05 15 0.06

Table 8.4.: Medians and 90% quantiles of the numbers of Dijkstra runs and the numbers
of polls during those runs (in millions) of NC, SN and SB for k = 2000 simple
paths on random graphs with varying vertex count and linear density.

random a fixed amount of edges, possibly resulting in a non-simple graph. Here, an
input class is defined by the number n ∈ {2000, 4000, 6000, 8000, 10 000} and a linear
density m/n ∈ {2, 3, 4, 7, 10, 20, 30, 40, 50}. Edge weights are drawn uniformly and inde-
pendently from [10 000]. For each input class, we enumerate k ∈ {200, 500, 1000, 2000}
simple paths.

In Table 8.3, we summarize the median and 90% quantile Q.9 of execution times for
some densities and k = 2000. These results are also shown in Figure 8.3 as boxplots for
n = 10 000, k = 2000 and varying density, and in Figure 8.2 for n = 10 000, m

n = 50
and varying number of enumerated paths. A more detailed view on the two fastest
implementations SN and SB in these figures is given in Figure 8.4.

Our results confirm Feng’s claim that NC is usually faster than KC on random graphs.
NC seems to struggle with low densities of m

n ≤ 2, and KC is often faster for those. This is
especially true for Q.9 running times, especially when considering Q.9 running times. On
the other hand, KC and SB display a more consistent growth. SB is always fastest, with
speedup factors ranging from 8 to 20 (outlier: speedup 32.8 for n = 6000 and m = 2n)
for lower densities, and speedups around factor 13 for m = 50n (outlier: speedup 37 for
n = 10 000) when compared to NC. SB is faster than SN, but not significantly faster,
and the relative gap does not seem to change as we modify graph parameters. Shortest
paths in Erdős-Rényi random graphs are often long in comparison to the diameter of
the graph, so we cannot benefit from pruning as much as for road graphs.

We now consider the running time dispersion. For SB, 90% of the instances finish
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within 160% of the corresponding median running times (the fastest 50%) for most
input classes. The dispersion of SN is similarly low. For KC, this ratio even stays below
106% for all but two input classes (n = 2000, m

n ≥ 30). We cannot find any correlation
between n, m and k on the one side, and the dispersion of running times on the other
side, for KC and SB. In contrast, NC regularly requires more than thrice the median
running time to answer 90% of the queries. Running times are therefore much harder to
predict on random graphs when using NC instead of SB or KC.

Table 8.4 shows the median number of Dijkstra calls. The numbers are relatively stable
across the various densities, but the Dijkstra counts for the SB algorithms is orders of
magnitudes smaller than the count for the NC algorithm. Note, however, that Dijkstra
runs for NC may be confined to a much smaller area than Dijkstra runs for SB. For this
reason, we also provide the number of polls, i.e., the total number of vertices that were
extracted from Dijkstra’s priority queue, for comparability. The ratio of the number of
polls of NC and SB ranges from 4.6 to 50, and suggests that saving SP tree computations
is much more beneficial than reducing the number of nodes visited to answer single-pair
shortest path queries.

Finally, the number of SP tree computations for SB actually declines as n grows.
Recall that, in the worst case, we have to compute one SP tree for each node of each
output simple path. Table 8.4 shows results for k = 2000 and n ≥ 2000. Nevertheless,
the median number of SP tree computations does not exceed 65. Most simple paths
therefore correspond to those well-behaved cases where paths represented by sidetracks
in already computed SP tree areas are themselves simple.

8.2.3. Results on Grid Graphs
We repeated Feng’s experiments on grid graphs generated by the spgrid generator pro-
vided on the DIMACS website [37]. The grids have side lengths l, w ∈ {50, 100, 200, 400}
with l ≤ w, resulting in 10 different grids. For each grid, we generated 20 weight func-
tions by selecting uniformly from {1, . . . , 10 000} for each edge, and then enumerated
k ∈ {100, 200, 400, 800, 1600, 3200} paths. Source and target vertex lie in opposing cor-
ners of the grid.

The results of our experiments on grid graphs are summarized in Figure 8.5. KC is
again the slowest algorithm, but NC is not significantly slower than SN any more. In
some cases, NC is even faster than SN. Although NC and SB differ on some classes,
there does not seem to be any correlation to the shape or size of the grid. For example,
NC is slightly faster on 50 × 100 grids, but slower on 200 × 400 grids although these
two configurations share the same shape, characterized by an aspect ratio of 2. On
the other hand, NC loses its advantage over SN when the grid grows from 50 × 50 to
50 × 200 (left column of subfigures), but SB loses its advantage over NC as the grid
grows from 100×400 to 400×400 (right column). In summary, the comparison between
the two remains inconclusive. However, SB is again much faster than SN, and therefore
dominates state-of-the-art algorithms on random grids, too.

The shortest path between two adjacent vertices u and v in a grid only consists of
the edge (u, v) itself. Consequently, edges of the shortest path tree T1 used by Feng to
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Figure 8.4.: Boxplots for running times in seconds of SN and SB on random graphs with
n = 10 000 vertices.
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Figure 8.5.: Boxplots of running times in seconds for grid graphs of various sizes. The
logarithmic-scale x-axis corresponds to different numbers k of enumerated
paths.64
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classify vertices are mostly directed toward the target vertex side of the grid. Hence,
the probability of a vertex being green is high, and the area to which Dijkstra runs are
confined are often empty.

The grid structure is also well suited for the pruning technique that is used in SB, but
not in SN, since sidetracks also represent simple paths with high probability. Thus, we
can start pruning early, and so more Dijkstra runs benefit from it.

8.2.4. Results on Network Graphs

To generate network topology graphs, we use graph generator called BRITE [19] and
developed at the Boston University in Boston, Massachusetts. We use the AS Barabaśi-
Albert model, which models a topology with symmetric edge relation that was gradually
grown as follows. We add vertices v1, . . . , vn in this order. We use v1 as source vertex and
vn as target vertex. When vertex vj enters the graph, the probability of an edge (vi, vj)
(and thus also (vj , vi)) being added to the graph is proportional to d(vj)/(

∑
k∈[j−1] vk).

The generator allows to specify the number of vertices a newly added vertex connects
to, and scales the probability for adding an edge accordingly. Like Feng, we use graph
sizes of n ∈ {1024, 2048, 4096, 8192, 16384}, and densities m

n ∈ {4, 12, 20, 28, 36}. As for
random graphs, an input class is a combination of n and m

n . Because of some corner cases,
the actual density is slightly below the specified one. For example, the first four vertices
cannot connect to four other vertices that were added earlier. Edge costs (bandwidths)
are integers and u.i.d. in {10, . . . , 1024}. Vertex placement in the plane and the size of
the plane should not have any effect when using the AS Barabaśi-Albert model. For
reference, we used random vertex placement, a main plane size of 1000 and an inner
plane size of 100. We enumerate up to k = 1600 simple paths.

Figure 8.6 shows running times for all four implementations on some input classes.
In contrast to the other graph classes, KC is quite competitive on topology graphs. On
(n, m

n ) ∈ {(4016, 28), (16384, 20), (16384, 28)}, it is on par with NC and SN. For very low
density, it is even faster than these two. However, this does not mean that topology
graphs especially well suited for KC. Instead, the optimistic approach of NC and SN
seems to fail, thus spoiling their advantage. Considering running times for other graph
classes and similar sizes, NC and SN are much slower on topology graphs. For example,
NC enumerates 2000 simple paths on random graphs with 10 000 vertices and density
30 in a median running time of 6.31 seconds. On topology graphs with 16 384 vertices
and density approximately 28, NC requires a median running time of more than 50
seconds to enumerate 1600 simple paths. The left column of subfigures suggests that
NC gets faster in relation to KC and SN as the graph size increases. Accordingly, the
right column suggests the same for rising densities.

Finally, the sidetrack-based algorithm with pruning, SB, is again the fastest one.
For the biggest and densest graphs in Figure 8.6, the median running time speedup
when compared to the respective second-fastest implementation is 8 or higher. More
importantly, the speedup increases both along with graph size and density.
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Figure 8.6.: Boxplots of running times in seconds for BRITE network graphs. The
logarithmic-scale x-axis corresponds to different numbers k of enumerated
paths.66
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8.2.5. Summary
In our computational study, we compare two state-of-the-art algorithms for kSSP, namely
an implementation KC of Sedeño-Noda’s algorithm [96] and an implementation NC of
Feng’s algorithm [46] NC, with the algorithm we propose in this thesis. Besides an
implementation SB of our algorithm with all practical improvements, we also consider
an implementation SN which omits online edge pruning. We use the same benchmark
graph classes that were already used in Feng’s computational study, including synthetic
Erdős-Rényi random graphs, real-world road graphs from the United States, and others.
We can confirm Feng’s findings that KC performs much worse than NC in practice,
leaving NC as the currently best Yen-based kSSP algorithm practically. However, our
algorithm achieves significant speedups when compared to Feng’s NC on all graph classes,
especially the fully optimized implementation SB. SB was only slower than SN for very
small path counts, but the performance hit of each extra path seems to be much harder
for SN than for SB.
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9. Introduction

In this part, we propose an algorithm for computing the k best solution values of combi-
natorial graph problems definable in monadic second-order logic in O(|V |+k log |V |) for
graphs G = (V,E). Section 9.1 establishes definitions only required in this part. Pre-
vious work on the combination of monadic second-order logic and graphs is presented
in Section 9.2. Chapter 10 arranges the basic ideas of the k-best algorithm around tree
decompositions of undirected graphs. A generalization for directed hypergraphs is given
in Chapter 11. We give proof sketches for the undirected case first, and complete proofs
for the general case later. The former is a special case of the latter, so correctness follows
for the undirected case, too.

9.1. Counting Monadic Second-order Logic
A wide range of graph properties can be expressed in various logic systems. Consider
the set of connected undirected graphs. An undirected graph G = (V,E) is connected iff
for any pair of vertices s, t, s is in the connected component of t. A formula expressing
connectedness might therefore look like this:

∀ s, t : s ∈ ConnectedComponent(t).

This formula assumes that the universe of discourse, the set the individuals s and t are
drawn from, is the set of vertices of G. The above characterization requires access to the
function ConnectedComponent that maps vertex t to the set of vertices in its connected
component. On the other hand, we are able to describe whether a set of vertices form a
connected component in another formula:

isConnectedComponent(W ) := [∀ v, w : (s ∈ W ∧ t /∈ W ) ⇒ (s, t) /∈ E)] .

In contrast to the first formula, where all variables are universally quantified, this formula
has one free variable W in addition. The symbol E is used as a binary relation symbol
in this formula. Assuming standard semantics of second-order logic, E is a non-logical
symbol: we need some context to interpret terms like (s, t) ∈ E. Assigning context to a
formula is called interpretation, and is defined more formally below. For now, we simply
say that G satisfies the formula (u, v) ∈ E if {u, v} ∈ E.

Using this formula, we can express connectedness without using the ConnectedCom-
ponent function:

isConnected := [∀ s, t : ∀W : (isConnectedComponent(W ) ∧ t ∈ W ) ⇒ s ∈ W ] .
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In summary, we need some context that specifies the universe of discourse, i.e., the set
of vertices of a graph, and a symmetric relation on these vertices, i.e., the edge relation,
to be able to describe connected undirected graphs.

Another example is the existence of a Eulerian cycle in G. An Eulerian cycle is a
cycle that contains every edge. According to our definition of a cycle, no edge occurs
twice, so an Eulerian cycle contains every edge exactly once. It is well known that there
is an Eulerian cycle in G iff G is connected and every vertex of G has even degree. The
formula

isConnected ∧ ∀ v : ∀W : isNeighborhood(v,W ) ⇒ |W | is even

therefore characterizes graphs that contain at least one Eulerian cycle, where the for-
mula isNeighborhood(v) expresses that W is the set of all vertices adjacent to v. This
neighborhood can easily be expressed in first-order logic, i.e., using a formula that only
quantifies individuals (elements of the universe) instead of relations: Every u ∈ W is
adjacent to v, and every u /∈ W is not adjacent to v.

To check whether |W | is even, we need another non-logical symbol Cardm,p. The
atomic formula Cardm,p(W ) expresses that the cardinality of W is congruent to p mod-
ulo m. For example, sets W of even size are characterized by Card2,0(W).

We may also consider edges as objects on their own, enabling quantification over edges
or relations over edges. An additional symbol isIncident expresses the incidence relation
between a vertex and an edge. For example, a complete graph can be characterized by
∀ s, t : (s, t) ∈ E, where we quantify over V , or by

∀ s, t : (s ∈ V ∧ t ∈ V) ⇒ (∃ e : isIncident(s, e) ∧ isIncident(t, e)),

quantifying s, t and e over V ∪E. Courcelle and Engelfriet [34] demonstrate that there
are properties of graphs that can be expressed when edges are discrete objects. They
use the graph property of having a perfect matching, which is easily characterized by

∃M ⊆ E : ∀ s ∈ V : ∃ e ∈ M : isIncident(s, e)∧∀ e′ ∈ M : (isIncident(s, e′) ⇒ e = e′).

Proving that graphs with perfect matchings cannot be expressed without discrete edge
objects is more involved; we refer the reader to Courcelle and Engelfriet [34].

For a more formal approach, we use definitions from Libkin [77]. A signature σ is
a set of constant symbols, set in lower-case bold letters, and a set of relation sym-
bols, set in upper-case bold letters or bold words, each associated with an arity. Let
{x, y, z, . . . ,X, Y, Z, . . .} be a set of variables. A term over σ is either a variable or a
constant in σ. A formula in second-order logic over σ is either an atomic or a composite
formula. For terms t1, . . . , tn over σ and a relation symbol P ∈ σ with arity n, t1 = t2
and P(t1, . . . , tn) are atomic formulas over σ. If φ1, φ2 are formulas over σ, then their
negation ¬φ1, conjunction φ1 ∧ φ2, and disjunction φ1 ∨ φ2, as well as ∀x : φ1(x),
∃x : φ1(x), ∀k X : φ1(X) and ∃k X : φ1(X) are composite formulas. The operators ∀k X
and ∃k X express universal and existential quantification of k-ary relations over the uni-
verse of discourse. A formula in second-order logic is in monadic second-order logic if
for every quantifier ∀k or ∃k we have k = 1, i.e., only unary relations are quantified.
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Let h, q,R ∈ N be fixed, and s1, . . . , sR be constant symbols. We denote by σ1 = σq
1,R

the signature {s1, . . . , sR,E} ∪ {Cardm,p | p ∈ [q],m ∈ [p]}, where E is a binary relation
symbol and Cardm,p are unary relation symbols. Similarly, σ2 = σq

2,R is the signature
{s1, . . . , sR, isIncident} ∪ {Cardm,p | p ∈ [q],m ∈ [p]}, where isIncident is a binary
relation symbol and Cardm,p are unary relation symbols. Then CMSi is the set of
formulas in second-order logic over σi. The set of formulas in second-order logic over
signature σ2 with exactly one free set variable, depth of nested quantification of at most
h is denoted by ΦR = Φh,q

2,R. Note that for any φ ∈ CMS2 with exactly one free set
variable, there are h, q,R ∈ N such that φ ∈ Φh,q

2,R.
A structure ⟨A, σ, I⟩ consists of a universe of discourse A, a signature σ and an

interpretation function I. At the minimum, the interpretation function maps every
constant in σ to an element in A, and every n-ary relation symbol to an n-ary relation
over A. A structure is a model for a formula over (a subset of) σ if it satisfies φ using
standard semantics of second-order logic. Note that in order to be a model for φ, I also
has to map free variables of φ to corresponding elements of A or relations over A. Our
aim is to find the k cheapest models for some fixed formula in CMS2 with respect to a
cost function c : A → R for some k ∈ N.

Restricting this chapter to graph problems enables us to introduce some simplification.
We assume that we want to find optimal solutions for some fixed undirected graph G =
(V,E). We restrict the problems to be solved to combinatorial optimization problems
where the underlying set is E. A formula to characterize feasible solutions for such
problems has exactly one non-logical symbol S that represents the solution. In the rest
of this chapter, we only consider structures ⟨V ⊔E, σ2, I⟩ with

• I(si) ∈ V ,

• I(isIncident) = {(v, e) ∈ V × E | v ∈ e}, and

• I(Cardm,p) = {V ′ ⊆ V | |V ′| ∼= p mod m}.

Instead of giving the full structure every time, we simply write S |= φ to mean that the
structure above with respect to G and I(S) = S for the single free variable S is a model
for φ.

Formally, every quantifier ranges over the whole universe of discourse without distin-
guishing between vertices and edges. However, the formula ψ(x) = ∃ y : isIncident(y, x)
expresses that the free variable x is an edge, and its negation characterizes vertices. We
will use short versions ∀x ∈ V : φ(x) instead of ∀x : ¬ψ(x) ⇒ φ(x), and ∀x ∈ E : φ(x)
instead of ∀x : ψ(x) ⇒ φ(x). The quantifiers ∃, ∀k and ∃k are used accordingly.

Every φ ∈ CMS2 corresponds to a family of combinatorial optimization problems;
an edge set S ⊆ E is a feasible solution for φ on G if S |= φ. We can now define
sat(φ) := {S ⊆ E | S |= φ} as the set of all feasible solutions for φ on G. For simplicity,
we identify these problems with the corresponding formula and refer to combinatorial
optimization problems in CMS2.

The class CMS2 spans a wide range of combinatorial graph problems that have been
studied extensively. Examples are various matching problems, the traveling salesperson
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problem, coloring and clique problems and many more.
The constant symbols also allow us to model problems with a fixed number of desig-

nated vertices. Of particular interest in this thesis is the k shortest simple path prob-
lem, which has a corresponding formula in CMS2, too. We need two designated vertices
s, t ∈ V with I(s1) = s and I(s2) = t. First, it is easy to see that the formula for
connectedness above can easily be adapted to subgraphs of G induced by some edge
subset. Second, we can characterize vertices v with at most d incident edges in a given
edge subset P using

degreeAtMosti(v,P) =
∀ e1, . . . , ed+1 :

⋀
i∈[d]

(ei ∈ P ∧ isIncident(v, ei)) ⇒
⋁

i,j∈[d+1],i ̸=j

ei = ej .

Then a subset P ⊆ E that is a model for

isConnected(P) ∧ degreeAtMost1(s1)
∧ ∃ e : (e ∈ P ∧ isIncident(s1, e))
∧ ∀ v : (degreeAtMost2(v) ∧ (degreeAtMost1(v) ⇒ (v = s1 ∨ v = s2))

is a simple path from s = I(s1) to t = I(s2) in G.
A formula ψ with designated vertex symbols s1, . . . , sn is symmetric in its designated

vertices if for every model ⟨A, σ, I⟩ for ψ and every permutation π on [n], the structure
⟨A, σ, I ′⟩ with I ′(si) = I(sπ(i)) also models ψ. Note that the above formula is symmetric
in s1 and s2: Every path from s = I(s1) to t = I(s2) in an undirected graph is also
a path from t to s in the same graph. In contrast, the k shortest simple path problem
on directed graphs is not symmetric. Structures for directed graphs are special cases
of structures for directed hypergraphs, which are covered in Chapter 11. It is very well
possible to model problems where different designated vertices have different roles. For
example, every subset S ⊆ E with s ∈ S and t /∈ S is a model for s1 ∈ S ∧ s2 /∈ S, using
the same interpretation function I as above.

Let G be an undirected graph and (T = (U,F ), b) be a rooted binary tree decom-
position. The designated vertices of G(u) for any u ∈ U are an injective sequence on
b(u) of length n = |b(u)|. In particular, we have b(u) = {su,1, . . . , su,n}, designated
vertex symbols s1, . . . , sn and I(si) = su,i for structures modeling G(u). Now assume
that u is an inner node with child nodes w1 and w2. For each designated vertex su,m of
G(u) and i ∈ [2], either su,m is also a designated vertex of G(wi) or su,m /∈ b(wi). Let
ϱi : [|b(u)|] → ([|b(wi)|] ∪ {ε}) be the function with and ϱi(m) = ε if the su,m /∈ b(wi),
and ϱi(m) = n for su,m = swi,n. Further, let M = {{i, j} | {vi, vj} ∈ E(u)} be the set of
unordered pairs of indices i, j such that the edge {vi, vj} is introduced by u. The type of
u is the triple (M,ϱ1, ϱ2). Note that for any sets M,N1, N2 with N ̸= N ′, f1 : M → N1
and f2 : M → N2 are different functions even if f1(m) = f2(m) for every m ∈ M . As a
consequence, two nodes always have different types if their bag sizes or the bag sizes of
their child nodes differ.
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Let R ∈ N. A CMS2 problem on undirected graphs is a combinatorial optimiza-
tion problem whose input is an undirected graph G = (V,E) with designated vertices
s1, . . . , sr ∈ V , r ≤ R, and edge cost function c : E → R, and where the set of feasible
solutions is sat(G,φ) for some φ ∈ ΦR. The value of an optimal solution in sat(G,φ)
with respect to c is v(G,φ).

Let G be an undirected graph and φ ∈ ΦR. Sets of solutions, and sat(G,φ) in
particular, are sets of n-tuples of sets. Let X, Y be q-tuples of sets, and A, B be sets
of n-tuples of sets. Then X and Y interfere if any set of X has a nonempty intersection
with any set of Y , i.e., there exist i, j ∈ [n] with Xi ∩ Yj ̸= ∅. By extension, A and B
interfere if some X ∈ A interferes with some Y ∈ B. If A and B do not interfere, then
A⊎B denotes the extended union of A and B, the set of all element-wise disjoint unions
of each X ∈ A and Y ∈ B, i.e.,

A⊎B := {(X1 ⊔Y1, . . . , Xq ⊔Yq) | X ∈ A, Y ∈ B}.

A rich tree decomposition of an undirected graph G = (V,E) is a tree decomposition
(T = (U,F ), b) together with a mapping ι : E → U such that e ⊆ b(ι(e)) for every e ∈ E.
The tree decomposition node ι(e) introduces the edge e. Note that ι−1(u) for a tree
decomposition node u is the set of edges of G that are introduced by u.

Lemma 9.1. Let w ∈ N, and G = (V,E) be an undirected graph with treewidth at most
w. A tree decomposition (T = (U,F ), b) of G with width w can be extended to a rich tree
decomposition in time O(|V |).

Proof. We compute ι in a depth-first search on T . When we discover node v from node
u, we compute the set of new vertices ∆u,v = b(v) \ b(u). An edge e = {w1, w2} with
w1 ∈ ∆u,v and w2 ∈ b(v) is subset of b(v), but not subset of b(u). Therefore, v is the
lowest common ancestor of all nodes that are eligible to introduce e, and we choose
ι(e) = u. Let Eu,v be the set of these edges.

Computing ∆u,v can be done in O(w). The sets Eu,v can be computed by iterating
the adjacency list of every vertex in ∆u,v and testing for the edge {w1, w2} if w2 in b(v).
Every edge is checked twice, once for each endpoint. The test w2 ∈ b(v) can be done in
O(w). Hence, the total running time is O(|V |) for fixed w.

Let (T = (U,F ), b) be a rich tree decomposition for an undirected graph G = (V,E),
u ∈ U some node of T , φ ∈ CMS2 and S ∈ sat(G,φ). The set E(u) contains all edges
that are introduced by a node in T (u). The subsolution S(u) of S is the subset of edges
in S that are introduced by a node in T (u), i.e., S(u) = S ∩ E(u).
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9.2. Related Work

Bertelè and Brioschi [10] were the first to introduce a graph parameter, namely its
dimension, that was later proven to be equivalent to treewidth by Bodlaender [13].
Research on treewidth was popularized by Robertson and Seymour. Most famously, they
proved [90] Wagner’s conjecture. A consequence of this is that any bounded-treewidth
graph class can be characterized by a finite set of graph minors.

Bodlaender [12] showed that graphs of treewidth at most w can be embedded into a
w-tree in linear time, for any fixed w ∈ N. It is straightforward to deduce a tree decom-
position of width w from an embedding in a w-tree. For other graphs, their algorithm
finds proof that the treewidth is greater than w. Computing tree decompositions is par-
allelizable, too. For graphs with n vertices, there is an algorithm by Bodlaender [14] to
compute tree decompositions with width w in time O(logn) on O(n3w+4) processors in
the EREW PRAM model, and an algorithm by Bodlaender and Hagerup [15] with run-
ning time O((logn)2) using only O(n) operations with optimal speedup, and therefore
O( n

(log n)2 ) many processors in the CRCW PRAM model. Elberfeld, Jakoby and Tan-
tau [39] showed that tree decompositions can also be computed using only logarithmic
memory space.

Many problems, including NP-hard ones, are solvable in linear time on graph classes
of bounded treewidth. Notable examples are finding minimum independent or dominat-
ing sets [2, 6, 8, 70, 93], Hamiltonian cycles, vertex coloring a graph with a minimum
number of colors [6], q-Coloring [49], computing minimum weight matchings [8], odd
cycle traversal [48], the Steiner tree problem [26] and the two-stage stochastic Steiner
tree problem [74]. In an effort to generalize these results, a line of research mainly by
Courcelle studies the expressive power of counting monadic second-order logic. Cour-
celle’s theorem [33] states that graphs of bounded treewidth satisfying a fixed formula
φ ∈ CMS2 with no free variables can be recognized in linear time. The algorithm is
usually presented in terms of a bottom-up tree automaton. It computes a state for every
node of a rooted binary tree decomposition in a bottom-up manner. To compute the
state of an inner node, only the states of its two child nodes have to be considered.
The set of possible states is finite and does not depend on the graph size. We can de-
cide whether the graph has the property in question by only looking at the state of the
root node. He also conjectured that every graph property that can be recognized by a
bottom-up tree automaton can also be characterized by a formula in CMS2. Only very
recently, Bojańczyk and Pilipczuk [16] proposed a proof for this conjecture, establishing
equality of the two classes.

Around the beginning of the 1990s, Courcelle and Mosbah [35] and, independently,
Arnborg, Lagergren and Seese [5] made the transition from decision problems to opti-
mization problems. Both allow multiple free variables that may represent vertex or edge
subsets, and each free variable can have its own cost function. This enables us to model,
e.g., graph coloring problems where coloring some vertex v in color 1 is more expensive
than coloring it in color 2. Interpreting these algorithms in terms of bottom-up tree
automata would lead to infinite sets of possible states. However, they still use dynamic
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programming, which bottom-up tree automata are special cases of. Courcelle and Mos-
bah show [35] that for every monadic second-order formula φ that characterizes feasible
solutions on graphs with bounded treewidth, there is a set of formulas Φ with φ ∈ Φ that
only has finitely many equivalence classes such that the set of feasible solutions for φ
can be decomposed into sets of feasible solutions on appropriate subgraphs, for formulas
in Φ. They propose to compute the set of feasible solutions for every formula in Φ at the
leaves of the tree decomposition, aggregating it in a way that again allows processing of
the inner nodes by only looking at constantly many aggregated values at child nodes.
Their approach is also a building block of our generalization to k-best optimization, and
is therefore described in more detail in Section 10.1.

To the best of our knowledge, there is no previous research on k-best enumeration on
bounded-treewidth graphs at all.
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We present a generalization of Courcelle and Mosbah’s optimization algorithm on graphs
with bounded treewidth to k-best optimization. This generalization is already heavy on
notation for the case of edge subset problems on undirected graphs. We present the
algorithm for this case first. In Section 10.1, we demonstrate how to enumerate the k
best solutions of a CMS2 optimization problem on graphs with bounded treewidth for
a fixed k in time O(|V |). In Section 10.2, k is considered part of the input, and we
demonstrate how to extend the first version for fixed k to find the next-best solution in
logarithmic extra time. We explain adjustments required for the general case of directed
hypergraphs with multiple vertex and edge subsets in Chapter 11. The algorithm for
extracting a solution in case of a fixed k can be applied without modification to the
general algorithm. Thus, we can compute the values of the k best solutions in time
O(|V | + k log |V |), and then extract any of those k solutions in O(|V |) time each.

For the rest of this section, let w ∈ N, G = (V,E) be the undirected input graph with
edge cost function c : E → R and treewidth at most w, and φ ∈ CMS2 be the formula
that characterizes feasible solutions of the combinatorial optimization problem we seek
to solve. We compute a rich binary tree decomposition (T = (U,F ), b, ι) for G with
width w and size O(|V |) and select a random root r ∈ U . According to Bodlaender [12]
and Lemma 9.1, (T, b, ι) can be computed in linear time.

10.1. k-Best Optimization for Fixed k

We are interested in solutions for φ on the whole graph G = G(r). Let w1, w2 be the child
nodes of r. Any solution S ∈ sat(G(r), φ) can be partitioned into subsolutions S(w1)
and S(w2), and a set of edges that are introduced at r. Each of these sets can be empty.
For some simple problems, as in the case sat(G(r), φ) = 2E , we can characterize both
sets of subsolutions Si = {S(wi) | S ∈ sat(G(r), φ)}, i ∈ [2], by using another formula ψi

with sat(G(wi), ψi) = Si. We could then combine any solution in sat(G(w1), ψ1) with
any solution in sat(G(w2), ψ2) to obtain a solution in sat(G(r), φ). For other problems,
however, this is not possible using a single pair (ψ1, ψ2) of formulas. An example where
this is not possible, the maximum matching problem, can be seen in Figure 10.1. The
naive approach would consider the infeasible solution S1 ⊔S2 as feasible.

Instead, we can use a sequence of pairs of formulas for these problems. Feferman and
Vaught [45] and Courcelle [33] demonstrate how to decompose φ into pairs (ψk

1 , ψ
k
2 ), k ∈

[l] for some l ∈ N. The decomposition only depends on φ and the type of r. The
following lemma is adapted to tree decompositions from Courcelle and Mosbah [35].
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v1

v2 v3

v1

v2

v1

v3

r

w1 w2

(a) Tree decomposition of G

S1 = {{v1, v2}}

S2 = {{v1, v3}}

S1(w1) = {{v1, v2}}

S2(w1) = ∅

S1(w2) = ∅

S2(w2) = {{v1, v3}}

(b) Subsolutions for each bag

Figure 10.1.: Example graph for the maximum matching problem. Vertices of the in-
put graph are depicted as circles; nodes of its tree decomposition as rect-
angles with rounded corners. Both feasible solutions S1, S2 with their
corresponding subsolutions can be seen in the right figure. The union
S1(w1) ⊔S2(w2) = {{v1, v2}, {v1, v3}} is not feasible in G(r).

Lemma 10.1. Let φ ∈ ΦR, and let (T, b, ι) be a rich binary tree decomposition rooted in
r for an undirected graph G. If r is not a leaf, it has two child nodes w1, w2, respectively,
and there exist l ∈ N, Ik ⊆ ι−1(r) and ψk

1 , ψ
k
2 ∈ ΦR for each k ∈ [l] such that

sat(G,φ) =
⨆ {

{Ik} ⊎ sat(G(w1), ψk
1 ) ⊎ sat(G(w2), ψk

2 ) | k ∈ [l]
}
, (10.1)

where l only depends on the type of r.

Proof. This follows from Lemma 11.5 and Lemma 11.1.

As indicated, the proof of Lemma 10.1 is deferred to Chapter 11.
In the situation of Lemma 10.1, we call ψk

i a child formula of φ with respect to the
type of r. For k ∈ [l], we call (ψk

1 , ψ
k
2 ) a pair of child formulas. Note that Lemma 10.1

can be applied recursively to G(wi) and ψk
i for i ∈ [2], k ∈ [l] because of ψk

i ∈ ΦR.

Corollary 10.2. In the situation of Lemma 10.1, for every S ∈ sat(G,φ), there is a
unique k ∈ [l] with S ∈ {Ik} ⊎ sat(G(w1), ψk

1 ) ⊎ sat(G(w2), ψk
2 ).

Proof. This follows directly from the big union operator being a disjoint one.

The unique fitting pair of child formulas of a solution S ∈ sat(G,φ) is the pair (ψk
1 , ψ

k
2 )

with the unique k according to Corollary 10.2.

Lemma 10.3. In the situation of Lemma 10.1, if e ∈ S for some S ∈ sat(G(wi), ψk
i ),

then e is introduced by a node in T (wi).

The proof of Lemma 10.3 is deferred to Chapter 11.
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10.1. k-Best Optimization for Fixed k

Corollary 10.4. Let M(u) be the union of all feasible solutions for all formulas in ΦR.
For every edge e ∈ E, there is at most one node u of T with e ∈ M(u)\ (M(v1)∪M(v2))
for child nodes v1, v2 of u, and we have ι(e) = u.

The original algorithm from Courcelle and Mosbah aggregated each occurring set S
of solutions to a single value, the cost of an optimal solution in S. Since we are only
interested in linear cost functions, the cost of the union of two disjoint solutions is
just the sum of the costs of the two solutions. The cost of an optimal solution in the
disjoint union of solution sets is the minimum of the individual optimal solutions. They
obtained the following result for directed hypergraphs; see Chapter 11 for the transition
to undirected graphs.

Lemma 10.5. In the situation of Lemma 10.1, we have

v(G(r), φ) = min
{
c(Ik) + v(G(w1), ψk

1 ) + v(G(w2), ψk
2 ) | k ∈ [l]

}
, (10.2)

where v(H,ψ) is the value of an optimal solution in sat(H,ψ) for some graph H and
some formula ψ.

The basic algorithm of Courcelle and Mosbah, called CM algorithm henceforth, is
the dynamic programming equivalent to the recursive application of Lemma 10.5 and
computes the value of an optimal solution in sat(G,φ). For every node u ∈ U , we
maintain a dynamic programming table (DP table) which maps each ψ ∈ ΦR to the
value v(G(u), ψ). Populating the table of u is called evaluation of u.

To evaluate a leaf node u, we initialize all optimal solution values with positive infinity.
We enumerate every edge subset S of G(u). For every ψ, we check if S is feasible for
ψ, and store the value of the cheapest feasible solution seen so far in the table. To
evaluate an inner node u, we utilize the child formula relation and apply Lemma 10.5.
This requires that all child nodes of u have already been evaluated.

Conceptually, the above algorithm is a depth-first search on T , starting at its root r.
Every time we finish a node v, we evaluate it. Since the number of formulas and the
number of child formulas per formula are fixed, the overall running time is linear in the
size of T .

This algorithm can be modified to find the values of the two best solutions by simply
swapping some operators. Instead of reducing a set of feasible solutions at the leaves only
to its optimal value, we can just as well reduce it to the value of its two best solutions,
resulting in a non-decreasing sequence of two solution values. To evaluate an inner node
u, we apply Lemma 10.5 again, but using min2 instead of min, and +2 instead of +.
Both min2 and +2 are binary operators operating on non-decreasing pairs of solution
values. The aggregation min2, applied to (a1, b1), (a2, b2), returns (a1,min(b1, a2)) if
a1 < a2, and (a2,min(a1, b2)) otherwise. In other words, it picks the two smallest values
from a1, a2, b1, b2 in non-decreasing order. The accumulation +2, applied to the same
operands, returns, (a1 +a2,min(a1 +b2, a2 +b1)). This is equivalent to considering every
sum of one value from the first operand and one value from the second operand, i.e.,
a1 +a2, a1 + b2, b1 +a2 and b1 + b2, and again picking the two smallest in non-decreasing
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order. Note that we always have a1 + a2 ≤ min(a1 + b2, a2 + b1) ≤ b1 + b2, allowing for
the simplification above. Applying these operators takes constant time, so the overall
asymptotic running time is not changed by this operator swap.

Lemma 10.6. Let w ∈ N, and P be the combinatorial optimization problem character-
ized by a formula φ ∈ ΦR and cost functions c. Given an undirected graph G, the CM
algorithm computes the values of the two best solutions satisfying φ on G in linear time
when used with the operators min2 and +2.

Proof. Correctness follows from Lemma 10.5 and the fact that the operators min2 and
+2 can be evaluated in constant time. Alternatively, it follows from directly from
Lemma 11.5 and Lemma 11.1.

We refer to the CM algorithm in conjunction with the min2 and +2 operators as the
2-CM algorithm.

When aggregating sets of solutions to a sequence of values of bounded length as
described above, much information about the solutions themselves is lost. We cannot
check if some edge e is part of an optimal solution by only looking at the root node, since
we only store the value of the solutions. Further, we cannot check if two equal solution
values in a DP table of a node u refer to the same solution, or to two different solutions
with the same value.

Example 5. We consider the toy problem of computing minimum weighted matchings
of cardinality exactly three, or the minimum three non-adjacent edges problem, on undi-
rected graphs of treewidth at most w ≥ 2. Figure 10.2 shows an example input graph
G = (V,E) with treewidth 2 and edge costs c and a rich binary tree decomposition
(T = (U,F ), b, ι) of G with width 2.

The formula ψn,i
I for n ∈ [w], i ∈ [3] and I ⊆ [3] with one free variable S expresses that

a set S is a matching consisting of exactly i edges of a graph with exactly n designated
vertices s1, . . . , sn such that si has an incident edge in S iff i ∈ I, i.e.,

ψn,i
I (S) = (∀ v ∈ V : degreeAtMost1(v,S)) ∧

⋀
i∈I

(∃ e ∈ S : isIncident(si, e)).

Then feasible solutions for the three non-adjacent edges problem on a graph with n
designated vertices are exactly the structures that model the formula

φ(S) :=
⋁

I⊆[3]
ψn,3

I (S)

with one free edge set variable S.
Consider a solution S that does not contain edges that are introduced in r, i.e.,

S ∩ ι−1(r) = ∅. As a consequence, we have a = |S(w1)|, b = |S(w2)|, a, b ∈ [3] and
a+ b = 3. In other words, a edges in S were chosen from G(w1) and b edges were chosen
from G(w2). Both G(w1) and G(w2) are graphs with three designated vertices, so there is
a pair of formulas (ψ3,a

I , ψ3,b
J ) with I, J ⊆ [3] and S ∈ sat(G(w1), ψ3,a

I )⊎sat(G(w2), ψ3,b
J ).
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(a) Input graph G
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(b) Rich binary tree decomposition of G

Figure 10.2.: Weighted undirected graph G = (V,E) and a rich binary tree decomposi-
tion (T = (U,F ), b, ι). Graphs inside a blue node u ∈ U are the subgraphs
G[b(u)]. Every edge e ∈ E is introduced by the unique node that depicts e
as a solid edge.
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Now consider a solution S that contains edges that are introduced in r and are therefore
not part of the subsolutions S(w1) and S(w2), i.e., we have a non-empty intersection
M = S ∩ ι−1(r). With a, b as above, we now have a+ b+ |M | = 3. Let Ui = {i ∈ [n] |
si of G(wi) is not covered by M} be the indices of designated vertices of the subgraph
G(wi), i ∈ [2], that are not covered by an edge in M . Let C be the set of vertices in
b(r) that are covered by an edge in M . These vertices may not be covered again by
edges selected in subsolutions. There is a pair of formulas (ψ3,a

I , ψ3,b
J ) with I ∈ [3] ⊆ U1,

J ∈ [3] ⊆ U2 and S ∈ {M} ⊎ sat(G(w1), ψ3,a
I ) ⊎ sat(G(w2), ψ3,b

J ).
For the root node of the example graph, we have

sat(G(r), φ) =⨆ {
sat(G(w1), ψ3,a

I ) ⊎ sat(G(w2), ψ3,b
J ) ⊎ {∅} | I, J ⊆ [3], a+ b = 3

}
⊔

⨆ {
sat(G(w1), ψ3,a

I ) ⊎ sat(G(w2), ψ3,b
J ) ⊎ Sv4v5 | I, J ⊆ [2], a+ b = 2

}
,

(10.3)

where Sv4v5 = {{{v4, v5}}} is the set consisting of a single solution consisting only of
edge {v4, v5}. This decomposition of φ assumes that the order on the designated vertices
are v4, v5 for G(r), v6, v7, v5 for G(w1) and v2, v3, v4 for G(w2). The child formulas of
ψn,i

I can be found similarly. Thus, the set F = {φ} ⊔{ψn,i
I | n ∈ [w], i ∈ [3], I ⊆ [3]} is

closed under the child formula relation from Lemma 10.1.
Initially, the 2-CM algorithm evaluates the three leaf nodes w1, w2 and w3. For the

single edge e in G(wi), i ∈ {3, 4}, the only formula with solution {e} is ψ2,1
{1,2}. The only

other solution, ∅, is only feasible for ψ2,0
∅ . None of the other formulas in F is feasible.

Similarly for G(w1), there is exactly one formula with the single solution {e} for each of
the three edges.

The inner node w2 has to be evaluated next. For each formula ψ in F , we adapt
Equation (10.3) to ψ, replacing each sat(·, ·) with v(·, ·). For example, a solution for
ψ3,2

[3] either consists of

• three non-adjacent edges introduced by w2 that cover all three designated vertices
of G(w3) (which is impossible in the example graph, since ι−1 forms a triangle),
and no edges introduced below w2, or

• one edge introduced by w2 that covers the first two designated source vertices v2
and v3, one edge introduced by w3 that covers the third designated source vertex
v4, and no edge introduced in w4, or

• . . .

In our case, the only feasible solution for ψ3,2
[3] is {{v1, v2}, {v3, v4}}, which corresponds

to the decomposition {{{v3, v4}}} ⊎ sat(G(w3), ψ2,1
{1,2}) ⊎ sat(G(w4), ψ3,0

∅ ). After w2 is
evaluated, the final node r can be evaluated, and the row of φ contains the values of the
two best solutions for the minimum three non-adjacent edges problem.

The tables in Figure 10.3 show the values of the best two solution for every formula
at every node. If formula ψ is missing in the table of node u, sat(G(u), ψ) is empty and
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φ

7, 11

ψ3,0
∅ ψ3,1

{1,2} ψ3,1
{1,3} ψ3,1

{2,3}

0, ∞ 5, ∞ 5, ∞ 1, ∞

ψ3,0
∅ ψ3,1

{1} ψ3,1
{1,2} ψ3,1

{1,3} ψ3,1
{2,3} ψ3,2

[3]

0, ∞ 4, ∞ 7, ∞ 3, ∞ 2, ∞ 6, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 4, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 7, ∞

r

w1 w2

w3 w4

Figure 10.3.: Dynamic programming tables of the 2-CM algorithm for the example input
graph and tree decomposition in Figure 10.2.

the table contains (∞,∞) in the row of ψ. An exception to this is the root node, where
only φ is shown.

Finally, note that the type of r is different from the type of w2. This already follows
from the fact that the child nodes of r have bag sizes of two and three, while the child
nodes of w2 both have bag size two. Therefore, decomposition of a formula according to
Lemma 10.1 can be different for r and w2.

10.2. k-Best Optimization for General k

In this section, we extend the algorithm from Section 10.1, where the number k of
solution values to enumerate was considered fixed to 2 and therefore independent from
the input, to an algorithm that expects k as part of the input.

Naively, we could simply generalize the approach used for k = 2. Instead of using
the operators min2 and +2, we would use mink and +k. However, evaluating these two
general operators requires time O(k). The resulting algorithm would have a running
time of O(kn). We improve upon this bound and obtain an algorithm with running time
O(n+ kD), where D is the depth of the tree decomposition.

The key idea revolves around managing a binary heap of objects that represent sub-
problems as described in Section 3.2.1. The Hamacher/Queyranne binary subproblem
heap approach requires an algorithm that solves the 2-best version of a combinatorial
optimization problem, so we will use the algorithm from Section 10.1. In order to use
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φ′

7, 11

ψ3,1
{2,3}

1, ∞

ψ3,0
∅ ψ3,1

{1} ψ3,1
{1,2} ψ3,1

{1,3} ψ3,1
{2,3} ψ3,2

[3]

0, ∞ 4, ∞ 7, ∞ 3, ∞ 2, ∞ 6, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 4, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 7, ∞

r

w1 w2

w3 w4

(a) Subproblem S({{v6, v7}}, ∅) that forces inclusion of the pivot

φ′

11, 11

ψ3,0
∅ ψ3,1

{1,2} ψ3,1
{1,3}

0, ∞ 5, ∞ 5, ∞

ψ3,0
∅ ψ3,1

{1} ψ3,1
{1,2} ψ3,1

{1,3} ψ3,1
{2,3} ψ3,2

[3]

0, ∞ 4, ∞ 7, ∞ 3, ∞ 2, ∞ 6, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 4, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 7, ∞

r

w1 w2

w3 w4

(b) Subproblem S(∅, {{v6, v7}}) that forces exclusion of the pivot

Figure 10.4.: Dynamic programming tables of the 2-CM algorithm for the example input
graph and tree decomposition in Figure 10.2 if only solutions are considered
that include (above) or exclude (below) the pivot edge {v6, v7}.
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Frederickson’s heap selection algorithm on this binary heap, we need an efficient way to
query the value of the second-best solution for each subproblem. Also, the heap does
not exist initially, so we also need to be able to create those parts of the heap that are
required by the heap selection algorithm efficiently.

Let us assume for now that we have an oracle that, given a subproblem of the original
problem characterized by φ ∈ ΦR, gives us a pivot edge, i.e., an edge e that is an
element of the optimal solution, but not an element of the second-best solution, or vice
versa, as well as the node of the tree decomposition that introduces e. Following the
Hamacher/Queyranne approach, we use a subproblem S(I,O) and the pivot e to create
two subproblems S(I ⊔{e}, O) and O(I,O⊔{e}).

First, observe that the two new subproblems are no longer in CMS2. We do not have
literals for edges in CMS2, so we cannot express e /∈ S. Even if we had literals for edges,
the number of these literals would be fixed independently from the size of the graph.
Otherwise, the set ΦR would no longer be finite.

Second, even if we had an algorithm similar to 2-CM that solves subproblems that
are not in CMS2, we would not be allowed to compute the complete DP tables for all
the subproblems. If we want to enumerate k values using the Hamacher/Queyranne
approach, we have to solve k − 1 many subproblems. We cannot store DP tables of size
O(n) each, because that would result in an algorithm with running time Ω(kn).

Example 6. We create the first two subproblems for Example 5. The optimal solution
is {{v1, v2}, {v3, v4}, {v6, v7}}, its value is 7. The value of three second-best solutions
is 11; we use the solution {{v1, v2}, {v3, v4}, {v5, v6}} for now, and explain later in this
section how the algorithm copes with ambiguities. Further, assume that our pivot oracle
gave us the pivot e = {v6, v7} as well as the node w1 that introduces e.

The DP tables for both subproblems are shown in Figure 10.4. Again, columns of
infeasible formulas are not on display. Observe that only tables of nodes on the path
from r to w1 have changed.

The observation in the example is actually a general rule. From Lemma 10.1, we
know that solutions at some node u cannot contain an edge e if e /∈ E(u), i.e., if e is not
introduced by a node in T (u). On the other hand, those nodes u for which e ∈ E(u) are
exactly those on the unique path from r to ι(e) in T .

We extend the functions sat and v to subproblems that are not in CMS2: For a
subproblem P ′ with feasible solutions S(I,O), satP ′(G(u), ψ) is the set of subsolutions
S(u) for S ∈ sat(G(u), ψ) with I ⊆ S and S ∩O = ∅, and vP ′(G(u), ψ) are the values of
the two best solutions in satP ′(G(u), ψ).

Let T be the evaluation tree of a subproblem P rooted in r with feasible solutions
S(I,O), and e a pivot for P . We describe how to adapt T to a subproblem P ′ of P with
solution set S(I ′, O′), with either I ′ = I ⊔{e} and O′ = O, or I ′ = I and O′ = O⊔{e},
given e and the nodes u1, . . . , ul of the r-ι(e) path in T . We update the tables bottom
up, i.e., for ui in descending order, starting with ul. If ul is a leaf, we simulate the 2-CM
algorithm for leaf nodes by enumerating all subsets of E(ul), so check for each subset S
if S is a feasible solution for any of the formulas in ΦR. However, we do not consider S
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φ

11, 11

ψ3,0
∅ ψ3,1

{1,2} ψ3,1
{1,3} ψ3,1

{2,3}

0, ∞ 5, ∞ 5, ∞ 1, ∞

φ

11, 11

ψ3,1
{2,3}

1, ∞

φ

7, 11

ψ3,0
∅ ψ3,1

{1,2} ψ3,1
{1,3}

0, ∞ 5, ∞ 5, ∞

ψ3,0
∅ . . .

0, ∞ . . .

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 4, ∞

ψ2,0
∅ ψ2,1

{1,2}

0, ∞ 7, ∞

r

w1

r({{v6, v7}}, ∅)

w1

r(∅, {{v6, v7}})

w1
w2

w3 w4

Figure 10.5.: Persistent data structure for Figure 10.2 holding all three versions of the
tree of dynamic programming tables from Figure 10.4. From the thick
tree of tables, two trees are derived (mixed thin and thin). Note that the
original, thick tree is not shown in Figure 10.4.

if I ⊈ S, since we want to adapt the table to P ′ where every feasible solution contains
e. For each inner node ui, we simulate the 2-CM algorithm for inner nodes using the
subformula relation from Lemma 10.5. This time, we skip every k with (I ′ ∩E(ui)) ⊈ Ik

or with Ik ∩O′ ̸= ∅.

Lemma 10.7. Let T be an evaluation tree of depth d rooted in r for a subproblem with
feasible solutions S(I,O). Given a pivot e for P and the r-ι(e) path in T , we can adapt
T to a subproblem P ′ whose feasible solutions are either S(I ⊔{e}, O) or S(I,O⊔{e}) in
time O(d).

Proof. We show that the above algorithm finds the values of the two best solutions in
satP ′(G(ui), ψ) for every ψ ∈ ΦR.

If ul is a leaf, we obviously consider exactly those solutions that adhere to the restric-
tions imposed by P ′. Checking if a solution is a model for some ψ is done in the same
way as in the 2-CM algorithm.

Let ui be an inner node. At most one of the child nodes of ui lies on the r-ι(e)
path, and we compute satP ′ correctly for this child node. Let v be a child node of
ui that does not lie on that path. Due to Corollary 10.4, adding edges to I or O
that are not in E(v) does not affect the solution sets sat at v. Therefore, we have
satP (G(v), ·) = satP ′(G(v), ·), and the DP table of v does not have to be modified. This
is also true for every node that is not a child of one of the nodes ui. It follows that satP ′
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has already been computed correctly for all child nodes of ui when we re-evaluate ui. In
other words, for every subsolution S at child node v of ui we have (E(v) ∩ I) ⊆ S and
S ∩ O = ∅. The algorithm above only uses those k for the composition of solution sets
according to Lemma 10.5 with (I ′ ∩ E(ui)) ⊆ Ik and Ik ∩O′ = ∅. This is sufficient due
to Corollary 10.4.

Finally, we need a way to compute a pivot e and its introducing node ι(e). Consider the
root node on the right side of Figure 10.5 for subproblem S({{v6, v7}}, ∅). The column
of φ contains the value 11 twice, meaning that the optimal and second-best solution have
the same value. We now by constructions that the two solutions behind those values have
to be distinct. We also know that the solution with value 11 referenced in the symmetric
subproblem S(∅, {{v6, v7}}), as seen on the left side of Figure 10.5, has to be yet another
solution, because those two subproblems partitioned the solution space of the parent
problem. It is possible, but quite technical to reconstruct the corresponding solutions.
Without care, we might want to extract both solutions of the right subproblem, and end
up with the same solution twice.

To make things easier, we introduce solution IDs. For every solution value in every
DP table, we store some information about the solution for this value. Formally, we
compute functions π1

u : ΦR → [2|ΦR|] and π1
u : ΦR → [2|ΦR|] such that for each i, j ∈ [2]

and ψ ∈ ΦR, πi
u(ψ) = πj

u(ψ) iff the i-th solution value for ψ in the DP table of u is
meant to reference the same solution as the j-th solution value for ψ in the DP table of
u.

We extend the 2-CM algorithm to also compute solution IDs. The computation is
straightforward for the leaves: every subset receives its own solution ID. Now consider
the evaluation of ψ at an inner node u with child nodes w1 and w2. The solution ID of
the combination of the i-th best solution value for child formula ψk

1 at w1 and the j-th
best solution value for child formula ψk

2 at w2 is computed as πi
w1(ψk

1 ) + |ΦR| · πi
w2(ψk

2 ).
The solution IDs computed so far might exceed the codomain [2|ΦR|]. In the end,

however, only 2|ΦR| many different solution IDs are used in any table, because this
is the number of solution values we store. Hence, we may apply an arbitrary injective
compression function γ : [2|E(u)|] → [2|ΦR|] at leaf nodes, or γ : [|ΦR|2] → [2|ΦR|] at inner
nodes. Storing γ as well as the solution IDs for each DP table only requires O(|ΦR|)
extra space per node.

With solution IDs in place, we can find a pivot by following a path starting in the root
of an evaluation tree. We only have to make sure that the subsolutions S1(u) and S2(u)
of the optimal solution S1 and the second-best solution S2 differ at the current node u.

We maintain a current node u, k1, k2 ∈ [2], and formulas ψ1, ψ2 ∈ ΦR. Initially, u
is the root of the evaluation tree we want to find a pivot for. For i ∈ [2], we initialize
ki = i, and ψi = φ. We find a pivot recursively as follows.

If u is an inner node, let w1 and w2 be the child nodes of u. For i ∈ [2], we find
ki,1, ki,2 ∈ [2] and the unique pair of subformulas (ψi,1, ψi,2) of ψi such that the ki-th
best solution for ψi at u is composed of the ki,1-th best solution for ψi,1 at w1 with
solution ID si,1, the ki,2-th best solution for ψi,2 at w2 with solution ID si,2, and a subset
Ii ⊆ ι−1(u) of the edges that are introduced by u. We use the solution IDs of the child
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nodes of u and the compression function of u to find these pairs. If s1,1 ̸= s1,2, we set
u = w1, ψ1 = ψ1,1 and ψ2 = ψ1,2, and recurse. Otherwise, if s2,1 ̸= s2,2, we set u = w2,
ψ1 = ψ2,1 and ψ2 = ψ2,2, and recurse. Otherwise, i.e., if s1,1 = s1,2 and s2,1 = s2,2, we
return u and an element in the symmetric difference of I1 and I2, and terminate.

If u is a leaf, we do not have to take care of subsolutions. We reconstruct solutions Su
1

and Su
2 with matching solution IDs s1 and s2, respectively. We return u and an element

of the symmetric difference of Su
1 and Su

2 , and terminate.

Lemma 10.8. Let G be an undirected graph, φ ∈ ΦR be a formula that characterizes
feasible solutions of CMS2 problem P on G, and T be an evaluation tree of depth d with
solution IDs for the two best solution values of a subproblem P ′ of P on G. A pivot edge
e for P ′ as well as ι(e) can be found in O(d) time.

Proof. We use the recursive algorithm above and maintain the invariants

1. at the beginning of the j-th iteration, the unique simple path from the root to u
has j edges, or the algorithm was already terminated,

2. for i ∈ [2], there is an optimal solution S1 and a second-best solution S2 in
satP ′(G,φ) such that Si(u) is the ki-th best solution for ψi at u, and

3. πk1(ψ1) ̸= ψk2(ψ2).

Initially, the first and third invariant hold trivially. The second invariant holds because
otherwise the optimal solution would be the same as the second-best solution.

Assume that the invariants hold at the beginning of an iteration. If the algorithm
terminates, no variables are modified, leaving the invariants unaffected. The only re-
maining case is u being an inner node, and there are still subsolutions of S1(u) and S2(u)
that differ at child node w1 or w2 of u. The correct child node is chosen by considering
solution IDs, so the second invariant follows for the exact same solutions S1 and S2, and
the third invariant follows directly. By setting u to one of its child nodes, we increase
the depth of u, so the first invariant holds at the beginning of the next iteration.

Let S1, S2 be the two solutions of the second invariant. Upon termination, there are
no subsolutions of S1(u) and S2(u) that differ. Because of the third invariant, S1(u) and
S2(u) themselves have to differ, so the only difference can lie within the edges introduced
by u.

Because of the first invariant, the algorithm terminates after at most d iterations. An
iteration basically consists of the enumeration of all pairs of child formulas for ψ1 and
ψ2, resulting in a total running time of O(d).

The above algorithm for finding the pivot can now replace our oracle.

Corollary 10.9. Let G be an undirected graph, φ ∈ ΦR be a formula that characterizes
feasible solutions of CMS2 problem P on G, and T be an evaluation tree of depth d
with solution IDs for the two best solution values of a subproblem P ′ of P on G. The
evaluation tree T for P can be updated to be an evaluation tree for P ′ in time O(d).
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7, 10

{v6, v7}

11, 11

{v5, v6}

11, ∞ 11, ∞

7, 11

{v3, v4}

11, 14

{v1, v2}

11, ∞ 14, ∞

7, ∞

− +

+,−

(a) Binary subproblem heap

r

w1 w2

w3 w4

r+

w+
1

r−

w−
1

r+,−

w+,−
2

(b) DP tables in persistent heaps

Figure 10.6.: Subproblem heap and persistent evaluation trees for non-uniquely solvable
subproblems for Example 5. Subproblem upper parts: two best solution
values; lower parts: selected pivot edge. DP tables with superscripts are
created during the DP table tree update for the corresponding subproblem.
The evaluation tree of the original problem is thick.

Proof. We can find a pivot e and its introducing node u in time O(d) (Lemma 10.8),
and use this information to update the O(d) many DP tables bottom-up it time O(d)
(Lemma 10.7).

The situation for the two child problems of the problem in Example 5 with pivot edge
{v6, v7} is illustrated in Figure 10.5. The complete binary heap of subproblems for one
possible selection of pivot edges in Example 5 together with the evaluation trees of all
subproblems with at least two feasible solutions, represented as persistent heaps, can be
seen in Figure 10.6.

The presence of solution IDs also makes it straightforward to extract a solution from
an evaluation tree in linear time.

Lemma 10.10. Let G = (V,E) be an undirected graph, φ ∈ ΦR be a formula that
characterizes feasible solutions of problem P on G, and T be an evaluation tree of depth
d with solution IDs of a subproblem P ′ of P on G. Given ψ ∈ ΦR, i ∈ [2] and u ∈ U ,
the i-th best solution in satP ′(G(u), ψ) can be computed in time O(d).

Proof. We perform a depth-first search, starting at (r, ψ). At each inner node u with
child nodes w1, w2, we recurse using (w1, ψ1) and (w2, ψ2) where solution IDs match,
reconstructing the matching sets Ik according to Lemma 10.1 as we go. At a leaf u,
we reconstruct the matching subset of E(u) accordingly. We visit every node once, and
only require constant time per node.
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The pivot finding algorithm is a query operation on an arborescence that only requires
a handle to the root node. It can easily be modified to record the nodes it visited, i.e.,
the various states of u. These are exactly those nodes that lie on the path from the
root node to the node that introduces the pivot. Combining this modified pivot finding
algorithm with the DP table update algorithm, we obtain two update operations on an
arborescence that only require a handle to the root node, one that enforces inclusion of
a pivot, and one that forces exclusion of the same pivot. Finally, the solution extraction
operation, too, only requires the root node of an evaluation tree. Therefore, these four
operations are eligible to be used in conjunction with persistent arborescences.

Actually, there are two reasons to exploit persistence. First and foremost, with-
out persistence we can only derive one subproblem P ′ from any subproblem P . The
evaluation tree of P is simply lost if we perform the change ephemerally. For the
Hamacher/Queyranne subproblem heap, however, we need to be able to derive two
subproblems from each P . We obtain the following.

Theorem 10.11. Let w ∈ N and φ ∈ CMS2 be fixed. Given k ∈ N and an undirected
graph G = (V,E) with w designated vertices and treewidth at most w, the values of the
k best solutions for φ on G can be computed in time O(|V | + k log |V |).

Proof. We compute a tree decomposition (T, b) ofG of width w rooted in r in time O(|V |)
according to Bodlaender [12]. We add a new root r′ whose bag contains exactly the
designated vertices of G, with r being the only child of r′. We have to add the designated
vertices to some bags to obtain a valid tree decomposition with width at most 2w. From
this, we compute a shallow, binary, rich tree decomposition (T ′, b′, ι) with width 6w− 2
using an algorithm from Bodlaender and Hagerup [15] and Lemma 9.1. We compute a
persistent evaluation tree using the 2-CM algorithm, and use the Hamacher/Queyranne
framework for finding the k best solutions. Computing the first evaluation tree requires
O(|V |) time. Using Frederickson’s heap selection algorithm on the subproblem heap, we
make sure that O(k) subproblems are created, each of which requires time O(log |V |)
using the persistent DP table update algorithm.

The second reason is the sustained possibility to extract solutions. With handles to
every old version of the evaluation tree, we are able to extract any solution whose value
we computed.

There is not much room for parallelization in the algorithm above. Evaluating a tree
decomposition node only takes constant time. In the update procedure, we need to
evaluate the affected nodes bottom-up, and the depth of a binary tree decomposition
with optimal width is Ω(log |V |). However, the initial evaluation tree can be computed
in parallel.

Theorem 10.12. Let w ∈ N and φ ∈ CMS2 be fixed. Given k ∈ N and a shallow, binary
tree decomposition (T = (U,F ), b) with width w for an undirected graph G, the values
of the k best solutions for φ on G can be computed in time O(k log |U |) in the EREW
PRAM model.
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Proof. We allocate one processor p(u) for each node u of T which is responsible for
evaluating u. Processor p(u) waits until all processors p(v) of child nodes v of u have
finished. The processor of the root node of T therefore waits O(log |G|) time. Only pro-
cessor p(u) writes solutions for node u, and only the parent u′ of u reads them, satisfying
restrictions of the EREW model. The algorithm to enhance a tree decomposition to a
rich one can be parallelized accordingly.

Finally, using the algorithm of Bodlaender [14] on O(|G|3w+4) processors to compute
a shallow tree decomposition, we obtain the following.

Corollary 10.13. Let w ∈ N and φ ∈ CMS2 be fixed. Given k ∈ N and an undirected
graph G of width w, the values of the k best solutions for φ on G can be computed in
time O(k log |U |) by O(|V |3w+4) processors in the CRCW PRAM model.
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In this chapter, we prove that the results from the previous section hold for directed hy-
pergraphs, which requires an excursion on hypergraph algebras and semi-homomorphisms.
With the basics set, correctness for the generalization of Courcelle and Mosbah’s algo-
rithm to finding the two best solution values is trivial. We give the missing proofs for
undirected graphs of bounded treewidth with a fixed amount of designated vertices,
using the results on hypergraphs.

In this section, we adopt much of the following notation from Courcelle and Mos-
bah [35]. All hypergraphs in this section are labeled hypergraphs, so we omit the labeled
qualifiers. After some definitions in Section 11.1, we show that the hypergraph approach
is just a more general view on the same problem, and how the terms used here transfer
to undirected graphs in Lemma 11.1.

11.1. Definitions

In this section, we define a hypergraph algebra whose parse trees serve as a replacement
of tree decompositions, as well as semi-homomorphisms, a generalization of homomor-
phisms. We redefine some of the terms used in Chapter 10 so they can be applied in a
hypergraph context.

11.1.1. Hypergraph Algebra

For hypergraphs, we perform a change in perspective. Given a set of basic hypergraphs
and a set of operations to compose larger hypergraphs, we are interested in how a
hypergraph could have been created. This can be described formally using a hypergraph
algebra. A hypergraph term is either a constant symbol of the algebra, or a composed
term. Let (A,≤, τ) be a ranked alphabet of hyperedge labels, arbitrarily fixed for the
reminder of this section. The function τ : A → N maps each edge label to its order. An
algebra for hypergraphs over A contains the following symbols.

The constant symbol 0 denotes the empty, 0-interface hypergraph, i.e., it has no
vertices or hyperedges. The constant symbol 1 denotes the 1-interface hypergraph with
exactly one vertex, but no hyperedges. For each a ∈ A, a denotes the τ(a)-interface
hypergraph with node set {v1, . . . , vτ(a)}, a single hyperedge e with lab(e) = a and
vert(e) = (vi)i∈[τ(a)], and src = vert(e).

Let term t denote the R-interface hypergraph G = (V,E, vert, lab, src) and term t′

denote the R′-interface hypergraph G′ = (V ′, E′, vert′, lab′, src′). The term t ⊕R,R′ t′

denotes the (R+R′)-interface hypergraph defined by
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• the vertex set (V × {1}) ⊔(V ′ × {2}),

• the hyperedge set (E × {1}) ⊔(E′ × {2}),

• vertex sequences vert′′ with vert′′((e, 1)) = vert(e) for e ∈ E and vert′′((e, 2)) =
vert′(e) for e ∈ E′,

• labeling function lab′′ with lab′′((e, 1)) = lab(e) for e ∈ E and lab′′((e, 2)) = lab′(e)
for e ∈ E′, and

• the R+R′ designated vertices src1, . . . , srcR, src′
1, . . . , src′

R′ .

This comes down to a disjoint union of two hypergraphs without the restrictions of the
vertex or hyperedge sets being disjoint. For each j ∈ [R], i ∈ [j − 1], θi,j,R(t) denotes
the R-interface hypergraph obtained from G by removing srcj from the vertex set of
G and replacing every occurrence of srcj with srci in the source sequence of G and in
every vertex sequence of a hyperedge of G. This is equivalent to fusing srcj into srci.
For a mapping α : [p] → [R], σα(t) denotes the p-interface hypergraph obtained from G
by replacing its R-element source sequence src with the p-element sequence src′, with
src′

i = srcα(i).
For a hypergraph term t, the hypergraph represented by t is denoted by v(t). A

hypergraph G is generated by a graph algebra H if there is a term t over H with
v(t) = G. Every hypergraph over A can be generated by a combination of the constant
symbols and hypergraph operators above. However, it consists of an infinite number
of hypergraph operators. A family L of hypergraphs over A is finitely generated if
there is a finite set OU = {⊕R,R′ | R,R′ ∈ N} of disjoint union symbols, a finite set
OF ⊆ {θi,j,R | R ∈ N, i ∈ [R], j ∈ [R] − i} of fusion symbols and a finite set OR = {σα |
p ∈ N, α : [p] → [R] injective} of relabeling symbols such that every hypergraph in L can
be generated by the algebra ⟨0,1, {a | a ∈ A}, OU , OF , OR⟩.

We say that t is a subterm of t ⊕R,R′ t′, t′ ⊕R′,R t, σα(t) and θi,j,R(t). The subterm
relation is transitive, i.e., subterms of subterms are again subterms, and symmetric. The
order of t is R if v(t) is an R-interface hypergraph. The depth of the terms 0, 1 and a
for a ∈ A is 1, while the depth of any other term is the maximum depth of any proper
subterm plus one. The width of t is the maximum order of a subterm of t. The width
of a hypergraph G is the minimum width of a term t with v(t) = G. Every family L
of hypergraphs of bounded width over A is finitely generated [4, 7, 32]. We denote by
GR = GR(A) the set of R-interface hypergraphs over A.

Our algorithms work on parse trees of hypergraphs in GR(A) with respect to some
finite hypergraph algebra H. A parse tree T = (U,F ) is an arborescence with root node
r that represents a term t generated by H. Every node u of T is associated with a
symbol in H, called the type of u. If t = t1 ⊕R,R′ t2, then r is associated with ⊕R,R′

and has two child nodes representing t1 and t2. If t = σα(t′) or t = θi,j,R(t′), then r is
associated with σα or θi,j,R, respectively, and has one child node representing t′. If t is a
constant symbol, r is associated with that symbol and a leaf of the parse tree. Note that
the depth of t coincides with the depth of T . For u ∈ U , G(u) denotes the hypergraph
represented by T (u). Figure 11.1 shows an example hypergraph and its parse tree.
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(b) Parse tree of G

Figure 11.1.: A 2-interface (hyper)graph G ∈ G2, with designated vertices s and t. The
vertices on the left of each parse tree node u are the sequence of designated
vertices of G(u). Every edge is labeled with the only label ε with order 2.

We give the missing proofs from Chapter 10 by proving equivalent results on parse trees
and then transferring them to undirected graphs. To do this, we give a transformation
from a rich binary tree decomposition (T = (U,F ), b, ι) of G = (V,E) with width
bounded by w to a hypergraph term over the above hypergraph algebra by replacing
every node u ∈ U with a parse subtree of depth, width and size O(w) for a hypergraph
term of bounded width. We do not require distinct edge labels, so we use the alphabet
A = {a}. We give constructions for terms that represent subgraphs or single features of
G.

We first construct a hypergraph term t that represents the subgraph of G induced
by the bag b(r) of the root r of T that only contains the edges ι−1(r) introduced by
r. For |ι−1(r)| = 1, we have t = a. The two vertices of the graph represented by this
term are the two endpoints of the unique edge introduced by r. Otherwise, assume
that n = |ι−1| is divisible by two. We produce two terms t1, t2 recursively that contain
n
2 edges of ι−1 each, partitioning ι−1 so no edge is produced twice. As the base case,
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11. Generalization to Hypergraphs

we need to construct subterms for single edges again, which is already described for
the case |ι−1(r)| = 1. Now some vertices in v(t1) represent vertices of G that are also
represented in v(t2). We disjointly merge the two graphs and then fuse those vertices of
v(t1 ⊕ t2) that represent the same vertices of G. Finally, we use the designated vertex
relabeling operation to remove duplicate designated vertices. This results in the term
σθ · · · θ(t1 ⊕ t2), with at most |ι−1(r)| many θ operators.

Let tw1 , tw2 be terms that represent G(w1), G(w2) for child nodes w1, w2 of r. Then
G = G(r) is represented by the term σθ · · · θ((σθ · · · θ(tw1 ⊕ tw2)) ⊕ t). The inner paren-
theses represent G(r) without the edges introduced by r and without vertices in b(r)
that are neither in b(w1) nor in b(w2). Those missing features are covered by t. The σ
operator and the θ operators in the inner parentheses make sure that the width of the
left operand of the last ⊕ is at most w. Those same operators at top-level (on the left
side of the term) impose a bound on the width of the whole term.

Finally, for every vertex v ∈ b(r) that is isolated in G(r), we append ⊕1. The 1 term
then represents v.

We proceed recursively, and obtain term tu for every node u of the tree decomposition.
By replacing u in the tree decomposition with a parse tree of tu, we obtain a parse tree
for a directed version of G.

Lemma 11.1. Let w ∈ N. For every undirected graph G = (V,E) of bounded width
w and every binary tree decomposition (T = (U,F ), b) of G with width w, there is a
hypergraph term t such that

• G can be obtained from v(t) by replacing every directed edge with an undirected
one on the same two vertices,

• the width of t is bounded by 2w,

• the length of t is O(|V |), and

• the depth of t is linearly bounded in the depth of T .

Proof. The θ operators make sure that several versions of the same vertex of G produced
in subterms are fused together. Every edge is produced exactly once in the subterm of
the node that introduces it.

The only operators that increase the order of a term are the ⊕ operators. However,
the operands of ⊕ are either a or start with σ and a series of θ operators, making sure
that the width of both subterm is at most max{2, w}. The width of the resulting term
is clearly bounded by 2w.

Let u ∈ U and n = |ι−1(u)|. We show by induction that the length of the subterm
produced for the edges introduced by u is bounded by s(n) := (3 +w)n−w− 2 if there
are no isolated vertices in G(u). If u introduces exactly one edge, the term is a of length
(3+w) ·1−w−2 = 1. Otherwise, the term is σθ · · · θ(t1 ⊕ t2). It has one σ operator, one
⊕ operators, w many θ operators, and the length of t1, t2 is assumed to be bounded by
s(n

2 ). Then the length of the overall term is 2+w+2s(n
2 ) = 2+w+2((3+w)n

2 −w−2) =
(3 + w)n− w − 2.
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A node can only introduce w(w−1)
2 ∈ O(w2) many edges. For every u ∈ U , there are at

most w vertices that cause an added ⊕1 term. Merging the subterms of the child nodes
of u and the subterm for the edges introduced by u adds another 2w + 4 operators. In
summary, the length of t is bounded by s(w2) + (2w) + (2w + 4) ∈ O(w2). Since w is a
constant, the concatenation of all subterms has length O(|V |).

Finally, the depth of t for node u as above is bounded by its length. Replacing u in T
with a parse tree of t therefore does not change its depth asymptotically.

For fixed w, there are only finitely many subterms distinct tu that can result from the
above transformation. Instead of the definition of the type of a tree decomposition node
in Chapter 10, we can define the type of u to be tu. Both type definitions only depend
on the relation between the designated vertices of u and its child nodes, as well as the
pairs of designated source vertices for which u introduced an edge, and are therefore
equivalent.

Sometimes it is convenient to have exactly two child nodes for each inner node of the
parse tree. To achieve this, we can use a slightly modified hypergraph grammar. We can
think of σα operators as having a second operand that is always the empty hypergraph.
Likewise, θi,j,R operators can be viewed as having a second operand that is always the
one-vertex hypergraph. These modified operators can even be derived from the original
ones. Instead of σα, we can use σ′

α = σα ◦ ⊕0,R(0). The operator θi,j,R can be replaced by
the composition θ′

i,j,R = θi,j,R ◦σα ◦ θi,R+1,R+1 ◦ ⊕1,R(1) with σ : [R] → [R+ 1], σ(i) = i.
We call the resulting algebra the binary hypergraph algebra. Parse trees of hypergraphs
with respect to the binary hypergraph algebra are called full parse trees. The proper
child of a θ′ or σ′ node is the one that does not represent the one-vertex or empty
hypergraph, respectively.

Let q ∈ N be fixed. To express problems on R-interface hypergraphs, RN, over A in
formulas, we have to represent hypergraphs in relational structures. In Chapter 10, we
used structures over the signature {s1, . . . , sR, isIncident} ∪ {Cardm,p | m, p ∈ N,m >
p}. The binary incidence relation symbol does not suffice anymore. Instead, we use
one incidence relation symbol edga of arity τ(a) for every a ∈ A. Specifically, we use
the signature Sq

A,R = {s1, . . . , sR} ∪ {edga | a ∈ A} ∪ {Cardm,p | p ∈ [q],m ∈ [p]}. A
hypergraph G = (V,E, vert, lab, src) over A can be represented as a relational structure
⟨V ⊔E,Sq

A,R, I⟩ with I(si) and I(Cardm,p) as above, and I(edga) = {(e, v1, . . . , vn) ∈
E × V n | lab(e) = a ∧ τ(a) = n ∧ vert(e) = (v1, . . . , vn)}.

The finite set ΦR = Φh,q
A,R consists of the set of formulas with signature Sq

A,R with
depth of nested quantification at most h ∈ N. Let ψ ∈ ΦR, and let X be a free variable
of ψ. Further, let ⟨V ⊔E,Sq

A,R, I⟩ be a model for ψ with X = I(X). We assume that ψ
enforces a type on X, type(X) ⊆ {V,E}, such that X ⊆ type(X) for every such model. In
other words, we can deduce from a formula whether a free variable is assumed to contain
vertices or hyperedges, and no free variable is intended to represent mixed vertex and
hyperedge sets.

We consider a combinatorial optimization problem P on hypergraphs in GR(A) whose
set of feasible solutions is characterized by a formula φ ∈ ΦR. In contrast to Chap-

99



11. Generalization to Hypergraphs

ter 10, we do not restrict φ to one free edge set variable. Instead, φ has a sequence
X1, . . . ,Xn of free variables. The number and types of the free variables only depends
on the problem, but not on the input graph. For each model ⟨V ⊔E,Sq

A,R, I⟩, the tu-
ple (I(X1), . . . , I(Xn)) is a feasible solution for the problem characterized by φ. We
extend the function sat, so it maps hypergraph G ∈ GR(A) and formula φ ∈ ΦR to
the set of feasible solutions for φ on G. Additionally, we denote by U(G,φ) the set of
all n-tuples where the i-th element is a subset of type(Xi). In other words, U(G,φ) is
the set of all solutions for P on G, both feasible and infeasible, and we always have
sat(G,φ) ⊆ U(G,φ). Please note that a solution is a tuple of sets of vertices or hyper-
edges in this section, while a solution in Chapter 10 was just a set of undirected edges.
Two solutions X, X ′, are distinct if there is j ∈ [n] with Xj ̸= X ′

j . Therefore, a solution
(X1, X2) is also distinct from a solution (X2, X1) for X1 ̸= X2, even if φ is a formula on
two free variables, and symmetric on these free variables. For a parse tree node u ∈ U ,
X(u) denotes the subsolution of X at u, which is obtained from X be removing every
graph feature from every set Xi that is not present in G(u). The special solution ∅ is
the n-tuple (∅, . . . , ∅).

11.1.2. Semi-Homomorphisms

We use evaluation structures to express values of solution sets. An evaluation structure
is an algebra M = ⟨M,⊕,⊗,0,1⟩ such that ⟨M,⊕, f⟩ and ⟨M,⊗,1⟩ are monoids, i.e.,
⊕ : M ×M → M and ⊗ : M ×M → M are associative, m⊕0 = 0⊕m = m and m⊗1 =
1⊗m = m for each m ∈ M . A semi-homomorphism w.r.t. structure ⟨U(G,φ),⊎,⊔,∅, ∅⟩
and M is a mapping h : U(G,φ) → M that acts like a homomorphism where applicable,
i.e., h(∅) = 0, h(∅) = 1, and for A,B ∈ U(G,φ), h(A ⊎ B) = h(A) ⊕ h(B) if A,B do
not interfere and h(A⊔B) = h(A) ⊗ h(B) if A ∩ B = ∅. An evaluation v is a function
that maps hypergraphs in GR(A) to an evaluation structure M. An evaluation v is an
MS-evaluation if there exists a semi-homomorphism h and a CMS formula φ ∈ ΦR such
that v(G) = h(sat(G,φ)) for every hypergraph G.

A CMS2 problem P on hypergraphs is a combinatorial optimization problem whose
set of feasible solution on each labeled R-interface hypergraph G is sat(G,φ) for some
φ ∈ ΦR. Let X1, . . . ,Xn be the free variables of φ. The input of P consists of a labeled
R-interface hypergraph G, and n cost functions ci : type(Xi) → M for an evaluation
structure M as above and a linearly ordered M . The value c(X) of a solution X ∈
U(G,φ) for P is the sum of the costs of its sets, c(X) =

∑
i∈[n] ci(Xi). Finding the value

of an optimal solution for P on G is equivalent to the evaluation v(G) = min{c(X) |
X ∈ sat(G,φ)}. Since c is linear, v can be written as v(G) = h(sat(G,φ)) with
h(A) = min{c(Y ) | Y ∈ A}, and is therefore an MS-evaluation.

11.2. k-Best Enumeration on Hypergraphs

The basic ideas for k-best enumeration on hypergraphs is the same as for undirected
graphs, using parse trees instead of tree decompositions. In this section, we give the
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required proofs and eventually conclude Chapter 10 by transferring those proofs to the
undirected case.

Lemmas 2.4 to 2.6 from Courcelle and Mosbah [35] are vital for our results, so we
state them here for completeness.

Lemma 11.2 (Lemma 2.4 from [35]). Let R1, R2 ∈ N and R = R1 + R2. For every
φ ∈ ΦR there is a sequence of pairs of formulas (ψ1

1, ψ
1
2), . . . , (ψl

1, ψ
2
2) ∈ ΦR1 × ΦR2

for some l ∈ N such that for every R1-interface hypergraph G1 and every R2-interface
hypergraph G2, we have

sat(G1 ⊕G2, φ) =
⨆

k∈[l]
sat(G1, ψ

k
1 ) ⊎ sat(G2, ψ

k
2 ).

Note that Lemma 11.2 can be applied in full parse trees directly.

Lemma 11.3 (Lemma 2.5 from [35]). For every φ ∈ ΦR and i, j ∈ [k], i < j, there is
a sequence of formulas ψ1, . . . , ψl ∈ ΦR for some l ∈ N such that for every R-interface
hypergraph G, we have

sat(θi,j,R(G), φ) =
⨆

k∈[l]
Vi,k ⊎ sat(G,ψk),

where each Vi,k is a set consisting of exactly one solution, each set of which either is
empty or only contains the i-th designated vertex of G.

Lemma 11.4 (Lemma 2.6 from [35]). For every φ ∈ ΦR, p ∈ N and α : [R] → [p], there
is a formula ψ ∈ Φp such that for every p-interface hypergraph G, we have

sat(σα(G), φ) = sat(G,ψ).

Lemmas 11.3 and 11.4 cannot be applied in full parse trees directly, because we use
the derived binary operators θ′ and σ′ there. However, there are similar decompositions
of ΨR for our derived operators as well, which follows from Lemma 1.2 from Courcelle
and Mosbah [35]. Therefore, we can use the following unified lemma for all operators of
our hypergraph algebra.

Lemma 11.5. Let R1, R2 ∈ N and R = R1 + R2. For every φ ∈ ΦR and every
operator f of the binary hypergraph algebra, there is a sequence of pairs of formulas
(ψ1

1, ψ
1
2), . . . , (ψl

1, ψ
2
2) ∈ ΦR1 × ΦR2 for some l ∈ N such that for every R1-interface

hypergraph G1 and every R2-interface hypergraph G2, we have

sat(f(G1, G2), φ) =
⨆

k∈[l]
sat(G1, ψ

k
1 ) ⊎ sat(G2, ψ

k
2 ). (11.1)

In the situation of Lemma 11.5, we call ψk
i a child formula of φ with respect to the

corresponding operator. For k ∈ [l], we call (ψk
1 , ψ

k
2 ) a pair of child formulas.
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Example 7. Courcelle’s famous theorem about recognizability of graph properties that
are expressible by CMS2 formulas with no free variables can be expressed as an MS-
evaluation. The evaluation structure to use is ⟨B,∧,∨, true, false⟩. The function
h : U(G,φ) → B with h(A) = (|A| > 0) applied to sat(G,φ) tells whether there is
at least one feasible solution for φ. Since φ lacks free variables, sat(G,φ) can either be
∅ or {∅}, the latter meaning that G has the desired property. Note that A⊎B = ∅ iff
A = ∅ or B = ∅, and therefore h(A⊎B) = h(A)∧h(B). Further, A⊔B = ∅ iff A = ∅ and
B = ∅, so h(A⊔B) = h(A) ∨ h(B). Both Feferman and Vaught [45] and Courcelle [33]
proved that this special MS-evaluation can be computed bottom-up on parse trees of any
finitely generated family of hypergraphs. This result is usually referred to as Courcelle’s
theorem. So in a sense, Lemma 11.5 is a generalization of Courcelle’s theorem.

Example 8. In combinatorial minimization with a linear cost function c, the cost of a
solution c(X ⊔Y ) can be computed as c(X) + c(Y ) by the definition of linearity. The
same holds for solutions that comprise multiple sets, so linearity of the cost function
defined for CMS2 problems follows from the linearity of the separate cost functions. The
cost of an optimal solution in a set A⊔B is the minimum of a and b, where a is the cost
of an optimal solution in A and b is the cost of an optimal solution in B. Therefore, using
the MS-evaluation defined via the semi-homomorphism h to ⟨R⊔{∞},+,min, 0,∞⟩ with
h(A) = min{c(X) | X ∈ A}, we can adapt Lemma 10.5 to hypergraphs and then apply
it to all CMS2 problems on hypergraphs. We can apply + and min on two scalars in
constant time, so the value of optimal solutions for CMS2 problems can be computed in
time O(|t|), where t is the relevant hypergraph term.

A semi-homomorphism h to ⟨(R⊔{∞})k,+k,mink, (0, . . . , 0), (∞, . . . ,∞)⟩ for fixed
k ∈ N is suitable, where h(A) is the lexicographically minimal (x1, . . . , xk) with pairwise
distinct X1, . . . , Xk ∈ A and xi = c(Xi) for i ∈ [k]. Again, we can apply +k and mink
on two k-tuples of scalars in constant time. Therefore, the values of the k best solutions
of a CMS2 for any fixed k can be computed in time O(|t|).

Let T be a full parse tree, and R = ⟨R,⊕,⊗,0,1⟩ be an evaluation structure. Consider
an MS-evaluation defined by the semi-homomorphism h. Subsolutions at leaf nodes con-
sist of empty sets or singletons, so applying h on those solutions can be done in constant
time. For inner node u, we may use evaluations of subformulas at child node w1, w2
of u; this is precisely the reason for considering semi-homomorphisms after all. Apply-
ing h directly to Equation (11.1) yields h(sat(G(u), φ) =

⨂
k∈[l] h(sat(G(w1), ψk

1 )) ⊕
h(sat(G(w2), ψk

2 )). Therefore, to evaluate u, we need to apply the ⊕ and ⊗ operator
k times for every formula φ ∈ ΦR, where k only depends on the type of u and φ, and
therefore does not depend on the size of the graph.

Lemma 11.6 (Variant of Proposition 3.1 from [35]). For every MS-evaluation f there
is an algorithm that computes f(v(t)) for every hypergraph term t of bounded width in
time O(η|t|), where η is an upper time bound for computing a⊗ b or a⊕ b.

The operators in Examples 7 and 8, ∧, ∨, +, min, +k and mink (for fixed k) can all be
applied in constant time. In conjunction with Bodlaender’s algorithm [12] to compute
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a tree decomposition graphs with bounded treewidth in linear time, Lemma 9.1 and
Lemma 11.1, this completes all proofs of Section 10.1. Also, we did not restrict CMS2
problems to formulas with only one free set variable. All results above also hold for
multiple free variables, not necessarily of the same type. Therefore, we can compute the
values of the two best solutions (actually, the k best solutions for fixed k) for any CMS2
problem on hypergraphs in linear time. This result extends naturally to undirected
graphs with bounded treewidth via Lemma 11.1.

The last pending proof is the one for Lemma 10.3. This theorem was used by the
pivot finding algorithm. We also used it to show that only DP tables on one path of an
evaluation tree have to be updated to instantiate a subproblem.

Lemma 11.7. For every R-interface hypergraph G, operator f of the binary hypergraph
algebra, φ ∈ ΦR with pairs of child formulas (ψ1

1, ψ
1
2), . . . , (ψl

1, ψ
l
2) w.r.t. f and i, j ∈ [l],

the solution sets sat(G1, ψ
i
1) and sat(G2, ψ

j
2) do not interfere.

Proof. For the ⊕ operator, G1 and G2 have disjoint vertex and hyperedge sets, so no
feature can occur both in a solution for G1 and in a solution for G2. The same is true
for the σ′ operator: its non-proper operand is 0, and the only possible solution for any
formula on v(0) is ∅. The non-proper operand of θ′ is 1, and possible solutions for v(1)
are exactly the elements of the Vi,k from Lemma 11.3, i.e., tuples consisting of empty
sets and 1-element sets containing the i-th designated vertex of the hypergraph. It is
not immediately clear from Lemma 11.3 that solutions for the child formulas ψi cannot
contain the i-th designated vertex, but this follows directly from the construction of
child formulas in the proof of Lemma 2.5 in [35].

Reusing the terminology from Chapter 10 again, a hyperedge e with lab(e) = a is
introduced by the parse tree leaf with type a that corresponds to e. A vertex v is
introduced by the lowest common ancestor of type θ′ of all parse tree nodes u for which
G(u) contains a vertex that represents u. If there is no such θ′ node, there is a unique
parse tree leaf of type 1 that represents v, or of type a such that v is represented by a
one of the vertices of the produced hyperedge, so v is introduced by that leaf.

Corollary 11.8. Let T be the parse tree with root r of a term over the binary hypergraph
algebra. In terms of Lemma 11.5, if x ∈ X for a hypergraph feature x and a set X of
any solution in sat(G(wi), ψk

i ), then x is introduced by a parse tree node in T (wi).

Proof. This is a direct consequence of Lemma 11.7.

The connection between nodes of a tree decomposition introducing an edge e and the
parse tree node that introduces a directed counterpart of e constitutes Lemma 10.3.

Corollary 11.9. If an edge e is introduced by node u ∈ U of a rich binary tree decom-
position (T = (U,F ), b, ι), then it is also introduced by a node in the subtree tu.

Proof. We explicitly created a nodes in tu for all the edges in ι−1(u).
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Lemma 11.5 and the concept of semi-homomorphisms allow us to generalize the 2-CM
algorithm to parse trees. The idea of solution IDs is easily generalized for solutions
with multiple sets, too. The pivot finding algorithm, and the update procedure for
evaluation trees only required Corollary 10.4, which we transfered to parse trees in
Corollary 11.8. Thus, we can use the Hamacher/Queyranne solution space partition
technique in conjunction with persistent evaluation trees again, which establishes the
main theorem of this section.

Theorem 11.10. Let L be a family of finitely generated hypergraphs, and φ ∈ CMS2.
Given k ∈ N and a parse tree T = (U,F ) with bounded width of a hypergraph G ∈ L, the
values of the k best solutions satisfying φ on G can be computed in time O(|U |+k log |U |).
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Epilogue
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12. Conclusion
In this thesis, we consider k-best variants of combinatorial optimization problems on
graphs. In particular, the first part studies about the k shortest simple path problem
in directed, weighted graphs. The importance of this problem has been established by a
variety of research and a great number of algorithms that have already been proposed for
it. However, all those algorithms are derived from the first kSSP algorithm by Yen [105]
that upper-bounded the problem’s complexity by O(kn(m + n logn)). Improvements
were only proposed for the solution of a subproblem, the problem of finding restricted
replacement paths, while leaving the algorithm’s frame unchanged. In contrast, our
algorithm is the first to be based on Eppstein’s algorithm for the problem of finding the
k shortest paths in a directed, weighted graph, omitting the requirement for the paths to
be simple. This problem, kSP, is seemingly less complex, with Eppstein’s algorithm [40]
having a running time of O(m + n logn + k) if the k shortest paths are not required
to be output in increasing order of length, and an additional O(k log k) otherwise. We
describe how to bridge this gap in complexity to achieve a running time equal to that
of Yen’s algorithm. Furthermore, we propose faster reachability checks and online edge
pruning techiques to further speed up the algorithm in practice.

We provide an extensive computational study to compare the proposed algorithm
with state-of-the-art Yen-based algorithms, namely Sedeño-Noda’s algorithm [96] and
Feng’s algorithm [46]. We confirm the superiority of Feng’s algorithm over Sedeño-
Noda’s algorithm on all considered graph classes. More importantly, our algorithm
further significantly improves on the running times of Feng’s algorithm, often by an
order of magnitude. This is especially true for the full-improvements implementation of
our algorithm for sufficiently large path counts.

In the second part of this thesis, we widen our focus to all combinatorial optimization
problems on directed hypergraphs with a fixed set of node and hyperedge labels that can
be expressed in monadic second-order logic with counting. More precisely, we consider
optimization problems where feasible solutions can be characterized by a formula in
this logic. We require that input hypergraphs are generated by a fixed and finite set of
production rules. If the algebra only produces hyperedges with exactly two vertices, the
resulting hypergraphs are effectively graphs with bounded treewidth.

For such hypergraphs, Courcelle’s theorem [33] states that graph properties expressible
in counting monadic second-order logic can be recognized in linear time; this was gener-
alized to said combinatorial optimization problems by Courcelle and Mosbah [35] shortly
after. We generalize their approach to k-best optimization using Hamacher/Queyranne-
style subproblem generation [59]. We introduce a hypergraph algebra with binary oper-
ators only, therefore obtaining binary parse trees, without losing expressive power when
compared with the hypergraph algebra used by Courcelle and Mosbah. After the initial
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evaluation of the formula that characterizes feasible solutions on the whole parse tree, we
use techniques based on persistent data structures to be able to derive evaluation trees of
subproblems. The resulting algorithm matches that of Courcelle and Mosbah in running
time O(n) required to find the initial solution. We compute the value of subsequent
solutions in logarithmic time each, resulting in a total running time of O(n+ log k) for
finding the values of the k best solutions. Further, each solution can be extracted from
the algorithm’s main data structure in linear time in the input size.
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We provide a list of open problems that we encountered during our research on k-best
enumeration, for paths or in general, and that we were not able to answer conclusively.

13.1. Simple Path Enumeration

Our sidetrack-based algorithm for simple path enumeration with edge pruning is already
significantly faster than other state-of-the-art algorithms. However, we believe that there
is still room for practical improvements.

First and foremost, we do not use the full potential of the candidate heap. Recall
that the root of this heap represents the empty sidetrack sequence. Also recall that
candidates on a path in the candidate heap starting in the root are represented by
sidetrack sequences of non-decreasing length. At any given time, our algorithm only
explores a region of the candidate heap where all candidates have the same length. After
extracting a candidate represented by (e1, . . . , er), we discover a candidate (e1, . . . , er, e)
for each sidetrack e whose tail is on the path from the head of er to t. Some of these
extensions represent simple paths, while others do not.

Our aim is to explore larger parts of the candidate heap early. Right before we explore
the abovementioned part of the candidate heap, we perform a depth-first search that lets
us determine whether the above trivial extensions are simple or not in constant time.
For those trivial extensions that are again simple, we can simply repeat the process.
Assume that the trivial extension C = (e1, . . . , er, e) was determined to be simple. We
can perform another depth-first search and in turn discover all trivial extensions of C.
If we repeat this process recursively, we explore a large cycle-free part of the candidate
heap, spanning various sidetrack sequence length. Since we usually find many new
simple candidates, we need a means to prioritize them. We may use another priority
queue where candidates’ priorities are again their length. Note that candidate discovery
has to stop at non-simple candidates, since those require repair including a Dijkstra run.
Running Dijkstra’s algorithm on the whole graph is significantly slower than a depth-
first search on a spanning tree of the graph, which itself is not asymptotically slower
than collecting the sidetracks of a path suffix.

The advantage of this greedy candidate heap exploration approach is an early upper
bound on the cost of the k-th simple path. As soon as k simple candidates have been
found, we obtain our first upper bound, and finding k simple candidates fast is the whole
point of this improvement. Recall that this upper bound can be used to prune edges
and therefore to speedup Dijkstra runs. It is evident from our experiments that this
edge pruning yields a great overall speedup for our sidetrack-based algorithm. As a side

109



13. Open Problems

effect, we can also limit the size of the non-candidate set earlier.

Question: Does the sidetrack-based kSSP algorithm benefit from an early upper bound
found by a more greedy exploration of the candidate heap?

Another potential for improvement is parallelization. The cycle-free area of the candi-
date heap described above is delimited by several non-simple candidates. Assume that
C1 and C2 are two such candidates, and the non-simple path represented by C1 is shorter
than the non-simple path represented by C2. The former is thus extracted earlier from
the non-candidate set, and we compute a new SP tree for the corresponding sub prob-
lem. However, we do not obtain any information about the subproblem induced by C2
when acting on C1. Therefore, we can trivially parallelize the two Dijkstra runs. For
example, we could allocate z− 1 threads, z being the number of processor cores, each of
which computes the SP tree for a distinct subproblem. Since Dijkstra runs are offloaded
to their own threads, we do not have to wait for the first non-simple candidate to be
extracted before we start the first Dijkstra run. Processing a simple candidate is several
orders of magnitude faster than a Dijkstra run on the whole graph, so we will not be able
to avoid blocking when the first non-simple candidate is extracted. However, subsequent
blocking times might very well be evitable.

Parallelization can also be used in conjunction with the cycle-free candidate heap
exploration approach above. Several threads can perform depth-first searches to ad-
vance the cycle-free area for different simple trivial extensions, thus boosting the whole
exploration process.

Question: Does the sidetrack-based kSSP algorithm benefit from parallelization of Di-
jkstra runs or a parallelized greedy cycle-free candidate heap exploration?

Open questions for the more theoretically inclined reader regard the running time
required by a kSSP algorithm per path. All existing algorithms for the problem require an
extra time of O(n(m+n logn)) for every additionally requested simple path in the worst
case, resulting in O(kn(m+ n logn)) total time for k simple paths. The O(m+ n logn)
part is caused by the Dijktra algorithm.

Most interesting would be a split into a preprocessing phase whose running time only
depends (polynomially) on the size of the graph, and a query phase. The k simple paths
would be enumerated in the query phase, so its running time has to depend on k.

Question: Is it possible to solve kSSP in time p(n) + o(kn(m + n logn)), where p is a
polynomial function?

In Part III, we demonstrated that kSSP can be solved in time O(n + k logn) if the
treewidth of the input graph is bounded. Tree-decomposable graphs, however, are not
the only class of graphs that allow for faster algorithms. Another obvious example are
directed acyclic graphs, where shortest paths can be computed in linear time. The
running time of any existing kSSP algorithm is thus reduced to O(knm) on such graphs.
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13.2. K-Best Enumeration on Tree-Decomposable Graphs

Question: Are there other interesting graph classes that allow for allow for faster short-
est path algorithms, or the abovementioned preprocessing-query split, or a more
efficient storage of shortest path trees, or an efficient adoption of an SP tree of the
graph to an SP tree of a subgraph?

Finally, we turn our attention to opportunities to apply our algorithms in practice.
Our experimental study demonstrated that the sidetrack-based approach is to be pre-
ferred if kSSP has to be solved directly. However, enumerating good solutions can also
appear as a subproblem. Specifically, enumerating paths is one of the two most common
approaches for the gap-closing phase of the constrained shortest path problem (CSP). In
the past, the enumeration approach proved inferior to the alternative label propagation
approach known from bicriterial path enumeration. Due to the advent of our efficient
kSSP algorithm, we require a reevaluation of this relation.

Question: Should we still prefer label setting algorithms over path enumeration algo-
rithms for the gap-closing phase of state-of-the-art CSP algorithms?

The gap-closing phase is preceded by a strong reduction test phase. A reduction test
checks whether a vertex or an edge can possibly be part of an optimal solution. Any
graph feature that cannot contribute to optimal solutions can simply be removed from
the graph. Strong reduction tests for CSP solve Lagrangian relaxations of subproblems
that force graph features to be part of the solution. The remaining graph might exhibit
a structure that lead to subpar performance of existing kSSP algorithm, but does not
slow down the sidetrack-based algorithm with pruning significantly. We already saw this
behaviour on topology graphs in Section 8.2.4.

Question: Do subgraphs resulting from reduction test pruning in CSP show a structure
that allows for further optimization of the sidetrack-based kSSP algorithm, or
kSSP algorithms in general?

13.2. K-Best Enumeration on Tree-Decomposable Graphs
There is not much room for improvement on the theoretical side of solution enumera-
tion for CMS2 problems on tree-decomposable graphs. The optimal solution cannot be
computed in sublinear time for all these problems. For example, the problem of finding
the cheapest edge is an CMS2 problem, and sabotaging an algorithm for this problem
that does not consider every edge is straightforward. The enumeration phase cannot be
solved faster, either. A path graph with n vertices has treewidth 1, and enumerating all
solutions for the cheapest-edge problem in increasing order cannot be done in o(n logn)
time, since this is equivalent to sorting.

Recall that the size of the set ΦR of formulas we have to compute solutions for depends
on the problem in consideration and on the treewidth. Grohe and Frick [52] proved that
this size cannot be bounded by any elementary function in the treewidth and the length
of the formula that characterizes feasible solutions unless P = NP. We already saw that
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the length of a formula that characterizes simple paths between two designated vertices
is quite long in Section 9.1. However, there are still problems for which ΦR is small. The
minimum weight three-edge matching toy problem in Example 5 only requires 9w + 1
subformulas, where w is the upper bound on the treewidth. The similar cheapest-edge
problem (equivalently, the minimum weight one-edge matching problem) only requires
two subformulas, specifically one for the original problem and one that characterizes
empty solutions. Those are still toy problems.

Question: Are there interesting graph problems for which we can derive practically
relevant algorithms from our solution enumeration approach?
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